

The Morgan Kaufmann Practical Guides Series
Series Editor: Michael J. Donahoo

Java: Practical Guide for Programmers
Zbigniew M. Sikora

Multicast Sockets: Practical Guide for Programmers
David Makofske and Kevin Almeroth

The Struts Framework: Practical Guide for Java Programmers
Sue Spielman

TCP/IP Sockets in Java: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

TCP/IP Sockets in C: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

JDBC: Practical Guide for Java Programmers
Gregory D. Speegle

For further information on these books and for a list of forthcoming titles, please visit our
Web site at www.mkp.com/practical.

http://www.mkp.com/practical

Java
Practical Guide for Programmers

Zbigniew M. Sikora
Independent Consultant

Senior Editor Rick Adams
Publishing Services Manager Edward Wade
Developmental Editor Karyn Johnson
Cover Design Yvo Riezebos Design
Cover Image Siede Preis/Getty Images
Text Design Side by Side Studios/Mark Ong
Composition and Illustration Windfall Software, using ZzTeX
Copyeditor Robert Fiske
Proofreader Sarah Burgundy
Indexer Steve Rath
Interior Printer The Maple-Vail Book Manufacturing Group
Cover Printer Phoenix Color Corporation

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

Morgan Kaufmann Publishers
An Imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
www.mkp.com

© 2003 by Elsevier Science (USA)
All rights reserved
Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means—electronic, mechanical, photocopying, recording, or
otherwise—without the prior written permission of the publisher.

Library of Congress Control Number: 2002114098
ISBN: 1-55860-909-1

This book is printed on acid-free paper.

http://www.mkp.com/

To my mother, Janina

This page intentionally left blank.

CONTENTS

Introduction 1

Simple Java Application 1
Java Tools 4

javac 4
java 5

Language Features 5

Basic Language Syntax 7

Comments 8
javadoc 8

Statements 8
Variables 9
Constants 9
Data Types 10

Integer Numbers 10
Real Numbers 11
Booleans 12
Characters 12
Strings 13
Arrays 14

Arithmetic Operations 15
Data Type Conversion 18

Flow Control 21

Conditional Statements 21
if Statement 21
if else Statement 22
else if Statement 23
Embedded Conditional Expressions 24

Switch Statement 24
Relational and Logical Operators 26

Bitwise Operators 28
Iteration Statements 28

while Loop 28
do while Loop 29
for Loop 30
break and continue Statements 30

Classes and Objects 33

Class and Object with No Methods 33
Class with Methods 35
Constructors 37

Method Overloading 39
Argument Passing in Java 39
Instance and Static Variables 42
Instance and Static Methods 44
this Keyword 45
StringBu.er 46
Vectors 47
Object Wrappers 47

Inheritance and Access Control 49

Creating Subclasses 49
Casting Objects 52

The Object Class 53
equals Method 53
hashCode Method 55
toString Method 56
instanceof Operator 57

Abstract Classes and Methods 57
Interfaces 59
Packages 60

classpath Option 62
Access Control 63
Inner Classes 67

Exceptions 71

Exception Handling 71
Java Exception Classes 74
Creating Exception Classes 75
Propagation of Exceptions 76
Runtime Exceptions 79
Assertions 80

Input/Output 83

Terminal I/O Example 85
FileReader and FileWriter Streams 86

FileWriter Example 86
The write Method 87
The OutputStreamWriter Stream 88
The PrintWriter Stream 89
FileReader Example 90
Using FileNotFoundException 91

FileInputStream and FileOutputStream 92

Bu.ered Input and Output Streams 93
Bu.eredWriter Example 93
Flushing the Bu.eredWriter Stream 94
Bu.eredReader Example 94

DataInputStream and DataOutputStream 95

DataOutputStream Example 95
DataInputStream Example 97
Wrapping Filter Streams 98

Random Access Files 98
Writing to a Random Access File 99
Reading from a Random Access File 100

Object Serialization 101
Controlling Serialization 104
The jar Tool 105

Developing GUIs 107

Introduction 107
Swing Components 108

Button 108
Combo Box 112
Check Box Button 112
Radio Button 112
Text Field 113
Text Area 113
Label 114
List 114

Component Methods 115
Borders 115
Background and Foreground Colors 116
Fonts 116
Enabling and Disabling Components 116

Swing Containers 117
Top-Level Containers 117
Dialogues 117
Intermediate-Level Containers 119

Layouts 120

FlowLayout 120
BorderLayout 122
GridLayout 123

Specifying Look and Feel 123
Event Handling 124

ActionListener 125
ItemListener 126
ListSelectionListener 127

Adapters in Event Handling 128
Painting with Swing 129
CustomerDetails Example 130
Applets 135

Swing Applets 138
Applet Life Cycle Methods 140
Applet Security 141

Collections 143

Set Interface 143
SortedSet Interface 147
Implementing the Comparable Interface 148

List Interface 151
Map Interface 152

SortedMap Interface 154
The Collections Class 154

Threads 157

The Thread Class 157
Multithreaded Application Example 158
Thread Priorities 160
The Runnable Interface 160

http://netlibrary.com/nlReader/nlReader.dll?BookID=81838&FileName=PAGE_143.html#PAGE_143
http://netlibrary.com/nlReader/nlReader.dll?BookID=81838&FileName=PAGE_157.html#PAGE_157

Finite Applet Thread Example 161
Infinite Applet Thread Example 163

Synchronizing Threads 164
Thread States 166

Appendix A Operator Precedence 167

Appendix B Swing Events 169

Index 173

http://netlibrary.com/nlReader/nlReader.dll?BookID=81838&FileName=PAGE_169.html#PAGE_169
http://netlibrary.com/nlReader/nlReader.dll?BookID=81838&FileName=PAGE_173.html#PAGE_173

Preface
The purpose of this book is to help you quickly learn the essentials of the Java language.
After its release in 1995, Java was initially used to execute programs from a Web page by
means of applets. However, Java is also a general-purpose, object-oriented programming
language. Java is used for developing applications as diverse as statistical calculations,
graphics, and accessing databases in a multitiered environment. In contrast to other
languages, Java has from the start supplied a large number of libraries. The latest release of
Java 2 Standard Edition version 1.4, or J2SE 1.4, in February 2002 contains over 2000
classes. All this means that Java is huge, and possible applications of it are very diverse.
Furthermore, many Java books tend to be huge, and though fine as reference material, do
not serve the newcomer to Java desiring a concise introduction. This book focuses on the
core language features only, and with the exception of Swing, does not cover any of the
application libraries.

This book is aimed at students and professional programmers who have some knowledge of
programming and are switching to Java. Experience of an objected-oriented or procedural
language such as C++, Smalltalk, C, or Pascal is assumed. The book will be suitable for
students in upper-division undergraduate or graduate Java conversion courses. It is not
aimed at students learning to program. Professional programmers switching to Java will
find a rapid introduction to the core language. This will give them the necessary Java
background for tackling more specialist material such as J2EE. For example, students and
enterprise programmers will find this book provides the Java needed for Gregory Speegle's
JDBC book in this series. This book covers only basic features, and topics such as
networking, RMI, and JavaBeans have not been included.

Recognizing that a programming language is best learned through example, we provide
numerous program examples with line-by-line explanations. To maintain the book's
conciseness and clarity, the program examples are not production-quality code. For
example, exception handling is omitted from most of the examples, except, of course, in the
chapter on exception

handling. This concise, essentials-only approach is in line with the Practical Guide series
overall philosophy. The book is based on J2SE 1.4, but anyone using version 1.2 or 1.3
should have no difficulties since any 1.4 or 1.3 features have been explicitly highlighted in
the text.

Chapter 1 dives straight in with a simple example of a Java program. This is to give you an
early feel for the language and show where we are heading. Chapters 2 and 3 cover much of
the basic syntax of Java, including sequencing, branching, and looping, but leaves
discussion of object-oriented topics for later. Those of you with a background in C or C++
will be able to get quickly through these chapters. Chapters 4 and 5 cover the object-
oriented features of the language. Chapters 6 and 7 cover the core features of exception
handling and input/output. To this point, the chapters should be read in order. The last three
chapters may be regarded as optional by some instructors. Chapter 8 covers the Swing
graphical user interface, which is the one application area covered in the book. Developing
GUIs is more fun, and readers coming from an environment such as C will appreciate what
is included for free with Java. Chapter 9 discusses collections. Finally, Chapter 10 covers
the more advanced topic of threads. This chapter uses applets for some of its examples, so
you should familiarize yourselves with the applet material in Chapter 8 before attempting
threads.

Source code, exercises, and related material can be found at the book's accompanying Web
site, www.mkp.com/practical/java.

Acknowledgments
First I would like to thank the technical editor of the Practical Guide series, Dr. Jeff
Donahoo of Baylor University, for his advice and numerous suggestions at all stages of the
book's development. This is really appreciated. I would like to thank the reviewers. These
include Carl Burnham; John Raley, Moonlight Systems; Lynn R. Ziegler, Saint John's
University; An Lam, 3PARdata and U.C. Santa Cruz; Bill Jackson, Ensemble Studios; Dr.
Lawrence (Pete) Petersen, Texas A&M University; Jonathan L. Brisbin; Christopher
Marshall, JP Morgan; William Cox, Cox Consulting; Simon P. Chappell; Ryan Witcher,
Modulant Solutions. All the reviewers provided considerable feedback and this has
influenced the final version of the book. I would also like to thank the staff at Morgan
Kaufmann, especially Karyn Johnson for her professionalism and, for giving me the
opportunity to publish the book, Edward Wade, Cheri Palmer, and the rest of the
production team.

http://www.mkp.com/practical/java

Introduction 1

Simple Java Application 1
Java Tools 4

javac 4
java 5

Language Features 5

Basic Language Syntax 7

Comments 8
javadoc 8

Statements 8
Variables 9
Constants 9
Data Types 10

Integer Numbers 10
Real Numbers 11
Booleans 12
Characters 12
Strings 13
Arrays 14

Arithmetic Operations 15
Data Type Conversion 18

Flow Control 21

Conditional Statements 21
if Statement 21
if else Statement 22
else if Statement 23
Embedded Conditional Expressions 24
Switch Statement 24

Relational and Logical Operators 26
Bitwise Operators 28

Iteration Statements 28
while Loop 28
do while Loop 29
for Loop 30
break and continue Statements 30

Classes and Objects 33

Class and Object with No Methods 33
Class with Methods 35
Constructors 37

Method Overloading 39
Argument Passing in Java 39
Instance and Static Variables 42
Instance and Static Methods 44
this Keyword 45
StringBu.er 46
Vectors 47
Object Wrappers 47

Inheritance and Access Control 49

Creating Subclasses 49
Casting Objects 52

The Object Class 53
equals Method 54
hashCode Method 55
toString Method 56
instanceof Operator 57

Abstract Classes and Methods 58
Interfaces 59
Packages 60

classpath Option 62
Access Control 63
Inner Classes 67

Exceptions 71

Exception Handling 71
Java Exception Classes 74
Creating Exception Classes 75
Propagation of Exceptions 76
Runtime Exceptions 79
Assertions 80

Input/Output 83

Terminal I/O Example 85
FileReader and FileWriter Streams 86

FileWriter Example 86
The write Method 87
The OutputStreamWriter Stream 88
The PrintWriter Stream 89
FileReader Example 90
Using FileNotFoundException 91

FileInputStream and FileOutputStream 92

Bu.ered Input and Output Streams 93
Bu.eredWriter Example 93
Flushing the Bu.eredWriter Stream 94
Bu.eredReader Example 94

DataInputStream and DataOutputStream 95
DataOutputStream Example 95
DataInputStream Example 97
Wrapping Filter Streams 98

Random Access Files 98

Writing to a Random Access File 99
Reading from a Random Access File 100

Object Serialization 101
Controlling Serialization 104
The jar Tool 105

Developing GUIs 107

Introduction 107
Swing Components 108

Button 108
Combo Box 112
Check Box Button 112
Radio Button 112
Text Field 113
Text Area 113
Label 114
List 114

Component Methods 115
Borders 115
Background and Foreground Colors 116
Fonts 116
Enabling and Disabling Components 116

Swing Containers 117
Top-Level Containers 117
Dialogues 117
Intermediate-Level Containers 119

Layouts 120
FlowLayout 120
BorderLayout 122
GridLayout 123

Specifying Look and Feel 123

Event Handling 124
ActionListener 125
ItemListener 126
ListSelectionListener 127

Adapters in Event Handling 128
Painting with Swing 129
CustomerDetails Example 130
Applets 135

Swing Applets 138
Applet Life Cycle Methods 140
Applet Security 141

Collections 143

Set Interface 143
SortedSet Interface 147
Implementing the Comparable Interface 148

List Interface 151
Map Interface 152

SortedMap Interface 154
The Collections Class 154

Threads 157

The Thread Class 157
Multithreaded Application Example 158
Thread Priorities 160
The Runnable Interface 160

Finite Applet Thread Example 161
Infinite Applet Thread Example 163

Synchronizing Threads 164
Thread States 166

Appendix A Operator Precedence 167

Appendix B Swing Events 169

Index 173

chapter 1
Introduction
The Java language was released in 1995 at the time of explosive growth in the Internet. The
initial language release included the HotJava Web browser written in Java itself. This made
it possible for the browser to execute programs from a Web page by means of applets.
Shortly after, Netscape and Microsoft enabled their browsers to execute Java applets.

However, Java is also a fully computational object-oriented language. As such, it is a
suitable vehicle for conventional standalone programs or applications, which is the main
use of the language today.

Java is also a multithreaded language, and this feature makes it a highly scaleable language
for programs that execute on a Web server. Consequently, in recent years, there has been
increasing use of Java for server side, or servlet, programming.

1.1 Simple Java Application

To give you an early feel for the language, the Multiply.java example shows a Java
application that outputs the product of two integers supplied as parameters.

Multiply.java

 1 public class Multiply {
 2
 3 public static void main(String[] args) {
 4 String resultString;
 5 int arg1;
 6 int arg2;
 7 int result;
 8
 9 arg1 = Integer.parseInt(args[0]);
10 arg2 = Integer.parseInt(args[1]);
11 result = arg1 * arg2;

12 resultString = Integer.toString(result);
13 System.out.println(''The product of " + args[0] +
14 " and " + args[1] + " is " + resultString);
15 }
16 }

Multiply.Java

The program consists of a class, Multiply, in a source file, Multiply.java. We will
cover classes in detail in Chapter 4. At this stage, it is sufficient to note that every program
must contain one public class. public is an access modifier, which specifies that other
programs can access our class. We discuss access modifiers in Chapter 5. We can
determine the class from the declaration (line 1)

public class Multiply {

The source file name must be the same as the class name. The source file suffix must be
.java. If these two conditions are not met, the program will not compile. The program is
compiled using the javac compiler, for example,

> javac Multiply.java

where > is the command prompt. We use > to indicate a command prompt in general. This
could be a > on Windows or a % on Unix. If compilation is successful, the compiler will
produce a bytecode file Multiply.class. All compiled bytecode files have the suffix
.class.

With many programming languages, compilation produces machine code. Each platform
will have its own machine-specific code, so a program compiled on one platform will need
to be recompiled on another before it can be run. Java bytecode is an intermediate code
between source code and machine code. The bytecode can be run by any Java interpreter
that conforms to the Java Virtual Machine (JVM) specification. A JVM can be a standalone
interpreter or embedded in a browser or electronic device. So having produced our
bytecode on one platform, we can run it on any other platform that supports a JVM.

To run the application, we can use the java interpreter as follows:

> java Multiply 7 12
The product of 7 and 12 is 84

Note that we do not add the .class suffix when specifying the program name. Following the
program name are optional parameters separated by one or more spaces.

At this stage, we do not expect you to have a detailed understanding of the code. The
starting brace, {, in line 1 denotes that following statements are part of the Multiply class.
Line 16 consists of a closing brace, }, which denotes the end of the class. We use these
braces not just to delimit classes but also, for example, to delimit blocks of code that follow
an if or else statement.

Because the program is a standalone application, it must contain the declaration (line 3)

public static void main(String[] args) {

We will describe the keywords public, static, and void in later chapters. At this point,
you should just note that they must precede main in the declaration line. A method is
roughly equivalent to a procedure or function in a nonobject-oriented language. Every Java
application must have a main method.

Note that Java is case sensitive; using PUBLIC instead of public, for example, will be
rejected by the compiler.

The main method has as a parameter an array of String objects named args. The
declarations (lines 4–7)

String resultString;
int arg1;
int arg2;
int result;

declare variables of type String and int. Note that a semicolon is used as a terminator,
so statements can span more than one line.

The statement in line 9 takes the first supplied parameter, the first element in the args
array identified by args[0], and converts it to the int type variable arg1. This is done
using the parseInt method of the supplied Java language class Integer. The syntax for
calling static methods, such as parseInt, is classname.methodname, or
Integer.parseInt in our case. We will learn about static methods in Chapter 4.
Line 11 multiplies the two input parameters, and line 12 converts the result to a String
variable, resultString, using the supplied Integer.toString method.

In lines 13–14, System.out.println prints a line to the standard output stream, then
terminates the line. System.out is an object in the java.lang.System class, which is
of type java.io.PrintStream. In turn, println is a method within the
PrintStream class, which takes a String as a parameter. This format of
objectname.methodname(parameters) for invoking a method, which is not
static, is standard Java syntax.

There are two main types of development environments in Java. The first is the Software
Development Kit (SDK), which can be downloaded for free from Sun's Web site,
java.sun.com/j2se/1.4/download.html. This site contains installation instructions for Windows,
Solaris, and Linux environments, as well as a link to start the download itself. The SDK
contains the javac compiler and java interpreter, various Java libraries, and tools. Once
Java has been installed, programs are typically developed using a text editor and compiled
and run from the command line as we have shown. Sun also provides a portal, java.sun.com,
for Java in general. In particular, there is a link to the Java 2 Platform API (application
programming interface) Specification. This provides documentation about all the Java-
supplied classes and methods. The API documentation can be viewed online or downloaded.

http://www.java.sun.com/j2se/1.4/download.html
http://www.java.sun.com/

The second kind of development environment is an IDE (integrated development
environment) available from many sources such as Borland's JBuilder, Oracle's JDeveloper,
and Sun's Forte. Some of these are free for personal use in a nonproduction environment.
These IDEs are window-driven environments and have all the SDK features as well as
features such as default code generation, advanced debugging, and code coaches.
Compiling or running a Java program can be done by clicking on a menu or tool bar in the
IDE. A typical development feature is to bring up a list of methods in a popup window
once a class or object has

been typed, thereby doing away with the need to memorize the large number of methods
provided by the Java libraries. Although IDEs are fine tools for experienced Java
developers, they have a large number of features that have to be assimilated. If you are new
to both Java and IDEs, you will find yourself at first spending as much time learning about
the IDE as Java itself.

In the remainder of this book, we will use the convention of

> javac MyClass.java
> java MyClass

to indicate compiling or running Java programs, whether from the command line SDK or a
Windows-driven IDE. To distinguish user input from any output, we will use the
convention of highlighting user input in bold.

1.2 Java Tools

The Java SDK contains a number of tools that are executed from the command line. If an
IDE is being used, then many of these tools will be incorporated within the IDE. We have
already encountered javac and java; we will describe these in a little more detail here.
Other tools such as javadoc and jar will be covered later in the book.

1.2.1 javac

javac compiles Java source code and produces bytecode class files. The source code file
must have a .java suffix; the resulting class files have a .class suffix. The file must
contain one public class with the class name the same as the file name. Other nonpublic
classes can be included in the same file. We can include more than one source file in a
single command, for example

javac Class1.java Class2.java

We can also group several source files in a single command file. For example, Myfiles
could contain

Class1.java
Class2.java
Class3.java

These can all be compiled with the command

javac @Myfiles

A program will usually have references to other classes. javac will search for a
corresponding class file. If a class file is found, but no corresponding source file, javac
will use the class file. If a corresponding source file is found, but no class file, javac will
compile the source file and use the resulting class file. If both source file and class file are
found, the class file is used unless the source file is more recent than the class file, in which
case the source file is recompiled and the resulting class file is used.

javac has a number of associated options: we will cover just a few.

-d destination

This sets the destination directory for the resulting class file. The default is to place the
class file in the same directory as the source file.

-verbose

This outputs details about each class loaded and each source file compiled.

javac, as well as java, also have a classpath option. We will discuss this option in
Chapter 5 after we have covered packages.

1.2.2 java

The java interpreter runs Java applications. It loads the application's class file and invokes
the specified class's main method, which must be public, void, and static. There
are a number of options for java, including the verbose option that we have seen for the
javac compiler. The format of the command is

java [options] classname [program parameters]

Note you do not include the .class suffix in the class name.

1.3 Language Features

Java's portability is largely achieved through the Java Virtual Machine concept. Instead of
compiling a program to a machine-specific code, a Java program is compiled into a
machine-independent bytecode. The bytecode, in turn, is interpreted by a machine-specific
Java Virtual Machine (JVM). A JVM is small, so it can easily be incorporated into Web
browsers. JVMs are available in many other environments: a standalone JVM can be
downloaded from Sun's Web site; JVMs can be included in personal digital assistants
(PDAs), or incorporated into relational database engines such as Oracle, or integrated
development environments (IDEs) such as Borland's JBuilder.

This approach means that Java program execution will be slower than a C program, for
example. Java, however, is significantly faster than other interpreted languages such as
Smalltalk. There can be further performance improvements with the use of just-in-time (JIT)
compilers that compile the bytecode into machine-specific code on demand.

Portability is also achieved by having a machine-independent size for all primitive data
types such as integer and floating point numbers. This contrasts with C, where maximum
sizes are machine dependent.

This has led to Sun describing Java as ''write once, run everywhere." However, this claim is
compromised to an extent. For example, the latest versions of most Web browsers support
only Java version 1.1. Java version 1.2 applets, which may include features such as Swing,
cannot be executed by most browsers. You can get around this by installing a Java 1.2
plugin to run with the browser, but this does qualify the "write once, run everywhere" claim.

Java is an object-oriented language. Object-oriented programming encourages good
software engineering practices such as information hiding and code reuse. Object
technology has a long history. The first fully object-oriented language, Smalltalk, was
developed in 1972 although object features were present in the Simula language before then.
The most widely used object-oriented language prior to Java was C++. This was developed
in 1985 by adding object features to the then widely used C language.

In contrast to C and C++, explicit memory allocation and deallocation is not required in
Java. The Java runtime system uses automatic garbage collection to reclaim memory of
objects no longer in use. There is no explicit use of pointers in Java programs. Pointers can
corrupt areas of memory, producing side effects and consequently making debugging a
difficult process. Pointers can even cause the underlying operating system to crash.
However, Java shares much of the syntax for data types and control structures with C.

Java differs from pure object languages such as Smalltalk in that primitive data types are
not treated as objects in Java for efficiency purposes. Java does provide object wrapper
classes for primitive data types for situations where their use is required. Java, through the
bytecode compilation process, is faster than the purely interpreted Smalltalk language.

Java is a multithreaded language. Threads are concurrent executions of code under control
of a single parent program. Threads can be explicitly created by application programs.
Multithreading leads to improved performance and scalability. Java is also a dynamic
language: classes are loaded only as they are needed.

Java provides a rich set of classes, or application programming interfaces (APIs). Some of
these classes such as input/output or the windowing classes of the Abstract Windows
Toolkit (AWT) are part of the language, and therefore are included with Java language
releases. Other APIs, such as the Swing graphical user interface, Java Database
Connectivity (JDBC), and servlets are considered separate from the language, and so can be
released independently if required.

chapter 2
Basic Language Syntax
This chapter starts looking at the basic syntax or grammar of the Java language. We use an
example program to illustrate language basics such as variables, Java keywords, data types,
and arithmetic operations. We suspend discussion of objects until Chapter 4 although we do
cover strings and arrays in this chapter. We continue with the basic syntax in Chapter 3,
where we discuss topics related to program flow control.

Throughout this chapter, we use an example application, Circle, which calculates the
area of a circle. The radius is input as a parameter to the program.

Circle

 1 /*
 2 This application reads in a radius of a circle
 3 and outputs its area.
 4 */
 5
 6 public class Circle {
 7 static final double PI = 3.14159;
 8
 9 public static void main(String[] args) {
10 int radius;
11 double area;
12
13 radius = Integer.parseInt(args[0]);
14 // area formula
15 area = PI * (radius * radius);
16 System.out.println(''A circle of radius " + args[0]

17 + '' has area of " + area);
18 }
19 }

Circle

An example of the output of Circle is as follows:

> java Circle 5
A circle of radius 5 has area of 78.53975

2.1 Comments

Comments are included in a program's code to improve readability, and are ignored by the
Java compiler. Comments that span one or more lines are enclosed by /* and */. In the
Circle program, lines 1–4 is an example of a multiline comment.

A single line comment is prefixed by //. A single line comment may be appended to an
existing statement. An example of a single line comment in line 14 is

// area formula.

2.1.1 javadoc

The javadoc tool, available as part of the Java SDK, parses documentation comments
within a Java source file and produces an HTML document. Within the source file, such
comments are included in a block beginning with /** and ending with */. Comment text
is written in HTML format and will include tags, prefixed with a @, which can be used, for
example, for headings such as author name and program version number, and for creating
hypertext links. Document blocks are placed immediately before the class, method, or field
they describe.

javadoc can be used for documenting one or more classes, packages, or both packages
and classes. We will learn about packages in Chapter 5. For each class or package,
javadoc will produce an HTML file (of the form class.html or package.html), as
well as a number of supporting files (index.html, for example). The resulting
documentation has the same format as the Java 2 Platform API Specification.

2.2 Statements

A statement is the smallest executable unit in a program, and is terminated by a semicolon.
For example, line 13 reads

radius = Integer.parseInt(args[0]);

One or more statements can be combined to form a block. A block is enclosed by braces {
and }. All the code making up the main method, lines 9–18, is a block. Blocks can be
nested to any depth; in our example, the main block is enclosed by the Circle class block.

2.3 Variables

A variable is used to store data in the computer's memory, which can later be used by the
program. radius and area are examples of variables in the Circle class.

A declaration associates a variable with a type. For example, in line 10,

int radius;

declares an int type variable named radius. Any number of variables can be declared with
a single data type so

int radius, diameter;

is a valid declaration. However, it is good practice to have one declaration per line. This
makes it easier to add comments or to subsequently change a variable's data type. A
variable can be assigned a value in the declaration. For example,

int radius = 5;

declares an integer variable radius and assigns it a value of 5. Of course, an alternative is to
have separate declaration and assignment statements, as follows:

int radius;
... other variable declarations
radius = 5;

A variable is an example of an identifier. An identifier is a named item that could be a
variable, class, object, method—in fact, any Java construct. For example, Circle is a class
identifier. An identifier can consist of an unlimited number of letters, digits, and
underscores, but must start with a letter or underscore. A number of words are reserved by
Java and cannot be used as identifiers; these are shown in Table 2.1.

As well as following the rules about identifiers, variables must also be unique within their
scope. For example, within the scope of the main method of the Circle class, there can
be only one variable named radius. A second declaration of radius, of type float, say,
is illegal and would be rejected by the compiler.

2.4 Constants

In Java, we identify a constant by declaring it as final. Within the main method of the
Circle class, we could have declared the PI constant as

final double PI = 3.14159;

Table 2.1: Java reserved words.

abstract assert* boolean break byte

case catch char class continue

default do double else extends

false final finally float for

goto** if implements import instanceof

int interface long native new

null package private protected public

return short static strictfp super

switch synchronized this throw throws

transient true try void volatile

while
* assert has been introduced in J2SE 1.4.

** goto is a reserved word, but not part of the Java language.

However, PI can then be used only within the main method. If we were to add more
methods to the Circle class, and want PI to be accessible to these methods, we need to
declare PI within the Circle class block but outside the main method block, and prefix it
with the static keyword. We have done this in line 7, as follows:

static final double PI = 3.14159;

A constant declared static is known as a class constant. We discuss the static
concept further in Chapter 4. If PI were to be assigned a value subsequently in the program,
this would be rejected by the compiler.

2.5 Data Types

We have already seen two data types, int and double. In this section, we describe all the
data types available in Java. The integer and real number, boolean and character data types
are all primitive data types. They are not objects mainly for efficiency purposes: this is in
contrast to languages such as Smalltalk, where all data types are objects. Strings, arrays,
and vectors, on the other hand, are objects in the Java language.

2.5.1 Integer Numbers

Integer variables or constants can take on only positive and negative integral values. Four
integer types are available, as shown in Table 2.2.

All the integer types are stored internally as two's complement. A positive number is stored
as its corresponding binary representation. For example, the byte representation of the
number 3 will be 00000011. To store a negative number, all the bits of the corresponding

Table 2.2: Integer types.

Name Size Minimum Value Maximum Value

byte 1 byte (8 bits) –128 127

short 2 bytes (16 bits) –32768 32767

int 4 bytes (32 bits) –2147483648 2147483647

long 8 bytes (64 bits) –
922337203685477580
8

9223372036854775807

positive binary number are inverted; then 1 is added to the result. For example, to obtain the
byte representation of the number –4, we start with the binary representation of 4,
00000100. We invert the bits, resulting in 11111011. Finally, we add 1, resulting in
11111100. In this scheme, the sign is stored in the leftmost (high) bit: a zero indicating a
positive number, and a one indicating a negative number.

Numbers larger than 1 byte are stored in big-endian order. The high-order (or most
significant) byte is stored first in memory. Little-endian order follows the reverse
convention. For example, take the short (2 byte) representation of the number 256:
00000001 00000000.

The order conventions are:

Address Big-Endian
Representatio
n

Little-Endian
Representatio
n

00 00000001 00000000

01 00000000 00000001

int values are assigned as decimal values by default, as in

int i = 17;

To assign an octal value, prefix the value with a zero. For example,

int ioctal = 010;

assigns octal 10 (decimal 8) to ioctal.

To assign a hexadecimal value, prefix the value with a zero then an x. For example,

int ihex = 0xB;

assigns hexadecimal B (decimal 11) to ihex.

A long literal value has an l or L suffix, for example,

long lvar = 123456789L;

2.5.2 Real Numbers

For floating point, or real, numbers, two types are available, as shown in Table 2.3. Note
that integer and real data types are guaranteed to take on the sizes in the preceding tables
regardless of the hardware platform on which the program runs.

Table 2.3: Real types.

