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Preface

Calabi-Yau manifolds have been an object of extensive research during
the last two decades. One of the reasons is the importance of Calabi-Yau
3-manifolds in modern physics - notably string theory. An interesting class
of Calabi-Yau manifolds is given by those with complex multiplication
(CM). Calabi-Yau manifolds with CM are also of interest in theoretical
physics, e.g. in connection with mirror symmetry and black hole attractors.

It is the main aim of this book to construct families of Calabi-Yau
3-manifolds with dense sets of fibers with complex multiplication. Most ex-
amples in this book are constructed using families of curves with dense sets
of fibers with C'M. The contents of this book can roughly be divided into
two parts. The first six chapters deal with families of curves with dense
sets of C'M fibers and introduce the necessary theoretical background. This
includes among other things several aspects of Hodge theory and Shimura
varieties. Using the first part, families of Calabi-Yau 3-manifolds with dense
sets of fibers with C'M are constructed in the remaining five chapters. In the
appendix one finds examples of Calabi-Yau 3-manifolds with complex multi-
plication which are not necessarily fibers of a family with a dense set of C'M
fibers.

The author hopes to have succeeded in writing a readable book that can
also be used by non-specialists. On the other hand the expert will find new
results about variations of Hodge structures and new examples of families
of curves and Calabi-Yau manifolds with dense sets of fibers with CM. The
author believes that this book will also be interesting for physicists.

This book is based on the authors doctoral thesis at Universitat Duisburg-
Essen. The author wishes to thank his former adviser Eckart Viehweg for his
excellent guidance and support. The text has been revised for publication at
the Graduiertenkolleg “Analysis, Geometrie und String Theorie” at Leibniz
Universitat Hannover.

Hannover, February 2009 J. C. Rohde



Contents

Introduction ...

1 An introduction to Hodge structures and Shimura

VaATTEIES . . oo
1.1 The basic definitions. .........c.oouiiiiiiiiii i
1.2 Jacobians, Polarizations and Riemann’s Theorem................
1.3 The definition of the Shimura datum..............................
1.4 Hermitian symmetric domains. ...........c.ooooviiiiiiiniienenn..
1.5 The construction of Shimura varieties.............................
1.6 The definition of complex multiplication..........................
1.7 Criteria and conjectures for complex multiplication..............

2 Cyclic covers of the projective line ...............................

2.1
2.2
2.3
2.4

Description of a cyclic cover of the projective line...............
The local system corresponding to a cyclic cover.................
The cohomology of & cover.............ooviiiiiiiiiiiiiin ...
Cyclic covers with complex multiplication........................

3 Some preliminaries for families of cyclic covers................

3.1
3.2
3.3

The generic Hodge group..........coooiiiiiiiiiiiiiiii ..
Families of covers of the projective line.....................o.. .
The homology and the monodromy representation...............

4 The Galois group decomposition of the Hodge structure....

4.1
4.2
4.3

4.4

The Galois group representation on the first cohomology.......
Quotients of covers and Hodge group decomposition............
Upper bounds for the Mumford-Tate groups

of the direct summands. ...
A criterion for complex multiplication............................



viii

10

Contents
The computation of the Hodge group............................ 91
5.1 The monodromy group of an eigenspace.......................... 92
5.2 The Hodge group of a general direct summand................... 99
5.3 A criterion for the reaching of the upper bound.................. 102
5.4 The exceptional Cases..........cooviuiiiiiiiiiiiiiiii i 106
5.5 The Hodge group of a universal family
of hyperelliptic CUrves. ...........oiiiiiiiiii i 110
5.6 The complete generic Hodge group...............coooiiiiiia. 115
Examples of families with dense sets of complex

multiplication fibers ........... ... ... 121
6.1 The necessary condition STNT ........cooiiiiiiiiiiiiiininaan. 121
6.2 The application of SINT for the more complicated cases....... 129
6.3 The complete lists of examples. ..., 136
6.4 The derived variations of Hodge structures....................... 137

The construction of Calabi-Yau manifolds

with complex multiplication.................... ... 143
7.1 The basic construction and complex multiplication.............. 143
7.2 The Borcea-Voisin tOWer............coooiiiiiiiiiiiiiiiiniina. 147
7.3 The Viehweg-Zuo tOWer...........ooiiiiiiiiiiii i 150
T4 A new example........oioiii i 153
The degree 3 case ...t 157
8.1 Prelude. ... oo 158
8.2 A modified version of the method of Viehweg and Zuo.......... 162
8.3 The resulting family and its involutions........................... 166
Other examples and variations............................ooooie. 169
9.1 The degree 3 CaSE. ... vvutu ettt 170
9.2 Calabi-Yau 3-manifolds obtained by quotients

of degree 3. ..o i 172
9.3 The degree 4 Case......c.uviuiin i 178
9.4 Involutions on the quotients of the degree 4 example............ 180

9.5 The extended automorphism group of the degree 4 example....183
9.6 The automorphism group of the degree 5 example

by Viehweg and Zuo...........oooiiiiiiiiiiii 185
Examples of CMCY families of 3-manifolds
and their invariants............ ... 187
10.1 The length of the Yukawa coupling................................ 187
10.2 Examples obtained by degree 2 quotients......................... 188
10.3 Examples obtained by degree 3 quotients......................... 189

10.4 Outlook onto quotients by cyclic groups of high order........... 196



Contents ix

11 Maximal families of CMCY type ........cccoooiiiiiiiiiiiiiiin. .. 199
11.1 Facts about involutions and quotients of K3-surfaces............ 199
11.2 The associated Shimura datum.....................oiii. 201
11.3 The exXamples. ....co.nii it e 203

A Examples of Calabi-Yau 3-manifolds with complex
multiplication ......... .. ... 209
A.1 Construction by degree 2 coverings of a ruled surface........... 209
A.2 Construction by degree 2 coverings of P2......................... 214
A.3 Construction by a degree 3 quotient.....................onn... 217

References. ... ... 223



Introduction

These lecture notes deal with construction methods of Calabi-Yau manifolds
with a special arithmetic property. In these methods we use curves with a
similar arithmetic property, namely, complex multiplication. In the case of
abelian varieties complex multiplication has been well studied by number
theorists. The first six chapters describe how this theory for abelian varieties
can be applied to the construction of curves with complex multiplication.
The remaining five chapters and the appendix are devoted to the construc-
tion methods of Calabi-Yau manifolds with a similarly defined arithmetic
property.

We give new examples of families of curves with dense sets of complex
multiplication fibers and new examples of families of Calabi-Yau manifolds
with a dense set of fibers with a similar arithmetic property. Moreover we will
acquaint the reader with Mumford-Tate groups, which we use as a main tool
for the study of Hodge structures and of variations of Hodge structures. The
generic Mumford-Tate groups of families of cyclic covers of the projective line
will be computed for a large class of examples.

Let us consider curves and Hodge structures on curves. In particular el-
liptic curves are both Calabi-Yau manifolds and abelian varieties. In general
the points on a curve C' of genus g generate a commutative group, which can
be endowed with the structure of an abelian variety of dimension g, which
is the Jacobian Jac(C) of C. The curve C can be obtained from Jac(C) and
the principal polarization on Jac(C'). In order to study the curve C' and its
properties one can also study Jac(C). Abelian varieties and their arithmetic
properties have been well-studied by number theorists.

By Riemann’s theorem, a polarized abelian variety with symplectic basis
corresponds to a pure polarized integral Hodge structure of weight 1. Thus
curves are determined by their Hodge structures. Therefore curves satisfy
a Torelli Theorem. For Calabi-Yau manifolds one has also a local Torelli
theorem. Thus one can study curves and Calabi-Yau manifolds in terms of
their Hodge structures.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 1
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_1,
(© Springer-Verlag Berlin Heidelberg 2009



2 Introduction

Let Z C R C R be a ring. Recall that an R-Hodge structure on an
R-module V is given by a decomposition of V¢ into subvector spaces VP4
with VP4 = V9P, We will see that each R-Hodge structure on V' can also be
given by a corresponding representation

h:S — GL(Vk)

of the Deligne torus S, which is the algebraic subgroup of GL(R?) given by

the matrices
_( T Y
M(x,y) = (y x) .

If V and h yield a Q-Hodge structure, we use the representation h for the
definition of the Mumford-Tate group MT(V, h). The Mumford-Tate group
MT(V, h) is the smallest subgroup of GL(Vr) defined over Q such that h(S)
is contained in MT(V, h). For a rational Hodge structure (V,h) of weight k
one can replace S by its subgroup S* given by the matrices M (z,y) with

det M (z,y) = 1.

In this case one can also replace MT(V, h) by the analogously defined Hodge
group Hg(V,h). The Hodge group Hg(V,h) coincides with the Zariski con-
nected component of the identity in MT(V, h) N SL(V). For any field F' with
Q € F C R one can also consider F-Hodge structures (V,h) and define
MTr(V,h) and Hgp(V, h) in an analogous way.

Let us consider the information which can be obtained from MT(V, h): for
example one says that an elliptic curve E has complex multiplication, if E
has a non-trivial endomorphism. This name is motivated by the fact that in
this case the endomorphism ring of E is a CM field. In general an abelian
variety X of dimension g is of C'M type, if its endomorphism algebra contains
a commutative Q-algebra of dimension 2g. The Mumford-Tate group of the
Hodge structure on H'(X,Q) is a torus, if and only if X is of CM type. We
say that a rational Hodge structure (V, h) has complex multiplication (C'M),
if MT(V, h) is a torus. For a curve C' the Hodge structures on H*(C,Q) and
H'(Jac(C),Q) are isomorphic. Hence we say that a curve has CM, if the
Mumford-Tate group of the Hodge structure on H*(C, Q) is a torus algebraic

group.

Remark 1. One can also study families of compact Kdhler manifolds and
their variations of Hodge structures in terms of Mumford-Tate groups. Let D
be a connected complex manifold and V be a polarized variation of Q-Hodge
structures of weight k over D. Then over a dense subset D° of D the
Mumford-Tate groups of all Hodge structures coincide. Let MT(V) denote
the common Mumford-Tate group. The Hodge structures over the points of
the complement of D° have a Mumford-Tate group contained in MT(V). The
group MT(V) is called the generic Mumford-Tate group.
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We will introduce Shimura data, which consist of a reductive Q-algebraic
group G and a representation h : S — Gp satisfying certain conditions.
Again consider an abelian variety X. For example the pair consisting of the
Mumford-Tate group of the Hodge structure on H!(X, Q) and the represen-
tation h given by this Hodge structure yields a Shimura datum. By using the
conditions which a Shimura datum has to satisfy we obtain:

Theorem 2. Let (G, h) be a Shimura datum and W be a finite dimensional
real vector space. Then the conjugacy class of h in Gr can be endowed
with the structure of a complex manifold D. Moreover each closed embed-
ding Gg — GL(W) yields a variation of Hodge structures over D such that
over a dense set of points p € D one has Hodge structures with complex
multiplication.

Note that in the case of the Hodge structure on H'(X,Q) given by h and
the closed embedding

id : MT(H(X,Q), h) — GL(H(X,Q))

the assumptions of the previous Theorem are satisfied, if X is an abelian
variety.

We will give a definition of complex multiplication for arbitrary compact
Kaéhler manifolds. Due to their application in theoretical physics we are espe-
cially interested in Calabi-Yau 3-manifolds. In theoretical physics one is also
interested in complex multiplication (see [37], [38]).

Here a Calabi-Yau manifold X of dimension n is a compact Kéahler mani-
fold of dimension n such that I'(Q%) =0 foralli = 1,...,n—1 and wx = Ox.

For odd dimensional compact Kahler manifolds one has the intermediate
Jacobians as a generalization of the Jacobians of curves. In general the in-
termediate Jacobian J is not an abelian variety, but only a complex torus.
In the case of an arbitrary complex torus complex multiplication is defined
as for an abelian variety. It can occur that the intermediate Jacobian J is
constant for a family of Calabi-Yau 3-manifolds (see Example 1.6.9). Hence
one intermediate Jacobian is not sufficient for an accurate description of
Calabi-Yau 3-manifolds and their Hodge structures. Nevertheless the inter-
mediate Jacobian of the manifold X of odd dimension k is of CM type, if
Hg(H*(X,Q),h) is a torus. Moreover the endomorphism algebra of a Hodge
structure (V,h) contains a commutative subalgebra of dimension equal to
dim V', if MT(V, h) is a torus. Thus we say that a compact Ké&hler manifold X
of dimension n has C'M over a totally real number field F, if Hg-(H" (X, F'))
is a torus. It would be very interesting to get mirror pairs of Calabi-Yau
3-manifolds with complex multiplication (see [23]).

One can also consider the Hodge groups of the Hodge structures H* (X, Q)
for some k # dim X. In the case of a Calabi-Yau manifold X of dimension
n > 3, it may occur that the Hodge structure on H™(X, Q) has CM and the
Hodge structure on H" 1(X,Q) has not CM for example. By considering
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the Hodge diamond of a Calabi-Yau manifold X of dimension n < 3, one
concludes that this can not occur for dim X < 3. In this case the condition of
complex multiplication is equivalent to the property that for all k£ the Hodge
group of H*(X,C) is commutative. We will call any family of Calabi-Yau
n-manifolds, which has a dense set of fibers X satisfying the property that
for all k the Hodge group of the Hodge structure on H*(X,Q) is commu-
tative, a CMCY family of n-manifolds. Here we will give some examples
of CMCY families of 3-manifolds and explain how to construct CMCY
families of n-manifolds in an arbitrarily high dimension. Moreover we will
explicitly determine some fibers with complex multiplication (see Example
7.3.1, Section 7.4, Remark 8.3.6, Remark 9.4.1 and Remark 11.3.13).

Example 3. The first example of a CMCY family of 3-manifolds was given
by C. Borcea [8]. This example uses the family € of elliptic curves given by

P2 B} V(y2$0 + $1(.’E1 — a:())(ml — )\xo)) — A E Al \ {0, 1}

By y — —y, one has a global involution v on €. Now let &; with involution t;
be a copy of € fori=1,2,3. We construct the family

51 X 52 X S3/<(L1,L2), (L2,L3)> — (Al \ {0, 1})3.

By blowing up the singular sections, we obtain a CMCY family of Calabi-Yau
3-manifolds.

In a similar way one can use n copies of £ and construct a CMCY family of
n-manifolds (see [56]). Similar to the previous example, we will use involutions
on CMCY families to obtain new C'MCY families of manifolds in higher
dimension. The other main tool of construction which we use is motivated
by the following example:

Example 4. Starting with a family of cyclic covers of P with a dense set of
CM fibers, E. Viehweg and K. Zuo [58] have constructed a CMCY family
of 3-manifolds. This construction is given by a tower of projective algebraic
manifolds starting with a family Fy of cyclic covers of P! given by

P? 5 V(y] + 21(x1 — x0) (21 — axo)(z1 — Brg)z) — (a0, ) € Mo,

which has a dense set of CM fibers. Since each of these covers given by the
fibers of the family can be embedded into P2, the fibers of F, are the branch
loci of the fibers of a family F» of cyclic covers of P? of degree 5. Moreover
the fibers of Fu, which can be embedded into P3, are the branch loci of the
fibers of a family F5 of cyclic covers of P2, which can be embedded into P*.
The family Fs is given by

P* O V(Y5 +y5 + 47 + 21 (21 — o) (z1 — axo) (21 — Bro)w0) — (0, B) € M.

By the adjunction formula, the fibers of Fs are Calabi- Yau 3-manifolds.
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Let g € My. The fiber (F3), has CM, if (F2)q has CM and (Fa), has
CM, if (F1)q has CM. Because of this argument, the family Fs has a dense
set of CM fibers which lie over the same points as the CM fibers of the family
of curves we have started with.

The previous example contains a deformation of the Fermat quintic in P4,
which is a well-studied example of a Calabi-Yau manifold with complex multi-
plication (see [38]). In the appendix we will give some examples of Calabi-Yau
3-manifolds which are not necessarily a fiber of a family with infinitely many
CM fibers.

By the previous example, we are led to be interested in the examples of
families of curves with a dense set of C'M fibers for our search for CMCY
families of n-manifolds. There is an other motivation given by an open ques-
tion in the theory of curves, too. In [11] R. Coleman formulated the following
conjecture:

Conjecture 5. Fiz an integer g > 4. Then there are only finitely many
complex algebraic curves C of genus g such that Jac(C) is of CM type.

Let P,, denote the configuration space of n+3 points in P!. One can endow
these n + 3 points in P' with local monodromy data and use these data for
the construction of a family C — P, of cyclic covers of P! (see Construction
3.2.1).

The action of PGLy(C) on P! yields a quotient M,, = P,,/PGLy(C). By
fixing 3 points on P!, the quotient M,, can also be considered as a subspace
of P,,.

Remark 6. In [29] J. de Jong and R. Noot gave counterexamples for g = 4
and g = 6 to the conjecture above. In [58] E. Viehweg and K. Zuo gave
an additional counterezample for g = 6. The counterexamples are given by
families C — Py, of cyclic covers of P! with dense sets of CM fibers. Here we
will find additional families C — Py, of cyclic genus 5 and genus 7 covers of
P! with dense sets of complex multiplication fibers, too.

All new examples C — P,, of the preceding remark have a variation V of
Hodge structures similar to the examples of J. de Jong and R. Noot [29],
and of E. Viehweg and K. Zuo [58], which we call pure (1,n) — VHS. Let
Hg(V) denote the generic Hodge group of V and let K denote an arbitrary
maximal compact subgroup of Hg®! (V)(R). In Section 4.4 we prove that a
pure (1,n) — VHS induces an open (multivalued) period map to the sym-
metric domain associated with Hg*!(V)(R)/K, which yields the dense sets of
complex multiplication fibers. We obtain the following result in Chapter 6:

Theorem 7. There are exactly 19 families C — P, of cyclic covers of P!
which have a pure (1,n) — VHS (including all known and new examples).

We will use the fact that the monodromy group Mon"(V) is a subgroup of
the derived group Hg?" (V) and we will study Mon®(V). Let 1 be a generator
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of the Galois group of C — P, and C(¢)) be the centralizer of ¢ in the
symplectic group with respect to the intersection pairing on an arbitrary
fiber of C. In Chapter 4 we obtain the result, which will be useful for our
study of Hg?" (V) and Mon’(V):

Lemma 8. The monodromy group Mon®(V) and the Hodge group Hg(V) are
contained in C(1).

We will not be able to determine Mon’(V) for all families C — P, of
cyclic covers of P'. But we will obtain for example the following results in
Chapter 5:

Proposition 9. Let C — P, be a family of cyclic covers of degree m onto
PL. Then one has:

1. If the degree m is a prime number > 3, the algebraic groups CI (1),
Mon’ (V) and Hgd" (V) coincide.
2. If C — Pagya is a family of hyperelliptic curves, one obtains

MonO(V) = Hg(V) = Spg(29).

3. In the case of a family of covers of P' with 4 branch points, we need a
pure (1,1) =V HS to obtain an open period map to the symmetric domain

associated with Hg** (V)(R)/K.

By our new examples of Viehweg-Zuo towers, we will only obtain CMCY
families of 2-manifolds. C. Voisin [60] has described a method to obtain
Calabi-Yau 3-manifolds by using involutions on K3 surfaces. C. Borcea [9]
has independently arrived at a more general version of the latter method,
which allows to construct Calabi-Yau manifolds in arbitrary dimension. By
using this method, we obtain in Section 7.2:

Proposition 10. Fori = 1,2 assume that C') — V; is a CMCY family of
n;-manifolds endowed with the V;-involution v; such that for all p € V; the
ramification locus (R;), of C,(,l) — C;,(;Z)/Li consists of smooth disjoint hyper-
surfaces. In addition assume that V; has a dense set of points p € V; such that
for all k the Hodge groups Hg(Hk(C,(,i),(@)) and Hg(H*((R;)p, Q)) are com-
mutative. By blowing up the singular locus of the family CV x C®) /{(11,12)),
one obtains a CMCY family of ny + no-manifolds over Vi x Vo endowed with
an involution satisfying the same assumptions as t1 and to.

Remark 11. By the preceding proposition, one can apply the construction
of C. Borcea and C. Voisin for families to obtain an infinite tower of CMCY
families of n-manifolds, which we call a Borcea-Voisin tower.

Example 12. The family C — My given by

P? 5 V(yi — 21(z1 — 20) (w1 — Azg)m0) — X € My
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has a pure (1,1) =V HS. Hence by the construction of Viehweg and Zuo [58],
one concludes that the family Co given by

P3 5 V(ys + yi — z1(x1 — 20) (21 — Ax0)T0) — X € M (1)

is a CMCY family of 2-manifolds.

This family has many My -automorphisms. The quotients by some of these
automorphisms yield new examples of CMCY families of 2-manifolds. More-
over there are some involutions on Co which make this family and its quotient
families of K3-surfaces suitable for the construction of a Borcea-Voisin tower
(see Section 7.4 for the construction of Co, and for the automorphism group
and the quotient families of Co see Section 9.3, Section 9.4 and Section 9.5).

Example 13. The family C — Ms given by
P(2,1,1) D V(yi’—xl(xl—xo)(ml—axo)(xl—bxo)(xl—cxo)xo) — (a,b,c) € M3

has a pure (1,3) — VHS. The desingularization ]}3’(2,27 1,1) of the weighted
projective space P(2,2,1,1) is given by blowing up the singular locus. By a
modification of the construction of Viehweg and Zuo, the family W given by

P(2,2,1,1) D V(y5 + v — o1 (21 — x0)(x1 — axo)(x1 — bxo)(z1 — cxo)z0)
— (a, b, c) e M; (2)

is a CMCY family of 2-manifolds. The family VW has a degree 3 quotient,
which yields a CMCY family of 2-manifolds. Moreover it has an involution,
which makes it and its degree 3 quotient suitable for the construction of a
Borcea-Voisin tower (see Chapter 8 for the construction of W and Section
9.1 for its degree 3 quotient).

By using the preceding example, we will obtain (see Section 9.2 for the
construction and Section 10.3 for the maximality):

Theorem 14. Let F3 be the Fermat curve of degree 8 and or, denote a
generator of the Galois group of the degree 8 cover Fz — PL. The family
W has two Msz-automorphism o' and o' of order 3 such that the quotients
WxFs/{(/,ap,)) and WxTFs3/{(a, ar,)) have desingularizations, which are
CMCY families of 3-manifolds. Moreover one of these families is mazimal.

By using the V. V. Nikulins classification of involutions on K3 surfaces
[51] and the construction of C. Voisin [60], we obtain in Chapter 11:

Theorem 15. For each integer 1 < r < 11 there exists a maximal holomor-
phic CMCY family of algebraic 3-manifolds with Hodge number h®! = r.

This book is organized as follows. The first three chapters explain well-
known facts and yield an introduction of the notations. Chapter 1 is an



8 Introduction

introduction to Hodge Theory and Shimura varieties with a special view
towards complex multiplication. We consider cyclic covers of P! in Chapter 2.
Moreover Chapter 3 introduces the remaining facts, which we need for the
description of families of cyclic covers of P! and their variations of Hodge
structures.

In Chapter 4 we consider the Galois group action of a cyclic cover of P! and
we state first results for the generic Hodge group of a family C — P,,. More-
over we will give a sufficient criterion for the existence of a dense set of C'M
fibers given by the pure (1,n) — VHS. In Chapter 5 we compute Mon’(V),
which provides much information about Hg(V). We will see that Mon"(V)
coincides with C9°* (1) in infinitely many cases. In Chapter 6 we classify the
examples of families of cyclic covers of P! providing a pure (1,n) — VHS.

The basic methods of the construction of CMCY -families in higher di-
mension are explained in Chapter 7. We introduce the Borcea-Voisin tower
and the Viehweg-Zuo tower and realize that only a small number of families
of cyclic covers of P! are suitable to start the construction of a Viehweg-
Zuo tower. We will also discuss some methods to find concrete CM fibers
at the end of this chapter. In Chapter 8 we will give a modified version of
the method of E. Viehweg and K. Zuo to construct the CMCY family of
2-manifolds given by (2). We consider the automorphism groups of our ex-
amples given by (1) and (2) in Chapter 9. This yields the further quotients of
the families given by (1) and (2) which are CMCY families of 2-manifolds.
We will see that these quotients are endowed with involutions, which make
them suitable for the construction of a Borcea-Voisin tower. Moreover we will
construct the families @ and R of Theorem 14 in Chapter 9. The next chapter
is devoted to the length of the Yukawa coupling of our examples families (mo-
tivated by the question of rigidity) and the Hodge numbers of their fibers. We
finish this chapter with an outlook onto the possibilities to construct CMCY
families of 3-manifolds by quotients of higher order. In Chapter 11 we use
directly the mirror construction of C. Voisin to obtain maximal holomorphic
CMCY families of 2-manifolds, which are suitable for the construction of a
holomorphic Borcea-Voisin tower.

Throughout this book we use the conventions of Algebraic Geometry as in
[26]. Most of the results and conventions about Hodge theory which we need
can be found in [61].
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Chapter 1
An introduction to Hodge structures
and Shimura varieties

In this chapter we recall the general facts about Hodge structures and
Shimura varieties, which are needed in the sequel. We will explain that
a Shimura datum consisting of a Q-reductive group G and a homomor-
phism A : S — G satisfying certain conditions allows the construction of
a Hermitian symmetric domain D. We will also give a definition of complex
multiplication (C'M), give a criterion for complex multiplication and discuss
some conjectures concerning complex multiplication.

Shimura varieties and complex multiplication are closely related. One can
construct a variation of Hodge structures on a Hermitian symmetric domain
obtained from a Shimura datum. This variation of Hodge structures yields
Hodge structures with complex multiplication over a dense set of points. Due
to the André-Oort conjecture, one assumes that every variation of Hodge
structures which contains infinitely many Hodge structures with complex
multiplication is of this kind.

In the first two sections we recall the basic definitions of Hodge the-
ory and consider polarized integral Hodge structures of type (1,0),(0,1),
which correspond to isomorphism classes of polarized abelian varieties with
symplectic basis by Riemann’s theorem. We define Shimura data and con-
struct Hermitian symmetric domains by using Shimura data in Section 1.3
and Section 1.4 respectively. The construction of Shimura varieties from
the Hermitian symmetric domains obtained by Shimura data is sketched in
Section 1.5.

In Section 1.6 we motivate our definition of complex multiplication and
write it down. Section 1.7 contains the theorem that a Shimura datum yields
a Hermitian symmetric domain D and a VHS on D, which yields Hodge
structures with C'M over a dense set of points. In this Section we discuss
some examples and conjectures about families with dense sets of complex
multiplication fibers, too.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 11
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_2,
(© Springer-Verlag Berlin Heidelberg 2009
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1.1 The basic definitions

Definition 1.1.1. Let R be a ring such that Z € R C R. An R-Hodge
structure is given by an R-module V' and a decomposition

VerC= g vre
P,qEZ

such that V74 = VP,
We will always assume that Vi has finite dimension.

1.1.2. Let the Deligne torus S be the R-algebraic group given by the matrices
_ (T Y : 2 2
M(x,y)(_y x> with 2“4y~ >0, z,y € R.

We identify the complex number z = z + iy € C* with M(z,y) € S(R).
One checks easily that this yields an isomorphism between C* and S(R). Let
t := (det M(x,y))~!. By using this identification, one sees easily that the
Deligne torus S is given by the affine variety

V(t(x? +y*) — 1) C Ad.
The Deligne torus S is also given by the Weil restriction
S = ResC/RGm,C~

Proposition 1.1.3. Let V' be an R-vector space. Fach real Hodge structure
on 'V defines by

z-aP? = 2Pz0P9 (VaP? e VP9 2 € C* 2 S(R))

an action of S on V@ C such that one has an R-algebraic homomorphism h :
S — GL(V'). Moreover by the eigenspace decomposition of Vi with respect to
the characters of S, any representation given by an algebraic homomorphism
h:S — GL(V) corresponds to a real Hodge structure on V.

Proof. (see [16], 1.1.1%) O

I Note that P. Deligne writes
z-aP?=2"Pz7 99 instead of z-aP? = 2PzlaP

in [16]. But this is only a matter of the chosen conventions.
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From now on, unless stated otherwise, let V' be a Q-vector space and let
h:S — GL(W)

be the algebraic homomorphism corresponding to a Hodge structure on V.
The algebraic subgroup S! C S is given by

V(z? +y* — 1) C Af.

This yields
S'R)={z€C:22=1} C C*.

We consider the exact sequence

z—z/Z
—

0—R* &S C* SHR) — 0,

which can be obtained by the exact sequence
OﬁGm,R&SHSIHO

of R-algebraic groups.

Remark 1.1.4. The homomorphism given by h o w is called weight homo-
morphism. There exists a k € Z such that VP7 = 0 for all p + q # k, if and
only if how is given by r — r¥. In this case the Hodge structure (V,h) is of
weight k.

Remark 1.1.5. By Proposition 1.1.3, any (real) Hodge structure on Vg of
weight k determines a unique morphism h; : S — GL(Vg) given by

St s GL(VR).

Since S = G, r - S, one can reconstruct h from h|g: and the weight homo-
morphism. By using Proposition 1.1.3 again, one can easily see that there is
a correspondence between Hodge structures of weight k£ on Vg and represen-
tations hy : ST — GL(Vg) given by

2. oPd — P59
for all a7 € VP4 which must satisfy p + ¢ = k for all VP9 2 (.
We call an R-Hodge structure (V, h) pure, if VP72 =0 for all p,q < 0.

Example 1.1.6. A pure integral Hodge structure of weight k is given by

H*(X,C)=H*(X,Z)®C= P HM(X) with H?I(X)= HI(X,0%)
ptq=k

for any compact Kéahler manifold X.
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1.1.7. Let X be a compact Kéahler manifold. The Hodge numbers
h?? = dim HP4(X) are often visualized by Hodge diamonds. For exam-
ple assume that X is a Calabi-Yau manifold. We say that X is a Calabi-Yau
manifold, if X is Ké&hler manifold of dimension n such that wx = Ox and
hF0 =0 for k=1,...n—1.

By [6], VIIL. Proposition 3.4, one has ht'' = 20 for a K3 surface resp.,
a Calabi-Yau 2-manifold. Thus by Hodge symmetry and Serre duality, the
Hodge diamond of a K3 surface is given by:

1
0 0
1 20 1
0 0
1

Moreover by Hodge symmetry and Serre duality, the Hodge diamond of a
Calabi-Yau 3-manifold is given by:

1
0 0
0 htt 0
1 h2,1 h2,1 1
0 Rl 0
0 0
1

Definition 1.1.8. Let R be a ring such that Z C R C R. A polarized
R-Hodge structure of weight k is given by an R-Hodge structure of weight k
on an R-module V and a bilinear form @ : V x V — R, which is symmetric,
if k is even, alternating otherwise, and whose extension on V ®p C satisfies:

1. The Hodge decomposition is orthogonal for the Hermitian form i*Q(-,).
2. For all o € VP2 \ {0} one has

k(k—1)
3

#=1(—1)"7Q(a,a) > 0.

Example 1.1.9. Let X be a compact Kéhler manifold. Recall that for
k < dim(X) the primitive cohomology H¥(X,R),.m is the kernel of the
Lefschetz operator

L HY(X,R) — H*" "2 (X,R)

given by
a— A"TFHW) A a,

where n := dim(X), the chosen Kéhler form is denoted by w and a €
H*(X,R). By
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(o, B) ::/X/\"_k(w)/\a/\ﬁ,

one obtains a polarization on H¥(X, Z)prim and hence a polarized integral
Hodge structure on H*(X,Z)pyim, if [w] € H?(X,Z) (see [61], 7.1.2)2.

Definition 1.1.10. Let Q C F C R be a field and V' be a F-vector space.
The Hodge group Hgp(V,h) of a F Hodge structure (V,h) is the smallest
F-algebraic subgroup G of GL(V') such that

h(S') C G xp R.

The Mumford-Tate group MTr(V,h) of a F Hodge structure (V,h) is the
smallest F-algebraic subgroup G of GL(V') such that

For simplicity we will write Hg(V, h) instead of Hgg(V,h) and MT(V,h)
instead of MTq(V, h).3

We will mainly consider rational Hodge structures. Nevertheless we often
take a view towards K Hodge structures, where Q C F' C R is a field. This
case can also be interesting (for example see [2] and [42]).

Next we define variations of Hodge structures (VHS). Consider a smooth
family f : X — Y of algebraic manifolds. We use the variation of Hodge
structures of such a family for the motivation of the general definition of
variations of Hodge structures. First we need to recall the definition of the
higher direct image sheaf:

Definition 1.1.11. Let f : A — B be a continuous map of topological
spaces and F be a sheaf of abelian groups on A. The higher direct image
sheaf is the sheaf associated to the presheaf given by

V— H'(f~(V), Fly-1v)

for all open subsets V C B.

Remark 1.1.12. The higher direct image sheaf R” f,(C) is a local system i.e.
a locally constant sheaf of stalk G, where G is an abelian group. In our case G
is given by the complex numbers. This follows from the fact that the fibers are

2 There is a more general definition of a polarized Hodge structure (see [16], 1.1.10). But
here we will mainly consider Hodge structures given by the primitive cohomology on a
Kahler manifold. Moreover we obtain H™(X,R)prim = H™(X,R), if X is a curve or if X is
a Calabi-Yau 3-manifold. Hence in these two cases of interest H™ (X, Rprim) is independent
by the chosen Ké&hler form. Moreover by its definition, the corresponding polarization is
independent of the K&hler form, if & = n. Thus in these two cases the integral polarized
Hodge structure depends only on the isomorphism class of X.

31In [17], Section 3 one finds an alternative definition of the Mumford-Tate group.
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diffeomorphic such that the corresponding family of differentiable manifolds
is locally constant (see [61] 9.1.1). The variation of Hodge structures will be
given by a filtration of

H* .= RF£,(C) ®c Oy

by holomorphic subbundles. Thus let us first explain that a filtration can give
the Hodge structure of a fiber:

1.1.13. Let Z C R C Rbe aring and V' be an R-module. Recall that we have
two equivalent definitions of an R-Hodge structure on V. A Hodge structure
can be defined by a certain direct sum decomposition of V¢ into the subvector
spaces VP17 (see Definition 1.1.1) or by a representation h : S — GL(Vg).

One needs a third equivalent definition of Hodge structures of weight k
to understand how a filtration of subbundles yields Hodge structures on the
fibers of H*, which will be the respective Hodge structures of weight & on
the fibers of f. A pure Hodge structure of weight k£ on V' can be given by a
decreasing filtration F'® on V¢ such that

Ve=FVe > F'Ve O...0 FFe =o.
The filtration satisfies
Ve = FPVe @ Fr—r+lVg
for all p. The direct summand V-7 is given by
VP4 = FPVe N FaVe.

It is an easy exercise to check that such a filtration yields a Hodge structure
of weight k and a Hodge structure of weight k yields such a filtration.

Proposition 1.1.14. Let X — Y be a smooth morphism of algebraic mani-
folds and
H* := R*f.(C) ®c Oy.

One has a filtration F* of H* by holomorphic subbundles FPH* such that for
ally € Y one has Fka(Xy,C) = F;Hk, Moreover one can define bundles
HP k=P = FPHF | FPHIHE such that Hg*k*p = HPFP(X,).

Proof. (see [61], 10.2.1) O

Remark 1.1.15. The HP*~P are not subbundles of H*. This motivates the
definition of the variation of Hodge structures by a filtration.
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Next we need to construct the Gauss-Manin connection:

Construction 1.1.16. We endow H* with a connection in the following
way':

Let U be a simply connected open subset of Y. Over U the local system
RF f.(C) can be considered as a locally constant sheaf. Moreover let

o= Zai ®o; € Hk(U),

where a; € RFf,(C)(U) and o; € O(U). The Gauss-Manin connection
V :HF — H* @ Qy is locally defined by

HE(U) Bazzai@)dilzai@d% € (H" @ Qy)(U).

By gluing, the connection is defined for each open subset of Y. Thus the
connection is globally defined.

Remark 1.1.17. The Gauss-Manin connection satisfies the Griffiths
transversality condition. That is

V(FPHF) C FPPIHY @ Qy and V(FPTIYHE) C FPHY @ Qy.
Thus by using quotients, we can define the map
vPkep o ypk-p _, pp-Lk-ptl o Oy

The Gauss-Manin connection is obviously not linear, but V?*~? is a mor-
phism of Oy-modules (see [61] 10.2.2).

For the motivation of the definition of a polarized variation of Hodge struc-
tures note one additional fact:

Remark 1.1.18. Let R be a ring such that Z C R C R. Recall that a family
of algebraic manifolds provides a locally constant family in the category of
differentiable manifolds. Thus the sheaf R*f,(R) is locally constant. There-
fore the polarization on R* f,(R) obtained by the polarization of the Hodge
structures of the fibers is locally constant, too.

Definition 1.1.19. Let D be a complex manifold and R be a ring such that
7Z C R C R. A variation V of R-Hodge structures of weight k over D is given
by a local system Vi of R-modules of finite rank and a filtration F* of Vo,
by holomorphic subbundles such that:

1. Griffiths transversality condition holds.
2. (Vrp,Fpy) is an R-Hodge structure of weight k for all p € D.
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The variation V of Hodge structures is polarized, if there is a flat (i.e.
locally constant) bilinear form @ on Vg such that (Vg p, Fp, Q) is a polarized
R-Hodge structure of weight k for all p € D.

Next we need to introduce and construct the parametrizing spaces of
Hodge structures. We start by the construction of the Grassmannian:

Construction 1.1.20. Let W be a complex vector space of dimension N
and 0 < k& < N. The Grassmannian Grass(W,k) is the manifold, which
parametrizes all complex subvector spaces of W of codimension k.* Let
K C W be a subvector space of codimension k and L C W be an other
subvector space such that

KeL=W.

Moreover let
g W — K resp.,, W — L

denote the respective projection onto K resp., L with kernel L resp., K. Now
let Z C W be an other vector space of codimension k such that ZNL = {0}.
This vector space Z is identified with

hz =7 0 (7TK)|§1 K — L.

By Z < hyz, an open neighborhood of the point px € Grass(W, k), which
represents K, can be given by Hom(K, L). Since each subvector space Z C W
of codimension k corresponds to exactly one point py € Grass(W, k), one
obtains gluing isomorphisms between the open sets. Thus Grass(W, k) is a
complex manifold of dimension k(N — k).

Moreover Grass(W, k) is projective and the tangent space Tk Grass(W, k)
is given by

Tk Grass(W, k) = Hom(K, W/K).

(see [61], 10.1).

1.1.21. Let (V, h) be an R-Hodge structure of weight k. For simplicity we as-
sume that (V, h) is pure. The Hodge structure is given by the Hodge filtration

Ve=FVe D F'We o ... FFVe o FFYe =o.

Moreover the flag space Fyro  pps-p . po.ks, Which parametrizes the filtra-
tions by subvector spaces of the respective codimensions, satisfies

Foro . pok—v__pos C HGrass(FpV(c, ROF 4 pbR=t o ppkepy),
P

4 Many authors define the Grassmannian Grass(W, k) as the manifold, which parametrizes
all subvector spaces of W of dimension k£ and not of codimension k. We use this abbrevia-
tion, since it makes our notations below easier.
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Recall that
Vp’kfp = FPVC/FerlV(C resp., hp’kip = COdiHleVC (Fp+1V(C).

The pure Hodge structures of weight k& with the Hodge numbers h¥0 ...,
hPFk=P ROk are classified by an open subset D’ of the flag space. This open
set D’ is defined by the condition

FPVe @ Frh—r+1Ve = V.

Now assume that (V) h, @) is a polarized pure R-Hodge structure. Thus @
yields a fixed polarization. The set D C D’, which parametrizes the Hodge
structures (V,h') such that (V,h/,;Q) is a polarized Hodge structure, is an
open subset of an analytic subspace of D'.

The space D is called the period domain. Let ¢ € D denote the point
corresponding to our polarized Hodge structures (V, h, Q). The tangent space
T,D is a subvector space of

quhk,()"“’hp,k—p““’ho,k
given by

Ty Fieo,... s, poe = @) Hom(FPT Ve, FPVe /FPHVE).

(see [61], 10.1).

Now one constructs easily the period map of a family:

1.1.22. A variation V of pure polarized R-Hodge structures over a simply
connected complex manifold S yields a holomorphic map p : S — D, where D
is a suitable period domain. This map depends on the choice of a trivialization
of V over the simply connected manifold S. Now assume that f: X — Y
is a holomorphic family of Ké&hler manifolds and V its variation of integral
Hodge structures. In this case one can define a multivalued holomorphic map
p:Y — D, which is called the period map.

1.2 Jacobians, Polarizations and Riemann’s Theorem

Let X be a Kéhler manifold. Consider the following exact sequence:

0—-Z—-0x —-0%x—0
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This yields the complex torus
Pic’(X) = H'(X,0x)/H' (X, Z),

which parametrizes the line bundles of degree 0. For a curve one has the
following construction of a complex torus:

Construction 1.2.1. Let C be a curve. Moreover let

7 = iniPi with inl =0
i=1 i=1

be a cycle of points P; € C. There exists a differentiable chain I" such that
OI' = Z. Let w be a holomorphic 1-form on C'. The value of the integral fF w
depends on Z up to the homology H;(C,Z). Thus Z yields an unique point
of the Jacobian

Jac(C) = HY(C)*/H (C,7),

which is a complex torus. There exists a holomorphic map
C — Jac(C),

which is called the Abel-Jacobi map. We fix a point py € C' and send each
p € C to the unique class in Jac(C) of the path integral over an arbitrary
path from pg to p. (see any good book about Riemann surfaces)

We will see that Pic’(C) = Jac(C) for any curve C. Moreover we will
check that Jac(C') is an abelian variety. The theory of abelian varieties, their
Hodge structures and their parametrizing spaces contains several features and
motivates the definition of Shimura data, which we will need in the sequel.

Let R be a ring such that Z C R C C and C be a curve. The homology

Hy(C,R) := Hy(C,Z) &z R

and the cohomology H'(C, R) are canonical duals (see [61], Théoréme 4.47).
On H1(C,Z) one defines the dual Hodge structure of weight —1 of the Hodge
structure on H'(C,Z) given by the Hodge filtration

0 H%1(C) C Hi(C,C) such that H*"'(C) = H*'(C)" and
H=10(C) = H"(0)".

In the sequel we will also need the following relations between the Hodge
structure of weight 1 on H*(C,Z) and the Hodge structure of weight —1 on
the homology H;(C,Z):

1.2.2. For each ring Z C R C C we have H'(C, R) = H,(C, R)*. By integra-
tion over R-valued paths, we obtain an isomorphism
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1 1
¢: H (C,R) — H{(C,R)" — Hpr(C,R).

The integral classes in the de Rham cohomology Hpp(C,R) are given by
H(H'(C, ).

On the homology H;(C,Z) of a curve C' one can define an intersection
pairing (-, -), which is an alternating bilinear form. The intersection form on
H,(C,7Z) can be given by the matrix

( 0 Eg)

—E, 0

with respect to a fixed symplectic basis (for example see [7], 11.1). Thus the
intersection form yields an isomorphism og : Hi(C,R) — H;(C, R)* for all

rings Z C R C C. In terms of the de Rham cohomology it assigns to each
a € Hy(C, R) the n, € H}x(C,C), which has the property that

<v,a>=Ana

for all v € Hy(C,C). By this definition, one has n, € H;(C,R)* = H*(C, R).
In addition one has

(7, @) z/ Ny A N
C

(compare [30], Section 5.1).5
Moreover one has

coh_1(z) =hi(2) o0 forall zec S'(R),
where h_1 and h; denote the corresponding embeddings
h_y:S"— GL(H,(C,R)) and h;:S* — GL(H'(C,R))

of the respective Hodge structures. Thus the Hodge groups of these Hodge
structures on H;(C,Z) and H'(C,Z) are isomorphic. Hence for a study of
the Hodge structure on H*(C,Z), it is sufficient to consider the dual Hodge
structure on Hy(C,Z).

Recall that the Hodge decomposition of the Hodge structure on H'(C, Q)
is orthogonal with respect to the Hermitian form

51n [30] the last equation is written down only for R = Z. By H'(C, R) = H'(C,Z) ®z R
and by Hi(C, R) = H1(C,Z) ®z R, one obtains the last equation for each ring Z C R C C.
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Thus by the polarization, H%!(C) is canonical isomorphic to H':%(C)*. Since
1.2.2 yields a corresponding canonical isomorphism o : Hy(C,Z) — HY(C,Z),
one concludes:

Corollary 1.2.3. Let C be a curve. Then Pic’(C) and Jac(C) are
isomorphic.

Next we consider polarizations on abelian varieties:

Remark 1.2.4. Let A = W/L be a complex g-dimensional torus. There is a
canonical isomorphism between H?(A,Z) and Z-valued alternating forms on
L = Hy(A,Z). Moreover for an alternating integral form F on L, there is a
line bundle £ on A with ¢}(£) = E, if and only if E(i-,i-) = E(-,-). By

H(u,v) = E(iu,v) + iE(u,v),

we get the corresponding Hermitian form H from E and conversely, given H
we obtain F by E = SH. (See [7], Proposition 2.1.6 and Lemma 2.1.7)

A polarization on an abelian variety is given by a line bundle £, whose
Hermitian form H, which corresponds to its first Chern class F, is positive
definite. The alternating form FE of the polarization can be given by the

matrix
0 D,
-D, 0

with respect to a symplectic basis of L, where D, = diag(ds,...,d,) with
di|dit1 (see [7], 3.1). The matrix D, depends on the polarization, and it is
called the type of the polarization. The polarization E on A is principal, if
D, = E,.

A positive definite Hermitian form H on W, which has the property that
S H is an integral alternating form on L, satisfies that SH (i-,4-) = SH(+, ")
resp., is a polarization. Since the Chern class of a line bundle £ is a polariza-
tion, if and only if £ is ample (see [7], Proposition 4.5.2.), H yields an ample
line bundle. By the Theorem of Chow, A is algebraic in this case. Moreover
if A is an abelian variety, there is a positive definite Hermitian form H on W
such that SH is integral on L (see [48], I. 3).

Example 1.2.5. Let X be a K&hler manifold. On
Pic’(X) = H'(X,0x)/H" (X, 7Z)

one has a negative definite Hermitian form given by the polarization iQ(-,")
of the weight one Hodge structure. Hence by —iQ(-,~), one has a positive
definite Hermitian form. Since Q(-, ") is integral on H'(X,Z), the same holds
true for the projection of H*(X,Z) to H' (X, Ox) with respect to S(—iQ(-,~))
as one can check easily. Hence Pic’(X) has a polarization and it is an abelian
variety.
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Assume that X is a curve C. The intersection form on H;(C,Z) can be

given by the matrix
0 E
—-E, O

with respect to a fixed symplectic basis (see 1.2.2). Hence the polarization
on Jac(C') is principal.

We repeat the consideration of the preceding example in a more general
setting, which will allow us to construct the moduli space b, of abelian va-
rieties of dimension g with extra structure explained below. This space will
be our first motivating example to use Shimura data. A Shimura datum will
endow b, with the structure of a Hermitian symmetric domain such that the
holomorphic universal family of abelian varieties has a dense set of fibers of
CM type.

Now let V' denote a Q-vector space of dimension 2g, let @ be a rational
alternating bilinear form on V', and let J be a complex structure on Vi (i.e.
an automorphism J with J2 = —id). Moreover a Hodge structure of type
(1,0),(0,1) on V is given by a decomposition

Ve=V"0a Vil

In an analogue way one defines the type of an arbitrary Hodge structure given
by a decomposition of V.

Remark 1.2.6. It is very easy to see that there is a correspondence between
Hodge structures h on V of type (1,0), (0, 1) and complex structures J on Vg
via h(i) = J.

Lemma 1.2.7. The complex structure J on Vg corresponds to a polarized
Hodge structure (V, h, Q) of type (1,0),(0,1), if and only if it satisfies

Q(Jv‘]) = Q(v) and Q(Jﬁvﬁ) >0
for all v € Vg.

Proof. Let the complex structure J on Vg be given by a polarized Hodge
structure of type (1,0),(0,1) on V. Any o, w € Vg can be given by

V=v+0v and W=w+w

for some v, w € H*°, where H''? and H®! are totally isotropic with respect
to ). Hence:

Q(Jv, Jw) = Q(iv, —iw) + Q(—iv,iw) = Q(v,w) + Q(v,w) = Q(v, W)
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Since the Hermitian form given by iQ(v,v) is positive definite on H'°, one
concludes:

Q(J,7) = Q(iv — iv, v+ v) = Q(iv, v) + Q(—iv,v) = 2iQ(v,v) >0 (1.1)

Conversely assume that Q(J-,-) > 0 and Q(-,-) = Q(J-, J-). Thus one has

Q(v1,v2) = Q(Jv1, Juz) = Q(ivy,iv2) = —Q(v1,v2)
resp., Q(v1,v2) = Q(Jv1, Jua) = Q(—ivy, —ive) = —Q(v1, v2)

for all v1,v9 € HYO := Eig(J,i) resp., for all vi,vy € HO' = FEig(J, —i).
Hence H'° resp., H%! is isotropic with respect to Q. The same calculation as
in (1.1) implies that iQ(-,~) is positive definite on H':* and negative definite
on H%'. Hence one gets a polarized Hodge structure of type (1,0), (0,1) by
Remark 1.2.6. O

By the preceding lemma and an easy calculation using that z = a + b €
S1(R) implies a” + b? = 1,5 we obtain:

Proposition 1.2.8. A polarized Hodge structure (V, h, Q) of type (1,0),(0,1)
induces a faithful symplectic representation

hiS'— Sp(Ve, Q).

Corollary 1.2.9. Let (V,h,Q) be a polarized Hodge structure of type
(1,0),(0,1). Then
Hg(V,h) C Sp(V, Q).

Theorem 1.2.10 (Riemann). There is a correspondence between polarized
abelian varieties of dimension g and polarized Hodge structures (L,h,Q) of
type (1,0),(0,1) on a torsion-free lattice L of rank 2g.

Proof. Let (L, h,Q) be a polarized Hodge structure on a torsion-free lattice
L of rank 2g. By
LOR—LQC — HY,

one has an isomorphism f of R-vector spaces. The complex structure of the
Hodge structure turns Lg into a C-vector space. One has f(\v) = Af(v) for all
complex numbers . By f, the alternating form @ may be considered as (real)
alternating form on H%!. But it satisfies Q(iv,v) < 0 for all v € H%!. Hence
let E = —Q. Lemma 1.2.7 implies that E(i-,i-) = E(-,-) and E(iv,v) > 0 for

6 Let v,w € Vg. The calculation is given by:
Q(zv, 20) = a2Q(v, w) + B2 Q(v, w) + ab(Q(Jv, w) + Q(v, Jw)) =

= Q(v,w)+ab(Q(Jv, w)+Q(Jv, J(Jw))) = Q(v, w) +ab(Q(Jv, w) + Q(Jv, —w)) = Q(v, w)
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all v € H%!. Thus the corresponding Hermitian form is positive definite (see
Remark 1.2.4) and we have a polarization on the complex torus H%!/L and
hence an abelian variety.

Conversely take a polarized abelian variety (A, E), where A = W/L. Let

@ = —E. By J = —i, one has similar to Lemma 1.2.7 a complex structure
corresponding to a polarized Hodge structure of type (1,0), (0,1) on L. Thus
we have obviously obtained the desired correspondence. O

Since a polarized rational Hodge structure can be considered as polarized
integral Hodge structure with respect to a fixed lattice, if the polarization on
this lattice is integral, one concludes by Lemma 1.2.7 and Theorem 1.2.10:

Corollary 1.2.11. There is a bijection between the sets of polarized abelian
varieties A = W/L and complex structures on L @ R satisfying

Q(JJ)=0Q(,) and Q(Jv,v) >0

for allv e L ® R with respect to an integral alternating form @ on L.

Remark 1.2.12. In order to obtain isomorphism classes of certain objects
corresponding to the polarized integral Hodge structures (L, h, Q) one can
fix a basis B of L. Usually this basis B is symplectic with respect to the
polarization E of A. Hence a polarized abelian variety with symplectic basis
consists of the triple (A, E, B). The conditions

Q(JJ)=Q(,-) and Q(Jv,v) >0

of the previous corollary are called Riemann conditions. Hence by Theorem
1.2.10, we have proved that a complex structure on L ® R corresponds to the
isomorphism class of a polarized abelian variety with symplectic basis, if and
only if it satisfies the Riemann conditions.

Remark 1.2.13. Two curves are isomorphic, if their Jacobians are iso-
morphic as principally polarized abelian varieties (see [7], Theorem 11.1.7).
Since we have proved that polarized abelian varieties correspond to polarized
integral Hodge structures, one concludes that two curves C' and C’ are iso-
morphic, if and only if there is an isomorphism between the polarized Hodge
structures on H'(C,Z) and H'(C’,Z). This yields the Torelli theorem for
curves.

1.3 The definition of the Shimura datum

We will endow the set of principally polarized abelian varieties with sym-
plectic basis with the structure of a Hermitian symmetric domain. Such a
domain can be obtained from a Shimura datum. Let G be a Q-algebraic
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reductive group. A Shimura datum is given by a homomorphism A : S — Gg
of algebraic groups, which satisfies some conditions, which we explain here.

For the definition of the Shimura datum and the construction of Hermitian
symmetric domains we need to recall some facts about algebraic groups. We
can assume that our algebraic groups are defined over a field F' of character-
istic 0. Thus our groups are defined over perfect fields.

Remark 1.3.1. Let G be an algebraic group. The adjoint group G4 is the
quotient of G obtained by the adjoint representation of GG on its Lie algebra
g. It is a well-known fact that G has the following algebraic subgroups:

By G°, we denote the Zariski connected component of identity. The derived
group G4 of G is the subgroup of G generated by its commutators. By
Z(@G), we denote the center of G. The Radical R(G) is the maximal connected
normal solvable subgroup of G. The unipotent radical R, (G) of G is given by

R, (G) :={g € R(G)|g is unipotent}.”

Definition 1.3.2. Let G be an algebraic group. Then one says:

e The group G is a reductive, if

Ry (G) = {e}.
e The group G semisimple, if

R(G) = {e}.

e The group G is simple, if {G} and {e} are the only normal connected
subgroups of G.

There exists an alternative description of semisimple groups. By the fol-
lowing proposition, one sees that a semisimple algebraic group G is isogeneous
to the fiberproduct of simple groups.

Proposition 1.3.3. Let {e} # G be a semisimple algebraic group. Then G
is isogeneous to the fiberproduct of its minimal nontrivial normal subgroups.

Proof. (follows from [10], IV. Proposition 14.10) O

By comparing the definition of reductive algebraic groups and semisimple
algebraic groups, one sees easily that semisimple groups are reductive. The
following proposition yields an additional relation between reductive groups
and semisimple groups.

