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INTRODUCTION

This monograph is motivated by a fundamental rigidity problem in
Riemannian geometry: determine whether the metric of a given Rieman-
nian symmetric space of compact type can be characterized by means of the
spectrum of its Laplacian. An infinitesimal isospectral deformation of the
metric of such a symmetric space belongs to the kernel of a certain Radon
transform defined in terms of integration over the flat totally geodesic tori
of dimension equal to the rank of the space. Here we study an infinitesi-
mal version of this spectral rigidity problem: determine all the symmetric
spaces of compact type for which this Radon transform is injective in an
appropriate sense. We shall both give examples of spaces which are not
infinitesimally rigid in this sense and prove that this Radon transform is
injective in the case of most Grassmannians.

At present, it is only in the case of spaces of rank one that infinitesimal
rigidity in this sense gives rise to a characterization of the metric by means
of its spectrum. In the case of spaces of higher rank, there are no analogues
of this phenomenon and the relationship between the two rigidity problems
is not yet elucidated. However, the existence of infinitesimal deformations
belonging to the kernel of the Radon transform might lead to non-trivial
isospectral deformations of the metric.

Here we also study another closely related rigidity question which
arises from the Blaschke problem: determine all the symmetric spaces for
which the X-ray transform for symmetric 2-forms, which consists in inte-
grating over all closed geodesics, is injective in an appropriate sense. In
the case of spaces of rank one, this problem coincides with the previous
Radon transform question. The methods used here for the study of these
two problems are similar in nature.

Let (X, g) be a Riemannian symmetric space of compact type. Con-
sider a family of Riemannian metrics {g:} on X, for |t| < e, with go = g.
The family {g¢;} is said to be an isospectral deformation of g if the spec-
trum of the Laplacian of the metric ¢; is independent of t. We say that
the space (X, g) is infinitesimally spectrally rigid (i.e., spectrally rigid to
first-order) if, for every such isospectral deformation {g:} of g, there is a
one-parameter family of diffeomorphisms {¢;} of X such that g: = ¢} g to
first-order in ¢t at ¢ = 0, or equivalently if the symmetric 2-form, which is
equal to the infinitesimal deformation %gt‘tzo of {g:}, is a Lie derivative
of the metric g.
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In [35], Guillemin introduced a criterion for infinitesimal spectral rigid-
ity which may be expressed as follows. We say that a symmetric p-form
on X satisfies the Guillemin condition if, for every maximal flat totally
geodesic torus Z contained in X and for all parallel vector fields ¢ on Z,
the integral

/Zu(C,C,...,C)dZ

vanishes, where dZ is the Riemannian measure of Z. A symmetric 2-
form, which is a Lie derivative of the metric, always satisfies the Guillemin
condition. Guillemin proved that a symmetric 2-form, which is equal to the
infinitesimal deformation of an isospectral deformation of g, satisfies the
Guillemin condition. We say that the space (X, g) is rigid in the sense of
Guillemin if the following property holds: the only symmetric 2-forms on X
satisfying the Guillemin condition are the Lie derivatives of the metric g.
Thus if the symmetric space X is rigid in the sense of Guillemin, it is
infinitesimally spectrally rigid.

We are interested in determining which symmetric spaces of compact
type are infinitesimally spectrally rigid; in particular, we wish to find those
spaces which are rigid in the sense of Guillemin. We show that an arbitrary
non-trivial product of irreducible symmetric spaces of compact type, which
are not equal to Lie groups, is not rigid in the sense of Guillemin. Conse-
quently, we shall restrict our attention to irreducible spaces. We shall also
see below that, in order for an irreducible space to be rigid in the sense of
Guillemin, it must be equal to its adjoint space.

Although much work has been done on the problem of isospectrality,
there are still very few results for positively curved spaces. All the pre-
viously known spectral rigidity results for symmetric spaces with positive
curvature concern spaces of rank one. In fact, we will see below that the
real projective space RP", with n > 2, is spectrally rigid; on the other
hand, for 2 < n < 6, the spectral rigidity of the sphere S™ was established
by Berger and Tanno (see [4] and [51]). The Guillemin rigidity of the
spaces of rank one (i.e., the projective spaces) which are not spheres was
first proved by Michel [45] for the real projective spaces RP", with n > 2,
and by Michel [45] and Tsukamoto [53] for the other projective spaces. As
we shall explain below, spectral rigidity results for these other projective
spaces can be derived from their Guillemin rigidity by means of Kiyohara’s
work [38].

In contrast to the case of negatively curved spaces, at present the
problem of isospectrality for positively curved spaces does not admit any
truly effective general approach. While the study of the symmetric spaces
considered here requires a case by case analysis, we have nevertheless been
able to develop criteria for rigidity which can be applied to numerous sit-
uations. Several fundamental aspects of differential geometry — the theory
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of overdetermined partial differential equations, deformation theory of Fin-
stein manifolds, harmonic analysis on symmetric spaces of compact type,
the geometry of the Grassmannians and their totally geodesic submanifolds
— enter into the elaboration of these criteria and their application to the
various spaces. Many of the results, which we present in the process, are of
considerable interest in their own right outside the context of deformation
theory and spectral rigidity.

In this monograph, we introduce new methods for studying the Guil-
lemin rigidity of irreducible symmetric spaces of compact type. The theory
of linear overdetermined partial differential equations of [28] provides us
with a fundamental ingredient of these methods, namely a certain differ-
ential operator which allows us to encode properties of the space under
consideration. Quite remarkably, these methods lead us to a criterion for
the Guillemin rigidity of a space in which neither this operator nor the
theory of overdetermined partial differential equations appear. We apply
this criterion to the Grassmannians of rank > 2 and we determine all those
which are rigid in the sense of Guillemin. In fact, we extend and com-
plete our previous work on the real Grassmannians of rank 2 undertaken
in [23]. Harmonic analysis on homogeneous spaces and results concerning
the infinitesimal deformations of Einstein metrics also play an important
role here.

Let K be a division algebra over R (i.e., K is equal to R, C or the
quaternions H). For m,n > 1, the Grassmannian GY, , of all K-planes
of dimension m in K™*" is a symmetric space of rank min(m,n). The
Grassmannians are irreducible and of compact type, with the exception
of Gf | = S' and of G§, whose universal covering space is S x S2. The
Grassmannian G]ﬁn is the projective space KP™. The main result presented
in this monograph may be stated as follows:

THEOREM 1. Let K be a division algebra over R and m,n > 1 be
given integers. The Grassmannian Gﬁ’n is rigid in the sense of Guillemin
if and only if m # n.

All the known examples of spaces which are rigid in the sense of
Guillemin are described in this theorem. When m or n is equal to 1,
Theorem 1 gives us the results of Michel and Tsukamoto mentioned above
concerning the projective spaces. This theorem implies that the Grassman-
nians Gf%n, with m,n > 2 and m # n, are infinitesimally spectrally rigid,
and provides us with the first examples of symmetric spaces of compact
type of arbitrary rank > 1 having this property.

Let (X,g) be a Riemannian symmetric space of compact type. The
symmetric space X is a homogeneous space of a compact semi-simple Lie
group G, which acts on X by isometries. The space E of all maximal flat
totally geodesic tori of X is a homogeneous space of G. The maximal
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flat Radon transform of X considered by Grinberg in [33] and [34] is a
G-equivariant linear mapping from the space of functions on X to the
space of functions on Z; it assigns to a function f on X the function
f on = whose value at a torus Z of Z is the integral of f over Z. In
view of Guillemin’s criterion, we define a maximal flat Radon transform
for symmetric p-forms, which is a G-equivariant linear mapping I from
the space of symmetric p-forms on X to the space of sections of a certain
homogeneous vector bundle over =. Its kernel consists of those symmetric
p-forms on X satisfying the Guillemin condition. On functions, it coincides
with the one considered by Grinberg. Determining whether the space X is
rigid in the sense of Guillemin may be viewed as a problem concerning this
Radon transform for symmetric 2-forms.

We recall that the adjoint space of X is the symmetric space which
admits X as a Riemannian cover and which is itself not a Riemannian
cover of another symmetric space. For example, the adjoint space of the
n-sphere S™ is the real projective space RP™. For these spaces of rank
one, the maximal flat tori are the closed geodesics. The kernel of the
maximal flat Radon transform for functions on S™ is the space of all odd
functions on S™. In fact, this Radon transform is injective when restricted
to the even functions on S™; this is equivalent to the classic fact that
the Radon transform for functions on RP” is injective. In [33] and [34],
Grinberg generalized these results and proved that the maximal flat Radon
transform for functions on X is injective if and only if the space X is equal
to its adjoint space.

Suppose that X possesses an involutive isometry ¢ which has no fixed
points, and that the quotient of X by the group of isometries of order 2
generated by o is also a symmetric space. Then X is not equal to its adjoint
space. In this case, it is easily seen that an arbitrary odd symmetric p-form
won X (i.e., which satisfies the relation o*u = —u) satisfies the Guillemin
condition, and we can construct odd symmetric 2-forms which are not Lie
derivatives of the metric. It follows directly that the maximal flat Radon
transform for functions on X is not injective and that X is not rigid in the
sense of Guillemin. In particular, this situation applies to the sphere S™
together with the anti-podal involution.

We now suppose that the space X is irreducible. If X is not isometric
to a sphere and is rigid in the sense of Guillemin, we show that the maximal
flat Radon transform for functions on X is injective. Since the sphere S™ is
not rigid in this sense, from Grinberg’s result we infer that, if the irreducible
symmetric space X is rigid in the sense of Guillemin, it must necessarily
be equal to its adjoint space. The Grassmannian Ggfw, with m,n > 1, is
equal to its adjoint space if and only if m # n. Therefore by Theorem 1, we
see that a Grassmannian, which is not flat, is rigid in the sense of Guillemin
if and only if it is equal to its adjoint space.
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We now consider the Grassmannian G]Em, with n > 2. This space
possesses an involutive isometry ¥ which sends an n-plane of K?” into its
orthogonal complement. The quotient space G’%n of Gf’n by the group of
isometries generated by V¥ is a symmetric space of rank n, which is equal
to the adjoint space of Gﬂ,in. According to the discussion which appears
above, the space Gﬂf’n is not rigid in the sense of Guillemin.

We observe that G5, is isometric to the product RP? x RP?; hence
this space is not rigid in the sense of Guillemin. All the other spaces Gf ,
are irreducible. On the other hand, the space G(g)27 which is isometric to
the Grassmannian GD§’4, and the space G’E{z are rigid.

The following theorem describes our results concerning the Guillemin
rigidity of these spaces:

THEOREM 2. Let ng > 3 be a given integer.
(i) If the symmetric space G, Is rigid in the sense of Guillemin,
so are all the spaces Gﬂsyn,

(ii) If the symmetric space G

with n > nyg.
C

no.no 18 rigid in the sense of Guillemin,

so are all the spaces GX  withn > ng and K = C or H.

n,n’

In conjunction with the Blaschke conjecture, Michel had previously
introduced another notion of rigidity for symmetric spaces; it coincides with
Guillemin rigidity for spaces of rank one. We say that a symmetric p-form
on an arbitrary symmetric space X satisfies the zero-energy condition if all
its integrals over the closed geodesics of X vanish. The space X is said to be
infinitesimally rigid if the only symmetric 2-forms on X satisfying the zero-
energy condition are the Lie derivatives of the metric. The infinitesimal
rigidity of a flat torus of dimension > 2 was established by Michel in [46].

The canonical metric g of a projective space X equal to KP", with
n > 2, or to the Cayley plane is a Cr-metric, i.e., a metric all of whose
geodesics are closed and of the same length w. An important question
which arises from the Blaschke conjecture consists in determining whether
the metric g is the only Cr-metric of X, up to an isometry. Green and
Berger have answered this question in the affirmative in the case of the
real projective spaces (see [5]). The infinitesimal deformation of g by Cj-
metrics satisfies the zero-energy condition. Thus the infinitesimal rigidity
of X may be interpreted as the rigidity to first-order for the deformation
problem of g by Cr-metrics. In [11], Duistermaat and Guillemin proved
that a metric ¢’ on X, whose spectrum is equal to the spectrum of the
metric g, is a Cr-metric. In the case of the real projective space RP", with
n > 2, the positive resolution of the Blaschke conjecture then implies that
the metric ¢’ is isometric to the metric g and, therefore, that this space
is spectrally rigid. For the other projective spaces, which are not spheres,
in [38] Kiyohara gave a partial answer to our question; in fact, he used
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the infinitesimal rigidity of X in order to show that a Cr-metric ¢’ on X,
which is sufficiently close to g, is isometric to g. In all cases, Kiyohara’s
work can be combined with the above-mentioned result of Duistermaat and
Guillemin to give us the following spectral rigidity result: a metric ¢’ on X,
whose spectrum is equal to that of g and which is sufficiently close to g, is
isometric to g.

We now return to the study of the symmetric spaces of compact type
of arbitrary rank. We show that a space which is rigid in the sense of
Guillemin is also infinitesimally rigid. Thus Theorem 1 implies that the
Grassmannian GX . with m,n > 1 and m # n, is infinitesimally rigid.

m,n’

The real Grassmannian Gp, ,, of oriented m-planes in R™*" is the
R

m,n"

m # n, its adjoint space is the Grassmannian G, ,. We may identify the

Grassmannian CNJI{RR with the sphere S™. On the other hand, the Grass-
R

mannian C~¥2’n, with n > 2, is isometric to the complex quadric @,,, which
is a hypersurface of CP"*+1!,

All the known results concerning the infinitesimal rigidity of irreducible
symmetric spaces are given by the following:

simply-connected double cover of the Grassmannian G In fact, when

THEOREM 3. Let m,n > 1 be given integers. B
(i) Suppose that m +n > 2. Then the real Grassmannian Gy, ,, is
infinitesimally rigid if and only if m,n > 2 and m +n > 5.
(ii) IfK is equal to R or C, the Grassmannian G%,  is infinitesimally
rigid if and only if m +n > 2. ’
(i) If (m,n) # (1,1) and (2,2), the Grassmannian G}, ,, is infinitesi-
mally rigid.

Theorem 3 tells us that any Grassmannian, which is not isometric to a
sphere, or to a product of spheres, or to G]S{z, is infinitesimally rigid. The
infinitesimal rigidity of such a Grassmannian, as long as it is not isometric
to a projective space or to the Grassmannian G]&Q, is proved by means of
the methods used to demonstrate Theorem 1.

We now present the various methods for proving the Guillemin rigidity
or the infinitesimal rigidity of an irreducible symmetric space of compact
type. The first one requires techniques based on the harmonic analysis on
homogeneous spaces of compact Lie groups. We used it in [14] to establish
the infinitesimal rigidity of the complex projective space CP™, with n > 2,
and in [23] to prove the Guillemin rigidity of the Grassmannian G5 5. The
proofs of the infinitesimal rigidity of the complex quadric @3 of dimen-
sion three, given in Chapter VI, and of the Grassmannian G§2, given in
Chapter X, are similar in nature.

In [13], the theory of linear overdetermined partial differential equa-
tions of [28] is used to construct the resolution of the sheaf of Killing vector
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fields on a symmetric space. This resolution plays a fundamental role in
our study of rigidity; in particular, one of its differential operators can be
used to encode properties of families of totally geodesic submanifolds of
our space and the prior knowledge of the rigidity of these submanifolds.

One approach to infinitesimal rigidity, which appears in [18], relies on
a resolution of the sheaf of Killing vector fields and leads to a new proof of
the infinitesimal rigidity of the complex projective space CP", with n > 2.
For this space, this approach requires a minimal use of harmonic analysis; it
also allows us to deduce the infinitesimal rigidity of the complex quadric @,
with n > 5, from that of its totally geodesic submanifolds isometric to the
complex projective plane CP? or to a flat 2-torus.

In Section 8 of Chapter II, we introduce a new approach to our rigidity
problems which is partially inspired by the one developed in [22] for the
study of the complex quadric @4 of dimension four. We give criteria both
for the Guillemin rigidity and for the infinitesimal rigidity of an irreducible
space X of compact type which exploit the fact that X is an Einstein
manifold. The relationship between the resolution of the sheaf of Killing
vector fields and the finite-dimensional space E(X) of infinitesimal Einstein
deformations of X introduced by Berger and Ebin [3] provides us with one
of the main ingredients of the proofs of these criteria. We still require some
results from harmonic analysis in the proofs of these criteria, but only in
a limited way. Also the fact that the Lichnerowicz Laplacian acting on
the space of symmetric forms is equal to a Casimir operator, which was
proved by Koiso in [41], plays an important role. Although the theory of
overdetermined partial differential equations enters in an essential way into
the proofs of our criteria, it should again be emphasized that it does not
appear in any form in their final statements.

We apply our criteria to the Grassmannians of rank > 2 in order to
prove Theorems 1 and 3 for these spaces. On such a Grassmannian which
is equal to its adjoint space, the injectivity of the Radon transform for
functions on the real projective plane is used to prove that the Guillemin
condition is hereditary with respect to certain totally geodesic submani-
folds. For our proofs, we also require the Guillemin rigidity of complex
projective plane CP? and the real Grassmannian Ggg. Moreover, in the
case of the complex Grassmannians, we must show that an infinitesimal
Einstein deformation satisfying the Guillemin condition vanishes. This last
fact, which is always a necessary condition for Guillemin rigidity, is proved
in Chapter VIII for the Grassmannians G%n, with m # n, by computing
the integrals of specific symmetric 2-forms over certain closed geodesics.

In Chapters VII and VIII, we introduce an averaging process which as-
signs to a symmetric p-form on the space C_Y”EH’”JFD withn >2and K=R
or C, a class of symmetric p-forms on the space Gﬂrf)n. This process has the
following property, which enables it to play an essential role in the proof
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of Theorem 2: if the p-form u on GX 4+1,n+1 satisfies the Guillemin condi-
tion, so do all the p-forms on C_?f,n associated to u. In fact, this process
is used to show that an infinitesimal Einstein deformation of the complex
Grassmannian G%jn satisfying the Guillemin condition vanishes. This last
assertion and several others concerning the spaces Ggf,n are proved by in-
duction on n. To demonstrate Theorem 2, we also exploit to a considerable
extent the methods which enter into the proofs of our rigidity criteria of
Chapter II.

The study of 1-forms on the Grassmannians satisfying the Guillemin
condition is of independent interest. Clearly, an exact 1-form always satis-

fies this condition. In fact, we have the following converse:

THEOREM 4. Let K be a division algebra over R. Let X be a sym-
metric space equal to one of the following spaces:
(i) G, ., withm+n>1 and m # n.

(i) GX, withn >2 and K = C or H.

n,n’

Then a 1-form on X satisfying the Guillemin condition is exact.

By means of our methods, we are able to give elementary and direct
proofs of Grinberg’s result concerning the maximal flat Radon transform
for functions on all the irreducible symmetric spaces of compact type con-
sidered above that are equal to their adjoint spaces.

In this monograph, all the known results concerning our rigidity prob-
lems for symmetric spaces, which are either of compact type, or flat tori,
or products of such manifolds, are presented in a unified way. For the
irreducible spaces, we give proofs which either are complete or omit only
certain technical details.

We wish to point out that, in Chapters I and III, several results and
formulas of Riemannian geometry are presented or derived in a particularly
simple way. Moreover, the result concerning conformal Killing vector fields
on Einstein manifolds given by Proposition 1.6 is new; it is required for the
proof of Proposition 2.16. The latter proposition leads us to the necessary
condition for Guillemin rigidity of an irreducible symmetric space described
above.

We now proceed to give a brief description of the contents of the chap-
ters of this monograph. In Chapter I, we introduce various differential
operators on a Riemannian manifold (X, g) arising from the curvature and
a complex of differential operators related to the Killing vector fields, which
includes the differential operator mentioned above. When X is a compact
Einstein manifold, the space F(X) of infinitesimal Einstein deformations
of the metric g contains the cohomology of this complex. In [41] and [42],
Koiso determined the irreducible symmetric spaces X of compact type for
which the space E(X) vanishes; this result gives us the exactness of this
complex for these spaces. The study of the Radon transforms, the tools
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derived from harmonic analysis on symmetric spaces and our criteria for
rigidity are to be found in Chapter II. In the following chapter, we present
the infinitesimal rigidity results for flat tori and the projective spaces, which
are not equal to spheres. In particular, in the case of the real projective
spaces, we give the proof of their infinitesimal rigidity due to Bourguignon
(see [5]) and a variant of the one due to Michel [45].

In Chapter IV, we study the differential geometry of real Grassmanni-
ans Gﬂsl’n and G%n and view them as symmetric spaces and homogeneous
spaces of the orthogonal group SO(m + n). We show that the Guillemin
condition for forms on the Grassmannian GJ, ,,, with m # n, is hereditary
with respect to certain totally geodesic submanifolds.

Chapter V is devoted to the geometry of the complex quadric. We view
this quadric @, of dimension n as a hypersurface of CP"*!, develop the
local formalism of K&hler geometry on this space and describe its totally
geodesic submanifolds. We also identify the quadric @, with the Grass-
mannian G ,, of oriented 2-planes in R"*? and use the harmonic analysis
on @, viewed as a homogeneous space of SO(n + 2) to examine the space
of complex symmetric 2-forms on @,,. The various proofs of the infinites-
imal rigidity of the complex quadric Q,,, with n > 3, and the proof of the
Guillemin rigidity of the Grassmannian ng, with n > 3, are presented in
Chapter VI.

In Chapter VII, we give the proofs of the rigidity of the real Grass-
mannians of rank > 3 and introduce the averaging process for symmetric
forms on GSR, which leads to the result given by Theorem 2 for the adjoint
spaces GSR. In Chapter VIII, we study the differential geometry of the
complex Grassmannians G%n and we view them as symmetric spaces and
homogeneous spaces. We introduce certain explicit functions and symmet-
ric 2-forms on these spaces, which enter into our analysis of the space of
infinitesimal Einstein deformations of these Grassmannians. We also de-
fine the averaging process for symmetric forms on the Grassmannian G%n,
which is used here to prove properties of its space of infinitesimal Einstein
deformations and in the next chapter to study the rigidity of its adjoint
space GS,H. Chapter IX is mainly devoted to the proofs of the rigidity of
the complex and the quaternionic Grassmannians of rank > 2.

In Chapter X, we prove the non-rigidity of the product of irreducible
symmetric spaces, which we mentioned above. We also present results
from [19] concerning the geometry of products of symmetric spaces and
their infinitesimal rigidity. The study of the real Grassmannian G5, is to
be found here. /
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CHAPTER I

SYMMETRIC SPACES AND EINSTEIN MANIFOLDS

§1. Riemannian manifolds

Let X be a differentiable manifold of dimension n, whose tangent and
cotangent bundles we denote by T' = T'x and T = T%, respectively. Let
C*(X) be the space of complex-valued functions on X. By ®kE, S'E,
/\j FE, we shall mean the k-th tensor product, the [-th symmetric product
and the j-th exterior product of a vector bundle E over X, respectively.
We shall identify S¥7* and A*T* with sub-bundles of ®"T* by means of
the injective mappings

ST - @', AT QT
sending the symmetric product 3y - ... - G into

Z Bo1) @+ @ Bo(k)

ceBy,

and the exterior product 31 A --- A 0 into

Z sgno - By1) @+ @ Bony,
ceBy,

where 31,...,0r € T* and &}, is the group of permutations of {1,...,k}
and sgno is the signature of the element o of &;. If a,8 € T*, the
symmetric product « - § is identified with the element o ® 6 + 0 ® «
of ®2T*. If £ €T, heS?T*, let £_1h be the element of T defined by

(1 h)(n) = h(&;m),
for n € T. If h € S?>T*, we denote by
BT —T*

the mapping sending ¢ € T into € _J h. If h is non-degenerate, then h’ is
an isomorphism, whose inverse will be denoted by hf.

Let E be a vector bundle over X; we denote by E¢ its complexification,
by £ the sheaf of sections of E over X and by C*°(E) the space of global
sections of E over X. We write S!E¢ and A\’ Ec for the complexifications
of S'E and A’ E. We consider the vector bundle J;(E) of k-jets of sections
of E, whose fiber at © € X is the quotient of the space C*°(E) by its
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subspace consisting of the sections of £ which vanish to order k + 1 at x.
If s is a section of E over X, the k-jet ji(s)(z) of s at z € X is the
equivalence class of s in Ji(E);. The mapping « — ji(s)(x) is a section
Jr(8) of Ji(E) over X. We denote by 7y : Jp1i(E) — Ji(E) the natural
projection sending ji4+:(s)(z) into jx(s)(x), for € X. We shall identify
Jo(E) with E and we set Jip(F) = 0, for k¥ < 0. The morphism of vector
bundles
e:S*T* @ E — Ji(E)

determined by

(- e df) @ 9)(@) = 5 (T, ) ) (@),

where f1,..., fi are real-valued functions on X vanishing at x € X and s
is a section of E over X, is well-defined since the function Hle fi vanishes
to order k — 1 at x. One easily verifies that the sequence

Tk—1

0— ST*" @ F -5 Ju(E) == J,_1(E) = 0

is exact, for k > 0.
Let E and F be vector bundles over X. If D : £ — F is a differential
operator of order k, there exists a unique morphism of vector bundles

p(D): Jy(E) = F

such that
Ds = p(D)jik(s),

for all s € £. The symbol of D is the morphism of vector bundles
o(D): S*T*® FE — F
equal to p(D)oe. If x € X and o € T, let
0a(D): E; — F,

be the linear mapping defined by

oa(D)u (D)(a* ®u),

= H o
where u € E, and o® denotes the k-th symmetric product of a. We say
that D is elliptic if, for all x € X and o« € T, the mapping o,(D) is

injective. If D is elliptic and X is compact, then it is well-known that the
kernel of D : C*°(FE) — C°°(F) is finite-dimensional.
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If € is a vector field on X and (8 is a section of ®kT* over X, we
denote by L¢3 the Lie derivative of 3 along £. For x € X , let p denote the
representation of the Lie algebra (T*®T), on T, and also the representation
induced by p on ®kT;. If £ is an element of 7, satisfying &(x) = 0,
and if u is the unique element of (T* ® T'), determined by the relation
e(u) = j1(€)(z), then we have

pu)n(z) = —[&,n](x),

for all n € 7,, and
(1.1) p(u)B(z) = —(Lef)(x),

for B e QT

We endow X with a Riemannian metric ¢ and we associate various
objects to the Riemannian manifold (X,g). The mappings ¢° : T — T*,
g' : T* — T are the isomorphisms determined by the metric g; we shall
sometimes write &2 = ¢”(¢) and of = gf(a), for € € T and o € T*. The
metric g induces scalar products on the vector bundle @”T* @ 7T and its
sub-bundles. We denote by dX the Riemannian measure of the Riemannian
manifold (X, g). If X is compact, the volume Vol (X, g) of (X, g) is equal
to the integral [ dX.

Let F and F be vector bundles over X endowed with scalar products
and D : £ — F be a differential operator of order k. We consider the scalar
products on C*°(E) and C*(F), defined in terms of these scalar products
on E and F and the Riemannian measure of X, and the formal adjoint
D* : F — & of D, which is a differential operator of order k. If D is elliptic
and X is compact, then DC*(E) is a closed subspace of C*°(F) and we
have the orthogonal decomposition

(1.2) C>(F) = DC®(E) & {u € C*(F) | D'u=0}.

Let B = Bx be the sub-bundle of /\QT* ® /\QT* consisting of those
tensors u € /\QT* ® /\QT* which satisfy the first Bianchi identity

U(§1752,€37£4) + U(§2,€37£1,£4) + ’U/(€37£1,§2754) = 07

for all £1,&9,&3,&4 € T. 1t is easily seen that, if an element u of B satisfies
the relation

u(£17£27§1752) = Oa

for all £1,& € T, then u vanishes. We consider the morphism of vector
bundles
5 S?T* @ S?°T* — B
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defined by
(TBU)(£17 627 £37 64) = %{u(fla 537 527 64) + U(SQ, 547 617 53)
- u(fb §4a 52) 53) - U/(§2, 537 517 £4)}7

for all u € S?°T* ® S?T* and &1,&:,63,&4 € T it is well-known that this
morphism is an epimorphism (see Lemma 3.1 of [13]). Let

o:T*®B— N°T* @ N*T*
be the restriction of the morphism of vector bundles
T* @ N2T* @ A°T* — N*T" @ N2T™,
which sends a ® 61 ® 05 into (A b)) ® b, for a € T*, 01,05 € /\QT*. The

kernel H of this morphism ¢ is equal to the sub-bundle of T* ® B consisting
of those tensors v € T* ® B which satisfy the relation

’U(§17€27£37£47€5) + U(£27§3a§17§47€5) + U(£37fla€2>£47£5) =0

for all £1,82,63,84,65 €T
Let

Tr=Tr, = Tryx : S?°T* =R,  Tr=Tr,: \’T* @ \’T* — @°T*

be the trace mappings defined by

n

TI‘h:Zh(tj,tj), TI'U 577 Zut],étj,
j=1 Jj=1

for h € S2°TF, u € (N°T* ® N’T*), and &, € T,, where z € X and
{t1,...,tn} is an orthonormal basis of T,. It is easily seen that

Tr B C S?T*.

We denote by ST the sub-bundle of S?T* equal to the kernel of the trace
mapping Tr : S?T* — R and by B° the sub-bundle of B equal to the kernel
of the trace mapping Tr : B — S2T*.

We consider the morphism of vector bundles

tn: S2T* — B
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defined by
7A_B(h) = TB(h ® 9)7

for h € S2T*. If h € S?T*, we easily verify that
(1.3) Tr7g(h) = 2((Trh) - g+ (n — 2)h),

and so we have
Tr-Tr7g(h) = (n —1)Trh.

When n > 3, from the preceding formulas we infer that the morphism 75
is injective, that the morphism Tr : B — S2T* is surjective and that B is
the orthogonal complement of 75(S?T*) in B.

We introduce various differential operators and objects associated with
the Riemannian manifold (X,g). First, let V = V9 be the Levi-Civita
connection of (X, g). If f is a real-valued function on X, we denote by
Hess f = Vdf the Hessian of f. If d* : /\jT* — /\j_lT* is the formal
adjoint of the exterior differential operator d : A\’ e N T*, we con-
sider the de Rham Laplacian A = dd* + d*d acting on A\’7*. The Lapla-
clan A = Ay = Ax acting on C*°(X) is also determined by the relation
Af = —TrHess f, for f € C*°(X). The spectrum Spec(X, g) of the metric
g on X is the sequence of eigenvalues (counted with multiplicities)

0=Xo <A SAg < <Ay <ot

of the Laplacian A, acting on the space C*°(X).
The Killing operator

Do = DO,X T — SQT*

of (X,g), which sends £ € 7 into L¢g, and the symmetrized covariant
derivative
DT — §%*T*,

defined by
(D'O)(&,m) = 5((VO) (& n) + (VO)(n,£)),

for 0 € T*, £,n € T, are related by the formula
(1.4) 3Do€ = D'g’(¢),
for £ € T. By (1.4), the conformal Killing operator

D§:T — S2T*
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of (X, g) is determined by
c 1 2 * b
D€ = Do — - (Tr Doé) - g = Do& + = (d'€") - g,
for £ € 7. The Killing (resp. conformal Killing) vector fields of (X, g) are
the solutions & € C°°(T) of the equation Doé = 0 (resp. D§¢ = 0). A
vector field £ on X is a conformal Killing vector field if and only if there is
a real-valued function f such that Do = fg. According to (1.4), a Killing

vector field £ on X satisfies the relation d*gb(f) = 0, and a real-valued
function f on X satisfies the relation

(1.5) Do(df)* = 2Hess f.

If ¢ is a local isometry of X defined on an open subset U of X and £ is a
vector field on U, according to (1.4) we see that

(1.6) ¢*Do€ = Do(6,1€).

LEMMA 1.1. Let Y be a totally geodesic submanifold of the Rieman-
nian manifold (X,g). Let i : Y — X be the natural imbedding and
gy = i*g be the Riemannian metric on Y induced by g. Let £ be a vector
field on X. Ifn is the vector field on Y whose value at x € Y is equal to the
orthogonal projection of {(x) onto the subspace Ty, of T, then we have

g (€) =gy (n),  *Leg=Lygy.

PrROOF: The lemma is a consequence of the relation (1.4) and the
vanishing of the second fundamental form of the imbedding .
By (1.1), the symbol

o(Do): T* @ T — S*T*
of Dy sends u € T* ® T into —p(u)g. It follows that
o(Do)(a®§) = a-¢"(§),

for o € T* and £ € T. This last equality implies that o(Dy) is an epimor-
phism and that the differential operator Dy is elliptic. We verify that

(Df)ae ) =a ¢~ - (E.a)g,

for o € T* and £ € T, and we easily see that the differential operator D§
is elliptic when n > 2. The kernel of o(Dy) is equal to the sub-bundle

g ={uveT"@T|p(u)g=0}
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of T* ® T. We consider the isomorphism of vector bundles
0T QQT* -T*QT
equal to id ® g*, which is also determined by the relation
g(u(w)€,m) = u(&,n),
forueT*®T* and £,n € T, and its restrictions
L SPT* - T*®T, L NTF ST RT.
Then it is easily verified that
(1.7) o(Do)u(h) = 2¢(h),

for h € S2T*, and that the image of the morphism ¢ : A*T* — T* @ T is
equal to gp; thus

i NPT — gy
is an isomorphism of vector bundles (see [13, §3]).
We consider the divergence operator

div : §?°T* — T*,
which is the first-order differential operator defined by
(divh)(&) = = (VA)(t;,15,),
j=1

for h € C>(S?T*), £ € Ty, where x € X and {ti,...,t,} is an orthonormal
basis of T,,. Let f be a real-valued function on X and let h be an element
of C>°(S2T*). Then we have

(1.8) div (fh) = fdivh — (df)* J h;
thus we see that
(1.9) D'div(fh) = fD'divh + 3 df - divh — D*((df)* J h),

and the section D! ((df)* I h) of S?T* is determined by

D'((df)* J h)(&,m) = L{h((¢ 2 Hess f)*, 1) + h((n_ Hess f)*, )

(1.10)
+ (VR)(E, (df),m) + (VR)(n, (df)F, €)},

for&,neT.
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The formal adjoint of Dy is equal to 2¢* - div : S2T* — 7. It follows
that the formal adjoint of D§ : 7 — S27* is equal to 2¢* -div : S37* — 7.
When X is compact, since the operator Dy is elliptic, by (1.2) we therefore
have the orthogonal decomposition

(1.11) C>®(S*T*) = DeC™(T) ® {h € C>(S*T*) | divh =0}

(see [3]). When X is a compact manifold of dimension > 2, since the
differential operator D§ is elliptic, by (1.2) we have the decomposition

(1.12) C>®(S3T*) = DSC>®(T) @ {h € C°(SgT*) | divh = 0}.

The curvature tensor ﬁ(g) of g is the section of /\2T* RT* T deter-
mined by

R(9)(&n,¢) = (VIVY — VIVE)C,
for £,m,¢( € T. The Riemann curvature tensor of g is the section R(g)
of /\QT* 0y /\QT* determined by

R(9) (€1, €2, 63,&1) = 9(€4, R(9) (61, 2, 3)),

for &1, &2, &3,&4 € T; according to the first Bianchi identity, R(g) is a section
of B. The second Bianchi identity tells us that (DR)(g) = VIR(g) is a
section of H. The Ricci tensor Ric(g) of the metric g is the section of S2T™*
equal to —Tr, R(g), while the scalar curvature r(g) of the metric g is the
function Tr, Ric(g) on X. We shall write R=Rx =R(g9), R=Rx = R(g)
and Ric = Ric(g).

Let & be a vector field on X. According to the second Bianchi identity
and the relation (1.4), we see that

(1.13) d*Ric’(€) = —1 (£ 7(g) + (Ric, Dof)),

where () is the scalar product on S?T* induced by the metric g. We
easily verify that

(1.14) div Do& = (A + dd*)&” — 2Ric”(€);

thus by (1.8), we have

(1.15) div D§e = A& — 2Ric”(€) + n-2 dd*e’.
n

From the preceding equation and (1.13), we obtain

(1.16) d*div D¢ =

w Ad*¢ + & - 1(g) + (Ric, Dok).
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If the scalar curvature r(g) of (X, g) is constant and equal to p € R and
if £ is a conformal Killing vector field, then by (1.16) we see that the real-
valued function f = —(2/n) - d*€® satisfying Do = fg is a solution of the
equation

(1.17) (n—1)Af = puf.

If X is compact, we know that the eigenvalues of the Laplacian A acting
on C*(X) are > 0; hence from the previous observation, we obtain the
following result due to Lichnerowicz [43, §83]:

LEMMA 1.2. Assume that (X, g) is a Riemannian manifold of dimen-
sion n > 2 and that its scalar curvature is constant and equal to p € R. If
¢ is a conformal vector field on X and if the real-valued function f on X
determined by the relation L¢g = fg is non-zero, then f is an eigenfunc-
tion of A with eigenvalue pu/(n — 1). If X is compact and if y < 0, then a
conformal Killing vector field on X is a Killing vector field.

Let
R, :S*T*—B, (DR),:5*T*—H, Ric,:S*T"— S*T*

be the linear differential operators, which are the linearizations along ¢
of the non-linear operators h — R(h), h — (DR)(h) and h — Ric(h),
respectively, where h is a Riemannian metric on X. Let h be a section of
S2T* over X. For |t| < €, we know that g; = g+th is a Riemannian metric
on a neighborhood of z; by definition, we have

d d
ngh = at R(g + th)|t:07 (DR);h = o (DR)(g + th)\t:o,

d
RlClgh = @ RIC(g + th)‘t:().

The differential operators R; and Ric'g are of order 2, while the operator

(DR);, is of order 3. The invariance of the three operators h ~— R(h),
h+— (DR)(h) and h — Ric(h) leads us to the formulas

(L18) Ry(Leg) = Le R, (DR)y(Leg) = Le VR,  Ricy(Leg) = Le Ric,
for all £ € 7. If h € C°°(S?T*) and h(x) = 0, with € X, then we have

(1.19) Tr (R,h)(x) = —(Ric,h)(x).
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It is easily verified that

(Ryh)(E1,82,83,64)
= 3 {(V?h)(&1, &, &2, €0) + (V2h)(E2, 4,61, 63)
— (V2h)(&1, 64,62, €3) — (V2h)(€2, 63,61, 64)
+ h(R(&1,62, &), &) — h(R(E1, 62, &), &)

(1.20)

for h € S?T* and &,&2,63,&4 € T (see Lemma 4.3 of [13]). By for-
mula (1.20), we see that the morphism of vector bundles

o(Ry): S*T* @ S°T* — B

is equal to 7.
The following result is given by Proposition 4.1 of [13].

ProposiTION 1.3. Let Y be a totally geodesic submanifold of X. Let
i 1Y — X be the natural imbedding and gy = i¢*g be the Riemannian
metric on Y induced by g. If h is a section of S*T* over X, then the
equality
i"RLh =R, (i*h)

holdson'Y.

PrOOF: If t € R, we write g; = g + th and g: = gy + ti*h. Let y be a
point of Y. Then there exist ¢ > 0 and neighborhoods U of y in Y and U
of i(y) in X such that i(U) C U and such that §; and g, are Riemannian
metrics on U and U, respectively, for |t| < e. Since i*g, = g, for |t| < ¢
we denote by B; the second fundamental form of the imbedding i, viewed
as a mapping from the Riemannian manifold (U ,g¢) to the Riemannian

manifold (U, g;). By the Gauss equation, we have

(1"R(9¢) — R(Ge))(&1,62,€3,84) = 9¢(Bi(&1,€3), Bi(§2,€4))
— gt(Be(&1,64), Bi(&2,63)),

for all §1,82,83,64 € Ty. According to our hypothesis, we have By = 0;
thus if we differentiate both sides of the above equation with respect to t,
at t = 0, we obtain

d, . - " 5
%(z R(g:) — R(gt))\t:o =i"Ryh — R, (i"h) =0

on U and hence at the point y.
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Let
D, : S*T* — N°T* o \*T*

be the linear differential operator defined by

(Dgh)(§1,€2,§37£4) = (R;h)(£17§23537£4) - h(ﬁ(€17€27£3)754)

(1.21) N
+ h(R(&1,62,84),63),

for h € S?T* and &1, &, 8&3,&, € T. Thus if h is a section of S?T* over X
vanishing at x € X, we see that (Dyh)(z) = (R} h)(z) belongs to B,. If f
is a real-valued function on X, according to (1.20) and (1.21) we see that

(1.22) R (fg) = t(Hess f @ g) + fR, Dy(fg) = 7p(Hess f ® g) — fR.

We consider the sub-bundle B = By of B, with variable fiber, whose
fiber at z € X is

B, = {(LeR)(x) | € € T, with (Leg)(x) =0},

and we denote by a : B — B/B the canonical projection. By (1.1), the
infinitesimal orbit of the curvature

{p(W)R [ uecg}

is a sub-bundle of B with variable fiber.
The following result is given by Lemma 5.3 of [13].

LEMMA 1.4. For all x € X, we have
(VR)(z) e (T*® B)x.

We now suppose that B is a vector bundle. We consider the second-
order differential operator

D1 = DI,X : SQT* — B/B
introduced in [13] and determined by
(D1h)(x) = a(Ry(h = Leg)) (@),

for ¥ € X and h € S?T7, where £ is an element of 7, satisfying h(z) =
(Leg)(x) whose existence is guaranteed by the surjectivity of o(Dy). By
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the first relation of (1.18), we see that this operator is well-defined. Clearly,
the sequence

(1.23) T 20, g2+ PLB/B
is a complex, and so we may consider the complex
(1.24) Co(T) 22 ¢ ($21*) 2L ¢>(B/B).
If h is a section of S2T* vanishing at € X, we have
(1.25) (D1h)(x) = a(Ryh)(x) = a(Dgh)(x).
We infer that the morphism of vector bundles

o(Dy) : J1(S?*T*) — B/B
is equal to a0 J(R;) and is therefore an epimorphism.

Let 3
k:S*T* — B/B

be the morphism of vector bundles determined by

for h € S2T*, &,m € T. If £ is vector field on X and h is the section Leg
of S?T*, from (1.7) we infer that

P(Do) (1 (€) — =A(h)) = 0;
hence by (1.1) and the definition of B, we see that
k(h) = —a(LeR).
Thus by the first relation of (1.18), we obtain the equality
(1.26) Dih = a(R;(h)) + k(h),
for h € S*T*.
Let f be a real-valued function on X. Since (1.23) is a complex,

by (1.5) we see that

(1.27) DqHess f = 0.
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We easily verify that
p(u(g)) = —4R;

from this last equality, (1.26) and (1.22), we obtain the relations

(1.28) Di(fg) = a(rp(Hess f @ g) = fR) = aDy(fg).

When X is compact, according to the decomposition (1.11) we see that
the natural mapping from the space

H(X) :{heCOO(S2T*) |divh =0, Dih =0}

to the cohomology of the complex (1.24) is an isomorphism.
We no longer make any assumption on B/B. For h,h’ € S*T*, we
define an element h_I k' of S2T* by

(hd W) (& m) =K (" - 1°(€),n) + I (g" - B’ (n), €),

for £,m € T. We consider the morphism of vector bundles L : S?T* — S2T*
determined by

L(a-B)(&n) = R(& ¢*a,n,¢"B) + R(&, ¢* B, n, g* )
+ R(n, g, &, ¢*B) + R(n, ¢*B, €. g* ),

for a, 3 € T* and &, € T. We have
(1.29) g_1h=2h, Lg = —2Ric,

for h € S?T*.
The Laplacian

A=V'V:Q'T - QT

is determined by

n

(Zu)(gla"'agp Z tj7tj;€1,~~'7£p)a

Jj=1

for u € C®(Q"T*), &1,...,&p € Ty, where z € X and {t1,...,t,} is an
orthonormal basis of T,,. The Lichnerowicz Laplacian

A=A : QT - R'T*



14 I. SYMMETRIC SPACES AND EINSTEIN MANIFOLDS

of [44] can be written as A = A + k,, where k, : @"T* — Q"T* is a
morphism of vector bundles (for an intrinsic definition of A, see [29, §4]).
For a € T* and u € Q"T*, we easily see that

Ta(B)u=0a(B)u= ~||a||* - u,

where ||| is the norm of a (with respect to the metric g); it follows that
the Lichnerowicz Laplacian A : @"7* — @"7* is elliptic. We recall that
the restriction of the Lichnerowicz Laplacian to A’7* is equal to the de
Rham Laplacian and that A(SP7T*) C SPT*. The Lichnerowicz Laplacian

A S2T - ST

is determined by o
Ah = Ah + Ric_| h + Lh,

for h € S?T*, and satisfies

(1.30) Tr Ah = ATr b,

for all h € S%7T*. If X is a positive real number, then the Lichnerowicz
Laplacian Ay corresponding to the Riemannian metric ¢' = Ag is related
to Ay by

Ay =AAy.

The operator Ric; can be expressed in terms of the Lichnerowicz Lapla-
cian; in fact, we have

(1.31) Ricyh = (Ah — Hess Tr h) — D'div h,

for h € S?T* (see, for example, Theorem 1.174 of [6]). Hence by (1.30),
we obtain the equality

(1.32) TrRicyh = ATrh — d*divh,
for h € S?T*. Thus if h € ST * satisfies divh = 0, then we have
(1.33) Ricyh = §(Ah — Hess Tr h), TrRicyh = ATrh

(see [22, §1]). If f is a real-valued function on X, by (1.8) and (1.32) we
see that the relation

(1.34) TrRicy(fg) = (n — 1DAf

holds.
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§2. Einstein manifolds

We say that the Riemannian manifold (X, g) is an Einstein manifold
if there is a real number A such that Ric = Ag. In this section, we suppose
that ¢ is an Einstein metric, i.e., that there is a real number A such that
Ric = Ag; the scalar curvature r(g) of (X, g) is constant and equal to nA.
By (1.29), we have

Ric_1 h =2)\h,

for h € S?T*. In this case, we see that
Ah —2Xh = Ah+ Lh,
for h € S?T*. If f is a real-valued function on X, it is easily seen that
(1.35) divHess f = dAf — \df.
Let & be a vector field on X. According to (1.14) and (1.15), we have
(1.36) div Do€ = (A + dd*)&" — 2)¢,
(1.37) div D§E = AE® — 206 + "7_2 dd*e.
By the last relation of (1.18), we see that
(1.38) (Ric, — Aid)L¢g = LeRic — ALeg = 0.
Hence if the section h = Do& of S?T* satisfies Tr h = 0, by (1.31) we have
(1.39) 1 Ah — D'divh — Ah = 0.

Now suppose that £ is a conformal Killing vector field. If the dimension
of X is > 2 and if the real-valued function f on X determined by the
relation L¢g = fg is non-zero, then f is an eigenfunction of A with eigen-
value nA/(n — 1); by (1.38), we see that

Ricy(fg) = A fg,

and so the fact that f is an eigenfunction of A may also be viewed as a
consequence of formula (1.34).
Assertion (ii) of the following lemma is proved in [42, p. 649].

LEMMA 1.5. Assume that (X, g) is a compact Einstein manifold and
that Ric = Ag, where X\ # 0. Let £ be a vector field on X .

(i) If ¢ is a Killing vector field, it verifies the relation A& = 2\,

(ii) If the dimension of X is > 3 and if ¢ is a conformal Killing vector
field satisfying the relation A = 2X\E, then € is a Killing vector field.
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Proor: If ¢ is a Killing vector field, by (1.4) we know that d*&” = 0;
then the relation A = 2A€” is a consequence of (1.36). If n > 3 and &
is a conformal Killing vector field satisfying the relation A&’ = 2X¢&”, from
formula (1.37) we deduce that dd*€” = 0; this last relation clearly implies
that d*€” = 0, and so D€ = D§E = 0.

We shall consider the n-sphere S™, with n > 2, viewed as the unit
sphere in R"*! endowed with its metric gg of constant curvature 1 induced
by the Euclidean metric of R**!. By an n-sphere of dimension n, we shall
mean the sphere S™ endowed with the metric pgy of constant curvature p,
where p is a positive real number.

In §4, Chapter II, we shall require the following result:

PROPOSITION 1.6. Assume that (X, g) is a compact, connected Ein-
stein manifold and that Ric = Ag, where A > 0. If X is not isometric to a
sphere, then a conformal Killing vector field on X is a Killing vector field.

PROOF: Let £ be a conformal Killing vector field on X and let f be
the real-valued function on X satisfying L¢g = fg. Assume that £ is not
a Killing vector field; in other words, we suppose that the function f does
not vanish. By Lemma 1.2, we know that f is an eigenfunction of the
Laplacian A with eigenvalue nA/(n — 1). Then Obata’s theorem (see [48]
or Theorem D.I.6 in Chapter IIT of [4]) tells us that X is isometric to a
sphere.

LEMMA 1.7. If (X, g) is an Einstein manifold, then we have
Tr B = {0}.
PrOOF: If x € X and £ € T satisty (Leg)(z) = 0, then we have
Te (LeR)(x) = (LeTr R) (@) = —(LeAg) (@) = 0.

According to Lemma 1.7, the trace mapping Tr : B — S?T™* induces,
by passage to the quotient, a morphism of vector bundles (with variable
fibers)

Tr: B/B — S*T*.

PROPOSITION 1.8. Assume that (X,g) is an Einstein manifold and
that Ric = Ag, with A € R. If B is a vector bundle, then the diagram

s — 2 BB
(1.40) lid lfﬁ

Ric/ —Aid
s — 5 827

is commutative.
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PROOF: Let h be a section of S2T* over X. If z € X and h(z) = 0,
then by (1.20) and (1.21) we have

—Tr (D1h)(z) = =Tra(R,h)(x) = =Tr (R h)(z) = (Ric,h)(z).

If £ is a vector field on X, then we know that D;L¢g = 0; on the other
hand, by the last relation of (1.18), we know that (1.38) holds. If z € X,
by the surjectivity of o(Dg) we know that there exists a vector field £ on X
such that (L¢g)(x) = h(z). The commutativity of the diagram (1.40) is
now a consequence of the previous observations.

Lemma 1.7 and Proposition 1.8 are proved in [25, §1]. If B is a vector
bundle, from Proposition 1.8 and relation (1.32) we obtain the equality

(1.41) —Tr-Tr D1h = ATrh — ATrh + d*div h,

for h € S?7T*.

LEMMA 1.9. Assume that (X, g) is a compact, connected Einstein
manifold and that Ric = Mg, where A # 0. Let h be an element of
C>(S2T*) satisfying divh = 0 and

(1.42) Tr (Ric), h — Ah) = 0.

Then we have Tr h = 0.
PROOF: Since divh = 0, from (1.33) and (1.42) we obtain the equality

(1.43) ATrh = ATrh.

When A is positive, Lichnerowicz’s theorem (see [43, p. 135] or Theo-
rem D.I.1 in Chapter III of [4]) tells us that the first non-zero eigenvalue
of the Laplacian A acting on C*°(X) is > nA/(n — 1). Therefore from our
hypothesis that A # 0 and (1.43), we deduce that Trh = 0.

The proof of Lemma 1.9 can be found in [3, §7]. The following lemma
is a generalization of Proposition 3.2 of [22].

LEMMA 1.10. Assume that (X,g) is a compact, connected Einstein
manifold and that Ric = A\g, where A # 0. Suppose that B is a vector
bundle. Let N be a sub-bundle of B containing B and E be a sub-bundle
of S2T* satisfying Tr N C E and TrE = {0}. Let h be an element of
C>(S2T*) satisfying

divh =0,  Dihe C®(N/B).
Then we have Trh = 0 and

Ah —2\h € C®(E).
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PrOOF: Since D;h is a section of N/B, by Proposition 1.8 our hy-
potheses on N and E imply that

(1.44) Ric, h — Ah = —Tr D1h € C*(E)

and hence that (1.42) holds. By Lemma 1.9, we have Trh = 0. Thus by
(1.31) and (1.44), we see that

Ah —2\h = 2(Ric, h — Ah) € C>(E).

The following lemma is due to Berger and Ebin [3] and Koiso [41].

LEMMA 1.11. Assume that (X,g) is a compact, connected Einstein
manifold and that Ric = A\g, with A € R. Let ¢ > 0 and g, be a one-
parameter family of Einstein metrics on X defined for |t| < e, with gg = g.
If the symmetric 2-form h = %gt\t:o satisfies the conditions

(1.45) divh =0, / Trh-dX =0,
X

then we have
(1.46) Ah = 2\h, Trh =0.

PrOOF: For |t| < e, we write Ric(g;) = A¢gt, where Ny € R and
Ao = A. This relation implies that

(1.47) Ric; (h) = Ah + Xg,

where N = %)\tuzo- Since divh = 0, by the second formula of (1.33) we
obtain
ATrh = ATrh+n\.

Since the integral of the function ATrh over X vanishes, from the second
relation of (1.45) we deduce that N = 0. If A # 0, by Lemma 1.9 we
see that Trh = 0. If A = 0, we have ATrh = 0; therefore the function
Trh is constant and the second relation of (1.45) implies that it vanishes.
By (1.33) and (1.47), with A’ = 0, we obtain the first equation of (1.46).
We now suppose that X is compact and connected, and we consider
the space M of all Riemannian metrics on X. The space of elements h
of C>°(82T*) satisfying (1.45) can be identified with the “tangent space”
to the subset of M consisting of all Riemannian metrics g on X, which
satisfy Vol (X, §) = Vol(X,g) and belong to a subset of M transversal
to the orbit of g under the group of diffeomorphisms of X. In fact, if
g+ is a one-parameter family of Einstein metrics on X defined for [t| < ¢,
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with € > 0 and go = g, satisfying Vol (X, g;) = Vol (X, g), then the in-
finitesimal deformation h = % Gti—o of the family g, satisfies the second
relation of (1.45). In view of these remarks, the decomposition (1.11) and
the above lemma, the space E(X) of infinitesimal Einstein deformations of
the metric g, introduced by Berger and Ebin in [3], is defined by

E(X)={hecC>®(S*T*)|divh =0, Trh =0, Ah=2\h}

(see also Koiso [41]). By definition, the space E(X) is contained in an
eigenspace of the Lichnerowicz Laplacian A, which is an elliptic operator,
and is therefore finite-dimensional.

According to Lemma 1.7, when B is a vector bundle, we may take
N=Band E = {0} in Lemma 1.10; from the latter lemma and the relation
between the space H(X) and the cohomology of the sequence (1.24), we
obtain the following result:

LEMMA 1.12. Assume that (X,g) is a compact, connected Einstein
manifold and that Ric = A\g, where A # 0. Suppose that B is a vector bun-
dle. Then the space H(X) is finite-dimensional and is a subspace of E(X).
Moreover if E(X) = {0}, then the sequence (1.24) is exact.

§3. Symmetric spaces

We say that the Riemannian manifold (X, g) is a locally symmetric
space if VR = 0. According to Lemma 1.4, if the equality

(1.48) HN(T*® B) = {0}

holds, then the manifold (X, g) is locally symmetric. Throughout this
section, we shall suppose that the manifold (X, g) is a connected locally
symmetric space. Since the set of local isometries of X acts transitively
on X, we see that B is a vector bundle. According to [13], the infinitesimal
orbit of the curvature is equal to B, and so we have:

LEMMA 1.13. Suppose that (X, g) is a connected locally symmetric
space. Then B is a vector bundle equal to the infinitesimal orbit of the
curvature

{p(w)R|u € gy }.
We now suppose that (X, ¢) has constant curvature K; then we have
R(&1,62,83,8) = K(9(&1,€4)9(&2,&3) — 9(&1,€3)9(82,€4)),

for £1,62,€3,64 € T, and Ric = (n — 1)K g. It follows directly from the
definition of the vector bundle B that it vanishes in this case. Thus if A
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is a section of S2T* vanishing at # € X, then by (1.25) we see that the
equality Dyh = D1h holds at € X. According to [13, §6], we know that

(1.49) Dy oDy =0.

Since the mapping o(Dp) is an epimorphism, it follows that the operator
D, takes its values in B and that D, is equal to D,. In this case, the
complex (1.23) becomes the sequence

(1.50) T 2o g2 Do g

introduced by Calabi [8], while the complex (1.24) becomes

(1.51) o (T) 22, o (827) 22 = (B).

The Lichnerowicz Laplacian A acting on symmetric 2-forms is given by
(1.52) Ah = Ah +2nKh —2K(Trh) - g,

for h € S2T*.
We assume moreover that X is a surface. Then we have Ric = \g,
with A = K, and B is a line bundle. Therefore the mapping

Tr-Tr: B, — R

is an isomorphism, for all © € X. Thus according to the relation (1.41),
if h € §2T*, the relation D;h = 0 holds if and only if the right-hand side
of (1.41) vanishes; in particular, if h € S27* satisfies divh = 0, then the
relation D1h = 0 is equivalent to the equality ATrh = ATrh. If X is
compact and K # 0, by Lemma 1.12 we obtain the equality

(1.53) H(X)={heC>®(S3T*) |divh=0};

thus we see that the equality H(X) = {0} implies that E(X) = {0}. On
the other hand, if X is compact and K = 0, we obtain the equality

(1.54) H(X)={heC®(S3T*)|divh=0}aR-g.

We now again suppose that (X, g) is an arbitrary connected locally
symmetric space. If X is a surface, we have just seen that the vector bundle
B is a line bundle and that the vector bundle B vanishes. According to
Lemma 1.13, we know that the vector bundle B always satisfies

n(n—l).

rank B <rankg; = 5
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If the dimension of X is > 3, in §1 we saw that Tr B = S?T*, and so we
obtain the inequalities

(n—=1) n(n+1)
2 < 2

rank B < i < rank B.

Thus we see that, if the dimension of X is > 2, the vector bundle B/ B is
always non-zero.

Let Y be a totally geodesic submanifold of X. Let i : Y — X be the
natural imbedding and gy = i*¢ be the Riemannian metric on Y induced
by g. Then (Y, gy) is a locally symmetric space; its Riemann curvature
tensor Ry is equal to the section i*R of By and the infinitesimal orbit
of Y is equal to By. For z € Y, the diagram

NT: — B,
N°Ty, — Bya

whose horizontal arrows send 8 € A*T7 and (3, € /\QT;},QJ onto p(¢(B1))R
and p(¢(B2)) Ry, respectively, is commutative. Therefore we have the rela-
tion

(1.55) i*By C By,

for x € Y. Thus if Y is connected, the imbedding ¢ induces a morphism of
vector bundles R R
i* : (B/B)‘y — By/By.

If Y has constant curvature, from (1.55) and the fact that By = {0} we
infer that

(1.56) i*B = {0}.

PROPOSITION 1.14. Suppose that X is a connected locally symmetric
space. Let' Y be a totally geodesic submanifold of X; let i : Y — X be the
natural imbedding and gy = i*g be the Riemannian metric on Y induced
by g. Let h be a section of S?>T* over X.

(i) The equality

(1.57) i*Dgh = Dy, (i*h)
holds on Y, and, when Y is connected, we have

(1.58) *(D1h)jy = D1yi*h.
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(ii) Assume that the manifold Y has constant curvature. If ¢ € Y and
&1,82,83,&4 € T, are tangent to Y and if u is an element of B, satisfying
au = (D1h)(z), then the equality

(1.59) i*u =1i"(Dgh)(z)
holds and we have

(160) u(§1’£27£37£4) = (Dgh)(€17£27§37€4)~

PRrROOF: Let &1, &2, &3 be vectors of Ty, with « € Y, which are tangent
to Y according to Theorems 7.2 and 4.2 in Chapter IV of [36], we know
that the vector R(&1,&2)E3 of T, is tangent to Y. Since Ry = i*R, we see
that

Ry (&1,&)€ = R(&1,&)Es.

The equality (1.57) now follows from Proposition 1.3 and formula (1.21).
Now suppose that Y is connected and let h be a section of S?T*. Let x
be a point of Y and let u be an element of B, satisfying au = (D1h)(z).
First, suppose that h vanishes at the point « of Y. Then (Dyh)(x) is an
element of B,; by (1.25) and (1.58), we see that the vector u — (Dgh)(x)
of B, belongs to B, and that

i*(D1h)(z) = i"(aDyh)(z) = a(Dy, i*h)(x) = (D1,yi"h)(z).

If Y has constant curvature, by (1.56) we obtain the relation (1.59). Next,
suppose there is a vector field £ on X satisfying L¢g = h. Then we have
D1h = 0 and, if i is the vector field on Y determined by &£, according to
Lemma 1.1 we have i*h = L, gy; thus we see that Dy yi*h = 0. If Y has
constant curvature, by (1.49) we know that Dy, L, gy = 0; thus by (1.57)
we have ¢*(Dgyh) = 0. Therefore, under either one of the two assumptions
imposed on h, we know that the equality (1.58) holds at = and that, if Y has
constant curvature, the relation (1.59) also holds. As the mapping o(Dy) is
an epimorphism, the preceding observation implies that the equality (1.58)
always holds and that, if Y has constant curvature, the relation (1.59) also
holds. The relation (1.60) is a consequence of (1.58).

LEMMA 1.15. Assume that (X, g) is a connected locally symmetric
space. Let'Y be a totally geodesic submanifold of X of constant curvature.
Let h be a section of S?T* over X. Let x € Y and u be an element of B,
such that (D1h)(z) = au. If the restriction of h to the submanifold Y is
a Lie derivative of the metric on Y induced by g, then the restrictions of
Dyh and u to the submanifold Y vanish.

ProOF: Let i:Y — X be the natural imbedding and gy = i*g be the
Riemannian metric on Y induced by g. Assume that the restriction i*h of
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h to the submanifold Y is equal to the Lie derivative £, gy of gy along a
vector field 7 on Y. Since Y has constant curvature, by (1.49) and (1.57)
we have

i*Dgh = Dy, (i*h) = Dg, Legy = 0.

From Proposition 1.14,(ii) and (1.59), we infer that i*u = 0.
From Lemmas 1.1 and 1.15, we deduce the following result:

LEMMA 1.16. Assume that (X, g) is a connected locally symmetric
space. Let Y, Z be totally geodesic submanifolds of X ; suppose that Z is
a submanifold of Y of constant curvature. Let h be a section of S>T* over
X. Let x € Z and u be an element of B, such that (D1h)(x) = aqu. If the
restriction of h to the submanifold Y is a Lie derivative of the metric on Y
induced by g, then the restriction of u to the submanifold Z vanishes.

We consider the third-order differential operator
D, =(DR),: S*T* —H
and the differential operator
(Dy, D) : S?°T* — H & B/B.
According to (1.18), we see that
(DR),(Leg) =0,

for all vector fields £ on X; thus we may consider the complex

(1.61) T Do, g2 P2 g 0 BB
We consider the connection
V:B—=T*®B

and the first-order differential operator
oV :B— N*T* @ N°T*,

where ¢ is the morphism of vector bundles defined in §1. Since VR = 0,
by Lemma 1.13 we easily see that

VBCT 9B

(see Lemma 7.3,(i) of [13]). Therefore the connection V induces by passage
to the quotient a connection

V:B/B—T"®B/B
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in the vector bundle B/B. According to [13, §7], we have

(1.62) VDih = (id ® a)Dsh,

for h € S?T*. Since X is locally homogeneous, the restriction
o:T"®B— N'T" o N°T*

of the morphism ¢ has constant rank; we denote by B, its cokernel and by
Q: /\BT* ® /\2T* — By the canonical projection. We easily see that there
exists a unique first-order differential operator D] : B/B — By such that

the diagram - 5 )
B = NToNT*

BB 2 B,
commutes. The following result is given by Lemma 1.3 of [18].

LEMMA 1.17. Suppose that (X,g) is a connected locally symmetric
space. Then the sequence

Do Dy

7 20, g2 P /B 2L By

is a complex.

PROOF: Since the sequence (1.23) is a complex, it suffices to show
that D} - D; = 0. Let h be an element of S°7* and u be an element of B
satisfying D1h = au. Then we have VD1h = (id ® @) Vu, and so by (1.62)
we see that Vu — Doh is an element of 7* @ B. Since o Dyh = 0, we have

DiD1h = acVu = ac(Vu — Dsh) = 0.

According to Theorem 7.2 of [13], the complex (1.61) is exact and for-
mally exact in the sense of [7, Chapter X] (see also [28] and [13]); hence the
differential operator (Ds, D7) is the compatibility condition of the Killing
operator Dy. Therefore if © is the sheaf of Killing vector fields on X,
that is, the kernel of the operator Dy : 7 — S2T*, the cohomology of the
complex

(1.63) (1) 2o 082y P2 oo @ B/ B)

is isomorphic to the cohomology group H' (X, ©). According to [13, §7], the
sheaf © is locally constant and, when X is simply-connected, the sequence
(1.63) is exact. The natural injective mapping from the cohomology of
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the complex (1.63) to the cohomology of the sequence (1.24) induces an
injective mapping from the cohomology group H'(X, ©) to the cohomology
of the complex (1.24).

According to Theorem 7.3 of [13], if the equality (1.48) holds, a section
h of S2T* satisfying D1h = 0 also satisfies the equation Dyh = 0. There-
fore if (1.48) is true, the complex (1.23) is exact and the two mappings
considered above involving cohomology groups are isomorphisms. More-
over, if the equality (1.48) holds and X is simply-connected, the sequence
(1.24) is exact; on the other hand, if the equality (1.48) holds and X is
compact, the cohomology group H' (X, ©) is isomorphic to H(X).

The universal covering manifold X of X endowed with the Rieman-
nian metric induced by ¢ is a locally symmetric space. If X is a finite
covering of X, then X is equal to the quotient X /T, where T" is a finite
subgroup of the group of isometries of X which acts without fixed points;
since the sequence (1.63) for the manifold X is exact, the sequence (1.63)
for the manifold X is also exact. If X is a symmetric space of compact
type, the manifold X is also a symmetric space of compact type and the
covering mapping X — X is finite (see Chapters IV and V of [36]). These
observations, together with the discussion which follows Lemma 1.17, give
us the following;:

THEOREM 1.18. Suppose that (X, g) is a connected locally symmetric
space satisfying one of the following conditions:

(i) the covering mapping X — X is finite;

(i) (X,g) is a symmetric space of compact type.
Then the sequence (1.63) is exact. If the equality (1.48) holds, the sequence
(1.24) is also exact.

We now suppose that (X, ¢g) has constant curvature K; then the vector
bundle B vanishes and so the equality (1.48) holds. Thus the complex
(1.50) is exact. If X is simply-connected, the sequence (1.51) is also exact.
These two results were first proved by Calabi [8] (see also [2]); other direct
proofs are given in [13, §6]. Furthermore if (X, g) is a compact surface of
constant curvature K, from the equalities (1.53) and (1.54) we obtain the
following proposition, whose first assertion is given by [2, p. 24].

PROPOSITION 1.19. Let (X, g) be a compact surface of constant cur-
vature K.
(i) The cohomology group H'(X,©) is isomorphic to the space

{heC™(SgT*) | divh =0}
when K # 0, and to the space
{he C®(S2T*) | divh=0}®R-g
when K = 0.
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(ii) If K # 0 and the cohomology group H'(X,©) vanishes, then we
have E(X) = {0}.

We now suppose that X is equal to the sphere (S™,gg) of constant
curvature 1, which is a symmetric space of compact type. We know that
the sequences (1.24) and (1.51) are exact and that the cohomology groups
HY(X,0) and H(X) vanish. When X is equal to the sphere (S2,g),
according to Proposition 1.19,(i) and the decomposition (1.12) we see that

(1.64) C>®(S3T*) = DEC™(T);
therefore, for h € C°°(S%T*), we may write

h=~Leg+ fog,

where ¢ is a vector field and f is a real-valued function on X = S2. More-
over, by Proposition 1.19,(ii), we have E(X) = {0} when X = S2.

If (X, g) is a compact manifold with positive constant curvature, then
its universal covering manifold is isometric to (S™, go), where p is a posi-
tive real number. Thus from Theorem 1.18 and the above results, we obtain
the following;:

PROPOSITION 1.20. Let (X, g) is a compact manifold with positive
constant curvature. Then cohomology group H* (X, ©) and the space H(X)
vanish, and the sequence (1.51) is exact.

We now suppose that (X, g) is a symmetric space of compact type.
Then there is a Riemannian symmetric pair (G, K) of compact type, where
G is a compact, connected semi-simple Lie group and K is a closed subgroup
of G, such that the space X is isometric to the homogeneous space G/K
endowed with a G-invariant metric. We identify X with G/K, and let x
be the point of X corresponding to the coset of the identity element of
G in G/K. If gy and € are the Lie algebras of G and K, respectively,
we consider the Cartan decomposition go = €y @ pg corresponding to the
Riemannian symmetric pair (G, K), where py is a subspace of gg. We
identify pg with the tangent space to X at the point xg. If B is the Killing
form of the Lie algebra g, the restriction of — B to pg induces a G-invariant
Riemannian metric go on X. According to Theorem 7.73 of [6], we know
that

If X is an irreducible symmetric space, the metric g is a positive multiple
of gy and is therefore an Einstein metric. The Ricci tensor of g is equal
to Ric = Ag, where X is a positive real number; by (1.65), we see that
go = 2Xg. Thus the Lichnerowicz Laplacians A and A, corresponding to
the metrics g and go, respectively, are related by A = 2AA .
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LEMMA 1.21. Let (X, g) be an irreducible symmetric space of compact
type. Then g is an FEinstein metric and there is a positive real number A
such that Ric = Ag; moreover, the metric gy induced by the Killing form
of go is equal to 2)\g.

In [41] and [42], Koiso proved the following:

THEOREM 1.22. Let X be an irreducible symmetric space of compact
type whose universal covering manifold is not equal to one of the following:

(1) SU(n +1), withn > 2;

(ii) SU(n)/SO(n), with n > 3;

(iii) SU(2n)/Sp(n), with n > 3;

(iv) SU(p+q)/SU(p) x U(q)), with p,q > 2;

(V) E6/F4
Then we have E(X) = {0}.

Some of the methods used by Koiso to prove Theorem 1.22 will be
described in §7, Chapter II; in fact, we shall give an outline of the proof of
this theorem for an irreducible symmetric space X which is not equal to a
simple Lie group. According to the remarks preceding Theorem 1.18, from
Lemma 1.12 and Theorem 1.22 we deduce:

THEOREM 1.23. Let X be an irreducible symmetric space of compact
type whose universal covering manifold is not equal to one of the spaces
(i)~(v) of Theorem 1.22. Then the sequence (1.24) is exact.

In [13] and [10], the equality (1.48) is proved for the complex projective
space CP", with n > 2, and the complex quadric of dimension > 3 (see
Propositions 3.32 and 5.14). Thus from Theorem 1.18, without the use of
the space of infinitesimal Einstein deformations, we obtain the exactness of
the sequence (1.24) when X is an irreducible symmetric space of compact
type equal either to a sphere, to a real or complex projective space, or
to the complex quadric of dimension > 3. Theorem 1.23 also gives us
the exactness of the sequence (1.24) for these irreducible symmetric spaces
other than the complex quadric of dimension 4. In fact, we conjecture that
the equality (1.48) holds for any irreducible symmetric space.

§4. Complex manifolds

In this section, we suppose that X is a complex manifold endowed
with a Hermitian metric g. We consider the sub-bundles 77 and T" of T¢
of complex vector fields of type (1,0) and (0, 1), respectively; then we have
the decomposition

Te=T & T".
The complex structure J of X induces involutions

J: N*TF — N>T*,  J:S°T* = ST,  J:T"@T —-T*®T
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defined by
B7(&m) = BJIE ), BI(Em) =h(JE Tn),  u!(€) = —Ju(JE),

for B N>T*, h € S?°T*, u e T*®T and &,n € T. Then g; is stable under
the involution J of T* @ T and the sub-bundle B of A\*T* @ \>T* is stable
under the involution

J=J&J: N°T* o N°T* — N*T* @ N°T*.
We then obtain the orthogonal decompositions

NT* =Tt @ (N°T*)~,  S2T* = (S*T*)* @ (S*T*)~,

(1.66)

B=B*® B, =9 gy
into direct sums of the eigenbundles Tp', (AT*)~, (S2T*)*, (S>T*)~,
BT, B, gf’ and g; corresponding to the eigenvalues +1 and —1, respec-
tively, of the involutions J. In fact, T]é’l is the bundle of real forms of type
(1,1), while (S?7*)* and (S?T*)~ are the bundles of (real) Hermitian and
skew-Hermitian symmetric 2-forms on X, respectively. It is easily verified
that

Tr(BT) C (S*T*)*,  Tr(B™) C (S°T*)".
Clearly we have

gf ={ucg luod =Jou)

hence the fiber of this vector bundle gf at x € X is equal to the Lie algebra
of the unitary group of the Hermitian vector space (T, J(z), g(z)).
We consider the morphism of vector bundles

(1.67) R°T* — ®°T*,
sending u € ®>T* into the element i@ of QT defined by
a(&,mn) = u(JEmn),
for all £,n € T. Clearly, the square of this morphism is equal to —id and
so (1.67) is an isomorphism. We easily verify that the isomorphism (1.67)
induces isomorphisms of vector bundles
(ST =Tyt Tt — (ST,

(1.68) (S2T*)~ — (S*T*)~, (AT — (N*T)~.
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The squares of the isomorphisms (1.68) are equal to —id. The metric g is a
section of (S2T*)T and its image under the isomorphism (1.67) is a section
of T]é’l7 which is the Kéhler form w of X.

Let SP9T* (resp. A”'?T*) be the bundle of complex differential sym-
metric (resp. exterior differential) forms of degree p + ¢ and of type (p, q)
on X. Then SU1T* and A"'T* are the complexifications of the bundles
(S?2T*)* and Tﬂé’l, respectively. The eigenbundles corresponding to the
eigenvalues +i and —i of the endomorphism of (S?T*)z (resp. of (/\QT*)é)
induced by the mapping (1.68) are the bundles S%°T* and S%2T* (resp. the
bundles A*°T* and A"°T*), respectively. We write T4 = A"’T* and
791 = A®'T*. Then we have the orthogonal decompositions

(") = 20T & %277, (N'T)g = AMT" & AT,
(1.69) Tg=T""0 1", ST = S*0T* @ ST @ 92T,
The isomorphism of vector bundles ¢” : T — T™* determined by the Hermi-
tian metric ¢ induces isomorphisms of vector bundles

(1.70) ¢ T =T1%, g T T
We consider the natural projections
7 ST — (SPTHY, 1 SPTE — SPOTH) o SPTE — SOAT

determined by the decompositions (1.66) and (1.69). Since the metric g is
a section of (S2T*)*, if f is a real-valued function on X, we see that

(1.71) TrmiHess f = TrHess f = —Af.

The isomorphism of vector bundles ¢ : /\ZT* — g1 induces isomor-
phisms
1,1 LA 2Ry — -
LTt — g, L (N°TH™ — g7

If 3 is an element of (/\2T*)_, we easily verify that
(1.72) p(u(B))w = 26.

Let 7 be the endomorphism of the vector bundle A*T*® A*T* defined
by

7T(01 02y 92)(517§2a§3a§4) = 201(51752)92(§3a§4) + 201(5?”54)02(51752)
+01(61,83)02(82,€4) + 01(&2,€4)02(E1,€3)
— 01(&2,83)02(&1,6a) — 601(&1,84)02(62,E3),
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for 61,605 € /\2T* and &1,&2,€3,&4 € T. We easily verify that the image of
the morphism 7 is contained in B. We consider the morphism of vector
bundles

v N*T* — B

defined by
Y(0) =7(we0),

for § € \*T*. Clearly, we have
V(TR BT, W(N'T)) BT

LEMMA 1.24. The morphism 1 is injective.

PROOF: Let 6 be an element of A*T* and let £, 7 be vectors of T.
Then we have

P(0)(&:n, €, JE) = 3(w(&,mO(E, JE) + w(&, JEO(E ).

This formula implies that

P(0)(&, IS, €, JE) = 6w(, JEO(E, JE)

and, when £ is orthogonal to Jn, that

P(0)(&:n, €, JE) = 3w(E, JE)O(E, ).

We now suppose that € belongs to the kernel of ¢). From these two formulas,
we infer that 0(&, J€) = 0, for all € € T, and that (¢,n) =0, forall&,n € T,
whenever 7 is orthogonal to J¢. Thus we see that 8 = 0.

We shall consider the morphism of vector bundles

b (\T") — B

defined by

for B € (N*T*)~.

We now suppose that (X, g) is a Kédhler manifold. If h is a section
of (S2T*)*, we easily verify that
(1.73) divh = i(0* — 0*)h.

The following result is given by Lemma 1.1 of [21].
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LEMMA 1.25. Suppose that (X, g) is a Kahler manifold and let f be
an element of C°°(X). If h is the section mHess f of (S*T*){, then we
have 5 B

h = i00f.
Let f be an element of C*°(X). We easily verify that

a74) D'9f = n'Hess f + 5 my Hess f,
1.74 _

D'0f = n""Hess f + 5 my Hess f.
Therefore, we have

7r+D18f = 7T+D15f = %W+H€SS f,
(1.75) _
n'Hess f — 7"'Hess f = DY(Of — Of).

By (1.4), from this last equality we infer that the section 7'Hess f—n"Hess f
belongs to the space DoC*>(T¢). According to (1.73) and Lemma 1.25, we
easily see that

(1.76) divryHess f = 1dAf.

Thus if (X, g) is a Kéahler-Einstein manifold and Ric = Ag, where A € R,
by (1.35) we have

(1.77) divn'Hess f = £ 0Af — A0, divr"Hess f = 20Af — AOf.

Suppose that (X, g) is a Hermitian symmetric space. Since (X, g) is a
Kaéhler manifold, its curvature R verifies the relation

R(&m) = R(&,n),
for all £,7 € T, and we have
(1.78) p(J)R =0,
(p(w)R)” = p(u”)R,

for w € T* ® T. From Lemma 1.13 and the decompositions (1.66), we
obtain the equality

(1.79) B=B*® B,
where

BY=BnBY=p(¢/)R, B~ =BNB =plg)R.



CHAPTER II

RADON TRANSFORMS ON SYMMETRIC SPACES

§1. Outline

In this chapter, we introduce the Radon transforms for functions and
symmetric forms on a symmetric space (X,g) of compact type, namely
the X-ray transform and the maximal flat transform. In §2, we present
results concerning harmonic analysis on homogeneous spaces and use them
to study these Radon transforms in §5 and to describe properties of certain
spaces of symmetric forms in §7. The notions of rigidity in the sense of
Guillemin and of infinitesimal rigidity of the space X are introduced in §3,;
in this section, we also state the fundamental result of Guillemin [35] con-
cerning isospectral deformations of the metric g of X (Theorem 2.14). In §4,
we present Grinberg’s theorem concerning the injectivity of the maximal
flat Radon transform for functions on X; when the space (X,g) is irre-
ducible, from this result we infer that, if the space X is rigid in the sense of
Guillemin, it is necessarily equal to its adjoint space. In §5, criteria for the
rigidity of the space X are given in terms of harmonic analysis. Some lem-
mas concerning irreducible G-modules, where G is a compact semi-simple
Lie group, proved in §6 are used in our study of symmetric forms on an ir-
reducible symmetric space presented in §7. Results concerning the space of
infinitesimal Einstein deformations of an irreducible symmetric space can
be found in §7. Our criteria for the infinitesimal rigidity or the rigidity in
the sense of Guillemin of an irreducible symmetric space are given in §8.

§2. Homogeneous vector bundles and harmonic analysis

Let (X, g) be a Riemannian manifold which may be written as a ho-
mogeneous space G/ K, where G is a compact Lie group and K is a closed
subgroup of G. We assume that the group G acts by isometries on the
Riemannian manifold X. If F' is a homogeneous vector bundle over X,
then the space C*°(F) is a G-module.

Let F be a complex homogeneous vector bundle over X endowed with a
Hermitian scalar product. We endow the space C*°(F') of sections of F' over
X with the Hermitian scalar product obtained from the scalar product on F'
and the Riemannian measure dX of X. If the vector bundle F' is unitary
in the sense of [56, §2.4], then the space C°°(F) is a unitary G-module.
Let ¢ be the point of X corresponding to the coset of the identity element
of G. The action of G on the fiber Fy of F' at the point zg of X induces
a representation 7 of K on Fj. Then F is isomorphic to the homogeneous
vector bundle G X, Fj and we shall identify these two homogeneous vector
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bundles. The representation 7 is unitary if and only if the vector bundle
F'is unitary.

We henceforth suppose that F' is a unitary homogeneous vector bundle.
If C*>(G; Fy) is the space of functions on G with values in Fy, we consider
its subspace

C®(G;1) ={f € C®G;Fy) | flak) =71(k) " f(a), forae G, ke K}

and we write
(r(a1)f)(a) = f(a;'a),

for a,a1 € G and f € C*°(G;7). Then 7 is representation of G on the
space C*°(G; 1) and the mapping

A:C>®(F)— C*(G;7),

defined by
(Au)(a) = a tu(aK),

for u € C*°(F) and a € G, is an isomorphism of G-modules. In particular,
if K is the subgroup {e} of G, where e is the identity element of G, and
Fy = C, then 7 is a representation of G on the space C°°(G) which gives
us a structure of G-module on C*>°(G).

Let G be the dual of the group G, that is, the set of equivalence classes
of irreducible G-modules over C. For v € G, let V., be a representative of v;
the mapping

ty 1 Vo @ Homg (Vy, Fy) — C(G; 1),
defined by
(W ® @)(a) = pla 1),
for all v € V,, ¢ € Homg (V,, Fy) and a € G, is injective. According to the
Frobenius reciprocity theorem, the image C’so(F ) of the mapping A~! o Loy
is a finite-dimensional G-submodule of C°°(F), which depends only on v
and is isomorphic to the direct sum of m copies of V., where m is the
integer dim Homg (V, Fy). If W is a G-submodule of C*°(F’), the image
of the mapping
V, ® Homg(V,, W) — C*(F),

which sends v ® ¢ into ¢(v), for v € V, and ¢ € Homg(V,, W), is a
G-submodule of W called the isotypic component of W corresponding
to 7. In fact, the isotypic component of C°°(F) corresponding to 7 is
equal to C5°(F'). A G-submodule W of C5°(F) is therefore isomorphic to
the direct sum of k copies of V,, with k& < dim Homg (V;,, Fy); this integer
k is called the multiplicity of the G-module W and denoted by Mult W.
According to Schur’s lemma, if the representation 7 of K is irreducible, the
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multiplicity dim Homg (V5 Fy) of C5°(F) is equal to the multiplicity of the
representation 7 in the decomposition of V, into irreducible K-modules.
For ~,+' € G, with v # 4/, the submodules C(F) and O3 (F) of C*°(F)
are orthogonal (see [56, §5.3]). For v € (?7 we denote by P, the orthog-
onal projection of C°°(F') onto its G-submodule C5°(F). The following
proposition is a direct consequence of Theorem 5.3.6 of [56].

PROPOSITION 2.1. The direct sum P C5°(F) is a dense submod-
ule of C*°(F).

The vector bundle @”T* ® @?T is a homogeneous vector bundle
and its complexification is a unitary homogeneous vector bundle. Thus
the vector bundles T¢, ®kT &, N'T¢ and SPTE are unitary homogeneous
G-vector bundles over X, and we consider the unitary G-modules C*°(1t)
and C“(@kTg). Moreover, we know that C*°(T) is a G-submodule of
C(1T¢), while

Co(N'TE), C=(S*TR), C°(Q"T*), C=(N'T*), C=(S*T)

are G-submodules of C°°(®kTE). For all v € G, the isomorphism of vector
bundles ¢” : T — T* induces isomorphisms of G-modules

¢+ O (Te) — C(T2).

Let g and ¢ be the Lie algebras of G and K, respectively. In this
section, we henceforth suppose that G/ K is a reductive homogeneous space;
this means that there is an Ad(K)-invariant complement of € in g. This
assumption always holds when the compact group G is connected and semi-
simple and (G, K) is a Riemannian symmetric pair of compact type. Let
Fy, F5, F5 be complex homogeneous vector bundles over X endowed with
Hermitian scalar products. Assume that these vector bundles are unitary.
Let

D: .7:1 - .7:2

be a homogeneous differential operator. Then we have
(2.1) DP,=P,D,
for 4 € G; therefore the morphism of G-modules

D : C®(Fy) — C®(F)
induces by restriction a morphism of G-modules

D : C,?o(Fl) — C,(;o(F2>7
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for v € G. We consider the subspace
KerD ={ue C®(F,) | Du=0}

of C°°(F1); according to the relation (2.1), if w is an element of Ker D, then
P,u also belongs to Ker D, for all v € G. If D is elliptic, we recall that
DC>(Fy) is a closed subspace of C°°(Fy); the following proposition is a
consequence of the results of [56, §5.7] and in particular its Lemma 5.7.7.

PROPOSITION 2.2. Let D : C*®(Fy) — C*(F3) be a homogeneous

differential operator. Then the following assertions hold:
(i) The direct sum P, 4 (C5°(F1) N Ker D) is a dense subspace of

Ker D; in fact, an element u of C*°(Fy) belongs to Ker D if and only if Pyu
belongs to Ker D, for all v € G.

(ii) The direct sum P o DCS°(F1) is a dense subspace of DO (F1).

(iii) If D is elliptic, then the closure of the direct sum @ .o DCS°(F1)
in C*°(Fy) is equal to DC*(Fy); in fact, if u is an element of C*(Fy) and
Pyu belongs to DCS°(Fy), for all v € G, then u belongs to DC(Fy).

The following proposition is given by Proposition 2.3 of [14].

PROPOSITION 2.3. Let
Q1: C™(F1) — C™(Fy), Q2 : C™(Fz) — C™(F3)

be homogeneous differential operators satisfying Q2 o Q1 = 0. Suppose
that the operator ) is either elliptic or equal to 0. Then the following
assertions are equivalent:

(i) The complex

C=(Fy) 25 0% (Ry) 22 0= (F)

is exact. X
(ii) For all v € G, the complex

o0 Ql o0 QQ o')
C’Y (Fl) — C’y (FQ) — C’Y (Fg)

is exact.
(iii) For all v € G, we have

Mult QQ(C,?/O(FQ)) Z Mult C,CY)O(FQ) — Mult C,C;O(Fl)
+ Mult (O,(;O(Fl) N Ker Ql)
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PRrOOF: First, suppose that assertion (ii) holds. Then according to
Proposition 2.2,(i) the subspace Ker @5 is equal to the closure of

D (CF°(F2) NKerQ2),

'yGG‘

and hence to the closure of €, 4 Q1(C5°(F1)). Since @ either vanishes
or is elliptic, by Proposition 2.2,(iii) this last space is equal to Q1(C*°(F}),
and so (i) holds. The equivalence of assertions (ii) and (iii) is immediate.

Now suppose that X is a complex manifold, that g is a Hermitian
metric and that the group G acts by holomorphic isometries on X. Then
the vector bundles 77 and T" are homogeneous sub-bundles of T¢, while
the vector bundles 7%° and T%! are homogeneous sub-bundles of T:. The
isomorphisms of vector bundles (1.70) are G-equivariant. Therefore for all
v € G’, the isomorphism of vector bundles ¢° : Te — T¢ induces isomor-
phisms of G-modules

(2.2) g CX(T) — C(T™Y),  CX(T") — C(THY).

§3. The Guillemin and zero-energy conditions

Let (X,g) be a Riemannian manifold. For p > 0, we consider the
symmetrized covariant derivative

DP = D% : SPT* — SPHLT*,

which is the first-order differential operator defined by

|l A
(DPu)(&1y. -5 &pyr) = b1 ;(VU)(@»&? oG 1),

for u € SPT* and &1,...,&y+1 € T. The operator D is equal to the exte-
rior differential operator d on functions, and the operator D! was already
introduced in §1, Chapter I.

If (X, g) is a flat torus, then we easily see that

(2.3) /Xg.de:o,

for all f € C°°(X) and all parallel vector fields ¢ on X; therefore, if u is a
symmetric p-form on X, we have

/}((Dpu)@l,...,cpﬂmxzo,
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for all parallel vector fields (1,...,(y+1 on X. By formula (1.4), we thus
see that

/ (Leg)(C1,¢2)dX =0,
X

for all vector fields £ on X and all parallel vector fields (1, (2 on X.

The following lemma is a consequence of the preceding remarks and
formula (1.4).

LEMMA 2.4. Let (X,g) be a Riemannian manifold and let Y be a
totally geodesic flat torus contained in X.

(i) Let u be a symmetric p-form on X. Then for all parallel vector
fields (i, ...,(p+1 on Y, the integral

/ (Dpu)(Cl, .. '7Cp+1) dY
X

vanishes.

(ii) Let & be a vector field on X. Then for all parallel vector fields
¢1,(2 on'Y, the integral

/ (Leg) (€1, Co) Y
Y

vanishes.

Let v : [0, L] — X be a closed geodesic of X of length L parametrized
by its arc-length s; we denote by #(s) the tangent vector to the geodesic
at the point v(s). If u is a symmetric p-form on X, we consider the integral

/vu/OLuwsms),...,ws))ds

of u over ~.

DEFINITION 2.5. We say that a symmetric p-form u on X satisfies the
zero-energy condition if, for every closed geodesic v of X, the integral of u
over «y vanishes.

Let Y be a totally geodesic submanifold of X clearly, if u is a symmet-
ric p-form on X satisfying the zero-energy condition, then the restriction
of u to Y also satisfies the zero-energy condition. From Lemma 2.4, we
obtain the following result:
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LEMMA 2.6. If u is a symmetric p-form on X, then the symmetric
(p + 1)-form DPu satisfies the zero-energy condition. A symmetric 2-form
on X, which is equal to a Lie derivative of the metric g, satisfies the zero-
energy condition.

DEFINITION 2.7. We say that the Riemannian metric g on X is a
Cp-metric if all its geodesics are periodic and have the same length L.

If g is a Cp-metric, we say that X is a C'r-manifold; then the geodesic
flow on the unit tangent bundle of (X g) is periodic with least period L.

The following proposition is due to Michel (Proposition 2.2.4 of [45];
see also Proposition 5.86 of [5]).

ProprosITION 2.8. Let g be a one-parameter family of Cp-metrics
on X, for |t| < e, with go = g. Then the infinitesimal deformation h =
4 9tj1=o of {gi} satisfies the zero-energy condition.

PROOF: Let v : [0,L] — X be a closed geodesic of the Riemannian
manifold (X, g). Then there exists a real number 0 < ¢ < ¢ and a differen-
tiable family of closed curves ; : [0, L] — X, for |t| < &, which possesses
the following properties: for each ¢, with [¢t| < §, the curve +; is a geodesic
of the metric g; parametrized by arc-length, and the curve 7y, is equal to ~.
We consider the variation of the family {+;} which is the vector field &
along the curve « defined by £(s) = %'yt(s)‘t:o, for 0 < s < L. Since g; is
a Cr-metric, we know that

/O 0 (e(s). An(s)) ds = L,

for |t| < §. We differentiate the left-hand side of the above equality with
respect to t, evaluate it at ¢ = 0, and then obtain the relation

L
| (0ints)- 50 + 20t €661) ds = .

On the other hand, according to the first variation formula, since 7 is
geodesic of the metric g, the derivative

d L

) RCIORABIEE

vanishes at t = 0; this gives us the relation

L
/0 9(o(s). &(s)) ds = 0.
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From the previous equalities, we infer that

L
/0 h(30(3).40(s)) ds = 0,

and so h satisfies the zero-energy condition.

DEFINITION 2.9. We say that a symmetric p-form v on a compact
locally symmetric space X satisfies the Guillemin condition if, for every
maximal flat totally geodesic torus Z contained in X and for all unitary
parallel vector fields ( on Z, the integral

(2.4) /Zu(C,C,...,C)dZ

vanishes.
From Lemma 2.4, we obtain:

LEMMA 2.10. Let X be a compact locally symmetric space. If u is a
symmetric p-form on X, then the symmetric (p+ 1)-form DPu satisfies the
Guillemin condition. If £ is a vector field on X, the symmetric 2-form L¢g
on X satisfies the Guillemin condition.

Thus every exact one-form on a compact locally symmetric space sat-
isfies the Guillemin and zero-energy conditions.

LEMMA 2.11. Let X be a flat torus. A symmetric p-form on X satis-
fying the zero-energy condition also satisfies the Guillemin condition.

