


Lecture Notes in Mathematics 1975

Editors:
J.-M. Morel, Cachan
F. Takens, Groningen
B. Teissier, Paris



Jan Christian Rohde

Cyclic Coverings,
Calabi-Yau Manifolds
and Complex
Multiplication

ABC



Jan Christian Rohde
Institut fuer Algebraische Geometrie
Leibniz Universität Hannover
Welfengarten 1, GRK 1463
30167 Hannover
Germany
rohde@math.uni-hannover.de

ISSN 0075-8434 e-ISSN 1617-9692
ISBN 978-3-642-00638-8 e-ISBN 978-3-642-00639-5
DOI 10.1007/978-3-642-00639-5
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: PCN applied for

Mathematics Subject Classification (2000): 14D07, 14G35, 14J32

c© Springer-Verlag Berlin Heidelberg 2009
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: SPi Publisher Services

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Calabi-Yau manifolds have been an object of extensive research during
the last two decades. One of the reasons is the importance of Calabi-Yau
3-manifolds in modern physics - notably string theory. An interesting class
of Calabi-Yau manifolds is given by those with complex multiplication
(CM). Calabi-Yau manifolds with CM are also of interest in theoretical
physics, e.g. in connection with mirror symmetry and black hole attractors.

It is the main aim of this book to construct families of Calabi-Yau
3-manifolds with dense sets of fibers with complex multiplication. Most ex-
amples in this book are constructed using families of curves with dense sets
of fibers with CM . The contents of this book can roughly be divided into
two parts. The first six chapters deal with families of curves with dense
sets of CM fibers and introduce the necessary theoretical background. This
includes among other things several aspects of Hodge theory and Shimura
varieties. Using the first part, families of Calabi-Yau 3-manifolds with dense
sets of fibers with CM are constructed in the remaining five chapters. In the
appendix one finds examples of Calabi-Yau 3-manifolds with complex multi-
plication which are not necessarily fibers of a family with a dense set of CM
fibers.

The author hopes to have succeeded in writing a readable book that can
also be used by non-specialists. On the other hand the expert will find new
results about variations of Hodge structures and new examples of families
of curves and Calabi-Yau manifolds with dense sets of fibers with CM . The
author believes that this book will also be interesting for physicists.

This book is based on the authors doctoral thesis at Universität Duisburg-
Essen. The author wishes to thank his former adviser Eckart Viehweg for his
excellent guidance and support. The text has been revised for publication at
the Graduiertenkolleg “Analysis, Geometrie und String Theorie” at Leibniz
Universität Hannover.

Hannover, February 2009 J. C. Rohde
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Introduction

These lecture notes deal with construction methods of Calabi-Yau manifolds
with a special arithmetic property. In these methods we use curves with a
similar arithmetic property, namely, complex multiplication. In the case of
abelian varieties complex multiplication has been well studied by number
theorists. The first six chapters describe how this theory for abelian varieties
can be applied to the construction of curves with complex multiplication.
The remaining five chapters and the appendix are devoted to the construc-
tion methods of Calabi-Yau manifolds with a similarly defined arithmetic
property.

We give new examples of families of curves with dense sets of complex
multiplication fibers and new examples of families of Calabi-Yau manifolds
with a dense set of fibers with a similar arithmetic property. Moreover we will
acquaint the reader with Mumford-Tate groups, which we use as a main tool
for the study of Hodge structures and of variations of Hodge structures. The
generic Mumford-Tate groups of families of cyclic covers of the projective line
will be computed for a large class of examples.

Let us consider curves and Hodge structures on curves. In particular el-
liptic curves are both Calabi-Yau manifolds and abelian varieties. In general
the points on a curve C of genus g generate a commutative group, which can
be endowed with the structure of an abelian variety of dimension g, which
is the Jacobian Jac(C) of C. The curve C can be obtained from Jac(C) and
the principal polarization on Jac(C). In order to study the curve C and its
properties one can also study Jac(C). Abelian varieties and their arithmetic
properties have been well-studied by number theorists.

By Riemann’s theorem, a polarized abelian variety with symplectic basis
corresponds to a pure polarized integral Hodge structure of weight 1. Thus
curves are determined by their Hodge structures. Therefore curves satisfy
a Torelli Theorem. For Calabi-Yau manifolds one has also a local Torelli
theorem. Thus one can study curves and Calabi-Yau manifolds in terms of
their Hodge structures.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 1
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5 1,
c© Springer-Verlag Berlin Heidelberg 2009



2 Introduction

Let Z ⊆ R ⊆ R be a ring. Recall that an R-Hodge structure on an
R-module V is given by a decomposition of VC into subvector spaces V p,q

with V p,q = V q,p. We will see that each R-Hodge structure on V can also be
given by a corresponding representation

h : S → GL(VR)

of the Deligne torus S, which is the algebraic subgroup of GL(R2) given by
the matrices

M(x, y) =
(

x y
−y x

)
.

If V and h yield a Q-Hodge structure, we use the representation h for the
definition of the Mumford-Tate group MT(V, h). The Mumford-Tate group
MT(V, h) is the smallest subgroup of GL(VR) defined over Q such that h(S)
is contained in MT(V, h). For a rational Hodge structure (V, h) of weight k
one can replace S by its subgroup S1 given by the matrices M(x, y) with

detM(x, y) = 1.

In this case one can also replace MT(V, h) by the analogously defined Hodge
group Hg(V, h). The Hodge group Hg(V, h) coincides with the Zariski con-
nected component of the identity in MT(V, h)∩ SL(V ). For any field F with
Q ⊆ F ⊆ R one can also consider F -Hodge structures (V, h) and define
MTF (V, h) and HgF (V, h) in an analogous way.

Let us consider the information which can be obtained from MT(V, h): for
example one says that an elliptic curve E has complex multiplication, if E
has a non-trivial endomorphism. This name is motivated by the fact that in
this case the endomorphism ring of E is a CM field. In general an abelian
variety X of dimension g is of CM type, if its endomorphism algebra contains
a commutative Q-algebra of dimension 2g. The Mumford-Tate group of the
Hodge structure on H1(X, Q) is a torus, if and only if X is of CM type. We
say that a rational Hodge structure (V, h) has complex multiplication (CM),
if MT(V, h) is a torus. For a curve C the Hodge structures on H1(C, Q) and
H1(Jac(C), Q) are isomorphic. Hence we say that a curve has CM , if the
Mumford-Tate group of the Hodge structure on H1(C, Q) is a torus algebraic
group.

Remark 1. One can also study families of compact Kähler manifolds and
their variations of Hodge structures in terms of Mumford-Tate groups. Let D
be a connected complex manifold and V be a polarized variation of Q-Hodge
structures of weight k over D. Then over a dense subset D0 of D the
Mumford-Tate groups of all Hodge structures coincide. Let MT(V) denote
the common Mumford-Tate group. The Hodge structures over the points of
the complement of D0 have a Mumford-Tate group contained in MT(V). The
group MT(V) is called the generic Mumford-Tate group.
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We will introduce Shimura data, which consist of a reductive Q-algebraic
group G and a representation h : S → GR satisfying certain conditions.
Again consider an abelian variety X. For example the pair consisting of the
Mumford-Tate group of the Hodge structure on H1(X, Q) and the represen-
tation h given by this Hodge structure yields a Shimura datum. By using the
conditions which a Shimura datum has to satisfy we obtain:

Theorem 2. Let (G,h) be a Shimura datum and W be a finite dimensional
real vector space. Then the conjugacy class of h in GR can be endowed
with the structure of a complex manifold D. Moreover each closed embed-
ding GR → GL(W ) yields a variation of Hodge structures over D such that
over a dense set of points p ∈ D one has Hodge structures with complex
multiplication.

Note that in the case of the Hodge structure on H1(X, Q) given by h and
the closed embedding

id : MT(H1(X, Q), h) ↪→ GL(H1(X, Q))

the assumptions of the previous Theorem are satisfied, if X is an abelian
variety.

We will give a definition of complex multiplication for arbitrary compact
Kähler manifolds. Due to their application in theoretical physics we are espe-
cially interested in Calabi-Yau 3-manifolds. In theoretical physics one is also
interested in complex multiplication (see [37], [38]).

Here a Calabi-Yau manifold X of dimension n is a compact Kähler mani-
fold of dimension n such that Γ(Ωi

X) = 0 for all i = 1, . . . , n−1 and ωX
∼= OX .

For odd dimensional compact Kähler manifolds one has the intermediate
Jacobians as a generalization of the Jacobians of curves. In general the in-
termediate Jacobian J is not an abelian variety, but only a complex torus.
In the case of an arbitrary complex torus complex multiplication is defined
as for an abelian variety. It can occur that the intermediate Jacobian J is
constant for a family of Calabi-Yau 3-manifolds (see Example 1.6.9). Hence
one intermediate Jacobian is not sufficient for an accurate description of
Calabi-Yau 3-manifolds and their Hodge structures. Nevertheless the inter-
mediate Jacobian of the manifold X of odd dimension k is of CM type, if
Hg(Hk(X, Q), h) is a torus. Moreover the endomorphism algebra of a Hodge
structure (V, h) contains a commutative subalgebra of dimension equal to
dim V , if MT(V, h) is a torus. Thus we say that a compact Kähler manifold X
of dimension n has CM over a totally real number field F , if HgF (Hn(X,F ))
is a torus. It would be very interesting to get mirror pairs of Calabi-Yau
3-manifolds with complex multiplication (see [23]).

One can also consider the Hodge groups of the Hodge structures Hk(X, Q)
for some k �= dim X. In the case of a Calabi-Yau manifold X of dimension
n > 3, it may occur that the Hodge structure on Hn(X, Q) has CM and the
Hodge structure on Hn−1(X, Q) has not CM for example. By considering
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the Hodge diamond of a Calabi-Yau manifold X of dimension n ≤ 3, one
concludes that this can not occur for dimX ≤ 3. In this case the condition of
complex multiplication is equivalent to the property that for all k the Hodge
group of Hk(X, C) is commutative. We will call any family of Calabi-Yau
n-manifolds, which has a dense set of fibers X satisfying the property that
for all k the Hodge group of the Hodge structure on Hk(X, Q) is commu-
tative, a CMCY family of n-manifolds. Here we will give some examples
of CMCY families of 3-manifolds and explain how to construct CMCY
families of n-manifolds in an arbitrarily high dimension. Moreover we will
explicitly determine some fibers with complex multiplication (see Example
7.3.1, Section 7.4, Remark 8.3.6, Remark 9.4.1 and Remark 11.3.13).

Example 3. The first example of a CMCY family of 3-manifolds was given
by C. Borcea [8]. This example uses the family E of elliptic curves given by

P
2 ⊃ V (y2x0 + x1(x1 − x0)(x1 − λx0)) → λ ∈ A

1 \ {0, 1}.

By y → −y, one has a global involution ι on E. Now let Ei with involution ιi
be a copy of E for i = 1, 2, 3. We construct the family

E1 × E2 × E3/〈(ι1, ι2), (ι2, ι3)〉 → (A1 \ {0, 1})3.

By blowing up the singular sections, we obtain a CMCY family of Calabi-Yau
3-manifolds.

In a similar way one can use n copies of E and construct a CMCY family of
n-manifolds (see [56]). Similar to the previous example, we will use involutions
on CMCY families to obtain new CMCY families of manifolds in higher
dimension. The other main tool of construction which we use is motivated
by the following example:

Example 4. Starting with a family of cyclic covers of P
1 with a dense set of

CM fibers, E. Viehweg and K. Zuo [58] have constructed a CMCY family
of 3-manifolds. This construction is given by a tower of projective algebraic
manifolds starting with a family F1 of cyclic covers of P

1 given by

P
2 ⊃ V (y5

1 + x1(x1 − x0)(x1 − αx0)(x1 − βx0)x0) → (α, β) ∈ M2,

which has a dense set of CM fibers. Since each of these covers given by the
fibers of the family can be embedded into P

2, the fibers of F1 are the branch
loci of the fibers of a family F2 of cyclic covers of P

2 of degree 5. Moreover
the fibers of F2, which can be embedded into P

3, are the branch loci of the
fibers of a family F3 of cyclic covers of P

3, which can be embedded into P
4.

The family F3 is given by

P
4 ⊃ V (y5

3 + y5
2 + y5

1 + x1(x1 − x0)(x1 − αx0)(x1 − βx0)x0) → (α, β) ∈ M2.

By the adjunction formula, the fibers of F3 are Calabi-Yau 3-manifolds.
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Let q ∈ M2. The fiber (F3)q has CM , if (F2)q has CM and (F2)q has
CM , if (F1)q has CM . Because of this argument, the family F3 has a dense
set of CM fibers which lie over the same points as the CM fibers of the family
of curves we have started with.

The previous example contains a deformation of the Fermat quintic in P
4,

which is a well-studied example of a Calabi-Yau manifold with complex multi-
plication (see [38]). In the appendix we will give some examples of Calabi-Yau
3-manifolds which are not necessarily a fiber of a family with infinitely many
CM fibers.

By the previous example, we are led to be interested in the examples of
families of curves with a dense set of CM fibers for our search for CMCY
families of n-manifolds. There is an other motivation given by an open ques-
tion in the theory of curves, too. In [11] R. Coleman formulated the following
conjecture:

Conjecture 5. Fix an integer g ≥ 4. Then there are only finitely many
complex algebraic curves C of genus g such that Jac(C) is of CM type.

Let Pn denote the configuration space of n+3 points in P
1. One can endow

these n + 3 points in P
1 with local monodromy data and use these data for

the construction of a family C → Pn of cyclic covers of P
1 (see Construction

3.2.1).
The action of PGL2(C) on P

1 yields a quotient Mn = Pn/PGL2(C). By
fixing 3 points on P

1, the quotient Mn can also be considered as a subspace
of Pn.

Remark 6. In [29] J. de Jong and R. Noot gave counterexamples for g = 4
and g = 6 to the conjecture above. In [58] E. Viehweg and K. Zuo gave
an additional counterexample for g = 6. The counterexamples are given by
families C → Pn of cyclic covers of P

1 with dense sets of CM fibers. Here we
will find additional families C → Pn of cyclic genus 5 and genus 7 covers of
P

1 with dense sets of complex multiplication fibers, too.

All new examples C → Pn of the preceding remark have a variation V of
Hodge structures similar to the examples of J. de Jong and R. Noot [29],
and of E. Viehweg and K. Zuo [58], which we call pure (1, n) − V HS. Let
Hg(V) denote the generic Hodge group of V and let K denote an arbitrary
maximal compact subgroup of Hgad(V)(R). In Section 4.4 we prove that a
pure (1, n) − V HS induces an open (multivalued) period map to the sym-
metric domain associated with Hgad(V)(R)/K, which yields the dense sets of
complex multiplication fibers. We obtain the following result in Chapter 6:

Theorem 7. There are exactly 19 families C → Pn of cyclic covers of P
1

which have a pure (1, n) − V HS (including all known and new examples).

We will use the fact that the monodromy group Mon0(V) is a subgroup of
the derived group Hgder(V) and we will study Mon0(V). Let ψ be a generator
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of the Galois group of C → Pn and C(ψ) be the centralizer of ψ in the
symplectic group with respect to the intersection pairing on an arbitrary
fiber of C. In Chapter 4 we obtain the result, which will be useful for our
study of Hgder(V) and Mon0(V):

Lemma 8. The monodromy group Mon0(V) and the Hodge group Hg(V) are
contained in C(ψ).

We will not be able to determine Mon0(V) for all families C → Pn of
cyclic covers of P

1. But we will obtain for example the following results in
Chapter 5:

Proposition 9. Let C → Pn be a family of cyclic covers of degree m onto
P

1. Then one has:

1. If the degree m is a prime number ≥ 3, the algebraic groups Cder(ψ),
Mon0(V) and Hgder(V) coincide.

2. If C → P2g+2 is a family of hyperelliptic curves, one obtains

Mon0(V) = Hg(V) ∼= SpQ(2g).

3. In the case of a family of covers of P
1 with 4 branch points, we need a

pure (1, 1)−V HS to obtain an open period map to the symmetric domain
associated with Hgad(V)(R)/K.

By our new examples of Viehweg-Zuo towers, we will only obtain CMCY
families of 2-manifolds. C. Voisin [60] has described a method to obtain
Calabi-Yau 3-manifolds by using involutions on K3 surfaces. C. Borcea [9]
has independently arrived at a more general version of the latter method,
which allows to construct Calabi-Yau manifolds in arbitrary dimension. By
using this method, we obtain in Section 7.2:

Proposition 10. For i = 1, 2 assume that C(i) → Vi is a CMCY family of
ni-manifolds endowed with the Vi-involution ιi such that for all p ∈ Vi the
ramification locus (Ri)p of C(i)

p → C(i)
p /ιi consists of smooth disjoint hyper-

surfaces. In addition assume that Vi has a dense set of points p ∈ Vi such that
for all k the Hodge groups Hg(Hk(C(i)

p , Q)) and Hg(Hk((Ri)p, Q)) are com-
mutative. By blowing up the singular locus of the family C(1) ×C(2)/〈(ι1, ι2)〉,
one obtains a CMCY family of n1 +n2-manifolds over V1×V2 endowed with
an involution satisfying the same assumptions as ι1 and ι2.

Remark 11. By the preceding proposition, one can apply the construction
of C. Borcea and C. Voisin for families to obtain an infinite tower of CMCY
families of n-manifolds, which we call a Borcea-Voisin tower.

Example 12. The family C → M1 given by

P
2 ⊃ V (y4

1 − x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1
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has a pure (1, 1)−V HS. Hence by the construction of Viehweg and Zuo [58],
one concludes that the family C2 given by

P
3 ⊃ V (y4

2 + y4
1 − x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1 (1)

is a CMCY family of 2-manifolds.
This family has many M1-automorphisms. The quotients by some of these

automorphisms yield new examples of CMCY families of 2-manifolds. More-
over there are some involutions on C2 which make this family and its quotient
families of K3-surfaces suitable for the construction of a Borcea-Voisin tower
(see Section 7.4 for the construction of C2, and for the automorphism group
and the quotient families of C2 see Section 9.3, Section 9.4 and Section 9.5).

Example 13. The family C → M3 given by

P(2, 1, 1) ⊃ V (y3
1−x1(x1−x0)(x1−ax0)(x1−bx0)(x1−cx0)x0) → (a, b, c) ∈M3

has a pure (1, 3) − V HS. The desingularization P̃(2, 2, 1, 1) of the weighted
projective space P(2, 2, 1, 1) is given by blowing up the singular locus. By a
modification of the construction of Viehweg and Zuo, the family W given by

P̃(2, 2, 1, 1) ⊃ Ṽ (y3
2 + y3

1 − x1(x1 − x0)(x1 − ax0)(x1 − bx0)(x1 − cx0)x0)
→ (a, b, c) ∈ M3 (2)

is a CMCY family of 2-manifolds. The family W has a degree 3 quotient,
which yields a CMCY family of 2-manifolds. Moreover it has an involution,
which makes it and its degree 3 quotient suitable for the construction of a
Borcea-Voisin tower (see Chapter 8 for the construction of W and Section
9.1 for its degree 3 quotient).

By using the preceding example, we will obtain (see Section 9.2 for the
construction and Section 10.3 for the maximality):

Theorem 14. Let F3 be the Fermat curve of degree 3 and αF3 denote a
generator of the Galois group of the degree 3 cover F3 → P

1. The family
W has two M3-automorphism α′ and α′′ of order 3 such that the quotients
W×F3/〈(α′, αF3)〉 and W×F3/〈(α′′, αF3)〉 have desingularizations, which are
CMCY families of 3-manifolds. Moreover one of these families is maximal.

By using the V. V. Nikulins classification of involutions on K3 surfaces
[51] and the construction of C. Voisin [60], we obtain in Chapter 11:

Theorem 15. For each integer 1 ≤ r ≤ 11 there exists a maximal holomor-
phic CMCY family of algebraic 3-manifolds with Hodge number h2,1 = r.

This book is organized as follows. The first three chapters explain well-
known facts and yield an introduction of the notations. Chapter 1 is an
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introduction to Hodge Theory and Shimura varieties with a special view
towards complex multiplication. We consider cyclic covers of P

1 in Chapter 2.
Moreover Chapter 3 introduces the remaining facts, which we need for the
description of families of cyclic covers of P

1 and their variations of Hodge
structures.

In Chapter 4 we consider the Galois group action of a cyclic cover of P
1 and

we state first results for the generic Hodge group of a family C → Pn. More-
over we will give a sufficient criterion for the existence of a dense set of CM
fibers given by the pure (1, n) − V HS. In Chapter 5 we compute Mon0(V),
which provides much information about Hg(V). We will see that Mon0(V)
coincides with Cder(ψ) in infinitely many cases. In Chapter 6 we classify the
examples of families of cyclic covers of P

1 providing a pure (1, n) − V HS.
The basic methods of the construction of CMCY -families in higher di-

mension are explained in Chapter 7. We introduce the Borcea-Voisin tower
and the Viehweg-Zuo tower and realize that only a small number of families
of cyclic covers of P

1 are suitable to start the construction of a Viehweg-
Zuo tower. We will also discuss some methods to find concrete CM fibers
at the end of this chapter. In Chapter 8 we will give a modified version of
the method of E. Viehweg and K. Zuo to construct the CMCY family of
2-manifolds given by (2). We consider the automorphism groups of our ex-
amples given by (1) and (2) in Chapter 9. This yields the further quotients of
the families given by (1) and (2) which are CMCY families of 2-manifolds.
We will see that these quotients are endowed with involutions, which make
them suitable for the construction of a Borcea-Voisin tower. Moreover we will
construct the families Q and R of Theorem 14 in Chapter 9. The next chapter
is devoted to the length of the Yukawa coupling of our examples families (mo-
tivated by the question of rigidity) and the Hodge numbers of their fibers. We
finish this chapter with an outlook onto the possibilities to construct CMCY
families of 3-manifolds by quotients of higher order. In Chapter 11 we use
directly the mirror construction of C. Voisin to obtain maximal holomorphic
CMCY families of 2-manifolds, which are suitable for the construction of a
holomorphic Borcea-Voisin tower.

Throughout this book we use the conventions of Algebraic Geometry as in
[26]. Most of the results and conventions about Hodge theory which we need
can be found in [61].

Acknowledgments

The text of this book has been revised at the Graduiertenkolleg “Analysis,
Geometrie und String Theorie” for publication. I am very grateful to Derek
Harland for many comments and the careful reading of the introduction.
Especially I would like to thank Klaus Hulek for several hints including his
hint to the essay [13] and stimulating discussions. Moreover, I would like to



Introduction 9

thank Remke Kloosterman for fruitful discussions about complex multiplica-
tion. I am very grateful to my former PhD adviser Eckart Viehweg for many
hints and discussions concerning the revision of this text.

The appendix is based on an article written at the beginning of 2008,
which was financially supported by the funds of the Leibniz-Preis of Hélène
Esnault and Eckart Viehweg.

This book is predicated on the authors doctoral thesis, which has been
supported by the funds of the DFG (“Graduiertenkolleg mathematische und
ingenieurswissenschaftliche Methoden für sichere Datenübertragung und In-
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Chapter 1
An introduction to Hodge structures
and Shimura varieties

In this chapter we recall the general facts about Hodge structures and
Shimura varieties, which are needed in the sequel. We will explain that
a Shimura datum consisting of a Q-reductive group G and a homomor-
phism h : S → GR satisfying certain conditions allows the construction of
a Hermitian symmetric domain D. We will also give a definition of complex
multiplication (CM), give a criterion for complex multiplication and discuss
some conjectures concerning complex multiplication.

Shimura varieties and complex multiplication are closely related. One can
construct a variation of Hodge structures on a Hermitian symmetric domain
obtained from a Shimura datum. This variation of Hodge structures yields
Hodge structures with complex multiplication over a dense set of points. Due
to the André-Oort conjecture, one assumes that every variation of Hodge
structures which contains infinitely many Hodge structures with complex
multiplication is of this kind.

In the first two sections we recall the basic definitions of Hodge the-
ory and consider polarized integral Hodge structures of type (1, 0), (0, 1),
which correspond to isomorphism classes of polarized abelian varieties with
symplectic basis by Riemann’s theorem. We define Shimura data and con-
struct Hermitian symmetric domains by using Shimura data in Section 1.3
and Section 1.4 respectively. The construction of Shimura varieties from
the Hermitian symmetric domains obtained by Shimura data is sketched in
Section 1.5.

In Section 1.6 we motivate our definition of complex multiplication and
write it down. Section 1.7 contains the theorem that a Shimura datum yields
a Hermitian symmetric domain D and a V HS on D, which yields Hodge
structures with CM over a dense set of points. In this Section we discuss
some examples and conjectures about families with dense sets of complex
multiplication fibers, too.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 11
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5 2,
c© Springer-Verlag Berlin Heidelberg 2009



12 1 An introduction to Hodge structures and Shimura varieties

1.1 The basic definitions

Definition 1.1.1. Let R be a ring such that Z ⊆ R ⊆ R. An R-Hodge
structure is given by an R-module V and a decomposition

V ⊗R C =
⊕

p,q∈Z

V p,q

such that V p,q = V q,p.

We will always assume that VR has finite dimension.

1.1.2. Let the Deligne torus S be the R-algebraic group given by the matrices

M(x, y) =
(

x y
−y x

)
with x2 + y2 > 0, x, y ∈ R.

We identify the complex number z = x + iy ∈ C
∗ with M(x, y) ∈ S(R).

One checks easily that this yields an isomorphism between C
∗ and S(R). Let

t := (det M(x, y))−1. By using this identification, one sees easily that the
Deligne torus S is given by the affine variety

V (t(x2 + y2) − 1) ⊂ A
3
R.

The Deligne torus S is also given by the Weil restriction

S = ResC/RGm,C.

Proposition 1.1.3. Let V be an R-vector space. Each real Hodge structure
on V defines by

z · αp,q = zpz̄qαp,q (∀αp,q ∈ V p,q, z ∈ C
∗ ∼= S(R))

an action of S on V ⊗C such that one has an R-algebraic homomorphism h :
S → GL(V ). Moreover by the eigenspace decomposition of VC with respect to
the characters of S, any representation given by an algebraic homomorphism
h : S → GL(V ) corresponds to a real Hodge structure on V .

Proof. (see [16], 1.1.11) ��

1 Note that P. Deligne writes

z · αp,q = z−pz̄−qαp,q instead of z · αp,q = zpz̄qαp,q

in [16]. But this is only a matter of the chosen conventions.
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From now on, unless stated otherwise, let V be a Q-vector space and let

h : S → GL(VR)

be the algebraic homomorphism corresponding to a Hodge structure on V .
The algebraic subgroup S1 ⊂ S is given by

V (x2 + y2 − 1) ⊂ A
2
R.

This yields
S1(R) = {z ∈ C : zz̄ = 1} ⊂ C

∗.

We consider the exact sequence

0 → R
∗ id

↪→ C
∗ z→z/z̄−→ S1(R) → 0,

which can be obtained by the exact sequence

0 → Gm,R
w
↪→ S → S1 → 0

of R-algebraic groups.

Remark 1.1.4. The homomorphism given by h ◦ w is called weight homo-
morphism. There exists a k ∈ Z such that V p,q = 0 for all p + q �= k, if and
only if h ◦ w is given by r → rk. In this case the Hodge structure (V, h) is of
weight k.

Remark 1.1.5. By Proposition 1.1.3, any (real) Hodge structure on VR of
weight k determines a unique morphism h1 : S1 → GL(VR) given by

S1 ↪→ S
h→ GL(VR).

Since S = Gm,R · S1, one can reconstruct h from h|S1 and the weight homo-
morphism. By using Proposition 1.1.3 again, one can easily see that there is
a correspondence between Hodge structures of weight k on VR and represen-
tations h1 : S1 → GL(VR) given by

z · αp,q = zpz̄qαp,q

for all αp,q ∈ V p,q, which must satisfy p + q = k for all V p,q �= 0.

We call an R-Hodge structure (V, h) pure, if V p,q = 0 for all p, q < 0.

Example 1.1.6. A pure integral Hodge structure of weight k is given by

Hk(X, C) = Hk(X, Z) ⊗ C =
⊕

p+q=k

Hp,q(X) with Hp,q(X) = Hq(X,Ωp
X)

for any compact Kähler manifold X.
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1.1.7. Let X be a compact Kähler manifold. The Hodge numbers
hp,q = dimHp,q(X) are often visualized by Hodge diamonds. For exam-
ple assume that X is a Calabi-Yau manifold. We say that X is a Calabi-Yau
manifold, if X is Kähler manifold of dimension n such that ωX

∼= OX and
hk,0 = 0 for k = 1, . . . n − 1.

By [6], VIII. Proposition 3.4, one has h1,1 = 20 for a K3 surface resp.,
a Calabi-Yau 2-manifold. Thus by Hodge symmetry and Serre duality, the
Hodge diamond of a K3 surface is given by:

1
0 0

1 20 1
0 0

1

Moreover by Hodge symmetry and Serre duality, the Hodge diamond of a
Calabi-Yau 3-manifold is given by:

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

Definition 1.1.8. Let R be a ring such that Z ⊆ R ⊆ R. A polarized
R-Hodge structure of weight k is given by an R-Hodge structure of weight k
on an R-module V and a bilinear form Q : V × V → R, which is symmetric,
if k is even, alternating otherwise, and whose extension on V ⊗R C satisfies:

1. The Hodge decomposition is orthogonal for the Hermitian form ikQ(·, ·̄).
2. For all α ∈ V p,q \ {0} one has

ip−q(−1)
k(k−1)

2 Q(α, ᾱ) > 0.

Example 1.1.9. Let X be a compact Kähler manifold. Recall that for
k ≤ dim(X) the primitive cohomology Hk(X, R)prim is the kernel of the
Lefschetz operator

Ln−k+1 : Hk(X, R) → H2n−k+2(X, R)

given by
α → ∧n−k+1(ω) ∧ α,

where n := dim(X), the chosen Kähler form is denoted by ω and α ∈
Hk(X, R). By
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(α, β) :=
∫

X

∧n−k(ω) ∧ α ∧ β,

one obtains a polarization on Hk(X, Z)prim and hence a polarized integral
Hodge structure on Hk(X, Z)prim, if [ω] ∈ H2(X, Z) (see [61], 7.1.2)2.

Definition 1.1.10. Let Q ⊆ F ⊂ R be a field and V be a F -vector space.
The Hodge group HgF (V, h) of a F Hodge structure (V, h) is the smallest
F -algebraic subgroup G of GL(V ) such that

h(S1) ⊆ G ×F R.

The Mumford-Tate group MTF (V, h) of a F Hodge structure (V, h) is the
smallest F -algebraic subgroup G of GL(V ) such that

h(S) ⊆ G ×F R.

For simplicity we will write Hg(V, h) instead of HgQ(V, h) and MT(V, h)
instead of MTQ(V, h).3

We will mainly consider rational Hodge structures. Nevertheless we often
take a view towards K Hodge structures, where Q ⊆ F ⊆ R is a field. This
case can also be interesting (for example see [2] and [42]).

Next we define variations of Hodge structures (V HS). Consider a smooth
family f : X → Y of algebraic manifolds. We use the variation of Hodge
structures of such a family for the motivation of the general definition of
variations of Hodge structures. First we need to recall the definition of the
higher direct image sheaf:

Definition 1.1.11. Let f : A → B be a continuous map of topological
spaces and F be a sheaf of abelian groups on A. The higher direct image
sheaf is the sheaf associated to the presheaf given by

V → H1(f−1(V ),F|f−1(V ))

for all open subsets V ⊂ B.

Remark 1.1.12. The higher direct image sheaf Rkf∗(C) is a local system i.e.
a locally constant sheaf of stalk G, where G is an abelian group. In our case G
is given by the complex numbers. This follows from the fact that the fibers are

2 There is a more general definition of a polarized Hodge structure (see [16], 1.1.10). But
here we will mainly consider Hodge structures given by the primitive cohomology on a
Kähler manifold. Moreover we obtain Hn(X, R)prim = Hn(X, R), if X is a curve or if X is
a Calabi-Yau 3-manifold. Hence in these two cases of interest Hn(X, Rprim) is independent
by the chosen Kähler form. Moreover by its definition, the corresponding polarization is
independent of the Kähler form, if k = n. Thus in these two cases the integral polarized
Hodge structure depends only on the isomorphism class of X.
3 In [17], Section 3 one finds an alternative definition of the Mumford-Tate group.
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diffeomorphic such that the corresponding family of differentiable manifolds
is locally constant (see [61] 9.1.1). The variation of Hodge structures will be
given by a filtration of

Hk := Rkf∗(C) ⊗C OY

by holomorphic subbundles. Thus let us first explain that a filtration can give
the Hodge structure of a fiber:

1.1.13. Let Z ⊆ R ⊆ R be a ring and V be an R-module. Recall that we have
two equivalent definitions of an R-Hodge structure on V . A Hodge structure
can be defined by a certain direct sum decomposition of VC into the subvector
spaces V p,q (see Definition 1.1.1) or by a representation h : S → GL(VR).

One needs a third equivalent definition of Hodge structures of weight k
to understand how a filtration of subbundles yields Hodge structures on the
fibers of Hk, which will be the respective Hodge structures of weight k on
the fibers of f . A pure Hodge structure of weight k on V can be given by a
decreasing filtration F • on VC such that

VC = F 0VC ⊃ F 1VC ⊃ . . . ⊃ F k+1VC = 0.

The filtration satisfies

VC = F pVC ⊕ F k−p+1VC

for all p. The direct summand V p,q is given by

V p,q = F pVC ∩ F qVC.

It is an easy exercise to check that such a filtration yields a Hodge structure
of weight k and a Hodge structure of weight k yields such a filtration.

Proposition 1.1.14. Let X → Y be a smooth morphism of algebraic mani-
folds and

Hk := Rkf∗(C) ⊗C OY .

One has a filtration F • of Hk by holomorphic subbundles F pHk such that for
all y ∈ Y one has F pHk(Xy, C) = F p

y Hk. Moreover one can define bundles
Hp,k−p = F pHk/F p+1Hk such that Hp,k−p

y = Hp,k−p(Xy).

Proof. (see [61], 10.2.1) ��

Remark 1.1.15. The Hp,k−p are not subbundles of Hk. This motivates the
definition of the variation of Hodge structures by a filtration.
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Next we need to construct the Gauss-Manin connection:

Construction 1.1.16. We endow Hk with a connection in the following
way:

Let U be a simply connected open subset of Y . Over U the local system
Rkf∗(C) can be considered as a locally constant sheaf. Moreover let

σ =
∑

αi ⊗ σi ∈ Hk(U),

where αi ∈ Rkf∗(C)(U) and σi ∈ O(U). The Gauss-Manin connection
∇ : Hk → Hk ⊗ ΩY is locally defined by

Hk(U) � σ =
∑

αi ⊗ σi
∇→

∑
αi ⊗ dσi ∈ (Hk ⊗ ΩY )(U).

By gluing, the connection is defined for each open subset of Y . Thus the
connection is globally defined.

Remark 1.1.17. The Gauss-Manin connection satisfies the Griffiths
transversality condition. That is

∇(F pHk) ⊆ F p−1Hk ⊗ ΩY and ∇(F p+1Hk) ⊆ F pHk ⊗ ΩY .

Thus by using quotients, we can define the map

∇̄p,k−p : Hp,k−p → Hp−1,k−p+1 ⊗ ΩY .

The Gauss-Manin connection is obviously not linear, but ∇̄p,k−p is a mor-
phism of OY -modules (see [61] 10.2.2).

For the motivation of the definition of a polarized variation of Hodge struc-
tures note one additional fact:

Remark 1.1.18. Let R be a ring such that Z ⊆ R ⊆ R. Recall that a family
of algebraic manifolds provides a locally constant family in the category of
differentiable manifolds. Thus the sheaf Rkf∗(R) is locally constant. There-
fore the polarization on Rkf∗(R) obtained by the polarization of the Hodge
structures of the fibers is locally constant, too.

Definition 1.1.19. Let D be a complex manifold and R be a ring such that
Z ⊆ R ⊆ R. A variation V of R-Hodge structures of weight k over D is given
by a local system VR of R-modules of finite rank and a filtration F• of VOD

by holomorphic subbundles such that:

1. Griffiths transversality condition holds.
2. (VR,p,F•

p ) is an R-Hodge structure of weight k for all p ∈ D.
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The variation V of Hodge structures is polarized, if there is a flat (i.e.
locally constant) bilinear form Q on VR such that (VR,p,F•

p , Qp) is a polarized
R-Hodge structure of weight k for all p ∈ D.

Next we need to introduce and construct the parametrizing spaces of
Hodge structures. We start by the construction of the Grassmannian:

Construction 1.1.20. Let W be a complex vector space of dimension N
and 0 < k < N . The Grassmannian Grass(W,k) is the manifold, which
parametrizes all complex subvector spaces of W of codimension k.4 Let
K ⊂ W be a subvector space of codimension k and L ⊂ W be an other
subvector space such that

K ⊕ L = W.

Moreover let
πK : W → K resp., πL : W → L

denote the respective projection onto K resp., L with kernel L resp., K. Now
let Z ⊂ W be an other vector space of codimension k such that Z ∩L = {0}.
This vector space Z is identified with

hZ = πL ◦ (πK)|−1
Z : K → L.

By Z ↔ hZ , an open neighborhood of the point pK ∈ Grass(W,k), which
represents K, can be given by Hom(K,L). Since each subvector space Z ⊂ W
of codimension k corresponds to exactly one point pZ ∈ Grass(W,k), one
obtains gluing isomorphisms between the open sets. Thus Grass(W,k) is a
complex manifold of dimension k(N − k).

Moreover Grass(W,k) is projective and the tangent space TKGrass(W,k)
is given by

TKGrass(W,k) ∼= Hom(K,W/K).

(see [61], 10.1).

1.1.21. Let (V, h) be an R-Hodge structure of weight k. For simplicity we as-
sume that (V, h) is pure. The Hodge structure is given by the Hodge filtration

VC = F 0VC ⊃ F 1VC ⊃ . . . ⊃ F kVC ⊃ F k+1VC = 0.

Moreover the flag space Fhk,0,...,hp,k−p,...,h0,k , which parametrizes the filtra-
tions by subvector spaces of the respective codimensions, satisfies

Fhk,0,...,hp,k−p,...,h0,k ⊂
∏
p

Grass(F pVC, h0,k + h1,k−1 + . . . + hp,k−p).

4 Many authors define the Grassmannian Grass(W, k) as the manifold, which parametrizes
all subvector spaces of W of dimension k and not of codimension k. We use this abbrevia-
tion, since it makes our notations below easier.
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Recall that

V p,k−p = F pVC/F p+1VC resp., hp,k−p = codimF pVC
(F p+1VC).

The pure Hodge structures of weight k with the Hodge numbers hk,0 . . . ,
hp,k−p . . . h0,k are classified by an open subset D′ of the flag space. This open
set D′ is defined by the condition

F pVC ⊕ F k−p+1VC = VC.

Now assume that (V, h,Q) is a polarized pure R-Hodge structure. Thus Q
yields a fixed polarization. The set D ⊂ D′, which parametrizes the Hodge
structures (V, h′) such that (V, h′, Q) is a polarized Hodge structure, is an
open subset of an analytic subspace of D′.

The space D is called the period domain. Let q ∈ D denote the point
corresponding to our polarized Hodge structures (V, h,Q). The tangent space
TqD is a subvector space of

TqFhk,0,...,hp,k−p,...,h0,k

given by

TqFhk,0,...,hp,k−p,...,h0,k =
⊕

p

Hom(F p+1VC, F pVC/F p+1VC).

(see [61], 10.1).

Now one constructs easily the period map of a family:

1.1.22. A variation V of pure polarized R-Hodge structures over a simply
connected complex manifold S yields a holomorphic map p : S → D, where D
is a suitable period domain. This map depends on the choice of a trivialization
of V over the simply connected manifold S. Now assume that f : X → Y
is a holomorphic family of Kähler manifolds and V its variation of integral
Hodge structures. In this case one can define a multivalued holomorphic map
p : Y → D, which is called the period map.

1.2 Jacobians, Polarizations and Riemann’s Theorem

Let X be a Kähler manifold. Consider the following exact sequence:

0 → Z → OX → O∗
X → 0
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This yields the complex torus

Pic0(X) = H1(X,OX)/H1(X, Z),

which parametrizes the line bundles of degree 0. For a curve one has the
following construction of a complex torus:

Construction 1.2.1. Let C be a curve. Moreover let

Z =
m∑

i=1

niPi with
m∑

i=1

ni = 0

be a cycle of points Pi ∈ C. There exists a differentiable chain Γ such that
∂Γ = Z. Let ω be a holomorphic 1-form on C. The value of the integral

∫
Γ

ω
depends on Z up to the homology H1(C, Z). Thus Z yields an unique point
of the Jacobian

Jac(C) = H1,0(C)∗/H1(C, Z),

which is a complex torus. There exists a holomorphic map

C → Jac(C),

which is called the Abel-Jacobi map. We fix a point p0 ∈ C and send each
p ∈ C to the unique class in Jac(C) of the path integral over an arbitrary
path from p0 to p. (see any good book about Riemann surfaces)

We will see that Pic0(C) ∼= Jac(C) for any curve C. Moreover we will
check that Jac(C) is an abelian variety. The theory of abelian varieties, their
Hodge structures and their parametrizing spaces contains several features and
motivates the definition of Shimura data, which we will need in the sequel.

Let R be a ring such that Z ⊆ R ⊆ C and C be a curve. The homology

H1(C,R) := H1(C, Z) ⊗Z R

and the cohomology H1(C,R) are canonical duals (see [61], Théorème 4.47).
On H1(C, Z) one defines the dual Hodge structure of weight −1 of the Hodge
structure on H1(C, Z) given by the Hodge filtration

0 ⊂ H0,−1(C) ⊂ H1(C, C) such that H0,−1(C) = H0,1(C)∗ and

H−1,0(C) = H1,0(C)∗.

In the sequel we will also need the following relations between the Hodge
structure of weight 1 on H1(C, Z) and the Hodge structure of weight −1 on
the homology H1(C, Z):

1.2.2. For each ring Z ⊂ R ⊂ C we have H1(C,R) ∼= H1(C,R)∗. By integra-
tion over R-valued paths, we obtain an isomorphism
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φ : H1(C, R) → H1(C, R)∗ → H1
DR(C, R).

The integral classes in the de Rham cohomology H1
DR(C, R) are given by

φ(H1(C, Z)).
On the homology H1(C, Z) of a curve C one can define an intersection

pairing (·, ·), which is an alternating bilinear form. The intersection form on
H1(C, Z) can be given by the matrix

(
0 Eg

−Eg 0

)

with respect to a fixed symplectic basis (for example see [7], 11.1). Thus the
intersection form yields an isomorphism σR : H1(C,R) → H1(C,R)∗ for all
rings Z ⊂ R ⊂ C. In terms of the de Rham cohomology it assigns to each
α ∈ H1(C,R) the ηα ∈ H1

DR(C, C), which has the property that

(γ, α) =
∫

γ

ηα

for all γ ∈ H1(C, C). By this definition, one has ηα ∈ H1(C,R)∗ = H1(C,R).
In addition one has

(γ, α) =
∫

C

ηγ ∧ ηα

(compare [30], Section 5.1).5

Moreover one has

σ ◦ h−1(z) = h1(z) ◦ σ for all z ∈ S1(R),

where h−1 and h1 denote the corresponding embeddings

h−1 : S1 → GL(H1(C, R)) and h1 : S1 → GL(H1(C, R))

of the respective Hodge structures. Thus the Hodge groups of these Hodge
structures on H1(C, Z) and H1(C, Z) are isomorphic. Hence for a study of
the Hodge structure on H1(C, Z), it is sufficient to consider the dual Hodge
structure on H1(C, Z).

Recall that the Hodge decomposition of the Hodge structure on H1(C, Q)
is orthogonal with respect to the Hermitian form

iQ(·, ·̄) = i

∫
C

· ∧ ·̄.

5 In [30] the last equation is written down only for R = Z. By H1(C, R) = H1(C, Z) ⊗Z R
and by H1(C, R) = H1(C, Z)⊗Z R, one obtains the last equation for each ring Z ⊆ R ⊆ C.
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Thus by the polarization, H0,1(C) is canonical isomorphic to H1,0(C)∗. Since
1.2.2 yields a corresponding canonical isomorphism σ : H1(C, Z) → H1(C, Z),
one concludes:

Corollary 1.2.3. Let C be a curve. Then Pic0(C) and Jac(C) are
isomorphic.

Next we consider polarizations on abelian varieties:

Remark 1.2.4. Let A = W/L be a complex g-dimensional torus. There is a
canonical isomorphism between H2(A, Z) and Z-valued alternating forms on
L = H1(A, Z). Moreover for an alternating integral form E on L, there is a
line bundle L on A with c1(L) = E, if and only if E(i·, i·) = E(·, ·). By

H(u, v) = E(iu, v) + iE(u, v),

we get the corresponding Hermitian form H from E and conversely, given H
we obtain E by E = �H. (See [7], Proposition 2.1.6 and Lemma 2.1.7)

A polarization on an abelian variety is given by a line bundle L, whose
Hermitian form H, which corresponds to its first Chern class E, is positive
definite. The alternating form E of the polarization can be given by the
matrix (

0 Dg

−Dg 0

)

with respect to a symplectic basis of L, where Dg = diag(d1, . . . , dg) with
di|di+1 (see [7], 3.1). The matrix Dg depends on the polarization, and it is
called the type of the polarization. The polarization E on A is principal, if
Dg = Eg.

A positive definite Hermitian form H on W , which has the property that
�H is an integral alternating form on L, satisfies that �H(i·, i·) = �H(·, ·)
resp., is a polarization. Since the Chern class of a line bundle L is a polariza-
tion, if and only if L is ample (see [7], Proposition 4.5.2.), H yields an ample
line bundle. By the Theorem of Chow, A is algebraic in this case. Moreover
if A is an abelian variety, there is a positive definite Hermitian form H on W
such that �H is integral on L (see [48], I. 3).

Example 1.2.5. Let X be a Kähler manifold. On

Pic0(X) = H1(X,OX)/H1(X, Z)

one has a negative definite Hermitian form given by the polarization iQ(·, ·̄)
of the weight one Hodge structure. Hence by −iQ(·, ·̄), one has a positive
definite Hermitian form. Since Q(·, ·) is integral on H1(X, Z), the same holds
true for the projection of H1(X, Z) to H1(X,OX) with respect to �(−iQ(·, ·̄))
as one can check easily. Hence Pic0(X) has a polarization and it is an abelian
variety.



1.2 Jacobians, Polarizations and Riemann’s Theorem 23

Assume that X is a curve C. The intersection form on H1(C, Z) can be
given by the matrix (

0 Eg

−Eg 0

)

with respect to a fixed symplectic basis (see 1.2.2). Hence the polarization
on Jac(C) is principal.

We repeat the consideration of the preceding example in a more general
setting, which will allow us to construct the moduli space hg of abelian va-
rieties of dimension g with extra structure explained below. This space will
be our first motivating example to use Shimura data. A Shimura datum will
endow hg with the structure of a Hermitian symmetric domain such that the
holomorphic universal family of abelian varieties has a dense set of fibers of
CM type.

Now let V denote a Q-vector space of dimension 2g, let Q be a rational
alternating bilinear form on V , and let J be a complex structure on VR (i.e.
an automorphism J with J2 = −id). Moreover a Hodge structure of type
(1, 0), (0, 1) on V is given by a decomposition

VC = V 1,0 ⊕ V 0,1.

In an analogue way one defines the type of an arbitrary Hodge structure given
by a decomposition of VC.

Remark 1.2.6. It is very easy to see that there is a correspondence between
Hodge structures h on V of type (1, 0), (0, 1) and complex structures J on VR

via h(i) = J .

Lemma 1.2.7. The complex structure J on VR corresponds to a polarized
Hodge structure (V, h,Q) of type (1, 0), (0, 1), if and only if it satisfies

Q(J ·, J ·) = Q(·, ·) and Q(Jṽ, ṽ) > 0

for all ṽ ∈ VR.

Proof. Let the complex structure J on VR be given by a polarized Hodge
structure of type (1, 0), (0, 1) on V . Any ṽ, w̃ ∈ VR can be given by

ṽ = v + v̄ and w̃ = w + w̄

for some v, w ∈ H1,0, where H1,0 and H0,1 are totally isotropic with respect
to Q. Hence:

Q(Jṽ, Jw̃) = Q(iv,−iw̄) + Q(−iv̄, iw) = Q(v, w̄) + Q(v̄, w) = Q(ṽ, w̃)
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Since the Hermitian form given by iQ(v, v̄) is positive definite on H1,0, one
concludes:

Q(Jṽ, ṽ) = Q(iv − iv̄, v + v̄) = Q(iv, v̄) + Q(−iv̄, v) = 2iQ(v, v̄) > 0 (1.1)

Conversely assume that Q(J ·, ·) > 0 and Q(·, ·) = Q(J ·, J ·). Thus one has

Q(v1, v2) = Q(Jv1, Jv2) = Q(iv1, iv2) = −Q(v1, v2)
resp., Q(v1, v2) = Q(Jv1, Jv2) = Q(−iv1,−iv2) = −Q(v1, v2)

for all v1, v2 ∈ H1,0 := Eig(J, i) resp., for all v1, v2 ∈ H0,1 := Eig(J,−i).
Hence H1,0 resp., H0,1 is isotropic with respect to Q. The same calculation as
in (1.1) implies that iQ(·, ·̄) is positive definite on H1,0 and negative definite
on H0,1. Hence one gets a polarized Hodge structure of type (1, 0), (0, 1) by
Remark 1.2.6. ��

By the preceding lemma and an easy calculation using that z = a + ib ∈
S1(R) implies a2 + b2 = 1,6 we obtain:

Proposition 1.2.8. A polarized Hodge structure (V, h,Q) of type (1, 0), (0, 1)
induces a faithful symplectic representation

h : S1 → Sp(VR, Q).

Corollary 1.2.9. Let (V, h,Q) be a polarized Hodge structure of type
(1, 0), (0, 1). Then

Hg(V, h) ⊆ Sp(V,Q).

Theorem 1.2.10 (Riemann). There is a correspondence between polarized
abelian varieties of dimension g and polarized Hodge structures (L, h,Q) of
type (1, 0), (0, 1) on a torsion-free lattice L of rank 2g.

Proof. Let (L, h,Q) be a polarized Hodge structure on a torsion-free lattice
L of rank 2g. By

L ⊗ R ↪→ L ⊗ C → H0,1,

one has an isomorphism f of R-vector spaces. The complex structure of the
Hodge structure turns LR into a C-vector space. One has f(λv) = λ̄f(v) for all
complex numbers λ. By f , the alternating form Q may be considered as (real)
alternating form on H0,1. But it satisfies Q(iv, v) < 0 for all v ∈ H0,1. Hence
let E = −Q. Lemma 1.2.7 implies that E(i·, i·) = E(·, ·) and E(iv, v) > 0 for

6 Let v, w ∈ VR. The calculation is given by:

Q(zv, zw) = a2Q(v, w) + b2Q(v, w) + ab(Q(Jv, w) + Q(v, Jw)) =

= Q(v, w)+ab(Q(Jv, w)+Q(Jv, J(Jw))) = Q(v, w)+ab(Q(Jv, w)+Q(Jv,−w)) = Q(v, w)
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all v ∈ H0,1. Thus the corresponding Hermitian form is positive definite (see
Remark 1.2.4) and we have a polarization on the complex torus H0,1/L and
hence an abelian variety.

Conversely take a polarized abelian variety (A,E), where A = W/L. Let
Q := −E. By J = −i, one has similar to Lemma 1.2.7 a complex structure
corresponding to a polarized Hodge structure of type (1, 0), (0, 1) on L. Thus
we have obviously obtained the desired correspondence. ��

Since a polarized rational Hodge structure can be considered as polarized
integral Hodge structure with respect to a fixed lattice, if the polarization on
this lattice is integral, one concludes by Lemma 1.2.7 and Theorem 1.2.10:

Corollary 1.2.11. There is a bijection between the sets of polarized abelian
varieties A = W/L and complex structures on L ⊗ R satisfying

Q(J ·, J ·) = Q(·, ·) and Q(Jv, v) > 0

for all v ∈ L ⊗ R with respect to an integral alternating form Q on L.

Remark 1.2.12. In order to obtain isomorphism classes of certain objects
corresponding to the polarized integral Hodge structures (L, h,Q) one can
fix a basis B of L. Usually this basis B is symplectic with respect to the
polarization E of A. Hence a polarized abelian variety with symplectic basis
consists of the triple (A,E,B). The conditions

Q(J ·, J ·) = Q(·, ·) and Q(Jv, v) > 0

of the previous corollary are called Riemann conditions. Hence by Theorem
1.2.10, we have proved that a complex structure on L⊗R corresponds to the
isomorphism class of a polarized abelian variety with symplectic basis, if and
only if it satisfies the Riemann conditions.

Remark 1.2.13. Two curves are isomorphic, if their Jacobians are iso-
morphic as principally polarized abelian varieties (see [7], Theorem 11.1.7).
Since we have proved that polarized abelian varieties correspond to polarized
integral Hodge structures, one concludes that two curves C and C ′ are iso-
morphic, if and only if there is an isomorphism between the polarized Hodge
structures on H1(C, Z) and H1(C ′, Z). This yields the Torelli theorem for
curves.

1.3 The definition of the Shimura datum

We will endow the set of principally polarized abelian varieties with sym-
plectic basis with the structure of a Hermitian symmetric domain. Such a
domain can be obtained from a Shimura datum. Let G be a Q-algebraic
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reductive group. A Shimura datum is given by a homomorphism h : S → GR

of algebraic groups, which satisfies some conditions, which we explain here.
For the definition of the Shimura datum and the construction of Hermitian

symmetric domains we need to recall some facts about algebraic groups. We
can assume that our algebraic groups are defined over a field F of character-
istic 0. Thus our groups are defined over perfect fields.

Remark 1.3.1. Let G be an algebraic group. The adjoint group Gad is the
quotient of G obtained by the adjoint representation of G on its Lie algebra
g. It is a well-known fact that G has the following algebraic subgroups:

By G0, we denote the Zariski connected component of identity. The derived
group Gder of G is the subgroup of G generated by its commutators. By
Z(G), we denote the center of G. The Radical R(G) is the maximal connected
normal solvable subgroup of G. The unipotent radical Ru(G) of G is given by

Ru(G) := {g ∈ R(G)|g is unipotent}.7

Definition 1.3.2. Let G be an algebraic group. Then one says:

• The group G is a reductive, if

Ru(G) = {e}.

• The group G semisimple, if

R(G) = {e}.

• The group G is simple, if {G} and {e} are the only normal connected
subgroups of G.

There exists an alternative description of semisimple groups. By the fol-
lowing proposition, one sees that a semisimple algebraic group G is isogeneous
to the fiberproduct of simple groups.

Proposition 1.3.3. Let {e} �= G be a semisimple algebraic group. Then G
is isogeneous to the fiberproduct of its minimal nontrivial normal subgroups.

Proof. (follows from [10], IV. Proposition 14.10) ��

By comparing the definition of reductive algebraic groups and semisimple
algebraic groups, one sees easily that semisimple groups are reductive. The
following proposition yields an additional relation between reductive groups
and semisimple groups.

7 Many authors (for example see [1], [10]) define R(G) and Ru(G) only for groups over
algebraically closed fields. However, these subgroups are defined over our field F of char-
acteristic 0 (see [53], Subsection 2.1.9).
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Proposition 1.3.4. Let G be a connected algebraic group. It is reductive, if
and only if it is the almost direct product of a torus and a semisimple group.
These groups can be given by Z(G)0 and Gder.

Proof. (see [54], Chapter I. §3 for the first statement and [10], IV. 14.2 for
the second statement) ��

Example 1.3.5. For technical and historical reasons we need to intro-
duce the general symplectic group GSp(V,Q). The general symplectic group
GSp(V,Q) is given by the automorphisms of the Q-vector space V , which
preserve alternating bilinear form Q up to a scalar. From this definition, it is
clear that GSp(V,Q) is given by the almost direct product

GSp(V,Q) = Gm,Q · Sp(V,Q).

The complex symplectic group Sp(V,Q)(C) is given by one of the classical
simple Lie groups. Therefore Sp(V,Q) is simple. The center of GSp(V,Q) is
given by the torus Gm,Q (see [40], page 66). Thus GSp(V,Q) is reductive by
the previous proposition.

Remark 1.3.6. Let G be a reductive Q-algebraic group with largest com-
mutative quotient T . In this case we obtain (see [15], 1.1):

1. One has the exact sequences:

1 → Gder → G → T → 1

1 → Z(G) → G → Gad → 1

1 → Z(Gder) → Z(G) → T → 1

2. The exact sequences induce a natural isogeny Gder → Gad with kernel
Z(Gder).

Assume that G is reductive Q-algebraic. From Proposition 1.3.4 and the
fact that Gder and Gad are isogeneous (see Remark 1.3.6), we conclude:

Corollary 1.3.7. Let G be a reductive Q-algebraic group. Then Gad is
semisimple.

Assume that G be a reductive Q-algebraic group. By the previous
Corollary and Remark 1.3.6, one concludes that Gad is a semisimple group
with trivial center. Moreover R-algebraic groups can be considered in terms
of Lie groups, since they yield Lie groups by their R-rational points. The
following lemma concerns in particular Gad(R).

Lemma 1.3.8. If G is a semisimple connected Lie group with trivial center,
then it is isomorphic to a direct product of simple groups with trivial centers.
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Proof. By [27], II. Corollary 5.2, the group G coincides with Gad ∼= G/Z(G).
Since the Lie algebra g of G is the direct sum of simple Lie algebras, g is the
Lie algebra of a certain direct product of simple groups, too. Without loss of
generality one can assume that these simple Lie groups have trivial centers.
Recall that the adjoint group depends only on the Lie algebra. Thus this
product of simple groups is isomorphic to its adjoint, which is the adjoint of
G coinciding with G. ��

In the definition of the Shimura datum one demands that the group G is
reductive, since R-algebraic reductive groups have Cartan involutions, which
will be important:

Definition 1.3.9. Let G be a connected R algebraic group. An involutive
automorphism θ of G is a Cartan involution, if the Lie subgroup

Gθ(R) := {g ∈ G(C)|g = θ(ḡ)}

of G(C) is compact.

Proposition 1.3.10. A connected R-algebraic group is reductive, if and only
if it has a Cartan involution. Any two Cartan involutions are conjugate by
an inner automorphism.

Proof. By [54], I. Corollary 4.3, each connected R-algebraic reductive group
has a Cartan involution and the Cartan involutions are conjugate. Let θ be
a Cartan involution on the connected R algebraic group G. Thus Gθ(R) is
compact. By [54], I. Proposition 3.3, the group Gθ(R) is reductive. Thus
one concludes that GC and G are reductive as in the proof of [54], I.
Theorem 4.2(i). ��

Note that id2 = id. Hence it can be considered as an involutive automor-
phism. This leads to the following examples of reductive groups:

Example 1.3.11. Let K be a connected R-algebraic group such that K(R)
is a compact Lie group. One has

Gid(R) := {g ∈ G(C)|g = ḡ} = G(R),

which is compact by our assumption. Hence each compact R-algebraic group
K ⊂ GL(W ) is reductive and has a Cartan involution given by id. Since any
two Cartan involutions of K are conjugate and id is fixed by conjugation, the
identity map id is the only Cartan involution of K.

Example 1.3.12. Let V be an R-vector space of dimension N . The Group
GL(V ) has an involution given by θ : M → (M t)−1. On GL(V )(C) one has
that M = θ(M̄), if and only if MM̄ t = E2g resp., if and only if M ∈ U(N).
It is a well-known fact that U(N) is compact. Thus θ is a Cartan involution.
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Remark 1.3.13. Assume that G is an R-algebraic reductive group with
Cartan involution θ and G′ ⊂ G is a Zariski closed subgroup such that
θ(G) = G. Since a closed subgroup of a compact Lie group is a compact Lie
group, one concludes easily that θ|G′ is a Cartan involution on G′.

