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INTRODUCTION

This monograph is motivated by a fundamental rigidity problem in
Riemannian geometry: determine whether the metric of a given Rieman-
nian symmetric space of compact type can be characterized by means of the
spectrum of its Laplacian. An infinitesimal isospectral deformation of the
metric of such a symmetric space belongs to the kernel of a certain Radon
transform defined in terms of integration over the flat totally geodesic tori
of dimension equal to the rank of the space. Here we study an infinitesi-
mal version of this spectral rigidity problem: determine all the symmetric
spaces of compact type for which this Radon transform is injective in an
appropriate sense. We shall both give examples of spaces which are not
infinitesimally rigid in this sense and prove that this Radon transform is
injective in the case of most Grassmannians.

At present, it is only in the case of spaces of rank one that infinitesimal
rigidity in this sense gives rise to a characterization of the metric by means
of its spectrum. In the case of spaces of higher rank, there are no analogues
of this phenomenon and the relationship between the two rigidity problems
is not yet elucidated. However, the existence of infinitesimal deformations
belonging to the kernel of the Radon transform might lead to non-trivial
isospectral deformations of the metric.

Here we also study another closely related rigidity question which
arises from the Blaschke problem: determine all the symmetric spaces for
which the X-ray transform for symmetric 2-forms, which consists in inte-
grating over all closed geodesics, is injective in an appropriate sense. In
the case of spaces of rank one, this problem coincides with the previous
Radon transform question. The methods used here for the study of these
two problems are similar in nature.

Let (X, g) be a Riemannian symmetric space of compact type. Con-
sider a family of Riemannian metrics {gt} on X, for |t| < ε, with g0 = g.
The family {gt} is said to be an isospectral deformation of g if the spec-
trum of the Laplacian of the metric gt is independent of t. We say that
the space (X, g) is infinitesimally spectrally rigid (i.e., spectrally rigid to
first-order) if, for every such isospectral deformation {gt} of g, there is a
one-parameter family of diffeomorphisms {ϕt} of X such that gt = ϕ∗

t g to
first-order in t at t = 0, or equivalently if the symmetric 2-form, which is
equal to the infinitesimal deformation d

dt gt|t=0 of {gt}, is a Lie derivative
of the metric g.
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In [35], Guillemin introduced a criterion for infinitesimal spectral rigid-
ity which may be expressed as follows. We say that a symmetric p-form u
on X satisfies the Guillemin condition if, for every maximal flat totally
geodesic torus Z contained in X and for all parallel vector fields ζ on Z,
the integral ∫

Z

u(ζ, ζ, . . . , ζ) dZ

vanishes, where dZ is the Riemannian measure of Z. A symmetric 2-
form, which is a Lie derivative of the metric, always satisfies the Guillemin
condition. Guillemin proved that a symmetric 2-form, which is equal to the
infinitesimal deformation of an isospectral deformation of g, satisfies the
Guillemin condition. We say that the space (X, g) is rigid in the sense of
Guillemin if the following property holds: the only symmetric 2-forms on X
satisfying the Guillemin condition are the Lie derivatives of the metric g.
Thus if the symmetric space X is rigid in the sense of Guillemin, it is
infinitesimally spectrally rigid.

We are interested in determining which symmetric spaces of compact
type are infinitesimally spectrally rigid; in particular, we wish to find those
spaces which are rigid in the sense of Guillemin. We show that an arbitrary
non-trivial product of irreducible symmetric spaces of compact type, which
are not equal to Lie groups, is not rigid in the sense of Guillemin. Conse-
quently, we shall restrict our attention to irreducible spaces. We shall also
see below that, in order for an irreducible space to be rigid in the sense of
Guillemin, it must be equal to its adjoint space.

Although much work has been done on the problem of isospectrality,
there are still very few results for positively curved spaces. All the pre-
viously known spectral rigidity results for symmetric spaces with positive
curvature concern spaces of rank one. In fact, we will see below that the
real projective space RP

n, with n ≥ 2, is spectrally rigid; on the other
hand, for 2 ≤ n ≤ 6, the spectral rigidity of the sphere Sn was established
by Berger and Tanno (see [4] and [51]). The Guillemin rigidity of the
spaces of rank one (i.e., the projective spaces) which are not spheres was
first proved by Michel [45] for the real projective spaces RP

n, with n ≥ 2,
and by Michel [45] and Tsukamoto [53] for the other projective spaces. As
we shall explain below, spectral rigidity results for these other projective
spaces can be derived from their Guillemin rigidity by means of Kiyohara’s
work [38].

In contrast to the case of negatively curved spaces, at present the
problem of isospectrality for positively curved spaces does not admit any
truly effective general approach. While the study of the symmetric spaces
considered here requires a case by case analysis, we have nevertheless been
able to develop criteria for rigidity which can be applied to numerous sit-
uations. Several fundamental aspects of differential geometry – the theory
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of overdetermined partial differential equations, deformation theory of Ein-
stein manifolds, harmonic analysis on symmetric spaces of compact type,
the geometry of the Grassmannians and their totally geodesic submanifolds
– enter into the elaboration of these criteria and their application to the
various spaces. Many of the results, which we present in the process, are of
considerable interest in their own right outside the context of deformation
theory and spectral rigidity.

In this monograph, we introduce new methods for studying the Guil-
lemin rigidity of irreducible symmetric spaces of compact type. The theory
of linear overdetermined partial differential equations of [28] provides us
with a fundamental ingredient of these methods, namely a certain differ-
ential operator which allows us to encode properties of the space under
consideration. Quite remarkably, these methods lead us to a criterion for
the Guillemin rigidity of a space in which neither this operator nor the
theory of overdetermined partial differential equations appear. We apply
this criterion to the Grassmannians of rank ≥ 2 and we determine all those
which are rigid in the sense of Guillemin. In fact, we extend and com-
plete our previous work on the real Grassmannians of rank 2 undertaken
in [23]. Harmonic analysis on homogeneous spaces and results concerning
the infinitesimal deformations of Einstein metrics also play an important
role here.

Let K be a division algebra over R (i.e., K is equal to R, C or the
quaternions H). For m,n ≥ 1, the Grassmannian GK

m,n of all K-planes
of dimension m in K

m+n is a symmetric space of rank min(m,n). The
Grassmannians are irreducible and of compact type, with the exception
of GR

1,1 = S1 and of GR

2,2 whose universal covering space is S2 × S2. The
Grassmannian GK

1,n is the projective space KP
n. The main result presented

in this monograph may be stated as follows:

Theorem 1. Let K be a division algebra over R and m,n ≥ 1 be
given integers. The Grassmannian GK

m,n is rigid in the sense of Guillemin
if and only if m �= n.

All the known examples of spaces which are rigid in the sense of
Guillemin are described in this theorem. When m or n is equal to 1,
Theorem 1 gives us the results of Michel and Tsukamoto mentioned above
concerning the projective spaces. This theorem implies that the Grassman-
nians GK

m,n, with m,n ≥ 2 and m �= n, are infinitesimally spectrally rigid,
and provides us with the first examples of symmetric spaces of compact
type of arbitrary rank > 1 having this property.

Let (X, g) be a Riemannian symmetric space of compact type. The
symmetric space X is a homogeneous space of a compact semi-simple Lie
group G, which acts on X by isometries. The space Ξ of all maximal flat
totally geodesic tori of X is a homogeneous space of G. The maximal
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flat Radon transform of X considered by Grinberg in [33] and [34] is a
G-equivariant linear mapping from the space of functions on X to the
space of functions on Ξ; it assigns to a function f on X the function
f̂ on Ξ whose value at a torus Z of Ξ is the integral of f over Z. In
view of Guillemin’s criterion, we define a maximal flat Radon transform
for symmetric p-forms, which is a G-equivariant linear mapping I from
the space of symmetric p-forms on X to the space of sections of a certain
homogeneous vector bundle over Ξ. Its kernel consists of those symmetric
p-forms on X satisfying the Guillemin condition. On functions, it coincides
with the one considered by Grinberg. Determining whether the space X is
rigid in the sense of Guillemin may be viewed as a problem concerning this
Radon transform for symmetric 2-forms.

We recall that the adjoint space of X is the symmetric space which
admits X as a Riemannian cover and which is itself not a Riemannian
cover of another symmetric space. For example, the adjoint space of the
n-sphere Sn is the real projective space RP

n. For these spaces of rank
one, the maximal flat tori are the closed geodesics. The kernel of the
maximal flat Radon transform for functions on Sn is the space of all odd
functions on Sn. In fact, this Radon transform is injective when restricted
to the even functions on Sn; this is equivalent to the classic fact that
the Radon transform for functions on RP

n is injective. In [33] and [34],
Grinberg generalized these results and proved that the maximal flat Radon
transform for functions on X is injective if and only if the space X is equal
to its adjoint space.

Suppose that X possesses an involutive isometry σ which has no fixed
points, and that the quotient of X by the group of isometries of order 2
generated by σ is also a symmetric space. Then X is not equal to its adjoint
space. In this case, it is easily seen that an arbitrary odd symmetric p-form
u on X (i.e., which satisfies the relation σ∗u = −u) satisfies the Guillemin
condition, and we can construct odd symmetric 2-forms which are not Lie
derivatives of the metric. It follows directly that the maximal flat Radon
transform for functions on X is not injective and that X is not rigid in the
sense of Guillemin. In particular, this situation applies to the sphere Sn

together with the anti-podal involution.
We now suppose that the space X is irreducible. If X is not isometric

to a sphere and is rigid in the sense of Guillemin, we show that the maximal
flat Radon transform for functions on X is injective. Since the sphere Sn is
not rigid in this sense, from Grinberg’s result we infer that, if the irreducible
symmetric space X is rigid in the sense of Guillemin, it must necessarily
be equal to its adjoint space. The Grassmannian GK

m,n, with m,n ≥ 1, is
equal to its adjoint space if and only if m �= n. Therefore by Theorem 1, we
see that a Grassmannian, which is not flat, is rigid in the sense of Guillemin
if and only if it is equal to its adjoint space.
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We now consider the Grassmannian GK

n,n, with n ≥ 2. This space
possesses an involutive isometry Ψ which sends an n-plane of K

2n into its
orthogonal complement. The quotient space ḠK

n,n of GK

n,n by the group of
isometries generated by Ψ is a symmetric space of rank n, which is equal
to the adjoint space of GK

n,n. According to the discussion which appears
above, the space GK

n,n is not rigid in the sense of Guillemin.
We observe that ḠR

2,2 is isometric to the product RP
2 × RP

2; hence
this space is not rigid in the sense of Guillemin. All the other spaces ḠK

n,n

are irreducible. On the other hand, the space ḠC

2,2, which is isometric to
the Grassmannian GR

2,4, and the space ḠH

2,2 are rigid.
The following theorem describes our results concerning the Guillemin

rigidity of these spaces:

Theorem 2. Let n0 ≥ 3 be a given integer.
(i) If the symmetric space ḠR

n0,n0
is rigid in the sense of Guillemin,

so are all the spaces ḠR

n,n, with n ≥ n0.

(ii) If the symmetric space ḠC

n0,n0
is rigid in the sense of Guillemin,

so are all the spaces ḠK

n,n, with n ≥ n0 and K = C or H.

In conjunction with the Blaschke conjecture, Michel had previously
introduced another notion of rigidity for symmetric spaces; it coincides with
Guillemin rigidity for spaces of rank one. We say that a symmetric p-form
on an arbitrary symmetric space X satisfies the zero-energy condition if all
its integrals over the closed geodesics of X vanish. The spaceX is said to be
infinitesimally rigid if the only symmetric 2-forms on X satisfying the zero-
energy condition are the Lie derivatives of the metric. The infinitesimal
rigidity of a flat torus of dimension ≥ 2 was established by Michel in [46].

The canonical metric g of a projective space X equal to KP
n, with

n ≥ 2, or to the Cayley plane is a Cπ-metric, i.e., a metric all of whose
geodesics are closed and of the same length π. An important question
which arises from the Blaschke conjecture consists in determining whether
the metric g is the only Cπ-metric of X, up to an isometry. Green and
Berger have answered this question in the affirmative in the case of the
real projective spaces (see [5]). The infinitesimal deformation of g by Cπ-
metrics satisfies the zero-energy condition. Thus the infinitesimal rigidity
of X may be interpreted as the rigidity to first-order for the deformation
problem of g by Cπ-metrics. In [11], Duistermaat and Guillemin proved
that a metric g′ on X, whose spectrum is equal to the spectrum of the
metric g, is a Cπ-metric. In the case of the real projective space RP

n, with
n ≥ 2, the positive resolution of the Blaschke conjecture then implies that
the metric g′ is isometric to the metric g and, therefore, that this space
is spectrally rigid. For the other projective spaces, which are not spheres,
in [38] Kiyohara gave a partial answer to our question; in fact, he used
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the infinitesimal rigidity of X in order to show that a Cπ-metric g′ on X,
which is sufficiently close to g, is isometric to g. In all cases, Kiyohara’s
work can be combined with the above-mentioned result of Duistermaat and
Guillemin to give us the following spectral rigidity result: a metric g′ on X,
whose spectrum is equal to that of g and which is sufficiently close to g, is
isometric to g.

We now return to the study of the symmetric spaces of compact type
of arbitrary rank. We show that a space which is rigid in the sense of
Guillemin is also infinitesimally rigid. Thus Theorem 1 implies that the
Grassmannian GK

m,n, with m,n ≥ 1 and m �= n, is infinitesimally rigid.
The real Grassmannian G̃R

m,n of oriented m-planes in R
m+n is the

simply-connected double cover of the Grassmannian GR

m,n. In fact, when
m �= n, its adjoint space is the Grassmannian GR

m,n. We may identify the
Grassmannian G̃R

1,n with the sphere Sn. On the other hand, the Grass-
mannian G̃R

2,n, with n ≥ 2, is isometric to the complex quadric Qn, which
is a hypersurface of CP

n+1.
All the known results concerning the infinitesimal rigidity of irreducible

symmetric spaces are given by the following:

Theorem 3. Let m,n ≥ 1 be given integers.
(i) Suppose that m + n > 2. Then the real Grassmannian G̃R

m,n is
infinitesimally rigid if and only if m,n ≥ 2 and m+ n ≥ 5.

(ii) If K is equal to R or C, the Grassmannian GK

m,n is infinitesimally
rigid if and only if m+ n > 2.

(iii) If (m,n) �= (1, 1) and (2, 2), the Grassmannian GH

n,n is infinitesi-
mally rigid.

Theorem 3 tells us that any Grassmannian, which is not isometric to a
sphere, or to a product of spheres, or to GH

2,2, is infinitesimally rigid. The
infinitesimal rigidity of such a Grassmannian, as long as it is not isometric
to a projective space or to the Grassmannian GR

2,2, is proved by means of
the methods used to demonstrate Theorem 1.

We now present the various methods for proving the Guillemin rigidity
or the infinitesimal rigidity of an irreducible symmetric space of compact
type. The first one requires techniques based on the harmonic analysis on
homogeneous spaces of compact Lie groups. We used it in [14] to establish
the infinitesimal rigidity of the complex projective space CP

n, with n ≥ 2,
and in [23] to prove the Guillemin rigidity of the Grassmannian GR

2,3. The
proofs of the infinitesimal rigidity of the complex quadric Q3 of dimen-
sion three, given in Chapter VI, and of the Grassmannian GR

2,2, given in
Chapter X, are similar in nature.

In [13], the theory of linear overdetermined partial differential equa-
tions of [28] is used to construct the resolution of the sheaf of Killing vector
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fields on a symmetric space. This resolution plays a fundamental role in
our study of rigidity; in particular, one of its differential operators can be
used to encode properties of families of totally geodesic submanifolds of
our space and the prior knowledge of the rigidity of these submanifolds.

One approach to infinitesimal rigidity, which appears in [18], relies on
a resolution of the sheaf of Killing vector fields and leads to a new proof of
the infinitesimal rigidity of the complex projective space CP

n, with n ≥ 2.
For this space, this approach requires a minimal use of harmonic analysis; it
also allows us to deduce the infinitesimal rigidity of the complex quadricQn,
with n ≥ 5, from that of its totally geodesic submanifolds isometric to the
complex projective plane CP

2 or to a flat 2-torus.
In Section 8 of Chapter II, we introduce a new approach to our rigidity

problems which is partially inspired by the one developed in [22] for the
study of the complex quadric Q4 of dimension four. We give criteria both
for the Guillemin rigidity and for the infinitesimal rigidity of an irreducible
space X of compact type which exploit the fact that X is an Einstein
manifold. The relationship between the resolution of the sheaf of Killing
vector fields and the finite-dimensional space E(X) of infinitesimal Einstein
deformations of X introduced by Berger and Ebin [3] provides us with one
of the main ingredients of the proofs of these criteria. We still require some
results from harmonic analysis in the proofs of these criteria, but only in
a limited way. Also the fact that the Lichnerowicz Laplacian acting on
the space of symmetric forms is equal to a Casimir operator, which was
proved by Koiso in [41], plays an important role. Although the theory of
overdetermined partial differential equations enters in an essential way into
the proofs of our criteria, it should again be emphasized that it does not
appear in any form in their final statements.

We apply our criteria to the Grassmannians of rank ≥ 2 in order to
prove Theorems 1 and 3 for these spaces. On such a Grassmannian which
is equal to its adjoint space, the injectivity of the Radon transform for
functions on the real projective plane is used to prove that the Guillemin
condition is hereditary with respect to certain totally geodesic submani-
folds. For our proofs, we also require the Guillemin rigidity of complex
projective plane CP

2 and the real Grassmannian GR

2,3. Moreover, in the
case of the complex Grassmannians, we must show that an infinitesimal
Einstein deformation satisfying the Guillemin condition vanishes. This last
fact, which is always a necessary condition for Guillemin rigidity, is proved
in Chapter VIII for the Grassmannians GC

m,n, with m �= n, by computing
the integrals of specific symmetric 2-forms over certain closed geodesics.

In Chapters VII and VIII, we introduce an averaging process which as-
signs to a symmetric p-form on the space ḠK

n+1,n+1, with n ≥ 2 and K = R

or C, a class of symmetric p-forms on the space ḠK

n,n. This process has the
following property, which enables it to play an essential role in the proof
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of Theorem 2: if the p-form u on ḠK

n+1,n+1 satisfies the Guillemin condi-
tion, so do all the p-forms on ḠK

n,n associated to u. In fact, this process
is used to show that an infinitesimal Einstein deformation of the complex
Grassmannian GC

n,n satisfying the Guillemin condition vanishes. This last
assertion and several others concerning the spaces GK

n,n are proved by in-
duction on n. To demonstrate Theorem 2, we also exploit to a considerable
extent the methods which enter into the proofs of our rigidity criteria of
Chapter II.

The study of 1-forms on the Grassmannians satisfying the Guillemin
condition is of independent interest. Clearly, an exact 1-form always satis-
fies this condition. In fact, we have the following converse:

Theorem 4. Let K be a division algebra over R. Let X be a sym-
metric space equal to one of the following spaces:

(i) GK

m,n, with m+ n > 1 and m �= n.

(ii) ḠK

n,n, with n ≥ 2 and K = C or H.
Then a 1-form on X satisfying the Guillemin condition is exact.

By means of our methods, we are able to give elementary and direct
proofs of Grinberg’s result concerning the maximal flat Radon transform
for functions on all the irreducible symmetric spaces of compact type con-
sidered above that are equal to their adjoint spaces.

In this monograph, all the known results concerning our rigidity prob-
lems for symmetric spaces, which are either of compact type, or flat tori,
or products of such manifolds, are presented in a unified way. For the
irreducible spaces, we give proofs which either are complete or omit only
certain technical details.

We wish to point out that, in Chapters I and III, several results and
formulas of Riemannian geometry are presented or derived in a particularly
simple way. Moreover, the result concerning conformal Killing vector fields
on Einstein manifolds given by Proposition 1.6 is new; it is required for the
proof of Proposition 2.16. The latter proposition leads us to the necessary
condition for Guillemin rigidity of an irreducible symmetric space described
above.

We now proceed to give a brief description of the contents of the chap-
ters of this monograph. In Chapter I, we introduce various differential
operators on a Riemannian manifold (X, g) arising from the curvature and
a complex of differential operators related to the Killing vector fields, which
includes the differential operator mentioned above. When X is a compact
Einstein manifold, the space E(X) of infinitesimal Einstein deformations
of the metric g contains the cohomology of this complex. In [41] and [42],
Koiso determined the irreducible symmetric spaces X of compact type for
which the space E(X) vanishes; this result gives us the exactness of this
complex for these spaces. The study of the Radon transforms, the tools
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derived from harmonic analysis on symmetric spaces and our criteria for
rigidity are to be found in Chapter II. In the following chapter, we present
the infinitesimal rigidity results for flat tori and the projective spaces, which
are not equal to spheres. In particular, in the case of the real projective
spaces, we give the proof of their infinitesimal rigidity due to Bourguignon
(see [5]) and a variant of the one due to Michel [45].

In Chapter IV, we study the differential geometry of real Grassmanni-
ans G̃R

m,n and GR

m,n and view them as symmetric spaces and homogeneous
spaces of the orthogonal group SO(m + n). We show that the Guillemin
condition for forms on the Grassmannian GR

m,n, with m �= n, is hereditary
with respect to certain totally geodesic submanifolds.

Chapter V is devoted to the geometry of the complex quadric. We view
this quadric Qn of dimension n as a hypersurface of CP

n+1, develop the
local formalism of Kähler geometry on this space and describe its totally
geodesic submanifolds. We also identify the quadric Qn with the Grass-
mannian G̃R

2,n of oriented 2-planes in R
n+2 and use the harmonic analysis

on Qn viewed as a homogeneous space of SO(n+ 2) to examine the space
of complex symmetric 2-forms on Qn. The various proofs of the infinites-
imal rigidity of the complex quadric Qn, with n ≥ 3, and the proof of the
Guillemin rigidity of the Grassmannian GR

2,n, with n ≥ 3, are presented in
Chapter VI.

In Chapter VII, we give the proofs of the rigidity of the real Grass-
mannians of rank ≥ 3 and introduce the averaging process for symmetric
forms on GR

n,n, which leads to the result given by Theorem 2 for the adjoint
spaces ḠR

n,n. In Chapter VIII, we study the differential geometry of the
complex Grassmannians GC

m,n and we view them as symmetric spaces and
homogeneous spaces. We introduce certain explicit functions and symmet-
ric 2-forms on these spaces, which enter into our analysis of the space of
infinitesimal Einstein deformations of these Grassmannians. We also de-
fine the averaging process for symmetric forms on the Grassmannian GC

n,n,
which is used here to prove properties of its space of infinitesimal Einstein
deformations and in the next chapter to study the rigidity of its adjoint
space ḠC

n,n. Chapter IX is mainly devoted to the proofs of the rigidity of
the complex and the quaternionic Grassmannians of rank ≥ 2.

In Chapter X, we prove the non-rigidity of the product of irreducible
symmetric spaces, which we mentioned above. We also present results
from [19] concerning the geometry of products of symmetric spaces and
their infinitesimal rigidity. The study of the real Grassmannian GR

2,2 is to
be found here.
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CHAPTER I

SYMMETRIC SPACES AND EINSTEIN MANIFOLDS

§1. Riemannian manifolds

Let X be a differentiable manifold of dimension n, whose tangent and
cotangent bundles we denote by T = TX and T ∗ = T ∗

X , respectively. Let
C∞(X) be the space of complex-valued functions on X. By

⊗k
E, SlE,∧j

E, we shall mean the k-th tensor product, the l-th symmetric product
and the j-th exterior product of a vector bundle E over X, respectively.
We shall identify SkT ∗ and

∧k
T ∗ with sub-bundles of

⊗k
T ∗ by means of

the injective mappings

SkT ∗ →⊗k
T ∗,

∧k
T ∗ →⊗k

T ∗,

sending the symmetric product β1 · . . . · βk into
∑
σ∈Sk

βσ(1) ⊗ · · · ⊗ βσ(k)

and the exterior product β1 ∧ · · · ∧ βk into
∑
σ∈Sk

sgnσ · βσ(1) ⊗ · · · ⊗ βσ(k),

where β1, . . . , βk ∈ T ∗ and Sk is the group of permutations of {1, . . . , k}
and sgnσ is the signature of the element σ of Sk. If α, β ∈ T ∗, the
symmetric product α · β is identified with the element α ⊗ β + β ⊗ α
of
⊗2

T ∗. If ξ ∈ T , h ∈ S2T ∗, let ξ h be the element of T ∗ defined by

(ξ h)(η) = h(ξ, η),

for η ∈ T . If h ∈ S2T ∗, we denote by

h� : T → T ∗

the mapping sending ξ ∈ T into ξ h. If h is non-degenerate, then h� is
an isomorphism, whose inverse will be denoted by h�.

Let E be a vector bundle over X; we denote by EC its complexification,
by E the sheaf of sections of E over X and by C∞(E) the space of global
sections of E over X. We write SlEC and

∧j
EC for the complexifications

of SlE and
∧j
E. We consider the vector bundle Jk(E) of k-jets of sections

of E, whose fiber at x ∈ X is the quotient of the space C∞(E) by its
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subspace consisting of the sections of E which vanish to order k + 1 at x.
If s is a section of E over X, the k-jet jk(s)(x) of s at x ∈ X is the
equivalence class of s in Jk(E)x. The mapping x 
→ jk(s)(x) is a section
jk(s) of Jk(E) over X. We denote by πk : Jk+l(E) → Jk(E) the natural
projection sending jk+l(s)(x) into jk(s)(x), for x ∈ X. We shall identify
J0(E) with E and we set Jk(E) = 0, for k < 0. The morphism of vector
bundles

ε : SkT ∗ ⊗ E → Jk(E)

determined by

ε(((df1 · . . . · dfk) ⊗ s)(x)) = jk

((∏k
i=1fi

))
(x),

where f1, . . . , fk are real-valued functions on X vanishing at x ∈ X and s
is a section of E over X, is well-defined since the function

∏k
i=1 fi vanishes

to order k − 1 at x. One easily verifies that the sequence

0 → SkT ∗ ⊗ E
ε−−→ Jk(E)

πk−1−−→ Jk−1(E) → 0

is exact, for k ≥ 0.
Let E and F be vector bundles over X. If D : E → F is a differential

operator of order k, there exists a unique morphism of vector bundles

p(D) : Jk(E) → F

such that
Ds = p(D)jk(s),

for all s ∈ E . The symbol of D is the morphism of vector bundles

σ(D) : SkT ∗ ⊗ E → F

equal to p(D) ◦ ε. If x ∈ X and α ∈ T ∗
x , let

σα(D) : Ex → Fx

be the linear mapping defined by

σα(D)u =
1
k!
σ(D)(αk ⊗ u),

where u ∈ Ex and αk denotes the k-th symmetric product of α. We say
that D is elliptic if, for all x ∈ X and α ∈ T ∗

x , the mapping σα(D) is
injective. If D is elliptic and X is compact, then it is well-known that the
kernel of D : C∞(E) → C∞(F ) is finite-dimensional.
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If ξ is a vector field on X and β is a section of
⊗k

T ∗ over X, we
denote by Lξβ the Lie derivative of β along ξ. For x ∈ X , let ρ denote the
representation of the Lie algebra (T ∗⊗T )x on Tx and also the representation
induced by ρ on

⊗k
T ∗
x . If ξ is an element of Tx satisfying ξ(x) = 0,

and if u is the unique element of (T ∗ ⊗ T )x determined by the relation
ε(u) = j1(ξ)(x), then we have

ρ(u)η(x) = −[ξ, η](x),

for all η ∈ Tx, and

(1.1) ρ(u)β(x) = −(Lξβ)(x),

for β ∈⊗kT ∗
x .

We endow X with a Riemannian metric g and we associate various
objects to the Riemannian manifold (X, g). The mappings g� : T → T ∗,
g� : T ∗ → T are the isomorphisms determined by the metric g; we shall
sometimes write ξ� = g�(ξ) and α� = g�(α), for ξ ∈ T and α ∈ T ∗. The
metric g induces scalar products on the vector bundle

⊗p
T ∗⊗⊗q

T and its
sub-bundles. We denote by dX the Riemannian measure of the Riemannian
manifold (X, g). If X is compact, the volume Vol (X, g) of (X, g) is equal
to the integral

∫
X
dX.

Let E and F be vector bundles over X endowed with scalar products
and D : E → F be a differential operator of order k. We consider the scalar
products on C∞(E) and C∞(F ), defined in terms of these scalar products
on E and F and the Riemannian measure of X, and the formal adjoint
D∗ : F → E of D, which is a differential operator of order k. If D is elliptic
and X is compact, then DC∞(E) is a closed subspace of C∞(F ) and we
have the orthogonal decomposition

(1.2) C∞(F ) = DC∞(E) ⊕ {u ∈ C∞(F ) | D∗u = 0 }.

Let B = BX be the sub-bundle of
∧2
T ∗ ⊗ ∧2

T ∗ consisting of those
tensors u ∈ ∧2

T ∗ ⊗∧2
T ∗ which satisfy the first Bianchi identity

u(ξ1, ξ2, ξ3, ξ4) + u(ξ2, ξ3, ξ1, ξ4) + u(ξ3, ξ1, ξ2, ξ4) = 0,

for all ξ1, ξ2, ξ3, ξ4 ∈ T . It is easily seen that, if an element u of B satisfies
the relation

u(ξ1, ξ2, ξ1, ξ2) = 0,

for all ξ1, ξ2 ∈ T , then u vanishes. We consider the morphism of vector
bundles

τB : S2T ∗ ⊗ S2T ∗ → B
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defined by

(τBu)(ξ1, ξ2, ξ3, ξ4) = 1
2{u(ξ1, ξ3, ξ2, ξ4) + u(ξ2, ξ4, ξ1, ξ3)

− u(ξ1, ξ4, ξ2, ξ3) − u(ξ2, ξ3, ξ1, ξ4)},

for all u ∈ S2T ∗ ⊗ S2T ∗ and ξ1, ξ2, ξ3, ξ4 ∈ T ; it is well-known that this
morphism is an epimorphism (see Lemma 3.1 of [13]). Let

σ : T ∗ ⊗B → ∧3
T ∗ ⊗∧2

T ∗

be the restriction of the morphism of vector bundles

T ∗ ⊗∧2
T ∗ ⊗∧2

T ∗ → ∧3
T ∗ ⊗∧2

T ∗,

which sends α⊗ θ1 ⊗ θ2 into (α ∧ θ1)⊗ θ2, for α ∈ T ∗, θ1, θ2 ∈ ∧2
T ∗. The

kernel H of this morphism σ is equal to the sub-bundle of T ∗⊗B consisting
of those tensors v ∈ T ∗ ⊗B which satisfy the relation

v(ξ1, ξ2, ξ3, ξ4, ξ5) + v(ξ2, ξ3, ξ1, ξ4, ξ5) + v(ξ3, ξ1, ξ2, ξ4, ξ5) = 0,

for all ξ1, ξ2, ξ3, ξ4, ξ5 ∈ T .
Let

Tr = Trg = TrX : S2T ∗ → R, Tr = Trg :
∧2
T ∗ ⊗∧2

T ∗ →⊗2
T ∗

be the trace mappings defined by

Trh =
n∑
j=1

h(tj , tj), (Tru)(ξ, η) =
n∑
j=1

u(tj , ξ, tj , η),

for h ∈ S2T ∗
x , u ∈ (

∧2
T ∗ ⊗ ∧2

T ∗)x and ξ, η ∈ Tx, where x ∈ X and
{t1, . . . , tn} is an orthonormal basis of Tx. It is easily seen that

TrB ⊂ S2T ∗.

We denote by S2
0T

∗ the sub-bundle of S2T ∗ equal to the kernel of the trace
mapping Tr : S2T ∗ → R and by B0 the sub-bundle of B equal to the kernel
of the trace mapping Tr : B → S2T ∗.

We consider the morphism of vector bundles

τ̂B : S2T ∗ → B
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defined by
τ̂B(h) = τB(h⊗ g),

for h ∈ S2T ∗. If h ∈ S2T ∗, we easily verify that

(1.3) Tr τ̂B(h) = 1
2 ((Trh) · g + (n− 2)h),

and so we have
Tr · Tr τ̂B(h) = (n− 1)Trh.

When n ≥ 3, from the preceding formulas we infer that the morphism τ̂B
is injective, that the morphism Tr : B → S2T ∗ is surjective and that B0 is
the orthogonal complement of τ̂B(S2T ∗) in B.

We introduce various differential operators and objects associated with
the Riemannian manifold (X, g). First, let ∇ = ∇g be the Levi-Civita
connection of (X, g). If f is a real-valued function on X, we denote by
Hess f = ∇df the Hessian of f . If d∗ :

∧jT ∗ → ∧j−1T ∗ is the formal
adjoint of the exterior differential operator d :

∧j−1T ∗ → ∧jT ∗, we con-
sider the de Rham Laplacian Δ = dd∗ + d∗d acting on

∧jT ∗. The Lapla-
cian Δ = Δg = ΔX acting on C∞(X) is also determined by the relation
Δf = −TrHess f , for f ∈ C∞(X). The spectrum Spec(X, g) of the metric
g on X is the sequence of eigenvalues (counted with multiplicities)

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · ·

of the Laplacian Δg acting on the space C∞(X).
The Killing operator

D0 = D0,X : T → S2T ∗

of (X, g), which sends ξ ∈ T into Lξg, and the symmetrized covariant
derivative

D1 : T ∗ → S2T ∗,

defined by
(D1θ)(ξ, η) = 1

2 ((∇θ)(ξ, η) + (∇θ)(η, ξ)),

for θ ∈ T ∗, ξ, η ∈ T , are related by the formula

(1.4) 1
2 D0ξ = D1g�(ξ),

for ξ ∈ T . By (1.4), the conformal Killing operator

Dc
0 : T → S2

0T ∗
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of (X, g) is determined by

Dc
0ξ = D0ξ −

1
n

(TrD0ξ) · g = D0ξ +
2
n

(d∗ξ�) · g,

for ξ ∈ T . The Killing (resp. conformal Killing) vector fields of (X, g) are
the solutions ξ ∈ C∞(T ) of the equation D0ξ = 0 (resp. Dc

0ξ = 0). A
vector field ξ on X is a conformal Killing vector field if and only if there is
a real-valued function f such that D0ξ = fg. According to (1.4), a Killing
vector field ξ on X satisfies the relation d∗g�(ξ) = 0, and a real-valued
function f on X satisfies the relation

(1.5) D0(df)� = 2 Hess f.

If φ is a local isometry of X defined on an open subset U of X and ξ is a
vector field on U , according to (1.4) we see that

(1.6) φ∗D0ξ = D0(φ−1
∗ ξ).

Lemma 1.1. Let Y be a totally geodesic submanifold of the Rieman-
nian manifold (X, g). Let i : Y → X be the natural imbedding and
gY = i∗g be the Riemannian metric on Y induced by g. Let ξ be a vector
field on X. If η is the vector field on Y whose value at x ∈ Y is equal to the
orthogonal projection of ξ(x) onto the subspace TY,x of Tx, then we have

i∗g�(ξ) = g�Y (η), i∗Lξg = LηgY .

Proof: The lemma is a consequence of the relation (1.4) and the
vanishing of the second fundamental form of the imbedding i.

By (1.1), the symbol

σ(D0) : T ∗ ⊗ T → S2T ∗

of D0 sends u ∈ T ∗ ⊗ T into −ρ(u)g. It follows that

σ(D0)(α⊗ ξ) = α · g�(ξ),

for α ∈ T ∗ and ξ ∈ T . This last equality implies that σ(D0) is an epimor-
phism and that the differential operator D0 is elliptic. We verify that

σ(Dc
0)(α⊗ ξ) = α · g�(ξ) − 1

n
〈ξ, α〉 g,

for α ∈ T ∗ and ξ ∈ T , and we easily see that the differential operator Dc
0

is elliptic when n ≥ 2. The kernel of σ(D0) is equal to the sub-bundle

g1 = {u ∈ T ∗ ⊗ T | ρ(u)g = 0 }
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of T ∗ ⊗ T . We consider the isomorphism of vector bundles

ι : T ∗ ⊗ T ∗ → T ∗ ⊗ T

equal to id ⊗ g�, which is also determined by the relation

g(ι(u)ξ, η) = u(ξ, η),

for u ∈ T ∗ ⊗ T ∗ and ξ, η ∈ T , and its restrictions

ι : S2T ∗ → T ∗ ⊗ T, ι :
∧2
T ∗ → T ∗ ⊗ T.

Then it is easily verified that

(1.7) σ(D0)ι(h) = 2ι(h),

for h ∈ S2T ∗, and that the image of the morphism ι :
∧2
T ∗ → T ∗ ⊗ T is

equal to g1; thus
ι :
∧2
T ∗ → g1

is an isomorphism of vector bundles (see [13, §3]).
We consider the divergence operator

div : S2T ∗ → T ∗,

which is the first-order differential operator defined by

(divh)(ξ) = −
n∑
j=1

(∇h)(tj , tj , ξ),

for h ∈ C∞(S2T ∗), ξ ∈ Tx, where x ∈ X and {t1, . . . , tn} is an orthonormal
basis of Tx. Let f be a real-valued function on X and let h be an element
of C∞(S2T ∗). Then we have

(1.8) div (fh) = fdivh− (df)� h;

thus we see that

(1.9) D1div (fh) = fD1divh+ 1
2 df · divh−D1((df)� h),

and the section D1((df)� h) of S2T ∗ is determined by

(1.10)
D1((df)� h)(ξ, η) = 1

2{h((ξ Hess f)�, η) + h((η Hess f)�, ξ)

+ (∇h)(ξ, (df)�, η) + (∇h)(η, (df)�, ξ)},

for ξ, η ∈ T .
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The formal adjoint of D0 is equal to 2g� · div : S2T ∗ → T . It follows
that the formal adjoint of Dc

0 : T → S2
0T ∗ is equal to 2g� ·div : S2

0T ∗ → T .
When X is compact, since the operator D0 is elliptic, by (1.2) we therefore
have the orthogonal decomposition

(1.11) C∞(S2T ∗) = D0C
∞(T ) ⊕ {h ∈ C∞(S2T ∗) | divh = 0 }

(see [3]). When X is a compact manifold of dimension ≥ 2, since the
differential operator Dc

0 is elliptic, by (1.2) we have the decomposition

(1.12) C∞(S2
0T

∗) = Dc
0C

∞(T ) ⊕ {h ∈ C∞(S2
0T

∗) | divh = 0 }.

The curvature tensor R̃(g) of g is the section of
∧2
T ∗ ⊗T ∗ ⊗T deter-

mined by
R̃(g)(ξ, η, ζ) = (∇g

ξ∇g
η −∇g

η∇g
ξ)ζ,

for ξ, η, ζ ∈ T . The Riemann curvature tensor of g is the section R(g)
of
∧2
T ∗ ⊗∧2

T ∗ determined by

R(g)(ξ1, ξ2, ξ3, ξ4) = g(ξ4, R̃(g)(ξ1, ξ2, ξ3)),

for ξ1, ξ2, ξ3, ξ4 ∈ T ; according to the first Bianchi identity, R(g) is a section
of B. The second Bianchi identity tells us that (DR)(g) = ∇gR(g) is a
section of H. The Ricci tensor Ric(g) of the metric g is the section of S2T ∗

equal to −TrgR(g), while the scalar curvature r(g) of the metric g is the
function Trg Ric(g) onX. We shall write R̃ = R̃X = R̃(g), R = RX = R(g)
and Ric = Ric(g).

Let ξ be a vector field on X. According to the second Bianchi identity
and the relation (1.4), we see that

(1.13) d∗Ric�(ξ) = − 1
2 (ξ · r(g) + 〈Ric, D0ξ〉),

where 〈 , 〉 is the scalar product on S2T ∗ induced by the metric g. We
easily verify that

(1.14) divD0ξ = (Δ + dd∗)ξ� − 2Ric�(ξ);

thus by (1.8), we have

(1.15) divDc
0ξ = Δξ� − 2Ric�(ξ) +

n− 2
n

dd∗ξ�.

From the preceding equation and (1.13), we obtain

(1.16) d∗divDc
0ξ =

2(n− 1)
n

Δd∗ξ� + ξ · r(g) + 〈Ric, D0ξ〉.
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If the scalar curvature r(g) of (X, g) is constant and equal to μ ∈ R and
if ξ is a conformal Killing vector field, then by (1.16) we see that the real-
valued function f = −(2/n) · d∗ξ� satisfying D0ξ = fg is a solution of the
equation

(1.17) (n− 1)Δf = μf.

If X is compact, we know that the eigenvalues of the Laplacian Δ acting
on C∞(X) are ≥ 0; hence from the previous observation, we obtain the
following result due to Lichnerowicz [43, §83]:

Lemma 1.2. Assume that (X, g) is a Riemannian manifold of dimen-
sion n ≥ 2 and that its scalar curvature is constant and equal to μ ∈ R. If
ξ is a conformal vector field on X and if the real-valued function f on X
determined by the relation Lξg = fg is non-zero, then f is an eigenfunc-
tion of Δ with eigenvalue μ/(n− 1). If X is compact and if μ < 0, then a
conformal Killing vector field on X is a Killing vector field.

Let

R′
g : S2T ∗ → B, (DR)′g : S2T ∗ → H, Ric′g : S2T ∗ → S2T ∗

be the linear differential operators, which are the linearizations along g
of the non-linear operators h 
→ R(h), h 
→ (DR)(h) and h 
→ Ric(h),
respectively, where h is a Riemannian metric on X. Let h be a section of
S2T ∗ over X. For |t| < ε, we know that gt = g+ th is a Riemannian metric
on a neighborhood of x; by definition, we have

R′
gh =

d

dt
R(g + th)|t=0, (DR)′gh =

d

dt
(DR)(g + th)|t=0,

Ric′gh =
d

dt
Ric(g + th)|t=0.

The differential operators R′
g and Ric′g are of order 2, while the operator

(DR)′g is of order 3. The invariance of the three operators h 
→ R(h),
h 
→ (DR)(h) and h 
→ Ric(h) leads us to the formulas

(1.18) R′
g(Lξg) = Lξ R, (DR)′g(Lξg) = Lξ∇R, Ric′g(Lξg) = Lξ Ric,

for all ξ ∈ T . If h ∈ C∞(S2T ∗) and h(x) = 0, with x ∈ X, then we have

(1.19) Tr (R′
gh)(x) = −(Ric′gh)(x).
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It is easily verified that

(1.20)

(R′
gh)(ξ1, ξ2, ξ3, ξ4)

= 1
2{(∇

2h)(ξ1, ξ3, ξ2, ξ4) + (∇2h)(ξ2, ξ4, ξ1, ξ3)

− (∇2h)(ξ1, ξ4, ξ2, ξ3) − (∇2h)(ξ2, ξ3, ξ1, ξ4)

+ h(R̃(ξ1, ξ2, ξ3), ξ4) − h(R̃(ξ1, ξ2, ξ4), ξ3)},

for h ∈ S2T ∗ and ξ1, ξ2, ξ3, ξ4 ∈ T (see Lemma 4.3 of [13]). By for-
mula (1.20), we see that the morphism of vector bundles

σ(R′
g) : S2T ∗ ⊗ S2T ∗ → B

is equal to τB .
The following result is given by Proposition 4.1 of [13].

Proposition 1.3. Let Y be a totally geodesic submanifold of X. Let
i : Y → X be the natural imbedding and gY = i∗g be the Riemannian
metric on Y induced by g. If h is a section of S2T ∗ over X, then the
equality

i∗R′
gh = R′

gY
(i∗h)

holds on Y .

Proof: If t ∈ R, we write gt = g + th and g̃t = gY + ti∗h. Let y be a
point of Y . Then there exist ε > 0 and neighborhoods Ũ of y in Y and U
of i(y) in X such that i(Ũ) ⊂ U and such that g̃t and gt are Riemannian
metrics on Ũ and U , respectively, for |t| < ε. Since i∗gt = g̃t, for |t| < ε
we denote by Bt the second fundamental form of the imbedding i, viewed
as a mapping from the Riemannian manifold (Ũ , g̃t) to the Riemannian
manifold (U, gt). By the Gauss equation, we have

(i∗R(gt) −R(g̃t))(ξ1, ξ2, ξ3, ξ4) = gt(Bt(ξ1, ξ3), Bt(ξ2, ξ4))

− gt(Bt(ξ1, ξ4), Bt(ξ2, ξ3)),

for all ξ1, ξ2, ξ3, ξ4 ∈ TŨ . According to our hypothesis, we have B0 = 0;
thus if we differentiate both sides of the above equation with respect to t,
at t = 0, we obtain

d

dt

(
i∗R(gt) −R(g̃t)

)
|t=0

= i∗R′
gh−R′

gY
(i∗h) = 0

on Ũ and hence at the point y.
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Let
Dg : S2T ∗ → ∧2T ∗ ⊗∧2T ∗

be the linear differential operator defined by

(1.21)
(Dgh)(ξ1, ξ2, ξ3, ξ4) = (R′

gh)(ξ1, ξ2, ξ3, ξ4) − h(R̃(ξ1, ξ2, ξ3), ξ4)

+ h(R̃(ξ1, ξ2, ξ4), ξ3),

for h ∈ S2T ∗ and ξ1, ξ2, ξ3, ξ4 ∈ T . Thus if h is a section of S2T ∗ over X
vanishing at x ∈ X, we see that (Dgh)(x) = (R′

gh)(x) belongs to Bx. If f
is a real-valued function on X, according to (1.20) and (1.21) we see that

(1.22) R′
g(fg) = τB(Hess f ⊗ g) + fR, Dg(fg) = τB(Hess f ⊗ g) − fR.

We consider the sub-bundle B̃ = B̃X of B, with variable fiber, whose
fiber at x ∈ X is

B̃x = { (LξR)(x) | ξ ∈ Tx with (Lξg)(x) = 0 },

and we denote by α : B → B/B̃ the canonical projection. By (1.1), the
infinitesimal orbit of the curvature

{ ρ(u)R | u ∈ g1 }

is a sub-bundle of B̃ with variable fiber.
The following result is given by Lemma 5.3 of [13].

Lemma 1.4. For all x ∈ X, we have

(∇R)(x) ∈ (T ∗ ⊗ B̃)x.

We now suppose that B̃ is a vector bundle. We consider the second-
order differential operator

D1 = D1,X : S2T ∗ → B/B̃

introduced in [13] and determined by

(D1h)(x) = α(R′
g(h− Lξg))(x),

for x ∈ X and h ∈ S2T ∗
x , where ξ is an element of Tx satisfying h(x) =

(Lξg)(x) whose existence is guaranteed by the surjectivity of σ(D0). By
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the first relation of (1.18), we see that this operator is well-defined. Clearly,
the sequence

(1.23) T D0−−→ S2T ∗ D1−−→ B/B̃

is a complex, and so we may consider the complex

(1.24) C∞(T ) D0−−→ C∞(S2T ∗) D1−−→ C∞(B/B̃).

If h is a section of S2T ∗ vanishing at x ∈ X, we have

(1.25) (D1h)(x) = α(R′
gh)(x) = α(Dgh)(x).

We infer that the morphism of vector bundles

σ(D1) : J1(S2T ∗) → B/B̃

is equal to α ◦ σ(R′
g) and is therefore an epimorphism.

Let
κ : S2T ∗ → B/B̃

be the morphism of vector bundles determined by

κ(h) = 1
2 α(ρ(ι(h)))R,

for h ∈ S2T ∗, ξ, η ∈ T . If ξ is vector field on X and h is the section Lξg
of S2T ∗, from (1.7) we infer that

p(D0)(j1(ξ) − ελ(h)) = 0;

hence by (1.1) and the definition of B̃, we see that

κ(h) = −α(LξR).

Thus by the first relation of (1.18), we obtain the equality

(1.26) D1h = α(R′
g(h)) + κ(h),

for h ∈ S2T ∗.
Let f be a real-valued function on X. Since (1.23) is a complex,

by (1.5) we see that

(1.27) D1Hess f = 0.
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We easily verify that
ρ(ι(g)) = −4R;

from this last equality, (1.26) and (1.22), we obtain the relations

(1.28) D1(fg) = α(τB(Hess f ⊗ g) − fR) = αDg(fg).

When X is compact, according to the decomposition (1.11) we see that
the natural mapping from the space

H(X) = {h ∈ C∞(S2T ∗) | divh = 0, D1h = 0 }

to the cohomology of the complex (1.24) is an isomorphism.
We no longer make any assumption on B/B̃. For h, h′ ∈ S2T ∗, we

define an element h h′ of S2T ∗ by

(h h′)(ξ, η) = h′(g� · h�(ξ), η) + h′(g� · h�(η), ξ),

for ξ, η ∈ T . We consider the morphism of vector bundles L : S2T ∗ → S2T ∗

determined by

L(α · β)(ξ, η) = R(ξ, g�α, η, g�β) +R(ξ, g�β, η, g�α)

+R(η, g�α, ξ, g�β) +R(η, g�β, ξ, g�α),

for α, β ∈ T ∗ and ξ, η ∈ T . We have

(1.29) g h = 2h, Lg = −2Ric,

for h ∈ S2T ∗.
The Laplacian

Δ = ∇∗∇ :
⊗pT ∗ →⊗pT ∗

is determined by

(Δu)(ξ1, . . . , ξp) = −
n∑
j=1

(∇2u)(tj , tj , ξ1, . . . , ξp),

for u ∈ C∞(
⊗p

T ∗), ξ1, . . . , ξp ∈ Tx, where x ∈ X and {t1, . . . , tn} is an
orthonormal basis of Tx. The Lichnerowicz Laplacian

Δ = Δg :
⊗pT ∗ →⊗pT ∗
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of [44] can be written as Δ = Δ + κp, where κp :
⊗p

T ∗ → ⊗p
T ∗ is a

morphism of vector bundles (for an intrinsic definition of Δ, see [29, §4]).
For α ∈ T ∗ and u ∈⊗p

T ∗, we easily see that

σα(Δ)u = σα(Δ)u = −||α||2 · u,

where ||α|| is the norm of α (with respect to the metric g); it follows that
the Lichnerowicz Laplacian Δ :

⊗pT ∗ →⊗pT ∗ is elliptic. We recall that
the restriction of the Lichnerowicz Laplacian to

∧pT ∗ is equal to the de
Rham Laplacian and that Δ(SpT ∗) ⊂ SpT ∗. The Lichnerowicz Laplacian

Δ : S2T ∗ → S2T ∗

is determined by
Δh = Δh+ Ric h+ Lh,

for h ∈ S2T ∗, and satisfies

(1.30) TrΔh = ΔTrh,

for all h ∈ S2T ∗. If λ is a positive real number, then the Lichnerowicz
Laplacian Δg′ corresponding to the Riemannian metric g′ = λg is related
to Δg by

Δg = λΔg′ .

The operator Ric′g can be expressed in terms of the Lichnerowicz Lapla-
cian; in fact, we have

(1.31) Ric′gh = 1
2 (Δh− Hess Trh) −D1divh,

for h ∈ S2T ∗ (see, for example, Theorem 1.174 of [6]). Hence by (1.30),
we obtain the equality

(1.32) Tr Ric′gh = ΔTrh− d∗divh,

for h ∈ S2T ∗. Thus if h ∈ S2T ∗ satisfies divh = 0, then we have

(1.33) Ric′gh = 1
2 (Δh− Hess Trh), Tr Ric′gh = ΔTrh

(see [22, §1]). If f is a real-valued function on X, by (1.8) and (1.32) we
see that the relation

(1.34) Tr Ric′g(fg) = (n− 1)Δf

holds.
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§2. Einstein manifolds

We say that the Riemannian manifold (X, g) is an Einstein manifold
if there is a real number λ such that Ric = λg. In this section, we suppose
that g is an Einstein metric, i.e., that there is a real number λ such that
Ric = λg; the scalar curvature r(g) of (X, g) is constant and equal to nλ.
By (1.29), we have

Ric h = 2λh,

for h ∈ S2T ∗. In this case, we see that

Δh− 2λh = Δh+ Lh,

for h ∈ S2T ∗. If f is a real-valued function on X, it is easily seen that

(1.35) div Hess f = dΔf − λdf.

Let ξ be a vector field on X. According to (1.14) and (1.15), we have

divD0ξ = (Δ + dd∗)ξ� − 2λξ�,(1.36)

divDc
0ξ = Δξ� − 2λξ� +

n− 2
n

dd∗ξ�.(1.37)

By the last relation of (1.18), we see that

(1.38) (Ric′g − λ id)Lξg = LξRic − λLξg = 0.

Hence if the section h = D0ξ of S2T ∗ satisfies Trh = 0, by (1.31) we have

(1.39) 1
2 Δh−D1divh− λh = 0.

Now suppose that ξ is a conformal Killing vector field. If the dimension
of X is ≥ 2 and if the real-valued function f on X determined by the
relation Lξg = fg is non-zero, then f is an eigenfunction of Δ with eigen-
value nλ/(n− 1); by (1.38), we see that

Ric′g(fg) = λfg,

and so the fact that f is an eigenfunction of Δ may also be viewed as a
consequence of formula (1.34).

Assertion (ii) of the following lemma is proved in [42, p. 649].

Lemma 1.5. Assume that (X, g) is a compact Einstein manifold and
that Ric = λg, where λ �= 0. Let ξ be a vector field on X.

(i) If ξ is a Killing vector field, it verifies the relation Δξ� = 2λξ�.
(ii) If the dimension of X is ≥ 3 and if ξ is a conformal Killing vector

field satisfying the relation Δξ� = 2λξ�, then ξ is a Killing vector field.



16 I. SYMMETRIC SPACES AND EINSTEIN MANIFOLDS

Proof: If ξ is a Killing vector field, by (1.4) we know that d∗ξ� = 0;
then the relation Δξ� = 2λξ� is a consequence of (1.36). If n ≥ 3 and ξ
is a conformal Killing vector field satisfying the relation Δξ� = 2λξ�, from
formula (1.37) we deduce that dd∗ξ� = 0; this last relation clearly implies
that d∗ξ� = 0, and so D0ξ = Dc

0ξ = 0.
We shall consider the n-sphere Sn, with n ≥ 2, viewed as the unit

sphere in R
n+1 endowed with its metric g0 of constant curvature 1 induced

by the Euclidean metric of R
n+1. By an n-sphere of dimension n, we shall

mean the sphere Sn endowed with the metric μg0 of constant curvature μ,
where μ is a positive real number.

In §4, Chapter II, we shall require the following result:

Proposition 1.6. Assume that (X, g) is a compact, connected Ein-
stein manifold and that Ric = λg, where λ > 0. If X is not isometric to a
sphere, then a conformal Killing vector field on X is a Killing vector field.

Proof: Let ξ be a conformal Killing vector field on X and let f be
the real-valued function on X satisfying Lξg = fg. Assume that ξ is not
a Killing vector field; in other words, we suppose that the function f does
not vanish. By Lemma 1.2, we know that f is an eigenfunction of the
Laplacian Δ with eigenvalue nλ/(n − 1). Then Obata’s theorem (see [48]
or Theorem D.I.6 in Chapter III of [4]) tells us that X is isometric to a
sphere.

Lemma 1.7. If (X, g) is an Einstein manifold, then we have

Tr B̃ = {0}.

Proof: If x ∈ X and ξ ∈ T ∗
x satisfy (Lξg)(x) = 0, then we have

Tr (LξR)(x) = (LξTrR)(x) = −(Lξλg)(x) = 0.

According to Lemma 1.7, the trace mapping Tr : B → S2T ∗ induces,
by passage to the quotient, a morphism of vector bundles (with variable
fibers)

Tr : B/B̃ → S2T ∗.

Proposition 1.8. Assume that (X, g) is an Einstein manifold and
that Ric = λg, with λ ∈ R. If B̃ is a vector bundle, then the diagram

(1.40)

S2T ∗ D1−−−−−−→ B/B̃⏐⏐�id

⏐⏐�−Tr

S2T ∗ Ric′g−λ id
−−−−−−→ S2T ∗

is commutative.
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Proof: Let h be a section of S2T ∗ over X. If x ∈ X and h(x) = 0,
then by (1.20) and (1.21) we have

−Tr (D1h)(x) = −Trα(R′
gh)(x) = −Tr (R′

gh)(x) = (Ric′gh)(x).

If ξ is a vector field on X, then we know that D1Lξg = 0; on the other
hand, by the last relation of (1.18), we know that (1.38) holds. If x ∈ X,
by the surjectivity of σ(D0) we know that there exists a vector field ξ on X
such that (Lξg)(x) = h(x). The commutativity of the diagram (1.40) is
now a consequence of the previous observations.

Lemma 1.7 and Proposition 1.8 are proved in [25, §1]. If B̃ is a vector
bundle, from Proposition 1.8 and relation (1.32) we obtain the equality

(1.41) −Tr · TrD1h = ΔTrh− λTrh+ d∗divh,

for h ∈ S2T ∗.

Lemma 1.9. Assume that (X, g) is a compact, connected Einstein
manifold and that Ric = λg, where λ �= 0. Let h be an element of
C∞(S2T ∗) satisfying divh = 0 and

(1.42) Tr (Ric′g h− λh) = 0.

Then we have Trh = 0.

Proof: Since divh = 0, from (1.33) and (1.42) we obtain the equality

(1.43) ΔTrh = λTrh.

When λ is positive, Lichnerowicz’s theorem (see [43, p. 135] or Theo-
rem D.I.1 in Chapter III of [4]) tells us that the first non-zero eigenvalue
of the Laplacian Δ acting on C∞(X) is ≥ nλ/(n− 1). Therefore from our
hypothesis that λ �= 0 and (1.43), we deduce that Trh = 0.

The proof of Lemma 1.9 can be found in [3, §7]. The following lemma
is a generalization of Proposition 3.2 of [22].

Lemma 1.10. Assume that (X, g) is a compact, connected Einstein
manifold and that Ric = λg, where λ �= 0. Suppose that B̃ is a vector
bundle. Let N be a sub-bundle of B containing B̃ and E be a sub-bundle
of S2T ∗ satisfying TrN ⊂ E and TrE = {0}. Let h be an element of
C∞(S2T ∗) satisfying

divh = 0, D1h ∈ C∞(N/B̃).

Then we have Trh = 0 and

Δh− 2λh ∈ C∞(E).
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Proof: Since D1h is a section of N/B̃, by Proposition 1.8 our hy-
potheses on N and E imply that

(1.44) Ric′g h− λh = −TrD1h ∈ C∞(E)

and hence that (1.42) holds. By Lemma 1.9, we have Trh = 0. Thus by
(1.31) and (1.44), we see that

Δh− 2λh = 2(Ric′g h− λh) ∈ C∞(E).

The following lemma is due to Berger and Ebin [3] and Koiso [41].

Lemma 1.11. Assume that (X, g) is a compact, connected Einstein
manifold and that Ric = λg, with λ ∈ R. Let ε > 0 and gt be a one-
parameter family of Einstein metrics on X defined for |t| < ε, with g0 = g.
If the symmetric 2-form h = d

dt gt|t=0 satisfies the conditions

(1.45) divh = 0,
∫
X

Trh · dX = 0,

then we have

(1.46) Δh = 2λh, Trh = 0.

Proof: For |t| < ε, we write Ric(gt) = λtgt, where λt ∈ R and
λ0 = λ. This relation implies that

(1.47) Ric′g(h) = λh+ λ′g,

where λ′ = d
dtλt|t=0. Since divh = 0, by the second formula of (1.33) we

obtain
ΔTrh = λTrh+ nλ′.

Since the integral of the function ΔTrh over X vanishes, from the second
relation of (1.45) we deduce that λ′ = 0. If λ �= 0, by Lemma 1.9 we
see that Trh = 0. If λ = 0, we have ΔTrh = 0; therefore the function
Trh is constant and the second relation of (1.45) implies that it vanishes.
By (1.33) and (1.47), with λ′ = 0, we obtain the first equation of (1.46).

We now suppose that X is compact and connected, and we consider
the space M of all Riemannian metrics on X. The space of elements h
of C∞(S2T ∗) satisfying (1.45) can be identified with the “tangent space”
to the subset of M consisting of all Riemannian metrics g̃ on X, which
satisfy Vol (X, g̃) = Vol (X, g) and belong to a subset of M transversal
to the orbit of g under the group of diffeomorphisms of X. In fact, if
gt is a one-parameter family of Einstein metrics on X defined for |t| < ε,
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with ε > 0 and g0 = g, satisfying Vol (X, gt) = Vol (X, g), then the in-
finitesimal deformation h = d

dt gt|t=0 of the family gt satisfies the second
relation of (1.45). In view of these remarks, the decomposition (1.11) and
the above lemma, the space E(X) of infinitesimal Einstein deformations of
the metric g, introduced by Berger and Ebin in [3], is defined by

E(X) = {h ∈ C∞(S2T ∗) | divh = 0, Trh = 0, Δh = 2λh }

(see also Koiso [41]). By definition, the space E(X) is contained in an
eigenspace of the Lichnerowicz Laplacian Δ, which is an elliptic operator,
and is therefore finite-dimensional.

According to Lemma 1.7, when B̃ is a vector bundle, we may take
N = B̃ and E = {0} in Lemma 1.10; from the latter lemma and the relation
between the space H(X) and the cohomology of the sequence (1.24), we
obtain the following result:

Lemma 1.12. Assume that (X, g) is a compact, connected Einstein
manifold and that Ric = λg, where λ �= 0. Suppose that B̃ is a vector bun-
dle. Then the space H(X) is finite-dimensional and is a subspace of E(X).
Moreover if E(X) = {0}, then the sequence (1.24) is exact.

§3. Symmetric spaces

We say that the Riemannian manifold (X, g) is a locally symmetric
space if ∇R = 0. According to Lemma 1.4, if the equality

(1.48) H ∩ (T ∗ ⊗ B̃) = {0}

holds, then the manifold (X, g) is locally symmetric. Throughout this
section, we shall suppose that the manifold (X, g) is a connected locally
symmetric space. Since the set of local isometries of X acts transitively
on X, we see that B̃ is a vector bundle. According to [13], the infinitesimal
orbit of the curvature is equal to B̃, and so we have:

Lemma 1.13. Suppose that (X, g) is a connected locally symmetric
space. Then B̃ is a vector bundle equal to the infinitesimal orbit of the
curvature

{ ρ(u)R | u ∈ g1 }.

We now suppose that (X, g) has constant curvature K; then we have

R(ξ1, ξ2, ξ3, ξ4) = K(g(ξ1, ξ4)g(ξ2, ξ3) − g(ξ1, ξ3)g(ξ2, ξ4)),

for ξ1, ξ2, ξ3, ξ4 ∈ T , and Ric = (n − 1)Kg. It follows directly from the
definition of the vector bundle B̃ that it vanishes in this case. Thus if h
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is a section of S2T ∗ vanishing at x ∈ X, then by (1.25) we see that the
equality Dgh = D1h holds at x ∈ X. According to [13, §6], we know that

(1.49) Dg ◦D0 = 0.

Since the mapping σ(D0) is an epimorphism, it follows that the operator
Dg takes its values in B and that D1 is equal to Dg. In this case, the
complex (1.23) becomes the sequence

(1.50) T D0−−→ S2T ∗ Dg−−→ B

introduced by Calabi [8], while the complex (1.24) becomes

(1.51) C∞(T ) D0−−→ C∞(S2T ∗)
Dg−−→ C∞(B).

The Lichnerowicz Laplacian Δ acting on symmetric 2-forms is given by

(1.52) Δh = Δh+ 2nKh− 2K(Trh) · g,

for h ∈ S2T ∗.
We assume moreover that X is a surface. Then we have Ric = λg,

with λ = K, and B is a line bundle. Therefore the mapping

Tr · Tr : Bx → R

is an isomorphism, for all x ∈ X. Thus according to the relation (1.41),
if h ∈ S2T ∗, the relation D1h = 0 holds if and only if the right-hand side
of (1.41) vanishes; in particular, if h ∈ S2T ∗ satisfies divh = 0, then the
relation D1h = 0 is equivalent to the equality ΔTrh = λTrh. If X is
compact and K �= 0, by Lemma 1.12 we obtain the equality

(1.53) H(X) = {h ∈ C∞(S2
0T

∗) | divh = 0 };

thus we see that the equality H(X) = {0} implies that E(X) = {0}. On
the other hand, if X is compact and K = 0, we obtain the equality

(1.54) H(X) = {h ∈ C∞(S2
0T

∗) | divh = 0 } ⊕ R · g.

We now again suppose that (X, g) is an arbitrary connected locally
symmetric space. If X is a surface, we have just seen that the vector bundle
B is a line bundle and that the vector bundle B̃ vanishes. According to
Lemma 1.13, we know that the vector bundle B̃ always satisfies

rank B̃ ≤ rank g1 =
n(n− 1)

2
.
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If the dimension of X is ≥ 3, in §1 we saw that TrB = S2T ∗, and so we
obtain the inequalities

rank B̃ ≤ n(n− 1)
2

<
n(n+ 1)

2
≤ rankB.

Thus we see that, if the dimension of X is ≥ 2, the vector bundle B/B̃ is
always non-zero.

Let Y be a totally geodesic submanifold of X. Let i : Y → X be the
natural imbedding and gY = i∗g be the Riemannian metric on Y induced
by g. Then (Y, gY ) is a locally symmetric space; its Riemann curvature
tensor RY is equal to the section i∗R of BY and the infinitesimal orbit
of Y is equal to B̃Y . For x ∈ Y , the diagram

∧2
T ∗
x −−→ Bx⏐⏐�i∗

⏐⏐�i∗
∧2
T ∗
Y,x −−→ BY,x

whose horizontal arrows send β1 ∈ ∧2
T ∗
x and β2 ∈ ∧2

T ∗
Y,x onto ρ(ι(β1))R

and ρ(ι(β2))RY , respectively, is commutative. Therefore we have the rela-
tion

(1.55) i∗B̃x ⊂ B̃Y,x,

for x ∈ Y . Thus if Y is connected, the imbedding i induces a morphism of
vector bundles

i∗ : (B/B̃)|Y → BY /B̃Y .

If Y has constant curvature, from (1.55) and the fact that B̃Y = {0} we
infer that

(1.56) i∗B̃ = {0}.

Proposition 1.14. Suppose that X is a connected locally symmetric
space. Let Y be a totally geodesic submanifold of X; let i : Y → X be the
natural imbedding and gY = i∗g be the Riemannian metric on Y induced
by g. Let h be a section of S2T ∗ over X.

(i) The equality

(1.57) i∗Dgh = DgY
(i∗h)

holds on Y , and, when Y is connected, we have

(1.58) i∗(D1h)|Y = D1,Y i
∗h.



22 I. SYMMETRIC SPACES AND EINSTEIN MANIFOLDS

(ii) Assume that the manifold Y has constant curvature. If x ∈ Y and
ξ1, ξ2, ξ3, ξ4 ∈ Tx are tangent to Y and if u is an element of Bx satisfying
αu = (D1h)(x), then the equality

(1.59) i∗u = i∗(Dgh)(x)

holds and we have

(1.60) u(ξ1, ξ2, ξ3, ξ4) = (Dgh)(ξ1, ξ2, ξ3, ξ4).

Proof: Let ξ1, ξ2, ξ3 be vectors of Tx, with x ∈ Y , which are tangent
to Y ; according to Theorems 7.2 and 4.2 in Chapter IV of [36], we know
that the vector R̃(ξ1, ξ2)ξ3 of Tx is tangent to Y . Since RY = i∗R, we see
that

R̃Y (ξ1, ξ2)ξ3 = R̃(ξ1, ξ2)ξ3.

The equality (1.57) now follows from Proposition 1.3 and formula (1.21).
Now suppose that Y is connected and let h be a section of S2T ∗. Let x
be a point of Y and let u be an element of Bx satisfying αu = (D1h)(x).
First, suppose that h vanishes at the point x of Y . Then (Dgh)(x) is an
element of Bx; by (1.25) and (1.58), we see that the vector u − (Dgh)(x)
of Bx belongs to B̃x and that

i∗(D1h)(x) = i∗(αDgh)(x) = α(DgY
i∗h)(x) = (D1,Y i

∗h)(x).

If Y has constant curvature, by (1.56) we obtain the relation (1.59). Next,
suppose there is a vector field ξ on X satisfying Lξg = h. Then we have
D1h = 0 and, if η is the vector field on Y determined by ξ, according to
Lemma 1.1 we have i∗h = LηgY ; thus we see that D1,Y i

∗h = 0. If Y has
constant curvature, by (1.49) we know that DgY

LηgY = 0; thus by (1.57)
we have i∗(Dgh) = 0. Therefore, under either one of the two assumptions
imposed on h, we know that the equality (1.58) holds at x and that, if Y has
constant curvature, the relation (1.59) also holds. As the mapping σ(D0) is
an epimorphism, the preceding observation implies that the equality (1.58)
always holds and that, if Y has constant curvature, the relation (1.59) also
holds. The relation (1.60) is a consequence of (1.58).

Lemma 1.15. Assume that (X, g) is a connected locally symmetric
space. Let Y be a totally geodesic submanifold of X of constant curvature.
Let h be a section of S2T ∗ over X. Let x ∈ Y and u be an element of Bx
such that (D1h)(x) = αu. If the restriction of h to the submanifold Y is
a Lie derivative of the metric on Y induced by g, then the restrictions of
Dgh and u to the submanifold Y vanish.

Proof: Let i : Y → X be the natural imbedding and gY = i∗g be the
Riemannian metric on Y induced by g. Assume that the restriction i∗h of
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h to the submanifold Y is equal to the Lie derivative LηgY of gY along a
vector field η on Y . Since Y has constant curvature, by (1.49) and (1.57)
we have

i∗Dgh = DgY
(i∗h) = DgY

LξgY = 0.

From Proposition 1.14,(ii) and (1.59), we infer that i∗u = 0.
From Lemmas 1.1 and 1.15, we deduce the following result:

Lemma 1.16. Assume that (X, g) is a connected locally symmetric
space. Let Y , Z be totally geodesic submanifolds of X; suppose that Z is
a submanifold of Y of constant curvature. Let h be a section of S2T ∗ over
X. Let x ∈ Z and u be an element of Bx such that (D1h)(x) = αu. If the
restriction of h to the submanifold Y is a Lie derivative of the metric on Y
induced by g, then the restriction of u to the submanifold Z vanishes.

We consider the third-order differential operator

D2 = (DR)′g : S2T ∗ → H

and the differential operator

(D2, D1) : S2T ∗ → H⊕B/B̃.

According to (1.18), we see that

(DR)′g(Lξg) = 0,

for all vector fields ξ on X; thus we may consider the complex

(1.61) T D0−−→ S2T ∗ (D2,D1)−−−−→ H⊕ B/B̃.

We consider the connection

∇ : B → T ∗ ⊗ B

and the first-order differential operator

σ∇ : B → ∧3T ∗ ⊗∧2T ∗,

where σ is the morphism of vector bundles defined in §1. Since ∇R = 0,
by Lemma 1.13 we easily see that

∇B̃ ⊂ T ∗ ⊗ B̃

(see Lemma 7.3,(i) of [13]). Therefore the connection ∇ induces by passage
to the quotient a connection

∇ : B/B̃ → T ∗ ⊗ B/B̃
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in the vector bundle B/B̃. According to [13, §7], we have

(1.62) ∇D1h = (id ⊗ α)D2h,

for h ∈ S2T ∗. Since X is locally homogeneous, the restriction

σ : T ∗ ⊗ B̃ → ∧3
T ∗ ⊗∧2

T ∗

of the morphism σ has constant rank; we denote by B1 its cokernel and by
α :
∧3
T ∗ ⊗∧2

T ∗ → B1 the canonical projection. We easily see that there
exists a unique first-order differential operator D′

1 : B/B̃ → B1 such that
the diagram

B σ∇−−−→ ∧3T ∗ ⊗∧2T ∗
⏐⏐�α

⏐⏐�α
B/B̃ D′

1−−−→ B1

commutes. The following result is given by Lemma 1.3 of [18].

Lemma 1.17. Suppose that (X, g) is a connected locally symmetric
space. Then the sequence

T D0−−→ S2T ∗ D1−−→ B/B̃ D′
1−−→ B1

is a complex.

Proof: Since the sequence (1.23) is a complex, it suffices to show
that D′

1 ·D1 = 0. Let h be an element of S2T ∗ and u be an element of B̃
satisfying D1h = αu. Then we have ∇D1h = (id⊗α)∇u, and so by (1.62)
we see that ∇u−D2h is an element of T ∗ ⊗ B̃. Since σD2h = 0, we have

D′
1D1h = ασ∇u = ασ(∇u−D2h) = 0.

According to Theorem 7.2 of [13], the complex (1.61) is exact and for-
mally exact in the sense of [7, Chapter X] (see also [28] and [13]); hence the
differential operator (D2, D1) is the compatibility condition of the Killing
operator D0. Therefore if Θ is the sheaf of Killing vector fields on X,
that is, the kernel of the operator D0 : T → S2T ∗, the cohomology of the
complex

(1.63) C∞(T ) D0−−→ C∞(S2T ∗)
(D2,D1)−−−−→ C∞(H ⊕B/B̃)

is isomorphic to the cohomology groupH1(X,Θ). According to [13, §7], the
sheaf Θ is locally constant and, when X is simply-connected, the sequence
(1.63) is exact. The natural injective mapping from the cohomology of
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the complex (1.63) to the cohomology of the sequence (1.24) induces an
injective mapping from the cohomology group H1(X,Θ) to the cohomology
of the complex (1.24).

According to Theorem 7.3 of [13], if the equality (1.48) holds, a section
h of S2T ∗ satisfying D1h = 0 also satisfies the equation D2h = 0. There-
fore if (1.48) is true, the complex (1.23) is exact and the two mappings
considered above involving cohomology groups are isomorphisms. More-
over, if the equality (1.48) holds and X is simply-connected, the sequence
(1.24) is exact; on the other hand, if the equality (1.48) holds and X is
compact, the cohomology group H1(X,Θ) is isomorphic to H(X).

The universal covering manifold X̃ of X endowed with the Rieman-
nian metric induced by g is a locally symmetric space. If X̃ is a finite
covering of X, then X is equal to the quotient X̃/Γ, where Γ is a finite
subgroup of the group of isometries of X̃ which acts without fixed points;
since the sequence (1.63) for the manifold X̃ is exact, the sequence (1.63)
for the manifold X is also exact. If X is a symmetric space of compact
type, the manifold X̃ is also a symmetric space of compact type and the
covering mapping X̃ → X is finite (see Chapters IV and V of [36]). These
observations, together with the discussion which follows Lemma 1.17, give
us the following:

Theorem 1.18. Suppose that (X, g) is a connected locally symmetric
space satisfying one of the following conditions:

(i) the covering mapping X̃ → X is finite;
(ii) (X, g) is a symmetric space of compact type.

Then the sequence (1.63) is exact. If the equality (1.48) holds, the sequence
(1.24) is also exact.

We now suppose that (X, g) has constant curvature K; then the vector
bundle B̃ vanishes and so the equality (1.48) holds. Thus the complex
(1.50) is exact. If X is simply-connected, the sequence (1.51) is also exact.
These two results were first proved by Calabi [8] (see also [2]); other direct
proofs are given in [13, §6]. Furthermore if (X, g) is a compact surface of
constant curvature K, from the equalities (1.53) and (1.54) we obtain the
following proposition, whose first assertion is given by [2, p. 24].

Proposition 1.19. Let (X, g) be a compact surface of constant cur-
vature K.

(i) The cohomology group H1(X,Θ) is isomorphic to the space

{h ∈ C∞(S2
0T

∗) | divh = 0 }
when K �= 0, and to the space

{h ∈ C∞(S2
0T

∗) | divh = 0 } ⊕ R · g
when K = 0.
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(ii) If K �= 0 and the cohomology group H1(X,Θ) vanishes, then we
have E(X) = {0}.

We now suppose that X is equal to the sphere (Sn, g0) of constant
curvature 1, which is a symmetric space of compact type. We know that
the sequences (1.24) and (1.51) are exact and that the cohomology groups
H1(X,Θ) and H(X) vanish. When X is equal to the sphere (S2, g0),
according to Proposition 1.19,(i) and the decomposition (1.12) we see that

(1.64) C∞(S2
0T

∗) = Dc
0C

∞(T );

therefore, for h ∈ C∞(S2T ∗), we may write

h = Lξg + fg,

where ξ is a vector field and f is a real-valued function on X = S2. More-
over, by Proposition 1.19,(ii), we have E(X) = {0} when X = S2.

If (X, g) is a compact manifold with positive constant curvature, then
its universal covering manifold is isometric to (Sn, μg0), where μ is a posi-
tive real number. Thus from Theorem 1.18 and the above results, we obtain
the following:

Proposition 1.20. Let (X, g) is a compact manifold with positive
constant curvature. Then cohomology groupH1(X,Θ) and the spaceH(X)
vanish, and the sequence (1.51) is exact.

We now suppose that (X, g) is a symmetric space of compact type.
Then there is a Riemannian symmetric pair (G,K) of compact type, where
G is a compact, connected semi-simple Lie group andK is a closed subgroup
of G, such that the space X is isometric to the homogeneous space G/K
endowed with a G-invariant metric. We identify X with G/K, and let x0

be the point of X corresponding to the coset of the identity element of
G in G/K. If g0 and k0 are the Lie algebras of G and K, respectively,
we consider the Cartan decomposition g0 = k0 ⊕ p0 corresponding to the
Riemannian symmetric pair (G,K), where p0 is a subspace of g0. We
identify p0 with the tangent space to X at the point x0. If B is the Killing
form of the Lie algebra g0, the restriction of −B to p0 induces a G-invariant
Riemannian metric g0 on X. According to Theorem 7.73 of [6], we know
that

(1.65) Ric(g0) = 1
2 g0.

If X is an irreducible symmetric space, the metric g is a positive multiple
of g0 and is therefore an Einstein metric. The Ricci tensor of g is equal
to Ric = λg, where λ is a positive real number; by (1.65), we see that
g0 = 2λg. Thus the Lichnerowicz Laplacians Δ and Δg0 corresponding to
the metrics g and g0, respectively, are related by Δ = 2λΔg0 .
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Lemma 1.21. Let (X, g) be an irreducible symmetric space of compact
type. Then g is an Einstein metric and there is a positive real number λ
such that Ric = λg; moreover, the metric g0 induced by the Killing form
of g0 is equal to 2λg.

In [41] and [42], Koiso proved the following:

Theorem 1.22. Let X be an irreducible symmetric space of compact
type whose universal covering manifold is not equal to one of the following:

(i) SU(n+ 1), with n ≥ 2;
(ii) SU(n)/SO(n), with n ≥ 3;
(iii) SU(2n)/Sp(n), with n ≥ 3;
(iv) SU(p+ q)/S(U(p) × U(q)), with p, q ≥ 2;
(v) E6/F4.

Then we have E(X) = {0}.
Some of the methods used by Koiso to prove Theorem 1.22 will be

described in §7, Chapter II; in fact, we shall give an outline of the proof of
this theorem for an irreducible symmetric space X which is not equal to a
simple Lie group. According to the remarks preceding Theorem 1.18, from
Lemma 1.12 and Theorem 1.22 we deduce:

Theorem 1.23. Let X be an irreducible symmetric space of compact
type whose universal covering manifold is not equal to one of the spaces
(i)–(v) of Theorem 1.22. Then the sequence (1.24) is exact.

In [13] and [10], the equality (1.48) is proved for the complex projective
space CP

n, with n ≥ 2, and the complex quadric of dimension ≥ 3 (see
Propositions 3.32 and 5.14). Thus from Theorem 1.18, without the use of
the space of infinitesimal Einstein deformations, we obtain the exactness of
the sequence (1.24) when X is an irreducible symmetric space of compact
type equal either to a sphere, to a real or complex projective space, or
to the complex quadric of dimension ≥ 3. Theorem 1.23 also gives us
the exactness of the sequence (1.24) for these irreducible symmetric spaces
other than the complex quadric of dimension 4. In fact, we conjecture that
the equality (1.48) holds for any irreducible symmetric space.

§4. Complex manifolds

In this section, we suppose that X is a complex manifold endowed
with a Hermitian metric g. We consider the sub-bundles T ′ and T ′′ of TC

of complex vector fields of type (1, 0) and (0, 1), respectively; then we have
the decomposition

TC = T ′ ⊕ T ′′.

The complex structure J of X induces involutions

J :
∧2
T ∗ → ∧2

T ∗, J : S2T ∗ → S2T ∗, J : T ∗ ⊗ T → T ∗ ⊗ T
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defined by

βJ(ξ, η) = β(Jξ, Jη), hJ(ξ, η) = h(Jξ, Jη), uJ(ξ) = −Ju(Jξ),

for β ∈ ∧2
T ∗, h ∈ S2T ∗, u ∈ T ∗ ⊗T and ξ, η ∈ T . Then g1 is stable under

the involution J of T ∗⊗T and the sub-bundle B of
∧2
T ∗⊗∧2

T ∗ is stable
under the involution

J = J ⊗ J :
∧2
T ∗ ⊗∧2

T ∗ → ∧2
T ∗ ⊗∧2

T ∗.

We then obtain the orthogonal decompositions

(1.66)

∧2
T ∗ = T 1,1

R
⊕ (
∧2
T ∗)−, S2T ∗ = (S2T ∗)+ ⊕ (S2T ∗)−,

B = B+ ⊕B−, g1 = g+
1 ⊕ g−1

into direct sums of the eigenbundles T 1,1
R

, (
∧2
T ∗)−, (S2T ∗)+, (S2T ∗)−,

B+, B−, g+
1 and g−1 corresponding to the eigenvalues +1 and −1, respec-

tively, of the involutions J . In fact, T 1,1
R

is the bundle of real forms of type
(1, 1), while (S2T ∗)+ and (S2T ∗)− are the bundles of (real) Hermitian and
skew-Hermitian symmetric 2-forms on X, respectively. It is easily verified
that

Tr (B+) ⊂ (S2T ∗)+, Tr (B−) ⊂ (S2T ∗)−.

Clearly we have
g+
1 = {u ∈ g1 | u ◦ J = J ◦ u };

hence the fiber of this vector bundle g+
1 at x ∈ X is equal to the Lie algebra

of the unitary group of the Hermitian vector space (Tx, J(x), g(x)).
We consider the morphism of vector bundles

(1.67)
⊗2

T ∗ →⊗2
T ∗,

sending u ∈⊗2
T ∗ into the element ǔ of

⊗2
T ∗ defined by

ǔ(ξ, η) = u(Jξ, η),

for all ξ, η ∈ T . Clearly, the square of this morphism is equal to −id and
so (1.67) is an isomorphism. We easily verify that the isomorphism (1.67)
induces isomorphisms of vector bundles

(S2T ∗)+ → T 1,1
R
, T 1,1

R
→ (S2T ∗)+,

(1.68) (S2T ∗)− → (S2T ∗)−, (
∧2
T ∗)− → (

∧2
T ∗)−.
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The squares of the isomorphisms (1.68) are equal to −id. The metric g is a
section of (S2T ∗)+ and its image under the isomorphism (1.67) is a section
of T 1,1

R
, which is the Kähler form ω of X.

Let Sp,qT ∗ (resp.
∧p,q

T ∗) be the bundle of complex differential sym-
metric (resp. exterior differential) forms of degree p + q and of type (p, q)
on X. Then S1,1T ∗ and

∧1,1
T ∗ are the complexifications of the bundles

(S2T ∗)+ and T 1,1
R

, respectively. The eigenbundles corresponding to the
eigenvalues +i and −i of the endomorphism of (S2T ∗)−

C
(resp. of (

∧2
T ∗)−

C
)

induced by the mapping (1.68) are the bundles S2,0T ∗ and S0,2T ∗ (resp. the
bundles

∧2,0
T ∗ and

∧0,2
T ∗), respectively. We write T 1,0 =

∧1,0
T ∗ and

T 0,1 =
∧0,1

T ∗. Then we have the orthogonal decompositions

(S2T ∗)−
C

= S2,0T ∗ ⊕ S0,2T ∗, (
∧2
T ∗)−

C
=
∧2,0

T ∗ ⊕∧0,2
T ∗,

(1.69) T ∗
C

= T 1,0 ⊕ T 0,1, S2T ∗
C

= S2,0T ∗ ⊕ S1,1T ∗ ⊕ S0,2T ∗.

The isomorphism of vector bundles g� : T → T ∗ determined by the Hermi-
tian metric g induces isomorphisms of vector bundles

(1.70) g� : T ′ → T 0,1, g� : T ′′ → T 1,0.

We consider the natural projections

π+ : S2T ∗ → (S2T ∗)+, π′ : S2T ∗
C
→ S2,0T ∗, π′′ : S2T ∗

C
→ S0,2T ∗

determined by the decompositions (1.66) and (1.69). Since the metric g is
a section of (S2T ∗)+, if f is a real-valued function on X, we see that

(1.71) Trπ+Hess f = Tr Hess f = −Δf.

The isomorphism of vector bundles ι :
∧2
T ∗ → g1 induces isomor-

phisms
ι : T 1,1

R
→ g+

1 , ι : (
∧2
T ∗)− → g−1 .

If β is an element of (
∧2
T ∗)−, we easily verify that

(1.72) ρ(ι(β))ω = 2β̌.

Let π be the endomorphism of the vector bundle
∧2
T ∗⊗∧2

T ∗ defined
by

π(θ1 ⊗ θ2)(ξ1, ξ2, ξ3, ξ4) = 2θ1(ξ1, ξ2)θ2(ξ3, ξ4) + 2θ1(ξ3, ξ4)θ2(ξ1, ξ2)

+ θ1(ξ1, ξ3)θ2(ξ2, ξ4) + θ1(ξ2, ξ4)θ2(ξ1, ξ3)

− θ1(ξ2, ξ3)θ2(ξ1, ξ4) − θ1(ξ1, ξ4)θ2(ξ2, ξ3),
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for θ1, θ2 ∈ ∧2
T ∗ and ξ1, ξ2, ξ3, ξ4 ∈ T . We easily verify that the image of

the morphism π is contained in B. We consider the morphism of vector
bundles

ψ :
∧2
T ∗ → B

defined by
ψ(θ) = π(ω ⊗ θ),

for θ ∈ ∧2
T ∗. Clearly, we have

ψ(T 1,1
R

) ⊂ B+, ψ((
∧2
T ∗)−) ⊂ B−.

Lemma 1.24. The morphism ψ is injective.

Proof: Let θ be an element of
∧2
T ∗ and let ξ, η be vectors of T .

Then we have

ψ(θ)(ξ, η, ξ, Jξ) = 3(ω(ξ, η)θ(ξ, Jξ) + ω(ξ, Jξ)θ(ξ, η)).

This formula implies that

ψ(θ)(ξ, Jξ, ξ, Jξ) = 6ω(ξ, Jξ)θ(ξ, Jξ)

and, when ξ is orthogonal to Jη, that

ψ(θ)(ξ, η, ξ, Jξ) = 3ω(ξ, Jξ)θ(ξ, η).

We now suppose that θ belongs to the kernel of ψ. From these two formulas,
we infer that θ(ξ, Jξ) = 0, for all ξ ∈ T , and that θ(ξ, η) = 0, for all ξ, η ∈ T ,
whenever η is orthogonal to Jξ. Thus we see that θ = 0.

We shall consider the morphism of vector bundles

ψ̌ : (
∧2
T ∗)− → B

defined by
ψ̌(β) = ψ(β̌),

for β ∈ (
∧2
T ∗)−.

We now suppose that (X, g) is a Kähler manifold. If h is a section
of (S2T ∗)+, we easily verify that

(1.73) divh = i(∂̄∗ − ∂∗)ȟ.

The following result is given by Lemma 1.1 of [21].
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Lemma 1.25. Suppose that (X, g) is a Kähler manifold and let f be
an element of C∞(X). If h is the section π+Hess f of (S2T ∗)+

C
, then we

have
ȟ = i∂∂f.

Let f be an element of C∞(X). We easily verify that

(1.74)
D1∂f = π′Hess f + 1

2 π+Hess f,

D1∂̄f = π′′Hess f + 1
2 π+Hess f.

Therefore, we have

(1.75)
π+D

1∂f = π+D
1∂̄f = 1

2 π+Hess f,

π′Hess f − π′′Hess f = D1(∂f − ∂̄f).

By (1.4), from this last equality we infer that the section π′Hess f−π′′Hess f
belongs to the space D0C

∞(TC). According to (1.73) and Lemma 1.25, we
easily see that

(1.76) divπ+Hess f = 1
2 dΔf.

Thus if (X, g) is a Kähler-Einstein manifold and Ric = λg, where λ ∈ R,
by (1.35) we have

(1.77) divπ′Hess f = 1
2 ∂Δf − λ∂f, divπ′′Hess f = 1

2 ∂̄Δf − λ∂̄f.

Suppose that (X, g) is a Hermitian symmetric space. Since (X, g) is a
Kähler manifold, its curvature R̃ verifies the relation

R̃(ξ, η) = R(ξ, η),

for all ξ, η ∈ T , and we have

ρ(J)R = 0,(1.78)

(ρ(u)R)J = ρ(uJ)R,

for u ∈ T ∗ ⊗ T . From Lemma 1.13 and the decompositions (1.66), we
obtain the equality

(1.79) B̃ = B̃+ ⊕ B̃−,

where

B̃+ = B̃ ∩B+ = ρ(g+
1 )R, B̃− = B̃ ∩B− = ρ(g−1 )R.



CHAPTER II

RADON TRANSFORMS ON SYMMETRIC SPACES

§1. Outline

In this chapter, we introduce the Radon transforms for functions and
symmetric forms on a symmetric space (X, g) of compact type, namely
the X-ray transform and the maximal flat transform. In §2, we present
results concerning harmonic analysis on homogeneous spaces and use them
to study these Radon transforms in §5 and to describe properties of certain
spaces of symmetric forms in §7. The notions of rigidity in the sense of
Guillemin and of infinitesimal rigidity of the space X are introduced in §3;
in this section, we also state the fundamental result of Guillemin [35] con-
cerning isospectral deformations of the metric g ofX (Theorem 2.14). In §4,
we present Grinberg’s theorem concerning the injectivity of the maximal
flat Radon transform for functions on X; when the space (X, g) is irre-
ducible, from this result we infer that, if the space X is rigid in the sense of
Guillemin, it is necessarily equal to its adjoint space. In §5, criteria for the
rigidity of the space X are given in terms of harmonic analysis. Some lem-
mas concerning irreducible G-modules, where G is a compact semi-simple
Lie group, proved in §6 are used in our study of symmetric forms on an ir-
reducible symmetric space presented in §7. Results concerning the space of
infinitesimal Einstein deformations of an irreducible symmetric space can
be found in §7. Our criteria for the infinitesimal rigidity or the rigidity in
the sense of Guillemin of an irreducible symmetric space are given in §8.

§2. Homogeneous vector bundles and harmonic analysis

Let (X, g) be a Riemannian manifold which may be written as a ho-
mogeneous space G/K, where G is a compact Lie group and K is a closed
subgroup of G. We assume that the group G acts by isometries on the
Riemannian manifold X. If F is a homogeneous vector bundle over X,
then the space C∞(F ) is a G-module.

Let F be a complex homogeneous vector bundle overX endowed with a
Hermitian scalar product. We endow the space C∞(F ) of sections of F over
X with the Hermitian scalar product obtained from the scalar product on F
and the Riemannian measure dX of X. If the vector bundle F is unitary
in the sense of [56, §2.4], then the space C∞(F ) is a unitary G-module.
Let x0 be the point of X corresponding to the coset of the identity element
of G. The action of G on the fiber F0 of F at the point x0 of X induces
a representation τ of K on F0. Then F is isomorphic to the homogeneous
vector bundle G×τ F0 and we shall identify these two homogeneous vector
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bundles. The representation τ is unitary if and only if the vector bundle
F is unitary.

We henceforth suppose that F is a unitary homogeneous vector bundle.
If C∞(G;F0) is the space of functions on G with values in F0, we consider
its subspace

C∞(G; τ) = { f ∈ C∞(G;F0) | f(ak) = τ(k)−1f(a), for a ∈ G, k ∈ K }

and we write
(π(a1)f)(a) = f(a−1

1 a),

for a, a1 ∈ G and f ∈ C∞(G; τ). Then π is representation of G on the
space C∞(G; τ) and the mapping

A : C∞(F ) → C∞(G; τ),

defined by
(Au)(a) = a−1u(aK),

for u ∈ C∞(F ) and a ∈ G, is an isomorphism of G-modules. In particular,
if K is the subgroup {e} of G, where e is the identity element of G, and
F0 = C, then π is a representation of G on the space C∞(G) which gives
us a structure of G-module on C∞(G).

Let Ĝ be the dual of the group G, that is, the set of equivalence classes
of irreducible G-modules over C. For γ ∈ Ĝ, let Vγ be a representative of γ;
the mapping

ιγ : Vγ ⊗ HomK(Vγ , F0) → C∞(G; τ),

defined by
ιγ(v ⊗ ϕ)(a) = ϕ(a−1v),

for all v ∈ Vγ , ϕ ∈ HomK(Vγ , F0) and a ∈ G, is injective. According to the
Frobenius reciprocity theorem, the image C∞

γ (F ) of the mapping A−1 ◦ ιγ
is a finite-dimensional G-submodule of C∞(F ), which depends only on γ
and is isomorphic to the direct sum of m copies of Vγ , where m is the
integer dim HomK(Vγ , F0). If W is a G-submodule of C∞(F ), the image
of the mapping

Vγ ⊗ HomG(Vγ ,W ) → C∞(F ),

which sends v ⊗ ϕ into ϕ(v), for v ∈ Vγ and ϕ ∈ HomG(Vγ ,W ), is a
G-submodule of W called the isotypic component of W corresponding
to γ. In fact, the isotypic component of C∞(F ) corresponding to γ is
equal to C∞

γ (F ). A G-submodule W of C∞
γ (F ) is therefore isomorphic to

the direct sum of k copies of Vγ , with k ≤ dim HomK(Vγ , F0); this integer
k is called the multiplicity of the G-module W and denoted by MultW .
According to Schur’s lemma, if the representation τ of K is irreducible, the
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multiplicity dim HomK(Vγ , F0) of C∞
γ (F ) is equal to the multiplicity of the

representation τ in the decomposition of Vγ into irreducible K-modules.
For γ, γ′ ∈ Ĝ, with γ �= γ′, the submodules C∞

γ (F ) and C∞
γ′ (F ) of C∞(F )

are orthogonal (see [56, §5.3]). For γ ∈ Ĝ, we denote by Pγ the orthog-
onal projection of C∞(F ) onto its G-submodule C∞

γ (F ). The following
proposition is a direct consequence of Theorem 5.3.6 of [56].

Proposition 2.1. The direct sum
⊕

γ∈Ĝ C
∞
γ (F ) is a dense submod-

ule of C∞(F ).

The vector bundle
⊗p

T ∗ ⊗ ⊗q
T is a homogeneous vector bundle

and its complexification is a unitary homogeneous vector bundle. Thus
the vector bundles TC,

⊗k
T ∗

C
,
∧j
T ∗

C
and SpT ∗

C
are unitary homogeneous

G-vector bundles over X, and we consider the unitary G-modules C∞(TC)
and C∞(

⊗k
T ∗

C
). Moreover, we know that C∞(T ) is a G-submodule of

C∞(TC), while

C∞(
∧k

T ∗
C
), C∞(SkT ∗

C
), C∞(

⊗k
T ∗), C∞(

∧k
T ∗), C∞(SkT ∗)

are G-submodules of C∞(
⊗k

T ∗
C
). For all γ ∈ Ĝ, the isomorphism of vector

bundles g� : T → T ∗ induces isomorphisms of G-modules

g� : C∞
γ (TC) → C∞

γ (T ∗
C
).

Let g and k be the Lie algebras of G and K, respectively. In this
section, we henceforth suppose thatG/K is a reductive homogeneous space;
this means that there is an Ad(K)-invariant complement of k in g. This
assumption always holds when the compact group G is connected and semi-
simple and (G,K) is a Riemannian symmetric pair of compact type. Let
F1, F2, F3 be complex homogeneous vector bundles over X endowed with
Hermitian scalar products. Assume that these vector bundles are unitary.
Let

D : F1 → F2

be a homogeneous differential operator. Then we have

(2.1) DPγ = PγD,

for γ ∈ Ĝ; therefore the morphism of G-modules

D : C∞(F1) → C∞(F2)

induces by restriction a morphism of G-modules

D : C∞
γ (F1) → C∞

γ (F2),
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for γ ∈ Ĝ. We consider the subspace

KerD = {u ∈ C∞(F1) | Du = 0 }

of C∞(F1); according to the relation (2.1), if u is an element of KerD, then
Pγu also belongs to KerD, for all γ ∈ Ĝ. If D is elliptic, we recall that
DC∞(F1) is a closed subspace of C∞(F2); the following proposition is a
consequence of the results of [56, §5.7] and in particular its Lemma 5.7.7.

Proposition 2.2. Let D : C∞(F1) → C∞(F2) be a homogeneous
differential operator. Then the following assertions hold:

(i) The direct sum
⊕

γ∈Ĝ (C∞
γ (F1) ∩ KerD) is a dense subspace of

KerD; in fact, an element u of C∞(F1) belongs to KerD if and only if Pγu

belongs to KerD, for all γ ∈ Ĝ.
(ii) The direct sum

⊕
γ∈ĜDC

∞
γ (F1) is a dense subspace ofDC∞(F1).

(iii) If D is elliptic, then the closure of the direct sum
⊕

γ∈ĜDC
∞
γ (F1)

in C∞(F2) is equal to DC∞(F1); in fact, if u is an element of C∞(F2) and
Pγu belongs to DC∞

γ (F1), for all γ ∈ Ĝ, then u belongs to DC∞(F1).

The following proposition is given by Proposition 2.3 of [14].

Proposition 2.3. Let

Q1 : C∞(F1) → C∞(F2), Q2 : C∞(F2) → C∞(F3)

be homogeneous differential operators satisfying Q2 ◦ Q1 = 0. Suppose
that the operator Q1 is either elliptic or equal to 0. Then the following
assertions are equivalent:

(i) The complex

C∞(F1)
Q1−−→ C∞(F2)

Q2−−→ C∞(F3)

is exact.
(ii) For all γ ∈ Ĝ, the complex

C∞
γ (F1)

Q1−−→ C∞
γ (F2)

Q2−−→ C∞
γ (F3)

is exact.
(iii) For all γ ∈ Ĝ, we have

MultQ2(C∞
γ (F2)) ≥ MultC∞

γ (F2) − MultC∞
γ (F1)

+ Mult (C∞
γ (F1) ∩ KerQ1).
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Proof: First, suppose that assertion (ii) holds. Then according to
Proposition 2.2,(i) the subspace KerQ2 is equal to the closure of

⊕
γ∈Ĝ

(C∞
γ (F2) ∩ KerQ2),

and hence to the closure of
⊕

γ∈ĜQ1(C∞
γ (F1)). Since Q1 either vanishes

or is elliptic, by Proposition 2.2,(iii) this last space is equal to Q1(C∞(F1),
and so (i) holds. The equivalence of assertions (ii) and (iii) is immediate.

Now suppose that X is a complex manifold, that g is a Hermitian
metric and that the group G acts by holomorphic isometries on X. Then
the vector bundles T ′ and T ′′ are homogeneous sub-bundles of TC, while
the vector bundles T 1,0 and T 0,1 are homogeneous sub-bundles of T ∗

C
. The

isomorphisms of vector bundles (1.70) are G-equivariant. Therefore for all
γ ∈ Ĝ, the isomorphism of vector bundles g� : TC → T ∗

C
induces isomor-

phisms of G-modules

(2.2) g� : C∞
γ (T ′) → C∞

γ (T 0,1), C∞
γ (T ′′) → C∞

γ (T 1,0).

§3. The Guillemin and zero-energy conditions

Let (X, g) be a Riemannian manifold. For p ≥ 0, we consider the
symmetrized covariant derivative

Dp = Dp
X : SpT ∗ → Sp+1T ∗,

which is the first-order differential operator defined by

(Dpu)(ξ1, . . . , ξp+1) =
1

p+ 1

p+1∑
j=1

(∇u)(ξj , ξ1, . . . , ξ̂j , . . . , ξp+1),

for u ∈ SpT ∗ and ξ1, . . . , ξp+1 ∈ T . The operator D0 is equal to the exte-
rior differential operator d on functions, and the operator D1 was already
introduced in §1, Chapter I.

If (X, g) is a flat torus, then we easily see that

(2.3)
∫
X

ζ · f dX = 0,

for all f ∈ C∞(X) and all parallel vector fields ζ on X; therefore, if u is a
symmetric p-form on X, we have

∫
X

(Dpu)(ζ1, . . . , ζp+1) dX = 0,



§3. The Guillemin and zero-energy conditions 37

for all parallel vector fields ζ1, . . . , ζp+1 on X. By formula (1.4), we thus
see that ∫

X

(Lξg)(ζ1, ζ2) dX = 0,

for all vector fields ξ on X and all parallel vector fields ζ1, ζ2 on X.
The following lemma is a consequence of the preceding remarks and

formula (1.4).

Lemma 2.4. Let (X, g) be a Riemannian manifold and let Y be a
totally geodesic flat torus contained in X.

(i) Let u be a symmetric p-form on X. Then for all parallel vector
fields ζ1, . . . , ζp+1 on Y , the integral

∫
X

(Dpu)(ζ1, . . . , ζp+1) dY

vanishes.

(ii) Let ξ be a vector field on X. Then for all parallel vector fields
ζ1, ζ2 on Y , the integral

∫
Y

(Lξg)(ζ1, ζ2) dY

vanishes.

Let γ : [0, L] → X be a closed geodesic of X of length L parametrized
by its arc-length s; we denote by γ̇(s) the tangent vector to the geodesic γ
at the point γ(s). If u is a symmetric p-form on X, we consider the integral

∫
γ

u =
∫ L

0

u(γ̇(s), γ̇(s), . . . , γ̇(s)) ds

of u over γ.

Definition 2.5. We say that a symmetric p-form u on X satisfies the
zero-energy condition if, for every closed geodesic γ of X, the integral of u
over γ vanishes.

Let Y be a totally geodesic submanifold of X; clearly, if u is a symmet-
ric p-form on X satisfying the zero-energy condition, then the restriction
of u to Y also satisfies the zero-energy condition. From Lemma 2.4, we
obtain the following result:
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Lemma 2.6. If u is a symmetric p-form on X, then the symmetric
(p+ 1)-form Dpu satisfies the zero-energy condition. A symmetric 2-form
on X, which is equal to a Lie derivative of the metric g, satisfies the zero-
energy condition.

Definition 2.7. We say that the Riemannian metric g on X is a
CL-metric if all its geodesics are periodic and have the same length L.

If g is a CL-metric, we say that X is a CL-manifold; then the geodesic
flow on the unit tangent bundle of (X, g) is periodic with least period L.

The following proposition is due to Michel (Proposition 2.2.4 of [45];
see also Proposition 5.86 of [5]).

Proposition 2.8. Let gt be a one-parameter family of CL-metrics
on X, for |t| < ε, with g0 = g. Then the infinitesimal deformation h =
d
dt gt|t=0 of {gt} satisfies the zero-energy condition.

Proof: Let γ : [0, L] → X be a closed geodesic of the Riemannian
manifold (X, g). Then there exists a real number 0 < δ ≤ ε and a differen-
tiable family of closed curves γt : [0, L] → X, for |t| < δ, which possesses
the following properties: for each t, with |t| < δ, the curve γt is a geodesic
of the metric gt parametrized by arc-length, and the curve γ0 is equal to γ.
We consider the variation of the family {γt} which is the vector field ξ
along the curve γ defined by ξ(s) = d

dt γt(s)|t=0, for 0 ≤ s ≤ L. Since gt is
a CL-metric, we know that

∫ L

0

gt(γ̇t(s), γ̇t(s)) ds = L,

for |t| < δ. We differentiate the left-hand side of the above equality with
respect to t, evaluate it at t = 0, and then obtain the relation

∫ L

0

(
h(γ̇0(s), γ̇0(s)) + 2g(γ̇0(s), ξ(s))

)
ds = 0.

On the other hand, according to the first variation formula, since γ is
geodesic of the metric g, the derivative

d

dt

∫ L

0

g(γ̇t(s), γ̇t(s)) ds

vanishes at t = 0; this gives us the relation

∫ L

0

g(γ̇0(s), ξ(s)) ds = 0.
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From the previous equalities, we infer that

∫ L

0

h(γ̇0(s), γ̇0(s)) ds = 0,

and so h satisfies the zero-energy condition.

Definition 2.9. We say that a symmetric p-form u on a compact
locally symmetric space X satisfies the Guillemin condition if, for every
maximal flat totally geodesic torus Z contained in X and for all unitary
parallel vector fields ζ on Z, the integral

(2.4)
∫
Z

u(ζ, ζ, . . . , ζ) dZ

vanishes.

From Lemma 2.4, we obtain:

Lemma 2.10. Let X be a compact locally symmetric space. If u is a
symmetric p-form on X, then the symmetric (p+1)-form Dpu satisfies the
Guillemin condition. If ξ is a vector field on X, the symmetric 2-form Lξg
on X satisfies the Guillemin condition.

Thus every exact one-form on a compact locally symmetric space sat-
isfies the Guillemin and zero-energy conditions.

Lemma 2.11. Let X be a flat torus. A symmetric p-form on X satis-
fying the zero-energy condition also satisfies the Guillemin condition.