Name Size Minimum
Value

Maximum Value

float 4
by
tes
(3
2
bit
s)

1.4E–45 3.4028235E38

double 8
by
tes
(6
4
bit
s)

4.9E–
324

1.7976931348623157E308

When a literal value is assigned to a float variable, the value must be suffixed by an f or
F, for example

float fvar = 6.2f;

The f indicates that 6.2 is a number of type float. By default, literal floating point
numbers are of type double, but we can use a d or D suffix. So both the following are
valid:

double dvar = 6.234;
double dvar = 6.234d;

2.5.3 Booleans

A boolean data type can take on only one of the literal values, true or false. For
example,

boolean creditWorthy = true;
if (creditWorthy) {
 System.out.println(''Customer credit is good");
}

2.5.4 Characters

A character variable or constant is declared with the char keyword. A character takes on a
single 16-bit Unicode character between single quotes. There are also a number of escape
sequences for denoting special characters, as follows:

\t tab

\r carriage return

\n line feed

\f form feed

\b backspace

\" double quote

\' single quote

\\ backslash

In the Circle program, we could add the following declaration immediately after the PI
declaration in line 7:

static final char TAB = '\t';

The statement in lines 16–17 could be replaced by

System.out.println(''A circle of radius " + args[0]
 + " has area of " + TAB + area);

This will add a tab in the output string. We could have simply added \t in the output
statement as in

System.out.println("A circle of radius " + args[0]
 + " has area of \t " + area);

2.5.5 Strings

A string literal is made up of one or more characters between double quotes. An example of
string literals is the statement in lines 16–17 of the Circle program. We can define a
string to be a variable by using the String data type. For example, in the Circle
program, we could declare String variables string1 and string2, as follows:

String string1 = "A circle of radius ";
String string2 = " has area of " ;

Lines 16–17 can now be replaced by

System.out.println(string1 + args[0] + string2 + area);

The + is used as a concatenation operator. Where a String is concatenated with a value
that is not a String, such as args[0] or area, the compiler will convert that value to a
String.

A String is actually an object in Java; we discuss objects in detail in Chapter 4. A string
can be created using the following objectlike syntax:

String string1 = new String("A circle of radius ");

This statement, and the statement

String string1 = "A circle of radius ";

are both legal in Java. An exception has been made in the Java language to allow
initialization of a String in a manner similar to nonobject-oriented languages. An
exception also has been made in the use of the + operator to allow String concatenation:
we would expect to use a method to concatenate objects.

Since a String is an object, a large number of methods are provided for manipulating
strings. For example, the java.lang.String.length method gives the length of a
String, as in

string1.length()

The java.lang.String.charAt(position) method returns the character at the
specified position, starting at 0. For example,

string1.charAt(3)

will return the fourth character in the string, namely, i.

Strings are immutable in Java. One cannot change individual characters in a String.
There is no method to change the nth character in a String. When we perform String
concatenation, we are not modifying the original String but creating a new String
object. The following example of java.lang.String.concat method illustrates
String immutability:

String s1, s2;
s1 = ''abc";
s2 = s1.concat("def");

The value of s1 after the concat method is executed remains an unchanged "abc". s2 is
equal to "abcdef" since concat returns a new object with the concatenated result, which
is assigned to s2. The main advantage of String immutability is that the Java compiler
can save space by sharing Strings. If a program repeatedly performs String
concatenation, when processing a file, for example, then the repeated creation of new
objects becomes inefficient. To cater for this, Java provides a mutable StringBuffer
class, which we discuss in Chapter 4.

We can convert all primitive data types to a String using the
java.lang.String.valueOf method. For example, the following converts an int to a
String:

int count = 123;
String countString = String.valueOf(count);

2.5.6 Arrays

An array contains a collection of elements, all of which have the same type. Arrays can be
of any type. An array declaration is of the form

datatype variable_name [] ;

or

datatype [] variable_name;

We have already seen an array, args, of type String in the Circle program. If we
wish to declare an array, intArray, say, of type int, enter either

int [] intArray;

or

int intArray[];

This statement only declares the variable intArray. To create or define an array, that is,
reserve storage in memory to hold the array, we need to use the new keyword. For example,

intArray = new int [2];

will create the array intArray with two elements and initialize it with zero values, the
default value for numbers. The reason for the new keyword is that an array is actually an
object in Java. Objects in Java are created using the new keyword, as we shall see in
Chapter 4.

Array elements are counted from zero, so

intArray[0] = 1;

assigns the value of 1 to the first element of intArray. Note that once an array is created,
its size cannot be changed.

An example of all this is the OutputArray program, which assigns the values of 1 and 2
to an integer array and outputs the results.

OutputArray

 1 public class OutputArray {
 2
 3 public static void main(String[] args) {
 4 int intArray [];
 5 intArray = new int [2];
 6 intArray[0] = 1;
 7 intArray[1] = 2;
 8 System.out.println(''Values of intArray are "
 9 + intArray[0] + " and " + intArray[1]);
10 }
11 }

OutputArray

One can declare, create, and assign initial values to an array in a single statement, so we can
replace lines 4–7 with the statement

int intArray[] = {1,2};

Arrays of arrays can be constructed in Java, by using consecutive pairs of brackets: [][].
OutputTable populates a two-dimensional array or table of type int.

OutputTable

 1 public class OutputTable {
 2
 3 public static void main(String[] args) {
 4 int table [] [] = {
 5 {1, 2},
 6 {3, 4, 5}
 7 };
 8 System.out.println("Values of table are "

 9 + table[0][0] + '' , " + table[0][1] + " , "
10 + table[1][0] + " , " + table[1][1] + " , "
11 + table[1][2]);
12 }
13 }

OutputTable

The main array, table, consists of two subarrays, table[0] and table[1]. Note the
subarrays can be of different lengths. We could have defined the table array as

int table [] [] = new int [2] [3];

and populated the array element by element.

To find the length of an array, use

array_name.length

So in our table array example, table.length returns the value 2, and
table[1].length returns the value 3.

The reason we can have arrays of arrays is that an array, like all objects, is a reference
type. This means that the memory address is stored in an array variable. The value of the
variable is a reference to a value or, indeed, to another array. So table[1][2] is a
reference to the value 5, while table[0] is a reference to the array with elements
table[0][0] and table[0][1]. Figure 2.1 shows how the two-dimensional table
array is implemented.

Figure 2.1: Two-dimensional array implementation.

2.6 Arithmetic Operations

The following arithmetic operators are available in Java:

+ addition

- subtraction

* multiplication

/ division

% modulus

Java provides the ++ and -- operators, which, respectively, increment and decrement the
operand. So a++ is equivalent to a = a + 1. If ++ or -- is postfixed to the operand, the
result is evaluated before the increment or decrement. If ++ or -- is prefixed, the result is
evaluated after the increment or decrement. The code in the Arithmetic example
illustrates this.

Arithmetic

 1 public class Arithmetic {
 2
 3 public static void main(String[] args) {
 4 int a1 = 2;
 5 int a2 = 2;
 6 int a3 = 2;
 7 int a4 = 2;
 8 int b;
 9 int c;
10 int d;
11 int e;
12
13 b = a1++;
14 c = ++a2;
15 d = a3--;
16 e = --a4;
17 System.out.println (''a1 = " + a1 + " b = " +b);
18 System.out.println("a2 = " + a2 + " c = " +c);
19 System.out.println("a3 = " + a3 + " d = " +d);
20 System.out.println("a4 = " + a4 + " e = " +e);
21 }
22 }

Arithmetic

The output of the Arithmetic application is as follows:

> java Arithmetic
a1 = 3 b = 2
a2 = 3 c = 3
a3 = 1 d = 2
a4 = 1 e = 1

This idea is extended by the +=, -=, *=, /=, and %= operands to combine an
operation with an assignment. Thus,

a += 2 is equivalent to a = a + 2

a -= 2 is equivalent to a = a - 2

a *= 2 is equivalent to a = a * 2

a /= 2 is equivalent to a = a / 2

a %= 2 is equivalent to a = a % 2

When an expression consists of two or more operators, Java applies rules of precedence
about which operand is applied first. Operands with a higher precedence are applied before
those of a lower precedence. The operands *, /, and % are of equal precedence, and are
of higher precedence than + and -. Consequently,

8 * 4 - 2 is equivalent to (8 * 4) - 2, which equals 30

8 + 4 / 2 is equivalent to 8 + (4 / 2), which equals 10

Of course, you can use parentheses to override this default behavior. Thus,

8 * (4 - 2) will evaluate to 16

(8 + 4) / 2 will evaluate to 6

Where an expression consists of two or more operators of equal precedence, Java will in
general evaluate the operands from left to right. For example,

8 / 4 * 2 is equivalent to (8 / 4) * 2, which equals 4

and not 8 / (4 * 2), which equals 1

The / and * operators are said to associate from left to right. A few operators associate
from right to left. Appendix A lists all the operator associativity rules.

2.7 Data Type Conversion

We can assign one primitive data type to another provided there is no possible loss of
precision. In such cases, Java automatically performs the data type conversion. For example,
in the code fragment

short s = 6;
int i = s;

we can assign s to i because the precision of a short is less than an int, so there is no
possible loss of precision. However, the statement

s = i;

is illegal because there is possible loss of precision. The program will fail to compile. In
this case, we need to explicitly cast the data type. This is done by enclosing the target data
type with parentheses and prefixing this to the source variable. For example,

s = (short) i;

The loss of precision argument means that we can assign an int to a float, but we need to
explicitly cast a float to an int, as follows:

float fvar = 6.2f;
int i = (int) fvar;

Note this truncates the fractional part. Even with a cast we cannot assign a boolean to an
integer or real.

chapter 3
Flow Control
This chapter concludes the basic language syntax with a discussion of sequencing,
branching, and looping. We cover conditional statements, relational and logical operators,
including bitwise operators, and iteration statements.

3.1 Conditional Statements

3.1.1 if Statement

The if construct is used if we wish to execute a statement only if a condition is true. The
basic format of the if statement is

if (condition) {
one or more statements to be executed if condition
is true;
}

The following code fragment illustrates the if statement:

public static void main(String[] args) {
if (args.length == 1){
 System.out.println(''Single argument = " + args[0] + " supplied");
}
 System.out.println("no of args = " + args.length);
}

Note there is no then component in the if clause in Java. The relational equality operator
== is used in the statement

if (args.length == 1)

We will cover other relational operators in Section 3.2. If only one statement is executed
when the condition is true, then the enclosing braces are optional. The preceding code could
be rewritten as follows:

public static void main(String[] args) {
if (args.length == 1)
 System.out.println(''Single argument = " + args[0] + " supplied");
System.out.println("no of args = " + args.length);
}

However, it is good practice to always use braces even if a single statement follows the if
condition. Otherwise, we might forget to add braces should a second embedded statement
be subsequently added.

3.1.2 if else Statement

The if else construct is used if we wish to execute one set of statements if a condition is
true, and a second set of statements if the condition is false. The basic format of the if
else construct is as follows:

if (condition) {
 one or more statements to be executed if
 condition is true;
} else {
 one or more statements to be executed if
 condition is false;
}

To illustrate this, the CalculateProduct example calculates the square of an input
argument if just one argument is supplied to the program; otherwise, it calculates the
product of the first and second arguments.

CalculateProduct

 1 public class CalculateProduct {
 2
 3 public static void main(String[] args) {
 4 int arg1;
 5 int arg2;
 6 int result;
 7
 8 if (args.length == 1){
 9 arg1 = Integer.parseInt(args[0]);
10 result = arg1 * arg1;
11 System.out.println("Square of " + args[0] + " is
"
12 + result);
13 } else {
14 arg1 = Integer.parseInt(args[0]);

15 arg2 = Integer.parseInt(args[1]);
16 result = arg1 * arg2;
17 System.out.println(''Product of " + args[0] +
18 " and " + args[1] + " = " + result);
19 }
20 System.out.println("no of args = " + args.length);
21 }
22 }

CalculateProduct

3.1.3 else if Statement

We can qualify the else clause in the previous section by adding a further condition to be
satisfied for the subsequent statements to be executed. This is done by using an else if
clause in place of the else clause. This has the following construct:

if (condition1) {
 one or more statements to be executed
 if condition1 is true;
} else if (condition2) {
 one or more statements to be executed
 if condition1 is false and condition2 is true;
}

Any number of else if clauses can be associated with the first if clause, and these may
be optionally followed by an else clause. For example, we can modify
CalculateProduct to handle three conditions: one argument supplied, two arguments
supplied and zero, three or more arguments supplied. The result is shown in the second
version of CalculateProduct.

CalculateProduct—second version

 1 public class CalculateProduct {
 2
 3 public static void main(String[] args) {
 4 int arg1;
 5 int arg2;
 6 int result;
 7
 8 if (args.length == 1){
 9 arg1 = Integer.parseInt(args[0]);
10 result = arg1 * arg1;
11 System.out.println("Square of " + args[0] + " is
"
12 + result);
13 } else if (args.length == 2){
14 arg1 = Integer.parseInt(args[0]);

15 arg2 = Integer.parseInt(args[1]);
16 result = arg1 * arg2;
17 System.out.println(''Product of " + args[0]
18 + " and " + args[1] + " = " + result);
19 } else {
20 System.out.println(
21 "Please supply one or two arguments");
22 }
23 System.out.println("no of args = " + args.length);
24 }
25 }

CalculateProduct—secondversion

3.1.4 Embedded Conditional Expressions

The ? operator enables you to embed expressions that are conditional on the value of a
boolean expression. The format is

boolean expression ? expression1 : expression2

expression1 is executed if the boolean expression is true; expression2 is
executed if boolean expression is false. The following code uses the ? operator:

public static void main(String[] args) {
 System.out.println(args.length +
 (args.length == 1 ? " argument has been provided" :
 " arguments have been provided"));
}

The preceding code could be rewritten replacing the ? with the if else construct, as
follows:

public static void main(String[] args) {
 if (args.length == 1){
 System.out.println(args.length + " argument has been provided");
 } else {
 System.out.println(args.length + " arguments have been provided");
 }
}

3.1.5 Switch Statement

Another type of branching construct is the switch statement. This takes the form

switch (expression1) {
case value1:
 one or more statements to be executed;
 break;
case value2:
one or more statements to be executed;
 break;
default:
 one or more statements to be executed;
 break;
}

expression1 is a char, byte, short, or int expression evaluated by the switch
statement. If this is equal to value1, the statements following the case value1: clause
are executed. If expression1 evaluates to value2, the statements following case
value2: are executed. Of course, there can be any number of case statements. If the value

of expression1 is not included in any of the case statements, then the statements
following default: are executed.

The break statement ensures that program execution continues with the statement
following the entire switch block. Without a break statement, after executing the
corresponding case statement, control would pass to subsequent case statements. As an
example, the second version of CalculateProduct has been rewritten using the
switch statement: the result is shown in the third version of CalculateProduct.

CalculateProduct—third version

 1 public class CalculateProduct {
 2
 3 public static void main(String[] args) {
 4 int arg1;
 5 int arg2;
 6 int result;
 7
 8 switch (args.length) {
 9 case 1:
10 arg1 = Integer.parseInt(args[0]);
11 result = arg1 * arg1;
12 System.out.println(''Square of " + args[0] + " is
 "
13 + result);
14 break;
15 case 2:
16 arg1 = Integer.parseInt(args[0]);
17 arg2 = Integer.parseInt(args[1]);
18 result = arg1 * arg2;
19 System.out.println("Product of " + args[0] + " an
d "
20 + args[1] + " = " + result);
21 break;
22 default:
23 System.out.println(
24 "Please supply one or two arguments");
25 break;
26 }

27 System.out.println(''no of args = " + args.length);
28 }
29 }

CalculateProduct—third version

3.2 Relational and Logical Operators

We have already encountered the equals relational operator ==. Listed next are all the
relational operators.

> greater than

>= greater than or equal to

< less than

<= less than or equal to

These are all of equal precedence. The remaining two operators are of lower precedence.

== equals

!= not equals

The precedence rules mean that in the following code fragment:

int a = 5, b = 4;
boolean c = true;
if (a > b == c) {
 System.out.println("Condition true");
}

the condition a > b == c is equivalent to (a > b) == c. The expression a > b is
evaluated first and returns a value of true or false, which is then compared with the value of
the boolean variable c.

More complex condition expressions can be constructed with the use of logical operators,
listed in order of precedence in Table 3.1.

Expressions using logical operators are evaluated left to right. Logical operators, apart
from !, have a lower precedence than the relational operators. A complete list of precedence
rules is shown in Appendix A.

The && and || operators have the same function as & and |, respectively, except in the
manner in which component expressions are evaluated. For example, in the expression (a
> b) & (c < d), the components are evaluated left to right, so (a > b) is evaluated
first. If (a > b) is false, the entire expression is false regardless of the result of the
component (c < d). Nevertheless, the component (c < d) will still be evaluated.
However, in the expression (a > b) && (c < d), the component (c < d) will not
be evaluated if (a > b) evaluates to false. This is known as short circuiting.

Table 3.1: Logical operators.

Operator Meaning Evaluation

! not n/a

& and unconditional

^ exclusive or (a or b true
but not both)

unconditional

| or (a or b true) unconditional

&& and conditional

|| or (a or b true) conditional

The following code fragment illustrates the use of logical operators:

int a = 5, b = 4, c = 2, d = 3, e = 0;
if (! (a < b)) {
 System.out.println('' ! condition true");
}
if ((a > b) & (c < d)) {
 System.out.println(" & condition true");
}
if ((a > b) | (c < d)) {
 System.out.println(" | condition true");
}
if ((a > b) ^ (c < d)) {
 System.out.println(" First ^ condition true");
} else {
 System.out.println(" First ^ condition false");
}
if ((a > b) ^ (d < c)) {
 System.out.println(" Second ^ condition true");
}
if ((true) | | (5/e == 0)) {
 System.out.println(" Divide by 0 avoided");
}
if ((true) | (5/e == 0)) {
 System.out.println(" Not printed");
}

This will output

> java TestLogicals
! condition true
& condition true
| condition true
First ^ condition false
Second ^ condition true

Table 3.2: Bitwise binary
operations.

Operation Result

a 00000011

b 00000010

a & b 00000010

a | b 00000011

a ^ b 00000001
Divide by 0 avoided
java.lang.ArithmeticException: / by zero
 void TestLogicals.main(java.lang.String[])
Exception in thread main

Note that the first ^ condition is false since both (a > b) and (c < d) are true.

3.2.1 Bitwise Operators

The bitwise operators, & (bitwise and), | (bitwise or), ^ (bitwise exclusive or), and ~
(bitwise complement) are used to manipulate the bits of the Java integral types. The
operators act similarly to the equivalent logical operators, except that operations apply to
individual bits.

The & operator sets the resulting bit to 1 if the corresponding bit in both operands is 1;
otherwise, the resulting bit is 0. The | operator sets the resulting bit to 1 if either bit is 1;
otherwise, the resulting bit is 0. The ^ operator sets the resulting bit to 1 if the two bits are
different; otherwise, the resulting bit is 0. Table 3.2 shows the results of these bitwise
binary operations applied to operands a and b, where a is the byte representation of the
number 3, and b is the byte representation of the number 2.

The ~ (bitwise complement) operator is a unary operator that inverts the value of each bit
of the operand.

Java also provides bit-shifting operators that apply to integral types. >> is a signed right
shift, << a left shift, and >>> an unsigned right shift with the resulting top bits filled by the
sign bit. The operators have a second right-hand operand that specifies the number of bits to
shift. So, for example, i << 2 shifts the bits of int i by two to the left.

3.3 Iteration Statements

If we wish to repeatedly execute a block of statements while a condition is true, the while,
do while, and for loop constructs are available.

3.3.1 while Loop

The syntax of a while loop is

while (boolean expression) {
 one or more statements;
}

The block of statements is repeatedly executed while the boolean expression evaluates to
true. As an example, we can rewrite the OutputArray program of Section 2.5.6 and
assign values to array elements intArray[0] and intArray[1] using a while loop.

OutputArray

 1 public class OutputArray {
 2
 3 public static void main(String[] args) {
 4 int i=0;
 5 int intArray [];
 6
 7 intArray = new int [2];
 8 while (i < intArray.length) {
 9 intArray[i] = i + 1;
10 i++;
11 }
12 System.out.println(''Values of intArray are " +
13 intArray[0] + " and " + intArray[1]);
14 }
15 }

OutputArray

3.3.2 do while Loop

The syntax of a do while loop is

do {
 one or more statements;
} while (boolean expression) ;

Unlike a while loop, a do while loop is guaranteed to execute at least once. In the
OutputArray example of the previous section, the while loop (lines 8–11) can be
replaced by the following do while loop:

do {
 intArray[i] = i + 1;
 i++;
} while (i < intArray.length);

3.3.3 for Loop

Where the iteration is over a range of values, a for loop is a more compact alternative to a
while or do while loop. The syntax is

for (initialization expression;
 test expression;
 increment expression) {
 one or more statements;
}

The initialization expression is executed once at the beginning of the first loop iteration.
The increment expression is executed at the end of every loop iteration. The test expression
is evaluated at the beginning of each loop iteration. If the test expression evaluates to false,
the for loop is terminated; if it evaluates to true, another iteration of the loop is executed.
Like a while loop, it is possible that the for loop may not be executed for a single
iteration.

In the OutputArray example of section 3.3.1, the while loop (lines 8–11) can be
replaced by the following for loop:

for (i = 0; i < intArray.length; i++) {
 intArray[i] = i+1;
}

Note that initialization, i = 0; increment, i++; and test expression, i <
intArray.length all occur on a single line. Any of the three parts of a for loop can be
omitted, but the semicolons must remain. If all three parts are omitted, we have an infinite
for loop, as follows:

for (;;) {
 ...
}

Within the for loop, there will be some means, such as a break statement, to end the
looping.

3.3.4 break and continue Statements

We have already seen the break statement in the context of the switch statement. The
break statement can also be used to exit out of a for, while, or do while loop. The
SumOddArguments program sums all the arguments until the first even-valued argument
is reached.

SumOddArguments

 1 public class SumOddArguments {
 2
 3 public static void main(String[] args) {
 4 int arg;
 5 int sum = 0;
 6

 7 for (int i = 0; i < args.length; i++) {
 8 arg = Integer.parseInt(args[i]);
 9 if (arg % 2 == 0) {
10 break;
11 }
12 sum = sum + arg;
13 }
14 System.out.println(''Sum of odd arguments is : " + su
m);
15 }
16 }

SumOdd Arguments

In the for loop (lines 7–13), as soon as an even-valued argument has been reached, in line
9 arg % 2 is equal to 0; consequently, the break statement passes control to the first
statement after the for loop, namely, line 14.

The continue statement passes control to the next iteration of the enclosing for,
while, or do while loop. The following code fragment sums all odd integers from 1 to
10:

int sum = 0;
for (int i = 1; i < 11; i++) {
 if (i % 2 == 0) {
 continue;
 }
 sum = sum + i;
}

The continue statement ensures that, for an even number, the next statement, sum =
sum + i, is skipped and thus sum is not incremented.

If within nested loops, a break statement is used to exit out of one of the inner loops, then
control passes to the next iteration of the enclosing loop. If the intention is to break out of
two or more enclosing loops, then this can be achieved by a labeled break. The
SumSomeArguments example sums all arguments until one argument is equal to one of
the elements of the array intArray. The elements of intArray are set to 5 and 6. If
arguments of 7, 8, 9, 5, and 3, say, are passed to the program, then the resulting sum equals
7 + 8 + 9 = 24.

SumSomeArguments

 1 public class SumSomeArguments {
 2
 3 public static void main(String[] args) {
 4 int intArray [];
 5 int arg;
 6 int sum = 0;

 7
 8 intArray = new int [2];
 9 intArray[0] = 5;
10 intArray[1] = 6;
11 outerForLoop:
12 for (int i = 0; i < args.length; i++) {
13 arg = Integer.parseInt(args[i]);
14 for (int j = 0; j < 2; j++) {
15 if (intArray[j] == arg) {
16 break outerForLoop;
17 }
18 }
19 sum = sum + arg;
20 }
21 System.out.println(''Sum of arguments = " + sum);
22 }
23 }

SumSomeArguments

The label in line 11 is outerForLoop:. The syntax for a label is any valid identifier
followed by a colon. The break label statement, break outerForLoop:, in line 16,
will pass control to the statement following the statement identified by the label. The
outerForLoop: statement refers to the entire outer for loop enclosed by braces, so
control passes to the println statement in line 21. If we had used an unlabeled break in
the program, then control would have passed to line 19, and the program would have
carried on adding the arguments to the sum.

chapter 4
Classes and Objects
Two fundamental concepts in object-oriented programming are that of classes and objects.
A class can be regarded as an object template: it describes how an object looks and operates.
We may have a bank account class that holds details such as account number, account name,
and balance. These are defined by member variables that are said to define the state of the
class. Examples of operations associated with the bank account class are making a deposit
or a withdrawal. Operations, or methods in object-oriented terminology, are said to define
the behavior of a class. An object is an instance of a class. Corresponding to our bank
account class, each individual bank account would be an object: fredsAccount, say,
would be an object holding bank account details for the individual Fred. The following
sections illustrate all the preceding concepts with Java code.

4.1 Class and Object with No Methods

To start, we will define a class, Account, corresponding to a bank account. This class will
have member variables defined for account number, account name, and balance. At this
stage, we have defined no methods for this class.

Account

 1 class Account {
 2 int accountNo;
 3 String accountName;
 4 double balance;
 5 }

Account

The class identifier, Account, in line 1 can be any valid Java identifier. By convention,
class identifiers are nouns, in mixed case with the first letter of each internal word
capitalized. Member variables are declared using the syntax datatype variableName
as described in Section 2.3. The code must be stored in a file Account.java.
Compilation by means of the command

> javac Account.java

will create a compiled bytecode file Account.class.

We create, or instantiate, an object using the following syntax:

classIdentifier objectName = new classIdentifier();

So to create an object fredsAccount that is an instantiation of the Account class, we
would use the following statement:

Account fredsAccount = new Account();

in any program, either an application or an applet, that uses the object.

To set the member variables to a particular value, we would use the syntax

objectIdentifier.variableIdentifier = value;

So to set the account number for fredsAccount object to a value of 123, say, we would
use the statement

fredsAccount.accountNo = 123;

Bringing all this together is an application, CreateAccount, that creates the
fredsAccount object, sets all the corresponding class member variables, and prints their
values.

CreateAccount

 1 class CreateAccount {
 2
 3 public static void main(String[] args) {
 4 Account fredsAccount = new Account();
 5 fredsAccount.accountNo = 123;
 6 fredsAccount.accountName = ''Fred";
 7 fredsAccount.balance = 50;
 8 System.out.println("A/c no: " + fredsAccount.accountN
o +
 9 " A/c name: " + fredsAccount.accountName + " Balance:
 "
10 + fredsAccount.balance);
11 }
12 }

We will need to compile CreateAccount by means of the command

> javac CreateAccount.java

Then we can run the program

> java CreateAccount
A/c no: 123 A/c name: Fred Balance: 50.0

4.2 Class with Methods

As we have already mentioned, as well as member variables defining its state, a class can
have methods defining its behavior. A method is similar to a procedure or function in a
nonobject-oriented programming language. For our bank account class, examples of
methods are deposit and withdraw. The following is code for the deposit method that
increases the balance by the amount deposited:

public void deposit(double amount) {
 balance = balance + amount;
}

The method declaration is of the form

access_modifier return_type identifier (arg1_type arg1_name, ...)

The access modifier for the deposit method example is public. This means that any
class can access the deposit method. We will look at access modifiers in Chapter 5. The
method return type can be any Java data type. If the method does not return a value, use the
keyword void as though void were a data type. Since our deposit method does not return
a value, we use void. The method identifier itself can be any valid Java identifier.
Optionally, a method can have any number of arguments preceded by their data types. In
the deposit method, we have one argument, amount, which is of type double. A
method may have no arguments, in which case add () after the method identifier. For
example,

public void clearBalance() {
 balance = 0;
}

The method body is enclosed in braces, { and }, and can have any number of statements. In
the deposit method, we have just one statement

balance = balance + amount;

balance is an Account class member variable, so still is in scope in the deposit
method. amount is a variable local to the deposit method, so cannot be accessed outside
the deposit method.

In the case of a withdrawal from our bank account, the balance will be decreased by the
amount withdrawn. If the resulting balance is less than zero, an error message is printed and
no withdrawal is made. We would also like our method to return the value of the
outstanding balance.

The Java code for the withdraw method follows:

public double withdraw(double amount) {
 if (balance - amount < 0) {
 System.out.println(''Insufficient Funds");
 }
 else {
 balance = balance - amount;
 }
 return balance;
}

Later in Chapter 6, we will see how the Java exception mechanism provides a better way to
report this condition.

Note the return statement in the withdraw method. A return statement is used to exit
from a method. Control passes to the statement following the one that invoked the method.
If a method is void, use the statement

return;

to exit from the method. Note that control passes to the invoking method after the last
statement in the current method, so a return statement is required in a void method only
if we wish to prematurely exit from the method if some condition is met. For methods other
than void, we need to use the statement

return expression;

where expression is the same data type as the current method's return type. For non-
void methods, the last statement in the method must be a return statement.

Note that since the withdraw method returns the balance, which is an Account class
member variable of type double, the withdraw method is of type double. The
Account class in this section now includes the deposit and withdraw methods.

Account

 1 class Account {
 2 int accountNo;
 3 String accountName;
 4 double balance;
 5
 6 public void deposit(double amount) {
 7 balance = balance + amount;
 8 }
 9
10 public double withdraw(double amount) {
11 if (balance - amount < 0) {
12 System.out.println("Insufficient Funds");

13 } else {
14 balance = balance - amount;
15 }
16 return balance;
17 }
18 }

Account

The syntax for invoking a method is

object_identifier.method(optional arguments);

An example of statements invoking the deposit and withdraw methods of the
Account class is

fredsAccount.deposit(100);
amountLeft = fredsAccount.withdraw(120);

where amountLeft is a variable of type double.

4.3 Constructors

Java provides a special kind of method, called a constructor, that executes each time an
instance of an object is created. The constructor can be used to initialize the state of an
object. The call to new, which creates an object, invokes the new object's constructor. The
constructor has the same identifier as its class and does not define a return type. The
following code fragment shows the Account constructor that sets the account number,
name, and balance to supplied values:

public Account(int no, String name, double bal){
 accountNo = no;
 accountName = name;
 balance = bal;
}

This code would be added to the Account class definition in the same way as the deposit
and withdrawal methods. The Account class now includes its constructor.