7 Many authors (for example see [1], [10]) define R(G) and R.(G) only for groups over
algebraically closed fields. However, these subgroups are defined over our field F' of char-
acteristic 0 (see [53], Subsection 2.1.9).
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Proposition 1.3.4. Let G be a connected algebraic group. It is reductive, if
and only if it is the almost direct product of a torus and a semisimple group.
These groups can be given by Z(G)° and GI°r.

Proof. (see [54], Chapter I. §3 for the first statement and [10], IV. 14.2 for
the second statement) O

Example 1.3.5. For technical and historical reasons we need to intro-
duce the general symplectic group GSp(V, ). The general symplectic group
GSp(V, Q) is given by the automorphisms of the Q-vector space V', which
preserve alternating bilinear form @ up to a scalar. From this definition, it is
clear that GSp(V, Q) is given by the almost direct product

GSp(V, Q) =Gmq - Sp(V. Q).

The complex symplectic group Sp(V,Q)(C) is given by one of the classical
simple Lie groups. Therefore Sp(V, Q) is simple. The center of GSp(V, Q) is
given by the torus G,, g (see [40], page 66). Thus GSp(V, Q) is reductive by
the previous proposition.

Remark 1.3.6. Let G be a reductive Q-algebraic group with largest com-
mutative quotient 7'. In this case we obtain (see [15], 1.1):

1. One has the exact sequences:

1-G G ->T—1
1—>Z(G)—>G—>Gad—>1
1— Z(G*) - Z(G) - T — 1

2. The exact sequences induce a natural isogeny G9¢* — G4 with kernel
Z(Gder),

Assume that G is reductive Q-algebraic. From Proposition 1.3.4 and the
fact that G9°" and G*¢ are isogeneous (see Remark 1.3.6), we conclude:

Corollary 1.3.7. Let G be a reductive Q-algebraic group. Then G® is
semisimple.

Assume that G be a reductive Q-algebraic group. By the previous
Corollary and Remark 1.3.6, one concludes that G*? is a semisimple group
with trivial center. Moreover R-algebraic groups can be considered in terms
of Lie groups, since they yield Lie groups by their R-rational points. The
following lemma concerns in particular G*(R).

Lemma 1.3.8. If G is a semisimple connected Lie group with trivial center,
then it is isomorphic to a direct product of simple groups with trivial centers.
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Proof. By [27], IL. Corollary 5.2, the group G coincides with G =~ G /Z(G).
Since the Lie algebra g of G is the direct sum of simple Lie algebras, g is the
Lie algebra of a certain direct product of simple groups, too. Without loss of
generality one can assume that these simple Lie groups have trivial centers.
Recall that the adjoint group depends only on the Lie algebra. Thus this
product of simple groups is isomorphic to its adjoint, which is the adjoint of
G coinciding with G. m|

In the definition of the Shimura datum one demands that the group G is
reductive, since R-algebraic reductive groups have Cartan involutions, which
will be important:

Definition 1.3.9. Let G be a connected R algebraic group. An involutive
automorphism 6 of G is a Cartan involution, if the Lie subgroup

G’(R) = {g € G(C)|g = 6(9)}
of G(C) is compact.

Proposition 1.3.10. A connected R-algebraic group is reductive, if and only
if it has a Cartan involution. Any two Cartan involutions are conjugate by
an inner automorphism.

Proof. By [54], I. Corollary 4.3, each connected R-algebraic reductive group
has a Cartan involution and the Cartan involutions are conjugate. Let 6 be
a Cartan involution on the connected R algebraic group G. Thus G?(R) is
compact. By [54], I. Proposition 3.3, the group GY(R) is reductive. Thus
one concludes that G¢ and G are reductive as in the proof of [54], I.
Theorem 4.2(i). O

Note that id? = id. Hence it can be considered as an involutive automor-
phism. This leads to the following examples of reductive groups:

Example 1.3.11. Let K be a connected R-algebraic group such that K(R)
is a compact Lie group. One has

G(R) :={g € G(C)lg = 3} = G(R),

which is compact by our assumption. Hence each compact R-algebraic group
K C GL(W) is reductive and has a Cartan involution given by id. Since any
two Cartan involutions of K are conjugate and id is fixed by conjugation, the
identity map id is the only Cartan involution of K.

Example 1.3.12. Let V be an R-vector space of dimension N. The Group
GL(V) has an involution given by 6 : M — (M*)~!. On GL(V)(C) one has
that M = 6(M), if and only if MM?' = Ey, resp., if and only if M € U(N).
It is a well-known fact that U(N) is compact. Thus 6 is a Cartan involution.
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Remark 1.3.13. Assume that G is an R-algebraic reductive group with
Cartan involution # and G’ C G is a Zariski closed subgroup such that
0(G) = G. Since a closed subgroup of a compact Lie group is a compact Lie
group, one concludes easily that 0| is a Cartan involution on G’.

From now on let (L, h, Q) be a polarized integral Hodge structure of type
(1,0),(0,1) on a torsion-free lattice L of rank 2¢g and V := L ® Q. For
simplicity we assume that @ is given by

%:(_% %) (1.2)

with respect to a symplectic basis of L.
We use the preceding remark to find a Cartan involution on Sp(V, Q):

Example 1.3.14. Let M € Sp(V,Q)(R). Then the matrix M is a 2g x 2g
matrix with A
B
v-(e b)
where A, B,C, D are g x g matrices. Since M € Sp(V, Q)(R), one has
M'JoM = Jy < Mt = J; M.

Hence
M=J; (MY & oMy = (M)~

Recall that a Cartan involution of GL(Vg) is given by M — (M%)t (see
Example 1.3.12). Thus the conjugation by Jy coincides with the restriction
of this Cartan involution to Sp(V, @Q)r. Hence by the preceding remark, this
yields a proof for the reductivity of Sp(V,@)r, which implies that Sp(V, Q@)
is reductive, too.

Example 1.3.15. The Hodge group Hg(V,h) contains the complex struc-
ture J = h(i), which acts by the multiplication with z on H%? and by the
multiplication with Z on HO!.

Let {b1,...,b,} be a basis of H? and

Rbx, = by, + bg, by = (b — by).
One has that
B ={Sb1,...,Qbg, Nb1,...,Rbglk =1,...,9}
is a basis of V. From the fact that J(Rby) = by and J(Sbg) = —RNby,
one concludes that J can be given by Jy (see (1.2)) with respect to the

basis B. Hence by the same arguments as in Example 1.3.14 and the fact
that Hg(V, h) C Sp(V, @), the group Hg(V, h)g is reductive.
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Note that S = G, g-S! and the weight one Hodge structure (V, h) satisfies

hlg,, = id. Thus from the fact that

h(8') € Sp(V,Q) and GSp(V.Q) = G- Sp(V,Q)

one concludes that
MT(V,h) C GSp(V, Q).

Later we will see that MT(V, k) is also reductive.
We see that the result of the previous example holds true in general:

Theorem 1.3.16. Let Q C F C R be a field and (V,h,Q) be a polarized
F-Hodge structure of weight k. Then

g — h(i)gh™ (i)
yields a Cartan involution of Hgp(V, h)r and Hgr(V, h) is reductive.

Proof. Let C' = h(i). Since h(—1) yields either id or —id, the inner automor-
phism 6 of Hg (V. h) given by

g — CgC

is an involution. Note that C' acts by the multiplication with =% on V4.

By the definition of the polarization of a Hodge structure of weight k,

k(k—1)
2

Hip g = 1""(=1)

Q('vf)
is a positive definite Hermitian form on V?9. Thus we define the Hermitian
form

Hep.q) = Q(,C)
on VP4, Since the Hodge decomposition is orthogonal for the Hermitian form
i*Q(-,7), the different Hermitian forms H, (p,q) give a Hermitian form H on V¢,

which is either positive definite or negative definite. Thus the unitary group
U(Vg, H)(R) is a compact Lie group. We show that

Hg (V. ) (R) C Hgp(V, h)(C) N U(Ve, H)(R),

which implies that Hg,(V,h)?(R) is compact resp., 6 is a Cartan involution.
From this result one concludes that Hgp(V, h) is reductive.

Let G(V,Q) = Sp(V,Q), if k is odd, and G(V,Q) = O(V,Q), if k is even.
Note that for each polarized polarized F-Hodge structure of weight k one has

Her(V,h) C G(V,Q).
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This follows from the fact that the Hodge decomposition is orthogonal for
i*Q(-,). Assume that g € Hgp(V,h)?(R). Thus one has

Q(v,Cu) = Q(gv, gCu) = Q(gv, CgC—1Cu) = Q(gv, Cgu).

Hence g is contained in Hg,(V, h)(C) N U(Vg, H)(R). O

We need to show that MT(V, k) is reductive, since h: S — MT(V, h)r is a
Shimura datum instead of h : S' — Hg(V, h)g in the case of a rational Hodge
structure. The definition of the Shimura datum will demand that MT(V, h)
is reductive. For the proof that MT(V, h) is reductive, we compare Hg(V, h)
and MT(V, h):

Lemma 1.3.17. Let F be a field such that Q C F C R and (V,h) be an
F-Hodge structure. Then one has

Hgx(V,h) = (MT (V, h) N SL(V))°.
Moreover MT g (V, H) is the almost direct product of Hgp(V, h) and G, p.

Proof. Since VP4 = V9P, one concludes dim V¢ = dim V??. By this fact

and the fact that each z € S1(R) acts by the multiplication with 2?29 on VP4,

one has h(z) € SL(V)(R) for each z € S*(R). Hence Hg(V, h) C SL(V).
By the natural multiplication, we have a morphism

m:Hgp(V,h) X Gy p — MTp(V, h)
with finite kernel, since Hg(V, h) C SL(V'). Thus the Zariski closure Z of
m(Hgrp(V,h) x G, p) € MTp(V, h)
is an F-algebraic subgroup of MTg(V, h). Moreover one has that
h(S) € Zp C MTr(V, h)r.
Hence Z = MTg(V, h).

Since all homomorphisms f : G — G’ of algebraic groups over algebraically
closed fields satisty f(G) = f(G) (see [1], Satz 2.1.8), we have the equality

Hegp(Vih)p - Gy p = Zp = MTE(V, h)p.
Now let M € MTp(V,h)(F) N SL(V)(F). It is given by a product N - M,
with N € G,,,(F) and My € Hgp(V, h)(F). Since Hg(V, h)(F) C SL(V)(F),
one concludes - - -
N € G (F)NSLV)(F) = pn(F),
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where dimV = n. One has M € Hgp(V,h)(K), if and only if N €
Hgpr(V,h)(F). Hence by the fact that p,(F) is finite, one obtains the
statement. a

Remark 1.3.18. For the polarized Hodge structure of weight 1 of a curve
of genus g, we have a natural embedding Hg(V, h) C Sp(V, Q). Since p24(Q)
is not a subgroup of Sp(V,Q) for g > 1 and for g = 1 one has us C h(S?),
we obtain the equality

Hg(V, h) = MT(V, h) N SL(V)

only in the case of a genus one curve.
We conclude by the previous lemma:

Corollary 1.3.19. Let Q C F C R be a field and (V,h,Q) be a polarized
F-Hodge structure of weight k. Then

MTG (V. h) = Hgg (V. h) and MTE (V. h) = Hgi! (V. h).

Moreover one concludes by Lemma 1.3.17 that the center of MT (V) h)
is the almost direct product of G,, p and the center of Hgy(V,h). Since
Hg(V, h) is reductive by Theorem 1.3.16, one concludes by Proposition 1.3.4
that MTp(V,h) is the almost direct product of its center and Hg " (V, h).
Again we apply Proposition 1.3.4 and obtain:

Corollary 1.3.20. Let Q C F C R be a field and (V,h,Q) be a polarized
F-Hodge structure of weight k. Then the MT (V) h) is reductive.

By Corollary 1.3.19, we will see later that the homomorphism h : S' —
Sp(V, Q)r given by one of our polarized integral Hodge structures of type
(1,0),(0,1) can be considered as a Shimura datum. In literature the Shimura
datum is given by h : S — GSp(V, Q)r, where h is the corresponding homo-
morphism of our Hodge structure in the sense of Proposition 1.1.3.

The Hermitian symmetric domains obtained from Shimura data (G, h)
are given by homogeneous spaces G4 (R) /K, where K is the compact group
fixed by the Cartan involution restricted to G4°*. At present we can construct
the homogeneous space in the case of our examples:

Construction 1.3.21. An embedding h : S' — Sp(V,Q)r obtained by a
polarized integral Hodge structure (L, h, Q) of type (1,0), (0,1) corresponds
to the complex structure J := h(i), which satisfies Q(J-,J-) = Q(-,-) and
Q(Jv,v) > 0. By the definition of Sp(V,Q)r, one has J € Sp(V,Q)x.
Moreover one checks easily that gJg~! satisfies the same conditions for all
g € Sp(V, Q).

The complex structure J can be given by the same matrix as Jy with
respect to a symplectic basis. Thus there exists a g € GL(V)(R) such
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that J = gJog~!. Therefore J yields a Cartan involution of Sp(V,Q)g.
By Proposition 1.3.10, one can assume that g € Sp(V,Q)(R). Therefore
Sp(V, Q)(R) acts by conjugation transitively on the set of complex structures
J € Sp(V, Q)(R) satistying Q(Jv,v) > 0.

Let K be the subgroup of Sp(V,Q)(R), which leaves a fixed h(S?!)
stable by conjugation. The set of points of the homogeneous space
hy = Sp(V,Q)(R)/K can be identified with the set of complex struc-
tures J € Sp(V, Q)(R) satisfying Q(Jv,v) > 0. By the preceding section, the
points of h, can be identified with the polarized integral Hodge structures
(L, h,Q) of type (1,0),(0,1) resp., principally polarized abelian varieties of
dimension g with symplectic basis.

In the same way one can construct a homogeneous subspace of f, using
the Hodge group Hg(Lg, i’) of a polarized integral Hodge structure (L, h’, Q)
instead of Sp(V, Q). This space parametrizes all polarized integral Hodge
structures (L, h, Q) with a Hodge group contained in Hg(Lg, h')

It is quite easy to see that a corresponding construction runs well in the
case of a representation h : S — GSp(V, Q)r obtained by a polarized integral
Hodge structure (L, k', Q) of type (1,0), (0,1). In this case we obtain a homo-
geneous space, which parametrizes all complex structures J € GSp(V, Q)(R).
In a similar way one obtains a subspace parametrizing all integral Hodge
structures (L, h) with a Mumford-Tate group contained in MT(Lg, h’).

Now let us define the Shimura datum:

Definition 1.3.22. A Shimura datum (G,h) is given by a reductive
@Q-algebraic group G and a conjugacy class of homomorphisms h : S — Gy
of algebraic groups satisfying:

1. The restriction of the inner automorphism of h(i) on Gg to G is a
Cartan involution.

2. The adjoint group G®! does not have any direct Q-factor H such that
H(R) is a compact Lie group.

3. The representation (ad o h)(S) on Lie(G)c corresponds to a Hodge struc-
ture of the type (1,—1) @ (0,0) ® (-1, 1).

In the cases of our examples we have already seen that Condition (1)
in the definition of a Shimura datum allows the construction of a homo-
geneous space, which parametrizes the conjugacy class of homomorphisms
h:S — Gg. In the next section we will see that Condition (2) and Condition
(3) allow one to endow the connected components of this homogeneous space
with the structure of a Hermitian symmetric domain.

We will also accept a pair (G, h) as Shimura datum, if the representation
(ad o h)(S) on Lie(G)c is trivial resp., corresponds to a Hodge structure of
the type (0,0). In this case we obtain a homogeneous space consisting of only
one point.

Remark 1.3.23. If one compares our definition of a Shimura datum with
other definitions used in literature, one finds some different formulations
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(for example compare [16], [40]). This happens, since one can replace the
Conditions (1) and (2) by equivalent conditions:

1. Since G and G* are isogeneous, the compact subgroups of Gﬁ‘éer and
G correspond. Moreover the inner automorphism of (ad o h)(i) on G&4
is well-defined. Thus the inner automorphism of (ad o h)(i) on G& is a
Cartan involution, if and only if the inner automorphism of h(i) on Gg to
Gder is a Cartan involution. Thus one can replace Condition (1) by the
condition that the inner automorphism of (ad o h)(i) on G2 is a Cartan
involution.

2. By Example 1.3.11, Condition (2) is equivalent to the condition that the
adjoint group G®? does not have any direct Q-factor H, which satisfies
0|y = idy for a Cartan involution 6 of G, Usually one writes that G4
does not have any direct Q-factor H such that the inner automorphism
of (ad o h)(7) restricted to H is trivial. This is equivalent to the condition
that G2 does not have a direct Q-factor H such that pry oadoh is trivial.

Now we give our first example of a Shimura datum:

Proposition 1.3.24. Assume that (V,h,Q) is a polarized rational Hodge
structure of type (1,0),(0,1). Then (GSp(V,Q),h) is a Shimura datum.

Proof. We have seen that GSp(V, @) is reductive.

By Construction 1.3.21, we have a conjugacy class of complex struc-
tures, which corresponds to a conjugacy class of homomorphisms h : S —
GSp(V, Q)r satisfying the condition (1) in the definition of the Shimura
datum.

Recall that Sp,,(C) is a classical simple Lie group. Thus GSp(V; Q) =
Sp(V,@Q)*! has only one direct simple factor, which is not compact. Hence
condition (2) of the Shimura datum is satisfied.

Since the center of GSp(V,Q)r is given by G,, r (see [40], page 66), the
kernel of the adjoint representation on Lie(GSp(V,Q)r) of any h(S) in the
conjugacy class is given by G,, r. Since h(a + ib) = aFs, + bJ, each g €
GSp(V, Q)(R) commutes with J, if and only if it commutes with each element
of S(R). Hence on the complexified eigenspace (pg)c with eigenvalue —1 with
respect to the Cartan involution, S acts by the characters z/z and z/z. This
corresponds to a Hodge structure of the type (1,—1) ® (0,0) ® (—1,1) on
Lie(GSp(V, Q)r). Hence condition (3) is satisfied. O

Definition 1.3.25. A Shimura datum (G, h) is of Hodge type, if there is a
closed embedding p : G — GSp(V, Q) such that one has the Shimura datum
of Example 1.3.24 by

h
S < Gr & GSp(V, Q)g.
In the next section we use Shimura data to construct complex manifolds,

which will be used for the construction of quasi-projective varieties, which are
the Shimura varieties. A Shimura variety is of Hodge type, if it is obtained by
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a Shimura datum (G, h) of Hodge type. We will use the examples of Shimura
data of Hodge type, which are given the following proposition:

Proposition 1.3.26. Let (V,h,Q) be a polarized Q-Hodge structure of type
(1,0),(0,1). Then (MT(V.h),h) is a Shimura datum.

Proof. By Corollary 1.3.20, the Mumford-Tate group MT(V, h) is reductive.
The inner automorphism given by

g9 — h(i)gh™"(q)

descends to a Cartan involution § on MT*(V,h)r = Hg*!(V, h)g. Hence
condition (1) in the definition of the Shimura datum, is satisfied.

Next we have to show that any direct Q-factor with trivial Cartan invo-
lution is isomorphic to {e}. Let H be a simple direct Q-factor of MT(V, h)ad
with trivial Cartan involution. We have a surjection

s MT(V, h) 25 MT(V, h)* 222 [,

which is obviously a homomorphism of Q-algebraic groups. Hence the kernel
K of s is a Q-algebraic group. The complex structure J, which satisfies that
the conjugation by ad(J) is the Cartan involution, satisfies that all elements
of the adjoint group Hp commute with ad(.J). Thus J is contained in Kg.
Hence h(S) C Kg, which implies K = MT(V, h) resp., H = {e}.

The conjugacy class of the representation h : S — MTgr(V,h) —
GSpr(V, Q) is the Shimura datum of Proposition 1.3.24. Hence the adjoint
representation of S on Lie(MT(V, h))c C Lie(GSp(V,Q))c induces a Hodge
structure of the same type (or of the type (0,0)). O

1.4 Hermitian symmetric domains

In this section we construct Hermitian symmetric domains by using Shimura
data. These domains will later be our restricted period domains, which
parametrize Hodge structures (V,h) such that h(S) is contained in a given
reductive group. Siegel’s upper half plane remains to be our illustrating ex-
ample. In the preceding section we have constructed Siegel’s upper half plane
b, as homogeneous space, which parametrizes polarized integral Hodge struc-
tures of type (1,0),(0,1). Here we see that Siegel’s upper half plane can be
endowed with the structure of a Hermitian symmetric domain.

Let G be an R-algebraic group. Moreover let G° denote the Zariski con-
nected component of identity and let G*(R) denote the connected component
of identity for the Lie group G(R). In general the Lie group G°(R) is not a
connected manifold, which will be a reason to be careful in this section. For
example G,,(R) is Zariski connected, but has two connected components
given by the real numbers larger than 0 and the real numbers smaller than 0.
Only the inclusion G°(R) D G*(R) holds true in general.
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1.4.1. Let (G, h) be a Shimura datum. The elements of the conjugacy class
of h are given by the points of the homogeneous space D = G(R)/K, where
K is the isotropy group of h, i. e. the subgroup of G(R) such that:

ghg™' =h (Vg € K)

Since the multiplication by g € G(R) is a diffeomorphism of the Lie group
G(R), all connected components yield manifolds isomorphic to the space given
by GT(R). Note that G24(R) is a connected Lie group, since it can be obtained
as the quotient

G (R) = G (R)/(ZN G (R)).

Assume that G(R) has r connected components. Since the center Z of G(R)
fixes all representations h by conjugation, D can be considered as

D= J G"®R)/adgw)(K).

i=1,...,7

Now we start to endow the connected components of the homogeneous
space D = G(R)/K obtained from a Shimura datum (G, h) with the structure
of a Hermitian symmetric domain.

Let M be a C* manifold. An almost complex structure on M is a smoothly
varying family (Jp)penm : TpM — T, M of automorphisms of the respective
tangent spaces T, M for all p € M, which satisfies the condition Jg = —1 for
all p € M. Thus J, is a complex structure on the vector space T, M for all
p € M. Such a pair (M, J) is called an almost complex manifold. For example
the affine complex line given by C with the almost complex structure

00 0 0 )
or Oy Oy or
is an almost complex manifold.

As everyone should know, the complex line C is not only an almost complex
manifold, but a complex manifold. An almost complex structure J on a C*>
manifold M is called integrable, if M is endowed with the structure of a
complex manifold, which induces the almost complex structure J. Let

S;(X,Y)=[X, Y]+ JJX, Y]+ JX,JY] - [JX,JY],
where X and Y are vector fields.
Theorem 1.4.2. An almost complex complex structure J is integrable, if and
only if it satisfies
S;=0.

Proof. (see [50]) O
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In order to get some sense for the criterion of Theorem 1.4.2; one can use it
to verify that the almost complex structure on C given by (1.3) is integrable.

For our construction of a Hermitian symmetric domain by a Shimura da-
tum we need the following definition:

Definition 1.4.3. A smooth 2-tensor field g on a C*> manifold M is a family
of bilinear maps g, : T, M X1, M — T,,M such that for all smooth vector fields
X,Y the map p — ¢,(X,Y) is smooth. The 2-tensor field g is a Riemannian
structure, if for all p € M the bilinear form g, is symmetric and positive
definite.

Now we endow a homogeneous space obtained from a Shimura datum with
a Riemannian structure:

Example 1.4.4. Let h : S — Gg be a Shimura datum and D = G(R)/ K (R)
be the homogeneous space parametrizing the elements of the conjugacy class
of h. By [27], II. §4, the homogeneous space D is a C* manifold and the
elements of G(R) act as diffeomorphisms on D. We construct a G(R) invariant
Riemannian form in the following way:

On the real vector space

T)D = Lie(G(R))/Lie(K,(R))

one finds easily a symmetric and positive definite bilinear form (-,-),. Let
u,v € TpD. Moreover let for all g € K} (R) the homomorphism u — dg(u) be
given by the differential of the diffeomorphism obtained from g. Since K}, (R)
is compact, the function given by

Kn(R) > g — (dg(u),dg(v))n € R

reaches a maximal value and a minimal value over K3 (R). In addition the
compactness of K, (R) implies that Kj(R) has a finite Haar measure dx. Thus
the bilinear form

(w,0)) = /K (). dg(0)da

is well-defined. Since (-,-) is symmetric and positive definite, one concludes
easily that (-,-)" is symmetric and positive definite, too. Moreover it is fixed
by the action of Kj.

Let b’ € D. There exists a g € G(R) with g(h’) = h. Let dg denote the
differential of the diffeomorphism on D obtained from g. On the tangent
space of b/ we define the positive definite and symmetric bilinear form (-, -)},

given by
() = (dg(-), dg(-))h-
Note that for all g,¢" € G(R) with

g (1) = g') = h
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there exists a k € Kj(R) with ¢ = k o g. Since (-,-)), is Kj(R)-invariant,
(+,-)}, is independent of the choice of g. Thus the action of G(R) on D as
a transitive diffeomorphism group yields a well-defined G(R)-invariant Rie-
mannian structure on each connected component of D. (see also the proof of
[27], IV. Proposition 3.4)

Definition 1.4.5. Let M be a connected C*° manifold with an almost com-
plex structure J. A Riemannian structure g on M is a Hermitian structure, if

g(JJ) = g(, )

Example 1.4.6. From the definition of the Shimura datum, Lie(G¢) has an
eigenspace decomposition of the type

(1,-1), (0,0), (-1,1)

with respect to the action of h(S). The intersection of the (0,0) eigenspace
with Lie(Ggr) coincides with Lie((K})gr). Thus on the vector space

T)(D) = Lie(G(R))/Lie(Kn(R))

we have a complex structure J;, obtained from the eigenspace decomposition
of Lie(G¢). Note that h(S) is contained in the center of (Kj)r and the com-
plex structure Jj, is given by the differential of the map obtained from some
root h(v/i). Let g € G(R) and h = g(h'). Now let dg denote the differential
of the diffeomorphism of D given by g. By

Jp =dg~" o Jy o dg,
one defines a complex structure on Ty D. Note that for all g,¢" € G(R) with
g'(h) =g(h')=h

there exists a k € Kj,(R) with ¢ = k o g. Since h(v/4) commutes with all
k € Ki(R), one obtains

d(g/)f1 oJyod(g) = dg todk Yo J,odkodg=dg ' oJ,odg.

Thus J/ is independent of the choice of g and we obtain a well-defined G(R)-
invariant almost complex structure J on D.

In Example 1.4.4 we have constructed a G(R)-invariant Riemannian
structure on each connected component of D. By the construction of this
Riemannian structure (-,-)},, one sees easily that

(Tne () T (D = (5 )

Thus we have a G(R)-invariant Hermitian structure on each connected com-
ponent of D.
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Definition 1.4.7. A Hermitian symmetric space is a connected complex
manifold M endowed with an Hermitian structure such that each point p € M
is an isolated fixed point of an involutive holomorphic isometry of M.

We consider the Riemannian structure on each connected component of D,
where D is the homogeneous space obtained from a Shimura datum (G, h).
Since the almost complex structure J is G(R)-invariant and D is a homoge-
neous space, it is sufficient to consider .J at one arbitrary point h € D. By
using the criterion S; = 0 of Theorem 1.4.2, one can show that the almost
complex structure J on a homogeneous space D obtained from a Shimura
datum is integrable (use the results of Example 1.4.4 and Example 1.4.6 and
compare to [27], VIII. Proposition 4.2 and its proof).

Since the Hermitian structure is G(R)-invariant, the Cartan involution
obtained from h(i) acts on D as an involutive isometry with isolated fixed
point representing h. By the fact that J is integrable, we conclude:

Proposition 1.4.8. Fach connected component of the homogeneous space D
obtained from a Shimura datum is a Hermitian symmetric space.

Let DT denote a connected component of D. Note that the group of holo-
morphic isometries Hol(D™, g) of the Hermitian symmetric space (D7, g) is
endowed with the structure of a Lie group instead of the structure of an alge-
braic group. Thus one is not able to define a Cartan involution of Hol(D™, g)
as we have done for R-algebraic groups. In this case one considers the com-
plexified Lie algebra Liec(Hol(DT,g)) and defines a Cartan involution for
Lie algebras (for details see [27], ITI. §7).

In our case the Cartan involution on G&! induces a Cartan involution on
the Lie algebra of G24(R) in the sense of [27]. Condition (2) in the definition
of the Shimura datum guarantees that G®! is not compact. Moreover the
action of G(R)™ on a connected component DT of D descends to an action
of G*(R) on D¥, since the center Z(G)(R) acts trivial on the conjugacy
class and G* = G/Z(G).

1.4.9. We will see that the quotient of G*!(R) by its direct compact fac-
tors is the connected component of the group of holomorphic isometries
(Hol(D*,g))T of the Hermitian symmetric space DT obtained from a
Shimura datum (G, h). By Condition (2) in the definition of the Shimura
datum, one concludes that Hol(D*,g)" is a noncompact semisimple Lie
group. This Lie group is endowed with an involution ¢, which induces by its
differential a Cartan involution on Lie(Hol(D™,g)). Let K, C Hol(D*,g)*
be the subgroup, on which ¢ acts as id. The isotropy group K of one point
p € DT satisfies K- C K C K,. Such a Hermitian symmetric space D7 is
called a Hermitian symmetric domain.

1.4.10. Hermitian symmetric domains have the following properties:

e FEach Hermitian symmetric domain D is biholomorphic to an open bounded
connected complex submanifold D’ of CV. Moreover each p € D’ is
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an isolated fixed point of an involutive holomorphic diffeomorphism
¢ : D' — D', which is induced from a corresponding involutive isometry
of D. Such a domain D’ is called bounded symmetric domain. Conversely
each bounded symmetric domain D’ can be equipped with a Hermi-
tian metric (called Bergman metric), which turns D’ into a Hermitian
symmetric domain (see [27], VIII. Theorem 7.1).

For example the upper half plane h; given by the complex numbers x + iy
with y > 0 is biholomorphic to the ball By = {z € C : |z| < 1}, which
is a bounded symmetric domain. The biholomorphic map ¢ : h; — By is
given by
z—1
8z) = .

e FEach holomorphic diffeomorphism between bounded symmetric domains
is an isometry for the Bergman metrices (see [27], VIII. Proposition 3.5).

e Let Is(D, g) denote the group of C*°-isometries of the Hermitian symmetric
domain (D, g) and Hol(D) denote the group of holomorphic diffeomor-
phisms acting on D. Then one has

Is(D,g)t = Hol(D, g)" = Hol(D)*

(see [40], Proposition 1.6).
e A Hermitian symmetric domain D is irreducible, if Hol(D, g)" is simple.
Each Hermitian symmetric domain D is a product

D=Dy x...xDy

of irreducible Hermitian symmetric domains Dy, ..., Dy (follows from [27],
VIII. Proposition 5.5). By the classification of simple Lie groups, one
obtains a classification of irreducible Hermitian symmetric domains (use
[27], VIII. Theorem 6.1 and [27], X. Table V).

Theorem 1.4.11. Let h : S — G be a Shimura datum, W be a real vector
space and K denote the centralizer of h(S). Then each connected component
DT of D = G(R)/K(R) has a unique structure of a Hermitian symmetric
domain. These domains are isomorphic, where the connected component of
the group of holomorphic isometries is given by the quotient of G*(R) by
its direct compact factors. Each representation p : Gg — GL(W) yields a
holomorphic variation (W, po h)nep of Hodge structures on D.

Proof. (See [16], 2.1.1.) O

By the preceding considerations of this section, we have already proved
that the connected components DV of D = G(R)/K(R) have a unique struc-
ture of a Hermitian symmetric space. The proof of the remaining statement
about variations of Hodge structures can be found in the same essay [16] of
P. Deligne in Proposition 1.1.14.(7).
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Now let us consider our main example:

Example 1.4.12. The Lie group GSp(V, Q)(R) has two connected compo-
nents. One component consists of matrices with positive determinant and
the other consists of matrices with negative determinant. Hence the corre-
sponding homogeneous space D parametrizing the elements of the conjugacy
class of a Hodge structure of an abelian variety given by h has two con-
nected components. Note that GSp(V,Q)(R)* is a product of Sp(V,Q)(R)
and G (R). Since G,,(R)™ is contained in the stabilizers of all points, the
corresponding connected homogeneous space coincides with b, such that the
preceding Theorem endows b, with the structure of a Hermitian symmetric
domain. By the representation of GSp(V, @)r given by the identical embed-
ding GSp(V, Q)r — GL(V)g, the upper half plane h, is endowed with the
natural holomorphic variation of polarized integral Hodge structures of type
(1,0),(0,1).

Assume that (V, h, Q) is a polarized Q-Hodge structure of type (1,0), (0,1).
By Proposition 1.3.26, the pair (MT(V,h),h) is a Shimura datum. Lemma
1.3.17 ensures that the connected components of the conjugacy class of h :
St — Hg(V, h) are given by connected components of MT(V,Q)(R)/K (R)
contained in the upper half plane lj,. Thus we rather work with Hg(V, k) than
with MT(V, h). By Corollary 1.3.19, the pair (Hg(V, h), h) can be considered
as Shimura datum, too:

Remark 1.4.13. Assume that (V,h, Q) is a polarized integral Hodge struc-
ture of type (1,0),(0,1). By Corollary 1.3.19, one has that MT*(V, h) =
Hg*(V,h). Thus one has that MT*(V,h)(R) = Hg*!(V,h)(R). Hence by
the preceding construction, Hg(V, h)24(R) is the identity component of the
holomorphic isometry group of the Hermitian symmetric domain D, where
D7 is a connected component of the conjugacy class of h. The isotropy group
of the point representing h is given by the compact subgroup of Hg*4(V, h)(R)
fixed by the Cartan involution on Hg®!(V,h)r obtained from the inner au-
tomorphism of the complex structure J = h(i). Hence one can consider the
pair consisting of V and h|g1 : S* — Hg(V, h)r as Shimura datum, too.

Note that D. Mumford and J. Tate have originally constructed families
of abelian varieties over Hermitian symmetric domains by using the Hodge
group instead of the Mumford-Tate group (see [46] and [47]) as we will do
in a similar way. The Mumford-Tate group was later introduced by number
theorists, who work with Shimura varieties, for technical reasons.

Now we construct the holomorphic family of principally polarized abelian
varieties over Hg(V,h)(R)/K corresponding to the VHS induced by the
closed embedding

id : Hg(V, h) — Sp(V. h),

where (V, h, Q) is a polarized rational Hodge structure of type (1,0), (0, 1).
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Construction 1.4.14. Let (L, h,Q) be a polarized Z-Hodge structure of
type (1,0),(0,1) with V' := Lg as before and {vy,...,v4,w1,...,w,} be a
symplectic basis of L with respect to Q). For example it may be given on
L := HY(C,Z), where C is a curve of genus g. Moreover let [v;] resp., [w;]
denote the image of v; resp., w; by the map

L—-L®C— H.

One has that Hg(V,h) C Sp(V, Q). Let K C Hg(V,h)™(R) be the centralizer
of h(S*(R)). Thus Hg(V,h)"(R)/K is a Hermitian symmetric domain as we
have seen. Consider the linearly independent set B = {{w], ..., [w,]} € H"!,
which generates the real subvector space W. Now ¢W is obviously generated
by {[Jw1],...,[Jwy]}. The principal polarization H of the abelian variety
A = H%!/L is given by the corresponding alternating form E = —Q as in the
proof of Theorem 1.2.10. Since E vanishes on W, the principal polarization H
given by H = E(i.,.)+4E(.,.) vanishes on the complex vector space W NiW,
too. Hence W N iW = 0. Thus the fact that Spang(v, Jv) is mapped to
Spanc([v]) implies that B is a C-basis of H%!. Hence the period matrix of
the corresponding abelian variety may be given by (Z, E), where the columns
of Z are given by the [v;] in their coordinates with respect to B.

Thus the embedding H"? — V¢ is given by the matrix (2%, —E,)*. Since
we have a holomorphic variation of Hodge structures, this matrix varies
holomorphically. Thus the period matrices of the corresponding abelian va-
rieties vary holomorphically, too. Hence the corresponding action of L on
H%' x Hg(V, h)T(R)/K is holomorphic and we obtain a holomorphic family
of abelian varieties over Hg(V,h)T(R)/K.

By the previous construction, the period matrices of the fibers of our holo-
morphic family of abelian varieties over Hg(V, h)*(R)/K are given by (Z, Ey).
Recall that Siegel’s upper half plane h, parametrizes the principally polar-
ized abelian varieties with symplectic basis. Hence for each p € b, one finds
exactly one matrix Z, such that (Z,, E,) is the period matrix of the given
principally polarized abelian variety with symplectic basis. Thus the mapping
¢ 1 p — Zp is injective and well-defined. By the previous construction, ¢ is
holomorphic, too.

Proposition 1.4.15. A matriz (Z, E,) is the period matriz of a principally
polarized abelian variety with respect to a symplectic basis, if and only if

Zt=7 and SZ > 0.

Proof. (see [7], Proposition 8.1.1) O

Since the set of matrices Z satisfying the conditions of the preceding
Proposition has the structure of a smooth complex manifold, ¢ is a holo-
morphic diffeomorphism. By ¢, one can endow the set of these matrices Z
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with the structure of a Hermitian symmetric domain. Hence we obtain the
often used description of the upper half plane:

Proposition 1.4.16.
by = {M € M,(C)|Z" = Z,3Z > 0}
Especially in the case g = 1 one obtains

h1 = {xz+iy € Cly > 0}.

1.5 The construction of Shimura varieties

In the preceding section we have seen that a Shimura datum yields a bounded
symmetric domain. This is the first step of the construction of a Shimura
variety. For completeness we sketch the construction of a Shimura variety in
this section. Later we will only need to use the language of Shimura data and
bounded symmetric domains obtained from these data.

Definition 1.5.1. Let G be a Q-algebraic group. An arithmetic subgroup I'
of G(Q) is a group, which is commensurable with G(Z).

A subgroup I' of a connected Lie group H is arithmetic, if there is a
Q-algebraic group G, an arithmetic subgroup I'g of G(Q) and a surjective
homomorphism 7 : G(R)* — H of Lie groups with compact kernel such that
n(To) =T

The second step of the construction of a Shimura variety is given by the
following theorem:

Theorem 1.5.2 (of Baily and Borel). Let D be a bounded symmetric
domain, and T' be an arithmetic subgroup of Hol(D)¥. Then the quotient
\D can be endowed with a structure of a complex quasi-projective variety.
This structure is unique, if I' is torsion-free.

Proof. (see [16], 2.1.2. and for the construction of the structure of a complex
variety see [5]) O

Next one needs the ring of finite adeles,® which is given by

A =Qez [z,
p

8 One reason for the introduction of adele rings is given by the fact that one wants to have
canonical models of Shimura varieties over number fields in number theory. We will not
need canonical models of Shimura varieties over number fields. For completeness we write
it down.
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where p runs over all prime numbers. Hence Af is the subring of []Q, con-
sisting of the (a,) such that a, € Z, for almost all a,. Now let (G, h) be a
Shimura datum, which gives the bounded symmetric domain DT by a con-
nected component of the conjugacy class D of h, and K be a compact open
subgroup of G(A7).

Definition 1.5.3. Let G be a Q-algebraic group. A principal congruence
subgroup of G(Q) is

I'(n):={g € G(Z)|g = E, mod n}

for some n € N. A congruence subgroup of G(Q) is a subgroup I' containing
I'(n) such that [I" : T'(n)] < oo for some n € N.

Lemma 1.5.4. Let K be a compact open subgroup of G(AT). Then T' :=
K NG(Q) is a congruence subgroup of G(Q).

Proof. (see [40], Proposition 4.1) O

The Shimura variety Shy (G, k) is given by the double quotient
Shi (G, h) = GQ\D x G(A)/K = G@\(D x (G(AT)/K)).

Proposition 1.5.5. Let K be a compact open subgroup of G(AS), C :=
GQ\G(AT)/K, and T, = gKg~*NG(Q)T for some [g] € C. Then one has

Shg(G,h) = | | Ty\D™.
lglec

Proof. (see [40], Lemma 5.13) O

Hence the preceding proposition and the Theorem of Baily and Borel en-
dow Shk (G, h) with the structure of an algebraic variety. By [40], Proposition
3.2, the surjection G — G*d maps a congruence subgroup of G onto an arith-
metic subgroup of G*d. Now we consider compact open subgroups with the
property that the resulting arithmetic subgroups on

G*(R) = Hol(D", g)" = Hol(D™)*
are torsion-free. Recall that the structure of a complex quasi-projective va-
riety on the quotient of a bounded symmetric domain by a torsion-free

arithmetic group is unique. If K’ C K, we have a natural morphism

Shy (G, h) — Shy (G, h). (1.4)
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By the projective limit running over all compact open K C G(Af) proving a
torsion-free arithmetic group on G%4(R), which is given via (1.4), we obtain
the Shimura variety”

Sh(G, h) = lim Sh (G, h).

1.6 The definition of complex multiplication

One says that an elliptic curve has complex multiplication, if its endo-
morphism ring is a complex multiplication field (CM field), i.e. a totally
imaginary quadratic extension of a totally real number field. For an arbitrary
abelian variety we define:

Definition 1.6.1. An abelian variety A is of CM type, if it is isogeneous to
a fiberproduct of simple abelian varieties X; (i = 1,...,n) such that there
are fields K; C End(X;) ®z Q, which satisfy

[K;:Q] > 2-dim(X;).

Proposition 1.6.2. If the abelian variety A is of CM type, the fields K; are
CM fields and satisfy
[K;: Q] =2-dim(X;).

Proof. (see [35], Chapter 1, Theorem 3.1 and see [35], Chapter 1, Lemma
3.2.) o

Many authors say that an abelian variety X has complex multiplication,
if there exists a skew field F' and an embedding F' — Endg(X) of Q-algebras
(see [7], [34]). This definition can be used in many applications.

However, we will use a much stronger definition of complex multiplication
for arbitrary Kéhler manifolds, which is motivated by the previous definition
of abelian varieties of CM type. We consider complex multiplication as a
property, which characterizes the Hodge group. Recall the following facts:

Remark 1.6.3. By a principal polarization on the abelian variety X, we
have an isomorphism between X and its dual abelian variety X given by

X = H'(X,0x)/H' (X, 7).

Thus for each curve C' the Hodge structures on H'(C,Z) and H'(Jac(C), Z)
are isomorphic. Moreover each polarization yields an isogeny X — X (com-
pare [7], 2.4).

9 Some authors denote only Sh(G, h) as Shimura variety.
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Proposition 1.6.4. An abelian variety A is of CM type, if and only if
Hg(H'(A,Q)) is a torus algebraic group.

Proof. (follows from [47]) O
By Remark 1.6.3 and Proposition 1.6.4, one concludes:

Corollary 1.6.5. Let C be a curve. Then Hg(H(C,Q),h¢) is a torus, if
and only if Jac(C) is of CM type.

Now let F' denote a totally real number field, (V, k) be an F-Hodge struc-
ture and
Endp(V,h) := {M € Homp(V,V)|gh = hg}

be its endomorphism algebra. Note that an abelian variety X is isogeneous
to its dual abelian variety

X = H'Y(X,0x)/H (X, Z)

(see Remark 1.6.3). Thus the endomorphism algebra of X given by End(X)®z
Q can be identified with Endg(H*(X,Q), hx ). Proposition 1.6.4 tells us that
an abelian variety X has a commutative endomorphism algebra of rank equal
to dim H*(X,Q), if Hg(H'(X,Q), hx) is a torus. Thus the endomorphism
algebra Endg(H'(X,Q), hx) of the Hodge structure contains a commutative
endomorphism algebra of rank equal to dim H' (X, Q), if Hg(H*(X,Q), hx) is
a torus algebraic group. We give a generalization of this version of Proposition
1.6.4, which will motivate our definition of complex multiplication:

Proposition 1.6.6. Let F' denote a totally real number field and (V, h) be an
F-Hodge structure. The endomorphism algebra Endp(V, h) contains a com-
mutative subalgebra of dimension n = dim V', if the Mumford-Tate group
MTg(V,h) is a torus.

Proof. Assume that MTz(V, h) is a torus. Thus it is contained in a maximal
torus T of GL(V'). Up to conjugation Tt is given by the torus of diagonal
matrices. Thus

dimT = dim V.

Now let W(T') denote the subvector space of Hompg(V, V'), which is generated
by the elements of T'(F'). It is a Zariski closed subset of Homp(V,V) and a
commutative subalgebra of Endg(V,h). Moreover it contains the torus 7 of
dimension n. Hence

dim W(T) > n.

On the other hand, each conjugation by an invertible matrix is an auto-
morphism of the algebra Endc(V, k). Thus each element of W (T)c is up to
conjugation a diagonal matrix, which implies

dim W(T) = n.
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Let us first consider intermediate Jacobians and afterwards discuss defini-
tions of complex multiplication, which use one intermediate Jacobian. These
definitions have some interesting applications as we will see. However, we will
see that one intermediate Jacobian does not accurately describe the Hodge
structure of a Calabi-Yau 3-manifold. Therefore we consider two intermediate
Jacobians in the case of a Calabi-Yau 3-manifold:

1.6.7. Let X be a Calabi-Yau 3-manifold. The Hodge structure on H?(X,Z)
is given by the decomposition

H3(X, C) _ HJ,O(X) @Hz’l(X) @H1’2(X) D H0,3(X).

The Calabi-Yau 3-manifold X has the following intermediate Jacobians:

e The Griffiths intermediate Jacobian Jg(X) is the complex torus corre-
sponding to the Hodge structure of type (1,0),(0,1) on H?(X,Z), which
is given by the direct sum decomposition

H"Y .= H*°(X)® H*'(X), H"" :=H"*(X)® H"*(X).

e The Weil intermediate Jacobian Jy (X) is the abelian variety correspond-
ing to the Hodge structure of type (1,0), (0,1) on H3(X,Z), which is given
by the direct sum decomposition

HY = H*'(X) e H**(X), H"" := H*°(X)® H"*(X).

The Weil intermediate Jacobian is Jy (X)) is a principally polarized abelian
variety. But it does not vary holomorphically in general.

The Griffiths intermediate Jacobian J(X) varies holomorphically. But it
is not algebraic in general. (see [8])

Remark 1.6.8. For each Kéahler manifold X of dimension 2n — 1 we can
define the intermediate Jacobian

J(X) = H> (X, 0)/(F" (B> (X, C)) & H*" (X, 2)),

which coincides with the Griffiths intermediate Jacobian Jg in the case of a
Calabi-Yau 3-manifold.

Some possible definitions of complex multiplication for a Kahler manifold
X of dimension 2n — 1 use the intermediate Jacobian J(X). Many authors
say that X has complex multiplication, if J(X) is of CM type or EndgJ(X)
contains a skew field F. This leads to definitions, which are often used in
many applications in mathematics and theoretical physics.

For example such a definition is used by S. Gukov and C. Vafa [23]. Mirror
pairs of Calabi-Yau 3-manifolds with Griffiths intermediate Jacobians, which
are respectively of CM-type over a number field F' with [F : Q] = 2(h?!1+1),
correspond to rational conformal field theories.
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However for an accurate description of the V HS the Griffiths intermedi-
ate Jacobian does not give enough information in general. Let us consider
the following example. It uses methods, which will be explained later. Thus
the reader is suggested to return to this example after he has read the rest
of this book, if he does not understand it now.

Example 1.6.9. There exists a K3 surface S with an involution tg such
that ts acts on HY1(S) by the character 1 and on H*%(S) & H"2(S) by
the character —1, which yields an eigenspace decomposition over Q. This
is the last example in the table of 11.3.11. Note that t is the rank of the
sublattice Pic(S)g of the Picard lattice, which is fixed by tg. In this case we
have t = 20. This implies that

Pic(S)g @z C = H“*(9)

such that 15 acts on H%!(S) by the character 1 as we have claimed.
The restricted Hodge structure (V_,h_) of the eigenspace with eigen-
value —1 satisfies
Hg(V—vh—)R C 80(2)

(see Section 11.2). Since SO(2) is commutative, Hg(V_, h_) is commutative,
too.

Each elliptic curve E has an involution ¢z such that E/{(1g) = P!. By
the Borcea-Voisin construction, which we explain in Section 7.2, we obtain a
Calabi-Yau 3-manifold X by blowing up the singularities of

S X E/{(ts,tg))-

The integral Hodge structure on the third cohomology of S x E is up to
torsion given by

(H*(S x B,Z),h) = (H*(S,Z),hs) @ (H' (E,Z), hx)

(follows from [61], Théoréeme 11.38). Since the points fixed by ts are given
by rational curves, one concludes with respect to the blowing up of these
rational curves o

H3(S x E,7) = H*(S x E, 7).

Due to [61], 7.3.2, one concludes that (H?(X,Z), hy) is the sub-hodge struc-
ture of (H3(S x E,Z),h) given by

(H¥(X,Z),hx) = (V_NH*(S,Z),h_) @ (H'(E,Z), hg).*°

10 In this situation one may ask for torsion. Since the kernel of the natural homomorphism
H*(X,7) — H*(X,Z) ® Q = H*(X,Q)

is given by the torsion elements, the weight one Hodge structure corresponding to the
Jacobian can be defined over the torsion-free lattice H?(X,Z)/torsion. Thus we can dis-
regard the torsion.
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Due to the fact that
(Vo)e = H>O(S) & H*(9),

the Griffiths intermediate Jacobian J¢(X) of our Calabi-Yau manifold X has
a corresponding integral Hodge structure given by

HY = g*9%(S)® HY(E,C), H"' = H*?(S)® H'(E,C). (1.5)
Note that for all elliptic curves the vector space H'(E,C) is given by
HY(E,C)=A®;C,

where A =2 Z? does not depend on the respective elliptic curve. Thus the
Griffiths intermediate Jacobian J;(X) and its corresponding integral Hodge
structure do not depend on the chosen elliptic curve. Therefore the differ-
ent Calabi-Yau 3-manifolds obtained from different elliptic curves have the
same Griffiths intermediate Jacobian. By the description of the correspond-
ing weight one Hodge structure (1.5), the Hodge group of the intermediate
Jacobian is isomorphic to Hg(V_,h_). Therefore one concludes that the
Hodge group of the intermediate Jacobian is a torus. Thus Jg(X) is of CM

type.
Thus we use a stronger term of complex multiplication:

Definition 1.6.10. Let F' be a totally real number field. A compact Kéhler
manifold X of dimension n has complex multiplication (CM) over F, if the
Hodge group of the F Hodge structure on H" (X, F) is a torus. We say that
X has complex multiplication, if it has complex multiplication over Q.

Proposition 1.6.11. A Calabi- Yau 3-manifold X has CM, if and only if its
Griffiths intermediate Jacobian Jo(X) is of CM type, its Weil intermediate
Jacobian Jw (X) is of CM type and the Hodge groups of the corresponding
weight one Hodge structures commute.

Proof. ([8], Theorem 2.3) O

Remark 1.6.12. Let X be the Calabi-Yau 3-manifold X of Example 1.6.9.
The Hodge structure on H3(X,Q) is given by the tensor product of the
Hodge structures (V_,h_) and (H'(E,Q),hg). By Proposition 7.1.4, the
Hodge structure (H3(X,Q),hx) has a commutative Hodge group resp., X
has C'M, if and only if (V_,h_) and (H'(E,Q), hg) have CM. Recall that
Ja(X) is of CM type for all elliptic curves E. It follows that if E does not
have complex multiplication, Jo(X) is of CM type and X does not have
CM. Hence the fact that the intermediate Jacobian Jg(X) is of CM type
does not imply that X has C'M.
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Now we note that a corresponding implication holds true in the case of
every odd dimensional Kéhler manifold:

Proposition 1.6.13. Let X be a Kdahler manifold of dimension 2n— 1. The
intermediate Jacobian

J(X) = H*" 7YX, C)/(F"(H*" "} (X, C)) ® H*" (X, Z))

is of CM type, if X has CM.

Proof. Let
hyx) : S* — GL(H* '(X,R))

denote the representation, which yields the weight one Hodge structure cor-
responding to J(X). Assume that X has CM. Thus Hg(H*"~1(X,Q), hx) is
a torus. It is contained in a maximal torus T' of GL(H?*"~1(X,Q)). The fact
that hx(S)(R) commutes with T'(R) is equivalent to the fact that for each
g € T(R) one has

g(Hk,anlfk(X)) _ Hk,2n717k(X) with k = 0’ 1, . 2n —1.

From this fact one concludes that hj(x)(S 1) is contained in the centralizer
of T. Since GL(H?*""!(X,Q)) is reductive, the maximal torus 7T is its own
centralizer. This follows from the fact that the centralizers of the maximal
tori (i. e. the Cartan subgroups) of a reductive group are the maximal tori
(see [10], IV. 13.17). Hence one concludes that hj(x)(S') C T, which implies
that J(X) is of CM type. O

1.7 Criteria and conjectures for complex multiplication

We have introduced the theory of Shimura varieties, which we will use for
the construction of families with a dense set of C'M points defined below:

Definition 1.7.1. Let D be a complex manifold and V be a holomorphic
variation of rational Hodge structures on D. A point p € D is a CM point
with respect to V, if V, has CM.

Let X — D be a holomorphic family of complex manifolds. A point p € D
is a CM point with respect to X, if X, is a C'M fiber resp., X, has a complex
multiplication.

By the next theorem, we give a criterion for dense sets of C'M points, which
implies that the family of abelian varieties over Hg(V, h)(R)/K of Construc-
tion 1.4.14 has a dense set of C'M fibers. We only need to understand the
definition of Shimura data and Hermitian symmetric domains. The construc-
tion of Shimura varieties by bounded symmetric domains has been written
down for completeness.



1.7 Criteria and conjectures for complex multiplication 51

Recall that a Shimura datum (G, h) gives a Hermitian symmetric domain
D and a representation of G gives a variation of Hodge structures over D.
Now consider the following theorem:

Theorem 1.7.2. Let (G, h) denote a Shimura datum. The set of CM points
with respect to the VHS induced by some closed embedding G — GL(W) for
some Q-vector space W is dense in G(R)/K(R).

Proof. By the following lemma, we have only to show that there exists one
CM point on G(R)/K. Since we have the closed embedding G — GL(W),
each Q-algebraic torus of G can be identified with a Q-algebraic torus of
GL(W). Thus the existence of a C'M point is equivalent to the statement
that there is a

h:S— Ggr — GL(W)

in this VHS, which factors through a Q-algebraic torus of G.

Now let T' be a maximal (Q-algebraic) torus of G. The centralizers of
the maximal tori (i. e. the Cartan subgroups) of a reductive group are the
maximal tori (see [10], IV. 13.17.). The torus T is contained in a maximal
torus Ths of Gr, which has the property that each point of T}, is contained
in the centralizer of Tk resp., in the centralizer of T'. Thus the torus Ty is in
fact maximal in Gg.