Proof: Let u be a symmetric p-form on X. It is easily seen that
the form u satisfies the Guillemin condition if and only if the integral (2.4)
vanishes for all unitary parallel vector fields ζ on X, all of whose orbits
are closed geodesics. Let ζ be such a vector field and let ϕt = exp tζ,
for t ∈ R, be the family of diffeomorphisms of X determined by ζ; then
there exists a real number L > 0 such that ϕt+L = ϕt and such that,
for all x ∈ X, the mapping γx : [0, L] → X defined by γx(t) = ϕt(x),
with 0 ≤ t ≤ L, is a closed geodesic of X of length L parametrized by its
arc-length. We suppose that L is the smallest such number. There is a
flat torus X ′ of dimension m− 1 and a Riemannian fibration π : X → X ′

whose fibers are equal to the family of all these closed geodesics; in fact, if
x1, x2 ∈ X, we have π(x1) = π(x2) if and only if we can write x2 = ϕt(x1),
for some 0 ≤ t ≤ L. If f is the function defined on X by

f(x) =
∫
γx

u,
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for x ∈ X, clearly there is a function f ′ on X ′ satisfying π∗f ′ = f . Then
we have ∫

Z

u(ζ, ζ, . . . , ζ) dZ =
∫
X′
f ′ dX ′.

If u satisfies the zero-energy condition, then the functions f and f ′ vanish,
and so, by the preceding formula, u satisfies the Guillemin condition.

If (X, g) is a compact locally symmetric space, according to Lemma
2.11 a symmetric p-form on X satisfying the zero-energy condition also
satisfies the Guillemin condition.

Definition 2.12. We say that a compact locally symmetric space X
is rigid in the sense of Guillemin (resp. infinitesimally rigid) if the only
symmetric 2-forms on X satisfying the Guillemin (resp. the zero-energy)
condition are the Lie derivatives of the metric g.

If X is a compact locally symmetric space X and p ≥ 0 is an integer,
we consider the space Zp of all sections of C∞(SpT ∗) satisfying the zero-
energy condition. According to Lemma 2.6, we have the inclusion

DpC∞(SpT ∗) ⊂ Zp+1.

By formula (1.4), we see that the infinitesimal rigidity of the compact lo-
cally symmetric space X is equivalent to the equality D1C∞(T ∗) = Z2. On
the other hand, the equality D0C∞(T ∗) = Z1 means that every differential
form of degree 1 on X satisfying the zero-energy condition is exact.

Proposition 2.13. Let X be a compact locally symmetric space.
Then the following assertions are equivalent:

(i) Every symmetric 2-form h on X, which satisfies the Guillemin
(resp. the zero-energy) condition and the relation divh = 0, vanishes.

(ii) The space X is rigid in the sense of Guillemin (resp. is infinitesi-
mally rigid).

Proof: First assume that assertion (i) holds. Let h be a symmetric
2-form on X satisfying the Guillemin (resp. the zero-energy) condition.
According to the decomposition (1.11), we may write

h = h0 +D0ξ,

where h0 is an element of C∞(S2T ∗) satisfying divh0 = 0 and ξ ∈ C∞(T ).
Clearly, by Lemma 2.10 (resp. Lemma 2.6), the symmetric 2-form h0 also
satisfies the Guillemin (resp. the zero-energy) condition; our assumption
implies that h0 vanishes, and so h is a Lie derivative of the metric. There-
fore (ii) is true. According to the decomposition (1.11), we see that asser-
tion (i) is a direct consequence of (ii).
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We now assume that (X, g) is a symmetric space of compact type. If
the space X is rigid in the sense of Guillemin, it is also infinitesimally rigid.
If X is a space of rank one, the closed geodesics of X are the maximal flat
totally geodesic tori of X, and so the notions of Guillemin rigidity and
infinitesimal rigidity for X are equivalent.

Consider a family of Riemannian metrics {gt} on X, for |t| < ε, with
g0 = g. We say that {gt} is an isospectral deformation of g if the spectrum
Spec(X, gt) of the metric gt is equal to Spec(X, g), for all |t| < ε. We say
that the space (X, g) is infinitesimally spectrally rigid (i.e., spectrally rigid
to first-order) if, for every such isospectral deformation {gt} of g, there is
a one-parameter family of diffeomorphisms ϕt of X such that gt = ϕ∗

t g
to first-order in t at t = 0, or equivalently if the infinitesimal deformation
d
dt gt|t=0 of {gt} is a Lie derivative of the metric g.

In [35], Guillemin proved the following result:

Theorem 2.14. A symmetric 2-form on a symmetric space (X, g)
of compact type, which is equal to the infinitesimal deformation of an
isospectral deformation of g, satisfies the Guillemin condition.

This theorem leads us to Guillemin’s criterion for the infinitesimal
spectral rigidity of a symmetric space of compact type which may be ex-
pressed as follows:

Theorem 2.15. If a symmetric space of compact type is rigid in the
sense of Guillemin, it is infinitesimally spectrally rigid.

§4. Radon transforms

Let (X, g) be a symmetric space of compact type. Then there is a
Riemannian symmetric pair (G,K) of compact type, where G is a compact,
connected semi-simple Lie group and K is a closed subgroup of G such that
the space X is isometric to the homogeneous space G/K endowed with a
G-invariant metric. We identify X with G/K, and let x0 be the point of X
corresponding to the coset of the identity element of G in G/K. Since the
maximal flat totally geodesic tori of X are conjugate under the action of
G on X, the space Ξ of all such tori is a homogeneous space of G. We also
consider the set Ξ′ of all closed geodesics of X; when the rank of X is equal
to one, then Ξ′ is equal to Ξ.

A Radon transform for functions on X assigns to a function on X
its integrals over a class of totally geodesic submanifolds of X of a fixed
dimension. Here we shall consider two such Radon transforms, the maximal
flat Radon transform and the X-ray transform.

The maximal flat Radon transform for functions on X assigns to a
real-valued function f on X the function f̂ on Ξ, whose value at a torus
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Z ∈ Ξ is the integral

f̂(Z) =
∫
Z

f dZ

of f over Z. Clearly this transform is injective if every function on X satis-
fying the Guillemin condition vanishes. The X-ray transform for functions
on X assigns to a real-valued function f on X the function f̌ on Ξ′, whose
value at a closed geodesic γ ∈ Ξ′ is the integral

f̌(γ) =
∫
γ

f.

Clearly this transform is injective if every function on X satisfying the zero-
energy condition vanishes. If the rank of X is equal to one, the maximal
flat Radon transform for functions on X coincides with the X-ray transform
for functions on X.

Let f be a real-valued function on X. If Z is a torus belonging to Ξ
and if ζ is a unitary parallel vector field on Z, then we see that

∫
Z

(fg)(ζ, ζ) dZ = f̂(Z).

On the other hand, if γ is a closed geodesic of X, we have
∫
γ

fg = f̌(γ).

Thus the maximal flat Radon (resp. the X-ray) transform of f vanishes
if and only if the symmetric 2-form fg satisfies the Guillemin (resp. the
zero-energy) condition.

If X is an irreducible symmetric space of compact type, we recall that
g is an Einstein metric and that Ric = λg, where λ is a positive real
number; moreover, the space E(X) of infinitesimal Einstein deformations
of the metric g is a G-submodule of C∞(S2T ∗).

Proposition 2.16. Let X be an irreducible symmetric space of com-
pact type, which is not isometric to a sphere. If X is rigid in the sense
of Guillemin (resp. is infinitesimally rigid), then the maximal flat Radon
(resp. the X-ray) transform for functions on X is injective.

Proof: Assume that X is rigid in the sense of Guillemin (resp. is
infinitesimally rigid). Let f be real-valued function on the Einstein mani-
fold X; suppose that the function f̂ (resp. the function f̌) vanishes. Then
the symmetric 2-form fg on X satisfies the Guillemin (resp. the zero-
energy) condition. Therefore we may write fg = Lξg, where ξ is a vector
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field on X. According to Proposition 1.6, the function f vanishes, and so
the corresponding Radon transform for functions is injective.

Let Λ be a finite group of isometries of X of order q. If F is a vector
bundle equal either to a sub-bundle of TC or to a sub-bundle of SpT ∗

C

invariant under the group Λ, we denote by C∞(F )Λ the space consisting of
all Λ-invariant sections of F ; if the vector bundle F is also invariant under
the group G and if the isometries of Λ commute with the action of G,
then C∞(F )Λ is a G-submodule of C∞(F ). If F is the trivial complex line
bundle, we consider the G-submodule C∞(X)Λ = C∞(F )Λ of Λ-invariant
functions on X.

We suppose that the group Λ acts without fixed points. Then the
quotient Y = X/Λ is a manifold and the natural projection � : X → Y is
a covering projection. Thus the metric g induces a Riemannian metric gY
on Y such that �∗gY = g. Clearly the space Y is locally symmetric.

A symmetric p-form u on X is invariant under the group Λ if and only
if there is a symmetric p-form û on Y such that u = �∗û. The projection
� induces an isomorphism

(2.5) �∗ : C∞(Y, SpT ∗
Y,C) → C∞(SpT ∗

C
)Λ,

sending u ∈ C∞(Y, SpT ∗
Y,C) into �∗u. A vector field ξ on X is invariant

under Λ if and only if it is �-projectable, i.e., if there exists a vector field
ξ̂ on Y such that �∗ξ(x) = ξ̂(�(x)), for all x ∈ X. If ξ is a Λ-invariant
vector field on X, then the Lie derivative D0ξ is a Λ-invariant symmetric
2-form on X and, if ξ̂ denotes the vector field on Y induced by ξ, we see
that

(2.6) D0ξ = �∗(D0,Y ξ̂).

If X is an irreducible symmetric space, then X and Y are Einstein
manifolds; according to the definition of the spaces E(X) and E(Y ) of
infinitesimal Einstein deformations, we see that the projection � and the
isomorphism (2.5) induce an isomorphism

(2.7) �∗ : E(Y ) → E(X)Λ,

where
E(X)Λ = E(X) ∩ C∞(S2T ∗)Λ.

Throughout the remainder of this section, we also suppose that the
isometries of Λ commute with the action of G on X; then Y is a homoge-
neous space of G. Assume furthermore that there is a subgroup K ′ of G
containing K and a G-equivariant diffeomorphism ϕ : Y → G/K ′ which
have the following properties:
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(i) (G,K ′) is a Riemannian symmetric pair;
(ii) when we identify X with G/K, the projection ϕ ◦ � is equal to

the natural projection G/K → G/K ′.
Under these conditions, the space (Y, gY ) is isometric to the symmetric
space G/K ′ of compact type endowed with a G-invariant metric.

Let Z be a maximal flat totally geodesic torus of X. Then �(Z) is a
flat torus of Y . On the other hand, if Z ′ is a maximal flat totally geodesic
torus of Y , then �−1Z ′ is a totally geodesic flat torus of X. From these
observations, it follows that Z = �−1(Z ′), where Z ′ = �(Z); we also see
that the rank of Y is equal to the rank of X and that the induced mapping
� : Z → Z ′ is q-fold covering. Moreover, the torus Z is invariant under the
group Λ. A parallel vector field ξ on Z is �-projectable, i.e., if there exists
a parallel vector field ξ̂ on Z ′ = �(Z) such that �∗ξ(x) = ξ̂(�(x)), for all
x ∈ Z. Conversely, any parallel vector field on Z ′ is of the form �∗ξ, for
some parallel vector field ξ on Z.

Let u be a symmetric p-form on X invariant under Λ and let û be the
symmetric p-form on Y such that u = �∗û. Let ξ be a parallel vector field
on Z and ξ̂ be the parallel vector field on Z ′ such that �∗ξ = ξ̂. Then the
function u(ξ, ξ, . . . , ξ) on Z is invariant under Λ and satisfies

u(ξ, ξ, . . . , ξ) = �∗û(ξ̂, ξ̂, . . . , ξ̂);

thus we obtain the equality
∫
Z

u(ξ, ξ, . . . , ξ) dZ = q

∫
Z′
û(ξ̂, ξ̂, . . . , ξ̂) dZ ′.

If γ is a closed geodesic of Y , it is easily seen that there is a closed
geodesic γ′ of X and an integer 1 ≤ q1 ≤ q such that the image of the
mapping � ◦ γ′ is equal to the image of γ and such that the equality

∫
γ′
�∗u = q1

∫
γ

u

holds for all symmetric p-forms u on Y .
From the above observations, we deduce the following:

Lemma 2.17. Suppose that the quotient Y = X/Λ is a symmetric
space. Then a symmetric p-form u on Y satisfies the Guillemin (resp. the
zero-energy) condition if and only if the symmetric p-form �∗u on X,
which is invariant under the group Λ, satisfies the Guillemin (resp. the
zero-energy) condition.

By Lemma 2.17, we see that the maximal flat Radon (resp. the X-ray)
transform for functions on Y is injective if and only if the restriction of the
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the maximal flat Radon (resp. the X-ray) transform for functions on X to
the space C∞(X)Λ is injective. From Lemma 2.17 and the equality (2.6),
we deduce the following three results:

Proposition 2.18. Suppose that the quotient Y = X/Λ is a sym-
metric space. Then the following assertions are equivalent:

(i) Every symmetric 2-form on the space X, which is invariant under
the group Λ and satisfies the Guillemin condition, is a Lie derivative of the
metric.

(ii) The space Y is rigid in the sense of Guillemin.

Proposition 2.19. Suppose that the quotient Y = X/Λ is a sym-
metric space. Then the following assertions are equivalent:

(i) Every symmetric 2-form on the space X, which is invariant under
the group Λ and satisfies the zero-energy condition, is a Lie derivative of
the metric.

(ii) The space Y is infinitesimally rigid.

Proposition 2.20. Suppose that the quotient Y = X/Λ is a sym-
metric space. Then the following assertions are equivalent:

(i) Every differential form of degree 1 on the space X, which is invari-
ant under the group Λ and satisfies the Guillemin (resp. the zero-energy)
condition, is exact.

(ii) Every differential form of degree 1 on the space Y , which satisfies
the Guillemin (resp. the zero-energy) condition, is exact.

Let F be a G-invariant sub-bundle of SpT ∗
C
, which is also invariant

under the group Λ. Then there exists a unique G-invariant sub-bundle FY
of SpT ∗

Y,C such that, for all x ∈ X, the isomorphism �∗ : SpT ∗
Y,y → SpT ∗

x ,
where y = �(x), induces an isomorphism �∗ : FY,y → Fx. A symmetric
p-form u on Y is a section of FY if and only if the Λ-invariant symmetric
p-form �∗u on X is a section of F . Then the mapping

�∗ : C∞(Y, FY ) → C∞(F )Λ,

induced by (2.5), is an isomorphism of G-modules.
The following proposition is a consequence of Lemma 2.17.

Proposition 2.21. Suppose that the quotient Y = X/Λ is a sym-
metric space. Let F be a sub-bundle of SpT ∗ invariant under the groups G
and Λ, and let FY be the G-invariant sub-bundle of SpT ∗

Y induced by F .
Then the following assertions are equivalent:

(i) Any section of the vector bundle F over the space X, which is
invariant under the group Λ and satisfies the Guillemin (resp. the zero-
energy) condition, vanishes.
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(ii) Any section of the vector bundle FY over the space Y , which
satisfies the Guillemin (resp. the zero-energy) condition, vanishes.

We now suppose that the group Λ is equal to the group {id, τ} of
order 2, where τ is an involutive isometry of X. We say that a symmetric
p-form u on X is even (resp. odd) with respect to τ if τ∗u = εu, where
ε = 1 (resp. ε = −1). A vector field ξ on X is even (resp. odd) with
respect to τ if τ∗ξ = ξ (resp. τ∗ξ = −ξ). Any of these tensors on X is
even if and only if it is invariant under the group Λ. If F is a G-invariant
sub-bundle of TC or of SpT ∗

C
, which is also invariant under τ , the space

C∞(F )ev (resp. C∞(F )odd) consisting of all even (resp. odd) sections of
F over X is a G-submodule of C∞(F ). Clearly, we have the equality
C∞(F )ev = C∞(F )Λ and the decomposition of G-modules

(2.8) C∞(F ) = C∞(F )ev ⊕ C∞(F )odd.

In particular, if F is the trivial complex line bundle, we obtain the decom-
position

C∞(X) = C∞(X)ev ⊕ C∞(X)odd,

where C∞(X)ev (resp. C∞(X)odd) is the G-submodule of C∞(X) consist-
ing of all even (resp. odd) functions on X; in fact, the space C∞(X)ev is
isomorphic to the space of all complex-valued functions on Y . Moreover,
we have the inclusion

dC∞(X)ev ⊂ C∞(T ∗)ev, dC∞(X)odd ⊂ C∞(T ∗)odd.

By (1.6), we have the inclusions

(2.9) D0C
∞(T )ev ⊂ C∞(S2T ∗)ev, D0C

∞(T )odd ⊂ C∞(S2T ∗)odd.

If X is an irreducible symmetric space, we consider the G-submodules

E(X)ev = E(X) ∩ C∞(S2T ∗)ev, E(X)odd = E(X) ∩ C∞(S2T ∗)odd

of E(X); then we have the equality E(X)ev = E(X)Λ and the decomposi-
tion of G-modules

(2.10) E(X) = E(X)ev ⊕ E(X)odd.

Let Z be a maximal flat totally geodesic torus of X. Since τ pre-
serves Z, if f is an odd function on X, we see that the integral of f over
Z vanishes. Therefore the odd functions on X satisfy the Guillemin condi-
tion, and so belong to the kernel of the maximal flat Radon transform for
functions.
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Proposition 2.22. We suppose that the group Λ is equal to the
group {id, τ} of order 2, where τ is an involutive isometry of X, and that
the quotient Y = X/Λ is a symmetric space. Then an odd symmetric
p-form on X satisfies the Guillemin condition, and the maximal flat Radon
transform for functions on X is not injective. Moreover, the space X is not
rigid in the sense of Guillemin.

Proof: Let u be an odd symmetric p-form on X and let Z be a
maximal flat totally geodesic torus of X. If ξ is a parallel vector field on Z,
then the function u(ξ, ξ, . . . , ξ) on Z is odd, that is,

u(ξ, ξ, . . . , ξ)(τ(x)) = −u(ξ, ξ, . . . , ξ)(x),

for all x ∈ Z; hence its integral over Z vanishes. We now construct an odd
symmetric 2-form h′ on X which is not a Lie derivative of the metric. Let x
be a point ofX and U be a open neighborhood of x for which U ∩ τ(U) = ∅.
By Lemma 1.13 and remarks made in §3, Chapter I, we know that the
infinitesimal orbit of the curvature B̃ is a vector bundle and that the quo-
tient bundle B/B̃ is non-zero. According to §1, Chapter I, the morphism
σ(D1) : S2T ∗ ⊗ S2T ∗ → B/B̃ is surjective; hence we may choose a sym-
metric 2-form h on X whose support is contained in U and which satisfies
(D1h)(x) �= 0. We know that h is not a Lie derivative of the metric on any
neighborhood of x. The symmetric 2-form h′ = h − τ∗h on X is odd and
its restriction to U is equal to h. Hence the form h′ satisfies the Guillemin
condition, and so the space X is not rigid in the sense of Guillemin.

We now consider an example of the above situation. The n-sphere
(Sn, g0), with n ≥ 2, is an irreducible symmetric space of rank one; in fact,
the group SO(n+1) acts transitively on Sn, and the sphere Sn is isometric
to the homogeneous space SO(n+ 1)/SO(n) (see §2, Chapter III and also
§10 in Chapter XI of [40]). The anti-podal involution τ of Sn is an isometry
which commutes with the action of SO(n + 1) on X = Sn. If Λ is the
group {id, τ} of isometries of X, the quotient Y = X/Λ is equal to the real
projective space RP

n endowed with the metric g0 of constant curvature 1
induced by the metric g0 of Sn. The natural projection � : Sn → RP

n is
a two-fold covering. The Riemannian manifold RP

n is also an irreducible
symmetric space of compact type of rank one. The closed geodesics of
the sphere Sn are the great circles, and the maximal flat totally geodesic
tori of Sn and RP

n are the closed geodesics. In fact, the metric g0 on Sn

(resp. on RP
n) is a CL-metric, where L = 2π (resp. L = π). We easily

see directly, or by Proposition 2.22, that the odd symmetric p-forms (with
respect to τ) on Sn satisfy the zero-energy condition. Moreover, according
to Proposition 2.22 the sphere Sn is not infinitesimally rigid.

In §3, Chapter III, we shall prove that the X-ray transform for func-
tions on the sphere Sn, with n ≥ 2, is injective on the space of all even



48 II. RADON TRANSFORMS ON SYMMETRIC SPACES

functions (see Proposition 3.17). Clearly, this result is equivalent to asser-
tion (i) of the following theorem. By Lemma 2.17, we know that assertions
(i) and (ii) of this theorem are equivalent. We point out that assertion (i)
of this theorem in the case of the 2-sphere S2 is a classic result due to Funk.

Theorem 2.23. (i) The kernel of the X-ray transform for functions
on the sphere (Sn, g0), with n ≥ 2, is equal to the space of all odd functions
on Sn.

(ii) The X-ray transform for functions on the real projective space
(RP

n, g0), with n ≥ 2, is injective.

The adjoint space of the symmetric space X is the symmetric space
which admits X as a Riemannian covering and is itself not a Riemannian
covering of another symmetric space. For example, the adjoint space of the
n-sphere Sn, with n ≥ 2, is the real projective space RP

n.
In [34], Grinberg generalized Theorem 2.23 and proved the following:

Theorem 2.24. The maximal flat Radon transform for functions on
a symmetric space X of compact type is injective if and only if X is equal
to its adjoint space.

By Proposition 2.22, the sphere Sn is not infinitesimally rigid. Hence
from Proposition 2.16 and Theorem 2.24, we obtain the following necessary
condition for Guillemin rigidity:

Theorem 2.25. Let X be an irreducible symmetric space of compact
type. If X is rigid in the sense of Guillemin, then X is equal to its adjoint
space.

In Chapter III, we shall show that the X-ray transform for functions
on a flat torus of dimension > 1 is injective; this result is due to Michel [46]
(see Proposition 3.5). If the symmetric space X is of rank q, each point
of X is contained in a totally geodesic flat torus of dimension q of X (see
Theorem 6.2 in Chapter V of [36]). Thus from the injectivity of the X-ray
transform for functions on a flat torus, we deduce the following:

Proposition 2.26. The X-ray transform for functions on a symmet-
ric space X of compact type of rank > 1 is injective.

We now extend the definitions of the maximal flat Radon transform
and the X-ray transform to symmetric p-forms. Let L be the vector bundle
over Ξ whose fiber at a point Z ∈ Ξ is the space of all parallel vector fields
on the flat torus Z. This vector bundle is a homogeneous G-bundle over Ξ
and its rank is equal to the rank of the symmetric space X. We consider the
p-th symmetric product SpL∗ of the dual L∗ of L. The space C∞(SpT ∗)
of all symmetric p-forms on X and the space C∞(Ξ, SpL∗) of all sections
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of SpL∗ over Ξ are G-modules. The maximal flat Radon transform for
symmetric p-forms on X is the morphism of G-modules

Ip : C∞(SpT ∗) → C∞(Ξ, SpL∗),

which assigns to a symmetric p-form u on X the section Ip(u) of SpL∗

whose value at the point Z ∈ Ξ is determined by

Ip(u)(ζ1, ζ2, . . . , ζp) =
∫
Z

u(ζ1, ζ2, . . . , ζp) dZ,

where ζ1, ζ2, . . . , ζp are elements of LZ . The kernel Np of this mapping
Ip is the G-submodule of C∞(SpT ∗) equal to the space consisting of all
symmetric p-forms on X which satisfy the Guillemin condition. The com-
plexification Np,C of the space Np shall be viewed as the G-submodule of
C∞(SpT ∗

C
) equal to the kernel of the morphism of G-modules

(2.11) Ip : C∞(SpT ∗
C
) → C∞(Ξ, SpL∗

C
)

induced by the mapping Ip. The mapping I0 coincides with the maximal
flat Radon transform for functions defined above, while the mapping I2
was introduced in [23].

The X-ray transform for symmetric p-forms onX is the linear mapping
I ′p sending an element u ∈ C∞(SpT ∗) into the real-valued function ǔ on Ξ′

whose value at the closed geodesic γ is the integral
∫
γ

u.

The kernel of this mapping I ′p is equal to the space Zp of all symmet-
ric p-forms on X satisfying the zero-energy condition. Then according to
Lemma 2.11, we have

Zp ⊂ Np.

Let γ be a closed geodesic of X; if φ is an element of G, we consider the
closed geodesic γφ = φ ◦ γ. The mapping

Φγ : C∞(SpT ∗
C
) → C∞(G),

which sends the complex symmetric p-form u into the complex-valued func-
tion Φγ(u) on G defined by

Φγ(u)(φ) =
∫
γφ

u =
∫
γ

φ∗u,
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for φ ∈ G, is a morphism of G-modules. The complexification Zp,C of the
space Zp shall be viewed as the G-submodule

⋂
γ∈Ξ′

Ker Φγ

of C∞(SpT ∗
C
) consisting of all complex symmetric p-forms on X which

satisfy the zero-energy condition.
When the rank of X is equal to one, the vector bundle L is a line

bundle; in this case, the X-ray transform for symmetric p-forms, which
may be viewed as a morphism of G-modules

I ′p : C∞(SpT ∗) → C∞(Ξ),

determines the maximal flat Radon transform for symmetric p-forms.

§5. Radon transforms and harmonic analysis

We consider the symmetric space (X, g) of compact type of §4 and
the compact Lie groups G and K introduced there. We denote by Γ the
dual Ĝ of the group G. As we mentioned in §2, the vector bundles TC

and
⊗p

T ∗
C

endowed with the Hermitian scalar products induced by the
metric g are homogeneous and unitary. Let F be a homogeneous complex
vector bundle over X; assume that F either is a G-invariant complex sub-
bundle of TC or can be written in the form E/E′, where E and E′ are
G-invariant complex sub-bundles of

⊗p
T ∗

C
satisfying E′ ⊂ E. We endow

F with the Hermitian scalar product obtained from the Hermitian scalar
product on TC or on

⊗p
T ∗

C
. Clearly, the vector bundle F is unitary, and

the space C∞(F ) endowed with the Hermitian scalar product obtained
from the Hermitian scalar product on F and the G-invariant Riemannian
measure dX of X is a unitary G-module. As in §2, we denote by C∞

γ (F )
the isotypic component of the G-module C∞(F ) corresponding to γ ∈ Γ,
and by Pγ the orthogonal projection of C∞(F ) onto its submodule C∞

γ (F ).
Throughout the remainder of this section, we shall assume that F is a

G-invariant complex sub-bundle of TC or of SpT ∗
C
. For γ ∈ Γ, we consider

the orthogonal projections Pγ of C∞(TC) onto its submodule C∞
γ (TC), and

of C∞(SpT ∗
C
) onto its submodule C∞

γ (SpT ∗
C
); then the restriction of Pγ to

C∞(F ) is the orthogonal projection of C∞(F ) onto C∞
γ (F ). Thus if F is a

sub-bundle of TC (resp. SpT ∗
C
), an element u of C∞(TC) (resp. C∞(SpT ∗

C
))

is a section of F if and only if Pγu is an element of C∞
γ (F ), for all γ ∈ Γ

(see Chapter 5 of [56]).
The vector bundle S0T ∗

C
is the trivial complex line bundle and we shall

identify the G-modules C∞(S0T ∗
C
) and C∞(X); we shall denote by C∞

γ (X)
the isotypic component of the G-module C∞(X) corresponding to γ ∈ Γ.
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Let Γ0 be the subset of Γ consisting of those elements γ of Γ for which
the G-module C∞

γ (X) is non-zero. It is well-known that, for γ ∈ Γ0, the
G-module C∞

γ (X) is irreducible (see Theorem 4.3 in Chapter V of [37]).
We endow the homogeneous space Ξ with a G-invariant Riemannian

metric and the homogeneous vector bundle SpL∗
C

with a G-invariant Hermi-
tian scalar product. The space C∞(Ξ, SpL∗

C
), endowed with the Hermitian

scalar product obtained from the Hermitian scalar product on SpL∗
C

and the
Riemannian measure of the Riemannian manifold Ξ, is a unitary G-module.
As in §2, for γ ∈ Γ, we denote by C∞

γ (Ξ, SpL∗
C
) the isotypic component of

the G-module C∞(Ξ, SpL∗
C
) corresponding to γ and by Pγ the orthogonal

projection of C∞(Ξ, SpL∗
C
) onto its G-submodule C∞

γ (Ξ, SpL∗
C
). Since the

mapping (2.11) is a morphism of G-modules, its kernel Np,C is a closed
G-submodule of C∞(SpT ∗

C
) and we have the inclusion

Ip(C∞
γ (SpT ∗

C
)) ⊂ C∞

γ (Ξ, SpL∗
C
);

moreover the relation
IpPγ = PγIp

holds for all γ ∈ Γ. Thus we have

(2.12) PγNp,C ⊂ Np,C,

for all γ ∈ Γ.
We choose a left-invariant volume form on G and endow the G-module

C∞(G) of all complex-valued functions on the groupG with the correspond-
ing G-invariant Hermitian scalar product. For γ ∈ Γ, we denote by Pγ the
orthogonal projection of C∞(G) onto the isotypic component C∞

γ (G) of
C∞(G) corresponding to γ.

If δ is a closed geodesic of X, the kernel of the morphism Φδ is a closed
subspace of C∞(SpT ∗

C
), and so Zp,C is a closed G-submodule of C∞(SpT ∗

C
).

Since Φδ is a morphism of G-modules, we also have the inclusion

Φδ(C∞
γ (SpT ∗

C
)) ⊂ C∞

γ (G)

and the relation

(2.13) ΦδPγ = PγΦδ

holds, for all γ ∈ Γ. By (2.13), we see that

(2.14) PγZp,C ⊂ Zp,C,

for all γ ∈ Γ.
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Now let Σ be a finite set of isometries of X which commute with the
action of G on X and let ε be a real number equal to ±1. The space
C∞(TC)Σ,ε, which consists of all elements ξ of C∞(TC) satisfying

σ∗ξ = εξ,

for all σ ∈ Σ, is a G-submodule of C∞(TC), while the space C∞(SpT ∗
C
)Σ,ε

which consists of all sections u of SpT ∗
C

over X satisfying

σ∗u = εu,

for all σ ∈ Σ, is a G-submodule of C∞(SpT ∗
C
). For all σ ∈ Σ, the actions

of σ∗ on C∞(TC) and of σ∗ on C∞(SpT ∗
C
) are unitary and we have

Pγσ∗ξ = σ∗Pγξ, Pγσ
∗u = σ∗Pγu,

for all ξ ∈ C∞(TC), u ∈ C∞(SpT ∗
C
) and γ ∈ Γ.

Suppose that the vector bundle F is invariant under the isometries
of Σ. Then we consider the G-submodule C∞(F )Σ,ε of C∞(F ), which is
defined by

C∞(F )Σ,ε = C∞(F ) ∩ C∞(TC)Σ,ε

whenever F is a sub-bundle of TC, and by

C∞(F )Σ,ε = C∞(F ) ∩ C∞(SpT ∗
C
)Σ,ε

whenever F is a sub-bundle of SpT ∗
C
. For γ ∈ Γ, we set

C∞
γ (F )Σ,ε = C∞

γ (F ) ∩ C∞(F )Σ,ε.

If γ ∈ Γ and σ ∈ Σ, we know that the action of σ preserves C∞
γ (F ). From

the above equalities, we obtain the inclusions

(2.15) PγC
∞(TC)Σ,ε ⊂ C∞

γ (TC)Σ,ε, PγC
∞(SpT ∗

C
)Σ,ε ⊂ C∞

γ (SpT ∗
C
)Σ,ε,

for all γ ∈ Γ, and we see that C∞
γ (F )Σ,ε is the isotypic component of the

G-module C∞(F )Σ,ε corresponding to γ. If F is the trivial complex line
bundle S0T ∗

C
, we set

C∞(X)Σ,ε = C∞(F )Σ,ε, C∞
γ (X)Σ,ε = C∞

γ (F )Σ,ε,

for γ ∈ Γ.
If τ is an involutive isometry of X which commutes with the action

of G and if Σ is the set {τ}, we have the relations

C∞(F )Σ,+1 = C∞(F )ev, C∞(F )Σ,−1 = C∞(F )odd
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involving the G-modules defined in §4; moreover, for γ ∈ Γ, we have the
orthogonal decomposition of G-modules

(2.16) C∞
γ (F ) = C∞

γ (F )ev ⊕ C∞
γ (F )odd.

According to (1.6) and observations made in §1, Chapter I, the dif-
ferential operator D0 : TC → S2T ∗

C
is homogeneous and elliptic. Hence

according to §2, we have

D0C
∞
γ (TC) ⊂ C∞

γ (S2T ∗
C
),

for all γ ∈ Γ. Since D0 is an elliptic operator and ε = ±1, we easily see
that

(2.17) D0C
∞(TC)Σ,ε = D0C

∞(TC) ∩ C∞(S2T ∗
C
)Σ,ε.

The differential operators

d : S0T ∗
C
→ T ∗

C
, div : S2T ∗

C
→ T ∗

C

and the Lichnerowicz Laplacian Δ : SpT ∗
C

→ SpT ∗
C

are homogeneous, and
so we have

dC∞
γ (X) ⊂ C∞

γ (T ∗
C
), divC∞

γ (S2T ∗
C
) ⊂ C∞

γ (T ∗
C
),

ΔC∞
γ (SpT ∗

C
) ⊂ C∞

γ (SpT ∗
C
),

for all γ ∈ Γ. We also see that

dC∞(X)Σ,ε = dC∞(X) ∩ C∞(T ∗
C
)Σ,ε.

We obtain the following two propositions from the inclusions (2.12),
(2.14) and (2.15), and from Theorem 5.3.6 of [56].

Proposition 2.27. Let F be a complex sub-bundle of SpT ∗
C

on the
symmetric space (X, g) which is invariant under the group G and the isome-
tries of Σ. Then if ε a real number equal to ±1, the submodule

⊕
γ∈Γ

(
Np,C ∩ C∞

γ (F )Σ,ε
)

is a dense subspace of Np,C ∩ C∞(F )Σ,ε.

Proposition 2.28. Let F be a complex sub-bundle of SpT ∗
C

on the
symmetric space (X, g) which is invariant under the group G and the isome-
tries of Σ. Then if ε a real number equal to ±1, the submodule

⊕
γ∈Γ

(
Zp,C ∩ C∞

γ (F )Σ,ε
)

is a dense subspace of Zp,C ∩ C∞(F )Σ,ε.
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The following proposition is a direct consequence of Propositions 2.27
and 2.28.

Proposition 2.29. Let (X, g) be a symmetric space of compact type.
Let Σ be a finite set of isometries of X which commute with the action of
G on X and let ε be a real number equal to ±1.

(i) The restriction of the maximal flat Radon transform for functions
on X to the space C∞(X)Σ,ε is injective if and only if the equality

N0,C ∩ C∞
γ (X)Σ,ε = {0}

holds for all γ ∈ Γ.
(ii) The restriction of the X-ray transform for functions on X to the

space C∞(X)Σ,ε is injective if and only if the equality

Z0,C ∩ C∞
γ (X)Σ,ε = {0}

holds for all γ ∈ Γ.

Proposition 2.29 implies the following assertions:
(i) The maximal flat Radon transform for functions on X is injective

if and only if the equality

N0,C ∩ C∞
γ (X) = {0}

holds for all γ ∈ Γ.
(ii) The X-ray transform for functions on X is injective if and only if

the equality
Z0,C ∩ C∞

γ (X) = {0}
holds for all γ ∈ Γ.

As we mentioned above, for γ ∈ Γ0, the G-module C∞
γ (X) is irre-

ducible. Thus in order to prove that the maximal flat Radon (resp. the
X-ray) transform for functions on X is injective, it suffices to carry out the
following steps:

(i) For all γ ∈ Γ0, describe an explicit non-zero vector fγ of the
G-module C∞

γ (X).
(ii) For γ ∈ Γ0, prove that the function f̂γ (resp. the function f̌γ) is

non-zero.
By Lemmas 2.6 and 2.11, we see that

(2.18) D0C
∞(TC) ⊂ Z2,C ⊂ N2,C, dC∞(X) ⊂ Z1,C ⊂ N1,C.

Clearly, the spaceX is rigid in the sense of Guillemin (resp. is infinitesimally
rigid) if and only if the equality

N2,C = D0C
∞(TC)
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holds (resp. the equality

Z2,C = D0C
∞(TC)

holds). Also, the equality

N1,C = dC∞(X)

implies (resp. the equality

Z1,C = dC∞(X)

implies) that any differential form of degree 1 on X satisfying the Guillemin
(resp. the zero-energy) condition is exact.

Proposition 2.30. Let (X, g) be a symmetric space of compact type.
Let Σ be a finite set of isometries of X which commute with the action of
G on X and let ε be a real number equal to ±1.

(i) The equality

N2,C ∩ C∞(S2T ∗
C
)Σ,ε = D0C

∞(TC)Σ,ε

holds if and only if

N2,C ∩ C∞
γ (S2T ∗

C
)Σ,ε = D0C

∞
γ (TC)Σ,ε,

for all γ ∈ Γ.
(ii) The equality

Z2,C ∩ C∞(S2T ∗
C
)Σ,ε = D0C

∞(TC)Σ,ε

holds if and only if

Z2,C ∩ C∞
γ (S2T ∗

C
)Σ,ε = D0C

∞
γ (TC)Σ,ε,

for all γ ∈ Γ.

Proof: Since D0 is an elliptic homogeneous differential operator, the
assertions of the proposition follow from the first inclusion of (2.15), the
equality (2.17) and from Propositions 2.2,(iii), 2.27 and 2.28.

Proposition 2.30 gives us the following criteria for the Guillemin rigid-
ity and the infinitesimal rigidity of X, which are analogous to the criteria
for the injectivity of the Radon transforms for functions on X obtained
from Proposition 2.29:
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Proposition 2.31. Let (X, g) be a symmetric space of compact type.
(i) The space X is rigid in the sense of Guillemin if and only if

N2,C ∩ C∞
γ (S2T ∗

C
) = D0C

∞
γ (TC),

for all γ ∈ Γ.
(ii) The space X is infinitesimally rigid if and only if

Z2,C ∩ C∞
γ (S2T ∗

C
) = D0C

∞
γ (TC),

for all γ ∈ Γ.

Proposition 2.32. Let (X, g) be a symmetric space of compact type.
Let Σ be a finite set of isometries of X which commute with the action of
G on X and let ε be a real number equal to ±1.

(i) The equality

N1,C ∩ C∞(T ∗
C
)Σ,ε = dC∞(X)Σ,ε

holds if and only if

N1,C ∩ C∞
γ (T ∗

C
)Σ,ε = dC∞

γ (X)Σ,ε,

for all γ ∈ Γ.
(ii) The equality

Z1,C ∩ C∞(T ∗
C
)Σ,ε = dC∞(X)Σ,ε

holds if and only if

Z1,C ∩ C∞
γ (T ∗

C
)Σ,ε = dC∞

γ (X)Σ,ε,

for all γ ∈ Γ.

Proof: Since the exterior differential operator d acting on C∞(X) is
an elliptic homogeneous differential operator, the assertions of the propo-
sition follow from (2.15) and Propositions 2.2,(iii), 2.27 and 2.28.

Proposition 2.32 gives us the following criteria, which are analogous
to the criteria for the Guillemin rigidity and the infinitesimal rigidity of X
given by Proposition 2.31:

Proposition 2.33. Let (X, g) be a symmetric space of compact type.
The following assertions are equivalent:

(i) A differential form of degree 1 on the space X satisfies the Guil-
lemin (resp. the zero-energy) condition if and only if it is exact.
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(ii) The equality

N1,C ∩ C∞
γ (T ∗

C
) = dC∞

γ (X)

holds (resp. the equality

Z1,C ∩ C∞
γ (T ∗

C
) = dC∞

γ (X)

holds) for all γ ∈ Γ.

Suppose that Σ is equal to a finite group Λ of isometries of X which
commute with the action ofG and that ε is equal to +1. Assume that Λ acts
without fixed points and that the quotient space Y = X/Λ is a symmetric
space; furthermore, assume that there is a subgroup K ′ of G containing K
and a G-equivariant diffeomorphism ϕ : Y → G/K ′ satisfying properties
(i) and (ii) of §4. If the vector bundle F is a sub-bundle of SpT ∗

C
which

is invariant under Λ, we consider the sub-bundle FY of SpT ∗
Y,C determined

by F ; then for γ ∈ Γ, the G-submodule

C∞
γ (F )Λ = C∞

γ (F )Σ,ε

of C∞
γ (F ) is the isotypic component of C∞(F )Λ corresponding to γ and

the isomorphism (2.5) induces an isomorphism

(2.19) �∗ : C∞
γ (Y, FY ) → C∞

γ (F )Λ

of G-modules. If Λ is the group {id, τ}, where τ is an involutive isometry
of X, then, for γ ∈ Γ, the mapping (2.19) gives us an isomorphism

�∗ : C∞
γ (Y, FY ) → C∞

γ (F )ev

of G-modules.
We choose a Cartan subalgebra of the complexification g of the Lie

algebra of G and fix a system of positive roots of g. Let p be an integer
equal to 1 or 2 and consider the corresponding homogeneous differential
operator Dp−1 : Sp−1T ∗ → SpT ∗. We consider the following properties
which the space X and the group Λ might possess:

(Ap) Let γ be an arbitrary element of Γ, and let u be an arbitrary
highest weight vector of the G-module C∞

γ (SpT ∗
C
)Λ; if the section u satisfies

the Guillemin condition, then u belongs to Dp−1C∞(Sp−1T ∗
C
)Λ.

(Bp) Let γ be an arbitrary element of Γ, and let u be an arbitrary
highest weight vector of the G-module C∞

γ (SpT ∗
C
)Λ; if the section u satisfies

the zero-energy condition, then u belongs to Dp−1C∞(Sp−1T ∗
C
)Λ.
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According to the relation (1.4) and Propositions 2.30 and 2.32, we see
that in order to prove that the equality

Np,C ∩ C∞(SpT ∗
C
)Λ = Dp−1C∞(Sp−1T ∗

C
)Λ

holds (resp. the equality

Zp,C ∩ C∞(SpT ∗
C
)Λ = Dp−1C∞(Sp−1T ∗

C
)Λ

holds), it suffices to verify that X and Λ possess property Ap (resp. prop-
erty Bp).

Thus according to Proposition 2.18 (resp. Proposition 2.19) and the
relation (1.4), we know that, if the space X and the group Λ possess prop-
erty A2 (resp. property B2), the space Y is rigid in the sense of Guillemin
(resp. is infinitesimally rigid). On the other hand, according to Proposi-
tion 2.20, if the space X and the group Λ possess property A1 (resp. prop-
erty B1), then every differential form of degree 1 on the space Y , which
satisfies the Guillemin (resp. the zero-energy) condition, is exact.

These methods for proving the rigidity of a symmetric space of compact
type were first introduced in [14] in the case of the complex projective space
(see §5, Chapter III). The analogous method for proving the injectivity of
Radon transforms for functions described above was first used by Funk to
prove Theorem 2.23 for the 2-sphere S2 and the real projective plane RP

2

(see also Proposition 3.17); it was also applied by Grinberg in [31] to other
projective spaces. The methods described above will be applied to the real
Grassmannian GR

2,n of 2-planes in R
n+2 and to the complex quadric Qn of

dimension n. In fact, they shall be used in Chapter VI to show that the real
Grassmannian GR

2,3 is rigid in the sense of Guillemin and that the complex
quadric Q3 is infinitesimally rigid, and in §4, Chapter X to show that the
real Grassmannian GR

2,2 is infinitesimally rigid. Also the criterion for the
exactness of a differential form of degree 1, which we have just described,
shall be used in the case of the real projective plane RP

2 in Chapter III,
in the case of the complex quadric Qn and of the real Grassmannian GR

2,n,
with n ≥ 3, in §11, Chapter VI, and in the case of the real Grassmannian
GR

2,2 in §4, Chapter X.

§6. Lie algebras

Let g be a complex semi-simple Lie algebra. The Casimir element of g
operates by a scalar c(V ) on an irreducible finite-dimensional g-module V .
If g is simple, the Casimir element of g acts on the irreducible g-module Vg

corresponding to the adjoint representation of g by the identity mapping,
and so c(Vg) = 1 (see Theorem 3.11.2 of [55]).
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Lemma 2.34. Let g be a complex semi-simple Lie algebra. Let V1

and V2 be irreducible finite-dimensional g-modules. Then the g-modules
V1 and V2 are isomorphic if and only if c(V1) = c(V2).

Proof: Choose a Cartan subalgebra h of g and fix a system of positive
roots of g. Let λ1 and λ2 be the highest weights of the irreducible g-modules
V1 and V2, respectively. If c(V1) = c(V2), then the infinitesimal characters
of these g-modules are equal; if δ is half the sum of the positive roots, by
Harish-Chandra’s theorem there exists an element w of the Weyl group
W of (g, h) such that w(λ1 + δ) = λ2 + δ (see §5 and Theorem 5.62 in
Chapter V of [39]). Since the weights λ1 + δ and λ2 + δ are dominant
integral, we know that w must be equal to the identity element of W (see
Lemma 4.7.4 of [55]), and so we have λ1 = λ2; hence the modules V1 and
V2 are isomorphic.

Let G be a compact connected, semi-simple Lie group, whose Lie alge-
bra we denote by g0. A complex G-module V can be viewed as a g0-module
and so the Casimir element of g0 operates on V ; if V is an irreducible
G-module, the Casimir element of g0 acts by the scalar c(V ) on V .

From Lemma 2.34, we obtain the following result:

Lemma 2.35. Let G be a compact connected, semi-simple Lie group.
Let V1 and V2 be irreducible complex G-modules. Then the G-modules V1

and V2 are isomorphic if and only if c(V1) = c(V2).

§7. Irreducible symmetric spaces

We consider the symmetric space (X, g) of compact type of §4. We
write X as the homogeneous space G/K, where G is a compact, connected
semi-simple Lie group and K is a closed subgroup of G. We suppose that
g is a G-invariant metric and that (G,K) is a Riemannian symmetric pair
of compact type. We continue to denote by Γ the dual Ĝ of the group G.
Let x0 be the point of X corresponding to the coset of the identity element
of G. If g0 and k0 are the Lie algebras of G and K, respectively, we consider
the Cartan decomposition g0 = k0 ⊕ p0 corresponding to the Riemannian
symmetric pair (G,K), where p0 is a subspace of g0. We identify p0 with
the tangent space to X at the point x0. If B is the Killing form of the
Lie algebra g0 of G, then the restriction of −B to p0 induces a G-invariant
Riemannian metric g0 on X. The complexifications g of g0 and p of p0 are
K-modules. We denote by Skp the k-th symmetric product of p and by S2

0p
the K-submodule of S2p consisting of those elements of S2p of trace zero
with respect to the Killing form of g. The isotropy group K acts on Tx0 ;
in fact, the K-modules TC,x0 , S

kT ∗
C,x0

and S2
0T

∗
C,x0

are isomorphic to the
K-modules p, Skp and S2

0p, respectively. If X is an irreducible Hermitian
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symmetric space, then we have

(2.20) dimC HomK(g,C) = 1, dimC HomK(g, p) = 2.

If X is an irreducible symmetric space which is not Hermitian, then we
have

(2.21) HomK(g,C) = {0}, dimC HomK(g, p) = 1.

The G-module

K = { ξ ∈ C∞(T ) | D0ξ = 0 }

of all Killing vector fields on X is isomorphic to g0. We identify its com-
plexification KC with the G-module

{ ξ ∈ C∞(TC) | D0ξ = 0 }

of complex vector fields on X, which is isomorphic to g. We know that
a Killing vector field ξ on X satisfies the relation d∗g�(ξ) = 0; thus the
subspaces g�(KC) and dC∞(X) of C∞(T ∗

C
) are orthogonal.

The Lichnerowicz Laplacian Δg acting on C∞(SpT ∗
C
) is self-adjoint

and its eigenvalues are non-negative real numbers. Since the Laplacian Δg

acting on SpT ∗
C

is elliptic, the eigenspace

{u ∈ C∞(SpT ∗
C
) | Δgu = μu }

of the Laplacian Δg corresponding to the eigenvalue μ ∈ R is finite-
dimensional. The Casimir element of g0 acts by a scalar cγ on an irre-
ducible G-module which is a representative of γ ∈ Γ. According to [41, §5],
the action of the Lichnerowicz Laplacian

Δg0 : C∞(SpT ∗
C
) → C∞(SpT ∗

C
)

corresponding to the metric g0 on X on the G-module C∞(SpT ∗
C
) coincides

with the action of the Casimir element of g0 on this G-module. Thus,
for γ ∈ Γ, we see that C∞

γ (SpT ∗
C
) is an eigenspace of the Lichnerowicz

Laplacian Δg0 with eigenvalue cγ . Since the operator Δg0 acting on SpT ∗
C

is elliptic and real-analytic, the elements of C∞
γ (SpT ∗

C
) are real-analytic

sections of SpT ∗
C
. If F is a complex sub-bundle of SpT ∗

C
invariant under

the group G, then the Laplacian Δg0 preserves the space C∞(F ).
We suppose throughout the remainder of this section that X is an

irreducible symmetric space. According to Lemma 1.21, the metric g is a
positive multiple of g0 and is an Einstein metric. In fact, by formula (1.65),
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we have Ric = λg, where λ is a positive real number, and g0 = 2λg;
moreover, the Lichnerowicz Laplacian Δ corresponding to the metric g is
equal to 2λΔg0 . Let F be a complex sub-bundle of SpT ∗

C
invariant under

the group G. If γ ∈ Γ, from Lemma 2.35 and the above remarks concerning
the Laplacian Δg0 we infer that the G-submodule C∞

γ (F ) is equal to the
eigenspace of Δ acting on C∞(F ) associated with the eigenvalue λγ = 2λcγ .
Moreover, by Proposition 2.1 and the preceding remark, for μ ∈ R we see
that, if the eigenspace

{u ∈ C∞(F ) | Δu = μu }

is non-zero, it is equal to the G-submodule C∞
γ (F ) of C∞(F ) and that μ

is equal to λγ , for some appropriate element γ of Γ.
We denote by ū the complex conjugate of an element of C∞(SpT ∗

C
). We

consider the set Λ of all eigenvalues of the Laplacian Δ acting on C∞(X)
and the eigenspace C∞(X)λ of Δ associated with the eigenvalue λ ∈ Λ.
For γ ∈ Γ0, the irreducible G-module C∞

γ (X) is equal to the eigenspace
C∞(X)λγ , where λγ = 2λcγ , and so is invariant under conjugation. More-
over, the mapping Γ0 → Λ, sending γ ∈ Γ0 into λγ , is bijective. Hence by
Proposition 2.1, the orthogonal direct sum

⊕
γ∈Γ0

C∞
γ (X) =

⊕
λ∈Λ

C∞(X)λ

is a dense submodule of C∞(X).

Lemma 2.36. Let (X, g) be an irreducible symmetric space of compact
type. The subspaces NC and ZC of C∞(SpT ∗

C
) are invariant under the

Lichnerowicz Laplacian Δ.

Proof: Let u be an element of NC (resp. of ZC). Since Δ is a homo-
geneous differential operator, by (2.1) we have

PγΔu = ΔPγu = λγPγu,

for all γ ∈ Γ. If γ is an element of Γ, according to (2.12) (resp. to (2.14)),
we know that Pγu belongs to Np,C (resp. to Zp,C); therefore so does PγΔu.
Since NC (resp. ZC) is a closed subspace of C∞(SpT ∗

C
), we see that Δu also

belongs to this subspace.

Proposition 2.37. Let (X, g) be an irreducible symmetric space of
compact type. Let E be a G-invariant sub-bundle of S2T ∗ and let h be a
symmetric 2-form on X. Assume that there is a real number μ such that

(2.22) Δh− μh ∈ C∞(E).
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(i) If μ is not an eigenvalue of the Laplacian Δ acting on C∞(S2T ∗
C
),

then h is a section of E.
(ii) Assume that μ is an eigenvalue of the Laplacian Δ acting on

C∞(S2T ∗
C
) and suppose that h satisfies divh = 0 and Trh = 0. Then

we can write h = h1 +h2, where h1 is a section of S2T ∗ and h2 is a section
of E satisfying

Δh1 = μh1, divh1 = divh2 = 0, Trh1 = Trh2 = 0;

moreover, if h satisfies the Guillemin (resp. the zero-energy) condition,
then we may require that h1 and h2 also satisfy the Guillemin (resp. the
zero-energy) condition.

Proof: Here we shall use Lemma 2.35 and the above remarks con-
cerning the eigenspaces of the Laplacian Δ. For γ ∈ Γ, we infer from (2.22)
that Pγ(Δh− μh) belongs to C∞(EC); by (2.1), we have

(2.23) Pγ(Δh− μh) = ΔPγh− μPγh = (λγ − μ)Pγh.

If μ is not an eigenvalue of Δ, then either the space C∞
γ (S2T ∗

C
) vanishes

or we have the inequality λγ �= μ. Under this assumption on μ, we deduce
that Pγh is an element of C∞(EC); it follows that h is a section of E. If μ is
an eigenvalue of Δ, there is a unique element γ′ of Γ satisfying λγ′ = μ. We
set h1 = Pγ′h; then h2 = h− h2 is orthogonal to the subspace C∞

γ′ (S2T ∗
C
).

If γ ∈ Γ is not equal to γ′, we have λγ �= μ and, by (2.23), we see that
Pγh2 = Pγh is an element of C∞(EC). Since Pγ′h2 = 0, it follows that h2 is
a section of E. If h satisfies Trh = 0 and divh = 0, by (2.1) we obtain the
equalities Trhj = 0 and divhj = 0, for j = 1, 2. If h satisfies the Guillemin
(resp. the zero-energy) condition, then according to (2.12) (resp. to (2.14))
the section h1 also satisfies the Guillemin (resp. the zero-energy) condition.

We shall require the following lemma in §8, Chapter V.

Lemma 2.38. Let (X, g) be an irreducible symmetric space of compact
type. Let γ, γ′ be elements of Γ. Let h be an element of C∞

γ (S2
0T

∗
C
) and

let f be an element of C∞(X). Assume that the section fh of S2T ∗
C

is an
element of C∞

γ′ (S2T ∗
C
) and suppose that the sections h and fh belong to

the space D0C
∞(TC). Then we have

(2.24) 1
2 df · divh−D1((df)� h) + 1

2 (λγ − λγ′)fh = 0.

Proof: The sections h and fh of S2
0T

∗
C

satisfy

Δh = λγh, Δ(fh) = λγ′ fh.

The desired result is a direct consequence of formulas (1.39) and (1.10).



§7. Irreducible symmetric spaces 63

We now further assume that X is of type I, i.e. is not equal to a simple
Lie group (see [36, p. 439]). We may suppose that the Lie group G is simple;
then the complexification g of the Lie algebra g0 is simple. Let γ1 be the
element of Γ which is the equivalence class of the irreducible G-module g.
We know that cγ1 = 1, and hence we have λγ1 = 2λ. This observation and
the above remarks concerning the Lichnerowicz Laplacians, together with
the Frobenius reciprocity theorem, give us the following result:

Lemma 2.39. Let (X, g) be an irreducible symmetric space of compact
type which is not equal to a simple Lie group. Let γ1 be the element of Γ
which is the equivalence class of the irreducible G-module g and let F be a
G-invariant complex sub-bundle of SpT ∗

C
. If λ is the positive real number

satisfying Ric = λg, then the G-module C∞
γ1 (F ) is equal to the eigenspace

{u ∈ C∞(F ) | Δu = 2λu }

of the Lichnerowicz Laplacian Δ, and the multiplicity of this G-module is
equal to the dimension of the complex vector space HomK(g, Fx0).

If E(X)C denotes the complexification of the space E(X), Lemma 2.39
gives us the equalities

(2.25)
E(X) = {h ∈ C∞

γ1 (S2
0T

∗
C
) | h = h̄, divh = 0 },

E(X)C = {h ∈ C∞
γ1 (S2

0T
∗
C
) | divh = 0 }.

Since E(X)C is G-submodule of C∞
γ1 (S2

0T
∗
C
), we know that E(X)C is equal

to the direct sum of k copies of the irreducible G-module g, where k is the
integer MultE(X)C; it follows that the G-module E(X) is isomorphic to
the direct sum of k copies of g0. Moreover, we infer that the vanishing of
the space dimC HomK(g, S2

0p) implies that the space E(X) vanishes.
Since the G-module KC is isomorphic to g, we see that

(2.26) KC ⊂ C∞
γ1 (TC);

this inclusion can also be obtained from Lemmas 1.5,(i) and 2.39. If X is
not a Hermitian symmetric space, according to the second equality of (2.21)
and the Frobenius reciprocity theorem we see that the relation

(2.27) C∞
γ1 (TC) = KC

holds. If X is a Hermitian symmetric space, by (2.20) we see that C∞
γ1 (X)

is an irreducible G-module; since the decomposition of T ∗
C

given by (1.69)
is G-invariant, by (2.20) we obtain the orthogonal decompositions

(2.28) C∞
γ1 (T ∗

C
) = g�(KC) ⊕ dC∞

γ1 (X) = ∂C∞
γ1 (X) ⊕ ∂̄C∞

γ1 (X),
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whose components g�(KC), dC∞
γ1 (X), ∂C∞

γ1 (X) and ∂̄C∞
γ1 (X) are irreducible

G-modules isomorphic to g.

Proposition 2.40. Let (X, g) be an irreducible symmetric space of
compact type, which is not equal to a simple Lie group or to the sphere S2.
Then the space E(X) of infinitesimal Einstein deformations of X is a G-
module isomorphic to the direct sum of k copies of the irreducibleG-module
g0 and its multiplicity k is equal to

dimC HomK(g, S2
0p) − dimC HomK(g, p) + 1.

If X is a Hermitian symmetric space, this multiplicity k is equal to

dimC HomK(g, S2
0p) − 1.

If X is not a Hermitian symmetric space, this multiplicity k is equal to

dimC HomK(g, S2
0p),

and we have

(2.29) E(X)C = C∞
γ1 (S2

0T
∗
C
), E(X) = {h ∈ C∞

γ1 (S2
0T

∗
C
) | h = h̄ }.

Proof: Since the differential operator Dc
0 : T → S2

0T ∗ is homoge-
neous, from the decomposition (1.12) and the relations (2.1) and (2.25),
we obtain the orthogonal decomposition

(2.30) C∞
γ1 (S2

0T
∗
C
) = Dc

0C
∞
γ1 (TC) ⊕ E(X)C.

We write
W = { ξ ∈ C∞

γ1 (TC) | Dc
0ξ = 0 }.

By (2.30), we have the equality

(2.31) MultE(X)C = MultC∞
γ1 (S2

0T
∗
C
) − MultC∞

γ1 (TC) + MultW.

By Lemma 1.5,(ii), Proposition 1.6 and Lemma 2.39, we see that

W = KC.

Hence the equality (2.31) becomes

MultE(X)C = MultC∞
γ1 (S2

0T
∗
C
) − MultC∞

γ1 (TC) + MultKC.
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Since MultKC is equal to one, the preceding equality together with the
Frobenius reciprocity theorem gives us the first assertion of the proposi-
tion. The other assertions of the proposition then follow from the second
equalities of (2.20) and (2.21).

In [42], Koiso also showed that the assertions of the previous propo-
sition also hold when the irreducible space X is a simple Lie group. The
following lemma is stated without proof by Koiso (see Lemma 5.5 of [42]);
for the irreducible symmetric spaces

SO(p+ q)/S(O(p) ×O(q)), SU(p+ q)/S(U(p) × U(q)),

with p, q ≥ 2, we shall verify the results of this lemma in Chapter IV (see
Lemma 4.1), Chapter V (see Lemma 5.15) and §3, Chapter VIII.

Lemma 2.41. Let (X, g) be a simply-connected irreducible symmetric
space of compact type which is not equal to a simple Lie group. If X is
Hermitian, then the space HomK(g, S2

0p) is one-dimensional and if X is not
Hermitian the space HomK(g, S2

0p) vanishes, unless X is one of the spaces
appearing in the following table which gives the dimension of the space
HomK(g, S2

0p):

X dimC HomK(g, S2
0p)

SU(2)/S(U(1) × U(1)) 0

SU(p+ q)/S(U(p) × U(q)), with p, q ≥ 2 2

SU(n)/SO(n), with n ≥ 3 1

SU(2n)/Sp(n), with n ≥ 3 1

E6/F4 1

The first two spaces X of this table are Hermitian, while the last three
are not Hermitian.

Since the space SU(2)/S(U(1) × U(1)) is isometric to the sphere S2,
by Lemma 2.41 and the equalities (2.25) we know that the space E(X)
vanishes when X is the sphere S2; we also proved this result directly in §3,
Chapter I. Therefore from Proposition 2.40 and Lemma 2.41, we obtain the
results of Theorem 1.22 when the space X of this theorem is not equal to a
simple Lie group; moreover, when X is equal to one of the last four spaces
of the table of Lemma 2.41, we see that the G-module E(X) is isomorphic
to g0.

Thus according to Proposition 2.40 and Lemma 2.41, if X is an irre-
ducible symmetric space of compact type, which is not equal to a simple Lie
group, the space E(X) either vanishes or is isomorphic to the G-module g0.

From the relations (2.17), (2.18) and (2.26), we obtain the following
result:
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Proposition 2.42. Let (X, g) be an irreducible symmetric space of
compact type, which is not equal to a simple Lie group, and let γ1 be the
element of Γ which is the equivalence class of the irreducible G-module g.
Let Σ be a finite set of isometries of X which commute with the action of
G on X and let ε be a real number equal to ±1.

(i) For γ ∈ Γ, the equality

N2,C ∩ C∞
γ (S2T ∗

C
)Σ,ε = D0C

∞
γ (TC)Σ,ε

is equivalent to

Mult
(
N2,C ∩ C∞

γ (S2T ∗
C
)Σ,ε
)
≤ MultC∞

γ (TC)Σ,ε

when γ �= γ1, or to

Mult
(
N2,C ∩ C∞

γ1 (S2T ∗
C
)Σ,ε
)
≤ MultC∞

γ1 (TC)Σ,ε − Mult
(
KC ∩ C∞(TC)Σ,ε

)

when γ = γ1.
(ii) For γ ∈ Γ, the equality

Z2,C ∩ C∞
γ (S2T ∗

C
)Σ,ε = D0C

∞
γ (TC)Σ,ε

is equivalent to

Mult
(
Z2,C ∩ C∞

γ (S2T ∗
C
)Σ,ε
)
≤ MultC∞

γ (TC)Σ,ε

when γ �= γ1, or to

Mult
(
Z2,C ∩ C∞

γ1 (S2T ∗
C
)Σ,ε
)
≤ MultC∞

γ1 (TC)Σ,ε − Mult
(
KC ∩ C∞(TC)Σ,ε

)

when γ = γ1.

Let d be the integer which is equal to 1 when X is a Hermitian sym-
metric space and equal to 0 otherwise. According to (2.27) and (2.28), we
know that the multiplicity of the G-module C∞

γ1 (TC) is equal to d+1. Since
its G-submodule KC is isomorphic to g, from Propositions 2.31 and 2.42
we deduce the following criteria for Guillemin rigidity and infinitesimal
rigidity:

Proposition 2.43. Let (X, g) be an irreducible symmetric space of
compact type, which is not equal to a simple Lie group, and let γ1 be the
element of Γ which is the equivalence class of the irreducible G-module g.

(i) If the inequality

Mult
(
N2,C ∩ C∞

γ (S2T ∗
C
)
)
≤ MultC∞

γ (TC)
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holds for all γ ∈ Γ, with γ �= γ1, and if the inequality

Mult
(
N2,C ∩ C∞

γ1 (S2T ∗
C
)
)
≤ d

holds, then the symmetric space X is rigid in the sense of Guillemin.
(ii) If the inequality

Mult
(
Z2,C ∩ C∞

γ (S2T ∗
C
)
)
≤ MultC∞

γ (TC)

holds for all γ ∈ Γ, with γ �= γ1, and if the inequality

Mult
(
Z2,C ∩ C∞

γ1 (S2T ∗
C
)
)
≤ d

holds, then the symmetric space X is infinitesimally rigid.

We choose a Cartan subalgebra of g and fix a system of positive roots
of g. If W is a G-submodule of C∞

γ (SpT ∗
C
), with γ ∈ Γ, the dimension of

its weight subspace, corresponding to the highest weight of C∞
γ (SpT ∗

C
), is

equal to the multiplicity of W . Thus according to Proposition 2.43,(i), to
prove the Guillemin rigidity of X, it suffices to successively carry out the
following steps:

(i) For all γ ∈ Γ, determine the multiplicities of the G-modules
C∞
γ (TC) and C∞

γ (S2T ∗
C
).

(ii) For all γ ∈ Γ, describe an explicit basis for the weight subspace
Wγ of the G-module C∞

γ (S2T ∗
C
) corresponding to its highest weight.

(iii) For γ ∈ Γ, consider the action of the Radon transform I2 on the
vectors of this basis for Wγ and prove that the inequality

dim (N2,C ∩Wγ) ≤ MultC∞
γ (TC)

holds whenever γ �= γ1, and that

dim (N2,C ∩Wγ1) ≤ d.

According to Proposition 2.43,(ii), to prove the infinitesimal rigidity
of X, it suffices to carry out the steps (i) and (ii) given above and then the
following step:

(iv) For γ ∈ Γ, prove that the inequality

dim (Z2,C ∩Wγ) ≤ MultC∞
γ (TC)

holds whenever γ �= γ1, and that

dim (Z2,C ∩Wγ1) ≤ d.
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These methods for proving the rigidity of an irreducible symmetric
space of compact type implement the criteria described at the end of §5.
They were first used in [14] to show that the complex projective space is
infinitesimally rigid (see §5, Chapter III).

§8. Criteria for the rigidity of an irreducible symmetric space

We consider the symmetric space (X, g) of compact type of §§4 and 7
and continue to view X as the homogeneous space G/K. We recall that a
closed connected totally geodesic submanifold Y of X is a symmetric space;
moreover, if x is a point of Y and the tangent space to Y at x is equal to
the subspace V of Tx, then the submanifold Y is equal to the subset ExpxV
of X (see §7 in Chapter IV of [36]).

Let F be a family of closed connected totally geodesic surfaces of
X which is invariant under the group G. Then the set NF (resp. N ′

F )
consisting of those elements of B (resp. of

∧2
T ∗ ⊗ ∧2

T ∗), which vanish
when restricted to the submanifolds belonging to F , is a sub-bundle of B
(resp. of

∧2
T ∗ ⊗ ∧2

T ∗). Clearly, we have NF ⊂ N ′
F . According to for-

mula (1.56), we see that
B̃ ⊂ NF ;

we shall identify NF/B̃ with a sub-bundle of B/B̃. If β : B/B̃ → B/NF is
the canonical projection, we consider the differential operator

D1,F = βD1 : S2T ∗ → B/NF .

Let F ′ be a family of closed connected totally geodesic submanifolds
of X. We denote by L(F ′) the subspace of C∞(S2T ∗) consisting of all
symmetric 2-forms h which satisfy the following condition: for all subman-
ifolds Z ∈ F ′, the restriction of h to Z is a Lie derivative of the metric of
Z induced by g. By Lemma 1.1, we know that D0C

∞(T ) is a subspace
of L(F ′). We consider the following properties which the family F ′ might
possess:

(I) If a section of S2T ∗ over X satisfies the Guillemin condition, then
its restriction to an arbitrary submanifold of X belonging to the family F ′

satisfies the Guillemin condition.
(II) Every submanifold of X belonging to F ′ is rigid in the sense of

Guillemin.
(III) Every submanifold of X belonging to F ′ is infinitesimally rigid.
If the family F ′ possesses properties (I) and (II), then we see that

N2 ⊂ L(F ′).

On the other hand, the restriction of an element of Z2 to an arbitrary sub-
manifold ofX belonging to the family F ′ satisfies the zero-energy condition;
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hence if the family F ′ possesses property (III), we have the inclusion

Z2 ⊂ L(F ′).

From Lemma 1.16, we obtain:

Proposition 2.44. Let (X, g) be a symmetric space of compact type.
Let F be a family of closed connected totally geodesic surfaces of X which
is invariant under the group G, and let F ′ be a family of closed connected
totally geodesic submanifolds of X. Assume that each surface of X belong-
ing to F is contained in a submanifold of X belonging to F ′. A symmetric
2-form h on X belonging to L(F ′) satisfies the relation D1,Fh = 0.

Proposition 2.45. Let (X, g) be a symmetric space of compact type.
Let F be a G-invariant family of closed connected totally geodesic surfaces
of X with positive constant curvature. Let h be an element of C∞(S2T ∗).
Then the following assertions are equivalent:

(i) The symmetric 2-form h belongs to L(F).
(ii) The section Dgh of

∧2
T ∗ ⊗∧2

T ∗ is an element of C∞(N ′
F ).

(iii) The symmetric 2-form h satisfies D1,Fh = 0.

Proof: By Lemma 1.15, we know that assertion (i) implies (ii). Now
suppose that assertion (ii) holds. Let Y be a totally geodesic submani-
fold of X belonging to the family F and let i : Y → X be the natural
imbedding. Then we have i∗Dgh = 0. If gY is the Riemannian metric
on Y induced by g, by Proposition 1.14,(i) the restriction i∗h of h to the
manifold Y satisfies DgY

i∗h = 0. Theorem 1.18 gives us the exactness of
the sequence (1.51) corresponding to the Riemannian manifold (Y, gY ) with
positive constant curvature; therefore the form i∗h on Y is a Lie derivative
of the metric gY . Thus we know that h belongs to L(F), and so assertion
(ii) implies (i). Since B̃ ⊂ NF , the equivalence of assertions (ii) and (iii) is
a consequence of Proposition 1.14,(ii).

Proposition 2.46. Let (X, g) be a symmetric space of compact type.
Let F ′ be a family of closed connected totally geodesic submanifolds of X.

(i) Suppose that each closed geodesic of X is contained in a subman-
ifold of X belonging to the family F ′. Then we have the inclusion

L(F ′) ⊂ Z2.

(ii) Suppose that the sequence (1.24), corresponding to an arbitrary
submanifold of X belonging to the family F ′, is exact. Let h be an element
of C∞(S2T ∗) satisfying the relation D1h = 0. Then h belongs to L(F ′).

(iii) Suppose that the hypothesis of (i) and of (ii) hold, and that the
space X is infinitesimally rigid. Then the sequence (1.24) is exact.

Proof: Let h be an element of C∞(S2T ∗). First, suppose that h
belongs to L(F ′) and that the hypothesis of (i) holds. Let γ be an arbitrary
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closed geodesic of X; then there is a submanifold Y of X belonging to the
family F ′ containing γ. Let i : Y → X be the natural inclusion. Since
the symmetric 2-form i∗h on Y is a Lie derivative of the metric of Y , the
integral of h over γ vanishes; thus the symmetric 2-form h satisfies the
zero-energy condition and assertion (i) holds. Next, let Y be an arbitrary
submanifold of X belonging to the family F ′ and let i : Y → X be the
natural inclusion. If D1,Y is the differential operator on the symmetric
space Y defined in §1, Chapter I, according to formula (1.58) of Proposition
1.14 the relation D1h = 0 implies that D1,Y i

∗h = 0. If D1h = 0 and if the
sequence (1.24) for Y is exact, it follows that i∗h is a Lie derivative of the
metric of Y . Thus assertion (ii) is true. Finally, assertion (iii) is a direct
consequence of (i) and (ii).

Theorem 2.47. Let (X, g) be a symmetric space of compact type.
Let F be a family of closed connected totally geodesic surfaces of X which
is invariant under the group G, and let F ′ be a family of closed connected
totally geodesic submanifolds of X. Assume that each surface of X belong-
ing to F is contained in a submanifold of X belonging to F ′. Suppose that
the relation (1.48) and the equality

(2.32) NF = B̃

hold.
(i) A symmetric 2-form h on X belonging to L(F ′) is a Lie derivative

of the metric g.
(ii) If the family F ′ possesses properties (I) and (II), then the sym-

metric space X is rigid in the sense of Guillemin.
(iii) If the family F ′ possesses property (III), then the symmetric space

X is infinitesimally rigid.

Proof: First, let h be a symmetric 2-form h on X belonging to L(F ′).
By Proposition 2.44, we see that D1,Fh = 0. According to the equal-
ity (2.32), we therefore know that D1h = 0. By the relation (1.48) and
Theorem 1.18, the sequence (1.24) is exact, and so we see that h is a Lie
derivative of the metric g. Thus we have proved assertion (i). Now as-
sume that the family F ′ satisfies the hypothesis of (i) (resp. of (ii)). Then
we know that the space N2 (resp. the space Z2) is contained in L(F ′).
Assertion (ii) (resp. (iii)) is a consequence of (i).

We now assume that (X, g) is an irreducible symmetric space of com-
pact type; then we have Ric = λg, where λ is a positive real number.

Theorem 2.48. Let (X, g) be an irreducible symmetric space of com-
pact type. Let F be a family of closed connected totally geodesic surfaces
of X which is invariant under the group G, and let F ′ be a family of closed
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connected totally geodesic submanifolds of X. Let E be a G-invariant sub-
bundle of S2

0T
∗. Assume that each surface of X belonging to F is contained

in a submanifold of X belonging to F ′, and suppose that the relation

(2.33) TrNF ⊂ E

holds.
(i) Let h be a symmetric 2-form on X satisfying divh = 0. If h

belongs to L(F ′) or satisfies the relation D1,Fh = 0, then we may write

h = h1 + h2,

where h1 is an element of E(X) and h2 is a section of E; moreover, if h also
satisfies the Guillemin (resp. the zero-energy) condition, we may require
that h1 and h2 satisfy the Guillemin (resp. the zero-energy) condition.

(ii) Let Λ be a finite group of isometries of X, and assume that the
vector bundle E is invariant under Λ. Suppose that

(2.34) C∞(E)Λ ∩ L(F ′) = {0},

and that the equality

(2.35) N2 ∩ E(X) = {0}

holds (resp. the equality

(2.36) Z2 ∩ E(X) = {0}

holds). Then a Λ-invariant symmetric 2-form on X belonging to L(F ′)
satisfies the Guillemin (resp. the zero-energy) condition if and only if it is
a Lie derivative of the metric g.

(iii) If the relations

(2.37) C∞(E) ∩ L(F ′) = {0}

and E(X) ⊂ C∞(E) hold, then we have

L(F ′) = D0C
∞(T ).

Proof: In view of Proposition 2.44, to prove assertion (i) it suffices
to consider a symmetric 2-form h on X satisfying the relations divh = 0
and D1,Fh = 0. Since TrE = {0}, by Lemma 1.10 and (2.33) we infer that
Trh = 0 and that

Δh− 2λh ∈ C∞(E).
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Assertion (i) is now a consequence of Proposition 2.37,(ii), with μ = 2λ.
Next, let k be a symmetric 2-form on X belonging to L(F ′). According to
the decomposition (1.11), we may write k as

k = h+D0ξ,

where h is an element of C∞(S2T ∗) satisfying divh = 0, which is uniquely
determined by k, and where ξ is a vector field on X. If k is invariant
under a finite group Λ of isometries of X, clearly h is also Λ-invariant.
Since D0ξ is an element of L(F ′), the 2-form h also belongs to L(F ′).
According to (i), we may write h = h1 + h2, where h1 is an element of
E(X) and h2 is a section of E. If k satisfies the Guillemin (resp. the
zero-energy) condition, according to Lemma 2.10 (resp. Lemma 2.6) so
does h, and we may suppose that h1 also satisfies the Guillemin (resp. the
zero-energy) condition. First, if E(X) ⊂ C∞(E), then h1 and h are also
sections of E; if moreover the equality (2.37) holds, then h vanishes and
so k is equal to D0ξ. Next, under the hypotheses of (ii), if k is Λ-invariant
and satisfies the Guillemin (resp. the zero-energy) condition and if the
equality (2.35) (resp. the equality (2.36)) holds, then h is a Λ-invariant
section of E; according to (2.34), we infer that h vanishes, and so k is
equal to D0ξ. We have thus verified both assertions (ii) and (iii).

Since the differential operator D1,F corresponding to the family F of
Theorem 2.48 is homogeneous, according to the proof of Proposition 2.37
the sections h1 and h2 given by Theorem 2.48,(i) satisfy the relations

D1,Fh1 = D1,Fh2 = 0.

The following theorem gives criteria for the Guillemin rigidity or the
infinitesimal rigidity of an irreducible symmetric space of compact type.

Theorem 2.49. Let (X, g) be an irreducible symmetric space of com-
pact type. Let F be a family of closed connected totally geodesic surfaces
of X which is invariant under the group G, and let F ′ be a family of closed
connected totally geodesic submanifolds of X. Let E be a G-invariant
sub-bundle of S2

0T
∗. Assume that each surface of X belonging to F is

contained in a submanifold of X belonging to F ′, and suppose that the
relations (2.33) and (2.37) hold.

(i) If the family F ′ possesses properties (I) and (II) and if the equality
(2.35) holds, then the symmetric space X is rigid in the sense of Guillemin.

(ii) If the family F ′ possesses property (III) and if the equality (2.36)
holds, then the symmetric space X is infinitesimally rigid.

Proof: Under the hypotheses of (i) (resp. of (ii)), a symmetric 2-form
h on X satisfying the Guillemin (resp. the zero-energy) condition belongs
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to L(F ′); by Theorem 2.48,(ii), with Λ = {id}, we see that h is a Lie
derivative of the metric g.

According to Proposition 2.13, we know that the equality (2.35) (resp.
the equality (2.36)) is a necessary condition for the Guillemin rigidity
(resp. the infinitesimal rigidity) of X.

If we take E = {0} in Theorem 2.49, we obtain the following corollary
of Theorem 2.49:

Theorem 2.50. Let (X, g) be an irreducible symmetric space of com-
pact type. Let F be a family of closed connected totally geodesic surfaces
of X which is invariant under the group G, and let F ′ be a family of closed
connected totally geodesic submanifolds of X. Assume that each surface
of X belonging to F is contained in a submanifold of X belonging to F ′.
Suppose that the equality

TrNF = {0}

holds. Then assertions (i) and (ii) of Theorem 2.49 hold.

Thus according to Theorem 2.50, when X is an irreducible space, in
Theorem 2.47 in order to obtain assertion (ii) (resp. assertion (iii)) of the
latter theorem we may replace the hypothesis that the relation (1.48) holds
by the hypothesis that the equality (2.35) (resp. the equality (2.36)) holds.

We again assume that X is an arbitrary symmetric space of compact
type. We consider the following properties which the family F ′ might
possess:

(IV) If a one-form over X satisfies the Guillemin condition, then its
restriction to an arbitrary submanifold of X belonging to the family F ′

satisfies the Guillemin condition.
(V) If Y is an arbitrary submanifold of X belonging to the family F ′,

every form of degree one on Y satisfying the Guillemin is exact.
(VI) If Y is an arbitrary submanifold of X belonging to the family F ′,

every form of degree one on Y satisfying the zero-energy is exact.
We consider the subset CF ′ of

∧2
T ∗ consisting of those elements

of
∧2
T ∗, which vanish when restricted to the submanifolds belonging to

the family F ′; if the family F ′ is invariant under the group G, then CF ′ is
a sub-bundle of

∧2
T ∗.

Theorem 2.51. Let (X, g) be a symmetric space of compact type. Let
F and F ′ be two families of closed connected totally geodesic submanifolds
of X. Assume that each submanifold of X belonging to F is contained in
a submanifold of X belonging to F ′, and suppose that

(2.38) CF = {0}.
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(i) If the family F ′ possesses properties (IV) and (V), then a differ-
ential form of degree one on X satisfies the Guillemin condition if and only
if it is exact.

(ii) If the family F ′ possesses property (VI), then a differential form
of degree one on X satisfies the zero-energy condition if and only if it is
exact.

Proof: Suppose that the family F ′ possesses properties (IV) and (V)
(resp. possesses property (VI)). Let θ be a 1-form on X satisfying the
Guillemin (resp. the zero-energy) condition. Consider a submanifold Y of
X belonging to the family F ′. According to our hypotheses, the restriction
θ′ of θ to Y satisfies the Guillemin (resp. the zero-energy) condition; it
follows that the 1-form θ′ on Y is closed. Hence the restriction of the 2-form
dθ to Y vanishes, and so the restriction of dθ to an arbitrary submanifold
of X belonging to the family F vanishes. From the relation (2.38), we infer
that θ is closed. Since the cohomology group H1(X,R) vanishes, the form
θ is exact.



CHAPTER III

SYMMETRIC SPACES OF RANK ONE

§1. Flat tori

Let (X, g) be a flat Riemannian manifold of dimension n. We first
suppose that X is the circle S1 of length L endowed with the Riemannian
metric g = dt⊗ dt, where t is the canonical coordinate of S1 defined mod-
ulo L. It is easily seen that this space X is infinitesimally rigid and that a
1-form on X satisfies the zero-energy condition if and only if it is exact.

In this section, we henceforth suppose that n ≥ 2. We recall that
B̃ = {0}, that the operator D1 is equal to Dg, and that the sequence (1.50)
is exact. Let h be a section of S2T ∗ over an open subset of X. According
to formulas (1.20) and (1.21), we see that Dgh is equal to the section R′

gh
of B and that

(3.1)

(Dgh)(ξ1, ξ2, ξ3, ξ4)

= 1
2{(∇

2h)(ξ1, ξ3, ξ2, ξ4) + (∇2h)(ξ2, ξ4, ξ1, ξ3)

− (∇2h)(ξ1, ξ4, ξ2, ξ3) − (∇2h)(ξ2, ξ3, ξ1, ξ4)},

for ξ1, ξ2, ξ3, ξ4 ∈ T . From Proposition 1.8, with λ = 0, and formula (1.31),
we obtain the equality

(3.2) −TrDgh = 1
2 (Δh− Hess Trh) −D1divh,

which can also be deduced directly from formula (3.1). By (3.2) and (1.30),
or by formula (1.41), we have

(3.3) −Tr · TrDgh = ΔTrh+ d∗divh.

In the remainder of this section, we suppose that (X, g) is a flat torus
of dimension ≥ 2. We may consider X as the quotient of the space R

n

endowed with the Euclidean metric g0. In fact, there is a lattice Λ generated
by a basis {ε1, . . . , εn} of R

n such that X is equal to the quotient R
n/Λ.

We shall identify a tensor on X with the Λ-invariant tensor on R
n which

it determines. Clearly, a tensor on R
n which is invariant under the group

of all translations of R
n induces a tensor on X. Let (x1, . . . , xn) be the

standard coordinate system of R
n. In particular, for 1 ≤ j ≤ n, the vector

field ∂/∂xj and the 1-form dxj on R
n are invariant under the group of all

translations of R
n and therefore induce a parallel vector field and a parallel

1-form on X, which we shall denote by ξj and αj , respectively. Clearly,
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{ξ1, . . . , ξn} is a basis for the space of parallel vector fields on X, while
{α1, . . . , αn} is a basis for the space of parallel 1-forms on X; in fact, we
have

〈ξj , αk〉 = δjk,

for 1 ≤ j, k ≤ n. Thus for all x ∈ X, the mapping

{ ξ ∈ C∞(T ) | ∇ξ = 0 } → Tx,

sending a vector field ξ into the value ξ(x) of ξ at x, is an isomorphism;
moreover for k, p ≥ 0, the mappings

{ θ ∈ C∞(
∧k

T ∗) | ∇θ = 0 } → ∧k
T ∗
x ,

{u ∈ C∞(SpT ∗) | ∇u = 0 } → SpT ∗
x ,

sending a differential form θ of degree k into the value θ(x) of θ at x and
a symmetric p-form u into the value u(x) of u at x, respectively, are also
isomorphisms. In fact, a parallel section θ of

∧k
T ∗ over X can be written

in the form

θ =
n∑

j1,...,jk=1

cj1...jkαj1 ∧ · · · ∧ αjk

and a parallel section u of SpT ∗ over X can be written in the form

u =
n∑

j1,...,jp=1

c′j1...jpαj1 · . . . · αjp ,

where the coefficients cj1...jp and c′j1...jk are real numbers. Hence the space
of all parallel sections of

∧k
T ∗ (resp. of SpT ∗) over X is isomorphic to the

space of all differential forms of degree k (resp. of all symmetric p-forms)
on R

n with constant coefficients. In particular, the metric g is equal to the
symmetric 2-form

∑n
j,k=1 αj ⊗ αk. Since the cohomology group Hk(X,R)

is isomorphic to
∧k

T ∗
x , where x is an arbitrary point of X, we know that

the space of harmonic forms of degree k on X is equal to the space of all
parallel sections of

∧k
T ∗ over X.

Proposition 3.1. Let X be a flat torus of dimension ≥ 2. Let ξ be
a vector field on X. Then ξ is a Killing vector field if and only if ∇ξ = 0.

Proof: We consider the 1-form α = g�(ξ) on X. First, we suppose
that X is a flat torus of dimension 2 and we consider the volume form
ω = α1 ∧ α2 of X. According to formula (1.4), the 1-form α satisfies the
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relations D1α = 0 and d∗α = 0. Since a harmonic 1-form on X is parallel,
we may write

α = β + d∗(fω),

where β is a 1-form satisfying ∇β = 0 and f is a real-valued function on X.
Then the 1-form d∗(fω) on X is induced by the 1-form

∂f

∂x2
dx1 −

∂f

∂x1
dx2

on R
2, where f is viewed as a Λ-invariant function on R

2. From the relation
D1α = 0, we obtain

∂2f

∂x1∂x2
= 0,

(
∂2

∂x2
1

− ∂2

∂x2
2

)
f = 0.

From the first of the preceding equations, we infer that the function f on R
2

can be written in the form f = f1 + f2, where fj is a real-valued function
on R

2 depending only on xj . Then the second equality tells us that the
function f1 − f2 on R

2 is harmonic and so is constant. It follows that the
two functions f1 and f2 are also constant, and so the 1-form α and the
vector field ξ are parallel. Now, we assume that the dimension of X is ≥ 2.
Let x0 be a point of X and let ζ1 and ζ2 be parallel vector fields on X;
then there is a totally geodesic flat 2-torus Y of X containing x0 such that
the vectors ζ1(x0) and ζ2(x0) are tangent to Y . We consider the vector
field η on Y , whose value at x ∈ Y is equal to the orthogonal projection of
ξ(x) onto the subspace TY,x of Tx. If i : Y → X is the natural imbedding
and gY = i∗g is the Riemannian metric on Y induced by g, according to
Lemma 1.1 we have i∗α = g�Y (η) and we know that η is a Killing vector
field on Y . Therefore the 1-form g�Y (η) on Y is parallel. Since i is a totally
geodesic imbedding, it follows that

(∇α)(ζ1, ζ2) = (∇Y i
∗α)(ζ1, ζ2) = 0

at the point x0. Thus we have shown that the 1-form α and the vector field
ξ on X are parallel.

We recall that the cohomology of the complex

C∞(T ) D0−−→ C∞(S2T ∗)
Dg−−→ C∞(B)

is isomorphic to the space

H(X) = {h ∈ C∞(S2T ∗) | divh = 0, Dgh = 0 }.
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Proposition 3.2. Let X be a flat torus of dimension ≥ 2. Let h be
a symmetric 2-form on X. Then the following assertions are equivalent:

(i) We have Δh = 0.
(ii) We have ∇h = 0.
(iii) The section h belongs to H(X).

Proof: Let ξ, η be parallel vector fields on X. If f is the real-valued
function on X equal to h(ξ, η), according to formula (1.52), we obtain the
relation

Δf = (Δh)(ξ, η).

Therefore if Δh vanishes, the function f is constant; since the parallel
vector fields ξ and η are arbitrary, we see that ∇h vanishes. If h is a
parallel section of S2T ∗, according to (3.1) we see that Dgh = 0, and so h
belongs toH(X). Finally, suppose that (iii) holds. Then according to (3.3),
we see that ΔTrh = 0; therefore Trh is constant. Formula (3.2) now tells
us that Δh = 0.

From Proposition 3.2, it follows that the space H(X) is equal to the
space

{h ∈ C∞(S2T ∗) | ∇h = 0 }
of all parallel sections of S2T ∗. According to remarks made in §3, Chapter I,
we know that the cohomology group H1(X,Θ) is isomorphic to this space,
and therefore also to the vector space S2T ∗

x , where x is an arbitrary point
of X; thus the dimension of this cohomology group is equal to n(n+ 1)/2.
Other proofs of these results are given in [2] and [15] (see Proposition 17.1
of [15]). From Proposition 3.2 and the decomposition (1.11), it follows that
an element h of C∞(S2T ∗) satisfying Dgh = 0 can be written in the form

(3.4) h = Lξg + h0,

where ξ is a vector field on X and h0 is a parallel section of S2T ∗ over X.

Lemma 3.3. Let u be a parallel symmetric p-form on a flat torus X
of dimension ≥ 2. If the form u satisfies the zero-energy condition, then it
vanishes.

Proof: Let γ : [0, L] → X be a closed geodesic of X parametrized
by its arc-length s. If γ̇(s) is the tangent vector to the geodesic γ at the
point γ(s), then we write ϕ(s) = u(γ̇(s), . . . , γ̇(s)) and we have

(∇u)(γ̇(s), γ̇(s), . . . , γ̇(s)) =
d

ds
ϕ(s),

for all 0 ≤ s ≤ L. Our hypothesis tells us that the function ϕ on [0, L] is con-
stant. If u satisfies the zero-energy condition, the integral of the function ϕ
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over the interval [0, L] vanishes, and hence the expression u(γ̇(s), . . . , γ̇(s))
vanishes for all 0 ≤ s ≤ L. If x is a point of X, we know that the set Cx
of vectors ξ of Tx − {0}, for which ExpxRξ is a closed geodesic of X, is a
dense subset of Tx. From these last two observations, we obtain the desired
result.

Lemma 3.4. Let h be a symmetric 2-form and u be a 1-form on a flat
torus X of dimension ≥ 2 which satisfy the zero-energy condition.

(i) If the symmetric 2-form h satisfies the relation Dgh = 0, then it
is a Lie derivative of the metric.

(ii) If the 1-form u satisfies the relation du = 0, then it is exact.

Proof: We first suppose that the relation Dgh = 0 holds. As we saw
above, we have the decomposition (3.4), where ξ is a vector field on X and
h0 is a parallel symmetric 2-form on X. According to Lemma 2.6, the form
h0 also satisfies the zero-energy condition. From Lemma 3.3 with p = 2,
we infer that h0 vanishes, and so the equality h = Lξg holds. If the 1-form
θ is closed, then we may write

θ = df + θ′,

where f is a real-valued function on X and θ′ is a harmonic 1-form on X.
Clearly, θ′ also satisfies the zero-energy condition. We saw above that θ′ is
parallel; hence by Lemma 3.3 with p = 1, we see that θ is equal to df .

Let {ε1, . . . , εn} be a basis of R
n which generates the lattice Λ, and

let (y1, . . . , yn) be the coordinates of R
2 associated with this basis of R

n.
Let {α′

1, . . . , α
′
n} be the parallel 1-forms on R

n determined by

〈∂/∂yj , α′
k〉 = δjk,

for 1 ≤ j, k ≤ n. For 1 ≤ j ≤ n, let ζj be the parallel vector field on X
induced by the vector field ∂/∂yj .

We now suppose that n = 2. We fix a pair of integers (p1, p2), with
p1 �= 0. If u is an arbitrary real number, we consider the line segment
γu : [0, 1] → R

2 defined in terms of the coordinates (y1, y2) by

γu(t) = (u+ p2 t,−p1t),

for 0 ≤ t ≤ 1; clearly its image in the torus X is a closed geodesic also
denoted by γu. The parallel vector field

ξ = p2
∂

∂y1
− p1

∂

∂y2
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on R
2 is tangent to the line segment γu. If θ is a symmetric p-form onX and

θ̂ is the Λ-invariant symmetric p-form determined by θ, then the integral
of θ over the closed geodesic γu of X is given by

(3.5)
∫
γu

θ = cp

∫ 1

0

θ̂(ξ, . . . , ξ)(γu(t)) dt,

where the constant cp ∈ R depends only on the integers p, p1 and p2 and
the basis {ε1, ε2} of R

2.
The following proposition is due to Michel [46].

Proposition 3.5. The X-ray transform for functions on a flat torus
of dimension n ≥ 2 is injective.

Proof: We first suppose that n = 2. Let f be a complex-valued
function on X satisfying the zero-energy condition; we also denote by f the
Λ-invariant function on R

2 which it determines. We consider the Fourier
series

f(y1, y2) =
∑

q1,q2∈Z

aq1q2e
2iπ(q1y1+q2y2)

of the function f on R
2, where the aq1q2 are its Fourier coefficients. We

now fix a pair of integers (p1, p2); we suppose that p1 �= 0 and we consider
the closed geodesic γu of X, which we associated above with the integers
p1 and p2 and with the real number u. We then consider the function
ψ on R whose value at u ∈ R is equal to the integral of f/c0 over the
closed geodesic γu, where c0 is the constant appearing in the equality (3.5),
with p = 0; according to our hypothesis, the function ψ vanishes identically.
Therefore the sum

∑
q1,q2∈Z

∫ 1

0

aq1q2e
2iπ(q1u+(p2q1−p1q2)t) dt

vanishes for all u ∈ R. The Fourier series of the function ψ is given by

ψ(u) =
∑
q1∈Z

e2iπq1u
∑
q2∈Z

aq1q2

∫ 1

0

e2iπ(p2q1−p1q2)t dt

for u ∈ R. Since the Fourier coefficient of ψ corresponding to the integer
p1 vanishes, we see that ap1p2 = 0. A similar argument shows that the
coefficient ap1p2 vanishes when p1 = 0 and p2 �= 0. Thus the function f is
constant and therefore vanishes. Since an arbitrary point of a flat torus of
dimension ≥ 2 is contained in a totally geodesic flat torus of dimension 2,
we obtain the desired result in all cases.
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Proposition 3.6. Suppose that X is a flat torus of dimension 2. Let
h be a symmetric 2-form and θ be a 1-form on X; suppose that these
two forms satisfy the zero-energy condition. Then we have the relations
Dgh = 0 and dθ = 0.

Proof: We consider the Λ-invariant symmetric forms

h = aα′
1 ⊗ α′

1 + bα′
1 · α′

2 + cα′
2 ⊗ α′

2, θ = a1α′
1 + a2α′

2

on R
2 determined by h and θ, where a, b, c, a1, a2 are Λ-invariant functions

on R
2. We now fix a pair of integers (p1, p2); we suppose that p1 �= 0 and

we consider the closed geodesic γu of X which we associated above with the
integers p1 and p2 and with the real number u. We consider the functions
ψ1 and ψ2 on R whose values at u ∈ R are equal to the integrals of θ/c1
and h/c2 over the closed geodesic γu, respectively; here cp is the constant
appearing in the equality (3.5). According to our hypotheses, the functions
ψ1 and ψ2 vanish identically. The Fourier series of the function ψ2 is given
by

∑
q1∈Z

e2iπq1u
∑
q2∈Z

(p2
2 aq1q2 − 2p1p2 bq1q2 + p2

1 cq1q2)
∫ 1

0

e2iπ(p2q1−p1q2)t) dt,

where aq1q2 , bq1q2 and cq1q2 are the Fourier coefficients of the functions a, b
and c, respectively; on the other hand, the Fourier series of the function ψ1

is given by

∑
q1∈Z

e2iπq1u
∑
q2∈Z

(p2 a
1
q1q2 − p1a

2
q1q2)

∫ 1

0

e2iπ(p2q1−p1q2)t) dt,

where a1
q1q2 and a2

q1q2 are the Fourier coefficients of the functions a1 and a2,
respectively. Since the Fourier coefficients of ψ1 and ψ2 corresponding to
the integer p1 vanish, we see that

p2
2 ap1p2 − 2p1p2 bp1p2 + p2

1 cp1p2 = 0, p2 a
1
p1p2 − p1a

2
p1p2 = 0.

A similar argument shows that these two relations also hold when p1 = 0
and p2 �= 0. It follows that

∂2a

∂y2
2

− 2
∂2b

∂y1∂y2
+
∂2c

∂y2
1

= 0,
∂a1

∂y2
− ∂a2

∂y1
= 0.

By (3.1), these last relations are equivalent to the equalities

(Dgh)(ζ1, ζ2, ζ1, ζ2) = 0, (dθ)(ζ1, ζ2) = 0,

respectively. Since {ζ1, ζ2} is a frame for the tangent bundle of R
2, we see

that Dgh = 0 and dθ = 0.
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Theorem 3.7. A flat torus of dimension ≥ 2 is infinitesimally rigid.

Theorem 3.8. A differential form of degree 1 on a flat torus of di-
mension ≥ 2 satisfies the zero-energy condition if and only if it is exact.

We now simultaneously prove Theorems 3.7 and 3.8. Let h be a sym-
metric 2-form and θ be a 1-form on the flat torus X, both of which satisfy
the zero-energy condition. Let x be an arbitrary point of X and {ξ, η} be
an orthonormal set of vectors of Tx. If F is the subspace Rξ ⊕ Rη of Tx,
then Y = ExpxF is a closed totally geodesic submanifold of X isometric to
a flat 2-torus. Let i : Y → X be the natural imbedding; the forms i∗h and
i∗θ on Y satisfy the zero-energy condition. If gY is the metric on Y induced
by g, Proposition 3.6 tells us that DgY

i∗h = 0 and di∗θ = 0. According
to Proposition 1.14,(i), the restriction i∗Dgh of the section Dgh of B to Y
vanishes. Hence we have

(Dgh)(ξ, η, ξ, η) = 0, (dθ)(ξ, η) = 0.

Thus these equalities holds for all ξ, η ∈ T , and we see that Dgh = 0
and dθ = 0. According to Lemma 3.4, the symmetric form h on X is Lie
derivative of the metric and the 1-form θ is exact.

Theorems 3.7 and 3.8 are due to Michel [46]; our proofs of these theo-
rems are essentially the same as those given by Estezet [12]. The next the-
orem, which generalizes both of these theorems, was proved by Michel [46]
when the integer p is equal to 0, 1 or an odd integer and by Estezet [12] in
all the other cases.

Theorem 3.9. Let X be a flat torus of dimension ≥ 2. For all p ≥ 0,
the space Zp+1 of all sections of C∞(Sp+1T ∗) satisfying the zero-energy
condition is equal to DpC∞(SpT ∗).

The next result is given by Proposition 1 of [20].

Proposition 3.10. Let (X, g) be a Riemannian manifold. Let Y be a
totally geodesic submanifold ofX isometric to a flat torus of dimension ≥ 2.
Let i : Y → X be the natural imbedding and gY = i∗g be the Riemannian
metric on Y induced by g. Let ξ be a Killing vector field on X.

(i) We have
i∗dg�(ξ) = 0.

(ii) If the 1-form g�(ξ) satisfies the zero-energy condition, then we have

i∗g�(ξ) = 0.

Proof: We consider the vector field η on Y , whose value at x ∈ Y
is equal to the orthogonal projection of ξ(x) onto the subspace TY,x of Tx.
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According to Lemma 1.1, we have g�Y (η) = i∗g�(ξ) and we know that η
is a Killing vector field on Y . Therefore by Proposition 3.1, we see that
∇Y g�Y (η) = 0, and so the 1-form g�Y (η) on Y is harmonic. Thus we have
i∗dg�(ξ) = dg�Y (η) = 0. If g�(ξ) satisfies the zero-energy condition, then so
does the 1-form g�Y (η) on Y ; by Theorem 3.8, the 1-form g�Y (η) on the flat
torus Y is exact and therefore vanishes.

§2. The projective spaces

In the remainder of this chapter, we shall consider the symmetric
spaces of compact type of rank one. They are the spheres (Sn, g0), the
real projective spaces (RP

n, g0), the complex projective spaces CP
n, the

quaternionic projective spaces HP
n, with n ≥ 2, and the Cayley plane.

The following two theorems are consequences of Theorems 3.20, 3.26, 3.39,
3.40, 3.44 and 3.45, which appear below in this chapter.

Theorem 3.11. A symmetric space of rank one, which is not isomet-
ric to a sphere, is infinitesimally rigid.

Theorem 3.12. Let X be a symmetric space of rank one, which is
not isometric to a sphere. A differential form of degree 1 on X satisfies the
zero-energy condition if and only if it is exact.

Most of the results described in the remainder of this section are to
be found in Chapter 3 of [5]. Let n be an integer ≥ 1. Let K be one of the
fields R, C or H. We set a = dimR K. We endow K

n+1 with its right vector
space structure over K, with the Hermitian scalar product

(3.6) 〈x, y〉 =

{∑n
j=0 xjyj if K = R or C,∑n
j=0 x̄jyj if K = H,

where x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn) are vectors of K
n+1,

and with the real scalar product

(3.7) 〈x, y〉R = Re 〈x, y〉,

for x, y ∈ K
n+1.

The projective space KP
n is the orbit space of the space K

n+1 − {0}
under the action of the group K

∗ = K−{0}; it is a manifold of dimension na.
Let

π : K
n+1 − {0} → KP

n

be the natural projection sending x ∈ K
n+1 − {0} into its orbit π(x); then

two non-zero vectors x, y of K
n+1 have the same image under π if and only

if there exists λ ∈ K
∗ such that x = y · λ.
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Let
SK

n+1 = {x ∈ K
n+1 | 〈x, x〉 = 1 }

be the unit sphere in K
n+1; its dimension is na+ a− 1. Then SK = SK

1

is a subgroup of K
∗, and the restriction

(3.8) π : SK
n+1 → KP

n

of the mapping π is a principal bundle with structure group SK.
Let x be a point of SK

n+1. The tangent space Tx(SK
n+1) of the

sphere SK
n+1 at x is identified with the space

{
u ∈ K

n+1 | 〈x, u〉R = 0
}
.

We denote by Tπ(x)(KP
n) the tangent space of KP

n at the point π(x). If
u ∈ K

n+1 satisfies 〈x, u〉R = 0, we denote by (x, u) the tangent vector
belonging to Tx(SK

n+1) corresponding to u, and we consider its image
π∗(x, u) in Tπ(x)(KP

n) under the mapping π∗; in fact, we have

(x, u) =
d

dt
(x+ tu)|t=0, π∗(x, u) =

d

dt
π(x+ tu)|t=0;

moreover if λ ∈ K, we see that

π∗(xλ, uλ) = π∗(x, u).

The subspace Vx(SK
n+1) of Tx(SK

n+1) consisting of the vectors tan-
gent to the fibers of the projection π is equal to

{ (x, xλ) | λ ∈ R, with Reλ = 0 } .

We also consider the subspace

Hx(SK
n+1) =

{
(x, u) | u ∈ K

n+1, with 〈x, u〉 = 0
}

of Tx(SK
n+1). Then the decomposition

Tx(SK
n+1) = Hx(SK

n+1) ⊕ Vx(SK
n+1)

is orthogonal with respect to the scalar product (3.6). The projection

(3.9) π∗ : Hx(SK
n+1) → Tπ(x)(KP

n)

is an isomorphism.
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We endow the sphere SK
n+1 with the Riemannian metric g0 induced

by the scalar product (3.7), and the projective space KP
n with the Rie-

mannian metric g determined by

g(π∗(x, u), π∗(x, v)) = 〈u, v〉R,

where x ∈ SK
n+1 and u, v ∈ K

n+1 satisfy 〈x, u〉 = 〈x, v〉 = 0. In fact, since
the equality

〈u, v〉R = 〈uλ, vλ〉R

holds for u, v ∈ K
n+1 and λ ∈ SK, the metric g on KP

n is well-defined.
We see that the projection (3.8) is a Riemannian submersion and that the
isomorphism (3.9) is an isometry.

Let x be a point of SK
n+1 and let u, v ∈ K

n+1, with 〈x, u〉 = 〈x, v〉 = 0.
When K = C, the tangent space Tπ(x)(CP

n) admits a structure of a complex
vector space; in fact, we have

π∗(x, u) · λ = π∗(x, u · λ),

for λ ∈ C. Clearly, by construction CP
n has the structure of a complex

manifold, and its complex structure J is determined by

Jπ∗(x, u) = π∗(x, ui).

In general, if the vectors u, v are non-zero, we say that the two vectors
π∗(x, u) and π∗(x, v) are K-dependent if there exists an element λ ∈ K

∗

such that u = v · λ; this relation among non-zero vectors of Tπ(x)(KP
n) is

easily seen to be well-defined. If the vector u is non-zero and ξ = π∗(x, u)
is the tangent vector of Tπ(x)(KP

n) corresponding to u, the subset

ξK = {π∗(x, u · λ) | λ ∈ K
∗ } ∪ {π∗(x, 0)}

is a real subspace of Tπ(x)(KP
n) of dimension (over R) equal to dimR K.

Moreover, if K = C, then ξK is equal to the real subspace Cξ of Tπ(x)(CP
n)

generated by ξ and Jξ.
The following lemma is proved in [5, §3.9].

Lemma 3.13. Let x be a point of SK
n+1 and u, v be non-zero vectors

of K
n+1, with 〈x, u〉 = 〈x, v〉 = 0. If ξ = π∗(x, u) and η = π∗(x, v) are

the tangent vectors of Tπ(x)(KP
n) corresponding to u and v, the following

assertions are equivalent:
(i) We have 〈u, v〉 = 0.
(ii) The vector ξ is orthogonal to the subspace ηK with respect to the

metric g.
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(iii) The subspaces ξK and ηK are orthogonal with respect to the
metric g.

If ξ1, . . . , ξn are non-zero vectors of Tπ(x)(KP
n) such that the subspaces

ξjK are mutually orthogonal, then we have the decomposition

Tπ(x)(KP
n) = ξ1K ⊕ · · · ⊕ ξnK.

We consider the subgroup U(n + 1,K) of GL(n + 1,K) consisting of
all elements A ∈ GL(n+ 1,K) satisfying

〈Ax,Ay〉 = 〈x, y〉,

for all x, y ∈ K
n+1. When K = R or C, let SU(n+1,K) be the subgroup of

U(n+1,K) consisting of all elements A ∈ U(n+1,K) satisfying detA = 1.
Then SU(n + 1,R) is equal to SO(n + 1) and SU(n + 1,C) is equal to
SU(n + 1), while U(n + 1,H) is equal to Sp(n + 1). When K is either R

or C, let G denote the group SU(n+ 1,K); when K is equal to H, let G be
the group U(n+ 1,K) = Sp(n+ 1).