Account

 1 class Account {
 2 int accountNo;
 3 String accountName;
 4 double balance;
 5
 6 public Account(int no, String name, double bal) {

 7 accountNo = no;
 8 accountName = name;
 9 balance = bal;
10 }
11
12 public void deposit(double amount) {
13 balance = balance + amount;
14 }
15
16 public double withdraw(double amount) {
17 if (balance - amount < 0) {
18 System.out.println(''Insufficient Funds");
19 } else {
20 balance = balance - amount;
21 }
22 return balance;
23 }
24 }

Account

The statements (lines 4–7) in the CreateAccount application in Section 4.1, which
create the fredsAccount object and initialize the corresponding class member variables,
can now be replaced by the single statement

Account fredsAccount = new Account(123, "Fred", 50);

If a class does not have a constructor, then Java creates a default constructor. This has no
parameters, and all instance variables are set to their default values. So for the Account
class, the default constructor will be equivalent to

public Account() {
 accountNo = 0;
 accountName = null;
 balance = 0.0;
}

Consequently, the statement

Account fredsAccount = new Account();

is legal if the Account class does not have a constructor. However, if a class has one or
more constructors and does not explicitly include a constructor without parameters, the
preceding statement is illegal. We cannot rely on a default constructor as a fallback in this
case.

4.4 Method Overloading

Method overloading is a feature common to most object-oriented programming languages
and is one aspect of polymorphism. This allows us to have methods with the same
identifier but with different argument lists. The argument lists can have a different ordering
of data types or can have a different number of arguments. In the Account class, in
addition to the deposit method we have already seen (lines 12–14), we could also add a
second deposit method that prints the balance if it exceeds a supplied level.

public void deposit(double amount, double level) {
 balance = balance + amount;
 if (balance > level) {
 System.out.println(''Current balance = " + balance);
 }
}

In the CreateAccounts application, the following statements would invoke each
deposit method in turn:

fredsAccount.deposit(100);
fredsAccount.deposit(100, 120);

The Java compiler checks that the data types of the method being invoked match those of
the method in the class. In this way, the correct method will be invoked.

Constructors can also be overloaded. In addition to the existing constructor in the Account
class (lines 6–10), we can add a second, which takes only the account number and name as
arguments and sets the balance to 10.

public Account(int no, String name) {
 accountNo = no;
 accountName = name;
 balance = 10;
}

In the CreateAccounts application, the following statements would create two objects,
fredsAccount and billsAccount, using each constructor in turn:

Account fredsAccount = new Account(123, "Fred", 50);
Account billsAccount = new Account(456, "Bill");

4.5 Argument Passing in Java

Any valid Java data type can be passed as an argument into a method. These can be
primitive data types such as int and float, or reference data types such as objects or
arrays. Both primitive and reference data type arguments are passed by value; however, the
impact on the calling method can be different depending on the passed data type.

Where a primitive data type argument is being passed, the value of the argument is copied
into the method's parameter. If the method changes the value of the parameter, then this
change is local to the method and does not affect the value of the argument in the calling
program. The following example illustrates this. The Employee class consists of just one
method, increment, which adds 10 to a supplied argument of type int.

Employee

 1 class Employee {
 2
 3 public void increment(int amount) {
 4 amount = amount + 10;
 5 System.out.println(''amount within method: " + amount
);
 6 }
 7 }

Employee

The CreateEmployee application sets the variable amount to 500 and invokes the
Employee class increment method with amount as an argument.

CreateEmployee

 1 class CreateEmployee {
 2
 3 public static void main(String[] args) {
 4 int amount = 500;
 5
 6 Employee fred = new Employee();
 7 fred.increment(amount);
 8 System.out.println("amount outside method: " + amount
);
 9 }
10 }

CreateEmployee

The output of running the CreateEmployee application follows:

> java CreateEmployee
amount within method: 510
amount outside method: 500

So although the increment method has increased the amount to 510, the amount in the
calling program remains at 500.

If, however, the argument passed to a method is a reference data type, the memory address
of the argument is copied to the method's parameter. Consequently, both the calling method
argument and the called method parameter reference the same object. If the method
changes the value of this object, then this change is reflected in the calling program. To
illustrate this, the second version of Employee has the increment method modified to
accept an array argument, salary, of type int. The first element of salary is
incremented by 10.

Employee—second version

 1 class Employee {
 2
 3 public void increment(int[] salary) {
 4 salary[0] = salary[0] + 10;
 5 System.out.println(''amount within method: " +
 6 salary[0]);
 7 }
 8 }

Employee—second version

In the second version of the CreateEmployee application, the argument passed to the
increment method is an array, fredsSalary.

CreateEmployee—second version

 1 class CreateEmployee {
 2
 3 public static void main(String[] args) {
 4 int fredsSalary[] = new int [1];
 5
 6 Employee fred = new Employee();
 7 fredsSalary[0] = 500;
 8 fred.increment(fredsSalary);
 9 System.out.println("amount outside method : "
10 + fredsSalary[0]);
11 }
12 }

CreateEmployee—second versión

The output of running CreateEmployee will now be as follows:

> java CreateEmployee
amount within method: 510
amount outside method: 510

4.6 Instance and Static Variables

By default, class member variables are instance variables. In the Account class shown
next, accountNo, accountName, and balance are all instance variables.

Account

 1 class Account {
 2 int accountNo;
 3 String accountName;
 4 double balance;
 5 }

Account

Whenever an object, or instance, of the class is created, copies of the instance variables are
created. In CreateAccount, two instances of the Account class are created:
fredsAccount and billsAccount. The instance variables corresponding to
fredsAccount and billsAccount are assigned values.

CreateAccount

 1 class CreateAccount {
 2
 3 public static void main(String[] args) {
 4 Account fredsAccount = new Account();
 5 fredsAccount.accountNo = 123;
 6 fredsAccount.accountName = ''Fred";
 7 fredsAccount.balance = 50;
 8 Account billsAccount = new Account();
 9 billsAccount.accountNo = 456;
10 billsAccount.accountName = "Bill";
11 billsAccount.balance = 75;
12
13 System.out.println("Freds A/c no: "
14 + fredsAccount.accountNo + " Freds A/c name: "
15 + fredsAccount.accountName + " Freds balance: "

16 + fredsAccount.balance);
17 System.out.println(''Bills A/c no: "
18 + billsAccount.accountNo
19 + " Bills A/c name: " + billsAccount.accountName
20 + " Bills Balance: " + billsAccount.balance);
21 }
22 }

CreateAccount

When we assign a value of 456 to billsAccount.accountNo, the value of
fredsAccount.accountNo is unaffected because Java has created two copies of
accountNo corresponding to billsAccount and fredsAccount. The result of
executing the program is shown as follows:

> java CreateAccount
Freds A/c no: 123 Freds A/c name: Fred Freds Balance: 50.0
Bills A/c no: 456 Bills A/c name: Bill Bills Balance: 75.0

A member variable can be defined as a static (or class) variable by use of the static
keyword. In this case, a single copy of the member variable is created regardless of the
number of instances (even if no instances are created). Each instance has access to the same
copy of the static variables. We would make a variable static if it is the same for all objects.
For example, we can add the static variable bankName to the Account class definition.

Account—second version

 1 class Account{
 2 static String bankName;
 3 int accountNo;
 4 String accountName;
 5 int balance;
 6 }

Account—second version

Suppose we add the following statements to the CreateAccount program:

fredsAccount.bankName = "Ealing Bank";
billsAccount.bankName = "Kingston Bank";

After the second statement is executed, the value of fredsAccount.bankName is also
"Kingston Bank" since the billsAccount and fredsAccount objects share the
same copy of the bankName variable. Normally, we would not prefix a static variable with
an object since it does not make

sense to associate a static variable with an object. We prefix static variables with the class
name, as follows:

Account.bankName = ''Ealing Bank";

4.7 Instance and Static Methods

As well as instance and static variables, we can also have instance and static (or class)
methods. By default, all methods are instance methods. As we have seen in Section 4.2,
instance methods are invoked by prefixing the method with an object. For example, we
invoke the instance method deposit

fredsAccount.deposit(100);

The deposit method modifies the instance variables corresponding to the
fredsAccount object only.

A static method does not operate on an object. Typically, a method that performs a general-
purpose calculation is a candidate for a static method. For example, we will take the
Circle application from Chapter 2 and rewrite it as a class containing the
calculateArea static method. This returns the area of the circle given a radius as a
supplied argument.

Circle—second version

 1 public class Circle {
 2 static final double PI = 3.14159;
 3
 4 public static double calculateArea (double radius) {
 5 // area formula
 6 return PI * (radius * radius);
 7 }
 8 }

Circle—second version

Static methods, like static variables, are identified by the use of the static keyword (line
4). We can invoke the calculateArea method from any class by prefixing the method
with its class name, for example

double circleArea = Circle.calculateArea(5);

An instance of the Circle class does not need to exist in order to access the
calculateArea static method.

Note that though instance methods can access static variables, static methods cannot access
instance variables. An attempt by a static method to access an instance variable will cause a
compilation error.

The java.lang.Math class, in particular, provides many examples of static methods and
constants. These are for use in mathematical calculations and include a more accurate
version of PI than we used in Circle. Consult the Sun API documentation for details.

4.8 this Keyword

In the Account class constructor of Section 4.3, we distinguished between member and
local variables by giving the variables different identifiers.

class Account {
 int accountNo;
 String accountName;
 double balance;
 public Account(int no, String name, double bal){
 accountNo = no;
 accountName = name;
 balance = bal;
 }

What if we used the same identifiers for member and local variable in the constructor, as
follows:

public Account(int accountNo, String accountName, double balance) {
 accountNo = accountNo;
 accountName = accountName;
 balance = balance;
}

Although this will compile successfully, Java cannot distinguish between the left-side
member variables and the right-side local variables. Variables on both sides of the
assignment operators are treated as local; the member variables are not set by the
constructor. As a result, the value of fredsAccount.accountNo, after invoking the
constructor in the following code fragment, is 0, the default value for integers in Java,
rather than 123.

Account fredsAccount = new Account(123, ''Fred", 60);

To specify an object's member variables, Java provides the this keyword, which is prefixed
to the member variable or method. The Account class constructor can be written as

public Account(int accountNo, String accountName, double balance) {
 this.accountNo = accountNo;
 this.accountName = accountName;
this.balance = balance;
}

The value of fredsAccount.accountNo after invoking the constructor

Account fredsAccount = new Account(123, ''Fred", 60);

is 123 as expected.

this is actually a reference to the object being constructed. All object variables are
references, so the following code fragment:

Account fredsAccount = new Account(...);
Account billsAccount = fredsAccount;
billsAccount.balance = 500;

sets the balance for both Bill and Fred.

4.9 StringBuffer

A StringBuffer object is similar to a String object but is more efficient when you are
repeatedly appending characters to a string. Unlike a String, a StringBuffer is
mutable so its contents can be modified. The nonobject-oriented syntactical sugar provided
by Strings in initialization and concatenation does not apply to StringBuffer objects.
For example, the statement

StringBuffer textbuf = "A circle of ";

is illegal. A valid statement would be

StringBuffer textbuf = new StringBuffer("A circle of ");

The statement

textbuf = textbuf + "radius ";

is also illegal. We need to make use of the java.lang.StringBuffer.append
method. The following statement is legal:

textbuf.append("radius ");

To modify a character within a StringBuffer object, use the
java.lang.StringBuffer. setCharAt method. For example, the statement

textbuf.setCharAt(3, 'Z');

sets the fourth character (counting starts at zero) of textbuf to 'Z'.

4.10 Vectors

Recall from Chapter 2 that once we create an array we cannot change its size. Vectors, on
the other hand, can grow and shrink at runtime as required. A Vector is an object of the
java.util.Vector class. A Vector object is created using the new keyword, for
example,

Vector vlist = new Vector();

This creates a Vector object, vlist, with default capacity of ten elements. As soon as 10
elements have been added, the capacity, by default, will be doubled to 20 elements in total.
It is possible to specify other capacities and increment factors. To add an element to an
array, use the java.util.Vector.add method. This method allows you to add any
object to the end of the Vector, for example,

vlist.add(''ABC");

adds string "ABC", which is an object, to the end of Vector vlist. The
java.util.Vector class provides methods capacity, which returns the current
capacity of a Vector, and size, which returns the number of elements in the Vector.
There are also methods for returning or deleting elements at a given position in the Vector.

Since Java version 1.2, a Vector is actually an implementation of the List interface, which
in turn, is a derivation of the Collection interface. Collections are described in Chapter
9.

Note that a Vector can only hold object types. We cannot directly add a primitive data type,
such as int, to a Vector. If we do need to add a primitive to a Vector, we must first
convert it to an object using an object wrapper.

4.11 Object Wrappers

Recall that unlike some object-oriented languages, primitive data types are not objects in
Java. However, there may be occasions when we need the object equivalents of primitive
data types, as we have seen with Vectors. Java provides wrapper classes for this purpose.
For example, we cannot directly convert a String, which is an object, into an int
primitive; we need to do this directly or indirectly through the int object wrapper
Integer. The wrapper classes for equivalent primitive data types are listed in Table 4.1.

Suppose we want to create an Integer object. We can do this like any object using the
new keyword, as follows:

Integer intObj = new Integer(7);

To convert a String to an Integer, use the java.lang.Integer.valueOf method,
for example

String snum = "456";
Integer intObj = Integer.valueOf(snum);

Table 4.1: Object wrappers.

Primitive Data Type Wrapper Class

byte java.lang.Byte

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

boolean java.lang.Boolean

char java.lang.Character

To convert an Integer object to an int primitive, we can use the
java.lang.Integer.intValue method, for example

int count = intObj.intValue();

To convert a String to an int primitive, we can perform the previous two statements in
one step using the java.lang.Integer.parseInt method, for example

int count = Integer.parseInt(snum);

chapter 5
Inheritance and Access Control
This chapter concludes discussion of specifically object-oriented features of the Java
language. By creating subclasses, we can inherit both variables and methods from other
classes; this encourages code reuse. Method overriding is another code reuse feature.
Related to the idea of inheritance are the concepts of abstract classes, interfaces, and inner
classes. This chapter also discusses packages and access control in Java.

5.1 Creating Subclasses

Inheritance is related to the idea of specializing an existing class. For example, we may
wish to create a class SavingsAccount that has all the characteristics of the Account
class, shown in Section 4.3, except that a minimum balance has to be present in
SavingsAccount.

SavingsAccount

 1 class SavingsAccount extends Account {
 2 double minBalance;
 3
 4 public SavingsAccount(int no, String name, double balance
) {
 5 super(no, name, balance);
 6 minBalance = 100;
 7 }
 8
 9 public double withdraw(double amount) {
10 if (balance - amount < minBalance) {
11 System.out.println(''Insufficient Funds");
12 } else {
13 balance = balance - amount;
14 }

15 return balance;
16 }
17 }

SavingsAccount

Rather than completely write from scratch all the code for SavingsAccount, we want to
reuse as far as possible variables and methods from the Account class. Additionally, we
would like to redefine the withdraw method to ensure that the balance does not fall below

the required level. The SavingsAccount class is an example of the specialization of the
Account class. The SavingsAccount class can be regarded as a subclass of the parent
class, or superclass, Account. In Java, the extends keyword is used to define a subclass.

The SavingsAccount class inherits both state (variables) and behavior (methods) from
the parent Account class. So a SavingsAccount object has a corresponding balance
instance variable. SavingsAccount also has an associated deposit method. The
withdraw method has been redefined for the SavingsAccount class: this is an example
of method overriding. Method overriding is another aspect of polymorphism. We have
also created a constructor for SavingsAccount.

Recall that a constructor has the same identifier as the class to which it belongs. In line 5,
the super keyword invokes the parent class constructor. If we leave out this statement,
Java automatically invokes the parent constructor with an implied super() statement.
Since we do not have a constructor in the Account class without arguments, namely,
Account(), we have to explicitly enter the super statement so as to invoke
Account(int no, String name, double balance).

CreateSavingsAccount illustrates how we might invoke the SavingsAccount class.

CreateSavingsAccount

 1 class CreateSavingsAccount {
 2
 3 public static void main(String[] args) {
 4 double balance;
 5
 6 SavingsAccount fredsAccount =
 7 new SavingsAccount(123, ''Fred", 60);
 8 fredsAccount.deposit(70);
 9 balance = fredsAccount.withdraw(40);
10 balance = fredsAccount.withdraw(20);
11 System.out.println("Balance: " + balance);
12 System.out.println("A/c No: " + fredsAccount.accountN
o);
13 }
14 }

CreateSavingsAccount

Note that the statement in line 8 invokes the deposit method inherited from the
Account class. The statement in line 9 invokes the overridden withdraw method defined
in the SavingsAccount class. Since the remaining balance falls below the minimum
balance required, this transaction will fail. The second withdraw method invocation in
line 10 does not violate the minimum balance requirement and so succeeds. Note that in
line 12 we refer to fredsAccount.accountNo. There is no accountNo instance
variable explicitly defined in the SavingsAccount class; this variable has been inherited

from the Account class. The following output shows the result of executing the
CreateSavingsAccount class:

> java CreateSavingsAccount
Insufficient Funds
Balance: 110.0
A/c No: 123

In CreateBothAccounts, we create an object fredsAccount of type
SavingsAccount if the supplied program parameter is equal to 1; otherwise, we create
an object soniasAccount of the parent class type, Account.

CreateBothAccounts

 1 class CreateBothAccounts {
 2
 3 public static void main(String[] args) {
 4 Account acc;
 5 double balance;
 6 int arg;
 7
 8 arg = Integer.parseInt(args[0]);
 9 SavingsAccount fredsAccount =
10 new SavingsAccount(123, ''Fred", 120);
11 Account soniasAccount = new Account(456, "Sonia", 120
);
12 if (arg == 1) {
13 acc = fredsAccount;
14 } else {
15 acc = soniasAccount;
16 }
17 balance = acc.withdraw(30);
18 }
19 }

CreateBothAccounts

We define an acc object of type Account (line 4). This is set to fredsAccount, a child
Savings-Account object, if the program parameter is equal to 1 (line 13). Otherwise,
acc is set to soniasAccount, a parent Account object (line 15). The crucial line is 17:
if the acc object is soniasAccount, the Account withdraw method is invoked, and
the resulting balance is 90. If the acc object is fredsAccount, then the overridden
SavingsAccount withdraw method is invoked. Since a SavingsAccount requires a
minimum balance of 100, the withdrawal is rejected and the balance remains at 120. This
ability of an object variable to refer to a class or its subclass is another aspect of
polymorphism. Because the decision as to which withdraw method to invoke is made at
runtime, and not compile time, it is known as dynamic binding.

We can create chains of inheritance in Java; a subclass will inherit variables and methods
explicitly defined in its immediate parent class. Any variables implicitly inherited by the
parent class will be also inherited by the subclass. For example, we may want to specialize
the SavingsAccount class still further and create a
HighInterestSavingsAccount. This class would inherit variables and methods
explicitly defined in the SavingsAccount class, namely, the overridden withdraw
method. HighInterestSavingsAccount would also inherit the accountNo,
accountName, balance variables, and deposit method from the Account class. Of
course, any of these can be overridden, in turn, by the HighInterestSavingsAccount
class. Note that Java supports only single inheritance; namely, a class can have at most only
one direct parent class.

Note that we can declare a method to be final: this prevents subclasses from overriding
the method. For example,

public final double withdraw(double amount) {

We can also declare a class to be final if we want to prevent further subclassing. For
example,

final class SavingsAccount extends Account {

We have already used the super keyword to call the parent class constructor. Another use
of the super keyword is to invoke any method from the parent class. The syntax for this is
super.method_identifier(optional arguments). For example, we can add
the deposit method shown next to the SavingsAccount class. This method merely
invokes the Account class deposit method, then prints the resulting balance.

deposit Method

1 public void deposit(double amount) {
2 super.deposit(amount);
3 System.out.println(''New balance: " + balance);
4 }

deposit Method

5.1.1 Casting Objects

Consider the following code fragment:

Account fredsAccount = new Account(...);
SavingsAccount fredsSavingAccount = new SavingsAccount(...);
fredsAccount = fredsSavingAccount; /* OK */
fredsSavingAccount = fredsAccount; /* fail */

In the first object assignment, the compiler implicitly casts a SavingsAccount type to an
Account type. This is done because all instances of SavingsAccount are also instances
of Account (upcasting). The second object assignment fails at compilation since we are
attempting to implicitly downcast an Account type to a SavingsAccount. Not all
instances of Account are also instances of SavingsAccount even though in our example
we know that fredsAccount contains an instance of SavingsAccount. We must
explicitly downcast, so the following statement would be valid:

fredsSavingAccount = (SavingsAccount) fredsAccount;

5.2 The Object Class

The Java-supplied java.lang.Object class is the parent or root of all classes. Every
class either directly or indirectly is a subclass of the Object class. Whenever we create a
class such as

class MyClass {
...
}

this is implicitly equivalent to

class MyClass extends Object {
...
}

The Object class contains a number of methods that all classes inherit by default. In many
cases, we will need to override these methods within our own classes.

5.2.1 equals Method

We cannot use the logical equality operator, ==, for testing whether two objects are equal
since the == operator tests if the two objects are stored in the same memory location. The
equals method in the Object class is used to test if the contents of two objects are equal.
As an example, let's look at String objects.

Consider the following code fragment:

String s1 = ''abc";
String s2 = new String("abc");
System.out.println(s1 == "abc");
System.out.println(s2 == "abc");

Because of String sharing, the first println is likely to output true; however, the
second statement will output false. The String class overrides the equals method to
return a value of true if the contents of two Strings are equal. So if we replace the
println statements with

System.out.println(s1.equals("abc"));
System.out.println(s2.equals("abc"));

then true will be output in both cases.

What if we have created our own objects and want to test for equality? For example,
suppose we have created the following Employee class:

Employee

 1 class Employee {
 2 int empNumber;
 3 String name;
 4 int salary;
 5
 6 public Employee(int empNumber, String name, int salary) {
 7 this.empNumber = empNumber;
 8 this.name = name;
 9 this.salary = salary;
10 }
11 }

Employee

We create Employee objects, e1 and e2, as follows:

Employee e1 = new Employee(1, ''Sim", 15000);
Employee e2 = new Employee(1, "Sim", 15000);

We want to test if the contents of e1 and e2 are the same. We cannot use the
Object.equals method because its default behavior is to act like the == operator. We
need to override the equals method so that it acts much like the overridden
String.equals method. The Java Language Specification1 states that an overridden
equals method must exhibit the following properties:

It is reflexive. For any reference value x, x.equals(x) should return true.

It is symmetric. For any reference values x and y, x.equals(y) should return
true if and only if y.equals(x) returns true.

It is transitive. For any reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) should return true.

It is consistent. For any reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparison on the object is modified.

For any nonnull reference value x, x.equals(null) should return false.

1 J. Gosling et al., The Java Language Specification 2d ed. (Boston: Addison-Wesley, 2000).

The preceding properties define an equivalence relation. The listing shows an overridden
equals method that we might add to the Employee class.

equals Method

 1 public boolean equals(Object o) {
 2 if (o == this) {
 3 return true;
 4 }
 5 if (o == null) {
 6 return false;
 7 }
 8 if (getClass() != o.getClass()) {
 9 return false;
10 }
11 Employee e = (Employee) o;
12 return empNumber == e.empNumber
13 && name.equals(e.name)
14 && salary == e.salary;
15 }

equals Method

Lines 2–4 are a check if the argument, o, is a reference to this object. If so, return true.
This statement is for efficiency only; it saves the later checking (as in lines 12–14) of the
individual fields that could be computationally expensive. In lines 5–7, a null argument
fails the equality test in line with the last requirement of the preceding equals equivalence
relation. In lines 8–10, we test whether this object and the argument belong to the same
class. We use the Object.getClass method, which returns the runtime class of an
object. If the two objects do not belong to the same class, they cannot be equal. In line 11,
we cast the object argument to an Employee type. Finally, in lines 12–14, we test if the
fields of the two objects have identical values. For primitive types, such as the

intempNumber and salary, we can safely use the == operator. For the String name,
we use the overridden String.equals method.

5.2.2 hashCode Method

The hashCode method in the Object class returns the hash code for the Object. This
is an int value that is used as a key when objects are placed in a Hashtable.
Hashtables are part of the Collections Framework and are discussed in Chapter 9.
Objects that are equal must produce the same hashCode value; otherwise, they will not
behave correctly in hash-based Collections. This means that if we override the equals
method, as in Employee class, we must also override the Object hashCode method.
We cannot rely on the default Object hashCode value. For example, for the following
Employee objects e1 and e2:

Employee e1 = new Employee(1, ''Sim", 15000);
Employee e2 = new Employee(1, "Sim", 15000);

the values of e1.hashCode() and e2.hashCode() are derived from each instance's
memory address and so will not be the same. The listing shows an overridden hashCode
method that we might add to the Employee class.

hashCode

1 public int hashCode() {
2 int result = 17;
3
4 result = 37 * result + empNumber;
5 result = 37 * result + name.hashCode();
6 result = 37 * result + salary;
7 return result;
8 }

hashCode

The derivation of the algorithm used in the preceding hashCode method is beyond the
scope of this book. It is sufficient to note that we have two main objectives when creating a
hashCode method. First, equal objects must have the same hash code. Second, a hash
method should distribute unequal instances uniformly across all possible hash values.2

5.2.3 toString Method

toString is another method belonging to the Object class. The default behavior is to
return the name of the class, followed by an @ then the hash code of the object in
hexadecimal. toString can be invoked explicitly as in

System.out.println(emp2.toString());

resulting in something like:

Employee@f97

toString is also invoked implicitly by Java when concatenating a non-String object
with a String, as in

System.out.println("emp2 is " + emp2);

2 J. Bloch, Effective Java Programming Language Guide (Boston: Addison-Wesley, 2001).

resulting in

emp2 is Employee@f97

Clearly, we would want to override toString in the Employee class to provide more
meaningful output. The code shows an overridden toString method that we might add to
the Employee class.

toString

1 public String toString() {
2 return ''Employee[" + empNumber + ", " + name + ", "
3 + salary + "]";
4 }

toString

The statement

System.out.println(emp2.toString());

will now output

Employee[2, Sim, 15000]

5.2.4 instanceof Operator

The instanceof operator is used to check if an object is an instance of the specified class
or subclass of that class. If this is the case, instanceof returns the boolean true;
otherwise, it returns false.

For example, in the code fragment

Integer intobj = new Integer(7);
if (intobj instanceof Integer) {
 System.out.println("intobj is an Integer");
}
if (intobj instanceof Object) {
 System.out.println("intobj is an Object");
}

since java.lang.Integer is a subclass of java.lang.Object, both if statements
are true.

5.3 Abstract Classes and Methods

In our bank account example, we can think of a savings account, checking (or current)
account, and long-term deposit account all being physical examples of subclasses of a
generalized account class. The account class is generalized, or abstract, in the sense that it
makes no sense to have a corresponding instantiated object: whenever a physical account is
opened, it must be a savings, checking, or long-term deposit. Nevertheless, we wish to have
an account class that will have defined variables and methods common to all subclasses.
Such a class is defined using the abstract keyword in Java. An abstract class cannot be
instantiated. The abstract class can define variables and methods that subclasses can use or,
if required, can override.

An abstract class can optionally consist of abstract methods. An abstract method consists of
the method declaration only; the method body is omitted. For any subclass of the abstract
class, a method must be declared with the same number and types of arguments (or
signature) as the abstract method, or the subclass will fail to compile. This is of practical
use in large software engineering projects where we want all subclasses of an abstract class
to use the same method signature.

The Abstract Account example shows the code for an abstract Account class.

Abstract Account

 1 abstract class Account {
 2
 3 int accountNo;
 4 String accountName;
 5 double balance;
 6
 7 public Account(int no, String name, double bal){
 8 accountNo = no;
 9 accountName = name;
10 balance = bal;
11 }
12
13 public abstract void deposit(double amount);
14
15 }

Abstract Account

accountNo, accountName, and balance are variables that are inherited by any
subclass of Account. Note the abstract class does have a constructor, but it cannot be
directly instantiated. We would need to instantiate a subclass, and the subclass constructor
would, in turn, invoke the abstract class constructor using the super keyword. deposit
is an example of an abstract method. We assume that all subclasses will have a deposit
method with one double argument, amount. We assume that not all subclasses will have
a withdraw method; LongTermDeposit, for example, may not allow any withdrawals.

CheckingAccount is a subclass of the abstract Account class.

CheckingAccount

 1 class CheckingAccount extends Account {
 2
 3 double minBalance;
 4
 5 public CheckingAccount(int no, String name, double balanc
e) {
 6 super(no, name, balance);
 7 minBalance = 100;
 8 }
 9
10 public void deposit(double amount) {
11 balance = balance + amount;
12 }
13
14 public double withdraw(double amount) {
15 if (balance - amount < 0) {
16 System.out.println(''Insufficient Funds");
17 } else {
18 balance = balance - amount;
19 }
20 return balance;
21 }
22 }

CheckingAccount

The point to note is that CheckingAccount must contain a public void deposit
method with a single double argument since deposit has been defined as an abstract
method in the parent abstract Account class. If the deposit method is not present, the
CheckingAccount class will not compile.

5.4 Interfaces

An interface extends the concept of an abstract class. An interface consists of method
declarations; however, no method body is included. An interface is a requirement: it
specifies "what" without the "how." The "how" is left to the class that implements the
interface. A class that implements an interface undertakes to implement all the methods in
the interface. The signatures of the class methods must be the same as those in the interface.

PerformTransaction is an example of an interface with deposit and withdraw
method declarations.

PerformTransaction

1 interface PerformTransaction {
2 public void deposit (double amount);
3 public double withdraw (double amount);
4 }

PerformTransaction

Note that all methods in an interface are public by default; we have chosen to make this
explicit. An interface is not a class, so we do not have a corresponding object. Any class
can choose to implement the PerformTransaction interface where it makes sense to
have deposit and withdraw methods. To implement an interface, include the
implements interface_name keyword in the class declaration, for example,

class InvestmentFund implements PerformTransaction {

Note that InvestmentFund must include both deposit and withdraw method bodies.
The signatures of these methods must match with those in the interface. Failure to comply
will cause a compilation error in the InvestmentFund class.

