

NEW METHODS OF CONCURRENT CHECKING

FRONTIERS IN ELECTRONIC TESTING

Consulting Editor
Vishwani D. Agrawal

Books in the series:

Digital Timing Measurements – From Scopes and Probes to Timing and Jitter
Maichen, W., Vol. 33
ISBN 0-387-32418-0

Fault-Tolerance Techniques for SRAM-based FPGAs
Kastensmidt, F.L., Carro, L. (et al.), Vol. 32
ISBN 0-387-31068-1

Data Mining and Diagnosing IC Fails
Huisman, L.M., Vol. 31
ISBN 0-387-24993-1

Fault Diagnosis of Analog Integrated Circuits
Kabisatpathy, P., Barua, A. (et al.), Vol. 30
ISBN 0-387-25742-X

Introduction to Advanced System-on-Chip Test Design and Optimi...
Larsson, E., Vol. 29
ISBN: 1-4020-3207-2

Embedded Processor-Based Self-Test
Gizopoulos, D. (et al.), Vol. 28
ISBN: 1-4020-2785-0

Advances in Electronic Testing
Gizopoulos, D. (et al.), Vol. 27
ISBN: 0-387-29408-2

Testing Static Random Access Memories
Hamdioui, S., Vol. 26
ISBN: 1-4020-7752-1

Verification by Error Modeling
Redecka, K. and Zilic, Vol. 25
ISBN: 1-4020-7652-5

Elements of STIL: Principles and Applications of IEEE Std. 1450
Maston, G., Taylor, T. (et al.), Vol. 24
ISBN: 1-4020-7637-1

Fault injection Techniques and Tools for Embedded systems Reliability…
Benso, A., Prinetto, P. (Eds.), Vol. 23
ISBN: 1-4020-7589-8

Power-Constrained Testing of VLSI Circuits
Nicolici, N., Al-Hashimi, B.M., Vol. 22B
ISBN: 1-4020-7235-X

High Performance Memory Memory Testing
Adams, R. Dean, Vol. 22A
ISBN: 1-4020-7255-4

SOC (System-on-a-Chip) Testing for Plug and Play Test Automation
Chakrabarty, K. (Ed.), Vol. 21
ISBN: 1-4020-7205-8

Test Resource Partitioning for System-on-a-Chip
Chakrabarty, K., Iyengar & Chandra (et al.), Vol. 20
ISBN: 1-4020-7119-1

A Designers’ Guide to Built-in Self-Test
Stroud, C., Vol. 19
ISBN: 1-4020-7050-0

New Methods of Concurrent Checking
Goessel, M., Ocheretn y, V., (et al.), Vol. 42
ISBN 978-1-4020-8419-5

NEW METHODS OF CONCURRENT
CHECKING

by

Michael Goessel
Potsdam University,
Germany

Vitaly Ocheretny
Infineon Technologies AG,
Neubiberg, Germany

Egor Sogomonyan
Potsdam University,
Germany

and

Daniel Marienfeld
Potsdam University,
Germany

123

Prof. Dr. Michael Gössel
Universität Potsdam
Inst. Informatik
14439 Potsdam
Germany
mgoessel@cs.uni-potsdam.de

Dr. Vitaly Ocheretny
Infineon Technologies AG
Am Campeon 1-12
85579 Neubiberg
Germany
vitalij@cs.uni-postdam.de

Prof. Dr. Egor Sogomonyan
Universität Potsdam
Inst. Informatik
14439 Potsdam
Germany

Dr. Daniel Marienfeld
Universität Potsdam
Inst. Informatik
14439 Potsdam
Germany

ISBN: 978-1-4020-8419-5 e-ISBN: 978-1-4020-8420-1

Library of Congress Control Number: 2008923933

c© 2008 Springer Science+Business Media B.V.
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Computers are everywhere around us. We, for example, as air passengers, car
drivers, laptop users with Internet connection, cell phone owners, hospital patients,
inhabitants in the vicinity of a nuclear power station, students in a digital library or
customers in a supermarket are dependent on their correct operation.

Computers are incredibly fast, inexpensive and equipped with almost unimagin-
able large storage capacity. Up to 100 million transistors per chip are quite common
today - a single transistor for each citizen of a large capital city in the world can be
easily accommodated on an ordinary chip. The size of such a chip is less than 1 cm2.

This is a fantastic achievement for an unbelievably low price. However, the very
small and rapidly decreasing dimensions of the transistors and their connections
over the years are also the reason for growing problems with reliability that will
dramatically increase for the nano-technologies in the near future.

Can we always trust computers? Are computers always reliable? Are chips suf-
ficiently tested with respect to all possible permanent faults if we buy them at a low
price or have errors due to undetected permanent faults to be discovered by con-
current checking? Besides permanent faults, many temporary or transient faults are
also to be expected.

What do we know about the detection of these transient faults during normal
operation?

Contrary to permanent faults, transient faults cannot be detected by testing but
rather only by concurrent checking, and the design of effective error detection cir-
cuits for concurrent checking will be a challenging problem in the next years.

The book in front of you, “New Methods of Concurrent Checking”, answers the
question as to how the best possible state-of-the-art error detection circuits can be
designed.

This book describes the latest new and effective methods for concurrent checking
for digital circuits which were developed mainly in the last 15 years. Some of the
methods are published for the first time.

The book is of interest to students and teachers in electrical engineering and
computer science, researchers and designers and all readers who are interested in
error detection and reliability of digital circuits and computers.

v

vi Preface

The authors have worked together in research and industrial projects in the area
of concurrent checking in the Fault-Tolerant Computing Group at the University
of Potsdam, Germany. This group was founded in 1992 as a Max-Planck-Working
Group and was incorporated into the Institute of Computer Science of the university
in 1997.

Many of the ideas and results presented here were obtained in cooperation with
guest researchers from different parts of the world. We thank all of them.

We are especially grateful to our colleagues V. Saposhnikov and Vl. Saposhnikov
at the University of Transportation, St. Petersburg, for their many wonderful ideas
and contributions, especially in the areas of self-dual error detection and error de-
tection by complementary circuits. The basic ideas in these areas arose in close
cooperation with them as can also be seen from the corresponding references.

Personally we would also like to thank K. Chakrabarty, Duke University, for his
stimulating discussions and advice over the years, and also the former Ph.D. students
A. Morosov, A. Dmitriev, A. Morosov, M. Seuring, M. Moshanin and H. Hartje for
their valuable contributions.

We are grateful to Paul Synnott for proofreading this book.

The authors

Contents

1 Introduction . 1

2 Physical Faults and Functional Errors . 5
2.1 Stuck-At Faults . 6
2.2 Bridging Faults . 10

2.2.1 Non-Resistive Bridging Faults . 10
2.2.2 Resistive Bridging Faults . 13

2.3 CMOS Stuck-Open and Stuck-On Faults . 17
2.4 Delay Faults . 21
2.5 Transient Faults . 22
2.6 Functional Error Model . 22
2.7 Output Dependencies . 24
2.8 Self-Testing and Self-Checking . 25
2.9 Faults and Errors in Submicron Technologies 27

3 Principles of Concurrent Checking . 31
3.1 Duplication and Comparison . 31

3.1.1 Description of the Method . 32
3.1.2 Comparators and Two-Rail Checkers . 33
3.1.3 Method of Partial Duplication . 40

3.2 Block Codes for Error Detection . 42
3.2.1 Classical Error Detection Codes . 42
3.2.2 Non-linear Split Error Detection Codes 49

3.3 Parity and Group Parity Checking . 53
3.3.1 Predictor and Generator Circuits . 55
3.3.2 Parity Prediction . 57
3.3.3 Generalized Circuit Graph . 60
3.3.4 Independent Outputs and Weakly Independent Outputs 62
3.3.5 Determination of Groups of Weakly Independent Outputs . . 66
3.3.6 Circuit Modification by Node-Splitting 70
3.3.7 Further Methods for the Determination of Weakly

Independent Outputs . 73

vii

viii Contents

3.4 Odd and Even Error Detection . 75
3.4.1 Description of Odd and Even Error Detection 75

3.5 Code-Disjoint Circuits . 77
3.5.1 Design of Code-Disjoint Circuits . 78

3.6 Error Detection by Complementary Circuits . 84
3.6.1 Error Detection by Use of Complementary Circuits 85
3.6.2 Complementary Circuits for 1-out-of-3 Codes 87
3.6.3 Conditions for the Existence of Totally Self-Checking

Error Detection Circuits by Complementary Circuits 90
3.7 General Method for the Design of Error Detection Circuits 98

3.7.1 Description of the Method . 98
3.8 Self-Dual Error Detection . 102

3.8.1 Self-Dual Boolean Functions . 103
3.8.2 Transformation of a Given Circuit into a Self-Dual Circuit . . 104
3.8.3 Self-Dual Error Detection Circuits . 107
3.8.4 Self-Dual Fault-Secure Circuits . 109

3.9 Error Detection with Soft Error Correction . 116
3.9.1 Description of the Method . 116

4 Concurrent Checking for the Adders . 123
4.1 Basic Types of Adders . 124
4.2 Parity Checking for Adders . 135
4.3 Self-Checking Adders . 138

4.3.1 Self-Checking Carry Look-Ahead Adders 138
4.3.2 Self-Checking Partially Duplicated Carry Skip Adder 151
4.3.3 Self-Checking Carry Select Adders . 156

References . 173

Index . 179

Chapter 1
Introduction

No technical system is 100% reliable. This is true for modern chips and will be
much more relevant for the next generation of chips.

The following types of errors may be distinguished:

1. Specification errors
2. Design errors
3. Production errors
4. Errors due to deliberate attacks.

Only the detection of errors caused by physical faults will be considered in this
book although, in principle, also errors evoked by deliberate attacks can be detected
by similar methods.

The percentage of undetected erroneously functioning devices used can be re-
duced by testing, by concurrent checking or on-line detection and by fault tolerance.

The notions of testing, concurrent checking and fault tolerance are explained in
brief below.

• Testing
After production every chip is tested. In a test a predetermined set of input values,
a test set, is applied to the chip, which is called the Circuit Under Test (CUT).
If, for the inputs from that test set, the outputs of the chip are not as expected,
the CUT is erroneous. If these outputs are correct, the CUT is considered to be
fault-free.
In an external test the test inputs from the test set are supplied by an external
tester. In Built-In Self-Test (BIST) the test inputs are generated on the chip. Dif-
ferent methods of testing are described, for instance, in [1, 2, 3].
Most, but not all, of the permanent faults can be detected by testing. The per-
centage of faulty chips which are not detected by the test depends on the fault
coverage of the test and the percentage of faulty chips before testing.

• Concurrent Checking
Temporary or transient faults are active only for a short duration of time, and
the moments of their occurrences are not predictable. Therefore, transient faults

1

2 1 Introduction

cannot be detected in advance by testing. The errors caused by transient faults
have to be detected during normal operation.
Error detection during normal operation is called concurrent checking or on-line
detection.
In concurrent checking or on-line detection the outputs of the considered func-
tional circuit are constantly monitored by use of redundant hardware. Only the
functional inputs, and no specially selected inputs, are applied during normal
operation.
The simplest and best known method of concurrent checking is duplication and
comparison.
The monitored circuit C is duplicated in a functionally equivalent circuit C′. The
functional inputs are applied in parallel to both the circuits C and C′ and the
outputs of C and C′ are compared by a comparator. An erroneous output of one
of the circuits C or C′ is detected by the comparator provided the comparator is
fault-free.
Since the necessary area overhead and the power consumption for duplication
and comparison are high, other methods of concurrent checking have been de-
veloped.

• Fault Tolerance
In a fault-tolerant system errors are compensated to some extent by the system.
The best-known method for the design of a fault tolerant system is triple modular
redundancy (TMR).
The considered system S is triplicated in three functionally identical systems S1 =
S2 = S3 = S.
The same functional inputs are applied in parallel to all three systems S1, S2 and
S3, and a majority voter V determines from the outputs of S1, S2 and S3 the output
of the triplicated system.
If one of the systems S1, S2 or S3 fails, the output of one of the systems may
be erroneous and (at least) two will be correct. The majority voter V determines
from the two correct outputs and the single erroneous output the correct output
as the output of the triplicated system. A fault within one of the systems S1, S2

or S3 will be corrected and the triplicated system is fault tolerant with respect to
such a fault.
Also error correction codes, (for instance Hamming codes,) error detection and
reconfiguration and other methods are used in fault-tolerant designs. Fault-
tolerant systems are described, for instance, in [4, 5, 6].

“New Methods for Concurrent Checking” considers concurrent checking or on-
line detection for digital circuits.

New methods of concurrent checking are presented, most of which were devel-
oped within the last 15 years.

Duplication and comparison are, as already pointed out, conceptually the sim-
plest method of error detection.

No special assumptions for the expected errors or faults are needed as long as the
faults or errors are located within one of the duplicated circuits.

1 Introduction 3

All methods of error detection other than duplication and comparison have to be
compared to this method with respect to the error detection probability, the neces-
sary area and the power consumption.

In practice, a method of concurrent checking is of interest if the necessary area is
considerably smaller than the 220–250% of the area of the functional circuit needed
for duplication and comparison, and if the probability of detecting errors due to
single stuck-at faults is about 90%+x.

The contents of the following chapters of the book are presented in brief below.
Physical faults and how these faults cause functional errors are described in

Chapter 2. Stuck-at faults, bridging faults, transistor stuck-open and stuck-on faults,
delay faults, the functional error model corresponding to a set of physical faults
and different output dependencies as independent outputs, weakly independent out-
puts and unidirectionally independent outputs are explained. These dependencies
between circuit outputs are used in the Chapters 3 and 4 for the design of error
detection circuits.

Chapter 3 contains basic and many new principles of concurrent checking for
random logic. The chapter starts with duplication and comparison, partial duplica-
tion with and without parity checking for the non-duplicated circuit part. Attention
is given to self-checking and easily testable comparators. A new easily testable com-
parator is presented for the first time.

Error detection using systematic codes is considered in detail. A new class of
non-linear codes for error detection is introduced. Besides errors which are detected
with certainty almost all the remaining errors are detected with a probability greater
than 1/2 by these non-linear codes.

The generalized circuit graph shown in [7] is described. This graph expresses
the connections of the gates of the considered circuit in summary. The nodes of
this graph are the maximal classes of gates with one output. The generalized cir-
cuit graph is utilized to determine groups of independent and weakly independent
outputs.

It is shown how these groups of independent and weakly independent outputs of
a given combinational circuit can be utilized for an optimal design of error detection
circuits by means of parity and group parity codes.

To improve the error detection capability of parity and group parity codes, circuit
transformations – described as “node splitting” of the gates belonging to fan-out
nodes of the generalized circuit graph - are considered.

It is shown how an arbitrarily given parity-checked circuit can be easily trans-
formed into a code-disjoint circuit with one or two additional outputs. Serial con-
nections of code-disjoint circuits are also considered.

A completely new method of error detection by complementary circuits is pre-
sented. For a given functional circuit with n outputs, a complementary circuit, also
with n outputs, is added such that the componentwise XOR sum of the correspond-
ing outputs of the functional circuit and of the complementary circuit is an element
of a chosen code. Also m-out-of-n codes and not only systematic codes can be used.

It is shown that the design space for the complementary circuit is huge and some
heuristic design methods are described.

4 1 Introduction

For a given combinational circuit, conditions necessary and sufficient for the
existence of a totally self-checking circuit by use of a complementary circuit are
proven for an 1-out-of-n code.

It is shown how the design of an error detection circuit with a specified functional
error model can be reduced to a standard synthesis problem, the optimum design
of a partially defined circuit. Because of the limited capabilities of the synthesis
tools for circuit optimization, this general method can in practice only be applied to
small circuits, and the different structural methods for the design of optimum error
detection circuits remain of great importance.

Self-dual error detection, including self-dual parity and self-dual duplication, is
explained. For this method the necessary area overhead is low but the original input
and the corresponding inverted input must always be successively applied to the
inputs of the self-dual circuit. Therefore, the time is increased by a factor of two and
this method is applicable to systems in which time is not critical. Such systems are,
for instance, control systems of mechanical systems.

At the end of this chapter the combination of the correction of soft errors in
the register cells by use of C-elements and error detection by systematic codes is
considered.

Chapter 4 is concerned with error detection for regular structures. The differ-
ent types of adders are chosen as regular structures. The methods developed in
Chapter 3 for random logic can be more specifically applied and slightly modified
to obtain optimum results for other regular structures like adders. A fast carry ripple
adder, different carry look-ahead adders, carry skip adders and carry select adders
are considered.

A new sum-bit-duplicated adder cell is introduced and used for concurrent check-
ing complementary to the well-known carry-duplicated adder cell. Based on the
concept of error detection by partial duplication, the sum-bit-duplicated adder cell
is utilized for different code-disjoint adder designs. Since the output registers of the
corresponding adders are also duplicated, all soft errors in these output registers,
odd and even, are detected by comparing the contents of these duplicated registers.
The non-duplicated part of the adder is checked by parity prediction. Without dupli-
cating the complete adder, the error detection probability of this sum-bit-duplicated
adder is almost the same as for the duplicated adder.

For other regular structures, such as different types of multipliers or dividers,
similar results can be obtained – as recently published in the literature [8, 9, 10].

It is not the only intention of Chapter 4 for the different adder types to develop
the best possible error detection circuit but also to demonstrate how the general
methods of error detection can be applied to regular structures and to encourage the
designers of future chips to develop their own optimum self-checking designs in the
technology available.

The contents of the book were used in the “Fault Tolerant System Design” lec-
tures in the last 7 years for undergraduate and graduate students at the University of
Potsdam, Germany and in some tutorials by one of the authors.

We hope the reader will be inspired by the ideas presented in this book to work
in this interesting field and will have the same pleasure the authors have over the
past years.

Chapter 2
Physical Faults and Functional Errors

Combinational and sequential circuits are built up of gates and memory elements.
Gates and memory elements for their part are currently made of transistors. Gates
and memory elements may be faulty due to physical faults.

Examples of physical faults are a short to ground or a shortage in the power
supply of a line, bridging between lines, broken lines, faults caused by α-particles
and high-energy neutrons, faults due to electromagnetic fields, including crosstalk.
Faults may be permanent or transient. Transient faults are active only for a short
time.

In this chapter different types of physical faults and functional errors will be
considered. An explanation is given as to how different faults can be modeled and
how faults cause functional errors.

A description is given of how single stuck-at faults occur if a short to ground or
a shortage in the power supply of a circuit line occurs. It will be demonstrated how
a single stuck-at fault causes an error at a circuit output if an error is stimulated at
the location of the fault and if the stimulated error is propagated to a circuit output
along a sensitized path.

It will be shown that the probability of propagating an error to a circuit output
decreases exponentially with the distance of the location of the fault from the circuit
output. The distance is measured by the number of gates with a controlling value.
Based on this result it will also be shown that the probability of a two-bit error is
significantly lower than the probability of a single-bit error.

It is then demonstrated that bridging faults occur if two circuit lines are erro-
neously connected. Non-resistive and resistive bridging faults are considered. In this
chapter we assume that non-resistive bridging faults may be adequately modeled by
an OR-function.

For resistive bridging faults it is explained how an unknown continuous parame-
ter, the resistance R of the bridge, determines the different types of possible errors.

The functional effects of bridging faults differ according to circumstances, and
simple examples are used to illustrate that a bridging fault can be modeled either
as a single stuck-at fault, as a replacement of an AND-gate by an OR-gate, by an
abstract automaton or by an oscillating signal line.

5

6 2 Physical Faults and Functional Errors

Stuck-open and stuck-on CMOS transistor faults will be considered in detail, and
it will be demonstrated that these transistor faults may result in a sequential behavior
of the circuit or in an undefined value with a high leakage current.

Gate delay and path delay faults will be distinguished.
It will be discussed under what conditions single-event transitions in the combi-

national part of the circuit generate soft errors in the memory elements, and that soft
errors directly induced in the memory elements are much more frequent.

Physical faults can erroneously alter the functional behavior of a circuit.
It will be shown how a functional error model can be determined. An error func-

tion or an error automaton will be assigned to every physical fault of the considered
fault model. The error model for single gates gives examples of single stuck-at faults
and bridging faults.

Output dependencies on faults will be introduced as useful error models. Inde-
pendent outputs, weakly independent outputs and unidirectionally independent out-
puts will be discussed. These dependencies express how faults may simultaneously
influence pairs or groups of circuit outputs. In the following chapters these depen-
dencies will be utilized for optimal design of error detection circuits.

To quantify the quality of error detection by concurrent checking the notions of
self-testing, fault-secure and total self-checking for circuits with concurrent check-
ing are explained.

To also guarantee the detection of input errors code-disjoint circuits will be con-
sidered.

All these notions will be defined with respect to an arbitrary fault model. Usually
these notions apply for the fault model of all single stuck-at faults of the considered
circuit.

It will be discussed in detail that, although at present in reality many types of
faults other than single stuck-at faults occur, these definitions with respect to single
stuck-at faults remain of real value.