The group G acts transitively on SK
n+1 and on KP

n by isometries.
Let {e0, e1, . . . , en} be the standard basis of K

n+1. Let K be the subgroup
of G leaving the point π(e0) fixed, and let K ′ be the subgroup of K con-
sisting of those elements of G leaving the point e0 fixed. Then we have
diffeomorphism

ϕ : G/K → KP
n, ϕ′ : G/K ′ → SK

n+1

defined by
ϕ(φ ·K) = πφ(e0), ϕ′(φ ·K ′) = φ(e0),

for φ ∈ G. If φ ∈ G belongs to K, then we have

φ(e0) = e0 · λ,

where λ ∈ SK; hence the element a of G can be written in the form

(3.10)
(
λ 0
0 B

)
,

where B belongs to U(n,K). If K1 denotes the subgroup U(1,K)×U(n,K)
of U(n+1,K), the group K is therefore equal to G∩K1. The subgroup K ′

consists of the elements (3.10) of K with λ = 1. When K = R, we identify
K ′ with the group SO(n).
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When K = R, in the remainder of this section we suppose that n ≥ 2.
If In denotes the unit matrix of order n, the element

s =
(
−1 0
0 In

)

of U(n+1,K) determines an involution σ ofG which sends a ∈ G into sas−1.
Then K is equal to the set of fixed points of σ; thus (G,K) is a Riemannian
symmetric pair. When K = R, the subgroup K ′ coincides with the identity
component of the group K, and (G,K ′) is also a Riemannian symmetric
pair in this case. The Cartan decomposition of the Lie algebra g0 of G
corresponding to σ is

g0 = k0 ⊕ p0;

here k0 is the Lie algebra of K and p0 is the space of all matrices

(3.11)
(

0 −tZ̄
Z 0

)

of g0, where Z ∈ K
n is viewed as a column vector and tZ̄ is its conjugate

transpose. We identify p0 with the vector space K
n and, in particular, the

element (3.11) of p0 with the vector Z of K
n. The adjoint action of K on

p0 is expressed by
Adφ · Z = B · Z · λ̄,

where φ is the element (3.10) of K and Z ∈ K
n. When K = R, we know

that k0 is also the Lie algebra of K ′.
We identify p0 with the tangent space of G/K (resp. of G/K ′ when

K = R) at the coset of the identity element of G. Via the above identifica-
tion of p0 with the vector space K

n, we transfer the scalar product on K
n

given by (3.7) to p0 and we note that this scalar product on p0 is invariant
under the adjoint action of K and therefore induces G-invariant metrics
on the homogeneous space G/K and, when K = R, on the space G/K ′,
which we denote by g1. Endowed with this metric g1, the manifold G/K
(resp. the manifold G/K ′ when K = R) is an irreducible symmetric space
of compact type. Then the diffeomorphism ϕ from (G/K, g1) to (KP

n, g)
and, when K = R, the diffeomorphism ϕ from (G/K ′, g1) to (SR

n+1, g0)
are isometries (see §C in Chapter 3 of [5] and §10 in Chapter XI of [40]).
It follows that the space (RP

n, g), with n ≥ 2, has constant curvature 1.
Since the complex structure of the manifold CP

n is invariant under
the group SU(n + 1,C), we see that (CP

n, g) is a Hermitian symmetric
space (see Proposition 4.2 in Chapter VIII of [36]). In fact, the metric g on
complex manifold CP

n is the Fubini-Study metric of constant holomorphic
curvature 4 (see Example 10.5 in Chapter XI of [40]). On the other hand,
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the projective lines CP
1 and HP

1 are isometric to the spheres S2 and S4,
respectively, endowed with their metrics of constant curvature 4. In §4, we
shall verify this last assertion in the case of the complex projective line.

The following result is proved in §D of [5, Chapter 3].

Proposition 3.14. Let X be the projective space KP
n, with n ≥ 2.

Let x be a point of X and ξ1, . . . , ξq ∈ Tx be unitary tangent vectors.
(i) If the subspaces ξ1K, . . . , ξqK of Tx are mutually orthogonal, then

Expx(Rξ1 ⊕ · · · ⊕ Rξq) is a closed totally geodesic submanifold of X iso-
metric to the real projective space RP

q endowed with its metric of constant
curvature 1.

(ii) If the subspaces ξ1K, . . . , ξqK of Tx are mutually orthogonal, then
Expx(ξ1K ⊕ · · · ⊕ ξqK) is a closed totally geodesic submanifold of X iso-
metric to the projective space KP

q.
(iii) Suppose that K is equal to H and that q = 2r, where r ≥ 1.

Suppose that the subspaces ξ1H, . . . , ξrH of Tx are mutually orthogonal
and that there are vectors uj ∈ Hx(SK

n+1) and λ ∈ H satisfying Reλ = 0
and

ξj = π∗(x, uj), ξj+r = π∗(x, ujλ),

for 1 ≤ j ≤ r. Then Expx(Rξ1 ⊕ · · · ⊕ Rξq) is a closed totally geodesic
submanifold of X isometric to the complex projective space CP

r endowed
with its metric of constant holomorphic curvature 4.

The following result is a direct consequence of Proposition 3.14.

Proposition 3.15. Suppose that K is equal to C or H. Let X be
the projective space KP

n, with n ≥ 2. Let x be a point of X and let ξ1
and ξ2 be linearly independent unitary tangent vectors of Tx. If ξ2 belongs
to ξ1K, then Expx(Rξ1 ⊕ Rξ2) is a closed totally geodesic submanifold of
X isometric to the complex projective line CP

1 endowed with its metric of
constant curvature 4.

Proposition 3.16. The projective space X = KP
n, with n ≥ 2, is a

Cπ-manifold.

Proof: By Proposition 3.14,(i), with q = 1, if x is a point of X and
ξ is a unitary vector of Tx, we see that ExpxRξ is isometric to RP

1 and is
therefore a closed geodesic of length π.

Clearly a CL-manifold cannot contain a totally geodesic flat torus of
dimension ≥ 2. Therefore, from Proposition 3.15 it follows that the sym-
metric spaces KP

n, with n ≥ 2, have rank one.
In §G of [5, Chapter 3], the structure of symmetric space of rank

one is defined on the Cayley plane X. An analogue of Proposition 3.14
holds for the Cayley plane. In fact, the inclusion of the quaternions H into
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the Cayley algebra gives rise to closed totally geodesic submanifolds of X
isometric to HP

2.

§3. The real projective space

We consider the sphere Sn = SR
n+1, with n ≥ 2, endowed with its

metric g0 of constant curvature 1, which is equal to the metric introduced
in §2. The anti-podal involution τ of the sphere Sn is an isometry. The real
projective space (RP

n, g0) is the quotient of Sn by the group Λ = {id, τ}.
When K = R, we observed in §2 that the group SK = {+1,−1} acts on
K
n+1 and on the unit sphere Sn = SK

n+1; in fact, its action is equal to
that of the group Λ. Therefore the metric g0 on RP

n is equal to the metric
g of §2. As in §4, Chapter II, we say that a function f on Sn is even
(resp. odd) if τ∗f = εf , where ε = +1 (resp. ε = −1). If X = Sn, we
denote by C∞(X)ev (resp. C∞(X)odd) the subspace of C∞(X) consisting
of all even (resp. odd) functions.

Let g = so(n + 1,C) be the complexification of the Lie algebra of
G = SO(n+1) and let Γ be the dual of the group G. Let γ0 and γ1 be the
elements of Γ which are the equivalence classes of the trivial G-module C

and of the irreducible G-module g, respectively.
We view the sphere X = Sn = SR

n+1 as the irreducible symmetric
space SO(n+ 1)/SO(n). The set of eigenvalues of the Laplacian Δ acting
on C∞(X) consists of all the integers λk = k(n + k − 1), where k is an
integer ≥ 0. The eigenspace Hk of Δ associated with the eigenvalue λk
consists of all the complex-valued functions on X which are restrictions
to Sn of harmonic polynomials of degree k on R

n+1. According to obser-
vations made in §7, Chapter II and by Proposition 2.1, we know that Hk

is an irreducible SO(n+ 1)-submodule of C∞(X) and that the direct sum⊕
k≥0 Hk is a dense submodule of C∞(X) (see §C.I in Chapter III of [4]).

For k ≥ 2, let γk be the element of Γ corresponding to the irreducible
G-module Hk; then we have the equalities

C∞
γk

(X) = Hk,

for all k ≥ 0. The homogeneous polynomial fk of degree k on R
n+1 defined

by
fk(x1, . . . , xn+1) = Re (x1 + ix2)k,

for (x1, . . . , xn+1) ∈ R
n+1, is harmonic; its restriction f̃k to Sn therefore

belongs to Hk. Since f̃k is an even (resp. odd) function on Sn when the
integer k is even (resp. odd), we obtain the inclusions

H2k ⊂ C∞(X)ev, H2k+1 ⊂ C∞(X)odd,

for all k ≥ 0.
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Let Y be the real projective space RP
n endowed with the metric g0,

which we view as an irreducible symmetric space. According to §7, Chap-
ter II and the isomorphism (2.19), we see that the set of eigenvalues of the
Laplacian ΔY acting on C∞(Y ) consists of all the integers λ2k, with k ≥ 0;
moreover if k is an even integer, the G-module C∞

γk
(Y ) is equal to the space

of functions on Y obtained from Hk by passage to the quotient. There-
fore

⊕
k≥0 C

∞
γ2k

(Y ) is a dense subspace of C∞(Y ), and the first non-zero
eigenvalue of the Laplacian ΔY acting on C∞(Y ) is equal to 2(n+ 1).

We consider the closed geodesic γ of Sn, which is the great circle
defined by

γ(s) = (cos s, 0, . . . , 0, sin s),

with 0 ≤ s ≤ 2π. Then we have the relations

I0(f̃2k)(γ) =
∫
γ

f̃2k =
∫ 2π

0

cos2k t dt > 0.

The following result is a consequence of the above observations and Propo-
sition 2.29, with Σ = {τ} and ε = +1.

Proposition 3.17. An even function on the sphere Sn, with n ≥ 2,
whose X-ray transform vanishes, vanishes identically.

In §4, Chapter II, we noted that the preceding proposition is equivalent
to assertion (i) of Theorem 2.23 and also that it implies that the X-ray
transform for functions is injective on the real projective space RP

n, with
n ≥ 2.

Theorem 3.18. The X-ray transform for functions on a symmetric
space of compact type of rank one, which is not isometric to a sphere, is
injective.

Proof: According to Proposition 3.14 and the discussion which fol-
lows this proposition, each point of such a projective space X is contained
in a closed totally geodesic submanifold of X isometric to the projective
plane RP

2. The desired result is then a consequence of Theorem 2.23,(ii).
Theorem 3.18, together with Proposition 2.26, implies that the X-ray

transform for functions on a symmetric spaceX of compact type is injective
if and only if X is not isometric to a sphere. Theorem 3.18 is also a
consequence of Theorem 2.24.

We shall now establish the infinitesimal rigidity of the real projective
space RP

n, a result due to Michel [45]. We first consider the case of the
real projective plane.
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Proposition 3.19. The real projective plane X = RP
2 is infinitesi-

mally rigid.

Proof: Let h be a symmetric 2-form on X satisfying the zero-energy
condition. We know that the relation (1.64) holds on the sphere (S2, g0),
which is a covering space of X; therefore we may write

h = D0ξ + fg,

where ξ is a vector field and f is a real-valued function on X. If γ is closed
geodesic of X, we have ∫

γ

f =
∫
γ

fg.

Since the Lie derivative Lξg satisfies the zero-energy condition, we see
that the function f also satisfies the zero-energy condition. From Theo-
rem 2.23,(ii), with n = 2, we deduce that the function f vanishes and so
we have h = D0ξ.

Theorem 3.20. The real projective space X = RP
n, with n ≥ 2, is

infinitesimally rigid.

Proof: Let h be a symmetric 2-form on X satisfying the zero-energy
condition. Let x be an arbitrary point of X and {ξ, η} be an orthonor-
mal set of vectors of Tx; we consider the subspace F = Rξ ⊕ Rη of Tx.
According to Proposition 3.14,(ii), we know that Y = ExpxF is a totally
geodesic submanifold of X isometric to RP

2. If i : Y → X is the natural
imbedding, by Proposition 3.19 we know that the restriction i∗h of h to
Y is a Lie derivative of the metric gY on Y induced by g. According to
Proposition 1.14,(i), we see that the restriction i∗Dgh of the section Dgh
of B to Y is equal to DgY

i∗h. Therefore by the relation (1.49), the section
i∗Dgh vanishes and so we have

(Dgh)(ξ, η, ξ, η) = 0.

Thus this last equality holds for all ξ, η ∈ T , and we see that Dgh = 0.
According to Theorem 1.18, the sequence (1.51) is exact, and so h is a Lie
derivative of the metric.

The proof of Proposition 3.19 given above is due to Bourguignon and
our proof of Theorem 3.20 is inspired by the one given in Chapter 5 of [5].
We now present a variant of the version given in [30, §2] of Michel’s original
proof of Proposition 3.19 (see [45]).

We suppose that (X, g) is the real projective plane (RP
2, g0). Let

γ : [0, π] → X be an arbitrary closed geodesic parametrized by its arc-
length. We set γ(0) = x, and let e1(t) = γ̇(t) be the tangent vector to the
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geodesic at γ(t), for 0 ≤ t ≤ π. We choose a unit vector e2 ∈ Tx orthogonal
to e1(0) and consider the family of tangent vectors e2(t) ∈ Tγ(t), with
0 ≤ t ≤ π, obtained by parallel transport of the vector e2 along γ. Clearly,
if u is an element of C∞(SpT ∗), we have

∫
γ

u =
∫ π

0

u(e1(t), e1(t), . . . , e1(t)) dt;

on the other hand, if v is an element of C∞(
⊗p

T ∗) and ξj(t) is a vector
field along γ(t) equal to either e1(t) or e2(t) for 1 ≤ j ≤ p− 1, we have

(∇v)(e1(t), ξ1(t), . . . , ξp−1(t)) =
d

dt
v(ξ1(t), . . . , ξp−1(t)),

and so

(3.12)
∫ π

0

(∇v)(e1(t), ξ1(t), . . . , ξp−1(t)) dt = 0.

We consider the space Z2 of symmetric 2-forms on X = RP
2 satisfying

the zero-energy condition. The following result given by Lemma 2.36 is
proved in [45] by considering the Jacobi fields along the closed geodesics
of X.

Lemma 3.21. The space Z2 of symmetric 2-forms on X = RP
2 is

invariant under the Lichnerowicz Laplacian Δ.

Lemma 3.22. Let X be the real projective plane RP
2. If h ∈ Z2

satisfies divh = 0, then we have

∫ π

0

(∇2h)(e2(t), e2(t), e2(t), e2(t)) dt =
∫
γ

Trh.

Proof: We have

(∇2h)(e2(t), e2(t), e2(t), e2(t)) = −(∇2h)(e2(t), e1(t), e1(t), e2(t))

= −(∇2h)(e1(t), e2(t), e1(t), e2(t))

+ h(e2(t), e2(t)) − h(e1(t), e1(t)),

for 0 ≤ t ≤ π; the first equality holds because divh = 0, while the second
one is obtained using the expression for the curvature of (X, g). The lemma
is now a consequence of (3.12).
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Lemma 3.23. Let X be the real projective plane RP
2. If h ∈ Z2

satisfies divh = 0, then

∫
γ

(ΔTrh− Trh) = 0.

Proof: According to (1.52), we have

(Δh)(e2(t), e2(t)) = −(∇2h)(e1(t), e1(t), e2(t), e2(t))

− (∇2h)(e2(t), e2(t), e2(t), e2(t))

+ 4h(e2(t), e2(t)) − 2(Trh)(γ(t)),

for 0 ≤ t ≤ π. By (1.30), (3.12), Lemmas 3.21 and 3.22, and the preceding
equality, we see that

∫
γ

ΔTrh =
∫
γ

TrΔh =
∫ π

0

(Δh)(e2(t), e2(t)) dt =
∫
γ

Trh.

Lemma 3.24. Let X be the real projective plane RP
2. If h ∈ Z2

satisfies divh = 0, then Trh vanishes.

Proof: According to Theorem 2.23,(ii), with n = 2, and Lemma 3.23,
we see that ΔTrh = Trh. As the first non-zero eigenvalue of the Laplacian
Δ acting on C∞(X) is equal to 6, we see that Trh = 0.

Lemma 3.25. Let X be the real projective plane RP
2. An element h

of Z2 satisfying divh = 0 vanishes.

Proof: Let h be an element of Z2 satisfying divh = 0. According
to Lemma 3.24 and the equality (1.53), the symmetric 2-form h belongs
to H(X). Then Proposition 1.20 tells us that h vanishes.

Now Proposition 3.19 is a direct consequence of Proposition 2.13 and
Lemma 3.25.

Our approach to the rigidity questions, which led us to the criteria
of Theorem 2.49 and the methods introduced in [22] for the study of the
complex quadrics, were partially inspired by the proof of the infinitesimal
rigidity of the real projective plane which we have just completed. The
correspondence between the arguments given here in the case of the real
projective plane and those used in the case of the complex quadric is pointed
out in [30].

The following result is due to Michel [47].
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Theorem 3.26. A differential form of degree 1 on the real projective
space RP

n, with n ≥ 2, satisfies the zero-energy condition if and only if it
is exact.

In the case of the real projective plane RP
2, according to Proposi-

tion 2.20, we see that Theorem 3.26 is a consequence of Proposition 3.29,(ii),
which is proved below; on the other hand, the proof of this theorem given
in [47] for RP

2 is elementary and requires only Stokes’s theorem for func-
tions in the plane. In fact, the result given by Theorem 3.26 for the real
projective plane implies the result in the general case. Let X be the real
projective space RP

n, with n ≥ 2; by Proposition 3.14, we easily see that
an element of

∧2
T ∗, which vanishes when restricted to the totally geodesic

surfaces of X isometric to the real projective plane, must be equal to 0.
Then the desired result for X is a consequence of Proposition 2.51,(ii).

The following result due to Bailey and Eastwood [1] generalizes both
Theorems 3.20 and 3.26.

Theorem 3.27. Let X be the real projective space RP
n, with n ≥ 2.

For all p ≥ 0, the space Zp+1 of all sections of C∞(Sp+1T ∗) satisfying the
zero-energy condition is equal to DpC∞(SpT ∗).

In the case p = 2, the assertion of Theorem 3.27 was first established
by Estezet (see [12] and [29]).

§4. The complex projective space

In this section, we suppose thatX is the complex projective space CP
n,

with n ≥ 1, endowed with the metric g of §2. We have seen that g is the
Fubini-Study metric of constant holomorphic curvature 4. We denote by J
the complex structure of X. As in §2, we identify X with the Hermi-
tian symmetric space G/K, where G is the group SU(n + 1) and K is its
subgroup S(U(n) × U(1)).

The curvature tensor R̃ of X is given by

(3.13)
R̃(ξ, η)ζ = g(η, ζ)ξ − g(ξ, ζ)η + g(Jη, ζ)Jξ − g(Jξ, ζ)Jη

− 2g(Jξ, η)Jζ,

for all ξ, η, ζ ∈ T ; it follows that

(3.14) Ric = 2(n+ 1)g.

Let ζ = (ζ0, ζ1, . . . , ζn) be the standard complex coordinate system
of C

n+1 and consider the complex vector field

ζ0 =
n∑
j=0

ζj
∂

∂ζj
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on C
n+1. We consider the objects associated with K = C in §2 and the

natural projection

(3.15) π : C
n+1 − {0} → CP

n.

The group U(1) = SK acts by multiplication on C
n+1 = K

n+1 and on the
unit sphere S2n+1 = SK

n+1 of dimension 2n+ 1 in C
n+1. The restriction

π : S2n+1 → CP
n

of the mapping π (which is also given by (3.8), with K = C) is a principal
bundle with structure group U(1).

If z is a point of the unit sphere S2n+1, the subspace Vz(S2n+1) of
Tz(S2n+1) is spanned by the tangent vector

(3.16) (z, iz) = i(ζ0 − ζ0)(z).

If Hz(S2n+1) is the complement of Vz(S2n+1) in Tz(S2n+1) defined in §2,
we know that the induced mapping

π∗ : Hz(S2n+1) → Tz(CP
n)

is an isometry.
Let h be a complex symmetric 2-form on C

n+2, which is U(1)-invariant
and which satisfies

(ζ0 − ζ0) h = 0.

According to (3.16) and the preceding observations, by restricting h to the
sphere S2n+1 and passing to the quotient, we obtain a complex symmetric
2-form h′ on CP

n, which is uniquely characterized by the relation

π∗h′ = h|S2n+1 ,

where π is the mapping (3.15).
Let u, u′ be vectors of S2n+1 satisfying 〈u, u′〉 = 0. We consider the

paths σ and σ̇ in S2n+1 defined by

(3.17)
σ(t) = cos t · u+ sin t · u′,
σ̇(t) = − sin t · u+ cos t · u′,

for t ∈ R; the unit tangent vector

α(t) = (σ(t), σ̇(t))
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of Tσ(t)(S2n+1) belongs to the subspace Hσ(t)(S2n+1) and is tangent to the
path σ. Then the path γ = γu,u′ defined by γ(t) = (π ◦σ)(t), for 0 ≤ t ≤ π,
is a closed geodesic of CP

n parametrized by its arc-length t, and we see
that π∗α(t) = γ̇(t), for all 0 ≤ t ≤ π.

Let f be a complex-valued function on C
n+1, whose restriction to the

sphere S2n+1 is invariant under the group U(1); then the restriction of f
to S2n+1 induces by passage to the quotient a function on CP

n, which we
denote by f̃ . In fact, if π is the mapping (3.15), this function f̃ satisfies
the relation

π∗f̃ = f|S2n+1 .

If z is a point of S2n+1 and ξ is a vector of Hz(S2n+1), then we easily see
that the equalities

(3.18) 〈df, ξ〉 = 〈df̃ , π∗ξ〉, 〈∂f, ξ〉 = 〈∂f̃ , π∗ξ〉, 〈∂̄f, ξ〉 = 〈∂̄f̃ , π∗ξ〉

hold. In particular, if we consider the path σ in S2n+1 and the closed
geodesic γ = γu,u′ of CP

n, by (3.18) we have

(3.19)
〈df̃ , γ̇(t)〉 = 〈df, α(t)〉 =

d

dt
f(σ(t)),

〈∂f̃ , γ̇(t)〉 = 〈∂f, α(t)〉, 〈∂̄f̃ , γ̇(t)〉 = 〈∂̄f, α(t)〉,

for all 0 ≤ t ≤ π.
Let g = sl(n+ 1,C) be the complexification of the Lie algebra of G

and let Γ be the dual of the group G. Let γ0 and γ1 be the elements
of Γ which are the equivalence classes of the trivial G-module C and of the
irreducible G-module g, respectively. As in §7, Chapter II, we identify the
complexification KC of the space K of all Killing vector fields on X with
the G-submodule

KerD0 = { ξ ∈ C∞(TC) | D0ξ = 0 }

of C∞
γ1 (TC) isomorphic to g.
Let Ak be the G-module consisting of all U(1)-invariant homogeneous

complex polynomials on C
n+1 of degree 2k in the variables ζ and ζ̄. Clearly,

a homogeneous polynomial belongs to Ak if and only if it is homogeneous
of degree k in ζ and of degree k in ζ̄. Let Pk be the G-submodule of Ak

consisting of all elements of Ak which are harmonic, and let Hk be the
G-module of all functions on X which are induced by the restrictions of
the polynomials of Pk to the sphere S2n+1.

For 0 ≤ j, k ≤ n, we consider the U(1)-invariant homogeneous complex
polynomial fjk on C

n+1 defined by

fjk(ζ) = ζj ζ̄k,
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for ζ ∈ C
n+1, and the function f̃jk on X induced by fjk. The space A1

is generated by the functions {fjk}, with 0 ≤ j, k ≤ n, while the space
P1 is generated by the functions {fjk} and {fjj − fkk}, with 0 ≤ j, k ≤ n
and j �= k. For 0 ≤ j, k ≤ n, let Ejk = (brs) be the element of gl(n+ 1,C)
determined by bjk = 1 and brs = 0 when (r, s) �= (j, k). The mapping

ϕ : A1 → gl(n+ 1,C),

which sends fjk into Ekj , is an isomorphism of G-modules; it induces by
restriction an isomorphism of G-modules ϕ : P1 → g.

The set of eigenvalues of the Laplacian Δ acting on C∞(X) consists of
all the integers 4k(n+ k), where k is an integer ≥ 0. If k ≥ 0 is an integer,
the G-module Hk is equal to the eigenspace of the Laplacian Δ acting on
C∞(X) associated with the eigenvalue 4k(n+k). According to observations
made in §7, Chapter II and by Proposition 2.1, we know that Hk is an
irreducible G-submodule of C∞(X) and that the direct sum

⊕
k≥0 Hk is

a dense submodule of C∞(X) (see §§C.I and C.III in Chapter III of [4]).
Then H0 = C∞

γ0 (X) is the space of all constant functions on X; on the
other hand, we know that H1 is isomorphic to the G-module g, and hence
H1 is equal to C∞

γ1 (X). For k ≥ 2, let γk be the element of Γ corresponding
to the irreducible G-module Hk. Then in fact, we have the equalities

C∞
γk

(X) = Hk,

for all k ≥ 0; moreover, if γ is an element of Γ which cannot be written in
the form γk, for some integer k ≥ 0, we know that C∞

γ (X) = {0}.
The function fk = (fn0)k is a U(1)-invariant homogeneous complex

polynomial on C
n+1 of degree 2k which is easily seen to be harmonic; thus

the function f̃k on X induced by fk is non-zero and belongs to Hk. Since
the differential operators ∂ and ∂̄ are homogeneous and X is a Kähler
manifold, it follows that, for k ≥ 1, the sections ∂f̃k of T 1,0 and ∂̄f̃k of T 0,1

are both non-zero and belong to the G-modules C∞
γk

(T 1,0) and C∞
γk

(T 0,1),
respectively.

If we consider the path σ in S2n+1 and the closed geodesic γ = γu,u′

of CP
n, and if we write u = (u0, u1, . . . , un) and u′ = (u′0, u

′
1, . . . , u

′
n), from

the formulas (3.19) we deduce that

(3.20)

〈∂f̃1, γ̇(t)〉 = ζ̄0(σ(t)) · d
dt
ζn(σ(t))

= (cos t · ū0 + sin t · ū′0)(− sin t · un + cos t · u′n),

〈∂̄f̃1, γ̇(t)〉 = ζn(σ(t)) · d
dt
ζ̄0(σ(t))

= (cos t · un + sin t · u′n)(− sin t · ū0 + cos t · ū′0),
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for all 0 ≤ t ≤ π; these relations imply that

(3.21) 〈(∂ − ∂̄)f̃1, γ̇(t)〉 = u′nū0 − unū
′
0,

for all 0 ≤ t ≤ π.
Let k be the complexification of the Lie algebra of K. The group

of all diagonal matrices of G is a maximal torus of G and of K. The
complexification t of the Lie algebra t0 of this torus is a Cartan subalgebra
of the semi-simple Lie algebra g and also of the reductive Lie algebra k. For
0 ≤ j ≤ n, the linear form λj : t → C, sending the diagonal matrix with
a0, a1, . . . , an ∈ C as its diagonal entries into aj , is purely imaginary on t0.
Then

Δ = {λi − λj | 0 ≤ i, j ≤ n and i �= j }

is the system of roots of g with respect to t, and

Δ′ = {λi − λj | 1 ≤ i, j ≤ n and i �= j }

is the system of roots of k with respect to t. We fix the positive system

Δ+ = {λi − λj | 0 ≤ i < j ≤ n }

for the roots of g, and the positive system Δ′+ = Δ′ ∩ Δ+ for the roots
of k.

Then we see that highest weight of the irreducible G-module Hk is
equal to kλ0 − kλn, and that f̃k is a highest weight vector of this module.
Clearly, we have

(3.22) C∞
γk

({g}) = Hk · g.

The fibers of the homogeneous vector bundles T 1,0 and T 0,1 at the
point π(e0) of X considered in §2 are irreducible K-modules of highest
weights equal to λ0 − λn and −λ0 + λ1, respectively. According to the
branching law for G and K (see Proposition 3.1 of [14]), from the results
of [14, §4] we obtain the following:

Proposition 3.28. Let X be the complex projective space CP
n, with

n ≥ 1.
(i) The G-modules C∞

γk
(T 1,0) and C∞

γk
(T 0,1) vanish when k = 0 and

are irreducible when k > 0.
(ii) Suppose that n = 1. Then for γ ∈ Γ, the G-modules C∞

γ (T 1,0)
and C∞

γ (T 0,1) vanish unless γ is equal to γk, for some integer k > 0.
(iii) We have

C∞
γ1 ((S2T ∗)−

C
) = {0}.
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We now consider the formalism of Kähler geometry on X = CP
n. We

consider the open subset

V = π
({

(ζ0, . . . , ζn) ∈ C
n+1

∣∣ ζ0 �= 0
})

of X = CP
n, the point a = π(1, 0, . . . , 0) of V , and the holomorphic co-

ordinate z = (z1, . . . , zn) on V , where zj is the function which satisfies
π∗zj = ζj/ζ0 on C

∗ × C
n, with 1 ≤ j ≤ n. We set

|z| = (|z1|2 + · · · + |zn|2)
1
2 .

The Fubini-Study metric g of X is given on V by

gjk̄ =
1
2

(
δjk

1 + |z|2 − z̄jzk
(1 + |z|2)2

)
,

for 1 ≤ j, k ≤ n. We recall that the Christoffel symbols of the Levi-Civita
connection ∇ of g are determined on V by

Γljk = Γl̄
j̄k̄

= − z̄jδkl + z̄kδjl
1 + |z|2 .

If f is a complex-valued function on V , we have

Δf = −2
n∑

j,k=1

gjk̄
∂2f

∂zj∂z̄k
;

in particular, we see that

(3.23) (Δf)(a) = −4
n∑

j,k=1

∂2f

∂zj∂z̄k
(a).

On the open subset V of X, we see that

f̃jk =
zj z̄k

1 + |z|2 , f̃0k =
z̄k

1 + |z|2 ,

f̃j0 =
zj

1 + |z|2 , f̃00 =
1

1 + |z|2 ,

for 1 ≤ j, k ≤ n. For 0 ≤ j, k ≤ n, with j �= k, and 1 ≤ l ≤ n, from
formula (3.23) we obtain the equalities

(3.24) (Δf̃jk)(a) = 0, (Δf̃ll)(a) = −4, (Δf̃00)(a) = 4n.
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For the remainder of this section, we suppose that n = 1 and that
X = CP

1. We consider the sphere S2 = SR
3; the mapping

ϕ : S2 → CP
1

is well-defined by

ϕ(x1, x2, x3) =

{
π(1 − x3, x1 + ix2) if (x1, x2, x3) �= (0, 0, 1),

π(x1 − ix2, 1 + x3) if (x1, x2, x3) �= (0, 0,−1),

where (x1, x2, x3) ∈ R
3, with x2

1 + x2
2 + x2

3 = 1. The two expressions for
ϕ correspond to the stereographic projections whose poles are the points
(0, 0, 1) and (0, 0,−1), respectively, and so we know that ϕ is a diffeomor-
phism. We also consider the involution Ψ of CP

1 which sends the point
π(u) of CP

1, where u is a non-zero vector of C
2, into the point π(v), where v

is a non-zero vector of C
2 orthogonal to u. If τ is the anti-podal involution

of the sphere S2, it is easily verified that the diagram

(3.25)

S2 τ−−→ S2

⏐⏐�ϕ
⏐⏐�ϕ

CP
1 Ψ−−→ CP

1

is commutative.
The mapping Ψ : C

2 → C
2 defined by

Ψ(u0, u1) = (−ū1, ū0),

for u0, u1 ∈ C, is an automorphism of C
2 (over R) satisfying Ψ2 = −id; it

induces by restriction a mapping Ψ : SC
2 → SC

2 such that the diagram

(3.26)

SC
2 Ψ−−→ SC

2

⏐⏐�π
⏐⏐�π

CP
1 Ψ−−→ CP

1

commutes. It is easily seen that we have the equality

Ψ∗f10 = −f10

among functions on C
2; therefore the function f̃k on CP

1 satisfies

(3.27) Ψ∗f̃k = (−1)kf̃k.
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If J is the complex structure of the vector space C
2, we see that the

automorphisms Ψ and J of C
2 satisfy

J ◦ Ψ = −Ψ ◦ J.

Thus if J is the complex structure of CP
1, it follows that

Ψ∗ · J = −J · Ψ∗,

as mappings acting on the tangent bundle of X = CP
1; from the preceding

relation, we infer that

(3.28) Ψ∗∂ = ∂̄Ψ∗

on
∧p
T ∗

C
.

We now verify that ϕ is an isometry from (S2, g0) to (CP
1, g′), where

g′ = 4g is the metric of constant curvature 1. In fact, we consider the
holomorphic coordinate z = z1 on the open subset V of CP

1. We saw
above that the metric g′ of CP

1 is given on V by

g′ =
2

(1 + |z|2)2 dz · dz̄.

Let U be the subset of R
3 consisting of all points (x1, x2, x3) ∈ R

3, with
x3 �= 1, and let ϕ′ : U → V be the mapping determined by

(z ◦ ϕ′)(x1, x2, x3) =
x1 + ix2

1 − x3
,

for (x1, x2, x3) ∈ R
3 belonging to U . Then the restrictions of ϕ and ϕ′ to

the open subset
U0 = S2 ∩ U = S2 − {(0, 0, 1)}

of S2 are equal, and we know that ϕ is a diffeomorphism from U0 to V . If
i is the natural inclusion of U0 into U , we then easily verify that

i∗ϕ′∗g′ = i∗(dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3)

on U0. It follows that ϕ∗g′ = g0 on the open subset U0 of S2 and hence on
all of S2.

We say that a symmetric p-form θ onX is even (resp. is odd) if and only
if Ψ∗θ = εu, where ε = 1 (resp. ε = −1). According to the commutativity
of diagram (3.25), a symmetric p-form θ on X is even (resp. is odd) if and
only if the symmetric p-form ϕ∗θ on S2 is even (resp. is odd).



102 III. SYMMETRIC SPACES OF RANK ONE

Since Hk is an irreducible G-module which contains the function f̃k,
by (3.27) we see that

(3.29)
C∞
γ2k

(X) = C∞
γ2k

(X)ev = H2k,

C∞
γ2k+1

(X) = C∞
γ2k+1

(X)odd = H2k+1,

for k ≥ 0. Now let k be a given positive integer. Since the differential
operators d and ∂− ∂̄ from C∞(X) to C∞(T ∗

C
) are homogeneous and since

the sections ∂f̃k of T 1,0 and ∂̄f̃k of T 0,1 are non-zero, from the relations
(3.28) and (3.29) and Proposition 3.28, we obtain the following equalities
among irreducible G-modules

(3.30)

C∞
γk

(T ∗
C
)ev =

{
dHk if k is even,

(∂ − ∂̄)Hk if k is odd,

C∞
γk

(T ∗
C
)odd =

{
(∂ − ∂̄)Hk if k is even,

dHk if k is odd.

Moreover, the sections df̃k and f̃k−1df̃1 are highest weight vectors of the
irreducible G-module dHk, while (∂ − ∂̄)f̃k and f̃k−1(∂ − ∂̄)f̃1 are highest
weight vectors of the irreducible G-module (∂ − ∂̄)Hk. From the relations
(3.30), with k = 1, and (2.28) we obtain the equalities

(3.31) C∞
γ1 (T ∗

C
)ev = (∂ − ∂̄)H1 = g�(KC)

of irreducible G-modules.
According to the commutativity of diagram (3.25), the first assertion

of the next proposition is equivalent to the result concerning the sphere S2

given by Proposition 3.17; moreover according to Proposition 2.20, the
second assertion of the next proposition implies the result concerning the
real projective plane stated in Theorem 3.26.

Proposition 3.29. Let X be the complex projective space CP
1.

(i) An even function on X, whose X-ray transform vanishes, vanishes
identically.

(ii) An even differential form of degree 1 on X satisfies the zero-energy
condition if and only if it is exact.

Proof: Let δ : [0, π] → X be the closed geodesic γu,u′ of X corre-
sponding to the pair of unit vectors u = (1, 0) and u′ = (0, 1). For all
0 ≤ t ≤ π, by (3.20) and (3.21) we easily verify that

f̃1(δ(t)) = sin t · cos t, 〈(∂ − ∂̄)f̃1, δ̇1(t)〉 = 1.
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When k ≥ 0 is an even integer, it follows that
∫
δ

f̃k =
∫
δ

f̃k (∂ − ∂̄)f̃1 =
∫ π

0

(cos t · sin t)k dt > 0.

Therefore the function f̃k and the 1-form f̃k (∂ − ∂̄)f̃1 on X do not satisfy
the zero-energy condition. When k ≥ 0 is an even integer, by (3.30) we
know that the sections f̃k and f̃k (∂ − ∂̄)f̃1 are highest weight vectors of
the irreducible G-modules C∞

γk
(X)ev and C∞

γk+1
(T ∗

C
)ev, respectively; thus

we have proved the relation

Z0,C ∩ C∞
γk

(X)ev = {0}

when k ≥ 0 is an even integer, and the relation

Z1,C ∩ C∞
γk

(T ∗
C
)ev = {0}

when k ≥ 1 is an odd integer. From Proposition 3.28,(ii), the equalities
(3.29) and (3.30), and the previous relations, we now deduce the equalities

Z0,C ∩ C∞
γ (X)ev = {0}, Z1,C ∩ C∞

γ (T ∗
C
)ev = dC∞

γ (X),

for all γ ∈ Γ. Then by Propositions 2.29,(ii) and 2.32,(ii), with Σ = {Ψ}
and ε = +1, we see that the restriction of the X-ray transform to C∞(X)ev

is injective and we obtain the equality

Z1,C ∩ C∞(T ∗
C
)ev = dC∞(X);

these results imply the two assertions of the proposition.
The bundle (S2T ∗)+

C
has rank one and is generated by its section g;

thus in this case, from Proposition 3.28,(iii) and the relation (3.22) we
obtain the equalities

(3.32) C∞
γ1 (S2T ∗

C
) = C∞

γ1 ({g}C) = H1 · g

of irreducible G-modules. Since C∞
γ1 (X) = H1 is the eigenspace of the

Laplacian associated with the eigenvalue 8 and since the differential oper-
ator Hess is homogeneous, from the relation (3.32) we deduce that

C∞
γ1 (S2T ∗

C
) = HessH1

and that

(3.33) Hess f = −4fg,
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for all f ∈ H1. If f and f ′ are elements of C∞(X), by (1.5) we see that

D0(f ′(df)�) = f ′D0(df)� + df · df ′ = 2f Hess f ′ + df · df ′;

in particular, when f is an element of H1, by (3.33) we obtain the relation

(3.34) D0(f ′(df)�) = −8ff ′g + df · df ′.

§5. The rigidity of the complex projective space

From formula (3.13), we deduce that

B̃+ = ρ(g+
1 )R = {0}

and, by (1.72), we obtain the equality

ρ(ι(β))R = −2ψ(β̌),

for β ∈ (
∧2
T ∗)−. Thus we have

(3.35) B̃ = B̃− = ψ((
∧2
T ∗)−)

and, by Lemma 1.24, the morphism

ψ : (
∧2
T ∗)− → B̃

is an isomorphism.
We now introduce various families of closed connected totally geodesic

submanifolds of X. Let x be a point of X, and let F1,x be the family of all
closed connected totally geodesic surfaces of X passing through x of the
form ExpxF , where F is the subspace of the tangent space Tx generated
by an orthonormal set of vectors {ξ, η} of Tx satisfying Cξ ⊂ (Cη)⊥. Let
F2,x be the family of all closed connected totally geodesic surfaces of X
passing through x of the form ExpxF , where F is the subspace Cξ of the
tangent space Tx determined by a unitary vector ξ of Tx. We consider the
G-invariant families

F1 =
⋃
x∈X

F1,x, F2 =
⋃
x∈X

F2,x,

F3 = F1 ∪ F2

of closed connected totally geodesic surfaces of X.
According to Proposition 3.14, a surface belonging to the family F1 is

isometric to the real projective plane with its metric of constant curvature 1,
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while a surface belonging to the family F2 is isometric to the complex
projective line with its metric of constant curvature 4.

For j = 1, 2, 3, we consider the sub-bundle Nj = NFj
of B consisting

of those elements of B which vanish when restricted to the submanifolds
of Fj . An element u of B belongs to N1 if and only if the relation

u(ξ, η, ξ, η) = 0

holds for all vectors ξ, η ∈ T satisfying Cξ ⊂ (Cη)⊥; moreover, an element
u of B belongs to N2 if and only if the relation

u(ξ, Jξ, ξ, Jξ) = 0

holds for all vectors ξ ∈ T . We set

N+
1 = N1 ∩B+, N−

1 = N1 ∩B−;

we easily see that the sub-bundle N1 of B is stable under the involution J ,
and so we have

N1 = N+
1 ⊕N−

1 .

An elementary computation shows that the rank of N1 is ≤ n(2n− 1) (see
[18, Proposition 4.1]). Moreover, it is easily verified that

ψ(
∧2
T ∗) ⊂ N1.

From these observations and the relations (3.35), we obtain the following:

Proposition 3.30. We have

N+
1 = ψ(T 1,1

R
), N−

1 = B̃ = ψ((
∧2
T ∗)−),

N1 = ψ(
∧2
T ∗) = B̃ ⊕ ψ(T 1,1

R
).

Let β be an element of
∧2
T ∗ and ξ be a unit vector of T ; then we see

that
ψ(β)(ξ, Jξ, ξ, Jξ) = 6β(ξ, Jξ).

Thus if β belongs to (
∧2
T ∗)−, we have

ψ(β)(ξ, Jξ, ξ, Jξ) = 0.

On the other hand, if β belongs to T 1,1
R

and is equal to ȟ, with h ∈ (S2T ∗)+,
we have

ψ(β)(ξ, Jξ, ξ, Jξ) = 6h(ξ, ξ).
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From these remarks, we obtain

ψ((
∧2
T ∗)−) ⊂ N2, ψ(T 1,1

R
) ∩N2 = {0}.

From Proposition 3.30 and these relations, we deduce the following result,
which is also given by Theorem 8.2 of [13].

Proposition 3.31. For n ≥ 2, we have

N3 = B̃.

In [13, Lemma 8.7], we also show that

(3.36) H ∩ (T ∗ ⊗N3) = {0}

and then deduce the relation (1.48) for the complex projective of dimen-
sion ≥ 2 from Proposition 3.31; thus we have the following:

Proposition 3.32. For n ≥ 2, we have

H ∩ (T ∗ ⊗ B̃) = {0}.

We consider the space Z2 of symmetric 2-forms on X satisfying the
zero-energy condition. Since the space X is simply connected, from Propo-
sition 3.32 and Theorem 1.18 it follows that the sequence (1.24) is exact.

Lemma 3.33. We have

L(F2) ⊂ L(F1) = Z2.

Proof: By Proposition 3.19, every submanifold of X belonging to
F1 is infinitesimally rigid, and so we obtain the inclusion Z2 ⊂ L(F1).
For j = 1 or 2, we see that every closed geodesic of X is contained in
a submanifold of X belonging to the family Fj ; then from Proposition
2.46,(i), we obtain the inclusion L(Fj) ⊂ Z2.

For j = 1 or 3, we consider the differential operator D1,Fj
of §8,

Chapter II corresponding to the family Fj .
Lemma 3.34. Let h be an element of C∞(S2T ∗) belonging to L(F2).

Then we have D1h = 0.

Proof: By Lemma 3.33, we know that h also belongs to L(F1).
Hence by Proposition 2.45, with F = F3, we see that D1,F3h = 0. By
Proposition 3.31, we therefore know that D1h = 0.

The equivalence of assertions (i) and (iii) of the following theorem is
originally due to Michel [45]. We now provide an alternate proof of Michel’s
result following [13, §8].
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Theorem 3.35. Let h be a symmetric 2-form on X = CP
n, with

n ≥ 2. The following assertions are equivalent:
(i) The symmetric 2-form h belongs to L(F2).
(ii) We have D1h = 0.
(iii) The symmetric 2-form h is a Lie derivative of the metric g.

Proof: From the exactness of sequence (1.24), we obtain the equiv-
alence of assertions (ii) and (iii). The implication (i) ⇒ (ii) is given by
Lemma 3.34, and the implication (iii) ⇒ (i) is a consequence of Lemma 1.1.

Let N ′
1 be the sub-bundle of

∧2
T ∗⊗∧2

T ∗ consisting of those elements
of
∧2
T ∗ ⊗∧2

T ∗ which vanish when restricted to the submanifolds of F1;
clearly, we have N1 ⊂ N ′

1. We consider the quotient bundle

E = (
∧2
T ∗ ⊗∧2

T ∗)/N ′
1

and the natural projection

β :
∧2
T ∗ ⊗∧2

T ∗ → E.

Let
D′
g : S2T ∗ → E

be the differential operator equal to the composition β ◦Dg. According to
Lemma 1.1 and Proposition 2.45, with F = F1, the sequence

(3.37) C∞(T ) D0−−→ C∞(S2T ∗)
D′

g−−→ C∞(E)

is a complex. From Proposition 2.45, with F = F1, and Lemma 3.33, we
obtain the following:

Lemma 3.36. Let h be an element of C∞(S2T ∗). The following as-
sertions are equivalent:

(i) The symmetric 2-form h satisfies the zero-energy condition.
(ii) We have D′

gh = 0.
(iii) We have D1,F1h = 0.

Consequently, we have:

Lemma 3.37. LetX be the complex projective space CP
n, with n ≥ 2.

The following assertions are equivalent:
(i) The space X is infinitesimally rigid.
(ii) The complex (3.37) is exact.

Lemma 3.38. A real-valued function f on X satisfies D′
g(fg) = 0 if

and only if it vanishes identically.

Proof: Let f be a real-valued function f on X satisfying D′
g(fg) = 0.

According to Lemma 3.36, the symmetric 2-form fg satisfies the zero-
energy condition, and so the X-ray transform f̌ of f vanishes. From The-
orem 3.18, we obtain the vanishing of f .
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Lemma 4.7 of [14] provides us with a more direct proof of Lemma 3.38.
In fact, let f is a real-valued function on X satisfying D′

g(fg) = 0. Let x
be a point of X; then there is a set {ξ1, . . . , ξn} of vectors of Tx such that
{ξ1, . . . , ξn, Jξ1, . . . , Jξn} is an orthonormal basis of Tx. According to the
second formula of (1.22) and (3.13), we have

Dg(fg)(ξj , ξk, ξj , ξk) =
1
2
{(Hess f)(ξj , ξj) + (Hess f)(ξk, ξk)} + f(x),

for 1 ≤ j < k ≤ n. From the preceding equality, we infer that
∑

1≤j<k≤n
{(Hess f)(ξj , ξj) + (Hess f)(ξk, ξk)} = −n(n− 1)f(x),

and so ∑
1≤j≤n

(Hess f)(ξj , ξj) = −nf(x).

It follows that
Δf = 2nf.

Since 2n is not an eigenvalue of Δ, it follows that f vanishes identically. In
fact, according to Lichnerowicz’s theorem (see [43, p. 135] or Theorem D.I.1
in Chapter III of [4]) and (3.14), we see that the first non-zero eigenvalue
of Δ is > 2(n+ 1); we have also seen that the first non-zero eigenvalue of
Δ is equal to 4(n+ 1).

The following theorem gives us the infinitesimal rigidity of the complex
projective spaces of dimension ≥ 2.

Theorem 3.39. The complex projective space X = CP
n, with n ≥ 2,

is infinitesimally rigid.

The infinitesimal rigidity of the complex projective spaces of dimension
≥ 2 was first proved by Tsukamoto [53]; in fact, he first proved directly
the infinitesimal rigidity of CP

2, and then used the above-mentioned result
of Michel given by Theorem 3.35 to derive the rigidity of the complex
projective spaces of dimension > 2. Other proofs of Theorem 3.39 may be
found in [14] and [18].

We can also obtain the infinitesimal rigidity of the complex projective
spaces of dimension ≥ 2 from the rigidity of the complex projective plane
by means of Theorem 2.47. In fact, we apply this theorem to the family
F equal to F3 and to the family F ′ consisting of all closed totally geodesic
submanifolds of X isometric to CP

2; according to Propositions 3.14, 3.31
and 3.32, we know that the hypotheses of Theorem 2.47 hold.

We remark that the equivalence of assertions (i) and (iii) of Theo-
rem 3.35 may be obtained from Theorem 3.39 and Lemma 3.33 without
requiring Propositions 3.31 and 3.32.
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We now present an outline of the proof of Theorem 3.39 given in [14].
Since the differential operator D′

g is homogeneous and the differential op-
erator D0 is elliptic, according to Lemma 3.37 and Proposition 2.3 we see
that the space X is infinitesimally rigid if and only if the complex

(3.38) C∞
γ (TC) D0−−→ C∞

γ (S2T ∗
C
)

D′
g−−→ C∞

γ (EC)

is exact for all γ ∈ Γ.
We choose a Cartan subalgebra of g and fix a system of positive roots

of g. If γ is an arbitrary element of Γ, we determine the multiplicities of
the G-modules C∞

γ (TC) and C∞
γ (S2T ∗

C
) and then describe an explicit ba-

sis for the weight subspace Wγ of C∞
γ (S2T ∗

C
) corresponding to its highest

weight in terms of elements of the eigenspaces Hk; either the multiplicity
of C∞

γ (S2T ∗
C
) is equal to 4 and the multiplicity of C∞

γ (T ∗
C
) is equal to 2, or

these two multiplicities are ≤ 2. Since X is an irreducible Hermitian sym-
metric space, according to (2.28) the multiplicity of the G-module C∞

γ1 (T ∗
C
)

is equal to 2. The multiplicity of C∞
γ1 (S2T ∗

C
) is also equal to 2; in fact, we

show that

(3.39) C∞
γ0 (S2T ∗

C
) = H0 · g, C∞

γ1 (S2T ∗
C
) = H1 · g + HessH1.

We also recall that the space KerD0 of all complex Killing vector fields
on X is an irreducible G-submodule of C∞

γ1 (TC).
According to these observations, in order to prove the exactness of the

sequence (3.38) corresponding to γ ∈ Γ, it suffices to consider the action
of the differential operator D′

g on the vectors of our basis for Wγ and to
prove that

dimC D
′
gWγ ≥ MultC∞

γ (S2T ∗
C
) − MultC∞

γ (TC)

if γ �= γ1, or that D′
gWγ �= 0 when γ = γ1. In fact, to obtain this result we

need to verify that D′
gWγ �= 0 or that

dimC D
′
gWγ ≥ 2,

as the case may be. This last step is carried out in [14, §5]; in fact, to
prove the first inequality, we choose an element h of Wγ , a point x ∈ X
and vectors ξ, η ∈ Tx satisfying Cξ ⊂ (Cη)⊥ and

(Dgh)(ξ, η, ξ, η) �= 0.

Before proceeding to the description of another proof of Theorem 3.39
given in [18], we shall prove the following result which first appeared in [17].
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Theorem 3.40. A differential form of degree 1 on X = CP
n, with

n ≥ 2, satisfies the zero-energy condition if and only if it is exact.

Proof: Let F be the sub-bundle of
∧2
T ∗ consisting of those elements

of
∧2
T ∗ which vanish when restricted to the submanifolds of F1. An

element α of
∧2
T ∗ belongs to F if and only if the relation

α(ξ, η) = 0

holds for all vectors ξ, η ∈ T satisfying Cξ ⊂ (Cη)⊥. An elementary alge-
braic computation shows that F is the line bundle generated by the Kähler
form ω of X. Let θ be a differential form of degree 1 on X. Since any closed
geodesic of X is contained in a submanifold belonging to the family F1, we
see that the 1-form θ satisfies the zero-energy condition if and only if the
restrictions of θ to the submanifolds belonging to the family F1 satisfy the
zero-energy condition. According to Theorem 3.26, the latter property of θ
holds if and only if dθ is a section of F . We now suppose that the 1-form
θ satisfies the zero-energy condition; our previous observations imply that
θ satisfies the relation

dθ = fω,

where f is a real-valued function on X. From this equality, we infer that

df ∧ ω = 0,

and so f is constant. Since the Kähler ω is harmonic, the function f
vanishes and so the form θ is closed; hence θ is exact.

The simplicity of the preceding proof, which is based on a remark of
Demailly (see [18]), rests on the correct interpretation of the bundle F .
This observation led us to a new proof of the infinitesimal rigidity of CP

n,
which can be found in [18] and which requires a minimal amount of har-
monic analysis. For symmetric 2-forms, the analogue of the bundle F of
the preceding proof is the bundle N1, and its interpretation is given by
Proposition 3.30.

We now describe the proof of Theorem 3.39 given in [18]. We consider
the first-order differential operator D′

1 introduced in §3, Chapter I. Clearly,
if u is a section of B satisfying ∇u = 0, from the definition of D′

1 we infer
that D′

1αu = 0. The following two results are proved in [18].

Lemma 3.41. Let β be a section of the bundle T 1,1
R

over an open
subset of X satisfying

(3.40) D′
1αψ(β) = 0.

Then the 2-form β is closed.
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Lemma 3.42. We have

{ f ∈ C∞(X) | D′
1αψ(∂∂̄f) = 0 } = H0 ⊕H1.

Algebraic computations, the first Bianchi identity and certain proper-
ties of the Killing vector fields on X are the ingredients which enter into
the proof of Lemma 3.41. In fact, in [18] it is shown that a Killing vector
field ξ on X satisfies the relation

(3.41) D′
1αψ(dg�(ξ)) = 0.

By (2.28), we know that

dC∞
γ1 (T ∗

C
) = dg�(KC) = ∂∂̄H1.

Thus from (3.41) and these equalities, we infer that

D′
1αψ(∂∂̄H1) = 0.

Since the differential operator D′
1αψ∂∂̄ is homogeneous and f̃k is a

non-zero element of the irreducible G-module Hk, according to Proposi-
tion 2.1, in order to prove Lemma 3.42 it therefore suffices to show that

D′
1αψ(∂∂̄f̃k) �= 0,

for all integers k > 1. This inequality is verified in the appendix of [18].
Let h be a symmetric 2-form onX satisfying the zero-energy condition.

From Proposition 3.19, it follows that h belongs to the space L(F1). By
Proposition 2.44 or Lemma 1.15, we see that D1h is a section of N1/B̃.
Thus by Proposition 3.30, there exists a section β of T 1,1

R
over X such that

D1h = αψ(β).

Then Lemma 1.17 tells us that the equality (3.40) holds; hence according
to Lemma 3.41, the 2-form β is closed. Therefore there exists a constant
c ∈ R and a real-valued function f on X such that

(3.42) β = cω + ∂∂̄f.

Since ω is parallel, we know that D′
1αψ(ω) = 0. Hence the equality (3.40)

implies that D′
1αψ(∂∂̄f) = 0. By Lemma 3.42, the function f belongs

to H0 ⊕H1. Therefore without loss of generality, we may assume that the
function f belongs to H1.
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We consider the subspaces

V = C∞
γ0 (S2T ∗

C
) ⊕ C∞

γ1 (S2T ∗
C
), W = C∞

γ0 ((B/B̃)C) ⊕ C∞
γ1 ((B/B̃)C)

of C∞(S2T ∗
C
) and C∞((B/B̃)C), and the element h′ = Pγ0h + Pγ1h of V .

Then h′′ = h−h′ is an element of C∞(S2T ∗
C
) orthogonal to the subspace V .

Since D1 is a homogeneous differential operator, by (2.1) we see that D1h
′

belongs to W and that D1h
′′ is orthogonal to W . Since the operator ∂∂̄

is homogeneous and ω is a G-invariant form, according to (2.1) and (3.42)
we know that β belongs to C∞

γ0 (
∧2
T ∗

C
)⊕C∞

γ1 (
∧2
T ∗

C
); as the morphism αψ

is G-equivariant, we see that αψ(β) is an element of the subspace W . It
follows that

D1h
′ = αψ(β), D1h

′′ = 0.

By (3.39), we may write

h′ = f1g + Hess f2,

where f1, f2 are real-valued functions on X. According to formulas (1.27)
and (1.28), we have

D1h
′ = D1(f1g) = αDg(f1g).

Thus by Proposition 3.30, we see that Dg(f1g) is a section of N1. Then
Lemma 3.38 tells us that the function f1 vanishes identically. Therefore
D1h

′ also vanishes, and so D1h = 0. By Proposition 3.32 and Theo-
rem 1.18, the complex (1.24) is exact, and so h is a Lie derivative of the
metric.

§6. The other projective spaces

Let X be a projective space equal either to the quaternionic projective
space HP

n, with n ≥ 2, or to the Cayley plane. Let F1 be the family of all
closed connected totally geodesic surfaces of X which are isometric either
to the real projective plane with its metric of constant curvature 1 or to
the sphere S2 with its metric of constant curvature 4. Let F2 be the family
of all closed connected totally geodesic submanifolds of X isometric to
the projective plane CP

2. We verify that every surface belonging to the
family F1 is contained in a submanifold belonging to the family F2 (see
Proposition 3.14, [45, §3.2] and [17, §3]).

We consider the sub-bundle N = NF1 of B consisting of those elements
of B which vanish when restricted to the submanifolds of F1. The following
proposition can be proved by means of computations similar to the ones
used in [14] to prove Proposition 3.31 and the relation (3.36) for the complex
projective spaces.
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Proposition 3.43. Let X be equal to the quaternionic projective
space HP

n, with n ≥ 2, or to the Cayley plane. Then we have

N = B̃, H ∩ (T ∗ ⊗N) = {0}.

We remark that the equalities of the preceding proposition imply that
the relation (1.48) holds for the space X. Thus we may apply Theorem 2.47
to the families F1 and F2 in order to obtain the following result from the
infinitesimal rigidity of CP

2.

Theorem 3.44. The quaternionic projective space HP
n, with n ≥ 2,

and the Cayley plane are infinitesimally rigid.

Theorem 3.45. Let X be equal to the quaternionic projective space
HP

n, with n ≥ 2, or to the Cayley plane. A differential form of degree 1
on X satisfies the zero-energy condition if and only if it is exact.

Proof: According to Propositions 3.14 and 3.15 (see Corollary 3.26
of [5]) whenX is equal to a quaternionic projective space, or by observations
made in [17, §3] when X is the Cayley plane, we easily see that

CF1 = {0}.

By Theorem 3.40, we know that the hypotheses of Theorem 2.51 are satis-
fied. The latter theorem now gives us the desired result.

Let F ′ be the family of all closed connected totally geodesic submani-
folds of X isometric to the projective line HP

1 (which is a sphere of dimen-
sion 4), or to the projective line over the Cayley algebra (which is a sphere
of dimension 8), as the case may be. By means of the methods which we
used in §5 to prove Theorem 3.35 for the complex projective spaces, we may
also derive the following theorem, which is weaker than Theorem 3.44.

Theorem 3.46. Let X be equal to the quaternionic projective space
HP

n, with n ≥ 2, or to the Cayley plane. If h is a symmetric 2-form on X,
the following assertions are equivalent:

(i) The symmetric 2-form h belongs to L(F ′).
(ii) We have D1h = 0.
(iii) The symmetric 2-form h is a Lie derivative of the metric g.

The equivalence of assertions (i) and (iii) of Theorem 3.46 were first
proved by Michel (see [45]). In [53], Tsukamoto deduced the infinitesimal
rigidity of X from this result of Michel, the infinitesimal rigidity of CP

2

and the exactness of sequence (1.51) for the sphere of dimension ≥ 2; he
requires the equality (1.57) of Proposition 1.14,(i) and uses an argument
similar to the one appearing in the proof of Theorem 3.20.



CHAPTER IV

THE REAL GRASSMANNIANS

§1. The real Grassmannians

Let m ≥ 1, n ≥ 0 be given integers and let F be a real vector space of
dimension m + n endowed with a positive definite scalar product. Let X
be the real Grassmannian G̃R

m(F ) of all oriented m-planes in F .
Let V = VX be the canonical vector bundle (of rank m) over X whose

fiber at x ∈ X is the subspace of F determined by the oriented m-plane x.
We denote by W = WX the vector bundle of rank n over X whose fiber
at x ∈ X is the orthogonal complement Wx of Vx in F . Then we have a
natural isomorphism of vector bundles

(4.1) V ∗ ⊗W → T

over X. We may view X as a submanifold of
∧m

F . In fact, the point
x ∈ X corresponds to the vector v1 ∧ · · · ∧ vm of

∧m
F , where {v1, . . . , vm}

is a positively oriented orthonormal basis of the oriented m-plane x. The
isomorphism (4.1) sends an element θ ∈ (V ∗⊗W )x into the tangent vector
dxt/dt|t=0 to X at x, where xt is the point of X corresponding to the vector

(v1 + tθ(v1)) ∧ · · · ∧ (vm + tθ(vm))

of
∧m

F , for t ∈ R.
Since the vector bundles V and W are sub-bundles of the trivial vec-

tor bundle over X whose fiber is F , the scalar product on F induces by
restriction positive definite scalar products g1 and g2 on the vector bun-
dles V and W , respectively. If we identify the vector bundle V ∗ with V
by means of the scalar product g1, the isomorphism (4.1) gives rise to a
natural isomorphism

(4.2) V ⊗W → T

of vector bundles over X, which allows us to identify these two vector
bundles and the vector bundle

⊗2
T ∗ with

⊗2
V ∗ ⊗⊗2

W ∗. In fact, if
θ1 ∈⊗2

V ∗, θ2 ∈⊗2
W ∗, we identify the element θ1⊗θ2 of

⊗2
V ∗⊗⊗2

W ∗

with the element u of
⊗2

T ∗ determined by

u(v1 ⊗ w1, v2 ⊗ w2) = θ1(v1, v2) · θ2(w1, w2),

for v1, v2 ∈ V and w1, w2 ∈W . The scalar product g on T induced by the
scalar product g1 ⊗ g2 on V ⊗W is a Riemannian metric on X.
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The involution τ of X, corresponding to the change of orientation of
an m-plane of F , is an isometry of X. The group Λ of isometries of X
generated by τ , which is of order 2, acts freely on X and we may consider
the Riemannian manifold Y = X/Λ endowed with the Riemannian metric
gY induced by g. The natural projection � : X → Y is a two-fold covering.
We identify Y with the real Grassmannian GR

m(F ) of all m-planes in F .
When m = 1, the Grassmannian GR

1 (F ) is the projective space of F .
Let VY and WY be the vector bundles over Y whose fibers at the point

y ∈ Y are equal to Vx and Wx, respectively, where x is one of the points
of X satisfying �(x) = y. Then the tangent space TY,y of Y at y ∈ Y is
identified with (VY ⊗WY )y.

For x ∈ X, the tangent space Tτ(x) is equal to (V ⊗W )x; it is easily
verified that the mapping τ∗ : Tx → Tτ(x) is equal to the identity mapping
of (V ⊗W )x. A vector field ξ on X is even (resp. odd) with respect to
the involution τ if τ∗ξ = ξ (resp. τ∗ξ = −ξ). We say that a symmetric
p-form u on X is even (resp. odd) with respect to τ if τ∗u = εu, where
ε = 1 (resp. ε = −1). Such a form u is even if and only if we can write
u = �∗u′, where u′ is a symmetric p-form on Y . If E is a sub-bundle of
SpT ∗ invariant under the isometry τ , there exists a unique sub-bundle EY
of SpT ∗

Y such that, for all x ∈ X, the isomorphism �∗ : SpT ∗
Y,y → SpT ∗

x ,
where y = �(x), induces by restriction an isomorphism �∗ : EY,y → Ex.
A symmetric p-form u on Y is a section of EY if and only if the even
symmetric p-form �∗u on X is a section of E.

Throughout the remainder of this section, we suppose that n ≥ 1. The
curvature R of the Riemannian manifold (X, g) is determined by

R(v1 ⊗ w1, v2 ⊗ w2, v3 ⊗ w3, v4 ⊗ w4)

= (〈v1, v4〉〈v2, v3〉 − 〈v1, v3〉〈v2, v4〉)〈w1, w2〉〈w3, w4〉
+ (〈w1, w4〉〈w2, w3〉 − 〈w1, w3〉〈w2, w4〉)〈v1, v2〉〈v3, v4〉,

for vj ∈ V , wj ∈ W , with 1 ≤ j ≤ 4, where 〈vj , vk〉 = g1(vj , vk) and
〈wj , wk〉 = g2(wj , wk). It follows that g is an Einstein metric; in fact, its
Ricci tensor is given by

(4.3) Ric = (m+ n− 2)g.

The sub-bundles S2T ∗ and
∧2
T ∗ of

⊗2
T ∗ admit decompositions

S2T ∗ = (S2V ∗ ⊗ S2W ∗) ⊕ (
∧2
V ∗ ⊗∧2

W ∗),(4.4)
∧2
T ∗ = (S2V ∗ ⊗∧2

W ∗) ⊕ (
∧2
V ∗ ⊗ S2W ∗).(4.5)

We denote by S2
0V

∗ the sub-bundle of S2V ∗ which is the orthogonal
complement, with respect to the scalar product induced by g1, of the line
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bundle {g1} generated by the section g1 of S2V ∗. Similarly, we denote by
S2

0W
∗ the sub-bundle of S2W ∗ which is the orthogonal complement of the

line bundle {g2} generated by the section g2. We consider the sub-bundles

E1 = {g1} ⊗ S2
0W

∗, E2 = S2
0V

∗ ⊗ {g2}, E3 = S2
0V

∗ ⊗ S2
0W

∗

of S2T ∗. If E0 is the line bundle {g} generated by the section g = g1 ⊗ g2
of S2T ∗, from the equality (4.4) we obtain the orthogonal decomposition

(4.6) S2T ∗ =
3⊕
j=0

Ej ⊕ (
∧2
V ∗ ⊗∧2

W ∗).

We consider the sub-bundle E = EX of S2T ∗ consisting of all elements
h of S2T ∗ which satisfy

(4.7) h(ξ, ξ) = 0,

for all elements ξ of V ⊗W of rank one. The sub-bundle E is invariant
under the isometry τ and we shall also consider the corresponding sub-
bundle EY of S2T ∗

Y induced by E; if x ∈ X, the fiber of EY at the point
y = �(x) consists of all elements h of S2T ∗

Y,y satisfying the relation (4.7)
for all elements ξ of TY,y = (V ⊗W )x of rank one.

We easily see that an element h of E satisfies the relation

h(v1 ⊗ w1, v2 ⊗ w2) + h(v1 ⊗ w2, v2 ⊗ w1) = 0,

for all v1, v2 ∈ V , w1, w2 ∈ W . Clearly, the vector bundle
∧2
V ∗ ⊗∧2

W ∗

is a sub-bundle of E; then from the decomposition (4.4), we obtain the
equality

E =
∧2
V ∗ ⊗∧2

W ∗.

This last relation implies that

(4.8) TrE = {0}, TrEY = {0}.

We also consider the Grassmannians X ′ = G̃R

n(F ) and Y ′ = GR

n(F ),
the natural projection � : X ′ → Y ′ and the involution τ of X ′. Let V ′

be the canonical vector bundle of rank n over X ′ whose fiber at a ∈ X ′ is
the subspace of F determined by the oriented n-plane a, and let W ′ be the
vector bundle of rank m over X ′ whose fiber over a ∈ X ′ is the orthogonal
complement W ′

a of V ′
a in F . As above, we identify the tangent bundle of

X ′ with the bundle V ′ ⊗W ′; the scalar product on F induces Riemannian
metrics on X ′ and Y ′. There is a natural diffeomorphism

Ψ : GR

m(F ) → GR

n(F ),
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sending an m-plane of F into its orthogonal complement. When m = n,
this mapping is an involution of Y = GR

n(F ); in this case, we say that a
symmetric p-form u on Y is even (resp. odd) if Ψ∗u = εu, where ε = 1
(resp. ε = −1).

Now suppose that the vector space F is oriented and let Ω be a unit
vector of

∧m+n
F which is positive with respect to the orientation of F . The

oriented m-plane x ∈ X gives us an orientation of Vx, which in turn induces
an orientation of Wx: if {v1, . . . , vm} is a positively oriented orthonormal
basis of Vx, then the orientation of Wx is determined by an orthonormal
basis {w1, . . . , wn} of Wx satisfying

v1 ∧ · · · ∧ vm ∧ w1 ∧ · · · ∧ wn = Ω.

Then there is a natural diffeomorphism

Ψ : G̃R

m(F ) → G̃R

n(F ),

sending x ∈ G̃R

m(F ) into the n-plane Wx endowed with the orientation
described above. For x ∈ X, we have V ′

Ψ(x) = Wx and W ′
Ψ(x) = Vx. It is

easily verified that the induced mapping Ψ∗ : (V ⊗W )x → (V ′ ⊗W ′)Ψ(x)

sends v ⊗ w into −w ⊗ v, where v ∈ Vx and w ∈ Wx; therefore Ψ is an
isometry. Clearly the diagram

(4.9)

G̃R

m(F ) Ψ−−→ G̃R

n(F )⏐⏐��
⏐⏐��

GR

m(F ) Ψ−−→ GR

n(F )

commutes. It follows that the mapping Ψ : GR

m(F ) → GR

n(F ) is also an
isometry. Also the diagram

G̃R

m(F ) Ψ−−→ G̃R

n(F )⏐⏐�τ
⏐⏐�τ

G̃R

m(F ) Ψ−−→ G̃R

n(F )

is easily seen to commute.
Let {e1, . . . , em+n} be the standard basis of R

m+n. We henceforth sup-
pose that F is the vector space R

m+n endowed with the standard Euclidean
scalar product. We now consider the real Grassmannians

X = G̃R

m,n = G̃R

m(Rm+n), Y = GR

m,n = GR

m(Rm+n),
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endowed with the Riemannian metrics g and gY induced by the standard
Euclidean scalar product of R

m+n. Throughout the remainder of this sec-
tion, we also suppose that m+ n ≥ 3.

The group SO(m + n) acting on R
m+n sends every oriented m-plane

into another oriented m-plane. This gives rise to an action of the group
SO(m + n) on X. In fact, the group SO(m + n) acts transitively on the
Riemannian manifold (X, g) by isometries. The isotropy group of the point
x0 ofX corresponding to the vector e1∧· · ·∧em of

∧m
R
m+n is the subgroup

K = SO(m) × SO(n) of SO(m+ n) consisting of the matrices

(4.10) φ =
(
A 0
0 B

)
,

where A ∈ SO(m) and B ∈ SO(n). The diffeomorphism

Φ : SO(m+ n)/K → X,

which sends the class φ·K, where φ ∈ SO(m+n), into the oriented m-plane
of R

m+n corresponding to the vector φ(e1)∧· · ·∧φ(em), is compatible with
the actions of SO(m+ n) on SO(m+ n)/K and X.

If Ip denotes the unit matrix of order p, the element

s =
(
−Im 0

0 In

)

of O(m + n) determines an involution σ of SO(m + n) which sends φ ∈
SO(m+n) into sφs−1. ThenK is equal to the identity component of the set
of fixed points of σ, and (SO(m+ n),K) is a Riemannian symmetric pair.
The Cartan decomposition of the Lie algebra g0 of SO(m+n) corresponding
to σ is

g0 = k0 ⊕ p0;

here k0 is the Lie algebra of K and p0 is the space of all matrices

(4.11)
(

0 −tZ
Z 0

)

of g0, where Z is a real n×m matrix and tZ is its transpose. We identify
p0 with the vector space Mn,m of all real n×m matrices and, in particular,
the element (4.11) of p0 with the matrix Z of Mn,m. The adjoint action of
K on p0 is expressed by

Adφ · Z = B · Z ·A−1,

where φ is the element (4.10) of K and Z ∈Mn,m.
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We identify p0 with the tangent space of SO(m+n)/K at the coset of
the identity element of SO(m+n). Clearly the diffeomorphism Φ sends this
coset into the point x0 of X. Since Vx0 is the subspace of R

m+n generated
by {e1, . . . , em}, clearly Wx0 is the subspace generated by {em+1, . . . , en}.
Then it is easily verified that the isomorphism Φ∗ : p0 → (V ⊗W )x0 sends
the element (4.11) of p0 corresponding to the matrix Z = (zjk) of Mn,m,
with 1 ≤ j ≤ n and 1 ≤ k ≤ m into the vector

∑
1≤j≤n
1≤k≤m

zjkek ⊗ ej+m

of (V ⊗W )x0 .
If B is the Killing form of g0, the restriction to p0 of the scalar prod-

uct −B is invariant under the adjoint action of K and therefore induces an
SO(m+ n)-invariant metric g0 on the homogeneous space SO(m+ n)/K.
Endowed with this metric g0, the manifold SO(m + n)/K is a symmet-
ric space of compact type of rank min(m,n). It is easily verified that
g0 = 2(m + n − 2)Φ∗g. Thus Φ is an isometry from the symmetric space
SO(m+ n)/K, endowed with the metric

1
2(m+ n− 2)

g0,

to X; henceforth, we shall identify these Riemannian manifolds by means
of this SO(m + n)-equivariant isometry. From Lemma 1.21, we again ob-
tain the equality (4.3). Moreover, the symmetric space SO(m + n)/K is
irreducible unless m = n = 2. On the other hand, we shall see below
that the Grassmannian G̃R

2,2 is not irreducible and is in fact isometric to a
product of 2-spheres (see Proposition 4.3).

The vector bundles V and W are homogeneous sub-bundles of the
trivial vector bundle over X whose fiber is R

m+n; it is easily seen that
(4.2) is an isomorphism of homogeneous SO(m + n)-bundles over X. All
the vector bundles appearing in the decomposition (4.6) and the bundle
E are homogeneous sub-bundles of S2T ∗; hence the fibers at x0 of these
vector bundles are K-submodules of S2T ∗

x0
.

When m = 1, we easily see that G̃R

1,n endowed with the metric g is
isometric to the sphere (Sn, g0) and that GR

1,n endowed with the metric gY
is isometric to the real projective space (RP

n, g0). In fact, the mapping
ϕ̃ : Sn → G̃R

1,n, sending the unit vector u ∈ Sn into the point of G̃R

1,n

corresponding to the oriented basis {u} of the line generated by u is easily
seen to be an isometry; moreover, by passage to the quotient, ϕ̃ induces an
isometry ϕ : RP

n → GR

1,n. When m = 1, we also know that E = {0}.
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The Grassmannian G̃R

n,m is also a homogeneous space of the group
SO(m + n). We shall always choose the orientation of R

m+n induced by
the unit vector e1 ∧ · · · ∧ em+n of

∧m+n
R
m+n. It is easily verified that the

isometry
Ψ : G̃R

m,n → G̃R

n,m

determined by this orientation satisfies

Ψ ◦ φ = φ ◦ Ψ,

for all φ ∈ SO(m + n). Thus G̃R

m,n and G̃R

n,m are isometric as symmetric
spaces. For x ∈ X, we shall always consider the orientation of the space Wx

induced by the orientation of its orthogonal complement Vx (with respect
to our orientation of R

m+n).
The involutive isometry τ of X satisfies

(4.12) τ · φ(x) = φ · τ(x),

for all φ ∈ SO(m + n) and x ∈ X. From (4.12), we see that the action
of the group SO(m + n) on X passes to the quotient Y . In fact, the
group SO(m+ n) acts transitively on Y and, if K1 = O(m) ×O(n) is the
subgroup of O(m + n) consisting of the matrices (4.10), where A ∈ O(m)
and B ∈ O(n), it is easily verified that the isotropy group of the point�(x0)
is equal to the subgroup K ′ = SO(m+n)∩K1 of SO(m+n). In fact, K ′ is
equal to the set of fixed points of the involution σ of SO(m+n). Therefore
(SO(m+ n),K ′) is a Riemannian symmetric pair and SO(m+ n)/K ′ is a
symmetric space of compact type of rank min(m,n); we identify this space
with Y by means of the isometry sending φ ·K ′ into the point φ(�(x0)), for
φ ∈ SO(m+ n). Then by (4.12), we see that the projection � : X → Y is
identified with the natural submersion SO(m+n)/K → SO(m+n)/K ′ of
symmetric spaces. The space Y is irreducible unless m = n = 2; moreover,
Y is the adjoint space of the symmetric space X whenever m �= n.

From the commutativity of the diagram (4.9), with F = R
m+n, we

infer that GR

m,n and GR

n,m are isometric as symmetric spaces.
The notion of even or odd tensor on X (with respect to the involutive

isometry τ) defined here coincides with the one considered in §4, Chap-
ter II. If F is an SO(m+ n)-invariant sub-bundle of TC or of SpT ∗

C
, which

is also invariant under the isometry τ , the space C∞(F )ev (resp. C∞(F )odd)
consisting of all even (resp. odd) sections of F over X is an SO(m + n)-
submodule of C∞(F ), and we then have the decomposition (2.8) of the
SO(m+ n)-module C∞(F ). Also if the bundle F is a sub-bundle of SpT ∗

C
,

the sub-bundle FY of SpT ∗
Y,C induced by F is invariant under the group

SO(m+ n) and coincides with the one considered in §4, Chapter II; more-
over, the mapping �∗ induces an isomorphism from the SO(m+n)-module
C∞(Y, FY ) of all sections of FY over Y to the SO(m+n)-module C∞(F )ev.
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If F is an arbitrary vector space of dimension m+ n endowed with a
positive definite scalar product, an isometry ϕ : R

m+n → F induces isome-
tries ϕ : G̃R

m,n → G̃R

m(F ) and ϕ : GR

m,n → GR

m(F ). Thus the Riemannian
manifolds G̃R

m(F ) and GR

m(F ) are symmetric spaces. If we write X = G̃R

m,n

and X ′ = G̃R

m(F ), for x ∈ X the isomorphism ϕ : R
m+n → F induces by

restriction isomorphisms

ϕ : VX,x → VX′,ϕ(x), ϕ : WX,x →WX′,ϕ(x);

hence the isomorphism ϕ∗ : TX,x → TX′,ϕ(x) is equal to the natural map-
ping

ϕ⊗ ϕ : VX,x ⊗WX,x → VX′,ϕ(x) ⊗WX′,ϕ(x).

It follows that
ϕ∗EX′,ϕ(x) = EX,x,

for all x ∈ X. Moreover, since τ ◦ϕ = ϕ ◦ τ as mappings from X to X ′, we
see that, if u is an even (resp. odd) symmetric form on X ′, then ϕ∗u is an
even (resp. odd) symmetric form on X. When m = n, since Ψ ◦ ϕ = ϕ ◦Ψ
as mappings from GR

n,n to GR

n(F ), we see that, if u is an even (resp. odd)
symmetric form on GR

n(F ), then ϕ∗u is an even (resp. odd) symmetric form
on GR

n,n.
The orientations of the spaces Vx, with x ∈ X, considered above,

together with the scalar product g1 on V , give us a Hodge operator

∗ :
∧p
V ∗ → ∧m−p

V ∗.

On the other hand, the orientations of the spaces Wx induced by the ori-
entations of the spaces Vx, for x ∈ X, together with the scalar product g2
on W , determine a Hodge operator

∗ :
∧p
W ∗ → ∧n−p

W ∗.

If m = 4, we consider the eigenbundles
∧+

V ∗ and
∧−

V ∗ of the Hodge
operator ∗ :

∧2
V ∗ → ∧2

V ∗ corresponding to the eigenvalues +1 and −1,
respectively; since this operator is an involution, we obtain the decompo-
sition

(4.13)
∧2
V ∗ =

∧+
V ∗ ⊕∧−

V ∗.

When n = 4, the Hodge operator ∗ :
∧2
W ∗ → ∧2

W ∗ gives us an analogous
decomposition

(4.14)
∧2
W ∗ =

∧+
W ∗ ⊕∧−

W ∗,
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where
∧+

W ∗ and
∧−

W ∗ are the eigenbundles of this Hodge operator corre-
sponding to the eigenvalues +1 and −1, respectively. Ifm = 4 (resp. n = 4),
the vector bundles appearing in the decomposition (4.13) (resp. (4.14)) are
homogeneous sub-bundles of

∧2
V ∗ (resp.

∧2
W ∗) and their fibers at x0 are

K-submodules of
∧2
V ∗
x0

(resp.
∧2
W ∗
x0

).
We now suppose that m,n ≥ 2. The complexification g of the Lie

algebra g0 is equal to so(m + n,C), and the complexification k of the Lie
algebra k0 admits the decomposition

k = k1 ⊕ k2,

where k1 and k2 are subalgebras of k isomorphic to so(m,C) and so(n,C),
respectively. If p denotes the subspace of g generated by p0, the Lie algebra
g admits the decomposition

g = k1 ⊕ k2 ⊕ p

into K-modules. In fact, the K-module k1 is isomorphic to
∧2
V ∗

C,x0
, the K-

module k2 is isomorphic to
∧2
W ∗

C,x0
and p is isomorphic to the K-module

(V ⊗W )C,x0 ; in fact, p is irreducible when m,n ≥ 3.
The fibers at x0 of the vector bundles Ej,C are irreducible K-modules.

In fact, E0,C,x0 is isomorphic to the trivial K-module, while E1,C,x0 is iso-
morphic to the irreducible K-module (S2

0W
∗)C,x0 and E2,C,x0 is isomorphic

to the irreducible K-module (S2
0V

∗)C,x0 . Therefore E3,C,x0 is isomorphic
to the irreducible K-module E1,C,x0 ⊗ E2,C,x0 . If m �= 4 (resp. n �= 4), the
K-module

∧2
V ∗

C,x0
(resp.

∧2
W ∗

C,x0
) is irreducible; on the other hand, when

m = 4 (resp. n = 4), the K-submodules
∧+

V ∗
C,x0

and
∧−

V ∗
C,x0

of
∧2
V ∗

C,x0

(resp.
∧+

W ∗
C,x0

and
∧−

W ∗
C,x0

of
∧2
W ∗

C,x0
) are irreducible. If m,n ≥ 3,

it is easily seen that none of these three irreducible K-modules Ej,C,x0 is
isomorphic to one of the K-modules

∧2
V ∗

C,x0
,
∧2
W ∗

C,x0
, or (V ⊗W )C,x0 ,

or to any one of their irreducible components.
If m,n �= 4, clearly (

∧2
V ∗ ⊗∧2

W ∗)C,x0 is an irreducible K-module.
When either m or n is equal to 4, the bundle

∧2
V ∗ ⊗ ∧2

W ∗ admits an
SO(n+m)-invariant decomposition arising from the decompositions (4.13)
and (4.14); the fibers at x0 of the components of the corresponding decom-
position of (

∧2
V ∗ ⊗∧2

W ∗)C are irreducible K-modules. If m,n ≥ 3, the
K-module (

∧2
V ∗ ⊗ ∧2

W ∗)C,x0 does not contain a K-submodule isomor-
phic to any one of the K-modules

∧2
V ∗

C,x0
,
∧2
W ∗

C,x0
, or to any one of their

irreducible components. If m,n ≥ 3 and m+ n ≥ 7, we easily see that the
K-module (

∧2
V ∗ ⊗∧2

W ∗)C,x0 does not contain a submodule isomorphic
to the irreducible K-module (V ⊗W )C,x0 or to p.
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We now suppose that m = n = 3. If we identify the vector bundle V ∗

with V and the vector bundle W ∗ with W by means of the scalar products
g1 on V and g2 on W , the Hodge operators

∗ : V ∗ → ∧2
V ∗, ∗ : W ∗ → ∧2

W ∗

determine isomorphisms

∗ : V → ∧2
V ∗, ∗ : W → ∧2

W ∗.

In turn, via the identification (4.2) the isomorphism

∗ ⊗ ∗ : V ⊗W → ∧2
V ∗ ⊗∧2

W ∗

gives rise to an SO(6)-equivariant isomorphism of vector bundles

(4.15) ∗ : T → ∧2
V ∗ ⊗∧2

W ∗.

In this case, the irreducible K-module (
∧2
V ∗ ⊗∧2

W ∗)C,x0 is isomorphic
to (V ⊗W )C,x0 and hence to p.

From the above remarks, we obtain the following results:

Lemma 4.1. Let X be the real Grassmannian G̃R

m,n, with m,n ≥ 3.
(i) We have

HomK(g, Ej,C,x0) = {0},

for j = 0, 1, 2, 3.
(ii) If m+ n ≥ 7, we have

HomK(g, (
∧2
V ∗ ⊗∧2

W ∗)C,x0) = {0}.

(iii) If m = n = 3, we have

dim HomK(g, (
∧2
V ∗ ⊗∧2

W ∗)C,x0) = 1.

We now suppose that m,n ≥ 3. From Lemma 4.1 and the decomposi-
tion (4.6), we deduce that

(4.16) HomK(g, S2T ∗
C,x0

) = {0}

when m,n ≥ 3 and m+ n ≥ 7, and that

(4.17) dim HomK(g, S2T ∗
C,x0

) = dim HomK(g, S2
0T

∗
C,x0

) = 1
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when m = n = 3. We recall that the Grassmannian G̃R

3,3 is isometric to the
symmetric space SU(4)/SO(4) (see [36, p. 519]). Thus by Lemma 2.41, we
know that the space HomK(g, S2

0T
∗
C,x0

) vanishes for the space G̃R

m,n, when
m,n ≥ 3 and m + n ≥ 7, and that HomK(g, S2

0T
∗
C,x0

) is one-dimensional
for the space G̃R

3,3; as we have just seen, both of these assertions are also
consequences of Lemma 4.1.

Let γ1 be the element of the dual of the group SO(m + n) which is
the equivalence class of the irreducible SO(m + n)-module g. We denote
by K the SO(m + n)-module of all Killing vector fields on X and by KC

its complexification. The irreducible symmetric space X is not equal to a
simple Lie group. Thus according to (2.27), we know that the SO(m+n)-
module C∞

γ1 (T ∗
C
) is irreducible and is equal to KC. When m + n ≥ 7, by

(4.16) the Frobenius reciprocity theorem tells us that

(4.18) C∞
γ1 (S2T ∗

C
) = {0},

and the equality (2.25) then says that E(X) = {0}. We now again consider
the case when m = n = 3. The isomorphism (4.15) provides us with an
isomorphism

∗ : C∞
γ1 (TC) → C∞

γ1 ((
∧2
V ∗ ⊗∧2

W ∗)C)

of SO(6)-modules; hence by (2.27), we have

C∞
γ1 ((
∧2
V ∗ ⊗∧2

W ∗)C) = ∗ KC.

By (4.17) and Lemma 4.1, the Frobenius reciprocity theorem gives us the
equalities

(4.19) C∞
γ1 (S2T ∗

C
) = C∞

γ1 (S2
0T

∗
C
) = C∞

γ1 ((
∧2
V ∗ ⊗∧2

W ∗)C) = ∗ KC.

By Proposition 2.40 and the equality (4.17), we see that E(X) is an irre-
ducible SO(6)-module isomorphic to the Lie algebra g0; moreover by (4.19)
and (2.29), we have

(4.20) E(X)C = C∞
γ1 ((
∧2
V ∗ ⊗∧2

W ∗)C) = ∗ KC.

Since
∧2
V ∗ ⊗ ∧2

W ∗ is a sub-bundle of E, the above discussion gives us
the following result:

Proposition 4.2. Let X be the Grassmannian G̃R

m,n, with m,n ≥ 3.
(i) If m+ n ≥ 7, then we have

E(X) = {0}.
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(ii) If m = n = 3, then E(X) is an irreducible SO(6)-module isomor-
phic to the Lie algebra g0 = so(6), and is equal to the SO(6)-submodule

{h ∈ C∞
γ1 ((
∧2
V ∗ ⊗∧2

W ∗)C) | h = h̄ } = ∗ K

of C∞(E).

When m + n ≥ 7, the vanishing of the space E(X) is also given by
Theorem 1.22 (see Koiso [41] and [42]).

For the remainder of this section, we suppose that m = n ≥ 2. Then
the isometry Ψ of the Grassmannian Y = GR

n,n is an involution. The group
Λ of isometries of Y generated by Ψ, which is of order 2, acts freely on
Y and we may consider the Riemannian manifold Ȳ = ḠR

n,n equal to the
quotient Y/Λ endowed with the Riemannian metric gȲ induced by g. The
natural projections �′ : Y → Ȳ and �′′ : X → Ȳ are two-fold and four-fold
coverings, respectively. The action of the group SO(2n) on Y passes to the
quotient Ȳ . In fact, SO(2n) acts transitively on Ȳ and it is easily verified
that the isotropy group of the point �′′(x0) is equal to the subgroup of
SO(2n) generated by K ′ and the matrix

(
0 −In
In 0

)

of SO(2n). In fact, ḠR

n,n is a symmetric space of compact type of rank n.
When n ≥ 3, it is irreducible and equal to the adjoint space of X and of Y .
On the other hand, when n = 2, it is not irreducible, and we have the
following result, whose proof appears below in §9, Chapter V:

Proposition 4.3. The symmetric space S2 × S2 (resp. RP
2 × RP

2)
endowed with the Riemannian metric which is the product of the metrics
of constant curvature 1 on each factor is isometric to the Grassmannian
G̃R

2,2 (resp. ḠR

2,2) endowed with the Riemannian metric 2g (resp. 2gȲ ).

The following proposition is a direct consequence of Propositions 4.3
and 10.2, and of Theorem 2.23,(ii).

Proposition 4.4. The maximal flat Radon transform for functions
on the symmetric space ḠR

2,2 is injective.

The notion of even or odd tensor on Y (with respect to the involutive
isometry Ψ) defined here coincides with the one considered in §4, Chap-
ter II. In fact, a section u of SpT ∗

Y over Y is even if and only if we can write
u = �′∗u′, where u′ is a symmetric p-form on Ȳ . Lemma 2.17 gives us the
following result:
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Lemma 4.5. A symmetric p-form u on ḠR

n,n satisfies the Guillemin

condition if and only if the even symmetric p-form �′∗u on GR

n,n satisfies
the Guillemin condition.

§2. The Guillemin condition on the real Grassmannians

Let m,n ≥ 1 be given integers. In this section, we again consider the
real Grassmannians X = G̃R

m,n and Y = GR

m,n, endowed with the metrics g
and gY , and the natural Riemannian submersion � : X → Y , and continue
to identify the tangent bundle T of X with the vector bundle V ⊗W as
in §1.

Let V1, . . . , Vr be mutually orthogonal subspaces of R
m+n and let

p1, . . . , pr be given integers, with 1 ≤ pj ≤ dimVj and p1 + · · · + pr = m.
For 1 ≤ j ≤ r, the space Vj is endowed with the scalar product induced by
the Euclidean scalar product of R

m+n; in turn, this scalar product induces
a Riemannian metric on G̃R

p1(Vj). Then there is a natural totally geodesic
imbedding

ι : G̃R

p1(V1) × · · · × G̃R

pr
(Vr) → G̃R

m,n

which is defined as follows. For 1 ≤ j ≤ r, let xj be a point of G̃R

pj
(Vj)

corresponding to the vector vj1 ∧ · · · ∧ vjpj
of
∧pjVj , where {vj1, . . . , vjpj

} is
a positively oriented orthonormal basis of the oriented pj-plane xj . The
mapping ι sends (x1, . . . , xr) into the point x of G̃R

m,n corresponding to the
vector

v1
1 ∧ · · · ∧ v1

p1 ∧ · · · ∧ vr1 ∧ · · · ∧ vrpr

of
∧m

R
m+n. Moreover there is a unique totally geodesic imbedding

ῑ : GR

p1(V1) × · · · ×GR

pr
(Vr) → GR

m,n

such that the diagram

G̃R

p1(V1) × · · · × G̃R

pr
(Vr)

ι−−→ G̃R

m,n⏐⏐��×···×�
⏐⏐��

GR

p1(V1) × · · · ×GR

pr
(Vr)

ῑ−−→ GR

m,n

commutes.
If V ′

j is the pj-dimensional subspace of Vj spanned by the vectors
{vj1, . . . , vjpj

} of Vj and if Wj is the orthogonal complement of V ′
j in Vj , the

tangent space of G̃R

pj
(Vpj

) at xj is identified with V ′
j ⊗Wj , for 1 ≤ j ≤ r.

Then V ′
1 ⊕· · ·⊕V ′

r is equal to Vx, while W1 ⊕· · ·⊕Wr is a subspace of Wx.
It is easily seen that the mapping ι∗(x1,...,xr) from the tangent space of
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G̃R

p1(V1) × · · · × G̃R

pr
(Vr) at (x1, . . . , xr) to the tangent space of G̃R

m,n at x
induced by ι is identified with the mapping

(V ′
1 ⊗W1) ⊕ · · · ⊕ (V ′

r ⊗Wr) → (V ⊗W )x

sending (θ1, . . . , θr) into θ1 + · · · + θr, where θj ∈ V ′
j ⊗Wj .

We consider the totally geodesic imbeddings ϕ : G̃R

p1(V1) → X and
ϕ̄ : GR

p1(V1) → Y defined by

ϕ(z) = ι(z, x2, . . . , xr), ϕ̄(�(z)) = ῑ(�(z), �(x2), . . . , �(xr)),

for z ∈ G̃R

p1(V1); then we have ϕ(x1) = x. We write Z = G̃R

p1(V1); then
the mapping ϕ∗ : (VZ ⊗ WZ)z → (V ⊗ W )ϕ(z) is the natural inclusion.
Therefore if h is a section of the vector bundle E over X, we see that the
symmetric 2-form ϕ∗h is a section of the vector bundle EZ over Z.

We have the equality

(4.21) ExpxV
′
1 ⊗W1 = ϕ(G̃R

p1(V1))

of closed totally geodesic submanifolds of G̃R

m,n. Indeed, using the above
description of the mapping ι∗ at (x1, . . . , xr), we see that the tangent spaces
of these two submanifolds of G̃R

m,n at x are equal. From the formula for
the curvature of G̃R

m,n, we infer that ExpxV ′
1 ⊗ W1 is a totally geodesic

submanifold of G̃R

m,n and a globally symmetric space. Clearly, the sub-
manifold ϕ(G̃R

p1(V1)) possesses these same properties. In fact, the subgroup
SO(m+n, V1) of SO(m+n) consisting of all elements of SO(m+n) which
preserve the subspace V1 and which are the identity on the orthogonal com-
plement of V1 acts transitively on these submanifolds by isometries. These
various observations yield the relation (4.21), which in turn gives us the
equality

(4.22) Exp�(x)V
′
1 ⊗W1 = ϕ̄(GR

p1(V1))

of closed totally geodesic submanifolds of GR

m,n.
It is easily verified that the diagram

(4.23)

G̃R

p1(V1) × G̃R

p2(V2) × · · · × G̃R

pr
(Vr)

ι−−→ G̃R

m,n⏐⏐�τ×id×···×id

⏐⏐�τ
G̃R

p1(V1) × G̃R

p2(V2) × · · · × G̃R

pr
(Vr)

ι−−→ G̃R

m,n

is commutative. It follows that, if u is an even (resp. odd) symmetric p-form
on G̃R

m,n, the symmetric p-form ϕ∗u on Z is even (resp. odd).
From the above observations and the equalities (4.21) and (4.22), we

obtain:
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Lemma 4.6. Let X be the real Grassmannian G̃R

m,n, with m,n ≥ 2.
Let x be a point of X and let V ′ and W ′ be non-zero subspaces of Vx and
Wx of dimension p and q, respectively. Then X ′ = ExpxV ′⊗W ′ is a closed
totally geodesic submanifold of X invariant under the involution τ , which
is isometric to the Grassmannian G̃R

p,q, and Y ′ = Exp�(x)V
′ ⊗ W ′ is a

closed totally geodesic submanifold of Y = GR

m,n, which is isometric to the

Grassmannian GR

p,q, with �−1(Y ′) = X ′. Moreover, if F is the subspace

V ′ ⊕W ′ of C
m+n of dimension p + q and Z is the Grassmannian G̃R

p (F ),
there are isometric imbeddings i : Z → X and ı̄ : GR

p (F ) → Y whose
images are equal to X ′ and Y ′, respectively, satisfying � ◦ i = ı̄ ◦ � and
which possess the following properties:

(i) if z is the unique point of Z satisfying i(z) = x, we have

VZ,z = V ′, WZ,z = W ′,

and the mapping i∗ : (VZ ⊗WZ)z → (V ⊗W )x induced by i is the natural
inclusion;

(ii) if u is an even (resp. odd) symmetric form on X, the form i∗u on
Z is even (resp. odd);

(iii) if h is a section of the sub-bundle E of S2T ∗ over X, then i∗h is
a section of the sub-bundle EZ of S2T ∗

Z .

If the subspaces Vj are all 2-dimensional and the integers pj are all
equal to 1, then the images of the mappings ι and ῑ are totally geodesic
flat r-tori of G̃R

m,n and GR

m,n. In particular, when m ≤ n and r = m,
these images are maximal flat totally geodesic tori of G̃R

m,n and GR

m,n, and
all maximal flat totally geodesic tori of G̃R

m,n and GR

m,n arise in this way.
On the other hand when n < m and r = n + 1, if the subspaces Vj are
2-dimensional and pj = 1 for 1 ≤ j ≤ n, and if pn+1 = m − n, then the
images

ι(G̃R

1 (V1) × · · · × G̃R

1 (Vn) × {xn+1})

and
ῑ(GR

1 (V1) × · · · ×GR

1 (Vn) ×GR

m−n(Vn+1))

are maximal flat totally geodesic n-tori of G̃R

m,n and GR

m,n, and all maximal
flat totally geodesic tori of G̃R

m,n and GR

m,n arise in this way. In this case,
GR

m−n(Vn+1) consists of the single point �(xn+1).
From Lemma 2.17, or from the commutativity of diagram (4.23) and

the above remarks concerning totally geodesic flat tori of the Grassmanni-
ans, we obtain the following result:
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Lemma 4.7. A symmetric p-form u on Y satisfies the Guillemin con-
dition if and only if the even symmetric p-form �∗u on X satisfies the
Guillemin condition.

Lemma 4.8. Let X be the real Grassmannian G̃R

m,n, with m,n ≥ 2.
Let 2 ≤ p ≤ m and 2 ≤ q ≤ n be given integers. Let F be the family
of all totally geodesic submanifolds of X passing through a point x ∈ X
which can be written in the form ExpxV ′⊗W ′, where V ′ is a p-dimensional
subspace of Vx and W ′ is a q-dimensional subspace of Wx. Let h be an
element of S2T ∗

x , with x ∈ X. If the restriction of h to an arbitrary
submanifold of the family F vanishes, then h vanishes.

Proof: Let {v1, . . . , vm} and {w1, . . . , wn} be orthonormal bases of
the spaces Vx and Wx, respectively. If 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n are
given integers, the two vectors ξ = vi⊗wj and η = vk⊗wl of Tx are tangent
to a submanifold of X belonging to the family F ; thus we have h(ξ, η) = 0.
It follows that h vanishes.

Lemma 4.9. Let Y be the real Grassmannian GR

m,n, with 2 ≤ m < n.
Let F1 and F2 be orthogonal subspaces of R

m+n of dimension 2m − 2
and ≥ 3, respectively, and let

(4.24) ϕ : GR

m−1(F1) ×GR

1 (F2) → Y

be the totally geodesic imbedding corresponding to the orthogonal sub-
spaces F1 and F2. Let x0 ∈ GR

1 (F2) and let Y ′ be the totally geodesic
submanifold

ϕ(GR

m−1(F1) × {x0})
of Y , which is isometric to GR

m−1,m−1. If u is a symmetric p-form on Y
satisfying the Guillemin condition, then the restriction of u to Y ′ satisfies
the Guillemin condition.

Proof: The rank of the symmetric space GR

m−1(F1) is equal to m−1.
Let Z be a maximal flat totally geodesic torus of GR

m−1(F1) of dimension
m − 1 and ξ be a unitary parallel vector field on Z. We define a unitary
vector field ξ′ on the submanifold ϕ(Z ×GR

1 (F2)) of Y by

ξ′(ϕ(z, x)) = ϕ∗(z,x)(ξ(z), 0),

for z ∈ Z, x ∈ GR

1 (F2). For x ∈ GR

1 (F2), we consider the totally geodesic
flat torus Zx = ϕ(Z×{x}) of Y of dimension m− 1. Let u be a symmetric
p-form on Y . We define a real-valued function f on GR

1 (F2) by

f(x) =
∫
Zx

u(ξ′, . . . , ξ′) dZx,
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for x ∈ GR

1 (F2). If i : Y ′ → Y is the inclusion mapping, we have the
equality

f(x0) =
∫
Z

(i∗u)(ξ, . . . , ξ) dZ.

Let γ : [0, L] → GR

1 (F2) be a closed geodesic of the real projective space
GR

1 (F2). Since the rank of the symmetric space Y is equal to m, we see that
Zγ = ϕ(Z × γ[0, L]) is a maximal flat totally geodesic torus of Y . Clearly
the equality ∫

γ

f =
∫
Zγ

u(ξ′, . . . , ξ′) dZγ

holds. Now we suppose that u satisfies the Guillemin condition; then the
above integral vanishes, and so the function f on the real projective space
GR

1 (F2) of dimension ≥ 2 satisfies the zero-energy condition. The injec-
tivity of the X-ray transform for functions on the real projective space of
dimension ≥ 2, given by Theorem 2.23,(ii), tells us that the function f
vanishes. From the equality f(x0) = 0, we infer that the restriction of u to
Y ′ satisfies the Guillemin condition.

The following proposition is a generalization of Lemma 5.3 of [23].

Proposition 4.10. Let y be a point of the real Grassmannian Y =
GR

m,n, with 2 ≤ m < n. Let Y ′ be a closed totally geodesic submanifold

of Y isometric to the real Grassmannian GR

m−1,n which can be written
in the form ExpyV ′ ⊗WY,y, where V ′ is an (m− 1)-dimensional subspace
of VY,y. If u is a symmetric p-form on Y satisfying the Guillemin condition,
then the restriction of u to Y ′ satisfies the Guillemin condition.

Proof: We consider the subspace V1 = V ′⊕WY,y of R
m+n of dimen-

sion m+ n− 1 and its orthogonal complement V2 in R
m+n. Since GR

1 (V2)
consists of a single point x0, from the equality (4.22) we see that the image
of the totally geodesic imbedding

ῑ : GR

m−1(V1) ×GR

1 (V2) → Y,

corresponding to the subspaces V1 and V2 of R
m+n, is equal to Y ′. We

choose a maximal flat totally geodesic torus Z of GR

m−1(V1) of dimen-
sion m − 1. We know that there exists a subspace F1 of V1 of dimen-
sion 2m−2 such that Z is a totally geodesic submanifold of the submanifold
GR

m−1(F1) of GR

m−1(V1). Since n ≥ m+1, the orthogonal complement F2 of
F1 in R

m+n is of dimension n−m+2 ≥ 3 and contains V2. Then x0 belongs
to the real projective space GR

1 (F2). We now consider the totally geodesic
imbedding (4.24) corresponding to the orthogonal subspaces F1 and F2

of R
m+n. Let u be a symmetric p-form on Y satisfying the Guillemin con-

dition. According to Lemma 4.9, the restrictions of u to the totally geodesic
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submanifold ϕ(GR

m−1(F1)×{x0}) or to its maximal flat torus ϕ(Z ×{x0})
satisfy the Guillemin condition. Since ῑ(Z×{x0}) = ϕ(Z×{x0}) is a max-
imal flat totally geodesic torus of the submanifold Y ′ and since all such tori
of Y ′ arise in this way, we infer that the restriction of u to Y ′ also satisfies
the Guillemin condition.

Proposition 4.11. Let y be a point of the real Grassmannian Y =
GR

m,n, with 2 ≤ m < n. Let Y ′ be a closed totally geodesic submanifold

of Y isometric to the real Grassmannian GR

m,m−1 which can be written
in the form ExpyVY,y ⊗W ′, where W ′ is an (m− 1)-dimensional subspace
ofWY,y. If u is a symmetric p-form on Y satisfying the Guillemin condition,
then the restriction of u to Y ′ satisfies the Guillemin condition.

Proof: We consider the subspace F = VY,y ⊕W ′ of R
m+n of dimen-

sion 2m−1. From the equality (4.22), we see that Y ′ is equal to the image
of the natural totally geodesic imbedding GR

m(F ) → Y , which sends the
m-plane of F into the m-plane of R

m+n which it determines. We choose a
maximal flat totally geodesic torus Z ′ of Y ′ of dimension m− 1. We know
that there exists a subspace F1 of F of dimension 2m − 2 such that Z ′ is
contained in the image of the totally geodesic imbedding

ῑ : GR

m−1(F1) ×GR

1 (F ′
1) → Y,

where F ′
1 is the orthogonal complement of F1 in F and GR

1 (F ′
1) consists

of a single point x0. Thus we may write Z ′ = ῑ(Z × {x0}), where Z is a
maximal flat totally geodesic torus of GR

m−1(F1). Since n ≥ m + 1, the
orthogonal complement F2 of F1 in R

m+n is of dimension n −m + 2 ≥ 3
and contains F ′

1. Then x0 belongs to the real projective space GR

1 (F2). We
now consider the totally geodesic imbedding (4.24) corresponding to the
orthogonal subspaces F1 and F2 of R

m+n. Let u be a symmetric p-form
on Y satisfying the Guillemin condition. According to Lemma 4.9, the
restrictions of u to the totally geodesic submanifold ϕ(GR

m−1(F1)×{x0}) or
to its maximal flat torus Z ′ = ϕ(Z×{x0}) satisfy the Guillemin condition.
Since Z ′ is an arbitrary maximal flat totally geodesic torus of Y ′, we infer
that the restriction of u to Y ′ also satisfies the Guillemin condition.