PRrROOF: Let u be a symmetric p-form on X. It is easily seen that
the form wu satisfies the Guillemin condition if and only if the integral (2.4)
vanishes for all unitary parallel vector fields ¢ on X, all of whose orbits
are closed geodesics. Let ¢ be such a vector field and let ¢, = expt(,
for t € R, be the family of diffeomorphisms of X determined by (; then
there exists a real number L > 0 such that @447 = ¢, and such that,
for all € X, the mapping v, : [0,L] — X defined by 7,(t) = ¢:(z),
with 0 <t < L, is a closed geodesic of X of length L parametrized by its
arc-length. We suppose that L is the smallest such number. There is a
flat torus X’ of dimension m — 1 and a Riemannian fibration 7 : X — X’
whose fibers are equal to the family of all these closed geodesics; in fact, if
21,22 € X, we have 7(x1) = w(x2) if and only if we can write zo = pi(x1),
for some 0 <t < L. If f is the function defined on X by

f(@) = / "
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for x € X, clearly there is a function f’ on X' satisfying 7*f’ = f. Then

we have
/u((,(,...,()de/ fdx’.
Z X/

If u satisfies the zero-energy condition, then the functions f and f’ vanish,
and so, by the preceding formula, u satisfies the Guillemin condition.

If (X,g) is a compact locally symmetric space, according to Lemma
2.11 a symmetric p-form on X satisfying the zero-energy condition also
satisfies the Guillemin condition.

DEFINITION 2.12. We say that a compact locally symmetric space X
is rigid in the sense of Guillemin (resp. infinitesimally rigid) if the only
symmetric 2-forms on X satisfying the Guillemin (resp. the zero-energy)
condition are the Lie derivatives of the metric g.

If X is a compact locally symmetric space X and p > 0 is an integer,
we consider the space Z, of all sections of C*°(SPT™*) satisfying the zero-
energy condition. According to Lemma 2.6, we have the inclusion

DPC™(SPT*) C 2,41

By formula (1.4), we see that the infinitesimal rigidity of the compact lo-
cally symmetric space X is equivalent to the equality D'C°(T*) = Z,. On
the other hand, the equality D°C>(T*) = Z; means that every differential
form of degree 1 on X satisfying the zero-energy condition is exact.

ProprosiTION 2.13. Let X be a compact locally symmetric space.
Then the following assertions are equivalent:

(i) Every symmetric 2-form h on X, which satisfies the Guillemin
(resp. the zero-energy) condition and the relation divh = 0, vanishes.

(ii) The space X is rigid in the sense of Guillemin (resp. is infinitesi-
mally rigid).

PROOF: First assume that assertion (i) holds. Let h be a symmetric
2-form on X satisfying the Guillemin (resp. the zero-energy) condition.
According to the decomposition (1.11), we may write

h = ho + Do,

where hg is an element of C°°(S?T*) satisfying div hg = 0 and & € C>(T).
Clearly, by Lemma 2.10 (resp. Lemma 2.6), the symmetric 2-form hg also
satisfies the Guillemin (resp. the zero-energy) condition; our assumption
implies that hg vanishes, and so h is a Lie derivative of the metric. There-
fore (ii) is true. According to the decomposition (1.11), we see that asser-
tion (i) is a direct consequence of (ii).
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We now assume that (X, g) is a symmetric space of compact type. If
the space X is rigid in the sense of Guillemin, it is also infinitesimally rigid.
If X is a space of rank one, the closed geodesics of X are the maximal flat
totally geodesic tori of X, and so the notions of Guillemin rigidity and
infinitesimal rigidity for X are equivalent.

Consider a family of Riemannian metrics {g;} on X, for || < e, with
go = g. We say that {g;} is an isospectral deformation of g if the spectrum
Spec(X, g;) of the metric g; is equal to Spec(X,g), for all [t| < e. We say
that the space (X, ¢g) is infinitesimally spectrally rigid (i.e., spectrally rigid
to first-order) if, for every such isospectral deformation {g;} of g, there is
a one-parameter family of diffeomorphisms ¢; of X such that ¢. = g
to first-order in t at t = 0, or equivalently if the infinitesimal deformation
%gt\t:o of {g:} is a Lie derivative of the metric g.

In [35], Guillemin proved the following result:

THEOREM 2.14. A symmetric 2-form on a symmetric space (X, g)
of compact type, which is equal to the infinitesimal deformation of an
isospectral deformation of g, satisfies the Guillemin condition.

This theorem leads us to Guillemin’s criterion for the infinitesimal
spectral rigidity of a symmetric space of compact type which may be ex-
pressed as follows:

THEOREM 2.15. If a symmetric space of compact type is rigid in the
sense of Guillemin, it is infinitesimally spectrally rigid.

84. Radon transforms

Let (X, g) be a symmetric space of compact type. Then there is a
Riemannian symmetric pair (G, K) of compact type, where G is a compact,
connected semi-simple Lie group and K is a closed subgroup of G such that
the space X is isometric to the homogeneous space G/K endowed with a
G-invariant metric. We identify X with G/K, and let g be the point of X
corresponding to the coset of the identity element of G in G/K. Since the
maximal flat totally geodesic tori of X are conjugate under the action of
G on X, the space = of all such tori is a homogeneous space of G. We also
consider the set Z’ of all closed geodesics of X; when the rank of X is equal
to one, then Z’ is equal to =.

A Radon transform for functions on X assigns to a function on X
its integrals over a class of totally geodesic submanifolds of X of a fixed
dimension. Here we shall consider two such Radon transforms, the maximal
flat Radon transform and the X-ray transform.

The maximal flat Radon transform for functions on X assigns to a
real-valued function f on X the function f on Z, whose value at a torus
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Z € = is the integral
f2)= [ taz
z

of f over Z. Clearly this transform is injective if every function on X satis-
fying the Guillemin condition vanishes. The X-ray transform for functions
on X assigns to a real-valued function f on X the function f on Z’, whose
value at a closed geodesic v € Z’ is the integral

ﬂw—lf

Clearly this transform is injective if every function on X satisfying the zero-
energy condition vanishes. If the rank of X is equal to one, the maximal
flat Radon transform for functions on X coincides with the X-ray transform
for functions on X.

Let f be a real-valued function on X. If Z is a torus belonging to =
and if ¢ is a unitary parallel vector field on Z, then we see that

/2<fgx<,<>d2:::f(2>.

On the other hand, if -y is a closed geodesic of X, we have

Lfg = f(9).

Thus the maximal flat Radon (resp. the X-ray) transform of f vanishes
if and only if the symmetric 2-form fg satisfies the Guillemin (resp. the
zero-energy) condition.

If X is an irreducible symmetric space of compact type, we recall that
g is an Finstein metric and that Ric = Mg, where X is a positive real
number; moreover, the space E(X) of infinitesimal Einstein deformations
of the metric g is a G-submodule of C°°(S?T*).

PROPOSITION 2.16. Let X be an irreducible symmetric space of com-
pact type, which is not isometric to a sphere. If X is rigid in the sense
of Guillemin (resp. is infinitesimally rigid), then the maximal flat Radon
(resp. the X-ray) transform for functions on X is injective.

PROOF: Assume that X is rigid in the sense of Guillemin (resp. is
infinitesimally rigid). Let f be real-valued function on the Einstein mani-
fold X; suppose that the function f (resp. the function f) vanishes. Then
the symmetric 2-form fg on X satisfies the Guillemin (resp. the zero-
energy) condition. Therefore we may write fg = L¢g, where £ is a vector
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field on X. According to Proposition 1.6, the function f vanishes, and so
the corresponding Radon transform for functions is injective.

Let A be a finite group of isometries of X of order ¢. If F' is a vector
bundle equal either to a sub-bundle of T or to a sub-bundle of SPTE
invariant under the group A, we denote by C*(F)" the space consisting of
all A-invariant sections of F'; if the vector bundle F' is also invariant under
the group G and if the isometries of A commute with the action of G,
then C°°(F) is a G-submodule of C*°(F). If F is the trivial complex line
bundle, we consider the G-submodule C*®(X)* = C>(F)* of A-invariant
functions on X.

We suppose that the group A acts without fixed points. Then the
quotient Y = X/A is a manifold and the natural projection @ : X — Y is
a covering projection. Thus the metric g induces a Riemannian metric gy
on Y such that w*gy = g. Clearly the space Y is locally symmetric.

A symmetric p-form w on X is invariant under the group A if and only
if there is a symmetric p-form @ on Y such that © = w*u. The projection
w induces an isomorphism

(2.5) @ CF(Y, ST ) — O (ST,

sending u € C*°(Y, SPTy ) into w*u. A vector field § on X is invariant
under A if and only if it is w-projectable, i.e., if there exists a vector field
€ on Y such that w,£(z) = £(w(x)), for all 2 € X. If £ is a A-invariant
vector field on X, then the Lie derivative Dy is a A-invariant symmetric
2-form on X and, if f denotes the vector field on Y induced by &, we see
that

(2.6) Do& = @* (Do y ).

If X is an irreducible symmetric space, then X and Y are Einstein
manifolds; according to the definition of the spaces F(X) and E(Y) of
infinitesimal Einstein deformations, we see that the projection w and the
isomorphism (2.5) induce an isomorphism

(2.7) w* : B(Y) = E(X)%,

where

E(X)» = B(X)nC*>(S*T*).

Throughout the remainder of this section, we also suppose that the
isometries of A commute with the action of G on X; then Y is a homoge-
neous space of G. Assume furthermore that there is a subgroup K’ of G
containing K and a G-equivariant diffeomorphism ¢ : Y — G/K’ which
have the following properties:
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(i) (G, K’) is a Riemannian symmetric pair;

(ii) when we identify X with G/K, the projection ¢ o w is equal to
the natural projection G/K — G/K’.

Under these conditions, the space (Y, gy) is isometric to the symmetric
space G/K' of compact type endowed with a G-invariant metric.

Let Z be a maximal flat totally geodesic torus of X. Then w(Z) is a
flat torus of Y. On the other hand, if Z’ is a maximal flat totally geodesic
torus of Y, then @w='Z’ is a totally geodesic flat torus of X. From these
observations, it follows that Z = w~1(Z’), where Z’ = w(Z); we also see
that the rank of Y is equal to the rank of X and that the induced mapping
w: Z — Z' is g-fold covering. Moreover, the torus Z is invariant under the
group A. A parallel vector field § on Z is w-projectable, i.e., if there exists
a parallel vector field € on Z’ = w(Z) such that w@,&(x) = f(w( ), for all
x € Z. Conversely, any parallel vector field on Z’ is of the form w@.&, for
some parallel vector field £ on Z.

Let u be a symmetric p-form on X invariant under A and let @ be the

symmetric p-form on Y such that u = w*a. Let £ be a parallel vector field
on Z and { be the parallel vector ﬁeld on Z' such that @,& = { Then the
function u(,&,...,£) on Z is invariant under A and satisfies

u(é,€, ..., &) = uE,E, ..., &);

thus we obtain the equality

/u(g,g,...,g)dzzq/ a(é, €, ... €6 a7
Z ,

If v is a closed geodesic of Y, it is easily seen that there is a closed
geodesic 7' of X and an integer 1 < g; < ¢ such that the image of the
mapping @ o ~’ is equal to the image of v and such that the equality

/w*u:ql/u
v’ vy

holds for all symmetric p-forms v on Y.
From the above observations, we deduce the following:

LEMMA 2.17. Suppose that the quotient Y = X/A is a symmetric
space. Then a symmetric p-form u on Y satisfies the Guillemin (resp. the
zero-energy) condition if and only if the symmetric p-form w*u on X,
which is invariant under the group A, satisfies the Guillemin (resp. the
zero-energy) condition.

By Lemma 2.17, we see that the maximal flat Radon (resp. the X-ray)
transform for functions on Y is injective if and only if the restriction of the
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the maximal flat Radon (resp. the X-ray) transform for functions on X to
the space C*™(X)" is injective. From Lemma 2.17 and the equality (2.6),
we deduce the following three results:

PROPOSITION 2.18. Suppose that the quotient Y = X/A is a sym-
metric space. Then the following assertions are equivalent:

(i) Every symmetric 2-form on the space X, which is invariant under
the group A and satisfies the Guillemin condition, is a Lie derivative of the
metric.

(ii) The spaceY is rigid in the sense of Guillemin.

PROPOSITION 2.19. Suppose that the quotient Y = X/A is a sym-
metric space. Then the following assertions are equivalent:

(i) Every symmetric 2-form on the space X, which is invariant under
the group A and satisfies the zero-energy condition, is a Lie derivative of
the metric.

(ii) The space Y is infinitesimally rigid.

PROPOSITION 2.20. Suppose that the quotient Y = X/A is a sym-
metric space. Then the following assertions are equivalent:

(i) Every differential form of degree 1 on the space X, which is invari-
ant under the group A and satisfies the Guillemin (resp. the zero-energy)
condition, is exact.

(ii) Every differential form of degree 1 on the space Y, which satisfies
the Guillemin (resp. the zero-energy) condition, is exact.

Let F' be a G-invariant sub-bundle of SPT{, which is also invariant
under the group A. Then there exists a unique G-invariant sub-bundle Fy
of SPTY ¢ such that, for all € X, the isomorphism w* : SPTy — SPT7,
where y = w(x), induces an isomorphism w* : Fy, — F,. A symmetric
p-form u on Y is a section of Fy if and only if the A-invariant symmetric
p-form @w*u on X is a section of F. Then the mapping

w* : C®(Y, Fy) — C®(F)*,

induced by (2.5), is an isomorphism of G-modules.
The following proposition is a consequence of Lemma 2.17.

PROPOSITION 2.21. Suppose that the quotient Y = X/A is a sym-
metric space. Let F' be a sub-bundle of SPT* invariant under the groups G
and A, and let Fy be the G-invariant sub-bundle of SPTy induced by F.
Then the following assertions are equivalent:

(i) Any section of the vector bundle F over the space X, which is
invariant under the group A and satisfies the Guillemin (resp. the zero-
energy) condition, vanishes.
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(ii) Any section of the vector bundle Fy over the space Y, which
satisfies the Guillemin (resp. the zero-energy) condition, vanishes.

We now suppose that the group A is equal to the group {id,7} of
order 2, where 7 is an involutive isometry of X. We say that a symmetric
p-form u on X is even (resp. odd) with respect to 7 if 7*u = eu, where
e =1 (resp. ¢ = —1). A vector field £ on X is even (resp. odd) with
respect to 7 if 7.& = & (resp. 7.§ = —&). Any of these tensors on X is
even if and only if it is invariant under the group A. If F' is a G-invariant
sub-bundle of Tt or of SPT{, which is also invariant under 7, the space
C>®(F)%¥ (resp. C*°(F)°44) consisting of all even (resp. odd) sections of
F over X is a G-submodule of C*°(F). Clearly, we have the equality
C>®(F)®V = C*°(F)" and the decomposition of G-modules

(2.8) C®(F) = C*(F)* @ C>(F)°%,

In particular, if F' is the trivial complex line bundle, we obtain the decom-
position
Coo(X) — > (X)ev fa O (X)odd’

where C(X)®¥ (resp. C*°(X)°44) is the G-submodule of C*°(X) consist-
ing of all even (resp. odd) functions on X; in fact, the space C*°(X)" is
isomorphic to the space of all complex-valued functions on Y. Moreover,
we have the inclusion

dC™>®(X)®¥ C C°°(T*)*, dC(X)°dd ¢ ¢oo(T*)°dd,
By (1.6), we have the inclusions
(2.9) DoC=(T)® € C°(S?T*)®¥,  DeC>®(T)°d c ¢>(S§%1*)°dd,
If X is an irreducible symmetric space, we consider the G-submodules
E(X)® = BE(X)NC®(S*T*)®,  E(X)° = E(X)nC>(s?T)°dd

of E(X); then we have the equality F(X)®" = E(X)" and the decomposi-
tion of G-modules

(2.10) E(X) = EBE(X)® @ BE(X)°%.

Let Z be a maximal flat totally geodesic torus of X. Since 7 pre-
serves Z, if f is an odd function on X, we see that the integral of f over
Z vanishes. Therefore the odd functions on X satisfy the Guillemin condi-
tion, and so belong to the kernel of the maximal flat Radon transform for
functions.
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ProrosiTION 2.22. We suppose that the group A is equal to the
group {id, 7} of order 2, where 7 is an involutive isometry of X, and that
the quotient Y = X/A is a symmetric space. Then an odd symmetric
p-form on X satisfies the Guillemin condition, and the maximal flat Radon
transform for functions on X is not injective. Moreover, the space X is not
rigid in the sense of Guillemin.

PROOF: Let u be an odd symmetric p-form on X and let Z be a
maximal flat totally geodesic torus of X. If £ is a parallel vector field on Z,
then the function u(&,€,...,€) on Z is odd, that is,

u(§7£a cee 75)(7(55)) - 7’&(5,57 s 76)(56)3

for all z € Z; hence its integral over Z vanishes. We now construct an odd
symmetric 2-form A’ on X which is not a Lie derivative of the metric. Let
be a point of X and U be a open neighborhood of = for which U N 7(U) = 0.
By Lemma 1.13 and remarks made in §3, Chapter I, we know that the
infinitesimal orbit of the curvature B is a vector bundle and that the quo-
tient bundle B/ B is non-zero. According to §1, Chapter I, the morphism
o(Dy) : S?°T* ® S?°T* — B/B is surjective; hence we may choose a sym-
metric 2-form h on X whose support is contained in U and which satisfies
(D1h)(z) # 0. We know that h is not a Lie derivative of the metric on any
neighborhood of z. The symmetric 2-form b’ = h — 7*h on X is odd and
its restriction to U is equal to h. Hence the form h' satisfies the Guillemin
condition, and so the space X is not rigid in the sense of Guillemin.

We now consider an example of the above situation. The n-sphere
(8™, 90), with n > 2, is an irreducible symmetric space of rank one; in fact,
the group SO(n+1) acts transitively on S™, and the sphere S™ is isometric
to the homogeneous space SO(n 4+ 1)/SO(n) (see §2, Chapter III and also
§10 in Chapter XI of [40]). The anti-podal involution 7 of S™ is an isometry
which commutes with the action of SO(n + 1) on X = S™. If A is the
group {id, 7} of isometries of X, the quotient ¥ = X/A is equal to the real
projective space RP"” endowed with the metric gy of constant curvature 1
induced by the metric gy of S™. The natural projection w : S™ — RP" is
a two-fold covering. The Riemannian manifold RP” is also an irreducible
symmetric space of compact type of rank one. The closed geodesics of
the sphere S™ are the great circles, and the maximal flat totally geodesic
tori of S and RP" are the closed geodesics. In fact, the metric go on S™
(resp. on RP") is a Cp-metric, where L = 27 (resp. L = 7). We easily
see directly, or by Proposition 2.22, that the odd symmetric p-forms (with
respect to 7) on S™ satisfy the zero-energy condition. Moreover, according
to Proposition 2.22 the sphere S™ is not infinitesimally rigid.

In §3, Chapter III, we shall prove that the X-ray transform for func-
tions on the sphere S™, with n > 2, is injective on the space of all even
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functions (see Proposition 3.17). Clearly, this result is equivalent to asser-
tion (i) of the following theorem. By Lemma 2.17, we know that assertions
(i) and (ii) of this theorem are equivalent. We point out that assertion (i)
of this theorem in the case of the 2-sphere S? is a classic result due to Funk.

THEOREM 2.23. (i) The kernel of the X-ray transform for functions
on the sphere (S™, go), with n > 2, is equal to the space of all odd functions
on S™.

(ii) The X-ray transform for functions on the real projective space
(RP™, o), with n > 2, is injective.

The adjoint space of the symmetric space X is the symmetric space
which admits X as a Riemannian covering and is itself not a Riemannian
covering of another symmetric space. For example, the adjoint space of the
n-sphere S™, with n > 2, is the real projective space RP".

In [34], Grinberg generalized Theorem 2.23 and proved the following:

THEOREM 2.24. The maximal flat Radon transform for functions on
a symmetric space X of compact type is injective if and only if X is equal
to its adjoint space.

By Proposition 2.22, the sphere S™ is not infinitesimally rigid. Hence
from Proposition 2.16 and Theorem 2.24, we obtain the following necessary
condition for Guillemin rigidity:

THEOREM 2.25. Let X be an irreducible symmetric space of compact
type. If X is rigid in the sense of Guillemin, then X is equal to its adjoint
space.

In Chapter III, we shall show that the X-ray transform for functions
on a flat torus of dimension > 1 is injective; this result is due to Michel [46]
(see Proposition 3.5). If the symmetric space X is of rank ¢, each point
of X is contained in a totally geodesic flat torus of dimension ¢ of X (see
Theorem 6.2 in Chapter V of [36]). Thus from the injectivity of the X-ray
transform for functions on a flat torus, we deduce the following:

PROPOSITION 2.26. The X-ray transform for functions on a symmet-
ric space X of compact type of rank > 1 is injective.

We now extend the definitions of the maximal flat Radon transform
and the X-ray transform to symmetric p-forms. Let L be the vector bundle
over = whose fiber at a point Z € = is the space of all parallel vector fields
on the flat torus Z. This vector bundle is a homogeneous G-bundle over =
and its rank is equal to the rank of the symmetric space X. We consider the
p-th symmetric product SPL* of the dual L* of L. The space C*°(SPT™*)
of all symmetric p-forms on X and the space C*°(Z, SPL*) of all sections
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of SPL* over = are G-modules. The maximal flat Radon transform for
symmetric p-forms on X is the morphism of G-modules

I, : C*(SPT*) — C™(Z, SPL"),

which assigns to a symmetric p-form w on X the section I,(u) of SPL*
whose value at the point Z € = is determined by

Ip(u)(<15<27"'a<p):/Zu(glaCQa"'aCP)dZa

where (1, (2,...,(, are elements of Lz. The kernel N, of this mapping
I, is the G-submodule of C'*°(SPT*) equal to the space consisting of all
symmetric p-forms on X which satisfy the Guillemin condition. The com-
plexification N, ¢ of the space N, shall be viewed as the G-submodule of
C>(SPT¢) equal to the kernel of the morphism of G-modules

(2.11) I, : C*(SPTE) — (2, SPLY)

induced by the mapping I),. The mapping Iy coincides with the maximal
flat Radon transform for functions defined above, while the mapping I
was introduced in [23].

The X-ray transform for symmetric p-forms on X is the linear mapping
I, sending an element u € C°°(SPT™) into the real-valued function % on =’
whose value at the closed geodesic v is the integral

[

The kernel of this mapping I{D is equal to the space Z, of all symmet-
ric p-forms on X satisfying the zero-energy condition. Then according to
Lemma 2.11, we have

Z, CNp.

Let v be a closed geodesic of X; if ¢ is an element of G, we consider the
closed geodesic v = ¢ o0 ~. The mapping

O, C™(SPTE) — C(G),

which sends the complex symmetric p-form v into the complex-valued func-
tion ®,(u) on G defined by

D, (u)(6) = /u - /qsu
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for ¢ € G, is a morphism of G-modules. The complexification Z, ¢ of the
space Z,, shall be viewed as the G-submodule

N Ker®,

YEE’

of C(SPT{) consisting of all complex symmetric p-forms on X which
satisfy the zero-energy condition.

When the rank of X is equal to one, the vector bundle L is a line
bundle; in this case, the X-ray transform for symmetric p-forms, which
may be viewed as a morphism of G-modules

I;, : C°(SPT*) — C™(E),
determines the maximal flat Radon transform for symmetric p-forms.

§5. Radon transforms and harmonic analysis

We consider the symmetric space (X,g) of compact type of §4 and
the compact Lie groups G and K introduced there. We denote by I' the
dual G of the group G. As we mentioned in §2, the vector bundles T¢
and @®"T¢ endowed with the Hermitian scalar products induced by the
metric g are homogeneous and unitary. Let ' be a homogeneous complex
vector bundle over X; assume that F' either is a G-invariant complex sub-
bundle of Tt or can be written in the form E/E’, where E and E’ are
G-invariant complex sub-bundles of @"T¢: satisfying E/ C E. We endow
F with the Hermitian scalar product obtained from the Hermitian scalar
product on T¢ or on @"T¢. Clearly, the vector bundle F is unitary, and
the space C°(F') endowed with the Hermitian scalar product obtained
from the Hermitian scalar product on F' and the G-invariant Riemannian
measure dX of X is a unitary G-module. As in §2, we denote by C2°(F)
the isotypic component of the G-module C*°(F') corresponding to v € T,
and by P, the orthogonal projection of C*°(F) onto its submodule Ce(F ).

Throughout the remainder of this section, we shall assume that F is a
G-invariant complex sub-bundle of T¢ or of SPT{. For v € I', we consider
the orthogonal projections P, of C*°(T¢) onto its submodule C3°(1¢), and
of C*°(SPT{) onto its submodule C5°(SPTE); then the restriction of P, to
C*(F') is the orthogonal projection of C*°(F') onto CS°(F'). Thus if F'is a
sub-bundle of Tt (resp. SPT{), an element u of C*°(T¢) (resp. C*°(SPTE))
is a section of I if and only if P,u is an element of C3°(F), for all y € T
(see Chapter 5 of [56]).

The vector bundle ST, ¢ is the trivial complex line bundle and we shall
identify the G-modules C*°(S°T¢) and C*°(X); we shall denote by C°(X)
the isotypic component of the G-module C*°(X) corresponding to v € T.
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Let T'g be the subset of I' consisting of those elements v of I'" for which
the G-module C3°(X) is non-zero. It is well-known that, for v € I'¢, the
G-module C5°(X) is irreducible (see Theorem 4.3 in Chapter V of [37]).

We endow the homogeneous space = with a G-invariant Riemannian
metric and the homogeneous vector bundle S? L with a G-invariant Hermi-
tian scalar product. The space C*°(E, SPL{.), endowed with the Hermitian
scalar product obtained from the Hermitian scalar product on SPL{ and the
Riemannian measure of the Riemannian manifold =, is a unitary G-module.
As in §2, for v € I', we denote by C2°(Z, SPLg) the isotypic component of
the G-module C*°(Z, SPL{) corresponding to v and by P, the orthogonal
projection of C*°(=, SP L) onto its G-submodule C3°(Z, SPLE). Since the
mapping (2.11) is a morphism of G-modules, its kernel N, ¢ is a closed
G-submodule of C*°(SPT() and we have the inclusion

L(C3(SPTE)) € O (2, S LE):

moreover the relation
I,P, =PI,

holds for all v € I'. Thus we have
(2.12) PN, c C Ny,

for all vy €T

We choose a left-invariant volume form on G and endow the G-module
C*(G) of all complex-valued functions on the group G with the correspond-
ing G-invariant Hermitian scalar product. For v € I', we denote by P, the
orthogonal projection of C°°(G) onto the isotypic component C3°(G) of
C*(G) corresponding to .

If 0 is a closed geodesic of X, the kernel of the morphism @5 is a closed
subspace of C*°(SPI), and so Z, ¢ is a closed G-submodule of C*°(SPT).
Since ¥4 is a morphism of G-modules, we also have the inclusion

@5(C3(57T2)) € C(C)
and the relation

(2.13) O5P, = P,P;s
holds, for all v € T'. By (2.13), we see that

(2.14) PyZ,c C Zyc,

for all v € T
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Now let X be a finite set of isometries of X which commute with the
action of G on X and let € be a real number equal to 1. The space
C*>(T¢)*#, which consists of all elements & of C°°(T¢) satisfying

O-*E = 557

for all o € %, is a G-submodule of C*°(T¢), while the space C°°(SPT)*¢
which consists of all sections u of SPT{ over X satisfying

oc*u = eu,

for all ¢ € X, is a G-submodule of C*°(SPT{). For all o € 3, the actions
of o, on C*(I¢) and of ¢* on C*°(SPT) are unitary and we have

P,YO'*f = O'*Pfyf, P,Ya*u = J*P,Yu7

for all £ € C™(T¢), u € C®(SPTE) and v € T.

Suppose that the vector bundle F' is invariant under the isometries
of ¥.. Then we consider the G-submodule C*(F)*# of C°°(F), which is
defined by

COO(F)Z,E _ Coo(F) n COO(TC)Z,E

whenever F' is a sub-bundle of T, and by
C>®(F)*¢ = C™(F) N C™(SPTE)>*
whenever F' is a sub-bundle of SPT{. For v € I', we set
ij"(F)E’E =C(F)N C>®(F)**.

If y €T and o € X, we know that the action of o preserves CJ° (F). From
the above equalities, we obtain the inclusions

(2.15) P,C>®(Tp)>* C C°(Te)™*,  P,C™(SPTE)™e C C°(SPTE)™*,

for all v € T', and we see that C;’O(F)E’E is the isotypic component of the

G-module C*°(F)*¢ corresponding to . If F is the trivial complex line
bundle SOT(C*, we set

Coo(X)E,E — COO(F)Z’E, C,(;O(X)E’E _ Cvso(};v)z‘,fs7

for v € I.
If 7 is an involutive isometry of X which commutes with the action
of G and if ¥ is the set {7}, we have the relations

COO(F)Z,—i-l _ COO(F)eV, Coo(F)Z,—l _ Coo(F)odd
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involving the G-modules defined in §4; moreover, for v € I', we have the
orthogonal decomposition of G-modules

(2.16) CX(F) = C(F) @ C(F)°.

According to (1.6) and observations made in §1, Chapter I, the dif-
ferential operator Dy : Tc — S?7¢ is homogeneous and elliptic. Hence
according to §2, we have

DoC3*(Te) € C°(S*TE),

for all v € T'. Since Dy is an elliptic operator and ¢ = +1, we easily see
that

(2.17) DoC>(Tc)* ¢ = DoC™(Te) N C™(S?TE)>*.
The differential operators
d:S7¢ — TZ, div : S*T¢ — 12

and the Lichnerowicz Laplacian A : SPTF — SPTZ are homogeneous, and
so we have

dC3°(X) C CF(1¢), div C3°(S*T¢) € O (T¢),
ACT(SPTE) C O (SPTR),
for all v € I'. We also see that
dC™®(X)™* =dC™>(X) N C™(T¢)™*.
We obtain the following two propositions from the inclusions (2.12),
(2.14) and (2.15), and from Theorem 5.3.6 of [56].

PROPOSITION 2.27. Let F' be a complex sub-bundle of SPT{ on the
symmetric space (X, g) which is invariant under the group G and the isome-
tries of 3. Then if € a real number equal to +1, the submodule

D (Np.c N O (F)™)

yel

is a dense subspace of N, c N C™®(F)*=.

PROPOSITION 2.28. Let F' be a complex sub-bundle of SPT{: on the
symmetric space (X, g) which is invariant under the group G and the isome-
tries of 3. Then if € a real number equal to +1, the submodule

@D (Z,cn C;”(F)E’E)
yel’

is a dense subspace of Z,c N C>®(F)*¥=.
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The following proposition is a direct consequence of Propositions 2.27
and 2.28.

PROPOSITION 2.29. Let (X, g) be a symmetric space of compact type.
Let X be a finite set of isometries of X which commute with the action of
G on X and let € be a real number equal to +1.

(i) The restriction of the maximal flat Radon transform for functions
on X to the space C*°(X)>*¢ is injective if and only if the equality

./\/07(3 n CE;O(X)Z’E = {0}

holds for all v € T".
(ii) The restriction of the X-ray transform for functions on X to the
space C>(X)** is injective if and only if the equality

Zo,c NCF(X)™° = {0}

holds for all v € T".

Proposition 2.29 implies the following assertions:
(i) The maximal flat Radon transform for functions on X is injective
if and only if the equality

Noe NCZ(X) = {0}

holds for all v € T.
(ii) The X-ray transform for functions on X is injective if and only if
the equality
Zoc NCF(X) = {0}

holds for all v € T'.

As we mentioned above, for v € I'g, the G-module C3°(X) is irre-
ducible. Thus in order to prove that the maximal flat Radon (resp. the
X-ray) transform for functions on X is injective, it suffices to carry out the
following steps:

(i) For all v € Ty, describe an explicit non-zero vector f, of the
G-module C°(X).

(ii) For v € Ty, prove that the function f,y (resp. the function fv) is
non-zero.

By Lemmas 2.6 and 2.11, we see that

(2.18) DyC*>(T¢) C Z3¢c C Nag, dC*®(X) C Z1c C Nic.

Clearly, the space X is rigid in the sense of Guillemin (resp. is infinitesimally
rigid) if and only if the equality

Noc = DoC*(T¢)
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holds (resp. the equality
Zyc = DoC>(Tk)
holds). Also, the equality
M ¢ =dC®(X)
implies (resp. the equality
Z1c=dC*(X)

implies) that any differential form of degree 1 on X satisfying the Guillemin
(resp. the zero-energy) condition is exact.

ProPOSITION 2.30. Let (X, g) be a symmetric space of compact type.
Let X be a finite set of isometries of X which commute with the action of
G on X and let € be a real number equal to +1.

(i) The equality

Noc N C=(SPTE)™E = DyC™(Te)™*
holds if and only if
Nac N CX(SPTE) ™ = DyC (1) ™+,

for all v € T
(ii) The equality

250N C™(S2TE) ™€ = DoC™(Tc)™*
holds if and only if
2.0 NOX(SPTE) ™ = DyC (Te) ™,

for all vy €T

PROOF: Since Dy is an elliptic homogeneous differential operator, the
assertions of the proposition follow from the first inclusion of (2.15), the
equality (2.17) and from Propositions 2.2,(iii), 2.27 and 2.28.

Proposition 2.30 gives us the following criteria for the Guillemin rigid-
ity and the infinitesimal rigidity of X, which are analogous to the criteria
for the injectivity of the Radon transforms for functions on X obtained
from Proposition 2.29:
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PROPOSITION 2.31. Let (X, g) be a symmetric space of compact type.
(i) The space X is rigid in the sense of Guillemin if and only if

Nae N CP(SPTE) = DyC® (Te),

for all v € T
(ii) The space X is infinitesimally rigid if and only if

250 NCP(SPTE) = DoCe (T,

for all vy € T.

PROPOSITION 2.32. Let (X, g) be a symmetric space of compact type.
Let ¥ be a finite set of isometries of X which commute with the action of
G on X and let € be a real number equal to +1.

(i) The equality

Nie NC=(TE)™* = dC™>(X)™°
holds if and only if
Nie NCF(TE)™ e = dO(X)™F,

for all v €T.
(ii) The equality

ZcNC®(TE)™° = dC™(X)>*
holds if and only if
ZicnN C',‘Y’O(T(’C*)E’6 = dC’fY’O(X)E’E,

for all v eT.

PROOF: Since the exterior differential operator d acting on C*°(X) is
an elliptic homogeneous differential operator, the assertions of the propo-
sition follow from (2.15) and Propositions 2.2,(iii), 2.27 and 2.28.

Proposition 2.32 gives us the following criteria, which are analogous
to the criteria for the Guillemin rigidity and the infinitesimal rigidity of X
given by Proposition 2.31:

PROPOSITION 2.33. Let (X, g) be a symmetric space of compact type.
The following assertions are equivalent:

(i) A differential form of degree 1 on the space X satisfies the Guil-
lemin (resp. the zero-energy) condition if and only if it is exact.
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(ii) The equality
NicNCF(TE) = dC°(X)
holds (resp. the equality
21cNCE(TE) = dC(X)

holds) for all v € T.

Suppose that X is equal to a finite group A of isometries of X which
commute with the action of G and that ¢ is equal to +1. Assume that A acts
without fixed points and that the quotient space Y = X/A is a symmetric
space; furthermore, assume that there is a subgroup K’ of G containing K
and a G-equivariant diffeomorphism ¢ : Y — G/K’ satisfying properties
(i) and (ii) of §4. If the vector bundle F is a sub-bundle of SPT which
is invariant under A, we consider the sub-bundle Fy of SPTy - determined
by F’; then for v € I, the G-submodule

(o'} A 00 pINS
C(F)N = C°(F)

of C5°(F) is the isotypic component of C°°(F' )A corresponding to vy and
the isomorphism (2.5) induces an isomorphism

(2.19) @ O (Y, Fy) — C(F)

of G-modules. If A is the group {id, 7}, where 7 is an involutive isometry
of X, then, for v € I', the mapping (2.19) gives us an isomorphism

@ OF(Y, Fy) — O (F)”

of G-modules.

We choose a Cartan subalgebra of the complexification g of the Lie
algebra of G and fix a system of positive roots of g. Let p be an integer
equal to 1 or 2 and consider the corresponding homogeneous differential
operator DP~! . §P~17T* . SPT* We consider the following properties
which the space X and the group A might possess:

(Ap) Let v be an arbitrary element of I, and let u be an arbitrary
highest weight vector of the G-module C3° (SPTE)A; if the section u satisfies
the Guillemin condition, then u belongs to DP~1C°(SP=1T¢)A

(Bp) Let v be an arbitrary element of I', and let u be an arbitrary
highest weight vector of the G-module C3° (SPTE)A; if the section u satisfies
the zero-energy condition, then u belongs to DP~1C>(SP=1T)A,
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According to the relation (1.4) and Propositions 2.30 and 2.32, we see
that in order to prove that the equality

Npc N C®(SPTE)N = DP=1Cee(SP1Te)A
holds (resp. the equality
Z,cNC®(SPTH)N = prto=(sr=iTy)h

holds), it suffices to verify that X and A possess property A, (resp. prop-
erty Bp).

Thus according to Proposition 2.18 (resp. Proposition 2.19) and the
relation (1.4), we know that, if the space X and the group A possess prop-
erty Ay (resp. property Bs), the space Y is rigid in the sense of Guillemin
(resp. is infinitesimally rigid). On the other hand, according to Proposi-
tion 2.20, if the space X and the group A possess property A; (resp. prop-
erty Bi), then every differential form of degree 1 on the space Y, which
satisfies the Guillemin (resp. the zero-energy) condition, is exact.

These methods for proving the rigidity of a symmetric space of compact
type were first introduced in [14] in the case of the complex projective space
(see §5, Chapter III). The analogous method for proving the injectivity of
Radon transforms for functions described above was first used by Funk to
prove Theorem 2.23 for the 2-sphere S? and the real projective plane RP?
(see also Proposition 3.17); it was also applied by Grinberg in [31] to other
projective spaces. The methods described above will be applied to the real
Grassmannian Gﬂin of 2-planes in R"*2 and to the complex quadric @,, of
dimension n. In fact, they shall be used in Chapter VI to show that the real
Grassmannian Gﬂig is rigid in the sense of Guillemin and that the complex
quadric @3 is infinitesimally rigid, and in §4, Chapter X to show that the
real Grassmannian G§2 is infinitesimally rigid. Also the criterion for the
exactness of a differential form of degree 1, which we have just described,
shall be used in the case of the real projective plane RP? in Chapter III,
in the case of the complex quadric @, and of the real Grassmannian Gﬂim
with n > 3, in §11, Chapter VI, and in the case of the real Grassmannian
G]%Q in §4, Chapter X.

§6. Lie algebras

Let g be a complex semi-simple Lie algebra. The Casimir element of g
operates by a scalar ¢(V') on an irreducible finite-dimensional g-module V.
If g is simple, the Casimir element of g acts on the irreducible g-module V
corresponding to the adjoint representation of g by the identity mapping,
and so ¢(Vg) = 1 (see Theorem 3.11.2 of [55]).
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LEMMA 2.34. Let g be a complex semi-simple Lie algebra. Let V
and V5, be irreducible finite-dimensional g-modules. Then the g-modules
Vi and Vs, are isomorphic if and only if ¢(V1) = ¢(V2).

PRrROOF: Choose a Cartan subalgebra b of g and fix a system of positive
roots of g. Let A\; and Ay be the highest weights of the irreducible g-modules
V1 and Vs, respectively. If ¢(Vy) = ¢(Vz), then the infinitesimal characters
of these g-modules are equal; if ¢ is half the sum of the positive roots, by
Harish-Chandra’s theorem there exists an element w of the Weyl group
W of (g,h) such that w(A; + ) = A2 + I (see §5 and Theorem 5.62 in
Chapter V of [39]). Since the weights A\; + § and Ay + § are dominant
integral, we know that w must be equal to the identity element of W (see
Lemma 4.7.4 of [55]), and so we have A\; = Ag; hence the modules V5 and
V5 are isomorphic.

Let G be a compact connected, semi-simple Lie group, whose Lie alge-
bra we denote by gg. A complex G-module V' can be viewed as a gg-module
and so the Casimir element of gy operates on V; if V is an irreducible
G-module, the Casimir element of gy acts by the scalar ¢(V) on V.

From Lemma 2.34, we obtain the following result:

LEMMA 2.35. Let G be a compact connected, semi-simple Lie group.
Let V1 and Va be irreducible complex G-modules. Then the G-modules V
and Vy are isomorphic if and only if ¢(Vy) = ¢(Va).

§7. Irreducible symmetric spaces

We consider the symmetric space (X, g) of compact type of §4. We
write X as the homogeneous space G/K, where G is a compact, connected
semi-simple Lie group and K is a closed subgroup of G. We suppose that
g is a G-invariant metric and that (G, K) is a Riemannian symmetric pair
of compact type. We continue to denote by I' the dual G of the group G.
Let x¢ be the point of X corresponding to the coset of the identity element
of G. If gy and &y are the Lie algebras of G and K, respectively, we consider
the Cartan decomposition gg = £y ® pg corresponding to the Riemannian
symmetric pair (G, K), where pg is a subspace of go. We identify pg with
the tangent space to X at the point zg. If B is the Killing form of the
Lie algebra gg of G, then the restriction of —B to pg induces a G-invariant
Riemannian metric gg on X. The complexifications g of gg and p of pg are
K-modules. We denote by S*p the k-th symmetric product of p and by SZp
the K-submodule of S?p consisting of those elements of S2p of trace zero
with respect to the Killing form of g. The isotropy group K acts on Tj,;
in fact, the K-modules T¢ s, SkT&IO and S(%T(E,xg are isomorphic to the
K-modules p, S*p and S2p, respectively. If X is an irreducible Hermitian
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symmetric space, then we have
(2.20) dim¢ Homg (g, C) = 1, dim¢ Homg (g, p) = 2.

If X is an irreducible symmetric space which is not Hermitian, then we
have

(2.21) Hompg (g, C) = {0}, dim¢c Homg (g, p) = 1.
The G-module
K={§e€C™(T)[ D=0}

of all Killing vector fields on X is isomorphic to go. We identify its com-
plexification K¢ with the G-module

{£eC™(T) | Dog =0}

of complex vector fields on X, which is isomorphic to g. We know that
a Killing vector field £ on X satisfies the relation d*gb(f) = 0; thus the
subspaces ¢’(Kc) and dC>(X) of C*(T}:) are orthogonal.

The Lichnerowicz Laplacian A, acting on C*(SPT{) is self-adjoint
and its eigenvalues are non-negative real numbers. Since the Laplacian A,
acting on SP7{ is elliptic, the eigenspace

{ue C®(SPT2) | Agu= )}

of the Laplacian A, corresponding to the eigenvalue p € R is finite-
dimensional. The Casimir element of gy acts by a scalar c, on an irre-
ducible G-module which is a representative of v € I'. According to [41, §5],
the action of the Lichnerowicz Laplacian

Ay, : CF(SPTE) — C(SPTF)

corresponding to the metric go on X on the G-module C*°(SPT{) coincides
with the action of the Casimir element of gy on this G-module. Thus,
for v € T', we see that C5°(SPT{) is an eigenspace of the Lichnerowicz
Laplacian Ay with eigenvalue c,. Since the operator Ay acting on SP7
is elliptic and real-analytic, the elements of C5°(SPT¢) are real-analytic
sections of SPT{. If F'is a complex sub-bundle of SPT¢ invariant under
the group G, then the Laplacian A, preserves the space C*°(F').

We suppose throughout the remainder of this section that X is an
irreducible symmetric space. According to Lemma 1.21, the metric ¢ is a
positive multiple of gg and is an Einstein metric. In fact, by formula (1.65),
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we have Ric = Ag, where A is a positive real number, and gy = 2Ag;
moreover, the Lichnerowicz Laplacian A corresponding to the metric g is
equal to 2AA,,. Let F' be a complex sub-bundle of SPT{ invariant under
the group G. If v € T, from Lemma 2.35 and the above remarks concerning
the Laplacian Ay, we infer that the G-submodule C3°(F') is equal to the
eigenspace of A acting on C*°(F) associated with the eigenvalue Ay = 2Xc,.
Moreover, by Proposition 2.1 and the preceding remark, for u € R we see
that, if the eigenspace

{ue C®({F) | Au=pu}

is non-zero, it is equal to the G-submodule C5°(F') of C°°(F) and that p
is equal to A, for some appropriate element v of I'.

We denote by u the complex conjugate of an element of C*°(SPT{). We
consider the set A of all eigenvalues of the Laplacian A acting on C*°(X)
and the eigenspace C*°(X)* of A associated with the eigenvalue A € A.
For v € Iy, the irreducible G-module CZ° (X) is equal to the eigenspace
C>®(X)*, where A\, = 2\c,, and so is invariant under conjugation. More-
over, the mapping I'g — A, sending v € I'g into A,, is bijective. Hence by
Proposition 2.1, the orthogonal direct sum

® O (X) = @ o=(x)*

v€Tlo AEA

is a dense submodule of C*°(X).

LEMMA 2.36. Let (X, g) be an irreducible symmetric space of compact
type. The subspaces Ng and Z¢ of C*°(SPT{) are invariant under the
Lichnerowicz Laplacian A.

PROOF: Let u be an element of N¢ (resp. of Z¢). Since A is a homo-
geneous differential operator, by (2.1) we have

P,Au = APy = A\ Pyu,

for all v € T'. If 7y is an element of T', according to (2.12) (resp. to (2.14)),
we know that P,u belongs to NV, ¢ (resp. to Z, c); therefore so does Py, Au.
Since Mg (resp. Z¢) is a closed subspace of C*°(SPT), we see that Au also
belongs to this subspace.

PROPOSITION 2.37. Let (X, g) be an irreducible symmetric space of
compact type. Let E be a G-invariant sub-bundle of S?T* and let h be a
symmetric 2-form on X. Assume that there is a real number i such that

(2.22) Ah — ph € C®(E).
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(i) If p is not an eigenvalue of the Laplacian A acting on C*(S?T¢),
then h is a section of E.

(ii) Assume that p is an eigenvalue of the Laplacian A acting on
C*>(S?T¢) and suppose that h satisfies divh = 0 and Trh = 0. Then
we can write h = hy + ha, where hy is a section of S?T* and hs is a section
of E satisfying

Ahl = /th, dthl = dthQ = O, TI'hl = TI‘hQ = 0;

moreover, if h satisfies the Guillemin (resp. the zero-energy) condition,
then we may require that hy and hg also satisfy the Guillemin (resp. the
zero-energy) condition.

PrRoOOF: Here we shall use Lemma 2.35 and the above remarks con-
cerning the eigenspaces of the Laplacian A. For v € T, we infer from (2.22)
that P,(Ah — ph) belongs to C*°(E¢); by (2.1), we have

(2.23) Py(Ah — ph) = APyh — pPyh = (A, — ) Pyh.

If 1 is not an eigenvalue of A, then either the space C’;’O(S?TE ) vanishes
or we have the inequality A, # p. Under this assumption on u, we deduce
that Pyh is an element of C*°(Ec); it follows that h is a section of E. If y1 is
an eigenvalue of A, there is a unique element v of I' satisfying A\, = p. We
set hqy = Py h; then hg = h — hy is orthogonal to the subspace C’,‘Y’?(S2TE).
If v € T' is not equal to 7', we have A\, # p and, by (2.23), we see that
Pyhy = Pyh is an element of C*°(E¢). Since Py hy = 0, it follows that hs is
a section of E. If h satisfies Trh = 0 and divh = 0, by (2.1) we obtain the
equalities Tr h; = 0 and divh; = 0, for j = 1,2. If h satisfies the Guillemin
(resp. the zero-energy) condition, then according to (2.12) (resp. to (2.14))
the section hy also satisfies the Guillemin (resp. the zero-energy) condition.
We shall require the following lemma in §8, Chapter V.

LEMMA 2.38. Let (X, g) be an irreducible symmetric space of compact
type. Let v, be elements of T'. Let h be an element of Cf;o(SgTE) and
let f be an element of C*°(X). Assume that the section fh of S*T¢: is an
element of C??(S2T6) and suppose that the sections h and fh belong to

the space DyC>°(T¢). Then we have
(2.24) 1df -divh — DY ((df)* 2 h) + 3(\y — Ay) fh = 0.
PROOF: The sections h and fh of SFT¢ satisfy
Ah=Xh,  A(fh) =\, fh.

The desired result is a direct consequence of formulas (1.39) and (1.10).
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We now further assume that X is of type I, i.e. is not equal to a simple
Lie group (see [36, p. 439]). We may suppose that the Lie group G is simple;
then the complexification g of the Lie algebra gg is simple. Let v; be the
element of I which is the equivalence class of the irreducible G-module g.
We know that c,, = 1, and hence we have \,, = 2. This observation and
the above remarks concerning the Lichnerowicz Laplacians, together with
the Frobenius reciprocity theorem, give us the following result:

LEMMA 2.39. Let (X, g) be an irreducible symmetric space of compact
type which is not equal to a simple Lie group. Let ~y; be the element of T’
which is the equivalence class of the irreducible G-module g and let F' be a
G-invariant complex sub-bundle of SPT{. If A is the positive real number
satisfying Ric = Ag, then the G-module C57(F) is equal to the eigenspace

{ue C®({F) | Au=2\u}

of the Lichnerowicz Laplacian A, and the multiplicity of this G-module is
equal to the dimension of the complex vector space Homg (g, Fy, ).

If E(X)c denotes the complexification of the space E(X), Lemma 2.39
gives us the equalities

E(X)={heCZ(S{TE) | h=h, divh =0},

(2.25)
E(X)c={he€CX(SeT¢) |divh =0}
Since E(X)c is G-submodule of C°(S§T¢), we know that E(X)c is equal
to the direct sum of k copies of the irreducible G-module g, where k is the
integer Mult F(X)c; it follows that the G-module E(X) is isomorphic to
the direct sum of k copies of gg. Moreover, we infer that the vanishing of
the space dim¢c Homg (g, S2p) implies that the space E(X) vanishes.
Since the G-module K¢ is isomorphic to g, we see that

(2.26) Ke € C3(Te);

this inclusion can also be obtained from Lemmas 1.5,(i) and 2.39. If X is
not a Hermitian symmetric space, according to the second equality of (2.21)
and the Frobenius reciprocity theorem we see that the relation

(2.27) C(Te) = Ke

holds. If X is a Hermitian symmetric space, by (2.20) we see that C3?(X)
is an irreducible G-module; since the decomposition of T¢ given by (1.69)
is G-invariant, by (2.20) we obtain the orthogonal decompositions

(2.28) C2(TE) = g (Ke) ® dCP(X) = 0C°(X) @ 0C° (X)),
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whose components g°(K¢), dC%(X), 0C% (X) and 5C’$f (X) are irreducible
G-modules isomorphic to g.

PROPOSITION 2.40. Let (X, g) be an irreducible symmetric space of
compact type, which is not equal to a simple Lie group or to the sphere S2.
Then the space E(X) of infinitesimal Einstein deformations of X is a G-
module isomorphic to the direct sum of k copies of the irreducible G-module
go and its multiplicity k is equal to

dim¢ Homg (g, Sap) — dime Hom (g, p) + 1.
If X is a Hermitian symmetric space, this multiplicity k is equal to
dimc Homg (g, S2p) — 1.
If X is not a Hermitian symmetric space, this multiplicity k is equal to
dimc Hom g (g, Sgp),
and we have
(229)  B(X)e = C(SIT2),  B(X)={he CX(S3TE) [h=h}.

PROOF: Since the differential operator D§ : 7 — S37* is homoge-
neous, from the decomposition (1.12) and the relations (2.1) and (2.25),
we obtain the orthogonal decomposition

(2.30) C2(SeTE) = DGO (Te) @ E(X)c.

We write
W={{eCy(Tc) | Ds€ =0}

By (2.30), we have the equality
(231)  Mult E(X)c = Mult C2(S5T¢) — Mult C52(T) + Mult W.
By Lemma 1.5,(ii), Proposition 1.6 and Lemma 2.39, we see that
W = Kc¢.
Hence the equality (2.31) becomes

Mult B(X)¢ = Mult C5°(S5T¢) — Mult C2°(Te) + Mult K.
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Since Mult K¢ is equal to one, the preceding equality together with the
Frobenius reciprocity theorem gives us the first assertion of the proposi-
tion. The other assertions of the proposition then follow from the second
equalities of (2.20) and (2.21).

In [42], Koiso also showed that the assertions of the previous propo-
sition also hold when the irreducible space X is a simple Lie group. The
following lemma is stated without proof by Koiso (see Lemma 5.5 of [42]);
for the irreducible symmetric spaces

SO(p+q)/S(O(p) x O(q)), SU(p+q)/S(U(p) x U(q)),

with p,q > 2, we shall verify the results of this lemma in Chapter IV (see
Lemma 4.1), Chapter V (see Lemma 5.15) and §3, Chapter VIII.

LEMMA 2.41. Let (X, g) be a simply-connected irreducible symmetric
space of compact type which is not equal to a simple Lie group. If X is
Hermitian, then the space Homp (g, S2p) is one-dimensional and if X is not
Hermitian the space Homy (g, Sap) vanishes, unless X is one of the spaces
appearing in the following table which gives the dimension of the space
HomK(gv S(%p)

X dim¢c Homg (g, S3p)
SU((2)/S(U(1) x U(1))
SU(p+q)/S(U(p) x U(q)), with p,q > 2
SU(n)/SO(n), with n > 3
SU((2n)/Sp(n), with n > 3
Eg/F,y

Rl =N

The first two spaces X of this table are Hermitian, while the last three
are not Hermitian.

Since the space SU(2)/S(U(1) x U(1)) is isometric to the sphere S2,
by Lemma 2.41 and the equalities (2.25) we know that the space E(X)
vanishes when X is the sphere S?; we also proved this result directly in §3,
Chapter I. Therefore from Proposition 2.40 and Lemma 2.41, we obtain the
results of Theorem 1.22 when the space X of this theorem is not equal to a
simple Lie group; moreover, when X is equal to one of the last four spaces
of the table of Lemma 2.41, we see that the G-module E(X) is isomorphic
to go.

Thus according to Proposition 2.40 and Lemma 2.41, if X is an irre-
ducible symmetric space of compact type, which is not equal to a simple Lie
group, the space F(X) either vanishes or is isomorphic to the G-module gg.

From the relations (2.17), (2.18) and (2.26), we obtain the following
result:
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PROPOSITION 2.42. Let (X, g) be an irreducible symmetric space of
compact type, which is not equal to a simple Lie group, and let v, be the
element of T' which is the equivalence class of the irreducible G-module g.
Let X be a finite set of isometries of X which commute with the action of
G on X and let € be a real number equal to +1.

(i) For v €T, the equality

Nac NCP(SPTE)* = DoC° (Te)™*
is equivalent to
Mult (N2, N C(S?TE)™ ) < Mult C°(Te)™*
when v # 1, or to
Mult (Nz,c N C2(S?TE)™) < Mult C2(T) ™ — Mult (K N C™(Te) ™)

when v = ;.
(ii) For v € T, the equality

Z50 NCP(SPTE)™* = DO (Te)™*
is equivalent to
Mult (Z2,c N C°(S?TE)™°) < Mult C°(Te)™*
when ~ # 1, or to
Mult (Z2,c N C2(S?TE)™°) < Mult C°(Te) ™ — Mult (Ke N C>(T¢)™°)

when v = ;.

Let d be the integer which is equal to 1 when X is a Hermitian sym-
metric space and equal to 0 otherwise. According to (2.27) and (2.28), we
know that the multiplicity of the G-module C3?(7¢) is equal to d+1. Since
its G-submodule K¢ is isomorphic to g, from Propositions 2.31 and 2.42
we deduce the following criteria for Guillemin rigidity and infinitesimal
rigidity:

PROPOSITION 2.43. Let (X, g) be an irreducible symmetric space of
compact type, which is not equal to a simple Lie group, and let v, be the
element of I" which is the equivalence class of the irreducible G-module g.

(i) If the inequality

Mult (NV2,c N CS°(S?TE)) < Mult C°(Tt)
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holds for all v € T', with v # 71, and if the inequality
Mult (Na,c NCP(S?TE)) < d

holds, then the symmetric space X is rigid in the sense of Guillemin.
(ii) If the inequality

Mult (Z2,c N C°(S?T¢)) < Mult C°(T¢)
holds for all v € T, with v # 1, and if the inequality
Mult (Z2,c N C2(S?TE)) < d

holds, then the symmetric space X is infinitesimally rigid.

We choose a Cartan subalgebra of g and fix a system of positive roots
of g. If W is a G-submodule of C5°(SPT¢), with v € T', the dimension of
its weight subspace, corresponding to the highest weight of C2°(SPT¢), is
equal to the multiplicity of W. Thus according to Proposition 2.43,(i), to
prove the Guillemin rigidity of X, it suffices to successively carry out the
following steps:

(i) For all v € T, determine the multiplicities of the G-modules
C°(Te) and C3°(S°T¢).

(ii) For all v € T, describe an explicit basis for the weight subspace
W, of the G-module CE;O(SQT &) corresponding to its highest weight.

(iii) For v € I, consider the action of the Radon transform I on the
vectors of this basis for W, and prove that the inequality

dim (Ngy(c N W’Y) < Mult C,C;O(T((j)
holds whenever v # 71, and that
dim (./\/’2@ N W%) <d.

According to Proposition 2.43,(ii), to prove the infinitesimal rigidity
of X it suffices to carry out the steps (i) and (ii) given above and then the
following step:

(iv) For vy € T', prove that the inequality

dim (Z2,c N W’Y) < Mult C,C;O(T(c)

holds whenever v # 71, and that

dim (Z,c NW,,) < d.
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These methods for proving the rigidity of an irreducible symmetric
space of compact type implement the criteria described at the end of §5.
They were first used in [14] to show that the complex projective space is
infinitesimally rigid (see §5, Chapter III).

§8. Criteria for the rigidity of an irreducible symmetric space

We consider the symmetric space (X, g) of compact type of §§4 and 7
and continue to view X as the homogeneous space G/K. We recall that a
closed connected totally geodesic submanifold Y of X is a symmetric space;
moreover, if z is a point of Y and the tangent space to Y at x is equal to
the subspace V of T}, then the submanifold Y is equal to the subset Exp,V
of X (see §7 in Chapter IV of [36]).

Let F be a family of closed connected totally geodesic surfaces of
X which is invariant under the group G. Then the set N (resp. N%)
consisting of those elements of B (resp. of A*T* @ A\*T*), which vanish
when restricted to the submanifolds belonging to F, is a sub-bundle of B
(resp. of A*T* @ A\*T*). Clearly, we have Ny C N’-. According to for-
mula (1.56), we see that

B C Ng;

we shall identify Nz/B with a sub-bundle of B/B. If 3: B/B — B/Ny is
the canonical projection, we consider the differential operator

DL}‘ = ﬁDl : SQT* - B/./\/]—‘

Let F’ be a family of closed connected totally geodesic submanifolds
of X. We denote by L(F’) the subspace of C°°(S?T*) consisting of all
symmetric 2-forms h which satisfy the following condition: for all subman-
ifolds Z € F’, the restriction of h to Z is a Lie derivative of the metric of
Z induced by g. By Lemma 1.1, we know that DoC>(T) is a subspace
of L(F'). We consider the following properties which the family F’ might
possess:

(I) If a section of ST over X satisfies the Guillemin condition, then
its restriction to an arbitrary submanifold of X belonging to the family F’
satisfies the Guillemin condition.
(II) Every submanifold of X belonging to F’ is rigid in the sense of
Guillemin.
(III) Every submanifold of X belonging to F’ is infinitesimally rigid.
If the family F’ possesses properties (I) and (II), then we see that

No C ﬁ(f/).

On the other hand, the restriction of an element of Z, to an arbitrary sub-
manifold of X belonging to the family F’ satisfies the zero-energy condition;
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hence if the family F’ possesses property (IIT), we have the inclusion
Z9 C L(F’)
From Lemma 1.16, we obtain:

PROPOSITION 2.44. Let (X, g) be a symmetric space of compact type.
Let F be a family of closed connected totally geodesic surfaces of X which
is invariant under the group G, and let F' be a family of closed connected
totally geodesic submanifolds of X. Assume that each surface of X belong-
ing to F is contained in a submanifold of X belonging to F'. A symmetric
2-form h on X belonging to L(F') satisfies the relation D1 gh = 0.

PROPOSITION 2.45. Let (X, g) be a symmetric space of compact type.
Let F be a G-invariant family of closed connected totally geodesic surfaces
of X with positive constant curvature. Let h be an element of C*(S?T*).
Then the following assertions are equivalent:
(i) The symmetric 2-form h belongs to L(F).
(ii) The section Dyh of N°T* @ N*T* is an element of C™ (N%).
(i) The symmetric 2-form h satisfies D1 zh = 0.

PROOF: By Lemma 1.15, we know that assertion (i) implies (ii). Now
suppose that assertion (ii) holds. Let Y be a totally geodesic submani-
fold of X belonging to the family F and let i : ¥ — X be the natural
imbedding. Then we have i*Djh = 0. If gy is the Riemannian metric
on Y induced by g, by Proposition 1.14,(i) the restriction i*h of h to the
manifold YV satisfies Dy, i*h = 0. Theorem 1.18 gives us the exactness of
the sequence (1.51) corresponding to the Riemannian manifold (Y, gy ) with
positive constant curvature; therefore the form ¢*h on Y is a Lie derivative
of the metric gy. Thus we know that h belongs to £L(F), and so assertion
(ii) implies (i). Since B C N, the equivalence of assertions (ii) and (iii) is
a consequence of Proposition 1.14,(ii).

PROPOSITION 2.46. Let (X, g) be a symmetric space of compact type.
Let F' be a family of closed connected totally geodesic submanifolds of X .
(i) Suppose that each closed geodesic of X is contained in a subman-

ifold of X belonging to the family F'. Then we have the inclusion

L(F') C Z,.

(ii) Suppose that the sequence (1.24), corresponding to an arbitrary
submanifold of X belonging to the family F', is exact. Let h be an element
of C*(S82T*) satisfying the relation D1h = 0. Then h belongs to L(F").

(iii) Suppose that the hypothesis of (i) and of (ii) hold, and that the
space X is infinitesimally rigid. Then the sequence (1.24) is exact.

PROOF: Let h be an element of C°°(S?T*). First, suppose that h
belongs to L(F’) and that the hypothesis of (i) holds. Let v be an arbitrary
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closed geodesic of X; then there is a submanifold Y of X belonging to the
family F' containing 7. Let 7 : Y — X be the natural inclusion. Since
the symmetric 2-form ¢*h on Y is a Lie derivative of the metric of Y, the
integral of h over -y vanishes; thus the symmetric 2-form h satisfies the
zero-energy condition and assertion (i) holds. Next, let Y be an arbitrary
submanifold of X belonging to the family 7’ and let ¢ : Y — X be the
natural inclusion. If D;y is the differential operator on the symmetric
space Y defined in §1, Chapter I, according to formula (1.58) of Proposition
1.14 the relation Dih = 0 implies that Dy yi*h = 0. If D1h =0 and if the
sequence (1.24) for Y is exact, it follows that i*h is a Lie derivative of the
metric of Y. Thus assertion (ii) is true. Finally, assertion (iii) is a direct
consequence of (i) and (ii).

THEOREM 2.47. Let (X,g) be a symmetric space of compact type.
Let F be a family of closed connected totally geodesic surfaces of X which
is invariant under the group G, and let F' be a family of closed connected
totally geodesic submanifolds of X. Assume that each surface of X belong-
ing to F is contained in a submanifold of X belonging to F'. Suppose that
the relation (1.48) and the equality

(2.32) Nr=B

hold.
(i) A symmetric 2-form h on X belonging to L(F') is a Lie derivative
of the metric g.
(i) If the family F' possesses properties (I) and (II), then the sym-
metric space X is rigid in the sense of Guillemin.
111 the fami possesses propert, , then the symmetric space
iii) If the family F' v (II1), then the sy i
X is infinitesimally rigid.

PROOF: First, let h be a symmetric 2-form h on X belonging to L(F").
By Proposition 2.44, we see that D; zh = 0. According to the equal-
ity (2.32), we therefore know that D1h = 0. By the relation (1.48) and
Theorem 1.18, the sequence (1.24) is exact, and so we see that h is a Lie
derivative of the metric g. Thus we have proved assertion (i). Now as-
sume that the family F’ satisfies the hypothesis of (i) (resp. of (ii)). Then
we know that the space Ny (resp. the space Z3) is contained in L(F’).
Assertion (ii) (resp. (iii)) is a consequence of (i).

We now assume that (X, g) is an irreducible symmetric space of com-
pact type; then we have Ric = Ag, where X is a positive real number.

THEOREM 2.48. Let (X, g) be an irreducible symmetric space of com-
pact type. Let F be a family of closed connected totally geodesic surfaces
of X which is invariant under the group G, and let F' be a family of closed
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connected totally geodesic submanifolds of X. Let E be a G-invariant sub-
bundle of S3T*. Assume that each surface of X belonging to F is contained
in a submanifold of X belonging to F', and suppose that the relation

(2.33) TrNegCFE

holds.
(i) Let h be a symmetric 2-form on X satisfying divh = 0. If h
belongs to L(F') or satisfies the relation Dy zh = 0, then we may write

h = hi + ho,

where hy is an element of E(X) and hy is a section of E; moreover, if h also
satisfies the Guillemin (resp. the zero-energy) condition, we may require
that hy and he satisfy the Guillemin (resp. the zero-energy) condition.

(ii) Let A be a finite group of isometries of X, and assume that the
vector bundle E is invariant under A. Suppose that

(2.34) Ce(EYAnL(F) = {0},

and that the equality

(2.35) NoNE(X) = {0}

holds (resp. the equality

(2.36) Z,NB(X) = {0}

holds). Then a A-invariant symmetric 2-form on X belonging to L(F’)
satisfies the Guillemin (resp. the zero-energy) condition if and only if it is

a Lie derivative of the metric g.
(iii) If the relations

(2.37) C>®(E)n L(F') = {0}
and E(X) C C*(FE) hold, then we have
L(F') = DoC>(T).
PROOF: In view of Proposition 2.44, to prove assertion (i) it suffices
to consider a symmetric 2-form h on X satisfying the relations divh = 0
and Dy zh = 0. Since Tr E = {0}, by Lemma 1.10 and (2.33) we infer that

Trh = 0 and that
Ah —2\h € C™(E).
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Assertion (i) is now a consequence of Proposition 2.37,(ii), with pu = 2.
Next, let k£ be a symmetric 2-form on X belonging to £L(F’). According to
the decomposition (1.11), we may write k as

k= h+ Do,

where h is an element of C°°(S2T™*) satisfying div h = 0, which is uniquely
determined by k, and where £ is a vector field on X. If k£ is invariant
under a finite group A of isometries of X, clearly h is also A-invariant.
Since Do€ is an element of L(F'), the 2-form h also belongs to L(F').
According to (i), we may write h = hy + hg, where h; is an element of
E(X) and hs is a section of E. If k satisfies the Guillemin (resp. the
zero-energy) condition, according to Lemma 2.10 (resp. Lemma 2.6) so
does h, and we may suppose that h; also satisfies the Guillemin (resp. the
zero-energy) condition. First, if E(X) C C™(FE), then hy and h are also
sections of E; if moreover the equality (2.37) holds, then h vanishes and
so k is equal to Do€. Next, under the hypotheses of (ii), if k is A-invariant
and satisfies the Guillemin (resp. the zero-energy) condition and if the
equality (2.35) (resp. the equality (2.36)) holds, then h is a A-invariant
section of E; according to (2.34), we infer that h vanishes, and so k is
equal to Do&. We have thus verified both assertions (ii) and (iii).

Since the differential operator D;  corresponding to the family F of
Theorem 2.48 is homogeneous, according to the proof of Proposition 2.37
the sections hy and hy given by Theorem 2.48,(i) satisfy the relations

Dl,fhl = DL]:hQ =0.

The following theorem gives criteria for the Guillemin rigidity or the
infinitesimal rigidity of an irreducible symmetric space of compact type.

THEOREM 2.49. Let (X, g) be an irreducible symmetric space of com-
pact type. Let F be a family of closed connected totally geodesic surfaces
of X which is invariant under the group G, and let ' be a family of closed
connected totally geodesic submanifolds of X. Let E be a G-invariant
sub-bundle of S2T*. Assume that each surface of X belonging to F is
contained in a submanifold of X belonging to F', and suppose that the
relations (2.33) and (2.37) hold.

(i) If the family F' possesses properties (I) and (I1) and if the equality
(2.35) holds, then the symmetric space X is rigid in the sense of Guillemin.

(i) If the family F' possesses property (1I11) and if the equality (2.36)
holds, then the symmetric space X is infinitesimally rigid.

PRrOOF: Under the hypotheses of (i) (resp. of (ii)), a symmetric 2-form
h on X satisfying the Guillemin (resp. the zero-energy) condition belongs
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to L(F'); by Theorem 2.48,(ii), with A = {id}, we see that h is a Lie
derivative of the metric g.

According to Proposition 2.13, we know that the equality (2.35) (resp.
the equality (2.36)) is a necessary condition for the Guillemin rigidity
(resp. the infinitesimal rigidity) of X.

If we take E' = {0} in Theorem 2.49, we obtain the following corollary
of Theorem 2.49:

THEOREM 2.50. Let (X, g) be an irreducible symmetric space of com-
pact type. Let F be a family of closed connected totally geodesic surfaces
of X which is invariant under the group G, and let ' be a family of closed
connected totally geodesic submanifolds of X. Assume that each surface
of X belonging to F is contained in a submanifold of X belonging to F'.
Suppose that the equality

TI‘N]: = {0}

holds. Then assertions (i) and (ii) of Theorem 2.49 hold.

Thus according to Theorem 2.50, when X is an irreducible space, in
Theorem 2.47 in order to obtain assertion (ii) (resp. assertion (iii)) of the
latter theorem we may replace the hypothesis that the relation (1.48) holds
by the hypothesis that the equality (2.35) (resp. the equality (2.36)) holds.

We again assume that X is an arbitrary symmetric space of compact
type. We consider the following properties which the family F’ might
possess:

(IV) If a one-form over X satisfies the Guillemin condition, then its
restriction to an arbitrary submanifold of X belonging to the family F’
satisfies the Guillemin condition.

(V) If Y is an arbitrary submanifold of X belonging to the family F’,
every form of degree one on Y satisfying the Guillemin is exact.

(VI) If'Y is an arbitrary submanifold of X belonging to the family F”,
every form of degree one on Y satisfying the zero-energy is exact.

We consider the subset Cz of /\QT* consisting of those elements
of /\QT*, which vanish when restricted to the submanifolds belonging to
the family F7; if the family F’ is invariant under the group G, then Cx is
a sub-bundle of \*T*.

THEOREM 2.51. Let (X, g) be a symmetric space of compact type. Let
F and F' be two families of closed connected totally geodesic submanifolds
of X. Assume that each submanifold of X belonging to F is contained in
a submanifold of X belonging to F', and suppose that

(2.38) Cr = {0}.
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(i) If the family F' possesses properties (IV) and (V), then a differ-
ential form of degree one on X satisfies the Guillemin condition if and only
if it is exact.

(ii) If the family F’ possesses property (VI), then a differential form
of degree one on X satisfies the zero-energy condition if and only if it is
exact.

PROOF: Suppose that the family F’ possesses properties (IV) and (V)
(resp. possesses property (VI)). Let 6 be a 1-form on X satisfying the
Guillemin (resp. the zero-energy) condition. Consider a submanifold Y of
X belonging to the family F’. According to our hypotheses, the restriction
0" of 0 to Y satisfies the Guillemin (resp. the zero-energy) condition; it
follows that the 1-form 6’ on Y is closed. Hence the restriction of the 2-form
df to Y vanishes, and so the restriction of df to an arbitrary submanifold
of X belonging to the family F vanishes. From the relation (2.38), we infer
that 6 is closed. Since the cohomology group H'(X,R) vanishes, the form
0 is exact.



CHAPTER III

SYMMETRIC SPACES OF RANK ONE

§1. Flat tori

Let (X,g) be a flat Riemannian manifold of dimension n. We first
suppose that X is the circle S* of length L endowed with the Riemannian
metric g = dt ® dt, where t is the canonical coordinate of S! defined mod-
ulo L. It is easily seen that this space X is infinitesimally rigid and that a
1-form on X satisfies the zero-energy condition if and only if it is exact.

In this section, we henceforth suppose that n > 2. We recall that
B = {0}, that the operator D, is equal to D,, and that the sequence (1.50)
is exact. Let h be a section of S2T* over an open subset of X. According
to formulas (1.20) and (1.21), we see that D,h is equal to the section R{h
of B and that

(Dgh)(&1,&2,83,84)
(3.1) = 3{(V2h)(&1, €3, €2, €4) + (V2h) (&2, €4, €1, &)
- (Vzh)(£17£4a§27€3) - (V2h)(£27£3a§17§4)}5

for &1,&2,8&3,&4 € T. From Proposition 1.8, with A = 0, and formula (1.31),
we obtain the equality

(3.2) —Tr Dyh = $(Ah — Hess Tr h) — D'div h,

which can also be deduced directly from formula (3.1). By (3.2) and (1.30),
or by formula (1.41), we have

(3.3) —Tr - Tr Dygh = ATr h + d*div h.

In the remainder of this section, we suppose that (X, g) is a flat torus
of dimension > 2. We may consider X as the quotient of the space R"”
endowed with the Fuclidean metric gg. In fact, there is a lattice A generated
by a basis {e1,...,e,} of R™ such that X is equal to the quotient R™/A.
We shall identify a tensor on X with the A-invariant tensor on R™ which
it determines. Clearly, a tensor on R™ which is invariant under the group
of all translations of R™ induces a tensor on X. Let (z1,...,2,) be the
standard coordinate system of R™. In particular, for 1 < j < n, the vector
field 9/0z; and the 1-form dz; on R™ are invariant under the group of all
translations of R™ and therefore induce a parallel vector field and a parallel
1-form on X, which we shall denote by §; and «;, respectively. Clearly,
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{&1,...,&.} 1s a basis for the space of parallel vector fields on X, while
{a1,...,a,} is a basis for the space of parallel 1-forms on X; in fact, we
have

(&js ar) = djk,

for 1 < 7,k < n. Thus for all x € X, the mapping
{£e (1) |VE=0} - T,

sending a vector field £ into the value £(z) of £ at z, is an isomorphism;
moreover for k,p > 0, the mappings

{0 C¥(N\"T") | Vo=0} — \°T},
{ue C®(SPT*) | Vu=0} — SPT,

sending a differential form 6 of degree k into the value 6(x) of 6 at = and
a symmetric p-form u into the value u(z) of u at z, respectively, are also
isomorphisms. In fact, a parallel section 6 of /\kT* over X can be written

in the form
n

0= E : Crogin Qg AN - Aoy
Jis--dk=1

and a parallel section u of SPT* over X can be written in the form

j— / .. . .
U= E Chrgy gy "o " Qs

where the coefficients ¢;, . ;, and ¢/ are real numbers. Hence the space

J1---Jk
of all parallel sections of A\"T™* (resp. of SPT*) over X is isomorphic to the
space of all differential forms of degree k (resp. of all symmetric p-forms)
on R™ with constant coefficients. In particular, the metric g is equal to the
symmetric 2-form E;kzl @ ® ay. Since the cohomology group H*(X,R)
is isomorphic to /\kT;, where x is an arbitrary point of X, we know that
the space of harmonic forms of degree k on X is equal to the space of all
. E s
parallel sections of \"T* over X.

PROPOSITION 3.1. Let X be a flat torus of dimension > 2. Let £ be
a vector field on X. Then & is a Killing vector field if and only if V€ = 0.

Proor: We consider the 1-form o = ¢°(¢) on X. First, we suppose
that X is a flat torus of dimension 2 and we consider the volume form
w = aj Aag of X. According to formula (1.4), the 1-form « satisfies the
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relations D'a = 0 and d*a = 0. Since a harmonic 1-form on X is parallel,
we may write

o = B+ d"(fw),

where ( is a 1-form satisfying V3 = 0 and f is a real-valued function on X.
Then the 1-form d*(fw) on X is induced by the 1-form

on R?, where f is viewed as a A-invariant function on R?. From the relation

D'a = 0, we obtain
0? 0? 0?
0x10x, Oz  Oz;

From the first of the preceding equations, we infer that the function f on R?
can be written in the form f = f; + f2, where f; is a real-valued function
on R? depending only on x;. Then the second equality tells us that the
function f; — f» on R? is harmonic and so is constant. It follows that the
two functions f; and fo are also constant, and so the 1-form « and the
vector field £ are parallel. Now, we assume that the dimension of X is > 2.
Let zg be a point of X and let (; and (2 be parallel vector fields on X;
then there is a totally geodesic flat 2-torus Y of X containing xzy such that
the vectors (1(xo) and (2(xg) are tangent to Y. We consider the vector
field n on Y, whose value at x € Y is equal to the orthogonal projection of
&(z) onto the subspace Ty, of T,. If i : Y — X is the natural imbedding
and gy = i*g is the Riemannian metric on Y induced by g, according to
Lemma 1.1 we have i*a = ¢3-(n) and we know that 7 is a Killing vector
field on Y. Therefore the 1-form gg, (n) on Y is parallel. Since i is a totally
geodesic imbedding, it follows that

(Va)(Cr,G2) = (Vyi*a)(C1,¢2) =0
at the point zg. Thus we have shown that the 1-form « and the vector field
& on X are parallel.
We recall that the cohomology of the complex
fe’e] Do (e’e] 2% Dg 00
C™(T) —= C>=(5°T*) —= C*(B)

is isomorphic to the space

H(X)={heC®(S2T*) | divh =0, Dyh=0}.
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PROPOSITION 3.2. Let X be a flat torus of dimension > 2. Let h be
a symmetric 2-form on X. Then the following assertions are equivalent:
(i) We have Ah = 0.
(ii) We have Vh = 0.
(iii) The section h belongs to H(X).

PrROOF: Let £, 7n be parallel vector fields on X. If f is the real-valued
function on X equal to h(£,n), according to formula (1.52), we obtain the
relation

Af = (Ah)(&n).

Therefore if Ah vanishes, the function f is constant; since the parallel
vector fields ¢ and 7 are arbitrary, we see that Vh vanishes. If h is a
parallel section of S?T*, according to (3.1) we see that Dyh =0, and so h
belongs to H(X). Finally, suppose that (iii) holds. Then according to (3.3),
we see that ATrh = 0; therefore Tr h is constant. Formula (3.2) now tells
us that Ah = 0.

From Proposition 3.2, it follows that the space H(X) is equal to the
space

{heC>=(S?T*) | Vh=0}

of all parallel sections of S2T*. According to remarks made in §3, Chapter I,
we know that the cohomology group H'(X,©) is isomorphic to this space,
and therefore also to the vector space ST, where z is an arbitrary point
of X; thus the dimension of this cohomology group is equal to n(n + 1)/2.
Other proofs of these results are given in [2] and [15] (see Proposition 17.1
of [15]). From Proposition 3.2 and the decomposition (1.11), it follows that
an element h of C°°(S?T™*) satisfying Dyh = 0 can be written in the form

(3.4) h = Leg + ho,

where £ is a vector field on X and hg is a parallel section of S?T* over X.

LEMMA 3.3. Let u be a parallel symmetric p-form on a flat torus X
of dimension > 2. If the form w satisfies the zero-energy condition, then it
vanishes.

PROOF: Let 7 : [0,L] — X be a closed geodesic of X parametrized
by its arc-length s. If 4(s) is the tangent vector to the geodesic v at the
point y(s), then we write ¢(s) = u(¥(s),...,%(s)) and we have

(V) (3(5).3(5)s - 3(5)) = - (),

for all 0 < s < L. Our hypothesis tells us that the function ¢ on [0, L] is con-
stant. If u satisfies the zero-energy condition, the integral of the function ¢
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over the interval [0, L] vanishes, and hence the expression u(§(s),...,%(s))
vanishes for all 0 < s < L. If = is a point of X, we know that the set C
of vectors ¢ of T, — {0}, for which Exp,R¢ is a closed geodesic of X, is a
dense subset of T,,. From these last two observations, we obtain the desired
result.

LEMMA 3.4. Let h be a symmetric 2-form and u be a 1-form on a flat
torus X of dimension > 2 which satisfy the zero-energy condition.

(i) If the symmetric 2-form h satisfies the relation Dyh = 0, then it
is a Lie derivative of the metric.

(ii) If the 1-form u satisfies the relation du = 0, then it is exact.

PROOF: We first suppose that the relation Dgjh = 0 holds. As we saw
above, we have the decomposition (3.4), where £ is a vector field on X and
ho is a parallel symmetric 2-form on X. According to Lemma 2.6, the form
ho also satisfies the zero-energy condition. From Lemma 3.3 with p = 2,
we infer that hg vanishes, and so the equality h = L¢g holds. If the 1-form
0 is closed, then we may write

0=df +0,

where f is a real-valued function on X and #’ is a harmonic 1-form on X.
Clearly, 6 also satisfies the zero-energy condition. We saw above that 6’ is
parallel; hence by Lemma 3.3 with p = 1, we see that 6 is equal to df.

Let {e1,...,e,} be a basis of R™ which generates the lattice A, and
let (y1,...,yn) be the coordinates of R? associated with this basis of R".
Let {a),...,al,} be the parallel 1-forms on R™ determined by

(0/0y;, ) = i

for 1 < j,k <mn. For 1 < j < n,let ¢; be the parallel vector field on X
induced by the vector field 0/0y;.

We now suppose that n = 2. We fix a pair of integers (p1,p2), with
p1 # 0. If w is an arbitrary real number, we consider the line segment
Yu : [0,1] — R? defined in terms of the coordinates (yi,y2) by

’}/u(t) = (u +p2 ta _plt),

for 0 <t < 1; clearly its image in the torus X is a closed geodesic also
denoted by ~,. The parallel vector field

fep oy O
P2ay1 p18y2
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on R? is tangent to the line segment ,,. If @ is a symmetric p-form on X and
# is the A-invariant symmetric p-form determined by 6, then the integral
of 6 over the closed geodesic 7, of X is given by

1
(3.5) [o=a /0 B(E. . &) (alt)) d,

u

where the constant ¢, € R depends only on the integers p, p; and p, and
the basis {e1,e2} of R%.
The following proposition is due to Michel [46].

PROPOSITION 3.5. The X-ray transform for functions on a flat torus
of dimension n > 2 is injective.

Proor: We first suppose that n = 2. Let f be a complex-valued
function on X satisfying the zero-energy condition; we also denote by f the
A-invariant function on R? which it determines. We consider the Fourier

series
— 29 +
f(yla y2) - E Qgiq2€ (@191 +42v2)

q1,92€7Z

of the function f on R?, where the a,,4, are its Fourier coefficients. We
now fix a pair of integers (p1, p2); we suppose that p; # 0 and we consider
the closed geodesic v, of X, which we associated above with the integers
p1 and py and with the real number u. We then consider the function
1 on R whose value at u € R is equal to the integral of f/cy over the
closed geodesic 7, where ¢g is the constant appearing in the equality (3.5),
with p = 0; according to our hypothesis, the function v vanishes identically.
Therefore the sum

1
2im(qru+(p2q1—p1g2)t)
> [ e at
0

q1,92€7Z

vanishes for all u € R. The Fourier series of the function v is given by

V)= 30 Y 0y, [ Emnet gy

1
QL EZ q2E€Z 0

for u € R. Since the Fourier coefficient of i corresponding to the integer
p1 vanishes, we see that ap,,, = 0. A similar argument shows that the
coefficient a,,p, vanishes when p; = 0 and py # 0. Thus the function f is
constant and therefore vanishes. Since an arbitrary point of a flat torus of
dimension > 2 is contained in a totally geodesic flat torus of dimension 2,
we obtain the desired result in all cases.
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PROPOSITION 3.6. Suppose that X is a flat torus of dimension 2. Let
h be a symmetric 2-form and 6 be a 1-form on X; suppose that these
two forms satisfy the zero-energy condition. Then we have the relations
Dyh =0 and df = 0.

PROOF: We consider the A-invariant symmetric forms
h=aa)®a]+ba)-ah+cay®al, 0 = a'a) + a’al

on R? determined by h and 0, where a, b, c,a', a? are A-invariant functions
on R2. We now fix a pair of integers (py,p2); we suppose that p; # 0 and
we consider the closed geodesic ,, of X which we associated above with the
integers p; and ps and with the real number u. We consider the functions
11 and ¥ on R whose values at u € R are equal to the integrals of 0/c;
and h/ce over the closed geodesic v, respectively; here ¢, is the constant
appearing in the equality (3.5). According to our hypotheses, the functions
11 and 1o vanish identically. The Fourier series of the function s is given
by

1
2iTqiu 2 _ 2 2im(paq1—p1q2)t)
E : e E (p2 Aq1q2 2p1p2 bq1q2 +p1 cthqz)/ € dt7
q1EZL q2€7Z 0

where ag, ¢, , g q, and cq, 4, are the Fourier coefficients of the functions a, b
and ¢, respectively; on the other hand, the Fourier series of the function
is given by

1
2imqiu 1 . 2 2im(p2q1—p1g2)t)
Y (g, ~ i) [ e o
QL EZ q2€ZL 0

where aél e and ag 1> are the Fourier coefficients of the functions a' and a?,

respectively. Since the Fourier coefficients of 11 and 1y corresponding to
the integer p; vanish, we see that

2 2 _ 1 2 _
P2 pyps — 2P1P2bp,py + D1 Cpip, =0, P20y, p, — P10y, p, = 0.

A similar argument shows that these two relations also hold when p; = 0
and p2 # 0. It follows that

0%a b 0?%c da'  Oa?

32 250on T =% g =0
dy; 00y Oyy dy2 O

By (3.1), these last relations are equivalent to the equalities

(Dgh)(¢1,62,61,¢2) =0, (d0)(¢1,¢2) =0,

respectively. Since {(1,(2} is a frame for the tangent bundle of R?, we see
that Dyh = 0 and df = 0.
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THEOREM 3.7. A flat torus of dimension > 2 is infinitesimally rigid.

THEOREM 3.8. A differential form of degree 1 on a flat torus of di-
mension > 2 satisfies the zero-energy condition if and only if it is exact.

We now simultaneously prove Theorems 3.7 and 3.8. Let i be a sym-
metric 2-form and 6 be a 1-form on the flat torus X, both of which satisfy
the zero-energy condition. Let 2 be an arbitrary point of X and {£,7n} be
an orthonormal set of vectors of T,,.. If F' is the subspace R @ Ry of T,
then Y = Exp, F' is a closed totally geodesic submanifold of X isometric to
a flat 2-torus. Let i : Y — X be the natural imbedding; the forms ¢*h and
1*0 on Y satisfy the zero-energy condition. If gy is the metric on Y induced
by g, Proposition 3.6 tells us that Dy, i*h = 0 and di*0 = 0. According
to Proposition 1.14,(i), the restriction i*Dyh of the section Dyh of B to Y
vanishes. Hence we have

(Dgh)(&’?:fﬂ?) =0, (d(g)(f,n) =0.

Thus these equalities holds for all £&,7 € T, and we see that D;h = 0
and df = 0. According to Lemma 3.4, the symmetric form h on X is Lie
derivative of the metric and the 1-form 6 is exact.

Theorems 3.7 and 3.8 are due to Michel [46]; our proofs of these theo-
rems are essentially the same as those given by Estezet [12]. The next the-
orem, which generalizes both of these theorems, was proved by Michel [46]
when the integer p is equal to 0, 1 or an odd integer and by Estezet [12] in
all the other cases.

THEOREM 3.9. Let X be a flat torus of dimension > 2. For all p > 0,

the space Z,11 of all sections of C°°(SPT1T*) satisfying the zero-energy
condition is equal to DPC>°(SPT™).

The next result is given by Proposition 1 of [20].

PROPOSITION 3.10. Let (X, g) be a Riemannian manifold. LetY be a
totally geodesic submanifold of X isometric to a flat torus of dimension > 2.
Leti:Y — X be the natural imbedding and gy = i*g be the Riemannian

metric on Y induced by g. Let £ be a Killing vector field on X.
(i) We have

i*dg’(€) = 0.
(ii) If the 1-form g° (&) satisfies the zero-energy condition, then we have
i*g’(€) = 0.

ProOOF: We consider the vector field n on Y, whose value at z € YV
is equal to the orthogonal projection of £(x) onto the subspace Ty, of T,.
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According to Lemma 1.1, we have ¢ (1) = i*¢°(£) and we know that 7
is a Killing vector field on Y. Therefore by Proposition 3.1, we see that
VY g (n) = 0, and so the 1-form g3 (n) on Y is harmonic. Thus we have
i*dg’(€) = dgi () = 0. If ¢°(&) satisfies the zero-energy condition, then so
does the 1-form g3 (1) on Y; by Theorem 3.8, the 1-form g} (1) on the flat
torus Y is exact and therefore vanishes.

§2. The projective spaces

In the remainder of this chapter, we shall consider the symmetric
spaces of compact type of rank one. They are the spheres (S™,gg), the
real projective spaces (RP", go), the complex projective spaces CP", the
quaternionic projective spaces HP™, with n > 2, and the Cayley plane.
The following two theorems are consequences of Theorems 3.20, 3.26, 3.39,
3.40, 3.44 and 3.45, which appear below in this chapter.

THEOREM 3.11. A symmetric space of rank one, which is not isomet-
ric to a sphere, is infinitesimally rigid.

THEOREM 3.12. Let X be a symmetric space of rank one, which is
not isometric to a sphere. A differential form of degree 1 on X satisfies the
zero-energy condition if and only if it is exact.

Most of the results described in the remainder of this section are to
be found in Chapter 3 of [5]. Let n be an integer > 1. Let K be one of the
fields R, C or H. We set a = dimg K. We endow K" ! with its right vector
space structure over K, with the Hermitian scalar product

E?:o r;y; if K=RorC,
(3.6) (x,y) = { L _
>0 Zy; i K=H,
where * = (vg,21,...,7,) and ¥y = (Y0,%1,-.-,¥Yn) are vectors of K"*1

and with the real scalar product

(3.7) (z,y)r = Re (2, y),

for z,y € Kntl,

The projective space KP" is the orbit space of the space K"*! — {0}
under the action of the group K* = K—{0}; it is a manifold of dimension na.
Let

7 : K" — {0} — KP"

be the natural projection sending x € K" — {0} into its orbit m(z); then
two non-zero vectors z,y of K™*! have the same image under 7 if and only
if there exists A € K* such that x =y - A.
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Let
SK" = {2z e K" | (z,2) =1}

be the unit sphere in K**!; its dimension is na + a — 1. Then SK = SK!
is a subgroup of K*, and the restriction

(3.8) 7 SK* - KP"
of the mapping 7 is a principal bundle with structure group SK.
Let x be a point of SK"*1. The tangent space T,(SK"*!) of the
sphere SK"*! at z is identified with the space
{ueK"™ | (z,u)p=0}.
We denote by Ty () (KP™) the tangent space of KP™ at the point m(x). If
u € K" satisfies (z,u)r = 0, we denote by (z,u) the tangent vector

belonging to T, (SK"*!) corresponding to u, and we consider its image
To(2,u) in Tr(y) (KP™) under the mapping 7,; in fact, we have

d d
(z,u) = pn (z + tu))i=o, Ta(w,u) = pn (@ + tu)ji—o;
moreover if A € K, we see that

T (A uN) = mi (2, 0).

The subspace V,.(SK"*1) of T,,(SK"*1) consisting of the vectors tan-
gent to the fibers of the projection 7 is equal to

{(z,zA) | A€ R, with ReA=0}.
We also consider the subspace
H,(SK"™) = {(z,u) | u € K", with (z,u) =0}
of T,(SK"*1). Then the decomposition
T, (SK™Y) = H,(SK"™) @ V, (SK"*1)
is orthogonal with respect to the scalar product (3.6). The projection
(3.9) Tt Hy (SK™Y) — Ty (KP™)

is an isomorphism.
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We endow the sphere SK"*! with the Riemannian metric gy induced
by the scalar product (3.7), and the projective space KP™ with the Rie-
mannian metric g determined by

g(me(z,u), T (z,0)) = (u, v)g,

where z € SK"*! and u,v € K" satisfy (z,u) = (z,v) = 0. In fact, since
the equality
(u, VIR = (U, V)R

holds for u,v € K" and A € SK, the metric g on KP" is well-defined.
We see that the projection (3.8) is a Riemannian submersion and that the
isomorphism (3.9) is an isometry.

Let x be a point of SK"*! and let u,v € K", with (x,u) = (z,v) = 0.
When K = C, the tangent space T (,)(CP") admits a structure of a complex
vector space; in fact, we have

me(@,u) - A =me(x,u-N),

for A € C. Clearly, by construction CP™ has the structure of a complex
manifold, and its complex structure J is determined by

Jm(x,u) = m(x, ui).