From now on let (L, h,Q) be a polarized integral Hodge structure of type
(1, 0), (0, 1) on a torsion-free lattice L of rank 2g and V := L ⊗ Q. For
simplicity we assume that Q is given by

J0 =
(

0 Eg

−Eg 0

)
(1.2)

with respect to a symplectic basis of L.
We use the preceding remark to find a Cartan involution on Sp(V,Q):

Example 1.3.14. Let M ∈ Sp(V,Q)(R). Then the matrix M is a 2g × 2g
matrix with

M =
(

A B
C D

)
,

where A,B,C,D are g × g matrices. Since M ∈ Sp(V,Q)(R), one has

M tJ0M = J0 ⇔ M−1 = J−1
0 M tJ0.

Hence
M = J−1

0 (M t)−1J0 ⇔ J0MJ−1
0 = (M t)−1.

Recall that a Cartan involution of GL(VR) is given by M → (M t)−1 (see
Example 1.3.12). Thus the conjugation by J0 coincides with the restriction
of this Cartan involution to Sp(V,Q)R. Hence by the preceding remark, this
yields a proof for the reductivity of Sp(V,Q)R, which implies that Sp(V,Q)
is reductive, too.

Example 1.3.15. The Hodge group Hg(V, h) contains the complex struc-
ture J = h(i), which acts by the multiplication with z on H1,0 and by the
multiplication with z̄ on H0,1.

Let {b1, . . . , bg} be a basis of H1,0 and

�bk = bk + b̄k, �bk = i(bk − b̄k).

One has that

B = {�b1, . . . ,�bg,�b1, . . . ,�bg|k = 1, . . . , g}

is a basis of VR. From the fact that J(�bk) = �bk and J(�bk) = −�bk,
one concludes that J can be given by J0 (see (1.2)) with respect to the
basis B. Hence by the same arguments as in Example 1.3.14 and the fact
that Hg(V, h) ⊂ Sp(V,Q), the group Hg(V, h)R is reductive.
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Note that S = Gm,R ·S1 and the weight one Hodge structure (V, h) satisfies
h|Gm,R

= id. Thus from the fact that

h(S1) ⊂ Sp(V,Q) and GSp(V,Q) = Gm,Q · Sp(V,Q)

one concludes that
MT(V, h) ⊂ GSp(V,Q).

Later we will see that MT(V, h) is also reductive.
We see that the result of the previous example holds true in general:

Theorem 1.3.16. Let Q ⊆ F ⊂ R be a field and (V, h,Q) be a polarized
F -Hodge structure of weight k. Then

g → h(i)gh−1(i)

yields a Cartan involution of HgF (V, h)R and HgF (V, h) is reductive.

Proof. Let C = h(i). Since h(−1) yields either id or −id, the inner automor-
phism θ of HgF (V, h) given by

g → CgC

is an involution. Note that C acts by the multiplication with ip−q on V p,q.
By the definition of the polarization of a Hodge structure of weight k,

H ′
(p,q) := ip−q(−1)

k(k−1)
2 Q(·, ·)

is a positive definite Hermitian form on V p,q. Thus we define the Hermitian
form

H(p,q) := Q(·, C·)
on V p,q. Since the Hodge decomposition is orthogonal for the Hermitian form
ikQ(·, ·), the different Hermitian forms H(p,q) give a Hermitian form H on VC,
which is either positive definite or negative definite. Thus the unitary group
U(VC,H)(R) is a compact Lie group. We show that

HgF (V, h)θ(R) ⊆ HgF (V, h)(C) ∩ U(VC,H)(R),

which implies that HgF (V, h)θ(R) is compact resp., θ is a Cartan involution.
From this result one concludes that HgF (V, h) is reductive.

Let G(V,Q) = Sp(V,Q), if k is odd, and G(V,Q) = O(V,Q), if k is even.
Note that for each polarized polarized F -Hodge structure of weight k one has

HgF (V, h) ⊆ G(V,Q).
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This follows from the fact that the Hodge decomposition is orthogonal for
ikQ(·, ·̄). Assume that g ∈ HgF (V, h)θ(R). Thus one has

Q(v, Cu) = Q(gv, gCu) = Q(gv, CgC−1Cu) = Q(gv, Cgu).

Hence g is contained in HgF (V, h)(C) ∩ U(VC,H)(R). ��

We need to show that MT(V, h) is reductive, since h : S → MT(V, h)R is a
Shimura datum instead of h : S1 → Hg(V, h)R in the case of a rational Hodge
structure. The definition of the Shimura datum will demand that MT(V, h)
is reductive. For the proof that MT(V, h) is reductive, we compare Hg(V, h)
and MT(V, h):

Lemma 1.3.17. Let F be a field such that Q ⊆ F ⊂ R and (V, h) be an
F -Hodge structure. Then one has

HgF (V, h) = (MTF (V, h) ∩ SL(V ))0.

Moreover MTF (V,H) is the almost direct product of HgF (V, h) and Gm,F .

Proof. Since V p,q = V q,p, one concludes dim V p,q = dim V q,p. By this fact
and the fact that each z ∈ S1(R) acts by the multiplication with zpz̄q on V p,q,
one has h(z) ∈ SL(V )(R) for each z ∈ S1(R). Hence HgF (V, h) ⊂ SL(V ).

By the natural multiplication, we have a morphism

m : HgF (V, h) × Gm,F → MTF (V, h)

with finite kernel, since HgF (V, h) ⊂ SL(V ). Thus the Zariski closure Z of

m(HgF (V, h) × Gm,F ) ⊆ MTF (V, h)

is an F -algebraic subgroup of MTF (V, h). Moreover one has that

h(S) ⊆ ZR ⊆ MTF (V, h)R.

Hence Z = MTF (V, h).
Since all homomorphisms f : G → G′ of algebraic groups over algebraically

closed fields satisfy f(G) = f(G) (see [1], Satz 2.1.8), we have the equality

HgF (V, h)F̄ · Gm,F̄ = ZF̄ = MTF (V, h)F̄ .

Now let M ∈ MTF (V, h)(F̄ ) ∩ SL(V )(F̄ ). It is given by a product N · M1

with N ∈ Gm(F̄ ) and M1 ∈ HgF (V, h)(F̄ ). Since HgF (V, h)(F̄ ) ⊂ SL(V )(F̄ ),
one concludes

N ∈ Gm(F̄ ) ∩ SL(V )(F̄ ) = μn(F̄ ),
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where dim V = n. One has M ∈ HgF (V, h)(K̄), if and only if N ∈
HgF (V, h)(F̄ ). Hence by the fact that μn(F̄ ) is finite, one obtains the
statement. ��

Remark 1.3.18. For the polarized Hodge structure of weight 1 of a curve
of genus g, we have a natural embedding Hg(V, h) ⊂ Sp(V,Q). Since μ2g(Q)
is not a subgroup of Sp(V,Q) for g > 1 and for g = 1 one has μ2 ⊂ h(S1),
we obtain the equality

Hg(V, h) = MT(V, h) ∩ SL(V )

only in the case of a genus one curve.

We conclude by the previous lemma:

Corollary 1.3.19. Let Q ⊆ F ⊂ R be a field and (V, h,Q) be a polarized
F -Hodge structure of weight k. Then

MTder
F (V, h) = Hgder

F (V, h) and MTad
F (V, h) = Hgad

F (V, h).

Moreover one concludes by Lemma 1.3.17 that the center of MTF (V, h)
is the almost direct product of Gm,F and the center of HgF (V, h). Since
HgF (V, h) is reductive by Theorem 1.3.16, one concludes by Proposition 1.3.4
that MTF (V, h) is the almost direct product of its center and Hgder

F (V, h).
Again we apply Proposition 1.3.4 and obtain:

Corollary 1.3.20. Let Q ⊆ F ⊂ R be a field and (V, h,Q) be a polarized
F -Hodge structure of weight k. Then the MTF (V, h) is reductive.

By Corollary 1.3.19, we will see later that the homomorphism h : S1 →
Sp(V,Q)R given by one of our polarized integral Hodge structures of type
(1, 0), (0, 1) can be considered as a Shimura datum. In literature the Shimura
datum is given by h : S → GSp(V, Q)R, where h is the corresponding homo-
morphism of our Hodge structure in the sense of Proposition 1.1.3.

The Hermitian symmetric domains obtained from Shimura data (G,h)
are given by homogeneous spaces Gder(R)/K, where K is the compact group
fixed by the Cartan involution restricted to Gder. At present we can construct
the homogeneous space in the case of our examples:

Construction 1.3.21. An embedding h : S1 → Sp(V,Q)R obtained by a
polarized integral Hodge structure (L, h,Q) of type (1, 0), (0, 1) corresponds
to the complex structure J := h(i), which satisfies Q(J ·, J ·) = Q(·, ·) and
Q(Jv, v) > 0. By the definition of Sp(V,Q)R, one has J ∈ Sp(V,Q)R.
Moreover one checks easily that gJg−1 satisfies the same conditions for all
g ∈ Sp(V,Q)R.

The complex structure J can be given by the same matrix as J0 with
respect to a symplectic basis. Thus there exists a g ∈ GL(V )(R) such
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that J = gJ0g
−1. Therefore J yields a Cartan involution of Sp(V,Q)R.

By Proposition 1.3.10, one can assume that g ∈ Sp(V,Q)(R). Therefore
Sp(V,Q)(R) acts by conjugation transitively on the set of complex structures
J ∈ Sp(V,Q)(R) satisfying Q(Jv, v) > 0.

Let K be the subgroup of Sp(V,Q)(R), which leaves a fixed h(S1)
stable by conjugation. The set of points of the homogeneous space
hg := Sp(V,Q)(R)/K can be identified with the set of complex struc-
tures J ∈ Sp(V,Q)(R) satisfying Q(Jv, v) > 0. By the preceding section, the
points of hg can be identified with the polarized integral Hodge structures
(L, h,Q) of type (1, 0), (0, 1) resp., principally polarized abelian varieties of
dimension g with symplectic basis.

In the same way one can construct a homogeneous subspace of hg using
the Hodge group Hg(LQ, h′) of a polarized integral Hodge structure (L, h′, Q)
instead of Sp(V,Q). This space parametrizes all polarized integral Hodge
structures (L, h,Q) with a Hodge group contained in Hg(LQ, h′)

It is quite easy to see that a corresponding construction runs well in the
case of a representation h : S → GSp(V,Q)R obtained by a polarized integral
Hodge structure (L, h′, Q) of type (1, 0), (0, 1). In this case we obtain a homo-
geneous space, which parametrizes all complex structures J ∈ GSp(V,Q)(R).
In a similar way one obtains a subspace parametrizing all integral Hodge
structures (L, h) with a Mumford-Tate group contained in MT(LQ, h′).

Now let us define the Shimura datum:

Definition 1.3.22. A Shimura datum (G,h) is given by a reductive
Q-algebraic group G and a conjugacy class of homomorphisms h : S → GR

of algebraic groups satisfying:

1. The restriction of the inner automorphism of h(i) on GR to Gder
R

is a
Cartan involution.

2. The adjoint group Gad does not have any direct Q-factor H such that
H(R) is a compact Lie group.

3. The representation (ad ◦ h)(S) on Lie(G)C corresponds to a Hodge struc-
ture of the type (1,−1) ⊕ (0, 0) ⊕ (−1, 1).

In the cases of our examples we have already seen that Condition (1)
in the definition of a Shimura datum allows the construction of a homo-
geneous space, which parametrizes the conjugacy class of homomorphisms
h : S → GR. In the next section we will see that Condition (2) and Condition
(3) allow one to endow the connected components of this homogeneous space
with the structure of a Hermitian symmetric domain.

We will also accept a pair (G,h) as Shimura datum, if the representation
(ad ◦ h)(S) on Lie(G)C is trivial resp., corresponds to a Hodge structure of
the type (0, 0). In this case we obtain a homogeneous space consisting of only
one point.

Remark 1.3.23. If one compares our definition of a Shimura datum with
other definitions used in literature, one finds some different formulations
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(for example compare [16], [40]). This happens, since one can replace the
Conditions (1) and (2) by equivalent conditions:

1. Since Gder and Gad are isogeneous, the compact subgroups of Gder
R

and
Gad

R
correspond. Moreover the inner automorphism of (ad ◦ h)(i) on Gad

R

is well-defined. Thus the inner automorphism of (ad ◦ h)(i) on Gad
R

is a
Cartan involution, if and only if the inner automorphism of h(i) on GR to
Gder

R
is a Cartan involution. Thus one can replace Condition (1) by the

condition that the inner automorphism of (ad ◦ h)(i) on Gad
R

is a Cartan
involution.

2. By Example 1.3.11, Condition (2) is equivalent to the condition that the
adjoint group Gad does not have any direct Q-factor H, which satisfies
θ|H = idH for a Cartan involution θ of Gad. Usually one writes that Gad

does not have any direct Q-factor H such that the inner automorphism
of (ad ◦ h)(i) restricted to H is trivial. This is equivalent to the condition
that Gad does not have a direct Q-factor H such that prH ◦ad◦h is trivial.

Now we give our first example of a Shimura datum:

Proposition 1.3.24. Assume that (V, h,Q) is a polarized rational Hodge
structure of type (1, 0), (0, 1). Then (GSp(V,Q), h) is a Shimura datum.

Proof. We have seen that GSp(V,Q) is reductive.
By Construction 1.3.21, we have a conjugacy class of complex struc-

tures, which corresponds to a conjugacy class of homomorphisms h : S →
GSp(V,Q)R satisfying the condition (1) in the definition of the Shimura
datum.

Recall that Sp2g(C) is a classical simple Lie group. Thus GSp(V,Q)ad =
Sp(V,Q)ad has only one direct simple factor, which is not compact. Hence
condition (2) of the Shimura datum is satisfied.

Since the center of GSp(V,Q)R is given by Gm,R (see [40], page 66), the
kernel of the adjoint representation on Lie(GSp(V,Q)R) of any h(S) in the
conjugacy class is given by Gm,R. Since h(a + ib) = aE2g + bJ , each g ∈
GSp(V,Q)(R) commutes with J , if and only if it commutes with each element
of S(R). Hence on the complexified eigenspace (p0)C with eigenvalue −1 with
respect to the Cartan involution, S acts by the characters z/z̄ and z̄/z. This
corresponds to a Hodge structure of the type (1,−1) ⊕ (0, 0) ⊕ (−1, 1) on
Lie(GSp(V,Q)R). Hence condition (3) is satisfied. ��

Definition 1.3.25. A Shimura datum (G,h) is of Hodge type, if there is a
closed embedding ρ : G ↪→ GSp(V,Q) such that one has the Shimura datum
of Example 1.3.24 by

S
h
↪→ GR

ρR

↪→ GSp(V,Q)R.

In the next section we use Shimura data to construct complex manifolds,
which will be used for the construction of quasi-projective varieties, which are
the Shimura varieties. A Shimura variety is of Hodge type, if it is obtained by
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a Shimura datum (G,h) of Hodge type. We will use the examples of Shimura
data of Hodge type, which are given the following proposition:

Proposition 1.3.26. Let (V, h,Q) be a polarized Q-Hodge structure of type
(1, 0), (0, 1). Then (MT(V.h), h) is a Shimura datum.

Proof. By Corollary 1.3.20, the Mumford-Tate group MT(V, h) is reductive.
The inner automorphism given by

g → h(i)gh−1(i)

descends to a Cartan involution θ on MTad(V, h)R = Hgad(V, h)R. Hence
condition (1) in the definition of the Shimura datum, is satisfied.

Next we have to show that any direct Q-factor with trivial Cartan invo-
lution is isomorphic to {e}. Let H be a simple direct Q-factor of MT(V, h)ad

with trivial Cartan involution. We have a surjection

s : MT(V, h) ad−→ MT(V, h)ad
prH−→ H,

which is obviously a homomorphism of Q-algebraic groups. Hence the kernel
K̃ of s is a Q-algebraic group. The complex structure J , which satisfies that
the conjugation by ad(J) is the Cartan involution, satisfies that all elements
of the adjoint group HR commute with ad(J). Thus J is contained in K̃R.
Hence h(S) ⊂ K̃R, which implies K̃ = MT(V, h) resp., H = {e}.

The conjugacy class of the representation h : S → MTR(V, h) ↪→
GSpR(V,Q) is the Shimura datum of Proposition 1.3.24. Hence the adjoint
representation of S on Lie(MT(V, h))C ⊂ Lie(GSp(V,Q))C induces a Hodge
structure of the same type (or of the type (0, 0)). ��

1.4 Hermitian symmetric domains

In this section we construct Hermitian symmetric domains by using Shimura
data. These domains will later be our restricted period domains, which
parametrize Hodge structures (V, h) such that h(S) is contained in a given
reductive group. Siegel’s upper half plane remains to be our illustrating ex-
ample. In the preceding section we have constructed Siegel’s upper half plane
hg as homogeneous space, which parametrizes polarized integral Hodge struc-
tures of type (1, 0), (0, 1). Here we see that Siegel’s upper half plane can be
endowed with the structure of a Hermitian symmetric domain.

Let G be an R-algebraic group. Moreover let G0 denote the Zariski con-
nected component of identity and let G+(R) denote the connected component
of identity for the Lie group G(R). In general the Lie group G0(R) is not a
connected manifold, which will be a reason to be careful in this section. For
example Gm(R) is Zariski connected, but has two connected components
given by the real numbers larger than 0 and the real numbers smaller than 0.
Only the inclusion G0(R) ⊃ G+(R) holds true in general.
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1.4.1. Let (G,h) be a Shimura datum. The elements of the conjugacy class
of h are given by the points of the homogeneous space D = G(R)/K, where
K is the isotropy group of h, i. e. the subgroup of G(R) such that:

ghg−1 = h (∀g ∈ K)

Since the multiplication by g ∈ G(R) is a diffeomorphism of the Lie group
G(R), all connected components yield manifolds isomorphic to the space given
by G+(R). Note that Gad(R) is a connected Lie group, since it can be obtained
as the quotient

Gad(R) = G+(R)/(Z ∩ G+(R)).

Assume that G(R) has r connected components. Since the center Z of G(R)
fixes all representations h by conjugation, D can be considered as

D =
•⋃

i=1,...,r

Gad(R)/adG(R)(K).

Now we start to endow the connected components of the homogeneous
space D = G(R)/K obtained from a Shimura datum (G,h) with the structure
of a Hermitian symmetric domain.

Let M be a C∞ manifold. An almost complex structure on M is a smoothly
varying family (Jp)p∈M : TpM → TpM of automorphisms of the respective
tangent spaces TpM for all p ∈ M , which satisfies the condition J2

p = −1 for
all p ∈ M . Thus Jp is a complex structure on the vector space TpM for all
p ∈ M . Such a pair (M,J) is called an almost complex manifold. For example
the affine complex line given by C with the almost complex structure

∂

∂x
→ ∂

∂y
,

∂

∂y
→ − ∂

∂x
(1.3)

is an almost complex manifold.
As everyone should know, the complex line C is not only an almost complex

manifold, but a complex manifold. An almost complex structure J on a C∞

manifold M is called integrable, if M is endowed with the structure of a
complex manifold, which induces the almost complex structure J . Let

SJ(X,Y ) = [X,Y ] + J [JX, Y ] + J [X,JY ] − [JX, JY ],

where X and Y are vector fields.

Theorem 1.4.2. An almost complex complex structure J is integrable, if and
only if it satisfies

SJ = 0.

Proof. (see [50]) ��
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In order to get some sense for the criterion of Theorem 1.4.2, one can use it
to verify that the almost complex structure on C given by (1.3) is integrable.

For our construction of a Hermitian symmetric domain by a Shimura da-
tum we need the following definition:

Definition 1.4.3. A smooth 2-tensor field g on a C∞ manifold M is a family
of bilinear maps gp : TpM×TpM → TpM such that for all smooth vector fields
X,Y the map p → gp(X,Y ) is smooth. The 2-tensor field g is a Riemannian
structure, if for all p ∈ M the bilinear form gp is symmetric and positive
definite.

Now we endow a homogeneous space obtained from a Shimura datum with
a Riemannian structure:

Example 1.4.4. Let h : S → GR be a Shimura datum and D = G(R)/Kh(R)
be the homogeneous space parametrizing the elements of the conjugacy class
of h. By [27], II. §4, the homogeneous space D is a C∞ manifold and the
elements of G(R) act as diffeomorphisms on D. We construct a G(R) invariant
Riemannian form in the following way:

On the real vector space

ThD = Lie(G(R))/Lie(Kh(R))

one finds easily a symmetric and positive definite bilinear form (·, ·)h. Let
u, v ∈ ThD. Moreover let for all g ∈ Kh(R) the homomorphism u → dg(u) be
given by the differential of the diffeomorphism obtained from g. Since Kh(R)
is compact, the function given by

Kh(R) � g → (dg(u), dg(v))h ∈ R

reaches a maximal value and a minimal value over Kh(R). In addition the
compactness of Kh(R) implies that Kh(R) has a finite Haar measure dx. Thus
the bilinear form

(u, v)′h =
∫

Kh(R)

(dg(u), dg(v))dx

is well-defined. Since (·, ·) is symmetric and positive definite, one concludes
easily that (·, ·)′ is symmetric and positive definite, too. Moreover it is fixed
by the action of Kh.

Let h′ ∈ D. There exists a g ∈ G(R) with g(h′) = h. Let dg denote the
differential of the diffeomorphism on D obtained from g. On the tangent
space of h′ we define the positive definite and symmetric bilinear form (·, ·)′h′

given by
(·, ·)′h′ = (dg(·), dg(·))′h.

Note that for all g, g′ ∈ G(R) with

g′(h′) = g(h′) = h
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there exists a k ∈ Kh(R) with g′ = k ◦ g. Since (·, ·)′h is Kh(R)-invariant,
(·, ·)′h′ is independent of the choice of g. Thus the action of G(R) on D as
a transitive diffeomorphism group yields a well-defined G(R)-invariant Rie-
mannian structure on each connected component of D. (see also the proof of
[27], IV. Proposition 3.4)

Definition 1.4.5. Let M be a connected C∞ manifold with an almost com-
plex structure J . A Riemannian structure g on M is a Hermitian structure, if

g(J ·, J ·) = g(·, ·).

Example 1.4.6. From the definition of the Shimura datum, Lie(GC) has an
eigenspace decomposition of the type

(1,−1), (0, 0), (−1, 1)

with respect to the action of h(S). The intersection of the (0, 0) eigenspace
with Lie(GR) coincides with Lie((Kh)R). Thus on the vector space

Th(D) = Lie(G(R))/Lie(Kh(R))

we have a complex structure Jh obtained from the eigenspace decomposition
of Lie(GC). Note that h(S) is contained in the center of (Kh)R and the com-
plex structure Jh is given by the differential of the map obtained from some
root h(

√
i). Let g ∈ G(R) and h = g(h′). Now let dg denote the differential

of the diffeomorphism of D given by g. By

Jh′ = dg−1 ◦ Jh ◦ dg,

one defines a complex structure on Th′D. Note that for all g, g′ ∈ G(R) with

g′(h′) = g(h′) = h

there exists a k ∈ Kh(R) with g′ = k ◦ g. Since h(
√

i) commutes with all
k ∈ Kh(R), one obtains

d(g′)−1 ◦ Jh ◦ d(g′) = dg−1 ◦ dk−1 ◦ Jh ◦ dk ◦ dg = dg−1 ◦ Jh ◦ dg.

Thus Jh′ is independent of the choice of g and we obtain a well-defined G(R)-
invariant almost complex structure J on D.

In Example 1.4.4 we have constructed a G(R)-invariant Riemannian
structure on each connected component of D. By the construction of this
Riemannian structure (·, ·)′h′ , one sees easily that

(Jh′(·), Jh′(·))′h′ = (·, ·)′h′ .

Thus we have a G(R)-invariant Hermitian structure on each connected com-
ponent of D.
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Definition 1.4.7. A Hermitian symmetric space is a connected complex
manifold M endowed with an Hermitian structure such that each point p ∈ M
is an isolated fixed point of an involutive holomorphic isometry of M .

We consider the Riemannian structure on each connected component of D,
where D is the homogeneous space obtained from a Shimura datum (G,h).
Since the almost complex structure J is G(R)-invariant and D is a homoge-
neous space, it is sufficient to consider J at one arbitrary point h ∈ D. By
using the criterion SJ = 0 of Theorem 1.4.2, one can show that the almost
complex structure J on a homogeneous space D obtained from a Shimura
datum is integrable (use the results of Example 1.4.4 and Example 1.4.6 and
compare to [27], VIII. Proposition 4.2 and its proof).

Since the Hermitian structure is G(R)-invariant, the Cartan involution
obtained from h(i) acts on D as an involutive isometry with isolated fixed
point representing h. By the fact that J is integrable, we conclude:

Proposition 1.4.8. Each connected component of the homogeneous space D
obtained from a Shimura datum is a Hermitian symmetric space.

Let D+ denote a connected component of D. Note that the group of holo-
morphic isometries Hol(D+, g) of the Hermitian symmetric space (D+, g) is
endowed with the structure of a Lie group instead of the structure of an alge-
braic group. Thus one is not able to define a Cartan involution of Hol(D+, g)
as we have done for R-algebraic groups. In this case one considers the com-
plexified Lie algebra LieC(Hol(D+, g)) and defines a Cartan involution for
Lie algebras (for details see [27], III. §7).

In our case the Cartan involution on Gad
R

induces a Cartan involution on
the Lie algebra of Gad(R) in the sense of [27]. Condition (2) in the definition
of the Shimura datum guarantees that Gad is not compact. Moreover the
action of G(R)+ on a connected component D+ of D descends to an action
of Gad(R) on D+, since the center Z(G)(R) acts trivial on the conjugacy
class and Gad ∼= G/Z(G).

1.4.9. We will see that the quotient of Gad(R) by its direct compact fac-
tors is the connected component of the group of holomorphic isometries
(Hol(D+, g))+ of the Hermitian symmetric space D+ obtained from a
Shimura datum (G,h). By Condition (2) in the definition of the Shimura
datum, one concludes that Hol(D+, g)+ is a noncompact semisimple Lie
group. This Lie group is endowed with an involution ι, which induces by its
differential a Cartan involution on Lie(Hol(D+, g)). Let Kι ⊂ Hol(D+, g)+

be the subgroup, on which ι acts as id. The isotropy group K of one point
p ∈ D+ satisfies K+

ι ⊆ K ⊆ Kι. Such a Hermitian symmetric space D+ is
called a Hermitian symmetric domain.

1.4.10. Hermitian symmetric domains have the following properties:

• Each Hermitian symmetric domain D is biholomorphic to an open bounded
connected complex submanifold D′ of C

N . Moreover each p ∈ D′ is
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an isolated fixed point of an involutive holomorphic diffeomorphism
φ : D′ → D′, which is induced from a corresponding involutive isometry
of D. Such a domain D′ is called bounded symmetric domain. Conversely
each bounded symmetric domain D′ can be equipped with a Hermi-
tian metric (called Bergman metric), which turns D′ into a Hermitian
symmetric domain (see [27], VIII. Theorem 7.1).

For example the upper half plane h1 given by the complex numbers x+ iy
with y > 0 is biholomorphic to the ball B1 = {z ∈ C : |z| < 1}, which
is a bounded symmetric domain. The biholomorphic map φ : h1 → B1 is
given by

φ(z) =
z − 1
z + 1

.

• Each holomorphic diffeomorphism between bounded symmetric domains
is an isometry for the Bergman metrices (see [27], VIII. Proposition 3.5).

• Let Is(D, g) denote the group of C∞-isometries of the Hermitian symmetric
domain (D, g) and Hol(D) denote the group of holomorphic diffeomor-
phisms acting on D. Then one has

Is(D, g)+ = Hol(D, g)+ = Hol(D)+

(see [40], Proposition 1.6).
• A Hermitian symmetric domain D is irreducible, if Hol(D, g)+ is simple.

Each Hermitian symmetric domain D is a product

D = D1 × . . . × Dk

of irreducible Hermitian symmetric domains D1, . . . , Dk (follows from [27],
VIII. Proposition 5.5). By the classification of simple Lie groups, one
obtains a classification of irreducible Hermitian symmetric domains (use
[27], VIII. Theorem 6.1 and [27], X. Table V).

Theorem 1.4.11. Let h : S → G be a Shimura datum, W be a real vector
space and K denote the centralizer of h(S). Then each connected component
D+ of D = G(R)/K(R) has a unique structure of a Hermitian symmetric
domain. These domains are isomorphic, where the connected component of
the group of holomorphic isometries is given by the quotient of Gad(R) by
its direct compact factors. Each representation ρ : GR → GL(W ) yields a
holomorphic variation (W,ρ ◦ h)h∈D of Hodge structures on D.

Proof. (See [16], 2.1.1.) ��

By the preceding considerations of this section, we have already proved
that the connected components D+ of D = G(R)/K(R) have a unique struc-
ture of a Hermitian symmetric space. The proof of the remaining statement
about variations of Hodge structures can be found in the same essay [16] of
P. Deligne in Proposition 1.1.14.(i).
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Now let us consider our main example:

Example 1.4.12. The Lie group GSp(V,Q)(R) has two connected compo-
nents. One component consists of matrices with positive determinant and
the other consists of matrices with negative determinant. Hence the corre-
sponding homogeneous space D parametrizing the elements of the conjugacy
class of a Hodge structure of an abelian variety given by h has two con-
nected components. Note that GSp(V,Q)(R)+ is a product of Sp(V,Q)(R)
and G

+
m(R). Since Gm(R)+ is contained in the stabilizers of all points, the

corresponding connected homogeneous space coincides with hg such that the
preceding Theorem endows hg with the structure of a Hermitian symmetric
domain. By the representation of GSp(V,Q)R given by the identical embed-
ding GSp(V,Q)R ↪→ GL(V )R, the upper half plane hg is endowed with the
natural holomorphic variation of polarized integral Hodge structures of type
(1, 0), (0, 1).

Assume that (V, h,Q) is a polarized Q-Hodge structure of type (1, 0), (0, 1).
By Proposition 1.3.26, the pair (MT(V, h), h) is a Shimura datum. Lemma
1.3.17 ensures that the connected components of the conjugacy class of h :
S1 → Hg(V, h) are given by connected components of MT(V,Q)(R)/K(R)
contained in the upper half plane hg. Thus we rather work with Hg(V, h) than
with MT(V, h). By Corollary 1.3.19, the pair (Hg(V, h), h) can be considered
as Shimura datum, too:

Remark 1.4.13. Assume that (V, h,Q) is a polarized integral Hodge struc-
ture of type (1, 0), (0, 1). By Corollary 1.3.19, one has that MTad(V, h) =
Hgad(V, h). Thus one has that MTad(V, h)(R) = Hgad(V, h)(R). Hence by
the preceding construction, Hg(V, h)ad(R) is the identity component of the
holomorphic isometry group of the Hermitian symmetric domain D+, where
D+ is a connected component of the conjugacy class of h. The isotropy group
of the point representing h is given by the compact subgroup of Hgad(V, h)(R)
fixed by the Cartan involution on Hgad(V, h)R obtained from the inner au-
tomorphism of the complex structure J = h(i). Hence one can consider the
pair consisting of V and h|S1 : S1 → Hg(V, h)R as Shimura datum, too.

Note that D. Mumford and J. Tate have originally constructed families
of abelian varieties over Hermitian symmetric domains by using the Hodge
group instead of the Mumford-Tate group (see [46] and [47]) as we will do
in a similar way. The Mumford-Tate group was later introduced by number
theorists, who work with Shimura varieties, for technical reasons.

Now we construct the holomorphic family of principally polarized abelian
varieties over Hg(V, h)(R)/K corresponding to the V HS induced by the
closed embedding

id : Hg(V, h) ↪→ Sp(V, h),

where (V, h,Q) is a polarized rational Hodge structure of type (1, 0), (0, 1).
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Construction 1.4.14. Let (L, h,Q) be a polarized Z-Hodge structure of
type (1, 0), (0, 1) with V := LQ as before and {v1, . . . , vg, w1, . . . , wg} be a
symplectic basis of L with respect to Q. For example it may be given on
L := H1(C, Z), where C is a curve of genus g. Moreover let [vi] resp., [wi]
denote the image of vi resp., wi by the map

L → L ⊗ C → H0,1.

One has that Hg(V, h) ⊂ Sp(V,Q). Let K ⊂ Hg(V, h)+(R) be the centralizer
of h(S1(R)). Thus Hg(V, h)+(R)/K is a Hermitian symmetric domain as we
have seen. Consider the linearly independent set B = {[w1], . . . , [wg]} ⊂ H0,1,
which generates the real subvector space W . Now iW is obviously generated
by {[Jw1], . . . , [Jwg]}. The principal polarization H of the abelian variety
A = H0,1/L is given by the corresponding alternating form E = −Q as in the
proof of Theorem 1.2.10. Since E vanishes on W , the principal polarization H
given by H = E(i., .)+ iE(., .) vanishes on the complex vector space W ∩ iW ,
too. Hence W ∩ iW = 0. Thus the fact that SpanR(v, Jv) is mapped to
SpanC([v]) implies that B is a C-basis of H0,1. Hence the period matrix of
the corresponding abelian variety may be given by (Z,Eg), where the columns
of Z are given by the [vi] in their coordinates with respect to B.

Thus the embedding H1,0 ↪→ VC is given by the matrix (Zt,−Eg)t. Since
we have a holomorphic variation of Hodge structures, this matrix varies
holomorphically. Thus the period matrices of the corresponding abelian va-
rieties vary holomorphically, too. Hence the corresponding action of L on
H0,1 ×Hg(V, h)+(R)/K is holomorphic and we obtain a holomorphic family
of abelian varieties over Hg(V, h)+(R)/K.

By the previous construction, the period matrices of the fibers of our holo-
morphic family of abelian varieties over Hg(V, h)+(R)/K are given by (Z,Eg).
Recall that Siegel’s upper half plane hg parametrizes the principally polar-
ized abelian varieties with symplectic basis. Hence for each p ∈ hg one finds
exactly one matrix Zp such that (Zp, Eg) is the period matrix of the given
principally polarized abelian variety with symplectic basis. Thus the mapping
ϕ : p → Zp is injective and well-defined. By the previous construction, ϕ is
holomorphic, too.

Proposition 1.4.15. A matrix (Z,Eg) is the period matrix of a principally
polarized abelian variety with respect to a symplectic basis, if and only if

Zt = Z and �Z > 0.

Proof. (see [7], Proposition 8.1.1) ��

Since the set of matrices Z satisfying the conditions of the preceding
Proposition has the structure of a smooth complex manifold, ϕ is a holo-
morphic diffeomorphism. By ϕ, one can endow the set of these matrices Z
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with the structure of a Hermitian symmetric domain. Hence we obtain the
often used description of the upper half plane:

Proposition 1.4.16.

hg
∼= {M ∈ Mg(C)|Zt = Z,�Z > 0}

Especially in the case g = 1 one obtains

h1 = {x + iy ∈ C|y > 0}.

1.5 The construction of Shimura varieties

In the preceding section we have seen that a Shimura datum yields a bounded
symmetric domain. This is the first step of the construction of a Shimura
variety. For completeness we sketch the construction of a Shimura variety in
this section. Later we will only need to use the language of Shimura data and
bounded symmetric domains obtained from these data.

Definition 1.5.1. Let G be a Q-algebraic group. An arithmetic subgroup Γ
of G(Q) is a group, which is commensurable with G(Z).

A subgroup Γ of a connected Lie group H is arithmetic, if there is a
Q-algebraic group G, an arithmetic subgroup Γ0 of G(Q) and a surjective
homomorphism η : G(R)+ → H of Lie groups with compact kernel such that
η(Γ0) = Γ.

The second step of the construction of a Shimura variety is given by the
following theorem:

Theorem 1.5.2 (of Baily and Borel). Let D be a bounded symmetric
domain, and Γ be an arithmetic subgroup of Hol(D)+. Then the quotient
Γ\D can be endowed with a structure of a complex quasi-projective variety.
This structure is unique, if Γ is torsion-free.

Proof. (see [16], 2.1.2. and for the construction of the structure of a complex
variety see [5]) ��

Next one needs the ring of finite adèles,8 which is given by

A
f = Q ⊗Z

∏
p

Zp,

8 One reason for the introduction of adèle rings is given by the fact that one wants to have
canonical models of Shimura varieties over number fields in number theory. We will not
need canonical models of Shimura varieties over number fields. For completeness we write
it down.
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where p runs over all prime numbers. Hence A
f is the subring of

∏
Qp con-

sisting of the (ap) such that ap ∈ Zp for almost all ap. Now let (G,h) be a
Shimura datum, which gives the bounded symmetric domain D+ by a con-
nected component of the conjugacy class D of h, and K be a compact open
subgroup of G(Af ).

Definition 1.5.3. Let G be a Q-algebraic group. A principal congruence
subgroup of G(Q) is

Γ(n) := {g ∈ G(Z)|g ≡ Eg mod n}

for some n ∈ N. A congruence subgroup of G(Q) is a subgroup Γ containing
Γ(n) such that [Γ : Γ(n)] < ∞ for some n ∈ N.

Lemma 1.5.4. Let K be a compact open subgroup of G(Af ). Then Γ :=
K ∩ G(Q) is a congruence subgroup of G(Q).

Proof. (see [40], Proposition 4.1) ��

The Shimura variety ShK(G,h) is given by the double quotient

ShK(G,h) := G(Q)\D × G(Af )/K := G(Q)\(D × (G(Af )/K)).

Proposition 1.5.5. Let K be a compact open subgroup of G(Af ), C :=
G(Q)\G(Af )/K, and Γ[g] = gKg−1∩G(Q)+ for some [g] ∈ C. Then one has

ShK(G,h) =
⊔

[g]∈C

Γ[g]\D+.

Proof. (see [40], Lemma 5.13) ��

Hence the preceding proposition and the Theorem of Baily and Borel en-
dow ShK(G,h) with the structure of an algebraic variety. By [40], Proposition
3.2, the surjection G → Gad maps a congruence subgroup of G onto an arith-
metic subgroup of Gad. Now we consider compact open subgroups with the
property that the resulting arithmetic subgroups on

Gad(R) = Hol(D+, g)+ = Hol(D+)+

are torsion-free. Recall that the structure of a complex quasi-projective va-
riety on the quotient of a bounded symmetric domain by a torsion-free
arithmetic group is unique. If K ′ ⊂ K, we have a natural morphism

ShK′(G,h) → ShK(G,h). (1.4)
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By the projective limit running over all compact open K ⊂ G(Af ) proving a
torsion-free arithmetic group on Gad(R), which is given via (1.4), we obtain
the Shimura variety9

Sh(G,h) = lim
←−

ShK(G,h).

1.6 The definition of complex multiplication

One says that an elliptic curve has complex multiplication, if its endo-
morphism ring is a complex multiplication field (CM field), i.e. a totally
imaginary quadratic extension of a totally real number field. For an arbitrary
abelian variety we define:

Definition 1.6.1. An abelian variety A is of CM type, if it is isogeneous to
a fiberproduct of simple abelian varieties Xi (i = 1, . . . , n) such that there
are fields Ki ⊂ End(Xi) ⊗Z Q, which satisfy

[Ki : Q] ≥ 2 · dim(Xi).

Proposition 1.6.2. If the abelian variety A is of CM type, the fields Ki are
CM fields and satisfy

[Ki : Q] = 2 · dim(Xi).

Proof. (see [35], Chapter 1, Theorem 3.1 and see [35], Chapter 1, Lemma
3.2.) ��

Many authors say that an abelian variety X has complex multiplication,
if there exists a skew field F and an embedding F ↪→ EndQ(X) of Q-algebras
(see [7], [34]). This definition can be used in many applications.

However, we will use a much stronger definition of complex multiplication
for arbitrary Kähler manifolds, which is motivated by the previous definition
of abelian varieties of CM type. We consider complex multiplication as a
property, which characterizes the Hodge group. Recall the following facts:

Remark 1.6.3. By a principal polarization on the abelian variety X, we
have an isomorphism between X and its dual abelian variety X̂ given by

X̂ = H1(X,OX)/H1(X, Z).

Thus for each curve C the Hodge structures on H1(C, Z) and H1(Jac(C), Z)
are isomorphic. Moreover each polarization yields an isogeny X → X̂ (com-
pare [7], 2.4).

9 Some authors denote only Sh(G, h) as Shimura variety.
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Proposition 1.6.4. An abelian variety A is of CM type, if and only if
Hg(H1(A, Q)) is a torus algebraic group.

Proof. (follows from [47]) ��

By Remark 1.6.3 and Proposition 1.6.4, one concludes:

Corollary 1.6.5. Let C be a curve. Then Hg(H1(C, Q), hC) is a torus, if
and only if Jac(C) is of CM type.

Now let F denote a totally real number field, (V, h) be an F -Hodge struc-
ture and

EndF (V, h) := {M ∈ HomF (V, V )|gh = hg}
be its endomorphism algebra. Note that an abelian variety X is isogeneous
to its dual abelian variety

X̂ ∼= H1(X,OX)/H1(X, Z)

(see Remark 1.6.3). Thus the endomorphism algebra of X given by End(X)⊗Z

Q can be identified with EndQ(H1(X, Q), hX). Proposition 1.6.4 tells us that
an abelian variety X has a commutative endomorphism algebra of rank equal
to dim H1(X, Q), if Hg(H1(X, Q), hX) is a torus. Thus the endomorphism
algebra EndQ(H1(X, Q), hX) of the Hodge structure contains a commutative
endomorphism algebra of rank equal to dimH1(X, Q), if Hg(H1(X, Q), hX) is
a torus algebraic group. We give a generalization of this version of Proposition
1.6.4, which will motivate our definition of complex multiplication:

Proposition 1.6.6. Let F denote a totally real number field and (V, h) be an
F -Hodge structure. The endomorphism algebra EndF (V, h) contains a com-
mutative subalgebra of dimension n = dim V , if the Mumford-Tate group
MTF (V, h) is a torus.

Proof. Assume that MTF (V, h) is a torus. Thus it is contained in a maximal
torus T of GL(V ). Up to conjugation TC is given by the torus of diagonal
matrices. Thus

dim T = dim V.

Now let W (T ) denote the subvector space of HomF (V, V ), which is generated
by the elements of T (F ). It is a Zariski closed subset of HomF (V, V ) and a
commutative subalgebra of EndF (V, h). Moreover it contains the torus T of
dimension n. Hence

dim W (T ) ≥ n.

On the other hand, each conjugation by an invertible matrix is an auto-
morphism of the algebra EndC(V, h). Thus each element of W (T )C is up to
conjugation a diagonal matrix, which implies

dim W (T ) = n.

��
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Let us first consider intermediate Jacobians and afterwards discuss defini-
tions of complex multiplication, which use one intermediate Jacobian. These
definitions have some interesting applications as we will see. However, we will
see that one intermediate Jacobian does not accurately describe the Hodge
structure of a Calabi-Yau 3-manifold. Therefore we consider two intermediate
Jacobians in the case of a Calabi-Yau 3-manifold:

1.6.7. Let X be a Calabi-Yau 3-manifold. The Hodge structure on H3(X, Z)
is given by the decomposition

H3(X, C) = H3,0(X) ⊕ H2,1(X) ⊕ H1,2(X) ⊕ H0,3(X).

The Calabi-Yau 3-manifold X has the following intermediate Jacobians:

• The Griffiths intermediate Jacobian JG(X) is the complex torus corre-
sponding to the Hodge structure of type (1, 0), (0, 1) on H3(X, Z), which
is given by the direct sum decomposition

H1,0 := H3.0(X) ⊕ H2,1(X), H0,1 := H1,2(X) ⊕ H0,3(X).

• The Weil intermediate Jacobian JW (X) is the abelian variety correspond-
ing to the Hodge structure of type (1, 0), (0, 1) on H3(X, Z), which is given
by the direct sum decomposition

H1,0 := H2,1(X) ⊕ H0,3(X), H0,1 := H3,0(X) ⊕ H1,2(X).

The Weil intermediate Jacobian is JW (X) is a principally polarized abelian
variety. But it does not vary holomorphically in general.

The Griffiths intermediate Jacobian JG(X) varies holomorphically. But it
is not algebraic in general. (see [8])

Remark 1.6.8. For each Kähler manifold X of dimension 2n − 1 we can
define the intermediate Jacobian

J(X) := H2n−1(X, C)/(Fn(H2n−1(X, C)) ⊕ H2n−1(X, Z)),

which coincides with the Griffiths intermediate Jacobian JG in the case of a
Calabi-Yau 3-manifold.

Some possible definitions of complex multiplication for a Kähler manifold
X of dimension 2n − 1 use the intermediate Jacobian J(X). Many authors
say that X has complex multiplication, if J(X) is of CM type or EndQJ(X)
contains a skew field F . This leads to definitions, which are often used in
many applications in mathematics and theoretical physics.

For example such a definition is used by S. Gukov and C. Vafa [23]. Mirror
pairs of Calabi-Yau 3-manifolds with Griffiths intermediate Jacobians, which
are respectively of CM -type over a number field F with [F : Q] = 2(h2,1 +1),
correspond to rational conformal field theories.
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However for an accurate description of the V HS the Griffiths intermedi-
ate Jacobian does not give enough information in general. Let us consider
the following example. It uses methods, which will be explained later. Thus
the reader is suggested to return to this example after he has read the rest
of this book, if he does not understand it now.

Example 1.6.9. There exists a K3 surface S with an involution ιS such
that ιS acts on H1,1(S) by the character 1 and on H2,0(S) ⊕ H0,2(S) by
the character −1, which yields an eigenspace decomposition over Q. This
is the last example in the table of 11.3.11. Note that t is the rank of the
sublattice Pic(S)0 of the Picard lattice, which is fixed by ιS . In this case we
have t = 20. This implies that

Pic(S)0 ⊗Z C = H1,1(S)

such that ιS acts on H1,1(S) by the character 1 as we have claimed.
The restricted Hodge structure (V−, h−) of the eigenspace with eigen-

value −1 satisfies
Hg(V−, h−)R ⊆ SO(2)

(see Section 11.2). Since SO(2) is commutative, Hg(V−, h−) is commutative,
too.

Each elliptic curve E has an involution ιE such that E/〈ιE〉 ∼= P
1. By

the Borcea-Voisin construction, which we explain in Section 7.2, we obtain a
Calabi-Yau 3-manifold X by blowing up the singularities of

S × E/〈(ιS , ιE)〉.

The integral Hodge structure on the third cohomology of S × E is up to
torsion given by

(H3(S × E, Z), h) = (H2(S, Z), hS) ⊗ (H1(E, Z), hE)

(follows from [61], Théorème 11.38). Since the points fixed by ιS are given
by rational curves, one concludes with respect to the blowing up of these
rational curves

H3(S̃ × E, Z) = H3(S × E, Z).

Due to [61], 7.3.2, one concludes that (H3(X, Z), hX) is the sub-hodge struc-
ture of (H3(S × E, Z), h) given by

(H3(X, Z), hX) = (V− ∩ H2(S, Z), h−) ⊗ (H1(E, Z), hE).10

10 In this situation one may ask for torsion. Since the kernel of the natural homomorphism

H3(X, Z) → H3(X, Z) ⊗ Q = H3(X, Q)

is given by the torsion elements, the weight one Hodge structure corresponding to the
Jacobian can be defined over the torsion-free lattice H3(X, Z)/torsion. Thus we can dis-
regard the torsion.
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Due to the fact that

(V−)C = H2,0(S) ⊕ H0,2(S),

the Griffiths intermediate Jacobian JG(X) of our Calabi-Yau manifold X has
a corresponding integral Hodge structure given by

H1,0 = H2,0(S) ⊗ H1(E, C), H0,1 = H0,2(S) ⊗ H1(E, C). (1.5)

Note that for all elliptic curves the vector space H1(E, C) is given by

H1(E, C) = Λ ⊗Z C,

where Λ ∼= Z
2 does not depend on the respective elliptic curve. Thus the

Griffiths intermediate Jacobian JG(X) and its corresponding integral Hodge
structure do not depend on the chosen elliptic curve. Therefore the differ-
ent Calabi-Yau 3-manifolds obtained from different elliptic curves have the
same Griffiths intermediate Jacobian. By the description of the correspond-
ing weight one Hodge structure (1.5), the Hodge group of the intermediate
Jacobian is isomorphic to Hg(V−, h−). Therefore one concludes that the
Hodge group of the intermediate Jacobian is a torus. Thus JG(X) is of CM
type.

Thus we use a stronger term of complex multiplication:

Definition 1.6.10. Let F be a totally real number field. A compact Kähler
manifold X of dimension n has complex multiplication (CM) over F , if the
Hodge group of the F Hodge structure on Hn(X,F ) is a torus. We say that
X has complex multiplication, if it has complex multiplication over Q.

Proposition 1.6.11. A Calabi-Yau 3-manifold X has CM , if and only if its
Griffiths intermediate Jacobian JG(X) is of CM type, its Weil intermediate
Jacobian JW (X) is of CM type and the Hodge groups of the corresponding
weight one Hodge structures commute.

Proof. ([8], Theorem 2.3) ��

Remark 1.6.12. Let X be the Calabi-Yau 3-manifold X of Example 1.6.9.
The Hodge structure on H3(X, Q) is given by the tensor product of the
Hodge structures (V−, h−) and (H1(E, Q), hE). By Proposition 7.1.4, the
Hodge structure (H3(X, Q), hX) has a commutative Hodge group resp., X
has CM , if and only if (V−, h−) and (H1(E, Q), hE) have CM . Recall that
JG(X) is of CM type for all elliptic curves E. It follows that if E does not
have complex multiplication, JG(X) is of CM type and X does not have
CM . Hence the fact that the intermediate Jacobian JG(X) is of CM type
does not imply that X has CM .
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Now we note that a corresponding implication holds true in the case of
every odd dimensional Kähler manifold:

Proposition 1.6.13. Let X be a Kähler manifold of dimension 2n− 1. The
intermediate Jacobian

J(X) := H2n−1(X, C)/(Fn(H2n−1(X, C)) ⊕ H2n−1(X, Z))

is of CM type, if X has CM .

Proof. Let
hJ(X) : S1 → GL(H2n−1(X, R))

denote the representation, which yields the weight one Hodge structure cor-
responding to J(X). Assume that X has CM . Thus Hg(H2n−1(X, Q), hX) is
a torus. It is contained in a maximal torus T of GL(H2n−1(X, Q)). The fact
that hX(S)(R) commutes with T (R) is equivalent to the fact that for each
g ∈ T (R) one has

g(Hk,2n−1−k(X)) = Hk,2n−1−k(X) with k = 0, 1, . . . 2n − 1.

From this fact one concludes that hJ(X)(S1) is contained in the centralizer
of T . Since GL(H2n−1(X, Q)) is reductive, the maximal torus T is its own
centralizer. This follows from the fact that the centralizers of the maximal
tori (i. e. the Cartan subgroups) of a reductive group are the maximal tori
(see [10], IV. 13.17). Hence one concludes that hJ(X)(S1) ⊂ T , which implies
that J(X) is of CM type. ��

1.7 Criteria and conjectures for complex multiplication

We have introduced the theory of Shimura varieties, which we will use for
the construction of families with a dense set of CM points defined below:

Definition 1.7.1. Let D be a complex manifold and V be a holomorphic
variation of rational Hodge structures on D. A point p ∈ D is a CM point
with respect to V, if Vp has CM .

Let X → D be a holomorphic family of complex manifolds. A point p ∈ D
is a CM point with respect to X , if Xp is a CM fiber resp., Xp has a complex
multiplication.

By the next theorem, we give a criterion for dense sets of CM points, which
implies that the family of abelian varieties over Hg(V, h)(R)/K of Construc-
tion 1.4.14 has a dense set of CM fibers. We only need to understand the
definition of Shimura data and Hermitian symmetric domains. The construc-
tion of Shimura varieties by bounded symmetric domains has been written
down for completeness.
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Recall that a Shimura datum (G,h) gives a Hermitian symmetric domain
D and a representation of G gives a variation of Hodge structures over D.
Now consider the following theorem:

Theorem 1.7.2. Let (G,h) denote a Shimura datum. The set of CM points
with respect to the V HS induced by some closed embedding G → GL(W ) for
some Q-vector space W is dense in G(R)/K(R).

Proof. By the following lemma, we have only to show that there exists one
CM point on G(R)/K. Since we have the closed embedding G → GL(W ),
each Q-algebraic torus of G can be identified with a Q-algebraic torus of
GL(W ). Thus the existence of a CM point is equivalent to the statement
that there is a

h : S → GR → GL(W )

in this V HS, which factors through a Q-algebraic torus of G.
Now let T be a maximal (Q-algebraic) torus of G. The centralizers of

the maximal tori (i. e. the Cartan subgroups) of a reductive group are the
maximal tori (see [10], IV. 13.17.). The torus TR is contained in a maximal
torus TM of GR, which has the property that each point of TM is contained
in the centralizer of TR resp., in the centralizer of T . Thus the torus TR is in
fact maximal in GR.

Recall that K0 ⊂ GR denotes the Zariski connected component of the
centralizer of h(S). It yields the compact Lie group K0(R). Hence Example
1.3.11 tells us that K0 is reductive. Moreover h(S) is contained in the center
of K0 and the center of K0 is a torus (see Proposition 1.3.4). Thus there exists
a maximal torus T0 of GR which contains h(S). Recall that an element of G is
regular, if its centralizer is a Cartan subgroup and that the regular elements
in GC resp., (T0)C contain a Zariski open dense subset of GC resp. (T0)C (see
[10], IV. 12.2 and [10], IV. Theorem 12.3). Let t ∈ T0(R) be regular. The
centralizer of t is the maximal torus T0, since the Cartan subgroups coincide
with the maximal tori in the case of a reductive group. The proof of the fact
that the regular elements of G contain a Zariski open dense subset uses the
fact that the morphism

GC × TC → GC via (g, x) → gxg−1

is dominant (see the proof of [10], IV. Theorem 12.3). Since this morphism is
defined over R, the differential over R is also surjective at any point. By the
Real Approximation Theorem, G(Q) lies dense in the manifold G(R). Hence
there exists a regular Q-rational element of G near to t ∈ T0(R), which is
conjugate to t and whose centralizer is a maximal torus. This torus is defined
over Q and contains an element of the conjugacy class of h(S). ��

Lemma 1.7.3. Let (G,h) denote a Shimura datum. Assume that G(R)/K
contains a CM point with respect to a V HS induced by some closed
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embedding G → GL(W ) for some Q-vector space W . Then the set of CM
points of the same type with respect to the same V HS is dense in G(R)/K.

Proof. We have two cases. Assume that G is a Q-algebraic torus. In this case
G(R)/K consists of one point. The fact that we have a closed embedding
G ↪→ GL(W ) implies that the Hodge group of the Hodge structure over this
point is a subtorus of the torus G.

In the other case G is not a Q-algebraic torus. By the assumptions, we have
a CM point in G(R)/K with respect to the V HS, which is induced by some
closed embedding G → GL(W ). This implies that G contains a Q-algebraic
torus T such that the conjugacy class of h : S → GR contains an element,
which factors through TR. By our preceding construction, the stabilizer of
the CM point [s0]K ∈ G(R)/K is given by s0Ks−1

0 . Thus one can replace K
by s0Ks−1

0 . In this case the fact that the V HS is induced by an embedding
G ↪→ GL(W ) implies that the Hodge group of the Hodge structure over [e]
is a subtorus of T . Hence [e] is a CM point with respect to this V HS, and
any s ∈ G(Q) ⊂ G(R) has the property that it is mapped to a CM point,
too. By the Real Approximation Theorem, G(Q) lies dense in the manifold
G(R) for all connected affine Q-algebraic groups G. Since the quotient map
is continuous, the set of CM points in G(R)/K is dense. ��

Remark 1.7.4. Let F denote a totally real number field and (V, h,Q) be
a pure polarized F -Hodge structure of weight k. Moreover let K denote the
centralizer of h in HgF (V, h)(R). We can relax the assumptions of Theorem
1.7.2 and show that the conjugacy class of h in HgF (V, h) given by the homo-
geneous space HgF (V, h)(R)/K contains a dense set of F -Hodge structures
with CM over F . The arguments are very similar:

A maximal torus of HgF (V, h) yields also a maximal torus of HgF (V, h)R.
Note that HgF (V, h)(F ) is dense in HgF (V, h)(R) (see [53], Theorem 7.7).
Since HgF (V, h) is reductive, the same methods as above yield an F -rational
maximal torus, which contains h(S) up to conjugation. Due to the fact
that HgF (V, h)(F ) is dense in HgF (V, h)(R), one concludes that the set
of points, which represent Hodge structures with CM over F , is dense in
HgF (V, h)(R)/K.

Now we apply Theorem 1.7.2 to the following example.

Example 1.7.5. Let X be a curve. We have the rational Hodge structure
(H1(X, Q), hX) of weight 1. The Shimura datum (MT(H1(X, Q), hX), hX)
and the representation

id : MT(H1(X, Q), hX) ↪→ GL(H1(X, Q))

give a variation of Hodge structures. This variation of Hodge structures con-
tains exactly all Hodge structures (H1(X, Q), h), which are conjugated to
(H1(X, Q), hX) and have a Mumford-Tate group satisfying
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MT(H1(X, Q), h) ⊆ MT(H1(X, Q), hX).

Especially (H1(X, Q), hX) occurs in this variation of Hodge structures. By
Theorem 1.7.2, over a dense set of points the occurring Hodge structures
have CM .

1.7.6. Recall that we want to find infinitely many fibers in a family f :
X → Y of curves or Calabi-Yau manifolds, which have CM . Assume that
f is a family of curves. Moreover recall that p : Y → hg denotes the period
map. In the case of curves we have a Torelli theorem, which implies that the
isomorphism class of the curve X of genus g is determined by a point of hg.

Let D denote the subdomain of the upper half plane hg given by the
Shimura datum of the preceding example. Assume that X does not have
CM . Otherwise D would consist of only one point. If (H1(X, Q), hX) ∈ D
has a neighborhood U in D such that U ⊂ p(Y ), the restricted holomorphic
family Xp−1(U) → p−1(U) contains infinitely many CM fibers. This follows
from Theorem 1.7.2.

In Section 3.1 we will see that the family f : X → Y has a generic
Mumford-Tate group MT such that the Mumford-Tate groups MT(Hn(X, Q),
hX) are contained in the generic Mumford-Tate group MT for all fibers X.
Moreover assume that the period map is generically finite. Let D be bounded
symmetric domain obtained from the Shimura datum (MT, hX), where X is
some fiber of f . If one can prove that the Hermitian symmetric domain D
satisfies

dim D ≤ dim Y,

one concludes from the generic finiteness of the period map that

dim D = dimY

and the family has a dense set of CM fibers.

Next one can ask for a necessary condition for the existence of CM fibers of
a family. The André-Oort conjecture (compare [3], [52]) concerns this question
for a necessary condition.

Conjecture 1.7.7. Assume that S is a Shimura variety and Z ⊂ S is an
irreducible algebraic subvariety. Then Z contains a dense set of CM points,
only if it is a Shimura subvariety of S.

Remark 1.7.8. Let (G,h) denote a Shimura datum obtained from the
generic Mumford-Tate group of a family of curves and the Hodge structure
of one fiber given by h, which satisfies the conditions of 1.7.6. In this case
Theorem 1.7.2 yields only a discrete set of CM points. Due to the André-
Oort conjecture, one can conject that any nonconstant family has at most a
discrete set of CM fibers.



54 1 An introduction to Hodge structures and Shimura varieties

1.7.9. By Proposition 1.4.16, one concludes that

dim hg =
g(g + 1)

2
.