The established belief is that the detection of all errors caused by all single stuck-
at faults will also result in a satisfactory error detection probability for errors due to
other types of faults. The similarity of this concept with the idea of an n-detection
test for single stuck-at faults to also detect other faults will be discussed.

At the end of this chapter the main reasons why concurrent checking is becoming
increasingly important for submicron technologies will be given.

2.1 Stuck-At Faults

The single stuck-at fault model is the most frequently used fault model, and almost
all error detection circuits are designed using this model. A circuit line is said to be
stuck-at 0 (1) if the line is fixed to 0 (1).

The single stuck-at model will be explained for an OR-gate, which is shown in
Fig. 2.1

The input lines of the OR-gate in Fig. 2.1 are labeled by 1 and 2 and the output
line by 3 respectively.

2.1 Stuck-At Faults 7

x1

x2
y = x1 x2

1

2

3

Fig. 2.1 OR-gate

If the line 1 is stuck-at i, this stuck-at fault will be denoted by l/i. If the OR-gate
is fault-free, it implements the Boolean function

y = x1 ∨ x2.

Now we assume that line 1 is stuck at 0, which will be described as 1/0. Then
the faulty OR-gate implements

y1/0 = 0∨ x2 = x2

instead of y = x1 ∨ x2.
For all the single stuck-at faults 1/1, 2/1 and 3/1 the faulty OR-gate implements

y1/1 = y2/1 = y3/1 = 1.

The truth table for the correct OR-gate and for the faulty OR-gates with the single
stuck-at faults 1/0 and 1/1 are given in Table 2.1.

It can be seen from Table 2.1 that the single stuck-at fault 1/0 causes an error at
the output of the OR-gate for the input combination x1 = 1, x2 = 0 and that for the
single stuck-at fault 1/1 the output of the OR-gate is erroneous for the inputs x1 = 0,
x2 = 0.

To understand under what conditions internal stuck-at faults of a combinational
circuit cause errors at the circuit outputs, the notion controlling value and non-
controlling value of a gate are useful.

An input value v, v ∈ {0,1} of a gate G is a controlling value if the output value
of G is uniquely determined by v. If v is a controlling value, then the output of G is
independent of the input value at the remaining input of G.

If v is not a controlling value, then v is called a non-controlling value.
For an AND-gate, v = 0 is a controlling value since for x1 = v = 0 the output

y = x1 ∧x2 = 0∧x2 = 0 is independent of the value of x2. v = 1 is a non-controlling

Table 2.1 Truth table of an OR-gate with single stuck-at faults 1/0 and 1/1

x1 x2 y y1/0 y1/1

0 0 0 0 1
0 1 1 1 1
1 0 1 0 1
1 1 1 1 1

8 2 Physical Faults and Functional Errors

value. For x1 = v = 1 the output y = x1 ∧ x2 = 1∧ x2 depends on the values of the
second input x2.

For AND, NAND, OR and NOR-gates the controlling values are 0, 0, 1 and 0 and
the non-controlling values are 1, 1, 0 and 0 respectively.

For XOR and XNOR-gates only non-controlling values exist. For both the input
values 0 and 1 at the first input of these gates the output depends on the value of the
second input.

To better understand how an error at a circuit output is generated by an internal
single stuck-at fault we consider the circuit of Fig. 2.2

The circuit has two outputs y1 and y2 and nine inputs x1, x2, . . . ,x9. The eight
gates are numbered from 1 to 8. (For simplicity of presentation, the signals x1,
x2, . . . ,x9 are considered as external inputs. They may also be internal signals of
a larger circuit.)

We assume that there is a single stuck-at fault 1/1 at the input line 1 of
gate G1.

An error at the input line 1 of gate G1 which is caused by the single stuck-at
fault 1/1 is stimulated under the input x1 = 0. The stimulated error is propagated
to the first circuit output y1 along a first path consisting of the gates G1, G2, G3

and G4 if all the side inputs x2, x3, x4, x5 of the gates G1, G2, G3 and G4 of the
path from the location of the fault 1/1 to the circuit output y1 are non-controlling
values. This is the case for x2 = 1, x3 = 0, and x4 = 1. Since the gate G4 is an
XOR-gate, every input of this gate is a non-controlling value and the side input x5 is
arbitrary.

An error is stimulated and propagated to the circuit output y1 only for the value
assignment x1 = 0, x2 = 1, x3 = 0 and x4 = 1. If we assume that the values for all the
input variables are randomly distributed equally, then the probability that an error
results at the output y1 due to the considered stuck-at fault is 1/16.

4
G1

G5

G3

G8

G6

G2

G7

G41

2

3

x2

x1

x3

x6

x4

x7

x5

x8
x9

y1

y2

Fig. 2.2 An example of a combinational circuit

2.1 Stuck-At Faults 9

Similarly, the single stuck-at fault 1/1 causes an error at the second output y2 if
the error is stimulated by x1 = 0 and propagated along the sensitized second path
consisting of the gates G1, G5, G6, G7 and G8. Again, the side inputs of the gates
of this path have to be the non-controlling values x2 = 1, x6 = 1, x7 = 1, x8 = 0 and
x9 = 1. If we again assume that the values for the input variables are randomly and
equally distributed, the probability that the single stuck-at fault 1/1 causes an error
at the circuit output y2 is 1/64.

A single-bit error occurs if an error is stimulated and propagated through gate G1

and propagated along only one of the paths G2, G3, G4 or G5, G6, G7, G8, but not
on both.

The probability of stimulating and propagating the error through gate G1 is 1
4 .

Along the first path G2, G3, G4, where G4 is an XOR-gate, the error will be prop-
agated with a probability of 1

4 and along the second path G5, G6, G7, G8 with a
probability of 1/16. Thus, the probability p1bit of a single-bit error is

p1bit =
1
4
× (

1
4

+
1
16

− 1
4
× 1

16
) =

19
256

≈ 0.074

Both the circuit outputs y1 and y2 are simultaneously erroneous if the error is
stimulated by x1 = 0 and simultaneously propagated along the paths G1, G2, G3,
G4 and G1, G5, G6, G7 and G8. This is only possible if the side inputs of both of
these paths are the non-controlling values x2 = 1, x3 = 0, x4 = 1 and x2 = 1, x6 = 1,
x7 = 1, x8 = 0, x9 = 1.

Since a two-bit error occurs only for a single value assignment of the eight vari-
ables x1, x2, x3, x4, x6, x7, x8, x9 out of 28 = 256 possible values, the probability
p2bit that a two-bit error is caused by the single stuck-at-1 fault 1/1 is 1/256.

p2bit =
1
4
× 1

16
=

1
256

≈ 0.004.

As illustrated by the sample circuit of Fig. 2.2 a stimulated error will be prop-
agated along a path of gates to a circuit output if all the side inputs of the gates
are non-controlling values. Since all input values of XOR-gates and XNOR-gates
are non-controlling values, an error is always propagated through XOR and XNOR-
gates.

Let us consider a path of Ncontr gates with a controlling value and Nncontr gates
with no controlling value.

If we assume that the values for the side inputs of the gates on the path are
randomly equally distributed with probabilities of the values 1 and 0 both equal to
1/2, then the probability pprop(e) that a stimulated error e will be propagated to a
circuit output along the considered path is

pprop(e) = 2−Ncontr . (2.1)

According to equation (2.1) the probability that a stimulated error is propagated
from the location of the fault to a circuit output exponentially decreases with the

10 2 Physical Faults and Functional Errors

distance of the location of the fault from the circuit output. More precisely, this
distance is determined by the number of gates with a controlling value.

If there are now two paths from the location of a fault to two circuit outputs y1

and y2 of N1 = N1,contr + N1,ncontr and N2 = N2,contr + N2,ncontr gates, where Ni,contr

and Ni,ncontr for i = 1,2 are the number of gates with and without controlling values
respectively.

Then the probability ptwo
prop(e) that a fault will be simultaneously propagated from

the location of the fault to the two circuit outputs y1 and y2 is

ptwo
prop(e) = 2−(N1,contr+N2,contr), (2.2)

and the probability that a stimulated error is propagated simultaneously to two cir-
cuit outputs y1, y2 exponentially decreases with the sum of the distances of the
outputs y1 and y2 from the location of the fault.

Compared to the probability psingle
prop (e)

psingle
prop (e) = 2−N1,contr +2−N2,contr −2−(N1,contr+N,contr) (2.3)

that the stimulated error e is propagated exactly to a single one of these outputs, the
probability ptwo

prop(e) of a two-bit error is low.

2.2 Bridging Faults

A bridging fault occurs if two or more wires are connected due to a physical fault.

2.2.1 Non-Resistive Bridging Faults

In the simplest case of a non-resistive bridging fault an additional (small) resistance
between the erroneously connected wires is neglected. Depending on the technol-
ogy, a wired OR or a wired AND may result. More specifically, bridging faults may
be also considered at the transistor level [3]. For simplicity of presentation we as-
sume in this chapter that a bridging fault is functionally described by a wired OR. If
a bridging fault results in a wired AND, the considerations are similar.

Let us consider an AND-gate represented in Fig. 2.3 with the input lines 1 and 2
and the output line 3.

First we assume that there is a bridging fault brid(1,2) between the input lines 1
and 2. Then the erroneous AND-gate is to be functionally replaced by the circuitry
of Fig. 2.4

The bridging between the input lines is functionally described by an OR-gate.
The circuit of Fig. 2.4 implements the erroneous output ye with

ye = (x1 ∨ x2)∧ (x1 ∨ x2) = x1 ∨ x2.

2.2 Bridging Faults 11

x2
x2y = x1

2

x1

31

Fig. 2.3 AND-gate with bridging between the input lines 1 and 2

ye

4 3

~ ye

31

2

1

2

x1
x2

x1
x2

Fig. 2.4 Functional model of input bridging of Fig. 2.3

The AND-gate with a bridging fault at its input lines is equivalent to an OR-gate.
As a further example we consider an input-output bridging fault of an OR-gate

as shown in Fig. 2.5.
Due to this bridging fault the erroneous OR-gate becomes a simple state machine.

Depending on the input x1(t), x2(t) and the output ye(t) at time t the output ye(t +1)
at time t +1 is determined as shown in Table 2.2.

1

2

~

s−a−1 fault

ye (t)

x2 (t)

x1 (t)
x2 (t)

x1 (t)

x2

x1

y(t)

~

3

Fig. 2.5 Input-output bridging of an OR-gate and functionally equivalent circuits

Table 2.2 Input-output bridging fault of an OR-gate

x1(t) x2(t) ye(t) ye(t +1)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

12 2 Physical Faults and Functional Errors

If ye(t) = 0, then for the inputs x1(t) = x2(t) = 0 the output ye(t +1) remains 0.
If ye(t) = 1, the output ye(t + 1) remains 1 for the same inputs x1(t) = x2(t) = 0,
and the circuit that functionally describes an input-output bridging fault of a combi-
national AND-gate is sequential.

But, as can be seen from Table 2.2, if the output is ye(t) = 1 for the first time,
then the output will be equal to 1 “forever” and the bridging fault in Fig. 2.5 can
in reality be described as a single stuck-at-1 fault of the output of the considered
OR-gate.

Figure 2.6 illustrates an input-output bridging fault brid(1,3) between the input
line 1 and the output line 3 of the AND-gate of Fig. 2.3.

The behavior of the AND-gate with this bridging fault is described by Table 2.3
and by the state diagram of an automaton with two states ye = 0 and ye = 1 in
Fig. 2.7.

If we apply the sequence (0,0); (0,1); (1,0); (1,1) to the erroneous AND-gate of
Fig. 2.6, the output sequence according to Table 2.3 or the state diagram of Fig. 2.7
is 0; 0; 0; 1 and no error is indicated. But, if we apply the same four inputs in a
different order - (1,1); (0,1); (1,0); (0,0) - the corresponding output sequence will be
1, 1, 0, 0 and in the second position an error occurs.

Even if this AND-gate with the considered bridging fault is “exhaustively” tested
with all its four possible 22 = 4 input values in the order (0,0); (0,1); (1,0); (1,1),
the bridging fault brid(1,3) will not be detected. But if during normal operation the
input (1,1) is followed by the input (0,1), an erroneous output value 1 instead of the
correct output value 0 is caused by this bridging fault.

A completely different situation may occur if in the feedback path of input-output
bridging an inverter is included as is shown for a NAND-gate in Fig. 2.8.

x1(t) y(t) ~ ye(t)x2(t)
x1(t)

x2(t)

1

2

3

Fig. 2.6 Input-output bridging of an AND-gate and functionally equivalent circuit

Table 2.3 Sequential circuit describing an input-output bridging fault of an AND-gate

x1(t) x2(t) ye(t) ye(t +1) ycorr

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 1 1
1 1 1 1 1

2.2 Bridging Faults 13

1, 1

ye = 1ye = 0

0, 0
0 1

1
1

0 0 1
0, 1, 0

0 1

Fig. 2.7 State diagram of the automaton corresponding to input-output bridging of an AND-gate

010101

y ~e
0

1

010101
1

2

3

y (t)ex2 = 1

x1 = 0

Fig. 2.8 Input-output bridging with an inverter in the feedback path

For the input values x1 = 0, x2 = 1 the erroneous output ye is oscillating. No
value, neither 0 nor 1, at the output ye of the erroneous NAND-gate is stable.

The number of possible bridging faults is huge. If the number of gates of the
considered circuit is N, then the number of circuit lines is proportional to N and
the number of bridging faults between two lines is proportional to N2. For a rela-
tively moderate number N = 107 of gates there are about 1014 bridging faults to be
considered.

If layout information is available, only bridging faults between circuit lines which
are close in the layout are to be considered. These are the bridging faults between
the inputs and the outputs of the N = 107 gates and their neighboring gates in the
layout.

In reality it can rarely be assumed that all bridging faults, including the input-
output bridging faults, which result in a sequential behavior of the circuit have
been detected in the test mode after production. Therefore, especially in the mod-
ern nano-technologies, undetected bridging faults may be expected which may
result in erroneous outputs during normal operation. The errors caused by the
bridging faults which were not detected by testing have to be detected by concurrent
checking.

For a more realistic description, bridging faults have to be modeled as resistive
bridging faults.

2.2.2 Resistive Bridging Faults

A short between circuit lines, which is called a bridging fault, is modeled as a re-
sistive bridging fault, if the electrical resistance between the erroneously connected
wires is taken into account. If a resistive bridging fault occurs between internal gate

14 2 Physical Faults and Functional Errors

lines [11] the fault is regarded as internal. If the short takes place between input and
output lines of gates, the bridging fault is regarded as external.

Figure 2.9 shows the model of a concrete external resistive bridging fault, a short
between the wires W1 and W2, the output lines of the predecessor gates G1 and
G2 of the bridge. G1 is an inverter and G2 is a NAND-gate. The wires W1 and W2

are supposed to be, due to a physical fault, electrically connected via an electrical
resistance R.

The main problem of resistive bridging faults is that the values of the resistances
of the possibly bridged pairs of wires are continuous unknown parameters of the
model.

In Fig. 2.9 the wires W1 and W2 are input lines of the successor gates G3 and G4,
where G3 is an OR-gate and G4 a NAND-gate. The side inputs of these gates are x4

and x5 respectively.
The resistive bridging fault between the wires W1 and W2 results in a functional

error if, due this fault, for some input x1, x2, x3, x4, x5 at least one of the outputs y1

or y2 of the successor gates G3 of G4 is erroneous.
For a large resistance, ideally for R = ∞, no fault occurs. For very small values

of R, ideally for R = 0, the bridging fault is non-resistive.
If both the values v1 on W1 and v2 on W2 are equal, i.e. for

v1 = x1 = v2 = x2 ∧ x3,

the bridging fault has no logical effect. If the values v1 on W1 and v2 on W2 are
different, i.e. for

v1 = x1 �= v2 = x2 ∧ x3,

the resistive bridging fault induces instead of the correct values v1 and v2 some
intermediate voltage levels u1 and u2 with 0 < u1, u2 < 1 on the wires W1 and W2.

x3

R

x2

x1

x5

x4

y1

y2

W1

W2

G3

G4

G2

G1

u2 (R, x1, x2, x3)

u1 (R, x1, x2, x3)

Fig. 2.9 Example of an external resistive bridging fault

2.2 Bridging Faults 15

If the intermediate voltage level u1 is larger than or equal to the threshold value
thr3 of gate G3, the intermediate voltage level u1 will be interpreted by the successor
gate G3 as 1 (high), otherwise as 0 (low).

Similarly, if the intermediate voltage level u2 is larger than or equal to the thresh-
old value thr4 of the gate G4, u2 will be interpreted by the successor gate G4 as 1,
otherwise as 0.

A resistive bridging fault with the resistance R can be detected by a test T if the
value of the resistance R is within a specific interval which is called the “Analog
Detection Interval” [12].

More precisely, if, in the presence of the resistive bridging fault, for R ∈ [0,Rmax]
at least for one test vector of the test set T an erroneous output is generated, the
interval [0,Rmax] is called an Analog Detection Interval ADI of the fault with re-
spect to the considered test set T [12, 13]. (Also more complicated cases with non-
continuous Analog Detection Intervals are possible.)

Rmax is the maximum value of the resistance for which the considered bridging
fault is detectable by a test vector from the given test set T .

The intermediate voltage levels u1 and u2 depend on the resistance R of the bridge
and on the number of conducting transistors of the predecessor gates, which is de-
termined by the actual values of the corresponding inputs of these gates. Also the
technological parameters of the transistors are of influence.

In the considered example the predecessor gates are G1 and G2, and the conduct-
ing transistors are determined by the concrete input values of x1, x2 and x3.

We illustrate this for the input x1 = 0 of G1 and for the two different pairs of
inputs x2 = 1, x3 = 0 and x′2 = 1, x′3 = 1 of G2.

A CMOS-implementation of the NOR-gate G2 is shown in Fig. 2.10.
For x1 = 0 the correct output of the inverter G1 is

v1 = x1 = 0 = 1.

Vdd

3

x2

y = x x2 3

nt1 nt2

Gnd

x

Fig. 2.10 CMOS implementation of NOR-gate G2

16 2 Physical Faults and Functional Errors

Both the correct outputs v2 = x2 ∨ x3 and v′2 = x′2 ∨ x′3 are equal to zero

v2 = 1∨0 = 0

and
v′2 = 1∨1 = 0.

For x2 = 1, x3 = 0 and x′2 = 1,x′3 = 1 the output y of the NOR-gate is disconnected
from VDD. For x2 = 1 and x3 = 0 the output y is connected to GND only via the
n-transistor nt1 and for x′2 = 1, x′3 = 1 via both the n-transistors nt1 and nt2.

Without a resistive bridging fault the output y of gate G2 is the same for x2 = 1,
x3 = 0 and for x′2 = 1, x′3 = 1, but, in the case of the considered resistive bridging
fault, the intermediate voltage levels u1, u2 and u′1, u′2 are different.

The logical values y3 of gate G3 and y4 of gate G4 depend on the intermediate
voltage levels and on their thresholds values thr3 and thr4 respectively. The thresh-
old values thr3 and thr4 depend also on the side inputs x4 and x5 of G3 and G4

respectively.
For x1 = 0 the correct value on the wire W1 is 1. In the presence of the considered

resistive bridging fault we have for the intermediate voltage level u1 < 1.
Let x4 = 0 be the non-controlling value of the OR-gate G3. For

u1 ≤ thr3(x4)

the output y3 is erroneously changed from 1 to 0, and for

u1 > thr3(x4)

the output y3 = 1 remains correct. If x4 = 1 is the controlling value of gate G3, the
output y3 = 1 of G3 remains always correct.

For x2 = 1, x3 = 0 or for x′2 = 1, x′3 = 1 the correct value on the wire W2 is 0.
In the presence of the considered resistive bridging fault, we have u2 > 0 for the
intermediate voltage level u2.

If x5 = 1 is the non-controlling values of gate G4 then for

u2 ≤ thr4(x5)

the output y2 is erroneously changed from 1 to 0, and for

u2 > thr4(x5)

the output y2 = 1 remains correct. If x5 = 0 is equal to the controlling value of the
NAND-gate G4, the output y2 = 1 is determined by this controlling value and is
always correct.

Depending on the resistance R of the bridging fault, the inputs x1, x2, x3, x4, x5

and the threshold values thr3 and thr4 the following cases are possible:

1. y1 is correct, y2 is correct,
2. y1 is erroneous, y2 is correct,

2.3 CMOS Stuck-Open and Stuck-On Faults 17

3. y1 is correct, y2 is erroneous,
4. y1 is erroneous, y2 is erroneous.

In the fourth case an internal 2-bit error occurs.
Depending on the concrete circumstances and the concrete successor gates of a

resistive bridge a two-bit error may occur which can be either unidirectional (0,0
into 1,1 or 1,1 into 0,0) or bidirectional (1,0 into 0,1 or 0,1 into 1,0).

This may be a rare situation, and in most cases at least one of these internal
two-bit errors will not be propagated to a circuit output and simultaneously latched
in a register, but the described situation requires special attention for concurrent
checking with respect to internal two-bit errors.