From Proposition 4.10 and Lemma 4.6, by means of the isometries
Ψ : GR

p,q → GR

q,p we deduce the following:

Proposition 4.12. Let y be a point of the real Grassmannian Y =
GR

m,n. Let Y ′ be a closed totally geodesic submanifold of Y isometric to

the real Grassmannian GR

q,r which can be written in the form ExpyV ′⊗W ′,
where V ′ is a q-dimensional subspace of VY,y and W ′ is an r-dimensional
subspace of WY,y. Assume either that 2 ≤ m < n and r = n, or that
2 ≤ n < m and q = m. If u is a symmetric p-form on Y satisfying the
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Guillemin condition, then the restriction of u to Y ′ satisfies the Guillemin
condition.

When 1 ≤ q ≤ m − 1, the following proposition is a consequence of
Propositions 4.11 and 4.12 and Lemma 4.6. If m ≤ q ≤ n in the following
proposition, the submanifold Y ′ of Y considered there has the same rank
as Y , and in this case the conclusion of the proposition is immediate.

Proposition 4.13. Let y be a point of the real Grassmannian Y =
GR

m,n, with 2 ≤ m < n. Let Y ′ be a closed totally geodesic submanifold

of Y isometric to the real Grassmannian GR

m,q which can be written in the
form ExpyVY,y ⊗W ′, where W ′ is a q-dimensional subspace of WY,y. If u
is a symmetric p-form on Y satisfying the Guillemin condition, then the
restriction of u to Y ′ satisfies the Guillemin condition.

From Proposition 4.12 and the injectivity of the X-ray transform for
functions on a real projective space, we now obtain the following proposi-
tion, which is also given by Theorem 2.24.

Proposition 4.14. For m,n ≥ 2, with m �= n, the maximal flat
Radon transform for functions on the real Grassmannian GR

m,n is injective.

Proof: Without any loss of generality, we may suppose that m < n.
Let y be an arbitrary point of GR

m,n; we consider a submanifold Y ′ of
Y = GR

m,n which is of the form ExpyV ′ ⊗ WY,y, where V ′ is a one-
dimensional subspace of VY,y. Let f be a function on Y satisfying the
Guillemin condition. Since Y ′ is isometric to the real projective space
RP

n of dimension n ≥ 3, by Proposition 4.12, with q = 1 and r = n, we
see that the restriction f ′ of f to Y ′ satisfies the zero-energy condition.
The injectivity of the X-ray transform for functions on the real projective
space RP

n, given by Theorem 2.23,(ii), now tells us that f ′ vanishes. Hence
the function f vanishes at y.

The following proposition is a generalization of Proposition 5.2 of [21].

Proposition 4.15. Let y be a point of the real Grassmannian Y =
GR

m,n, with 2 ≤ m < n, and let 2 ≤ r ≤ n be a given integer. Let
Y ′ be a closed totally geodesic submanifold of Y isometric to the real
Grassmannian GR

1,r which can be written in the form Expyv ⊗W ′, where
v is a unit vector of VY,y and W ′ is an r-dimensional subspace of WY,y. If
θ is a 1-form on Y satisfying the Guillemin condition, then the restriction
of θ to Y ′ is exact.

Proof: Let Z be the closed totally geodesic submanifold of Y equal
to Expyv⊗WY,y, which is isometric to the real Grassmannian GR

1,n; clearly
Y ′ is a totally geodesic submanifold of Z. Let θ be a 1-form on Y satisfying
the Guillemin condition. By Proposition 4.12, the restriction of θ to the
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submanifold Z satisfies the zero-energy condition; therefore so does the
restriction θ′ of θ to the submanifold Y ′. By Theorem 3.26, we know that
θ′ is exact.



CHAPTER V

THE COMPLEX QUADRIC

§1. Outline

This chapter is devoted to the complex quadric which plays a central
role in the rigidity problems. In §§2 and 3, we describe the differential ge-
ometry of the quadric Qn viewed as a complex hypersurface of the complex
projective space CP

n+1. We show that Qn is a Hermitian symmetric space
and a homogeneous space of the group SO(n+ 2). The involutions of the
tangent spaces of Qn, which arise from the second fundamental form of the
quadric, allow us to introduce various objects and vector bundles on Qn.
In particular, we decompose the bundle of symmetric 2-forms on Qn into
irreducible SO(n+2)-invariant sub-bundles; one of these bundles L, which
is of rank 2, was first introduced in [18]. In §4, we develop the local formal-
ism of Kähler geometry on the complex quadric following [22]; we wish to
point out that auspicious choices lead to remarkably simple formulas. The
identification of the quadric Qn with the Grassmannian G̃R

2,n of oriented
2-planes in R

n+2 given in §5 allows us to relate the geometries of these two
manifolds and to define the objects introduced in §3 in an intrinsic man-
ner. In the next section, we describe the tangent spaces of various families
of totally geodesic submanifolds of Qn and present results concerning the
spaces of tensors of curvature type which vanish when restricted to some of
these families. In §7, we determine explicitly the space of infinitesimal Ein-
stein deformations of Qn and, from the point of view of harmonic analysis
on homogeneous spaces, we compute the multiplicities of a class of isotypic
components of the SO(n+2)-module of complex symmetric 2-forms on Qn
and establish properties of these components. Finally, §8 is devoted to re-
sults concerning sections of the sub-bundle L of S2T ∗; in §9, we prove that
the complex quadric Q2 is isometric to the product of spheres S2 × S2.

§2. The complex quadric viewed as a symmetric space

Let n be an integer ≥ 2. In this chapter, we suppose that X is the com-
plex quadric Qn, which is the complex hypersurface of complex projective
space CP

n+1 defined by the homogeneous equation

ζ2
0 + ζ2

1 + · · · + ζ2
n+1 = 0,

where ζ = (ζ0, ζ1, . . . , ζn+1) is the standard complex coordinate system
of C

n+2. Let g be the Kähler metric on X induced by the Fubini-Study
metric g̃ on CP

n+1 of constant holomorphic curvature 4 considered in Chap-
ter III. We denote by J the complex structure of X or of CP

n+1.
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We consider the natural projection

π : C
n+2 − {0} → CP

n+1

and the unit sphere S2n+3 of C
n+2 endowed with the Riemannian metric

induced by the real scalar product (3.7) on C
n+2. For z ∈ S2n+3, we

consider the space

Hz(S2n+3) =
{

(z, u) | u ∈ C
n+2, 〈z, u〉 = 0

}

of §2, Chapter III defined in terms of the Hermitian scalar product (3.6),
with K = C, and we view it as a subspace of the tangent space Tz(S2n+3)
of S2n+3 at z; we denote by Tπ(z)(CP

n+1) the tangent space of CP
n+1

at π(z). We recall that the restriction

π : S2n+3 → CP
n+1

of the mapping π is a Riemannian submersion and that, for z ∈ S2n+3, the
induced mapping

π∗ : Hz(S2n+3) → Tπ(z)(CP
n+1)

is an isometry.
We endow C

n+2 with the complex bilinear form h defined by

h(z, w) =
n+1∑
j=0

zjwj ,

where z = (z0, z1, . . . , zn+1) and w = (w0, w1, . . . , wn+1) are elements
of C

n+2. In fact, we have

Qn =
{
π(z) | z ∈ C

n+2 − {0}, h(z, z) = 0
}

=
{
π(z) | z ∈ S2n+3, h(z, z) = 0

}
.

If z ∈ S2n+3 satisfies h(z, z) = 0, we consider the subspace

H ′
z(S

2n+3) =
{

(z, u) | u ∈ C
n+2, 〈z, u〉 = 0, h(z, u) = 0

}

of Hz(S2n+3); then the mapping

π∗ : H ′
z(S

2n+3) → Tπ(z)

is an isometry (see Example 10.6 in Chapter XI of [40]).
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Let {e0, e1, . . . , en+1} be the standard basis of C
n+2. Let b̃ be the point

(e0 + ie1)/
√

2 of S2n+3; then h(b̃, b̃) = 0 and b = π(b̃) is a point of Qn. We
consider the vectors

ν̃ =
(
b̃, (−e0 + ie1)/

√
2
)
, ν̃′ =

(
b̃, (ie0 + e1)/

√
2
)

of Hb̃(S
2n+3); clearly, we have π∗ν̃′ = −Jπ∗ν̃. Then

{
(b̃, e2), . . . , (b̃, en+1), (b̃, ie2), . . . , (b̃, ien+1)

}

is an orthonormal basis of H ′
b̃
(S2n+3) and {ν̃, ν̃′} is an orthonormal basis

for the orthogonal complement of H ′
b̃
(S2n+3) in Hb̃(S

2n+3).
The group SU(n+2) acts on C

n+2 and CP
n+1 by holomorphic isome-

tries. Its subgroup G = SO(n + 2) leaves the submanifold X of CP
n+1

invariant; in fact, the group G acts transitively and effectively on the Rie-
mannian manifold (X, g) by holomorphic isometries. The isotropy group
of the point b is equal to the subgroup K = SO(2)×SO(n) of G consisting
of the matrices (

A 0
0 B

)
,

where A ∈ SO(2) and B ∈ SO(n). For θ ∈ R, we denote by R(θ) the
element (

cos θ − sin θ
sin θ cos θ

)

of SO(2) and by R′(θ) the element

(
R(θ) 0

0 I

)

of K, where I is the identity element of SO(n). Since R′(θ)b̃ = e−iθ b̃, we
see that

(5.1) R′(θ)∗π∗(b̃, ej) = π∗(e−iθ b̃, ej) = π∗(b̃, eiθej),

for 2 ≤ j ≤ n+ 1.
Let {e′1, . . . , e′n} be the standard basis of C

n and let

ψ : Tb → C
n

be the isomorphism of real vector spaces determined by

ψπ∗(b̃, ej) = e′j−1, ψπ∗(b̃, iej) = ie′j−1,
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for 2 ≤ j ≤ n+1. If we identify Tb with C
n by means of this isomorphism ψ,

since Jπ∗(b̃, ej) = π∗(b̃, iej), for 2 ≤ j ≤ n + 1, the complex structure
of Tb is the one determined by the multiplication by i on C

n, and the
Kähler metric g at b is the one obtained from the standard Hermitian
scalar product on C

n, given by (3.6). Moreover, by (5.1) we see that the
action of the element

(5.2) φ =
(
R(θ) 0

0 B

)

of K, with B ∈ SO(n), θ ∈ R, on Tb = C
n is given by

(5.3) φ∗ζ = eiθBζ,

for ζ ∈ C
n, where SO(n) is considered as a subgroup of SU(n).

Since G acts transitively on X, the mapping

Ψ : G/K → X,

which sends the class φ ·K, where φ ∈ G, into the point φ(b), is a diffeo-
morphism compatible with the actions of G on G/K and X.

The element j = R′(π/2) of K belongs to the center of K and is of
order 4. The element s = j2 of G determines an involution σ of G which
sends φ ∈ G into sφs−1. Then K is equal to the identity component of the
set of fixed points of σ and (G,K) is a Riemannian symmetric pair. The
Cartan decomposition of the Lie algebra g0 of G corresponding to σ is

g0 = k0 ⊕ p0,

where k0 is the Lie algebra of K and p0 is the space of all matrices

(5.4)

⎛
⎝ 0 0 −tξ

0 0 −tη
ξ η 0

⎞
⎠

of g0, where ξ, η are vectors of R
n considered as column vectors. We

identify p0 with the tangent space of G/K at the coset of the identity
element of G and also with the vector space R

n ⊕ R
n; in particular, the

matrix (5.4) of p0 is identified with the vector (ξ, η) ∈ R
n ⊕ R

n.
If B is the Killing form of g0, the restriction to p0 of the scalar product

−B is invariant under the adjoint action of K and therefore induces a
G-invariant Riemannian metric g0 on the homogeneous space G/K. The
restriction of Ad j to p0 is a K-invariant complex structure on p0 and so
gives rise to a G-invariant almost complex structure on G/K. According
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to Proposition 4.2 in Chapter VIII of [36], this almost complex structure is
integrable and the manifoldG/K, endowed with the corresponding complex
structure and the metric g0, is a Hermitian symmetric space. The space
G/K is of compact type and of rank 2; when n ≥ 3, it is irreducible.

It is easily verified that the isomorphism Ψ∗ : p0 → Tb sends (ξ, η) ∈ p0,
with ξ, η ∈ R

n, into the element (ξ+iη)/
√

2 of C
n. The group K acts on Tb

and, for φ ∈ K, we have

Ψ∗ ◦ Adφ = φ ◦ Ψ∗

as mappings from p0 to Tb. We also see that Ψ∗ ◦ Ad j = J ◦ Ψ∗ and that

g0 = 4nΨ∗g.

Thus Ψ is a holomorphic isometry from the Hermitian symmetric space
G/K, endowed with the metric (1/4n) · g0, to X; henceforth, we shall
identify these two Kähler manifolds by means of this isometry. According
to formula (1.65), it follows that X is an Einstein manifold and that its
Ricci tensor Ric is given by

(5.5) Ric = 2ng.

§3. The complex quadric viewed as a complex hypersurface

We begin by recalling some results of Smyth [49] (see also [21]). The
second fundamental form C of the complex hypersurface X of CP

n+1 is a
symmetric 2-form with values in the normal bundle of X in CP

n+1. We
denote by S the bundle of unit vectors of this normal bundle.

Let x be a point of X and ν be an element of Sx. We consider the
element hν of S2T ∗

x defined by

hν(ξ, η) = g̃(C(ξ, η), ν),

for all ξ, η ∈ Tx. Since {ν, Jν} is an orthonormal basis for the fiber of the
normal bundle of X in CP

n+1 at the point x, we see that

C(ξ, η) = hν(ξ, η)ν + hJν(ξ, η)Jν,

for all ξ, η ∈ Tx. If μ is another element of Sx, we have

(5.6) μ = cos θ · ν + sin θ · Jν,

with θ ∈ R. We consider the symmetric endomorphism Kν of Tx deter-
mined by

hν(ξ, η) = g(Kνξ, η),
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for all ξ, η ∈ Tx. Since our manifolds are Kähler, we have

C(ξ, Jη) = JC(ξ, η),

for all ξ, η ∈ Tx; from this relation, we deduce the equalities

(5.7) KJν = JKν = −KνJ.

It follows that hν and hJν are linearly independent. By (5.7), we see that
hν belongs to (S2T ∗)− and that

(5.8) ȟν = −hJν .

Then if μ is the element of Sx given by (5.6), it is easily verified that

(5.9) Kμ = cos θ ·Kν + sin θ · JKν .

The Gauss equation gives us an expression for the Riemann curvature ten-
sor R of (X, g) in terms of the Riemann curvature tensor R0 of CP

n+1

(endowed with the metric g̃) and the second fundamental form C; in fact,
we have

R(ξ1, ξ2, ξ3, ξ4) = R0(ξ1, ξ2, ξ3, ξ4) + g̃(C(ξ1, ξ4), C(ξ2, ξ3))

− g̃(C(ξ1, ξ3), C(ξ2, ξ4)),

for all ξ1, ξ2, ξ3, ξ4 ∈ T . Using formulas (3.13) and (5.7), from the above
relation we obtain the equality

(5.10)

R̃(ξ, η)ζ = g(η, ζ)ξ − g(ξ, ζ)η + g(Jη, ζ)Jξ − g(Jξ, ζ)Jη

− 2g(Jξ, η)Jζ + g(Kνη, ζ)Kνξ − g(Kνξ, ζ)Kνη

+ g(JKνη, ζ)JKνξ − g(JKνξ, ζ)JKνη,

for all ξ, η, ζ ∈ Tx. From (5.7), we infer that the trace of the endomorphism
Kν of Tx vanishes. According to this last remark and formulas (5.10)
and (5.7), we see that

Ric(ξ, η) = −2g(K2
νξ, η) + 2(n+ 1)g(ξ, η),

for all ξ, η ∈ Tx. From (5.5), it follows that Kν is an involution. We call
Kν the real structure of the quadric associated to the unit normal ν.

We denote by T+
ν and T−

ν the eigenspaces of Kν corresponding to the
eigenvalues +1 and −1, respectively. Then by (5.7), we infer that J induces
isomorphisms of T+

ν onto T−
ν and of T−

ν onto T+
ν , and that

(5.11) Tx = T+
ν ⊕ T−

ν
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is an orthogonal decomposition. If μ is the unit normal given by (5.6), then
according to (5.7) we easily see that

(5.12) T+
μ =

{
cos θ′ · ξ + sin θ′ · Jξ | ξ ∈ T+

ν

}
,

where θ′ = θ/2. In particular, if μ is the unit normal −ν, we obtain the
equalities

(5.13) T+
μ = JT+

ν = T−
ν .

If φ is an isometry of CP
n+1 which preserves X, we have

C(φ∗ξ, φ∗η) = φ∗C(ξ, η),

for all ξ, η ∈ T . Thus, if μ is the tangent vector φ∗ν belonging to Sφ(x), we
see that

hμ(φ∗ξ, φ∗η) = hν(ξ, η),

for all ξ, η ∈ Tx, and hence that

(5.14) Kμφ∗ = φ∗Kν

on Tx. Therefore φ induces isomorphisms

φ∗ : T+
ν → T+

μ , φ∗ : T−
ν → T−

μ .

Now let ν be a section of S over an open subset U of X. Let hν be the
section of S2T ∗ over U corresponding to the unit normal field ν defined by

(hν)(x) = hν(x),

for x ∈ U ; we then consider the symmetric endomorphism Kν of T|U de-
termined by

Kν(x) = Kν(x),

for x ∈ U . We also consider the sub-bundles T+
ν and T−

ν of T|U , which
are the eigenbundles of Kν corresponding to the eigenvalues +1 and −1,
respectively; we have T+

ν,x = T+
ν(x) and T−

ν,x = T−
ν(x), for x ∈ U . If ∇̃

denotes the Levi-Civita connection of the metric g̃ on CP
n+1, we consider

the 1-form ϕν on U defined by

〈ξ, ϕν〉 = g̃(∇̃ξν, Jν),

for all ξ ∈ T|U . Then we have the equality

(5.15) ∇̃ξν = −Kνξ + 〈ξ, ϕν〉Jν,
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for all ξ ∈ T|U . Now let ξ, η be vectors of T|U . According to (5.15) and
the definition of the curvature tensor R̃0 of CP

n+1, we easily see that the
equality

(5.16)
R̃0(ξ, η)ν = 〈ξ ∧ η, dϕν〉Jν − (∇̃Kν)(ξ, η) + (∇̃Kν)(η, ξ)

+ 〈ξ, ϕν〉JKνη − 〈η, ϕν〉JKνξ

holds. On the other hand, formula (3.13) tells us that

(5.17) R̃0(ξ, η)ν = −2ω(ξ, η)Jν.

Since Kν is an involution of T|U , by (5.7) the definition of the second
fundamental form C gives us the relation

(5.18)
(∇̃Kν)(ξ, η) − (∇̃Kν)(η, ξ) = (∇Kν)(ξ, η) − (∇Kν)(η, ξ)

− 2ω(ξ, η)Jν.

We equate the normal and tangential components of the right-hand sides
of (5.16) and (5.17); using (5.18), we then find that

(5.19) dϕν = −4ω

and that the Gauss-Codazzi equation

(5.20) (∇Kν)(ξ, η) − (∇Kν)(η, ξ) = 〈ξ, ϕν〉JKνη − 〈η, ϕν〉JKνξ

holds. Since Kν is an involution, we know that ∇K2
ν = 0; hence if η is

an element of T+
ν (resp. of T−

ν ), we see that (∇Kν)(ξ, η) belongs to T−
ν

(resp. to T+
ν ). From this last remark, the equality (5.20) and the fact that

J induces isomorphisms J : T+
ν → T−

ν and J : T−
ν → T+

ν , we deduce that
the relation

(5.21) (∇Kν)(ξ, η) = 〈ξ, ϕν〉JKνη

holds whenever ξ belongs to T+
ν (resp. to T−

ν ) and η is an element of T−
ν

(resp. of T+
ν ). Since X is a Kähler manifold, by (5.7) we see that

(∇Kν)(ξ, Jη) = −J(∇Kν)(ξ, η).

If ξ and η belong to the same eigenbundle of Kν , by (5.21) and (5.7) we
have

(∇Kν)(ξ, Jη) = 〈ξ, ϕν〉Kνη;
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from the last two equalities, we infer that the relation (5.21) also holds in
this case. Thus we have shown that

(5.22) ∇Kν = ϕν ⊗ JKν .

The remainder of this section is devoted to results of [21] and [23]. We
consider the sub-bundle L of (S2T ∗)− introduced in [18], whose fiber at
x ∈ X is equal to

Lx = {hμ | μ ∈ Sx };
according to (5.9), if ν ∈ Sx, this fiber Lx is generated by the elements
hν and hJν and so the sub-bundle L of (S2T ∗)− is of rank 2. We denote
by (S2T ∗)−⊥ the orthogonal complement of L in (S2T ∗)−. By (5.8), we
see that L is stable under the endomorphism (1.68) of (S2T ∗)−; since the
automorphism J of T is an isometry, the orthogonal complement (S2T ∗)−⊥

of L in (S2T ∗)− is also stable under this endomorphism. We denote by
L′, L′′, (S2,0T ∗)⊥ and (S0,2T ∗)⊥ the eigenbundles corresponding to the
eigenvalues +i and −i of the endomorphism of (S2T ∗)−

C
induced by the

mapping (1.68). In fact, we have the equalities

L′ = LC ∩ S2,0T ∗, L′′ = LC ∩ S0,2T ∗,

(S2,0T ∗)⊥ = (S2T ∗)−⊥
C

∩ S2,0T ∗, (S0,2T ∗)⊥ = (S2T ∗)−⊥
C

∩ S0,2T ∗

and the decompositions

LC = L′ ⊕ L′′, (S2T ∗)−⊥
C

= (S2,0T ∗)⊥ ⊕ (S0,2T ∗)⊥.

By (5.8), if x ∈ X and ν ∈ Sx, we infer that hν + ihJν generates L′
x and

that hν − ihJν generates L′′
x. Clearly, we have the equalities

L′′ = L′, (S0,2T ∗)⊥ = (S2,0T ∗)⊥

and the orthogonal decompositions

(5.23) S2,0T ∗ = L′ ⊕ (S2,0T ∗)⊥, S0,2T ∗ = L′′ ⊕ (S0,2T ∗)⊥.

Now let x a point of X and ν be an element of Sx. For β ∈ T 1,1
R,x and

h ∈ (S2T ∗)+x , we define elements Kνβ of
∧2
T ∗
x and Kνh of S2T ∗

x by

(Kνβ)(ξ, η) = β(Kνξ,Kνη), (Kνh)(ξ, η) = h(Kνξ,Kνη),

for all ξ, η ∈ Tx. Using (5.7) and (5.9), we see that Kνβ and Kνh belong
to T 1,1

R
and (S2T ∗)+, respectively, and do not depend on the choice of the

unit normal ν. Using (5.7) and (5.9), we see that Kνβ and Kνh belong
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to T 1,1
R

and (S2T ∗)+, respectively, and do not depend on the choice of the
unit normal ν. We thus obtain canonical involutions of T 1,1

R
and (S2T ∗)+

over all of X, which give us the orthogonal decompositions

T 1,1
R

= (T 1,1
R

)+ ⊕ (T 1,1
R

)−,

(S2T ∗)+ = (S2T ∗)++ ⊕ (S2T ∗)+−

into the direct sum of the eigenbundles (T 1,1
R

)+, (T 1,1
R

)−, (S2T ∗)++ and
(S2T ∗)+− corresponding to the eigenvalues +1 and −1, respectively, of
these involutions. We easily see that

(5.24)

(S2T ∗)++
x = {h ∈ (S2T ∗)+x | h(ξ, Jη) = 0, for all ξ, η ∈ T+

ν },

(S2T ∗)+−
x = {h ∈ (S2T ∗)+x | h(ξ, η) = 0, for all ξ, η ∈ T+

ν },

(T 1,1
R

)+x = {β ∈ (T 1,1
R

)x | β(ξ, Jη) = 0, for all ξ, η ∈ T+
ν },

(T 1,1
R

)−x = {β ∈ (T 1,1
R

)x | β(ξ, η) = 0, for all ξ, η ∈ T+
ν }.

By (5.7), the morphism (1.67) induces by restriction isomorphisms

(5.25) (S2T ∗)++ → (T 1,1
R

)−, (S2T ∗)+− → (T 1,1
R

)+.

Using the equalities (5.24), we find that

rank (S2T ∗)++ =
n(n+ 1)

2
, rank (S2T ∗)+− =

n(n− 1)
2

.

The metric g is a section of (S2T ∗)++ and generates a line bundle {g},
whose orthogonal complement in (S2T ∗)++ is the sub-bundle (S2T ∗)++

0

consisting of the traceless symmetric tensors of (S2T ∗)++. The Kähler
form ω of X is the image under the morphism (1.67), or under the first
isomorphism of (5.25), and is therefore a section of (T 1,1

R
)−. We denote by

(T 1,1
R

)−0 the orthogonal complement in (T 1,1
R

)− of the line bundle {ω} gen-
erated by the section ω; the vector bundle (T 1,1

R
)−0 is the image of (S2T ∗)++

0

under the morphism (1.67). We thus obtain the orthogonal decompositions

S2T ∗ = L⊕ (S2T ∗)−⊥ ⊕ {g} ⊕ (S2T ∗)++
0 ⊕ (S2T ∗)+−,(5.26)

S2T ∗
C

= L′ ⊕ L′′ ⊕ (S2,0T ∗)⊥ ⊕ (S0,2T ∗)⊥

⊕ {g}C ⊕ (S2T ∗)++
0C

⊕ (S2T ∗)+−
C
,

(5.27)

T 1,1
R

= {ω} ⊕ (T 1,1
R

)−0 ⊕ (T 1,1
R

)+.(5.28)
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Using the relation (5.14), we easily see that the decompositions (5.26)–
(5.28) are G-invariant.

Let

π++ : S2T ∗ → (S2T ∗)++, π0
++ : S2T ∗ → (S2T ∗)++

0 ,

π+− : S2T ∗ → (S2T ∗)+−, ρ+ : T 1,1
R

→ (T 1,1
R

)+

be the orthogonal projections. Clearly, we have

π0
++h = π++h− 1

n
(Trh) · g,

for h ∈ S2T ∗.
Now let ν be a section of S over an open subset U of X and consider

the symmetric endomorphism Kν of T|U and the corresponding sub-bundle
T+
ν of T|U . If β ∈ T 1,1

R,x and h ∈ (S2T ∗)+x , with x ∈ U , we have

π+−h = 1
2 (h−Kνh), ρ+β = 1

2 (β +Kνβ).

Let h be an element of (S2T ∗)+; if k is the element π+−h, then by (5.7)
we see that

(5.29) ǩ = ρ+ȟ.

Let f be a real-valued function on X; if k is the section π+−Hess f of
(S2T ∗)+−, according to (5.29) and Lemma 1.25, we see that

(5.30) ǩ = iρ+∂∂f.

If u is a section of (S2T ∗)+ or of (T 1,1
R

)+ over U , by (5.22) we have

(∇Kνu)(ξ, η, ζ) = (∇u)(ξ,Kνη,Kνζ)

+ u((∇ξKν)η,Kνζ) + u(Kνη, (∇ξKν)ζ),

= (∇u)(ξ,Kνη,Kνζ)

+ 〈ξ, ϕν〉(u(JKνη,Kνζ) + u(Kνη, JKνζ))

= (∇u)(ξ,Kνη,Kνζ),

for all ξ, η, ζ ∈ T|U . If h is a section of (S2T ∗)+ over X, from the preceding
relations we infer that

(5.31) ∇ξπ++h = π++∇ξh, ∇ξπ+−h = π+−∇ξh,
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for all ξ ∈ T ; moreover if β is a section of (T 1,1
R

)+ over U , we obtain the
relation

(5.32) (dρ+β)(ξ, η, ζ) = (dβ)(ξ, η, ζ),

for all ξ, η, ζ ∈ T+
ν .

The complex conjugation of C
n+2 induces an involutive isometry τ of

CP
n+1 satisfying

(5.33) τ · φ(z) = φ · τ(z),

for all φ ∈ G and z ∈ CP
n+1; moreover τ preserves the submanifold X

of CP
n+1. The group Λ of isometries of X generated by τ , which is of

order 2, acts freely on X and we may therefore consider the Riemannian
manifold Y = X/Λ, with the metric gY induced by g, and the natural
projection � : X → Y , which is a two-fold covering. By (5.33), we see that
the action of the group G on X passes to the quotient Y ; in fact, the group
G acts transitively on Y . If K1 = O(2)×O(n) is the subgroup of O(n+ 2)
consisting of the matrices (

A 0
0 B

)
,

where A ∈ O(2) and B ∈ O(n), it is easily verified that the isotropy group
of the point �(b) is equal to the subgroup K ′ = G ∩K1 of G. We know
that G/K ′ is a symmetric space of compact type of rank 2, which we may
identify with Y by means of the isometry

Ψ̄ : G/K ′ → Y

sending φ ·K ′ into the point φ(�(b)), for φ ∈ G. Then by (5.33), we see
that the projection � : X → Y is identified with the natural submersion
G/K → G/K ′ of symmetric spaces.

Clearly, we have

(5.34) τ∗ · J = −J · τ∗,

as mappings acting on the tangent bundle of CP
n+1. Since τ is an isometry

of CP
n+1 preserving X, the tangent vector μ = τ∗ν belongs to Sτ(x) and

by (5.14) we have
τ∗Kν = Kμτ∗

on Tx. It follows that τ∗ preserves all the sub-bundles of S2T ∗ appearing
in the decomposition (5.26), and hence also (S2T ∗)++; moreover, we have

(5.35) τ∗π++ = π++τ
∗, τ∗π+− = π+−τ∗.
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By (5.34), we see that

(5.36) τ∗π′ = π′′τ∗

on S2T ∗
C
, and

(5.37) τ∗∂ = ∂̄τ∗

on
∧p
T ∗

C
.

We consider the sub-bundle {gY } of S2T ∗
Y generated by its section gY .

The bundles of the decomposition (5.26) are invariant under the group Λ.
Thus if F is one of the vector bundles appearing in the right-hand side of
the decomposition (5.26), we consider the sub-bundle FY of S2T ∗

Y which
it determines; then the mapping �∗ : FY,�(b) → Fb is an isomorphism of
K-modules. We denote by (S2T ∗

Y )−⊥, (S2T ∗
Y )++

0 and (S2T ∗
Y )+− the sub-

bundles of S2T ∗
Y determined by the sub-bundles (S2T ∗)−⊥, (S2T ∗)++

0 and
(S2T ∗)+− of S2T ∗, respectively. Then from (5.26) we obtain the decom-
position

(5.38) S2T ∗
Y = LY ⊕ (S2T ∗

Y )⊥ ⊕ {gY } ⊕ (S2T ∗
Y )++

0 ⊕ (S2T ∗
Y )+−

over Y .
All the fibers at b of the G-invariant vector bundles appearing in the

right-hand side of the decompositions (5.26) and (5.27) are K-submodules
of S2T ∗

b or S2T ∗
b,C. The fiber S2T ∗

Y,�(b) is a K ′-module and all the fibers
at �(b) of the vector bundles appearing in the right-hand side of the de-
composition (5.38) are K ′-submodules of S2T ∗

Y,�(b).

§4. Local Kähler geometry of the complex quadric

We now introduce the formalism of Kähler geometry on the complex
quadric X = Qn, with n ≥ 2, developed in [22, §4].

Let ζ = (ζ0, ζ1, . . . , ζn+1) be the standard complex coordinate system
of C

n+2. We consider the natural projection π : C
n+2 −{0} → CP

n+1, the
open subset

V = π
({

(ζ0, . . . , ζn+1) ∈ C
n+2

∣∣ ζ0 �= 0
})

of CP
n+1 and the holomorphic coordinate z = (z1, . . . , zn+1) on V , where

zj is the function which satisfies π∗zj = ζj/ζ0 on C
∗ × C

n+1. We set

|z| = (|z1|2 + · · · + |zn+1|2)
1
2 .

The Fubini-Study metric g̃ of CP
n+1 is given on V by

g̃jk̄ =
1
2

(
δjk

1 + |z|2 − z̄jzk
(1 + |z|2)2

)
, for 1 ≤ j, k ≤ n+ 1.
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We recall that the Christoffel symbols of the Levi-Civita connection ∇̃ of
g̃ are determined on V by

Γ̃ljk = Γ̃l̄
j̄k̄

= − z̄jδkl + z̄kδjl
1 + |z|2 .

The intersection X ∩ V is equal to the hypersurface of V given by the
equation

(5.39) z2
1 + · · · + z2

n+1 = −1.

We consider the open subset

V ′ = { z = (z1, . . . , zn+1) | Im zn+1 �= 0 }

of V and the corresponding open subset U = X∩V ′ of X. The holomorphic
vector fields

ξj =
∂

∂zj
− zj
zn+1

∂

∂zn+1
,

with 1 ≤ j ≤ n, on V ′ are tangent to X, and over U they constitute a
frame for the bundle T ′ of tangent vectors of type (1,0) of X. On V ′, we
consider the vector fields

ν′ =
n+1∑
l=1

(zl − z̄l)
1 + |z|2

∂

∂zl
,

ζ =
n∑
k=1

(zk − z̄k)
1 + |z|2 ξk, ηj = ξj + zjζ

and the 1-forms
ωj = dzj −

zj − z̄j
zn+1 − z̄n+1

dzn+1,

with 1 ≤ j ≤ n; we set ν′′ = ν′.
The real vector field

(5.40) ν =
n+1∑
l=1

(zl − z̄l)
(
∂

∂zl
− ∂

∂z̄l

)

on V ′ satisfies
ν

1 + |z|2 = ν′ + ν′′.

It is easily seen that the restriction of ν to the open subset U of X is a
section of the bundle S of unit normals over U , and that

(5.41) 〈ηk, ωj〉 = δjk, 〈ν, ωj〉 = 0
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on U , for 1 ≤ i, j ≤ n. From the first relation of (5.41), it follows that
{η1, . . . , ηn} is a frame for T ′ over U and that

{Re η1, . . . ,Re ηn, Im η1, . . . , Im ηn}

is a frame for T over U .
By means of the equation (5.39), which defines the complex quadric, we

see that the decomposition of the tangent vector ∂/∂zn+1 into its tangential
and normal components is given by

(5.42)
1

zn+1

∂

∂zn+1
= ζ − ν′

on U . It follows that

(5.43) ηj =
∂

∂zj
+ zjν

′

on U , for 1 ≤ j ≤ n. By means of (5.42), we obtain the equality

(5.44) ∇̃ξjξk = ∇ξjξk+
(
δjk +

zjzk
z2
n+1

)
ν′,

where

(5.45)

∇ξjξk =
zj z̄n+1 − z̄jzn+1

zn+1(1 + |z|2)2 ξk +
zkz̄n+1 − z̄jzn+1

zn+1(1 + |z|2)2 ξj

−
(
δjk +

zjzk
z2
n+1

)
ζ,

for 1 ≤ j, k ≤ n. From (5.45), we easily deduce that

(5.46) ∇ηj
ηk = − z̄k

1 + |z|2 ηj −
zj + z̄j
1 + |z|2 ηk.

Since ∇ξj ξ̄k = 0, we have

(5.47) ∇ηj η̄k = − z̄k
1 + |z|2 η̄j , ∇η̄j ηk = − zk

1 + |z|2 ηj .

The Hermitian metric g of X is determined on U by

(5.48) gjk̄ = g(ηj , η̄k) =
1
2

(
δjk

1 + |z|2 − zj z̄k + z̄jzk
(1 + |z|2)2

)
,
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and the inverse matrix (gjk̄) of (gjk̄) is given by the formula

(5.49)
gjk̄ = 2(1 + |z|2)

{
δjk −

1 + |zn+1|2
(zn+1 − z̄n+1)2

(zj z̄k + z̄jzk)

+
(1 + z̄2

n+1)zjzk + (1 + z2
n+1)z̄j z̄k

(zn+1 − z̄n+1)2

}
,

for 1 ≤ j, k ≤ n. The image a of the point (1, 0, . . . , 0, i) of C
n+2 under the

natural projection π : C
n+2 − {0} → CP

n+1 belongs to the subset U of X;
then a is the point of U with coordinates (0, . . . , 0, i). By (5.48), we see
that

(5.50) gjk̄(a) = g(ηj , η̄k)(a) =
1
4
.

We consider the section hν over U and the symmetric endomorphism
Kν of T|U corresponding to the unit normal field ν. For 1 ≤ j ≤ n, we
verify directly that

∇̃ξjν = − ∂

∂z̄j
+

zj
zn+1

∂

∂z̄n+1
+
zj z̄n+1 − z̄jzn+1

zn+1
ν′

on U . From this last relation and the decomposition (5.42), we infer that

∇̃ξj
ν = −ξ̄j +

zj z̄n+1 − z̄jzn+1

zn+1
(ζ̄ + ν′ − ν′′)

on U . The equality (5.15) implies that

Kνξj = ξ̄j −
zj z̄n+1 − z̄jzn+1

zn+1
ζ̄.

It follows that
Kνζ =

z̄n+1

zn+1
ζ̄,

and thus we obtain the relation

(5.51) Kνηj = η̄j .

By (5.51), (5.46) and (5.47), we have

(∇Kν)(ηj , ηk) =
zj + z̄j
1 + |z|2 η̄k,
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for 1 ≤ k ≤ n; according to (5.22), we then see that

(5.52) 〈ηj , ϕν〉 = i
zj + z̄j
1 + |z|2 .

For 1 ≤ j ≤ n, we consider the vector fields

vj =
√

2 (ηj + η̄j), wj = Jvj = i
√

2 (ηj − η̄j)

on U . By (5.51), we see that {v1, . . . , vn} and {w1, . . . , wn} are frames for
T+
ν and T−

ν , respectively, over U . By (5.50), we see that {v1(a), . . . , vn(a)}
is an orthonormal basis of T+

ν(a) = T+
ν,a. By (5.51) and (5.7), we obtain the

relations

(5.53)

hν(ηj , ηk) = gjk̄ = hν(η̄j , η̄k),

hJν(ηj , ηk) = −i gjk̄ = −hJν(η̄j , η̄k),

hν(ηj , η̄k) = hJν(ηj , η̄k) = 0,

for 1 ≤ j, k ≤ n.
The relations (5.46) and (5.47) tell us that ∇vj = ∇wj at the point a,

for 1 ≤ j ≤ n. Therefore there are orthonormal frames {v′1, . . . , v′n} for T+
ν

and {w′
1, . . . , w

′
n} for T−

ν over U satisfying

(∇vj)(a) = (∇wj)(a) = 0

and v′j(a) = vj(a), w′
j(a) = wj(a), for 1 ≤ j ≤ n. Thus since the group

G = SO(n + 2) acts transitively on X, if x is a given point of X, from
the preceding remark and (5.14) we infer that there exist a section μ of S
over a neighborhood U ′ of x and an orthonormal frame {ζ1, . . . , ζn} for the
vector bundle T+

μ over U ′ satisfying (∇ζj)(x) = 0, for 1 ≤ j ≤ n.
If ã is the point (e0 + ien+1)/

√
2 of S2n+3, then we note that π(ã) = a;

moreover,

{(ã, e1), . . . , (ã, en), (ã, ie1), . . . , (ã, ien)}

is an orthonormal basis of H ′
ã(S

2n+1), and the unit vector

μ =
(
ã, (−e0 + ien+1)/

√
2
)

of Hã(S2n+1) is orthogonal to H ′
ã(S

2n+3). We easily verify that

π∗(ã, ej) = vj(a), π∗(ã, iej) = wj(a), π∗μ = ν(a),
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for 1 ≤ j ≤ n. Since Kνvj = vj and Kνwj = −wj , we see that

Kνπ∗(ã, ej) = π∗(ã, ej), Kνπ∗(ã, iej) = −π∗(ã, iej),

for 1 ≤ j ≤ n.
We know that the vectors π∗ν̃ and π∗ν̃′ = −Jπ∗ν̃ introduced in §2

belong to Sb. By interchanging the roles of the coordinates ζ1 and ζn+1,
from the preceding relations we obtain the equalities

(5.54) Kπ∗ν̃ π∗(b̃, ej) = π∗(b̃, ej), Kπ∗ν̃ π∗(b̃, iej) = −π∗(b̃, iej),

for 2 ≤ j ≤ n+ 1.
Let f be a complex-valued function on CP

n+1 and f̃ be its restriction
to X. For 1 ≤ j, k ≤ n, let fj , fj̄, fjk̄, fjk and fj̄k̄ be the functions on V ′

defined by

fj = ηjf, fj̄ = η̄jf,

fjk̄ = ηjfk̄ +
z̄k

1 + |z|2 fj̄,

fjk = ηjfk +
z̄k

1 + |z|2 fj +
zj + z̄j
1 + |z|2 fk,

fj̄k̄ = η̄jfk̄ +
zk

1 + |z|2 fj̄ +
zj + z̄j
1 + |z|2 fk̄.

By formulas (5.46) and (5.47), for 1 ≤ j, k ≤ n we have

(5.55)
(Hess f̃)(ηj , η̄k) = fjk̄, (Hess f̃)(ηj , ηk) = fjk,

(Hess f̃)(η̄j , η̄k) = fj̄k̄

on U . For 1 ≤ j, k ≤ n, from the preceding formulas, we obtain the
equalities

(5.56)

(Hess f̃)(ηj , η̄k) =
∂2f

∂zj∂z̄k
,

(Hess f̃)(ηj , ηk) =
∂2f

∂zj∂zk
+ i δjk

∂f

∂zn+1
,

(Hess f̃)(η̄j , η̄k) =
∂2f

∂z̄j∂z̄k
− i δjk

∂f

∂z̄n+1

at the point a; moreover when j �= k, by (5.46) and (5.47) we see that the
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relations

(5.57)

(∇Hess f̃)(η̄j , ηj , ηk) =
∂3f

∂zj∂z̄j∂zk
+

1
2
∂f

∂zk
,

(∇Hess f̃)(ηj , η̄j , η̄k) =
∂3f

∂zj∂z̄j∂z̄k
+

1
2
∂f

∂z̄k
,

(∇Hess f̃)(ηj , ηj , ηk) =
∂3f

∂z2
j ∂zk

+
1
2
∂f

∂zk
+ i

∂2f

∂zk∂zn+1
,

(∇Hess f̃)(ηj , ηj , ηj) =
∂3f

∂z3
j

+
3
2
∂f

∂zj
+ 3i

∂2f

∂zj∂zn+1

hold at the point a. By (5.55) and (5.51), for 1 ≤ j, k ≤ n, we obtain the
equality

(5.58)

(π++Hess f̃)(ηj , η̄k) =
1
2

(
∂2f

∂zj∂z̄k
+

∂2f

∂zk∂z̄j

)
,

(π+−Hess f̃)(ηj , η̄k) =
1
2

(
∂2f

∂zj∂z̄k
− ∂2f

∂zk∂z̄j

)

at the point a.

§5. The complex quadric and the real Grassmannians

We also consider {e0, e1, . . . , en+1} as the standard basis of R
n+2. We

consider the real Grassmannian G̃R

2,n of oriented 2-planes in R
n+2, which

is a homogeneous space of G = SO(n+ 2), endowed with the Riemannian
metric g′ defined in §1, Chapter IV and denoted there by g; we also consider
the homogeneous vector bundles V and W over G̃R

2,n.
We define an almost complex structure J on G̃R

2,n as follows. If
x ∈ G̃R

2,n and {v1, v2} is a positively oriented orthonormal basis of the ori-
ented 2-plane Vx, the endomorphism J of Vx, determined by

Jv1 = v2, Jv2 = −v1,

is independent of the choice of basis of Vx and we have J2 = −id. Clearly,
the almost complex structure J of G̃R

2,n, which is equal to J⊗ id on the tan-
gent space (V ⊗W )x of G̃R

2,n at x ∈ G̃R

2,n, is invariant under the group G.
Since G̃R

2,n is a symmetric space, according to Proposition 4.2 in Chap-
ter VIII of [36], this almost complex structure J is integrable and the
manifold G̃R

2,n, endowed with the corresponding complex structure and the
metric g′, is a Hermitian symmetric space.
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As in §1, Chapter IV, we consider the diffeomorphism

Φ : G/K → G̃R

2,n,

which sends the class φ ·K, where φ ∈ G, into the oriented 2-plane of R
n+2

corresponding to the vector φ(e0)∧φ(e1), and which is compatible with the
actions of G on G/K and X. If x0 is the point of G̃R

2,n corresponding to the
vector e0∧e1, we see that Vx0 is generated by {e0, e1} and Wx0 is generated
by {e2, . . . , en+1}; moreover, the isomorphism Φ∗ : p0 → (V ⊗W )x0 induced
by Φ satisfies

Φ∗ ◦ Ad j = J ◦ Φ∗.

The complex quadric X = Qn is endowed with the metric g of §2. It is
easily verified that the diffeomorphism

Θ = Ψ ◦ Φ−1 : G̃R

2,n → X

sends the oriented 2-plane of R
n+2 determined by v1 ∧ v2, where {v1, v2}

is an orthonormal system of vectors of R
n+2, into the point of X equal

to π(v1 + iv2). Clearly, we have Θ(x0) = b and

Θ ◦ φ = φ ◦ Θ,

for all φ ∈ G. Thus Φ is a holomorphic isometry from G/K to X. In §1,
Chapter IV, we saw that g0 = 2nΦ∗g′; therefore we have

(5.59) Θ∗g = 1
2 g

′.

If τ0 denotes the involution of G̃R

2,n corresponding to the change of
orientation of a 2-plane of R

n+2 (which is denoted by τ in §1, Chapter IV),
we see that

(5.60) τ ◦ Θ = Θ ◦ τ0.

Also we consider the diffeomorphisms Φ̄ from the homogeneous space G/K ′

to the real Grassmannian GR

2,n of (unoriented) 2-planes in R
n+2, which

sends φ ·K ′, where φ ∈ G, into the 2-plane of R
n+2 spanned by φ(e0) and

φ(e1), and the diffeomorphism

Θ̄ = Ψ̄ ◦ Φ̄−1 : GR

2,n → Y.

Then by (5.60), it is easily seen that the diagram

(5.61)

G̃R

2,n
Θ−−→ X⏐⏐��

⏐⏐��
GR

2,n
Θ̄−−→ Y

commutes.
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If x ∈ G̃R

2,n, let Kx be the set of endomorphisms κ of Vx satisfying

Jκ = −κJ, κ2 = id.

If x ∈ X and {v1, v2} is a positively oriented orthonormal basis of the
oriented 2-plane Vx, the endomorphism κ0 of Vx determined by

κ0v1 = v1 κ0v2 = −v2,

belongs to Kx. It is easily seen that Kx consists precisely of all endomor-
phisms κ of Vx which can be written in the form

κ = cos θ · κ0 + sin θ · Jκ0,

where θ ∈ R. For κ ∈ Kx, we denote also by κ the endomorphism κ⊗ id of
the tangent space (V ⊗W )x of G̃R

2,n at x.
We again consider the point x0 of G̃R

2,n and its image b = Θ(x0) in X.
If ν′ = π∗ν̃′ is the element of Sb of §2, using the relations (5.54) we easily
verify that the endomorphism Kν′ of Tb is determined by

Kν′Θ∗(e0 ⊗ ej) = Θ∗(e0 ⊗ ej), Kν′Θ∗(e1 ⊗ ej) = −Θ∗(e1 ⊗ ej),

for 2 ≤ j ≤ n + 1. Thus if κ0 is the endomorphism of Vx0 corresponding
to the oriented orthonormal basis {e0, e1} of the oriented 2-plane Vx0 , we
have

Kν′Θ∗ = Θ∗κ0,

as mappings from the tangent space of G̃R

2,n at x0 to the tangent space
of X at b. It follows that the mapping Θ induces a bijective mapping
Θ : Kx → Sx, with Θ(κ0) = ν′, such that, for all κ ∈ Kx, we have the
equality

(5.62) KνΘ∗ = Θ∗κ

of mappings from (V ⊗W )x to the tangent space of X at Θ(x), where ν is
the element Θ(κ) of Sx.

We henceforth identify the real Grassmannian G̃R

2,n with the complex
quadric X = Qn by means of the holomorphic diffeomorphism Θ, and the
real Grassmannian GR

2,n with the manifold Y by means of the diffeomor-
phism Θ̄. Then for x ∈ X, the tangent space Tx is identified with (V ⊗W )x.
According to the commutativity of the diagram (5.61), we see that the map-
ping � : X → Y is then identified with the natural projection from G̃R

2,n

to GR

2,n. The involutive isometry τ of Qn defined in §3 is identified with
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the involution τ0 of G̃R

2,n corresponding to the change of orientation of a
2-plane of R

n+2. According to (5.59), the Kähler metric 2g on Qn is iden-
tified with the metric g′ of G̃R

2,n. Following §1, Chapter IV, we identify the
vector bundles S2T ∗ and

(S2V ∗ ⊗ S2W ∗) ⊕ (
∧2
V ∗ ⊗∧2

W ∗).

Thus we may identify the fiber of the latter vector bundle at the point
x0 with the fiber S2T ∗

b (resp. the fiber S2T ∗
Y,�(b)) as K-modules (resp. as

K ′-modules).
In §4, Chapter II and in §1, Chapter IV, we introduced the notion of

even or odd tensor (with respect to the involutive isometry τ). We recall
that, if F is a G-invariant sub-bundle of TC or of SpT ∗

C
, which is also invari-

ant under τ , the SO(m+n)-module C∞(F ) admits the decomposition (2.8),
where C∞(F )ev (resp. C∞(F )odd) is the SO(m+n)-submodule of C∞(F )
consisting of all even (resp. odd) sections of F over X. In particular, we
have the decomposition

C∞(X) = C∞(X)ev ⊕ C∞(X)odd

of the SO(m+ n)-module C∞(X).
If x is a point of X and ν is an element of Sx, according to the discus-

sion appearing above, there exists a positively oriented basis {v1, v2} of Vx
such that

J(v1 ⊗ w) = v2 ⊗ w, J(v2 ⊗ w) = −v1 ⊗ w,

v1 ⊗Wx = T+
ν , v2 ⊗Wx = T−

ν ,

for all w ∈ Wx. If {α1, α2} is the basis of V ∗
x dual to the basis {v1, v2},

by (5.7) we easily verify that the equalities

(5.63) hν = 1
2 (α2

1 − α2
2) ⊗ g2, hJν = α1 · α2 ⊗ g2

hold. If F is a subspace of T+
ν , there exists a subspace W1 of Wx of the

same dimension as F such that

F ⊕ JF = Vx ⊗W1.

If W ′ is a subspace of Wx of dimension k ≥ 2, according to Lemma 4.6 we
know that the closed totally geodesic submanifold ExpxVx ⊗W ′ of X is
isometric to the quadric Qk.

The sub-bundles (S2T ∗)++ and (S2T ∗)+− of (S2T ∗)+ can be defined
directly in terms of the intrinsic structure of the real Grassmannian G̃R

2,n,
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without having recourse to the imbedding of X as a complex hypersurface
of CP

n+1 by

(S2T ∗)++
x = {h ∈ (S2T ∗)+x | h(κξ, κη) = h(ξ, η), for all ξ, η ∈ Tx },

(S2T ∗)+−
x = {h ∈ (S2T ∗)+x | h(κξ, κη) = −h(ξ, η), for all ξ, η ∈ Tx },

for x ∈ X, where κ is an arbitrary element of Kx. We shall sometimes
write (S2T ∗

X)+− = (S2T ∗)+−.
Let x ∈ X and {v1, v2} be an orthonormal basis of Vx. An element

h ∈ S2T ∗
x belongs to the sub-bundle (S2T ∗)+ (resp. (S2T ∗)−) if and only

if
h(v2 ⊗ w1, v2 ⊗ w2) = εh(v1 ⊗ w1, v1 ⊗ w2),

h(v1 ⊗ w1, v2 ⊗ w2) = −εh(v1 ⊗ w2, v2 ⊗ w1),

for all w1, w2 ∈ Wx, where ε = 1 (resp. ε = −1). It is easily seen that an
element h of S2T ∗

x belongs to the sub-bundle (S2T ∗)++ if and only if

h(v2 ⊗ w1, v2 ⊗ w2) = h(v1 ⊗ w1, v1 ⊗ w2), h(v1 ⊗ w1, v2 ⊗ w2) = 0,

for all w1, w2 ∈ Wx; moreover, an element h of S2T ∗
x belongs to the sub-

bundle (S2T ∗)+− if and only if

h(vj ⊗ w1, vj ⊗ w2) = 0, h(v1 ⊗ w1, v2 ⊗ w2) = −h(v1 ⊗ w2, v2 ⊗ w1),

for all w1, w2 ∈Wx and j = 1, 2.
We consider the sub-bundles S2

0V
∗ of S2V ∗ and S2

0W
∗ of S2W ∗, the

sub-bundles E, Ej , with j = 1, 2, 3, of S2T ∗ defined in §1, Chapter IV.
The above observations concerning the sub-bundles (S2T ∗)−, (S2T ∗)++

and (S2T ∗)+− lead us to the equality

(5.64) (S2T ∗)+− = E

and to the inclusions

E1 ⊂ (S2T ∗)++
0 , S2

0V
∗ ⊗ S2W ∗ ⊂ (S2T ∗)−,

∧2
V ∗ ⊗∧2

W ∗ ⊂ (S2T ∗)+−.

On the other hand, the equalities (5.63) tell us that

(5.65) E2 = L.
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From the above inclusions, the relations (5.64) and (5.65), and the decom-
positions (4.6) and (5.26), we obtain the equalities

(5.66)

E1 = (S2T ∗)++
0 , E3 = (S2T ∗)−⊥,

S2
0V

∗ ⊗ S2W ∗ = (S2T ∗)−,
∧2
V ∗ ⊗∧2

W ∗ = E = (S2T ∗)+−.

We now suppose that n is even. In §1, Chapter IV, we saw that the
oriented 2-plane x ∈ X determines an orientation of the space Wx. Let x
be a point of X and let ν be an element of Sx. We say that an orthonormal
basis {ζ1, . . . , ζn} of T+

ν is positively (resp. negatively) oriented if there
is a positively oriented orthonormal basis {v1, v2} of Vx and a positively
(resp. negatively) oriented orthonormal basis {w1, . . . , wn} of Wx such that

ζj = v1 ⊗ wj ,

for 1 ≤ j ≤ n. Since n is even, it is easily seen that the notions of positively
and negatively oriented orthonormal bases of T+

ν are well-defined. Also an
arbitrary orthonormal basis of T+

ν is either positively or negatively oriented.
We now consider the case when n = 4. The orientations of the

spaces Wa, with a ∈ X, and the scalar product g2 give rise to a Hodge
operator

∗ :
∧2
W ∗ → ∧2

W ∗.

In turn, this operator induces an involution ∗ = id⊗∗ of the vector bundle∧2
V ∗ ⊗ ∧2

W ∗. Let x be a point of X and let {w1, . . . , w4} be a posi-
tively oriented orthonormal basis of Wx; according to the definition of the
involution ∗ of

∧2
V ∗ ⊗∧2

W ∗, we easily see that

(5.67) (∗ h)(v1 ⊗ w1, v2 ⊗ w2) = h(v1 ⊗ w3, v2 ⊗ w4),

for all h ∈ (
∧2
V ∗⊗∧2

W ∗)x. Let ν be an element of Sx and let {ζ1, . . . , ζ4}
be a positively oriented orthonormal basis of T+

ν . By (5.67), we have

(5.68) (∗ h)(ζ1, Jζ2) = h(ζ3, Jζ4),

for all h ∈ (S2T ∗)+−
x .

By formulas (3.6) of [21] and (5.68), we easily verify that this auto-
morphism ∗ of the vector bundle

∧2
V ∗⊗∧2

W ∗ is equal to the involution ∗
of the vector bundle (S2T ∗)+− defined in [21, §3] in terms of an appropri-
ate orientation of the real structures of X. Thus the eigenbundles F+ and
F− of this involution of (S2T ∗)+− corresponding to the eigenvalues +1
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and −1, which are considered in [21, §3], are equal to
∧2
V ∗ ⊗∧+

W ∗ and∧2
V ∗ ⊗∧−

W ∗, respectively. The decomposition

(5.69) (S2T ∗)+− = F+ ⊕ F−

then gives rise to the equality

(5.70) (S2T ∗)+−
C

= F+
C

⊕ F−
C
.

Since the mapping τ∗ : Tx → Tτ(x), with x ∈ X, is equal to the identity
mapping of (V ⊗W )x, we easily see that

(5.71) τ∗ · ∗ = − ∗ · τ∗,

as mappings from (S2T ∗)+−
τ(x) to (S2T ∗)+−

x .
If h is a section of (S2T ∗)+− over X, then the equality

(5.72) ∇ξ∗ h = ∗ ∇ξh

holds for all ξ ∈ T . Indeed, let x be an arbitrary point of X; in §4,
we saw that there exists a section ν of S over a neighborhood U of X
and an orthonormal frame {ζ1, . . . , ζ4} for T+

ν satisfying (∇ζj)(x) = 0,
for 1 ≤ j ≤ n. Without loss of generality, we may suppose that, for each
point a ∈ U , the orthonormal basis {ζ1(a), . . . , ζ4(a)} of T+

ν(a) is positively
oriented. By means of this frame and the relation (5.68), we see that the
equality (5.72) holds for all ξ ∈ Tx.

The following result is given by Lemma 4.1 of [21].

Lemma 5.1. Let X be the quadric Q4. Let x ∈ X and ν ∈ Sx, and
let {ζ1, ζ2, ζ3, ζ4} be a positively oriented orthonormal basis of T+

ν,x. Then
for h ∈ C∞((S2T ∗)+−), we have

(div ∗ h)(Jζ1) = −(dȟ)(ζ2, ζ3, ζ4).

Proof: By the second equalities of (5.24) and (5.30), and by (5.68)
and (5.72), we have

−(div ∗ h)(Jζ1) = (∇∗ h)(ζ2, ζ2, Jζ1) + (∇∗ h)(ζ3, ζ3, Jζ1)
+ (∇∗ h)(ζ4, ζ4, Jζ1)

= (∗ ∇ζ2h)(ζ2, Jζ1) + (∗ ∇ζ3h)(ζ3, Jζ1)
+ (∗ ∇ζ4h)(ζ4, Jζ1)

= (∇ȟ)(ζ2, ζ3, ζ4) + (∇ȟ)(ζ3, ζ4, ζ2) + (∇ȟ)(ζ4, ζ2, ζ3)
= (dȟ)(ζ2, ζ3, ζ4).

The following result is given by Lemma 3.2 of [22].
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Lemma 5.2. Let X be the quadric Q4. For all f ∈ C∞(X), we have

div ∗ π+−Hess f = 0.

Proof: Let x be a point of X and ν be an element of Sx, and let
{ζ1, ζ2, ζ3, ζ4} be a positively oriented orthonormal basis of T+

ν,x. If f is an
element of C∞(X), by Lemma 5.1 and formulas (5.30) and (5.32) we see
that

(div ∗ π+−Hess f)(Jζ1) = −(idρ+∂∂f)(ζ2, ζ3, ζ4)

= −(id∂∂f)(ζ2, ζ3, ζ4)
= 0.

§6. Totally geodesic surfaces

and the infinitesimal orbit of the curvature

We begin by giving an explicit representation of the infinitesimal orbit
of the curvature of the complex quadric X = Qn, with n ≥ 3.

We consider the morphism of vector bundles

τB : S2T ∗ ⊗ S2T ∗ → B, τ̂B : S2T ∗ → B

of §1, Chapter I and the morphisms of vector bundles

ψ :
∧2
T ∗ → B, ψ̌ : (

∧2
T ∗)− → B

of §4, Chapter I; we saw that the morphisms τ̂B and ψ are injective.
If x is a point of X and ν is an element of Sx, for β ∈ ∧2

T ∗
x we define

an element βKν of S2T ∗
x by

βKν (ξ, η) = β(Kνξ, η) + β(ξ,Kνη),

for ξ, η ∈ Tx. We easily verify that the element

βKν ⊗ hν + βKJν ⊗ hJν

of S2T ∗
x ⊗ S2T ∗

x does not depend on the choice of the element ν of Sx. If
we set

χ(β) = τB(βKν ⊗ hν + βKJν ⊗ hJν),

we then obtain a well-defined morphism

χ :
∧2
T ∗ → B

of vector bundles over X. We easily see that

ρ(ι(β))hν = βKν ,
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for all β ∈ ∧2
T ∗
x . From formulas (1.72) and (5.10), it follows that

ρ(ι(β))R = −2χ(β), for β ∈ T 1,1
R
,

ρ(ι(β))R = −2(ψ̌ + χ)(β), for β ∈ (
∧2
T ∗)−.

In fact, if β is an element of (T 1,1
R

)+ or if β = ω, by relation (1.78) we have

ρ(ι(β))R = 0.

By means of the decomposition (5.28), Lemma 1.13 and the preceding
formulas, we obtain the equalities

(5.73) B̃+ = χ((T 1,1
R

)−0 ), B̃− = (ψ̌ + χ)((
∧2
T ∗)−).

We now introduce various families of closed connected totally geodesic
submanifolds of X. Let x be a point of X and ν be an element of Sx. If
{ξ, η} is an orthonormal set of vectors of T+

ν , according to formula (5.10) we
see that the set ExpxF is a closed connected totally geodesic surface of X,
whenever F is the subspace of Tx generated by one of following families of
vectors:

(A1) {ξ, Jη};
(A2) {ξ + Jη, Jξ − η};
(A3) {ξ, Jξ};
(A4) {ξ, η}.

According to [10], if F is generated by the family (A2) (resp. the fam-
ily (A3)) of vectors, where {ξ, η} is an orthonormal set of vectors of T+

ν ,
the surface ExpxF is isometric to the complex projective line CP

1 with its
metric of constant holomorphic curvature 4 (resp. curvature 2). Moreover,
if F is generated by the family (A1), where {ξ, η} is an orthonormal set of
vectors of T+

ν , the surface ExpxF is isometric to a flat torus.
For 1 ≤ j ≤ 4, we denote by F̃ j,ν the set of all closed totally geodesic

surfaces of X which can be written in the form ExpxF , where F is a
subspace of Tx generated by a family of vectors of type (Aj).

According to §5, there exists a unit vector v of Vx such that an ar-
bitrary submanifold Z belonging to the family F̃4,ν can be written in the
form Expxv ⊗ W ′, where W ′ is a two-dimensional subspace of Wx. We
consider the Riemannian metric g′ on the Grassmannian G̃R

1,2 defined in
Chapter IV; by Lemma 4.6 and the relation (5.59), we see that the submani-
fold Z is isometric to the Grassmannian G̃R

1,2 endowed with the Riemannian
metric 1

2g
′. Therefore such a submanifold Z is isometric to a sphere of con-

stant curvature 2 (see also [10]); moreover, by Lemma 4.6 we also see that
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the image of Z under the mapping � : X → Y is a closed totally geodesic
surface of Y isometric to the real projective plane endowed with its metric
of constant curvature 2.

If ε is a number equal to ±1 and ξ, η, ζ are unit vectors of T+
ν satisfying

g(ξ, η) = g(ξ, ζ) = 3g(η, ζ) = ε
3
5
,

and if F is the subspace of Tx generated by the vectors

{ξ + Jζ, η + εJ(ξ − η) − Jζ},

according to (5.10) we also see that the set ExpxF is a closed connected
totally geodesic surface of X. Moreover, according to [10] this surface is
isometric to a sphere of constant curvature 2/5. We denote by F̃5,ν the set
of all such closed totally geodesic surfaces of X.

If {ξ1, ξ2, ξ3, ξ4} is an orthonormal set of vectors of T+
ν and if F is the

subspace of Tx generated by the vectors

{ξ1 + Jξ2, ξ3 + Jξ4},

according to (5.10) we see that the set ExpxF is a closed connected totally
geodesic surface of X. Moreover, according to [10] this surface is isometric
to the real projective plane RP

2 of constant curvature 1. Clearly such
submanifolds of X only occur when n ≥ 4. We denote by F̃6,ν the set of
all such closed totally geodesic surfaces of X.

If {ξ1, ξ2, ξ3, ξ4} is an orthonormal set of vectors of T+
ν and if F is the

subspace of Tx generated by the vectors

{ξ1 + Jξ2, Jξ1 − ξ2, ξ3 + Jξ4, Jξ3 − ξ4},

according to (5.10) we see that the set ExpxF is a closed connected totally
geodesic submanifold of X. Moreover, this submanifold is isometric to the
complex projective plane CP

2 of constant holomorphic curvature 4. Clearly
such submanifolds of X only occur when n ≥ 4. We denote by F̃7,ν the set
of all such closed totally geodesic submanifolds of X.

When n ≥ 4, clearly a surface belonging to the family F̃2,ν or to the
family F̃6,ν is contained in a closed totally geodesic submanifold of X be-
longing to the family F̃7,ν . In fact, the surfaces of the family F̃2,ν (resp. the
family F̃6,ν) correspond to complex lines (resp. to linearly imbedded real
projective planes) of the submanifolds of X belonging to the family F̃7,ν

viewed as complex projective planes.
Let Z be a surface belonging to the family F̃ j,ν , with 1 ≤ j ≤ 6; we

may write Z = ExpxF , where F is an appropriate subspace of Tx. Clearly,



162 V. THE COMPLEX QUADRIC

this space F is contained in a subspace of Tx which can be written in the
form F1 ⊕ JF1, where F1 is a subspace of T+

ν of dimension k; we may
suppose that this integer k is given by

k =

{ 2 when 1 ≤ j ≤ 4,
3 when j = 5,
4 when j = 6, 7.

According to observations made in §5, the surface Z = ExpxF is contained
in a closed totally geodesic submanifold ExpxVx ⊗W1 of X isometric to
the quadric Qk, where W1 is a subspace of Wx of dimension k.

Let F ′
x be the family of all closed connected totally geodesic submani-

folds of X passing through x which can be written as ExpxVx⊗W1, where
W1 is a subspace of Wx of dimension 3. We know that a submanifold of X
belonging to F ′

x is isometric to the quadric Q3 of dimension 3.
For 1 ≤ j ≤ 7, we consider the G-invariant families

F̃j
x =

⋃
ν∈Sx

F̃j,ν , F̃ j =
⋃
x∈X

F̃j
x

of closed connected totally geodesic submanifolds of X. When n ≥ 4, we
know that a surface belonging to the family F̃2 is contained in a closed
totally geodesic submanifold of X belonging to the family F̃7. We write

F1 = F̃1 ∪ F̃3 ∪ F̃4, F2 = F̃1 ∪ F̃2 ∪ F̃6,

F3 = F̃1 ∪ F̃2 ∪ F̃4 ∪ F̃5.

We also consider the G-invariant family

F ′ =
⋃
x∈X

F ′
x

of closed connected totally geodesic submanifolds of X isometric to Q3.
We have seen that a surface belonging to the family F̃j , with 1 ≤ j ≤ 5,
is contained in a closed totally geodesic submanifold of X belonging to the
family F ′.

Since the group G acts transitively on the set Ξ of all maximal flat
totally geodesic tori of X and also on a torus belonging to Ξ, and since a
surface of F̃1 is a flat 2-torus, we see that, if Z is an element of Ξ and if x
is a point of Z, there exists an element ν ∈ Sx and an orthonormal set of
vectors {ξ, η} of T+

ν such that

Z = Expx(Rξ ⊕ RJη).

It follows that the family F̃1 is equal to Ξ.
In [10], Dieng classified all closed connected totally geodesic surfaces

of X and proved the following:
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Proposition 5.3. If n ≥ 3, then the family of all closed connected
totally geodesic surfaces of X is equal to F1 ∪ F2 ∪ F3.

If Z is a surface of X belonging to the family F̃ j , with 1 ≤ j ≤ 6,
there is a subgroup of G which acts transitively on Z. Thus for 1 ≤ j ≤ 6,
we see that an element u of

⊗q
T ∗
x , with x ∈ X, vanishes when restricted

to an arbitrary surface belonging to the family F̃ j if and only if it vanishes
when restricted to an arbitrary surface belonging to the family F̃j

x of closed
connected totally geodesic surfaces of X passing through x.

We now establish relationships between the families of closed totally
geodesic surfaces of X introduced above, the G-invariant sub-bundles of
S2T ∗ and the infinitesimal orbit of the curvature B̃. If F is a G-invariant
family of closed connected totally geodesic surfaces of X, we denote by NF
the sub-bundle of B consisting of those elements of B which vanish when
restricted to the submanifolds of F .

For 1 ≤ k ≤ 6 and j = 1, 2, 3, we set

Ñk = NF̃k , Nj = NFj
,

Ñ+
k = Ñk ∩B+, Ñ−

k = Ñk ∩B−,

N+
j = Nj ∩B+, N−

j = Nj ∩B−.

Using the relation (5.13), we easily verify that the sub-bundles Ñk and Nj
of B are stable under the involution J ; hence we have

(5.74) Ñk = Ñ+
k ⊕ Ñ−

k , Nj = N+
j ⊕N−

j ,

for 1 ≤ k ≤ 6 and j = 1, 2, 3. According to formula (1.56), we see that

(5.75) B̃ ⊂ Nj ,

for j = 1, 2, 3.
Let x be a point of X, and let ν be an element of Sx and {ξ, η} be an

orthonormal system of vectors of T+
ν . Let u be an element of the vector

bundle Ñ1; clearly we have

(5.76) u(ξ, Jη, ξ, Jη) = 0.

Since ν is an arbitrary element of Sx, from the relation (5.12) we easily
infer that u also satisfies

(5.77) u(ξ + tJξ, Jη − tη, ξ + tJξ, Jη − tη) = 0,

for all t ∈ R. Since the vectors ζ1 = ξ + η and ζ2 = ξ − η of T+
ν are

orthogonal and have the same length, the equality (5.77), with t = 1, tells
us that

u(ζ1 + Jζ1, Jζ2 − ζ2, ζ1 + Jζ1, Jζ2 − ζ2) = 0;
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the preceding relation implies that the element u of Ñ1 satisfies

(5.78) u(ξ + Jη, η + Jξ, ξ + Jη, η + Jξ) = 0.

Clearly an element u of the vector bundle Ñ2 satisfies

(5.79) u(ξ + Jη, Jξ − η, ξ + Jη, Jξ − η) = 0,

while an element u of Ñ3 verifies the relation

(5.80) u(ξ, Jξ, ξ, Jξ) = 0.

On the other hand, an element u of Ñ4 satisfies

(5.81) u(ξ, η, ξ, η) = 0.

Finally, if n ≥ 4 and u is an element of Ñ6, and if {ζ, ζ ′} is an orthonormal
system of vectors of T+

ν orthogonal to the vectors ξ and η, we see that

(5.82) u(ξ + Jζ, η + Jζ ′, ξ + Jζ, η + Jζ ′) = 0.

We remark that an element u of B− always satisfies the relation (5.80).
Clearly, an element u of Bx belongs to N2,x if and only if u satisfies the

relations (5.76), (5.79) and (5.82), for all ν ∈ Sx. It is easily verified that
the vector bundles τ̂B(L) and ψ((

∧2
T ∗)−) are sub-bundles of N−

2 . Using
the formula (1.3), we see that

(5.83) Tr τ̂B(L) = L, Trψ((
∧2
T ∗)−) = {0},

and so we obtain the inclusion

(5.84) L ⊂ TrN−
2 .

The following three lemmas are proved in [21].

Lemma 5.4. Suppose that n ≥ 3. Let ν be an element of Sx and
{ξ, η, ζ} be an orthonormal system of vectors of T+

ν , and let u be an element
of the vector bundle Ñ1. Then the following assertions hold:

(i) We have

(5.85) u(ξ, Jζ, η, Jζ) = 0.

(ii) If u belongs to Ñ−
1 , we have

(5.86) u(ξ, Jξ, η, Jξ) + u(ξ, Jη, η, Jη) = 0.
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Lemma 5.5. Suppose that n ≥ 3. Let ν be an element of Sx and
{ξ, η} be an orthonormal system of vectors of T+

ν , and let u be an element
of the vector bundle Ñ+

1 ∩ Ñ+
2 . Then we have

(5.87) 2u(ξ, η, ξ, η) + u(ξ, Jξ, ξ, Jξ) + u(η, Jη, η, Jη) = 0.

Lemma 5.6. Suppose that n ≥ 4. Let ν be an element of Sx and
{ξ, η, ζ, ζ ′} be an orthonormal system of vectors of T+

ν , and let u be an
element of Ñ1 ∩ Ñ6. Then the following assertions hold:

(i) We have

u(ξ, η, ξ, η) + u(Jζ, Jζ ′, Jζ, Jζ ′) = 0,(5.88)

u(ξ, η, Jζ, η) + u(ξ, Jζ ′, Jζ, Jζ ′) = 0.(5.89)

(ii) If u belongs to B−, we have

(5.90) u(ξ, η, ξ, ζ) = −u(ζ ′, η, ζ ′, ζ).

(iii) If n ≥ 5, we have

(5.91) u(ξ, η, ξ, ζ) = 0.

(iv) If n ≥ 5 and if u belongs to B+, we have

(5.92) u(ξ1, ξ2, ξ3, ξ4) = 0,

for all vectors ξ1, ξ2, ξ3, ξ4 ∈ T+
ν .

Lemma 5.7. Suppose that n ≥ 5. Let ν be an element of Sx and
{ξ, η} be an orthonormal system of vectors of T+

ν , and let u be an element
of N+

2 . Then the equality (5.80) holds and we have

(5.93) u(ξ, η, ξ, Jξ) = 0.

Let x be a point of X, and let ν be an element of Sx and {ξ, η}
be an orthonormal system of vectors of T+

ν . We choose an orthonormal
basis {ξ1, . . . ξn} of T+

ν , with ξ1 = ξ and ξ2 = η; then {Jξ, . . . Jξn} is an
orthonormal basis of T−

ν . Then for u ∈ Bx and ζ ∈ Tx, we have

(Tru)(ξ, ζ) = u(ξ, η, ζ, η) + u(ξ, Jξ, ζ, Jξ) + u(ξ, Jη, ζ, Jη)

+
n∑
j=3

(u(ξ, ξj , ζ, ξj) + u(ξ, Jξj , ζ, Jξj)).
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Thus if u is an element of Ñ1,x, by the relation (5.76) and Lemma 5.4,(i)
we see that

(5.94)

(Tru)(ξ, ξ) = u(ξ, η, ξ, η) + u(ξ, Jξ, ξ, Jξ) +
n∑
j=3

u(ξ, ξj , ξ, ξj),

(Tru)(ξ, η) = u(ξ, Jξ, η, Jξ) + u(ξ, Jη, η, Jη) +
n∑
j=3

u(ξ, ξj , η, ξj)

and

(5.95)

(Tru)(ξ, Jη) = u(ξ, η, Jη, η) + u(ξ, Jξ, Jη, Jξ)

+
n∑
j=3

(u(ξ, ξj , Jη, ξj) + u(ξ, Jξj , Jη, Jξj)).

Lemma 5.8. For n ≥ 3, we have

TrN1 ⊂ (S2T ∗)+−.

Proof: Let x be a point ofX and u be an element ofN1,x. Let ν be an
element of Sx and ξ be a unit vector of T+

ν . We choose an orthonormal basis
{ξ1, . . . ξn} of T+

ν , with ξ1 = ξ. According to the first formula of (5.95),
with η = ξ2, and the relations (5.80) and (5.81), the expression (Tru)(ξ, ξ)
vanishes. Hence, by polarization we obtain the equality

(5.96) (Tru)(ξ, η) = 0,

for all vectors η of T+
ν . Now let η be a given vector of T+

ν . Since ν is an
arbitrary element of Sx, from the equalities (5.96) and (5.12) we infer that
the function f defined by

f(s) = (Tru)(ξ + sJξ, η + sJη),

for s ∈ R, vanishes identically. The equality f ′(0) = 0 gives the relation

(5.97) (Tru)(ξ, Jη) + (Tru)(Jξ, η) = 0.

If u belongs to N+
1 , according to (5.96) and (5.24) we find that Tru is an

element of (S2T ∗)+−. If u belongs to N−
1 , from (5.96) and (5.97) it follows

that Tru = 0. The desired result is now a consequence of the second
equality of (5.74), with j = 1.
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Proposition 5.9. (i) For n ≥ 4, we have

(5.98) TrN−
2 = L, TrN+

2 ⊂ (S2T ∗)+−.

(ii) For n ≥ 5, we have

(5.99) TrN+
2 = {0}.

Proof: We suppose that n ≥ 4. Let x be a point of X and u be an
element of N2,x. Let ν be an element of Sx and {ξ, η} be an orthonormal
system of vectors of T+

ν . We choose an orthonormal basis {ξ1, . . . ξn} of T+
ν ,

with ξ1 = ξ and ξ2 = η. First, suppose that u belongs to N−
2 . When n ≥ 5,

by Lemma 5.6,(iii) we see that

u(ξ, ξj , η, ξj) = 0,

for all 3 ≤ j ≤ n; by the equality (5.90) of Lemma 5.6,(ii), we have

u(ξ, ξ3, η, ξ3) + u(ξ, ξ4, η, ξ4) = 0.

Therefore according to the second formula of (5.94) and (5.86), we obtain

(5.100) (Tru)(ξ, η) = 0.

By the equality (5.88) of Lemma 5.6,(i), we see that

u(ξ, ξj , ξ, ξj) = u(η, ξk, η, ξk),

for 3 ≤ j, k ≤ n, with j �= k; hence we have the equality

n∑
j=3

u(ξ, ξj , ξ, ξj) =
n∑
j=3

u(η, ξj , η, ξj).

As u belongs to B−, we know that (5.80) holds, and so from the previous
relation and the first formula of (5.94), we deduce that

(5.101) (Tru)(ξ, ξ) = (Tru)(η, η).

Since ν is an arbitrary element of Sx, from the relation (5.12) and the
equalities (5.100) and (5.101), we easily infer that u also satisfies

(Tru)(ξ + tJξ, η + tJη) = 0,

(Tru)(ξ + tJξ, ξ + tJξ) = (Tru)(η + tJη, η + tJη),
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for all t ∈ R. Since Tru belongs to (S2T ∗)−, we obtain the equalities

(5.102) (Tru)(ξ, Jη) = 0, (Tru)(ξ, Jξ) = (Tru)(η, Jη).

We set
a = (Tru)(ξ, ξ), b = (Tru)(ξ, Jξ).

By (5.7), (5.100), (5.101) and (5.102), it is easily seen that Tru is equal to
the element ahν + bhJν of Lx, and so we obtain the inclusion

TrN−
2 ⊂ L.

This inclusion and (5.84) give us the first relation of (5.98). Now suppose
that u belongs to N+

2 . When n ≥ 5, by Lemma 5.7 we know that the
relation (5.80) holds; then according to the first formula of (5.94) and
Lemma 5.6,(iv), we see that the expression (Tru)(ξ, ξ) vanishes. When
n = 4, according to the first formula of (5.94) and the equalities (5.87) of
Lemma 5.5, we have

(Tru)(ξ, ξ) + (Tru)(η, η) = u(ξ, ξ3, ξ, ξ3) + u(ξ, ξ4, ξ, ξ4)

+ u(η, ξ3, η, ξ3) + u(η, ξ4, η, ξ4);

now by the relation (5.88) of Lemma 5.6,(i), the right-hand side of the
preceding equality vanishes. Therefore if n = 4 and ζ is a unit vector
of T+

ν orthogonal to ξ and η, we see that

(Tru)(ξ, ξ) = −(Tru)(η, η) = (Tru)(ζ, ζ) = −(Tru)(ξ, ξ).

Hence the expression (Tru)(ξ, ξ) = 0 also vanishes when n = 4. By po-
larization, we see that the equality (Tru)(ξ, ξ′) = 0 holds for all ξ′ ∈ T+

ν ;
by (5.24), we find that Tru belongs to (S2T ∗)+−. We now suppose that
n ≥ 5. By Lemma 5.7, we know that the equality (5.93) holds, and so we
obtain

u(ξ, η, η, Jη) = 0,

u(ξ, Jξ, Jη, Jξ) = −u(Jξ, ξ, η, ξ) = 0.

By the equality (5.89) of Lemma 5.6,(i), we see that the sum
n∑
j=3

(u(ξ, ξj , Jη, ξj) + u(ξ, Jξj , Jη, Jξj))

vanishes. Hence according to (5.95), the expression (Tru)(ξ, Jη) vanishes.
Since Tru belongs to (S2T ∗)+, we know that (Tru)(ξ, Jξ) = 0. Thus we
have proved assertion (ii).

The following two propositions are direct consequences of Proposi-
tion 5.9 and the second equality of (5.74), with j = 2. In fact, Proposi-
tion 5.11 is given by Proposition 5.1 of [21].
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Proposition 5.10. For n ≥ 5, we have

TrN2 = L.

Proposition 5.11. For n = 4, we have

TrN2 ⊂ L⊕ (S2T ∗)+−.

In [18], we verified that the sum

τ̂B(L) ⊕ ψ((
∧2
T ∗)−) ⊕ B̃−

is direct; we also know that it is a sub-bundle of N−
2 . Using the relations

(1.79) and (5.73), in [18] we were able to determine the ranks of the vector
bundles B̃+ and B̃−. When n ≥ 5, by means of Lemmas 5.4–5.7 and other
analogous results, in [21] we found explicit bounds for the ranks of the
vector bundles N+

2 and N−
2 . From these results, the relation (1.79), the

second equality of (5.74) and the inclusion (5.75), with j = 2, we obtain
the following proposition (see [18, §5]):

Proposition 5.12. For n ≥ 5, we have

N+
2 = B̃+, N−

2 = B̃− ⊕ ψ((
∧2
T ∗)−) ⊕ τ̂B(L),

N2 = B̃ ⊕ ψ((
∧2
T ∗)−) ⊕ τ̂B(L).

According to Lemma 1.7 and (5.83), we see that Proposition 5.10 may
also be deduced from Proposition 5.12.

By methods similar to those used in [21] to prove Lemmas 5.4–5.7,
Dieng [10] showed that N3 ⊂ Ñ3 and proved the following result:

Proposition 5.13. For n ≥ 3, we have

N3 = B̃.

When n ≥ 3, Dieng [10] showed that

H ∩ (T ∗ ⊗N3) = {0},

and then deduced the relation (1.48) for the complex quadric X from
Proposition 5.13; thus, we have the following result:

Proposition 5.14. For n ≥ 3, we have

H ∩ (T ∗ ⊗ B̃) = {0}.

From Proposition 5.14 and Theorem 1.18, we deduce the exactness of
the sequence (1.24) for the complex quadric X = Qn.
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§7. Multiplicities

In this section, we shall suppose that n ≥ 3. Let g and k denote the
complexifications of the Lie algebras g0 and k0 of G = SO(n + 2) and its
subgroup K, respectively. Let Γ = Ĝ and K̂ be the duals of the groups G
and K, respectively.

For μ ∈ C, we set

L(μ) =
(

0 −iμ
iμ 0

)
.

If m ≥ 1, for θ0, θ1, . . . , θm ∈ R, μ0, μ1, . . . , μm ∈ C, we consider the
2(m+ 1) × 2(m+ 1) matrices

R(θ0, θ1, . . . , θm) =

⎛
⎜⎜⎝
R(θ0) 0 . . . 0

0 R(θ1) . . . 0
...

...
. . .

...
0 0 . . . R(θm)

⎞
⎟⎟⎠ ,

L(μ0, μ1, . . . , μm) =

⎛
⎜⎜⎝
L(μ0) 0 . . . 0

0 L(μ1) . . . 0
...

...
. . .

...
0 0 . . . L(μm)

⎞
⎟⎟⎠ .

We define a subgroup T of G and a Lie subalgebra t of g as follows. If
n = 2m, with m ≥ 2, the subgroup T consists of all (n+2)×(n+2) matrices
R(θ0, θ1, . . . , θm), with θ0, θ1, . . . , θm ∈ R, and the Lie algebra t consists of
all (n + 2) × (n + 2) matrices L(μ0, μ1, . . . , μm), with μ0, μ1, . . . , μm ∈ C.
If n = 2m+ 1, with m ≥ 1, the subgroup T consists of all (n+ 2)× (n+ 2)
matrices (

R(μ0, μ1, . . . , μm) 0
0 1

)
,

with θ0, θ1, . . . , θm ∈ R, and the Lie algebra t consists of all (n+2)×(n+2)
matrices

L′(μ0, μ1, . . . , μm) =
(
L(μ0, μ1, . . . , μm) 0

0 0

)
,

with μ0, μ1, . . . , μm ∈ C.
The subgroup T is a maximal torus of G, and t is the complexification

of the Lie algebra t0 of T and is a Cartan subalgebra of the semi-simple
Lie algebras g and k. If n = 2m (resp. n = 2m + 1), for 0 ≤ j ≤ m, the
linear form λj on t, which sends the element L(μ0, μ1, . . . , μm) (resp. the
element L′(μ0, μ1, . . . , μm)) of t, with μ0, μ1, . . . , μm ∈ C, into μj , is purely
imaginary on t0; for 0 ≤ i ≤ m− 1, we write αi = λi − λi+1.



§7. Multiplicities 171

We first suppose that n = 2m, with m ≥ 2. We set αm = λm−1 + λm.
We choose Weyl chambers of (g, t) and (k, t) for which the system of simple
roots of g and k are equal to {α0, α1, . . . , αm} and {α1, . . . , αm}, respec-
tively. The highest weight of an irreducible G-module (resp. K-module) is
a linear form

c0λ0 + c1λ1 + · · · + εcmλm

on t, where ε = ±1 and c0, c1, . . . , cm are integers satisfying

(5.103) c0 ≥ c1 ≥ · · · ≥ cm ≥ 0 (resp. c1 ≥ · · · ≥ cm ≥ 0).

The equivalence class of such a G-module (resp. K-module) is determined
by this weight. In this case, we identify Γ (resp. K̂) with the set of all such
linear forms on t.

We next suppose that n = 2m+ 1, with m ≥ 1. We set αm = λm. We
choose Weyl chambers of (g, t) and (k, t) for which the system of simple roots
of g and k are equal to {α0, α1, . . . , αm} and {α1, . . . , αm}, respectively. The
highest weight of an irreducible G-module (resp. K-module) is a linear form

c0λ0 + c1λ1 + · · · + cmλm

on t, where c0, c1, . . . , cm are integers satisfying the inequalities (5.103).
The equivalence class of such a G-module (resp. K-module) is determined
by this weight. In this case, we identify Γ (resp. K̂) with the set of all such
linear forms on t.

For r, s ≥ 0, we consider the elements

γr,s = (2r + s)λ0 + sλ1, γ′r,s = (2r + s+ 1)λ0 + sλ1

of Γ. The highest weight of the G-module g is γ1 = γ0,1.
The Lie algebra k admits the decomposition

k = k1 ⊕ z,

where z is the one-dimensional center of k and k1 is a subalgebra of k iso-
morphic to so(n,C). In fact, a matrix

(
A 0
0 B

)

of k, where A ∈ so(2,C) and B ∈ so(n,C), can be written as the sum of
the two matrices (

A 0
0 0

)
,

(
0 0
0 B

)
,
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which belong to z and k1, respectively. The complexification p of p0 admits
the decomposition

p = p− ⊕ p+,

where p− and p+ are the eigenspaces of the endomorphism Ad j of p cor-
responding to the eigenvalues +i and −i, respectively. Since j belongs to
the center of K, this decomposition of p is invariant under the action of K
on p. We thus obtain the K-invariant decomposition

(5.104) g = k1 ⊕ z ⊕ p− ⊕ p+

of the Lie algebra g. The K-modules z, p− and p+ are irreducible and
their highest weights are equal to 0, −λ0 + λ1 and λ0 + λ1, respectively.
If n �= 4, the K-module k1 is irreducible; its highest weight is equal to λ1

when n = 3, and to λ1 + λ2 when n ≥ 5. When n = 4, the Lie algebra
admits the decomposition

(5.105) k1 = k+1 ⊕ k−1 ,

where k+1 and k−1 are simple subalgebras of k1 isomorphic to so(3,C); these
factors k+1 and k−1 are irreducible K-modules whose highest weights are
equal to λ1 + λ2 and λ1 − λ2, respectively.

We consider the subgroup

K ′ = G ∩ (O(2) ×O(n))

of G, which we introduced in §3 and which contains the subgroup K. The
decomposition (5.104) gives us the K ′-invariant decomposition

(5.106) g = k1 ⊕ z ⊕ p

of the Lie algebra g; in fact, the K ′-modules z, k1 and p are irreducible.
We recall that the point x0 of G̃R

2,n corresponding to the vector e0 ∧ e1
is identified with the point b of X = Qn defined in §2. We consider Vx0 as
an O(2)-module and Wx0 as an O(n)-module. Let {α0, α1} be a basis of
V ∗
x0

dual to the basis {e0, e1} of Vx0 . Since α0 ∧ α1 is a basis of the one-
dimensional vector space

∧2
V ∗
x0

, we see that it is a trivial SO(2)-module,
but is not trivial as an O(2)-module. There are natural isomorphisms
φ : z → ∧2

V ∗
C,x0

of O(2)-modules and φ : k1 → ∧2
W ∗

C,x0
of O(n)-modules,

which are both also isomorphisms of K ′-modules.
We now suppose that n = 4. As we saw in §5, the orientation of

the 2-plane Vx0 determines an orientation of the space Wx0 and a Hodge
operator

∗ :
∧2
W ∗
x0

→ ∧2
W ∗
x0

;
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if B is an element of O(4), we easily verify that

(5.107) ∗B = (detB) ·B ∗

as endomorphisms of
∧2
W ∗
x0

. In fact, we have the decomposition

∧2
W ∗

C,x0
=
∧+

W ∗
C,x0

⊕∧−
W ∗

C,x0

of
∧2
W ∗

C,x0
into irreducible SO(4)-submodules, which are the eigenspaces

of the involution ∗. The isomorphism φ : k1 → ∧2
W ∗

C,x0
induces isomor-

phisms φ : k+1 → ∧+
W ∗

C,x0
and φ : k−1 → ∧−

W ∗
C,x0

of SO(4)-modules.

We no longer suppose that n = 4. Since
∧2
V ∗
x0

is a trivial K-module
and since the SO(n)-modules k1 and

∧2
W ∗

C,x0
are isomorphic, the K-

modules k1 and (
∧2
V ∗ ⊗∧2

W ∗)C,x0 are isomorphic. Hence from the last
of the equalities (5.66), it follows that the fiber at the point b of the vector
bundle (S2T ∗)+−

C
is isomorphic to k1 as a K-module.

The fibers at the point b of X of the vector bundles T ′ and T ′′ and
of the vector bundles appearing in the decomposition (5.27) of S2T ∗

C
are

irreducibleK-modules, except for the fiber of (S2T ∗)+−
C

which is irreducible
only when n �= 4. Using the description of these K-modules and of the
action of K on Tb given in §2, we see that the highest weight of (S2T ∗)+−

C,b

is equal to λ1 when n = 3, and to λ1 +λ2 when n ≥ 5, and that the highest
weights of the other such irreducible K-modules are given by the following
table:

K-module Highest weight K-module Highest weight

T ′
b −λ0 + λ1 T ′′

b λ0 + λ1

L′
b 2λ0 L′′

b −2λ0

(S2,0T ∗)⊥b 2λ0 + 2λ1 (S0,2T ∗)⊥b −2λ0 + 2λ1

{g}C,a 0 (S2T ∗)++
0C,b 2λ1

When n = 4, the fibers at the point b of X of the vector bundles F+
C

and F−
C

appearing in the decomposition (5.70) are irreducible K-modules
whose highest weights are λ1 + λ2 and λ1 − λ2, respectively.

We recall that the equalities

E1 = (S2T ∗)++
0 , E2,C = LC = L′ ⊕ L′′,

E3,C = (S2T ∗)−⊥
C

= (S2,0T ∗)⊥ ⊕ (S0,2T ∗)⊥

hold. Hence from the previous discussion, we obtain the following result:
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Lemma 5.15. Let X be the complex quadric Qn, with n ≥ 3.
(i) We have

HomK(g, Ej,C,b) = {0},
for j = 1, 2, 3.

(ii) If n �= 4, we have

dim HomK(g, (S2T ∗)+−
C,b ) = 1.

(iii) If n = 4, we have

dim HomK(g, (S2T ∗)+−
C,b ) = 2.

From Lemma 5.15 and the decomposition (5.26), we deduce that

(5.108) dim HomK(g, S2
0T

∗
C,b) = 1

when n �= 4, and that

(5.109) dim HomK(g, S2
0T

∗
C,b) = 2

when n = 4.
According to the decomposition (5.106), the mapping

φ : g → (
∧2
V ∗ ⊗∧2

W ∗)C,x0

is well-defined by
φ(u) = (α0 ∧ α1) ⊗ φ(u1),

where u = u1 + u2 is an element of g, with u1 ∈ k1 and u2 ∈ z ⊕ p; it is
clearly a morphism of K-modules, but is not a morphism of K ′-modules.
When n �= 4, by Lemma 5.15,(ii) this morphism φ is the generator of the
space HomK(g, (

∧2
V ∗ ⊗∧2

W ∗)C,x0), and so we have

HomK′(g, (
∧2
V ∗ ⊗∧2

W ∗)C,x0) = {0}.

On the other hand, when n = 4, by (5.107) we see that the mapping

ψ : g → (
∧2
V ∗ ⊗∧2

W ∗)C,x0

defined by
ψ(u) = (α0 ∧ α1) ⊗ ∗ φ(u1),

where u = u1 + u2 is an element of g, with u1 ∈ k1 and u2 ∈ z ⊕ p, is a
morphism of K ′-modules. When n = 4, by Lemma 5.15,(iii) we see that
the space

HomK(g, (
∧2
V ∗ ⊗∧2

W ∗)C,x0)
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is generated by the morphisms φ and ψ; it follows that its subspace

HomK′(g, (
∧2
V ∗ ⊗∧2

W ∗)C,x0)

is one-dimensional and is generated by the mapping ψ.
We consider the real Grassmannian Y = GR

2,n and the natural projec-
tion � : X → Y . We recall that the isotropy group of the point �(b) is
equal to K ′; moreover the mapping �∗ : S2T ∗

Y,�(b) → S2T ∗
b is an isomor-

phism of K-modules and the fiber at the point �(b) of the vector bundle
(S2T ∗

Y )+−
C

is isomorphic to (
∧2
V ∗⊗∧2

W ∗)C,x0 as aK ′-module. By restric-
tion, the isomorphism of G-modules �∗ : C∞(Y, S2T ∗

Y,C) → C∞(S2T ∗
C
)ev

induces isomorphisms of G-modules C∞
γ (Y, S2T ∗

Y,C) → C∞
γ (S2T ∗

C
)ev and

C∞
γ (Y, (S2T ∗

Y )+−
C

) → C∞
γ ((S2T ∗)+−

C
)ev, for all γ ∈ Γ, given by (2.19). Ac-

cording to (2.21), since Y is an irreducible symmetric space which is not
Hermitian, we have

HomK′(g,C) = {0}.
From these remarks, Lemma 5.15 and the decomposition (5.38), we obtain
the following:

Lemma 5.16. Let Y be the real Grassmannian GR

2,n, with n ≥ 3, and
let y0 be the point �(b) of Y .

(i) If n �= 4, we have

HomK′(g, S2T ∗
Y,C,y0) = {0}.

(ii) If n = 4, we have

dim HomK′(g, S2T ∗
Y,C,y0) = dim HomK′(g, (S2T ∗

Y )+−
C,y0

) = 1.

According to the equalities (5.108) and (5.109) and Proposition 2.40,
since the symmetric space X is irreducible and is not equal to a simple
Lie group, we see that E(X) vanishes when n �= 4, and that E(X) is
isomorphic to the G-module g0 when n = 4. By Lemma 5.15 and the
Frobenius reciprocity theorem, we see that

C∞
γ0,1

(S2
0T

∗
C
) = C∞

γ0,1
((S2T ∗)+−

C
);

if n �= 4, then Lemma 5.15 tells us that C∞
γ0,1

(S2
0T

∗
C
) is an irreducible

G-module.
If E(X)ev denotes the G-submodule E(X)∩C∞(S2T ∗)ev of E(X), the

projection � induces an isomorphism of G-modules �∗ : E(Y ) → E(X)ev

given by (2.7). Thus when n �= 4, the vanishing of E(X) implies that
E(Y ) = {0}. Since the symmetric space Y is irreducible, is not equal to
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a simple Lie group and is not Hermitian, from Lemma 5.16 and Proposi-
tion 2.40 we again obtain the vanishing of E(Y ) when n �= 4; moreover
when n = 4, we see that E(Y ) is isomorphic to the G-module g0, and so
we have the equality

E(X) = E(X)ev.

By Lemma 5.16 and the Frobenius reciprocity theorem, when n �= 4 we
see that C∞

γ0,1
(Y, S2T ∗

Y,C) and C∞
γ0,1

(S2T ∗
C
)ev vanish; moreover when n = 4,

the G-module C∞
γ0,1

(Y, S2T ∗
Y,C) is equal to C∞

γ0,1
(Y, (S2T ∗)+−

Y,C) and is irre-
ducible. When n = 4, from the relations (2.29) we therefore obtain the
equality (5.112) of the next proposition; in turn, this equality implies that
the relations (5.111) of the next proposition hold and that C∞

γ0,1
(S2T ∗

C
)ev

is an irreducible G-module. We have thus proved the following result:

Proposition 5.17. Let X be the complex quadric Qn and Y be the
real Grassmannian GR

2,n, with n ≥ 3. If n �= 4, we have

E(X) = {0}, E(Y ) = {0}.

If n = 4, the spaces E(X) and E(Y ) are irreducible SO(6)-modules iso-
morphic to g0 = so(6); moreover, we have

(5.110) E(X) ⊂ C∞((S2T ∗)+−)ev,

(5.111) E(X)C = C∞
γ0,1

(S2T ∗
C
)ev = C∞

γ0,1
((S2T ∗)+−

C
)ev,

(5.112) E(Y )C = C∞
γ0,1

(Y, S2T ∗
Y,C).

When n �= 4, the vanishing of the space E(X) is also given by Theo-
rem 1.22 (see Koiso [41] and [42]).

From the branching law for G = SO(n+ 2) and K described in The-
orems 1.1 and 1.2 of [54], using the computation of the highest weights of
the irreducible K-modules given above we obtain the following two propo-
sitions:

Proposition 5.18. Let X be the complex quadric Qn, with n ≥ 3.
For γ ∈ Γ, the G-modules C∞

γ (L′) and C∞
γ (L′′) vanish unless γ = γr,s,

with r ≥ 1 and s ≥ 0.

Proposition 5.19. Let X be the complex quadric Qn, with n ≥ 3.
For r, s ≥ 0, the non-zero multiplicities of the G-modules C∞

γr,s
(F ), where

F is a homogeneous vector bundle over X equal either to T ′ or T ′′ or to
one of the vector bundles appearing in the decomposition (5.27) of S2T ∗

C
,
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are given by the following table:

F Conditions on r, s MultC∞
γr,s

(F )

T ′ r + s ≥ 1 2 if r, s ≥ 1

T ′′ 1 otherwise

L′ r ≥ 1, s ≥ 0 1

L′′

(S2,0T ∗)⊥ r + s ≥ 2 2 if r ≥ 2, s = 1

(S2,0T ∗)⊥ or r = 1, s ≥ 2
3 if r, s ≥ 2
1 otherwise

{g}C r, s ≥ 0 1

(S2T ∗)++
0C

r ≥ 1 or s ≥ 2 2 if r ≥ 1, s = 1
3 if r ≥ 1, s ≥ 2
1 otherwise

(S2T ∗)+−
C

r ≥ 0, s ≥ 1 1 if n �= 4
2 if n = 4

We note that, if F is one of the homogeneous sub-bundles of S2T ∗
C

considered in the preceding proposition, the multiplicity of the G-module
C∞
γ0,1

(F ) is also given by Lemma 5.15.
The Casimir element of g0 operates by a scalar cγ on an irreducible

G-module which is a representative of γ ∈ Γ. We set λγ = 4ncγ , for γ ∈ Γ.
According to (5.5) and §7, Chapter II, we therefore see that

Δu = λγu,

for all u ∈ C∞
γ (SpT ∗

C
). We shall write λr,s = λγr,s . Since cγ1 = 1, we see

that λ0,1 = 4n.
Let f be a complex-valued function on C

n+2, whose restriction to
the unit sphere S2n+3 of C

n+2 is invariant under U(1). As we saw in §4,
Chapter III, the restriction of f to S2n+3 induces by passage to the quotient
a function on CP

n+1, which we also denote by f and whose restriction to X
we denote by f̃ . If φ is an element of G = SO(n + 2), the function φ∗f
on C

n+2 also gives rise to a function on CP
n+1, whose restriction to X

is equal to φ∗f̃ . We consider the standard complex coordinate system
ζ = (ζ0, ζ1, . . . , ζn+1) of C

n+2, and the functions

f0,1(ζ) = (ζ0 + iζ1)(ζ̄2 + iζ̄3) − (ζ2 + iζ3)(ζ̄0 + iζ̄1),

f1,0(ζ) = (ζ0 + iζ1)(ζ̄0 + iζ̄1)
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on C
n+2. We also consider the function ρ on C

n+2 given by

ρ(ζ) = ζ0ζ̄0

and the space H of functions on C
n+2 generated over C by the set

{ ζj ζ̄k − ζk ζ̄j | 0 ≤ j < k ≤ n+ 1 }.

If r, s are integers ≥ 0, the functions fr,s = fr1,0 · fs0,1, the function ρ and
the elements of H are all invariant under U(1). The function f0,1 and the
function f ′, defined by

f ′(ζ) = (ζ0 + iζ1)ζ̄n+1 − ζn+1(ζ̄0 + iζ̄1),

belong to H. We shall consider the functions f̃r,s and f̃ ′ on X, and we set
f̃r,s = 0 when r < 0 or s < 0. The functions fr,s and the functions of H
clearly satisfy the relations

(5.113) τ∗f̃r,s = (−1)sf̃r,s, τ∗f̃ = −f̃ ,

for f ∈ H. Clearly, the space H̃ = { f̃ | f ∈ H} is a submodule of the
G-module C∞(X)odd and is isomorphic to the irreducible G-module g. Its
subspace

{ f̃ | f ∈ H, f = f̄ }

is isomorphic as a real G-module to the subalgebra g0 of g.
Let φ be the element of G defined by

φ(ζ)1 = ζ2, φ(ζ)2 = ζ3, φ(ζ)3 = ζn+1, φ(ζ)n+1 = ζ1

and φ(ζ)j = ζj for j = 0 or 3 < j ≤ n. For r, s ≥ 0, we consider the
function f ′r,s = φ∗fr,s and f ′′ = φ∗f ′ on C

n+2. We also consider the
objects introduced in §4. Then on the open subset V of CP

n+1, we see
that

ρ(z) =
1

1 + |z|2 ,

for z ∈ V , and that the functions f ′r,s and f ′′ are determined by

f ′1,0(z) = ρ(z)(1 + iz2)(1 + iz̄2),

f ′0,1(z) = ρ(z)((1 + iz2)(z̄3 + iz̄n+1) − (z3 + izn+1)(1 + iz̄2)),

f ′′(z) = ρ(z)((1 + iz2)z̄1 − z1(1 + iz̄2)),



§7. Multiplicities 179

for z ∈ V . Then we have f̃ ′r,s = φ∗f̃r,s, and we easily see that f̃ ′r,s(a) = 2−r

and f̃ ′′(a) = 0. We also have

(5.114) df̃ ′r,s =
1

2r+1
(i(2r + s)(dz2 + dz̄2) − s(dz3 − dz̄3))

at the point a; thus by (5.50), we obtain the equality

(5.115) (df̃ ′r,s)
� =

1
2r−1

(i(2r + s)(η2 + η̄2) + s(η3 − η̄3))

at the point a. We set

cjr,s = 2(r + s), c2r,s = (2r + s)(2r + s+ 1), c3r,s = 2r + s2 + s,

for j = 1 or 4 ≤ j ≤ n. Using formulas (5.56) and (5.58), for 1 ≤ j, k ≤ n
and all integers r, s ≥ 0, we verify that the relations

(Hess f̃ ′1,0)(ηj , ηk) = (Hess f̃ ′1,0)(η̄j , η̄k) = −1
4
δjk,(5.116)

(Hess f̃ ′r,s)(η1, η1) = (Hess f̃ ′r,s)(η̄1, η̄1) = − r

2r+1
,(5.117)

(π++Hess f̃ ′r,s)(ηj , η̄k) = − 1
2r+2

cjr,s δjk,(5.118)

(π+−Hess f̃ ′r,s)(ηj , η̄k) =
i

2r+2
s(2r + s+ 1)(δj2δk3 − δj3δk2),(5.119)

(π+−Hess f̃ ′′)(η2, η̄1) =
i

2
(5.120)

hold at the point a. From (5.115) and (5.120), we obtain

(5.121) φ∗((df̃1,0)� π+−Hess f̃ ′)(η̄1) = −1

at the point a. Using the formulas (5.57), we see that

(5.122)
(∇Hess f̃ ′1,0)(η̄1, η1, ηj)(a) = (∇Hess f̃ ′1,0)(η1, η̄1, η̄j)(a)

= (∇Hess f̃ ′1,0)(η2, η2, ηj)(a) = 0,

for j = 2, 3.
When r ≥ 1 or when s ≥ 2, the section π++Hess f̃r,s cannot be written

in the form cf̃r,sg, for some c ∈ C. Indeed, if this were the case, the
expression (π++Hess f̃ ′r,s)(ηj , η̄j)(a) would be independent of the index j,
for 1 ≤ j ≤ 3; our assertion is now a consequence of the formulas (5.118).
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According to [50], for r, s ≥ 0, the function f̃r,s on X is a highest
weight vector of the irreducible G-module Hr,s = C∞

γr,s
(X). According

to §7, Chapter II, we know that Hr,s is the eigenspace of the Laplacian
Δ acting on C∞(X) with eigenvalue λr,s. In fact, since f0,1 belongs to
the space H and since the submodule H̃ is isomorphic to the irreducible
G-module g, the eigenspace H0,1 is equal to the space H̃. It also follows that
the space Hr,s is invariant under conjugation. Since Hr,s is an irreducible
G-module, by (5.113) we see that

C∞
γr,2s

(X) = C∞
γr,2s

(X)ev, C∞
γr,2s+1

(X) = C∞
γr,2s+1

(X)odd,

for r, s ≥ 0. We also know that C∞
γ (X) = 0, whenever γ ∈ Γ is not of the

form γr,s, with r, s ≥ 0.
Since the function f̃ ′r,s = φ∗f̃r,s also belongs to Hr,s, using (5.50) and

(5.118) we easily verify that the eigenvalue of the function f̃ ′r,s is equal to

(5.123) λr,s = 2
(
2(n− 2)(r + s) + (2r + s)(2r + s+ 2) + s2

)
.