Moreover by [14], the moduli space of curves of genus g ≥ 2 is a quasi-
projective variety of the dimension 3g − 3. For an introduction to moduli of
curves we refer to [25]. Thus for g ≤ 3 the dimension of the moduli space of
curves of genus g and dim hg coincide. Hence the moduli space of curves of
genus g ≤ 3 contains a dense set of points representing curves with CM .

By the same arguments as in 1.7.9, one can see that dim hg is larger than
the dimension of the moduli space of curves of dimension g for g > 3. In this
case the subspace of hg, whose points represent the Jacobians of the curves of
genus g has a smaller dimension than hg. Hence the existence of non-trivial
families with dense sets of CM fibers and the André-Oort conjecture imply
that there are subsets of this locus, which have the structure of a Hermitian
symmetric domain. R. Coleman [11] thought that each of these domains would
at most consist of one point. He formulated the following conjecture:

Conjecture 1.7.10. Fix an integer g ≥ 4. Then there are only finitely many
complex algebraic curves C of genus g such that Jac(C) is of CM type.

In [29] J. de Jong and R. Noot gave counterexamples to the previous
conjecture for g = 4 and g = 6. In [58] E. Viehweg and K. Zuo gave an addi-
tional counterexample for g = 6. In Chapter 6 we will give counterexamples
for g = 5 and g = 7, which occur in the lists of Section 6.3. All counterexam-
ples are given by families of curves, which are parametrized over a Shimura
variety, which is given by a ball quotient. Note that the complex n-ball Bn

is a bounded symmetric domain. A ball quotient is a quotient of Bn by an
arithmetic subgroup of the identity component of the group of holomorphic
isometries of Bn for some n. Let us consider the complex ball Bn in detail:

1.7.11. The complex n-ball Bn is the domain contained in P
n given by the

points
p = (p0 : p1 : . . . : pn),

which satisfy
|p1

p0
|2 + . . . + |p1

p0
|2 < 1.

This is equivalent to the condition

0 < |p0|2 − |p1|2 − . . . − |pn|2.

As one can easily see the Lie group PU(1, n)(R) acts on Bn and the stabilizer
of the point

p = (1 : 0 : . . . : 0)
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is the subgroup P(U(1)×U(n))(R). The group PU(1, n) is not a C-algebraic
group, since complex conjugation is not C-linear. Since one can consider
C

n+1 as real vector space and the complex conjugation is R-linear, U(1, n)
and PU(1, n) are R-algebraic. Due to the remarks below [27], X. Table V, the
homogeneous space PU(1, n)(R)/P(U(1)×U(n))(R) is a Hermitian symmetric
domain. By [31], Volume II. Example 10.7, one has

Bn
∼= PU(1, n)(R)/P(U(1) × U(n))(R).

Due to its counterexamples, the Coleman conjecture has to be reformulated
in the following way:

Conjecture 1.7.12. There exists an integer g′ > 7 such that for all fixed
g ≥ g′ there are only finitely many complex algebraic curves C with CM type
of genus g.

The Coleman conjecture motivates similar conjectures for manifolds of
other kinds. For example consider the weight one Hodge structures of the Weil
intermediate Jacobian JW (X) of a Calabi Yau 3-manifold X with polarization
Q. This intermediate Jacobian can be given by a point of the upper half plane

h1+h2,1 ∼= Sp(H3(X, R), Q)/U(1 + h2,1).

By 1.7.9, one has that

dim h1+h2,1 =
(h2,1 + 1)(h2,1 + 2)

2
.

On the other hand the universal deformation of a Calabi-Yau 3-manifold is a
family over a basis of dimension h2,1 (see [61] 10.3.2). Hence one can conject
that for almost all fixed h1,1 and h2,1 there are only finitely many Calabi-
Yau 3-manifolds with CM , which have the Hodge numbers h1,1 and h2,1.
This conjecture has been formulated by S. Gukov and C. Vafa [23].

Here we give some examples of families of Calabi-Yau 3-manifolds with
dense sets of CM fibers. Thus for some fixed h1,1 and h2,1 there are infinitely
many Calabi-Yau 3-manifolds with CM , which have the Hodge numbers h1,1

and h2,1. There are known examples of families of Calabi-Yau 3-manifolds,
which contain a dense set of CM fibers, too:

Example 1.7.13. By C. Borcea [8], two examples of families with complex
multiplication fibers have been constructed. The first example uses the family
E of elliptic curves given by

P
2 ⊃ V (y2x0 + x1(x1 − x0)(x1 − λx0)) → λ ∈ A

1 \ {0, 1}.
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By y → −y, one has a global involution ι on E . Now let Ei with involution ιi
be a copy of E for i = 1, 2, 3. We obtain the family

E1 × E2 × E3/〈(ι1, ι2), (ι2, ι3)〉 → (A1 \ {0, 1})3.

By blowing up the singular sections, we obtain a family of Calabi-Yau
3-manifolds with a dense set of complex multiplication fibers.

The other example of C. Borcea uses the family C of degree 2 covers of P
2

ramified over six lines in general position. By the Galois group action, one
has an involution ιC on C. By blowing up the intersection loci of these lines,
one obtains the family C̃ of K3 surfaces. The involution ιC acts on C̃, too.
By blowing up the singular locus of C̃ × E/〈(ιC , ιE)〉, we obtain a family of
Calabi-Yau 3-manifolds with a dense set of complex multiplication fibers.

Later E. Viehweg and K. Zuo [58] have constructed a deformation of the
Fermat quintic in P

4, which is a well-studied Calabi-Yau 3-manifold with
complex multiplication:

Example 1.7.14. We will later see that the V HS of the family F1 given by

P
2 ⊃ V (y5

1 + x1(x1 − x0)(x1 − αx0)(x1 − βx0)x0) → (α, β) ∈ M2

allows to consider its basis as ball quotient. Thus this family has a dense set
of CM fibers. Since each of these covers given by the fibers of the family can
be embedded into P

2, the fibers of F1 are the branch loci of the fibers of a
family F2 of cyclic covers of P

2 of degree 5. Moreover the fibers of F2, which
can be embedded into P

3, are the branch loci of the fibers of a family F3 of
cyclic covers of P

3, which can be embedded into P
4. The family F3 is given by

P
4 ⊃ V (y5

3 + y5
2 + y5

1 + x1(x1 − x0)(x1 − αx0)(x1 − βx0)x0) → (α, β) ∈ M2.

By the adjunction formula, the fibers of F3 are Calabi-Yau 3-manifolds.
Let q ∈ M2. The fiber (F3)q has CM , if (F2)q has CM and (F2)q has

CM , if (F1)q has CM . Because of this argument, the family F3 has a dense
set of CM fibers, which lie over the same points as the CM fibers of the
family of curves we have started with.

We will use, combine and modify the methods of the previous two exam-
ples in order to obtain new examples. It is our main topic to explain these
methods.

An other method to obtain Calabi-Yau manifolds with complex multi-
plication was suggested by Y. Zhang. Due to the André-Oort conjecture, he
conjects that the Basis of a family of Calabi-Yau 3-manifolds with a dense set
of CM fibers has the structure of a Shimura (sub)variety (see [64], page 20).

A Shimura subvariety of a Shimura variety can be obtained from an em-
bedding of Shimura data (G1, h1) → (G2, h2). An embedding of Shimura
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data is given by a closed embedding j : G1 → G2 of Q-algebraic groups such
that the conjugacy class of h2 coincides with the conjugacy class of

S
h1−→ (G1)R

jR−→ (G2)R.

Thus (G1, h1) yields a Hermitian symmetric subdomain D1 of the Hermitian
symmetric domain D2 obtained by (G2, h2). Note that not all Shimura sub-
varieties of Sh(G2, h2) are of that type (see [43], Remark 2.6). A complex
submanifold M of D2 is totally geodesic, if for all p ∈ M each geodesic in
D2, which is tangent to M at p is contained in M . Thus one says that an
irreducible subvariety V of the Shimura variety Sh(G2, h2) is totally geodesic,
if it is obtained from a totally geodesic submanifold M of D2.

In [43] B. Moonen has proved the following Theorem:

Theorem 1.7.15. An irreducible subvariety V of a Shimura variety Sh(G,h)
is a Shimura subvariety, if and only if it contains a CM point and it is totally
geodesic.



Chapter 2
Cyclic covers of the projective line

Recall that we will study variations of Hodge structures of families of cyclic
coverings of the projective line. Moreover some families of such covers are
suitable for the construction of families of Calabi-Yau manifolds with dense
sets of complex multiplication fibers. In order to understand variations of
Hodge structures of such families of cyclic coverings we need to understand
the Hodge structure of a cyclic covering C → P

1.
A cyclic cover π : C → P

1 is given by

ym = (x − a1)d1 · . . . · (x − an)dn , (2.1)

where each dk is an integer satisfying 1 ≤ dk ≤ m − 1. The numbers dk are
not uniquely determined by the isomorphism class of a cover. However, these
numbers determine the isomorphism class of a cover and we will use them
for the computation of the variation of Hodge structures in the following
chapters.

In Section 2.1 we give a general description of cyclic covers of P
1 and

explain which tuples (d1, . . . , dn) yield equivalent covers. We will see that the
Galois group action of the cyclic covering yields an eigenspace decomposition
of π∗(C) over the complement of the branch points. In Section 2.2 we use
the branch indices dk for the description of the monodromy representations
of these eigenspaces. We have also an eigenspace decomposition of H1(C, C)
by the Galois group action, which can also be described by using the branch
indices dk, as we will do in Section 2.3. In the next chapter this eigenspace
decomposition will be extended to an eigenspace decomposition of the V HS
of our families of cyclic coverings of P

1. In Section 2.4 we cover certain curves
C given by (2.1) by a Fermat curve, which implies that each of these certain
curves C has CM .

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 59
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5 3,
c© Springer-Verlag Berlin Heidelberg 2009
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2.1 Description of a cyclic cover of the projective line

Let us first repeat some known facts about Galois covers of P
1.

Definition 2.1.1. Let T1, T2, and S be topological spaces resp., com-
plex manifolds resp., algebraic varieties. The coverings f1 : T1 → S and
f2 : T2 → S, which are morphisms in the respective category, are called equiv-
alent, if there is an isomorphism g : T1 → T2 in the respective category such
that f1 = f2 ◦ g.

Proposition 2.1.2. Let G be a finite group, and S := {a1, . . . , an} ⊂ A
1

⊂ P
1. There is a correspondence between the following objects:

1. The isomorphism classes of Galois extensions of C(P1) = C(x) with Galois
group G and branch points contained in S.

2. The equivalence classes of (non-ramified) Galois coverings f : R → P
1 \ S

of topological spaces with deck transformation group isomorphic to G.
3. The normal subgroups in the fundamental group π1(P1 \ S) with quotient

isomorphic to G.

Proof. (see [62], Theorem 5.14) ��

Remark 2.1.3. We will need to understand the correspondence of the pre-
ceding Proposition. The correspondence between (1) and (2) is given by the
facts that a Galois covering f : R → P

1 \ S (of topological spaces) yields a
covering f : R̄ → P

1 of compact Riemann surfaces, and any morphism of
compact Riemann surfaces corresponds to an embedding of their function
fields.

The correspondence between (2) and (3) is given by the path lifting prop-
erties of coverings of Hausdorff spaces. Take b ∈ R. Let p = f(b), and
γ ∈ π1(P1 \ S, p), and f∗(γ(0)) = b. Then f∗(γ(1)) = g · b for some g ∈
G ∼= Deck(R/(P1 \P )). This induces a homomorphism Φb : π1(P1 \S, p) → G
and a kernel of this homomorphism, which is a normal subgroup G.

Remark 2.1.4. Let f : R → P
1 be a Galois covering with branch points

a1, . . . , an. One can choose γ1, . . . , γn ∈ π1(P1 \P ) such that each γk is given
by a loop running counterclockwise “around” exactly one ak. Hence one has
that

γn = γ−1
1 . . . γ−1

n−1

and we conclude that

Φb(γn) = Φb(γ1)−1 . . . Φb(γn−1)−1.

From now on we consider only irreducible cyclic covers of P
1. An irreducible

cyclic cover can be given by a prime ideal

(ym − (x − a1)d1 · . . . · (x − an)dn) ⊂ C[x, y].
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First this ideal defines only an affine curve in A
2, which has singularities, if

there are some dk > 1. But there exists a unique smooth projective curve
C birationally equivalent to this affine curve. By the natural projection onto
the x-axis, one obtains a cyclic cover of the smooth curve C onto P

1.

Remark 2.1.5. Let us consider the cover given by

ym = (x − a1)d1 · . . . · (x − an)dn ,

and fix a k0 ∈ {1, . . . n}. By an automorphism of P
1, one can put ak0 onto 0.

Let μk0 = dk0
m ∈ Q, and D a small disc centered in 0, which does not contain

any other ak with k �= k0. Take any point p ∈ ∂D and remove the segment
[0, p]. The topological space D \ [0, p] is simply connected. Hence one can
define root functions z → zμk0 on this space, which are given by:

zμk0 = |z|μk0 exp(
2πitdk0

m
+2πi

�

m
) (with � = 0, 1, . . . , m−1 and z = |z| exp(2πit))

Since the cover is given by ym = xdk0 resp., y = xμk0 over a small disc
around 0, we may lift a closed path around 0 to some path with starting
point (z, zμk0 ) and ending point (z, e2πiμk0 zμk0 ).

Definition 2.1.6. Let e2πiμk0 and dk0 be given by Remark 2.1.5. Then
e2πiμk0 is the local monodromy datum of dk0 .

Lemma 2.1.7. Assume that d1, . . . , dn < m. Let the (non-singular projec-
tive) curve C be given by

ym = (x − a1)d1 · . . . · (x − an)dn .

Then the Galois group G is Z/(m), and the covering C → P
1 is given by the

kernel of the homomorphism Φ given by γk → dk ∈ Z/(m). The point ∞ is
a branch point and

Φ(γ∞) = −
n∑

k=1

dk mod m,

if and only if m does not divide
n∑

k=1

dk.

Proof. The last statement of the lemma follows by the preceding rest of the
lemma and the Remark 2.1.4.

The Galois group and Z/(m) are obviously isomorphic. Let us remove the
ramification points of C. Then we obtain a Riemann surface R. Now take a
small loop γk around pk, which starts and ends in p ∈ P

1. Moreover take a
point b ∈ R with f(b) = p. The definition of R and Remark 2.1.5 imply that
the lifting f∗(γk) of the path γk starting in b ends in the point dk · b. Hence
the statement follows from Proposition 2.1.2 and Remark 2.1.3. ��
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Let d ∈ Z and 1 < m ∈ N. The residue class of d in Z/(m) is denoted
by [d]m.

Remark 2.1.8. Let G = Z/(m), and [d]m ∈ Z/(m)∗. We consider the ker-
nels of the monodromy representations of the covers locally given by

ym = (x − a1)d1 · . . . · (x − an)dn

and
ym = (x − a1)[dd1]m · . . . · (x − an)[ddn]m .

By the preceding lemma, these kernels coincide. Hence we conclude that both
covers are equivalent.

2.2 The local system corresponding to a cyclic cover

Now let us assume that our cover π : C → P
1 is given by

ym = (x − a1)d1 · . . . · (x − an)dn ,

where m divides d1 + . . . + dn and ∞ is not a branch point. Moreover let

S := {a1, . . . , an}.

First let us consider the construction of a cyclic cover of an arbitrary algebraic
manifold:

Remark 2.2.1. Let X be a complex algebraic manifold, L an invertible
sheaf on X and

D =
∑

bkDk

a normal crossing divisor on X, where Lm = O(D) and 0 < bk < m for each
k. Then by L and D, one can construct a cyclic cover of degree m onto X
(see [20], §3).

Definition 2.2.2. Let bk and Dk be given by the previous remark. The
number bk is called the branch index of Dk with respect to this cyclic cover.

Example 2.2.3. In the case of

X = P
1, D =

n∑
k=1

dkak, L = OP1(
1
m

n∑
k=1

dk),

the cyclic cover of Remark 2.2.1 is given by

ym = (x − a1)d1 · . . . · (x − an)dn .
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Next we describe the local system π∗(C)|P1\S and its monodromy.

Lemma 2.2.4. Let V be a C-vector space of dimension n, and X be an
arcwise connected and locally simply connected topological space with x ∈ X.
Then the monodromy representation provides a bijection between the set of
isomorphism classes of local systems of stalk V on X and the set of repre-
sentations

π1(X,x) → GLn(C),

modulo the action of AutC(V ) by conjugation.

Proof. (see [61], Remarque 15.12) ��

Since GL1(C) ∼= C
∗ is commutative, we can conclude:

Corollary 2.2.5. The monodromy yields a bijection between the set of iso-
morphism classes of rank one local systems on P

1 \ S and the set of repre-
sentations

π1(P1 \ S) → GL1(C).

The Galois group of our covering curve is isomorphic to Z/(m) and gen-
erated by a map ψ, which is given by (x, y) → (x, e2πi 1

m y) with respect to
the above affine curve contained in A

2, which is birationally equivalent to
the covering curve. Hence a character χ of this group is determined by χ(ψ)
with χ(ψ) ∈ {e2πi j

m |j = 0, 1, . . . ,m − 1}. Thus the character group is iso-
morphic Z/(m) and we identify the character, which maps ψ to e2πi j

m , with
j ∈ Z/(m).1

Let D be an arbitrary disc contained in P
1 \ S. The preimage of D is

given by the disjoint union of discs Dr with r = 0, 1, . . . ,m − 1 such that
ψ(Dr) = D[r+1]m . The vector space π∗CC |P1\S(D) has the basis {vj |j =
0, 1, . . . ,m − 1}, where

vj := (e
2πj(m−1)

m , . . . , e
2πj
m , 1),

and the r-th. coordinate denotes the value of the corresponding section of
π−1(D) on Dr. By the push-forward action, each vj is an eigenvector with
respect to the character given by j. Since D is arbitrary, one can glue the
local eigenspaces, and obtain an eigenspace decomposition

π∗CC |P1\S =
m−1⊕
j=0

Lj

1 These two identifications with Z/(m) are obviously not canonical, but useful for the
description of π∗CC |

P1\S by using our explicit equation for π : C → P1 as we will see a
little bit later.
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into rank 1 local systems, where Lj is the eigenspace with respect to
the character given by j ∈ Z/(m). Hence the monodromy representation
ρ : π1(P1 \ S) → GLm(C) has the corresponding decomposition

ρ = (ρ0, ρ1, . . . , ρm−1) : π1(X ) →
m−1∏
i=0

GL1(C),

where
ρj : π1(P1 \ S) → GL1(C)

is the monodromy representation of Lj for all j = 0, 1, . . . ,m − 1.
Let us recall that our cyclic cover C is given by

ym = (x − a1)d1 . . . (x − an)dn ,

where ∞ is not a branch point. Now let x ∈ P
1 \ S, and x ∈ D, where D is a

sufficiently small open disc as above. Take a counterclockwise loop γk around
ak and cover the loop with a finite number of (sufficiently) small discs. The
continuation of s̃ on the unification of these discs leads to a multisection. By
Remark 2.1.5, the possible liftings γ

(r)
k of the loop γk are paths with starting

point γ
(r)
k (0) = yr, where yr ∈ Dr and ending point γ

(r)
k (1) = y[dk+r]m . This

implies that the monodromy representation of Lj maps γk to e
2πjdk

m . Hence
we conclude:

Theorem 2.2.6. Let the cyclic cover π : C → P
1, which is not branched

over ∞, be given by

ym = (x − a1)d1 . . . (x − an)dn . (2.2)

Then the local system π∗C|P1\S is given by the monodromy representation

γk → {(xj)j=0,1...,m−1 → (e
2πijdk

m xj)j=0,1...,m−1}.

Remark 2.2.7. One can consider π∗(Q(e2πi 1
m ))|P\S , too. Since a generator

ψ of Gal(C; P1) satisfies ψm = 1, the minimal polynomial of its action on
π∗(Q(e2πi 1

m ))|P\S decomposes into linear factors contained in Q(e2πi 1
m )[x].

Hence the eigenspace decomposition is defined over Q(e2πi 1
m ).

Each local system L of C-vector spaces on any topological space X has a
dual local system L∨ given by the sheafification of the presheaf

U → HomC(L, C).
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Proposition 2.2.8. One has

L
∨
j = L̄j .

Furthermore the monodromy representation μL∨
j

of L
∨
j is given by μL∨

j
(γs) =

μLj
(γs) for all s ∈ S.

Proof. (see [19], Proposition 2) ��

Hence by the respective monodromy representations, we obtain for all
j = 1, . . . , m − 1:

Corollary 2.2.9.
L
∨
j = Lm−j

Let r|m. We consider the C-algebra endomorphism Φr of C[x, y] given by
x → x and y → yr. The (non-singular) curve C is birationally equivalent to
the affine variety given by Spec(C[x, y]/I), where

I = (ym − (x − a1)d1 . . . (x − an)dn).

By Φr, we obtain the prime ideal

Φ−1
r (I) = (y

m
r − (x − a1)d1 . . . (x − an)dn).

Let Cr be the irreducible projective non-singular curve birationally equivalent
to the affine variety given by Spec(C[x, y]/Φ−1

r (I)).

Remark 2.2.10. By the equation above, we have a cover πr : Cr → P
1 of

degree m
r . The homomorphism Φr induces a cover φr : C → Cr of degree r

such that
π = πr ◦ φr.

Proposition 2.2.11.

(πr)∗CCr
|P1\S =

m
r −1⊕
j=0

Lr·j ⊂ π∗CC |P1\S .

Proof. Let m0 := m
r . By Theorem 2.2.6, the monodromy representation of

the local system (πr)∗CCr
|P1\{a1,...,an} is given by

γk → {(xj)j=0,1..., m
r −1 → (e

2πijdk
m0 xj)j=0,1..., m

r −1 = (e
2πijrdk

m xj)j=0,1..., m
r −1}.

By the respective monodromy representations of the local systems Lj , this
yields the statement. ��
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2.3 The cohomology of a cover

In this section we discuss some known facts about the eigenspace decom-
position of the Hodge structure of a curve C with respect to a cyclic cover
π : C → P

1. The main reference for this section is given by §3 of the book
[20] of H. Esnault and E. Viehweg. Section 2 of the essay [18] of P. Deligne
and G. D. Mostow contains additional information about our case.

Let π : C → P
1 be given by

ym = (x − a1)d1 · . . . · (x − an)dn

such that ∞ is not a branch point,

S = {a1, . . . , an}, D = d1a1 + . . .+dnan and L(j) = O
P1 (j

d1 + . . . + dn

m
−

n+3∑
k=1

[
j

m
·dk]).

Moreover let the generator ψ of the Galois group of π be given by (x, y) →
(x, e2πi 1

m y) with respect to the explicit equation above, which yields π.
We fix some new notation: Let q ∈ Q and [q] denote the largest integer,

which is smaller than q. Then we define [q]1 := q − [q] . Moreover we define

Sj := {a ∈ S|[jμa]1 �= 0}.

Proposition 2.3.1. The sheaves π∗(O) and π∗(ω) have a decomposition into
eigenspaces with respect to the Galois group representation, which are given
by the sheaves L(j)−1

and

ωj := ωP1(logD(j)) ⊗ L(j)−1
with D(j) :=

∑
a∈Sj

a

for j = 0, 1, . . . , m − 1 such that ψ acts via pull-back by the character e2πi j
m

on L(j)−1
resp., ωj.

Proof. The eigenspace decomposition of π∗(O) follows by [20], Corollary 3.11.
Moreover [20], Lemma 3.16, d) yields the decomposition of π∗(ω) into the
claimed sheaves. Since L(j)−1

is an eigenspace with respect to the Galois
group representation, ωj is an eigenspace of the same eigenvalue. ��

Remark 2.3.2. One has obviously h0(ω0) = 0. By [20], 2.3, c), one concludes
that

ωP1(logD(j)) = ωP1(D(j))

for j = 1, . . . , m − 1. Hence for j = 1, . . . , m − 1 we obtain
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h0(ωj) = h0(OP1(−2 + deg(D(j)) − j
d1 + . . . + dn+3

m
+

n+3∑
k=1

[
j

m
· dk]))

= −1 + |Sj | +
∑
a∈Sj

(−jμa + [jμa]) = −1 +
∑
a∈Sj

(1 − [jμa]1).

But here we want to determine our eigenspaces on π∗(ωC) with respect to
the push-forward action. Thus we put ω(j) := ω[m−j]m , and we obtain

h1,0
j (C) := h0(ω(j)) = h0(ω[m−j]m) = −1+

∑
a∈Sj

(1−[(m−j)μa]1) = −1+
∑
a∈Sj

[jμa]1.

Moreover let H0,1
j (C) denote the vector space of antiholomorphic 1-forms on

C with respect to the corresponding character of the Galois group action.
Since the push-forward action of the Galois group respects the alternating
form of the polarization of the Hodge structure on H1(C, Z), one concludes
that H0,1

[m−j]m
(C) is the dual of H1,0

j (C). Thus:

Proposition 2.3.3. We have the eigenspace decomposition

H1(C, C) =
m−1⊕
j=1

H1
j (C, C) with H1,0

j (C) ⊕ H0,1
j (C) = H1

j (C, C).

Moreover by h0,1
j (C) = h1,0

[m−j]m
(C) and the preceding calculations, one

concludes:

Proposition 2.3.4. We have

h1,0
j (C) =

∑
s∈Sj

[jμs]1 − 1, and h0,1
j (C) =

∑
s∈Sj

(1 − [jμs]1) − 1.

The preceding two propositions imply:

Corollary 2.3.5.
h1

j (C, C) = |Sj | − 2

2.4 Cyclic covers with complex multiplication

Let us now search for examples of covers of P
1 with complex multiplication.

The family given by

P
2 ⊃ V (ym − x1(x1 − x0)(x1 − a1x0) . . . (x1 − am−3x0))

→ (a1, . . . , am−3) ∈ (A1 \ {0, 1})m−3 \ {ai = aj |i �= j}
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has obviously a fiber isomorphic to the Fermat curve Fm, which is given by
V (ym+xm+1) and has complex multiplication (see [22] and [32]). For another
family with a fiber with complex multiplication, we must work a little bit.

Lemma 2.4.1. If (V, h1) and (W,h2) are two Q-Hodge structures of weight
k, then

Hg(V ⊕W,h1⊕h2) ⊂ Hg(V, h1)×Hg(W,h2) ⊂ GL(V )×GL(W ) ⊂ GL(V ⊕W ),

and the projections

Hg(V ⊕ W ) → Hg(V ), and Hg(V ⊕ W ) → Hg(W )

are surjective.

Proof. (see [58], Lemma 8.1) ��

Lemma 2.4.2. Let V ⊂ W be a rational sub-Hodge structure of a polarized
Hodge structure W . Then we have a direct sum decomposition

W = V ⊕ V ′,

where V ′ is also a rational sub-Hodge structure of W .

Proof. (see [61], Lemme 7.26) ��

Lemma 2.4.3. A curve C, which is covered by the Fermat curve Fm given
by V (xm + ym + zm) ⊂ P

2 for some 1 ≤ m ∈ N, has complex multiplication.

Proof. A covering Fm → C yields an injective vector space homomorphism

H1(C, Q) → H1(Fm, Q),

which extends to an embedding of Hodge structures (see [61], 7.3.2 for more
details). This embedding induces a direct sum decomposition into two ratio-
nal sub-Hodge structures of H1(Fm, Q) (see Lemma 2.4.2). Hence by Lemma
2.4.1 and the fact that Fm has complex multiplication, one obtains the
statement. ��

Theorem 2.4.4. Let 0 < d1, d < m, and ξk denote a primitive k-th. root of
unity for all k ∈ N. Then the curve C, which is given by

ym = xd1

n−2∏
i=1

(x − ξi
n−2)

d,

is covered by the Fermat curve F(n−2)m given by V (y(n−2)m + x(n−2)m + 1)
and has complex multiplication.
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Proof. Let C be the curve, which is given by

ym = xd1

n−2∏
i=1

(x − ξi
n−2)

d,

and φ : A
2 → A

2 be the morphism, which is given by y → yxd1 and x →
xm. By a little abuse of notation, we denote by C ∩ A

2 the singular affine
curve given by the equation above, which is birationally equivalent to C. The
corresponding homomorphism φ∗ : C[x, y] → C[x, y] sends the ideal, which
defines C ∩ A

2, to the ideal generated by

ymxm·d1 − xm·d1

n−2∏
i=1

(xm − ξi
n−2)

d.

This is contained in the ideal generated by

ym −
n−2∏
i=1

(xm − ξi
n−2)

d. (2.3)

Let m0 := m
gcd(m,d) , and d0 := d

gcd(m,d) . It is obvious that

ym −
n−2∏
i=1

(xm − ξi
n−2)

d =
gcd(m,d)−1∏

j=0

(ym0 − ξj
gcd(m,d)

n−2∏
i=1

(xm − ξi
n−2)

d0).

Now we take the curve C1, which is given by

ym0 =
n−2∏
i=1

(xm − ξi
n−2)

d0 .

By the definitions of m0 and d0, and Remark 2.1.8, the curve C1 is given by

ym0 =
n−2∏
i=1

(xm − ξi
n−2),

too. Hence this curve irreducible, and φ induces a cover C1 → C resp., φ∗

induces a C-algebra homomorphism C[C ∩ A
2] → C[C1 ∩ A

2]. By x → x

and y → yn−2 m
m0 , we get a cover of the Fermat curve F(n−2)m given by

V (y(n−2)m+x(n−2)m+1) onto C1. Now we use the composition of these covers
F(n−2)m → C1 and C1 → C, and Lemma 2.4.3. This yields the statement. ��



Chapter 3
Some preliminaries for families
of cyclic covers

In this chapter we collect the remaining preparations for the computations
concerning the V HS of our families π : C → Pn of cyclic covering of P

1,
which we construct in this chapter.

Let V denote the V HS of the family X → Y of curves and Mon0(V)
denote the identity component of the Zariski closure of the monodromy group
of V. In Section 3.1 we introduce the generic Hodge group Hg(V), which is
the maximum of the Hodge groups of all occurring Hodge structures in V.
Moreover Hg(V) coincides with the Hodge groups of the Hodge structures in
V over the complement of a unification of countably many submanifolds of Y .
Our families π : C → Pn are constructed in Section 3.2. We will also make
some general remarks about the monodromy representation of V including
the fact that the Galois group action yields an eigenspace decomposition
in Section 3.2. In Section 3.3 we make some explicit computations of the
monodromy representations of these eigenspaces. These computations are
motivated from the fact that Mon0(V) is a normal subgroup of the derived
group Hgder(V) of the generic Hodge group! as we see in Section 3.1.

3.1 The generic Hodge group

We want to study the variations of Hodge structures (V HS) of the families
of cyclic covers of P

1, which will be constructed in the next section. Hence
let us first make some general observations about the relation between their
monodromy groups and Hodge groups resp., Mumford-Tate groups. These
observation lead to the definition of the generic Hodge group defined below.

Proposition 3.1.1. Let W be a connected complex manifold and V be a
polarized variation of rational Hodge structures of weight k over W . Then
there is a countable union W ′ ⊂ W of submanifolds such that all MT(Vp)
coincide (up to conjugation by integral matrices) for all p ∈ W \W ′. Moreover
one has MT(Vp′) ⊂ MT(Vp) for all p′ ∈ W ′ and p ∈ W \ W ′.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 71
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5 4,
c© Springer-Verlag Berlin Heidelberg 2009
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Proof. (see [43], Subsection 1.2) ��

Remark 3.1.2. There exist the following versions of the previous
proposition:

If one replaces W by a connected complex algebraic manifold in the pre-
vious proposition, the submanifolds W ′ ⊂ W of the previous proposition are
algebraic, too (see also [43], Subsection 1.2).

Now let F be a totally real number field, W be a complex connected
algebraic manifold, A → W be a family of abelian varieties and V be its
polarized variation of F -Hodge structures of weight 1 over W . Then there
is a countable union W ′ ⊂ W of subvarieties such that all MT(Vp) coincide
(up to conjugation by integral matrices) for all closed p ∈ W \ W ′ (see [42],
Subsection 1.2).

The previous remark motivates the definition of the generic Mumford-Tate
group MTF (V) of a polarized variation V of F -Hodge structures of weight 1
of a family of abelian varieties over a connected complex algebraic manifold
W . Moreover the preceding proposition motivates the definition of the generic
Mumford-Tate group MT(V) of a polarized variation V of Q-Hodge structures
of weight k on a connected complex manifold. The generic Mumford-Tate
group is given by MTF (V) = MTF (Vp) resp., MT(V) = MT(Vp) for all
closed p ∈ W \ W ′.

Since the image of the embedding SL(VF,p) ↪→ GL(VF,p) is independent
with respect to the chosen coordinates on VF,p, Lemma 1.3.17 allows us to
define the generic Hodge group HgF (V) := (MTF (V) ∩ SLF (V))0 such that
HgF (V) = HgF (Vp) for all (closed) p ∈ W \ W ′.

Definition 3.1.3. Let Q ⊆ K ⊆ R be a field and V = (VK ,F•, Q) be a po-
larized variation of K Hodge structures on a connected complex manifold D.
Then Mon0

K(V)p denotes the connected component of identity of the Zariski
closure of the monodromy group in GL((VK)p) for some p ∈ D. For simplicity
we write Mon0(V)p instead of Mon0

Q(V)p.

Theorem 3.1.4. Keep the assumptions and notations of Proposition 3.1.1.
One has that Mon0

F (V)p is a subgroup of MTder
F (Vp) for all p ∈ W \ W ′.

Moreover for a variation of Q Hodge structures one has that Mon0(V)p is a
normal subgroup of MTder(Vp) and

Mon0(V)p = MTder(Vp)

for all p ∈ W \ W ′, if VQ has a CM point.

Proof. (see [43], Theorem 1.4 for the statement about the variations of Q

Hodge structures and [42], Properties 7.14 for the statement about the vari-
ations of F Hodge structures) ��

Corollary 3.1.5. Keep the assumptions of Proposition 3.1.1. Then the group
Mon0(V) is semisimple.
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Proof. By Theorem 3.1.4, the Lie subalgebra Lie(Mon0
Q(V)R) of

Lie(MTder
Q (V)R) is an ideal. Recall that MTder

Q (V)R is semisimple. Hence
the algebra Lie(Mon0

Q(V)R) consists of the direct sum of simple subalgebras
of Lie(MTder

Q (V)R). Thus Mon0
Q(V)R and Mon0(V) are semisimple. ��

3.2 Families of covers of the projective line

Let S be some C-scheme. Recall that the covers c1 : V1 → P
1
S and c2 :

V2 → P
1
S are equivalent, if there is a S-isomorphism j : V1 → V2 such that

c1 = c2 ◦ j.
In this section we construct a family of cyclic covers of P

1 such that all
equivalence classes of covers with a fixed number of branch points with fixed
branch indices are represented by some of its fibers. For us it is sufficient to
start with a space, which is not a moduli scheme, but whose closed points
“hit” all equivalence classes of covers of P

1 with Galois group G = (Z/m,+)
and a fixed number of branch points with fixed branch indices.

We start with the space

(P1)n+3 ⊃ Pn := (P1)n+3 \ {zi = zj |i �= j},

which parametrizes the injective maps φ : N → P
1, where N := {s1, . . . ,

sn+3}. Thus a point q ∈ Pn corresponds to an injective map φq : N → P
1.1

One can consider Pn as configuration space of n + 3 ordered points, too.
We endow the points sk ∈ N with some local monodromy data αk =

e2πiμk , where

μk ∈ Q, 0 < μk < 1 and
n+3∑
k=1

μk ∈ N.

Now we construct a family of covers of P
1 by these local monodromy data:

Construction 3.2.1. Let m be the smallest integer such that mμk ∈ N for
k = 1, . . . , n + 3, and Dk ⊂ PPn

:= P
1 × Pn be the prime divisor given by

Dk = {(ak, a1, . . . , ak, . . . , an+3)}.

1 The set N is some arbitrary finite set, where the set S of the preceding chapter is a
concrete set S ⊂ P1 given by S = φq(N) for some q ∈ Pn.
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Let D be the divisor

D :=
n+3∑
k=1

mμkDk ∼ mD0 with D0 := (
n+3∑
k=1

μk) · ({0} × Pn).

By the sheaf L := OPPn
(D0) and the divisor D, we obtain an irreducible

cyclic cover C of degree m onto PPn
as in [20], §3 (where irreducible means

that the covering variety is irreducible). By π : C → P
1 × Pn

pr2→ Pn, this
cyclic cover yields a family of irreducible cyclic covers of degree m onto P

1.
Suppose that r divides m. By taking the quotient of the subgroup of order

r of the Galois group of the cyclic cover C → P
1 × Pn, one gets a family

πr : Cr → Pn of cyclic covers of degree m
r onto P

1. Let φr : C → Cr denote
the quotient map. One has

π = πr ◦ φr.

Remark 3.2.2. Without loss of generality one may assume that q :=
(a1, . . . , an+3) ∈ Pn is contained in A

n+3, too. Thus the fiber Cq is given
by the equation

ym = (x − a1)d1 · . . . · (x − an+3)dn+3

with dk = mμk. By Remark 2.1.5, the local monodromy datum αk describes
the lifting of a path γk around ak ∈ P

1.2 One checks easily that each equiv-
alence class of cyclic covers of degree m with n + 3 branch points and fixed
branch indexes d1, . . . , dn+3 is represented by some fibers of C. Moreover for
C = Cq the quotient Cr of Remark 2.2.10 is given by the fiber (Cr)q.

A family of smooth algebraic curves over C determines a proper submersion
τ : X → Y in the category of differentiable manifolds ([61], Proposition 9.5).
By the Ehresmann theorem, we obtain that over any contractible submanifold
W of Y the family is diffeomorphic to X0 × W , where X0 is the fiber of
some point 0 ∈ W . This fact has some consequences for the monodromy
representation of the variation of integral Hodge structures.

Recall that R1τ∗(Z) is the sheaf associated to the presheaf given by

V → H1(τ−1(V ), Z|π−1(V ))

for all open subsets V ⊂ Pn. Moreover we have

H1(X0, Z) = H1(XW , Z) = (R1τ∗(Z))(W )

for some contractible W ⊂ Pn with 0 ∈ W , which implies that R1τ∗(Z) is a
local system (see [61], 9.2.1).

2 This circumstance explains the term “local monodromy datum”.
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By using these facts, one can easily ensure that the monodromy group
of the V HS of a family of curves can be calculated over any arbitrary field
Q ⊆ K ⊆ C:

Lemma 3.2.3. Let K be a field with char(K) = 0. Moreover let τ : X → Y
be a holomorphic family of curves. Then we obtain

R1τ∗(K) = R1τ∗(Z) ⊗Z K.

Proof. The sheaf R1τ∗(K) is given by the sheafification of the presheaf

V → H1(τ−1(V ),K|τ−1(V )).

Hence by the description of the cohomology by Čech complexes, this presheaf
is given by

V → H1(τ−1(V ), Z|τ−1(V )) ⊗Z K.

By the fact that a local section of Z or K on a connected component of V
resp., τ−1(V ) is constant, one does not need to differ between the locally
constant sheaves given by Z resp., K on X or Y for the computation of
R1τ∗(K). This yields the desired identification. ��

By the fact that the integral cohomology of a curve does not have torsion,
one concludes:

Corollary 3.2.4. Keep the assumptions of Lemma 3.2.3. Then the mon-
odromy representations of R1τ∗(Z) and R1τ∗(K) coincide.

Remark 3.2.5. Recall that we have an eigenspace decomposition of

H1(C0, C) = H1(C0, Z) ⊗ C

with respect to the Galois group action. By H1(C0, C) = (R1π∗(C))(W ) for
some contractible W ⊂ Pn with 0 ∈ W , we obtain an eigenspace decomposi-
tion of (R1π∗(C))(W ). Since we have this decomposition over all contractible
W ⊂ Pn, we can glue these eigenspaces, which yields a decomposition of
the whole sheaf R1π∗(C) into eigenspaces with respect to the Galois group
action.

Recall that we have an identification between the characters of the Galois
group of some fiber and the elements j ∈ Z/(m). This identification allows a
compatible identification between the characters of the Galois group of the
family and the elements j ∈ Z/(m). Let Lj denote the eigenspace of R1π∗(C)
with respect to the character j.

Remark 3.2.6. Let 0 ∈ Pn. We have a monodromy action ρC by diffeomor-
phisms on the fiber C0, which is induced by the gluing diffeomorphisms of the
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locally constant family of manifolds given by C. Since these gluing diffeomor-
phisms induce the gluing homomorphisms of R1π∗(Z) in the obvious natural
way, the monodromy representation ρ of R1π∗(Z) is given by

ρ(γ)(η) = (ρC(γ))∗(η) (∀ η ∈ H1(C0, Z)).

Remark 3.2.7. Since each gluing diffeomorphism of the locally constant
family of manifolds corresponding to C respects intersection form, Remark
3.2.6 implies that the monodromy group of R1π∗(C) respects the polariza-
tion of the Hodge structures. Assume that H1

j (Cq, C) = (Lj)q satisfies that
H1,0

j (Cq) = n1 and H0,1
j (Cq)2 = n2. This means that the polarized variation

of integral Hodge structure endows (Lj)q with an Hermitian form with sig-
nature (n1, n2). Hence the monodromy group of this eigenspace is contained
in U(n1, n2). In this sense we say that Lj is of type (n1, n2).

3.3 The homology and the monodromy representation

In this section we study the monodromy representation of π1(Pn) on the dual
of R1π∗(C) given by the complex homology. This will yield corresponding
statements for the monodromy representation of R1π∗(C).

In the case of the configuration space Pn of n+3 points, we make a differ-
ence between these different points. One says that the points are “colored”
by different “colors”. Moreover one can identify its fundamental group with
the subgroup of the braid group on n+3 strands in P

1, which is given by the
braids leaving the strands invariant (see [24], Chapter I. 3.). This subgroup
of the braid group is called the colored braid group. An element of this group
is for example given by the Dehn twist Tk1,k2 with 1 ≤ k1 < k2 ≤ n + 3. The
Dehn twist Tk1,k2 is given by leaving ak2 “run” counterclockwise around ak1 .

Now we consider a fiber C = Cq of C. Recall that C is a cyclic cover of P
1

described in Chapter 2. Let ψ denote the generator of the Galois group as in
Section 2.2. We keep the notation of Chapter 2.

Consider the eigenspace Lj , which can be extended from a local system on
P

1 \ S to a local system on P
1 \ Sj with Sj = {a1, . . . , anj+3}. For simplicity

one may without loss of generality assume that anj+3 = ∞ and ak ∈ R such
that ak < ak+1 for all k = 1, . . . , nj+2. Here we assume that δk is the oriented
path from ak to ak+1 given by the straight line.

Construction 3.3.1. Let ζ be a path on P
1. Assume without loss of gener-

ality that ζ((0, 1)) is contained in a simply connected open subset U of P
1\S.

Otherwise we decompose ζ into such paths. It has m liftings ζ(0), . . . , ζ(m−1)

to C such that ψ(ζ(	)) = ζ([	−1]m). By the tensorproduct of C with the free
abelian group generated by the paths on C, one obtains the vector space
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of C-valued paths on C. Now let c ∈ C and take the linear combination of
C-valued paths on C given by

ζ̂ = cζ(0) + . . . + ce2πi jr
m ζ(r) + . . . + ce2πi

j(m−1)
m ζ(m−1).

By the assumptions, one verifies easily that ψ(ζ̂) = e2πi j
m ζ̂. Moreover by the

local sections given by c, . . . , ce2πi jr
m , . . . , ce2πi

j(m−1)
m on the corresponding

sheets over U containing the different ζ(	)((0, 1)), one obtains a corresponding
section c̃ ∈ Lj(U). In this sense we have a Lj-valued path c̃ · ζ on P

1.

Remark 3.3.2. Consider the (oriented) path δk from the branch point ak

to the branch point ak+1. Let ek be a non-zero local section of Lj defined
over an open set containing δk((0, 1)). The Lj-valued path ek · δk yields an
element [ek · δk] of the homology group of H1(C, C), which is represented by
the corresponding linear combination of paths in C lying over δk. It has the
character j with respect to the Galois group representation. Let H1(C, C)j

denote the corresponding eigenspace.

Definition 3.3.3. A partition of Sj into some disjoint sets S(1)∪ . . .∪S(	) =
Sj is stable with respect to the local monodromy data μk of Lj , if

∑
ak∈S(1)

μk /∈ N, . . . ,
∑

ak∈S(�)

μk /∈ N.

Theorem 3.3.4. Assume that Sj = {ai : i = 1, . . . , nj + 3} has the stable
partition {a1, . . . , a	+1}, {a	+2, . . . , anj+3} for some 1 ≤ � ≤ nj +1. Then the
eigenspace H1(C, C)j of the complex homology group of C has a basis given by

B = {[ekδk] : k = 1, . . . , �} ∪ {[ekδk] : k = � + 2, . . . , nj + 2}.

Proof. By [36], Lemma 4.5, one has that {[ekδk] : k = 1, . . . , nj +1} is a basis
of H1(C, C)j . Hence {[ekδk] : k = 1, . . . , nj + 2} is not linearly independent.

One can compute a non-trivial linear combination, which yields 0, in the
following way: Choose a non-zero section of Lj over

U = P
1 \ (

nj+2⋃
k=1

δk).

This yields a linear combination of the sheets over U , on which ψ acts by j.
By the boundary operator ∂, one gets the desired non-trivial linear combi-
nation of Lj-valued paths, which is equal to 0. Now let αk denote the local
monodromy datum of Lj around ak ∈ Sj for all k = 1, . . . , nj + 3. By the
local monodromy data, one can easily compute this linear combination. This
computation yields that {δ1, . . . , δ	} ∪ {δ	+2, . . . , δnj+2} is linearly indepen-
dent, if and only if {a1, . . . , a	+1}, {a	+2, . . . , anj+3} is a stable partition. ��
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Let αk denote the local monodromy datum of Lj around ak ∈ Sj for
all k = 1, . . . , nj + 3. One has up to a certain normalization of the ba-
sis vectors [e1δ1], . . . [e1δnj+1] the following description of the monodromy
representation:

The Dehn twist Tk,k+1 leaves obviously δ	 invariant for all |k − �| > 1.
Moreover by following a path representing Tk,k+1, one sees that the mon-
odromy action of Tk,k+1 on H1(C, C)j (induced by push-forward) is given by

[ek−1δk−1] → [ek−1δk−1] + αk(1 − αk+1)[ekδk],
[ekδk] → αkαk+1[ekδk]

and [ek+1δk+1] → [ek+1δk+1] + (1 − αk)[ekδk].

Hence the monodromy representation is given by:

Proposition 3.3.5. The monodromy representation of T	,	+1 on H1(C, C)j

is given with respect to the basis {[ekδk]|k = 1, . . . nj +1} of H1(C, C)j by the
matrix with the entries:

M	,	+1(a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : a = b and a �= �
α	α	+1 : a = b = �

α	(1 − α	+1) : a = � and b = � − 1
1 − α	 : a = � and b = � + 1

0 : elsewhere

Remark 3.3.6. The monodromy representation of Proposition 3.3.5 corre-
sponds to an eigenspace in the local system given by the direct image of the
complex homology. By integration over C-valued paths, this eigenspace is the
dual local system of Lm−j . By the polarization, Lj is the dual of Lm−j , too.
Hence Proposition 3.3.5 yields the monodromy representation of Lj .



Chapter 4
The Galois group decomposition
of the Hodge structure

In this chapter we make some general observations about the V HS of C → Pn

and its generic Hodge group. Moreover we will give an upper bound for
the generic Hodge group and a sufficient criterion for dense sets of complex
multiplication fibers.

Let ξ be a primitive m-th. root of unity and r < m be a divisor of m.
Recall that a fiber C of one of our families π : C → Pn is given by

ym = (x − a1)d1 · . . . · (x − an+3)dn+3 .

By the Galois group action we have a decomposition of H1(C, Q) into sub-
spaces N1(Cr, Q) such that the Galois group action endows N1(Cr, Q) with
the structure of a Q(ξr)-vector space as we see in Section 4.1. In Section 4.2
we see that this decomposition is also a decomposition into sub-Hodge struc-
tures, which are closely related to the quotients Cr of C. By the centralizer
of the Galois group action, we obtain an upper bound for the generic Hodge
group in Section 4.3. The real valued points of the centralizer are given by the
direct product of the unitary groups with respect to the Hermitian forms on
the eigenspaces Lj with j ≤ m

2 . By using this description of the centralizer,
we define pure (1, n) variations of Hodge structures and show that a family
C with a pure (1, n) − V HS has a dense set of CM fibers in Section 4.4.

4.1 The Galois group representation on the first
cohomology

Let π : C → P
1 be a cyclic cover of degree m. The elements of Gal(π) act as

Z-module automorphisms on H1(C, Z). This induces a faithful representation

ρ1 : Gal(π) → GL(H1(C, Q)). (4.1)

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 79
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By the Galois group representation of a cyclic cover of degree m, we have
the following eigenspace decomposition:

H1(C, Q) ⊗ Q(ξ) = H1(C, Q(ξ)) =
m−1⊕
i=1

H1
j (C, Q(ξ))

Recall that π : C → P
1 is given by some fibers of a family π : C → Pn. The

monodromy representation of R1π∗(C) has a decomposition into subrepre-
sentations on the different eigenspaces. In general there is no Q(ξ) structure
on H1(C, Q), which turns H1(C, Q) into a Q(ξ)-vector space. But in this sec-
tion we will see that H1(C, Q) has a direct sum decomposition into sub-vector
spaces with different Q(ξr) structures, where r|m. Moreover we will see that
the monodromy representation respects the different Q(ξr) structures, which
we will study.

Let ψ denote a generator of Gal(π) as in Chapter 2. The characteristic
polynomial of ρ1(ψ) decomposes into the product of the minimal polynomials
of the different ξr, where r|m and ξ is a m-th. primitive root of unity. By
[33], Satz 12.3.1., we have a decomposition of H1(C, Q) into subvector spaces
N1(Cr, Q) such that the Q-vector space automorphism ρ1(ψ)|N1(Cr,Q) is (up
to conjugation) given by a matrix

⎛
⎜⎝

M 0
. . .

0 M

⎞
⎟⎠ ,

where M is the k × k matrix given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 −p0

1 0 . . . 0 −p1

0 1
. . . 0 −p2

...
. . . . . .

...
0 . . . 0 1 −pk−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where xk +pk−1x
k−1+. . .+p1x+p0 is the minimal polynomial of ξr.1 We call

a Q-vector space with such an automorphism of the form diag(M, . . . , M) a
Q(ξr)-structure. By ξr ·v := g(v), this defines a scalar multiplication of Q(ξr),
which turns N1(Cr, Q) into a Q(ξr)-vector space. We obtain:

1 In the next section we will see that there is a correspondence between the covers Cr and
the subvector spaces N1(Cr, Q), which justifies this notation.
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Proposition 4.1.1. The direct sum decomposition

H1(C, Q) =
⊕
r|m

N1(Cr, Q)

is a direct sum of Q(ξr)-structures.

Next we consider the trace map

tr : H1
j (C, Q(ξ)) → H1(C, Q) given by v →

∑
γ∈Gal(Q(ξ);Q)

γv,

which will be one of our main tools in this chapter. By the Galois group action,
the vector space N1(Cr, Q(ξr)) decomposes into eigenspaces H1

j (C, Q(ξr)))
such that

H1
j (C, Q(ξ)) = H1

j (C, Q(ξr)) ⊗Q(ξr) Q(ξ).

Lemma 4.1.2. Let r|m and r = gcd(j,m). Then tr|H1
j (C,Q(ξr)) is a

monomorphism.

Proof. Let f ∈ H1
j (C, Q(ξr)) \ {0}. We need some Galois theory. By the fact

that Q(ξr) is a Galois extension of Q, the group Γr := Aut(Q(ξ); Q(ξr)) is
a normal subgroup of (Z/(m))∗ ∼= Γ := Gal(Q(ξ); Q), which is the kernel
of the epimorphism Γ → Gal(Q(ξr); Q) given by γ → γ|Q(ξr) for all γ ∈
Gal(Q(ξ); Q). Hence we obtain that

tr(f) =
∑

γ∈Gal(Q(ξ);Q)

γf =
∑

[γ]∈Γ/Γr

[γ]
∑
γ∈Γr

γf =
∑

γ∈Gal(Q(ξr);Q)

γ|Γr|f.

Since ψ acts by an integral matrix, one has γ ◦ ψ = ψ ◦ γ for all γ ∈ Γ. This
implies that

γ(ξr)γ(f) = γ(ξrf) = (γ ◦ ψ)(f) = ψ(γf). (4.2)

Thus γ(f) ∈ H1
j0j(C, Q(ξ)), where j0 ∈ (Z/(m))∗ corresponds to γ. By the

fact that we have a direct sum of eigenspaces, we conclude that

tr(f) =
∑

γ∈Gal(Q(ξr);Q)

γ|Γr|f �= 0.

��

Now we consider the restriction of the trace map to

R :=
⊕
r|m

H1
r (C, Q(ξr)).
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Proposition 4.1.3. The trace map tr|R : R → H1(C, Q) is an isomorphism
of Q-vector spaces.

Proof. Let
v :=

∑
r|m

vr ∈ R

with vr ∈ H1
r (C, Q(ξr)). By the proof of the preceding lemma, we know that

tr(vr) =
∑

γ∈Gal(Q(ξr);Q)

γ|Γr|vr ∈
⊕

j∈(Z/( m
r ))∗

H1
j (C, Q(ξ)).

These ξjr with j ∈ (Z/(m
r ))∗ are exactly the m

r -th. primitive roots of unity.
Thus they are the elements with order m

r in the multiplicative group gen-
erated by ξ. Hence by the fact that we have a direct sum of eigenspaces,
we conclude that tr(v) = 0 implies that tr(vr) = 0 for all r with r|m. By
the preceding lemma, this implies that vr = 0 for all r with r|m. Hence
v = 0. Thus the map tr|R is injective, and we have only to verify that
dimQ(R) = dimQ(H1(C, Q)):

dimQ R =
∑
r|m

dimQ(ξ)(H1
r (C, Q(ξ))) · [Q(ξr); Q]

=
∑
r|m

dimQ(ξ)(H1
r (C, Q(ξ))) · �{primitive

m

r
-th. roots of unity}

=
m−1∑
j=1

dimQ(ξ)(H1
j (C, Q(ξ))) = dimQ(ξ)(H1(C, Q(ξ))) = dimQ(H1(C, Q))

��
Remark 4.1.4. We know that the monodromy representation fixes
H1(C, Q) and each H1

j (C, Q(ξ)). By the fact that

N1(Cr, Q) = N1(Cr, Q(ξ)) ∩ H1(C, Q),

we conclude that the monodromy representation fixes N1(Cr, Q)), too.

Proposition 4.1.5. The monodromy representation ρ on N1(Cr, Q) is
given by

ρ(ω) =

⎛
⎜⎝

γ1Mω

. . .
γkMω

⎞
⎟⎠ ,

where Mω denotes the image of ω in the monodromy of H1
r (C, Q(ξr)), and

{γ1, . . . , γk} = Gal(Q(ξr); Q).
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Proof. Since ρ(γ) fixes the eigenspaces, it acts by diag(M1, . . . ,Mk), where
each M	 with 1 ≤ � ≤ k describes the action of ρ(ω) on γ	H

1
r (C, Q(ξr)). Let

jγ ∈ (Z/(m
r ))∗ and γ correspond. The description of the M1, . . . ,Mk follows

from the facts that each ρ(ω) commutes with each γ ∈ Gal(Q(ξr); Q), and
that γH1

r (C, Q(ξr)) = H1
rjγ

(C, Q(ξr)) (see (4.2)) for all γ ∈ Gal(Q(ξr); Q). ��

Now let Nω denote the restriction of ρ(ω) on N1(Cr, Q) and v ∈ N1(Cr, Q)
given by v = tr(w) for some w ∈ H1

r (C, Q(ξr)). By the preceding proposition,
we have:

Nω(v) = Nω([Q(ξ); Q(ξr)]
∑

γ∈Gal(Q(ξr);Q)

γw) = [Q(ξ); Q(ξr)]
k∑

i=1

γiMω(γi(w))

= [Q(ξ); Q(ξr)]
k∑

i=1

γi(Mω(w)) = tr(Mω(w))

The trace map H1
r (C, Q(ξr)) → N1(Cr, Q) is an isomorphism of Q(ξr)-vector

spaces with respect to the Q(ξr) structure on N1(Cr, Q). Thus one has:

Proposition 4.1.6. The monodromy representation on N1(Cr, Q) is a rep-
resentation on a Q(ξr)-vector space given by the Q(ξr) structure, which
coincides up to the trace map with the monodromy representation on
H1

r (C, Q(ξr)).

We will need a decomposition of H1(C, R) into a direct sum of certain sub-
vector spaces fixed by the Galois group representation. This decomposition
is defined over

Q(ξj)+ = Q(ξj) ∩ R

and given by the sub-vector spaces

�V(j) := (H1
j (C, Q(ξ)) ⊕ H1

m−j(C, Q(ξ))) ∩ H1(C, Q(ξj)+).

Since the monodromy representation fixes

H1
j (C, Q(ξ)), H1

m−j(C, Q(ξ)) and H1(C, Q(ξj)+),

it fixes �V(j), too.

Remark 4.1.7. One has that tr : H1
j (C, Q(ξj)) → N1(Cj , Q) coincides with

the composition

H1
j (C, Q(ξj)) tr→ �V(j) tr→ N1(Cj , Q).

Hence the latter trace map �V(j) tr→ N1(Cj , Q) induces a Q(ξj)+-
structure on N1(Cj , Q), which is compatible with the Q(ξj)-structure via
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Q(ξj)+ ↪→ Q(ξj). Thus by the preceding results about the monodromy rep-
resentation on N1(Cj , Q), the monodromy representation on N1(Cj , Q) is a
Q(ξj)+-vector space representation with respect to the Q(ξj)+-structure.

Remark 4.1.8. In the case of H1
m
2
(C, Q(ξ

m
2 )) one gets that Q(ξ

m
2 ) =

Q(−1) = Q. In other terms: The monodromy group on H1
m
2
(C, Q(ξ

m
2 )) is

the monodromy group on the rational vector space N1(Cm
2
, Q).

4.2 Quotients of covers and Hodge group
decomposition

In this section we consider our quotient families πr : Cr → Pn of covers, and
their Hodge groups. Moreover we will explain the notation N1(Cr, Q) and
show that the decomposition of H1(C, Q) into these Q(ξr) structures is a
decomposition into rational sub-Hodge structures. Recall that Cr is given by a
quotient of the subgroup of order r of the Galois group of C (see Construction
3.2.1).

Let C and Cr denote a fiber of C and the corresponding fiber of Cr over
the same point. The natural cover φr : C → Cr induces an embedding of
Hodge structures, which gives a direct sum decomposition of H1(C, Q) into
two rational sub-Hodge structures (see [61], 7.3.2 and [61], Lemme 7.26).

The Hodge structure on H1(Cr, Q) is the sub-Hodge structure of H1(C, Q)
fixed by Gal(φr). Hence the eigenspaces of H1(Cr, C) with respect to the
Galois group πr can be identified with the eigenspaces of H1(C, C), on which
Gal(φr) acts trivial. Thus one obtains

H1(Cr, C) =

m
r −1⊕
j=1

H1
jr(C, C) ↪→

m−1⊕
j=1

H1
j (C, C) = H1(C, C).