Interfaces provide a form of multiple inheritance since a class can choose to implement any
number of interfaces. We shall see examples of this in Chapter 8 when discussing event-
handling listener interfaces. Interfaces can include constants as well as methods. For
example, we could add the following constants to the PerformTransaction interface:

static final int GOOD_CUSTOMER = 1;
static final int BAD_CUSTOMER = 0;

It is possible for an interface to define only constants and no methods.

5.5 Packages

Related classes can be grouped in a package. This makes management of large software
projects easier. Class name conflicts are reduced. If we are creating a new class, we only
need to check that the same class identifier is used in the current package; it does not matter
if the same class identifier is used in another package. Packages also provide a mechanism
for access control. We can allow classes to have unrestricted access to each other within a
package while restricting access to classes outside the package.

The syntax for assigning a class to a package is the statement

package package_identifier;

This must be the first statement in the class source code. Suppose we have an Account
class, consisting of a constructor, deposit and withdraw methods that we place in the
bankaccount package.

package bankaccount;
public class Account {
 public Account(...) {...}
 public void deposit(...) {...}
 public double withdraw(...) {...}
}

Suppose we create an Account class, consisting of a constructor and a deposit method
that belongs to the salesaccount package.

package salesaccount;
public class Account {
 public Account(...) {...}
 public void deposit(...) {...}
}

The functionality of the class Account in the salesaccount package could be
completely different from that of the Account class in the bankaccount package. Note
that the source code will be stored in a directory having the same name as the package
identifier. For example, on the Windows NT operating system, the two Account classes
might be stored in directories

C:\JavaSourceCode\bankaccount and
C:\JavaSourceCode\salesaccount

In this way, any conflict that would be caused by the rule that the Account class source
code must be stored in file Account.java is avoided.

We can also have package hierarchies. For example, we may wish to subdivide the
bankaccount package into two subpackages: debit and credit, say. A class that
belonged to the debit subpackage would have

package bankaccount.debit;

as the first statement. The source code would reside in directory

C:\JavaSourceCode\bankaccount\debit

An application in a package other than bankaccount or salesaccount would access
the Account class or methods by prefixing the identifiers with the package name. This is
illustrated by the following code fragment

bankaccount.Account fredsAccount =
 new bankaccount.Account(123, ''Fred", 60);
salesaccount.Account billsAccount =
 new salesaccount.Account(456, "Bill", 70);

Of course, if the preceding code fragment belonged in the bankaccount package, then
we do not need to use the bankaccount package prefix. The first statement could be
rewritten as

Account fredsAccount = new Account(123, "Fred", 60);

To avoid using the package prefix in a program outside the package being referred to, use
the import keyword. This must be in a statement that immediately follows any package
statement; otherwise, it must be the first statement in the program. For example, the
statement

import bankaccount.*;

allows the program to access any class belonging to the bankaccount package without
the bankaccount prefix. We can import individual classes from a package by using the
statement

import package_identifier.class_identifier;

For example,

import bankaccount.Account;

To achieve global uniqueness, where packages are available to third parties, the following
package naming convention is recommended by Sun: Internet domain name in reverse,
followed by packages and subpackages. For example, we could have
com.sun.java.swing.

One of the strengths of the Java language is the large number of supplied packages and
classes. For example, the following packages are included as part of the Java language:

java.awt Abstract Window Toolkit graphical user interface

java.io Input and output, covered in Chapter 7

java.sql JDBC database access

Sun Microsystems also supplies packages that are not strictly part of the Java language.
This enables these packages to have releases independently of the language releases. These
packages begin with javax. Examples are

javax.swing Swing graphical user interface, covered in
Chapter 8

javax.servlet Servlets

Details of these packages and many more can be found in the API documentation. The
documentation is written in HTML and includes lists of packages and classes as well as an
index to all classes, methods, and variables. Numerous HTML links provide cross-
referencing: by clicking on a class name, its associated methods are displayed. We can then
click on a method name to have details of the method displayed. There are so many
supplied classes in Java that programmers should become familiar with the documentation.

5.5.1 classpath Option

At this point, we should mention the classpath option of both the javac compiler and
java interpreter. The format is

-classpath path1;path2...

This provides a list of starting search directories, which can include jar archive files,
searched for classes by tools such as the javac and java. We cover the jar utility in
Section 7.7.2. For example, suppose the tool is searching for package1.Class1 and the
classpath option, for Windows, is

-classpath C:\myjava\myapps;C:\myjava\myjar1.jar

For Unix, we would use a colon and forward slashes as separators. The tool would look for
Class1 in directory \myjava\myapps\package1 and in myjar1.jar for
package1.Class1. javac (but not java) will, by default, also search in the current
directory. There is no need to specify search locations for supplied core classes such as
java.lang and java.io. The current directory is specified by a dot (.), which is the
default if classpath is not specified.

An alternative to using the -classpath option for each application being compiled or
interpreted is to set the CLASSPATH environment variable. The details for setting this are
operating system dependent; however, the search locations are specified in the same
manner as for the -classpath option.

5.6 Access Control

Java allows one to control access to member variables and methods. Java provides the
following access levels: public, protected, package, and private. public is
the most open access level: variables and methods declared public can be accessed by
any class. protected is the next level of accessibility: protected variables and
methods can be accessed within the same class, package, and subclass, even if the subclass
is in a different package. The package, or friendly, access level is the default: this
allows variables and methods to be accessed from anywhere in the same package.
private is the most restrictive access level: private variables and methods can be
accessed only in the current class.

In the remainder of this section, we will look at some examples of using access levels. The
Private Account example shows an Account class within the bankaccount
package. The class member variables all have their access level set to private. The
Account constructor has no access level explicitly specified, so the package access level
applies by default. We have added a method, balanceCleared, which checks that there
is still money in the account. balanceCleared is invoked by the withdraw method.
We make balanceCleared private because we may later decide to use a more
complex formula for deciding that a balance is clear; one that may involve a different data
representation. Consequently, we do not wish to expose balanceCleared to classes
other than Account. Another use of private methods is to decompose a large public
method into smaller private component methods that on their own make no sense outside
the current class.

Private Account

1 package bankaccount;
 2
 3 class Account {

 4 private int accountNo;
 5 private double balance;
 6 private String accountName;
 7
 8 Account(int accountNo, String accountName, double balanc
e) {
 9 this.accountNo = accountNo;
10 this.accountName = accountName;
11 this.balance = balance;
12 }
13
14 public double withdraw(double amount) {
15 if (balanceCleared(amount)) {
16 balance = balance - amount;
17 } else {
18 System.out.println(''Insufficient Funds");
19 }
20 return balance;
21 }
22
23 private boolean balanceCleared(double amount) {
24 if (balance - amount >= 0) {
25 return true;
26 } else {
27 return false;
28 }
29 }
30 }

Private Account

Consider the following statements issued from another class in the bankaccount package:

Account fredsAccount = new Account(123, "Fred", 60);
if (fredsAccount.balanceCleared(20)) System.out.println("OK");
fredsAccount.accountName = "FRED";

The first statement is legal because the Account constructor has the package access
level by default. The second statement is illegal because the balanceCleared method in
the Account class has private access level. The third statement is also illegal because
the accountName variable is private. A program containing the second and third
statements will not compile.

A common strategy is for all instance variables in a class to be declared private; this is
known as encapsulation. If there is a need for another class to access any of these variables,
this can be done through methods that are declared public, protected, or
package. For example, in the Account class, we could add the setAccountName
method.

public void setAccountName(String newName) {
 accountName = newName;
}

The advantage of this approach is that we can add a number of data integrity checks within
the setAccountName method. For example, if newName contains numeric values or its
length is greater than say, 50, the assignment could fail. To use this method, we would
replace the illegal statement

fredsAccount.accountName = ''FRED";

with the legal statement

fredsAccount.setAccountName("FRED");

Similarly, we can create a method, public String getAccountName(), which
returns the value of accountName. getAccountName is an example of a getter, or
accessor, method, and by convention, these are prefixed with get. setAccountName is
an example of a setter, or mutator, method, and by convention, these are prefixed with
set. These conventions are enforced by environments such as JavaBeans.

The Protected Account example illustrates the use of the protected access level.
We revert to the original withdraw method, which checks the balance. Though we are
prepared to allow all classes within the bankaccount package and all subclasses of
Account to access variables and methods in Account, we are not prepared to expose
these to all classes. So we grant all member variables, the constructor, and the withdraw
method protected access level.

Note the Account class itself has public access level.

Protected Account

 1 package bankaccount;
 2
 3 public class Account {
 4 protected int accountNo;
 5 protected double balance;
 6 protected String accountName;
 7
 8 protected Account(int accountNo, String accountName,
 9 double balance) {
10 this.accountNo = accountNo;
11 this.accountName = accountName;
12 this.balance = balance;
13 }
14
15 protected double withdraw(double amount) {
16 if (balance - amount < 0) {
17 System.out.println("Insufficient Funds");
18 } else {

19 balance = balance - amount;
20 }
21 return balance;
22 }
23 }

Protected Account

The SubAccount class is a subclass of Account that belongs to the salesaccount
package. This subclass does not do very much; it just consists of a constructor that invokes
the parent, Account, class constructor using the super keyword.

SubAccount

 1 package salesaccount;
 2
 3 import bankaccount.*;
 4
 5 class SubAccount extends Account {
 6 double minBalance;
 7
 8 SubAccount(int no, String name, double balance) {
 9 super(no, name, balance);
10 }
11 }

SubAccount

Note that line 5 is legal since the Account class in the Protected Account example
was declared public. By default, a class has package access level, which means a
subclass can only be created in the same package. Line 9 is also legal since this statement
invokes the protected Account constructor in the Account class.

The following statements issued by a program that is within the salesaccount package,
but is not a subclass of Account, are all illegal:

Account shamsasAccount = new Account(456, ''Shamsa", 70);
balance = shamsasAccount.withdraw(10);
shamsasAccount.accountName = "SHAMSA";

The first statement is illegal because the Account constructor in the Protected
Account example is protected, so it can only be accessed outside the bankaccount
package from a subclass of Account. The second statement is illegal because the
withdraw method is protected. The third statement is illegal because the
accountName variable is protected. Note that the preceding three statements would all be
legal if they were placed in the bankaccount package.

Figure 5.1: Java access levels.

Figure 5.1 summarizes Java access levels. A vertical line represents a subclass relationship,
so class B is a subclass of class A. Assume the protection levels are set in class A. Then
the following classes can access methods and variables in class A:

public classes A, B, C, D, and E

protected classes A, B, C, and D

package, or
friendly

classes A, B, and D

private class A

5.7 Inner Classes

An inner class is a class nested within another class. We can describe an inner class
schematically as follows:

class Outer {
 class Inner {

 }
}

An inner class has access to member variables of the enclosing, outer, class even if they are
declared private. An instance of an inner class can exist only within an instance of the
enclosing class. To illustrate this, the Account class includes the Statement inner class.

Account

 1 public class Account {
 2 private int accountNo;

 3 private String accountName;
 4 private double balance;
 5
 6 public Account(int accountNo, String accountName,
 7 double balance) {
 8 this.accountNo = accountNo;
 9 this.accountName = accountName;
10 this.balance = balance;
11 }
12
13 public class Statement {
14 private int statementNo;
15
16 public Statement(int statementNo) {
17 this.statementNo = statementNo;
18 }
19
20 public void printStatement() {
21 System.out.println(''Account No: " + accountNo);
22 System.out.println("Statement No: " + statementNo
);
23 System.out.println("Balance: " + balance);
24 }
25 }
26 }

Account

As before, Account has a constructor (lines 6–11). Lines 13–25 define the Statement
inner class. Every Statement has a statement number, and this is initialized in the inner
class constructor (lines 16–18). Statement also has a method, printStatement (lines
20–24), that prints account and statement details. Note that accountNo and balance are
private variables belonging to the outer, Account, class. Private variables, as we have
seen, can normally be accessed only in the current class. However, inner classes are an
exception, and we can access accountNo and balance in printStatement.

Note that when we compile the Account.java program, we produce two class files:
Account.class and Account$Statement.class. In this way, the one-to-one
relationship of class to class file is maintained.

Recall that an inner class instance can exist only within an outer class instance, so the
format for creating these instances is

OuterClass OuterClassInstance = new OuterClassConstructor;
OuterClass.InnerClass InnerClassInstance =
 OuterClassInstance.new InnerClassConstructor;

Consequently, the statement

Account shamsa = new Account(456, ''Shamsa", 500);

will create an Account, shamsa, as expected. The statement

Account.Statement shamsaStatement = shamsa.new Statement(7);

creates shamsaStatement, which is an instance of the inner, Statement, class with a
statement number of 7. We cannot create this instance unless the outer class instance, in
this case shamsa, is present. We can then invoke an inner class method in the usual way,
for example

shamsaStatement.printStatement();

Inner classes are particularly useful in event-handling applications, for example, when
using adapters. In Chapter 8, we discuss Java's event-handling mechanism, including
adapters, and provide more examples of inner classes.

Inner classes can be embedded within a method; these are known as local inner classes. It is
possible to create local inner classes without a name, or anonymous inner classes. We shall
see an example of this in Chapter 8.

chapter 6
Exceptions
Java provides an exception-handling mechanism that helps you build robust code. When an
error occurs at runtime, an exception is thrown. It is possible for an application to catch this
exception and, in many cases, recover from it.

6.1 Exception Handling

The Multiply class, which we have seen in Chapter 1, multiplies two integers supplied as
arguments and outputs the result.

Multiply

 1 public class Multiply {
 2
 3 public static void main(String[] args) {
 4 String resultString;
 5 int arg1;
 6 int arg2;
 7 int result;
 8
 9 arg1 = Integer.parseInt(args[0]);
10 arg2 = Integer.parseInt(args[1]);
11 result = arg1 * arg2;
12 resultString = Integer.toString(result);
13 System.out.println(''The product of " + args[0] +
14 " and " + args[1] + " is " + resultString);
15 }
16 }

Multiply

If, instead of integers, we supply a real number as an argument, Java will raise the
following runtime NumberFormatException:

> java Multiply 7.3 8
java.lang.NumberFormatException: 7.3
at java.lang.Integer.parseInt(Integer.java:344)
at java.lang.Integer.parseInt(Integer.java:382)
at Multiply.main(Multiply.java:9)

Furthermore, if we were to run the program without supplying any arguments, we would
get the following ArrayIndexOutofBoundsException:

> java Multiply
java.lang.ArrayIndexOutofBoundsException : 0
at Multiply.main(Multiply.java:9)

In both cases, the runtime error is caused when executing the statement in line 9:

arg1 = Integer.parseInt(args[0]);

The NumberFormatException is caused by attempting to convert a string containing a
real number to an integer. The ArrayIndexOutofBoundsException is caused by the
size of the args array being zero; consequently, the element args[0] is outside the
bounds of the args array.

The try and catch statements allow exceptions to be handled by the program. The try
statement contains all the code that may throw an exception. Each exception is handled by a
catch statement. When an exception is thrown at runtime, the try block execution is
terminated and control is passed to the appropriate catch statement. The form of try and
catch statements is

try {
 one or more statements that may throw an exception
} catch (Exception e) {
 one or more statements to be executed if this
 exception is thrown
}

The second version of Multiply has added exception-handling statements.

Multiply—second version

 1 public class Multiply {
 2
 3 public static void main(String[] args) {
 4 String resultString;
 5 int arg1;
 6 int arg2;
 7 int result;
 8

 9 try {
10 arg1 = Integer.parseInt(args[0]);
11 arg2 = Integer.parseInt(args[1]);
12 result = arg1 * arg2;
13 resultString = Integer.toString(result);
14 System.out.println(''The product of " + args[0]
15 + " and " + args[1] + " is " + resultString);
16 } catch (NumberFormatException e) {
17 System.out.println("Both arguments must be integer"
);
18 } catch (ArrayIndexOutOfBoundsException e) {
19 System.out.println(
20 "Two integer arguments are required");
21 }
22 }
23 }

Multiply—second version

The finally statement defines a block of code that is guaranteed to execute after leaving the
try block regardless of how we leave it. Consider the following code fragment:

try {
 one or more statements that may throw an exception
} catch (Exception1 e) {
 code to execute if Exception1 is thrown, statement a
} catch (Exception2 e) {
 code to execute if Exception2 is thrown, statement b
} finally {
 code guaranteed to execute, statement c
}
next statement, statement d
}

If no exception is thrown, then after executing the try block, statements c then d are
executed. If either Exception1 or Exception2 are thrown, then either statement a or b
will be executed. Control is then passed to statement c, then d. At this point, the

finally statement may seem redundant; after all, statement c could be added to the same
block as, and immediately prior to, statement d. However, there is a possibility of another
runtime exception, Exception3, being thrown. Although we should try to anticipate
likely runtime exceptions in our code, it may not be practical to do so. In this case, the
program will abort with an error message at some point in the try block before reaching
statement d. However, if we have the finally clause in our code, statement c will
execute even if Exception3 is thrown before the program aborts. Typically, statement c
would contain some sort of tidying-up code. For example, a file may be opened by one of
the statements in the try block. The file may still be open when one of the exceptions is
thrown. The statement(s) in the finally block would close the file if it were still open.

6.2 Java Exception Classes

When an exception is thrown, an object is thrown corresponding to one of the supplied Java
exception classes. In Section 6.1, we have seen an example of an exception being thrown
by the runtime system; an exception can also be explicitly thrown by the program code.
This is illustrated in Section 6.3. Figure 6.1 shows the exception class hierarchy outline.

Note that the Error hierarchy describes serious internal errors that applications should not
normally try to catch. A large number of exception classes, both runtime and nonruntime,
are inherited from the Exception class. If you want to know details of any particular
exception class, consult the Sun API documentation.

A thrown exception can be caught by an exception class higher in the class hierarchy. For
example, lines 18–21 from the Multiply example in the previous section,

} catch (ArrayIndexOutOfBoundsException e) {
 System.out.println(''Two integer arguments are required");
}

Figure 6.1: Exception hierarchy outline.

could be replaced by

} catch (IndexOutOfBoundsException e) {
 System.out.println(''Out of Bounds Exception");
}

Usually, it is good practice to use the most specific exception class. In the preceding
example, the code in the catch statement must be able to handle any possible
StringIndexOutOfBounds exceptions as well as ArrayIndexOutOfBounds
exceptions.

6.3 Creating Exception Classes

It is possible to create your own exception classes. These exceptions are then explicitly
thrown in the program code using the throw statement. An exception class is created by
creating a subclass of the Java-supplied Exception class. It is possible to create a
subclass of a class lower in the exception class hierarchy, for example, a subclass of the
RuntimeException class. However, this is not good practice, as we shall see later in this
chapter.

As an example, we will create an exception class, ArgumentTooBigException, that
catches exceptions thrown whenever arguments supplied to a program exceed a given value.

ArgumentTooBigException

1 public class ArgumentTooBigException extends Exception {
2 public ArgumentTooBigException(){}
3 }

ArgumentTooBigException

We can use any valid unique identifier for the exception class name. However, the
exception class hierarchy in the Java language uses the standard of an exception class
ending with the string Exception. It is good practice to continue with this convention, so
our class has been named ArgumentTooBigException. It consists of a single
constructor that does nothing other than enable the instantiation of the thrown exception
object.

Suppose we have a class, MultiplyClass, that consists of single method, multiply,
which returns the product of two supplied arguments. If either argument is greater than 99,
we want to throw our ArgumentTooBigException.

multiply Method

 1 public class MultiplyClass {
 2
 3 public static int multiply(int arg1, int arg2)
 4 throws ArgumentTooBigException {

 5 if (arg1 > 99 | arg2 > 99) {
 6 throw new ArgumentTooBigException();
 7 }
 8 return arg1 * arg2;
 9 }
10 }

multiply Method

Note that in the statement (line 6),

throw new ArgumentTooBigException();

the new keyword creates a throwable object corresponding to the
ArgumentTooBigException class. The throw keyword then throws this object. Note
that the method declaration includes the clause throws ArgumentTooBigException
(line 4). Java has a requirement that any exception, other than runtime exceptions, must be
either caught by the method or specified in the throws clause of the method. Note that a
method is not required to declare in its throws clause any subclasses of Error that might
be thrown during its execution. Since the multiply method does not catch the exception,
it must be specified in the throws clause. Since the exception is part of the method
declaration and so part of its interface, any method that invokes the multiply method is
aware of the ArgumentTooBig exception, and the invoking method can decide whether
to catch the exception.

6.4 Propagation of Exceptions

Continuing with the example of the previous section, suppose MultiplyClass now
consists of a main method, which accepts two integer arguments and invokes the
multiplyHandler method. multiplyHandler then invokes the multiply method,
which as we have seen in the previous section may throw an ArgumentTooBig exception.
In this section, we examine how the exception thrown in the multiply method is propagated
upwards through the multiplyHandler and main methods.

MultiplyClass

 1 public class MultiplyClass {
 2
 3 public static void main(String[] args)
 4 throws ArgumentTooBigException {
 5 String resultString;
 6 int arg1;
 7 int arg2;
 8 int result;
 9
10 arg1 = Integer.parseInt(args[0]);

11 arg2 = Integer.parseInt(args[1]);
12 result = multiplyHandler (arg1, arg2);
13 resultString = Integer.toString(result);
14 System.out.println(''The product of " + args[0]
15 + " and " + args[1] + " is " + resultString);
16 }
17
18 public static int multiply(int arg1, int arg2)
19 throws ArgumentTooBigException {
20 if (arg1 > 99 | arg2 > 99) {
21 throw new ArgumentTooBigException();
22 }
23 return arg1 * arg2;
24 }
25
26 public static int multiplyHandler(int arg1, int arg2)
27
 throws ArgumentTooBigException {
28 return multiply(arg1, arg2);
29 }
30 }

MultiplyClass

Since the invoked multiply method specifies the ArgumentTooBigException in its
throws clause, this exception must be either caught or specified in the throws clause of
the multiplyHandler method. Since multiplyHandler does not catch the exception,
we must specify it in the throws clause of the method (line 27).

Now consider the code for the main method. Since the invoked multiplyHandler
method specifies ArgumentTooBigException in its throws clause, this exception
must be either caught or specified in the throws clause of the main method. Since the
main method does not catch the exception, we must specify it in its throws clause (line 4).

Although we have thrown an ArgumentTooBig exception in the multiply method, we
have made no attempt to catch the exception using the try catch construct. What

happens if the exception is thrown? Java will work through the method call stack, through
the multiply, multiplyHandler, and main methods in turn, searching for an
exception handler. Since no exception handler is found, the runtime system, and so the Java
program, terminates. The following output shows the ArgumentTooBig exception being
thrown:

> java MultiplyClass 100 98
ArgumentTooBigException
at MultiplyClass.multiply<MultiplyClass.java:29>
at MultiplyClass.multiplyHandler<MultiplyClass.java:23>
at MultiplyClass.main<MultiplyClass.java:13>

It is not good practice to throw an exception from the main method and have the runtime
system terminate the program. The application should catch the exception and terminate the
program in a controlled manner. The second version of MultiplyClass has the main
method modified to use the try catch construct.

MultiplyClass—second version

 1 public class MultiplyClass {
 2
 3 public static void main(String[] args) {
 4 String resultString;
 5 int arg1;
 6 int arg2;
 7 int result;
 8
 9 try {
10 arg1 = Integer.parseInt(args[0]);
11 arg2 = Integer.parseInt(args[1]);
12 result = multiplyHandler (arg1, arg2);
13 resultString = Integer.toString(result);
14 System.out.println(''The product of " + args[0]
15 + " and " + args[1] + " is " + resultString);
16 } catch (ArgumentTooBigException e) {
17 System.out.println("arguments must be < 100");
18 System.out.println(e.toString());
19 }
20 }
21
22 public static int multiply(int arg1, int arg2)
23 throws ArgumentTooBigException {
24 if (arg1 > 99 | arg2 > 99) {
25 throw new ArgumentTooBigException();
26 }
27 return arg1 * arg2;
28 }
29
30 public static int multiplyHandler(int arg1, int arg2)
31 throws ArgumentTooBigException {

32 return multiply(arg1, arg2);
33 }
34 }

MultiplyClass—second version

Recall that the ArgumentTooBig exception must be either caught or specified in the
throws clause of the main method. Since the exception is caught, we do not need to
specify it in the throws clause.

If we now run MultiplyClass, we get the following result:

> java MultiplyClass 100 98
arguments must be < 100
ArgumentTooBigException

Rather than printing the trace of the method call stack, only the code within the catch
group of statements is executed.

6.5 Runtime Exceptions

Recall from the previous sections that Java has a requirement that any exception, other
than RuntimeException or Error, must be either caught by the method or specified in
the throws clause of the method. Since a runtime exception, as the name suggests, is usually
thrown by the runtime system, it may not be practicable for application code to try to catch
all such exceptions. For this reason, the requirement to throw or catch runtime exceptions is
relaxed by the Java compiler. For example, if instead of an integer, we supply a real
number as an argument to the MultiplyClass application, the runtime
NumberFormatException will be thrown. However, there is no requirement to either
catch or specify this exception.

This suggests the possibility of subclassing your own exceptions as runtime exceptions. We
can rewrite the ArgumentTooBigException class as a subclass of
RuntimeException.

ArgumentTooBigException

1 public class ArgumentTooBigException extends
2 RuntimeException {
3 public ArgumentTooBigException(){}
4 }

ArgumentTooBigException

We will now rewrite all the methods of the MultiplyClass application without having
to either catch or specify the ArgumentTooBigException.

MultiplyClass

 1 public class MultiplyClass {
 2
 3 public static void main(String[] args){
 4 String resultString;
 5 int arg1;
 6 int arg2;

 7 int result;
 8
 9 arg1 = Integer.parseInt(args[0]);
10 arg2 = Integer.parseInt(args[1]);
11 result = multiplyHandler (arg1, arg2);
12 resultString = Integer.toString(result);
13 System.out.println(''The product of " + args[0]
14 + " and " + args[1] + " is " + resultString);
15 }
16
17 static int multiplyHandler(int arg1, int arg2){
18 return multiply(arg1, arg2);
19 }
20
21 static int multiply(int arg1, int arg2){
22 if (arg1 > 99 | arg2 > 99) {
23 throw new ArgumentTooBigException();
24 }
25 return arg1 * arg2;
26 }
27 }

MultiplyClass

However, this use of runtime exceptions is not good software engineering practice. In the
multiply method, we have decided to throw the ArgumentTooBigException. We
have also made the decision not to catch this exception in the multiply method. So the
decision whether or not to catch the exception is made by the invoking method,
multiplyHandler. The only way the developer of the multiplyHandler method
knows which exceptions he or she may need to catch is by examining the code of
multiply to see what exceptions are thrown. On a large project, multiplyHandler
and multiply may be developed by separate teams. The multiply method may be part
of a general utilities class, which may be invoked by a large number of different methods.
In all the preceding scenarios, we would not want users of the multiply method to have
to trawl through our code. All this violates the principle of information hiding; namely, the
invoker of any method needs only to be aware of the method interface but not details of the
invoked method body. Consequently, it is good practice to create your own exceptions as
subclasses of the Exception class. In this way, the catch or specify exceptions
requirement is enforced.

6.6 Assertions

The assert statement, introduced in J2SE 1.4, consists of a boolean expression the
programmer believes to be true when it is executed. If it is not true, Java will throw an
AssertionError exception. Assertions are useful in testing and debugging programs.
The syntax for assert is

assert boolean expression;

If boolean expression evaluates to false, an AssertionError exception is thrown with
no associated message. Alternatively, we can use the syntax

assert boolean expression : value expression;

where value expression is an expression that returns a value; the string equivalent of
this value is output in the AssertionError message if boolean expression is false.

Assertions are typically used within a default else clause, within an if/else statement,
or within a switch statement with no default case. For example, suppose TestAssert
contains the following code fragment:

switch (x) {
case 1:
 System.out.println(''case 1");
 break;
case 2:
 System.out.println("case 2");
 break;
default:
 assert false : x;
 System.out.println("default");
 break;
}
System.out.println("carry on");

We believe that x can take on only the values 1 or 2. Should x take on any other value, the
assert will fail.

By default, the javac compiler runs in 1.3 compatibility mode, so the -source option
should be used, as follows:

> javac -source 1.4 TestAssert.java

At runtime, assertion checking is disabled by default. So if x is equal to 3, say, we will get
the following result:

> java TestAssert
default
carry on

To enable runtime assertion checking, use the -ea option, as follows:

> java -ea TestAssert
Exception in thread "main" java.lang.AssertionError: 3
at TestAssert.main(TestAssert.java.12)

chapter 7
Input/Output
Input and output are performed in Java by means of streams. The same mechanism is used
whether the information is being input or output by means of a file, terminal I/O, socket, or
pipe. Separate streams are used for reading from a source and for writing to a destination or
sink. For both these streams, the mechanism is open a stream, read or write information,
and close the stream. The java.io package provides a large number of classes to handle
the different physical I/O implementations. These are shown in Figures 7.1 to 7.4. J2SE 1.4
includes the java.nio, or ''New I/O," package. This supplements the existing java.io
package and contains features such as buffering for primitive data types and mapping a file
in memory. These subjects are beyond the scope of this book; in this chapter, we cover the
java.io package.

At the top level are InputStream and OutputStream. InputStream is an abstract
class representing an input stream of bytes. This class has a number of methods, the most
important of which are a number of overloaded read methods. OutputStream is an
abstract class representing a output stream of bytes. This class has a number of methods,
the most important of which are a number of overloaded write methods. A number of
specialized classes are inherited from InputStream and OutputStream that override
their parent methods to handle specific I/O implementations, for example, files or pipes.
Figures 7.1 and 7.2 also show a number of subclasses of FilterInputStream and
FilterOutputStream. These filter streams add functionality to existing streams, for
example, providing buffering or letting an application read or write primitive Java data
types. We will see examples of these streams later in this chapter.

Similar to InputStream and OutputStream classes are the Reader and Writer
classes. However, these are abstract classes that represent input and output streams of
characters rather than bytes.

We will cover only some of the I/O streams and for each stream one or two methods. If you
want to know more about any stream, consult the Sun API documentation.

Figure 7.1: InputStream hierarchy.

Figure 7.2: OutputStream hierarchy.

Figure 7.3: Reader hierarchy.

Figure 7.4: Writer hierarchy.