Let r, s ≥ 0 be given integers and γ be an element of Γ; then γ+γr,s also
belongs to Γ. If γ = γr′,s′ , with r′, s′ ≥ 0, then we have γ+γr,s = γr+r′,s+s′ .
Let u be a highest weight vector of the G-module C∞

γ (SpT ∗
C
). According

to §7, Chapter II, we know that u is a real-analytic section of SpT ∗
C
. Hence

the section f̃r,su of SpT ∗
C

is non-zero; clearly, this element of C∞
γ (SpT ∗

C
)

is of weight γ + γr,s. Since G is connected, the section f̃r,su is a highest
weight vector of C∞

γ+γr,s
(SpT ∗

C
).

According to Proposition 5.19, since Hr,s is an irreducible G-module,
we have

(5.124) C∞
γr,s

({g}C) = Hr,s · g,

and that the section f̃r,sg is a highest weight vector of this module; more-
over, we know that

(5.125) C∞
γ0,1

(S2T ∗
C
) = C∞

γ0,1
({g}C) ⊕ C∞

γ0,1
((S2T ∗)+−

C
).

Since Hess : C∞(X) → C∞(S2T ∗
C
) is a homogeneous differential operator

and Hr,s is an irreducible G-module, by (5.118) and (5.119) we know that
the space π+−HessHr,s is an irreducible G-submodule of C∞

γr,s
((S2T ∗)+−

C
)

when r ≥ 0 and s ≥ 1, and that the space π++HessHr,s is an irreducible
G-submodule of C∞

γr,s
((S2T ∗)++

C
) when r+s > 0. Furthermore, when r ≥ 0

and s ≥ 1, the sections

π+−Hess f̃r,s, f̃r,s−1π+−Hess f̃0,1
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are highest weight vectors of the G-module C∞
γr,s

((S2T ∗)+−
C

); on the other
hand, when r+s > 0, the section π++Hess f̃r,s is a highest weight vector of
the G-module C∞

γr,s
((S2T ∗)++

C
). Using (5.118), we verified that the section

π0
++Hess f̃r,s = π++Hess f̃r,s +

1
2n

λr,s f̃r,sg

of (S2T ∗)++
0C

is non-zero when r ≥ 1 or when s ≥ 2; therefore under
these assumptions, this section is a highest weight vector of the irreducible
G-submodule π0

++HessHr,s of C∞
γr,s

((S2T ∗)++
0C

). By (5.113) and (5.35), we
see that all these sections of (S2T ∗)+

C
are even (resp. odd) when s is an

even (resp. odd) integer. According to Proposition 5.19 we have

(5.126) C∞
γr,0

((S2T ∗)+−
C

) = {0},

for r ≥ 0; moreover when n �= 4, the G-module C∞
γr,s

((S2T ∗
C
)+−) is irre-

ducible for r ≥ 0 and s ≥ 1. Therefore when n �= 4, for r ≥ 0 and s ≥ 1,
we have the equality

(5.127) C∞
γr,s

((S2T ∗
C
)+−) = π+−HessHr,s

of irreducible G-modules, and there is a non-zero constant cr,s ∈ C such
that

(5.128) π+−Hess f̃r,s = cr,s · f̃r,s−1π+−Hess f̃0,1.

Furthermore, when n �= 4, we have the equalities

(5.129)
C∞
γr,2s

((S2T ∗)+−
C

) = C∞
γr,2s

((S2T ∗)+−
C

)ev,

C∞
γr,2s+1

((S2T ∗)+−
C

) = C∞
γr,2s+1

((S2T ∗)+−
C

)odd,

for r, s ≥ 0; by (5.124), (5.125) and (5.129), we obtain the relation

(5.130) C∞
γ0,1

(S2T ∗
C
) = C∞

γ0,1
(S2T ∗

C
)odd.

Some of the above facts concerning G-submodules of C∞
γ0,1

(S2T ∗
C
), and in

particular the equalities (5.125) and (5.130), were previously derived from
Lemmas 5.15 and 5.16.

Now suppose that n = 4 and let r ≥ 0 and s ≥ 1 be given integers.
Since the involutive morphism of vector bundles ∗ : (S2T ∗)+− → (S2T ∗)+−

is G-equivariant, the sections

f̃r,s−1∗ π+−Hess f̃0,1, ∗ π+−Hess f̃r,s
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are highest weight vectors of the G-module C∞
γr,s

((S2T ∗
C
)+−); by (5.113),

(5.35) and (5.71), we see that these sections are even (resp. odd) when
s is an odd (resp. even) integer. Thus when s is even (resp. odd) inte-
ger, the highest weight vector f̃r,s−1Hess f̃0,1 is even (resp. odd), while the
highest weight vector f̃r,s−1∗ π+−Hess f̃0,1 is odd (resp. even). Since the
multiplicity of the G-module C∞

γr,s
((S2T ∗

C
)+−), which is given by Proposi-

tion 5.19, is equal to 2, we see that the G-modules C∞
γr,s

((S2T ∗
C
)+−)ev and

C∞
γr,s

((S2T ∗
C
)+−)odd are irreducible, that a highest weight vector h of the

G-module C∞
γr,s

((S2T ∗
C
)+−) can be written in the form

h = b1f̃r,s−1Hess f̃0,1 + b2f̃r,s−1∗ π+−Hess f̃0,1,

where b1, b2 are complex numbers which do not both vanish, and that
there is a non-zero constant cr,s ∈ C such that the relation (5.128) holds.
From these remarks, we obtain the following equalities among irreducible
G-modules

(5.131)

C∞
γr,s

((S2T ∗
C
)+−)ev =

{
π+−HessHr,s if s is even,

∗ π+−HessHr,s if s is odd,

C∞
γr,s

((S2T ∗
C
)+−)odd =

{
∗ π+−HessHr,s if s is even,

π+−HessHr,s if s is odd.

By (5.124), (5.125) and (5.131), we see that the relations

(5.132)

C∞
γ0,1

(S2T ∗
C
)ev = C∞

γ0,1
((S2T ∗

C
)+−)ev = ∗ π+−HessH0,1,

C∞
γ0,1

(S2T ∗
C
)odd = C∞

γ0,1
({g}C) ⊕ C∞

γ0,1
((S2T ∗

C
)+−)odd

= H0,1 · g ⊕ π+−HessH0,1

hold. The first equality of (5.132) is also given by the relation (5.111) of
Proposition 5.17. From the first equalities of (5.132) and Proposition 5.17,
we obtain:

Proposition 5.20. Let X be the complex quadric Q4. Then the
irreducible SO(6)-module E(X) is equal to the SO(6)-submodule

{ ∗ π+−Hess f | f ∈ H0,1, f = f̄ }

of C∞((S2T ∗)+−).

We no longer assume that n = 4 and return to the situation where
n is an arbitrary integer ≥ 3. Since Hess : C∞(X) → C∞(S2T ∗

C
) is a
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homogeneous differential operator and H1,0 is an irreducible G-module,
by (5.116) we know that the spaces π′HessH1,0 and π′′HessH1,0 are ir-
reducible G-submodules of C∞

γ1,0
(S2,0T ∗) and C∞

γ1,0
(S0,2T ∗), respectively.

Moreover, the sections π′Hess f̃1,0 and π′′Hess f̃1,0 are highest weight vec-
tors of these modules. When r ≥ 1, we therefore see that the sections
f̃r−1,sπ

′Hess f̃1,0 and f̃r−1,sπ
′′Hess f̃1,0 of (S2T ∗)−

C
are highest weight vec-

tors of the G-modules C∞
γr,s

(S2,0T ∗) and C∞
γr,s

(S0,2T ∗), respectively.
According to Proposition 5.19, for r ≥ 1 and s ≥ 0, the G-modules

C∞
γr,s

(L′) and C∞
γr,s

(L′′) are irreducible, and we have the equalities

C∞
γ1,0

(L′) = C∞
γ1,0

(S2,0T ∗), C∞
γ1,0

(L′′) = C∞
γ1,0

(S0,2T ∗).

From the preceding remarks, it follows that

C∞
γ1,0

(L′) = π′Hess H1,0, C∞
γ1,0

(L′′) = π′′Hess H1,0;

thus π′Hess f̃1,0 and π′′Hess f̃1,0 are sections of L′ and L′′ and are highest
weight vectors of the irreducible G-modules C∞

γ1,0
(L′) and C∞

γ1,0
(L′′), re-

spectively. If r, s are integers ≥ 0, we see that the sections f̃r,sπ′Hess f̃1,0
and f̃r,sπ′′Hess f̃1,0 are highest weight vectors of the irreducible G-modules
C∞
γr+1,s

(L′) and C∞
γr+1,s

(L′′), respectively. Thus a highest weight vector h
of the G-module C∞

γr+1,s
(LC) can be written in the form

h = f̃r,s(b′π′ + b′′π′′) Hess f̃1,0,

where b′, b′′ are complex numbers which do not both vanish. According to
(5.113) and (5.36), the sections

(π′ + π′′)Hess f̃1,0, (π′ − π′′)Hess f̃1,0

are highest weight vectors of the irreducible G-modules C∞
γ1,0

(LC)ev and
C∞
γ1,0

(LC)odd, respectively. Moreover by (1.4) and the second equality
of (1.75), we know that the highest weight vector (π′ − π′′)Hess f̃1,0 of
C∞
γ1,0

(LC)odd belongs to D0C
∞(TC), and so we have

(5.133) C∞
γ1,0

(LC)odd = (π′ − π′′)HessH1,0 ⊂ D0C
∞(TC).

We define integers dr,s by

dr,s =

{ 0 if r = s = 0,
2 if r, s ≥ 1,
1 otherwise.

The following lemma is a consequence of Proposition 5.19 and of the
proof of Lemma 9.1 of [23].
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Lemma 5.21. The multiplicity of the G-module C∞
γr,s

(TC)ev or of the

G-module C∞
γr,s

(TC)odd is equal to dr,s.

As in §7, Chapter II, we identify the complexification KC of the space
K of all Killing vector fields on X with a G-submodule of C∞

γ0,1
(TC). From

the relations (2.28), (5.37) and (5.113), we obtain the equalities

(5.134)
C∞
γ0,1

(TC)ev = KC,

C∞
γ0,1

(T ∗
C
)ev = (∂ − ∂̄)H0,1, C∞

γ0,1
(T ∗

C
)odd = dH0,1

of irreducible G-modules.
The first relation of (5.134), Lemma 5.21 and Proposition 2.42,(i), with

X = Qn, Σ = {τ} and ε = +1, give us the following result:

Proposition 5.22. For γ ∈ Γ, the equality

N2,C ∩ C∞
γ (S2T ∗

C
)ev = D0C

∞
γ (TC)ev

is equivalent to

Mult (N2,C ∩ C∞
γ (S2T ∗

C
)ev) ≤ MultC∞

γ (TC)ev

when γ �= γ0,1, or to

N2,C ∩ C∞
γ0,1

(S2T ∗
C
)ev = {0}

when γ = γ0,1.

The first relation of (5.134), Lemma 5.21 and Proposition 2.42,(ii),
with X = Qn, Σ = {τ} and ε = −1, give us the following result:

Proposition 5.23. For γ ∈ Γ, the equality

Z2,C ∩ C∞
γ (S2T ∗

C
)odd = D0C

∞
γ (TC)odd

is equivalent to

Mult (Z2,C ∩ C∞
γ (S2T ∗

C
)odd) ≤ MultC∞

γ (TC)odd.

Proposition 2.27, with X = Qn, p = 2, F = (S2T ∗)+−
C

, Σ = {τ} and
ε = +1, gives us the following result:

Proposition 5.24. Let X be the complex quadric Qn, with n ≥ 3.
The submodule ⊕

γ∈Γ

(
N2,C ∩ C∞

γ ((S2T ∗)+−
C

)ev
)

is a dense subspace of N2,C ∩ C∞((S2T ∗)+−
C

)ev.

Proposition 2.28, with X = Qn, p = 2, F = (S2T ∗)+−
C

, Σ = {τ} and
ε = −1, gives us the following result:
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Proposition 5.25. Let X be the complex quadric Qn, with n ≥ 3.
The submodule ⊕

γ∈Γ

(
Z2,C ∩ C∞

γ ((S2T ∗)+−
C

)odd
)

is a dense subspace of Z2,C ∩ C∞((S2T ∗)+−
C

)odd.

§8. Vanishing results for symmetric forms

This section is mainly devoted to results concerning the sections of the
vector bundle L and to the proofs of the following two results:

Proposition 5.26. Let X be the complex quadric Qn, with n ≥ 3.
A section h of L over X, which satisfies the relation divh = 0, vanishes
identically.

Theorem 5.27. Let X be the complex quadric Qn, with n ≥ 3. An
even section of L over X, which belongs to the space D0C

∞(T ), vanishes
identically. Moreover, we have the equality

D0C
∞(TC) ∩ C∞(LC) = C∞

γ1,0
(LC)odd = (π′ − π′′)HessH1,0.

Theorem 5.27 may be restated as follows:

Theorem 5.28. Let X be the complex quadric Qn, with n ≥ 3. A
section h of L over X is a Lie derivative of the metric if and only if there
is a real-valued function f on X satisfying

h = π′Hess f − π′′Hess f

and Δf = λ1,0f .

Since Hess : C∞(X) → C∞(S2T ∗
C
) is a homogeneous differential op-

erator, the Hessian of an element of H0,1 belongs to C∞
γ0,1

(S2T ∗
C
). Hence

by (5.125), we see that

Hess f = π+Hess f = π+−Hess f − 1
2n

(Δf) · g,

for all f ∈ H0,1. Since λ0,1 = 4n, from the previous equalities we deduce
that

π+−Hess f = π+Hess f + 2fg,

for f ∈ H0,1. Hence from formulas (1.76) and (1.8), we obtain the relation

(5.135) divπ+−Hess f = 2(n− 1)df,

for all f ∈ H0,1.
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When n �= 4, from the relations (2.25), (5.125), (5.127) and (5.135) we
obtain the vanishing of the space E(X), given by Proposition 5.17, without
having recourse to Proposition 2.40.

By (5.123), we know that λ1,0 = 4(n + 2); hence according to (5.5)
and (1.77), we see that

(5.136) divπ′Hess f = 4∂f, divπ′′Hess f = 4∂̄f,

for all f ∈ H1,0.
We consider the element φ of G = SO(n + 2) of §7, and, for r, s ≥ 0,

the function f̃ ′r,s = φ∗f̃r,s on X, which belongs to Hr,s; we write

hr,s = Hess f̃ ′r,s.

By (1.8), (5.114)–(5.116) and (5.136), for r ≥ 1 and s ≥ 0 we see that
the equalities

(5.137)
div
(
f̃ ′r−1,sπ

′h1,0

)
=

1
2r

(i(2r + s+ 2)dz2 + sdz3),

div
(
f̃ ′r−1,sπ

′′h1,0

)
=

1
2r

(i(2r + s+ 2)dz̄2 − sdz̄3)

hold at the point a. By (1.8), (5.114), (5.115), (5.119) and (5.135), for r ≥ 0
and s ≥ 1 we see that the equality

(5.138)
div (f̃ ′r,s−1π+−h0,1) =

1
2r
i(s+ n− 2)(dz2 + dz̄2)

− 1
2r

(2r + s+ n− 2)(dz3 − dz̄3)

holds at the point a.

Lemma 5.29. Let r, s ≥ 0, with r + s ≥ 1, and b, b′, b′′ ∈ C. Suppose
that the element

(5.139)
h = b′f̃r−1,sπ

′Hess f̃1,0 + b′′f̃r−1,sπ
′′Hess f̃1,0

+ bf̃r,s−1π+−Hess f̃0,1

of C∞
γr,s

(LC ⊕ (S2T ∗)+−
C

) satisfies divh = 0. Then h vanishes identically.

Proof: By (5.137) and (5.138), when r, s ≥ 1, we see that the relation
divφ∗h = 0 implies that the equalities

0 = 2r · (divφ∗h)(η2) = i((2r + s+ 2)b′ + (s+ n− 2)b),

0 = 2r · (divφ∗h)(η3) = sb′ − (2r + s+ n− 2)b,

0 = 2r · (divφ∗h)(η̄2) = i((2r + s+ 2)b′′ + (s+ n− 2)b),

0 = 2r · (divφ∗h)(η̄3) = −sb′′ + (2r + s+ n− 2)b
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hold at a. Since the determinant of the matrix
(

2r + s+ 2 s+ n− 2
−s 2r + s+ n− 2

)

is positive, when r, s ≥ 1 the coefficients b′, b′′ and b vanish, and so in this
case h vanishes. Since

div (S2T 2,0) ⊂ T 1,0, div (S2T 0,2) ⊂ T 0,1,

when either r = 0 or s = 0, by (5.138) and (5.139) we see that the relation
divφ∗h = 0 implies that h vanishes.

Let r, s ≥ 0 be given integers, with r + s ≥ 1. According to §7, when
r ≥ 1 and s ≥ 0, a highest weight vector h of the G-module C∞

γr,s
(LC) can

be written in the form (5.139), with b = 0 and b′, b′′ ∈ C; moreover when
n �= 4, a highest weight vector h of the G-module C∞

γr,s
(LC ⊕ (S2T ∗)+−

C
)

can be written in the form (5.139), with b, b′, b′′ ∈ C. Hence since the
differential operator div : S2T ∗

C
→ T ∗

C
is homogeneous, from Lemma 5.29

and the relation (2.1) we deduce the following:

Proposition 5.30. Let X be the complex quadric Qn, with n ≥ 3.
Let r, s ≥ 0 be given integers, with r + s ≥ 1.

(i) When r ≥ 1, an element h of C∞
γr,s

(LC) satisfying divh = 0 van-
ishes identically.

(ii) When n �= 4, an element h of C∞
γr,s

(LC ⊕ (S2T ∗)+−
C

) satisfying
divh = 0 vanishes identically.

Since div : S2T ∗
C

→ T ∗
C

is a homogeneous differential operator, by
Propositions 2.3 (with Q1 = 0), 5.18 and 5.30,(i) we see that the operator

div : C∞(LC) → C∞(T ∗
C
)

is injective. This result implies the assertion of Proposition 5.26.
By (5.116)–(5.119) and (5.50), we easily verify that the relations

(π′′h1,0)((η1 hr,s)�, η̄1) = (π′h1,0)((η̄1 hr,s)�, η1) =
r

2r+1
,(5.140)

(π′h1,0)((η2 hr,s)�, η2) =
1

2r+2
(2r + s)(2r + s+ 1)(5.141)

hold at the point a.

Proposition 5.31. Let r, s ≥ 0 be given integers and b′, b′′ ∈ C.
Suppose that the element

h = f̃ ′r,s(b
′π′ + b′′π′′) Hess f̃ ′1,0
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of C∞(S2T ∗
C
) satisfies the relation

(D1divh)(η1, η̄1)(a) = 0.

Then we have b′ + b′′ = 0.

Proof: We write

h1 = (b′π′ + b′′π′′)h1,0.

According to (5.137), we have

divh1 = 4(b′∂f̃ ′1,0 + b′′∂̄f̃ ′1,0);

hence by the first equality of (1.75), we see that

π+D
1divh1 = 2(b′ + b′′)π+h1,0.

By (5.114), (5.115), (5.117), (5.122) and (5.140), we therefore obtain the
equalities

(D1divh1)(η1, η̄1) = −1
2

(b′ + b′′), (df̃ ′r,s · divh1)(η1, η̄1) = 0,

(∇h1)(η1, (df̃ ′r,s)
�, η̄1) = (∇h1)(η̄1, (df̃ ′r,s)

�, η1) = 0,

h1((η1 hr,s)�, η̄1) + h1((η̄1 hr,s)�, η1) =
r

2r+1
(b′ + b′′)

at the point a. According to formulas (1.9) and (1.10) and the preceding
relations, we see that

(D1div (f̃ ′r,sh1))(η1, η̄1)(a) = − 1
2r+2

(r + 2)(b′ + b′′).

Thus our hypotheses imply that b′ + b′′ = 0.

Proposition 5.32. Let r, s ≥ 0 be given integers. Suppose that the
element

f̃ ′r,s(π
′ − π′′) Hess f̃ ′1,0

of C∞(S2T ∗
C
) belongs to the space D0C

∞(TC). Then the integers r and s
vanish.

Proof: We consider the sections h1 = (π′ − π′′) Hess f̃1,0 and h′1 =
φ∗h1 of S2

0T
∗
C
. According to (5.136), we have

divh′1 = 4(∂f̃ ′1,0 − ∂̄f̃ ′1,0).
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Thus by (5.114), (5.115), (5.122) and (5.141), the equalities

(df̃ ′r,s · divh′1)(η2, η2) = − 1
2r−1

(2r + s), (∇h′1)(η2, (df̃ ′r,s)�, η2) = 0,

h′1((η2 hr,s)�, η2) =
1

2r+2
(2r + s)(2r + s+ 1)

hold at the point a. Let h2 denote the section of S2T ∗
C

equal to the left-hand
side of the relation (2.24), with f = f̃ ′r,s, h = h′1, γ = γ1,0 and γ′ = γr+1,s.
Then by formula (1.10), the previous equalities, and the relations (5.116)
and (5.123), we see that

h2(η2, η2)(a) =
1

2r+2
(s2 + (2n− 3)s+ 2(n− 1)r).

According to (5.133) and observations made in §7, we know that the section
h1 of S2T ∗

C
belongs to the spaces D0C

∞(TC) and is a highest weight vector
of the G-module C∞

γ1,0
(S2

0T
∗
C
), and that the section f̃r,sh1 is a highest weight

vector of the G-module C∞
γr+1,s

(S2T ∗
C
). Therefore the section h′1 = φ∗h1

belongs to the space D0C
∞(TC) and the section f̃ ′r,sh

′
1 = φ∗(f̃r,sh1) belongs

to the G-module C∞
γr+1,s

(S2T ∗
C
). According to Lemma 2.38, with γ = γ1,0

and γ′ = γr+1,s, and our hypothesis, we see that h2 vanishes. Therefore
we obtain the relation

s2 + (2n− 3)s+ 2(n− 1)r = 0,

and so we have r = s = 0.

Proposition 5.33. Let r, s ≥ 0 be given integers and b′, b′′ ∈ C.
Suppose that the element

h = f̃r,s(b′π′ + b′′π′′) Hess f̃1,0

of C∞(S2T ∗
C
) belongs to the space D0C

∞(TC). Then we have b′ + b′′ = 0;
moreover if h is non-zero, the integers r and s vanish.

Proof: Since h is a section of the sub-bundle (S2T ∗)−
C

, so is the
section Δh. Clearly, we have Trh = 0; hence by formula (1.39), we see
that π+D

1divh = 0. Thus the section

h′ = φ∗h = f̃ ′r,s(b
′π′ + b′′π′′) Hess f̃ ′1,0

satisfies π+D
1divh′ = 0. From Proposition 5.31, we therefore obtain the

relation b′ + b′′ = 0. According to our hypothesis, h′ belongs to the
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space D0C
∞(TC), and so the other assertion of the proposition is a conse-

quence of Proposition 5.32.
Let r, s ≥ 0 be given integers. According to Proposition 5.33 and the

description of the highest weight vectors of the G-module C∞
γr+1,s

(LC) given
above, we see that the space

C∞
γr+1,s

(LC) ∩D0C
∞(TC)

vanishes unless r = s = 0 and that

C∞
γ1,0

(LC)ev ∩D0C
∞(TC) = {0}.

Since D0 is a homogeneous differential operator, by Proposition 5.18 and
the relations (2.1) and (5.133), we see that Theorem 5.27 is a consequence
of these results.

§9. The complex quadric of dimension two

This section is devoted to the proof of Proposition 4.3. We once again
consider the natural projection π : C

m+1 − {0} → CP
m and the Fubini-

Study metric g̃ on CP
m of constant holomorphic curvature 4. As in §2,

we view the complex quadric Q2 as a hypersurface of CP
3 endowed with

the Kähler metric g induced by the metric g̃ of CP
3. We recall that the

complex conjugation of C
4 induces the involutive isometry τ of Q2.

We endow the manifold CP
1 × CP

1 with the Kähler metric which is
the product of the metrics g̃ on each factor. It is well-known that the Segre
imbedding

σ : CP
1 × CP

1 → CP
3,

which sends the point (π(u), π(v)), where u = (u0, u1) and v = (v0, v1) are
non-zero vectors of C

2, into the point π(u0v0, u0v1, u1v0, u1v1) of CP
3, is

an isometry. The element A of SU(4) determined by

A(ζ) =
1√
2

(ζ0 + ζ3, ζ1 − ζ2, i(ζ3 − ζ0), i(ζ1 + ζ2)),

for ζ = (ζ0, ζ1, ζ2, ζ3) ∈ C
4, induces an isometry of CP

3 which we also
denote by A. We now easily verify that the image of the mapping α = A◦σ
from CP

1 × CP
1 to CP

3 is equal to the complex quadric Q2; thus the
mapping α induces an isometry

α : CP
1 × CP

1 → Q2.

We consider the involutive isometry Ψ of CP
1 defined in §4, Chap-

ter III; according to the commutativity of diagram (3.26), it sends the
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point π(u), where u = (u0, u1) is a non-zero vector of C
2, into the point

π(v), where v = (−ū1, ū0) is a non-zero vector of C
2 orthogonal to u. We

easily verify that the diagram

(5.142)

CP
1 × CP

1 α−−→ Q2⏐⏐�Ψ×Ψ

⏐⏐�τ
CP

1 × CP
1 α−−→ Q2

is commutative.
Now we consider the diffeomorphism Θ : G̃R

2,2 → Q2 defined in §5 and
the involutive isometry Ψ of G̃R

2,2 defined in §1, Chapter IV, which sends an
oriented 2-plane of R

4 into its orthogonal complement endowed with the
appropriate orientation. If ψ : Q2 → Q2 is the involutive isometry equal to
the composition Θ−1 ◦ Ψ ◦ Θ, the diagram

(5.143)

CP
1 × CP

1 α−−→ Q2⏐⏐�id×Ψ

⏐⏐�ψ
CP

1 × CP
1 α−−→ Q2

is also commutative. In fact, let u = (u0, u1) and v = (v0, v1) be non-zero
vectors of C

2. Then we see that α(π(u), π(v)) is equal to π(ζ), where ζ is
the non-zero vector of C

4 given by

ζ = (u0v0 + u1v1, u0v1 − u1v0, i(u1v1 − u0v0), i(u0v1 + u1v0)).

If h is the complex bilinear form on C
4 defined in §2, an elementary

computation shows that the point α(π(u),Ψ(π(v))) can be written in the
form π(ζ ′), where ζ ′ is a non-zero vector of C

4 satisfying

〈ζ, ζ ′〉 = h(ζ, ζ ′) = 0.

This observation, together with the fact that the points π(ζ) and π(ζ ′)
belong to the quadric Q2, allows us to see that {Re ζ, Im ζ,Re ζ ′, Im ζ ′} is
a positively oriented orthogonal basis of R

4. If x, y ∈ G̃R

2,2 are the oriented
2-planes of R

4 corresponding to the vectors Re ζ ∧ Im ζ and Re ζ ′ ∧ Im ζ ′

of
∧2

R
4, respectively, we have

Θ(x) = α(π(u), π(v)), Θ(y) = α(π(u),Ψ(π(v))).

The commutativity of the diagram (5.143) is now a consequence of the
relations Ψ(x) = y.
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We endow the manifolds S2×S2 and RP
2×RP

2 with the Riemannian
metrics which are the product of the metrics g0 of constant curvature 1 on
each factor. We recall that the diffeomorphism ϕ : S2 → CP

1 defined in
§4, Chapter III is an isometry of (S2, g0) onto (CP

1, 4g̃). We denote by g′

the Riemannian metrics on the Grassmannians G̃R

2,2 and GR

2,2 defined in §1,
Chapter IV. When we endow the space G̃R

2,2 with the metric 2g′, by (5.59)
we see that the mapping

β = Θ−1 ◦ α ◦ (ϕ× ϕ) : S2 × S2 → G̃R

2,2

is an isometry.
We consider the anti-podal involution τ1 of S2 which is denoted by τ

in §3, Chapter III. The group Λ1 (resp. Λ2) of isometries of the Riemannian
manifold S2 × S2 generated by the mapping τ1 × τ1 (resp. the mappings
id × τ1 and τ1 × id), which is of order 2 (resp. order 4), acts freely on
S2 × S2. Clearly, Λ1 is a subgroup of Λ2. We consider the Riemannian
manifolds (S2 × S2)/Λ1 and (S2 × S2)/Λ2 endowed with the Riemannian
metrics induced by the metric of S2 × S2. The relation (5.60) and the
commutativity of the diagrams (3.25) and (5.142) now tell us that β induces
an isometry from the quotient (S2 × S2)/Λ1 onto the Grassmannian GR

2,2

endowed with the metric 2g′.
On the other hand, we observe that the quotient (S2 × S2)/Λ2 is

diffeomorphic to RP
2 × RP

2. If gȲ is the Riemannian metric on Ȳ = ḠR

2,2

defined in §1, Chapter IV, from the commutativity of the diagrams (3.25),
(5.142) and (5.143), we infer that β induces an isometry from RP

2 × RP
2

to the space ḠR

2,2 endowed with the metric 2gȲ . This completes the proof
of Proposition 4.3.



CHAPTER VI

THE RIGIDITY OF THE COMPLEX QUADRIC

§1. Outline

In §2, we describe an explicit totally geodesic flat torus of the complex
quadric Qn, with n ≥ 3, viewed as a complex hypersurface of projective
space. In §3, we introduce certain symmetric 2-forms on the quadric; later,
in §7 we shall see that they provide us with explicit bases for the high-
est weight subspaces of the isotypic components of the SO(5)-module of
complex symmetric 2-forms on the three-dimensional quadric Q3. In §§4
and 5, we compute integrals over closed geodesics in order to prove that lin-
ear combinations of the symmetric 2-forms of §3 satisfying the zero-energy
condition must verify certain relations. As the space of complex symmet-
ric 2-forms on Q3 satisfying the Guillemin condition (resp. the zero-energy
condition) is invariant under the group SO(5), the rigidity results (Theo-
rems 6.35 and 6.36) for the quadric Q3 are obtained by establishing appro-
priate bounds for the dimensions of certain spaces of symmetric 2-forms
consisting of vectors of highest weight satisfying either the Guillemin con-
dition or the zero-energy condition. These bounds were obtained in the
case of the Guillemin condition in [23] and are recalled in §3. In §6, we
establish the corresponding bounds for odd forms on Q3 satisfying the zero-
energy condition. In §8, we prove the rigidity theorems for the quadric of
dimension ≥ 3. In particular, we show that the quadric Q3 is infinitesi-
mally rigid; this result is the last remaining one needed to complete our
study of the rigidity of the quadric. Since the quadric Qn is a two-fold
covering of the real Grassmannian GR

2,n of 2-planes in R
n+2, we deduce the

rigidity in the sense of Guillemin of this Grassmannian from these results
of §8 when n ≥ 3; we note that the proof presented here does not rely, as
does the one given in [23], on the infinitesimal rigidity of the quadrics of
dimension ≥ 4. In §§9 and 10, we present detailed outlines of the various
other proofs of the infinitesimal rigidity of the quadric of dimension ≥ 4
following [18] and [22]. Also in §9, we give a new proof of the infinitesimal
rigidity of the quadric of dimension ≥ 5, which follows some of the lines
of the proof of the infinitesimal rigidity of the quadric Q4 of [22]. One of
the main ingredients of our new proof for the quadric of dimension ≥ 5 is
a vanishing result for sections of the vector bundle L proved in §8, Chap-
ter V; in fact, it is quite different from the one found in [18], which totally
avoids the use of harmonic analysis. In §11, we present the results of [20]
and [23] which concern 1-forms; in particular, we show that a 1-form on
Qn satisfying the zero-energy condition or an even 1-form on Qn satisfying
the Guillemin condition is exact.
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§2. Totally geodesic flat tori of the complex quadric

Throughout this chapter, we suppose that X is the complex quadric
Qn, with n ≥ 3, endowed with the Kähler metric g introduced in §2,
Chapter V. We shall consider the objects and use the notations established
in Chapter V.

If Z is a flat totally geodesic 2-torus of X, we denote by ∇Z the Levi-
Civita connection of the Riemannian manifold Z endowed with the metric
induced by g; if ζ is a vector field on Z, we consider the complex vector
fields on X defined along Z by

ζ ′ = 1
2 (ζ − iJζ), ζ ′′ = 1

2 (ζ + iJζ) = ζ ′,

which are of type (1, 0) and (0, 1), respectively.
We now study an explicit maximal flat totally geodesic torus of X.

The image Z0 of the imbedding

ι : G̃R

1 (V1) × G̃R

1 (V2) → G̃R

2,n

of §2, Chapter IV, corresponding to the orthogonal 2-planes V1 = Re0⊕Re1
and V2 = Ren ⊕ Ren+1 of R

n+2, is a totally geodesic flat 2-torus of G̃R

2,n.
When we identify the Grassmannian G̃R

2,n with the complex quadric X as
in §5, Chapter V, the torus Z0 can be viewed as follows. As in Chapter V,
we consider the point a of X which is the image of the point (1, 0, . . . , 0, i)
of C

n+2 under the natural projection

π : C
n+2 − {0} → CP

n+1.

If K0 is the subgroup of G = SO(n+ 2) consisting of all matrices

⎛
⎝A 0 0

0 In−2 0
0 0 B

⎞
⎠ ,

where A,B ∈ SO(2) and In−2 is the (n− 2)× (n− 2) identity matrix, the
submanifold Z0 of X is equal to K0 · a and is the image of the mapping
σ : R

2 → X defined by σ(θ, ϕ) = πσ̃(θ, ϕ), where

σ̃(θ, ϕ) = (cos θ, sin θ, 0, . . . , 0,−i sinϕ, i cosϕ) ∈ C
n+2,

for (θ, ϕ) ∈ R
2. This mapping σ satisfies σ(0, 0) = a and

σ(θ, ϕ) = σ(θ + 2kπ, ϕ+ 2lπ) = σ(θ + kπ, ϕ+ kπ),
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for all k, l ∈ Z and (θ, ϕ) ∈ R
2. We consider the group of translations Γ

of R
2 generated by the vectors (2π, 0) and (π, π) and the flat torus R

2/Γ,
which is the quotient of R

2 by the group Γ. According to the preceding
relations, we see that σ induces an imbedding

σ̄ : R
2/Γ → X.

Let (θ, ϕ) be the standard coordinate system of R
2. It is easily verified that

(6.1) σ∗g = 1
2 (dθ ⊗ dθ + dϕ⊗ dϕ).

Therefore, if the quotient R
2/Γ is endowed with the flat metric induced by

the metric 1
2 (dθ⊗dθ+dϕ⊗dϕ) on R

2, the mapping σ̄ is a totally geodesic
isometric imbedding. Throughout this chapter, we shall often identify a
function f on R

2 satisfying

f(θ, ϕ) = f(θ + 2kπ, ϕ+ 2lπ) = f(θ + kπ, ϕ+ kπ),

for all k, l ∈ Z and (θ, ϕ) ∈ R
2, with the unique function f̂ on the torus Z0

satisfying the equality σ∗f̂ = f on R
2. The restriction of the mapping σ

to the subset Z̃0 = [0, 2π]× [0, π] of R
2 is a diffeomorphism from Z̃0 to Z0.

Therefore if f is a function on Z0, then we see that

(6.2)

∫
Z0

f dZ0 =
1
2

∫
Z̃0

(σ∗f)(θ, ϕ) dθ dϕ =
1
2

∫ π

0

∫ 2π

0

(σ∗f)(θ, ϕ) dθ dϕ

=
1
2

∫ π

0

∫ π

0

((σ∗f)(θ, ϕ) + (σ∗f)(θ + π, ϕ)) dθ dϕ.

We now consider the objects introduced in §4, Chapter V. If (θ, ϕ) is
an element of R

2 satisfying cos θ �= 0, the point σ(θ, ϕ) belongs to the open
subset V of CP

n+1 defined in §4, Chapter V and we have

z1(σ(θ, ϕ)) = tan θ,

zn(σ(θ, ϕ)) = −i sinϕ
cos θ

,

zj(σ(θ, ϕ)) = 0,

zn+1(σ(θ, ϕ)) = i
cosϕ
cos θ

,

for 2 ≤ j ≤ n−1. The vector fields ∂/∂θ and ∂/∂ϕ on R
2 are σ-projectable;

in other words, there exist well-defined parallel vector fields ξ0 and η0 on
Z0 such that

ξ0(σ(θ, ϕ)) = σ∗

((
∂

∂θ

)
(θ, ϕ)

)
, η0(σ(θ, ϕ)) = σ∗

((
∂

∂ϕ

)
(θ, ϕ)

)
,
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for (θ, ϕ) ∈ R
2. In fact, {ξ0, η0} is a basis for the space of parallel vector

fields on Z0; according to (6.1), we have

g(ξ0, ξ0) = g(η0, η0) =
1
2
, g(ξ0, η0) = 0.

We see that the equalities

(6.3)

ξ′0 =
1

cos2 θ

(
∂

∂z1
− i sin θ sinϕ

∂

∂zn
+ i sin θ cosϕ

∂

∂zn+1

)
,

η′0 = − i

cos θ

(
cosϕ

∂

∂zn
+ sinϕ

∂

∂zn+1

)

hold at the point σ(θ, ϕ) of Z0, for (θ, ϕ) ∈ R
2 satisfying cos θ �= 0.

When cos θ cosϕ �= 0, the point σ(θ, ϕ) belongs to the open subset
U0 = Z0 ∩ U of Z0. The restrictions of the complex vector fields ηk to U0

are determined by the equalities

(6.4) η1 = cos2 θ · ξ′0, ηj = ∂/∂zj , ηn = i cos θ cosϕ · η′0,

with 2 ≤ j ≤ n − 1, which hold at the point σ(θ, ϕ) whenever (θ, ϕ) ∈ R
2

satisfies cos θ cosϕ �= 0. We consider the section ν of the bundle S over
U given by (5.40) and the involutive endomorphism Kν of T|U defined
by Kν(x) = Kν(x), for x ∈ U ; from the relation (5.51), we obtain the
equalities

(6.5) Kνξ0 = ξ0, Kνη0 = −η0

on the open subset U0 of Z0. It follows that the restriction of this involution
Kν to TZ0 satisfies

(6.6) Kν(TZ0|U0) ⊂ TZ0|U0 .

As in Chapter II, we denote by Ξ the space of all maximal flat totally
geodesic tori of X. Since the point a belongs to Z0, according to the
description of Ξ given in §6, Chapter V, we see that

Z0 = Expa(Rξ0(a) ⊕ Rη0(a)).

Lemma 6.1. Let Z be a totally geodesic flat 2-torus of X and let
x0 ∈ Z. Then there exist an open neighborhood U ′ of x0 in Z, an involution
κ of T|U ′ which preserves the tangent bundle of Z and a section μ of S
over U ′ such that κ(x) = Kμ(x), for all x ∈ U ′. Moreover, the restriction of
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this involution κ to TZ is an endomorphism of TZ|U ′ which is parallel with
respect to the connection ∇Z .

Proof: Since the group G acts transitively both on Ξ and on the
torus Z ∈ Ξ, without loss of generality by (5.14) we may assume that Z
is the torus Z0 described above and that x0 is the point a of the subset
U0 of Z0. Then if ν is the section of S over U given by (5.40), according
to (6.6) we know that the involution Kν of T|U preserves the tangent bundle
of Z0. Let ξ, η be tangent vectors to Z0 at x ∈ U0; if κ is the restriction of
the involution Kν to TZ0 , we know that

(∇Z
ξ κ)η = (∇ξKν)η.

According to (5.22), the right-hand side of this equality belongs to JTZ0,x;
since Z0 is a totally real submanifold of X, it vanishes. Thus we have
∇Zκ = 0.

Lemma 6.2. Let Z be a totally geodesic flat 2-torus of X. Then
there exists a unique (up to a sign) involution κ of T|Z which preserves
the tangent bundle of Z and which at every point x of Z is equal to a
real structure Kμ of X, where μ ∈ Sx. Moreover, the restriction of this
involution κ to TZ is an endomorphism of TZ which is parallel with respect
to the connection ∇Z .

Proof: Let x be a point of Z. According to §6, Chapter V, we may
write

Z = Expx(Rξ ⊕ RJη),

where μ is an appropriately chosen element of Sx and {ξ, η} is an orthonor-
mal set of elements of T+

μ . Clearly, Kμ preserves the tangent space to Z
at x. According to (5.9), a real structure κ′ of the quadric X associated
with another unit normal of Sx can be written in the form

κ′ = cos θ ·Kμ + sin θ · JKμ,

where θ ∈ R. We see that κ′ preserves the tangent space to Z at x if and
only if sin θ = 0, that is, if κ′ = ±Kμ. From this observation and the
orientability of Z, by Lemma 6.1 we obtain the desired endomorphism κ
of T|Z ; clearly, it is unique up to a sign and is parallel with respect to the
connection ∇Z .

The involution κ, which Lemma 6.2 associates with a totally geodesic
flat 2-torus Z contained in X, is called a real structure of the torus Z; it
is uniquely determined up to a sign.

According to Lemma 6.2 and its proof, there exists a unique real struc-
ture κ0 of the torus Z0 such that

κ0(a) = Kν(a),
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and we know that the vector fields κ0ξ0 and κ0η0 on Z0 are parallel. Hence
by (6.5), we see that

(6.7) κ0ξ0 = ξ0, κ0η0 = −η0

and that the restriction of κ0 to U0 is equal to the involutive endomorphism
Kν of T|U0 .

Let Z be a totally geodesic flat 2-torus contained in X; we choose a
real structure κ of Z. Since the restriction of κ to TZ is parallel, the tangent
bundle TZ admits an orthogonal decomposition

TZ = T+
Z ⊕ T−

Z

invariant under ∇Z , where T+
Z and T−

Z are the eigenbundles of the restric-
tion of κ to TZ , corresponding to the eigenvalues +1 and −1. Clearly, this
decomposition of TZ is independent of the choice of κ. It is easily seen that
there exist unitary parallel sections ξ of T+

Z and η of T−
Z ; these two vector

fields are unique up to a sign and {ξ, η} is a basis for the space of parallel
vector fields on Z.

Since the group G acts transitively on Ξ, we see that an element h
of C∞(S2T ∗) satisfies the Guillemin condition if and only if
∫
Z0

(φ∗h)(ξ0, ξ0) dZ0 =
∫
Z0

(φ∗h)(η0, η0) dZ0 =
∫
Z0

(φ∗h)(ξ0, η0) dZ0 = 0,

for all φ ∈ G.
Now let ξ, η be arbitrary vector fields on Z satisfying κξ = ξ and

κη = −η. If h is a section of (S2T ∗)+ over X, we have

(6.8)

(π++h)(ξ, ξ) = h(ξ, ξ), (π++h)(η, η) = h(η, η),

(π++h)(ξ, η) = (π+−h)(ξ, ξ) = (π+−h)(η, η) = 0,

(π+−h)(ξ, η) = h(ξ, η).

Let f be an element of C∞(X). If ζ1, ζ2 are vector fields on Z, according
to Lemma 1.25, we have

(π+Hess f)(ζ ′1, ζ
′′
2 ) = (∂∂̄f)(ζ ′1, ζ

′′
2 ).

Thus by (6.8), if ζ is a vector field on Z equal either to ξ or to η, we obtain
the relations

(π++Hess f)(ζ, ζ) = 2(π+Hess f)(ζ ′, ζ ′′) = 2(∂∂̄f)(ζ ′, ζ ′′),(6.9)

(π+−Hess f)(ξ, η) = (π+Hess f)(ξ′, η′′) + (π+Hess f)(η′, ξ′′)

= (∂∂̄f)(ξ′, η′′) + (∂∂̄f)(η′, ξ′′).
(6.10)
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From the above discussion concerning the parallel vector fields on the
totally geodesic flat 2-torus Z and from the relations (6.8), we deduce the
following result:

Proposition 6.3. Let h be a section of (S2T ∗)+ over X = Qn, with
n ≥ 3. The symmetric 2-form h satisfies the Guillemin condition if and
only if the two symmetric 2-forms π++h and π+−h satisfy the Guillemin
condition.

Let N be an odd integer ≥ 1; we consider the closed geodesic

δN : [0, π] → Z0

of Z0, defined by δN (t) = σ(t,Nt), for 0 ≤ t ≤ π. The tangent vector field
δ̇N along the geodesic δN is determined by

δ̇N (t) = (ξ0 +Nη0)(δN (t)),

for 0 ≤ t ≤ π; we see that δ̇N has constant length equal to
√

(N2 + 1)/2.
Thus if h is a symmetric 2-form on X, we have

(6.11)

∫
δN

h =
2

N2 + 1

∫ π

0

h(δ̇N (t), δ̇N (t)) dt

=
2

N2 + 1

∫ π

0

h(ξ0 +Nη0, ξ0 +Nη0)(δN (t)) dt.

Hence by the formulas (6.7) and (6.8), if h is a section of (S2T ∗)++ over X,
we have

(6.12)
∫
δN

h = cN

(∫ π

0

h(ξ0, ξ0)(δN (t)) dt+N2

∫ π

0

h(η0, η0)(δN (t)) dt
)
,

where cN = 2/(N2 + 1), while if h is a section of (S2T ∗)+− over X, we
have

(6.13)
∫
δN

h =
2N

N2 + 1

∫ π

0

h(ξ0, η0)(δN (t)) dt.

We shall use the formulas (6.12) and (6.13) with N = 1 or 3, and we write
δ = δ1.

§3. Symmetric forms on the complex quadric

We now introduce certain symmetric 2-forms on X which are defined
in [23, §4]; we shall also recall some of their properties which are established
in [23].
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We remark that the Hermitian symmetric 2-forms

u1 = ((ζ0 + iζ1)d(ζ2 + iζ3) − (ζ2 + iζ3)d(ζ0 + iζ1))

· ((ζ̄0 + iζ̄1)dζ̄n+1 − ζ̄n+1d(ζ̄0 + iζ̄1)),

u2 = ((ζ0 + iζ1)dζn+1 − ζn+1d(ζ0 + iζ1))

· ((ζ̄0 + iζ̄1)d(ζ̄2 + iζ̄3) − (ζ̄2 + iζ̄3)d(ζ̄0 + iζ̄1))

on C
n+2 are U(1)-invariant. If ζ0 is the complex vector field on C

n+2

introduced in §4, Chapter III, we easily verify that

ζ0 uj = ζ0 uj = 0,

for j = 1, 2. Therefore, as we saw in §4, Chapter III, the symmetric 2-forms
u1 and u2 induce Hermitian symmetric 2-forms on CP

n+1, which we also
denote by u1 and u2 and whose restrictions to X we denote by ũ1 and ũ2,
respectively. Clearly, if τ is the involutive isometry of CP

n+1 induced by the
complex conjugation of C

n+2, we have the equality τ∗u1 = u2 on CP
n+1,

and thus the symmetric 2-form

k = ũ1 − ũ2

on X is an odd form, and so is an element of C∞((S2T ∗)+
C
)odd. By (5.35),

the sections
k+ = π++k, k− = π+−k

of (S2T ∗)+
C

are elements of C∞((S2T ∗)++
C

)odd and C∞((S2T ∗)+−
C

)odd, re-
spectively.

We consider the sections

h′1 = π′Hess f̃1,0, h′′1 = π′′Hess f̃1,0,

h′2 = ∂f̃1,0 · ∂f̃1,0, h′′2 = ∂̄f̃1,0 · ∂̄f̃1,0,

h′3 = ∂f̃1,0 · ∂f̃0,1, h′′3 = ∂̄f̃1,0 · ∂̄f̃0,1,

h′4 = ∂f̃0,1 · ∂f̃0,1, h′′4 = ∂̄f̃0,1 · ∂̄f̃0,1,

k′1 = ∂f̃1,0 · (f̃ ′∂f̃0,1 − f̃0,1∂f̃
′), k′′1 = ∂̄f̃1,0 · (f̃ ′∂̄f̃0,1 − f̃0,1∂̄f̃

′),

k′2 = ∂f̃0,1 · (f̃ ′∂f̃0,1 − f̃0,1∂f̃
′), k′′2 = ∂̄f̃0,1 · (f̃ ′∂̄f̃0,1 − f̃0,1∂̄f̃

′)

of (S2T ∗)−
C

, the sections

w1 = π++

(
∂f̃1,0 · ∂̄f̃0,1 − ∂f̃0,1 · ∂̄f̃1,0

)
,

w2 = π++

(
f̃0,1 Hess (f̃0,1f̃ ′) − f̃ ′ Hess f̃0,2

)
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of (S2T ∗)++
C

and the section

w3 = π+−
(
f̃0,1 Hess f̃ ′ − f̃ ′ Hess f̃0,1

)

of (S2T ∗)+−
C

.
We fix integers r, s ≥ 0. We consider the subspace Vr,s of C∞(S2T ∗

C
)

generated (over C) by the sections

h1 = f̃r,sg, h2 = f̃r−1,sπ++Hess f̃1,0, h3 = f̃r,s−2π++(∂f̃0,1 · ∂̄f̃0,1)

of (S2T ∗)++
C

, the sections

h4 = f̃r−1,s(h′1 + h′′1), h5 = f̃r−2,s(h′2 + h′′2),

h6 = f̃r−1,s−1(h′3 + h′′3), h7 = f̃r,s−2(h′4 + h′′4)

of (S2T ∗)−
C

and the section h8 = f̃r,s−1π+−Hess f̃0,1 of (S2T ∗)+−
C

. By
the relations (5.35)–(5.37) and (5.113), we see that, when s is an even
(resp. odd) integer, all the sections hj , with 1 ≤ j ≤ 8, are even (resp. odd).
Thus we have the inclusions

(6.14) Vr,2p ⊂ C∞(S2T ∗
C
)ev, Vr,2p+1 ⊂ C∞(S2T ∗

C
)odd,

for all p ≥ 0. Lemmas 7.2, 7.5 and 7.6,(i) of [23] give us the following:

Lemma 6.4. Let r, s ≥ 0 be given integers. The non-zero elements of
the set {hj}1≤j≤8 of generators of the space Vr,s form a basis of Vr,s. More
precisely, the dimension and a basis of Vr,s are given by the following table:

dim Vr,s Basis of Vr,s

r = s = 0 1 h1

r = 1, s = 0 3 h1, h2, h4

r ≥ 2, s = 0 4 h1, h2, h4, h5

r = 0, s = 1 2 h1, h8

r = 1, s = 1 5 h1, h2, h4, h6, h8

r ≥ 2, s = 1 6 h1, h2, h4, h5, h6, h8

r = 0, s ≥ 2 4 h1, h3, h7, h8

r = 1, s ≥ 2 7 h1, h2, h3, h4, h6, h7, h8

r, s ≥ 2 8 hj , with 1 ≤ j ≤ 8
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We also consider the subspace Wr,s of C∞(S2T ∗
C
) generated (over C)

by the section h̃1 = f̃r−1,s−1w1 of (S2T ∗)++
C

and the sections

h̃2 = f̃r−1,s(h′1 − h′′1), h̃3 = f̃r−2,s(h′2 − h′′2),

h̃4 = f̃r−1,s−1(h′3 − h′′3), h̃5 = f̃r,s−2(h′4 − h′′4)

of (S2T ∗)−
C

. By the relations (5.35)–(5.37) and (5.113), we see that, when
s is an even (resp. odd) integer, all these generators of Wr,s are odd
(resp. even). Thus we have the inclusions

(6.15) Wr,2p+1 ⊂ C∞(S2T ∗
C
)ev, Wr,2p ⊂ C∞(S2T ∗

C
)odd,

for all p ≥ 0. Lemma 7.7 of [23] asserts the following:

Lemma 6.5. Let r, s ≥ 0 be given integers. The non-zero elements of
the set of generators of the space Wr,s form a basis of Wr,s. More precisely,
the dimensions and bases of the non-zero spaces Wr,s are given by the
following table:

dim Wr,s Basis of Wr,s

r = 1, s = 0 1 h̃2

r ≥ 2, s = 0 2 h̃2, h̃3

r = 1, s = 1 3 h̃1, h̃2, h̃4

r ≥ 2, s = 1 4 h̃1, h̃2, h̃3, h̃4

r = 0, s ≥ 2 1 h̃5

r = 1, s ≥ 2 4 h̃1, h̃2, h̃4, h̃5

r, s ≥ 2 5 h̃j , with 1 ≤ j ≤ 5

If s ≥ 1, we consider the subspace V ′
r,s of C∞(S2T ∗

C
) generated (over C)

by the sections ϑ1 = f̃r,s−1k
− and ϑ2 = f̃r,s−1k

+ of (S2T ∗)+
C

and the
sections

ϑ3 = f̃r−1,s−1(k′1 − k′′1 ), ϑ4 = f̃r,s−2(k′2 − k′′2 )

of (S2T ∗)−
C

. Let W ′
r,s be the subspace of C∞(S2T ∗

C
) generated (over C) by

the sections ϑ̃1 = f̃r,s−2w2 and ϑ̃2 = f̃r,s−1w3 of (S2T ∗)+
C

and the sections

ϑ̃3 = f̃r−1,s−1(k′1 + k′′1 ), ϑ̃4 = f̃r,s−2(k′2 + k′′2 )
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of (S2T ∗)−
C

. By (5.35), (5.37) and (5.113), we see that, when s is an even
(resp. odd) integer, these generators of V ′

r,s are even (resp. odd) and these
generators of W ′

r,s are odd (resp. even). Thus we have the inclusions

(6.16)
V ′
r,2p+2 ⊂ C∞(S2T ∗

C
)ev, V ′

r,2p+1 ⊂ C∞(S2T ∗
C
)odd,

W ′
r,2p+1 ⊂ C∞(S2T ∗

C
)ev, W ′

r,2p ⊂ C∞(S2T ∗
C
)odd,

for all p ≥ 0.
Lemma 7.9 of [23] asserts the following:

Lemma 6.6. If r ≥ 0, s ≥ 1, the non-zero elements of the set of
generators of the spaces V ′

r,s and W ′
r,s form bases of these spaces. More

precisely, the dimensions and bases of the non-zero spaces V ′
r,s and W ′

r,s

are given by the following table:

dim V ′
r,s Basis of V ′

r,s dim W ′
r,s Basis of W ′

r,s

r = 0, s = 1 2 ϑ1, ϑ2 1 ϑ̃2

r = 0, s ≥ 2 3 ϑ1, ϑ2, ϑ4 3 ϑ̃1, ϑ̃2, ϑ̃4

r ≥ 1, s = 1 3 ϑ1, ϑ2, ϑ3 2 ϑ̃2, ϑ̃3

r ≥ 1, s ≥ 2 4 ϑ1, ϑ2, ϑ3, ϑ4 4 ϑ̃1, ϑ̃2, ϑ̃3, ϑ̃4

We remark that

h8 = f̃r,s−1Hess f̃0,1, ϑ̃2 = f̃r,s−1w3

are sections of the bundle (S2T ∗)+−
C

, while all the other generators of the
spaces Vr,s, Wr,s, with s ≥ 0, and of the spaces V ′

r,s, W
′
r,s, with s ≥ 1,

are sections of the bundle (S2T ∗)−
C
⊕ (S2T ∗)++

C
, which is the orthogonal

complement of (S2T ∗)+−
C

in S2T ∗
C
.

The following two lemmas are given by Lemmas 7.6, 7.8 and 7.10
of [23].

Lemma 6.7. Let r, s ≥ 0 be given integers.
(i) If s is even, we have

dim (N2,C ∩ Vr,s) ≤ dr,s.

(ii) If s is odd, we have

dim (N2,C ∩Wr,s) ≤ dr,s.

Lemma 6.8. Let r ≥ 0, s ≥ 1 be given integers.
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(i) If s is even, we have

dim (N2,C ∩ V ′
r,s) ≤ 1.

(ii) If s is odd, we have

dim (N2,C ∩W ′
r,s) ≤ 1.

§4. Computing integrals of symmetric forms

In this section and the next one, we shall compute integrals of sym-
metric 2-forms over specific closed geodesics of X. Each of these geodesics
is contained in one of the families of flat 2-tori of X considered in [23, §4].
Thus many of the computations appearing in these two sections of this
chapter are the same or similar to those of [23, §4].

We consider the torus Z0 introduced in §2 and we shall use the objects
associated there with this torus. In particular, we shall identify a function
f on R

2 satisfying

f(θ, ϕ) = f(θ + 2kπ, ϕ+ 2lπ) = f(θ + kπ, ϕ+ kπ),

for all k, l ∈ Z and (θ, ϕ) ∈ R
2, with the unique function f̂ on the torus Z0

satisfying the equality σ∗f̂ = f on R
2.

The restriction ρ̃ to X of the function ρ on CP
n+1 satisfies

(6.17) ρ̃(σ(θ, ϕ)) =
cos2 θ

2
,

for (θ, ϕ) ∈ R
2. Using formulas (6.3) and (6.17), we easily verify that the

equalities

〈ξ′0, ∂ρ̃〉 = − sin θ cos θ
2

, 〈η′0, ∂ρ̃〉 = 0,

(∂∂̄ρ̃)(ξ′0, ξ
′′
0 ) =

1
4

(3 sin2 θ − 1), (∂∂̄ρ̃)(ξ′0, η
′′
0 ) = 0,(6.18)

(∂∂̄ρ̃)(η′0, η
′′
0 ) = −cos2 θ

4

hold at all points σ(θ, ϕ) of Z0, with (θ, ϕ) ∈ R
2, for which cos θ �= 0, and

hence at all points σ(θ, ϕ) of Z0.
For α ∈ R, let ψα be the element of G = SO(n+ 2) defined by

ψα(ζ)0 = sinα · ζn+1 + cosα · ζ2, ψα(ζ)n+1 = cosα · ζn+1 − sinα · ζ2,
ψα(ζ)2 = ζn, ψα(ζ)3 = ζ0, ψα(ζ)n = δn3 ζ0 + (1 − δn3 )ζ3,
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and ψα(ζ)j = ζj for j = 0 or 3 < j < n, where ζ ∈ C
n+2. We set μ = cosα

and λ = sinα. Then for r, s ≥ 0, at a point z of the complex hypersurface
Ṽ of the open subset V of CP

n+1 defined by the equation z2 = 0, the
functions ψ∗

αfr,s are determined by

(ψ∗
αf1,0)(z) = ρ(z)(λzn+1 + iz1)(λz̄n+1 + iz̄1),

(ψ∗
αf0,1)(z) = ρ(z)((λzn+1 + iz1)(z̄n + i) − (zn + i)(λz̄n+1 + iz̄1)).

Using (6.3), (6.17) and (6.18), we easily verify that the equalities

(6.19)

ψ∗
αf̃1,0 = 1

2 (λ2 cos2 ϕ− sin2 θ),

ψ∗
αf̃0,1 = −(λ cos θ cosϕ+ sin θ sinϕ),

(ψ∗
α∂∂̄f̃0,1)(ξ

′
0, η

′′
0 ) = (ψ∗

α∂∂̄f̃0,1)(η
′
0, ξ

′′
0 )

= − 1
2 (cos θ cosϕ+ λ sin θ sinϕ),

hold at the point σ(θ, ϕ) of Z0, with (θ, ϕ) ∈ R
2. For r, s ≥ 0, by (6.7) and

(6.10) we now obtain

(6.20)
ψ∗

0

(
f̃r,sπ+−Hess f̃0,1

)
(ξ0, η0)

=
(−1)r+s+1

2r
sin2r+s θ · cos θ · sins ϕ · cosϕ

at this point σ(θ, ϕ) of Z0.

Lemma 6.9. For r, s ≥ 0, the integral

∫
δ

ψ∗
0

(
f̃r,sπ+−Hess f̃0,1

)

does not vanish.

Proof: According to formula (6.20), we have

ψ∗
0

(
f̃r,sπ+−Hess f̃0,1

)
(ξ0, η0)(δ(t)) =

(−1)r+s+1

2r
cos2 t · sin2(r+s) t,

for 0 ≤ t ≤ π. Since cos2 t · sin2(r+s) t ≥ 0, the lemma is a consequence of
the equality (6.13) and the above relation.
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Let α be a given real number; we set μ = cosα and λ = sinα. If
j : Ṽ → V is the inclusion mapping of the complex hypersurface Ṽ into V ,
the symmetric 2-forms j∗ψ∗

αu1 and j∗ψ∗
αu2 on Ṽ satisfy the relations

j∗ψ∗
αu1 = iμρ2((λzn+1 + iz1)dzn − (zn + i)(λdzn+1 + idz1))

· (z̄1dz̄n+1 − z̄n+1dz̄1),

j∗ψ∗
αu2 = iμρ2(z1dzn+1 − zn+1dz1)

· ((λz̄n+1 + iz̄1)dz̄n − (z̄n + i)(λdz̄n+1 + idz̄1))

at z ∈ Ṽ . We again consider the symmetric 2-forms k = ũ1 − ũ2 and
k− = π+−k on X introduced in §3. Using formulas (6.3) and (6.17) and
the preceding relations, we verify that the equalities

(ψ∗
αk)(ξ

′
0, η

′′
0 ) = −μ

4
(λ cosϕ(cos θ + sinϕ) + sin θ(sinϕ− cos θ)),

(ψ∗
αk)(η

′
0, ξ

′′
0 ) = −μ

4
(λ cosϕ(cos θ − sinϕ) + sin θ(sinϕ+ cos θ))

hold at the point σ(θ, ϕ) of Z0, with (θ, ϕ) ∈ R
2; by (6.7) and (6.8), we see

that

(6.21)
(ψ∗
αk

−)(ξ0, η0) = (ψ∗
αk)(ξ0, η0) = (ψ∗

αk)(ξ
′
0, η

′′
0 ) + (ψ∗

αk)(η
′
0, ξ

′′
0 )

= −μ
2

(λ cos θ cosϕ+ sin θ sinϕ)

at this point of Z0.
Let r, s ≥ 0 be given integers. For u, t ∈ R, we set

qr,s(u, t) = (u2 cos2 t− sin2 t)r · (u cos2 t+ sin2 t)s+1,

and we consider the polynomial

Qr,s(u) =
∫ π

0

qr,s(u, t) dt

in u. From formulas (6.19) and (6.21), we obtain

(6.22) ψ∗
α(f̃r,sk−)(ξ0, η0)(δ(t)) =

(−1)s+1

2r+1
cosα · qr,s(sinα, t),

for 0 ≤ t ≤ π.



§4. Computing integrals of symmetric forms 207

Lemma 6.10. Let r, s ≥ 0 be given integers. Then there exists α0 ∈ R

such that the integral ∫
δ

ψ∗
α0

(f̃r,sk−)

does not vanish.

Proof: The coefficient of u2r+s+1 of the polynomial Qr,s(u) is equal
to the integral ∫ π

0

cos2(r+s+1) t dt,

which is positive, and so the polynomial Qr,s is non-zero. Hence there
exists a real number α0 such that the expressions cosα0 and Qr,s(sinα0)
do not vanish. Therefore by (6.12) and (6.22), we infer that the integral of
the lemma corresponding to this element α0 ∈ R does not vanish.

Let ψ′ be the element of G defined by

ψ′(ζ)1 = ζn, ψ′(ζ)3 = ζn+1,

ψ′(ζ)n+1 = ζ1, ψ′(ζ)n = δn3 ζn+1 + (δn3 − 1)ζ3,

and ψ′(ζ)j = ζj , for j = 0, 2, or 3 < j < n, where ζ ∈ C
n+2. Then

for r, s ≥ 0, the restrictions of the functions ψ′∗fr,s and ψ′∗f ′ to Ṽ are
determined by

(ψ′∗f1,0)(z) = ρ(z)(1 + izn)(1 + iz̄n),

(ψ′∗f0,1)(z) = iρ(z)((1 + izn)z̄n+1 − zn+1(1 + iz̄n)),

(ψ′∗f ′)(z) = ρ(z)((1 + izn)z̄1 − z1(1 + iz̄n)),

for z ∈ Ṽ . Using (6.3), (6.17) and (6.18), we easily verify that the equalities

ψ′∗f̃1,0 = 1
2 (cos2 θ − sin2 ϕ), ψ′∗f̃0,1 = cos θ cosϕ,

ψ′∗f̃ ′ = sin θ sinϕ,

(ψ′∗∂∂̄f̃0,1)(ξ′0, η
′′
0 ) = (ψ′∗∂∂̄f̃0,1)(η′0, ξ

′′
0 ) = 1

2 sin θ sinϕ,

(ψ′∗∂∂̄f̃ ′)(ξ′0, η
′′
0 ) = (ψ′∗∂∂̄f̃ ′)(η′0, ξ

′′
0 ) = 1

2 cos θ cosϕ

hold at the point σ(θ, ϕ) of Z0, with (θ, ϕ) ∈ R
2. By (6.7) and (6.10), we

now obtain the equality

(6.23) ψ′∗(f̃r,sw3)(ξ0, η0) =
1
2r

(cos2 θ − sin2 ϕ)r+1(cos θ cosϕ)s

at this point of Z0.
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For k, l ≥ 0, we consider the integral

Ik,l =
∫ π

0

cosk 2t · cosl t dt.

If k and l are even integers, we clearly have

(6.24) Ik,l > 0

and we easily see that

(6.25) Ik,l − Ik,l+2 > 0.

When k is odd, we have

(6.26) Ik,0 =
1
2

∫ 2π

0

cosk u du = 0.

We use integration by parts to obtain the formula

(6.27) (l + 1)Ik,l+1 = 4k(Ik−1,l+1 − Ik−1,l+3) + lIk,l−1.

When k is an odd integer and s ≥ 1 is an arbitrary integer, from the
relations (6.25)–(6.27) we deduce by induction on s that

(6.28) Ik,2s > 0.

Lemma 6.11. Let r ≥ 0 and s ≥ 1 be given integers. Then the integral

∫
δ

ψ′∗(f̃r,sw3)

does not vanish.

Proof: For r, s ≥ 0, according to formula (6.23), we have

ψ′∗(f̃r,sw3)(ξ0, η0)(δ(t)) =
1
2r

cosr+1 2t · cos2s t,

with 0 ≤ t ≤ π. If s ≥ 1, from this equality and the relations (6.12), (6.24)
and (6.28) we infer that the integral of the lemma does not vanish.

Since the elements ψα and ψ′ of G induce isometries of X, by Lem-
mas 6.9, 6.10 and 6.11, for r, s ≥ 0 we see that the symmetric 2-forms
f̃r,sπ+−Hess f̃0,1, f̃r,sk− and f̃r,s+1w3 do not satisfy the zero-energy condi-
tion.
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§5. Computing integrals of odd symmetric forms

This section is a continuation of the preceding one. Its results will only
be used in the proofs of the lemmas of §6, which we require for Proposi-
tions 6.28 and 6.34 and for Theorem 6.36. This last theorem is needed in §8
to establish the infinitesimal rigidity of the quadric Q3 of dimension 3.

If k, l ≥ 0 are given integers, we set

Jk,l =
∫ π

0

sin2k t · cosl+1 3t · cos t dt,

J̃k,l =
∫ π

0

sin2k t · cosl 3t dt.

Clearly, we have J0,0 = 0. Using elementary trigonometric relations and
integration by parts, we verify that

J0,l =
1
4

(
2 +

3l − 2
3l + 2

+
3l − 4
3l + 4

)
J0,l−1,

for l ≥ 1; it follows that J0,l = 0, for all l ≥ 0. We easily see that

(6.29) 4Jk+1,l = Jk,l − J̃k,l+2,

for k, l ≥ 0. Let l ≥ 0 be a given even integer. Then we know that J̃k,l > 0,
for k ≥ 0. Since J0,l = 0, from (6.29) we infer by induction on k that
Jk,l < 0, for all k ≥ 1. Thus we have proved the following result:

Lemma 6.12. If k ≥ 1 and l ≥ 0 are given integers, with l even, then
we have Jk,l < 0.

In this section, we again consider the torus Z0 and the objects associ-
ated with Z0, and we shall use the conventions and notations of §4.

For α, β ∈ R, let ψα,β be the element of G defined by

ψα,β(ζ)0 = cosα · ζ1 + sinα · ζ2, ψα,β(ζ)1 = ζn+1,

ψα,β(ζ)2 = sinα · ζ1 − cosα · ζ2, ψα,β(ζ)3 = cosβ · ζ0 + sinβ · ζn,
ψα,β(ζ)n = δn3 (cosβ · ζ0 + sinβ · ζn) + (δn3 − 1)ζ3,

ψα,β(ζ)n+1 = cosβ · ζn − sinβ · ζ0,

and ψα,β(ζ)j = ζj for 3 < j < n, where ζ ∈ C
n+2. We write ψ̌α = ψα,0

and we set μ = cosα and λ = sinα. Then for r, s ≥ 0, the restrictions of
the functions ψ̌∗

αfr,s to Ṽ are determined by

(ψ̌∗
αf1,0)(z) = ρ(z)(μz1 + izn+1)(μz̄1 + iz̄n+1),

(ψ̌∗
αf0,1)(z) = ρ(z)((μz1 + izn+1)(λz̄1 + i) − (λz1 + i)(μz̄1 + iz̄n+1)),
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for z ∈ Ṽ . By (6.17), we see that the equalities

(6.30)
ψ̌∗
αf̃1,0 = −1

2 ((λ2 − 1) sin2 θ + cos2 ϕ),

ψ̌∗
αf̃0,1 = − cosϕ (λ sin θ + i cos θ)

hold at the point σ(θ, ϕ) of Z0, with (θ, ϕ) ∈ R
2.

We denote by f the function ψ̌∗
αf1,0 on C

n+2 and we consider the
symmetric 2-forms h′ = π′Hess f̃ and h′′ = π′′Hess f̃ on X. Then we have
h′ = ψ̌∗

αh
′
1 and h′′ = ψ̌∗

αh
′′
1 . Using the formulas (5.55), we verify that the

equalities

h′(η1, η1) = − 1
4 cos4 θ (μ sin θ + cosϕ)2,

h′(η1, ηn) = 0,

h′(ηn, ηn) = − 1
4 cos2 θ cos2 ϕ (μ sin θ + cosϕ)2,

h′′(η̄1, η̄1) = − 1
4 cos4 θ (μ sin θ − cosϕ)2,

h′′(η̄1, η̄n) = 0,

h′′(η̄n, η̄n) = − 1
4 cos2 θ cos2 ϕ (μ sin θ − cosϕ)2

hold at the point σ(θ, ϕ) of Z0, with (θ, ϕ) ∈ R
2. By means of (6.4) and

the preceding formulas, we see that

(6.31)

h′(η0, η0) = −h′(ξ0, ξ0) = 1
4 (μ sin θ + cosϕ)2,

h′′(η0, η0) = −h′′(ξ0, ξ0) = 1
4 (μ sin θ − cosϕ)2,

h′(ξ0, η0) = h′′(ξ0, η0) = 0

at this point of Z0.
We consider the vector field

ζ0 = ξ0 + 3η0

on Z0. If h is a symmetric 2-form on X, by (6.11) we have

(6.32)
∫
δ3

h =
1
5

∫ π

0

h(ζ0, ζ0)(δ3(t)) dt,

where δ3(t) = σ(t, 3t), for 0 ≤ t ≤ π.
Let r, s ≥ 0 be given integers. We define

pr,s(u, θ, ϕ) = (u2 sin2 θ + cos2 ϕ− sin2 θ)r · (u sin θ cosϕ+ i cos θ cosϕ)s,

p1
r,s(u, θ, ϕ) = ((1 − u2) sin2 θ + cos2 ϕ) · pr,s(u, θ, ϕ),

p2
r,s(u, θ, ϕ) = sin θ cosϕ · pr,s(u, θ, ϕ),
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for u, θ, ϕ ∈ R. For j = 1, 2, we consider the polynomial

P jr,s(u) =
∫ π

0

pjr,s(u, t, 3t) dt

in u. We write

cr,s =
(−1)r+s

5 · 2r−3
.

By (6.30) and (6.31), we now obtain

ψ̌∗
α(f̃r,s(h′1 + h′′1))(ζ0, ζ0) = 2cr,s p1

r,s(sinα, θ, ϕ),(6.33)

ψ̌∗
α(f̃r,s(h′1 − h′′1))(ζ0, ζ0) = cr,s cosα · p2

r,s(sinα, θ, ϕ).(6.34)

Lemma 6.13. Let r ≥ 0 and s ≥ 1 be given integers. Assume that s
is odd and that 2r+s > 1. Then there exists α0 ∈ R such that the integral

∫
δ3

ψ̌∗
α0

(
f̃r,s(h′1 + h′′1)

)

does not vanish.

Proof: We write s = 2l + 1, with l ≥ 0. The coefficient of u2r+s−1

of the polynomial P 1
r,s(u) is equal to −isJr+l,s−1. Since r + l > 0, by

Lemma 6.12 this expression is non-zero. Thus the polynomial P 1
r,s is non-

zero, and so there exists a real number α0 such that P 1
r,s(sinα0) does not

vanish. From the relations (6.32) and (6.33), we infer that the integral of
the lemma corresponding to this element α0 ∈ R does not vanish.

Lemma 6.14. Let r ≥ 0 and s ≥ 2 be given integers, with s even.
Then there exists α0 ∈ R such that the integral

∫
δ3

ψ̌∗
α0

(
f̃r,s(h′1 − h′′1)

)

does not vanish.

Proof: We write s = 2l, with l ≥ 0. The coefficient of u2r+s−1 of the
polynomial P 2

r,s(u) is equal to isJr+l,s. By Lemma 6.12, this expression
is non-zero. Thus the polynomial P 2

r,s is non-zero, and so there exists a
real number α0 such that the expressions cosα0 and P 2

r,s(sinα0) do not
vanish. From the relations (6.32) and (6.34), we infer that the integral of
the lemma corresponding to this element α0 ∈ R does not vanish.

Let r ≥ 0 and s ≥ 1 be given integers. Since the elements ψ̌α of G
induce isometries of X, according to Lemmas 6.13 and 6.14, the symmetric
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2-form f̃r,s(h′1+h
′′
1), when 2r+s > 1 and s is odd, and the symmetric 2-form

f̃r,s(h′1 − h′′1), when s is even, do not satisfy the zero-energy condition.
Let A, B, C be the functions on R

2 defined by

A = (λ sin θ + i cos θ) sinϕ, B = (λ sin θ + i cos θ) cosϕ,

C = (i sin θ − λ cos θ) cosϕ,

for (θ, ϕ) ∈ R
2. Using (6.4), (6.17) and (6.18) and the expressions for the

functions ψ̌∗
αf̃1,0 and ψ̌∗

αf̃0,1 on Ṽ , we verify that the equalities

〈ξ′0, ψ̌∗
α∂f̃1,0〉 = 1

2μ cos θ (μ sin θ + cosϕ),

〈ξ′′0 , ψ̌∗
α∂̄f̃1,0〉 = 1

2μ cos θ (μ sin θ − cosϕ),

〈η′0, ψ̌∗
α∂f̃1,0〉 = 1

2 sinϕ (cosϕ+ μ sin θ),

〈η′′0 , ψ̌∗
α∂̄f̃0,1〉 = 1

2 sinϕ (cosϕ− μ sin θ),

〈ξ′0, ψ̌∗
α∂f̃0,1〉 = 1

2 (C + iμ), 〈ξ′′0 , ψ̌∗
α∂̄f̃0,1〉 = 1

2 (C − iμ),

〈η′0, ψ̌∗
α∂f̃0,1〉 = 1

2A = 〈η′′0 , ψ̌∗
α∂̄f̃0,1〉,

(ψ̌∗
α∂∂̄f̃1,0)(ξ

′
0, ξ

′′
0 ) = 1

4 (μ2(2 − 3 sin2 θ) + cos2 ϕ),

(ψ̌∗
α∂∂̄f̃1,0)(η

′
0, η

′′
0 ) = 1

4 (cos2 ϕ− 2 sin2 ϕ− μ2 sin2 θ),

(ψ̌∗
α∂∂̄f̃0,1)(ξ

′
0, η

′′
0 ) = 1

2 sinϕ (λ cos θ − i sin θ) = (ψ̌∗
α∂∂̄f̃0,1)(η

′
0, ξ

′′
0 )

hold at the point σ(θ, ϕ) of Z0, with (θ, ϕ) ∈ R
2.

Let r, s ≥ 0 be fixed integers; we now consider the sections hj , with
1 ≤ j ≤ 8, defined in §3. We first suppose that r = s = 1. Using (6.5),
(6.8), (6.9), (6.10) and the preceding formulas, we see that

(6.35)

(ψ̌∗
αh1)(ζ0, ζ0) =

5
2
B((λ2 − 1) sin2 θ + cos2 ϕ),

(ψ̌∗
αh2)(ζ0, ζ0) = −B((λ2 − 1)(6 sin2 θ − 1) + 5 cos2 ϕ− 9 sin2 ϕ),

(ψ̌∗
αh6)(ζ0, ζ0) = (C + 3A)((1 − λ2) sin θ cos θ + 3 sinϕ cosϕ)

+ i(1 − λ2)(cos θ cosϕ+ 3 sin θ sinϕ),

(ψ̌∗
αh8)(ζ0, ζ0) = 3((1 − λ2) sin2 θ − cos2 ϕ)(λ cos θ − i sin θ) sinϕ.

Lemma 6.15. Suppose that r = s = 1 and let a1, a2, a4, a6, a8 ∈ C. If
the symmetric 2-form h = a1h1 + a2h2 + a4h4 + a6h6 + a8h8 satisfies the
zero-energy condition, then we have the relation

(6.36) 5a1 − 12a2 + 4a6 + 6a8 = 0.
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Proof: By formulas (6.32) and (6.35), there exists an explicit poly-
nomial P (u) of degree ≤ 3 in u such that

∫
δ3

ψ̌∗
αh = P (sinα),

for all α ∈ R; moreover, we verify that the coefficient of u2 of P (u) is equal
to

i

10
(5a1 − 12a2 + 4a6 + 6a8) J1,0.

If the symmetric 2-form h satisfies the zero-energy condition, the polyno-
mial P vanishes and so, by Lemma 6.12, we obtain the relation (6.36).

When r = 0 and s = 3, by the methods used to verify the relations
(6.35) we obtain the equalities

(6.37)

(ψ̌∗
αh1)(ζ0, ζ0) = −5B3,

(ψ̌∗
αh3)(ζ0, ζ0) = −B

2
(1 − λ2 + C2 + 9A2),

(ψ̌∗
αh7)(ζ0, ζ0) = B(1 − λ2 − (C + 3A)2),

(ψ̌∗
αh8)(ζ0, ζ0) = 6B2 (λ cos θ − i sin θ) sinϕ.

Lemma 6.16. Suppose that r = 0 and s = 3 and let a1, a3, a7, a8 ∈ C.
If the symmetric 2-form h = a1h1 + a3h3 + a7h7 + a8h8 satisfies the zero-
energy condition, then the relation

(6.38) 15a1 + 4a3 + 12a7 + 6a8 = 0

holds.

Proof: By formulas (6.32) and (6.37), there exists an explicit poly-
nomial Q(u) of degree ≤ 3 in u such that

∫
δ3

ψ̌∗
αh = Q(sinα),

for all α ∈ R; moreover, we verify that the coefficient of u2 of Q(u) is equal
to

− i

5
(15a1 + 4a3 + 12a7 + 6a8) J1,1.

If the symmetric 2-form h satisfies the zero-energy condition, the polyno-
mial Q vanishes and so, by Lemma 6.12, we obtain the relation (6.38).
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Lemma 6.17. Let r ≥ 0 and s ≥ 1 be given integers, with s odd. Let
a1, . . . , a8 be given complex numbers; suppose that aj = 0 when hj = 0,
for 1 ≤ j ≤ 8. Suppose that the section

h =
8∑
j=1

ajhj

of S2T ∗
C

satisfies the zero-energy condition. Then we have relations

(2r + 2s− 3)
(
(2r + 2s− 1)a1 − 4((r + s− 1)a2 − a5 − a6) + 2a8

)
− (2r2 + 4rs− 4r + 2s2 − 4s+ 3)a3

+ 4(r2 + 2rs+ r + s2 + s− 3)a7 = 0,

(6.39)

s(2r + 2s− 5)
(
(2r + 2s− 3)a1 − 4(r + s− 3)a2 + 12a5

)
− (2s3 + 4rs2 + 2r2s+ 4r2 − 4s2 − s− 16r)a3

− 4(2r + 2s− 5)(2r2 + 4rs+ 2s2 − 3s)a6 − 4ca7

+ 2(2r + 2s− 5)(4r2 + 8rs+ 4s2 − 5s− 8r)a8 = 0,

(6.40)

s2(2r + s− 2)a1 − 4s2(r − 2)a2 + 4s2(s+ 2)a5

− (2r + s− 2)(s2 − 2r − 2s)(a3 + 2a8)

− 4(rs2 + s2 + 2r2 + 5rs− 2s− 2r)a6

+ 4s(s2 + 2rs+ 2r2 − 4r − 2s)a7 = 0,

(6.41)

where

c = 3s3 + 4r3 − 4r2 + 10rs2 + 11r2s− 9s2 − 13rs+ 3s− 12r.

When r is odd, we have the relations

(r + s− 1)(a1 − 4a2 − a3 − 2a8) + 4(r + s+ 1)(a5 + a6 + a7) = 0,(6.42)

r(2r + s+ 2)a1 − 4(2r2 + rs− 2)a2 − r(2r + s)(a3 − 2a8)

+ 4(2r2 + rs+ 2r + 2s)a5 − 4ra6 = 0.
(6.43)

When r is even, we have the relations

(r − 1)(a1 − 4a2 − a3) + 4(r + 1)a5 + 2(r − 1)a8 = 0,(6.44)

(2r + s)(r + s− 2)a1 − (2r + s− 2)(r + s− 2)(4a2 + a3 + 2a8)

+ 4(r + s)(2r + s− 4)a5 + 4(r + s)(2r + s− 3)a6

+ 4(r + s)(2r + s− 2)a7 = 0.

(6.45)
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Proof: By (6.30) and the formulas involving ψ̌α which appear after
Lemma 6.15, we obtain expressions for the functions (ψ̌∗

αhj)(ξ0+η0, ξ0+η0)
on Z0, with 1 ≤ j ≤ 8. By the relations (6.11)–(6.13), with N = 1, there
exists an explicit polynomial P (u) of degree ≤ 2r + s in u such that

∫
δ

ψ̌∗
αh = P (sinα),

for all α ∈ R. Since the symmetric 2-form h satisfies the zero-energy
condition, this polynomial P vanishes. The vanishing of the coefficient
of u2r+s−1 of P (u) gives us the relation (6.41). Next, we give equalities
analogous to those appearing after Lemma 6.14, with ψ̌α replaced by the
element ψα of G defined in §4. Then by (6.19) and these formulas, we
obtain expressions for the functions (ψ∗

αhj)(ξ0 + η0, ξ0 + η0) on Z0, with
1 ≤ j ≤ 8. Using relations (6.11)–(6.13), with N = 1, we compute an
explicit polynomial Q(u) of degree ≤ 2r + s in u such that

∫
δ

ψ∗
αh = Q(sinα),

for all α ∈ R. Our hypotheses imply that this polynomial Q vanishes. The
vanishing of the coefficient of u2r+s (resp. of u2r+s−1) of Q(u) gives us the
relation (6.39) (resp. the relation (6.40)). Moreover, when r is odd, the
equality Q(−1) = 0 is equivalent to (6.42), while the equality Q′(1) = 0
is equivalent to (6.43). On the other hand, when r is even, the equality
Q(1) = 0 is equivalent to (6.44), while the equality Q′(−1) = 0 is equivalent
to (6.45).

Let r, s ≥ 0 be fixed integers; we now consider the sections h̃j , with
1 ≤ j ≤ 5, defined in §3.

Lemma 6.18. Let r ≥ 1 and s ≥ 2 be given integers, with s even.
Let a1, a2, a3, a4, a5 be given complex numbers; suppose that a3 = 0 when
r = 1. If the section

h =
5∑
j=1

aj h̃j

of S2T ∗
C

satisfies the zero-energy condition, then we have relations

(s− 1)(a1 − a4) + 2ra5 = 0,(6.46)

(s2 − 2r − 3s+ 3)a1 + 4s(s− 1)a3 − (s− 1)(s2 + 2r − 3s− 1)a4

+ 2r(s2 − 3s+ 1)a5 = 0.
(6.47)

Proof: We first derive equalities analogous to (6.30) and to those
appearing after Lemma 6.14, with ψ̌α replaced by ψα,β , with α, β ∈ R.
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Since we have ψ̌α = ψα,0, these new formulas generalize those given above;
we also remark that ψ∗

α,βf1,0 = ψ̌∗
αf1,0. We then obtain expressions for the

functions (ψ̌∗
αh̃j)(ξ0 + η0, ξ0 + η0) and

∂

∂β
(ψ∗
α,βh̃j)(ξ0 + η0, ξ0 + η0)|β=0

on Z0, with 1 ≤ j ≤ 5. Using the relations (6.11)–(6.13), with N = 1, we
find explicit polynomials P1(u) of degree ≤ 2r + s− 1 and P2(u) of degree
≤ 2r + s in u such that

∫
δ

ψ̌∗
αh = cosα · P1(sinα),

∂

∂β

(∫
δ

ψ∗
α,βh

)
|β=0

= P2(sinα),

for all α ∈ R. If the symmetric 2-form h satisfies the zero-energy condi-
tion, the polynomials P1 and P2 vanish; the vanishing of the coefficients
of u2r+s−1 in the polynomials P1(u) and P2(u) give us the relations (6.46)
and (6.47), respectively.

We consider the sections

k1 = 1
2 (k′2 + k′′2 + w2), k2 = 1

2 (k′2 + k′′2 − w2)

of S2T ∗
C
.

Lemma 6.19. Let r, s ≥ 0 be given integers, with s even, and let
a1, a2, a3, a4 be given complex numbers. Suppose that a3 = 0 when r = 0.
If the section

h = a1f̃r,sk1 + a2f̃r,sk2 + a3f̃r−1,s+1(k′1 + k′′1 ) + a4f̃r,s+1w3

of S2T ∗
C

satisfies the zero-energy condition, then we have the relations

(6.48) (4r + 3s+ 7)a1 + (4r + s+ 5)a2 − 4(s+ 1)(a3 − a4) = 0,

(6.49) c1a1 + c2a2 − 4(s+ 1)(c3a3 − c4a4) = 0,

(6.50) (s+ 1)c′1a1 + c′2a2 − 4(s+ 1)(c′3a3 − c′4a4) = 0,

where

c1 = 28 + 56r + 45s+ 44r2 + 25s2 + 48rs+ 12r2s+ 12rs2 + 4rs3

+ 16r3 + 11s3 + 3s4,

c2 = 20 + 40r + 39s+ 20r2 + 27s2 + 64rs+ 4r2s+ 28rs2 + 4rs3

+ 16r3 + 9s3 + s4,
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c3 = 4r2 + 4rs+ 8r + s3 + 12s2 + 39s+ 36,

c4 = 4r2 − 4rs− 8r + s3 + 4s2 + 7s+ 4,

c′1 = 3s3 + 10rs2 + 8r2s+ 2s2 + 4rs− 4r2 − 16r − 12s− 7,

c′2 = s4 + 8r2s2 + 26rs2 + 6rs3 + 20r2s+ 7s3 + 12s2

+ 16rs− 4r2 + 3s− 20r − 3,

c′3 = s3 + 2rs2 + 4r2 + 12rs+ 6s2 + 12r + 8s− 1,

c′4 = (2r + s+ 1)(s2 + s− 2r − 1).

Proof: By the methods used in proving Lemma 6.18, we compute
explicit polynomials Q1(u) of degree ≤ 2r + s + 2 and Q2(u) of degree
≤ 2r + s+ 3 in u such that

∫
δ

ψ̌∗
αh = cosα ·Q1(sinα),

∂

∂β

(∫
δ

ψ∗
α,βh

)
|β=0

= Q2(sinα),

for all α ∈ R. If the symmetric 2-form h satisfies the zero-energy condition,
the polynomials Q1 and Q2 vanish; the vanishing of the coefficients of
u2r+s+2 and u2r+s in the polynomial Q1(u) give us the relations (6.48)
and (6.49), respectively, while the vanishing of the coefficient of u2r+s+2 in
the polynomial Q2(u) give us the relation (6.50).

Lemma 6.20. Let r, s ≥ 0 be given integers, with s even, and let
a1, a2, a3, a4 be given complex numbers. Suppose that a3 = 0 when r = 0,
and that a4 = 0 when s = 0. If the section

h = a1f̃r,sk
− + a2f̃r,sk

+ + a3f̃r−1,s(k′1 − k′′1 ) + a4f̃r,s−1(k′2 − k′′2 )

of S2T ∗
C

satisfies the zero-energy condition, then we have the relations

(s+ 1)(2r + 2s− 1)a1 + (4r2 + 8rs+ 4s2 + 3s− 1)a2

− 2(4r2 + 8rs+ 4s2 + 4r + s− 3)a3

− 2(2r2 + 3rs+ s2 + 7r + 3s+ 2)a4 = 0,

(6.51)

(2r + 2s+ 1)a1 + a2 + 2a3 + 2(r + s+ 2)a4 = 0,(6.52)

a1 + a2 − 2a3 = 0.(6.53)

Proof: By the methods used to prove Lemma 6.18, we compute an
explicit polynomial P (u) of degree ≤ 2r + s+ 1 in u such that

∫
δ

ψ̌∗
αh = cosα · P (sinα),
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for all α ∈ R. Here we require formulas (6.19) and (6.21) and certain
formulas used in proving Lemma 6.17. The equality P (0) = 0 is equivalent
to (6.52), while the equality P ′(0) = 0 is equivalent to (6.51). On the other
hand, when r is even, the equality P (1) = 0 is equivalent to (6.53). When
r is odd, the equality P (−1) = 0 is equivalent to the relation

(6.54) (r + s)(a1 − a2) + 2(r + s+ 2)(a3 + a4) = 0.

We easily see that the relations (6.52) and (6.54) imply that (6.53) holds. If
the symmetric 2-form h satisfies the zero-energy condition, the polynomial
P vanishes, and we obtain the desired equalities.

Lemmas 6.17–6.20 are due to Tela Nlenvo; details of the proofs of these
lemmas can be found in [52].

§6. Bounds for the dimensions of spaces of symmetric forms

In this section, we use the results of §§4 and 5 to give bounds for the
dimension of certain spaces which we shall need in §7.

Lemma 6.21. Let r, s ≥ 0 be given integers, with s even. Then we
have

dim (Z2,C ∩ V ′
r,s+1) ≤ 1.

Proof: For r ≥ 1, s ≥ 2, the determinant of the 3× 3 matrix, whose
entries are the coefficients of a1, a2 and a3 in the relations (6.51), (6.52)
and (6.53), is equal to

16s(r + s+ 1).

If r = 0 and s ≥ 2 (resp. if r ≥ 1 and s = 0), the relations (6.51) and (6.52),
with a3 = 0 (resp. with a4 = 0), are clearly linearly independent. Finally,
if r = s = 0, the relations (6.51), (6.52) and (6.53) reduce to a1 + a2 = 0.
We remark that the symmetric 2-form h of Lemma 6.20 is an element
of V ′

r,s+1. From Lemmas 6.6 and 6.20, we then deduce the desired inequal-
ity.

Lemma 6.22. Let r, s ≥ 0 be given integers, with s even. Then we
have

dim (Z2,C ∩W ′
r,s+2) ≤ 1.

Proof: If r ≥ 1, the determinant of the 3 × 3 matrix, whose entries
are the coefficients of a2, a3 and a4 in the relations (6.48), (6.49) and (6.50),
is equal to

28(s+ 2)(s+ 1)3(r + s+ 2)(2r + s+ 1).

If r = 0, the relations (6.48) and (6.50), with a3 = 0, are linearly indepen-
dent; in fact, the determinant of the 2 × 2 matrix, whose entries are the
coefficients of a2 and a4 in these two relations, is equal to −8(s+ 1)2. We
remark that the symmetric 2-form h of Lemma 6.19 is an element ofW ′

r,s+2.
From Lemmas 6.6 and 6.19, we then obtain the desired inequality.
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Lemma 6.23. Let r, s ≥ 0 be given integers, with s even. Then we
have

dim (Z2,C ∩Wr,s) ≤ dr,s.

Proof: If r, s ≥ 2, the determinant of the 2× 2 matrix, whose entries
are the coefficients of a3 and a4 in the relations (6.46) and (6.47), is equal
to the non-zero expression 4s(s − 1)2. If r = 1 and s ≥ 2, or if r ≥ 2 and
s = 0, the relation (6.46) is non-trivial. We note that the relations (6.46)
and (6.47) do not involve the coefficient a2; when r ≥ 1 and s ≥ 2, according
to Lemma 6.14, the symmetric 2-form h̃2, which belongs to Wr,s, does not
satisfy the zero-energy condition. We remark that the symmetric 2-form
h of Lemma 6.18 is an element of Wr,s. These observations, together with
Lemmas 6.5 and 6.18, give us the desired inequality.

Lemma 6.24. Let r ≥ 0, s ≥ 1 be given integers, with s odd. Then
we have

dim (Z2,C ∩ Vr,s) ≤ dr,s.

Proof: We note that the relations (6.39)–(6.45) do not involve the
coefficient a4; when r ≥ 1 and 2r + s − 3 > 0, according to Lemma 6.13,
the symmetric 2-form h4, which belongs to Vr,s, does not satisfy the zero-
energy condition. Also the symmetric 2-form h of Lemma 6.17 is an element
of Vr,s.

(i) We first consider the case when r, s ≥ 3 and r is odd. In view
of the above observations and Lemmas 6.4 and 6.17, it suffices to show
that the 5× 7 matrix, corresponding to the linear system consisting of the
equations (6.39)–(6.43) in the scalars aj , with 1 ≤ j ≤ 8 and j �= 4, is of
maximal rank. The determinant of the 5× 5 matrix, whose entries are the
coefficients of the aj , with j = 1 and 5 ≤ j ≤ 8, in these relations, is equal
to

Δ = 210(s− 1)(s− 2)(r + s− 1)(2r + s)(r + s)3Δ′,

where

Δ′ = 4r3 − 10r2 + 12r2s− 20rs+ 9rs2 + 4r + 8 + 5s− 8s2 + 2s3.

We verify that the expression Δ′ is > 0; indeed, since r, s ≥ 3, we have

9rs2 + 12r2s = 3rs2 + 6rs2 + 10r2s+ 2r2s

≥ 9s2 + 18rs+ 10r2 + 2rs

> 8s2 + 20rs+ 10r2.

Therefore the determinant Δ is > 0 and our 5 × 7 matrix is of maximal
rank.
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(ii) We next consider the case when r ≥ 2 is even and s ≥ 3. In view
of the observations which precede the case (i), and Lemmas 6.4 and 6.17,
it suffices to show that the 5 × 7 matrix, corresponding to the linear sys-
tem consisting of the equations (6.39)–(6.41), and (6.44) and (6.45) in the
scalars aj , with 1 ≤ j ≤ 8 and j �= 4, is of maximal rank. The determinant
of the 5× 5 matrix, whose entries are the coefficients of the aj , with j = 1
and 5 ≤ j ≤ 8, in these relations, is equal to

Δ = −210(s− 1)(s− 2)(2r + s)(r + s− 1)2(r + s)2A(r, s),

where

A(r, s) = 4r3 − 18r2 + 12r2s− 38rs+ 9rs2 + 28r + 31s− 15s2 + 2s3 − 12.

We now show that the expression A(r, s) is positive. In fact, when r = 2,
we have

A(2, s) = 2s3 + 3s2 + 3s+ 4 > 0.

On the other hand, when r ≥ 4, we have

2s3 + 9rs2 + 12r2s = 2s3 + 3rs2 + 6rs2 + 5r2s+ 7r2s

≥ 6s2 + 12s2 + 18rs+ 20rs+ 21r2

> 15s2 + 38rs+ 18r2;

since 31s − 12 > 0, we see that A(r, s) > 0 in this case. Therefore the
determinant Δ is always < 0 and our 5 × 7 matrix is of maximal rank.

(iii) We now consider the case when r = 1 and s ≥ 3. We set a5 = 0;
then the relations (6.39) and (6.41)–(6.43) are equivalent to the system of
equations

(4s2 − 1)a1 − 2(2s− 1)(2sa2 − 2a6 − a8) − (2s2 + 1)a3

+ 4(s2 + 3s− 1)a7 = 0,
(6.55)

s2a1 + 4sa2 − (s2 − 2s− 2)(a3 + 2a8) − 4(2s+ 3)a6

+ 4(s2 − 2)a7 = 0,
(6.56)

s(a1 − 4a2 − a3 − 2a8) + 4(s+ 2)(a6 + a7) = 0,(6.57)

(s+ 4)a1 − 4sa2 − (s+ 2)(a3 − 2a8) − 4a6 = 0.(6.58)

Since 2r+ s− 3 = s− 1 > 0, in view of the observations which precede the
case (i), and Lemmas 6.4 and 6.17, it suffices to show that the 4×6 matrix,
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corresponding to the linear system consisting of equations (6.55)–(6.58) in
the scalars aj , with 1 ≤ j ≤ 8 and j �= 4, 5, is of maximal rank. The
determinant of the 4 × 4 matrix, whose entries are the coefficients of the
scalars a1, a2, a3, a6 in the equations (6.55)–(6.58), is equal to

32s(s− 1)(s− 2)(s+ 1)3,

and so our 4 × 6 matrix is of maximal rank.
(iv) We now consider the case when r ≥ 2 and s = 1. We set

a3 = a7 = 0. Then the relations (6.39) and (6.40) are equivalent to the
system of equations

(2r + 1)a1 − 4ra2 + 4a5 + 4a6 + 2a8 = 0,(6.59)

(2r − 1)a1 − 4(r − 2)a2 + 12a5 − 4(2r2 + 4r − 1)a6

+ 2(4r2 − 1)a8 = 0.
(6.60)

On the other hand, the equation (6.42) is equivalent to

(6.61) r(a1 − 4a2 − 2a8) + 4(r + 2)(a5 + a6) = 0,

while the equation (6.44) is equivalent to

(6.62) (r − 1)(a1 − 4a2) + 4(r + 1)a5 + 2(r − 1)a8 = 0.

Since 2r+s−3 = 2r−2 > 0, in view of the observations which precede the
case (i), and Lemmas 6.4 and 6.17, when r is odd (resp. even) it suffices to
know that the 3 × 5 matrix corresponding to the linear system consisting
of equations (6.59)–(6.61) (resp. of equations (6.59), (6.60) and (6.62)) in
the scalars a1, a2, a5, a6, a8 is of maximal rank. Since the determinant of
the matrix

⎛
⎜⎝

4 4 2
12 −4(2r2 + 4r − 1) 2(4r2 − 1)

4(r + 2) 4(r + 2) −2r

⎞
⎟⎠

is equal to 128(r + 1)3 (resp. of the matrix
⎛
⎜⎝

4 4 2
12 −4(2r2 + 4r − 1) 2(4r2 − 1)

4(r + 1) 0 2(r − 1)

⎞
⎟⎠

is equal to 128r(r + 1)2), our 3 × 5 matrix is of maximal rank when r is
odd (resp. even).
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(v) We now consider the case when r = s = 1. We set

a3 = a5 = a7 = 0;

then the relations (6.40) and (6.42) are equivalent to the system of equa-
tions

(6.63) a1 + 4a2 − 20a6 + 6a8 = 0, a1 − 4a2 + 12a6 − 2a8 = 0.

We also consider the relation (6.36) of Lemma 6.15. Since the determinant
of the matrix ⎛

⎝ 1 4 6
1 −4 −2
5 −12 6

⎞
⎠

is equal to −64, we see that the 3×4 matrix of the linear system consisting
of equations (6.63) and (6.36) in the scalars a1, a2, a6, a8 is of maximal
rank. From Lemmas 6.4, 6.15 and 6.17, we obtain the desired inequality in
this case.

(vi) We now consider the case when r = 0 and s ≥ 3. We set

a2 = a4 = a5 = a6 = 0;

then the relations (6.40), (6.44) and (6.45) are equivalent to the system of
equations

(2s− 3)(2s− 5)a1 − (2s2 − 4s− 1)a3 − 12(s2 − 3s+ 1)a7

+ 2(2s− 5)(4s− 5)a8 = 0,
(6.64)

a1 − a3 + 2a8 = 0,(6.65)

sa1 + (2 − s)a3 + 4sa7 − (2s− 4)a8 = 0.(6.66)

Since the determinant of the matrix
⎛
⎜⎝

2s2 − 4s− 1 12(s2 − 3s+ 1) 2(2s− 5)(4s− 5)
1 0 2

s− 2 −4s −2s+ 4

⎞
⎟⎠

is equal to −32(s − 1)(s − 3), we see that the 3 × 4 matrix of the linear
system consisting of equations (6.64)–(6.66) in the scalars a1, a3, a7, a8 is
of maximal rank when s ≥ 5. If s = 3, the relation (6.64) gives us the
equation

(6.67) 3a1 − a3 + 12a7 − 2a8 = 0;
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in this case, we also consider the relation (6.38) of Lemma 6.16. Since the
determinant of the matrix ⎛

⎝ 1 −1 2
3 −1 −2
15 4 6

⎞
⎠

is equal to 104, the 3×4 matrix of the linear system consisting of equations
(6.65), (6.67) and (6.38) in the scalars a1, a3, a7, a8 is of maximal rank. For
all s ≥ 3, we then obtain the desired inequality from Lemmas 6.4, 6.16
and 6.17.

(vii) We finally consider the case when r = 0 and s = 1. In this case,
we set

a2 = a3 = a4 = a5 = a6 = a7 = 0.

The equation (6.39) is equivalent to

a1 + 2a8 = 0,

and then Lemmas 6.4 and 6.17 imply the desired result.

§7. The complex quadric of dimension three

In this section, we suppose that n = 3 and that X is the quadric Q3 of
dimension 3, which is a homogeneous space of the group G = SO(5). Let
Γ be the dual of the group G.

The Casimir element of the Lie algebra g0 of G operates by a scalar cγ
on an irreducible G-module which is a representative of γ ∈ Γ. We know
that, for γ ∈ Γ, the G-module C∞

γ (SpT ∗
C
) is an eigenspace of the Lich-

nerowicz Laplacian Δ with eigenvalue λγ = 12cγ . If W is a G-submodule
of C∞

γ (SpT ∗
C
), with γ ∈ Γ, we denote by C(W ) the weight subspace of W

corresponding to its highest weight γ; we recall that the multiplicity of the
G-module W is equal to the dimension of the space C(W ).

If we set

c(t, s) =
(t+ s)(t+ s+ 3) + s(s+ 1)

6
,

by Freudenthal’s formula we have

cγr,s = c(2r, s), cγ′
r,s

= c(2r + 1, s);

in particular, we see that cγ′
0,0

= 2/3. In fact, we easily verify that the
expression for λr,s given by (5.123) is equal to λγr,s = 12cγr,s .

From the branching law for SO(5) and its subgroup K described in
Theorem 1.2 of [54], using the computation of the highest weights of the
irreducible K-modules given in §7, Chapter V, we obtain the following
result given by Proposition 9.1 of [23] (see also [54, §4]):



224 VI. THE RIGIDITY OF THE COMPLEX QUADRIC

Proposition 6.25. For γ ∈ Γ, the SO(5)-module C∞
γ (F ), where F is

a homogeneous vector bundle over X = Q3, equal either to T ′ or T ′′ or to
one of the vector bundles appearing in the decomposition (5.27) of S2T ∗

C
,

vanishes unless γ is equal to γr,s or to γ′r,s, for some r, s ≥ 0. For r, s ≥ 0,
the non-zero multiplicities of the SO(5)-modules C∞

γ′
r,s

(F ), where F is one

of these homogeneous vector bundles, are given by the following table:

F Conditions on r, s MultC∞
γ′

r,s
(F )

T ′ r ≥ 0, s ≥ 1 1

T ′′

(S2,0T ∗)⊥ r + s ≥ 2 and s ≥ 1 2 if r ≥ 1, s ≥ 2

(S0,2T ∗)⊥ 1 otherwise

(S2T ∗)++
0C

r ≥ 0, s ≥ 1 2 if r ≥ 0, s ≥ 2
1 otherwise

(S2T ∗)+−
C

r, s ≥ 0 2 if r ≥ 0, s ≥ 1
1 otherwise

Remark. According to Proposition 6.25, we see that the irreducible
SO(5)-module C∞

γ′
0,0

(S2T ∗)+−
C

is a non-zero eigenspace of the Lichnerowicz
Laplacian Δ with eigenvalue λγ′

0,0
= 12cγ′

0,0
= 8. Clearly the numbers cγr,s

and cγ′
r,s

are > cγ′
0,0

when r + s > 0; therefore the first eigenvalue of the
Lichnerowicz Laplacian Δ acting on C∞(S2T ∗

C
) is equal to 8 and is strictly

less than the first eigenvalue λ0,1 = 12 of the Laplacian Δ acting on the
space of functions C∞(X).