Recall that every eigenspace Lj of R1π∗(C) is a local system. We consider
the eigenspace (Lj)Cr

of R1(πr)∗(C) with the character j and the eigenspace
Ljr of R1π∗(C). Proposition 2.2.11 tells us that the local monodromy data
of (Lj)Cr

and Lrj coincide. By Proposition 3.3.5, these monodromy data
determine the dual monodromy representations of the eigenspaces of the dual
V HS given by the homology. Thus we obtain:

Proposition 4.2.1. The local systems (Lj)Cr
and Ljr coincide.

The following statements will explain the notation “N1(Cr, Q)”. One has
that

N1(Cr, Q) ⊗Q C =
⊕

j∈(Z/ m
r )∗

H1
jr(C, C).
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Since each H1
jr(C, C) ⊂ N1(Cr, C) has a decomposition into

H1,0
j (Cr) ⊕ H0,1

j (Cr), where H1
j (Cr, C) = H1

m−j(Cr, C) ⊂ N1(Cr, C),

each N1(Cr, Q) is a rational sub-Hodge structure of H1(C, Q). Moreover
each N1(Cr, Q) is the maximal sub-Hodge structure of H1(Cr, Q), which is
orthogonal (with respect to the polarization) to each sub-Hodge structure of
H1(Cr, Q) given by a quotient H1(Cr′ , Q) with r < r′ < m, r|r′ and r′|m.
By using Lemma 2.4.1, we have the result:

Proposition 4.2.2. We have a decomposition

H1(C, Q) =
⊕
r|m

N1(Cr, Q)

into rational Hodge structures and a natural embedding

Hg(C) ↪→
∏
r|m

Hg(N1(Cr, Q))

such that the natural projections

Hg(C) → Hg(N1(Cr, Q))

are surjective for all r.

Remark 4.2.3. Note that the preceding section yields a corresponding
statement about the Zariski closures of the monodromy group of R1π∗(Q)
and the restricted representations monodromy representations on the differ-
ent N1(Cr, Q). These two facts will play a very important role.

4.3 Upper bounds for the Mumford-Tate groups
of the direct summands

The different N1(Cr, Q) on the fibers induce a decomposition of R1π∗(Q)
into a direct sum of local systems N 1(Cr, Q). Now we consider the induced
variations Vr of rational Hodge structures on the local systems N 1(Cr, Q).
Let Qr denote the alternating form on N1(Cr, Q) obtained by the restriction
of the intersection form Q of the curve C. One has that each element of
ρ(π1(Pn)) commutes with the Galois group. The same holds true for the
image of the homomorphism

h : S → GSp(H1(C, R), Q)
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corresponding to the Hodge structure of an arbitrary fiber. Since the Galois
group respects the intersection form, its representation on N1(Cr, Q) is con-
tained in Sp(N1(Cr, Q), Qr). Let Cr(ψ) denote the centralizer of the Galois
group in Sp(N1(Cr, Q), Qr) and GCr(ψ) denote the centralizer of the
Galois group in GSp(N1(Cr, Q), Qr). One concludes:

Proposition 4.3.1. The centralizer GCr(ψ) contains the generic Mumford-
Tate group MT(Vr). Moreover the centralizer Cr(ψ) contains the generic
Hodge group Hg(Vr) and Mon0(Vr).

We write
C(ψ) :=

∏
r|m

Cr(ψ).

Remark 4.3.2. If r �= m
2 , the preceding proposition yields some infor-

mation. In the case r = m
2 the elements of the Galois group act as the

multiplication with 1 or −1 on N1(Cm
2
, Q). Since id resp., −id is contained

in the center of Sp(N1(Cm
2
, Q), Qm

2
), this proposition does not give any new

information in this case.

Now let us assume that r �= m
2 . We describe Cr(ψ) by its R-valued points.

Let ξj be a m
r -th. primitive root of unity such that H1

j (C, C) ⊂ N1(Cr, C),
v ∈ H1

j (C, C) and M ∈ Cr(ψ)(R). Then one gets

ψM(v) = M(ψv) = M(ξjv) = ξjM(v).

Thus M leaves each H1
j (C, C) invariant.

For our description of Cr(ψ) we introduce the trace map

tr : GL(H1
j (C, C)) → GL(�V(j)R)

given by

GL(H1
j (C, C)) � N → N × N̄ ∈ GL(H1

j (C, C)) × GL(H1
m−j(C, C)), (4.3)

where N̄ denotes the matrix, which satisfies that N̄ v̄ = Nv for all v ∈
H1

j (C, C). Recall that we have a fixed complex structure. Thus one checks
easily that N × N̄ leaves �V(j)R invariant. Hence we consider it as a real
matrix.

For the Hermitian form H(·, ·) := iE(·, ·̄) and v, w ∈ H1
j (C, C) one obtains

H(v, w) = iE(v, w̄) = iE(Mv,Mw̄) = iE(Mv,Mw) = H(Mv,Mw).

Thus the matrix M |
V(j)R
is contained in tr(U(H1

j (C, C),H|H1
m−j(C,C))).



4.3 Upper bounds for the Mumford-Tate groups of the direct summands 87

Assume conversely that M ∈ GL(N1(Cr, C)) satisfies that

M |
V(j)R
∈ tr(U(H1

j (C, C),H|H1
j (C,C)))

for each m
r -th. primitive root of unity ξj . Since M fixes all H1

j (C, C) ⊂
N1(Cr, C), it commutes with the Galois group representation on N1(Cr, R).
Now let N ∈ GL(H1

j (C, C)) be the matrix with tr(N) = M |
V(j)R
. One has

that
iE(v, w̄) = iE(Nv,Nw) ⇔ E(v, w̄) = E(Nv,Nw)

for all v, w ∈ H1
j (C, C). By the fact that E is an alternating form, one gets

E(v̄, w) = E(Nv,Nw),

too. The elements of �V(j)C are given by v1 + v̄2 and w1 + w̄2 with

v1, v2, w1, w2 ∈ H1
j (C, C).

Thus one concludes that

E(v1 + v̄2, w1 + w̄2) = E(v1, w̄2) + E(v̄2, w1) = E(Nv1, Nw2) + E(Nv2, Nw1)
= E(Mv1,Mw̄2) + E(Mv̄2,Mw1) = E(M(v1 + v̄2),M(w1 + w̄2)).

Hence M is contained in the symplectic group. Altogether we conclude:

Theorem 4.3.3. If r �= m
2 , the group Lie Cr(ψ)(R) is isomorphic to the

direct product of the Lie groups given by the R-valued points of the unitary
groups over �V(j)R ⊂ N1(Cr, R) induced by the trace maps and the unitary
groups U(H1

j (C, C),H|H1
j (C,C)).

Recall the definition of the type (a, b) of an eigenspace Lj in Remark 3.2.5.
If there is an eigenspace of N1(Cr, C) of type (a, b) with a > 0 and b > 0,
we call N1(Cr, Q) general. Otherwise we call it special. Now assume that
N1(Cr, Q) is special. In this case h(S) is contained in the center of GCr(ψ)R,
and h(S1) is contained in the center of Cr(ψ)R. Thus one concludes:

Remark 4.3.4. Assume that N1(Cr, Q) is special. Then the center
Z(GCr(ψ)) of GCr(ψ) contains MT(Vr). Moreover the center Z(Cr(ψ))
of Cr(ψ) contains Hg(Vr).

Remark 4.3.5. One has that Cr(ψ)R consists of U(s)t for some s, t ∈ N0,
if N1(Cr, Q) is special. Thus in this case the monodromy group is a discrete
sub-group of the compact group U(s)t. Hence it is finite and Mon0(Vr) is
trivial in this case.
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4.4 A criterion for complex multiplication

In this short section we find a sufficient condition for the existence of a dense
set of CM fibers of a family of cyclic covers. By technical reasons, we do not
consider the family C → Pn, but a family over the space Mn, which can be
considered as the quotient

Mn = Pn/PGL2(C).

One has an embedding ιa,b,c : Mn → Pn, too. Its image is the subspace of
Pn, which parametrizes the maps φ : N → P

1 satisfying φ(a) = 0, φ(b) = 1
and φ(c) = ∞ for some fixed a, b, c ∈ N (compare to [18], 3.7).

Remark 4.4.1. One can move 3 arbitrary branch points of a fiber of
C → Pn to 0, 1 and ∞. Hence one has that all fibers of the geometric points
of Pn occur as fibers of the restricted family CMn

→ Mn, too. Hence the
generic Hodge groups and the generic Mumford-Tate groups of the both fam-
ilies coincide.

4.4.2. Each curve C with g(C) > 1 has at most 84(g−1) automorphisms (see
[26], IV. Exercise 2.5). Thus C can have only finitely many cyclic covering
maps onto P

1 with different Galois groups. Moreover, there is an automor-
phism α of P

1, if the Galois groups of the covers of Cp1 and Cp2 can be
conjugate by an isomorphism ι such that the following diagram commutes:

Cp1
ι ��

��

Cp2

��
P

1 α ��
P

1

Thus C occurs only as finitely many fibers of CMn
, if g(C) ≥ 2.

Recall that we have defined the type of an eigenspace Lj in Remark 3.2.5.

Definition 4.4.3. A family π : C → Pn of cyclic covers has a pure (1, n) −
V HS, if it has its V HS only one eigenspace Lj of type (1, n) such that Lm−j

is of type (n, 1), and all other eigenspaces are of type (a, 0) or of type (0, b)
for some a, b ∈ N0.

Theorem 4.4.4. Let CMn
→ Mn be a family of cyclic covers of P

1 and C
be a fiber with g(C) ≥ 2 as before. Assume that C has a pure (1, n) − V HS.
Then the family CMn

→ Mn has a dense set of complex multiplication fibers.

Proof. We have to show that over an arbitrary open simply connected subset
W of Mn(C) there are infinitely many CM points of the V HS of CMn

. Let
q0 ∈ W and Lj be the eigenspace of type (1, n). We have a trivialization
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R1π∗(C)|W = H1(Cq0 , C) × W such that Lj |W ∼= H1
j (Cq0 , C) × W.

Let q ∈ W and �
(j)
q ∈ H1,0

j (Cq)\{0}. By the holomorphic V HS of the family,
one obtains a holomorphic “fractional period” map

p : W → P(H1
j (Cq0 , C)) via q → [�(j)

q ].

By the assumptions, the integral Hodge structure depends uniquely on the
class [�(j)

q ] ∈ P(H1
j (Cq0 , C)). Since for each fiber there are only finitely many

isomorphic fibers (see 4.4.2) and two curves have isomorphic polarized inte-
gral Hodge structures, if and only if they are isomorphic, the fibers of p have
the dimension 0. Thus [49], Chapter VII. Proposition 4 and the fact that

dim W = dim P(H1
j (Cq0 , C))

tell us that p is open.
The natural embedding C(ψ) ↪→ GL(H1(Cq0 , C)) induces a holomorphic

variation of Hodge structures over the bounded symmetric domain associated
with C(ψ)(R)/K (see Theorem 1.4.11). This V HS depends uniquely on the
fractional V HS on the eigenspace H1

j (Cq0 , C) of type (1, n). Hence this V HS
yields a holomorphic injection

ϕ : C(ψ)(R)/K → P(H1
j (Cq0 , C)).

Recall that that homogeneous space C(ψ)(R)/K parametrizes the integral
Hodge structures of type (1, 0), (0, 1) on H1(Cq0 , C), whose Hodge group is
contained in C(ψ). Hence altogether the map ϕ−1 ◦ p, which assigns to each
fiber Cq its integral Hodge structure, is open. Since the set of CM points on
C(ψ)(R)/K is dense (see Theorem 1.7.2), this yields the desired statement.

��



Chapter 5
The computation of the Hodge group

Recall that Pn is the configuration space of n + 3 points and Mn =
Pn/PGL2(C). In this chapter we try to compute the derived group Hgder(V)
of the generic Hodge group of a family C → Pn by using Mon0(V). We will
get many information and for infinitely many examples we will obtain

MTder(V) = Hgder(V) = Mon0(V) = Cder(ψ).

Our motivation is to try to prove that the criterion of Theorem 4.4.4
given by the existence of a pure (1, n) − V HS is also necessary under some
additional assumptions. Finally we will see that a family C → M1 induces
an open period map

p : M1(C) → MTad(V)/K,

if and only if it has a pure (1, 1) − V HS.
In Section 5.1 we show that for all eigenspaces Lj of type (p, q) with p, q > 0

the group Mon0
R(�V (j)) is given by the unitary group of the Hermitian form

on Lj with respect to the polarization, if j �= m
2 or Lj is of type (1, 1).

We make some general observations about Mon0(Vr) in Section 5.2. Since
Mon0(Vr) ⊂ Cder

r (ψ), the latter group is an upper bound of Mon0(Vr). For
Mon0(Vr) we give a sufficient criterion of the reaching of this upper bound
in Section 5.3. In Section 5.4 we consider the exceptional cases, which do not
satisfy this sufficient criterion. We see that Mon0

R
(Vr) is a proper subgroup

of Cder
r (ψ)R in some of these cases. For completeness we show that Hg(V) ∼=

SpQ(2g) in the case of an universal family of hyperelliptic curves of genus
g in Section 5.5. In Section 5.6 we collect the previous results and consider
Mon0(V). W! e finish this section with the proof of the result that a family
C → M1 induces an open period map

p : M1(C) → MTad(V)/K,

if and only if it has a pure (1, 1) − V HS.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 91
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5 6,
c© Springer-Verlag Berlin Heidelberg 2009
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5.1 The monodromy group of an eigenspace

Let j ∈ {1, . . . , m − 1}. Then we have an eigenspace Lj in the variation of
Hodge structures of a family C → Pn of cyclic degree m covers of P

1. There are
p, q ∈ N0 such that the eigenspace H1

j (C, C) of an arbitrary fiber C is of type
(p, q), where (p, q) is the signature of the restricted polarization of the latter
eigenspace. The type of Lj is given by the type of H1

j (C, C). The embedding
R ↪→ C allows to consider H1

j (C, C) as R-vector space. Let Mon0(Lj) denote
the identity component of the Zariski closure of the monodromy group of Lj

in GLR(H1
j (C, C)).

We show in this section:

Theorem 5.1.1. Let Lj be of type (p, q) with p, q ≥ 1. Moreover assume
that j �= m

2 or p = q = 1. Then

Mon0(Lj) = SU(p, q).

If p = 0 or q = 0, the statement of the preceding theorem does not hold
true in general as one can conclude by Remark 4.3.5.

We give a proof of Theorem 5.1.1 by induction over the integer given by
p + q.

By the following lemma, we start the proof of Theorem 5.1.1:

Lemma 5.1.2. If Lj is of type (1, 1), its monodromy group contains in-
finitely many elements.

Proof. There are two cases: In the first case there are some local monodromy
data α1 and α2 of the eigenspace Lj in (πq)∗(CC)|P1\Sj

for the fiber C := Cq

of some arbitrary q ∈ Pn such that α1α2 = 1. In this case the Dehn twist
T1,2 yields a unipotent triangular matrix (follows by Proposition 3.3.5) and
we are done.

Otherwise each Dehn twist Tk,	 provides a semisimple matrix, where its
eigenvalues are given by 1 and a m-th. root of unity. Note that the matrices
induced by the Dehn twists T1,2 and T2,3 do not commute. In the considered
case {a1, a2}, {a3, a4} is a stable partition. Hence one can choose the basis
B = {[e1γ1], [e3γ3]} of Hj

1(C, C). By the fact that these two cycles do not
intersect each other, this basis is orthogonal with respect to the Hermitian
form induced by the intersection form. Hence by normalization, this basis
is orthonormal with respect to the Hermitian form such that the Hermitian
form is without loss of generality given by diag(1,−1) with respect to B. The
matrix induced by T1,2 is given by diag(ξ, 1) with respect to B, where ξ is a
m-th. root of unity. Since the matrix A of T2,3 with respect to B does not
commute with diag(ξ, 1), it is not a diagonal matrix. Now we compute the
commutator

K = A · diag(ξ, 1) · A−1 · diag(ξ̄, 1).
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Since the monodromy representation respects the Hermitian form on the
eigenspace, one can replace A by a non-diagonal matrix in SU(1, 1) and the
matrix diag(ξ, 1) by diag(e, ē) ∈ SU(1, 1), where e2 = ξ, for the computation
of K. By [54], page 59, one has a description of the matrices in SU(1, 1)(R)
such that

K =
(

a b
b̄ ā

)
diag(e, ē)

(
ā −b
−b̄ a

)
diag(ē, e) =

(
aā − e−2bb̄ ab − e2ab
āb̄ − e−2āb̄ aā − e2bb̄

)
.

Hence

tr(K) − 2 = 2aā − 2�(e2)bb̄ − 2 = 2aā − 2�(e2)bb̄ − aā + bb̄ − 1

≥ (aā − |�(e2)|bb̄) + (bb̄ − |�(e2)|bb̄) − 1 ≥ aā − |�(e2)|bb̄ − 1 ≥ 0.

If the eigenvalues of K would be roots of unity (if it is not unipotent), one
would have |tr(K)| < 2. Hence by the fact that tr(K) ≥ 2, one concludes
that K is unipotent or has eigenvalues v with |v| �= 1. In both cases K has
infinite order. ��

For the proof of Theorem 5.1.1 we need to recall some facts about complex
simple Lie algebras. The complex simple Lie algebra sln(C) will be very
important:

Remark 5.1.3. The Lie algebra sln(C) is given by

sln(C) = {M ∈ Mn×n(C) : tr(M) = 0}.

The Cartan subalgebra of sln(C) is given by

h = {diag(a1, . . . , an) :
n∑

i=1

ai = 0}.

Each root space is given by the matrices (ai,j), which have exactly one entry
ai0,j0 �= 0 for a fixed pair (i0, j0) with i0 �= j0.

We want to show a statement about unitary groups, and not about special
linear groups. The fact, which makes sln(C) interesting for us, is given by the
following remark:

Remark 5.1.4. We can obviously embed sup,q(R) into slp+q(C), since
SU(p, q)(R) is a Lie subgroup of SLp+q(C). Moreover isup,q(R) is a subvector
space of slp+q(C) (considered as real vector space). One has that

sup,q(C) = sup,q(R) ⊕ isup,q(R) = slp+q(C).

(see [21], page 433).



94 5 The computation of the Hodge group

Moreover we need to compare the monodromy group of Lj with the
monodromy groups of some of its restrictions over certain subspaces of Pn.

Remark 5.1.5. Consider some embedding ιa,b,c : Mn ↪→ Pn. By the holo-
morphic diffeomorphism

PGL2(C) × ιa,b,c(Mn)(C) � M × q → M(q) ∈ Pn(C),

we have that

PGL2(C) ×Mn
∼= Pn and π1(PGL2(C)) × π1(Mn) ∼= π1(Pn),

where π1(PGL2(C)) ∼= Z/(2) (compare [18], 3.7 and [18], 3.15).

For technical reasons, we need to introduce an additional subspace of Pn:

P(ak)
n = {q ∈ Pn|φq(ak) = ∞}

Let GT denote the group of triangular matrices given by

GT = {
(

a 0
b 1

)
∈ M2×2(C)|a �= 0}.

We have obviously an embedding ιa,b,c : Mn ↪→ P(an+3)
n such that we get a

holomorphic diffeomorphism

GT × ιa,b,c(Mn)(C) � M × q → M(q) ∈ P(an+3)
n (C).

Hence we have that

GT ×Mn
∼= P(an+3)

n and π1(GT ) × π1(Mn) ∼= π1(P(an+3)
n ),

where π1(GT ) ∼= Z/(2).
The space P(an+3)

n has a natural interpretation as configuration space of
n+2 points on R

2. Its fundamental group is the colored braid group on n+2
strands in R

2.

Lemma 5.1.6. The fundamental group of the configuration space of n + 2
points on R

2 is generated by the Dehn twists Tk1,k2 with 1 ≤ k1 < k2 ≤ n+2.

Proof. (see [24], Chapter I. 4) ��

5.1.7. By the preceding results, the monodromy groups of Lj , (Lj)Mn
and

(Lj)P(an+3)
n

are commensurable. Therefore their R-Zariski closures have the
same connected component of identity. Thus we do not need to distinguish
between them and we will call all of them simply Mon0(Lj).
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Again assume that Lj is of type (1, 1). By Lemma 5.1.6, the monodromy
group ρj(π1(P(a4)

1 )) of (Lj)P(a4)
1

is generated by the matrices ρj(Tk,	) for
k, � ∈ {1, 2, 3}. For each Dehn twist T one can choose a suitable numbering
of the branch points such that T = T1,2. Hence by Proposition 3.3.5, one
concludes that the generators of the monodromy group are contained in the
group given by

{M ∈ GL2(C)|det(M)m = 1}.

Since Mon0(Lj) is contained in U(1, 1), one concludes that Mon0(Lj) ⊆
SU(1, 1). Thus the complexification of the Lie algebra of Mon0(Lj) is con-
tained in sl2(C). Note that the real Zariski closure Mon0(�V(j)R) is iso-
morphic to Mon0(Lj) and Mon0(�V(j)R) is a quotient of the semisimple
group Mon0

R(Vr). Thus by the kernel, which is semisimple, we have an exact
sequence of algebraic groups. This yields an exact sequence of semisim-
ple Lie algebras such that Mon0(Lj) must be semisimple. One has that
Mon0

C(Lj) ⊆ SUC(1, 1). Since su1,1(C) = sl2(C) is the smallest semisim-
ple non-trivial complex Lie algebra (see [21], §14.1, Step 3) and Mon0(Lj) is
infinite by Lemma 5.1.2, one concludes:

Proposition 5.1.8. If Lj is of type (1, 1), then Mon0(Lj) = SU(1, 1).

Recall that we want to give a proof of Theorem 5.1.1 by induction. The fol-
lowing construction explains our method to compare the monodromy groups
of eigenspaces of different type, which we will need for the induction:

Construction 5.1.9 (Collision of points). Let Lj be an eigenspace in
the cohomology of a fiber C = Cq with the local monodromy data αk on ak.
Now let

b := {anj+2, anj+3} and P = {{a1}, . . . , {anj+1}, b}

be a stable partition of N = {a1, . . . , anj+3}. Let φP : P → P
1 be some em-

bedding and the local system L(P )j on P
1\φP (P ) have the local monodromy

data
αb = αanj+2αanj+3 and otherwise α{ak} = αak

.

By Construction 3.2.1, these monodromy data allow the construction of a
family of cyclic covers

π(P ) : C(P ) → Pnj−1.

The higher direct image sheaf R1π(P )∗(C) has an eigenspace with respect
to the character given by 1, which we denote by L(P )j .1 By the description
of the respective monodromy representations in Proposition 3.3.5, we can

1 This definition may seem to be a little bit odd. But it is motivated by some reasons,
which should become clearer by Remark 5.1.10.
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identify the monodromy group of (L(P )j)P(b)
nj−1

with the subgroup of the

monodromy group of (Lj)P(an3 )
n

generated by the Dehn twists Tak1 ,ak2
with

k1, k2 ≤ nj + 1.

Remark 5.1.10. The local system L(P )j is in general not the j-th.
eigenspace of a family of irreducible covers of degree m obtained by a
collision of two branch points of a family of irreducible covers of degree m.
The problem is given by the irreducibility of the resulting family obtained by
collision. Take for example the family C → P2 with generic fibers given by

y4 = (x − a1)(x − a2)(x − a3)2 · . . . · (x − a5)2.

By the collision of a1 and a2, one does not obtain an irreducible family of
degree 4 covers. But the resulting local system L(P )1 is the eigenspace with
respect to the character 1 on the higher direct image sheaf of the family
C(P ) → P1 with generic fibers given by

y2 = (x − a1) · . . . · (x − a4).

Now let Lj be of type (p, q) with p, q > 0. By the collision of two points
and Proposition 2.3.4, one gets an eigenspace of type (p, q − 1) or of type
(p − 1, q), if there is a suitable corresponding stable partition. A little bit
later we will see that this construction yields an induction step such that the
statement of Theorem 5.1.1 for local systems of type (p, q−1) (if p, q−1 ≥ 1)
and of type (p− 1, q) (if p− 1, q ≥ 1) implies the statement of Theorem 5.1.1
for local systems of type (p, q).

For the application of the step of induction we will need a pair of stable
partitions such that the resulting two eigenspaces satisfy the assumptions
of Theorem 5.1.1. Moreover one can assume that for each fiber Sj contains
at least 5 different points. Otherwise Lj is of type (1, 1) or unitary. By the
following technical lemma, we start to show that there exists a suitable pair
of stable partitions, if the assumptions of Theorem 5.1.1 are satisfied and if
Sj contains at least 5 points:

Lemma 5.1.11. Assume that j �= m
2 . Then there is an ak ∈ Sj with μk �= 1

2 .

Proof. Assume that all ak ∈ Sj satisfy μk = 1
2 and j �= m

2 . One has that Cr

(with r = gcd(m, j)) is a family of irreducible cyclic covers of P
1 of degree

m
r > 2 given by μ1, . . . , μn+3 in the sense of Construction 3.2.1. By the
assumption that all ak ∈ Sj satisfy μk = 1

2 , each branch point has the same
branch index m

2r , which divides the degree m
r . Since we assume that j �= m

2 ,
one concludes that the branch indices given by m

2r are not 1. Thus Cr is not
a family of irreducible cyclic covers. Contradiction! ��
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Next we show that a μk �= 1
2 yields two stable partitions:

Lemma 5.1.12. Assume that Sj contains at least 5 different points such
that there is an ak ∈ Sj with μk �= 1

2 . Then there are some pairwise different
μh, μi, μs, μt ∈ Sj such that

μh + μi �= 1, and μs + μt �= 1.

Proof. Assume that each pair h, i′ ∈ {1, . . . , n + 3} with h �= i′ satisfies
μh + μi′ = 1. This implies that μh = μi′ = 1

2 for each pair h, i′. But this
contradicts the assumptions of this lemma. Hence by the assumptions, there
must be a pair (h, i′) such that μh + μi′ �= 1.

Now consider S′
j := Sj \ {ah, ai′}. Let us assume that each pair as′ , at′ ∈

S′
j with s′ �= t′ satisfies μs′ + μt′ = 1. Since |S′

j | ≥ 3, one concludes that
μs′ = μt′ = 1

2 . Since μh = 1
2 or μi′ = 1

2 would contradict the assumptions in
this case, one concludes that μh, μi′ �= 1

2 . Hence put i := s′, s := i′, t := t′,
and we are done in this case.

If there are as′ , at′ ∈ S′
j with s′ �= t′ and μs′ + μt′ �= 1, we put i := i′,

s := s′, t := t′, and we are done. ��

By Lemma 5.1.11 and Lemma 5.1.12, one concludes immediately:

Corollary 5.1.13. Assume that Sj contains at least 5 different points and
j �= m

2 . Then there are some pairwise different μh, μi, μs, μt ∈ Sj such that

μh + μi �= 1, and μs + μt �= 1.

Remark 5.1.14. The condition that

μh + μi �= 1, and μs + μt �= 1

implies that

(μh �= 1
2

or μi �=
1
2
) and (μs �= 1

2
or μt �=

1
2
).

Therefore the resulting eigenspace obtained by the collision of ah and ai resp.,
as and at satisfies that there is a local monodromy datum μk �= 1

2 . Hence
the resulting eigenspace is not a middle part Lm

2
of the V HS of the family

obtained by the respective collision of two points. It remains to ensure that
the resulting eigenspaces are not of type (a, 0) resp., (0, b) in order to satisfy
the assumptions of Theorem 5.1.1 in this case.

5.1.15. Assume that Lj is of type (1, n) with n > 1. By Proposition 2.3.4,
one calculates that

n+3∑
i=1

μi = 2
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in this case. One can choose the indices such that

μ1 ≤ . . . ≤ μn+3.

Hence one has
μ1 + μ3 ≤ μ2 + μ4 ≤ μ3 + μ5.

By the fact that

(μ2 + μ4) + (μ3 + μ5) < 2 and μ2 + μ4 ≤ 1
2
((μ2 + μ4) + (μ3 + μ5)),

one has
μ1 + μ3 ≤ μ2 + μ4 < 1.

Since the local systems with respect to the corresponding stable partitions of
the collision of a1 and a3 resp., the collision of a2 and a4 are of type (1, n−1) as
one can calculate by Proposition 2.3.4, one can apply the induction hypothesis
for these partitions.

Now let Lj be of type (n, 1). Then the monodromy representation of Lj is
the complex conjugate of the monodromy representation of Lm−j , which is of
type (1, n) in this case. Hence first the induction step yields the statement for
all Lj of type (1, n). Then we have the statement for all Lj of type (n, 1), too.

Assume that Lj is of type (p, q) with p, q ≥ 2 and satisfies the assumptions
of Theorem 5.1.1. By Corollary 5.1.13, one has a pair of stable partitions.
Remark 5.1.14 and the fact that p, q ≥ 2 imply that the corresponding
eigenspaces satisfy the assumptions of Theorem 5.1.1, too.

Now we must only prove and explain the step of induction:
One has without loss of generality the stable partitions

P1 = {{a1}, . . . , {an+1}, {an+2, an+3}}, and P2 = {{a1, a2}, {a3}, . . . , {an+3}}.

Here we assume without loss of generality that ak ∈ R and ak < ak+1 such
that δk is the oriented path from ak to ak+1 given by the straight line.

Let q ∈ Pn. We consider the monodromy representation with respect to
the basis B of (Lj)q given by

B = {[e1δ1], . . . , [enδn], [en+2δn+2]}.

One has obviously that Mon0(Lj(P1)) leaves 〈[e1δ1], . . . , [enδn]〉 invariant and
fixes all vectors in 〈[en+2δn+2]〉. Now let U1 be a small open neighborhood of
the identity in Mon0(Lj(P1))(R) such that the “inverse”

log : U1 → Lie(Mon0(Lj(P1)))
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of the exponential map is defined on U1. By Remark 5.1.4 and the induction
hypothesis, log(U1) generates a Lie algebra, whose complexification L1 is with
respect to B given by the matrices

⎛
⎜⎜⎜⎝

a1,1 . . . a1,n 0
...

...
...

an,1 . . . an,n 0
0 . . . 0 0

⎞
⎟⎟⎟⎠ , where N :=

⎛
⎜⎝

a1,1 . . . a1,n

...
...

an,1 . . . an,n

⎞
⎟⎠

is an arbitrary n × n matrix with tr(N) = 0. Note that Mon0(Lj(P2)) fixes
all vectors in 〈[e1δ1]〉 and leaves 〈[e3δ3], . . . , [en+2δn2 ]〉 invariant. Hence in a
similar way log(U2) (e ∈ U2 ⊂ Mon0(Lj(P2))(R)) generates a Lie algebra. Its
complexification L2 is given by the matrices

(
0 v
0 N

)
,

where N is again an arbitrary n × n matrix with tr(N) = 0 and

v = (v1, . . . , vn)

is a vector depending on N . It is easy to see that L1 and L2 generate sln+1(C).
Since Mon0(Lj) is contained in SU(p, q) and sup,q ⊗ C ∼= sln+1(C), the

group Mon0(Lj) is isomorphic to SU(p, q).

5.2 The Hodge group of a general direct summand

The V HS of a family C → Pn has a decomposition into rational subvariations
Vr of Hodge structures, which where introduced in Section 4.3. Recall that
Vr is general, if its monodromy group is infinite. Otherwise we call it special.
Let r �= m

2 , Vr be general and Lj ⊂ Vr in this section. Moreover recall that
Mon0

R(Vr)q denotes the connected component of identity of the Zariski closure
of the monodromy group in GL(((Vr)R)q) for some q ∈ Pn. Since Mon0

R(Vr)q1

and Mon0
R(Vr)q2 are conjugated, we write Mon0

R(Vr) instead of Mon0
R(Vr)q

for simplicity.

Remark 5.2.1. The group Mon0
R(Vr) does not need to be equal to

Mon0(Vr)×QR. It satisfies only Mon0
R(Vr) ⊆ Mon0(Vr)×QR. Hence Mon0

R(Vr)
yields a lower bound for Mon0(Vr). Thus one obtains

Cder
r (ψ) = Hgder(V) = Mon0(Vr),

if Cder
r (ψ)R = Mon0

R(Vr).
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By the preceding section, we know that Mon0
R(Vr) → Mon0(Lj) can be

considered as the projection onto some SU(a, b), if Lj is of type (a, b) with
a, b > 0. Otherwise one can use induction with the corresponding stable
partitions again. We only consider the start of induction:

Assume that Sj = 4. hence one has without loss of generality Cr → P1. By
our assumptions, there is an eigenspace Lj2 in N 1(Cr, C) of type (1, 1), whose
monodromy group is infinite. Since the monodromy group of Lj is conjugated
to the monodromy of Lj2 by some γ ∈ Gal(Q(ξr); Q), it is infinite, too. One
concludes similarly to the preceding section that Mon0(Lj) = SU(2) (since
su2(C) = sl2(C) by [21], page 433, too). The rest of the proof is an induction
analogue to the induction of the preceding section.

By the preceding considerations, one has:

Proposition 5.2.2. Assume that Vr is general. Then the image of the nat-
ural projection Mon0

R(Vr) → GL(�V(j)R) is given by the special unitary
group induced by the trace map and the special unitary group SU(H1

j (C, C),
H|H1

j (C,C)) described in Section 4.3.

Moreover we know that Mon0
R(Vr) is contained in Cder

r (ψ)R, which is given
by a direct product of certain groups SU(a, b). Either Mon0(Vr) = Cder

r (ψ)
or it is given by a proper subgroup. We want to examine the conditions of
the case Mon0(Vr) �= Cder

r (ψ). This will yield information and some criteria
for the structure of Mon0(Vr).

First let us make a simple, but very useful observation:

Remark 5.2.3. Let G1, . . . , Gt be connected simple Lie groups and N ⊂
G1 × . . . × Gt =: G be a normal connected subgroup. One has that Lie(G)
is a direct sum of the simple ideals Lie(G1), . . . , Lie(Gt), which implies that
each ideal is a sum of certain Lie(Gi) (see [27], II. Corollary 6.3). Since
the normal connected subgroups of G and the ideals of Lie(G) correspond
(follows by [21], Proposition 8.41 and [21], Exercise 9.2), one obtains that

N = G1 × . . . × Gt0 × {e} × . . . × {e}

for some t0 ≤ t with respect to a suitable numbering.

The decomposition of the rational Hodge structure N1(Cr, Q) into the
Q(ξr)+-Hodge structures �V(j) yields a decomposition of the variation Vr

of rational Hodge structures into the variations �V(j) of Q(ξr)+-Hodge
structures.

By technical reasons, we consider the semisimple adjoint group Monad
R (Vr)

instead of Mon0
R(Vr) first. By Remark 5.2.3, one concludes that Monad

R (Vr)
is isomorphic to the direct product of Monad(�V(j)R) and the kernel Kj of
the natural projection Monad

R (Vr) → Monad(�V(j)R). Moreover one has:
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Lemma 5.2.4. Let G1, . . . , Gt be simple adjoint Lie groups and G be a
semisimple subgroup of G1 × . . . × Gt such that each natural projection

G ↪→ G1 × . . . × Gt
prj−→ Gj

is surjective. One has G �= G1 × . . . × Gt, if and only if there are some
j1, j2 ∈ {1, . . . , t} with j1 �= j2 such that G contains a simple subgroup G′

isomorphically mapped onto Gj1 and Gj2 by the natural projections.

Proof. The “if” part is easy to see. The “only if” part follows by induction.
��

Note that we have a natural embedding

Monad
R (Vr) ↪→

∏
j∈Z/ m

r ,j≤m
2

Monad(�V(j)R).

Thus the preceding lemma and our assumption that Mon0(Vr) �= Cder
r (ψ)

imply that there is a direct simple factor of Monad
R (Vr), which isomorphically

mapped onto Monad(�V(j1)R) and Monad(�V(j2)R) for some j1 and j2 with
j2 �= j1 and m − j1. By Remark 5.2.3, Monad

R (Vr) is a direct product of the
kernel of the both projections and this direct simple factor.

Thus the natural projections onto Monad(�V(j1)R) and Monad(�V(j2)R)
yield an isomorphism

αad : Monad(�V(j1)R) → Monad(�V(j2)R).

Moreover one concludes that the image Monad(�V(j1, j2)R) of the projection

Monad
R (Vr) → Monad(�V(j1)R) × Monad(�V(j2)R)

is given by the graph of αad.

5.2.5. For the image Mon0(�V(j1, j2)R) of the projection

Mon0
R(Vr) → Mon0(�V(j1)R) × Mon0(�V(j2)R)

this implies that the natural projections

p1 : Mon0(�V(j1, j2)R) → Mon0(�V(j1)R)

and
p2 : Mon0(�V(j1, j2)R) → Mon0(�V(j2)R)

are isogenies. Since

Mon0(�V(j1)R)(C) = Mon0(�V(j2)R)(C) = SLa+b(C),
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where (a, b) is the type of Lj1 , and the Lie group SLa+b(C) is simply connected
(see [21], Proposition 23.1), the induced isogenies of Lie groups of C-valued
points are isomorphisms. Hence the isogenies p1 and p2 are isomorphisms.

Hence our assumption implies the existence of an isomorphism

α : Mon0(�V(j1)R) → Mon0(�V(j2)R),

which satisfies that Mon0(�V(j1, j2)R) is given by Graph(α).

5.3 A criterion for the reaching of the upper bound

In this section we give a necessary criterion for the existence of an isomor-
phism α. This yields a sufficient condition that Mon0(Vr) reaches the upper
bound Cder

r (ψ). In addition we will see that Mon0(V) = Mon0(V1) reaches
the upper bound, if the degree m of the covers given by the fibers of C → Pn

is a prime number > 2.2

We say that a Dehn twist T is semisimple (with respect to Vr), if the
monodromy representation ρj of one (and hence of all) Lj ⊂ Vr yields
a semisimple matrix ρj(T ). By the trace map (see (4.3)), we can iden-
tify Monad(�V(j)R) and Monad(Lj). Thus Mon0(�V(j1, j2)R) is equal
to Graph(α), if and only if one has a corresponding isomorphism αad :
Monad(L1) → Monad(L2) such that Monad(Lj1⊕Lj2) is given by Graph(αad).
By an abuse of notation, we will write α instead of αad from now on.

First let us formulate a sufficient criterion for the non-existence of α in
the case C → P1:

Proposition 5.3.1. Let Vr be general and Lj1 ,Lj2 ⊂ Vr be of type (a, b),
where a + b = 2. Moreover let zi denote the non-trivial eigenvalue of ρji

(T )
with respect to a semisimple Dehn twist T for i = 1, 2. Then there is not
any isomorphism α : Monad(L1) → Monad(L2) such that Pρj2 = α ◦ Pρj1 , if
there is a semisimple Dehn twist T such that the non-trivial eigenvalue z2 of
ρj2(T ) is not contained in {z1, z̄1}.

Proof. Assume that Monad(L1) and Monad(L2) are isomorphic and T satisfies
the assumptions of this proposition. Thus ρj1(T ) generates a finite commuta-
tive subgroup FT of Monad(Lj1). Our assumption that a+b = 2 implies that
Monad(Lj1) ∼= Monad(Lj2) is isomorphic to PU(1, 1) or PU(2). Note that the
elements of FT (R) are up to conjugation given by classes of diagonal matri-
ces. The elements of FT (R) commute exactly with the R-rational elements
of the maximal torus G of PU(1, 1) resp., PU(2) which is (up to conjugation)

2 For m = 2 we will later see that Mon0(V) reaches the upper bound as well.
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given by the classes of diagonal matrices in PU(1, 1) resp., PU(2). One checks
easily that G(R) is isomorphic to S1(R). Hence one can identify FT (R) with
some 〈ξs〉 ⊂ S1(R). Now let 1 �= ζ ∈ 〈ξs〉 satisfy the property that there is
a closed interval on S1(R) with end points 1 and ζ, which does not contain
any other element of 〈ξs〉. Hence there is a closed interval I on G with ending
points [diag(1, 1)] and [diag(ζ, 1)] ∈ FT , which does not contain any other
element of FT .

Now assume such an isomorphism α exists. Note that we have an identi-
fication α(G)(R) = S1(R), too. But our assumptions imply that

α(diag(ζ, 1)) /∈ {diag(ζ, 1),diag(ζ̄, 1)}.

Hence by our identification α(G)(R) = S1(R), one obtains that

α(ζ) /∈ {ζ, ζ̄}.

Thus α(I) ⊂ α(G)(R) is not a connected interval, which does not contain any
other element of 〈ξs〉 except of 1 and α(ζ). But α must be a homeomorphism
on the R-valued points. Contradiction! ��

By the preceding proposition, we can use certain semisimple Dehn twists
for the study of the generic Hodge group. Hence we make some observations
about the orders and the existence of semisimple Dehn twists:

Lemma 5.3.2. Let j �= m
2 and v|mr , where

1 �= v, r := gcd(m, j) and 1, 2 �= m

rv
.

Then there exists a Dehn twist T ∈ π1(Pn) such that ρj(T ) ∈ Mon(Lj) is
semisimple and |〈ρj(T )〉| does not divide v.

Proof. One can replace C by Cr and choose a suitable collection of local
monodromy data for C such that j = 1. By an isomorphism 〈ξ〉 ∼= Z/(m),
the non-trivial eigenvalues of the semisimple Dehn twists Tk1,k2 correspond
to some elements [bk1,k2 ] ∈ Z/(m), where bk1,k2 := dk1 + dk2 and dk1 and dk2

denote the branch indices of ak1 and ak2 .
Assume that each semisimple Dehn twist satisfies that its order divides

some v with v|m. This implies that m
v |bk1,k2 for all bk1,k2 . Hence for all k =

1, . . . , n + 3 one has that m
v divides

2dk = (dk + dk1) + (dk + dk2) − (dk1 + dk2) = bk,k1 + bk,k2 − bk1,k2 .

Since there does not exist any integer N �= 1, which divides each dk, one has
that m

v divides 2. This implies that m
v = 1 or m

v = 2. ��
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For the formulation of our criterion in the higher dimensional case we need
the following lemma:

Lemma 5.3.3. Let q ∈ Pn. Assume that we have a stable partition

P := {{a1}, {a2}, {a3}, {a4, . . . , anj+3}}

with respect to the local monodromy data of (Lj)q such that we can define the
eigenspace Lj(P ) over P1 with b = {a4, . . . , anj+3} as in Construction 5.1.9.
Then the monodromy group ρj(P )(π1(P1)) of Lj(P ) has a subgroup of finite
index generated by ρj(T1,2) and ρj(T2,3).

Proof. The stability of the partition ensures that αb = αa4 . . . αnj+3 �= 1. It
is a well-known fact that π1(M1(C)) is generated by the two loops around
0 and 1, where we identify A

1 \ {0, 1} = M1. By the embedding M1 → P1

given by
a1 = 0, a3 = 1, a4 = ∞,

we can identify the generators of π1(M1(C)) with the Dehn twists T1,2 and
T2,3. The statement follows from the fact that the monodromy group of
Lj(P )|M1 has finite index in the monodromy group of Lj(P ). ��

Proposition 5.3.4. Let Lj1 ,Lj2 ⊂ (V1)C with j1 �= j2 and j1 �= m − j2.
Assume that we have a stable partition

P := {{a1}, {a2}, {a3}, {a4, . . . , an+3}}

such that the monodromy group of Lj1(P ) or Lj2(P ) is infinite. Let
Mon0(Lj1(P )) and Mon0(Lj2(P )) be not isomorphic or Tk,	 be a semisim-
ple Dehn twist with k, � ∈ {1, 2, 3} such that the non-trivial eigenvalue z2

of ρj2(Tk,	) is not contained in {z1, z̄1}, where z1 denotes the non-trivial
eigenvalue of ρj1(Tk,	). Then

Mon0(�V(j1, j2)R) = Mon0(�V(j1)R) × Mon0(�V(j2)R).

Proof. By Lemma 5.3.3 and the fact that the monodromy group of Lj |Mn

has finite index in the monodromy group of Lj , one concludes that the group
generated by ρj1(T1,2) and ρj1(T2,3) resp., ρj2(T1,2) and ρj2(T2,3) has finite
index in the monodromy representation of Lj1(P ) resp., Lj2(P ). Therefore
an isomorphism

α : Mon0(�V(j1)R) → Mon0(�V(j2)R)

yields an isomorphism

α(P ) : Mon0(Lj1(P )) → Mon0(Lj2(P )).
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Thus one only needs to apply Proposition 5.3.1. ��

Now let us first define the condition for the reaching of the upper bound
and then write down the obvious theorem:

Definition 5.3.5. Assume that one has for each Lj1 ,Lj2 ⊂ Vr with j1 �=
j2,m − j2 and Mon0

R(Lj1) ∼= Mon0
R(Lj1) a stable partition

P := {{a1}, {a2}, {a3}, {a4, . . . , anj+3}}

(with respect to a suitable enumeration) such that the monodromy group of
Lj1(P ) or Lj2(P ) is infinite and one of the following conditions is satisfied:

1. Mon0(Lj1(P )) and Mon0(Lj2(P )) are not isomorphic.
2. There is a semisimple Dehn twist Tk,	 with k, � ∈ {1, 2, 3} such that the

non-trivial eigenvalue z2 of ρj2(Tk,	) is not contained in {z1, z̄1}, where z1

denotes the non-trivial eigenvalue of ρj1(Tk,	).

We call Vr very general in this case.
A direct summand Vr is exceptional, if it is general, but not very general.

By Proposition 5.3.4, one concludes:

Theorem 5.3.6. If Vr is very general, Mon0(Vr) reaches the upper bound
Cder(ψ).

Theorem 5.3.7. If the degree m of the covers given by the fibers of C → Pn

is a prime number m > 2, Mon0(V) = Mon(V1) reaches the upper bound.

Proof. By the preceding theorem, we have only to show that Mon0(V) =
Mon(V1) is very general. Note that Lemma 5.3.2 implies that there is a
semisimple Dehn twist for m > 2.

Assume that we are in the case of a family C → P1, and that j1 �= j2,m−j2.
Since Z/(m) is a field in our case, one has that each semisimple Dehn twist
satisfies that the non-trivial eigenvalue of ρj2(T ) is not contained in {z1, z̄1},
where z1 denotes the non-trivial eigenvalue of ρj2(T ). Thus in this case the
statement follows from Proposition 5.3.1.

Otherwise we have to find a stable partition P as in Proposition 5.3.4.
One has without loss of generality the semisimple Dehn twist T1,2. Moreover
assume without loss of generality that d1 + d2 = m − 1. One has two cases:
Either there is some a3 such that

P = {{a1}, {a2}, {a3}, {a4, . . . , an+3}}

is the desired stable partition or one has that

d3 = . . . = dn+3 = 1.
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Since in the case m = 3 there is nothing to show, one can otherwise assume
that m > 3 and take the stable partition

P = {{a3}, {a4}, {a5}, {a1, a2, a6, . . . , an+3}}.
��

5.4 The exceptional cases

At this time the author does not see a possibility to calculate the monodromy
group of the V HS of an arbitrary family C → Pn. Therefore we consider
mainly a family C → P1.

5.4.1. Let ρj1 and ρj2 denote the monodromy representations of Lj1 ,Lj2 ⊂
Vr. Proposition 3.3.5 yields a description of ρj1(T ) and ρj2(T ) for some Dehn
twist T . By this description, the entries of the matrices ρj1(T ) and ρj2(T )
differ by some γ ∈ Gal(Q(ξr); Q). By its action on 〈ξr〉 ∼= Z/(m

r ), each γ

can be identified with some [v] ∈ (Z/(m
r ))∗ such that [ j1

r v]m
r

= [ j2
r ]m

r
. One

has a subgroup H1(γ) of 〈ξr〉 consisting of roots of unity fixed by γ and
a subgroup H2(γ) of 〈ξr〉 consisting of roots of unity, on which γ acts by
complex conjugation. Since j1 �= j2,m − j2, one has that γ is neither given
by the complex conjugation nor by the identity. Thus H1(γ) resp., H2(γ)
is given by {1} or some proper subgroup of 〈ξr〉 generated by ξrt1(γ) resp.,
ξrt2(γ), where 1 �= t1(γ) and 1 �= t2(γ) divide m

r .

For the rest of this section we consider only families C → P1 of degree
m with an exceptional part Vr. Assume without loss of generality that V1 is
exceptional and j1 = 1. Let γ correspond to v. For simplicity we write t1 and
t2 instead of t1(γ) and t2(γ), and H1 and H2 instead of H1(γ) and H2(γ).

Lemma 5.4.2. Let C → P1 be a family of degree m covers such that V1 is
exceptional. Then one is without loss of generality in one of the following
cases:

1. (Complex case) t1|d1 + d2, t1|d2 + d3 and t2|d1 + d3, where t1 does not
divide d1 + d3.

2. (Separated case) t1 = 2 and 2 divides d1 + d2, d2 + d3 and d1 + d3.

Proof. If V1 is exceptional, then d1 +d2, d2 +d3 and d1 +d3 are divided by t1
or t2. Assume that t1 (resp., t2) divides d1+d2, d2+d3 and d1+d3. Hence one
has t1 = 2 (resp., t2 = 2) as in the proof of Lemma 5.3.2. Otherwise one has
only to choose a suitable enumeration such that one is in the complex case.

��

Remark 5.4.3. It can occur that one is in the complex case and the sepa-
rated case with respect to the same eigenspaces (up to complex conjugation).
Consider the family C → P1 of degree 12 covers given by
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d1 = 5, d2 = 1, d3 = 11, d4 = 7.

Let v = 5. Then one has t1 = 3 and t2 = 2 such that 3|d1 + d2, 3|d2 + d3 and
2|d1 + d3. Now let v = 7. In this case one has t1 = 2 and 2 divides d1 + d2,
d2 + d3 and d1 + d3. By 5.4.10, we will see that there is an isomorphism
α : Mon0(�V(1))R → Mon0(�V(5))R.

On the other hand consider the family C → P1 of degree 12 covers given by

d1 = 11, d2 = 1, d3 = 11, d4 = 1.

Again by the same arguments, we are in the complex case and the separated
case at the same time. But in this case the existence of a suitable isomorphism

α : Mon0
R(�V(1)) → Mon0

R(�V(5))

is not known to the author at this time.

5.4.4. Assume that the direct summand V1 is separated with respect to
[v]m ∈ (Z/(m))∗ for a family C → P1 of degree m covers. One has [v2] = [2]
in each separated case. This implies that [2][v − 1] = [0]. Therefore one has
[v] = [m

2 + 1] ∈ (Z/(m))∗ in each separated case. Hence v ∈ (Z/(m))∗ is an
involution. The fact that [v] = [m

2 +1] ∈ (Z/(m))∗ implies that m
2 +1 is odd.

Hence 4 divides m. In the separated case r1 = 2 divides each dk + d	. Thus
V1 is separated, if and only if 4|m and each dk is odd.

Therefore there are infinitely many cases of families C → P1 such that V1

is separated. At this time the author can not give an isomorphism

α : Monad(L1) → Monad(Lm
2 +1)

for each separated example.

By the preceding point we have classified and described all examples C →
P1 such that V1 is separated. Hence we consider only the case of a family
C → P1 such that V1 is complex for the rest of this section.

Lemma 5.4.5. Assume that V1 is complex. Then one has:

� := lcm(t1, t2) =
{

m : m is odd
m
2 : m is even

Proof. If m is odd, H1 ∩ H2 = {1} = {ξm}. If m is even, H1 ∩ H2 =
{1,−1} = 〈ξ m

2 〉. ��

Lemma 5.4.6. Assume that V1 is complex. Then one has that t1t2 = m or
t1t2 = m

2 . Moreover one has that t1t2 = m, if m is odd, and t1t2 = m
2 , if

2|m, but 4 does not divide m.
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Proof. If m is odd, one has � = lcm(t1, t2) = m. Hence one obtains t′1t
′
2g = m

for g := gcd(t1, t2) and ti = gt′i. Hence |H1| = t′2 and |H2| = t′1. If g > 2,
there is a semisimple Dehn twist, whose order does not divide t′1t

′
2 (follows

from Lemma 5.3.2). But this can not occur by our assumption that V1 is
complex. Hence g = 1, since g = 2 is not possible for m odd.

If m is even, one has � = lcm(t1, t2) = m
2 . Hence one has t′1t

′
2g = m

2 for
g := gcd(t1, t2) and ti = gt′i. If g > 2, there is a semisimple Dehn twist, whose
order does not divide t′1t

′
2. Hence one has g = 1 or g = 2. Thus t1t2 = m or

t1t2 = m
2 .

Now assume that 2|m, but 4 does not divide m. Then one has that m
2 =

lcm(t1, t2) is odd. Hence one can not have that g = 2 in this case. Thus g = 1
and t1t2 = m

2 . ��

Example 5.4.7. In the case 4|m both t1t2 = m and t1t2 = m
2 can occur.

Let m = 24 and take v = 5 for the corresponding automorphism of Q(ξ). In
this case one has t1 = 6 and t2 = 4 such that t1t2 = 24 = m.

Now let m = 24 and take v = 7. In this case one has t1 = 4 and t2 = 3
such that t1t2 = 12 = m

2 .

Proposition 5.4.8. Assume γ ∈ Gal(Q(ξ); Q) yields an example of a com-
plex case. Then γ is an involution.

Proof. Let [v] ∈ Z/(m)∗ correspond to γ. One has that t1t2 = m or t1t2 = m
2 .

Since one has that [vt1]m = [t1]m and [vt2]m = −[t2]m, one gets that

(v − 1)t1 ∈ (m) and (v + 1)t2 ∈ (m).

This implies that t2|(v − 1) and t1|(v + 1) or (if t1t2 = m
2 ) that 2t2|(v − 1)

and 2t1|(v + 1). Hence in each case one obtains that

v2 − 1 = (v − 1)(v + 1) ∈ (m).

��

Theorem 5.4.9. Let C → P1 be a family of degree m covers. Then V1 is
complex, if and only if the fibers of C have the branch indices d1, . . . , d4 with
2m = d1 + . . . + d4 such that

[vd2]m = [d1 + d2 + d3]m, [vd1]m = [−d3]m, [vd3]m = [−d1]m

or

[vd2]m = [d1 +d2 +d3 +
m

2
]m, [vd1]m = [−d3 +

m

2
]m, [vd3]m = [−d1 +

m

2
]m

for some v with [v2]m = [1]m and [v]m /∈ {[1]m, [m − 1]m}.

Proof. The condition 2m = d1 + . . . + d4 ensures that V1 is not special.
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By an abuse of notation, each integer z denotes the residue class [z]m in
this proof. Assume that V1 is complex. Hence by Lemma 5.4.2, one has that

2vd2 = v((d1 + d2) − (d1 + d3) + (d2 + d3)) = (d1 + d2) + (d1 + d3) + (d2 + d3)

= 2(d1 + d2 + d3),

2vd1 = v((d1+d2)+(d1+d3)−(d2+d3)) = (d1+d2)−(d1+d3)−(d2+d3)) = −2d3,

2vd3 = v(−(d1+d2)+(d1+d3)+(d2+d3)) = −(d1+d2)−(d1+d3)+(d2+d3)) = −2d1.

Hence one has two cases:

vd2 = d1 + d2 + d3 or vd2 = d1 + d2 + d3 +
m

2

In the first case (resp., the second case) the fact that v(d1 + d2) = d1 + d2

implies that vd1 = −d3 (resp., vd1 = −d3 + m
2 ). Moreover in the first case

(resp., the second case) the fact that v(d2 + d3) = d2 + d3 implies that
vd3 = −d1 (resp., vd3 = −d1 + m

2 ). Hence we have obtained the claimed
equations.

Assume conversely that the family C → P1 satisfies one of the two systems
of equations of this theorem. Then one can easily calculate that V1 is complex.

��

5.4.10. Let C → P1 be a family of degree m covers. Assume that d1, d2, d3

satisfy the first system of equations of Theorem 5.4.9 with respect to some v
with [v2] = [1]m, which satisfies that [v]m /∈ {[1]m, [m − 1]m}. Moreover let
j ∈ (Z/(m))∗ such that Lj ⊂ V1 with monodromy representation ρj . Now we
calculate that Mon0

Q(ξ)+(V1) does not reach the upper bound Cder
1 (g)Q(ξ)+ in

this case.
Let a1 = 0, a3 = 1 and a4 = ∞. The fundamental group of the corre-

sponding copy of M1 is generated by T1,2 and T2,3. One obtains that

ρj(T1,2) =
(

ξjd1+jd2 1 − ξjd1

0 1

)
, ρj(T2,3) =

(
1 0

ξjd2 − ξjd2+jd3 ξjd2+jd3

)
.

Let γv ∈ Gal(Q(ξ); Q) denote the automorphism corresponding to [v]. The
monodromy representation of Ljv is given by

ρjv(T1,2) =

(
ξjd1+jd2 1 − ξ−jd3

0 1

)
, ρjv(T2,3) =

(
1 0

ξjd1+jd2+jd3 − ξjd2+jd3 ξjd2+jd3

)
.

One calculates easily that

1 − ξjd1

1 − ξ−jd3
· ξjd2 − ξjd2+jd3

ξjd1+jd2+jd3 − ξjd2+jd3
=

ξjd2 − ξjd2+jd3 − ξjd1+jd2 + ξjd1+jd2+jd3

ξjd1+jd2+jd3 − ξjd2+jd3 − ξjd1+jd2 + ξjd2
= 1.
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Hence there is a z ∈ Q(ξ) such that γv|<ρj(T1,2),ρj(T2,3)> coincides with
α|<ρj(T1,2),ρj(T2,3)>, where α is given by

(
a b
c d

)
→

(
a zb

z−1c d

)
.

Thus by Lemma 5.2.4, the group Mon0
Q(ξ)+(V1) does not attain its upper

bound in this case. In addition one calculates easily that α is given by

(
a b
c d

)
→

(√
z 0

0
√

z−1

)(
a b
c d

) (√
z−1 0
0

√
z

)
.

Thus the monodromy representations of Lj and Ljv coincide up to conjuga-
tion such that Lj and Ljv are isomorphic for each j ∈ (Z/(m))∗.

Corollary 5.4.11. There are infinitely many families C → P1 such that V1

is complex and Mon0
Q(ξ)+(V1) does not reach its upper bound.

Proof. Let p, q ∈ N such that gcd(p, q) = 1 with p, q /∈ {1, 2} and m := pq.
Hence Z/(m) = Z/(p) × Z/(q). Let v < m correspond to (1,−1) ∈ Z/(p) ×
Z/(q). Thus we get [v2] = [1]m and [v]m /∈ {[1]m, [m − 1]m}. One has that

d1 = v, d2 = 1, d3 = m − 1

satisfies the first system of equations of Theorem 5.4.9, which guarantees
by 5.4.10 that Mon0

Q(ξ)+(V1) does not reach its upper bound. Since there
are infinitely many possible choices for p, q ∈ N such that gcd(p, q) = 1
with p, q /∈ {1, 2}, one obtains infinitely many families C → P1 such that
Mon0

Q(ξ)+(V1) does not reach its upper bound. ��

5.5 The Hodge group of a universal family
of hyperelliptic curves

If the middle part Vm
2

is of type (1, 1), one obtains Mon0(Vm
2
) = SpQ(2),

since SpR(2) ∼= SU(1, 1), and Mon0
R(Vm

2
) = SU(1, 1) as one has by Theorem

5.1.1.
By using [63] Theorem 10.1 and Remark 10.2, one can conclude that

the Hodge group Hg(Vm
2
) of an arbitrary middle part Vm

2
coincides with

Sp(Vm
2
, QVm

2
). For completeness we give an elementary proof. We use the

the fact that
Mon0(Vm

2
) ⊆ Hg(Vm

2
) ⊆ Sp(Vm

2
, QVm

2
)

and show by explicit calculations that the dimensions of the Lie algebras of
Mon0(Vm

2
) and Sp(Vm

2
, QVm

2
) coincide.
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By Proposition 3.3.5, each Dehn twist T	,	+1 yields a unipotent subgroup
of Mon0(Vm

2
) isomorphic to Ga. Its corresponding subvector space of the Lie

algebra is generated by

A	,	+1(a, b) =

⎧⎨
⎩

−1 : a = � and b = � − 1
1 : a = � and b = � + 1
0 : elsewhere

.