7.1 Terminal I/O Example

To illustrate the use of InputStreams and OutputStreams, Terminal reads in a
stream of bytes from the standard input, typically a computer keyboard, and displays the
result to the standard output, typically a computer screen.

Terminal

 1 import java.io.*;
 2
 3 public class Terminal {
 4
 5 public static void main(String[] args) throws IOException
 {
 6 int b;
 7
 8 while ((b = System.in.read()) != -1) {
 9 System.out.print((char)b);
10 }
11 }
12 }

Terminal

In line 1, we use the import statement to abbreviate java.io class names. In line 8, note
that java.lang.System.in is the standard input. This is an InputStream object. So
we can use one of the overloaded read methods from the InputStream class. This returns
a byte, b, of type int. The value –1 is returned by read when the end of the stream is
reached. The read method throws an IOException, so we need the throws clause in
the declaration of line 5. In line 9, we output to the standard output,
java.lang.System.out. This is not actually an OutputStream object but a
PrintStream object (PrintStream being a subclass of OutputStream). So we can
use one of the overloaded print methods of the PrintStream class to print out b,
having first cast it to a character.

7.2 FileReader and FileWriter Streams

FileReader and FileWriter are character streams, belonging to the Reader and
Writer hierarchies, that are specialized for performing file input and output. These
streams handle 16-bit Unicode characters, and so would normally be used when handling
files containing textual data. Java also provides equivalent byte streams,
FileInputStream and FileOutputStream, that handle ISO-Latin-1 8-bit bytes.
Typically, these streams would be used for handling image and sound data.

Java provides a class, java.io.File, for representing files. The constructor
File(filename) creates a file instance. filename is a string containing just the file
name or the full directory path name; for example, File1.txt or
\\MyJavaFiles\\File1.txt on Windows. In the former case, the physical file will
reside in the same directory as the Java program accessing the file. Note the use of double
backslash characters in the Windows path name, since a single backslash is the escape
character within a string. You can use a single forward slash, for example,
/MyJavaFiles/File1.txt, for both Windows and Unix directory paths. To ensure
portability beyond Windows or Unix environments, the java.io.File class provides a
separator static variable that provides the file separator for the local host.

A number of methods in the File class provide information about the properties or
existence of files. For example, the method File.exists() returns the boolean true if
the specified file physically exists.

To open a file for reading, we create a FileReader object on the file. Either a string or
file object should be supplied to the FileReader constructor. There are a number of
methods in the java.io.FileReader class, the most useful being read. This method is
overloaded to take a string, a single character, or an array of characters as arguments.

To open a file for writing, we create a FileWriter object on the file. Again, either a
string or file object should be supplied to the FileWriter constructor. There are a
number of methods in the java.io.FileWriter class, the most useful being write. This
method is overloaded to take a string, a single character, or an array of characters as
arguments.

7.2.1 FileWriter Example

The WriteFile example writes ten lines of text to a file, File1.txt.

WriteFile

 1 import java.io.*;
 2
 3 public class WriteFile {

 4
 5 public static void main(String[] args) throws
 6 IOException{
 7 String text;
 8 int i;
 9
10 File outputFile = new File(''File1.txt");
11 FileWriter out = new FileWriter(outputFile);
12 for (i=1; i<11; i++) {
13 text = "Line " + i + " of text\n";
14 out.write(text);
15 }
16 out.close();
17 }
18 }

WriteFile

As the FileWriter write method throws an IOException, we include the clause
throws IOException in the main declaration (lines 5–6). Line 10 creates a file object,
outputFile, associated with the physical file File1.txt. In line 11, this file object is
then passed as an argument to the FileWriter constructor, which creates an output
stream, out. We could have omitted creating the file object and passed the file name as an
argument to the FileWriter constructor, as follows:

FileWriter out = new FileWriter("File1.txt");

In lines 12–15, we have a for loop that, for each of ten iterations, creates a line of text held
in the string variable, text. In line 13, note that the last character in the string is \n; this
creates a new line after the string has been output. In line 14, the text is output to the file
using the java.io.FileWriter.write method.

Finally, in line 16, we use the java.io.FileWriter.close method to close the output
stream and release associated system resources. We do not have to explicitly close the
output stream; it is implicitly closed by the Java garbage collector when the output stream
object is no longer referenced. However, it is good practice to explicitly close streams when
they are no longer needed.

7.2.2 The write Method

We mentioned earlier that the java.io.FileWriter.write method is overloaded to
take either a string, a single character, or an array of characters as an argument. The
WriteFile example used a string, text, as an argument to the write method. The
second version of WriteFile has the same functionality as before, except that it converts
the output string to a char array, charbuff, then uses charbuff as an argument to the
write method.

WriteFile—second version

 1 import java.io.*;
 2
 3 public class WriteFile {
 4
 5 public static void main(String[] args) throws
 6 IOException{
 7 String text;
 8 char charbuff[] = new char [30];
 9 int i;
10 int j;
11
12 FileWriter out = new FileWriter(''File1.txt");
13 for (i=1; i<11; i++) {
14 text = "Line " + i + " of text\n";
15 for (j=0; j < text.length(); j++) {
16 charbuff[j] = text.charAt(j);
17 }
18 out.write(charbuff, 0 ,text.length());
19 }
20 out.close();
21 }

WriteFile—second version

The char array is created in line 8. We have dispensed with creating a file object; instead, in
line 12, we supply the file name as an argument to the FileWriter constructor.

In lines 15–17, we have a for loop that takes each character in a string, converts it to a
type char, and assigns it to the charbuff array. The method
java.langString.charAt(j) takes the jth character of the supplied string and
returns a char value.

In line 18, we use the write(char Array, offset, length) form of the write
method to output charbuff to the output stream, out.

7.2.3 The OutputStreamWriter Stream

The observant reader will have noticed in Figure 7.4 that FileWriter is a subclass of
OutputStreamWriter. The OutputStreamWriter stream converts characters
written to it to bytes: OutputStreamWriter can be wrapped around any byte
OutputStream, including File-OutputStream. FileWriter is actually a
convenience class that is equivalent to an OutputStreamWriter stream wrapped around
a FileOutputStream. So the statement in line 12 of WriteFile,

FileWriter out = new FileWriter("File1.txt");

is equivalent to

FileOutputStream fout = new FileOutputStream(''File1.txt");
OutputStreamWriter out = new OutputStreamWriter(fout);

Characters written to an OutputStreamWriter are converted to bytes using a character
encoding scheme. The default is the host's default encoding scheme. For Windows, this is
ISO 8859–1, the ISO Latin alphabet No. 1. To use another encoding scheme, it has to be
specified in the second form of the OutputStreamWriter constructor. For example, if
we want to specify the ISO 8859-7 Latin/Greek alphabet, we would use the constructor

OutputStreamWriter out = new
 OutputStreamWriter(fout, "ISO8859_7");

7.2.4 The PrintWriter Stream

The PrintWriter stream is used for printing strings and numbers in text format. A
PrintWriter stream can be wrapped around any byte OutputStream or character
Writer stream, including FileWriter. The PrintWriter class implements all the
print methods of the PrintStream class. The WritePrintFile program has the same
functionality as the WriteFile program from Section 7.2.1, but outputs to a
PrintWriter wrapped around a FileWriter stream.

WritePrintFile

 1 import java.io.*;
 2
 3 public class WritePrintFile {
 4
 5 public static void main(String[] args) throws
 6 IOException{
 7 String text;
 8 int i;
 9
10 File outputFile = new File("File1.txt");
11 FileWriter out = new FileWriter(outputFile);
12 PrintWriter p = new PrintWriter(out);
13 for (i=1; i<11; i++) {
14 p.println("Line " + i + " of text");
15 }
16 p.close();
17 out.close();
18 }
19 }

WritePrintFile

In lines 10–12, we create a PrintWriter object, p, wrapped around the FileWriter
stream, out, which outputs to our file File1.txt. Note in line 14, we use the
PrintWriter println method, which prints the string then terminates the line, so
dispensing with the \n newline character.

7.2.5 FileReader Example

The ReadFile example reads a file, File1.txt, and prints out the contents of the file
to the standard output stream using the System.out.print method.

ReadFile

 1 import java.io.*;
 2
 3 public class ReadFile {
 4
 5 public static void main(String[] args) throws
 6 IOException {
 7 File inputFile = new File(''File1.txt");
 8 if (! inputFile.exists()) {
 9 System.out.println("File does not exist");
10 System.exit(1);
11 }
12 FileReader in = new FileReader(inputFile);
13 int c;
14 while ((c = in.read()) != -1){
15 System.out.print((char) c);
16 }
17 in.close();
18 }
19 }

ReadFile

In line 7, we create a file object, inputFile, using the java.io.File constructor. In
line 8, we test the physical existence of this file using the java.io.File.exists
method. If the file does not exist, the program prints a message, then terminates using the
System.exit method (lines 9–10).

If the file does exist, we then create an input stream, in, with the java.io.FileReader
constructor (line 12). In line 14, we use the java.io.FileReader.read method to
read a single character from the input stream. This method returns a value of –1 when the
end of the input stream is reached. Consequently, the while statement will read all the
characters in turn from the input stream. The read method returns a character, c, of type
int, so we need to cast this to a char type to use the System.out.print method in
line 15.

Analogous to FileWriter, FileReader is actually a convenience class that is
equivalent to an InputStreamReader stream wrapped around a FileInputStream.

So the statement in line 12 of ReadFile,

FileReader in = new FileReader(inputFile);

is equivalent to

FileInputStream fin = new FileInputStream(inputFile);
InputStreamReader in = new InputStreamReader(fin);

Like OutputStreamWriter, InputStreamReader also has a constructor for
specifying non-default character-encoding schemes.

7.2.6 Using FileNotFoundException

The ReadFile example in the previous section used the java.io.File.exists
method to test for the existence of the input file, and aborting with an error message if the
file was not present. The second version of ReadFile achieves the same functionality by
testing for a FileNotFoundException using try catch statements.

ReadFile—second version

 1 import java.io.*;
 2
 3 public class ReadFile {
 4
 5 public static void main(String[] args) throws
 6 IOException {
 7 File inputFile = new File(''File1.txt");
 8 try {
 9 FileReader in = new FileReader(inputFile);
10 int c;
11 while ((c = in.read()) != -1){
12 System.out.print((char) c);
13 }
14 in.close();
15 } catch (FileNotFoundException e) {
16 System.out.println("File does not exist");
17 System.exit(1);
18 }
19 }
20 }

ReadFile—second version

Most of the program's processing is within the try statement. In line 9, if the file
File1.txt does not physically exist, then the java.io.FileReader constructor will
raise a FileNotFoundException. This exception is handled by the catch statement

in line 15. In this case, the program prints a message, then terminates using the
System.exit method (lines 16–17).

7.3 FileInputStream and FileOutputStream

The FileReader and FileWriter streams handle 16-bit Unicode characters, so would
normally be used when handling files containing textual data. The equivalent byte streams,
FileInputStream and FileOutputStream, handle ISO-Latin 8-bit bytes. Typically,
these streams would be used for handling image and sound data. The ReadWriteFile
example reads the contents of file File1.txt using FileInputStream and writes
them to File2.txt using FileOutputStream.

ReadWriteFile

 1 import java.io.*;
 2
 3 public class ReadWriteFile {
 4
 5 public static void main(String[] args) throws
 6 IOException {
 7 int c;
 8
 9 File inputFile = new File(''File1.txt");
10 File outputFile = new File("File2.txt");
11 FileInputStream in = new FileInputStream(inputFile);
12 FileOutputStream out =
13 new FileOutputStream(outputFile);
14 while ((c = in.read()) != -1){
15 out.write(c);
16 }
17 in.close();
18 out.close();
19 }
20 }

ReadWriteFile

In lines 9–10, we create file objects, inputFile and outputFile. In lines 11–13, we
then use FileInputStream and FileOutputStream constructors to create the two
stream objects, in and out. Line 14 uses the java.io.FileInputStream.read
method in the same way as the java.io.FileReader.read method described in
Section 7.2.5. Most of the methods in the

FileReader and FileWriter classes have an equivalent in FileInputStream and
FileOutputStream, respectively.

Line 15 uses the form of the java.io.FileOutputStream.write method that
outputs a single character, c, at a time to the output stream, out.

7.4 Buffered Input and Output Streams

If a large amount of data is being read from a source or written to a destination, buffering
will make the processing more efficient. Instead of accessing the destination for every write,
by using a buffered output stream, data is written to a buffer; when the buffer is full, it is
sent to the destination with one write. Similarly, with a buffered read operation, the buffer
is filled with a single read. If the stream is a file stream, then both the source and
destination will typically be a disk file. Buffered streams are used in conjunction with
character or byte streams. BufferedReader and BufferedWriter are buffered
streams used to wrap any character Reader or Writer stream; for file streams, these are
FileReader and FileWriter, respectively. BufferedInputStream and
BufferedOutputStream are buffered streams used to wrap any byte InputStream or
OutputStream; for file streams, these are FileInputStream and
FileOutputStream, respectively.

When creating a buffered stream using the buffered stream constructor, you can specify a
buffer size or use the default size.

The following sections illustrate the BufferedReader and BufferedWriter streams.
BufferedInputStream and BufferedOutputStream are handled in a similar
manner, so we have not shown any examples of these.

7.4.1 BufferedWriter Example

Recall the WriteFile example, from Section 7.2.1, which uses the FileWriter stream
to write ten lines of text to file File1.txt. We have modified this to use a
BufferedWriter stream; the result is WriteBufFile.

WriteBufFile

 1 import java.io.*;
 2
 3 public class WriteBufFile {
 4
 5 public static void main(String[] args) throws
 6 IOException{
 7 String text;
 8 int i;
 9
10 FileWriter out = new FileWriter(''File1.txt");
11 BufferedWriter outBuffer = new BufferedWriter(out);
12 for (i = 1; i < 11; i++) {

13 text = ''Line " + i + " of text\n";
14 outBuffer.write(text);
15 }
16 outBuffer.close();
17 out.close();
18 }
19 }

WriteBufFile

In line 10, we create a FileWriter stream as previously. In line 11, we create a
BufferedWriter stream with the default buffer size to wrap the FileWriter stream,
out.

The remaining code is as before except that in line 14 we write to the buffer stream using
the java.io.BufferedWriter.write method.

7.4.2 Flushing the BufferedWriter Stream

When data is being written using BufferedWriter, unless the total data is an exact
multiple of the buffer size, some data will be left in the buffer that has not been written to
the destination. Normally, this is not a problem because as soon as the BufferedWriter
stream is closed, either explicitly or implicitly when the program terminates, the buffer is
implicitly flushed, that is, the remaining buffer contents are written to the destination.

However, there may be occasions when we want to explicitly flush the buffer. To do this,
use the java.io.BufferedWriter.flush method. For example, in the
WriteBufFile example of the previous section, we add the statement

outBuffer.flush();

immediately before closing the BufferedWriter stream (line 17) to explicitly flush the
buffer.

7.4.3 BufferedReader Example

Recall the ReadFile example from Section 7.2.5 that uses the FileReader stream to
read and print the contents of file File1.txt. We have modified this to use a
BufferedReader stream; the result is ReadBufFile.

ReadBufFile

 1 import java.io.*;
 2
 3 public class ReadBufFile {
 4
 5 public static void main(String[] args) throws
 6 IOException {
 7 int c;

 8
 9 FileReader in = new FileReader(''File1.txt");
10 BufferedReader inBuffer = new BufferedReader(in);
11 while ((c = inBuffer.read()) != -1){
12 System.out.print((char) c);
13 }
14 inBuffer.close();
15 in.close();
16 }
17 }

ReadBufFile

In line 9, we create a FileReader stream as previously. In line 10, we then create
BufferedReader stream to wrap the FileReader stream, in.

The remaining code is as before except that in line 11 we read from the buffer stream using
the java.io.BufferedReader.read method.

7.5 DataInputStream and DataOutputStream

DataInputStream and DataOutputStream are streams that enable applications to
read or write primitive Java data types by wrapping an underlying byte stream. For file
streams, these underlying streams are FileInputStream and FileOutputStream.
Both the java.io.DataInputStream and java.io.DataOutputStream classes
contain a large number of methods for reading and writing the primitive Java data types.
DataInputStream and DataOutputStream are examples of filter streams.

7.5.1 DataOutputStream Example

The WriteBinFile example writes out an order to a file File1.dat. The order
consists of a number of lines; each line is made up of an item, price, and quantity ordered as
follows:

ice axe;74.99;2
crampons;44.95;1
sleeping bag;100.00;1
mittens;37.50;3

A semicolon is used as a field separator.

WriteBinFile

 1 import java.io.*;
 2
 3 public class WriteBinFile {

 4
 5 public static void main(String[] args) throws
 6 IOException {
 7 FileOutputStream fileOut = new
 8 FileOutputStream(''File1.dat");
 9 DataOutputStream out = new DataOutputStream(fileOut);
10 String[] item = {"ice axe", "crampons",
11 "sleeping bag", "mittens"};
12 float[] price = {74.99f, 44.95f, 100.00f, 37.50f};
13 int[] qty = {2, 1, 1, 3};
14 char fieldSeparator = ';';
15 char lineSeparator = '\n';
16 int i;
17 for (i = 0; i < 4; i++) {

18 out.writeChars(item[i]);
19 out.writeChar(fieldSeparator);
20 out.writeFloat(price[i]);
21 out.writeChar(fieldSeparator);
22 out.writeInt(qty[i]);
23 out.writeChar(lineSeparator);
24 }
25 out.close();
26 }
27 }

WriteBinFile

In lines 7–8, we create a FileOutputStream object, fileOut, in the usual way.

In line 9, we use the DataOutputStream constructor to create an object, out, to wrap
the FileOutputStream, fileOut.

In lines 10–13, we create a String array, item, holding the four items, a float array,
price, holding the four prices, and an int array, qty, holding the four quantities. In lines
14–15, we define field and line separators.

In lines 17–24, we use a for loop to output the four lines to the DataOutputStream. For
each line, we use the following methods from the java.io.DataOutputStream class:

writeChars outputs a String data type, in this case, item

writeChar outputs a char data type, in this case, the field separator

writeFloat outputs a float data type, in this case, price

writeChar outputs another field separator

writeInt outputs an int data type, in this case, qty

writeChar outputs the line separator

7.5.2 DataInputStream Example

The ReadBinFile example reads the file File1.dat, produced by WriteBinFile
described in the previous section, and prints the file contents.

ReadBinFile

 1 import java.io.*;
 2
 3 public class ReadBinFile {
 4
 5 public static void main(String[] args) throws
 6 IOException {
 7 float price;
 8 int qty;
 9 char singlechar;
10 StringBuffer item;
11 FileInputStream fileIn = new FileInputStream(''File1.
dat");
12 DataInputStream in = new DataInputStream(fileIn);
13 try {
14 while (true) {
15 item = new StringBuffer(30);
16 while ((singlechar = in.readChar()) != ';') {
17 item.append(singlechar);
18 }
19 price = in.readFloat();
20 in.readChar(); /* skip field separator */
21 qty = in.readInt();
22 in.readChar(); /* skip line separator */
23 System.out.println("item: " + item + " price:
 "
24 + price + " quantity: " + qty);
25 }
26 } catch (EOFException e) {
27 in.close();
28 }
29 }
30 }

ReadBinFile

In line 11, we create a FileInputStream object, fileIn, in the usual way. In line 12,
we use the DataInputStream constructor to create an object, in, to wrap the
FileInputStream, fileIn.

With a DataInputStream, we cannot use –1 to indicate we have reached the end of a
file. Instead, we use try catch statements that handle the EOFException that is raised

when any of the DataInputStream read methods reach the end of the file. Within the
try statement, we start an infinite loop in line 14.

In lines 15–18, we use the DataInputStream.readChar method to read a single
character, singlechar, from the stream. Each character is appended to the variable
item, a StringBuffer data type, until we read a field separator.

In line 19, we read the price from the stream using the DataInputStream.readFloat
method. We use the readChar method to skip the field separator (line 20), then read the
quantity using the readInt method (line 21). We use the readChar method again to skip
the line separator (line 22), then in lines 23–24 print the file contents for the current line to
the standard output stream.

7.5.3 Wrapping Filter Streams

Filter streams can be successively layered. For example, in the WriteBinFile program
of Section 7.5.1, we could use a buffered DataOutputStream with the statements

FileOutputStream fileOut = new FileOutputStream(''File1.dat");
BufferedOutputStream buffOut = new BufferedOutputStream(fileOut);
DataOutputStream out = new DataOutputStream(buffOut);

7.6 Random Access Files

All the file input and output streams discussed so far in this chapter are sequential. This is
fine for batch processing, where the entire contents of a file are either read, written to, or
updated. However, this sequential mode can be very inefficient when we want to access just
a few records in a large file stored on disk. If the record is located at the beginning of the
file, there will be little degradation in performance; if the record is located at the end of the
file, we will need to read through the entire file to reach our desired record. Random access
provides nonsequential or direct access to the contents of a file. In Java, this facility is
achieved by maintaining an index or file pointer. The file pointer is moved whenever data is
read from or written to the file and so provides the current position in the file.

Java provides the java.io.RandomAccessFile class both for reading from and
writing to random access files. The class provides a number of methods, many of which are
similar to the read and write methods we have seen for other streams. However, a few
methods are unique to this class; the most significant are getFilePointer and seek.
getFilePointer returns the current position of the file pointer; seek positions the file
pointer just before the specified byte offset.

This means that to randomly access a record, we need to know its position in the file.
Consequently, although variable length records are permitted in Java random access files,
they are most likely to be of fixed length. Also in practice, we would need an algorithm that
would map a record's unique key identifier to a byte offset position in the file.

7.6.1 Writing to a Random Access File

The WriteRAF example writes ten records to a random access file RAFile1.dat.
Obviously, in practice, we would use a random access for files of at least several thousand
records. Each record consists of a string corresponding to a person's address. Random
access records can consist of fields corresponding to any of the Java primitive data types.

WriteRAF

 1 import java.io.*;
 2
 3 public class WriteRAF {
 4
 5 public static void main(String[] args) throws
 6 IOException {
 7 int i;
 8 String text;
 9 RandomAccessFile fileOut;
10
11 fileOut = new RandomAccessFile(''RAFile1.dat", "rw");
12 for (i=1; i<11; i++) {
13 text = "Address of " + i + " person\n";
14 System.out.println("offset: " + fileOut.length()
);
15 fileOut.seek(fileOut.length());
16 fileOut.writeChars(text);
17 }
18 fileOut.close();
19 }
20 }

WriteRAF

In line 11, we create a random access file object, fileOut, which corresponds to physical
file RAFile1.dat using the RandomAccessFile constructor. When creating a random
access file, we need to specify whether the file is for reading and writing, "rw", or for
reading only, "r".

We execute a for loop (lines 12–17) that writes each record to the file. In line 15, we
position the file pointer at the end of the file so that we append the records to the file in the
right order. The java.io.RandomAccessFile.length method returns the length, in
bytes, of the file. We then use this length as the offset argument in the
java.io.RandomAccess.seek method. Because each string is 20 characters, or 40
bytes, in length, we know the offsets for each record will be 0, 40, 80, 120, and so on. The
println statement in line 14 simply confirms this.

In line 16, we use RandomAccessFile.writeChars to write the address string, text,
as a sequence of characters to the file.

7.6.2 Reading from a Random Access File

The ReadRAF example reads the random access file, RAFile1.dat, created in the
previous section. We retrieve the record identified by an offset of 80 bytes, the third record,
and print its contents to the standard output stream.

ReadRAF

 1 import java.io.*;
 2
 3 public class ReadRAF {
 4
 5 public static void main(String[] args) throws
 6 IOException {
 7 char singlechar;
 8 StringBuffer address;
 9 RandomAccessFile fileIn;
10
11 fileIn = new RandomAccessFile(''RAFile1.dat", "r");
12 fileIn.seek(80);
13 address = new StringBuffer(20);
14 while ((singlechar = fileIn.readChar()) != '\n') {
15 address.append(singlechar);
16 }
17 System.out.println(address);
18 fileIn.close();
19 }
20 }

ReadRAF

In line 11, we use the RandomAccessFile constructor to create our file object, fileIn,
only this time we specify a read-only file. If we attempt to write to this file with any of the
write methods, an IOException will be thrown.

In line 12, we position the file pointer at an offset of 80 bytes using the
java.io.Random-AccessFile.seek method.

In lines 14–16, we have a while loop that reads each single character from the file and
appends to a StringBuffer variable, address. The while loop is terminated when we
read the line separator. The single characters are read from the file using the
java.io.RandomAccess-File.readChar method. The record contents, which are
now held in the address variable, are printed to the standard output stream in line 17.

7.7 Object Serialization

Normally, objects do not persist beyond the lifetime of the program that created them.
However, persistence is required when we write objects to a file to be later read back in,
possibly by a different program. Although we have seen how to read and write primitive
data types and text to a file, we require a mechanism for storing the state of an object.
Serialization converts an object and its state to a stream of bytes. RMI (Remote Method
Invocation) also uses serialization to transparently communicate with objects on remote
machines.

The JVM automatically handles most details of serialization, at least for default cases.
However, Java provides a mechanism where we can customize the serialization process if
required.

Serialization is a large topic, and we cover just the basics here. Topics such as class
versioning, or evolution, have been omitted.

The byte streams ObjectInputStream and ObjectOutputStream allow us to read
and write objects. As an example, consider the following Account class. Account
includes a constructor that throws a customized ValueTooSmallException if we
attempt to create an Account object with a negative balance.

ValueTooSmallException

1 public class ValueTooSmallException extends
2 Exception {
3 public ValueTooSmallException(){}
4
5 public ValueTooSmallException(String message) {
6 super(message);
7 }
8 }

ValueTooSmallException

Account

 1 import java.io.*;
 2
 3 class Account implements Serializable {
 4 int accountNo;
 5 String accountName;
 6 double balance;
 7
 8 Account(int accountNo, String accountName, double balance
)
 9 throws ValueTooSmallExcepti
on {
10 this.accountNo = accountNo;
11 this.accountName = accountName;

12 if (balance < 0) {
13 throw new ValueTooSmallException(''Negative Balance
");
14 else {
15 this.balance = balance;
16 }
17 }
18 }

Account

Suppose we want to write Account objects to a file and subsequently read these from the
file. The first requirement for writing an object to a stream is that the corresponding class
must implement the Serializable interface. So note the implements
Serializable clause in line 3. Note that the Serializable interface does not require
us to implement any methods. Such a no-method interface is known as a marker interface.

A second requirement is that the object's member variables are nonstatic. Serialization will
not affect static variables; they may be different when the object is read back in, or
deserialized.

WriteAccount is a program that writes two Account objects, account1 and account2,
to a file acc.dat.

WriteAccount

 1 import java.io.*;
 2
 3 class WriteAccount {
 4
 5 public static void main(String[] args) throws
 6 IOException, ValueTooSmallException {
 7 Account account1 = new Account(1, "account1", 40);
 8 Account account2 = new Account(2, "account2", 100);
 9 FileOutputStream out = new FileOutputStream("acc.dat"
);
10 ObjectOutputStream outob = new ObjectOutputStream(out
);
11 outob.writeObject(account1);
12 outob.writeObject(account2);
13 outob.close();
14 out.close();
15 }
16 }

WriteAccount

In line 9, we create a FileOutputStream object, out, that outputs to file acc.dat.
Line 10 creates an ObjectOutputStream object, outob, wrapped around out. It is
important to note that an ObjectOutputStream object can be wrapped around any byte
OutputStream, not just a FileOutputStream. In lines 11–12, we use the
ObjectOutputStream writeObject method to write the account1 and account2
objects to outob.

ReadAccount is a program that reads the Account objects from the acc.dat file using
an ObjectInputStream.

ReadAccount

 1 import java.io.*;
 2
 3 class ReadAccount {
 4
 5 public static void main(String[] args) throws
 6 IOException, ClassNotFoundException {
 7 FileInputStream in = new FileInputStream(''acc.dat");
 8 ObjectInputStream inobj = new ObjectInputStream(in);
 9 Account acc1 = (Account) inobj.readObject();
10 Account acc2 = (Account) inobj.readObject();
11 System.out.println(" 1st number : " + acc1.accountNo);
12 System.out.println(" 2nd balance : " + acc2.balance);
13 inobj.close();
14 in.close();
15 }
16 }

ReadAccount

In lines 7–8, we create an ObjectInputStream object, inobj, wrapped around a
FileInputStream object, in, which is connected to the acc.dat file. In lines 9–10, we
use the ObjectInputStream readObject method to read the Account objects from
the ObjectInputStream. readObject returns an Object type, so this needs to be
cast to Account. readObject reads the objects in the same order as they were written
to the acc.dat file. So acc1 corresponds to the account1 object in the
WriteAccount program. readObject throws a ClassNotFoundException, so this
exception should be present in the throws clause of the declaration (lines 5–6), together
with the IOException thrown by all the stream methods.

The objects being written and read may be considerably more complex than this. For
example, the Account class may have a reference to a Branch object. Furthermore, a
number of Account objects may refer to the same Branch. To avoid making multiple
copies of the Branch object, Java gives each object a serial number when writing to an
ObjectOutputStream, hence the name serialization for this process. The process of
reading back the object from the ObjectInputStream is called deserialization.

Note that when serializing an object, any referenced object must also be serializable. In fact,
all objects in the referenced graph, known as transitive closure, must be serializable.

7.7.1 Controlling Serialization

Writing objects to a file that is possibly passed on to a third party before being read back in
does mean a loss of control, which may cause concern for sensitive data. Of course, if we
do not want an object to be serialized at all, we simply do not include the implements
Serializable clause in the class declaration. If, however, we do not want individual
member variables to be serialized, while allowing the serialization of others, we can use the
transient keyword. For example, if we do not want to allow serialization of the account
name, we change line 5 of Account to

transient String accountName;

If we now run WriteAccount, then ReadAccount, acc1.accountName and
acc2.accountName will both be set to null. The effect would have been the same if
accountName had been a static variable.