Recall that K° C Ggr denotes the Zariski connected component of the
centralizer of h(S). It yields the compact Lie group K°(R). Hence Example
1.3.11 tells us that KY is reductive. Moreover h(S) is contained in the center
of K° and the center of KU is a torus (see Proposition 1.3.4). Thus there exists
a maximal torus T of Gr which contains h(S). Recall that an element of G is
regular, if its centralizer is a Cartan subgroup and that the regular elements
in G¢ resp., (To)c contain a Zariski open dense subset of G resp. (Tp)c (see
[10], IV. 12.2 and [10], IV. Theorem 12.3). Let ¢t € Ty(R) be regular. The
centralizer of ¢ is the maximal torus Tp, since the Cartan subgroups coincide
with the maximal tori in the case of a reductive group. The proof of the fact
that the regular elements of G contain a Zariski open dense subset uses the
fact that the morphism

Ge x Tz — Ge via (g,2) — grg™*

is dominant (see the proof of [10], IV. Theorem 12.3). Since this morphism is
defined over R, the differential over R is also surjective at any point. By the
Real Approximation Theorem, G(Q) lies dense in the manifold G(R). Hence
there exists a regular Q-rational element of G near to t € Typ(R), which is
conjugate to t and whose centralizer is a maximal torus. This torus is defined
over Q and contains an element of the conjugacy class of h(S). O

Lemma 1.7.3. Let (G,h) denote a Shimura datum. Assume that G(R)/K
contains a CM point with respect to a VHS induced by some closed
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embedding G — GL(W) for some Q-vector space W. Then the set of CM
points of the same type with respect to the same VHS is dense in G(R)/K.

Proof. We have two cases. Assume that G is a Q-algebraic torus. In this case
G(R)/K consists of one point. The fact that we have a closed embedding
G — GL(W) implies that the Hodge group of the Hodge structure over this
point is a subtorus of the torus G.

In the other case G is not a Q-algebraic torus. By the assumptions, we have
a C'M point in G(R)/K with respect to the VHS, which is induced by some
closed embedding G — GL(W). This implies that G contains a Q-algebraic
torus 7" such that the conjugacy class of h : S — Gy contains an element,
which factors through Tr. By our preceding construction, the stabilizer of
the C'M point [so]x € G(R)/K is given by sqK sy *. Thus one can replace K
by soKsal. In this case the fact that the V. HS is induced by an embedding
G — GL(W) implies that the Hodge group of the Hodge structure over [e]
is a subtorus of T. Hence [e] is a C'M point with respect to this VHS, and
any s € G(Q) C G(R) has the property that it is mapped to a CM point,
too. By the Real Approximation Theorem, G(Q) lies dense in the manifold
G(R) for all connected affine Q-algebraic groups G. Since the quotient map
is continuous, the set of C'M points in G(R)/K is dense. O

Remark 1.7.4. Let F' denote a totally real number field and (V,h, Q) be
a pure polarized F-Hodge structure of weight k. Moreover let K denote the
centralizer of h in Hgr(V,h)(R). We can relax the assumptions of Theorem
1.7.2 and show that the conjugacy class of h in Hg(V, h) given by the homo-
geneous space Hgp(V, h)(R)/K contains a dense set of F-Hodge structures
with C'M over F. The arguments are very similar:

A maximal torus of Hg(V, h) yields also a maximal torus of Hgp(V, h)g.
Note that Hgn(V,h)(F) is dense in Hgp(V,h)(R) (see [53], Theorem 7.7).
Since Hg(V, h) is reductive, the same methods as above yield an F-rational
maximal torus, which contains h(S) up to conjugation. Due to the fact
that Hgp(V,h)(F) is dense in Hgp(V,h)(R), one concludes that the set
of points, which represent Hodge structures with C'M over F, is dense in
Hep (V, h)(R) /K.

Now we apply Theorem 1.7.2 to the following example.

Example 1.7.5. Let X be a curve. We have the rational Hodge structure
(HY(X,Q),hx) of weight 1. The Shimura datum (MT(H'(X,Q),hx),hx)
and the representation

id: MT(H'(X,Q), hx) — GL(H'(X,Q))
give a variation of Hodge structures. This variation of Hodge structures con-

tains exactly all Hodge structures (H'(X,Q),h), which are conjugated to
(HY(X,Q), hx) and have a Mumford-Tate group satisfying
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MT(H'(X,Q),h) C MT(H'(X,Q), hx).

Especially (H!(X,Q), hx) occurs in this variation of Hodge structures. By
Theorem 1.7.2, over a dense set of points the occurring Hodge structures
have C'M.

1.7.6. Recall that we want to find infinitely many fibers in a family f :
X — Y of curves or Calabi-Yau manifolds, which have CM. Assume that
f is a family of curves. Moreover recall that p : Y — b, denotes the period
map. In the case of curves we have a Torelli theorem, which implies that the
isomorphism class of the curve X of genus g is determined by a point of .

Let D denote the subdomain of the upper half plane h, given by the
Shimura datum of the preceding example. Assume that X does not have
CM. Otherwise D would consist of only one point. If (H'(X,Q),hyx) € D
has a neighborhood U in D such that U C p(Y'), the restricted holomorphic
family X,-1(;y — p~'(U) contains infinitely many C'M fibers. This follows
from Theorem 1.7.2.

In Section 3.1 we will see that the family f : X — Y has a generic
Mumford-Tate group MT such that the Mumford-Tate groups MT(H™ (X, Q),
hx) are contained in the generic Mumford-Tate group MT for all fibers X.
Moreover assume that the period map is generically finite. Let D be bounded
symmetric domain obtained from the Shimura datum (MT, hx ), where X is
some fiber of f. If one can prove that the Hermitian symmetric domain D
satisfies

dim D < dimY,

one concludes from the generic finiteness of the period map that
dim D =dimY
and the family has a dense set of C'M fibers.

Next one can ask for a necessary condition for the existence of C'M fibers of
a family. The André-Oort conjecture (compare [3], [52]) concerns this question
for a necessary condition.

Conjecture 1.7.7. Assume that S is a Shimura variety and Z C S is an
irreducible algebraic subvariety. Then Z contains a dense set of CM points,
only if it is a Shimura subvariety of S.

Remark 1.7.8. Let (G,h) denote a Shimura datum obtained from the
generic Mumford-Tate group of a family of curves and the Hodge structure
of one fiber given by h, which satisfies the conditions of 1.7.6. In this case
Theorem 1.7.2 yields only a discrete set of C'M points. Due to the André-
Oort conjecture, one can conject that any nonconstant family has at most a
discrete set of C'M fibers.
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1.7.9. By Proposition 1.4.16, one concludes that

glg+1)

dimb, = 5

Moreover by [14], the moduli space of curves of genus g > 2 is a quasi-
projective variety of the dimension 3g — 3. For an introduction to moduli of
curves we refer to [25]. Thus for g < 3 the dimension of the moduli space of
curves of genus g and dim b, coincide. Hence the moduli space of curves of
genus g < 3 contains a dense set of points representing curves with CM.

By the same arguments as in 1.7.9, one can see that dim b, is larger than
the dimension of the moduli space of curves of dimension g for g > 3. In this
case the subspace of h,, whose points represent the Jacobians of the curves of
genus g has a smaller dimension than h,. Hence the existence of non-trivial
families with dense sets of CM fibers and the André-Oort conjecture imply
that there are subsets of this locus, which have the structure of a Hermitian
symmetric domain. R. Coleman [11] thought that each of these domains would
at most consist of one point. He formulated the following conjecture:

Conjecture 1.7.10. Fiz an integer g > 4. Then there are only finitely many
complex algebraic curves C of genus g such that Jac(C) is of CM type.

In [29] J. de Jong and R. Noot gave counterexamples to the previous
conjecture for g = 4 and g = 6. In [58] E. Viehweg and K. Zuo gave an addi-
tional counterexample for g = 6. In Chapter 6 we will give counterexamples
for g = 5 and g = 7, which occur in the lists of Section 6.3. All counterexam-
ples are given by families of curves, which are parametrized over a Shimura
variety, which is given by a ball quotient. Note that the complex n-ball B,
is a bounded symmetric domain. A ball quotient is a quotient of B, by an
arithmetic subgroup of the identity component of the group of holomorphic
isometries of B,, for some n. Let us consider the complex ball B,, in detail:

1.7.11. The complex n-ball B,, is the domain contained in P" given by the
points
p=Po:pLi...:pn)
which satisfy
Py Bpcr
0 Do

This is equivalent to the condition

0<Ipol® = Ip1l* = ... — Ipal®.

As one can easily see the Lie group PU(1,n)(R) acts on B,, and the stabilizer
of the point
p=(1:0:...:0)
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is the subgroup P(U(1) x U(n))(R). The group PU(1,n) is not a C-algebraic
group, since complex conjugation is not C-linear. Since one can consider
C™*! as real vector space and the complex conjugation is R-linear, U(1,n)
and PU(1, n) are R-algebraic. Due to the remarks below [27], X. Table V, the
homogeneous space PU(1,7)(R)/P(U(1)xU(n))(R) is a Hermitian symmetric
domain. By [31], Volume II. Example 10.7, one has

B, 2 PU(1,n)(R)/P(U(1) x U(n))(R).

Due to its counterexamples, the Coleman conjecture has to be reformulated
in the following way:

Conjecture 1.7.12. There exists an integer g > 7 such that for all fized
g > ¢’ there are only finitely many complex algebraic curves C with CM type

of genus g.

The Coleman conjecture motivates similar conjectures for manifolds of
other kinds. For example consider the weight one Hodge structures of the Weil
intermediate Jacobian Jy (X) of a Calabi Yau 3-manifold X with polarization
@. This intermediate Jacobian can be given by a point of the upper half plane

h1+h2~1 = Sp(H?’(X, R)v Q)/U(l + h271)'
By 1.7.9, one has that

) h2t 4+ 1)(R?1 42
dlmf)1+h2,1 = ( )2( )

On the other hand the universal deformation of a Calabi-Yau 3-manifold is a
family over a basis of dimension h?! (see [61] 10.3.2). Hence one can conject
that for almost all fixed h*! and h?! there are only finitely many Calabi-
Yau 3-manifolds with CM, which have the Hodge numbers h'! and h2!.
This conjecture has been formulated by S. Gukov and C. Vafa [23].

Here we give some examples of families of Calabi-Yau 3-manifolds with
dense sets of C'M fibers. Thus for some fixed h'! and h?! there are infinitely
many Calabi-Yau 3-manifolds with C'M, which have the Hodge numbers h':!
and h?!. There are known examples of families of Calabi-Yau 3-manifolds,
which contain a dense set of C'M fibers, too:

Example 1.7.13. By C. Borcea [8], two examples of families with complex
multiplication fibers have been constructed. The first example uses the family
& of elliptic curves given by

PQ D V(y2$0 + 1‘1(.131 — xo)(l‘l — )\JZQ)) — A€ Al \{0, 1}
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By y — —v, one has a global involution ¢ on £. Now let &; with involution ¢;
be a copy of £ for i = 1,2,3. We obtain the family

51 X 82 X (€3/<(L17L2)7 (LQ,L3)> — (Al \ {0, 1})3

By blowing up the singular sections, we obtain a family of Calabi-Yau
3-manifolds with a dense set of complex multiplication fibers.

The other example of C. Borcea uses the family C of degree 2 covers of P?
ramified over six lines in general position. By the Galois group action, one
has an involution ¢c on C. By blowing up the intersection loci of these lines,
one obtains the family C of K3 surfaces. The involution tc acts on C, too.
By blowing up the singular locus of C x £/{(tc,t5)), we obtain a family of
Calabi-Yau 3-manifolds with a dense set of complex multiplication fibers.

Later E. Viehweg and K. Zuo [58] have constructed a deformation of the
Fermat quintic in P4, which is a well-studied Calabi-Yau 3-manifold with
complex multiplication:

Example 1.7.14. We will later see that the VHS of the family F; given by
P? > V (4} + x1(z1 — o) (21 — amo) (w1 — Bwo)zo) — (o, B) € My

allows to consider its basis as ball quotient. Thus this family has a dense set
of C'M fibers. Since each of these covers given by the fibers of the family can
be embedded into P2, the fibers of F; are the branch loci of the fibers of a
family F; of cyclic covers of P? of degree 5. Moreover the fibers of Fy, which
can be embedded into P2, are the branch loci of the fibers of a family F3 of
cyclic covers of P3, which can be embedded into P*. The family F3 is given by

PO V(3 + 95 + 4f + z1(21 — o) (21 — amo)(z1 — Bag)zo) — (o, B) € M.

By the adjunction formula, the fibers of F3 are Calabi-Yau 3-manifolds.

Let ¢ € My. The fiber (F3), has CM, if (F3), has CM and (F2), has
CM, if (F1), has CM. Because of this argument, the family F3 has a dense
set of C'M fibers, which lie over the same points as the C'M fibers of the
family of curves we have started with.

We will use, combine and modify the methods of the previous two exam-
ples in order to obtain new examples. It is our main topic to explain these
methods.

An other method to obtain Calabi-Yau manifolds with complex multi-
plication was suggested by Y. Zhang. Due to the André-Oort conjecture, he
conjects that the Basis of a family of Calabi-Yau 3-manifolds with a dense set
of C'M fibers has the structure of a Shimura (sub)variety (see [64], page 20).

A Shimura subvariety of a Shimura variety can be obtained from an em-
bedding of Shimura data (G1,h1) — (Ga,h2). An embedding of Shimura
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data is given by a closed embedding j : G; — G2 of Q-algebraic groups such
that the conjugacy class of hs coincides with the conjugacy class of

S M (G)r 25 (Go)g.

Thus (G4, h1) yields a Hermitian symmetric subdomain D; of the Hermitian
symmetric domain Dy obtained by (Ga, hs). Note that not all Shimura sub-
varieties of Sh(Go, ho) are of that type (see [43], Remark 2.6). A complex
submanifold M of D, is totally geodesic, if for all p € M each geodesic in
D5, which is tangent to M at p is contained in M. Thus one says that an
irreducible subvariety V' of the Shimura variety Sh(Gaz, hs) is totally geodesic,
if it is obtained from a totally geodesic submanifold M of Ds.
In [43] B. Moonen has proved the following Theorem:

Theorem 1.7.15. An irreducible subvariety V of a Shimura variety Sh(G, h)
s a Shimura subvariety, if and only if it contains a CM point and it is totally
geodesic.



Chapter 2
Cyclic covers of the projective line

Recall that we will study variations of Hodge structures of families of cyclic
coverings of the projective line. Moreover some families of such covers are
suitable for the construction of families of Calabi-Yau manifolds with dense
sets of complex multiplication fibers. In order to understand variations of
Hodge structures of such families of cyclic coverings we need to understand
the Hodge structure of a cyclic covering C' — PL.

A cyclic cover 7 : C — P! is given by

ym:(x—al)dl -...~(x—an)d", (2.1)

where each dj is an integer satisfying 1 < di < m — 1. The numbers dj, are
not uniquely determined by the isomorphism class of a cover. However, these
numbers determine the isomorphism class of a cover and we will use them
for the computation of the variation of Hodge structures in the following
chapters.

In Section 2.1 we give a general description of cyclic covers of P! and
explain which tuples (di,...,d,) yield equivalent covers. We will see that the
Galois group action of the cyclic covering yields an eigenspace decomposition
of m.(C) over the complement of the branch points. In Section 2.2 we use
the branch indices dj, for the description of the monodromy representations
of these eigenspaces. We have also an eigenspace decomposition of H!(C, C)
by the Galois group action, which can also be described by using the branch
indices di, as we will do in Section 2.3. In the next chapter this eigenspace
decomposition will be extended to an eigenspace decomposition of the VHS
of our families of cyclic coverings of P1. In Section 2.4 we cover certain curves
C given by (2.1) by a Fermat curve, which implies that each of these certain
curves C' has CM.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 59
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_3,
(© Springer-Verlag Berlin Heidelberg 2009
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2.1 Description of a cyclic cover of the projective line

Let us first repeat some known facts about Galois covers of P*.

Definition 2.1.1. Let T3, T5, and S be topological spaces resp., com-
plex manifolds resp., algebraic varieties. The coverings f; : 73 — S and
f2 1 Ty — S, which are morphisms in the respective category, are called equiv-
alent, if there is an isomorphism ¢ : 17 — 715 in the respective category such

that f1 = faog.

Proposition 2.1.2. Let G be a finite group, and S := {ay,...,a,} C Al
C P'. There is a correspondence between the following objects:

1. The isomorphism classes of Galois extensions of C(P') = C(z) with Galois
group G and branch points contained in S.

2. The equivalence classes of (non-ramified) Galois coverings f : R — P\ S
of topological spaces with deck transformation group isomorphic to G.

3. The normal subgroups in the fundamental group w1 (P! \ S) with quotient
isomorphic to G.

Proof. (see [62], Theorem 5.14) O

Remark 2.1.3. We will need to understand the correspondence of the pre-
ceding Proposition. The correspondence between (1) and (2) is given by the
facts that a Galois covering f : R — P!\ S (of topological spaces) yields a
covering f : R — P! of compact Riemann surfaces, and any morphism of
compact Riemann surfaces corresponds to an embedding of their function
fields.

The correspondence between (2) and (3) is given by the path lifting prop-
erties of coverings of Hausdorff spaces. Take b € R. Let p = f(b), and
v € m(PY\ S,p), and f*(7(0)) = b. Then f*(y(1)) = g-b for some g €
G = Deck(R/(P*\ P)). This induces a homomorphism ®; : 7 (P*\ S, p) — G
and a kernel of this homomorphism, which is a normal subgroup G.

Remark 2.1.4. Let f : R — P! be a Galois covering with branch points
ai,...,a,. One can choose 71, ...,v, € m (P'\ P) such that each v is given
by a loop running counterclockwise “around” exactly one aj. Hence one has

that

Y=k

and we conclude that

(Db('yn) = (I)b(ﬁh)il cee (I)b(7n71)71~

From now on we consider only irreducible cyclic covers of P'. An irreducible
cyclic cover can be given by a prime ideal

(" — (@ —a))™ ... (z — an)™) C Clz,y].
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First this ideal defines only an affine curve in A%, which has singularities, if
there are some d; > 1. But there exists a unique smooth projective curve
C birationally equivalent to this affine curve. By the natural projection onto
the x-axis, one obtains a cyclic cover of the smooth curve C' onto P'.

Remark 2.1.5. Let us consider the cover given by
y" = (z — al)d1 R an)d”,

and fix a ko € {1,...n}. By an automorphism of P!, one can put ay, onto 0.
Let pg, = d% € Q, and D a small disc centered in 0, which does not contain
any other ap with k # ky. Take any point p € D and remove the segment
[0,p]. The topological space D \ [0,p] is simply connected. Hence one can
define root functions z — z#*o on this space, which are given by:

SHeo — ‘Z|#k0 exp(Qﬂ—thko
m

—|—27ri£) (with £=0,1,...,m—1 and z = |z| exp(27it))
m

Since the cover is given by y™ = x%o resp., y = xM*0 over a small disc
around 0, we may lift a closed path around 0 to some path with starting
point (z, 2#%0) and ending point (z, €2 ko zHko ).

Definition 2.1.6. Let e>™%#* and dj, be given by Remark 2.1.5. Then
e?™iko is the local monodromy datum of d, .

Lemma 2.1.7. Assume that dy,...,d, < m. Let the (non-singular projec-
tive) curve C' be given by

di dn

Yy =(r—a)™ ... (T —ap)
Then the Galois group G is Z/(m), and the covering C — Pl is given by the
kernel of the homomorphism ® given by v, — di € Z/(m). The point oo is
a branch point and

P(vec) = = Y _di mod m,
k=1

if and only if m does not divide ", dj,.
k=1

Proof. The last statement of the lemma follows by the preceding rest of the
lemma and the Remark 2.1.4.

The Galois group and Z/(m) are obviously isomorphic. Let us remove the
ramification points of C'. Then we obtain a Riemann surface R. Now take a
small loop 7 around py, which starts and ends in p € P'. Moreover take a
point b € R with f(b) = p. The definition of R and Remark 2.1.5 imply that
the lifting f*(vx) of the path 74 starting in b ends in the point dy - b. Hence
the statement follows from Proposition 2.1.2 and Remark 2.1.3. O
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Let d € Z and 1 < m € N. The residue class of d in Z/(m) is denoted
by [d]m.

Remark 2.1.8. Let G = Z/(m), and [d],,, € Z/(m)*. We consider the ker-
nels of the monodromy representations of the covers locally given by

Yyt = (m—al)dl "..~(x—an)d"

and

[dds)m . [ddp )

y" = (z —ap) v (—ap)

By the preceding lemma, these kernels coincide. Hence we conclude that both
covers are equivalent.

2.2 The local system corresponding to a cyclic cover

Now let us assume that our cover 7 : C — P! is given by
Y= (x—a)P - (= ay)?,
where m divides dy + ...+ d,, and oo is not a branch point. Moreover let
S:={ay,...,an}.
First let us consider the construction of a cyclic cover of an arbitrary algebraic

manifold:

Remark 2.2.1. Let X be a complex algebraic manifold, £ an invertible

sheaf on X and
D= "b,Dy

a normal crossing divisor on X, where £ = O(D) and 0 < b, < m for each
k. Then by £ and D, one can construct a cyclic cover of degree m onto X
(see [20], §3).

Definition 2.2.2. Let by and Dy be given by the previous remark. The
number by, is called the branch index of Dy with respect to this cyclic cover.

Example 2.2.3. In the case of

n

X=P, D= idkak’ L= Opl(%zdk)a

k=1 k=1
the cyclic cover of Remark 2.2.1 is given by

Y™ = (x—a)P - (2 —ay).
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Next we describe the local system 7. (C)|p1\ g and its monodromy.

Lemma 2.2.4. Let V be a C-vector space of dimension n, and X be an
arcwise connected and locally simply connected topological space with x € X.
Then the monodromy representation provides a bijection between the set of
isomorphism classes of local systems of stalk V. on X and the set of repre-
sentations

m (X, z) — GL,(C),
modulo the action of Autc (V') by conjugation.

Proof. (see [61], Remarque 15.12) O
Since GL;(C) = C* is commutative, we can conclude:

Corollary 2.2.5. The monodromy yields a bijection between the set of iso-
morphism classes of rank one local systems on P\ S and the set of repre-
sentations

71 (P*\ S) — GL{(C).

The Galois group of our covering curve is isomorphic to Z/(m) and gen-
erated by a map v, which is given by (z,y) — (z, e2mim y) with respect to
the above affine curve contained in A2, which is birationally equivalent to
the covering curve. Hence a character x of this group is determined by x(v)
with (1) € {€2™w|j = 0,1,...,m — 1}. Thus the character group is iso-
morphic Z/(m) and we identify the character, which maps ¢ to e*™, with
jez/(m).!

Let D be an arbitrary disc contained in P!\ S. The preimage of D is
given by the disjoint union of discs D, with » = 0,1,...,m — 1 such that
Y(D,) = Dpiqy,,- The vector space m,.Cclpi\s(D) has the basis {v;|j =
0,1,...,m — 1}, where

2mj(m—1) 275
vji=(e ™ ,...,em, 1),

and the r-th. coordinate denotes the value of the corresponding section of
7 1(D) on D,. By the push-forward action, each v; is an eigenvector with
respect to the character given by j. Since D is arbitrary, one can glue the
local eigenspaces, and obtain an eigenspace decomposition

m—1

W*Cchpl\s = @ ]Lj

Jj=0

I These two identifications with Z/(m) are obviously not canonical, but useful for the
description of W*(Cc|p1\s by using our explicit equation for w : ¢ — P! as we will see a
little bit later.
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into rank 1 local systems, where L; is the eigenspace with respect to
the character given by j € Z/(m). Hence the monodromy representation
p:m(P'\ S) — GL,,(C) has the corresponding decomposition

m—1
P = (p07p17"'apm—1) : 771(‘)() - H GLl(C)7
=0

where
pj :m(P'\ S) — GLi(C)

is the monodromy representation of IL; for all j =0,1,...,m — 1.
Let us recall that our cyclic cover C' is given by

Y™ = (x—a)P .. (z—ay)?,
where 0o is not a branch point. Now let 2 € P\ S, and 2 € D, where D is a
sufficiently small open disc as above. Take a counterclockwise loop 7 around
ay, and cover the loop with a finite number of (sufficiently) small discs. The
continuation of 5§ on the unification of these discs leads to a multisection. By
Remark 2.1.5, the possible liftings 7,(:) of the loop 7, are paths with starting

point 'y,(:) (0) = y,, where y,. € D, and ending point 'y,(f)(l) = Yldy+r]m- Lhis

2mjd
implies that the monodromy representation of L; maps v to e 7. Hence

we conclude:

Theorem 2.2.6. Let the cyclic cover m : C — P, which is not branched
over oo, be given by

Y™ = (x—a)P ... (z—ay)?. (2.2)

Then the local system .Clp1\g is given by the monodromy representation

2mijdy
Ve — {(xj)jzo,l...,mq - (6 T xj)j:O,l...,mfl]\

Remark 2.2.7. One can consider m,(Q(e2™ ))|p g, too. Since a generator
Y of Gal(C;P!) satisfies ™ = 1, the minimal polynomial of its action on
7. (Q(e2™))|p g decomposes into linear factors contained in Q(e2™ )[z].
Hence the eigenspace decomposition is defined over (@(827”%).

Each local system L of C-vector spaces on any topological space X has a
dual local system LV given by the sheafification of the presheaf

U — Home(L, C).
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Proposition 2.2.8. One has

LY =L,

Furthermore the monodromy representation pLy of IL}/ is given by pLy (vs) =

pr; (vs) for all s € S.
Proof. (see [19], Proposition 2) 0

Hence by the respective monodromy representations, we obtain for all
7=1,...,m—1:

Corollary 2.2.9.

vV
Lj — LnL—j

Let r|m. We consider the C-algebra endomorphism ®,. of C[z,y] given by
2 — x and y — y". The (non-singular) curve C' is birationally equivalent to
the affine variety given by Spec(C[z,y]/I), where

I=@y™"—(z— al)d1 oz — an)d“).
By ®,., we obtain the prime ideal

oI = (y7 —(x—a)™ .. (= ay)™).
Let C'. be the irreducible projective non-singular curve birationally equivalent
to the affine variety given by Spec(Cl[z,y]/®; *(I)).

Remark 2.2.10. By the equation above, we have a cover 7, : C, — P! of

degree 7. The homomorphism @, induces a cover ¢, : C' — C). of degree r

such that
T =T, 0 ¢p.

Proposition 2.2.11.

m_1
(Wr)*(CCT‘IPl\S = @ Lr.j (- T*CC‘PI\S.
j=0
Proof. Let mg := 7. By Theorem 2.2.6, the monodromy representation of

the local system (7,)+Cc, |p1\{a,.....a,,} 1S given by

2mijdy 2mijrdy
e — {(@))j=01.,mo1 = (€770 @5)j=01..,m_1= (e ™ Tj)j=0,1.,m_1}.

By the respective monodromy representations of the local systems LL;, this
yields the statement. ]
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2.3 The cohomology of a cover

In this section we discuss some known facts about the eigenspace decom-
position of the Hodge structure of a curve C' with respect to a cyclic cover
7 : C — P'. The main reference for this section is given by §3 of the book
[20] of H. Esnault and E. Viehweg. Section 2 of the essay [18] of P. Deligne
and G. D. Mostow contains additional information about our case.

Let 7 : C — P! be given by
dl T e

VU= @) (@ ag)®

such that oo is not a branch point,

n+3
. d ...+d j
S={ai,...,an}, D=dia1+...+dnan and £ :O]Pl(jgf E [idk])
m pt m

Moreover let the generator ¢ of the Galois group of = be given by (z,y) —
(z, 627”%34) with respect to the explicit equation above, which yields .
We fix some new notation: Let ¢ € Q and [g] denote the largest integer,

which is smaller than g. Then we define [¢]; := ¢ — [g] . Moreover we define

S; = {a € S|ljnal #0}.

Proposition 2.3.1. The sheaves m,.(O) and 7. (w) have a decomposition into
eigenspaces with respect to the Galois group representation, which are given
by the sheaves L) and

wj = wp1 (logD(j)) @ LD with DY) = Z a
a€S;

forj = q, 1,...,m — 1 such that v acts via pull-back by the character i
on LU resp., w;.

Proof. The eigenspace decomposition of 7. (O) follows by [20], Corollary 3.11.
Moreover [20], Lemma 3.16, d) yields the decomposition of 7.(w) into the

claimed sheaves. Since £0)”" is an eigenspace with respect to the Galois
group representation, w; is an eigenspace of the same eigenvalue. O

Remark 2.3.2. One has obviously h°(wp) = 0. By [20], 2.3, ¢), one concludes
that

wp1 (logDY)) = wp: (DY)

for j=1,...,m— 1. Hence for j =1,...,m — 1 we obtain
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o dy .+ dy w3y
B (wy) = (O (=2 + deg(DV)) — j =22 Z% - dy))
k=

=149+ D (—jta + lital) = =1+ Y (1= [juahs
GES]' IIES

But here we want to determine our eigenspaces on 7, (we) with respect to
the push-forward action. Thus we put w@) := Wim—j].,» and we obtain

hy0(C) = B (W) = B (wpm—1,,) = =14+ Y (1=[(m=j)palt) = =1+ Y _ [jualr-
a€S; a€S;

Moreover let H]Q’l(C) denote the vector space of antiholomorphic 1-forms on
C with respect to the corresponding character of the Galois group action.
Since the push-forward action of the Galois group respects the alternating
form of the polarization of the Hodge structure on H'(C,Z), one concludes
that Hﬁ;}fﬂm(C) is the dual of Hjl’O(C)‘ Thus:

Proposition 2.3.3. We have the eigenspace decomposition

m—1
HY(C,C) = @ H}(C,C) with H}*(C)e® H}"'(C)=H}(C,C).
j=1

Moreover by h?’l(C’) hi?

(il (C) and the preceding calculations, one
concludes:

Proposition 2.3.4. We have

h%(0) =Y ljmsh =1 and B3NC) = 3" (1= [jpsy) — 1.

SES; SES;
The preceding two propositions imply:

Corollary 2.3.5.
hjl-(C,(C) =15, —2

2.4 Cyclic covers with complex multiplication

Let us now search for examples of covers of P! with complex multiplication.
The family given by

P2 5 V(y™ — 21 (21 — 20)(21 — a120) - . . (21 — Aym_370))

— (a1 amg) € (AN {0, 1)\ {a; = ayli # 5}



68 2 Cyeclic covers of the projective line

has obviously a fiber isomorphic to the Fermat curve F,,, which is given by
V(y™+x™+1) and has complex multiplication (see [22] and [32]). For another
family with a fiber with complex multiplication, we must work a little bit.

Lemma 2.4.1. If (V, hy) and (W, hy) are two Q-Hodge structures of weight
k, then

Hg(VaeW, hi®hs) C Hg(V, hy)xHg(W, he) C GL(V)xGL(W) C GL(VeW),
and the projections

Hg(Vae W) — Hg(V), and Hg(V e W) — Hg(W)
are surjective.

Proof. (see [58], Lemma 8.1) O

Lemma 2.4.2. Let V. C W be a rational sub-Hodge structure of a polarized
Hodge structure W. Then we have a direct sum decomposition

W=VeaeV,
where V' is also a rational sub-Hodge structure of W.

Proof. (see [61], Lemme 7.26) O

Lemma 2.4.3. A curve C, which is covered by the Fermat curve F,, given
by V(z™ +y™ + 2™) C P? for some 1 < m € N, has complex multiplication.

Proof. A covering [F,,, — C yields an injective vector space homomorphism
H'(C,Q) — H'(F,Q),

which extends to an embedding of Hodge structures (see [61], 7.3.2 for more
details). This embedding induces a direct sum decomposition into two ratio-
nal sub-Hodge structures of H*(F,,, Q) (see Lemma 2.4.2). Hence by Lemma
2.4.1 and the fact that F,, has complex multiplication, one obtains the
statement. O

Theorem 2.4.4. Let 0 < dy,d < m, and & denote a primitive k-th. root of
unity for all k € N. Then the curve C, which is given by

n—2

y" =2t [ - &)

i=1

is covered by the Fermat curve F(,_sy,, given by V(y(n=2m 4 gp(n=2m 4 q)
and has complex multiplication.
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Proof. Let C be the curve, which is given by

n—2

y" =zt H(m - 52—2)d,

i=1

and ¢ : A> — A? be the morphism, which is given by y — yaz® and = —

™. By a little abuse of notation, we denote by C'N A? the singular affine
curve given by the equation above, which is birationally equivalent to C'. The
corresponding homomorphism ¢* : Clx,y] — C[z,y] sends the ideal, which
defines C' N A2, to the ideal generated by

n—2
ymxm-dl o xm-dl H(xm _ 71172)(1'

i=1

This is contained in the ideal generated by

n—2
e || [ A (2.3)
i=1
Let mg := m, and do = m It is obvious that
n—2 ged(m,d)—1 —
ym - H(zm - ;—Q)d = H (y gcd(m d) H ; 0)'
i=1 j=0 i=1

Now we take the curve C7, which is given by

n—2

Yy = H(Im - 2—2)%-

ymo = H(mm - 5;—2)’

too. Hence this curve irreducible, and ¢ induces a cover C; — C resp., ¢*
induces a C-algebra homomorphism C[C' N A%] — C[C; NA%. By z — =
and y — y" 270, we get a cover of the Fermat curve F(n—2)m given by
V(y=2m 4 2(=2m 11) onto C;. Now we use the composition of these covers
F(,—2)m — C1 and C; — C, and Lemma 2.4.3. This yields the statement. O



Chapter 3
Some preliminaries for families
of cyclic covers

In this chapter we collect the remaining preparations for the computations
concerning the VHS of our families 7 : C — P, of cyclic covering of P!,
which we construct in this chapter.

Let V denote the VHS of the family X — Y of curves and Mon"(V)
denote the identity component of the Zariski closure of the monodromy group
of V. In Section 3.1 we introduce the generic Hodge group Hg(V), which is
the maximum of the Hodge groups of all occurring Hodge structures in V.
Moreover Hg(V) coincides with the Hodge groups of the Hodge structures in
V over the complement of a unification of countably many submanifolds of Y.
Our families 7 : C — P,, are constructed in Section 3.2. We will also make
some general remarks about the monodromy representation of V including
the fact that the Galois group action yields an eigenspace decomposition
in Section 3.2. In Section 3.3 we make some explicit computations of the
monodromy representations of these eigenspaces. These computations are
motivated from the fact that Mon”(V) is a normal subgroup of the derived
group Hg" (V) of the generic Hodge group! as we see in Section 3.1.

3.1 The generic Hodge group

We want to study the variations of Hodge structures (VHS) of the families
of cyclic covers of P!, which will be constructed in the next section. Hence
let us first make some general observations about the relation between their
monodromy groups and Hodge groups resp., Mumford-Tate groups. These
observation lead to the definition of the generic Hodge group defined below.

Proposition 3.1.1. Let W be a connected complex manifold and V be a
polarized variation of rational Hodge structures of weight k over W. Then
there is a countable union W' C W of submanifolds such that all MT(V,)
coincide (up to conjugation by integral matrices) for allp € W\W'. Moreover
one has MT(V,) C MT(V,) for allp’ € W andp e W\ W'

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 71
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_4,
(© Springer-Verlag Berlin Heidelberg 2009
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Proof. (see [43], Subsection 1.2) O

Remark 3.1.2. There exist the following versions of the previous
proposition:

If one replaces W by a connected complex algebraic manifold in the pre-
vious proposition, the submanifolds W’ C W of the previous proposition are
algebraic, too (see also [43], Subsection 1.2).

Now let F' be a totally real number field, W be a complex connected
algebraic manifold, A — W be a family of abelian varieties and V be its
polarized variation of F-Hodge structures of weight 1 over W. Then there
is a countable union W' C W of subvarieties such that all MT(V,) coincide
(up to conjugation by integral matrices) for all closed p € W\ W’ (see [42],
Subsection 1.2).

The previous remark motivates the definition of the generic Mumford-Tate
group MT (V) of a polarized variation V of F-Hodge structures of weight 1
of a family of abelian varieties over a connected complex algebraic manifold
W. Moreover the preceding proposition motivates the definition of the generic
Mumford-Tate group MT(V) of a polarized variation V of Q-Hodge structures
of weight k£ on a connected complex manifold. The generic Mumford-Tate
group is given by MTp(V) = MTpg(V,) resp., MT(V) = MT(V,) for all
closed p e W\ W'

Since the image of the embedding SL(Vp,) < GL(Vp,) is independent
with respect to the chosen coordinates on Vg ,, Lemma 1.3.17 allows us to
define the generic Hodge group Hgr (V) := (MTg(V) N SLr(V))? such that
Hgr(V) = Hgp(V,) for all (closed) p e W\ W'.

Definition 3.1.3. Let Q C K C R be a field and V = (Vg, F*, Q) be a po-
larized variation of K Hodge structures on a connected complex manifold D.
Then MonY% (), denotes the connected component of identity of the Zariski
closure of the monodromy group in GL((Vk),) for some p € D. For simplicity
we write Mon®(V), instead of Mon(%(V)p.

Theorem 3.1.4. Keep the assumptions and notations of Proposition 3.1.1.
One has that Mon%(V), is a subgroup of MTY(V,) for all p € W\ W'.
Moreover for a variation of Q Hodge structures one has that MonO(V)p s a
normal subgroup of MTder(Vp) and

Mon’(V),, = MT" (V,)

for allp e W\W', if Vg has a CM point.

Proof. (see [43], Theorem 1.4 for the statement about the variations of Q
Hodge structures and [42], Properties 7.14 for the statement about the vari-
ations of F' Hodge structures) O

Corollary 3.1.5. Keep the assumptions of Proposition 3.1.1. Then the group
Mon®(V) is semisimple.
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Proof. By Theorem 3.1.4, the Lie subalgebra Lie(Mon(%(V)]R) of
Lie(MTleer(V)R) is an ideal. Recall that MTleer(V)R is semisimple. Hence
the algebra Lie(Mon&(V)R) consists of the direct sum of simple subalgebras
of Lie(MTfiQer(V)R). Thus Mon&(V)R and Mon"(V) are semisimple. O

3.2 Families of covers of the projective line

Let S be some C-scheme. Recall that the covers ¢; : V7 — IEMS and ¢ :
Vo — PL are equivalent, if there is a S-isomorphism j : ¥ — V3 such that
C1 = C9 0 j

In this section we construct a family of cyclic covers of P! such that all
equivalence classes of covers with a fixed number of branch points with fixed
branch indices are represented by some of its fibers. For us it is sufficient to
start with a space, which is not a moduli scheme, but whose closed points
“hit” all equivalence classes of covers of P! with Galois group G = (Z/m, +)
and a fixed number of branch points with fixed branch indices.

We start with the space

(P12 5 Py o= (P12 \ {21 = zli # 5},

which parametrizes the injective maps ¢ : N — P!, where N := {s1,...,
Sn+3}. Thus a point ¢ € P, corresponds to an injective map ¢, : N — P11
One can consider P, as configuration space of n 4+ 3 ordered points, too.

We endow the points s € N with some local monodromy data aj =
e2mik  where

n+3

e €Q, 0< pur <1 and Z,ukeN.
k=1

Now we construct a family of covers of P! by these local monodromy data:

Construction 3.2.1. Let m be the smallest integer such that mu, € N for
k=1,...,n+3,and Dy C Pp, := P! x P, be the prime divisor given by

Dy ={(ak,a1,...,a%, ..., an13)}-

I The set N is some arbitrary finite set, where the set S of the preceding chapter is a
concrete set S C P! given by S = ¢4(N) for some g € Pp,.
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Let D be the divisor

n+3 n+3
D= Z mu, Dy ~mDy with Dg := (Z pi) - ({0} x Pp).
k=1 k=1

By the sheaf £ := Op, (Do) and the divisor D, we obtain an irreducible
cyclic cover C of degree m onto Pp, as in [20], §3 (where irreducible means
that the covering variety is irreducible). By = : C — P! x P, "% P, this
cyclic cover yields a family of irreducible cyclic covers of degree m onto P!.

Suppose that r divides m. By taking the quotient of the subgroup of order
r of the Galois group of the cyclic cover C — P! x P,,, one gets a family
7+ Cp — Pp of cyclic covers of degree ™ onto P'. Let ¢, : C — C, denote
the quotient map. One has

T =T 0 .

Remark 3.2.2. Without loss of generality one may assume that ¢ :=
(a1,...,ant3) € Py, is contained in A"3, too. Thus the fiber C, is given
by the equation

Y™ = (x —a)D - (@ = aygs)Tre

with di = mug. By Remark 2.1.5, the local monodromy datum «j describes
the lifting of a path 7; around aj € P'.2 One checks easily that each equiv-
alence class of cyclic covers of degree m with n + 3 branch points and fixed
branch indexes dy, ..., d,+3 is represented by some fibers of C. Moreover for
C = C, the quotient C, of Remark 2.2.10 is given by the fiber (C,),.

A family of smooth algebraic curves over C determines a proper submersion
7: X — Y in the category of differentiable manifolds ([61], Proposition 9.5).
By the Ehresmann theorem, we obtain that over any contractible submanifold
W of Y the family is diffeomorphic to Xy x W, where X is the fiber of
some point 0 € W. This fact has some consequences for the monodromy
representation of the variation of integral Hodge structures.

Recall that R'7,(Z) is the sheaf associated to the presheaf given by

V- Hl(Til(V)a Z|7r*1(V))
for all open subsets V' C P,,. Moreover we have
H'(Xo,Z) = H'(Xw,Z) = (R'7.(Z))(W)

for some contractible W C P,, with 0 € W, which implies that R'7.(Z) is a
local system (see [61], 9.2.1).

2 This circumstance explains the term “local monodromy datum”.
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By using these facts, one can easily ensure that the monodromy group

of the VHS of a family of curves can be calculated over any arbitrary field
QCKCC:

Lemma 3.2.3. Let K be a field with char(K) = 0. Moreover let 7: X — Y
be a holomorphic family of curves. Then we obtain

R'7.(K) = R'7.(Z) ®z K.
Proof. The sheaf R!7,(K) is given by the sheafification of the presheaf
V- Hl(Til(V)v K|T*1(V))'

Hence by the description of the cohomology by Cech complexes, this presheaf
is given by
V s BN V), 2 ) @3 K.

By the fact that a local section of Z or K on a connected component of V'
resp., 7~ 1(V) is constant, one does not need to differ between the locally
constant sheaves given by Z resp., K on X or Y for the computation of
R7,(K). This yields the desired identification. O

By the fact that the integral cohomology of a curve does not have torsion,
one concludes:

Corollary 3.2.4. Keep the assumptions of Lemma 3.2.3. Then the mon-
odromy representations of R'7.(Z) and R'1.(K) coincide.

Remark 3.2.5. Recall that we have an eigenspace decomposition of
H'(Cy,C) = H'(Cy,Z) ® C

with respect to the Galois group action. By H'(Cy,C) = (R'7.(C))(W) for
some contractible W C P,, with 0 € W, we obtain an eigenspace decomposi-
tion of (R'm,(C))(W). Since we have this decomposition over all contractible
W C P,, we can glue these eigenspaces, which yields a decomposition of
the whole sheaf R'm,(C) into eigenspaces with respect to the Galois group
action.

Recall that we have an identification between the characters of the Galois
group of some fiber and the elements j € Z/(m). This identification allows a
compatible identification between the characters of the Galois group of the
family and the elements j € Z/(m). Let £; denote the eigenspace of R'7,(C)
with respect to the character j.

Remark 3.2.6. Let 0 € P,. We have a monodromy action p¢ by diffeomor-
phisms on the fiber Cy, which is induced by the gluing diffeomorphisms of the
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locally constant family of manifolds given by C. Since these gluing diffeomor-
phisms induce the gluing homomorphisms of R'7,(Z) in the obvious natural
way, the monodromy representation p of R'm,(Z) is given by

p(V)(n) = (pc(7))«(n) (¥ n € H (Co,Z)).

Remark 3.2.7. Since each gluing diffeomorphism of the locally constant
family of manifolds corresponding to C respects intersection form, Remark
3.2.6 implies that the monodromy group of R'm,(C) respects the polariza-
tion of the Hodge structures. Assume that HJ(C,,C) = (L;), satisfies that
H;’O(Cq) =n; and Hf’l(Cq)g = ny. This means that the polarized variation
of integral Hodge structure endows (£;), with an Hermitian form with sig-
nature (n1,n9). Hence the monodromy group of this eigenspace is contained
in U(ni,n2). In this sense we say that £; is of type (n1,n2).

3.3 The homology and the monodromy representation

In this section we study the monodromy representation of w1 (P,,) on the dual
of R'7,(C) given by the complex homology. This will yield corresponding
statements for the monodromy representation of R, (C).

In the case of the configuration space P,, of n+ 3 points, we make a differ-
ence between these different points. One says that the points are “colored”
by different “colors”. Moreover one can identify its fundamental group with
the subgroup of the braid group on n + 3 strands in P!, which is given by the
braids leaving the strands invariant (see [24], Chapter I. 3.). This subgroup
of the braid group is called the colored braid group. An element of this group
is for example given by the Dehn twist T, r, with 1 < k; < ks <n+ 3. The
Dehn twist Ty, x, is given by leaving ay, “run” counterclockwise around ay, .

Now we consider a fiber C' = C, of C. Recall that C is a cyclic cover of P!
described in Chapter 2. Let 1 denote the generator of the Galois group as in
Section 2.2. We keep the notation of Chapter 2.

Consider the eigenspace L, which can be extended from a local system on
P!\ S to a local system on P!\ S; with S; = {ay,...,an,43}. For simplicity
one may without loss of generality assume that an;+3 = 00 and ax € R such
that ap < ap4q forall k =1,...,n;,2. Here we assume that J, is the oriented
path from ay to ary1 given by the straight line.

Construction 3.3.1. Let ¢ be a path on P'. Assume without loss of gener-
ality that ¢((0,1)) is contained in a simply connected open subset U of P1\ S.
Otherwise we decompose ¢ into such paths. It has m liftings ¢(©, ..., ¢(m=1
to C such that 1 (¢¥)) = ¢(*=1m) By the tensorproduct of C with the free
abelian group generated by the paths on C, one obtains the vector space
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of C-valued paths on C. Now let ¢ € C and take the linear combination of
C-valued paths on C' given by

J(m 1)

CA: CC(O) +.. 4 27rz—<—(7‘) +. —|—C€ C(m 1)
By the assumptions, one verifies easily that w(f ) = Lé . Moreover by the
local sections given by ¢, ...,ce2™w ... ce 2t 1) on the corresponding

sheets over U containing the dlfferent ¢@((0,1)), one obtains a corresponding
section ¢ € IL;(U). In this sense we have a L;-valued path ¢- ¢ on P

Remark 3.3.2. Consider the (oriented) path d; from the branch point ay,
to the branch point ay41. Let e be a non-zero local section of L; defined
over an open set containing d5((0,1)). The LL;-valued path e, - §; yields an
element [ey, - 0] of the homology group of H;(C,C), which is represented by
the corresponding linear combination of paths in C' lying over dy. It has the
character j with respect to the Galois group representation. Let H;(C,C);
denote the corresponding eigenspace.

Definition 3.3.3. A partition of S; into some disjoint sets SV U...US®) =
S; is stable with respect to the local monodromy data p;, of L, if

Z N’k¢N""’ Z Uk¢N'

akGS(l) akGS(z)

Theorem 3.3.4. Assume that S; = {a;, : © = 1,...,n; + 3} has the stable
partition {ax,... a1}, {ary2,. .. an, 3} for some 1l <L <n;+1. Then the
eigenspace H1(C, C); of the complex homology group of C' has a basis given by

B:{[ek§k]:kzl,...,ﬂ}U{[ekc?k]:k:€+2,...,nj+2}.

Proof. By [36], Lemma 4.5, one has that {[ex0x] : K =1,...,n;+1} is a basis
of H(C,C);. Hence {[exdr] : k =1,...,n; + 2} is not linearly independent.

One can compute a non-trivial linear combination, which yields 0, in the
following way: Choose a non-zero section of IL; over

n;j+2
U=P\(J 6.

This yields a linear combination of the sheets over U, on which 1 acts by j.
By the boundary operator 0, one gets the desired non-trivial linear combi-
nation of LLj-valued paths, which is equal to 0. Now let «, denote the local
monodromy datum of L; around a, € S; for all k = 1,...,n; + 3. By the
local monodromy data, one can easily compute this linear combination. This
computation yields that {d1,...,0¢} U {d¢12,...,0n;42} is linearly indepen-
dent, if and only if {ay,...,ar1}, {aes2, ..., an,43} is a stable partition. O
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Let oy denote the local monodromy datum of L; around a; € S; for

all & = 1,...,n; + 3. One has up to a certain normalization of the ba-
sis vectors [e101],...[e10,, 1] the following description of the monodromy
representation:

The Dehn twist T} p+1 leaves obviously d; invariant for all |k — ¢] > 1.
Moreover by following a path representing 7} ,41, one sees that the mon-
odromy action of Ty ;11 on Hy(C,C); (induced by push-forward) is given by

len—10k—1] = [ex—10k—1] + (1l — agy1)[erdr),
lendr] — oo y1[erdr]
and [ek+15k+1] — [ek+15k+1] + (1 - ak)[ekék].

Hence the monodromy representation is given by:

Proposition 3.3.5. The monodromy representation of Tpey1 on Hq1(C,C);
is given with respect to the basis {[exdk]|k = 1,...n;+1} of H1(C,C); by the
matrixz with the entries:

1 @ a=0b and a#/?
gy 2 oa=b="{
Mppia1(a,b) = ¢ (1 —app1) @ a=4L and b=(-1
l—ay : a=¥¢ and b=/(+1
0 : elsewhere

Remark 3.3.6. The monodromy representation of Proposition 3.3.5 corre-
sponds to an eigenspace in the local system given by the direct image of the
complex homology. By integration over C-valued paths, this eigenspace is the
dual local system of £,,_;. By the polarization, £; is the dual of £,,_;, too.
Hence Proposition 3.3.5 yields the monodromy representation of £;.



Chapter 4
The Galois group decomposition
of the Hodge structure

In this chapter we make some general observations about the VHS of C — P,
and its generic Hodge group. Moreover we will give an upper bound for
the generic Hodge group and a sufficient criterion for dense sets of complex
multiplication fibers.

Let £ be a primitive m-th. root of unity and r < m be a divisor of m.
Recall that a fiber C' of one of our families 7 : C — P, is given by

Y™ = (x —a)P . (@ — angs)®re

By the Galois group action we have a decomposition of H!(C,Q) into sub-
spaces N1(C,, Q) such that the Galois group action endows N!(C,, Q) with
the structure of a Q(&£")-vector space as we see in Section 4.1. In Section 4.2
we see that this decomposition is also a decomposition into sub-Hodge struc-
tures, which are closely related to the quotients C,. of C. By the centralizer
of the Galois group action, we obtain an upper bound for the generic Hodge
group in Section 4.3. The real valued points of the centralizer are given by the
direct product of the unitary groups with respect to the Hermitian forms on
the eigenspaces £; with j < . By using this description of the centralizer,
we define pure (1,n) variations of Hodge structures and show that a family
C with a pure (1,n) — VHS has a dense set of CM fibers in Section 4.4.

4.1 The Galois group representation on the first
cohomology

Let 7 : C — P! be a cyclic cover of degree m. The elements of Gal(m) act as
Z-module automorphisms on H!(C,Z). This induces a faithful representation

p! : Gal(m) — GL(H'(C,Q)). (4.1)

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 79
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_5,
(© Springer-Verlag Berlin Heidelberg 2009
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By the Galois group representation of a cyclic cover of degree m, we have
the following eigenspace decomposition:

m—1
H'(C,Q) ® Q&) = H'(C,Q(¢)) = €P H}(C,Q(¢))
=1

Recall that 7 : C' — P! is given by some fibers of a family 7 : C — P,.. The
monodromy representation of R'm,(C) has a decomposition into subrepre-
sentations on the different eigenspaces. In general there is no Q(§) structure
on H(C,Q), which turns H'(C, Q) into a Q(£)-vector space. But in this sec-
tion we will see that H'(C, Q) has a direct sum decomposition into sub-vector
spaces with different Q(£") structures, where r|m. Moreover we will see that
the monodromy representation respects the different Q(£") structures, which
we will study.

Let v denote a generator of Gal(w) as in Chapter 2. The characteristic
polynomial of p!(1)) decomposes into the product of the minimal polynomials
of the different ", where r|m and £ is a m-th. primitive root of unity. By
[33], Satz 12.3.1., we have a decomposition of H!(C, Q) into subvector spaces
N'(C,,Q) such that the Q-vector space automorphism p*(¢)|n1(c, @) is (up
to conjugation) given by a matrix

M 0
0 M

where M is the k£ x k matrix given by

0 0 0 —po
1 0 0 —P1
M=10 1 0 —p |,
0 ... 0 1 —pu

where ¥ +pp_12¥ 71 4. . 4 p1x+pp is the minimal polynomial of £.1 We call
a Q-vector space with such an automorphism of the form diag(M,..., M) a
Q(&")-structure. By £"-v := g(v), this defines a scalar multiplication of Q(£"),
which turns N1(C,., Q) into a Q(£7)-vector space. We obtain:

1 In the next section we will see that there is a correspondence between the covers C,. and
the subvector spaces N1 (C,, Q), which justifies this notation.
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Proposition 4.1.1. The direct sum decomposition

HY(C,Q) =P N'(C,,Q)

rlm
is a direct sum of Q(&")-structures.

Next we consider the trace map

tr: Hj(C,Q(¢) — H'(C,Q) givenby v — > 7,
v€Gal(Q(£);Q)

which will be one of our main tools in this chapter. By the Galois group action,
the vector space N'(C,,Q(£")) decomposes into eigenspaces H;(C,Q(£7)))
such that

Hj(C,Q(8)) = H; (C,Q(£")) ®q(ery Q(E).

Lemma 4.1.2. Let rlm and r = ged(j,m). Then tr[gicger)) 8 a
e,
monomorphism.