In principle, resistive bridging faults, with the exception of some feedback bridg-
ing faults, can be detected to some extent by testing. For the unknown parameter R
a probability distribution p(R) is either determined from experimental data of the
chips which are to be tested or by some reasonable assumptions and an expected
fault detection probability can be computed [12].

Concurrent checking is of special importance for the detection of errors due to
feedback bridging faults.

It was shown in [14], [11] by simulation that, depending on the value of the
resistance R, a ciruit line may be oscillating between intermediate voltage levels
with a frequency much higher than the clock frequency of the circuit. The detection
of such an error during testing depends on the concrete timings of the strobes of the
tester and cannot be guaranteed.

Bridging faults with high resistances will not have an immediate logical effect
but they may result in small timing variations [11]. For the high clock frequencies
of modern computers this type of error is also of growing importance and has to be
detected by concurrent checking.

2.3 CMOS Stuck-Open and Stuck-On Faults

Typical transistor faults in CMOS technology are now considered. In CMOS tech-
nology, gates and circuits are implemented as a p-net and a complementary n-net.

A typical CMOS implementation of a combinational function f (x) is shown in
Fig. 2.11.

The p-net implements the function f (x) by p-transistors, and the n-net the in-
verted function f (x) by n-transistors. In the fault-free case, either the p-net or the
n-net is conductive depending on the input x. If, for the input x the p-net is con-
ductive, then VDD (∼ 1) is connected to the output and y(x) = 1. The output is
connected to GND (∼ 0) if the n-net is conductive. Then we have y(x) = 0.

Since in the fault-free case the p-net and the n-net are at no time simultaneously
conductive VDD is never connected to GND and, besides the switching activity,
there is (in an ideal case) no current flowing between VDD and GND.

If we now assume that either the p-net or the n-net is faulty, then the following
situations are possible:

18 2 Physical Faults and Functional Errors

^

p−net

n−net

x output y(x)

Gnd = 0

f (x)

f (x)

Vdd = 1^

Fig. 2.11 CMOS implementation of a boolean function f (x)

1. For an input x both the p-net and the n-net are conductive.
2. For an input x both the p-net and the n-net are simultaneously non-conductive.

In the first case, if the p-net and the n-net are simultaneously conductive, the
output y(x) is connected both to VDD (∼ 1) and to GND (∼ 0) and the actual
output value is undefined, y(x) = u.

Depending on the actual value of u, which is mainly determined by the resis-
tances of the p-net and n-net, u may be interpreted as 1 or 0.

In the second case both the p-net and the n-net are not conducting and the output
is disconnected from both VDD (∼ 1) and GND (∼0). Then the actual output value
y
(
x(t)

)
remains the previous output value y

(
x(t −1)

)
.

The circuit implementing a combinational function in the fault-free case becomes
sequential due to this fault.

Now some simple examples of actual transistor faults will be considered.
A transistor is a voltage-controlled resistance [15]. For the simplicity of presen-

tation, the p- and n-transistors are modeled as switches.
P- and n-transistors are shown in Figs. 2.12 and 2.13.

S

G

D

S
p−transistor

G = 1

D

S

G = 0

D

Fig. 2.12 Switching model of a p-transistor

2.3 CMOS Stuck-Open and Stuck-On Faults 19

S

G

D

S
n−transistor

G = 1

D

S

G = 0

D

Fig. 2.13 Switching model of an n-transistor

For a p-transistor in Fig. 2.12, D (drain) is connected to S (source) if G(gate) = 1,
and D is not connected to S if G = 0.

An n-transistor is shown in Fig. 2.13. For an n-transistor, D is connected to S if
G = 0, and D is not connected to S if G = 1.

Stuck-open and stuck-on faults are now explained:

• Stuck-open fault of a transistor:
If D (drain) and S (source) are, independent of the value of G (gate), always
disconnected, the transistor is regarded as being stuck open.
A stuck-open fault can be modeled as an open switch.

• Stuck-on fault of a transistor:
If D (drain) and S (source) are, independent of the value of G (gate), always
connected, the transistor is regarded as being stuck on.
A stuck-on fault can be modeled as a closed switch.

To explain the logic errors caused by transistor faults we now consider a CMOS
implementation of a NOR-gate, which is presented in Fig. 2.14.

The p-net consists of the p-transistors A and B and the complementary n-net of
the n-transistors C and D. For x1 = x2 = 0 the output y is connected to VDD (∼ 1).
In all other cases, y is connected to GND (∼ 0).

D

1

x2

y = x x1 2

Gnd

Vdd

B

A

C

x

Fig. 2.14 CMOS implementation of a NOR-gate

20 2 Physical Faults and Functional Errors

D

1

x (t)2

y (t)e

Gnd

Vdd

B

A

C

x (t)

Fig. 2.15 CMOS NOR-gate with a stuck-open fault of a transistor C

Let us assume now that the transistor A is stuck open. Then VDD (∼ 1) is always
disconnected from the output y. For the input x1 = x2 = 0 GND (∼ 0) is also dis-
connected from y and the previous output value will be retained. In principle this
will be either 0 or 1. But from the time the output of the faulty NOR-gate is 0 for
the first time it will remain 0 forever and the stuck-open fault of the transistor A
can be sufficiently well modeled by a single stuck-at 0 fault of the output y of the
NOR-gate.

Next we consider a stuck-open fault of the transistor C. In this case there is no
connection from GND via the transistor C to the output y. The corresponding faulty
NOR-gate is shown in Fig. 2.15. The behavior of the faulty NOR-gate of Fig. 2.15
is determined by Table 2.4.

For x1(t) = 1, x2(t) = 0 the output ye(t) is disconnected from both VDD and
GND and the previous output ye(t − 1) is retained. The faulty NOR-gate becomes
sequential.

Table 2.4 Table of values for a NOR-gate with a stuck-open transistor

x1(t) x2(t) ye(t) ye(t +1)

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

2.4 Delay Faults 21

D

1

x (t)2

y (t)e

Gnd

Vdd

B

A

C

x (t)

Fig. 2.16 CMOS NOR-gate with a stuck-on fault of a transistor A

If this faulty NOR-gate is “exhaustively” tested with all possible four inputs or-
dered as 11, 10, 01, 00, the corresponding output sequence will be 0, 0, 0, 1 and all
the outputs are correct.

But if the input sequence is applied in the order 00, 10, 01, 11, the corresponding
output sequence of the faulty NOR-gate is 1, 1, 0, 0 and the fault will be detected.

A stuck-open transistor fault may not be detected even if all possible input com-
binations are applied to the inputs of the faulty gate but not in the necessary order.

This is similar to an input-output bridging fault with no inverter in the feedback
line.

Let the transistor A now be stuck on. Then the transistor A is always conducting
and the corresponding faulty NOR-gate is shown in Fig. 2.16.

For x1 = 1 and x2 = 0 the output ye is simultaneously connected to both VDD
(∼ 1) and GND (∼ 0) and the value of the output ye is undefined u, y = u. It can-
not be predicted whether ye will be interpreted as 1 or 0 and this fault may not be
detected by a logic test.

But in this case, since VDD is connected to GND, a relatively high current flows,
which can be detected by measuring this current in a so-called IDDQ test [2].

2.4 Delay Faults

Delay faults are caused by small defects in the manufacturing process that cause the
timing conditions of the circuits to be violated. If a delay fault occurs, the transition
of a signal from 0 to 1 or from 1 to 0 does not take place in the expected time cycle
but rather in the following cycle. The logical function of the circuit is not changed
if the length of the clock interval is increased.

22 2 Physical Faults and Functional Errors

Two types of delay faults are distinguished as follows:

• Gate delay faults:
A gate delay occurs if the delay is located within a single gate.

• Path delay faults:
In a path delay the delay is accumulated along a path in the circuit.

When testing, delay faults can be detected by two-pattern tests applied at speed.
During normal operation, delay faults can easily cause errors at the circuit outputs.

2.5 Transient Faults

Transient faults are temporary faults caused by different (often external) reasons.
Ionizing radiation of α-particles and high energy neutrons may cause very short

duration pulses of current resulting in single event upsets (SEU) in the signal values
of a circuit. Single event upsets may cause bits to be flipped in a latch or flip-flop,
resulting in a soft error in the system.

Bit flips may be generated by single event upsets directly within the memory
elements or in the combinational part of the circuit.

Soft errors are the main reason for errors in the memory units.
Other reasons for transient faults may be, for instance, electromagnetic fields

including crosstalk between circuit lines, heat, delay faults and others. If a transient
fault occurs in the combinational part of a circuit, it will be captured as a soft error
in a latch or a flip-flop if the following conditions according to [16] are satisfied:

1. Logic condition:
There must be a path which is sensitized by the input values from the location of
the fault to a memory element.

2. Timing condition:
The deviation in the logical value, which may be a short voltage pulse, has to
arrive at the input of the memory element during the latching window of this
element.

3. Electrical condition:
During the propagation along the sensitized path to the memory element an elec-
tric deviation may be attenuated. The electric deviation at the location of the
transient fault has to be large enough that the propagated deviation is still suffi-
ciently large enough to be captured as an error by the memory element.

Transient faults can only be detected by concurrent checking and not be testing.

2.6 Functional Error Model

An error is caused by a fault if the input-output behavior of the faulty circuit is dif-
ferent from the input-output behavior of the correct circuit and if the corresponding
inputs are applied to the faulty circuit.

2.6 Functional Error Model 23

In the following section we consider a combinational circuit fC with the input and
output sets X = {0,1}m and Y = {0.1}n where n≥ 1, implementing a combinational
function f : X → Y .

We also assume that a set Φ = {ϕ1, . . . ,ϕN} of technical faults of the considered
circuit fC is given.

In the presence of a fault ϕ ∈Φ the faulty circuit is denoted as fC,ϕ and the faulty
circuit fC,ϕ implements the function fϕ , which is called an error function.

The notion of a functional error model is introduced by the following

Definition 2.1. The functional error model F(f) of the circuit fC with respect to the
set Φ = {ϕ1, . . . ,ϕN} of technical faults is the set

F(f) = { f0 = f ; fϕ1 , . . . , fϕN} (2.4)

of error functions fϕ1 , . . . , fϕN to which the error-free function f0 = f is added.

As an example we consider the circuit ∨C consisting of a single OR-gate as shown
in Fig. 2.1 with the set of single stuck-at faults

Φ = {ϕ1 = 1/0,ϕ2 = 2/0,ϕ3 = 3/0,ϕ4 = 1/1,ϕ5 = 2/1,ϕ6 = 3/1}.

Then the functional error model of the OR-gate for the single stuck-at fault
model is

Fsa(∨) = { f0 = x1 ∨ x2; f1/0 = x2, f2/0 = x1, f3/0 = 0, f1/1 = f2/1 = f3/1 = 1} =
= {x1 ∨ x2;x2,x1,0,1}.

As a second example let us consider the input bridging fault of the AND-gate
of Fig. 2.3. The set of technical faults Φinput−bridging consists of the single bridging
fault brid(1,2) only,

Φinput−bridging = {brid(1,2}

If the input bridging fault brid(1,2) occurs, the AND-gate has to be functionally
replaced by an OR-gate and the functional error model is

F(∧)input−bridging = {x1 ∧ x2;x1 ∨ x2}.

If an input-output bridging fault brid(1,3) as in Fig. 2.6 occurs, the erroneous
circuit ∧brid(1,3) = A2 is functionally equivalent to the sequential circuit represented
in Fig. 2.7.

Similarly, for an input-output bridging fault brid(2,3) the corresponding erro-
neous circuit ∧brid(2,3) = A3 will also be sequential and for the AND-gate of Fig. 2.3
the functional error model for the technical fault model “bridging faults” Φbrid ,

Φbrid = {brid(1,2),brid(1,3),brid(2,3)}

is
F(x1 ∧ x2)brid = {x1 ∧ x2;x1 ∨ x2,A2,A3}.

24 2 Physical Faults and Functional Errors

In this case the functional error model consists of a set of error functions, in this
case a single function x1 ∨ x2, and a set of error automata, A2 and A3.

The error model for a CMOS implementation of a combinational circuit with
stuck-on and stuck-open transistor faults consists of a set of error functions and a
set of error automata.

A different situation occurs if, as in Fig. 2.8, an inverter is included in the feed-
back path of a bridging fault. Then, as already described, the circuit output of the
faulty circuit will be oscillating.

Such oscillating behavior cannot be described by use of the classical discrete
system theory as a combinational function or as an abstract automaton. In this case
a functional error model cannot be formulated as described.

Another limitation of this model results from the fact that not all possible faults
can be formally specified.

As long as the faulty circuit can be adequately described as a combinational
function or an abstract automaton the functional error model is a precise description
of the errors expected due to the technical faults considered.

2.7 Output Dependencies

Output dependencies with respect to technical faults can be successfully used for
the design of error detection circuits. This approach will be shown in this book.

Until now independent outputs, weakly independent outputs and unidirectionally
independent outputs were investigated. Structural and functional dependencies of
outputs may be distinguished.

Independent outputs will be discussed first of all.

Definition 2.2. Two outputs y1 and y2 of a circuit fC with the input set X are re-
garded as independent with respect to a fault ϕ if, in the presence of the fault ϕ for
every input x ∈ X at most one of the outputs y1 or y2 is erroneous [17].

Definition 2.3. A group of outputs y1,y2, . . . ,yn of a circuit fC with the input set X
is regarded as independent with respect to a fault ϕ if, in the presence of the fault ϕ
for every x ∈ X at most one of these outputs is erroneous.

If the outputs y1,y2, . . . ,yn are implemented without sharing common gates, they
are (structurally) independent with respect to single stuck-at faults.

Obviously a group of independent outputs can be successfully monitored by par-
ity prediction and several groups of independent outputs by group parity prediction.

Since groups of independent outputs seldom as a generalization comprise inde-
pendent outputs, the notion of weakly independent outputs was introduced. As a
modification of Definition 2.2 we have

Definition 2.4. Two outputs y1 and y2 of a circuit fC with the input set X are re-
garded as weakly independent with respect to a fault ϕ if, in the presence of the
fault ϕ there exists an input xϕ ∈ X that for this input xϕ one of the outputs y1 or y2

is erroneous [18].

2.8 Self-Testing and Self-Checking 25

Groups of weakly independent outputs are similarly defined. If groups of weakly
independent outputs are monitored by parity prediction faults may be detected by
some latency.

Groups of independent and weakly independent outputs can be successfully uti-
lized for the design of self-checking and self-testing circuits. This will be described
in Section 3.3.4 of this book.

Also unidirectionally independent outputs are considered.

Definition 2.5. Two outputs y1 and y2 of a circuit fC with the input set X are called
unidirectionally independent with respect to a fault ϕ if, in the presence of the fault
ϕ for every input x ∈ X either both the outputs are correct, or only one of the out-
puts is erroneous, or, if both the outputs are erroneous they are unidirectionally
erroneous.

In the last case both the outputs are erroneously changed from 0,0 to 1,1 or from
1,1 to 0,0 but not from 1,0 to 0,1 or from 0,1 to 1,0.

Groups of unidirectionally independent outputs which can be adequately checked
by Berger codes were introduced in [19].

In [19] a simple transformation is also described that transforms an arbitrarily
given combinational circuit into a circuit with unidirectionally independent out-
puts. This circuit transformation is very similar to the transformation which is used
to transform a self-dual circuit into a self-dual fault-secure circuit as described in
Section 3.8.4 of this book.

2.8 Self-Testing and Self-Checking

Errors of combinational or sequential circuits which are caused by technical faults
which are not detected by testing shall be detected during normal operation by con-
current checking.

The necessary error detection probability is determined by the type of application
and by the probability of the occurrence of an error of the monitored circuit during
normal operation.

Let us assume that a functional circuit produces (on average) an error every 10
days. If the error detection probability is 90%, we can expect a single undetected
error within 100 days.

If the monitored functional circuit produces a single error per day (per 144 min-
utes = 1/10 day), then an error detection probability of 99% (99.9%) is needed to
achieve the same expected number of one undetected error in 100 days.

Clearly the required error detection probability depends very much on the type
of application, which is different for a cell phone, a PC, an air plane or a nuclear
power station.

However, it is clear that 100% error detection probability can never be achieved.
And also due to the nature of probability even a very high error detection probability
never excludes a single event of an undetected error among a huge number of error

26 2 Physical Faults and Functional Errors

free outputs and a large number of detected errors. It is not predictable in what
moment an undetected or undetectable error occurs.

To classify different levels of error detection the notions of self-testing, fault-
secure, totally self-checking and code-disjoint are mainly used. These notions will
be given now for a circuit C with concurrent checking, with an input set X , a subset
χ = Xexp of expected inputs, χ ⊂ X , for which the behavior of C is of interest and a
set of faults Φ = {ϕ1, . . . ,ϕN}:

• Self-testing:
A circuit C with concurrent error detection is self-testing with respect to a set Φ
of faults if for every fault ϕ ∈ Φ there exists an input xϕ ∈ χ such that for the
input xϕ the output of C is erroneous and the error will be detected by concurrent
checking.

• Fault-secure:
A circuit C with concurrent error detection is fault-secure with respect to a set Φ
of faults if every error at the output of C due to every fault ϕ ∈ Φ for every input
x, x ∈ χ will be detected by concurrent checking.
In a fault-secure circuit every erroneous output which is caused by a fault of the
considered fault model will always be detected by concurrent checking.

• Totally self-checking:
A circuit C with concurrent error detection is totally self-checking with respect
to a set Φ of faults if C is self-testing and fault-secure with respect to Φ .

Very often the notions self-testing, fault-secure and totally self-checking are de-
fined with respect to the fault set of all single stuck-at faults of C where the circuit
C also includes the hardware for concurrent checking.

It is clear also from the definitions of self-testing, fault-secure and totally self-
checking with respect to a given set Φ of faults that there may be errors caused by
faults, not from the set Φ , which may not be detected. This is, for instance, possible
if the circuit is totally self-checking with respect to all single stuck-at faults but not
for all bridging faults.

The detection of input errors is a particular problem of concurrent checking.
Without special measures an erroneous input of a circuit with concurrent checking
is interpreted by the circuit simply as a different input for which no error indication
is demanded.

Input errors have to be detected if they are not detected as output errors of the
preceding system.

To detect input errors, the set X of inputs has to be divided into a subset set of
expected inputs Xexp and the remaining set of unexpected inputs Xnexp with X =
Xexp∪Xnexp, and Xexp∩Xnexp = /0. The expected inputs have to be from the expected
input set Xexp = χ .

As a subset of X the set Xexp is called a code, and the expected inputs - which are
elements of Xexp - are called input code words.

As an example, let us consider a circuit C with m dimensional inputs x =
x1,x2, . . . ,xm. The set Xexp of expected inputs may be the set of all m dimensional
binary vectors with even parity. Then the expected inputs are code words of an even
parity code.

2.9 Faults and Errors in Submicron Technologies 27

In general any other subset of m dimensional inputs may be a set of expected
inputs.

It is checked whether the inputs belong to the set of expected inputs Xexp or not,
and an input error can be detected if it changes an expected input x ∈ Xexp into an
erroneous input xerr ∈Xnexp. If an error changes an expected input x∈X into another
input x′, x′ �= x, x′ ∈ Xexp then the error cannot be detected.

If, as previously assumed, the set of expected input values is the set of all m
dimensional binary vectors with even parity, then an input error will be detected if
the parity of the erroneous input is odd and the input error will not be detected if the
parity of the erroneous input is even.

To also include the detection of input errors in the concept of concurrent check-
ing, the notion of code-disjoint circuits was introduced:

• Code-disjoint:
A circuit C with concurrent checking is code-disjoint with respect to a code χ =
Xexp ⊂ X if, for an erroneous input xerr �= x, where x ∈ Xnexp, an error is detected
by concurrent checking and if, for xerr ∈ Xexp, no error is indicated.

For the design of self-checking circuits the set of single stuck-at faults is used as
the set of technical faults Φ in almost all cases. There are different reasons for the
choice of this set of faults, as given below:

1. Almost all known methods for the design of self-checking circuits are based on
the fault model of single stuck-at faults.

2. There is a strong belief in the community that a circuit which is fault-secure for
all single stuck-at faults and detects all errors due to single stuck-at faults will
also detect most of the errors caused by other, even non-modelled, faults.
If the circuit is fault-secure, then for an arbitrary stuck-at fault, a fault will be
detected for every input which generates an erroneous output.

3. The method of n-detection testing has some similarity to the concept of totally
self-checking. n-detection of single stuck-at faults is also believed to be a method
to detect non-modelled faults by testing. In the terminology of testing totally self-
checking means that every single stuck-at fault will be detected for every possible
test of this fault by the hardware of concurrent checking. Thus, if there exist n
test vectors for a single stuck-at fault ϕ , all these n test vectors of an n-detection
test are utilized to detect all single stuck-at faults by concurrent checking.

For sequences of (possibly accumulating) faults the notions of strongly fault-
secure and strongly code-disjoint are given in [5, 20, 21].

2.9 Faults and Errors in Submicron Technologies

With the fast development and application of the submicron technologies concurrent
checking is becoming increasingly important. This is due to the fact that in these
technologies chips cannot be tested with the same high fault coverage of 99.x% for
their permanent faults as for single stuck-at faults and that the number of transient
faults is increasing [22, 23].