In [23], we verified that all the non-zero vectors of the spaces Vr,s and
Wr,s are highest weight vectors of the SO(5)-module C∞

γr,s
(S2T ∗

C
). From

Proposition 5.19, Lemmas 6.4 and 6.5, and the inclusions (6.14) and (6.15),
we infer the following result given by Lemma 9.2 of [23]:

Lemma 6.26. For r, s ≥ 0, we have

(6.68)
C(C∞

γr,2s
(S2T ∗

C
)ev) = Vr,2s, C(C∞

γr,2s+1
(S2T ∗

C
)odd) = Vr,2s+1,

C(C∞
γr,2s

(S2T ∗
C
)odd) = Wr,2s, C(C∞

γr,2s+1
(S2T ∗

C
)ev) = Wr,2s+1.

In §7, Chapter V, we saw that, for r ≥ 0 and s ≥ 1, the section
f̃r,s−1π+−Hess f̃0,1 is a highest weight vector of the irreducible SO(5)-
module C∞

γr,s
((S2T ∗

C
)+−) and we derived the relations (5.126), (5.129) and

(5.130); in fact, this section is even (resp. is odd) when s is an even
(resp. odd) integer. These results can also be obtained using Proposi-
tion 5.19 and Lemma 6.26.
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From Proposition 5.22 and from Lemmas 5.21, 6.7 and 6.26, we obtain
the following result:

Proposition 6.27. For r, s ≥ 0, we have

N2,C ∩ C∞
γr,s

(S2T ∗
C
)ev = D0C

∞
γr,s

(TC)ev.

From Proposition 5.23 and from Lemmas 5.21, 6.23, 6.24 and 6.26, we
then obtain the following result:

Proposition 6.28. For r, s ≥ 0, we have

Z2,C ∩ C∞
γr,s

(S2T ∗
C
)odd = D0C

∞
γr,s

(TC)odd.

The following lemma is a consequence of Proposition 6.25 and of the
proof of Lemma 9.3 of [23].

Lemma 6.29. For r ≥ 0, s ≥ 1, the SO(5)-modules C∞
γ′

r,s
(TC)ev and

C∞
γ′

r,s
(TC)odd are irreducible. For r ≥ 0, we have

C∞
γ′

r,0
(TC) = {0}.

In [23], we verified that all the non-zero vectors of the spaces V ′
r,s,

with s ≥ 1, and W ′
r,s, with s ≥ 0, are highest weight vectors of the

SO(5)-module C∞
γ′

r,s
(S2T ∗

C
).

The next lemma is given by Lemma 9.4 of [23].

Lemma 6.30. The SO(5)-module C∞
γ′
0,0

((S2T ∗)+−
C

)ev is irreducible,

and it possesses a highest weight vector h0 satisfying

k− = f̃0,1 · h0.

Proof: If φ is the element of SO(5) defined in §7, Chapter V, we
have (φ∗f̃0,1)(a) = 1 and (φ∗f̃ ′)(a) = 0. By (5.121), we obtain

(6.69) φ∗((df̃1,0)� w3)(η̄1) = φ∗((df̃1,0)� π+−Hess f̃ ′)(η̄1) = −1

at the point a. By Proposition 6.25, the SO(5)-module C∞
γ′
0,0

((S2T ∗)+−
C

)
is irreducible; let h′0 be a highest weight vector of this module. Clearly
the section h′0 is either even or odd. For r, s ≥ 0, from the equality
γ′r,s = γ′0,0 + γr,s we infer that f̃r,sh

′
0 is a highest weight vector of the

SO(5)-module C∞
γ′

r,s
((S2T ∗)+−

C
). Since div : S2T ∗

C
→ T ∗

C
is a homogeneous

differential operator, by Lemma 6.29 we see that

(6.70) div (f̃r,0h′0) = 0,
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for r ≥ 0. The relation (6.70), with r = 0, 1, and formula (1.8) imply that

(df̃1,0)� h′0 = 0.

Hence the highest weight vector h = f̃0,1h
′
0 of C∞

γ′
0,1

((S2T ∗)+−
C

) satisfies the
equation

(6.71) (df̃1,0)� h = 0.

According to Proposition 6.25, we know that the multiplicity of the SO(5)-
module C∞

γ′
0,1

((S2T ∗)+−
C

) is equal to 2. By the remark preceding this lemma

and the inclusions (6.16), the sections w3 and k− are highest weight vectors
of the modules C∞

γ′
0,1

((S2T ∗)+−
C

)ev and C∞
γ′
0,1

((S2T ∗)+−
C

)odd, respectively.
Therefore these vectors are linearly independent and there exist unique
scalars c1, c2 ∈ C such that

h = c1w3 + c2k
−.

Moreover since the section h is either even or odd, we know that one (and
only one) of the coefficients c1, c2 must vanish. If c2 = 0, then from (6.71)
we obtain the relation

(df̃1,0)� w3 = 0,

which contradicts (6.69). Therefore we must have c1 = 0, and the vector h
is a non-zero multiple of k− and so is an odd section of (S2T ∗)+−

C
. Hence

the vector h0 = (1/c2)h′0 satisfies the conclusion of the lemma.
For r ≥ 0, the highest weight vector f̃r,0h0 of the SO(5)-module

C∞((S2T ∗)+−
C

)ev generates (over C) a subspace V ′
r,0 of this module. By

Lemma 6.30 we have
f̃r,sk

− = f̃r,s+1h0,

for r, s ≥ 0, and so the symmetric 2-form f̃r,sh0 belongs to the sub-
space V ′

r,s, for all r, s ≥ 0.
From Proposition 6.25, Lemma 6.6, the inclusions (6.16) and the re-

mark preceding Lemma 6.30, we deduce the following result given by
Lemma 9.5 of [23]:

Lemma 6.31. For r, s ≥ 0, we have

(6.72)
C(C∞

γ′
r,2s

(S2T ∗
C
)ev) = V ′

r,2s, C(C∞
γ′

r,2s+1
(S2T ∗

C
)odd) = V ′

r,2s+1,

C(C∞
γ′

r,2s
(S2T ∗

C
)odd) = W ′

r,2s, C(C∞
γr,2s+1

(S2T ∗
C
)ev) = W ′

r,2s+1.
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Let r, s ≥ 0 be given integers. By Lemma 6.31, the SO(5)-modules
C∞
γ′

r,s
((S2T ∗)+−

C
)ev and C∞

γ′
r,s+1

((S2T ∗)+−
C

)odd are irreducible. Moreover,
we have

C∞
γ′

r,0
((S2T ∗)+−

C
) = C∞

γ′
r,0

((S2T ∗)+−
C

)ev.

In fact, when s is even (resp. odd), the section f̃r,sh0 (resp. f̃r,s−1w3)
of (S2T ∗)+−

C
is a highest weight vector of the irreducible SO(5)-module

C∞
γ′

r,s
((S2T ∗)+−

C
)ev. When s is ≥ 1 and even (resp. odd), the section

f̃r,s−1w3 (resp. f̃r,sh0 = f̃r,s−1k
−) is a highest weight vector of the ir-

reducible SO(5)-module C∞
γ′

r,s
((S2T ∗)+−

C
)odd.

The following result is proved in [23, §9].

Lemma 6.32. For r, s ≥ 0, with s even, the symmetric 2-form f̃r,sh0

on X does not satisfy the Guillemin condition.

For r ≥ 0, we have W ′
r,0 = {0}. From Proposition 5.22 and from

Lemmas 6.8, 6.29, 6.31 and 6.32, we then obtain the following result:

Proposition 6.33. For r, s ≥ 0, we have

N2,C ∩ C∞
γ′

r,s
(S2T ∗

C
)ev = D0C

∞
γ′

r,s
(TC)ev.

From Proposition 5.23 and from Lemmas 6.21, 6.22, 6.29 and 6.31, we
obtain the following result:

Proposition 6.34. For r, s ≥ 0, we have

Z2,C ∩ C∞
γ′

r,s
(S2T ∗

C
)odd = D0C

∞
γ′

r,s
(TC)odd.

We now complete the proof of the following result of [23].

Theorem 6.35. An even symmetric 2-form on the quadric X = Q3

satisfies the Guillemin condition if and only if it is a Lie derivative of the
metric.

Proof: From Proposition 2.30,(i), with X = Q3, Σ = {τ} and
ε = +1, and Propositions 6.25, 6.27 and 6.33, we obtain the equality

N2,C ∩ C∞(S2T ∗
C
)ev = D0C

∞(TC)ev,

which implies the desired result.
The following is a consequence of joint work with Tela Nlenvo (see [52]

and §5).
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Theorem 6.36. An odd symmetric 2-form on the quadric X = Q3

satisfies the zero-energy condition if and only if it is a Lie derivative of the
metric.

Proof: From Proposition 2.30,(ii), with X = Q3, Σ = {τ} and
ε = −1, and Propositions 6.25, 6.28 and 6.34, we obtain the equality

Z2,C ∩ C∞(S2T ∗
C
)odd = D0C

∞(TC)odd,

which implies the desired result.
Let r, s ≥ 0 be given integers. By Lemma 4.5 of [23], when s ≥ 2 is

even, the highest weight vector

f̃r,s−1π+−Hess f̃0,1

of the irreducible SO(5)-module C∞
γr,s

((S2T ∗)+−
C

)ev does not satisfy the
Guillemin condition. When s is even (resp. odd), by Lemma 6.32 (resp.
Lemma 4.10 of [23]), the highest weight vector f̃r,sh0 (resp. f̃r,s−1w3) of the
irreducible SO(5)-module C∞

γ′
r,s

((S2T ∗)+−
C

)ev does not satisfy the Guillemin
condition. Thus from the remarks following Lemma 6.31 and the equalities
(5.126) and (5.129), we obtain the following:

Proposition 6.37. Let X be the complex quadric Q3. For r, s ≥ 0,
we have

N2,C ∩ C∞
γr,s

((S2T ∗)+−
C

)ev = N2,C ∩ C∞
γ′

r,s
((S2T ∗)+−

C
)ev = {0}.

The following theorem is a direct consequence of Propositions 5.24,
6.25 and 6.37.

Theorem 6.38. An even section of (S2T ∗)+− over the quadric Q3,
which satisfies the Guillemin condition, vanishes identically.

Let r ≥ 0, s ≥ 1 be given integers. By Lemma 6.9, when s is an odd
integer, the highest weight vector

f̃r,s−1π+−Hess f̃0,1

of the irreducible SO(5)-module C∞
γr,s

((S2T ∗)+−
C

)odd does not satisfy the
zero-energy condition. When s is even (resp. odd), by Lemma 6.11 (resp.
Lemma 6.10), the highest weight vector f̃r,s−1w3 (resp. f̃r,sh0 = f̃r,s−1k

−)
of the irreducible SO(5)-module C∞

γ′
r,s

((S2T ∗)+−
C

)odd does not satisfy the
zero-energy condition. Thus from the remarks following Lemma 6.31 and
the equalities (5.126) and (5.129), we obtain the following:
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Proposition 6.39. Let X be the complex quadric Q3. For r, s ≥ 0,
we have

Z2,C ∩ C∞
γr,s

((S2T ∗)+−
C

)odd = Z2,C ∩ C∞
γ′

r,s
((S2T ∗)+−

C
)odd = {0}.

The following theorem is a direct consequence of Propositions 5.25,
6.25 and 6.39.

Theorem 6.40. An odd section of (S2T ∗)+− over the quadric Q3,
which satisfies the zero-energy condition, vanishes identically.

§8. The rigidity of the complex quadric

In this section, we assume that X is the complex quadric Qn, with
n ≥ 3, and we extend the main results of §7 to the quadricQn; in particular,
we shall prove the four following theorems.

Theorem 6.41. An even symmetric 2-form on the quadric X = Qn,
with n ≥ 3, satisfies the Guillemin condition if and only if it is a Lie
derivative of the metric.

Theorem 6.42. An odd symmetric 2-form on the quadric X = Qn,
with n ≥ 3, satisfies the zero-energy condition if and only if it is a Lie
derivative of the metric.

Theorem 6.43. An even section of (S2T ∗)+− over the quadric Qn,
with n ≥ 3, which satisfies the Guillemin condition, vanishes identically.

Theorem 6.44. An odd section of (S2T ∗)+− over the quadric Qn,
with n ≥ 3, which satisfies the zero-energy condition, vanishes identically.

From Theorems 6.41 and 6.42, we shall deduce the following:

Theorem 6.45. The complex quadric X = Qn, with n ≥ 3, is in-
finitesimally rigid.

From Theorems 6.43 and 6.44, we shall deduce the following:

Theorem 6.46. A section of (S2T ∗)+− over the complex quadric Qn,
with n ≥ 3, which satisfies the zero-energy condition, vanishes identically.

We now prove these last two theorems simultaneously. Let h be a
symmetric 2-form on X satisfying the zero-energy condition. We write
h = h+ + h−, where

h+ = 1
2 (h+ τ∗h), h− = 1

2 (h− τ∗h)

are the even and odd parts of h, respectively. Clearly, since τ is an isometry,
both these 2-forms h+ and h− satisfy the zero-energy condition. If h is a
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section of (S2T ∗)+−, so are the forms h+ and h−. By Lemma 2.11, the even
form h+ satisfies the Guillemin condition. First, by Theorems 6.41 and 6.42
we know that the even form h+ and the odd form h− are Lie derivatives
of the metric. Finally, if h is a section of (S2T ∗)+−, by Theorems 6.43
and 6.44 we know that the forms h+ and h− vanish.

From Theorems 6.41 and 6.43, and from Propositions 2.18 and 2.21,
with Λ = {id, τ} and F = E = (S2T ∗)+−, we deduce the following two
results:

Theorem 6.47. The real Grassmannian Y = GR

2,n, with n ≥ 3, is
rigid in the sense of Guillemin.

Theorem 6.48. A section of the vector bundle EY over the real
Grassmannian Y = GR

2,n, with n ≥ 3, which satisfies the Guillemin condi-
tion, vanishes identically.

We now proceed to prove Theorems 6.41–6.44. If x is a point of X, let
F ′
x be the family of all closed connected totally geodesic submanifolds of X

passing through x ∈ X which can be written as ExpxVx⊗W1, where W1 is
a three-dimensional subspace of Wx. In §6, Chapter V, we considered the
family

F ′ =
⋃
x∈X

F ′
x

of submanifolds of X and we saw that a submanifold of X belonging to F ′

is isometric to the complex quadric Q3 of dimension 3.
From Lemma 4.8, with p = 2 and q = 3, we obtain:

Lemma 6.49. Let X be the complex quadric Qn, with n ≥ 3. Let
x ∈ X and h be an element of S2T ∗

x . If the restriction of h to an arbitrary
submanifold of the family F ′

x vanishes, then h vanishes.

Proposition 6.50. Let h be a symmetric 2-form on the quadric X =
Qn, with n ≥ 3.

(i) If h is an even form satisfying the Guillemin condition, then h
belongs to L(F ′).

(ii) If h is an odd form satisfying the zero-energy condition, then h
belongs to L(F ′).

(iii) If h is a section of (S2T ∗)+− and satisfies the hypotheses of (i)
or (ii), then h vanishes.

Proof: We consider the complex quadric Z = Q3 of dimension 3.
Let X ′ be a submanifold of X belonging to the family F ′. According to
Lemma 4.6 and the equality (5.64), there is a totally geodesic imbedding
i : Z → X whose image is equal to X ′ and which possesses the following
properties:
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(a) if h is a section of (S2T ∗)+−, then the symmetric 2-form i∗h on Z
is a section of the sub-bundle (S2T ∗

Z)+− of S2T ∗
Z ;

(b) if h is an even (resp. odd) form on X, then the symmetric 2-form
i∗h on Z is even (resp. odd).
Since the rank of the symmetric space X ′ is equal to that of X, if h sat-
isfies the Guillemin condition, then the form i∗h on Z also satisfies the
Guillemin condition. First, if h satisfies the hypotheses of (i) (resp. of (ii)),
by Theorem 6.35 (resp. Theorem 6.36) the form i∗h is a Lie derivative of
the metric of Z, and hence the restriction of h to X ′ is a Lie derivative
of the metric of X ′. Next, if h is a section of (S2T ∗)+− and satisfies the
hypotheses of (i) (resp. of (ii)), by Theorem 6.38 (resp. Theorem 6.40), we
infer that i∗h and the restriction of h to X ′ vanish. Now suppose that h
satisfies the hypotheses of (i) or (ii). Then we have shown that h belongs
to L(F ′); moreover, if h is a section of (S2T ∗)+−, by Lemma 6.49 we see
that h vanishes.

We note that Proposition 6.50,(iii) gives us Theorems 6.43 and 6.44.
We therefore know that Theorem 6.46 also holds.

We consider the G-invariant family F = F1 of closed connected totally
geodesic surfaces of X defined in §6, Chapter V; there we saw that each
surface of F is contained in a totally geodesic submanifold belonging to the
family F ′, and that all the totally geodesic flat 2-tori of X belong to the
family F . Thus any closed geodesic of X is contained in a totally geodesic
surface of X belonging to the family F ; it follows that

(6.73) L(F ′) ⊂ Z2.

According to the inclusion (6.73) and Theorem 6.46, we know that the
equality

(6.74) C∞((S2T ∗)+−) ∩ L(F ′) = {0}

holds. By Lemma 5.8, relation (6.74) and Proposition 5.17, we see that
the families F and F ′ and the vector bundle E = (S2T ∗)+− satisfy the
hypotheses of Theorem 2.48,(iii). Hence from this theorem, we deduce the
following result:

Theorem 6.51. Let h be a symmetric 2-form on the quadric X = Qn,
with n ≥ 3. If h belongs to L(F ′), then h is a Lie derivative of the metric
of X.

This theorem together with the first two parts of Proposition 6.50 im-
plies Theorems 6.41 and 6.42. According to the proofs of Theorem 2.45,(iii)
and Proposition 6.50, we see that the only results of §7 which we require
for the proof of Theorem 6.41 (resp. Theorem 6.42) are Theorems 6.35
and 6.38 (resp. Theorem 6.36 and 6.40).
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None of our results concerning forms on the quadric satisfying the
zero-energy condition enter into our proof of Theorem 6.41 given above.
Previously, in [23] we deduced Theorem 6.41 for the quadricQn, with n ≥ 4,
from Theorem 6.35 by means of the infinitesimal rigidity of this quadric.
In fact, if h is an even symmetric 2-form on X = Qn, with n ≥ 4, satisfying
the Guillemin condition, by Proposition 6.50,(i) and the inclusion (6.73) we
know that h satisfies the zero-energy condition; the infinitesimal rigidity
of Qn implies that h is a Lie derivative of the metric.

From Theorems 5.27 and 6.41, we obtain the following:

Theorem 6.52. An even section of L over the quadricQn, with n ≥ 3,
which satisfies the Guillemin condition, vanishes identically.

From Theorem 6.41 and the decomposition (1.11), we obtain the rela-
tion

(6.75) N2 ∩ {h ∈ C∞(S2T ∗)ev | divh = 0 } = {0}.

§9. Other proofs of the infinitesimal rigidity of the quadric

In this section, we suppose that X is the complex quadric Qn, with
n ≥ 4. This section and the next one are devoted to other proofs of the
infinitesimal rigidity of the quadric X = Qn, with n ≥ 4. Some of the
methods used here were introduced in [18] and [22].

The essential aspects of the proof of the following proposition were
first given by Dieng in [10].

Proposition 6.53. The infinitesimal rigidity of the quadric Q3 im-
plies that all the quadrics Qn, with n ≥ 3, are infinitesimally rigid.

Proof: We consider the G-invariant family F3 of closed connected
totally geodesic surfaces of X introduced in §6, Chapter V and the family
F ′ of closed connected totally geodesic submanifolds of X isometric to the
quadric Q3 introduced in §6, Chapter V and in §8. According to a remark
made in §6, Chapter V, we know that each surface belonging to the family
F3 is contained in a totally geodesic submanifold of X belonging to the
family F ′. Assume that we know that the quadricQ3 is infinitesimally rigid;
then the family F ′ possesses property (III) of §8, Chapter II; moreover,
by Propositions 5.13 and 5.14, the families F = F3 and F ′ satisfy the
hypotheses of Theorem 2.47,(iii). From this last theorem, we deduce the
infinitesimal rigidity of X.

We now consider the G-invariant family F = F2 of closed connected
totally geodesic surfaces of X. The sub-bundle N2 = NF of B consisting
of those elements of B, which vanish when restricted to the closed totally
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geodesic submanifolds of F , was introduced in §8, Chapter II and was
considered in §6, Chapter V. We also consider the differential operator

D1,F : S2T ∗ → B/N2

of §8, Chapter II.
We consider the families F̃1, F̃6 and F̃7 of closed connected totally

geodesic submanifolds of X introduced in §6, Chapter V and we set

F ′ = F̃1 ∪ F̃6 ∪ F̃7.

A submanifold of X belonging to F̃1 (resp. to F̃6) is a surface isometric to
the flat 2-torus (resp. to the real projective plane RP

2), while a submanifold
of X belonging to F̃7 is isometric to the complex projective space CP

2.
In §6, Chapter V, we saw that each surface belonging to F̃2 is contained
in a submanifold of X belonging to the family F̃7; therefore each surface
of X belonging to F is contained in a submanifold of X belonging to the
family F ′. According to Proposition 3.19 and Theorems 3.7 and 3.39, we
see that the family F ′ possesses property (III) of §8, Chapter II. Hence
a symmetric 2-form h on X satisfying the zero-energy condition belongs
to L(F ′), and, by Proposition 2.44, verifies the relation

D1,Fh = 0.

Proposition 6.54. Let h be a symmetric 2-form on quadric X = Qn,
with n ≥ 4, satisfying the zero-energy condition and the relation divh = 0.
Then when n ≥ 5, the symmetric form h is a section of the vector bundle L;
when n = 4, it is a section of the vector bundle L⊕ (S2T ∗)+−.

Proof: We know that h belongs to L(F ′). We suppose that n ≥ 5
(resp. that n = 4). According to Proposition 5.10 (resp. Proposition 5.11),
we see that the hypotheses of Theorem 2.48,(i) hold, with E = L (resp. with
E = L ⊕ (S2T ∗)+−). By Proposition 5.17, we know that E(X) = {0}
(resp. that E(X) ⊂ C∞((S2T ∗)+−)). Then Theorem 2.48,(i) tells us that
h is a section of L (resp. of L⊕ (S2T ∗)+−).

In §10, we shall prove the following result:

Proposition 6.55. Let X be the quadric Q4. A section h of the
vector bundle L⊕ (S2T ∗)+− satisfying the relations

divh = 0, D1,Fh = 0

vanishes identically.

We now give an alternate proof of Theorem 6.45, with n ≥ 4, using
Propositions 6.54, 6.55 and 5.26. In the case n = 4, this proof appears
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in [22]. Let h be a symmetric 2-form on the quadric X = Qn, with n ≥ 4,
satisfying the zero-energy condition and the relation divh = 0. When
n ≥ 5, Proposition 6.54 tells us that h is a section of L; by Proposition 5.26,
we see that h vanishes identically. When n = 4, Proposition 6.54 tells us
that h is a section of L⊕(S2T ∗)+−, and, as we saw above, Proposition 2.44
gives us the relationD1,Fh = 0; by Proposition 6.55, we see that h vanishes.
Then Proposition 2.13 gives us the infinitesimal rigidity of X.

Finally, we present an outline of the proof of the infinitesimal rigidity
of Qn, with n ≥ 5, given in [18]. This proof completely avoids the use of
harmonic analysis on the quadric; it requires the description of the explicit
complement of B̃ in the vector bundle N2 = NF given by Proposition 5.12.

We consider the natural projection α : B → B/B̃ and the differential
operator D′

1 : B/B̃ → B1 defined in §3, Chapter I. We also consider the
morphism of vector bundles

ψ :
∧2
T ∗ → B, τ̂B : S2T ∗ → B

of Chapter I. In [18], using the equalities (5.73), (5.19) and (5.22), by
purely algebraic computations and elementary operations involving differ-
ential forms we were able to prove the following result:

Proposition 6.56. Let β be a section of (
∧2
T ∗)− and v be a section

of L over an open subset of X satisfying

(6.76) D′
1α(ψ(β) + τ̂B(v)) = 0.

Then we have v = 0 and ∇β = 0.

We suppose that n ≥ 5. Let h be a symmetric 2-form on X satisfying
the zero-energy condition. As we have seen above, we have D1,Fh = 0. By
Proposition 5.12, there exist elements β of C∞((

∧2
T ∗)−) and v ∈ C∞(L)

such that
D1h = α(ψ(β) + τ̂B(v)).

By Lemma 1.17, we obtain the relation (6.76). Then Proposition 6.56 tells
us that v = 0 and ∇β = 0. Since a harmonic differential 2-form on X
is a constant multiple of the Kähler form of X, we immediately deduce
that β = 0. Thus we know thatD1h = 0. We know that the sequence (1.24)
is exact (see §6, Chapter V); therefore h is a Lie derivative of the metric.
We have thus shown that the infinitesimal rigidity of the quadric Qn, with
n ≥ 5, is a consequence of Propositions 5.12, 5.14 and 6.56.

§10. The complex quadric of dimension four

In this section, we suppose that X is the complex quadric Q4 of di-
mension 4, which is a homogeneous space of the group G = SO(6), and we
present an outline of the proof of Proposition 6.55.
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For r, s ≥ 0, we consider the elements

γ1
r,s = (2r+s+2)λ0 +(s+1)λ1 +λ2, γ2

r,s = (2r+s+2)λ0 +(s+1)λ1−λ2

of Γ.
We recall that the SO(6)-equivariant involution ∗ of (S2T ∗)+− de-

fined in §5, Chapter V gives rise to the decomposition (5.70) of the sub-
bundle (S2T ∗)+−

C
. In §7, Chapter V, we saw that the highest weight of the

irreducible K-submodules F+
C,b and F−

C,b of (S2T ∗)+−
C,b are equal to λ1 + λ2

and λ1 − λ2, respectively. Hence from the branching law for SO(6) and K
described in Theorem 1.1 of [54], we obtain the following result given by
Proposition 4.2 of [21] (see also [54, §4]):

Proposition 6.57. For γ ∈ Γ, the SO(6)-module C∞
γ ((S2T ∗)+−

C
)

vanishes unless γ is equal to γr,s+1, to γ1
r,s or to γ2

r,s, for some r, s ≥ 0.

For r, s ≥ 0, the multiplicities of the SO(6)-modules C∞
γ1

r,s
((S2T ∗)+−

C
) and

C∞
γ2

r,s
((S2T ∗)+−

C
) are equal to 2.

The function f1 on C
n+2 defined by

f1(ζ) = (ζ0 + iζ1)(ζ̄n + iζ̄n+1) − (ζn + ζn+1)(ζ̄0 + iζ̄1)

belongs to H. We consider the element f̃1 of H̃ induced by f1, and also the
section

w4 = π+−
(
f̃0,1 Hess f̃1 − f̃1 Hess f̃0,1

)
of (S2T ∗)+−

C
.

The following lemma is given by Lemma 3.9 of [22].

Lemma 6.58. Let r, s ≥ 0. The elements

div (f̃r,sw4), div (f̃r,s∗ w4)

of C∞(T ∗
C
) are linearly independent.

According to Lemma 6.58, we know that w4 is a non-zero section of
(S2T ∗)+−

C
; in [22, §3], we saw that f̃r,sw4 is a highest weight vector of the

SO(6)-module C∞
γ1

r,s
((S2T ∗)+−

C
), for r, s ≥ 0. Since the morphism ∗ is an

SO(6)-equivariant involution of (S2T ∗)+−, it follows that f̃r,s∗w4 is also a
highest weight vector of the SO(6)-module C∞

γ1
r,s

((S2T ∗)+−
C

). From Lemma

6.58 and Proposition 6.57, we infer that the space C(C∞
γ1

r,s
((S2T ∗)+−

C
)) is

generated by the sections f̃r,sw4 and f̃r,s∗ w4. Since div : S2T ∗
C
→ T ∗

C
is a

homogeneous differential operator, Lemma 6.58 tells us that the mapping

(6.77) div : C∞
γj

r,s
((S2T ∗)+−

C
) → C∞

γj
r,s

(T ∗
C
)

is injective for j = 1.
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In [22, §3], we showed that the SO(6)-module C∞
γ2

r,s
((S2T ∗)+−

C
) is equal

to the image of C∞
γ1

r,s
((S2T ∗)+−

C
) under the conjugation mapping sending

the section h of (S2T ∗)+−
C

into h̄. Therefore the mapping (6.77), with j = 2,
is also injective.

We again consider the family F = F2 of closed connected surfaces ofX,
the sub-bundle N2 of B and the differential operator D1,F of §9. The vector
bundle T ∗

C
⊕ (B/N2)C endowed with the Hermitian scalar product induced

by the metric g is homogeneous and unitary; moreover the differential
operator

Q = div ⊕D1,F : S2T ∗
C
→ T ∗

C
⊕ (B/N2)C

is homogeneous.
The following result is given by Lemma 3.7 of [22]:

Lemma 6.59. If r ≥ 0, s ≥ 1, we have

D1,F ∗ π+−Hess f̃r,s �= 0.

According to the results of §7, Chapter V, concerning the highest
weight vectors of the SO(6)-module C∞

γr,s
((S2T ∗)+−

C
), with r ≥ 0 and s ≥ 1,

and by the relation (5.128), a highest weight vector h of this SO(6)-module
can be written in the form

h = b1 f̃r,s−1π+−Hess f̃0,1 + b2∗ π+−Hess f̃r,s,

where b1, b2 ∈ C.
The following result is a consequence of Lemma 3.8 of [22].

Lemma 6.60. Let r, s ≥ 0, with r + s ≥ 1, and b, b′, b′′ ∈ C. Suppose
that the element

(6.78)
h = b′f̃r−1,sπ

′Hess f̃1,0 + b′′f̃r−1,sπ
′′Hess f̃1,0

+ b1 f̃r,s−1π+−Hess f̃0,1 + b2∗ π+−Hess f̃r,s

of C∞
γr,s

(LC ⊕ (S2T ∗)+−
C

) satisfies Qh = 0. Then h vanishes identically.

Proof: According to Lemmas 5.2 and 5.29, the relation divh = 0
gives us the vanishing of the coefficients b′ and b′′ when r ≥ 1, and of the
coefficient b1 when s ≥ 1. Therefore when s ≥ 1, we see that

h = b2∗ π+−Hess f̃r,s;

then Lemma 6.59 tells us that b2 also vanishes.
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If r, s ≥ 0 are integers satisfying r+ s ≥ 1, according to §7, Chapter V
and the remarks appearing above, a highest weight vector h of the SO(6)-
module

C∞
γr,s

(LC ⊕ (S2T ∗)+−
C

)

can be written in the form (6.78), with b1, b2, b′, b′′ ∈ C. Since the differen-
tial operator Q is homogeneous, from Lemma 6.60 we deduce the following:

Proposition 6.61. Let r, s ≥ 0 be given integers, with r+ s ≥ 1. An
element h of C∞

γr,s
(LC ⊕ (S2T ∗)+−

C
) satisfying Qh = 0 vanishes identically.

Propositions 5.18, 5.19, 6.57 and 6.61, together with the injectivity of
the mappings (6.77), with j = 1, 2, imply the following:

Proposition 6.62. Let γ be an element of Γ. Then an element h of
C∞
γ (LC ⊕ (S2T ∗)+−

C
) satisfying Qh = 0 vanishes identically.

Now Proposition 6.55 is a direct consequence of Propositions 6.62
and 2.3 (with Q1 = 0).

According to Proposition 5.17 and (5.132), we know that the relations

E(X) ⊂ C∞(S2T ∗)ev, E(X)C = C∞
γ0,1

(S2T ∗
C
)ev = ∗ π+−HessH0,1

hold. The last equalities imply that the result of Lemma 5.2 holds for
all f ∈ H0,1. From the preceding relations and (6.75), we obtain the fol-
lowing:

Proposition 6.63. Let X be the quadric Q4. Then we have

(6.79) N2 ∩ E(X) = N2 ∩ C∞
γ0,1

(S2T ∗
C
)ev = {0}.

§11. Forms of degree one

We now return to the study of the complex quadric X = Qn of dimen-
sion n ≥ 3, viewed as a homogeneous space of the group G = SO(n + 2).
Most of the results and proofs of this section can be found in [20] and
in [23, §11].

We say that a differential form θ of degree p on X is even (resp. odd)
if τ∗θ = εθ, where ε = 1 (resp. ε = −1). Clearly, if θ is an even (resp. odd)
differential p-form on X, so is the (p+ 1)-form dθ. In particular, we have

(6.80) dC∞(X)ev ⊂ C∞(T ∗
C
)ev, dC∞(X)odd ⊂ C∞(T ∗

C
)odd.

We consider the G-invariant families F̃1, F̃2 and F̃4 of closed con-
nected totally geodesic surfaces of X introduced in §6, Chapter V. We
know that F̃1 consists of all the totally geodesic flat 2-tori of X. We easily
see that an element of T ∗, which vanishes when restricted to the surfaces
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belonging to the family F̃1, vanishes. The set C1 (resp. C2) consisting of
those elements of

∧2
T ∗, which vanish when restricted to the surfaces be-

longing to the family F̃1 (resp. the family F̃4), is a sub-bundle of
∧2
T ∗.

The set C3 consisting of those elements of
∧2
T ∗, which vanish when re-

stricted to the surfaces belonging to the G-invariant family F̃1 ∪ F̃2, is
clearly a sub-bundle of C1.

Let x ∈ X and let β1 be an element of C1,x and β2 an element of C2,x.
Let ν be an element of Sx, and let {ξ, η} be an orthonormal set of elements
of T+

ν . An element θ of T ∗
x , which vanishes when restricted to the surfaces

belonging to the family F̃1, satisfies

θ(ξ) = 0, θ(Jη) = 0,

and therefore vanishes. According to the definition of the families F̃1

and F̃4, we see that β1 and β2 satisfy the relations

(6.81) β1(ξ, Jη) = 0, β2(ξ, η) = 0.

Since ν is an arbitrary element of Sx, from relation (5.12) we infer that β1

and β2 also satisfy

(6.82)
β1(ξ + tJξ, Jη − tη) = 0,

β2(Jξ, Jη) = 0, β2(ξ + tJξ, η + tJη) = 0,

for all t ∈ R. From the first and last identities of (6.82), we infer that

(6.83) β1(Jξ, Jη) = β1(ξ, η), β2(ξ, Jη) + β2(Jξ, η) = 0.

Hence, if β2 belongs to (T 1,1
R

)−, we see that

β2(ξ, Jη) = 0;

therefore by the second relations of (6.81) and (6.82), we obtain the equality

(6.84) C2 ∩ (
∧2
T ∗)− = {0}.

Since the vectors ξ + η and ξ − η of T+
ν are orthogonal and have the same

length, the first equality of (6.81) tells us that

β1(ξ − η, Jξ + Jη) = 0;

the preceding relation, together with the first equality of (6.81), implies
that the element β1 of C1 satisfies

(6.85) β1(ξ, Jξ) = β1(η, Jη).
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By (6.81) and (6.83), we see that β1 belongs to (T 1,1
R

). Clearly, the 2-form
ω is a section of C1. If we set a = β1(ξ, Jξ), then according to (6.85)
and (6.81), the element β′ = β − aω satisfies

β′(ζ, Jζ) = 0,

for all elements ζ of T+
ν . By (5.24), we therefore know that β′ belongs

to (T 1,1
R

)+. We have thus proved that C1 is a sub-bundle of (T 1,1
R

)+ ⊕{ω}.
Clearly, by (5.24) we also see that (T 1,1

R
)+ ⊂ C1. We have thus verified the

first relation given by the following result:

Lemma 6.64. We have

(6.86) C1 = (T 1,1
R

)+ ⊕ {ω}, C2 = (T 1,1
R

)−, C3 = {0}.

Proof: It remains to verify the last two equalities of (6.86). Let
x ∈ X and let β be an element of

∧2
T ∗
x . According to (6.81) and (6.82),

we know that β belongs to C2 if and only if the relations

β(ξ, η) = β(Jξ, Jη) = 0

hold for all elements ν ∈ Sx and all orthonormal sets {ξ, η} of elements
of T+

ν,x. It follows that an element of
∧2
T ∗
x belongs to C2 if and only if

both its components in (
∧2
T ∗)− and T 1,1

R
are elements of C2. Hence from

the equality (6.84), we see that C2 is a sub-bundle of T 1,1
R

; more precisely,
by (5.24) we obtain the second relation of (6.86). Finally, suppose that β
belongs to C3; then we may write

β = β1 + cω,

where β1 is an element of (T 1,1
R

)+ and c ∈ R. Let ν be an element of Sx
and {ξ, η} be an orthonormal set of elements of T+

ν,x. According to the
definition of the family F̃2, if the element β of C1 belongs to C3, it satisfies

β(ξ + Jη, Jξ − η) = 0.

Since β1 is a Hermitian form, the left-hand side of the preceding relation
is equal to

−2β1(ξ, η) + 2c,

and so we obtain
β1(ξ, η) = β1(η, ξ) = 2c.

From these last equalities, we deduce that β1(ξ, η) = 0 and c = 0. Since β1

also satisfies the first relation of (6.81), we see that β = 0 and so we obtain
the last equality of (6.86).
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According to the decompositions (1.66) and (5.28), the sub-bundles

F1 = (T 1,1
R

)−0 ⊕ (
∧2
T ∗)−, F2 = (T 1,1

R
)+ ⊕ (

∧2
T ∗)−

are the orthogonal complements of C1 and of C2, respectively, in
∧2
T ∗;

for j = 1, 2, we consider the orthogonal projection πj :
∧2
T ∗ → Fj . Then

F1,C and F2,C are homogeneous complex sub-bundles of
∧2
T ∗

C
. We consider

the first-order homogeneous differential operator d̃j = πjd : T ∗ → Fj
and the kernel Mj of the induced mapping d̃j : C∞(T ∗

C
) → C∞(Fj,C),

for j = 1, 2. For γ ∈ Γ and j = 1, 2, we consider the G-submodules

Mj,γ = Mj ∩ C∞
γ (T ∗

C
), M ev

2,γ = M2 ∩ C∞
γ (T ∗

C
)ev

of C∞
γ (T ∗

C
). For j = 1, 2, we consider the complex

(6.87) C∞(X) d−−→ C∞(T ∗)
d̃j−−→ C∞(Fj).

Lemma 6.65. Let γ ∈ Γ and let θ be an element of C∞
γ (T ∗

C
). Suppose

that dθ is a form of type (1, 1).
(i) If γ is not of the form γr,s, with r + s > 0, then we have dθ = 0.
(ii) If γ is equal to γr,s, with r+s > 0, and θ is a highest weight vector

of C∞
γ (T ∗

C
), then there exists a scalar c ∈ C such that

(6.88) dθ = c∂∂̄f̃r,s.

Proof: Since dθ is a form of type (1, 1) and X is a simply-connected
Kähler manifold, there exists a unique function f ∈ C∞(X) satisfying
dθ = ∂∂̄f and ∫

X

f dX = 0.

Since the differential operator ∂∂̄ is homogeneous, this function f belongs
to C∞

γ (X). Hence if γ is not of the form γr,s, with r+ s > 0, this function
f vanishes and dθ = 0. On the other hand, if γ = γr,s, with r+ s > 0, and
θ is a highest weight vector of C∞

γ (T ∗
C
), then f is a multiple of the highest

weight vector f̃r,s of C∞
γ (X); thus there exists a complex number c ∈ C

such that the relation (6.88) holds.

Lemma 6.66. Let γ be an element of Γ.
(i) If γ is not equal to γ1 = γ0,1, we have

M1 ∩ C∞
γ (T ∗

C
) = dC∞

γ (X).

(ii) If γ is not of the form γr,0, with r ≥ 1, we have

M2 ∩ C∞
γ (T ∗

C
) = dC∞

γ (X).
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(iii) If γ = γr,0, with r ≥ 1, we have

M2 ∩ C∞
γ (T ∗

C
)ev = dC∞

γ (X)ev.

Proof: We first remark that, since X is simply-connected and d is
a homogeneous differential operator, a closed 1-form of C∞

γ (T ∗
C
) belongs

to dC∞
γ (X). Therefore, to prove the desired results, it suffices to show

that dM1,γ = 0 (resp. dM2,γ = 0) when γ satisfies the hypothesis of (i)
(resp. of (ii)), and that dM ev

2,γ = 0 when γ = γr,0, with r ≥ 1. Let j be
an integer equal to 1 or 2. Assume that Mj,γ �= 0 and let θ be a highest
weight vector of Mj,γ . The relation d̃jθ = 0 implies that dθ is a form of
type (1, 1). First, if γ is not of the form γr,s, with r + s > 0, according
to Lemma 6.65,(i), we have dθ = 0 and so dMj,γ = {0}. Now suppose
that γ is equal to γr,s, with r + s > 0; by Lemma 6.65,(ii), we know that
there exists a constant c ∈ C such that the equality (6.88) holds. Since the
morphism (1.67) induces the isomorphisms (5.25), by Lemma 1.25, when
j = 1 (resp. j = 2), we see that the relation d̃jθ = 0 is equivalent to the
fact that the symmetric 2-form cπ+Hess f̃r,s is a section of the sub-bundle
{g}C ⊕ (S2T ∗)+−

C
(resp. of the sub-bundle (S2T ∗)++

C
), or to the equality

cπ0
++Hess f̃r,s = 0 (resp. to the equality cπ+−Hess f̃r,s = 0). According

to §7, Chapter V, when r ≥ 1 or s ≥ 2 (resp. when s ≥ 1), the section
π0

++Hess f̃r,s (resp. the section π+−Hess f̃r,s) is non-zero; therefore for j = 1
(resp. j = 2), under this hypothesis, the constant c vanishes and we see that
dθ = 0 and dMj,γ = {0}. We have thus completed the proof of assertions
(i) and (ii). For r ≥ 1, by (5.37) and (5.113) the 2-form ∂∂̄f̃r,0 is odd. If
θ is an even section of T ∗

C
, by (6.80) we know that the 2-form dθ is even.

Thus if j = 2 and γ = γr,0, with r ≥ 1, and if θ is an even section of T ∗
C
, the

relation (6.88) implies that dθ vanishes. Thus when γ = γr,0, with r ≥ 1,
we have shown that dM ev

2,γ = {0}, and so assertion (iii) holds.

Proposition 6.67. An even 1-form θ on X satisfying the condition
d̃2θ = 0 is exact.

Proof: Let θ be an even 1-form on X satisfying d̃2θ = 0, and let γ be
an arbitrary element of Γ. Since d̃2 is a homogeneous differential operator,
by (2.1) we know that Pγθ belongs to M ev

2,γ . Lemma 6.66 then tells us
that Pγθ is an element of dC∞

γ (X). Since d is an elliptic operator, from
Proposition 2.2,(iii) it follows that θ belongs to dC∞(X).

Proposition 6.68. The space g�(K) belongs to the kernel of d̃1 and
is isomorphic to the cohomology of the complex (6.87), with j = 1.

Proof: By Proposition 3.10,(i), we know that g�(K) belongs to the
kernel of d̃1. Let θ be a 1-form on X satisfying d̃1θ = 0. We consider
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the element θ′ = Pγ1θ of C∞
γ1 (T ∗

C
); from the equality (2.28), we obtain the

existence of elements ξ ∈ KC and f ∈ C∞(X) such that

θ′ = df + g�(ξ).

The element θ′′ = θ − θ′ of C∞(T ∗
C
) satisfies Pγ1θ

′′ = 0. Since d̃1 is a
homogeneous differential operator, by (2.1) we know that Pγθ′′ = Pγθ
belongs to M1,γ , for all γ ∈ Γ, with γ �= γ1. By Lemma 6.66,(i), we see
that Pγθ′′ is an element of dC∞

γ (X), for all γ ∈ Γ. Since d is an elliptic
operator, by Proposition 2.2,(iii), it follows that θ′′ belongs to dC∞(X).
Therefore we may write

θ = df ′ + g�(ξ),

where f ′ ∈ C∞(X). Since the relation d∗g�(η) = 0 is satisfied by all Killing
vector fields η on X, we now obtain the desired result.

We consider the real Grassmannian Y = GR

2,n and the natural projec-
tion � : X → Y .

Proposition 6.69. An even 1-form θ on X satisfying the Guillemin
condition verifies the relation d̃2θ = 0.

Proof: Let θ be an even 1-form on X satisfying the Guillemin condi-
tion and let θ̂ be the unique 1-form on Y = GR

2,n satisfying θ = �∗θ̂. Let Z
be a closed totally geodesic submanifold of X belonging to the family F̃4;
in §6, Chapter V, we saw that Z is isometric to a 2-sphere of constant
curvature 2 and that its projection Z ′ in Y is a closed totally geodesic sub-
manifold of Y isometric to a real projective plane; in fact, by Lemma 4.6,
we know that Z ′ can be written in the form Expyv ⊗ W ′, where y is a
point of Y , and v is a unit vector of VY,y, and W ′ is a two-dimensional
subspace of WY,y. Thus, according to Lemma 4.7 and Proposition 4.15,
with m = r = 2, the restriction of θ̂ to Z ′ is exact. Hence the restriction of
dθ to Z vanishes. By Lemma 6.64, it follows that dθ is a section of (T 1,1

R
)−,

and so d̃2θ vanishes.
From Propositions 2.20, 6.67 and 6.69, we deduce the following two

results given by Theorems 11.1 and 11.2 of [23]:

Theorem 6.70. An even 1-form on the quadric Qn, with n ≥ 3,
satisfies the Guillemin condition if and only if it is exact.

Theorem 6.71. A 1-form on the Grassmannian GR

2,n, with n ≥ 3,
satisfies the Guillemin condition if and only if it is exact.

The following result is given by Theorem 2 of [20].



§11. Forms of degree one 243

Theorem 6.72. A 1-form on the quadric X = Qn, with n ≥ 3, satis-
fies the zero-energy condition if and only if it is exact.

Proof: Let θ be a 1-form on X satisfying the zero-energy condition.
From Theorem 3.8, it follows that the restriction of θ to a flat torus of X
belonging to the family F̃1 is exact. Therefore we have d̃1θ = 0. According
to Proposition 6.68, we may write

θ = df + g�(ξ),

where f is a real-valued function and ξ is a Killing vector field on X. Let
Z be a surface of X belonging to the family F̃1 and let i : Z → X be
the natural imbedding. Since the 1-form g�(ξ) = θ − df on X satisfies the
zero-energy condition and Z is a flat torus, Proposition 3.10,(ii) tells us
that i∗g�(ξ) = 0. Thus the restriction of the 1-form g�(ξ) to an arbitrary
surface of X belonging to the family F̃1 vanishes. As we have seen above,
this implies that g�(ξ) vanishes; we thus obtain the equality θ = df .

When n ≥ 4, we are able to give a proof of the preceding theorem which
avoids the use of Proposition 6.68. In §6, Chapter V, we saw that each
surface belonging to the family F̃2 is contained in a submanifold belonging
to the family F̃7 of closed totally geodesic submanifolds of X introduced
there. Since a submanifold belonging to the family F̃7 is isometric to the
complex projective space CP

2, according to Theorems 3.8 and 3.40 we know
that the family F̃1 ∪ F̃7 possesses property (VI) of §8, Chapter II. When
n ≥ 4, Theorem 6.72 is thus a consequence of the last equality of (6.86)
and Theorem 2.51,(ii), with F = F̃3 and F ′ = F̃1 ∪ F̃7.



CHAPTER VII

THE RIGIDITY OF THE REAL GRASSMANNIANS

§1. The rigidity of the real Grassmannians

Let m ≥ 2 and n ≥ 3 be given integers. We consider the real Grass-
manniansX = G̃R

m,n and Y = GR

m,n, endowed with the Riemannian metrics
g and gY defined in §1, Chapter IV, and the natural Riemannian submer-
sion � : X → Y . As in §1, Chapter IV, we view these Grassmannians
as irreducible symmetric spaces and as homogeneous spaces of the group
G = SO(m + n). We identify the tangent bundle T of X with the vector
bundle V ⊗W . We shall also consider the Kähler metric g̃ on the complex
quadric Qn defined in §2, Chapter V and denoted there by g.

Let x be a point of X. Let Fx be the family of all closed connected
totally geodesic surfaces of X passing through x of the form ExpxF , where
F is a subspace of the tangent space Tx satisfying one of the following three
conditions:

(i) F is generated by the vectors {v1 ⊗ w1, v2 ⊗ w2}, where {v1, v2}
is an orthonormal set of elements of Vx and {w1, w2} is an orthonormal set
of elements of Wx;

(ii) F = V1 ⊗w, where V1 is a two-dimensional subspace of Vx and w
is a unit vector of Wx;

(iii) F = v ⊗ W1, where v is a unit vector of Vx and W1 is a two-
dimensional subspace of Wx.

According to the formula for the curvature of the Grassmannian G̃R

m,n

given in §1, Chapter IV, we know that a surface of Fx corresponding to a
subspace F of Tx of type (i) is a totally geodesic flat 2-torus; on the other
hand, by Lemma 4.6, a surface of Fx corresponding to a subspace F of Tx
of type (ii) or of type (iii) is isometric to a 2-sphere of constant curvature 1.

Let F ′
x be the family of all closed connected totally geodesic submani-

folds of X passing through x which can be written as ExpxV1 ⊗Wx, where
V1 is a two-dimensional subspace of Vx. Clearly, each surface of Fx is con-
tained in a totally geodesic submanifold of X belonging to the family F ′

x.
According to the relation (5.59) and Lemma 4.6, we know that a submani-
fold of X belonging to the family F ′

x is isometric to the complex quadric Qn
of dimension n endowed with the Riemannian metric 2g̃.

From Lemma 4.8, with p = 2 and q = n, we obtain:

Lemma 7.1. Let X be the real Grassmannian G̃R

m,n, with m ≥ 2,

n ≥ 3. Let u be an element of
⊗2

T ∗
x , with x ∈ X. If the restriction of u

to an arbitrary submanifold of the family Fx vanishes, then u vanishes.
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We consider the G-invariant families

F =
⋃
x∈X

Fx, F ′ =
⋃
x∈X

F ′
x

of closed connected totally geodesic submanifolds of X. We consider the
sub-bundle N = NF of B introduced in §8, Chapter II consisting of those
elements of B, which vanish when restricted to the closed totally geodesic
submanifolds of F .

Lemma 7.2. Let X be the real Grassmannian G̃R

m,n, with m ≥ 2,
n ≥ 3. Then we have

TrN ⊂ E.

Proof: Let x be a point of X. Let v be an arbitrary unit vector
of Vx and w be an arbitrary unit vector of Wx. Let {v1, . . . , vm} be an
orthonormal basis of Vx and {w1, . . . , wn} be an orthonormal basis of Wx,
with v1 = v and w1 = w. If 1 ≤ i ≤ m and 1 ≤ j ≤ n are given integers,
the two vectors v⊗w and vi⊗wj are tangent to a surface belonging to the
family Fx. Thus if u is an element of Nx, we see that

(Tru)(v ⊗ w, v ⊗ w) =
∑

1≤i≤m
1≤j≤n

u(v ⊗ w, vi ⊗ wj , v ⊗ w, vi ⊗ wj) = 0.

Hence TrNx is a subspace of Ex.

Proposition 7.3. Let h be a section of E over the real Grassmannian
X = G̃R

m,n, with m ≥ 2 and n ≥ 3. If the restriction of h to an arbitrary
submanifold X ′ of X belonging to the family F ′ is a Lie derivative of the
metric of X ′, then h vanishes.

Proof: We consider the complex quadric Z = Qn endowed with the
metric 2g̃. Let X ′ be a submanifold of X belonging to the family F ′.
According to Lemma 4.6 and the equality (5.64), there is a totally geodesic
isometric imbedding i : Z → X whose image is equal to X ′ such that i∗h
is a section of the sub-bundle (S2T ∗

Z)+− of S2T ∗
Z . If the restriction of h to

X ′ is a Lie derivative of the metric of X ′, by Lemma 2.6 the symmetric
2-form i∗h satisfies the zero-energy condition; by Theorem 6.46, we infer
that i∗h and the restriction of h to X ′ vanish. The desired result is now a
consequence of Lemma 7.1.

The infinitesimal rigidity of the complex quadric Qn, given by Theo-
rem 6.45, implies that the family F ′ possesses property (III) of §8, Chap-
ter II; therefore we have

(7.1) Z2 ⊂ L(F ′).
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By relation (4.8), we know that E is a G-invariant sub-bundle of S2
0T

∗.
According to Lemma 7.2 and Proposition 7.3, the families F and F ′ and
the vector bundle E satisfy the relations (2.33) and (2.37). Now assume
that m ≥ 3. Then Proposition 4.2 tells us that E(X) is a subspace of
C∞(E); hence the relations (2.37) and (7.1) give us the equality (2.36).
Thus the families F and F ′ and the vector bundle E satisfy the hypothe-
ses of Theorem 2.49,(ii) and 2.48,(iii). Hence from these two theorems,
we deduce the infinitesimal rigidity of the space G̃R

m,n and the equality
L(F ′) = D0C

∞(T ) when m,n ≥ 3. As the space G̃R

2,n is isometric to the
complex quadric Qn endowed with the metric 2g̃, the Grassmannian G̃R

2,n

is infinitesimally rigid. Since the Grassmannian G̃R

n,2 is isometric to G̃R

2,n,
we have therefore proved the following two theorems:

Theorem 7.4. The real Grassmannian X = G̃R

m,n, with m,n ≥ 2 and
m+ n ≥ 5, is infinitesimally rigid.

Theorem 7.5. Let h be a symmetric 2-form on the real Grassmannian
X = G̃R

m,n, with m,n ≥ 3. If h belongs to L(F ′), then h is a Lie derivative
of the metric of X.

In Chapter X, we shall show that the Grassmannian G̃R

2,2 is not in-
finitesimally rigid; on the other hand, Theorem 10.20 tells us that the
Grassmannian GR

2,2 is infinitesimally rigid
Let y be a point of Y ; choose a point x ∈ X satisfying �(x) = y.

The family FY,y of all closed connected totally geodesic submanifolds of Y
of the form ExpyF , where F is a subspace of the tangent space Tx sat-
isfying conditions (i), (ii) or (iii), does not depend on the choice of the
point x and so is well-defined. Similarly the family F ′

Y,y consisting of all
closed connected totally geodesic submanifolds of Y which can be written
as ExpxV1 ⊗Wx, where V1 is a two-dimensional subspace of Vx, is well-
defined. Clearly, each surface of FY,y is contained in a totally geodesic
submanifold of Y belonging to the family F ′

Y,y. According to Lemma 4.6,
we know that a submanifold of Y belonging to the family F ′

Y,y is isometric
to the real Grassmannian GR

2,n.
In the next section, we shall require the following result; its proof is

similar to the proof of Lemma 4.8 and shall be omitted.

Lemma 7.6. Let Y be the real Grassmannian GR

m,n, with m,n ≥ 2.

Let u be an element of
⊗2

T ∗
Y,y, with y ∈ Y . If the restriction of u to an

arbitrary submanifold of the family FY,y vanishes, then u vanishes.

We consider the G-invariant families

FY =
⋃
y∈Y

FY,y, F ′
Y =

⋃
y∈Y

F ′
Y,y
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of closed connected totally geodesic submanifolds of X. If Y ′ is a surface
of Y belonging to the family FY , there is a subgroup of G which acts
transitively on Y ′; thus we see that an element u of

⊗q
T ∗
x , with x ∈ X,

vanishes when restricted to an arbitrary surface belonging to the family FY
if and only if it vanishes when restricted to an arbitrary surface belonging
to the family FY,y. We consider the sub-bundle NFY

of B consisting of
those elements of B, which vanish when restricted to the closed totally
geodesic surfaces of FY .

If Y ′ is a submanifold of Y belonging to FY,y (resp. to F ′
Y,y) which

can be written as ExpyF , where F is a subspace of Tx, then �−1Y ′ is
a submanifold of X equal to the submanifold ExpxF belonging to the
family Fx (resp. to the family F ′

x); moreover � : X ′ → Y ′ is a two-fold
covering. Thus if h is a symmetric 2-form on Y belonging to L(F ′

Y ), the
even 2-form �∗h on X belongs to L(F ′). Also from Lemma 7.2, we obtain
the relation

(7.2) TrNFY
⊂ EY .

Proposition 7.7. Let h be a section of EY over the real Grassman-
nian Y = GR

m,n, with m ≥ 2 and n ≥ 3. If the restriction of h to an
arbitrary submanifold Y ′ of Y belonging to the family F ′

Y is a Lie deriva-
tive of the metric of Y ′, then h vanishes.

Proof: The symmetric 2-form �∗h on X = G̃R

m,n is even and is a
section of the vector bundle E over X. If h is an element of L(F ′

Y ), then
the form �∗h belongs to L(F ′). The desired result is a consequence of
Proposition 7.3.

We remark that the preceding proposition actually requires only Theo-
rem 6.43 rather than Theorem 6.46, whose proof relies upon both Theorems
6.43 and 6.44 and which is needed for the case of an arbitrary symmetric
2-form considered in Proposition 7.3.

We now suppose that m < n. According to Theorem 6.47, the real
Grassmannian Y = GR

2,n is rigid in the sense of Guillemin, and so the family
F ′
Y possesses property (II) of §8, Chapter II. By Proposition 4.12, with

q = 2 and r = n, the family F ′
Y also possesses property (I) of §8, Chapter II.

By relation (4.8), we know that EY is a G-invariant sub-bundle of S2
0T

∗
Y .

According to (7.2) and Proposition 7.7, the families FY and F ′
Y and the

vector bundle EY satisfy the relations (2.33) and (2.37) of Theorem 2.48.
When m ≥ 3, Proposition 4.2,(i) tells us the equality (2.35) holds; thus
the families FY and F ′

Y and the vector bundle EY satisfy the hypotheses
of Theorem 2.49,(i). Hence from this theorem, we deduce the Guillemin
rigidity of the space GR

m,n whenm < n andm ≥ 3. Since the Grassmannian
GR

p,q is isometric to GR

q,p, we have therefore proved the following:
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Theorem 7.8. The real Grassmannian X = GR

m,n, with m,n ≥ 2 and
m �= n, is rigid in the sense of Guillemin.

Since the space G̃R

2,n is isometric to the complex quadric Qn endowed
with the metric 2g̃, we know that the sequence (1.24) is exact for G̃R

2,n,
with n ≥ 3 (see §6, Chapter V). We now proceed to show that the sequence
(1.24) is also exact for the Grassmannians G̃R

m,n, with m,n ≥ 3; we begin
by verifying the following:

Proposition 7.9. Let h be a symmetric 2-form on the real Grass-
mannian X = G̃R

m,n, with m,n ≥ 3, satisfying D1h = 0. Then h belongs
to L(F ′).

Proof: Since a submanifold Z of X belonging to the family F ′ is iso-
metric to the complex quadric of dimension n endowed with the metric 2g̃,
we know that the sequence (1.24) for Z is exact. The desired result is given
by Proposition 2.46,(ii).

From Proposition 7.9 and Theorem 7.5, we obtain the exactness of the
sequence (1.24) for the real Grassmannian G̃R

m,n, with m,n ≥ 3. Since the
real Grassmannian GR

m,n is a quotient of G̃R

m,n by the group of isometries
Λ of order 2 considered in §1, Chapter IV, the sequence (1.24) is also exact
for the real Grassmannian GR

m,n, with m,n ≥ 2 and m + n ≥ 5. Thus we
have demonstrated the following:

Proposition 7.10. Let m,n ≥ 3 be given integers. If X is the real
Grassmannian G̃R

m,n or GR

m,n, then the sequence (1.24) is exact.

The result of the preceding proposition is given by Theorem 1.23 for
all the real Grassmannians X = G̃R

m,n, with m,n ≥ 3, other than the
space G̃R

3,3. In fact, when m,n ≥ 3 and m + n ≥ 7, according to Proposi-
tion 4.2,(i), we know that the space E(X) vanishes; Lemma 1.12 then tells
us that the sequence (1.24) is exact.

It is easily seen that the sub-bundle CF ′ of
∧2
T ∗, consisting of those el-

ements of
∧2
T ∗ which vanish when restricted to the closed totally geodesic

submanifolds of F ′, vanishes. It follows that the sub-bundle CF ′
Y

of
∧2
T ∗
Y ,

consisting of those elements of
∧2
T ∗
Y which vanish when restricted to the

closed totally geodesic submanifolds of F ′
Y , also vanishes.

By Theorem 6.72, we know that F ′ possesses property (VI) of §8,
Chapter II. When m < n, Proposition 4.12, with q = 2 and r = n, tells us
that the family F ′

Y satisfies property (IV) of §8, Chapter II; moreover by
Theorem 6.71, we know that F ′

Y also possesses property (V) of §8, Chap-
ter II. From these observations and Theorem 2.51, we obtain the following
two theorems:
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Theorem 7.11. Let m,n ≥ 2 be given integers, with m �= n. A
1-form on the real Grassmannian Y = GR

m,n satisfies the Guillemin condi-
tion if and only if it is exact.

Theorem 7.12. Let m,n ≥ 2 be given integers, with m + n ≥ 5.
A 1-form on the real Grassmannian X = G̃R

m,n satisfies the zero-energy
condition if and only if it is exact.

Theorem 7.12 is given by Theorem 3 of [20]. In Chapter X, we shall
show that a 1-form on the Grassmannian GR

2,2 satisfies the zero-energy
condition if and only if it is exact (see Theorem 10.21).

§2. The real Grassmannians ḠR

n,n

Let F be a real vector space of dimension m + n, where m,n ≥ 1,
endowed with a positive definite scalar product. We consider the real
Grassmannians GR

m(F ) and GR

n(F ) endowed with the Riemannian metrics
induced by the scalar product of F , which are defined in §1, Chapter IV.
There we also saw that the natural mapping

Ψ : GR

m(F ) → GR

n(F ),

sending an m-plane of F into its orthogonal complement, is an isometry.
When m = n, then Ψ = ΨX is an involution of X = GR

n(F ); as in §1,
Chapter IV, we say that a symmetric p-form u on X is even (resp. odd) if
Ψ∗
Xu = εu, where ε = 1 (resp. ε = −1).

Let n ≥ 2 be a given integer. We now suppose that the dimension of F
is equal to 2n + 2 and we consider the Grassmannian X = GR

n+1(F ). We
identify the tangent bundle T of X with the vector bundle V ⊗W . Let U
be a subspace of F of dimension ≥ n. If the orthogonal complement U⊥ of
U in F is non-zero, according to §2, Chapter IV, there is totally geodesic
imbedding

(7.3) ι : GR

1 (U⊥) ×GR

n(U) → GR

n+1(F ),

sending the pair (z, y), where z ∈ GR

1 (U⊥) and y ∈ GR

n(U), into the point
of GR

n+1(F ) corresponding to the (n+ 1)-plane of F generated by the sub-
spaces of U⊥ and U corresponding to the points z and y, respectively.

We henceforth suppose that the subspace U is of dimension 2n and
we write Y = GR

n(U). Since dimU⊥ = 2, the manifold Z = GR

1 (U⊥)
is isometric to the circle S1. We consider the totally geodesic imbedding
ι : Z × Y → X given by (7.3). For z ∈ Z, let ιz : Y → X be the mapping
sending y ∈ Y into ι(z, y); for y ∈ Y , let ρy : Z → X be the mapping
sending z ∈ Z into ι(z, y). A symmetric p-form θ on X determines a
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symmetric p-form θU on Y as follows. If ξ1, . . . , ξp ∈ TY , we consider the
real-valued function f on Z defined by

f(z) = (ι∗zθ)(ξ1, . . . , ξp),

for z ∈ Z, and we define θU by setting

θU (ξ1, . . . , ξp) =
∫
Z

f dZ.

In particular, if θ is a function on X, we have

θU (y) =
∫
Z

ρ∗yθ dZ,

for y ∈ Y .
If z ∈ Z and y ∈ Y , the mapping ιz : TY,y → Tx, where x = ι(z, y), is

equal to the natural inclusion of (VY ⊗WY )y into (V ⊗W )x. Thus if h is
a section of the sub-bundle E of S2T ∗ over X, then the symmetric 2-form
ι∗zh is a section of the sub-bundle EY of S2T ∗

Y ; therefore the symmetric
2-form hU on Y is also a section of EY .

For z ∈ Z and y ∈ Y , we easily see that

ΨXι(z, y) = ι(ΨZ(z),ΨY (y)),

and so we have

(7.4) ΨX ◦ ιz = ιΨZ(z) ◦ ΨY ,

as mappings from Y to X. If θ is a symmetric p-form on X and ξ1, . . . , ξp
are vectors of TY , we consider the symmetric p-form θ′ = Ψ∗

Xθ on X and
the real-valued functions f1 and f2 on Z defined by

f1(z) = (ι∗zθ
′)(ξ1, . . . , ξp), f2(z) = (ι∗zθ)(ΨY ∗ξ1, . . . ,ΨY ∗ξp),

for z ∈ Z. From (7.4), it follows that

f1 = Ψ∗
Zf2.

Since ΨZ is an isometry of Z, this relation implies that

θ′U (ξ1, . . . , ξp) =
∫
Z

f1 dZ =
∫
Z

f2 dZ = θU (ΨY ∗ξ1, . . . ,ΨY ∗ξp).

The following lemma is a direct consequence of the preceding equalities.
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Lemma 7.13. Let n ≥ 2 be a given integer. Let F be a real vector
space of dimension 2n+ 2 endowed with a positive definite scalar product
and let U be a subspace of F of dimension 2n. If θ is an even symmetric
p-form on GR

n+1(F ), then the symmetric p-form θU on GR

n(U) is even.

Let Y ′ be a maximal flat totally geodesic torus of Y ; then we easily
see that X ′ = ι(Z × Y ′) is a maximal flat totally geodesic torus of X.
Let ξ1, . . . , ξp be arbitrary parallel vector fields on Y ′; they induce parallel
vector fields ξ′1, . . . , ξ

′
p on X ′ determined by

ξ′j(ι(z, y)) = ιz∗ξj(y),

for z ∈ Z, y ∈ Y ′ and 1 ≤ j ≤ p. Then from the definition of θU and
Fubini’s theorem, we infer that

∫
Y ′
θU (ξ1, . . . , ξp) dY ′ =

∫
X′
θ(ξ′1, . . . , ξ

′
p) dX

′.

From this equality, we deduce the following result:

Lemma 7.14. Let n ≥ 2 be a given integer. Let F be a real vector
space of dimension 2n+ 2 endowed with a positive definite scalar product
and let U be a subspace of F of dimension 2n. If θ is a symmetric p-form
on GR

n+1(F ) satisfying the Guillemin condition, then the symmetric p-form
θU on GR

n(U) satisfies the Guillemin condition.

We now suppose that the vector space F is equal to the space R
2n+2

endowed with the standard Euclidean scalar product. Then X is the Grass-
mannian GR

n+1,n+1 endowed with the Riemannian metric g defined in §1,
Chapter IV; we view X as an irreducible symmetric space and as a homo-
geneous space of the group G = SO(2n+ 2). We consider the G-invariant
family FX of closed connected totally geodesic surfaces of X which was in-
troduced in §1; in fact, for the Grassmannian GR

n,n, this family was denoted
there by FY . We also consider the sub-bundle N = NFX

of B consisting
of those elements of B, which vanish when restricted to the closed totally
geodesic submanifolds of FX , and the differential operator

D1,FX
: S2T ∗ → B/N

of §8, Chapter II. According to Lemma 7.2, we have the relation

(7.5) TrN ⊂ EX ,

which is also given by (7.2).



252 VII. THE RIGIDITY OF THE REAL GRASSMANNIANS

Proposition 7.15. Let f be a real-valued function on the real Grass-
mannian X = GR

n+1,n+1, with n ≥ 2. Suppose that, for any subspace U

of R
2n+2 of dimension 2n, the function fU on GR

n(U) vanishes. Then the
function f vanishes.

Proof: Let x be a point of X; we choose a subspace V1 of Vx of
codimension one and we consider the orthogonal complement U ′ of V1

in F = R
2n+2, whose dimension is equal to n + 2. We also consider the

totally geodesic imbedding

i : GR

1 (U ′) → GR

n+1(F ),

sending z ∈ GR

1 (U ′) into the (n+1)-plane of F generated by the subspace V1

and the line corresponding to the point z. There is a unique point z0 of
GR

1 (U ′) such that x = i(z0). Let γ be a closed geodesic of the projective
space GR

1 (U ′). Then there is a subspace U ′′ of U ′ of dimension 2 such
that the image of γ is equal to the submanifold GR

1 (U ′′) of GR

1 (U ′). The
orthogonal complement U of U ′′ in F is of dimension 2n and contains V1;
thus the subspace V1 of U corresponds to a point y0 of GR

n(U). We consider
the totally geodesic imbedding

ι : GR

1 (U ′′) ×GR

n(U) → GR

n+1(F )

given by (7.3). Then we have i(z) = ι(z, y0), for z ∈ GR

1 (U ′′), and so the
equality ∫

γ

i∗f = fU (y0)

holds. Our hypothesis tells us that fU vanishes, and hence the function
i∗f on GR

1 (U ′) satisfies the zero-energy condition. Since the dimension of
GR

1 (U ′) is ≥ 3, the injectivity of the Radon transform on this real projective
space, given by Theorem 2.23,(ii), implies that the function i∗f vanishes.
Since we have x = i(z0), we obtain the vanishing of the function f at the
point x.

Proposition 7.16. Let h be a symmetric 2-form and θ be a 1-form
on the real Grassmannian X = GR

n+1,n+1, with n ≥ 3.
(i) Suppose that, for any subspace U of R

2n+2 of dimension 2n, the
symmetric 2-form hU on GR

n(U) vanishes. Then the symmetric form h
vanishes.

(ii) Suppose that, for any subspace U of R
2n+2 of dimension 2n, the

symmetric 2-form hU on GR

n(U) is a Lie derivative of the metric of GR

n(U).
Then we have the relation

D1,FX
h = 0.
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(iii) Suppose that, for any subspace U of R
2n+2 of dimension 2n, the

1-form θU on GR

n(U) is closed. Then the restriction of dθ to an arbitrary
submanifold of X belonging to the family FX vanishes.

Proof: Let x be a point of X, and let ξ1, ξ2 ∈ Tx be vectors tan-
gent to a given totally geodesic surface X ′ of X belonging to the family
FX and containing x. By Lemma 7.6, we see that, in order to prove asser-
tion (i) (resp. assertion (iii)) it suffices to show that h(ξ1, ξ2) = 0 (resp. that
(dθ)(ξ1, ξ2) = 0) under the hypothesis of (i) (resp. of (iii)). According to
Proposition 1.14,(ii), in order to prove assertion (ii) it suffices to show that
the relation

(7.6) (Dgh)(ξ1, ξ2, ξ1, ξ2) = 0

holds under the hypothesis of (ii). According to the definition of FX , there
are subspaces V1 of Vx of codimension one andW1 ofWx of dimension 2 such
that the vectors ξ1, ξ2 belong to the subspace V1 ⊗W1 of Tx = (V ⊗W )x.
We set U ′ = V1 ⊕W1; the subspace V1 of U ′ corresponds to a point y0
of Y ′ = GR

n(U ′). We consider the orthogonal complements V ′
1 of V1 in

Vx and U ′′ of U ′ in F = R
2n+2. Then V ′

1 is a one-dimensional subspace
of U ′′ corresponding to a point z0 of the real projective space GR

1 (U ′′) of
dimension n− 1. The totally geodesic imbedding

ι′ : GR

1 (U ′′) ×GR

n(U ′) → GR

n+1(F ),

given by (7.3), sends the point (z0, y0) into the point x ofX. If z is a point of
GR

1 (U ′′), we consider the mapping ι′z : Y ′ → X sending y ∈ Y ′ into ι′(z, y).
The mapping ι′z0∗ : TY ′,y0 → Tx0 is equal to the natural inclusion of V1⊗W1

into (V ⊗W )x. Thus there are unique tangent vectors η1, η2 ∈ TY ′,y0 such
that ι′z0∗η1 = ξ1 and ι′z0∗η2 = ξ2; moreover these vectors are tangent to a
closed totally geodesic surface of Y ′. If gY ′ is the Riemannian metric of
the Grassmannian Y ′, by formula (1.57) we see that

(7.7) (Dgh)(ξ1, ξ2, ξ1, ξ2) = (DgY ′ ι
′∗
z0h)(η1, η2, η1, η2);

also we have
(dθ)(ξ1, ξ2) = (dι′∗z0θ)(η1, η2).

We consider the real-valued functions f1, f2 and f3 on GR

1 (U ′′) defined by

f1(z) = (ι′∗z h)(η1, η2), f2(z) = (DgY ′ ι
′∗
z h)(η1, η2, η1, η2),

f3(z) = (dι′∗z θ)(η1, η2),

for z ∈ GR

1 (U ′′). Let γ be a closed geodesic of the projective space GR

1 (U ′′).
Then there is a subspace U ′′

1 of U ′′ of dimension 2 such that the image of γ is



254 VII. THE RIGIDITY OF THE REAL GRASSMANNIANS

equal to the submanifold GR

1 (U ′′
1 ) of GR

1 (U ′′). The orthogonal complement
U of U ′′

1 in F is of dimension 2n and contains U ′. Thus GR

n(U ′) is a sub-
manifold of Y = GR

n(U) and η1, η2 may be considered as tangent vectors
to Y . We denote by gY the Riemannian metric of the Grassmannian Y .
We consider the totally geodesic imbedding

ι : GR

1 (U ′′
1 ) ×GR

n(U) → GR

n+1(F )

given by (7.3) and the induced mapping ιz : Y → X corresponding to the
point z of GR

1 (U ′′
1 ). Then by (1.57), we have

f1(z) = (ι∗zh)(η1, η2), f2(z) = (DgY
ι∗zh)(η1, η2, η1, η2),

f3(z) = (dι∗zθ)(η1, η2),

for z ∈ GR

1 (U ′′
1 ). Using the preceding equalities, we easily verify that the

relations

(7.8)

∫
γ

f1 = hU (η1, η2),
∫
γ

f2 = (DgY
hU )(η1, η2, η1, η2),

∫
γ

f3 = (dθU )(η1, η2)

hold. If hU is a Lie derivative of the metric gY , since η1, η2 are tangent to
a totally geodesic surface of GR

n(U) of constant curvature, by Lemma 1.1
and the relations (1.49) and (1.57) the expression (DgY

hU )(η1, η2, η1, η2)
vanishes. We now assume that the hypothesis of the j-th assertion of the
proposition holds, where j = 1, 2 or 3. Then by (7.8) the integrals of fj over
the closed geodesics of the real projective space GR

1 (U ′′) vanish. Since the
dimension of GR

1 (U ′′) is ≥ 2, the injectivity of the Radon transform on this
real projective space, given by Theorem 2.23,(ii), implies that the function
fj vanishes on GR

1 (U ′′). From the vanishing of this function at the point
z0 of GR

1 (U ′′) and (7.7), we obtain the relation h(ξ1, ξ2) = 0 when j = 1,
the relation (7.6) when j = 2, or the relation (dθ)(ξ1, ξ2) = 0 when j = 3.

Let n be an integer ≥ 2, and let U be a real vector space of dimen-
sion 2n endowed with a positive definite scalar product. According to an
observation made in §1, Chapter IV, if all even functions on GR

n,n satisfying
the Guillemin condition vanish, then the analogous result is also true for
the Grassmannian GR

n(U); moreover if all even symmetric 2-forms (resp.
1-forms) on GR

n,n satisfying the Guillemin condition are Lie derivatives of
the metric (resp. are exact), then the analogous result is also true for the
Grassmannian GR

n(U). We shall use these remarks in the course of the
proofs of the next three propositions.
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n,n 255

Proposition 7.17. For n ≥ 2, the maximal flat Radon transform for
functions on the symmetric space ḠR

n,n is injective.

Proof: We proceed by induction on n ≥ 2. Proposition 4.4 tells
us that the desired result is true for n = 2. Next, let n ≥ 2 be a given
integer and suppose that the maximal flat Radon transform for functions
on the symmetric space ḠR

n,n is injective. Let f be an even real-valued
function on X = GR

n+1,n+1 satisfying the Guillemin condition. Let U be
an arbitrary subspace of R

2n+2 of dimension 2n. According to Lemmas
7.13 and 7.14, the function fU on GR

n(U) is even and satisfies the Guillemin
condition. From Lemma 4.5 and our induction hypothesis, we infer that the
function fU vanishes. Then by Proposition 7.15, we know that f vanishes.
According to Lemma 4.5, this argument gives us the desired result for the
space X.

The preceding proposition is also given by Theorem 2.24.

Proposition 7.18. Let n be an integer ≥ 3 and suppose that all
even symmetric 2-forms on GR

n,n satisfying the Guillemin condition are Lie

derivatives of the metric. Then an even symmetric 2-form onX = GR

n+1,n+1

satisfying the Guillemin condition is a Lie derivative of the metric.

Proof: Let k be an even symmetric 2-form on X satisfying the
Guillemin condition. According to the decomposition (1.11), we may de-
compose k as

k = h+D0ξ,

where h is an even symmetric 2-form on X satisfying divh = 0, which is
uniquely determined by k, and where ξ is a vector field on X. Then by
Lemma 2.10, h also satisfies the Guillemin condition. Let U be an arbi-
trary subspace of R

2n+2 of dimension 2n and consider the Grassmannian
Y = GR

n(U). According to Lemmas 7.13 and 7.14 and our hypothesis, we
see that the symmetric 2-form hU on Y is a Lie derivative of the metric of Y .
Therefore by Proposition 7.15,(ii), we know that D1,FX

h = 0. According
to the relations (4.8) and (7.5), the vector bundle E and the symmetric
2-form h satisfy the hypotheses of Theorem 2.48,(i), with F ′ = F = FX .
By Proposition 4.2,(i), we know that E(X) = {0}. Then Theorem 2.48,(i)
tells us that h is a section of E. Therefore hU is a section of EY over Y .
From Proposition 7.7, we now infer that the form hU vanishes. Proposi-
tion 7.15,(i) tells us that h vanishes; thus the symmetric 2-form k is a Lie
derivative of the metric of X.

Proposition 7.19. Let n be an integer ≥ 3 and suppose that all even
1-forms on GR

n,n satisfying the Guillemin condition are exact. Then an even

1-form on X = GR

n+1,n+1 satisfying the Guillemin condition is exact.
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Proof: Let θ be an even 1-form on X satisfying the Guillemin con-
dition. Let U be an arbitrary subspace of R

2n+2 of dimension 2n and con-
sider the Grassmannian Y = GR

n(U). According to Lemmas 7.13 and 7.14
and our hypothesis, the 1-form θU on Y is closed. Therefore by Proposi-
tion 7.15,(iii), we know that the restriction of dθ to an arbitrary subman-
ifold of X belonging to the family FX vanishes. Then Lemma 7.6 tells us
that dθ = 0. Since the cohomology group H1(X,R) vanishes, the form θ is
exact.

The following theorem is a direct consequence of Propositions 2.18
and 7.18.

Theorem 7.20. If the symmetric space ḠR

n,n, with n ≥ 3, is rigid in

the sense of Guillemin, then so is the space ḠR

n+1,n+1.

The following proposition is a direct consequence of Propositions 2.20
and 7.19.

Proposition 7.21. Let n be an integer ≥ 3 and suppose that all
1-forms on ḠR

n,n satisfying the Guillemin condition are exact. Then a

1-form on X = ḠR

n+1,n+1 satisfying the Guillemin condition is exact.

According to Proposition 4.3, the symmetric space ḠR

2,2 is isometric
to the product RP

2 × RP
2. In Chapter X, we shall show that this space

is not rigid in the sense of Guillemin (Theorem 10.5) and that there exist
1-forms on this space which satisfy the Guillemin condition and which are
not exact (Theorem 10.6).



CHAPTER VIII

THE COMPLEX GRASSMANNIANS

§1. Outline

This chapter is devoted to the geometry of the complex Grassmanni-
ans. In §2, we study the complex Grassmannian GC

m,n of complex m-planes
in C

m+n, with m,n ≥ 2, and show that it is a Hermitian symmetric space
and a homogeneous space of the group SU(m + n); we also consider the
Grassmannian ḠC

n,n, which is the adjoint space of GC

n,n. We introduce
certain vector bundles over GC

m,n and use them to decompose the bun-
dle of symmetric 2-forms on GC

m,n into irreducible SU(m + n)-invariant
sub-bundles. We then determine the highest weights of the fibers of these
vector bundles in §3. We define certain complex-valued functions on GC

m,n

by means of the corresponding Stiefel manifold; then these functions and
specific symmetric 2-forms on GC

m,n, arising from the complexification g of
the Lie algebra of SU(m+n), allow us to describe explicitly and study the
SU(m+ n)-modules of functions and complex symmetric 2-forms on GC

m,n

isomorphic to g. In particular, we examine the case when m = n and de-
termine explicitly the space of infinitesimal Einstein deformations of GC

n,n.
In §5, we define the natural isometry between the Grassmannian GC

2,2 and
the complex quadric Q4 and use it to relate their geometries; from the re-
sults of Chapter VI, it follows that this complex Grassmannian is infinites-
imally rigid and that its quotient ḠC

2,2 is rigid in the sense of Guillemin. In
the next section, we show that the Guillemin condition for forms on GC

m,n,
with m �= n, is hereditary with respect to certain totally geodesic subman-
ifolds. The remainder of this chapter is mainly devoted to the proof of the
following result, which plays an essential role in our study of the rigidity
of the complex Grassmannians presented in Chapter IX: an infinitesimal
Einstein deformation of GC

m,n satisfying the Guillemin condition vanishes.
In order to prove this result in the case when m �= n, we compute the
integrals of some of the symmetric 2-forms considered in §4 over explicit
closed geodesics. By means of these computations, in §8 we also establish
relations among the symmetric 2-forms of §4. Finally, in §9 we study forms
on the Grassmannian GC

n,n and we introduce an averaging process which
assigns to a p-form u on GC

n+1,n+1 a class of p-forms on GC

n,n that are ob-
tained by integrating u over closed geodesics. We then consider a certain
explicit complex symmetric 2-form h

(n)
1 on GC

n,n and show that one of the

averages of the 2-form h
(n+1)
1 on GC

n+1,n+1 is equal to the form h
(n)
1 . From

this last result, we deduce by induction on n that an Einstein deformation
of the space GC

n,n which satisfies the Guillemin condition vanishes.
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§2. The complex Grassmannians

Let X be a manifold and let E be a real vector bundle over X endowed
with a complex structure J . The complexification EC of E admits the
decomposition

EC = E′ ⊕ E′′,

where E′ and E′′ are the eigenbundles corresponding to the eigenvalues
+i and −i, respectively, of the endomorphism J of EC. Let (S2E)+ and
(S2E)− (resp. (

∧2
E)+ and (

∧2
E)−) be the eigenbundles of S2E (resp.

of
∧2
E) corresponding to the eigenvalues +1 and −1, respectively, of the

involution of S2E (resp. of
∧2
E) induced by J . We then have the decom-

positions

S2E = (S2E)+ ⊕ (S2E)−,
∧2
E = (

∧2
E)+ ⊕ (

∧2
E)−.

The complex structure J induces a complex structure on the vector bundle
E∗ dual to E, which we also denote by J . We identify S2E∗ with the
bundle of symmetric 2-forms on E in such a way that

(α · α)(ξ1, ξ2) = 2〈ξ1, α〉〈ξ2, α〉,

for ξ1, ξ2 ∈ E and α ∈ E∗. We consider the sub-bundle S2,0E∗ of (S2E∗)−
C

(resp. the sub-bundle
∧2,0

E∗ of (
∧2
E∗)−

C
) consisting of all elements u

of S2E∗
C

(resp. of
∧2
E∗

C
) which satisfy u(ξ, η) = 0, for ξ ∈ E′′ and η ∈ EC,

and the sub-bundle S0,2E∗ of (S2E∗)−
C

(resp. the sub-bundle
∧0,2

E∗ of
(
∧2
E∗)−

C
) consisting of all elements u of S2E∗

C
(resp. of

∧2
E∗

C
) which satisfy

u(ξ, η) = 0, for ξ ∈ E′ and η ∈ EC. We then have the decompositions

(S2E∗)−
C

= S2,0E∗ ⊕ S0,2E∗, (
∧2
E∗)−

C
=
∧2,0

E∗ ⊕∧0,2
E∗.

Now suppose that E is a complex vector bundle over X whose complex
structure we denote by J . A sesquilinear form h on E satisfies the relation

h(u, v) = Reh(u, v) + iReh(u, Jv),

for all u, v ∈ E. If we consider E as a real vector bundle endowed with
the complex structure J and if h is a Hermitian form on E, then Reh is a
section of (S2E∗)+.

We suppose that X is a complex manifold. Then the vector bundles
T ′, T ′′, (S2T ∗)+, (S2T ∗)− and (

∧2
T ∗)− of §4, Chapter I coincide with the

bundles associated above with the vector bundles T and T ∗; moreover, the
bundle T 1,1

R
is equal to (

∧2
T ∗)+. If (p, q) is equal to (2, 0) or to (0, 2),
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the bundles Sp,qT ∗ and
∧p,q

T ∗ coincide with the bundles associated above
with the vector bundle E = T .

Let m,n ≥ 0 be given integers and let F be a complex vector space of
dimension m+n endowed with a positive definite Hermitian scalar product.
We now suppose that X is the complex Grassmannian GC

m(F ) of all com-
plex m-planes in F ; then X is a complex manifold whose complex structure
we denote by J . If either m = 0 or n = 0, the manifold GC

m(F ) is a point.
When m = 1, the manifold GC

1 (F ) is the complex projective space of all
complex lines of F .

Let V = VX be the canonical complex vector bundle of rank m over
X whose fiber at x ∈ X is equal to the subspace x of F . We denote by
W = WX the complex vector bundle of rank n over X whose fiber over
x ∈ X is the orthogonal complement Wx of Vx in F . We consider the
complex vector bundles V ∗ and W ∗ dual to V and W . We identify the
complex vector bundles HomC(V,W ) and V ∗ ⊗C W , and we also identify
V with the dual of the vector bundle V ∗. We denote by J the complex
structure of any one of these complex vector bundles. We denote by α⊗w
the tensor product of α ∈ V ∗ and w ∈W in V ∗ ⊗C W ; we have

J(α⊗ w) = Jα⊗ w = α⊗ Jw.

We have a natural isomorphism of vector bundles

(8.1) V ∗ ⊗C W → T

over X, which sends an element θ ∈ (V ∗ ⊗C W )x into the tangent vector
dxt/dt|t=0 to X at x, where xt is the point of X corresponding to the
m-plane

{ v + tθ(v) | v ∈ Vx },
for t ∈ R. The isomorphism (8.1) allows us to identify these two vector
bundles V ∗ ⊗C W and T together with their complex structures.

Throughout the remainder of this section, we suppose that m,n ≥ 1.
It is easily verified that the involution θ of (S2T ∗)− determined by

(θh)(α1 ⊗ w1, α2 ⊗ w2) = h(α2 ⊗ w1, α1 ⊗ w2),

for h ∈ S2T ∗ and α1, α2 ∈ V ∗ and w1, w2 ∈W , is well-defined. If (S2T ∗)−+

and (S2T ∗)−− are the eigenbundles of (S2T ∗)− corresponding to the eigen-
values +1 and −1, respectively, of this involution θ, then we have the de-
composition

(S2T ∗)− = (S2T ∗)−+ ⊕ (S2T ∗)−−.

If either m = 1 or n = 1, we see that the bundle (S2T ∗)−− vanishes. If
(p, q) is equal to (2, 0) or to (0, 2), we consider the complex vector bundles

(Sp,qT ∗)+ = Sp,qT ∗ ∩ (S2T ∗)−+
C
, (Sp,qT ∗)− = Sp,qT ∗ ∩ (S2T ∗)−−

C
;
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then we have the decompositions

(8.2)
S2,0T ∗ = (S2,0T ∗)+ ⊕ (S2,0T ∗)−,

S0,2T ∗ = (S0,2T ∗)+ ⊕ (S0,2T ∗)−.

It is easily verified that the morphisms

τ1 : (S2V )+ ⊗ (S2W ∗)+ → (S2T ∗)+,

τ2 : (S2V )− ⊗ (S2W ∗)− → (S2T ∗)−+,

τ3 : (
∧2
V )− ⊗ (

∧2
W ∗)− → (S2T ∗)−−,

which send the element k1 ⊗ k2 into the symmetric 2-form k1 ◦ k2 of S2T ∗

determined by

(k1◦k2)(α1⊗w1, α2⊗w2) = k1(α1, α2)k2(w1, w2)−k1(α1, Jα2)k2(w1, Jw2),

for all α1, α2 ∈ V ∗ and w1, w2 ∈ W , are well-defined. Clearly if k1 is an
element of (S2V )+ and k2 is an element of (S2W ∗)+, the element k1 ◦ k2

vanishes if and only if one of the two elements k1 and k2 vanishes. The
morphisms τ2 and τ3 induce morphisms of vector bundles

S2,0V ⊗C S
2,0W ∗ → (S2,0T ∗)+, S0,2V ⊗C S

0,2W ∗ → (S0,2T ∗)+,(8.3)
∧2,0

V ⊗C

∧2,0
W ∗ → (S2,0T ∗)−,

∧0,2
V ⊗C

∧0,2
W ∗ → (S0,2T ∗)−;(8.4)

it is easily seen that the morphisms (8.3) are non-zero and that, when
m,n ≥ 2, the morphisms (8.4) are also non-zero at each point of X. In fact,
we shall later verify that the morphisms (8.3) and (8.4) are isomorphisms
and that the equalities

(8.5)
(S2,0T ∗)+ = S2,0V ◦ S2,0W ∗, (S0,2T ∗)+ = S0,2V ◦ S0,2W ∗,

(S2,0T ∗)− =
∧2,0

V ◦∧2,0
W ∗, (S0,2T ∗)− =

∧0,2
V ◦∧0,2

W ∗

hold.
Since the vector bundles V and W are complex sub-bundles of the triv-

ial complex vector bundle over X whose fiber is F , a sesquilinear form on F
induces by restriction sesquilinear forms on the vector bundles V and W .
In particular, the Hermitian scalar product on F induces by restriction
positive definite Hermitian scalar products g1 and g2 on the vector bundles
V and W , respectively. We consider the mappings

V ∗ → V, W →W ∗
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sending α ∈ V ∗ into the element α� ∈ V and w into the element w� ∈ W ∗

determined by

g1(v, α�) = 〈v, α〉, 〈u,w�〉 = g2(u,w),

for all v ∈ V and u ∈W . We remark that

(cα)� = c̄α�, (cw)� = c̄w�,

for all c ∈ C, α ∈ V ∗ and w ∈W .
A sesquilinear form q on the complex vector bundle V induces a sesqui-

linear form on the vector bundle V ∗, which we also denote by q and which
is determined by

q(α1, α2) = q(α�2, α
�
1),

for all α1, α2 ∈ V ∗. In particular, the sesquilinear form g1 on V ∗ induced by
the Hermitian scalar product g1 on V is also a positive definite Hermitian
scalar product.

Two sesquilinear forms q1 on V and q2 on W determine a section q1 ·q2
of (S2T ∗)+

C
over X, which is well-defined by

(q1 · q2)(α1 ⊗w1, α2 ⊗w2) = q1(α1, α2) · q2(w1, w2)+ q1(α2, α1) · q2(w2, w1),

for all α1, α2 ∈ V ∗ and w1, w2 ∈W .
As we have seen above, the real positive definite scalar products h1

and h2 on the vector bundles V ∗ and W determined by

h1(α1, α2) = Re g1(α1, α2), h2(w1, w2) = Re g2(w1, w2),

for all α1, α2 ∈ V ∗ and w1, w2 ∈W , are sections of (S2V )+ and (S2W ∗)+,
respectively. From an observation made above, we infer that the sub-
bundles

Ẽ1 = h1 ◦ (S2W ∗)+, Ẽ2 = (S2V )+ ◦ h2

of (S2T ∗)+ are isomorphic to (S2W ∗)+ and (S2V )+, respectively.
If q2 is a sesquilinear form on W , then we easily verify that

g1 · q2 = h1 ◦ q′2 + ih1 ◦ q′′2 ,

where q′2 and q′′2 are the sections of (S2W ∗)+ defined by

q′2(w1, w2) = Re (q2(w1, w2) + q2(w2, w1)),

q′′2 (w1, w2) = Re (q2(w1, Jw2) + q2(w2, Jw1)),



262 VIII. THE COMPLEX GRASSMANNIANS

for all w1, w2 ∈ W ; therefore g1 · q2 is a section of the sub-bundle Ẽ1,C

of (S2T ∗)+
C
. If q1 is a sesquilinear form on V , then we easily verify that

q1 · g2 = q′1 ◦ h2 + iq′′1 ◦ h2,

where q′1 and q′′1 are the sections of (S2V )+ defined by

q′1(α1, α2) = Re (q1(α1, α2) + q1(α2, α1)),

q′′1 (α1, α2) = Re (q1(α1, Jα2) + q1(α2, Jα1)),

for all α1, α2 ∈ W ; therefore q1 · g2 is a section of the sub-bundle Ẽ2,C

of (S2T ∗)+
C
.

The Riemannian metric g on X determined by the section g̃ = 1
2g1 · g2

of (S2T ∗)+
C

is Hermitian and is related to g̃ by the formula

g̃(ξ, η) = g(ξ, η) + ig(ξ, Jη),

for ξ, η ∈ T . In fact, according to the above formulas the metric g is equal
to h1 ◦ h2

The curvature R of the Riemannian manifold (X, g) can be computed
in terms of the scalar products g1 and g2; in fact, if αj ∈ V ∗, wj ∈W , with
1 ≤ j ≤ 4, the expression

R(α1 ⊗ w1, α2 ⊗ w2, α3 ⊗ w3, α4 ⊗ w4)

is equal to the real part of the sum

g1(α1, α4)g1(α3, α2)g2(w1, w2)g2(w3, w4)

− g1(α1, α3)g1(α4, α2)g2(w1, w2)g2(w4, w3)

+ g2(w1, w4)g2(w3, w2)g1(α1, α2)g1(α3, α4)

− g2(w1, w3)g2(w4, w2)g1(α1, α2)g1(α4, α3).

It follows that g is an Einstein metric; in fact, its Ricci tensor is given by

(8.6) Ric = 2(m+ n) g.

We consider the trace mappings

Tr : (S2V )+ → R, Tr : (S2W ∗)+ → R

defined by

Tr k1 =
2m∑
j=1

k1(βj , βj), Tr k2 =
2n∑
l=1

k2(tl, tl),
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for k1 ∈ S2Vx and k2 ∈ S2W ∗
x , where x ∈ X and {β1, . . . , β2m} is an

orthonormal basis of V ∗
x and {t1, . . . , t2n} is an orthonormal basis of Wx

with respect to the scalar products h1 and h2, respectively. We denote by
(S2V )+0 and (S2W ∗)+0 the sub-bundles of (S2V )+ and (S2W ∗)+ equal to
the kernels of these trace mappings. The sub-bundles

E1 = h1 ◦ (S2W ∗)+0 , E2 = (S2V )+0 ◦ h2

of Ẽ1 and Ẽ2 are isomorphic to (S2W ∗)+0 and (S2V )+0 , respectively. Clearly
if E0 is the line bundle {g} generated by the section g of (S2T ∗)+, we have

Ẽ1 = E0 ⊕ E1, Ẽ2 = E0 ⊕ E2.

We consider the trace mappings

Tr1 : (S2T ∗)+ → (S2W ∗)+, Tr2 : (S2T ∗)+ → (S2V )+

determined by

(Tr1 h)(w1, w2) =
2m∑
j=1

h(βj ⊗ w1, βj ⊗ w2),

(Tr2 h)(α1, α2) =
2n∑
l=1

h(α1 ⊗ tl, α2 ⊗ tl),

for h ∈ S2T ∗
x , k1 ∈ S2Vx, k2 ∈ S2W ∗

x , α1, α2 ∈ V ∗
x and w1, w2 ∈Wx, where

x ∈ X and {β1, . . . , β2m} is an orthonormal basis of V ∗
x and {t1, . . . , t2n}

is an orthonormal basis of Wx (over R) with respect to the scalar products
h1 and h2, respectively. We have

TrTr1 h = Tr Tr2 h = 2 Trh,

for h ∈ (S2T ∗)+. For k1 ∈ (S2V )+, k2 ∈ (S2W ∗)+, we see that the
relations

Tr1(k1 ◦ k2) = (Tr k1) · k2, Tr2(k1 ◦ k2) = (Tr k2) · k1

hold. Clearly the kernel E3 of the morphism

Tr1 ⊕ Tr2 : (S2T ∗)+ → (S2W ∗)+ ⊕ (S2V )+

contains the sub-bundle (S2V )+0 ◦ (S2W ∗)+0 of (S2T ∗)+. Using the above
relations involving the trace mappings, we obtain the orthogonal decom-
position

(8.7) (S2T ∗)+ =
3⊕
j=0

Ej ,
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and we see that the orthogonal projections πj : (S2T ∗)+ → Ej are given
by

(8.8)

π1h =
1

2m
h1 ◦

(
Tr1 h− 1

n
(Trh) · h2

)
,

π2h =
1
2n

(
Tr2 h− 1

m
(Trh) · h1

)
◦ h2,

π3h = h− 1
2m

h1 ◦ (Tr1 h) −
1
2n

(Tr2 h) ◦ h2 +
1

2mn
(Trh) · g,

for h ∈ (S2T ∗)+. If α ∈ V ∗ and w ∈ W are unit vectors and if h is an
element of (S2T ∗)+, we easily verify that

(8.9)

(π1h)(α⊗ w,α⊗ w) =
1

2m

(
(Tr1 h)(w,w) − 1

n
Trh

)
,

(π2h)(α⊗ w,α⊗ w) =
1
2n

(
(Tr2 h)(α, α) − 1

m
Trh

)
.

We shall later verify that the equality

(8.10) E3 = (S2V )+0 ◦ (S2W ∗)+0

holds. The relations (8.7) and (8.10) imply that

(S2T ∗)+ = (S2V )+ ◦ (S2W ∗)+

and that the mapping τ1 is an isomorphism.
From the decompositions (1.69), (8.2) and (8.7), we obtain the decom-

position

(8.11) S2T ∗
C

=
3⊕
j=0

Ej,C⊕(S2,0T ∗)+⊕(S2,0T ∗)−⊕(S0,2T ∗)+⊕(S0,2T ∗)−.

We consider the sub-bundle E = EX of S2T ∗ consisting of all elements
h of S2T ∗ which satisfy

h(ξ, ξ) = 0,

for all elements ξ of V ∗ ⊗C W of rank one. Clearly, we have

(8.12) TrE = {0}.

Moreover, if m = 1, the vector bundle E vanishes. It is easily seen that
(S2T ∗)−− is a sub-bundle of E; in fact, when m,n ≥ 2, in §3 we shall verify
that these two vector bundles are equal.
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We also consider the Grassmannian X ′ = GC

n(F ). Let V ′ be the
canonical complex vector bundle of rank n over X ′ whose fiber at a ∈ X ′

is the n-plane a, and let W ′ the complex vector bundle of rank m over X ′

whose fiber over a ∈ X ′ is the orthogonal complement W ′
a of V ′

a in F . As
above, we identify the tangent bundle of X ′ with the bundle V ′∗⊗W ′, and
the standard Hermitian scalar product on F induces a Riemannian metric
on X ′. There is a natural diffeomorphism

Ψ : GC

m(F ) → GC

n(F ),

sending an m-plane of F into its orthogonal complement; in fact, Ψ sends
x ∈ GC

m(F ) into the n-plane Wx. For x ∈ X, we have V ′
Ψ(x) = Wx and

W ′
Ψ(x) = Vx. If θ is an element of HomC(Vx,Wx), we consider the adjoint

tθ ∈ HomC(Wx, Vx) of θ defined in terms of the Hermitian scalar product
on F ; if α ∈ V ∗

x and w ∈Wx, the element α⊗w of HomC(Vx,Wx) satisfies

t(α⊗ w) = w� ⊗ α�.

It is easily verified that the induced mapping

Ψ∗ : (V ∗ ⊗C W )x → (V ′∗ ⊗C W
′)Ψ(x)

sends θ ∈ HomC(Vx,Wx) into −tθ; therefore Ψ is an isometry and we have

(8.13) Ψ∗(α⊗ w) = −w� ⊗ α�,

for all α ∈ V ∗
x and w ∈ Wx. Thus we see that Ψ∗EX′,Ψ(x) = EX,x, for all

x ∈ X.
When m = n, the mapping Ψ = ΨX is an involutive isometry of

X = GC

n(F ) which preserves the bundle E = EX ; in this case, we say that
a symmetric p-form u on X is even (resp. odd) if Ψ∗u = εu, where ε = 1
(resp. ε = −1).

Let {e1, . . . , em+n} be the standard basis of C
m+n. We henceforth

suppose that F is the vector space C
m+n endowed with the standard Her-

mitian scalar product. We now consider the complex Grassmannian

X = GC

m,n = GC

m(Cm+n),

endowed with the Riemannian metric g induced by the standard Hermitian
scalar product on C

m+n.
The action of the group G = SU(m + n) on C

m+n gives rise to an
action of G on X. In fact, the group G acts transitively on the Rieman-
nian manifold (X, g) by holomorphic isometries. The isotropy group of the
point x0 of X equal to the m-plane Vx0 of C

m+n spanned by the vectors
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{e1, . . . , em} is the subgroup K = S(U(m) × U(n)) of G consisting of the
matrices

(8.14) φ =
(
A 0
0 B

)
,

where A ∈ U(m) and B ∈ U(n), with determinant 1. The diffeomorphism

Φ : G/K → X,

which sends the class φ · K, where φ ∈ G, into the m-plane of C
m+n

spanned by the vectors {φ(e1), . . . , φ(em)}, is compatible with the actions
of G on G/K and X.

The element

j =
(
Im 0
0 i · In

)

of U(m+n) belongs to the centralizer ofK. The element s = j2 of U(m+n)
determines an involution σ of G which sends φ ∈ G into sφs−1. Then K is
equal to the set of fixed points of σ, and (G,K) is a Riemannian symmetric
pair. The center S of G consists of all matrices λIn, where λ is an (m+n)-th
root of unity; it is invariant under the involution σ. Then we see that

KS = {φ ∈ G | φ−1σ(φ) ∈ S }

is a subgroup of G containing K and S. The Cartan decomposition of the
Lie algebra g0 of G corresponding to σ is

g0 = k0 ⊕ p0,

where k0 is the Lie algebra of K and p0 is the space of all matrices

(8.15)
(

0 −tZ̄
Z 0

)

of g0, where Z is a complex n×m matrix and tZ̄ is its conjugate transpose.
We identify p0 with the vector space MC

n,m of all complex n×m matrices
and, in particular, the element (8.15) of p0 with the matrix Z ∈ MC

n,m.
The adjoint action of K on p0 is expressed by

Adφ · Z = B · Z ·A−1,

where φ is the element (8.14) of K and Z ∈MC

n,m.
We identify p0 with the tangent space of G/K at the coset of the iden-

tity element of G; the diffeomorphism Φ sends this coset into the point x0
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of X. Since Vx0 is the subspace of C
m+n generated by {e1, . . . , em}, clearly

Wx0 is the subspace generated by {em+1, . . . , em+n}. If {e∗1, . . . , e∗m} is the
basis of V ∗

x0
dual to the basis {e1, . . . , em} of Vx0 , then it is easily verified

that the isomorphism Φ∗ : p0 → (V ∗ ⊗ W )x0 sends the element (8.15)
of p0 corresponding to the matrix Z = (zjk) of MC

n,m, with 1 ≤ j ≤ n and
1 ≤ k ≤ m, into the vector

∑
1≤j≤n
1≤k≤m

zjke
∗
k ⊗ ej+m

of (V ∗ ⊗W )x0 .
The restriction of Ad j to p0 is a complex structure on p0, and so gives

rise to a G-invariant complex structure on G/K. If B is the Killing form
of g0, the restriction to p0 of the scalar product −B is invariant under the
adjoint action of K and therefore induces a G-invariant metric g0 on the
homogeneous space G/K. Endowed with this complex structure and the
metric g0, the manifold G/K is an irreducible Hermitian symmetric space
of compact type of rank min(m,n) (see Proposition 4.2 in Chapter VIII
of [36]). When m �= n, we easily see that the group KS is equal to K; then
according to §9 in Chapter VII of [36], it follows that G/K is equal to its
adjoint space.

The group K acts on Tx0 and, for φ ∈ K, we have the equality

Φ∗ ◦ Adφ = φ · Φ∗

as mappings from p0 to Tx0 . We also see that Φ∗ ◦Ad j = J ◦Φ∗ and that

(8.16) g0 = 4(m+ n)Φ∗g.

Thus Φ is a holomorphic isometry from the symmetric space G/K, endowed
with the metric (1/4(m+ n)) · g0, to X; henceforth, we shall identify these
Hermitian manifolds by means of this G-equivariant isometry. Therefore
the metric g is Kähler and, from Lemma 1.21, we again obtain the equal-
ity (8.6).