Now we consider the middle part of type (2, 2). Hence we are in the case
of the genus 2 curves. For � = 1, . . . , 4 the matrices A	,	+1 generate a 4
dimensional vector space. Moreover by [Ai,i+1, Ai+1,i+2] for i = 1, 2, 3, we
get the 3 additional linearly independent matrices

⎛
⎜⎜⎝

−1 0 1 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 0
0 −1 0 1
−1 0 1 0
0 0 0 0

⎞
⎟⎟⎠ , and

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 −1 0
0 −1 0 1

⎞
⎟⎟⎠ .

By
[A2,3, [A3,4, A4,5]] resp., [[A1,2, A2,3], A3,4],

we obtain the two further linearly independent matrices

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 0 0 0
−1 0 1 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

0 −1 0 1
0 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Thus the Lie algebra has at least dimension 9. Moreover one checks easily
that

[[A1,2, A2,3], [A3,4, A4,5]] =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 0
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

is a tenth linearly independent matrix. Thus the well-known fact that SpQ(4)
has dimension 10 implies:

Proposition 5.5.1. If Vm
2

is of type (2, 2), then Mon0(Vm
2
) ∼= Sp(Vm

2
, QVm

2
).

Note that the quotient of Sp4(R) by its maximal compact subgroup is
Siegel’s upper half plane h2, which has dimension 3. Since M3 has dimension
3, one concludes for the restricted family CM3 → M3 of genus 2 curves:

Corollary 5.5.2. The family CM3 → M3 of genus 2 curves has a dense set
of CM fibers.

Proof. One has (similarly to the proof of Theorem 4.4.4) that the holo-
morphic period map p : M3 → h2 has fibers of dimension 0. Since
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dim(h2) = dim(M3) = 3, one concludes that p is open. Hence the state-
ment follows from the fact that h2 has a dense set of CM points. ��

We will use Proposition 5.5.1 and the calculations, which yield this propo-
sition, to show the following theorem by induction:

Theorem 5.5.3. If Vm
2

is of type (g, g), then Mon0(Vm
2
) ∼= Sp(Vm

2
, QVm

2
).

Corollary 5.5.4.

Hg(Vm
2
) = Sp(Vm

2
, QVm

2
) and MT(Vm

2
) = GSp(Vm

2
, QVm

2
)

It is a well-known fact that dim(SpQ(2g)) = 2g2 + g.3 Hence one gets

dim(SpQ(2g + 1)) = 2(g + 1)2 + g + 1 = (2g2 + g) + (4g + 3).

We will show by induction that for each g ∈ N the matrices A	,	+1 generate
a Lie algebra, which has at least the same dimension as sp2g(Q). This yields
Theorem 5.5.3. Since we have shown the statement for g = 1, 2, we will only
give the induction step:

Recall that we have defined Lj-valued paths [ekδk] in Section 3.3. We
consider a middle part of type (g + 1, g + 1) with respect to the basis
B = {[e1δ1], . . . , [e2g+2δ2g+2]}. The Dehn twists T	,	+1 for � = 1, . . . , 2g yield
the monodromy group G1 of a middle part of type (g, g). Therefore by the
induction hypothesis, they yield a group isomorphic to Sp2g(Q).

Remark 5.5.5. One has the obvious embedding of G1 ↪→ GL(N1(Cm
2
, Q))

with respect to the basis B1 := {[e1δ1], . . . , [e2gδ2g], [e2g+2δ2g+2], [e2g+3δ2g+3]}
such that

G1 � A →

⎛
⎝A

1 0
0 1

⎞
⎠ ∈ GL(N1(Cm

2
, Q)).

Moreover this embedding of G1 into GL(N1(Cm
2
, Q)) is given by

G1 � A →

⎛
⎝A v

1 0
0 1

⎞
⎠ ∈ GL(N1(Cm

2
, Q)),

with respect to the basis B, where vt = (v1, . . . , v2g) is a vector depending
on A.

Since we consider the embedding with respect to the latter basis, we want
to understand v, which is possible, if we understand the base change between
the bases of the preceding remark.

3 Otherwise one has a description of sp2g(C) in [21], page 239. By this description, one can
easily determine its dimension.
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Lemma 5.5.6. Let C → P
1 be a hyperelliptic curve of genus g + 1. One has

(up to a suitable normalization)

g+1∑
i=0

[e2i+1δ2i+1] = 0.

Proof. Let ζ ∈ H2(C, C) be a nontrivial linear combination of the clo-
sures of the sheets of P

1 \ S, on which ψ acts via push-forward by the
character 1 ∈ Z/(2). One has that ∂ζ represents a linear combination of
[e1δ1], . . . , [e2g+1δ2g+3] ∈ H1(C, C)1, which is equal to zero. Recall that over
δ1 ∪ . . . ∪ δ2g+3 the gluing of these sheets depends on the local monodromy
data determined by the branch indices of the branch points ak. Since each
ak has the local monodromy datum −1, this linear combination is (up to a
suitable normalization of [e1δ1], . . . , [e2g+1δ2g+3]) given by

g+1∑
i=0

[e2i+1δ2i+1] = 0.

��
5.5.7. By the preceding lemma, the matrices of base change between the
bases B and B1 are given by

MB1
B (id) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
. . .

...
1 −1

1 0
0 −1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and MB
B1

(id) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
. . .

...
1 −1

1 0
0 1
−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

such that
⎛
⎝A v

1 0
0 1

⎞
⎠ = MB1

B (id) ·

⎛
⎝A

1 0
0 1

⎞
⎠ · MB

B1
(id).

Thus one calculates easily that v1 = 0, if a1,1 = 1 and a1,j = 0 for 2 ≤
j ≤ 2g and A = (ai,j). The exponential map exp is a diffeomorphism on a
neighborhood of 0. Hence by the definition

exp(m) = 1 + m +
m2

2
+

m3

6
+ . . . ,

one concludes that each (mi,j) ∈ Lie(G1) satisfies that m1,2g+1 = 0, if
m1,j = 0 for all j = 1, . . . , 2g, which will play a very important role later.
Otherwise exp would yield a matrix with a1,1 = 1, a1,j = 0 for 2 ≤ j ≤ 2g
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and v1 �= 0 as one can calculate by the fact that each (mi,j) ∈ Lie(G1)
satisfies that mi,j = 0 for i > 2g.

Lemma 5.5.8. Let i0 ≤ 2g and j0 < 2g be integers such that i0 − j0 > 0. In
the Lie algebra Lie(G1) one finds an element (x(i0,j0)

i,j ) with x
(i0,j0)
i0,j0

�= 0 and

x
(i0,j0)
i,j = 0, if i > i0 or j < j0 or i = 1.

Proof. Let k0 := i0 − j0 > 0. We show the statement by induction over k0.
Each pair (i0, j0) with i0 − j0 = k0 = 1 is given by (i0, i0 − 1). By Ai0,i0+1,
such an element is given for each (i0, i0 − 1).

Now let (i0, j0) be a pair with k0 := i0− j0 > 1 and assume that the state-
ment is satisfied for k0−1, . . . , 1 > 0. Hence one has (x(i0,j0+1)

i,j ), Aj0+1,j0+2 ∈
Lie(G1). By

(x(i0,j0)
i,j ) := [(x(i0,j0+1)

i,j ), Aj0+1,j0+2],

one obtains the desired element of Lie(G1), since one has the entry

x
(i0,j0)
i0,j0

= x
(i0,j0+1)
i0,j0+1 · (Aj0+1,j0+2)j0+1,j0 �= 0.

��

Moreover the Dehn twists T2n−1,2n, . . . , T2g+2,2g+3 generate a group G2

isomorphic to the monodromy group of a middle part of type (2, 2), which
has dimension 10. One can easily compare the matrices of Lie(G2) with the
above explicitly given matrices of a middle part of type (2, 2): “The restriction
of the matrices of Lie(G2) to the lower right corner looks like the matrices
of the Lie algebra of the monodromy group of a middle part of type (2, 2).”

Since the vectors

A2g−1,2g, A2g,2g+1 and [A2g−1,2g, A2g,2g+1]

are contained in Lie(G1)∩Lie(G2), both Lie algebras yield together a 2g2 +
g + 7-dimensional vector space of matrices (xi,j), whose entries xi,j vanish
for j < 2g − 3 and i > 2g. Hence by using

[A2g+1,2g+2, (x
(2g,j0)
i,j )] and [[A2g+1,2g+2, A2g+2,2g+3], x

(2g,j0)
i,j ]

for j0 < 2g − 3, one has 4g − 6 additional linearly independent vectors.
Thus we have altogether (2g2 + g) + (4g + 1) linearly independent vectors.
Hence 2 remaining linearly independent vectors are to find. Since x

(i0,j0)
i,j = 0

for i = 1, in the constructed vector space of matrices (mi,j) the coordinate
m1,2g+1 depends uniquely on the vectors in Lie(G1) such that m1,2g+1 = 0,
if m1,j = 0 for all j = 1, . . . , 2g as we have seen in 5.5.7. Let

Lie(G1) � (yi,j) = [A1,2, [A2,3, [. . . [A2g−1,2g, A2g,2g+1] . . .]].
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One checks easily that
y1,2g+1 �= 0.

Now the matrix

(y′
i,j) = [(yi,j), [A2g+1,2g+2, A2g+2,2g+3]]

satisfies y′
1,2g+1 �= 0, y′

i,j = 0 for i, j ≤ 2g and y′
1,2g+2 = 0. Thus we have found

a new vector not contained in the vector space, which we have constructed
by Lie(G1), Lie(G2) and some Lie brackets at the present.

Note that all matrices (xi,j), which we have found, satisfy x1,2g+2 = 0.
But

(zi,j) := [(yi,j), A2g+1,2g+2]

satisfies z1,2g+2 �= 0. Therefore we are done.

5.6 The complete generic Hodge group

By this section, we finish our calculation (of the derived group) of the generic
Hodge group and obtain the final result:

Theorem 5.6.1. One has

Mon0(V) =
∏
r|m

Mon0(Vr)

in the following cases:

1. The degree m of the covers given by the fibers of C → Pn is odd.
2. Pn = P1 and 6 does not divide m.

Corollary 5.6.2. Assume that C → Pn satisfies one of the following condi-
tions:

1. The degree m of the covers given by the fibers of C → Pn is odd.
2. Pn = P1 and 6 does not divide m.

Then one has
MTder(V) = Hgder(V) ⊇

∏
r|m

Mon0(Vr).

By Theorem 2.4.4, one has a CM -fiber, if the fibers of C → Pn have
n + 1 branch points with the same branch index d. Thus by the fact that
this implies the equality of Mon0(V) and MTder(V) (see Theorem 3.1.4), one
concludes:

Corollary 5.6.3. Let the fibers of C → Pn have n+1 branch points with the
same branch index d and C → Pn satisfy one of the following conditions:
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1. The degree m of the covers given by the fibers of C → Pn is odd.
2. Pn = P1 and 6 does not divide m.

Then
MTder(V) = Hgder(V) =

∏
r|m

Mon0(Vr).

Since Cder
r (g) is an upper bound for Hgder(Vr), one concludes finally:

Corollary 5.6.4. Assume that C → Pn satisfies one of the following condi-
tions:

1. The degree m of the covers given by the fibers of C → Pn is odd.
2. Pn = P1 and 6 does not divide m.

If all Vr except of the middle part are very general or special, one has

MTder(V) = Hgder(V) = Mon0(V) =
∏
r|m

Mon0(Vr).

Recall that we search for families C → Pn with dense set of complex
multiplication fibers. One obtains dense set of complex multiplication fibers,
if one has an open (multivalued) period map

p : Mn(C) → MTder(V)(R)/K

given by the V HS. Hence for our applications we need to know MTder(V) and
the dimension of MTder(V)(R)/K, but not MT(V) itself. Let us first prove
Theorem 5.6.1. After this proof we will see that the (multivalued) period map
of a family C → M1 onto MTder(V)(R)/K is open, if and only if one has a
(1, 1) − V HS.

For the proof of Theorem 5.6.1 we use the same methods as before. One has
that Monad(V) is the direct product of the kernel of the natural projection

p1 : Monad(V) → Monad(Vr1)

and an adjoint semisimple group Gr1 isomorphic to Monad(Vr1). Moreover
one has that

Monad(V) =
∏
r|m

Monad(Vr),

if and only if each Gr1 is contained in the kernels of the natural projections
onto all Monad(Vr2) with r1 �= r2.

We give a proof of Theorem 5.6.1 by contradiction. Thus we assume that

Mon0
R(V) �=

∏
r|m

Mon0
R(Vr). This implies Monad

R (V) �=
∏
r|m

Monad
R (Vr).
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Hence some Gr1 is not contained in the kernel of the projection onto
Monad(Vr2) for some r2 �= r1. Since all simple direct factors of Gr1 resp.,
Gr2 project isomorphically onto some Monad(Lj1) resp., Monad(Lj2), one
gets an isomorphism

α : Monad(Lj1) → Monad(Lj2),

which respects the respective projective monodromy representations. But by
the following proposition, the isomorphism α can not exist, if the assumptions
of Theorem 5.6.1 are satisfied. This yields the proof of Theorem 5.6.1.

Proposition 5.6.5. Assume that r1 := gcd(m, j1) �= r2 := gcd(m, j2).
Moreover assume that one of the following cases holds true:

1. m is odd.
2. Pn = P1 and 6 does not divide m.

Then an isomorphism

α : Monad(Lj1) → Monad(Lj2),

which respects the respective projective monodromy representations, can not
exist.

Proof. Assume without loss of generality that r1 < r2. This implies m
r1

> m
r2

.
There are two cases: Either 2r1 �= r2 or 2r1 = r2.

If m is odd, one has r1
2 �= g := gcd( m

r1
, m

r2
). Hence by Lemma 5.3.2, one finds

a Dehn twist T such that Pρj1(T ) is semisimple and the order of Pρj1(T )
does not divide g. One has that Pρj2(T ) is either unipotent or semisimple. If
Pρj2(T ) is semisimple, its order divides m

r2
. But the order of Pρj1(T ) does not

divide m
r2

. If Pρj2(T ) is unipotent, its order is infinite. But Pρj1(T ) has finite
order. However Pρj1(T ) and Pρj2(T ) do not have the same order. Hence such
an isomorphism α : Monad(Lj1) → Monad(Lj2), which respects the respective
projective monodromy representations, can not exist in this case.

Now assume that we are in the case of a family C → P1, where 6 does
not divide m. There is a Dehn twist T such that Pρj1(T ) is semisimple. If
Pρj1(T ) and Pρj2(T ) do not have the same order, one can argue as above.
Otherwise all semisimple Dehn twists have the same order. Hence one must
have 2r1 = r2. The nontrivial eigenvalue of ρj2(T ) is given by the square of
the nontrivial eigenvalue ξ of ρj1(T ). Note that the corresponding maximal
tori are isomorphic to S1, where S1

C
∼= Gm,C. Thus its character group is

isomorphic to Z. Hence the induced map of the corresponding maximal tori
can be an isomorphism, only if one has ξ2 = ξ−1 = ξ̄. In this case ξ would
be a primitive cubic root of unity, which implies that 3 divides m. Since we
have that 2r1 = r2, 6 would divide m. But by the assumptions, this is not
possible. ��
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Remark 5.6.6. If 2r1 = r2, there are many additional cases, in which α can
not exist. These obvious cases are given, if for a Dehn twist T the order of
the semisimple matrix ρr1(T ) does not divide m

2r1
, if ρr1(T ) is semisimple and

ρj2(T ) is unipotent or if Lj1 and Lj1 are of type (a1, b1) and (a2, b2) such that

(a1, b1) �= (a2, b2) and (a1, b1) �= (b2, a2).

But in the case of the family C → P1 of degree 6 covers given by the local
monodromy data

d1 = d2 = 1, d3 = d4 = 5

nothing of them holds true with respect to L1 and L4. In this case the situ-
ation is not clear.

Now let us finish this chapter and state the final result about the period
map:

Theorem 5.6.7. In the case of a family C → M1 the period map

p : M1(C) → MTder(V)(R)/K

is open, if and only if one has a pure (1, 1) − V HS.

Proof. As we have seen in the proof Theorem 4.4.4, the period map is open,
if one has a pure (1, 1) − V HS.

For the other direction assume that the period map is open and there are
up to complex conjugation at least two different eigenspaces, which are not
unitary.

Lemma 5.6.8. Assume that we have a family CM1 → M1. Only if all Vr

except for exactly one Vr0 are special, the period map

p : M1(C) → MTder(V)(R)/K

can be open.

Proof. Assume that r1 and r2 divide m such that r1 �= r2 and Vr1 and Vr2

are not special. If 2r1 �= r2 or if there is a Dehn twist, whose finite order with
respect to Vr1 does not divide m

r2
= m

2r1
, the same arguments as in the proof

of Proposition 5.6.5 imply that

dim(MTder(V)(R)/K) > 1 = dim(M1).

Therefore the period map can not be open.
Otherwise assume without loss of generality that r1 = 1 and all semisimple

Dehn twists have an order dividing m
2 . This implies that all dk are odd and

the degree m is even. Hence Mon0(Vm
2
) is isomorphic to SpQ(2), where its
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monodromy representation sends all Dehn twists to unipotent matrices. Thus
dim(MTder(V)(R)/K) > 1. ��

By Lemma 5.6.8, these two eigenspaces, which are not unitary, must be
contained in the same Vr0 , which must be exceptional. Hence assume without
loss of generality that Vr0 = V1.

In the separated case, the fact that all dk are odd (compare to 5.4.4) implies
that Mon0

R(Vm
2
) = SpR(2). Hence by Lemma 5.6.8, we have a contradiction.

In the complex case Lemma 5.4.2 implies without loss of generality that

t1|d1 + d2, t1|d2 + d3, t1|d1 + d4, t1|d3 + d4.

This implies that t1 divides each dk or that t1 does not divide any dk. Thus
t1 does not divide any dk. Hence Cm

t1
is a family of covers with 4 branch

points, where ρ m
t1

(T1,2) and ρ m
t1

(T2,3) are unitary. Hence Vm
t1

has an infinite
monodromy group resp., it is not special. Thus by Lemma 5.6.8, we have a
contradiction. ��



Chapter 6
Examples of families with dense sets
of complex multiplication fibers

In this chapter we classify all families C → Pn of covers with a pure (1, n) −
V HS. Due to Theorem 4.4.4, all these families have a dense set of CM
fibers. We say that a pure (1, n) − V HS is primitive, if the (1, n) eigenspace
Lj satisfies that j ∈ (Z/(m))∗. Otherwise the pure (1, n) − V HS is derived.

In Section 6.1 we give an integral condition for the branch indices dk of
the family C with the fibers given by

ym = (x − a1)d1 · . . . · (x − an)dn .

This integral condition is stronger than the similar integral condition INT of
P. Deligne and G. D. Mostow [18]. Thus we call this strong integral condition
SINT . We show that this condition is necessary for the existence of a primi-
tive pure (1, n)− V HS. By using this condition, we compute all examples of
families C → P1 of covers with a primitive pure (1, 1)− V HS in Section 6.2,
which will be listed in Section 6.3. By using the list of examples satisfying
INT for n > 1 in [18], we give in Section 6.3 the complete lists of families
with a primitive pure (1, n)−V HS. In Section 6.3 we give also the complete
list of examples with a derived pure (1, n) − V HS, which will be verified in
Section 6.4.

6.1 The necessary condition SINT

By Theorem 4.4.4, one has a sufficient criterion for a dense set of CM fibers of
a family CMn

→ Mn. This criterion is satisfied, if C has a pure (1, n)−V HS
(i.e. its V HS contains one eigenspace of type (1, n), a complex conjugate
eigenspace of type (n, 1) and otherwise only eigenspaces of the type (a, 0)
and (0, b) for some a, b ∈ N0).

Remark 6.1.1. Assume that the family C → Pn of cyclic covers of de-
gree m has a pure (1, n)-VHS and that Lj0 is the eigenspace of type (1, n).

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 121
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5 7,
c© Springer-Verlag Berlin Heidelberg 2009
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Let j0 /∈ (Z/(m))∗. Then we have 1 < r0 := gcd(j0,m). By Section 4.2, the
family Cr0 has a pure (1, n)-VHS, too.

Definition 6.1.2. A pure (1, n)− V HS is primitive, if j0 ∈ (Z/(m))∗. Oth-
erwise it is a derived pure (1, n) − V HS with the associated primitive pure
(1, n) − V HS induced by Cr0 , where Cr0 is given by the preceding remark.

Hence first we search for families with a primitive pure (1, n)−V HS. Later
we will look for families with a derived pure (1, n)−V HS. It is helpful to have
a necessary condition to find the families with a primitive pure (1, n)−V HS.
In [18] P. Deligne and G. D. Mostow have formulated the following integral
condition INT :

Definition 6.1.3. A local system on P
1 \ S of monodromy (αs)s∈S with

αs = exp(2πiμs) and μs ∈ Q for all s ∈ S satisfies the condition INT , if:

1. 0 < μs < 1 for all s ∈ S.
2. We have for all s, t ∈ S: (1−μs−μt)−1 is an integer, if s �= t and μs+μt < 1.
3.

∑
μs = 2.

Remark 6.1.4. By P. Deligne and G. D. Mostow [18], the monodromy of
the fractional period map of an eigenspace Lj of type (1, n) is discrete in
the unitary group U(1, n) and has finite covolume, if one has that H1(Cq, C)j

satisfies INT for some q ∈ Pn. This sufficient condition can be replaced by
a weaker condition ΣINT as G. D. Mostow [44] has shown. Later G. D.
Mostow [45] has shown that ΣINT is necessary for the discreteness, if n > 3.

One can identify the local monodromy data, which yield the family C → Pn

by Construction 3.2.1, with the local monodromy data of the eigenspace L1 of
some fiber Cq for an arbitrary q ∈ Pn. Hence one can formulate the condition
INT for the local monodromy data of the family. For the latter data we give
a corresponding stronger integral condition SINT :

Definition 6.1.5. A family C → Pn of cyclic covers of P
1 given by the local

monodromy data given by μk ∈ Q around sk ∈ N satisfies SINT , if we have:

1. μk1 + μk2 = 1 or (1−μk1 −μk2)
−1 ∈ Z for all sk1 , sk2 ∈ N with sk1 �= sk2 .

2.
∑

μs = 2.

Remark 6.1.6. The reader checks easily that for a family C → P1 the con-
ditions INT and SINT are equivalent. Moreover by the list on [18], page 86,
each family C → Pn with n ≥ 2, which satisfies INT , satisfies SINT , too.

At the present the author can not explain this fact. We use SINT instead
of INT , since this is a stronger and hence a more helpful condition.

By the following theorem, we have our helpful necessary condition for
families C, which have a primitive pure (1, n) − V HS:

Theorem 6.1.7. If the family C → Pn has a primitive pure (1, n) − V HS,
its local monodromy data can be given rational numbers satisfying SINT .
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For the proof of Theorem 6.1.7 we first reduce the situation to the case
of a family C → P1 of covers with only 4 branch points. That means we will
consider a pair of branch points of a fiber of C → Pn, where C has a primitive
pure (1, n) − V HS, as a pair of branch points with the same branch indices
of a fiber of a family C(P ) → P1, which has a primitive pure (1, 1) − V HS.
The following lemma will make it possible in almost all cases:

Lemma 6.1.8. Assume that C is given by local monodromy data on at least
5 points, where one does not have μ3 = . . . = μn+3 = 1

2 . Then there exists a
stable partition P with {a1}, {a2} ∈ P such that |P | = 4.1

Proof. One can without loss of generality assume that μ1+μ2 ≤ 1. Otherwise
we take the local monodromy data of Lm−1.

Now assume that such a stable partition P with {a1}, {a2} ∈ P does not
exist. Hence one must have μ1 +μ2 +μk = 1 for all 3 ≤ k ≤ n+3. Otherwise
one obtains the stable partition

P = {{a1}, {a2}, {ak}, {a3, . . . , ak−1, ak+1, . . . , an+3}}

Thus one must have
μ := μ3 = . . . = μnj+3.

Since

P = {{a1}, {a2}, {a3, a4}, {a5, . . . , anj+3}}
is not a stable partition by our assumption, too, one has

2μ = μ3 + μ4 = 1. Hence μ =
1
2
.

��
6.1.9. The family of irreducible cyclic covers of P

1 given by the local mon-
odromy data

μ1 = μ2 =
1
4
, μ3 = μ4 = μ5 =

1
2

has a primitive pure (1, 2) − V HS. Moreover it is easy to calculate that this
family satisfies SINT .

This is the only example of a family C → Pn with a primitive pure (1, n)−
V HS for n > 1, which does not satisfy the assumptions of Lemma 6.1.8: It is
very easy to see that this is the only degree 4 example with a primitive pure
(1, n) − V HS for n > 1, which contradicts the assumptions of Lemma 6.1.8.
If m > 4, L3 must be unitary. But in this case the condition that

n + 3 > 4 and [3μ3]1 = . . . = [3μn+3]1 =
1
2

1 Since the assumptions of this lemma are sufficient, we do not restrict to the interesting
case of a family with a primitive pure (1, n) − V HS.
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and Proposition 2.3.4 imply that

h1,0
3 (C) ≥ (

∑
k≥3

[3μk]1) − 1 = (
∑
k≥3

1
2
) − 1 > 0

and
h0,1

3 (C) ≥
∑
k≥3

(1 − [3μk]1) − 1 = (
∑
k≥3

1
2
) − 1 > 0.

Thus L3 is not unitary.

6.1.10. Assume that C → Pn has a primitive pure (1, n) − V HS. Hence L1

is without loss of generality the eigenspace of type (1, n). For our application
of Lemma 6.1.8 we must check that the collision of Lemma 6.1.8 resp., its
corresponding stable partition yields a family C(P ) → P1, which has a prim-
itive pure (1, 1) − V HS. The family C(P ) is given by N = P with the local
monodromy data

α{ak,...,a�} = αk · . . . · α	 (∀ {ak, . . . , a	} ∈ P )

as in Construction 3.2.1. The fibers of C(P ) have degree m′, where m′ divides
m. For j = 1, . . . ,m′ − 1 and q ∈ M1, the eigenspace Lj(P ) in the Hodge
structure of C(P )q with the character j is given by the local monodromy data

[jμ1]1, [jμ2]1, [jμ3 + . . . + jμk]1, [jμk+1 + . . . + jμn+3]1.

If the eigenspace Lj in the V HS of C is of type (0, a), Proposition 2.3.4
implies that its local monodromy data satisfy

[jμ1]1 + . . . + [jμn+3]1 = 1.

Hence one has that

[jμ1]1 + [jμ2]1 + [jμ3 + . . . + jμk]1 + [jμk+1 + . . . + jμn+3]1 = 1,

too. Thus by Proposition 2.3.4, Lj(P ) is of type (0, a′).
If Lj is of type (a, 0), Lm−j is of type (0, a). The dual eigenspace Lj(P )∨

of Lj(P ) is given by

[(m − j)μ1]1, [(m − j)μ2]1, [(m − j)μ3 + . . . + (m − j)μk]1,
[(m − j)μk+1 + . . . + (m − j)μn+3]1.

The same arguments as above tell us that Lj(P )∨ is of type (0, a′). Thus
Lj(P ) is of type (a′, 0).

The restricted family CM1(P ) → M1 of cyclic covers with 4 different
branch points has a non-trivial variation of Hodge structures. This follows
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from the fact that each fiber of CMn
→ Mn is isomorphic to only finitely

many other fibers (compare to 4.4.2). Therefore the eigenspaces L1(P ) and
Lm′−1(P ) are of type (1, 1). In addition one concludes that m′ = 2 or m′ = m.

Now we are without loss of generality in the case of a family C → P1 with
a primitive pure (1, 1) − V HS. For the proof of Theorem 6.1.7 we need the
following lemma:

Lemma 6.1.11. Let C and C′ be curves and γ : Jac(C) → Jac(C ′) be an
isomorphism of principally polarized abelian varieties. Then there exists a
unique isomorphism f : C → C ′ such that

±γ ◦ αp = αf(p) ◦ f

for each p ∈ C, where αp and αf(p) denote the respective Abel-Jacobi maps.

Proof. By [39], Theorem 12.1, for each p ∈ C and p′ ∈ C ′ there is a unique
isomorphism f : C → C ′ and a unique c ∈ Jac(C ′) such that

±γ ◦ αp + c = αp′ ◦ f.

Since (γ ◦ αp)(p) = 0 ∈ Jac(C ′) and (αp′ ◦ f)(p) = [f(p) − p′] ∈ Jac(C ′), one
has c = 0 for p′ = f(p). ��

By the next proposition, we will apply Lemma 6.1.11 for our proof of
Theorem 6.1.7:

Proposition 6.1.12. Let q1, q2 ∈ Pn and C → Pn be a family of cyclic cov-
ers. Assume there is an isomorphism between the polarized integral Hodge
structures of the fibers Cq1 and Cq2 , which respects the eigenspace decom-
positions of H1(Cq1 , C) and H1(Cq1 , C). Then there is an isomorphism ι :
Cp1 → Cp2 and an isomorphism α : P

1 → P
1 such that the following diagram

commutes:
Cp1

ι ��

��

Cp2

��
P

1 α ��
P

1

Proof. Let γ be an isomorphism of polarized Hodge structures respecting the
eigenspace decompositions of H1(Cq1C) and H1(Cq1C). Then there exists a
suitable pair (ψ1, ψ2) of generators of the Galois groups of Cq1 and Cq1 such
that

γ ◦ (ψ1)∗ = (ψ2)∗ ◦ γ.

For simplicity we write ψ instead of ψ1 and ψ2.
By the exponential exact sequence, an isomorphism γ : H1(Cq1 , Z) →

H1(Cq2 , Z) of polarized Hodge structures commuting with the action of ψ
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on these integral Hodge structures induces an isomorphism γ′ : Jac(Cq1) →
Jac(Cq2) commuting with ψ∗. In other terms one has

γ′ ◦ ψ∗ = ψ∗ ◦ γ′

for the Jacobians.
By Lemma 6.1.11, one obtains a unique isomorphism Cp1

ι→ Cp2 such that

ι ◦ ψ = ψ ◦ ι.

Thus one obtains the desired automorphism α. ��

6.1.13. Now assume that C → Pn has a primitive pure (1, n)−V HS. More-
over one can without loss of generality assume that L1 is the eigenspace of
type (1, n). Choose s1, s2 ∈ N .

If μ1 + μ2 = 1, there remains nothing to prove for these two points with
respect to Theorem 6.1.7.

Otherwise we let the branch points collide as in Lemma 6.1.8, if we are not
in the only exceptional case, which satisfies SINT as we have seen in 6.1.9.
Thus we can restrict to the case C → P1. Assume that all 4 branch points of a
fiber of C → P1 have pairwise different branch indices. By Proposition 6.1.12,
there will not be an isomorphism α between different fibers, which respects
the action of the Galois group. Hence the fractional period map according to
L1|M1 is injective. Now choose the embedding M1 ↪→ P

1 corresponding to

p1 = 0, p3 = 1, p4 = ∞.

By [36], Section 4, one can identify the fractional period map concerning L1

with some multivalued map, which is called Schwarz map. The Schwarz map
is the composition of the multivalued map studied by P. Deligne and G. D.
Mostow in [18], which is defined by some integrals, with the natural map
C

n+1 \ {0} → P
n
C
. By [18], 9.6 and the preceding description of the fractional

period map, there exists a sufficiently small neighborhood U of 0 ∈ P
1 \M1

such that the fractional period map concerning L1 is (up to a biholomorphic
map) given by x → x1−μ1−μ2 on U \ {0}. Hence the injectivity of the period
map implies that (1 − μ1 − μ2)−1 ∈ Z. This yields SINT .

6.1.14. Now we have the problem that we can not directly apply Proposition
6.1.12 as before, if we assume that there are 4 branch points, where exactly
two of them have the same branch index: Let p1 and p4 have the same branch
index and p3 run around p2, where

p1 = 0, p2 = 1, p4 = ∞.

The automorphism x → x−1 interchanges 0 and ∞ and leaves a basis of
neighborhoods of 1 ∈ P

1\M1 invariant. We have obviously the same problem,
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if we let p1 run around p4. But for all other pairs k1, k2 ∈ {1, 2, 3, 4} with
k1 �= k2 and the coordinates

k1 = 0, k3 = 1, k4 = ∞,

Proposition 6.1.12 implies that the multivalued period map is injective on
U \ {0}, where U is a sufficiently small neighborhood of 0 ∈ P

1 \M1. Thus
k1 and k2 satisfy the integral condition

1 − μk1 − μk2 = 0 or (1 − μk1 − μk2)
−1 ∈ Z.

Hence one must ensure that the remaining pairs satisfy this latter condition,
in order to show that SINT is satisfied:

Let us change the enumeration and assume that μ1 = μ2. By Proposition
6.1.12, we can have

1 − μ1 − μ2 =
1
�

or 1 − μ1 − μ2 =
2
�

or 1 − μ1 − μ2 = 0

for some odd � ∈ Z. Note that 1−μ1−μ2 = −(1−μ3−μ4), if μ1+. . .+μ4 = 2.
Hence we only have to exclude the second case

(1 − μ1 − μ2) =
2
�
.

First assume that m is odd. In this case m − 2d1 is odd and the second case
can not occur. Hence assume that m is even and let m = 2sr, where r = k · �
is odd. If the second case holds true, one has

2sk� − 2d1

2sk�
=

2
�
⇔ 2s−1k� − d1 = 2sk ⇔ d1 = 2s−1k(� − 2).

If s ≥ 2, one has that d1 = d2 is even. Since C2 must have a trivial V HS, one
has without loss of generality that d3 = 2s−1k�. Since we have

2m = d1 + . . . + d4,

which is even, where d1, d2, d3 are even, too, d4 must be even. But in this
case the cover is not irreducible. Hence we must have s = 1. Since C2 must
have a trivial V HS, one has without loss of generality d3 = k�. Since we have

2m = d1 + . . . + d4,

which is even, where d1, d2, d3 are odd, one must have that d4 is odd, too. But
in this case Ck	 is the family of elliptic curves and we do not have a primitive
pure (1, 1) − V HS. Therefore the second case is excluded.
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If we have 4 branch points and more than exactly two of them have the
same branch index, one can have the additional simple cases

μ1 = μ2 = μ3 or μ1 = μ2, μ3 = μ4.

For these very simple cases one can directly calculate all occurring examples
of families C → P1 with a primitive pure (1, 1) − V HS. Then one can verify
by their local monodromy data that Theorem 6.1.7 holds true in these cases
as we will do now.

Remark 6.1.15. One must without loss of generality have

d1 < d4 resp., d1 = d2 = d3 < d4 or d1 = d2 < d3 = d4

in the simple cases, if m > 2. Otherwise we would obtain

d1 = d2 = d3 = d4 =
m

2
,

which implies that C is not irreducible, if m > 2.

Lemma 6.1.16. Assume that the family C → P1 with the branch indices
d1 = d2 = d3 �= d4 has a primitive pure (1, 1) − V HS. Then the degree m
is odd and satisfies m ≤ 9. Moreover one has without loss of generality that
d1 = d2 = d3 = 1.

Proof. By the assumptions we have that 2m = 3d1 + d4. Hence g =
gcd(m, d1) = 1 divides d4, too, which implies by the irreducibility of the
fibers of C that g = 1. Thus if m is even, we have that d1 = d2 = d3 and d4

are odd. But in this case Cm
2

would be the family of elliptic curves such that
Lm

2
is of type (1, 1). Contradiction! Hence m must be odd.

It remains to show that m ≤ 9. Since gcd(m, d1) = 1, the fibers are without
loss of generality given by

ym = x(x − 1)(x − λ)

such that L[ m
2 ] is of type (1, 1) as one can calculate by Proposition 2.3.4. By

Proposition 2.3.4, one can calculate the type of Lm−3
2

by its local monodromy
data, too. For this local system one gets that

3[
m − 3
2m

]1 + [
(m − 3)(m − 3)

2m
]1

= 3
m − 3
2m

+(m− 3)
m − 3
2m

− [
(m − 3)(m − 3)

2m
] =

m − 3
2

− [
(m − 3)(m − 3)

2m
].
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Now let us assume that 9 < m. Since m must be odd, we obtain

3[
m − 3

2m
]1 + [

(m − 3)(m − 3)

2m
]1 =

m − 3

2
− [

m − 6

2
+

9

2m
] =

m − 3

2
− m − 7

2
= 2.

This result and Proposition 2.3.4 imply that Lm−3
2

is of type (1, 1) in this
case, too. Hence we do not have a pure (1, 1) − V HS, if 9 < m. ��

Remark 6.1.17. In the case of the preceding lemma one obtains all exam-
ples of families C → P1 with a primitive pure (1, 1) − V HS by m = 5, 7, 9,
which satisfy SINT as one can calculate easily, too.

Remark 6.1.18. If we are in the second simple case d1 = d2 �= d3 = d4, one
obtains

d1 + d3 = d2 + d4 = m.

By the fact that d1 �= d3, one concludes that μ1, μ3 �= 1
2 . Hence the local

monodromy data of L2 satisfy [2μi]1 �= 0 for all i = 1, . . . , 4. Moreover one has

[2μ1]1 + [2μ3]1 = [2μ2]1 + [2μ4]1 = 1.

Hence L2 is of type (1, 1) and C can have a primitive (1, 1) − V HS, only if
m = 3. Thus the only possible case is given by

μ1 = μ2 =
1
3

and μ3 = μ4 =
2
3
,

which satisfies SINT as one can easily verify.

6.2 The application of SINT for the more
complicated cases

In the preceding section we have seen that SINT is a necessary condition
for families C → Pn with a primitive pure (1, n)−V HS. In addition we have
given all examples of families C → P1 with a primitive pure (1, 1) − V HS,
which do not satisfy that at most two branch points have the same branch
index. Here we calculate all examples of families C → P1 with a primitive
pure (1, 1) − V HS, which satisfy that at most two branch points have the
same branch index.

By technical reasons, we will sometimes assume m ≥ 4. Note that the only
possible case of a family C → P1 of degree 3 covers with a pure (1, 1)−V HS
is given by Remark 6.1.18, where the only possible case of degree 2 covers
is given by the elliptic curves. Thus this assumption does not provide any
restriction for the more complicated cases.

Note that in the case of a family C → P1 the condition SINT is equivalent
to INT .
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Remark 6.2.1. By [18], 14.3, one can describe all families of covers C → P1,
whose local monodromy data satisfy INT , such that there is not any pair
k1, k2 ∈ {1, 2, 3, 4} with k1 �= k2 satisfying μk1 + μk2 = 1, in the following
way: Let (p, q, r) ∈ N

3 with 1
p + 1

q + 1
r < 1 and 1 < p ≤ q ≤ r < ∞. Then in

the case of 4 branch points these solutions of INT for covers can be given by:

μ1 =
1
2
(1 − 1

p
− 1

q
+

1
r
), μ2 =

1
2
(1 − 1

p
+

1
q
− 1

r
),

μ3 =
1
2
(1 +

1
p
− 1

q
− 1

r
), μ4 =

1
2
(1 +

1
p

+
1
q

+
1
r
)

We have that

μ1 + μ2 = 1 − 1
p
, μ1 + μ3 = 1 − 1

q
, μ2 + μ3 = 1 − 1

r
.

Thus p ,q, and r divide the degree m of the cover. This fact and the equations,
which use p, q, and r for the definition of the different μi, imply that we have

m = lcm(p, q, r) or m = 2 · lcm(p, q, r).

If we are in the case of a family with a primitive pure (1, 1) − V HS such
that all local monodromy data satisfy μk1 + μk2 �= 1 and at most two branch
points have the same index, we are in the case of Remark 6.2.1 with the
additional condition p < r. Hence let us first consider this case. Later we will
consider families with at most two branch points with the same branch index
and some μk1 + μk2 = 1, which is the last remaining subcase.

Now let � := lcm(p, q, r).

Lemma 6.2.2. Let C → P1 be given by p, q, r as in Remark 6.2.1, where
p < r, and have a primitive pure (1, 1) − V HS. Then one has

1
p

=
1
q

+
1
r
.

Proof. Since p|� resp., p|m, we have the family Cp, which must have a trivial
V HS. This implies that there is a di0 with m

p |di0 , which implies that 	
p |di0 .

Since
di0 = � ± �

p
± �

q
± �

r
or 2di0 = � ± �

p
± �

q
± �

r
,

one concludes that 	
p |(

	
q ± 	

r ). From the fact that 	
p ≥ 	

q and 	
p > 	

r , one
obtains

�

p
=

�

q
+

�

r
. Hence

1
p

=
1
q

+
1
r
.

��
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Lemma 6.2.3. Let C → P1 be a family with a primitive pure (1, 1)− V HS,
which is given by p, q, r as in Remark 6.2.1, where p < r. Then the family C
and the eigenspace L1 are given by the local monodromy data

μ1 =
1
2
− 1

q
, μ2 =

1
2
− 1

r
, μ3 =

1
2
, μ4 =

1
2

+
1
p
.

Proof. By Lemma 6.2.2, we have

1
p

=
1
q

+
1
r
.

This equation and Remark 6.2.1, this imply that C and L1 have the local
monodromy data

μ1 =
1
2
− 1

q
, μ2 =

1
2
− 1

r
, μ3 =

1
2
, μ4 =

1
2

+
1
p
.

��

Remark 6.2.4. Let C → P1 is a family of covers of degree m ≥ 4 with
a primitive pure (1, 1) − V HS satisfying the assumptions of Lemma 6.2.3.
Moreover assume that 3 /∈ (Z/(m))∗. Hence the assumption that C → P1 has
primitive pure (1, 1) − V HS implies that the family C3 must have a trivial
V HS. Thus all fibers of C3 must be isomorphic. Hence they are ramified over
at most 3 points. By Lemma 6.2.3, one concludes that

0 = [
1
2
− 3

q
]1, 0 = [

1
2
− 3

r
]1 or 0 = [

1
2

+
3
p
]1.

Since μ4 = 1
2 + 1

p < 1, one concludes that 2 < p ≤ q ≤ r. Thus one has

p = 6, q = 6 or r = 6.

Hence one can determine all examples of families C → P1 with a primitive
pure (1, 1) − V HS in this case as we will do now:

6.2.5. Keep the assumptions of Remark 6.2.4. In the case p = 6 one has that
[3μ4]1 = 0. One can have q = 7, 8, 9, 10, 11, 12, where q = 12 implies that

1
6

=
1
p
,

1
q

=
1
r

=
1
12

,

which leads to a family with a primitive pure (1, 1)−V HS. Now we verify that
q = 7, 8, 9, 10, 11 do not lead to a family with a primitive pure (1, 1)− V HS:
One must have that L5 is unitary. It has the local monodromy data

μ3 =
1
2

and μ4 = [
1
2

+
5
6
]1 =

1
3
.
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Hence one must have that

1
6
≥ μ1 = [

1
2
− 5

q
]1,

which is satisfied for q = 10, 11, but not for q = 7, 8, 9. For q = 10 we have
that

1
r

=
1
p
− 1

q
=

1
15

.

This leads to a family given by the local monodromy data

μ1 =
4
10

, μ2 =
13
30

, μ3 =
1
2
, μ4 =

2
3
.

One calculates easily that the eigenspace L7 in the V HS of this family is
given by

μ1 =
4
5
, μ2 =

1
30

, μ3 =
1
2
, μ4 =

2
3
.

Hence this family has not a pure (1, 1) − V HS.
For q = 11 we have that

1
p
− 1

q
=

5
66

.

Hence the equation of Lemma 6.2.2 can not be satisfied in this case.

6.2.6. Keep the assumptions of Remark 6.2.4. Moreover assume that q = 6.
In this case we can have p = 3, 4, 5, where p = 3 implies

1
p

=
1
3
,

1
q

=
1
r

=
1
6
,

which yields an example of a family with a primitive (1, 1)−V HS. For p = 4
resp., p = 5 Lemma 6.2.2 and Lemma 6.2.3 yield a family of covers given by
the local monodromy data

μ1 =
1
3
, μ2 =

5
12

μ3 =
1
2
, μ4 =

3
4

resp.,

μ1 =
1
3
, μ2 =

14
30

μ3 =
1
2
, μ4 =

7
10

.

Hence one can easily verify that L5 is an eigenspace of type (1, 1) in both
cases. Thus p = 4, 5 do not lead to a primitive pure (1, 1) − V HS.

6.2.7. Keep the assumptions of Remark 6.2.4. Moreover assume that r = 6.
In this case Lemma 6.2.2 implies that

1
p
≥ 2

r
=

1
3
.
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Hence one has p = 2 or p = 3, where p = 2 would imply that μ4 = 1, and
p = 3 yields the same example of a family with a primitive pure (1, 1)−V HS
as in 6.2.6.

Now we have considered the subcase given by 3 /∈ (Z/(m))∗. We start the
consideration of the subcase given by 3 ∈ (Z/(m))∗ by the following lemma:

Lemma 6.2.8. Let C → P1 be a family with a primitive pure (1, 1)− V HS,
which satisfies that each μk1 + μk2 �= 1. Then one has m > 4.

Proof. We know that one must have m ≥ 4 in the considered case. Thus we
must only exclude m = 4. Since for a family C of degree 4 covers with a
primitive pure (1, 1)−V HS the family C2 must have a trivial V HS, one has
without loss of generally d1 = 2. By the assumption that each μk1 +μk2 �= 1,
one concludes that d1, d2, d3 are not equal to 2. Hence d1, d2, d3 are odd. But
this contradicts our assumptions, which imply that we have the even sum

2m = d1 + . . . + d4.

��

Remark 6.2.9. Keep the assumption of Lemma 6.2.3. If m > 4, the
eigenspace L3 is not of type (1, 1). Assume that 3 is a unit in Z/(m). Thus
Lemma 6.2.8 implies for the local monodromy data of L3 that

∑
μi = 3 or∑

μi = 1. Recall that μ3 = 1
2 . Hence

∑
μi = 3 implies that

μ1, μ2, μ4 >
1
2
.

By Lemma 6.2.3, one concludes that

μ1 =
3
2
− 3

q
and μ2 =

3
2
− 3

r
.

By Lemma 6.2.2, this implies that

μ4 = 3 − μ1 − μ2 − μ3 = 3 − 3
2

+
3
q
− 3

2
+

3
r
− 1

2
= −1

2
+

3
p

+
3
q

= −1
2

+
3
p

in this case. This implies that p, q, r < 6.
In the case

∑
μi = 1 one gets μ1, μ2, μ4 < 1

2 . By Lemma 6.2.2 and Lemma
6.2.3, this implies that

μ1 =
1
2
− 3

q
, μ2 =

1
2
− 3

r
and μ4 = −1

2
+

3
p

such that p < 6 and q, r > 6.
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Remark 6.2.10. The case p, q, r < 6 does not yield any example of a fam-
ily with a primitive pure (1, 1) − V HS, since no triple (p, q, r) ∈ N

3 with
2 ≤ p ≤ q ≤ r < 6 satisfies both

1
p
− 1

q
=

1
r

and
1
p

+
1
q

+
1
r

< 1

as one can check by calculation for each example.

6.2.11. Assume that we are in the case p < 6 and q, r > 6. Since 1
p + 1

q = 1
r ,

one has 1
p ≤ 21

q such that 6 < q ≤ 2p and 3 < p < 6. Hence one has two
cases: p = 4 or p = 5. Thus by using that 1

p − 1
q = 1

r , one calculates that only
the examples given by

p = 4, q = r = 8 and p = 5, q = r = 10

have a primitive pure (1, 1) − V HS in this case.

Now we consider the last remaining case of a family C → P1 with a primi-
tive pure (1, 1)− V HS. In this case there are at most 2 branch indices equal
and one has some μk1 + μk2 = 1.

Lemma 6.2.12. Let C → P1 a family of cyclic covers. If there are k1, k2 ∈
{1, 2, 3, 4} such that dk1 + dk2 = m with d1 ≤ d2 ≤ d3 ≤ d4, then one has

d1 + d4 = m and d2 + d3 = m.

Proof. (quite easy to see) ��

Remark 6.2.13. By the preceding lemma, we have that d1 + d4 = d2 +
d3 = m, if there are k1, k2 ∈ {1, 2, 3, 4} such that dk1 + dk2 = m with
d1 ≤ d2 ≤ d3 ≤ d4. Hence if d1 + d3 = m resp., d3 = d4, one gets d1 = d2,
too. But this contradicts the assumption that at most 2 branch indexes are
equal. Hence by SINT , one gets

μ1 + μ2 = 1 − 1
p

< 1, μ1 + μ3 = 1 − 1
q

< 1, μ2 + μ3 = 1

with p, q ∈ N and p ≤ q. Hence one obtains similarly to Remark 6.2.1 with
1
p + 1

q < 1:

μ1 =
1
2
(1 − 1

p
− 1

q
), μ2 =

1
2
(1 − 1

p
+

1
q
),

μ3 =
1
2
(1 +

1
p
− 1

q
), μ4 =

1
2
(1 +

1
p

+
1
q
)
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Lemma 6.2.14. Assume that the local monodromy data of Remark 6.2.13
yield a family of degree m ≥ 4 with a primitive pure (1, 1)−V HS. Then one
has p = q and m is even.

Proof. In the case of Remark 6.2.13 the eigenspace L2 is given by the local
monodromy data

μ1 = 1 − 1
p
− 1

q
, μ2 = [1 − 1

p
+

1
q
]1, μ3 = [

1
p
− 1

q
]1, μ4 =

1
p

+
1
q
.

Thus in this case L2 is of type (1, 1), if and only if p < q. Hence one can
obtain a primitive pure (1, 1) − V HS, only if p = q. Now p = q implies that
μ2 = μ3 = 0 for the local monodromy data of L2. Hence the family of covers
has an even degree. ��

Proposition 6.2.15. Assume that the local monodromy data of Remark
6.2.13 yield a family of degree m ≥ 4 with a primitive pure (1, 1) − V HS.
Then p = q ≤ 6.

Proof. By the preceding lemma, the assumptions imply that p = q. Hence by
Remark 6.2.13, we have:

μ1 =
p − 2
2p

, μ2 = μ3 =
1
2
, μ4 =

p + 2
2p

(6.1)

If p > 6, then L3 has the local monodromy given by

μ1 =
p − 6
2p

, μ2 = μ3 =
1
2
, μ4 =

p + 6
2p

.

Hence Proposition 2.3.4 implies that L3 is of type (1, 1) in this case. ��

Lemma 6.2.16. Assume that the local monodromy data of Remark 6.2.13
yield a family of degree m ≥ 4 with a primitive pure (1, 1) − V HS. Then p
must be even.

Proof. Assume that p is odd. Since gcd(p − 2, 2p) = 1 in this case, one gets
a family of degree 2p with branch indices

d1 = p − 2, d2 = d3 = p, d4 = p + 2.

Thus all branch indices are odd, and Cp is a family of elliptic curves such that
Lp is of type (1, 1). Contradiction! ��

Remark 6.2.17. Keep the assumptions of the preceding lemma. Since one
must have μ1 > 0, the preceding proposition and (6.1) imply that

3 ≤ p ≤ 6.

Since p = q must be even, one can only have p = 4 and p = 6.
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1. For p = 4 one obtains the example of a family with a primitive pure
(1, 1) − V HS given by

μ1 =
1
4
, μ2 = μ3 =

1
2
, μ4 =

3
4
.

2. If p = 6 one has the example of a family with a primitive pure (1, 1)−V HS
given by

μ1 =
1
3
, μ2 = μ3 =

1
2
, μ4 =

2
3
.

6.3 The complete lists of examples

In this section we give the complete lists of examples of families C → Pn

with primitive pure (1, n)-variations of Hodge structures and derived pure
(1, n)-variations of Hodge structures.

By our preceding calculations, we get the following complete list of families
of covers C → P1 with a primitive pure (1, 1) − V HS, where “ref” denotes
the number of the preceding remark, lemma, proposition or point yielding
the respective example:

number degree branch points with branch index genus ref

1 2 1 1 1 1 1 (known)

2 3 1 2 2 1 2 6.1.18

3 4 1 2 2 3 2 6.2.17, (1)

4 5 1 3 3 3 4 6.1.17

5 6 1 4 4 3 3 6.2.6, 6.2.7

6 6 2 3 3 4 2 6.2.17, (2)

7 7 2 4 4 4 6 6.1.17

8 8 2 5 5 4 5 6.2.11

9 9 3 5 5 5 7 6.1.17

10 10 3 6 6 5 6 6.2.11

11 12 4 7 7 6 7 6.2.5

We will later see that each derived pure (1, n) − V HS is in fact a derived
pure (1, 1)−V HS. In the next section we will verify that we get the following
complete list of families of covers C → P1 with a derived pure (1, 1)− V HS,
where Nr0 means the number of Cr0 in the preceding list, which has the
corresponding primitive pure (1, 1) − V HS:

degree branch points with branch index genus r0 Nr0

4 1 1 1 1 3 2 1

6 1 1 1 3 4 3 1

6 1 2 2 1 4 2 2



6.4 The derived variations of Hodge structures 137

Note that any family C → Pn with a primitive pure (1, n) − V HS satisfies
SINT , which implies INT . Hence by consulting the list of [18] on page 86,
which contains all examples satisfying INT for n ≥ 2, and the computation
of the types of the eigenspaces of the corresponding covers), we have the
following complete list of families of covers with a primitive pure (1, n)−V HS
for n > 1:

degree branch points with branch index genus

3 2 1 1 1 1 3

4 2 2 2 1 1 3

5 2 2 2 2 2 6

6 3 3 3 2 2 4

3 1 1 1 1 1 1 4

In [11] R. Coleman formulated the following conjecture:

Conjecture 6.3.1. Fix an integer g ≥ 4. Then there are only finitely many
complex algebraic curves C of genus g such that Jac(C) is of CM type.

Remark 6.3.2. J. de Jong and R. Noot [29] resp., E. Viehweg and K. Zuo
[58] have given counterexamples of families with infinitely many CM fibers
for g = 4, 6. In our lists here we have counterexamples for g = 5, 7.

J. de Jong and R. Noot resp., E. Viehweg and K. Zuo needed to find a fiber
with CM for the proofs that their examples of families have infinitely many
CM fibers. In the proof of Theorem 4.4.4, which implies that the examples of
this section have dense set of complex multiplication fibers, we did not need
to find one CM fiber first.

By the fact that our examples C → Mn with a dense set of CM fibers
satisfy that n + 1 branch points have the same branch index, Theorem 2.4.4
yields the CM -type of one CM fiber and hence by Lemma 1.7.3, the CM -
type of a dense set of CM fibers.

6.4 The derived variations of Hodge structures

In this section we determine the families of cyclic covers with a derived pure
(1, n) − V HS and verify that the list of examples in the preceding section is
complete.

Remark 6.4.1. Assume that the family C of degree dm covers has a derived
pure (1, n) − V HS induced by Cd. Let

d = pn1
1 · . . . · pnt

t
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be the decomposition of d into its prime factors. Then there exists a family
of covers of degree p1m with a derived pure (1, n) − V HS. Hence there are
two cases to consider first: d is a prime number and divides m, or d is a prime
number and does not divide m.

Lemma 6.4.2. Let p be a prime number. Assume that d is a prime number
such that gcd(d, p) = 1. Then a family C of covers of degree p · d with a
derived pure (1, n)−V HS induced by Cd can not exist, if all Dehn twists yield
semisimple matrices with respect to the monodromy representation of Ld.

Proof. Since Cp must have a trivial V HS, there exists a d2 such that d divides
d2. Moreover there is a d1 such that d does not divide d1. Hence gcd(d, d1 +
d2) = 1. by the fact that Cd has the property that its local monodromy
data satisfy μ1 + μ2 �= 1, one concludes that gcd(p, d1 + d2) = 1, too. Hence
[d1 + d2]dp is a unit in Z/(dp). Thus there exists a d0 ∈ (Z/(dp))∗ such that
d0[d1 + d2]dp = 1. One obtains that the sum of the integers of {1, . . . , p − 1}
representing [d0d1]dp and [d0d2]dp is given by dm + 1. By Proposition 2.3.4,
one concludes that Ld0 is not of type (0, n + 1). Moreover the fact that the
local monodromy data of Ld0 satisfy

μ1 + μ2 =
dp + 1

dp
, μ3 ≤ dp − 1

dp
, μ4 + . . . + μn+3 < n

tells us that
μ1 + . . . + μn+3 < n + 2.

Hence one concludes by Proposition 2.3.4 that Ld0 is not of type (n + 1, 0),
too. ��

Lemma 6.4.3. Let m = 2tp, where p �= 2 is a prime number and t ≥ 1.
Assume that d is a prime number such that gcd(d,m) = 1. Then a family C
of degree m · d covers with a derived pure (1, n) − V HS, which is induced by
Cd, can not exist.

Proof. Since C2 must have a trivial V HS, one has d1 = . . . = dn = 2t−1dp.
By the fact that Cp must have a trivial V HS, we obtain that 2td divides n
different branch indices. Since there must be at least two different branch
indices, which are not divided by d, dn+2 and dn+3 are not divided by d. By
the fact that d1 = . . . = dn = 2t−1dp is not divided by 2td, one must have
n = 1 and that 2td divides d2. Moreover the facts that

d1 + . . . + d4 ∈ (m) = (2tpd) and 2|d2

imply without loss of generality that 2 does not divide d3. We have two cases:
Either p|d3 or this does not hold true. In the first case one has that 2, p and d
do not divide d2 +d3. Hence d2 +d3 is a unit, and again we use the argument
that there is a d0 ∈ (Z/(dm))∗ such that [d0d2 + d0d3] = 1.
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In the other case d3 yields a unit of Z/(dm). Hence we have without loss
of generality d3 = 1. Thus g := gcd(dm, d1 + d3) ∈ {1, 2}. If g = 1, we are
done again. Otherwise we must have t = 1, if g = 2. Hence

[(pd − 2)(d1 + d3)]dm = pd + pd − 2 = dm − 2

such that Lpd−2 is neither of type (0, n + 1) nor of type (n + 1, 0), since the
fact that 2td divides d2 implies that [(pd − 2)d2]dm �= [1]dm. ��

Lemma 6.4.4. Let p be a prime number and m = pt with t ≥ 2. Assume
that d is a prime number such that gcd(d, p) = 1. Then there can not be a
family C of degree m · d covers with a derived pure (1, n) − V HS, which is
induced by Cd.

Proof. Since Cp must have a trivial V HS, one concludes without loss of gen-
erality that dpt−1 divides d1, . . . , dn. Since d and p divide

dpt = d1 + . . . + dn+3,

too, p resp., d does not divide at least two different elements of {dn+1, dn+2,
dn+3}. Hence there is an element of {dn+1, dn+2, dn+3}, which is not divided
by both d and p. Without loss of generality dn+1 is a unit in Z/(2td). Hence
one has without loss of generality [d1 + dn+1]dm = [1]dm. ��

There are only few remaining examples, which do not satisfy the assump-
tions of the preceding lemmas. One of these examples is considered in the
following lemma:

Lemma 6.4.5. Let d �= 3 be a prime number. There can not be a family of
covers of degree 3d with a derived pure (1, 2) − V HS induced by Cd given by
the local monodromy data

μ1 = . . . = μ4 =
1
3
, μ5 =

2
3
.