Proof. Let f € Hj(C,Q(¢")) \ {0}. We need some Galois theory. By the fact
that Q(£") is a Galois extension of Q, the group I', := Aut(Q(£); Q(£7)) is
a normal subgroup of (Z/(m))* = I' := Gal(Q(¢); Q), which is the kernel
of the epimorphism I' — Gal(Q(£"); Q) given by v — 7|g(ery for all v €
Gal(Q(¢); Q). Hence we obtain that

()= > af= > MWD af= D Anlf

y€Gal(Q(£);Q) [v]er/Ty  ~el: y€Gal(Q(§7);Q)

Since 1) acts by an integral matrix, one has v o = 1 o~ for all v € I'. This
implies that
YEM) =& f) = (yo)(f) = (vf)- (4.2)

Thus v(f) € H} .(C,Q(£)), where jo € (Z/(m))* corresponds to 7. By the

Joj
fact that we have a direct sum of eigenspaces, we conclude that

w(f)= >, Al #o.
v€Gal(Q(£7);Q)

Now we consider the restriction of the trace map to

R:=@H(C.QE)).

rlm
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Proposition 4.1.3. The trace map tr|g : R — H*(C,Q) is an isomorphism
of Q-vector spaces.

Proof. Let

v::ZvreR

rim

with v, € H}(C,Q(£")). By the proof of the preceding lemma, we know that

)= Y, Aleee @ Hi(CQE).

YEGal(Q(§7);Q) JE@/ ()™

These &/" with j € (Z/(2))* are exactly the Z-th. primitive roots of unity.
Thus they are the elements with order ”* in the multiplicative group gen-
erated by €. Hence by the fact that we have a direct sum of eigenspaces,
we conclude that tr(v) = 0 implies that tr(v,) = 0 for all r with r|m. By
the preceding lemma, this implies that v, = 0 for all r with r|m. Hence

= 0. Thus the map tr|r is injective, and we have only to verify that

dimg(R) = dimg(H'(C,Q)):

rlm
= ZI: dimg¢) (H, (C,Q(&))) - #{primitive %—th. roots of unity}
m—1
dimgye) (H; (C, Q(€))) = dimge) (H'(C,Q(¢))) = dimg(H'(C,Q))
j=1

O

Remark 4.1.4. We know that the monodromy representation fixes
H'(C,Q) and each Hj(C,Q(£)). By the fact that

NY(C,,Q) = NY(C,, Q(€)) N H'(C,Q),

we conclude that the monodromy representation fixes N(C,.,Q)), too.

Proposition 4.1.5. The monodromy representation p on N'(C,, Q) is
given by
71Mw

p(w) = ’
rYka

where M, denotes the image of w in the monodromy of H}(C,Q(¢7)), and

s} = Gal(Q(€7); Q).



4.1 The Galois group representation on the first cohomology 83

Proof. Since p(7) fixes the eigenspaces, it acts by diag(M, ..., M}), where
each M, with 1 < ¢ < k describes the action of p(w) on v, H(C,Q(¢7)). Let
Jy € (Z/(%*))* and «y correspond. The description of the M, ..., M} follows
from the facts that each p(w) commutes with each v € Gal(Q(¢"); Q), and
that v H(C,Q(€") = HY, (C,QE) (see (4.2)) for all 5 € Gal(Q(¢); Q). D

Now let N, denote the restriction of p(w) on N}(C,,Q) and v € N*(C,.,Q)
given by v = tr(w) for some w € H!(C,Q(£7)). By the preceding proposition,
we have:

k

No(v) = No([Q(€) Q€] Y. w) = [Q€); QN D %Mo (vi(w))
v€Gal(Q(¢7);Q) i=1

k
= [Q); QEN Y %(Mo(w)) = tr(M,(w))
i=1
The trace map H}(C,Q(¢7)) — NY(C,., Q) is an isomorphism of Q(£")-vector
spaces with respect to the Q(¢7) structure on N1(C,., Q). Thus one has:

Proposition 4.1.6. The monodromy representation on N'(C,,Q) is a rep-
resentation on a Q(&")-vector space given by the Q(£") structure, which
coincides up to the trace map with the monodromy representation on

Hy(C,Q(E7)).-

We will need a decomposition of H(C,R) into a direct sum of certain sub-
vector spaces fixed by the Galois group representation. This decomposition
is defined over

QE)* =Q¢)NR
and given by the sub-vector spaces
RV(j) := (H; (C,Q(8)) ® H,,_;(C,Q(€))) n H'(C,Q&)7).
Since the monodromy representation fixes
H}(C,Q(€), Hp;(C,Q(6) and H'(C,Q(&)7),
it fixes RV(5), too.

Remark 4.1.7. One has that tr: H} (C,Q(¢7)) — N'(C;, Q) coincides with
the composition

H}C,Q(¢7) 5 RV(j) = NY(C;,Q).

tr

Hence the latter trace map RV(j) — N'Y(C;,Q) induces a Q(&7)"-
structure on N*(C;,Q), which is compatible with the Q(¢7)-structure via
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Q(¢7)T — Q(¢7). Thus by the preceding results about the monodromy rep-
resentation on N'(C;,Q), the monodromy representation on N'(C;,Q) is a
Q(&7) T -vector space representation with respect to the Q(&7) -structure.

Remark 4.1.8. In the case of H}n (C,Q(£%)) one gets that Q(¢2) =
Q(—1) = Q. In other terms: The monodromy group on Hx, (C’ Q%)) is

the monodromy group on the rational vector space N 1(C’%,@)

4.2 Quotients of covers and Hodge group
decomposition

In this section we consider our quotient families =, : C, — P, of covers, and
their Hodge groups. Moreover we will explain the notation N*(C,,Q) and
show that the decomposition of H'(C,Q) into these Q(£") structures is a
decomposition into rational sub-Hodge structures. Recall that C, is given by a
quotient of the subgroup of order r of the Galois group of C (see Construction
3.2.1).

Let C' and C,. denote a fiber of C and the corresponding fiber of C, over
the same point. The natural cover ¢, : C — C, induces an embedding of
Hodge structures, which gives a direct sum decomposition of H'(C,Q) into
two rational sub-Hodge structures (see [61], 7.3.2 and [61], Lemme 7.26).

The Hodge structure on H!(C,., Q) is the sub-Hodge structure of H(C, Q)
fixed by Gal(¢,). Hence the eigenspaces of H'(C,,C) with respect to the
Galois group 7, can be identified with the eigenspaces of H!(C, C), on which
Gal(¢,) acts trivial. Thus one obtains

-1 m—1
@Hl (C,C) — P H}(C,C) = H'(C,C).
1

j=

Recall that every eigenspace £; of R'm.(C) is a local system. We consider
the eigenspace (L;)c, of R'(m,).(C) with the character j and the eigenspace
L, of R'7,(C). Proposition 2.2.11 tells us that the local monodromy data
of (L;)¢c, and L,; coincide. By Proposition 3.3.5, these monodromy data
determine the dual monodromy representations of the eigenspaces of the dual
V HS given by the homology. Thus we obtain:

Proposition 4.2.1. The local systems (L;)c, and L, coincide.

The following statements will explain the notation “N*'(C,,Q)”. One has
that
NY(C,Q@eC= € H},(C.0).

Je@/z)x
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Since each Hj,.(C,C) C N*(C,,C) has a decomposition into

1,0 0.1 T gl 1
H;"(Cy)® H; (Cp), where Hi(C,,C)=H,_,(C,,C)c N (C,,C),

each N'(C,,Q) is a rational sub-Hodge structure of H'(C,Q). Moreover
each N1(C,, Q) is the maximal sub-Hodge structure of H'(C,,Q), which is
orthogonal (with respect to the polarization) to each sub-Hodge structure of
HY(C,,Q) given by a quotient H'(C,s,Q) with r < r’ < m, r|r’ and r’|m.
By using Lemma 2.4.1, we have the result:

Proposition 4.2.2. We have a decomposition

=N

rlm

into rational Hodge structures and a natural embedding

— [[Hs(V'(Cr, Q)

rlm
such that the natural projections

Hg(C) — Hg(N'(C;, Q)
are surjective for all r.

Remark 4.2.3. Note that the preceding section yields a corresponding
statement about the Zariski closures of the monodromy group of R!7,(Q)
and the restricted representations monodromy representations on the differ-
ent N'(C,, Q). These two facts will play a very important role.

4.3 Upper bounds for the Mumford-Tate groups
of the direct summands

The different N1(C,,Q) on the fibers induce a decomposition of Rl7,(Q)
into a direct sum of local systems N''(C,, Q). Now we consider the induced
variations V, of rational Hodge structures on the local systems N (C,, Q).
Let @, denote the alternating form on N!(C,, Q) obtained by the restriction
of the intersection form @ of the curve C. One has that each element of
p(m1(Pp)) commutes with the Galois group. The same holds true for the
image of the homomorphism

h:S — GSp(H'(C,R),Q)
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corresponding to the Hodge structure of an arbitrary fiber. Since the Galois
group respects the intersection form, its representation on N'(C,., Q) is con-
tained in Sp(N*(C,, Q),Q,). Let C,.(¢0) denote the centralizer of the Galois
group in Sp(N'(C,,Q),Q,) and GC,(¢)) denote the centralizer of the
Galois group in GSp(N1(C,, Q),Q,). One concludes:

Proposition 4.3.1. The centralizer GC,.(1) contains the generic Mumford-
Tate group MT(V,). Moreover the centralizer C,.(¢) contains the generic
Hodge group Hg(V,) and Mon®(V,).

We write

@) =[] C @)

rlm

Remark 4.3.2. If r # the preceding proposition yields some infor-
mation. In the case r = the elements of the Galois group act as the
multiplication with 1 or —1 on Nl(C’%,@). Since id resp., —id is contained
in the center of Sp(N'(Cz,Q), Q= ), this proposition does not give any new
information in this case.

R

Now let us assume that r # 5. We describe C.(¢) by its R-valued points.
Let & be a 2-th. primitive root of unity such that Hjl(C, C) c NY(C,,C),
ve Hj(C,C) and M € C,(1)(R). Then one gets

WM (v) = M(yv) = M(&v) = & M (v).

Thus M leaves each Hj(C,C) invariant.
For our description of C,.(¢) we introduce the trace map

tr : GL(H; (C,C)) — GL(RV(j)r)
given by
GL(H}(C,C)) > N — N x N € GL(H}(C,C)) x GL(H}, ;(C,C)), (4.3)

where N denotes the matrix, which satisfies that No = Nv for all v €
H}(C,C). Recall that we have a fixed complex structure. Thus one checks
easily that N x N leaves RV (j)r invariant. Hence we consider it as a real

matrix.
For the Hermitian form H(-,-) := iE(-,~) and v,w € H}(C, C) one obtains

H(v,w) = iE(v,w) = iE(Mv, Mw) = iE(Mv, Mw) = H(Muv, Mw).

Thus the matrix M|gy(;), is contained in tr(U(H;(C,C), H|g1 (cc)))-

m—j
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Assume conversely that M € GL(N!(C,., C)) satisfies that

Mgy (j), € tr(U(H;(C, C). Hlm:c0))

NY(C,,C), it commutes with the Galois group representation on N*(C,,R).
Now let N € GL(H;(C,C)) be the matrix with tr(N) = M|gy(;),. One has
that

for each ™-th. primitive root of unity &’. Since M fixes all H;(C’, C) c

iE(v,w) = iE(Nv, Nw) < E(v,w) = E(Nv, Nw)

for all v,w € HJ1 (C,C). By the fact that E is an alternating form, one gets
E(v,w) = E(Nv, Nw),
too. The elements of RV (j)c are given by vy + U2 and w; + wy with
V1, Vg, Wy, Wa € H;(C,(C)‘
Thus one concludes that

E(’Ul + 1_}2,11)1 +U_}2) = E(Ul,’lﬁg) + E(ﬁg,wl) = E(N’Ul,N’LUQ) + E(N’UQ,N’LUl)
= E(M’Ul,Mﬂ)Q) + E(M1727Mw1) = E(M(’Ul + 172),M(w1 + 11)2))

Hence M is contained in the symplectic group. Altogether we conclude:

Theorem 4.3.3. If r # F, the group Lie C.(1)(R) is isomorphic to the
direct product of the Lie groups given by the R-valued points of the unitary
groups over RV (j)r C NY(C,,R) induced by the trace maps and the unitary
groups U(H}(C, 0), H\H}(C@).

Recall the definition of the type (a,b) of an eigenspace £; in Remark 3.2.5.
If there is an eigenspace of N1(C,.,C) of type (a,b) with a > 0 and b > 0,
we call NY(C,,Q) general. Otherwise we call it special. Now assume that
NY(C,,Q) is special. In this case h(S) is contained in the center of GC,.(¢)g,
and h(S') is contained in the center of C,.(¢))g. Thus one concludes:

Remark 4.3.4. Assume that N!(C,,Q) is special. Then the center
Z(GCr(v)) of GC.(¢p) contains MT(V,). Moreover the center Z(C,(v))
of C,(¢) contains Hg(V,).

Remark 4.3.5. One has that C,(¢)r consists of U(s)" for some s,t € Ny,
if N1(C,.,Q) is special. Thus in this case the monodromy group is a discrete
sub-group of the compact group U(s)?. Hence it is finite and Mon®(V,) is
trivial in this case.
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4.4 A criterion for complex multiplication

In this short section we find a sufficient condition for the existence of a dense
set of CM fibers of a family of cyclic covers. By technical reasons, we do not
consider the family C — P,,, but a family over the space M,,, which can be
considered as the quotient

M,, = P, /PGL,(C).

One has an embedding ¢4, : M, — P, too. Its image is the subspace of
P,., which parametrizes the maps ¢ : N — P! satisfying ¢(a) = 0, ¢(b) = 1
and ¢(c) = oo for some fixed a,b,c € N (compare to [18], 3.7).

Remark 4.4.1. One can move 3 arbitrary branch points of a fiber of
C — P, to 0, 1 and co. Hence one has that all fibers of the geometric points
of P, occur as fibers of the restricted family Cnq, — M., too. Hence the
generic Hodge groups and the generic Mumford-Tate groups of the both fam-
ilies coincide.

4.4.2. Each curve C with g(C) > 1 has at most 84(¢g—1) automorphisms (see
[26], TV. Exercise 2.5). Thus C can have only finitely many cyclic covering
maps onto P! with different Galois groups. Moreover, there is an automor-
phism « of P!, if the Galois groups of the covers of Cp,, and C,, can be
conjugate by an isomorphism ¢ such that the following diagram commutes:

Cpp ——Cp

| !

P! [ P!
Thus C occurs only as finitely many fibers of Cpy, , if g(C) > 2.

Recall that we have defined the type of an eigenspace £; in Remark 3.2.5.

Definition 4.4.3. A family 7 : C — P,, of cyclic covers has a pure (1,n) —
VHS, if it has its VHS only one eigenspace L; of type (1,n) such that £,,_;
is of type (n, 1), and all other eigenspaces are of type (a,0) or of type (0,b)
for some a,b € Nj.

Theorem 4.4.4. Let Cpg, — M, be a family of cyclic covers of P* and C
be a fiber with g(C') > 2 as before. Assume that C has a pure (1,n) — VHS.
Then the family Caq, — My, has a dense set of complex multiplication fibers.

Proof. We have to show that over an arbitrary open simply connected subset
W of M,,(C) there are infinitely many C'M points of the VHS of Cpy,,. Let
go € W and L; be the eigenspace of type (1,n). We have a trivialization
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R'm.(C)lw = H'(Cqy,C) x W such that Lj|w = H}(Cq,,C) x W.

Let ¢ € W and w((lj) € H;’O(Cq)\{O}. By the holomorphic VHS of the family,
one obtains a holomorphic “fractional period” map

p:WHP(H}(CqO,(C)) via q—>[w((1j)].

By the assumptions, the integral Hodge structure depends uniquely on the
class [w,(lj )] € P(H}(Cq,,C)). Since for each fiber there are only finitely many
isomorphic fibers (see 4.4.2) and two curves have isomorphic polarized inte-
gral Hodge structures, if and only if they are isomorphic, the fibers of p have
the dimension 0. Thus [49], Chapter VII. Proposition 4 and the fact that

dim W = dim P(H/(C,,, C))

tell us that p is open.

The natural embedding C (1)) — GL(H'(Cy,,C)) induces a holomorphic
variation of Hodge structures over the bounded symmetric domain associated
with C(¢0)(R)/K (see Theorem 1.4.11). This VHS depends uniquely on the
fractional V'HS on the eigenspace H;(Cy,, C) of type (1,n). Hence this VHS
yields a holomorphic injection

¢ : C(W)(R)/K — P(H}(Cyy, C)).

Recall that that homogeneous space C(1)(R)/K parametrizes the integral
Hodge structures of type (1,0),(0,1) on H'(C,,,C), whose Hodge group is
contained in C'(¢)). Hence altogether the map ¢~ o p, which assigns to each
fiber C, its integral Hodge structure, is open. Since the set of CM points on
C(¢¥)(R)/K is dense (see Theorem 1.7.2), this yields the desired statement.

O



Chapter 5
The computation of the Hodge group

Recall that P, is the configuration space of n + 3 points and M, =
Pn/PGL2(C). In this chapter we try to compute the derived group Hgder(V)
of the generic Hodge group of a family C — P, by using Mon®(V). We will
get many information and for infinitely many examples we will obtain

MT (V) = Hg"" (V) = Mon"(V) = C4 ().

Our motivation is to try to prove that the criterion of Theorem 4.4.4
given by the existence of a pure (1,n) — VHS is also necessary under some
additional assumptions. Finally we will see that a family C — M induces
an open period map

p: Mi(C) = MT* (V)/K,

if and only if it has a pure (1,1) — VHS.

In Section 5.1 we show that for all eigenspaces L; of type (p, ¢) with p,q > 0
the group Mong (RV(5)) is given by the unitary group of the Hermitian form
on L; with respect to the polarization, if j # % or L; is of type (1,1).
We make some general observations about Mon’()V,.) in Section 5.2. Since
Mon’(V,) € C9*(¢)), the latter group is an upper bound of Mon®(V,.). For
Mon’(V,) we give a sufficient criterion of the reaching of this upper bound
in Section 5.3. In Section 5.4 we consider the exceptional cases, which do not
satisfy this sufficient criterion. We see that Mon%(V,) is a proper subgroup
of €47 (1h)g in some of these cases. For completeness we show that Hg(V) =
Spg(2g) in the case of an universal family of hyperelliptic curves of genus
g in Section 5.5. In Section 5.6 we collect the previous results and consider
Mon”(V). W! e finish this section with the proof of the result that a family
C — M induces an open period map

p: M{(C) - MT*(V)/K,

if and only if it has a pure (1,1) — VHS.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 91
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_6,
(© Springer-Verlag Berlin Heidelberg 2009
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5.1 The monodromy group of an eigenspace

Let j € {1,...,m — 1}. Then we have an eigenspace £; in the variation of
Hodge structures of a family C — P, of cyclic degree m covers of P1. There are
p,q € Ng such that the eigenspace H]1 (C,C) of an arbitrary fiber C'is of type
(p,q), where (p, q) is the signature of the restricted polarization of the latter
eigenspace. The type of L; is given by the type of H}(C7 C). The embedding
R < C allows to consider H}(C,C) as R-vector space. Let Mon®(L;) denote
the identity component of the Zariski closure of the monodromy group of £;
in GLz(H}(C,C)).
We show in this section:

Theorem 5.1.1. Let L; be of type (p,q) with p,q > 1. Moreover assume
that j # 5 orp=q=1. Then

Mon®(£;) = SU(p, q).

If p =0 or g =0, the statement of the preceding theorem does not hold
true in general as one can conclude by Remark 4.3.5.

We give a proof of Theorem 5.1.1 by induction over the integer given by
p+q.

By the following lemma, we start the proof of Theorem 5.1.1:

Lemma 5.1.2. If £; is of type (1,1), its monodromy group contains in-
finitely many elements.

Proof. There are two cases: In the first case there are some local monodromy
data oy and ay of the eigenspace L; in (74)+(Cc)[p1\s, for the fiber C:=C,
of some arbitrary ¢ € P, such that ayas = 1. In this case the Dehn twist
Ty o yields a unipotent triangular matrix (follows by Proposition 3.3.5) and
we are done.

Otherwise each Dehn twist T} provides a semisimple matrix, where its
eigenvalues are given by 1 and a m-th. root of unity. Note that the matrices
induced by the Dehn twists T » and 15 3 do not commute. In the considered
case {a1,az},{as,as} is a stable partition. Hence one can choose the basis
B = {[e1m1], [esy3]} of HI(C,C). By the fact that these two cycles do not
intersect each other, this basis is orthogonal with respect to the Hermitian
form induced by the intersection form. Hence by normalization, this basis
is orthonormal with respect to the Hermitian form such that the Hermitian
form is without loss of generality given by diag(1, —1) with respect to B. The
matrix induced by T3 2 is given by diag(, 1) with respect to B, where ¢ is a
m-th. root of unity. Since the matrix A of 75 3 with respect to B does not
commute with diag(¢, 1), it is not a diagonal matrix. Now we compute the
commutator

K = A-diag(¢,1) - A7 - diag(€, 1).
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Since the monodromy representation respects the Hermitian form on the
eigenspace, one can replace A by a non-diagonal matrix in SU(1,1) and the
matrix diag(¢&, 1) by diag(e, é) € SU(1, 1), where 2 = £, for the computation
of K. By [54], page 59, one has a description of the matrices in SU(1,1)(R)
such that

=

Hence

aa — e 2bb  ab— e2ab

by .. ~(a =b\,
a) diag(c, ¢) <—b a > diag(e, e) = (ab —e2ab aa— ezbb) '

SR

tr(K) — 2 = 2aa — 2R(e*)bb — 2 = 2aa — 2R(e*)bb — aa + bb — 1
> (a@ — |R(e?)|bb) + (bb — |R(e?)|bb) — 1 > aa — |R(e?)|bb — 1 > 0.

If the eigenvalues of K would be roots of unity (if it is not unipotent), one
would have |tr(K)| < 2. Hence by the fact that tr(K) > 2, one concludes
that K is unipotent or has eigenvalues v with |v| # 1. In both cases K has
infinite order. O

For the proof of Theorem 5.1.1 we need to recall some facts about complex
simple Lie algebras. The complex simple Lie algebra sl,(C) will be very
important:

Remark 5.1.3. The Lie algebra s(,,(C) is given by
50, (C) ={M € M,,»,(C) : tr(M) = 0}.
The Cartan subalgebra of sl,,(C) is given by
h = {diag(a,...,a,) : Zai = 0}.
i=1
Each root space is given by the matrices (a; ;), which have exactly one entry
Qg .50 7é 0 for a fixed pair (io,jo) with io 7é jo.

We want to show a statement about unitary groups, and not about special
linear groups. The fact, which makes sl,,(C) interesting for us, is given by the
following remark:

Remark 5.1.4. We can obviously embed su,,(R) into sl,,,(C), since
SU(p, ¢)(R) is a Lie subgroup of SL,4(C). Moreover isu, ,(R) is a subvector
space of sl,4,(C) (considered as real vector space). One has that

sty ¢(C) = sy (R) @ isuy, 4 (R) = s0,44(C).

(see [21], page 433).
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Moreover we need to compare the monodromy group of £; with the
monodromy groups of some of its restrictions over certain subspaces of P,,.

Remark 5.1.5. Consider some embedding tqp, : M, < P,. By the holo-
morphic diffeomorphism

PGL2(C) X ta,,c(My)(C) 3 M x ¢ — M(q) € P,(C),
we have that
PGLQ((C) X ./\/ln =P, and 7T1(PGL2((C)) X 7T1(Mn) = 7T1(7Dn),

where 71 (PGL2(C)) = Z/(2) (compare [18], 3.7 and [18], 3.15).

For technical reasons, we need to introduce an additional subspace of P,,:
Pyt = {q € Puléq(ar) = oo}
Let G1 denote the group of triangular matrices given by

6r=1(j ) € Maa(©la 20}

We have obviously an embedding tq . : M, — Py(ba"”) such that we get a

holomorphic diffeomorphism
G X tap,e(My)(C) 3 M x ¢ — M(q) € PLo+)(C).
Hence we have that
Gr x My, 2 Pln+3) and 1(Gr) x m1(My,) 2 mp (PLn+9)),

where m1(Gr) = Z/(2).

The space 777(1“"“) has a natural interpretation as configuration space of
n+ 2 points on R2. Its fundamental group is the colored braid group on n+ 2
strands in R?.

Lemma 5.1.6. The fundamental group of the configuration space of n + 2
points on R? is generated by the Dehn twists Ty ky with 1 <k < ko <n+2.

Proof. (see [24], Chapter I. 4) O

5.1.7. By the preceding results, the monodromy groups of £;, (£;)m, and
(Ej)P(an +3 are commensurable. Therefore their R-Zariski closures have the
same connected component of identity. Thus we do not need to distinguish
between them and we will call all of them simply Mon’(L;).
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Again assume that £; is of type (1,1). By Lemma 5.1.6, the monodromy
group pj(m(Pfa“))) of (£j)pa is generated by the matrices p;(Tj,¢) for
k¢ € {1,2,3}. For each Dehn1 twist 7" one can choose a suitable numbering
of the branch points such that 7" = 77 >. Hence by Proposition 3.3.5, one
concludes that the generators of the monodromy group are contained in the
group given by

(M € GLy(C)|det(M)™ = 1}.

Since Mon’(L;) is contained in U(1,1), one concludes that Mon®(L;) C
SU(1,1). Thus the complexification of the Lie algebra of Mon"(L;) is con-
tained in sl5(C). Note that the real Zariski closure Mon’(RV(j)g) is iso-
morphic to Mon”(£;) and Mon’(RV(j)r) is a quotient of the semisimple
group Mon%(vr). Thus by the kernel, which is semisimple, we have an exact
sequence of algebraic groups. This yields an exact sequence of semisim-
ple Lie algebras such that Mono(ﬁj) must be semisimple. One has that
Mong(£;) € SUc(1,1). Since su; 1(C) = sly(C) is the smallest semisim-
ple non-trivial complex Lie algebra (see [21], §14.1, Step 3) and Mon®(L;) is
infinite by Lemma 5.1.2, one concludes:

Proposition 5.1.8. If £; is of type (1,1), then Mon®(L;) = SU(1,1).

Recall that we want to give a proof of Theorem 5.1.1 by induction. The fol-
lowing construction explains our method to compare the monodromy groups
of eigenspaces of different type, which we will need for the induction:

Construction 5.1.9 (Collision of points). Let L; be an eigenspace in
the cohomology of a fiber C' = C, with the local monodromy data oy, on ay.
Now let

b:={an;42,an,13} and P = {{a1},...,{an,+1},0}

be a stable partition of N = {a1,...,an,43}. Let ¢pp : P — P! be some em-
bedding and the local system L(P); on P*\ ¢ p(P) have the local monodromy
data

W = Qa,, ,a, 5 and otherwise oy} = aq,.

By Construction 3.2.1, these monodromy data allow the construction of a
family of cyclic covers

7(P) : C(P) = Pp, 1.

The higher direct image sheaf R'7(P),(C) has an eigenspace with respect
to the character given by 1, which we denote by £(P);.! By the description
of the respective monodromy representations in Proposition 3.3.5, we can

1 This definition may seem to be a little bit odd. But it is motivated by some reasons,
which should become clearer by Remark 5.1.10.
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identify the monodromy group of (L(P);) with the subgroup of the

p®_
7’1,]‘7
monodromy group of (,Cj)P(a,L3) generated by the Dehn twists Ty,

kl,kg Snj+1.

with

kq1Qko

Remark 5.1.10. The local system L(P); is in general not the j-th.
eigenspace of a family of irreducible covers of degree m obtained by a
collision of two branch points of a family of irreducible covers of degree m.
The problem is given by the irreducibility of the resulting family obtained by
collision. Take for example the family C — P, with generic fibers given by

vt =(z—a1)(z —as)(x —az)®- ... (z —as)>

By the collision of a; and as, one does not obtain an irreducible family of
degree 4 covers. But the resulting local system £(P); is the eigenspace with
respect to the character 1 on the higher direct image sheaf of the family
C(P) — Py with generic fibers given by

v¥=(@x—a) ... (x—ay).

Now let £; be of type (p,q) with p,q > 0. By the collision of two points
and Proposition 2.3.4, one gets an eigenspace of type (p,q — 1) or of type
(p — 1,q), if there is a suitable corresponding stable partition. A little bit
later we will see that this construction yields an induction step such that the
statement of Theorem 5.1.1 for local systems of type (p,g—1) (if p,g—1 > 1)
and of type (p—1,¢) (if p—1,¢g > 1) implies the statement of Theorem 5.1.1
for local systems of type (p, q).

For the application of the step of induction we will need a pair of stable
partitions such that the resulting two eigenspaces satisfy the assumptions
of Theorem 5.1.1. Moreover one can assume that for each fiber S; contains
at least 5 different points. Otherwise £; is of type (1,1) or unitary. By the
following technical lemma, we start to show that there exists a suitable pair
of stable partitions, if the assumptions of Theorem 5.1.1 are satisfied and if
S; contains at least 5 points:

Lemma 5.1.11. Assume that j # . Then there is an ay, € S; with . # %

Proof. Assume that all a € S; satisfy p, = % and j # 4. One has that C,
(with 7 = ged(m, 7)) is a family of irreducible cyclic covers of P! of degree
- > 2 given by p1,...,Uny3 in the sense of Construction 3.2.1. By the
assumption that all a, € S; satisfy py = %, each branch point has the same
branch index g, which divides the degree 7*. Since we assume that j # 7,
one concludes that the branch indices given by Z* are not 1. Thus C,. is not

a family of irreducible cyclic covers. Contradiction! ad
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Next we show that a uj # % yields two stable partitions:

Lemma 5.1.12. Assume that S; contains at least 5 different points such
that there is an ay € S; with puy, # % Then there are some pairwise different
Ky Hiy fsy fie € S5 such that

pnt+p 1, and ps + pe # 1.

Proof. Assume that each pair h,i’ € {1,...,n + 3} with h # ' satisfies
wn + pi = 1. This implies that up = py = % for each pair h,i’. But this
contradicts the assumptions of this lemma. Hence by the assumptions, there
must be a pair (h,i’) such that pp + py # 1.

Now consider S} =55\ {an,a}. Let us assume that each pair ay,ap €
S% with s" # ¢’ satisfies o + py = 1. Since |S}| > 3, one concludes that
s = by = % Since pp = % or py = % would contradict the assumptions in
this case, one concludes that pup, py # % Hence put ¢ := s',s := ¢/, t == t/,
and we are done in this case.

If there are ay,ay € S; with " # ¢/ and pg + pp # 1, we put ¢ := ¢/,
s:=s',t:=t, and we are done. |

By Lemma 5.1.11 and Lemma 5.1.12, one concludes immediately:

Corollary 5.1.13. Assume that S; contains at least 5 different points and
J # % . Then there are some pairwise different un, i, jis, pie € S; such that

pn+ i 1, and ps + pe # 1.

Remark 5.1.14. The condition that

pntps 1, and g+ py # 1
implies that

1

1) and (us# s or ).

1
(un # 5 or pi # 5 5 5

Therefore the resulting eigenspace obtained by the collision of a;, and a; resp.,
as and a; satisfies that there is a local monodromy datum py # % Hence
the resulting eigenspace is not a middle part L= of the VHS of the family
obtained by the respective collision of two points. It remains to ensure that
the resulting eigenspaces are not of type (a,0) resp., (0,b) in order to satisfy
the assumptions of Theorem 5.1.1 in this case.

5.1.15. Assume that £; is of type (1,n) with n > 1. By Proposition 2.3.4,

one calculates that
n+3

ZM =2
=1
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in this case. One can choose the indices such that

M1 < oo < lngs.

Hence one has
p +ps < po + pg < ops A+ ps.

By the fact that

1
(2 + pa) + (us +p5) <2 and po + pg < 5((#2 + pa) + (s + p15)),
one has
B+ p3 < po+pg < 1

Since the local systems with respect to the corresponding stable partitions of
the collision of a1 and ag resp., the collision of as and a4 are of type (1,n—1) as
one can calculate by Proposition 2.3.4, one can apply the induction hypothesis
for these partitions.

Now let £; be of type (n,1). Then the monodromy representation of £; is
the complex conjugate of the monodromy representation of £,,_;, which is of
type (1,n) in this case. Hence first the induction step yields the statement for
all £; of type (1,n). Then we have the statement for all £; of type (n, 1), too.

Assume that £; is of type (p, ¢) with p, ¢ > 2 and satisfies the assumptions
of Theorem 5.1.1. By Corollary 5.1.13, one has a pair of stable partitions.
Remark 5.1.14 and the fact that p,q > 2 imply that the corresponding
eigenspaces satisfy the assumptions of Theorem 5.1.1, too.

Now we must only prove and explain the step of induction:

One has without loss of generality the stable partitions

P = {{a1}7 EEE {an+l}, {U«n+2, an+3}}7 and P, = {{al, GQ}, {(13}7 ey {an+3}}.

Here we assume without loss of generality that ay € R and ap < agy1 such
that dj is the oriented path from aj to ax41 given by the straight line.

Let ¢ € P,. We consider the monodromy representation with respect to
the basis B of (L£;), given by

B = {[6161]7 SERE) [en(gn]a [en+25n+2}}'
One has obviously that Mon®(L;(P;)) leaves ([e161], ..., [e,0,]) invariant and
fixes all vectors in ([e;,120,42]). Now let U; be a small open neighborhood of

the identity in Mon’(£;(Py))(R) such that the “inverse”

log U — LiG(MOHO(,Cj (Pl)))
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of the exponential map is defined on U;. By Remark 5.1.4 and the induction
hypothesis, log(U;) generates a Lie algebra, whose complexification Ly is with
respect to B given by the matrices

a1 e ain 0
’ ail ... Qinp
, where N :=
an1 --- Gnn 0
0 ... 0 0 oo fnn

is an arbitrary n x n matrix with tr(N) = 0. Note that Mon"(£;(P,)) fixes
all vectors in ([e101]) and leaves ([esds], ..., [ent20n,]) invariant. Hence in a
similar way log(Uz) (e € Us C Mon?(L;(P,))(R)) generates a Lie algebra. Its
complexification Lo is given by the matrices

0 v
0 NJ’
where N is again an arbitrary n x n matrix with tr(N) = 0 and

v=(v1,...,0p)

is a vector depending on N. It is easy to see that L, and Lo generate sl,, 1 (C).
Since Mon’(L;) is contained in SU(p,q) and su,, ® C = sl,,,(C), the
group Mon” (L£;) is isomorphic to SU(p, q).

5.2 The Hodge group of a general direct summand

The VHS of a family C — P,, has a decomposition into rational subvariations
V. of Hodge structures, which where introduced in Section 4.3. Recall that
V. is general, if its monodromy group is infinite. Otherwise we call it special.
Let r # &, V. be general and £; C V), in this section. Moreover recall that
Monﬂ%(VT)q denotes the connected component of identity of the Zariski closure
of the monodromy group in GL(((V,)r),) for some g € P,,. Since Mong (V) ,,
and Mon$(V,),, are conjugated, we write Mon{(V),) instead of Mong(V,),
for simplicity.

Remark 5.2.1. The group Mon$(V,) does not need to be equal to
Mon®(V,.) xgR. It satisfies only Mong (V,) € Mon®(V,.) xgR. Hence Mon$ (V)
yields a lower bound for Mon®(V,). Thus one obtains

Gy () = Hg"' (V) = Mon(V,),

if C9°r(y)g = Mong (V).
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By the preceding section, we know that Mon%(V,) — Mono(ﬁj) can be
considered as the projection onto some SU(a,b), if £; is of type (a,b) with
a,b > 0. Otherwise one can use induction with the corresponding stable
partitions again. We only consider the start of induction:

Assume that S; = 4. hence one has without loss of generality C, — P;. By
our assumptions, there is an eigenspace £;, in N''(C,., C) of type (1,1), whose
monodromy group is infinite. Since the monodromy group of £; is conjugated
to the monodromy of £;, by some v € Gal(Q(£"); Q), it is infinite, too. One
concludes similarly to the preceding section that Mon’(£;) = SU(2) (since
su3(C) = sl3(C) by [21], page 433, too). The rest of the proof is an induction
analogue to the induction of the preceding section.

By the preceding considerations, one has:

Proposition 5.2.2. Assume that V, is general. Then the image of the nat-
ural projection Mong(V,) — GL(RV(j)r) is given by the special unitary
group induced by the trace map and the special unitary group SU(HJl (C,C),
H‘H}(C,C)) described in Section 4.3.

Moreover we know that Mon$ (V) is contained in C9¢* (¢))g, which is given
by a direct product of certain groups SU(a,b). Either Mon®(V,) = Cd7(4)
or it is given by a proper subgroup. We want to examine the conditions of
the case Mon"(V,.) # €97 (1)), This will yield information and some criteria
for the structure of Mon®(V,.).

First let us make a simple, but very useful observation:

Remark 5.2.3. Let G1,...,G; be connected simple Lie groups and N C
G1 X ... x Gy =: G be a normal connected subgroup. One has that Lie(G)
is a direct sum of the simple ideals Lie(G1), ..., Lie(G¢), which implies that
each ideal is a sum of certain Lie(G;) (see [27], II. Corollary 6.3). Since
the normal connected subgroups of G and the ideals of Lie(G) correspond
(follows by [21], Proposition 8.41 and [21], Exercise 9.2), one obtains that

N=G1 x...x Gy x{e} x...x{e}
for some tg < t with respect to a suitable numbering.

The decomposition of the rational Hodge structure N1(C,,Q) into the
Q(¢")T-Hodge structures RV(j) yields a decomposition of the variation V),
of rational Hodge structures into the variations RV(j) of Q(£")*-Hodge
structures.

By technical reasons, we consider the semisimple adjoint group Monﬁd(Vr)
instead of Mon$ (V) first. By Remark 5.2.3, one concludes that Mong!(V,)
is isomorphic to the direct product of Mon®!(RV(j)r) and the kernel K of
the natural projection Moni!(V,.) — Mon®!(RV(j)r). Moreover one has:
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Lemma 5.2.4. Let Gy,...,G; be simple adjoint Lie groups and G be a
semisimple subgroup of G1 X ... x Gy such that each natural projection

pTj

G— G x...xG — G

is surjective. One has G # G1 X ... X Gy, if and only if there are some
J1,J2 € {1,...,t} with j1 # jo such that G contains a simple subgroup G’
isomorphically mapped onto G, and G;, by the natural projections.

Proof. The “if” part is easy to see. The “only if” part follows by induction.
O

Note that we have a natural embedding

Mong'(V,) =  [] = Mon®(RV(j)r).

JEL TGS

Thus the preceding lemma and our assumption that Mon®(V,) # C%° (1))
imply that there is a direct simple factor of Mong(V),.), which isomorphically
mapped onto Mon® (RV(j1)r) and Mon®!(RV(jz)r) for some j; and jp with
j2 # j1 and m — j;. By Remark 5.2.3, Monﬁd(V,«) is a direct product of the
kernel of the both projections and this direct simple factor.

Thus the natural projections onto Mon®(RV(j1)r) and Mon(RV(j2)r)
yield an isomorphism

a®® s Mon™ (RV(ji1)r) — Mon™ (RV(j2)w)-
Moreover one concludes that the image Mon®! (RV(j1, j2)r) of the projection
Mong' (V) — Mon®! (RV(j1)r) x Mon®*(RV(j2)r)

is given by the graph of o9,
5.2.5. For the image Mon’(RV (41, j2)r) of the projection

Mon (V,:) — Mon®(RV(j1)r) x Mon® (RV(j2)r)
this implies that the natural projections
P Mon® (RV (51, j2)=) — Mon”(RV(j1)z)

and
P2 MODO(%V(jl,jQ)R) — MOHO(%V(J.Q)R)

are isogenies. Since

Mon® (RV(j1)=)(C) = Mon"(RV(j2)2)(C) = SLa45(C),



102 5 The computation of the Hodge group

where (a, b) is the type of £;,, and the Lie group SL,5(C) is simply connected

(see [21], Proposition 23.1), the induced isogenies of Lie groups of C-valued

points are isomorphisms. Hence the isogenies p; and ps are isomorphisms.
Hence our assumption implies the existence of an isomorphism

o : Mon® (RV(j1)r) — Mon®(RV(ja2)r),

which satisfies that Mon”(RV(j1, j2)r) is given by Graph(a).

5.3 A criterion for the reaching of the upper bound

In this section we give a necessary criterion for the existence of an isomor-
phism «. This yields a sufficient condition that MonO(VT) reaches the upper
bound C%(¢). In addition we will see that Mon”(V) = Mon®(V;) reaches
the upper bound, if the degree m of the covers given by the fibers of C — P,
is a prime number > 2.2

We say that a Dehn twist 7' is semisimple (with respect to V,.), if the
monodromy representation p; of one (and hence of all) £; C V, yields
a semisimple matrix p;(7T"). By the trace map (see (4.3)), we can iden-
tify Mon®™ (RV(j)r) and Mon®¥(£;). Thus Mon’(RV(j1,j2)r) is equal
to Graph(a), if and only if one has a corresponding isomorphism a? :
Mon™(£;) — Mon®®(Ls) such that Mon®! (L}, ©L;,) is given by Graph(a??).
By an abuse of notation, we will write « instead of a*? from now on.

First let us formulate a sufficient criterion for the non-existence of « in
the case C — Py:

Proposition 5.3.1. Let V, be general and L;,,L;, C V, be of type (a,b),
where a + b = 2. Moreover let z; denote the non-trivial eigenvalue of p;, (T')
with respect to a semisimple Dehn twist T for i = 1,2. Then there is not
any isomorphism « : Mon® (L) — Mon(Ly) such that Pp;, = a o Ppj,, if
there is a semisimple Dehn twist T such that the non-trivial eigenvalue zo of
P4, (T') is not contained in {z1, 21 }.

Proof. Assume that Mon®!(£;) and Mon®!(L,) are isomorphic and T satisfies
the assumptions of this proposition. Thus p;, (T') generates a finite commuta-
tive subgroup F'T of Mon®!(£;, ). Our assumption that a+b = 2 implies that
Mon™(£;,) = Mon®!(L;,) is isomorphic to PU(1, 1) or PU(2). Note that the
elements of FT(R) are up to conjugation given by classes of diagonal matri-
ces. The elements of FT(R) commute exactly with the R-rational elements
of the maximal torus G of PU(1,1) resp., PU(2) which is (up to conjugation)

2 For m = 2 we will later see that Mon®()) reaches the upper bound as well.
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given by the classes of diagonal matrices in PU(1, 1) resp., PU(2). One checks
easily that G(R) is isomorphic to S1(R). Hence one can identify FT(R) with
some (£°) C SY(R). Now let 1 # ¢ € (£%) satisfy the property that there is
a closed interval on S'(R) with end points 1 and ¢, which does not contain
any other element of (¢%). Hence there is a closed interval I on G with ending
points [diag(1,1)] and [diag((,1)] € F'T, which does not contain any other
element of F'T.

Now assume such an isomorphism « exists. Note that we have an identi-
fication a(G)(R) = S1(R), too. But our assumptions imply that

a(diag(¢, 1)) ¢ {diag(¢, 1), diag(¢, 1)}

Hence by our identification a(G)(R) = S'(R), one obtains that

a(¢) ¢ {¢. ¢}

Thus «(I) C «(G)(R) is not a connected interval, which does not contain any
other element of (£°) except of 1 and «((¢). But @ must be a homeomorphism
on the R-valued points. Contradiction! O

By the preceding proposition, we can use certain semisimple Dehn twists
for the study of the generic Hodge group. Hence we make some observations
about the orders and the existence of semisimple Dehn twists:

Lemma 5.3.2. Let j # F and v|7*, where

1#wv, r:=gcd(m,j) and 1,2 # m
TV
Then there exists a Dehn twist T € w1 (Py) such that p;j(T) € Mon(L;) is

semisimple and |(p;(T))| does not divide v.

Proof. One can replace C by C,. and choose a suitable collection of local
monodromy data for C such that j = 1. By an isomorphism () = Z/(m),
the non-trivial eigenvalues of the semisimple Dehn twists 7}, , correspond
to some elements [b, x,] € Z/(m), where by, i, := di, + di, and di, and dy,
denote the branch indices of ax, and a,.

Assume that each semisimple Dehn twist satisfies that its order divides
some v with v/m. This implies that =|by, , for all b, ,. Hence for all k =
1,...,n+ 3 one has that 7+ divides

2dy, = (dy + dg,) + (di + dr,) — (di, + diy) = bk + Ok ky — Dby ky -

Since there does not exist any integer N # 1, which divides each d, one has
that =+ divides 2. This implies that =+ =1 or =+ = 2. a
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For the formulation of our criterion in the higher dimensional case we need
the following lemma:

Lemma 5.3.3. Let g € P,,. Assume that we have a stable partition

P = {{al}v {a2}a {a3}7 {CL4, T 7anj+3}}

with respect to the local monodromy data of (L), such that we can define the
eigenspace L;(P) over Py with b = {ay, ..., an, 3} as in Construction 5.1.9.
Then the monodromy group p;(P)(m1(P1)) of L;(P) has a subgroup of finite
index generated by p;j(Th,2) and p;j(T23).

Proof. The stability of the partition ensures that a, = g, .., 13 # 1. It
is a well-known fact that m (M;(C)) is generated by the two loops around
0 and 1, where we identify A!\ {0,1} = M;. By the embedding M; — P;
given by

a1 =0, az=1, a4 =,

we can identify the generators of m1(M;(C)) with the Dehn twists 77 » and

T5,3. The statement follows from the fact that the monodromy group of
L;(P)|m, has finite index in the monodromy group of £;(P). O

Proposition 5.3.4. Let L;,L;, C (Vi)c with j1 # jo and j1 # m — ja.
Assume that we have a stable partition

Pi={{a1},{as}, {as}, {as, ..., anys}}

such that the monodromy group of L; (P) or L;,(P) is infinite. Let
Mon®(L;, (P)) and Mon®(L,(P)) be not isomorphic or Ty be a semisim-
ple Dehn twist with k,¢ € {1,2,3} such that the non-trivial eigenvalue zo
of pj,(Tkye) is not contained in {z1,z }, where z; denotes the non-trivial
eigenvalue of pj, (Tke). Then

Mon®(RV(j1, j2)r) = Mon’ (RV(j1)r) x Mon’ (RV(j2)r)-

Proof. By Lemma 5.3.3 and the fact that the monodromy group of L;|4,,
has finite index in the monodromy group of £;, one concludes that the group
generated by p;, (Th,2) and pj;, (To 3) resp., pj,(T12) and pj,(Ts 3) has finite
index in the monodromy representation of L;, (P) resp., £j,(P). Therefore
an isomorphism

o : Mon’ (RV(j1)r) — Mon®(RV(j2)r)
yields an isomorphism

a(P) : Mon® (L, (P)) — Mon®(L;, (P)).
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Thus one only needs to apply Proposition 5.3.1. O

Now let us first define the condition for the reaching of the upper bound
and then write down the obvious theorem:

Definition 5.3.5. Assume that one has for each £; ,L;, C V, with j; #
j2,m — j» and Mong(L;,) = Mon%(L;,) a stable partition

P = {{al}v {a2}v {(13}, {a47 cee ,anj+3}}

(with respect to a suitable enumeration) such that the monodromy group of
L;,(P) or Lj,(P) is infinite and one of the following conditions is satisfied:

1. Mon®(£;, (P)) and Mon"(L,,(P)) are not isomorphic.

2. There is a semisimple Dehn twist T} , with k,¢ € {1,2,3} such that the
non-trivial eigenvalue 25 of pj, (Tk ¢) is not contained in {21, Z1 }, where z;
denotes the non-trivial eigenvalue of p;, (Tk.¢).

We call V,. very general in this case.
A direct summand V, is exceptional, if it is general, but not very general.

By Proposition 5.3.4, one concludes:

Theorem 5.3.6. If V,. is very general, MonO(VT) reaches the upper bound
Cder(d))-

Theorem 5.3.7. If the degree m of the covers given by the fibers of C — P,
is a prime number m > 2, Mon®(V) = Mon(V;) reaches the upper bound.

Proof. By the preceding theorem, we have only to show that MonO(V) =
Mon(Vy) is very general. Note that Lemma 5.3.2 implies that there is a
semisimple Dehn twist for m > 2.

Assume that we are in the case of a family C — Py, and that j; # ja, m—ja.
Since Z/(m) is a field in our case, one has that each semisimple Dehn twist
satisfies that the non-trivial eigenvalue of p;,(T') is not contained in {21,z },
where z; denotes the non-trivial eigenvalue of p;, (7). Thus in this case the
statement follows from Proposition 5.3.1.

Otherwise we have to find a stable partition P as in Proposition 5.3.4.
One has without loss of generality the semisimple Dehn twist T} 2. Moreover
assume without loss of generality that dy + do = m — 1. One has two cases:
Either there is some a3 such that

P ={{a1},{az},{as}, {as,. .., ans3}}
is the desired stable partition or one has that

dy = ... =dpi3=1.
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Since in the case m = 3 there is nothing to show, one can otherwise assume
that m > 3 and take the stable partition

P = {{a3}7 {CL4}, {a5}a {ala a2, a6, - . - 7an+3}}'

5.4 The exceptional cases

At this time the author does not see a possibility to calculate the monodromy
group of the VHS of an arbitrary family C — P,,. Therefore we consider
mainly a family C — P;.

5.4.1. Let p;, and p;, denote the monodromy representations of £L;,,L;, C
V. Proposition 3.3.5 yields a description of p;, (T') and p,, (T") for some Dehn
twist 7. By this description, the entries of the matrices p;, (T') and p;, (T')
differ by some v € Gal(Q(£"); Q). By its action on (£") = Z/(™%), each v
can be identified with some [v] € (Z/(%F))* such that [%v]T = []72}% One
has a subgroup Hj(y) of (£") consisting of roots of unity fixed by v and
a subgroup Hs(7y) of (£") consisting of roots of unity, on which v acts by
complex conjugation. Since j; # jo,m — ja, one has that v is neither given
by the complex conjugation nor by the identity. Thus Hi(v) resp., Ha(y)
is given by {1} or some proper subgroup of (¢7) generated by &1(") resp.,
€2 where 1 # t1(7) and 1 # t5(v) divide 2.

For the rest of this section we consider only families C — P; of degree
m with an exceptional part V,.. Assume without loss of generality that V; is
exceptional and j; = 1. Let « correspond to v. For simplicity we write ¢; and
to instead of 1 () and (), and Hy and Hy instead of Hy(y) and Hy(7).

Lemma 5.4.2. Let C — Py be a family of degree m covers such that Vy is
exceptional. Then one is without loss of generality in one of the following
cases:

1. (Complex case) ti|dy + da, ti|ds + d3 and ta|dy + d3, where t; does not
divide dl + d3.
2. (Separated case) t1 = 2 and 2 divides dy + da, do + d3 and dy + ds.

Proof. If V; is exceptional, then di +ds, ds +d3 and dy + d3 are divided by t;
or to. Assume that ¢1 (resp., t2) divides dj +da, do +ds and dq +ds. Hence one
has t; = 2 (resp., to = 2) as in the proof of Lemma 5.3.2. Otherwise one has
only to choose a suitable enumeration such that one is in the complex case.

|

Remark 5.4.3. It can occur that one is in the complex case and the sepa-
rated case with respect to the same eigenspaces (up to complex conjugation).
Consider the family C — P; of degree 12 covers given by
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dy =5 dy=1, dy =11, dy=T.

Let v = 5. Then one has ¢; = 3 and to = 2 such that 3|d; + ds, 3|ds + d3 and
2|dy + ds. Now let v = 7. In this case one has t; = 2 and 2 divides d; + da,
dy 4+ ds and dy + ds. By 5.4.10, we will see that there is an isomorphism
a: Mon"(RV(1))g — Mon”(RV(5))g.

On the other hand consider the family C — P; of degree 12 covers given by

di=11, dy=1, dy=11, dy=1.

Again by the same arguments, we are in the complex case and the separated
case at the same time. But in this case the existence of a suitable isomorphism

a : Monj (RV(1)) — Mon® (RV(5))
is not known to the author at this time.

5.4.4. Assume that the direct summand V; is separated with respect to
[V]m € (Z/(m))* for a family C — P; of degree m covers. One has [v2] = [2]
in each separated case. This implies that [2][v — 1] = [0]. Therefore one has
[v] =[5 + 1] € (Z/(m))* in each separated case. Hence v € (Z/(m))* is an
involution. The fact that [v] = [% +1] € (Z/(m))* implies that % 41 is odd.
Hence 4 divides m. In the separated case r; = 2 divides each dj + dy. Thus
V; is separated, if and only if 4|m and each dj, is odd.

Therefore there are infinitely many cases of families C — P; such that V;
is separated. At this time the author can not give an isomorphism

o : Mon™ (L) — Monad(E%_H)

for each separated example.

By the preceding point we have classified and described all examples C —
P1 such that V; is separated. Hence we consider only the case of a family
C — Py such that V; is complex for the rest of this section.

Lemma 5.4.5. Assume that V; is complex. Then one has:

E::lcm(tl,tg)—{fg : m s odd

31 m is even
Proof. If m is odd, Hy N Hy = {1} = {{™}. If m is even, H; N Hy =
{17_1} = <§7> g

Lemma 5.4.6. Assume that Vi is complex. Then one has that tito = m or

tita = 5. Moreover one has that tita = m, if m is odd, and tity = 7, if

2|m, but 4 does not divide m.
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Proof. If m is odd, one has ¢ = lem(¢1,t2) = m. Hence one obtains tjthg = m
for g := ged(ty,ta2) and t; = gt.. Hence |Hy| = t, and |Ha| = t}). If g > 2,
there is a semisimple Dehn twist, whose order does not divide #}t, (follows
from Lemma 5.3.2). But this can not occur by our assumption that V; is
complex. Hence g = 1, since g = 2 is not possible for m odd.

If m is even, one has ¢ = lem(ty,t2) = 4. Hence one has tithg = 3 for
g := ged(ty, t2) and t; = gtl. If g > 2, there is a semisimple Dehn twist, whose
order does not divide ¢}t,. Hence one has g = 1 or g = 2. Thus t1t3 = m or
tity = 2.

Now assume that 2|m, but 4 does not divide m. Then one has that %
lem(ty,t2) is odd. Hence one can not have that g = 2 in this case. Thus g =
and tltg = %

O~ |l

Example 5.4.7. In the case 4|m both t1to = m and tity = % can occur.

Let m = 24 and take v = 5 for the corresponding automorphism of Q(¢). In
this case one has t; = 6 and t9 = 4 such that t1ts = 24 = m.

Now let m = 24 and take v = 7. In this case one has t; = 4 and ¢ = 3
such that 122 =12 = 7.

Proposition 5.4.8. Assume v € Gal(Q(£); Q) yields an example of a com-
plex case. Then v is an involution.

Proof. Let [v] € Z/(m)* correspond to y. One has that t1ty = m or t1ty = 3.
Since one has that [vt1],, = [t1]m and [vts]m, = —[t2]m, one gets that

(v—1t; € (m) and (v+ 1)ts € (m).