In general, if the vectors u,v are non-zero, we say that the two vectors
me(x,u) and 7. (x,v) are K-dependent if there exists an element A € K*
such that v = v - \; this relation among non-zero vectors of Ty, (KP") is
easily seen to be well-defined. If the vector u is non-zero and & = . (x, u)
is the tangent vector of T’ (,)(KP") corresponding to u, the subset

EK = {m(z,u-\) | A€ K* }U{m.(z,0)}

is a real subspace of Tr(,)(KP") of dimension (over R) equal to dimg K.
Moreover, if K = C, then (K is equal to the real subspace C¢ of T}, (CP™)
generated by & and JE.

The following lemma is proved in [5, §3.9].

LEMMA 3.13. Let x be a point of SK"! and u,v be non-zero vectors
of K" with (x,u) = (z,v) = 0. If §{ = m.(x,u) and n = m.(z,v) are
the tangent vectors of Ty (,)(IKP") corresponding to u and v, the following
assertions are equivalent:

(i) We have (u,v) = 0.
(ii) The vector & is orthogonal to the subspace nK with respect to the
metric g.
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(iii) The subspaces (K and nK are orthogonal with respect to the
metric g.

If &1, . .., &, are non-zero vectors of Ty (,) (KP™) such that the subspaces
&;K are mutually orthogonal, then we have the decomposition

Tr)(KP") =6 K@ -+ @ &K

We consider the subgroup U(n + 1,K) of GL(n + 1,K) consisting of
all elements A € GL(n + 1,K) satisfying

(Az, Ay) = (z,9),

for all z,y € K"*1. When K = R or C, let SU(n+1,K) be the subgroup of
U(n+1,K) consisting of all elements A € U(n+ 1,K) satisfying det A = 1.
Then SU(n 4+ 1,R) is equal to SO(n + 1) and SU(n + 1,C) is equal to
SU(n + 1), while U(n + 1,H) is equal to Sp(n 4+ 1). When K is either R
or C, let G denote the group SU(n + 1,K); when K is equal to H, let G be
the group U(n + 1,K) = Sp(n + 1).

The group G acts transitively on SK™*! and on KP" by isometries.
Let {eq,e€1,.-.,e,} be the standard basis of K"*!. Let K be the subgroup
of G leaving the point m(eg) fixed, and let K’ be the subgroup of K con-
sisting of those elements of G leaving the point eg fixed. Then we have
diffeomorphism

v:G/K — KP", ¢ G/K' — SK"H

defined by
p(¢- K) =mdled), ¢ (¢ K') = g(eo),
for ¢ € G. If ¢ € G belongs to K, then we have

¢(60> =€0 - Aa

where A € SK; hence the element a of G can be written in the form

(3.10) (3 g) ,

where B belongs to U(n,K). If K; denotes the subgroup U(1,K) x U(n, K)
of U(n+1,K), the group K is therefore equal to GN K;. The subgroup K’
consists of the elements (3.10) of K with A = 1. When K = R, we identify
K’ with the group SO(n).
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When K = R, in the remainder of this section we suppose that n > 2.
If I,, denotes the unit matrix of order n, the element

of U(n+1,K) determines an involution o of G which sends a € G into sas™!.

Then K is equal to the set of fixed points of o; thus (G, K) is a Riemannian
symmetric pair. When K = R, the subgroup K’ coincides with the identity
component of the group K, and (G, K’) is also a Riemannian symmetric
pair in this case. The Cartan decomposition of the Lie algebra gy of G
corresponding to o is

g0 = €0 @ po;

here € is the Lie algebra of K and pg is the space of all matrices

(3.11) (2 _SZ>

of gg, where Z € K" is viewed as a column vector and ‘Z is its conjugate
transpose. We identify py with the vector space K" and, in particular, the
element (3.11) of py with the vector Z of K". The adjoint action of K on
po is expressed by

Ad¢-Z=B-Z-),

where ¢ is the element (3.10) of K and Z € K". When K = R, we know
that £y is also the Lie algebra of K’.

We identify po with the tangent space of G/K (resp. of G/K’ when
K =R) at the coset of the identity element of G. Via the above identifica-
tion of py with the vector space K", we transfer the scalar product on K"
given by (3.7) to pp and we note that this scalar product on pg is invariant
under the adjoint action of K and therefore induces G-invariant metrics
on the homogeneous space G/K and, when K = R, on the space G/K’,
which we denote by g;. Endowed with this metric g;, the manifold G/K
(resp. the manifold G/K’ when K = R) is an irreducible symmetric space
of compact type. Then the diffeomorphism ¢ from (G/K,¢;) to (KP™,g)
and, when K = R, the diffeomorphism ¢ from (G/K’, g1) to (SR"*1 go)
are isometries (see §C in Chapter 3 of [5] and §10 in Chapter XI of [40]).
It follows that the space (RP",g), with n > 2, has constant curvature 1.

Since the complex structure of the manifold CP” is invariant under
the group SU(n + 1,C), we see that (CP",g) is a Hermitian symmetric
space (see Proposition 4.2 in Chapter VIII of [36]). In fact, the metric g on
complex manifold CP" is the Fubini-Study metric of constant holomorphic
curvature 4 (see Example 10.5 in Chapter XI of [40]). On the other hand,
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the projective lines CP! and HP' are isometric to the spheres S? and S*,

respectively, endowed with their metrics of constant curvature 4. In §4, we

shall verify this last assertion in the case of the complex projective line.
The following result is proved in §D of [5, Chapter 3].

PRroPOSITION 3.14. Let X be the projective space KP™, with n > 2.
Let x be a point of X and &1,...,&, € T, be unitary tangent vectors.

(i) If the subspaces &1K, ..., §,K of T,, are mutually orthogonal, then
Exp,(R& & --- & RE,) is a closed totally geodesic submanifold of X iso-
metric to the real projective space RP? endowed with its metric of constant
curvature 1.

(ii) If the subspaces 1K, ..., &K of T, are mutually orthogonal, then
Exp, (&K@ --- @ §,K) is a closed totally geodesic submanifold of X iso-
metric to the projective space KPY.

(iii) Suppose that K is equal to H and that ¢ = 2r, where r > 1.
Suppose that the subspaces &1H, ..., &.H of T, are mutually orthogonal
and that there are vectors u; € H,(SK"!) and X\ € H satisfying ReA =0
and

& = me(x,uy), Ejvr = Ta(,u5),

for 1 < j < r. Then Exp,(R& & --- @ RE,) is a closed totally geodesic
submanifold of X isometric to the complex projective space CP" endowed
with its metric of constant holomorphic curvature 4.

The following result is a direct consequence of Proposition 3.14.

PropPOSITION 3.15. Suppose that K is equal to C or H. Let X be
the projective space KP", with n > 2. Let x be a point of X and let &
and & be linearly independent unitary tangent vectors of T,,. If £ belongs
to &K, then Exp, (R& @ REy) is a closed totally geodesic submanifold of
X isometric to the complex projective line CP! endowed with its metric of
constant curvature 4.

PRrROPOSITION 3.16. The projective space X = KP™, withn > 2, is a
Cr-manifold.

PROOF: By Proposition 3.14,(i), with ¢ = 1, if x is a point of X and
€ is a unitary vector of T}, we see that Exp,R¢ is isometric to RP! and is
therefore a closed geodesic of length .

Clearly a C';-manifold cannot contain a totally geodesic flat torus of
dimension > 2. Therefore, from Proposition 3.15 it follows that the sym-
metric spaces KP", with n > 2, have rank one.

In §G of [5, Chapter 3], the structure of symmetric space of rank
one is defined on the Cayley plane X. An analogue of Proposition 3.14
holds for the Cayley plane. In fact, the inclusion of the quaternions H into
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the Cayley algebra gives rise to closed totally geodesic submanifolds of X
isometric to HP2.

§3. The real projective space

We consider the sphere S™ = SR™t! with n > 2, endowed with its
metric go of constant curvature 1, which is equal to the metric introduced
in §2. The anti-podal involution 7 of the sphere S™ is an isometry. The real
projective space (RP™, gg) is the quotient of S™ by the group A = {id, 7}.
When K = R, we observed in §2 that the group SK = {+1,—1} acts on
K"*1 and on the unit sphere 8™ = SK"*!; in fact, its action is equal to
that of the group A. Therefore the metric gg on RP™ is equal to the metric
g of §2. As in §4, Chapter II, we say that a function f on S™ is even
(resp. odd) if 7*f = ef, where ¢ = +1 (resp. ¢ = —1). If X = 5™, we
denote by C>(X)®" (resp. C°°(X)°dd) the subspace of C*°(X) consisting
of all even (resp. odd) functions.

Let g = so(n + 1,C) be the complexification of the Lie algebra of
G =50(n+1) and let T" be the dual of the group G. Let vy and 77 be the
elements of I' which are the equivalence classes of the trivial G-module C
and of the irreducible G-module g, respectively.

We view the sphere X = S" = SR"*! as the irreducible symmetric
space SO(n+1)/S0(n). The set of eigenvalues of the Laplacian A acting
on C*°(X) consists of all the integers A\, = k(n + k — 1), where k is an
integer > 0. The eigenspace Hjy of A associated with the eigenvalue Ay
consists of all the complex-valued functions on X which are restrictions
to S™ of harmonic polynomials of degree k on R"*!. According to obser-
vations made in §7, Chapter II and by Proposition 2.1, we know that Hy,
is an irreducible SO(n + 1)-submodule of C*°(X) and that the direct sum
D).~ Hr is a dense submodule of C*°(X) (see §C.I in Chapter III of [4]).
For k > 2, let v, be the element of I' corresponding to the irreducible
G-module Hy; then we have the equalities

C2(X) = Hy,

for all k > 0. The homogeneous polynomial f; of degree k on R**! defined
by

fe(x1, .. xpy1) = Re(z1 + ixg)k,
for (z1,...,2n41) € R™*!, is harmonic; its restriction fr to S™ therefore
belongs to Hy. Since fi is an even (resp. odd) function on S™ when the
integer k is even (resp. odd), we obtain the inclusions

Hgk C C«oo()()ov7 H2k+1 C COO(X)Odd,

for all £ > 0.
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Let Y be the real projective space RP"™ endowed with the metric gy,
which we view as an irreducible symmetric space. According to §7, Chap-
ter IT and the isomorphism (2.19), we see that the set of eigenvalues of the
Laplacian Ay acting on C*°(Y") consists of all the integers Agy, with k > 0;
moreover if k is an even integer, the G-module C5? (Y) is equal to the space
of functions on Y obtained from Hj by passage to the quotient. There-
fore @~ €55, (Y) is a dense subspace of C*°(Y'), and the first non-zero
eigenvalue of the Laplacian Ay acting on C*°(Y') is equal to 2(n + 1).

We consider the closed geodesic v of S™, which is the great circle
defined by

v(s) = (cos s,0,...,0,sins),

with 0 < s < 27. Then we have the relations

27
Io(fzk)(’Y) :/fzk :/0 cos?® t dt > 0.
Y

The following result is a consequence of the above observations and Propo-
sition 2.29, with ¥ = {7} and ¢ = +1.

PropoOSITION 3.17. An even function on the sphere S™, with n > 2,
whose X-ray transform vanishes, vanishes identically.

In §4, Chapter II, we noted that the preceding proposition is equivalent
to assertion (i) of Theorem 2.23 and also that it implies that the X-ray
transform for functions is injective on the real projective space RP", with
n > 2.

THEOREM 3.18. The X-ray transform for functions on a symmetric
space of compact type of rank one, which is not isometric to a sphere, is
injective.

PROOF: According to Proposition 3.14 and the discussion which fol-
lows this proposition, each point of such a projective space X is contained
in a closed totally geodesic submanifold of X isometric to the projective
plane RP%. The desired result is then a consequence of Theorem 2.23,(ii).

Theorem 3.18, together with Proposition 2.26, implies that the X-ray
transform for functions on a symmetric space X of compact type is injective
if and only if X is not isometric to a sphere. Theorem 3.18 is also a
consequence of Theorem 2.24.

We shall now establish the infinitesimal rigidity of the real projective
space RP", a result due to Michel [45]. We first consider the case of the
real projective plane.
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PROPOSITION 3.19. The real projective plane X = RIP? is infinitesi-
mally rigid.

PROOF: Let h be a symmetric 2-form on X satisfying the zero-energy
condition. We know that the relation (1.64) holds on the sphere (S2, go),
which is a covering space of X; therefore we may write

h = Do& + [y,

where ¢ is a vector field and f is a real-valued function on X. If v is closed

geodesic of X, we have
[1=] 10
¥ gl

Since the Lie derivative L¢g satisfies the zero-energy condition, we see
that the function f also satisfies the zero-energy condition. From Theo-
rem 2.23,(ii), with n = 2, we deduce that the function f vanishes and so
we have h = Dy€.

THEOREM 3.20. The real projective space X = RP", with n > 2, is
infinitesimally rigid.

PROOF: Let h be a symmetric 2-form on X satisfying the zero-energy
condition. Let z be an arbitrary point of X and {{,n} be an orthonor-
mal set of vectors of T,; we consider the subspace F' = R¢ @ Ry of T,.
According to Proposition 3.14,(ii), we know that ¥ = Exp_F is a totally
geodesic submanifold of X isometric to RP?. If 5 : Y — X is the natural
imbedding, by Proposition 3.19 we know that the restriction i*h of h to
Y is a Lie derivative of the metric gy on Y induced by g. According to
Proposition 1.14,(i), we see that the restriction i*Dgyh of the section Dyh
of B toY is equal to Dy, i*h. Therefore by the relation (1.49), the section
1*Dgyh vanishes and so we have

(Dgh)(ga URS 7]) =0.

Thus this last equality holds for all £, € T, and we see that Dyh = 0.
According to Theorem 1.18, the sequence (1.51) is exact, and so h is a Lie
derivative of the metric.

The proof of Proposition 3.19 given above is due to Bourguignon and
our proof of Theorem 3.20 is inspired by the one given in Chapter 5 of [5].
We now present a variant of the version given in [30, §2] of Michel’s original
proof of Proposition 3.19 (see [45]).

We suppose that (X,g) is the real projective plane (RP2, gg). Let
v : [0,m7] — X be an arbitrary closed geodesic parametrized by its arc-
length. We set v(0) = z, and let e1(t) = 4(t) be the tangent vector to the
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geodesic at y(t), for 0 < t < 7. We choose a unit vector e; € T, orthogonal
to e1(0) and consider the family of tangent vectors ex(t) € T, with
0 <t < m, obtained by parallel transport of the vector es along . Clearly,
if u is an element of C°°(SPT*), we have

/A/u - /OW wer(t), er(t), . ex(t)) dt:

on the other hand, if v is an element of C*(®” T*) and &;(t) is a vector
field along ~(t) equal to either ey (t) or es(t) for 1 < j < p— 1, we have

(Vo)1 610 6p1(8) = (&), a8,

and so
(3.12) /W(Vv)(el(t),gl(t), 6y (8) dt = 0.
0

We consider the space Z5 of symmetric 2-forms on X = RP? satisfying
the zero-energy condition. The following result given by Lemma 2.36 is
proved in [45] by considering the Jacobi fields along the closed geodesics
of X.

LEMMA 3.21. The space Z5 of symmetric 2-forms on X = RP? is
invariant under the Lichnerowicz Laplacian A.

LEMMA 3.22. Let X be the real projective plane RP2. If h € Z,
satisfies divh = 0, then we have

/ﬂ(vzh)(GQ(t),eg(t)762(t),€2(t)) dt = /Tr h.
0 8!
PrROOF: We have

(V2h)(e2(t), ea(t), ea(t), ea(t)) = —(V2h)(ea(t), ex(t), ex(t), 2

for 0 < ¢ < 7; the first equality holds because divh = 0, while the second
one is obtained using the expression for the curvature of (X, g). The lemma
is now a consequence of (3.12).
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LEMMA 3.23. Let X be the real projective plane RP2. If h € 2,
satisfies div h = 0, then

/(ATrh—Trh) =0.
2l

PROOF: According to (1.52), we have

(AR)(ea(t), e2(t)) = —(VZR)(ex(t), e (1), ea(t), ea(t))
— (V2R)(ea(t), ea(t), ea(t), ea(t))
+ 4h(ea(t), ea(t)) — 2(Tr h)(y(t)),

for 0 <t <. By (1.30), (3.12), Lemmas 3.21 and 3.22, and the preceding
equality, we see that

/ATrh:/TYAh:/Ow(Ah)(eg(t),eg(t))dt:/Trh.

LEMMA 3.24. Let X be the real projective plane RP%. If h € Z,
satisfies div h = 0, then Tr h vanishes.

PROOF: According to Theorem 2.23,(ii), with n = 2, and Lemma 3.23,
we see that ATrh = Trh. As the first non-zero eigenvalue of the Laplacian
A acting on C*(X) is equal to 6, we see that Trh = 0.

LEMMA 3.25. Let X be the real projective plane RP2. An element h
of Zy satisfying div h = 0 vanishes.

PRrROOF: Let h be an element of Z; satisfying divh = 0. According
to Lemma 3.24 and the equality (1.53), the symmetric 2-form A belongs
to H(X). Then Proposition 1.20 tells us that i vanishes.

Now Proposition 3.19 is a direct consequence of Proposition 2.13 and
Lemma 3.25.

Our approach to the rigidity questions, which led us to the criteria
of Theorem 2.49 and the methods introduced in [22] for the study of the
complex quadrics, were partially inspired by the proof of the infinitesimal
rigidity of the real projective plane which we have just completed. The
correspondence between the arguments given here in the case of the real
projective plane and those used in the case of the complex quadric is pointed
out in [30].

The following result is due to Michel [47].
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THEOREM 3.26. A differential form of degree 1 on the real projective
space RIP™, with n > 2, satisfies the zero-energy condition if and only if it
is exact.

In the case of the real projective plane RP?, according to Proposi-
tion 2.20, we see that Theorem 3.26 is a consequence of Proposition 3.29,(ii),
which is proved below; on the other hand, the proof of this theorem given
in [47] for RP? is elementary and requires only Stokes’s theorem for func-
tions in the plane. In fact, the result given by Theorem 3.26 for the real
projective plane implies the result in the general case. Let X be the real
projective space RP", with n > 2; by Proposition 3.14, we easily see that
an element of /\2T*, which vanishes when restricted to the totally geodesic
surfaces of X isometric to the real projective plane, must be equal to O.
Then the desired result for X is a consequence of Proposition 2.51,(ii).

The following result due to Bailey and Eastwood [1] generalizes both
Theorems 3.20 and 3.26.

THEOREM 3.27. Let X be the real projective space RP", with n > 2.
For all p > 0, the space Z,.1 of all sections of C*°(SPT1T*) satisfying the
zero-energy condition is equal to DPC>°(SPT™).

In the case p = 2, the assertion of Theorem 3.27 was first established
by Estezet (see [12] and [29]).

84. The complex projective space

In this section, we suppose that X is the complex projective space CP",
with n > 1, endowed with the metric g of §2. We have seen that g is the
Fubini-Study metric of constant holomorphic curvature 4. We denote by J
the complex structure of X. As in §2, we identify X with the Hermi-
tian symmetric space G/K, where G is the group SU(n + 1) and K is its
subgroup S(U(n) x U(1)).

The curvature tensor R of X is given by

R(&,m)¢ = g(n, Q)& — g(& Om+ g(In, ¢)JE — g(JE, C)JIn
for all &, n,¢ € T it follows that

(3.13)

(3.14) Ric = 2(n + 1)g.

Let ¢ = (o,C1,---,Cn) be the standard complex coordinate system
of C™*! and consider the complex vector field

- 0
=Y G
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on C"*1. We consider the objects associated with K = C in §2 and the
natural projection

(3.15) 7. C" — {0} — CP".

The group U(1) = SK acts by multiplication on C"*! = K"*! and on the
unit sphere S27T1 = SK"*+! of dimension 2n + 1 in C**!. The restriction

7§t cpr

of the mapping 7 (which is also given by (3.8), with K = C) is a principal
bundle with structure group U(1).

If z is a point of the unit sphere S?"*!  the subspace V,(S?"*1) of
T.(S?"*1) is spanned by the tangent vector

(3.16) (2,i2) = i(¢° = C0)(2).

If H.(S?"*1) is the complement of V(S?"*1) in T, (S?"*!) defined in §2,
we know that the induced mapping

T o H,(S*" T — T,(CP™)

is an isometry.
Let h be a complex symmetric 2-form on C"*2, which is U(1)-invariant
and which satisfies

(¢"=¢") Jh=0.

According to (3.16) and the preceding observations, by restricting h to the
sphere S?"*! and passing to the quotient, we obtain a complex symmetric
2-form h’ on CP", which is uniquely characterized by the relation

71'*h/ = h|52n+1 ,
where 7 is the mapping (3.15).

Let u,u’ be vectors of S?"*! satisfying (u,u’) = 0. We consider the
paths o and & in S?"*! defined by

o(t) = cost-u+sint-u,
(3.17)
o(t) = —sint - u + cost -,

for t € R; the unit tangent vector

aft) = (o(t),o(t))
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of T,y (S*" 1) belongs to the subspace Ho (1) (S** 1) and is tangent to the
path o. Then the path v = 7, . defined by () = (moo)(t), for 0 <t <,
is a closed geodesic of CP"™ parametrized by its arc-length ¢, and we see
that m.a(t) = (¢), for all 0 < ¢ < .

Let f be a complex-valued function on C"*!, whose restriction to the
sphere S?"*1 is invariant under the group U(1); then the restriction of f
to S2"*1! induces by passage to the quotient a function on CP", which we
denote by f. In fact, if 7 is the mapping (3.15), this function f satisfies
the relation ~

7T*f = f|S2n+1.

If 2z is a point of S?"*! and ¢ is a vector of H,(S?"*1), then we easily see
that the equalities

(3.18)  (df,&) = (df, m.€), (Of,€) = (0f , m&), (0f.&) = (Of, m.&)

hold. In particular, if we consider the path ¢ in S$?"*! and the closed
geodesic v = 7y, s of CP", by (3.18) we have

(d4F, (1)) = {df, alt)) = 5 F(o (1),
OF 4(0) = @f a0, (0F,5()) = (01, at),

forall 0 <t <.

Let g =sl(n+ 1,C) be the complexification of the Lie algebra of G
and let T' be the dual of the group G. Let 7y and ; be the elements
of I which are the equivalence classes of the trivial G-module C and of the
irreducible G-module g, respectively. As in §7, Chapter II, we identify the
complexification K¢ of the space K of all Killing vector fields on X with
the G-submodule

(3.19)

Ker Dy = {f € Coo(Tc) | Doé = 0}

of C3°(1c) isomorphic to g.

Let Ay, be the G-module consisting of all U(1)-invariant homogeneous
complex polynomials on C**! of degree 2k in the variables ¢ and ¢. Clearly,
a homogeneous polynomial belongs to Ay if and only if it is homogeneous
of degree k in ¢ and of degree k in . Let P} be the G-submodule of Ay
consisting of all elements of A4, which are harmonic, and let Hj be the
G-module of all functions on X which are induced by the restrictions of
the polynomials of Py, to the sphere S?7+1,

For 0 < j, k < n, we consider the U(1)-invariant homogeneous complex
polynomial f;; on C"™! defined by

Fir(€) = ¢iC,
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for ¢ € C**!) and the function fjk on X induced by fji. The space A;
is generated by the functions {fjx}, with 0 < j, k < n, while the space
P, is generated by the functions {f;x} and {fj; — fex}, with 0 < j,k <n
and j # k. For 0 < j,k < n, let E;; = (b,s) be the element of gl(n + 1,C)
determined by b;, = 1 and b,s = 0 when (r, s) # (4, k). The mapping

v: A —glln+1,0C),

which sends fj; into Ej;, is an isomorphism of G-modules; it induces by
restriction an isomorphism of G-modules ¢ : P; — g.

The set of eigenvalues of the Laplacian A acting on C*°(X) consists of
all the integers 4k(n + k), where k is an integer > 0. If k£ > 0 is an integer,
the G-module Hy, is equal to the eigenspace of the Laplacian A acting on
C>(X) associated with the eigenvalue 4k(n+k). According to observations
made in §7, Chapter II and by Proposition 2.1, we know that Hy is an
irreducible G-submodule of C*°(X) and that the direct sum &, -, Hy is
a dense submodule of C*(X) (see §§C.I and C.III in Chapter IIT of [4]).
Then Hy = C59(X) is the space of all constant functions on X; on the
other hand, we know that H; is isomorphic to the G-module g, and hence
‘H; is equal to C’V"f(X). For k > 2, let v be the element of " corresponding
to the irreducible G-module Hy. Then in fact, we have the equalities

Co(X) = Hi,

for all k£ > 0; moreover, if v is an element of I" which cannot be written in
the form vy, for some integer k > 0, we know that C5°(X) = {0}.

The function fi = (fn0)* is a U(1)-invariant homogeneous complex
polynomial on C"*! of degree 2k which is easily seen to be harmonic; thus
the function f; on X induced by fj is non-zero and belongs to Hy. Since
the differential operators 9 and 0 are homogeneous and X is a Kihler
manifold, it follows that, for k > 1, the sections 8 f; of T+ and dfj, of T
are both non-zero and belong to the G-modules CS°(T"?) and C2(T1),
respectively.

If we consider the path o in S?"*! and the closed geodesic v = 7y u
of CP™, and if we write u = (ug, u1, ..., u,) and v’ = (uf,u,...,u,), from
the formulas (3.19) we deduce that

(0F1,4(1)) = Go(o (1)) - % Gulo (1)

= (cost - g + sint - ug)(—sint - u, + cost - ul,),
(3.20)

(0F4(0) = o (0)) - 5 Golo(0)

= (cost - u, +sint -l )(—sint - Gy + cost - ay),
n 0
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for all 0 < ¢ < 7; these relations imply that
(3.:21) (0= 0) 1, 4(8)) = upuo — untiy,

forall 0 <t <m.

Let ¢ be the complexification of the Lie algebra of K. The group
of all diagonal matrices of G is a maximal torus of G and of K. The
complexification t of the Lie algebra ty of this torus is a Cartan subalgebra
of the semi-simple Lie algebra g and also of the reductive Lie algebra ¢. For
0 < j < n, the linear form A; : t — C, sending the diagonal matrix with
ap,ai, ..., an € C as its diagonal entries into a;, is purely imaginary on tg.
Then

A={N-)|0<ij<nandi#j}

is the system of roots of g with respect to t, and
A'={XN—-X|1<ij<nandi#;j}
is the system of roots of £ with respect to t. We fix the positive system
AT ={N—-X\|0<i<j<n}

for the roots of g, and the positive system A’ = A’ N AT for the roots
of &

Then we see that highest weight of the irreducible G-module Hy is
equal to kAo — kX, and that fi is a highest weight vector of this module.
Clearly, we have

(3.22) C({g}) = Ha - 9.

The fibers of the homogeneous vector bundles T%° and T%! at the
point 7(eg) of X considered in §2 are irreducible K-modules of highest
weights equal to A\g — A\, and —XAg + A1, respectively. According to the
branching law for G and K (see Proposition 3.1 of [14]), from the results
of [14, §4] we obtain the following:

PROPOSITION 3.28. Let X be the complex projective space CP”, with

n > 1.
(i) The G-modules C3(T"°) and C32(T"') vanish when k = 0 and

are irreducible when k > 0.

(i) Suppose that n = 1. Then for v € I, the G-modules C3°(T"°)
and C’W"O(To’l) vanish unless «y is equal to vy, for some integer k > 0.

(i) We have

C((8°T°)z) = {0},
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We now consider the formalism of Kahler geometry on X = CP". We
consider the open subset

V=nu({(C,.--,¢)eC" | {#0})
of X = CP", the point a = 7(1,0,...,0) of V, and the holomorphic co-
ordinate z = (z1,...,2,) on V, where z; is the function which satisfies
w2 = (j/C on C* x C", with 1 < j < n. We set
2l = (2af® -+ [2al?) .

The Fubini-Study metric g of X is given on V' by

L 1 (5j ZjZk
PETANTHRER T O EPR )

for 1 < j,k < n. We recall that the Christoffel symbols of the Levi-Civita
connection V of g are determined on V' by

L T — _zjékl + Z1oj
LA 1+ |22

If f is a complex-valued function on V', we have

Af=-2 Zn: gt 2

Py aZjaik’
in particular, we see that
n
0% f
3.23 A =—4
(323) (a0 =4 3 550
On the open subset V' of X, we see that

o 2§ 2k P Zk
fjk_1+|z‘2a fOk: 1+|Z|27
g Zj A 1
f]0_1+|2‘27 f00_1+|z|27

for 1 < j,k <n. For 0 < j,k <n, with j # k, and 1 <[ < n, from
formula (3.23) we obtain the equalities

(3'24) (Afjk)(a> =0, (Afll)(a) = —4, (AJZOO)(G) = 4n.
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For the remainder of this section, we suppose that n = 1 and that
X = CP'. We consider the sphere S? = SR?; the mapping

©0:8? — CP!
is well-defined by

(1l — x3, 1 +ixe) if (z1,22,23) # (0,0,1),
7T(£L’1 —i$2,1+$3) lf ($1,$2,$3) 7& (0,0,—1),

o(z1, 22, 23) = {

where (z1,79,73) € R3, with 22 + 23 + 23 = 1. The two expressions for
¢ correspond to the stereographic projections whose poles are the points
(0,0,1) and (0,0, —1), respectively, and so we know that ¢ is a diffeomor-
phism. We also consider the involution ¥ of CP! which sends the point
7(u) of CP!, where u is a non-zero vector of C2, into the point 7(v), where v
is a non-zero vector of C2 orthogonal to u. If 7 is the anti-podal involution
of the sphere S, it is easily verified that the diagram

sz s 8
(3.25) Jso Jso
cp' . cPp
is commutative.
The mapping ¥ : C? — C2 defined by

U(ug,ur) = (—u1, o),

for ug,u; € C, is an automorphism of C? (over R) satisfying ¥? = —id; it
induces by restriction a mapping ¥ : SC? — SC? such that the diagram

scz Y, sc2

(3.26) ln lﬁ

cpt X, cp!

commutes. It is easily seen that we have the equality

\I/*flo = 7f10

among functions on C2; therefore the function fi on CP! satisfies

(3.27) U* i, = (=1)* fi.
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If J is the complex structure of the vector space C2, we see that the
automorphisms ¥ and J of C? satisfy

JoW =—-VolJ
Thus if J is the complex structure of CP!, it follows that
v, -J=-J-7,,

as mappings acting on the tangent bundle of X = CP!; from the preceding
relation, we infer that

(3.28) U*0 = oU*

on NPT¢.

We now verify that ¢ is an isometry from (52, go) to (CP!, g’), where
g’ = 4g is the metric of constant curvature 1. In fact, we consider the
holomorphic coordinate z = z; on the open subset V of CP!. We saw
above that the metric ¢’ of CP! is given on V by

2
o s
g = 7(1 FFEIE dz - dz.

Let U be the subset of R? consisting of all points (x1, 22, 23) € R3, with
z3 # 1, and let ¢’ : U — V be the mapping determined by

’ o xr1 + il‘g

(zo¢) (21, 02, 23) = —— = e

for (z1,2,23) € R? belonging to U. Then the restrictions of ¢ and ¢’ to
the open subset

Up=5?NU=5*—-{(0,0,1)}

of §? are equal, and we know that ¢ is a diffecomorphism from Uy to V. If
7 is the natural inclusion of Uy into U, we then easily verify that

i g =i*(dry ® dzy + dre ® drs + drg @ dr3)

on Up. It follows that ¢*g’ = go on the open subset Uy of S? and hence on
all of S2.

We say that a symmetric p-form 6 on X is even (resp. is odd) if and only
if U*0 = eu, where € =1 (resp. ¢ = —1). According to the commutativity
of diagram (3.25), a symmetric p-form 6 on X is even (resp. is odd) if and
only if the symmetric p-form ¢*6 on S? is even (resp. is odd).
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Since Hj is an irreducible G-module which contains the function fk,
by (3.27) we see that

C (X)) =C% (X)® =Ho,

Y2k Y2k

O (X) o> ( )odd — H2k+17

Y2k41 Y2k41

(3.29)

for £ > 0. Now let k be a given positive integer. Since the differential
operators d and 0 — 0 from C°°(X) to C*°(T}) are homogeneous and since
the sections dfy of T1° and 8f, of T%! are non-zero, from the relations
(3.28) and (3.29) and Proposition 3.28, we obtain the following equalities
among irreducible G-modules

dHy, if k£ is even,

C(X) T* ev — _
w1e) { (0—OYHy if k is odd,
(3.30) )

(0 — O)YHy, if k is even,

Ooo (T*)odd _

me dH if & is odd.
Moreover, the sections dfy and fr_1dfi are highest weight vectors of the
irreducible G-module dHj,, while (0 — (“))fk and fk 1(0 — 8)f1 are highest
weight vectors of the irreducible G-module (9 — 9)Hy. From the relations
(3.30), with & = 1, and (2.28) we obtain the equalities

(3.31) CF(TE)™ = (0 - 0)H1 = ¢’ (Ke)

of irreducible G-modules.

According to the commutativity of diagram (3.25), the first assertion
of the next proposition is equivalent to the result concerning the sphere S?
given by Proposition 3.17; moreover according to Proposition 2.20, the
second assertion of the next proposition implies the result concerning the
real projective plane stated in Theorem 3.26.

PROPOSITION 3.29. Let X be the complex projective space CP'.

(i) An even function on X, whose X-ray transform vanishes, vanishes
identically.

(ii) An even differential form of degree 1 on X satisfies the zero-energy
condition if and only if it is exact.

PROOF: Let ¢ : [0,7] — X be the closed geodesic 7, of X corre-
sponding to the pair of unit vectors v = (1,0) and «' = (0,1). For all
0 <t <, by (3.20) and (3.21) we easily verify that

f1(6(t)) = sint - cost, (0 =) f1,01(t)) =1
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When k > 0 is an even integer, it follows that

/5‘/?1@:/6]%(875)]51:/0 (Cost~sint)kdt>0.

Therefore the function fi and the 1-form fj, (0—0) f1 on X do not satisfy
the zero-energy condition. When & > 0 is an even integer, by (3.30) we
know that the sections fi and fi, (9 — d)f1 are highest weight vectors of
the irreducible G-modules C35°(X)® and C37 | (1¢)®Y, respectively; thus
we have proved the relation

Zo,c NCH(X)™ = {0}
when k£ > 0 is an even integer, and the relation
Z1,cNCR(Te)* = {0}

when k& > 1 is an odd integer. From Proposition 3.28,(ii), the equalities
(3.29) and (3.30), and the previous relations, we now deduce the equalities

Zoc NCT(X)™ ={0},  Z1cNCF(Te)™ = dCF (X)),

for all ¥ € T'. Then by Propositions 2.29,(ii) and 2.32,(ii), with ¥ = {¥}
and € = +1, we see that the restriction of the X-ray transform to C*°(X)®"
is injective and we obtain the equality

Z1cNC(TE) = dC(X);

these results imply the two assertions of the proposition.

The bundle (SQT*)é has rank one and is generated by its section g;
thus in this case, from Proposition 3.28,(iii) and the relation (3.22) we
obtain the equalities

(3:32) O (S°T) = O ({g)e) = Ha g

of irreducible G-modules. Since C57(X) = H; is the eigenspace of the

Laplacian associated with the eigenvalue 8 and since the differential oper-

ator Hess is homogeneous, from the relation (3.32) we deduce that
C2(S?T¢) = Hess Hy

and that

(3.33) Hess f = —4fyg,



104 I1I. SYMMETRIC SPACES OF RANK ONE
for all f € Hy. If f and f are elements of C*°(X), by (1.5) we see that

Do(f'(df)*) = f'Do(df)* + df - df' = 2f Hess ' + df - df’;

in particular, when f is an element of Hy, by (3.33) we obtain the relation
(3.34) Do(f'(df)F) = =8f f'g +df - df".

85. The rigidity of the complex projective space

From formula (3.13), we deduce that
B* = p(g )R ={0}
and, by (1.72), we obtain the equality
p(L(B))R = —20(B),

for # € (\°T*)~. Thus we have

(3.35) B=B"=v(A\T")")
and, by Lemma 1.24, the morphism
v (N'T*)” — B

is an isomorphism.

We now introduce various families of closed connected totally geodesic
submanifolds of X. Let x be a point of X, and let F7 ; be the family of all
closed connected totally geodesic surfaces of X passing through z of the
form Exp_F, where F' is the subspace of the tangent space T, generated
by an orthonormal set of vectors {£,n} of T, satisfying C¢ C (Cn)*. Let
Fs,. be the family of all closed connected totally geodesic surfaces of X
passing through x of the form Exp,F, where F' is the subspace C¢ of the
tangent space T, determined by a unitary vector £ of T,. We consider the
G-invariant families

Fi= U Fia, Fo= U Fopas
zeX reX

Fy=FiUF

of closed connected totally geodesic surfaces of X.
According to Proposition 3.14, a surface belonging to the family F is
isometric to the real projective plane with its metric of constant curvature 1,
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while a surface belonging to the family F» is isometric to the complex
projective line with its metric of constant curvature 4.

For j = 1,2, 3, we consider the sub-bundle N; = Nz, of B consisting
of those elements of B which vanish when restricted to the submanifolds
of F;. An element u of B belongs to NV; if and only if the relation

u(&,m,&m) =0

holds for all vectors &,n € T satisfying C¢ C (Cn)+; moreover, an element
u of B belongs to N if and only if the relation

u(§, JE, & JE) =0
holds for all vectors € € T. We set
N =N, nBT, N =NNB7;

we easily see that the sub-bundle Ny of B is stable under the involution J,
and so we have

Ni =N & Ny

An elementary computation shows that the rank of Ny is < n(2n —1) (see
[18, Proposition 4.1]). Moreover, it is easily verified that

W(N*T*) C Ny.

From these observations and the relations (3.35), we obtain the following:

PROPOSITION 3.30. We have

N =9(Tyh), Ny =B=9¢((AT)7),
Ny =o(N°T*) = Boy(Tp').

Let 8 be an element of /\2T* and £ be a unit vector of T'; then we see
that

Y(B)(E, JE, €, JE) = 68(&, J¢).
Thus if 3 belongs to (A°T*)~, we have
Y(B)(E JE, € JE) = 0.

On the other hand, if 3 belongs to Tﬂé"l and is equal to h, with h € (S?T*)*,
we have

P(B)(&, IS, &, JE) = 6h(&, ).
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From these remarks, we obtain

D(AN’T*)7) C Nay  (Tg'h) NNy = {0}

From Proposition 3.30 and these relations, we deduce the following result,
which is also given by Theorem 8.2 of [13].

ProposITION 3.31. For n > 2, we have

Ny = B.
In [13, Lemma 8.7], we also show that
(3.36) HN(T*® N3) = {0}

and then deduce the relation (1.48) for the complex projective of dimen-
sion > 2 from Proposition 3.31; thus we have the following:

ProposITION 3.32. For n > 2, we have
HN(T*® B) = {0}.

We consider the space Z, of symmetric 2-forms on X satisfying the
zero-energy condition. Since the space X is simply connected, from Propo-
sition 3.32 and Theorem 1.18 it follows that the sequence (1.24) is exact.

LEMMA 3.33. We have
ﬁ(}—g) C ,C(J:l) = ZQ.

Proor: By Proposition 3.19, every submanifold of X belonging to
F1 is infinitesimally rigid, and so we obtain the inclusion Z; C L(Fy).
For j = 1 or 2, we see that every closed geodesic of X is contained in
a submanifold of X belonging to the family Fj; then from Proposition
2.46,(i), we obtain the inclusion L(F;) C Z,.

For j = 1 or 3, we consider the differential operator Dy x, of §8,
Chapter II corresponding to the family F;.

LEMMA 3.34. Let h be an element of C>(S?T*) belonging to L(F>).
Then we have D1h = 0.

PrROOF: By Lemma 3.33, we know that h also belongs to L£(Fi).
Hence by Proposition 2.45, with 7 = F3, we see that Dy s,h = 0. By
Proposition 3.31, we therefore know that D1k = 0.

The equivalence of assertions (i) and (iii) of the following theorem is
originally due to Michel [45]. We now provide an alternate proof of Michel’s
result following [13, §8].
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THEOREM 3.35. Let h be a symmetric 2-form on X = CP", with
n > 2. The following assertions are equivalent:
(i) The symmetric 2-form h belongs to L(Fz).
(ii) We have D1h = 0.
(iii) The symmetric 2-form h is a Lie derivative of the metric g.

PRrOOF: From the exactness of sequence (1.24), we obtain the equiv-
alence of assertions (ii) and (iii). The implication (i) = (ii) is given by
Lemma 3.34, and the implication (iii) = (i) is a consequence of Lemma 1.1.

Let N{ be the sub-bundle of /\2T* ® /\2T* consisting of those elements
of A\°T* ® \*T* which vanish when restricted to the submanifolds of Fi;
clearly, we have N3 C N;. We consider the quotient bundle

E = (N'T* @ N'T*)/Nj
and the natural projection

B:NT* @ N*T* — E.
Let

D; Ry
be the differential operator equal to the composition 3o D,. According to
Lemma 1.1 and Proposition 2.45, with F = Fi, the sequence
0 Do 00 [ Q2% D.:? 0

(3.37) C®(T) —> C®(S°T*) — C*(E)
is a complex. From Proposition 2.45, with 7 = F;, and Lemma 3.33, we
obtain the following:

LEMMA 3.36. Let h be an element of C*°(S*T*). The following as-
sertions are equivalent:
(i) The symmetric 2-form h satisfies the zero-energy condition.
(ii) We have Dyh = 0.
(iii) We have Dy g h = 0.

Consequently, we have:

LEMMA 3.37. Let X be the complex projective space CP", withn > 2.
The following assertions are equivalent:

(i) The space X is infinitesimally rigid.

(ii) The complex (3.37) is exact.

LEMMA 3.38. A real-valued function f on X satisfies Dy(fg) = 0 if
and only if it vanishes identically.

PRrOOF: Let f be areal-valued function f on X satisfying Dy (fg) = 0.
According to Lemma 3.36, the symmetric 2-form fg satisfies the zero-
energy condition, and so the X-ray transform f of f vanishes. From The-
orem 3.18, we obtain the vanishing of f.
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Lemma 4.7 of [14] provides us with a more direct proof of Lemma 3.38.
In fact, let f is a real-valued function on X satisfying D;(fg) = 0. Let x
be a point of X; then there is a set {&1,...,&,} of vectors of T}, such that
{1, &ny JE1, ..., JEu } is an orthonormal basis of T,,. According to the
second formula of (1.22) and (3.13), we have

Dy (1) (65,665, €) = 5 ((Hess £)(&5, ) + (Hess )G, &)} + (2),

for 1 < j < k <n. From the preceding equality, we infer that

> {(Hess £)(&,&) + (Hess (&, &)} = —n(n — 1) f(x),

1<j<k<n

and so
> (Hess f) (&, &) = —nf(x).
1<j<n
It follows that
Af =2nf.

Since 2n is not an eigenvalue of A, it follows that f vanishes identically. In
fact, according to Lichnerowicz’s theorem (see [43, p. 135] or Theorem D.I.1
in Chapter III of [4]) and (3.14), we see that the first non-zero eigenvalue
of Ais > 2(n + 1); we have also seen that the first non-zero eigenvalue of
A is equal to 4(n + 1).

The following theorem gives us the infinitesimal rigidity of the complex
projective spaces of dimension > 2.

THEOREM 3.39. The complex projective space X = CP"™, withn > 2,
is infinitesimally rigid.

The infinitesimal rigidity of the complex projective spaces of dimension
> 2 was first proved by Tsukamoto [53]; in fact, he first proved directly
the infinitesimal rigidity of CPP2, and then used the above-mentioned result
of Michel given by Theorem 3.35 to derive the rigidity of the complex
projective spaces of dimension > 2. Other proofs of Theorem 3.39 may be
found in [14] and [18].

We can also obtain the infinitesimal rigidity of the complex projective
spaces of dimension > 2 from the rigidity of the complex projective plane
by means of Theorem 2.47. In fact, we apply this theorem to the family
F equal to F3 and to the family F’ consisting of all closed totally geodesic
submanifolds of X isometric to CP?; according to Propositions 3.14, 3.31
and 3.32, we know that the hypotheses of Theorem 2.47 hold.

We remark that the equivalence of assertions (i) and (iii) of Theo-
rem 3.35 may be obtained from Theorem 3.39 and Lemma 3.33 without
requiring Propositions 3.31 and 3.32.
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We now present an outline of the proof of Theorem 3.39 given in [14].
Since the differential operator D; is homogeneous and the differential op-
erator Dy is elliptic, according to Lemma 3.37 and Proposition 2.3 we see
that the space X is infinitesimally rigid if and only if the complex

o0 Dy o0 * D; oo
(338) Cﬂy (TC) I C’y (SzT(C) - C'y (E(C)

is exact for all y € T,

We choose a Cartan subalgebra of g and fix a system of positive roots
of g. If v is an arbitrary element of I', we determine the multiplicities of
the G-modules C°(T¢) and C$°(S?T¢) and then describe an explicit ba-
sis for the weight subspace W, of C,CY’O(S2T€) corresponding to its highest
weight in terms of elements of the eigenspaces Hy; either the multiplicity
of C?(SQTE) is equal to 4 and the multiplicity of C5°(T¢) is equal to 2, or
these two multiplicities are < 2. Since X is an irreducible Hermitian sym-
metric space, according to (2.28) the multiplicity of the G-module C5?(T¢)
is equal to 2. The multiplicity of ny’f(SzTE) is also equal to 2; in fact, we
show that

(3.39) C2(S*TE) =Ho - g, CO(S?TE) = Hy - g+ Hess Hi.

We also recall that the space Ker Dy of all complex Killing vector fields
on X is an irreducible G-submodule of C3°(T¢).

According to these observations, in order to prove the exactness of the
sequence (3.38) corresponding to v € T, it suffices to consider the action
of the differential operator D; on the vectors of our basis for W, and to
prove that

dim¢ D, W, > Mult C5°(S*T¢) — Mult C2°(T¢)

if 7 # 71, or that D{ W, # 0 when v = ;. In fact, to obtain this result we
need to verify that D} W, # 0 or that

dimg¢ D;W7 > 2,
as the case may be. This last step is carried out in [14, §5]; in fact, to

prove the first inequality, we choose an element h of W, a point x € X
and vectors &,m € T, satisfying C¢ C (Cn)+ and

(Dgh)(fa 777§a 77) 7& 0.

Before proceeding to the description of another proof of Theorem 3.39
given in [18], we shall prove the following result which first appeared in [17].
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THEOREM 3.40. A differential form of degree 1 on X = CP", with
n > 2, satisfies the zero-energy condition if and only if it is exact.

PROOF: Let F be the sub-bundle of /\2T* consisting of those elements
of A*T* which vanish when restricted to the submanifolds of F;. An
element « of /\2T* belongs to F' if and only if the relation

a(é,n) =0

holds for all vectors &,7 € T satisfying C¢ C (Cn)t. An elementary alge-
braic computation shows that F' is the line bundle generated by the Kahler
form w of X. Let 6 be a differential form of degree 1 on X. Since any closed
geodesic of X is contained in a submanifold belonging to the family F;, we
see that the 1-form 6 satisfies the zero-energy condition if and only if the
restrictions of 6 to the submanifolds belonging to the family JF; satisfy the
zero-energy condition. According to Theorem 3.26, the latter property of 6
holds if and only if df is a section of F. We now suppose that the 1-form
0 satisfies the zero-energy condition; our previous observations imply that
0 satisfies the relation
df = fw,

where f is a real-valued function on X. From this equality, we infer that
df N\w =0,

and so f is constant. Since the Kéahler w is harmonic, the function f
vanishes and so the form @ is closed; hence 6 is exact.

The simplicity of the preceding proof, which is based on a remark of
Demailly (see [18]), rests on the correct interpretation of the bundle F.
This observation led us to a new proof of the infinitesimal rigidity of CP™,
which can be found in [18] and which requires a minimal amount of har-
monic analysis. For symmetric 2-forms, the analogue of the bundle F' of
the preceding proof is the bundle Ni, and its interpretation is given by
Proposition 3.30.

We now describe the proof of Theorem 3.39 given in [18]. We consider
the first-order differential operator D} introduced in §3, Chapter I. Clearly,
if u is a section of B satisfying Vu = 0, from the definition of D} we infer
that Djau = 0. The following two results are proved in [18].

LEMMA 3.41. Let 3 be a section of the bundle Tﬂé’l over an open
subset of X satisfying

(3.40) D}jarp(3) = 0.

Then the 2-form f3 is closed.
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LEMMA 3.42. We have
[f € C®(X) | Dyap(ddf) = 0} = Ho & Hy.

Algebraic computations, the first Bianchi identity and certain proper-
ties of the Killing vector fields on X are the ingredients which enter into
the proof of Lemma 3.41. In fact, in [18] it is shown that a Killing vector
field € on X satisfies the relation

(3.41) Diay(dg’(€)) = 0.
By (2.28), we know that
dC(T¢) = dg’ (Kc) = 00H,.
Thus from (3.41) and these equalities, we infer that
Dyarp(00H;) = 0.

Since the differential operator Dja)d9 is homogeneous and fr is a
non-zero element of the irreducible G-module Hj, according to Proposi-
tion 2.1, in order to prove Lemma 3.42 it therefore suffices to show that

Daip(90f) # 0,

for all integers k > 1. This inequality is verified in the appendix of [18].
Let h be a symmetric 2-form on X satisfying the zero-energy condition.
From Proposition 3.19, it follows that h belongs to the space L(F1). By
Proposition 2.44 or Lemma 1.15, we see that Dih is a section of Nl/B.
Thus by Proposition 3.30, there exists a section 3 of Tﬂé’l over X such that

D1h = ap().

Then Lemma 1.17 tells us that the equality (3.40) holds; hence according
to Lemma 3.41, the 2-form 3 is closed. Therefore there exists a constant
¢ € R and a real-valued function f on X such that

(3.42) B = cw + 00f.

Since w is parallel, we know that Djay(w) = 0. Hence the equality (3.40)
implies that D}aw(00f) = 0. By Lemma 3.42, the function f belongs
to Ho @ H1. Therefore without loss of generality, we may assume that the
function f belongs to Hj.
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We consider the subspaces
V = O (S2TE) @ C2(SPTE), W = C((B/B)e) & C=((B/B)c)

of C*°(S?*T¢) and C*=((B/B)c), and the element h' = P, h + P, h of V.
Then h” = h—h’ is an element of C°°(S?T¢) orthogonal to the subspace V.
Since D is a homogeneous differential operator, by (2.1) we see that Dk’
belongs to W and that D;h” is orthogonal to W. Since the operator )
is homogeneous and w is a G-invariant form, according to (2.1) and (3.42)
we know that [ belongs to C%’(/\QTC*) ® Oy (/\2Té); as the morphism a
is G-equivariant, we see that () is an element of the subspace W. It
follows that
Dlh/ = aw(6)7 Dlh” =0.

By (3.39), we may write
W' = fig + Hess fo,

where fi, f2 are real-valued functions on X. According to formulas (1.27)
and (1.28), we have

Dih/ = Di(f1g9) = aDgy(f19)-

Thus by Proposition 3.30, we see that Dgy(f1g) is a section of Ny. Then
Lemma 3.38 tells us that the function f; vanishes identically. Therefore
D11/ also vanishes, and so Dih = 0. By Proposition 3.32 and Theo-
rem 1.18, the complex (1.24) is exact, and so h is a Lie derivative of the
metric.

§6. The other projective spaces

Let X be a projective space equal either to the quaternionic projective
space HP™, with n > 2, or to the Cayley plane. Let F; be the family of all
closed connected totally geodesic surfaces of X which are isometric either
to the real projective plane with its metric of constant curvature 1 or to
the sphere S? with its metric of constant curvature 4. Let F» be the family
of all closed connected totally geodesic submanifolds of X isometric to
the projective plane CP2. We verify that every surface belonging to the
family F7 is contained in a submanifold belonging to the family Fo (see
Proposition 3.14, [45, §3.2] and [17, §3]).

We consider the sub-bundle N = Nz, of B consisting of those elements
of B which vanish when restricted to the submanifolds of ;. The following
proposition can be proved by means of computations similar to the ones
used in [14] to prove Proposition 3.31 and the relation (3.36) for the complex
projective spaces.
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ProprosiTION 3.43. Let X be equal to the quaternionic projective
space HP™, with n > 2, or to the Cayley plane. Then we have

N=B, HN(T*®N)=/{0}.

We remark that the equalities of the preceding proposition imply that
the relation (1.48) holds for the space X. Thus we may apply Theorem 2.47
to the families F; and F» in order to obtain the following result from the
infinitesimal rigidity of CP2.

THEOREM 3.44. The quaternionic projective space HIP", with n > 2,
and the Cayley plane are infinitesimally rigid.

THEOREM 3.45. Let X be equal to the quaternionic projective space
HP™, with n > 2, or to the Cayley plane. A differential form of degree 1
on X satisfies the zero-energy condition if and only if it is exact.

PROOF: According to Propositions 3.14 and 3.15 (see Corollary 3.26
of [5]) when X is equal to a quaternionic projective space, or by observations
made in [17, §3] when X is the Cayley plane, we easily see that

C]:1 = {0}

By Theorem 3.40, we know that the hypotheses of Theorem 2.51 are satis-
fied. The latter theorem now gives us the desired result.

Let F’ be the family of all closed connected totally geodesic submani-
folds of X isometric to the projective line HP! (which is a sphere of dimen-
sion 4), or to the projective line over the Cayley algebra (which is a sphere
of dimension 8), as the case may be. By means of the methods which we
used in §5 to prove Theorem 3.35 for the complex projective spaces, we may
also derive the following theorem, which is weaker than Theorem 3.44.

THEOREM 3.46. Let X be equal to the quaternionic projective space
HP™, with n > 2, or to the Cayley plane. If h is a symmetric 2-form on X,
the following assertions are equivalent:

(i) The symmetric 2-form h belongs to L(F").
(ii) We have D1h = 0.
(iii) The symmetric 2-form h is a Lie derivative of the metric g.

The equivalence of assertions (i) and (iii) of Theorem 3.46 were first
proved by Michel (see [45]). In [53], Tsukamoto deduced the infinitesimal
rigidity of X from this result of Michel, the infinitesimal rigidity of CIP?
and the exactness of sequence (1.51) for the sphere of dimension > 2; he
requires the equality (1.57) of Proposition 1.14,(i) and uses an argument
similar to the one appearing in the proof of Theorem 3.20.



CHAPTER IV

THE REAL GRASSMANNIANS

§1. The real Grassmannians

Let m > 1, n > 0 be given integers and let F' be a real vector space of
dimension m + n endowed with a positive definite scalar product. Let X
be the real Grassmannian G% (F) of all oriented m-planes in F.

Let V = Vx be the canonical vector bundle (of rank m) over X whose
fiber at x € X is the subspace of F' determined by the oriented m-plane x.
We denote by W = Wx the vector bundle of rank n over X whose fiber
at z € X is the orthogonal complement W, of V, in F. Then we have a
natural isomorphism of vector bundles

(4.1) VW =T

over X. We may view X as a submanifold of A" F. In fact, the point
x € X corresponds to the vector vy A+ Avy, of A" F, where {v1,...,v,,}
is a positively oriented orthonormal basis of the oriented m-plane x. The
isomorphism (4.1) sends an element 6 € (V*®@ W), into the tangent vector
dxy/dt|i—o to X at x, where z; is the point of X corresponding to the vector

(v1 +t0(v1)) A=+ A (Vi + t0(V1n))

of N"F, for t € R.

Since the vector bundles V and W are sub-bundles of the trivial vec-
tor bundle over X whose fiber is F', the scalar product on F' induces by
restriction positive definite scalar products g; and g on the vector bun-
dles V' and W, respectively. If we identify the vector bundle V* with V'
by means of the scalar product g;, the isomorphism (4.1) gives rise to a
natural isomorphism

(4.2) Vew T

of vector bundles over X, which allows us to identify these two vector
bundles and the vector bundle ®°T* with ®°V* ® ®°W*. In fact, if
0, € @°V*, 0, € @ W*, we identify the element 6; @6, of @*V* @@ W*
with the element u of *T* determined by

w(v1 ® wi, va ® we) = b1 (v1, v2) - O2(wr,w2),

for v1,vy € V and wy, we € W. The scalar product g on T induced by the
scalar product g1 ® go on V ® W is a Riemannian metric on X.
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The involution 7 of X, corresponding to the change of orientation of
an m-plane of F', is an isometry of X. The group A of isometries of X
generated by 7, which is of order 2, acts freely on X and we may consider
the Riemannian manifold Y = X/A endowed with the Riemannian metric
gy induced by g. The natural projection w : X — Y is a two-fold covering.
We identify Y with the real Grassmannian G% (F) of all m-planes in F.
When m = 1, the Grassmannian G}(F) is the projective space of F.

Let V3 and Wy be the vector bundles over Y whose fibers at the point
y € Y are equal to V, and W, respectively, where x is one of the points
of X satisfying w(z) = y. Then the tangent space Ty, of Y at y € Y is
identified with (Vy @ Wy),,.

For z € X, the tangent space T;(,) is equal to (V @ W),; it is easily
verified that the mapping 7. : T, — Ty () is equal to the identity mapping
of (V®&W),. A vector field £ on X is even (resp. odd) with respect to
the involution 7 if 7.{ = £ (resp. 7.& = —§). We say that a symmetric
p-form v on X is even (resp. odd) with respect to 7 if 7*u = eu, where
e =1 (resp. ¢ = —1). Such a form w is even if and only if we can write
u = w*u’, where v’ is a symmetric p-form on Y. If FE is a sub-bundle of
SPT* invariant under the isometry 7, there exists a unique sub-bundle Fy
of SPTy such that, for all z € X, the isomorphism @™ : SPT}*,’y — SPTX,
where y = w(x), induces by restriction an isomorphism @w* : By, — E,.
A symmetric p-form u on Y is a section of Ey if and only if the even
symmetric p-form w*u on X is a section of F.

Throughout the remainder of this section, we suppose that n > 1. The
curvature R of the Riemannian manifold (X, g) is determined by

R(v1 @ w1, v2 @ wa,v3 @ W3, Vs @ Wy)
= ((v1, v4){v2,v3) — (v1,v3){Va, v4)) (W1, wa) (W3, wy)
+ ((w1, wa) (wa, w3) — (wy, wsz) (w2, wa))(vi,v2)(vs, v4),

for v; € V, w; € W, with 1 < j < 4, where (vj,v;) = g1(vj,v;) and
(wj, wr) = ga(wj, wg). It follows that g is an Einstein metric; in fact, its
Ricci tensor is given by

(4.3) Ric = (m +n — 2)g.

The sub-bundles S?T* and /\2T* of ®2T* admit decompositions
(4.4) S2T* = (S2V* @ SPWH) @ (N°VF @ A*WH),
(4.5) A2T* = (S2V* @ A2WH) @ (A2V* @ S2W).

We denote by S2V* the sub-bundle of S?V* which is the orthogonal
complement, with respect to the scalar product induced by g7, of the line
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bundle {g;} generated by the section g; of S2V*. Similarly, we denote by
S2W* the sub-bundle of S?W* which is the orthogonal complement of the
line bundle {g>} generated by the section go. We consider the sub-bundles

By ={g1} @ SEW*, Eo=SiV*®{g}, E3z=SV*®SiW*

of S2T*. If Ej is the line bundle {g} generated by the section g = g; ® go
of S2T*, from the equality (4.4) we obtain the orthogonal decomposition

(4.6) ST+ = é E; & (N°V* @ N°WH).
§=0

We consider the sub-bundle E = Ex of S>T* consisting of all elements
h of S2T* which satisfy

(4.7) h(£,§) =0,

for all elements £ of V@ W of rank one. The sub-bundle F is invariant
under the isometry 7 and we shall also consider the corresponding sub-
bundle Ey of S*Ty: induced by F; if x € X, the fiber of Ey at the point
y = w(x) consists of all elements h of SQT{’},y satisfying the relation (4.7)
for all elements £ of Ty, = (V ® W), of rank one.

We easily see that an element h of E satisfies the relation

h(v1 ® wy,v2 @ wa) + h(vy @ wa, v ® wy) =0,

for all v1,v9 € V, wy,we € W. Clearly, the vector bundle /\ZV* ® /\2W*
is a sub-bundle of F; then from the decomposition (4.4), we obtain the
equality

E=N\V* @ N°W*.
This last relation implies that

(4.8) TE={0}, TrEy ={0}

We also consider the Grassmannians X' = éE(F) and Y' = GR(F),
the natural projection @ : X’ — Y’ and the involution 7 of X'. Let V'
be the canonical vector bundle of rank n over X’ whose fiber at a € X’ is
the subspace of I’ determined by the oriented n-plane a, and let W’ be the
vector bundle of rank m over X’ whose fiber over a € X’ is the orthogonal
complement W/ of V! in F. As above, we identify the tangent bundle of
X’ with the bundle V' ® W’; the scalar product on F' induces Riemannian
metrics on X’ and Y’. There is a natural diffeomorphism

U GR(F) - GR(F),
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sending an m-plane of F' into its orthogonal complement. When m = n,
this mapping is an involution of Y = GX(F); in this case, we say that a
symmetric p-form u on Y is even (resp. odd) if U*u = eu, where ¢ = 1
(resp. e = —1).

Now suppose that the vector space F' is oriented and let €2 be a unit
vector of A" " F which is positive with respect to the orientation of F.. The
oriented m-plane x € X gives us an orientation of V,, which in turn induces
an orientation of Wy: if {v1,...,v,,} is a positively oriented orthonormal
basis of V,,, then the orientation of W, is determined by an orthonormal
basis {wy,...,wy,} of W, satisfying

VIA AUy AWy A - Aw, = .
Then there is a natural diffeomorphism
U GR(F) — GR(F),

sending # € GE (F) into the n-plane W, endowed with the orientation
described above. For x € X, we have V\I’,(z) = W, and W\’I,(z) =V, Itis
easily verified that the induced mapping ¥, : (V@ W), — (V' @ W)y
sends v ® w into —w ® v, where v € V,, and w € W,; therefore ¥ is an
isometry. Clearly the diagram

GE(F) % GX(F)

(4.9) lw lw

GE(F) —~ GX(F)

commutes. It follows that the mapping ¥ : G (F) — GE(F) is also an
isometry. Also the diagram

G (F) —— Gi(F)
is easily seen to commute.
Let {e1, ..., emin} be the standard basis of R"*". We henceforth sup-

pose that F is the vector space R™ 1" endowed with the standard Euclidean
scalar product. We now consider the real Grassmannians

X=Gp,=GL®R™™),  Y=0G), =G LR,



118 IV. THE REAL GRASSMANNIANS

endowed with the Riemannian metrics g and gy induced by the standard
Euclidean scalar product of R™*". Throughout the remainder of this sec-
tion, we also suppose that m +n > 3.

The group SO(m + n) acting on R™*" sends every oriented m-plane
into another oriented m-plane. This gives rise to an action of the group
SO(m +n) on X. In fact, the group SO(m + n) acts transitively on the
Riemannian manifold (X, g) by isometries. The isotropy group of the point
xg of X corresponding to the vector e; A+ - -Aey, of A" R™T™ is the subgroup
K = 50(m) x SO(n) of SO(m + n) consisting of the matrices

(4.10) ¢:(g‘ g),

where A € SO(m) and B € SO(n). The diffeomorphism
®:50(m+n)/K — X,

which sends the class ¢- K, where ¢ € SO(m+n), into the oriented m-plane
of R™*" corresponding to the vector ¢(e1) A---Ad(en), is compatible with
the actions of SO(m +n) on SO(m + n)/K and X.

If I, denotes the unit matrix of order p, the element

_ _Im 0
*“lo 1

of O(m + n) determines an involution o of SO(m + n) which sends ¢ €
SO(m+n) into s¢ps~1. Then K is equal to the identity component of the set
of fixed points of o, and (SO(m + n), K) is a Riemannian symmetric pair.
The Cartan decomposition of the Lie algebra gg of SO(m+n) corresponding
to o is

go = £o @ po;

here £, is the Lie algebra of K and pq is the space of all matrices

(4.11) (g _(;Z)

of go, where Z is a real n x m matrix and 7 is its transpose. We identify
po with the vector space M, ,, of all real n x m matrices and, in particular,
the element (4.11) of po with the matrix Z of M, ,,. The adjoint action of
K on pg is expressed by

Ad¢p-Z=B-Z-A1,

where ¢ is the element (4.10) of K and Z € M, .
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We identify po with the tangent space of SO(m+n)/K at the coset of
the identity element of SO(m+n). Clearly the diffeomorphism ® sends this
coset into the point zo of X. Since V,, is the subspace of R"*" generated
by {e1,...,em}, clearly W, is the subspace generated by {€mt1,...,en}
Then it is easily verified that the isomorphism @, : pg — (V ® W), sends
the element (4.11) of pg corresponding to the matrix Z = (z;;) of My, m,
with 1 < j7 <mn and 1 < k < m into the vector

E Zikek Q €j4m
1<j<n
1<k<m

of (V@W)y,.

If B is the Killing form of gg, the restriction to pg of the scalar prod-
uct — B is invariant under the adjoint action of K and therefore induces an
SO(m + n)-invariant metric go on the homogeneous space SO(m +n)/K.
Endowed with this metric gg, the manifold SO(m + n)/K is a symmet-
ric space of compact type of rank min(m,n). It is easily verified that
go = 2(m + n — 2)®*g. Thus ® is an isometry from the symmetric space
SO(m +n)/K, endowed with the metric

1
2(m +n —2) 90,

to X; henceforth, we shall identify these Riemannian manifolds by means
of this SO(m + n)-equivariant isometry. From Lemma 1.21, we again ob-
tain the equality (4.3). Moreover, the symmetric space SO(m + n)/K is
irreducible unless m = n = 2. On the other hand, we shall see below
that the Grassmannian G7 5 is not irreducible and is in fact isometric to a
product of 2-spheres (see Proposition 4.3).

The vector bundles V' and W are homogeneous sub-bundles of the
trivial vector bundle over X whose fiber is R™*"; it is easily seen that
(4.2) is an isomorphism of homogeneous SO(m + n)-bundles over X. All
the vector bundles appearing in the decomposition (4.6) and the bundle
E are homogeneous sub-bundles of S?7*; hence the fibers at x( of these

vector bundles are K-submodules of S*T7 .

When m = 1, we easily see that éﬂﬁn endowed with the metric g is
isometric to the sphere (S™, gg) and that G]%n endowed with the metric gy
is isometric to the real projective space (RP",gg). In fact, the mapping
¢ : S — GY,, sending the unit vector u € S™ into the point of GT,
corresponding to the oriented basis {u} of the line generated by w is easily
seen to be an isometry; moreover, by passage to the quotient, ¢ induces an

isometry ¢ : RP" — GT,. When m = 1, we also know that E = {0}.
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The Grassmannian @Sm is also a homogeneous space of the group
SO(m + n). We shall always choose the orientation of R™*" induced by
the unit vector e; A - - - A ey of A™T"R™1". 1t is easily verified that the
isometry

AR AR
U Gmm — Gn)m
determined by this orientation satisfies
Vogp=q¢oW,

for all ¢ € SO(m + n). Thus éB‘;m and é%m are isometric as symmetric
spaces. For x € X, we shall always consider the orientation of the space W,
induced by the orientation of its orthogonal complement V,, (with respect
to our orientation of R™*").

The involutive isometry 7 of X satisfies

(4.12) T ¢9(x) = ¢ 71(x),

for all ¢ € SO(m + n) and = € X. From (4.12), we see that the action
of the group SO(m + n) on X passes to the quotient Y. In fact, the
group SO(m + n) acts transitively on Y and, if K1 = O(m) x O(n) is the
subgroup of O(m + n) consisting of the matrices (4.10), where A € O(m)
and B € O(n), it is easily verified that the isotropy group of the point w(xg)
is equal to the subgroup K’ = SO(m+n)NK; of SO(m+n). In fact, K’ is
equal to the set of fixed points of the involution ¢ of SO(m+n). Therefore
(SO(m +n), K') is a Riemannian symmetric pair and SO(m +n)/K’ is a
symmetric space of compact type of rank min(m,n); we identify this space
with Y by means of the isometry sending ¢- K’ into the point ¢(w(zy)), for
¢ € SO(m+n). Then by (4.12), we see that the projection w: X — Y is
identified with the natural submersion SO(m +n)/K — SO(m+n)/K' of
symmetric spaces. The space Y is irreducible unless m = n = 2; moreover,
Y is the adjoint space of the symmetric space X whenever m # n.

From the commutativity of the diagram (4.9), with F' = R™T"  we
infer that Gl}%,n and G]sm are isometric as symmetric spaces.

The notion of even or odd tensor on X (with respect to the involutive
isometry 7) defined here coincides with the one considered in §4, Chap-
ter IL. If F is an SO(m + n)-invariant sub-bundle of Tt or of SPT¢, which
is also invariant under the isometry 7, the space C°°(F)®V (resp. C°(F)°dd)
consisting of all even (resp. odd) sections of F' over X is an SO(m + n)-
submodule of C*°(F), and we then have the decomposition (2.8) of the
SO(m + n)-module C*°(F). Also if the bundle F is a sub-bundle of SPT{,
the sub-bundle Fy of SPTYy . induced by F' is invariant under the group
SO(m+n) and coincides with the one considered in §4, Chapter II; more-
over, the mapping w™* induces an isomorphism from the SO(m+n)-module
C>=(Y, Fy) of all sections of Fy over Y to the SO(m+n)-module C>°(F)".
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If F' is an arbitrary vector space of dimension m + n endowed with a
positive definite scalar product, an isometry ¢ : R™*" — F induces isome-
tries ¢ : Gy, ,, — G (F) and ¢ : Gf , — G (F). Thus the Riemannian
manifolds G (F) and GE (F) are symmetric spaces. If we write X = éilin
and X' = GE (F), for # € X the isomorphism ¢ : R™" — F induces by

restriction isomorphisms
P VX,a: - VX’,gp(m)a 2 WX,I - WX/,cp(r)§

hence the isomorphism ¢, : T'x » — T'x/ ,(z) 15 equal to the natural map-
ping
PRp:Vx, @Wx, — VX’,Lp(m) Y WX’,cp(:z:)~

It follows that
(IO*EX/,LP({L’) = EX,a:;

for all z € X. Moreover, since 7o @ = po T as mappings from X to X', we
see that, if u is an even (resp. odd) symmetric form on X', then ¢*u is an
even (resp. odd) symmetric form on X. When m = n, since oy = o ¥
as mappings from Gy , to G (F), we see that, if u is an even (resp. odd)
symmetric form on GX(F), then p*u is an even (resp. odd) symmetric form
on Gy .
The orientations of the spaces V,, with * € X, considered above,

together with the scalar product g; on V, give us a Hodge operator
x: NPVE— NPV

On the other hand, the orientations of the spaces W, induced by the ori-
entations of the spaces V., for € X, together with the scalar product g,
on W, determine a Hodge operator

w: NPW*S — N"TPW

If m = 4, we consider the eigenbundles AT V* and A~ V* of the Hodge

operator * : /\ZV* — /\ZV* corresponding to the eigenvalues +1 and —1,
respectively; since this operator is an involution, we obtain the decompo-
sition

(4.13) NVE= NV e NV

When n = 4, the Hodge operator  : /\QW* — /\QW* gives us an analogous
decomposition

(4.14) NW*=N\NTW*a AW,
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where AT W* and A\~ W* are the eigenbundles of this Hodge operator corre-
sponding to the eigenvalues +1 and —1, respectively. If m = 4 (resp. n = 4),
the vector bundles appearing in the decomposition (4.13) (resp. (4.14)) are
homogeneous sub-bundles of A*V* (resp. A°W*) and their fibers at z are
K-submodules of \*V;% (resp. A°W,).

We now suppose that m,n > 2. The complexification g of the Lie
algebra go is equal to so(m + n,C), and the complexification ¢ of the Lie
algebra €y admits the decomposition

E=¢ by,

where £ and £ are subalgebras of € isomorphic to so(m,C) and so(n,C),
respectively. If p denotes the subspace of g generated by pg, the Lie algebra
g admits the decomposition

g=t ot p

into K-modules. In fact, the K-module £, is isomorphic to /\QV&ZO, the K-

module &5 is isomorphic to /\21/1/'67350 and p is isomorphic to the K-module
(V@ W)c,z; in fact, p is irreducible when m,n > 3.

The fibers at g of the vector bundles E; ¢ are irreducible K-modules.
In fact, Ey c,z, is isomorphic to the trivial K-module, while E; ¢ 5, is iso-
morphic to the irreducible K-module (S’g W*)¢,zo and E2 ¢ 4, is isomorphic
to the irreducible K-module (S2V*)c .,. Therefore Ej ¢z, is isomorphic
to the irreducible K-module E1 ¢ 4, ® E2c,5,- If m # 4 (resp. n # 4), the
K-module /\QV(C*"% (resp. /\2W6710) is irreducible; on the other hand, when
m =4 (resp. n = 4), the K-submodules /\JFV(C*J0 and A\~ V¢, of /\ZVC’"%
(resp. /\JFW(C*@O and A\~ W¢ - of /\QW(C*JU) are irreducible. If m,n > 3,
it is easily seen that none of these three irreducible K-modules Ej ¢, is
isomorphic to one of the K-modules /\2V(C*’gc07 /\QI/V(C*)I07 or (V& W)cw»
or to any one of their irreducible components.

If m,n # 4, clearly (A\°V* @ A*W*)c 4, is an irreducible K-module.
When either m or n is equal to 4, the bundle A’V* @ A>W* admits an
SO(n+m)-invariant decomposition arising from the decompositions (4.13)
and (4.14); the fibers at xg of the components of the corresponding decom-
position of (A\*V* @ A*W*)¢ are irreducible K-modules. If m,n > 3, the
K-module (A*V* @ A\°W*)c., does not contain a K-submodule isomor-
phic to any one of the K-modules /\QV(C*’I07 /\QI/V(C*)I07 or to any one of their
irreducible components. If m,n > 3 and m + n > 7, we easily see that the
K-module (\°V* @ /\2W*)Qgg0 does not contain a submodule isomorphic
to the irreducible K-module (V @ W) 4, or to p.
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We now suppose that m = n = 3. If we identify the vector bundle V*
with V and the vector bundle W* with W by means of the scalar products
g1 on V and g2 on W, the Hodge operators
«: V5= NV s« W — NPWH
determine isomorphisms
w:V — ANV, W — N2W™.
In turn, via the identification (4.2) the isomorphism
x@x: VoW — ANV N°W*
gives rise to an SO(6)-equivariant isomorphism of vector bundles
(4.15) w: T — NV N°W.
In this case, the irreducible K-module (A\*V* @ A*W*)¢.4, is isomorphic

to (V @ W)c 5, and hence to p.
From the above remarks, we obtain the following results:

LEMMA 4.1. Let X be the real Grassmannian GF

moms With m,n > 3.
(i) We have

HomK(g7 Ej,C,JJo) = {O}a

for j =0,1,2,3.
(ii) If m +n > 7, we have

Homg (g, (N'V* ® A"W*)ca,) = {0}
(i) If m = n = 3, we have
dim Homp (g, (A*V* @ A*W*)cz,) = 1.

We now suppose that m,n > 3. From Lemma 4.1 and the decomposi-
tion (4.6), we deduce that

(4.16) Homg (g, S°T¢ ) = {0}
when m,n > 3 and m +n > 7, and that

(4.17) dim Homg (g, S*T¢ ) = dim Homg (g, S§T¢ ) = 1
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when m = n = 3. We recall that the Grassmannian @53 is isometric to the
symmetric space SU(4)/SO(4) (see [36, p. 519]). Thus by Lemma 2.41, we
know that the space Homg (g, S(%th:k,zo) vanishes for the space é]ﬁ’n,
m,n > 3 and m +n > 7, and that HomK(g,SgTC*m) is one-dimensional

when

for the space @53; as we have just seen, both of these assertions are also
consequences of Lemma 4.1.

Let 71 be the element of the dual of the group SO(m + n) which is
the equivalence class of the irreducible SO(m + n)-module g. We denote
by K the SO(m + n)-module of all Killing vector fields on X and by K¢
its complexification. The irreducible symmetric space X is not equal to a
simple Lie group. Thus according to (2.27), we know that the SO(m + n)-
module C2°(T¢) is irreducible and is equal to Kc. When m +n > 7, by
(4.16) the Frobenius reciprocity theorem tells us that

(4.18) C52(8°T¢) = {0},

and the equality (2.25) then says that F(X) = {0}. We now again consider
the case when m = n = 3. The isomorphism (4.15) provides us with an
isomorphism
27 7% 21q7%
w1 O3 (Te) — GNPV @ APW)e)

of SO(6)-modules; hence by (2.27), we have
CX(N V@ NPW)e) = * Ke.

By (4.17) and Lemma 4.1, the Frobenius reciprocity theorem gives us the
equalities

(419)  C(STE) = CX(SETE) = C(NVF @ N*W*)e) = * Ke.

By Proposition 2.40 and the equality (4.17), we see that E(X) is an irre-
ducible SO(6)-module isomorphic to the Lie algebra go; moreover by (4.19)
and (2.29), we have

(4.20) E(X)c = CUN V@ N*W*)e) = * Ke.

Since A*V* ® A*W* is a sub-bundle of E, the above discussion gives us
the following result:

PROPOSITION 4.2. Let X be the Grassmannian GR

m.ny With m,n > 3.
(i) If m +mn > 7, then we have

E(X) = {0}.
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(ii) If m = n = 3, then E(X) is an irreducible SO(6)-module isomor-
phic to the Lie algebra go = s0(6), and is equal to the SO(6)-submodule

{he CXUNV @ NW*)e) [h=h} =+K

of C*(E).

When m 4+ n > 7, the vanishing of the space E(X) is also given by
Theorem 1.22 (see Koiso [41] and [42]).

For the remainder of this section, we suppose that m = n > 2. Then
the isometry U of the Grassmannian ¥ = Gﬂs)n is an involution. The group
A of isometries of Y generated by ¥, which is of order 2, acts freely on
Y and we may consider the Riemannian manifold ¥ = G]ﬁm equal to the
quotient Y/A endowed with the Riemannian metric gy induced by g. The
natural projections @’ : Y — Y and w” : X — Y are two-fold and four-fold
coverings, respectively. The action of the group SO(2n) on Y passes to the
quotient Y. In fact, SO(2n) acts transitively on Y and it is easily verified
that the isotropy group of the point w”(xg) is equal to the subgroup of
SO(2n) generated by K’ and the matrix

0o -I,

I, 0
of SO(2n). In fact, Gﬂs,n is a symmetric space of compact type of rank n.
When n > 3, it is irreducible and equal to the adjoint space of X and of Y.

On the other hand, when n = 2, it is not irreducible, and we have the
following result, whose proof appears below in §9, Chapter V:

PROPOSITION 4.3. The symmetric space S? x S? (resp. RP? x RP?)
endowed with the Riemannian metric which is the product of the metrics
of constant curvature 1 on each factor is isometric to the Grassmannian
G5, (resp. G5 ,) endowed with the Riemannian metric 2g (resp. 2gy ).

The following proposition is a direct consequence of Propositions 4.3
and 10.2, and of Theorem 2.23,(ii).

PROPOSITION 4.4. Tbe maximal flat Radon transform for functions
on the symmetric space Gﬂiz is injective.

The notion of even or odd tensor on Y (with respect to the involutive
isometry ¥) defined here coincides with the one considered in §4, Chap-
ter IL. In fact, a section w of SPTy over Y is even if and only if we can write
u = w'* ', where u' is a symmetric p-form on Y. Lemma 2.17 gives us the
following result:
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R

n.n Satisties the Guillemin

R

n,n

LEMMA 4.5. A symmetric p-form u on G
condition if and only if the even symmetric p-form @' u on G
the Guillemin condition.

satisfies

§2. The Guillemin condition on the real Grassmannians

Let m,n > 1 be given integers. In this section, we again consider the
real Grassmannians X = G&yn andY = Ggim, endowed with the metrics g
and gy, and the natural Riemannian submersion w : X — Y, and continue
to identify the tangent bundle T of X with the vector bundle V @ W as
in §1.

Let Vi,...,V, be mutually orthogonal subspaces of R™*" and let
D1,-..,pr be given integers, with 1 < p; < dimV; and p; +--- + p, = m.
For 1 < j < r, the space Vj is endowed with the scalar product induced by
the Euclidean scalar product of R™*+": in turn, this scalar product induces
a Riemannian metric on Gﬁl(‘/}). Then there is a natural totally geodesic
imbedding B B B

L GH;(Vl) X e X GET(V?") — G%n

which is defined as follows. For 1 < j < r, let z; be a point of égj (V)
corresponding to the vector v A --- A vl of A\P?Vj, where {vl,... ,vgj} is
a positively oriented orthonormal basis of the oriented p;-plane x;. The
mapping ¢ sends (21, ..., z,) into the point z of @Sln corresponding to the
vector

1

vl/\--~/\v1

pl/\.../\v{/\.../\qf

Pr

of A" R™T". Moreover there is a unique totally geodesic imbedding
1:Gy (V1) x - x Gy (V) = G
such that the diagram

GE (Vi) x - x GE (V) —— GE,

Pr

[rxe |=

Gy (Vi) x - x Gy (Vi) —— G,

Pr

commutes.

_ If Vj’ is the p;-dimensional subspace of V; spanned by the vectors
{v],... ,vgj} of V; and if Wj is the orthogonal complement of Vj’ in Vj, the
tangent space of éﬁj(vpj) at z; is identified with V) @ Wj, for 1 < j <.
Then V/ @---®V/ is equal to V,, while W; @ - - - ® W, is a subspace of W,,.
It is easily seen that the mapping t.(;,... .,) from the tangent space of
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GR (V1) x -+ x éET(VT) at (z1,...,2,) to the tangent space of G%, , at x
induced by ¢ is identified with the mapping

Viewye-—-ao VoW, — (VeW),

sending (61,...,0;) into 61 + - - + 6,, where 0; € V/ @ W;.
We consider the totally geodesic imbeddings ¢ : é;lfl(Vl) — X and
@: G (Vi) — Y defined by

w(2) =z, 22,...,2p), ?(w(2)) = l(lw(2), w(x2),. .., w(x,)),

for 2 € G& (7); then we have p(z1) = z. We write Z = G¥, (V1); then
the mapping ¢. : (Vz ® Wz). — (V ® W),y is the natural inclusion.
Therefore if h is a section of the vector bundle E over X, we see that the
symmetric 2-form ¢*h is a section of the vector bundle E over Z.

We have the equality

(4.21) Exp, V] ® W1 = ¢(G% (V1))

of closed totally geodesic submanifolds of CNY'E!;M Indeed, using the above
description of the mapping ¢, at (z1,...,x,), we see that the tangent spaces
of these two submanifolds of GE  at 2 are equal. From the formula for

m,n

the curvature of GE

m,n’

we infer that Exp, V) ® W is a totally geodesic
submanifold of GE  and a globally symmetric space. Clearly, the sub-

m,n
manifold gp(@ﬁl (V1)) possesses these same properties. In fact, the subgroup
SO(m+n, V) of SO(m+n) consisting of all elements of SO(m +n) which
preserve the subspace V; and which are the identity on the orthogonal com-
plement of V7 acts transitively on these submanifolds by isometries. These
various observations yield the relation (4.21), which in turn gives us the

equality
(4.22) Exp ) Vi @ Wi = @(GEI(Vl))
of closed totally geodesic submanifolds of G, ,,.
It is easily verified that the diagram
G (Vi) x G (Va) x - x GE (Vi) —— G,

(4.23) lTXidX"'Xid lq—
GR (V1) x GE (Vo) x - x GE (V;) —— GF

is commutative. It follows that, if u is an even (resp. odd) symmetric p-form
on Gy, ., the symmetric p-form ¢*u on Z is even (resp. odd).

From the above observations and the equalities (4.21) and (4.22), we
obtain:
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LEMMA 4.6. Let X be the real Grassmannian @5%", with m,n > 2.
Let x be a point of X and let V' and W’ be non-zero subspaces of V,, and
W, of dimension p and q, respectively. Then X' = Exp, V'@ W’ is a closed
totally geodesic submanifold of X invariant under the involution 7, which
is isometric to the Grassmannian ég’q, and Y' = Exp,)V' @ W is a
closed totally geodesic submanifold of Y = G]film, which is isometric to the
Grassmannian G, with = *(Y') = X'. Moreover, if F is the subspace
V'@ W’ of C™*™ of dimension p + q and Z is the Grassmannian éE(F),
there are isometric imbeddings i : Z — X and 7 : Gj(F) — Y whose
images are equal to X’ and Y’, respectively, satisfying w o4 = 70 w and
which possess the following properties:

(i) if z is the unique point of Z satisfying i(z) = x, we have

VZ,z = V/, WZ,Z = W/,

and the mapping i : (Vz; @ Wz), — (V® W), induced by i is the natural
inclusion;

(i) ifu is an even (resp. odd) symmetric form on X, the form i*u on
Z is even (resp. odd);

(iii) if h is a section of the sub-bundle E of S*T* over X, then i*h is
a section of the sub-bundle Ez of S*T}.

If the subspaces V; are all 2-dimensional and the integers p; are all
equal to 1, then the images of the mappings ¢+ and ¢ are totally geodesic
flat r-tori of G% , and G]ﬁl,n. In particular, when m < n and r = m,

m,n

these images are maximal flat totally geodesic tori of é]}in and GR and

m,n’
all maximal flat totally geodesic tori of CNJ]&" and G]f;,n arise in this way.
On the other hand when n < m and r = n + 1, if the subspaces V; are
2-dimensional and p; = 1 for 1 < j < n, and if p,41 = m — n, then the
images

UGT (V1) x - x GY (Vi) x {@n41})

and
[(G?(Vl) X oo X Gﬂf(Vn) X G]Ei_n(vn-‘rl))

R

m.n» and all maximal

are maximal flat totally geodesic n-tori of éE‘;m and G

flat totally geodesic tori of é?ﬁm and Gﬂfm’n arise in this way. In this case,
G® _ . (V,41) consists of the single point @ (1)

From Lemma 2.17, or from the commutativity of diagram (4.23) and
the above remarks concerning totally geodesic flat tori of the Grassmanni-

ans, we obtain the following result:
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LEMMA 4.7. A symmetric p-form u on Y satisfies the Guillemin con-
dition if and only if the even symmetric p-form w*u on X satisfies the
Guillemin condition.

LEMMA 4.8. Let X be the real Grassmannian é%m with m,n > 2.
Let 2 < p <m and 2 < q < n be given integers. Let F be the family
of all totally geodesic submanifolds of X passing through a point ¢ € X
which can be written in the form Exp, V' @ W', where V' is a p-dimensional
subspace of V,, and W' is a g-dimensional subspace of W,. Let h be an
element of S?T, with x € X. If the restriction of h to an arbitrary
submanifold of the family F vanishes, then h vanishes.

PRrOOF: Let {v1,...,v,} and {w1,...,w,} be orthonormal bases of
the spaces V, and W, respectively. If 1 < i,k < m and 1 < j,Il < n are
given integers, the two vectors £ = v; ®w; and n = v, ®w; of T, are tangent
to a submanifold of X belonging to the family F; thus we have h(&,n) = 0.
It follows that h vanishes.

LEMMA 4.9. Let Y be the real Grassmannian Gy, ,,, with 2 < m < n.
Let Fy and F» be orthogonal subspaces of R™™ of dimension 2m — 2
and > 3, respectively, and let

(4.24) 0:GR L (F)) x GR(Fy) - Y

be the totally geodesic imbedding corresponding to the orthogonal sub-
spaces I} and F,. Let o € GR(Fy) and let Y' be the totally geodesic
submanifold

P(Gr_1 (F1) x {z0})

of Y, which is isometric to Ggiq,mfr If u is a symmetric p-form on Y

satisfying the Guillemin condition, then the restriction of u to Y’ satisfies
the Guillemin condition.

PROOF: The rank of the symmetric space G% _; (F}) is equal to m —1.
Let Z be a maximal flat totally geodesic torus of G%,_;(F}) of dimension
m — 1 and £ be a unitary parallel vector field on Z. We define a unitary
vector field ¢’ on the submanifold ¢(Z x G} (Fy)) of Y by

gl(@(zv :L’)) = @*(z,x)(g(z)a O)a
for z € Z, x € G}(Fy). For z € GR(Fy), we consider the totally geodesic

flat torus Z, = p(Z x {z}) of Y of dimension m — 1. Let u be a symmetric
p-form on Y. We define a real-valued function f on G}(Fy) by

f(ar)=/z W€, &) dZ,,

x
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for v € G}(Fy). If i : Y/ — Y is the inclusion mapping, we have the
equality

flaw) = [ @0ie...9)dz.

Let v : [0,L] — G}(F) be a closed geodesic of the real projective space
GR(Fy). Since the rank of the symmetric space Y is equal to m, we see that
Zy = ¢(Z x ~[0, L]) is a maximal flat totally geodesic torus of Y. Clearly

the equality
/f:/ u(g/a"'ag/)dZ'Y
Y Z'y

holds. Now we suppose that u satisfies the Guillemin condition; then the
above integral vanishes, and so the function f on the real projective space
GR(Fy) of dimension > 2 satisfies the zero-energy condition. The injec-
tivity of the X-ray transform for functions on the real projective space of
dimension > 2, given by Theorem 2.23,(ii), tells us that the function f
vanishes. From the equality f(xzg) = 0, we infer that the restriction of u to
Y’ satisfies the Guillemin condition.
The following proposition is a generalization of Lemma 5.3 of [23].

PROPOSITION 4.10. Let y be a point of the real Grassmannian Y =
mons With 2 <m < n. Let Y’ be a closed totally geodesic submanifold
of Y isometric to the real Grassmannian GE‘;L,L” which can be written
in the form Exp, V' ® Wy, where V' is an (m — 1)-dimensional subspace
of Vy,y. If u is a symmetric p-form on Y satisfying the Guillemin condition,
then the restriction of u to Y’ satisfies the Guillemin condition.

GR

PROOF: We consider the subspace Vi = V' & Wy, of R™" of dimen-
sion m +n — 1 and its orthogonal complement Vz in R™*+". Since G(V3)
consists of a single point zg, from the equality (4.22) we see that the image
of the totally geodesic imbedding

02 Gy (Vi) X GY(V2) = Y,
corresponding to the subspaces Vi and V, of R™*"  is equal to Y’. We
choose a maximal flat totally geodesic torus Z of G _ (Vi) of dimen-
sion m — 1. We know that there exists a subspace F; of V; of dimen-
sion 2m—2 such that Z is a totally geodesic submanifold of the submanifold
GR _(F)) of G _,(V1). Since n > m+1, the orthogonal complement Fy of
Fy in R™*™ is of dimension n—m+2 > 3 and contains V5. Then z belongs
to the real projective space G%(F,). We now consider the totally geodesic
imbedding (4.24) corresponding to the orthogonal subspaces F; and Fj
of R™*", Let u be a symmetric p-form on Y satisfying the Guillemin con-
dition. According to Lemma 4.9, the restrictions of u to the totally geodesic
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submanifold ¢(GE,_;(Fy) x {zo}) or to its maximal flat torus ¢(Z x {z¢})
satisfy the Guillemin condition. Since 7(Z x {zo}) = ¢(Z x {z¢}) is a max-
imal flat totally geodesic torus of the submanifold Y’ and since all such tori
of Y’ arise in this way, we infer that the restriction of u to Y’ also satisfies
the Guillemin condition.

ProPOSITION 4.11. Let y be a point of the real Grassmannian ¥ =

G]§L7n, with 2 < m < n. Let Y’ be a closed totally geodesic submanifold
of Y isometric to the real Grassmannian GY, ., which can be written
in the form Exp,Vy,, ® W', where W' is an (m — 1)-dimensional subspace
of Wy,,,. Ifu is a symmetric p-form on Y satisfying the Guillemin condition,

then the restriction of u to Y' satisfies the Guillemin condition.

PROOF: We consider the subspace F = Vy, & W' of R™*" of dimen-
sion 2m — 1. From the equality (4.22), we see that Y is equal to the image
of the natural totally geodesic imbedding G% (F) — Y, which sends the
m-plane of F into the m-plane of R™™™ which it determines. We choose a
maximal flat totally geodesic torus Z’ of Y’ of dimension m — 1. We know
that there exists a subspace F; of F of dimension 2m — 2 such that Z’ is

contained in the image of the totally geodesic imbedding
0: Gy (F1) x GY(F]) = Y,

where F] is the orthogonal complement of F; in F and G} (F]) consists
of a single point zy. Thus we may write Z' = 1(Z x {x0}), where Z is a
maximal flat totally geodesic torus of GX _;(F;). Since n > m + 1, the
orthogonal complement F of F; in R™*™ is of dimension n —m + 2 > 3
and contains F|. Then zo belongs to the real projective space G} (Fy). We
now consider the totally geodesic imbedding (4.24) corresponding to the
orthogonal subspaces F; and Fy of R™*". Let u be a symmetric p-form
on Y satisfying the Guillemin condition. According to Lemma 4.9, the
restrictions of u to the totally geodesic submanifold ¢(G%, _; (Fy) x {zo}) or
to its maximal flat torus Z’ = ¢(Z x {x}) satisfy the Guillemin condition.
Since Z’ is an arbitrary maximal flat totally geodesic torus of Y, we infer
that the restriction of u to Y’ also satisfies the Guillemin condition.