Proof. Let gcd(d, 3) = 1 and C be a family of degree 3d with a derived
pure (1, 2) − V HS. Since C3 should have a trivial V HS, one has with a new
enumeration d|d1 and d|d2. Moreover one has without loss of generality that
d3 and d4 are not divided by d. Hence d divides neither d1 + d3 nor d2 + d4.
Moreover the local monodromy data of Cd tell us that 3 does not divide d1+d3

or d2 + d4. Hence without loss of generality d1 + d3 is a unit in Z/(3d) such
there is a d0 ∈ (Z/(3d))∗ with the property that [d0d1 + d0d3]3d = 1, which
implies that Ld0 is of type (1, 2) or of type (2, 1). ��

The reader checks easily that all examples of families with a primitive
pure (1, n)− V HS satisfy with two exceptions the assumptions of one of the
preceding lemmas. These two exceptions yield examples of families with a
derived pure (1, n) − V HS as we will see now.
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6.4.6. Now we consider the case of the elliptic curves. Let d be a prime
number with gcd(d, 2) = 1 and C be a family of degree d · 2 covers with
a derived pure (1, 1) − V HS induced by Cd. Thus d1, . . . , d4 must be odd.
Without loss of generality we have d4 = d, since C2 must have a trivial
V HS. Since d3 = d would imply that L1 is of type (1, 1), one has that
d1, d2, d3 ∈ (Z/(2d))∗. We have two cases. Either d1 = d2 or this does not
hold true. In the first case we put d1 = d2 = d − 2. One has

2d < d1 + d2 + d4 < 2 · 2d

such that L1 is of type (1, 1), if 4 < d. Thus one can have d = 3. In this case
one has a family of degree 6 covers, where d4 = 3. Hence one must have

μ1 = μ2 = μ3 =
1
6
, μ4 =

1
2
.

In the second case, one puts d3 = d−2. This implies that d3 +d4 = 2d−2.
Since d1 �= d2, one can not have d1 = d2 = 1 such that L1 is of type (1, 1) in
this case.

6.4.7. Now we consider the case number 2 in the list of examples with a
primitive pure (1, 1)−V HS. Let d be a prime number with gcd(d, 3) = 1 and
C be a family of degree d·3 covers with a derived pure (1, 1)−V HS induced by
Cd. Assume without loss of generality that d divides d1 and d1+ . . .+d4 = 3d.
We have 2 cases: Either d divides d2, d3 or d4, or d does not divide d2, d3 and
d4. In the first case one has without loss of generality that d divides d2. Since
d divides d1 and d1 + . . . + d4 = 3d, one concludes that d1 = d2 = d. This
implies that L2 is of type (1, 1) such that d = 2. In addition one concludes
that

d1 = d2 = 2, d3 = d4 = 1.

In the second case one has that 3 does not divide d(d1 + di) for exactly
one k ∈ {2, 3, 4}, which follows by the branch indices in the case number 2.
Hence 3 does not divide d1 + dk. Moreover d does not divide d1 + dk, too.
Hence d1 + dk ∈ (Z/(3d))∗.

Proposition 6.4.8. Let d be a prime number, which divides m and C be
a family of covers of degree md. Assume a Dehn twist yields a semisimple
matrix of maximal order m with respect to the monodromy representation of
Ld. Then C can not have a derived pure (1, n) − V HS induced by Cd.

Proof. Assume without loss of generality that ρd(T1,2) yields a matrix of
order m. In this case [d(d1 + d2)] ∈ Z/(dm) has the order m. Hence the fact
that d divides m implies that d1 + d2 ∈ (Z/(dm))∗. ��

Remark 6.4.9. One can easily check that the assumptions of the preceding
proposition are satisfied for all examples of families with a primitive pure
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(1, n)−V HS except of the case of elliptic curves. In this case we have in fact
an example of a family of degree 4 covers with a derived pure (1, 1) − V HS.
Without loss of generality we have

d1 + . . . + d4 = 4.

Hence the only possibility is given by

d1 = . . . = d4 = 1.

6.4.10. In the case of the elliptic curves we have families of degree 6 and
degree 4 covers with a derived pure (1, 1) − V HS. Hence one must check
that there is not a family of degree 8, 12 or 18 covers with derived pure
(1, 1) − V HS in this case.

First we check that there is not a family C of degree 8 covers with a derived
pure (1, 1)−V HS. Otherwise one has such a family C of degree 8 covers such
that C2 is the family of degree 4 covers with a derived pure (1, 1) − V HS.
This implies that each dk satisfies [dk]4 = [1]4 or each dk satisfies [dk]4 = [3]4.
Moreover one has without loss of generality that d1 + . . . + d4 = 8. Hence it
is not possible that each dk satisfies [dk]4 = [3]4. Thus the only possibility is
(up to the numbering) given by

d1 = d2 = d3 = 1, d4 = 5.

But in this case L3 is of type (1, 1). Thus there can not exist a family of
degree 8 covers with a derived pure (1, 1) − V HS.

There can not be a family of degree 12 covers with a derived pure (1, 1)−
V HS induced by C6. Otherwise one has that C3 the example of degree 4
covers with a derived pure (1, 1) − V HS. Thus one concludes that

[d1]4 = . . . = [d4]4 = [1]4 or [d1]4 = . . . = [d4]4 = [3]4.

Since one has without loss of generality that d1 + . . . + d4 = 12, the only
possibilities are given by

d1 = d2 = 5, d3 = d4 = 1 and d1 = 9, d2 = d3 = d4 = 1.

In the first case L2 is of type (1, 1) and in the second case L5 is of type (1, 1).
There can not be a family of degree 18 covers with a derived (1, 1)−V HS

induced by C9. Otherwise one has that C3 is the example of degree 6 covers
with a derived pure (1, 1) − V HS induced by the elliptic curves. Thus one
concludes that

[d1]6 = . . . = [d3]6 = [1]6 and [d4]6 = [3]6
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or
[d1]6 = . . . = [d3]6 = [5]6 and [d4]6 = [3]6.

Since one has without loss of generality that d1 + . . . + d4 = 18, the only
possibilities are given by:

d1 = 13, d2 = d3 = 1, d4 = 3

d1 = d2 = 7, d3 = 1, d4 = 3

d1 = 7, d2 = d3 = 1, d4 = 9

d1 = d2 = d3 = 1, d4 = 15

d1 = d2 = d3 = 5, d4 = 3.

One has that L5 is of type (1, 1) in case 1, L2 is of type (1, 1) in case 2, L5 is
of type (1, 1) in case 3, L7 is of type (1, 1) in case 4 and L2 is of type (1, 1)
in case 5.

6.4.11. It remains to show that there can not exist a degree 12 cover with a
derived (1, 1) − V HS induced by the degree 3 cover given by

d1 = d2 = 1, d3 = d4 = 2.

Otherwise one has such a family C of degree 12 covers such that C2 is the
family of degree 6 covers with a derived pure (1, 1) − V HS by the degree 3
example above. Thus one concludes that

[d1]6 = [d2]6 = [2]6 and [d3]6 = [d4]6 = [1]6

or
[d1]6 = [d2]6 = [4]6 and [d3]6 = [d4]6 = [5]6

Since one has without loss of generality that d1 + . . . + d4 = 12, the only
possibilities are given by

d1 = 8, d2 = 2, d3 = d4 = 1 and d1 = d2 = 2, d3 = 7, d4 = 1.

One has that L5 is of type (1, 1) in the first case and one has that L3 is of
type (1, 1) in the second case.



Chapter 7
The construction of Calabi-Yau
manifolds with complex multiplication

In this chapter we explain the basic construction methods of Calabi-yau
manifolds with complex multiplication and give a first new example. We
call a family of Calabi-Yau n-manifolds, which contains a dense set of fibers
X such that the Hodge group of the Hodge structure on Hk(X, Q) is a torus
for all k, a CMCY family of n-manifolds.

In Section 7.1 we explain the technical facts, which we will need for the con-
struction of CMCY families. By using the mirror construction of C. Borcea
[9] and C. Voisin [60], we give a method to construct an infinite tower of
CMCY families in Section 7.2. In Section 7.3 we discuss the construction
method of E. Viehweg and K. Zuo [58]. By using this method given by a
tower of cyclic covers, E. Viehweg and K. Zuo [58] have constructed an ex-
ample of a CMCY family of 3-manifolds. We finish this chapter with the
example

P
3 ⊃ V (y4

2 + y4
1 + x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1

of a family of K3 surfaces with a dense set of CM fibers. This example is
obtained from the Viehweg-Zuo tower, which starts with the family

P
2 ⊃ V (y4

1 + x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1

of curves. This family has a dense set of CM fibers by the previous chapter.
By some of its involutions the family of K3 surfaces above is suitable for the
construction of a Borcea-Voisin tower.

7.1 The basic construction and complex multiplication

Now we have finished our considerations on Hodge structures of cyclic covers
of P

1. We start with the second part, which is devoted to the construction
of families of Calabi-Yau manifolds with dense set of complex multiplication
fibers.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 143
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5 8,
c© Springer-Verlag Berlin Heidelberg 2009
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In the works of C. Borcea [8], [9], of E. Viehweg and K. Zuo [58] and of
C. Voisin [60] the methods to obtain higher dimensional Calabi-Yau mani-
folds contain one common basic construction. In this section we describe this
construction and explain how it yields complex multiplication. For this con-
struction we use Kummer coverings. Let A − B be a principal divisor with

(f) = A−B for some f ∈ C(X). The Kummer covering given by C(X)(m

√
A
B )

is nothing but the normalization of X in C(X)( m
√

f).
Let V1 and V2 be irreducible complex algebraic manifolds and A resp., B

be a bundle of irreducible algebraic manifolds with universal fiber A resp.,
B over V1 resp., V2. Moreover let Z resp., Σ be a cyclic Galois cover of
A resp., a cyclic Galois cover of B of degree m over V1 resp., V2 ramified
over a smooth divisor. We assume that the irreducible components of these
ramification divisors intersect each fiber of Z resp., Σ transversally in smooth
subvarieties of codimension 1. Thus we assume that Z and Σ are given by
Kummer coverings of the kind

C(W ) = C(X)(m

√
D1 + . . . + Dk

Dm
0

),

where D1, . . . , Dk are (reduced) smooth prime divisors, which do not intersect
each other.

Example 7.1.1. By a cyclic degree 2 cover S → R of surfaces (or in general
algebraic varieties), one has an involution on S. Let us assume that the surface
S is a smooth K3 surface. Moreover assume that there exists an involution
ι on S, which acts via pull-back by −1 on Γ(ωS). It has the property that
it fixes at most a divisor D, whose support consists of smooth curves, which
do not intersect each other (see [60], 1.1). Moreover by [60], 1.1, to give an
involution ι on S, which acts by −1 on Γ(ωS), is the same as to give a cyclic
degree 2 cover S → R of smooth surfaces. In this case R is rational, if and
only if D �= 0.

We consider the following commutative diagram, which yields the basic
construction:

Z × Σ
γ �� Y ′ α �� A× B �� V1 × V2

Z̃ × Σ
γ̃ ��

β

��

Ỹ α̃ ��

δ

��

Π̂

ζ

�� (7.1)

First we explain the upper line of this diagram: The cyclic covers Z and Σ
can locally be described by equations of the type

ym =
∏

i=1,...,k

fi(x1, . . . , xj)
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over any open affine set A of A resp., B, where fi is the (reduced) equation
of Di in A. The Galois transformations are given by

(y, x1, . . . , xj)
gk→ (e2π

√
−1 k

m y, x1, . . . , xj)

for some k ∈ Z/(m). Hence we have a natural identification between Z/(m)
and the Galois groups given by [k]m → gk. By the description of the covers
above in terms of Kummer coverings, this identification is independent of the
chosen open affine subset. Now γ is the quotient by

G := 〈(1, 1)〉 ⊂ G′ := Gal(Z;A) × Gal(Σ;B),

and α is the quotient by G′/G. The morphism ζ is given by the blowing
up of the fiber product of the supports of the branch divisors of Z and Σ.
Moreover δ is the blowing up along the singular points of Y ′, which is given
by the intersection locus of the ramification divisors, and β is the blowing up
with respect to the corresponding inverse image ideal sheaf. Hence α̃ and γ̃ are
the unique cyclic covers obtained by the universal property of the blowing up
(compare to [26], II. Corollary 7.15). By the construction of α, one can easily
check that α̃ is not ramified over the exceptional divisor. Hence the branch
locus of α̃ is smooth. This implies that Ỹ is smooth, too. The ramification
locus of γ̃ is given by the smooth exceptional divisor of β, since G leaves the
generators of the inverse image ideal sheaf invariant as one can see by the
following remark:

Remark 7.1.2. Now we describe Z̃ × Σ. A neighborhood of the preimage
point p ∈ Z ×Σ of a singular point can be identified with an open neighbor-
hood of 0 ∈ C

2 × B, where B is a ball of suitable dimension and the Galois
group acts via (x1, x2) → (e

2πi
m x1, e

2πi
m x2) with respect to the coordinates on

C
2. Due to [6], III. Proposition 5.3, each singular point of Y ′ has an ana-

lytic neighborhood isomorphic to V (xm = ym−1z)×B. Hence locally we have
the product of a cover of surfaces with B. One should have B in mind. But
for the description of Z̃ × Σ, it is sufficient to consider only covers of sur-
faces. The inverse image ideal sheaf with respect to this cover is generated by
{xm−i

1 xi
2 : i = 0, 1, . . . ,m}. By the Veronese embedding for relative projective

manifolds, one can easily identify the blowing up with respect to this ideal
with the blowing up with respect to the ideal generated by {x1, x2}. But this
is the blowing up of the origin resp., the preimage point of the singular point.
Hence Z̃ × Σ is given by the blowing up of the reduced preimage γ−1(S),
where S is the singular locus of Y ′.

Now we have described the basic construction. Next we see that this con-
struction yields complex multiplication. We use following fact:

Proposition 7.1.3. For all ã ∈ A, and b̃ ∈ B, we have the following tensor
product of rational Hodge structures on the fibers:
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Hn(Zã × Σb̃, Q) =
⊕

a+b=n

Ha(Zã, Q) ⊗ Hb(Σb̃, Q)

such that

Hr,s(Zã × Σb̃) =
⊕

p+p′=r,q+q′=s

Hp,q(Zã) ⊗ Hp′,q′
(Σb̃)

Proof. (follows from [61], Théorème 11.38) ��
We want to construct higher dimensional varieties with complex multipli-

cation. The first main tool is:

Proposition 7.1.4. Let h1 and h2 be rational polarized Hodge structures.
Then

h3 = h1 ⊗ h2

is of CM type, if and only if h1 and h2 are of CM type.

Proof. (see [8], Proposition 1.2) ��
By the fact that Y ′ is not smooth, but the blowing up Ỹ is smooth, Ỹ

will be our candidate for a family of Calabi-Yau manifolds with dense set of
complex multiplication fibers. Hence we must consider the behavior of the
Hodge structures under blowing up:

Lemma 7.1.5. Let X be an algebraic manifold of dimension n and X̃ be
the blowing up X with respect to some submanifold Z ⊃ X of codimen-
sion 2. Then Hg(Hk(X̃, Z)) is commutative, if and only if Hg(Hk(X, Z))
and Hg(Hk−2(Z, Z)) are commutative, too.

Proof. By [61], Théorème 7.31, we have an isomorphism

Hk(X, Z) ⊕ Hk−2(Z, Z) ∼= Hk(X̃, Z)

of Hodge structures, where Hk−2(Z, Z) is shifted by (1, 1) in bi-degree. Since

Hg(Hk(X̃, Z)) = Hg(Hk(X, Z) ⊕ Hk−2(Z, Z)) ⊂ Hg(Hk(X, Z)) × Hg(Hk−2(Z, Z))

such that the natural projections

Hg(Hk(X̃, Z)) → Hg(Hk(X, Z)) and Hg(Hk(X̃, Z)) → Hg(Hk−2(Z, Z))

are surjective (see Lemma 2.4.1), we obtain the result. ��
Corollary 7.1.6. Let X be a smooth surface and X̃ be the blowing up of
some point p ∈ X. Then X has complex multiplication, if and only if X̃ has
complex multiplication, too. Moreover we obtain that

Hg(H2(X̃, Z)) ∼= Hg(H2(X, Z)).



7.2 The Borcea-Voisin tower 147

Now we want to consider the behavior of the fibers. Hence for simplicity
we assume now that V1 = V2 = Spec(C) in diagram (7.1). By the fact that Ỹ
has the Hodge structure given by the Hodge sub-structure of Z̃ × Σ invariant
under the Galois group, one concludes:

Theorem 7.1.7. If for all k the groups Hg(Hk(Z, Q)), Hg(Hk(Σ, Q)) and
Hg(Hk(Zi, Q)) are commutative,1 then Hg(Hk(Ỹ , Q)) is commutative for all
k, too.

Remark 7.1.8. At first sight the condition that for all k the groups
Hg(Hk(Z, Q)), Hg(Hk(Σ, Q)) and Hg(Hk(Zi, Q)) have to be commuta-
tive may seem to be a little bit restrictive. But by the Hodge diamond of a
Calabi-Yau n-manifold with n ≤ 3 or the Hodge diamond of a Calabi-Yau
n-manifold given by a projective hypersurface, one sees that the condition
that all its Hodge groups are commutative is equivalent to the condition that
it has complex multiplication. Moreover we will need this condition for an
inductive construction of families of Calabi-Yau manifolds with dense set of
complex multiplication fibers in arbitrary high dimension in the next section.

7.2 The Borcea-Voisin tower

Recall that we want to construct families of Calabi-Yau manifolds with a
dense set of CM fibers. Hence let us now define Calabi-Yau manifolds:

Definition 7.2.1. A Calabi-Yau manifold X of dimension n is a compact
Kähler manifold of dimension n such that Γ(Ωi

X) = 0 for all i = 1, . . . , n − 1
and ωX

∼= OX .

By the construction of the preceding section, which we will use, we need
more and we get more than only complex multiplication. Hence let us define,
which we will get:

Definition 7.2.2. A CMCY family X → B of n-manifolds is a (smooth)
family of Calabi-Yau manifolds of dimension n, which has a dense set of fibers
Xb satisfying the property that Hg(Hk(Xb, Q)) is commutative for all k.

In this section the degree m of all cyclic covers, which will occur, is equal
to 2. We apply the construction of a Calabi-Yau manifold with an involution
by two Calabi-Yau manifolds with involutions by C. Borcea [9]. This yields an

1 One needs in fact the condition that each Hg(Hk(Zi, Q)) is commutative. The argument
is similar to the argument in the proof of Proposition 10.3.2.
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iterative construction of CMCY families with involutions in arbitrary high
dimension by CMCY families in lower dimension.2

Construction 7.2.3. Let Z1 → M be a CMCY family of n-manifolds
covering the A bundle A with ramification locus R1, which satisfies the
assumptions for Z in diagram (7.1). Moreover let Σi be a CMCY family
Σi → M(i) of ni-manifolds covering the Bi bundle Bi over M(i) with ramifi-
cation locus R(i), which satisfies the assumptions for Σ in diagram (7.1), for
all 1 < i ∈ N.

Let us assume that there is a dense subset of points m(i) ∈ M(i) resp.,
p ∈ M, which have the property that each Hg(Hk((Σi)m(i) , Q)) and each
Hg(Hk(R(i)

m(i) , Q)) resp., each Hg(Hk((Z1)p, Q)) and each Hg(Hk((R1)p, Q))
is commutative.

We define an iterative tower of covers

Zi → V (i) := M×M(2) × . . . ×M(i)

given by
Zi = Ỹi,

where Ỹi is obtained from Ỹ in the diagram (7.1) with V1 = V (i−1), V2 =
M(i), Σ = Σi and Z = Zi−1 for all i ∈ N. Let us call such a construction
Borcea-Voisin tower.

The assumption that we have ramification in codimension 1 on the fibers
of a family of Calabi-Yau manifolds leads to the important property that the
corresponding involutions act by −1 on the global sections of their canonical
sheaves, as we see by the following Lemma:

Lemma 7.2.4. Let C be a Calabi-Yau manifold and ι be an involution on
it. Assume that the points fixed by ι are given by a non-trivial smooth divisor
D. Then ι acts by −1 on H0(C,ωC).

Proof. By our assumptions, the induced natural cyclic cover γ : C → C/ι is
ramified over a smooth non-trivial divisor D such that C/ι is smooth. Hence
one has a cyclic cover of manifolds and one can apply the Hurwitz formula
(compare [6], I. 16). Since C has a trivial canonical divisor, the Hurwitz
formula implies that OC(−D) ∼= γ∗(ωC/ι). This implies that ωC/ι does not
contain any global section. Since ωC/ι yields the eigenspace for the character
1 of γ∗(ωC) (see [20], §3), the character of the action of ι on H0(C,ωC) is not
given by 1. Thus it is given by −1. ��

2 The construction of C. Borcea is repeated in Proposition 7.2.5. By C. Voisin [60], the same
construction was used to construct Calabi-Yau 3-manifolds by K3-surfaces with involutions
and elliptic curves. This is the reason that our construction here is called “Borcea-Voisin
tower”. Here this construction is introduced as a systematic method to construct Calabi-
Yau manifolds with complex multiplication in an arbitrary dimension which has never been
done by C. Borcea or C. Voisin in this way.
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Proposition 7.2.5. Assume that γ1 : C1 → M1 and γ2 : C2 → M2 are cyclic
covers of degree 2 with the involutions ι1 and ι2 and ramification divisors
D1 ⊂ C1 and D2 ⊂ C2, which are not trivial and consist of disjoint smooth
hypersurfaces. Moreover assume that C1 and C2 are Calabi-Yau manifolds of
dimension n1 and n2. Let ˜C1 × C2 denote the blowing up of C1 × C2 with
respect to D1 ×D2. Then by the involution on ˜C1 × C2 given by (ι1, ι2), one
obtains a cyclic cover γ : ˜C1 × C2 → C such that C is a Calabi-Yau manifold.

Proof. We assume that each Ci is a Calabi-Yau manifold such that ht,0(Ci) =
0 for all t = 1, . . . , ni − 1. By the assumption that one has the ramification
divisors D1 and D2 and Lemma 7.2.4, the corresponding involution of each
γi acts by −1 on each ωCi

. Thus one concludes that hj,0(C) = 0 for all
j = 1, . . . , (n1 + n2) − 1.

The canonical divisor K
C̃1×C2

of ˜C1 × C2 is given by the exceptional di-

visor E of the blowing up ˜C1 × C2 → C1 × C2. Moreover the ramification
divisor R of γ coincides with E. Hence by the Hurwitz formula ([6], I.16), we
have

O
C̃1×C2

(R) ∼= O
C̃1×C2

(K
C̃1×C2

) = ω
C̃1×C2

∼= γ∗(ωC) ⊗O
C̃1×C2

(R).

Thus one concludes that γ∗(ωC) ∼= O.
Since ι1 and ι2 act by the character −1, the involution (ι1, ι2) on ˜C1 × C2

leaves the global sections of ω
C̃1×C2

invariant. Now recall that γ∗(ωC̃1×C2
)

consists of a direct sum of invertible sheaves, which are the eigenspaces
with respect to the characters of the Galois group action. By [20], §3, the
eigenspace for the character 1 is given by ωC . Thus ωC has a non-trivial
global section. Hence the canonical divisor of C satisfies (up to linear equiva-
lence) KC ≥ 0. Thus by the fact that γ∗(ωC) ∼= O, we have the desired result
KC ∼ 0. ��

Altogether one has the following result:

Theorem 7.2.6. Each family Zi → M×M(2) × . . .×M(i) obtained by the
Borcea-Voisin tower is a CMCY family of n + n2 + . . . + ni-manifolds.

Proof. The statement that each (Zi)p is a Calabi-Yau manifold follows fiber-
wise by induction. By the assumptions, we have the result for n = 1. First by
induction, one can show that the ramification loci are given by smooth divi-
sors. By using this fact and the induction hypothesis, one can apply Lemma
7.2.4 such that each involution acts by the character −1 on each Γ(ω). Hence
the assumptions of Proposition 7.2.5 are satisfied, which provides the induc-
tion step.

Next we show the statement about the commutativity of all Hodge groups
over a dense subset of the basis. Due to the situation described in diagram
(7.1) the connected components of the ramification locus (Ri+1)p×m(i+1) of
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(Zi+1)p×m(i+1) over p × m(i+1) ∈ V (i) ×M(i+1) are given by the connected
components of (Zi)p ×R

(i+1)

m(i+1) and by the connected components of (Ri)p ×
(Σi+1)j , where (Ri)p is the ramification locus of (Zi)p.

Hence it is sufficient to use an inductive argument and to show the follow-
ing Claim: ��

Claim 7.2.7. Assume that for all k the Hodge group Hg(Hk((Zi)p, Z))
is commutative and each connected component Z of the ramification lo-
cus (Ri)p satisfies that each Hg(Hk(Z, Z)) is commutative. In addition we
assume that for all k the Hodge group Hg(Hk(Σi+1)m(i+1) , Z)) is commu-
tative and each connected component Zi+1 of R

(i+1)

m(i+1) satisfies that each
Hg(Hk(Zi+1, Z)) is commutative. Then for all k each connected component
Z̃ of (Ri+1)p×m(i+1) satisfies that each Hg(Hk(Z̃, Z)) is commutative and for
all k Hg(Hk((Zi+1)p×m(i+1) , Z)) is commutative.

Proof. By the assumptions of this claim and the description of Ri+1 above,
one obtains obviously that the connected components Z̃ of (Ri+1)p×m(i+1)

satisfy that each Hg(Hk(Z̃, Z)) is commutative. Then one must simply use
Theorem 7.1.7 and one obtains that each Hg(Hk(Zi+1)p×m(i+1) , Z)) is com-
mutative, too. ��

7.3 The Viehweg-Zuo tower

By the Borcea-Voisin tower, one can construct CMCY families of manifolds
in arbitrary high dimension. But one needs CMCY families of manifolds (in
low dimension) with a suitable involution, which can be used to be Z1 or
some Σi. One way to obtain some suitable CMCY families of n-manifolds
(in low dimension) is given by the Viehweg-Zuo tower, which we introduce
now.

E. Viehweg and K. Zuo [58] have constructed a tower of projective algebraic
manifolds starting with a family F1 of cyclic covers of P

1 given by

P
2 ⊃ V (y5

1 + x1(x1 − x0)(x1 − αx0)(x1 − βx0)x0) → (α, β) ∈ M2,

which has a dense set of CM fibers. This is one example of a family of cyclic
covers, which has a primitive pure (1, 2) − V HS as one can easily verify by
using Proposition 2.3.4. Since each of these covers given by the fibers of the
family can be embedded into P

2, the fibers of F1 are the branch loci of the
fibers of a family F2 of cyclic covers of P

2 of degree 5. Moreover the fibers
of F2, which can be embedded into P

3, are the branch loci of the fibers of a
family F3 of cyclic covers of P

3, which can be embedded into P
4. The family

F3 is given by

P
4 ⊃ V (y5

3 + y5
2 + y5

1 + x1(x1 − x0)(x1 − αx0)(x1 − βx0)x0) → (α, β) ∈ M2.
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The fibers of F3 are Calabi-Yau 3-manifolds. By an inductive argument, this
latter family has a dense set of CM points on the basis given by the dense set
of the CM points of the family of curves we have started with (see [58]). Since
only the Hodge group of the Hodge structure on H3(X, Q) of a projective
hypersurface X ⊂ P

4 can be non-trivial, the family F3 is a CMCY family of
3-manifolds.

Example 7.3.1. By Theorem 2.4.4, the fibers of F1 isomorphic to

V (y5
1 + x5

1 + x5
0), V (y5

1 + x1(x4
1 + x4

0)), V (y5
1 + x1(x3

1 + x3
0)x0) ⊂ P

2

have CM . Thus the fibers of F3 isomorphic to

V (y5
3+y5

2+y5
1+x5

1+x5
0), V (y5

3+y5
2+y5

1+x1(x4
1+x4

0)), V (y5
3+y5

2+y5
1+x1(x3

1+x3
0)x0) ⊂ P

4

have CM , too.

Example 7.3.2. We consider the CMCY family F3

P
4 ⊃ V (y5

3 + y5
2 + y5

1 + x1(x1 − x0)(x1 − αx0)(x1 − βx0)x0) → (α, β) ∈ M2

constructed by E. Viehweg and K. Zuo. On each fiber (F3)p the involution ι
given by

ι(y3 : y2 : y1 : x1 : x0) = (y2 : y3 : y1 : x1 : x0)

leaves the smooth divisor Dp given by the equation y3 = y2 invariant. More-
over one has that Dp

∼= (F2)p. Therefore there is a dense set of points p ∈ M2,
which have the property that for all k the Hodge groups of Hk(Dp, Q) and
Hk((F3)p, Q) are commutative. Hence one can use F3 to be Z1 or some Σi for
the construction of a Borcea-Voisin tower of CMCY families of n-manifolds.

Example 7.3.3. Let Fd denote the Fermat curve of degree d > 2. The curve
Fd has complex multiplication (see [22] and [32]). By the construction of E.
Viehweg and K. Zuo in [58], one concludes that the Calabi-Yau manifold Hd

given by

V (
d−1∑
i=0

xd
i ) ⊂ P

d−1

has complex multiplication. Since Hd is a projective hypersurface, this implies
that Hd has only commutative Hodge groups. We have the involution ιa
given by

(xd−1 : . . . : x2 : x1 : x0) → (xd−1 : . . . ;x2 : x0 : x1)

on Hd. If d is even, one has the additional involution ιb given by

(xd−1 : . . . : x1 : x0) → (xd−1 : . . . : x1 : −x0).
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The involution ιa resp., ιb (if it is given on Hd) fixes the points of a smooth
divisor on Hd, which is isomorphic to

V (
d−2∑
i=0

xd
i ) ⊂ P

d−2.

Therefore by the same arguments as in Example 7.3.2, one can use Hd to be
Z1 or some Σi with M = Spec(C), resp., M(i) = Spec(C) for the construction
of a Borcea-Voisin tower of CMCY families of n-manifolds.

We want to start the construction of a Viehweg-Zuo tower (of projective
hypersurfaces as in [58] or the construction of a modified version) with a
family of cyclic covers C → Mn of P

1 with a dense set of CM fibers. For the
smoothness of the higher dimensional fibers of the resulting families, we will
use the assumption that the fibers of C are given by

V (ym + x(x − 1)(x − a1) . . . (x − an)) ⊂ A
2, (7.2)

where m divides n + 3 such that all branch indices coincide.
By our preceding results, we have only the following examples of fami-

lies of cyclic covers of P
1 with a dense set of CM fibers, which satisfy this

assumption:

degree m number of ramification points of the fibers

2 4

2 6

3 6

4 4

5 5

Remark 7.3.4. The case with m = 2 and 4 ramification points is the case
of elliptic curves, which has been considered by C. Borcea in [8]. The case
with m = 5 yields the example by E. Viehweg and K. Zuo in [58].

The case with m = 3 is one of the examples of a family of covers of P
1

with a dense set of CM fibers by J. de Jong and R. Noot [29]. We must a
bit work to give a suitable modified construction of a Viehweg-Zuo tower for
this example. The next chapter is devoted to this modified construction of a
Viehweg-Zuo tower.

In the case of the family C → M3 of genus 2 curves the author does not
see a possibility for the construction of a Viehweg-Zuo tower.3

3 One natural choice for an embedding of the fibers of the family of genus 2 curves is given by
the weighted projective space P(3, 1, 1). But the canonical divisor of the desingularization
of P(3, 1, 1) does not allow a natural construction of a Viehweg-Zuo tower as in the case of
P(2, 1, 1), which we will see in the next chapter for the degree 3 case.
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The case with m = 4 yields the Shimura- and Teichmüller curve of M.
Möller [41], which provides the example of the next section.

7.4 A new example

Here we see that the Shimura- and Teichmüller curve of M. Möller yields
an example of a Viehweg-Zuo tower. Moreover we will see that the result-
ing CMCY family of 2-manifolds is endowed with some involutions, which
make it suitable for the construction of a Borcea-Voisin tower. In addition
we give some explicit CM fibers and try to decide, which involutions provide
isomorphic quotients resp., isomorphic CMCY families by the construction
of a Borcea-Voisin tower.

Proposition 7.4.1. The family C2 → M1 given by

P
3 ⊃ V (y4

2 + y4
1 + x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1

is a CMCY family of 2-manifolds.

Proof. It is well-known that a hypersurface of P
3 of degree 4 is a K3-surface.

By [58], Notation 2.2, and Corollary 8.5, we have that λ0 is a CM -point
of C2, if λ0 is a CM -point of the family C1 → M1 given by

P
2 ⊃ V (y4

1 + x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1.

Note that C1 has in fact a dense set of CM fibers, since it has a derived
pure (1, 1)−V HS as we have seen. Since only the Hodge group of the Hodge
structure on H2(X, Q) can be non-trivial for a K3-surface X (follows by
definition resp., by the Hodge diamond of a K3-surface), the family C2 is a
CMCY family of 2-manifolds. ��

Now we give some examples of CM fibers of C2:

Remark 7.4.2. Consider the family E → M1 of elliptic curves given by

P
2 ⊃ V (y2x0 + x1(x1 − x0)(x1 − λx0)) → λ ∈ M1.

Note that C1 has a derived pure (1, 1) − V HS, where E has the associated
primitive pure (1, 1) − V HS. Thus the Hodge structure decomposition of
Proposition 4.2.2 tells us that the fiber (C1)λ has CM , if the fiber Eλ has
CM . In the proof of Proposition 7.4.1 we have seen that (C2)λ has CM , if
(C1)λ has CM . Thus by the CM fibers of E , we can determine CM fibers
of C2.
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Example 7.4.3. By Remark 7.4.2, the well-known CM curves with j
invariant 0 and 1728 yield CM fibers of C2 isomorphic to

V (y4
2 + y4

1 + (x3
1 − x3

0)x0), V (y4
2 + y4

1 + x4
1 + x4

0) ⊂ P
3.

Theorem 2.4.4 yields the same examples.

Example 7.4.4. By [26], IV. Proposition 4.18, one concludes that an elliptic
curve has complex multiplication, if it has a non-trivial isogeny with itself.
The elliptic curve with j invariant 8000 resp., -3375 is given by

y2x0 = x1(x1−x0)(x1−(1+
√

2)2x0) resp., y2x0 = x1(x1−x0)(x1−
1

4
(3+i

√
7)2x0)

and has an isogeny of degree 2 with itself. Moreover the elliptic curve with
j invariant 1728 has an isogeny of degree 2 with itself. This follows from the
solution of [26], IV. Exercise 4.5, which we will partially sketch. Thus the
K3 surfaces given by

y4
2 +y4

1 +x1(x1−x0)(x1−(1+
√

2)2x0)x0 and y4
2 +y4

1 +x1(x1−x0)(x1−
1

4
(3+i

√
7)2x0)x0

have complex multiplication.
We sketch how we obtain the given examples: First note that each degree

2 cover u : P
1 → P

1 is up to a changement of coordinates given by x → x2.
This follows from the fact that u has two ramification points by the Hurwitz
formula. Without loss of generality the elliptic curve E is endowed with a
degree two cover i : E → P

1 such that there exists a λ such i is ramified over
0, 1, λ,∞ resp., E is locally given by

V (y2 − x(x − 1)(x − λ)) ⊂ A
2. (7.3)

Since an isogeny f : E → E is a morphism of abelian varieties, one concludes
that for each (x, y) = f(P ) ∈ E one has f(−P ) = −(x, y) = (x,−y). Hence
one concludes that there exist the degree 2 covers uf : P

1 → P
1 and hf :

E → P
1 such that

i ◦ f = uf ◦ hf .

It is a very easy exercise to check that uf can be given by x → x2 in this case
for some suitable λ, which yields E. Thus one concludes that hf is ramified
over

1,−1,
√

λ,−
√

λ,

which follows from considering the ramification indices. By a changement of
coordinates, E is given by

0, 1,
(
√

λ + 1)2

(
√

λ − 1)2
,∞,
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too. Note that λ and 1−λ yield the same elliptic curve. We substitute t =
√

λ
and resolve the equations

t2 =
(t + 1)2

(t − 1)2
and t2 = 1 − (t + 1)2

(t − 1)2

by using the computer algebra program MATHEMATICA in the case of
the ground field C. This yields the stated elliptic curves E with an isogeny
f : E → E of degree 2. It remains to prove the completeness of the given
examples, which is a well-known fact.

Example 7.4.5. Elliptic curves with CM has been well studied by number
theorists. In [55], Appendix C, §3 there is a list of 13 isomorphy classes of
elliptic curves with complex multiplication containing all classes represented
by the preceding 4 examples. Two examples of the list, which have the j
invariants 54000 and 16581375, are given by the equations

y2 = x3 − 15x + 22, y2 = x3 − 595x + 5586.

The equations allow an explicit determination of involutions on these exam-
ples. The given equations for the 7 remaining isomorphy classes of elliptic
curves do not allow an immediate description of involutions.

As we will see, the family C2 has some involutions, which make it suitable
for the construction of a Borcea-Voisin tower. The following lemma is obvious:

Lemma 7.4.6. Over the basis M1 the family C2 has three involutions
given by

ι1(y2 : y1 : x1 : x0) = (−y2 : y1 : x1 : x0), ι2(y2 : y1 : x1 : x0) = (y2 : −y1 : x1 : x0),

ι3(y2 : y1 : x1 : x0) = (−y2 : −y1 : x1 : x0),

which constitute with the identity map a subgroup of the M1-automorphism
group of C2 isomorphic to the Kleinsche Vierergruppe.

Remark 7.4.7. Over M1 there are at least the 4 following additional invo-
lutions on C2:

ι4(y2 : y1 : x1 : x0) = (y1 : y2 : x1 : x0), ι5(y2 : y1 : x1 : x0) = (iy1 : −iy2 : x1 : x0),

ι6(y2 : y1 : x1 : x0) = (−y1 : −y2 : x1 : x0), ι7(y2 : y1 : x1 : x0) = (−iy1 : iy2 : x1 : x0)

Theorem 7.4.8. By the involutions ι1 and ι4, the family C2 can be used to
be Z1 or some Σi for the construction of a Borcea-Voisin tower of CMCY
families of n-manifolds.
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Proof. The divisor of the fiber (C2)λ, which is fixed by ι1 resp., ι4 is given by
y2 = 0 resp., y2 = y1. Hence both divisors are smooth and isomorphic to the
fiber (C1)λ given by

P
2 ⊃ V (y4

1 + x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1.

We use the same arguments as in the proof of Proposition 7.4.1: If (C1)λ

has complex multiplication, then (C2)λ and the divisor fixed by ι1 resp., ι4
have complex multiplication, too. Hence by the fact that C1 has a dense
set of complex multiplication fibers, C2 and ι1 resp., C2 and ι4 satisfy the
assumptions of Construction 7.2.3. ��

Remark 7.4.9. By the fact that

ι2 = ι4 ◦ ι1 ◦ ι4,

the involution ι2 is suitable for the construction of a Borcea-Voisin tower,
too. But according to the construction of C. Voisin [60], this implies that ι2
yields a CMCY family of 3-manifolds over M1 ×M1, which is isomorphic
to the corresponding family obtained by ι1.

Let α denote the M1-automorphism of C2 given by

(y2 : y1 : x1 : x0) → (iy2 : y1 : x1 : x0).

One calculates easily that

ι5 = α ◦ ι4 ◦ α−1, ι6 = α2 ◦ ι4 ◦ α−2, ι7 = α−1 ◦ ι4 ◦ α.

Hence one has that C2/ι4, . . . , C2/ι7 resp., the resulting CMCY families of
3-manifolds obtained by the method of C. Voisin [60] are isomorphic as M1-
schemes resp., as M1 ×M1-schemes.

Since
ι3 = ι1ι2,

the involution ι3 acts by id on each Γ(ω(C2)λ
) such that it can not be used

for the construction of a Borcea-Voisin tower.

Remark 7.4.10. By Example 7.4.3, Example 7.4.4 and Example 7.4.5, one
has 6 explicitly given elliptic curves with CM and explicitly given involutions,
which yields 6 K3 surfaces with CM . By using the method of C. Voisin
[60], these examples yield 36 explicitly given fibers with CM for each of our
resulting CMCY family of 3-manifolds.

Remark 7.4.11. The author does not see a way to conjugate ι1 into ι4.
Moreover we will see that the fibers of the resulting CMCY families of 3-
manifolds constructed with ι1 and ι4 according to C. Voisin [60] have the same
Hodge numbers. This means that the question for isomorphisms between
these two families remains open.



Chapter 8
The degree 3 case

In this chapter we give a modified construction of a Viehweg-Zuo tower,
which yields a CMCY family of 2-manifolds suitable for the construction of
a Borcea-Voisin tower.

Let R1 the desingularization of the weighted projective space P(2, 1, 1),
which is obtained from blowing up the singular point. We start with the
family C of curves given by

R1 ⊃ V (y3 −x1(x1 −x0)(x1 −a1x0)(x1 −a2x0)(x1 −a3x0)x0) → (a1, a2, a3) ∈ M3.

This family has a dense set of CM fibers. Since the degree of these covers of
P

1 does not coincide with the sum of their branch indices, it is not possible
to work with usual projective spaces. Thus we work with weighted projective
spaces P(2, . . . , 2, 1, 1) resp., their desingularizations to obtain Calabi-Yau
hypersurfaces and a tower of cyclic coverings similar to the construction of
E. Viehweg and K. Zuo [58]. For this construction we have to recall some
facts and to make some preparations in Section 8.1. In Section 8.2 we give
our modified version of the construction of Viehweg and Zuo, which yields a
CMCY family of Calabi-Yau 2-manifolds. Let R2 be the desingularization
of the weighted projective space P(2, 2, 1, 1), which is obtained from blow-
ing up the singular locus. The CMCY family of Calabi-Yau 2-manifolds is
given by

R2 ⊃ Ṽ (y3
2+y3

1−x1(x1−x0)(x1−a1x0)(x1−a2x0)(x1−a3x0)x0) → (a1, a2, a3) ∈M3.

We indicate some involutions of this family, which make it suitable for the
construction of a Borcea-Voisin tower, in Section 8.3.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 157
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5 9,
c© Springer-Verlag Berlin Heidelberg 2009
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8.1 Prelude

Recall that the usual projective space P
n is given by Proj(C[zn, . . . , z1, z0]),

where each zj (with j = 0, . . . , n) has the weight 1. Our weighted projective
space Qn is given by Proj(C[yn, . . . , y1, x1, x0]), where each yj (with j =
1, . . . , n) has the weight 2, and x0 and x1 have the weight 1.

First we investigate and describe the projective space Qn. The following
well-known Lemma will be very useful here:

Lemma 8.1.1. (Veronese embedding) Let R be a graded ring. Then we have

Proj(R) ∼= Proj(R[d]).

Proposition 8.1.2. The weighted projective space Qn is isomorphic to the
irreducible singular hypersurface in P

n+2 given by the equation z1z3 = z2
2 .

The singular locus of Qn is given by V (z1, z2, z3).

Proof. By the Veronese embedding, we have

Qn ∼= Proj(k[x2
0, x0x1, x

2
1, y1, . . . , yn]).

Therefore we obtain a closed embedding of Qn into P
n+2 given by

x2
0 → z1, x0x1 → z2, x2

1 → z3, y1 → z4, . . . , yn → zn+3.

We have that Qn\V (x2
0) is isomorphic to A

n+1. Hence dim(Qn) = n+1, which
implies that its projective cone, which is contained in A

n+3, has the dimension
n + 2. By [26], I. Proposition 1.13, each irreducible component of dimension
n+2 of this cone is given by an ideal generated by one irreducible polynomial.
The corresponding polynomial of the unique irreducible component of Qn is

f(z1, z2, z3) = z1z3 − z2
2 ,

since each point p ∈ Qn ⊂ P
n+2 satisfies f(p) = 0 and f is irreducible. The

last statement about the singular locus follows from calculating the partial
derivatives of f . ��

Let a1, . . . , a2m ∈ C, and m ∈ N \ {1}. Then C(n) ⊂ Qn is the subvariety,
which is given by the homogeneous polynomial

ym
n + . . . + ym

1 + (x1 − a1x0) . . . (x1 − a2mx0).

It is a very easy exercise to check that this polynomial is irreducible.

Proposition 8.1.3. There exists a homogeneous polynomial G ∈ C[z1, z2, z3]
of degree m such that C(n) ⊂ P

n+2 is given by the ideal generated by h and
f , where
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h = zm
n+3 + . . . zm

4 + G.

Proof. We can obviously choose a polynomial G such that

G(x2
0, x0x1, x

2
0) = (x1 − a1x0) . . . (x1 − a2mx0).

Now let h = zm
n+3 + . . . zm

4 + G, and

φ : C[z1, . . . , zn+3] → C[x2
0, x0x1, x

2
1, y1, . . . , yn]

be the homomorphism associated to the closed embedding Qn ↪→ P
n+2, which

has the kernel (f). We obtain

φ(h) = ym
n + . . . + ym

1 + (x1 − a1x0) . . . (x1 − a2mx0).

Hence C(n) ⊂ P
n+2 is given by the prime ideal

φ−1(I(C(n))) = (h, f).

��

Proposition 8.1.4. The singular locus of C(n) is given by C(n)∩V (z1, z2, z3).

Proof. On Qn\V (x0) ∼= Spec(C[x1, y1, . . . , yn]) the hypersurface C(n) is given
by the equation

0 = ym
n + . . . + ym

1 + (x1 − a1) . . . (x1 − a2m).

By the partial derivatives of the polynomial on the right hand, one can easily
check that there are no singularities of C(n) in this affine subset. The same
arguments give the same statement for Qn \ V (x1). Hence all singularities of
C(n) are contained in V = V (z1, z2, z3). For all P ∈ C(n) ∩ V , the Jacobian
matrix of C(n) at P does not have the maximal rank 2, where this is obtained
by explicit calculation of the partial derivatives of f and h. ��

8.1.5. The variety Qn has a natural interpretation as degree 2 cover of the
variety given by {z2 = 0} ramified over {z1 = z2 = 0} and {z2 = z3 = 0}.
Hence by blowing up V = V (z1, z2, z3), the proper transform Rn := Q̃n

V is
the natural degree 2 cover of the proper transform of {z2 = 0} ramified over
the disjoint proper transforms of {z1 = z2 = 0} and {z2 = z3 = 0}. Thus Rn

is non-singular.
Note that the general construction of the blowing up yields a natural

embedding of an open subset of Rn into A
n+2 × P

2. Hence the Jacobian
matrix at each point of Rn has the maximal rank 3 with respect to this
local embedding. The Jacobian matrix of the proper transform C̃n of C(n) is
given by adding the line of the partial derivatives of h to the Jacobian matrix
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of Rn. Without loss of generality we are on the open subset {y1 = 1}. On the
exceptional divisor E the polynomial G vanishes. Thus all points of C̃n ∩ E
satisfy

ym
n + . . . + yn

2 + 1 = 0.

Hence for each p ∈ C̃n ∩E there is a partial derivative ∂h/∂yi(P ) �= 0. Since
all partial derivatives of the equations defining Rn with respect to yi vanish,
the Jacobian matrix of C̃n has the maximal rank 4 at each point on the
exceptional divisor. Thus C̃n is smooth.

Remark 8.1.6. Note that Q1 has a natural interpretation as projective clo-
sure of the affine cone of a rational curve of degree 2 in P

2. By [26], V.
Example 2.11.4, one has that R1, which is the blowing up of the unique
singular point given by the vertex of the cone, is a rational ruled surface
isomorphic to P(OP1 + OP1(2)), where the exceptional divisor has the self-
intersection number −2.

By [26], II. Proposition 8.20, one has for n ≥ 1:

ωQn\V (z1,z2,z3) = ωPn+2\V (z1,z2,z3) ⊗ I(Qn \ V (z1, z2, z3)) ⊗OQn\V (z1,z2,z3)

= OQn\V (z1,z2,z3)(−(n + 1)V (z4))

By [4], Theorem 2.7 and the fact that the self-intersection number of the
exceptional divisor is −2, the pull-back of the canonical divisor of Q1 with
respect to the blowing up morphism is the canonical divisor of R1. Note that
the canonical divisor of Q1 yields the canonical divisor of Q1 \ {s}, where s
denotes the singular point. Thus:

Corollary 8.1.7. The canonical divisor of R1 is given by −2V (z4).

The following lemma describes the construction of this section. One has
the following commutative diagram of closed embeddings:

C(0)

��

�� . . .

��

�� C(n)

��

�� C(n+1)

��

�� . . .

��
Q0

��

�� . . .

��

�� Qn

��

�� Qn+1

��

�� . . .

��
P

2 �� . . . ��
P

n+2 ��
P

n+3 �� . . .

The ideal sheaf of each blowing up C̃n → C(n) and Rn → Qn is generated
by z1, z2, z3. Moreover this ideal sheaf is obviously the inverse image ideal
sheaf of the ideal sheaf generated by z1, z2, z3 with respect to all embeddings.
Hence we obtain by [26], II. Corollary 7.15 for V := V (z1, z2, z3):
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Lemma 8.1.8. We have the commutative diagram

C̃0

��

�� . . .

��

�� C̃n

��

�� C̃n+1

��

�� . . .

��
R0

��

�� . . .

��

�� Rn

��

�� Rn+1

��

�� . . .

��
P̃

2
V

�� . . . �� P̃n+2
V

�� Pn+3
V

�� . . .

of closed embeddings.

Remark 8.1.9. Note that C(0) = C̃0, C(1) = C̃1 and Q0 = R0.

Theorem 8.1.10. The canonical divisor of Rn is given by −(n + 1)Ṽ (z4)
for n ≥ 1.

Proof. By Corollary 8.1.7, we have the statement for n = 1.
We use induction for higher n. Let En denote exceptional divisor of

the blowing up Rn → Qn. The open subset Rn\En is isomorphic to
Qn\V (z1, z2, z3). We know that −(n + 1)Ṽ (z4) is the canonical divisor of
Qn\V (z1, z2, z3). Hence we conclude that

KRn+1 = −(n + 2)Ṽ (z4) + zEn+1

for some z ∈ Z. We have that Rn ∼ Ṽ (z4) in Cl(Rn+1). By the induction
hypothesis, we have

ORn(−(n + 1)Ṽ (z4)) ∼= ωRn ∼= ORn+1(Ṽ (z4)) ⊗ ωRn+1 ⊗ORn

such that z = 0 and −(n + 2)Ṽ (z4) is the canonical divisor of Rn+1. ��

Since we want to construct a family of Calabi-Yau manifolds, we note:

Theorem 8.1.11. The hypersurface C̃m−1 ⊂ Rm−1 is a Calabi-Yau mani-
fold.

Proof. By Theorem 8.1.10, −mṼ (z4) is the canonical divisor of Rm−1. Hence
[26], II. Proposition 8.20 and C̃m−1 ∼ mṼ (z4) imply that

ωC̃m−1
= OC̃m−1

.

By the fact that hq,0 is a birational invariant of non-singular projective vari-
eties (see [26], page 190), and Rm−1 is birationally equivalent to P

m, we obtain
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that hq,0(Rm−1) = 0 for all 1 ≤ q ≤ m. By Hodge symmetry and Serre dual-
ity, we obtain that hq(Rm−1,O) = 0 for all 1 ≤ q ≤ m and hq(Rm−1, ω) = 0
for all 0 ≤ q ≤ m−1. Since the canonical divisor of Rm−1 is linearly equivalent
to −C̃m−1, we obtain the exact sequence

0 → ωRm−1 → ORm−1 → OC̃m−1
→ 0.

This implies that hi(C̃m−1,O) = 0 for 1 ≤ i < m − 1 = dim(C̃m−1). Hence
C̃m−1 is a Calabi-Yau manifold. ��

8.1.12. The projection P
n+2 \ {(1 : 0 : . . . : 0)} → P

n+1 given by

(zn+3 : . . . : z1) → (zn+2 : . . . : z1)

induces a cyclic cover C(n+1) → Qn of degree m ramified over C(n). The
Galois group is generated by

(zn+3 : zn+2 : . . . : z1) → (ξzn+3 : zn+2 : . . . : z1),

where ξ is a primitive m-th. root of unity.
Recall the commutative diagram of Lemma 8.1.8. Let A

4 be given by
{z4 = 1} ⊂ P

4 and A
3 be given by {z4 = 1} ⊂ P

3. Then the projection above
yields a morphism

f : A
4 × P

2 → A
3 × P

2. (8.1)

Since the blowing up yields natural embeddings of open subsets of C̃2 and
R1 into the varieties of (8.1), f induces a rational map C̃2 → R1. Now this
rational map C̃2 → R1 is again a cyclic cover of degree m with the Galois
group as above (on the open locus of definition). On the complements of the
exceptional divisors it coincides with the cyclic cover C(2) → Q1 above. Hence
by gluing, one has a cyclic cover C̃2 → R1 ramified over C(1).

8.2 A modified version of the method of Viehweg
and Zuo

The following construction is a modified version of the construction in [58],
Section 5. Here we show that C̃2 has CM , if C(1) has CM . In the next section
we will use the construction of the preceding section to define a family of K3-
surfaces. In this section we give the argument that this family of K3-surfaces
is a CMCY family of 2-manifolds.

For our application, it is sufficient to consider the situation fiberwise and
to work with P

1-bundles over P
1 resp., with rational ruled surfaces. Let πn :



8.2 A modified version of the method of Viehweg and Zuo 163

Pn → P
1 denote the rational ruled surface given by P(OP1 ⊕ OP1(n)) and

σ denote a non-trivial global section of OP1(6), which has the six different
zero points represented by a point q ∈ M3. The sections Eσ, E0 and E∞ of
P(O ⊕O(6)) are induced by

id ⊕ σ : O → O ⊕O(6), id ⊕ 0 : O → O ⊕O(6)

and 0 ⊕ id : O(6) → O ⊕O(6)

resp., by the corresponding surjections onto the cokernels of these embeddings
as described in [26], II. Proposition 7.12.

Remark 8.2.1. The divisors Eσ and E0 intersect each other transversally
over the 6 zero points of σ. Recall that Pic(P6) has a basis given by a fiber
and an arbitrary section. Hence by the fact that Eσ and E0 do not intersect
E∞, one concludes that they are linearly equivalent with self-intersection
number 6. Since E∞ is a section, it intersects each fiber transversally. Thus
one has that E∞ ∼ E0 − (E0.E0)F , where F denotes a fiber. Therefore one
concludes

E∞.E∞ = E∞.(E0 − (E0.E0)F ) = −(E0.E0) = −6.

Next we establish a morphism μ : P2 → P6 over P
1. By [26], II. Proposition

7.12., this is the same as to give a surjection π∗
2(O ⊕O(6)) → L, where L is

an invertible sheaf on P2. By the composition

π∗
2(O⊕O(6)) = π∗

2(O)⊕π∗
2O(6) ↪→

3⊕
i=0

π∗
2O(2i) = Sym3(π∗

2(O⊕O(6))) → OP2(3),

where the last morphism is induced by the natural surjection π∗
2(O⊕O(2)) →

OP2(1) (see [26], II. Proposition 7.11), we obtain a morphism μ∗ of sheaves.
This morphism μ∗ is not a surjection onto OP2(3), but onto its image
L ⊂ OP2(3). Locally over A

1 ⊂ P
1 all rational ruled surfaces are given

by Proj(C[x])[y1, y2], where x has the weight 0. Hence we have locally that
π∗

2(O ⊕O(6)) = Oe1 ⊕Oe2. Over A
1 the morphism μ∗ is given by

e1 → y3
1 , e2 → y3

2

such that the sheaf L = im(μ∗) ⊂ OP2(3) is invertible. Thus the morphism
μ : P2 → P6 corresponding to μ∗ is locally given by the ring homomorphism

(C[x])[y1, y2] → (C[x])[y1, y2] via y1 → y3
1 and y2 → y3

2 .
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Construction 8.2.2. One has a commutative diagram

Y ′ τ ′
�� P′

2

μ′
��
P

1 × P
1

Ŷ τ̂ ��

ρ

��

δ

��

P̂2

μ̂ ��

ρ2

��

δ2

��

P̂6

ρ6

��

δ6

��

Y τ

3
√

μ∗Eσ
3·(μ∗E0)red

��

π

��

P2
μ

3
√

E∞+6·F
E0

��

π2

��

P6

π6

��
P

1 id ��
P

1 id ��
P

1

of morphisms between normal varieties with:

(a) δ, δ2, δ6, ρ, ρ2 and ρ6 are birational.
(b) π is a family of curves, π2 and πd are P

1-bundles.
(c) All the horizontal arrows (except for the ones in the bottom line) are

Kummer coverings of degree 3.

Proof. One must only explain δ6 and ρ6. Recall that Eσ is a section of P(O⊕
O(6)), which intersects E0 transversally in exactly 6 points. The morphism
ρ6 is the blowing up of the six intersection points of E0 ∩ Eσ. The preimage
of the six points given by q ∈ M3 with respect to π6 ◦ ρ6 consists of the
exceptional divisor D̂1 and the proper transform D̃2 of the preimage of these
six points with respect to ρ6 given by 6 rational curves with self-intersection
number −1. The morphism δ6 is obtained by blowing down D̃2. ��

Remark 8.2.3. The section σ has the zero divisor given by some q ∈ P3.
Hence one obtains μ∗(Eσ) ∼= Cq, where C → P3 denotes the family of cyclic
covers of P

1 with a pure (1, 3)−V HS of degree 3. Since τ is the unique cyclic
degree 3 covering of P2

∼= R1 ramified over μ∗(Eσ) ∼= Cq, the surface Y is
isomorphic to some K3-surface C̃2 of the preceding section.

Recall that Fn denotes the Fermat curve of degree n.

Proposition 8.2.4. The surface Y is birationally equivalent to Cq ×
F3/〈(1, 1)〉.1

Proof. Let Ẽ• denote the proper transform of the section E• with respect
to ρ6. Then μ̂ is the Kummer covering given by

1 Similarly to [58], Construction 5.2, we show that Y ′ is birationally equivalent to Cq ×
F3/〈(1, 1)〉.
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3

√
Ẽ∞ + 6 · F
Ẽ0 + D̂1

,

where D̂1 denotes the exceptional divisor of ρ6. Thus the morphism μ′ is the
Kummer covering

3

√
(δ6)∗Ẽ∞ + 6 · (δ6)∗F
(δ6)∗Ẽ0 + (δ6)∗D̂1

= 3

√
P1 × {∞} + 6 · (P × P1)

P1 × {0} + Δ × P1
,

where Δ is the divisor of the 6 different points in P
1 given by q ∈ M3 and

P ∈ P
1 is the point with the fiber F . Since E0 + Eσ is a normal crossing

divisor, Ẽσ neither meets Ẽ0 nor D̃2, where D̃2 is the proper transform of
π∗

6(Δ). Therefore (δ6)∗Ẽσ neither meets

(δ6)∗Ẽ0 = P
1 × {0} nor (δ6)∗Ẽ∞ = P

1 × {∞}.

Hence one can choose coordinates in P
1 such that (δ6)∗Ẽσ = P

1 × {1}.
By the definition of τ , we obtain that τ̂ is given by

3

√
ρ∗2μ

∗(Eσ)
ρ∗2μ

∗(E0)
= 3

√
μ̂∗(Ẽσ)
μ̂∗(Ẽ0)

,

and τ ′ is given by

3

√
μ′∗(P1 × {1})
μ′∗(P1 × {0}) .

By the fact that the last function is the third root of the pullback of a
function on P

1 × P
1 with respect to μ′, it is possible to reverse the order

of the field extensions corresponding to τ ′ and μ′ such that the resulting
varieties obtained by Kummer coverings are birationally equivalent. Hence
we have the composition of β : P

1 × P
1 → P

1 × P
1 given by

3

√
P1 × {1}
P1 × {0}

with

3

√
β∗(P1 × {∞}) + 6 · (P × P1)

β∗(P1 × {0}) + (Δ × P1)
,

which yields the covering variety isomorphic to F3 × Cq/〈(1, 1)〉. ��
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Hence C̃2
∼= Y is birationally equivalent to the algebraic manifold Ŷ in the

diagram (7.1) with Z = C(1) and Σ = F3. Therefore by Corollary 7.1.6, we
obtain:

Corollary 8.2.5. If the curve μ∗(Eσ) has complex multiplication, then the
K3-surface Y has complex multiplication, too.