This implies that to|(v — 1) and #;|(v + 1) or (if t1t2 = %) that 2t5|(v — 1)
and 2¢1|(v 4 1). Hence in each case one obtains that

v? —1=(v—1)(v+1) € (m).
O

Theorem 5.4.9. Let C — Py be a family of degree m covers. Then Vy is
complex, if and only if the fibers of C have the branch indices dy, ... ,ds with
2m =dy + ...+ dy such that

[vday = [di + da + d3lin,  [vdilm = [~dslim, [vds]m = [~di]m

m m m
[vda]m = [d1 +d2+d3+5]m, [vdi]m = [*d3+5]m7 [vds]m = [*ler?]m

for some v with [v*],;, = [1]m and [v]m & {[Um, [m — 1m}.

Proof. The condition 2m = d; + ... + d4 ensures that V; is not special.
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By an abuse of notation, each integer z denotes the residue class [z],, in
this proof. Assume that V; is complex. Hence by Lemma 5.4.2, one has that

2vdy = v((d1 + dz2) — (di +d3) + (d2 + d3)) = (d1 + d2) + (d1 +d3) + (d2 + d3)
= 2(dy + d2 + d3),

2udy = v((di+d2)+(di+ds)— (d2+d3)) = (di +d2) — (d1 +d3) — (d2+d3)) = —2d3,
2vds = v(—(d1+dz2)+(di+ds)+(d2+d3)) = —(di+d2)—(d1+d3)+(d2+d3)) = —2d;.

Hence one has two cases:

vy = dy +dy +dy or vdy = dy + dy + s+ 2

In the first case (resp., the second case) the fact that v(dy + da) = dy + da

implies that vd; = —d3 (resp., vdy = —d3 + ). Moreover in the first case

(resp., the second case) the fact that v(dy + d3) = da + d3 implies that

vdy = —dy (resp., vd3 = —d; + ). Hence we have obtained the claimed
equations.

Assume conversely that the family C — P; satisfies one of the two systems

of equations of this theorem. Then one can easily calculate that V; is complex.

O

5.4.10. Let C — P; be a family of degree m covers. Assume that dy,ds, d3
satisfy the first system of equations of Theorem 5.4.9 with respect to some v
with [v?] = [1];,, which satisfies that [v],, & {[1]m,[m — 1], }. Moreover let
j € (Z/(m))* such that £; C V; with monodromy representation p;. Now we
calculate that Mon%(€)+ (V1) does not reach the upper bound C{" (g)g(¢)+ in
this case.

Let a; = 0, a3 = 1 and a4 = oco. The fundamental group of the corre-
sponding copy of M; is generated by 77 2 and 75 3. One obtains that

Ejd1+jd2 1— gjdl

1 0
pi(Ti2) = ( 0 1 ) v pi(Tas) = <§jd2 _ gidatids gjdz-&-jds) :

Let v, € Gal(Q(£); Q) denote the automorphism corresponding to [v]. The
monodromy representation of £, is given by

gjd1+jd2 1— g—jds 1 0
pjo(T1,2) = 0 ] 0 Pio(T2,3) =\ gjdi+idatids _ gdatids  gidatids |-

One calculates easily that

1—gida gida _ gidztids gida _ gidatjds _ giditida 4 gjditjdatjds
1— f*de ' gjd1+jd2+jd3 — gjderjds - gjd1+jd2+jd3 — gjd2+jd3 — 5jd1+jd2 + Ejdz




110 5 The computation of the Hodge group

Hence there is a z € Q(§) such that 7v,|<p, (1, )., (105)> coincides with
Ol <p(T1.2).p, (Tn.5)>» Where o is given by

a b . a zb

c d z"te d )
Thus by Lemma 5.2.4, the group Mon%(§)+ (V1) does not attain its upper
bound in this case. In addition one calculates easily that « is given by

a b NZE) a b Vz=l 0
— .
c d 0 z~1 c d 0 Vz
Thus the monodromy representations of £; and £, coincide up to conjuga-
tion such that £; and £;, are isomorphic for each j € (Z/(m))*.

Corollary 5.4.11. There are infinitely many families C — Py such that V;
is complex and Mon%(£)+(V1) does not reach its upper bound.

Proof. Let p,q € N such that ged(p,q) = 1 with p,q ¢ {1,2} and m := pgq.
Hence Z/(m) = Z/(p) x Z/(q). Let v < m correspond to (1,—1) € Z/(p) x
Z/(q). Thus we get [v?] = [1],, and [v],, & {[1]m, [m — 1];n}. One has that

dlzv, d2:1, d3=m—1

satisfies the first system of equations of Theorem 5.4.9, which guarantees
by 5.4.10 that Mon%(§)+(1/1) does not reach its upper bound. Since there
are infinitely many possible choices for p,q € N such that ged(p,q) = 1
with p,q ¢ {1,2}, one obtains infinitely many families C — P; such that
Mon%(g)Jr (V1) does not reach its upper bound. O

5.5 The Hodge group of a universal family
of hyperelliptic curves

If the middle part V= is of type (1,1), one obtains MonO(V%) = Spg(2),
since Spy(2) = SU(1,1), and Mon]%(V%) = SU(1,1) as one has by Theorem
5.1.1.

By using [63] Theorem 10.1 and Remark 10.2, one can conclude that
the Hodge group Hg(V%) of an arbitrary middle part V= coincides with
Sp(V%,va). For completeness we give an elementary proof. We use the

2
the fact that
0
Mon (V%) - Hg(V%) - Sp(V%,QV%>

and show by explicit calculations that the dimensions of the Lie algebras of
MonO(V%) and Sp(Vm,Qy,, ) coincide.
2
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By Proposition 3.3.5, each Dehn twist Ty 41 yields a unipotent subgroup
of MonO(V%) isomorphic to G,. Its corresponding subvector space of the Lie
algebra is generated by

-1 : a=/¢ and b=/¢-1
A +1(a,b) = 1 : a=/¢ and b=/(+1.
0 : elsewhere

Now we consider the middle part of type (2,2). Hence we are in the case
of the genus 2 curves. For ¢ = 1,...,4 the matrices A, ¢y1 generate a 4
dimensional vector space. Moreover by [A; i+1, Ait1,i42] for ¢ = 1,2,3, we
get the 3 additional linearly independent matrices

10 1 0 0 0 00 00 0 0
0 1 0 0 0 -1 0 1 0 0 0 0
0000l |=1 0 1ol ™ o 0o -1 0
0 00 0 0 0 00 0 -1 0 1

By
[A2.3,[A3.4,Ass]] resp., [[A12,A23], A34],

we obtain the two further linearly independent matrices

0 1

1 and

o O O
o O OO
OO OO
OO OO
o O OO
OO O =

0
1

o = O

-1

Thus the Lie algebra has at least dimension 9. Moreover one checks easily

that
-1 0

0 0
0 0
0

0
0
0
1 0

0
0
[[A1,2, A2 3], [As4, Aas]] = 0
0

is a tenth linearly independent matrix. Thus the well-known fact that Spg(4)
has dimension 10 implies:

Proposition 5.5.1. If V= is of type (2,2), then MonO(V%) = Sp(Vo, Qv ).
2
Note that the quotient of Sp,(R) by its maximal compact subgroup is

Siegel’s upper half plane hs, which has dimension 3. Since M3 has dimension
3, one concludes for the restricted family Cpq, — M3 of genus 2 curves:

Corollary 5.5.2. The family Capq, — M3 of genus 2 curves has a dense set
of CM fibers.

Proof. One has (similarly to the proof of Theorem 4.4.4) that the holo-
morphic period map p : Mz — by has fibers of dimension 0. Since
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dim(h2) = dim(M3) = 3, one concludes that p is open. Hence the state-
ment follows from the fact that hs has a dense set of C'M points. O

We will use Proposition 5.5.1 and the calculations, which yield this propo-
sition, to show the following theorem by induction:

Theorem 5.5.3. If V= is of type (g,9), then Mono(V%) = Sp(Vm, Qum )-
2
Corollary 5.5.4.

It is a well-known fact that dim(Spg(2¢)) = 29 + ¢.*> Hence one gets

dim(Spg(29 + 1)) =2(g + 1)* + g+ 1 = (29 + g) + (49 + 3).

We will show by induction that for each g € N the matrices Ay 41 generate
a Lie algebra, which has at least the same dimension as sp,, (Q). This yields
Theorem 5.5.3. Since we have shown the statement for g = 1,2, we will only
give the induction step:

Recall that we have defined Lj;-valued paths [exdx] in Section 3.3. We
consider a middle part of type (¢ + 1,9 + 1) with respect to the basis
B ={[eid1],...,[e2g+2024+2]}. The Dehn twists Ty 41 for £ =1,...,2¢g yield
the monodromy group G of a middle part of type (g,g). Therefore by the
induction hypothesis, they yield a group isomorphic to Spgg(Q).

Remark 5.5.5. One has the obvious embedding of G; — GL(N'(Cxz,Q))
with I"CSpCCt to the basis Bl = {[6151}, ey [62g52g], [62g+2529+2], [62g+362g+3]}
such that
A
Gi>A— 1 0| e€GLN'(Cz,Q)).
0 1

Moreover this embedding of G into GL(N'(Cz,Q)) is given by

A w
Gi>A— 1 0] eGLN'(Cz,Q),
0 1
with respect to the basis B, where v* = (vq,...,v24) is a vector depending

on A.

Since we consider the embedding with respect to the latter basis, we want
to understand v, which is possible, if we understand the base change between
the bases of the preceding remark.

3 Otherwise one has a description of $Pog(C) in [21], page 239. By this description, one can
easily determine its dimension.
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Lemma 5.5.6. Let C — P! be a hyperelliptic curve of genus g+ 1. One has
(up to a suitable normalization)

g+1

Z[€2i+152i+1] = 0.

=0

Proof. Let ¢ € Hy(C,C) be a nontrivial linear combination of the clo-
sures of the sheets of P!\ S, on which 9 acts via push-forward by the
character 1 € Z/(2). One has that 9¢ represents a linear combination of
[e101], ..., [eag+102g+3] € H1(C,C)1, which is equal to zero. Recall that over
01 U...U 2443 the gluing of these sheets depends on the local monodromy
data determined by the branch indices of the branch points ag. Since each
ay, has the local monodromy datum —1, this linear combination is (up to a

suitable normalization of [e101], ..., [e2g+1024+3]) given by
g+1
Z[e2i+152i+1] =0.
i=0

O

5.5.7. By the preceding lemma, the matrices of base change between the
bases B and B are given by

1 -1 1 -1
MB(id) = 1 —1 1 and ME (id) = L1
5 (id) 1 0 B 10
0 —1 0 1
10 ~10
such that
A A

Thus one calculates easily that vy = 0, if a;; = 1 and a;; = 0 for 2 <
j < 2gand A = (a;;). The exponential map exp is a diffeomorphism on a
neighborhood of 0. Hence by the definition

2 m?)

m
exp(m)=14+m+ —+ —+...,
2 6
one concludes that each (m; ;) € Lie(G;) satisfies that mq o441 = 0, if
my,; =0 for all j = 1,...,2¢g, which will play a very important role later.
Otherwise exp would yield a matrix with a;; =1, a1 ; =0 for 2 < j < 2¢g
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and vy # 0 as one can calculate by the fact that each (m; ;) € Lie(G1)
satisfies that m; ; = 0 for i > 2g.

Lemma 5.5.8. Letig < 2g and jo < 2g be integers such that ig — jo > 0. In
the Lie algebra Lie(G1) one finds an element (x(?’”)) with {7070 #0 and

1, 20,70

27 =0, if i > ig or j < jo ori=1.

Proof. Let kg := ig — jo > 0. We show the statement by induction over k.
Each pair (io,jo) with io — jo = ko =1is given by (io,io — ].) By Aio,ioJrl?
such an element is given for each (ig,ip — 1).

Now let (ig, jo) be a pair with ko :=ig —jo > 1 and assume that the state-

ment is satisfied for kg —1,...,1 > 0. Hence one has (x§f§’j0+1)), Ajo+1,jo+2 €
o o
(217 = @57 sl

one obtains the desired element of Lie(Gy), since one has the entry

(i0,90) __ _(i0,jo+1)
Tigie = Tig o1~ (Ajot1gor2)iot1.go 7 O-
O
Moreover the Dehn twists Th,—12n; ..., T2¢+4224+3 generate a group G

isomorphic to the monodromy group of a middle part of type (2,2), which

has dimension 10. One can easily compare the matrices of Lie(G3) with the

above explicitly given matrices of a middle part of type (2,2): “The restriction

of the matrices of Lie(G2) to the lower right corner looks like the matrices

of the Lie algebra of the monodromy group of a middle part of type (2,2).”
Since the vectors

Aog 129, Azgagr1 and [Agg 124, Aog2g11]

are contained in Lie(G1) N Lie(G2), both Lie algebras yield together a 2g% +
¢ + 7-dimensional vector space of matrices (; ), whose entries x; ; vanish
for j < 2g — 3 and 7 > 2g. Hence by using

29,j 29,5
[A2g+1.29+2, (xz('j] ]0))] and [[A29+1,2g+2,A29+2)29+3},1’§7f 30)]

for jo < 2¢g — 3, one has 49 — 6 additional linearly independent vectors.
Thus we have altogether (2g° + g) + (4g + 1) linearly independent vectors.
Hence 2 remaining linearly independent vectors are to find. Since 2979 = 0
for i = 1, in the constructed vector space of matrices (m; ;) the coordinate
mi,2g+1 depends uniquely on the vectors in Lie(G1) such that mq 2441 =0,

ifm;; =0forall j=1,...,2g as we have seen in 5.5.7. Let

Lie(G1)  (yij) = [A12,[A23, [ .- [A2g—1,2g, A2g,29+1] - . ]].
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One checks easily that
Y1,2g+1 # 0.

Now the matrix

(Wi ;) = [(Wig) [A2g 41,2942, Azgr2,2g+3]]

satisfies ) 5,1 # 0,y; ; = 0ford,j < 2gand y] 5,5 = 0. Thus we have found
a new vector not contained in the vector space, which we have constructed
by Lie(G1), Lie(G2) and some Lie brackets at the present.

Note that all matrices (z; ;), which we have found, satisfy 12442 = 0.
But

(2i5) = [(Yig), A2g+1,2g+2]

satisfies 21 2942 # 0. Therefore we are done.

5.6 The complete generic Hodge group

By this section, we finish our calculation (of the derived group) of the generic
Hodge group and obtain the final result:

Theorem 5.6.1. One has

Mon’(V) = [ [ Mon®(V,)

in the following cases:

1. The degree m of the covers given by the fibers of C — P, is odd.
2. P, =P1 and 6 does not divide m.

Corollary 5.6.2. Assume that C — P, satisfies one of the following condi-
tions:

1. The degree m of the covers given by the fibers of C — P, is odd.
2. Pn =P1 and 6 does not divide m.

Then one has
MT (V) = Hg"* (V) 2 [[ Mon’ (V).
rlm
By Theorem 2.4.4, one has a C'M-fiber, if the fibers of C — P, have
n + 1 branch points with the same branch index d. Thus by the fact that

this implies the equality of Mon®(V) and MT%* (V) (see Theorem 3.1.4), one
concludes:

Corollary 5.6.3. Let the fibers of C — P, have n+1 branch points with the
same branch index d and C — P, satisfy one of the following conditions:
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1. The degree m of the covers given by the fibers of C — P, is odd.
2. Pn =P1 and 6 does not divide m.

Then
MT" (V) = Hg" (V) = [ [ Mon’(V,).

rlm
Since C4"(g) is an upper bound for Hg?" (V,.), one concludes finally:

Corollary 5.6.4. Assume that C — P, satisfies one of the following condi-
tions:

1. The degree m of the covers given by the fibers of C — P, is odd.
2. Pn =P1 and 6 does not divide m.

If all V,. except of the middle part are very general or special, one has

MT (V) = Hg** (V) = Mon"(V) = [ Mon’(V,).

rlm

Recall that we search for families C — P, with dense set of complex
multiplication fibers. One obtains dense set of complex multiplication fibers,
if one has an open (multivalued) period map

p: My (C) = MTY" (V)(R)/K

given by the V HS. Hence for our applications we need to know MT" (V) and
the dimension of MT"(V)(R)/K, but not MT(V) itself. Let us first prove
Theorem 5.6.1. After this proof we will see that the (multivalued) period map
of a family C — M, onto MT9"(V)(R)/K is open, if and only if one has a
(1,1) = VHS.

For the proof of Theorem 5.6.1 we use the same methods as before. One has
that Mon®@ (V) is the direct product of the kernel of the natural projection

p1 : Mon®d(V) — Mon®(V),.,)

and an adjoint semisimple group G,, isomorphic to Monad(V,.l). Moreover
one has that
Mon* (V) = H Mon®(V,),
rlm
if and only if each G,, is contained in the kernels of the natural projections
onto all Mon(V,.,) with | # ry.
We give a proof of Theorem 5.6.1 by contradiction. Thus we assume that

Mon§ (V) # H Mon§(V,). This implies Mon3® (V) # H Mon3* (V).
|m

rim
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Hence some G, is not contained in the kernel of the projection onto
Monad(Vrz) for some ry # ry. Since all simple direct factors of G,, resp.,
G, project isomorphically onto some Mon®®(L;,) resp., Mon®!(L;,), one
gets an isomorphism

a: Mon™(L;,) — Mon™(L},),

which respects the respective projective monodromy representations. But by
the following proposition, the isomorphism « can not exist, if the assumptions
of Theorem 5.6.1 are satisfied. This yields the proof of Theorem 5.6.1.

Proposition 5.6.5. Assume that r1 = ged(m,j1) # ro = ged(m,ja).
Moreover assume that one of the following cases holds true:

1. m is odd.
2. P, =P1 and 6 does not divide m.

Then an isomorphism
a: Mon™(L;,) — Mon™(L},),

which respects the respective projective monodromy representations, can not
exist.

Proof. Assume without loss of generality that r; < ro. This implies % > %
There are two cases: Either 2r; # ro or 2r; = ro.

If m is odd, one has 3 # g := gcd(%, %) Hence by Lemma 5.3.2, one finds
a Dehn twist T such that Pp;, (T) is semisimple and the order of Pp;, (T')
does not divide g. One has that Pp;,(T") is either unipotent or semisimple. If
Ppj, (T) is semisimple, its order divides 7. But the order of Ppj;, (T') does not
divide 7. If Ppj, (T)) is unipotent, its order is infinite. But Pp;, (T') has finite
order. However Pp;, (T') and Ppj;,(T) do not have the same order. Hence such
an isomorphism a : Mon®®(£;,) — Mon?(L;,), which respects the respective
projective monodromy representations, can not exist in this case.

Now assume that we are in the case of a family C — P;, where 6 does
not divide m. There is a Dehn twist T" such that Pp;, (T) is semisimple. If
Pp;, (T) and Pp;,(T) do not have the same order, one can argue as above.
Otherwise all semisimple Dehn twists have the same order. Hence one must
have 2ry = ro. The nontrivial eigenvalue of p;,(T) is given by the square of
the nontrivial eigenvalue £ of p;, (T'). Note that the corresponding maximal
tori are isomorphic to S', where St = G, c. Thus its character group is
isomorphic to Z. Hence the induced map of the corresponding maximal tori
can be an isomorphism, only if one has ¢2 = ¢~! = £. In this case ¢ would
be a primitive cubic root of unity, which implies that 3 divides m. Since we
have that 2r; = ro, 6 would divide m. But by the assumptions, this is not

possible. O
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Remark 5.6.6. If 2r; = ry, there are many additional cases, in which « can
not exist. These obvious cases are given, if for a Dehn twist 7" the order of
the semisimple matrix p;, (7)) does not divide 37, if p,, (T') is semisimple and
P4, (T') is unipotent or if £;, and L;, are of type (a1, b1) and (as, by) such that

(a1,b1) # (a2,b2) and (ay,by) # (ba,az).

But in the case of the family C — P; of degree 6 covers given by the local
monodromy data

di=dy=1, d3=ds4=5
nothing of them holds true with respect to £; and £L4. In this case the situ-

ation is not clear.

Now let us finish this chapter and state the final result about the period
map:

Theorem 5.6.7. In the case of a family C — My the period map
p: Mi(C) = MT (V)(R)/K
is open, if and only if one has a pure (1,1) — VHS.

Proof. As we have seen in the proof Theorem 4.4.4, the period map is open,
if one has a pure (1,1) — VHS.

For the other direction assume that the period map is open and there are
up to complex conjugation at least two different eigenspaces, which are not
unitary.

Lemma 5.6.8. Assume that we have a family Capq, — M. Only if all V),
except for exactly one V., are special, the period map

p: My(C) — MTY (V) (R)/K

can be open.

Proof. Assume that r; and ro divide m such that r1 # ry and V,, and V,,
are not special. If 2ry 2 r5 or if there is a Dehn twist, whose finite order with
respect to V., does not divide % = %, the same arguments as in the proof
of Proposition 5.6.5 imply that

dim(MT" (V)(R)/K) > 1 = dim(M,).

Therefore the period map can not be open.
Otherwise assume without loss of generality that 7y = 1 and all semisimple
Dehn twists have an order dividing 3. This implies that all dj, are odd and

the degree m is even. Hence MonO(V%) is isomorphic to Spg(2), where its
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monodromy representation sends all Dehn twists to unipotent matrices. Thus
dim(MT" (V)(R)/K) > 1. m

By Lemma 5.6.8, these two eigenspaces, which are not unitary, must be
contained in the same V,,, which must be exceptional. Hence assume without
loss of generality that V,, = V.

In the separated case, the fact that all dy, are odd (compare to 5.4.4) implies
that Mon]%(]/%) = Spr(2). Hence by Lemma 5.6.8, we have a contradiction.

In the complex case Lemma 5.4.2 implies without loss of generality that

tl‘dl +d2, t1|d2+d3, tl‘d1+d4, t1|d3+d4.

This implies that t; divides each dj or that ¢; does not divide any dj. Thus
t; does not divide any dj. Hence C% is a family of covers with 4 branch
points, where ,O%(leg) and pa (T3,3) are unitary. Hence V% has an infinite
monodromy group resp., it is not special. Thus by Lemma 5.6.8, we have a
contradiction. O



Chapter 6
Examples of families with dense sets
of complex multiplication fibers

In this chapter we classify all families C — P,, of covers with a pure (1,n) —
VHS. Due to Theorem 4.4.4, all these families have a dense set of CM
fibers. We say that a pure (1,n) — V HS is primitive, if the (1,n) eigenspace
L; satisfies that j € (Z/(m))*. Otherwise the pure (1,n) — VHS is derived.

In Section 6.1 we give an integral condition for the branch indices dj of
the family C with the fibers given by

Y™ = (x —a)B .. (@ —ay).

This integral condition is stronger than the similar integral condition INT of
P. Deligne and G. D. Mostow [18]. Thus we call this strong integral condition
SINT. We show that this condition is necessary for the existence of a primi-
tive pure (1,n) — VHS. By using this condition, we compute all examples of
families C — Py of covers with a primitive pure (1,1) — VHS in Section 6.2,
which will be listed in Section 6.3. By using the list of examples satisfying
INT for n > 1 in [18], we give in Section 6.3 the complete lists of families
with a primitive pure (1,n) — VHS. In Section 6.3 we give also the complete
list of examples with a derived pure (1,n) — VHS, which will be verified in
Section 6.4.

6.1 The necessary condition SINT

By Theorem 4.4.4, one has a sufficient criterion for a dense set of C'M fibers of
a family Caq, — M,,. This criterion is satisfied, if C has a pure (1,n) —VHS
(i.e. its VHS contains one eigenspace of type (1,n), a complex conjugate
eigenspace of type (n,1) and otherwise only eigenspaces of the type (a,0)
and (0,b) for some a,b € Ny).

Remark 6.1.1. Assume that the family C — P,, of cyclic covers of de-
gree m has a pure (1,n)-VHS and that £, is the eigenspace of type (1,n).

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 121
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_7,
(© Springer-Verlag Berlin Heidelberg 2009
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Let jo ¢ (Z/(m))*. Then we have 1 < rq := ged(jo, m). By Section 4.2, the
family C,, has a pure (1,n)-VHS, too.

Definition 6.1.2. A pure (1,n) — VHS is primitive, if jo € (Z/(m))*. Oth-
erwise it is a derived pure (1,n) — VHS with the associated primitive pure
(1,n) — VHS induced by C,,, where C,, is given by the preceding remark.

Hence first we search for families with a primitive pure (1,n)—V HS. Later
we will look for families with a derived pure (1,n)—V HS. It is helpful to have
a necessary condition to find the families with a primitive pure (1,n) -V HS.
In [18] P. Deligne and G. D. Mostow have formulated the following integral
condition INT"

Definition 6.1.3. A local system on P!\ S of monodromy (ay)ses with
as = exp(2mipg) and ps € Q for all s € S satisfies the condition INT, if:

1. 0<pus <1lforalsesS.
2. We have for all s,t € S: (1—ps—pu¢) ' is an integer, if s # t and pg+puy < 1.

30> s =2.

Remark 6.1.4. By P. Deligne and G. D. Mostow [18], the monodromy of
the fractional period map of an eigenspace £; of type (1,n) is discrete in
the unitary group U(1,n) and has finite covolume, if one has that H,(C,,C);
satisfies INT for some q € P,. This sufficient condition can be replaced by
a weaker condition XINT as G. D. Mostow [44] has shown. Later G. D.
Mostow [45] has shown that 3INT is necessary for the discreteness, if n > 3.

One can identify the local monodromy data, which yield the family C — P,,
by Construction 3.2.1, with the local monodromy data of the eigenspace LL; of
some fiber C, for an arbitrary g € P,,. Hence one can formulate the condition
INT for the local monodromy data of the family. For the latter data we give
a corresponding stronger integral condition STNT"

Definition 6.1.5. A family C — P,, of cyclic covers of P! given by the local
monodromy data given by up € Q around s € N satisfies SINT, if we have:

1. pagy + iy = Lor (1— g, — pig,) "t € Z for all s, , sk, € N with si, # sp,.
2. > ps = 2.

Remark 6.1.6. The reader checks easily that for a family C — P; the con-
ditions INT and SINT are equivalent. Moreover by the list on [18], page 86,
each family C — P, with n > 2, which satisfies INT, satisfies SINT, too.

At the present the author can not explain this fact. We use SINT instead
of INT, since this is a stronger and hence a more helpful condition.

By the following theorem, we have our helpful necessary condition for
families C, which have a primitive pure (1,n) — VHS:

Theorem 6.1.7. If the family C — P, has a primitive pure (1,n) — VHS,
its local monodromy data can be given rational numbers satisfying SINT .



6.1 The necessary condition SINT 123

For the proof of Theorem 6.1.7 we first reduce the situation to the case
of a family C — P; of covers with only 4 branch points. That means we will
consider a pair of branch points of a fiber of C — P,,, where C has a primitive
pure (1,n) — VHS, as a pair of branch points with the same branch indices
of a fiber of a family C(P) — P1, which has a primitive pure (1,1) — VHS.
The following lemma will make it possible in almost all cases:

Lemma 6.1.8. Assume that C is given by local monodromy data on at least
5 points, where one does not have pus = ... = lip43 = % Then there exists a
stable partition P with {a1},{as} € P such that |P| = 4.

Proof. One can without loss of generality assume that g +po < 1. Otherwise
we take the local monodromy data of £, 1.

Now assume that such a stable partition P with {a1},{a2} € P does not
exist. Hence one must have pq + puo + i, = 1 for all 3 < k < n+ 3. Otherwise
one obtains the stable partition

P = {{al}, {az}, {ak}, {CL3, ey Ak—1, k41, - - ,an+3}}

Thus one must have
MHi= g3 = ... = [L,Lj+3.

Since

P = {{a1}7 {a2}7 {a37 a4}7 {a57 ) anj+3}}

is not a stable partition by our assumption, too, one has

1
2 = p3 + pg = 1. Hence Mzi'
O

6.1.9. The family of irreducible cyclic covers of P! given by the local mon-

odromy data
1 1

,L’fl:,UfQ:Z, #3:,u4:,u5:§

has a primitive pure (1,2) — VHS. Moreover it is easy to calculate that this
family satisfies SINT.

This is the only example of a family C — P,, with a primitive pure (1,n) —
VHS for n > 1, which does not satisfy the assumptions of Lemma 6.1.8: It is
very easy to see that this is the only degree 4 example with a primitive pure
(1,n) — VHS for n > 1, which contradicts the assumptions of Lemma 6.1.8.
If m > 4, £3 must be unitary. But in this case the condition that

1
n+3>4 and [3/,[,3]1 =...= [Slf"n-i-?)]l = 5

1 Since the assumptions of this lemma are sufficient, we do not restrict to the interesting
case of a family with a primitive pure (1,n) — VHS.
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and Proposition 2.3.4 imply that

nC) = (3wl —1= (3 5) ~1>0

k>3 k>3
and )
0,1 _
hg'(C) = > (1= Buly) = 1= 5) —1>0.
k>3 k>3

Thus L3 is not unitary.

6.1.10. Assume that C — P, has a primitive pure (1,n) — VHS. Hence £
is without loss of generality the eigenspace of type (1,n). For our application
of Lemma 6.1.8 we must check that the collision of Lemma 6.1.8 resp., its
corresponding stable partition yields a family C(P) — P;, which has a prim-
itive pure (1,1) — VHS. The family C(P) is given by N = P with the local
monodromy data

Aay,....ap} = Ok * oot Q (V {ak7...,a4}€P)
as in Construction 3.2.1. The fibers of C(P) have degree m’, where m/ divides

m. For j =1,...,m' — 1 and ¢ € M, the eigenspace LL;(P) in the Hodge
structure of C(P), with the character j is given by the local monodromy data

Gpale, [pely, [ps+ .o+ ikl e + o+ Jtngs)i

If the eigenspace £; in the VHS of C is of type (0,a), Proposition 2.3.4
implies that its local monodromy data satisfy

[pis 4o 4 [pngsh = 1.

Hence one has that

Gpali + el + [ps + oo+ duel + e + oo+ Jpngs) = 1,

too. Thus by Proposition 2.3.4, L;(P) is of type (0,a’).
If £, is of type (a,0), L,—; is of type (0,a). The dual eigenspace L;(P)"
of L;(P) is given by

[(m = F)pmlrs [(m = Gp2lr, [(m—Fps + ..+ (m = F)pkl,
[(m = ) prgr + -+ (M = J)pngs]r

The same arguments as above tell us that L;(P)Y is of type (0,a’). Thus
L;(P) is of type (a’,0).

The restricted family Caq, (P) — My of cyclic covers with 4 different
branch points has a non-trivial variation of Hodge structures. This follows
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from the fact that each fiber of Cnq, — M,, is isomorphic to only finitely
many other fibers (compare to 4.4.2). Therefore the eigenspaces L;(P) and
L, —1(P) are of type (1,1). In addition one concludes that m’ = 2 or m’ = m.

Now we are without loss of generality in the case of a family C — P; with
a primitive pure (1,1) — VHS. For the proof of Theorem 6.1.7 we need the
following lemma:

Lemma 6.1.11. Let C' and C’" be curves and ~ : Jac(C) — Jac(C’) be an
isomorphism of principally polarized abelian varieties. Then there exists a
unique isomorphism f : C — C' such that

tyoay = ajg oS
for each p € C, where o, and oy, denote the respective Abel-Jacobi maps.

Proof. By [39], Theorem 12.1, for each p € C and p’ € C” there is a unique
isomorphism f : C'— C’ and a unique ¢ € Jac(C’) such that

tyoa,+c=ayof

Since (y o ap)(p) = 0 € Jac(C”) and (g o f)(p) = [f(p) — p] € Jac(C’), one
has ¢ =0 for p’ = f(p). a

By the next proposition, we will apply Lemma 6.1.11 for our proof of
Theorem 6.1.7:

Proposition 6.1.12. Let q1,q2 € P, and C — P, be a family of cyclic cov-
ers. Assume there is an isomorphism between the polarized integral Hodge
structures of the fibers Cq, and Cg,, which respects the eigenspace decom-
positions of H'(Cy,,C) and H'(C,,,C). Then there is an isomorphism v :
Cp, — Cp, and an isomorphism a : P! — P such that the following diagram
commutes:

Cpy ———=Cp,

L,

P! P!

Proof. Let v be an isomorphism of polarized Hodge structures respecting the
eigenspace decompositions of H'(C,,C) and H'(C,, C). Then there exists a
suitable pair (11,%2) of generators of the Galois groups of C,, and C,, such
that

Yo (1)s = (h2)s 07
For simplicity we write 1) instead of ¢); and 5.

By the exponential exact sequence, an isomorphism v : H 1(Cq1,Z) —
H'(C,,,7Z) of polarized Hodge structures commuting with the action of 1
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on these integral Hodge structures induces an isomorphism +' : Jac(C,,) —
Jac(Cy,) commuting with 1,. In other terms one has

Y othy = 1hi 0y

for the Jacobians.
By Lemma 6.1.11, one obtains a unique isomorphism C,, ~ C,, such that

Lo =1our.
Thus one obtains the desired automorphism a. O

6.1.13. Now assume that C — P, has a primitive pure (1,n) — VHS. More-
over one can without loss of generality assume that £; is the eigenspace of
type (1,n). Choose s1,s2 € N.

If 41 + pe = 1, there remains nothing to prove for these two points with
respect to Theorem 6.1.7.

Otherwise we let the branch points collide as in Lemma 6.1.8, if we are not
in the only exceptional case, which satisfies SINT as we have seen in 6.1.9.
Thus we can restrict to the case C — P;. Assume that all 4 branch points of a
fiber of C — P; have pairwise different branch indices. By Proposition 6.1.12,
there will not be an isomorphism a between different fibers, which respects
the action of the Galois group. Hence the fractional period map according to
L1|m, is injective. Now choose the embedding M; — P! corresponding to

p1=0, ps=1, ps=oo0.

By [36], Section 4, one can identify the fractional period map concerning £
with some multivalued map, which is called Schwarz map. The Schwarz map
is the composition of the multivalued map studied by P. Deligne and G. D.
Mostow in [18], which is defined by some integrals, with the natural map
C" 1\ {0} — PE. By [18], 9.6 and the preceding description of the fractional
period map, there exists a sufficiently small neighborhood U of 0 € P! \ M,
such that the fractional period map concerning £; is (up to a biholomorphic
map) given by & — x!=#17#2 on U \ {0}. Hence the injectivity of the period
map implies that (1 — y; — pu2)~* € Z. This yields SINT.

6.1.14. Now we have the problem that we can not directly apply Proposition
6.1.12 as before, if we assume that there are 4 branch points, where exactly
two of them have the same branch index: Let p; and ps have the same branch
index and ps run around po, where

p1 =0, pp=1, ps=oc.

The automorphism z — ! interchanges 0 and oo and leaves a basis of
neighborhoods of 1 € P!\ M invariant. We have obviously the same problem,
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if we let p; run around py. But for all other pairs ki, ks € {1,2,3,4} with
k1 # ko and the coordinates

1171:07 ]{33:1, ]C4:OO,
Proposition 6.1.12 implies that the multivalued period map is injective on

U\ {0}, where U is a sufficiently small neighborhood of 0 € P* \ M;. Thus
k1 and ko satisfy the integral condition

1_,Ll'k1 — Mo =0 or (1_“/61 _N’k2)71 € Z.

Hence one must ensure that the remaining pairs satisfy this latter condition,
in order to show that SINT is satisfied:

Let us change the enumeration and assume that p; = ps. By Proposition
6.1.12, we can have

1 2
—or 1—py —po=
L e

1—pg —po = Zor 1—p1 —pe=0

for some odd ¢ € Z. Note that 1—py —po = —(1—pz —pa), if 1+ . .+ pg = 2.
Hence we only have to exclude the second case

2
(= —p2) = .

First assume that m is odd. In this case m — 2d; is odd and the second case

can not occur. Hence assume that m is even and let m = 2°r, where r = k- £
is odd. If the second case holds true, one has

2Sk€—2d1 o 2 s—1 _ 9s __ os—1

If s > 2, one has that dy = ds is even. Since Co must have a trivial V H S, one
has without loss of generality that ds = 2°~'k/. Since we have

2m =dy + ...+ dg,

which is even, where di,ds, d3 are even, too, d4 must be even. But in this
case the cover is not irreducible. Hence we must have s = 1. Since Cy must
have a trivial V H S, one has without loss of generality d3 = kf. Since we have

2m:d1+...+d4,

which is even, where dy, ds, d3 are odd, one must have that d4 is odd, too. But

in this case Cyy is the family of elliptic curves and we do not have a primitive
pure (1,1) — VHS. Therefore the second case is excluded.
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If we have 4 branch points and more than exactly two of them have the
same branch index, one can have the additional simple cases

M1 = pi2 = H3 OT [y = {2, {3 = H4.

For these very simple cases one can directly calculate all occurring examples
of families C — P; with a primitive pure (1,1) — VHS. Then one can verify
by their local monodromy data that Theorem 6.1.7 holds true in these cases
as we will do now.

Remark 6.1.15. One must without loss of generality have
dy < dy resp., di=dy=d3<dy or di =dy <d3=dy

in the simple cases, if m > 2. Otherwise we would obtain

d1=d2=d3=d4=%7

which implies that C is not irreducible, if m > 2.

Lemma 6.1.16. Assume that the family C — Py with the branch indices
dy = dy = ds # dy has a primitive pure (1,1) — VHS. Then the degree m
is odd and satisfies m < 9. Moreover one has without loss of generality that
di =dy=ds=1.

Proof. By the assumptions we have that 2m = 3d; + d4. Hence g =
ged(m,dy) = 1 divides dy, too, which implies by the irreducibility of the
fibers of C that g = 1. Thus if m is even, we have that dy = dy = d3 and d4
are odd. But in this case Cz would be the family of elliptic curves such that
L is of type (1,1). Contradiction! Hence m must be odd.

It remains to show that m < 9. Since ged(m, dy) = 1, the fibers are without
loss of generality given by

y" =xz(z—1)(z—A)

such that E[%J is of type (1, 1) as one can calculate by Proposition 2.3.4. By
Proposition 2.3.4, one can calculate the type of £ m_s by its local monodromy

data, too. For this local system one gets that

m—3 (m—3)(m —3)

3+

Jh

2m

m—3 m—=3 (m—=3)(m—-3), m-=3 (m—3)(m-—3)
| =t

2m
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Now let us assume that 9 < m. Since m must be odd, we obtain

m

[(m—S)(m—?)) m—3 m—©6 9 m—3 m-7

2}, + h="2t ot
! 1T T 2 om' 2 2

3 2m

2m

This result and Proposition 2.3.4 imply that EmT4 is of type (1,1) in this
case, too. Hence we do not have a pure (1,1) — VHS, if 9 < m. O

Remark 6.1.17. In the case of the preceding lemma one obtains all exam-
ples of families C — P; with a primitive pure (1,1) — VHS by m = 5,7,9,
which satisfy SINT as one can calculate easily, too.

Remark 6.1.18. If we are in the second simple case d; = da # d3 = dy4, one
obtains
dy +ds =dy+dy =m.

By the fact that dy # ds, one concludes that ui,ps # % Hence the local
monodromy data of Lo satisfy [24;]1 # 0 for alli = 1,...,4. Moreover one has

[2pa]1 + [2us)1 = [2pa)1 + [2p4]1 = 1.

Hence L is of type (1,1) and C can have a primitive (1,1) — VHS, only if
m = 3. Thus the only possible case is given by

1 q 2
= = — an = = -
Hi = K2 3 H3 = H4 3’

which satisfies STNT as one can easily verify.

6.2 The application of SINT for the more
complicated cases

In the preceding section we have seen that SINT is a necessary condition
for families C — P,, with a primitive pure (1,n) — VHS. In addition we have
given all examples of families C — P; with a primitive pure (1,1) — VHS,
which do not satisfy that at most two branch points have the same branch
index. Here we calculate all examples of families C — P; with a primitive
pure (1,1) — VHS, which satisfy that at most two branch points have the
same branch index.

By technical reasons, we will sometimes assume m > 4. Note that the only
possible case of a family C — P of degree 3 covers with a pure (1,1) —VHS
is given by Remark 6.1.18, where the only possible case of degree 2 covers
is given by the elliptic curves. Thus this assumption does not provide any
restriction for the more complicated cases.

Note that in the case of a family C — P; the condition SINT is equivalent
to INT.
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Remark 6.2.1. By [18], 14.3, one can describe all families of covers C — Py,
whose local monodromy data satisfy INT, such that there is not any pair
ky,ko € {1,2,3,4} with ky # ko satisfying pg, + pr, = 1, in the following
way: Let (p,q,r) € N3 with%+é+%<lamdl<p§q§r<oo. Then in
the case of 4 branch points these solutions of INT for covers can be given by:

1 1 1 1 1 1 1 1
/“:5(1_5_6—’—;)’ M2=§(1—; 5—;)7

1 1 1 1 1 1 1
,11,3:5(14‘5_5_;)7 /14425(1—‘!‘];4‘5“!‘;)

We have that
1 1 1
pr+pe=1—— m+tps=1——, po+puz=1——.
p q T

Thus p ,q, and r divide the degree m of the cover. This fact and the equations,
which use p, g, and r for the definition of the different y;, imply that we have

m = lem(p,q,r) or m=2-lem(p,q,r).

If we are in the case of a family with a primitive pure (1,1) — VHS such
that all local monodromy data satisfy pg, + pr, 7 1 and at most two branch
points have the same index, we are in the case of Remark 6.2.1 with the
additional condition p < r. Hence let us first consider this case. Later we will
consider families with at most two branch points with the same branch index
and some jig, + ftg, = 1, which is the last remaining subcase.

Now let ¢ := lem(p, q,r).

Lemma 6.2.2. Let C — P; be given by p,q,r as in Remark 6.2.1, where
p < r, and have a primitive pure (1,1) — VHS. Then one has

Proof. Since pl|¢ resp., pjm, we have the family C,, which must have a trivial
VHS. This implies that there is a d;, with 7|d;,, which implies that £|d1-0.
Since N N
dip =0t —-—*—-—*+—- or 2d;) =0+ -+ - £ —,
p q T p q T
one concludes that £|(§ + £). From the fact that % > g and £ > £ one
obtains

hS]

¢ 0 0 1 1 1
—=—-+4-. Hence —=—-+—.
p q T p q T
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Lemma 6.2.3. Let C — Py be a family with a primitive pure (1,1) — VHS,
which is given by p,q, as in Remark 6.2.1, where p < r. Then the family C
and the eigenspace Ly are given by the local monodromy data

11 11 1 71+1
/L1*2 q7 ,u’2f2 T‘7 .UJ3*27 ,LL4—2 p'
Proof. By Lemma 6.2.2, we have
1 1 1
poqa T

This equation and Remark 6.2.1, this imply that C and L; have the local
monodromy data

|
| =
DO |

M1 =

O

Remark 6.2.4. Let C — P; is a family of covers of degree m > 4 with
a primitive pure (1,1) — VHS satisfying the assumptions of Lemma 6.2.3.
Moreover assume that 3 ¢ (Z/(m))*. Hence the assumption that C — P; has
primitive pure (1,1) — VHS implies that the family C;3 must have a trivial
V HS. Thus all fibers of C3 must be isomorphic. Hence they are ramified over
at most 3 points. By Lemma 6.2.3, one concludes that

1 3 1 3 1 3
O—[g*a]l, O—[if;]l or 0—[54’5]1

Since py = % + % < 1, one concludes that 2 < p < ¢ < r. Thus one has
p=6, ¢q=6 or r==6.

Hence one can determine all examples of families C — P; with a primitive
pure (1,1) — VHS in this case as we will do now:

6.2.5. Keep the assumptions of Remark 6.2.4. In the case p = 6 one has that
[3u4]1 = 0. One can have ¢ = 7,8,9,10,11, 12, where ¢ = 12 implies that

which leads to a family with a primitive pure (1,1)—V HS. Now we verify that
q=17,8,9,10,11 do not lead to a family with a primitive pure (1,1) — VHS:
One must have that Ly is unitary. It has the local monodromy data

1

1 1 5
o =5 and /,L4=[§—|—6]1=§.
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Hence one must have that

> p =

| =

which is satisfied for ¢ = 10, 11, but not for ¢ = 7,8,9. For ¢ = 10 we have

that

1 1 1 1
- =

p g 15

This leads to a family given by the local monodromy data

4 13 1 2

m=1p H2=3p M=35 HM=3
One calculates easily that the eigenspace L7 in the VHS of this family is
given by
4 1 1 2
5 MzZ%, #325, ,u4:§.
Hence this family has not a pure (1,1) — VHS.
For ¢ = 11 we have that

H1 =

1 1 5

p g 66
Hence the equation of Lemma 6.2.2 can not be satisfied in this case.

6.2.6. Keep the assumptions of Remark 6.2.4. Moreover assume that ¢ = 6.
In this case we can have p = 3,4, 5, where p = 3 implies

1 1 1
p 3 q
which yields an example of a family with a primitive (1,1) =V HS. For p = 4
resp., p = 5 Lemma 6.2.2 and Lemma 6.2.3 yield a family of covers given by
the local monodromy data

_1 5 _1 _3
M1—3, M2—12 M3—2, M4—4
resp.,
_1 _14 _1 _7
M1—37 ﬂ2—30 M3—27 M4—10-

Hence one can easily verify that L5 is an eigenspace of type (1,1) in both
cases. Thus p = 4,5 do not lead to a primitive pure (1,1) — VHS.

6.2.7. Keep the assumptions of Remark 6.2.4. Moreover assume that r = 6.
In this case Lemma 6.2.2 implies that

>

=N

1
3

SRR
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Hence one has p = 2 or p = 3, where p = 2 would imply that u4 = 1, and
p = 3 yields the same example of a family with a primitive pure (1,1)—=V HS
as in 6.2.6.

Now we have considered the subcase given by 3 ¢ (Z/(m))*. We start the
consideration of the subcase given by 3 € (Z/(m))* by the following lemma:

Lemma 6.2.8. Let C — Py be a family with a primitive pure (1,1) — VHS,
which satisfies that each pi, + pir, 7 1. Then one has m > 4.

Proof. We know that one must have m > 4 in the considered case. Thus we
must only exclude m = 4. Since for a family C of degree 4 covers with a
primitive pure (1,1) — VHS the family Cy must have a trivial V HS, one has
without loss of generally d; = 2. By the assumption that each ug, + pr, # 1,
one concludes that dy, ds, ds are not equal to 2. Hence dy, ds, ds are odd. But
this contradicts our assumptions, which imply that we have the even sum

2m:d1++d4
O

Remark 6.2.9. Keep the assumption of Lemma 6.2.3. If m > 4, the
eigenspace L3 is not of type (1,1). Assume that 3 is a unit in Z/(m). Thus
Lemma 6.2.8 implies for the local monodromy data of Lz that > pu; = 3 or
> wi = 1. Recall that p3 = 2. Hence > p; = 3 implies that

1
ul,uz,u4>§-
By Lemma 6.2.3, one concludes that
3 3 d 3 3
=——— an == ——.
f 2 q 12 2 r
By Lemma 6.2.2, this implies that
., o, 3,3.3,3 1 1,33 1.3
M4—M1M2M3—2q2r2—2pq—2p

in this case. This implies that p, g, < 6.
In the case Y p; = 1 one gets puy, po, g < % By Lemma 6.2.2 and Lemma
6.2.3, this implies that

1 3 1 3
_+_2 __- 409
, u2—2 Tand Ly = 2—|—

=

N | =
| W

such that p < 6 and ¢q,r > 6.
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Remark 6.2.10. The case p,q,7 < 6 does not yield any example of a fam-
ily with a primitive pure (1,1) — VHS, since no triple (p,q,7) € N? with
2 <p < g <r <6 satisfies both

1

1 1 11 1
-=-and - +-+-<1
p q r rp q T
as one can check by calculation for each example.
1

T

6.2.11. Assume that we are in the case p < 6 and ¢, > 6. Since %—i—% =
one has % < 2% such that 6 < ¢ < 2p and 3 < p < 6. Hence one has two
cases: p =4 or p = 5. Thus by using that ]% — % 1

= -, one calculates that only
the examples given by

p=4, g=r=8 and p=5, ¢g=r=10
have a primitive pure (1,1) — VHS in this case.

Now we consider the last remaining case of a family C — P; with a primi-
tive pure (1,1) — VHS. In this case there are at most 2 branch indices equal
and one has some pp, + pr, = 1.

Lemma 6.2.12. Let C — Py a family of cyclic covers. If there are ki, ks €
{1,2,3,4} such that dy, + dx, = m with dy < ds < d3 < dy, then one has

di+ds=m and do+ ds =m.

Proof. (quite easy to see) O

Remark 6.2.13. By the preceding lemma, we have that d; + dy = do +
ds = m, if there are ki,ky € {1,2,3,4} such that di, + dx, = m with
dy < do < d3 < dy. Hence if di + d3 = m resp., d3 = dy4, one gets d; = ds,
too. But this contradicts the assumption that at most 2 branch indexes are
equal. Hence by SINT, one gets

1 1
u1+u2=1—5<1, u1+u3=1—§<17 po+pz =1

with p,q € N and p < ¢. Hence one obtains similarly to Remark 6.2.1 with
1,1

=4+ =<1t

p'a
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Lemma 6.2.14. Assume that the local monodromy data of Remark 6.2.13
yield a family of degree m > 4 with a primitive pure (1,1) —V HS. Then one
has p = q and m is even.

Proof. In the case of Remark 6.2.13 the eigenspace L, is given by the local
monodromy data

1 1 1 1

- =L~ D oma= 4

p q p q p q p q
Thus in this case Lo is of type (1,1), if and only if p < ¢. Hence one can
obtain a primitive pure (1,1) — VHS, only if p = q. Now p = ¢ implies that
po = p3 = 0 for the local monodromy data of Ly. Hence the family of covers
has an even degree. ]

Proposition 6.2.15. Assume that the local monodromy data of Remark
6.2.13 yield a family of degree m > 4 with a primitive pure (1,1) — VHS.
Then p = q < 6.

Proof. By the preceding lemma, the assumptions imply that p = ¢q. Hence by
Remark 6.2.13, we have:

p—2 1 p+2
- = = [y = — === 6.1
H1 % H2 = 13 9 Ha 2% (6.1)

If p > 6, then L3 has the local monodromy given by

_p—6 o1 _pt6
H1 = 2p ) /l2—/l3—27 Ha = 2p .
Hence Proposition 2.3.4 implies that L3 is of type (1,1) in this case. ]

Lemma 6.2.16. Assume that the local monodromy data of Remark 6.2.13
yield a family of degree m > 4 with a primitive pure (1,1) — VHS. Then p
must be even.

Proof. Assume that p is odd. Since ged(p — 2,2p) = 1 in this case, one gets
a family of degree 2p with branch indices

dy=p—2, dy=d3s=p, dg=p+2.

Thus all branch indices are odd, and C,, is a family of elliptic curves such that
L, is of type (1,1). Contradiction! O

Remark 6.2.17. Keep the assumptions of the preceding lemma. Since one
must have p1 > 0, the preceding proposition and (6.1) imply that

3<p<6.

Since p = ¢ must be even, one can only have p =4 and p = 6.
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1. For p = 4 one obtains the example of a family with a primitive pure
(1,1) — VHS given by

1 1 3
M= H2=M3 =5, Ha= 7.

2. If p = 6 one has the example of a family with a primitive pure (1,1)—VHS

given by
1 1 2
1= = Ho = [13 = = e = —.

6.3 The complete lists of examples

In this section we give the complete lists of examples of families C — P,
with primitive pure (1,n)-variations of Hodge structures and derived pure
(1, n)-variations of Hodge structures.

By our preceding calculations, we get the following complete list of families
of covers C — P; with a primitive pure (1,1) — VHS, where “ref” denotes
the number of the preceding remark, lemma, proposition or point yielding
the respective example:

number degree branch points with branch index genus ref

1 1111 1 (known)
2 3 1221 2 6.1.18
3 4 1223 2 6.2.17,(1)
4 5 1333 4 6.1.17
5 6 1443 3 6.2.6,6.2.7
6 6 2334 2 6.2.17,(2)
7 7 2444 6 6.1.17
8 8 2554 5 6.2.11
9 9 3555 7 6.1.17
10 10 3665 6 6.2.11
11 12 4776 7 6.2.5

We will later see that each derived pure (1,n) — VHS is in fact a derived
pure (1,1)—V HS. In the next section we will verify that we get the following
complete list of families of covers C — P; with a derived pure (1,1) — VHS,
where N,, means the number of C,, in the preceding list, which has the
corresponding primitive pure (1,1) — VHS:

degree branch points with branch index genus 79 Ny,
4 1111 3 2 1

6 1113 4 3 1
6 1221 4 2 2
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Note that any family C — P,, with a primitive pure (1,n) — VHS satisfies
SINT, which implies INT. Hence by consulting the list of [18] on page 86,
which contains all examples satisfying INT for n > 2, and the computation
of the types of the eigenspaces of the corresponding covers), we have the
following complete list of families of covers with a primitive pure (1,n)—V HS
for n > 1:

degree branch points with branch index genus

3 21111 3
4 22211 3
5 22222 6
6 33322 4
3 111111 4

In [11] R. Coleman formulated the following conjecture:

Conjecture 6.3.1. Fix an integer g > 4. Then there are only finitely many
complex algebraic curves C of genus g such that Jac(C) is of CM type.

Remark 6.3.2. J. de Jong and R. Noot [29] resp., E. Viehweg and K. Zuo
[58] have given counterexamples of families with infinitely many C'M fibers
for g = 4,6. In our lists here we have counterexamples for g = 5, 7.

J. de Jong and R. Noot resp., E. Viehweg and K. Zuo needed to find a fiber
with CM for the proofs that their examples of families have infinitely many
CM fibers. In the proof of Theorem 4.4.4, which implies that the examples of
this section have dense set of complex multiplication fibers, we did not need
to find one C'M fiber first.

By the fact that our examples C — M, with a dense set of C'M fibers
satisfy that n + 1 branch points have the same branch index, Theorem 2.4.4
yields the C'M-type of one CM fiber and hence by Lemma 1.7.3, the C M-
type of a dense set of C'M fibers.

6.4 The derived variations of Hodge structures

In this section we determine the families of cyclic covers with a derived pure
(1,n) — VHS and verify that the list of examples in the preceding section is
complete.

Remark 6.4.1. Assume that the family C of degree dm covers has a derived
pure (1,n) — VHS induced by C,4. Let

d=npi" ... pt



138 6 Examples of families with dense sets of complex multiplication fibers

be the decomposition of d into its prime factors. Then there exists a family
of covers of degree pym with a derived pure (1,n) — VHS. Hence there are
two cases to consider first: d is a prime number and divides m, or d is a prime
number and does not divide m.