From Proposition 4.10 and Lemma 4.6, by means of the isometries
v G;lf,q — Gf)p we deduce the following:

PROPOSITION 4.12. Let y be a point of the real Grassmannian Y =
G]f;,m. Let Y’ be a closed totally geodesic submanifold of Y isometric to
the real Grassmannian GI}},T which can be written in the form Exp,V'@W’,
where V' is a g-dimensional subspace of Vy,, and W' is an r-dimensional
subspace of Wy,,. Assume either that 2 < m < n and r = n, or that
2 <mn < mandq=m. If uis a symmetric p-form on Y satisfying the
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Guillemin condition, then the restriction of u to Y’ satisfies the Guillemin
condition.

When 1 < ¢ < m — 1, the following proposition is a consequence of
Propositions 4.11 and 4.12 and Lemma 4.6. If m < ¢ < n in the following
proposition, the submanifold Y’ of Y considered there has the same rank
as Y, and in this case the conclusion of the proposition is immediate.

PROPOSITION 4.13. Let y be a point of the real Grassmannian Y =
G%n, with 2 < m < n. Let Y’ be a closed totally geodesic submanifold
of Y isometric to the real Grassmannian G%q which can be written in the
form Exp, Vy, ® W', where W' is a g-dimensional subspace of Wy,,,. If u
is a symmetric p-form on Y satisfying the Guillemin condition, then the

restriction of u to Y’ satisfies the Guillemin condition.

From Proposition 4.12 and the injectivity of the X-ray transform for
functions on a real projective space, we now obtain the following proposi-
tion, which is also given by Theorem 2.24.

PROPOSITION 4.14. For m,n > 2, with m # n, the maximal flat
Radon transform for functions on the real Grassmannian Gy, ,, is injective.

PrOOF: Without any loss of generality, we may suppose that m < n.
Let y be an arbitrary point of GX : we consider a submanifold Y’ of

m,ns
Y = G}, , which is of the form Exp,V’ ® Wy, where V' is a one-
dimensional subspace of Vy,. Let f be a function on Y satisfying the
Guillemin condition. Since Y’ is isometric to the real projective space
RP" of dimension n > 3, by Proposition 4.12, with ¢ = 1 and r = n, we
see that the restriction f’ of f to Y’ satisfies the zero-energy condition.
The injectivity of the X-ray transform for functions on the real projective
space RP™| given by Theorem 2.23,(ii), now tells us that f’ vanishes. Hence
the function f vanishes at y.

The following proposition is a generalization of Proposition 5.2 of [21].

PROPOSITION 4.15. Let y be a point of the real Grassmannian Y =
G]E%n, with 2 < m < n, and let 2 < r < n be a given integer. Let
Y’ be a closed totally geodesic submanifold of Y isometric to the real
Grassmannian GY,. which can be written in the form Exp,v @ W', where
v Is a unit vector of Vy,, and W' is an r-dimensional subspace of Wy ,,. If
0 is a 1-form on Y satisfying the Guillemin condition, then the restriction
of 6 to Y’ is exact.

PrOOF: Let Z be the closed totally geodesic submanifold of Y equal
to Exp, v ® Wy,,, which is isometric to the real Grassmannian Gﬂﬁn; clearly
Y” is a totally geodesic submanifold of Z. Let 6 be a 1-form on Y satisfying
the Guillemin condition. By Proposition 4.12, the restriction of 6 to the
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submanifold Z satisfies the zero-energy condition; therefore so does the
restriction 6 of 6 to the submanifold Y’. By Theorem 3.26, we know that
0’ is exact.



CHAPTER V

THE COMPLEX QUADRIC

§1. Outline

This chapter is devoted to the complex quadric which plays a central
role in the rigidity problems. In §§2 and 3, we describe the differential ge-
ometry of the quadric Q,, viewed as a complex hypersurface of the complex
projective space CP"*!. We show that Q,, is a Hermitian symmetric space
and a homogeneous space of the group SO(n + 2). The involutions of the
tangent spaces of @,,, which arise from the second fundamental form of the
quadric, allow us to introduce various objects and vector bundles on @,.
In particular, we decompose the bundle of symmetric 2-forms on @,, into
irreducible SO(n + 2)-invariant sub-bundles; one of these bundles L, which
is of rank 2, was first introduced in [18]. In §4, we develop the local formal-
ism of Kéhler geometry on the complex quadric following [22]; we wish to
point out that auspicious choices lead to remarkably simple formulas. The
identification of the quadric @, with the Grassmannian G§, of oriented
2-planes in R™*2 given in §5 allows us to relate the geometries of these two
manifolds and to define the objects introduced in §3 in an intrinsic man-
ner. In the next section, we describe the tangent spaces of various families
of totally geodesic submanifolds of @),, and present results concerning the
spaces of tensors of curvature type which vanish when restricted to some of
these families. In §7, we determine explicitly the space of infinitesimal Ein-
stein deformations of @,, and, from the point of view of harmonic analysis
on homogeneous spaces, we compute the multiplicities of a class of isotypic
components of the SO(n + 2)-module of complex symmetric 2-forms on @,
and establish properties of these components. Finally, §8 is devoted to re-
sults concerning sections of the sub-bundle L of S?T*; in §9, we prove that
the complex quadric Q2 is isometric to the product of spheres S? x S2.

§2. The complex quadric viewed as a symmetric space

Let n be an integer > 2. In this chapter, we suppose that X is the com-
plex quadric @,,, which is the complex hypersurface of complex projective
space CP"*! defined by the homogeneous equation

GHG+ -+ =0,

where ¢ = ({0,C1,---,Cnt1) is the standard complex coordinate system
of C"*2. Let g be the Kihler metric on X induced by the Fubini-Study
metric § on CP"*! of constant holomorphic curvature 4 considered in Chap-
ter III. We denote by J the complex structure of X or of CP"*1.



§2. The complex quadric viewed as a symmetric space 135
We consider the natural projection
7:C"? — {0} — CP"*!

and the unit sphere $?"+3 of C"*2 endowed with the Riemannian metric
induced by the real scalar product (3.7) on C"*2. For z € S?"*3 we
consider the space

HL(57%) = { (2,u) | u € €2, (z,u) = 0}
of §2, Chapter III defined in terms of the Hermitian scalar product (3.6),
with K = C, and we view it as a subspace of the tangent space T, (S%""3)

of §#"*3 at z; we denote by Ty (,)(CP"*!) the tangent space of CP"*!
at m(z). We recall that the restriction

7§23 cprt!

of the mapping 7 is a Riemannian submersion and that, for z € 273, the
induced mapping

Ty HZ(SQTH_S) — Tz (CP”+1)

is an isometry.
We endow C"*2 with the complex bilinear form h defined by

n+1

h(z,w) =Y zjw;,
§=0

where z = (20,21,...,2n+1) and w = (wp,w1,...,Wyt1) are elements
of C"*2. In fact, we have

Qn={m(2)|2z€C" {0}, h(z,2) =0}
={m(2) |z € 5**3 h(z,2)=0}.
If 2 € §2"+3 satisfies h(z, 2) = 0, we consider the subspace
HL(S*"3) = { (z,u) |u € C"™2 (z,u) =0, h(z,u) = O}
of H,(5%"+3); then the mapping
ot HL(SP"%) — T

is an isometry (see Example 10.6 in Chapter XI of [40]).
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Let {eg, €1, ..., ent1} be the standard basis of C" 2. Let b be the point
(eo +ie1)/v/2 of $?"F3; then h(b,b) = 0 and b = 7(b) is a point of Q,,. We
consider the vectors

= (b (—eo+ie1)/V2), 7' = (b, (ieo+e1)/V2)

of H;(5?"3); clearly, we have .,/ = —Jm,. Then

{(bv 62)’ LR (Z;v 6n+1)a (Z;a ie?)’ R (87 Z.en+1)}

is an orthonormal basis of Hé(52”+3) and {7,7'} is an orthonormal basis
for the orthogonal complement of Hé(SQ”‘H)’) in Hy(52m3).

The group SU(n+2) acts on C"*2? and CP"*! by holomorphic isome-
tries. Its subgroup G = SO(n + 2) leaves the submanifold X of CP"*+!
invariant; in fact, the group G acts transitively and effectively on the Rie-
mannian manifold (X, g) by holomorphic isometries. The isotropy group
of the point b is equal to the subgroup K = SO(2) x SO(n) of G consisting

of the matrices
A 0
0 B)’

where A € SO(2) and B € SO(n). For 6§ € R, we denote by R(6) the
element
cosf —sind
sinf  cosf
of SO(2) and by R'(6) the element
R(#) 0
0 I

of K, where I is the identity element of SO(n). Since R'(0)b = e~ b, we
see that

(5.1) R(0).m.(b,ej) = ma(e” b, e;) = m (b, e¢;),

for2<j<n+1.
Let {€},...,e},} be the standard basis of C™ and let

YTy — C"
be the isomorphism of real vector spaces determined by

Y. (b,ej) =€}_4, Y, (b, iej) = i€,
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for 2 < 7 < n+1. If we identify T} with C™ by means of this isomorphism v,
since Jw*(l;, ej) = 7r*(l~), ie;), for 2 < j < m+ 1, the complex structure
of T, is the one determined by the multiplication by ¢ on C", and the
Kaéhler metric g at b is the one obtained from the standard Hermitian
scalar product on C", given by (3.6). Moreover, by (5.1) we see that the
action of the element

6:2) o= ("0 1)

of K, with B € SO(n), # € R, on T, = C" is given by

(5-3) $.¢ = e B,

for ¢ € C", where SO(n) is considered as a subgroup of SU(n).
Since G acts transitively on X, the mapping

U:G/K — X,

which sends the class ¢ - K, where ¢ € G, into the point ¢(b), is a diffeo-
morphism compatible with the actions of G on G/K and X.

The element j = R/(7w/2) of K belongs to the center of K and is of
order 4. The element s = j2 of G determines an involution o of G which
sends ¢ € G into s¢s~'. Then K is equal to the identity component of the
set of fixed points of o and (G, K) is a Riemannian symmetric pair. The
Cartan decomposition of the Lie algebra gy of G corresponding to o is

go = £ @ o,

where € is the Lie algebra of K and pg is the space of all matrices

0 0 -t
(5.4) 0 0 —p
&En O

of gg, where &£, n are vectors of R™ considered as column vectors. We
identify po with the tangent space of G/K at the coset of the identity
element of G and also with the vector space R™ @ R"; in particular, the
matrix (5.4) of py is identified with the vector (£,n) € R™ @ R™.

If B is the Killing form of g, the restriction to pg of the scalar product
—B is invariant under the adjoint action of K and therefore induces a
G-invariant Riemannian metric gg on the homogeneous space G/K. The
restriction of Adj to pg is a K-invariant complex structure on pg and so
gives rise to a G-invariant almost complex structure on G/K. According
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to Proposition 4.2 in Chapter VIII of [36], this almost complex structure is
integrable and the manifold G/ K, endowed with the corresponding complex
structure and the metric gg, is a Hermitian symmetric space. The space
G/K is of compact type and of rank 2; when n > 3, it is irreducible.

It is easily verified that the isomorphism ¥, : pg — T} sends (€,71) € po,
with &€, € R™, into the element (¢ 4i71)/v/2 of C". The group K acts on T},
and, for ¢ € K, we have

U,0Adgp=¢o VU,
as mappings from pg to Tp. We also see that W, o Adj = J o ¥, and that
go = 4n¥*g.

Thus ¥ is a holomorphic isometry from the Hermitian symmetric space
G/K, endowed with the metric (1/4n) - go, to X; henceforth, we shall
identify these two Kahler manifolds by means of this isometry. According
to formula (1.65), it follows that X is an Einstein manifold and that its
Ricci tensor Ric is given by

(5.5) Ric = 2ng.

§3. The complex quadric viewed as a complex hypersurface

We begin by recalling some results of Smyth [49] (see also [21]). The
second fundamental form C of the complex hypersurface X of CP"*! is a
symmetric 2-form with values in the normal bundle of X in CP"*!. We
denote by S the bundle of unit vectors of this normal bundle.

Let x be a point of X and v be an element of S,. We consider the
element h, of S?T defined by

hu(€,m) = g(C(&n),v),

for all £,m € T,. Since {v, Jv} is an orthonormal basis for the fiber of the
normal bundle of X in CP"*! at the point x, we see that

C&n) =h(&mv + by (&) v,
for all £, € T,. If p is another element of S;, we have
(5.6) w=cosb -v+sinb- Jy,

with 8 € R. We consider the symmetric endomorphism K, of T, deter-
mined by

hy(&,m) = g(K.,&,n),
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for all £,7 € T,,. Since our manifolds are Kéhler, we have

C(& Jn) =JC(&n),

for all £, € T,; from this relation, we deduce the equalities
(5.7) K;,=JK,=-K,J.

It follows that h, and hj, are linearly independent. By (5.7), we see that
h,, belongs to (S?T*)~ and that

(5.8) hy, = —hy,.
Then if u is the element of S, given by (5.6), it is easily verified that
(5.9) K, =cosb-K,+sinf - JK,.

The Gauss equation gives us an expression for the Riemann curvature ten-
sor R of (X,g) in terms of the Riemann curvature tensor Ry of CP"*!
(endowed with the metric §) and the second fundamental form C; in fact,
we have

R(&1,82,83,84) = Ro(&1,82,83,84) + 3(C(61,64), C (€2, €3))
- 9(C(&1,63),C(&2,64)),

for all &1,&5,&5,& € T. Using formulas (3.13) and (5.7), from the above
relation we obtain the equality

R(&,m)¢ = g(n,0)& — g(&,Om+ g(Jn, ) JE — g(JE,C)JIn
(5.10) —29(J&,n)JC+ g(Kun, Q)KL& — g(K,& Q) Kun
+9(JKV777C)JKVE - g<JKV£7C)JKV’rI?

for all £,7,¢ € T,.. From (5.7), we infer that the trace of the endomorphism
K, of T, vanishes. According to this last remark and formulas (5.10)
and (5.7), we see that

for all £, € T,. From (5.5), it follows that K, is an involution. We call
K, the real structure of the quadric associated to the unit normal v.

We denote by Tif and T, the eigenspaces of K, corresponding to the
eigenvalues +1 and —1, respectively. Then by (5.7), we infer that J induces
isomorphisms of Tf onto T}, and of T}, onto 7,7, and that

(5.11) T.=T ®T,
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is an orthogonal decomposition. If p is the unit normal given by (5.6), then
according to (5.7) we easily see that

(5.12) TF = {cost' -&+sind - JE|EeTf },

where 0" = /2. In particular, if p is the unit normal —v, we obtain the
equalities

+ _ gt o
(5.13) Tr=JI=1T,.
If ¢ is an isometry of CP"*! which preserves X, we have

C(¢*§7 ¢*77) = ¢*C(§, 77),

for all £, € T. Thus, if u is the tangent vector ¢.v belonging to Sy(,), we
see that

hu(:€, 8<m) = hu (€, m),
for all £, € T,,, and hence that
(5.14) K¢, = ¢ K,
on T,.. Therefore ¢ induces isomorphisms
¢*:Tj—>T;, ¢*:TV_—>TM_.

Now let v be a section of S over an open subset U of X. Let h, be the
section of S2T* over U corresponding to the unit normal field v defined by

(hu)(x) = hu(:v)7

for x € U; we then consider the symmetric endomorphism K, of Tjy de-
termined by
Ku(x) = Kl/(:v)a

for x € U. We also consider the sub-bundles T, and T, of Tj;;, which
are the eigenbundles of K, corresponding to the eigenvalues +1 and —1,
respectively; we have T;fw = T:(m) and T, = TV_(I), forxz e U. If V
denotes the Levi-Civita connection of the metric § on CP"*!, we consider
the 1-form ¢, on U defined by

<£7 SDV> = g(%gl/, JV)7
for all § € Tjy. Then we have the equality

(5.15) Ver = —K & + (€, 0,)Jv,
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for all £ € Tjy. Now let &,n be vectors of Tjy;. According to (5.15) and

the definition of the curvature tensor Ry of CP"*!, we easily see that the
equality

Ro(&,mv = (€ An,de,)Jv — (VE,)(E,n) + (VK,)(1,€)
+ <§> @V>JKV77 - <77’ @V)JKug

holds. On the other hand, formula (3.13) tells us that

(5.16)

(5.17) Ro(&,m)v = —2w(&,m)Jv.

Since K, is an involution of Ty, by (5.7) the definition of the second
fundamental form C' gives us the relation

(VE,) (&) = (VE,)(0,€) = (VE,)(En) — (VE,)(1,€)

5.18
(5.18) —2w(&,n)Jv.

We equate the normal and tangential components of the right-hand sides
of (5.16) and (5.17); using (5.18), we then find that

(5.19) dpy, = —4w
and that the Gauss-Codazzi equation

(5.20) (VEL)(&n) = (VE) (0, €) = (& ) JEun = (0, 00) TKLE

holds. Since K, is an involution, we know that VK2 = 0; hence if 7 is
an element of T)F (resp. of T), we see that (VK,)(£,n) belongs to T,
(resp. to T,}). From this last remark, the equality (5.20) and the fact that
J induces isomorphisms J : T.f — T, and J : T, — T,F, we deduce that
the relation

(521) (VKV)(f»ﬂ) = <£7QPV>JKV77

holds whenever £ belongs to T.f (resp. to T}, ) and 7 is an element of T}
(resp. of T,7). Since X is a Kéhler manifold, by (5.7) we see that

(VKV)(& Jﬁ) = —J(VKV)(&??)

If £ and 7 belong to the same eigenbundle of K, by (5.21) and (5.7) we
have

(VKV)(£7 Jn) = <§7 901/>KV77;
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from the last two equalities, we infer that the relation (5.21) also holds in
this case. Thus we have shown that

(5.22) VK, = ¢, ® JK,.

The remainder of this section is devoted to results of [21] and [23]. We
consider the sub-bundle L of (S?7*)~ introduced in [18], whose fiber at
z € X is equal to

Ly={hy,|pesS}

according to (5.9), if v € S, this fiber L, is generated by the elements
h, and hj, and so the sub-bundle L of (S?T*)~ is of rank 2. We denote
by (S2T*)~1 the orthogonal complement of L in (S*T*)~. By (5.8), we
see that L is stable under the endomorphism (1.68) of (S2T*)~; since the
automorphism J of T is an isometry, the orthogonal complement (S27*)~+
of L in (S?T*)~ is also stable under this endomorphism. We denote by
L', L", (8297*)% and (S%2T*)* the eigenbundles corresponding to the
eigenvalues +i and —i of the endomorphism of (S2T*)6 induced by the
mapping (1.68). In fact, we have the equalities

L'=LecnS*T*, L' = LcnS™°T*,
(52,0T*)J_ _ (S2T*)EL N SQ’OT*, (SO,2T*)J_ _ (S2T*)EL N SO,ZT*
and the decompositions
LC — L/ o L”, (SZT*)(EL _ (52,0T*)J_ D (SO’ZT*)J‘.

By (5.8), if x € X and v € S;, we infer that h, + ihy, generates L and
that h, —ihy, generates L. Clearly, we have the equalities

L'=1/,  (S%T*)*t = (S207+)L
and the orthogonal decompositions
(5.23) SQ,OT* _ L/ ® (SQ’OT*)L, SO,ZT* — L// @ (SO,QT*)L.

Now let x a point of X and v be an element of S,. For § € Tﬂé’i and
h € (S2T*)F, we define elements K, 3 of A>T and K, h of ST by

(Kuﬁ)(fvﬁ) = ﬁ(KV§,KV77)a (Kuh)(fﬂ?) = h(Kuf,Kun)7

for all £, € T,,. Using (5.7) and (5.9), we see that K, and K, h belong
to T]é’l and (S?T*)7, respectively, and do not depend on the choice of the
unit normal v. Using (5.7) and (5.9), we see that K, 8 and K,h belong
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to T]é’l and (S2T™)7, respectively, and do not depend on the choice of the
unit normal v. We thus obtain canonical involutions of Tﬂé’l and (S%T*)*
over all of X, which give us the orthogonal decompositions

Tyt = (T o ('),
(S2T*)* = (S°T*)** @ (S°T*)

into the direct sum of the eigenbundles (Tp'")*, (Tg'')~, (S2T*)** and
(S2T*)*~ corresponding to the eigenvalues +1 and —1, respectively, of
these involutions. We easily see that

(S*T*)3* = {h e (S°T)F | (& Jn) =0, for all &, € Tf },

(
(S?°T*)F~ ={h e (S*T*)} | h(&,n) =0, for all &, € T, },
5.24
24 (T = {8 e (Tph). | BE, Jn) =0, for all &, € T} },
(

(Te)y ={B € (T")a | BEn) =0, forall &y € T},
By (5.7), the morphism (1.67) induces by restriction isomorphisms
(G25) (ST @), (ST - (T
Using the equalities (5.24), we find that

n+1)

2 *++_n( n(n_l)
rank (S“T*)"" = 5 _.

rank (S?T*)"~ = 3

The metric g is a section of (S?T*)*™+ and generates a line bundle {g},
whose orthogonal complement in (S?7*)** is the sub-bundle (S27™)f™"
consisting of the traceless symmetric tensors of (S?*T*)**. The Kihler
form w of X is the image under the morphism (1.67), or under the first
isomorphism of (5.25), and is therefore a section of (Ty'')~. We denote by
(Ta'')y the orthogonal complement in (T3'")~ of the line bundle {w} gen-
erated by the section w; the vector bundle (T]é’l)a is the image of (S27*)4+

under the morphism (1.67). We thus obtain the orthogonal decompositions
(5.26) ST = Lo (S°T*) @ {g} @ (S°T*)§ " @ ($°T*)*,
( 27) SQTE _ L/ ® L// @ (SQ,OT*)J_ @ (SO,2T*)J_
5.
©{gtc e (S*T7)5c @ (S°T7)¢T,

(5.28) Tyt ={w}e (Ty')y @ (Tx'h)".
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Using the relation (5.14), we easily see that the decompositions (5.26)—
(5.28) are G-invariant.
Let

Ty S2TF — (SPT)HE, x0L s S2TF — (ST,
Ty 0 SPT* — (S2T*)*, pr: Tt — (Tt

be the orthogonal projections. Clearly, we have
0 1
Ty h=m 1 h— - (Trh) - g,

for h € S?T*.
Now let v be a section of S over an open subset U of X and consider
the symmetric endomorphism K, of Tj;; and the corresponding sub-bundle

T;f of Tjy. If B € Ty’ and h € (S?T*)}, with € U, we have

meh=3(h—EKh),  piB =B+ K0

Let h be an element of (S?T*)*; if k is the element 7, _h, then by (5.7)
we see that

(5.29) E=pyh.

Let f be a real-valued function on X; if k is the section my_Hess f of
(S2T*)*~, according to (5.29) and Lemma 1.25, we see that

(5.30) k=ip, 00f.
If u is a section of (S2T*)* or of (Tp'")T over U, by (5.22) we have
(VKVU) (67 n, C) = (VU) (ga K,n, KUC)
+ U((VsKu)% KVC) + U(Kum (VﬁKV)C)a
= (Vu) (& Kun, K. Q)

+ (& ou) (u(J Ky, K,.Q) + u(K,n, JK,Q))
= (VU)(& K,n, KUC)’

for all £,n,¢ € Tjy. If h is a section of (S2T*)T over X, from the preceding
relations we infer that

(531) V€7T++h = 7T++th, V§7T+7h = 7T+7V§h,
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for all £ € T'; moreover if 3 is a section of (Tﬂi’l)+ over U, we obtain the
relation

(5.32) (dp+B)(&;n,C) = (dB)(&,,€),

for all &,m,( € T)F.
The complex conjugation of C"*2 induces an involutive isometry 7 of
CP™*! satisfying

(5.33) T ¢(2) = ¢ 7(2),

for all ¢ € G and z € CP""'; moreover T preserves the submanifold X
of CP"*!1. The group A of isometries of X generated by 7, which is of
order 2, acts freely on X and we may therefore consider the Riemannian
manifold Y = X/A, with the metric gy induced by g, and the natural
projection w : X — Y, which is a two-fold covering. By (5.33), we see that
the action of the group G on X passes to the quotient Y’; in fact, the group
G acts transitively on Y. If K3 = O(2) x O(n) is the subgroup of O(n+2)
consisting of the matrices
A 0
(0 5)

where A € O(2) and B € O(n), it is easily verified that the isotropy group
of the point w(b) is equal to the subgroup K’ = G N Ky of G. We know
that G/K’ is a symmetric space of compact type of rank 2, which we may
identify with Y by means of the isometry

V:G/K' —-Y

sending ¢ - K’ into the point ¢(w (b)), for ¢ € G. Then by (5.33), we see
that the projection w : X — Y is identified with the natural submersion
G/K — G /K’ of symmetric spaces.

Clearly, we have

(5.34) T d = =J Ty,

as mappings acting on the tangent bundle of CP"*!. Since 7 is an isometry
of CP™*! preserving X, the tangent vector p = 7, belongs to S () and
by (5.14) we have

T K, = K7«

on T,. It follows that 7* preserves all the sub-bundles of S?T* appearing
in the decomposition (5.26), and hence also (S?7*)+; moreover, we have

*

(5.35) Ty =Tpg T, T =mp_T .
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By (5.34), we see that

(5.36) = n"r*
on S2T(f':‘, and

(5.37) 70 = or*

on APT¢.

We consider the sub-bundle {gy } of S>T} generated by its section gy .
The bundles of the decomposition (5.26) are invariant under the group A.
Thus if F' is one of the vector bundles appearing in the right-hand side of
the decomposition (5.26), we consider the sub-bundle Fy of STy which
it determines; then the mapping @” : Fy ) — Fy is an isomorphism of
K-modules. We denote by (S2Ty:)~+, (S?T5)¢™ and (S2Ty)*~ the sub-
bundles of STy determined by the sub-bundles (S27*)~%, (S?T*)¢* and
(S2T*)*~ of S2T*, respectively. Then from (5.26) we obtain the decom-
position

(5.38) STy = Ly @ (S*°Ty): @ {gv} @ (S*°Ty)§ ™ @ (S*T5) "~

over Y.

All the fibers at b of the G-invariant vector bundles appearing in the
right-hand side of the decompositions (5.26) and (5.27) are K-submodules
of S2Tb* or SQTb"iC. The fiber S2T;;w(b) is a K’-module and all the fibers

at w(b) of the vector bundles appearing in the right-hand side of the de-
composition (5.38) are K’-submodules of SQT;w(b).
84. Local Kahler geometry of the complex quadric

We now introduce the formalism of K&hler geometry on the complex
quadric X = @Q,, with n > 2, developed in [22, §4].

Let ¢ = (¢o,¢1,---,Cn+1) be the standard complex coordinate system
of C"*2. We consider the natural projection 7 : C"*2 — {0} — CP"*!, the
open subset

V=nu{(C,. - 1) EC*"?| L #0})

of CP"*! and the holomorphic coordinate z = (z1,...,2,+1) on V, where
z; is the function which satisfies 7*z; = (;/{p on C* x C"*1. We set

1
|2l = (Jaf” + -+ [znga )2

The Fubini-Study metric § of CP**! is given on V by

N 1 5]‘ Ejzk .
= — for1 <. k< 1.
9ik 2(1+|z2 (A1) @ =shhsnt
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We recall that the Christoffel symbols of the Levi-Civita connection V of
g are determined on V' by

T fT _ _Zj(skl + deﬂ
TR T T T e

The intersection X NV is equal to the hypersurface of V' given by the
equation

(5.39) 422, =L
We consider the open subset
Vi={z=(21,--,2n+1) | Imzp11 #0}

of V and the corresponding open subset U = XNV’ of X. The holomorphic
vector fields
0 24 0

= 5. — )
8,2]- Zn+1 82n+1

&

with 1 < 7 < n, on V'’ are tangent to X, and over U they constitute a
frame for the bundle 7" of tangent vectors of type (1,0) of X. On V', we
consider the vector fields

Pt 1+ |22 9z
n
(2 — Zk)
¢= T+ P &k nj =& +2;¢
k=1
and the 1-forms B
) P
LU] = de — J J dzn-‘rla

Zn+1 — EnJrl

with 1 < j < n; we set v/ = /.
The real vector field

n+1 ) 9
o =3 ()

on V' satisfies y

o "
1+|Z|2—V + v,

It is easily seen that the restriction of v to the open subset U of X is a
section of the bundle S of unit normals over U, and that

(5.41) (N, w?) = 7, (r,wl) =0
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on U, for 1 < 4,5 < n. From the first relation of (5.41), it follows that
{m,...,nn} is a frame for 7" over U and that

{Reni,...,Reny,Imny,...,Imn,}

is a frame for T over U.

By means of the equation (5.39), which defines the complex quadric, we
see that the decomposition of the tangent vector 9/9z,41 into its tangential
and normal components is given by

1
(5.42) g =(-
Zn+41 aZn-‘,—l
on U. It follows that
0
(543) 7’]j = (972] + ZjZ//

on U, for 1 < j < n. By means of (5.42), we obtain the equality

- Zj2k
(5.44) Ve, & = V§j§k+(5ﬂc + 3 )V/’
ZnJrl
where
Ve, & = 2 g 4 2 S g

e (L1 |22
ZiZ
- <6jk + ;’“)c,

Zn+1

znt1(1+]2)%)?
(5.45)

for 1 < j,k <n. From (5.45), we easily deduce that

_ Zk 7 + z;

(5.46) Ve =

Since V¢, £ = 0, we have

2k _

_ 2k
5.47 Vo =——"51; Vi g =———"7-7510;.
( ) 77_777k 1+‘Z|2 7]]7 nj 77]6 1—|—|Z|2 77]

The Hermitian metric g of X is determined on U by

B 1 05 2iZk + Zizk
5.48 7= g i) = o 2 - T )
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and the inverse matrix (/%) of (9;%) is given by the formula

ik 1+|Zn+1‘2 _ _
g" =2(1+ 22{5'k Z2iZk + ZiZk
( | | ) J (ZnJrl _Zn+1>2( J J )

(1+ ZTQLH)zjzk +(1+ z',%_'rl)ijilc }
(Zn-i-l - Zn—i—l)z ’

(5.49)

for 1 < j,k < n. The image a of the point (1,0,...,0,4) of C"*2 under the
natural projection 7 : C"*2 — {0} — CP"*! belongs to the subset U of X;
then a is the point of U with coordinates (0,...,0,7). By (5.48), we see
that

(5.50) g52(a) = gl 1) (@) = .

We consider the section h, over U and the symmetric endomorphism
K, of Tiy corresponding to the unit normal field v. For 1 < j < n, we
verify directly that

65 b—_ Zj 0 " Z2jZn+1 — ZjZn+1 o
’ 0Z;  Zn+1 0Zn41 Zn+1

on U. From this last relation and the decomposition (5.42), we infer that

ZjZn+1 — ZjZn+1 (f

=6+ Er i - )

Zn41
on U. The equality (5.15) implies that
K& =& — Z2jZn4+1 — ZjZn+1 Z.
J yi Tt
It follows that _
K, ¢ = Zn+1 E

Zn+1

and thus we obtain the relation
(5.51) Koy = iy
By (5.51), (5.46) and (5.47), we have

. zi+ 2z _
T 1t

(VKL)(n5, 1)
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for 1 < k < n; according to (5.22), we then see that

. Zj+2j
1 .
1+ |2

(5.52) (j> pv) =

For 1 < j < n, we consider the vector fields
v = V20 ), wy = Juy=iV2 (1))

on U. By (5.51), we see that {v1,...,v,} and {w1,...,w,} are frames for
T.f and T, respectively, over U. By (5.50), we see that {v1(a),...,v,(a)}
is an orthonormal basis of T:Ea) =T,5,. By (5.51) and (5.7), we obtain the
relations

b (nj, k) = 955 = ho (15, 7).
(5.53) by (njsme) = —i 9k = —hgu (15, 1K),
hl’(njaﬁk) = hJV(njaﬁk) = 07

for 1 <j.k<n.

The relations (5.46) and (5.47) tell us that Vv; = Vw; at the point a,
for 1 < j < n. Therefore there are orthonormal frames {v],..., v} } for T,F
and {w],...,w}} for T, over U satisfying

(Vv;)(a) = (Vw;)(a) =0

and v (a) = v;(a), wj

(a) = wj(a), for 1 < j < n. Thus since the group
G = S0(n + 2) acts transitively on X, if x is a given point of X, from
the preceding remark and (5.14) we infer that there exist a section p of S
over a neighborhood U’ of x and an orthonormal frame {(1,...,(,} for the
vector bundle T,/ over U’ satisfying (V(;)(z) = 0, for 1 < j < n.

If @ is the point (eg +ieny1)/v/2 of S2"F3, then we note that 7(a) = a;
moreover,

{(a,e1),...,(a,en), (a,ier),...,(a,ie,)}
is an orthonormal basis of HZ(S*"*1), and the unit vector
= (d, (—eo + ien+1)/\/§)
of Hz(S?"*1) is orthogonal to HZ(S?"3). We easily verify that

(@, e;) = vj(a), m.(a,iej) = w;(a), Tt = v(a),
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for 1 < j <n. Since K,v; = v; and K, w; = —w;, we see that
K,m.(a,e;) = m.(a,e;), K, m.(a,iej) = —m.(a, ie;),
for1 <j<n.
We know that the vectors 7,7 and w0/ = —Jm. U introduced in §2

belong to Sp. By interchanging the roles of the coordinates (; and (41,
from the preceding relations we obtain the equalities

(5.54) K pmi(bej) =m(b,e;), Koo ma(byie;) = —m.(b,ie;),

for2<j<n+1.

Let f be a complex-valued function on CP"*! and f be its restriction
to X. For 1 <j,k <mn,let fj, f7, fj5, fjxr and fj;; be the functions on V!
defined by

fi=nif, fr=nf,

Prp— . - 2k —
fjk_njfk+ 1+|Z|2 f]a

o 2k Zj + Zj
fjk_njfk+1+| |2 f] 1+|Z|2 fk?
IS itz
fjk_njfk 1+| |2 f] 1+|Z‘2 fk'

By formulas (5.46) and (5.47), for 1 < j, k < n we have
(Hessf)(njvﬁk):fjl%a (HeSSf)(Ujaﬁk):fjk,
(Hess f)(7;,7) = f5r

on U. For 1 < j,k < n, from the preceding formulas, we obtain the
equalities

(5.55)

. . 0f
(Hess f)(n;,7%) = m7
Y
(5.56) (Hess f)(nj, k) = m + 1,k R
*f . of

(Hess f)(ﬁg>77k) 9z.07. 0z —10jk 0Zn+1

at the point a; moreover when j # k, by (5.46) and (5.47) we see that the
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relations
03 f 1 of
(VH@SSJC)(%%aﬁk) m + 3 92
o3 f 1 0f
(VHGSSf)(UJ,maUk) W 53751:7
(5.57) #r 1o 5
(VHess ) 13:13:1) = 525+ 5 5y 1 Gy
o*f 3 0f .0
(VHebbf)(m,m,m) Ep 3 +587+32m

hold at the point a. By (5.55) and (5.51), for 1 < j, k < n, we obtain the
equality

3Zjazk 8zk82]

i 0%f
(7‘(‘+ Hess f)(ﬂgﬂ?k) <8z332k - 8zk82]>

at the point a.

(5.58)

2 2
oDl = (2 ),
1
2

§5. The complex quadric and the real Grassmannians

We also consider {eg,e1,...,e,11} as the standard basis of R"*2. We
consider the real Grassmannian G§n of oriented 2-planes in R"*2, which
is a homogeneous space of G = SO(n + 2), endowed with the Riemannian
metric g’ defined in §1, Chapter IV and denoted there by g; we also consider
the homogeneous vector bundles V and W over G ..

We define an almost complex structure J on ng as follows. If
T € éﬂfn and {v1,v2} is a positively oriented orthonormal basis of the ori-
ented 2-plane V., the endomorphism J of V,, determined by

JUl = V2, JUQ = —1,

is independent of the choice of basis of V,, and we have J 2 = —id. Clearly,
the almost complex structure J of G2 o which is equal to J ®id on the tan-
gent space (V @ W), of G2’n at x € Gz)n, is invariant under the group G.
Since G 2., 18 a symmetric space, according to Proposition 4.2 in Chap-
ter VIII of [36], this almost complex structure J is integrable and the

manifold G2 n, endowed with the corresponding complex structure and the
metric ¢’, is a Hermitian symmetric space.
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As in §1, Chapter IV, we consider the diffeomorphism
o:G/K — G5,

which sends the class ¢- K, where ¢ € G, into the oriented 2-plane of R"*2
corresponding to the vector ¢(eg) A¢p(e1), and which is compatible with the
actions of G on G/K and X. If z is the point of @QR“ corresponding to the
vector eg Aey, we see that V,, is generated by {eg, e1} and W, is generated
by {ea, ..., ent1}; moreover, the isomorphism ®, : pg — (VRW),, induced
by ® satisfies

P, 0Adj=Jo0,.

The complex quadric X = @,, is endowed with the metric g of §2. It is
easily verified that the diffeomorphism
O=Tod ':G}, » X

sends the oriented 2-plane of R"*2 determined by vy A va, where {vy, v}
is an orthonormal system of vectors of R™*2, into the point of X equal
to m(vy + dvg). Clearly, we have ©(xg) = b and

Oop=0o0,
for all ¢ € G. Thus ® is a holomorphic isometry from G/K to X. In §1,
Chapter IV, we saw that gg = 2n®*¢g’; therefore we have
(5.59) O*g=1g.

If 79 denotes the involution of 6H§n corresponding to the change of
orientation of a 2-plane of R"*2 (which is denoted by 7 in §1, Chapter IV),
we see that

(5.60) To®=0o0Ty.

Also we consider the diffeomorphisms ® from the homogeneous space G/ K’
to the real Grassmannian G5, of (unoriented) 2-planes in R™"*2, which
sends ¢ - K', where ¢ € G, into the 2-plane of R"*2 spanned by ¢(eq) and
¢(e1), and the diffeomorphism

(:)Z\T/O@*l:Gﬂin—»Y.

Then by (5.60), it is easily seen that the diagram
Gz, - X

(5.61) lw lw

a5, -2

comimutes.
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If z € GE | let K, be the set of endomorphisms x of V, satisfying

2,n
Jrk = —kKJ, k? = id.

If £ € X and {v1,v2} is a positively oriented orthonormal basis of the
oriented 2-plane V., the endomorphism kg of V, determined by

Rol1 = U1 KoU2 = —U2,

belongs to K. It is easily seen that K, consists precisely of all endomor-
phisms x of V, which can be written in the form

K =cosf-Kkg+sinb - Jkg,

where 6 € R. For x € K5, we denote also by x the endomorphism x ®id of
the tangent space (V @ W), of G3,, at x.

We again consider the point zg of éﬂsn and its image b = O(xp) in X.
If v/ = 7,7 is the element of S of §2, using the relations (5.54) we easily
verify that the endomorphism K, of T} is determined by

Kyf@*(eo ® ej) = @*(60 X ej), KV/G*(el ® ej) = 7@*(61 ® ej),

for 2 < j < n+ 1. Thus if kg is the endomorphism of V,, corresponding
to the oriented orthonormal basis {eg,e;} of the oriented 2-plane V,,, we

have
K,/ @* = @*HQ,

as mappings from the tangent space of @§n at zy to the tangent space
of X at b. It follows that the mapping © induces a bijective mapping
O : K, — S;, with ©(kg) = v/, such that, for all kK € K., we have the
equality

(5.62) K,0, = 0.x

of mappings from (V ® W), to the tangent space of X at O(x), where v is
the element O(k) of Sy.

We henceforth identify the real Grassmannian @QRR with the complex
quadric X = @, by means of the holomorphic diffeomorphism O, and the
real Grassmannian G]Sn with the manifold ¥ by means of the diffeomor-
phism ©. Then for z € X, the tangent space T}, is identified with (V@W),.
According to the commutativity of the diagram (5.61), we see that the map-
ping @w : X — Y is then identified with the natural projection from é§n
to G§’n. The involutive isometry 7 of @,, defined in §3 is identified with
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the involution 7y of @;% corresponding to the change of orientation of a
2-plane of R"*2. According to (5.59), the Kihler metric 2g on Q,, is iden-
tified with the metric ¢’ of (NJIQRTL Following §1, Chapter IV, we identify the
vector bundles S?7* and

(S2V* @ S2W*) @ (N*V* @ N*WH).

Thus we may identify the fiber of the latter vector bundle at the point
xo with the fiber S?T} (resp. the fiber SQT;w(b)) as K-modules (resp. as

K'-modules).

In §4, Chapter II and in §1, Chapter IV, we introduced the notion of
even or odd tensor (with respect to the involutive isometry 7). We recall
that, if F'is a G-invariant sub-bundle of T¢ or of SPT{, which is also invari-
ant under 7, the SO(m+n)-module C*°(F') admits the decomposition (2.8),
where C(F)®" (resp. C*°(F)°%) is the SO(m + n)-submodule of C>°(F)
consisting of all even (resp. odd) sections of F' over X. In particular, we
have the decomposition

COO(X) — Coo(X)ev P Coo(X)odd

of the SO(m + n)-module C*>(X).

If z is a point of X and v is an element of S, according to the discus-
sion appearing above, there exists a positively oriented basis {vy,v9} of V,,
such that

J(v1 @ w) = vy @ w, J(vy @ w) = —v; @ w,
v @ W, =T, v @ Wy =T,

for all w € W,. If {a1, a2} is the basis of V* dual to the basis {v1,v2},
by (5.7) we easily verify that the equalities

(5'63) hy, = %(a? - 043) & g2, hjy =a1-02® g2

hold. If F is a subspace of Tif, there exists a subspace Wy of W, of the
same dimension as F' such that

FeJF =V, W;.

If W’ is a subspace of W, of dimension k > 2, according to Lemma 4.6 we
know that the closed totally geodesic submanifold Exp,V, @ W’ of X is
isometric to the quadric Q.

The sub-bundles (S?T*)™+ and (S2T*)*~ of (S2T*)" can be defined
directly in terms of the intrinsic structure of the real Grassmannian éﬂin,
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without having recourse to the imbedding of X as a complex hypersurface
of CP"+! by
(S2T*) = {h € (S*T*)} | h(k&, k) = h(&,n), for all &,n € Ty},
(S*T*)5™ = {h € (S°T*)} | h(k€, k) = —h(&n), for all n € Ty },
for x € X, where k is an arbitrary element of /. We shall sometimes
write (S2T%)T— = (S2T*)"~.
Let x € X and {v1,v2} be an orthonormal basis of V. An element
h € ST} belongs to the sub-bundle (S?T*)T (resp. (S?T*)7) if and only
if
h(ve ® wy,va ® wa) = eh(vy @ wi,v1 ® wa),
h(v1 @ w1, ve @ wa) = —eh(v1 @ we,v2 @ w1),
for all wy,wy € W, where ¢ = 1 (resp. ¢ = —1). It is easily seen that an
element h of S?T belongs to the sub-bundle (S?T*)™ if and only if
h(UQ X w1, V2 (4 'IUQ) = h('Ul ® w1, U1 [029] ’LUQ), h('l}l ® w1, V2 [029] ’LUQ) = 0,

for all wy,wy € W,; moreover, an element h of S>T; belongs to the sub-
bundle (S27*)*~ if and only if

h(v; @ wi,v; @wz) =0,  h(vy ® wy,v2 ® wa) = —h(vy ® wa, v ® wy),
for all wi,wy € W, and j =1, 2.

We consider the sub-bundles SZV* of S?V* and SZW* of S?W*, the
sub-bundles E, E;, with j = 1,2,3, of S2T* defined in §1, Chapter IV.
The above observations concerning the sub-bundles (S%7*)~, (S2T*)*+
and (S2T*)T~ lead us to the equality
(5.64) (S’T*~ =F
and to the inclusions

By C (S?TH§T, S3v* e SPW* C (S*T%)~,
AV @ N2W* C (S2T)+.
On the other hand, the equalities (5.63) tell us that

(5.65) E,=1L.
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From the above inclusions, the relations (5.64) and (5.65), and the decom-
positions (4.6) and (5.26), we obtain the equalities

Ey = (S*T*){*,  Ey=(S*T")",
(5.66) S2V* @ SPW* = (S*T*)™,
A VE @ N*W* = E = (S2T*)*~.

We now suppose that n is even. In §1, Chapter IV, we saw that the
oriented 2-plane x € X determines an orientation of the space W,. Let z
be a point of X and let v be an element of S,. We say that an orthonormal
basis {(1,...,(,} of T, is positively (resp. negatively) oriented if there
is a positively oriented orthonormal basis {vy,v2} of V, and a positively
(resp. negatively) oriented orthonormal basis {wy, ..., w,} of W such that

Cj =11 ® wy,

for 1 < 5 < n. Since n is even, it is easily seen that the notions of positively
and negatively oriented orthonormal bases of T, are well-defined. Also an
arbitrary orthonormal basis of T, is either positively or negatively oriented.

We now consider the case when n = 4. The orientations of the
spaces W,, with a € X, and the scalar product g, give rise to a Hodge
operator

* /\QW* — /\ZW*.

In turn, this operator induces an involution * = id ® * of the vector bundle
AN V* @ N°W*. Let x be a point of X and let {wi,...,ws} be a posi-

tively oriented orthonormal basis of W, ; according to the definition of the
involution * of A’V* ® A*W*, we easily see that

(567) (* h)(’Ul & w1, V2 X U)Q) = h(Ul X ws, V2 (29 w4),

for all h € (A*V*@A*W*),. Let v be an element of S, and let {1, ..., ¢}
be a positively oriented orthonormal basis of T,F. By (5.67), we have

(5.68) (x h)(C1, JC2) = h((3, JCa),

for all h € (S2T*)f~.

By formulas (3.6) of [21] and (5.68), we easily verify that this auto-
morphism # of the vector bundle A*V*® A*W* is equal to the involution *
of the vector bundle (S?T*)*~ defined in [21, §3] in terms of an appropri-
ate orientation of the real structures of X. Thus the eigenbundles '™ and
F~ of this involution of (S?T*)™~ corresponding to the eigenvalues +1
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and —1, which are considered in [21, §3], are equal to A*V* @ ATW* and
/\2V* ® N\~ W™, respectively. The decomposition

(5.69) (S?°T*)T~ =Ft e F-
then gives rise to the equality
(5.70) (S?°T*) ¢ =Ff o F;.

Since the mapping 7. : Ty — Tr(y), with z € X, is equal to the identity
mapping of (V ® W),, we easily see that

(5.71) TF k= — kT

as mappings from (S2T*)j(;) to (S2T*)f~.
If h is a section of (S?T*)*~ over X, then the equality

(5.72) Vg* h = % Vgh

holds for all £ € T. Indeed, let  be an arbitrary point of X; in §4,
we saw that there exists a section v of S over a neighborhood U of X
and an orthonormal frame {¢i,...,{} for T)F satisfying (V¢;)(z) = 0,
for 1 < j < n. Without loss of generality, we may suppose that, for each
point a € U, the orthonormal basis {¢;(a),...,s(a)} of T:Ea) is positively

oriented. By means of this frame and the relation (5.68), we see that the
equality (5.72) holds for all ¢ € T,,.
The following result is given by Lemma 4.1 of [21].

LEMMA 5.1. Let X be the quadric Q4. Let x € X and v € S,, and
let {¢1,(2,(3,C4} be a positively oriented orthonormal basis of T:x. Then
for h € C>((S*T*)*~), we have

(div* A)(JC1) = —(dh)(Cz, G, Ca)-

PROOF: By the second equalities of (5.24) and (5.30), and by (5.68)
and (5.72), we have

—(divx h)(JC1) = (V* h)(C2, G2, JC1) + (V* h)(C3,C3, JC1)
+ (V1) (Cas €y I 1)
= (* Vi, h)(G2, JGi) + (+ Ve h)(Cs, I Cr)
+ (* Ve, h)(Ca, JC1)
= (VA)(C2, (35 Ca) + (VR)(C3, Car C2) + (V) (Cas G2, Cs)
= (dh)(¢2, s, Ca)-

The following result is given by Lemma 3.2 of [22].
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LEMMA 5.2. Let X be the quadric Q4. For all f € C*(X), we have
div+my_Hess f = 0.

PROOF: Let x be a point of X and v be an element of S;, and let
{¢1, 2, G35 Ca} be a positively oriented orthonormal basis of T,,. If f is an
element of C*°(X), by Lemma 5.1 and formulas (5.30) and (5.32) we see

that 5
(div * 74 _Hess f)(J¢1) = —(idp+ 99 f) (2, €3, Ca)

= —(idddf) (¢, (3, Ca)
=0.

§6. Totally geodesic surfaces

and the infinitesimal orbit of the curvature

We begin by giving an explicit representation of the infinitesimal orbit
of the curvature of the complex quadric X = @,,, with n > 3.
We consider the morphism of vector bundles

T : S?°T* @ S*T* — B, t5:S*°T* — B
of §1, Chapter I and the morphisms of vector bundles
v:NT*— B, ¢:(N°T")” — B

of §4, Chapter I; we saw that the morphisms 75 and 1 are injective.
If x is a point of X and v is an element of S, for 5 € /\2T; we define
an element 3% of S2T* by

6KV (67 77) = ﬂ(Kugu 77) + ﬂ(f? Kl/n)7
for &, € T,,. We easily verify that the element
B @ hy + 85 @ hyy

of S?T* @ S%T; does not depend on the choice of the element v of S,. If
we set
X(B) = 5(B% @ hy + 57 @ hyy),

we then obtain a well-defined morphism
x: N\N°T* — B
of vector bundles over X. We easily see that

p(L(ﬁ))h,, = 5KV;
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for all 3 € A*T7. From formulas (1.72) and (5.10), it follows that

p(L(B)R = —2x(B), for BeTy",
p(L(B))R = —2( +X)(B),  for B e (N°T*)".

In fact, if 3 is an element of (T£,1)+ or if § = w, by relation (1.78) we have

p(L(B)) R = 0.

By means of the decomposition (5.28), Lemma 1.13 and the preceding
formulas, we obtain the equalities

(5.73) BY=x((Tz")y),  B™ =@+ 0)(ANT)").

We now introduce various families of closed connected totally geodesic
submanifolds of X. Let x be a point of X and v be an element of S,. If
{&,n} is an orthonormal set of vectors of T}, according to formula (5.10) we
see that the set Exp,F is a closed connected totally geodesic surface of X,
whenever F' is the subspace of T, generated by one of following families of
vectors:

(A1) {& JInk;
(A2) {&+JIn, JE —n};
(As) {&,J¢}

According to [10], if F is generated by the family (Az) (resp. the fam-
ily (A3)) of vectors, where {£,7n} is an orthonormal set of vectors of T,
the surface Exp, F is isometric to the complex projective line CP! with its
metric of constant holomorphic curvature 4 (resp. curvature 2). Moreover,
if F is generated by the family (A1), where {&,n} is an orthonormal set of
vectors of TiF, the surface Exp, F' is isometric to a flat torus.

For 1 < j < 4, we denote by F7¥ the set of all closed totally geodesic
surfaces of X which can be written in the form Exp_F, where F is a
subspace of T, generated by a family of vectors of type (A;).

According to §5, there exists a unit vector v of V, such that an ar-
bitrary submanifold Z belonging to the family F%¥ can be written in the
form Exp,v ® W', where W’ is a two-dimensional subspace of W,. We
consider the Riemannian metric ¢’ on the Grassmannian (N}'Dﬁz defined in
Chapter IV; by Lemma 4.6 and the relation (5.59), we see that the submani-
fold Z is isometric to the Grassmannian (N}’Dﬁz endowed with the Riemannian
metric % g'. Therefore such a submanifold Z is isometric to a sphere of con-
stant curvature 2 (see also [10]); moreover, by Lemma 4.6 we also see that
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the image of Z under the mapping w : X — Y is a closed totally geodesic
surface of Y isometric to the real projective plane endowed with its metric
of constant curvature 2.

If & is a number equal to 41 and &, 7, ¢ are unit vectors of T} satisfying

o(Em) = 9(6,0) = 3900, =< 3,

and if F' is the subspace of T, generated by the vectors

{€+J<777+€J(€777)7‘]C}3

according to (5.10) we also see that the set Exp,F' is a closed connected
totally geodesic surface of X. Moreover, according to [10] this surface is
isometric to a sphere of constant curvature 2/5. We denote by F5* the set
of all such closed totally geodesic surfaces of X.

If {&1, &9, €3,&4} is an orthonormal set of vectors of Tf and if F is the
subspace of T, generated by the vectors

{& 4+ J&, & + T}

according to (5.10) we see that the set Exp, F is a closed connected totally
geodesic surface of X. Moreover, according to [10] this surface is isometric
to the real projective plane RP? of constant curvature 1. Clearly such
submanifolds of X only occur when n > 4. We denote by F%” the set of
all such closed totally geodesic surfaces of X.

If {&1,&2,&3,&4 ) is an orthonormal set of vectors of T,F and if F is the
subspace of T, generated by the vectors

{&+J&, J& — 62,83 + J&4, JE3 — &4}

according to (5.10) we see that the set Exp, F is a closed connected totally
geodesic submanifold of X. Moreover, this submanifold is isometric to the
complex projective plane CP? of constant holomorphic curvature 4. Clearly
such submanifolds of X only occur when n > 4. We denote by F7¥ the set
of all such closed totally geodesic submanifolds of X.

When n > 4, clearly a surface belonging to the family F2* or to the
family F is contained in a closed totally geodesic submanifold of X be-
longing to the family 7. In fact, the surfaces of the family F2¥ (resp. the
family F 6:¥) correspond to complex lines (resp. to linearly imbedded real
projective planes) of the submanifolds of X belonging to the family Frv
viewed as complex projective planes.

Let Z be a surface belonging to the family F7¥, with 1 < j < 6; we
may write Z = Exp_F', where F' is an appropriate subspace of T,. Clearly,
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this space F' is contained in a subspace of T, which can be written in the
form Fy @ JF;, where F} is a subspace of T,F of dimension k; we may
suppose that this integer k is given by

2 when 1<
k= { 3 when j=
4 when j =

According to observations made in §5, the surface Z = Exp, F is contained
in a closed totally geodesic submanifold Exp,V, ® W of X isometric to
the quadric @y, where W is a subspace of W, of dimension k.

Let F., be the family of all closed connected totally geodesic submani-
folds of X passing through = which can be written as Exp, V, ® Wi, where
W1 is a subspace of W, of dimension 3. We know that a submanifold of X
belonging to F, is isometric to the quadric Q3 of dimension 3.

For 1 < 5 <7, we consider the G-invariant families

Fi= yFr. B UF
VES, reX

of closed connected totally geodesic submanifolds of X. When n > 4, we

know that a surface belonging to the family F?2 is contained in a closed

totally geodesic submanifold of X belonging to the family F7. We write

Fi=FUFUF,  FR=FUFUF
Fy=F UFPUFUF.
We also consider the G-invariant family

F'=UZF.
zeX
of closed connected totally geodesic submanifolds of X isometric to Q3.
We have seen that a surface belonging to the family F7, with 1 < j < 5,
is contained in a closed totally geodesic submanifold of X belonging to the
family F'.

Since the group G acts transitively on the set = of all maximal flat
totally geodesic tori of X and also on a torus belonging to =, and since a
surface of F is a flat 2-torus, we see that, if Z is an element of = and if
is a point of Z, there exists an element v € S, and an orthonormal set of
vectors {&,n} of T, such that

Z = Exp,(RE G RJIn).

It follows that the family F! is equal to =.
In [10], Dieng classified all closed connected totally geodesic surfaces
of X and proved the following:
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ProprosITION 5.3. If n > 3, then the family of all closed connected
totally geodesic surfaces of X is equal to F1 U Fa U F3.

If Z is a surface of X belonging to the family F7, with 1 < j < 6,
there is a subgroup of G which acts transitively on Z. Thus for 1 < j <6,
we see that an element u of @7}, with x € X, vanishes when restricted
to an arbitrary surface belonging to the family 7 if and only if it vanishes
when restricted to an arbitrary surface belonging to the family f-; of closed
connected totally geodesic surfaces of X passing through z.

We now establish relationships between the families of closed totally
geodesic surfaces of X introduced above, the G-invariant sub-bundles of
S2T* and the infinitesimal orbit of the curvature B. If F is a G-invariant
family of closed connected totally geodesic surfaces of X, we denote by Nz
the sub-bundle of B consisting of those elements of B which vanish when
restricted to the submanifolds of F.

For 1<k <6andj=1,2,3, we set

Nk:N]:'k7 Nj:N]:ja
N;:NkﬂBjL, N,;:NkOB’,
Nf =N;nBt, N7 =N;nB.

Using the relation (5.13), we easily verify that the sub-bundles Ny and N;
of B are stable under the involution J; hence we have

(5.74) Ny=NfeoN;, N;=NfeN;,

for 1 <k <6andj=1,2,3. According to formula (1.56), we see that
(5.75) B C N,

for 5 =1,2,3.

Let z be a point of X, and let v be an element of S,, and {£,n} be an
orthonormal system of vectors of T, . Let u be an element of the vector
bundle Ni; clearly we have

(5.76) u(&, Jn, &, Jn) = 0.

Since v is an arbitrary element of S,, from the relation (5.12) we easily
infer that u also satisfies

(5.77) w4+ tJE Iy —tn, E+tJE, Iy —tn) =0,

for all t € R. Since the vectors (; = £ +n and (o = & —n of T, are
orthogonal and have the same length, the equality (5.77), with ¢ = 1, tells
us that

w(C+JC, I — G, G+ JG, I — ) = 0;
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the preceding relation implies that the element u of N; satisfies

(5.78) w(§+Jn,n+JEE+ In,n+ JE) = 0.
Clearly an element u of the vector bundle Ny satisfies

(5.79) w(&+ Jn, JE—n, &+ JIn, JE —n) =0,

while an element u of Nj verifies the relation

(5.80) u(, JE, & JE) = 0.

On the other hand, an element u of Ny satisfies

(5.81) u(&,mn,&n) = 0.

Finally, if n > 4 and u is an element of Ng, and if {¢, ¢’} is an orthonormal
system of vectors of T orthogonal to the vectors ¢ and 7, we see that

(5.82) wE+ JCn+ I E+ JCn+ J() =0.

We remark that an element u of B~ always satisfies the relation (5.80).

Clearly, an element u of B, belongs to N . if and only if u satisfies the
relations (5.76), (5.79) and (5.82), for all v € S,. It is easily verified that
the vector bundles 75(L) and ¥((A*T*)™) are sub-bundles of N; . Using
the formula (1.3), we see that

(5.83) Teg(L) =L,  Tro((A*T)7) = {0},
and so we obtain the inclusion
(5.84) LCTrNg.

The following three lemmas are proved in [21].

LEMMA 5.4. Suppose that n > 3. Let v be an element of S, and
{&,1m, ¢} be an orthonormal system of vectors of T\, and let u be an element
of the vector bundle Ny. Then the following assertions hold:

(i) We have

(5.85) w(&, J¢,m, J¢) = 0.

(ii) If u belongs to Ny , we have
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LEMMA 5.5. Suppose that n > 3. Let v be an element of S, and
{¢,m} be an orthonormal system of vectors of T.F, and let u be an element
of the vector bundle N;” N N5". Then we have

(5.87) 2u(&,n, & n) +u(&, JEE JE) +uln, Jn,n, Jn) = 0.

LEMMA 5.6. Suppose that n > 4. Let v be an element of S, and
{&,1,¢,¢'} be an orthonormal system of vectors of T,", and let u be an
element of Nl N ]\76. Then the following assertions hold:

(i) We have

(5.88) u(&n,&n) +u(J¢ I IC I =

(5.89) w(&n, JC,m) +u(€, J¢, IC IC) =
(i) If u belongs to B~, we have

(5.90) (€, €.¢) = —u(C',n.¢',0)-
(ifi) Ifn > 5, we have

(5.91) u(€,n,€¢) = 0.

(iv) If n > 5 and if u belongs to BT, we have

(592) U(§1,€27§3,£4) = 07

for all vectors &1, &a,&3,84 € T,

LEMMA 5.7. Suppose that n > 5. Let v be an element of S, and
{&,m} be an orthonormal system of vectors of T\, and let u be an element
of NF. Then the equality (5.80) holds and we have

(5.93) u(§,n, &, J§) = 0.
Let 2 be a point of X, and let v be an element of S, and {£,n}
be an orthonormal system of vectors of T.F. We choose an orthonormal

basis {£1,... &} of ToF, with & = € and & = n; then {J¢,... J&,} is an
orthonormal basis of T,;. Then for v € B, and ¢ € T,, we have

(Tru)(§,¢) = u(&n,¢,n) +u(&, JE, ¢, JE) +ul(&, In, ¢, Jn)

Z (6,65, &) +ul(€, J&;, ¢, JE))).
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Thus if u is an element of N ., by the relation (5.76) and Lemma 5.4, (i)
we see that

3

(Tru)(f,{) = U(fﬂ?vf’ 77) + u(§7 JE, €, ‘]g) + u(€7£j7§5€j)7

(5.94) =
(Tru)(&,m) = u(&, JEn, JE) +u(&, In,n, Jn) + )y u(€,&5,n,§5)
j=3
and
(Truw)(&, Jn) =u(&,n, Jn,n) +u(&, JE, In, JE)
(5.95)

) (€& In, &) + ul€, T, Tn, JE;)).
j=3

LEMMA 5.8. For n > 3, we have
Tr Ny C (S*T*)*.

PROOF: Let z be a point of X and u be an element of V; ;. Let v be an
element of S, and £ be a unit vector of T,. We choose an orthonormal basis
{&1,... &} of Tf, with & = £ According to the first formula of (5.95),
with n = &, and the relations (5.80) and (5.81), the expression (Tru)(&, §)
vanishes. Hence, by polarization we obtain the equality

(5.96) (Tru)(§,m) =0,

for all vectors n of T,F. Now let  be a given vector of 7). Since v is an
arbitrary element of S, from the equalities (5.96) and (5.12) we infer that
the function f defined by

f(s) = (Tru)(§+ sJE n+ sdn),

for s € R, vanishes identically. The equality f’(0) = 0 gives the relation

(5.97) (Tru)(&, Jn) + (Tru)(JE ) = 0.

If u belongs to N;', according to (5.96) and (5.24) we find that Tru is an
element of (S27*)*~. If u belongs to N, , from (5.96) and (5.97) it follows
that Tru = 0. The desired result is now a consequence of the second
equality of (5.74), with j = 1.
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PROPOSITION 5.9. (i) For n > 4, we have
(5.98) Tr Ny =L, Tr N C (S?T*)*~.
(ii) For n > 5, we have
(5.99) Tr Ny = {0}.

PRrROOF: We suppose that n > 4. Let z be a point of X and u be an
element of Ny ,. Let v be an element of S, and {&,n} be an orthonormal
system of vectors of T, We choose an orthonormal basis {£1, ... &,} of T)F,
with & = £ and &, = 7. First, suppose that u belongs to Ny . When n > 5,
by Lemma 5.6,(iii) we see that

u(&,&5,m,§5) =0,
for all 3 < j < n; by the equality (5.90) of Lemma 5.6,(ii), we have
u(&,&3,1,83) +u(§; 84,1, 84) = 0.
Therefore according to the second formula of (5.94) and (5.86), we obtain
(5.100) (Tru)(&,m) =0.

By the equality (5.88) of Lemma 5.6,(i), we see that

u(g,gjvgagj) = u(n7£k7n7£k),

for 3 < j,k < n, with j # k; hence we have the equality

n n

D oul6&,68) =Y un, &, &).

i=3 i=3

As u belongs to B~, we know that (5.80) holds, and so from the previous
relation and the first formula of (5.94), we deduce that

(5.101) (Tru)(&,€) = (Tru)(n,n).

Since v is an arbitrary element of S,, from the relation (5.12) and the
equalities (5.100) and (5.101), we easily infer that u also satisfies

(Tru)(§ +tJEn+tJn) =0,
(Tru)(§+tJEE+1JE) = (Tru)(n+ tJn,n+tJn),
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for all t € R. Since Tru belongs to (S?T*)~, we obtain the equalities

(5.102) (Tru)(&,Jn) =0, (Tru)(§, JE) = (Tru)(n, Jn).

We set
a=(Tru)(¢), b= (Tru)(¢, JE).

By (5.7), (5.100), (5.101) and (5.102), it is easily seen that Tru is equal to
the element ah, + bhj, of L,, and so we obtain the inclusion

TrN, C L.

This inclusion and (5.84) give us the first relation of (5.98). Now suppose
that v belongs to N2+. When n > 5, by Lemma 5.7 we know that the
relation (5.80) holds; then according to the first formula of (5.94) and
Lemma 5.6,(iv), we see that the expression (Trw)(,§) vanishes. When
n = 4, according to the first formula of (5.94) and the equalities (5.87) of
Lemma 5.5, we have

(Tru)(€,€) + (Tru)(n,n) = u(§,&3,8,83) +u(, 64,6, 6a)

+ U(n» 537 7, 53) + u(na 547 7, 64)7

now by the relation (5.88) of Lemma 5.6,(i), the right-hand side of the
preceding equality vanishes. Therefore if n = 4 and ( is a unit vector
of T;F orthogonal to £ and 7, we see that

(Tru)(&,€) = =(Tru)(n,n) = (Tru)((, () = =(Tru)(§, £).

Hence the expression (Tru)(£,£) = 0 also vanishes when n = 4. By po-
larization, we see that the equality (Tru)(&,£&") = 0 holds for all ¢ € TfF;
by (5.24), we find that Tru belongs to (S?T*)"~. We now suppose that
n > 5. By Lemma 5.7, we know that the equality (5.93) holds, and so we
obtain

u(fv mn, JT]) =0,
u(§7 Jfa J777 ‘]g) = _u(‘]fv ga m, g) =0.
By the equality (5.89) of Lemma 5.6,(i), we see that the sum

n

> (u(€, &, In, &) +ulE, JE, I, JE;))

Jj=3

vanishes. Hence according to (5.95), the expression (Trw)(&, Jn) vanishes.
Since Tru belongs to (S2T*)*, we know that (Tru)(¢, J€) = 0. Thus we
have proved assertion (ii).

The following two propositions are direct consequences of Proposi-
tion 5.9 and the second equality of (5.74), with j = 2. In fact, Proposi-
tion 5.11 is given by Proposition 5.1 of [21].
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ProrosiTIiON 5.10. For n > 5, we have
Tr Ny = L.
ProposITION 5.11. For n = 4, we have
Tr Ny C L@ (S*T*)" .
In [18], we verified that the sum
#5(L) © p(N*T*)") © B~

is direct; we also know that it is a sub-bundle of N, . Using the relations
(1.79) and (5.73), in [18] we were able to determine the ranks of the vector
bundles B+ and B~. When n > 5, by means of Lemmas 5.4-5.7 and other
analogous results, in [21] we found explicit bounds for the ranks of the
vector bundles N5 and N, . From these results, the relation (1.79), the
second equality of (5.74) and the inclusion (5.75), with j = 2, we obtain
the following proposition (see [18, §5]):

ProrosITION 5.12. For n > 5, we have
NS =BT, Ny =B @y(\°T*)") @s(L),
Ny = Ba¢p(N’T*)7) @ 75(L).

According to Lemma 1.7 and (5.83), we see that Proposition 5.10 may
also be deduced from Proposition 5.12.

By methods similar to those used in [21] to prove Lemmas 5.4-5.7,
Dieng [10] showed that N3 C N3 and proved the following result:

ProrosITION 5.13. For n > 3, we have
N3 =B.
When n > 3, Dieng [10] showed that
HnN(T" ® N3) = {0},

and then deduced the relation (1.48) for the complex quadric X from
Proposition 5.13; thus, we have the following result:

PropoOSITION 5.14. For n > 3, we have
HN(T*® B) = {0}.

From Proposition 5.14 and Theorem 1.18, we deduce the exactness of
the sequence (1.24) for the complex quadric X = Q.
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§7. Multiplicities

In this section, we shall suppose that n > 3. Let g and ¥ denote the
complexifications of the Lie algebras go and ¢y of G = SO(n + 2) and its
subgroup K, respectively. Let I' = G and K be the duals of the groups G
and K, respectively.

For pn € C, we set

= o).

If m > 1, for 6y,601,...,0, € R, po,p1,-.-,4m € C, we consider the
2(m + 1) x 2(m + 1) matrices

R(O) 0O 0
0 R() ... 0
R(@O,Hl,...,Hm)z . . . . ’
0 0 R(0:m)
L) 0 0
0 L(m) 0
L(N/Oa,u/la"'a/j/m): : . . :
0 0 ... L{um)

We define a subgroup T of G and a Lie subalgebra t of g as follows. If
n = 2m, with m > 2, the subgroup T consists of all (n+42) x (n+2) matrices
R(6o,01,...,0m), with 69,61, ...,0,, € R, and the Lie algebra t consists of
all (n+2) x (n + 2) matrices L(uo, 1, -- -, fhm ), With po, g1, ..., i € C.
If n = 2m+ 1, with m > 1, the subgroup T consists of all (n+ 2) x (n + 2)

matrices
R(/’(‘07/’(‘17"'7/’Lm) 0
0 1)’

with 0,01, ...,0, € R, and the Lie algebra t consists of all (n+2) x (n+2)

ma riCeS
== L ) yrr oy Mm 0
(MO?N ""7/‘1’771) ( (M( Ml M ) )7

with po, i1, -5 i € C.

The subgroup T is a maximal torus of G, and t is the complexification
of the Lie algebra ty of T and is a Cartan subalgebra of the semi-simple
Lie algebras g and & If n = 2m (resp. n = 2m + 1), for 0 < j < m, the
linear form A; on t, which sends the element L(uo, i1, ..., ftm) (resp. the
element L' (o, pt1, - . -, ftm)) of £, with po, g1, ..., . € C, into p;, is purely
imaginary on tg; for 0 <7 < m — 1, we write a; = A\; — Aj41.
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We first suppose that n = 2m, with m > 2. We set a,;, = Mu—1 + A
We choose Weyl chambers of (g, t) and (£, t) for which the system of simple
roots of g and £ are equal to {ag,a1,...,an} and {aq,...,an}, respec-
tively. The highest weight of an irreducible G-module (resp. K-module) is
a linear form
CoNo + C1 AL + - -+ ECmAm

on t, where ¢ = £1 and ¢q, ¢1, . . ., ¢, are integers satisfying
(5.103) co>c1 > >cepm>0 (resp. ¢1 > -+ > ¢ > 0).

The equivalence class of such a G-module (resp. K-module) is determined
by this weight. In this case, we identify I' (resp. K) with the set of all such
linear forms on t.

We next suppose that n = 2m+ 1, with m > 1. We set a,, = A\p,. We
choose Weyl chambers of (g, t) and (€, t) for which the system of simple roots
of g and ¢ are equal to {ag, a1, ..., } and {aq, ..., am }, respectively. The
highest weight of an irreducible G-module (resp. K-module) is a linear form

codo + c1A1 + -+ Cm A,
on t, where cg,cq,...,¢, are integers satisfying the inequalities (5.103).
The equivalence class of such a G-module (resp. K-module) is determined
by this weight. In this case, we identify I' (resp. K) with the set of all such

linear forms on t.
For r, s > 0, we consider the elements

Tr,s = (27" + S))\o + sAq, "}/;,,S = (27‘ + s+ 1))\0 + sA1

of I'. The highest weight of the G-module g is v1 = 7p,1.
The Lie algebra £ admits the decomposition

E:E16937

where 3 is the one-dimensional center of £ and #; is a subalgebra of ¢ iso-
morphic to so(n,C). In fact, a matrix

(6 5)

of ¢, where A € s0(2,C) and B € so(n,C), can be written as the sum of

the two matrices
A 0 0 O
0o 0/’ 0 B/’
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which belong to 3 and ¢, respectively. The complexification p of pg admits
the decomposition

p:p*GBerv

where p_ and p are the eigenspaces of the endomorphism Ad j of p cor-
responding to the eigenvalues +i and —i, respectively. Since j belongs to
the center of K, this decomposition of p is invariant under the action of K
on p. We thus obtain the K-invariant decomposition

(5.104) g=8 D3 DP_Dpy

of the Lie algebra g. The K-modules 3, p_ and py are irreducible and
their highest weights are equal to 0, —A\g + A1 and Ag + A1, respectively.
If n # 4, the K-module ¢ is irreducible; its highest weight is equal to A\;
when n = 3, and to A\; + Ay when n > 5. When n = 4, the Lie algebra
admits the decomposition

(5.105) b=t e,

where £ and €] are simple subalgebras of £ isomorphic to s0(3, C); these
factors €] and €] are irreducible K-modules whose highest weights are
equal to A1 + Ao and Ay — Ao, respectively.

We consider the subgroup

K' =GN (0@2) x On))

of G, which we introduced in §3 and which contains the subgroup K. The
decomposition (5.104) gives us the K’-invariant decomposition

(5.106) g=6®30p

of the Lie algebra g; in fact, the K’-modules 3, £; and p are irreducible.
We recall that the point x( of GIS,L corresponding to the vector ey A ey
is identified with the point b of X = @,, defined in §2. We consider V;,, as
an O(2)-module and W, as an O(n)-module. Let {ag, a1} be a basis of
Vz dual to the basis {eg,e1} of V,. Since ag A a; is a basis of the one-

dimensional vector space /\2V$*U, we see that it is a trivial SO(2)-module,
but is not trivial as an O(2)-module. There are natural isomorphisms
¢:3— /\2‘/&ch of O(2)-modules and ¢ : &, — /\2W¢":‘110 of O(n)-modules,
which are both also isomorphisms of K’-modules.

We now suppose that n = 4. As we saw in §5, the orientation of
the 2-plane V,, determines an orientation of the space W, and a Hodge
operator

* /\QW;(] — /\2W’k ;

o
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if B is an element of O(4), we easily verify that
(5.107) * B = (detB) - B x*

as endomorphisms of /\QW;O. In fact, we have the decomposition
/\ C,xo — /\ C,zo D /\ C,zo

of /\QI/V(C”‘@O into irreducible SO(4)-submodules, which are the eigenspaces
of the involution *. The isomorphism ¢ : ¢ — /\21/17&350 induces isomor-
phisms ¢ : & — ATWZ, and ¢ty — ATWE,, of SO(4)-modules.

We no longer suppose that n = 4. Since /\QVI*0 is a trivial K-module
and since the SO(n)-modules ¢; and /\2W5’I0 are isomorphic, the K-

modules & and (A*V* ® A\°W*)c.z, are isomorphic. Hence from the last
of the equalities (5.66), it follows that the fiber at the point b of the vector
bundle (S27*){™ is isomorphic to € as a K-module.

The fibers at the point b of X of the vector bundles 77 and T" and
of the vector bundles appearing in the decomposition (5.27) of ST are
irreducible K-modules, except for the fiber of (S27*){~ which is irreducible
only when n # 4. Using the description of these K-modules and of the
action of K on T} given in §2, we see that the highest weight of (SQT*)E;
is equal to A; when n = 3, and to A\; + A2 when n > 5, and that the highest
weights of the other such irreducible K-modules are given by the following
table:

K-module Highest weight K-module Highest weight
T, —Xo+ M Ty Ao+ A1
L 2o Ly —2Xo
(S207*);k 200 + 2) (S027*)i —2X0 +2)\
{gtc. 0 (S°T7)3chy 2\,

When n = 4, the fibers at the point b of X of the vector bundles Fg
and Fi appearing in the decomposition (5.70) are irreducible K-modules
whose highest weights are A\; + Ay and A1 — Ao, respectively.

We recall that the equalities

B =(S°T"){*, FEyc=Le=LalL,
ES,(C — (S2T*)(EL _ (SZ,OT*)J_ a (SO,ZT*)J_

hold. Hence from the previous discussion, we obtain the following result:
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LEMMA 5.15. Let X be the complex quadric Q,, with n > 3.
(i) We have
Homg (g, Ejcp) = {0},

for 7 =1,2,3.
(ii) If n # 4, we have

dim Homg (g, (S*T*){5) = 1.
(iii) If n = 4, we have
dim Homg (g, (S*T*){5) = 2.
From Lemma 5.15 and the decomposition (5.26), we deduce that
(5.108) dim Homp (g, S57¢ ) = 1
when n # 4, and that
(5.109) dim Homp (g, S3T¢ ;) = 2

when n = 4.
According to the decomposition (5.106), the mapping

¢:9— (NV O N W )eu,

is well-defined by

d(u) = (a0 A a1) ® d(u),
where u = u; + ug is an element of g, with u; € € and uy € 3 @ p; it is
clearly a morphism of K-modules, but is not a morphism of K’-modules.
When n # 4, by Lemma 5.15,(ii) this morphism ¢ is the generator of the
space Homg (g, (A*V* @ A*W*)c.a,), and so we have

Homp (g, (A*V* @ A*W*)e,z,) = {0}.
On the other hand, when n = 4, by (5.107) we see that the mapping
big—= (AVO N W )eu
defined by
Y(u) = (ag A ar) @ x ¢p(uy),

where u = u; + uo is an element of g, with w1 € &, and us € 3P p, is a
morphism of K’-modules. When n = 4, by Lemma 5.15,(iii) we see that
the space

HOIIIK(Q, (/\QV* ® AzW*)C,Io)
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is generated by the morphisms ¢ and 1; it follows that its subspace
Hom (8, (A*V* © AN*W*)e )

is one-dimensional and is generated by the mapping .

We consider the real Grassmannian ¥ = G]Sn and the natural projec-
tion @ : X — Y. We recall that the isotropy group of the point w(b) is
equal to K’; moreover the mapping w* : SQT;7w(b) — SQTZ;" is an isomor-
phism of K-modules and the fiber at the point w(b) of the vector bundle
(S2Ty) & is isomorphic to (AN V*ONW*)c.a, as a K'-module. By restric-
tion, the isomorphism of G-modules w* : C*(Y, S*Ty. ) — C™(S*T¢)*
induces isomorphisms of G-modules C3°(Y, SZT}*,,C) — C°(S?TE)®Y and
C2(Y, (82Ty) ™) — C2((SPT*)E 7)Y, for all v € T, given by (2.19). Ac-
cording to (2.21), since Y is an irreducible symmetric space which is not

Hermitian, we have
Homg-(g,C) = {0}.

From these remarks, Lemma 5.15 and the decomposition (5.38), we obtain
the following:

LEMMA 5.16. LetY be the real Grassmannian Gﬂz{’n, with n > 3, and
let yo be the point w(b) of Y.
(i) If n # 4, we have

Homye (9, S°T3.c.,.) = {0).
(ii) If n = 4, we have

dim Homg- (g, SQT;}’C’yO) = dim Homg- (g, (SQT{;)E;O) =1

According to the equalities (5.108) and (5.109) and Proposition 2.40,
since the symmetric space X is irreducible and is not equal to a simple
Lie group, we see that E(X) vanishes when n # 4, and that E(X) is
isomorphic to the G-module gy when n = 4. By Lemma 5.15 and the
Frobenius reciprocity theorem, we see that

Coe (S8T¢E) = O3 ((S*T™)E7);
if n # 4, then Lemma 5.15 tells us that C59 (S3T¢) is an irreducible
G-module.

If E(X)® denotes the G-submodule E(X)NC>(S2T*)¢Y of E(X), the
projection w induces an isomorphism of G-modules @w* : E(Y) — E(X)®"
given by (2.7). Thus when n # 4, the vanishing of F(X) implies that
E(Y) = {0}. Since the symmetric space Y is irreducible, is not equal to



176 V. THE COMPLEX QUADRIC

a simple Lie group and is not Hermitian, from Lemma 5.16 and Proposi-
tion 2.40 we again obtain the vanishing of E(Y) when n # 4; moreover
when n = 4, we see that E(Y') is isomorphic to the G-module go, and so
we have the equality

By Lemma 5.16 and the Frobenius reciprocity theorem, when n # 4 we
see that C'5 ( ,SQT;},C) and O35 | (S2T%)°¥ vanish; moreover when n = 4,

the G-module C2 (Y, 5?Ty ) is equal to CS9 (Y, (S*T*){ ) and is irre-
ducible. When n = 4, from the relations (2.29) we therefore obtain the
equality (5.112) of the next proposition; in turn, this equality implies that
the relations (5.111) of the next proposition hold and that C;’SI(SQTC*)E"
is an irreducible G-module. We have thus proved the following result:

ProproSITION 5.17. Let X be the complex quadric Q,, and Y be the
real Grassmannian Gy ,,, withn > 3. If n # 4, we have

E(X)={0},  E(Y)={0}.

If n = 4, the spaces E(X) and E(Y) are irreducible SO(6)-modules iso-
morphic to go = 50(6); moreover, we have

(5.110) E(X) C O>®((S*T*)* ),
(5.111) E(X)c = O (SPTe)™ = C52 ((S*T) 7)™,
(5.112) E(Y)c = 0% (Y, STy ).

When n # 4, the vanishing of the space E(X) is also given by Theo-
rem 1.22 (see Koiso [41] and [42]).

From the branching law for G = SO(n + 2) and K described in The-
orems 1.1 and 1.2 of [54], using the computation of the highest weights of
the irreducible K-modules given above we obtain the following two propo-
sitions:

ProposiTION 5.18. Let X be the complex quadric @, with n > 3.
For v € T', the G-modules C3°(L') and C$°(L") vanish unless v = 7, s,
with r > 1 and s > 0.

ProPOSITION 5.19. Let X be the complex quadric Q),,, with n > 3.
For r,s > 0, the non-zero multiplicities of the G-modules C7° _(F"), where
I is a homogeneous vector bundle over X equal either to T’ or T" or to
one of the vector bundles appearing in the decomposition (5.27) of S*T¢,
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are given by the following table:

F Conditions on r, s Mult C5° (F)
T’ r+s>1 2 ifr,s>1
T 1 otherwise
L r>1,8>0 1
L//
(8207*)+ r+s>2 2 ifr>2s=1
(SQ,OT*)L orr=1,5>2
3 ifr,s>2
1 otherwise
{g9}c r,s >0 1
(S2T*)gdE | r>lors>2 2 ifr>1,s=1
3 ifr>1,58>2
1 otherwise
(S2TE | r>0,s>1 1 ifn#4
2 ifn=4

We note that, if F' is one of the homogeneous sub-bundles of ST
considered in the preceding proposition, the multiplicity of the G-module
C3  (F) is also given by Lemma 5.15.

The Casimir element of gy operates by a scalar c, on an irreducible
G-module which is a representative of v € I'. We set A, = 4nc,, for y € I'.

According to (5.5) and §7, Chapter II, we therefore see that
Au = \yu,

for all u € C°(SPTE). We shall write A, s = A, . Since ¢,, = 1, we see
that )\0’1 = 4n.

Let f be a complex-valued function on C"*2, whose restriction to
the unit sphere S?"*3 of C"*2 is invariant under U(1). As we saw in §4,
Chapter III, the restriction of f to S2"*3 induces by passage to the quotient
a function on CP"*!, which we also denote by f and whose restriction to X
we denote by f. If ¢ is an element of G = SO(n + 2), the function ¢*f
on C™*2 also gives rise to a function on CP"*!, whose restriction to X
is equal to ¢*f. We consider the standard complex coordinate system
¢ =(¢0,C1y--,Cny1) of C*2 and the functions

fo.1(€) = (Co +i€1) (G2 +iC3) — (G2 +iC3) (o + iC1),
f1.0(¢Q) = (Co +i¢1) (G +iCa)
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on C"*2. We also consider the function p on C"*? given by

p(¢) = ¢olo

and the space H of functions on C"*2 generated over C by the set
(GG -GG 10<j<k<n+1}

If r, s are integers > 0, the functions f, s = fi( - /51, the function p and
the elements of H are all invariant under U(1). The function fy 1 and the
function f’, defined by

F'(€) = (o + i¢1)Cnr1 — Cnr1(Co +iC1),

belong to H. We shall consider the functions fr,s and f’ on X, and we set

fr,s = 0 when r < 0 or s < 0. The functions f, s and the functions of H
clearly satisfy the relations

(5.113) T frs=(-1frs,  Tf=—F,

for f € H. Clearly, the space H = {f | f € H} is a submodule of the
G-module C*(X)°44 and is isomorphic to the irreducible G-module g. Its
subspace

{flfeH, f=F}

is isomorphic as a real G-module to the subalgebra gg of g.
Let ¢ be the element of G defined by

d(C1 =0, 0(Q2=¢, ¢()3="7Cr1, (Onr1=C

and ¢(¢); = ¢ for j = 0or 3 < j < n. For r,s > 0, we consider the
function f], = ¢*frs and f” = ¢*f on C"*2. We also consider the
objects introduced in §4. Then on the open subset V of CP"*!, we see

that
1

p(z) = w,

for z € V, and that the functions f, ; and f” are determined by
f {,0(2’)

f6,1(2')
f"(2)

(Z)(l + ZZQ)(l =+ 7;22),

p
p(Z)((l + iZQ)(E:J, + i5n+1) — (2’3 =+ i2n+1)(1 =+ 7;52)),
p(Z)((l + 7:22)21 — Zl(l + Z.ZQ))7
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for z € V. Then we have f;s = ¢* fr., and we easily see that f{nys(a) =2
and f”(a) = 0. We also have

1
(5.114) Aft o = oy (127 + ) (d2 + d2) — s(dzg — d2))

at the point a; thus by (5.50), we obtain the equality

(5.115) (aft)F =

r

5T (i(2r + 8)(n2 + M2) + s(n3 — 73))

at the point a. We set
. =2(r+s), ;o= (2r+s)(2r +s+1), ¢ =2r+s"+s,
for j =1 or 4 < j < n. Using formulas (5.56) and (5.58), for 1 < j,k <mn

and all integers r, s > 0, we verify that the relations

- ~ 1
(5.116)  (Hess f1,0)(nj, ) = (Hess f1,0) (. 71k) = =7 G

< ~ r
(5117) (HGSS f;,s)(nlanl) = (HESS fr/’,s)(ﬁlaﬁl) - 7@7

~ ) 1
(5.118) (me+Hess f1.) (0 k) = =575 €1 Ok

~ )
(5.119) (my_Hess f; o) (nj, ) = ST} 8(2r + s+ 1)(d;20k3 — 530k2),

(5.120) (4~ Hess '), 1) = 5

hold at the point a. From (5.115) and (5.120), we obtain
(5.121) ¢*((df10)* Iy _Hess f)(71) = —1

at the point a. Using the formulas (5.57), we see that

(VHess f1 o) (71, . 15)(a) = (VHess f{ o) (1,771, 7) (@)

(5.122) |
= (VHess f1 ) (12,12, n;)(a) =0,

for j =2,3.

When r > 1 or when s > 2, the section 74 Hess fns cannot be written
in the form cf,’,sg, for some ¢ € C. Indeed, if this were the case, the
expression (74 Hess f;ys)(nj,ﬁj)(a) would be independent of the index j,
for 1 < j < 3; our assertion is now a consequence of the formulas (5.118).
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According to [50], for r,s > 0, the function fr s on X is a highest
weight vector of the irreducible G-module H, s = C5° (X). According
to §7, Chapter II, we know that H, s is the eigenspace of the Laplacian
A acting on C*(X) with eigenvalue A, . In fact, since fy1 belongs to
the space H and since the submodule H is isomorphic to the irreducible
G-module g, the eigenspace H, ; is equal to the space H. Tt also follows that
the space H, s is invariant under conjugation. Since H, ; is an irreducible
G-module, by (5.113) we see that
C’(f 25( ) 0’3?25( )ev’ 0’32,254@ (X) = C’(;:25+1 (X)Odd’

for 7,5 > 0. We also know that C5°(X) = 0, whenever v € I is not of the
form 7, s, with r, s > 0.

Since the function f;s = ¢* f,.s also belongs to H,.,, using (5.50) and
(5.118) we easily verify that the eigenvalue of the function f;é is equal to

(5.123) Ars =2(2(n—2)(r +8) + (2r + 5)(2r + s + 2) + s%).

Let r, s > 0 be given integers and y be an element of I'; then v+, 5 also
belongs to I'. If v = 7, o, with 7/, ' > 0, then we have Y+, s = Yrpr sts'-
Let u be a highest weight vector of the G-module C5°(SPT¢). According
to §7, Chapter II, we know that u is a real-analytic section of SPT:. Hence
the section fr,su of SPT¢ is non-zero; clearly, this element of C5°(SPTY)
is of weight v + 7, 5. Since G is connected, the section fmu is a highest
weight vector of C55,  (SPTE).

According to Propomtlon 5.19, since H, s is an irreducible G-module,
we have

(5124) Csfs({g}(:) = Hr,s 9,

and that the section fr,sg is a highest weight vector of this module; more-
over, we know that

(5.125) 032 (S°T2) = O3 ({9)0) & CF

Yo,1 V01((52T*)g_)'

Since Hess : C®°(X) — C*(5%T¢) is a homogeneous differential operator
and H, s is an irreducible G-module, by (5.118) and (5.119) we know that
the space my_Hess H, 5 is an irreducible G-submodule of ny’fvs((SQT*)éf)
when r > 0 and s > 1, and that the space 7 HessH, s is an irreducible
G-submodule of C5° ((SQT*)++) when r+s > 0. Furthermore, when r > 0
and s > 1, the beCthIlb

m4_Hess f; s, fr.s—1my_Hess fo 1
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are highest weight vectors of the G-module C5° ((S*T*){£7); on the other

hand, when r+s > 0, the section 71 Hess f;)s is a highest weight vector of
the G-module C’ifys((SQT*)[CH’). Using (5.118), we verified that the section

1 ~
a_ >\r,s fr,sg

7r?H_Hess fr.s = myyHess fr o + o

of (SQT*)&;r is non-zero when r > 1 or when s > 2; therefore under
these assumptions, this section is a highest weight vector of the irreducible
G-submodule 7 Hess H, ; of C’sfys((SQT*)gg). By (5.113) and (5.35), we
see that all these sections of (S?T*){ are even (resp. odd) when s is an
even (resp. odd) integer. According to Proposition 5.19 we have

(5.126) C32 ((S*T)E7) = {0},

for 7 > 0; moreover when n # 4, the G-module C5° ((S*T¢)"7) is irre-
ducible for » > 0 and s > 1. Therefore when n # 4, for r > 0 and s > 1,
we have the equality

(5.127) C® ((8*Tg)T7) = my_Hess Hy

of irreducible G-modules, and there is a non-zero constant ¢, s € C such
that

(5.128) 71 _Hess fr,s =Crgs- fr,s_ﬁu_Hess fo,l-
Furthermore, when n # 4, we have the equalities

O3, (ST E) = €52, ((SPT)ET)™,

Yr,2s Yr,2s
(5.129) s N
O’(;f.25+1((‘9 T )C ) = C’?fzurl((s T )(C )0 )

for r,s > 0; by (5.124), (5.125) and (5.129), we obtain the relation

(5.130) C (SPTE) = O (SPTE)° .
Some of the above facts concerning G-submodules of CT7 | (S2T¢), and in
particular the equalities (5.125) and (5.130), were previously derived from
Lemmas 5.15 and 5.16.

Now suppose that n = 4 and let » > 0 and s > 1 be given integers.
Since the involutive morphism of vector bundles * : (S?T*)T~ — (S2T*)+=
is G-equivariant, the sections

frs—1% my_Hess fo 1, * w4 _Hess f;



182 V. THE COMPLEX QUADRIC

are highest weight vectors of the G-module CS° ((S*T¢)*™7); by (5.113),
(5.35) and (5.71), we see that these sections are even (resp. odd) when
s is an odd (resp. even) integer. Thus when s is even (resp. odd) inte-
ger, the highest weight vector fm,lHeSS f0,1 is even (resp. odd), while the
highest weight vector fr,s_l* 74— Hess fo,1 is odd (resp. even). Since the
multiplicity of the G-module C’,‘;fﬁs((SQT ©)77), which is given by Proposi-
tion 5.19, is equal to 2, we see that the G-modules C5° ((S*T¢)*7)°" and
C’i?fyﬁ((SQTg)"‘_)Odd are irreducible, that a highest weight vector h of the

G-module CF7 ((S?T¢) ') can be written in the form

h = blfr,s—lHeSS ];0,1 + b?f?”,s—l* ’/T+_H6SS fO,la

where by,bs are complex numbers which do not both vanish, and that
there is a non-zero constant ¢, s € C such that the relation (5.128) holds.
From these remarks, we obtain the following equalities among irreducible
G-modules

m4_HessH,, if sis even,
Cse ((S*TE) ) = L
e *m1_HessH, s if sisodd,
(5.131)
*m1_HessH, s if sis even,

o> SQT* +—yodd _
Yr,s (( C) ) 71-+_Hess Hr,s if s is odd.