8.3 The resulting family and its involutions

8.3.1. Let us summarize the things we have done. By using the Veronese
embedding, the weighted projective space Q2 = PC(2, 2, 1, 1) is given by
V (z1z3 = z2

2) ⊂ P
4. Moreover there exists a homogeneous polynomial

G(a1,a2,a3) ∈ C[z1, z2, z3] of degree 3 such that

G(a1,a2,a3)(x
2, x, 1) = x(x − 1)(x − a1)(x − a2)(x − a3)

for each (a1, a2, a3) ∈ M3. Let W ↪→ Q2×M3
pr2→ M3 be the family with the

fibers given by Wq = V (z1z3 − z2
2 , z3

5 + z3
4 + Gq) for all q ∈ M3. Moreover

let W ↪→ R2 × M3 → M3 be the smooth family obtained by the proper
transform of W with respect to the blowing up of V (z1, z2, z3) ×M3. Since
the family C → M3 given by

R1 ⊃ V (y3 − x1(x1 − x0)(x1 − a1x0)(x1 − a2x0)(x1 − a3x0)x0) → (a1, a2, a3) ∈ M3

has dense set of complex multiplication fibers, Corollary 8.2.5 implies that
W is a CMCY family of 2-manifolds.

Next we will find and study involutions on W over M3 satisfying the
assumptions for the construction of a Borcea-Voisin tower.

Remark 8.3.2. We have the involutions on W over M3 given by

γ(1)(z5 : z4 : z3 : z2 : z1) = (z4 : z5 : z3 : z2 : z1),
γ(2)(z5 : z4 : z3 : z2 : z1) = (ξz4 : ξ2z5 : z3 : z2 : z1),
γ(3)(z5 : z4 : z3 : z2 : z1) = (ξ2z4 : ξz5 : z3 : z2 : z1),

where ξ is a fixed primitive cubic root of unity. For simplicity we write γ
instead of γ(1), too. Since the ideal sheaf of V (z1, z2, z3) ∩ W coincides with
its inverse image ideal sheaf with respect to γ(i) (for all i = 1, 2, 3), each γ(i)

induces an involution on W over the basis M3 denoted by γ(i), too.
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Remark 8.3.3. We have the M3-automorphism κ of W given by

κ(z5 : z4 : z3 : z2 : z1) = (ξz5 : z4 : z3 : z2 : z1) with

κ−1(z5 : z4 : z3 : z2 : z1) = (ξ2z5 : z4 : z3 : z2 : z1)

such that by the same argument as in Remark 8.3.2, we obtain an automor-
phism of W over M3 denoted by κ, too. On W and hence on W one has

γ(2) = κ ◦ γ ◦ κ−1 and γ(3) = κ−1 ◦ γ ◦ κ.

Hence these involutions act by the same character on the global differential
forms of the fibers of W, and all quotients W/γ(i) are isomorphic. Therefore
it is sufficient to consider the quotient by γ.

Proposition 8.3.4. On each fiber of W the involution γ fixes exactly the
points on the divisor given by V (z4 = z5) and one exceptional line over one
singular point of the corresponding fiber of W .

Proof. Let q ∈ M3 and let S denote the singular locus of Wq. On Wq \ S
the points fixed by γ are given by the divisor V (z4 = z5). Now let us con-
sider the exceptional divisors of the blowing up, which turns W into the
family W of smooth K3-surfaces. There are exactly 3 points of S given by
z1 = z2 = z3 = 0 and z3

4 + z3
5 = 0. The involution γ fixes (1 : −1 : 0 : 0 : 0)

and interchanges the other two singular points. Since the generators of the
ideal of the blowing up are invariant under γ, one concludes that each point
on the exceptional line over (1 : −1 : 0 : 0 : 0) is fixed by γ. ��

Since the divisor on Wq given by V (z4 = z5) is isomorphic to Cq and the
projective line providing the fixed exceptional divisor has CM , one has by
Corollary 8.2.5:

Theorem 8.3.5. By the involution γ, the family W can be used to be some
Z1 or Σi in the construction of a Borcea-Voisin tower.

Remark 8.3.6. By Example 7.4.3, Example 7.4.4 and Example 7.4.5, one
has 6 explicitly given elliptic curves with CM and explicitly given involutions.
Theorem 2.4.4 yields the K3 surfaces isomorphic to

V (y3
2+y3

1+x6
1+x6

0), V (y3
2+y3

1+x1(x5
1+x5

0)), V (y3
2+y3

1+x1(x4
1+x4

0)x0) ⊂ R2

with complex multiplication. Thus by using the method of C. Voisin [60], one
obtains 18 explicitly given fibers with CM for the resulting CMCY family
of 3-manifolds.



Chapter 9
Other examples and variations

In this chapter we consider the automorphism groups of our examples of
CMCY families. We want to find some new examples of CMCY families of
n-manifolds as quotients by cyclic subgroups of these automorphism groups.
By using [20], Lemma 3.16, d), one can easily determine the character of the
action of these cyclic groups on the global sections of the canonical sheaves of
the fibers. In this chapter we state this character with respect to the pull-back
action.

In Section 9.1 we see that the CMCY family W of 2-manifolds given by

R2 ⊃ Ṽ (y3
2+y3

1 = x1(x1−x0)(x1−a1x0)(x1−a2x0)(x1−a3x0)x0) → (a1, a2, a3) ∈M3

has a degree 3 quotient, which is birationally equivalent to a CMCY family
of 2-manifolds. This quotient is also suitable for the construction of a Borcea-
Voisin tower. By using degree 3 automorphisms of W → M3 and the Fermat
curve F3 of degree 3, we construct the CMCY families Q → M3 and R →
M3 of 3-manifolds in Section 9.2.

In Section 9.3 we consider a subgroup of the automorphism group of the
CMCY family C2 → M1 given by

P
3 ⊃ V (y4

2 + y4
1 + x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1.

We find some degree 2 quotients of this family, which are birationally equiv-
alent to CMCY families of 2-manifolds. In Section 9.4 we see that these
families have involutions suitable for the construction of Borcea-Voisin towers.
We consider a larger subgroup of the automorphism group of C2 in Section 9.5.

In Section 9.6 we study the automorphism group of the CMCY family of
3-manifolds

P
4 ⊃ V (y5

3 + y5
2 + y5

1 + x1(x1 − x0)(x1 − ax0)(x1 − bx0)x0) → (a, b) ∈ M2

constructed by E. Viehweg and K. Zuo [58].
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9.1 The degree 3 case

Let ξ denote a fixed primitive cubic root of unity. In 8.3.1 we have constructed
the CMCY family W → M3 given by

R2 := P̃C(2, 2, 1, 1) ⊃ Ṽ (y3
2+y3

1+x1(x1−1)(x1−a1x0)(x1−a2x0)(x1−a3x0)x0)

→ (a1, a2, a3) ∈ M3.

First we introduce an M3-automorphism group G3 of the family W. The
elements g ∈ G3 can be uniquely written as a product g = abc with a ∈ 〈α〉,
b ∈ 〈β〉 and c ∈ 〈γ〉, where:

α(z5 : z4 : z3 : z2 : z1) = (ξz5 : z4 : z3 : z2 : z1),

β(z5 : z4 : z3 : z2 : z1) = (z5 : ξz4 : z3 : z2 : z1),

γ(z5 : z4 : z3 : z2 : z1) = (z4 : z5 : z3 : z2 : z1)

The group G3 contains exactly 18 elements. The action of G3 on the global
sections of the canonical sheaves of the fibers induces a surjection of G3 onto
the multiplicative group of the 6-th. roots of unity. Its kernel is the cyclic
group of order 3 generated by αβ−1.

Remark 9.1.1. Since αβ−1 is an M3-automorphism, one obtains the quo-
tient family W/〈αβ−1〉 → M3. One checks easily that αβ−1 leaves exactly
the sections given by z5 = z4 = 0 invariant. Let q ∈ M3. The fiber
(W/〈αβ−1〉)q of W/〈αβ−1〉 has quotient singularities of the type A3,2 (see
[6], III. Proposition 5.3). We blow up the sections of fixed points on W and
call the resulting exceptional divisor E1. On each connected component of E1

one has two disjoint sections of fixed points again. But on a fiber the quotient
map sends any fixed point onto a singularity of the type A3,1.1 Hence let us
blow up these latter sections of fixed points with exceptional divisor E2. The
canonical divisor of the resulting fibers W̃q is given by

KW̃q
= (Ẽ1)q + 2(E2)q,

where quotient map ϕ induced by αβ−1 has ramification on E2. Thus by
the Hurwitz formula, one calculates that ϕ∗(ωq) = O((Ẽ1)q). Note that the
irreducible components of the exceptional curve (E1)q have selfintersection-
number −1. Since (E2)q is the exceptional divisor of the blowing up of two
points of each irreducible component of (E1)q, each irreducible component
of (Ẽ1)q has selfintersection-number −3. By the fact that the quotient map

1 For this description consider the corresponding action of the cyclic group on an analytic
open neighborhood of a fixed point.
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ϕ : W̃q → (W̃/〈αβ−1〉)q is not ramified over ϕ((Ẽ1)q), the irreducible com-
ponents of ϕ((Ẽ1)q) have selfintersection-number −1.

From now on let X := W̃/〈αβ−1〉.

Proposition 9.1.2. One can blow down ϕ(Ẽ1) such that the blowing down
morphism φ : X → Y yields a CMCY family Y → M3 of 2-manifolds.

Proof. By the construction of the projective family, one has an invertible
relatively very ample sheaf A := OX (D) on X . Let P denote some con-
nected component of ϕ(Ẽ1). Note that ϕ(Ẽ1) consists of different copies of
P

1
Spec(R) with Spec(R) = Pn such that each invertible sheaf on P is uniquely

determined by its degree. Thus the intersection number μP := Dq.Pq is in-
dependent of q ∈ Pn. As in the proof of the Castelnuovo Theorem in [26], V.
Theorem 5.7 the invertible sheaf

L := A(
∑

P⊂ϕ(Ẽ1)

μP P )

yields the blowing down morphism on the fibers. Since this Pn-morphism is
globally defined, one obtains a global blowing down morphism f such that
the resulting family Y = f(X ) is smooth.

By the fact that αβ acts by the character 1 on Γ(ωWq
), one concludes

easily that Y → M3 is a family of K3 surfaces. Since W has a dense set of
CM fibers, one concludes that X = W̃/〈αβ〉 and Y have dense sets of CM
fibers, too. ��

By the blowing down of ϕ(Ẽ1), we get the following situation:

Ẽ1 ∪ E2� �

��

ϕ �� �� ϕ(Ẽ1 ∪ E2)� �

��

φ �� �� φ ◦ ϕ(E2)� �

��
W̃

mod〈αβ2〉

ϕ �� X
Bl(ϕ(Ẽ1))

φ �� Y

Proposition 9.1.3. The M3-automorphism γ of W yields an involution on
Y, which makes it suitable for the construction of a Borcea-Voisin tower.

Proof. One has the following commutative diagram:

W̃
γ

��

αβ−1
�� W̃

γ

��
W̃

α−1β �� W̃
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Thus γ yields an involution on X = W̃/〈αβ−1〉. By the fact that γ(E1) = E1,
it induces an involution on the complement of the sections of Y obtained by
blowing down ϕ(Ẽ1). Since these sections have codimension 2, the involution
extends to a holomorphic involution on Y (by Hartog’s Extension Theorem
[61], Théorème 1.25). By the fact that γ acts by −1 on Γ(ωWq

), the same
holds true for Xq and Yq.

Let C → M3 denote the family of degree 3 covers with a pure (1, 3)−V HS.
We have seen that Wq has CM , if Cq has CM . Therefore Hk(Yq, Q) has a
commutative Hodge group for all k, if Cq has CM . Thus the following point
describes the ramification divisor of γq on Yq and ensures that there is a
dense set of CM fibers Yq such that the ramification divisor of γq has CM ,
too. ��

9.1.4. Now we describe the divisor of points of Yq fixed by γ for some q ∈
M3. Each point of Yq \ (φ ◦ ϕ(E2)) can be given by the image [p] of a point
p ∈ Wq with respect to the quotient map according to 〈αβ−1〉. One has that
a point [p] ∈ Yq \(φ◦ϕ(E2)) is fixed by γ, if and only if γ(p) ∈ 〈αβ2〉·p. These
points p ∈ Wq are exactly given by 〈αβ2〉 · V (y2 = y1) and the exceptional
divisor of Wq → Wq.

By the fact that 〈αβ2〉 · V (y2 = y1) interchanges all 3 irreducible compo-
nents of 〈αβ2〉·V (y2 = y1) and all 3 irreducible components of the exceptional
divisor of W → W , one obtains a divisor of fixed points on Yq given by Cq

and one copy of P
1. Since γ is given by (y2 : y1) → (y1 : y2) on E1 and

αβ2 is given by (y2 : y1) → (y2 : ξy1) on E1, γ interchanges each two irre-
ducible components of E2, which intersect the same irreducible component of
Ẽ1. Thus the ramification divisor of Y → Y/γ given by a family of rational
curves and C, where C denotes the example of a family of degree 3 covers
with a pure (1, 3) − V HS.

9.2 Calabi-Yau 3-manifolds obtained by quotients
of degree 3

We have seen that the family W of K3-surfaces given by

R2 := P̃C(2, 2, 1, 1) ⊃ Ṽ (y3
2+y3

1+x1(x1−1)(x1−a1x0)(x1−a2x0)(x1−a3x0)x0)

→ (a1, a2, a3) ∈ M3

has a dense set of fibers Wq such that Hk(Wq, Q) has a commutative Hodge
group for all k.

Recall that the canonical divisor of R1 ∼= P(O⊕O(2)) is given by −2Ṽ (z4).
Now we consider the up to isomorphisms unique cyclic cover of degree 3
given by Wq → R1 ramified over Cq, whose Galois group is generated by α.
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Moreover consider the cyclic degree 3 cover F3 → P
1, where F3 = V (x3 +

y3 + z3) ⊂ P
2 denotes the Fermat curve of degree 3 and αF3 given by

(x : y : z) = (x : y : ξz),

is a generator of the Galois group, which acts by the character ξ on Γ(ωF3).
Let X be a singular variety of dimension n such that each irreducible

component of its singular locus S has at least the codimension 2. Then we
call X a singular Calabi-Yau n-manifold, if h0(X \ S,Ωk

X\S) = 0 for all
k = 1, . . . , n − 1 and ωX\S

∼= OX\S . With the notation of diagram (7.1) one
gets:

Proposition 9.2.1. The quotient of W × F3 by 〈(1, 2)〉 yields a family of
singular Calabi-Yau 3-manifolds with a dense set of CM fibers.

Proof. Note that the V HS of the family W × F3/〈(1, 2)〉 is the sub-V HS
fixed by 〈(1, 2)〉.2 Since F3 has complex multiplication, a CM fiber of W
yields a corresponding CM fiber of W × F3/〈(1, 2)〉.

Let ϕ denote the quotient map

ϕ : W × F3 → W × F3/〈(1, 2)〉

and S denote the singular locus of W × F3/〈(1, 2)〉. Over each point, which
lies not in the singular locus given by 3 copies of C, one does not have rami-
fication. Hence by the Hurwitz formula, ϕ∗(ω(W×F3/〈(1,2)〉)\S) is given by the
structure sheaf. Since 〈(1, 2)〉 acts on Γ(ωW×F3) by the character 1, the sheaf
ω(W×F3/〈(1,2)〉)\S has global sections. Hence

ω(W×F3/〈(1,2)〉)\S = O(W×F3/〈(1,2)〉)\S .

In addition the reader checks easily that 〈(1, 2)〉 does not act by the character
1 on a non-trivial sub-vector space of H1,0(W × F3) or H2,0(W × F3). Thus
W × F3/〈(1, 2)〉 is a family of singular Calabi-Yau 3-manifolds. ��

Now consider a fiber Wq, which is a family of curves given by

Wq → R2 → P
1.

Thus
Wq × F3 → R2 → P

1

is a family of surfaces. The singular locus given by 3 copies of Cq does not
consist of sections.

2 For a short introduction to such orbifolds and their Hodge theory see [12], Appendix A.3.
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Here we do not blow up sections of Wq ×F3 → P
1. Hence here one can not

formulate a relative version of the Castelnuovo Theorem as in Proposition
9.1.2. Thus we use complex analytic methods:

9.2.2. Let X be a non-compact complex analytic surface. Note that self-
intersection numbers are also defined for compact complex curves on non-
compact complex analytic surfaces X. On X one can blow down a compact
rational curve with self-intersection number −1 such that one obtains a
smooth complex analytic surface. Moreover for the blowing up φ : X̃ → X of
the point p ∈ X with exceptional divisor E, one has

ωX̃ = φ∗(ωX̃)(E).

We have also the adjunction formula for X and X̃ such that E2 = −1.
Moreover one has for each compact curve C on X

φ∗(C)2 = C2.

(see [6], I. - III.)

Hence we can repeat the procedure of the previous section for small open
analytic subsets and glue. We will locally blow down a divisor to a codimen-
sion 2 submanifold Z. Note that we have for the complement of Z gluing
morphisms, since the blowing down morphism ϕ yields an obvious isomor-
phism between the complements of Z and ϕ−1(Z). Hence the gluing of our
local blowing down morphisms follows from Hartog’s extension theorem and
the uniqueness of this extension, which follows from the continuity of holo-
morphic maps:

Theorem 9.2.3 (Hartog). Assume that U is an open subset of C
N and

f is a holomorphic function on U \ {u1 = u2 = 0}. Then f extends to a
holomorphic function on U .

Proof. (see [61], Théorème 1.25) ��

9.2.4. Now consider a fiber (W×F3/〈(1, 2)〉)q of W×F3/〈(1, 2)〉 and its sin-
gularities in the complex analytic setting. For the construction of the blowing
up of a complex submanifold we refer to [61], 3.3.3. As in [61], 3.3.3 described,
one constructs the blowing up over open sets first. The global blowing up is
given by gluing the local blowing ups. Here we consider the situation on
sufficiently small complex open submanifolds.

The M3-automorphism α acts on y2 by ξ. On each fiber Wq the curve
Cq defines the ramification locus of Wq → R2, which is fixed by α. A local
parameter pCq

on Cq yields a local parameter on Wq fixed by α. By z, we
denote a local parameter for the neighborhoods of the ramification points of
F3. On a small open subset, which intersects the ramification locus of
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ϕq : (W × F3)q → (W × F3/〈(1, 2)〉)q,

one has the three local parameters given by y2, pCq
and z.

By the action of 〈(1, 2)〉 on the local parameters, the singular loci of the
family W × F3/〈(1, 2)〉 are locally given by the product of the 4-ball B4 with
a surface, which has a singularity of the type A3,2 (with the notation in [6],
III. Section 5). Let us blow up the family of fixed curves on W ×F3 with re-
spect to 〈(1, 2)〉 and let E1 denote the exceptional divisor. On each connected
component of E1 one has two disjoint families of fixed curves with respect to
the action of 〈(1, 2)〉 again. Again this follows from the consideration of the
action of 〈(1, 2)〉 on local parameters of a small open subset. On a fiber the
quotient map sends any neighborhood of a point on these latter curves onto
the product of the 1-ball B1 with a surface with a singularity of the type
A3,1. Hence let us blow up these latter two families of curves with excep-
tional divisor E2. The canonical divisor of the resulting fibers (W̃ × F3)q is
given by

K
(W̃×F3)q

= (Ẽ1)q + 2(E2)q,

where quotient map ϕ by 〈(1, 2)〉 is ramified over E2. Thus by the Hurwitz
formula, one calculates that

ϕ∗(ωq) = O((Ẽ1)q). (9.1)

By 9.2.2 and our blowing up construction, one concludes that Ẽ1 is locally
given the product of a rational −3 curve with B4. Thus the divisor D = ϕ(Ẽ1)
is covered by open analytic subsets U on W̃ × F3/〈(1, 2)〉 such that U is of
the type X × B4, where X is a complex analytic surface containing a −1
curve E′ and D is given by E′ × B4. By 9.2.2, we can blow down E′. This
yields a local blowing down of D. We have explained that we can glue these
blowing down maps. Thus we obtain a family

R → M3.

By (9.1), one concludes easily that the fibers have a trivial canonical bundle.
Moreover one sees quite easily that the fibers are Calabi-Yau 3-manifolds.

At present it is not clear to the author that the family R → M3 is alge-
braic, since we have used analytic methods. Note that this construction is a
relative version of a construction by S. Cynk and K. Hulek [13], which yields
a result written down in Proposition 10.4.3. Thus the fibers are algebraic.

Note we have blown up copies of the family C of degree 3 covers. Moreover
note that F3 has CM and that for all q ∈ M3 the fiber Wq has CM , if the
fiber Cq has CM . Since C has a dense set of CM fibers, we conclude:

Proposition 9.2.5. The family R → M3 is a (holomorphic) CMCY family
of 3-manifolds.
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Let us construct an other example: αβ acts by the character ξ2 on Γ(ωWq
)

for all q ∈ M3. Moreover we have a Galois cover F3 → P
1 of degree 3 with a

generator αF3 given by

(x : y : z) = (x : y : ξz),

which acts by the character ξ on γ(ωF3). Hence α2 := (αβ, αF3) leaves
Γ(ωWq×F3) invariant.

The automorphism α2 fixes a finite number of points on Wq ×F3 given by

{z5 = z4 = 0} × {z = 0},

and α2 fixes in addition the points on the curves given by the fiber product of
{z = 0} with the exceptional divisor of the blowing up Wq → Wq. The latter
statement about the exceptional divisor of Wq → Wq follows from the fact
that αβ fixes the generators of the corresponding ideal sheaf of the blowing
up and the singular points of Wq given by

(1 : −1 : 0 : 0 : 0), (1 : −ξ : 0 : 0 : 0) and (1 : −ξ2 : 0 : 0 : 0).

9.2.6. Now we determine the action of αβ on the local parameters, whose
zero-loci are given by the exceptional divisor EWq

of Wq → Wq. The action
of αβ on Wq ⊂ P

4 is given by

(z5 : z4 : z3 : z2 : z1) → (ξz5 : ξz4 : z3 : z2 : z1) resp.,

(z5 : z4 : z3 : z2 : z1) → (z5 : z4 : ξ−1z3 : ξ−1z2 : ξ−1z1).

By using the explicit equations for Wq in 8.3.1, one can very easily calculate
that αβ acts by ξ−1 on these local parameters.3

Hence the singularities of Wq × F3/〈α2〉, which result by the exceptional
divisor of Wq → Wq, are locally given by the product of B1 with a singularity
of the type A3,2.

Now we construct a desingularization of W × F3/〈α2〉, which is a CMCY
family of 3-manifolds. Let EW denote the exceptional divisor of W → W . We
start with the blowing up of the family of rational curves given by the fiber-
product of EW with the points on F3 fixed by αF3 . This yields the exceptional
divisor EC consisting of 9 rational ruled surfaces. By the same arguments as
in 9.2.4, each connected component of EC contains two families of rational

3 The singular locus of Wq is contained in Wq ∩ {z5 = 1}. Thus one can calculate the
desingularization with the usual equations zitj = zjti for i, j = 1, 2, 3. On {ti = 1} the
zero locus of the local parameter zi yields the exceptional divisor. The local parameter
fixed by αβ can be given by t1/ti or t3/ti.
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curves of fixed points. The blowing up W̃ × F3 of these latter families has a
quotient

W̃ × F3/α2

with quotient map given by ϕ such that on the complement of the isolated
sections fixed by ϕ

ϕ∗ωq = O((ẼC)q).

9.2.7. Recall that R1 is a rational ruled surface, where the exceptional divisor
ER1 of the blowing up R1 → Q1 is a section of R1 → P

1 (see Remark 8.1.6).
A fiber Wq can be considered as a family

Wq
f→ R1 → P

1

of curves, where f is constructed in 8.1.12. By 8.3.1 and the projection R2 →
R1, the morphism f extends to a morphism f : W → R1 ×M3 such that the
exceptional divisor EW of the blowing up W → W is send to the exceptional
divisor ER1×M3 = ER1 ×M3 of the blowing up R1 ×M3 → Q1 ×M3. The
following commutative diagram describes the situation:

EW

f

��

�� W
f

��

�� W

f

��
ER1 ×M3

��

�� R1 ×M3

��

�� Q1 ×M3

P
1 ×M3

id �� P1 ×M3

9.2.8. Thus
g : W f→ R1 ×M3 → P

1 ×M3

is a family of curves, which has 3 distinguished sections given by the excep-
tional divisor EW of W → W . Moreover by the description of f : Wq → R1

as degree 3 cover, one can easily see that the fibers of g are given by the Fer-
mat curve of degree 3 or consist of 3 smooth rational curves intersecting each
other in exactly one point, which does not lie on (EW)q. Over P

1 \{∞}×M3

and P
1 \ {0} × M3 one can embed the restricted family into some copy of

P
2
A1×M3

.
Therefore we obtain the family

W × F3 → P
1 ×M3

of surfaces, which has sections given by the fiberproduct of the exceptional
divisors of W → W with the points fixed by αF3 , which do not meet any
singular point of a fiber. In addition α2 is a P

1 ×M3-automorphism of this
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family. Hence by the same arguments as in the proof of Proposition 9.1.2, we
can blow down ϕ(ẼC) over (P1 \{∞})×M3 and (P1 \{0})×M3. By gluing,
we obtain the family Q̂. Note that the singular fibers of W×F3 → P

1×M3 are
given by 3 copies of P

1×F3. Hence by the restriction of the sheaf, which yields
the blowing down morphism, to the corresponding copies of P̃1 × F3/〈α2〉, one
obtains smooth blowing down morphisms on these copies.

Construction 9.2.9. But Q̂ has 18 sections of singular points given by the
18 isolated sections fixed by α2 on W̃ × F3. Recall that these sections are
given by

{z5 = z4 = 0} × {z = 0}.
Let Q → Q̂ denote the blowing up of the singular sections of Q̂ and

˜W̃ × F3 → W̃ × F3

denote the blowing up of these 18 sections. By the same arguments as in
Remark 7.1.2, we obtain the following commutative diagram:

˜̃W
��

ϕ̃ �� Q

��
W̃

ϕ �� Q̂

Note that ϕ̃ is a cyclic cover on the complement of ẼC . Thus by the Hurwitz
formula and the fact that α2 acts by the character 1 on Γ(ωWq×F3) for each
q ∈ M3, one concludes that Q is a family of Calabi-Yau 3-manifolds.

Proposition 9.2.10. The family Q → M3 is a CMCY family of
3-manifolds.

Proof. Note that on each fiber we blow up some points and several copies of
P

1, which have CM . Hence by Theorem 7.1.7, we must only apply the facts
that F3 has CM and W has a dense set of fibers Wq such that Hg(Hk(Wq, Q))
is commutative for all k. ��

9.3 The degree 4 case

Consider the CMCY family C2 → M1 of 2-manifolds given by

P
3 ⊃ V (y4

2 + y4
1 + x1(x1 − x0)(x1 − λx0)x0) → λ ∈ M1

which we have constructed in Section 7.4. In this section we construct quo-
tients of C2 by cyclic subgroups of its group of M1-automorphisms, which
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will be suitable to obtain new CMCY families of 2-manifolds. In the next
section we will see that these new examples are endowed with involutions,
which make them suitable for the construction of the Borcea-Voisin tower.
Hence by the Hurwitz formula and some other obvious reasons, one has:

Claim 9.3.1. Let C be a K3 surface and α be an involution on C, which
admits a finite set S of fixed points on C. Then the quotient C̃/α, where C̃
denotes the blowing up of C with respect to the subvariety given by S, is a
K3 surface, too. Moreover C̃/α has complex multiplication, if C has complex
multiplication.

Now we introduce a group G4 of M1-automorphisms of the CMCY family
C2 → M1. The elements g ∈ G4 can be uniquely written as a product g = abc
with a ∈ 〈α〉, b ∈ 〈β〉, and c ∈ 〈ι4〉, where:

α(y2 : y1 : x1 : x0) = (iy2 : y1 : x1 : x0), β(y2 : y1 : x1 : x0) = (y2 : iy1 : x1 : x0),

ι4(y2 : y1 : x1 : x0) = (y1 : y2 : x1 : x0)

Therefore the group G4 contains exactly 32 elements. The action of G4 on
the global sections of the canonical sheaves of the fibers induces a surjection
of G4 onto the multiplicative group of the 4-th. roots of unity.

Its kernel K4 is a normal subgroup of order 8. It contains the following
automorphisms of order 4:

δ(y2 : y1 : x1 : x0) = (−y1 : y2 : x1 : x0), ε(y2 : y1 : x1 : x0) = (iy2 :−iy1 : x1 : x0),

η(y2 : y1 : x1 : x0) = (iy1 : iy2 : x1 : x0)

One has that
ι3 = δ2 = ε2 = η2 = (αβ)2.

Moreover one checks easily that K4 is isomorphic to the quaternion group
and has the generators δ, ε and η. Thus one has

K4/〈ι3〉 = (Z/2)2. (9.2)

One can easily calculate that

α〈δ〉α−1 = 〈η〉.

By the fact that K4 has 2 residue classes with respect to 〈δ〉 resp., 〈ε〉 resp.,
〈η〉, one concludes that 〈δ〉 resp., 〈ε〉 resp., 〈η〉 is a normal subgroup of K4.
Since [α]K4 generates G4/K4 and

α〈ε〉α−1 = 〈ε〉,

〈ε〉 is a normal subgroup of G4.



180 9 Other examples and variations

9.3.2. Recall that ι3 denotes the involution given by

ι3(y2 : y1 : x1 : x0) = (−y2 : −y1 : x1 : x0).

Let C〈ι3〉 be the CMCY family of 2-manifolds given by the quotient C̃2/〈ι3〉,
where C̃2 denotes the blowing up of C2 with respect to the 8 sections fixed by
ι3. Four sections fixed by ι3 are given by (1 : ζ : 0 : 0), where ζ runs through
the primitive 8-th. roots of unity. The other 4 sections are given by

(0 : 0 : 0 : 1), (0 : 0 : 1 : 1), (0 : 0 : λ : 1) and (0 : 0 : 1 : 0).

Since the generators α, β and ι4 of G4 leave the ideal sheaf corresponding to
these 8 sections invariant, all automorphisms of G4 induce automorphisms on
C̃2. Note that ι3 commutes with each τ ∈ G4. For each τ ∈ G4 one finds open
affine subsets invariant under 〈τ, ι3〉. On these affine sets the global sections
of the structure sheaf invariant under 〈τ, ι3〉 are contained in O〈ι3〉, where τ
leaves O〈ι3〉 invariant. Therefore τ induces an automorphism on C〈ι3〉. One
checks easily that δ, η and ε yield involutions on C〈ι3〉 leaving only finitely
many sections fixed. Thus by using Claim 9.3.1, these involutions yield the
CMCY families of 2-manifolds

C〈δ〉 ∼= Cα〈δ〉α−1 = C〈η〉 and C〈ε〉.

9.4 Involutions on the quotients of the degree
4 example

In Section 7.4 we introduced several M1-involutions ι1, . . . , ι7 of C2. We have
seen that ι3 acts by the character 1 on the global sections of the canonical
sheaves of the fibers. Moreover ι1, ι2, ι4, . . . , ι7 act by the character −1 on
the global sections of the canonical sheaves of the fibers. Here we show that
each for each i = 1, 2, 4, . . . , 7 the involution ιi induces M1-involutions on
the quotient families of 9.3.2, which make them suitable for the construction
of a Borcea-Voisin tower.

Remark 9.4.1. One can use Example 7.4.3, Example 7.4.4 and Example
7.4.5 and determine some explicitly given CM fibers of the new quotient
families. By using the method of C. Voisin [60], these new K3 surfaces
with complex multiplication and our explicit examples of elliptic curves with
complex multiplication yield new Calabi-Yau 3-manifolds with complex mul-
tiplication

We fix some new notation. Let C2 be an arbitrary fiber of C2, p ∈ C2,
where p is not fixed by ι3, and Fi denote the curve of fixed points on C2 with
respect to ιi for all i = 1, 2, 4, . . . , 7.



9.4 Involutions on the quotients of the degree 4 example 181

9.4.2. The involutions ι1 and ι2 induce the same involution on C〈ι3〉. One has
that ι1([p]〈ι3〉) = [p]〈ι3〉, if and only if p ∈ F1∪F2. The involution ι3 induces an
involution on the curve F1 and on the curve F2. Each of the covers induced by
these involutions has 4 ramification points. Hence by the Hurwitz formula, ι1
induces an involution on C〈ι3〉, which has a divisor of fixed points containing
two families of elliptic curves. By [60], 1.1, the ramification divisor of our
involution on a fiber of C〈ι3〉 has at most one irreducible component of genus
g > 0 or consists of two elliptic curves. Thus it consists of two elliptic curves.
It is quite easy to check that by this involution ι1, the family C〈ι3〉 is suitable
for the construction of a Borcea-Voisin tower.

9.4.3. The involutions ι4 and ι6 induce the same involution on C〈ι3〉. One
has that ι4([p]〈ι3〉) = [p]〈ι3〉, if and only if p ∈ F4 ∪ F6. The involution ι3
induces an involution on the curve F4 and on the curve F6. Each of the
covers induced by these involutions have 4 ramification points. Hence by the
same arguments as in 9.4.2, the involution ι4 induces an involution on C〈ι3〉,
which has a divisor of fixed points consisting of two families of elliptic curves.
It is quite easy to check that by this involution ι1, the family C〈ι3〉 is suitable
for the construction of a Borcea-Voisin tower.

Since αι4α
−1 = ι5 and αι6α

−1 = ι7, the involutions ι5 and ι7 induce up
isomorphisms the same involution as ι4 and ι6 on C〈ι3〉.

Recall the M1-automorphisms

δ(y2 : y1 : x1 : x0) = (−y1 : y2 : x1 : x0), ε(y2 : y1 : x1 : x0) = (iy2 :−iy1 : x1 : x0)

of C2 of order 4.

Remark 9.4.4. Now we consider the quotient families C〈δ〉 and C〈ε〉 in 9.3.2.
Moreover one has that δ and ε act as involutions on the 4 sections given by
(1 : ζ : 0 : 0), where ζ runs through the primitive 8-th. roots of unity, and
leave the sections given by

(0 : 0 : 0 : 1), (0 : 0 : 1 : 1), (0 : 0 : λ : 1), (0 : 0 : 1 : 0)

invariant.
One can easily verify there does not exist a point p ∈ C2 on the complement

of these eight sections such that δ(p) = ι3(p) or ε(p) = ι3(p).
Therefore either p is contained in one of the 8 sections fixed by ι3 or 〈δ〉 ·p

and 〈ε〉 · p contain 4 different elements. For our notation we will assume that
p is not fixed by ι3 as above.

9.4.5. The involutions ι1 and ι2 commute with ε. Thus the same holds true
with respect to the involutions on C〈ι3〉 induced by ι1, ι2 and ε. Hence one
concludes that ι1 and ι2 induce an involution an C〈ε〉. Since ι1 and ι2 in-
duce the same involution on C〈ι3〉, the involutions ι1 and ι2 induce the same
involution on C〈ε〉.



182 9 Other examples and variations

A point [p] on the fiber C〈ε〉 of C〈ε〉 is fixed by ι1, if ι1(p) = εi(p) for
i = 0, . . . , 3. This is exactly satisfied on F1 and F2 for i = 0 or i = 2. The
automorphism ε yields a quotient of F1 resp., F2 of degree 4 fully ramified
over 4 points. Hence by the Hurwitz formula, F1/〈ε〉 and F2/〈ε〉 are rational
curves.

By the definitions of ι1 and ε, one checks easily that their actions coincide
on the exceptional divisor on C̃2 over the four sections given by V (y2, y1).
Moreover by the definitions of ι1 and ε, one checks easily that for each prim-
itive 8-th. root ζ of unity

ι1(1 : ζ : 0 : 0) = ε(1 : ζ : 0 : 0) = (1 : −ζ : 0 : 0).

Both M1-automorphisms fix the local parameters x1 and x0.
Thus altogether the involution ι1 induces an involution on C〈ε〉, which has

a divisor of fixed points consisting of 8 disjoint families of rational curves. It is
quite easy to check that C〈ε〉 is suitable for the construction of a Borcea-Voisin
tower by this involution.

9.4.6. The involutions ι4, . . . , ι7 do not commute with ε. But one has ειi =
ιiε

3 for all i = 4, . . . , 7. Hence ιi (i = 4, . . . , 7) induces an involution on C〈ι3〉.
Since ι5 = ει4, ι6 = ε2ι4 and ι7 = ε3ι4, these involutions induce the same
involution on C〈ε〉.

A point [p] ∈ C〈ε〉 is invariant under ι4, if ι4(p) = εi(p) for i = 0, . . . , 3.
One has that ι4(p) = (p) on F4, ι4(p) = ε1(p) on F7, ι4(p) = ε2(p) on
F6 and ι4(p) = ε3(p) on F5. Note that ε(F4) = F6, ε(F6) = F4, ε2(F4) = F4

and ε2(F6) = F6. Moreover one has ε(F5) = F7, ε(F7) = F7, ε2(F5) = F5

and ε2(F5) = F5. The automorphism ε2 = ι3 yields a quotient of F4, F5, F6

resp., F7 of degree 2 ramified over 4 points, where F4 and F6 resp., F5 and
F7 are mapped onto the same quotient by ε. Hence by the Hurwitz formula,
the quotient consists of two families of elliptic curves.

By [60], 1.1, the ramification divisor of our involution on C〈ε〉 has at most
one irreducible component of genus g > 0 or consists of two elliptic curves.
Thus ι4 induces an involution on C〈ε〉, which has a divisor of fixed points
consisting of 2 families of elliptic curves. It is quite easy to check that this
involution makes C〈ε〉 suitable for the construction of a Borcea-Voisin tower.

9.4.7. The involutions ι4 and ι6 do not commute with δ. But one has δι4 =
ι4δ

3 and δι6 = ι6δ
3. Moreover one has

ι1 = δ ◦ ι4, ι6 = δ2 ◦ ι4, and ι2 = δ3 ◦ ι4.

Hence ι1, ι2, ι4 and ι6 induce the same involution on C<δ>.
A point [p] ∈ C〈δ〉 is invariant under ι4, if ι4(p) = δi(p). This occurs, if

and only if
p ∈ F1 ∪ F2 ∪ F4 ∪ F6.
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Note that δ(F4) = F6 and δ(F1) = F2. Moreover δ yields a degree 4 quotient
of F4∪F6, and a degree 4 quotient of F1∪F2. Thus the divisor of fixed points
contains two families of elliptic curves.

By the same arguments as in 9.4.6, the involution ι4 induces an involution
on C〈δ〉, which has a divisor of fixed points consisting of 2 families of elliptic
curves and makes C〈δ〉 suitable for the construction of a Borcea-Voisin tower.

9.4.8. The involution ι5 commutes with δ. One has that p = ι5(p), if p ∈ F5

and δ2(p) = ι5(p), if p ∈ F7. Note that δ acts as degree 4 automorphism on
F5 resp., F7. Each of the corresponding quotient maps is fully ramified over
4 points. By the same arguments as in 9.4.5, the M1-automorphisms ι5 and
δ act in the same way on the exceptional divisor of C̃2. Thus ι5 induces an
involution on C〈δ〉, which fixes a divisor consisting of 8 families of rational
curves. Moreover it is quite easy to check that this involution makes C〈δ〉
suitable for the construction of a Borcea-Voisin tower.

9.4.9. Since αι1α
−1 = ι1 and αδα−1 = η, one concludes that the involution

induced by ι1 on C〈η〉 coincides up to an isomorphism with the involution in-
duced by ι1 on C〈δ〉.

Since αι5α
−1 = ι6 and αδα−1 = η, one concludes that the involution

induced by ι6 on C〈η〉 coincides up to an isomorphism with the involution in-
duced by ι5 on C〈δ〉.

9.5 The extended automorphism group of the degree
4 example

The group G4 of M1-automorphisms of C2 does not contain all M1-
automorphisms of C2. In this section we give an additional group E4

of M1-automorphisms such that G4 and E4 generate an extended M1-
automorphism group Ḡ4. Moreover we will make some remarks about Ḡ4

and E4.
We obtain due to [28], Proposition 9 and the notations of [28], Section 2:

Proposition 9.5.1. The family C2 has a group E4 of M1-automorphisms
consisting of 16 different automorphisms given by (αβ)ν with ν = 0, . . . , 3
and:

αζ(y2 : y1 : x1 : x0) = (ζy2 : ζy1 : x1 − λx0 : x1 − x0), ζ4 = (1 − λ)2

βς(y2 : y1 : x1 : x0) = (ςy2 : ςy1 : x1 − x0 :
1
λ

x1 − x0), ς4 = (1 − 1
λ

)2

γκ(y2 : y1 : x1 : x0) = (κy2 : κy1 : λx0 : x1), κ4 = λ2

The involutions of E4 are given by (αβ)ν , αζ , βς and γκ for ν = 2, ζ2 = 1−λ,
ς2 = 1 − 1

λ and κ2 = λ. The group E4 has a subgroup isomorphic to the
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quaternion group given by (αβ)ν , αζ , βς and γκ for ν = 0, 2, ζ2 = −1 + λ,
ς2 = −1 + 1

λ and κ2 = −λ.

One can ask for the character of the action of the involutions of E4 on
Γ(ω(C2)q

) for each q ∈ M1 and the possibilities to use these involutions for
the construction of Borcea-Voisin towers. For example one has:

Example 9.5.2. One checks easily that γ√λ resp., γ−
√

λ fixes the family
curves on C2 given by

x1 =
√

λx0 resp., x1 = −
√

λx0.

This family of curves is isomorphic to the constant family with universal
fiber given by the Fermat curve F4 of degree 4, which has the genus 3. Thus
it acts by the character −1 on Γ(ω(C2)q

) for each q ∈ M1. Since F4 has
complex multiplication, γ√λ and γ−

√
λ make C2 suitable for the construction

of a Borcea-Voisin tower.
The following claim implies that γ√λ and γ−

√
λ yield isomorphic families

by the Borcea-Voisin tower:

Claim 9.5.3. One can conjugate γ√λ and γ−
√

λ in E4.

Proof. There exists some g of order 4 contained in the quaternion subgroup
of E4 such that

γ√λ = (αβ)g and γ−
√

λ = (αβ)3g = (αβ)(αβ)2g = (αβ)g−1.

It is a well-known fact that there is a g2 contained in the quaternion group
such that

g−1 = g2 ◦ g ◦ g−1
2 .

Since (αβ) is contained in the center of E4, one obtains the result. ��

Finally the question for isomorphy between C2/ι1 and C2/ι4 resp., the
corresponding CMCY families of 3-manifolds constructed by the method of
C. Voisin [60] remains open, since we have:

Remark 9.5.4. By the description of E4 in Proposition 9.5.1, one checks
easily that the generators α, β, ι4 of G4 commute with each element of E4.
Hence each element of Ḡ4, which is the group generated by G4 and E4, can
be written as κτ with κ ∈ E4 and τ ∈ G4. Thus for each σ ∈ G4 one obtains

(κτ)−1σ(κτ) = τ−1στ. (9.3)

Hence the fact that ι1 and ι4 are not conjugate in G4 implies that ι1 and ι4
are not conjugate in Ḡ4.

Moreover (9.3) implies that γ√λ is not conjugate to ι1 or ι4 in Ḡ4.
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Remark 9.5.5. One may search for additional involutions in Ḡ4 and try
to determine the character of the actions of all involutions on Γ(ω(C2)q

) for
each q ∈ M1. In addition one can try to determine the involutions, which
are suitable for the construction of a Borcea-Voisin tower and try to repeat
the construction of the preceding section for arbitrary induced involutions on
suitable quotients by cyclic subgroups of Ḡ4.

9.6 The automorphism group of the degree 5 example
by Viehweg and Zuo

We consider the CMCY family F3

P
4 ⊃ V (y5

3 +y5
2 +y5

1 +x1(x1−x0)(x1−a1x0)(x1−a2x0)x0) → (a1, a2) ∈ M2

of 3-manifolds constructed by E. Viehweg and K. Zuo. Let ξ denote a fixed
primitive 5-th. root of unity. We introduce an M2-automorphism group G5

of the family F3 → M2. The elements g ∈ G5 can be uniquely written as a
product g = abcd with a ∈ 〈α〉, b ∈ 〈β〉, c ∈ 〈γ〉 and d ∈ S3, where:

α(y3 : y2 : y1 : x1 : x0) = (ξy3 : y2 : y1 : x1 : x0),

β(y3 : y2 : y1 : x1 : x0) = (y3 : ξy2 : y1 : x1 : x0),

γ(y3 : y2 : y1 : x1 : x0) = (y3 : y2 : ξy1 : x1 : x0),

d(y3 : y2 : y1 : x1 : x0) = (yd(3) : yd(2) : yd(1) : x1 : x0)

Therefore the group G5 contains exactly 5 ·5 ·5 ·6 = 750 elements. The action
of G5 on the global sections of the canonical sheaves of the fibers induces a
surjection of G5 onto the multiplicative group of the 10-th. roots of unity.4

Its kernel K5 is a normal subgroup of order 75. It contains the subgroup
〈αβ−1, βγ−1〉 of automorphisms of order 5. This group has 25 elements. More-
over it contains the cyclic group given by the permutations of A3 of order 3.
Therefore all elements of K5 are determined.

9.6.1. Let us consider all cyclic groups 〈g〉 ⊂ K5 with g = abc �= e as above.
If a = e or b = e or c = e, the group 〈g〉 is given by 〈αβ−1〉, 〈βγ−1〉 or 〈αγ−1〉.
These groups are conjugate by (1, 2), (1, 3), (2, 3) ∈ S3.

Now consider the cyclic group 〈g〉 ⊂ K5 with g = abc and a, b, c �= e. One
has that 〈g〉 contains an element αβbγ4−b with b ∈ {1, 2, 3}. Hence by e ∈ S3

or (2, 3) ∈ S3, it is conjugate to 〈αβγ3〉 or 〈αβ2γ2〉. By the cycle (1, 3) ∈ S3,
these both groups are conjugate. By the fact that 〈αβγ3〉 leaves only finitely

4 Note that S3 is generated by the involutions given by the cycles (1, 2) and (2, 3), which
act by the character −1 on the global sections of the canonical sheaves of the fibers.
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many points invariant on each fiber, but 〈αβ−1〉 leaves a curve invariant on
each fiber, both groups can not be conjugate.

Therefore we have two conjugacy classes of cyclic subgroups 〈g〉 ⊂ K5 with
g = abc �= e represented by 〈αβ−1〉 and 〈αβγ3〉.

Claim 9.6.2. Any automorphism τ ∈ K5, which is not given by

τ(y3 : y2 : y1 : x1 : x0) = (ξsy3 : ξty2 : ξ5−s−ty1 : x1 : x0)

for some s, t ∈ Z, satisfies τ3 = id.

Proof. If τ satisfies the assumptions of the Claim, then τ or τ−1 is given by

(y3 : y2 : y1 : x1 : x0) → (ξsy1 : ξty3 : ξ5−s−ty2 : x1 : x0) (9.4)

for some s, t ∈ Z. Hence we assume without loss of generality that τ is given
by (9.4) and verify the statement by calculation:

τ3(y3 : y2 : y1 : x1 : x0) = τ2(ξsy1 : ξty3 : ξ−s−ty2 : x1 : x0)

= τ(ξ−ty2 : ξs+ty1 : ξ−sy3 : x1 : x0) = (y3 : y2 : y1 : x1 : x0)

��

For each τ as in (9.4) one can easily calculate that α−sβ−s−t ◦ τ ◦ αsβs+t

is given by
(y3 : y2 : y1 : x1 : x0) → (y1 : y3 : y2 : x1 : x0).

Therefore all cyclic subgroups of K5 are up to conjugation determined.
Hence:

Proposition 9.6.3. The family F3 has up to isomorphisms the following
quotient families of Calabi-Yau orbifolds with dense sets of CM fibers:

F3/〈αβ4〉, F3/〈αβγ3〉, F3/〈(1, 2, 3)〉

Proof. The existence of dense sets of CM fibers follows, since the V HS of a
quotient family of F3 is a sub-V HS of F3. ��



Chapter 10
Examples of CMCY families
of 3-manifolds and their invariants

In this chapter we collect all examples of CMCY -families from the previous
chapters, determine the length of their Yukawa couplings and compute the
Hodge numbers of their fibers. In Section 10.4 we will also give an outlook
to the possible construction methods of Calabi-Yau manifolds by using other
Calabi-Yau manifolds in lower dimensions and cyclic automorphism groups.
We recall the definition of the length of the Yukawa coupling and its computa-
tion methods in Section 10.1. Since there are equations for the Hodge numbers
of the Calabi-Yau 3-manifolds obtained from the Borcea-Voisin method, we
only need to list them in Section 10.2. In Section 10.3 we need to calculate a
little bit to get the Hodge numbers of Calabi-yau 3-manifolds obtained from
K3 surfaces with a degree 3 automorphism and Fermat curve of degree 3.

10.1 The length of the Yukawa coupling

First let us construct the Yukawa coupling. A little bit later in this short
section we will give a motivation to consider it and describe how to calculate
its length for our examples of CMCY families of 3-manifolds. For this section
we refer [57], [58] and [59].

Construction 10.1.1. Assume that U is a quasi projective variety and V
is a complex polarized variation of Hodge structures of weight n on U . It is
a well-known fact that there exists a suitable finite cover of U such that the
pullback of V has local unipotent monodromy. We replace U by this finite
cover. There exists a smooth projective compactification Y of U such that
S := Y \ U is a normal crossing divisor. Then one can construct the Deligne
extension H of V ⊗C OU (i.e., the unique extension such that the Gauß-
Manin connection yields the structure of a logarithmic Higgs bundle (F, θ)
on the associated graded bundle and the real components of eigenvalues of
the residues are contained in [0, 1)). The graduation gives a decomposition of
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F into locally free sheaves Ep,n−p and the Gauß-Manin connection induces
an OY -linear morphism

Ep,n−p → En−1,n−p+1 ⊗ Ω1
Y (logS),

called Higgs field. The Yukawa coupling θi (for i ≤ n) is defined by the
composition

θi : En,0 θn,0−→ En−1,1 ⊗ Ω1
Y (logS)

θn−1,1−→ En−2,2 ⊗ Sym2Ω1
Y (logS)

θn−2,2−→ . . .

θn−i+1,i−1−→ En−i,i ⊗ SymiΩ1
Y (logS).

Definition 10.1.2. Let f : V → U be a family with fibers of dimension n as
in Construction 10.1.1. The length ζ(f) of the Yukawa coupling is given by

ζ(f) := min{i ≥ 1; θi = 0} − 1.

We say that the Yukawa coupling has maximal length, if ζ(f) = n.
The family f : V → U is rigid, if there does not exist a non-trivial defor-

mation of f over a nonsingular quasi-projective curve T .

The following proposition yields our motivation to consider the length of
the Yukawa coupling:

Proposition 10.1.3. If the Yukawa coupling has maximal length, the family
is rigid.

Proof. (see [57], Section 8) ��

The statements of the following lemma, which allow the computation
of length of the Yukawa couplings of our examples of CMCY families of
3-manifolds by their construction, are well-known:

Lemma 10.1.4. For two variations of Hodge structures V and W on a holo-
morphic manifold one has

ζ(V ⊗ W) = ζ(V) + ζ(W) and ζ(V ⊕ W) = max{ζ(V), ζ(W)}.

10.2 Examples obtained by degree 2 quotients

Let Z1 → M be one of the examples of a CMCY family of 2-manifolds,
which we have constructed in the preceding chapters, with a suitable invo-
lution ι such that it satisfies the assumptions for Z1 in the construction of
a Borcea-Voisin tower. Here we list all examples of CMCY families Z2 of
3-manifolds obtained by the Borcea-Voisin tower starting with such a family
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Z1 and Σ2 given by the family E → M1 of elliptic curves endowed with
its natural involution. By the definition of Calabi-Yau manifolds, Serre du-
ality and Hodge symmetry, all Hodge numbers of the fibers of the resulting
CMCY family Z2 of 3-manifolds are determined by h1,1 and h2,1.

Claim 10.2.1. Keep the assumptions above. Let (Z1)p → (Z1)p/ι be rami-
fied over N curves with genus g1, . . . , gN for all p ∈ M. Then the fibers of
Z2 have the Hodge numbers

h1,1 = 11 + 5N − N ′ and h2,1 = 11 + 5N ′ − N, where N ′ =
∑

gi.

Proof. (see [60], Corollaire 1.8) ��

Hence for our examples of CMCY families of 3-manifolds obtained by us-
ing the Borcea-Voisin tower and CMCY families of 2-manifolds with suitable
involutions, we have the following table:

family Z1 basis M involution ι N N ′ h1,1 h2,1 ζ reference

C2 M1 ι1 1 3 13 25 2 7.4.8

C2 M1 ι4 1 3 13 25 2 7.4.8

C2 M1 γ√
λ
, γ√−λ 1 3 13 25 2 9.5.2

C〈ι3〉 M1 ι1 2 2 19 19 2 9.4.2

C〈ι3〉 M1 ι4 2 2 19 19 2 9.4.3

C〈ε〉 M1 ι1 8 0 51 3 2 9.4.5

C〈ε〉 M1 ι4 2 2 19 19 2 9.4.6

C〈δ〉 M1 ι1 = ι4 2 2 19 19 2 9.4.7

C〈δ〉 M1 ι5 8 0 51 3 2 9.4.8

W M3 γ 2 4 17 29 2 8.3.4, 8.3.5

Y M3 γ 2 4 17 29 2 9.1.3, 9.1.4

10.3 Examples obtained by degree 3 quotients

In this section we determine the Hodge numbers of the CMCY family Q of
3-manifolds obtained by Proposition 9.2.10 and the Hodge numbers of the
CMCY family R of 3-manifolds obtained by Proposition 9.2.5.

Remark 10.3.1. In the case of the CMCY families Q and R one has ζ = 1
for the length of the Yukawa coupling as one concludes by their constructions
and using Lemma 10.1.4.

Let X be a complex manifold and γ an automorphism of X of order m.
Then Hk(X, C)	 denotes the eigenspace of Hk(X, C), on which γ acts via
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pullback by the character e2πi �
m . For the computation of the Hodge numbers

of the fibers of Q and R we will need the following proposition:

Proposition 10.3.2. Let X be a Kähler manifold of dimension 3. Moreover
let ϕ be an automorphism of X fixing a finite set of some isolated points Z0

and a finite set Z1 of disjoint curves such that ϕm = id for some m ∈ N.
Then one has the following eigenspaces:

H2(X̃Z1∪Z0 , Z)0 ∼= H2(X, Z)0 ⊕ H0(Z1, Z) ⊕ H0(Z0, Z),

H3(X̃Z1∪Z0 , Z)0 ∼= H3(X, Z)0 ⊕ H1(Z1, Z)

Proof. Let Y be a Kähler manifold and Z be a submanifold of codimension r.
Then the Hodge structure of the blowing up ỸZ along Z is given by

Hk(Y,Z) ⊕
r−2⊕
i=0

Hk−2i−2(Z, Z) ∼= Hk(ỸZ , Z),

where Hk−2i−2(Z, Z) shifted by (i+1, i+1) in bi-degree (see [61], Théorème
7.31).

Thus one has:

H2(X̃Z1∪Z0 , Z) ∼= H2(X, Z) ⊕ H0(Z1, Z) ⊕ H0(Z0, Z),

H3(X̃Z1∪Z0 , Z) ∼= H3(X, Z) ⊕ H1(Z1, Z)

Hence it remains to show that H0(Z1, Z), H0(Z0, Z) and H1(Z1, Z) are in-
variant as sub-Hodge structures by ϕ. Therefore one considers the proof of
[61], Théorème 7.31. These sub-Hodge structures are given by the image of
j∗ ◦ (π|Z1∪Z0)

∗(H0(Z1 ∪Z0, Z)) and j∗ ◦ (π|Z1∪Z0)
∗(H1(Z1 ∪Z0, Z)), where j

denotes the embedding of the exceptional divisor E of the blowing up mor-
phism π : X̃Z1∪Z0 → X.1 One has the following commutative diagram:

X̃Z1∪Z0

ϕ �� X̃Z1∪Z0

E
ϕ ��

π|E
��

j

��

E

π|E
��

j

��

Z1 ∪ Z0
ϕ �� Z1 ∪ Z0

1 In general one has
⊕r−2

i=0
j∗◦hi◦(π|Z1∪Z0 )∗ instead of j∗◦(π|Z1∪Z0 )∗ for i = 0, . . . , r−2

in [61], Théorème 7.31, where h denotes the cup-product with c1(OE(1)) and the sheaf
OE(1) of the projective bundle E is described in [61], Subsection 3.3.2. But here the weight
of the Hodge structures is to small for i > 0.
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Since ϕ acts as the identity on Z1 ∪ Z0, the same holds true for the Hodge
structures on Z1 ∪ Z0. Hence by the commutative diagram, the same holds
true for the sub-Hodge structures on X̃ given by j∗ ◦ (π|Z1∪Z0)

∗. ��

Proposition 10.3.3. For all q ∈ M3 the action of the cyclic group 〈αβ〉 on
W yields an eigenspace decomposition of H1,1(Wq) of the dimensions

h1,1(Wq)0 = 14, h1,1(Wq)1 = 3, h1,1(Wq)2 = 3.

Proof. Let W̃ → W be the blowing up of the six sections fixed by αβ. By
the same arguments as in the proof of the preceding proposition, each fiber
W̃q has the Hodge numbers

h2,0 = 1, h1,1 = 26, h0,2 = 1.

Let M := W̃q/〈αβ〉. Now we consider the quotient morphism ϕ : W̃q → M .
By the Hurwitz formula, one concludes that

ϕ∗(KM ) = −2E − E(2),

where E is the exceptional divisor of Wq → Wq given by three −2 curves and
E(2) is the exceptional divisor of W̃q → Wq. From [61], Proposition 21.14, we
have that 3 · K2

M = (ϕ∗(KM ))2. Since

(ϕ∗(KM ))2 = (−2E − E(2))2 = 4 · (−6) − 6 = −30

and c1(M)2 = K2
M (see [26], Appendix A, Example 4.1.2), one obtains

c1(M)2 = K2
M = −10.

By the Noether formula (compare to [26], Appendix A, Example 4.1.2 and
[61], Remarque 23.6), one has

χ(OM ) =
1
12

(c1(M)2 + c2(M)) with c2(M) − 2 = b2(M)

in our case. From the fact that χ(OM ) = 1, one calculates that

h1,1(W̃q)0 = b2(M) = 20.

By the fact that the blowing up morphism W̃q → Wq has an exceptional
divisor consisting of 6 rational curves, we conclude similar to Proposition
10.3.2 that

h1,1(Wq)0 = h1,1(W̃q)0 − 6 = 20 − 6 = 14.
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Since the K3 surface Wq has the Hodge number

h1,1(Wq) = 20 and h1,1(Wq)1 = h1,1(Wq)2,

one concludes that
h1,1(Wq)1 = h1,1(Wq)2 = 3.

��

Proposition 10.3.4. For all q ∈ M3 the action of the cyclic group 〈α〉 on
W yields an eigenspace decomposition of H1,1(Wq) of the dimensions

h1,1(Wq)0 = 2, h1,1(Wq)1 = 9, h1,1(Wq)2 = 9.

Proof. Recall that
Wq/〈α〉 = R1.

Since −2V (z4) is the canonical divisor of R1 (see Corollary 8.1.7), one obtains

c1(R1)2 = K2
R1 = 8.

By the Noether formula, one has

χ(OR1) =
1
12

(c1(R1)2 + c2(R1)) with c2(R1) − 2 = b2(R1).