Lemma 6.4.2. Let p be a prime number. Assume that d is a prime number
such that ged(d,p) = 1. Then a family C of covers of degree p - d with a
derived pure (1,n)—V HS induced by Cq can not exist, if all Dehn twists yield
semisimple matrices with respect to the monodromy representation of Lg.

Proof. Since C, must have a trivial VH S, there exists a dy such that d divides
do. Moreover there is a d; such that d does not divide d;. Hence ged(d, d; +
ds) = 1. by the fact that C4 has the property that its local monodromy
data satisfy 1 + pe # 1, one concludes that ged(p, dy + ds) = 1, too. Hence
[d1 + d2)ap is a unit in Z/(dp). Thus there exists a dy € (Z/(dp))* such that
dold1 + da]ap = 1. One obtains that the sum of the integers of {1,...,p — 1}
representing [dody]ap and [doda]qp is given by dm + 1. By Proposition 2.3.4,
one concludes that L4, is not of type (0,n + 1). Moreover the fact that the
local monodromy data of Ly, satisfy

dp+1 dp—1
, M3 S 1)
dp dp

M1+ pe = Ha+ oo F s <N

tells us that
w1+ fpgs <n+ 2.

Hence one concludes by Proposition 2.3.4 that L4, is not of type (n + 1,0),
too. O

Lemma 6.4.3. Let m = 2'p, where p # 2 is a prime number and t > 1.
Assume that d is a prime number such that ged(d,m) = 1. Then a family C
of degree m - d covers with a derived pure (1,n) — VHS, which is induced by
Cq, can not exist.

Proof. Since Co must have a trivial VHS, one has dy = ... = d,, = 2" 1dp.
By the fact that C, must have a trivial VHS, we obtain that 2'd divides n
different branch indices. Since there must be at least two different branch
indices, which are not divided by d, d,,4+2 and d, 43 are not divided by d. By
the fact that d; = ... = d,, = 2~ !dp is not divided by 2'd, one must have
n = 1 and that 2'd divides do. Moreover the facts that

di+...+ds € (m)=(2"pd) and 2|dy

imply without loss of generality that 2 does not divide d3. We have two cases:
Either p|ds or this does not hold true. In the first case one has that 2, p and d
do not divide ds 4+ ds3. Hence ds + d3 is a unit, and again we use the argument
that there is a dy € (Z/(dm))* such that [doda + dods] = 1.
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In the other case d3 yields a unit of Z/(dm). Hence we have without loss
of generality d3 = 1. Thus g := ged(dm,dy + d3) € {1,2}. If g = 1, we are
done again. Otherwise we must have ¢t = 1, if g = 2. Hence

[(pd — 2)(d1 + dg)]dm = pd-l—pd —2=dm—2

such that £,4_2 is neither of type (0,n + 1) nor of type (n + 1,0), since the
fact that 2'd divides dy implies that [(pd — 2)da]am # [1]dm.- O

Lemma 6.4.4. Let p be a prime number and m = p* with t > 2. Assume
that d is a prime number such that ged(d,p) = 1. Then there can not be a
family C of degree m - d covers with a derived pure (1,n) — VHS, which is
induced by Cyq.

Proof. Since C, must have a trivial V HS, one concludes without loss of gen-
erality that dp’~! divides di,...,d,. Since d and p divide

dpt:d1+--~+dn+37

too, p resp., d does not divide at least two different elements of {d, 1, d, 12,
dpn43}. Hence there is an element of {d, 11, dnt2,dn13}, which is not divided
by both d and p. Without loss of generality d,, .1 is a unit in Z/(2!d). Hence
one has without loss of generality [d; + dpt1]dam = [Lam- O

There are only few remaining examples, which do not satisfy the assump-
tions of the preceding lemmas. One of these examples is considered in the
following lemma:

Lemma 6.4.5. Let d # 3 be a prime number. There can not be a family of
covers of degree 3d with a derived pure (1,2) — VHS induced by Cq given by
the local monodromy data

2

H5=§-

1
pL= = e g
Proof. Let ged(d,3) = 1 and C be a family of degree 3d with a derived
pure (1,2) — VHS. Since Cs should have a trivial VH.S, one has with a new
enumeration d|d; and d|ds. Moreover one has without loss of generality that
ds and dy4 are not divided by d. Hence d divides neither dy + d3 nor do + dy.
Moreover the local monodromy data of C4 tell us that 3 does not divide dy +d3
or dg + dy4. Hence without loss of generality d; + d3 is a unit in Z/(3d) such
there is a dy € (Z/(3d))* with the property that [dod; + dods]sq = 1, which
implies that Lg, is of type (1,2) or of type (2, 1). O

The reader checks easily that all examples of families with a primitive
pure (1,n) — VHS satisfy with two exceptions the assumptions of one of the
preceding lemmas. These two exceptions yield examples of families with a
derived pure (1,n) — VHS as we will see now.
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6.4.6. Now we consider the case of the elliptic curves. Let d be a prime
number with ged(d,2) = 1 and C be a family of degree d - 2 covers with
a derived pure (1,1) — VHS induced by C4. Thus di,...,ds must be odd.
Without loss of generality we have dy = d, since Cy must have a trivial
VHS. Since ds = d would imply that L; is of type (1,1), one has that
dy,da,ds € (Z/(2d))*. We have two cases. Either d; = da or this does not
hold true. In the first case we put d; = do = d — 2. One has

2d <dy+do+dy <2-2d

such that LL; is of type (1,1), if 4 < d. Thus one can have d = 3. In this case
one has a family of degree 6 covers, where dy = 3. Hence one must have

In the second case, one puts ds = d — 2. This implies that ds +dy = 2d — 2.
Since dy # da, one can not have d; = ds = 1 such that L, is of type (1,1) in
this case.

6.4.7. Now we consider the case number 2 in the list of examples with a
primitive pure (1,1) =V HS. Let d be a prime number with ged(d,3) = 1 and
C be a family of degree d-3 covers with a derived pure (1,1)—V H.S induced by
Cg4. Assume without loss of generality that d divides d; and di +. ..+d4 = 3d.
We have 2 cases: Either d divides ds, d3 or dy4, or d does not divide ds, d3 and
dy4. In the first case one has without loss of generality that d divides ds. Since
d divides dy and dy + ... 4+ d4 = 3d, one concludes that dy = do = d. This
implies that Lo is of type (1,1) such that d = 2. In addition one concludes
that
dy=dy=2, d3=dy=1.

In the second case one has that 3 does not divide d(d; + d;) for exactly
one k € {2,3,4}, which follows by the branch indices in the case number 2.
Hence 3 does not divide dy + dj. Moreover d does not divide dy + dj, too.
Hence dy +dy, € (Z/(3d))*.

Proposition 6.4.8. Let d be a prime number, which divides m and C be
a family of covers of degree md. Assume a Dehn twist yields a semisimple
matriz of mazximal order m with respect to the monodromy representation of
Lg. Then C can not have a derived pure (1,n) — VHS induced by Cq.

Proof. Assume without loss of generality that pq(732) yields a matrix of
order m. In this case [d(d; + d2)] € Z/(dm) has the order m. Hence the fact
that d divides m implies that dy + do € (Z/(dm))*. O

Remark 6.4.9. One can easily check that the assumptions of the preceding
proposition are satisfied for all examples of families with a primitive pure
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(1,n) —VHS except of the case of elliptic curves. In this case we have in fact
an example of a family of degree 4 covers with a derived pure (1,1) — VHS.
Without loss of generality we have

di+...4+dy =4

Hence the only possibility is given by

6.4.10. In the case of the elliptic curves we have families of degree 6 and
degree 4 covers with a derived pure (1,1) — VHS. Hence one must check
that there is not a family of degree 8, 12 or 18 covers with derived pure
(1,1) — VHS in this case.

First we check that there is not a family C of degree 8 covers with a derived
pure (1,1) =V HS. Otherwise one has such a family C of degree 8 covers such
that Cq is the family of degree 4 covers with a derived pure (1,1) — VHS.
This implies that each dj, satisfies [di]4 = [1]4 or each dy, satisfies [dy]s = [3]4.
Moreover one has without loss of generality that d; + ...+ dy = 8. Hence it
is not possible that each dj, satisfies [di]4 = [3]4. Thus the only possibility is
(up to the numbering) given by

d1:d2=d3=1, d4=5.

But in this case L3 is of type (1,1). Thus there can not exist a family of
degree 8 covers with a derived pure (1,1) — VHS.

There can not be a family of degree 12 covers with a derived pure (1,1) —
VHS induced by Cg. Otherwise one has that Cs the example of degree 4
covers with a derived pure (1,1) — VHS. Thus one concludes that

[d1}4 =...= [d4]4 = [1]4 or [d1]4 =...= [d4]4 = [3}4

Since one has without loss of generality that dy + ...+ dy = 12, the only
possibilities are given by

d1:d2:5, d3:d4:1 and d1:9, d2:d3:d4:1.

In the first case L5 is of type (1,1) and in the second case Lj is of type (1, 1).

There can not be a family of degree 18 covers with a derived (1,1) —VHS
induced by Cy. Otherwise one has that Cs is the example of degree 6 covers
with a derived pure (1,1) — VHS induced by the elliptic curves. Thus one
concludes that

[d1]6 =...= [d3]6 = [1]6 and [d4]6 = [3]6
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or

[d1]6 =...= [dg]@ = [5]6 and [d4]6 = [3]6

Since one has without loss of generality that d; + ...+ dy = 18, the only
possibilities are given by:

di=13, dy=ds=1, dy=3
di=dy=7, dy=1, dy=3
di =7, dy=ds=1, d;=9
di=dy=d3=1, dy=15
di=dy =ds =5, dy=3.

One has that L5 is of type (1, 1) in case 1, Lo is of type (1, 1) in case 2, L5 is
of type (1,1) in case 3, L7 is of type (1,1) in case 4 and L is of type (1,1)
in case 5.

6.4.11. It remains to show that there can not exist a degree 12 cover with a
derived (1,1) — VHS induced by the degree 3 cover given by

Otherwise one has such a family C of degree 12 covers such that Cs is the
family of degree 6 covers with a derived pure (1,1) — VHS by the degree 3
example above. Thus one concludes that

[dile = [d2]6 = [2]6¢ and [ds]e = [da]e = [1]6

or
[di]s = [do]6 = [4]¢ and [ds]s = [da]6 = [5]s

Since one has without loss of generality that dy + ...+ dy = 12, the only

possibilities are given by

d1:8, d2:2, d3:d4:1 and d1:d2:2, d3:7, d4:1

One has that L5 is of type (1,1) in the first case and one has that L3 is of
type (1,1) in the second case.



Chapter 7
The construction of Calabi-Yau
manifolds with complex multiplication

In this chapter we explain the basic construction methods of Calabi-yau
manifolds with complex multiplication and give a first new example. We
call a family of Calabi-Yau n-manifolds, which contains a dense set of fibers
X such that the Hodge group of the Hodge structure on H*(X, Q) is a torus
for all k, a CMCY family of n-manifolds.

In Section 7.1 we explain the technical facts, which we will need for the con-
struction of CMCY families. By using the mirror construction of C. Borcea
[9] and C. Voisin [60], we give a method to construct an infinite tower of
CMCY families in Section 7.2. In Section 7.3 we discuss the construction
method of E. Viehweg and K. Zuo [58]. By using this method given by a
tower of cyclic covers, E. Viehweg and K. Zuo [58] have constructed an ex-
ample of a CMCY family of 3-manifolds. We finish this chapter with the
example

P35 V(ys + yi + z1(x1 — 20)(21 — Azo)T0) — X € My

of a family of K3 surfaces with a dense set of C'M fibers. This example is
obtained from the Viehweg-Zuo tower, which starts with the family

P? > V(yi + z1(z1 — 20) (21 — Azo)mo) — A € My

of curves. This family has a dense set of CM fibers by the previous chapter.
By some of its involutions the family of K3 surfaces above is suitable for the
construction of a Borcea-Voisin tower.

7.1 The basic construction and complex multiplication

Now we have finished our considerations on Hodge structures of cyclic covers
of P'. We start with the second part, which is devoted to the construction
of families of Calabi-Yau manifolds with dense set of complex multiplication
fibers.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 143
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_8,
(© Springer-Verlag Berlin Heidelberg 2009
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In the works of C. Borcea [8], [9], of E. Viehweg and K. Zuo [58] and of
C. Voisin [60] the methods to obtain higher dimensional Calabi-Yau mani-
folds contain one common basic construction. In this section we describe this
construction and explain how it yields complex multiplication. For this con-
struction we use Kummer coverings. Let A — B be a principal divisor with

(f) = A—B for some f € C(X). The Kummer covering given by (C(X)(”\L/%)

is nothing but the normalization of X in C(X)( R/f).

Let V4 and V5 be irreducible complex algebraic manifolds and A resp., B
be a bundle of irreducible algebraic manifolds with universal fiber A resp.,
B over Vj resp., V4. Moreover let Z resp., ¥ be a cyclic Galois cover of
A resp., a cyclic Galois cover of B of degree m over Vj resp., Vo ramified
over a smooth divisor. We assume that the irreducible components of these
ramification divisors intersect each fiber of Z resp., ¥ transversally in smooth
subvarieties of codimension 1. Thus we assume that Z and ¥ are given by
Kummer coverings of the kind

m Dy+...+ Dk)
Dy ’
where Dy, ..., Dy are (reduced) smooth prime divisors, which do not intersect
each other.

Example 7.1.1. By a cyclic degree 2 cover S — R of surfaces (or in general
algebraic varieties), one has an involution on S. Let us assume that the surface
S is a smooth K3 surface. Moreover assume that there exists an involution
¢ on S, which acts via pull-back by —1 on I'(wg). It has the property that
it fixes at most a divisor D, whose support consists of smooth curves, which
do not intersect each other (see [60], 1.1). Moreover by [60], 1.1, to give an
involution ¢ on S, which acts by —1 on I'(wg), is the same as to give a cyclic
degree 2 cover S — R of smooth surfaces. In this case R is rational, if and
only if D # 0.

We consider the following commutative diagram, which yields the basic
construction:

Zxy— V' ® - AxB VixVe o (7.1)
] | d

v ~ & N
ZxX Y II

First we explain the upper line of this diagram: The cyclic covers Z and %
can locally be described by equations of the type

vy = [ fite... 2
=1,k
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over any open affine set A of A resp., B, where f; is the (reduced) equation
of D; in A. The Galois transformations are given by

;) & (2T

(y7x15"'a myaxlv"'7xj)

for some k € Z/(m). Hence we have a natural identification between Z/(m)
and the Galois groups given by [k],, — gx. By the description of the covers
above in terms of Kummer coverings, this identification is independent of the
chosen open affine subset. Now + is the quotient by

G:={((1,1)) c G :=Gal(Z;A) x Gal(%;B),

and « is the quotient by G’'/G. The morphism ¢ is given by the blowing
up of the fiber product of the supports of the branch divisors of Z and 3.
Moreover § is the blowing up along the singular points of ), which is given
by the intersection locus of the ramification divisors, and [ is the blowing up
with respect to the corresponding inverse image ideal sheaf. Hence & and 7 are
the unique cyclic covers obtained by the universal property of the blowing up
(compare to [26], II. Corollary 7.15). By the construction of «, one can easily
check that & is not ramified over the exceptional divisor. Hence the branch
locus of & is smooth. This implies that ) is smooth, too. The ramification
locus of 4 is given by the smooth exceptional divisor of 3, since G leaves the
generators of the inverse image ideal sheaf invariant as one can see by the
following remark:

Remark 7.1.2. Now we describe Z x ¥. A neighborhood of the preimage
point p € Z x X of a singular point can be identified with an open neighbor-
hood of 0 € C? x B, where B is a ball of suitable dimension and the Galois
group acts via (21, z9) — (e%xh e x9) with respect to the coordinates on
C2. Due to [6], III. Proposition 5.3, each singular point of )’ has an ana-
lytic neighborhood isomorphic to V(2™ = y™~12) x B. Hence locally we have
the product of a cover of surfaces with B. One should have B in mind. But

for the description of Z x X, it is sufficient to consider only covers of sur-
faces. The inverse image ideal sheaf with respect to this cover is generated by
{2 i =0,1,...,m}. By the Veronese embedding for relative projective
manifolds, one can easily identify the blowing up with respect to this ideal
with the blowing up with respect to the ideal generated by {x1,x2}. But this
is the blg?\vigg up of the origin resp., the preimage point of the singular point.
Hence Z x ¥ is given by the blowing up of the reduced preimage v~ 1(95),
where S is the singular locus of ).

Now we have described the basic construction. Next we see that this con-
struction yields complex multiplication. We use following fact:

Proposition 7.1.3. For alla € A, and b € B, we have the following tensor
product of rational Hodge structures on the fibers:
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H'(2a % %,Q) = @ H*(22,Q) @ H'(%,Q)

at+b=n
such that
H(Z;x%) = P H(Z:) @ H(5)
ptp'=r.q+q'=s
Proof. (follows from [61], Théoréme 11.38) O

We want to construct higher dimensional varieties with complex multipli-
cation. The first main tool is:

Proposition 7.1.4. Let hy and ho be rational polarized Hodge structures.
Then
hs = h1 ® hs

is of CM type, if and only if hy and hy are of CM type.
Proof. (see [8], Proposition 1.2) O

By the fact that )’ is not smooth, but the blowing up Y is smooth, )
will be our candidate for a family of Calabi-Yau manifolds with dense set of
complex multiplication fibers. Hence we must consider the behavior of the
Hodge structures under blowing up:

Lemma 7.1.5. Let X be an algebraic manifold of dimension n and X be
the blowing up X with respect to some submanifold Z > X of codimen-
sion 2. Then Hg(H*(X,Z)) is commutative, if and only if Hg(H*(X,Z))
and Hg(H*=2(Z, 7)) are commutative, too.

Proof. By [61], Théoréme 7.31, we have an isomorphism
H*(X,Z)® H**(2,Z) =~ H"(X, Z)
of Hodge structures, where H*~2(Z, Z) is shifted by (1,1) in bi-degree. Since
Hg(H"(X,Z)) = Hg(H"(X,2) ® H* *(2,2)) C Hg(H"(X,Z)) x Hg(H"*(Z,Z))
such that the natural projections
Hg(H"(X,Z)) — Hg(H"(X,Z)) and Hg(H"(X,Z)) — Hg(H"*(2,2))

are surjective (see Lemma 2.4.1), we obtain the result. O

Corollary 7.1.6. Let X be a smooth surface and X be the blowing up of
some point p € X. Then X has complexr multiplication, if and only if X has
complex multiplication, too. Moreover we obtain that

Hg(H?(X,Z)) =~ Hg(H*(X,Z)).
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Now we want to consider the behavior of the fibers. Hence for simplicity
we assume now that V4 = V5 = Spec(C) in diagram (7.1). By the fact that

has the Hodge structure given by the Hodge sub-structure of Z x ¥ invariant
under the Galois group, one concludes:

Theorem 7.1.7. If for all k the groups Hg(H’i(Z,Q)), Hg(H*(%,Q)) and
Hg(H*(Z;,Q)) are commutative,* then Hg(H*(Y,Q)) is commutative for all
k, too.

Remark 7.1.8. At first sight the condition that for all k the groups
Hg(H*(Z2,Q)), Hg(H*(%,Q)) and Hg(H*(Z;,Q)) have to be commuta-
tive may seem to be a little bit restrictive. But by the Hodge diamond of a
Calabi-Yau n-manifold with n < 3 or the Hodge diamond of a Calabi-Yau
n-manifold given by a projective hypersurface, one sees that the condition
that all its Hodge groups are commutative is equivalent to the condition that
it has complex multiplication. Moreover we will need this condition for an
inductive construction of families of Calabi-Yau manifolds with dense set of
complex multiplication fibers in arbitrary high dimension in the next section.

7.2 The Borcea-Voisin tower

Recall that we want to construct families of Calabi-Yau manifolds with a
dense set of CM fibers. Hence let us now define Calabi-Yau manifolds:

Definition 7.2.1. A Calabi-Yau manifold X of dimension n is a compact
Kihler manifold of dimension n such that T'(Q%) =0 foralli=1,...,n—1
and wy = Ox.

By the construction of the preceding section, which we will use, we need
more and we get more than only complex multiplication. Hence let us define,
which we will get:

Definition 7.2.2. A CMCY family X — B of n-manifolds is a (smooth)
family of Calabi-Yau manifolds of dimension n, which has a dense set of fibers
X, satisfying the property that Hg(H* (A3, Q)) is commutative for all k.

In this section the degree m of all cyclic covers, which will occur, is equal
to 2. We apply the construction of a Calabi-Yau manifold with an involution
by two Calabi-Yau manifolds with involutions by C. Borcea [9]. This yields an

1 One needs in fact the condition that each Hg(H*(Z;,Q)) is commutative. The argument
is similar to the argument in the proof of Proposition 10.3.2.
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iterative construction of CMCY families with involutions in arbitrary high
dimension by CMCY families in lower dimension.?

Construction 7.2.3. Let 2, — M be a CMCY family of n-manifolds
covering the A bundle A with ramification locus R;, which satisfies the
assumptions for Z in diagram (7.1). Moreover let %; be a CMCY family
¥; — M@ of n;-manifolds covering the B; bundle B; over M) with ramifi-
cation locus R, which satisfies the assumptions for ¥ in diagram (7.1), for
alll <ieN.

Let us assume that there is a dense subset of points m() € M® resp.,
p € M, which have the property that each Hg(H"*((X;),,t,Q)) and each

Hg(H*(R",,),Q)) resp., each Hg(H*((Z,),,Q)) and each Hg(H*((R1),, Q)
is commutative.

We define an iterative tower of covers
Zi > VO = M x M® x ... x MY

given by R

Z; = Yi,
where Y; is obtained from Y in the diagram (7.1) with V; = V=1V, =
M(i), Y =23; and Z = Z;_; for all i € N. Let us call such a construction
Borcea-Voisin tower.

The assumption that we have ramification in codimension 1 on the fibers
of a family of Calabi-Yau manifolds leads to the important property that the
corresponding involutions act by —1 on the global sections of their canonical
sheaves, as we see by the following Lemma:

Lemma 7.2.4. Let C be a Calabi-Yau manifold and v be an involution on
it. Assume that the points fized by ¢ are given by a non-trivial smooth divisor
D. Then v acts by —1 on H°(C,w¢).

Proof. By our assumptions, the induced natural cyclic cover v : C' — C/v is
ramified over a smooth non-trivial divisor D such that C'/¢ is smooth. Hence
one has a cyclic cover of manifolds and one can apply the Hurwitz formula
(compare [6], I. 16). Since C' has a trivial canonical divisor, the Hurwitz
formula implies that Oc(—D) = v*(wey,). This implies that we/, does not
contain any global section. Since w¢/, yields the eigenspace for the character
1 of 74 (we) (see [20], §3), the character of the action of t on H°(C,w¢) is not
given by 1. Thus it is given by —1. ad

2 The construction of C. Borcea is repeated in Proposition 7.2.5. By C. Voisin [60], the same
construction was used to construct Calabi-Yau 3-manifolds by K3-surfaces with involutions
and elliptic curves. This is the reason that our construction here is called “Borcea-Voisin
tower”. Here this construction is introduced as a systematic method to construct Calabi-
Yau manifolds with complex multiplication in an arbitrary dimension which has never been
done by C. Borcea or C. Voisin in this way.
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Proposition 7.2.5. Assume thaty, : C1 — My and s : Coy — Ms are cyclic
covers of degree 2 with the involutions 11 and o and ramification divisors
Dy, C Cy and Dy C Cs, which are not trivial and consist of disjoint smooth
hypersurfaces. Moreover assume that Cy and Cy are Calabi- Yau manifolds of

dimension ni and no. Let 01/;_62 denote the blowing up of Cy1 x Cy with
respect to Dy X Do. Then by the involution on Cy x Cy given by (i1,t2), one
obtains a cyclic cover vy : C; x Co — C such that C is a Calabi- Yau manifold.

Proof. We assume that each C; is a Calabi-Yau manifold such that h*9(C;) =
0 forallt=1,...,n; — 1. By the assumption that one has the ramification
divisors Dy and Dy and Lemma 7.2.4, the corresponding involution of each
7v; acts by —1 on each we,. Thus one concludes that h?%°(C) = 0 for all
j:L...,(nl +n2)71

The canonical divisor K 635G, of C1 x (5 is given by the exceptional di-
1

visor E of the blowing up C7 x Cy — C; x Cy. Moreover the ramification
divisor R of v coincides with E. Hence by the Hurwitz formula ([6], I.16), we
have

~

OC:?EQ(R) = OC%Q(KCT;EQ) = wCT;Ez = ’}/*(Wc) ® O

C/l—;az (R)

Thus one concludes that v*(we) = O.

Since ¢1 and t9 act by the character —1, the involution (¢1,t2) on Cq x Co
leaves the global sections of w 635G invariant. Now recall that 7. (w 0/1;-52)
consists of a direct sum of invertible sheaves, which are the eigenspaces
with respect to the characters of the Galois group action. By [20], §3, the
eigenspace for the character 1 is given by we. Thus we has a non-trivial
global section. Hence the canonical divisor of C' satisfies (up to linear equiva-
lence) K¢ > 0. Thus by the fact that v*(we) = O, we have the desired result

Ko ~ 0. O
Altogether one has the following result:

Theorem 7.2.6. Each family Z; — M x M®) x ... x M obtained by the
Borcea-Voisin tower is a CMCY family of n + na + ... + n;-manifolds.

Proof. The statement that each (Z;), is a Calabi-Yau manifold follows fiber-
wise by induction. By the assumptions, we have the result for n = 1. First by
induction, one can show that the ramification loci are given by smooth divi-
sors. By using this fact and the induction hypothesis, one can apply Lemma
7.2.4 such that each involution acts by the character —1 on each I'(w). Hence
the assumptions of Proposition 7.2.5 are satisfied, which provides the induc-
tion step.

Next we show the statement about the commutativity of all Hodge groups
over a dense subset of the basis. Due to the situation described in diagram
(7.1) the connected components of the ramification locus (Riy1),xme+1 of
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(Zi41)pxma+n over p x mU+t) € VO x MU+ are given by the connected

components of (Z;), x R:fii)l) and by the connected components of (R;), x
(Xi41);, where (R;), is the ramification locus of (Z;),.

Hence it is sufficient to use an inductive argument and to show the follow-
ing Claim: a

Claim 7.2.7. Assume that for all k the Hodge group Hg(H*((Z:),,7Z))
is commutative and each connected component Z of the ramification lo-
cus (R;), satisfies that each Hg(H"(Z,Z)) is commutative. In addition we
assume that for all k the Hodge group Hg(H*(Xii1)m+1),Z)) is commu-
tative and each connected component Z;+1 of Ri:;i)m satisfies that each
Hg(H*(Z;41,7)) is commutative. Then for all k each connected component
Z of (Rit1)psmt+1) satisfies that each Hg(H*(Z,7)) is commutative and for
all k Hg(H*((Zi41) pxma+v, Z)) is commutative.

Proof. By the assumptions of this claim and the description of R;;;1 above,
one obtains obviously that the connected components Z of (Rit1) pxemG+n
satisfy that each Hg(H"*(Z,Z)) is commutative. Then one must simply use
Theorem 7.1.7 and one obtains that each Hg(H"(Zi41),xme+1,%)) is com-
mutative, too. g

7.3 The Viehweg-Zuo tower

By the Borcea-Voisin tower, one can construct CMCY families of manifolds
in arbitrary high dimension. But one needs CMCY families of manifolds (in
low dimension) with a suitable involution, which can be used to be Z; or
some ;. One way to obtain some suitable CMCY families of n-manifolds
(in low dimension) is given by the Viehweg-Zuo tower, which we introduce
now.

E. Viehweg and K. Zuo [58] have constructed a tower of projective algebraic
manifolds starting with a family F; of cyclic covers of P! given by

P25 V(yi’ + z1 (21 — 20) (21 — axg)(z1 — Bro)xo) — (o, B) € Mo,

which has a dense set of C'M fibers. This is one example of a family of cyclic
covers, which has a primitive pure (1,2) — VHS as one can easily verify by
using Proposition 2.3.4. Since each of these covers given by the fibers of the
family can be embedded into P2, the fibers of F; are the branch loci of the
fibers of a family F; of cyclic covers of P2 of degree 5. Moreover the fibers
of F», which can be embedded into P3, are the branch loci of the fibers of a
family Fs of cyclic covers of P3, which can be embedded into P*. The family
Fs is given by

P D V(Y5 +y5 + y) + 21(21 — 20) (71 — azo) (21 — Bag)mo) — (0, B) € M.
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The fibers of F3 are Calabi-Yau 3-manifolds. By an inductive argument, this
latter family has a dense set of C'M points on the basis given by the dense set
of the C'M points of the family of curves we have started with (see [58]). Since
only the Hodge group of the Hodge structure on H?(X,Q) of a projective
hypersurface X C P* can be non-trivial, the family F3 is a CMCY family of
3-manifolds.

Example 7.3.1. By Theorem 2.4.4, the fibers of F; isomorphic to

V(Y + 2t +a5), V(i +a1(2) +25), V(Y7 + 21 (2f + ag)ao) € P2
have C'M. Thus the fibers of F3 isomorphic to
V(y3+y3 -+t +ai+ag), V(y3+ys -+t ezl +ag)), V(3 +y3 +yp +ar (af +ag)zo) C P
have C'M, too.

Example 7.3.2. We consider the CMCY family F3
P D V(y3 + 5 + 45 + 21(z1 — 20) (1 — o) (1 — Bao)xo) — (a, B) € My

constructed by E. Viehweg and K. Zuo. On each fiber (F3), the involution ¢
given by
ys i ys i y1 a1 :20) = (Y21 Y3 2 Y1 : 1 & Xo)

leaves the smooth divisor D), given by the equation y3 = y» invariant. More-
over one has that D), = (F3),. Therefore there is a dense set of points p € Mo,
which have the property that for all k the Hodge groups of H*(D,,Q) and
H*((F3),, Q) are commutative. Hence one can use F3 to be Z1 or some ¥; for
the construction of a Borcea-Voisin tower of CMCY families of n-manifolds.

Example 7.3.3. Let Fy; denote the Fermat curve of degree d > 2. The curve
F4 has complex multiplication (see [22] and [32]). By the construction of E.
Viehweg and K. Zuo in [58], one concludes that the Calabi-Yau manifold Hy
given by

d—1
V(Z zf) c pi-t
i=0
has complex multiplication. Since Hy is a projective hypersurface, this implies
that H; has only commutative Hodge groups. We have the involution ¢,
given by
(!’Edfl P o IR o | 2!,C0)—> (l‘dfl Z...;:L‘g::b‘o:xl)

on Hy. If d is even, one has the additional involution ¢, given by

(Tg—1:...ix1:20) — (Tg—1 : ... 1 X1 1 —Tp).
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The involution ¢, resp., ¢, (if it is given on Hy) fixes the points of a smooth
divisor on Hg, which is isomorphic to

V(> xf) cp

Therefore by the same arguments as in Example 7.3.2, one can use Hy to be
Z; or some ¥; with M = Spec(C), resp., M) = Spec(C) for the construction
of a Borcea-Voisin tower of CMCY families of n-manifolds.

We want to start the construction of a Viehweg-Zuo tower (of projective
hypersurfaces as in [58] or the construction of a modified version) with a
family of cyclic covers C — M, of P! with a dense set of C M fibers. For the
smoothness of the higher dimensional fibers of the resulting families, we will
use the assumption that the fibers of C are given by

V™ 4z —1)(z—a1)...(x —a,)) C A% (7.2)

where m divides n 4 3 such that all branch indices coincide.

By our preceding results, we have only the following examples of fami-
lies of cyclic covers of P! with a dense set of CM fibers, which satisfy this
assumption:

degree m number of ramification points of the fibers

2 4

T W N
T O O

Remark 7.3.4. The case with m = 2 and 4 ramification points is the case
of elliptic curves, which has been considered by C. Borcea in [8]. The case
with m = 5 yields the example by E. Vichweg and K. Zuo in [58].

The case with m = 3 is one of the examples of a family of covers of P!
with a dense set of CM fibers by J. de Jong and R. Noot [29]. We must a
bit work to give a suitable modified construction of a Viehweg-Zuo tower for
this example. The next chapter is devoted to this modified construction of a
Viehweg-Zuo tower.

In the case of the family C — M3 of genus 2 curves the author does not
see a possibility for the construction of a Viehweg-Zuo tower.?

3 One natural choice for an embedding of the fibers of the family of genus 2 curves is given by
the weighted projective space P(3,1,1). But the canonical divisor of the desingularization
of P(3,1,1) does not allow a natural construction of a Viehweg-Zuo tower as in the case of
P(2,1,1), which we will see in the next chapter for the degree 3 case.
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The case with m = 4 yields the Shimura- and Teichmiiller curve of M.
Méller [41], which provides the example of the next section.

7.4 A new example

Here we see that the Shimura- and Teichmiiller curve of M. Méller yields
an example of a Viehweg-Zuo tower. Moreover we will see that the result-
ing CMCY family of 2-manifolds is endowed with some involutions, which
make it suitable for the construction of a Borcea-Voisin tower. In addition
we give some explicit CM fibers and try to decide, which involutions provide
isomorphic quotients resp., isomorphic CMCY families by the construction
of a Borcea-Voisin tower.

Proposition 7.4.1. The family Co — M given by
P32 V(yy +yi +x1(x1 — 20) (21 — Axg)m0) — A € M,

is a CMCY family of 2-manifolds.

Proof. Tt is well-known that a hypersurface of P? of degree 4 is a K 3-surface.
By [58], Notation 2.2, and Corollary 8.5, we have that Ay is a C'M-point
of Cy, if Ag is a C'M-point of the family C; — M; given by

P2 5 V(yi1 + x1 (21 — 20) (21 — Axg)20) — X € M.

Note that C; has in fact a dense set of CM fibers, since it has a derived
pure (1,1) — V HS as we have seen. Since only the Hodge group of the Hodge
structure on H?(X,Q) can be non-trivial for a K3-surface X (follows by
definition resp., by the Hodge diamond of a K3-surface), the family Cs is a
CMCY family of 2-manifolds. ad

Now we give some examples of CM fibers of Cs:
Remark 7.4.2. Consider the family &€ — M; of elliptic curves given by
P? D V(y23§0 +£C1(£L'1 - 1’0)(%1 — /\lL’o)) — X € M;.

Note that C; has a derived pure (1,1) — VHS, where £ has the associated
primitive pure (1,1) — VHS. Thus the Hodge structure decomposition of
Proposition 4.2.2 tells us that the fiber (C1)) has CM, if the fiber £, has
CM. In the proof of Proposition 7.4.1 we have seen that (C2), has CM, if
(C1)x has CM. Thus by the CM fibers of £, we can determine CM fibers
of CQ.
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Example 7.4.3. By Remark 7.4.2, the well-known CM curves with j
invariant 0 and 1728 yield C'M fibers of C isomorphic to

V(s +yt + (23 —ad)mo), V(ys +yt+at+ag) C P2

Theorem 2.4.4 yields the same examples.

Example 7.4.4. By [26], IV. Proposition 4.18, one concludes that an elliptic
curve has complex multiplication, if it has a non-trivial isogeny with itself.
The elliptic curve with j invariant 8000 resp., -3375 is given by

1
ylwo = x1(z1—x0) (21— (1+V2)%x0) resp., y°zo = z1(z1—0) (21 _Z(g—Hﬁ)Z%)
and has an isogeny of degree 2 with itself. Moreover the elliptic curve with
J invariant 1728 has an isogeny of degree 2 with itself. This follows from the
solution of [26], IV. Exercise 4.5, which we will partially sketch. Thus the
K3 surfaces given by

1
ys +yt +o1(v1 —x0) (21— (1+V2)2z0)z0 and y3 +yt +21(v1 —20) (21— Z(3+i\ﬁ)2wo)xo

have complex multiplication.

We sketch how we obtain the given examples: First note that each degree
2 cover u : P! — P! is up to a changement of coordinates given by = — z2.
This follows from the fact that u has two ramification points by the Hurwitz
formula. Without loss of generality the elliptic curve E is endowed with a
degree two cover i : E — P! such that there exists a A such i is ramified over

0,1, A\, 00 resp., F is locally given by
V(y? —z(x—1)(z — ) C A% (7.3)

Since an isogeny f : F — F is a morphism of abelian varieties, one concludes
that for each (x,y) = f(P) € F one has f(—P) = —(z,y) = (z, —y). Hence
one concludes that there exist the degree 2 covers uy : P — P! and hy :
E — P! such that

tof=wuyohy.

It is a very easy exercise to check that us can be given by x — 22 in this case
for some suitable A, which yields . Thus one concludes that h is ramified

over
1,—1, VX, =V,

which follows from considering the ramification indices. By a changement of
coordinates, F is given by

(VA +1)2
O,l,m,oo,
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too. Note that A and 1—\ yield the same elliptic curve. We substitute ¢t = v/
and resolve the equations

2 (t+1)2
(=1 and t“=1-— (=1

by using the computer algebra program MATHEMATICA in the case of
the ground field C. This yields the stated elliptic curves E with an isogeny
f: E — FE of degree 2. It remains to prove the completeness of the given
examples, which is a well-known fact.

Example 7.4.5. Elliptic curves with C'M has been well studied by number
theorists. In [55], Appendix C, §3 there is a list of 13 isomorphy classes of
elliptic curves with complex multiplication containing all classes represented
by the preceding 4 examples. Two examples of the list, which have the j
invariants 54000 and 16581375, are given by the equations

y? =2 — 152+ 22, 3% = 23 — 595z + 5586.

The equations allow an explicit determination of involutions on these exam-
ples. The given equations for the 7 remaining isomorphy classes of elliptic
curves do not allow an immediate description of involutions.

As we will see, the family Co has some involutions, which make it suitable
for the construction of a Borcea-Voisin tower. The following lemma is obvious:

Lemma 7.4.6. Over the basis My the family Co has three involutions
given by

Ll(yg tY1 X ::L'o) = (—yg Y1 X1t xo), Lg(yg Y1 X1t 1’0) = (yg LY s :J}o),

L3(y2 “Y1 T Zxo) = (—y2 AR | iffo),

which constitute with the identity map a subgroup of the My -automorphism
group of Co isomorphic to the Kleinsche Vierergruppe.

Remark 7.4.7. Over M there are at least the 4 following additional invo-
lutions on Cs:

ta(y2 s y1 w1 i w0) = (Y1 1 Y2 : @1 @o), ts(y2:y1 i1 o) = (ty1 1 —iy2 : T1 : To),

Le(yz Y1 X J,‘o) = (—y1 D—Y2 11 :Co), L7(y2 Y1, :mo) = (—iy1 :iyg 11 :l‘o)

Theorem 7.4.8. By the involutions 11 and vy, the family Co can be used to
be 21 or some X; for the construction of a Borcea-Voisin tower of CMCY
families of n-manifolds.
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Proof. The divisor of the fiber (C2)x, which is fixed by ¢; resp., ¢4 is given by
y2 = 0 resp., y2 = y1. Hence both divisors are smooth and isomorphic to the
fiber (C1)\ given by

P? 5 V(y} + z1(x1 — 20)(x1 — Axg)T0) — A € M.

We use the same arguments as in the proof of Proposition 7.4.1: If (Cy)y
has complex multiplication, then (C3)) and the divisor fixed by ¢q resp., 14
have complex multiplication, too. Hence by the fact that C; has a dense
set of complex multiplication fibers, Co and ¢; resp., Co and ¢4 satisfy the
assumptions of Construction 7.2.3. ad

Remark 7.4.9. By the fact that
lg = 14 0 l1 O ly,

the involution to is suitable for the construction of a Borcea-Voisin tower,
too. But according to the construction of C. Voisin [60], this implies that o
yields a CMCY family of 3-manifolds over M; x My, which is isomorphic
to the corresponding family obtained by ¢1.

Let o denote the Mi-automorphism of Cy given by

(y2 21 w1 wo) = (g2 91 21 : Zo).
One calculates easily that
_ —1 _ 2 —2 _ -1
ls=aoloa ', lg=a"ol0a 7, Ly=a oL oa.

Hence one has that Cy/t4,...,Ca/t7 resp., the resulting CMCY families of
3-manifolds obtained by the method of C. Voisin [60] are isomorphic as M-
schemes resp., as M; x M;-schemes.
Since
L3 = Lil2,

the involution ¢3 acts by id on each I'(w(c,),) such that it can not be used
for the construction of a Borcea-Voisin tower.

Remark 7.4.10. By Example 7.4.3, Example 7.4.4 and Example 7.4.5, one
has 6 explicitly given elliptic curves with C M and explicitly given involutions,
which yields 6 K3 surfaces with C'M. By using the method of C. Voisin
[60], these examples yield 36 explicitly given fibers with C'M for each of our
resulting C M CY family of 3-manifolds.

Remark 7.4.11. The author does not see a way to conjugate ¢1 into ¢4.
Moreover we will see that the fibers of the resulting CMCY families of 3-
manifolds constructed with ¢; and ¢4 according to C. Voisin [60] have the same
Hodge numbers. This means that the question for isomorphisms between
these two families remains open.



Chapter 8
The degree 3 case

In this chapter we give a modified construction of a Viehweg-Zuo tower,
which yields a CMCY family of 2-manifolds suitable for the construction of
a Borcea-Voisin tower.

Let R' the desingularization of the weighted projective space P(2,1,1),
which is obtained from blowing up the singular point. We start with the
family C of curves given by

R' D V(5 —z1(z1 — o) (21 — arzo) (21 — aozo) (21 — aszo)xo) — (a1, az, az) € Ms.

This family has a dense set of C'M fibers. Since the degree of these covers of
P! does not coincide with the sum of their branch indices, it is not possible
to work with usual projective spaces. Thus we work with weighted projective
spaces P(2,...,2,1,1) resp., their desingularizations to obtain Calabi-Yau
hypersurfaces and a tower of cyclic coverings similar to the construction of
E. Viehweg and K. Zuo [58]. For this construction we have to recall some
facts and to make some preparations in Section 8.1. In Section 8.2 we give
our modified version of the construction of Viehweg and Zuo, which yields a
CMCY family of Calabi-Yau 2-manifolds. Let R? be the desingularization
of the weighted projective space P(2,2,1,1), which is obtained from blow-
ing up the singular locus. The CMCY family of Calabi-Yau 2-manifolds is
given by

R*D V(yg—ky:f—xl(zl—xo)(xl—alxo)(ﬂcl—azxo)(azl—agl’o)xo) — (a1,a2,a3) € Ms.

We indicate some involutions of this family, which make it suitable for the
construction of a Borcea-Voisin tower, in Section 8.3.

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 157
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_9,
(© Springer-Verlag Berlin Heidelberg 2009
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8.1 Prelude

Recall that the usual projective space P" is given by Proj(Clzy, ..., 21, 20]),
where each z; (with j =0,...,n) has the weight 1. Our weighted projective
space Q" is given by Proj(Clyy,...,y1,®1,%0]), where each y; (with j =
1,...,n) has the weight 2, and z¢ and x; have the weight 1.

First we investigate and describe the projective space Q™. The following
well-known Lemma will be very useful here:

Lemma 8.1.1. (Veronese embedding) Let R be a graded ring. Then we have
Proj(R) = Proj(R¥).

Proposition 8.1.2. The weighted projective space Q™ is isomorphic to the
irreducible singular hypersurface in P"*2 given by the equation z1z3 = 23.
The singular locus of Q™ is given by V(z1, 22, 23).

Proof. By the Veronese embedding, we have
Q™ = Proj(k[z3, zox1, 23, Y1, -, Yn))-
Therefore we obtain a closed embedding of Q™ into P"t2 given by
T2 21, ToTy — 2z, T2 23, YL — 24, -y Yn — Znis

We have that Q™\V (22) is isomorphic to A"+, Hence dim(Q™) = n+1, which
implies that its projective cone, which is contained in A”*3, has the dimension
n + 2. By [26], I. Proposition 1.13, each irreducible component of dimension
n+2 of this cone is given by an ideal generated by one irreducible polynomial.
The corresponding polynomial of the unique irreducible component of Q™ is

f(21,22723) = 2123 — Zg,

since each point p € Q™ C P2 satisfies f(p) = 0 and f is irreducible. The
last statement about the singular locus follows from calculating the partial
derivatives of f. a

Let ay,...,az,m € C, and m € N\ {1}. Then C(,) C Q" is the subvariety,
which is given by the homogeneous polynomial

yn' oAyt 4 (21— a1zo) .. (@1 — agm@o).

It is a very easy exercise to check that this polynomial is irreducible.

Proposition 8.1.3. There exists a homogeneous polynomial G € Clzy, 22, 23]
of degree m such that C,) C P"*2 s given by the ideal generated by h and
f, where



8.1 Prelude 159
h=z"s+...20" +G.

Proof. We can obviously choose a polynomial G such that

G (23, zor1,73) = (21 — a120) . . . (21 — A2mT0).
Now let h =z 3 +... 20" + G, and

¢ :Clz1, ..., 2n43] — Clad, 201, 22, Y1, - - -, Yn)

be the homomorphism associated to the closed embedding Q" — P"*+2, which
has the kernel (f). We obtain

d(h) =yr + ...+ Y+ (21 — a120) . . . (T1 — a2mo).

Hence C(,) C P"*2 is given by the prime ideal

o (Z(Ciwy)) = (h, ).
O

Proposition 8.1.4. The singular locus of C(y) is given by C(,,)N\V (21, 22, 23).

Proof. On Q"\V (o) = Spec(C[z1,y1,. .., ¥yn]) the hypersurface C,) is given
by the equation

0=y +...+y" + (21 —a1)...(z1 — azm).

By the partial derivatives of the polynomial on the right hand, one can easily
check that there are no singularities of C(,) in this affine subset. The same
arguments give the same statement for @™\ V(z1). Hence all singularities of
C(n) are contained in V' = V/(21, 22, 23). For all P € C(,,) NV, the Jacobian
matrix of C,) at P does not have the maximal rank 2, where this is obtained
by explicit calculation of the partial derivatives of f and h. a

8.1.5. The variety Q™ has a natural interpretation as degree 2 cover of the
variety given by {z2 = 0} ramified over {z; = 2o = 0} and {23 = 23 = 0}.
Hence by blowing up V' = V/(z1, 29, 23), the proper transform R" := Q% is
the natural degree 2 cover of the proper transform of {zo = 0} ramified over
the disjoint proper transforms of {z; = 2o = 0} and {23 = z3 = 0}. Thus R"
is non-singular.

Note that the general construction of the blowing up yields a natural
embedding of an open subset of R" into A"*? x P2. Hence the Jacobian
matrix at each point of R™ has the maximal rank 3 with respect to this
local embedding. The Jacobian matrix of the proper transform C,, of Clny is
given by adding the line of the partial derivatives of h to the Jacobian matrix
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of R™. Without loss of generality we are on the open subset {y; = 1}. On the
exceptional divisor E the polynomial G vanishes. Thus all points of C,NE
satisfy

Yo'+ ... Fyy +1=0.

Hence for each p € C,, N E there is a partial derivative dh/dy;(P) # 0. Since
all partial derivatives of the equations defining R™ with respect to y; vanish,
the Jacobian matrix of C, has the maximal rank 4 at each point on the
exceptional divisor. Thus C,, is smooth.

Remark 8.1.6. Note that Q' has a natural interpretation as projective clo-
sure of the affine cone of a rational curve of degree 2 in P2. By [26], V.
Example 2.11.4, one has that R!, which is the blowing up of the unique
singular point given by the vertex of the cone, is a rational ruled surface
isomorphic to P(Op1 + Op1(2)), where the exceptional divisor has the self-
intersection number —2.

By [26], II. Proposition 8.20, one has for n > 1:

WQMV (21,22,23) = WPH+2\V(21,22,23) © I(Qn \ V(Zl’ 22, Z3)) ® OQ”\V(Zl«,Zz,Z?,)

= 0Qm\V(21,22,25) (=(n+ 1)V (z1))

By [4], Theorem 2.7 and the fact that the self-intersection number of the
exceptional divisor is —2, the pull-back of the canonical divisor of Q' with
respect to the blowing up morphism is the canonical divisor of R'. Note that
the canonical divisor of Q! yields the canonical divisor of Q! \ {s}, where s
denotes the singular point. Thus:

Corollary 8.1.7. The canonical divisor of R is given by —2V (z4).

The following lemma describes the construction of this section. One has
the following commutative diagram of closed embeddings:

Cuo) o Cin) Cln+t1)
QO o Qn QnJrl
]P>2 e ]Pm+2 ]Pm—Q—S

The ideal sheaf of each blowing up C,, — Ciny and R™ — Q" is generated
by z1, 22, z3. Moreover this ideal sheaf is obviously the inverse image ideal
sheaf of the ideal sheaf generated by z1, z2, 23 with respect to all embeddings.
Hence we obtain by [26], IT. Corollary 7.15 for V := V (21, 22, 23):
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Lemma 8.1.8. We have the commutative diagram

C~10 én C7L+ 1
RO R" Rn+ 1
IFD%/ . Eb‘gb/-i-Q ]P)7‘}+3

of closed embeddings.
Remark 8.1.9. Note that Cg) = Co, Cay = Cy and Q° = RO.

Theorem 8.1.10. The canonical divisor of R™ is given by —(n + 1)V (z4)
forn > 1.

Proof. By Corollary 8.1.7, we have the statement for n = 1.

We use induction for higher n. Let E,, denote exceptional divisor of
the blowing up R™ — Q™. The open subset R™\E, is isomorphic to
Q"\V (21, 22, z3). We know that —(n 4 1)V (z4) is the canonical divisor of
Q"\V (21, 22, 23). Hence we conclude that

Kpnir = —(n+42)V(24) + 2En 41

for some z € Z. We have that R” ~ V(z,) in CI(R*!). By the induction
hypothesis, we have

Opn(—(n+ 1)‘7(2:4)) = wrn = Ogntt (‘7(2’4)) ® wrn+1 @ Opn
such that z = 0 and —(n 4 2)V(z4) is the canonical divisor of R"*1. O

Since we want to construct a family of Calabi-Yau manifolds, we note:

Theorem 8.1.11. The hypersurface Cp—1 C R™ ' is a Calabi- Yau mani-
fold.

Proof. By Theorem 8.1.10, —mf/(zzl) is the canonical divisor of R™~1 Hence
[26], II. Proposition 8.20 and Cy,—1 ~ mV (z4) imply that

wé'mfl = OCnL—l '

By the fact that h?0 is a birational invariant of non-singular projective vari-
eties (see [26], page 190), and R™~1! is birationally equivalent to P, we obtain
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that h2?(R™~1) = 0 for all 1 < ¢ < m. By Hodge symmetry and Serre dual-
ity, we obtain that h?(R™~1,0) =0 for all 1 < ¢ <m and h?(R™ 1, w) =0
for all 0 < ¢ < m—1. Since the canonical divisor of R™ ! is linearly equivalent
to fC’m_l, we obtain the exact sequence

O—>me71 _>0Rmfl —>OC", — 0.

m—1

This implies that hi(C‘m_l, O)=0for1<i<m-1= dim(é’m_l). Hence

C,—1 is a Calabi-Yau manifold. O
8.1.12. The projection P"*2\ {(1:0:...:0)} — P"*! given by
(Zngsiooi21) = (Zng2 vt 21)

induces a cyclic cover C, 1) — Q" of degree m ramified over C(,). The
Galois group is generated by

(zn43:2Zny2 i 21) = (E2nt3  Znao i on .0 21),

where £ is a primitive m-th. root of unity.

Recall the commutative diagram of Lemma 8.1.8. Let A* be given by
{24 =1} C P* and A3 be given by {24 = 1} C P3. Then the projection above
yields a morphism

f:A* x P? — A% x P2, (8.1)

Since the blowing up yields natural embeddings of open subsets of Cy and
R! into the varieties of (8.1), f induces a rational map Cy — R'. Now this
rational map Co — R! is again a cyclic cover of degree m with the Galois
group as above (on the open locus of definition). On the complements of the
exceptional divisors it coincides with the cyclic cover Cg) — Q' above. Hence

by gluing, one has a cyclic cover Co — R' ramified over Cy-

8.2 A modified version of the method of Viehweg
and Zuo

The following construction is a modified version of the construction in [58],
Section 5. Here we show that C has CM, if C(1) has CM. In the next section
we will use the construction of the preceding section to define a family of K 3-
surfaces. In this section we give the argument that this family of K3-surfaces
is a CMCY family of 2-manifolds.

For our application, it is sufficient to consider the situation fiberwise and
to work with P'-bundles over P! resp., with rational ruled surfaces. Let m,, :
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P,, — P! denote the rational ruled surface given by P(Op: @& Op:(n)) and
o denote a non-trivial global section of Op1(6), which has the six different
zero points represented by a point ¢ € M3. The sections E,, Ey and F, of
P(O @ O(6)) are induced by

id®o:0—-080(6), idea0: 0 — 0 0(6)
and 0@id: O(6) — O & O(6)

resp., by the corresponding surjections onto the cokernels of these embeddings
as described in [26], IT. Proposition 7.12.

Remark 8.2.1. The divisors F, and Fj intersect each other transversally
over the 6 zero points of 0. Recall that Pic(Ps) has a basis given by a fiber
and an arbitrary section. Hence by the fact that E, and Ey do not intersect
F, one concludes that they are linearly equivalent with self-intersection
number 6. Since E,, is a section, it intersects each fiber transversally. Thus
one has that Fo, ~ Ey — (Ey.Eg)F, where F denotes a fiber. Therefore one
concludes

Es.Eo = Eoo.(Eo — (Eo.Eo)F) = —(Ey.Eg) = —6.

Next we establish a morphism j : Py — Pg over PL. By [26], IT. Proposition
7.12., this is the same as to give a surjection m5(O & O(6)) — L, where L is
an invertible sheaf on Py. By the composition

3 (0®0(6)) = 73 (0)@130(6) — ) 73 0(2i) = Sym® (73 (0B 0(6))) — Or, (3),

where the last morphism is induced by the natural surjection 75 (O®O(2)) —
Op, (1) (see [26], II. Proposition 7.11), we obtain a morphism p* of sheaves.
This morphism p* is not a surjection onto Op,(3), but onto its image
L C Op,(3). Locally over A! C P! all rational ruled surfaces are given
by Proj(C[z])[y1,y=2], where x has the weight 0. Hence we have locally that
715(0 @ O(6)) = Oey @ Oey. Over A the morphism p* is given by

3 3
€1 — Y1,€2 — Yo

such that the sheaf £ = im(p*) C Op,(3) is invertible. Thus the morphism
Py — Pg corresponding to p* is locally given by the ring homomorphism

(ClzD[y1, y2] — (Clz])[y1,92) via y1 — yi and yo — v3.
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Construction 8.2.2. One has a commutative diagram

/

T’ H
)’ P, P! x P!
5 52 d6
~ 7 ~ fu ~
Yy Py Pg
P P2 P6
T H
P P
y \3/ 1*Ey 2 \3/ Eoo 16-F 6
3- (k¥ Bo)red Eo
U T2 e
Pl id Pl id IP’l

of morphisms between normal varieties with:

(a) ¢, 02, dg, p, p2 and pg are birational.