By (5.124), (5.125) and (5.131), we see that the relations

O (S2T)™ = O ((S2T3)* ) = # my_Hess Ho 1,

70,1 70,1

(5.132) C (SPTE)* = O ({g}e) & O

70,1

((5*Tg)* )
= H071 gD 7T+_HeSSH071

hold. The first equality of (5.132) is also given by the relation (5.111) of
Proposition 5.17. From the first equalities of (5.132) and Proposition 5.17,
we obtain:

ProposiTiON 5.20. Let X be the complex quadric Q4. Then the
irreducible SO(6)-module E(X) is equal to the SO(6)-submodule

{*mi_Hessf|f€Hor, f=[}
of 0> ((S2T*)+~).

We no longer assume that n = 4 and return to the situation where
n is an arbitrary integer > 3. Since Hess : C®(X) — C>®(S?T¢) is a
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homogeneous differential operator and H; is an irreducible G-module,
by (5.116) we know that the spaces m'Hess H; o and n"HessHy o are ir-
reducible G-submodules of C2° (S29T*) and C2° (S§%2T*), respectively.

71,0 71,0
Moreover, the sections 7' Hess fl,O and 7''Hess f1,o are highest weight vec-
tors of these modules. When r > 1, we therefore see that the sections
fr,l,sw'HeSS f1,o and .];T,LSWNHQSS f1,0 of (S?T*)¢ are highest weight vec-
tors of the G-modules C3° (S*9T*) and C$° (S%*T*), respectively.
According to Proposition 5.19, for » > 1 and s > 0, the G-modules
C30 (L") and C57 (L") are irreducible, and we have the equalities
O (L/) — > (542,0T=~<)7 o> (L//) — (> (SO’ZT*).

1,0 Y1,0 71,0 71,0

From the preceding remarks, it follows that

C3? (L) = m'Hess My 0, C37 (L") = 7'""Hess M1 03
thus 7'Hess f1 o and 7”/Hess f) o are sections of L' and L” and are highest

weight vectors of the irreducible G-modules C3Y (L') and C55 (L"), re-

spectively. If r, s are integers > 0, we see that the sections fnsw’ Hess fl,o
and f, ;7" Hess f1 o are highest weight vectors of the irreducible G-modules
C> (L) and C*, = (L"), respectively. Thus a highest weight vector h

Vr+1,s Yr+1,s

of the G-module C57  (Lc) can be written in the form

h= fr7s(b’7r’ +b"7"") Hess fl,o,

where b/, b are complex numbers which do not both vanish. According to
(5.113) and (5.36), the sections

(7" + 7"")Hess f1 0, (7" — 7"")Hess f1.0

are highest weight vectors of the irreducible G-modules C57 (Lc)®" and

(Clagh (Lc)°%, respectively. Moreover by (1.4) and the second eq}lality
of (1.75), we know that the highest weight vector (7’ — 7”")Hess f1,0 of
C5? (Lc)* belongs to DyC>(T¢), and so we have

(5.133) C> (Le)°% = (' — n")Hess M1, C DoC™(Tt).

71,0
We define integers d, ; by
0 ifr=s5=0,
drs =142 ifr,s>1,
1 otherwise.

The following lemma is a consequence of Proposition 5.19 and of the
proof of Lemma 9.1 of [23].
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LEMMA 5.21. The multiplicity of the G-module C5° (1c)®" or of the
G-module CF7 (Tc)°dd is equal to d,. .
As in §7, Chapter II, we identify the complexification ¢ of the space

K of all Killing vector fields on X with a G-submodule of C5¢ (T¢). From
the relations (2.28), (5.37) and (5.113), we obtain the equalities

> (T([;)CV — ’CCa

70,1

O3 (T2)™ = (0= D)Mo, OS2, (T3)™ = dHo,s

Yo,1 Yo,1

(5.134)

of irreducible G-modules.
The first relation of (5.134), Lemma 5.21 and Proposition 2.42,(i), with
X =Qn, ¥ ={7} and € = +1, give us the following result:

PROPOSITION 5.22. For v € I, the equality
Nae NCP(SPTE)™ = DoC (Te)™
is equivalent to
Mult (Ma,c N C5°(S?TE)®Y) < Mult C3°(Te)™
when v # 9,1, or to
NocNCX (ST = {0}

7o,1
when v = 9,1.

The first relation of (5.134), Lemma 5.21 and Proposition 2.42,(ii),
with X = @, ¥ = {7} and € = —1, give us the following result:

ProPoOSITION 5.23. For v € T', the equality
Zy.c NCF(SPTE)°M = DoC (T)*
is equivalent to
Mult (Z5,c N C°(S?TE)°) < Mult C°(T)°M.
Proposition 2.27, with X = Q,,, p =2, F = (SQT*)g_, ¥ ={r} and
€ = +1, gives us the following result:

PROPOSITION 5.24. Let X be the complex quadric Q,,, with n > 3.
The submodule
D (Nac NCT((S*T)ET)™)
yel
is a dense subspace of Noc N C%((S2T*) 7).

Proposition 2.28, with X = Q,, p =2, F = (S?T*){~, ¥ = {r} and
e = —1, gives us the following result:



88. Vanishing results for symmetric forms 185

ProprosITION 5.25. Let X be the complex quadric @, with n > 3.
The submodule
D (Z2,c NOF((SPT)E7)*)

~yel

is a dense subspace of Zo c N C°((S2T*){™)0dd.

88. Vanishing results for symmetric forms

This section is mainly devoted to results concerning the sections of the
vector bundle L and to the proofs of the following two results:

PROPOSITION 5.26. Let X be the complex quadric Q,,, with n > 3.
A section h of L over X, which satisfies the relation divh = 0, vanishes
identically.

THEOREM 5.27. Let X be the complex quadric @, withn > 3. An
even section of L over X, which belongs to the space DoC*°(T'), vanishes
identically. Moreover, we have the equality

DoC>®(Te) N C>(Le) = C° (Le)° = (7' — 7" )Hess Hy 0.

1,0

Theorem 5.27 may be restated as follows:

THEOREM 5.28. Let X be the complex quadric Q.,,, with n > 3. A
section h of L over X is a Lie derivative of the metric if and only if there
is a real-valued function f on X satisfying

h = n'Hess f — 7" Hess f

and Af = )\1’0]('.

Since Hess : C*°(X) — C>°(S?T¢) is a homogeneous differential op-
erator, the Hessian of an element of Ho,1 belongs to C5° (S*T¢). Hence
by (5.125), we see that '

1
Hess f = myHess f = my_Hess f — o (Af)-g,
n
for all f € Hop,1. Since Ag,1 = 4n, from the previous equalities we deduce

that
m_Hess f = m Hess f + 2fg,

for f € Ho1. Hence from formulas (1.76) and (1.8), we obtain the relation
(5.135) divry_Hess f = 2(n — 1)df,

for all f € Ho,1.



186 V. THE COMPLEX QUADRIC

When n # 4, from the relations (2.25), (5.125), (5.127) and (5.135) we
obtain the vanishing of the space E(X), given by Proposition 5.17, without
having recourse to Proposition 2.40.

By (5.123), we know that A; g = 4(n + 2); hence according to (5.5)
and (1.77), we see that

(5.136) div7'Hess f = 40f, div 7" Hess f = 40f,

for all f € Hi .
We consider the element ¢ of G = SO(n + 2) of §7, and, for r,s > 0,
the function f] ;= ¢* f. s on X, which belongs to H, s; we write

hys = Hess f/ ;.

By (1.8), (5.114)—(5.116) and (5.136), for » > 1 and s > 0 we see that
the equalities

= 1
div (f}_; (7' h1p) = > (i(2r + s + 2)d2g + sdz3),

(5.137) X
27 (Z(?T’ + s+ Q)dZQ — Sdfg)
, (5.115), (5.119) and (5.135), for r > 0

diV (f;_l)s’ﬁ//hlﬁo) =

hold at the point a. By (1.8), (5.114)
and s > 1 we see that the equality

~ 1
div (f;’5717'r+,h0,1) = ? Z(S +n— 2)(d22 + dig)
(5.138)

1
— §(2T+S+n*2)(d,’53 7d23)

holds at the point a.

LEMMA 5.29. Let r,s >0, withr +s > 1, and b,b’,0"” € C. Suppose
that the element

h = b/fr_Lsﬂ'/HeSS f170 + b”fr_Ls?TNHeSS ]FLO
(5.139) - _
+ bfr,sfl7T+*HeSS fO,l
of C3° (Lc @ (S2T*){7) satisties divh = 0. Then h vanishes identically.

PROOF: By (5.137) and (5.138), when r, s > 1, we see that the relation
div ¢*h = 0 implies that the equalities

0=2"-(dive*h)(n2) =i((2r + s+ 2)b' + (s + n — 2)b),
0=2"-(dive*h)(n3) = sb' — (2r + s +n — 2)b,
0=2"-(dive*h)(2) = i((2r + s + 2)b" + (s + n — 2)b),
0=2"-(dive*h)(73) = —sb”" + (2r+s+n—2)b
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hold at a. Since the determinant of the matrix

2r+s+2 s+n—2
—s 2r+s+n—2

is positive, when 7, s > 1 the coefficients &', " and b vanish, and so in this
case h vanishes. Since

div (8?7%%) c 79, div (8?7%?) c 7%,

when either r =0 or s = 0, by (5.138) and (5.139) we see that the relation
div ¢*h = 0 implies that h vanishes.

Let r,s > 0 be given integers, with r + s > 1. According to §7, when
7 >1and s > 0, a highest weight vector h of the G-module C5¢ (Lc) can
be written in the form (5.139), with b = 0 and ¥',b"” € C; moréover when
n # 4, a highest weight vector h of the G- module C,‘jfys(Lc @ (S*T)E7)
can be written in the form (5.139), with b,0’,"” € C. Hence since the
differential operator div : S*7 — 7 is homogeneous, from Lemma 5.29
and the relation (2.1) we deduce the following:

ProrosiTIiON 5.30. Let X be the complex quadric @, with n > 3.
Let r,s > 0 be given integers, with r + s > 1.

(i) When r > 1, an element h of C57 (L¢) satistying divh = 0 van-
ishes identically.

(i) When n # 4, an element h of C3° (Lc & (S2T*){™) satistying
div h = 0 vanishes identically.

Since div : Sz’]?c* — 7¢ is a homogeneous differential operator, by
Propositions 2.3 (with @1 = 0), 5.18 and 5.30,(i) we see that the operator

div: C°(L¢) — C(1¢)

is injective. This result implies the assertion of Proposition 5.26.
By (5.116)—(5.119) and (5.50), we easily verify that the relations

r

(5.140) (7" h1,0)((m1 - hrs)* 1) = (7'ha0) (71 2 ) 1) = PrEsk

(5.141) (7' h1,0)((n2 2 hrs)¥,m2) = er+2 (2r +s)(2r +s+1)

hold at the point a.

ProposITION 5.31. Let r,s > 0 be given integers and b',b" € C.
Suppose that the element

h= f;s( 7" + b"7") Hess f{’o
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of C>(S?Ty,) satisfies the relation
(D*div h)(m1,71)(a) = 0.

Then we have b/ +b" = 0.

PRrooF: We write
hy = (b'7" +b"7") ha p.
According to (5.137), we have
divhy = 4(b'0f] o +b"0f] o);
hence by the first equality of (1.75), we see that
mD'divhy = 2(b' + ") hi .

By (5.114), (5.115), (5.117), (5.122) and (5.140), we therefore obtain the
equalities

(DY div ), ) =~
(Vhl)(nla (dfvi,s)u>ﬁ1) = (Vhl)(ﬁh (df;,s)uvnl) =0,

.
B ((m 3 hs)?s 1) + (1 ) m) = o (O +07)

(b/ + b/,)7 (df;‘,s -div h1)(7717771) =0,

at the point a. According to formulas (1.9) and (1.10) and the preceding
relations, we see that

(D (7)), 7)) = g (r 20 + 8.

Thus our hypotheses imply that ' + 0" = 0.

PROPOSITION 5.32. Let r,s > 0 be given integers. Suppose that the
element

Jlo(n' —a") Hess fi o

of C*(S?T¢) belongs to the space DoC*>(T¢). Then the integers r and s
vanish.

PROOF: We consider the sections hy = (7' — 7”") Hess f1 o and b} =
¢*hy of S2T:. According to (5.136), we have

divh) = 4(0f] o — 0f1 o)
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Thus by (5.114), (5.115), (5.122) and (5.141), the equalities

(df}., - divhy)(n2, 1) = — (2r+s),  (Vhy)(n2, (df))F 1) = 0,

1
27‘—1
1
Wi ((n2 ) hes)t m2) = oz (2r+8)2r+s+1)

hold at the point a. Let hs denote the section of S*T equal to the left-hand
side of the relation (2.24), with f = fAS, h=h,vy=mv,0and 7 = V41,5
Then by formula (1.10), the previous equalities, and the relations (5.116)
and (5.123), we see that

ha (2, m2) (a) = 2T1+2 (s2 4+ (2n — 3)s +2(n — 1)r).

According to (5.133) and observations made in §7, we know that the section
hy of S*T¢: belongs to the spaces DoC>(T¢) and is a highest weight vector
of the G-module C5? | (S2T¢), and that the section f,.,shl is a highest weight
vector of the G-module CT° (S2T¢). Therefore the section hf = ¢*hy
belongs to the space DyC>(T¢) and the section f;sh’l = ¢*(f,.sh1) belongs
to the G-module C$f+1’S(S2TE). According to Lemma 2.38, with v = ;9
and v = 7,415, and our hypothesis, we see that ho vanishes. Therefore

we obtain the relation
s>+ (2n —3)s +2(n — 1)r = 0,

and so we have r = s = 0.
ProPOSITION 5.33. Let r,s > 0 be given integers and b',b" € C.
Suppose that the element
h= fro('n" +"7") Hess fi1 0
of C*°(S?T¢) belongs to the space DoC>(T¢). Then we have b' + " = 0;
moreover if h is non-zero, the integers r and s vanish.

PROOF: Since h is a section of the sub-bundle (S?T™)z, so is the
section Ah. Clearly, we have Trh = 0; hence by formula (1.39), we see
that m, D'divh = 0. Thus the section

W =¢*h= ﬂ7s(b'7r’ +V"7"") Hess f{jo

satisfies 7, D'divh/ = 0. From Proposition 5.31, we therefore obtain the
relation ' + b” = 0. According to our hypothesis, h’ belongs to the
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space DoC*(T¢), and so the other assertion of the proposition is a conse-
quence of Proposition 5.32.

Let r,s > 0 be given integers. According to Proposition 5.33 and the
description of the highest weight vectors of the G-module C;’fﬂﬁs (L¢) given
above, we see that the space

Cor. (L) N DoC>(Tt)

Yr+1,s

vanishes unless »r = s = 0 and that

3y o (Le)®™ N DeC™(Tc) = {0}
Since Dy is a homogeneous differential operator, by Proposition 5.18 and
the relations (2.1) and (5.133), we see that Theorem 5.27 is a consequence
of these results.

89. The complex quadric of dimension two

This section is devoted to the proof of Proposition 4.3. We once again
consider the natural projection w : C™*! — {0} — CP™ and the Fubini-
Study metric g on CP™ of constant holomorphic curvature 4. As in §2,
we view the complex quadric @ as a hypersurface of CP? endowed with
the Kihler metric g induced by the metric § of CP3. We recall that the
complex conjugation of C* induces the involutive isometry 7 of Q5.

We endow the manifold CP! x CP! with the Kihler metric which is
the product of the metrics § on each factor. It is well-known that the Segre
imbedding

o : CP! x CP! — CP?,

which sends the point (7(u), 7(v)), where u = (ug, u1) and v = (vg, v1) are
non-zero vectors of C2, into the point m(ugvo, uovy,u1vo, uivy) of CP3, is
an isometry. The element A of SU(4) determined by

A(Q) = iz (Co+ Gy C1 — Cayil(Ca — o)y i(G1 + G2)),

for ¢ = (Co,¢1,(2,¢3) € C*, induces an isometry of CP3 which we also
denote by A. We now easily verify that the image of the mapping a = Aoo
from CP! x CP! to CP? is equal to the complex quadric Qs; thus the
mapping « induces an isometry

a: CP' x CP! — Q.

We consider the involutive isometry ¥ of CP' defined in §4, Chap-
ter IIT; according to the commutativity of diagram (3.26), it sends the
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point 7(u), where u = (ug,u;) is a non-zero vector of C2, into the point
7(v), where v = (—1, 1) is a non-zero vector of C? orthogonal to u. We
easily verify that the diagram

CP!' x CP! % @,
(5.142) lww lf
CP! x CP! 2% Q,

is commutative. _
Now we consider the diffeomorphism © : Gﬂiz — Q2 defined in §5 and

the involutive isometry ¥ of @52 defined in §1, Chapter IV, which sends an
oriented 2-plane of R* into its orthogonal complement endowed with the
appropriate orientation. If ¥ : Q2 — Q2 is the involutive isometry equal to
the composition © 7! o U o O, the diagram

CP! x CP! 2% @,
(5.143) lidw llp
CP! x CP! 2% Q.
is also commutative. In fact, let © = (up,u1) and v = (vg,v1) be non-zero

vectors of C2. Then we see that a(r(u),7(v)) is equal to 7(¢), where ¢ is
the non-zero vector of C* given by

¢ = (uguo + urv1, upv1 — U1, U1V — UeUp), 1(UeV1 + UIVY))-

If h is the complex bilinear form on C? defined in §2, an elementary
computation shows that the point a(7(u), U(7(v))) can be written in the
form 7(¢"), where ¢’ is a non-zero vector of C* satisfying

(€.¢") = h(¢.¢) =0.

This observation, together with the fact that the points 7(¢) and = ({’)
belong to the quadric @2, allows us to see that {Re(,Im{,Re¢’,Im ('} is
a positively oriented orthogonal basis of R*. If z,y € @52 are the oriented
2-planes of R* corresponding to the vectors Re( A Im ¢ and Re ¢’ A Im ¢’
of /\2R4, respectively, we have

The commutativity of the diagram (5.143) is now a consequence of the
relations ¥(x) = y.
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We endow the manifolds S2 x S? and RP? x RP? with the Riemannian
metrics which are the product of the metrics gg of constant curvature 1 on
each factor. We recall that the diffeomorphism ¢ : S? — CP! defined in
§4, Chapter III is an isometry of (52, go) onto (CP',43). We denote by ¢’

the Riemannian metrics on the Grassmannians G , and G 5 defined in §1,

Chapter IV. When we endow the space @52 with the metric 2¢’, by (5.59)
we see that the mapping

Bz@‘loaO(goX(p):SQxSQHéﬂiz

is an isometry.

We consider the anti-podal involution 7, of S? which is denoted by T
in §3, Chapter III. The group A; (resp. As) of isometries of the Riemannian
manifold S% x S? generated by the mapping 7, x 71 (resp. the mappings
id x 71 and 71 x id), which is of order 2 (resp. order 4), acts freely on
52 x 52, Clearly, A; is a subgroup of A,. We consider the Riemannian
manifolds (5% x S?)/A; and (S? x S?)/As endowed with the Riemannian
metrics induced by the metric of S? x S2. The relation (5.60) and the
commutativity of the diagrams (3.25) and (5.142) now tell us that § induces
an isometry from the quotient (5% x S2)/A; onto the Grassmannian G]§’2
endowed with the metric 2¢’.

On the other hand, we observe that the quotient (S? x S?)/Ay is
diffeomorphic to RP? x RP2. If gy is the Riemannian metric on Y = Gﬂ;z
defined in §1, Chapter IV, from the commutativity of the diagrams (3.25),
(5.142) and (5.143), we infer that 3 induces an isometry from RP? x RP?
to the space @52 endowed with the metric 2¢gy. This completes the proof
of Proposition 4.3.



CHAPTER VI

THE RIGIDITY OF THE COMPLEX QUADRIC

§1. Outline

In §2, we describe an explicit totally geodesic flat torus of the complex
quadric @, with n > 3, viewed as a complex hypersurface of projective
space. In §3, we introduce certain symmetric 2-forms on the quadric; later,
in §7 we shall see that they provide us with explicit bases for the high-
est weight subspaces of the isotypic components of the SO(5)-module of
complex symmetric 2-forms on the three-dimensional quadric Q3. In §§4
and 5, we compute integrals over closed geodesics in order to prove that lin-
ear combinations of the symmetric 2-forms of §3 satisfying the zero-energy
condition must verify certain relations. As the space of complex symmet-
ric 2-forms on Q3 satisfying the Guillemin condition (resp. the zero-energy
condition) is invariant under the group SO(5), the rigidity results (Theo-
rems 6.35 and 6.36) for the quadric Q3 are obtained by establishing appro-
priate bounds for the dimensions of certain spaces of symmetric 2-forms
consisting of vectors of highest weight satisfying either the Guillemin con-
dition or the zero-energy condition. These bounds were obtained in the
case of the Guillemin condition in [23] and are recalled in §3. In §6, we
establish the corresponding bounds for odd forms on @3 satisfying the zero-
energy condition. In §8, we prove the rigidity theorems for the quadric of
dimension > 3. In particular, we show that the quadric @5 is infinitesi-
mally rigid; this result is the last remaining one needed to complete our
study of the rigidity of the quadric. Since the quadric @, is a two-fold
covering of the real Grassmannian ng of 2-planes in R"*2, we deduce the
rigidity in the sense of Guillemin of this Grassmannian from these results
of §8 when n > 3; we note that the proof presented here does not rely, as
does the one given in [23], on the infinitesimal rigidity of the quadrics of
dimension > 4. In §§9 and 10, we present detailed outlines of the various
other proofs of the infinitesimal rigidity of the quadric of dimension > 4
following [18] and [22]. Also in §9, we give a new proof of the infinitesimal
rigidity of the quadric of dimension > 5, which follows some of the lines
of the proof of the infinitesimal rigidity of the quadric Q4 of [22]. One of
the main ingredients of our new proof for the quadric of dimension > 5 is
a vanishing result for sections of the vector bundle L proved in §8, Chap-
ter V; in fact, it is quite different from the one found in [18], which totally
avoids the use of harmonic analysis. In §11, we present the results of [20]
and [23] which concern 1-forms; in particular, we show that a 1-form on
Q,, satisfying the zero-energy condition or an even 1-form on @,, satisfying
the Guillemin condition is exact.
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§2. Totally geodesic flat tori of the complex quadric

Throughout this chapter, we suppose that X is the complex quadric
@, with n > 3, endowed with the Kéahler metric g introduced in §2,
Chapter V. We shall consider the objects and use the notations established
in Chapter V.

If Z is a flat totally geodesic 2-torus of X, we denote by VZ the Levi-
Civita connection of the Riemannian manifold Z endowed with the metric
induced by g; if ¢ is a vector field on Z, we consider the complex vector
fields on X defined along Z by

(=3C—-iJ¢), ("=35(C+i¢)=C,

which are of type (1,0) and (0, 1), respectively.
We now study an explicit maximal flat totally geodesic torus of X.
The image Z; of the imbedding

L2 GE (V1) x GY(12) = G,

of §2, Chapter IV, corresponding to the orthogonal 2-planes V; = Req®Re;
and Vo = Re,, @ Re, 1 of R"*2, is a totally geodesic flat 2-torus of Gﬂin.

When we identify the Grassmannian éﬂ§n with the complex quadric X as
in §5, Chapter V, the torus Z; can be viewed as follows. As in Chapter V,
we consider the point a of X which is the image of the point (1,0,...,0,1%)
of C"*2 under the natural projection

m:C"2 — {0} — CP"*!,

If K is the subgroup of G = SO(n + 2) consisting of all matrices

A 0 0
0 In—2 0 )
0 0 B

where A, B € SO(2) and I, is the (n — 2) x (n — 2) identity matrix, the
submanifold Zy of X is equal to Ky - a and is the image of the mapping
o :R? — X defined by o (0, @) = 75 (0, ¢), where

5(0, ) = (cosf,sinh,0,...,0,—isinp,icosp) € C"2,
for (6, ) € R2. This mapping o satisfies o(0,0) = a and

a(0,p) =00+ 2km, o+ 2n) =0(0 + kr, o + kr),
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for all k,l € Z and (0,p) € R%. We consider the group of translations T
of R? generated by the vectors (27, 0) and (7, 7) and the flat torus R?/T,
which is the quotient of R? by the group I'. According to the preceding
relations, we see that o induces an imbedding

7:R*T — X.
Let (6, ¢) be the standard coordinate system of R?. It is easily verified that
(6.1) o*g=3(df @ df + dp @ dp).

Therefore, if the quotient R?/T" is endowed with the flat metric induced by
the metric 3(df ® df + dp ® dy) on R?, the mapping & is a totally geodesic
isometric imbedding. Throughout this chapter, we shall often identify a
function f on R? satisfying

f(0,0) = f(0 + 2k, o + 2Im) = f(0 + km, o + k),
for all k,1 € Z and (0, ¢) € R2, with the unique function f on the torus Zj
satisfying the equality o*f = f on R2. The restriction of the mapping o

to the subset Zy = [0, 27] x [0, 7] of R? is a diffeomorphism from Zy to Zj.
Therefore if f is a function on Zj, then we see that

/Zodeo—/( “£)(0, ) dodip = - // o 1)(6,0) 0 dg

_5/0 /0 ((c*F)(0,0) + (6 f)(0 + T, 9)) dO dep.

(6.2)

We now consider the objects introduced in §4, Chapter V. If (6, ) is
an element of R? satisfying cos @ # 0, the point o (6, ) belongs to the open
subset V of CP"*+! defined in §4, Chapter V and we have

21(0(97 QO)) = tan97 Zj(a(ea 90)) = Oa
__,sin<p . cosp
zn(a(é‘, (p)) =1 COSH7 Zn+1(0(0, 90)) =1 cos 6 )

for 2 < j < n—1. The vector fields 9/96 and 9/dp on R? are o-projectable;
in other words, there exist well-defined parallel vector fields &, and 79 on
Zo such that

alo.0) =0 ((55) ©9)). mie.on=o. ((52) @)
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for (0,¢) € R?. In fact, {£,m0} is a basis for the space of parallel vector
fields on Zp; according to (6.1), we have

9(80,80) = 9(n0,m0) = %7 9(&o,m0) = 0.

We see that the equalities

, 1 o ... 0 9
&=—>%=| 35— —isinfsingp — +isinfcosyp ,
63) cos?2 6 \ 0z Ozp Zn+1

0 ‘ cos 0 + si 9
=— —— +sin
"o cosf v 0z, v 0zZn+1

hold at the point o (6, ) of Zy, for (0, ) € R? satisfying cos @ # 0.

When cosfcosp # 0, the point (6, p) belongs to the open subset
Uy = ZyNU of Zy. The restrictions of the complex vector fields 7 to Uy
are determined by the equalities

(6.4) m = cos? 0 - &), n; = 0/0z;, Nn = i cos B cos - np,

with 2 < j < n — 1, which hold at the point (6, ¢) whenever (6, ¢) € R?
satisfies cosfcosp # 0. We consider the section v of the bundle S over
U given by (5.40) and the involutive endomorphism K, of T}y defined
by K,(z) = K,(g), for x € U; from the relation (5.51), we obtain the
equalities

(6.5) K, & = &o, Kyno = —no

on the open subset Uy of Z. It follows that the restriction of this involution
K, to Ty, satisfies

(66) KV(TZU|U0) c TZO\UU‘

As in Chapter II, we denote by = the space of all maximal flat totally
geodesic tori of X. Since the point a belongs to Zj, according to the
description of = given in §6, Chapter V, we see that

Zy = Exp, (R¢o(a) & Rao(a)).

LEMMA 6.1. Let Z be a totally geodesic flat 2-torus of X and let
2o € Z. Then there exist an open neighborhood U’ of xg in Z, an involution
k of Ty which preserves the tangent bundle of Z and a section u of S
over U’ such that k(x) = K (3, for all z € U'. Moreover, the restriction of
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this involution k to Tz is an endomorphism of Tz, which is parallel with
respect to the connection V7.

PROOF: Since the group G acts transitively both on = and on the
torus Z € =, without loss of generality by (5.14) we may assume that Z
is the torus Z; described above and that x( is the point a of the subset
Uy of Zy. Then if v is the section of S over U given by (5.40), according
to (6.6) we know that the involution K, of Tjy; preserves the tangent bundle
of Zy. Let £,n be tangent vectors to Zy at x € Up; if « is the restriction of
the involution K, to Tz,, we know that

(VEr)n = (VeK,)n.

According to (5.22), the right-hand side of this equality belongs to JTz, ;
since Z; is a totally real submanifold of X, it vanishes. Thus we have
VZk = 0.

LEMMA 6.2. Let Z be a totally geodesic flat 2-torus of X. Then
there exists a unique (up to a sign) involution x of T|; which preserves
the tangent bundle of Z and which at every point x of Z is equal to a
real structure K, of X, where y € S;. Moreover, the restriction of this
involution k to Tz is an endomorphism of Tz which is parallel with respect
to the connection V7.

PRrROOF: Let x be a point of Z. According to §6, Chapter V, we may
write

Z = Exp,(RE & RJn),

where p is an appropriately chosen element of S, and {£,n} is an orthonor-
mal set of elements of le‘ . Clearly, K,, preserves the tangent space to Z
at x. According to (5.9), a real structure ' of the quadric X associated
with another unit normal of S, can be written in the form

k' =cosf- K, +sinb - JK,,

where 6 € R. We see that ' preserves the tangent space to Z at z if and
only if sinf = 0, that is, if ' = +K,. From this observation and the
orientability of Z, by Lemma 6.1 we obtain the desired endomorphism
of T|z; clearly, it is unique up to a sign and is parallel with respect to the
connection V7.

The involution k, which Lemma 6.2 associates with a totally geodesic
flat 2-torus Z contained in X, is called a real structure of the torus Z; it
is uniquely determined up to a sign.

According to Lemma 6.2 and its proof, there exists a unique real struc-
ture ko of the torus Zy such that
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and we know that the vector fields k¢&y and kgng on Z; are parallel. Hence
by (6.5), we see that

(6.7) koo = &o, KoTo = —1o

and that the restriction of kg to Uy is equal to the involutive endomorphism
KV of ﬂUO .

Let Z be a totally geodesic flat 2-torus contained in X; we choose a
real structure k of Z. Since the restriction of k to Tz is parallel, the tangent
bundle Tz admits an orthogonal decomposition

T, =TS &T;

invariant under VZ, where T; and T, are the eigenbundles of the restric-
tion of k to Tz, corresponding to the eigenvalues +1 and —1. Clearly, this
decomposition of T is independent of the choice of k. It is easily seen that
there exist unitary parallel sections £ of TZ+ and n of T ; these two vector
fields are unique up to a sign and {£,n} is a basis for the space of parallel
vector fields on Z.

Since the group G acts transitively on =, we see that an element h
of C°(S2T*) satisfies the Guillemin condition if and only if

/ (6°h) (6o, &0) dZo = / (6*R) (10, m0) dZo = / (6" 1) (€0,10) dZo = O,
Zo Zo Zo

for all ¢ € G.
Now let £,n be arbitrary vector fields on Z satisfying k& = £ and
k1 = —n. If h is a section of (S2T*)* over X, we have

(ﬂ_++h) (E» 5) = h(«f, g)a (ﬂ—++h) (777 77) = h(na 77)7
(6.8) (me:h)(&m) = (7-h)(&,€) = (m4—h)(n,n) =0,
(me—h)(&,m) = h(&n).

Let f be an element of C*°(X). If (3, (s are vector fields on Z, according
to Lemma 1.25, we have

(mHess f)(C1,¢5) = (991)(G1, 63)-

Thus by (6.8), if ¢ is a vector field on Z equal either to £ or to n, we obtain
the relations

(6.9)  (mysHess £)(¢, Q) = 2(mHess f)(¢,¢") = 2(99f)(¢, ¢"),

(my—Hess f)(&,n) = (7 Hess f)(¢',n") + (1 Hess f)(n',£")

(6.10) . _
= (00)(& ") + (90f)(n',€").
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From the above discussion concerning the parallel vector fields on the
totally geodesic flat 2-torus Z and from the relations (6.8), we deduce the
following result:

PROPOSITION 6.3. Let h be a section of (S*T*)* over X = Q,,, with
n > 3. The symmetric 2-form h satisfies the Guillemin condition if and
only if the two symmetric 2-forms w4 h and w4 _h satisfy the Guillemin
condition.

Let N be an odd integer > 1; we consider the closed geodesic
on [0, 7] — Zo

of Zy, defined by dn(t) = o(t, Nt), for 0 <t < 7. The tangent vector field
oy along the geodesic d is determined by

On(t) = (€0 + Nmo)(dn(t)),

for 0 <t < m; we see that oy has constant length equal to /(N2 + 1)/2.
Thus if & is a symmetric 2-form on X, we have

92 ™ )
/ h:m/() h(dn (), () dt

(6.11) on ) )
:m/o h(&o + Nnjo, & + Nno)(dn (1)) dt.

Hence by the formulas (6.7) and (6.8), if h is a section of (S2T*)** over X,
we have

1) [ heoy ( | hleocarontnde + 5 [ b m) @) dt)

where ¢y = 2/(N? + 1), while if h is a section of (S*T*)*~ over X, we
have

(6.13) [ h= g [ e miG @) a

We shall use the formulas (6.12) and (6.13) with N =1 or 3, and we write
§ = 01.
§3. Symmetric forms on the complex quadric

We now introduce certain symmetric 2-forms on X which are defined
in [23, §4]; we shall also recall some of their properties which are established
in [23].



200 VI. THE RIGIDITY OF THE COMPLEX QUADRIC

We remark that the Hermitian symmetric 2-forms

u1 = ((Co +1¢1)d(C2 +iC3) — (G2 +iC3)d(Co + iC1))
((Co + 1€1)dCns1 — Crird(Co +i6h)),

ug = ((Co + 1¢1)dCnt1 — Cry1d(Co +iC1))
- ((Co +i¢1)d(Ca 4 iC3) — (Co + iC3)d(Co +iC1))

on C"*2 are U(1)-invariant. If ¢° is the complex vector field on C"*2
introduced in §4, Chapter III, we easily verify that

COJ Uj :CTJ Uj :0,

for j = 1,2. Therefore, as we saw in §4, Chapter III, the symmetric 2-forms
uy and uy induce Hermitian symmetric 2-forms on CP"*!, which we also
denote by u; and us and whose restrictions to X we denote by w1 and g,
respectively. Clearly, if 7 is the involutive isometry of CP™*! induced by the
complex conjugation of C"*2, we have the equality 7*u; = up on CP"*!,
and thus the symmetric 2-form

on X is an odd form, and so is an element of C*((S>T*){)°d4. By (5.35),
the sections
k+ :7T++]€, k™ :7T+_I<i

of (S2T*){ are elements of C°°((S2T*){1)0dd and C°°((S2T*) )0, re-
spectively.
We consider the sections

hy = n'Hess f1,0, h{ = 7" Hess fl,o»
by = 0f10- Ofio, 4 =0f10-9fi0,
hy=0f10-0fo1, WY =0f0-0fo1,
hy = 5f0,1 ~8f0,1, q = 5170,1 '5f0,13
ki =0f10- (f0for — for0f), V' =0f10- (f'0for — fordf"),
ky=0fo1 - (f'0for — foadf), K =0fo1-(Ffor — fordf)

of (S*T*)¢, the sections

Wy = T4+ (5f170 : 5f0,1 - 3JE071 '5f1,0),
Wo = T4y (f0,1 Hess (fo,1f') — f' Hess fo,z)
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of (S27*){™ and the section

ws =y (fo.1 Hess f' — f' Hess fo,1)

of (S2T*)t~.
We fix integers 7, s > 0. We consider the subspace V. s of C*(S%T¢)
generated (over C) by the sections

hi = frsg, ha= fro1smyyHess fio, ha= frsomit(8for1-0fon)

of (S2T*)&™, the sections

h4 - frfl,s(hll + hlll), h5 = f~r72,s<h12 + h/2/)7

he = frovs-1(hy +B5),  hy = froa(hy + hY)
of (S?T*); and the section hg = frs_1my_Hess foq of (S2T*){~. By
the relations (5.35)—(5.37) and (5.113), we see that, when s is an even

(resp. odd) integer, all the sections h;, with 1 < j < 8, are even (resp. odd).
Thus we have the inclusions

(6.14) Vg C C®(S2TE)™,  Vygppa C C®(S2T)°%,

for all p > 0. Lemmas 7.2, 7.5 and 7.6,(i) of [23] give us the following:

LEMMA 6.4. Let r,s > 0 be given integers. The non-zero elements of
the set {h; }1<;<s of generators of the space V, , form a basis of V,. ;. More
precisely, the dimension and a basis of V,. s are given by the following table:

dim V, s Basis of V. 5
r=s= 1 hy
r=1,s=0 3 hi,ha, hy
r>2s5=0 4 hi,ha, hy, hs
r=0,s=1 2 h1, hg
r=1,s=1 5 hi,ha, ha, he, hs
r>2 5= 6 hi, ha, ha, hs, he, hg
r=20,s>2 4 hi, h3, hr, hg
r=1s>2 7 hi, ha, h3, ha, he, b7, hg
r,s>2 8 hj, with 1 <35 <8




202 VI. THE RIGIDITY OF THE COMPLEX QUADRIC

We also consider the subspace W, s of C*°(S?T¢) generated (over C)
by the section h; = f,_1,s_1w; of (S2T"‘)(E:H and the sections
ha = fro1,s(hy = hY), hs = fr2,s(hy — hY),
iL4 - frfl,sfl(hé - hl&'.l)a BE) = fr7572(hﬁl - hﬁ;’)

of (52T*)z. By the relations (5.35)—(5.37) and (5.113), we see that, when

s is an even (resp. odd) integer, all these generators of W, , are odd
(resp. even). Thus we have the inclusions

(6.15) Wyopr1 C C®(S?TE), Wiy2p C C™(S%T)04,

for all p > 0. Lemma 7.7 of [23] asserts the following:

LEMMA 6.5. Let r,s > 0 be given integers. The non-zero elements of
the set of generators of the space W, s form a basis of W, ;. More precisely,
the dimensions and bases of the non-zero spaces W, s are given by the
following table:

dim W, g Basis of W, 4
r=1,s=0 1 hoy
r>2 8= 2 ha, hs
r=1,s= 3 i~L1,i~L2,i~L4
r>2, 5= 4 hi,ho, hs, hy
r=0,s>2 1 hs
r=1,s>2 4 iLl,iLQ,iL4,f~L5

rs>2 5 hj, with1<j <5

If s > 1, we consider the subspace V;/ _ of C>(S?T¢) generated (over C)
by the sections ¥, = fm,lk_ and 99 = fr’s,lk‘*‘ of (SQT*)é and the
sections

O = fro1,s—1 (K — k), Oy = frs_o(kh — KY)

of (§°T*)¢. Let W/, be the subspace of C*°(S?T¢) generated (over C) by
the sections J; = fm_gwg and Uy = fr_ys_lwg of (SQT*)z:' and the sections

'33 = frfl,sfl(ki + k,{); ’l§4 = fr,572(1€é + kg)
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of (S*T*)c. By (5.35), (5.37) and (5.113), we see that, when s is an even
(resp. odd) integer, these generators of V! ; are even (resp. odd) and these
generators of W/  are odd (resp. even). Thus we have the inclusions

V/,2p+2 C COO(S2TE)8V, V/,2p+1 C COO(SQTC*)Odd7

T T

W/,2p+1 C COO(SzTE)ev’ 7/*,2;0 c COO(SQT(C*)Oddv

T

(6.16)

for all p > 0.
Lemma 7.9 of [23] asserts the following:

LEMMA 6.6. If » > 0, s > 1, the non-zero elements of the set of
generators of the spaces V|, and W] form bases of these spaces. More
precisely, the dimensions and bases of the non-zero spaces V! and W]
are given by the following table:

dim V!, | Basis of V' | dim W/ | Basis of Wy |
r=0,s=1 2 %, 92 1 i
r=0,5>2 3 V1,92, 94 3 01,02,04
r>1,s=1 3 V1,02, 5 2 Ua, 03
r>1,5>2 4 V1, 02,03,04 4 01,02,03,04

We remark that
hS = fr,s—lHeSS fO,lv 192 = fr,s—1w3

are sections of the bundle (S27*){~, while all the other generators of the
spaces V;. 5, W;. s, with s > 0, and of the spaces V!, W/ , with s > 1,
are sections of the bundle (S?T*)g @ (S2T*){L™, which is the orthogonal
complement of (S?7%){™ in S?T¢.

The following two lemmas are given by Lemmas 7.6, 7.8 and 7.10
of [23].

LEMMA 6.7. Let r,s > 0 be given integers.
(i) If s is even, we have

dim (N27(C N ‘/r,s> < dns-
(ii) If s is odd, we have
dim (NQ,(C N Wr,s) <ds.

LEMMA 6.8. Let r > 0, s > 1 be given integers.
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(i) If s is even, we have
dim (Noc NV ) < 1.
(ii) If s is odd, we have

dim (Mo c NW/ ) < 1.

§4. Computing integrals of symmetric forms

In this section and the next one, we shall compute integrals of sym-
metric 2-forms over specific closed geodesics of X. Each of these geodesics
is contained in one of the families of flat 2-tori of X considered in [23, §4].
Thus many of the computations appearing in these two sections of this
chapter are the same or similar to those of [23, §4].

We consider the torus Z; introduced in §2 and we shall use the objects
associated there with this torus. In particular, we shall identify a function
f on R? satisfying

f0,0) = f(0+ 2km, o+ 2lm) = f(0 + kn,p + kn),

for all k,1 € Z and (0, ¢) € R2, with the unique function f on the torus Zg
satisfying the equality o* f = f on R2.
The restriction § to X of the function p on CP"*! satisfies

cos? 6
2 )

(6.17) plo(0,¢)) =

for (0, ) € R2. Using formulas (6.3) and (6.17), we easily verify that the
equalities

- sin @ cos 6 ~
<§(I)78p> = _T’ <77(I)78p> =0,

(618)  (00p)(eh &) = { (Bsin® 0~ 1), (007) (&b, ) =0,

cos? 6
4

(80p) (nh,16) =

hold at all points (6, ) of Zy, with (6, ) € R2, for which cosf # 0, and
hence at all points o (6, p) of Zp.
For a € R, let ¢, be the element of G = SO(n + 2) defined by

Ya(C)o =sina - (uy1 +cosa- (o, VYa({)nt1 =cosa - (up1 —sina - (z,

Ya(Q)2 = Cns Ya(C)3 = Cos Va(Q)n = 05 + (1 — 05)(s,
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and 1, (¢); = ¢j for j =0 or 3 < j < n, where ¢ € C"*2. We set yu = cosa
and A = sina. Then for r, s > 0, at a point z of the complex hypersurface
V of the open subset V of CP"*! defined by the equation zo = 0, the
functions ¢}, f, s are determined by

(Yaf1.0)(2) = p(2)Azny1 +i21)(AZny1 +i21),
(0 F01)(2) = P(2)(Vomss +120) o+ 1) — (om ) Nomss +50).
Using (6.3), (6.17) and (6.18), we easily verify that the equalities
Ui fro = 3(A*cos® p —sin®0),
1/’2];0,1 = —(Acosfcosp + sinfsin @),

($500f0,1) (&0 m5) = (V500fo,1) (16, €5)
= —1(cosf cos o + Asinfsinp),

(6.19)

hold at the point (6, ) of Zy, with (0, ¢) € R2. For r,s > 0, by (6.7) and
(6.10) we now obtain

(U (J;T,ST"JereSS f0,1> (an 770)

(6'20) (_1)r+8+1

- ¢

in?" %6 - cosh - sin® - cos @

at this point (6, ) of Zj.

LEMMA 6.9. For r,s > 0, the integral

/6 1/}8 (.fr,sWJereSS fO,l)

does not vanish.

PROOF: According to formula (6.20), we have

(71)r+s+1

05 (Froms—Hess fo) (6o m0) (6(8)) = ——

cos® ¢ - sin?("+%) ¢,

for 0 < t < . Since cos?t - sin2(7+s) ¢ > 0, the lemma is a consequence of

the equality (6.13) and the above relation.
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_Let a be a given real number; we set p = cosa and A = sina. If
J 'V — V is the inclusion mapping of the complex hypersurface V' into V/,
the symmetric 2-forms j*¢%u, and j*i%us on V satisfy the relations

F*iur = iup® (Aeny1 +i21)dzn — (20 4+ 1) (Ad2p 1 +idz1))
(Z1dZn41 — Znt1dZr),
s = ipp® (z1d2n11 — Zni1dzr)

((AZpg1 +i21)dzZn — (2, + 1) (AdZp41 +idZ1))

at 2 € V. We again consider the symmetric 2-forms k = 4; — 4y and
k™ = m4_k on X introduced in §3. Using formulas (6.3) and (6.17) and
the preceding relations, we verify that the equalities

(¥5k) (&, m0) = —
($ak)(no, &) = —

(Acos @(cos @ + sin ) + sin O(sin ¢ — cos b)),

(A cos p(cos B — sin ) + sin §(sin ¢ + cos h))

R IR S

hold at the point o (6, ) of Zy, with (0, p) € R?; by (6.7) and (6.8), we see
that

(Vak ) (&0, m0) = (Yak) (€0, mo) = (V5k) (0, m0) + (Vak) (6, &6)

:_H(

(6.21)
5 A cos 6 cos p + sin 0 sin p)

at this point of Zj.
Let r, s > 0 be given integers. For u,t € R, we set

@rs(u,t) = (u? cos® t —sin? )" - (ucos? t 4 sin? )51,

and we consider the polynomial

Qr,s(u) = /0 QT,S(U? t) dt

in w. From formulas (6.19) and (6.21), we obtain

L B (71)s+1 .
(6.22) i, (fr.sk™)(€0,m0)(8(F)) = Tgr1 Cosa ¢rs(sina, t),

for0 <t <.
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LEMMA 6.10. Let r,s > 0 be given integers. Then there exists ap € R
such that the integral

/ /ll):;(] (frask_)
5
does not vanish.

PROOF: The coefficient of u?"*+1 of the polynomial Q.. s(u) is equal
to the integral

s
/ cos?r st ¢ gt
0

which is positive, and so the polynomial @, s is non-zero. Hence there
exists a real number g such that the expressions cos oy and Q. s(sin )
do not vanish. Therefore by (6.12) and (6.22), we infer that the integral of
the lemma corresponding to this element oy € R does not vanish.

Let ¢’ be the element of G defined by

1//({)1 = Cn; W(C)s = Cn+1a
V' (ns1 = C1, V' (C)n = 05 Cugr + (85 — 1)Cs,

and ¥'(¢); = ¢j, for j = 0,2, or 3 < j < n, where ( € C""2. Then
for r,s > 0, the restrictions of the functions ¢ f, ; and ¢"*f’ to V are
determined by

(W™ fr0)(2) = p(2)(L +izn) (1 + iZn),

(W™ fo)(2) = ip(2)((1 + i2n)Zns1 — 2nr1(1 +i2)),
W) (2) = p()((1 +izp)21 — 21(1 +i2n)),
for z € V. Using (6.3), (6.17) and (6.18), we casily verify that the equalities
W 0 = (cos® 6 — sin® ), V" fo,1 = cos b cos o,
"™ f = sinfsin g,
(V™00 fo1)(Eh,ml) = (V"0 fo1)(mh. &) = 3 sinfsin o,
(W 00f")(&h,m5) = (00" )(mh, ) = & cosOcos

hold at the point o (6, ) of Zy, with (0, ) € R2. By (6.7) and (6.10), we
now obtain the equality

(6.23) w’*(f},swg)(gm M) = % (cos2 6 — sin? QD)T+1 (cos O cos p)®

at this point of Zj.
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For k,1 > 0, we consider the integral

T
I = / cos® 2t - cost t dt.
0

If k and [ are even integers, we clearly have
(6.24) I >0
and we easily see that

(6.25) Ipg — I 142 > 0.

When £ is odd, we have
1 27
(6.26) Ino= 5/ cos® udu = 0.
0

We use integration by parts to obtain the formula
(627) (l + 1)Ik,l+1 = 4k(1k—1,l+1 — Ik—l,l+3) —+ lIk,l—l-

When k is an odd integer and s > 1 is an arbitrary integer, from the
relations (6.25)—(6.27) we deduce by induction on s that

(6.28) Ti2s > 0.

LEMMA 6.11. Letr > 0 and s > 1 be given integers. Then the integral

/6¢'*(fr,sw3)

does not vanish.

PROOF: For r,s > 0, according to formula (6.23), we have

O (fr.sws) (o m0) (5(1) = % cos" 1 2t - cos®* t,

with 0 < ¢ < 7. If s > 1, from this equality and the relations (6.12), (6.24)
and (6.28) we infer that the integral of the lemma does not vanish.

Since the elements 1), and ¢’ of G induce isometries of X, by Lem-
mas 6.9, 6.10 and 6.11, for r,s > 0 we see that the symmetric 2-forms
fr757r+,Hess f0,1, fr’sk* and fr’sﬂwg do not satisfy the zero-energy condi-
tion.
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85. Computing integrals of odd symmetric forms

This section is a continuation of the preceding one. Its results will only
be used in the proofs of the lemmas of §6, which we require for Proposi-
tions 6.28 and 6.34 and for Theorem 6.36. This last theorem is needed in §8
to establish the infinitesimal rigidity of the quadric Q3 of dimension 3.

If k,1 > 0 are given integers, we set

T
Jie,1 =/ sin? ¢ - cos!*1 3t - cost dt,
0

T
I = / sin®* t - cos 3t dt.
0

Clearly, we have Jyo = 0. Using elementary trigonometric relations and
integration by parts, we verify that

1 31—-2 31—4
= - 2 —_— —_— _
Jou 4( +3z+2+3z+4)‘]°’l b

for [ > 1; it follows that Jy; = 0, for all [ > 0. We easily see that
(6.29) 4Jev10 = Jns — Jeiro,

for k,1 > 0. Let I > 0 be a given even integer. Then we know that j;g,l >0,
for £k > 0. Since Jy; = 0, from (6.29) we infer by induction on k that
Jr1 <0, for all £ > 1. Thus we have proved the following result:

LEMMA 6.12. If k> 1 and I > 0 are given integers, with | even, then
we have Jy; < 0.

In this section, we again consider the torus Zy and the objects associ-
ated with Zy, and we shall use the conventions and notations of §4.
For a, B € R, let 9o 3 be the element of G defined by

Ya,8(C)o =cosa- (1 +sina-C,  Ya,p(0)1 = Cot1,
Ya,6(C)2 =sina - (1 —cosa -G, Ya,p(()s=cosB-Go+sinf- G,
Ya,3(C)n =05 (cos B - (o +sinf - () + (65 — 1)(s,
Va,5(Ont1 = cos B+ (n —sin B - (o,

and 1, 5(¢); = ¢; for 3 < j < n, where ¢ € C"2. We write o = a0
and we set p = cosa and A = sina. Then for 7, s > 0, the restrictions of
the functions 9%, f, s to V' are determined by

(i fr0)(2) = p(2) (21 + iznp1) (U2 + iZns1),
(V5 fo.1)(2) = p(2)((m21 + izns1) (A2 + 1) — (Az1 +9) (021 + iZn11)),
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for z € V. By (6.17), we see that the equalities

¢2f1,0 = —%(()\2 — 1) sin? @ + cos? ),

(6.30) et
V2 fo1 = —cosp (Asinf + icos0)

hold at the point o (6, @) of Zy, with (6, ¢) € R*.
We denote by f the function 1/1* f1.0 on C"2 and we consider the
symmetric 2-forms k' = 7'Hess f and h” = 7"Hess f on X. Then we have
= % h} and b = EhY. Using the formulas (5.55), we verify that the
equalities

W (n,m) = —1cos* 0 (usin + cos ),
B (s nn) =
W (N, mn) = — 1 cos® @ cos® o (pusin 6 + cos p)?,

—21cos* 0 (usin® — cos )?,

)
R (i1, 1)
B (i1, i)

)

B (s T 1 cos® f cos® ¢ (pusin @ — cos ¢)?

hold at the point o (6, ) of Zy, with (0, ) € R%. By means of (6.4) and
the preceding formulas, we see that

hl(nOa 770) = _h/(fov 50) = %(MSIHQ + cos 90)27
(6.31) R (no,mo) = —h" (€0, &) = L(psind — cos p)?,

1 (€0,m0) = h" (&0, m0) = 0

at this point of Zj.
We consider the vector field

Co = &o + 3o
on Zy. If h is a symmetric 2-form on X, by (6.11) we have
1 ™
(6:32) [ =5 [ bcoeanar
5 5 Jo

where 05(t) = o(t, 3t), for 0 <t < .
Let 7,5 > 0 be given integers. We define

Pr.s(u,0,0) = (u?sin? 0 + cos® p — sin® 0)" - (usin @ cos ¢ + i cos 0 cos ),
Pr.s(u,0,9) = (1 = u?)sin® 0 + cos® ) - pr.s(u, 0, 9),

pg,s(uv 0, 90) =sinf cos ¢ - p7',s(u7 0, @)7
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for u,0,p € R. For j = 1,2, we consider the polynomial

Pl (u) = / i (u,t,3t)dt
0

in u. We write
(-1t

By (6.30) and (6.31), we now obtain

(6'33) 152 (fr,s(hll + h/ll))<§07 CO) = QCr,s p}‘,s(Sin Q, 9’ 90)’
(6.34) D2 (fros (B = 1Y) (G0, Co) = crs cOs - p2 (sina, 6, ).

LEMMA 6.13. Let r > 0 and s > 1 be given integers. Assume that s
is odd and that 2r+s > 1. Then there exists ag € R such that the integral

Dty (Fros(hy + hY))

03

does not vanish.

PRrROOF: We write s = 21 + 1, with [ > 0. The coefficient of u?"+5~!
of the polynomial P! (u) is equal to —isJ,.4;s—1. Since r +1 > 0, by
Lemma 6.12 this expression is non-zero. Thus the polynomial Prl’ s 1s non-
zero, and so there exists a real number ag such that P} (sinag) does not
vanish. From the relations (6.32) and (6.33), we infer that the integral of

the lemma corresponding to this element oy € R does not vanish.

LEMMA 6.14. Let r > 0 and s > 2 be given integers, with s even.
Then there exists ag € R such that the integral

Do (fros(y = 1))

03

does not vanish.

PROOF: We write s = 2[, with [ > 0. The coefficient of u2"+5~1 of the
polynomial Pf’s(u) is equal to isJ,4;s. By Lemma 6.12, this expression
is non-zero. Thus the polynomial P?_ is non-zero, and so there exists a
real number ag such that the expressions cos o and Pf, s(sinag) do not
vanish. From the relations (6.32) and (6.34), we infer that the integral of
the lemma corresponding to this element ay € R does not vanish.

Let 7 > 0 and s > 1 be given integers. Since the elements ¢, of G
induce isometries of X, according to Lemmas 6.13 and 6.14, the symmetric
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2-form f, (R} +hY), when 2r+s > 1 and s is odd, and the symmetric 2-form

J;7~75(lz’1 — hY), when s is even, do not satisfy the zero-energy condition.
Let A, B, C be the functions on R? defined by

= (Asiné + icos ) sin p, B = (Asin6 + i cos ) cos p,
C = (isinf — Acos ) cos ¢,
for (0,¢) € R% Using (6. -4), (6.17) and (6.18) and the expressions for the
functions w* f1 o and 1/1* fo 1 on V we verify that the equalities
) = 1pcosO (usind + cos ),
) = Lpcosd (usind — cos ),
) = 3 sing (cosg + psind),
dfo1) = 3 sing (cosp — psinb),
(&, 00 fo1) = 3(C+ip), (&, 050f01) = L(C —ip),
w0fon) = 3A= <U6’a¢33f0,1>,
($200f1.0)(&,€0) = §(1*(2 = 3sin® ) + cos® ),
(6509 f1,0) (1, 1)
(€500 f0,1) (&6, m6) = 3 sine (Acos —isin ) = (V509 fo1) (), £5)

hold at the point (6, ) of Zy, with (0, ¢) € R2.

Let r,s > 0 be fixed integers; we now consider the sections h;, with
1 < 5 <8, defined in §3. We first suppose that r = s = 1. Using (6.5),
(6.8), (6.9), (6.10) and the preceding formulas, we see that

2
1
1
1(cos® p — 2sin® p — p? sin® 0),
1
2

(5 (G, o) = 5 BIO® = 1)sin? 0+ cos? ).

(Y2 h2)(Co, Co) = —B((A? —1)(6sin? 0 — 1) + 5cos® ¢ — 9sin? ),
(¥ h6)(Co, Co) = (C +3A)((1 — X?)sin @ cos 6 + 3sin g cos )
+ (1 — A?)(cos 6 cos ¢ + 3sin O sin ),

(6.35)

(¥ hg)(Co, Co) = 3((1 — A?)sin® 6 — cos? @) (A cos @ — isin 0) sin .

LEMMA 6.15. Suppose that r = s = 1 and let ay,as, a4, a6,as € C. If
the symmetric 2-form h = a1hy + ashs + a4hy + aghg + aghg satisfies the
zero-energy condition, then we have the relation

(636) 5a1 — 12a9 + 4ag + 6ag = 0.
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PROOF: By formulas (6.32) and (6.35), there exists an explicit poly-
nomial P(u) of degree < 3 in w such that

Y h = P(sina),
d3

for all a € R; moreover, we verify that the coefficient of u? of P(u) is equal
to )
i
10
If the symmetric 2-form h satisfies the zero-energy condition, the polyno-
mial P vanishes and so, by Lemma 6.12, we obtain the relation (6.36).
When r = 0 and s = 3, by the methods used to verify the relations
(6.35) we obtain the equalities

(5&1 — 12a5 + 4ag + 6(18) J1,0~

(5h1)(Cos Go) = —5B°,
(G2 (Go. o) = —5 (1= N+ C% +942),

(Eh7)(Co, Co) = B(1 — A2 — (C + 34)?),
(1% hs) (Co, Co) = 6B (Acosd — isin ) sin .

(6.37)

LEMMA 6.16. Suppose that r = 0 and s = 3 and let a1, a3, a7,ag € C.
If the symmetric 2-form h = a1hy + ashs + a7h7 + aghg satisfies the zero-
energy condition, then the relation

(638) 15a1 + 4a3 + 12a7 + 6ag =0

holds.

ProOOF: By formulas (6.32) and (6.37), there exists an explicit poly-
nomial Q(u) of degree < 3 in w such that

/@mz@mm»

03

for all a € R; moreover, we verify that the coefficient of u? of Q(u) is equal

to )
—% (15a1 + 4as + 12a7 + 6ag) Jy 1.

If the symmetric 2-form h satisfies the zero-energy condition, the polyno-

mial @ vanishes and so, by Lemma 6.12, we obtain the relation (6.38).
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LEMMA 6.17. Let r > 0 and s > 1 be given integers, with s odd. Let
ai,...,as be given complex numbers; suppose that a; = 0 when h; = 0,
for 1 < j < 8. Suppose that the section

8
h = Z ajhj
j=1

of S?T¢ satisfies the zero-energy condition. Then we have relations
(2r +2s5—3)((2r +2s — 1)a; — 4((r + s — 1)az — a5 — ag) + 2as)
(6.39) — (2r% 4 4rs — 4r 4+ 25% — 45 + 3)as
+4(r* 4+ 2rs+r+ s>+ 5 —3)ay = 0,

s(2r +2s — 5)((2r + 25 — 3)ay — 4(r + s — 3)as + 12as)
— (28 +4rs? + 2r%s + 4r? — 45* — 5 — 167)as

(6.40)
— 4(2r + 25 — 5)(2r? + 4rs + 25% — 3s)ag — 4cay
+2(2r + 25 — 5)(4r% + 8rs + 4s% — 5s — 8r)ag = 0,
s2(2r + 5 — 2)ay — 45%(r — 2)ag + 45%(s + 2)as
—(2r +5—2)(s% — 2r — 25) (a3 + 2ag)
(6.41) — 4(rs® + 5% 4 2r% 4 5rs — 25 — 2r)ag
+ 4s(s% + 2rs 4+ 2r* — 41 — 2s)a; = 0,
where

¢ =383+ 4r> — 4r? + 10rs% + 11r%s — 9s%2 — 13rs + 3s — 12r.
When r is odd, we have the relations

(6.42) (r+s—1)(a1 —4as — a3 — 2ag) + 4(r + s+ 1)(as + ag + ay) =0,

(6.43) r(2r 4+ s+ 2)a; — 4(2r* + s — 2)ag — r(2r + s)(az — 2ag)
6.43

+4(2r% + rs + 2r + 2s)as — 4rag = 0.
When r is even, we have the relations

(6.44) (r—1)(a; —4as —a3) +4(r + 1)as + 2(r — 1)ag = 0,

2r+s)(r+s—2)ar — (2r +s—2)(r + s — 2)(4az + a3 + 2as)
(6.45) +4(r+s)2r+s—4)as +4(r+s)(2r+s—3)ag
+4(r+s)2r+s—2)ar =0.
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PROOF: By (6.30) and the formulas involving 1 which appear after
Lemma 6.15, we obtain expressions for the functions (¢ hj) (€410, &0 +m0)
on Zy, with 1 < j < 8. By the relations (6.11)—(6.13), with N = 1, there
exists an explicit polynomial P(u) of degree < 2r + s in u such that

/&Zh = P(sin ),
5

for all @ € R. Since the symmetric 2-form h satisfies the zero-energy
condition, this polynomial P vanishes. The vanishing of the coefficient
of u?" 71 of P(u) gives us the relation (6.41). Next, we give equalities
analogous to those appearing after Lemma 6.14, with 1), replaced by the
element ¥, of G defined in §4. Then by (6.19) and these formulas, we
obtain expressions for the functions (¢} h;)(& + no,&o + 1m0) on Zy, with
1 < j < 8. Using relations (6.11)—(6.13), with N = 1, we compute an
explicit polynomial Q(u) of degree < 2r + s in u such that

/ Uih = Qsina),
)

for all @ € R. Our hypotheses imply that this polynomial @) vanishes. The
vanishing of the coefficient of u?"** (resp. of u?"7571) of Q(u) gives us the
relation (6.39) (resp. the relation (6.40)). Moreover, when r is odd, the
equality Q(—1) = 0 is equivalent to (6.42), while the equality Q’(1) = 0
is equivalent to (6.43). On the other hand, when r is even, the equality
Q(1) = 0 is equivalent to (6.44), while the equality @' (—1) = 0 is equivalent
to (6.45).

Let r,s > 0 be fixed integers; we now consider the sections ?Lj, with
1 < j <5, defined in §3.

LEMMA 6.18. Let » > 1 and s > 2 be given integers, with s even.
Let a1, as,as,aq,as be given complex numbers; suppose that ag = 0 when

r = 1. If the section .
h= Z a; ilj
j=1
of S?T¢ satisfies the zero-energy condition, then we have relations

(646) (5 — 1)((11 — a4) + 27"CL5 = O,

(6.47) (s —2r — 35+ 3)a; +4s(s — 1)az — (s — 1)(s* + 2r — 35 — 1)ay
' +2r(s? = 3s+1)as = 0.

Proor: We first derive equalities analogous to (6.30) and to those
appearing after Lemma 6.14, with v, replaced by 1, g, with a,8 € R.



216 VI. THE RIGIDITY OF THE COMPLEX QUADRIC

Since we have ¢, = Ya,0, these new formulas generalize those given above;
we also remark that ¥7, 5f1,0 = ¢ f1,0. We then obtain expressions for the

functions (1/3(’;?1]-)(50 + 1o, &0 + 10) and

9
op
on Zy, with 1 < j < 5. Using the relations (6.11)—(6.13), with N = 1, we

find explicit polynomials Pj(u) of degree < 2r + s —1 and Pa(u) of degree
< 27 + s in u such that

[ian=cosa- pitsina), 2 [unan) = Pt

for all @« € R. If the symmetric 2-form h satisfies the zero-energy condi-
tion, the polynomials P; and P, vanish; the vanishing of the coefficients
of u?"**~1 in the polynomials P;(u) and P,(u) give us the relations (6.46)
and (6.47), respectively.

We consider the sections

(wz,ﬁhj)(fo + 10, &0 + 10)|8=0

]4}1 = %(k’2+k’2'+w2), ]4}2 = %(ké—kké’—wg)
of S*T¢.

LEMMA 6.19. Let r,s > 0 be given integers, with s even, and let
ai,as, a3, aq be given complex numbers. Suppose that az = 0 when r = 0.
If the section

h = alfr,skl + azfr,skz + a3fr—1,s+1(ki + k) + a4fr,s+1w3
of S?T¢: satisfies the zero-energy condition, then we have the relations

(6.48) (4r+3s+T)ay + (4r+s+5)ag —4(s + 1)(az — aq) =0,

(6.49) cray + ceas — 4(s + 1)(czaz — cqaq) = 0,
(6.50) (s + 1)clar + chas — 4(s + 1)(chas — chas) = 0,
where

¢ = 28 + 561 + 455 + 4472 + 255 + 48rs + 12r%s + 12rs% + 4rs®
+ 1613 + 1152 + 3s%,

ca = 20 + 407 + 39s + 207% + 275> + 64rs + 4r%s + 28rs* + 4rs®
+ 1673 + 95 + 54,
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c3 = 4r? + 4rs 4+ 8r + s + 125% + 39s + 36,

ey =4r? —drs —8r 453 + 457 + Ts + 4,

¢ = 38% +10rs® 4 8r%s + 25% + 4rs — 4r? — 16r — 125 — 7,

chy = st +8r2s% 4 26152 + 615> + 20r%s + 75 + 1252
+16rs — 412 4+ 35 — 201 — 3,

ch =83+ 2rs® +4r® + 12rs + 65% + 12r + 85 — 1,

=02r+s+1)(s*+s—2r—1).

PrRoOOF: By the methods used in proving Lemma 6.18, we compute
explicit polynomials Q1(u) of degree < 2r 4+ s + 2 and Q2(u) of degree
< 2r + s+ 3 in u such that

/éiﬁ:;h =cosa - Qi(sina), % (/6 wzﬁh) o = Q2(sina),

for all a € R. If the symmetric 2-form h satisfies the zero-energy condition,
the polynomials @); and )2 vanish; the vanishing of the coefficients of
u?rT5+2 and w27 in the polynomial Q(u) give us the relations (6.48)
and (6.49), respectively, while the vanishing of the coefficient of u?"+*+2 in
the polynomial Q2(u) give us the relation (6.50).

LEMMA 6.20. Let r,s > 0 be given integers, with s even, and let
ai,as,as,aq be given complex numbers. Suppose that az = 0 when r = 0,
and that ay = 0 when s = 0. If the section

h= alfnski + agﬂ.7sk+ + Cl3f',-_178(]€/1 - k'lll) + a4fr7s_1(k’2 — ké’)
of S?T¢: satisfies the zero-energy condition, then we have the relations

(s +1)(2r 425 — 1)ay + (4r* + 8rs + 45> + 35 — 1)ay
(6.51) —2(4r% + 8rs + 45 +4r + 5 — 3)as
—2(2r% + 3rs 4+ %+ Tr + 35+ 2)ay = 0,

(6.52) (2r +2s+4 1)ay + a2 + 2a3 + 2(r + s + 2)ayg = 0,

(653) a1 + as — 2a3 = 0.

PRrROOF: By the methods used to prove Lemma 6.18, we compute an
explicit polynomial P(u) of degree < 2r + s + 1 in u such that

/@Zh = cosa - P(sina),
5
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for all & € R. Here we require formulas (6.19) and (6.21) and certain
formulas used in proving Lemma 6.17. The equality P(0) = 0 is equivalent
to (6.52), while the equality P’(0) = 0 is equivalent to (6.51). On the other
hand, when r is even, the equality P(1) = 0 is equivalent to (6.53). When
r is odd, the equality P(—1) = 0 is equivalent to the relation

(6.54) (r+s)(a1 —az) +2(r + s+ 2)(az +ag) =0.

We easily see that the relations (6.52) and (6.54) imply that (6.53) holds. If
the symmetric 2-form h satisfies the zero-energy condition, the polynomial
P vanishes, and we obtain the desired equalities.

Lemmas 6.17-6.20 are due to Tela Nlenvo; details of the proofs of these
lemmas can be found in [52].

§6. Bounds for the dimensions of spaces of symmetric forms

In this section, we use the results of §§4 and 5 to give bounds for the
dimension of certain spaces which we shall need in §7.

LEMMA 6.21. Let r,s > 0 be given integers, with s even. Then we
have
dim (Zg)(c N VYT/’S+1) <1

PROOF: For r > 1, s > 2, the determinant of the 3 x 3 matrix, whose
entries are the coefficients of a1, az and as in the relations (6.51), (6.52)
and (6.53), is equal to

16s(r + s+ 1).

If r =0and s > 2 (resp. if » > 1 and s = 0), the relations (6.51) and (6.52),
with az = 0 (resp. with a4 = 0), are clearly linearly independent. Finally,
if r = s = 0, the relations (6.51), (6.52) and (6.53) reduce to a; + ag = 0.
We remark that the symmetric 2-form h of Lemma 6.20 is an element
of V! 1. From Lemmas 6.6 and 6.20, we then deduce the desired inequal-

1ty.
LEMMA 6.22. Let r,s > 0 be given integers, with s even. Then we

have
dim (Z2c N Wr/,s+2> < 1.

Proor: If r > 1, the determinant of the 3 x 3 matrix, whose entries
are the coefficients of ag, a3 and a4 in the relations (6.48), (6.49) and (6.50),
is equal to
28(s4+2)(s +1)>(r+s+2)(2r +s+1).

If r = 0, the relations (6.48) and (6.50), with az = 0, are linearly indepen-
dent; in fact, the determinant of the 2 x 2 matrix, whose entries are the
coefficients of ay and a4 in these two relations, is equal to —8(s + 1)2. We
remark that the symmetric 2-form h of Lemma 6.19 is an element of W 5.
From Lemmas 6.6 and 6.19, we then obtain the desired inequality.
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LEMMA 6.23. Let r,s > 0 be given integers, with s even. Then we
have
dim (Zoc N W, 5) < dys.

PROOF: If r,s > 2, the determinant of the 2 x 2 matrix, whose entries
are the coefficients of as and a4 in the relations (6.46) and (6.47), is equal
to the non-zero expression 4s(s — 1)2. Ifr=1and s > 2, orif r > 2 and
s = 0, the relation (6.46) is non-trivial. We note that the relations (6.46)
and (6.47) do not involve the coefficient ag; when r > 1 and s > 2, according
to Lemma 6.14, the symmetric 2-form izg, which belongs to W, s, does not
satisfy the zero-energy condition. We remark that the symmetric 2-form
h of Lemma 6.18 is an element of W, ;. These observations, together with
Lemmas 6.5 and 6.18, give us the desired inequality.

LEMMA 6.24. Let r > 0, s > 1 be given integers, with s odd. Then
we have

dim (ZQ,(C N ‘/r,s) < dr,s~

PROOF: We note that the relations (6.39)—(6.45) do not involve the
coefficient ay; when r > 1 and 2r + s — 3 > 0, according to Lemma 6.13,
the symmetric 2-form hy4, which belongs to V;. 5, does not satisfy the zero-
energy condition. Also the symmetric 2-form h of Lemma 6.17 is an element
of Vi s.

(i) We first consider the case when 7, > 3 and r is odd. In view
of the above observations and Lemmas 6.4 and 6.17, it suffices to show
that the 5 x 7 matrix, corresponding to the linear system consisting of the
equations (6.39)-(6.43) in the scalars a;j, with 1 < j < 8 and j # 4, is of
maximal rank. The determinant of the 5 x 5 matrix, whose entries are the
coefficients of the a;, with j =1 and 5 < j < 8, in these relations, is equal
to

A=20(s—1)(s—2)(r+s—1)(2r +s)(r+s)3A/,

where
A =413 —10r% + 12125 — 20rs + 9rs® + 4r + 8 + 5s — 8s% + 25°.
We verify that the expression A’ is > 0; indeed, since r, s > 3, we have
9rs? 4+ 12r2s = 3rs® 4 6rs? 4+ 10r%s + 2r2s

> 952 + 18rs + 1012 + 2rs
> 852 + 20rs + 1072,

Therefore the determinant A is > 0 and our 5 x 7 matrix is of maximal
rank.
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(ii) We next consider the case when r > 2 is even and s > 3. In view
of the observations which precede the case (i), and Lemmas 6.4 and 6.17,
it suffices to show that the 5 x 7 matrix, corresponding to the linear sys-
tem consisting of the equations (6.39)—(6.41), and (6.44) and (6.45) in the
scalars a;, with 1 < j < 8 and j # 4, is of maximal rank. The determinant
of the 5 x 5 matrix, whose entries are the coefficients of the a;, with j =1
and 5 < j < 8, in these relations, is equal to

A= —210(5 —D(s=2)2r+s)(r+s— 1)2(r + s)2A(r, s),
where
A(r,s) = 4r® —18r? 4+ 12r%s — 38rs + 9rs® + 28r 4 31s — 1557 + 25° — 12.

We now show that the expression A(r,s) is positive. In fact, when r = 2,

we have
A(2,5) = 25° + 35 +35+4> 0.

On the other hand, when r > 4, we have

25% 4+ 9rs? + 12rs = 253 + 3rs® + 615 + 5r2s + Tres
> 652 + 1252 + 18rs + 20rs + 2172
> 1552 + 38rs + 187r%;

since 31s — 12 > 0, we see that A(r,s) > 0 in this case. Therefore the
determinant A is always < 0 and our 5 X 7 matrix is of maximal rank.

(iii) We now consider the case when » =1 and s > 3. We set a5 = 0;
then the relations (6.39) and (6.41)—(6.43) are equivalent to the system of
equations

(45% — 1)ay — 2(2s — 1)(2say — 2a6 — ag) — (25 + 1)as

(659) +4(s* + 35— 1)a; = 0,
s2ay + 4sap — (s* — 25 — 2)(az + 2ag) — 4(2s + 3)ag

(6:56) +4(s2 = 2)ay = 0,

(6.57) s(ar — dag — ag — 2ag) + 4(s + 2)(ag + a7) = 0,

(6.58) (s +4)ay — 4saz — (s + 2)(ag — 2as) — 4ag = 0.

Since 2r +s—3 = s—1 > 0, in view of the observations which precede the
case (i), and Lemmas 6.4 and 6.17, it suffices to show that the 4 x 6 matrix,
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corresponding to the linear system consisting of equations (6.55)—(6.58) in
the scalars a;, with 1 < j < 8 and j # 4,5, is of maximal rank. The
determinant of the 4 x 4 matrix, whose entries are the coefficients of the
scalars ay, ag, as, ag in the equations (6.55)—(6.58), is equal to

325(s — 1)(s — 2)(s +1)3,

and so our 4 x 6 matrix is of maximal rank.

(iv) We now consider the case when » > 2 and s = 1. We set
az = a7 = 0. Then the relations (6.39) and (6.40) are equivalent to the
system of equations

(6.59) (2r + 1)ay — 4ras + 4as + 4ag + 2ag = 0,

(2r — 1)ay — 4(r — 2)ag + 12a5 — 4(2r% + 4r — 1)ag

6.60
( ) +2(4r* — 1)ag = 0.

On the other hand, the equation (6.42) is equivalent to
(6.61) r(a; — 4as — 2ag) + 4(r + 2)(as + ag) = 0,
while the equation (6.44) is equivalent to

(6.62) (r—1)(a1 —4az) + 4(r + 1)as + 2(r — 1)ag = 0.

Since 2r+s—3 = 2r —2 > 0, in view of the observations which precede the
case (i), and Lemmas 6.4 and 6.17, when r is odd (resp. even) it suffices to
know that the 3 x 5 matrix corresponding to the linear system consisting
of equations (6.59)—(6.61) (resp. of equations (6.59), (6.60) and (6.62)) in
the scalars aq,as,as, ag, ag is of maximal rank. Since the determinant of
the matrix

4 4 2
12 422 +4r—1) 2(4r?—1)
4(r +2) 4(r +2) —2r

is equal to 128(r + 1)3 (resp. of the matrix

4 4 2
12 —4(2r2 +4r —1) 2(4r2 1)
4(r+1) 0 2(r—1)

is equal to 128r(r + 1)?), our 3 x 5 matrix is of maximal rank when 7 is
odd (resp. even).
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(v) We now consider the case when r = s = 1. We set
as = a5 = a7 = 0;

then the relations (6.40) and (6.42) are equivalent to the system of equa-
tions

(663) a1 + 4as — 20ag + 6ag = 0, a1 — 4as + 12a¢ — 2ag = 0.

We also consider the relation (6.36) of Lemma 6.15. Since the determinant
of the matrix

1 4 6
1 -4 =2
5 —12 6

is equal to —64, we see that the 3 x 4 matrix of the linear system consisting
of equations (6.63) and (6.36) in the scalars aj,as,as,as is of maximal
rank. From Lemmas 6.4, 6.15 and 6.17, we obtain the desired inequality in
this case.

(vi) We now consider the case when r =0 and s > 3. We set

as = a4 =as =ag = 0;

then the relations (6.40), (6.44) and (6.45) are equivalent to the system of
equations

(25 — 3)(25 — 5)a; — (25% —4s — 1)az — 12(s* — 35 + 1)ay

(6.64)

+2(2s — 5)(4s — 5)ag =0,
(6.65) a1 —az +2ag =0,
(6.66) say + (2 — s)ag + 4say — (28 — 4)ag = 0.

Since the determinant of the matrix

252 —4s—1 12(s* —3s+1) 2(2s—5)(4s—5)
1 0 2
s—2 —4s —25+4
is equal to —32(s — 1)(s — 3), we see that the 3 x 4 matrix of the linear
system consisting of equations (6.64)—(6.66) in the scalars aq,as, az,as is

of maximal rank when s > 5. If s = 3, the relation (6.64) gives us the
equation

(667) 3a1 — ag + 12a7 — 2ag = 0;
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in this case, we also consider the relation (6.38) of Lemma 6.16. Since the
determinant of the matrix

1 -1 2
3 -1 =2
15 4 6

is equal to 104, the 3 x 4 matrix of the linear system consisting of equations
(6.65), (6.67) and (6.38) in the scalars ay, as, ar, ag is of maximal rank. For
all s > 3, we then obtain the desired inequality from Lemmas 6.4, 6.16
and 6.17.
(vii) We finally consider the case when r = 0 and s = 1. In this case,
we set
a2:a3:a4:a5:a6:a720.

The equation (6.39) is equivalent to
ay + 2ag = 0,
and then Lemmas 6.4 and 6.17 imply the desired result.

§7. The complex quadric of dimension three

In this section, we suppose that n = 3 and that X is the quadric Q3 of
dimension 3, which is a homogeneous space of the group G = SO(5). Let
I" be the dual of the group G.

The Casimir element of the Lie algebra go of G operates by a scalar c,
on an irreducible G-module which is a representative of v € I'. We know
that, for v € I', the G-module C5°(SPT¢) is an eigenspace of the Lich-
nerowicz Laplacian A with eigenvalue A\, = 12¢,. If W is a G-submodule
of C°(SPT¢), with v € T', we denote by C(W) the weight subspace of W
corresponding to its highest weight ~; we recall that the multiplicity of the
G-module W is equal to the dimension of the space C(W).

If we set
(t+s)t+s+3)+s(s+1)

6 9

c(t,s) =
by Freudenthal’s formula we have
Cy,., = (21, 5), cyr = c(2r+1,5);

in particular, we see that Crpy = 2/3. In fact, we easily verify that the
expression for A, given by (5.123) is equal to A, = 12¢,, .

From the branching law for SO(5) and its subgroup K described in
Theorem 1.2 of [54], using the computation of the highest weights of the
irreducible K-modules given in §7, Chapter V, we obtain the following
result given by Proposition 9.1 of [23] (see also [54, §4]):
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PROPOSITION 6.25. Fory € I, the SO(5)-module C5°(F'), where F' is
a homogeneous vector bundle over X = Q3, equal either to T' or T" or to
one of the vector bundles appearing in the decomposition (5.27) of S*T¢,
vanishes unless vy is equal to 7y, s or to 'y,’,’s, for some r,s > 0. For r,s >0,
the non-zero multiplicities of the SO(5)-modules C57 (F'), where I is one

of these homogeneous vector bundles, are given by the following table:

F Conditions on r, s Mult C57 (F)
T r>0,s>1 1
T//
(S2.07)+ r+s>2and s>1 2 ifr>1,s>2
( 50,27 ) 1 1 otherwise
(82T r>0,s>1 2 ifr>0,s>2
1 otherwise
(SQT*)(?T r,s >0 2 ifr>0,s>1
1 otherwise

REMARK. According to Proposition 6.25, we see that the irreducible
SO(5)-module C°° (S 2T7*){&™ is a non-zero eigenspace of the Lichnerowicz
Laplacian A w1th elgenvalue Ay 1o =12¢cy =8. Clearly the numbers c,,
and Cyy., Ar€ > Cyr when r + s > 0; therefore the first eigenvalue of the
Lichnerowicz Laplacian A acting on C*°(S?T¢) is equal to 8 and is strictly
less than the first eigenvalue Ao = 12 of the Laplacian A acting on the
space of functions C*°(X).

In [23], we verified that all the non-zero vectors of the spaces V,. ; and
W, are highest weight vectors of the SO(5)-module C° (S*T¢). From
Proposition 5.19, Lemmas 6.4 and 6.5, and the inclusions (6 14) and (6.15),
we infer the following result given by Lemma 9.2 of [23]:

LEMMA 6.26. For r,s > 0, we have

C(C2, (S?TE)Y) = Vyas, C(C°, . (S?TE)°) =V, 0541,

Yr,2s Yr,2s+1

C(C, (S*TE)°) = W05,  C(CZ, . (S*TE)Y) = Wy ost1-

Vr,2s Yr,2s+1

(6.68)

~In 87, Chapter V, we saw that, for » > 0 and s > 1, the section
fr.s—1m4—Hess fo1 is a highest weight vector of the irreducible SO(5)-
module C5° ((S*T¢)* ™) and we derived the relations (5.126), (5.129) and
(5.130); in fact, this section is even (resp. is odd) when s is an even
(resp. odd) integer. These results can also be obtained using Proposi-
tion 5.19 and Lemma 6.26.
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From Proposition 5.22 and from Lemmas 5.21, 6.7 and 6.26, we obtain
the following result:

PROPOSITION 6.27. Forr,s > 0, we have
NQ’C N C:?:S (SQT(E) DoO (T(c)
From Proposition 5.23 and from Lemmas 5.21, 6.23, 6.24 and 6.26, we

then obtain the following result:

ProposITION 6.28. For r,s > 0, we have
Z2,C N Coo (SQT*)odd Docoo ( )odd.
The following lemma is a consequence of Proposition 6.25 and of the
proof of Lemma 9.3 of [23].
LEMMA 6.29. For r > 0,s > 1, the SO(5)-modules C3 (T¢)®" and

cy (Tt)°% are irreducible. For r > 0, we have
Cszo (Tt) = {0}.

In [23], we verified that all the non-zero vectors of the spaces V!

89
with s > 1, and W/, with s > 0, are highest weight vectors of the

SO(5)- module C’f;fS(SQTC).
The next lemma is given by Lemma 9.4 of [23].
LEMMA 6.30. The SO(5)-module o ((SzT*) T)ev is irreducible,

and it possesses a highest weight vector ho sat1sfy1ng
== fo1-ho.
PROOF: If ¢ is the element of SO(5) defined in §7, Chapter V, we
have (¢* fo,1)(a) =1 and (¢* f’)(a) = 0. By (5.121), we obtain
(6.69) ¢ ((dfr0)" Jws)(m) = ¢"((df10)* Jmy_Hess f')(in) = —1

at the point a. By Proposition 6.25, the SO(5)-module C7 (S2T*)E)
0,0

is irreducible; let h{ be a highest weight vector of this module. Clearly

the section hy, is either even or odd. For r,s > 0, from the equality

Yrs = V0.0 T Vr,s we infer that f. hy is a highest weight vector of the

50(5)-module C37 ((SQT*) 7). Since div : $?*7¢ — 7T is a homogeneous

differential operator by Lemma 6.29 we see that

(6.70) div (fuoh}) =0,
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for r > 0. The relation (6.70), with » = 0,1, and formula (1.8) imply that
(dfi0)f Jhy=0.

Hence the highest weight vector h = fo 1hf of Cf;,)o . ((S*T*){&™) satisfies the

equation
(6.71) (df1.0)* Jh=0.

According to Proposition 6.25, we know that the multiplicity of the SO(5)-
module C’;’éo ) ((S*T*){£7) is equal to 2. By the remark preceding this lemma

and the inclusions (6.16), the sections w3 and k™ are highest weight vectors
of the modules C;’z’l((SQT*)éf)e" and Cséo,l((SQT*)éf)Odd, respectively.
Therefore these vectors are linearly independent and there exist unique
scalars ¢y, co € C such that

h = ciws + Cgk_.

Moreover since the section h is either even or odd, we know that one (and
only one) of the coefficients ¢;, co must vanish. If ¢; = 0, then from (6.71)
we obtain the relation

(df1.0)f Jws =0,

which contradicts (6.69). Therefore we must have ¢; = 0, and the vector h
is a non-zero multiple of £~ and so is an odd section of (S>7T*){~. Hence
the vector hg = (1/c2)hy satisfies the conclusion of the lemma.

For r > 0, the highest weight vector fr,oho of the SO(5)-module
Co°((S2T*)E7)ev generates (over C) a subspace V.o of this module. By
Lemma 6.30 we have

fr,ski == f~r,s+1h07

for r;,s > 0, and so the symmetric 2-form fmho belongs to the sub-
space V!, for all r,s > 0.

From Proposition 6.25, Lemma 6.6, the inclusions (6.16) and the re-
mark preceding Lemma 6.30, we deduce the following result given by
Lemma 9.5 of [23]:

LEMMA 6.31. Forr,s > 0, we have

C(O7, (ST =Veney CCT, (ST = Ve,

(6.72) o :
C(Cf;f,zs (S TC*)O ) - ;,2.@7 C(OOO (S TC*)ev) = ;,28+1'

Yr,2s+1
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Let r,s > 0 be given integers. By Lemma 6.31, the SO(5)-modules
c ((S*T*)E7)" and c ((ST*){E7)°4d are irreducible. Moreover,
s r,s41

we have
Csio((SQT*)g_) = C’f;f)g((SQT*)(‘C"_)eV.

In fact, when s is even (resp. odd), the section fr,sh() (resp. fr,s_lwg)
of (S2T*){™ is a highest weight vector of the irreducible SO(5)-module
Cf;/ow((SQT*)[C*'_)e". When s is > 1 and even (resp. odd), the section

fr’s,lwg (resp. fr,sho = fns,lk_) is a highest weight vector of the ir-
reducible SO(5)-module C3? ((S2T) & )edd.
The following result is proved in [23, §9].

LEMMA 6.32. For r,s > 0, with s even, the symmetric 2-form fr,sho
on X does not satisfy the Guillemin condition.

For r > 0, we have W], = {0}. From Proposition 5.22 and from
Lemmas 6.8, 6.29, 6.31 and 6.32, we then obtain the following result:

ProPOSITION 6.33. For r,s > 0, we have

NocNCF (S*TE)™ = DyCSy (To)™.

s ,8

From Proposition 5.23 and from Lemmas 6.21, 6.22, 6.29 and 6.31, we
obtain the following result:

PROPOSITION 6.34. For r,s > 0, we have
ZycNCY (STE)°M = DoCSY (T ).

We now complete the proof of the following result of [23].

THEOREM 6.35. An even symmetric 2-form on the quadric X = Q3
satisfies the Guillemin condition if and only if it is a Lie derivative of the
metric.

PROOF: From Proposition 2.30,(1), with X = Q3, ¥ = {7} and
€ = +1, and Propositions 6.25, 6.27 and 6.33, we obtain the equality
Noc N C®(S2TE)Y = DyC™(Tt)*,

which implies the desired result.
The following is a consequence of joint work with Tela Nlenvo (see [52]
and §5).
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THEOREM 6.36. An odd symmetric 2-form on the quadric X = Q3
satisfies the zero-energy condition if and only if it is a Lie derivative of the
metric.

PROOF: From Proposition 2.30,(ii), with X = Q3, ¥ = {7} and
€ = —1, and Propositions 6.25, 6.28 and 6.34, we obtain the equality

22,(: N Coo(sQTE)odd _ DOCOO (T([j)Odd,

which implies the desired result.
Let r,s > 0 be given integers. By Lemma 4.5 of [23], when s > 2 is
even, the highest weight vector

frs—1my_Hess fo1

s

Guillemin condition. When s is even (resp. odd), by Lemma 6.32 (resp.
Lemma 4.10 of [23]), the highest weight vector f,.sho (resp. f, s_1ws) of the
irreducible SO(5)-module C37 ((S2T*)E 7)Y does not satisfy the Guillemin
condition. Thus from the remarks following Lemma 6.31 and the equalities
(5.126) and (5.129), we obtain the following:

of the irreducible SO(5)-module C’ifﬁ((SzT*)g_)c" does not satisfy the

PROPOSITION 6.37. Let X be the complex quadric Qs. For r,s > 0,
we have

Noe N O ((SPT)ET)™ = Noe O ((SPT*)E7)™ = {0},

s

The following theorem is a direct consequence of Propositions 5.24,
6.25 and 6.37.

THEOREM 6.38. An even section of (S*T*)™~ over the quadric Q3,
which satisfies the Guillemin condition, vanishes identically.

Let r > 0, s > 1 be given integers. By Lemma 6.9, when s is an odd
integer, the highest weight vector

fr,s—17T+—Hess fO,l

of the irreducible SO(5)-module Csf,s((SQT*)éf)Odd does not satisfy the
zero-energy condition. When s is even (resp. odd), by Lemma 6.11 (resp.
Lemma 6.10), the highest weight vector f, s_1ws (resp. frsho = frs—1k™)
of the irreducible SO(5)-module C’,‘;fs((SQT*)g_)Odd does not satisfy the
zero-energy condition. Thus from the remarks following Lemma 6.31 and
the equalities (5.126) and (5.129), we obtain the following:
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PROPOSITION 6.39. Let X be the complex quadric (3. For r,s > 0,
we have

ZocNCS ((SPT)E)M = Zoe N O ((SPTF)E7)°M = {0},

Yr,s

The following theorem is a direct consequence of Propositions 5.25,
6.25 and 6.39.

THEOREM 6.40. An odd section of (S?*T*)*~ over the quadric Q3,
which satisfies the zero-energy condition, vanishes identically.

88. The rigidity of the complex quadric

In this section, we assume that X is the complex quadric Q,,, with
n > 3, and we extend the main results of §7 to the quadric @, ; in particular,
we shall prove the four following theorems.

THEOREM 6.41. An even symmetric 2-form on the quadric X = @,
with n > 3, satisfies the Guillemin condition if and only if it is a Lie
derivative of the metric.

THEOREM 6.42. An odd symmetric 2-form on the quadric X = @,
with n > 3, satisfies the zero-energy condition if and only if it is a Lie
derivative of the metric.

THEOREM 6.43. An even section of (S*T*)T~ over the quadric Q.,
with n > 3, which satisfies the Guillemin condition, vanishes identically.

THEOREM 6.44. An odd section of (S?*T*)*~ over the quadric Q,,
with n > 3, which satisfies the zero-energy condition, vanishes identically.

From Theorems 6.41 and 6.42, we shall deduce the following:

THEOREM 6.45. The complex quadric X = Q,, with n > 3, is in-
finitesimally rigid.

From Theorems 6.43 and 6.44, we shall deduce the following:

THEOREM 6.46. A section of (S?T*)*~ over the complex quadric Q.,,
with n > 3, which satisfies the zero-energy condition, vanishes identically.

We now prove these last two theorems simultaneously. Let h be a
symmetric 2-form on X satisfying the zero-energy condition. We write
h = ht 4+ h~, where

Wt =3(h+7h),  h™=i(h—1"h)

are the even and odd parts of h, respectively. Clearly, since 7 is an isometry,
both these 2-forms ht and h~ satisfy the zero-energy condition. If 4 is a
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section of (S2T*)*~, so are the forms ™ and h~. By Lemma 2.11, the even
form h satisfies the Guillemin condition. First, by Theorems 6.41 and 6.42
we know that the even form h™ and the odd form h~ are Lie derivatives
of the metric. Finally, if h is a section of (S*T*)*~, by Theorems 6.43
and 6.44 we know that the forms AT and A~ vanish.