We may want to act defensively and guard against our file being corrupted. For example,
recall that the Account class constructor will throw a ValueTooSmallException if an
attempt is made to create an Account object with a negative balance. The readObject
method (in lines 9–10 of ReadAccount) does not invoke the Account constructor. So if
the acc.dat file became corrupted and the balance of account1 altered from 40.0 to –
40.0, ReadAccount would still create an acc1 object with a balance of –40.0 violating
our constructor constraint. To guard against this, we can add our own version of the
readObject method to the Account class.

readObject

 1 private void readObject(ObjectInputStream in) throws
 2 IOException, ClassNotFoundException {
 3 in.defaultReadObject();
 4 if (balance < 0) {
 5 throw new InvalidObjectException(''Negative Balance")
;
 6 }
 7 }

readObject

The first statement must be a call of the ObjectInputStream defaultReadObject
method (line 3), which reads the nonstatic, nontransient variables of the current class,
Account, from the stream. defaultReadObject throws IOException and
ClassNotFoundException, so these should be included in the throws clause of the
declaration (lines 1–2). Any customized code follows the defaultReadObject call. In
this case, we throw an InvalidObjectException if the balance is negative (lines 4–6).
An InvalidObjectException is used to indicate that one or more deserialized objects

have failed validation tests. As a defensive programming strategy, we would include all
class constructor constraints in a readObject method if the class is being serialized.

In a similar manner, if we wish to customize the serialization process, we can add a
writeObject method with customized code following a call to defaultWriteObject.

7.7.2 The jar Tool

At this point, we should mention the jar tool, provided as part of the Java SDK. The jar
tool combines multiple files into a single jar archive file. jar files are compressed, like
ZIP files, and can contain class files, serialized files, data files, images, and so on. This
makes for convenient installation and distribution of files, and as we have seen in Chapter 5,
we can include jar files in a classpath list. In the following example:

jar cvf myjar Class1 Class2

cvf are jar options, indicating c, which creates a new or empty archive; v, which
generates verbose output; and f, which specifies a jar file name, myjar in the example.

The jar tool automatically creates a manifest file, META-INF/MANIFEST.MF, which
contains metadata describing the archive and is the first entry in the jar file. There are
many options in the jar tool, for example, extracting files from an archive, listing contents
of a jar file, and incorporating a customized manifest file.

chapter 8
Developing GUIs
From its initial release, Java has included a number of classes for providing a graphical user
interface (GUI). These classes were collectively known as the Abstract Window Toolkit
(AWT). In Java versions 1.0 and 1.1, the AWT was the only means available for
developing GUIs.

Java Swing classes for developing GUIs became available with the Sun Software
Development Kit (SDK) platform 2; this included version 1.2 of the Java language, so 1.2
or a higher version of Java should be used to develop Swing programs. Swing provides a
larger set of components than AWT and has a much richer functionality than the AWT
equivalents. Furthermore, an AWT GUI takes on a look and feel dependent on the
underlying operating system, whereas with Swing it is easy to specify a look and feel for
most operating systems. In this chapter, we describe Swing. Swing, however, is a very large
topic. There are many components with associated classes, methods, and interfaces. In this
chapter, we can cover only the basics.

8.1 Introduction

Three basic concepts behind Swing are containers, components, and event handling. A
container can be regarded as a screen or part of a screen. A container has an associated
layout, which determines how components are arranged when they are added to a container.
Atomic graphical user components, such as buttons, radio buttons, lists, and check boxes,
are placed in containers. These can be top-level containers such as applets or frames, or can
be placed in intermediate-level components such as panels, which in turn, are placed in the
top-level containers. Event handling is the means by which user interactions are captured
by a program, for example, a user makes a selection from a list of available items.

Swing has separate model and view classes for components. The data is held in a model
class and is displayed in a view class. For example, the button data model interface is
ButtonModel, and the supplied class that implements this interface is
DefaultButtonModel. The button view class is JButton. For most components, the
model is kept in the background, and the application program interacts with the view class
through supplied methods. However, for more complex components, such as lists and
tables, we need to explicitly interact with the model classes. One consequence of this
separation of model and view classes is that it is possible for certain components to share
models.

With the AWT, each component Java class had a corresponding device-dependent interface
or peer that maps the classes execution code onto the underlying windowing system. So an
AWT button includes Windows and Motif peer interfaces, for example. For this reason,
AWT components are called heavyweight. Swing, on the other hand, is peerless, or

lightweight, in that all component code is written entirely in Java. There are no device-
dependent component peers; all the interaction with the underlying windowing system
takes place within the top-level applet or frame containers. A consequence of this is that,
whereas with AWT the GUI takes on a look and feel dependent on the underlying operating
system, with Swing GUIs take on a Java look and feel by default although it is possible to
specify a look and feel for most operating systems.

Although Swing supersedes the AWT, Swing still makes use of AWT classes especially in
the area of event handling. Consequently, the Swing examples in this chapter will typically
use java.awt as well as javax.Swing classes.

Figures 8.1 and 8.2 are examples of GUIs that we can create with Swing. These represent a
simplified online equipment store. Figure 8.1 represents a screen where prospective
customers enter their details. Figure 8.2 represents an order entry screen where customers
place selected purchases in a shopping cart.

We refer to these screens throughout this chapter because they provide examples of a
number of components and containers. In Section 8.9, we provide the program code behind
Figure 8.1.

8.2 Swing Components

In this section, we describe a number of components available in the
javax.swing.JComponent class. Figure 8.3 shows the inheritance hierarchy for both
top-level containers and many of the lower-level components.

All the components within the JComponent class begin with a J. This distinguishes them
from the earlier AWT components.

To abbreviate Swing class names, a program should include the statement

import javax.swing.*;

8.2.1 Button

This is one of the simplest components. The component labeled ''Add to Cart," in Figure
8.2, is an example of a button. To create a button, first declare the button object to be of
type JButton. For example,

JButton cartbutton;

Figure 8.1: Customer Details Screen.

Then invoke the javax.swing.JButton constructor, as follows:

cartbutton = new JButton(''Add to Cart");

This will create a button labeled with the supplied text. It is possible to create an unlabeled
button using the constructor JButton(). All the layout examples in Section 8.5 also use
buttons.

Figure 8.2: Order Entry Screen.

Figure 8.3: Swing component inheritance hierarchy.

8.2.2 Combo Box

A combo box (or popup list) consists of a button that when clicked brings up a menu, and
the user selects one item from this menu. This differs from a list in that before and after the
menu selection is made only one item is visible. In Figure 8.1, the component dealing with
shopping frequency labeled ''first time," "occasionally," and "frequently" is an example of a
combo box. To create a combo box, first declare the combo box object to be of type
JComboBox. For example,

JComboBox freqButton;

Then invoke the javax.swing.JComboBox constructor, as follows:

freqButton = new JComboBox (comboString) ;

where comboString is a String array containing the combo box items

String[] comboString = {"first time", "occasionally",
 "frequently"};

By default a combo box is uneditable. A combo box can be made editable by using the
javax.swing.JComboBox.setEditable method, for example

freqButton.setEditable(true);

8.2.3 Check Box Button

A check box is a two-state button that can be clicked on or off. In Figure 8.1, the
component labeled "Trade Customer" is an example of a check box button. To create a
check box button, first declare the check box button object to be of type JCheckBox. For
example,

JCheckBox tradeButton;

Next invoke the javax.swing.JCheckBox constructor, as follows:

tradeButton = new JCheckBox("Trade Customer", false);

This creates a check box button labeled "Trade Customer" with the initial state set to off.
We could have used an alternative constructor JCheckBox ("Trade Customer")
because this sets the initial state to off by default. There is also the constructor
JCheckBox(), which creates an unlabeled check box button with the initial state set to
off.

8.2.4 Radio Button

A radio button group consists of a group of radio buttons with no more than one button
selected at a time. In Figure 8.1, the buttons labeled "age under 20," "20–39," "40–59,"
"over 60" collectively form a radio button group. To create a radio button group, first
declare the individual button objects to be of type JRadioButton. Then declare the radio
button group object to be of type ButtonGroup. For example,

JRadioButton age1, age2, age3, age4;
ButtonGroup ageButton;

Then invoke the javax.swing.ButtonGroup constructor, as follows:

ageButton = new ButtonGroup();

The individual buttons are created using the javax.swing.JRadioButton constructor,
for example

age1 = new JRadioButton(''age under 20");

The individual buttons are then added to the radio button group using the
javax.swing.Button-Group.add method, as follows:

ageButton.add(age1);

8.2.5 Text Field

A text field component is used for inputting or displaying a line of text information. To
create a text field component, first declare the object to be of type JTextFiled. For
example,

JTextField qtyfield;

Then invoke the javax.swing.JTextField constructor, for example

qtyfield = new JTextField (3);

where the constructor argument specifies the minimum number of columns in the text field
itself. By default, a text field is editable; if a text field is to be used for outputting messages
only, then use the javax.swing.text.JTextComponent method
setEditable(false). Note that the JTextField class is a subclass of the
JTextComponent class, as is the JTextArea class described in Section 8.2.6.
Consequently, the setEditable method can also be used with text area components.

8.2.6 Text Area

The text area component is similar to the text field component, except in that it allows for
multiple lines of text. In Figure 8.1, the component below the text "Enter Name and
Address" is an example of a text area component. To create a text area component, first
declare the object to be of type JTextArea. For example,

JTextArea addressArea;

By default, the text area is set up without scroll bars. To add scroll bars, you create a
JScrollPane object then add the text area to the JScrollPane object. So declare a
JScrollPane object, for example

JScrollPane addressPane;

Then invoke the javax.swing.JTextArea constructor, for example

addressArea = new JTextArea(3,12);

where the constructor arguments specify the minimum number of rows and columns in the
text area itself. Now add addressArea to a scrollpane using the JScrollPane
constructor, as follows:

addressPane = new JScrollPane(addressArea,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS and
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS indicate that the vertical and
horizontal scrollbars are always visible. The default is to show no scrollbars until the text
area becomes full with text entered by the user.

8.2.7 Label

A label component is used for displaying static text. In Figure 8.1, the text ''How often do
you shop with us:" is displayed using a label. To create a label, first declare the object to be
of type JLabel. For example,

JLabel freqLabel;

Then invoke the javax.swing.JLabel constructor, as follows:

freqLabel = new JLabel("How often do you shop with us: ");

8.2.8 List

A list component displays a scrolling list from which the user can select one or more items.
A list differs from a combo box in that two or more items in the list can be made visible at
all times. In Figure 8.2, the component to the right of the text "Select Purchase" is an
example of a list. With Swing lists, we explicitly manipulate two models: the list and
selection models. A list model is declared, list elements are added to this model, and the
model is used when creating the list object. First declare a list model of type
DefaultListModel. For example,

DefaultListModel shoppingListModel;

Then declare a list object to be of type JList. For example,

JList shoppingList;

Then create the list model object using the javax.swing.DefaultListModel
constructor, as follows:

shoppingListModel = new DefaultListModel();

Individual list elements are added to the model using the
javax.swing.DefaultListModel.addElement method. For example,

shoppingListModel.addElement(''ice axe");

The list object itself is created using the javax.swing.JList constructor, as follows:

shoppingList = new JList(shoppingListModel);

Note the constructor requires the list model as an argument.

To specify that only one item can be selected from the list at any one time, use the
setSelectionMode method. For example,

shoppingList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

Other possible argument values are SINGLE_INTERVAL_SELECTION, which allows one
contiguous interval to be selected, and MULTIPLE_INTERVAL_SELECTION, which
allows multiple intervals to be selected. MULTIPLE_INTERVAL_SELECTION is the
default. To set the number of list rows to be made visible, use the
javax.swing.JList.setVisibleRowCount method. For example,

shoppingList.setVisibleRowCount(3);

will make three rows of shoppingList visible at any one time. Note that, like text areas,
scrollbars are not automatically created for lists by Swing. To add scrollbars, create a
scrollpane object, then add the list to the scrollpane object. For example,

JScrollPane sp = new JScrollPane(shoppingList);

8.3 Component Methods

There are a large number of methods in the javax.swing.JComponent class that deal
with setting up borders, fonts, and colors, for example. Consequently, most of these
methods are inherited by the components described in this chapter. In this section, we will
describe just a few of these methods. For more details, consult the Sun API documentation.

8.3.1 Borders

To create borders around components, Java provides the
javax.swing.JComponent.setBorder method. This method requires a border
object as a parameter; the border object itself is provided by the
javax.swing.BorderFactory class. There are many methods in this class; we will
list just a few.

createLineBorder(color) creates a line border with the specified color around
the component. For example, the statement

 button1.setBorder(BorderFactory.createLineBorder(Color.
red));

creates a red line border around the JButton object button1. Note that to use the
Color.red object, we would need the following statement in the application code:

 import java.awt.Color;

createLoweredBevelBorder() and createRaisedBevelBorder() create
borders with lowered and raised bevel edges. For example,

 label.setBorder(BorderFactory.createLoweredBevelBorder(
));

creates a lowered bevel border for the JLabel object label.

8.3.2 Background and Foreground Colors

The javax.swing.JComponent.setBackground and
javax.swing.JComponent.setForeground methods can be used to set background
and foreground colors for a component. For example, the statements

cartbutton.setBackground(Color.black);
cartbutton.setForeground(Color.white);

set the background and foreground colors for the JButton object cartbutton.

8.3.3 Fonts

The javax.swing.JComponent.setFont method is used to set fonts for text
associated with a component. This method requires a font object as a parameter; the font
object itself is created by using the java.awt.Font(font_name, font_style,
font_size) constructor. For example,

cartbutton.setFont(new Font(''Italic", Font.ITALIC, 12));

sets the font associated with the JButton object cartbutton to 12 point italic. If
cartbutton is a labeled button, then any text inside the button will use this font.

8.3.4 Enabling and Disabling Components

By default, all components are enabled. However, we may wish to disable a component. A
disabled component cannot respond when clicked by the user. Having disabled a
component, as a result of user actions we may wish to enable it again. Enabling and
disabling are performed by the javax.swing.JComponent.setEnabled(boolean)
method. For example, the statement

button2.setEnabled(false);

will disable the JButton object button2. Some disabled components, such as buttons,
will take on a different (usually fainter) appearance from their enabled counterparts.

8.4 Swing Containers

8.4.1 Top-Level Containers

There are two types of top-level containers in Swing: applets and windows. An applet in
Swing is a subclass of JApplet, as indicated by the declaration

public class Multiply extends JApplet

An applet will have an associated layout. An applet will contain components or other
intermediate-level containers such as panels. An applet is downloaded by a Java-enabled
Web browser then run: we discuss this aspect of applets in Section 8.10.

The second type of top-level container is a window. If we wish to add a GUI to a Java
application, then we must use a window container. More precisely, we would use a subclass
of a window, namely, a frame. A frame consists of a window together with a title bar. For
example, Figure 8.1, being an application, uses a frame with the ''Customer Details Screen"
title bar. CustomerDetails in Section 8.9 provides the corresponding code. The
application itself is a subclass of JFrame as indicated by the declaration

public class CustomerDetails extends JFrame

The javax.swing.JFrame class provides a number of methods: setTitle,
setSize, and setVisible are among the most useful. setTitle is used to set the text
in the title bar. setSize is used to set the size of the frame in pixels. The contents of a
frame need to be made explicitly visible using the setVisible(true) method. A frame
will have an associated layout. A frame will contain components or other intermediate-level
containers such as panels.

Swing components can be added to panels, but panels and components cannot be directly
added to top-level applet or frame containers. Top-level containers consist of an
intermediate container, the content pane. The content pane contains all the visible
components in the window's GUI. Components that would otherwise be added to the top-
level container are added to the content pane. The methods
javax.swing.JFrame.getContentPane and
javax.swing.JApplet.getContentPane return the content pane for the current
frame or applet, respectively. The content pane is actually an AWT (not Swing) object of
type java.awt.Container, so to abbreviate class names a program should include the
statement

import java.awt.Container;

The following is a code fragment for getting the content pane, cp, for the current applet or
frame, and adding a button component, button1, to the content pane:

Container cp;

cp = this.getContentPane();
cp.add(button1);

8.4.2 Dialogues

Apart from frames, there is one other specialized window subclass, namely, Dialog.
Dialogues typically provide messages within their own windows. The Swing Dialogue
class,

Figure 8.4: Standard dialogue windows.

javax.swing.JDialog is a subclass of java.awt.Dialog, which in turn, is a
subclass of java.awt.Windows. This class is used to create a custom dialogue window.
With Swing, a number of standard dialogue windows are available and easy to use. These
standard dialogues are available through the javax.swing.JOptionPane class. Figure
8.4 shows the standard dialogue windows available with JOptionPane.

Dialogues usually have an associated parent frame. Typically, this frame will contain the
application, and the dialogue will be created in response to the user performing a selection
or some kind of action in the parent frame. Note that once a dialogue window appears, the
user cannot perform any other action until the dialogue window has been clicked. The most
useful method in the JOptionPane class is showMessageDialog. The statement

JOptionPane.showMessageDialog(fr, ''A Message");

where fr is the parent frame, creates a default information message dialogue window with
a corresponding information icon. The default title is "Message," and the message text is

the second argument, namely, ''A Message." The result is shown in Figure 8.4. Other
invocations of the method are in the form

JOptionPane.showMessageDialog(fr, title, text, message_type);

where fr is the parent frame, title is the text to be displayed in the title portion of the
window, text is the message displayed, and message_type determines the icon to be
displayed. To illustrate this, the following statements produce the remaining dialogue
windows shown in Figure 8.4:

JOptionPane.showMessageDialog(fr, "An Error Message",
 "Error", JOptionPane.ERROR_MESSAGE);
JOptionPane.showMessageDialog(fr, "An Information
 Message", "Information",
 JOptionPane.INFORMATION_MESSAGE);

Note that the preceding statement is similar to the first default dialogue, except in this case,
the title text is supplied as a parameter.

JOptionPane.showMessageDialog(fr, "A Warning
 Message", "Warning", JOptionPane.WARNING_MESSAGE);
JOptionPane.showMessageDialog(fr, "A Question
 Message", "Question", JOptionPane.QUESTION_MESSAGE);
JOptionPane.showMessageDialog(fr, "A Plain Message",
 "Plain", JOptionPane.PLAIN_MESSAGE);

Note that for the preceding statement no icon is displayed.

We should briefly mention here a few other classes that provide for specialized dialogues
similar to JOptionPane. The javax.swing.ProgressMonitor class is used to
show the progress of an operation. This is done by means of a dialogue window and
progress bar. The javax.swing.JColorChooser class is used to manipulate and select
a color. The javax.swing.JFileChooser class is used to choose a file. Consult the
Sun API documentation for details.

8.4.3 Intermediate-Level Containers

Intermediate-level containers contain Swing components, but themselves will be contained
within one of the two top-level containers, applet or frame.

Panel

A panel is a grouping of Swing components. A GUI screen consists of any number of
panels. Like all containers, a panel will have a layout type associated with it, this
determines how the components within a panel are displayed. Panels differ from other
containers in that a panel itself can contain subpanels as well as components.

The declaration

JPanel mypanel;

declares a mypanel object of type JPanel. The statement

mypanel = new JPanel();

creates the mypanel object using the JPanel() class constructor.

Scrollpane

Scrollpanes can be used to provide a scrollable view for any component whose size can
change dynamically. Candidate components are text areas and lists, for example. A
scrollpane will include horizontal and vertical scrollbars.

There are a number of constructors in the javax.swing.JScrollPane class. The
simplest is JScrollPane(component). This will show scrollbars only if the contents
of the component are larger than the scrollable view. So in a text area component, for
example, scrollbars will be shown only when the user has filled the viewable text area with
text. Another form of the constructor is JScrollPane(component,
vertical_policy, horizontal_policy). vertical_ policy and
horizontal_policy specify the behavior of the vertical and horizontal scrollbars,
respectively. vertical_policy takes one of the following values:

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED. This specifies that vertical
scrollbars are shown only when needed.

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS. This specifies that vertical
scrollbars are always shown.

JScrollPane.VERTICAL_SCROLLBAR_NEVER. This specifies that vertical
scrollbars are never shown.

horizontal_policy takes on similar values regarding horizontal scrollbar behavior.
Once a scrollpane object is created, it is added to the content pane. We have seen examples
of scrollpanes with text areas and lists in Sections 8.2.6 and 8.2.8, respectively.

8.5 Layouts

All containers, both top-level and intermediate, have an associated layout. Swing provides
the following layouts: FlowLayout, BorderLayout, GridLayout,
GridbagLayout, CardLayout, and BoxLayout. We describe FlowLayout,
BorderLayout, and GridLayout in the following sections. Consult the Sun API
documentation for details of remaining layouts.

8.5.1 FlowLayout

This is the simplest type of layout. Components are added to a container from left to right.
If no horizontal space is available for a component, a new row is started. Figure 8.5 is an
example of a frame container using FlowLayout (the components are actually buttons,
but they can be

Figure 8.5: FlowLayout.

Figure 8.6: Dynamically adjusted FlowLayout.

any Swing component). If the window is dynamically widened by dragging with a mouse,
all the components will in due course fit on one row, resulting in Figure 8.6.

FlowLayout is the default layout type for all JPanel objects. Note that there is a default
horizontal and vertical gap of 5 pixels between the components. By default, each row of
components is center justified. The FlowLayout is an AWT feature, so to abbreviate class
names, programs should include the statement

import java.awt.FlowLayout;

To create a FlowLayout container with these defaults, use the following statements:

cp = this.getContentPane();
cp.setLayout(new FlowLayout());

where cp is the current applet or frame content pane. getContentPane and setLayout
are methods in both javax.swing.JApplet and javax.swing.JFrame classes.

To specify an alignment, use the constructor FlowLayout(align), where align is
either FlowLayout.LEFT (left justified), FlowLayout.RIGHT (right justified) or
FlowLayout.CENTER (center justified, the default). To specify an alignment and
component gap sizes, use the constructor FlowLayout(align, horizgap,
vertgap), where horizgap is the horizontal gap and vertgap is the vertical gap in
pixels.

Figure 8.7: BorderLayout.

8.5.2 BorderLayout

In the BorderLayout type, the container is divided into five sections, namely, north, west,
center, east, and south. When adding a component to a BorderLayout container, one of
the above five sections is specified. BorderLayout is the default layout for content panes.
Figure 8.7 is an example of a BorderLayout on a frame consisting of five components
(again actually buttons).

BorderLayout is an AWT feature, so to abbreviate class names, programs must include
the statement

import java.awt.BorderLayout;

To create a BorderLayout container, use the following statements:

cp = this.getContentPane();
cp.setLayout(new BorderLayout());

where cp is the current applet or frame content pane. This creates no gaps between the
components. If gaps are desired, use the constructor BorderLayout(horizgap,
vertgap), the gaps being specified in pixels. A component is added to a
BorderLayout container with a statement of the form add(component,
BorderLayout.SECTION). The following code illustrates this for Figure 8.7:

cp = this.getContentPane();

cp.setLayout(new BorderLayout());
/* set up buttons and add them to content pane */
button1 = new JButton(''component 1");
cp.add(button1, BorderLayout.NORTH);
button2 = new JButton("component 2");
cp.add(button2, BorderLayout.WEST);

Figure 8.8: GridLayout.

button3 = new JButton(''component 3");
cp.add(button3, BorderLayout.CENTER);
button4 = new JButton("component 4");
cp.add(button4, BorderLayout.EAST);
button5 = new JButton("component 5");
cp.add(button5, BorderLayout.SOUTH);

8.5.3 GridLayout

In a GridLayout container, components are placed in a grid of cells. The statement

cp.setLayout(new GridLayout(r, c));

specifies a GridLayout with r rows and c columns for the content pane cp. By default,
there are no gaps between components. Again, if gaps are desired, use the constructor
GridLayout(r, c, horizgap, vertgap).

Figure 8.8 illustrates a GridLayout frame with a grid of three rows and two columns. The
GridLayout is an AWT feature, so to abbreviate class names, programs must include the
statement

import java.awt.GridLayout;

8.6 Specifying Look and Feel

Recall that Swing graphical user interfaces (GUIs) take on a Java look and feel by default.
All the figures in this chapter have used the Swing Java look and feel. However, it is
possible to specify a windowing system look and feel.

Look and feel is set by the javax.swing.UIManager.setLookAndFeel method.
This method has one parameter, the name of the class that determines look and feel. These

classes are not part of the Java language itself, but rather classes within a package
(com.sun.java.swing) supplied by the Java Software Development Kit (SDK). The
classes are as follows:

com.sun.java.swing.plaf.windows.WindowsLookAndFeel for Windows
(32 bit only) operating systems

com.sun.java.swing.plaf.motif.MotifLookAndFeel for CDE/Motif look
and feel on Sun platforms

The setLookAndFeel method must be invoked within a try catch block. For
example, the following code fragment will create a Windows look and feel:

try {
 UIManager.setLookAndFeel(
 ''com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
} catch (Exception e) { }

8.7 Event Handling

All of our examples have been write only: displaying GUI objects on a window or panel,
but with no means of the user communicating back to the program. This communication is
provided by the Swing event-handling mechanism.

The basic idea of event handling is to register an object to act as a listener for a particular
type of event on a particular component. Typically, the listener object will be the applet or
application instance. An event, such as clicking on a component, causes an event object to
be sent to all registered listeners. The class corresponding to the listener object will contain
methods from the listener interface that handle the event.

The listener interface that is used depends on the type of event the application wishes to
capture. For example, the event of a user clicking on a button would be handled by the
ActionListener, a keystroke by the KeyListener, a mouse movement by the
MouseListener interfaces, and so on. Interfaces were covered in Section 5.4. Recall that
all the methods declared in an interface must have their method bodies written in the
application program. For ActionListener, there is only one corresponding method,
actionPerformed, so this method would perform any actions resulting from the event.
On the other hand, the KeyListener interface has three corresponding methods:
keyPressed, keyReleased, and keyTyped, so all these would need to be present
in the application code.

To abbreviate event-handling class names, the application should include the statement

import java.awt.event.*;

The class declaration must list any listeners that the class implements. For example,
suppose we have a class, CustomerDetails, which is a frame that implements
ActionListener and ItemListener. The class declaration would then be

public class CustomerDetails extends JFrame
 implements ActionListener, ItemListener {

The next step is to register the class instance to act as a listener for one or more specific
components. For example, the following statement registers the CustomerDetails
object to act as an ActionListener for the tradeButton button:

tradeButton.addItemListener(this);

The argument, this, indicates the object corresponding to the current class, namely,
CustomerDetails. Each button object for which we wish to handle a corresponding
event will have a corresponding listener registration statement. Each listener interface has a
corresponding ''add" method for registering a listener object.

The final step is to write the listener method bodies themselves. The ActionListener
interface has one corresponding method, actionPerformed. ItemListener also has
just one corresponding method, itemStateChanged.

These two methods are described in detail in Sections 8.7.1 and 8.7.2. At this stage, you
should note that a number of events can invoke the same listener. For example, a user
clicking on a button or pressing return after entering text in a text field can generate an
ActionListener event in both cases. Consequently, the code in actionPerformed
needs to distinguish between button and text field events. Even if only one component type,
button, say, is present in a frame or applet, the code would need to distinguish between the
different button components.

In the following sections, we describe a few of the most common listener interfaces. A full
list of listener interfaces, their associated methods and the components that invoke the
listener, is given in Appendix B. Details of all the listener interfaces can be found in the
Sun API documentation.

8.7.1 ActionListener

ActionListeners are used to respond to action events. Action events are typically
created by clicking a button or pressing return in a text field. The ActionListener
interface consists of a single method, actionPerformed. Specifically, this method has
the signature

void actionPerformed(ActionEvent e);

where e is an object of type ActionEvent. The java.awt.event.ActionEvent
class contains a number of methods; two of the most useful are getSource and
getActionCommand. getSource returns the object that generated the event.
getActionCommand returns the command string associated with the component that
generated the event. By default, this string is the text associated with a labeled component;
you can explicitly set the command string using the setActionCommand method.

As an example, suppose we have registered action listeners for a combo box, freqButton,
and a radio button group, age, consisting of individual radio buttons age1, age2,
age3, and age4. These could represent the shopping frequency combo box and age radio
button in the Customer Details screen of Figure 8.1. The actionPerformed
method is shown next.

actionPerformed

1 public void actionPerformed(ActionEvent e) {
2 if (e.getSource() instanceof JComboBox) {
3 System.out.println(''Customer shops : " +
4 freqButton.getSelectedItem());
5 } else if (e.getSource() instanceof JRadioButton) {
6 if (age1.isSelected()) {
7 System.out.println("Customer is under 20");
8 } else if (age2.isSelected()) {
9 System.out.println("Customer is 20 - 39");
10 } else if (age3.isSelected()) {
11 System.out.println("Customer is 40 - 59");
12 } else if (age4.isSelected()) {
13 System.out.println("Customer is over 60");
14 }
15 }
16 }

actionPerformed

If the user clicks the freqButton combo box, a message is printed to the console
informing us how frequently the customer shops. Since we have also registered an action
listener for the age radio button, the statement (line 2)

if (e.getSource() instanceof JComboBox) {

determines whether the event corresponds to the clicking of a combo box. Since the
application is registered to listen to only one combo box, freqButton, we can use the
javax.swing. JComboBox.getSelectedItem method to determine the currently
selected item.

In line 5, we check if the event corresponds to the user clicking a radio button. In line 6, we
use the javax.swing.JCheckBox.isSelected method to determine if the age1
radio button has been selected. The isSelected method returns true if the radio button is
currently selected, otherwise false. We perform similar tests for the remaining radio buttons
forming the radio button group.

8.7.2 ItemListener

ItemListeners are used to respond to item events. These are generated whenever an
item's state changes. Typically, this occurs when an item is selected or deselected from a
check box or a radio button. If, for example, a particular radio button is currently selected
and another radio button is clicked, the item event is fired twice: once when the current
radio button is deselected, and a second time when the new radio button is selected. The
ItemListener interface consists of a single method, itemStateChanged.
Specifically, this method has the signature

void itemStateChanged(ItemEvent e);

where e is an object of type ItemEvent. The java.awt.event.ItemEvent class
contains a number of methods, including getSource. As with an action event, getSource
returns the object that generated the event.

As an example, suppose we have registered an item listener for a check box,
tradeButton. This could represent the Trade Customer check box in Figure 8.1. The
itemStateChanged method is shown next.

itemStateChanged

1 public void itemStateChanged (ItemEvent e) {
2 if (e.getSource() instanceof JCheckBox) {
3 JCheckBox buttonLabel = (JCheckBox)
4 e.getItemSelectable();
5 if (buttonLabel == tradeButton){
6 if (e.getStateChange() == e.SELECTED) {
7 System.out.println(''Customer is trade");
8 } else {
9 System.out.println("Customer is not trade"
);
10 }
11 }
12 }
13 }

itemStateChanged

The statement (line 2)

if (e.getSource() instanceof JCheckBox) {

determines whether the event source is a check box. In that case, in lines 3–4, we use the
java.awt.event.ItemEvent.getItemSelectable method to obtain the
originator of the item event. This is then cast to a JCheckBox, buttonLabel. We can
then use the ItemEvent.getState-Change method to determine whether
tradeButton has been checked.