28 2 Physical Faults and Functional Errors

The main reasons, which will be briefly described, are the large chip sizes, the
very small dimensions of the transistors, the shrinking voltage levels and the lack of
simple adequate fault models for the new types of faults.

1. Large chip sizes:
It is not feasible to test very large chips of several tens of millions of transistors
for all possible modeled and unmodeled hundreds of millions of permanent faults
within a few seconds in a high volume production test.

2. Small dimensions of the transistors:
The dimensions of the transistors and of the connecting wires are so small that
statistical variations may already result in subtle defects, such as high-resistance
bridging faults or high-resistance opens causing very small delays. These small
delays may show up as erroneously delayed output signals only at the high clock
frequencies used in normal operation, and not in the test mode.

3. Growing number of transient faults:
The number of transient, i.e. of non-permanent faults caused by α-particles and
by cosmic radiation is growing due to the small dimensions of the transistors and
due to the reduced voltage levels. Also crosstalk errors and delay faults due to
subtle defects cannot be modeled other than by random transient faults.

4. Non-existing simple fault models:
For the design of effective tests, simple formalized fault models, and test metrics
based on such models are needed. Such simple fault models and test metrics do
not exist for most of the realistic faults. Therefore, in practice, for the design of
effective tests, besides the modeled single stuck-at faults, bridging faults, stuck-
on faults, stuck-open faults and other modeled faults, also unmodeled faults have
to be taken into account. Since these unmodeled faults are not well-described no
guarantee can be given that they are detected by the test.

At the end of this chapter we refer to some recent attempts, to solve the problems
of concurrent checking in submicron technologies by use of different additional
sensors on the chips. As examples we mention here:

• In [24] inverter chains are applied to measure the amount of radiation to which
the circuit is exposed. In the case of a high level of radiation, the output capacities
of the circuit are temporarily increased to make the circuit less sensitive to single
event upsets.

• In [25] the detection of aging faults is considered. These faults occur as delay
faults after the chips are used for some years. These faults cannot be detected by
a production test. During the test they do not yet exist.
Special aging sensors are proposed to predict possible delay faults before they
actually appear. The clock rate of the chip will be adaptively slowed down if
necessary.

• In [26] embedded sensors are applied to detect the silicon ionization and to pre-
dict single event upsets in an early stage of their generation.

The development and application of different sensors for concurrent checking
in the submicron technologies is in a very early stage, and the part such additional

2.9 Faults and Errors in Submicron Technologies 29

sensors will play in the future is not easy to predict. The application of the proposed
sensors reduces the probability of special types of undetected errors in the submi-
cron technologies. With the reduced rates of undetected errors the well developed
logical methods of concurrent checking, as described in this book at the gate level,
will be become more effective.

We expect that within the next 5–10 years that the combination of the logical
methods of concurrent checking with some future sensors will be an active area of
research.

In this chapter the most relevant types of technical faults, namely single stuck-at
faults, bridging faults, stuck-open and stuck-on transistor faults, delay faults, tran-
sient faults in the combinational part of a circuit and directly induced soft errors in
the memory elements were described.

It was shown how these types of faults influence the behavior of the faulty circuit
and how the corresponding errors can be adequately modeled.

The functional error model corresponding to a set of physical faults was pre-
sented. It was explained that the functional error model is a very general and exact
error model as long as the faulty circuit can be described as a combinational or se-
quential time-discrete circuit and has neither oscillating signal lines nor undefined
values.

Independent outputs, weakly independent outputs and unidirectionally indepen-
dent outputs were introduced to model the different dependencies between pairs
or groups of circuit outputs in the presence of faults. These dependencies will be
utilized in the following chapters for the design of error detection circuits.

To qualify the error detection capability of a circuit with concurrent checking,
the definitions of self-testing, fault-secure, totally self-checking and code-disjoint
circuits with respect to a given fault set were presented. These definition were for-
mulated for circuits with concurrent checking.

The fact that these notions are mainly defined in the literature with respect to the
fault model of all single stuck-at faults was intensively discussed.

Chapter 3
Principles of Concurrent Checking

3.1 Duplication and Comparison

In this section duplication and comparison as the conceptually simplest method of
error detection will be described and discussed in detail.

The outputs of two duplicated circuits are compared during normal operation by
a comparator or, if the circuits are inversely duplicated, by a two-rail checker.

The main advantages of this method are that the method is simple, that it is easily
applicable to every circuit and that no specific error model is needed.

The main disadvantages are the high area overhead and the more than two-fold
increase in power consumption.

Of special interest is how the potential faults within the comparator can be de-
tected. It will be shown how this problem can be traditionally solved by use of
self-checking comparators. Self-checking comparators with two outputs and with a
single periodic output will be presented. These comparators are able to detect all
internal single stuck-at faults.

A new easily testable comparator with a single output will also be described. It
will be shown how the most disturbing faults, stuck-at faults at the single output
of the comparator, can be tested without interrupting the normal operation of the
comparator.

Partial duplication combining error detection by duplication and comparison for
the duplicated part and by parity prediction for the non-duplicated part will be ex-
plained. The method of partial duplication will be utilized for the design of self-
checking adders in Chapter 4 of this book.

The necessary area can be reduced by the method of partial duplication and all
errors due to faults within the duplicated part of the circuit, including odd and even
errors within the output registers, are detected by comparing the contents of these
registers. It is of special interest that these registers are checked by duplication and
comparison, since soft errors directly induced in these registers by α-particles are
of arbitrary parity and cannot be detected by parity prediction.

The errors caused by faults within the non-duplicated part are in most cases
single-bit errors detected by parity prediction.

31

32 3 Principles of Concurrent Checking

Duplication and comparison are the standard method for error detection, and all
the other methods will be compared with this method with respect to the neces-
sary area, power consumption and error detection probability of errors due to single
stuck-at faults.

3.1.1 Description of the Method

The method of duplication and comparison is shown in Fig. 3.1. The monitored
circuit C1 is functionally duplicated in the circuit C2. The circuits C1 and C2 are
functionally, but not necessarily structurally, equivalent.

During normal operation an input sequence x1,x2, . . . ,xi, . . . of m dimensional
inputs is applied to both the circuits C1 and C2. The corresponding n dimensional
outputs y1

1, y1
2, . . ., y1

i . . . of C1 and y2
1, y2

2, . . ., y2
i . . . of C2 are compared by a compara-

tor Comp. The error signals e1, e2, . . ., ei, . . . are the output signals of the comparator
Comp.

For y1
j = y2

j the error signal e j is e j = 0 and no error is indicated. For y1
j �= y2

j the
error signal e j is e j = 1, which indicates an error.

If, instead of the directly duplicated circuit C2, an inverted duplicated circuit C
2

is
then designed for j = 1,2, . . . ,n the inverted outputs y2

j = y1
j of C1 are implemented

by C
2
, and the outputs of C1 and C

2
have to be compared by a two-rail checker TRC.

This is shown in Fig. 3.2.
Advantages of duplication and comparison are as follows:

1. The method is simple.
2. Every error at the outputs of one of the duplicated circuits C1 or C2 is immedi-

ately detected.
3. No special fault model is required.

C
1

C
2

Comp

m

n

xj

yj
2

y j
1

ej

= yj
1

n

Fig. 3.1 Duplication and comparison

3.1 Duplication and Comparison 33

TRC

C
1

C
2

n

nmxj

ej

y
j
2

y
j
1

= y 1
j

Fig. 3.2 Inverted duplication

Disadvantages of duplication and comparison are as follows:

1. The area required is more than twice the area of the original circuit C1.
The original circuit C1, the duplicated circuit C2 and the comparator Comp have
to be implemented. An area of about 220–250% of the area of the original circuit
is needed for the implementation of duplication and comparison.

2. The power consumption is also more than twice the power consumption of the
original circuit C1.

3. The number of expected faults of the circuitry of Fig. 3.1 or Fig. 3.2 is more than
twice the number of expected faults of the original circuit C1.
A larger number of faults causes larger yield losses in production.

4. Faults within the comparator Comp or the two-rail checker TRC can prevent other
faults from being detected.

3.1.2 Comparators and Two-Rail Checkers

The possibilities for the detection of faults in the comparator or in the two-rail
checker are now discussed in more detail.

If both the circuits C1 and C2 are correct, the outputs y1
i of C1 and y2

i of C2 are
equal for i = 1,2, Since the word length of y1

i = y2
i is n at most 2n of the prin-

cipally possible 22n input values can be applied to the 2n inputs of the comparator
Comp.

Thus for n = 10 of the 22n = 220 ≈ 106 possible input values of the compara-
tor as a circuit with 20 input lines only 2n = 210 ≈ 103 different values may be
applied.

In reality even a small subset of these 2n principally possible values may be gen-
erated at the outputs of C1 and C2. The same is true for two-rail checkers. Because of
this relatively very small set of input values which are applied during normal oper-
ation to the inputs of the comparator Comp the detection of faults in the comparator

34 3 Principles of Concurrent Checking

during normal operation is a serious problem. The same is true if an embedded
comparator has to be tested. Undetected faults may be accumulated within the com-
parator preventing errors at its inputs from being detected.

Solutions to this problem were investigated for a long time.
We now discuss the problem for two-rail checkers in greater detail. (By placing

n inverters to n of the 2n inputs of a two-rail checker the two-rail checker can be
easily modified in an equality checker.)

A well known two-rail checker with four inputs according to [27] is shown in
Fig. 3.3. Two-rail checkers with more than four inputs can be obtained as trees of
such two-rail checkers with four inputs and two outputs.

The two-rail checker of Fig. 3.3 maps all two-rail inputs (i.e. the outputs of

C1 and C
2
) with y1

1 = y2
1 and y1

2 = y2
2 to two-rail outputs r1, r2 with r1 = r2. All

inputs that are not two-rail are mapped to equal outputs r1 = r2. The two-rail
checker of Fig. 3.3 has the four correct two-rail input words 0101;0110;1001;1010
which are called the input code words of the checker. The correct two-rail out-
put words of this checker are 01;10. They are called the output code words of the
checker.

All the input code words 0101; 0110;1001;1010 are mapped to the two output
code words 10; 01 and all the input non-code words 0000; 0001; 0010; 0011; 0100;
0111; 1000; 1011; 1100; 1101; 1110; 1111 are mapped to one of the output non-
code words 00 or 11.

The property of a checker to map input code words to output code words and
input non-code words to output non-code words is called code-disjointness [28].
The property of a checker to be code-disjoint is necessary to detect all errors at its
inputs.

The detection of internal faults of a checker is, as already pointed out, also of
great interest. If internal faults of a checker are not detected in time these undetected
faults may destroy the code-disjointness of the checker.

Faults of the checker can be either detected by concurrent checking during nor-
mal operation or by testing in a special test mode.

r1

r2

y1
2

y1
1

y2
1

y2
2

Fig. 3.3 Self-checking two-rail checker

3.1 Duplication and Comparison 35

A checker is called self-testing if for every (single stuck-at) fault ϕ there exists
an input code word xϕ such that in the presence of the fault ϕ the faulty checker
outputs a non-code output for the input xϕ .

The internal fault ϕ is detected if the input code word xϕ is actually applied to the
checker during normal operation. If the input code word xϕ is in the set of expected
inputs of the checker then we can expect that the fault xϕ will be detected within a
reasonable time interval. If xϕ does not belong to the set of expected inputs of the
(embedded) checker, the input code word xϕ never occurs as an input of the checker
and the fault ϕ will not be detected.

If for the two-rail checker of Fig. 3.3 all the four possible two-rail input code
words 0101; 0110; 1001; 1010 are actually applied the, two-rail checker is self-
testing with respect to all single stuck-at faults. This can be easily proven by inspec-
tion.

Thus the checker of Fig. 3.3 is code-disjoint and, if all the possible four input
code words are actually applied to its inputs, also self-testing (with respect to single
stuck-at faults).

If only a single output of the checker is allowed, the outputs of the two-rail
checker in Fig. 3.3 have to be XORed. But in this case a single stuck-at fault at
the single output line of the checker cannot be detected during normal operation.

Some of the single stuck-at faults within the checker may remain undetected if,
during normal operation, not all the possible two-rail inputs are applied to the inputs
of a two-rail checker. This may be often the case if real circuits with a large number
of outputs are (inverted) duplicated. In the presence of undetected stuck-at faults
within the checker some of the input non-code words are now mapped to output
code words, and they cannot be detected as erroneous. The faulty checker loses
the property of being code-disjoint and some of the errors at its inputs cannot be
detected.

There are many attempts to design self-checking two-rail and equality checkers
or comparators. We mention here only some results concerning comparators with a
single dynamic periodic output [29, 30, 31].

In Fig. 3.4 a self-checking comparator with a single periodic output according
to [29] is shown. The comparator of Fig. 3.4 consists of an array of four XOR-gates
and a C-element with two inputs according to [32]. The comparator componentwise
compares y1 = (y1

1,y
1
2)) and y2 = (y2

1,y
2
2). The additional input signal y0 is period-

ically changed between 0 and 1 and the output v is periodic as long as no error
occurs.

For y0 = 0 we have

z1 = z2 = 0 for y1
1 = y2

1 and y1
2 = y2

2

and for y0 = 1
z1 = z2 = 1 for y1

1 = y2
1 and y1

2 = y2
2.

If the additional signal y0 is periodic and if no error occurs, the internal sig-
nals z1, z2 with z1 = z2 are changing periodically between 0,0 and 1,1. These

36 3 Principles of Concurrent Checking

C
−

el
em

en
t

v

Vdd Vdd

Gnd Gnd

y 1
1

y 1
2

y 2
1

y 2
2

y0

z1

z2

Fig. 3.4 Self-checking two-rail checker with a single periodic output

periodic internal signals are processed by the C-element into a single periodic output
1,0,1,0,1,

The function of the C-element is described in Table 3.1.
If, due to an error at one of the inputs, say at the input y2

1, we have for the first
time z1 �= z2, the corresponding output v of the C-element is the previous output of
this element. Then the output is not periodic and the error will be detected. Also
in the case that due to an error both the components of the inputs are not equal the
output v of the C-element is not periodic.

The comparator of Fig. 3.4 can be tested by just two inputs. The described com-
parator can be also used as a two-rail checker.

A comparator is described in [29] for more than two inputs. The output of the
described comparator is, as already pointed out, a dynamic output and a C-element
is needed which may not belong to a commercial synthesis tool.

Instead of designing a self-checking comparator it is also reasonable to design a
comparator which is periodically tested.

For practical applications we recommend the easily testable comparator with a
single output according to [33], which will now be described. Only a standard li-
brary is needed and the comparator can be implemented by any design tool. In con-
trast to the known comparators with a single output [29, 30, 31], the output of the
comparator of Fig. 3.5 is static and not dynamic.

Table 3.1 Function of C-element

z1 z2 v

0 0 0
1 1 1

0 1 previous
value

1 0 previous
value

3.1 Duplication and Comparison 37

0

FF2

1
MUX

u (t)

0 1
MUX

FF1

0

FFn

1
MUX

1

2
2

1

n
n

E (t)c

A (t)

x1 (t)
y1 (t)

z1 (t)

z2 (t)

zn (t)

y2 (t)

yn (t)

x1 (t)

x2 (t)

x0

x2 (t)

xn (t)

xn (t)

Fig. 3.5 First self-testing comparator with a single output

The comparator shown in Fig. 3.5 compares the two input vectors x1(t), . . . ,xn(t)
and x′1(t), . . . ,x

′
n(t). For the additional input x0 = 1 the comparator is an equality

checker and for x0 = 0 a two-rail checker.
The comparator is not totally self-checking, but compared to the comparator used

in [34], can be easily tested.
The comparator of Fig. 3.5 consists of three serially connected parts. The first

part is a simple XOR-network with 2n XOR-gates. The second part consists of n
scannable flip-flops, which can be used either as a pipeline register or as a scan
path. The third part is an n-input AND (NAND)-gate.

For i = 1, . . . ,n the input signal xi(t) and the additional input x0 are connected
to the inputs of the XOR-gate XORi. The output of this XOR-gate and the input
signal x′i(t) are connected to the inputs of the XOR-gate XOR′

i, the output of which
is denoted by y(t).

yi(t) is determined as

yi(t) = xi(t)⊕ x′i(t)⊕ x0. (3.1)

If the control signal c of the multiplexors of the scan flip-flops is 0, then yi(t) is
stored for one clock cycle in the flip-flop FFi and the output zi(t) of FFi is

zi(t) = yi(t −1) = xi(t −1)⊕ x′i(t −1)⊕ x0. (3.2)

Then the output u(t) of the comparator is

u(t) =
n∧

i=1

yi(t) =
n∧

i=1

(xi(t −1)⊕ x′i(t −1)⊕ x0). (3.3)

38 3 Principles of Concurrent Checking

For x0 = 1 the comparator is an equality checker. As long as all components of
the input vectors x1(t), . . . ,xn(t) and x′1(t), . . . ,x

′
n(t) are pairwise equal the output

u(t +1) is equal to 1. If at least one of the components xk(t) and x′k(t) are not equal,
u(t +1) is equal to 0 and every erroneous pair of inputs will be detected at the output
of the comparator.

For x0 = 0 the comparator is a two-rail checker. As long as all components of the
input vectors are pairwise different the output of the comparator is equal to 1. If at
least one pair xk(t),x′k(t) of the components of the input vector is equal, the output
u(t +1) is equal to 0.

Now we show how the comparator with x0 = 1 can be tested with respect to all
single stuck-at faults. With x0 = 1 the comparator is an equality checker.

First we consider the testability of the XOR-gates. A two-input XOR-gate can be
tested with respect to single stuck-at faults if all the possible inputs 00, 01, 10 and 11
are applied to its inputs. During normal operation we have xi(t) = x′i(t) ∈ {00,11}
and x0 = 1 and the inputs of the XOR-gates are 01 and 11 for XORi and 10 and 01 for
XOR‘i. If we change the additional input x0 to 0, then the inputs of the XOR-gates
are 00 and 10 for XORi and 00 and 11 for XOR‘i. For x0 = 0 and for i = 1, . . . ,n
the internal signals yi(t) are stored in the flip-flops FFi and shifted out of the scan
chain.

During normal operation the n-input AND-gate at the output of the comparator
is tested with respect to all stuck-at-0 faults. The AND-gate can be easily tested for
stuck-at-1 faults by use of the scan chain. The necessary n test-inputs are shifted in
and the output is monitored.

A modification of the comparator of Fig. 3.5 is shown in Fig. 3.6.
The comparator shown in Fig. 3.6 allows us to check the single output line for a

single stuck-at fault during normal operation.

0

FF2

1

0 1

MUX u (t)

MUX

FF1

0

FFn

1
MUX

1

2
2

1

n
n

E (t)c

A (t)

x0

x1 (t)

x1 (t)

x2 (t) y2 (t)

yn (t)

y1 (t)

z1 (t)

v1 (t)

v2 (t)

z2 (t)

zn (t)

x2 (t)

xn (t)

xn (t)

Fig. 3.6 Second self-testing comparator with a single output

3.1 Duplication and Comparison 39

In Fig. 3.6 the outputs of the flip-flops FF1, . . . ,FFn are connected to both an
n-input AND-gate with the output

v1(t) = z1(t)∧ . . .∧ zn(t)

and an n-input NOR-gate with the output

v2(t) = z1(t)∨ . . .∨ zn(t).

The additional input x0 of the XOR-gates XOR1, . . . ,XORn also controls whether
v1(t) or v2(t) is selected as the output u(t) of the comparator. Thus we have

u(t) = x0v1(t)∨ x0 ∨ v2(t). (3.4)

For x0 = 1 the output of the comparator is

u(t) =
n∧

i=1

(xi(t −1)⊕ x′i(t −1)⊕1), (3.5)

and for x0 = 0

u(t) =
n∨

i=1

(xi(t −1)⊕ x′i(t −1)). (3.6)

If no error occurs, equations (3.5) and (3.6) imply for an equality checker

u(t) =
{

1 for x0 = 1
0 for x0 = 0

.

By changing the additional input x0 from 1 to 0 the output of the comparator
can be tested for stuck-at 0/1 faults. Consequently, the function of the comparator
to check its input signals for equality is not interrupted.

All single stuck-at faults of all gates, except the single stuck-at-1 faults at the
inputs of the n-input AND-gate and the single stuck-at-0 faults at the inputs of the
n-input NOR-gate, will be detected during normal operation if the additional input
x0 is switched from time to time between 0 and 1.

The single stuck-at-1 faults at the inputs of the n-input AND-gate and the single
stuck-at-0 faults at the inputs of the n-input NOR-gate can be tested in a test mode
by scanning the necessary test inputs into the scan chain.

If the comparator is slightly modified, it can be beneficially applied for error
location in fault-tolerant systems. Details are described in [33].

A well-known modification of duplication and comparison is Two-Rail Logic.
In Two-Rail Logic every circuit line of the original circuit is duplicated in two

lines. The first of these duplicated lines carries the original signal s and the second
one the corresponding inverted signal s. Inverters can be saved since both the orig-
inal and the inverted signal are always available. A disadvantage of this method is
that the circuit cannot be simply duplicated, a special design for the two-rail circuit
is necessary. Two-rail logic is described, for instance, in [35, 36].