From Theorems 6.41 and 6.43, and from Propositions 2.18 and 2.21,
with A = {id,7} and F = E = (S?T*)"~, we deduce the following two
results:

THEOREM 6.47. The real Grassmannian Y = Gg{’n, with n > 3, is
rigid in the sense of Guillemin.

THEOREM 6.48. A section of the vector bundle Ey over the real
Grassmannian Y = Gﬂin, with n > 3, which satisfies the Guillemin condi-
tion, vanishes identically.

We now proceed to prove Theorems 6.41-6.44. If = is a point of X, let
F! be the family of all closed connected totally geodesic submanifolds of X
passing through = € X which can be written as Exp,V, ® W1, where W} is
a three-dimensional subspace of W,. In §6, Chapter V, we considered the
family

F=UZ%
zeX

of submanifolds of X and we saw that a submanifold of X belonging to F’
is isometric to the complex quadric Q3 of dimension 3.

From Lemma 4.8, with p = 2 and ¢ = 3, we obtain:

LEMMA 6.49. Let X be the complex quadric @,, with n > 3. Let
x € X and h be an element of S*T. If the restriction of h to an arbitrary
submanifold of the family F, vanishes, then h vanishes.

PROPOSITION 6.50. Let h be a symmetric 2-form on the quadric X =

Qn, withn > 3.
(i) If h is an even form satisfying the Guillemin condition, then h

belongs to L(F").

(ii) If h is an odd form satisfying the zero-energy condition, then h
belongs to L(F').

(iii) If h is a section of (S*T*)*~ and satisfies the hypotheses of (i)
or (ii), then h vanishes.

PROOF: We consider the complex quadric Z = Q3 of dimension 3.
Let X’ be a submanifold of X belonging to the family F’. According to
Lemma 4.6 and the equality (5.64), there is a totally geodesic imbedding
1 : Z — X whose image is equal to X’ and which possesses the following
properties:
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(a) if h is a section of (S27™*)T~, then the symmetric 2-form i*h on Z
is a section of the sub-bundle (5%7%)"~ of S?T%;

(b) if h is an even (resp. odd) form on X, then the symmetric 2-form

i*h on Z is even (resp. odd).
Since the rank of the symmetric space X’ is equal to that of X, if h sat-
isfies the Guillemin condition, then the form ¢*h on Z also satisfies the
Guillemin condition. First, if h satisfies the hypotheses of (i) (resp. of (ii)),
by Theorem 6.35 (resp. Theorem 6.36) the form i*h is a Lie derivative of
the metric of Z, and hence the restriction of A to X’ is a Lie derivative
of the metric of X’. Next, if h is a section of (S2T*)T~ and satisfies the
hypotheses of (i) (resp. of (ii)), by Theorem 6.38 (resp. Theorem 6.40), we
infer that ¢*h and the restriction of h to X’ vanish. Now suppose that h
satisfies the hypotheses of (i) or (ii). Then we have shown that h belongs
to L(F'); moreover, if h is a section of (S*T*)*~, by Lemma 6.49 we see
that h vanishes.

We note that Proposition 6.50,(iii) gives us Theorems 6.43 and 6.44.
We therefore know that Theorem 6.46 also holds.

We consider the G-invariant family F = F; of closed connected totally
geodesic surfaces of X defined in §6, Chapter V; there we saw that each
surface of F is contained in a totally geodesic submanifold belonging to the
family F’, and that all the totally geodesic flat 2-tori of X belong to the
family F. Thus any closed geodesic of X is contained in a totally geodesic
surface of X belonging to the family F; it follows that

(6.73) L(F') C Z,.

According to the inclusion (6.73) and Theorem 6.46, we know that the
equality

(6.74) C((S?T*)" )N L(F') = {0}

holds. By Lemma 5.8, relation (6.74) and Proposition 5.17, we see that
the families F and F’ and the vector bundle E = (S2T*)*~ satisfy the
hypotheses of Theorem 2.48,(iii). Hence from this theorem, we deduce the
following result:

THEOREM 6.51. Let h be a symmetric 2-form on the quadric X = @,
with n > 3. If h belongs to L(F'), then h is a Lie derivative of the metric
of X.

This theorem together with the first two parts of Proposition 6.50 im-
plies Theorems 6.41 and 6.42. According to the proofs of Theorem 2.45,(iii)
and Proposition 6.50, we see that the only results of §7 which we require
for the proof of Theorem 6.41 (resp. Theorem 6.42) are Theorems 6.35
and 6.38 (resp. Theorem 6.36 and 6.40).
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None of our results concerning forms on the quadric satisfying the
zero-energy condition enter into our proof of Theorem 6.41 given above.
Previously, in [23] we deduced Theorem 6.41 for the quadric Q,,, with n > 4,
from Theorem 6.35 by means of the infinitesimal rigidity of this quadric.
In fact, if h is an even symmetric 2-form on X = @,,, with n > 4, satisfying
the Guillemin condition, by Proposition 6.50,(i) and the inclusion (6.73) we
know that h satisfies the zero-energy condition; the infinitesimal rigidity
of @, implies that h is a Lie derivative of the metric.

From Theorems 5.27 and 6.41, we obtain the following:

THEOREM 6.52. An even section of L over the quadric Q.,, withn > 3,
which satisfies the Guillemin condition, vanishes identically.

From Theorem 6.41 and the decomposition (1.11), we obtain the rela-
tion

(6.75) Non{heC®(S*T*)* | divh =0} = {0}.

89. Other proofs of the infinitesimal rigidity of the quadric

In this section, we suppose that X is the complex quadric @,, with
n > 4. This section and the next one are devoted to other proofs of the
infinitesimal rigidity of the quadric X = @Q,, with n > 4. Some of the
methods used here were introduced in [18] and [22].

The essential aspects of the proof of the following proposition were
first given by Dieng in [10].

PROPOSITION 6.53. The infinitesimal rigidity of the quadric Q3 im-
plies that all the quadrics @y, with n > 3, are infinitesimally rigid.

PrOOF: We consider the G-invariant family F3 of closed connected
totally geodesic surfaces of X introduced in §6, Chapter V and the family
F' of closed connected totally geodesic submanifolds of X isometric to the
quadric Q3 introduced in §6, Chapter V and in §8. According to a remark
made in §6, Chapter V, we know that each surface belonging to the family
F3 is contained in a totally geodesic submanifold of X belonging to the
family F’'. Assume that we know that the quadric Q)3 is infinitesimally rigid;
then the family F’ possesses property (III) of §8, Chapter II; moreover,
by Propositions 5.13 and 5.14, the families 7 = F3 and F’ satisfy the
hypotheses of Theorem 2.47,(iii). From this last theorem, we deduce the
infinitesimal rigidity of X.

We now consider the G-invariant family F = JF, of closed connected
totally geodesic surfaces of X. The sub-bundle N = Nx of B consisting
of those elements of B, which vanish when restricted to the closed totally
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geodesic submanifolds of F, was introduced in §8, Chapter II and was
considered in §6, Chapter V. We also consider the differential operator

Dy 7 S2T* — B/N3

of §8, Chapter II. o )
We consider the families F*, F¢ and F7 of closed connected totally
geodesic submanifolds of X introduced in §6, Chapter V and we set

F =FurSur.

A submanifold of X belonging to F' (resp. to F9) is a surface isometric to
the flat 2-torus (resp. to the real projective plane RIP?), while a submanifold
of X belonging to F7 is isometric to the complex projective space CP2.
In §6, Chapter V, we saw that each surface belonging to F? is contained
in a submanifold of X belonging to the family F7; therefore each surface
of X belonging to F is contained in a submanifold of X belonging to the
family F’. According to Proposition 3.19 and Theorems 3.7 and 3.39, we
see that the family F’ possesses property (III) of §8, Chapter II. Hence
a symmetric 2-form h on X satisfying the zero-energy condition belongs
to L(F'), and, by Proposition 2.44, verifies the relation

D1 yh=0.

PROPOSITION 6.54. Let h be a symmetric 2-form on quadric X = @y,
with n > 4, satisfying the zero-energy condition and the relation divh = 0.
Then when n > 5, the symmetric form h is a section of the vector bundle L;
when n = 4, it is a section of the vector bundle L & (S?T*)*~.

PRrROOF: We know that h belongs to L(F'). We suppose that n > 5
(resp. that n = 4). According to Proposition 5.10 (resp. Proposition 5.11),
we see that the hypotheses of Theorem 2.48,(i) hold, with E = L (resp. with
E = L@ (S*T*)*7). By Proposition 5.17, we know that F(X) = {0}
(resp. that E(X) C C*((S?T*)*7)). Then Theorem 2.48,(i) tells us that
h is a section of L (resp. of L & (S?T*)™7).

In §10, we shall prove the following result:

PrOPOSITION 6.55. Let X be the quadric Q4. A section h of the
vector bundle L @& (S*T*)*~ satisfying the relations

divh=0, Dyzh=0

vanishes identically.

We now give an alternate proof of Theorem 6.45, with n > 4, using
Propositions 6.54, 6.55 and 5.26. In the case n = 4, this proof appears
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in [22]. Let h be a symmetric 2-form on the quadric X = Q,,, with n > 4,
satisfying the zero-energy condition and the relation divh = 0. When
n > 5, Proposition 6.54 tells us that h is a section of L; by Proposition 5.26,
we see that h vanishes identically. When n = 4, Proposition 6.54 tells us
that h is a section of L@ (S?T*)*~, and, as we saw above, Proposition 2.44
gives us the relation D rh = 0; by Proposition 6.55, we see that h vanishes.
Then Proposition 2.13 gives us the infinitesimal rigidity of X.

Finally, we present an outline of the proof of the infinitesimal rigidity
of Qn, with n > 5, given in [18]. This proof completely avoids the use of
harmonic analysis on the quadric; it requires the description of the explicit
complement of B in the vector bundle Ny = N7 given by Proposition 5.12.

We consider the natural projection o : B — B/B and the differential
operator D] : B/B’ — Bj defined in §3, Chapter I. We also consider the
morphism of vector bundles

Y :N\NT* - B, 7p:8°T"— B

of Chapter I. In [18], using the equalities (5.73), (5.19) and (5.22), by
purely algebraic computations and elementary operations involving differ-
ential forms we were able to prove the following result:

PROPOSITION 6.56. Let (3 be a section of (\*T*)~ and v be a section
of L over an open subset of X satisfying

(6.76) Dia(y () + 7p(v)) = 0.
Then we have v =0 and V3 = 0.

We suppose that n > 5. Let h be a symmetric 2-form on X satisfying
the zero-energy condition. As we have seen above, we have D; rh = 0. By
Proposition 5.12, there exist elements 3 of C*°((A*T*)~) and v € C>(L)
such that

Dih = a($(B) + 75(v)).

By Lemma 1.17, we obtain the relation (6.76). Then Proposition 6.56 tells
us that v = 0 and VB = 0. Since a harmonic differential 2-form on X
is a constant multiple of the K&hler form of X, we immediately deduce
that 8 = 0. Thus we know that D1h = 0. We know that the sequence (1.24)
is exact (see §6, Chapter V); therefore h is a Lie derivative of the metric.
We have thus shown that the infinitesimal rigidity of the quadric @,,, with
n > 5, is a consequence of Propositions 5.12, 5.14 and 6.56.

§10. The complex quadric of dimension four

In this section, we suppose that X is the complex quadric Q4 of di-
mension 4, which is a homogeneous space of the group G = SO(6), and we
present an outline of the proof of Proposition 6.55.
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For r, s > 0, we consider the elements
Yoo =(2r+s+2) A+ (s+ DA+ A2, 17, = (2r+s5+2)Ao+(s+1)A — X

of I'.

We recall that the SO(6)-equivariant involution x of (S?T*)T~ de-
fined in §5, Chapter V gives rise to the decomposition (5.70) of the sub-
bundle (S2T*)Z§7. In §7, Chapter V, we saw that the highest weight of the
irreducible K-submodules Fd, and Fg , of (S?*T*){, are equal to Aj + Ao
and A1 — Ao, respectively. Hence from the branchiné law for SO(6) and K
described in Theorem 1.1 of [54], we obtain the following result given by
Proposition 4.2 of [21] (see also [54, §4]):

PROPOSITION 6.57. For v € T, the SO(6)-module C°((S*T*){™)
vanishes unless vy is equal to ¥y sy1, to 7., or to 47, for some r,s > 0.
For r,s > 0, the multiplicities of the SO(6)-modules C3? ((S?T*)¢™) and

Cﬁ?ys((SQT*)gf) are equal to 2.
The function f; on C"*?2 defined by

f1(Q) = (Co + i) (G + iCnt1) — (G + Cn1) (o + 1)

belongs to H. We consider the element fl of H induced by f;, and also the
section

Wy =Ty (fo,l Hess fi — fi Hess fo,l)
of (S2T*)¢~.
The following lemma is given by Lemma 3.9 of [22].
LEMMA 6.58. Let r,s > 0. The elements

div (fr,sw4)7 div (,]E?",s * UJ4)

of C*(T¢) are linearly independent.

According to Lemma 6.58, we know that wy is a non-zero section of
(S2T*)&~; in [22, §3], we saw that f, swy is a highest weight vector of the
50(6)-module C7¥ ((82T*)¢7), for r;s > 0. Since the morphism * is an

SO(6)-equivariant involution of (S27*)*~, it follows that fr’s* wy is also a
highest weight vector of the SO(6)-module C5% ((S?T*)¢7). From Lemma

6.58 and Proposition 6.57, we infer that the space C(CSP ((S*T*)E7)) is

generated by the sections fmwzl and fm* wy. Since div : SQ’ZE —Tdisa
homogeneous differential operator, Lemma 6.58 tells us that the mapping

(6.77) div : Cj;s((SQT*)g—) — C% (T¢)

is injective for j = 1.
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In [22, §3], we showed that the SO(6)-module C5 ((S*T*){7) is equal
to the image of C’j:‘f ((S?T*)¢ ™) under the conjugation mapping sending

the section h of (S2T*){ ™ into h. Therefore the mapping (6.77), with j = 2,
is also injective.

We again consider the family F = F5 of closed connected surfaces of X,
the sub-bundle N, of B and the differential operator Dy £ of §9. The vector
bundle T¢ & (B/Nz)c endowed with the Hermitian scalar product induced
by the metric ¢ is homogeneous and unitary; moreover the differential
operator

Q=dive Dl,]: : 5278 — 78 D (B/NQ)(C

is homogeneous.
The following result is given by Lemma 3.7 of [22]:

LEMMA 6.59. Ifr >0, s > 1, we have
D1 7+ m4_Hess f,ﬂys #0.

According to the results of §7, Chapter V, concerning the highest
weight vectors of the SO(6)-module C2° ((S*T*){7), withr > 0and s > 1,
and by the relation (5.128), a highest weight vector h of this SO(6)-module
can be written in the form

h = by fre_1my_Hess fo1 + box my_Hess f,.,

where by,by € C.
The following result is a consequence of Lemma 3.8 of [22].

LEMMA 6.60. Let r,s >0, withr +s > 1, and b,t/,b” € C. Suppose
that the element

h = b/fNrfl,s’]TlHeSS f~1,0 + b//.frfl,s’]TNHeSS fl,O
(6.78) _ N B
+ b1 frs—1m_Hess fo,1 + bax my _Hess f;. s

of C° (L¢ @ (S*T*){™) satisfies Qh = 0. Then h vanishes identically.

PROOF: According to Lemmas 5.2 and 5.29, the relation divh = 0
gives us the vanishing of the coefficients b’ and " when r > 1, and of the
coefficient b; when s > 1. Therefore when s > 1, we see that

h = bQ* 7T+_HeSS fr,s;

then Lemma 6.59 tells us that by also vanishes.
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If r, s > 0 are integers satisfying r +s > 1, according to §7, Chapter V
and the remarks appearing above, a highest weight vector h of the SO(6)-
module

O3 (Le @ (S*T™)¢7)

can be written in the form (6.78), with b1,bs,0’,b” € C. Since the differen-
tial operator @ is homogeneous, from Lemma 6.60 we deduce the following:

PROPOSITION 6.61. Let r,s > 0 be given integers, with r+s > 1. An
element h of C3° (Lc @ (82T*){7) satisfying Qh = 0 vanishes identically.

Propositions 5.18, 5.19, 6.57 and 6.61, together with the injectivity of
the mappings (6.77), with j = 1,2, imply the following:

PROPOSITION 6.62. Let v be an element of I'. Then an element h of
CP(Lc® (S2T*){7) satisfying Qh = 0 vanishes identically.

Now Proposition 6.55 is a direct consequence of Propositions 6.62
and 2.3 (with @, = 0).
According to Proposition 5.17 and (5.132), we know that the relations
E(X) C C%(8*T*)*, E(X)c =C3 (SPTE)™ = 7y _Hess Ho
hold. The last equalities imply that the result of Lemma 5.2 holds for

all f € Ho1. From the preceding relations and (6.75), we obtain the fol-
lowing;:

PROPOSITION 6.63. Let X be the quadric Q4. Then we have

(6.79) NaNE(X) =Ny N C®

0,1

(S*TE)™ = {0}.

811. Forms of degree one

We now return to the study of the complex quadric X = @, of dimen-
sion n > 3, viewed as a homogeneous space of the group G = SO(n + 2).
Most of the results and proofs of this section can be found in [20] and
in [23, §11].

We say that a differential form 6 of degree p on X is even (resp. odd)
if 70 = €6, where € = 1 (resp. € = —1). Clearly, if 6 is an even (resp. odd)
differential p-form on X, so is the (p 4+ 1)-form df. In particular, we have

(6.80) dC™(X)® € C™(Tg)®,  dC™(X)° ¢ C°°(Tg)°d.

We consider the G-invariant families !, F2 and F?* of closed con-
nected totally geodesic surfaces of X introduced in §6, Chapter V. We
know that F1 consists of all the totally geodesic flat 2-tori of X. We easily
see that an element of T, which vanishes when restricted to the surfaces
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belonging to the family F*, vanishes. The set C; (resp. C3) consisting of
those elements of AT, which vanish when restricted to the surfaces be-
longing to the family F! (resp. the family F%), is a sub-bundle of A\°T*.
The set C3 consisting of those elements of /\2T*, which vanish when re-
stricted to the surfaces belonging to the G-invariant family F! U F2, is
clearly a sub-bundle of Cf.

Let x € X and let 3; be an element of C ,; and 3, an element of Cy ;.
Let v be an element of S,,, and let {&, n} be an orthonormal set of elements
of ;. An element 6 of T, which vanishes when restricted to the surfaces
belonging to the family F!, satisfies

0(¢) =0,  6(Jn) =0,

and therefore vanishes. According to the definition of the families Fl
and F*, we see that 4, and 3y satisfy the relations

(6.81) P&, In) =0, Ba(&m) =0.

Since v is an arbitrary element of S, from relation (5.12) we infer that 3,
and (> also satisfy

Ba2(JE, Jn) =0, Ba(E+tTE,m+tJn) =0,

for all t € R. From the first and last identities of (6.82), we infer that

(6.82)

(6.83) Pr(JE, In) = Bu(&:n), Ba(&, Jn) + B2(JE,n) = 0.
Hence, if 82 belongs to (Tﬂé’l)_, we see that
Ba(&, Jn) = 0;

therefore by the second relations of (6.81) and (6.82), we obtain the equality
(6.84) Cy N (AT~ = {0}

Since the vectors £ +n and £ — i of Tf are orthogonal and have the same
length, the first equality of (6.81) tells us that

Pr(& —n, JE+ Jn) = 0;

the preceding relation, together with the first equality of (6.81), implies
that the element (3; of C; satisfies

(6.85) P& JE) = Bi(n, In).
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By (6.81) and (6.83), we see that 31 belongs to (Tx''). Clearly, the 2-form
w is a section of Cy. If we set a = [1(&, JE), then according to (6.85)
and (6.81), the element ' = 3 — aw satisfies

#(¢.J¢) =0,

for all elements ¢ of T.f. By (5.24), we therefore know that 3’ belongs
to (Tg'")T. We have thus proved that C} is a sub-bundle of (Tp"")* @ {w}.
Clearly, by (5.24) we also see that (T]é’l)+ C C;. We have thus verified the
first relation given by the following result:

LEMMA 6.64. We have
(6.86) Cr =Ty e{w), Co=1x")", Cs={0}

PROOF: It remains to verify the last two equalities of (6.86). Let
z € X and let 8 be an element of A*T*. According to (6.81) and (6.82),
we know that § belongs to Cs if and only if the relations

hold for all elements v € S, and all orthonormal sets {{,n} of elements
of T,f,. It follows that an element of A°T# belongs to Cy if and only if
both its components in (A*T*)~ and Ty are elements of Cy. Hence from
the equality (6.84), we see that Cy is a sub-bundle of Tﬂi’l; more precisely,
by (5.24) we obtain the second relation of (6.86). Finally, suppose that 3
belongs to C3; then we may write

B =B+ cuw,

where (3; is an element of (T]é’l)+ and ¢ € R. Let v be an element of S,
and {£,7} be an orthonormal set of elements of T,f,. According to the

definition of the family F2, if the element 8 of Cy belongs to Cs, it satisfies

B+ Jn,JE—n) =0.

Since (1 is a Hermitian form, the left-hand side of the preceding relation
is equal to

_261 (57 T]) + 267

and so we obtain

B1(€,n) = B1(n, &) = 2c.

From these last equalities, we deduce that 51(£,7) = 0 and ¢ = 0. Since 5
also satisfies the first relation of (6.81), we see that 5 = 0 and so we obtain
the last equality of (6.86).
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According to the decompositions (1.66) and (5.28), the sub-bundles
Fi=(Tghy @ (N'T*)",  F=(Tx")" & (N'T*)”

are the orthogonal complements of C'; and of Cs, respectively, in /\2T *
for j = 1,2, we consider the orthogonal projection ; : /\2T* — Fj. Then
Fi ¢ and F5 ¢ are homogeneous complex sub-bundles of /\2T<c*~ We consider
the first-order homogeneous differential operator czj =mid :T" — Fj
and the kernel M; of the induced mapping d; : C®(T%) — C™(F;c¢),
for 7 =1,2. For v € I" and j = 1,2, we consider the G-submodules

M, = M;NC2(TE),  MsY, = My 0 C2°(T3)*

of C°(T¢). For j = 1,2, we consider the complex

(6.87) 0= (X) —Ls 0 (T*) -2 0% (F)).

LEMMA 6.65. Lety € I' and let 6 be an element of C3° (T¢). Suppose
that df is a form of type (1,1).

(i) If~y is not of the form v, s, with r + s > 0, then we have df = 0.

(ii) If+y is equal to 7y, s, withr+s > 0, and 0 is a highest weight vector
of C3°(T¢), then there exists a scalar ¢ € C such that

(6.88) df = cddf, ..

PROOF: Since df is a form of type (1,1) and X is a simply-connected
Kéahler manifold, there exists a unique function f € C°°(X) satisfying

df = 00f and
/ fdX =0.
X

Since the differential operator 90 is homogeneous, this function f belongs
to C3°(X). Hence if 7 is not of the form =, 5, with 7 4+ s > 0, this function
f vanishes and df = 0. On the other hand, if v =+, 5, with » +s > 0, and
¢ is a highest weight vector of C2°(1¢), then f is a multiple of the highest

weight vector frys of C¥° (X); thus there exists a complex number ¢ € C
such that the relation (6.88) holds.

LEMMA 6.66. Let v be an element of T'.
(i) If~ is not equal to v = 70,1, we have

My N CF(T¢E) = dCF° (X).
(ii) If v is not of the form ~,, with r > 1, we have

My N C2(T¢) = dCS(X).
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(iii) Ify = 0, with r > 1, we have
My N C2(TE)™ = dC°(X)°.

PRrROOF: We first remark that, since X is simply-connected and d is
a homogeneous differential operator, a closed 1-form of C2°(7¢) belongs
to dC5°(X). Therefore, to prove the desired results, it suffices to show
that dM; , = 0 (resp. dMs . = 0) when ~ satisfies the hypothesis of (i)
(resp. of (ii)), and that dM3Y, = 0 when v = 7,0, with 7 > 1. Let j be
an integer equal to 1 or 2. Assume that M, # 0 and let 6 be a highest
weight vector of M . The relation Jje = 0 implies that df is a form of
type (1,1). First, if v is not of the form ~, s, with r +s > 0, according
to Lemma 6.65,(i), we have df = 0 and so dM;, = {0}. Now suppose
that v is equal to 7, s, with 7 + s > 0; by Lemma 6.65,(ii), we know that
there exists a constant ¢ € C such that the equality (6.88) holds. Since the
morphism (1.67) induces the isomorphisms (5.25), by Lemma 1.25, when
j =1 (resp. j = 2), we see that the relation Jje = 0 is equivalent to the
fact that the symmetric 2-form cm Hess fr,s is a section of the sub-bundle
{g}c & (S*T*){™ (resp. of the sub-bundle (S?T*){™), or to the equality
e Hess fr.s = 0 (resp. to the equality cmy Hess f., = 0). According
to §7, Chapter V, when » > 1 or s > 2 (resp. when s > 1), the section
7T3_ Hess f, s (resp. the section 7 _Hess f,. ;) is non-zero; therefore for j = 1
(resp. j = 2), under this hypothesis, the constant ¢ vanishes and we see that
df =0 and dM;, = {0}. We have thus completed the proof of assertions
(i) and (ii). For > 1, by (5.37) and (5.113) the 2-form 9df, o is odd. If
6 is an even section of T, by (6.80) we know that the 2-form df is even.
Thus if j = 2 and v = v,0, with r > 1, and if 6 is an even section of 7%, the
relation (6.88) implies that df vanishes. Thus when v = 7, o, with r > 1,
we have shown that dM5Y = {0}, and so assertion (iii) holds.

_ PROPOSITION 6.67. An even 1-form 6 on X satistying the condition
dof = 0 is exact.

PROOF: Let 6 be an even 1-form on X satisfying d20 = 0, and let ~v be
an arbitrary element of I'. Since dy is a homogeneous differential operator,
by (2.1) we know that P,60 belongs to MsY. Lemma 6.66 then tells us
that P60 is an element of dC5°(X). Since d is an elliptic operator, from
Proposition 2.2,(iii) it follows that 6 belongs to dC>°(X).

PROPOSITION 6.68. The space ¢°(K) belongs to the kernel of d, and
is isomorphic to the cohomology of the complex (6.87), with j = 1.

PROOF: By Proposition 3.10,(i), we know that ¢’ (K) belongs to the
kernel of di. Let 6 be a 1-form on X satisfying d16 = 0. We consider
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the element 0" = P,, 0 of C3°(1¢); from the equality (2.28), we obtain the
existence of elements { € K¢ and f € C*°(X) such that

0' = df +¢°(¢).

The element 67 = 6 — ' of C°°(T}) satisfies P,,0” = 0. Since d; is a
homogeneous differential operator, by (2.1) we know that P,0"” = P,
belongs to M; ., for all v € ', with v # ~;. By Lemma 6.66,(i), we see
that P,0" is an element of dCS°(X), for all v € T'. Since d is an elliptic
operator, by Proposition 2.2,(iii), it follows that 6" belongs to dC*°(X).
Therefore we may write

0 =df" + g (¢),

where f’ € C*(X). Since the relation d*g”(n) = 0 is satisfied by all Killing
vector fields 1 on X, we now obtain the desired result.

We consider the real Grassmannian ¥ = ng and the natural projec-
tionw: X —Y.

PROPOSITION 6.69. An even 1-form 6 on X satisfying the Guillemin
condition verifies the relation dx6 = 0.

PROOF: Let 6 be an even 1-form on X satisfying the Guillemin condi-
tion and let § be the unique 1-form on Y = Gﬂin satisfying 6 = w*0. Let Z
be a closed totally geodesic submanifold of X belonging to the family F*;
in §6, Chapter V, we saw that Z is isometric to a 2-sphere of constant
curvature 2 and that its projection Z’ in Y is a closed totally geodesic sub-
manifold of Y isometric to a real projective plane; in fact, by Lemma 4.6,
we know that Z’ can be written in the form Exp,v ® W', where y is a
point of Y, and v is a unit vector of Vy,, and W’ is a two-dimensional
subspace of Wy,. Thus, according to Lemma 4.7 and Proposition 4.15,
with m = r = 2, the restriction of 0 to Z' is exact. Hence the restriction of
df to Z vanishes. By Lemma 6.64, it follows that df is a section of (Tﬂé’l)_7
and so dof vanishes.

From Propositions 2.20, 6.67 and 6.69, we deduce the following two
results given by Theorems 11.1 and 11.2 of [23]:

THEOREM 6.70. An even 1-form on the quadric Q,, with n > 3,
satisfies the Guillemin condition if and only if it is exact.

THEOREM 6.71. A 1-form on the Grassmannian Gy, with n > 3,
satisfies the Guillemin condition if and only if it is exact.

The following result is given by Theorem 2 of [20].
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THEOREM 6.72. A 1-form on the quadric X = Q,,, with n > 3, satis-
fies the zero-energy condition if and only if it is exact.

PROOF: Let 0 be a 1-form on X satisfying the zero-energy condition.
From Theorem 3.8, it follows that the restriction of ¢ to a flat torus of X
belonging to the family F! is exact. Therefore we have d10 = 0. According
to Proposition 6.68, we may write

0 =df +g°(€),

where f is a real-valued function and ¢ is a Killing vector field on X. Let
Z be a surface of X belonging to the family F! and let i : Z — X be
the natural imbedding. Since the 1-form ¢°(£) = 6§ — df on X satisfies the
zero-energy condition and Z is a flat torus, Proposition 3.10,(ii) tells us
that i*¢°(¢) = 0. Thus the restriction of the 1-form ¢°(¢) to an arbitrary
surface of X belonging to the family F* vanishes. As we have seen above,
this implies that ¢”(¢) vanishes; we thus obtain the equality 6 = df.

When n > 4, we are able to give a proof of the preceding theorem which
avoids the use of Proposition 6.68. In §6, Chapter V, we saw that each
surface belonging to the family F2 is contained in a submanifold belonging
to the family F7 of closed totally geodesic submanifolds of X introduced
there. Since a submanifold belonging to the family F7 is isometric to the
complex projective space CP?, according to Theorems 3.8 and 3.40 we know
that the family F' U F7 possesses property (VI) of §8, Chapter II. When
n > 4, Theorem 6.72 is thus a consequence of the last equality of (6.86)
and Theorem 2.51,(ii), with F = F% and F' = F' U F".



CHAPTER VII

THE RIGIDITY OF THE REAL GRASSMANNIANS

§1. The rigidity of the real Grassmannians

Let m > 2 and n > 3 be given integers. We consider the real Grass-
mannians X = G]R pandY = Gﬁ n» €ndowed with the Riemannian metrics
g and gy defined i in §1 Chapter IV and the natural Riemannian submer-
sion w : X — Y. As in §1, Chapter IV, we view these Grassmannians
as irreducible symmetric spaces and as homogeneous spaces of the group
G = SO(m + n). We identify the tangent bundle T' of X with the vector
bundle V ® W. We shall also consider the Kahler metric § on the complex
quadric Q,, defined in §2, Chapter V and denoted there by g.

Let « be a point of X. Let F, be the family of all closed connected
totally geodesic surfaces of X passing through x of the form Exp_F', where
F is a subspace of the tangent space T satisfying one of the following three
conditions:

(i) F is generated by the vectors {v; ® wy, vy ® wa}, where {vy, v}
is an orthonormal set of elements of V, and {wy, w2} is an orthonormal set
of elements of W;

(ii) F = Vi ® w, where V; is a two-dimensional subspace of V,, and w
is a unit vector of W;

(iii) F = v ® Wy, where v is a unit vector of V, and W; is a two-
dimensional subspace of W,.

According to the formula for the curvature of the Grassmannian é]ﬁin
given in §1, Chapter IV, we know that a surface of F, corresponding to a
subspace F' of T, of type (i) is a totally geodesic flat 2-torus; on the other
hand, by Lemma 4.6, a surface of F, corresponding to a subspace F' of T,
of type (ii) or of type (iii) is isometric to a 2-sphere of constant curvature 1.

Let F,, be the family of all closed connected totally geodesic submani-
folds of X passing through x which can be written as Exp, Vi ® W,,, where
V; is a two-dimensional subspace of V. Clearly, each surface of F, is con-
tained in a totally geodesic submanifold of X belonging to the family F..
According to the relation (5.59) and Lemma 4.6, we know that a submani-
fold of X belonging to the family F, is isometric to the complex quadric @,
of dimension n endowed with the Riemannian metric 2g.

From Lemma 4.8, with p = 2 and ¢ = n, we obtain:

LEMMA 7.1. Let X be the real Grassmannian Gmn, with m > 2,

n > 3. Let u be an element of® =, with x € X. If the restriction of u
to an arbitrary submanifold of the family F, vanishes, then u vanishes.
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We consider the G-invariant families

F=UZF, F=UF
zeX rzeX

of closed connected totally geodesic submanifolds of X. We consider the
sub-bundle N = Nz of B introduced in §8, Chapter II consisting of those
elements of B, which vanish when restricted to the closed totally geodesic
submanifolds of F.

LEMMA 7.2. Let X be the real Grassmannian CNY'E!;M, with m > 2,
n > 3. Then we have

TrN C E.

PRrROOF: Let  be a point of X. Let v be an arbitrary unit vector
of V, and w be an arbitrary unit vector of W,. Let {v1,...,v,} be an
orthonormal basis of V,, and {w1,...,w,} be an orthonormal basis of W,
with v; =vand wy =w. If 1 <i<m and 1 < j < n are given integers,
the two vectors v ®@w and v; ® w; are tangent to a surface belonging to the
family F,. Thus if u is an element of N, we see that

(Tru)(v @ w,v@w) = Z u(v @ w,v; @ wj,vQw,v; @w;) =0.
1<i<m
1<j<n

Hence Tr N, is a subspace of F,.

P~ROPOSITION 7.3. Let h be a section of E over the real Grassmannian
X = GB{;W, with m > 2 and n > 3. If the restriction of h to an arbitrary

submanifold X' of X belonging to the family F' is a Lie derivative of the
metric of X', then h vanishes.

PRrROOF: We consider the complex quadric Z = Q,, endowed with the
metric 2g. Let X’ be a submanifold of X belonging to the family F’.
According to Lemma 4.6 and the equality (5.64), there is a totally geodesic
isometric imbedding i : Z — X whose image is equal to X’ such that i*h
is a section of the sub-bundle (S?T)*~ of S?T%. If the restriction of h to
X' is a Lie derivative of the metric of X’, by Lemma 2.6 the symmetric
2-form i*h satisfies the zero-energy condition; by Theorem 6.46, we infer
that *h and the restriction of h to X’ vanish. The desired result is now a
consequence of Lemma 7.1.

The infinitesimal rigidity of the complex quadric @,, given by Theo-
rem 6.45, implies that the family F’ possesses property (III) of §8, Chap-
ter II; therefore we have

(7.1) 25 C L(F).
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By relation (4.8), we know that E is a G-invariant sub-bundle of S2T*.
According to Lemma 7.2 and Proposition 7.3, the families F and F’ and
the vector bundle E satisfy the relations (2.33) and (2.37). Now assume
that m > 3. Then Proposition 4.2 tells us that F(X) is a subspace of
C*(E); hence the relations (2.37) and (7.1) give us the equality (2.36).
Thus the families F and F’ and the vector bundle E satisfy the hypothe-
ses of Theorem 2.49,(ii) and 2.48,(iii). Hence from these two theorems,
m,n and the equality

L(F') = DyC>°(T) when m,n > 3. As the space G2 . 1s isometric to the
complex quadric @), endowed with the metric 2g, the Grassmannian G2 "

we deduce the infinitesimal rigidity of the space GR

is infinitesimally rigid. Since the Grassmannian G 2 Is isometric to Ggm7
we have therefore proved the following two theorems

THEOREM 7.4. The real Grassmannian X = Gm n» Withm,n > 2 and
m +n > 5, is infinitesimally rigid.

THEOREM 7.5. Let h be a symmetric 2-form on the real Grassmannian
X = Gm ns With m,n > 3. If h belongs to L(F'), then h is a Lie derivative
of the metric of X.

In Chapter X, we shall show that the Grassmannian (N}'D§’2 is not in-
finitesimally rigid; on the other hand, Theorem 10.20 tells us that the
Grassmannian G , is infinitesimally rigid

Let y be a point of YV; choose a point x € X satisfying w(z) = y.
The family Fy,, of all closed connected totally geodesic submanifolds of Y’
of the form Exp,F', where F' is a subspace of the tangent space T} sat-
isfying conditions (i), (ii) or (iii), does not depend on the choice of the
point = and so is well-defined. Similarly the family f{,’y consisting of all
closed connected totally geodesic submanifolds of Y which can be written
as Exp, V1 ® W,, where V; is a two-dimensional subspace of V, is well-
defined. Clearly, each surface of Fy,, is contained in a totally geodesic
submanifold of Y belonging to the family F3, y,y- According to Lemma 4.6,
we know that a submanifold of Y belonging to the family fyy is isometric
to the real Grassmannian G5 2

In the next section, we shall require the following result; its proof is
similar to the proof of Lemma 4.8 and shall be omitted.

LEMMA 7.6. Let Y be the real Grassmannian Gm ns With m,n > 2.

Let u be an element of ® 1y, with y € Y. If the restriction of u to an
arbitrary submanifold of the family Fy,, vanishes, then v vanishes.

We consider the G-invariant families

Fr=UFvy, F=UH,

yey yey
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of closed connected totally geodesic submanifolds of X. If Y is a surface
of Y belonging to the family Fy, there is a subgroup of G which acts
transitively on Y’; thus we see that an element u of @777, with z € X,
vanishes when restricted to an arbitrary surface belonging to the family Fy
if and only if it vanishes when restricted to an arbitrary surface belonging
to the family Fy,. We consider the sub-bundle Nz, of B consisting of
those elements of B, which vanish when restricted to the closed totally
geodesic surfaces of Fy .

If Y’ is a submanifold of Y belonging to Fy,, (resp. to 73 ) which
can be written as Exp, F, where F' is a subspace of T}, then w Y is
a submanifold of X equal to the submanifold Exp, F belonging to the
family F, (rvesp. to the family F.); moreover w : X' — Y’ is a two-fold
covering. Thus if h is a symmetric 2-form on Y belonging to L(F3,), the
even 2-form w*h on X belongs to L(F'). Also from Lemma 7.2, we obtain
the relation

(72) Tr N]:y C Ey.
PROPOSITION 7.7. Let h be a section of Ey over the real Grassman-
nian Y = G&n, with m > 2 and n > 3. If the restriction of h to an

arbitrary submanifold Y’ of Y belonging to the family Fi, is a Lie deriva-
tive of the metric of Y’, then h vanishes.

ProorF: The symmetric 2-form @w*h on X = Gm » 1s even and is a
section of the vector bundle E over X. If h is an element of L(F3), then
the form w*h belongs to L(F'). The desired result is a consequence of
Proposition 7.3.

We remark that the preceding proposition actually requires only Theo-
rem 6.43 rather than Theorem 6.46, whose proof relies upon both Theorems
6.43 and 6.44 and which is needed for the case of an arbitrary symmetric
2-form considered in Proposition 7.3.

We now suppose that m < n. According to Theorem 6.47, the real
Grassmannian Y = G5 , is rigid in the sense of Guillemin, and so the family
Fy, possesses property (II) of §8, Chapter II. By Proposition 4.12, with
g = 2 and r = n, the family Fi, also possesses property (I) of §8, Chapter II.
By relation (4.8), we know that Ey is a G-invariant sub-bundle of SZT5:.
According to (7.2) and Proposition 7.7, the families Fy and Fj, and the
vector bundle Ey satisfy the relations (2.33) and (2.37) of Theorem 2.48.
When m > 3, Proposition 4.2,(i) tells us the equality (2.35) holds; thus
the families Fy and Fj, and the vector bundle Ey satisfy the hypotheses
of Theorem 2.49,(i). Hence from this theorem, we deduce the Guillemin
rigidity of the space G | when m < n and m > 3. Since the Grassmannian

G]R is isometric to Gq »» we have therefore proved the following:
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THEOREM 7.8. The real Grassmannian X = G®

m.ns Withm,n > 2 and
m # n, is rigid in the sense of Guillemin.

Since the space C:'H;‘n is isometric to the complex quadric @,, endowed

with the metric 2g, we know that the sequence (1.24) is exact for @]Sn,
with n > 3 (see §6, Chapter V). We now proceed to show that the sequence
(1.24) is also exact for the Grassmannians GX

mons With m,n > 3; we begin
by verifying the following:

PROPOSITION 7.9. Let h be a symmetric 2-form on the real Grass-
mannian X = GB‘;W, with m,n > 3, satisfying D1h = 0. Then h belongs
to L(F').

PROOF: Since a submanifold Z of X belonging to the family F’ is iso-
metric to the complex quadric of dimension n endowed with the metric 2g,
we know that the sequence (1.24) for Z is exact. The desired result is given
by Proposition 2.46,(ii).

From Proposition 7.9 and Theorem 7.5, we obtain the exactness of the
sequence (1.24) for the real Grassmannian G%, . with m,n > 3. Since the

m,n’
real Grassmannian G, ,, is a quotient of G, , by the group of isometries
A of order 2 considered in §1, Chapter IV, the sequence (1.24) is also exact
for the real Grassmannian G%, ., with m,n > 2 and m +n > 5. Thus we

have demonstrated the followiﬁg:

PROPOSITION 7.10. Let m,n > 3 be given integers. If X is the real
Grassmannian G or GX . then the sequence (1.24) is exact.

m,n m,n’

The result of the preceding proposition is given by Theorem 1.23 for

all the real Grassmannians X = G]ﬁm, with m,n > 3, other than the

space é]}fs In fact, when m,n > 3 and m + n > 7, according to Proposi-
tion 4.2,(i), we know that the space E(X) vanishes; Lemma 1.12 then tells
us that the sequence (1.24) is exact.

It is easily seen that the sub-bundle C'z: of /\QT*, consisting of those el-
ements of /\QT* which vanish when restricted to the closed totally geodesic
submanifolds of F’, vanishes. It follows that the sub-bundle Cry of /\QT{;,

consisting of those elements of /\QT{i which vanish when restricted to the
closed totally geodesic submanifolds of F3,, also vanishes.

By Theorem 6.72, we know that F’ possesses property (VI) of §8,
Chapter II. When m < n, Proposition 4.12, with ¢ = 2 and r = n, tells us
that the family 73, satisfies property (IV) of §8, Chapter II; moreover by
Theorem 6.71, we know that F3, also possesses property (V) of §8, Chap-
ter II. From these observations and Theorem 2.51, we obtain the following
two theorems:
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THEOREM 7.11. Let m,n > 2 be given integers, with m # n. A
1-form on the real Grassmannian Y = G%n satisfies the Guillemin condi-
tion if and only if it is exact.

THEOREM 7.12. Let m,n > 2 be given integers, with m +n > 5.
A 1-form on the real Grassmannian X = Gﬂfhn satisfies the zero-energy
condition if and only if it is exact.

Theorem 7.12 is given by Theorem 3 of [20]. In Chapter X, we shall
show that a 1-form on the Grassmannian GDQQ}Q satisfies the zero-energy
condition if and only if it is exact (see Theorem 10.21).

§2. The real Grassmannians G ,

Let F be a real vector space of dimension m + n, where m,n > 1,
endowed with a positive definite scalar product. We consider the real
Grassmannians G% (F) and GX(F) endowed with the Riemannian metrics
induced by the scalar product of F', which are defined in §1, Chapter IV.
There we also saw that the natural mapping

U GE(F) — GR(F),

sending an m-plane of F' into its orthogonal complement, is an isometry.
When m = n, then ¥ = Wy is an involution of X = GX(F); as in §1,
Chapter IV, we say that a symmetric p-form w on X is even (resp. odd) if
U u = eu, where e = 1 (resp. € = —1).

Let n > 2 be a given integer. We now suppose that the dimension of F’
is equal to 2n + 2 and we consider the Grassmannian X = Gk, (F). We
identify the tangent bundle T" of X with the vector bundle V @ W. Let U
be a subspace of F of dimension > n. If the orthogonal complement U+ of
U in F is non-zero, according to §2, Chapter IV, there is totally geodesic
imbedding

(7.3) L GY(UT) x GR(U) — Gy (F),

sending the pair (z,y), where z € GX(U"1) and y € GE(U), into the point
of GE,(F) corresponding to the (n+ 1)-plane of F generated by the sub-
spaces of U+ and U corresponding to the points z and y, respectively.

We henceforth suppose that the subspace U is of dimension 2n and
we write Y = GR(U). Since dimU~+ = 2, the manifold Z = G}(U?)
is isometric to the circle S*. We consider the totally geodesic imbedding
t:ZxY — X given by (7.3). For z € Z, let ¢, : Y — X be the mapping
sending y € Y into i(z,y); for y € Y, let p, : Z — X be the mapping
sending z € Z into ¢(z,y). A symmetric p-form 6 on X determines a
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symmetric p-form 0y on Y as follows. If &i,...,&, € Ty, we consider the
real-valued function f on Z defined by

f(Z) = (429)(517 e vgp)v

for z € Z, and we define 0y by setting

Ou(&,.... &) = /Zde.

In particular, if 6 is a function on X, we have

Ou(y) = /Z py0.dZ,

foryeY.

If z€ Z and y € Y, the mapping ¢, : Ty,, — Ty, where x = 1(z,y), is
equal to the natural inclusion of (Vy @ Wy), into (V ® W),. Thus if h is
a section of the sub-bundle E of S?T* over X, then the symmetric 2-form
tth is a section of the sub-bundle Ey of S?T5:; therefore the symmetric
2-form hy on Y is also a section of Ey-.

For z € Z and y € Y, we easily see that

Uxe(z,y) = uVz(2), Uy (y)),
and so we have
(7.4) Uxot, =ty,e) oWy,
as mappings from Y to X. If  is a symmetric p-form on X and &;,...,&,

are vectors of Ty, we consider the symmetric p-form ¢’ = ¥%6 on X and
the real-valued functions f; and fo on Z defined by

fl(’z) = (L:«‘gl)(flv oo agp)a f?(z) = (ng)(\:[lY*glv B \IJY*gp)v
for z € Z. From (7.4), it follows that
fr =9%fa.

Since Wy is an isometry of Z, this relation implies that

Qb(fl,...,fp):/Zflez/ngdZ:GU(\IIY*&,...,\IJY*{},).

The following lemma is a direct consequence of the preceding equalities.
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LEMMA 7.13. Let n > 2 be a given integer. Let F' be a real vector
space of dimension 2n + 2 endowed with a positive definite scalar product
and let U be a subspace of F' of dimension 2n. If 0 is an even symmetric
p-form on G% | (F), then the symmetric p-form 0y on G%(U) is even.

Let Y’ be a maximal flat totally geodesic torus of Y; then we easily
see that X’ = «(Z x Y') is a maximal flat totally geodesic torus of X.
Let &, ...,&, be arbitrary parallel vector fields on Y”; they induce parallel
vector fields &1, ...,&, on X’ determined by

f; (L(Z7 y)) = Lz*gj (y)a

for € Z, y € Y and 1 < j < p. Then from the definition of y and
Fubini’s theorem, we infer that

/,HU(fl,...,fp)dY/:/X/H(fj,...,f;)dX’.

From this equality, we deduce the following result:

LEMMA 7.14. Let n > 2 be a given integer. Let F' be a real vector
space of dimension 2n + 2 endowed with a positive definite scalar product
and let U be a subspace of F' of dimension 2n. If 0 is a symmetric p-form
on G | (F) satisfying the Guillemin condition, then the symmetric p-form
0y on GR(U) satisfies the Guillemin condition.

We now suppose that the vector space F is equal to the space R?"+2
endowed with the standard Euclidean scalar product. Then X is the Grass-
mannian Gy, | ., endowed with the Riemannian metric g defined in §1,
Chapter IV; we view X as an irreducible symmetric space and as a homo-
geneous space of the group G = SO(2n + 2). We consider the G-invariant
family Fx of closed connected totally geodesic surfaces of X which was in-
troduced in §1; in fact, for the Grassmannian Gﬁsyn, this family was denoted
there by Fy. We also consider the sub-bundle N = Nz, of B consisting
of those elements of B, which vanish when restricted to the closed totally

geodesic submanifolds of Fx, and the differential operator
Dy 5y 2 S?°T* — BN

of §8, Chapter II. According to Lemma 7.2, we have the relation

(7.5) Tr N C Ex,

which is also given by (7.2).
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PROPOSITION 7.15. Let f be a real-valued function on the real Grass-
mannian X = Gﬂ§+1,n+1’ with n > 2. Suppose that, for any subspace U
of R?"*2 of dimension 2n, the function fi; on G%(U) vanishes. Then the
function f vanishes.

PROOF: Let z be a point of X; we choose a subspace Vi of V, of
codimension one and we consider the orthogonal complement U’ of V;
in F = R?"*2, whose dimension is equal to n 4+ 2. We also consider the
totally geodesic imbedding

i:GY(U") = Gy (F),

sending z € G} (U’) into the (n+1)-plane of F' generated by the subspace V;
and the line corresponding to the point z. There is a unique point zy of
GR(U") such that = i(z). Let v be a closed geodesic of the projective
space GX(U’). Then there is a subspace U” of U’ of dimension 2 such
that the image of 7 is equal to the submanifold GY(U”) of G}(U’). The
orthogonal complement U of U” in F' is of dimension 2n and contains Vi;
thus the subspace V; of U corresponds to a point o of GX(U). We consider
the totally geodesic imbedding

L GHU") x Gu(U) = Gy (F)

given by (7.3). Then we have i(z) = 1(2,), for z € GR(U"), and so the
equality
[0 = fow)
~

holds. Our hypothesis tells us that fy vanishes, and hence the function
i*f on GY(U’) satisfies the zero-energy condition. Since the dimension of
GR(U") is > 3, the injectivity of the Radon transform on this real projective
space, given by Theorem 2.23,(ii), implies that the function i*f vanishes.
Since we have x = i(zp), we obtain the vanishing of the function f at the
point x.

PROPOSITION 7.16. Let h be a symmetric 2-form and 6 be a 1-form
on the real Grassmannian X = Gy, ., withn > 3.

(i) Suppose that, for any subspace U of R*"*2 of dimension 2n, the
symmetric 2-form hy on GX(U) vanishes. Then the symmetric form h
vanishes.

(ii) Suppose that, for any subspace U of R?*"*2 of dimension 2n, the
symmetric 2-form hy on GX(U) is a Lie derivative of the metric of G=(U).
Then we have the relation

Dy 7. h=0.
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(iii) Suppose that, for any subspace U of R?*"*2 of dimension 2n, the
1-form Oy on GE(U) is closed. Then the restriction of df to an arbitrary
submanifold of X belonging to the family Fx vanishes.

PrOOF: Let z be a point of X, and let &,& € T, be vectors tan-
gent to a given totally geodesic surface X’ of X belonging to the family
Fx and containing x. By Lemma 7.6, we see that, in order to prove asser-
tion (i) (resp. assertion (iii)) it suffices to show that h(&1,&2) = 0 (resp. that
(d0)(&1,&2) = 0) under the hypothesis of (i) (resp. of (iii)). According to
Proposition 1.14,(ii), in order to prove assertion (ii) it suffices to show that
the relation

(7.6) (Dgh)(&1,&2,61,&2) =0

holds under the hypothesis of (ii). According to the definition of Fx, there
are subspaces V; of V, of codimension one and W7 of W, of dimension 2 such
that the vectors &1, &, belong to the subspace Vi @ Wi of T, = (V@ W),.
We set U' = V4 @ Wy; the subspace V; of U’ corresponds to a point yg
of Y/ = G®(U’). We consider the orthogonal complements V{ of V; in
V, and U” of U’ in F = R?"*2. Then V] is a one-dimensional subspace
of U” corresponding to a point zy of the real projective space GT(U") of
dimension n — 1. The totally geodesic imbedding

VI GHU") x GRU') — GE L (F),

given by (7.3), sends the point (29, yo) into the point x of X. If 2 is a point of
G} (U"), we consider the mapping ¢/, : Y’ — X sending y € Y’ into /(z,y).
The mapping ¢, , : Ty’ y, — T&, is equal to the natural inclusion of V1 @ W,
into (V ® W),. Thus there are unique tangent vectors 7,1, € Ty 4, such
that «/ ,m = & and [ 72 = &; moreover these vectors are tangent to a
closed totally geodesic surface of Y. If gy is the Riemannian metric of
the Grassmannian Y’, by formula (1.57) we see that

(77) (Dgh>(€17£27§17€2) = ( gy’ Zoh)(n1777277717n2)

also we have
(d0)(&1, &2) = (deZ,0) (11, m2)-
We consider the real-valued functions fi, fo and f3 on GX(U") defined by

fi(z) = (L/z*h)(nh??z)’ f2(2) = (D gy bz h)(fh,nzﬂhﬂh)
f3(2) = (e 0)(m1,m2),

for z € G}(U"). Let v be a closed geodesic of the projective space G (U").
Then there is a subspace U; of U” of dimension 2 such that the image of 7 is
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equal to the submanifold G (U}') of GF(U"). The orthogonal complement
U of U in F is of dimension 2n and contains U’. Thus GX(U’) is a sub-
manifold of Y = GE(U) and 7,72 may be considered as tangent vectors
to Y. We denote by gy the Riemannian metric of the Grassmannian Y.
We consider the totally geodesic imbedding

L G?(U{/) X GIS(U) - GEJA(F)

given by (7.3) and the induced mapping ¢, : Y — X corresponding to the
point z of G (U}’). Then by (1.57), we have

fl(z) = (Lzh)(nlﬂh)v fQ(Z) = (DQYLZh)(nlvn%nl?n?)a
f3(z) = (de20)(n1,7m2),

for z € GR(UY). Using the preceding equalities, we easily verify that the
relations

/lehU(nlan2)7 /f2:(DgyhU)(7717772a771a772),
(7.8) K !
/f3 = (d6y) (. 12)

hold. If Ay is a Lie derivative of the metric gy, since 71,72 are tangent to
a totally geodesic surface of GX(U) of constant curvature, by Lemma 1.1
and the relations (1.49) and (1.57) the expression (Dgy hy)(n1, 72,11, 12)
vanishes. We now assume that the hypothesis of the j-th assertion of the
proposition holds, where j = 1,2 or 3. Then by (7.8) the integrals of f; over
the closed geodesics of the real projective space G (U") vanish. Since the
dimension of G} (U") is > 2, the injectivity of the Radon transform on this
real projective space, given by Theorem 2.23,(ii), implies that the function
f; vanishes on G}(U”). From the vanishing of this function at the point
2o of GF(U") and (7.7), we obtain the relation h(&;, &) = 0 when j = 1,
the relation (7.6) when j = 2, or the relation (d6)(&1,&2) = 0 when j = 3.

Let n be an integer > 2, and let U be a real vector space of dimen-
sion 2n endowed with a positive definite scalar product. According to an
observation made in §1, Chapter IV, if all even functions on Gﬂs’n satisfying
the Guillemin condition vanish, then the analogous result is also true for
the Grassmannian G%(U); moreover if all even symmetric 2-forms (resp.
1-forms) on G, ,, satisfying the Guillemin condition are Lie derivatives of
the metric (resp. are exact), then the analogous result is also true for the
Grassmannian GX(U). We shall use these remarks in the course of the
proofs of the next three propositions.
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PROPOSITION 7.17. Forn > 2j the maximal flat Radon transform for
functions on the symmetric space Gﬂsyn is injective.

ProoF: We proceed by induction on n > 2. Proposition 4.4 tells
us that the desired result is true for n = 2. Next, let n > 2 be a given
integer and suppose that the maximal flat Radon transform for functions
on the symmetric space @57” is injective. Let f be an even real-valued
function on X = Gy, satisfying the Guillemin condition. Let U be
an arbitrary subspace of R?"*2 of dimension 2n. According to Lemmas
7.13 and 7.14, the function fiy on GE(U) is even and satisfies the Guillemin
condition. From Lemma 4.5 and our induction hypothesis, we infer that the
function fy vanishes. Then by Proposition 7.15, we know that f vanishes.
According to Lemma 4.5, this argument gives us the desired result for the
space X.

The preceding proposition is also given by Theorem 2.24.

PROPOSITION 7.18. Let n be an integer > 3 and suppose that all
even symmetric 2-forms on Gﬂs’n satisfying the Guillemin condition are Lie
derivatives of the metric. Then an even symmetric 2-form on X = G Tl
satisfying the Guillemin condition is a Lie derivative of the metric.

PRrROOF: Let k£ be an even symmetric 2-form on X satisfying the
Guillemin condition. According to the decomposition (1.11), we may de-
compose k as

k= h+ Do,

where h is an even symmetric 2-form on X satisfying divh = 0, which is
uniquely determined by k, and where £ is a vector field on X. Then by
Lemma 2.10, & also satisfies the Guillemin condition. Let U be an arbi-
trary subspace of R2"*2 of dimension 2n and consider the Grassmannian
Y = GR(U). According to Lemmas 7.13 and 7.14 and our hypothesis, we
see that the symmetric 2-form hy on Y is a Lie derivative of the metric of Y.
Therefore by Proposition 7.15,(ii), we know that D, h = 0. According
to the relations (4.8) and (7.5), the vector bundle E and the symmetric
2-form h satisfy the hypotheses of Theorem 2.48 (i), with 7' = F = Fx.
By Proposition 4.2,(i), we know that E(X) = {0}. Then Theorem 2.48,(i)
tells us that h is a section of E. Therefore hy is a section of Ey over Y.
From Proposition 7.7, we now infer that the form Ay vanishes. Proposi-
tion 7.15,(i) tells us that h vanishes; thus the symmetric 2-form k is a Lie
derivative of the metric of X.

PROPOSITION 7.19. Let n be an integer > 3 and suppose that all even
1-forms on GE)R satisfying the Guillemin condition are exact. Then an even

1-form on X = G¥ +1,n+1 satisfying the Guillemin condition is exact.
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PRrROOF: Let € be an even 1-form on X satisfying the Guillemin con-
dition. Let U be an arbitrary subspace of R?"*2 of dimension 2n and con-
sider the Grassmannian Y = G%(U). According to Lemmas 7.13 and 7.14
and our hypothesis, the 1-form 0y on Y is closed. Therefore by Proposi-
tion 7.15,(iil), we know that the restriction of df to an arbitrary subman-
ifold of X belonging to the family Fx vanishes. Then Lemma 7.6 tells us
that df = 0. Since the cohomology group H!(X,R) vanishes, the form 6 is
exact.

The following theorem is a direct consequence of Propositions 2.18
and 7.18.

R
n,n’

THEOREM 7.20. If the symmetric space G
the sense of Guillemin, then so is the space GX 1t

with n > 3, is rigid in

The following proposition is a direct consequence of Propositions 2.20
and 7.19.

PROPOSITION 7.21. Let n be an integer > 3 and suppose that all
1-forms on GE  satisfying the Guillemin condition are exact. Then a

n,n

1-form on X = G% +1,n+1 satisfying the Guillemin condition is exact.

According to Proposition 4.3, the symmetric space @5’2 is isometric
to the product RP? x RP?2. In Chapter X, we shall show that this space
is not rigid in the sense of Guillemin (Theorem 10.5) and that there exist
1-forms on this space which satisfy the Guillemin condition and which are
not exact (Theorem 10.6).



CHAPTER VIII

THE COMPLEX GRASSMANNIANS

§1. Outline

This chapter is devoted to the geometry of the complex Grassmanni-
ans. In §2, we study the complex Grassmannian G%n of complex m-planes
in C™"", with m,n > 2, and show that it is a Hermitian symmetric space
and a homogeneous space of the group SU(m + n); we also consider the
Grassmannian G ,,, which is the adjoint space of G ,. We introduce
certain vector bundles over G%n and use them to decompose the bun-
dle of symmetric 2-forms on G%n into irreducible SU(m + n)-invariant
sub-bundles. We then determine the highest weights of the fibers of these
vector bundles in §3. We define certain complex-valued functions on GSM
by means of the corresponding Stiefel manifold; then these functions and
specific symmetric 2-forms on G%n, arising from the complexification g of
the Lie algebra of SU(m +n), allow us to describe explicitly and study the
SU(m + n)-modules of functions and complex symmetric 2-forms on G, ,,
isomorphic to g. In particular, we examine the case when m = n and de-
termine explicitly the space of infinitesimal Einstein deformations of G%n.
In §5, we define the natural isometry between the Grassmannian ng and
the complex quadric @4 and use it to relate their geometries; from the re-
sults of Chapter VI, it follows that this complex Grassmannian is infinites-
imally rigid and that its quotient GgQ is rigid in the sense of Guillemin. In
the next section, we show that the Guillemin condition for forms on G%n,
with m # n, is hereditary with respect to certain totally geodesic subman-
ifolds. The remainder of this chapter is mainly devoted to the proof of the
following result, which plays an essential role in our study of the rigidity
of the complex Grassmannians presented in Chapter IX: an infinitesimal
Einstein deformation of G;Cnm satisfying the Guillemin condition vanishes.
In order to prove this result in the case when m # n, we compute the
integrals of some of the symmetric 2-forms considered in §4 over explicit
closed geodesics. By means of these computations, in §8 we also establish
relations among the symmetric 2-forms of §4. Finally, in §9 we study forms
on the Grassmannian GS’H and we introduce an averaging process which
assigns to a p-form u on GS+1,7H—1 a class of p-forms on G%,n that are ob-

tained by integrating u over closed geodesics. We then consider a certain
C

n,n

explicit complex symmetric 2-form hgn) on G, . and show that one of the

averages of the 2-form hgnﬂ) on GS+1,n+1 is equal to the form hgn). From
this last result, we deduce by induction on n that an Einstein deformation
of the space GE{’” which satisfies the Guillemin condition vanishes.
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§2. The complex Grassmannians

Let X be a manifold and let F be a real vector bundle over X endowed
with a complex structure J. The complexification E¢ of E admits the
decomposition

Ec = E'® E”,
where E’ and E” are the eigenbundles corresponding to the eigenvalues
+i and —i, respectively, of the endomorphism J of E¢. Let (S?E)* and
(S2E)~ (resp. (A’E)* and (A’E)™) be the eigenbundles of S2E (resp.
of /\2E) corresponding to the eigenvalues +1 and —1, respectively, of the

involution of S2E (resp. of A°E) induced by J. We then have the decom-
positions

S?E = (S?E)* & (S?E)™, NE=(NE)" @ (NE)".

The complex structure J induces a complex structure on the vector bundle
E* dual to E, which we also denote by J. We identify S?E* with the
bundle of symmetric 2-forms on E in such a way that

(Oé ’ a)(§17§2) = 2(51,0&><§2,0¢>7

for £1,& € E and a € E*. We consider the sub-bundle S*°E* of (S?E*)z
(resp. the sub-bundle A*°E* of (/\2E*)6) consisting of all elements u
of S?E¢. (resp. of /\2E(*:) which satisfy u(&,n) =0, for £ € E” and n € Eg,
and the sub-bundle S®2E* of (S2E*)z (resp. the sub-bundle A2E* of
(/\QE*)E) consisting of all elements u of S?E}. (resp. of /\QEE) which satisfy
u(€,m) =0, for £ € ' and n € Ec. We then have the decompositions

(S?E)c = S*E* @ S“2E*,  (N’E)g = N*E o N\"?E

Now suppose that E is a complex vector bundle over X whose complex
structure we denote by J. A sesquilinear form h on E satisfies the relation

h(u,v) = Re h(u,v) + iRe h(u, Jv),

for all u,v € E. If we consider E as a real vector bundle endowed with
the complex structure J and if h is a Hermitian form on E, then Reh is a
section of (S2E*)*.

We suppose that X is a complex manifold. Then the vector bundles
T/, T", (S2T*)*, (S2T*)~ and (\°T*)~ of §4, Chapter I coincide with the
bundles associated above with the vector bundles T and T*; moreover, the
bundle Ty is equal to (AN°’T*)*. If (p,q) is equal to (2,0) or to (0,2),
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the bundles SP4T* and A\”"?T* coincide with the bundles associated above
with the vector bundle £ =T.

Let m,n > 0 be given integers and let F' be a complex vector space of
dimension m+n endowed with a positive definite Hermitian scalar product.
We now suppose that X is the complex Grassmannian G, (F) of all com-
plex m-planes in F'; then X is a complex manifold whose complex structure
we denote by J. If either m = 0 or n = 0, the manifold GS,(F) is a point.
When m = 1, the manifold G$(F) is the complex projective space of all
complex lines of F.

Let V = Vx be the canonical complex vector bundle of rank m over
X whose fiber at * € X is equal to the subspace = of F. We denote by
W = Wx the complex vector bundle of rank n over X whose fiber over
x € X is the orthogonal complement W, of V, in F. We consider the
complex vector bundles V* and W* dual to V and W. We identify the
complex vector bundles Hom¢(V, W) and V* ®@c W, and we also identify
V' with the dual of the vector bundle V*. We denote by J the complex
structure of any one of these complex vector bundles. We denote by o ® w
the tensor product of « € V* and w € W in V* ®c W; we have

Jaw)=Ja®w=a® Jw.
We have a natural isomorphism of vector bundles
(8.1) V*@cW —-T

over X, which sends an element 6 € (V* ®c W), into the tangent vector
dxy/dt|t—o to X at xz, where x; is the point of X corresponding to the
m-plane

{v+t0(v) |veV,},

for t € R. The isomorphism (8.1) allows us to identify these two vector
bundles V* ®@c W and T together with their complex structures.

Throughout the remainder of this section, we suppose that m,n > 1.
It is easily verified that the involution 6§ of (S2T*)~ determined by

(0h) (1 @ wy, 0 @ wa) = h(ag ® w1, a1 ® wa),

for h € S?T* and a1, a2 € V* and wy, wy € W, is well-defined. If (S27*)~+
and (S2T*)~~ are the eigenbundles of (S?T™)~ corresponding to the eigen-
values +1 and —1, respectively, of this involution €, then we have the de-
composition

(S?T*)~ = (S*T*) "+ @ (S*T*) .
If either m = 1 or n = 1, we see that the bundle (S?7™*)~~ vanishes. If
(p, q) is equal to (2,0) or to (0,2), we consider the complex vector bundles

(SPAT*)t = SPIT N (SPT™)c,  (SPIT™) ™ = SPIT N (S°T*)¢ 5
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then we have the decompositions

( ) SQ’OT* — (SQ,OT*)+ @ (SQ’OT*)_7
8.2
SO’2T* _ (SO,QT*)Jr oy (SO,2T*)7.

It is easily verified that the morphisms
1 (SPV)T @ (SPWH)T — (ST T,
T (S?V)” @ (S*W*)™ — (S?°T*)~ T,
75 (NV)T @ (NWH)™ = (5°T7) 7,

which send the element k; ® ko into the symmetric 2-form k; o ko of S2T*
determined by

(k10oks) (a1 @wr, aa@ws) = k1 (o, ) ka(wr, we) —ki (a1, Jag) ke (wi, Jws),

for all ay,as € V* and wy,ws € W, are well-defined. Clearly if k1 is an
element of (S?V)* and ko is an element of (S?W*)*, the element ki o ko
vanishes if and only if one of the two elements k; and ks vanishes. The
morphisms 7, and 73 induce morphisms of vector bundles

(83) 52’0V Qc SZ,OW* _ (S27OT*)+, SO,QV Q¢ SO’2W* _ (SO’QT*)Jr,
(8.4) AV @c A¥'W* — (8207, A"V @c AVPWF — (SO2T%) 7

it is easily seen that the morphisms (8.3) are non-zero and that, when
m,n > 2, the morphisms (8.4) are also non-zero at each point of X. In fact,
we shall later verify that the morphisms (8.3) and (8.4) are isomorphisms
and that the equalities

(SQ,OT*)+ — SQ,OV o SQ’OW*, (SO,QT*)Jr — 50’2V ° SO’QW*,

B (s0r < AR A, (5920 = AR o A0
hold.

Since the vector bundles V and W are complex sub-bundles of the triv-
ial complex vector bundle over X whose fiber is F', a sesquilinear form on F'
induces by restriction sesquilinear forms on the vector bundles V' and W.
In particular, the Hermitian scalar product on F' induces by restriction
positive definite Hermitian scalar products ¢g; and g on the vector bundles
V and W, respectively. We consider the mappings

V¥ =V, W — W
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sending a € V* into the element of € V and w into the element w’ € W*
determined by

gl(vaau) = <v,a>, <uawb> :.92('“’“)),
for all v € V and u € W. We remark that
(ca)? = o, (cw)

forallce C,acV*and w e W.

A sesquilinear form ¢ on the complex vector bundle V' induces a sesqui-
linear form on the vector bundle V*, which we also denote by ¢ and which
is determined by

q(ah a2) = Q(aﬁga a§)7
for all a1, as € V*. In particular, the sesquilinear form g; on V* induced by
the Hermitian scalar product g; on V is also a positive definite Hermitian
scalar product.

Two sesquilinear forms ¢; on V' and g2 on W determine a section ¢ - g2
of (S2T*){ over X, which is well-defined by

(Q1 'q2)(a1 Qwy, a2 ®w2) = Q1(a1aa2) 'qQ(w17w2) +QI(O‘2aO‘1) 'qQ(w27w1)7

for all o, a9 € V* and wq,wo € W.
As we have seen above, the real positive definite scalar products hq
and ho on the vector bundles V* and W determined by

hi(a1, a2) = Re gi(ay, az), ha (w1, ws) = Re g2(w1, wa),

for all iy, g € V* and wy,we € W, are sections of (S?V)* and (S2W*)™T,
respectively. From an observation made above, we infer that the sub-
bundles
Ey=hyo(S?W*)F,  Ey=(5?V)tohy
of (S2T*)™T are isomorphic to (S?W*)* and (S?V)*, respectively.
If g is a sesquilinear form on W, then we easily verify that

G1-q2 =hiog)+ihioq,,

where ¢4 and ¢4 are the sections of (S?W*)* defined by

go (w1, wa) = Re (g2 (w1, w2) + g2(wa, w1)),

1

¢5 (w1, w2) = Re (ga(w1, Jwz) + g2(w2, Jwr)),
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for all wy,we € W; therefore g; - g2 is a section of the sub-bundle ELC
of (SQT*)('C". If ¢; is a sesquilinear form on V', then we easily verify that

Q192 = q; 0 ha +igy o hy,
where ¢} and ¢} are the sections of (S?V)T defined by
¢ (a1, a2) = Re (q1(a1, a2) + q1(az, 1)),
/!

¢i (a1, a2) = Re (q1 (a1, Jao) + g1 (a2, Jaur)),

for all ay,as € W, therefore g1 - g2 is a section of the sub-bundle Egy@
of (S2T*)¢E.

The Riemannian metric g on X determined by the section g = % g1 g2
of (S2T*){ is Hermitian and is related to § by the formula

g(&m) = g(&mn) +ig(&, JIn),

for £,m € T. In fact, according to the above formulas the metric g is equal
to hl o hg

The curvature R of the Riemannian manifold (X, g) can be computed
in terms of the scalar products g; and go; in fact, if o; € V*, w; € W, with
1 < j <4, the expression

R(on @ wi, ap @ wa, a3 ® w3, org @ wy)

is equal to the real part of the sum
g1(a1, as)gi(az, a2)ga(wr, wa)g2(ws, wa)

— g1(ou, a3)g1(aa, az)ge (w1, wa)ga(wa, ws)

+ g2 (w1, wa)ge (w3, w2)g1 (a1, a2)g1 (s, )

— g2(w1, w3)g2(wa, w2)g1 (1, a2)g1 (v, a3).
It follows that ¢ is an Einstein metric; in fact, its Ricci tensor is given by
(8.6) Ric=2(m+n)g.

We consider the trace mappings
Tr: (S*V)" - R,  Tr:(S?W**" —R

defined by

2m 2n
Trky =Y ki(B5,8),  Trka =Y ka(ti,ty),
j=1 =1
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for ky € S?V, and ky € S?W}, where z € X and {81,...,02m} is an
orthonormal basis of V* and {¢1,...,%2,} is an orthonormal basis of W,
with respect to the scalar products h; and hs, respectively. We denote by
(S?V)§ and (S?W*)J the sub-bundles of (S2V)* and (S?W*)T equal to
the kernels of these trace mappings. The sub-bundles

By = hy o (S*WH){, By = (S?V){ o hy
of Ey and E; are isomorphic to (S2W*)§ and (S2V){, respectively. Clearly
if By is the line bundle {g} generated by the section g of (S?T*)", we have
Ei=Ey® E, Ey = Ey & Eb.
We consider the trace mappings
Try : (S2T*)T — (SPW*)T, Ty (ST — (S2V)*T
determined by

2m

(Try B) (w1, w2) = Z h(B; ® wi, Bj ® wa),

=1
2n

(Trah)(an,02) = > h(og @t 00 @),
=1

for h € S2T}, ky € S?V,, ko € S?°W, a1, a9 € V and wy, wy € W, where
x € X and {f1,...,02m} is an orthonormal basis of V5 and {¢1,...,t2,}
is an orthonormal basis of W, (over R) with respect to the scalar products
hy and hs, respectively. We have

TrTry h = TrTro h = 2Trh,

for h € (S?*T*)". For ki € (S?V)T, ko € (S?W*)T, we see that the
relations

Trl(kl o kQ) = (TI' kl) . kQ, TrQ(kl o kg) = (TI‘ ]{72) . kl
hold. Clearly the kernel E3 of the morphism
Try @ Try : (S2T*)T — (S2W*) T @ (S?V) T

contains the sub-bundle (S2V)§ o (S2W*){ of (S?T*)T. Using the above
relations involving the trace mappings, we obtain the orthogonal decom-
position

(8.7) (S*T*)T = é E;,
j=0
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and we see that the orthogonal projections 7; : (S?*T*)* — E; are given
by

7r1h:1h10<Tr1h—1(’Iﬁrh)~h2>,
2m n
1 1
(8.8)  mph=— (mh — —(Trh) - h1> o ho,
2n m
h—h—ih o(T h)—i(T h)oh —i—L(T h)
T3 = om 1 I om I 2 B I 9,

mn

for h € (S?T*)T. If « € V* and w € W are unit vectors and if h is an
element of (S2T*)T, we easily verify that

(mh)(a®@w,a®w) = % ((Trl h)(w,w) — % Tr h),
(8.9)

(mah) (@ @ w, @ ® w) = % <(m h)(a, ) — ;%h).

We shall later verify that the equality

(8.10) B3 = (S*V)§ o (S*W*)§

holds. The relations (8.7) and (8.10) imply that
(S2T*)* = (S2V)*+ o (S2W*)+

and that the mapping 77 is an isomorphism.
From the decompositions (1.69), (8.2) and (8.7), we obtain the decom-
position

3
(8.11) S*T¢ = @ Ejc® (S*'T*)T @ (S20T*)” @ (S"2T*)t @ (S92T*)~.
j=0

We consider the sub-bundle E = Ex of S>T* consisting of all elements
h of S2T* which satisfy

h(§,€) =0,
for all elements & of V* @c W of rank one. Clearly, we have
(8.12) Tr E = {0}.

Moreover, if m = 1, the vector bundle E vanishes. It is easily seen that
(S2T*)~~ is a sub-bundle of E; in fact, when m,n > 2, in §3 we shall verify
that these two vector bundles are equal.
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We also consider the Grassmannian X’ = GS(F). Let V' be the
canonical complex vector bundle of rank n over X’ whose fiber at a € X’
is the n-plane a, and let W’ the complex vector bundle of rank m over X’
whose fiber over a € X' is the orthogonal complement W/ of V] in F. As
above, we identify the tangent bundle of X’ with the bundle V* @ W', and
the standard Hermitian scalar product on F' induces a Riemannian metric
on X'. There is a natural diffeomorphism

G (F) — GS(F),

sending an m-plane of F' into its orthogonal complement; in fact, ¥ sends
r € G (F) into the n-plane W,. For z € X, we have Vi) = Wa and
W\’I,( 2) = V. If 0 is an element of Homg(V,,, W, ), we consider the adjoint

t9 € Homc (W, V,) of 6 defined in terms of the Hermitian scalar product
on F;if a € V} and w € W, the element o ® w of Home(V,,, W,,) satisfies

Haow) =uw’ @l
It is easily verified that the induced mapping
U, (V' @c W)a — (V™ @c W)y(a)
sends 0 € Homg(V,, W) into —'0; therefore ¥ is an isometry and we have
(8.13) U, (a@w) = -uw’ ®af

for all « € V;J and w € W,,. Thus we see that V*Ex/ y(,) = Ex s, for all
zeX.

When m = n, the mapping ¥ = Uy is an involutive isometry of
X = GC(F) which preserves the bundle E = Ex; in this case, we say that
a symmetric p-form u on X is even (resp. odd) if ¥*u = eu, where € = 1
(resp. e = —1).

Let {e1,...,€min} be the standard basis of C™™". We henceforth
suppose that F' is the vector space C™ 1" endowed with the standard Her-
mitian scalar product. We now consider the complex Grassmannian

X =G = Gr(C™),

endowed with the Riemannian metric g induced by the standard Hermitian
scalar product on C™*7,

The action of the group G = SU(m + n) on C™*™ gives rise to an
action of G on X. In fact, the group G acts transitively on the Rieman-
nian manifold (X, g) by holomorphic isometries. The isotropy group of the
point xy of X equal to the m-plane V,,, of C"™*" spanned by the vectors
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{e1,...,em} is the subgroup K = S(U(m) x U(n)) of G consisting of the
matrices

(8.14) ¢:(§ g)

where A € U(m) and B € U(n), with determinant 1. The diffeomorphism
$:G/K — X,

which sends the class ¢ - K, where ¢ € G, into the m-plane of C™*"
spanned by the vectors {¢(e1),...,d(em)}, is compatible with the actions

of Gon G/K and X.
(L. 0
7=\o i

The element
of U(m++n) belongs to the centralizer of K. The element s = 52 of U(m+n)
determines an involution ¢ of G which sends ¢ € G into s¢s~!. Then K is
equal to the set of fixed points of o, and (G, K) is a Riemannian symmetric
pair. The center S of G consists of all matrices AL, where A is an (m+n)-th
root of unity; it is invariant under the involution o. Then we see that

Ks={¢eG|¢ lo(¢) €S}

is a subgroup of G containing K and S. The Cartan decomposition of the
Lie algebra gy of G corresponding to o is

go = £y @ po,

where ¥ is the Lie algebra of K and pg is the space of all matrices

(8.15) (g —SZ )

of go, where Z is a complex n x m matrix and 7 is its conjugate transpose.
We identify pg with the vector space M,‘Em of all complex n x m matrices

and, in particular, the element (8.15) of py with the matrix Z € Mfim.
The adjoint action of K on pg is expressed by

Ad¢p-Z=B-Z-A1,

where ¢ is the element (8.14) of K and Z € M.
We identify po with the tangent space of G/K at the coset of the iden-
tity element of G; the diffeomorphism ® sends this coset into the point xg



§2. The complex Grassmannians 267

of X. Since V,, is the subspace of C™*" generated by {e1,...,en}, clearly
Wy, is the subspace generated by {€m41,...,emint I {ef,... €} is the
basis of V;; dual to the basis {e1,...,en} of Vi, then it is easily verified
that the isomorphism ®, : py — (V* ® W),, sends the element (8.15)
of po corresponding to the matrix Z = (z;;) of MF,,, with 1 < j <n and
1 < k < m, into the vector

*
E , Zjker D €j4m
1<j<n
1<k<m

of (V*Q@W)y,-

The restriction of Ad j to pg is a complex structure on pg, and so gives
rise to a G-invariant complex structure on G/K. If B is the Killing form
of g, the restriction to pg of the scalar product —B is invariant under the
adjoint action of K and therefore induces a G-invariant metric gy on the
homogeneous space G/K. Endowed with this complex structure and the
metric gg, the manifold G/K is an irreducible Hermitian symmetric space
of compact type of rank min(m,n) (see Proposition 4.2 in Chapter VIII
of [36]). When m # n, we easily see that the group Ky is equal to K; then
according to §9 in Chapter VII of [36], it follows that G/K is equal to its
adjoint space.

The group K acts on T, and, for ¢ € K, we have the equality

D, 0Adp =9 D,
as mappings from pg to T,,. We also see that ®, 0 Adj = J o &, and that
(8.16) go = 4(m +n)d*g.

Thus @ is a holomorphic isometry from the symmetric space G/ K, endowed
with the metric (1/4(m +n)) - go, to X; henceforth, we shall identify these
Hermitian manifolds by means of this G-equivariant isometry. Therefore
the metric g is Kéhler and, from Lemma 1.21, we again obtain the equal-
ity (8.6).

The Grassmannian G(S’m is also a homogeneous space of the group G.
From (8.13), it follows that the mapping ¥ : G;Cn’n — G%,, is an anti-

holomorphic isometry. It is easily verified that the isometry ¥ satisfies
Tog=gol,

for all ¢ € G. Thus G%n and G%ym are isometric as Riemannian symmetric
spaces, but not as complex manifolds.
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The vector bundles V' and W are homogeneous G-sub-bundles of the
trivial complex vector bundle over X whose fiber is C™*". Therefore the
tensor product V* @¢ W is a homogeneous G-bundle and it is easily seen
that (8.1) is an isomorphism of homogeneous G-bundles over X. All the
vector bundles appearing in the decomposition (8.11) and the bundle E are
homogeneous sub-bundles of S?T¢; hence the fibers at z of these vector
bundles are K-submodules of ST, C.zo- Moreover under the action of the
group K on C™*" the subspaces V,, and W, of C™" are preserved; in
fact, the fiber V,,, is a U(m)-module, while the fiber W, is a U(n)-module.
The fibers at g € X of the vector bundles

(817) (SZVv)a—)C7 SQ,OV" SO’QV, /\2,0‘/7 /\O,QV
are U(m)-modules, while the fibers at zp € X of the vector bundles
(818) (SQW*)S:(C, S2’OW*, SO’QW*, /\270W*, /\O,QW*

are U(n)-modules. Each of these modules is either irreducible or vanishes;
in fact, they are all irreducible when m,n > 2. The tensor products

((S*V)g @ (S*W*)§ o
(8.19) (S2V @c S2OW*),,,  (8%2V @c S“2W*),,,
(/\270V ®c /\2’0w*>107 (/\072V ®c /\0,2W*)IO

possess natural structures of K-modules. Therefore when m,n > 2, the
K-modules E1 ;, and Es ,, and the K-modules (8.19) are irreducible. The
morphism of vector bundles

(8.20) 11 (SPV)E @ (SPWH)§ — (S2V)§ o (SPWH)

and the morphisms of vector bundles (8.3) and (8.4) are G-equivariant, and
hence the restrictions of these morphisms of vector bundles to the fibers
at xg are morphisms of K-modules. When m,n > 2, we know that these
morphisms of K-modules are non-zero. From these remarks, we infer that
the morphism (8.20) is an isomorphism of vector bundles and that the mor-
phisms of vector bundles (8.3) and (8.4) are injective. Since the rank of
the vector bundles (S2V)§ and (S2W*){ are equal to m? — 1 and n? — 1,
respectively, from the decomposition (8.7) we now see that the vector bun-
dle F5 and its sub-bundle (S?V){ o (S2W*){ have the same rank; we thus
obtain the equality (8.10). On the other hand, by a dimension-counting
argument, from the decomposition (8.2) we now obtain the equalities (8.5)
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and see that the morphisms (8.3) and (8.4) are isomorphisms. In fact, we
have

(8.21) rank (S27%)"~ = 2(7;) (Z)

When m = 1, we easily see that G(lc’n is isometric to the complex

projective space CP" endowed with its Fubini-Study metric of constant
holomorphic curvature 4, and we know that E = {0}.

If F is an arbitrary complex vector space of dimension m + n en-
dowed with a positive definite Hermitian scalar product, then an isometry
¢ : C™™ — F induces a holomorphic isometry ¢ : G5, — G§, (F).
Thus the Riemannian manifold GS,(F) is a Hermitian symmetric space.
From (8.13), it follows that the mapping ¥ : GS (F) — GS(F) is an anti-
holomorphic isometry. If we write X = G§, ,, and X’ = GS,(F), for z € X
the isomorphism ¢ : C™*™" — F induces by restriction isomorphisms

@ VX,x — VX’,go(nc)a @ WX,I — WX/7@(3;);

hence the isomorphism ¢, : Tx , — T'x/
ping

.o(x) 18 equal to the natural map-

R0 VR, ®Wxo = Vi i) © Wxr ()

It follows that
W*EX’,Lp(w) = EX,Q:;

for all x € X. When m = 1, the Hermitian metric of the complex projective
space GT(F) induced by the Hermitian scalar product of F has constant
holomorphic curvature 4. When m = n, since ¥ o ¢ is equal to ¢ o ¥
as mappings from Gf ,, to G5 (F), we see that, if u is an even (resp. odd)
symmetric form on GS(F), then p*u is an even (resp. odd) symmetric form
on G%n.

For the remainder of this section, we suppose that m = n > 1. We
consider the involutive isometry ¥ of X = G ,,. From formulas (8.9) and
(8.13), we easily infer that

(822) \I/*Trlh = WQ\I/*h,

for all h € (S*T*)T. We saw above that the isometry ¥ preserves the sub-
bundle E of S?T*. The group A of isometries of X generated by ¥, which is
of order 2, acts freely on X and we may consider the Riemannian manifold
X = ég’n equal to the quotient X /A endowed with the Riemannian metric
gx induced by g. The natural projection @ : X — X is a two-fold covering.
The action of the group SU(2n) on X passes to the quotient X. In fact,
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SU(2n) acts transitively on X, and it is easily verified that the isotropy
group of the point w(xg) is equal to the subgroup of SU(2n) generated

by K and the matrix
0 —-I,
I, O

of SU(2n). This isotropy group is precisely the group Kg; thus according
to §9 in Chapter VII of [36], we see that X is a symmetric space of compact
type which is equal to the adjoint space of X. Moreover, the space X is
irreducible and has rank n.

The notion of even or odd tensor on X (with respect to the involutive
isometry ) defined here coincides with the one considered in §4, Chap-
ter II. In fact, a section u of SPT* over X is even if and only if we can
write © = w*u’, where u’ is a symmetric p-form on X. Lemma 2.17 gives
us the following result:

LEMMA 8.1. A symmetric p-form u on G%m

condition if and only if the even symmetric p-form w*u on G
the Guillemin condition.

satisfies the Guillemin

(C .
nn Satisties

From Proposition 2.18, we obtain the following:

PropoOSITION 8.2. The symmetric space G‘gn is rigid in the sense of
C

Guillemin if and only if every even symmetric 2-form on G, ,, satisfying

the Guillemin condition is a Lie derivative of the metric.

The notion of even (resp. odd) symmetric p-form on CP! defined in §4,
Chapter III, coincides with the one introduced here on Gfl. Hence from
Lemma 8.1 and Propositions 2.20 and 3.29, we obtain the following result:

PRrROPOSITION 8.3. Let X be the symmetric space C_v'(lc’l.

(i) The X-ray transform for functions on X is injective.

(ii) A differential form of degree 1 on X satisfies the zero-energy con-
dition if and only if it is exact.

Since the space G'(fl has rank one, the first assertion of this proposition
is also given by Theorem 2.24.

§3. Highest weights of irreducible modules
associated with the complex Grassmannians

Let m,n > 2 be given integers. We pursue our study of the complex
Grassmannian X = G;Cmn. We consider the Lie algebras go and € of the
compact Lie group G = SU(m + n) and its subgroup K. The complexi-
fication g of go is equal to sl(m + n,C), and the complexification ¢ of the
Lie algebra £y admits the decomposition

t=ti ot @3,
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where 3 is the center of £, which is one-dimensional, and where £; and ¢, are
simple subalgebras of ¢ isomorphic to sl(m,C) and sl(n,C), respectively.

In fact, a matrix
A 0
0 B

of ¢, where A € gl(m,C), B € gl(n,C) satisfy Tr A + Tr B = 0, can be
written as the sum of the three matrices

(A—;mﬂyhloy

0 0
0 0 0 B-LmrB)-1, )"

(i(Tr(z)‘l)Jm i(T“OB)-In)

which belong to £;, €5 and 3, respectively. The complexification p of the
subspace pg of go can be written as

p:p—EBp—i-a

where p_ and p, are the eigenspaces of the endomorphism Ad j of p corre-
sponding to the eigenvalues +7 and —i, respectively. Since j belongs to the
center of U(m + n), this decomposition of p is invariant under the action
of K on p. We thus obtain the decomposition

(8.23) g=t QL P3Bp_Bp,

of the Lie algebra g into irreducible K-modules. If E;; = (cg;) is the matrix
of gl(m + n,C) which is determined by ¢;; = 1 and ¢ = 0 whenever
(k,1) # (i,7), the subspace p4 of p is generated (over C) by the matrices

(Ej|1<i<mandm+1<j<m+n},
while the subspace p_ of p is generated (over C) by the matrices
{Ej|lm+1<i<m+nandl<j<m}.

The group of all diagonal matrices of G is a maximal torus of G and
of K. The complexification t of the Lie algebra ty of this torus is a Cartan
subalgebra of the semi-simple Lie algebra g and also of the reductive Lie
algebra . For 1 < j < m + n, the linear form A; : t — C, sending the
diagonal matrix with aq,...,am4n € C as its diagonal entries into a;, is
purely imaginary on t3. Then

A:{)\i—)\j|1§i,j§m+nandi7éj}
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is the system of roots of g with respect to t; if we set

Ar={N—XN|1<ij<mandi#j},
Ag={ - |m+1<ij<m+nandi#j},

then A’ = A1 UA; is the system of roots of & with respect to t. We fix the
positive system

At ={N—-)N|1<i<j<m+n}

for the roots of g, and the positive system A’*T = A’ N AT for the roots
of .

If o is the root A\; — Aj of A, with 1 < 4,5 < m +n and i # j, we
consider the subspace g, of g generated by E;;. If A; is the set of roots of A
which do not vanish identically on the center 3, we write Q4 = AT N A;;
then we see that

pr = D o po= D 9o

a€Q4 a€Qy

It is easily verified that the highest weights of the K-modules ¢, €5, 3, p_
and p are equal to A1 — A, A1 — Aman, 0, —Am + A1 and Ay — A,y
respectively.

We consider the vector bundles

Vil = (S*V)ge Wyt = (S*W*)g e

As we saw in §2, the fibers at zp € X of the vector bundles (8.17) and
(8.18) are irreducible K-modules. It is easily verified (see [39, pp. 222—
223]) that the highest weights of these irreducible K-modules are given by
the following table:

K-module Highest weight K-module Highest weight

Vol,’mlo AL —Am Wol,’;o Am+1 = Amtn
(520V),, 21 (S2OW*),, —2Amn
(592V),, —2Am, (SO2W*),, 2Amt1
NV, M+ A (AW )ao | =Amtn—1 = Amin
(A**V)ay —Am-1— Am (A"2 W), Am+1 + Ama2

In §2, we saw that the K-modules F ,, and Fs ,, and the K-modules
(8.19) are irreducible. We know that the mappings (8.3), (8.4) and (8.20)
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are G-equivariant isomorphisms of vector bundles. Therefore the fibers at
x( of the homogeneous sub-bundles of S ZT({:" which appear in the right-hand
side of (8.11) are irreducible K-modules, and the morphism

711 ((S*V)g @ (S*W7)§ )wy — Baa

is an isomorphism of irreducible K-modules. Using these facts, from the
above table we deduce that the highest weights of these irreducible K-
modules are given by the following table:

K-module Highest weight

Eo.c,a0 0

E1.ca0 Am41 = Amdn

Es.ca A=A

E3 ¢z A1 = Am + Amt1 — Amn
(S201T) 2M1 = 2\ min
(8%°T*);, AL+ A2 = Angn—1 — Aman
(80277 + —2Am + 2A i1
(SO 2T*)IO —Am—1— Am + A1 + Ao

The fact that the K-modules (S297T*)} and (S*°T*);  are irreducible is
asserted in §2 of [9, Chapter 3].

Since the irreducible K-modules appearing in the above table are
pairwise non-isomorphic, from the decomposition (8.11) we infer that a
K-submodule of SQT(C can be written as a direct sum of submodules
appearing in this table. It is easily seen that there are elements of the irre-
ducible K-modules Ej ¢ 4., (S2°T*)} and (S%2T*)} , with 0 < j < 3,
which do not belong to the K-module E¢,,. We also know that the
K-modules (5%°T*); and (S*?T*), are submodules of E¢ 4,. From these

remarks, we deduce the equality

o

(8.24) (S*T*)"~ = E.

Since the decomposition (8.7) is orthogonal, we see that the orthogonal
complement of the sub-bundle Ey @ E; @ Fs in S2T* is equal to

F = (S*T*)” @ Es.