8.7.3 ListSelectionListener

The ListSelectionListener interface is used to handle list selection events. These
occur whenever the selection in a list or table has changed. Note that since the
ListSelectionListener is a Swing and not an AWT listener interface, to abbreviate
class names, the program should include the following statement:

import javax.swing.event.*;

The ListSelectionListener interface consists of a single method,
valueChanged(ListSelection-Event e), where e is an object of type
ListSelectionEvent. The method javax.swing.event.
ListSelectionEvent.getSource obtains the source object generating the event. The
value-Changed example uses the javax.swing.JList.getSelectedValue to
determine the list item that has been selected.

valueChanged

1 public void valueChanged(ListSelectionEvent e) {
2 if (e.getSource() instanceof JList) {
3 if (shoppingList.getSelectedValue().equals(''ice axe")
) {
4 System.out.println("ice axe selected");
5 }
6 }
7 }

valueChanged

8.7.4 Adapters in Event Handling

All the listener interfaces we have described so far have just one associated method. Many
other interfaces have several associated methods. We will use one such interface,
WindowListener, as an example throughout this section. WindowListener has
windowActivated, windowClosed, windowClosing, windowDeactivated,
windowDeiconified, windowIconified, and windowOpened as associated
methods. Recall from Section 5.4 that a class implementing an interface must have bodies
for all the interface methods. This means that if we are interested in setting up only one
listener interface method, windowClosing, say, we would need to write empty bodies
for the other methods along the lines of

public void windowActivated((WindowEvent e)) { }

To avoid this, we can use an adapter class: this implements empty bodies for all the
interface methods. All event listener interfaces containing more than one method definition
have a corresponding adapter class. In the case of WindowListener, this is
WindowAdapter. The application class is defined as a subclass of the adapter class, and
any nonempty interface methods are written within the application class.

If our application is a frame or applet subclass, then we cannot also define the application
as a subclass of WindowAdapter. However, we can use inner classes. The following
code fragment shows an inner class, MyWindowAdapter, that implements the
windowClosing method. This, in turn, terminates the application when the user closes
the main window.

class MyWindowAdapter extends WindowAdapter {
 public void windowClosing(WindowEvent e) {
System.exit(0);
 }
}

The listener registration is performed by the statement

this.addWindowListener(new MyWindowAdapter());

Note we do not register the application object to act as a listener, but an instance of the
MyWindowAdapter class. The component for which we are registering a listener is the
component involved when a user shuts the main window. This component is the current
frame instance, identified by the keyword this.

If we create only a single object of the MyWindowAdapter class, we can dispense with
giving the adapter subclass a name by using an anonymous inner class. We can replace the
preceding MyWindowAdapter class and the addWindowListener statement with

this.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
});

This syntax reads as define an anonymous inner class as a subclass of WindowAdapter,
create an instance of this inner class, and use this instance as an argument to the
addWindowListener method.

8.8 Painting with Swing

With Swing, we do not draw text or images directly onto a frame or applet. A component
subclass is created, usually a subclass of JPanel, and the painting is performed in the
subclasses' paintComponent method. An instance of this component subclass is then
created and added to the content pane. The PaintPanel example shows a panel subclass
performing painting.

PaintPanel

1 import javax.swing.*;
2 import java.awt.Dimension;
3 import java.awt.Graphics;
4
5 class PaintPanel extends JPanel {
6 public PaintPanel() {
7 setPreferredSize(new Dimension(110, 24));
8 }
9

10 public void paintComponent (Graphics g) {
11 super.paintComponent(g);
12 g.drawString(''Text to be drawn" , 20, getHeight());
13 }
14 }

PaintPanel

The constructor, PaintPanel, uses the
javax.swing.JPanel.setPreferredSize method to set the size of the panel, in
this case, 110 pixels wide and 24 pixels high. The first statement in the paintComponent
method must be

super.paintComponent(g);

This causes the component to paint its background. The
java.awt.Graphics.drawString method is used to paint the text. Two useful
methods in javax.swing.JComponent that can be used with drawString are
getHeight and getWidth. These return the current component height and width,
respectively.An instance of PaintPanel is created and then added to the content pane, cp,
as follows:

PaintPanel p = new PaintPanel();

cp.add(p);

8.9 CustomerDetails Example

In this section, we bring together topics discussed in this chapter by walking through the
CustomerDetails code that produces Figure 8.1.

CustomerDetails

 1 import javax.swing.*;
 2 import java.awt.Dimension;
 3 import java.awt.GridLayout;
 4 import java.awt.event.*;
 5 import java.awt.Color;
 6 import java.awt.Container;
 7
 8 public class CustomerDetails extends JFrame
 9 implements ActionListener, ItemListener {
 10 JTextArea addressArea;
 11 JScrollPane addressPane;
 12 JLabel addressLabel;
 13 JLabel freqLabel;

 14 JComboBox freqButton;
 15 JCheckBox tradeButton;
 16 JRadioButton age1;
 17 JRadioButton age2;
 18 JRadioButton age3;
 19 JRadioButton age4;
 20 ButtonGroup ageButton;
 21 JPanel agePanel;
 22 JPanel freqPanel;
 23 Container cp;
 24 String[] comboString= {''first time",
 25 "occasionally", "frequently"}
;
 26
 27 public CustomerDetails() {
 28
 29 /* set up layout panels */
 30 cp = this.getContentPane();
 31 cp.setLayout(new GridLayout(5,1));
 32 agePanel = new JPanel();
 33 agePanel.setLayout(new GridLayout(4,1));
 34 freqPanel = new JPanel();
 35 freqPanel.setLayout(new GridLayout(1,2));
 36
 37 /* set up name address label */
 38 addressLabel = new JLabel("Enter Name and Address:")
;
 39 cp.add(addressLabel) ;
 40
 41 /* set up name address text area */

 42 addressArea = new JTextArea(3,12);
 43 addressPane = new JScrollPane(addressArea,
 44 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
 45 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
 46 cp.add(addressPane);
 47
 48 /* set up Trade Customer Checkbox button */
 49 tradeButton = new JCheckBox("Trade Customer", false)
;
 50 tradeButton.addItemListener(this);
 51 cp.add(tradeButton);
 52
 53 /* set up shopping frequency combo box */
 54 freqLabel = new JLabel(
 55 "How often do you shop with us: ");
 56 freqPanel.add(freqLabel);
 57 freqButton = new JComboBox(comboString);
 58 freqButton.addActionListener(this);
 59 freqPanel.add(freqButton);
 60 cp.add(freqPanel);

 61
 62 /* set up age range radio button */
 63 ageButton = new ButtonGroup();
 64 age1 = new JRadioButton(''age under 20");
 65 age2 = new JRadioButton("20-39");
 66 age3 = new JRadioButton("40-59");
 67 age4 = new JRadioButton("over 60");
 68 ageButton.add(age1);
 69 ageButton.add(age2);
 70 ageButton.add(age3);
 71 ageButton.add(age4);
 72 age1.addActionListener(this);
 73 age2.addActionListener(this);
 74 age3.addActionListener(this);
 75 age4.addActionListener(this);
 76 agePanel.add(age1);
 77 agePanel.add(age2);
 78 agePanel.add(age3);
 79 agePanel.add(age4);
 80 cp.add(agePanel);
 81 this.addWindowListener(new WindowAdapter() {
 82 public void windowClosing(WindowEvent e) {
 83 System.exit(0);
 84 }
 85 });
 86 }
 87
 88 // actionPerformed is ActionListener interface method
 89 // which responds to action event of selecting
 90 // combo box or radio button
 91 public void actionPerformed(ActionEvent e) {

 92 if (e.getSource() instanceof JComboBox) {
 93 System.out.println("Customer shops: " +
 94 freqButton.getSelectedItem());
 95 } else if (e.getSource() instanceof JRadioButton) {
 96 if (age1.isSelected()) {
 97 System.out.println("Customer is under 20");
 98 } else if (age2.isSelected()) {
 99 System.out.println("Customer is 20 - 39");
100 } else if (age3.isSelected()) {
101 System.out.println("Customer is 40 - 59");
102 } else if (age4.isSelected()) {
103 System.out.println("Customer is over 60");
104 }
105 }
106 }
107

108 // itemStateChanged is ItemListener interface method
109 // which responds to item event of clicking checkbox
110 public void itemStateChanged (ItemEvent e) {
111 if (e.getSource() instanceof JCheckBox) {
112 JCheckBox buttonLabel = (JCheckBox)
113 e.getItemSelectable();
114 if (buttonLabel == tradeButton){
115 if (e.getStateChange() == e.SELECTED) {
116 System.out.println(''Customer is trade")
;
117 } else {
118 System.out.println("Customer is not trad
e");
119 }
120 }
121 }
122 }
123
124 // main method creates CustomerDetails frame
125 public static void main(String args[]) {
126 CustomerDetails cd = new CustomerDetails ();
127 cd.setTitle("Customer Details Screen");
128 cd.setSize(400,600);
129 cd.setVisible(true);
130 }
131 }

CustomerDetails

The class declaration (lines 8–9) indicates that this is a frame that implements the
ActionListener and ItemListener interfaces. Lines 30–31 specify that the frame's
content pane has an associated GridLayout of five rows and one column. The
GridLayout schema consists of the following components and panels:

addressLabel JLabel Component

addressArea JTextArea
Component

tradeButton JCheckbox
Component

freqPanel JPanel

agePanel JPanel

We have used this schema to ensure that the screen is equally divided among the five
components or panels.

The freqPanel panel itself uses a GridLayout of one row and two columns, and
consists of the following components:

freqLabel JLabel Component freqButton JComboBox
Component

The agePanel panel itself uses a GridLayout of four rows and one column, and
consists of the following components:

age1 JRadioButton Component

age2 JRadioButton Component

age3 JRadioButton Component

age4 JRadioButton Component

These components make up the ageButton ButtonGroup. The code creates the
preceding components and panels, then adds them to their assigned panels or directly to the
content pane.

Note that having created a JTextArea component, addressArea, we do not add the
component directly to the content pane but first to a scroll pane. The statement (lines 43–45)

addressPane = new JScrollPane(addressArea,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

creates a scrollpane object, addressPane, with horizontal and vertical scrollbars always
visible. In line 46, addressPane is added to the content pane.

In line 49, note that when creating the tradeButton check box, by setting the second
argument of the constructor to false, the check box is initially set unchecked.

In line 50, we register this frame to act as an ItemListener for the tradeButton
component, and (line 58) as an ActionListener for the freqButton component.

In line 63, the ageButton radio button group object is created using the ButtonGroup
constructor. Individual radio buttons are then assigned to the radio button group using the
JRadioButton constructor. For example, in line 64,

age1 = new JRadioButton(''age under 20");

This sets the radio button to unchecked by default. If we want to initially display a radio
button as checked, we would use the JRadioButton(text, boolean) constructor, as
follows:

age1 = new JRadioButton("age under 20", true);

We use the javax.swing.ButtonGroup.add method to add the radio button to the
group. For example, in line 68,

ageButton.add(age1);

Note that we register this frame to act as an ActionListener for each individual radio
button (lines 72–75).

In lines 81–85, we add an anonymous inner class to terminate the application when the user
closes the main window, as described in Section 8.7.4.

The actionPerformed and itemStateChanged methods were described in Sections
8.7.1 and 8.7.2, respectively.

In the main method (lines 125–130), the statement (line 126)

CustomerDetails cd = new CustomerDetails ();

creates an instance, cd, of the frame CustomerDetails. We then set the frame's title
and size, and make the frame visible.

8.10 Applets

In this section, we describe a simple applet, MultiplyApplet.java. This applet
performs the same function as the Multiply application in Chapter 1, namely, to output
the product of two integers supplied as parameters. In contrast to an application that is a
standalone program, an applet is invoked by a Web browser from a Web page. A Web page
written in HTML (hypertext markup language) will contain an applet tag that specifies the
location of the applet class files and the position of the applet on the Web page. The
browser retrieves the applet class files across the Internet (of course, the applet class files
may reside in the user's local computer), and runs the applet using the browser's JVM.
Multiply.html is an example of a minimal Web page that loads MultiplyApplet.

Multiply.html

 1 <HTML>
 2 <HEAD>
 3 <TITLE>
 4 HTML Page which loads Multiply Applet
 5 </TITLE>
 6 </HEAD>
 7 <APPLET CODE = ''MultiplyApplet" WIDTH = 250 HEIGHT =
 8 200 NAME = "MultiplyApplet" >
 9 <PARAM NAME = "firstInt" VALUE = "7">
10 <PARAM NAME = "secondInt" VALUE = "12">
11 </APPLET>
12 </HTML>

Multiply.html

We do not cover HTML in this book; furthermore, it is not necessary to have a knowledge
of HTML to understand applets. It is sufficient to note that an HTML page consists of a
series of tags and content that describe how a Web page looks when displayed. Tags start
with a < character and end with a > character. Some tags have a slash after the leading <.
The tag without the slash is the start tag, and the tag with the slash is the end tag. Tags can
be nested within one another.

An HTML applet tag takes the form <APPLET>...</APPLET>. Within the tag are
applet details such as the width and height of the applet display area. In particular, the
clause in line 7,

CODE = ''MultiplyApplet"

gives the name of the applet class file.

WIDTH = 250

gives the initial width of the applet display area in pixels.

HEIGHT = 200

gives the initial height of the applet display area in pixels. In line 8,

NAME = "MultiplyApplet"

is the name given to the applet instance. This makes it possible for applets on the same page
to communicate with each other. In line 9,

<PARAM NAME = "firstInt" VALUE = "7">

assigns the value 7 to the named parameter, firstInt. The applet itself,
MultiplyApplet, then uses the parameter names, in this case, firstInt and
secondInt, to retrieve the parameters set in the HTML page, as we shall see shortly.

We now turn to the MultiplyApplet.java code itself.

MultiplyApplet.java

 1 public class MultiplyApplet extends java.applet.Applet {
 2
 3 private String param1;
 4 private String param2;
 5 private String resultString;
 6 private int arg1;
 7 private int arg2;
 8 private int result;
 9
10 public void init() {
11 param1 = getParameter("firstInt");
12 param2 = getParameter("secondInt");
13 arg1 = Integer.parseInt(param1);
14 arg2 = Integer.parseInt(param2);
15 result = arg1 * arg2;
16 }
17
18 public void paint(java.awt.Graphics g) {
19 resultString = Integer.toString(result);

20 g.drawString(''The product of " + param1 + " and " +
21 param2 + " is " + resultString, 50, 100);
22 }
23 }

MultiplyApplet.java

Note that just like a Java application, Java applet source code is stored in a file with a name
of the form className.java. The declaration (line 1),

public class MultiplyApplet extends java.applet.Applet {

indicates that the MultiplyApplet class is an applet. More accurately,
MultiplyApplet is a subclass of the java.applet.Applet class. As such,
MultiplyApplet inherits a number of methods from the Applet class.

Note that we do not have a main method. main methods are the starting points for
standalone applications written in Java. The life cycle of an applet is different. An applet
usually contains an init method; this method is invoked when the applet is loaded into a
Web browser for the first time. Typically, init will perform initialization; in our simple
example, init actually performs the multiplication of the two input parameters.

getparameter is an Applet method that returns the value of the named parameter. The
named parameter must be present in the PARAM NAME tag in the HTML Web page. For
example, in the statement (line 11)

param1 = getParameter("firstInt");

the named parameter "firstInt" corresponds to that in line 9,

<PARAM NAME = "firstInt" VALUE = "7">

of the HTML page, Multiply.html.

In line 18 of MultiplyApplet.java, the paint method is used to output to the applet
drawing area. It overrides the paint method of the java.awt.Component class. The
paint method takes an object g of type java.awt.Graphics as an argument. This
object represents the applet drawing area. drawString is one of the methods in the
Graphics class, and lines 20–21 draw the text corresponding to the supplied String to
the applet drawing area, g, at x and y coordinates of 50 and 100.

As with applications, we use the javac compiler to produce a bytecode file
MultiplyApplet.class.

One way to test an applet is to use Sun's Applet Viewer, which can be downloaded
from their Web site as part of the Java SDK. Assuming that the Applet Viewer,
Multiply.html

Figure 8.9: Applet Viewer invoking MultiplyApplet.

file, and MultiplyApplet.class files all reside in the same directory, we can issue the
command

> appletviewer Multiply.html

The result is shown in Figure 8.9.

Assuming we have a Java-enabled Web browser installed on our test computer, we simply
need to enter the full HTML file path name in the browser's address area. For example,
Figure 8.10 shows the output from a Microsoft Internet Explorer version 5 Web browser
when the path name C:\JavaExamples\Multiply.html has been entered in the
address area.

8.10.1 Swing Applets

The applet described in the previous section was a subclass of java.applet.Applet
and as such did not use any Swing features. The advantage of this is that the applet can be
invoked by any Java 1.0–enabled Web browser (virtually all browsers). The disadvantage is
that we are restricted to the limited AWT graphical user interface. Applets can use the
Swing features described earlier in this chapter. However, most browsers such as Microsoft
Internet Explorer or Netscape Navigator that support only Java version 1.1 can run version
1.2 or Swing applets if they install a Java 1.2 plugin. However, if we use a plugin, we
cannot use the <APPLET> tag in an HTML page. The tags that are used are more complex
and differ from browser to browser; however, Sun does provide a utility for converting an
<APPLET> tag to the plugin equivalent. The next listing shows the Swing version of the
MultiplyApplet example described in the previous section.

Figure 8.10: Internet Explorer invoking Multiply Applet.

MultiplyApplet—Swing version

 1 import javax.swing.*;
 2 import java.awt.Container;
 3
 4 public class MultiplyApplet extends JApplet {
 5 private String param1;
 6 private String param2;
 7 private String resultString;
 8 private int arg1;
 9 private int arg2;
10 private int result;
11 Container cp;
12
13 public void init() {

14 param1 = getParameter(''firstInt");
15 param2 = getParameter("secondInt");
16 arg1 = Integer.parseInt(param1);
17 arg2 = Integer.parseInt(param2);
18 result = arg1 * arg2;
19 cp = getContentPane();
20 Panel p = new Panel ();
21 cp.add(p);
22 }
23

24 class Panel extends JPanel {
25
26 public void paintComponent (java.awt.Graphics g) {
27 super.paintComponent(g);
28 resultString = Integer.toString(result);
29 g.drawString("The product of " + param1 + " and "
 +
30 param2 + " is " + resultString, 50, 100);
31 }
32 }
33 }

MultiplyApplet—Swing version

There are only a couple of differences between the Swing and AWT versions. The first
point to note is that our Multiply applet is a subclass of JApplet and not Applet. The
JApplet class is actually a subclass of Applet and consequently inherits many of its
methods. The second difference is that we do not draw the result directly on to the applet
but create a JPanel subclass, Panel, and use the subclass paintComponent method to
draw the result. This technique was described in Section 8.8. Panel is another example of
an inner class. We could have declared Panel as a separate, outer, class. However, in that
case, Panel would not have had access to MultiplyApplet's member variables, such as
result, unless we declared these public. Note that we still use the AWT Graphics
object in Swing. We can use the Multiply.html page from Section 8.10 to run this
applet.

8.10.2 Applet Life Cycle Methods

Because applets are run from browsers, they differ from applications in that they do not
have a main method. Instead, applets have an init method that is used to perform any
applet initialization and is called only once in the lifetime of an applet.

The first method the Web browser invokes on loading the applet is the constructor. In
MultiplyApplet, we could have overridden the MultiplyApplet constructor to
perform some applet initialization. However, it is not always possible to perform all
initialization within an applet constructor. For this reason, the applet class provides the
init method, which is invoked after the applet object has been created.

The start method is invoked immediately after the init method. start, as the name
suggests, starts the applet execution. start is also invoked if the user revisits the page
containing the applet, having left it to visit other Web pages.

The stop method is used to stop the applet's execution, and is invoked when the user quits
the browser or leaves the applet's page to visit other Web pages.

The destroy method is invoked after the stop method when the user quits the browser.
The applet is unloaded, and any final cleanup actions, such as freeing up memory, are
performed by this method.

Note that all these methods belong to the Applet class, and are inherited by the JApplet
class, and so apply to both Swing and AWT applets.

8.10.3 Applet Security

Because an applet, resident on a Web server, is invoked by a browser on a client machine,
most browsers place security restrictions on what an applet can do on a client machine. For
example, applets cannot read, write, delete files, or list directories on the client machine.
Applets cannot make network connections other than to the Web server it was loaded from.
Applets cannot start new programs. Applets cannot read certain system properties such as
the user's home directory or account name. The applet code cannot contain native methods,
that is, methods written in a language other than Java.

Note that some browsers relax some of these restrictions when dealing with trusted, or
signed, applets. An applet is held in a digitally signed jar (Java Archive) file. The
technique of digitally signing a jar file is beyond the scope of this book. The recipient of
this signed applet uses encryption techniques to verify the source of the applet. The applet
is then ''trusted" to perform most of the activities barred to untrusted applets.

chapter 9
Collections
The Java Collections Framework consists of a number of interfaces and implementations
for handling collections and maps. A collection groups multiple elements into a single unit.
A collection can be implemented as either of the classic data structures, lists or sets. A list
allows duplicates, and maintains objects in the order in which they are added to the list. On
the other hand, a set does not allow duplicates and provides either no particular ordering or
an ordering based on the objects themselves regardless of the order in which they were
added.

A map is a grouping of keys and their corresponding values. A map cannot contain
duplicate keys, and each key can have at most one associated value. An example of a map
is a grouping of employee numbers (key) and the associated employee names (values).

The Collection Framework is a hierarchy of interfaces, as shown in Figure 9.1. This
hierarchy is mirrored in the hierarchy of offered implementations, as shown in Figure 9.2.
Collections provide examples of polymorphism: some operations are defined on all
collections, and as collections get more specialized, operations that make sense only for
that type are introduced into the hierarchy. We can write code that will manipulate a
Collection type. This code will work regardless of the implementation of that
Collection type.

The main top-level interfaces in the Collections Framework are Collection and Map.
These interfaces define methods typically for adding elements to, removing elements from,
and iterating through collections and maps. Sun does not provide a direct implementation of
the Collection interface. Two more interfaces are inherited from the Collection
interface: the Set and List interfaces. The SortedSet interface, in turn, inherits from
the Set interface. Sun provides classes that implement all these lower-level interfaces. The
SortedMap interface inherits from the Map interface; implementations are provided for
both the Map and SortedMap interfaces.

9.1 Set Interface

A Set is a collection that cannot contain duplicate elements. This is identical to the
mathematical definition of a set. All the methods in the Set interface are inherited from the
Collection

Figure 9.1: Collections interface hierarchy.

interface. Two classes in the java.util package implement the Set interface: HashSet
and TreeSet. HashSet is faster but does not guarantee ordering; if ordering is required,
TreeSet should be used. TreeSet is a sorted set that we cover in Section 9.1.1.

CollectExample adds an number of elements to a HashSet, then prints the set.

CollectExample

 1 import java.util.*;
 2
 3 public class CollectExample {
 4
 5 public static void main(String[] args) {
 6 Collection c = new HashSet();
 7 c.add(''Smith");
 8 c.add("Jones");
 9 c.add("Smith");

10 c.add(''Brown");
11 c.add("Able");
12 Iterator i = c.iterator();
13 while (i.hasNext()) {
14 System.out.print(i.next() + " ");
15 }
16 }
17 }

Figure 9.2: Collections class hierarchy.

CollectExample

The output from CollectExample is

> java CollectExample
Jones Smith Brown Able

Note that since duplicates are not allowed in sets, the set contains only one element named
''Smith". Note (line 6) that we have defined our HashSet as a Collection type, c.
We could have defined the HashSet as a Set type, as follows:

Set c = new HashSet();

However, as we shall see, using a Collection type makes writing generic code easier. A
HashSet has a backing hash table of default initial capacity of 16 buckets (in J2SE 1.4)
and load factor of 0.75. This means the hash table is allowed to become three quarters full
before it is increased. We can change these default tuning parameters by the constructors
HashSet(int capacity) and HashSet(int capacity, float
load_factor).

Elements are added to the set using the add method. The Iterator object, which is part
of the Collection interface, is used for traversing over collections. The Iterator has
three associated methods.

hasNext() returns true if the iteration has more elements

next() returns the next element in the iteration

remove() removes the current element in the iteration
from the collection

The program uses the hasNext and next methods to print the entire collection. The
following code fragment is used to remove "Brown" from the collection using the
Iterator remove method. Note that the Iterator next method returns an Object
type.

Iterator i = c.iterator();
while (i.hasNext()) {
 Object o = i.next();
 if (o.equals("Brown")) {
 i.remove();
 }
}

We could remove "Brown" from the collection using the Collection remove method,
as follows:

c.remove("Brown");

The Collection interface has a number of methods for performing bulk operations such
as addAll and removeAll. For example, suppose we create a second collection c2, as
follows:

Collection c2 = new HashSet();
c2.add("Thomas");

c2.add("Able");

The statement

c.addAll(c2);

adds the contents of c2 to c. This is equivalent to a mathematical set union. The resulting
contents of c will be ''Smith", "Jones", "Brown", "Able", and "Thomas".
The statement

c.removeAll(c2);

removes the contents of c2 from c, or put another way, the result is the set of elements in
c that are not in c2. This is equivalent to a mathematical set difference. The resulting
contents of c will be "Smith", "Jones", and "Brown". Details of all the Set
interface methods and their implementations can be found in the Sun API documentation.

9.1.1 SortedSet Interface

In the previous section, we discussed the HashSet implementation of the Set interface. If
we wish to maintain a set in ascending order, we need to use the TreeSet implementation
of the SortedSet interface. In CollectExample, we need to replace line 6 with

Collection c = new TreeSet();

No other changes need to be made. The program output will now be

> java CollectExample
Able Brown Jones Smith

The order of this SortedSet is a consequence of the String class implementing the
Comparable interface. There is only one method in Comparable, namely,
compareTo. The compareTo method determines the ordering; in the case of the
String implementation of compareTo, this is in lexicographic order. The Java
Integer class (the object wrapper for int) and Date class, for example, also implement
the Comparable interface. The Integer class compareTo method sorts the set in
signed numerical order. The Date class compareTo method sorts the set in chronological
order. In Section 9.1.2, we shall see how we might implement our own Comparable
interface.

The SortedSet interface inherits all the methods of the Set interface. In addition,
SortedSet provides a number of methods, such as first and last, which make sense
only for a set that is sorted. There is only one implementation of SortedSet, namely,
TreeSet. To use the noninherited methods, we need to replace the statement

Collection c = new TreeSet();

with

SortedSet c = new TreeSet();

The statements

System.out.println("first: " + c.first());
System.out.println("last: " + c.last());

will produce the output

first: Able
last: Smith

9.1.2 Implementing the Comparable Interface

Suppose we have an Employee class, with attributes employee number, name, and salary.
We then create some Employee objects, and then add these to a SortedSet Collection.
To keep these in a sorted order, we must implement the Comparable interface
compareTo method. This method will define the sort order. The listing shows how we
might do this for the Employee class.

Employee

 1 class Employee implements Comparable {
 2 int empNumber;
 3 String name;
 4 int salary;
 5
 6 public Employee(int empNumber, String name, int salary) {
 7 this.empNumber = empNumber;
 8 this.name = name;
 9 this.salary = salary;
10 }
11
12 public boolean equals(Object o) {
13 if (o == this) {
14 return true;
15 }
16 if (o == null) {
17 return false;
18 }
19 if (getClass() != o.getClass()) {
20 return false;
21 }
22 Employee e = (Employee) o;

23 return empNumber == e.empNumber
24 && name.equals(e.name)
25 && salary == e.salary;
26 }
27
28 public int hashCode() {
29 int result = 17;
30
31 result = 37 * result + empNumber;
32 result = 37 * result + name.hashCode();
33 result = 37 * result + salary;
34 return result;
35 }
36
37 public int compareTo (Object o) {

38 Employee e = (Employee) o;
39 return salary - e.salary;
40 }
41 }

Employee

In line 1, the Employee class definition indicates that the Comparable interface is being
implemented. Lines 6–10 define the Employee constructor. In lines 12–26, we override
the equals method, as discussed in Section 5.2.1. In this case, two employee objects are
equal if the contents of their empNumber, name, and salary fields are all equal. In
lines 28–35, we override the hashCode method, as discussed in Section 5.2.2. If we do not
override hashCode, a collection of Employee objects will not behave correctly. In lines
37–40, we define the compareTo method.

The Java Language Specification states the properties that an overridden compareTo
method should exhibit. The main requirement is that the expression x.compareTo(y)
will return a negative integer, zero, or a positive integer if the object x is less than, equal to,
or greater than the object y. In our case, we want to sort according to salary order; since
salary is a positive int, the expression salary - e.salary in line 39 satisfies the
compareTo requirement.

CreateEmployee creates five employee objects, adds them to a TreeSet collection, and
then prints the set.

CreateEmployee

 1 import java.util.*;
 2
 3 class CreateEmployee {
 4 public static void main(String[] args) {
 5 Employee emp1 = new Employee(1, ''JONES", 15000);
 6 Employee emp2 = new Employee(2, "SIM", 20000);
 7 Employee emp3 = new Employee(3, "JONES", 19000);
 8 Employee emp4 = new Employee(4, "THORPE", 18000);
 9 Employee emp5 = new Employee(3, "JONES", 19000);
10
11 Collection c = new TreeSet();
12 c.add(emp1);
13 c.add(emp2);
14 c.add(emp3);
15 c.add(emp4);
16 c.add(emp5);
17 Iterator i = c.iterator();
18 while (i.hasNext()) {
19 Employee e = (Employee) i.next();

20 System.out.println(e.empNumber + '' " + e.name
21 + " " + e.salary);
22 }
23 }
24 }

CreateEmployee

Note emp1 and emp3 are two different employees with the same surname JONES. Note
that emp5 is a duplicate entry for employee number 3. The output, in salary order, is as
follows:

> java CreateEmployee
1 JONES 15000
4 THORPE 18000
3 JONES 19000
2 SIM 20000

Note that, being a set, the collection does not include the duplicate emp5.