The Grassmannian GC

n,m is also a homogeneous space of the group G.
From (8.13), it follows that the mapping Ψ : GC

m,n → GC

n,m is an anti-
holomorphic isometry. It is easily verified that the isometry Ψ satisfies

Ψ ◦ φ = φ ◦ Ψ,

for all φ ∈ G. Thus GC

m,n and GC

n,m are isometric as Riemannian symmetric
spaces, but not as complex manifolds.
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The vector bundles V and W are homogeneous G-sub-bundles of the
trivial complex vector bundle over X whose fiber is C

m+n. Therefore the
tensor product V ∗ ⊗C W is a homogeneous G-bundle and it is easily seen
that (8.1) is an isomorphism of homogeneous G-bundles over X. All the
vector bundles appearing in the decomposition (8.11) and the bundle E are
homogeneous sub-bundles of S2T ∗

C
; hence the fibers at x0 of these vector

bundles are K-submodules of S2T ∗
C,x0

. Moreover under the action of the
group K on C

m+n, the subspaces Vx0 and Wx0 of C
m+n are preserved; in

fact, the fiber Vx0 is a U(m)-module, while the fiber Wx0 is a U(n)-module.
The fibers at x0 ∈ X of the vector bundles

(8.17) (S2V )+0,C, S2,0V, S0,2V,
∧2,0

V,
∧0,2

V

are U(m)-modules, while the fibers at x0 ∈ X of the vector bundles

(8.18) (S2W ∗)+0,C, S2,0W ∗, S0,2W ∗,
∧2,0

W ∗,
∧0,2

W ∗

are U(n)-modules. Each of these modules is either irreducible or vanishes;
in fact, they are all irreducible when m,n ≥ 2. The tensor products

(8.19)

((S2V )+0 ⊗ (S2W ∗)+0 )x0 ,

(S2,0V ⊗C S
2,0W ∗)x0 , (S0,2V ⊗C S

0,2W ∗)x0 ,

(
∧2,0

V ⊗C

∧2,0
W ∗)x0 , (

∧0,2
V ⊗C

∧0,2
W ∗)x0

possess natural structures of K-modules. Therefore when m,n ≥ 2, the
K-modules E1,x0 and E2,x0 and the K-modules (8.19) are irreducible. The
morphism of vector bundles

(8.20) τ1 : (S2V )+0 ⊗ (S2W ∗)+0 → (S2V )+0 ◦ (S2W ∗)+0

and the morphisms of vector bundles (8.3) and (8.4) are G-equivariant, and
hence the restrictions of these morphisms of vector bundles to the fibers
at x0 are morphisms of K-modules. When m,n ≥ 2, we know that these
morphisms of K-modules are non-zero. From these remarks, we infer that
the morphism (8.20) is an isomorphism of vector bundles and that the mor-
phisms of vector bundles (8.3) and (8.4) are injective. Since the rank of
the vector bundles (S2V )+0 and (S2W ∗)+0 are equal to m2 − 1 and n2 − 1,
respectively, from the decomposition (8.7) we now see that the vector bun-
dle E3 and its sub-bundle (S2V )+0 ◦ (S2W ∗)+0 have the same rank; we thus
obtain the equality (8.10). On the other hand, by a dimension-counting
argument, from the decomposition (8.2) we now obtain the equalities (8.5)
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and see that the morphisms (8.3) and (8.4) are isomorphisms. In fact, we
have

(8.21) rank (S2T ∗)−− = 2
(
m

2

)(
n

2

)
.

When m = 1, we easily see that GC

1,n is isometric to the complex
projective space CP

n endowed with its Fubini-Study metric of constant
holomorphic curvature 4, and we know that E = {0}.

If F is an arbitrary complex vector space of dimension m + n en-
dowed with a positive definite Hermitian scalar product, then an isometry
ϕ : C

m+n → F induces a holomorphic isometry ϕ : GC

m,n → GC

m(F ).
Thus the Riemannian manifold GC

m(F ) is a Hermitian symmetric space.
From (8.13), it follows that the mapping Ψ : GC

m(F ) → GC

n(F ) is an anti-
holomorphic isometry. If we write X = GC

m,n and X ′ = GC

m(F ), for x ∈ X
the isomorphism ϕ : C

m+n → F induces by restriction isomorphisms

ϕ : VX,x → VX′,ϕ(x), ϕ : WX,x →WX′,ϕ(x);

hence the isomorphism ϕ∗ : TX,x → TX′,ϕ(x) is equal to the natural map-
ping

ϕ−1∗ ⊗ ϕ : V ∗
X,x ⊗WX,x → V ∗

X′,ϕ(x) ⊗WX′,ϕ(x).

It follows that
ϕ∗EX′,ϕ(x) = EX,x,

for all x ∈ X. When m = 1, the Hermitian metric of the complex projective
space GC

1 (F ) induced by the Hermitian scalar product of F has constant
holomorphic curvature 4. When m = n, since Ψ ◦ ϕ is equal to ϕ ◦ Ψ
as mappings from GC

n,n to GC

n(F ), we see that, if u is an even (resp. odd)
symmetric form on GC

n(F ), then ϕ∗u is an even (resp. odd) symmetric form
on GC

n,n.
For the remainder of this section, we suppose that m = n ≥ 1. We

consider the involutive isometry Ψ of X = GC

n,n. From formulas (8.9) and
(8.13), we easily infer that

(8.22) Ψ∗π1h = π2Ψ∗h,

for all h ∈ (S2T ∗)+. We saw above that the isometry Ψ preserves the sub-
bundle E of S2T ∗. The group Λ of isometries of X generated by Ψ, which is
of order 2, acts freely on X and we may consider the Riemannian manifold
X̄ = ḠC

n,n equal to the quotient X/Λ endowed with the Riemannian metric
gX̄ induced by g. The natural projection � : X → X̄ is a two-fold covering.
The action of the group SU(2n) on X passes to the quotient X̄. In fact,
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SU(2n) acts transitively on X̄, and it is easily verified that the isotropy
group of the point �(x0) is equal to the subgroup of SU(2n) generated
by K and the matrix (

0 −In
In 0

)

of SU(2n). This isotropy group is precisely the group KS ; thus according
to §9 in Chapter VII of [36], we see that X̄ is a symmetric space of compact
type which is equal to the adjoint space of X. Moreover, the space X̄ is
irreducible and has rank n.

The notion of even or odd tensor on X (with respect to the involutive
isometry Ψ) defined here coincides with the one considered in §4, Chap-
ter II. In fact, a section u of SpT ∗ over X is even if and only if we can
write u = �∗u′, where u′ is a symmetric p-form on X̄. Lemma 2.17 gives
us the following result:

Lemma 8.1. A symmetric p-form u on ḠC

n,n satisfies the Guillemin

condition if and only if the even symmetric p-form �∗u on GC

n,n satisfies
the Guillemin condition.

From Proposition 2.18, we obtain the following:

Proposition 8.2. The symmetric space ḠC

n,n is rigid in the sense of

Guillemin if and only if every even symmetric 2-form on GC

n,n satisfying
the Guillemin condition is a Lie derivative of the metric.

The notion of even (resp. odd) symmetric p-form on CP
1 defined in §4,

Chapter III, coincides with the one introduced here on GC

1,1. Hence from
Lemma 8.1 and Propositions 2.20 and 3.29, we obtain the following result:

Proposition 8.3. Let X be the symmetric space ḠC

1,1.
(i) The X-ray transform for functions on X is injective.
(ii) A differential form of degree 1 on X satisfies the zero-energy con-

dition if and only if it is exact.

Since the space ḠC

1,1 has rank one, the first assertion of this proposition
is also given by Theorem 2.24.

§3. Highest weights of irreducible modules
associated with the complex Grassmannians

Let m,n ≥ 2 be given integers. We pursue our study of the complex
Grassmannian X = GC

m,n. We consider the Lie algebras g0 and k0 of the
compact Lie group G = SU(m + n) and its subgroup K. The complexi-
fication g of g0 is equal to sl(m + n,C), and the complexification k of the
Lie algebra k0 admits the decomposition

k = k1 ⊕ k2 ⊕ z,
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where z is the center of k, which is one-dimensional, and where k1 and k2 are
simple subalgebras of k isomorphic to sl(m,C) and sl(n,C), respectively.
In fact, a matrix (

A 0
0 B

)

of k, where A ∈ gl(m,C), B ∈ gl(n,C) satisfy TrA + TrB = 0, can be
written as the sum of the three matrices

(
A− 1

m (TrA) · Im 0
0 0

)
,

(
0 0
0 B − 1

n (TrB) · In

)
,

(
1
m (TrA) · Im 0

0 1
n (TrB) · In

)
,

which belong to k1, k2 and z, respectively. The complexification p of the
subspace p0 of g0 can be written as

p = p− ⊕ p+,

where p− and p+ are the eigenspaces of the endomorphism Ad j of p corre-
sponding to the eigenvalues +i and −i, respectively. Since j belongs to the
center of U(m + n), this decomposition of p is invariant under the action
of K on p. We thus obtain the decomposition

(8.23) g = k1 ⊕ k2 ⊕ z ⊕ p− ⊕ p+

of the Lie algebra g into irreducible K-modules. If Eij = (ckl) is the matrix
of gl(m + n,C) which is determined by cij = 1 and ckl = 0 whenever
(k, l) �= (i, j), the subspace p+ of p is generated (over C) by the matrices

{Eij | 1 ≤ i ≤ m and m+ 1 ≤ j ≤ m+ n },

while the subspace p− of p is generated (over C) by the matrices

{Eij | m+ 1 ≤ i ≤ m+ n and 1 ≤ j ≤ m }.

The group of all diagonal matrices of G is a maximal torus of G and
of K. The complexification t of the Lie algebra t0 of this torus is a Cartan
subalgebra of the semi-simple Lie algebra g and also of the reductive Lie
algebra k. For 1 ≤ j ≤ m + n, the linear form λj : t → C, sending the
diagonal matrix with a1, . . . , am+n ∈ C as its diagonal entries into aj , is
purely imaginary on t0. Then

Δ = {λi − λj | 1 ≤ i, j ≤ m+ n and i �= j }
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is the system of roots of g with respect to t; if we set

Δ1 = {λi − λj | 1 ≤ i, j ≤ m and i �= j },
Δ2 = {λi − λj | m+ 1 ≤ i, j ≤ m+ n and i �= j },

then Δ′ = Δ1 ∪Δ2 is the system of roots of k with respect to t. We fix the
positive system

Δ+ = {λi − λj | 1 ≤ i < j ≤ m+ n }

for the roots of g, and the positive system Δ′+ = Δ′ ∩ Δ+ for the roots
of k.

If α is the root λi − λj of Δ, with 1 ≤ i, j ≤ m + n and i �= j, we
consider the subspace gα of g generated by Eij . If Δz is the set of roots of Δ
which do not vanish identically on the center z, we write Q+ = Δ+ ∩ Δz;
then we see that

p+ =
⊕

α∈Q+

gα, p− =
⊕

α∈Q+

g−α.

It is easily verified that the highest weights of the K-modules k1, k2, z, p−
and p+ are equal to λ1−λm, λm+1−λm+n, 0, −λm+λm+1 and λ1−λm+n,
respectively.

We consider the vector bundles

V 1,1
0 = (S2V )+0,C, W 1,1

0 = (S2W ∗)+0,C.

As we saw in §2, the fibers at x0 ∈ X of the vector bundles (8.17) and
(8.18) are irreducible K-modules. It is easily verified (see [39, pp. 222–
223]) that the highest weights of these irreducible K-modules are given by
the following table:

K-module Highest weight K-module Highest weight

V 1,1
0,x0

λ1 − λm W 1,1
0,x0

λm+1 − λm+n

(S2,0V )x0 2λ1 (S2,0W ∗)x0 −2λm+n

(S0,2V )x0 −2λm (S0,2W ∗)x0 2λm+1

(
∧2,0

V )x0 λ1 + λ2 (
∧2,0

W ∗)x0 −λm+n−1 − λm+n

(
∧0,2

V )x0 −λm−1 − λm (
∧0,2

W ∗)x0 λm+1 + λm+2

In §2, we saw that the K-modules E1,x0 and E2,x0 and the K-modules
(8.19) are irreducible. We know that the mappings (8.3), (8.4) and (8.20)
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are G-equivariant isomorphisms of vector bundles. Therefore the fibers at
x0 of the homogeneous sub-bundles of S2T ∗

C
which appear in the right-hand

side of (8.11) are irreducible K-modules, and the morphism

τ1 : ((S2V )+0 ⊗ (S2W ∗)+0 )x0 → E3,x0

is an isomorphism of irreducible K-modules. Using these facts, from the
above table we deduce that the highest weights of these irreducible K-
modules are given by the following table:

K-module Highest weight

E0,C,x0 0

E1,C,x0 λm+1 − λm+n

E2,C,x0 λ1 − λm

E3,C,x0 λ1 − λm + λm+1 − λm+n

(S2,0T ∗)+x0
2λ1 − 2λm+n

(S2,0T ∗)−x0
λ1 + λ2 − λm+n−1 − λm+n

(S0,2T ∗)+x0
−2λm + 2λm+1

(S0,2T ∗)−x0
−λm−1 − λm + λm+1 + λm+2

The fact that the K-modules (S2,0T ∗)+x0
and (S2,0T ∗)−x0

are irreducible is
asserted in §2 of [9, Chapter 3].

Since the irreducible K-modules appearing in the above table are
pairwise non-isomorphic, from the decomposition (8.11) we infer that a
K-submodule of S2T ∗

C,x0
can be written as a direct sum of submodules

appearing in this table. It is easily seen that there are elements of the irre-
ducible K-modules Ej,C,x0 , (S2,0T ∗)+x0

and (S0,2T ∗)+x0
, with 0 ≤ j ≤ 3,

which do not belong to the K-module EC,x0 . We also know that the
K-modules (S2,0T ∗)−x0

and (S0,2T ∗)−x0
are submodules of EC,x0 . From these

remarks, we deduce the equality

(8.24) (S2T ∗)−− = E.

Since the decomposition (8.7) is orthogonal, we see that the orthogonal
complement of the sub-bundle E0 ⊕ E1 ⊕ E2 in S2T ∗ is equal to

F = (S2T ∗)− ⊕ E3.

From the decomposition (8.23) of g into irreducible K-modules, the decom-
positions (8.2) and (8.11), and the preceding table, we obtain

(8.25) dim HomK(g,C) = 1, dim HomK(g, Ej,C,x0) = 1,
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for j = 0, 1, 2, and

(8.26) HomK(g, FC,x0) = {0}.

Thus we have

(8.27) dim HomK(g, S2
0T

∗
C,x0

) = 2

(see Lemma 5.5 of [42]).
The highest weight of the irreducibleG-module g is equal to λ1 − λm+n

and E1,m+n is a highest weight vector of g. If γ1 is the element of the
dual of the group G which is the equivalence class of this irreducible
G-module, by (8.25)–(8.27) the Frobenius reciprocity theorem tells us that
the G-modules C∞

γ1 (X), C∞
γ1 (E1,C) and C∞

γ1 (E2,C) are irreducible and that
the equalities

(8.28)
C∞
γ1 (S2T ∗

C
) = C∞

γ1 ((S2T ∗)+
C

),

C∞
γ1 (S2

0T
∗
C
) = C∞

γ1 (E1,C) ⊕ C∞
γ1 (E2,C)

hold.
Since the symmetric space X is irreducible and is not equal to a simple

Lie group, from (2.25) and (8.28) we see that an element of E(X) is a section
of the sub-bundle E1 ⊕ E2 of S2

0T
∗; more precisely, we have

(8.29) E(X) = {h ∈ C∞
γ1 (E1,C) ⊕ C∞

γ1 (E2,C) | h = h̄, divh = 0 }.

From Proposition 2.40 and the equalities (8.27) and (8.29), we obtain the
following result:

Proposition 8.4. Let X be the complex Grassmannian GC

m,n, with
m,n ≥ 2. Then the space E(X) is an irreducible SU(m+n)-submodule of
C∞(E1 ⊕ E2) isomorphic to the Lie algebra g0 = su(m+ n).

§4. Functions and forms on the complex Grassmannians

Let m,n ≥ 2 be given integers. In this section, we describe explicit
functions and symmetric 2-forms on the complex GrassmannianX = GC

m,n,
which we view as a homogeneous space of the group G = SU(m+ n).

Let Sm,n be the space of all complex (m + n) ×m matrices A satis-
fying tĀA = Im. We view Sm,n as the Stiefel manifold of all orthonormal
m-frames in C

m+n; the matrix A of Sm,n determines the m-frame consist-
ing of the m column vectors of A. The unitary group U(m) acts on Sm,n by
right multiplication and we consider the quotient space Sm,n/U(m). The
mapping

ρ : Sm,n → GC

m,n,



§4. Functions and forms on the complex Grassmannians 275

sending the element A of Sm,n into the m-plane spanned by the m column
vectors of A, induces by passage to the quotient a diffeomorphism

ρ̄ : Sm,n/U(m) → GC

m,n.

The group G acts on Sm,n by left multiplication; clearly, the mappings ρ
and ρ̄ are G-equivariant. A function f on Sm,n which is invariant under the
right action of U(m) determines a function f̃ on GC

m,n satisfying ρ∗f̃ = f .
For 1 ≤ j ≤ m + n, we consider the C

m-valued function Zj on Sm,n,
which sends a matrix of Sm,n into its j-th row; if 1 ≤ l ≤ m, we denote by
Zlj the l-th component of this function. For 1 ≤ j, k ≤ m+ n, we consider
the complex-valued function

fjk = 〈Zj , Zk〉 =
m∑
l=1

ZljZ̄
l
k

on Sm,n, which is invariant under the right action of U(m). Let H be the
space of all functions f on Sm,n which are invariant under the right action
of U(m) and can be written in the form

(8.30) f =
m+n∑
j,k=1

ajkfjk,

where the coefficients ajk ∈ C satisfy

(8.31)
m+n∑
j=1

ajj = 0.

Then H is a G-module isomorphic to g. In fact, the mapping

(8.32) H → g,

sending the function f given by (8.30) into the matrix (iakj) of g, is an
isomorphism of G-modules; moreover, the image of the G-submodule

H0 = { f ∈ H | f = f̄ }

of H under the isomorphism (8.32) is equal to the subalgebra g0 = su(m+n)
of g. Thus H is an irreducible G-module and the G-submodule

H̃ = { f̃ | f ∈ H}
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of C∞(X) is isomorphic to H and to g. Therefore H̃ is a G-submodule of
the irreducible G-module C∞

γ1 (X), and so we obtain the equality

(8.33) C∞
γ1 (X) = H̃.

Clearly, the function f0 = fm+n,1 = 〈Zm+n, Z1〉 is a highest weight vector
of H, and so the function f̃0 on X is a highest weight vector of the irre-
ducible G-module C∞

γ1 (X) (see [32]). By Lemma 2.39 and (8.6), we know
that H̃ is the eigenspace of the Laplacian Δ with eigenvalue 4(m+ n).

Let ζ = (ζ1, . . . , ζm+n) be the standard coordinate of C
m+n. For

1 ≤ j, k ≤ m+ n, let Q̃jk be the sesquilinear form on C
m+n defined by

Q̃jk(ζ, ζ ′) = ζj ζ̄
′
k,

for ζ, ζ ′ ∈ C
m+n, and consider the U(1)-invariant complex polynomial Qjk

on C
m+n determined by

Qjk(ζ) = Q̃jk(ζ, ζ) = ζj ζ̄k,

for all ζ ∈ C
m+n. If {v1, . . . , vm+n} is an orthonormal basis of C

m+n, then
we easily see that

(8.34)
m+n∑
l=1

Qjk(vl) = δjk.

Now let {v1, . . . , vm} be an orthonormal system of vectors of C
m+n and s

be the point of Sm,n corresponding to this orthonormal m-frame of C
m+n;

then we have

(8.35) fjk(s) =
m∑
l=1

Qjk(vl).

Let x be a point of X, and let {v1, . . . , vm} and {w1, . . . , wn} be or-
thonormal bases of the spaces Vx and Wx, respectively. Since

{v1, . . . , vm, w1, . . . , wn}

is an orthonormal basis of C
m+n, according to (8.34) we have the equality

m∑
l=1

Qjk(vl) +
n∑
r=1

Qjk(wr) = δjk.
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From the preceding equality and the relation (8.35), we infer that

(8.36) f̃jk(x) =
m∑
l=1

Qjk(vl) = δjk −
n∑
r=1

Qjk(wr).

We write Q = Qm+n,1. In particular, the relation (8.36) tells us that

(8.37) f̃0(x) =
m∑
l=1

Q(vl) = −
n∑
r=1

Q(wr).

We consider the G-module of all sesquilinear forms on C
m+n and its

G-submodule Q consisting of all sesquilinear forms q on C
m+n which can

be written in the form

(8.38) q =
m+n∑
j,k=1

ajkQ̃jk,

where the coefficients ajk ∈ C satisfy the relation (8.31). Then Q is a
G-module isomorphic to g; in fact, the mapping

Q → g,

sending the sesquilinear form q given by (8.38) into the matrix (iakj) of g,
is an isomorphism of G-modules. Thus Q is an irreducible G-module and
the sesquilinear form Q̃ = Q̃m+n,1 is a highest weight vector of Q.

We consider the isomorphism of G-modules

H → Q

sending the element f of H given by (8.30) into the element q = Q(f) of Q
given by (8.38). If f is a function of H, we easily see that the form Q(f)
is Hermitian if and only if f belongs to H0. For f ∈ H, we consider the
sesquilinear forms Q1(f) on V ∗ and Q2(f) on W induced by Q(f). Then
we have Q̃ = Q(f0), and we write Q1 = Q1(f0) and Q2 = Q2(f0). We see
that

(8.39) Q1(α, α) = Q(α�), Q2(w,w) = Q(w),

for α ∈ V ∗, w ∈W .
For f ∈ H, the symmetric 2-forms g1 ·Q2(f) and Q1(f) ·g2 are sections

of the vector bundles Ẽ1,C and Ẽ2,C, respectively. By (8.36), we see that

(8.40) Tr (g1 ·Q2(f)) = −4mf̃, Tr (Q1(f) · g2) = 4nf̃ ,
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for all f ∈ H. Thus by (8.40), we have morphisms of G-modules

κ1 : H → C∞(E1,C), κ2 : H → C∞(E2,C)

defined by

κ1(f) = g1 ·Q2(f) +
2
n
f̃ · g, κ2(f) = Q1(f) · g2 −

2
m
f̃ · g,

for f ∈ H. Clearly the image of κj is contained in C∞
γ1 (Ej,C), for j = 1, 2.

If f is an element of H, it is easily seen that g1 ·Q2(f) (resp. Q1(f) ·g2) is a
section of Ẽ1 (resp. of Ẽ2) if and only if Q(f) is Hermitian, or equivalently
if f belongs to H0. Thus if f belongs to H0, then κj(f) is a section of Ej ,
for j = 1, 2.

Let x be a point of X. If the vectors e1 and em+n belong to Vx and if
q2 is a sesquilinear form on W , we verify that

(Q1 · g2)(α1 ⊗ w,α2 ⊗ w) = 1, (g1 · q2)(α1 ⊗ w,α2 ⊗ w) = 0,

for all unit vectors w ∈ Wx, where α1 and α2 are the vectors of Vx de-
termined by α�1 = e1 and α�2 = em+n. If the vectors e1 and em+n belong
to Wx and if q1 is a sesquilinear form on V , we verify that

(g1 ·Q2)(α⊗ em+n, α⊗ e1) = 1, (q1 · g2)(α⊗ em+n, α⊗ e1) = 0,

for all unit vectors α ∈ V ∗
x . From these observations, if a, b are complex

numbers which do not both vanish, we infer that the sections

ag1 ·Q2 + bQ1 · g2, κ1(f0), κ2(f0),

are non-zero.
Since f0 is a highest weight vector of H, it follows that the sections

g1·Q2 andQ1·g2 are highest weight vectors of the G-modules C∞
γ1 (Ẽ1,C) and

C∞
γ1 (Ẽ2,C), respectively, and that the sections κ1(f0) and κ2(f0) are highest

weight vectors of the G-modules C∞
γ1 (E1,C) and C∞

γ1 (E2,C), respectively.
Since the G-modules C∞

γ1 (E1,C) and C∞
γ2 (E2,C) are irreducible, we obtain

the equalities

(8.41) C∞
γ1 (E1,C) = κ1(H), C∞

γ2 (E2,C) = κ2(H).

Moreover, the sections g1 ·Q2+Q1 ·g2 and g1 ·Q2−Q1 ·g2 are highest weight
vectors of the G-module C∞

γ1 ((S2T ∗)+
C
); also since κj(f0) is a section of the

vector bundle Ej,C, the sections

κ1(f0) + κ2(f0), κ1(f0) − κ2(f0)

are highest weight vectors of the G-module C∞
γ1 (S2

0T
∗
C
).
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Since the differential operator Hess : C∞(X) → C∞(S2T ∗
C
) is homoge-

neous, it induces a morphism of G-modules Hess : H → C∞
γ1 (S2T ∗

C
). Thus

if f is an element of H, from the equalities (8.28) and the decomposition
(8.7) we infer that Hess f̃ = π+Hess f̃ is a section of (S2T ∗)+

C
and that

(8.42) Hess f̃ = (π1 + π2)Hess f̃ − 2(m+ n)
mn

f̃ · g;

here we used the fact that f̃ is an eigenfunction of the Laplacian Δ with
eigenvalue 4(m+ n). By (1.35) and (8.6), we see that

(8.43) div Hess f̃ = 2(m+ n)df̃ ,

for f ∈ H̃. From (8.42), (8.43) and (1.8), we obtain the identity

(8.44) div (π1 + π2)Hess f̃ = 2(m+ n)
(

1 − 1
mn

)
df̃ ,

for f ∈ H.
Let f be a non-zero element of H. By (8.44), we know that the section

(π1 + π2)Hess f̃ is non-zero. Since (8.7) is a direct sum decomposition, it
follows that at least one of the two sections π1Hess f̃ and π2Hess f̃ does
not vanish. Therefore the section (π1 −π2)Hess f̃ of S2

0T
∗
C

does not vanish.
In §8, we shall prove the following result:

Proposition 8.5. We have

π1Hess f̃0 = κ1(f0), π2Hess f̃0 = −κ2(f0).

This proposition implies that the two sections π1Hess f̃0 and π2Hess f̃0
do not vanish. Since Hess is a homogeneous differential operator, it follows
that the morphism πjHess : C∞(X) → C∞(Ej,C) induces an isomorphism
of G-modules

(8.45) πjHess : H → C∞
γ1 (Ej,C),

for j = 1, 2. In fact, since κ1 and κ2 and the mappings (8.45) are isomor-
phisms of G-modules, from Proposition 8.5 we deduce that

(8.46) π1Hess f̃ = κ1(f), π2Hess f̃ = −κ2(f),

for all f ∈ H. From (8.42) and (8.46), we now deduce that

(8.47) Hess f̃ = g1 ·Q2(f) −Q1(f) · g2.
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For the remainder of this section, we suppose that m = n. Then we
have

(κ1 + κ2)(f) = g1 ·Q2(f) +Q1(f) · g2,

(κ1 − κ2)(f) = g1 ·Q2(f) −Q1(f) · g2 +
4
n
f̃ · g,

for all f ∈ H. According to (8.46), we have

(8.48) (π1 − π2)Hess f̃ = g1 ·Q2(f) +Q1(f) · g2,

for f ∈ H.
We note that Proposition 8.5 is exploited here only in order to prove

the equalities (8.47) and (8.48). Neither Proposition 8.5 nor these equalities
shall be used in any of our subsequent proofs; they are presented here only
for the sake of completeness.

Let x be a point of the Grassmannian X = GC

n,n. Let {v1, . . . , vn}
and {w1, . . . , wn} be orthonormal bases of the vector spaces Vx and Wx,
respectively. According to (8.35), for 1 ≤ j, k ≤ 2n, we see that

f̃jk(x) =
n∑
l=1

Qjk(vl), f̃jk(Ψ(x)) =
n∑
r=1

Qjk(wr).

From these relations and (8.36), it follows that

f̃jk(x) + f̃jk(Ψ(x)) = δjk,

for 1 ≤ j, k ≤ 2n. This equality implies that

Ψ∗f̃ = −f̃ ,

for all f ∈ H, and thus the functions of H̃ are odd. Since the G-module
C∞
γ1 (X) is irreducible, by (8.33) we see that

(8.49) C∞
γ1 (X) = C∞

γ1 (X)odd = H̃.

Moreover, since Hess is a homogeneous differential operator, if f is an
element of H, the symmetric 2-form Hess f̃ on X is odd.

We easily verify that

Ψ∗(g1 ·Q2(f)) = Q1(f) · g2,

for all f ∈ H. Therefore by (8.49), for f ∈ H, we see that (κ1 + κ2)(f)
(resp. (κ1 − κ2)(f)) is an even (resp. an odd) section of S2

0T
∗
C
. Thus the

sections
(κ1 + κ2)(f0) = g1 ·Q2 +Q1 · g2,

(κ1 − κ2)(f0) = g1 ·Q2 −Q1 · g2 +
4
n
f̃0 · g
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are highest weight vectors of the G-modules

C∞
γ1 (S2

0T
∗
C
)ev, C∞

γ1 (S2
0T

∗
C
)odd,

respectively. Moreover, from (8.28) it follows that these G-modules are
irreducible and the equalities

(8.50) C∞
γ1 (S2

0T
∗
C
)ev = (κ1 + κ2)H, C∞

γ1 (S2
0T

∗
C
)odd = (κ1 − κ2)H

hold; hence by (8.50), we have

(8.51)
C∞
γ1 (S2T ∗

C
)ev = C∞

γ1 (S2
0T

∗
C
)ev = (κ1 + κ2)H,

C∞
γ1 (S2T ∗

C
)odd = H̃ · g ⊕ (κ1 − κ2)H.

By (8.39), we see that

(8.52) (κ1 + κ2)(f0)(α⊗ w,α⊗ w) = 2(Q(α�) +Q(w)),

for all unit vectors α ∈ V and w ∈W .
Since the involutive isometry Ψ of X is anti-holomorphic, we see that

(8.53) Ψ∗∂ = ∂̄Ψ∗

on
∧p
T ∗

C
. From the relations (2.28), (8.53) and (8.49), we obtain the

equalities

(8.54)
C∞
γ1 (TC)ev = KC,

C∞
γ1 (T ∗

C
)ev = (∂ − ∂̄)H̃, C∞

γ1 (T ∗
C
)odd = dH̃

of irreducible G-modules.
Let f be an element of H. By (8.22) and (8.49), we see that the section

(π1+π2)Hess f̃ of S2
0T

∗
C

is odd and that the section (π1−π2)Hess f̃ of S2
0T

∗
C

is even. If f is non-zero, we saw that these two sections do not vanish;
thus the sections (π1 + π2)Hess f̃ and (π1 − π2)Hess f̃ are non-zero vec-
tors of the G-modules C∞

γ1 (S2
0T

∗
C
)odd and C∞

γ1 (S2
0T

∗
C
)ev, respectively. Since

the G-modules C∞
γ1 (S2

0T
∗
C
)odd and C∞

γ1 (T ∗
C
)odd are irreducible, by (8.44) we

therefore see that the homogeneous differential operator div induces an
isomorphism of G-modules

(8.55) div : C∞
γ1 (S2

0T
∗
C
)odd → C∞

γ1 (T ∗
C
)odd.

We consider the symmetric space Y = ḠC

n,n and the natural projection
� : X → Y . We consider the G-submodules

E(X)ev = E(X) ∩ C∞(S2T ∗)ev, E(X)odd = E(X) ∩ C∞(S2T ∗)odd
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of E(X). According to §4, Chapter II, the projection � induces an isomor-
phism of G-modules �∗ : E(Y ) → E(X)ev given by (2.7) and we have the
decomposition (2.10) of E(X).

Since the mapping (8.55) is an isomorphism, by (2.25) we see that
E(X)odd = {0}; it follows that

E(X) = E(X)ev ⊂ C∞
γ1 (S2

0T
∗
C
)ev.

Proposition 8.4 tells us that E(X) is an irreducible G-module isomorphic
to g0, and so we have the equality

E(X)C = C∞
γ1 (S2

0T
∗
C
)ev.

From the first equalities of (8.51), we obtain the relations (8.56) of the next
proposition. Since (κ1 + κ2)H0 is a G-submodule of C∞(S2

0T
∗)ev isomor-

phic to g0, it is therefore equal to E(X). From the above discussion, we
obtain the following:

Proposition 8.6. Let X be the complex Grassmannian GC

n,n, with

n ≥ 2, and Y be the symmetric space ḠC

n,n. The spaces E(X) and E(Y ) are
irreducible SU(2n)-modules isomorphic to g0 = su(2n); moreover, E(X) is
equal to the SU(2n)-submodule (κ1 + κ2)H0 of C∞(S2

0T
∗)ev, and we have

(8.56) E(X)C = C∞
γ1 (S2T ∗

C
)ev = C∞

γ1 (S2
0T

∗
C
)ev = (κ1 + κ2)H,

(8.57) E(Y )C = C∞
γ1 (Y, S2T ∗

Y,C).

§5. The complex Grassmannians of rank two

In this section, we consider the complex Grassmannian X = GC

2,n,
with n ≥ 2, endowed with the metric g of §2. We view X as a homogeneous
space of the group G = SU(n+2). The standard Hermitian scalar product
on C

n+2 induces a Hermitian scalar product ĝ on
∧2

C
n+2, which in turn

induces a Hermitian metric g̃ of constant holomorphic curvature 4 on the
complex projective space GC

1 (
∧2

C
n+2) of all complex lines of

∧2
C
n+2.

If u is a non-zero vector of
∧2

C
n+2, we denote by π(u) the element of

GC

1 (
∧2

C
n+2) corresponding to the complex line of

∧2
C
n+2 generated by u.

If u is a unit vector of
∧2

C
n+2 and v is a vector of

∧2
C
n+2 orthogonal

to u, we consider the vector

π∗(u, v) =
d

dt
π(u+ tv)|t=0

tangent to the projective space GC

1 (
∧2

C
n+2) at π(u). It is easily verified

that the Plücker imbedding

ι : GC

2,n → GC

1 (
∧2

C
n+2),



§5. The complex Grassmannians of rank two 283

which sends the complex 2-plane generated by the vectors v1, v2 of C
n+2

into π(v1 ∧ v2), is an isometric imbedding.
Throughout the remainder of this section, we shall suppose that n = 2.

Let {e1, e2, e3, e4} be the standard basis of C
4. The complex quadratic form

H on
∧2

C
4 with values in the one-dimensional vector space

∧4
C

4 defined
by

H(ξ1, ξ2) = ξ1 ∧ ξ2,

for ξ1, ξ2 ∈ ∧2
C

4, is non-degenerate. The vectors

ω1 =
1√
2

(e1 ∧ e2 + e3 ∧ e4), ω2 =
i√
2

(e1 ∧ e2 − e3 ∧ e4),

ω3 =
1√
2

(e2 ∧ e3 + e1 ∧ e4), ω4 =
i√
2

(e2 ∧ e3 − e1 ∧ e4),

ω5 =
1√
2

(e1 ∧ e3 − e2 ∧ e4), ω6 =
i√
2

(e1 ∧ e3 + e2 ∧ e4)

form an orthonormal basis for
∧2

C
4 (with respect to ĝ) which diagonalizes

the quadratic form H; in fact, we have

H(ωj , ωk) = δjk e1 ∧ e2 ∧ e3 ∧ e4,

for 1 ≤ j, k ≤ 6. An element A of the group G acts on
∧2

C
4 and preserves

both the scalar product ĝ and the quadratic form H. Then we may write
Aωj =

∑6
k=1 c

k
j ωk; from these properties of A, we easily deduce that the

coefficients ckj are real.
We consider the complex hypersurface Z of GC

1 (
∧2

C
4) defined by the

homogeneous equation H(ξ, ξ) = 0, for ξ ∈ ∧2
C

4. By Cartan’s lemma, we
easily see that the image of ι is equal to Z. The complex coordinate system
(ζ1, . . . , ζ6) on

∧2
C

4 determined by the orthonormal basis {ω1, . . . , ω6}
allows us to identify

∧2
C

4 with C
6 and GC

1 (
∧2

C
4) with CP

5. Then Z is
identified with the complex quadric Q4 of the complex projective space
CP

5 defined by the homogeneous equation

ζ2
1 + · · · + ζ2

6 = 0.

We consider the metric on Z induced by the metric g̃ of GC

1 (
∧2

C
4); then

ι : GC

2,2 → Z is an isometry, and the complex Grassmannian GC

2,2 is isomet-
ric via this mapping to the complex quadric Q4 endowed with the Rieman-
nian metric g of §2, Chapter V. Thus from Theorem 6.45, with n = 4, we
deduce:
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Theorem 8.7. The Grassmannian GC

2,2 is infinitesimally rigid.

The complex conjugation of C
6 induces an involution τ of

∧2
C

4: the
point ζ of

∧2
C

4 with coordinates (ζ1, . . . , ζ6) is sent into the point τ(ζ)
with coordinates (ζ̄1, . . . , ζ̄6). In turn, this involution induces an involutive
isometry τ of GC

1 (
∧2

C
4) which preserves the hypersurface Z. If Ψ is the

isometry of X = GC

2,2 which sends a 2-plane in C
4 into its orthogonal

complement, we now verify that the diagram

(8.58)

GC

2,2
Ψ−−→ GC

2,2⏐⏐�ι
⏐⏐�ι

Z
τ−−→ Z

is commutative. Indeed, if x0 is the point of X corresponding to the
2-plane generated by {e1, e2}, then Ψ(x0) corresponds to its orthogonal
complement, which is the 2-plane generated by {e3, e4}. Let φ be an ele-
ment of G. Then the point φ(x0) of X corresponds to the 2-plane gener-
ated by {φ(e1), φ(e2)}, while Ψφ(x0) corresponds to the 2-plane generated
by {φ(e3), φ(e4)}. We verify that

(8.59) e1 ∧ e2 =
1√
2

(ω1 − iω2), e3 ∧ e4 =
1√
2

(ω1 + iω2).

We may write φωj =
∑6
k=1 c

k
j ωk, where the coefficients ckj are real. It

follows that

φ(e1 ∧ e2) =
1√
2

6∑
j=1

(cj1 − icj2)ωj , φ(e3 ∧ e4) =
1√
2

6∑
j=1

(cj1 + icj2)ωj .

Thus the points ιφ(x0) and ιΨφ(x0) of GC

1 (
∧2

C
4) correspond to the points

of CP
5 with homogeneous coordinates (ζ1, . . . , ζ6) and (ζ ′1, . . . , ζ

′
6), respec-

tively, where

ζj =
1√
2

(cj1 − icj2), ζ ′j =
1√
2

(cj1 + icj2).

Since ζ ′j = ζ̄j , we see that ιΨφ(x0) is equal to τιφ(x0). Since the group
G acts transitively on the Grassmannian X, from this last observation we
obtain the commutativity of the diagram (8.58).

According to (5.59), the quotient of the complex quadric Q4 by the
action of the group of isometries of Q4 generated by τ is isometric to the
real Grassmannian GR

2,4 endowed with the Riemannian metric 1
2g, where
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g is the metric on GR

2,4 considered in §1, Chapter IV. Hence the commu-
tativity of diagram (8.58) implies that the space ḠC

2,2 is isometric to the
Grassmannian GR

2,4 endowed with this metric 1
2g; moreover, a symmetric

p-form u on the quadric Z is even (resp. odd) with respect to the involu-
tion τ if and only if the symmetric p-form ι∗u on GC

2,2 is even (resp. odd).
From Proposition 4.14 and Theorems 6.47 and 6.71, with n = 4, we deduce
the following three results, the first of which is also given by Theorem 2.24:

Proposition 8.8. The maximal flat Radon transform for functions
on the symmetric space ḠC

2,2 is injective.

Theorem 8.9. The symmetric space ḠC

2,2 is rigid in the sense of
Guillemin.

Theorem 8.10. A 1-form on the symmetric space ḠC

2,2 satisfies the
Guillemin condition if and only if it is exact.

The mapping ι∗ : C∞(S2T ∗
Z) → C∞(S2T ∗) induces an isomorphism

ι∗ : E(Z) → E(X).

According to the commutativity of diagram (8.58), from the equalities
(8.56) and the relation (6.79) given by Proposition 6.63, it follows that

(8.60) N2 ∩ E(X) = N2 ∩ (κ1 + κ2)H = {0}.

We remark that the first equality of (8.56) for GC

2,2 is also a consequence
of relation (5.111) of Proposition 5.17.

We continue to identify Z with the quadric Q4 as above. We also
identify the vector bundle L of rank 2 over the complex quadric Q4 defined
in §3, Chapter V with a sub-bundle of S2T ∗

Z . We now proceed to verify
that, for all x ∈ X, the isomorphism ι∗ : S2T ∗

Z,ι(x) → S2T ∗
X,x induces an

isomorphism

(8.61) ι∗ : Lι(x) → EX,x.

Let x1 be the point of X corresponding to the 2-plane generated
by {e3, e4}. According to §2, Chapter V and the relations (8.59), the
tangent vectors

{π∗(e3 ∧ e4, ωj), π∗(e3 ∧ e4, iωj)},

with 3 ≤ j ≤ 6, form an orthonormal basis for the tangent space of Z at
the point x̃1 = ι(x1), and the unit tangent vector ν = π∗(e3 ∧ e4,−e1 ∧ e2)
at x̃1 is normal to Z. According to the relations (5.54), the action of the
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real structure Kν of the quadric associated with the unit normal ν is given
by

Kνπ∗(e3∧e4, ωj) = π∗(e3∧e4, ωj), Kνπ∗(e3∧e4, iωj) = −π∗(e3∧e4, iωj),

for 3 ≤ j ≤ 6. Since

e1 ∧ e4 =
1√
2

(ω3 + iω4), e2 ∧ e3 =
1√
2

(ω3 − iω4),

we see that

Kνπ∗(e3 ∧ e4, e1 ∧ e4) = π∗(e3 ∧ e4, e2 ∧ e3).

The elements hν and hJν of S2T ∗
Z,x̃1

determined by

hν(ξ, η) = g̃(Kνξ, η), hJν(ξ, η) = g̃(JKνξ, η),

for ξ, η ∈ TZ,x̃1 , are generators of the fiber Lx̃1 . Thus we obtain

hν(π∗(e3 ∧ e4, e1 ∧ e4), π∗(e3 ∧ e4, e1 ∧ e4))
= g̃(Kνπ∗(e3 ∧ e4, e1 ∧ e4), π∗(e3 ∧ e4, e1 ∧ e4))
= g̃(π∗(e3 ∧ e4, e2 ∧ e3), π∗(e3 ∧ e4, e1 ∧ e4))
= 0;

on the other hand, we also have

hJν(π∗(e3 ∧ e4, e1 ∧ e4), π∗(e3 ∧ e4, e1 ∧ e4))
= g̃(JKνπ∗(e3 ∧ e4, e1 ∧ e4), π∗(e3 ∧ e4, e1 ∧ e4))
= g̃(Jπ∗(e3 ∧ e4, e2 ∧ e3), π∗(e3 ∧ e4, e1 ∧ e4))
= 0.

It follows that

(8.62) h(π∗(e3 ∧ e4, e1 ∧ e4), π∗(e3 ∧ e4, e1 ∧ e4)) = 0,

for all h ∈ Lx̃1 .
Let x be an arbitrary point of X and let α ∈ V ∗

x and w ∈Wx be unit
vectors. We consider the tangent vector ξ = α ⊗ w ∈ (V ∗ ⊗W )x. Then
there are orthonormal bases {v1, v2} of Vx and {w1, w2} of Wx such that
〈v1, α〉 = 1, 〈v2, α〉 = 0 and w1 = w. Then we easily see that

ι∗ξ = π∗(v1 ∧ v2, w1 ∧ v2).
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There exists an element φ of G satisfying

φ(e3) = v1, φ(e4) = v2, φ(e1) = w1, φ(e2) = w2.

Then the isometries φ of X and GC

1 (
∧2

C
4) induced by this element of G

satisfy ι ◦ φ = φ ◦ ι, φ(x1) = x, φ(x̃1) = ι(x); in turn, these isometries
induce isomorphisms

φ∗ : Lι(x) → Lx̃1 , φ∗ : EX,x → EX,x1 .

Clearly we have

(8.63) φ∗π∗(e3 ∧ e4, e1 ∧ e4) = ι∗ξ.

From the relations (8.62) and (8.63), we see that

h(ι∗ξ, ι∗ξ) = 0,

for all h ∈ Lι(x), and so we obtain the inclusion ι∗(Lι(x)) ⊂ EX,x. According
to (8.21) and (8.24), we know that the bundle EX is of rank 2. Therefore
the equality ι∗(Lι(x)) = EX,x holds, and we have verified that the mapping
(8.61) is an isomorphism.

The commutativity of the diagram (8.58), the isomorphisms (8.61) and
Theorem 6.52 give us the following:

Theorem 8.11. Let X be the complex Grassmannian GC

2,2. An even
section of EX over X, which satisfies the Guillemin condition, vanishes
identically.

§6. The Guillemin condition on the complex Grassmannians

Let m,n ≥ 1 be given integers. In this section, we return to our study
of the complex Grassmannian X = GC

m,n, endowed with the metric g, and
continue to identify the tangent bundle T of X with the vector bundle
V ∗ ⊗C W as in §2.

Let F be a totally real subspace of C
m+n of dimensionm+n. The stan-

dard Hermitian scalar product on C
m+n induces a positive definite scalar

product on F ; we consider the real Grassmannian Y = GR

m(F ) endowed
with the Riemannian metric determined by this scalar product on F . We
then have a totally geodesic imbedding

(8.64) ι : GR

m(F ) → GC

m,n,

which sends the real subspace F ′ of F of dimension m into the complex
subspace of C

m+n of dimension m generated by F ′ over C. If y is a point
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of Y , then Vι(y) is the subspace of C
m+n generated by VY,y over C andWι(y)

is the subspace of C
m+n generated by WY,y over C. The scalar product

on F allows us to identify the vector bundle VY with its dual bundle V ∗
Y

and therefore also VY ⊗R WY with HomR(VY ,WY ). Then we see that, for
y ∈ Y , the mapping ι∗y induced by ι is equal to the injective mapping

(8.65) (VY ⊗R WY )y → (V ∗ ⊗C W )ι(y),

which sends θ ∈ (VY⊗RWY )y, considered as an element of HomR(VY ,WY )y,
into the unique element θ̃ of HomC(V,W )ι(y) whose restriction to VY,y is
equal to θ and which satisfies θ̃◦J = J ◦ θ̃, where J is the complex structure
of C

m+n. For y ∈ Y , we identify the space (VY ⊗R WY )y with its image in
(V ∗ ⊗C W )ι(y) under the mapping (8.65); then we have the equality

(8.66) Expι(y)(VY ⊗R WY )y = ι(GR

m(F ))

of closed totally geodesic submanifolds ofGC

m,n. The tangent spaces of these
submanifolds of GC

m,n at ι(y) are equal. From the formula for the curvature
of GC

m,n, we infer that Expι(y)(VY ⊗R WY )y is a totally geodesic subman-
ifold of GC

m,n and a globally symmetric space. Clearly, the submanifold
ι(GR

m(F )) has these same properties. In fact, the subgroup of SU(m + n)
consisting of all elements of SU(m + n) which preserve the subspace F
of C

m+n acts transitively on these submanifolds by isometries. These var-
ious observations yield the equality (8.66). From the above description of
the mappings ι∗y, with y ∈ Y , we infer that, if h is a section of the vector
bundle E of S2T ∗ over X, then the symmetric 2-form ι∗h is a section of the
vector bundle EY over Y . Since Y is a symmetric space of the same rank
as X, if u is a symmetric p-form on X satisfying the Guillemin condition,
then the symmetric p-form ι∗u on Y also satisfies the Guillemin condition.
Since an arbitrary point of X belongs to the image of an imbedding of
the form (8.64), from the preceding observation and Proposition 4.12 we
deduce the following result, which is also given by Theorem 2.24:

Proposition 8.12. For m,n ≥ 2, with m �= n, the maximal flat
totally geodesic Radon transform on the complex Grassmannian GC

m,n is
injective.

Let x be a given point of GC

m,n. Let V ′ and W ′ be totally real non-zero
subspaces of V ∗

x and Wx of dimension p and q, respectively. Then there is
a natural injective mapping

(8.67) V ′ ⊗R W
′ → (V ∗ ⊗C W )x;

we shall identify V ′⊗RW
′ with its image under the mapping (8.67), which

is a totally real subspace of (V ∗⊗CW )x. We choose a totally real subspace
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V1 of V ∗
x of dimension m containing V ′ and a totally real subspace W1 of

Wx of dimension n containing W ′. We then consider the injective mapping

(8.68) V1 ⊗R W1 → (V ∗ ⊗C W )x

given by (8.67). Let V ′
1 be the totally real subspace of Vx consisting of the

vectors v of Vx for which 〈α, v〉 ∈ R, for all α ∈ V1, and let V ′′ be the
subspace of V ′

1 equal to the image of V ′ under the isomorphism V1 → V ′
1

induced by the scalar product on V ′
1 . We consider the totally real subspace

F = V ′
1 ⊕W1 of C

m+n and the corresponding totally geodesic isometric
imbedding ι given by (8.64). If y is the point of Y = GR

m(F ) corresponding
to the real subspace V ′

1 of F , then we have ι(y) = x, and we see that
VY,y = V ′

1 and WY,y = W1. Thus the image of the mapping (8.68) is equal
to the image of the mapping (8.65) at y induced by this imbedding ι. We
denote by Z the real Grassmannian GR

p,q and let j : Z → Y be the isometric
imbedding given by Lemma 4.6 whose image is equal to the submanifold
ExpyV ′′ ⊗R W

′ of Y . We easily see that the image of the restriction of the
mapping ι∗y to the subspace V ′′ ⊗R W

′ of (VY ⊗R WY )y is equal to the
subspace V ′ ⊗R W

′ of (V ∗ ⊗C W )x. Therefore the image of the isometric
imbedding i = ι ◦ j : Z → X is equal to the totally geodesic submanifold
X ′ = ExpxV ′ ⊗R W

′ of GC

m,n. If h is a section of the vector bundle E
of S2T ∗ over X, we have seen that the symmetric 2-form ι∗h is a section
of the vector bundle EY over Y ; by Lemma 4.6, we now infer that the
symmetric 2-form i∗h is a section of the vector bundle EZ over Z. Thus
we have proved the following lemma:

Lemma 8.13. Let x be a point of the complex Grassmannian X =
GC

m,n, with m,n ≥ 2. Let V ′ and W ′ be totally real non-zero subspaces of
V ∗
x and Wx of dimension p and q, respectively. Then X ′ = ExpxV ′ ⊗R W

′

is a closed totally geodesic submanifold of X isometric to the real Grass-
mannian Z = GR

p,q. Moreover, there is an isometric imbedding i : Z → X
whose image is equal to X ′ and which has the following property: if h is
a section of the sub-bundle E of S2T ∗ over X, then i∗h is a section of the
sub-bundle EZ of S2T ∗

Z .

Assume that p = m and that q = n. Then X ′ is a symmetric space of
the same rank as X. Thus the restriction to X ′ of any symmetric form on
X satisfying the Guillemin condition also satisfies the Guillemin condition.
Moreover we may choose a maximal flat totally geodesic torus Z0 of X
contained in X ′ and containing the point x. If Z is an arbitrary maximal
flat totally geodesic torus of X and z is a point of Z, there exists an element
φ of SU(m+n) such that φ(Z0) = Z and φ(x) = z; therefore Z is contained
in the totally geodesic submanifold φ(X ′) = ExpzV2 ⊗R W2 of X, which
is isometric to the real Grassmannian GR

m,n, where V2 is the totally real
subspace φ−1∗(V ′) of V ∗

z and W2 is the totally real subspace φ(W ′) of Wz.
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From Propositions 4.12 and 4.13 and Lemma 4.6, we then obtain the
following:

Proposition 8.14. Let x be a point of the complex Grassmannian
X = GC

m,n, with 2 ≤ m < n. Let X ′ be a closed totally geodesic subman-

ifold of X isometric to the real Grassmannian GR

p,q which can be written
in the form ExpxV ′ ⊗R W

′, where V ′ and W ′ are totally real non-zero
subspaces of V ∗

x and Wx of dimension p and q, respectively. Assume either
that p = m or that q = n. If u is a symmetric form on X satisfying the
Guillemin condition, then the restriction of u to X ′ satisfies the Guillemin
condition.

Let F1 and F2 be orthogonal complex subspaces of C
m+n and let p1

and p2 be given integers satisfying 0 ≤ pj ≤ dimFj , for j = 1, 2, and
p1 + p2 = m. We suppose that F2 is the orthogonal complement of F1

in C
m+n. For j = 1, 2, the space Fj is endowed with the Hermitian scalar

induced by the standard Hermitian scalar product of C
m+n; we consider

the complex Grassmannians Y = GC

p1(F1) and Z = GC

p2(F2) endowed with
the Hermitian metrics induced by these Hermitian scalar products. Then
there is totally geodesic imbedding

(8.69) ι : Z × Y → X,

sending the pair (z, y), where z ∈ Z and y ∈ Y , into the point of X
corresponding to the m-plane of C

m+n generated by the subspaces of F2

and F1 corresponding to the points z and y, respectively.
We now fix points y ∈ Y and z ∈ Z; we write x = ι(z, y). By definition,

we have

(8.70) Vx = VY,y ⊕ VZ,z, Wx = WY,y ⊕WZ,z.

It is easily seen that the mapping ι∗(z,y) from the tangent space of Z×Y at
(z, y) to the tangent space Tx induced by ι is identified with the mapping

(8.71) (V ∗
Z ⊗WZ)z ⊕ (V ∗

Y ⊗WY )y → (V ∗ ⊗W )x

sending θ1 ⊕ θ2, where θj ∈ V ∗
j ⊗ Wj is considered as an element of

HomC(Vj ,Wj), into the element θ of (V ∗ ⊗W )x determined by

θ(v1) = θ1(v1), θ(v2) = θ2(v2),

for all vectors v1 ∈ V1 and v2 ∈ V2. Let

ιz : VY,y → Vx, ιz : WY,y →Wx
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be the inclusion mappings corresponding to the decompositions (8.70). The
first decomposition of (8.70) also determines an injective mapping

ιz : V ∗
Y,y → V ∗

x .

If α is a vector of V ∗
Y,y, we consider the vector α� of VY,y determined by α;

then we have the relation

(8.72) ιzα
� = (ιzα)�

among vectors of Vx.
We consider the totally geodesic imbedding

ϕ = ιz : Y → X

defined by ϕ(a) = ιz(a) = ι(z, a), for all a ∈ Y ; then we have ϕ(y) = x.
Then we have the equality

(8.73) ϕ∗(α⊗ w) = (ιzα) ⊗ (ιzw)

among vectors of (V ∗ ⊗W )x, for all α ∈ V ∗
Y,y and w ∈WY,y. According to

(8.73), if h is a section of the sub-bundle E of S2T ∗ over X, we see that,
for z ∈ Z, the symmetric 2-form ϕ∗h is a section of the sub-bundle EY of
S2T ∗

Y .
If Fx denotes the image of (V ∗

Y ⊗WY )y under the mapping (8.71), we
have the equality

(8.74) ExpxFx = ϕ(GC

p1(F1))

of closed totally geodesic submanifolds of GC

m,n. Indeed, using the above
description of the mapping ι∗ at (z, y) given by (8.71), we see that the
tangent spaces of these two submanifolds of GC

m,n at x are equal. From
the formula for the curvature of GC

m,n, we infer that ExpxFx is a totally
geodesic submanifold of GC

m,n and a globally symmetric space. Clearly, the
submanifold ϕ(GC

p1(F1)) has these same properties. In fact, the subgroup
SU(m + n, F1) of SU(m + n), consisting of all elements of SU(m + n)
which preserve the subspace F1 and are the identity on the orthogonal
complement of F1, acts transitively on these submanifolds by isometries.
These various observations yield the relation (8.74).

Now let V ′ be a complex subspace of V ∗
x of dimension p and W ′ be

a complex subspace of Wx of dimension q. Let V ′
1 be the subspace of Vx

equal to the image of V ′ under the mapping V ∗
x → Vx sending α ∈ V ∗

x into
α� ∈ Vx. In fact, V ′

1 is the orthogonal complement of the subspace

V ′′ = { v ∈ Vx | 〈v, α〉 = 0, for all α ∈ V ′ }
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of Vx. Then the complex subspace F1 = V ′
1 ⊕W ′ of C

m+n of dimension
p + q is orthogonal to V ′′. Thus V ′′ is a subspace of dimension m − p of
the orthogonal complement F2 of F1 in C

m+n. We consider the complex
Grassmannians Y = GC

p (F1) and Z = GC

p2(F2), with p2 = m − p, and the
totally geodesic imbedding ι : Z × Y → X given by (8.69), with p1 = p.

Let y be the point of Y corresponding to the subspace V ′
1 of F1 and let

z be the point of Z corresponding to the subspace V ′′ of F2. Then we have
VY,y = V ′

1 and WY,y = W ′ and x is equal to ι(z, y). The totally geodesic
imbedding ϕ = ιz : Y → X sends the point of Y corresponding to a p-plane
F ′ of F1 into the m-plane of C

m+n generated by the subspaces F ′ and V ′′.
The image (V ∗

Y ⊗WY )y under the mapping (8.71) is equal to the subspace
V ′ ⊗C W

′ of (V ∗ ⊗C W )x. Therefore from (8.74), we obtain the equality

(8.75) ExpxV
′ ⊗C W

′ = ϕ(GC

p (F1))

of closed totally geodesic submanifolds of GC

m,n.
From these remarks and the equality (8.75), we obtain:

Lemma 8.15. Let x be a point of the complex Grassmannian X =
GC

m,n, with m,n ≥ 2. Let V ′ and W ′ be complex non-zero subspaces
of V ∗

x and Wx of complex dimension p and q, respectively. Then X ′ =
ExpxV ′ ⊗C W

′ is a closed totally geodesic submanifold of X isometric to
the complex Grassmannian Y = GC

p,q. Moreover, there is an isometric
imbedding i : Y → X whose image is equal to X ′, a unique point y of Y
satisfying i(y) = x, and isomorphisms ϕ1 : V ∗

Y,y → V ′, ϕ2 : WY,y → W ′,
which possess the following properties:

(i) the mapping i∗ : (V ∗
Y ⊗C WY )y → (V ∗ ⊗C W )x induced by i is

equal to ϕ1 ⊗ ϕ2;
(ii) if h is a section of the sub-bundle E of S2T ∗ over X, then i∗h is

a section of the sub-bundle EY of S2T ∗
Y .

If we take p = 1 in the preceding lemma, then X ′ is isometric to
the complex projective space CP

q; moreover, the restriction to X ′ of an
arbitrary section of the vector bundle E vanishes.

Proposition 8.16. Let x be a point of the complex Grassmannian
X = GC

m,n, with 2 ≤ m < n. Let X ′ be a closed totally geodesic sub-

manifold of X isometric to the complex Grassmannian GC

p,q which can be
written in the form ExpxV ′⊗CW

′, where V ′ and W ′ are non-zero complex
subspaces of V ∗

x and Wx of dimension p and q, respectively. Assume either
that p = m or that q = n. If u is a symmetric form on X satisfying the
Guillemin condition, then the restriction of u to X ′ satisfies the Guillemin
condition.

Proof: Let u be a symmetric form on X satisfying the Guillemin
condition. Let Z be a maximal flat totally geodesic torus of the submani-
fold X ′. To prove the proposition, we need to show that the restriction of u
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to Z satisfies the Guillemin condition. It suffices to consider the case when
Z contains the point x. Indeed, according to the previous discussion, there
is an element φ of SU(m + n) preserving X ′ and such that φ(x) belongs
to Z. We have seen above that there exist a totally real subspace V1 of V ′

of dimension p and a totally real subspace W1 of Wx of dimension q such
that Z is contained in the totally geodesic submanifold X1 = ExpxV1⊗RW1

of X ′, which by Lemma 8.13 is isometric to the real Grassmannian GR

p,q.
By Proposition 8.14, the restriction of u to the submanifold X1 satisfies
the Guillemin condition. Since X1 is a symmetric space of the same rank
as X ′, it follows that Z is a maximal flat totally geodesic torus of the
submanifold X1. Hence the restriction of u to Z satisfies the Guillemin
condition. This completes the proof of the proposition.

If we take either p = 1 and q = n, or p = m and q = 1 in the pre-
ceding proposition, since the Grassmannians GC

m,n and GC

m,n are isometric,
by (8.13) we obtain:

Proposition 8.17. Let x be a point of the complex Grassmannian
X = GC

m,n, with m,n ≥ 2 and m �= n. Let X ′ be a closed totally geodesic
submanifold of X isometric to a complex projective space of dimension ≥ 2,
which can be written either in the form Expxα ⊗Wx, where α is a unit
vector of V ∗

x , or in the form ExpxV ∗
x ⊗ w, where w is a unit vector of Wx.

If u is a symmetric form on X satisfying the Guillemin condition, then the
restriction of u to X ′ satisfies the zero-energy condition.

§7. Integrals of forms on the complex Grassmannians

Let m,n ≥ 2 be given integers. We consider the complex Grassman-
nian X = GC

m,n, the group G = SU(m+n) and the mapping ρ : Sm,n → X
of §4.

This section and §9 are mainly devoted to results which lead to the
following:

Proposition 8.18. Let X be the complex Grassmannian GC

m,n, with
m,n ≥ 2. Then the equality

(8.76) N2 ∩ E(X) = {0}

holds.

We remark that, when m = n = 2, the assertion of this proposition is
already given by (8.60). According to Lemma 2.11, we see that Proposi-
tion 8.18 implies that the equality

(8.77) Z2 ∩ E(X) = {0}

also holds.
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We consider the sesquilinear form Q̃ = Qm+n,1 on C
m+n and the

sesquilinear forms Q1 on V ∗ and Q2 on W induced by Q̃, which are de-
fined in §4. We also consider the U(1)-invariant polynomial Q on C

m+n

determined by Q̃ and the function f̃0 on X, which are also defined in §4.
Let F be a complex subspace of C

m+n of dimension q+ 1, with q ≥ 1.
We consider the complex projective space GC

1 (F ) of dimension q, the unit
sphere S(F ) of F and the natural projection

π : S(F ) → GC

1 (F ),

which sends u ∈ S(F ) into the line generated by u. Clearly, a U(1)-
invariant function on S(F ) induces by passage to the quotient a function
on GC

1 (F ). Let {u1, . . . , up} be an orthonormal basis for the orthogonal
complement F⊥ of F in C

m+n; by an argument similar to the one which
gives us the relation (8.37), we see that the expression

∑p
l=1Q(ul) is inde-

pendent of the choice of the basis for F⊥. We consider the U(1)-invariant
function f1 on S(F ) defined by

f1(u) = Q(u) +
p∑
l=1

Q(ul),

for u ∈ S(F ). We consider the functions f̃1 on GC

1 (F ) induced by f1. If
F contains the vectors e1 and em+n, we remark that Q(v) vanishes for all
v ∈ F⊥, and so in this case we see that f1(u) = Q(u), for all u ∈ S(F ). If
u, u′ are vectors of S(F ), which are orthogonal with respect to the standard
Hermitian scalar product on C

m+n and if t ∈ R, we consider the unit vector

σ(t) = cos t · u+ sin t · u′

of F ; in §4, Chapter III, we remarked that the path γ = γu,u′ defined by
γ(t) = (π ◦ σ)(t), with 0 ≤ t ≤ π, is a closed geodesic of GC

1 (F ).
Let F1 be a complex subspace of C

m+n of dimension n+1; we consider
the complex projective space Y = GC

1 (F1). Let F⊥
1 be the orthogonal

complement of F1 in C
m+n and let {u1, . . . , um−1} be an orthonormal basis

of F⊥
1 . We consider the totally geodesic imbedding

ι1 : Y → GC

m,n,

which sends π(u), with u ∈ S(F1), into the m-plane of C
m+n generated by

u and the subspace F⊥
1 . We consider the functions f̃1 on Y induced by the

U(1)-invariant function f1 on S(F1). According to the definition of ι1 and
the equality (8.37), we see that

(8.78) ι∗1f0 = f1.
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Let u be a given element of S(F1); we consider the points y = π(u)
of Y and x = ι1(y) of X. Then u belongs to Vx. Let α be the unit vector
of V ∗

x determined by the relations

〈u, α〉 = 1, 〈v, α〉 = 0,

for all v ∈ F⊥
1 . Then we easily verify that α is the vector of V ∗

x determined
by the relation α� = u. According to the relation (8.73), we see that

(8.79) ι1∗TY,y = α⊗Wx.

Let u, u′ be vectors of S(F1), which are orthogonal with respect to the
standard Hermitian scalar product on C

m+n. As above, we consider the
unit vector

σ(t) = cos t · u+ sin t · u′

of F1, with t ∈ R, and the closed geodesic γ = γu,u′ of Y defined by
γ(t) = (π ◦ σ)(t), for 0 ≤ t ≤ π. We write x(t) = ι1γ(t), for 0 ≤ t ≤ π; the
subspace Vx(t) of C

m+n is generated by the vector σ(t) and the space F⊥
1 .

For 0 ≤ t ≤ π, let α(t) be the unit vector of V ∗
x(t) determined by

〈σ(t), α(t)〉 = 1, 〈v, α(t)〉 = 0,

for all v ∈ F⊥
1 ; then we easily verify that α(t)� = σ(t). The unit vector

σ̇(t) = − sin t · u + cos t · u′ belongs to the space Wx(t), and according
to (8.73), we have

ι1∗γ̇(t) = α(t) ⊗ σ̇(t) ∈ (V ∗ ⊗C W )x(t).

By (8.78), we see that

(8.80) f̃0(x(t)) = f̃1(γ(t)) = Q(σ(t)) +
m−1∑
l=1

Q(ul).

Moreover, by (8.39) we obtain the relations

(8.81)
(Q1 · g2)(α(t) ⊗ σ̇(t), α(t) ⊗ σ̇(t)) = 2Q(σ(t)),

(g1 ·Q2)(α(t) ⊗ σ̇(t), α(t) ⊗ σ̇(t)) = 2Q(σ̇(t)).

If h is a section of S2T ∗
C

over X, we have

(8.82)
∫
ι1γ

h =
∫ π

0

h(α(t) ⊗ σ̇(t), α(t) ⊗ σ̇(t)) dt.
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We now suppose that the subspace F1 of C
m+n contains the vectors

e1 and em+n. We also suppose that

u =
1√
2

(e1 + em+n)

and that u′ is orthogonal to e1 and em+n. We consider the closed geodesic
δ1 = ι1 ◦ γu,u′ of X. For 0 ≤ t ≤ π, the unit vectors σ(t) of Vx(t) and σ̇(t)
of Wx(t) associated above to the geodesic γu,u′ of Y are given by

(8.83)

σ(t) =
cos t√

2
· (e1 + em+n) + sin t · u′,

σ̇(t) = − sin t√
2

· (e1 + em+n) + cos t · u′.

From (8.83), we deduce that

Q(σ(t)) =
1
2

cos2 t, Q(σ̇(t)) =
1
2

sin2 t.

According to (8.80), we see that

f̃0(x(t)) = Q(σ(t)) =
1
2

cos2 t.

Hence by (8.81) and (8.82), we have
∫
δ1

f̃0 =
π

4
,

∫
δ1

g1 ·Q2 =
∫
δ1

Q1 · g2 =
π

2
.

From these equalities, we obtain the relations

(8.84)
∫
δ1

κ1(f0) =
n+ 1
2n

π,

∫
δ1

κ2(f0) =
m− 1
2m

π.

Now let F2 be a complex subspace of C
m+n of dimension m + 1. We

consider the Grassmannians Z = GC

m(F2) and Z ′ = GC

1 (F2), the isometry
Ψ : Z ′ → Z defined in §2 and the totally geodesic imbedding

ι2 : Z → GC

m,n,

sending an m-plane of F2 into the m-plane of C
m+n which it determines.

We consider the function f̃1 on Z ′ induced by the U(1)-invariant function
f1 on S(F2). We now verify that the equality

(8.85) Ψ∗ι∗2f̃0 = −f̃1
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holds. Indeed, let {u1, . . . , un−1} be an orthonormal basis for the orthogo-
nal complement F⊥

2 of F2 in C
m+n. Let u be an element of S(F2) and let

{ε1, . . . , εm} be an orthonormal basis for the orthogonal complement of the
space Cu in F2. Then the element Ψ(π(u)) of Z is the m-plane of C

m+n

generated by the vectors {ε1, . . . , εm}, and so by (8.37) we have

(8.86) (ι∗2f̃0)(Ψ(π(u))) =
m∑
k=1

Q(εk).

Since
{ε1, . . . , εm, u, u1, . . . , un−1}

is an orthonormal basis of C
m+n, by (8.37) we have

Q(u) +
m∑
k=1

Q(εk) +
n−1∑
j=1

Q(uj) = 0.

From the preceding relation and (8.86), it follows that

f̃1(π(u)) = −(ι∗2f̃0)(Ψ(π(u))),

and so the equality (8.85) holds.
Let z be a point of Z and set x = ι2(z). Let w be a non-zero vector

of F2 orthogonal to Vx. Then according to the relation (8.73), we see that

(8.87) ι2∗TZ,z = V ∗
x ⊗ w.

Let v, v′ be vectors of S(F2), which are orthogonal with respect to the
standard Hermitian scalar product on C

m+n. As above, we consider the
unit vector

σ(t) = cos t · v + sin t · v′

of F2, with t ∈ R, and the closed geodesic γ = γv,v′ of GC

1 (F2) defined
by γ(t) = (π ◦ σ)(t), for 0 ≤ t ≤ π. We consider the closed geodesic
γ′ = ι2 ◦Ψ◦γ of X. Let V1 be the subspace of F2 orthogonal to the vectors
v and v′. For 0 ≤ t ≤ π, the space Vγ′(t) is generated by V1 and the unit
vector σ̇(t) = − sin t · v+ cos t · v′ of F2. The unit vector σ(t) of F2 belongs
to Wγ′(t). Let β(t) be the unit vector of V ∗

γ′(t) determined by

〈σ̇(t), β(t)〉 = −1, 〈v, β(t)〉 = 0,

for all v ∈ V1; we easily verify that β(t)� = −σ̇(t). Then by (8.13) and
(8.73), we have

γ̇′(t) = ι2∗Ψ∗γ̇(t) = β(t) ⊗ σ(t) ∈ (V ∗ ⊗C W )γ′(t).
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By (8.85), we see that

(8.88) f̃0(γ′(t)) = −f̃1(γ(t)) = −Q(σ(t)) −
n−1∑
l=1

Q(ul).

Moreover, by (8.39) we obtain the relations

(8.89)
(Q1 · g2)(β(t) ⊗ σ(t), β(t) ⊗ σ(t)) = 2Q(σ̇(t)),

(g1 ·Q2)(β(t) ⊗ σ(t), β(t) ⊗ σ(t)) = 2Q(σ(t)).

If h is a section of S2T ∗
C

over X, we have

(8.90)
∫
γ′
h =

∫ π

0

h(β(t) ⊗ σ(t), β(t) ⊗ σ(t)) dt.

We now suppose that the subspace F2 of Cm+n contains the vectors
e1 and em+n. We also suppose that

v =
1√
2

(e1 + em+n)

and that v′ is orthogonal to e1 and em+n. We consider the closed geodesic
δ2 = ι2 ◦ ψ ◦ γv,v′ of X. For 0 ≤ t ≤ π, the unit vectors σ(t) of Wx(t) and
σ̇(t) of Vx(t) associated above with the geodesic γv,v′ of Z ′ are given by

(8.91)

σ(t) =
cos t√

2
· (e1 + em+n) + sin t · v′,

σ̇(t) = − sin t√
2

· (e1 + em+n) + cos t · v′.

From (8.91), we deduce that

Q(σ(t)) =
1
2

cos2 t, Q(σ̇(t)) =
1
2

sin2 t.

According to (8.88), we see that

f̃0(γ′(t)) = −Q(σ(t)).

Hence by (8.89) and (8.90), we have
∫
δ2

f̃0 = −π
4
,

∫
δ2

g1 ·Q2 =
∫
δ2

Q1 · g2 =
π

2
.
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From these equalities, we obtain the relations

(8.92)
∫
δ2

κ1(f0) =
n− 1
2n

π,

∫
δ2

κ2(f0) =
m+ 1
2m

π.

We suppose that the subspaces F1 and F2 of C
m+n both contain the

vectors e1 and em+n. We denote by Ỹ and Z̃ the totally geodesic subman-
ifolds of X equal to the images of ι1 : Y → X and ι2 : Z → X. We again
suppose that

u = v =
1√
2

(e1 + em+n)

and that the vectors u′ ∈ S(F1) and v′ ∈ S(F2) are orthogonal to e1
and em+n. We consider the closed geodesic δ1 = ι1 ◦ γu,u′ of X contained
in the submanifold Ỹ and the closed geodesic δ2 = ι2 ◦ Ψ ◦ γv,v′ of X
contained in the submanifold Z̃.

Let a, b ∈ C and consider the section

h = (aκ1 + bκ2)(f0)

of S2T ∗
C
. According to (8.84) and (8.92), we have

∫
δ1

h =
π

2

(
n+ 1
n

a− m− 1
m

b

)
,(8.93)

∫
δ2

h =
π

2

(
n− 1
n

a− m+ 1
m

b

)
.(8.94)

Now suppose that the restrictions of h to the totally geodesic submanifolds
Ỹ and Z̃ of X satisfy the zero-energy condition. According to Proposi-
tion 8.17, we know that this assumption on h holds either if h satisfies the
zero-energy condition or if m �= n and h satisfies the Guillemin condition.
Then from the equalities (8.93) and (8.94), we obtain the relations

n+ 1
n

a− m− 1
m

b = 0,
n− 1
n

a− m+ 1
m

b = 0;

since the determinant of the matrix
(
n+ 1 m− 1
n− 1 m+ 1

)

is equal to 2(m + n), it follows that h vanishes. We have thus proved the
following result:
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Proposition 8.19. Let X be the complex Grassmannian GC

m,n, with
m,n ≥ 2. Let

h = (aκ1 + bκ2)(f0)

be an element of C∞(S2
0T

∗
C
) corresponding to a, b ∈ C.

(i) If the symmetric 2-form h satisfies the zero-energy condition, then
h vanishes.

(ii) If m �= n and if the symmetric 2-form h satisfies the Guillemin
condition, then h vanishes.

Proposition 8.20. Let X be the complex Grassmannian GC

m,n, with
m,n ≥ 2, and let h be an element of C∞

γ1 (S2
0T

∗
C
).

(i) If the symmetric 2-form h satisfies the zero-energy condition, then
h vanishes.

(ii) If m �= n and if the symmetric 2-form h satisfies the Guillemin
condition, then h vanishes.

Proof: Assume that the G-module N2,C ∩ C∞
γ1 (S2

0T
∗) is non-zero

(resp. the G-module Z2,C ∩ C∞
γ1 (S2

0T
∗) is non-zero and that m �= n). Ac-

cording to (8.28) and (8.41), a highest weight vector h of this non-zero
G-module is a linear combination of the highest weight vectors κ1(f0) and
κ2(f0) of C∞

γ1 (S2
0T

∗). By Proposition 8.19, we see that the section h must
vanish, which is a contradiction.

From Proposition 8.20 and the relations (2.25), we deduce that the
equality (8.77) holds whenever m,n ≥ 2, and that the equality (8.76) of
Proposition 8.18 is true when m �= n.

§8. Relations among forms on the complex Grassmannians

The results of this section are used only to prove Proposition 8.5 and
the equalities (8.47) and (8.48). They do not enter into any of our other
proofs and are presented only for the sake of completeness.

Let m,n ≥ 2 be given integers. We consider the complex Grassman-
nian X = GC

m,n. We consider the complex-valued function f̃0 on X ob-
tained from the function f0 on Sm,n. In §4, we saw that the equalities
(8.28) and the decomposition (8.7) imply that

h0 = Hess f̃0 = π+Hess f̃0

is a section of (S2T ∗)+
C
.

This section is mainly devoted to the proof of the following result:

Lemma 8.21. Let x be a point of the Grassmannian X = GC

m,n, with
m,n ≥ 2. If α ∈ V ∗

x and w ∈Wx are unit vectors, we have

(8.95)
(π1Hess f̃0)(α⊗ w,α⊗ w) = κ1(f0)(α⊗ w,α⊗ w),

(π2Hess f̃0)(α⊗ w,α⊗ w) = −κ2(f0)(α⊗ w,α⊗ w).
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From Lemma 8.21, we immediately obtain the result given by Propo-
sition 8.5.

If x is a point of the Grassmannian X and if α ∈ V ∗
x and w ∈Wx are

unit vectors, by (8.39) we see that the formulas (8.95) are equivalent to

(8.96)
(π1Hess f̃0)(α⊗ w,α⊗ w) =

2
n
f̃0(x) +Q(w),

(π2Hess f̃0)(α⊗ w,α⊗ w) =
2
m
f̃0(x) −Q(α�).

Let F1 be a complex subspace of C
m+n of dimension n+ 1; we denote

by F⊥
1 the orthogonal complement of F1 in C

m+n. We consider the complex
projective space Y = GC

1 (F1) and the totally geodesic imbedding

ι1 : Y → GC

m,n

of §7, which sends π(u), with u ∈ S(F1), into the m-plane of C
m+n gener-

ated by u and the subspace F⊥
1 .

Let u be a given element of S(F1); we consider the points y = π(u)
of Y and x = ι1(y) of X. Then we know that u belongs to Vx. Let α be
the unit vector of V ∗

x determined by the relation α� = u. In §7, we saw
that the equality (8.79) holds.

Let w be an arbitrary unit vector of Wx and let h be an element
of (S2T ∗)+x . According to the second equality of (8.9) and the equal-
ity (8.79), we have

(8.97) (π2h)(α⊗ w,α⊗ w) =
1
2n

(
TrY ι∗1h− 1

m
Trh

)
.

If f is a real-valued function on X, then by (1.71) we have

TrY ι∗1π+Hess f = TrY ι∗1Hess f = −ΔY ι
∗
1f ;

thus if h is the section π+Hess f of (S2T ∗)+, by (1.71) and (8.97) we see
that

(8.98) (π2h)(α⊗ w,α⊗ w) =
1

2mn
(Δf)(x) − 1

2n
(ΔY ι

∗
1f)(y).

Let F2 be a complex subspace of C
m+n of dimensionm+1. As in §7, we

consider the Grassmannians Z = GC

m(F2) and Z ′ = GC

1 (F2), the isometry
Ψ : Z ′ → Z defined in §2 and the totally geodesic imbedding

ι2 : Z → GC

m,n,

sending an m-plane of F2 into the m-plane of C
m+n which it determines.
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Let z be a point of Z and set x = ι2(z). Let w be a unit vector of F2

orthogonal to Vx. In §7, we saw that the equality (8.87) holds. Let α be an
arbitrary unit vector of V ∗

x and let h be an element of (S2T ∗)+x . According
to the first equality of (8.9) and the equality (8.87), we have

(8.99) (π1h)(α⊗ w,α⊗ w) =
1

2m

(
TrZ ι∗2h− 1

n
Trh

)
.

If f is a real-valued function on X, then by (1.71) we have

TrZ ι∗2π+Hess f = TrZ ι∗2Hess f = −ΔZι
∗
2f ;

thus if h is the section π+Hess f of (S2T ∗)+, by (1.71) and (8.99) we see
that

(8.100) (π1h)(α⊗ w,α⊗ w) =
1

2mn
(Δf)(x) − 1

2m
(ΔZι

∗
2f)(z).

Let x be a point of the GrassmannianX and let α ∈ V ∗
x and w ∈Wx be

given unit vectors. Let v be the vector of Vx equal to α�. Let {v1, . . . , vm}
and {w1, . . . , wn} be orthonormal bases of the spaces Vx and Wx, respec-
tively. We proceed to verify the equalities (8.96).

We now suppose that F1 is the subspace Wx ⊕ Cv of C
m+n; the or-

thogonal complement F⊥
1 of F1 is equal to the orthogonal complement

of Cv in Vx. We easily see that x = ι1(π(v)). We consider the function f̃1
on Y induced by the U(1)-invariant function f1 on S(F1). Since f̃0 is an
eigenfunction of the Laplacian Δ with eigenvalue 4(m + n), according to
formulas (8.78) and (8.98), with u = v, we have

(8.101) (π2h0)(α⊗ w,α⊗ w) =
2(m+ n)
mn

f̃0(x) −
1
2n

(ΔY f̃1)(π(v)).

For u ∈ S(F1), we write

u = ζ0v + ζ1w1 + · · · + ζnwn,

where (ζ0, . . . , ζn) ∈ C
n+1; we view (ζ0, ζ1, . . . , ζn) as the homogeneous

coordinates of the point π(u) of Y . Since the homogeneous coordinates of
the point π(v) are equal to (1, 0, . . . , 0), by (3.24) we see that

(ΔY f̃1)(π(v)) = 4nQ(v) − 4
n∑
j=1

Q(wj).

From the preceding equality and the relations (8.37) and (8.101), we obtain
the second formula of (8.96).
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We now suppose that F2 is the subspace Vx⊕Cw of C
m+n. If z is the

point of Z corresponding to the m-plane Vx of F2, we see that ι2(z) = x
and Ψ(π(w)) = z. We consider the function f̃1 on Z ′ induced by the
U(1)-invariant function f1 on S(F2). By (8.85) we have

(ΔZι
∗
2f̃0)(z) = −(ΔZ′ f̃1)(π(w)).

Since f̃0 is an eigenfunction of the Laplacian Δ with eigenvalue 4(m+ n),
from (8.100) and the previous equality we obtain the relation

(8.102) (π1h0)(α⊗ w,α⊗ w) =
2(m+ n)
mn

f̃0(x) +
1

2m
(ΔZ′ f̃1)(π(w)).

For u ∈ S(F2), we write

u = ζ0w + ζ1v1 + · · · + ζmvm,

where (ζ0, ζ1, . . . , ζm) ∈ C
m+1; we view (ζ0, ζ1, . . . , ζm) as the homogeneous

coordinates of the point π(u) of Z ′. Since the homogeneous coordinates of
the point π(w) of Z ′ are equal to (1, 0, . . . , 0), by (3.24) we see that

(ΔZ′ f̃2)(π(w)) = 4mQ(w) − 4
m∑
k=1

Q(vk).

From the preceding equality and the relation (8.102), we obtain the first
formula of (8.96). This completes the proof of Lemma 8.21.

§9. The complex Grassmannians ḠC

n,n

Let n ≥ 2 be a given integer. Let F be a complex vector space of
dimension 2n endowed with a positive definite Hermitian scalar product.
We consider the complex Grassmannian X = GC

n(F ) endowed with the
Hermitian metric induced by the Hermitian scalar product of F . Let U be
a complex subspace of F of dimension 2n−2. The orthogonal complement
U⊥ of U in F is two-dimensional. We consider the complex Grassmannians
Y = GC

n−1(U) and Z = GC

1 (U⊥). Since dimU⊥ = 2, the manifold Z is
isometric to CP

1. There is a totally geodesic imbedding

ι : Z × Y → X,

given by (8.69), sending the pair (z, y), where z ∈ Z and y ∈ Y , into the
point of X corresponding to the n-plane of F generated by the subspaces
of U⊥ and U corresponding to the points z and y, respectively. For z ∈ Z,
let ιz : Y → X be the mapping sending y ∈ Y into ι(z, y).
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We consider the involutive isometries ΨX , ΨY and ΨZ of X, Y and Z,
respectively. Clearly, the diagram

GC

1 (U⊥) ×GC

n−1(U) ι−−→ GC

n(F )⏐⏐�ΨZ×ΨY

⏐⏐�ΨX

GC

1 (U⊥) ×GC

n−1(U) ι−−→ GC

n(F )

is commutative. For z ∈ Z, the commutativity of this diagram gives us the
relation

(8.103) ΨX ◦ ιz = ιΨZ(z) ◦ ΨY ,

as mappings from Y to X.
If γ is a closed geodesic of Z = GC

1 (U⊥), a symmetric p-form θ on X
determines a symmetric p-form θU,γ on Y as follows. If ξ1, . . . , ξp ∈ TY , we
consider the real-valued function f on Z defined by

f(z) = (ι∗zθ)(ξ1, . . . , ξp),

for z ∈ Z, and we define θU,γ by setting

θU,γ(ξ1, . . . , ξp) =
1
2π

∫
γ

(f + Ψ∗
Zf) =

1
2π

(∫
γ

f +
∫
γ′
f

)
,

where γ′ is the closed geodesic ΨZ ◦ γ of Z.
If h is a section of the sub-bundle E of S2T ∗ over X, in §6 we saw

that, for z ∈ Z, the symmetric 2-form ι∗zh is a section of the sub-bundle
EY of S2T ∗

Y ; therefore if γ is a closed geodesic of Z, the symmetric 2-form
hU,γ on Y is also a section of EY .

Let θ be a symmetric p-form on X. Suppose that there exists a sym-
metric p-form θ̃ on Y such that

ι∗zθ = θ̃,

for all z ∈ Z; since the length of an arbitrary closed geodesic of Z is equal
to π, we see that

θU,γ = θ̃,

for all closed geodesics γ of Z.
We consider the symmetric p-form θ′ = Ψ∗

Xθ on X; if ξ1, . . . , ξp are
vectors of TY , we also consider the real-valued functions f1 and f2 on Z
defined by

f1(z) = (ι∗zθ
′)(ξ1, . . . , ξp), f2(z) = (ι∗zθ)(ΨY ∗ξ1, . . . ,ΨY ∗ξp),
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for z ∈ Z. From (8.103), it follows that

f1 = Ψ∗
Zf2.

Since ΨZ is an involution, this relation implies that

θ′U,γ(ξ1, . . . , ξp) =
1
2π

∫
γ

(f1 + Ψ∗
Zf1) =

1
2π

∫
γ

(f2 + Ψ∗
Zf2)

= θU,γ(ΨY ∗ξ1, . . . ,ΨY ∗ξp),

for all closed geodesics γ of Z. Thus we have shown that

(8.104) (Ψ∗
Xθ)U,γ = Ψ∗

Y (θU,γ),

for all closed geodesics γ of Z. The following lemma is a direct consequence
of the preceding equality.

Lemma 8.22. Let n ≥ 2 be a given integer. Let F be a complex
vector space of dimension 2n endowed with a positive definite Hermitian
scalar product. Let U be a complex subspace of F of dimension 2n − 2
and let U⊥ be the orthogonal complement of U in F ; let γ be a closed
geodesic of GC

1 (U⊥). If θ is an even symmetric p-form on GC

n(F ), then the
symmetric p-form θU,γ on GC

n−1(U) is even.

Let Y ′ be a maximal flat totally geodesic torus of Y and let γ be a
closed geodesic of Z. We consider the images Z ′ of the closed geodesic γ
and Z ′′ of the closed geodesic ΨZ ◦γ. Then we see that X ′ = ι(Z ′×Y ′) and
X ′′ = ι(Z ′′ × Y ′) are maximal flat tori of X. Let ξ1, . . . , ξp be arbitrary
parallel vector fields on Y ′; they induce parallel vector fields ξ′1, . . . , ξ

′
p

on X ′ and ξ′′1 , . . . , ξ
′′
p on X ′′ determined by

ξ′j(ι(z
′, y)) = ιz′∗ξj(y), ξ′′j (ι(z′′, y)) = ιz′′∗ξj(y),

for z′ ∈ Z ′, z′′ ∈ Z ′′, y ∈ Y ′ and 1 ≤ j ≤ p. Then from the definition of
θU,γ and Fubini’s theorem, we infer that

∫
Y ′
θU,γ(ξ1, . . . , ξp) dY ′

=
1
2π

(∫
X′
θ(ξ′1, . . . , ξ

′
p) dX

′ +
∫
X′′

θ(ξ′′1 , . . . , ξ
′′
p ) dX ′′

)
.

From this equality, we deduce the following result:
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Lemma 8.23. Let n ≥ 2 be a given integer. Let F be a complex
vector space of dimension 2n endowed with a positive definite Hermitian
scalar product. Let U be a complex subspace of F of dimension 2n − 2
and let U⊥ be the orthogonal complement of U in F ; let γ be a closed
geodesic of GC

1 (U⊥). If θ is a symmetric p-form on GC

n(F ) satisfying the
Guillemin condition, then the symmetric p-form θU,γ on GC

n−1(U) satisfies
the Guillemin condition.

We now suppose that F is equal to the complex space C
2n endowed

with the standard Hermitian scalar product. Then X is equal to the
Grassmannian GC

n,n. We view X as a homogeneous space of the group
G = SU(2n). We consider the even symmetric 2-form

h
(n)
1 = (κ1 + κ2)(f0)

on X = GC

n,n.
We also suppose that U is the complex subspace of C

2n−2 generated
by the vectors {e1, e4, . . . , e2n}. The orthogonal complement U⊥ of U in
C

2n+2 is the subspace generated by e2 and e3. We consider the isomorphism
ϕ : C

2n−2 → U which sends the vector (ζ1, . . . , ζ2n−2) of C
2n−2 into the

vector

ζ1e1 +
2n−2∑
j=2

ζjej+2

of U . If Q′ is the polynomial on C
2n−2 determined by

Q′(ζ) = ζ2n−2ζ̄1,

for ζ = (ζ1, . . . , ζ2n−2) ∈ C
2n−2, then we have

(8.105) ϕ∗Q = Q′.

The isomorphism ϕ allows us to identify the Grassmannians Y = GC

n−1(F )
and GC

n−1,n−1 and to view the symmetric 2-form h
(n−1)
1 as a symmetric

2-form on Y . We now proceed to prove that

(8.106) ι∗zh
(n)
1 = h

(n−1)
1 ,

for all z ∈ Z. Indeed, let y be a point of Y and z be a point of Z; we write
x = ι(z, y); if α ∈ VY,y and w ∈ WY,y are unit vectors, by (8.52), (8.72),
(8.73) and (8.105) we have

(
ι∗zh

(n)
1

)
(α⊗ w,α⊗ w) = 2(Q((ιzα)�) +Q(ιzw))

= 2(Q(α�) +Q(w))

= h
(n−1)
1 (α⊗ w,α⊗ w).

The relation (8.106) is an immediate consequence of these equalities.
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If γ is a closed geodesic of Z and h is the symmetric 2-form h
(n)
1 on X,

according to (8.106) and the remark preceding Lemma 8.22 we see that

(8.107) hU,γ = h
(n−1)
1 .

Lemma 8.24. Let n ≥ 2 be a given integer. The symmetric 2-form

h
(n)
1 on GC

n,n does not satisfy the Guillemin condition.

Proof: Suppose that the symmetric 2-form h
(n)
1 on GC

n,n satisfies
the Guillemin condition. If n ≥ 3, according to the relation (8.107) and
Lemma 8.23 the symmetric 2-form h

(n−1)
1 on GC

n−1,n−1 also satisfies the
Guillemin condition. Our assumption therefore implies that the symmetric
2-form h

(2)
1 on GC

2,2 satisfies the Guillemin condition. The equalities (8.60)

then tell us that h(2)
1 vanishes. Thus our assumption leads to a contradic-

tion.

Proposition 8.25. Let X be the complex Grassmannian GC

n,n, with
n ≥ 2, and let h be an element of C∞

γ1 (S2T ∗
C
)ev. If h satisfies the Guillemin

condition, then h vanishes.

Proof: Assume that the G-module M = N2,C ∩C∞
γ1 (S2T ∗)ev is non-

zero. Since the 2-form h
(n)
1 is a highest weight vector of the irreducible

G-module C∞
γ1 (S2T ∗)ev, a highest weight vector of the G-module M is

a non-zero of the multiple of h(n)
1 . This implies that h(n)

1 satisfies the
Guillemin condition. Now Lemma 8.24 leads to a contradiction.

From Propositions 8.6 and 8.25, we now deduce that the equality (8.76)
of Proposition 8.18 holds when m = n ≥ 2. This last fact, together with
the remarks appearing at the end of §7, which explain the consequences
of Proposition 8.20, completes the proof of Proposition 8.18. According to
Lemma 2.11, this result also gives us a proof of the equality (8.77) when
m = n, which we had already derived from Proposition 8.20.



CHAPTER IX

THE RIGIDITY OF THE COMPLEX GRASSMANNIANS

§1. The rigidity of the complex Grassmannians

Let m,n ≥ 2 be given integers. Let X be the complex Grassmannian
GC

m,n endowed with its Kähler metric g. As in §2, Chapter VIII, we view
this Grassmannian as an irreducible symmetric space and as a homogeneous
space of the group G = SU(m+ n), and we identify the tangent bundle T
of X with the complex vector bundle V ∗ ⊗C W .

Let x be a point of X. Let F1
x be the family of all closed connected

totally geodesic surfaces of X passing through x of the form ExpxF , where
F is generated (over R) by the vectors {α1 ⊗w1, α2 ⊗w2}, where {α1, α2}
is an orthonormal set of elements belonging to a totally real subspace of V ∗

x

and {w1, w2} is an orthonormal set of elements belonging to a totally real
subspace of Wx.

Let F2
x be the family of all closed connected totally geodesic surfaces

of X passing through x of the form ExpxF , where F is a totally real sub-
space of the tangent space Tx satisfying one of the following two conditions:

(i) F = V1 ⊗ w, where V1 is a totally real two-dimensional subspace
of V ∗

x and w is a unit vector of Wx;
(ii) F = α ⊗W1, where α is a unit vector of V ∗

x and W1 is a totally
real two-dimensional subspace of Wx.

Let F3
x be the family of all closed connected totally geodesic surfaces

of X passing through x of the form ExpxF , where F is the complex sub-
space of Tx determined by a unit vector α of V ∗

x and a unit vector w of Wx

and generated by the vectors {α⊗ w, J(α⊗ w)}.
According to the expression for the curvature of the complex Grass-

mannian GC

m,n given in §2, Chapter VIII, we know that a surface of F1
x is a

totally geodesic flat 2-torus; on the other hand, by Lemmas 8.13 and 8.15
a surface of F2

x is isometric to a 2-sphere of constant curvature 1, while a
surface of F3

x is isometric to a 2-sphere of constant curvature 4.
Let F4

x be the family of all closed connected totally geodesic subman-
ifolds of X passing through x of the form ExpxF , where F is a totally
real subspace of Tx equal to V1 ⊗R W1, where V1 and W1 are totally real
subspaces of V ∗

x and Wx of dimension 2 and n, respectively. Let F5
x be

the family of all closed connected totally geodesic submanifolds of X pass-
ing through x of the form ExpxF , where F is the complex subspace of Tx
determined by a unit vector α of V ∗

x and equal to α⊗Wx.
Clearly, each surface of F1

x or of F2
x is contained in a totally geodesic

submanifold of X belonging to the family F4
x , while a surface of F3

x is con-
tained in a totally geodesic submanifold of X belonging to the family F5

x .
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By Lemmas 8.13 and 8.15, we know that a submanifold of X belonging
to the family F4

x is isometric to the real Grassmannian GR

2,n and that a
submanifold of X belonging to the family F5

x is isometric to the complex
projective space CP

n of dimension n endowed with its Fubini-Study metric
of constant holomorphic curvature 4.

For 1 ≤ j ≤ 4, we consider the G-invariant family

Fj =
⋃
x∈X

Fj
x

of closed connected totally geodesic submanifolds of X; we write F ′′ = F4

and also consider the G-invariant families

F = F1 ∪ F2 ∪ F3, F̃ = F2 ∪ F3, F ′ = F4 ∪ F5

of closed connected totally geodesic submanifolds of X. Clearly, every
surface of F is contained in a totally geodesic submanifold of X belonging
to the family F ′; moreover, we have F̃ ⊂ F and F ′′ ⊂ F ′.

If Z is a submanifold of X belonging to the family Fj , with 1 ≤ j ≤ 4,
there is a subgroup of G which acts transitively on Z. Thus for 1 ≤ j ≤ 4,
we see that an element u of

⊗q
T ∗
x , with x ∈ X, vanishes when restricted

to an arbitrary submanifold belonging to the family F j if and only if it
vanishes when restricted to an arbitrary submanifold belonging to the fam-
ily Fj

x.

Lemma 9.1. Let m,n ≥ 2 be given integers and let X be the complex
Grassmannian GC

m,n. Let u be an element of
⊗2

T ∗
x , with x ∈ X. If the

restriction of u to an arbitrary submanifold of the family F vanishes, then
u vanishes.

Proof: Let {α1, . . . , αm} (resp. {w1, . . . , wn}) be an orthonormal
basis for a totally real subspace of V ∗

x (resp. of Wx) of dimension m (resp. of
dimension n). Let 1 ≤ i, j ≤ m and 1 ≤ k, l ≤ n be given integers. The
vectors {αi⊗wk, αj ⊗wl} (resp. the vectors {J(αi⊗wk), J(αj ⊗wl)}) are
tangent to a surface of X belonging to the family F1 ∪ F2. The vectors
{αi ⊗ wk, J(αj ⊗ wl)} are also tangent to a surface of X belonging to the
family F1 ∪ F2 unless i = j and k = l. Suppose that the restriction of u
to an arbitrary submanifold of the family F vanishes; then we see that

u(αi ⊗ wk, αj ⊗ wl) = u(J(αi ⊗ wk), J(αj ⊗ wl)) = 0;

moreover if i �= j or k �= l, we also have

u(αi ⊗ wk, J(αj ⊗ wl)) = 0.
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On the other hand, the vectors {αi ⊗ wk, αi ⊗ Jwk} are tangent to a sub-
manifold belonging to the family F3, and so we see that

u(αi ⊗ wk, J(αi ⊗ wk)) = 0.

It follows that u vanishes.

Lemma 9.2. Let m,n ≥ 2 be given integers and let X be the complex
Grassmannian GC

m,n. Let u be an element of
∧2
T ∗
x , with x ∈ X. If the

restriction of u to an arbitrary submanifold of the family F̃ vanishes, then
u vanishes.

Proof: Assume that the restriction of u to an arbitrary submanifold
of the family F̃ vanishes. In view of Lemma 9.1, it suffices to prove that
the restriction of u to an arbitrary submanifold of the family F1 vanishes.
In fact, let {α1, α2} be an orthonormal set of elements belonging to a
totally real subspace of V ∗

x and {w1, w2} be an orthonormal set of elements
belonging to a totally real subspace of Wx. Our assumption on u tells us
that

u(α⊗ w1, α⊗ w2) = 0, u(α1 ⊗ w,α2 ⊗ w) = 0,

with α = α1, α2 or α1 + α2 and w = w1, w2 or w1 + w2. The first set of
relations implies that

u(α1 ⊗ w1, α2 ⊗ w2) + u(α2 ⊗ w1, α1 ⊗ w2) = 0,

while the second set tells us that

u(α1 ⊗ w1, α2 ⊗ w2) + u(α1 ⊗ w2, α2 ⊗ w1) = 0.

Since u belongs to
∧2
T ∗
x , these two equalities imply that

u(α1 ⊗ w1, α2 ⊗ w2) = 0.

If F̂ is a G-invariant family of closed connected totally geodesic sur-
faces ofX, we consider the sub-bundle NF̂ of B consisting of those elements
of B, which vanish when restricted to the closed totally geodesic submani-
folds of F̂ , which was introduced in §8, Chapter II. We write N = NF .

Lemma 9.3. Let m,n ≥ 2 be given integers and let X be the complex
Grassmannian GC

m,n. Then we have

TrN ⊂ E.

Proof: Let x be a point of X. Let α be an arbitrary unit vec-
tor of V ∗

x and w be an arbitrary unit vector of Wx. Let {α1, . . . , αm}
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(resp. {w1, . . . , wn}) be an orthonormal basis for a totally real subspace
of V ∗

x of dimension m (resp. of dimension n) containing α (resp. w), with
α1 = α (resp. w1 = w). As we have seen in the proof of Lemma 9.1, for
1 ≤ j ≤ m and 1 ≤ k ≤ n, the two vectors α⊗w and αj ⊗wk (resp. α⊗w
and J(αj⊗wk)) are tangent to a surface belonging to the family F . There-
fore if u is an element of Nx, we see that

(Tru)(α⊗ w,α⊗ w)

=
∑

1≤j≤m
1≤k≤n

{u(α⊗ w,αj ⊗ wk, α⊗ w,αj ⊗ wk)

+ u(α⊗ w, J(αj ⊗ wk), α⊗ w, J(αj ⊗ wk)}
= 0.

Hence TrNx is a subspace of Ex.

Proposition 9.4. Let h be a section of E over the complex Grass-
mannian X = GC

m,n, with m ≥ 2 and n ≥ 3. If the restriction of h to an
arbitrary submanifold Z of X belonging to the family F ′′ is a Lie derivative
of the metric of Z, then h vanishes.

Proof: Assume that h belongs to L(F ′′). We consider the real Grass-
mannian Z = GR

2,n. Let X ′ be a submanifold of X belonging to the fam-
ily F4. According to Lemma 8.13, there is a totally geodesic isometric
imbedding i : Z → X whose image is equal to X ′ such that i∗h is a section
of the sub-bundle EZ of S2T ∗

Z . Our hypotheses imply that the symmet-
ric 2-form i∗h on Z satisfies the Guillemin condition. By Theorem 6.48,
we infer that i∗h = 0 and hence that the restriction of h to X ′ vanishes.
According to Lemma 8.15, the restriction of h to a submanifold of X be-
longing to the family F5 vanishes. Thus the restriction of h to an arbitrary
submanifold of X belonging to the family F ′ or to the family F vanishes.
The desired result is now a consequence of Lemma 9.1.

We now suppose that n ≥ 3. The Guillemin rigidity of the real Grass-
mannian GR

2,n, given by Theorem 6.47, and the infinitesimal rigidity of the
complex projective space of dimension n, given by Theorem 3.39, tell us
that the family F ′ possesses properties (II) and (III) of §8, Chapter II.
When m < n, according to Propositions 8.14 and 8.17, the family F ′ also
possesses property (I) of §8, Chapter II. By (8.12), we know that E is
a G-invariant sub-bundle of S2

0T
∗. According to Lemma 9.3 and Proposi-

tion 9.4, the families F and F ′ and the vector bundle E satisfy the relations
(2.33) and (2.37) of Theorem 2.48. Proposition 8.18 tells us that the equal-
ities (2.35) and (2.36) hold. Thus the families F and F ′ and the vector
bundle E satisfy the hypotheses of Theorem 2.49,(ii) and, when m < n,
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they also satisfy the hypotheses of Theorem 2.49,(i). Hence from Theo-
rem 2.49, we deduce the infinitesimal rigidity of GC

m,n and, when m < n,
the Guillemin rigidity of GC

m,n. On the other hand, according to Theo-
rem 8.7 the space GC

2,2 is infinitesimally rigid. Since the Grassmannian
GC

p,q is isometric to GC

q,p, we have therefore proved the following two theo-
rems:

Theorem 9.5. The complex Grassmannian GC

m,n, with m,n ≥ 2 and
m �= n, is rigid in the sense of Guillemin.

Theorem 9.6. The complex Grassmannian GC

m,n, with m,n ≥ 2, is
infinitesimally rigid.

Let F̌ be the family of all closed totally geodesic submanifolds of X
which can be written in the form ExpxV ′ ⊗W ′, where x ∈ X and where
V ′ is a totally real subspace of V ∗

x of dimension m and W ′ is a totally real
subspace of Wx of dimension n. According to Lemma 8.13, a member of
the family F̌ is isometric to the real Grassmannian X = GR

m,n.

Proposition 9.7. Let m,n ≥ 2 be given integers. If X is the complex
Grassmannian GC

m,n, the sequence (1.24) is exact.

Proof: First, suppose that m + n ≥ 5. Let γ be a closed geodesic
of X; then there is a maximal flat totally geodesic torus Z of X contain-
ing γ. According to the remarks following Lemma 8.13, Z is contained
in a totally geodesic submanifold Y of X belonging to the family F̌ ; let
i : Y → X be the natural inclusion. According to Proposition 7.10 and re-
marks made in §1, Chapter VII, we know that the sequence (1.24) for Y is
exact. By Theorem 9.6, the family F̌ satisfies all the hypotheses of Propo-
sition 2.46; thus the desired conclusion is a consequence of this proposition
when m+ n ≥ 5. On the other hand, the complex Grassmannian GC

2,2 is
isometric to the complex quadric Q4 (see §5, Chapter VIII), and so we know
that the sequence (1.24) is exact when m = n = 2 (see §6, Chapter V).

According to Lemma 9.1, the sub-bundle CF ′ of
∧2
T ∗, consisting of

those elements of
∧2
T ∗ which vanish when restricted to the closed totally

geodesic submanifolds of F ′, vanishes.
We now suppose that n ≥ 3. By Theorems 3.40 and 7.12, we know

that F ′ possesses property (VI) of §8, Chapter II. When m < n, Propo-
sitions 8.14 and 8.16, with q = n, tell us that the family F ′ possesses
property (IV) of §8, Chapter II; moreover by Theorems 3.40 and 7.11,
we know that F ′ also possesses property (V) of §8, Chapter II. Since the
Grassmannian GC

2,2 is isometric to the complex quadric Q4 (see §5, Chap-
ter VIII), from these observations, Theorem 2.51, and Theorem 6.72, with
n = 4, we obtain the following two theorems:
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Theorem 9.8. Let m,n ≥ 2 be given integers, with m �= n. A form
of degree 1 on the complex Grassmannian GC

m,n satisfies the Guillemin
condition if and only if it is exact.

Theorem 9.9. Let m,n ≥ 2 be given integers, with m,n ≥ 2. A form
of degree 1 on the complex Grassmannian GC

m,n satisfies the zero-energy
condition if and only if it is exact.

Theorem 9.9 is given by Theorem 3 of [20].

§2. On the rigidity of the complex Grassmannians ḠC

n,n

We consider the complex Grassmannian X = GC

n+1,n+1, with n ≥ 1.
We view X as an irreducible symmetric space and as a homogeneous space
of the group G = SU(2n + 2) and we consider the involutive isometry
ΨX of X. We consider the G-invariant families F , F j and F̃ of closed
connected totally geodesic surfaces of X. We also consider the sub-bundles
N = NF and NF̃ of B corresponding to the families F and F̃ , which were
introduced in §1, and the associated differential operators

D1,F : S2T ∗ → B/N , D1,F̃ : S2T ∗ → B/NF̃

of §8, Chapter II.
Let U be a complex subspace of C

2n+2 of dimension 2n. The orthog-
onal complement U⊥ of U in C

2n+2 is two-dimensional. We consider the
complex Grassmannians Y = GC

n(U) and Z = GC

1 (U⊥), the unit sphere
S(U⊥) of U⊥ and the natural projection π : S(U⊥) → GC

1 (U⊥), which
sends u ∈ S(U⊥) into the line generated by u. Since dimU⊥ = 2, the man-
ifold Z is isometric to CP

1. We also consider the involutive isometry ΨZ

of Z. There is totally geodesic imbedding

(9.1) ι : Z × Y → X,

given by (8.69), sending the pair (z, y), where z ∈ Z and y ∈ Y , into the
point of X corresponding to the n-plane of F generated by the subspaces
of U⊥ and U corresponding to the points z and y, respectively. For z ∈ Z,
let ιz : Y → X be the mapping sending y ∈ Y into ι(z, y). If γ is a closed
geodesic of Z and θ is a symmetric p-form on X, we consider the symmetric
p-form θU,γ on Y defined in §9, Chapter VIII.