40 3 Principles of Concurrent Checking

3.1.3 Method of Partial Duplication

Error detection by partial duplication was introduced in [37] and in recent years
applied to different types of adders, multipliers and dividers in [38, 39, 40, 8, 9, 10].

We consider a combinational circuit C, the outputs of which are stored in a latch
or a register R. It is assumed that the considered circuit C is implemented as a serial
connection of two circuits C1 and C2, as shown in Fig. 3.7.

Such an implementation can be easily obtained from the netlist of C by splitting
the netlist into two parts.

The sub-circuit C2 and the register R are duplicated in the two sub-circuits C1
2

and C2
2 and the two registers R1 and R2. If an error occurs due to a fault in one of

the duplicated circuits C1
2 and C2

2 or in one of the registers R1 or R2, the error will
be detected by comparing the contents of the registers R1 and R2. The combina-
tional circuit C1, which is not duplicated, is monitored by an error detection circuit.
Figure 3.8 shows a partially duplicated circuit where the non-duplicated part C1 is
checked by parity prediction. The outputs of C1 are XORed to derive the output
parity P(z) of C1 and compared with the predicted parity Pz(x), which is determined
from the inputs x of C1.

Soft errors directly induced in the registers R1 or R2 and soft errors in the registers
caused by transient faults in the duplicated parts C1

2 or C2
2 near to the registers are

detected by comparing the contents of the registers. Errors due to faults in the non-
duplicated part C1 result in the same erroneous contents of both the registers R1 and
R2. They cannot be detected by comparing the contents of these duplicated registers.
These errors are detected by the error detection circuit for C1.

x(t)
C1 C2 R

y(t) y(t−1)

Fig. 3.7 Circuit represented as a serial connection of C1 and C2

P (x)z

C1

x

zn

z1

C2
2

C2
1

R2

R1
y1

y2

P(z)

P (x)z

Fig. 3.8 Partial duplication with parity checking for the non-duplicated part

3.1 Duplication and Comparison 41

C1

x

C
2
2 R2

R1C 1
2

y1

y2

Fig. 3.9 Partial duplication without concurrent checking for the non-duplicated part

Code-disjoint partially duplicated circuits were introduced in [41] and described
in Section 3.5 of this book.

Partial duplication without error detection for the non-duplicated combinational
part C1 according to [42] is shown in Fig. 3.9.

The duplicated circuit C2 is determined such that the gates with a high soft error
susceptibility are added step by step to C2 until the necessary area for the imple-
mentation of C2 does not exceed the acceptable additional area. Faults within C1

2
and C2

2 will be detected, while faults within C1 will not be detected. Since the gates
with high susceptibility to soft errors belong to C1

2 and C2
2 , the probability of error

detection with respect to soft errors is high.

This section explained in detail duplication and comparison as the conceptually
simplest method of error detection.

The main advantages of this method - namely that the method is easily applicable,
that no specific error model is needed and that every error due to a fault in one of
the duplicated circuits will be detected were described.

Also the main disadvantages, the necessary large area, which is more than twice
the area of the functional circuit, and the high power consumption, which is also
more than twice the power consumption of the original circuit, were discussed.

It was explained that faults in the comparator that can prevent the comparator
from detecting errors of the functional circuits require special treatment and that
these errors can be detected by self-checking comparators. Self-checking compara-
tors with two outputs and a single periodic output were presented.

A new easily testable comparator with a single output and an additional input
signal was also introduced. It was shown how the most disturbing faults, stuck-at
faults at the single output of that comparator, can be tested without interrupting the
normal operation of the comparator.

Partial duplication with error detection by duplication and comparison for the
duplicated part and error detection by parity prediction for the non-duplicated part
were described. It is of special interest that the output registers were included in the
duplicated part since soft errors directly induced by α-particles in these registers are
of arbitrary parity and cannot be detected by parity prediction.

Errors caused by faults in the non-duplicated part are in the most cases one-bit
errors and are detected by parity prediction.

Partial duplication without error detection for the non-duplicated part was like-
wise considered.

42 3 Principles of Concurrent Checking

Since duplication and comparison are the standard method for error detection, all
the other methods described in this book will be compared with this method with
respect to the necessary area, power consumption and error detection probability of
errors due to single stuck-at faults.

3.2 Block Codes for Error Detection

In this section the basic notion and notations of block codes will be described. It
will be explained how the check bits are determined from the information bits, and
the classical codes which are utilized for the design of error detection circuits will
be briefly described. Almost all of these codes are systematic block codes.

A new class of codes, non-linear split error detection codes, where parities are
split into non-linear parts will be introduced. The error detection capability of these
codes will be investigated and it will be demonstrated that a first subset of errors
will be detected with certainty, a second subset of errors with a probability greater
or equal to 1/2 and a third very small subset of errors will not be detected. This
is different to linear codes, where an error is either detected with certainty or not
detected with certainty.

The expenditure for the implementation of these codes lies somewhere between
the expenditure required for parity codes and the expenditure required for Hamming
codes.

This section will not be an introduction to coding theory and we assume that the
reader is familiar with the basics of coding theory as described in the literature for
coding theory, for instance, in [43, 44].

3.2.1 Classical Error Detection Codes

In general, a code is a subset ψ of a set X , ψ ⊆ X . The element x, x ∈ X , is an
element of the code or a code word if x ∈ ψ and a non-code word if x ∈ X\ψ .

A well-known example of a code is the parity code. For a parity code with a word
length n we have X = {0,1}n, where X is the set of all binary words x1 . . .xn of n
bits with xi ∈ {0,1}, n ≥ 2.

The subset ψ is the set of all binary words x1 . . .xn with x1 ⊕ . . .⊕ xn = P with
P = 0 for an even parity code and P = 1 for an odd parity code.

For n = 3, the set of all words of length 3 is X = {0,1}3 = {000, 001, 010, 011,
100, 101, 110, 111}.

For P = 0, the even parity code ψeven consists of ψeven = {000, 011, 101, 101}.
011 is a code word since 011∈ψeven. 111 is a non-code word since 111∈X\ψeven =
{001, 010, 100, 111} = ψodd .

In this book only block codes are considered for error detection.
A code ψ is a block code of length n, n ≥ 1, if ψ and X are sets of words of

length n only. We assume X = {0,1}n and that the symbols or the components of
the code words are binary.

3.2 Block Codes for Error Detection 43

Information is encoded and protected against certain errors by use of a code.
If a code word is erroneously changed into a non-code word, the error will be
detected.

If a correct code word v = v1, . . . ,vn is erroneously changed into an erroneous
word v′ = v′1, . . . ,v

′
n by an error, the error can be formally described by a binary

error vector e.
The error vector e is defined as

e = (e1, . . . ,en) = (v⊕ v′) = (v1 ⊕ v′1), . . . ,(vn ⊕ v′n).

For ei = 1 the ith component vi of v is erroneously changed into v′i = vi⊕1 = vi, and
for e j = 0 the jth component v′j = v j remains correct.

The number of ones in the error vector e indicates how many bit positions of v
are erroneous.

The number w(v) of ones in a binary vector v = (v1, . . . ,vn),

w(v) =
n

∑
i=1

vi,

is called its Hamming weight.
The Hamming distance d(v,v′) between two vectors v = v1, . . . ,vn and v′ =

v′1, . . . ,v
′
n is defined as the number of different bit positions of these vectors v and

v′. Since the Hamming distance d(v,v′) can be determined as

d(v,v′) =
n

∑
i=1

(vi ⊕ vn),

we have
d(v,v′) = w(v⊕ v′),

and the Hamming distance between two vectors v and v′ is equal to the Hamming
weight of the componentwise XOR-sum (v⊕ v′) of these vectors.

An error e with Hamming weight w(e) will change w(e) bits of the correct vec-
tor v.

For a given code C the Hamming distance between all pairs of its code vectors
can be determined. The minimum distance dmin between all pairs of the code C is
called the distance of the code.

If the distance of a code is dmin, no error e with a Hamming weight w(e) ≤ dmin

can change a code word into another code word of that code, and all errors with a
weight w(e) ≤ dmin will be detected by this code.

But we emphasize that not only errors e with a Hamming weight w(e)≤ dmin are
detected by this code.

Every error changing an expected code word into a non-code word is detectable,
but an error changing an expected code word into another, unexpected code word
is not.

44 3 Principles of Concurrent Checking

If NC is the number of code words, for every code word the number of non-
detectable errors is NC − 1. These are the errors changing the expected code word
into another, unexpected code word.

In general, for two different code words the corresponding sets of detectable
errors may be different. For linear codes these sets are equal and for non-linear
codes these sets may be different. Therefore, for linear codes such as parity codes,
group parity codes, Hamming codes or BCH-codes, independent of the expected
code word, an error will be with certainty either detectable or not detectable. This
is different for non-linear codes for which the detectability of an error depends on
the expected code word. This will be demonstrated for the Non-linear Split Error
Detection Codes, which will be introduced in the next subsection.

Very often the information which is to be encoded is given as an information
word u = u1, . . . ,uk of k bits. The information word is mapped to a code word v =
v1, . . . ,vn of n bits, n > k, by a function g : {0,1}k →{0,1}n, v = g(u).

Different information words u,u′ with u �= u′ have to be mapped to different code
words v and v′,

v = g(u) �= g(u′) = v′.

In many applications error detection circuits are designed by use of systematic
block codes. (In some applications also m-out-of-n codes are used.)

We consider systematic block codes of length n and information words of length
k, k < n.

In a code word of a systematic block code the information word u = u1, . . . ,uk

remains unchanged and l = n−k check bits c1, . . . ,cl are added to the k information
bits to form a code word. Thus, for a code word v of a systematic block code we
have

v = v1, . . . ,vn = g(u) = g(u1, . . . ,uk) = u1, . . . ,uk,c1, . . . ,cl (3.7)

where
v1, . . . ,vk = u1, . . . ,uk. (3.8)

The l check bits c1, . . . ,cl are determined as

c1 = g1(u1, . . . ,uk), . . . ,cl = gl(u1, . . . ,uk) (3.9)

and g1, . . . ,gl are Boolean functions of length k.
If the Boolean functions g1, . . . ,gl are all linear, the code is linear.
Now the classical error detection codes used in this book will be briefly de-

scribed.

1. Parity Codes
To the k information bits u1, . . . ,uk a single check bit c1 = cP (called the parity
bit) is added, and a code word v(u) of a parity code is of the form

v(u) = u1 . . .ukcP.

3.2 Block Codes for Error Detection 45

The parity bit cP is defined as

cP = u1 ⊕ . . .⊕uk

for an even parity code and as

cP = u1 ⊕ . . .⊕uk

for an odd parity code.
For an even parity code all the words of length n = k +1 with an even number

of ones are code words, and all words of length n = k +1 with an odd number of
ones are not.

For an odd parity code all the words of length n = k + 1 with an odd number
of ones are code words, and all words of length n = k + 1 with an even number
of ones are not.

2. Group Parity Codes
The information bits of a group parity code are partitioned into groups and for
every group of information bits its own check bit, the parity bit of the group, is
determined.

For l groups the corresponding l check bits c1, . . . ,cl are determined by l parity
equations

c1 = u1,1 ⊕ . . .⊕u1,k1 ,

...

cl = ul,1 ⊕ . . .⊕ul,kl

with
u1,1, . . . ,u1,k1 , . . . ,ul,1 . . . ,ul,kl ∈ {u1, . . . ,uk}

and k1, . . . ,kl ≤ k.
The groups {u1,1, . . . ,u1,k1}, . . . ,{ul.1, . . . ,ul,kl} of information bits may be dis-

joint or not.
In general, every linear code is a group parity code. But the notion Group

Parity Code is only used when the groups of information bits for which parity bits
are computed are specially selected and adapted to the concrete circumstances.

For example, if the information bits are arranged as bytes, for every byte its
own parity bit may be determined and the natural groups of information bits are
the bytes.

If the input-output behaviour of a circuit is concurrently checked by a group
parity code the circuit outputs are the information bits of the code. To achieve
the best possible error detection probability for a given number of l parity bits,
the circuit outputs are grouped into the best l groups by use of the net list of the
circuit.

46 3 Principles of Concurrent Checking

3. Duplication Code
Duplication (and comparison) is, as already described, the most frequently used
method of concurrent checking. The information word u = u1 . . .uk is simply
duplicated. The code word v(u) is

v(u) = u1 . . .uk c1 . . .ck

with

c1 = u1,

...

ck = uk.

4. Two-Rail Code
The two-rail code is a simple modification of the duplication code. Instead of
directly duplicating the bits of the information word u = u1 . . .uk these bits are
duplicated in inverse form. The code word v(u) of the information word u is
defined as

v(u) = u1 . . .uk c′1 . . .c′k

with

c′1 = u1,

...

c′k = uk.

5. Berger Code
The check bits c1, . . . ,cl of a Berger code are the binary representation of the
number of zeros (or the number of ones) of the corresponding information bits
u1, . . . ,uk.

Since, for k information bits, the number of zeros is at most k, the number l of
the necessary check bits is

l = �ld(k)+1�.
�x� denotes the largest integer less than or equal to x.

More formally, for the information word u = u1 . . .uk the code word v(u) =
v1 . . .vn is

v(u) = v1 . . .vn = u1 . . .uk c1 . . .cl

with

c1 . . .cl = (
k

∑
i=1

ui)binary,

where (y)binary is the binary representation of y.
For three information bits u1, u2, u3 the 2 = �ld(3)+ 1� check bits c1, c2 are

represented in Table 3.2.

3.2 Block Codes for Error Detection 47

Table 3.2 Check bits of a Berger code with 3 information bits

u1 u2 u3 c1 c2

0 0 0 1 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 0 0

6. Modulo p Checking
The check bits of Modulo p Checking are the arithmetic value of the data bits
modulo p.

The modulo p value r of an integer z,

r = z modulo p,

is defined as the residue or the remainder r of the division of z by p,

z = m · p+ r, with 0 ≤ r < p.

Thereby z, m, p and r are integers. Sometimes also negative residues with
0 ≤ |r| < p are used.

Examples are:

7 mod 5 = 2,

8 mod 3 = 5 mod 3 = 2,

10 mod 2 = 0,

2n mod (2n −1) = 1,

2n mod (2n +1) = −1.

To the information bits u1, . . . ,uk the check bits

c1 . . .cl = [(uk +2uk−1 +4uk−2 + . . .+2k−1u1) mod p]binary

are added to form a code word u1 . . .ukc1 . . .cl .
(uk +2uk−1 +4uk−2 + . . .+2k−1u1) is the arithmetic value of u1u2 . . .uk and [y]bin

denotes the binary representation of y.
For example, let u1u2u3u4u5 = 10111 and p = 3. The arithmetic value of

10111 is
1+2 ·1+4 ·1+8 ·0+16 ·1 = 23.

Since 23 mod 3 = 2 with [2]binary = 10 = c1c2 the corresponding code word is

u1u2u3u4u5 c1c2 = 10111 10.

48 3 Principles of Concurrent Checking

Since for p �= 2n the determination of z mod p for larger values of z can only
be implemented with reasonable costs for p = 2n ±1, in practice only these “low
cost values” are used.

The reason is that the validity of the equations

2t·smod (2s −1) = 1

and
2t·smod (2s +1) = (−1)t

allows a cascaded implementation of the modulo p = 2s ±1 computation of the
arithmetic value of the information bits [45]

For instance, for p = 3 = 22 −1 we have

22 mod 3 = 24 mod 3 = 28 mod 3 = . . . = 1,

and for p = 5 = 22 +1

21·2 mod 5 = 23·2 mod 5 = . . . = −1,

22·2 mod 5 = 24·2 mod 5 = . . . = 1.

By use of these equations

(32u1 +16u2 +8u3 +4u4 +2u5 +u6) mod 3

can be determined in a cascaded form as

(2u1 +u2) mod 3⊕mod 3 (2u3 +u4) mod 3⊕mod 3 (2u5 +u6) mod 3

and
(32u1 +16u2 +8u3 +4u4 +2u5 +u6) mod 5

as

(2u1 +u2)�mod 5 (2u3 +u4)⊕mod 5 (2u5 +u6)

with

x�mod 5 (y mod 5) = x⊕mod 5 (5− [ymod 5]).

Modulo p checking is especially useful for concurrent checking of arithmetic
operations.

When checking arithmetic operations modulo p the following equations may
be used

(x+ y) mod p = (x mod p)⊕mod p (y mod p),

(x− y) mod p = (x mod p)�mod p (y mod p),

(x · y) mod p = (x mod p)�mod p (y mod p).

3.2 Block Codes for Error Detection 49

7. m-out-of-n Codes
The block length of an m-out-of-n code is n. Exactly m out of the n bits of the
block are 1, and the remaining n−m bits are 0. The number of code words of an
m-out-of-n code is

(n
m

)
.

Information bits and check bits cannot be separated.
For example, the 3 =

(3
1

)
code words of an 1-out-of-3 code are 100, 010, 001

and the 5 remaining 3-bit words 000, 110, 101, 011, 111 are non-code words.
For the 2-out-of-4 code the 6 =

(6
2

)
code words are 1100, 1010, 1001, 0110,

0101, 0011. All the 24 −
(4

2

)
= 10 remaining 4-bit words are non-code words.

3.2.2 Non-linear Split Error Detection Codes

In this subsection new non-linear systematic error detection codes are briefly de-
scribed [46].

A fixed number of l check bits c1, . . . ,cl is added to the k, k > 2, information bits
u1, . . . ,uk. In general the number l of check bits is small. The expense for non-linear
split error detection codes is between parity and Hamming codes.

At least one of the check bits, say c1, is determined as

c1 = f11(u11,u12)⊕ f12(u13,u14)⊕ . . . (3.10)

where the set of variables {u11, u12, u13, u14 . . .} is a subset of the information bits
{u1,u2, . . . , uk}.

For j = 1,2, . . . the functions f1 j are two-input non-linear functions with a con-
trolling input con(1, j). Such functions are two-input NAND-, AND-, NOR- and OR
functions with the controlling inputs 0, 0, 1 and 1 respectively.

A first example of a non-linear split error detection code with k information bits
u1,u2, . . . ,uk, where k is even, and 3 check bits c1,c2,c3 is shown in Fig. 3.10.

For this code the first check bit c1 is determined as

c1 = (u1 ∧u2)⊕ (u3 ∧u4)⊕ . . .⊕ (uk−1 ∧uk) (3.11)

where

f11(u11,u12) = (u1 ∧u2),

f12(u13,u14) = (u3 ∧u4),
... .

All the functions f1 j, j = 1, . . . ,k/2 are NAND-functions. The controlling value
of the NAND-function is 0.

Similarly, the second check bit c2 is determined as

c2 = f21(u21,u22)⊕ f22(u23,u24)⊕ . . . =
= (u1 ∨u2)⊕ (u3 ∨u4)⊕ . . .⊕ (uk−1 ∨uk), (3.12)

50 3 Principles of Concurrent Checking

u1

u2

u3

u4

d2

d4

d6

dk–2

u5

u6

uk–2

uk–1

uk

c1 c2 c3

Fig. 3.10 Non-linear split error detection code with three check bits

where

f21(u21,u22) = (u1 ∨u2),
f22(u23,u24) = (u3 ∨u4),

...

and all the functions f2 j, j = 1, . . . ,k/2 are NOR-functions. The controlling value
for the NOR-function is 1.

Because of (ui ∧u j)⊕ (ui ∨u j) = ui ⊕u j we have

c1 ⊕ c2 = u1 ⊕u2 ⊕u3 ⊕u4 ⊕ . . .⊕uk−1 ⊕uk = P(u), (3.13)

and the linear parity function P(u) = u1 ⊕ . . .⊕uk of the information bits u1, . . . ,uk

may be considered as split into the two non-linear functions implemented by the
check bits c1 and c2.

The third check bit c3 is determined as

c3 = (u2 ∧u3)⊕ (u4 ∧u5)⊕ . . .⊕ (uk ∧u1). (3.14)

The error detection capability of the considered non-linear code will now be dis-
cussed and compared with the error detection capabilities of traditional error detec-
tion codes.

3.2 Block Codes for Error Detection 51

As has already been pointed out, for linear error detection codes such as parity
code, Hamming code or BCH-code, the set of all possible errors E is divided into
two disjoint subsets E1 and E2. Errors from the first subset E1 are detected with
certainty. Errors from the second E2 will never be detected. Thus, for a parity code
odd errors will always be detected and even errors will never be detected. This is
different for a non-linear split error detection code. For these codes the set E of
errors is divided into three disjoint subsets E ′

1, E ′
2 and E ′

3.
Errors from the first subset E ′

1 will always be detected by the non-linear split
code as the errors from the first set E1 of a linear error detection code. Errors from
the second subset E ′

2 will be detected at least with a probability of 1/2. It is thereby
assumed that all the information bits u1, u2, . . . , uk are equal to 0 or to 1 with the
same probability of 1/2. Errors from the third subset E ′

3, which is usually very small,
will never be detected.