Suppose we want to sort by name and salary so that employees with the same name are
ordered by salary. The code shows a new version of the Employee class compareTo
method.

compareTo

 1 public int compareTo(Object o) {
 2 Employee e = (Employee) o;
 3 int cmp = name.compareTo(e.name);
 4 return (cmp != 0 ? cmp: salary - e.salary) ;
 5 }

compareTo

In line 2, we cast the argument o to an Employee type. In line 3, we compare the most
significant part of the objects, in this case, name. We use the String.compareTo
method for this purpose: this uses a lexicographic ordering as we have seen. cmp will be set
to zero if the objects are equal; otherwise, cmp will be nonzero. In line 4, if the value of
cmp is nonzero, we return the value of cmp; otherwise, we compare the next significant
part of the objects, namely, salary, and return the expression salary - e.salary.
If we now run CreateEmployee, the result will be as follows:

> java CreateEmployee
1 JONES 15000
3 JONES 19000
2 SIM 20000
4 THORPE 18000

9.2 List Interface

A list is an ordered collection that may include duplicate elements. The user has control
over positional placing of elements in a list. The List interface, as well as inheriting all
the Collection methods, includes additional methods that manipulate the position of
elements in a list. Three classes in the java.util package implement the List interface:
ArrayList, LinkedList, and Vector. ArrayList, in general, is the fastest
implementation; if, however, elements are frequently added to the beginning or end of a list
or there are frequent deletions from a list, then the LinkedList implementation should be
used. Prior to Java version 1.2, Vector was a separate data structure, since version 1.2
Vector is an implementation of the List interface. The Vector class is similar to an
ArrayList; however, Vector is synchronized while ArrayList is unsynchronized. All
Collection framework implementations, apart from Vector and Hashtable, are
unsynchronized. We discuss synchronization in Section 10.5.

Consider CollectExample from Section 9.1; instead of adding elements to a set, we will
add them to a list using the ArrayList implementation. The only change we need to
make to the program is to replace line 6 with

Collection c = new ArrayList();

The program will now output:

> java CollectExample
Smith Jones Smith Brown Able

Note that since we have a list, the duplicate elements ''Smith" are permitted. This
example illustrates the polymorphic behavior of Collections. Our Collection interface
methods work regardless of whether the implementation is a Set or List.

If we want to use the LinkedList or Vector implementations in the program we only
need to change the one statement. Both ArrayList and Vector have a default initial
capacity of ten elements. This is automatically incremented when the list becomes full. We
can change these default tuning parameters with the constructors ArrayList(int
capacity) and Vector(int capacity). There are no tuning parameters for the
LinkedList constructor.

There are a number of methods in the List interface such as set, get, and subList that
are not inherited from the Collection interface. To use any of these methods, we replace
the Collection type in line 6 with a List type, as follows:

List c = new ArrayList();

The set method is used to replace an element in a specified position in a list with a new
element. For example, the statement

c.set(3, "BROWN");

replaces the fourth element (count from zero) "Brown" with "BROWN".

The get method returns the element at the specified position. For example,

Object o = c.get(3);

returns the fourth element of c.

The subList(startposition, endposition) method is used to create a sublist
from the current list starting at startposition inclusive to endposition exclusive.
For example, the statement

List c1 = c.subList(2, 4);

creates a sublist c1 with contents ''Smith", "Brown".

The List interface also provides its own iterator, ListIterator, in addition to the
Collection interface iterator. ListIterator inherits all the methods of Iterator
but in addition provides methods such as previous and hasPrevious for iterating
through a list in the reverse direction. previous returns the previous element in the list.
hasPrevious returns true if there are more elements in the list when iterating in the
reverse direction.

The statement

ListIterator l = c.listIterator(5);

creates a ListIterator, l, starting at the fourth (last) element in the list c. The
argument, 5, is the element that would be retrieved by a call to the next method. The
following code fragment iterates backward through our list:

while (l.hasPrevious()) {
 System.out.print(l.previous() + " ");
}

producing the result

Able Brown Smith Jones Smith

Details of all the List interface methods and their implementations can be found in the
Sun API documentation.

9.3 Map Interface

A map is a grouping of keys and their corresponding values. A map cannot contain
duplicate keys, and each key can have at most one associated value. Recall that a map is a
top-level interface, so it does not inherit any of the Collection methods but is provided
with its own methods similar in functionality to Collection methods. We will discuss
three of the classes in the java.util package that implement the Map interface:
HashMap, TreeMap, and Hashtable. HashMap is fastest but does not guarantee
ordering; if ordering is required, TreeMap should be used. Prior to Java version 1.2,
Hashtable was a separate data structure, since version 1.2, Hashtable is an
implementation of the Map interface. The Hashtable class is similar to a HashMap, but
a Hashtable is synchronized.

MapExample adds a number of elements to a HashMap, then prints the values of the map.

MapExample

 1 import java.util.*;
 2

 3 public class MapExample {
 4
 5 public static void main(String[] args) {
 6 Map m = new HashMap();
 7 m.put(new Integer(1), ''Smith");
 8 m.put(new Integer(2), "Jones");
 9 m.put(new Integer(3), "Smith");
10 m.put(new Integer(4), "Brown");
11 m.put(new Integer(5), "Able");
12
13 Collection c = m.keySet();
14 Iterator i = c.iterator();
15 while (i.hasNext()) {
16 System.out.print(m.get(i.next()) + " ");
17 }
18 }
19 }

MapExample

The output of the program is

> java MapExample
Able Brown Smith Jones Smith

Note (line 6) that we have defined our HashMap as a Map type, m. We could have defined
the HashMap as a HashMap type, as follows:

HashMap m = new HashMap();

However, as with a Collection, a Map type makes the code more generic: the code that
follows the preceding statement will work whatever the implementation. To use a
Hashtable implementation, we simply change the statement to

Map m = new Hashtable();

for the program to work.

In lines 7–11, we use the put(key, value) method to add pairs of keys with associated
values to our map. Because the put arguments must be Object types, we use the
Integer wrapper to convert integer numbers to objects.

There is no iterator object that iterates directly over a map. We need to use a collection or
set view method that converts a map to a collection or set. We then iterate over this
collection or set as before. The statement (line 13)

Collection c = m.keySet();

uses the collection view method keySet to return a collection, c, of keys contained in the
map, m.

In lines 15–17, we then iterate over the collection c. In line 16, we use the
Iterator.next method to obtain the next key in the collection. We look up the key's
value using the Map.get method and print this value. Note that although in this case the
map has been ordered by descending key order, the HashMap class does not guarantee
ordering. If order has to be guaranteed, we must use the SortedMap interface as described
in Section 9.3.1.

Apart from keySet, the other set view methods are values, which returns a collection
of values contained in the map, and entrySet, which returns a collection of key value
mappings contained in the map. In the preceding MapExample, the entrySet view
would be

5=Able 4=Brown 3=Smith 2=Jones 1=Smith

Details of all the Map interface methods and their implementations can be found in the Sun
API documentation.

9.3.1 SortedMap Interface

In the previous section, we discussed the HashMap implementation of the Map interface. If
we wish to maintain a map in ascending key order, we need to use the TreeMap
implementation of the Map interface. In MapExample, we need to replace line 6 with

Map m = new TreeMap();

No other changes need to be made. The program output will now be

Smith Jones Smith Brown Able

The SortedMap interface inherits all the methods of the Map interface. In addition,
SortedMap provides a number of methods, such as firstKey and lastKey, which
make sense only for a map that is sorted. There is only one implementation of
SortedMap, namely, TreeMap. To use the noninherited methods, we need to replace
line 6 with

SortedMap m = new TreeMap();

The statements

System.out.println(''first key: " + m.firstKey());
System.out.println("last key: " + m.lastKey());

will produce the output

first key: 1
last key: 5

9.4 The Collections Class

The java.util.Collections class provides a number of methods that operate on
collections (in most cases, lists). We will describe two such methods, sort and reverse,
in this section. The sort method sorts a list into the natural ascending order of its elements.
Suppose we have created the following list:

List c = new ArrayList();
c.add("Smith");
c.add(''Jones");
c.add("Smith");
c.add("Brown");
c.add("Able");

then the statement

Collections.sort(c);

will sort the List c as follows:

Able Brown Jones Smith Smith

Like SortedSets, the sort method uses the String class implementation of the
Comparable interface compareTo method to sort the Strings in lexicographic order.
Similarly, if the collection contains Dates, then the Date class implementation of the
Comparable interface compareTo method is used to sort the Dates in chronological
order.

The reverse method reverses the order of elements in a list. For example, the statement

Collections.reverse(c);

will reverse the List c as follows:

Able Brown Smith Jones Smith

Details of all the Collections class methods can be found in the Sun API documentation.

chapter 10
Threads
It is possible in Java for an individual program to simultaneously perform more than one
task, or thread. All the programs discussed in this book so far implicitly use just one thread.
Such a program is described as single threaded. Threads cannot exist independently; they
always exist within the context of a program. A Java program can have any number of
associated threads that are created explicitly; if a program has more than one associated
thread, it is said to be multithreaded. Threads are sometimes described as execution
contexts.

It is possible to delay execution of a thread: this feature of threads is typically used in
animation. Multithreading is often used in applets that perform a number of independent
tasks, one or more of which performs some lengthy initialization. With multithreading, the
applet can perform some tasks while the lengthy tasks continue in the background.
Typically, these lengthy tasks include loading images or accessing large volumes of data. A
common use of multithreading is in client–server applications where the server may use
one thread for each client.

10.1 The Thread Class

Java provides the java.lang.Thread class for explicitly creating and controlling
threads. To use threads, first create a subclass of Thread. This subclass must include a run
method; the code within the run method performs the thread's task. Each instantiation of
this subclass corresponds to a single thread. To start the thread, the controlling program
invokes the java.lang.Thread.start method. Invoking start causes the thread's
run method to be invoked. This is done right away; we do not wait for another thread to
complete the run method. In this way, multithreaded execution is achieved. The thread is
implicitly stopped as soon as the run method terminates. One important method in the
Thread class is sleep: this causes the thread to cease execution for a specified number of
milliseconds.

10.2 Multithreaded Application Example

To illustrate what we have covered so far, we introduce a Java application,
PrintNumbersThread, which includes thread code that simply lists the numbers 1 to 10.
The application will have two thread instances; the thread will append the thread instance
name to the output number so that we can distinguish between the instances. Finally, we
will use the sleep method within the thread's run method to cease execution every half-
second so that we can interleave the two thread instances' output.

PrintNumbersThread

 1 public class PrintNumbersThread extends Thread {
 2 String name;
 3
 4 public PrintNumbersThread(String threadName){
 5 name = threadName;
 6 }
 7
 8 public void run() {
 9 int i;
10
11 for (i=1; i<11; i++) {
12 System.out.println(name + '': " + i);
13 try {
14 Thread.sleep(500);
15 } catch (InterruptedException e) {}
16 }
17 }
18 }

PrintNumbersThread

Line 1 indicates that PrintNumbersThread is a Thread subclass. The
PrintNumbersThread class contains a constructor (lines 4–6) that simply assigns the
supplied thread's instance name to the variable name. The run method (lines 8–17) contains
a for loop that is executed ten times. Within the for loop (line 12), we print the thread
instance's name followed by the numbers 1 to 10. In line 14, we use the sleep method to
cease the current thread's execution for 500 milliseconds. This will enable any other started
threads to resume execution. To use the sleep method, we must enclose the sleep statement
within a try catch statement that handles an InterruptedException. Failure to do so
will cause the program's compilation to fail.

The RunThreads application invokes PrintNumbersThread.

RunThreads

 1 public class RunThreads {
 2
 3 public static void main(String args[]) {
 4 PrintNumbersThread thread1;
 5 PrintNumbersThread thread2;
 6
 7 thread1 = new PrintNumbersThread(''Thread1");
 8 thread2 = new PrintNumbersThread("Thread2");
 9 thread1.start();
10 thread2.start();
11 }
12 }

RunThreads

In lines 7–8, we create two instances of the thread, thread1 and thread2, by invoking
the PrintNumbersThread constructor. In lines 9–10, we use the
java.lang.Thread.start method to start the two thread instances.

The output of RunThreads is as follows:

> java RunThreads
Thread1: 1
Thread2: 1
Thread1: 2
Thread2: 2
Thread1: 3
Thread2: 3
Thread1: 4
Thread2: 4
Thread1: 5
Thread2: 5
Thread1: 6
Thread2: 6
Thread1: 7
Thread2: 7
Thread1: 8
Thread2: 8
Thread1: 9
Thread2: 9
Thread1: 10
Thread2: 10

10.3 Thread Priorities

By default, a thread inherits its priority from the program or thread that created it. It is
possible to set a thread's priority using the Thread.setPriority method. A runnable
thread with the highest priority is chosen first for execution. The setPriority method
takes a value between Thread.MIN_PRIORITY and Thread.MAX_PRIORITY as an
argument.

For example, in RunThreads, if we were to add the following statements prior to starting
the threads:

thread1.setPriority(Thread.MIN_PRIORITY);
thread2.setPriority(Thread.MAX_PRIORITY);

the result would be to output the thread2 stream first. The two threads would still be
interleaved because the result of using the sleep method on the higher priority thread2 is
to allow execution of the lower priority thread1.

Note that the Java thread priority scheduler does not usurp any timeslicing performed on a
single-processor computer system using an operating system such as Windows NT. For
example, if we were to remove the sleep method (line 14) from the run method of
PrintNumbersThread but set the thread priorities as described earlier, we would output
all of thread2 followed by all of thread1. On a single-processor timeslicing system, such
as Windows NT, the timeslice would be large enough to output the threads in their entirety.
However, if our program were modified so that each thread output many thousands of lines,
not just ten, then the timeslicing would come into play switching between threads after
several thousand iterations of each thread.

10.4 The Runnable Interface

In Section 10.2, we developed a threaded application by extending the Thread class and
creating a run method within the extended class. An applet is created by extending the
Applet or JApplet class; a class cannot be a subclass of more than one parent class, so
we cannot extend the Thread class if we want to create a thread within an applet. To get
around this, Java provides the Runnable interface. The interface is specified in the applet
class declaration using the implements keyword, for example,

public class ThreadedNumbers extends Applet implements Runnable {

The Runnable interface consists of just one method, run, which takes no arguments. We
create the run method within our applet subclass; the method contains the execution code
for the thread similar to the run method for applications described in Section 10.2. We
avoid having to subclass Thread by passing an instance of the applet subclass, this, to the
newly created Thread object.

For example,

numbersThread = new Thread(this);

The thread is then started as follows:

numbersThread.start();

10.4.1 Finite Applet Thread Example

Before describing a threaded applet example, OneToTwenty is an applet that paints the
numbers 1 to 20 in the applet window. The result is shown in Figure 10.1.

OneToTwenty

 1 import java.applet.*;
 2 import java.awt.Graphics;
 3
 4 public class OneToTwenty extends Applet {
 5
 6 public void paint(Graphics g) {
 7 int i;
 8 int xpos;
 9 int ypos;
10 String text;
11
12 xpos = 0;
13 ypos = 50;
14 for (i=1; i<21; i++) {
15 xpos = xpos + 20;
16 text = Integer.toString(i);
17 g.drawString(text, xpos, ypos);
18 }
19 }
20 }

OneToTwenty

Figure 10.1: Applet Viewer invoking OneToTwenty applet.

The code for the corresponding HTML page, OneToTwenty.html, can be found on the
book's Web site. We want to modify the output shown in Figure 10.1 so that each number is
painted in turn from left to right at intervals of half a second. This is a simple example of
animation, and we would create the code for it by using the Runnable interface described
in Section 10.4. This is achieved by ThreadedNumbers.

ThreadedNumbers

 1 import java.applet.*;
 2 import java.awt.Graphics;
 3
 4 public class ThreadedNumbers extends Applet implements Runnab
le {
 5 Thread numbersThread;
 6 int xpos = 0;
 7 int ypos = 0;
 8 String text = '' ";
 9
10 public void start() {
11 numbersThread = new Thread(this);
12 numbersThread.start();
13 }
14
15 public void run() {
16 int i;
17
18 xpos = 0;
19 ypos = 50;
20 for (i=1; i<21; i++) {
21 try {
22 Thread.sleep(500);
23 } catch (InterruptedException e) {}
24 xpos = xpos + 20;
25 text = Integer.toString(i);
26 repaint();
27 }
28 }
29
30 public void paint(Graphics g) {
31 g.drawString(text, xpos, ypos);
32 }
33 }

ThreadedNumbers

Line 4 specifies in the applet class declaration that a Runnable interface is being
implemented.

The start method (lines 10–13) overrides the applet class start method. In line 11, we
pass an instance of the ThreadedNumbers class, this, as an argument to the Thread
constructor. In line 12, the thread, numbersThread, is started.

Recall that starting a thread invokes the thread's run method. The run method (lines 15–28)
includes a for loop that iterates over the numbers 1 to 20. For each iteration, we delay the
thread's execution for half a second, 500 milliseconds, by means of the sleep method (line
22). In lines 24–25, we calculate the string equivalent, text, of the current iteration number
and the horizontal position, xpos, of the number.

In line 26, we force the redrawing of the applet window by invoking the repaint method,
which in turn, invokes the paint method. The thread is implicitly stopped as soon as the
run method terminates.

10.4.2 Infinite Applet Thread Example

In the previous example, the thread stopped as soon as its run method terminated. However,
if an applet executes a thread that is terminated only when the user closes or stops the
applet, then we need to stop the thread in a different manner. This is best illustrated with an
example: the ThreadForEver applet displays integers in turn starting at 1, incrementing
the integer by 1, and only terminating when the user stops the applet.

ThreadForEver

 1 import java.applet.*;
 2 import java.awt.Graphics;
 3
 4 public class ThreadForEver extends Applet
 5 implements Runnable {
 6 Thread numbersThread;
 7 int i = 1;
 8 int xpos = 100;
 9 int ypos = 50;
10 String text = '' ";
11
12 public void start() {
13 numbersThread = new Thread(this);
14 numbersThread.start();
15 }
16
17 public void run() {
18 while (numbersThread != null) {
19 i++;
20 try {
21 Thread.sleep(100);

22 } catch (InterruptedException e) {}
23 text = Integer.toString(i);

24 repaint();
25 }
26 }
27
28 public void paint(Graphics g) {
29 g.drawString(text, xpos, ypos);
30 }
31
32 public void stop() {
33 numbersThread = null;
34 }
35 }

ThreadForEver

The code for the corresponding HTML page, ThreadForEver.html, can be found on
the book's Web site. The applet implements a Runnable interface in the same manner as a
finite applet thread. There is also no change to the applet start method. However, instead
of a finite for loop in the run method, we specify the following while loop (line 18):

while (numbersThread != null) {

As long as the thread is not stopped, this condition will be satisfied. The run method
delays execution for 100 milliseconds; this is not strictly required but is probably the
minimum amount of time required to see individual integers appear on the screen. In lines
23–24, the string equivalents of the integers are displayed in the same position in the applet
window using the repaint and paint methods as before.

Thes stop method overrides the applet class stop method. This method is invoked when
the user either stops or quits the applet using Applet Viewer or closes the window with a
browser. The stop method consists of just one statement (line 33) setting the
numbersThread object to null, thus causing the while loop in the run method to
terminate.

10.5 Synchronizing Threads

A program may access the same object from separate concurrent threads. To ensure that
only one thread at a time can access an object, we use the synchronized keyword. We
can synchronize a method or block of code. When a thread executes a synchronized method
or block of code, it places a lock on the associated object. This prevents any other thread
from executing any synchronized method that accesses that object.

For example, the SynchronizedSumming class contains two synchronized methods,
add and subtract.

SynchronizedSumming

 1 public class SynchronizedSumming{
 2 int result;
 3
 4 synchronized void add(int arg1) {
 5 result = result + arg1;
 6 }
 7
 8 synchronized void subtract(int arg1) {
 9 result = result - arg1;
10 }
11 }

SynchronizedSumming

Any thread concurrently executing either of these methods is accessing the same shared
SynchronizedSumming object. In particular, the SynchronizedSumming result
variable is shared. So we do not want one thread to be executing the add method while
another is concurrently executing the subtract method.

As soon as the first thread executes the add method, say, because it is synchronized, a lock
is placed on the SynchronizedSumming object. This prevents another thread from
executing any synchronized method that accesses the SynchronizedSumming object. In
particular, a second thread cannot execute the subtract method. As soon as the first
thread completes execution of the add method, the lock on the object is released.

Rather than place a lock on an object for the duration of an entire method, we may be able
to isolate critical lines of code that access an object. For example, the add method may
perform some time-consuming processing that does not affect the
SynchronizedSumming object until the last statement.

We can create a synchronized block around this statement as follows:

void add(int arg1) {
 ...
 time consuming processing statements
 ...
 synchronized (this) {
 result = result + arg1;
 }
}

The this keyword ensures the current object, SynchronizedSumming, is locked. If the
synchronized block accesses another object, object_name, say, that we want to lock, we
would use the statement

synchronized (object_name) {

10.6 Thread States

In the previous sections, we talked about starting a thread, delaying execution of a thread
by means of the sleep method, and stopping a thread. In this section, we describe the
various thread states more precisely. A thread can be in one of the following states:

New thread. A thread is in this state after it has been created using the Thread
constructor but before the start method has been invoked. A new thread will have
no system resources allocated for it.

Runnable. A thread becomes runnable when the start method is invoked. This does not
mean that a thread is actually running; in a single-processor computer system, another
thread may be running at a given moment.

Not runnable. A thread cannot run. A thread becomes not runnable when the Thread
class sleep or wait method has been invoked.

Dead. A thread dies when it stops. This occurs automatically when the thread's run
method terminates.

Finally, the Thread class includes a method isAlive to test if a thread is alive. A thread
is alive if it has been started and has not yet died. If a thread is alive, it is either runnable or
not runnable. One cannot distinguish one state from the other. If a thread is not alive, it is
either a new thread or dead. Again, it is not possible to distinguish between these states.

appendix A
Operator Precedence
The following table lists Java's operators and associativity characteristics in order of
precedence. Operators at the top of the table have greater precedence than those lower
down.

Operator Level Associativity

++ – – right to left

! ~ cast right to left

* / % left to right

+ – left to right

<< >> >>> left to right

< > <= >= instanceof left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

= *= /= %= += –= <<= >>= >>>= &=
^= |=

right to left

appendix B
Swing Events
The following table lists the event listeners, the methods that are used in the interface to
respond to the events and the Swing components that generate the corresponding events.

Listener Interface Associated Methods Invoked by
Component

ActionListener actionPerformed Button, Check Box,
Combo Box, Menu
Item, Radio Button,
Text Field, File
Chooser, Password
Field, Toggle Button

CaretListener caretUpdate Editor Pane, Password
Field, Text Area, Text
Field, Text Pane

ComponentListener componentHidden
componentMoved
componentResized
componentShown

All components and
containers

ContainerListener componentAdded
componentRemoved

All containers

ChangeListener stateChanged Button, Check Box,
Color Chooser, Menu
Item, Progress Bar,
Radio Button, Slider,
Tabbed Pane, Toggle
Button, Scroll Pane

DocumentListener changedUpdate
insertUpdate
removeUpdate

Editor Pane, Password
Field, Text Area, Text
Field, Text Pane

UndoableEditListener undoableEditHappened Editor Pane, Password
Field, Text Area, Text
Field, Text Pane

FocusListener focusGained focusLost All components and
containers

ItemListener itemStateChanged Button, Check Box, Combo

Box, Menu Item, Radio Button,
Toggle Button

KeyListener keyPressed keyReleased
keyTyped All components and containers

ListSelectionListener valueChanged List, Table
MouseListener mouseClicked mouseEntered

mouseExited mousePressed
mouseReleased

All components and containers

MouseMotionListener mouseDragged mouseMoved All components and containers
WindowListener windowActivated windowClosed

windowClosing
windowDeactivated
windowDeiconified
windowIconified
windowOpened

Dialog, Frame

HyperLinkListener hyperlinkUpdate Editor Pane, Text Pane
MenuListener menuCanceled menuDeselected

menuSelected Menu

MenuKeyListener menuKeyPressed
menuKeyReleased
menuKeyTyped

MenuItem

MenuDragMouseListener menuDragMouseDragged
menuDragMouseEntered
menuDragMouseExited
menuDragMouseReleased

MenuItem

PopupMenuListener popupMenuCanceled
popupMenuWillBecomeInvisible
popupMenuWillBecomeVisible

Popup Menu

TableColumnModelListener columnAdded
columnMarginChanged
columnMoved columnRemoved
columnSelectionChanged

Table

CellEditorListener editingCanceled editingStopped Table
TableModelListener tableChanged Table

InternalFrameListener internalFrameActivated

internalFrameClosed
internalFrameClosing
internalFrameDeactivated
internalFrameDeiconified
internalFrameIconified
internalFrameOpened

Internal Frame

ListDataListener contentsChanged intervalAdded
intervalRemoved List

TreeExpansionListener treeCollapsed treeExpanded Tree
TreeWillExpandListener treeWillCollapse treeWillExpandTree
TreeModelListener treeNodesChanged

treeNodesInserted
treeNodesRemoved
treeStructureChanged

Tree

TreeSelectionListener valueChanged Tree

	Java : Practical Guide for Programmers
	Preface
	Acknowledgments
	Chapter 1
	Introduction
	1.1 Simple Java Application
	1.2 Java Tools
	1.2.1 javac
	1.2.2 java

	1.3 Language Features

	Chapter 2
	Basic Language Syntax
	2.1 Comments
	2.1.1 javadoc
	2.2 Statements
	2.3 Variables
	2.4 Constants
	2.5 Data Types
	2.5.1 Integer Numbers
	2.5.2 Real Numbers
	2.5.3 Booleans
	2.5.4 Characters
	2.5.5 Strings
	2.5.6 Arrays
	2.6 Arithmetic Operations
	2.7 Data Type Conversion

	Chapter 3
	Flow Control
	3.1 Conditional Statements
	3.1.1 if Statement
	3.1.2 if else Statement
	3.1.3 else if Statement
	3.1.4 Embedded Conditional Expressions
	3.1.5 Switch Statement

	3.2 Relational and Logical Operators
	3.2.1 Bitwise Operators

	3.3 Iteration Statements
	3.3.1 while Loop
	3.3.2 do while Loop
	3.3.3 for Loop
	3.3.4 break and continue Statements

	Chapter 4
	Classes and Objects
	4.1 Class and Object with No Methods
	4.2 Class with Methods
	4.3 Constructors
	4.4 Method Overloading
	4.5 Argument Passing in Java
	4.6 Instance and Static Variables
	4.7 Instance and Static Methods
	4.8 this Keyword
	4.9 StringBuffer
	4.10 Vectors
	4.11 Object Wrappers

	Chapter 5
	Inheritance and Access Control
	5.1 Creating Subclasses
	5.1.1 Casting Objects

	5.2 The Object Class
	5.2.1 equals Method
	5.2.2 hashCode Method
	5.2.3 toString Method
	5.2.4 instanceof Operator

	5.3 Abstract Classes and Methods
	5.4 Interfaces
	5.5 Packages
	5.5.1 classpath Option
	5.6 Access Control
	5.7 Inner Classes

	Chapter 6
	Exceptions
	6.1 Exception Handling
	6.2 Java Exception Classes
	6.3 Creating Exception Classes
	6.4 Propagation of Exceptions
	6.5 Runtime Exceptions
	6.6 Assertions

	Chapter 7
	Input/Output
	7.1 Terminal I/O Example
	7.2 FileReader and FileWriter Streams
	7.2.1 FileWriter Example
	7.2.2 The write Method
	7.2.3 The OutputStreamWriter Stream
	7.2.4 The PrintWriter Stream
	7.2.5 FileReader Example
	7.2.6 Using FileNotFoundException

	7.3 FileInputStream and FileOutputStream
	7.4 Buffered Input and Output Streams
	7.4.1 BufferedWriter Example
	7.4.2 Flushing the BufferedWriter Stream
	7.4.3 BufferedReader Example

	7.5 DataInputStream and DataOutputStream
	7.5.1 DataOutputStream Example
	7.5.2 DataInputStream Example
	7.5.3 Wrapping Filter Streams

	7.6 Random Access Files
	7.6.1 Writing to a Random Access File
	7.6.2 Reading from a Random Access File

	7.7 Object Serialization
	7.7.1 Controlling Serialization
	7.7.2 The jar Tool

	Chapter 8
	Developing GUIs
	8.1 Introduction
	8.2 Swing Components
	8.2.1 Button
	8.2.2 Combo Box
	8.2.3 Check Box Button
	8.2.4 Radio Button
	8.2.5 Text Field
	8.2.6 Text Area
	8.2.7 Label
	8.2.8 List

	8.3 Component Methods
	8.3.1 Borders
	8.3.2 Background and Foreground Colors
	8.3.3 Fonts
	8.3.4 Enabling and Disabling Components

	8.4 Swing Containers
	8.4.1 Top-Level Containers
	8.4.2 Dialogues
	8.4.3 Intermediate-Level Containers

	8.5 Layouts
	8.5.1 FlowLayout
	8.5.2 BorderLayout
	8.5.3 GridLayout

	8.6 Specifying Look and Feel
	8.7 Event Handling
	8.7.1 ActionListener
	8.7.2 ItemListener
	8.7.3 ListSelectionListener
	8.7.4 Adapters in Event Handling

	8.8 Painting with Swing
	8.9 CustomerDetails Example
	8.10 Applets
	8.10.1 Swing Applets
	8.10.2 Applet Life Cycle Methods
	8.10.3 Applet Security

	Chapter 9
	Collections
	9.1 Set Interface
	9.1.1 SortedSet Interface
	9.1.2 Implementing the Comparable Interface

	9.2 List Interface
	9.3 Map Interface
	9.3.1 SortedMap Interface

	9.4 The Collections Class

	Chapter 10
	Threads
	10.1 The Thread Class
	10.2 Multithreaded Application Example
	10.3 Thread Priorities
	10.4 The Runnable Interface
	10.4.1 Finite Applet Thread Example
	10.4.2 Infinite Applet Thread Example

	10.5 Synchronizing Threads
	10.6 Thread States

	Appendix A
	Operator Precedence

	Appendix B
	Swing Events

	End of Book