From the fact that χ(OR1) = 1, one calculates that

h1,1(W̃q)0 = b2(R1) = 2.

Since the K3 surface Wq has the Hodge number

h1,1(Wq) = 20 and h1,1(Wq)1 = h1,1(Wq)2,

one concludes that
h1,1(Wq)1 = h1,1(Wq)2 = 9.

��

Proposition 10.3.5. For all q ∈ M3 one has

h1,1(Qq) = 51.

Proof. Since

h0,0(Wq)0 = h0,0(F3)0 = h1,1(F3)0 = 1, b1(Wq) = 0
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and Proposition 10.3.3 tells us that

h1,1(Wq)0 = 14,

one concludes that h1,1(Wq ×F3)0 = 15. Note that α2 fixes 6 · 3 = 18 points.
Moreover we have an additional exceptional divisor consisting of 3 · 3 · 3 = 27
rational ruled surfaces. In the construction of Q we blow down 9 of these
families of ruled surfaces. Hence by Proposition 10.3.2,

h1,1(Qq) = 15 + 18 + 27 − 9 = 51.

��

Proposition 10.3.6. For all q ∈ M3 one has

h1,1(Rq) = 9.

Proof. Since

h0,0(Wq)0 = h0,0(F3)0 = h1,1(F3)0 = 1, b1(Wq) = 0

and Proposition 10.3.4 tells us that

h1,1(Wq)0 = 2,

one concludes that h1,1(Wq × F3)0 = 3. Note that α2 fixes 3 copies of the
genus 4 curve Cq. Each of these copies yields 3 blowing ups of a copy of Cq

and one blowing down to a copy of Cq. Hence by Proposition 10.3.2,

h1,1(Rq) = 3 + 9 − 3 = 9.

��

Proposition 10.3.7. For all q ∈ M3 one has

h1,2(Qq) = h2,1(Qq) = 3.

Proof. Recall that αβ acts by the character e2πi 2
3 on the global sections of

ωWq
for all q ∈ Pn and αF3 acts by the character e2πi 1

3 on the global sections
of ωF3 . Hence one obtains

h1,0(F3)1 = h0,1(F3)2 = h2,0(Wq)2 = h0,2(Wq)1 = 1

and

h1,0(F3)2 = h0,1(F3)1 = h2,0(Wq)1 = h0,2(Wq)2 = 0.
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Note that b1(Wq) = b3(Wq) = 0, h1,1(Wq)0 = 14 and h1,1(Wq)1 =
h1,1(Wq)2 = 3. Recall that

H3(Wq × F3, C)0 =
2⊕

t=0

H2(Wq, C)t ⊗ H1(F3, C)[3−t]3 .

Hence one concludes that

H3(Wq × F3, C)0 = (H2,0(Wq)2 ⊕ H1,1(Wq)2) ⊗ H1,0(F3)1

⊕(H1,1(Wq)1 ⊕ H0,2(Wq)1) ⊗ H0,1(F3)2.

This implies that

H2,1(Wq × F3)0 = H1,1(Wq)2 ⊗ H1,0(F3)1 such that h2,1(Wq × F3)0 = 3.

Hence by Proposition 10.3.2 and the fact that b1(P1) = 0, one obtains the
statement. ��

Proposition 10.3.8. For all q ∈ M3 one has

h1,2(Rq) = h2,1(Rq) = 33.

Proof. The automorphism α acts by the character e2πi 1
3 on the global sec-

tions of ωWq
for all q ∈ Pn and α2

F3
acts by the character e2πi 2

3 on the global
sections of ωF3 . Hence one obtains

h1,0(F3)1 = h0,1(F3)2 = h2,0(Wq)2 = h0,2(Wq)1 = 0

and

h1,0(F3)2 = h0,1(F3)1 = h2,0(Wq)1 = h0,2(Wq)2 = 1.

Note that b1(Wq) = b3(Wq) = 0, h1,1(Wq)0 = 2 and h1,1(Wq)1 =
h1,1(Wq)2 = 9. Recall that

H3(Wq × F3, C)0 =
2⊕

t=0

H2(Wq, C)t ⊗ H1(F3, C)[3−t]3 .

Hence one concludes that

H3(Wq × F3, C)0 = (H2,0(Wq)1 ⊕ H1,1(Wq)1) ⊗ H1,0(F3)2

⊕(H1,1(Wq)2 ⊕ H0,2(Wq)2) ⊗ H0,1(F3)1.
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This implies that

H2,1(Wq × F3)0 = H1,1(Wq)2 ⊗ H1,0(F3)1 such that h2,1(Wq × F3)0 = 9.

Hence by Proposition 10.3.2 and the fact that we have 6 copies of Cq with
H1,0(Cq) = 4, one obtains the statement. ��

Next we show that Q is a maximal family of Calabi-Yau manifolds. First
let us define maximality. For this definition recall:

Proposition 10.3.9. Each Calabi-Yau manifold X has a local universal de-
formation X → B, where

dim(B) = h2,1(X).

Proof. (see [61], 10.3.2) ��

Definition 10.3.10. A family F → Y of Calabi-Yau manifolds is maximal
in 0 ∈ Y , if the universal property of the local universal deformation X → B
of F0 yields a surjection of a neighborhood of 0 onto B. The family F → Y
is maximal, if it is maximal in all 0 ∈ Y .

Remark 10.3.11. If the family F → Y of Calabi-Yau manifolds is maxi-
mal in some 0 ∈ Y , its restriction to the complement of a closed analytic
subvariety of Y is maximal.

Remark 10.3.12. Since Wq is birationally equivalent to F3×Cq/〈(1, 1)〉 (see
Proposition 8.2.4), one has

H2,0(Wq) = H1,0(F3)1 ⊗ H1,0(Cq)2,

where C denotes the family of degree 3 covers with a pure (1, 3)−V HS. Thus
by our former notation with respect to the push forward action, the V HS
of W depends uniquely on the fractional V HS of the eigenspace L1 of the
V HS of C.

In Section 9.2 we have seen that Q is birationally equivalent to a quotient of
W×F3. It differs by some blowing up morphism with respect to some families
of rational curves and some isolated sections. Thus by similar arguments, the
V HS of Q depends on the V HS of W. Hence the V HS of Q depends uniquely
on the fractional V HS of L1. Thus the period map of Q can be considered
as a multivalued map to the ball B3.

The preceding remark tells us the period map of the family Q → M3 is
locally injective. Hence by the Torelli theorem for Calabi-Yau manifolds, one
concludes:

Theorem 10.3.13. The family Q → M3 is maximal.
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10.4 Outlook onto quotients by cyclic groups
of high order

Recall that we used K3 surfaces S and elliptic curves E with cyclic degree m
covers S → R and E → P

1 to construct Calabi-Yau 3-manifolds by a quotient,
where m = 2, 3. In this chapter we give an outlook on the possibilities to use
of cyclic groups of higher order for the construction of Calabi-Yau 3-manifolds
by an elliptic curve and a K3-surface.

First the following Lemma shows that there are only finitely many elliptic
curves with an action of a cyclic group with order m > 2, which could be
suitable:

Lemma 10.4.1. Let E be an elliptic curve, and f : E → P
1 be a cyclic

cover. Then one obtains

m := deg(f) = 2, 3, 4 or 6.

For each m > 2 there is at most only one elliptic curve having a cyclic cover
f : E → P

1 of degree m.2

Proof. We use Proposition 2.3.4 and Corollary 2.3.5. Let f : E → P
1 be be a

cyclic cover of degree m > 2. Moreover if f has n branch points, then L1 is
of type (p, q) with p+q = n−2. Thus there must be at least 2 branch points.
If there are only 2 branch points, we are in the case of the cover P

1 → P
1

given by x → xm. Since L1 is of type (p, q) with p + q = n − 2, the curve C
can be an elliptic curve for m > 2, only if n = 3.

For n = 3 and m > 2 we have that L1 is of type (p, q) with p + q = 1.
Without loss of generality we assume that p = 0 and q = 1. Hence by
Proposition 2.3.4, one concludes that

μ1 + μ2 + μ3 = 1.

If m = 3, one has only the case of the Fermat curve of degree 3 given by

μ1 = μ2 = μ3 =
1
3
.

If m > 3, L2 must be of type (0, 0), which implies without loss of generality
that μ1 = 1

2 . Hence for m = 4 we have only the case of the cover given by

μ1 =
1
2
, μ2 = μ3 =

1
4
.

2 The well-educated reader knows the automorphism group of the abelian variety given by
one elliptic curve. But the quotient map by a cyclic subgroup of this automorphism group
is fully ramified at the zero-point. There could be cyclic covers, which are not fully ramified
over all branch points. Hence for the proof of this lemma, it is not sufficient to know the
automorphism group of this abelian variety.
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If m > 4, L2 and L3 must be of type (0, 0), which implies without loss of
generality that μ1 = 1

2 and μ2 = 1
3 . Hence we obtain the only additional case

given by the degree 6 cover with the local monodromy data

μ1 =
1
2
, μ2 =

1
3
, μ3 =

1
6
.

��

Let S be a K3-surface, E be an elliptic curve and the cyclic groups 〈γS〉
and 〈γE〉 of order m > 1 acting on S and E with the ramification loci FS and
FE such that γS and γE act by −1 on the global sections of the respective
canonical sheaves. The aim is the construction of a Calabi-Yau 3-manifold
by a desingularization of S×E/〈(γS , γE)〉. The following proposition tells us
that there are singularities on S × E/〈(γS , γE)〉, if m > 2. Thus one has to
find a suitable desingularization in these cases.

Proposition 10.4.2. Let m > 2. Then γS must have ramification.

Proof. If γS does not have ramification, one concludes by the Hurwitz formula
ϕ∗

Sω = O. Thus the quotient has a canonical sheaf ω with ω⊗m = O for
m > 2. Moreover it has the Betti number b1 = 0. In addition it must be
a minimal model, since a rational −1 curve would lie in the support of the
canonical divisor K and forbid any torsion of K. But by the Enriques-Kodaira
classification (compare to [6], VI.), such a minimal model does not exist. ��

In the cases of Calabi-Yau manifolds with degree 3 and 4 automorphisms
S. Cynk and K. Hulek [13] have given general methods to obtain Calabi-
Yau manifolds in higher dimension. These methods are written down in the
following two propositions. Note that in the examples of the constructions
of the CMCY families Q and R of 3-manifolds we have already used the
general method of S. Cynk and K. Hulek for the degree 3 case. In the degree
6 case no method is known to the author.

Proposition 10.4.3. Let X1 and X2 be Calabi-Yau manifolds and ξ be a
primitive cubic root of unity. Assume that for i = 1, 2 the Calabi-Yau mani-
fold Xi has an automorphism ηi of order 3 such that ηi acts via pullback by
the character ξi on H0(Xi, ωXi

). Moreover assume that the fixed point set
on X1 is a smooth divisor and that the fixed point set on X2 consists of a
disjoint union of a smooth divisor and a smooth submanifold of codimension
2. Assume that η1 is locally given by (ξ, 1, . . . , 1) near the divisor of fixed
points and η2 is locally given by (ξ2, 1, . . . , 1) near the divisor of fixed points
and (ξ, ξ, 1, . . . , 1) near the submanifold of fixed points of codimension 2.

Then X1 × X2/〈(η1, η2)〉 has a resolution X of singularities, which is a
Calabi-Yau manifold. The Calabi-Yau manifold X admits an action of Z/(3),
which satisfies the same assumptions as for X2.

Proof. (see [13], Proposition 3.1) ��
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Proposition 10.4.4. Let X1 and X2 be Calabi-Yau manifolds. Assume that
X1 has an automorphism η1 of order 4 such that η1 acts via pullback by the
character i on H0(X1, ωX1) and X2 has a automorphism η2 of order 4 such
that η2 acts via pullback by the character −i on H0(X2, ωX2). Moreover as-
sume that the fixed point set on X1 is a smooth divisor and that the fixed point
set on X2 consists of a disjoint union of smooth submanifolds of codimension
one, two or three. Assume that η1 is locally given by (i, 1, . . . , 1) near the
divisor of fixed points and η2 is locally given by (−i, 1, . . . , 1), (−1, i, 1, . . . , 1)
or (i, i, i, 1, . . . , 1) near the respective submanifolds of fixed points.

Then X1 × X2/〈(η1, η2)〉 has a resolution X of singularities, which is a
Calabi-Yau manifold. The Calabi-Yau manifold X admits an action of Z/(4),
which satisfies the same assumptions as for X2.

Proof. (see [13], Proposition 4.1) ��



Chapter 11
Maximal families of CMCY type

In this chapter we use the classification of involutions on K3 surfaces S by
V. V. Nikulin [51], which act by −1 on H0(S, ωS). If the divisor of fixed points
consists at most of rational curves, the Borcea-Voisin construction yields a
maximal holomorphic CMCY family of 3-manifolds.

After we have recalled some basic facts in Section 11.1, we define a Shimura
datum by using involutions on the integral lattice in Section 11.2. Each
of the points of a dense open subset of the bounded symmetric domain
obtained from this Shimura datum represents a marked K3 surface with
involution. By using this fact, we obtain our examples of maximal holomor-
phic CMCY families of 3-manifolds in Section 11.3. For each n ∈ N with
n ≤ 11 there is a holomorphic maximal CMCY family over a basis of dimen-
sion n.

11.1 Facts about involutions and quotients
of K3-surfaces

In this section we collect some known facts about K3 surfaces and their
involutions, which we will need in the sequel.

11.1.1. The integral cohomology H2(S, Z) is a lattice of rank 22. We have
the cup-product (·, ·) on H2(S, Z), which yields a symmetric bilinear form.
Let L := (H2(S, Z), (·, ·)). One has the orthogonal direct sum decomposition

L ∼= (−E8) ⊕ (−E8) ⊕ H ⊕ H ⊕ H,

where −E8 consists of Z
8 endowed with a negative definite integral bilinear

form given by the matrix

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 199
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and H denotes the hyperbolic plane, i. e. H = (Z2, 〈·, ·〉), where 〈·, ·〉 is given
by the matrix (

0 1
1 0

)

(see [6], VIII. Proposition 3.3 and the notation in [6], VIII. Section 1 and
also [6], I. Examples 2.7 for details).

Remark 11.1.2. Let S be a K3-surface and L = H2(S, Z), where L is
endowed with an involution ι. Assume that ι corresponds to an involution on
S, which acts by the character −1 on Γ(ωS). Then the involution induces a
degree 2 cover γ : S → R onto a smooth surface R. Moreover the divisor of
fixed points, which yields the ramification divisor of γ, consists of a disjoint
union of smooth curves or it is the zero-divisor. The involution ι yields integral
sub-Hodge structures H2(S, Z)0 and H2(S, Z)1 of H2(S, Z) such that ι acts
by (−1)i on H2(S, Z)i. Since ι acts by −1 on Γ(ωS) and

H2(R, Q) = H2(S, Q)0,

one has that
H2,0(S),H0,2(S) ⊂ H2(S, C)1.

Moreover the intersection form has the signature (2, r) on H2(S, Q)1 (com-
pare to [60], §1 and [60], 2.1).

Remark 11.1.3. Let

D = {[ω] ∈ P(H2(S, C)1)|(ω, ω) = 0, (ω, ω̄) > 0}.

By the Torelli theorem, each marked K3 surface (S′, φS′) endowed with an
involution, which yields the the same involution ι on his cohomology lattice,
yields a unique one dimensional vector space H2,0(S′) ⊂ H2(S, C)1 corre-
sponding to some p ∈ D.
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11.2 The associated Shimura datum

The Hodge structure of a K3 surface S with a cyclic degree 2 cover onto
a rational surface resp., Enriques surface R has a decomposition into two
rational Hodge structures H2(S, Q)1 and H2(S, Q)0. We consider H2(S, Q)1,
since the variation of Hodge structures given by H2(S, Q)0 is trivial.

The Hodge decomposition of H2(S, C) is orthogonal with respect to the
Hermitian form (·, ·̄). Therefore the corresponding embedding

h : S1 → SL(H2(S, R)1)

factors trough the special orthogonal group SO(H2(S, R)1) with respect to
the symmetric form given by the cup product pairing, where SO(H2(S, R)1)
is isomorphic to SO(2, r)R. Let ω ∈ ωS \ {0},

�ω :=
1
2
(ω + ω̄), �ω :=

i

2
(ω − ω̄)

and {v1, . . . vr} be a basis of H1,1(X, R)1. One has the basis

{�ω,�ω, v1, . . . , vr}

of H1(X, R)1 such that the intersection form is without loss of generality
given by the matrix diag(1, 1,−1, . . . ,−1) with respect to this basis. The
subgroup, whose elements are invariant under

g → h(i)gh(i−1),

is given by S(O(2) × O(r)), where

h(i) = h(i−1) = diag(−1,−1, 1, . . . , 1).

Since h2(i) = h(−1) = diag(1, . . . , 1), the action of i is an involution. This
implies that one has a decomposition of so2,r(R) into 2 eigenspaces with
respect to the eigenvalues 1 and −1. Hence h(

√
i) yields a complex structure

on the eigenspace with eigenvalue −1. The eigenspace for the eigenvalue 1 is
given by the Lie algebra of S(O(2) × O(r)). Thus we have a decomposition

so2,r(C) = h+ ⊕ h0 ⊕ h−

such that S1 acts by the characters z/z̄, 1 and z̄/z on the respective complex
sub-vector spaces.

We continue our consideration of the involution ι given by

ι(g) = h(i)gh−1(i).
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The matrices M1 ∈ SO(2, r)(C) with M̄1 = ι(M1) satisfy that

M̄1 = diag(−1,−1, 1, . . . , 1) · M1 · diag(−1,−1, 1, . . . , 1)

= diag(1, 1,−1, . . . ,−1) · M1 · diag(1, 1,−1, . . . ,−1).

Since SO(2, r)(C) is given by the matrices M satisfying

M t · diag(1, 1,−1, . . . ,−1) · M = diag(1, 1,−1, . . . ,−1)

⇔ M−1 = diag(1, 1,−1, . . . ,−1) · M t · diag(1, 1,−1, . . . ,−1),

each matrix M1 satisfies
M−1

1 = M̄ t
1.

Thus M1 is contained in the compact group SU(2 + r), and one concludes:

Proposition 11.2.1. Our morphism

h : S1 → SO(H2(S, Q)1)R

yields a Shimura datum.1

Remark 11.2.2. Note that the simple Lie group SO(2, r)(R) consists of
two connected components (see [21], Exercise 7.2). Since the Lie group
SO(2 + r)(C) ∼= SO(H2(S, R)1)(C) is connected (see [27], IX. Lemma 4.2),
the algebraic group SO(H2(S, R)1) is connected, too. Recall that all Cartan
involutions of the simple algebraic group SO(H2(S, R)1) are conjugate. The
action of S1 on H2(S, R)1 is given by its action on 〈�ω,�ω〉 and S1 fixes all
vectors of H1,1(S, R)1. This implies that all morphisms

h : S1 → SO(H2(S, R)1),

which yields the Hodge structure of a K3 surface, satisfy that their images
h(S1) are conjugate. The definition of the Hodge structure on H2(S, R)1 im-
plies that the R-valued points of the kernel of h are given by {1,−1} ∈ S1(R).
Let ιS1 : S1 → S1 be the involution given by x → x−1. For each morphism
h1 in the conjugacy class of h, there exists exactly one other morphism h2

1 This Shimura datum is not a Shimura datum in the sense of Definition 1.3.22. Let
GO(H2(S, Q)1) denote the general orthogonal group, which preserves the symmetric
bilinear form up to a scalar. The Hodge structure defines a corresponding homomorphism

h : S → GO(H2(S, Q)1)R,

which is a Shimura datum in the sense of Definition 1.3.22 and whose restriction to S1 is
the morphism of the proposition. By arguments analogous to the arguments in Remark
1.4.13, we can consider this restricted morphism as Shimura datum, too.
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with h1(S1) = h2(S1) and kernel given by {1,−1} ∈ S1(R), which is given
by h2 = h1 ◦ ιS1 . The conjugation by diag(−1, 1,−1, 1, . . . , 1) yields an inner
automorphism ϕ of SO(H2(S, R)1) such that h2 = ϕ ◦ h1. Thus each Hodge
structure of a K3 surface obtained by some p ∈ D is obtained by some
element of the conjugacy class of our morphism h : S1 → SO(H2(S, R)1).
Moreover note that the holomorphic V HS over the bounded symmetric do-
main associated with SO(H2(S, R)1)(R)+/K, which is induced by the natural
embedding SO(H2(S, Q)1) → GL(H2(S, Q)1), is uniquely determined by the
variation of the subbundle of rank 1 given by H2,0. Since

r = dim(D) = dim(SO(H2(S, R)1)(R)/K),

this V HS yields a biholomorphic map from the bounded symmetric domain
associated with SO(H2(S, R)1)(R)+/K) onto D+.

The preceding remark and Theorem 1.7.2 imply:

Theorem 11.2.3. There is a dense set of CM points on D with respect to
the V HS on D obtained by Remark 11.2.2.

11.3 The examples

First we construct a holomorphic family of marked K3-surfaces with a global
involution over its basis:

Construction 11.3.1. There exists a universal family u : X → B of marked
analytic K3-surfaces, whose basis is not Hausdorff (see [6], VIII. Section
12). Let φ denote the global marking of the family X → B. We consider an
involution ι on a marked K3 surface (S, φ), which acts by −1 on H2,0(S).
This involution yields an involutive isometry ι on the lattice L. Thus the
involution ι endows X → B with a new marking ι ◦ φ. By the universal
property of the universal family, this new marking yields an involution of the
family:

X
u

��

ιX �� X
u

��
B

ιB �� B

Let Δ : B → B × B denote the diagonal embedding. We define

Bι = Graph(ιB) ∩ Δ(B) ⊂ B × B.

Note that each point b ∈ Bι has an analytic neighborhood U ⊂ B such that
XU → U is given by the Kuranishi family and yields an injective period map
for U . Thus on U×U the diagonal Δ(U) and Graph(ιB |U ) are closed analytic
submanifolds. Hence Bι has the structure of an analytic variety, which is not
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necessarily Hausdorff, and can have singularities. The composition Δ ◦ u
allows to consider Δ(B) as basis of the universal family of the marked K3
surfaces. By the restricted family XBι

→ Bι, we obtain a holomorphic family
with a global involution over the basis Bι. For simplicity we write Xι → Bι

instead of XBι
→ Bι.

Remark 11.3.2. The fibers of Xι → Bι have by the involution ι a cyclic
covering onto a projective surface (compare to [60], 2.1). Thus the fibers of
Xι → Bι are algebraic.

Proposition 11.3.3. Assume that for all b ∈ Bι the involution ιXb
on Xb

has a locus of fixed points consisting of rational curves. Then the holomorphic
family Xι → Bι is due to its global involution suitable for the construction of
a holomorphic Borcea-Voisin tower.

Proof. Let b0 ∈ Bι and U ⊂ Bι be a small open neighborhood of b0. The
eigenspace decomposition with respect to ι yields a variation of Hodge struc-
tures on the eigenspace with respect to −1. The corresponding period map
yields an open injection of U into D. By the fact that D has a dense set of
CM points, the family Xι → Bι has a dense set of CM fibers. Since the locus
of fixed points with respect to ιXb

consists of rational curves, this locus of
fixed points has complex multiplication, too. Hence Xι → Bι can be used for
the construction of a holomorphic Borcea-Voisin tower. ��

Assume that Xι → Bι satisfies the assumptions of Proposition 11.3.3.
Then let Xι → Bι × M1 denote the family obtained by the holomorphic
Borcea-Voisin tower from Xι → Bι and E → M1 denote the family of elliptic
curves.

Definition 11.3.4. A family F → Y of Calabi-Yau manifolds is maximal in
0 ∈ Y , if the universal property of the local universal deformation X → B of
F0 yields a surjection of a neighborhood of 0 onto B. The family F → Y is
maximal, if it is maximal in all 0 ∈ Y .

Theorem 11.3.5. The family Xι is maximal.

Proof. By the following lemma, we start to prove Theorem 11.3.5:

Lemma 11.3.6.

H3((Xι)p×q) = H2((Xι)p, Q)1 ⊗ H1(Eq, Q)

Proof. Due to Proposition 10.3.2 and the fact that the exceptional divisors
consist of some rational curves, one only needs to determine H3((Xι)p ×
Eq, Q)0. Since b1((Xι)p) = b3((Xι)p) = 0 and H1(Eq, Q) = H1(Eq, Q)1, we are
done. ��
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By using the preceding lemma, we prove the following proposition.

Proposition 11.3.7. One has that dim(Bι×B1) and h2,1((Xι)p×q) coincide.

Proof. By Proposition 11.3.6,

H3((Xι)p×q) = H2((Xι)p, Q)1 ⊗ H1,0(Eq, Q) ⊕ H2((Xι)p, Q)1 ⊗ H0,1(Eq, Q).

Therefore

h2,1((Xι)p×q) = h1,1((Xι)p, Q)1 · h1,0(Eq, Q) + h2,0((Xι)p, Q)1 · h0,1(Eq, Q)

= h1,1((Xι)p, Q)1 + h2,0((Xι)p, Q)1 = h1,1((Xι)p, Q)1 + 1.

Recall that D+ is the bounded symmetric domain obtained by SO(2, r)+(R),
where r = h1,1((Xι)p, R)1. By [27], IX. Table II, the domain D has the
complex dimension r.2 Since the period map p : Bι → D of Xι → Bι is
locally bijective, one concludes

h1,1((Xι)p, Q)1 = r = dim(D) = dim(Bι),

which yields the result. ��

By the following proposition, we finish the proof of Theorem 11.3.5: ��

Proposition 11.3.8. The period map yields a multivalued map from M1 ×
Bι to the period domain, which is locally injective.

Proof. Let B be a small open subset of M1 × Bι and let x1, x2 ∈ B. Note
that the period map p on M1 × Bι yields different image points p(x1) and
p(x2), if the classes of H3,0((Xι)x1) and H3,0((Xι)x2) in P(H3((Xι)x1 , C)) do
not coincide. The respective period maps on Bι and M1 are locally injective
and depend only on ωEq

and ω(Xι)p
. Since

H3,0((Xι)p×q) ⊂ H3((Xι)p×q) = H2((Xι)p, Q)1 ⊗ H1(Eq, Q)

is given by H2,0((Xι)p) ⊗ H1,0(Eq), the period map concerning Xι is locally
injective, too. ��

It remains to classify the involutions ι on L, which provide our families
Xι → Bι with a global involution.

Remark 11.3.9. The involutions on L, which yields involutions on certain
K3 surfaces, are characterized by the triples of the following integers (com-
pare to [51]):

• The integer t is the rank of the sublattice Pic(S)0 of the Picard lattice of
an arbitrary fiber S of Xι, which is invariant under the global involution.

2 By [27], IX. Table II, the domain D has the dimension 2r as real manifold.
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• By the intersection pairing, one obtains a homomorphism Pic(S)0 →
Pic(S)∨0 . The integer a is given by

(Z/(2))a ∼= Pic(S)∨0 /Pic(S)0.

• By the morphism Pic(S)0 → Pic(S)∨0 , the intersection form on Pic(S)0
yields a quadratic form q on Pic(S)∨0 with values in Q. The integer δ is 0,
if q has only values in Z and 1 otherwise.

For a fixed triple (t, a, δ) we write X(t,a,δ) → B(t,a,δ) instead of Xι → Bι

and X(t,a,δ) instead of Xι.

Remark 11.3.10. The ramification locus of the fibers with respect to the
involution on X → Bt,a,δ is given by two elliptic curves, if (t, a, δ) = (10, 8, 0),
is empty, if (t, a, δ) = (10, 10, 0), and otherwise given by CN ′+E1+. . .+EN−1,
where CN ′ is a curve of genus

N ′ =
1
2
(22 − t − a), and N =

1
2
(t − a) + 1.

(compare to [51]).
Therefore the triples

(t, a, δ) = (10, 10, 0) and (t, a, δ) with t + a = 22

yield the examples of families X(t,a,δ) → B(t,a,δ) with global involutions over
the basis, whose locus of fixed points consists at most of families of rational
curves. Hence by Proposition 11.3.3, these triples yield maximal holomorphic
CMCY families of 3-manifolds.

11.3.11. By [51], Figure 2, one gets the following complete list of holo-
morphic maximal CMCY families X(t,a,δ) → B(t,a,δ) × M1 of 3-manifolds
obtained by this method. By Claim 10.2.1, we obtain the Hodge numbers
h1,1 and h2,1 of the fibers of X(t,a,δ).

t a δ N h1,1 h2,1

10 10 0 0 11 11

11 11 1 1 16 10

12 10 1 2 21 9

13 9 1 3 26 8

14 8 1 4 31 7

15 7 1 5 36 6

16 6 1 6 41 5

17 5 1 7 46 4

18 4 1 8 51 3

18 4 0 8 51 3

19 3 1 9 56 2

20 2 1 10 61 1
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Remark 11.3.12. C. Borcea [8] has constructed Calabi-Yau manifolds of
dimension 3 with CM by using 3 elliptic curves with involutions. This con-
struction yields a CMCY family of 3-manifolds over M1 ×M1 ×M1. The
fibers have the Hodge numbers h1,1 = 51 and h2,1 = 3. By similar arguments
as in Theorem 11.3.5, this family is maximal. The associated period domain
is given by B1 × B1 × B1.

As we have seen in Section 10.3, the family Q → M3 is a maximal CMCY
family of 3-manifolds, whose fibers have the same Hodge numbers h1,1 = 51
and h2,1 = 3. The associated period domain is given by B3.

Moreover by Theorem 11.3.5 and the preceding point, we have two ad-
ditional holomorphic maximal CMCY families of 3-manifolds, whose fibers
have the same Hodge numbers h1,1 = 51 and h2,1 = 3. The associated period
domain is given by B1 × D, where D denotes the bounded domain given by
SO(2, 2)(R)/K.

Hence there exist 4 maximal CMCY families of 3-manifolds, whose fibers
have the Hodge numbers h1,1 = 51 and h2,1 = 3. One can easily check that
the example of [8] has a Yukawa coupling of length 3, where the Yukawa
coupling of the family Q → M3 constructed in Section 9.2 has the length 1.
Hence there are not any open sets of the respective bases, which allow a local
identification of these two families.

By using the involutions on elliptic curves, one gets a local identification
between E × E/〈(ιE , ιE)〉 → M1 ×M1, which yields the example of [8], with
one of our examples X(t,a,δ) → B(t,a,δ) with t = 18 and a = 4. This implies
a local identification between the resulting CMCY families of 3-manifolds
obtained by the Borcea-Voisin tower.

Remark 11.3.13. By Example 7.4.5, there are 13 explicit examples of ellip-
tic curves with CM . Thus for the CMCY family of C. Borcea [8], which we
have discussed in the preceding remark, one obtains up to birational equiv-
alence 455 different examples of CM fibers. For 6 of these 13 elliptic curves,
we have an explicitly given involution. Thus we can at least describe the 56
Calabi-Yau 3-manifolds, which are obtained by some of the latter 6 elliptic
curves, by local equations.

Remark 11.3.14. It would be interesting to consider the following question:
Is the maximal CMCY family X(10,10,0) its own mirror family?

Let S denote a K3 surface with an involution, which acts by −1 on Γ(ωS).
In [60] the triples (t, a, δ), which yield our families X(t,a,δ) → B(t,a,δ) satisfying
the assumptions of Proposition 11.3.3, do not satisfy the assumptions of the
technical Lemma [60], Lemme 2.5. This Lemma guarantees the existence of a
hyperbolic plane H ⊂ H2(S, Z)1, which is needed for the mirror construction
in [60]. Hence these triples (t, a, δ) do not satisfy the assumptions of the
Mirror Theorem [60], Théorème 2.17. But by [12], Lemma 4.4.4, there is a
hyperbolic plane H ⊂ H2(S, Z)1 for these triples. Moreover by [6], VIII.
19, one has a description of the corresponding involution on the cohomology
lattice, which yields the existence of a hyperbolic plane H ⊂ H2(S, Z)1.
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In her construction of a Calabi-Yau 3-manifold ([60], Lemme 1.3) C. Voisin
assumes that the involution on the K3 surface is not given by the triple
(10, 10, 0), since it is easy to see that the resulting 3-manifold is not simply
connected in this case. But by Proposition 7.2.5 the resulting 3-manifold
satisfies our definition of a Calabi-Yau manifold (Definition 7.2.1) in this
case, too.

The mirror of a fiber of X(10,10,0) must have the same Hodge numbers
h1,1 = h2,1 = 11. By Claim 10.2.1, this implies for an involution on a K3
surface:

5N − N ′ = 5N ′ − N = 0

Hence one calculates easily that N = N ′ = 0. Thus by V. V. Nikulins [51]
classification of involutions on K3 surfaces, the Voisin-Borcea Mirror (in the
notation of [12]) of a fiber of X(10,10,0) should be obtained by the triple
(10, 10, 0), too. Hence the author has the impression that one can consider
the maximal CMCY family X(10,10,0) of 3-manifolds as its own mirror family,
but one must check the details.



Appendix A
Examples of Calabi-Yau 3-manifolds
with complex multiplication

Introduction

The previous examples of Calabi-Yau manifolds with CM occur as fibers of a
family over a Shimura variety, which has a dense set of complex multiplication
fibers. Here we give some examples, which are not necessarily fibers of a non-
trivial family with a dense set of complex multiplication fibers.

The first two sections give two different classes of examples by using invo-
lutions on K3 surfaces. In each of the both Sections we will use a modified
version of the construction of Viehweg and Zuo to obtain K3 surfaces, which
are suitable for the construction of a Borcea-Voisin tower.

In the third section we will prove that a K3 surface with a degree 3 au-
tomorphism has complex multiplication. By using methods, which has been
introduced in Section 9.1 and Section 9.2, we will use this automorphism and
the Fermat curve of degree 3 for the construction of a Calabi-Yau 3-manifold
with complex multiplication.

A.1 Construction by degree 2 coverings
of a ruled surface

We start by finding curves with complex multiplication. The following propo-
sition yields some examples:

Proposition A.1.1. Let 0 < d1, d < m, and ξk denote a primitive k-th. root
of unity for all k ∈ N. Then the curve C, which is locally given by

ym = xd1

n−2∏
i=1

(x − ξi
n−2)

d,

209
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is covered by the Fermat curve F(n−2)m locally given by

y(n−2)m + x(n−2)m + 1 = 0

and has complex multiplication.

Proof. (see Theorem 2.4.4) ��

Example A.1.2. By the preceding proposition, the curves locally given by

y4 = x8
1 + x8

0, y4 = x1(x7
1 + x7

0), y4 = x1(x6
1 + x6

0)x0

have complex multiplication. These curves are degree 4 covers of the projec-
tive line and have the genus 9 as one can easily calculate by the Hurwitz
formula.

The curves of the preceding example have a natural interpretation as cyclic
covers of P

1 of degree 4. One can identify these covers with the set of their 8
branch points in P

1. Thus let P8 denote the configuration space of 8 different
points in P

1. We use a modified version of the construction in [58], Section 5
to construct K3 surfaces with complex multiplication by Example A.1.2 in a
first step. This method is nearly the same method as in Section 8.2.

For our application, it is sufficient to work with P
1-bundles over P

1 resp.,
with rational ruled surfaces. Let πn : Pn → P

1 denote the rational ruled
surface given by P(OP1 ⊕OP1(n)) and σ denote a non-trivial global section of
OP1(8), which has the 8 different zero points represented by a point q ∈ P8.
The sections Eσ, E0 and E∞ of P(O ⊕O(8)) are induced by

id ⊕ σ : O → O ⊕O(8), id ⊕ 0 : O → O ⊕O(8)
and 0 ⊕ id : O(8) → O ⊕O(8)

resp., by the corresponding surjections onto the cokernels of these embeddings
as described in [26], II. Proposition 7.12.

Remark A.1.3. The divisors Eσ and E0 intersect each other transversally
over the 8 zero points of σ. Recall that Pic(P8) has a basis given by a fiber and
an arbitrary section. Hence by the fact that Eσ and E0 do not intersect E∞,
one concludes that they are linearly equivalent with self-intersection num-
ber 8. Since E∞ is a section, it intersects each fiber transversally. Thus one
has that E∞ ∼ E0 − (E0.E0)F , where F denotes a fiber. Therefore one
concludes

E∞.E∞ = E∞.(E0 − (E0.E0)F ) = −(E0.E0) = −8.
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Next we establish a morphism μ : P2 → P8 over P
1. By [26], II. Proposition

7.12., this is the same as to give a surjection π∗
2(O ⊕O(8)) → L, where L is

an invertible sheaf on P2. By the composition

π∗
2(O⊕O(8)) = π∗

2(O)⊕π∗
2O(8) ↪→

4⊕
i=0

π∗
2O(2i) = Sym4(π∗

2(O⊕O(8))) → OP2(4),

where the last morphism is induced by the natural surjection π∗
2(O⊕O(2)) →

OP2(1) (see [26], II. Proposition 7.11), we obtain a morphism μ∗ of sheaves.
This morphism μ∗ is not a surjection onto OP2(4), but onto its image
L ⊂ OP2(4). Over A

1 ⊂ P
1 all rational ruled surfaces are locally given by

Proj(C[x])[y1, y2], where x has the weight 0. Hence we have locally that
π∗

2(O ⊕O(8)) = Oe1 ⊕Oe2. Over A
1 the morphism μ∗ is given by

e1 → y4
1 , e2 → y4

2

such that the sheaf L = im(μ∗) ⊂ OP2(4) is invertible. Thus the morphism
μ : P2 → P8 corresponding to μ∗ is locally given by the ring homomorphism

(C[x])[y1, y2] → (C[x])[y1, y2] via y1 → y8
1 and y2 → y8

2 .

Construction A.1.4. One has a commutative diagram

Y ′ τ ′
�� P′

2

μ′
��
P

1 × P
1

Ŷ τ̂ ��

ρ

��

δ

��

P̂2

μ̂ ��

ρ2

��

δ2

��

P̂8

ρ8

��

δ8

��

Y τ

2
√

μ∗Eσ
3·(μ∗E0)red

��

π

��

P2
μ

4
√

E∞+8·F
E0

��

π2

��

P8

π8

��
P

1 id ��
P

1 id ��
P

1

of morphisms between normal varieties with:

(a) δ, δ2, δ8, ρ, ρ2 and ρ8 are birational.
(b) π is a family of curves, π2 and π8 are P

1-bundles.

Proof. One must only explain δ8 and ρ8. Recall that Eσ is a section of P(O⊕
O(8)), which intersects E0 transversally in exactly 8 points. The morphism
ρ8 is the blowing up of the 8 intersection points of E0 ∩Eσ. The preimage of
the 8 points given by q ∈ P8 with respect to π8◦ρ8 consists of the exceptional
divisor D̂1 and the proper transform D̃2 of the preimage of these 8 points
with respect to ρ8 given by 8 rational curves with self-intersection number
−1. The morphism δ8 is obtained by blowing down D̃2. ��
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Remark A.1.5. The section σ has the zero divisor given by some q ∈ P8.
Hence one obtains μ∗(Eσ) ∼= C, where C → P

1 is a cyclic cover of degree 4
as in Example A.1.2 ramified over the 8 points given by σ. The surface Y is
a cyclic degree 2 cover of P2 ramified over C. Thus it has an involution. It is
given by the invertible sheaf

L = ω−1
P2

and the divisor

B = μ∗(Eσ), where O(B) ∼= L2,

with the notation of [6] I. Section 17. Thus [6] I. Lemma 17.1 implies that Y
is a K3 surface.

By Lemma 10.4.1, there is only one elliptic curve with a cyclic degree 4
cover onto P

1. Let E denote this curve, which is locally given by

y4 = x(x − 1)2.

One can easily see that E has the j invariant 1728. Thus E has complex
multiplication.

We fix some notation. Let n ∈ N, let ξ be a fixed primitive n-th. root of
unity and let C1 and C2 be curves locally given by

yn = f1(x) and yn = f2(x),

where f1, f2 ∈ C[x]. By (x, y) → (x, ξy), one can define an automorphism γi

on Ci for i = 1, 2. The surface C1 ×C2/〈(1, 1)〉 is the quotient of C1 ×C2 by
〈(γ1, γ2)〉.
Proposition A.1.6. The surface Y is birationally equivalent to C ×
E/〈(1, 1)〉.1

Proof. Let Ẽ• denote the proper transform of the section E• with respect to
ρ8. Then μ̂ is the Kummer covering given by

4

√
Ẽ∞ + 8 · F
Ẽ0 + D̂1

,

where D̂1 denotes the exceptional divisor of ρ8. Thus the morphism μ′ is the
Kummer covering

4

√
(δ8)∗Ẽ∞ + 8 · (δ8)∗F
(δ8)∗Ẽ0 + (δ8)∗D̂1

= 4

√
P1 × {∞} + 8 · (P × P1)

P1 × {0} + Δ × P1
,

1 Similarly to [58], Construction 5.2, we show that Y ′ is birationally equivalent to C ×
E/〈(1, 1)〉.
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where Δ is the divisor of the 8 different points in P
1 given by q ∈ P8 and

P ∈ P
1 is the point with the fiber F . Since E0 + Eσ is a normal crossing

divisor, Ẽσ neither meets Ẽ0 nor D̃2, where D̃2 is the proper transform of
π∗

8(Δ). Therefore (δ8)∗Ẽσ neither meets

(δ8)∗Ẽ0 = P
1 × {0} nor (δ8)∗Ẽ∞ = P

1 × {∞}.

Hence one can choose coordinates in P
1 such that (δ8)∗Ẽσ = P

1 × {1}.
By the definition of τ , we obtain that τ̂ is given by

2

√
ρ∗2μ

∗(Eσ)
ρ∗2μ

∗(E0)
= 2

√
μ̂∗(Ẽσ)
μ̂∗(Ẽ0)

,

and τ ′ is given by

2

√
μ′∗(P1 × {1})
μ′∗(P1 × {0}) .

By the fact that the last function is the root of the pullback of a function
on P

1 × P
1 with respect to μ′, it is possible to reverse the order of the field

extensions corresponding to τ ′ and μ′ such that the resulting varieties ob-
tained by Kummer coverings are birationally equivalent. Hence we have the
composition of β : P

1 × P
1 → P

1 × P
1 given by

2

√
P1 × {1}
P1 × {0}

with

4

√
β∗(P1 × {∞}) + 8 · (P × P1)

β∗(P1 × {0}) + (Δ × P1)
,

which yields the covering variety isomorphic to E × C/〈(1, 1)〉. ��

As in Section 8.2 we conclude:

Corollary A.1.7. If the curve C has complex multiplication, the K3-surface
Y has complex multiplication, too.

By the the preceding corollary, our Example A.1.2 yields 3 different K3
surfaces with complex multiplication locally given by

y2
2 + y4

1 + x8
1 + x8

0, y2
2 + y4

1 + x1(x7
1 + x7

0), y2
2 + y4

1 + x1(x6
1 + x6

0)x0.

Proposition A.1.8. For i = 1, 2 assume that Ci is a Calabi-Yau i-manifold
with complex multiplication endowed with the involution ιi such that ιi acts
by −1 on Γ(ωCi

). By blowing up the singular locus of C1 ×C2/〈(ι1, ι2)〉, one
obtains a Calabi-Yau 3-manifold with complex multiplication.
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Proof. It is well-known that an involution on a Calabi-Yau 2-manifold resp.,
a K3 surface, which acts by −1 on Γ(ω), has a smooth divisor of fixed points
or it has not any fixed point. Thus the proof follows from the same methods
as in Section 7.2. ��

Now we need some elliptic curves with complex multiplication:

Example A.1.9. Elliptic curves with CM has been well studied by number
theorists. Some examples of elliptic curves with complex multiplication are
given by the following list:

equation j invariant

y2
1x0 = x3

1 − x3
0 0

y2
1x0 = x1(x1 − x0)(x1 − 2x0) 1728

y2x0 = x1(x1 − x0)(x1 − (1 +
√

2)2x0) 8000

y2x0 = x1(x1 − x0)(x1 − 1
4
(3 + i

√
7)2x0) −3375

y2x0 = x3
1 − 15x1x2

0 + 22x3
0 54000

y2x0 = x3 − 595x1x2
0 + 5586x3

0 16581375

Note that the equations allow an explicit definition of an involution on these
elliptic curves. (see Section 7.4)

A.1.10. By combining our 3 examples of K3 surfaces and the 6 elliptic
curves and using Proposition A.1.8, we have 18 examples of Calabi-Yau
3-manifolds with complex multiplication. By [60], one has equations to deter-
mine the Hodge numbers of these examples. Let C2 be a K3 surface satisfying
the assumptions of Proposition A.1.8, let N be the number of curves in the
ramification locus of the quotient map C2 → C2/ι2 and let N ′ be given by

N ′ = g1 + . . . + gN ,

where gi denotes the genus of the i-th. curve in the ramification locus. Then
one has for the Calabi-Yau 3-manifold, which results by Proposition A.1.8:

h1,1 = 11 + 5N − N ′

h2,1 = 11 + 5N ′ − N

In our case the ramification locus of C2 → C2/ι2 is given by one genus 9
curve. Thus in our case the Hodge numbers are given by

h1,1 = 7 and h2,1 = 55.

A.2 Construction by degree 2 coverings of P
2

Example A.2.1. By Proposition A.1.1, the projective curves given by
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y6 = x6
1 + x6

0, y6 = x1(x5
1 + x5

0), y6 = x1(x4
1 + x4

0)x0

have complex multiplication. These curves have the genus 10 as one can easily
calculate by the Hurwitz formula.

Let P6 denote the configuration space of 6 different points in P
1. Again

we use a modified version of the construction in [58], Section 5. Let σ denote
a non-trivial global section of OP1(6), which has the 6 different zero points
represented by a point q ∈ P6.

Here the sections Eσ, E0 and E∞ of P(O ⊕O(6)) are induced by

id ⊕ σ : O → O ⊕O(6), id ⊕ 0 : O → O ⊕O(6)
and 0 ⊕ id : O(6) → O ⊕O(6)

resp., by the corresponding surjections onto the cokernels of these embeddings
as described in [26], II. Proposition 7.12.

One concludes similarly to the preceding section that

E∞.E∞ = E∞.(E0 − (E0.E0)F ) = −(E0.E0) = −6.

By the composition

π∗
1(O⊕O(6)) = π∗

1(O)⊕π∗
1O(6) ↪→

6⊕
i=0

π∗
1O(i) = Sym6(π∗

1(O⊕O(6))) → OP1(6),

where the last morphism is induced by the natural surjection π∗
2(O⊕O(1)) →

OP1(1) (see [26], II. Proposition 7.11), we obtain a morphism μ∗ of sheaves
as in the preceding section. The morphism μ : P1 → P6 corresponding to μ∗

is locally given by the ring homomorphism

(C[x])[y1, y2] → (C[x])[y1, y2] via y1 → y6
1 and y2 → y6

2 .

Construction A.2.2. One has a commutative diagram

Y ′ τ ′
�� P′

1

μ′
��
P

1 × P
1

Ŷ τ̂ ��

ρ

��

δ

��

P̂1

μ̂ ��

ρ1

��

δ1

��

P̂6

ρ6

��

δ6

��

Y τ

2
√

μ∗Eσ
3·(μ∗E0)red

��

π

��

P1
μ

6
√

E∞+6·F
E0

��

π1

��

P6

π6

��
P

1 id ��
P

1 id ��
P

1
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of morphisms between normal varieties with:

(a) δ, δ1, δ1, ρ, ρ1 and ρ6 are birational.
(b) π is a family of curves, π1 and π6 are P

1-bundles.

Proof. One must only explain δ6 and ρ6. These morphisms are given by blow-
ing up morphisms similar to the preceding section. ��
Remark A.2.3. The section σ has the zero divisor given by some q ∈ P6.
Hence one obtains μ∗(Eσ) ∼= C, where C → P

1 is a cyclic cover of degree 6
as in Example A.2.1 ramified over the 6 points given by σ. The surface Y is a
cyclic degree 2 cover of P1 ramified over C. Thus it is birationally equivalent
to the K3 surface given the degree 2 cover of P

2 ramified over C.

Let C ′ denote the projective smooth curve locally given by

y6 = x(x − 1).

By Proposition A.1.1, it has complex multiplication.

Proposition A.2.4. The surface Y is birationally equivalent to C ×
C ′/〈(1, 1)〉.
Proof. Let Ẽ• denote the proper transform of the section E• with respect to
ρ6. Then μ̂ is the Kummer covering given by

6

√
Ẽ∞ + 6 · F
Ẽ0 + D̂1

,

where D̂1 denotes the exceptional divisor of ρ6. Thus the morphism μ′ is the
Kummer covering

6

√
(δ6)∗Ẽ∞ + 6 · (δ6)∗F
(δ6)∗Ẽ0 + (δ6)∗D̂1

= 6

√
P1 × {∞} + 6 · (P × P1)

P1 × {0} + Δ × P1
,

where Δ is the divisor of the 6 different points in P
1 given by q ∈ P6 and

P ∈ P
1 is the point with the fiber F . Since E0 + Eσ is a normal crossing

divisor, Ẽσ neither meets Ẽ0 nor D̃2, where D̃2 is the proper transform of
π∗

6(Δ). Therefore (δ6)∗Ẽσ neither meets

(δ6)∗Ẽ0 = P
1 × {0} nor (δ6)∗Ẽ∞ = P

1 × {∞}.

Hence one can choose coordinates in P
1 such that (δ6)∗Ẽσ = P

1 × {1}.
By the definition of τ , we obtain that τ̂ is given by

2

√
ρ∗1μ

∗(Eσ)
ρ∗1μ

∗(E0)
= 2

√
μ̂∗(Ẽσ)
μ̂∗(Ẽ0)

,



A.3 Construction by a degree 3 quotient 217

and τ ′ is given by

2

√
μ′∗(P1 × {1})
μ′∗(P1 × {0}) .

By the fact that the last function is the root of the pullback of a function
on P

1 × P
1 with respect to μ′, it is possible to reverse the order of the field

extensions corresponding to τ ′ and μ′ such that the resulting varieties ob-
tained by Kummer coverings are birationally equivalent. Hence we have the
composition of β : P

1 × P
1 → P

1 × P
1 given by

2

√
P1 × {1}
P1 × {0}

with

6

√
β∗(P1 × {∞}) + 6 · (P × P1)

β∗(P1 × {0}) + (Δ × P1)
,

which yields the covering variety isomorphic to C ′ × C/〈(1, 1)〉. ��

Hence Y is birationally equivalent to C ′ ×C/〈(1, 1)〉. As in Section 8.2 we
conclude:

Corollary A.2.5. If the curve C has complex multiplication, the K3-surface
Y has complex multiplication, too.

A.2.6. By the preceding corollary, our Example A.2.1 yields 3 different K3
surfaces with complex multiplication as degree 2 covers of P

2, which are
locally given by

y2
2 + y6

1 = x6
1 + x6

0, y2
2 + y6

1 = x1(x5
1 + x5

0), y2
2 + y6

1 = x1(x4
1 + x4

0)x0.

By an elliptic curve with complex multiplication, these K3 surfaces yield
Calabi-Yau 3-manifolds with complex multiplication. We obtain 18 Calabi-
Yau 3-manifolds with complex multiplication by using Example A.1.9. By the
same methods as in A.1.10, one calculates easily that the resulting Calabi-Yau
3-manifolds have the Hodge numbers

h1,1 = 6 and h2,1 = 60.

A.3 Construction by a degree 3 quotient

Consider the K3 surface

S = V ((y3
2 − y3

1)y1 + (x3
1 − x3

0)x0) ⊂ P
3.
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By using the partial derivatives of the defining equation, one can easily verify
that S is smooth. First we prove that this surface has complex multiplica-
tion. In a second step we consider an automorphism of degree 3 on this
surface, which allows the construction of a Calabi-Yau 3-manifold with com-
plex multiplication.

Proposition A.3.1. The K3 surface S has complex multiplication.

Proof. Consider the isomorphic curves

C1 = V (z4
1 − (y3

2 − y3
1)y1) ⊂ P

2,

C2 = V (z4
2 − (x3

1 − x3
0)x0) ⊂ P

2.

Since the elliptic curve with j invariant 0 given by

V (y2x0 + x3
1 + x3

0) ⊂ P
2

has complex multiplication, one concludes as in Remark 7.4.2 that C1 and
C2 have complex multiplication, too. The K3 surface S is birationally equiv-
alent to

T = C1 × C2/〈(1, 1)〉.
This follows from the rational map C1 × C2 → S given by

((z1 : y2 : y1), (z2 : x1 : x0)) → (
z2

z1
y2 :

z2

z1
y1 : x1 : x0).2

There exists a suitable sequence of blowing ups turning C1×C2 into ˜C1 × C2

such that
T̃ = ˜C1 × C2/〈(1, 1)〉

is smooth. Since we only blow up points, ˜C1 × C2 has CM , too (see Corollary
7.1.6). Thus the quotient has CM . Since T̃ is birationally equivalent to S,
there exists a sequence of blowing ups of smooth points and blowing downs
to smooth points, which turns T̃ into S. By Corollary 7.1.6, the fact that T̃
has CM implies that S has CM . ��

A.3.2. Let ξ denote e
2πi
3 . The K3 surface S has an automorphism γ of degree

3 given by
(y2 : y1 : x1 : x0) → (ξy2 : y1 : ξx1 : x0).

On {x0 = 1} we have the 4 fixed points given by

(0 : 4
√
−1 : 0 : 1).

2 In [9], Section 5 one finds a similar rational map.
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Now assume x0 = 0. By the equation of S, this yields

(y3
2 − y3

1)y1 = 0.

Thus in addition the line given by y1 = x0 = 0 is fixed.

Proposition A.3.3. The automorphism γ acts via pullback by ξ2 on Γ(ωS).

Proof. By the multiplication of i with z1 and z2, one defines an action of the
group of the 4-th. roots of unity on the curves C1 and C2 given by

V (z4
1 − (y3

2 − y3
1)y1) ⊂ P

2 and C2 = V (z4
2 − (x3

1 − x3
0)x0) ⊂ P

2.

The −1 eigenspace in Γ(ωC1) and Γ(ωC2) with respect to the action of i comes
from the cohomology of the elliptic curve E0 given by

y2x0 = x3
1 − x3

0

(see Section 4.2). Note that the action of 〈(1, 1)〉 on ωC1×C2 fixes exactly
the tensor product of the −1 eigenspaces in Γ(ωC1) and Γ(ωC2). Thus one
concludes that Γ(ωS) is given by the tensor product of the −1 eigenspaces in
Γ(ωC1) and Γ(ωC2).

The automorphism γF3 : E0 → E0 given by x1 → ξx1 is the generator of
the Galois group of the degree 3 cover, which allows an identification of E0

with the Fermat curve F3 of degree 3. It acts via pullback by ξ on Γ(ωF3).
Thus the corresponding automorphisms ϕC1 : C1 → C1 and ϕC2 : C2 → C2

act by ξ on the −1 eigenspace with respect to H0(ωC1) and H0(ωC2). Note
that (ϕC1 , ϕC2) yields an automorphism of C1×C2/〈(1, 1)〉. By the birational
map to S, this automorphism corresponds to γ and one verifies easily that γ
acts via pullback by ξ2 on Γ(ωS). ��

A.3.4. Consider the blowing up P̃
3 of P

3 with respect to {y2 = x1 = 0}. Let
S̃ denote the proper transform of the blowing up of S with respect to the
latter blowing up, which has the exceptional divisor E consisting of four −1
curves over the 4 points given by (0 : 4

√
−1 : 0 : 1). Consider the projection

p : S\{y2 = x1 = 0} ↪→ P
3\{y2 = x1 = 0}→ P

1 given by (y2 : y1 : x1 : x0)→ (y2 : x1).

Over {x0 = 1} one has an embedding of an open subset of P̃
3 into P

1 × A
3,

which yields an open embedding e of an open subset U of S̃ into P
1 × A

3.
Note that P

1 × A
3 is endowed with a natural projection pr1 : P

1 × A
3 → P

1.
Over U \ {y2 = x1 = 0} one has

p = pr1 ◦ e.

Thus by gluing, p extends to a morphism S̃ → P
1, which is a family of

projective curves of degree 4. This family has a section D = {y1 = x0 = 0}.
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One checks easily the singular loci of the fibers do not meet D (since y2 �= 0
or x1 �= 0). By S̃ × F3 → P

1, we have a family of surfaces. Let denote the
generator of the Galois group of F3 → P

1, which acts via pullback by ξ on ωF3 .
The quotient map onto S̃×F3/〈(γ, γF3)〉 yields three quotient singularities of
type A3,2 with the notation of [6], III. Section 5. As in Section 9.2 described
one must blow up the three corresponding sections obtained from D and in
a second step one blows up the fixed locus of the exceptional divisor over D.
Now we blow down the image of the proper transform of the exceptional
divisor over D and obtain the orbifold X1. Note that the exceptional divisor
E of the blowing up S̃ → S and the 3 points on F3 fixed by γF3 yield a
singular locus consisting of 12 curves.

On S × F3 we blow up the 12 points given by the product of {(0 : 4
√
−1 :

0 : 1)} with the three points fixed by γF3 . Since (γ, γF3) acts by ξ on all local
parameters of each of these points, the exceptional divisor over these points
is contained in the ramification locus of the quotient map onto

X2 = S̃ × F3/〈(γ, γF3)〉.

X2 is a orbifold with three A3,2 singularities obtained from D. By gluing
the complements of the singular loci of X1 and X2, one obtains a Calabi-
Yau 3-manifold X. By the same arguments as in Section 9.2, the Calabi-Yau
manifold X has obviously complex multiplication.

Thus the Calabi-Yau manifold X is obtained by the method of S. Cynk
and K. Hulek [13], which we have written down in Proposition 10.4.3.

A.3.5. For the computation of the Hodge numbers we use the same methods
as in Section 10.3. During Section 10.3 these methods are explained in-depth.
The automorphism γ of S acts on S̃, too. The quotient map ϕ onto M = S̃/γ
is ramified over E and D = {y1 = x0 = 0}. Since D is a rational curve on a
K3 surface, the adjunction formula implies that D.D = −2. By the Hurwitz
formula, one has

ϕ∗KM ∼ −2D − E.

Since
3 · K2

M = (ϕ∗KM )2,

one concludes that
c1(M)2 = K2

M = −4.

Thus the Noether formula

χ(OM ) =
1
12

(c1(M)2 + c2(M)) and c2(M) − 2 = b2(M)

tell us that b2(M) = 14. Since we have blown up 4 points, one obtains
h1,1

0 (S) = 10. Thus
h1,1

1 (S) = h1,1
2 (S) = 5.
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By the fact that one has an exceptional divisor consisting of 12 copies of
P

2 and 6 rational ruled surfaces and b1(S) = 0, one obtains as in Section 10.3:

h1,1(X) = h0,0
0 (F3) · h1,1

0 (S) + h0,0
0 (S) · h1,1

0 (F3) + 18 = 10 + 1 + 18 = 29

h2,1(X) = h1,0
1 (F3) · h1,1

2 (S) = 5
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175 rue du Chevaleret,
75013 Paris, France
E-mail: teissier@math.jussieu.fr

For the “Mathematical Biosciences Subseries” of LNM:

Professor P.K. Maini, Center for Mathematical Biology,
Mathematical Institute, 24-29 St Giles,
Oxford OX1 3LP, UK
E-mail: maini@maths.ox.ac.uk

Springer, Mathematics Editorial, Tiergartenstr. 17,
69121 Heidelberg, Germany,
Tel.: +49 (6221) 487-259
Fax: +49 (6221) 4876-8259
E-mail: lnm@springer.com


	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	fulltext_8.pdf
	fulltext_9.pdf
	fulltext_10.pdf
	fulltext_11.pdf
	fulltext_12.pdf
	back-matter.pdf