This fact will now be explained for the non-linear split error detection code with
k information bits u1, . . . , uk and l = 3 check bits c1, c2, c3 shown in Fig. 3.10.

In Fig. 3.10 the number of check bits is three. According to equation (3.13)
the XOR-sum of the check bits c1 and c2 is equal to the parity P(u) of the in-
formation bits u1, . . . ,uk. Therefore, every odd error of the information bits will
always be detected either by the check bit c1 or c2 and all odd errors belong
to E ′

1.
All even errors for which not all the k information bits are simultaneously erro-

neous will be detected with at least a probability of 1/2. They are elements of E ′
2.

The error changing the information bits 1,0,1,0, . . ., 1,0 . . . into 0,1,0,1, . . .,0,1, . . .
cannot be detected by this code and belongs to E ′

3.
We now explain how even-bit errors for which not all the k information bits

u1, . . . ,uk are simultaneously erroneous are detected. For these faults at least one
of the check bits is changed with a probability greater or equal to 1/2. We thereby
assume, as already pointed, out that the information bits u1, . . . ,uk are equal to 0 and
1 with a probability of 1/2.

As an example of such an even-bit error we consider the 4-bit error for which the
four correct information bits u3, u4, u5, u6 are changed into the erroneous informa-
tion bits u3, u4, u5, u6. All the other information bits are assumed to be correct.

For the correct information bits we have, according to Fig. 3.10

d2 = u2 ∧u3,

d4 = (u2 ∧u3)⊕ (u4 ∧u5),

d6 = (u2 ∧u3)⊕ (u4 ∧u5)⊕ (u6 ∧u7)

and for the erroneous inputs

d′
2 = u2 ∧u3,

d′
4 = (u2 ∧u3)⊕ (u4 ∧u5),

d′
6 = (u2 ∧u3)⊕ (u4 ∧u5)⊕ (u6 ∧u7).

52 3 Principles of Concurrent Checking

For d6 �= d′
6 the considered 4-bit error will be detected since all the other values

which are XORed with d6 or d′
6 to form the check bit c3 are the same for both d6

and d′
6.

Let now u2 = 0. For d6 �= d′
6 the error will be detected. If we assume d′

6 = (u4 ∧
u5)⊕ (u6 ∧ u7) = d6 = (u4 ∧ u5)⊕ (u6 ∧ u7) the 4-bit error will not be detected by
the check bit c3. But then we have for u2 = 1 with (u4∧u5)⊕(u6∧u7) = (u4∧u5)⊕
(u6 ∧u7) that d′

6 = u3 ⊕ (u4 ∧u5)⊕ (u6 ∧u7) �= u3 ⊕ (u4 ∧u5)⊕ (u6 ∧u7) = d6, and
the considered four-bit error will be detected for u2 = 1. Similarly it can be shown
that if the error will not be detected for input u2 = 1, it will be detected for input
u2 = 0. Thus, the considered error will be detected for u2 = 0 or for u2 = 1 by c3

and therefore at least with a probability of 1/2.
We emphasize here that the input u2 does not belong to the erroneous bits of the

considered error. If the four-bit error changes u3 = 0, u4 = 0, u5 = 1, u6 = 0 into
u3 = 1, u4 = 1, u5 = 0, u6 = 1, then this error will also be detected with certainty
at the check bits c1 and c2 and this specific four-bit error will be detected with a
probability of 1. An even-bit error with the first erroneous bit ui, i odd, will be
detected at the check bit c3 with a probability of 1/2. If i is even, the error will be
detected at the check bits c2 and c3 with a probability of 1/2.

Some of the even-bit errors for which all the information bits u = u1, . . . ,uk are
simultaneously erroneous cannot be detected by the code shown in Fig. 3.10.

An error for which all the information bits are erroneous cannot be detected if
we have for i = 1,2,3

ci(u1, . . . ,uk) = ci(u1, . . . ,uk).

By use of

ui ∧u j = 1⊕ui ∧u j,

ui ∨u j = 1⊕ui ⊕u j ⊕ui ∧u j,

and ui ∨u j = ui ∧u j

we obtain by direct calculation for j = 1,2,3

c j(u1, . . . ,uk) = c j(u1, . . . ,uk)⊕ [(k/2) modulo2]⊕u1 ⊕u2 ⊕ . . .⊕uk =
= c j(u)⊕ [(k/2) modulo2]⊕P(u), (3.15)

and the error will not be detected if

[(k/2) modulo2]⊕u1 ⊕ . . .⊕uk = 0. (3.16)

This is, for instance, the case if u1, . . . ,uk = 1,0,1,0, . . . is changed to 0,1,0,1, . . .
or if u1, . . . ,uk = 1,1,1,1, . . . for even k/2 is changed to 0,0,0,

The error will be detected if

[(k/2) modulo2]⊕u1 ⊕ . . .⊕uk = 1. (3.17)

3.3 Parity and Group Parity Checking 53

u1

u2

u3

u4

u5

u6

u7

u8

c1 c2 c3 c4

Fig. 3.11 Non-linear split error detection code with four check bits

In Fig. 3.11 for k = 8 another non-linear split error detection code with four check
bits c1, c2, c3, c4 is shown. The number of check bits is again independent of the
number of information bits. The three check bits c1, c2 and c3 implement non-linear
functions. The check bit c4 is an XOR-sum of u3 and u7, and is a linear function.

Since we have
c1 ⊕ c2 = u1 ⊕u2 ⊕ . . .⊕u7 ⊕u8

all odd errors are detected. It can be shown that all error bursts of length 2, 4 and 6
are detected with certainty by this code. Many other errors are also detected with at
least a probability of 1/2.

Other examples of non-linear split error detection codes can be easily derived.

In this section basic notions and notations of systematic block codes were briefly
explained. A new class of codes, non-linear split error detection codes, was intro-
duced.

It was explained that parities of that codes are split into non-linear parts and it
was demonstrated that these codes detect a first subset of errors with certainty, a
second subset of errors with a probability greater or equal to 1/2 and that a third,
very small subset of errors will not be detected.

It was shown that the number of check bits is independent of the number of
information bits and that the expenditure for the implementation for these codes is
between parity codes and Hamming codes.

3.3 Parity and Group Parity Checking

Parity checking and group parity checking belong to the most popular methods
of error detection. Conceptual simplicity combined with a moderate area over-

54 3 Principles of Concurrent Checking

head make this method attractive for designers. All odd errors at the circuit out-
puts or all odd errors within a group of outputs are detected. Even errors are not
detectable.

Parity checking for regular structures such as adders, multipliers, dividers and
others is different from parity checking for random logic. Regular structures are built
up from some basic cells which can be specially designed to ease error detection by
parity or group parity checking.

In this section we will only be interested in parity and group parity checking
for random logic. The application of parity checking to regular structures will be
detailed in the second part of this book where concurrent checking for different
types of adders will be investigated.

In random logic during normal operation more than 80% of the errors which are
caused by single stuck-at faults are 1-bit or odd-bit errors. These errors will be, as
already pointed out, detected by parity checking. But for many applications 80+x%
error detection is not high enough. Since the even-bit errors are not detected, efforts
to improve parity and group parity checking are directed to reduce the number of
two-bit and even-bit errors that simultaneously occur in a group of parity-checked
outputs.

If the functional circuit to be checked is already designed and structurally given,
then the circuit outputs have only to be divided into groups such that two-bit errors
caused by single stuck-at faults do not simultaneously corrupt two outputs of the
same group.

If the functional circuit is only functionally but not structurally specified, then the
functional circuit can be designed in a first step as usual by an available synthesis
tool and in a second step modified in such a way that errors caused by single stuck-at
faults will only change single outputs of the parity-checked groups.

This section describes in detail parity and group parity checking as a special case
of error detection using of systematic codes.

At the beginning predictor and generator circuits for systematic codes will be
explained. It will be shown how a parity predictor can be derived by optimizing a
serial connection of the functional circuit, which is given as a netlist of gates and an
XOR-tree. The XOR-tree is in this way the corresponding generator circuit for parity
checking.

It will be illustrated by a simple example how a fault in a single gate that is shared
by two outputs can cause a two-bit error, which is not detectable by parity checking.
If such a gate is duplicated, such a situation can be avoided.

To improve the error detection probability for parity and group parity checking,
dependencies of circuit outputs with respect to gate faults will be considered in
detail.

To systematically investigate such output dependencies the generalized circuit
graph according to [7] for a combinational circuit will be described. This circuit
graph will be extensively used in this section. The nodes of the circuit graph are
the maximum sets of gates with one output. A first node and a second node are
connected by an edge if the output of the first node is connected to an input of a gate
belonging to the second node. It will be shown how this circuit graph can be easily
derived from the netlist of the circuit.

3.3 Parity and Group Parity Checking 55

The notions of independent and weakly independent outputs with respect to sin-
gle gate faults will be explained.

Consequently, two outputs of a circuit are independent with respect to a fault if,
in the presence of that fault, for an arbitrary input at most one of the considered
outputs is erroneous.

Weakly independent outputs are introduced as a generalization of independent
outputs.

Two outputs are weakly independent, if these outputs are either never erroneous
or if there exists an input that for this input in the presence of the considered fault
only one of the outputs is erroneous.

Structural and functional dependencies will be distinguished.
It will be shown how groups of independent outputs and groups of weakly inde-

pendent outputs can be determined.
It will be demonstrated how groups of independent and weakly independent out-

puts can be used for the design of self-checking and self-testing circuits. Separate
and joint implementations of the functional circuit and the predictor circuit will be
considered as a result.

It will also be explained how the error detection probability can be improved by
splitting special nodes of the generalized circuits graph, i.e. by replicating the gates
belonging to the split nodes of the generalized circuit graph. Almost all the known
methods for parity checking and group-parity checking will be explained in this
section.

3.3.1 Predictor and Generator Circuits

For systematic block codes, error detection circuits are very often designed by use
of predictor and generator circuits.

The general structure according to [35, 47] is shown in Fig. 3.12.

EDC

x
fC

Gen

y1

yn

C
om

p

Pr

error
signal

m

c (y)1

c (y)q
c (x)1

c (x)q

Fig. 3.12 Error detection by use of predictor and generator circuits

56 3 Principles of Concurrent Checking

A combinational circuit fC implementing the combinational function y = f (x)
with y = y1, . . . ,yn and x = x1, . . . ,xm is checked by an error detection circuit EDC
consisting of a predictor Pr, a generator Gen and a comparator Comp.

The outputs y1, . . . ,yn of the functional circuit fC are determined as

y1 = f1(x),
...

yn = fn(x),

where f1, . . . , fn are Boolean functions of length m.
If the combinational circuit fC is monitored by use of a systematic code with n

information bits y1, . . . ,yn and q check bits c1, . . . ,cq, then we have for the check
bits

c1(y) = g1(y1, . . . ,yn),
c2(y) = g2(y1, . . . ,yn),

...

cq(y) = gq(y1, . . . ,yn), (3.18)

where g1, . . . ,gq are Boolean functions of length n determined by the code. The
generator Gen implements these Boolean functions and generates the check bits
c(y) = c1(y), . . . ,cq(y) depending on the outputs y = y1, . . . ,yn of the circuit fC.

Conversely, the predictor Pr generates the same check bits c(x) = c1(x), . . . ,cq(x)
but now depending on the inputs x = x1, . . . ,xm of fC according to

c1(x) = g1

(
y1(x), . . . ,yn(x)

)
= g1

(
f1(x), . . . , fn(x)

)
,

c2(x) = g2

(
y1(x), . . . ,yn(x)

)
= g2

(
f1(x), . . . , fn(x)

)
,

...

cq(x) = gq

(
y1(x), . . . ,yn(x)

)
= gq

(
f1(x), . . . , fn(x)

)
. (3.19)

The comparator Comp compares the check bits c(x) with c(y). If c(y) and c(x)
are not equal an error signal e is generated.

Functionally, the predictor Pr is a serial connection of the monitored circuit fC
and the generator Gen as illustrated in Fig. 3.12. In practice, the predictor Pr is an
optimized version of this serial connection of fC and Gen obtained by use of an
available synthesis tool as shown in Fig. 3.13.

In most cases one of the following approaches is used for the design of error
detection circuits using of systematic codes:

1. The functional circuit fC is given as a netlist of gates and this netlist will not be
modified for the design of an error detection circuit. The expected errors at the
circuit outputs of fC are determined from the given netlist of fC and the assumed

3.3 Parity and Group Parity Checking 57

optimize !

Pr
mx q c(x)

fC
m

Pr

x n y
Gen

q c(x)
~

Fig. 3.13 Implementation of the predictor circuit for a systematic code

fault model. For these errors an error detection circuit with a high error detection
probability is designed. In almost all cases the considered faults are single stuck-
at faults.

2. The given netlist of the functional circuit fC is modified in such a way that errors
due to the considered faults of the modified circuit are relatively easily detectable
by an error detection circuit. Again, in most cases errors due to single stuck-at
faults are assumed. Unidirectional errors and errors with a limited multiplicity
are also considered.

3. The design tool for the functional circuit fC is modified in such a way that the
necessary redundancy for error detection is automatically included in the struc-
ture of the functional circuit fC. Again, single stuck-at faults are considered.

3.3.2 Parity Prediction

Error detection by parity prediction is illustrated in Fig. 3.14.
The functional circuit fC has m binary inputs x = x1, . . . ,xm and n binary outputs

y = y1, . . . ,yn, y1 = f1(x), . . . ,yn = fn(x).
The n outputs y = y1, . . . ,yn of fC are considered as the information bits of the

parity code. To these n information bits a single check bit c1, the parity bit, is added.
This parity bit c1 is determined twice, once as c1(y) = P(y) from the outputs y1,

Gen

c1(y) = P(y)

yn

m

error
signalPr

c1(x) = P(x)

x
fC

y1

Fig. 3.14 Error detection by parity prediction

58 3 Principles of Concurrent Checking

y2, . . . , yn of the functional circuit by the generator Gen and a second time as c1(x) =
P(x) from the inputs x1, x2, . . . , xm of the functional circuit by the predictor Pr.

The generator Gen determines the parity bit P(y) = c1(y) as

P(y) = c1(y) = y1 ⊕ y2 ⊕ . . .⊕ yn (3.20)

by an XOR-tree.
The predictor Pr computes P(x) = c1(x) as

P(x) = c1(x) = f1(x)⊕ f2(x)⊕ . . .⊕ fn(x). (3.21)

The predictor Pr implements an optimized form of the parity P(x) = c1(x) as
shown in Fig. 3.15.

The comparator compares the one-dimensional outputs of the predictor Pr and
the generator Gen. If a two-output comparator is used with 0,0 and 1,1 for cor-
rect output signals and 0,1 and 1,0 for erroneous output signals, no hardware for a
comparator is needed.

For a single output comparator the outputs of the predictor Pr and of the genera-
tor Gen are to be XORed by a single XOR-gate.

All odd errors at the circuit outputs y1, . . . ,yn of the functional circuit fC are de-
tected. But all even errors at this circuit outputs are not detected by parity prediction.

As a simple example we consider the functional circuit fC presented in Fig. 3.16
in which we have

y1(x) = (x1 ∧ x2)⊕ (x2 ∨ x3),
y2(x) = x2 ∨ x3.

optimize!

y1

yn

x
fC

m

Pr

c1(x) = P(x)

Fig. 3.15 Determination of parity predictor

2

2

3
1

Cf
x 3

x

x 1
y 1

y 2

Fig. 3.16 Example of a combinational circuit

3.3 Parity and Group Parity Checking 59

2

31

Cf

Gen

4

ePr

x3

x2

x1

y2

y1

Fig. 3.17 Parity checking for the example of Fig. 3.16

Error detection by parity prediction is shown in Fig. 3.17 for this circuit.
The parity predictor Pr defines the parity P(x) in relation to the inputs x1, x2, x3

as given below:
P(x) = y1(x)⊕ y2(x) = x1 ∧ x2.

The generator Gen determines the parity of the outputs P(y) as

P(y) = y1 ⊕ y2.

The error signal e is obtained by XOR-ing P(x) and P(y),

e = P(y)⊕P(x) = y1 ⊕ y2 ⊕ (x1 ∧ x2).

The OR-gate 2 in Fig. 3.17 is shared between the outputs y1 and y2. It is easy to
see that no error at the output of that OR-gate can be detected by parity prediction,
since the output of the OR-gate 2 is directly connected to the circuit output y2 and via
the XOR-gate 3 also with the circuit output y1. Since the XOR-function is uniquely
invertible every error at an input of the XOR-gate is always propagated to its output,
which is also the circuit output y1 and every error at the output of the OR-gate
2 always results in a two-bit error at the circuit outputs. But a two-bit error at the
circuit outputs y1 and y2 is masked by the XOR-gate 4, which is the generator circuit
in this simple example.

If the two circuit outputs of the functional circuit fC are separately implemented
without sharing common gates, all single gate faults, including single stuck-at faults,
can be detected by parity checking. A separate implementation of the Boolean
functions

y1(x) = (x1 ∧ x2)⊕ (x1 ∨ x2),
y2(x) = x2 ∨ x3

is shown in Fig. 3.18. Compared to Fig. 3.16 the OR-gate 2 is duplicated in the
OR-gates 2 and 2′.

60 3 Principles of Concurrent Checking

2/

31

x3

x2

x1

2

y1

fC

y2

Fig. 3.18 Separate implementation for the outputs of the example in Fig. 3.16

The output of every gate is only connected to a single circuit output and every
fault of a gate can at most erroneously change a single circuit output.

If the predictor is also separately implemented, every error at the circuit outputs
due to a single gate fault will be immediately detected by parity checking.

3.3.3 Generalized Circuit Graph

To utilize dependencies between circuit outputs with respect to single gate faults in
a systematic way the generalized circuit graph G(fC) of a combinational circuit fC
was introduced in 1970 in [7].

The circuit is supposed to be given as a netlist of gates. The nodes Nj, j = 1, . . .
of the generalized circuit graph are the maximum sets of gates with a single output.
Two nodes Ni, Nj are connected by an arc directed from Ni to Nj if the output of Ni

is connected to an input of a gate belonging to the node Nj.
The generalized circuit graph G(fC) of a combinational circuit fC can be deter-

mined from the netlist of fC by the following algorithm.

Algorithm : Generalized Circuit Graph

The (non-fanout) outputs and the gates of the circuit are considered as
elements

1. Choose the elements which are the (non-fanout) outputs of the circuit fC
and mark these elements with different colors.

2. If an element (gate) is not yet marked and if its output is connected only to
marked elements of the same color, then mark this element with the same
color.

3. If the output of an element is not yet marked and if its output is connected
only to already marked elements but with different colors, mark this ele-
ment with a new color.

4. Continue until all elements are marked or colored.

3.3 Parity and Group Parity Checking 61

x1

x2

x3

2

c

3

8

III 14III

III

II

II 13 II

I 12 I

III 15 IVIV

IV

V

VIVII

b
5

6

y2

y3

y1

9

7

z8

y4
10

11

1

4
z6

z5

Fig. 3.19 Example of a combinational circuit

The elements with identical colors are the nodes of the generalized circuit graph
G(fC).

As an example we now determine the generalized circuit graph for the circuit
represented in Fig. 3.19, implementing at its four outputs the functions

y1(x) = (x1 ∧ x2)∨ (x1 ∧ x3),
y2(x) = (x1 ∧ x2)∨ (x1 ∧ x3),
y3(x) = (x1 ∧ x3)∨ (x1 ∧ x3),
y4(x) = x1 ∨ (x2 ∧ x3).

The (non-fanout) outputs of the circuit are the outputs 12, 13, 14 and 15. They
are marked with the colors I, II, III and IV.

Since the output of the element 2 is only connected to elements, here to the
element 12, with color I, this element is also marked with color I.

Since the output of the element 5 is only connected to elements, with color II
(element 13), the element 5 is also colored with color II. Similarly the element 6 is
colored with color II.

The elements 14, 9, 7 and 8 are colored with color III, and the elements 15, 11
and 10 with color IV.

The output of the element 1 is connected with elements that are already differ-
ently colored. Therefore, the element is colored with a new color V. The elements 4
and 3 are also colored with new colors VI and VII, respectively.

The resulting generalized circuit graph is shown in Fig. 3.20.
The elements 12, 13, 14 and 15 corresponding to the circuit outputs y1, y2, y3 and

y4 are underlined. The nodes I, II, III and IV containing the circuit outputs y1, y2, y3

and y4 are called the output nodes of these circuit outputs. We assign the variables
z5, z6 and z8 to the outputs of the (internal) nodes V, VI and VII .

From the construction of the generalized circuit graph it is evident that all faults
in elements belonging to the same node as a circuit output can erroneously change
only this circuit output. Faults in elements of a node which is connected to more

62 3 Principles of Concurrent Checking

3

y3

y2

y1z5

z5

z8

z6

z8

z6

I

2
12

II
13
5, 6

III
14

9, 7, 8

IV
15

11, 10

VI

V

VII

1

4

y4

Fig. 3.20 Generalized circuit graph for the example of Fig. 3.19

than one node can possibly erroneously change more than one circuit output under
some inputs.