From the decomposition (8.23) of g into irreducible K-modules, the decom-
positions (8.2) and (8.11), and the preceding table, we obtain

(8.25) dim Homg(g,C) = 1, dim Homg (g, Ej c,z0) = 1,
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for 7 =0,1,2, and

(8.26) Homp (g, Fcz) = {0}

Thus we have

(8.27) dim Homg (g, SgT¢,,) = 2

(see Lemma 5.5 of [42]).

The highest weight of the irreducible G-module g is equal to Ay — A\4p,
and FEq m4pn is a highest weight vector of g. If 7, is the element of the
dual of the group G which is the equivalence class of this irreducible
G-module, by (8.25)—(8.27) the Frobenius reciprocity theorem tells us that
the G-modules C5?(X), C5?(F1 c) and C5F(Fa c) are irreducible and that
the equalities

C(SPTE) = C((S°T™)¢),

(8.28)
C(SETE) = C(Erc) @ O (Eac)
hold.
Since the symmetric space X is irreducible and is not equal to a simple
Lie group, from (2.25) and (8.28) we see that an element of E(X) is a section
of the sub-bundle E; @ Fy of S3T*; more precisely, we have

(8.29) E(X)={heCF(Eic)®C3(Eyc) | h=h, divh=0}.

From Proposition 2.40 and the equalities (8.27) and (8.29), we obtain the
following result:

PROPOSITION 8.4. Let X be the complex Grassmannian G%n, with

m,n > 2. Then the space E(X) is an irreducible SU (m + n)-submodule of
C*(E, @ E,) isomorphic to the Lie algebra go = su(m + n).

84. Functions and forms on the complex Grassmannians

Let m,n > 2 be given integers. In this section, we describe explicit
functions and symmetric 2-forms on the complex Grassmannian X = G%n,
which we view as a homogeneous space of the group G = SU(m + n).

Let Sy, be the space of all complex (m + n) X m matrices A satis-
fying tAA = I,,,. We view Sm.n as the Stiefel manifold of all orthonormal
m-frames in C"™*"; the matrix A of S, ,, determines the m-frame consist-
ing of the m column vectors of A. The unitary group U(m) acts on Sy, » by
right multiplication and we consider the quotient space Sp,./U(m). The
mapping

p:Smn— Gt

m,n’
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sending the element A of Sy, ,, into the m-plane spanned by the m column
vectors of A, induces by passage to the quotient a diffeomorphism

p i Smn/U(m) — G(rcn,w

The group G acts on Sy, , by left multiplication; clearly, the mappings p
and p are G-equivariant. A function f on S,, , which is invariant under the
right action of U(m) determines a function f on G;Cn)n satisfying p*f = f.

For 1 < j < m+n, we consider the C"-valued function Z; on Sy, n,
which sends a matrix of S,, ,, into its j-th row; if 1 <1 < m, we denote by
Z]l- the [-th component of this function. For 1 < j, k < m + n, we consider
the complex-valued function

fin =12, 2x) = > 2} 7,
=1

on Sy, n, which is invariant under the right action of U(m). Let H be the
space of all functions f on S, , which are invariant under the right action
of U(m) and can be written in the form

m—+n
(8.30) F=" ajfir,
Gik=1
where the coefficients a;, € C satisfy
m—+n

(8.31) > aj;=0.
j=1

Then H is a G-module isomorphic to g. In fact, the mapping
(8.32) H—g,

sending the function f given by (8.30) into the matrix (iay;) of g, is an
isomorphism of G-modules; moreover, the image of the G-submodule

Ho={feH|f=TF}

of H under the isomorphism (8.32) is equal to the subalgebra go = su(m+n)
of g. Thus H is an irreducible G-module and the G-submodule

H={f|feH}
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of C*(X) is isomorphic to H and to g. Therefore H is a G-submodule of
the irreducible G-module C3?(X), and so we obtain the equality

(8.33) C(X)=H.

Clearly, the function fo = fi+n1 = (Zm+n, Z1) is a highest weight vector
of H, and so the function fy on X is a highest weight vector of the irre-
ducible G-module C57(X) (see [32]). By Lemma 2.39 and (8.6), we know

that H is the eigenspace of the Laplacian A with eigenvalue 4(m + n).
Let ¢ = (C1,.--,(m+n) be the standard coordinate of C™*tn.  For
1 <j,k <m+n,let Qji be the sesquilinear form on C™*" defined by

for ¢,¢" € C™*™, and consider the U(1)-invariant complex polynomial Q
on C™*" determined by

Qr(Q) = Q;r(¢, Q) = ¢,

for all ¢ € C™*". If {v1,...,Vmin} is an orthonormal basis of C"™*", then
we easily see that

m—+n

(834) Z ij(vl) = k-
=1

Now let {v1,...,vn} be an orthonormal system of vectors of C™*™ and s
be the point of S, ,, corresponding to this orthonormal m-frame of C"™*";
then we have

(8.35) fir(s) = Z Qjr(v1).
=1

Let  be a point of X, and let {vy,...,v,,} and {wy,...,w,} be or-
thonormal bases of the spaces V, and W, respectively. Since

{v1, .y Uy W1,y ooy W b

is an orthonormal basis of C™", according to (8.34) we have the equality

Zij(Uz) + Z Qijr(wr) = k.
=1 r=1
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From the preceding equality and the relation (8.35), we infer that

(836) fjk: ZQJ}C ’Ul — U5k — ZQ]IC wr
=1 r=1

We write Q@ = Q4n,1. In particular, the relation (8.36) tells us that

(8.37) folz) => Q) ==Y Qw,).
=1 r=1

We consider the G-module of all sesquilinear forms on C™*" and its
G-submodule Q consisting of all sesquilinear forms g on C™*" which can
be written in the form

m—+n

(8.38) q=Y_ ajQjk,

Jik=1

where the coefficients a;; € C satisfy the relation (8.31). Then Q is a
G-module isomorphic to g; in fact, the mapping

Q—g,

sending the sesquilinear form ¢ given by (8.38) into the matrix (iax;) of g,
is an isomorphism of G-modules. Thus Q is an irreducible G-module and
the sesquilinear form Q = Qern’l is a highest weight vector of Q.

We consider the isomorphism of G-modules

H—Q

sending the element f of H given by (8.30) into the element ¢ = Q(f) of Q
given by (8.38). If f is a function of H, we easily see that the form Q(f)
is Hermitian if and only if f belongs to Hy. For f € H, we consider the
sesquilinear forms Q1 (f) on V* and Q2(f) on W induced by Q(f). Then

we have Q = Q(fo), and we write @1 = Q1(fo) and Q2 = Q2(fo). We see
that

(8.39) Qi(a,a) =Q(af),  Q2(w,w) =Q(w),

forac VY weW.
For f € H, the symmetric 2-forms g, -Q2(f) and Q1(f)- g2 are sections
of the vector bundles E1 c and E2 ¢, respectively. By (8.36), we see that

(8.40) Tr(g1-Qa(f) = —4mf,  Tr(Qi(f)-g2) = 4nf,
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for all f € H. Thus by (8.40), we have morphisms of G-modules
k1:H— C®(Eic), Ko 1 H — C™(E2c)
defined by

=90 Q)+ J g ()= Qi) 2= o

for f € H. Clearly the image of ; is contained in C3?(Ejc), for j = 1,2.
If f is an element of H, it is easily seen that g1 - Q2(f) (resp. Q1(f)-g2) is a
section of F; (resp. of Eg) if and only if Q(f) is Hermitian, or equivalently
if f belongs to Hy. Thus if f belongs to Ho, then x;(f) is a section of Ej,
for j =1,2.

Let  be a point of X. If the vectors e; and e, 1, belong to V, and if
@2 is a sesquilinear form on W, we verify that

(Q1-92)(1 @w, 0 ®w) =1, (91 @2) (o1 ® W, 9 @ w) =0,

for all unit vectors w € W,, where ay and «s are the vectors of V, de-
termined by ozﬁl = e1 and ag = em+n- If the vectors e; and e+, belong
to W, and if ¢q; is a sesquilinear form on V', we verify that

(91 Q2)(a®emin,a®er) =1, (1 g2) (@@ empn,a®er) =0,

for all unit vectors o € V*. From these observations, if a,b are complex
numbers which do not both vanish, we infer that the sections

agi - Q2 +bQ1 - go, k1(fo), k2(fo),

are non-zero.

Since fp is a highest weight vector of H, it follows that the sections
g1-Q2 and Qg2 are highest weight vectors of the G-modules C'Wof (El,(C) and
C‘W’f(Eg,@), respectively, and that the sections 1 (fy) and x2(fo) are highest
weight vectors of the G-modules Csf(ELC) and Cgf(Eg,C), respectively.
Since the G-modules C5?(E1 c) and C55(Ea ) are irreducible, we obtain
the equalities

(8.41) CX(Erc) = kM),  CX(Esc) = ra(H).

Moreover, the sections g1 Q2+ Q1+ g2 and g7 - Q2 — Q1 - g2 are highest weight
vectors of the G-module Csf((SQT*)$); also since &, (fo) is a section of the
vector bundle Ej ¢, the sections

r1(fo) + k2(fo), r1(fo) — r2(fo)

are highest weight vectors of the G-module C°(SET¢).
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Since the differential operator Hess : C*°(X) — C*°(S?T¢) is homoge-
neous, it induces a morphism of G-modules Hess : H — Cﬁf(SzTC*). Thus
if f is an element of H, from the equalities (8.28) and the decomposition
(8.7) we infer that Hess f = 7y Hess f is a section of (S?>7*){ and that

2(m+n) ;

(8.42) Hess f = (m + Wg)Hessf — g

mn

here we used the fact that f is an eigenfunction of the Laplacian A with
eigenvalue 4(m + n). By (1.35) and (8.6), we see that

(8.43) div Hess f = 2(m + n)df,

for f € H. From (8.42), (8.43) and (1.8), we obtain the identity
- 1 ~
(8.44) div (my 4 m2)Hess f = 2(m + n) (1 - )df,
mn

for f € H.
Let f be a non-zero element of H. By (8.44), we know that the section
(m + FQ)HGSSf is non-zero. Since (8.7) is a direct sum decomposition, it
follows that at least one of the two sections m1Hess f and moHess f does
not vanish. Therefore the section (m1 —m)Hess f of SgT¢ does not vanish.
In §8, we shall prove the following result:

PROPOSITION &8.5. We have

1 Hess fo = Hl(fo), WQHQSSfO = —Iig(fo).

This proposition implies that the two sections 7y Hess fo and moHess fo
do not vanish. Since Hess is a homogeneous differential operator, it follows
that the morphism m;Hess : C>°(X) — C*°(E; ¢) induces an isomorphism
of G-modules

(8.45) miHess : H — C77(Ejc),

for j = 1,2. In fact, since k1 and ko and the mappings (8.45) are isomor-
phisms of G-modules, from Proposition 8.5 we deduce that

(8.46) miHess f = k1 (f), moHess f = —ka(f),

for all f € H. From (8.42) and (8.46), we now deduce that

(8.47) Hess f = g1 - Q2(f) — Q1(f) - go-
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For the remainder of this section, we suppose that m = n. Then we
have

(k1 + k2)(f) = g1 - Q2(f) + Q1(f) - 92,

(51 = m2)(f) = 91+ @2(1) ~ @Qa(f) g2+ - o9,
for all f € H. According to (8.46), we have

(8.48) (w1 — m2)Hess f = g1 - Q2(f) + Q1(f) - g2,

for f € H.

We note that Proposition 8.5 is exploited here only in order to prove
the equalities (8.47) and (8.48). Neither Proposition 8.5 nor these equalities
shall be used in any of our subsequent proofs; they are presented here only
for the sake of completeness.

Let = be a point of the Grassmannian X = G .. Let {v1,...,v,}
and {wy,...,w,} be orthonormal bases of the vector spaces V, and W,
respectively. According to (8.35), for 1 < j, k < 2n, we see that

Fir(x ZQ;k vr), Fir(W Zng w).

From these relations and (8.36), it follows that
Fin(@) + fin(¥(@)) = o1,
for 1 < j,k < 2n. This equality implies that
\I]*fN = _f~7
for all f € H, and thus the functions of H are odd. Since the G-module
C57(X) is irreducible, by (8.33) we see that

(8.49) C2(X) = C(X)°M =H.

Moreover, since Hess is a homogeneous differential operator, if f is an
element of H, the symmetric 2-form Hess f on X is odd.
We easily verify that

V(g1 - Q2(f)) = Q1(f) - 92,

for all f € H. Therefore by (8.49), for f € H, we see that (k1 + r2)(f)
(resp. (k1 — K2)(f)) is an even (resp. an odd) section of S3T;:. Thus the
sections

(k1 +K2)(fo) = g1 - Q2+ Q1 - g2,

(f€1—52)(f0)=g1'Q2—Q1'g2+%f0-g
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are highest weight vectors of the G-modules
CSU(SSTE)™,  CF(SHTE) ™,

respectively. Moreover, from (8.28) it follows that these G-modules are
irreducible and the equalities

(850)  CR(SITE)™ = (k1 +hr2)H,  CI(SFTE)M = (k1 — ka)H
hold; hence by (8.50), we have
(8.51) C22(SPTE)™ = CU(SFTE)™ = (k1 + ko) H,
. Cf;?(SQTC*)odd :ﬂ.g@(,ﬁ — g H.
By (8.39), we see that

(8.52) (k1 + K2)(fo) (a ® w,a @ w) = 2(Q(f) + Q(w)),

for all unit vectors a € V and w € W.
Since the involutive isometry ¥ of X is anti-holomorphic, we see that

(8.53) U*9 = dU*

on APT¢. From the relations (2.28), (8.53) and (8.49), we obtain the
equalities

C(Te)™ = Ke,

(8.54) _ .
CR(THY = (0-H,  CF(Tg)°*M =dH
of irreducible G-modules.

Let f be an element of H. By (8.22) and (8.49), we see that the section
(m1 +ma)Hess f of SZT¢ is odd and that the section (m; —mg)Hess f of SZT¢:
is even. If f is non-zero, we saw that these two sections do not vanish;
thus the sections (w1 + m2)Hess f and (m; — my)Hess f are non-zero vec-
tors of the G-modules C3? (S27%)°dd and CS2(S3TE), respectively. Since
the G-modules CS2(S3T¢ ) and C29(T%)°4 are irreducible, by (8.44) we
therefore see that the homogeneous differential operator div induces an
isomorphism of G-modules

(8.55) div : C2(SgTE)* — O (T)°.

We consider the symmetric space Y = ng and the natural projection
w: X — Y. We consider the G-submodules

E(X)® = BE(X)NC>®(S*T*)®, E(X)° = B(X)nC(s2T)°dd
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of E(X). According to §4, Chapter II, the projection w induces an isomor-
phism of G-modules w* : E(Y) — E(X)® given by (2.7) and we have the
decomposition (2.10) of E(X).

Since the mapping (8.55) is an isomorphism, by (2.25) we see that
E(X)°dd = {0}; it follows that

E(X)=E(X)®™ C CX(S5Te).

Proposition 8.4 tells us that E(X) is an irreducible G-module isomorphic
to go, and so we have the equality

E(X)c = C2(S3T8).

From the first equalities of (8.51), we obtain the relations (8.56) of the next
proposition. Since (k1 + #2)Ho is a G-submodule of C*°(S3T*)® isomor-
phic to go, it is therefore equal to E(X). From the above discussion, we
obtain the following;:

PROPOSITION 8.6. Let X be the complex Grassmannian Gg,n, with
n > 2, andY be the symmetric space G ,,. The spaces E(X) and E(Y') are
irreducible SU (2n)-modules isomorphic to gg = su(2n); moreover, E(X) is

equal to the SU(2n)-submodule (k1 + k2)Ho of C*°(SET*)", and we have
(8.56)  E(X)c = C2(S*TE)® = C(SeTE) = (k1 + ka)H,
(8.57) B(Y)e = C22(Y, 8°T5 ).

§5. The complex Grassmannians of rank two

In this section, we consider the complex Grassmannian X = ng,
with n > 2, endowed with the metric g of §2. We view X as a homogeneous
space of the group G = SU(n+2). The standard Hermitian scalar product
on C"*2 induces a Hermitian scalar product § on /\QC”"’?, which in turn
induces a Hermitian metric § of constant holomorphic curvature 4 on the
complex projective space GE(A’C™2) of all complex lines of A>CF2.
If u is a non-zero vector of A’C"*2, we denote by m(u) the element of
GE(A\*C™*2) corresponding to the complex line of A*C™*+2 generated by u.
If u is a unit vector of /\2((3”“‘2 and v is a vector of /\2((:"‘*‘2 orthogonal
to u, we consider the vector

d
o, 0) = (4 1) o

tangent to the projective space GS(A’C™+2) at 7 (u). It is easily verified
that the Pliicker imbedding

v: G5, — GT(N'CP?),
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which sends the complex 2-plane generated by the vectors vy, vy of C*+2
into m(vy A vg), is an isometric imbedding.
Throughout the remainder of this section, we shall suppose that n = 2.
Let {e1, e, €3, €4} be the standard basis of C*. The complex quadratic form
H on \>C* with values in the one-dimensional vector space A\*C* defined
by
H(&1,62) = &1 A&,

for &1,&5 € A2C4, is non-degenerate. The vectors

wlz%(el/\€2+€3/\€4), WQ:£(€1A€2—63A64)7
1 )

W3:ﬁ(62/\€3+61/\64), w4:\ﬁ(62/\63761/\64),
1 )

(.05:%(61/\63762/\64), wgz\ﬁ(el/\ngreg/\&;)

form an orthonormal basis for A\*C* (with respect to §) which diagonalizes
the quadratic form H; in fact, we have

H(wj7wk) = 0jk €1 N eg N es /\64,

for 1 < j,k <6. An element A of the group G acts on /\2(C4 and preserves
both the scalar product § and the quadratic form H. Then we may write
Awj = 22=1 c;? wy; from these properties of A, we easily deduce that the
coefficients cf are real.

We consider the complex hypersurface Z of GS(A\*C*) defined by the
homogeneous equation H(£,£) =0, for € € /\2(C4. By Cartan’s lemma, we
easily see that the image of ¢ is equal to Z. The complex coordinate system
((1y.-.,¢6) on /\Q(C4 determined by the orthonormal basis {wi,...,ws}
allows us to identify A*C* with C5 and GE(A’C*) with CP5. Then Z is
identified with the complex quadric @4 of the complex projective space
CP® defined by the homogeneous equation

G-+ @G =0,

We consider the metric on Z induced by the metric § of GF( /\ C*); then

G(C2 — Z is an isometry, and the complex Grassmannian G o is isomet-
ric via this mapping to the complex quadric ()4 endowed with the Rieman-
nian metric g of §2, Chapter V. Thus from Theorem 6.45, with n = 4, we
deduce:
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THEOREM 8.7. The Grassmannian GSQ is infinitesimally rigid.

The complex conjugation of C® induces an involution 7 of A*C*: the
point ¢ of /\ C* with coordinates ((1,...,(s) is sent into the point 7(¢)
with coordinates (Cl, ...,Cg). In turn, this involution induces an involutive
isometry 7 of GE(A\? (C4) which preserves the hypersurface Z. If U is the
isometry of X = G22 which sends a 2-plane in C* into its orthogonal
complement, we now verlfy that the diagram

G5, —— G5,
(8.58) l l
z - Z

is commutative. Indeed, if x( is the point of X corresponding to the
2-plane generated by {ej,es}, then ¥(zg) corresponds to its orthogonal
complement, which is the 2-plane generated by {es,es}. Let ¢ be an ele-
ment of G. Then the point ¢(z() of X corresponds to the 2-plane gener-
ated by {¢(e1), ¢(e2)}, while Uo(xg) corresponds to the 2-plane generated
by {¢(e3), p(eq)}. We verify that

1 ) 1 )
(8.59) e1N\ey = % (w1 —iwa), e3 N\eg = \7@ (w1 + ws).
We may write ¢pw; = Zk 1 c wg, where the coefficients c are real. It
follows that

6 6
1 1
d(e1 Neg) 2 E w], ez Ney) 2 E
Jj=1 J=1

Thus the points tp(z0) and t¥é(zo) of GF(A’C*) correspond to the points
of CP5 with homogeneous coordinates (¢1,...,(s) and ((1,...,(}), respec-
tively, where

Since (j = Cj, we see that t¥¢(z0) is equal to Tid(zo). Since the group
G acts transitively on the Grassmannian X, from this last observation we
obtain the commutativity of the diagram (8.58).

According to (5.59), the quotient of the complex quadric Q4 by the
action of the group of isometries of Q4 generated by 7 is isometric to the
real Grassmannian Gﬂi , endowed with the Riemannian metric % g, where
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g is the metric on G§74 considered in §1, Chapter IV. Hence the commu-
tativity of diagram (8.58) implies that the space G, is isometric to the
Grassmannian G§,4 endowed with this metric % g; moreover, a symmetric
p-form u on the quadric Z is even (resp. odd) with respect to the involu-
tion 7 if and only if the symmetric p-form +*u on GSQ is even (resp. odd).
From Proposition 4.14 and Theorems 6.47 and 6.71, with n = 4, we deduce
the following three results, the first of which is also given by Theorem 2.24:

ProposITION 8.8. The maximal flat Radon transform for functions
on the symmetric space GSQ is injective.

THEOREM 8.9. The symmetric space C:‘SQ is rigid in the sense of
Guillemin.

THEOREM 8.10. A 1-form on the symmetric space G’SQ satisfies the
Guillemin condition if and only if it is exact.

The mapping ¢* : C°°(S?T3) — C°°(S2T*) induces an isomorphism
*:E(Z) — E(X).

According to the commutativity of diagram (8.58), from the equalities
(8.56) and the relation (6.79) given by Proposition 6.63, it follows that

(8.60) NQQE(X) ZNQQ(Hl + Ko)H = {0}

We remark that the first equality of (8.56) for ng, is also a consequence
of relation (5.111) of Proposition 5.17.

We continue to identify Z with the quadric Q4 as above. We also
identify the vector bundle L of rank 2 over the complex quadric ()4 defined
in §3, Chapter V with a sub-bundle of S?T%. We now proceed to verify

that, for all € X, the isomorphism ¢* : SQTEL(I) — S§°T% , induces an
isomorphism

(8.61) A LL(I) — Ex .

Let x; be the point of X corresponding to the 2-plane generated
by {es,es}. According to §2, Chapter V and the relations (8.59), the
tangent vectors

{m.(e3 N eq,w;j), mi(e3 A ey, iwj)},
with 3 < 7 < 6, form an orthonormal basis for the tangent space of Z at

the point 1 = ¢(x1), and the unit tangent vector v = m,(es A eq, —e1 Aea)
at 7 is normal to Z. According to the relations (5.54), the action of the
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real structure K, of the quadric associated with the unit normal v is given
by

K,m(esNeq,w;) = mi(esNeq,wj), Kymi(esAeq,iw;) = —mi(ezNeq,iwj),
for 3 < j < 6. Since
el /\64:L(W3+Z’u}4), 62/\63:L((JJ37’IZW4)7
V2 V2
we see that
Kymi(es Neg,eq Neg) = ma(es Aeg,ea Aes).
The elements h, and hj, of SQT},g21 determined by

hl/(gvn) :g(Kllgvn)a hJV(§777) :g(JKV£777)7

for £, € Tz 3,, are generators of the fiber Lz, . Thus we obtain

h,,(7r*(e3 Neg,e1 N\ 64),7'(*(63 Neg,e1 N\ 64))

J(Kymi(es ANeg,e1 Ney),mi(es Aeg,e1 Aey))

g(ms(es Neq,ea Nes),mu(es Aeg,e1 Aeg))
0

)
on the other hand, we also have

hyv(mi(es Aes,e1 Aeq),mi(es Aea,e1 Aeyq))

J(JK,m(e3 Neg,e1 Ney),me(es Neg,e1 Aey))

g(Jmi(es ANeg,ea Nes),me(es Aeyg,e1 Aey))
0

It follows that
(8.62) h(m.(es Neg,e1 Neg),mu(es Neg,e1 Aeg)) =0,

for all h € Lj,.

Let x be an arbitrary point of X and let a € VJ and w € W, be unit
vectors. We consider the tangent vector { = a®@ w € (V* ® W),. Then
there are orthonormal bases {vi,v2} of V, and {w;,ws} of W, such that
(v1,a) =1, (vg,a) =0 and wy = w. Then we easily see that

1€ = mi (V1 A Vg, w1 A vg).
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There exists an element ¢ of G satisfying
dles) =v1, dles) =va, ¢(er) =wi, Ple2) = wa.

Then the isometries ¢ of X and GE(A*C*) induced by this element of G
satisfy to ¢ = ¢ o, ¢(x1) = z, ¢(&1) = ¢(z); in turn, these isometries
induce isomorphisms

¢* : LL(QZ) - Lfi‘17 ¢* : EX,m - EX,."cl-
Clearly we have
(8.63) D.i(e3 Neg,e1 Aes) = €.

From the relations (8.62) and (8.63), we see that

h(t:&, 1:8) = 0,

for all h € L, (), and so we obtain the inclusion t*(L,(;)) C Ex .. According
to (8.21) and (8.24), we know that the bundle Ex is of rank 2. Therefore
the equality ¢*(L,(z)) = Ex . holds, and we have verified that the mapping
(8.61) is an isomorphism.

The commutativity of the diagram (8.58), the isomorphisms (8.61) and
Theorem 6.52 give us the following:

THEOREM 8.11. Let X be the complex Grassmannian GSQ. An even
section of Ex over X, which satisfies the Guillemin condition, vanishes
identically.

§6. The Guillemin condition on the complex Grassmannians

Let m,n > 1 be given integers. In this section, we return to our study
of the complex Grassmannian X = G‘,Cn’n, endowed with the metric g, and
continue to identify the tangent bundle 7' of X with the vector bundle
V*®c W as in §2.

Let F be a totally real subspace of C™ "™ of dimension m-+n. The stan-
dard Hermitian scalar product on C™*" induces a positive definite scalar
product on F; we consider the real Grassmannian Y = GE (F) endowed
with the Riemannian metric determined by this scalar product on F. We
then have a totally geodesic imbedding
(8.64) 1:GR(F) — G(Enm,
which sends the real subspace I’ of F' of dimension m into the complex
subspace of C"™" of dimension m generated by F’ over C. If y is a point
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of Y, then V,(,) is the subspace of C™*" generated by Vy,, over C and W,y
is the subspace of C™*" generated by Wy, over C. The scalar product
on F' allows us to identify the vector bundle V3 with its dual bundle V¢
and therefore also Vy @g Wy with Homg (Vy, Wy-). Then we see that, for
y € Y, the mapping ¢4, induced by ¢ is equal to the injective mapping

(8.65) (Vv @r Wy)y — (V" ®c W)y(y),

which sends 6 € (Vy @rWy )y, considered as an element of Homg (Vy-, Wy ),
into the unique element 6 of Home(V, W), (y) whose restriction to Vy,,, is
equal to € and which satisfies GoJ =J oé, where J is the complex structure
of C™*". For y € Y, we identify the space (Vy ®@r Wy ), with its image in
(V* ®@c W),(y) under the mapping (8.65); then we have the equality

(8.66) Exp, ) (Vv ®r Wy )y, = (G, (F))

of closed totally geodesic submanifolds of G;Cn,n. The tangent spaces of these
submanifolds of G%n at t(y) are equal. From the formula for the curvature
of G¢

m,n>’

we infer that Epr(y)(Vy ®r Wy), is a totally geodesic subman-
ifold of G;Cnm and a globally symmetric space. Clearly, the submanifold
t(G® (F)) has these same properties. In fact, the subgroup of SU(m + n)
consisting of all elements of SU(m + n) which preserve the subspace F'
of C™*™ acts transitively on these submanifolds by isometries. These var-
ious observations yield the equality (8.66). From the above description of
the mappings ¢4y, with y € Y, we infer that, if h is a section of the vector
bundle E of S?T* over X, then the symmetric 2-form ¢*h is a section of the
vector bundle Ey over Y. Since Y is a symmetric space of the same rank
as X, if u is a symmetric p-form on X satisfying the Guillemin condition,
then the symmetric p-form ¢*u on Y also satisfies the Guillemin condition.
Since an arbitrary point of X belongs to the image of an imbedding of
the form (8.64), from the preceding observation and Proposition 4.12 we
deduce the following result, which is also given by Theorem 2.24:

ProposiTIiON 8.12. For m,n > 2, with m # n, the maximal flat
totally geodesic Radon transform on the complex Grassmannian G(Tcnm is
injective.

Let z be a given point of G%n. Let V/ and W’ be totally real non-zero

subspaces of V) and W, of dimension p and ¢, respectively. Then there is
a natural injective mapping

(8.67) V'@r W — (V* @c W)a;

we shall identify V' ®@g W’ with its image under the mapping (8.67), which
is a totally real subspace of (V*®@c W),. We choose a totally real subspace
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V1 of V¥ of dimension m containing V' and a totally real subspace Wy of
W, of dimension n containing W’. We then consider the injective mapping

(8.68) Vigr Wi — (V7 @c W),

given by (8.67). Let V{ be the totally real subspace of V,, consisting of the
vectors v of V,, for which {(a,v) € R, for all a« € V;, and let V" be the
subspace of V] equal to the image of V/ under the isomorphism V; — V/
induced by the scalar product on V{. We consider the totally real subspace
F = V/ & Wi of C™*™ and the corresponding totally geodesic isometric
imbedding ¢ given by (8.64). If y is the point of Y = G%,(F) corresponding
to the real subspace V{ of F, then we have ¢(y) = z, and we see that
W,y = V{ and Wy, = W;. Thus the image of the mapping (8.68) is equal
to the image of the mapping (8.65) at y induced by this imbedding ¢. We
denote by Z the real Grassmannian Gf, g andlet j : Z — Y be the isometric
imbedding given by Lemma 4.6 whose image is equal to the submanifold
Exp, V" @r W' of Y. We easily see that the image of the restriction of the
mapping t., to the subspace V" @r W’ of (V3 ®r Wy), is equal to the
subspace V' @g W' of (V* @c W),. Therefore the image of the isometric
imbedding i = 10 j : Z — X is equal to the totally geodesic submanifold
X' = Exp,V' @r W’ of G5, ,,. If h is a section of the vector bundle E
of S2T* over X, we have seen that the symmetric 2-form ¢*h is a section
of the vector bundle Fy over Y; by Lemma 4.6, we now infer that the
symmetric 2-form i*h is a section of the vector bundle E; over Z. Thus
we have proved the following lemma:

LEMMA 8.13. Let x be a point of the complex Grassmannian X =
G%n, with m,n > 2. Let V! and W' be totally real non-zero subspaces of
V¥ and W, of dimension p and q, respectively. Then X' = Exp, V' @g W’
is a closed totally geodesic submanifold of X isometric to the real Grass-
mannian Z = Gﬁq. Moreover, there is an isometric imbedding i : Z — X
whose image is equal to X' and which has the following property: if h is
a section of the sub-bundle E of S?T* over X, then i*h is a section of the
sub-bundle Ez of S*T7.

Assume that p = m and that ¢ = n. Then X' is a symmetric space of
the same rank as X. Thus the restriction to X’ of any symmetric form on
X satisfying the Guillemin condition also satisfies the Guillemin condition.
Moreover we may choose a maximal flat totally geodesic torus Zy of X
contained in X’ and containing the point . If Z is an arbitrary maximal
flat totally geodesic torus of X and z is a point of Z, there exists an element
¢ of SU(m+n) such that ¢(Zy) = Z and ¢(x) = z; therefore Z is contained
in the totally geodesic submanifold ¢(X’) = Exp, Vo ®g Wa of X, which
is isometric to the real Grassmannian G~ ., where V5, is the totally real

m,n’

subspace ¢~ * (V') of V* and Wy is the totally real subspace ¢(W') of W,.
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From Propositions 4.12 and 4.13 and Lemma 4.6, we then obtain the
following:

ProOPOSITION 8.14. Let x be a point of the complex Grassmannian
X = G%n, with 2 < m < n. Let X' be a closed totally geodesic subman-
ifold of X isometric to the real Grassmannian G;liq which can be written
in the form Exp, V' ®@g W', where V' and W' are totally real non-zero
subspaces of V. and W, of dimension p and gq, respectively. Assume either
that p = m or that ¢ = n. If u is a symmetric form on X satisfying the
Guillemin condition, then the restriction of u to X' satisfies the Guillemin

condition.

Let Fy and F5 be orthogonal complex subspaces of C™ %" and let p;
and pp be given integers satisfying 0 < p; < dim F}, for j = 1,2, and
p1 + p2 = m. We suppose that F, is the orthogonal complement of F}
in C™*". For j = 1,2, the space F; is endowed with the Hermitian scalar
induced by the standard Hermitian scalar product of C™*"; we consider
the complex Grassmannians ¥ = Ggl (F1) and Z = G;C,Q (F») endowed with
the Hermitian metrics induced by these Hermitian scalar products. Then
there is totally geodesic imbedding

(8.69) L: ZxY — X,

sending the pair (z,y), where z € Z and y € Y, into the point of X
corresponding to the m-plane of C™*" generated by the subspaces of I
and F} corresponding to the points z and y, respectively.

We now fix points y € Y and z € Z; we write z = «(z,y). By definition,
we have

(870) V, = Vy’y (oo VZ,Z7 W, = Wy’y b WZ,z-

It is easily seen that the mapping ¢,(. ) from the tangent space of Z x Y at
(z,9) to the tangent space T, induced by ¢ is identified with the mapping

(8.71) (V3 @Wz). & (Vi@ Wy), — (Ve W),

sending 6; @ 02, where 0; € V]* ® W; is considered as an element of
Homc (V}, W;), into the element 6 of (V* ® W), determined by

O(v1) =01 (v1),  O(v2) = O2(va),
for all vectors v; € Vi and vy € V5. Let

Lyt Vyy — Vo, Lyt Wy — Wy
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be the inclusion mappings corresponding to the decompositions (8.70). The
first decomposition of (8.70) also determines an injective mapping

L Vy, — Vi

If o is a vector of Vy , we consider the vector a¥ of Vy,, determined by «;
then we have the relation

(8.72) Lof = (1)

among vectors of V.
We consider the totally geodesic imbedding

p=1,Y =X

defined by ¢(a) = t.(a) = i(z,a), for all a € Y; then we have p(y) = =.
Then we have the equality

(8.73) vl @w) = (1,0) @ (Lw)

among vectors of (V* @ W)y, for all « € Vy and w € Wy,,. According to
(8.73), if h is a section of the sub-bundle E of S?T* over X, we see that,
for z € Z, the symmetric 2-form ¢*h is a section of the sub-bundle Fy of
S2Ty.

If F, denotes the image of (Vyf ® Wy ), under the mapping (8.71), we
have the equality

(8.74) Exp, F, = (G}, (F1))

of closed totally geodesic submanifolds of G;Cn’n. Indeed, using the above
description of the mapping ¢, at (z,y) given by (8.71), we see that the
tangent spaces of these two submanifolds of G%n at x are equal. From
the formula for the curvature of G

m.n» We infer that Exp, F, is a totally
geodesic submanifold of G(Sn,n and a globally symmetric space. Clearly, the
submanifold (G, (F1)) has these same properties. In fact, the subgroup
SU(m + n, Fy) of SU(m + n), consisting of all elements of SU(m + n)
which preserve the subspace F; and are the identity on the orthogonal
complement of Fj, acts transitively on these submanifolds by isometries.
These various observations yield the relation (8.74).

Now let V' be a complex subspace of V* of dimension p and W’ be
a complex subspace of W, of dimension ¢q. Let V] be the subspace of V
equal to the image of V’ under the mapping V,* — V,, sending « € V,* into
af € V,. In fact, V/ is the orthogonal complement of the subspace

V”:{UeVz | (v,a) =0, forallaEV’}
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of V. Then the complex subspace Fy = V] & W’ of C"™" of dimension
p + ¢ is orthogonal to V. Thus V" is a subspace of dimension m — p of
the orthogonal complement Fy of F; in C™*". We consider the complex
Grassmannians Y = G§(Fy) and Z = G, (F»), with po = m — p, and the
totally geodesic imbedding ¢ : Z x Y — X given by (8.69), with p; = p.
Let y be the point of Y corresponding to the subspace V{ of F; and let
z be the point of Z corresponding to the subspace V' of F5. Then we have
Vy,y = V{ and Wy, = W’ and z is equal to ¢(z,y). The totally geodesic
imbedding ¢ = ¢, : Y — X sends the point of Y corresponding to a p-plane
F' of F} into the m-plane of C™*" generated by the subspaces £’ and V.
The image (V3f ® Wy ), under the mapping (8.71) is equal to the subspace
V' ®@c W' of (V* ®@c W),. Therefore from (8.74), we obtain the equality

(8.75) Exp, V' @c W' = ¢(G5(F1))

of closed totally geodesic submanifolds of G(Emn.

From these remarks and the equality (8.75), we obtain:

LEMMA 8.15. Let x be a point of the complex Grassmannian X =
G%n, with m,n > 2. Let V' and W’ be complex non-zero subspaces
of V¥ and W, of complex dimension p and g, respectively. Then X' =
Exp, V' ®@c W' is a closed totally geodesic submanifold of X isometric to
the complex Grassmannian ¥ = Ggﬁq. Moreover, there is an isometric
imbedding i : Y — X whose image is equal to X', a unique point y of Y
satisfying i(y) = x, and isomorphisms @1 : Vy', — V', @5 1 Wy, — W',
which possess the following properties:

(i) the mapping i, : (V3 ®c Wy)y, — (V* ®@¢ W), induced by i is
equal to p1 ® p2;

(ii) if h is a section of the sub-bundle E of S*T* over X, then i*h is
a section of the sub-bundle Ey of S*Ty:.

If we take p = 1 in the preceding lemma, then X' is isometric to
the complex projective space CP?; moreover, the restriction to X’ of an
arbitrary section of the vector bundle F vanishes.

PRrROPOSITION 8.16. Let x be a point of the complex Grassmannian
X = G(,Cnyn, with 2 < m < n. Let X' be a closed totally geodesic sub-
manifold of X isometric to the complex Grassmannian vaq which can be
written in the form Exp,V’' ®@c W', where V' and W' are non-zero complex
subspaces of V. and W, of dimension p and q, respectively. Assume either
that p = m or that ¢ = n. If u is a symmetric form on X satisfying the
Guillemin condition, then the restriction of u to X' satisfies the Guillemin
condition.

PRrROOF: Let u be a symmetric form on X satisfying the Guillemin
condition. Let Z be a maximal flat totally geodesic torus of the submani-
fold X’. To prove the proposition, we need to show that the restriction of u
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to Z satisfies the Guillemin condition. It suffices to consider the case when
Z contains the point z. Indeed, according to the previous discussion, there
is an element ¢ of SU(m + n) preserving X’ and such that ¢(x) belongs
to Z. We have seen above that there exist a totally real subspace V; of V'
of dimension p and a totally real subspace W of W, of dimension ¢ such
that Z is contained in the totally geodesic submanifold X; = Exp, Vi ®@r W)
of X’ which by Lemma 8.13 is isometric to the real Grassmannian Gﬁq.
By Proposition 8.14, the restriction of u to the submanifold X; satisfies
the Guillemin condition. Since X7 is a symmetric space of the same rank
as X', it follows that Z is a maximal flat totally geodesic torus of the
submanifold X;. Hence the restriction of v to Z satisfies the Guillemin
condition. This completes the proof of the proposition.

If we take either p = 1 and ¢ = n, or p = m and ¢ = 1 in the pre-
ceding proposition, since the Grassmannians G;Cn’n and G;Cn’n are isometric,
by (8.13) we obtain:

PROPOSITION 8.17. Let x be a point of the complex Grassmannian
X =G5, ,,, withm,n > 2 and m # n. Let X’ be a closed totally geodesic
submanifold of X isometric to a complex projective space of dimension > 2,
which can be written either in the form Exp,a ® W,, where « is a unit
vector of V), or in the form Exp,V* ® w, where w is a unit vector of W,.
If u is a symmetric form on X satisfying the Guillemin condition, then the

restriction of u to X' satisfies the zero-energy condition.

§7. Integrals of forms on the complex Grassmannians

Let m,n > 2 be given integers. We consider the complex Grassman-
nian X = G%n, the group G = SU(m+n) and the mapping p : Sy, — X
of §4.

This section and §9 are mainly devoted to results which lead to the
following:

ProprosITION 8.18. Let X be the complex Grassmannian G;Cmn, with
m,n > 2. Then the equality

(8.76) No N E(X) = {0}

holds.

We remark that, when m = n = 2, the assertion of this proposition is
already given by (8.60). According to Lemma 2.11, we see that Proposi-
tion 8.18 implies that the equality

(8.77) 2, N E(X) = {0}

also holds.



294 VIII. THE COMPLEX GRASSMANNIANS

We consider the sesquilinear form Q = Qm+n,1 on C™T™ and the
sesquilinear forms @1 on V* and Q2 on W induced by Q, which are de-
fined in §4. We also consider the U(1)-invariant polynomial @Q on C™*"
determined by Q and the function fo on X, which are also defined in §4.

Let F be a complex subspace of C™*" of dimension g+ 1, with ¢ > 1.
We consider the complex projective space G$(F) of dimension ¢, the unit
sphere S(F) of F' and the natural projection

T S(F) — GS(P),

which sends v € S(F) into the line generated by u. Clearly, a U(1)-
invariant function on S(F') induces by passage to the quotient a function
on G$(F). Let {ui,...,u,} be an orthonormal basis for the orthogonal
complement F'+ of F in C™*"; by an argument similar to the one which
gives us the relation (8.37), we see that the expression Y ;_; Q(u;) is inde-
pendent of the choice of the basis for F-. We consider the U(1)-invariant
function f; on S(F') defined by

P

fi(w) = Qu) + > Q(w),

=1

for u € S(F). We consider the functions f; on GE(F) induced by f;. If
F contains the vectors ey and e,,4,, we remark that Q(v) vanishes for all
v € F+, and so in this case we see that fi(u) = Q(u), for all u € S(F). If
u, u’ are vectors of S(F'), which are orthogonal with respect to the standard
Hermitian scalar product on C™*" and if ¢t € R, we consider the unit vector

o(t) = cost-u+sint-u

of F'; in §4, Chapter III, we remarked that the path v = ~, s defined by
y(t) = (moo)(t), with 0 < t < 7, is a closed geodesic of G$(F).

Let Fy be a complex subspace of C"™ " of dimension n+ 1; we consider
the complex projective space Y = G$(Fy). Let Fi- be the orthogonal
complement of F; in C™*" and let {u1,...,Um—1} be an orthonormal basis
of Fi-. We consider the totally geodesic imbedding

1Y — G%,n,
which sends 7(u), with u € S(F}), into the m-plane of C"™ "™ generated by
u and the subspace Fj-. We consider the functions fl on Y induced by the
U (1)-invariant function f; on S(Fy). According to the definition of ¢; and
the equality (8.37), we see that

(878) Likfo = fl-
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Let u be a given element of S(F}); we consider the points y = m(u)
of Y and = 11(y) of X. Then u belongs to V,,. Let o be the unit vector
of V) determined by the relations

<uva> =1, <Uva> =0,

for all v € Fi-. Then we easily verify that « is the vector of V* determined
by the relation af = u. According to the relation (8.73), we see that

(8.79) tTyy =@ W,.

Let u,u’ be vectors of S(Fy), which are orthogonal with respect to the
standard Hermitian scalar product on C™*™. As above, we consider the
unit vector

o(t) = cost-u+sint-u

of Fy, with ¢t € R, and the closed geodesic v = 7, of Y defined by
~¥(t) = (moo)(t), for 0 <t < . We write z(t) = t17y(t), for 0 <t < 7r; the
subspace V() of C™ ™ is generated by the vector o(t) and the space Fi-.

For 0 <t <, let a(t) be the unit vector of V7, determined by

(o(t),a(t)) =1,  (v,a(t)) =0,
for all v € Fi*; then we easily verify that a(t)! = o(t). The unit vector
o(t) = —sint - u + cost - u' belongs to the space W), and according
to (8.73), we have
11:9(t) = at) @a(t) € (V' @c W)gw)-
By (8.78), we see that

m—1

(8.80) fo(z(t)) = fr(v(1) = Qo (1)) + ) Q(w).

=1

Moreover, by (8.39) we obtain the relations

(8.81)

If h is a section of SQT(C* over X, we have

(8.82) / h— /0 " halt) ® 6 (), alt) ® & (1)) dt.



296 VIII. THE COMPLEX GRASSMANNIANS

We now suppose that the subspace Iy of C™T" contains the vectors
e; and e, +n,. We also suppose that

u—i(e + emtn)
\/§ 1 m—+n

and that v’ is orthogonal to e; and e,,1,,. We consider the closed geodesic
01 = 11 0 Yy, of X. For 0 <t <7, the unit vectors o(t) of V() and &(t)
of W) associated above to the geodesic v, of Y are given by

t
o(t) = st (€1 + emain) +sint -,

V2

int
G(t) = — 222 (1 + emn) + cOSE- 1.

V2
From (8.83), we deduce that

(8.83)

Qo(t)) = %cos2 t, Q(a(t)) = %sin2 t.

According to (8.80), we see that
7 1
fo(z(t) =Q(a(t)) = 3 cos? t.

Hence by (8.81) and (8.82), we have

™

~ T
f0:*7 /91'Q2= Q1'92=
5 4 51 5 2

From these equalities, we obtain the relations

(8.84) /ém(fo):”“w, A“Q(fO):E”

2n 2m

Now let F5 be a complex subspace of C"*" of dimension m + 1. We
consider the Grassmannians Z = G, (Fy) and Z' = G$(F,), the isometry
U : 7' — Z defined in §2 and the totally geodesic imbedding

Lo 4 — G;Cn,n,
sending an m-plane of Fy into the m-plane of C™*" which it determines.

We consider the function f; on Z’ induced by the U(1)-invariant function
f1 on S(Fy). We now verify that the equality

(8.85) U3 fo=—fi
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holds. Indeed, let {uy,...,u,—1} be an orthonormal basis for the orthogo-
nal complement F3- of Fy in C™*". Let u be an element of S(Fy) and let
{€1,...,&m} be an orthonormal basis for the orthogonal complement of the
space Cu in Fy. Then the element ¥(7(u)) of Z is the m-plane of C™*"
generated by the vectors {e1,...,&x,}, and so by (8.37) we have

(8.86) (t3fo) (¥ => Qe

k=1

Since
{61, ey Emy U, UL, . ,Un_l}

is an orthonormal basis of C™*", by (8.37) we have

m n—1
Q)+ Qex) + > Q(uy) =0.
k=1 j=1

From the preceding relation and (8.86), it follows that

Aim(w) = =(3.fo) (¥(m(w))),

and so the equality (8.85) holds.
Let z be a point of Z and set © = t2(z). Let w be a non-zero vector
of Fy orthogonal to V,. Then according to the relation (8.73), we see that

(8.87) 0. . =V @w.

Let v,v" be vectors of S(F5), which are orthogonal with respect to the
standard Hermitian scalar product on C™*". As above, we consider the
unit vector

o(t) = cost-v+sint v

of Fy, with ¢t € R, and the closed geodesic v = 7,,» of G{(F,) defined
by v(t) = (woo)(t), for 0 < t < 7. We consider the closed geodesic
v = 130Wo~ of X. Let V4 be the subspace of Fy orthogonal to the vectors
v and v'. For 0 <t < 7, the space V() is generated by V; and the unit
vector 7 (t) = —sint-v+cost- v of Fy. The unit vector o(t) of Fy belongs
to W (). Let 3(t) be the unit vector of V7, determined by

(0(t),8(t) = -1,  (v,8(t)) =0,

for all v € V;; we easily verify that 3(t)¥ = —&(¢). Then by (8.13) and
(8.73), we have

’yl(t) = LQ*\IJ*’y(t) = ﬁ(t) ® U(f) S (V* ®c W)'y’(t)-
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By (8.85), we see that

(8.88) fo(' (1) = =A(v(1) = =Q(a(t)) = Y Q(w).

(8.89)

If b is a section of S?T¢: over X, we have
(8.90) / h= / () @ o(t), (L) ® (b)) dt.
v’ 0

We now suppose that the subspace Fy of C™™ contains the vectors
e; and e,,+,. We also suppose that

L 1+ emin)
v=—(e1 + emain
J2 o

and that v’ is orthogonal to e; and e,,1,. We consider the closed geodesic
02 = tg 0 0y, of X. For 0 <t < 7, the unit vectors o(t) of W) and
(t) of V() associated above with the geodesic 7, ./ of Z’ are given by

t
o(t) = % (€1 + emyn) +sint -0,
(8.91) sint
o(t) = ——= - (e1 + emyn) +cost - v'.
V2

From (8.91), we deduce that

Qo(t)) = %cos2t, Q6 (1)) = L sint.

According to (8.88), we see that

Hence by (8.89) and (8.90), we have

. T s
fO:_Zv /91'Q2=/Q1'92=§-
52 62 62
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From these equalities, we obtain the relations

(8.92) /52 k1 (fo) = n2;1 T, /52 ra(fo) = Tr;i;lw

We suppose that the subspaces Fy and F» of C™*+" both contain the
vectors e and e€,,4,. We denote by Y and Z the totally geodesic subman-
ifolds of X equal to the images of ¢1 : Y — X and 13 : Z — X. We again
suppose that

L (1 + emen)
u=v=——" (e Cmtn
NG 1 +

and that the vectors v’ € S(Fy) and v/ € S(F3) are orthogonal to e;
and epy4n. We consider the closed geodesic d; = ¢1 0y, of X contained
in the submanifold ¥ and the closed geodesic 8 = 13 0 ¥ o Yoo Of X
contained in the submanifold Z.

Let a,b € C and consider the section

h = (ak1 + br2)(fo)

of S?T¢. According to (8.84) and (8.92), we have

1 —1
(8.93) /h_’r(”+ amb),
5 2 n m

(8.94) b= 2(

Now suppose that the restrictions of h to the totally geodesic submanifolds
Y and Z of X satisfy the zero-energy condition. According to Proposi-
tion 8.17, we know that this assumption on h holds either if i satisfies the
zero-energy condition or if m # n and h satisfies the Guillemin condition.
Then from the equalities (8.93) and (8.94), we obtain the relations

1 -1 -1 1
ntl, Mmoo, ne oMl o,
n m n m

since the determinant of the matrix
n+1 m-—1
n—1 m+1

is equal to 2(m + n), it follows that h vanishes. We have thus proved the
following result:



300 VIII. THE COMPLEX GRASSMANNIANS

ProproSITION 8.19. Let X be the complex Grassmannian G%n, with
m,n > 2. Let
h= (am + bliz)(f())

be an element of C*(SZT¢) corresponding to a,b € C.

(i) If the symmetric 2-form h satisfies the zero-energy condition, then
h vanishes.

(ii) If m # n and if the symmetric 2-form h satisfies the Guillemin
condition, then h vanishes.

PROPOSITION 8.20. Let X be the complex Grassmannian G%n, with
m,n > 2, and let h be an element of CS°(S§T¢).

(i) If the symmetric 2-form h satisfies the zero-energy condition, then
h vanishes.

(ii) If m # n and if the symmetric 2-form h satisfies the Guillemin
condition, then h vanishes.

PROOF: Assume that the G-module N2 ¢ N C;’f(SgT*) is non-zero
(resp. the G-module Z5 ¢ N CS(SFT™) is non-zero and that m # n). Ac-
cording to (8.28) and (8.41), a highest weight vector h of this non-zero
G-module is a linear combination of the highest weight vectors x1(fo) and
ra(fo) of C2(S3T™). By Proposition 8.19, we see that the section h must
vanish, which is a contradiction.

From Proposition 8.20 and the relations (2.25), we deduce that the
equality (8.77) holds whenever m,n > 2, and that the equality (8.76) of
Proposition 8.18 is true when m # n.

§8. Relations among forms on the complex Grassmannians

The results of this section are used only to prove Proposition 8.5 and
the equalities (8.47) and (8.48). They do not enter into any of our other
proofs and are presented only for the sake of completeness.

Let m,n > 2 be given integers. We consider the complex Grassman-
nian X = Gf, ,,. We consider the complex-valued function fo on X ob-
tained from the function fy on S, ,. In §4, we saw that the equalities
(8.28) and the decomposition (8.7) imply that

ho = Hess fo = mHess fo
is a section of (S27%){.
This section is mainly devoted to the proof of the following result:

LEMMA 8.21. Let = be a point of the Grassmannian X = G%n, with
m,n > 2. If o« € V) and w € W, are unit vectors, we have

(8.95) (WlHessfo)(a®w,a®w) = k1(fo) (@ ®@ w,a @ w),
‘ (moHess fo)(a @ w,a @ w) = —ra(fo)(a @ w, o @ w).
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From Lemma 8.21, we immediately obtain the result given by Propo-
sition 8.5.

If = is a point of the Grassmannian X and if @ € V] and w € W, are
unit vectors, by (8.39) we see that the formulas (8.95) are equivalent to

(mHess fo)(a @ w, o @ w) = % fo(z) + Q(w),
(8.96) ] 5
(moHess fo)(a ® w,a @ w) = - fo(z) = Q(a?).

Let F; be a complex subspace of C"" of dimension n + 1; we denote
by Fi- the orthogonal complement of I} in C"™*". We consider the complex
projective space Y = GY(F}) and the totally geodesic imbedding

t1:Y — G%n

of §7, which sends 7(u), with v € S(F}), into the m-plane of C"™*" gener-
ated by u and the subspace Fj-.

Let u be a given element of S(F}); we consider the points y = m(u)
of Y and = = +1(y) of X. Then we know that u belongs to V. Let a be
the unit vector of V* determined by the relation af = u. In §7, we saw
that the equality (8.79) holds.

Let w be an arbitrary unit vector of W, and let h be an element
of (S?T*)F. According to the second equality of (8.9) and the equal-
ity (8.79), we have

1 1
(8.97) (mah)(a ®@ w,a @ w) = o (Try tih — - Tr h> .

If f is a real-valued function on X, then by (1.71) we have

Try ¢jmHess f = Try (jHess f = —Avy(] f;
thus if h is the section 74 Hess f of (S27*)*, by (1.71) and (8.97) we see
that

(8.98) (mah)(a @ w, 0 ® w) = —— (Af)(x)

1
omn T on (AYLTf)(Z/)-

Let I, be a complex subspace of C™*™ of dimension m+1. Asin §7, we
consider the Grassmannians Z = G%,(Fy) and Z' = G (Fy), the isometry
VU : Z' — Z defined in §2 and the totally geodesic imbedding

1 Z — GE

m,n’

sending an m-plane of F, into the m-plane of C™*" which it determines.
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Let 2z be a point of Z and set x = t2(z). Let w be a unit vector of Fy
orthogonal to V.. In §7, we saw that the equality (8.87) holds. Let a be an
arbitrary unit vector of V* and let h be an element of (S?7*)}. According
to the first equality of (8.9) and the equality (8.87), we have

1 L1
(8.99) (mh)(a®w,a®w):2m<TrZL2h—nTrh>.

If f is a real-valued function on X, then by (1.71) we have
Try 3w Hess f = Try t3Hess f = —Agus f;

thus if h is the section 74 Hess f of (S?T*)", by (1.71) and (8.99) we see
that

1 1
(8.100) (mh)(a®@w,a®@w) = S (Af)(x) — %m (Az3f)(2).

Let = be a point of the Grassmannian X and let a« € V) and w € W, be
given unit vectors. Let v be the vector of V, equal to af. Let {v1,.. ., Um}
and {wy,...,w,} be orthonormal bases of the spaces V,, and W, respec-
tively. We proceed to verify the equalities (8.96).

We now suppose that F} is the subspace W, @ Cv of C™*"; the or-
thogonal complement Fj- of F; is equal to the orthogonal complement
of Cv in V,. We easily see that 2 = ¢ (7(v)). We consider the function fi
on Y induced by the U(1)-invariant function f; on S(Fy). Since fy is an
eigenfunction of the Laplacian A with eigenvalue 4(m + n), according to
formulas (8.78) and (8.98), with u = v, we have

(8101)  (mho)a@waow) =250 oy Ly ) a).
For u € S(F}), we write
u = (v + Qwy + - + Cwy,
where (Co,...,Cn) € C*1: we view (Co,Ch,-..,Cn) as the homogeneous

coordinates of the point m(u) of Y. Since the homogeneous coordinates of
the point 7 (v) are equal to (1,0,...,0), by (3.24) we see that

n

(Ay fi)(n(v)) = 4nQ(v) — 4 Q(w;).

Jj=1

From the preceding equality and the relations (8.37) and (8.101), we obtain
the second formula of (8.96).
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We now suppose that F, is the subspace V, @ Cw of C"™*". If z is the
point of Z corresponding to the m-plane V, of Fy, we see that 12(2) = =
and U(m(w)) = z. We consider the function f; on Z’ induced by the
U(1)-invariant function f; on S(F3). By (8.85) we have

(Azbﬁfo)(z) = —(Az'ﬁ)(”(w))-

Since fo is an eigenfunction of the Laplacian A with eigenvalue 4(m + n),
from (8.100) and the previous equality we obtain the relation

HmAn) &)+ L (Ag f)r(w)).

102 =
(8.102)  (miho)(a @ w,a @ w) o 5

For u € S(F3), we write
U:COw+<1U1+"'+<mlUma

where (o, (1, .-+, ¢m) € C™L we view (o, (1, - - -, Gn) as the homogeneous
coordinates of the point 7(u) of Z’. Since the homogeneous coordinates of
the point w(w) of Z’ are equal to (1,0,...,0), by (3.24) we see that

m

(Az: fo)(m(w)) = 4mQ(w) — 4 Q(uvg).

k=1

From the preceding equality and the relation (8.102), we obtain the first
formula of (8.96). This completes the proof of Lemma 8.21.

§9. The complex Grassmannians G’Sm

Let n > 2 be a given integer. Let F be a complex vector space of
dimension 2n endowed with a positive definite Hermitian scalar product.
We consider the complex Grassmannian X = GC(F) endowed with the
Hermitian metric induced by the Hermitian scalar product of F'. Let U be
a complex subspace of F' of dimension 2n — 2. The orthogonal complement
Ut of U in F is two-dimensional. We consider the complex Grassmannians
Y = G¢_((U) and Z = GS(U1). Since dimU~+ = 2, the manifold Z is
isometric to CP'. There is a totally geodesic imbedding

L:Z XY — X,

given by (8.69), sending the pair (z,y), where z € Z and y € Y, into the
point of X corresponding to the n-plane of F' generated by the subspaces
of U+ and U corresponding to the points z and y, respectively. For z € Z,
let ¢, : Y — X be the mapping sending y € Y into ¢(z, y).
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We consider the involutive isometries ¥y, Uy and ¥ of X, Y and Z,
respectively. Clearly, the diagram

GL(UY) x G, (U) —— GL(F)

l‘l’z)(\l/y J,\IIX

GI(U) x Gy, (U) —— Gi(F)
is commutative. For z € Z, the commutativity of this diagram gives us the
relation

(8.103) Ux o =tw,oVy,

as mappings from Y to X.

If v is a closed geodesic of Z = G$(U+), a symmetric p-form 6 on X
determines a symmetric p-form 67, on Y as follows. If &,...,¢&, € Ty, we
consider the real-valued function f on Z defined by

f(z) = (429)(517 s 7£p)>

for z € Z, and we define 0y by setting

bualtrn-onnty) = g2 [+ wen = ([ 1+ [ 1)

where v/ is the closed geodesic W5 o« of Z.

If h is a section of the sub-bundle E of S?T* over X, in §6 we saw
that, for z € Z, the symmetric 2-form ¢;h is a section of the sub-bundle
Ey of S?T5:; therefore if v is a closed geodesic of Z, the symmetric 2-form
hy, onY is also a section of Fy.

Let 8 be a symmetric p-form on X. Suppose that there exists a sym-
metric p-form 6 on'Y such that

0 =0,

for all z € Z; since the length of an arbitrary closed geodesic of Z is equal
to 7, we see that R
9U,’y = 97

for all closed geodesics v of Z.

We consider the symmetric p-form 6 = ¥%0 on X; if &,...,&, are
vectors of Ty, we also consider the real-valued functions f; and f; on Z
defined by

fi(z) = (526/)(51» cee afp)v f2(z) = (ng)(\IIY*gh ceey \I/Y*gp)v
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for z € Z. From (8.103), it follows that

fi =Yg fo.
Since Uy is an involution, this relation implies that

O (6rrens) = o= [(Fi+ 0500 = o= [ (fa+ 031
ol Y

= GU,ﬂ/(\IIY*fla ceey \IJY*gp)a

for all closed geodesics v of Z. Thus we have shown that
(8.104) (YxO)vy = ¥y (u),

for all closed geodesics v of Z. The following lemma is a direct consequence
of the preceding equality.

LEMMA 8.22. Let n > 2 be a given integer. Let F' be a complex
vector space of dimension 2n endowed with a positive definite Hermitian
scalar product. Let U be a complex subspace of F' of dimension 2n — 2
and let U+ be the orthogonal complement of U in F; let v be a closed
geodesic of GF(UL). If 0 is an even symmetric p-form on GS(F), then the
symmetric p-form 0y, on GS_;(U) is even.

Let Y’ be a maximal flat totally geodesic torus of Y and let v be a
closed geodesic of Z. We consider the images Z’ of the closed geodesic 7y
and Z" of the closed geodesic ¥z ov. Then we see that X' = «(Z' xY”’) and
X" = (2" xY') are maximal flat tori of X. Let i,...,§, be arbitrary
parallel vector fields on Y”; they induce parallel vector fields &j,...,¢,
on X" and &Y,...,§) on X" determined by

Gz y) = 1nily), & " Y) = 1Y),

for 2/ € 7/, 2" € Z", y € Y and 1 < j < p. Then from the definition of
0u, and Fubini’s theorem, we infer that

/ Ou~ (&1 .., &) dY
Y/

1

T or

( X/Q(g{,...,g;)dX’—&— ( i’,...,gg)dX”).

X

From this equality, we deduce the following result:
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LEMMA 8.23. Let n > 2 be a given integer. Let F' be a complex
vector space of dimension 2n endowed with a positive definite Hermitian
scalar product. Let U be a complex subspace of F' of dimension 2n — 2
and let U+ be the orthogonal complement of U in F; let v be a closed
geodesic of G$(UL). If § is a symmetric p-form on GS(F) satisfying the
Guillemin condition, then the symmetric p-form 67, on GS_, (U) satisfies
the Guillemin condition.

We now suppose that F is equal to the complex space C?" endowed
with the standard Hermitian scalar product. Then X is equal to the
Grassmannian G, . We view X as a homogeneous space of the group
G = SU(2n). We consider the even symmetric 2-form

h{"Y = (w1 + K2)(fo)

on X = G%,n
We also suppose that U is the complex subspace of C2"~2 generated
by the vectors {e1,eq,...,ea,}. The orthogonal complement Ut of U in

C?"*2 is the subspace generated by e and e3. We consider the isomorphism
@ : C?"=2 — U which sends the vector ((1,...,(an_2) of C>*~2 into the

vector
2n—2

Grer + Z Giejy2

j=2
of U. If Q' is the polynomial on C?"~2 determined by
Q'(¢) = Gn—2C,
for ¢ = ((1,--.,Can—2) € C*"~2, then we have
(8.105) 0'Q=0Q.
The isomorphism ¢ allows us to identify the Grassmannians Y = GS$_, (F)

and Gﬁ,l,n,l and to view the symmetric 2-form hgnil)

2-form on Y. We now proceed to prove that

(8.106) R = R,

as a symmetric

for all z € Z. Indeed, let y be a point of Y and z be a point of Z; we write
z = u(z,y); if @ € Vy,y, and w € Wy,, are unit vectors, by (8.52), (8.72),
(8.73) and (8.105) we have

(1A (0 ® w, 0 @ w) = 2(Q((1:0)*) + Q(1w))
=2(Q(*) + Q(w))
= 1"V ®w,aew).

The relation (8.106) is an immediate consequence of these equalities.
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If 7 is a closed geodesic of Z and h is the symmetric 2-form hgn) on X,
according to (8.106) and the remark preceding Lemma 8.22 we see that

(8.107) hyy =h{"Y,

LEMMA 8.24. Let n > 2 be a given integer. The symmetric 2-form
hgn) on GY ,, does not satisfy the Guillemin condition.

PROOF: Suppose that the symmetric 2-form h(n) on G’Sn satisfies

the Guillemin condition. If n > 3, according to the relatlon (8 107) and

Lemma 8.23 the symmetric 2-form hg" Y on Ggfl,nfl also satisfies the
Guillemin condition. Our assumption therefore implies that the symmetric

2-form h(12) on G’SQ satisfies the Guillemin condition. The equalities (8.60)

then tell us that h:(LZ) vanishes. Thus our assumption leads to a contradic-
tion.

ProrosITION 8.25. Let X be the complex Grassmannian Gn n, With
n > 2, and let h be an element of COO(SQTC)EV If h satisfies the Guillemin
condition, then h vanishes.

PROOF: Assume that the G-module M = N5 ¢ N Cif(SzT*)eV is non-

zero. Since the 2-form hg") is a highest weight vector of the irreducible
G-module C2°(S?T*)%, a highest weight vector of the G-module M is

a non-zero of the multiple of 2. This implies that h{" satisfies the
Guillemin condition. Now Lemma 8.24 leads to a contradiction.

From Propositions 8.6 and 8.25, we now deduce that the equality (8.76)
of Proposition 8.18 holds when m = n > 2. This last fact, together with
the remarks appearing at the end of §7, which explain the consequences
of Proposition 8.20, completes the proof of Proposition 8.18. According to
Lemma 2.11, this result also gives us a proof of the equality (8.77) when
m = n, which we had already derived from Proposition 8.20.



CHAPTER IX

THE RIGIDITY OF THE COMPLEX GRASSMANNIANS

§1. The rigidity of the complex Grassmannians

Let m,n > 2 be given integers. Let X be the complex Grassmannian
G;Cn’n endowed with its Kéhler metric g. As in §2, Chapter VIII, we view
this Grassmannian as an irreducible symmetric space and as a homogeneous
space of the group G = SU(m + n), and we identify the tangent bundle T
of X with the complex vector bundle V* @¢c W.

Let = be a point of X. Let F.! be the family of all closed connected
totally geodesic surfaces of X passing through x of the form Exp_ F', where
F is generated (over R) by the vectors {a ® w1, as ® wa}, where {ay,as}
is an orthonormal set of elements belonging to a totally real subspace of V!
and {w,ws} is an orthonormal set of elements belonging to a totally real
subspace of W,.

Let F2 be the family of all closed connected totally geodesic surfaces
of X passing through x of the form Exp,F', where F' is a totally real sub-
space of the tangent space T, satisfying one of the following two conditions:

(i) F =V, ® w, where V; is a totally real two-dimensional subspace
of V) and w is a unit vector of W;

(ii) F = a ® Wy, where « is a unit vector of V¥ and W is a totally
real two-dimensional subspace of W.

Let F2 be the family of all closed connected totally geodesic surfaces
of X passing through x of the form Exp, F', where F' is the complex sub-
space of T, determined by a unit vector « of V} and a unit vector w of W,
and generated by the vectors {a ® w, J(a ® w)}.

According to the expression for the curvature of the complex Grass-
mannian G, ,, given in §2, Chapter VIII, we know that a surface of F} is a
totally geodesic flat 2-torus; on the other hand, by Lemmas 8.13 and 8.15
a surface of F2 is isometric to a 2-sphere of constant curvature 1, while a
surface of F3 is isometric to a 2-sphere of constant curvature 4.

Let F2 be the family of all closed connected totally geodesic subman-
ifolds of X passing through z of the form Exp,F, where F' is a totally
real subspace of T, equal to Vi ®g Wy, where Vi and W; are totally real
subspaces of V,* and W, of dimension 2 and n, respectively. Let F2 be
the family of all closed connected totally geodesic submanifolds of X pass-
ing through x of the form Exp, F', where F is the complex subspace of T},
determined by a unit vector a of V) and equal to a @ W,.

Clearly, each surface of F or of F2 is contained in a totally geodesic
submanifold of X belonging to the family F2, while a surface of F3 is con-
tained in a totally geodesic submanifold of X belonging to the family F2.
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By Lemmas 8.13 and 8.15, we know that a submanifold of X belonging
to the family F? is isometric to the real Grassmannian Gﬂin and that a
submanifold of X belonging to the family F?2 is isometric to the complex
projective space CP™ of dimension n endowed with its Fubini-Study metric
of constant holomorphic curvature 4.

For 1 < j <4, we consider the G-invariant family

Fl=F

zeX

of closed connected totally geodesic submanifolds of X; we write F” = F*
and also consider the G-invariant families

F=FUFuF, F=Fur® F=r‘ur

of closed connected totally geodesic submanifolds of X. Clearly, every
surface of F is contained in a totally geodesic submanifold of X belonging
to the family F’; moreover, we have F C F and F” C F'.

If Z is a submanifold of X belonging to the family 77, with 1 < j < 4,
there is a subgroup of G which acts transitively on Z. Thus for 1 < j <4,
we see that an element u of @77, with x € X, vanishes when restricted
to an arbitrary submanifold belonging to the family F7 if and only if it
vanishes when restricted to an arbitrary submanifold belonging to the fam-
ily Fi.

LEMMA 9.1. Let m,n > 2 be given integers and let X be the complex
Grassmannian G%n. Let u be an element of @>T, with z € X. If the
restriction of u to an arbitrary submanifold of the family F vanishes, then
u vanishes.

ProOOF: Let {aq,...,am} (resp. {w1,...,w,}) be an orthonormal
basis for a totally real subspace of V, (resp. of W) of dimension m (resp. of
dimension n). Let 1 < 4,57 < m and 1 < k,l < n be given integers. The
vectors {a; @ wi, o; ® wy} (resp. the vectors {J(a; @ wy), J(o; @ wy)}) are
tangent to a surface of X belonging to the family ' U F2. The vectors
{a; ® wg, J(oj ® wy)} are also tangent to a surface of X belonging to the
family F' U F? unless i = j and k = [. Suppose that the restriction of u
to an arbitrary submanifold of the family F vanishes; then we see that

u(oy ® wy, a; @ wy) = u(J (e @ wy), J(a; @ wy)) = 0;
moreover if i # j or k # [, we also have

u(og @ wg, J(a; @ wy)) = 0.
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On the other hand, the vectors {o; ® wg, a; ® Jwy} are tangent to a sub-
manifold belonging to the family F2, and so we see that

u(a; @ wi, J(a; @ wg)) = 0.

It follows that u vanishes.

LEMMA 9.2. Let m,n > 2 be given integers and let X be the complex
Grassmannian G%n. Let u be an element of /\2T;‘, with x € X. If the
restriction of u to an arbitrary submanifold of the family F vanishes, then
u vanishes.

PROOF: Assume that the restriction of u to an arbitrary submanifold
of the family F vanishes. In view of Lemma 9.1, it suffices to prove that
the restriction of u to an arbitrary submanifold of the family F* vanishes.
In fact, let {a1, @2} be an orthonormal set of elements belonging to a
totally real subspace of V;* and {wy, w2} be an orthonormal set of elements
belonging to a totally real subspace of W,. Our assumption on u tells us
that

u(a @ wy,a @ wy) =0, u(a; @ w,as ® w) =0,

with @ = a1, as or a1 + as and w = wy, wy or wy + we. The first set of
relations implies that

u(a @ wi, s @ ws) + ulag ® wy, a1 @ wy) =0,
while the second set tells us that
u(ay @ wy, ag @ we) + u(a ® wa, e ® wy) = 0.
Since u belongs to /\2T;, these two equalities imply that
u(ay @ wi, ag @ we) = 0.
If F is a G-invariant family of closed connected totally geodesic sur-
faces of X, we consider the sub-bundle Nz of B consisting of those elements

of B, which vanish when restricted to the closed totally geodesic submani-
folds of F, which was introduced in §8, Chapter II. We write N = Nx.

LEMMA 9.3. Let m,n > 2 be given integers and let X be the complex
Grassmannian G(,Cnm. Then we have

TrN C E.

PROOF: Let x be a point of X. Let o be an arbitrary unit vec-
tor of V¥ and w be an arbitrary unit vector of W,. Let {aq,...,amn}
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(resp. {w1,...,w,}) be an orthonormal basis for a totally real subspace
of V. of dimension m (resp. of dimension n) containing « (resp. w), with
a1 = « (resp. w1 = w). As we have seen in the proof of Lemma 9.1, for
1<j<mand1 <k <n,the two vectors a @ w and o; ® wy, (resp. a @ w
and J(o; ®wy)) are tangent to a surface belonging to the family F. There-
fore if u is an element of IV,, we see that

(Tru)(a®@w,a® w)

= Z {u(a ®@ w, a; ® wi, 0 @ w, a; ® wy,)
1<j<m
1<k<n
+u(la@w, J(a; @ wg),a @ w, J(o; @ wg)}
=0.

Hence Tr N, is a subspace of F,.

PROPOSITION 9.4. Let h be a section of E over the complex Grass-
mannian X = GS ., with m > 2 and n > 3. If the restriction of h to an

arbitrary submanifold Z of X belonging to the family F" is a Lie derivative
of the metric of Z, then h vanishes.

PROOF: Assume that h belongs to L(F"). We consider the real Grass-
mannian Z = G]QR’,L. Let X’ be a submanifold of X belonging to the fam-
ily F%. According to Lemma 8.13, there is a totally geodesic isometric
imbedding i : Z — X whose image is equal to X’ such that i*h is a section
of the sub-bundle Ez of S2T%. Our hypotheses imply that the symmet-
ric 2-form i*h on Z satisfies the Guillemin condition. By Theorem 6.48,
we infer that ¢*h = 0 and hence that the restriction of h to X’ vanishes.
According to Lemma 8.15, the restriction of i to a submanifold of X be-
longing to the family F® vanishes. Thus the restriction of A to an arbitrary
submanifold of X belonging to the family F’ or to the family F vanishes.
The desired result is now a consequence of Lemma 9.1.

We now suppose that n > 3. The Guillemin rigidity of the real Grass-
mannian G]Sn, given by Theorem 6.47, and the infinitesimal rigidity of the
complex projective space of dimension n, given by Theorem 3.39, tell us
that the family F’ possesses properties (II) and (III) of §8, Chapter II.
When m < n, according to Propositions 8.14 and 8.17, the family F' also
possesses property (I) of §8, Chapter II. By (8.12), we know that F is
a G-invariant sub-bundle of S37*. According to Lemma 9.3 and Proposi-
tion 9.4, the families F and F’ and the vector bundle E satisfy the relations
(2.33) and (2.37) of Theorem 2.48. Proposition 8.18 tells us that the equal-
ities (2.35) and (2.36) hold. Thus the families F and F’ and the vector
bundle E satisfy the hypotheses of Theorem 2.49,(ii) and, when m < n,



312 IX. THE RIGIDITY OF THE COMPLEX GRASSMANNIANS

they also satisfy the hypotheses of Theorem 2.49,(i). Hence from Theo-
rem 2.49; we deduce the infinitesimal rigidity of G;Cnm and, when m < n,
the Guillemin rigidity of G%n. On the other hand, according to Theo-
rem 8.7 the space ng is infinitesimally rigid. Since the Grassmannian
Gg 4 18 isometric to GC | we have therefore proved the following two theo-

q,p?
rems:

THEOREM 9.5. The complex Grassmannian G;Cn’n, with m,n > 2 and
m # n, is rigid in the sense of Guillemin.

C

m,n’

THEOREM 9.6. The complex Grassmannian G
infinitesimally rigid.

with m,n > 2, is

Let F be the family of all closed totally geodesic submanifolds of X
which can be written in the form Exp, V' @ W', where x € X and where
V' is a totally real subspace of V* of dimension m and W’ is a totally real
subspace of W, of dimension n. According to Lemma 8.13, a member of
the family F is isometric to the real Grassmannian X = Glﬁw.

PROPOSITION 9.7. Let m,n > 2 be given integers. If X is the complex
Grassmannian G, , the sequence (1.24) is exact.

m,n’

PRrROOF: First, suppose that m +n > 5. Let v be a closed geodesic
of X; then there is a maximal flat totally geodesic torus Z of X contain-
ing . According to the remarks following Lemma 8.13, Z is contained
in a totally geodesic submanifold Y of X belonging to the family F; let
i:Y — X be the natural inclusion. According to Proposition 7.10 and re-
marks made in §1, Chapter VII, we know that the sequence (1.24) for Y is
exact. By Theorem 9.6, the family F satisfies all the hypotheses of Propo-
sition 2.46; thus the desired conclusion is a consequence of this proposition
when m +n > 5. On the other hand, the complex Grassmannian Gg2 is
isometric to the complex quadric Q4 (see §5, Chapter VIII), and so we know
that the sequence (1.24) is exact when m = n = 2 (see §6, Chapter V).

According to Lemma 9.1, the sub-bundle C'z of /\QT*, consisting of
those elements of /\2T* which vanish when restricted to the closed totally
geodesic submanifolds of F’, vanishes.

We now suppose that n > 3. By Theorems 3.40 and 7.12, we know
that F’ possesses property (VI) of §8, Chapter II. When m < n, Propo-
sitions 8.14 and 8.16, with ¢ = n, tell us that the family F’ possesses
property (IV) of §8, Chapter II; moreover by Theorems 3.40 and 7.11,
we know that F' also possesses property (V) of §8, Chapter II. Since the
Grassmannian G(QC’2 is isometric to the complex quadric Q4 (see §5, Chap-
ter VIII), from these observations, Theorem 2.51, and Theorem 6.72, with
n = 4, we obtain the following two theorems:
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THEOREM 9.8. Let m,n > 2 be given integers, with m # n. A form
of degree 1 on the complex Grassmannian G%yn satisfies the Guillemin
condition if and only if it is exact.

THEOREM 9.9. Let m,n > 2 be given integers, with m,n > 2. A form
of degree 1 on the complex Grassmannian G35, ,, satisfies the zero-energy
condition if and only if it is exact.

Theorem 9.9 is given by Theorem 3 of [20].

§2. On the rigidity of the complex Grassmannians Gg,n

We consider the complex Grassmannian X = G§,,,,, with n > 1.
We view X as an irreducible symmetric space and as a homogeneous space
of the group G = SU(2n + 2) and we consider the involutive isometry
Uy of X. We consider the G-invariant families F, F/ and F of closed
connected totally geodesic surfaces of X. We also consider the sub-bundles
N = Nz and Nz of B corresponding to the families 7 and F, which were
introduced in §1, and the associated differential operators

Dy r:8*T" = B/N, D, ;:S°T" - B/N;

of §8, Chapter II.

Let U be a complex subspace of C?"*2 of dimension 2n. The orthog-
onal complement UL of U in C?>"*2 is two-dimensional. We consider the
complex Grassmannians Y = GC(U) and Z = GF(U'), the unit sphere
S(U*) of UL and the natural projection 7 : S(U+) — GY(UL), which
sends u € S(U™) into the line generated by u. Since dim U+ = 2, the man-
ifold Z is isometric to CP!. We also consider the involutive isometry ¥
of Z. There is totally geodesic imbedding

(9.1) L:ZxY — X,

given by (8.69), sending the pair (z,y), where z € Z and y € Y, into the
point of X corresponding to the n-plane of F' generated by the subspaces
of Ut and U corresponding to the points z and y, respectively. For z € Z,
let ¢, : Y — X be the mapping sending y € Y into «(z,y). If 7 is a closed
geodesic of Z and 6 is a symmetric p-form on X, we consider the symmetric
p-form 0y on Y defined in §9, Chapter VIIIL.

LEMMA 9.10. Let f be a real-valued function, 6 be a 1-form and h
be a symmetric 2-form on the complex Grassmannian X = G5, ., with
n > 2. Let U be a complex subspace of C*"*2 of dimension 2n and let
U~ be the orthogonal complement of U in C*"*2. Let 1: Z xY — X be
the mapping given by (9.1), where Z = GY(U*) and Y = GS(U), and let
U/’ = W, be the involutive isometry of Z.
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(i) Suppose that, for any closed geodesic v of Z, the function fy
on Y vanishes. Then we have

[/Zf + L*\I”(z)f = 0,

for all z € Z.
(ii) Suppose that, for any closed geodesic v of Z, the symmetric
2-form hy onY vanishes. Then we have

L;h —+ L*\I/’(z)h = 0,

for all z € Z.
(iii) Suppose that, for any closed geodesic vy of Z, the 1-form 6y, on
Y is closed. Then we have

dea + L*\I,/(z)de = 0

(iv) Suppose that, for any closed geodesic v of Z, the symmetric
2-form hy, onY is a Lie derivative of the metric of Y. Let y be a point
of Y and let &, &> be vectors of Ty, which are tangent to a totally geodesic
surface of Y. Then we have

(12Dgh + 1312y Dgh) (€1, €2, €2, &2) = 0,
for all z € Z.

PrOOF: We denote by gy the Riemannian metric of the Grassman-
nian Y. Let y be a point of Y and let &;, &> be vectors of Ty . We consider
the real-valued functions f; and f; on Z defined by

J1(2) = (LLh) (&1, &), fa(2) = (12dB)(&1, &2),
f3(2) = (tzDgh) (&1, &2,€1,62),

for z € Z. We write fo = f and fj = f; + U f;, for 0 < j < 3. Then by
the relation (1.57), we have

f3(2) = (Dgy 12h) (&1, €2, 1, 62),

for z € Z. Let v be a closed geodesic of Z. We easily verify that the
equalities

1 < 1 -
5r [ Fr=toatee) o [ F= i)

%/gzwwwm&&&@>
v
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hold. If the hypothesis of the j-th assertion of the lemma holds, with
7 = 1,2 or 3, then the even function fj_l on Z satisfies the zero-energy
condition. If the symmetric 2-form hy - is a Lie derivative of the metric
gy and if &,&; are tangent to a totally geodesic surface of Y, which is
necessarily of constant curvature, by Lemma 1.1 and the relations (1.49)
and (1.57) the expression (Dy, hy,)(&1,&2,&1,&2) vanishes. Thus if the hy-
pothesis of assertion (iv) holds and if £, &, are tangent to a totally geodesic
surface of Y, the even function f3 on Z satisfies the zero-energy condition.
Proposition 3.29,(i) tells us that, if the function fj, with 0<j <3, 0on Z
satisfies the zero-energy condition, then it vanishes identically. This gives
us the desired results.

We henceforth suppose that n > 2. Let = be a point of X and
let {v1,...,vp41} and {ws,...,w,41} be orthonormal bases of the com-
plex vector spaces V, and W, respectively. For 1 < 7 < n +1, let V;
be the complex subspace of V, of dimension n generated by the vectors
{v1,---,Vj—1,Vj41, ..., Uny1}, and let W’ be the complex subspace of W, of
codimension one generated by the vectors {wy,...,w,}. For 1 <j <n+1,
we consider the complex subspaces

Uj=V;eW', Uj=V;®Cwyp

of C?"*2; the orthogonal complement Ujl of U; in C?*"*2 is generated
by the vectors {v;,wn41}. Let U’ be the complex subspace of C?"*+2 of
dimension 2n whose orthogonal complement U+ in C?"*2 is generated by
the vectors {va, vny1}-

For 1 < j <n+ 1, we consider the mappings

;i GTUF) xGS(Uy) = X, J:GFUM) xGLU) — X

given by (9.1). Let x; be the point of X corresponding to the (n+1)-plane
Uj, and let y; be the point of GS(U;) corresponding to the n-plane V; and
zj be the point w(v;) of Z; = G‘f(UjJ-). The image 2} of z; under the
involutive isometry Wz, of Z; is equal to m(wy+1). Then we have

(9.2) vi(z5,y5) =, v (25, y5) = ;.

Let ' be the point of GS(U’) corresponding to the n-plane generated by
the vectors {v1, wp4+1} when n = 2 and by the vectors {v1,v3, ..., Vn, Wni1}
when n > 3, and let 2’ be the point 7(vy) of Z’ = G$(U”. The image 2"
of 2/ under the involutive isometry ¥z of Z’ is equal to 7(v,41). Then we
have

(9.3) (2 Y) = wpg, (2" y) = 1.
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Let f be a real-valued function on X. Suppose that, for any complex
subspace U of C?"*2 of dimension 2n and any closed geodesic v of GS(UL),
the function fy, on GS(U) vanishes. Then by Lemma 9.10,(i) and the
relations (9.2) and (9.3), we see that

flz) = —f(xj), f(@ni1) = —f(22),

for 1 < 5 < n+ 1. These equalities imply that f(z) = 0. Thus we have
proved the following:

PropPoOSITION 9.11. Let f be a real-valued function on the complex
Grassmannian X = GS+1,n+1a with n > 2. Suppose that, for any complex
subspace U of C*"*2 of dimension 2n and any closed geodesic vy of GS(U),
where U~ is the orthogonal complement of U in C>"*2, the function fy .,
on GE(U) vanishes. Then the function f vanishes.

We now return to the discussion which precedes Proposition 9.11. Let
w} and w} be given vectors of W’ and consider the vectors a; and ag of V¥
determined by
(Vk, 1) = Ok1, (Vk, ) = 02,
for 1 < k < n+ 1. The tangent vectors £ = a; ® w} and n = a1 ® wh
belonging to T, satisfy

(Vg &) = Oprw], (Vg, M) = Op1wsy,

for1<k<n+1. Forl<j<n+1,since Ve, = Uj and W' is a subspace
of Wy,, we may consider the tangent vectors §; and 7n; of T, determined
by

<’Uk7£j> = 6k1w/1a <Uk777j> = 6k1wév <wn+1?§j> = <w7l+1a77j> = O’

for 1<k <n+1,withk#j. For1<j<n+1, we consider the point y;
of the Grassmannian Y; = GS(U;); since Vy, o, = V; and Wy, ,,, = W', we
may consider the vectors §; and 7j; tangent to Y; at y; which are determined
by R
<’Uk7£j> = 5k1w/1a <Uk7 ﬁ]> = 5k1wl2a

for 1 < k < n+1, with k # j. We consider the point ¢’ of the Grassmannian
Y’ = GS(U'); since W' is a subspace of W, we may consider the vectors
& and 7 tangent to Y’ at the point y’ which are determined by

(0, &) = dpwy, (v, n') = kaws,  (Wng1,&) = (Wpt1,7') =0,

fork=1and 3<k<n.
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If the vectors w} and w} belong to a totally real subspace of W, (resp.
if the vector w} is equal to Jw}), then the vectors & and 7 are tangent
to a totally geodesic surface of X belonging to the family F2 (resp. the
family F2); moreover, for 1 < j < n + 1, the vectors &; and n; are tangent
to a totally geodesic surface of Y, while the vectors ¢’ and n’ are tangent
to a totally geodesic surface of Y.

For 1 < j <n+ 1, we consider the mappings

¢j =ty 1 GLUj) = X, ¢ =1 1 GL(U;) — X,

J

¢ =1, GSU) — X, " =1, GSU) — X;
then we easily see that the relations

$1j = &, PjsTlj =1, L& =&, BT =
& = &nt1, ¢’ = Nt Pl = &, oin' =n2

hold for 2 <5 <n+1.

We now suppose that n > 3. We consider the complex subspace V'
of V,, of dimension n generated by the vectors {vi,ve,v4,...,vn41}. For
1 <j < n+ 1, we consider the complex subspace U; of C?"*2 of dimen-
sion 2n generated by V' and the vectors {wi,...,w;_1,w;q1,...,Wni1},
whose orthogonal complement UJJ- in C?"*2 is generated by the vectors

(9.4)

{vs,w;}; we also consider the complex subspace U of C?"2 of dimen-
sion 2n generated by V, and the vectors {wy, ..., w,_1}, whose orthogonal
complement UL in €272 g generated by the vectors {wy,,w,41}. For
1 <j <n+1, we consider the mappings

i G(lc(UjJ‘) x GS(U;) — X, i:GYUH) xGE(U) - X

given by (9.1). Let Z; be the point of X corresponding to the (n+1)-plane
V' & Cw;; let g; be the point of GS(Uj) corresponding to the n-plane V'
and let Z; be the point 7(vs) of Z; = G(lc(Ujl). The image Z; of Z; under
the involutive isometry W = of Zj is equal to m(w;). Then we have

5(Z,05) ==, (%) = 1.
Let § be the point of Gg(ﬁ) corresponding to the n-plane V' and let Z be
the point m(wy) of Z = GF(U*). The image Z’ of Z under the involutive

isometry ¥ ; of Z is equal to m(wpn41). Then we have

Z(gv?D = I, 2(2/7:&) = Tny1-
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The tangent vectors { = a1 ® wy and ¢’ = ay ® we belonging to T,
satisfy
(Vk, C) = dg1wn, (Uk, ') = Opows,

for1<k<n+1 For3<j<n+1,since ij =V’ ® Cw; and since the
vectors w1 and wg belong to Wz, we may consider the tangent vectors (j
and ¢ of Tz; determined by

<Uk7<j> = 5k‘1w17 <Uk7<j/> = 5k‘2w27 <w]a<j> = <w]a<]/> = 07

for 1 <k <n+1, with k # 3. For 3 <j <n+1, we consider the point g;
of the Grassmannian Y; = GS(U;); since Vs 6, = = V" and since the vectors

w; and wy belong to Wf,j 5,0 We may consider the vectors Cj and C ; tangent

to Y; at ; which are determined by

<Uk:a §]> = 5k1’U}1, <Uk7C > - 6k2w27

for 1 <k <n+1, with k # 3. We consider the point gy of the Grassmannian
Y = GE(U); since V3 ; = V' and since the vectors wy and wy belong to

Wy ;» we may consider the vectors 5 and f’ tangent to Y at the point 7
which are determined by

(vk, €) = Sy, (vg, ') = Sr1wa,

for 1 <k <n+1, with k # 3.

Since {ay, s} is an orthonormal set of vectors belonging to a totally
real subspace of V;* and {wy,wsz} is an orthonormal set of vectors belonging
to a totally real subspace of W, the vectors ¢ and ¢’ are tangent to a
totally geodesic surface of X belonging to the family F*; 1. moreover, for
3 < j < n+1, the vectors (; and C’ are tangent to a totally geodesic

surface of YJ7 while the vectors C and C are tangent to a totally geodesic
surface of Y.
For 3 < j <n+ 1, we consider the mappings

6 =10z GLU) = X, @ =02 :GLU)) = X,
¢=1i::GL(U) — X, ¢ =iz :GLU) = X;
then we easily see that the relations
03 3G = ¢, éi-*c:;- =, ég-jé‘{ = 9.5 = ¢
¢ = Cn, ¢.C" = ¢, ¢.C = Cnt1, ¢l =

hold.
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We again suppose that n > 2. Let 6 be a 1-form and h be a symmetric
2-form on X. We first assume that, for any complex subspace U of C2"*2 of
dimension 2n and any closed geodesic v of GF(U+), the symmetric 2-form
hy, on GS(U) vanishes and the 1-form 0y, on GS(U) is closed. Let u be
a form on X which is equal either to h or to 3 = df. Since ¥z, (z;) = 2/
and Uy (2') = 2, by Lemma 9.10,(ii) or (iii), we see that

(9-6) (@5u+ dfu) (&) =0, (¢ u+ "™ u) (&, n') =0,

for 1 < j < n+1; moreover when n > 3, since ¥ (Z;) = Ziand V() = 7/,

we have
(9.7) (G5h+G7h)((,C)) =0, ("h+¢"h)((, () =0,

for 3 < j <m+ 1. Then from the equalities (9.4) and (9.6), we obtain the
relations

u(€,n) = —U(fjvnj)a W(Ent1, Mnt1) = —u(&a,m2),

for 2 < 7 < mn+ 1. On the other hand, when n > 3, from the equalities
(9.5) and (9.7) we obtain the relations

h(C,¢) = =G, G) Gy Gu) = —NlGnts Grpa)s
for 3 < j < n+ 1. Thus our assumptions on h and 6 imply that
(9-8) h(§,m) =0, B(&n) =0,
and, when n > 3, that
(9-9) h(¢.¢") =0.
From the equalities (9.8) we infer that
(9.10) hMa®@ W, a® W,) =0, Bla@W,,a® W,) =0,
for all vectors o € V*. According to the relation (8.104), our assumptions
on h and 0 imply that the two forms W5 h and U%0 also satisfy these
assumptions; therefore since
(911) Ux(a®w)=-w ®d, TUx(a®@W,) =V, @a,
for a € V¥ and w € W, the relations (9.10) lead us to

(9.12) h(Vi®w, V) ®@w)=0, BV @w, V) @w) =0,
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for all vectors w € W,. According to (9.10) and (9.12), the restrictions
of h and df to an arbitrary submanifold of X belonging to the family F
vanishes. When n > 3, according to (9.9) we see that the restriction of h
to an arbitrary submanifold of X belonging to the family F' vanishes; by
Lemma 9.1, it follows that h vanishes.