Lemma 9.10. Let f be a real-valued function, θ be a 1-form and h
be a symmetric 2-form on the complex Grassmannian X = GC

n+1,n+1, with
n ≥ 2. Let U be a complex subspace of C

2n+2 of dimension 2n and let
U⊥ be the orthogonal complement of U in C

2n+2. Let ι : Z × Y → X be
the mapping given by (9.1), where Z = GC

1 (U⊥) and Y = GC

n(U), and let
Ψ′ = ΨZ be the involutive isometry of Z.
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(i) Suppose that, for any closed geodesic γ of Z, the function fU,γ
on Y vanishes. Then we have

ι∗zf + ι∗Ψ′(z)f = 0,

for all z ∈ Z.
(ii) Suppose that, for any closed geodesic γ of Z, the symmetric

2-form hU,γ on Y vanishes. Then we have

ι∗zh+ ι∗Ψ′(z)h = 0,

for all z ∈ Z.
(iii) Suppose that, for any closed geodesic γ of Z, the 1-form θU,γ on

Y is closed. Then we have

ι∗zdθ + ι∗Ψ′(z)dθ = 0.

(iv) Suppose that, for any closed geodesic γ of Z, the symmetric
2-form hU,γ on Y is a Lie derivative of the metric of Y . Let y be a point
of Y and let ξ1, ξ2 be vectors of TY,y which are tangent to a totally geodesic
surface of Y . Then we have

(
ι∗zDgh+ ι∗Ψ′(z)Dgh

)
(ξ1, ξ2, ξ2, ξ2) = 0,

for all z ∈ Z.

Proof: We denote by gY the Riemannian metric of the Grassman-
nian Y . Let y be a point of Y and let ξ1, ξ2 be vectors of TY,y. We consider
the real-valued functions f1 and f2 on Z defined by

f1(z) = (ι∗zh)(ξ1, ξ2), f2(z) = (ι∗zdθ)(ξ1, ξ2),

f3(z) = (ι∗zDgh)(ξ1, ξ2, ξ1, ξ2),

for z ∈ Z. We write f0 = f and f̃j = fj + Ψ′∗fj , for 0 ≤ j ≤ 3. Then by
the relation (1.57), we have

f3(z) = (DgY
ι∗zh)(ξ1, ξ2, ξ1, ξ2),

for z ∈ Z. Let γ be a closed geodesic of Z. We easily verify that the
equalities

1
2π

∫
γ

f̃1 = hU,γ(ξ1, ξ2),
1
2π

∫
γ

f̃2 = (dθU,γ)(ξ1, ξ2),

1
2π

∫
γ

f̃3 = (DgY
hU,γ)(ξ1, ξ2, ξ1, ξ2)
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hold. If the hypothesis of the j-th assertion of the lemma holds, with
j = 1, 2 or 3, then the even function f̃j−1 on Z satisfies the zero-energy
condition. If the symmetric 2-form hU,γ is a Lie derivative of the metric
gY and if ξ1, ξ2 are tangent to a totally geodesic surface of Y , which is
necessarily of constant curvature, by Lemma 1.1 and the relations (1.49)
and (1.57) the expression (DgY

hU,γ)(ξ1, ξ2, ξ1, ξ2) vanishes. Thus if the hy-
pothesis of assertion (iv) holds and if ξ1, ξ2 are tangent to a totally geodesic
surface of Y , the even function f̃3 on Z satisfies the zero-energy condition.
Proposition 3.29,(i) tells us that, if the function f̃j , with 0 ≤ j ≤ 3, on Z
satisfies the zero-energy condition, then it vanishes identically. This gives
us the desired results.

We henceforth suppose that n ≥ 2. Let x be a point of X and
let {v1, . . . , vn+1} and {w1, . . . , wn+1} be orthonormal bases of the com-
plex vector spaces Vx and Wx, respectively. For 1 ≤ j ≤ n + 1, let Vj
be the complex subspace of Vx of dimension n generated by the vectors
{v1, . . . , vj−1, vj+1, . . . , vn+1}, and letW ′ be the complex subspace ofWx of
codimension one generated by the vectors {w1, . . . , wn}. For 1 ≤ j ≤ n+1,
we consider the complex subspaces

Uj = Vj ⊕W ′, Ũj = Vj ⊕ Cwn+1

of C
2n+2; the orthogonal complement U⊥

j of Uj in C
2n+2 is generated

by the vectors {vj , wn+1}. Let U ′ be the complex subspace of C
2n+2 of

dimension 2n whose orthogonal complement U ′⊥ in C
2n+2 is generated by

the vectors {v2, vn+1}.
For 1 ≤ j ≤ n+ 1, we consider the mappings

ιj : GC

1 (U⊥
j ) ×GC

n(Uj) → X, ι′ : GC

1 (U ′⊥) ×GC

n(U ′) → X

given by (9.1). Let xj be the point of X corresponding to the (n+1)-plane
Ũj , and let yj be the point of GC

n(Uj) corresponding to the n-plane Vj and
zj be the point π(vj) of Zj = GC

1 (U⊥
j ). The image z′j of zj under the

involutive isometry ΨZj
of Zj is equal to π(wn+1). Then we have

(9.2) ιj(zj , yj) = x, ιj(z′j , yj) = xj .

Let y′ be the point of GC

n(U ′) corresponding to the n-plane generated by
the vectors {v1, wn+1} when n = 2 and by the vectors {v1, v3, . . . , vn, wn+1}
when n ≥ 3, and let z′ be the point π(v2) of Z ′ = GC

1 (U ′). The image z′′

of z′ under the involutive isometry ΨZ′ of Z ′ is equal to π(vn+1). Then we
have

(9.3) ι′(z′, y′) = xn+1, ι′(z′′, y′) = x2.
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Let f be a real-valued function on X. Suppose that, for any complex
subspace U of C

2n+2 of dimension 2n and any closed geodesic γ of GC

1 (U⊥),
the function fU,γ on GC

n(U) vanishes. Then by Lemma 9.10,(i) and the
relations (9.2) and (9.3), we see that

f(x) = −f(xj), f(xn+1) = −f(x2),

for 1 ≤ j ≤ n + 1. These equalities imply that f(x) = 0. Thus we have
proved the following:

Proposition 9.11. Let f be a real-valued function on the complex
Grassmannian X = GC

n+1,n+1, with n ≥ 2. Suppose that, for any complex

subspace U of C
2n+2 of dimension 2n and any closed geodesic γ of GC

1 (U⊥),
where U⊥ is the orthogonal complement of U in C

2n+2, the function fU,γ
on GC

n(U) vanishes. Then the function f vanishes.

We now return to the discussion which precedes Proposition 9.11. Let
w′

1 and w′
2 be given vectors of W ′ and consider the vectors α1 and α2 of V ∗

x

determined by
〈vk, α1〉 = δk1, 〈vk, α2〉 = δk2,

for 1 ≤ k ≤ n + 1. The tangent vectors ξ = α1 ⊗ w′
1 and η = α1 ⊗ w′

2

belonging to Tx satisfy

〈vk, ξ〉 = δk1w
′
1, 〈vk, η〉 = δk1w

′
2,

for 1 ≤ k ≤ n+ 1. For 1 ≤ j ≤ n+ 1, since Vxj
= Ũj and W ′ is a subspace

of Wxj , we may consider the tangent vectors ξj and ηj of Txj determined
by

〈vk, ξj〉 = δk1w
′
1, 〈vk, ηj〉 = δk1w

′
2, 〈wn+1, ξj〉 = 〈wn+1, ηj〉 = 0,

for 1 ≤ k ≤ n+ 1, with k �= j. For 1 ≤ j ≤ n+ 1, we consider the point yj
of the Grassmannian Yj = GC

n(Uj); since VYj ,yj
= Vj and WYj ,yj

= W ′, we
may consider the vectors ξ̃j and η̃j tangent to Yj at yj which are determined
by

〈vk, ξ̃j〉 = δk1w
′
1, 〈vk, η̃j〉 = δk1w

′
2,

for 1 ≤ k ≤ n+1, with k �= j. We consider the point y′ of the Grassmannian
Y ′ = GC

n(U ′); since W ′ is a subspace of Wy′ , we may consider the vectors
ξ′ and η′ tangent to Y ′ at the point y′ which are determined by

〈vk, ξ′〉 = δk1w
′
1, 〈vk, η′〉 = δk1w

′
2, 〈wn+1, ξ

′〉 = 〈wn+1, η
′〉 = 0,

for k = 1 and 3 ≤ k ≤ n.
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If the vectors w′
1 and w′

2 belong to a totally real subspace of Wx (resp.
if the vector w′

2 is equal to Jw′
1), then the vectors ξ and η are tangent

to a totally geodesic surface of X belonging to the family F2 (resp. the
family F3); moreover, for 1 ≤ j ≤ n+ 1, the vectors ξj and ηj are tangent
to a totally geodesic surface of Yj , while the vectors ξ′ and η′ are tangent
to a totally geodesic surface of Y ′.

For 1 ≤ j ≤ n+ 1, we consider the mappings

φj = ιj,zj : GC

n(Uj) → X, φ′j = ιj,z′
j

: GC

n(Uj) → X,

φ′ = ι′z′ : GC

n(U ′) → X, φ′′ = ι′z′′ : GC

n(U ′) → X;

then we easily see that the relations

(9.4)
φj∗ξ̃j = ξ, φj∗η̃j = η, φ′j∗ξ̃j = ξj , φ′j∗η̃j = ηj ,

φ′∗ξ
′ = ξn+1, φ′∗η

′ = ηn+1 φ′′∗ξ
′ = ξ2, φ′′∗η

′ = η2

hold for 2 ≤ j ≤ n+ 1.
We now suppose that n ≥ 3. We consider the complex subspace V ′

of Vx of dimension n generated by the vectors {v1, v2, v4, . . . , vn+1}. For
1 ≤ j ≤ n + 1, we consider the complex subspace Ũj of C

2n+2 of dimen-
sion 2n generated by V ′ and the vectors {w1, . . . , wj−1, wj+1, . . . , wn+1},
whose orthogonal complement Ũ⊥

j in C
2n+2 is generated by the vectors

{v3, wj}; we also consider the complex subspace Ũ of C
2n+2 of dimen-

sion 2n generated by Vx and the vectors {w1, . . . , wn−1}, whose orthogonal
complement Ũ⊥ in C

2n+2 is generated by the vectors {wn, wn+1}. For
1 ≤ j ≤ n+ 1, we consider the mappings

ι̃j : GC

1 (Ũ⊥
j ) ×GC

n(Ũj) → X, ι̃ : GC

1 (Ũ⊥) ×GC

n(Ũ) → X

given by (9.1). Let x̃j be the point of X corresponding to the (n+1)-plane
V ′ ⊕ Cwj ; let ỹj be the point of GC

n(Ũj) corresponding to the n-plane V ′

and let z̃j be the point π(v3) of Z̃j = GC

1 (Ũ⊥
j ). The image z̃′j of z̃j under

the involutive isometry ΨZ̃j
of Z̃j is equal to π(wj). Then we have

ι̃j(z̃j , ỹj) = x, ι̃j(z̃′j , ỹj) = x̃j .

Let ỹ be the point of GC

n(Ũ) corresponding to the n-plane V ′ and let z̃ be
the point π(wn) of Z̃ = GC

1 (Ũ⊥). The image z̃′ of z̃ under the involutive
isometry ΨZ̃ of Z̃ is equal to π(wn+1). Then we have

ι̃(z̃, ỹ) = x̃n, ι̃(z̃′, ỹ) = x̃n+1.
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The tangent vectors ζ = α1 ⊗ w1 and ζ ′ = α2 ⊗ w2 belonging to Tx
satisfy

〈vk, ζ〉 = δk1w1, 〈vk, ζ ′〉 = δk2w2,

for 1 ≤ k ≤ n+ 1. For 3 ≤ j ≤ n+ 1, since Vx̃j = V ′ ⊕ Cwj and since the
vectors w1 and w2 belong to Wx̃j , we may consider the tangent vectors ζj
and ζ ′j of Tx̃j

determined by

〈vk, ζj〉 = δk1w1, 〈vk, ζ ′j〉 = δk2w2, 〈wj , ζj〉 = 〈wj , ζ ′j〉 = 0,

for 1 ≤ k ≤ n+ 1, with k �= 3. For 3 ≤ j ≤ n+ 1, we consider the point ỹj
of the Grassmannian Ỹj = GC

n(Ũj); since VỸj ,ỹj
= V ′ and since the vectors

w1 and w2 belong to WỸj ,ỹj
, we may consider the vectors ζ̃j and ζ̃ ′j tangent

to Ỹj at ỹj which are determined by

〈vk, ζ̃j〉 = δk1w1, 〈vk, ζ̃ ′j〉 = δk2w2,

for 1 ≤ k ≤ n+1, with k �= 3. We consider the point ỹ of the Grassmannian
Ỹ = GC

n(Ũ); since VỸ ,ỹ = V ′ and since the vectors w1 and w2 belong to
WỸ ,ỹ, we may consider the vectors ζ̃ and ζ̃ ′ tangent to Ỹ at the point ỹ
which are determined by

〈vk, ζ̃〉 = δk1w1, 〈vk, ζ̃ ′〉 = δk1w2,

for 1 ≤ k ≤ n+ 1, with k �= 3.
Since {α1, α2} is an orthonormal set of vectors belonging to a totally

real subspace of V ∗
x and {w1, w2} is an orthonormal set of vectors belonging

to a totally real subspace of Wx, the vectors ζ and ζ ′ are tangent to a
totally geodesic surface of X belonging to the family F1; moreover, for
3 ≤ j ≤ n + 1, the vectors ζ̃j and ζ̃ ′j are tangent to a totally geodesic
surface of Ỹj , while the vectors ζ̃ and ζ̃ ′ are tangent to a totally geodesic
surface of Ỹ .

For 3 ≤ j ≤ n+ 1, we consider the mappings

φ̃j = ι̃j,z̃j : GC

n(Ũj) → X, φ̃′j = ι̃j,z̃′
j

: GC

n(Ũj) → X,

φ̃ = ι̃z̃ : GC

n(Ũ) → X, φ̃′ = ι̃z̃′ : GC

n(Ũ) → X;

then we easily see that the relations

(9.5)
φ̃j∗ζ̃j = ζ, φ̃j∗ζ̃ ′j = ζ ′, φ̃′j∗ζ̃j = ζj , φ̃′j∗ζ̃

′
j = ζ ′j ,

φ̃∗ζ̃ = ζn, φ̃∗ζ̃ ′ = ζ ′n φ̃′∗ζ̃ = ζn+1, φ̃′∗ζ̃
′ = ζ ′n+1

hold.
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We again suppose that n ≥ 2. Let θ be a 1-form and h be a symmetric
2-form on X. We first assume that, for any complex subspace U of C

2n+2 of
dimension 2n and any closed geodesic γ of GC

1 (U⊥), the symmetric 2-form
hU,γ on GC

n(U) vanishes and the 1-form θU,γ on GC

n(U) is closed. Let u be
a form on X which is equal either to h or to β = dθ. Since ΨZj

(zj) = z′j
and ΨZ′(z′) = z′′, by Lemma 9.10,(ii) or (iii), we see that

(9.6) (φ∗ju+ φ′∗j u)(ξ̃j , η̃j) = 0, (φ′∗u+ φ′′∗u)(ξ′, η′) = 0,

for 1 ≤ j ≤ n+1; moreover when n ≥ 3, since ΨZ̃j
(z̃j) = z̃′j and ΨZ̃(z̃) = z̃′,

we have

(9.7) (φ̃∗jh+ φ̃′∗j h)(ζ̃j , ζ̃
′
j) = 0, (φ̃∗h+ φ̃′∗h)(ζ̃, ζ̃ ′) = 0,

for 3 ≤ j ≤ n+ 1. Then from the equalities (9.4) and (9.6), we obtain the
relations

u(ξ, η) = −u(ξj , ηj), u(ξn+1, ηn+1) = −u(ξ2, η2),

for 2 ≤ j ≤ n + 1. On the other hand, when n ≥ 3, from the equalities
(9.5) and (9.7) we obtain the relations

h(ζ, ζ ′) = −h(ζj , ζ ′j), h(ζn, ζ ′n) = −h(ζn+1, ζ
′
n+1),

for 3 ≤ j ≤ n+ 1. Thus our assumptions on h and θ imply that

(9.8) h(ξ, η) = 0, β(ξ, η) = 0,

and, when n ≥ 3, that

(9.9) h(ζ, ζ ′) = 0.

From the equalities (9.8) we infer that

(9.10) h(α⊗Wx, α⊗Wx) = 0, β(α⊗Wx, α⊗Wx) = 0,

for all vectors α ∈ V ∗
x . According to the relation (8.104), our assumptions

on h and θ imply that the two forms Ψ∗
Xh and Ψ∗

Xθ also satisfy these
assumptions; therefore since

(9.11) ΨX∗(α⊗ w) = −w� ⊗ α�, ΨX∗(α⊗Wx) = V ∗
Ψ(x) ⊗ α�,

for α ∈ V ∗
x and w ∈Wx, the relations (9.10) lead us to

(9.12) h(V ∗
x ⊗ w, V ∗

x ⊗ w) = 0, β(V ∗
x ⊗ w, V ∗

x ⊗ w) = 0,
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for all vectors w ∈ Wx. According to (9.10) and (9.12), the restrictions
of h and dθ to an arbitrary submanifold of X belonging to the family F̃
vanishes. When n ≥ 3, according to (9.9) we see that the restriction of h
to an arbitrary submanifold of X belonging to the family F1 vanishes; by
Lemma 9.1, it follows that h vanishes.

Next, we suppose that the form h satisfies the following weaker con-
dition: for any complex subspace U of C

2n+2 of dimension 2n and any
closed geodesic γ of GC

1 (U⊥), the symmetric 2-form hU,γ on GC

n(U) is a Lie
derivative of the metric of GC

n(U). We also suppose either that the vectors
w′

1 and w′
2 belong to a totally real subspace of Wx or that w′

2 = Jw′
1; as

we remarked above, for 1 ≤ j ≤ n+ 1, the vectors ξ̃j and η̃j are tangent to
a totally geodesic surface of Yj , while the vectors ξ′ and η′ are tangent to
a totally geodesic surface of Y ′. Since ΨZj

(zj) = z′j and ΨZ′(z′) = z′′, by
Lemma 9.10,(iv), we see that

(9.13)
(φ∗jDgh+ φ′∗j Dgh)(ξ̃j , η̃j , ξ̃j , η̃j) = 0,

(φ′∗Dgh+ φ′′∗Dgh)(ξ′, η′, ξ′, η′) = 0,

for 1 ≤ j ≤ n + 1; moreover when n ≥ 3, since the vectors ζ̃j and ζ̃ ′j are
tangent to a totally geodesic surface of Ỹj and the vectors ζ̃ and ζ̃ ′ are
tangent to a totally geodesic surface of Ỹ , and since ΨZ̃j

(z̃j) = z̃′j and
ΨZ̃(z̃) = z̃′, we have

(9.14)
(φ̃∗jDgh+ φ̃′∗j Dgh)(ζ̃j , ζ̃ ′j , ζ̃j , ζ̃

′
j) = 0,

(φ̃∗Dgh+ φ̃′∗Dgh)(ζ̃, ζ̃ ′, ζ̃, ζ̃ ′) = 0,

for 3 ≤ j ≤ n+1. Then from the equalities (9.4) and (9.13), we obtain the
relations

(Dgh)(ξ, η, ξ, η) = −(Dgh)(ξj , ηj , ξj , ηj),

(Dgh)(ξn+1, ηn+1, ξn+1, ηn+1) = −(Dgh)(ξ2, η2, ξ2, η2),

for 2 ≤ j ≤ n+1. On the other hand, when n ≥ 3, from the equalities (9.5)
and (9.14) we obtain the relations

(Dgh)(ζ, ζ ′, ζ, ζ ′) = −(Dgh)(ζj , ζ ′j , ζj , ζ
′
j),

(Dgh)(ζn, ζ ′n, ζn, ζ
′
n) = −(Dgh)(ζn+1, ζ

′
n+1, ζn+1, ζ

′
n+1),

for 3 ≤ j ≤ n+ 1. Thus our assumption on h implies that

(9.15) (Dgh)(ξ, η, ξ, η) = 0,
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and, when n ≥ 3, that

(9.16) (Dgh)(ζ, ζ ′, ζ, ζ ′) = 0.

The equality (9.15) implies that the restriction of Dgh to a totally geodesic
surface of X belonging to the family F3, or to a subspace of Tx of the
form α⊗W1, where α is a unit vector of V ∗

x and W1 is a totally real two-
dimensional subspace of Wx, vanishes. According to the relation (8.104),
our assumption on h implies that the form Ψ∗

Xh also satisfies this assump-
tion; therefore by (9.11), the restriction of Dgh to a subspace of Tx of the
form V1 ⊗ w, where V1 is a totally real 2-dimensional subspace of V ∗

x and
w is a unit vector of Wx, vanishes. Thus the restriction of Dgh to a totally
geodesic surface of X belonging to the family F2 vanishes; therefore so does
the restriction of Dgh to a surface belonging to the family F̃ . According
to Proposition 1.14,(ii), we have shown that D1,F̃h = 0. When n ≥ 3,
according to (9.16) we see that the restriction of Dgh to a totally geodesic
surface of X belonging to the family F1 vanishes; therefore according to
Proposition 1.14,(ii), we know that D1,Fh = 0.

In the course of the previous discussion, we have proved the following
proposition:

Proposition 9.12. Let h be a symmetric 2-form and θ be a 1-form
on the complex Grassmannian X = GC

n+1,n+1, with n ≥ 2.
(i) Suppose that, for any complex subspace U of C

2n+2 of dimen-
sion 2n and any closed geodesic γ of GC

1 (U⊥), where U⊥ is the orthogonal
complement of U in C

2n+2, the symmetric 2-form hU,γ on GC

n(U) vanishes.
Then the restriction of the symmetric form h to an arbitrary submani-
fold of X belonging to the family F̃ vanishes; moreover, when n ≥ 3, the
symmetric form h vanishes.

(ii) Suppose that, for any complex subspace U of C
2n+2 of dimen-

sion 2n and any closed geodesic γ of GC

1 (U⊥), where U⊥ is the orthogonal
complement of U in C

2n+2, the symmetric 2-form hU,γ on GC

n(U) is a Lie
derivative of the metric of GC

n(U). Then the relation

D1,F̃h = 0

holds; moreover, when n ≥ 3, the relation

D1,Fh = 0

holds.
(iii) Suppose that, for any complex subspace U of C

2n+2 of dimen-
sion 2n and any closed geodesic γ of GC

1 (U⊥), where U⊥ is the orthogonal
complement of U in C

2n+2, the 1-form θU,γ on GC

n(U) is closed. Then the
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restriction of the 2-form dθ to an arbitrary submanifold of X belonging to
the family F̃ vanishes.

Let n be an integer ≥ 2, and let U be a complex vector space of di-
mension 2n endowed with a positive definite scalar product. According
to an observation made in §2, Chapter VIII, if all even functions on GC

n,n

satisfying the Guillemin condition vanish, then the analogous result is also
true for the Grassmannian GC

n(U); moreover if all even symmetric 2-forms
(resp. 1-forms) on GC

n,n satisfying the Guillemin condition are Lie deriva-
tives of the metric (resp. are exact), then the analogous result is also true
for the Grassmannian GC

n(U). We shall use these remarks in the course of
the proofs of the next three propositions.

Proposition 9.13. For n ≥ 2, the maximal flat Radon transform for
functions on the symmetric space ḠC

n,n is injective.

Proof: We proceed by induction on n ≥ 2. Proposition 8.8 tells us
that the desired result is true for n = 2. Next, let n ≥ 2 be a given integer
and suppose that the maximal flat Radon transform for functions on the
symmetric space ḠC

n,n is injective. Let f be an even real-valued function
on X = ḠC

n+1,n+1 satisfying the Guillemin condition. Let U be an arbi-
trary subspace of C

2n+2 of dimension 2n; we denote by U⊥ its orthogonal
complement in C

2n+2. Let γ be a closed geodesic of GC

1 (U⊥). According
to Lemmas 8.22 and 8.23, the function fU,γ on GC

n(U) is even and satisfies
the Guillemin condition. From Lemma 8.1 and our induction hypothesis,
we infer that the function fU,γ vanishes. Then by Proposition 9.11, we
know that f vanishes. According to Lemma 8.1, this argument gives us the
desired result for the space X.

The preceding proposition is also given by Theorem 2.24.

Proposition 9.14. Let n be an integer ≥ 3 and suppose that all
even symmetric 2-forms on GC

n,n satisfying the Guillemin condition are Lie

derivatives of the metric. Then an even symmetric 2-form onX = GC

n+1,n+1

satisfying the Guillemin condition is a Lie derivative of the metric.

Proof: Let k be an even symmetric 2-form on X satisfying the
Guillemin condition. According to the decomposition (1.11), we may de-
compose k as

k = h+D0ξ,

where h is an even symmetric 2-form on X satisfying divh = 0, which is
uniquely determined by k, and where ξ is a vector field on X. Then by
Lemma 2.10, h also satisfies the Guillemin condition. Let U be an arbi-
trary subspace of C

2n+2 of dimension 2n; we denote by U⊥ its orthogonal
complement in C

2n+2. We consider the Grassmannian Y = GC

n(U). Let γ
be a closed geodesic of GC

1 (U⊥). According to Lemmas 8.22 and 8.23 and
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our hypothesis, we see that the symmetric 2-form hU,γ on Y is even and is
a Lie derivative of the metric of Y . Therefore by Proposition 9.12,(ii), we
know that D1,Fh = 0. According to the relation (8.12) and Lemma 9.3,
the vector bundle E and the symmetric 2-form h satisfy the hypotheses of
Theorem 2.48,(i), with F ′ = F . Then Theorem 2.48,(i) tells us that we
may write h = h1 + h2, where h1 is an element of E(X) which satisfies
the Guillemin condition and h2 is a section of E. According to Proposi-
tion 8.18, we see that h1 = 0. Therefore h is a section of E, and so hU,γ is
an even section of EY over Y . Proposition 9.4 gives us the vanishing of the
form hU,γ . Then Proposition 9.12,(i) tells us that h vanishes. Therefore
the symmetric 2-form k is a Lie derivative of the metric of X.

Proposition 9.15. Let n be an integer ≥ 2 and suppose that all even
1-forms on GC

n,n satisfying the Guillemin condition are exact. Then an even

1-form on X = GC

n+1,n+1 satisfying the Guillemin condition is exact.

Proof: Let θ be an even 1-form on X satisfying the Guillemin condi-
tion. Let U be an arbitrary subspace of C

2n+2 of dimension 2n; we denote
by U⊥ its orthogonal complement in C

2n+2. We consider the Grassman-
nian Y = GC

n(U). Let γ be a closed geodesic of GC

1 (U⊥). According to
Lemmas 8.22 and 8.23 and our hypothesis, we see that the 1-form θU,γ
on Y is closed. Therefore by Proposition 9.12,(iii), we know that the re-
striction of dθ to an arbitrary submanifold of X belonging to the family
F̃ vanishes. Then Lemma 9.2 tells us that dθ = 0. Since the cohomology
group H1(X,R) vanishes, the form θ is exact.

The following theorem is a direct consequence of Propositions 8.2
and 9.14.

Theorem 9.16. If the symmetric space ḠC

n,n, with n ≥ 3, is rigid in

the sense of Guillemin, then so is the symmetric space ḠC

n+1,n+1.

The following theorem is a direct consequence of Theorem 8.10 and
Propositions 2.20 and 9.15.

Theorem 9.17. Let n be an integer ≥ 2. Then a 1-form on the
symmetric space X = ḠC

n,n satisfies the Guillemin condition if and only if
it is exact.

§3. The rigidity of the quaternionic Grassmannians

Let m,n ≥ 1 be given integers. We consider the quaternions H and
we denote by x̄ the conjugate of a quaternion x ∈ H. We consider the
space H

m+n as a right H-module and we endow H
m+n with the Hermitian

inner product defined as follows: the inner product 〈x, y〉 of the vectors
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x = (x1, . . . , xm+n) and y = (y1, . . . , ym+n) of H
m+n is given by

〈x, y〉 =
m+n∑
j=1

x̄j · yj .

The quaternionic Grassmannian X = GH

m,n consists of all right H-
submodules of H

m+n of dimension m (over H). We denote by Vx the
right submodule of H

m+n corresponding to the point x of X; then its
orthogonal complement Wx is also a right H-submodule of H

m+n and the
dual H-module V ∗

x of Vx is a left H-module. We shall identify the tangent
space Tx at x ∈ X with the real vector space

HomH(Vx,Wx) = Wx ⊗H V
∗
x .

By restriction, the Hermitian inner product on H
m+n induces Hermitian

inner products on Vx and Wx and therefore also on V ∗
x , which we denote

by 〈 , 〉. If θ is an element of HomH(Vx,Wx), we consider its adjoint tθ
defined in terms of these Hermitian inner products which is an element
of HomH(Wx, Vx). If φ is an endomorphism of Vx over H, we denote by
Trφ the trace of φ viewed as an endomorphism of the real vector space Vx.
We consider the Riemannian metric g on X determined by

g(θ, θ′) =
1
4

Tr tθ′ ◦ θ,

for θ, θ′ ∈ HomH(Vx,Wx). We say that a real subspace V1 of V ∗
x (resp. W1

of Wx) is totally real if V1 ∩ (q · V1) = {0} (resp. if W1 ∩ (W1 · q) = {0}),
for all q ∈ H satisfying Re q = 0.

The left action of the symplectic group G = Sp(m + n) on H
m+n

induces a left action on X which is transitive; the metric g is easily seen
to be G-invariant. The space X is isometric to the irreducible symmetric
space Sp(m+ n)/Sp(m)× Sp(n). We consider the G-invariant sub-bundle
E = EX of S2T ∗ consisting of all elements h of S2T ∗ which satisfy

h(ξ, ξ) = 0,

for all elements ξ of W ⊗H V
∗ of rank one. Clearly, we have

(9.17) TrE = {0}.

We also consider the Grassmannian GH

n,m. There is a natural mapping

Ψ : GH

m,n → GH

n,m,
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sending x ∈ GH

m,n into the right H-module Wx of dimension n, which is
easily seen to be an isometry. The Grassmannian GH

n,m is also a homoge-
neous space of the group G and it is easily verified that the isometry Ψ
satisfies

Ψ ◦ φ = φ ◦ Ψ,

for all φ ∈ G. Thus GH

m,n and GH

n,m are isometric as symmetric spaces.
When m = n, the isometry Ψ of X = GH

n,n is an involution. The group
Λ of isometries of X generated by Ψ, which is of order 2, acts freely on X
and we may consider the Riemannian manifold X̄ = ḠH

n,n equal to the
quotient X/Λ endowed with the Riemannian metric gX̄ induced by g. The
natural projection � : X → X̄ is a two-fold covering. The action of the
group Sp(2n) on X passes to the quotient X̄ and acts transitively on X̄.
The manifold X̄ is a symmetric space of compact type of rank n, which is
irreducible and equal to the adjoint space of X. We say that a section u of
SpT ∗ over X is even (resp. odd) if Ψ∗u = εu, where ε = 1 (resp. ε = −1).
Such a tensor u is even if and only if we can write u = �∗u′, where u′ is
a symmetric p-form on X̄. This notion of even or odd form on X (with
respect to the involutive isometry Ψ) coincides with the one considered
in §3, Chapter II.

We now suppose that m,n are arbitrary integers ≥ 2. Let x be a point
of X. Let Fx be the family of all closed connected totally geodesic surfaces
of X passing through x of the form ExpxF , where F is a real subspace of
the tangent space Tx satisfying one of the following three conditions:

(i) F is generated (over R) by the vectors {w1 ⊗α1, w2 ⊗α2}, where
{α1, α2} are unit vectors of V ∗

x satisfying 〈α1, α2〉 = 0 and {w1, w2} are
unit vectors of Wx satisfying 〈w1, w2〉 = 0;

(ii) F is generated (over R) by the vectors {w ⊗ α1, w ⊗ α2}, where
{α1, α2} are unit vectors of V ∗

x satisfying 〈α1, α2〉 = 0 and w is a unit
vector of Wx;

(iii) F is generated (over R) by the vectors {w1 ⊗ α,w2 ⊗ α}, where
α is a unit vector of V ∗

x and {w1, w2} are unit vectors of Wx satisfying
〈w1, w2〉 = 0;

(iv) F is generated (over R) by the vectors {w ⊗ α,wq ⊗ α}, where q
is a non-zero element of H satisfying Re q = 0 and where α is a unit vector
of V ∗

x and w is a unit vector of Wx.
A surface of Fx corresponding to a subspace F of Tx of type (i) is a to-

tally geodesic flat 2-torus; on the other hand, a surface of Fx corresponding
to a subspace F of Tx of type (ii) or of type (iii) is isometric to a 2-sphere
of constant curvature 1, while a surface of Fx corresponding to a subspace
F of Tx of type (iv) is isometric to a 2-sphere of constant curvature 4.

Let F ′
x be the family of all closed connected totally geodesic subman-

ifolds of X passing through x of the form ExpxF , where F is a totally real
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subspace of Tx generated by the subspaces W1⊗RV1 and W1q⊗RV1, where
V1 and W1 are totally real subspaces of V ∗

x and Wx of dimension m and n,
respectively, and where q is a non-zero element of H satisfying Re q = 0.
Clearly, each surface of Fx is contained in a totally geodesic submanifold
of X belonging to the family F ′

x. A submanifold of X belonging to the
family F ′

x is isometric to the complex Grassmannian Z = GC

m,n. In fact,
if Z ′ is a submanifold of X belonging to the family F ′

x, then there exists
a totally geodesic isometric imbedding ι : Z → X whose image is equal to
Z ′ such that ι∗EX = EZ . Moreover Z ′ has the same rank as X; therefore,
if u is a symmetric p-form on X satisfying the Guillemin condition, the
restriction of u to Z ′ also satisfies the Guillemin condition. When m = n,
we may assume that the imbedding ι has the following additional property:
if u is an even section of SpT ∗ over X, then ι∗u is an even p-form on Z.

We consider the G-invariant families

F =
⋃
x∈X

Fx, F ′ =
⋃
x∈X

F ′
x

of closed connected totally geodesic submanifolds of X. Clearly, every sur-
face of F is contained in a totally geodesic submanifold of X belonging to
the family F ′. By the above remarks concerning a surface of the family F ′

x,
with x ∈ X, we see that the family F ′ possesses property (I) of §8, Chap-
ter II; hence by Proposition 8.12, we obtain the following result, which is
also given by Theorem 2.24:

Proposition 9.18. For m,n ≥ 2, with m �= n, the maximal flat
totally geodesic Radon transform on the quaternionic Grassmannian GH

m,n

is injective.

We consider the sub-bundle N = NF of B consisting of those ele-
ments of B, which vanish when restricted to the closed totally geodesic
submanifolds of F , which was introduced in §8, Chapter II. The proofs of
the following two lemmas are similar to those of Lemmas 9.1 and 9.3 and
shall be omitted.

Lemma 9.19. Let X be the quaternionic Grassmannian GH

m,n, with

m,n ≥ 2. Let u be an element of
⊗2

T ∗
x , with x ∈ X. If the restriction of

u to an arbitrary submanifold of the family F vanishes, then u vanishes.

Lemma 9.20. Let m,n ≥ 2 be given integers and let X be the quater-
nionic Grassmannian GH

m,n. Then we have

TrN ⊂ E.

Proposition 9.21. Let h be a section of E over the quaternionic
Grassmannian X = GH

m,n, with m,n ≥ 2. Suppose that the restriction of
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h to an arbitrary submanifold Z of X belonging to the family F ′ is a Lie
derivative of the metric of Z. If either n ≥ 3, or if m = n = 2 and h is an
even section of E, then h vanishes.

Proof: Let X ′ be a submanifold of X belonging to the family F ′.
We consider the complex Grassmannian Z = GC

m,n. Then there is a totally
geodesic isometric imbedding i : Z → X whose image is equal to X ′ such
that i∗h is a section of the sub-bundle EZ of S2T ∗

Z ; moreover, when m = n
and h is even, we may suppose that the 2-form i∗h on Z is even. Our
hypotheses imply that the symmetric 2-form i∗h on Z is a Lie derivative of
the metric of Z. When n ≥ 3, according to Proposition 9.4 we see that i∗h
vanishes. If m = n = 2 and h is even, the vanishing of the even section i∗h
over Z is given by Theorem 8.11. Thus the restriction of h to X ′ vanishes.
The desired result follows from Lemma 9.19.

By Theorems 9.5 and 9.6, we know that the family F ′ possesses prop-
erty (III) of §8, Chapter II and that, when m �= n, it also possesses prop-
erty (II) of §8, Chapter II. Also Theorem 1.22 gives us the vanishing of the
space E(X).

When n ≥ 3, according to Proposition 9.21, we know that

(9.18) L(F ′) ∩ C∞(E) = {0}.

Since the Grassmannian GH

n,2 is isometric to GH

2,n, the following two the-
orems are direct consequences of Theorem 2.49, the relation (9.17) and
Lemma 9.20.

Theorem 9.22. The quaternionic GrassmannianGH

m,n, withm,n ≥ 2
and m �= n, is rigid in the sense of Guillemin.

Theorem 9.23. Let m,n ≥ 2 be given integers, with m+n ≥ 5. The
quaternionic Grassmannian GH

m,n is infinitesimally rigid.

When m = n = 2, according to Proposition 9.21 we know that

(9.19) L(F ′) ∩ C∞(E)ev = {0}.

By Proposition 2.18 and Theorem 8.9, if either n = 2 or if n ≥ 3 and the
space ḠC

n,n is rigid in the sense of Guillemin, an even symmetric 2-form on
the space X = GH

n,n satisfying the Guillemin condition belongs to L(F ′).
The following two results are a consequence of Proposition 2.18, Theo-
rem 2.48,(ii), the relations (9.17)–(9.19), Lemma 9.20 and Theorem 9.16.

Theorem 9.24. The symmetric space ḠH

2,2 is rigid in the sense of
Guillemin.

Theorem 9.25. Let n0 be an integer ≥ 3. If the space ḠC

n0,n0
is rigid

in the sense of Guillemin, then the symmetric spaces ḠH

n,n are rigid in the
sense of Guillemin, for all n ≥ n0.
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The proof of the following result is similar to that of Proposition 9.7
and shall therefore be omitted.

Proposition 9.26. Let m,n ≥ 2 be given integers, with m+ n ≥ 5.
If X is the quaternionic Grassmannian GH

m,n, the sequence (1.24) is exact.

According to Lemma 9.19, the sub-bundle CF ′ of
∧2
T ∗, consisting of

those elements of
∧2
T ∗ which vanish when restricted to the closed totally

geodesic submanifolds of F ′, vanishes. By Theorem 9.9, we know that F ′

possesses property (VI) of §8, Chapter II. Since the rank of a submanifold
of X belonging to the family F ′ is equal to the rank of X, the family F ′

possesses property (IV) of §8, Chapter II. When m �= n, by Theorem 9.8,
we know that F ′ also possesses property (V) of §8, Chapter II. From these
observations and Theorem 2.51, we obtain the following two theorems:

Theorem 9.27. Let m,n ≥ 2 be given integers, with m �= n. A form
of degree 1 on the quaternionic Grassmannian GH

m,n satisfies the Guillemin
condition if and only if it is exact.

Theorem 9.28. Let m,n ≥ 2 be given integers. A form of degree 1
on the quaternionic Grassmannian GH

m,n satisfies the zero-energy condition
if and only if it is exact.

The next theorem is a consequence of Theorem 9.17, and its proof is
similar to that of Theorem 9.27 and shall be omitted.

Theorem 9.29. Let n be an integer ≥ 2. A form of degree 1 on the
symmetric space ḠH

n,n satisfies the Guillemin condition if and only if it is
exact.



CHAPTER X

PRODUCTS OF SYMMETRIC SPACES

§1. Guillemin rigidity and products of symmetric spaces

Let Y and Z be two manifolds; we consider the product X = Y × Z
and the natural projections prY and prZ of X onto Y and Z, respectively.
If θ is a section of

⊗p
T ∗
Y over Y (resp. of

⊗p
T ∗
Z over Z), we shall also

denote by θ the section pr∗Y θ (resp. the section pr∗Zθ) of
⊗p

T ∗ over X; a
vector field ξ on Y (resp. on Z) induces a vector field on the product X,
which we shall also denote by ξ. If θ1 is a symmetric p-form on Y and θ2 is a
symmetric q-form on Z, we shall consider the symmetric (p+q)-form θ1 ·θ2
on X. We identify the bundles pr−1

Y TY and pr−1
Z TZ with sub-bundles of T ,

which we also denote by TY and TZ , respectively; similarly, we identify the
bundles pr−1

Y T ∗
Y and pr−1

Z T ∗
Z with sub-bundles of T ∗, which we also denote

by T ∗
Y and T ∗

Z , respectively. We then have the direct sum decompositions

(10.1) T = TY ⊕ TZ , T ∗ = T ∗
Y ⊕ T ∗

Z .

We denote by πY : T → TY and by πZ : T → TZ the natural projections
of T onto TY and TZ , respectively.

The fiber of the vector bundle T ∗
Y ⊗ T ∗

Z at the point x = (y, z) of X,
with y ∈ Y and z ∈ Z, is equal to T ∗

Y,y⊗T ∗
Z,z. We identify T ∗

Y ⊗T ∗
Z with the

sub-bundle of S2T ∗, which is equal to the image of the injective morphism
of vector bundles over X

φ : T ∗
Y ⊗ T ∗

Z → S2T ∗,

defined by
(φv)(ξ, η) = v(πY ξ, πZη) + v(πY η, πZξ),

for all v ∈ T ∗
Y ⊗ T ∗

Z and ξ, η ∈ T . Then if θ1 is a 1-form on Y and θ2 is a
1-form on Z, the symmetric 2-form θ1 · θ2 on X is equal to φ(θ1 ⊗ θ2). Also
we have the decomposition

(10.2) S2T ∗ = S2T ∗
Y ⊕ (T ∗

Y ⊗ T ∗
Z) ⊕ S2T ∗

Z .

Let (Y, gY ) and (Z, gZ) be two Riemannian manifolds; we consider the
product manifoldX = Y ×Z endowed with the product metric g = gY +gZ .
The Riemann curvature tensor R of (X, g) is given by

R = RY +RZ ,
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where RY and RZ are the Riemann curvature tensors of the manifolds
(Y, gY ) and (Z, gZ), respectively.

We now assume that X1 = Y and X2 = Z are symmetric spaces of
compact type. For j = 1, 2, there is a Riemannian symmetric pair (Gj ,Kj)
of compact type, where Gj is a compact, connected semi-simple Lie group
and Kj is a closed subgroup of Gj such that the space Xj is isometric to
the homogeneous space Gj/Kj endowed with a Gj-invariant metric. Let Γj
be the dual of the group Gj . For all γ ∈ Γj , we recall that the multiplicity
of the Gj-module C∞

γ (Xj) is ≤ 1.
For the remainder of this section, we suppose that (X, g) is the sym-

metric space of compact type equal to the product X1 ×X2 endowed with
the product metric g = g1 + g2. We view X as the homogeneous space
G/K, where G is the group G1×G2 and K is the group K1×K2. We may
identify Γ with Γ1 ×Γ2. For all γ1 ∈ Γ1 and γ2 ∈ Γ2, we easily see that the
equality

(10.3) C∞
(γ1,γ2)

(TC) = C∞
γ1 (X1) · C∞

γ2 (TX2,C) + C∞
γ2 (X2) · C∞

γ1 (TX1,C)

of G-modules holds.
We denote by pr1 the natural projection of X onto X1. Let u′ be

a symmetric p-form on X1 and consider the symmetric p-form u = pr∗1u
′

on X. A maximal flat totally geodesic torus Z of X is equal to the product
Z1×Z2, where Zj is a maximal flat totally geodesic torus of Xj . A parallel
vector field ξ on Z can be written as the sum ξ = ξ1 + ξ2, where ξj is a
parallel vector field on Zj , for j = 1, 2. Then we have

∫
Z

u(ξ, ξ, . . . , ξ) dZ = Vol (Z2, g2) ·
∫
Z1

u′(ξ1, ξ1, . . . , ξ1) dZ1.

Let γ be a closed geodesic of X. Then the path pr1 ◦ γ in X1 determines
a closed geodesic γ′ of X1, and it is easily verified that the integral of the
symmetric p-form u over the closed geodesic γ is a constant multiple of the
integral of u′ over the closed geodesic γ′. From these remarks, it follows
that, if the symmetric p-form u′ on X1 satisfies the Guillemin (resp. the
zero-energy) condition, then so does the symmetric p-form u on X.

Proposition 10.1. Let X1 and X2 be symmetric spaces of compact
type. Suppose that the symmetric space X1 is not rigid in the sense of
Guillemin (resp. is not infinitesimally rigid). Then the symmetric space
X = X1 ×X2 is not rigid in the sense of Guillemin (resp. is not infinitesi-
mally rigid).

Proof: Let h′ be a symmetric 2-form on X1, which satisfies the
Guillemin (resp. the zero-energy) condition and is not a Lie derivative of
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the metric g1. According to the previous discussion, the symmetric 2-form
h = pr∗1h

′ on X satisfies the Guillemin (resp. the zero-energy) condition.
Let z be a given point of X2 and let ι : X1 → X be the totally geodesic
imbedding sending y ∈ X1 into the point (y, z) of X; then we have ι∗h = h′.
If there exists a vector field on X such that Lξg = h, then we consider the
vector field η on X1 determined by

ι∗η(y) = pr1∗ξ(y, x2),

for all y ∈ X1; by Lemma 1.1, we obtain the equality Lηg1 = h′, which
leads us to a contradiction.

Proposition 10.2. Let X1 and X2 be symmetric spaces of compact
type. Suppose that the maximal flat Radon transform for functions on the
space Xj is injective, for j = 1, 2. Then the maximal flat Radon transform
for functions on the symmetric space X = X1 ×X2 is injective.

Proof: Let f be a real-valued function on X, whose maximal flat
Radon transform vanishes. For z ∈ X2, we consider the real-valued function
fz on X1 defined by

fz(y) = f(y, z),

for all y ∈ X1. Let Z1 be a maximal flat totally geodesic torus of X1; we
define a real-valued function fZ1 on X2 by

(10.4) fZ1(z) =
∫
Z1

fz dZ1,

for z ∈ X2. If Z2 is a maximal flat totally geodesic torus of X2, then
Z1 × Z2 is a maximal flat totally geodesic torus of X1 ×X2, and we have

∫
Z2

fZ1 dZ2 =
∫
Z

f dZ = 0.

Therefore the function fZ1 on X2 satisfies the Guillemin condition, and so,
according to our hypothesis on X2, it vanishes. From the equality (10.4),
for z ∈ X2, we see that the function fz on X1 satisfies the Guillemin
condition, and so, according to our hypothesis on X1, it vanishes. Thus we
have shown that the function f vanishes.

Proposition 10.3. Let X1 and X2 be symmetric spaces of compact
type. Let p be an integer ≥ 0. If f is a complex-valued function on X1

and θ is a complex symmetric p-form on X2, then the complex symmetric
(p+1)-form u = df · θ on the product X = X1 ×X2 satisfies the Guillemin
condition.

Proof: Let Z be a maximal flat totally geodesic torus of X and ξ be
a parallel vector field on Z. The torus Z is equal to the product Z1 × Z2,
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where Zj is a maximal flat totally geodesic torus of Xj , and the vector
field ξ can be written as the sum ξ = ξ1 + ξ2, where ξj is a parallel vector
field on Zj , for j = 1, 2. Since the 1-form df on X1 satisfies the Guillemin
condition, we have

∫
Z

u(ξ, ξ, . . . , ξ) dZ =
∫
Z1

(ξ1 · f) dZ1 ·
∫
Z2

θ(ξ2, ξ2, . . . , ξ2) dZ2 = 0.

We fix a maximal torus Tj of the group Gj and a system of positive
roots Δj for the complexification of the Lie algebra of Gj . We then consider
the maximal torus T1 × T2 of G and the system Δ1 ∪ Δ2 of positive roots
for the complexification of the Lie algebra of G.

We now suppose that X1 and X2 are irreducible symmetric spaces
which are not equal to simple Lie groups. Then the complexifications g1

and g2 of the Lie algebras of the groups G1 and G2 are simple. For j = 1, 2,
let γ1

j be the element of Γj which is the equivalence class of the irreducible
Gj-module gj .

Proposition 10.4. Let X1 and X2 be irreducible symmetric spaces
of compact type which are not equal to simple Lie groups. Let γj be
an element of Γj , for j = 1, 2; let θj be a highest weight vector of the

Gj-module C∞
γj

(T ∗
Xj ,C

). Suppose that the following two conditions hold:

(i) either the G1-module C∞
γ1 (X1) vanishes or γ2 �= γ1

2 ;

(ii) either the G2-module C∞
γ2 (X2) vanishes or γ1 �= γ1

1 .

Then the symmetric 2-form θ1 · θ2 on X = X1 ×X2 does not belong to the
space D0C

∞(TC).

Proof: Suppose that the symmetric 2-form h = θ1 · θ2 on X is equal
to D0ξ, where ξ is a section of TC over X. Since h is a highest weight
vector of C∞

(γ1,γ2)
(S2T ∗

C
) and the differential operator D0 is homogeneous,

we may suppose that ξ is a highest weight vector of C∞
(γ1,γ2)

(TC). Since the
multiplicities of the modules C∞

γ1 (X1) and C∞
γ2 (X2) are ≤ 1, according to

the equality (10.3) we may write

ξ = f1ξ2 + f2ξ1,

where fj ∈ C∞
γj

(Xj) and ξj ∈ C∞
γj

(TXj ,C) are either highest weight vectors
of these modules or equal to 0. Then we have

D0ξ = f1D0,X2ξ2 + f2D0,X1ξ1 + df1 · g�2(ξ2) + df2 · g�1(ξ1).

Since h(ηj , ηj) = 0, for all ηj ∈ TXj
and j = 1, 2, we obtain the relations

f1D0,X2ξ2 = f2D0,X1ξ1 = 0.
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Thus if f1 is non-zero, we see that D0,X2ξ2 vanishes; hence ξ2 is a Killing
vector field on X2 and so belongs to the G2-module C∞

γ (TX2,C), where
γ = γ1

2 . According to our hypothesis (i), we know that γ2 �= γ1
2 and

therefore ξ2 vanishes. Similarly, from the hypothesis (ii) we deduce that
either f2 or ξ1 vanishes. Thus we have shown that the vector field ξ and
the symmetric form h on X vanish, which leads to a contradiction.

Theorem 10.5. Let X1 and X2 be irreducible symmetric spaces of
compact type which are not equal to simple Lie groups. The symmetric
space X = X1 ×X2 is not rigid in the sense of Guillemin.

Proof: We choose elements γ1 ∈ Γ1 and γ2 ∈ Γ2 satisfying γ1 �= γ1
1

and γ2 �= γ1
2 . We also suppose that γ1 and γ2 do not correspond to

the trivial representations of G1 and G2, and that the modules C∞
γ1 (X1)

and C∞
γ2 (X2) do not vanish. Let f1 and f2 be highest weight vectors of

C∞
γ1 (X1) and C∞

γ2 (X2), respectively. Then we know that df1 and df2 are
highest weight vectors of C∞

γ1 (T ∗
X1,C

) and C∞
γ2 (T ∗

X2,C
). According to Propo-

sition 10.3, with p = 1, the real and imaginary parts of the complex 2-form
h = df1 · df2 on X satisfy the Guillemin condition. By Proposition 10.4,
the form h does not belong to the space D0C

∞(TC). Therefore either the
real or the imaginary part of h is not equal to a Lie derivative of the metric
of X, and so X is not rigid in the sense of Guillemin.

If the irreducible spaces X1 and X2 of Theorem 10.5 are equal to their
adjoint spaces, then so is their product X = X1 ×X2; under this hypothe-
sis, by Theorem 2.24 we know that the maximal flat Radon transform for
functions on X is injective. For example, according to Theorem 10.5 the
product RP

n×RP
n, with n ≥ 2, is not rigid in the sense of Guillemin, while

the maximal flat Radon transform for functions on this space is injective.
On the other hand, we shall see that this space is infinitesimally rigid (see
Theorem 10.19).

From Theorem 10.5 and Proposition 10.1, we infer that the product

X1 ×X2 × · · · ×Xp,

with p ≥ 2 and where each factor Xj , with 1 ≤ j ≤ p, is a symmetric space
of compact type, and where X1 and X2 are irreducible spaces which are
not equal to simple Lie groups, is not rigid in the sense of Guillemin.

Theorem 10.6. LetX1 andX2 be symmetric spaces of compact type.
There exists a 1-form on the symmetric space X = X1 ×X2 which satisfies
the Guillemin condition and is not exact.

Proof: For j = 1, 2, let fj be a non-constant real-valued function
on Xj . Then the 1-form u = f2df1 clearly satisfies

du = −df1 ∧ df2 �= 0.
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According to Proposition 10.3, with p = 0, the 1-form u on X satisfies the
Guillemin condition.

§2. Conformally flat symmetric spaces

Let (X, g) be a Riemannian manifold of dimension n. We consider the
automorphism of the vector bundle T ∗⊗T which sends u ∈ T ∗⊗T into u�

and is determined by the following: if u = β ⊗ ξ, where β ∈ T ∗ and ξ ∈ T ,
then u� is equal to g�(ξ)⊗ g�(β). Let B1 be the sub-bundle of B consisting
of those elements v of B for which the relation v(ξ1, ξ2, ξ3, ξ4) = 0 holds,
with ξ1, ξ2, ξ3, ξ4 ∈ T , whenever all the vectors ξj are tangent to the same
factor or whenever two of the ξj are tangent to Y and the other two are
tangent to Z.

We recall that, if X is a simply-connected symmetric space, then X is
isometric to the product X0 ×X+ ×X−, where X0 is a Euclidean space,
and X+ and X− are symmetric spaces of compact and non-compact type,
respectively (see Proposition 3.4 in Chapter V of [36]); we call X0 the
Euclidean factor ofX. IfX is a locally symmetric space, we say thatX does
not admit a Euclidean factor at a point x ∈ X if there exists a neighborhood
of x isometric to a subset of a product X+ ×X−, where X+ and X− are
symmetric spaces of compact and non-compact type, respectively.

Let (Y, gY ) and (Z, gZ) be two Riemannian manifolds. We suppose
that X is the product manifold Y × Z endowed with the product metric
g = gY + gZ . Here we use the conventions concerning tensors on a product
established in §1. As above, we identify T ∗

Y ⊗ T ∗
Z with the sub-bundle

of S2T ∗; then it is easily verified that

τ̂B(T ∗
Y ⊗ T ∗

Z) ⊂ B1.

We consider the sub-bundles

gY1 = {u ∈ T ∗
Y ⊗ TY | ρ(u)gY = 0 }, gZ1 = { v ∈ T ∗

Z ⊗ TZ | ρ(v)gZ = 0 }.

By means of the decompositions (10.1), we identify the bundles pr−1
Y gY1 and

pr−1
Z gZ1 with sub-bundles of T ∗ ⊗ T , which we also denote by gY1 and gZ1 ,

respectively. The sub-bundle

gY,Z1 = {u− u� | u ∈ T ∗
Y ⊗ TZ }

of T ∗ ⊗ T is isomorphic to T ∗
Y ⊗ TZ ; it is clear that gY,Z1 ⊂ g1. Moreover,

we have:

Lemma 10.7. Let (Y, gY ) and (Z, gZ) be two Riemannian manifolds.
Let (X, g) be the Riemannian product (Y ×Z, gY + gZ). Then we have the
equality

g1 = gY1 ⊕ gZ1 ⊕ gY,Z1 .
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We now suppose that (Y, gY ) and (Z, gZ) are connected locally sym-
metric spaces. We set

B̃Y,Z = ρ(gY,Z1 )R;

then we have the surjective morphism of vector bundles

(10.5) T ∗
Y ⊗ TZ → B̃Y,Z ,

sending u into ρ(u− u�)R. It is easily verified that

B̃Y,Z ⊂ B1.

In fact, B̃Y,Z is the sub-bundle of B1 consisting of all elements v of B1 for
which there exists an element u ∈ T ∗

Y ⊗ TZ such that the equalities

v(ξ1, η1, η2, η3) = RZ(u(ξ1), η1, η2, η3),

v(η1, ξ1, ξ2, ξ3) = −RY (u�(η1), ξ1, ξ2, ξ3)

hold for all ξ1, ξ2, ξ3 ∈ TY and η1, η2, η3 ∈ TZ .
The following result is given by Lemma 1.2 of [19].

Lemma 10.8. Let (Y, gY ) and (Z, gZ) be two connected locally sym-
metric spaces. Let (X, g) be the Riemannian product (Y × Z, gY + gZ).
Then we have

(10.6) B̃ = B̃Y ⊕ B̃Z ⊕ B̃Y,Z .

Let x = (y, z) be a point of X, with y ∈ Y and z ∈ Z; if Y (or Z) does
not admit a Euclidean factor at y (or z), then the mapping (10.6) is an
isomorphism at the point x.

When Y and Z have constant curvature equal to KY and KZ , respec-
tively, we know that B̃Y = {0} and B̃Z = {0} (see §3, Chapter I); from the
above discussion and the equality (10.6), for u ∈ T ∗

Y ⊗ TZ , we deduce that

ρ(u− u�)R = −2τB(u′ ⊗ (KY gY −KZgZ)),

where u′ = (id ⊗ g�Z)u, and hence that

(10.7) B̃ = τB((T ∗
Y ⊗ T ∗

Z) ⊗ (KY gY −KZgZ)).

The first assertion of the following proposition is a direct consequence
of the equality (10.7) and its second assertion is proven in [16, §2].
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Proposition 10.9. Let (Y, gY ) and (Z, gZ) be two Riemannian man-
ifolds of constant curvature KY and KZ , respectively. Assume that the
dimension of Y is ≥ 1 and that KZ �= 0. Let (X, g) be the Riemannian
product (Y × Z, gY + gZ). If either dimY = 1 or if KZ = −KY , then we
have

(10.8) B̃ = τ̂B(T ∗
Y ⊗ TZ);

moreover, when the dimension of X is ≥ 4, the equality (1.48) holds.

In fact, under the hypotheses of the preceding proposition, when the
dimension of X is equal to 3, the rank of the vector bundle H ∩ (T ∗ ⊗ B̃)
is equal to 3.

We no longer suppose that X is a product manifold; we now assume
that the dimension n of X is ≥ 3. We consider the orthogonal decomposi-
tion

B = τ̂B(S2T ∗) ⊕B0

given in §1, Chapter I.
The following result is given by Lemma 3.4 of [13].

Lemma 10.10. Let x be a point of X and let v be an element of Bx.
Then the relation ρ(u)v = 0 holds for all u ∈ g1,x if and only if there exists
a ∈ R such that v = aτ̂B(g)(x).

The Weyl tensor W of (X, g) is the section of the sub-bundle B0 which
is the orthogonal projection of the Riemann curvature tensor R onto B0.
Then we have

(10.9) R = W + τ̂B(h),

where h is the section of S2T ∗ given by

h =
1

n− 2

(
r(g)
n− 1

g − 2Ric
)
.

If (X, g) is an Einstein manifold, from formula (10.9) we infer that the Weyl
tensor W of X vanishes if and only if X has constant curvature. When
n ≥ 4, a classic result due to Weyl asserts that the metric g is conformally
flat if and only if the Weyl tensor W vanishes (see [15, §3]).

Lemma 10.11. The Weyl tensor W vanishes if and only if we have
the inclusion

(10.10) B̃ ⊂ τ̂B(S2T ∗).
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Proof: Let x be a point of X and let ξ be an element of Tx satisfying
(Lξg)(x) = 0. By (10.9), we obtain the equality

(LξR)(x) = (LξW )(x) + τ̂B((Lξh)(x)),

where (LξW )(x) belongs to B0 and τ̂B((Lξh)(x)) is an element of S2T ∗.
Hence (LξR)(x) belongs to τ̂B(S2T ∗) if and only if (LξW )(x) = 0. We
therefore see that the inclusion B̃ ⊂ τ̂B(S2T ∗) is valid if and only if the re-
lation (LξW )(x) = 0 holds for all x ∈ X and ξ ∈ Tx satisfying (Lξg)(x) = 0.
Now according to formula (1.1), this last condition is equivalent to the fact
that the relation ρ(u)W = 0 holds for all u ∈ g1. By Lemma 10.10, we
know that it is equivalent to W = 0.

The following theorem is due to S. T. Yau (see [57, §5]).

Theorem 10.12. Let (Y, gY ) and (Z, gZ) be two connected Rieman-
nian manifolds. Let (X, g) be the Riemannian product (Y × Z, gY + gZ).
If the dimension of X is ≥ 3 and if neither Y nor Z is reduced to a point,
then the following assertions are equivalent:

(i) The manifold (X, g) is conformally flat.
(ii) The manifolds (Y, gY ) and (Z, gZ) have constant curvature, and if

both factors Y and Z are of dimension ≥ 2, the curvature of (Y, gY ) is the
negative of the curvature of (Z, gZ).

The following theorem is a direct consequence of Proposition 10.9 and
Theorem 10.12.

Theorem 10.13. Let (Y, gY ) and (Z, gZ) be two connected Rieman-
nian manifolds of dimension ≥ 1. Let (X, g) be the Riemannian product
(Y × Z, gY + gZ). Assume that (X, g) is a conformally flat Riemannian
manifold of dimension n ≥ 3. Then the inclusion (10.10) holds; moreover,
if n ≥ 4, then the equality (1.48) holds.

In fact, under the hypotheses of Theorem 10.13, if (X, g) is not flat,
then the equality (10.8) holds.

Theorem 10.14. Let (X, g) be a Riemannian manifold of dimen-
sion ≥ 4. The following assertions are equivalent:

(i) The manifold (X, g) is locally symmetric and conformally flat.
(ii) The inclusion (10.10) and the equality (1.48) hold.

Proof: First, Lemmas 1.4 and 10.11 give us the implication (ii) ⇒ (i).
Conversely, we begin by remarking that a locally homogeneous irreducible
Riemannian manifold is Einstein; moreover, if the Weyl tensor of such a
manifold vanishes, we saw above that it has constant curvature and so
B̃ = {0} (see §3, Chapter I). In general, if (i) holds, then X is locally
isometric to a product of symmetric spaces which are either irreducible or
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flat; if this product is non-trivial, according to Theorem 10.12 the manifold
X is locally isometric to a product of two Riemannian manifolds (Y, gY )
and (Z, gZ) satisfying condition (ii) of Theorem 10.12. In this case, the
desired result follows from Theorem 10.13.

§3. Infinitesimal rigidity of products of symmetric spaces

Let (X, g) be a compact symmetric space. For x ∈ X, the set CX,x
of vectors ξ of Tx − {0}, for which ExpxRξ is a closed geodesic of X, is a
dense subset of Tx.

Let (Y, gY ) and (Z, gZ) be two compact symmetric spaces. We suppose
that (X, g) is equal to the Riemannian product (Y × Z, gY + gZ).

Let h be a symmetric 2-form on X. For y ∈ Y and ξ ∈ CY,y, we
consider the 1-form hξ on Z defined by

hξ(η) =
1
L

∫ L

0

h(γ̇(t), η) dt,

for η ∈ TZ , where γ(t) = Expxtξ and γ̇(t) is the tangent vector to the closed
geodesic γ of length L. We have hλξ = λhξ, for all ξ ∈ CY,y and λ ∈ R,
with λ �= 0.

We say that the product Y × Z satisfies condition (A) if, for all sym-
metric 2-forms h ∈ C∞(T ∗

Y ⊗T ∗
Z) on X satisfying the zero-energy condition,

there exists a section h1 of T ∗
Y ⊗ T ∗

Z over X such that

(10.11) h1(ξ, η) = hξ(η),

for all ξ ∈ CY,y, with y ∈ Y , and η ∈ TZ . This condition on the product
Y × Z means that averaging the sections of T ∗

Y ⊗ T ∗
Z satisfying the zero-

energy condition over the closed geodesics of Y is a C∞-process.
The following general result is proved in [19]:

Theorem 10.15. Let Y and Z be two compact symmetric spaces.
Suppose that the following conditions hold:

(i) either the universal covering space of Y or the universal covering
space of Z does not admit a Euclidean factor;

(ii) the spaces Y and Z are infinitesimally rigid;
(iii) the 1-forms on Y and on Z satisfying the zero-energy condition

are exact;
(iv) the product Y × Z satisfies condition (A).

Then the product X = Y × Z is infinitesimally rigid.

If Y is a flat torus, or a projective space different from a sphere, or the
complex quadric Qn of dimension n ≥ 3, in [19] we showed that the product
Y × Z satisfies condition (A). In fact if Y is a projective space different
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from a sphere, the geodesic flow ϕt on the unit sphere bundle SY of TY of
Y is periodic of period π; in this case, if h is a section of C∞(T ∗

Y ⊗T ∗
Z) over

X satisfying the zero-energy condition, we define a function h1 on TY ×TZ
by

h1(ξ, η) =
1
π

∫ π

0

h(ϕtξ, η) dt,

for ξ ∈ SY and η ∈ TZ , and by setting h1(λξ, η) = λh1(ξ, η) for ξ ∈ SY ,
η ∈ TZ and λ ∈ R. In [19], we verified that h1 arises from a C∞-section of
T ∗
Y ⊗ T ∗

Z which we also denote by h1. Since CY,y = TY,y − {0}, for y ∈ Y ,
we see that the relation (10.11) holds, and therefore so does condition (A).
Since projective spaces, different from spheres, flat tori and the complex
quadrics of dimension ≥ 3 are infinitesimally rigid and the 1-forms on
these spaces satisfying the zero-energy condition are exact (see Chapters III
and VI), from the preceding theorem we deduce:

Theorem 10.16. Let Y be a compact symmetric space which is either
a projective space different from a sphere, or a flat torus, or a complex
quadric of dimension ≥ 3. Let Z be a symmetric space of compact type
which is infinitesimally rigid; assume that the 1-forms on Z satisfying the
zero-energy condition are exact. If Y is a flat torus, assume moreover that
the universal covering space of Z does not admit a Euclidean factor. Then
the product X = Y × Z is infinitesimally rigid.

From Theorems 7.4, 7.12, 9.6, 9.9, 9.23 and 9.28 and the preceding
theorem, we deduce the following:

Theorem 10.17. Let m,n be given integers. Let Y be a compact
symmetric space which is either a projective space different from a sphere,
or a flat torus, or a complex quadric of dimension ≥ 3. Let Z be a sym-
metric space of compact type which is either the Grassmannian G̃R

m,n,

with m,n ≥ 5, or the Grassmannian GC

m,n, with m,n ≥ 2, or the Grass-

mannian GH

m,n, with m,n ≥ 5. Then the product X = Y × Z is infinitesi-
mally rigid.

The following theorem is also proved in [19].

Theorem 10.18. Let Y and Z be two compact symmetric spaces
which are infinitesimally rigid. Assume that the 1-forms on Y and Z sat-
isfying the zero-energy condition are exact. Then a 1-form on the product
manifold X = Y × Z satisfies the zero-energy condition if and only if it is
exact.

Since the 1-forms on a projective space, different from a sphere, on
a flat torus, or on the complex quadric Qn of dimension n ≥ 3, which
satisfy the zero-energy condition, are exact, the following theorem is a
direct consequence of Theorems 10.16 and 10.18.
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Theorem 10.19. A product of Riemannian manifolds

X = X1 ×X2 × · · · ×Xr,

where each factor Xj is either a projective space different from a sphere, or
a flat torus, or a complex quadric of dimension ≥ 3, is infinitesimally rigid.

§4. The infinitesimal rigidity of GR

2,2

We consider the product manifold X = Y × Z, where the manifolds
Y and Z are equal to the sphere S2. We endow Y and Z with the metric
g0 of S2 of constant curvature 1 and consider the product metric on X.
We denote by τ the anti-podal involution of S2; let σ be the involution
τ × τ of X. We consider the Riemannian metrics g′ on the real Grass-
mannians G̃R

2,2 and GR

2,2 defined in §1, Chapter IV and denoted there by g.
By Proposition 4.3, we know that the Grassmannian G̃R

2,2 endowed with
the metric 2g′ is isometric to the manifold X = S2 × S2 endowed with
the product metric. According to Proposition 2.22, the sphere S2 is not
infinitesimally rigid; then Proposition 10.1 tells us that the Grassmannian
G̃R

2,2 is not infinitesimally rigid. If Λ is the group of isometries of X gen-
erated by σ, in §9, Chapter V we saw that the Riemannian manifold X/Λ
endowed with the metric induced by the metric of X is isometric to the
real Grassmannian GR

2,2 endowed with the metric 2g′.
This section is devoted to the proof of the following two theorems:

Theorem 10.20. The real Grassmannian GR

2,2 is infinitesimally rigid.

Theorem 10.21. A differential form of degree 1 on the real Grass-
mannian GR

2,2 satisfies the zero-energy condition if and only if it is exact.

By Proposition 4.3, we know that the space RP
2 ×RP

2 endowed with
the product metric is isometric to the quotient of the Grassmannian GR

2,2,
endowed with the metric 2g′, by its group of isometries generated by the
involutive isometry Ψ considered in §1, Chapter IV. Thus from Theo-
rem 10.20 and Proposition 2.19, we deduce that the space RP

2 × RP
2 is

infinitesimally rigid; this last result is also given by Theorem 10.17. From
Theorem 10.21, we infer that a 1-form on RP

2×RP
2 satisfies the zero-energy

condition if and only if it is exact; this last result can also be obtained from
Theorems 3.26 and 10.18.

According to Propositions 2.19 and 2.20, we know that Theorems 10.20
and 10.21 are respectively equivalent to the following two results:

Theorem 10.22. A symmetric 2-form on the product S2×S2, which
is even with respect to the involution σ and satisfies the zero-energy con-
dition, is a Lie derivative of the metric.
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Theorem 10.23. A differential 1-form on the product S2×S2, which
is even with respect to the involution σ and satisfies the zero-energy con-
dition, is exact.

We consider the Fubini-Study metric g̃ on the complex projective
space CP

1 of constant curvature 4, and various objects and notions as-
sociated to this space in §4, Chapter III. In particular, we consider the
isometry ϕ from (S2, g0) to (CP

1, 4g̃) and the involutive isometry Ψ of CP
1.

We say that a symmetric p-form on CP
1 is even (resp. odd) if Ψ∗u = εu,

where ε = 1 (resp. ε = −1). We identify CP
1 with the Hermitian symmet-

ric space SU(2)/K ′, where K ′ is the subgroup S(U(1) × U(1)) of SU(2).
Let Γ′ denote the dual of the group SU(2). If k is an integer ≥ 0, let γk be
the element of Γ′ corresponding to the irreducible SU(2)-module Hk; we
also consider the complex-valued function f̃k on CP

1, which belongs to Hk,
and we recall that f̃k = (f̃1)k.

For the remainder of this section, we let X be the product manifold
Y × Z, where the manifolds Y and Z are equal to the complex projective
line CP

1. We endow Y and Z with the Fubini-Study metrics gY and gZ of
constant curvature 4, respectively, and we consider the product metric g
on X. We denote by Ψ′ the involutive isometry Ψ × Ψ of CP

1 × CP
1.

We say that a symmetric p-form u on X is even (resp. odd) if Ψ′∗u = εu,
where ε = 1 (resp. ε = −1). We consider the subspaces HY,k = C∞

γk
(Y )

of C∞(Y ) and HZ,k = C∞
γk

(Z) of C∞(Z), which correspond to the space
Hk of functions on CP

1; we also denote by fY (resp. by fZ) the function
on Y belonging to HY,1 (resp. on Z belonging to HZ,1) corresponding to
the function f̃1 on CP

1.
We view X as the symmetric space G/K of compact type, where G

is the group SU(2) × SU(2) and K = K ′ ×K ′. We identify the dual Γ of
the group G with Γ′ × Γ′. The complexification g of the Lie algebra of G
is equal to the Lie algebra sl(2)⊕ sl(2). The group of all diagonal matrices
of G is a maximal torus of G, and the complexification t of the Lie algebra
of this torus is a Cartan subalgebra of the semi-simple Lie algebra g. For
1 ≤ j ≤ 4, the linear form λj : t → C, sending the diagonal matrix, whose
diagonal entries are a1, a2, a3, a4, into aj , is purely imaginary on t0. Then
{λ1 − λ2, λ3 − λ4} is a positive system for the roots of g with respect to t.

According to the commutativity of diagram (3.25), in order to prove
Theorem 10.21 (resp. Theorem 10.22) it suffices to show that an even sym-
metric 2-form (resp. 1-form) on the product X = CP

1×CP
1, which satisfies

the zero-energy condition, is a Lie derivative of the metric (resp. is exact).
The remainder of this section is devoted to the proof of these two assertions.

We use the notation introduced in §1. We view the metrics gY and gZ
as sections over X of the sub-bundles S2T ∗

Y and S2T ∗
Z of S2T ∗; then we

have g = gY + gZ . Let F0 be the sub-bundle of rank 2 of S2T ∗ generated



342 X. PRODUCTS OF SYMMETRIC SPACES

by the sections gY and gZ ; clearly, F = F0 ⊕ (T ∗
Y ⊗ T ∗

Z) is a homogeneous
sub-bundle of S2T ∗ invariant under the isometry Ψ′.

Let h be a symmetric 2-form on X. According to the decomposi-
tion (10.2), we may write h = k1 + k2 + k3, where k1, k2, k3 are sections
of S2T ∗

Y , S2T ∗
Z and T ∗

Y ⊗ TZ , respectively. For y ∈ Y and z ∈ Z, by means
of the isometry ϕ, we apply the equality (1.64) to the restriction of k1 to
Y × {z} and to the restriction of k2 to {y} × Z. We then see that there
exist a vector field ξ and a section h1 of F over X such that

h = Lξg + h1.

Since the differential operator D0 is homogeneous, by (2.1) it follows that

(10.12)
C∞
γ (S2T ∗

C
) = D0C

∞
γ (TC) + C∞

γ (FC),

C∞
γ (S2T ∗

C
)ev = D0C

∞
γ (TC)ev + C∞

γ (FC)ev,

for all γ ∈ Γ.
Let f ′Y and f ′Z be given elements of H1,Y and H1,Z , respectively; ac-

cording to the relation (3.31), we know that there exist complex Killing
vector fields ξY on Y and ξZ on Z such that

g�Y (ξY ) = (∂ − ∂̄)f ′Y , g�Z(ξZ) = (∂ − ∂̄)f ′Z .

Thus if f ′′Y and f ′′Z are arbitrary complex-valued functions on Y and Z,
respectively, we easily see that

(10.13) D0(f ′′Y ξZ) = df ′′Y · (∂ − ∂̄)f ′Z , D0(f ′ZξY ) = (∂ − ∂̄)fY · df ′′Z ;

moreover, according to formulas (1.5) and (3.33), and the derivation of the
relation (3.34), we see that

(10.14)
D0(f ′′Z(df ′Y )�) = −8f ′Y f

′′
ZgY + df ′Y · df ′′Z ,

D0(f ′′Y (df ′Z)�) = −8f ′′Y f
′
ZgZ + df ′′Y · df ′Z .

Let γ be an element of Γ. Unless γ is of the form (γk, γl), where k, l
are integers ≥ 0, we know that C∞

γ (X) = {0} and, by Proposition 3.28,
we have C∞

γ (FC) = {0}; moreover, according to Proposition 3.28 and the
equality (10.3), we see that C∞

γ (T ∗
C
) = {0}, unless γ is of the form (γk, γl),

where k, l are integers ≥ 0 satisfying k + l > 0.
Now let k, l ≥ 0 be given integers and suppose that γ is the element

(γk, γl) of Γ. From the relations (3.29), we obtain the following equalities
among irreducible G-modules

(10.15) C∞
γ (X) = C∞

γk
(Y )C∞

γl
(Z) =

{
C∞
γ (X)ev if k + l is even,

C∞
γ (X)odd if k + l is odd;
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moreover, we see that the function fkY f
l
Z on X is a highest weight vector

of this G-module. From the relations (10.15), it follows that

C∞
γ (FC) = C∞

γk
(Y )C∞

γl
(Z)gY + C∞

γk
(Y )C∞

γl
(Z)gZ + C∞

γk
(T ∗
Y,C) · C∞

γl
(T ∗
Z,C);

moreover, we infer that the G-module C∞
γ (FC)ev is given by

C∞
γ (FC)ev = C∞

γk
(Y )C∞

γl
(Z)gY + C∞

γk
(Y )C∞

γl
(Z)gZ

+ C∞
γk

(T ∗
Y,C)ev · C∞

γl
(T ∗
Z,C)ev

+ C∞
γk

(T ∗
Y,C)odd · C∞

γl
(T ∗
Z,C)odd

when k + l is an even integer, and by

C∞
γ (FC)ev = C∞

γk
(T ∗
Y,C)ev · C∞

γl
(T ∗
Z,C)odd + C∞

γk
(T ∗
Y,C)odd · C∞

γl
(T ∗
Z,C)ev

when k + l is an odd integer. By Proposition 3.28, it follows that the
G-module C∞

γ (FC)ev vanishes whenever one of the integers k and l is equal
to 0 and the other one is odd. According to (3.30), we also see that

C∞
γ (FC)ev = (∂ − ∂̄)H1,Y · dHl,Z

when k = 1 and the integer l is even, and that

C∞
γ (FC)ev = dHk,Y · (∂ − ∂̄)H1,Z

when l = 1 and the integer k is even. From the previous relations and the
equalities (10.3) and (10.13), we then obtain the inclusion

(10.16) C∞
γ (FC)ev ⊂ D0C

∞
γ (TC)

whenever one of the integers k and l is equal to 1 and the other one is even.
Let h be a highest weight vector of the G-module C∞

γ (FC)ev. Ac-
cording to the equalities (3.30), the observations concerning highest weight
vectors made in §4, Chapter III and the descriptions of this G-module given
above, if the integers k and l are positive, we see that the section h of FC

can be written in the form

h = fk−1
Y f l−1

Z

(
fY fZ(a1gY + a2gZ) + b1dfY · dfZ + b2(∂− ∂̄)fY · (∂− ∂̄)fZ

)
,

with a1, a2, b1, b2 ∈ C, when k + l is even, and in the form

(10.17) h = fk−1
Y f l−1

Z (b1dfY · (∂ − ∂̄)fZ + b2(∂ − ∂̄)fY · dfZ
)
,
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with b1, b2 ∈ C, when k+ l is odd. Moreover, if one of the integers k and l
is equal to 0 and the other one is even, we may write

(10.18) h = fkY f
l
Z(a1gY + a2gZ),

with a1, a2 ∈ C.
According to formulas (10.14), when l is an odd integer and k = 1, we

know that the section

D0(f lZ(dfY )�) = −8fY f lZgY + dfY · df lZ

of FC belongs to D0C
∞
γ (TC)ev and is a highest weight vector of C∞

γ (FC)ev;
on the other hand, when k is an odd integer and l = 1, the section

D0(fkY (dfZ)�) = −8fkY fZgZ + dfkY · dfZ

of FC belongs to D0C
∞
γ (TC)ev and is a highest weight vector of C∞

γ (FC)ev.
According to (10.3), (3.29) and (3.30), the G-module C∞

γ (T ∗
C
)ev is

given by
C∞
γ (T ∗

C
)ev = Hk,Y · dHl,Z + Hl,Z · dHk,Y

when k + l is an even positive integer, and by

C∞
γ (T ∗

C
)ev = Hk,Y · (∂ − ∂̄)Hl,Z + Hl,Z · (∂ − ∂̄)Hk,Y

when k + l is an odd integer. If k + l ≥ 1, according to observations
concerning highest weight vectors made in §4, Chapter III, a highest weight
vector β of the G-module C∞

γ (T ∗
C
)ev can be written in the form

β = a1f
k
Y df

l
Z + a2f

l
Z df

k
Y ,

with a1, a2 ∈ C, when k + l is even, and in the form

β = a1f
k
Y (∂ − ∂̄)f lZ + a2f

l
Z (∂ − ∂̄)fkY ,

with a1, a2 ∈ C, when k + l is odd. Moreover when k + l ≥ 1, we see that
the section d(fkY df

l
Z) of T ∗

C
is a highest weight vector of the G-submodule

dC∞
γ (X) of C∞

γ (T ∗
C
).

Let k, l ≥ 0 be given integers. We consider the real-valued function
Fk,l on R defined by

Fk,l(t) = sink t · cosl t,

for t ∈ R, and we set

Ak,l =
∫ π

0

Fk,l(t) dt, Bk,l =
∫ π

0

Fk,l(2t) dt.
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We know that Ak,l = Bk,l > 0 when k and l are both even, and that Ak,l
and Bk,l vanish when k and l are both odd. From the relation

Fk,l = Fk+2,l + Fk,l+2,

we obtain the formula

(10.19) Ak,l = Ak+2,l +Ak,l+2.

Clearly, we have
Fk,l(π/2 − t) = Fl,k(t),

for t ∈ R; when k + l is even, the function Fk,l is π-periodic and so, from
the preceding relation, we deduce the equality

(10.20) Ak,l = Al,k.

We consider the function Fk = Fk,k and we write Ak = Ak,k; when k ≥ 1,
we also consider the real-valued function F̃k on R defined by

F̃k(t) = (k − 1) cos2 2t− sin2 2t.

Then for t ∈ R, we have

Fk(t) =
1
2k
Fk,0(2t), Ak =

1
2k+1

∫ 2π

0

sink t dt;

hence we easily verify that

(10.21) F ′′
1 (t) = −2 sin 2t, F ′′

k = kFk−2 · F̃k,

for all t ∈ R and k ≥ 2, and, using integration by parts, we obtain the
formula

(10.22) Ak = 4
k + 2
k + 1

Ak+2.

The relations (10.19) and (10.20) imply that

(10.23) Ak = 2Ak+2,k.

According to (10.19) and (10.23), we have

Ak+4,k = Ak+2,k −Ak+2;
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hence by (10.22), we see that

(10.24) Ak+4,k =
k + 3
k + 1

Ak+2.

We easily verify that

Fk(t) cos2 2t = Fk+4,k(t) + Fk,k+4(t) − 2Fk+1(t),

for t ∈ R; then by (10.20) and (10.24), we obtain the formula

(10.25)
∫ π

0

Fk(t) cos2 2t dt =
4

k + 1
Ak+2.

The closed geodesics of CP
1 are described in §4, Chapter III. Let δ1

(resp. δ2) be the closed geodesic γu,u′ of CP
1 corresponding to the pair of

unit vectors u = (1, 0) and u′ = (0, 1) (resp. u = (0, 1) and u′ = (1, 0)).
For θ ∈ R, let δθ be the closed geodesic γu,u′ of CP

1 corresponding to the
pair of unit vectors

u =
1√
2

(1, 1), u′ =
eiθ√

2
(−1, 1);

when θ = π, we write δ3 = δθ. For all 0 ≤ t ≤ π, by (3.20) and (3.21) we
easily verify that

(10.26)

f̃1(δ1(t)) = f̃1(δ2(t)) = sin t · cos t,

〈df̃1, δ̇1(t)〉 = 〈df̃1, δ̇2(t)〉 = cos 2t,

〈(∂ − ∂̄)f̃1, δ̇1(t)〉 = −〈(∂ − ∂̄)f̃1, δ̇2(t)〉 = 1,

f̃1(δθ(t)) = 1
2 (cos 2t+ i sin θ · sin 2t),

〈df̃1, δ̇θ(t)〉 = − sin 2t+ i sin θ · cos 2t,

〈(∂ − ∂̄)f̃1, δ̇θ(t)〉 = cos θ.

In particular, for 0 ≤ t ≤ π, we have

f̃1(δ3(t)) = 1
2 cos 2t, 〈df̃1, δ̇3(t)〉 = − sin 2t, 〈(∂ − ∂̄)f̃1, δ̇3(t)〉 = −1.

For θ ∈ R, we consider the closed geodesics η1, η2, η3, ξθ1 and ξθ2 of X
defined by

η1(t) = (δ1(t), δ1(t)), η2(t) = (δ1(t), δ2(t)), η3(t) = (δ1(t), δ3(t)),

ξθ1(t) = (δ1(t), δθ(t)), ξθ2(t) = (δθ(t)), δ1(t)),
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for all 0 ≤ t ≤ π. If η is one of these closed geodesics of X and u is a
section of SpT ∗ over X, then we have

(10.27)
∫
η

u =
1

2p/2

∫ π

0

u(η̇(t), η̇(t), . . . , η̇(t)) dt.

Let k, l ≥ 0 be given integers. We define a function ψk,l on R
2 by

ψk,l(t, θ) =
1

2k+l−1
cos θ · Fk,1(2t) · (cos 2t+ i sin θ · sin 2t)l,

for t, θ ∈ R; we see that

(10.28)
∂ψk,l
∂θ

(t, 0) =
il

2k+l−1
Fk+1,l(2t),

for t ∈ R.
We now consider the sections

h1 = fkY f
l
Z dfY · (∂ − ∂̄)fZ , h2 = fkY f

l
Z (∂ − ∂̄)fY · dfZ

of FC. According to the formulas (10.26), we see that

h1(η̇3(t), η̇3(t)) = − 1
2k+l−1

Fk,l+1(2t), h1(ξ̇θ1(t), ξ̇θ1(t)) = ψk,l(t, θ),

h2(η̇3(t), η̇3(t)) = − 1
2k+l−1

Fk+1,l(2t), h2(ξ̇θ2(t), ξ̇θ2(t)) = ψl,k(t, θ),

for all 0 ≤ t ≤ π and θ ∈ R. For j = 1, 2, we consider the real-valued
function Pj on R defined by

Pj(θ) =
∫
ξθ

j

hj .

According to the relations (10.27) and (10.28), we see that

(10.29) P ′
1(0) =

il

2k+l
Bk+1,l, P ′

2(0) =
ik

2k+l
Bl+1,k.

Lemma 10.24. Let k, l ≥ 1 be given integers. Suppose that k + l is
odd.

(i) If l is even, then the section

fkY f
l
Z dfY · (∂ − ∂̄)fZ

of FC does not satisfy the zero-energy condition.
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(ii) If k is even, then the section

fkY f
l
Z (∂ − ∂̄)fY · dfZ

of FC does not satisfy the zero-energy condition.

Proof: If the integer l (resp. k) is even and positive, according to the
equalities (10.29) and the properties of the coefficients Br,s given above, we
see that P ′

1(0) (resp. P ′
2(0)) is non-zero; therefore there exists an element

θ1 ∈ R (resp. θ2 ∈ R) such that the integral P1(θ1) (resp. P2(θ2)) does not
vanish.

Lemma 10.25. Let k, l be given integers and b1, b2 be given complex
numbers. Suppose that k + l is odd and that the section

h = b1f
k
Y f

l
Z dfY · (∂ − ∂̄)fZ + b2f

k
Y f

l
Z (∂ − ∂̄)fY · dfZ

of FC satisfies the zero-energy condition. Then the coefficient b1 vanishes
when k is even, and the coefficient b2 vanishes when k is odd.

Proof: According to the formulas (10.26), we see that

h(η̇3(t), η̇3(t)) = − 1
2k+l−1

(
b1Fk,l+1 + b2Fk+1,l

)
(2t),

for all 0 ≤ t ≤ π. Thus by (10.27), we have

∫
η3

h = − 1
2k+l

(b1Bk,l+1 + b2Bk+1,l).

The desired conclusion is a direct consequence of this equality and the
properties of the coefficients Br,s given above.

From Lemmas 10.24 and 10.25, we immediately deduce the following
result:

Lemma 10.26. Let k, l ≥ 2 be given integers and b1, b2 be given com-
plex numbers. Suppose that k + l is odd and that the section

h = b1f
k
Y f

l
Z dfY · (∂ − ∂̄)fZ + b2f

k
Y f

l
Z (∂ − ∂̄)fY · dfZ

of FC satisfies the zero-energy condition. Then we have b1 = b2 = 0 and
the section h vanishes.

We consider the sections

h3 = fkY f
l
Z dfY · dfZ , h4 = fkY f

l
Z (∂ − ∂̄)fY · (∂ − ∂̄)fZ
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of FC. According to the formulas (10.26), we see that

(10.30)
h3(η̇1(t), η̇1(t)) = h3(η̇2(t), η̇2(t)) = 2Fk+l(t) · cos2 2t,

h4(η̇1(t), η̇1(t)) = −h4(η̇2(t), η̇2(t)) = 2Fk+l(t),

for all 0 ≤ t ≤ π.

Lemma 10.27. Let k, l ≥ 1 be given integers and a1, a2, b1, b2 be given
complex numbers. Suppose that k + l is even and that the section

h = fk−1
Y f l−1

Z

(
fY fZ(a1gY + a2gZ) + b1dfY · dfZ + b2(∂ − ∂̄)fY · (∂ − ∂̄)fZ

)

of FC satisfies the zero-energy condition. Then the coefficient b2 vanishes,
and the relation

(10.31) (k + l − 1)(a1 + a2) + 8b1 = 0

holds.

Proof: According to the formulas (10.26) and (10.30), we see that

h(η̇1(t), η̇1(t)) = (a1 + a2)Fk+l(t) + 2(b1 cos2 2t+ b2)Fk+l−2(t),

h(η̇2(t), η̇2(t)) = (a1 + a2)Fk+l(t) + 2(b1 cos2 2t− b2)Fk+l−2(t),

for all 0 ≤ t ≤ π. Hence by means of the equalities (10.22), (10.25)
and (10.27), we have

∫
η1

h =
1
2

(
(a1 + a2) +

8
k + l − 1

(b1 + (k + l)b2)
)
·Ak+l,

∫
η2

h =
1
2

(
(a1 + a2) +

8
k + l − 1

(b1 − (k + l)b2)
)
·Ak+l.

Since k + l is even, we know that Ak+l > 0; as h satisfies the zero-energy
condition, we therefore obtain the relation

(k + l − 1)(a1 + a2) + 8(b1 + ε(k + l)b2) = 0,

for ε = 1,−1. This implies the desired assertion.
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Lemma 10.28. Let k, l ≥ 1 be given integers and a1, a2 be given
complex numbers. Suppose that k + l is odd and that the section

(10.32) β = a1f
k
Y (∂ − ∂̄)f lZ + a2f

l
Z (∂ − ∂̄)fkY

of T ∗
C

satisfies the zero-energy condition. Then the section β vanishes.

Proof: According to the formulas (10.26), we see that

β(η̇1(t)) = (la1 + ka2)Fk+l−1(t), β(η̇2(t)) = (ka2 − la1)Fk+l−1(t),

for all 0 ≤ t ≤ π. Thus by (10.27), we have

∫
η1

β =
1√
2

(la1 + ka2)Ak+l−1,

∫
η2

β =
1√
2

(ka2 − la1)Ak+l−1.

Since k + l is odd, we know that Ak+l−1 > 0; the desired conclusion is a
consequence of the preceding equalities.

We consider the group of translations Λ of R
2 generated by the vectors

(π, 0) and (0, π) and the torus W = R
2/Λ of dimension 2, which is the

quotient of R
2 by the group Λ. We endow W with the flat metric g′

induced by the standard Euclidean metric of R
2. Let � : R

2 → W be the
natural projection. Let (θ, ϕ) be the standard coordinate system of R

2.
Clearly, we have

�∗g′ = dθ ⊗ dθ + dϕ⊗ dϕ.

If h′ is a symmetric 2-form on W , then according to formula (3.1), we know
that

(10.33)

�∗(Dg′h
′)
(
∂

∂θ
,
∂

∂ϕ
,
∂

∂θ
,
∂

∂ϕ

)

=
1
2

{
∂2

∂θ2
(�∗h′)

(
∂

∂ϕ
,
∂

∂ϕ

)
+

∂2

∂ϕ2
(�∗h′)

(
∂

∂θ
,
∂

∂θ

)

− 2
∂2

∂θ∂ϕ
(�∗h′)

(
∂

∂θ
,
∂

∂ϕ

)}
.

Let
δ1 : [0, π] → CP

1, δ2 : [0, π] → CP
1

be closed geodesics of CP
1 parametrized by their arc-length. Let α1 and

α2 be the π-periodic real-valued functions on R determined by

αj(t) = f̃1(δj(t)),
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for j = 1, 2. The imbedding

ι : W → X

sending the point �(θ, ϕ) of W into (δ1(θ), δ2(ϕ)), with 0 ≤ θ, ϕ ≤ π, is
totally geodesic.

Let k, l ≥ 1 be given integers and a1, a2, b be given complex numbers.
We consider the section

(10.34) h = fk−1
Y f l−1

Z

(
fY fZ(a1gY + a2gZ) + b dfY · dfZ

)

of FC and the section

(10.35) β = a1f
k
Y df

l
Z + a2f

l
Z df

k
Y

of T ∗
C
. Then we have

�∗ι∗h = αk1α
l
2(a1 dθ ⊗ dθ + a2 dϕ⊗ dϕ) + b αk−1

1 αl−1
2

dα1

dθ

dα2

dϕ
dθ · dϕ.

According to formula (10.33), we see that the equality Dg′ι
∗h = 0 is equiv-

alent to the relation

(10.36) a1α
k
1

d2αl2
dϕ2

+ a2
d2αk1
dθ2

αl2 =
2b
kl

d2αk1
dθ2

· d
2αl2
dϕ2

.

Also we have

(10.37) �∗dι∗β = (a1 − a2)
dαk1
dθ

dαl2
dϕ

dθ ∧ dϕ.

We consider the functions Φk,l on R
2 and Ψl on R defined by

Φk,l(θ, ϕ) = la1 sin2 2θ · F̃l(ϕ) + ka2 sin2 2ϕ · F̃k(θ) − 8bF̃k(θ) · F̃l(ϕ),

Ψl(ϕ) = (la1 + 8b) F̃l(ϕ) − a2 sin2 2ϕ,

for θ, ϕ ∈ R. Then we have

(10.38)

Φk,l(0, 0) = −8(k − 1)(l − 1)b,

Φk,l(π/4, 0) = (l − 1)(la1 + 8b) = Ψl(0),

Φk,l(0, π/4) = (k − 1)(ka2 + 8b),

Ψl(π/4) = −(la1 + a2 + 8b).
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We now suppose that the geodesics δ1 and δ2 are equal to the geodesic
δ1 defined above; then we have

α1(t) = α2(t) = F1(t),

for all t ∈ R. In this case, by (10.21) the equality Dg′ι
∗h = 0 or the

relation (10.36) is equivalent to the equality

Fk−2(θ) · Fl−2(ϕ) · Φk,l(θ, ϕ) = 0,

for all θ, ϕ ∈ R, when k, l ≥ 2, and to the equality

sin 2θ · Fl−2(ϕ) · Ψl(ϕ) = 0,

for all θ, ϕ ∈ R, when k = 1 and l ≥ 2. Thus when k, l ≥ 2, the equality
Dg′ι

∗h = 0 is equivalent to the vanishing of the function Φk,l; furthermore
when k = 1 and l ≥ 2, the equalityDg′ι

∗h = 0 is equivalent to the vanishing
of the function Ψl.

Now suppose that the symmetric 2-form h on X given by (10.34) satis-
fies the zero-energy condition. According to Proposition 3.6, we know that
Dg′ι

∗h = 0. We first suppose that k, l ≥ 2; then the function Φk,l vanishes.
From the relations (10.38), we deduce the vanishing of the coefficients a1,
a2 and b. Therefore the section h vanishes in this case. Next, we suppose
that k = 1 and l ≥ 2; then the function Ψl vanishes. The relations (10.38)
give us the equalities la1 + 8b = 0 and a2 = 0. By a similar reasoning,
when l = 1 and k ≥ 2, we obtain the equalities ka2 + 8b = 0 and a1 = 0.

On the other hand, when k = l = 1, by (10.21) the relation (10.36) is
easily seen to be equivalent to the equality

(a1 + a2 + 8b) sin 2θ · sin 2ϕ = 0,

for all θ, ϕ ∈ R. Our hypothesis on h therefore implies that this last identity
holds; thus we obtain the relation a1 + a2 + 8b = 0, which is also given by
Lemma 10.27.

The previous discussion, together with the formulas (10.14), gives us
the following result:

Lemma 10.29. Let k, l ≥ 1 be given integers and a1, a2, b be given
complex numbers. Suppose that the section h of FC given by (10.34) sat-
isfies the zero-energy condition.

(i) If k, l ≥ 2, then the section h vanishes.
(ii) If k = 1 and l ≥ 2, then we have a2 = 0 and la1 = −8b, and the

section h is given by

(10.39) h = −a1

8
D0(f lZ(dfY )�).
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(iii) If l = 1 and k ≥ 2, then we have a1 = 0 and ka2 = −8b, and the
section h is given by

(10.40) h = −a2

8
D0(fkY (dfZ)�).

(iv) If k = l = 1, then we have a1 + a2 + 8b = 0 and the section h is
given by

(10.41) h = −1
8
(
a1D0(fZ(dfY )�) + a2D0(fY (dfZ)�)

)
.

Lemma 10.30. Let k, l ≥ 1 be given integers and a1, a2 be given com-
plex numbers. Suppose that the section β of T ∗

C
given by (10.35) satisfies

the zero-energy condition. Then we have a1 = a2 and the section β is given
by β = a1d(fkY f

l
Z).

Proof: We consider the torus W defined above and the imbedding
ι : W → X corresponding to the geodesics δ1 = δ1 and δ2 = δ1. According
to Proposition 3.6, we know that dι∗β = 0. The equality (10.37) tells us
that

kl(a1 − a2)Fk−1(θ) · Fl−1(ϕ) · cos 2θ · cos 2ϕ = 0,

for all θ, ϕ ∈ R. This implies the desired relation a1 = a2.

Lemma 10.31. Let k ≥ 0 be a given even integer and a1, a2 be given
complex numbers. Suppose that the section

h = fkY (a1gY + a2gZ)

of FC satisfies the zero-energy condition. Then we have a1 = a2 = 0 and
the section h vanishes.

Proof: Let z be a given point of Z and let y be a point of Y such
that fY (y) �= 0. We consider the closed geodesics η′ and η′′ of X defined
by

η′(t) = (δ1(t), z), η′′(t) = (y, δ1(t)),

for 0 ≤ t ≤ π. Then we see that

h(η̇′(t), η̇′(t)) = a1Fk(t), h(η̇′′(t), η̇′′(t)) = a2f
k
Y (y),

for 0 ≤ t ≤ π; it follows that

∫
η′
h = a1Ak,

∫
η′′
h = πa2f

k
Y (y).
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Since Ak is positive and fY (y) is non-zero, the vanishing of these integrals
implies that a1 = a2 = 0.

Let k ≥ 0 be an even integer; the proof of the preceding lemma also
shows that, if the section

fkZ(a1gY + a2gZ)

of FC satisfies the zero-energy condition, then it vanishes.

Proposition 10.32. Let k, l ≥ 1 be given odd integers and let γ be
the element (γk, γl) of Γ. If one of the integers k, l is equal to 1, then we
have the inclusion

Z2,C ∩ C∞
γ (FC)ev ⊂ D0C

∞
γ (TC)ev.

Proof: Above we provided an explicit highest weight vector of the
G-submodule D0C

∞
γ (TC)ev ∩ C∞

γ (FC)ev of Z2,C ∩ C∞
γ (FC)ev. Now let h

be an arbitrary highest weight vector of the G-module Z2,C ∩ C∞
γ (FC)ev.

According to the description of the highest weight vectors of the G-module
C∞
γ (FC)ev given above, by Lemma 10.27 there are coefficients a1, a2, b ∈ C

satisfying (10.31), with b1 = b, such that the equality (10.34) holds. When
k = 1 and l ≥ 3 (resp. l = 1 and k ≥ 3), Lemma 10.29,(ii) (resp. Lemma
10.29,(iii)) tells us that the relation (10.39) (resp. the relation (10.40))
holds, and so h belongs to D0C

∞
γ (TC)ev. When k = l = 1, the rela-

tion (10.31) says that a1 + a2 + 8b = 0; Lemma 10.29,(iv) tells us that the
relation (10.41) holds, and so h belongs to D0C

∞
γ (TC)ev. These observa-

tions imply the desired inclusion.

Proposition 10.33. Let k, l ≥ 0 be given integers and let γ be the
element (γk, γl) of Γ. Suppose that k, l ≥ 2, or that one of the integers
k, l is equal to 0 and that the other one is even. Then the G-module
Z2,C ∩ C∞

γ (FC)ev vanishes.

Proof: Suppose that the G-module Z2,C∩C∞
γ (FC)ev does not vanish

and let h be a highest weight vector of this module. We now exploit
the description of the highest weight vectors of the G-module C∞

γ (FC)ev

given above. We first suppose that k, l ≥ 2. When k + l is even, by
Lemma 10.27 we know that h may be written in the form (10.34), with
a1, a2, b ∈ C; then Lemma 10.29 gives us the vanishing of h, which leads
us to a contradiction. When k + l is odd, the symmetric 2-form h may be
written in the form (10.17), with b1, b2 ∈ C; then Lemma 10.26 gives us
the vanishing of h, which leads us to a contradiction. Finally, assume that
one of the integers k, l is equal to 0 and that the other one is even. The
symmetric 2-form h may be written in the form (10.18), with a1, a2 ∈ C;
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then Lemma 10.31, together with the remark following it, implies that h
vanishes; this leads us once again to a contradiction.

Propositions 10.32 and 10.33 and the inclusions (10.16), together with
the results stated above concerning the vanishing of certain G-modules of
the form C∞

γ (FC)ev, with γ ∈ Γ, imply that the inclusion

Z2,C ∩ C∞
γ (FC)ev ⊂ D0C

∞
γ (TC)ev

holds for all γ ∈ Γ. The second equality of (10.12) and Lemma 2.6 then
tell us that

Z2,C ∩ C∞
γ (S2T ∗

C
)ev = D0C

∞
γ (TC)ev,

for all γ ∈ Γ. According to Proposition 2.30,(ii), with Σ = {Ψ′} and
ε = +1, we have therefore shown that the equality

Z2,C ∩ C∞(S2T ∗
C
)ev = D0C

∞(TC)ev

holds. Thus we have proved that an even symmetric 2-form on the prod-
uct X = CP

1 × CP
1, which satisfies the zero-energy condition, is a Lie

derivative of the metric. As we have seen above, this result implies both
Theorems 10.22 and 10.20.

Proposition 10.34. Let k, l ≥ 0 be given integers, with k + l ≥ 1,
and let γ be the element (γk, γl) of Γ.

(i) When k + l is odd, the G-module Z1,C ∩ C∞
γ (T ∗

C
)ev vanishes.

(ii) When k + l is even, we have the inclusion

Z1,C ∩ C∞
γ (T ∗

C
)ev ⊂ dC∞

γ (X).

Proof: First, assume that k + l is odd. Suppose that the G-module
Z1,C ∩ C∞

γ (T ∗
C
)ev does not vanish and let β be a highest weight vector of

this module. According to the description of the highest weight vectors
of the G-module C∞

γ (T ∗
C
)ev given above, there are coefficients a1, a2 ∈ C

such that the equality (10.32) holds. Then Lemma 10.28 gives us the
vanishing of β, which leads us to a contradiction. Thus we have proved
assertion (i). Next, assume that k + l is even. Then we know that the
1-form d(fkY f

l
Z) is a highest weight vector of the G-submodule dC∞

γ (X)ev

of Z1,C ∩ C∞
γ (T ∗

C
)ev. Let β be an arbitrary highest weight vector of the

G-module Z1,C ∩ C∞
γ (T ∗

C
)ev. According to the description of the highest

weight vectors of the G-module C∞
γ (T ∗

C
)ev given above, there are coeffi-

cients a1, a2 ∈ C such that the equality (10.35) holds. Then Lemma 10.30
tells us that β is a multiple of the section d(fkY f

l
Z) of T ∗

C
, and so β belongs

to dC∞
γ (X)ev. These observations imply assertion (ii).



356 X. PRODUCTS OF SYMMETRIC SPACES

Proposition 10.34 and Lemma 2.6, together with the results stated
above concerning the vanishing of certainG-modules of the form C∞

γ (T ∗
C
)ev,

with γ ∈ Γ, imply that the equality

Z1,C ∩ C∞
γ (T ∗

C
)ev = dC∞

γ (X)ev

holds for all γ ∈ Γ. According to Proposition 2.32,(ii), with Σ = {Ψ′}
and ε = +1, we have therefore shown that the equality

Z1,C ∩ C∞(T ∗
C
)ev = dC∞(X)ev

holds. Thus we have proved that an even 1-form on the product CP
1×CP

1,
which satisfies the zero-energy condition, is exact. As we have seen above,
this result implies both Theorems 10.23 and 10.21.
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Vol. 140, Birkhäuser, Boston, Basel, Berlin, 1996.

[40] S. Kobayashi and K. Nomizu, Foundations of differential geometry,
Vol. II, Interscience Publishers, New York, 1969.

[41] N. Koiso, Rigidity and stability of Einstein metrics – The case of
compact symmetric spaces, Osaka J. Math., 17 (1980), 51–73.

[42] N. Koiso, Rigidity and infinitesimal deformability of Einstein met-
rics, Osaka J. Math., 19 (1982), 643–668.
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nérale, Inst. Hautes Études Sci. Publ. Math., 10 (1961), 1–52.

[45] R. Michel, Problèmes d’analyse géométrique liés à la conjecture de
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