In our example, a fault in gate 2 can erroneously change only the circuit output
12(= y1). Faults in gate 1 can possibly simultaneously change the outputs 12(= y1)
and 13(= y2) and faults in gate 4 can possibly result in a two-bit error at the outputs
12(= y1) and 14(= y3).

3.3.4 Independent Outputs and Weakly Independent Outputs

To express dependencies of outputs with respect to different faults the notions of
independent outputs [17] and weakly independent outputs [18] are now given.

Definition 3.1. Independent Outputs:
Let fC be a combinational circuit with the outputs (y1, . . . ,yn) = y and with the
inputs
(x1, . . . ,xm) = x from the input set X and let Φ = {ϕ1, . . .ϕL} the set of considered
technical faults.

Then the outputs yi and y j are independent with respect to a fault ϕ , ϕ ∈ Φ , if
we have for all x ∈ X either

yi(x) = yi(ϕ,x) and y j(x) = y j(ϕ,x)

or
yi(x)⊕ y j(x) �= yi(ϕ,x)⊕ y j(ϕ,x).

Thereby yi(ϕ,x) denotes the output value at output yi in the presence of the fault ϕ
for input x ∈ X .

3.3 Parity and Group Parity Checking 63

If the outputs yi and y j are independent with respect to a fault ϕ ∈ Φ , then, in the
presence of the fault ϕ , at most one of the outputs yi or y j is erroneous. Both these
outputs are not erroneous at the same time.

Definition 3.2. The outputs yi and y j are independent with respect to a set of faults
Φ if the outputs yi and y j are independent for all ϕ,ϕ ∈ Φ .

Outputs may be functionally or structurally independent.

Definition 3.3. The outputs yi and y j are structurally independent if they are imple-
mented without sharing any common gates.

If the outputs yi and y j are structurally independent, there is no node in the gen-
eralized circuit graph which is connected to both the outputs yi and y j respectively.

Structurally independent outputs are independent with respect to single stuck-
at faults (and also with respect to any faults within the maximum classes of
elements).

Definition 3.4. The outputs yi and y j are functionally independent if, in spite of
their implementation with some common gates, the outputs yi and y j satisfy Defini-
tion 3.1.

The definition of independent outputs can be easily extended to a group of several
outputs.

Definition 3.5. Let fC be a combinational circuit with the outputs y1, . . . ,yn, the
input set X and let ϕ be a technical fault.

Then the outputs yi1, . . . ,yiK are a group of independent outputs of fC with respect
to a fault ϕ if we have for x ∈ X either

yi1(x) = yi1(ϕ,x),

...

yiK(x) = yiK(ϕ,x) (3.22)

or

yi1(x)⊕ yi2(x)⊕ . . .⊕ yiK(x) �= yi1(ϕ,x)⊕ yi2(ϕ,x)⊕ . . .⊕ yiK(ϕ,x). (3.23)

The XOR-sum yi1(x)⊕ yi2(x)⊕ . . .⊕ yiK(x) of the correct outputs of the con-
sidered group is different from the XOR-sum of the erroneous outputs yi1(ϕ,x)⊕
yi2(ϕ,x)⊕ . . .⊕ yiK(ϕ,x) if one, three or an odd number of outputs are erroneous.

Theoretically, instead of Definition 3.5 a modified definition could be used where
only a single output of a group is erroneous due to a fault.

Since the notion of independent outputs is mainly utilized for the design of parity-
checked circuits with only a single parity bit or with some additional parity bits for
some groups of outputs we prefer the definition of a group of independent outputs
as given in Definition 3.5.

64 3 Principles of Concurrent Checking

Similar to the Definitions 3.2 and 3.3 we have

Definition 3.6. The outputs yi1, . . . ,yiK are a group of independent outputs of fC
with respect to a set of faults Φ if we have for ϕ ∈ Φ and for x ∈ X either

yi1(x) = yi1(ϕ,x),
...

yiK(x) = yiK(ϕ,x)

or
yi1(x)⊕ yi2(x)⊕ . . .⊕ yiK(x) �= yi1(ϕ,x)⊕ yi2(ϕ,x)⊕ . . .⊕ yiK(ϕ,x).

Definition 3.7. The outputs yi1, . . . ,yiK are a group of structurally independent out-
puts if all the outputs yi1, . . . ,yiK are separately implemented without sharing any
common gates.

A group of structurally independent outputs is independent with respect to all
single gate faults, including single stuck-at faults.

In Fig. 3.19 the outputs {y2,y3} and {y2,y4} are groups of structurally indepen-
dent outputs. This can be easily seen from the generalized circuit graph of Fig. 3.20.
There is no common predecessor node for the output nodes II(y2) and III(y3). The
same is true for the output nodes II(y2) and IV(y4).

Since in real designs independent outputs are seldom we now introduce the con-
cept of weakly independent outputs according to [18]. Applying this concept, self-
testing, but not self-checking circuits can be designed. Faults may be detected with
some latency.

Definition 3.8. Weakly Independent Outputs:
Let fC be a combinational circuit with the outputs (y1, . . . ,yn) = y and with the
inputs
(x1, . . . ,xm) = x in a set X and let Φ = {ϕ1, . . .ϕL} be the set of considered technical
faults.

Then the outputs yi and y j are weakly independent with respect to the set of faults
Φ and with respect to a subset χ ⊆ X of inputs if for any ϕ ∈ Φ there exists an input
x ∈ χ such that

yi(x)⊕ y j(x) �= yi(ϕ,x)⊕ y j(ϕ,x) (3.24)

or that for all x ∈ χ

yi(x) = yi(ϕ,x) and y j(x) = y j(ϕ,x). (3.25)

If the outputs yi and y j are weakly independent then there exists an input x ∈ χ
such that in the presence of the fault ϕ one of the outputs is erroneous. For this input
x both outputs are not erroneous at the same time.

As a modification of Definition 3.5 we have

Definition 3.9. Let fC be a combinational circuit with the outputs y1, . . . ,yn and with
the inputs x1, . . . ,xm = x in a set X and let Φ = {ϕ1, . . .ϕL} be the set of considered
technical faults.

3.3 Parity and Group Parity Checking 65

Then the outputs yi1, yi2, . . . ,yiK are a group of weakly independent outputs with
respect to the set of faults Φ and with respect to a subset χ ⊆ X of inputs if for any
ϕ ∈ Φ there exists an input x ∈ χ such that

yi1(x)⊕ yi2(x)⊕ . . .⊕ yiK(x) �= yi1(ϕ,x)⊕ yi2(ϕ,x)⊕ . . .⊕ yiK(ϕ,x) (3.26)

or that for all x ∈ χ , for all ϕ ∈ Φ and for j = 1, . . . ,K

yi j(x) = yi j(ϕ,x). (3.27)

The general structure of a self-checking or self-testing circuit designed by use
of M groups of independent outputs or weakly independent outputs is shown in
Fig. 3.21.

The combinational circuit fC has n outputs y1, . . . ,yn. These outputs are divided
into M (overlapping) groups of independent or weakly independent outputs. The
parities z1, z2, . . . ,zM of the groups of independent or weakly independent outputs
are determined by M parity trees P1, P2, . . . ,PM . The inverted parities z1, z2, . . . ,zM

are realized by the additional predictor circuit gC and compared with the parities z1,
z2, . . . ,zM by the comparator Comp.

For weakly independent outputs we describe the proposed method in more detail.
We assume that χ ⊆ X is a test set for fC.
Since the groups of outputs of fC are weakly independent for any fault ϕ of

the fault model there exists at least one input such that at least one of the parities
z1, z2, . . . ,zM is erroneous in the test mode, and all faults will be detected in test
mode.

In normal operation mode some of the errors due to the faults of the fault model
are detected with latency. In any case, a fault is detected if the corresponding input

C
om

p

zM

z2

z1

yn

y1

z1

z2

zM

m

fC
error
signal

gC

M
U

X

m

m

x

Test
Input

P1

P2

PM

Fig. 3.21 Self-testing combinational circuit with weakly independent outputs

66 3 Principles of Concurrent Checking

from the input set χ ⊆ X is applied to the circuit and in many cases also for other
inputs from X .

3.3.5 Determination of Groups of Weakly Independent Outputs

The determination of optimum groups of weakly independent outputs is highly com-
plex, and heuristic methods have to be used.

We consider a combinational circuit fC with n outputs y1, . . . ,yn and a set Φ of
faults with a restricted input set χ . The restricted input set χ is supposed to be a test
set for fC.

The groups (or sets) of weakly independent outputs are denoted by S1, S2,
As the first set S1 of weakly independent outputs we choose the set of all outputs,

S1 = y1, . . . ,yn. These outputs are weakly independent for all faults ϕ ∈ Φodd ⊆ Φ
which change an odd number of circuit outputs at least for some input x from the
restricted input set χ , x ∈ χ .

Now we remove Φodd from the set of all faults Φ and we obtain Φeven as

Φeven = Φ \Φodd .

Practically speaking, the set Φeven consists of 0% to 17% of all faults [48, 49].
The set Φeven consists of all faults for which there is no input from the test set χ

with an odd number of erroneous outputs.
To every fault ϕk ∈ Φeven = {ϕ1, . . . ,ϕL} we assign an input xk ∈ χ such that at

least one output y j of fC is erroneous

y j(xk) �= y j(ϕk,xk). (3.28)

Simultaneously with the output y j for input xk at least a second output of fC is
erroneous.

We define an (L,n) matrix Tk,l . The rows of Tk,l correspond to the faults of Φeven

and the columns to the different outputs of fC. The matrix Tk,l is specified as

Tk,l =
{

1 if yl(xk) �= yl(ϕk,xk)
0 if yl(xk) = yl(ϕk,xk).

(3.29)

If Tk,l = 1 the lth output of fC is erroneous for input xk due to the fault ϕk ∈ Φeven.
For every column l, l = 1, . . . ,n we count the number |1l | of ones in that column.

|1l | indicates how often the output yl is erroneous for all the faults ϕk ∈ Φeven for
the inputs xk that are assigned to the faults ϕk.

Any zero-column m corresponding to an output ym with no error will be removed
from the matrix Tk,l . The corresponding output ym will never be erroneous due to
faults ϕk ∈ Φeven for the input xk.

Now we describe a heuristic algorithm for the determination of groups of weakly
independent outputs.

3.3 Parity and Group Parity Checking 67

Algorithm : Determination of Groups of Weakly Independent Outputs

1. From the unmarked columns of the matrix Tk,l we select a column r with a
maximum value |1r| of ones and we mark this column with *.

2. All the rows j for which Tj,r = 1 are also marked with *. (These rows cor-
respond to the faults ϕ j, ϕ j ∈ Φeven for which for input x j the output yr(x j)
is erroneous, i.e. for which yr(x j) �= yr(ϕ j,x j). These faults are detected by
observing the output yr.)

3. Now all the columns m, m �= r for which Tj,m = 1 are marked with +. (If
m′ is a column marked with +, then we have Tj,m′ = 1 and Tj,r = 1 and
the outputs ym′ and yr are simultaneously erroneous if the fault ϕ j occurs.
Therefore the outputs ym′ and yr should not be added modulo 2 and they
should not be in the same group of weakly independent outputs.
In general, outputs corresponding to columns marked by + should not be
in the same group of independent outputs.)

4. If not all columns are marked either by + or * goto 1, otherwise goto 5.
5. End.

The columns marked by * correspond to a group of weakly independent outputs.
Next the columns marked by * are deleted from the matrix Tk,l . Every zero-

column will also be removed and the next group of weakly independent outputs
is determined. The procedure is repeated until all rows are removed from the
matrix.

The groups of weakly independent outputs consist of the first group S1 of all
outputs and the following mutually disjoint subsets S2, S3, . . . ,SM of the outputs
which are determined by the described algorithm.

Since S2, S3, . . . ,SM are mutually disjoint, the parity z1 of the outputs from S1, i.e.
the parity of all circuit outputs, can be determined as the XOR-sum of the parities
z2, z3, . . . ,zm of the outputs of these groups G2, G3, . . . ,GM .

The parities z1, z2, . . . ,zM of the groups G1, G2, . . . ,GM of weakly independent
outputs are compared with the corresponding inverted parities z1, z2, . . . ,zM deter-
mined by the predictor circuit gC and compared by the comparator Comp.

We now illustrate the method described for the example represented in Fig. 3.22.
The circuit of Fig. 3.22 with three inputs x1, x2 and x3 and three outputs y1, y2

and y3 implements at its outputs the following Boolean functions

y1(x1,x2,x3) = (x1 ∧ x2)∨ (x1 ∧ x3),
y2(x1,x2,x3) = (x1 ∧ x2)∨ (x1 ∧ x3),
y3(x1,x2,x3) = (x1 ∧ x3)∨ (x1 ∧ x3).

The set S1 = {y1,y2,y3} is chosen as the first group S1 of weakly independent
outputs. These outputs are XORed to form the parity bit z1.

68 3 Principles of Concurrent Checking

x2

x3

1

6

9

4

x1

3

8

b
c

2

5

7

y1

y2

y3

Fig. 3.22 Example of a combinational circuit

It can be easily proven by fault simulation that the group of outputs S1 =
{y1,y2,y3} is weakly independent with respect to all single stuck-at faults except
the stuck-at-1 fault b/1 at the input b of gate 4 and the stuck-at-0 fault c/0 at the
output c of gate 4. The set Φeven is Φeven = {b/1,c/0}.

In the case of the stuck-at fault b/1 the circuit implements

y1(b/1,x1,x2,x3) = (x1 ∧ x2)∨ x1,

y2(b/1,x1,x2,x3) = (x1 ∧ x2)∨ (x1 ∧ x3),
y3(b/1,x1,x2,x3) = (x1 ∧ x3)∨ x1.

In the presence of the stuck-at fault c/0 we have

y1(c/0,x1,x2,x3) = x1 ∧ x2,

y2(c/0,x1,x2,x3) = (x1 ∧ x2)∨ (x1 ∧ x3),
y3(c/0,x1,x2,x3) = x1 ∧ x3.

We assign the inputs xb/1 = (0,0,0) and xc/0 = (0,0,1) to the faults y(b/1) and
y(c/0) respectively.

For the input (0,0,0) we have

1 = y1(b/1;0,0,0) �= y1(0,0,0) = 0,

0 = y2(b/1;0,0,0) = y2(0,0,0) = 0

and

1 = y3(b/1;0,0,0) �= y3(0,0,0) = 0

and for input (0,0,1)

0 = y1(c/0;0,0,1) �= y1(0,0,1) = 1,

0 = y2(c/0;0,0,1) = y2(0,0,1) = 0

and

0 = y3(c/0;0,0,1) �= y3(0,0,1) = 1.

3.3 Parity and Group Parity Checking 69

The corresponding (2×3) matrix T is

T =
(

1 0 1
1 0 1

)
.

The matrix Tk,l has two rows corresponding to the two faults b/1 and c/0 from
Φeven. The assigned inputs are 000 and 001 respectively.

The matrix Tk,l has three columns 1,2,3 corresponding to the three circuit outputs
y1, y2, y3.

The matrix element T11 is T11 = 1 since for the first fault b/1 the output
y1(b/1;0,0,0) is different from the correct output y1(0,0,0). Because of y2(b/1;0,
0,0) = y2(0,0,0) and y3(b/1;0,0,0) �= y3(0,0,0) we have T12 = 0 and T13 = 1.

Similarly the elements T21 = 1, T22 = 0 and T23 = 1 are determined since
y1(c/0;0,0,1) �= y1(0,0,1), y2(c/0;0,0,1) = y1(0,0,1) and y3(c/0;0,0,1) �= y3(0,
0,1).

The outputs y1 and y3 are erroneous for two faults, the output y2 for no faults.
Therefore we have |11| = |13| = 2 and |12| = 0. These numbers are shown in
Table 3.3 in the row “sum”.

The steps of the algorithm for the determination of the remaining groups of
weakly independent outputs are illustrated in the following Tables 3.3 and 3.4.

Column 2 with no error will be removed from T , and the new matrix is given in
Table 3.4.

One of the columns of the new matrix with a maximum sum of errors is column
2 corresponding to the output y3. This column is marked with *. Since T12 = T22 = 1
the rows 1 and 2 will also be marked by *. These rows correspond to faults b/1 and

Table 3.3 Determination of groups of weakly independent outputs: step 1

input fault
outputs

y1 y2 y3

000 b/1 1 0 1
001 c/0 1 0 1

sum 2 0 2

Table 3.4 Determination of groups of weakly independent outputs: step 2

input fault
outputs

y1 + y3 ∗

000 b/1∗ 1 1
001 c/0∗ 1 1

sum 2 2

70 3 Principles of Concurrent Checking

c/0 for which the output y3 is erroneous for the assigned inputs 0,0,0 and 0,0,1.
These faults are detected by observing the output y3.

Because of T11 = 1 the column 1, corresponding to the output y1 has to be marked
with +, and the output y1 should not be XORed with output y3, since for the fault
b/1 the outputs y3 and y1 are simultaneously erroneous under input 0,0,0.

Now the rows 1 and 2 which are marked by * will be deleted from T and the
resulting matrix is empty.

The groups of weakly independent outputs are S1 = {y1,y2,y3} and S2 = {y3}
and the predictor has to inplement

y1(x)⊕ y2(x)⊕ y3(x) = x1 ∨ (x2 ∧ x3)

and
y3 = (x1 ∧ x3)∨ x1 ∨ (x3).

The resulting self-testing circuit is shown in Fig. 3.23.

3.3.6 Circuit Modification by Node-Splitting

If circuit outputs of a given circuit fC are not weakly independent with respect to
single stuck-at faults the circuit fC can be modified such that the outputs of the
modified circuit are weakly independent.

error
signal

gC

fC

C
om

p

x1

x2

x3

y1

y2

y3 z1

z3

z1

z3

z1

z3

Fig. 3.23 Self-testing combinational circuit with weakly independent outputs for the example of
Fig. 3.22

3.3 Parity and Group Parity Checking 71

The gates belonging to specific nodes are s times replicated if the fan-out of the
node is s.

This method was introduced in [50] and it is called node-splitting.
To explain the method we consider a circuit for which the functional outputs and

the (inverted) parity are jointly optimized [51].
By node splitting we are able to achieve that the circuit becomes self-testing with

respect to all single stuck-at faults. Most of the errors, due to single stuck-at faults
are immediately detected.

As an example we consider the circuit of Fig. 3.19 which implements at its output
y4 the Boolean function

y4 = y1(x)⊕ y2(x)⊕ y3(x) = x1 ∨ (x2 ∧ x3),

which is the inverted parity of the outputs y1, y2 and y3.
The group of four outputs {y1,y2,y3,y4} is weakly independent with respect to

all single stuck-at faults except the single stuck-at-1 fault b/1 and the single stuck-
at-0 fault c/0 of gate 4.

In the generalized circuit graph of Fig. 3.20 the node VI consists of the gate 4
only. Since this node has a fan-out of 2 the node, i.e. gate 4, has to be duplicated.
The modified circuit is shown in Fig. 3.24.

Functionally the circuits of Figs. 3.19 and 3.24 are identical. Structurally they are
different since in the circuit of Fig. 3.24 the gate 4 of Fig. 3.19 is duplicated in the
gates 4 and 4′.

The generalized circuit graph of the modified circuit is given in Fig. 3.25.
For the modified circuit it can be shown that the group of outputs {y1,y2,y3,y4} is

weakly independent with respect to all single stuck-at faults of the gates 1 and 3. For
all the other gates it is evident from the generalized circuit graph that the group of

2

4

Ix1

x2

x3

3

I
V

IVII

III

II

III

IV

II

III III

8 III
IV IV

II

12

13

14

15

5

9

11
10

7

6

y1

y4

y3

y2

1

4

Fig. 3.24 Modified by node-splitting circuit of Fig. 3.19

72 3 Principles of Concurrent Checking

V

y3

y2

y1
12

13
5, 6

15
11, 10

1

3

2, 4

14
9, 7,
8, 4

I

II

III

IV

VII

y4

Fig. 3.25 Generalized circuit graph of the modified circuit in Fig. 3.24

outputs {y1,y2,y3,y4} is even independent with respect to all single stuck-at faults
of these gates.

The outputs y1, y2, y3 are XORed and compared with the output y4 which imple-
ments the (predicted) inverted parity P(x) as shown in Fig. 3.26.

In this approach the parity and the functional outputs of the original circuit can
be jointly implemented. The circuit modification by node-splitting guarantees that
the group of all outputs is weakly independent with respect to all single stuck-at
faults and that the resulting circuit is self-testing.

If it is possible to modify the design tools, the method proposed in [52] is of
interest.

The method is based on the dependencies of the nodes of the generalized cir-
cuit graph and is applicable to arbitrary combinational circuits with not too many
outputs.

x

modified by
node−splitting

P(x) = y4 (x)

P(y)

P(x)

y2 (x)

y3 (x)

y1 (x)

fC

m

Fig. 3.26 Self-testing parity checking with joint implementation of the functional bits and the
parity bit

3.3 Parity and Group Parity Checking 73

For every node of the generalized circuit graph of the functional combinational
circuit the set of structurally reachable outputs is determined. These sets are de-
scribed by reachability vectors. The reachability vectors determine the structurally
possible errors at circuit outputs due to faults of elements of the corresponding
nodes.