Next, we suppose that the form h satisfies the following weaker con-
dition: for any complex subspace U of C?"*2 of dimension 2n and any
closed geodesic v of GT(U™), the symmetric 2-form hyr, on GS(U) is a Lie
derivative of the metric of GS(U). We also suppose either that the vectors
w} and wj belong to a totally real subspace of W, or that wy = Jw}; as
we remarked above, for 1 < j < n+1, the vectors ¢; and 7); are tangent to
a totally geodesic surface of Y}, while the vectors & and n’ are tangent to
a totally geodesic surface of Y. Since Wz, (2;) = 2} and Wz (2') = 2, by
Lemma 9.10,(iv), we see that

(9.13)
(¢I*D9h + d)//*Dgh)(glv 7713 fla 77/)

0,
0,

for 1 < 57 < n+ 1; moreover when n > 3, since the vectors fj and 53’ are
tangent to a totally geodesic surface of 37] and the vectors C~ and 5’ are

tangent to a totally geodesic surface of Y, and since W 2, (2;) = z; and

V(%) = 7/, we have
(¢EDgh + & Dyh) (G, &G, E) =0,
(¢*Dyh + ¢"*Dgh)(C,{',¢,C') =0,

for 3 < j < n-+1. Then from the equalities (9.4) and (9.13), we obtain the
relations

(9.14)

(Dgh)(&ﬁafaﬁ) = 7(Dgh)(§jvnj7£j7nj);
(Dgh)(£n+17nn+1a£n+17nn+1) = —(Dgh)(§277727§2,772)»

for 2 < j < n+1. On the other hand, when n > 3, from the equalities (9.5)
and (9.14) we obtain the relations

(Dgh)(gv <I7 Ca CI) = _(Dgh)(Cja Cj/» ij (;)7
(Dgh)(Cns G Gns Go) = —(Dgh) (Cns1s Gr1s Gty )

for 3 < j <n+ 1. Thus our assumption on h implies that
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and, when n > 3, that

(9.16) (Dgh)(¢,¢",¢,¢") = 0.

The equality (9.15) implies that the restriction of Dyh to a totally geodesic
surface of X belonging to the family 73, or to a subspace of T} of the
form o ® Wy, where « is a unit vector of V) and W is a totally real two-
dimensional subspace of W, vanishes. According to the relation (8.104),
our assumption on h implies that the form W% h also satisfies this assump-
tion; therefore by (9.11), the restriction of Dyh to a subspace of T, of the
form Vi ® w, where V; is a totally real 2-dimensional subspace of V; and
w is a unit vector of W, vanishes. Thus the restriction of Dgyh to a totally
geodesic surface of X belonging to the family F? vanishes; therefore so does
the restriction of Dyh to a surface belonging to the family F. According
to Proposition 1.14,(ii), we have shown that D, zh = 0. When n > 3,
according to (9.16) we see that the restriction of Dyh to a totally geodesic
surface of X belonging to the family F! vanishes; therefore according to
Proposition 1.14,(ii), we know that Dy zh = 0.

In the course of the previous discussion, we have proved the following
proposition:

PROPOSITION 9.12. Let h be a symmetric 2-form and 6 be a 1-form
on the complex Grassmannian X = G%, .1, withn > 2.

(i) Suppose that, for any complex subspace U of C*"*2 of dimen-
sion 2n and any closed geodesic y of GS(UL), where U+ is the orthogonal
complement of U in C*"*2, the symmetric 2-form hy;, on GS(U) vanishes.
Then the restriction of the symmetric form h to an arbitrary submani-
fold of X belonging to the family F vanishes; moreover, when n > 3, the
symmetric form h vanishes.

(ii) Suppose that, for any complex subspace U of C?*"*2 of dimen-
sion 2n and any closed geodesic y of GS(U*L), where U+ is the orthogonal
complement of U in C*"*2 the symmetric 2-form hy ., on GS(U) is a Lie
derivative of the metric of GS(U). Then the relation

D, zh =0
holds; moreover, when n > 3, the relation
Dy rh =0

holds.

(iii) Suppose that, for any complex subspace U of C*"*2 of dimen-
sion 2n and any closed geodesic y of GS(U*L), where U+ is the orthogonal
complement of U in C?"*2, the 1-form 0y, on GS(U) is closed. Then the
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restriction of the 2-form df to an arbitrary submanifold of X belonging to
the family F vanishes.

Let n be an integer > 2, and let U be a complex vector space of di-
mension 2n endowed with a positive definite scalar product. According
to an observation made in §2, Chapter VIII, if all even functions on Gg,n
satisfying the Guillemin condition vanish, then the analogous result is also
true for the Grassmannian G<(U); moreover if all even symmetric 2-forms
(resp. 1-forms) on G, satisfying the Guillemin condition are Lie deriva-
tives of the metric (resp. are exact), then the analogous result is also true
for the Grassmannian G<(U). We shall use these remarks in the course of
the proofs of the next three propositions.

PROPOSITION 9.13. Forn > 2J the maximal flat Radon transform for
functions on the symmetric space G<  is injective.

n,n

PROOF: We proceed by induction on n > 2. Proposition 8.8 tells us
that the desired result is true for n = 2. Next, let n > 2 be a given integer
and suppose that the maximal flat Radon transform for functions on the
symmetric space G’Sm is injective. Let f be an even real-valued function
on X = G£+1,n+l satisfying the Guillemin condition. Let U be an arbi-
trary subspace of C2"*2 of dimension 2n; we denote by U~ its orthogonal
complement in C2"*2, Let v be a closed geodesic of GF(UL). According
to Lemmas 8.22 and 8.23, the function fyr, on G5(U) is even and satisfies
the Guillemin condition. From Lemma 8.1 and our induction hypothesis,
we infer that the function fy, vanishes. Then by Proposition 9.11, we
know that f vanishes. According to Lemma 8.1, this argument gives us the
desired result for the space X.

The preceding proposition is also given by Theorem 2.24.

PropoSITION 9.14. Let n be an integer > 3 and suppose that all
even symmetric 2-forms on Gg’n satisfying the Guillemin condition are Lie
derivatives of the metric. Then an even symmetric 2-form on X = G< a1
satisfying the Guillemin condition is a Lie derivative of the metric.

PROOF: Let k£ be an even symmetric 2-form on X satisfying the
Guillemin condition. According to the decomposition (1.11), we may de-
compose k as

k=h+ Do,

where h is an even symmetric 2-form on X satisfying divh = 0, which is
uniquely determined by k, and where £ is a vector field on X. Then by
Lemma 2.10, h also satisfies the Guillemin condition. Let U be an arbi-
trary subspace of C2"*2 of dimension 2n; we denote by U+ its orthogonal
complement in C?"*2. We consider the Grassmannian Y = GS(U). Let v
be a closed geodesic of G$(U™). According to Lemmas 8.22 and 8.23 and
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our hypothesis, we see that the symmetric 2-form hy, on Y is even and is
a Lie derivative of the metric of Y. Therefore by Proposition 9.12,(ii), we
know that Dy rh = 0. According to the relation (8.12) and Lemma 9.3,
the vector bundle E and the symmetric 2-form A satisfy the hypotheses of
Theorem 2.48,(i), with 7/ = F. Then Theorem 2.48,(i) tells us that we
may write h = h; + hg, where hy is an element of E(X) which satisfies
the Guillemin condition and hsg is a section of E. According to Proposi-
tion 8.18, we see that hy = 0. Therefore h is a section of E, and so hy 4 is
an even section of Fy over Y. Proposition 9.4 gives us the vanishing of the
form hy~. Then Proposition 9.12,(i) tells us that h vanishes. Therefore
the symmetric 2-form k is a Lie derivative of the metric of X.

PROPOSITION 9.15. Let n be an integer > 2 and suppose that all even
1-forms on G%’n satisfying the Guillemin condition are exact. Then an even

1-form on X = GS +1,n+1 satisfying the Guillemin condition is exact.

PROOF: Let 6 be an even 1-form on X satisfying the Guillemin condi-
tion. Let U be an arbitrary subspace of C2"*2 of dimension 2n; we denote
by U+ its orthogonal complement in C2"*2. We consider the Grassman-
nian Y = GS(U). Let 7 be a closed geodesic of G$(U™). According to
Lemmas 8.22 and 8.23 and our hypothesis, we see that the 1-form 6y
on Y is closed. Therefore by Proposition 9.12,(iii), we know that the re-
striction of df to an arbitrary submanifold of X belonging to the family
F vanishes. Then Lemma 9.2 tells us that df = 0. Since the cohomology
group H'(X,R) vanishes, the form 6 is exact.

The following theorem is a direct consequence of Propositions 8.2
and 9.14.

C

n,n’

THEOREM 9.16. If the symmetric space G with n > 3, is rigid in
the sense of Guillemin, then so is the symmetric space G 1,11 -

The following theorem is a direct consequence of Theorem 8.10 and
Propositions 2.20 and 9.15.

THEOREM 9.17. Let n be an integer > 2. Then a 1-form on the
symmetric space X = Gg’n satisfies the Guillemin condition if and only if
it is exact.

83. The rigidity of the quaternionic Grassmannians

Let m,n > 1 be given integers. We consider the quaternions H and
we denote by Z the conjugate of a quaternion x € H. We consider the
space H™'™ as a right H-module and we endow H™ " with the Hermitian
inner product defined as follows: the inner product (z,y) of the vectors
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= (T1, -+, Tmin) and ¥y = (Y1, ..., Ymin) of H™T" is given by

m—+n

(z,y) = Z Zj-yj-
j=1

The quaternionic Grassmannian X = G],H,Iw consists of all right H-

submodules of H™" of dimension m (over H). We denote by V, the
right submodule of H™'" corresponding to the point z of X; then its
orthogonal complement W, is also a right H-submodule of H™*" and the
dual H-module V of V;, is a left H-module. We shall identify the tangent
space T, at x € X with the real vector space

HOmH(Vx, Wx) =W, Qu V;.

By restriction, the Hermitian inner product on H™*" induces Hermitian
inner products on V, and W, and therefore also on V.7, which we denote
by (,). If 6 is an element of Homyg(V,, W,), we consider its adjoint 6
defined in terms of these Hermitian inner products which is an element
of Homy(W,,V,). If ¢ is an endomorphism of V,, over H, we denote by
Tr ¢ the trace of ¢ viewed as an endomorphism of the real vector space V.
We consider the Riemannian metric g on X determined by

1
g(0,0") = ETrtH’OG,

for 0,0" € Homy(V,,, W,,). We say that a real subspace V; of V* (resp. W1
of W) is totally real if V4 N (g - Vi) = {0} (resp. if Wy N (W7 - ¢) = {0}),
for all ¢ € H satisfying Req = 0.

The left action of the symplectic group G = Sp(m + n) on H™"
induces a left action on X which is transitive; the metric g is easily seen
to be G-invariant. The space X is isometric to the irreducible symmetric
space Sp(m +mn)/Sp(m) x Sp(n). We consider the G-invariant sub-bundle
E = Ex of S?T* consisting of all elements h of S2T* which satisfy

h(€,€) =0,
for all elements £ of W @y V* of rank one. Clearly, we have
(9.17) Tr E = {0}.
We also consider the Grassmannian Ggm. There is a natural mapping

v.GE o GH

m,n n,m>»
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H
m,n

sending z € G into the right H-module W, of dimension n, which is

easily seen to be an isometry. The Grassmannian G[flﬂm is also a homoge-

neous space of the group G and it is easily verified that the isometry ¥
satisfies

Vog=¢ol,
for all ¢ € G. Thus G}, ,, and G} are isometric as symmetric spaces.

When m = n, the isometry ¥ of X = Glﬂl’n is an involution. The group
A of isometries of X generated by ¥, which is of order 2, acts freely on X
and we may consider the Riemannian manifold X = G‘Eﬁn equal to the
quotient X/A endowed with the Riemannian metric g% induced by g. The
natural projection @ : X — X is a two-fold covering. The action of the
group Sp(2n) on X passes to the quotient X and acts transitively on X.
The manifold X is a symmetric space of compact type of rank n, which is
irreducible and equal to the adjoint space of X. We say that a section u of
SPT* over X is even (resp. odd) if U*u = eu, where e = 1 (resp. ¢ = —1).
Such a tensor u is even if and only if we can write u = w*u’, where v’ is
a symmetric p-form on X. This notion of even or odd form on X (with
respect to the involutive isometry W) coincides with the one considered
in §3, Chapter II.

We now suppose that m, n are arbitrary integers > 2. Let x be a point
of X. Let F, be the family of all closed connected totally geodesic surfaces
of X passing through x of the form Exp,F', where F' is a real subspace of
the tangent space T, satisfying one of the following three conditions:

(i) F is generated (over R) by the vectors {w; ® a1, ws ® as}, where
{a1,as} are unit vectors of V* satisfying (aq,a0) = 0 and {wq,ws} are
unit vectors of W, satisfying (w1, ws) = 0;

(ii) F is generated (over R) by the vectors {w ® a1, w ® as}, where
{a1,as} are unit vectors of V* satisfying (a3,a2) = 0 and w is a unit
vector of W;

(iii) F' is generated (over R) by the vectors {w; ® o, ws ® a}, where
« is a unit vector of V¥ and {w,we} are unit vectors of W, satisfying
(wy,wq) = 0;

(iv) F is generated (over R) by the vectors {w ® o, wq ® a}, where ¢
is a non-zero element of H satisfying Re ¢ = 0 and where « is a unit vector
of V¥ and w is a unit vector of W,.

A surface of F, corresponding to a subspace F' of T, of type (i) is a to-
tally geodesic flat 2-torus; on the other hand, a surface of F, corresponding
to a subspace F of T, of type (ii) or of type (iii) is isometric to a 2-sphere
of constant curvature 1, while a surface of F, corresponding to a subspace
F of T, of type (iv) is isometric to a 2-sphere of constant curvature 4.

Let F.. be the family of all closed connected totally geodesic subman-
ifolds of X passing through z of the form Exp, F', where F' is a totally real
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subspace of T, generated by the subspaces W7 ®g V1 and Wiq®g V1, where
V1 and W are totally real subspaces of V* and W, of dimension m and n,
respectively, and where ¢ is a non-zero element of H satisfying Req = 0.
Clearly, each surface of F, is contained in a totally geodesic submanifold
of X belonging to the family F,. A submanifold of X belonging to the
family F, is isometric to the complex Grassmannian Z = G%,n. In fact,
if Z’ is a submanifold of X belonging to the family F., then there exists
a totally geodesic isometric imbedding ¢ : Z — X whose image is equal to
Z' such that «* Ex = Ez. Moreover Z’ has the same rank as X; therefore,
if u is a symmetric p-form on X satisfying the Guillemin condition, the
restriction of u to Z’ also satisfies the Guillemin condition. When m = n,
we may assume that the imbedding ¢ has the following additional property:
if w is an even section of SPT™ over X, then +*u is an even p-form on Z.
We consider the G-invariant families

F=UF, F=UF

zeX zeX

of closed connected totally geodesic submanifolds of X. Clearly, every sur-
face of F is contained in a totally geodesic submanifold of X belonging to
the family F’. By the above remarks concerning a surface of the family F,
with z € X, we see that the family F’ possesses property (I) of §8, Chap-
ter II; hence by Proposition 8.12, we obtain the following result, which is
also given by Theorem 2.24:

ProposiTION 9.18. For m,n > 2, with m # n, the maximal flat
totally geodesic Radon transform on the quaternionic Grassmannian G, ,
is injective.

We consider the sub-bundle N = Nz of B consisting of those ele-
ments of B, which vanish when restricted to the closed totally geodesic
submanifolds of F, which was introduced in §8, Chapter II. The proofs of
the following two lemmas are similar to those of Lemmas 9.1 and 9.3 and
shall be omitted.

LEMMA 9.19. Let X be the quaternionic Grassmannian G%m with
m,n > 2. Let u be an element of ®2T;, with x € X. If the restriction of

u to an arbitrary submanifold of the family F vanishes, then u vanishes.
LEMMA 9.20. Let m,n > 2 be given integers and let X be the quater-
nionic Grassmannian ng. Then we have

TrN CE.

PROPOSITION 9.21. Let h be a section of E over the quaternionic
Grassmannian X = G with m,n > 2. Suppose that the restriction of

m,n?’
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h to an arbitrary submanifold Z of X belonging to the family F' is a Lie
derivative of the metric of Z. If either n > 3, or if m =n = 2 and h is an
even section of E, then h vanishes.

PROOF: Let X’ be a submanifold of X belonging to the family F'.
We consider the complex Grassmannian Z = G;Cn,n. Then there is a totally
geodesic isometric imbedding ¢ : Z — X whose image is equal to X’ such
that i*h is a section of the sub-bundle Ez of S?T’%; moreover, when m = n
and h is even, we may suppose that the 2-form i*h on Z is even. Our
hypotheses imply that the symmetric 2-form ¢*h on Z is a Lie derivative of
the metric of Z. When n > 3, according to Proposition 9.4 we see that ¢*h
vanishes. If m = n = 2 and h is even, the vanishing of the even section i*h
over Z is given by Theorem 8.11. Thus the restriction of h to X’ vanishes.
The desired result follows from Lemma 9.19.

By Theorems 9.5 and 9.6, we know that the family F’ possesses prop-
erty (III) of §8, Chapter II and that, when m # n, it also possesses prop-
erty (II) of §8, Chapter II. Also Theorem 1.22 gives us the vanishing of the

space E(X).
When n > 3, according to Proposition 9.21, we know that
(9.18) L(FHYNC>=(E) = {0}.

Since the Grassmannian GE{Q is isometric to G]S{W the following two the-

orems are direct consequences of Theorem 2.49, the relation (9.17) and
Lemma 9.20.

THEOREM 9.22. The quaternionic Grassmannian Gy, ,,, withm,n > 2
and m # n, is rigid in the sense of Guillemin.

THEOREM 9.23. Let m,n > 2 be given integers, with m+n > 5. The
quaternionic Grassmannian G]ﬁgm is infinitesimally rigid.

When m = n = 2, according to Proposition 9.21 we know that
(9.19) L(FYNC®(E)* = {0}.
By Proposition 2.18 and Theorem 8.9, if either n = 2 or if n > 3 and the

space G(,Cw is rigid in the sense of Guillemin, an even symmetric 2-form on
the space X = G}/, satisfying the Guillemin condition belongs to L(F").

The following two results are a consequence of Proposition 2.18, Theo-
rem 2.48,(ii), the relations (9.17)—(9.19), Lemma 9.20 and Theorem 9.16.

THEOREM 9.24. The symmetric space @2% is rigid in the sense of
Guillemin.
C

no,no0

THEOREM 9.25. Let ng be an integer > 3. If the space G is rigid
in the sense of Guillemin, then the symmetric spaces G‘En are rigid in the
sense of Guillemin, for all n > ny.
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The proof of the following result is similar to that of Proposition 9.7
and shall therefore be omitted.

PROPOSITION 9.26. Let m,n > 2 be given integers, with m +n > 5.
If X is the quaternionic Grassmannian G, . the sequence (1.24) is exact.

m,n’

According to Lemma 9.19, the sub-bundle Cz/ of /\2T *, consisting of
those elements of /\QT* which vanish when restricted to the closed totally
geodesic submanifolds of F’, vanishes. By Theorem 9.9, we know that F’
possesses property (VI) of §8, Chapter II. Since the rank of a submanifold
of X belonging to the family F’ is equal to the rank of X, the family F’
possesses property (IV) of §8, Chapter II. When m # n, by Theorem 9.8,
we know that F' also possesses property (V) of §8, Chapter II. From these
observations and Theorem 2.51, we obtain the following two theorems:

THEOREM 9.27. Let m,n > 2 be given integers, with m # n. A form
of degree 1 on the quaternionic Grassmannian G%n satisfies the Guillemin
condition if and only if it is exact.

THEOREM 9.28. Let m,n > 2 be given integers. A form of degree 1
on the quaternionic Grassmannian ng satisfies the zero-energy condition
if and only if it is exact.

The next theorem is a consequence of Theorem 9.17, and its proof is
similar to that of Theorem 9.27 and shall be omitted.

THEOREM 9.29. Let n be an integer > 2. A form of degree 1 on the
symmetric space G]ffyn satisfies the Guillemin condition if and only if it is
exact.



CHAPTER X

PRODUCTS OF SYMMETRIC SPACES

§1. Guillemin rigidity and products of symmetric spaces

Let Y and Z be two manifolds; we consider the product X =Y x Z
and the natural projections pry and pr, of X onto Y and Z, respectively.
If 0 is a section of @"Ty: over Y (resp. of Q"1 over Z), we shall also
denote by 6 the section pr3-0 (resp. the section pri6) of @”T* over X; a
vector field £ on Y (resp. on Z) induces a vector field on the product X,
which we shall also denote by £. If 61 is a symmetric p-form on Y and 65 is a
symmetric g-form on Z, we shall consider the symmetric (p+ ¢)-form 6, -5
on X. We identify the bundles pr;lTy and pr}lTZ with sub-bundles of T,
which we also denote by Ty and Tz, respectively; similarly, we identify the
bundles pr;lT;} and pr}lT 7 with sub-bundles of 7™, which we also denote
by Ty and T7, respectively. We then have the direct sum decompositions

(10.1) T=Ty &1y, T* :T; @T}.

We denote by ny : T'— Ty and by 7z : T — Ty the natural projections
of T onto Ty and T, respectively.

The fiber of the vector bundle T5 ® T at the point = = (y, z) of X,
withy € Y and z € Z, is equal to Ty, ®T; .. We identify Ty ®T; with the
sub-bundle of S2T™*, which is equal to the image of the injective morphism
of vector bundles over X

¢: Ty @ Ty — S*T*,

defined by
(¢v)(&,m) = v(7y &, mzn) + v(Tyn, 728),

for all v € Ty ® T and &, € T. Then if #; is a 1-form on Y and 65 is a
1-form on Z, the symmetric 2-form 6; - 62 on X is equal to ¢(f; ® 02). Also
we have the decomposition

(10.2) S2T* = S*Ty @ (Ty @ Th) @ S*T.
Let (Y, gy) and (Z, gz) be two Riemannian manifolds; we consider the
product manifold X =Y x Z endowed with the product metric g = gy +¢z.

The Riemann curvature tensor R of (X, g) is given by

R=Ry + Rz,
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where Ry and Rz are the Riemann curvature tensors of the manifolds
(Y,gy) and (Z, gz), respectively.

We now assume that X; = Y and Xy = Z are symmetric spaces of
compact type. For j = 1,2, there is a Riemannian symmetric pair (G;, K;)
of compact type, where G; is a compact, connected semi-simple Lie group
and K is a closed subgroup of G; such that the space X; is isometric to
the homogeneous space G/ K; endowed with a G j-invariant metric. Let I';
be the dual of the group G;. For all v € I';j, we recall that the multiplicity
of the Gj-module C°(X;) is < 1.

For the remainder of this section, we suppose that (X, g) is the sym-
metric space of compact type equal to the product X; x X5 endowed with
the product metric ¢ = g1 + g2. We view X as the homogeneous space
G /K, where G is the group G1 X G2 and K is the group K; x K5. We may
identify I" with I'y x I's. For all 77 € I'; and 5 € I's, we easily see that the
equality

(103)  CF,,)(Te) = C(X1) - CF (Txye) + O (Xa) - O (T, )

of G-modules holds.

We denote by pr; the natural projection of X onto X;. Let u be
a symmetric p-form on X; and consider the symmetric p-form u = prju’
on X. A maximal flat totally geodesic torus Z of X is equal to the product
Zy X Zy, where Z; is a maximal flat totally geodesic torus of X;. A parallel
vector field £ on Z can be written as the sum & = & + &, where ; is a
parallel vector field on Z;, for j = 1,2. Then we have

/Zu(§>£7"'7§)dz:VOI(Z2792)'/ Ul(€17§1,...7£1)dZ1.

Zy

Let v be a closed geodesic of X. Then the path pr; o+ in X; determines
a closed geodesic v/ of X1, and it is easily verified that the integral of the
symmetric p-form u over the closed geodesic vy is a constant multiple of the
integral of u’ over the closed geodesic +'. From these remarks, it follows
that, if the symmetric p-form «' on X; satisfies the Guillemin (resp. the
zero-energy) condition, then so does the symmetric p-form u on X.

ProrosiTioN 10.1. Let X; and X2 be symmetric spaces of compact
type. Suppose that the symmetric space X; is not rigid in the sense of
Guillemin (resp. is not infinitesimally rigid). Then the symmetric space
X = X, x X5 is not rigid in the sense of Guillemin (resp. is not infinitesi-
mally rigid).

ProOOF: Let I/ be a symmetric 2-form on X;, which satisfies the
Guillemin (resp. the zero-energy) condition and is not a Lie derivative of
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the metric g;. According to the previous discussion, the symmetric 2-form
h = prih’ on X satisfies the Guillemin (resp. the zero-energy) condition.
Let z be a given point of X5 and let ¢ : X; — X be the totally geodesic
imbedding sending y € X into the point (y, z) of X; then we have t*h = 1'.
If there exists a vector field on X such that L£;g = h, then we consider the
vector field  on X7 determined by

L (y) = pri.&(y, z2),

for all y € X;; by Lemma 1.1, we obtain the equality £,¢1 = ', which
leads us to a contradiction.

ProposITION 10.2. Let X; and Xo be symmetric spaces of compact
type. Suppose that the maximal flat Radon transform for functions on the
space X is injective, for j = 1,2. Then the maximal flat Radon transform
for functions on the symmetric space X = X1 X Xo Is injective.

ProOOF: Let f be a real-valued function on X, whose maximal flat
Radon transform vanishes. For z € X5, we consider the real-valued function
f» on X7 defined by

fz(y) = f(y,z),

for all y € X;. Let Z; be a maximal flat totally geodesic torus of Xi; we
define a real-valued function fz, on X, by

(10.4) fz,(z)= [ f.dZi,

Z
for z € Xo. If Z5 is a maximal flat totally geodesic torus of X5, then
7y X Zs is a maximal flat totally geodesic torus of X7 x Xo, and we have

fz,dZs = / Fdz=o.
Zs 7

Therefore the function fz, on X satisfies the Guillemin condition, and so,
according to our hypothesis on Xs, it vanishes. From the equality (10.4),
for z € Xs, we see that the function f, on X; satisfies the Guillemin
condition, and so, according to our hypothesis on X7, it vanishes. Thus we
have shown that the function f vanishes.

ProrosiTION 10.3. Let X; and Xo be symmetric spaces of compact
type. Let p be an integer > 0. If f is a complex-valued function on X;
and 0 is a complex symmetric p-form on X5, then the complex symmetric
(p+1)-form u = df -0 on the product X = X; x X5 satisfies the Guillemin
condition.

PROOF: Let Z be a maximal flat totally geodesic torus of X and £ be
a parallel vector field on Z. The torus Z is equal to the product Z; x Zs,
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where Z; is a maximal flat totally geodesic torus of X, and the vector
field £ can be written as the sum £ = &; + &2, where &; is a parallel vector
field on Zj, for j = 1,2. Since the 1-form df on X, satisfies the Guillemin
condition, we have

/u(f,g,,f)dZ:/ (51f)dZ] (62752,,52)d22:0
A Z1

0
Za

We fix a maximal torus 7} of the group G; and a system of positive
roots A; for the complexification of the Lie algebra of G;. We then consider
the maximal torus 77 x Ty of G and the system A; U Ay of positive roots
for the complexification of the Lie algebra of G.

We now suppose that X; and X, are irreducible symmetric spaces
which are not equal to simple Lie groups. Then the complexifications g,
and go of the Lie algebras of the groups G; and G are simple. For j = 1,2,
let 'y]l be the element of I'; which is the equivalence class of the irreducible
Gj-module g;.

ProrosiTiON 10.4. Let X; and Xs be irreducible symmetric spaces
of compact type which are not equal to simple Lie groups. Let «; be
an element of I';, for j = 1,2; let 0; be a highest weight vector of the
Gj-module C3° (T)*(j,c)' Suppose that the following two conditions hold:

(i) either the Gi-module C3°(X1) vanishes or o # 73;

(i) either the Gy-module CS9(X3) vanishes or 71 # 1.

Then the symmetric 2-form 61 -5 on X = X7 x X5 does not belong to the
space DoC*>(T¢).

PROOF: Suppose that the symmetric 2-form h = 6; - 3 on X is equal
to Dy&, where € is a section of T over X. Since h is a highest weight
vector of C(o,‘;l 72)(SZT ¢) and the differential operator Dy is homogeneous,

we may suppose that ¢ is a highest weight vector of C’E’;’l ,yz)(T(c). Since the

multiplicities of the modules C57(X1) and C35(X3) are < 1, according to
the equality (10.3) we may write

&= fri&o + f261,

where f; € C57(X;) and §; € C5° (T, c) are either highest weight vectors
of these modules or equal to 0. Then we have

Doé = f1Do,x,& + foDo x, &1 + dfy - g3(&2) + dfs - g3 (&1).

Since h(n;,n;) =0, for all n; € T, and j = 1,2, we obtain the relations

f1Do,x,62 = f2Do,x,&1 = 0.
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Thus if f; is non-zero, we see that Dy x,&> vanishes; hence & is a Killing
vector field on X3 and so belongs to the Ga-module C3°(Tx, c), where
v = ~4. According to our hypothesis (i), we know that 75 # ~4 and
therefore & vanishes. Similarly, from the hypothesis (ii) we deduce that
either fy or & vanishes. Thus we have shown that the vector field ¢ and
the symmetric form h on X vanish, which leads to a contradiction.

THEOREM 10.5. Let X; and Xs be irreducible symmetric spaces of
compact type which are not equal to simple Lie groups. The symmetric
space X = X7 x Xs is not rigid in the sense of Guillemin.

PROOF: We choose elements v; € 'y and 7y, € 'y satisfying v, # 71
and v # 3. We also suppose that 7; and v, do not correspond to
the trivial representations of G and Ga, and that the modules C’;’f(XQ
and C59(X2) do not vanish. Let f; and fy be highest weight vectors of
C5(X1) and C59(Xz), respectively. Then we know that df; and dfs are
highest weight vectors of C3°(Tx, ¢) and C55 (T, ). According to Propo-
sition 10.3, with p = 1, the real and imaginary parts of the complex 2-form
h = dfy - dfs on X satisfy the Guillemin condition. By Proposition 10.4,
the form h does not belong to the space DoC*(1¢). Therefore either the
real or the imaginary part of h is not equal to a Lie derivative of the metric
of X, and so X is not rigid in the sense of Guillemin.

If the irreducible spaces X7 and X5 of Theorem 10.5 are equal to their
adjoint spaces, then so is their product X = X7 x Xs; under this hypothe-
sis, by Theorem 2.24 we know that the maximal flat Radon transform for
functions on X is injective. For example, according to Theorem 10.5 the
product RP™ x RP™, with n > 2, is not rigid in the sense of Guillemin, while
the maximal flat Radon transform for functions on this space is injective.
On the other hand, we shall see that this space is infinitesimally rigid (see
Theorem 10.19).

From Theorem 10.5 and Proposition 10.1, we infer that the product

X1XX2X~~~XXP,

with p > 2 and where each factor X;, with 1 < j < p, is a symmetric space
of compact type, and where X; and X, are irreducible spaces which are
not equal to simple Lie groups, is not rigid in the sense of Guillemin.

THEOREM 10.6. Let X; and X5 be symmetric spaces of compact type.
There exists a 1-form on the symmetric space X = X1 X X, which satisfies
the Guillemin condition and is not exact.

Proor: For j = 1,2, let f; be a non-constant real-valued function
on X;. Then the 1-form u = fadf; clearly satisfies

du = —dfy N dfy # 0.
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According to Proposition 10.3, with p = 0, the 1-form u on X satisfies the
Guillemin condition.

§2. Conformally flat symmetric spaces

Let (X, g) be a Riemannian manifold of dimension n. We consider the
automorphism of the vector bundle T* ® T which sends u € T* @ T into u"
and is determined by the following: if u = F® &, where 5 € T* and £ € T,
then u? is equal to ¢°(£) ® ¢*(B). Let B be the sub-bundle of B consisting
of those elements v of B for which the relation v(&1,&2,&3,£4) = 0 holds,
with &1, &2,83,8 € T, whenever all the vectors &; are tangent to the same
factor or whenever two of the &; are tangent to Y and the other two are
tangent to Z.

We recall that, if X is a simply-connected symmetric space, then X is
isometric to the product Xy x X x X~, where Xj is a Euclidean space,
and X and X~ are symmetric spaces of compact and non-compact type,
respectively (see Proposition 3.4 in Chapter V of [36]); we call X the
Euclidean factor of X. If X is a locally symmetric space, we say that X does
not admit a FEuclidean factor at a point « € X if there exists a neighborhood
of x isometric to a subset of a product X+ x X, where X+ and X~ are
symmetric spaces of compact and non-compact type, respectively.

Let (Y,gy) and (Z,gz) be two Riemannian manifolds. We suppose
that X is the product manifold Y x Z endowed with the product metric
g = gy + gz. Here we use the conventions concerning tensors on a product
established in §1. As above, we identify 7Ty ® T with the sub-bundle
of S2T*; then it is easily verified that

T5(Ty ® T}) C B;.
We consider the sub-bundles
g ={ueTy @Ty | plu)gy =0}, g ={veT;®@Tz|p(v)gz =0}

By means of the decompositions (10.1), we identify the bundles pry' g} and

prg1 g% with sub-bundles of T* ® T, which we also denote by g7 and g7,
respectively. The sub-bundle

gf’Z:{u—u”uGT;}@TZ}

of T* ® T' is isomorphic to Ty ® Tz; it is clear that g}/’z C g1. Moreover,
we have:

LEMMA 10.7. Let (Y, gy) and (Z, gz) be two Riemannian manifolds.
Let (X, g) be the Riemannian product (Y X Z, gy +gz). Then we have the
equality
g=91 ©g9f ©g"”.
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We now suppose that (Y, gy) and (Z,gz) are connected locally sym-
metric spaces. We set

By,z = p(g)"?)R;

then we have the surjective morphism of vector bundles

(10.5) Ty ® Ty — By,z,

sending u into p(u — u?)R. Tt is easily verified that
By.z C By.

In fact, BY, z 18 the sub-bundle of B; consisting of all elements v of By for
which there exists an element u € Ty ® T’z such that the equalities

U(§1a7717772,773) = RZ(U(El)vntha 773)3
v(n1,£17£27£3) = 7RY(uh(nl)a€17§2>£3)
hold for all &1,&5,&3 € Ty and n1,1m2,13 € 1.
The following result is given by Lemma 1.2 of [19].

LEMMA 10.8. Let (Y, gy) and (Z,gz) be two connected locally sym-
metric spaces. Let (X,g) be the Riemannian product (Y X Z,gy + gz).
Then we have

(10.6) B =By ® Bz ® By_.

Let x = (y,2) be a point of X, withy € Y and z € Z; if Y (or Z) does
not admit a Euclidean factor at y (or z), then the mapping (10.6) is an
isomorphism at the point x.

When Y and Z have constant curvature equal to Ky and Kz, respec-
tively, we know that By = {0} and Bz = {0} (see §3, Chapter I); from the
above discussion and the equality (10.6), for v € Ty ® Tz, we deduce that

plu—u R = 275 ® (Kygy — Kz92)),

where v’ = (id ® g% )u, and hence that

(10.7) B=15((Ty ®T3) @ (Kygy — Kz97)).

The first assertion of the following proposition is a direct consequence
of the equality (10.7) and its second assertion is proven in [16, §2].
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PROPOSITION 10.9. Let (Y, gy) and (Z, gz) be two Riemannian man-
ifolds of constant curvature Ky and Kz, respectively. Assume that the
dimension of Y is > 1 and that Kz # 0. Let (X,g) be the Riemannian
product (Y X Z,gy + gz). If either dimY =1 or if Kz = —Ky, then we
have

(10.8) B =75(Ty ® Tz);

moreover, when the dimension of X is > 4, the equality (1.48) holds.

In fact, under the hypotheses of the preceding proposition, when the
dimension of X is equal to 3, the rank of the vector bundle H N (T* @ B)
is equal to 3.

We no longer suppose that X is a product manifold; we now assume
that the dimension n of X is > 3. We consider the orthogonal decomposi-
tion

B = 75(S*T*) @ B°
given in §1, Chapter I.
The following result is given by Lemma 3.4 of [13].

LEMMA 10.10. Let x be a point of X and let v be an element of B,.
Then the relation p(u)v = 0 holds for all u € g , if and only if there exists
a € R such that v = atg(g)(x).

The Weyl tensor W of (X, g) is the section of the sub-bundle B° which
is the orthogonal projection of the Riemann curvature tensor R onto B°.
Then we have

(10.9) R=W +#5(h),

where h is the section of S2T* given by

he (r(g)g—2Ric>.

n—2\n-—1

If (X, g) is an Einstein manifold, from formula (10.9) we infer that the Weyl
tensor W of X vanishes if and only if X has constant curvature. When
n > 4, a classic result due to Weyl asserts that the metric g is conformally
flat if and only if the Weyl tensor W vanishes (see [15, §3]).

LEMMA 10.11. The Weyl tensor W vanishes if and only if we have
the inclusion

(10.10) B C 75(S*T™).
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PROOF: Let x be a point of X and let £ be an element of 7, satisfying
(Leg)(z) = 0. By (10.9), we obtain the equality

(LeR)(x) = (LeW)(x) + 7B((Leh)(2)),

where (L£W)(x) belongs to B® and 75((L¢h)(z)) is an element of S2T*.
Hence (L¢R)(x) belongs to 75(S*T*) if and only if (LcW)(z) = 0. We
therefore see that the inclusion B C 75(S%T*) is valid if and only if the re-
lation (L:W)(z) = 0 holds for all z € X and ¢ € 7, satisfying (L¢g)(z) = 0.
Now according to formula (1.1), this last condition is equivalent to the fact
that the relation p(u)WW = 0 holds for all u € g;. By Lemma 10.10, we
know that it is equivalent to W = 0.
The following theorem is due to S. T. Yau (see [57, §5]).

THEOREM 10.12. Let (Y, gy) and (Z, gz) be two connected Rieman-
nian manifolds. Let (X, g) be the Riemannian product (Y X Z,gy + gz).
If the dimension of X is > 3 and if neither Y nor Z is reduced to a point,
then the following assertions are equivalent:

(i) The manifold (X, g) is conformally flat.

(ii) The manifolds (Y, gy ) and (Z, gz) have constant curvature, and if
both factors Y and Z are of dimension > 2, the curvature of (Y, gy) is the
negative of the curvature of (Z,gz).

The following theorem is a direct consequence of Proposition 10.9 and
Theorem 10.12.

THEOREM 10.13. Let (Y, gy) and (Z,gz) be two connected Rieman-
nian manifolds of dimension > 1. Let (X,g) be the Riemannian product
(Y X Z,gy + gz). Assume that (X,g) is a conformally flat Riemannian
manifold of dimension n > 3. Then the inclusion (10.10) holds; moreover,
if n > 4, then the equality (1.48) holds.

In fact, under the hypotheses of Theorem 10.13, if (X, g) is not flat,
then the equality (10.8) holds.

THEOREM 10.14. Let (X,g) be a Riemannian manifold of dimen-
sion > 4. The following assertions are equivalent:

(i) The manifold (X, g) is locally symmetric and conformally flat.

(ii) The inclusion (10.10) and the equality (1.48) hold.

PROOF: First, Lemmas 1.4 and 10.11 give us the implication (ii) = (i).
Conversely, we begin by remarking that a locally homogeneous irreducible
Riemannian manifold is Einstein; moreover, if the Weyl tensor of such a
manifold vanishes, we saw above that it has constant curvature and so
B = {0} (see §3, Chapter I). In general, if (i) holds, then X is locally
isometric to a product of symmetric spaces which are either irreducible or
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flat; if this product is non-trivial, according to Theorem 10.12 the manifold
X is locally isometric to a product of two Riemannian manifolds (Y, gy )
and (Z, gz) satisfying condition (ii) of Theorem 10.12. In this case, the
desired result follows from Theorem 10.13.

§3. Infinitesimal rigidity of products of symmetric spaces

Let (X, g) be a compact symmetric space. For x € X, the set Cx ,
of vectors ¢ of T, — {0}, for which Exp,R¢ is a closed geodesic of X, is a
dense subset of T,.

Let (Y, gy ) and (Z, gz) be two compact symmetric spaces. We suppose
that (X, g) is equal to the Riemannian product (Y X Z, gy + gz).

Let h be a symmetric 2-form on X. For y € Y and £ € Cy,, we
consider the 1-form h¢ on Z defined by

for n € Tz, where v(t) = Exp_t¢ and §(¢) is the tangent vector to the closed
geodesic v of length L. We have hys = Ahg, for all £ € Cy,, and XA € R,
with A # 0.

We say that the product Y x Z satisfies condition (A) if, for all sym-
metric 2-forms h € C*°(Ty @75 ) on X satisfying the zero-energy condition,
there exists a section h; of Ty ® T over X such that

(10.11) hi(€,m) = he(n),

for all £ € Cy,y, with y € Y, and n € Tz. This condition on the product
Y x Z means that averaging the sections of Ty ® T satisfying the zero-
energy condition over the closed geodesics of Y is a C°°-process.

The following general result is proved in [19]:

THEOREM 10.15. Let Y and Z be two compact symmetric spaces.

Suppose that the following conditions hold:
(i) either the universal covering space of Y or the universal covering

space of Z does not admit a Euclidean factor;

(ii) the spaces Y and Z are infinitesimally rigid;

(iii) the 1-forms on Y and on Z satisfying the zero-energy condition
are exact;

(iv) the product Y x Z satisfies condition (A).
Then the product X =Y X Z is infinitesimally rigid.

If Y is a flat torus, or a projective space different from a sphere, or the
complex quadric @, of dimension n > 3, in [19] we showed that the product
Y X Z satisfies condition (A). In fact if YV is a projective space different
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from a sphere, the geodesic flow ; on the unit sphere bundle Sy of Ty of
Y is periodic of period ; in this case, if h is a section of C*° (T ®T%) over
X satisfying the zero-energy condition, we define a function h; on Ty x T
by

m@m=%4h@&MM

for £ € Sy and n € Tz, and by setting hi(A\,n) = Ahi(€,n) for € € Sy,
n € Tz and A € R. In [19], we verified that h; arises from a C'*°-section of
Ty ® T which we also denote by hy. Since Cy, =Ty, — {0}, for y € Y,
we see that the relation (10.11) holds, and therefore so does condition (A).
Since projective spaces, different from spheres, flat tori and the complex
quadrics of dimension > 3 are infinitesimally rigid and the 1-forms on
these spaces satisfying the zero-energy condition are exact (see Chapters ITI
and VI), from the preceding theorem we deduce:

THEOREM 10.16. LetY be a compact symmetric space which is either
a projective space different from a sphere, or a flat torus, or a complex
quadric of dimension > 3. Let Z be a symmetric space of compact type
which is infinitesimally rigid; assume that the 1-forms on Z satisfying the
zero-energy condition are exact. If Y is a flat torus, assume moreover that
the universal covering space of Z does not admit a FEuclidean factor. Then
the product X =Y X Z is infinitesimally rigid.

From Theorems 7.4, 7.12, 9.6, 9.9, 9.23 and 9.28 and the preceding
theorem, we deduce the following;:

THEOREM 10.17. Let m,n be given integers. Let Y be a compact
symmetric space which is either a projective space different from a sphere,
or a flat torus, or a complex quadric of dimension > 3. Let Z be a sym-
metric space of compact type which is either the Grassmannian GEWL,
Sm, with m,n > 2, or the Grass-

with m,n > 5. Then the product X =Y X Z is infinitesi-

with m,n > 5, or the Grassmannian G
mannian G&

mally rigid.
The following theorem is also proved in [19].

THEOREM 10.18. Let Y and Z be two compact symmetric spaces
which are infinitesimally rigid. Assume that the 1-forms on Y and Z sat-
isfying the zero-energy condition are exact. Then a 1-form on the product
manifold X =Y x Z satisfies the zero-energy condition if and only if it is
exact.

Since the 1-forms on a projective space, different from a sphere, on
a flat torus, or on the complex quadric @, of dimension n > 3, which
satisfy the zero-energy condition, are exact, the following theorem is a
direct consequence of Theorems 10.16 and 10.18.
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THEOREM 10.19. A product of Riemannian manifolds
X=X1 xXox---xX,,

where each factor X is either a projective space different from a sphere, or
a flat torus, or a complex quadric of dimension > 3, is infinitesimally rigid.

84. The infinitesimal rigidity of G]§72

We consider the product manifold X =Y x Z, where the manifolds
Y and Z are equal to the sphere S2. We endow Y and Z with the metric
go of S% of constant curvature 1 and consider the product metric on X.
We denote by 7 the anti-podal involution of S?; let ¢ be the involution
7 x 7 of X. We consider the Riemannian metrics ¢’ on the real Grass-
mannians GH;Q and ng defined in §1, Chapter IV and denoted there by g.

By Proposition 4.3, we know that the Grassmannian C~}’§2 endowed with
the metric 2¢’ is isometric to the manifold X = 5% x S? endowed with
the product metric. According to Proposition 2.22, the sphere S? is not
infinitesimally rigid; then Proposition 10.1 tells us that the Grassmannian
ng is mot infinitesimally rigid. If A is the group of isometries of X gen-
erated by o, in §9, Chapter V we saw that the Riemannian manifold X/A
endowed with the metric induced by the metric of X is isometric to the
real Grassmannian G5 , endowed with the metric 2¢’.
This section is devoted to the proof of the following two theorems:

THEOREM 10.20. The real Grassmannian G , is infinitesimally rigid.

THEOREM 10.21. A differential form of degree 1 on the real Grass-
mannian GI&2 satisfies the zero-energy condition if and only if it is exact.

By Proposition 4.3, we know that the space RP? x RP? endowed with
the product metric is isometric to the quotient of the Grassmannian G]§72,
endowed with the metric 2¢’, by its group of isometries generated by the
involutive isometry W considered in §1, Chapter IV. Thus from Theo-
rem 10.20 and Proposition 2.19, we deduce that the space RP? x RP? is
infinitesimally rigid; this last result is also given by Theorem 10.17. From
Theorem 10.21, we infer that a 1-form on RP? x RP? satisfies the zero-energy
condition if and only if it is exact; this last result can also be obtained from
Theorems 3.26 and 10.18.

According to Propositions 2.19 and 2.20, we know that Theorems 10.20
and 10.21 are respectively equivalent to the following two results:

THEOREM 10.22. A symmetric 2-form on the product S? x S?, which
is even with respect to the involution o and satisfies the zero-energy con-
dition, is a Lie derivative of the metric.
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THEOREM 10.23. A differential 1-form on the product S? x S?, which
is even with respect to the involution o and satisfies the zero-energy con-
dition, is exact.

We consider the Fubini-Study metric § on the complex projective
space CP! of constant curvature 4, and various objects and notions as-
sociated to this space in §4, Chapter III. In particular, we consider the
isometry ¢ from (52, go) to (CP!,4g) and the involutive isometry ¥ of CP!.
We say that a symmetric p-form on CP! is even (resp. odd) if U*u = cu,
where ¢ = 1 (resp. € = —1). We identify CP! with the Hermitian symmet-
ric space SU(2)/K’, where K’ is the subgroup S(U(1) x U(1)) of SU(2).
Let I denote the dual of the group SU(2). If k is an integer > 0, let 5 be
the element of I corresponding to the irreducible SU(2)-module Hy; we
also consider the complex-valued function fk on CP!, which belongs to Hy,
and we recall that f, = (f1)F.

For the remainder of this section, we let X be the product manifold
Y x Z, where the manifolds Y and Z are equal to the complex projective
line CP!. We endow Y and Z with the Fubini-Study metrics gy and gz of
constant curvature 4, respectively, and we consider the product metric g
on X. We denote by ¥ the involutive isometry ¥ x ¥ of CP' x CP!.
We say that a symmetric p-form u on X is even (resp. odd) if U"*u = eu,
where ¢ = 1 (resp. ¢ = —1). We consider the subspaces Hy = C5°(Y)
of C*(Y) and Hzy = C59(Z) of C*°(Z), which correspond to the space
H, of functions on CP!; we also denote by fy (resp. by fz) the function
on Y belonging to Hy,1 (resp. on Z belonging to Hz 1) corresponding to
the function f; on CP*.

We view X as the symmetric space G/K of compact type, where G
is the group SU(2) x SU(2) and K = K' x K'. We identify the dual T' of
the group G with IV x IV. The complexification g of the Lie algebra of G
is equal to the Lie algebra s[(2) @ sl[(2). The group of all diagonal matrices
of G is a maximal torus of G, and the complexification t of the Lie algebra
of this torus is a Cartan subalgebra of the semi-simple Lie algebra g. For
1 < j <4, the linear form \; : t — C, sending the diagonal matrix, whose
diagonal entries are a1, asg, a3, a4, into aj, is purely imaginary on to. Then
{A1 — A2, A3 — Ay} is a positive system for the roots of g with respect to t.

According to the commutativity of diagram (3.25), in order to prove
Theorem 10.21 (resp. Theorem 10.22) it suffices to show that an even sym-
metric 2-form (resp. 1-form) on the product X = CP! x CP!, which satisfies
the zero-energy condition, is a Lie derivative of the metric (resp. is exact).
The remainder of this section is devoted to the proof of these two assertions.

We use the notation introduced in §1. We view the metrics gy and gz
as sections over X of the sub-bundles S?Ty: and S?Tj of S?T*; then we
have g = gy + gz. Let Fy be the sub-bundle of rank 2 of S?T* generated
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by the sections gy and gz; clearly, F' = Fy & (Ty ® T5) is a homogeneous
sub-bundle of S?T* invariant under the isometry ¥’.

Let h be a symmetric 2-form on X. According to the decomposi-
tion (10.2), we may write h = k; + ko + k3, where ki, ko, k3 are sections
of S?Ty, ST and Ty ® Tz, respectively. For y € Y and z € Z, by means
of the isometry ¢, we apply the equality (1.64) to the restriction of k; to
Y x {z} and to the restriction of ks to {y} x Z. We then see that there
exist a vector field £ and a section hy of F' over X such that

h=_Leg+hi.

Since the differential operator Dy is homogeneous, by (2.1) it follows that
C(S*Tg) = DoC(Te) + C° (Fe),

(10.12) .
O (S?TE)* = DoC (Te)* + C°(Fo)®,

for all v € T

Let f{ and f/, be given elements of Hq y and H; z, respectively; ac-
cording to the relation (3.31), we know that there exist complex Killing
vector fields £y on Y and £z on Z such that

(&) =0-0f,  gy(&z)=(0-0)f}.

Thus if f{/ and f7 are arbitrary complex-valued functions on Y and Z,
respectively, we easily see that

(10.13)  Do(f{€z) =dfy - (0= 09)fz.  Dol(fzév) = (9 —0)fy - df7;

moreover, according to formulas (1.5) and (3.33), and the derivation of the
relation (3.34), we see that

Do(fy(dfy)?) = =8f{ fhay + dfy - dfy,
Do(fi(dfy)?) = =81 fraz + dfy - dfy.

Let v be an element of T'. Unless v is of the form (vg,7;), where &,
are integers > 0, we know that C3°(X) = {0} and, by Proposition 3.28,
we have C5°(Fc) = {0}; moreover, according to Proposition 3.28 and the
equality (10.3), we see that C3°(T¢) = {0}, unless v is of the form (yx,v),
where k, [ are integers > 0 satisfying k +{ > 0.

Now let k,1 > 0 be given integers and suppose that v is the element
(Vk,y1) of T'. From the relations (3.29), we obtain the following equalities
among irreducible G-modules

(10.14)

Cr(X)® if k+1is even,
(10.15)  CX(X)=C(Y)C(Z) =

oo dd ; H .
Cr (X))o if k+1 is odd;
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moreover, we see that the function f£f, on X is a highest weight vector
of this G-module. From the relations (10.15), it follows that

C3°(Fc) = C3;

k

YT (Z)gy + C3(YV)CT (Z2)g9z + O3 (T c) - O (T.0);

moreover, we infer that the G-module C5°(F¢)®” is given by

CF(Fe)” = CR(Y)CT(Z)gy + CT(Y)CT(Z) g2
+ RT3 0) - O (T7.0)
+ O3 (Ty )M - O (T )
when k + [ is an even integer, and by
O (Fe)®™ = C5(Ty o)™ - O (T.0)* + OS5 (Ty0) "M - OFF (T.0)

when k + [ is an odd integer. By Proposition 3.28, it follows that the
G-module C3° (Fr)®¥ vanishes whenever one of the integers k and [ is equal
to 0 and the other one is odd. According to (3.30), we also see that

CX(Fe)® = (0 - O)Hay - dHy z
when k£ = 1 and the integer [ is even, and that
CF(Fc)®™ = dHyy - (0 — OYH1 7

when [ = 1 and the integer k is even. From the previous relations and the
equalities (10.3) and (10.13), we then obtain the inclusion

(10.16) C(Fe)™ € DoC(Te)

whenever one of the integers k and [ is equal to 1 and the other one is even.

Let h be a highest weight vector of the G-module C5°(Fc)®”. Ac-
cording to the equalities (3.30), the observations concerning highest weight
vectors made in §4, Chapter I1I and the descriptions of this G-module given
above, if the integers k and [ are positive, we see that the section h of F
can be written in the form

h=fy 15 (fy fz(a1gy +azgz) +bidfy - dfz +b2(0— ) fy - (0—0)fz),

with a1, as,b1,bs € C, when k + [ is even, and in the form

(10.17) h=fy f (badfy - (0 — 0) fz + b2(0 — O) fy - dfz),
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with b1,b € C, when k + [ is odd. Moreover, if one of the integers k and [
is equal to 0 and the other one is even, we may write

(10.18) h = fy fy(argy + azgz),

with aq,as € C.
According to formulas (10.14), when [ is an odd integer and k = 1, we
know that the section

Do(fz(dfy)") = =8y fz9v +dfy - dfy
of Ft belongs to DOC’;’O(T@)‘S" and is a highest weight vector of C,‘Y’O(Fc)e";
on the other hand, when k£ is an odd integer and [ = 1, the section
Do(fy(dfz)") = =8f5 fz9z + dfy - dfz

of F belongs to DoCS5°(Tc)®¥ and is a highest weight vector of C5°(Fc)®.

According to (10.3), (3.29) and (3.30), the G-module C2°(T¢)V is
given by
CR(TE)™ = Hiy - dHiz + Hiz - dHpy

when k + [ is an even positive integer, and by
C(TE)™ = Hiy - (0 —OHiz + Hiz - (0 — O Hyy

when k + [ is an odd integer. If kK + [ > 1, according to observations
concerning highest weight vectors made in §4, Chapter III, a highest weight
vector 3 of the G-module C5°(7¢)°V can be written in the form

B=arfy dfy +axfy dfy,

with a1,as € C, when k + [ is even, and in the form
B=arfy (0-0)f; +axfy (0 - ) fy,

with a1,a2 € C, when k + [ is odd. Moreover when k + [ > 1, we see that
the section d(ff dfl) of T¢: is a highest weight vector of the G-submodule
dC*(X) of C(T¢).
Let k,1 > 0 be given integers. We consider the real-valued function
Fj; on R defined by
Fi(t) =sin®t-cos't,

for t € R, and we set

AkJ :/ FkJ(t)dt, BkJZ/ Fkyl(Qt) dt.
0 0
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We know that Ay ; = By; > 0 when k and ! are both even, and that Ay,
and By ; vanish when k and [ are both odd. From the relation

Frpi=Fryo1+ Fr 2,
we obtain the formula
(10.19) Apg = Apyon + Arago.

Clearly, we have
Fk’l(’ﬂ'/2 - t) = Fl’k(t),

for t € R; when k + [ is even, the function F}; is m-periodic and so, from
the preceding relation, we deduce the equality

(10.20) Ay = Arg.

We consider the function F, = Fj, , and we write Ay, = A x; when k > 1,
we also consider the real-valued function Fj on R defined by

Fi(t) = (k — 1) cos® 2t — sin® 2t.

Then for t € R, we have

1 2m )
Fi(t) = 2k F.0(2t), Ay = W/ sin® ¢ dt;
0

hence we easily verify that
(10.21) F'(t) = —2sin2t,  F{ =kFy_o- Fy,

for all t € R and k£ > 2, and, using integration by parts, we obtain the
formula

k42
(10.22) Ay = 45— Ak

The relations (10.19) and (10.20) imply that
(10.23) A =2A1 121
According to (10.19) and (10.23), we have

Apyar = Apgop — Apga;
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hence by (10.22), we see that

k+3
10.24 A = —— Aj4o.
(10.24) brik = g Arsa

We easily verify that
Fyo(t) cos® 2t = Fypa i(t) + Frppa(t) — 2Fp 1 (1),

for t € R; then by (10.20) and (10.24), we obtain the formula

™ 4
10.25 Fi(t)cos? 2t dt = —— Aprs.
( ) /O i (t) cos rq ke

The closed geodesics of CP! are described in §4, Chapter III. Let 6;
(resp. 02) be the closed geodesic v, v of CP! corresponding to the pair of
unit vectors u = (1,0) and u’ = (0,1) (resp. v = (0,1) and v = (1,0)).
For 6 € R, let 6% be the closed geodesic 7, . of CP' corresponding to the
pair of unit vectors

W=, u/—i(—l 1);
- \/i 9 ) - \/i I )
when 6 = 7, we write d3 = 6%, For all 0 <t <, by (3.20) and (3.21) we
easily verify that
f1(61(t)) = f1(2(t)) = sint - cost,
<df1,51 (t)> = <df17(§2(t)> = COS 2t,
0—0)f1,61(1)) = —((0 — D) fr,d2(t)) = 1,
(10.26) (( - ).f1,01(t)) = —((0 — 0) f1,02(t))
f1(8%(t)) = 1 (cos2t 4+ isin@ - sin2t),
(dfy,6%(t)) = —sin2t + isin @ - cos 2t,

(0 = 8) f1,0%(t)) = cosb.
In particular, for 0 < t < 7, we have
f1(05(t)) = Scos2t, (dfi,03(t)) = —sin2t, ((0—0)f1,03(t)) = —1.

For 6 € R, we consider the closed geodesics 1y, 12, 13, £¢ and £§ of X
defined by

m(t) = (01(£),01(¢)), m2(t) = (61(2),02(¢)), n3(t) = (d1(t), 03(t)),
() = (6:(1),8°(t),  &(1) = (6°(1)), 81(1)),
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for all 0 < ¢t < 7. If n is one of these closed geodesics of X and w is a
section of SPT™* over X, then we have

1 o . .
(10.27) / w= gz [ W), .
Let k,1 > 0 be given integers. We define a function 1; on R? by

1
Y (t,0) = ST cos @ - Fy,1(2t) - (cos 2t 4 isin @ - sin 2t)!,

for t,0 € R; we see that

0 il
(10.28) VhL(1,0) = Sem et Fiaa(20),

for t € R.
We now consider the sections

=y fzdfy - (0=0)fz,  ho=fyfz (0= 0)fy - dfz
of Ft. According to the formulas (10.26), we see that

ha(n3(t), 7s(t)) = —2,%% Frup(2t),  ha(€0(8),60(1)) = ¢a(t,0),

ha(13(t),713(t)) = ijl r Ferna(2t),  ha(E5(),65(t)) = vuk(t,0),

forall 0 <t < wand § € R. For j = 1,2, we consider the real-valued
function P; on R defined by

Pj(e)—/ge hy.

According to the relations (10.27) and (10.28), we see that

il ) ik

(10.29) P{(0) = ggy Brerss  P3(0) = 5y Briage

LEMMA 10.24. Let k,l > 1 be given integers. Suppose that k + [ is

odd.
(i) Ifl is even, then the section

Frzdfy - (0-0)fz

of Fr does not satisfy the zero-energy condition.
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(ii) If k is even, then the section
¥ fz 0= 0)fv - dfz

of Fr does not satisfy the zero-energy condition.

PROOF: If the integer I (resp. k) is even and positive, according to the
equalities (10.29) and the properties of the coefficients B, s given above, we
see that P/(0) (resp. P3(0)) is non-zero; therefore there exists an element
01 € R (resp. 03 € R) such that the integral P;(6;1) (resp. Py(62)) does not
vanish.

LEMMA 10.25. Let k,l be given integers and by, by be given complex
numbers. Suppose that k + [ is odd and that the section

h=bify [y dfy - (0= 0)fz + b2 f5 f7 (0 =) fy - dfz
of Fg¢ satisfies the zero-energy condition. Then the coefficient by vanishes
when k is even, and the coefficient by vanishes when k is odd.

PROOF: According to the formulas (10.26), we see that

. . 1
h(ns(t),13(t)) = ORI (b1 Fpa41 + baFiq1,) (2t),

for all 0 < ¢ < 7. Thus by (10.27), we have

1
: h= v (01Bk,1+1 + b2Bi11).
3

The desired conclusion is a direct consequence of this equality and the
properties of the coefficients B, ; given above.

From Lemmas 10.24 and 10.25, we immediately deduce the following
result:

LeEmMA 10.26. Let k,l > 2 be given integers and by, by be given com-
plex numbers. Suppose that k + [ is odd and that the section

h=bifffydfy - (0—0)fz +baff fy (0 —0)fy - dfz

of F¢ satisfies the zero-energy condition. Then we have by = bs = 0 and
the section h vanishes.

We consider the sections

hy = fEfydfy -dfz,  ha=fEfo (0—0)fy - (0—0)fz
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of Fr. According to the formulas (10.26), we see that

ha(in (), 1 () = ha(n2(t),12(t)) = 2F1(t) - cos® 2t,

(10.30)
ha(iu (), 11 () = —ha(n2(t), m2(t)) = 2Fpqa(t),

forall0 <t <.

LEMMA 10.27. Let k,l > 1 be given integers and a1, as, b1, by be given
complex numbers. Suppose that k + [ is even and that the section

h= 5 o (fy fz(a1gy + azgz) + bidfy - df 7 +b2(9 — 0) fy - (0 — 0) fz)

of Fg satisfies the zero-energy condition. Then the coefficient by vanishes,
and the relation

(10.31) (k+1—1)(a; +az) +8b =0
holds.

PROOF: According to the formulas (10.26) and (10.30), we see that

h(i (), 71(t)) = (a1 + a) Frpa(t) + 2(by cos® 2t + ba) Fiy1-2(t),
h(12(2),72(t)) = (a1 + a2) Fyi(t) + 2(by cos® 2t — bo) Fipy—(2),

for all 0 < ¢t < w. Hence by means of the equalities (10.22), (10.25)
and (10.27), we have

1 8
/mh 5 ((Ch + az) + k+l_1(b1+(/f+l)bz)) K+

1 8
= _ — - Ak
/mh 5 ((al + az) + T (b1 (k’+l)b2)) ket

Since k + [ is even, we know that Apy; > 0; as h satisfies the zero-energy
condition, we therefore obtain the relation

(k+1—1)(a1 4+ a2) +8(b1 +e(k +1)b2) =0,

for e =1, —1. This implies the desired assertion.
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LEMMA 10.28. Let k,I > 1 be given integers and ai,as be given
complex numbers. Suppose that k + [ is odd and that the section

(10.32) B=aify (0—0)fy +asfy (0—0)fy

of T¢: satisfies the zero-energy condition. Then the section [3 vanishes.

PROOF: According to the formulas (10.26), we see that

B(m(t) = (lay + kaz) Fry—1(t),  B(2(t)) = (kag — lay)Fryi-1(t),
for all 0 <t < 7. Thus by (10.27), we have

1 1
= — (la1 + kas)Apyi_1, = — (kas — lay)Agi—1.
mﬂ \/5( 1 2)Akyi—1 7725 \/5( 2 1)Akti-1

Since k + [ is odd, we know that Apy;—1 > 0; the desired conclusion is a
consequence of the preceding equalities.

We consider the group of translations A of R? generated by the vectors
(m,0) and (0,7) and the torus W = R?/A of dimension 2, which is the
quotient of R? by the group A. We endow W with the flat metric ¢’
induced by the standard Euclidean metric of R?. Let @ : RZ — W be the
natural projection. Let (0,¢) be the standard coordinate system of R2.
Clearly, we have

w'g =df @ df + dp @ dp.

If A’ is a symmetric 2-form on W, then according to formula (3.1), we know
that

o 8 o 0
* ! = =
“ (Dg’h)<aa’ago’ae’a<p>
(0 .. [d 8 2 /9 d
(10.33) _2{892(wm<&p’&p)+8</>2<wm<80’30>

2 ., (9 0
Qaeaso(“)<ae’8w)}'

st [0,7] — CP, 62 :[0,7] — CP*

Let

be closed geodesics of CP! parametrized by their arc-length. Let oy and
ag be the m-periodic real-valued functions on R determined by

aj(t) = fu(& (1)),
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for j = 1,2. The imbedding
L W—=X
sending the point @ (6, p) of W into (§1(6),5%(p)), with 0 < 0, < 7, is
totally geodesic.

Let k,1 > 1 be given integers and a1, as, b be given complex numbers.
We consider the section

(10.34) h= 5 (fy fz(angy + azgz) + bdfy - dfz)

of Fr and the section

(10.35) 8= afy dfy + asf7 dfy
of T, Then we have

k—1 l 1da1 dOé2

w**h = afab(a; df @ db + az de @ dp) +bat o a0 dp de - de.

According to formula (10.33), we see that the equality Dy c*h = 0 is equiv-
alent to the relation

dzo/ d?ak 2b d2ak  d2al
k aoy 1 2
(10.36) araf el +ay —— 52 2T e iz

Also we have

dof doj 4o dp.

(10.37) w ' d* B = (a1 — az) — a0 dy

We consider the functions ®;; on R? and ¥; on R defined by

Dp1(0, ) = lay sin® 20 - Fy(g) + kag sin® 2¢ - Fi,(0) — 8bF(0) - Fi(¢),
V() = (lay + 8b) Fl(sﬂ) — ag sin® 2,

for 6, € R. Then we have

®;,,(0,0

(I)kl(ﬂ'/4 0

) = =8(k = 1)(I - 1)b,
) =
10.38
(10.38) ) =
)=

(I —1)(lay + 8b) = ¥(0),
(k — 1) (kas + 8b),
(la1 +as + Sb)

(I)k 1(0 7T/4
Wy (/4
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We now suppose that the geodesics ' and 62 are equal to the geodesic
01 defined above; then we have

a1(t) = aa(t) = Fi(2),

for all t € R. In this case, by (10.21) the equality Dy t*h = 0 or the
relation (10.36) is equivalent to the equality

Fk*?(e) : FVl*Q(SD) . (bk,l(ea QD) = 07
for all 0, p € R, when k,l > 2, and to the equality
sin260 - Fj_o(p) - ¥;(¢) =0,

for all 8, € R, when k£ =1 and [ > 2. Thus when k,l > 2, the equality
Dg1*h = 0 is equivalent to the vanishing of the function ®y ;; furthermore
when k = 1 and ! > 2, the equality Dy/c*h = 0 is equivalent to the vanishing
of the function ¥;.

Now suppose that the symmetric 2-form h on X given by (10.34) satis-
fies the zero-energy condition. According to Proposition 3.6, we know that
Dgv*h = 0. We first suppose that k,l > 2; then the function ®;,; vanishes.
From the relations (10.38), we deduce the vanishing of the coefficients ay,
as and b. Therefore the section h vanishes in this case. Next, we suppose
that k = 1 and [ > 2; then the function ¥; vanishes. The relations (10.38)
give us the equalities la; + 80 = 0 and as = 0. By a similar reasoning,
when [ = 1 and k£ > 2, we obtain the equalities kas + 8b = 0 and a; = 0.

On the other hand, when k =1 = 1, by (10.21) the relation (10.36) is
easily seen to be equivalent to the equality

(a1 + az + 8b) sin26 - sin2¢ = 0,

for all 8, p € R. Our hypothesis on h therefore implies that this last identity
holds; thus we obtain the relation a; + as + 8b = 0, which is also given by
Lemma 10.27.

The previous discussion, together with the formulas (10.14), gives us
the following result:

LEMMA 10.29. Let k,I > 1 be given integers and ai,as,b be given
complex numbers. Suppose that the section h of F¢ given by (10.34) sat-
isfies the zero-energy condition.

(i) If k,1 > 2, then the section h vanishes.

(ii) If k = 1 and | > 2, then we have a; = 0 and lay = —8b, and the

section h is given by

(10.39) h =~ Do(7L(dfv ).
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(i) Ifl =1 and k > 2, then we have a1 = 0 and kaz = —8b, and the
section h is given by

(10.40) h= —% Do(fy(df2)").

(iv) If k =1 =1, then we have a; + ag + 8b = 0 and the section h is
given by

(10.41) h= =3 (@ Dolf2(dfy ) + a2 Dol (df)1).

LeEmMA 10.30. Let k,1 > 1 be given integers and a1, as be given com-
plex numbers. Suppose that the section 3 of T given by (10.35) satisfies
the zero-energy condition. Then we have a; = ao and the section (3 is given

by B = ard(f}f}).

PrOOF: We consider the torus W defined above and the imbedding
t: W — X corresponding to the geodesics 6! = §; and §% = §;. According
to Proposition 3.6, we know that dc*3 = 0. The equality (10.37) tells us
that
El(ar — a2)Fr—1(0) - F1_1(p) - cos 20 - cos 2¢ = 0,

for all 8, € R. This implies the desired relation a; = as.
LeEmMA 10.31. Let k > 0 be a given even integer and aj,as be given

complex numbers. Suppose that the section

h= f¥(a1gy + az9z)

of F¢ satisfies the zero-energy condition. Then we have a; = ay = 0 and
the section h vanishes.

PROOF: Let z be a given point of Z and let y be a point of Y such
that fy(y) # 0. We consider the closed geodesics i’ and n” of X defined
by

n'(t) = (01(t),2),  1"(t) = (y,01(1)),

for 0 <t < m. Then we see that

R (8),7/ (8) = ar Fe(t),  h(i"(£),9" (1) = ax f¥(y),

for 0 <t < m; it follows that

/hZMAm !/h:W@ﬁ@y
n/ 77//



354 X. PRODUCTS OF SYMMETRIC SPACES

Since Ay is positive and fy (y) is non-zero, the vanishing of these integrals
implies that a; = as = 0.

Let £ > 0 be an even integer; the proof of the preceding lemma also
shows that, if the section

f5(a1gy + a2gz)

of Fr satisfies the zero-energy condition, then it vanishes.

ProposiTioN 10.32. Let k,I > 1 be given odd integers and let v be
the element (yx,v;) of T'. If one of the integers k,l is equal to 1, then we
have the inclusion

227(: n C,C;O(Fc)ev - DOC$° (T(C)ev'

PROOF: Above we provided an explicit highest weight vector of the
G-submodule DoCS°(Tc)®Y N C°(Fe)® of Z3c N C°(Fe)®. Now let h
be an arbitrary highest weight vector of the G-module 25 ¢ N C2°(Fc)®".
According to the description of the highest weight vectors of the G-module
Cj?c(FC)eV given above, by Lemma 10.27 there are coefficients a1, as,b € C
satisfying (10.31), with b; = b, such that the equality (10.34) holds. When
k=1and!>3 (resp. I =1 and k > 3), Lemma 10.29,(ii) (resp. Lemma
10.29,(iii)) tells us that the relation (10.39) (resp. the relation (10.40))
holds, and so h belongs to DoC3°(Tc)®. When k = [ = 1, the rela-
tion (10.31) says that aq + a2 + 8b = 0; Lemma 10.29,(iv) tells us that the
relation (10.41) holds, and so h belongs to DoC5°(T¢)®". These observa-
tions imply the desired inclusion.

ProposiTioN 10.33. Let k,I > 0 be given integers and let v be the
element (yg,7y) of I'. Suppose that k,l > 2, or that one of the integers
k,l is equal to 0 and that the other one is even. Then the G-module
Zoc N CW"O(FC)Q" vanishes.

PROOF: Suppose that the G-module Z5 cNC3° (Fr)®¥ does not vanish
and let h be a highest weight vector of this module. We now exploit
the description of the highest weight vectors of the G-module C5°(F¢)®”
given above. We first suppose that k,I > 2. When k + [ is even, by
Lemma 10.27 we know that h may be written in the form (10.34), with
ai,as,b € C; then Lemma 10.29 gives us the vanishing of h, which leads
us to a contradiction. When k + [ is odd, the symmetric 2-form h may be
written in the form (10.17), with by,by € C; then Lemma 10.26 gives us
the vanishing of A, which leads us to a contradiction. Finally, assume that
one of the integers k,[ is equal to 0 and that the other one is even. The
symmetric 2-form h may be written in the form (10.18), with a;,as € C;
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then Lemma 10.31, together with the remark following it, implies that h
vanishes; this leads us once again to a contradiction.

Propositions 10.32 and 10.33 and the inclusions (10.16), together with
the results stated above concerning the vanishing of certain G-modules of
the form C5°(Fc)®, with v € I, imply that the inclusion

25 NCF(Fe)® C DO (Te)™

holds for all v € I'. The second equality of (10.12) and Lemma 2.6 then
tell us that
ZocnN Cso(SQTE)CV = DoC*(Tc)™,

for all v € T. According to Proposition 2.30,(ii), with ¥ = {0’} and
€ = +1, we have therefore shown that the equality

Zyc NC®(S?TE)Y = DoC™(Tc)®

holds. Thus we have proved that an even symmetric 2-form on the prod-
uct X = CP' x CP!, which satisfies the zero-energy condition, is a Lie
derivative of the metric. As we have seen above, this result implies both
Theorems 10.22 and 10.20.

ProposiTIiON 10.34. Let k,I > 0 be given integers, with k +1 > 1,
and let v be the element (vj,~y;) of T'.

(i) When k + 1 is odd, the G-module Z ¢ N C3°(T¢)*" vanishes.

(ii) When k +1 is even, we have the inclusion

21N CE(TE)® C dCE(X).

PROOF: First, assume that k + [ is odd. Suppose that the G-module
Z1,c N C(TE)® does not vanish and let 3 be a highest weight vector of
this module. According to the description of the highest weight vectors
of the G-module C3°(T¢%)®Y given above, there are coefficients ai,az € C
such that the equality (10.32) holds. Then Lemma 10.28 gives us the
vanishing of (3, which leads us to a contradiction. Thus we have proved
assertion (i). Next, assume that k& + [ is even. Then we know that the
1-form d(f& fL) is a highest weight vector of the G-submodule dCO (X))
of Z1,cNCF(TE)Y. Let 8 be an arbitrary highest weight vector of the
G-module 21 ¢ N C3(T¢)®Y. According to the description of the highest
weight vectors of the G-module C5°(T¢)®" given above, there are coeffi-
cients a1, as € C such that the equality (10.35) holds. Then Lemma 10.30
tells us that 3 is a multiple of the section d(f& f%) of T¢, and so 8 belongs
to dC5°(X)®V. These observations imply assertion (ii).
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Proposition 10.34 and Lemma 2.6, together with the results stated
above concerning the vanishing of certain G-modules of the form C3° (1),
with v € T', imply that the equality

2,0 NCR(TE)™ = dC(X)*

holds for all v € T'. According to Proposition 2.32,(ii), with ¥ = {0’}
and € = +1, we have therefore shown that the equality

Z1cNC®(TE) = dC=(X)*
holds. Thus we have proved that an even 1-form on the product CP! x CP!,

which satisfies the zero-energy condition, is exact. As we have seen above,
this result implies both Theorems 10.23 and 10.21.



REFERENCES

T. BAILEY and M. EASTWOOD, Zero-energy fields on real projective
space, Geom. Dedicata, 67 (1997), 245-258.

L. BERARD-BERGERY, J. P. BOURGUIGNON and J. LAFONTAINE,
Déformations localement trivialement triviales des variétés riemanni-
ennes, Proc. Sympos. Pure Math., Vol. 27, Amer. Math. Soc., Prov-
idence, RI, 1975, 3-32.

M. BERGER and D. EBIN, Some decompositions of the space of
symmetric tensors on a Riemannian manifold, J. Differential Geom.,
3 (1969), 379-392.

M. BERGER, P. GAUDUCHON and E. MAZET, Le spectre d’une
variété riemannienne, Lect. Notes in Math., Vol. 194, Springer-Ver-
lag, Berlin, Heidelberg, New York, 1971.

A. BESSE, Manifolds all of whose geodesics are closed, Ergeb. Math.
Grenzgeb., Bd. 93, Springer-Verlag, Berlin, Heidelberg, New York,
1978.

A. BESSE, Finstein manifolds, Ergeb. Math. Grenzgeb., 3 Folge,
Bd. 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.

R. BRyANT, S. S. CHERN, R. GARDNER, H. GOLDSCHMIDT and
P. GRIFFITHS, Exterior differential systems, Math. Sci. Res. Inst.
Publ., Vol. 18, Springer-Verlag, New York, Berlin, Heidelberg, 1991.

E. CaLaBI, On compact, Riemannian manifolds with constant cur-
vature. I, Proc. Sympos. Pure Math., Vol. 3, Amer Math. Soc., Prov-
idence, RI, 1961, 155-180.

E. CaraBi and E. VESENTINI, On compact, locally symmetric Kah-
ler manifolds, Ann. of Math., 71 (1960), 472-507.

Y. DIENG, Quelques résultats de rigidité infinitésimale pour les quad-
riques complexes, C. R. Acad. Sci. Paris Sér. I Math., 304 (1987),
393-396.

H. DUISTERMAAT and V. GUILLEMIN, The spectrum of positive
elliptic operators and periodic bicharacteristics, Invent. Math., 29
(1975), 39-79.

P. ESTEZET, Tenseurs symétriques a énergie nulle sur les variétes a
courbure constante, These de doctorat de troisieme cycle, Université
de Grenoble I, 1988.



358

[13]

[19]

[20]

REFERENCES

J. GAsQul and H. GOLDSCHMIDT, Déformations infinitésimales des
espaces riemanniens localement symétriques. I, Adv. in Math., 48
(1983), 205-285.

J. GasQul and H. GoLDSCHMIDT, Déformations infinitésimales des
espaces riemanniens localement symétriques. II. La conjecture in-
finitésimale de Blaschke pour les espaces projectifs complexes, Ann.
Inst. Fourier (Grenoble), 34,2 (1984), 191-226.

J. GasqQul and H. GOLDSCHMIDT, Déformations infinitésimales des
structures conformes plates, Progress in Math., Vol. 52, Birkh&user,
Boston, Basel, Stuttgart, 1984.

J. Gasqur and H. GOLDSCHMIDT, Infinitesimal rigidity of S x RP”,
Duke Math. J., 51 (1984), 675-690.

J. GasQul and H. GoLDSCHMIDT, Une caractérisation des formes
exactes de degré 1 sur les espaces projectifs, Comment. Math. Helv.,
60 (1985), 46-53.

J. GasQui and H. GOLDSCHMIDT, Rigidité infinitésimale des espaces
projectifs et des quadriques complexes, J. Reine Angew. Math., 396
(1989), 87-121.

J. GAsQui and H. GOLDSCHMIDT, Infinitesimal rigidity of products
of symmetric spaces, Illlinois J. Math., 33 (1989), 310-332.

J. GasqQul and H. GoLDSCHMIDT, Critere d’exactitude pour les
formes de degré 1 sur les quadriques complexes, Bull. Soc. Math.
France, 117 (1989), 103-119.

J. GasQui and H. GOLDSCHMIDT, On the geometry of the complex
quadric, Hokkaido Math. J., 20 (1991), 279-312.

J. GAsQul and H. GoLDscHMIDT, The infinitesimal rigidity of the
complex quadric of dimension four, Amer. Math. J., 116 (1994),
501-539.

J. GAsQui and H. GoLDscHMIDT, Radon transforms and spectral
rigidity on the complex quadrics and the real Grassmannians of rank
two, J. Reine Angew. Math., 480 (1996), 1-69.

J. GasqQul and H. GOLDSCHMIDT, The infinitesimal spectral rigidity
of the real Grassmannians of rank two, in CR-geometry and overde-
termined systems, edited by T. Akahori et al., Advanced Studies in
Pure Mathematics, Vol. 25, Math. Soc. of Japan, Kinokuniya Co.,
Tokyo, 1997, 122-140.



REFERENCES 359

J. Gasqul and H. GoLpscHMIDT, The Radon transform and spec-
tral rigidity of the Grassmannians, Contemp. Math., 251 (2000),
205-221.

J. GasqQul and H. GoLDSCHMIDT, Injectivité de la transformation
de Radon sur les grassmanniennes, Séminaire de théorie spectrale,
Vol. 18, Université de Grenoble I, 2000, 27-41.

J. GAsQui and H. GOLDSCHMIDT, Some remarks on the infinitesimal
rigidity of the complex quadric, in Lie groups, geometric structures
and differential equations — One hundred years after Sophus Lie —,
edited by T. Morimoto et al., Advanced Studies in Pure Mathematics,
Vol. 37, Math. Soc. of Japan, Tokyo, 2002, 79-97.

H. GoLpscHMIDT, Existence theorems for analytic linear partial dif-
ferential equations, Ann. of Math., 86 (1967), 246-270.

H. GorpscHMIDT, The Radon transform for symmetric forms on
real projective spaces, Contemp. Math., 113 (1990), 81-96.

H. GoLbscHMIDT, On the infinitesimal rigidity of the complex quad-
rics, Contemp. Math., 140 (1992), 49-63.

E. GRINBERG, Spherical harmonics and integral geometry on pro-
jective spaces, Trans. Amer. Math. Soc., 279 (1983), 187—-203.

E. GRINBERG, On images of Radon transforms, Duke. Math. J., 52
(1985), 939-972.

E. GRINBERG, Aspects of flat Radon transforms, Contemp. Math.,
140 (1992), 73-85.

E. GRINBERG, Flat Radon transforms on compact symmetric spaces
with application to isospectral deformations (preprint).

V. GUILLEMIN, On micro-local aspects of analysis on compact sym-
metric spaces, in Seminar on micro-local analysis, by V. Guillemin,
M. Kashiwara and T. Kawai, Ann. of Math. Studies, No. 93, Prince-
ton University Press, University of Tokyo Press, Princeton, NJ, 1979,
79-111.

S. HELGASON, Differential geometry, Lie groups, and symmetric
spaces, Academic Press, Orlando, FL, 1978.

S. HELGASON, Groups and geometric analysis, Academic Press, Or-
lando, FL, 1984.

K. KiyOHARA, Riemannian metrics with periodic geodesic flows on
projective spaces, Japan J. Math. (N.S.), 13, 2 (1987), 209-234.



[53]

[54]

REFERENCES

A. W. KNAPP, Lie groups beyond an introduction, Progress in Math.,
Vol. 140, Birkh&user, Boston, Basel, Berlin, 1996.

S. KoBavasHI and K. NoMi1zU, Foundations of differential geometry,
Vol. 11, Interscience Publishers, New York, 1969.

N. Koiso, Rigidity and stability of Einstein metrics — The case of
compact symmetric spaces, Osaka J. Math., 17 (1980), 51-73.

N. Koiso, Rigidity and infinitesimal deformability of Einstein met-
rics, Osaka J. Math., 19 (1982), 643-668.

A. LICHNEROWICZ, Géométrie des groupes de transformations,
Dunod, Paris, 1958.

A. LICHNEROWICZ, Propagateurs et commutateurs en relativité gé-
nérale, Inst. Hautes Etudes Sci. Publ. Math., 10 (1961), 1-52.

R. MICHEL, Problemes d’analyse géométrique liés a la conjecture de
Blaschke, Bull. Soc. Math. France, 101 (1973), 17-69.

R. MICHEL, (a) Un probleme d’exactitude concernant les tenseurs
symétriques et les géodésiques, C. R. Acad. Sci. Sér. A, 284 (1977),
183-186; (b) Tenseurs symétriques et géodésiques, C. R. Acad. Sci.
Sér. A, 284 (1977), 1065-1068.

R. MICHEL, Sur quelques problemes de géométrie globale des géodé-
siques, Bol. Soc. Bras. Mat., 9 (1978), 19-38.

M. OBATA, Certain conditions for a Riemannian manifold to be iso-
metric with a sphere, J. Math. Soc. Japan, 14 (1962), 333-340.

B. SmyTH, Differential geometry of complex hypersurfaces, Ann. of
Math., 85 (1967), 246—-266.

R. STRICHARTZ, The explicit Fourier decomposition of
L?(SO(n)/SO(n —m)), Canad. J. Math., 27 (1975), 294-310.

S. TanNoO, Eigenvalues of the Laplacian of Riemannian manifolds,
Tohoku Math. J., 25 (1973), 391-403.

L. TELA NLENVO, Formes impaires et un probleme de rigidité in-
finitésimale pour la quadrique complexe de dimension 3, These de
Doctorat, Université de Grenoble I, 1997.

C. TsukAMOTO, Infinitesimal Blaschke conjectures on projective
spaces, Ann. Sci. Ecole Norm. Sup. (4), 14 (1981), 339-356.

C. TSUKAMOTO, Spectra of Laplace-Beltrami operators on
SO(n+2)/S0(2) x SO(n) and Sp(n +1)/Sp(1) x Sp(n), Osaka J.
Math., 18 (1981), 407-426.



REFERENCES 361

[65] V. S. VARADARAJAN, Lie groups, Lie algebras, and their represen-
tations, Graduate Texts in Math., Vol. 102, Springer-Verlag, New
York, Berlin, Heidelberg, 1984.

[56) N. WALLACH, Harmonic analysis on homogeneous spaces, Marcel
Dekker, New York, 1973.

[57] S. T. Yau, Remarks on conformal transformations, J. Differential
Geom., 8 (1973), 369-381.



This page intentionally left blank



INDEX

adjoint representation of a Lie algebra, 58

adjoint space of a symmetric space, 48

Bianchi identity

first, 3, 8

second, 8
Blaschke problem, ix, xiii
branching law, 98, 176, 223, 235

Calabi sequence, 20

Cartan decomposition, 26, 59, 87, 118,
137, 266

Cartan’s lemma, 283

Cartan subalgebra, 57, 59, 67, 98, 109,
170, 271, 341

Casimir element, 58-60, 177, 223

Cayley algebra, 89, 113

Cayley plane, 88, 112-113

infinitesimal rigidity of, 113
Christoffel symbols, 99, 147
closed geodesic, 37

cohomology group, 25—26, 74, 76, 78, 256,

323
complex of differential operators, 12, 20,
23-24, 35, 107, 240
cohomology of, 13, 24-25, 77, 241
complex Grassmannians, 258-323, 339
curvature of complex, 262

exactness of 1-forms on, 285, 313, 323

functions on, 273-277

as a Hermitian symmetric space, 267
infinitesimal rigidity of, 284, 312
Ricci tensor of, 262

rigidity in the sense of Guillemin, 285,

312, 323

of rank two, 282-287

symmetric 2-forms on, 277-282,
293-303, 307

GS ., 269-270, 285, 323

complex manifold, 27-32, 36

complex projective line, 88, 100-104, 270,

341
complex projective space, 27, 87-88,
94-112
closed geodesics of, 95—96

curvature of, 94
functions on, 96-98
infinitesimal rigidity of, 107-112
as a Hermitian symmetric space, 87
local Kéihler geometry of, 99
spectrum of, 97
Ricci tensor of, 94
complex quadric, 27, 134-243, 339-340
closed geodesic of, 199
curvature of, 139
differential forms of degree one on,
237-243,
of dimension four, 157-159, 182,
172-173, 234-237, 283
of dimension three, 223-229
of dimension two, 190-192
functions on, 177-180
as a Hermitian symmetric space, 138
infinitesimal rigidity of, 229, 232-234
local Kahler geometry of, 146-152
Ricci tensor of, 138
spectrum of, 180
symmetric 2-forms on, 180-190,
199-223
complex structure, 27
complex vector field, 27
curvature tensor, 8

differential form of degree one
exactness of, 45, 56-57, 73-74, 82-83,
94, 102, 241-243, 249, 255-256, 285,
313, 333, 339-340
differential form of type (p, q), 29
differential operator, 2
elliptic, 2
formal adjoint, 3
homogeneous, 34-35
divergence operator, 7

Einstein manifold, 15-19, 336-337
Einstein metric, 15, 2627

exterior differential operator, 2, 5, 36, 56
exterior product, 1

flat torus, 36, 39, 48, 75-83, 339-340



364 INDEX

infinitesimal rigidity of, 82
totally geodesic, 37, 39
maximal totally geodesic in a symmet-
ric space, 41, 330
maximal totally geodesic in a complex
quadric, 194-198
Fourier coefficient, 80—81
Fourier series, 80—81
Freudenthal’s formula, 223
Frobenius reciprocity theorem, 33, 63, 65,
124, 175, 176, 274
Fubini-Study metric, 87, 94, 99, 134, 146,
190, 341
Funk’s theorem, 48, 58
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Jacobi field, 92
jet, 1-2
jet bundle, 1-2
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Kéhler manifold, 30-31
Kéahler-Einstein manifold, 31
Killing form of a semi-simple Lie algebra,
26, 59, 119, 137, 267
Killing operator, 5
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conformal, 56
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Lichnerowicz, 13—-14, 20, 26, 53, 60—-63,
92, 223-224
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Levi-Civita connection, 5, 99, 140, 147,
194
Lichnerowicz’s theorem, 17
Lie algebra, 26
complex semi-simple, 58—59
complex simple, 58
reductive, 98, 271
Lie derivative, 3
Lie group
dual of, 33
semi-simple, 26, 41, 59
simple, 27, 63-66
linearization
of the Riemann curvature, 9
of the Ricci tensor, 9, 14
locally symmetric space, 19-25, 335, 337

maximal torus of a Lie group, 98, 170,
271, 332, 341
multiplicity of a module, 33
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infinitesimal rigidity of, 327
rigidity in the sense of Guillemin, 327
GH ., 325, 327-328

quaternionic projective space, 112-113
infinitesimal rigidity of, 113

Radon transform, 41-50
maximal flat, 41-42, 48, 54, 125, 132,
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for symmetric forms, 48-50
X-ray transform, 42, 48, 54, 80, 90, 102
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exactness of 1-forms on, 249, 255-256,
340
infinitesimal rigidity of, 246, 340
of oriented planes, 114
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Ricci tensor of, 115
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real projective plane, 58, 91-94
infinitesimal rigidity of, 91
real projective space, 27, 48, 87, 89-94
functions on, 90
infinitesimal rigidity of, 91-93
spectral rigidity of, x, xiii
spectrum of, 90
real structure
of a complex quadric, 139
of a flat torus in a complex quadric,
197
representation, 32
unitary, 33
Ricci tensor, 8, 115, 138, 262
Riemann curvature tensor, 8
Riemannian manifold, 3

volume of, 3
conformally flat, 336—-337
of constant curvature, 19, 26, 335-337
Riemannian measure, 3
Riemannian metric, 3
C'r-metric, 38, 47, 88
conformally flat, 336
Riemannian symmetric pair, 26, 34, 41,
44, 59, 87, 118, 120, 137, 266, 330
rigidity of a symmetric space
infinitesimal, 40, 45, 54, 56, 58, 6670,
72-73, 83, 330, 338-340
infinitesimal spectral, 41
in the sense of Guillemin, 40, 42, 45,
47, 48, 54, 56, 58, 66-68, 70, 72-73,
330, 333
spectral, 41

scalar curvature, 8
Schur’s lemma, 34
second fundamental form, 10, 138
Segre imbedding, 190
spectrum of a metric, 5
sphere, 16, 26-27, 47-48, 89-90
of dimension two, 26, 58, 65, 100—101
functions on, 89
spectral rigidity of, x
spectrum of, 89
Stiefel manifold, 274-275
surface of constant curvature, 20, 25-26
symbol of a differential operator, 2
symmetric form of type (p, q), 29
symmetric 2-form,
Hermitian, 28
skew-Hermitian, 28
symmetric product, 1
symmetric space, 334
symmetric space of compact type, 25, 26,
41-74
irreducible, 2627, 60-68, 70-74
Hermitian, 31, 59-60, 64-65
products of, 330-334, 338-340
rank of, 48
of rank one, 83, 90
universal covering manifold of, 25, 27
symmetrized covariant derivative, 5, 36
symplectic group, 324
system of roots, 98, 171, 271-272

totally geodesic submanifolds, 6, 10
of the complex quadric, 160-163
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of the complex Grassmannians, weight subspace, 67, 223
308-309 Weyl chamber, 171

of a locally symmetric space, 21-23 Weyl group, 59

of the projective spaces, 88 Weyl tensor, 336

of the quaternionic Grassmannians,
325-326 X-ray transform

of the real Grassmannians, 244-245 for functions, 42

of a symmetric space, 68-74 for symmetric forms, 49

trace See also Radon transform
mappings, 4

of a symmetric 2-form, 4 zero-energy condition, 37-40, 44-46,

70-74, 78, 81
unitary group, 28, 274