(b) 7 is a family of curves, 7 and 74 are P'-bundles.

(¢) All the horizontal arrows (except for the ones in the bottom line) are
Kummer coverings of degree 3.

Proof. One must only explain dg and pg. Recall that E, is a section of P(O &
O(6)), which intersects Fy transversally in exactly 6 points. The morphism
pe is the blowing up of the six intersection points of Fy N E,. The preimage
of the six points given by ¢ € M3 with respect to mg o pg consists of the
exceptional divisor Dy and the proper transform D5 of the preimage of these
six points with respect to pg given by 6 rational curves with self-intersection
number —1. The morphism dg is obtained by blowing down Ds. a

Remark 8.2.3. The section ¢ has the zero divisor given by some ¢ € Ps.
Hence one obtains p*(E,) = C,, where C — Ps denotes the family of cyclic
covers of P! with a pure (1,3) —V HS of degree 3. Since 7 is the unique cyclic
degree 3 covering of Py = R! ramified over u*(E,) = C4, the surface ) is
isomorphic to some K 3-surface Cs of the preceding section.

Recall that [F,, denotes the Fermat curve of degree n.

Proposition 8.2.4. The surface ) is birationally equivalent to C, X

Fs/((1,1)).!

Proof. Let E, denote the proper transform of the section F, with respect
to pe. Then i is the Kummer covering given by

! Similarly to [58], Construction 5.2, we show that )’ is birationally equivalent to Cq X

F3/((1,1)).
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3|Es +6-F

V' B+ Dy
where D; denotes the exceptional divisor of p6- Thus the morphism p' is the
Kummer covering

§/(66) B +6-(06),F _,[P! x {00} +6- (P x P1)
(06)sEo + (06).D1 Pl x {0} + A x P’

where A is the divisor of the 6 different points in P! given by ¢ € Mz and

P € P! is the point with the fiber F. Since Ey + E, is a normal crossing

divisor, E, neither meets Eq nor Ds, where D, is the proper transform of
75 (A). Therefore (Jg).E, neither meets

(86)+Eo = P! x {0} nor (8)«Fs =P x {c0}.

Hence one can choose coordinates in P! such that (0g).E, = P! x {1}.
By the definition of 7, we obtain that 7 is given by

i,/p;mwa) _ i/m(i)
psi*(Eo) fr*(Eo)’

W (B x (1))
(BT {0))°

By the fact that the last function is the third root of the pullback of a
function on P! x P! with respect to p’, it is possible to reverse the order
of the field extensions corresponding to 7/ and p’ such that the resulting
varieties obtained by Kummer coverings are birationally equivalent. Hence
we have the composition of 3 : P! x P! — P! x P! given by

and 7’ is given by

o[ P x {1}
Pl {0}

with

s B* (P x {oo}) +6 - (P x P1)
pr(Pr > {0}) + (A x P1) -

which yields the covering variety isomorphic to Fg x C,/((1,1)). O
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Hence Cy 22 Y is birationally equivalent to the algebraic manifold Y in the
diagram (7.1) with Z = C(y) and ¥ = F3. Therefore by Corollary 7.1.6, we
obtain:

Corollary 8.2.5. If the curve p*(E,) has complex multiplication, then the
K3-surface Y has complex multiplication, too.

8.3 The resulting family and its involutions

8.3.1. Let us summarize the things we have done. By using the Veronese
embedding, the weighted projective space Q? = P¢(2,2,1,1) is given by
V(z123 = 23) C P% Moreover there exists a homogeneous polynomial
Gay,az,a5) € Cl21, 22, 23] of degree 3 such that

G(ahaz,as)(xQ, z,1)=a(x—1)(x — ar)(x — a2)(x — a3)

for each (a1, as,a3) € Ms. Let W — Q% x M3 "¢ M3 be the family with the
fibers given by W, = V(2125 — 23, 23 + 2§ + G,) for all ¢ € M3. Moreover
let W — R? x M3 — Mj be the smooth family obtained by the proper
transform of W with respect to the blowing up of V(z1, 22, 2z3) X Ms. Since
the family C — M3 given by

Rl D) V(y3 —581(561 — l’o)(.’[l — alxo)(:cl — agxo)(acl — a3$0)$0) — (a17a2,a3) S Mg

has dense set of complex multiplication fibers, Corollary 8.2.5 implies that
W is a CMCY family of 2-manifolds.

Next we will find and study involutions on W over M3 satisfying the
assumptions for the construction of a Borcea-Voisin tower.

Remark 8.3.2. We have the involutions on W over M3 given by

7(1)(25 tzatzzizoiz) = (2425123 290 21),
7(2)(25 tz4izzize ) = (Ezq €225 125 : 29 ¢ z1),

7(3)(2'5 czgi iz z) = (€224 €25 1231 20 1 21),

where £ is a fixed primitive cubic root of unity. For simplicity we write
instead of v(!), too. Since the ideal sheaf of V(z1, 22, 2z3) N W coincides with
its inverse image ideal sheaf with respect to (%) (for all i = 1,2, 3), each A ®
induces an involution on W over the basis M3 denoted by (| too.
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Remark 8.3.3. We have the Ms-automorphism x of W given by
K(zs 24 :23:20:21) = (€25 : 241 231 29 21) with

5_1(25 tZ4tz3izei ) = (5225 DZ4i23i29:21)

such that by the same argument as in Remark 8.3.2, we obtain an automor-
phism of W over M3 denoted by &, too. On W and hence on W one has

7(2) =rovyor ! and ~®) =k lovyon.

Hence these involutions act by the same character on the global differential
forms of the fibers of W, and all quotients W /() are isomorphic. Therefore
it is sufficient to consider the quotient by ~.

Proposition 8.3.4. On each fiber of W the involution v fixes exactly the
points on the divisor given by V(z4 = 25) and one exceptional line over one
singular point of the corresponding fiber of W.

Proof. Let ¢ € Mgz and let S denote the singular locus of W,. On W, \ S
the points fixed by ~ are given by the divisor V(z4 = z5). Now let us con-
sider the exceptional divisors of the blowing up, which turns W into the
family W of smooth K3-surfaces. There are exactly 3 points of S given by
21 =29 = 23 =0 and 23 + 22 = 0. The involution ~ fixes (1: —=1:0:0:0)
and interchanges the other two singular points. Since the generators of the
ideal of the blowing up are invariant under ~, one concludes that each point
on the exceptional line over (1: —1:0:0:0) is fixed by ~. O

Since the divisor on W, given by V(24 = z5) is isomorphic to C, and the
projective line providing the fixed exceptional divisor has CM, one has by
Corollary 8.2.5:

Theorem 8.3.5. By the involution vy, the family YW can be used to be some
Z1 or X; in the construction of a Borcea-Voisin tower.

Remark 8.3.6. By Example 7.4.3, Example 7.4.4 and Example 7.4.5, one
has 6 explicitly given elliptic curves with C M and explicitly given involutions.
Theorem 2.4.4 yields the K3 surfaces isomorphic to

V(ys+yi+ai+ag), V(gt+yi+an(@i+ag)), V(g+yi+a(ai+ag)zo) € R?
with complex multiplication. Thus by using the method of C. Voisin [60], one

obtains 18 explicitly given fibers with C'M for the resulting CMCY family
of 3-manifolds.



Chapter 9
Other examples and variations

In this chapter we consider the automorphism groups of our examples of
CMCY families. We want to find some new examples of CMCY families of
n-manifolds as quotients by cyclic subgroups of these automorphism groups.
By using [20], Lemma 3.16, d), one can easily determine the character of the
action of these cyclic groups on the global sections of the canonical sheaves of
the fibers. In this chapter we state this character with respect to the pull-back
action.
In Section 9.1 we see that the CMCY family W of 2-manifolds given by

R DV (y3+y? = 1 (z1—20) (21 —a120) (21 —azx0) (1 —azz0)zo) — (a1,az2,a3) € M3

has a degree 3 quotient, which is birationally equivalent to a CMCY family
of 2-manifolds. This quotient is also suitable for the construction of a Borcea-
Voisin tower. By using degree 3 automorphisms of W — M3 and the Fermat
curve F3 of degree 3, we construct the CMCY families Q — M3 and R —
M3 of 3-manifolds in Section 9.2.

In Section 9.3 we consider a subgroup of the automorphism group of the
CMCY family Co — M given by

P35 V(yg1 + y‘f + z1 (21 — 20) (21 — Axo)20) — X € M.

We find some degree 2 quotients of this family, which are birationally equiv-
alent to CMCY families of 2-manifolds. In Section 9.4 we see that these
families have involutions suitable for the construction of Borcea-Voisin towers.
We consider a larger subgroup of the automorphism group of Cs in Section 9.5.

In Section 9.6 we study the automorphism group of the CMCY family of
3-manifolds

P* D V(y3 + 5 + 97 + x1(z1 — o) (21 — amo)(z1 — bxo)w0) — (a,b) € My

constructed by E. Viehweg and K. Zuo [58].
J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 169
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9.1 The degree 3 case

Let & denote a fixed primitive cubic root of unity. In 8.3.1 we have constructed
the CMCY family W — M3 given by

R? :=P¢(2,2,1,1) D V(y3+yi +o1(z1-1)(z1—a120) (21—az20) (x1—a370) 7o)
— (al,ag,ag) S Mg.

First we introduce an Mgs-automorphism group Gs of the family W. The
elements g € G3 can be uniquely written as a product g = abe with a € (),
be (B) and ¢ € (v), where:

ofzs i zq:23:20:21) = (251241231 29 21),
Blzs i za:23:20:21) = (25 : €241 23: 291 21),
Y(z5:24:23:20:21) = (24:25:23: 221 21)

The group Gs contains exactly 18 elements. The action of G3 on the global
sections of the canonical sheaves of the fibers induces a surjection of Gs onto
the multiplicative group of the 6-th. roots of unity. Its kernel is the cyclic
group of order 3 generated by a37!.

Remark 9.1.1. Since a3~! is an M3-automorphism, one obtains the quo-
tient family W/(aB71) — Ms3. One checks easily that a3~! leaves exactly
the sections given by z; = 24 = 0 invariant. Let ¢ € Mgs. The fiber
W/{ap™1)), of W/{aB~1) has quotient singularities of the type A3 (see
[6], ITI. Proposition 5.3). We blow up the sections of fixed points on W and
call the resulting exceptional divisor F7. On each connected component of F;
one has two disjoint sections of fixed points again. But on a fiber the quotient
map sends any fixed point onto a singularity of the type A3 1. Hence let us
blow up these latter sections of fixed points with exceptional divisor Fs. The
canonical divisor of the resulting fibers Wq is given by

Ky, = (B1)q + 2(Ez2)q,

where quotient map ¢ induced by a3~! has ramification on E. Thus by
the Hurwitz formula, one calculates that ¢*(w,) = O((E}),). Note that the
irreducible components of the exceptional curve (E;), have selfintersection-
number —1. Since (E2), is the exceptional divisor of the blowing up of two
points of each irreducible component of (E),, each irreducible component
of (El)q has selfintersection-number —3. By the fact that the quotient map

L For this description consider the corresponding action of the cyclic group on an analytic
open neighborhood of a fixed point.
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¢ : W, — OW/{aB™1)), is not ramified over ¢((E}),), the irreducible com-
ponents of ¢((E1),) have selfintersection-number —1.

From now on let X := W/{af~1).

Proposition 9.1.2. One can blow down cp(El) such that the blowing down
morphism ¢ : X — Y yields a CMCY family Y — Mgz of 2-manifolds.

Proof. By the construction of the projective family, one has an invertible
relatively very ample sheaf A := Ox (D) on X. Let P denote some con-
nected component of ¢(E;). Note that o(E;) consists of different copies of
Pépec( r) With Spec(R) = P, such that each invertible sheaf on P is uniquely
determined by its degree. Thus the intersection number pp := D,.F, is in-
dependent of ¢ € P,,. As in the proof of the Castelnuovo Theorem in [26], V.
Theorem 5.7 the invertible sheaf

L:=A( > ppP)

PCyo(Er)

yields the blowing down morphism on the fibers. Since this P,-morphism is
globally defined, one obtains a global blowing down morphism f such that
the resulting family Y = f(X) is smooth.

By the fact that a3 acts by the character 1 on I'(wyy,), one concludes
easily that ) — M3 is a family of K3 surfaces. Since VW has a dense set of
C'M fibers, one concludes that X = W/(a8) and ) have dense sets of CM
fibers, too. a

By the blowing down of ¢(FE)), we get the following situation:

_ . @
E1UE, — 0(Ey U By) ————— ¢ o ¢(E»)

e

2 X B
mod(aB3?) Bl(¢(E1))

Proposition 9.1.3. The Ms-automorphism v of W yields an involution on
Y, which makes it suitable for the construction of a Borcea-Voisin tower.

Proof. One has the following commutative diagram:

- af3 1
W%
Wl

~ a”lp
W%

s

Y

-

=
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Thus ~ yields an involution on X = W/(a8~1). By the fact that v(E;) = Ei,
it induces an involution on the complement of the sections of ) obtained by
blowing down ¢(E}). Since these sections have codimension 2, the involution
extends to a holomorphic involution on Y (by Hartog’s Extension Theorem
[61], Théoreme 1.25). By the fact that v acts by —1 on I'(wyy, ), the same
holds true for &, and ).

Let C — M3 denote the family of degree 3 covers with a pure (1,3)—V HS.
We have seen that W, has CM, if C, has C M. Therefore H*(),,Q) has a
commutative Hodge group for all k, if C; has C'M. Thus the following point
describes the ramification divisor of 7, on ), and ensures that there is a
dense set of C'M fibers ), such that the ramification divisor of v, has C'M,
too. O

9.1.4. Now we describe the divisor of points of ), fixed by ~ for some ¢ €
M. Each point of Y, \ (¢ o ¢(Es)) can be given by the image [p] of a point
p € W, with respect to the quotient map according to (@3~'). One has that
a point [p] € YV, \ (pop(E»)) is fixed by v, if and only if y(p) € (a3?)-p. These
points p € W, are exactly given by (a3?) - V(ya = y1) and the exceptional
divisor of W, — W,.

By the fact that (a3%) - V(ya = y1) interchanges all 3 irreducible compo-
nents of (a3?)-V (ya = y1) and all 3 irreducible components of the exceptional
divisor of W — W, one obtains a divisor of fixed points on Y, given by C,
and one copy of P!. Since « is given by (y2 : 11) — (y1 : y2) on E; and
af? is given by (y2 : y1) — (y2 : €y1) on Ey, 7 interchanges each two irre-
ducible components of Fs, which intersect the same irreducible component of
FE;. Thus the ramification divisor of Y — /7 given by a family of rational
curves and C, where C denotes the example of a family of degree 3 covers
with a pure (1,3) —VHS.

9.2 Calabi-Yau 3-manifolds obtained by quotients
of degree 3

We have seen that the family W of K3-surfaces given by
R?:=P¢(2,2,1,1) D V(ys+yi4z (x1—1)(x1—a120) (x1—asz0 ) (1 —aszo)xo)

— (a1,a2,a3) € M3

has a dense set of fibers W, such that H*(W,, Q) has a commutative Hodge
group for all k.

Recall that the canonical divisor of R! = P(O@®O(2)) is given by —2V (z4).
Now we consider the up to isomorphisms unique cyclic cover of degree 3
given by W, — R! ramified over C,, whose Galois group is generated by a.
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Moreover consider the cyclic degree 3 cover F3 — P! where F3 = V(2 +
y> + 23) C P? denotes the Fermat curve of degree 3 and ag, given by

(xiy:2)=(x:y:E2),

is a generator of the Galois group, which acts by the character £ on T'(wr,).

Let X be a singular variety of dimension n such that each irreducible
component of its singular locus S has at least the codimension 2. Then we
call X a singular Calabi-Yau n-manifold, if h%(X \ S,9Q%,4) = 0 for all
k=1,...,n—1and wx\g = Ox\g. With the notation of diagram (7.1) one
gets:

Proposition 9.2.1. The quotient of W x F3 by ((1,2)) yields a family of
singular Calabi- Yau 3-manifolds with a dense set of CM fibers.

Proof. Note that the VHS of the family W x F3/((1,2)) is the sub-VHS
fixed by {((1,2)).? Since F3 has complex multiplication, a CM fiber of W
yields a corresponding C'M fiber of W x F3/((1,2)).

Let ¢ denote the quotient map

p:WxFz —WxF;3/((1,2))

and S denote the singular locus of W x F3/((1,2)). Over each point, which
lies not in the singular locus given by 3 copies of C, one does not have rami-
fication. Hence by the Hurwitz formula, ¢*(wowvxr,/((1,2)))\s) 18 given by the
structure sheaf. Since ((1,2)) acts on I'(wyyxr, ) by the character 1, the sheaf
WWxFs/((1,2))\s has global sections. Hence

WO xFs (L2 = OWxEs/(1.2)\s-

In addition the reader checks easily that ((1,2)) does not act by the character
1 on a non-trivial sub-vector space of H1:0(W x F3) or H%(W x F3). Thus
W x F3/((1,2)) is a family of singular Calabi-Yau 3-manifolds. O

Now consider a fiber W, which is a family of curves given by
W, — R? — PL.

Thus
W, x F3 — R? — P!

is a family of surfaces. The singular locus given by 3 copies of C, does not
consist of sections.

2 For a short introduction to such orbifolds and their Hodge theory see [12], Appendix A.3.
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Here we do not blow up sections of W, x F3 — P!. Hence here one can not
formulate a relative version of the Castelnuovo Theorem as in Proposition
9.1.2. Thus we use complex analytic methods:

9.2.2. Let X be a non-compact complex analytic surface. Note that self-
intersection numbers are also defined for compact complex curves on non-
compact complex analytic surfaces X. On X one can blow down a compact
rational curve with self-intersection number —1 such that one obtains a
smooth complex analytic surface. Moreover for the blowing up ¢ : X — X of
the point p € X with exceptional divisor E, one has

wg = ¢ (wg)(E).

We have also the adjunction formula for X and X such that E? = —1.
Moreover one has for each compact curve C' on X

¢*(C)2 — 02.
(see [6], I. - IIL.)

Hence we can repeat the procedure of the previous section for small open
analytic subsets and glue. We will locally blow down a divisor to a codimen-
sion 2 submanifold Z. Note that we have for the complement of Z gluing
morphisms, since the blowing down morphism ¢ yields an obvious isomor-
phism between the complements of Z and ¢~'(Z). Hence the gluing of our
local blowing down morphisms follows from Hartog’s extension theorem and
the uniqueness of this extension, which follows from the continuity of holo-
morphic maps:

Theorem 9.2.3 (Hartog). Assume that U is an open subset of CN and
f is a holomorphic function on U \ {u; = ug = 0}. Then [ extends to a
holomorphic function on U.

Proof. (see [61], Théoréme 1.25) O

9.2.4. Now consider a fiber (W xF3/((1,2))), of W xF3/((1,2)) and its sin-
gularities in the complex analytic setting. For the construction of the blowing
up of a complex submanifold we refer to [61], 3.3.3. As in [61], 3.3.3 described,
one constructs the blowing up over open sets first. The global blowing up is
given by gluing the local blowing ups. Here we consider the situation on
sufficiently small complex open submanifolds.

The Msz-automorphism o acts on ya by £ On each fiber W, the curve
C, defines the ramification locus of W, — R?, which is fixed by «. A local
parameter pc, on C, yields a local parameter on W, fixed by a. By z, we
denote a local parameter for the neighborhoods of the ramification points of
F3. On a small open subset, which intersects the ramification locus of
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pg: (W xFz)g — (W xF3/((1,2)))g,

one has the three local parameters given by y2, pc, and 2.

By the action of ((1,2)) on the local parameters, the singular loci of the
family W x F3/{((1,2)) are locally given by the product of the 4-ball B, with
a surface, which has a singularity of the type Az o (with the notation in [6],
IIT. Section 5). Let us blow up the family of fixed curves on W x F3 with re-
spect to ((1,2)) and let E; denote the exceptional divisor. On each connected
component of F; one has two disjoint families of fixed curves with respect to
the action of ((1,2)) again. Again this follows from the consideration of the
action of ((1,2)) on local parameters of a small open subset. On a fiber the
quotient map sends any neighborhood of a point on these latter curves onto
the product of the 1-ball By with a surface with a singularity of the type
As 1. Hence let us blow up these latter two families of curves with excep-

tional divisor E,. The canonical divisor of the resulting fibers (Vmg)q is

given by

K sy, = (E1)g +2(E2)q,

where quotient map ¢ by ((1,2)) is ramified over E5. Thus by the Hurwitz
formula, one calculates that

" (wg) = O((Er)y)- (9-1)

By 9.2.2 and our blowing up construction, one concludes that E; is locally
given the product of a rational —3 curve with B4. Thus the divisor D = ¢(E})

is covered by open analytic subsets U on W x F3/((1,2)) such that U is of
the type X x B4, where X is a complex analytic surface containing a —1
curve E' and D is given by E' x B4. By 9.2.2, we can blow down E’. This
yields a local blowing down of D. We have explained that we can glue these
blowing down maps. Thus we obtain a family

R%Mg.

By (9.1), one concludes easily that the fibers have a trivial canonical bundle.
Moreover one sees quite easily that the fibers are Calabi-Yau 3-manifolds.

At present it is not clear to the author that the family R — Mgj is alge-
braic, since we have used analytic methods. Note that this construction is a
relative version of a construction by S. Cynk and K. Hulek [13], which yields
a result written down in Proposition 10.4.3. Thus the fibers are algebraic.

Note we have blown up copies of the family C of degree 3 covers. Moreover
note that Fs has C'M and that for all ¢ € M3 the fiber W, has C'M, if the
fiber C, has C'M. Since C has a dense set of C'M fibers, we conclude:

Proposition 9.2.5. The family R — M3 is a (holomorphic) CMCY family
of 3-manifolds.
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Let us construct an other example: a3 acts by the character £2 on I' (ww,)
for all ¢ € M3. Moreover we have a Galois cover F3 — P! of degree 3 with a
generator ay, given by

(xiy:2)=(x:y:E2),

which acts by the character £ on 7y(wr,). Hence ay = (af,ar,) leaves
I'(ww, xr;) invariant.
The automorphism « fixes a finite number of points on W, x F3 given by

{z5 =24 =0} x {z =0},

and as fixes in addition the points on the curves given by the fiber product of
{# = 0} with the exceptional divisor of the blowing up W, — W,. The latter
statement about the exceptional divisor of W, — W, follows from the fact
that af fixes the generators of the corresponding ideal sheaf of the blowing
up and the singular points of W, given by

(1:=1:0:0:0), (1:=£:0:0:0) and (1:—£2:0:0:0).

9.2.6. Now we determine the action of o on the local parameters, whose
zero-loci are given by the exceptional divisor Eyy, of W, — W,. The action
of a3 on W, C P* is given by

(z5:24:23:20:21) — (25 : 824 1 23 291 21) TeSp.,
(z5:24:23:20:21) — (25: 24 € g 67 2y 5_121).

By using the explicit equations for W, in 8.3.1, one can very easily calculate
that o3 acts by £~ ! on these local parameters.?

Hence the singularities of W, x F3/(as), which result by the exceptional
divisor of W, — W, are locally given by the product of B; with a singularity
of the type A372.

Now we construct a desingularization of W x Fs/(aw), which is a CMCY
family of 3-manifolds. Let Eyy denote the exceptional divisor of W — W. We
start with the blowing up of the family of rational curves given by the fiber-
product of Eyy with the points on F5 fixed by ag,. This yields the exceptional
divisor E¢ consisting of 9 rational ruled surfaces. By the same arguments as
in 9.2.4, each connected component of Ec contains two families of rational

3 The singular locus of Wy is contained in Wg N {z5 = 1}. Thus one can calculate the
desingularization with the usual equations z;t; = zj;t; for 4,5 = 1,2,3. On {t; = 1} the
zero locus of the local parameter z; yields the exceptional divisor. The local parameter
fixed by af can be given by t1/t; or t3/t;.
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curves of fixed points. The blowing up W x F3 of these latter families has a
quotient

WXFg/az

with quotient map given by ¢ such that on the complement of the isolated
sections fixed by ¢

Prwg = O((EC>q)~

9.2.7. Recall that R' is a rational ruled surface, where the exceptional divisor
Eg1 of the blowing up R* — Q! is a section of R! — P! (see Remark 8.1.6).
A fiber W, can be considered as a family

WqLRl—ﬂPl

of curves, where f is constructed in 8.1.12. By 8.3.1 and the projection R? —
R', the morphism f extends to a morphism f : W — R x M3 such that the
exceptional divisor Eyy of the blowing up W — W is send to the exceptional
divisor Egiy, = Epi x M3 of the blowing up R' x M3 — Q' x Mj. The
following commutative diagram describes the situation:

Eyy w W
fl fl fi
Eri x M3y R! X Mjy Ql X M3
P! x My d P! x Ms
9.2.8. Thus

g: WL R x My — P x M

is a family of curves, which has 3 distinguished sections given by the excep-
tional divisor Eyy of W — W. Moreover by the description of f: W, — R!
as degree 3 cover, one can easily see that the fibers of g are given by the Fer-
mat curve of degree 3 or consist of 3 smooth rational curves intersecting each
other in exactly one point, which does not lie on (Eyy),. Over P!\ {oo} x M3
and P!\ {0} x Mj3 one can embed the restricted family into some copy of

2
IPAl XMs*

Therefore we obtain the family
W x Fz — P! x M3
of surfaces, which has sections given by the fiberproduct of the exceptional

divisors of W — W with the points fixed by ap,, which do not meet any
singular point of a fiber. In addition as is a P! x Ms-automorphism of this
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family. Hence by the same arguments as in the proof of Proposition 9.1.2, we
can blow down ¢(E¢) over (P1\ {oc}) x M3 and (P*\ {0}) x M3. By gluing,

we obtain the family Q. Note that the singular fibers of WxF3 — P! x M3 are
given by 3 copies of P! x F5. Hence by the restriction of the sheaf, which yields

the blowing down morphism, to the corresponding copies of P! x F3/{as), one
obtains smooth blowing down morphisms on these copies.

Construction 9.2.9. But O has 18 sections of singular points given by the

18 isolated sections fixed by «as on m;»,. Recall that these sections are
given by
{#5 = 24 = 0} x {z = 0}.

Let QO — Q denote the blowing up of the singular sections of Q and

WXFgHWXFg

denote the blowing up of these 18 sections. By the same arguments as in
Remark 7.1.2, we obtain the following commutative diagram:

W29
|,
W%

Q

Note that @ is a cyclic cover on the complement of E¢. Thus by the Hurwitz
formula and the fact that ao acts by the character 1 on I'(wyy, xF,) for each
q € M3, one concludes that Q is a family of Calabi-Yau 3-manifolds.

Proposition 9.2.10. The family Q@ — Mg is a CMCY family of
3-manifolds.

Proof. Note that on each fiber we blow up some points and several copies of
P!, which have CM. Hence by Theorem 7.1.7, we must only apply the facts
that F3 has C M and W has a dense set of fibers W, such that Hg(H"*(W,, Q))
is commutative for all k. ad

9.3 The degree 4 case

Consider the CMCY family Co — M of 2-manifolds given by
P3O V(yy +yi +x1(x1 — 20) (21 — Axg)m0) — A € M4

which we have constructed in Section 7.4. In this section we construct quo-
tients of Co by cyclic subgroups of its group of Mj-automorphisms, which
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will be suitable to obtain new CMCY families of 2-manifolds. In the next
section we will see that these new examples are endowed with involutions,
which make them suitable for the construction of the Borcea-Voisin tower.
Hence by the Hurwitz formula and some other obvious reasons, one has:

Claim 9.3.1. Let C' be a K3 surface and « be an involution on C', which
admits a finite set S of fized points on C. Then the quotient C’/a, where C
denotes the blowing up of C with respect to the subvariety given by S, is a
K3 surface, too. Moreover C’/oz has complex multiplication, if C has complex
multiplication.

Now we introduce a group G4 of Mj-automorphisms of the CMCY family
Cy — M. The elements g € G4 can be uniquely written as a product g = abc
with a € (o), b € (3), and ¢ € (14), where:

a(yz iy1 i@y ixo) = (Y2t y1: w1 :20), Bly2 v :21:x0) = (Y2 iy1 : @1 : o),

ta(y2 s y1 sy s o) = (Y1 : Yo : w1 : )

Therefore the group G4 contains exactly 32 elements. The action of G4 on
the global sections of the canonical sheaves of the fibers induces a surjection
of G4 onto the multiplicative group of the 4-th. roots of unity.

Its kernel K4 is a normal subgroup of order 8. It contains the following
automorphisms of order 4:

Oy2:y1:xy:xo) = (—y1:y2 21 :20), €(y2:y1:a1:20)= (Y2 : —iy1:T1: To),

Ny :y1 @1 x0) = (11 : iye 1 T1 : xg)

One has that
13 =0 =€ =n> = (af)’.

Moreover one checks easily that K4 is isomorphic to the quaternion group
and has the generators §, € and 7. Thus one has

Ka/(t3) = (Z/2)*. (9-2)

One can easily calculate that

By the fact that K4 has 2 residue classes with respect to (d) resp., (€) resp.,
(n), one concludes that () resp., (€) resp., () is a normal subgroup of K.
Since [a]g, generates G4/K, and

(€) is a normal subgroup of Gy.
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9.3.2. Recall that 13 denotes the involution given by

t3(y2 sy sy s o) = (—y2 1 —y1 1 1 : Xo)-

Let Cy,,) be the CMCY family of 2-manifolds given by the quotient C~2/<L3>,
where Cy denotes the blowing up of Cy with respect to the 8 sections fixed by
t3. Four sections fixed by ¢3 are given by (1:¢:0:0), where ¢ runs through
the primitive 8-th. roots of unity. The other 4 sections are given by

(0:0:0:1), (0:0:1:1), (0:0:A:1) and (0:0:1:0).

Since the generators «, 3 and 14 of G4 leave the ideal sheaf corresponding to
these 8 sections invariant, all automorphisms of G4 induce automorphisms on
Cy. Note that t3 commutes with each 7 € G4. For each 7 € G4 one finds open
affine subsets invariant under (7,:3). On these affine sets the global sections
of the structure sheaf invariant under (7,3) are contained in O3}, where 7
leaves O{3) invariant. Therefore 7 induces an automorphism on C(i3)- One
checks easily that d, n and e yield involutions on C,,) leaving only finitely
many sections fixed. Thus by using Claim 9.3.1, these involutions yield the
CMCY families of 2-manifolds

Cs) = Caya—t =Crny and Crq.

9.4 Involutions on the quotients of the degree
4 example

In Section 7.4 we introduced several M -involutions ¢1, ..., t7 of Co. We have
seen that t3 acts by the character 1 on the global sections of the canonical
sheaves of the fibers. Moreover i1, 2,4, ...,t7 act by the character —1 on
the global sections of the canonical sheaves of the fibers. Here we show that
each for each i = 1,2,4,...,7 the involution ¢; induces M-involutions on
the quotient families of 9.3.2, which make them suitable for the construction
of a Borcea-Voisin tower.

Remark 9.4.1. One can use Example 7.4.3, Example 7.4.4 and Example
7.4.5 and determine some explicitly given C'M fibers of the new quotient
families. By using the method of C. Voisin [60], these new K3 surfaces
with complex multiplication and our explicit examples of elliptic curves with
complex multiplication yield new Calabi-Yau 3-manifolds with complex mul-
tiplication

We fix some new notation. Let C5 be an arbitrary fiber of Co, p € Cj,
where p is not fixed by ¢3, and F; denote the curve of fixed points on Cy with
respect to ¢; for all e =1,2,4,...,7.
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9.4.2. The involutions ¢1 and ¢3 induce the same involution on Cy,,). One has
that ¢1([p](,)) = [Pl(), if and only if p € F1UF;. The involution ¢3 induces an
involution on the curve F; and on the curve F,. Each of the covers induced by
these involutions has 4 ramification points. Hence by the Hurwitz formula, ¢
induces an involution on Cy,,y, which has a divisor of fixed points containing
two families of elliptic curves. By [60], 1.1, the ramification divisor of our
involution on a fiber of C(,,y has at most one irreducible component of genus
g > 0 or consists of two elliptic curves. Thus it consists of two elliptic curves.
It is quite easy to check that by this involution ¢y, the family C(,,) is suitable
for the construction of a Borcea-Voisin tower.

9.4.3. The involutions ¢4 and ¢¢ induce the same involution on Cy, . One
has that t4([p](,)) = [Plws), if and only if p € Fy U Fs. The involution ¢3
induces an involution on the curve F; and on the curve Fg. Each of the
covers induced by these involutions have 4 ramification points. Hence by the
same arguments as in 9.4.2, the involution ¢4 induces an involution on C,,),
which has a divisor of fixed points consisting of two families of elliptic curves.
It is quite easy to check that by this involution ¢, the family C(,,) is suitable
for the construction of a Borcea-Voisin tower.

Since awa™! = 15 and atga”! = u7, the involutions ¢5 and ¢7 induce up
isomorphisms the same involution as ¢4 and g on C,,.

Recall the M-automorphisms
O0(y2:y1:@y:mo) = (—y1:y2: @1 : ), €(y2:y1:21:20) = (Y2 —iyr : X1 : X0)

of Cqy of order 4.

Remark 9.4.4. Now we consider the quotient families C(sy and C) in 9.3.2.
Moreover one has that § and € act as involutions on the 4 sections given by
(1:¢:0:0), where ¢ runs through the primitive 8-th. roots of unity, and
leave the sections given by

(0:0:0:1), (0:0:1:1), (0:0:A:1), (0:0:1:0)

invariant.

One can easily verify there does not exist a point p € Cs on the complement
of these eight sections such that §(p) = t3(p) or e(p) = t3(p).

Therefore either p is contained in one of the 8 sections fixed by ¢3 or (d) - p
and (€) - p contain 4 different elements. For our notation we will assume that
p is not fixed by ¢3 as above.

9.4.5. The involutions ¢1 and t5 commute with €. Thus the same holds true
with respect to the involutions on Cy,,y induced by ¢1, t2 and €. Hence one
concludes that ¢; and ¢ induce an involution an C<6>. Since ¢; and ¢y in-
duce the same involution on C< the involutions ¢; and ¢o induce the same
involution on Cy).

L3>7
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A point [p] on the fiber Cy of Cpo is fixed by ¢, if 11(p) = €'(p) for
i =0,...,3. This is exactly satisfied on F} and F5 for i = 0 or ¢ = 2. The
automorphism e yields a quotient of F; resp., Fy of degree 4 fully ramified
over 4 points. Hence by the Hurwitz formula, Fy /(e) and F5/(e) are rational
curves.

By the definitions of ¢1 and €, one checks easily that their actions coincide
on the exceptional divisor on Cy over the four sections given by V(y2,91).
Moreover by the definitions of ¢1 and €, one checks easily that for each prim-
itive 8-th. root ¢ of unity

11(1:¢:0:0)=€(1:¢:0:0)=(1:—-¢:0:0).

Both M-automorphisms fix the local parameters z; and xg.

Thus altogether the involution ¢; induces an involution on C(.y, which has
a divisor of fixed points consisting of 8 disjoint families of rational curves. It is
quite easy to check that C is suitable for the construction of a Borcea-Voisin
tower by this involution.

9.4.6. The involutions t4,...,t7 do not commute with €. But one has e;; =
;€3 for all i =4,...,7. Hence ¢; (i =4,...,7) induces an involution on Clus)-
Since t5 = €4, tg = €214 and 17 = €314, these involutions induce the same
involution on Cy).

A point [p] € Oy is invariant under vy, if 14(p) = €'(p) for i = 0,...,3.
One has that t4(p) = (p) on Fy, ts(p) = €'(p) on Fr, wu(p) = €*(p) on
Fs and 14(p) = €3(p) on Fy. Note that e(Fy) = Fs, e(Fg) = Fy, €2(Fy) = Fy
and €2(Fs) = Fs. Moreover one has e(F5) = Fy, e(Fy) = Fr, ¢2(Fs) = F;
and €2(F5) = Fs. The automorphism €2 = 13 yields a quotient of Fy, F, Fg
resp., Fr of degree 2 ramified over 4 points, where Fy and Fj resp., F5 and
F7 are mapped onto the same quotient by e. Hence by the Hurwitz formula,
the quotient consists of two families of elliptic curves.

By [60], 1.1, the ramification divisor of our involution on C' has at most
one irreducible component of genus g > 0 or consists of two elliptic curves.
Thus ¢4 induces an involution on C, which has a divisor of fixed points
consisting of 2 families of elliptic curves. It is quite easy to check that this
involution makes C(y suitable for the construction of a Borcea-Voisin tower.

9.4.7. The involutions ¢4 and tg do not commute with ¢. But one has 4 =
1403 and i = 160°. Moreover one has

11 =001y, L6:(520L4, and 19 = 6% 0 14.

Hence ¢1, t9, t4 and tg induce the same involution on C.s~.
A point [p] € Cs) is invariant under ¢4, if v4(p) = 6°(p). This occurs, if
and only if
p € FyUF,UFyU Fg.
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Note that §(Fy) = Fs and §(Fy) = F». Moreover § yields a degree 4 quotient
of F,yUFy, and a degree 4 quotient of F; U F5. Thus the divisor of fixed points
contains two families of elliptic curves.

By the same arguments as in 9.4.6, the involution ¢4 induces an involution
on Csy, which has a divisor of fixed points consisting of 2 families of elliptic
curves and makes C(s) suitable for the construction of a Borcea-Voisin tower.

9.4.8. The involution t5 commutes with §. One has that p = t5(p), if p € F5
and 0%(p) = t5(p), if p € Fr. Note that & acts as degree 4 automorphism on
Fy resp., F7. Each of the corresponding quotient maps is fully ramified over
4 points. By the same arguments as in 9.4.5, the Mj-automorphisms ¢5 and
6 act in the same way on the exceptional divisor of Cy. Thus t5 induces an
involution on C(s), which fixes a divisor consisting of 8 families of rational
curves. Moreover it is quite easy to check that this involution makes Cs)
suitable for the construction of a Borcea-Voisin tower.

9.4.9. Since atja! =11 and ada~!' =7, one concludes that the involution

induced by ¢; on Cy, coincides up to an isomorphism with the involution in-
duced by ¢1 on Cys).

Since arsa™' = 15 and ada~! = 5, one concludes that the involution
induced by ¢ on Cy, coincides up to an isomorphism with the involution in-
duced by ¢5 on Cysy.

9.5 The extended automorphism group of the degree
4 example

The group G4 of Mj-automorphisms of Co does not contain all M;-
automorphisms of Co. In this section we give an additional group [E4
of M;-automorphisms such that G4 and E, generate an extended M;-
automorphism group G4. Moreover we will make some remarks about Gy
and E4.

We obtain due to [28], Proposition 9 and the notations of [28], Section 2:

Proposition 9.5.1. The family Co has a group E4 of Mi-automorphisms
consisting of 16 different automorphisms given by (af)” with v = 0,...,3
and:

04{(?/2 sy ay i wo) = (Cu2 i Cyr @y — Aot X1 — Xo), C4 =(1 _)‘)2

1 1
Be(yz ty1 : @1 2 wo) = (SY2 1 qy1 1 X1 — o o z9), ¢*=(1-<)?

V(Y2 Y1t @1 o) = (Ky2 : Ky AZg : 1), kY= \?

The involutions of B4 are given by (aB)”, a¢, Be and v, forv =2,(* = 1=,

2 =1- % and K? = X. The group E4 has a subgroup isomorphic to the
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quaternion group given by (aB)”, ac, B and 7, for v =10,2, (? = =14 A,
§2:—1+§ and K2 = —\.

One can ask for the character of the action of the involutions of E4 on
F(w(cz)q) for each ¢ € M and the possibilities to use these involutions for
the construction of Borcea-Voisin towers. For example one has:

Example 9.5.2. One checks easily that v 5 resp., v_ s fixes the family
curves on Cy given by

z1 = VAzg resp., x1 = —VAzo.

This family of curves is isomorphic to the constant family with universal
fiber given by the Fermat curve Fy of degree 4, which has the genus 3. Thus
it acts by the character —1 on T'(w,),) for each ¢ € M;. Since Fy has
complex multiplication, v, and v__ 5 make Cy suitable for the construction
of a Borcea-Voisin tower.

The following claim implies that v 5 and v_, 5 yield isomorphic families
by the Borcea-Voisin tower:

Claim 9.5.3. One can conjugate v /5 and y_ /5 in Eq.

Proof. There exists some g of order 4 contained in the quaternion subgroup
of E4 such that

Y5 = (@B)g and v_ ;5 = (afB)’g = (aB)(af)’g = (aB)g~".

It is a well-known fact that there is a go contained in the quaternion group
such that
g =gog0g, "

Since (af3) is contained in the center of E4, one obtains the result. O

Finally the question for isomorphy between Cy/t; and Co/i4 resp., the
corresponding CMCY families of 3-manifolds constructed by the method of
C. Voisin [60] remains open, since we have:

Remark 9.5.4. By the description of E; in Proposition 9.5.1, one checks
easily that the generators a, (3,14 of G4 commute with each element of Ey.
Hence each element of G4, which is the group generated by G4 and Ey4, can
be written as k7 with x € E4 and 7 € G,4. Thus for each ¢ € G4 one obtains

(k) to(kT) =17 toT. (9.3)
Hence the fact that 1 and ¢4 are not conjugate in G4 implies that ¢; and 14

are not conjugate in Gy. -
Moreover (9.3) implies that v  is not conjugate to ¢1 or ¢4 in Gy.
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Remark 9.5.5. One may search for additional involutions in G4 and try
to determine the character of the actions of all involutions on I'(wc,),) for
each ¢ € Mj. In addition one can try to determine the involutions, which
are suitable for the construction of a Borcea-Voisin tower and try to repeat
the construction of the preceding section for arbitrary induced involutions on
suitable quotients by cyclic subgroups of Gy.

9.6 The automorphism group of the degree 5 example
by Viehweg and Zuo

We consider the CMCY family F3
P* D V(43 +u5 + 17 + 21 (21 — 20) (11 — a1m0) (21 — agwo)zo) — (a1, az) € My

of 3-manifolds constructed by E. Viehweg and K. Zuo. Let £ denote a fixed
primitive 5-th. root of unity. We introduce an Ms-automorphism group Gs
of the family F3 — M. The elements g € G5 can be uniquely written as a
product g = abed with a € (a), b € (§), c € (y) and d € S5, where:

a(ys :y2 1 y1 w1 x0) = (ys s Y2t Y1 = X1 5 Xo),

Bys Y2 :y1 : @1 o) = (Y3 : Y2 1 Y1 © @1 2 o),

Yz Y2ty @ s x0) = (Y3 : Y2 €Y1z X1 2 o),
d(ys :y2 1 y1 1 @1 T0) = (Ya3) © Ya2) * Yaq) : L1 To)

Therefore the group Gy contains exactly 5-5-5-6 = 750 elements. The action
of G5 on the global sections of the canonical sheaves of the fibers induces a
surjection of G5 onto the multiplicative group of the 10-th. roots of unity.*

Its kernel K5 is a normal subgroup of order 75. It contains the subgroup
(af~t, By~1) of automorphisms of order 5. This group has 25 elements. More-
over it contains the cyclic group given by the permutations of Az of order 3.
Therefore all elements of K5 are determined.

9.6.1. Let us consider all cyclic groups (g) C K5 with g = abc # e as above.
Ifa=eorb=-eorc= e, the group (g) is given by (aB~1), (By~1) or (ay~1).
These groups are conjugate by (1,2), (1,3),(2,3) € Ss.

Now consider the cyclic group (g) C K5 with g = abc and a,b,c # e. One
has that (g) contains an element a3°y*~% with b € {1,2,3}. Hence by e € S3
or (2,3) € S, it is conjugate to (a3y3) or (a3%42). By the cycle (1,3) € Ss,
these both groups are conjugate. By the fact that (a3v?) leaves only finitely

4 Note that S3 is generated by the involutions given by the cycles (1,2) and (2, 3), which
act by the character —1 on the global sections of the canonical sheaves of the fibers.
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many points invariant on each fiber, but {(a3~1!) leaves a curve invariant on
each fiber, both groups can not be conjugate.

Therefore we have two conjugacy classes of cyclic subgroups (g) C K5 with
g = abc # e represented by (a371) and (af7?).

Claim 9.6.2. Any automorphism 7 € Ky, which is not given by

T(ys y2 i yn i wr i wo) = (s : Eya 1 €7 Pyr syt o)
for some s,t € Z, satisfies 7> = id.

Proof. If T satisfies the assumptions of the Claim, then 7 or 7~ ! is given by

(Y3 ot y1 s w1 s o) — (%Y1 Elyz = €5 tyg 1 2y 2 o) (9.4)
for some s,t € Z. Hence we assume without loss of generality that 7 is given
by (9.4) and verify the statement by calculation:

3 . . . . _ L 2(¢s .t L e—s—t . .

T(ys Y2 i yr w1 i xo) =7 (%1 Elys : € Yo 1 X1t X0)

=7y &y 1 & ys s wy two) = (Y3 Y2 1ty ¢ To)
O
For each 7 as in (9.4) one can easily calculate that a=*37*"fo10a*3°Tt
is given by
(ys:y2:y1 21 :@g) — (Y1 : Y3 : Y2 : X1 : Tp)-
Therefore all cyclic subgroups of K5 are up to conjugation determined.

Hence:

Proposition 9.6.3. The family F3 has up to isomorphisms the following
quotient families of Calabi-Yau orbifolds with dense sets of CM fibers:

Fsl{aBh), Fs/(aBr®), F3/((1.2,3))

Proof. The existence of dense sets of CM fibers follows, since the VHS of a
quotient family of F3 is a sub-VHS of F3. O



Chapter 10
Examples of CMCY families
of 3-manifolds and their invariants

In this chapter we collect all examples of C M CY -families from the previous
chapters, determine the length of their Yukawa couplings and compute the
Hodge numbers of their fibers. In Section 10.4 we will also give an outlook
to the possible construction methods of Calabi-Yau manifolds by using other
Calabi-Yau manifolds in lower dimensions and cyclic automorphism groups.
We recall the definition of the length of the Yukawa coupling and its computa-
tion methods in Section 10.1. Since there are equations for the Hodge numbers
of the Calabi-Yau 3-manifolds obtained from the Borcea-Voisin method, we
only need to list them in Section 10.2. In Section 10.3 we need to calculate a
little bit to get the Hodge numbers of Calabi-yau 3-manifolds obtained from
K3 surfaces with a degree 3 automorphism and Fermat curve of degree 3.

10.1 The length of the Yukawa coupling

First let us construct the Yukawa coupling. A little bit later in this short
section we will give a motivation to consider it and describe how to calculate
its length for our examples of C M CY families of 3-manifolds. For this section
we refer [57], [58] and [59].

Construction 10.1.1. Assume that U is a quasi projective variety and V
is a complex polarized variation of Hodge structures of weight n on U. It is
a well-known fact that there exists a suitable finite cover of U such that the
pullback of V has local unipotent monodromy. We replace U by this finite
cover. There exists a smooth projective compactification Y of U such that
S:=Y \ U is a normal crossing divisor. Then one can construct the Deligne
extension H of V @¢ Op (i.e., the unique extension such that the Gauf-
Manin connection yields the structure of a logarithmic Higgs bundle (F0)
on the associated graded bundle and the real components of eigenvalues of
the residues are contained in [0, 1)). The graduation gives a decomposition of

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 187
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_11,
(© Springer-Verlag Berlin Heidelberg 2009
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F into locally free sheaves EP""P and the GauBl-Manin connection induces
an Oy-linear morphism

EPP — BRI @ O (logS),

called Higgs field. The Yukawa coupling 6; (for i < n) is defined by the

composition

6, : E™0 8 grell g 0l (Iog8) "7 En22 @ Sym?QL (logS) A
P B g Symil (logS).

Definition 10.1.2. Let f: V — U be a family with fibers of dimension n as
in Construction 10.1.1. The length ((f) of the Yukawa coupling is given by

C(f) = min{i > 16, = 0} — 1.

We say that the Yukawa coupling has maximal length, if {(f) = n.
The family f:V — U is rigid, if there does not exist a non-trivial defor-
mation of f over a nonsingular quasi-projective curve 7.

The following proposition yields our motivation to consider the length of
the Yukawa coupling:

Proposition 10.1.3. If the Yukawa coupling has maximal length, the family

s 1rigid.

Proof. (see [57], Section 8) O
The statements of the following lemma, which allow the computation

of length of the Yukawa couplings of our examples of CMCY families of
3-manifolds by their construction, are well-known:

Lemma 10.1.4. For two variations of Hodge structures V and W on a holo-
morphic manifold one has

((VoW) = (V) +{W) and (Ve W) =max{((V),((W)}.

10.2 Examples obtained by degree 2 quotients

Let Z; — M be one of the examples of a CMCY family of 2-manifolds,
which we have constructed in the preceding chapters, with a suitable invo-
lution ¢ such that it satisfies the assumptions for Z; in the construction of
a Borcea-Voisin tower. Here we list all examples of CMCY families 25 of
3-manifolds obtained by the Borcea-Voisin tower starting with such a family
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Z; and Xs given by the family & — M; of elliptic curves endowed with
its natural involution. By the definition of Calabi-Yau manifolds, Serre du-
ality and Hodge symmetry, all Hodge numbers of the fibers of the resulting
CMCY family Z, of 3-manifolds are determined by A" and h%1.

Claim 10.2.1. Keep the assumptions above. Let (Z1), — (Z1),/t be rami-
fied over N curves with genus g1,...,g9n for all p € M. Then the fibers of
Zo have the Hodge numbers

W't =114 5N — N’ and h*' =11+ 5N’ — N, where N' = Zgi.

Proof. (see [60], Corollaire 1.8) 0

Hence for our examples of CMCY families of 3-manifolds obtained by us-
ing the Borcea-Voisin tower and C M CY families of 2-manifolds with suitable
involutions, we have the following table:

family Z; basis M involutiont N N’ ALl A2l (¢ reference
Ca My L1 1 3 13 25 2 7.4.8
Ca My L4 1 3 13 25 2 7.4.8
Co My Yoo Yv=x 1 3 13 25 2 9.5.2
Clus) My " 2 2 19 19 2 942
Clua) My L4 2 2 19 19 2 943
Clo My " 8 0 51 3 2 945
Cloy My L 2 2 19 19 2 946
Cis) My w=w 2 2 19 19 2 947
Cis) My ' 8 0 51 3 2 948
w M3 0% 2 4 17 29 2 8.34,8.3.5
y M3 o 2 4 17 29 2 9.1.3,9.14

10.3 Examples obtained by degree 3 quotients

In this section we determine the Hodge numbers of the CMCY family Q of
3-manifolds obtained by Proposition 9.2.10 and the Hodge numbers of the
CMCY family R of 3-manifolds obtained by Proposition 9.2.5.

Remark 10.3.1. In the case of the CMCY families Q and R one has ( =1
for the length of the Yukawa coupling as one concludes by their constructions
and using Lemma 10.1.4.

Let X be a complex manifold and v an automorphism of X of order m.
Then H*(X,C), denotes the eigenspace of H*(X,C), on which 7 acts via
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pullback by the character e2™i5 . For the computation of the Hodge numbers
of the fibers of Q and R we will need the following proposition:

Proposition 10.3.2. Let X be a Kdhler manifold of dimension 3. Moreover
let v be an automorphism of X fizing a finite set of some isolated points Z
and a finite set Zy of disjoint curves such that ©™ = id for some m € N.
Then one has the following eigenspaces:

H*(X 7,020, L)o = H*(X,Z)o ® H*(Z1,Z) ® H*(Z0, Z),
H3*(X 7,02, 2)0 = H*(X, 7)o ® H(Z,,7)

Proof. Let Y be a Kahler manifold and Z be a submanifold of codimension r.
Then the Hodge structure of the blowing up Yz along Z is given by

r—2
HY (Y, 2) 0 @D HY ' 72(2,2) = H* (Y3, Z0),
1=0

where H¥=21=2(Z Z) shifted by (i + 1,7+ 1) in bi-degree (see [61], Théoréme
7.31).
Thus one has:

H*(Xz,0z,,72) = H*(X,Z) ® H*(Z,,Z) ® H°(Zy,Z),
Hs(leUZmZ) = Hg(Xa Z) D Hl(ZhZ)

Hence it remains to show that H%(Z1,Z), H(Zy,Z) and H'(Z,7Z) are in-
variant as sub-Hodge structures by ¢. Therefore one considers the proof of
[61], Théoréme 7.31. These sub-Hodge structures are given by the image of
Ji 0 (7] 2,020) (H(Z1 U Zo, Z)) and ji o (7| 2,02,)*(H'(Z1 U Zo, Z)), where j
denotes the embedding of the exceptional divisor F of the blowing up mor-
phism 7 : Xz, 0z, — X.! One has the following commutative diagram:

~ %) ~
XZ1UZO - XZIUZO

Z\UZy— = 7, U Z,

! In general one has @::_02 Jrohto(m|z,uz,)" instead of jxo(m|z,uz,)* fori=0,...,7—2
in [61], Théoréme 7.31, where h denotes the cup-product with ¢1(Og(1)) and the sheaf
Og(1) of the projective bundle E is described in [61], Subsection 3.3.2. But here the weight
of the Hodge structures is to small for 7 > 0.
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Since ¢ acts as the identity on Z; U Z, the same holds true for the Hodge
structures on Z; U Zp. Hence by the commutative diagram, the same holds
true for the sub-Hodge structures on X given by j. o (7]z,uz,)* O

Proposition 10.3.3. For all ¢ € M3 the action of the cyclic group (o) on
W yields an eigenspace decomposition of HY'(W,) of the dimensions

R W,)o =14, hYT W) =3, KM (OW,). = 3.

Proof. Let W — W be the blowing up of the six sections fixed by af. By
the same arguments as in the proof of the preceding proposition, each fiber
W, has the Hodge numbers

h*0 =1, nY' =26, h%% =1,

Let M := W,/(a3). Now we consider the quotient morphism ¢ : W, — M.
By the Hurwitz formula, one concludes that

0" (Ku) = —2E — E®,

where E is the exceptional divisor of W, — W, given by three —2 curves and
E® is the exceptional divisor of Wy — Wj,. From [61], Proposition 21.14, we
have that 3 - K3, = (¢*(Kas))?. Since

(0" (Kum))? = (—2E — E®)? =4 (=6) — 6 = —30
and ¢;(M)? = K3, (see [26], Appendix A, Example 4.1.2), one obtains
ca(M)? = K3 = —10.

By the Noether formula (compare to [26], Appendix A, Example 4.1.2 and
[61], Remarque 23.6), one has

X(OM) = %(Cl(M)Q +02(M)) with CQ(M) —2= bQ(M)

in our case. From the fact that x(Ops) = 1, one calculates that
hYE (W, )0 = ba(M) = 20.

By the fact that the blowing up morphism Wq — W, has an exceptional
divisor consisting of 6 rational curves, we conclude similar to Proposition

10.3.2 that
Y (W,)o = WM (W,)o — 6 =20 — 6 = 14.
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Since the K3 surface W, has the Hodge number

MY (W,) =20 and M (OW,)1 =AY OWV,)a,
one concludes that

REYW,)1 = hME(W,)2 = 3.
O

Proposition 10.3.4. For all ¢ € M3 the action of the cyclic group () on
W yields an eigenspace decomposition of HY'(W,) of the dimensions

R W,)o =2, AW =9, AV OW,)2 = 9.

Proof. Recall that
W,/{a) = R*.

Since —2V (z4) is the canonical divisor of R* (see Corollary 8.1.7), one obtains
Cl(Rl)2 = KI2?1 =&.

By the Noether formula, one has

(Om) = %(cl(ﬁcl)2 +es(RY) with ea(RY) — 2 = by(RY).
From the fact that x(Opr:) = 1, one calculates that
YL (W,)o = ba(RY) = 2.
Since the K3 surface W, has the Hodge number
R OW,) =20 and AU (OW,)1 = hMHW,)a,

one concludes that
REYW,)1 = hME(W,)2 = 9.

Proposition 10.3.5. For all ¢ € M3 one has
rtt(Q,) = 51.
Proof. Since

hO’O(Wq)O = hO’O(Fg)() = hl’l(Fg)O = ].7 bl(Wq) =0
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and Proposition 10.3.3 tells us that
hl’l(Wq)o = 14,
one concludes that A1 (W, x F3)o = 15. Note that oo fixes 6 -3 = 18 points.
Moreover we have an additional exceptional divisor consisting of 3-3-3 = 27
rational ruled surfaces. In the construction of Q@ we blow down 9 of these

families of ruled surfaces. Hence by Proposition 10.3.2,

ht1(Q,) = 15+ 18 427 — 9 = 51.

Proposition 10.3.6. For all ¢ € M3 one has
L (R,) = 9.
Proof. Since
RO (Wy)o = h*(F3)o = RV (F3)o =1, by(W,) =0
and Proposition 10.3.4 tells us that
hE (We)o = 2,
one concludes that h'(W, x F3)o = 3. Note that ay fixes 3 copies of the
genus 4 curve C,. Each of these copies yields 3 blowing ups of a copy of C,

and one blowing down to a copy of C,. Hence by Proposition 10.3.2,

RYY(R,) =3+9-3=09.

Proposition 10.3.7. For all ¢ € M3 one has
hb2(Qq) = h*1(Q,) = 3.
Proof. Recall that af acts by the character ™3 on the global sections of
1
wwy, for all ¢ € P, and ar, acts by the character e?™3 on the global sections
of wr,. Hence one obtains

h'C(F3)y = %1 (Fs)y = B0 (Wy)2 = hO?(Wy)1 =1

and

RYO(F3)o = RO (F3)y = h*°(W,)1 = h*2(W,)2 = 0.
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Note that by(W,) = bs(W,) = 0, h"*(W,)o = 14 and AM1(W,); =
Rt (W, )2 = 3. Recall that

2
H3*W, x F3,C)g = @Hz(Wq, C) @ H (F3,C)3_y,-
t=0
Hence one concludes that
Hg(wq x Fs, (C)O = (szo(wqh S2] Hl’l(Wq)2) ® HLO(FS)I
S(H (Wy)1 & H*?(Wy)) @ H' (Fs),.
This implies that

H>'(W, x F3)g = H" (W,)2 ® H'O(F3); such that h*'(W, x F3)o = 3.

Hence by Proposition 10.3.2 and the fact that b;(P') = 0, one obtains the
statement. O

Proposition 10.3.8. For all ¢ € M3 one has
h'2(R,) = h*'(R,) = 33.
Proof. The automorphism « acts by the character 23 on the global sec-
-2
tions of wyy, for all ¢ € P, and a]%s acts by the character e?™*3 on the global
sections of wr,. Hence one obtains

hl,O(FB)l — ho’l(]Fg)Q — h2’0(Wq)2 — h(),2(Wq)1 =0

and

A0 (F3)z = h%' (Fs)1 = h*°(Wy)1 = hO2(W,)2 = 1.
Note that by(W,) = bs(W,) = 0, kb W,)0 = 2 and R (W) =
R (W,)2 = 9. Recall that

2
H3(W, x F3,C)o = @) H*(W,,C); @ H' (F3,C)3_y,-
t=0
Hence one concludes that

H?*(Wq x Fs,C)o = (H**(Wy)1 & H'(Wy)1) © H"(Fs),

SHY (Wy)2 ® H*?(Wy)2) ©® H*'(F3);.
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This implies that
H*' (W, x F3)o = H"*(W,)s @ H"*(F3); such that h*'(W, x F3)o = 9.

Hence by Proposition 10.3.2 and the fact that we have 6 copies of C, with
H19(C,) = 4, one obtains the statement. O

Next we show that Q is a maximal family of Calabi-Yau manifolds. First
let us define maximality. For this definition recall:

Proposition 10.3.9. Each Calabi- Yau manifold X has a local universal de-
formation X — B, where

dim(B) = h*'(X).
Proof. (see [61], 10.3.2) O

Definition 10.3.10. A family F — Y of Calabi-Yau manifolds is maximal
in 0 € Y, if the universal property of the local universal deformation X — B
of Fy yields a surjection of a neighborhood of 0 onto B. The family F — Y
is maximal, if it is maximal in all 0 € Y.

Remark 10.3.11. If the family F — Y of Calabi-Yau manifolds is maxi-
mal in some 0 € Y, its restriction to the complement of a closed analytic
subvariety of Y is maximal.

Remark 10.3.12. Since W, is birationally equivalent to Fs xC,/((1,1)) (see
Proposition 8.2.4), one has

H*(W,) = H"(F3)1 ® H"(Cy)2,

where C denotes the family of degree 3 covers with a pure (1,3) —V HS. Thus
by our former notation with respect to the push forward action, the VHS
of W depends uniquely on the fractional VHS of the eigenspace £ of the
VHS of C.

In Section 9.2 we have seen that Q is birationally equivalent to a quotient of
W x 3. It differs by some blowing up morphism with respect to some families
of rational curves and some isolated sections. Thus by similar arguments, the
VHS of Q depends on the VHS of W. Hence the V HS of Q depends uniquely
on the fractional VHS of £;. Thus the period map of Q can be considered
as a multivalued map to the ball Bs.

The preceding remark tells us the period map of the family Q — M3 is
locally injective. Hence by the Torelli theorem for Calabi-Yau manifolds, one
concludes:

Theorem 10.3.13. The family Q — M3 is mazimal.
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10.4 Outlook onto quotients by cyclic groups
of high order

Recall that we used K3 surfaces S and elliptic curves E with cyclic degree m
covers S — R and E — P! to construct Calabi-Yau 3-manifolds by a quotient,
where m = 2, 3. In this chapter we give an outlook on the possibilities to use
of cyclic groups of higher order for the construction of Calabi-Yau 3-manifolds
by an elliptic curve and a K 3-surface.

First the following Lemma shows that there are only finitely many elliptic
curves with an action of a cyclic group with order m > 2, which could be
suitable:

Lemma 10.4.1. Let E be an elliptic curve, and f : E — P! be a cyclic
cover. Then one obtains

m:=deg(f)=2, 3, 4 or 6.

For each m > 2 there is at most only one elliptic curve having a cyclic cover
f:E — P! of degree m.?

Proof. We use Proposition 2.3.4 and Corollary 2.3.5. Let f : E — P! be be a
cyclic cover of degree m > 2. Moreover if f has n branch points, then L is
of type (p, ¢) with p+ ¢ = n— 2. Thus there must be at least 2 branch points.
If there are only 2 branch points, we are in the case of the cover P! — P!
given by x — a™. Since L, is of type (p,q) with p + ¢ = n — 2, the curve C
can be an elliptic curve for m > 2, only if n = 3.

For n = 3 and m > 2 we have that L; is of type (p,q) with p 4+ ¢ = 1.
Without loss of generality we assume that p = 0 and ¢ = 1. Hence by
Proposition 2.3.4, one concludes that

p1+ po + pg = 1.
If m = 3, one has only the case of the Fermat curve of degree 3 given by

1
Hi=H2 =13 =3
If m > 3, Ly must be of type (0,0), which implies without loss of generality
that pup = % Hence for m = 4 we have only the case of the cover given by

1 1

/l1:§7 M2:M3:Z~

2 The well-educated reader knows the automorphism group of the abelian variety given by
one elliptic curve. But the quotient map by a cyclic subgroup of this automorphism group
is fully ramified at the zero-point. There could be cyclic covers, which are not fully ramified
over all branch points. Hence for the proof of this lemma, it is not sufficient to know the
automorphism group of this abelian variety.
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If m > 4, Ly and L3 must be of type (0,0), which implies without loss of

generality that pq = % and po = % Hence we obtain the only additional case

given by the degree 6 cover with the local monodromy data

1

1
M1:§, M2:§, M3 =

1
5
]
Let S be a K3-surface, E be an elliptic curve and the cyclic groups (7s)
and (yg) of order m > 1 acting on S and E with the ramification loci Fs and
Fg such that vg and vg act by —1 on the global sections of the respective
canonical sheaves. The aim is the construction of a Calabi-Yau 3-manifold
by a desingularization of S x E/{(vs,vr)). The following proposition tells us
that there are singularities on S x E/{(vs,vEg)), if m > 2. Thus one has to
find a suitable desingularization in these cases.

Proposition 10.4.2. Let m > 2. Then g must have ramification.

Proof. If vg does not have ramification, one concludes by the Hurwitz formula
piw = O. Thus the quotient has a canonical sheaf w with w®™ = O for
m > 2. Moreover it has the Betti number b; = 0. In addition it must be
a minimal model, since a rational —1 curve would lie in the support of the
canonical divisor K and forbid any torsion of K. But by the Enriques-Kodaira
classification (compare to [6], VI.), such a minimal model does not exist. O

In the cases of Calabi-Yau manifolds with degree 3 and 4 automorphisms
S. Cynk and K. Hulek [13] have given general methods to obtain Calabi-
Yau manifolds in higher dimension. These methods are written down in the
following two propositions. Note that in the examples of the constructions
of the CMCY families Q@ and R of 3-manifolds we have already used the
general method of S. Cynk and K. Hulek for the degree 3 case. In the degree
6 case no method is known to the author.

Proposition 10.4.3. Let X; and X5 be Calabi-Yau manifolds and £ be a
primitive cubic root of unity. Assume that for i = 1,2 the Calabi- Yau mani-
fold X; has an automorphism n; of order 3 such that n; acts via pullback by
the character & on H°(X;,wx,). Moreover assume that the fized point set
on X1 is a smooth divisor and that the fixed point set on Xs consists of a
disjoint union of a smooth divisor and a smooth submanifold of codimension
2. Assume that 1y is locally given by (§,1,...,1) near the divisor of fized
points and 1y is locally given by (£2,1,...,1) near the divisor of fived points
and (§,€,1,...,1) near the submanifold of fixed points of codimension 2.

Then X1 x Xo/((n1,m2)) has a resolution X of singularities, which is a
Calabi- Yau manifold. The Calabi-Yau manifold X admits an action of Z/(3),
which satisfies the same assumptions as for Xs.

Proof. (see [13], Proposition 3.1) O
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Proposition 10.4.4. Let X and X5 be Calabi- Yau manifolds. Assume that
X4 has an automorphism ny of order 4 such that n1 acts via pullback by the
character i on HO(Xl,wXI) and Xo has a automorphism ny of order 4 such
that mo acts via pullback by the character —i on H°(Xs,wx,). Moreover as-
sume that the fized point set on X1 is a smooth divisor and that the fized point
set on Xo consists of a disjoint union of smooth submanifolds of codimension

one, two or three. Assume that ny is locally given by (i,1,...,1) near the
divisor of fized points and ns is locally given by (—i,1,...,1), (=1,4,1,...,1)
or (i,4,1,1,...,1) near the respective submanifolds of fized points.

Then X1 x Xo/((n1,12)) has a resolution X of singularities, which is a
Calabi-Yau manifold. The Calabi-Yau manifold X admits an action of Z/(4),
which satisfies the same assumptions as for Xs.

Proof. (see [13], Proposition 4.1) O



Chapter 11
Maximal families of CMCY type

In this chapter we use the classification of involutions on K3 surfaces S by
V. V. Nikulin [51], which act by —1 on H°(S,wg). If the divisor of fixed points
consists at most of rational curves, the Borcea-Voisin construction yields a
maximal holomorphic CMCY family of 3-manifolds.

After we have recalled some basic facts in Section 11.1, we define a Shimura
datum by using involutions on the integral lattice in Section 11.2. Each
of the points of a dense open subset of the bounded symmetric domain
obtained from this Shimura datum represents a marked K3 surface with
involution. By using this fact, we obtain our examples of maximal holomor-
phic CMCY families of 3-manifolds in Section 11.3. For each n € N with
n < 11 there is a holomorphic maximal CMCY family over a basis of dimen-
sion n.

11.1 Facts about involutions and quotients
of K 3-surfaces

In this section we collect some known facts about K3 surfaces and their
involutions, which we will need in the sequel.

11.1.1. The integral cohomology H?(S,Z) is a lattice of rank 22. We have
the cup-product (-,-) on H?(S,Z), which yields a symmetric bilinear form.
Let L := (H?(S,Z),(-,-)). One has the orthogonal direct sum decomposition

L~ (—Es)® (—Fs)®H® HODH,

where —Eg consists of Z® endowed with a negative definite integral bilinear
form given by the matrix

J.C. Rohde, Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 199
Lecture Notes in Mathematics 1975, DOI: 10.1007/978-3-642-00639-5_12,
(© Springer-Verlag Berlin Heidelberg 2009
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-2 0 1 o o0 0 0 O
0 -2 0 1 0O 0 0 O
1 0o -2 1 0o 0 0 O
0 1 1 -2 1 0o 0 0
0o 0 O 1 -2 1 0 0
o 0 0 O 1 -2 1 0
o 0 0 0 O 1 -2 1
o o0 o0 0 0 O 1 -2

and H denotes the hyperbolic plane, i. e. H = (Z?,(,+)), where (,-) is given

by the matrix
0 1
10

(see [6], VIIL. Proposition 3.3 and the notation in [6], VIII. Section 1 and
also [6], I. Examples 2.7 for details).

Remark 11.1.2. Let S be a K3-surface and L = H?(S,Z), where L is
endowed with an involution ¢. Assume that ¢ corresponds to an involution on
S, which acts by the character —1 on I'(wg). Then the involution induces a
degree 2 cover v : S — R onto a smooth surface R. Moreover the divisor of
fixed points, which yields the ramification divisor of «, consists of a disjoint
union of smooth curves or it is the zero-divisor. The involution ¢ yields integral
sub-Hodge structures H%(S,Z)o and H?(S,Z); of H*(S,Z) such that ¢ acts
by (—=1)" on H?(S,Z);. Since ¢ acts by —1 on I'(wg) and

HQ(Rv Q) = HQ(Sa @)07

one has that
H?*°(8),H*?(S) c H?*(S,C);.

Moreover the intersection form has the signature (2,7) on H%(S,Q); (com-
pare to [60], §1 and [60], 2.1).

Remark 11.1.3. Let
D = {[w] € P(H(S,C)1)|(w,w) = 0, (w,@) > 0}.

By the Torelli theorem, each marked K3 surface (S’, ¢s/) endowed with an
involution, which yields the the same involution ¢ on his cohomology lattice,
yields a unique one dimensional vector space H?°(S’) ¢ H?(S,C); corre-
sponding to some p € D.
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11.2 The associated Shimura datum

The Hodge structure of a K3 surface S with a cyclic degree 2 cover onto
a rational surface resp., Enriques surface R has a decomposition into two
rational Hodge structures H2(S,Q); and H?(S,Q)o. We consider H?(S,Q);,
since the variation of Hodge structures given by H?2(S,Q)g is trivial.

The Hodge decomposition of H?(S,C) is orthogonal with respect to the
Hermitian form (-,~). Therefore the corresponding embedding

h:S' — SL(H?*(S,R))

factors trough the special orthogonal group SO(H?(S,R)1) with respect to
the symmetric form given by the cup product pairing, where SO(H?(S,R)1)
is isomorphic to SO(2,r)g. Let w € wg \ {0},

1 .
Rw := §(w—|—a)), Sw = l(w )

and {vy,...v.} be a basis of H1'1(X,R);. One has the basis
{Rw, Sw,v1,...,0.}

of H'(X,R); such that the intersection form is without loss of generality
given by the matrix diag(1l,1,—1,...,—1) with respect to this basis. The
subgroup, whose elements are invariant under

g — h(Dgh(i™),
is given by S(O(2) x O(r)), where
h(i) = h(i™t) = diag(—1,-1,1,...,1).
Since h?(i) = h(—1) = diag(1,...,1), the action of i is an involution. This
implies that one has a decomposition of so3,(R) into 2 eigenspaces with
respect to the eigenvalues 1 and —1. Hence h(\ﬂ) yields a complex structure

on the eigenspace with eigenvalue —1. The eigenspace for the eigenvalue 1 is
given by the Lie algebra of S(O(2) x O(r)). Thus we have a decomposition

502, (C) =hy ©ho Db

such that S! acts by the characters z/z, 1 and z/z on the respective complex
sub-vector spaces.
We continue our consideration of the involution ¢ given by

t(g) = h(i)gh™" (i).
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The matrices M; € SO(2,7)(C) with M; = «(M;) satisfy that
M, = diag(—1,-1,1,...,1) - My - diag(—1,—1,1,...,1)

=diag(1,1,—1,...,—1) - M; - diag(1,1,—-1,...,—1).
Since SO(2,7)(C) is given by the matrices M satisfying

M- diag(1,1,—1,...,—1) - M = diag(1,1,—1,...,—1)

& M~ = diag(1,1,-1,..., 1) - M" - diag(1,1, —1,...,—1),

each matrix M; satisfies B
Mt = M.

Thus M; is contained in the compact group SU(2 + r), and one concludes:

Proposition 11.2.1. Our morphism
h:S'— SO(H?(S,Q)1)r

yields a Shimura datum.'

Remark 11.2.2. Note that the simple Lie group SO(2,7)(R) consists of
two connected components (see [21], Exercise 7.2). Since the Lie group
SO(2 +7)(C) = SO(H?(S,R)1)(C) is connected (see [27], IX. Lemma 4.2),
the algebraic group SO(H?(S,R);) is connected, too. Recall that all Cartan
involutions of the simple algebraic group SO(H?(S,R);) are conjugate. The
action of S on H?(S,R); is given by its action on (Rw, Sw) and S? fixes all
vectors of H11(S,R);. This implies that all morphisms

h:S* — SO(H?*(S,R),),

which yields the Hodge structure of a K3 surface, satisfy that their images
h(S1) are conjugate. The definition of the Hodge structure on H?(S,R); im-
plies that the R-valued points of the kernel of h are given by {1, -1} € S*(R).
Let tg1 : S — S! be the involution given by z — z~!. For each morphism
h1 in the conjugacy class of h, there exists exactly one other morphism hso

I This Shimura datum is not a Shimura datum in the sense of Definition 1.3.22. Let
GO(H?(S,Q)1) denote the general orthogonal group, which preserves the symmetric
bilinear form up to a scalar. The Hodge structure defines a corresponding homomorphism

h:S— GO(H?(S,Q)1)g,

which is a Shimura datum in the sense of Definition 1.3.22 and whose restriction to S! is
the morphism of the proposition. By arguments analogous to the arguments in Remark
1.4.13, we can consider this restricted morphism as Shimura datum, too.
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with h1(S') = ha(S') and kernel given by {1,—1} € S'(R), which is given
by ho = hy otg1. The conjugation by diag(—1,1,—1,1,...,1) yields an inner
automorphism ¢ of SO(H?(S,R);) such that hy = o hy. Thus each Hodge
structure of a K3 surface obtained by some p € D is obtained by some
element of the conjugacy class of our morphism h : S* — SO(H?(S,R);).
Moreover note that the holomorphic VHS over the bounded symmetric do-
main associated with SO(H?(S,R);)(R)" /K, which is induced by the natural
embedding SO(H?(S,Q);) — GL(H?(S,Q)1), is uniquely determined by the
variation of the subbundle of rank 1 given by H%°. Since

r = dim(D) = dim(SO(H?(S,R)1)(R)/K),

this V HS yields a biholomorphic map from the bounded symmetric domain
associated with SO(H?(S,R);)(R)*/K) onto DT.

The preceding remark and Theorem 1.7.2 imply:

Theorem 11.2.3. There is a dense set of CM points on D with respect to
the VHS on D obtained by Remark 11.2.2.

11.3 The examples

First we construct a holomorphic family of marked K 3-surfaces with a global
involution over its basis:

Construction 11.3.1. There exists a universal family v : X — B of marked
analytic K 3-surfaces, whose basis is not Hausdorff' (see [6], VIII. Section
12). Let ¢ denote the global marking of the family X — B. We consider an
involution ¢ on a marked K3 surface (S, ¢), which acts by —1 on H*9(S).
This involution yields an involutive isometry ¢ on the lattice L. Thus the
involution ¢ endows X — B with a new marking ¢ o ¢. By the universal
property of the universal family, this new marking yields an involution of the
family:

Lx
%X

X
B$>B

Let A : B — B x B denote the diagonal embedding. We define
B, = Graph(tp) N A(B) C B x B.

Note that each point b € B, has an analytic neighborhood U C B such that
Xy — U is given by the Kuranishi family and yields an injective period map
for U. Thus on U x U the diagonal A(U) and Graph(:p|y) are closed analytic
submanifolds. Hence B, has the structure of an analytic variety, which is not
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necessarily Hausdorff, and can have singularities. The composition A o u
allows to consider A(B) as basis of the universal family of the marked K3
surfaces. By the restricted family Xp, — B,, we obtain a holomorphic family
with a global involution over the basis B,. For simplicity we write X, — B,
instead of X5, — B,.

Remark 11.3.2. The fibers of X, — B, have by the involution ¢ a cyclic
covering onto a projective surface (compare to [60], 2.1). Thus the fibers of
X, — B, are algebraic.

Proposition 11.3.3. Assume that for all b € B, the involution tx, on X,
has a locus of fized points consisting of rational curves. Then the holomorphic
family X, — B, is due to its global involution suitable for the construction of
a holomorphic Borcea-Voisin tower.

Proof. Let by € B, and U C B, be a small open neighborhood of by. The
eigenspace decomposition with respect to ¢ yields a variation of Hodge struc-
tures on the eigenspace with respect to —1. The corresponding period map
yields an open injection of U into D. By the fact that D has a dense set of
CM points, the family X, — B, has a dense set of CM fibers. Since the locus
of fixed points with respect to ty, consists of rational curves, this locus of
fixed points has complex multiplication, too. Hence X, — B, can be used for
the construction of a holomorphic Borcea-Voisin tower. O

Assume that X, — B, satisfies the assumptions of Proposition 11.3.3.
Then let X, — B, x M denote the family obtained by the holomorphic
Borcea-Voisin tower from X, — B, and £ — M denote the family of elliptic
curves.

Definition 11.3.4. A family 7 — Y of Calabi-Yau manifolds is maximal in
0 € Y, if the universal property of the local universal deformation X — B of
Fo yields a surjection of a neighborhood of 0 onto B. The family F — Y is
maximal, if it is maximal in all 0 € Y.

Theorem 11.3.5. The family X, is mazimal.
Proof. By the following lemma, we start to prove Theorem 11.3.5:

Lemma 11.3.6.

HS((xb)qu) = HQ((XL)IH Q)l ® Hl(gqv Q)

Proof. Due to Proposition 10.3.2 and the fact that the exceptional divisors
consist of some rational curves, one only needs to determine H3((X,), x
&,,Q)o. Since b1 ((X,),) = b3((X.),) =0 and H'(E,,Q) = H'(E,,Q)1, we are
done. O
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By using the preceding lemma, we prove the following proposition.
Proposition 11.3.7. One has that dim(B, xBy) and h*((X,),x4) coincide.

Proof. By Proposition 11.3.6,

H?((X)pxq) = H*((X.), Q1 @ H(€,,Q) ® H?((X,), Q)1 © H”'(£,,Q).
Therefore

hQ’l((xb)qu) = hLl((XL)pa Q)l : hLO(gqu) + h270((XL)pa Q)l : hoJ(‘S‘qu)
= W (X)), @+ A2O((X,)p, Q)1 = hV (X)), Q)1 + 1.

Recall that DT is the bounded symmetric domain obtained by SO(2, 7)™ (R),
where r = hV1((X,),,R)1. By [27], IX. Table II, the domain D has the
complex dimension 7.2 Since the period map p : B, — D of X, — B, is
locally bijective, one concludes

Y ((X), Q)1 = r = dim(D) = dim(B,),
which yields the result. O
By the following proposition, we finish the proof of Theorem 11.3.5: O

Proposition 11.3.8. The period map yields a multivalued map from My x
B, to the period domain, which is locally injective.

Proof. Let B be a small open subset of M1 x B, and let z1,22 € B. Note
that the period map p on M; x B, yields different image points p(x;) and
p(2), if the classes of H39((X,),,) and H>°((X,),,) in P(H3*((X,)s,,C)) do
not coincide. The respective period maps on B, and M; are locally injective
and depend only on wg, and w(y,),. Since

H3’O((%L)p><q) C HS((%L)qu) = H2((Xt)paQ)1 ® Hl(gan)

is given by H?°((X,),) ® H"°(&,), the period map concerning X, is locally
injective, too. O

It remains to classify the involutions ¢ on L, which provide our families
X, — B, with a global involution.

Remark 11.3.9. The involutions on L, which yields involutions on certain
K3 surfaces, are characterized by the triples of the following integers (com-
pare to [51]):

e The integer ¢ is the rank of the sublattice Pic(S)g of the Picard lattice of
an arbitrary fiber S of X,, which is invariant under the global involution.

2 By [27], IX. Table II, the domain D has the dimension 2r as real manifold.
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e By the intersection pairing, one obtains a homomorphism Pic(S)y —
Pic(S)y. The integer a is given by

(Z/(2))" = Pic(S)y /Pic(S)o.

e By the morphism Pic(S)g — Pic(S)y, the intersection form on Pic(S)g
yields a quadratic form ¢ on Pic(S)y with values in Q. The integer ¢ is 0,
if ¢ has only values in Z and 1 otherwise.

For a fixed triple (¢,a,d) we write X 4.5y — Bt,q,5) instead of X, — B,
and X(; 4,5 instead of X,.

Remark 11.3.10. The ramification locus of the fibers with respect to the
involution on X — B, 4 s is given by two elliptic curves, if (¢, a,d) = (10, 8,0),
is empty, if (¢, a,d) = (10, 10,0), and otherwise given by Cn+E1+...+En_1,
where Cy/ is a curve of genus

1 1
N’=§(22—t—a), and N:i(t—a)—kl.

(compare to [51]).
Therefore the triples

(t,a,0) = (10,10,0) and (t,a,d) with ¢t+a =22

yield the examples of families X(; 4.5y — B(s,q,5) With global involutions over
the basis, whose locus of fixed points consists at most of families of rational
curves. Hence by Proposition 11.3.3, these triples yield maximal holomorphic
CMCY families of 3-manifolds.

11.3.11. By [51], Figure 2, one gets the following complete list of holo-
morphic maximal CMCY families X 45y — Bt,a,5) X M1 of 3-manifolds
obtained by this method. By Claim 10.2.1, we obtain the Hodge numbers
Y1 and h?! of the fibers of X(t,a,5)-

t a § N hbl p2l
10 10 0 O 11 11
11 11 1 1 16 10
12 10 1 2 21 9
3 9 1 3 26 8
14 8 1 4 31 7
15 7 1 5 36 6
16 6 1 6 41 5
17 5 1 7 46 4
18 4 1 8 51 3
18 4 0 8 51 3
19 3 1 9 56 2
20 2 1 10 61 1
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Remark 11.3.12. C. Borcea [8] has constructed Calabi-Yau manifolds of
dimension 3 with CM by using 3 elliptic curves with involutions. This con-
struction yields a CMCY family of 3-manifolds over M; x My x My. The
fibers have the Hodge numbers h'»! = 51 and h?! = 3. By similar arguments
as in Theorem 11.3.5, this family is maximal. The associated period domain
is given by By x By x B;.

As we have seen in Section 10.3, the family Q@ — M3 is a maximal CMCY
family of 3-manifolds, whose fibers have the same Hodge numbers h''! = 51
and h?! = 3. The associated period domain is given by Bs.

Moreover by Theorem 11.3.5 and the preceding point, we have two ad-
ditional holomorphic maximal CMCY families of 3-manifolds, whose fibers
have the same Hodge numbers h'*' = 51 and h?! = 3. The associated period
domain is given by By x D, where D denotes the bounded domain given by
SO(2,2)(R)/K.

Hence there exist 4 maximal CMCY families of 3-manifolds, whose fibers
have the Hodge numbers h'*! = 51 and h?! = 3. One can easily check that
the example of [8] has a Yukawa coupling of length 3, where the Yukawa
coupling of the family @ — M3 constructed in Section 9.2 has the length 1.
Hence there are not any open sets of the respective bases, which allow a local
identification of these two families.

By using the involutions on elliptic curves, one gets a local identification
between & x £/((tg,te)) — My x My, which yields the example of [8], with
one of our examples X(; 4 5) — B(1,4,5) With ¢ = 18 and a = 4. This implies
a local identification between the resulting CMCY families of 3-manifolds
obtained by the Borcea-Voisin tower.

Remark 11.3.13. By Example 7.4.5, there are 13 explicit examples of ellip-
tic curves with CM. Thus for the CMCY family of C. Borcea [8], which we
have discussed in the preceding remark, one obtains up to birational equiv-
alence 455 different examples of C'M fibers. For 6 of these 13 elliptic curves,
we have an explicitly given involution. Thus we can at least describe the 56
Calabi-Yau 3-manifolds, which are obtained by some of the latter 6 elliptic
curves, by local equations.

Remark 11.3.14. It would be interesting to consider the following question:
Is the maximal CMCY family X(19,10,0) its own mirror family?

Let S denote a K3 surface with an involution, which acts by —1 on I'(wg).
In [60] the triples (¢, a, 0), which yield our families X(; 4 5y — Bit,q,5) satisfying
the assumptions of Proposition 11.3.3, do not satisfy the assumptions of the
technical Lemma [60], Lemme 2.5. This Lemma guarantees the existence of a
hyperbolic plane H C H?(S,Z)1, which is needed for the mirror construction
in [60]. Hence these triples (¢,a,d) do not satisfy the assumptions of the
Mirror Theorem [60], Théoreme 2.17. But by [12], Lemma 4.4.4, there is a
hyperbolic plane H C H?(S,Z); for these triples. Moreover by [6], VIIL.
19, one has a description of the corresponding involution on the cohomology
lattice, which yields the existence of a hyperbolic plane H C H?(S,Z);.



208 11 Maximal families of CMCY type

In her construction of a Calabi-Yau 3-manifold ([60], Lemme 1.3) C. Voisin
assumes that the involution on the K3 surface is not given by the triple
(10,10, 0), since it is easy to see that the resulting 3-manifold is not simply
connected in this case. But by Proposition 7.2.5 the resulting 3-manifold
satisfies our definition of a Calabi-Yau manifold (Definition 7.2.1) in this
case, too.

The mirror of a fiber of X(19,10,0) must have the same Hodge numbers
hbt = p%! = 11. By Claim 10.2.1, this implies for an involution on a K3
surface:

5N —N'=5N'—N =0

Hence one calculates easily that N = N’ = 0. Thus by V. V. Nikulins [51]
classification of involutions on K3 surfaces, the Voisin-Borcea Mirror (in the
notation of [12]) of a fiber of X(10,10,0) should be obtained by the triple
(10,10,0), too. Hence the author has the impression that one can consider
the maximal CMCY family X (10,10,0) of 3-manifolds as its own mirror family,
but one must check the details.



Appendix A
Examples of Calabi-Yau 3-manifolds
with complex multiplication

Introduction

The previous examples of Calabi-Yau manifolds with C'M occur as fibers of a
family over a Shimura variety, which has a dense set of complex multiplication
fibers. Here we give some examples, which are not necessarily fibers of a non-
trivial family with a dense set of complex multiplication fibers.

The first two sections give two different classes of examples by using invo-
lutions on K3 surfaces. In each of the both Sections we will use a modified
version of the construction of Viehweg and Zuo to obtain K3 surfaces, which
are suitable for the construction of a Borcea-Voisin tower.

In the third section we will prove that a K3 surface with a degree 3 au-
tomorphism has complex multiplication. By using methods, which has been
introduced in Section 9.1 and Section 9.2, we will use this automorphism and
the Fermat curve of degree 3 for the construction of a Calabi-Yau 3-manifold
with complex multiplication.

A.1 Construction by degree 2 coverings
of a ruled surface

We start by finding curves with complex multiplication. The following propo-
sition yields some examples:

Proposition A.1.1. Let 0 < dy,d < m, and & denote a primitive k-th. root
of unity for all k € N. Then the curve C, which is locally given by

n—2

y" =t [ - &)

i=1

209
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is covered by the Fermat curve F(,_oy, locally given by
y(n72)m + x(n72)m +1=0

and has complex multiplication.
Proof. (see Theorem 2.4.4) O
Example A.1.2. By the preceding proposition, the curves locally given by

Y =21 (af + x)zo

yt=af +ag, y' = o] +ag), y
have complex multiplication. These curves are degree 4 covers of the projec-
tive line and have the genus 9 as one can easily calculate by the Hurwitz
formula.

The curves of the preceding example have a natural interpretation as cyclic
covers of P! of degree 4. One can identify these covers with the set of their 8
branch points in P'. Thus let Pg denote the configuration space of 8 different
points in P1. We use a modified version of the construction in [58], Section 5
to construct K3 surfaces with complex multiplication by Example A.1.2 in a
first step. This method is nearly the same method as in Section 8.2.

For our application, it is sufficient to work with P'-bundles over P! resp.,
with rational ruled surfaces. Let 7, : P, — P! denote the rational ruled
surface given by P(Op1 @ Op:(n)) and o denote a non-trivial global section of
Op1(8), which has the 8 different zero points represented by a point ¢ € Ps.
The sections E,, Fy and E of P(O @ O(8)) are induced by

ideec:0—-0a008), da0:0—0d0(8)
and 0®id: O(8) — O @ O()

resp., by the corresponding surjections onto the cokernels of these embeddings
as described in [26], II. Proposition 7.12.

Remark A.1.3. The divisors F, and Ej intersect each other transversally
over the 8 zero points of 0. Recall that Pic(Ps) has a basis given by a fiber and
an arbitrary section. Hence by the fact that F, and Fy do not intersect E,
one concludes that they are linearly equivalent with self-intersection num-
ber 8. Since E, is a section, it intersects each fiber transversally. Thus one
has that Fo, ~ Eg — (Eo.Ep)F, where F' denotes a fiber. Therefore one
concludes

Es.Eso = Eno.(Eo — (Eo.Eo)F) = —(Ey.Eqy) = —8.
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Next we establish a morphism p : Py — Pg over PL. By [26], IT. Proposition
7.12., this is the same as to give a surjection 73(O @ O(8)) — L, where L is
an invertible sheaf on Po. By the composition

(0B 0(8)) = m5(0)&m30(8) — (P m30(2i) = Sym* (73 (0B O(8))) — Vs, (4),

where the last morphism is induced by the natural surjection 75(O®0(2)) —
Op, (1) (see [26], II. Proposition 7.11), we obtain a morphism u* of sheaves.
This morphism p* is not a surjection onto Op,(4), but onto its image
L C Op,(4). Over A! C P! all rational ruled surfaces are locally given by
Proj(Clz])[y1, y2], where = has the weight 0. Hence we have locally that
75(0 @ O(8)) = Oey @ Oeq. Over Al the morphism p* is given by

4 4
€1 = Y1,€2 — Yo

such that the sheaf £ = im(u*) C Op,(4) is invertible. Thus the morphism
i : Py — Pg corresponding to p* is locally given by the ring homomorphism

(ClzD)[y1,y2] — (Clz])[y1,y2] via y1 — y? and ys — y§~

Construction A.1.4. One has a commutative diagram

7 ’
T I

) P, P! x P!
5 52 ds
~ 7 ~ f ~
Yy Py Ps
P P2 P8

T H
Y——=DP ———> Py
3-(L*E0)red Eo
T T2 T8
id id
P! P! P!

of morphisms between normal varieties with:

(a) 0, 02, s, p, p2 and pg are birational.
(b) 7 is a family of curves, 7 and 7g are P'-bundles.

Proof. One must only explain ds and ps. Recall that E, is a section of P(O @
O(8)), which intersects Fy transversally in exactly 8 points. The morphism
ps is the blowing up of the 8 intersection points of EyN E,. The preimage of
the 8 points given by ¢ € Pg with respect to 7g o pg consists of the exceptional
divisor D; and the proper transform Do of the preimage of these 8 points
with respect to ps given by 8 rational curves with self-intersection number
—1. The morphism dg is obtained by blowing down Ds. O
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Remark A.1.5. The section ¢ has the zero divisor given by some ¢ € Ps.
Hence one obtains p*(E,) = C, where C' — P! is a cyclic cover of degree 4
as in Example A.1.2 ramified over the 8 points given by o. The surface ) is
a cyclic degree 2 cover of Py ramified over C. Thus it has an involution. It is
given by the invertible sheaf

L= wp, !

and the divisor

B = u*(E,), where O(B) = L2
with the notation of [6] I. Section 17. Thus [6] I. Lemma 17.1 implies that Y
is a K3 surface.

By Lemma 10.4.1, there is only one elliptic curve with a cyclic degree 4
cover onto P!. Let E denote this curve, which is locally given by

yt=a(x —1)%

One can easily see that E has the j invariant 1728. Thus E has complex
multiplication.

We fix some notation. Let n € N, let £ be a fixed primitive n-th. root of
unity and let C; and C5 be curves locally given by

y" = fi(z) and y" = fo(x),

where f1, fo € C[z]. By (z,y) — (,£y), one can define an automorphism -;
on C; for i = 1,2. The surface Cy x C2/((1,1)) is the quotient of C} x Cs by

((11,72))-
Proposition A.1.6. The surface Y is birationally equivalent to C X

E/((1,1)).!

Proof. Let E, denote the proper transform of the section E, with respect to
ps- Then [ is the Kummer covering given by

JEx +8-F
Ey+Dy '
where D; denotes the exceptional divisor of pg. Thus the morphism 4’ is the
Kummer covering

4 (58)* ~°O+8(58)*F o Pl % {OO}+8(PX]P’1)
(58)*E0 + (58)*D1 B P! x {0} + A x P’

! Similarly to [58], Construction 5.2, we show that ) is birationally equivalent to C' x

E/((1,1)).
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where A is the divisor of the 8 different points in P' given by ¢ € Ps and
P < P! is the point with the fiber F. Since Ey + E, is a normal crossing
divisor, E, neither meets Ey nor [)2, where Ds is the proper transform of
75 (A). Therefore (dg).E, neither meets

(8s)eBo = P* x {0} nor (Jg)Eae = P! x {o0).

Hence one can choose coordinates in P! such that (dg).E, = P! x {1}.
By the definition of 7, we obtain that 7 is given by

</p;mEq) _ \2/;2*(19”)
P (Eo) fr*(Eo)’

[ (B x {1})
W (B {0))

By the fact that the last function is the root of the pullback of a function
on P! x P! with respect to p, it is possible to reverse the order of the field
extensions corresponding to 7" and p’ such that the resulting varieties ob-
tained by Kummer coverings are birationally equivalent. Hence we have the
composition of 3: P! x PL — P! x P! given by

and 7’ is given by

o[ Pt x {1}
Pl x {0}
with
85 (Pt x {oo}) + 8- (P x P1)
pr(Pr > {0}) + (A x PY) 7
which yields the covering variety isomorphic to E x C'/((1,1)). O

As in Section 8.2 we conclude:

Corollary A.1.7. If the curve C' has complex multiplication, the K3-surface
Y has complex multiplication, too.

By the the preceding corollary, our Example A.1.2 yields 3 different K3
surfaces with complex multiplication locally given by

vs Tyl +at a3 +un (el +2g), v+l + (el +ag)zo.

Proposition A.1.8. Fori=1,2 assume that C; is a Calabi- Yau i-manifold
with complex multiplication endowed with the involution t; such that v; acts
by —1 on T'(we,). By blowing up the singular locus of C1 x Ca/{(11,t2)), one
obtains a Calabi- Yau 3-manifold with complex multiplication.
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Proof. Tt is well-known that an involution on a Calabi-Yau 2-manifold resp.,
a K3 surface, which acts by —1 on I'(w), has a smooth divisor of fixed points
or it has not any fixed point. Thus the proof follows from the same methods
as in Section 7.2. ]

Now we need some elliptic curves with complex multiplication:

Example A.1.9. Elliptic curves with C'M has been well studied by number
theorists. Some examples of elliptic curves with complex multiplication are
given by the following list:

equation 7 invariant
viro =t — a3 0
y%wo =xz1(z1 — z0)(x1 — 220) 1728
y2wo = z1(z1 — 20) (21 — (14 V2)220) 8000
y2wo = w1 (21 — w0)(z1 — 2(3+iVT7)2xg)  —3375
y?xo = o — 152123 + 222 54000
y2wg = 23 — 5952122 + 558623 16581375

Note that the equations allow an explicit definition of an involution on these
elliptic curves. (see Section 7.4)

A.1.10. By combining our 3 examples of K3 surfaces and the 6 elliptic
curves and using Proposition A.1.8, we have 18 examples of Calabi-Yau
3-manifolds with complex multiplication. By [60], one has equations to deter-
mine the Hodge numbers of these examples. Let Cs be a K3 surface satisfying
the assumptions of Proposition A.1.8, let N be the number of curves in the
ramification locus of the quotient map Co — Cy/to and let N’ be given by

N =g +...+gn,

where g; denotes the genus of the i-th. curve in the ramification locus. Then
one has for the Calabi-Yau 3-manifold, which results by Proposition A.1.8:

't =1145N — N’

h*' =11+5N' — N

In our case the ramification locus of Cy — C5/io is given by one genus 9
curve. Thus in our case the Hodge numbers are given by

Rt =7 and R*! =55.

A.2 Construction by degree 2 coverings of P2

Example A.2.1. By Proposition A.1.1, the projective curves given by
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6 6 6 6 5 5 6 4 4
Yy =i +xzg, Yy =zi(2] +20), ¥ =wi(z] + 20)T0
have complex multiplication. These curves have the genus 10 as one can easily
calculate by the Hurwitz formula.

Let Ps denote the configuration space of 6 different points in P'. Again
we use a modified version of the construction in [58], Section 5. Let o denote
a non-trivial global section of Op:1(6), which has the 6 different zero points
represented by a point ¢ € Pg.

Here the sections E,, Ey and E of P(O @ O(6)) are induced by

id®o:0—-0a0(6), ida0: 00— O0a0(6)
and 0@id: O(6) - O ® O(6)
resp., by the corresponding surjections onto the cokernels of these embeddings

as described in [26], II. Proposition 7.12.
One concludes similarly to the preceding section that

Eoo.Ese = Eno.(Eg — (Eo.Eo)F) = —(Ey.Ep) = —6.

By the composition
6
T (0®0(6)) = 71 (0) 7 O(6) — @D 7 O) = Sym® (71 (0 ® O(6))) — O, (6),
=0

where the last morphism is induced by the natural surjection 75 (O®O(1)) —
Op, (1) (see [26], II. Proposition 7.11), we obtain a morphism p* of sheaves
as in the preceding section. The morphism u : Py — Py corresponding to u*
is locally given by the ring homomorphism

(ClaD)ly1,y2] — (ClaDy1.y2] via y1 —y;i and y2 — y3.
Construction A.2.2. One has a commutative diagram

’
T’ 2

y/ Ip)ll ]P>1 % Pl
4 61 J6
~ 7 ~ fu ~
Yy Py P
P P1 P6

T H
Yy—P ——— P
\2/ 1*Eq 6/ Eco+6-F
3-(L*EQ)red Eo
™ T e
Pl id Pl id ]P’l
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of morphisms between normal varieties with:

(a) ¢, d1, 01, p, p1 and pg are birational.
(b) 7 is a family of curves, 7; and 7 are P!-bundles.

Proof. One must only explain dg and pg. These morphisms are given by blow-
ing up morphisms similar to the preceding section. a

Remark A.2.3. The section o has the zero divisor given by some ¢ € Pg.
Hence one obtains p*(E,) = C, where C' — P! is a cyclic cover of degree 6
as in Example A.2.1 ramified over the 6 points given by o. The surface ) is a
cyclic degree 2 cover of P; ramified over C. Thus it is birationally equivalent
to the K3 surface given the degree 2 cover of P? ramified over C.

Let C” denote the projective smooth curve locally given by

y® =a(z —1).

By Proposition A.1.1, it has complex multiplication.
Proposition A.2.4. The surface Y is birationally equivalent to C X

c'/((1,1)).

Proof. Let E, denote the proper transform of the section F, with respect to
pe- Then fi is the Kummer covering given by

o/ Eso +6-F
Eo+Dy
where D; denotes the exceptional divisor of pg. Thus the morphism p’ is the
Kummer covering

o/ (06)sEoe + 6 (36) F [P x {oo} +6- (P x P1)
(06)sEo + (66)x D1 Pl x {0} +Ax Pl

where A is the divisor of the 6 different points in P! given by ¢ € Ps and
P e P! is the point with the fiber F. Since Ey + E, is a normal crossing
divisor, E, neither meets Eq nor Ds, where D, is the proper transform of
75 (A). Therefore (3g).E, neither meets
(86)«Eo = P! x {0} nor (8)«Fo =P x {o0}.

Hence one can choose coordinates in P! such that (0g).E, = P! x {1}.
By the definition of 7, we obtain that 7 is given by

\z/piu*(Ea) _ \2//1*(1:70—)
pin*(Eo) fr*(Eo)’
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and 7’ is given by

o (P < {1})
(Pt x {0})

By the fact that the last function is the root of the pullback of a function
on P! x P! with respect to 1, it is possible to reverse the order of the field
extensions corresponding to 7/ and p/ such that the resulting varieties ob-
tained by Kummer coverings are birationally equivalent. Hence we have the
composition of 4 : P! x P! — P! x P! given by

o[ P x {1}
Pt x {0}
with
of (P! x {o0}) +6- (P x P')
B (Pt x {0}) + (A x P')
which yields the covering variety isomorphic to C’ x C/{(1,1)). O

Hence )Y is birationally equivalent to C’ x C'/((1,1)). As in Section 8.2 we
conclude:

Corollary A.2.5. If the curve C has complex multiplication, the K3-surface
Y has complex multiplication, too.

A.2.6. By the preceding corollary, our Example A.2.1 yields 3 different K3
surfaces with complex multiplication as degree 2 covers of P2, which are
locally given by

Y3 +yr = af +af, yi+yf = a1(a} +a3), y3 +of = ai(a] +ag)wo.
By an elliptic curve with complex multiplication, these K3 surfaces yield
Calabi-Yau 3-manifolds with complex multiplication. We obtain 18 Calabi-
Yau 3-manifolds with complex multiplication by using Example A.1.9. By the
same methods as in A.1.10, one calculates easily that the resulting Calabi-Yau

3-manifolds have the Hodge numbers

Rt =6 and h*! = 60.

A.3 Construction by a degree 3 quotient

Consider the K3 surface

S=V((y3 —ydys + (2§ — af)zo) C P
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By using the partial derivatives of the defining equation, one can easily verify
that S is smooth. First we prove that this surface has complex multiplica-
tion. In a second step we consider an automorphism of degree 3 on this
surface, which allows the construction of a Calabi-Yau 3-manifold with com-
plex multiplication.

Proposition A.3.1. The K3 surface S has complex multiplication.

Proof. Consider the isomorphic curves
Cr = V(21 = (43 — yi)y1) C P,
Coy =V (25 — (23 — xd)z) C P
Since the elliptic curve with j invariant 0 given by
V(2 wo + 23 + 2d) c P?

has complex multiplication, one concludes as in Remark 7.4.2 that C; and
C5 have complex multiplication, too. The K3 surface S is birationally equiv-
alent to

T = Cl X C2/<(17 1)>
This follows from the rational map Cy x Cy — S given by

z z
((z1: 92 :11), (22 : 21 1 1)) — (2—2y2 : Z—zyl cxy :xg).
1 1

There exists a suitable sequence of blowing ups turning C; x Cs into Cy x Cs
such that ~ o
T = Cl X 02/<(1, 1)>

is smooth. Since we only blow up points, C; x Cy has CM, too (see Corollary
7.1.6). Thus the quotient has C'M. Since T is birationally equivalent to S,
there exists a sequence of blowing ups of smooth points and blowing downs
to smooth points, which turns 7" into S. By Corollary 7.1.6, the fact that T
has C'M implies that S has C M. a

27

A.3.2. Let £ denote e 5 . The K3 surface S has an automorphism ~ of degree
3 given by

(y2 :y1 21 :20) — (Eya 2 y1 : €1 2 x0)-
On {zp = 1} we have the 4 fixed points given by

(0:v/—=1:0:1).

21n [9], Section 5 one finds a similar rational map.
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Now assume xzy = 0. By the equation of S, this yields

(5 —yi)y = 0.

Thus in addition the line given by y; = xg = 0 is fixed.
Proposition A.3.3. The automorphism ~y acts via pullback by £ on T'(wg).

Proof. By the multiplication of ¢ with z; and 2o, one defines an action of the
group of the 4-th. roots of unity on the curves C; and C5 given by

V2t = (3 — o)) CP? and C = V(25 — (2} — x)zo) C P2

The —1 eigenspace in I'(w¢, ) and T'(we, ) with respect to the action of i comes
from the cohomology of the elliptic curve Ey given by

ysz(] = .’E:{) — .’Eg
(see Section 4.2). Note that the action of ((1,1)) on we,xc, fixes exactly
the tensor product of the —1 eigenspaces in I'(we, ) and I'(we,). Thus one
concludes that I'(wg) is given by the tensor product of the —1 eigenspaces in
INwe,) and TNwe,).

The automorphism g, : Ey — Ey given by x1 — &x; is the generator of
the Galois group of the degree 3 cover, which allows an identification of Ej
with the Fermat curve Fs of degree 3. It acts via pullback by & on I'(wp,).
Thus the corresponding automorphisms ¢¢, : C1 — C7 and @¢, : Co — Co
act by & on the —1 eigenspace with respect to H%(we,) and H(we, ). Note
that (¢c,, ¢c,) yvields an automorphism of C; x Cy/((1,1)). By the birational
map to S, this automorphism corresponds to v and one verifies easily that
acts via pullback by &2 on I'(wg). O

A.3.4. Consider the blowing up P? of P? with respect to {y, = 21 = 0}. Let
S denote the proper transform of the blowing up of S with respect to the
latter blowing up, which has the exceptional divisor E consisting of four —1
curves over the 4 points given by (0: v/—1:0: 1). Consider the projection

p:S\{y2 = x1 = 0} — P*\{yo = 21 = 0} — P" given by (y2: 1 : &1 :20) — (y2: x1).
Over {zg = 1} one has an embedding of an open subset of P* into P! x A%,
which yields an open embedding e of an open subset U of S into P' x A3,

Note that P x A2 is endowed with a natural projection pri : Pt x A% — P!
Over U \ {y2 = #1 = 0} one has

p=prioe.

Thus by gluing, p extends to a morphism S — P!, which is a family of
projective curves of degree 4. This family has a section D = {y; = zo = 0}.



220 A Examples of Calabi-Yau 3-manifolds with complex multiplication

One checks easily the singular loci of the fibers do not meet D (since yo # 0
or x; # 0). By S x F5 — P!, we have a family of surfaces. Let denote the
generator of the Galois group of F3 — P!, which acts via pullback by & on wy, .
The quotient map onto S x F3/{(~, r, )) yields three quotient singularities of
type As 2 with the notation of [6], III. Section 5. As in Section 9.2 described
one must blow up the three corresponding sections obtained from D and in
a second step one blows up the fixed locus of the exceptional divisor over D.
Now we blow down the image of the proper transform of the exceptional
divisor over D and obtain the orbifold X;. Note that the exceptional divisor
E of the blowing up S — S and the 3 points on Fs fixed by Yry yield a
singular locus consisting of 12 curves.

On S x F3 we blow up the 12 points given by the product of {(0: v/—1 :
0: 1)} with the three points fixed by ~g,. Since (v, vr,) acts by & on all local
parameters of each of these points, the exceptional divisor over these points
is contained in the ramification locus of the quotient map onto

Xo =8 x F3/<(’777F3)>

Xy is a orbifold with three Aj, singularities obtained from D. By gluing
the complements of the singular loci of X; and X5, one obtains a Calabi-
Yau 3-manifold X. By the same arguments as in Section 9.2, the Calabi-Yau
manifold X has obviously complex multiplication.

Thus the Calabi-Yau manifold X is obtained by the method of S. Cynk
and K. Hulek [13], which we have written down in Proposition 10.4.3.

A.3.5. For the computation of the Hodge numbers we use the same methods
as in Section 10.3. During Section 10.3 these methods are explained in-depth.
The automorphism ~ of S acts on S, too. The quotient map ponto M = 5/7
is ramified over F and D = {y; = x¢ = 0}. Since D is a rational curve on a
K3 surface, the adjunction formula implies that D.D = —2. By the Hurwitz
formula, one has

(P*K]W ~ —2D — FE.

Since
3- K3 = (9" Kn)?,

one concludes that

Thus the Noether formula
1
X(On) = = (c1(M)? + ca(M)) and ca(M) — 2 = by(M)
tell us that bo(M) = 14. Since we have blown up 4 points, one obtains

hy' (S) = 10. Thus
h'(S) = hy' (S) = 5.
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By the fact that one has an exceptional divisor consisting of 12 copies of
P2 and 6 rational ruled surfaces and by (S) = 0, one obtains as in Section 10.3:

AU (X) = hg® (F3) - hy ' (S) + ho*(S) - hy ' (F3) + 18 = 10+ 1 + 18 = 29

W X) = hy " (Fs) - by (S) =5
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