The original circuit is assumed to have only reachability vectors corresponding
to errors detectable by the selected group parity code.

The automatic synthesis tool is modified in such a way that resubstitution and
extraction of subexpressions can only be executed if the resulting possible structural
errors corresponding to the obtained reachability vectors are still detectable by the
considered group parity code.

Starting with a single parity group for every output, i.e. with duplication and
comparison, a heuristic algorithm is developed step by step to enlarge the number
of outputs in the parity groups until the functional circuit, the predictor circuit and
the necessary comparator or two-rail checker are at optimum.

It is of interest to notice that using the proposed method for a functionally given
circuit under check the optimal group parity code, the structure of the functional
circuit and the predictor are automatically determined.

3.3.7 Further Methods for the Determination of Weakly
Independent Outputs

There are several other methods to determine groups of weakly independent outputs.
We mention the following:

• Based on path lengths from the output of the gates to the circuit outputs, groups
of weakly independent outputs are determined in [53].

• In [54] in a first step groups of outputs which depend upon disjoint input sets are
determined. These are groups of independent outputs.
Depending on the fault coverage the remaining outputs are either added to al-
ready existing groups or they form new groups of outputs.
If all the remaining outputs form their own group of one output only, then all
the groups are groups of independent outputs and the fault coverage for single
stuck-at faults is 100%.

• In [55] first a test set is computed by an ATPG generator. Then all the outputs of
the considered circuit are XORed to form a parity tree.
The faults that are not detected at the output of the parity tree by the inputs from
the test set are determined and additional circuit outputs are added until 100%
fault coverage for single stuck-at faults (in test mode) is achieved.

• A probabilistic method for the determination of groups of weakly independent
outputs is given in [56].
Based on simple estimates for the existence of sensitized paths from the internal
signal lines to the circuit outputs, the circuit outputs are partitioned into groups

74 3 Principles of Concurrent Checking

of weakly independent outputs. No fault simulation is needed. Since all the used
algorithms are of linear complexity with respect to the number of gates and of
quadratic complexity with respect to the number of circuit outputs the method
can be applied to large circuits.

• The application of a Hamming Code for the determination of output groups is
described for instance in [57]. The concrete circuit structure is not taken into
consideration, and the self-testing property cannot be guaranteed. However, for
many circuits most of the errors at the circuit outputs due to single stuck-at faults
are 1-bit and 2-bit errors. Since 1-bit and 2-bit errors are not masked by a Ham-
ming code the fault coverage is high.

Parity and group parity checking was described in this section. It was shown how
a predictor circuit and a generator circuit have to be added to the functional circuit.
In this way, the generator circuit is an XOR-tree to implement the XOR-function of
the outputs of the functional circuit.

If the functional circuit is given as a netlist of gates, it was shown how the parity
predictor can be easily derived by optimizing a serial connection of the functional
circuit and an XOR-tree which is the generator circuit already described.

It was illustrated by a simple example how a fault in a single gate, which is shared
by two outputs, can cause a two-bit error that is not detectable by parity checking.
If such a gate is duplicated, a situation of this kind can be avoided.

To improve the error detection probability for parity and group parity checking,
dependencies of circuit outputs with respect to gate faults were considered.

It was demonstrated that output dependencies can be systematically investigated
by use of the generalized circuit graph according to [7]. The determination and
the application of this circuit graph for the design of self-checking and self-testing
circuits were described in detail.

The notions of independent and weakly independent outputs with respect to sin-
gle gate faults were given.

It was explained that two outputs of a circuit are independent with respect to
a fault if, in the presence of that fault, for an arbitrary input at most one of the
considered outputs is erroneous.

Weakly independent outputs were defined as a generalization of independent out-
puts.

Two outputs are weakly independent, if they are either never erroneous or if
there exists an input such that for this input in the presence of a fault only one of the
outputs is erroneous.

Structural and functional dependencies were distinguished.
It was shown how groups of independent outputs and groups of weakly indepen-

dent outputs can be determined and how these groups of independent and weakly
independent outputs can be utilized for the design of self-checking and self-testing
circuits.

It was also explained how the error detection probability can be improved by
splitting special nodes of the generalized circuits graph, i.e. by replicating the gates
belonging to the split nodes of the generalized circuit graph.

3.4 Odd and Even Error Detection 75

Separate and joint implementations of the functional and predictor circuits were
considered.

Consequently, a separate implementation results in a better error detection prob-
ability combined with a higher necessary area overhead, but for a joint implemen-
tation the error detection probability is only slightly reduced, especially if some
specific nodes of the generalized circuit graph are split.

3.4 Odd and Even Error Detection

In this section it will be shown how, according to [58], odd and even errors can be
detected by two different error detection circuits, a first error detection circuit for all
the odd errors and a second one for the even errors caused by single stuck-at faults.

The odd errors are, as usual, detected by parity prediction.
It will be explained how the even error detection circuit can be determined by

fault simulation for single stuck-at faults. For small circuits, all the input values are
simulated for every fault.

It will be stated how a truth table can be derived for a partially defined Boolean
function which defines the even error detection circuit.

Heuristic solutions with a high probability of even error detection can be applied
for larger circuits.

3.4.1 Description of Odd and Even Error Detection

In [58] it is proposed to detect odd and even errors by two different error detection
circuits. Since the method is also applicable to larger circuits it will be described in
some detail.

Most of the errors due to single stuck-at faults are single-bit errors. These single-
bit errors and also the other odd errors are detected by ordinary parity checking,
and the predicted parity is determined by the parity predictor. The few even errors
resulting from single stuck-at faults are detected by an additional Even-Bit Error
Detection Circuit.

In Fig. 3.27 the odd and even error detection for a combinational circuit fC
with an m-dimensional input x = (x1, . . . ,xm) and an n-dimensional output y =
(y1, . . . ,yn) is shown.

The design of the parity predictor Pr was already explained in Section 3.3.2 and
will not be repeated here.

We now describe how the Even Error Detection Circuit can be designed. The set
of all considered single stuck-at faults is denoted by Φ .

We explain the method for small circuits by use of the truth table for the Even
Error Detection Circuit.

76 3 Principles of Concurrent Checking

P(x)

m

Pr

Ef

P(y)

eeven

y1

z2

z1

x
fC

yn

Fig. 3.27 Odd-even error detection

The truth table of the error detection function E f (x,y), x ∈ {0,1}m, y ∈ {0,1}n

of the Even Error Detection Circuit can be determined in the following steps:

1. Inject a fault ϕ ∈ Φ into fC and remove ϕ from Φ , Φ = Φ \{ϕ}.
2. Apply all inputs x∈ {0,1}m to fC,ϕ , where fC,ϕ denotes the combinational circuit

with the injected fault ϕ .
If for some x the output y(ϕ,x) = y1(ϕ,x), . . . ,yn(ϕ,x) differs from y(x) =
y1(x), . . . ,yn(x) in an even number of bits, add x,y(ϕ,x) to the on-set of the truth
table of the error detection function E f .

3. If Φ is empty, go to 4, otherwise go to 1.
4. Add for x ∈ {0,1}m x,y(x), y(x) = f (x), to the off-set of the truth table of the

error detection function Ef .
5. All the rows not yet defined of the truth table for E f are “don’t care”.
6. End.

The Even Error Detection Circuit is an implementation of the truth table of the
function eeven(x) = E f (x,y). The output eeven of the Even Error Detection Circuit
can be XORed with the output of the parity predictor.

Error detection of odd and even errors at the outputs z1 and z2 is summarized in
the following Table 3.5.

Table 3.5 Error detection of odd and even errors
z1 z2

no error
0 0
1 1

odd error
0 1
1 0

even error
0 1
1 0

3.5 Code-Disjoint Circuits 77

If no error occurs, we have P(x) = P(y), eeven = 0 and therefore z1 = z2. In the
case of an odd error we obtain P(x) �= P(y), eeven = 0 and z1 �= z2. For an even error
we have P(x) = P(y), eeven = 1 and also z1 �= z2, and odd and even errors due to
single stuck-at faults are always detected.

In reality the set Φ of all single stuck-at faults can be reduced. If from the location
of a fault ϕ there are only paths to a single circuit output, this fault can be removed
from Φ since due to this fault no even-bit error can be caused. This reduction can
be easily done by use of the generalized circuit graph as described in Section 3.3.3.

For larger circuits the on-set of the even error detection function E f can be ap-
proximated as described in [58]. The aim of the method proposed in [58] is to com-
pact groups of input values of the truth table for E f by input cubes with “don’t
cares”.

For every fault ϕ ∈ Φ randomly selected inputs x ∈ {0,1}n are applied to fC,ϕ .
If for a randomly selected input x = x1, . . . ,xm the corresponding output y(ϕ,x) =
y1(ϕ;x1, . . . ,xi, . . . ,xm) . . . ,yn(ϕ;x1, . . . ,xi, . . . ,xm) has an even number of erroneous
bits, then all the bits x1, . . . ,xm of the input x are inverted one by one.

For i = 1, . . . ,m the input x1, . . . ,xi, . . . ,xm is applied to fC,ϕ .
If y1(ϕ;x1, . . . ,xi, . . . ,xm) . . . ,yn(ϕ;x1, . . . ,xi, . . . ,xm) also has an even number of

erroneous bits, then the ith bit xi in the input vector x is replaced by an undefined
value (don’t care) and the corresponding input cube belongs to the on-set of E f . If
no even-bit error occurs, the bit xi is flipped back, and the unmodified input vector
is added to the on-set of E f .

In this method several input vectors with “don’t care” values, or several input
cubes, are generated. Only the input cubes, all their input vectors resulting in even-
bit errors are fault-simulated for the determination of the on-set of the error detection
function E f . Details are described in [58].

In this section it was explained how odd and even errors can be detected by two
different error detection circuits.

It was detailed that the odd errors are detected, as usual, by parity prediction
while the even errors, caused by single stuck-at faults, are detected by an additional
even error detection circuit.

It was explained how the even error detection circuit can be determined as a
partially defined combinational circuit by fault simulation.

3.5 Code-Disjoint Circuits

Code-disjoint circuits are needed to detect input errors (and not only errors caused
by internal faults) during normal operation.

The inputs and the outputs of a code-disjoint circuit have to be encoded. Input
code words are mapped to output code words and input non-code words to output
non-code words.

All the errors changing an input code word into a non-code word are detected.

78 3 Principles of Concurrent Checking

Code-disjoint circuits for parity-encoded inputs and outputs will be described in
this section.

It will be shown how an arbitrarily given combinational circuit can be systemati-
cally modified into a code-disjoint circuit. The inputs and outputs have to be parity-
encoded and, compared to ordinary parity prediction, basically the predicted parity
has to be replaced by the XOR-sum of the input parity and the predicted output
parity.

Two different types of code-disjoint circuits, the first one with two additional
outputs and the second one with three outputs will be introduced in this section.
These code-disjoint circuits are especially suitable for error detection of different
serial connections of code-disjoint circuits.

Code-disjoint partial duplication will also be explained in this section. Using
code-disjoint partial duplication, soft errors directly induced in the registers of the
circuit, errors due to transient faults in the combinational part and input errors are
detected.

The method of code-disjoint partial duplication is widely applied for error detec-
tion for adders as described in Chapter 4 and for multipliers [8, 9] and dividers [10].

3.5.1 Design of Code-Disjoint Circuits

Now we describe how for an arbitrarily given combinational circuit fC a code-
disjoint circuit fC,cd for parity codes can be systematically designed. The inputs and
the outputs of the code-disjoint circuit are parity-encoded. Input errors and output
errors due to internal faults are detected. The content of the section is based on [59].

Let fC be an arbitrarily given combinational circuit with m inputs (x1, . . . ,xm) =
x and n outputs (y1, . . . ,yn) = y implementing the Boolean Functions y1(x) =
f1(x), . . . , yn(x) = fn(x) for which the code-disjoint circuit has to be designed.

To the functional inputs (x1, . . . ,xm) an additional parity input xm+1, where

xm+1 = P(x) = x1 ⊕ x2 ⊕ . . .⊕ xm

is added. P(x) is called the input parity.
We also add two auxiliary additional outputs y′n+1 and y′n+2 with

y′n+1 = P(x)⊕P
(

y(x)
)

=

= x1 ⊕ x2 ⊕ . . .⊕ xn ⊕ y1(x)⊕ y2(x)⊕ . . .⊕ yn(x)
and

y′n+2 = xm+1 = P(x).

The output y′n+2 is directly connected with the input parity xm+1. The output y′n+1

implements the XOR-sum of the input parity P(x) and the parity P
(

y(x)
)

of the

outputs of fC in accordance with x.

3.5 Code-Disjoint Circuits 79

y1

y2

yn+1 yn+1

yn

yn+2

x1

x2

xm

xm+1
xm+1 = P(x)

fC

fC,cd

P(x) P(y(x))

Fig. 3.28 Code-disjoint combinational circuit with a single additional output

The outputs y′n+1 and y′n+2 are XORed to form the output yn+1, where

yn+1 = y1(x)⊕ y2(x)⊕ . . .⊕ yn(x) = P
(

y(x)
)
.

The resulting circuit in Fig. 3.28 is the code-disjoint circuit fC,cd .
If the circuit fC is given as a netlist of gates, the code-disjoint circuit fC,cd can be

obtained by optimizing the circuitry of Fig. 3.29 by an available synthesis tool.
The circuits implementing P(x)⊕P(y) and fC may be either jointly or separately

implemented.
More sophisticated implementations are described in [60].
We show now that the circuit fC,cd of Fig. 3.28 is code-disjoint with respect to a

parity code.

fC

fC

y n
+

2

yn+1

P(x) P(y(x))

x1

xm

xm+1

fC,cd
y1

yn

yn+1

Fig. 3.29 Synthesis of a code-disjoint circuit from a netlist of the functional circuit

80 3 Principles of Concurrent Checking

By construction fC,cd maps parity-encoded inputs x1, . . . ,xm,xm+1 with an odd
number of ones into parity-encoded outputs y1, . . . ,yn,yn+1, also with an odd num-
ber of ones.

If an erroneous input xe
1, . . . ,x

e
m,xe

m+1 with an even number of ones is applied to
fC,cd and if the number of ones in the corresponding output ye

1, . . . ,y
e
n,y

e
n+1 is even,

the error will be detected.
Let us now assume that the number of ones in xe

1, . . . ,x
e
m,xe

m+1 is even and that
in the corresponding outputs ye

1, . . . ,y
e
n,y

e
n+1 the number of ones is odd. Then we

change xe
m+1 into xe

m+1 and ye
n+1 is changed into ye

n+1.
Now the number of ones in xe

1, . . . ,x
e
m,xe

m+1 is odd and the number of ones in
ye

1, . . . ,y
e
n,y

e
n+1 is even.

This is a contradiction since inputs of odd parity are mapped by fC,cd to outputs
of odd parity, and we have shown that inputs of even parity are mapped to outputs
of even parity. Thus the circuit fC,cd is indeed code-disjoint.

A serial connection of three code-disjoint circuits f 1
C,cd , f 2

C,cd , f 3
C,cd is presented

in Fig. 3.30.
Only the outputs of the third code-disjoint circuit have to be checked by compar-

ing the corresponding parity bits r1 = P(y3) and r2 = y3
n3+1.

As a modification of the code-disjoint circuit with a single additional out-
put yn+1 = P(x)⊕ P(y)⊕ xm+1 a code-disjoint circuit with three additional out-
puts y′n+1 = P(y(x)), y′n+2 = P(x) and yn+3 = xm+1 can be designed, as shown in
Fig. 3.31.

In Fig. 3.31 the additional output y′n+1 implements the parity of the outputs in
relation to x,

y′n+1 = y1(x)⊕ y2(x)⊕ . . .⊕ yn(x) = P
(

y(x)
)
.

For the additional output y′n+2 we have

y′n+2 = x1 ⊕ x2 ⊕ . . .⊕ xm = P(x).

and the additional output yn+3 is directly connected to the parity input xm+1.
According to [60] internal nodes of fC can be utilized for the implementation of

y′n+2.
By comparing yn+3 and xm+1 input errors and errors due to some internal faults

of fC are detected. Other internal faults of fC are detected by comparing y′n+1 =
y1(x)⊕ y2(x)⊕ . . .⊕ yn(x) = P(y(x)) with the XOR-sum P(y) = y1 ⊕ . . .⊕ yn of the
outputs of fC.

A serial connection of three code-disjoint circuits f 1
C,cd , f 2

C,cd , f 3
C,cd with three

additional outputs is shown in Fig. 3.32.
The input parity P(x1) generated at the output y1′

n1+2 of f 1
C,cd is compared with

x1
m1+1.

The output parity P(y1) at the output y1′
n1+1 of f 1

C,cd is equal to the input parity

P(x2) at the output y2′
n2+2 of the circuit f 2

C,cd , and the output parity P(y2) at the output

y2′
n2+1 of f 2

C,cd is equal to the input parity P(x3) at the output y3′
n3+2 of the circuit f 3

C,cd .

3.5
C

ode-D
isjointC

ircuits
81

xm1

1

xm1+1
1

x1
1

yn1

1

yn1+1
1

yn1+1
1 xm2+1

2

y1
1

xm2

2

x1
2

fC,cd
1

P(x1) P(y1)

fC,cd
2

P(x2) P(y2)

fC,cd
3

P(x3) P(y3)

yn2

2

yn2+1
2

y1
2

xm3

3

x1
3

yn3

3

yn3+1
3

y1
3

r2

r1

P(y3)

= yn2+1
2 xm3+1

3
= yn3+1

3

Fig. 3.30 Serial connection of code-disjoint circuits

82 3 Principles of Concurrent Checking

P(x)

y1

yn

y2

x1

x2

xm

mx +1

f
C

f
C,cd

ny +3

ny +1

ny +2

P(y(x))

Fig. 3.31 Code-disjoint circuit with three additional outputs

The output parity P(y3) of f 3
C,cd at the output y3′

n3+1 is compared with the XOR-

sum y3
1 ⊕ . . .⊕ y3

n3
of the outputs y3

1, . . . , y3
n3

of f 3
C,cd .

Now we describe how a code-disjoint circuit can be designed for a partially du-
plicated functional circuit as shown in Fig. 3.33.

The original circuit fC with m inputs X = x1, . . . ,xm and the n outputs implement-
ing the n Boolean functions of length m z1 = f1(x), . . . ,zn = fn(x) is implemented
as a serial connection of the circuits fC1 and fC2 . The circuit fC1 has the inputs
x = x1, . . . ,xm and the outputs y = y1, . . . ,yp which are also the inputs of fC2 . The
outputs z = z1, . . . ,zn of fC2 are also the outputs of the original circuit fC. The circuit
fC2 is duplicated in f 1

C2
with the outputs z1

1, . . . ,z
1
n, and f 2

C2
with the outputs z2

1, . . . ,z
2
n.

The outputs of these duplicated circuits are stored in the two registers R1 and R2.
The inputs x = x1, . . . ,xm are parity-encoded with the parity bit

xm+1 = x1 ⊕ . . .⊕ xm = P(x).

At the line yp+1 the XOR-sum P(x)⊕P(y(x)) of the input parity P(x) and the output
parity P(y(x)) of the outputs y1, . . . ,yp of fC1

P(x)⊕P
(

y(x)
)

= x1 ⊕ . . .⊕ xm ⊕ y1(x)⊕ . . .yp(x)

are determined as a function of x.
The XOR-sum of the outputs y1, . . . ,yp of fC1 is determined by an XOR-tree and

XORed with P(x)⊕P(y(x)) to form the input parity P(x), which is compared with
xm+1.

All odd input errors and all odd errors at the outputs of fC1 are detected by com-
paring xm+1 and P(x) = yp+1 ⊕ y1 ⊕ . . .⊕ yp.

All errors due to faults in one of the subcircuits f 1
C2

or f 2
C2

or in one of the two

registers R1 or R2 are detected by comparing the contents of the registers R1 and R2.

3.5
C

ode-D
isjointC

ircuits
83

Comparator

m
1

1+1

xm
1

1

x 1
1

f
C,cd
1

yn
1

1

y 1
1

yn
1

1+1

y 2
1

P(x)2 P(y)2

f
C,cd
2

x 2
1

xm
2

2

P(x)3

f
C,cd
3

x 3
1

xm
3

3

y 3
1

P(y)3

P(y)3
P(y)1P(x)1

yn
2

+12

yn
1

1+2 yn
2

+22

yn
3

+13

yn
3

+23

2r
1r

xm
2

2+1 xm
3

3+1

yn
2

2
yn

3

3

x

Fig. 3.32 Serial connection of code-disjoint circuits with three additional outputs

84 3 Principles of Concurrent Checking

2
1y

1x

xm yp

fC1

z2
1

z2
n

z1
n

z1
1

2

fC 2

1

yp+1

xm +1

xm +1

R2

P(x)
P(y(x))

R1

P(x)

P(x)=

fC

Fig. 3.33 Partially duplicated code-disjoint circuit

In this section it was shown how code-disjoint circuits for parity-encoded inputs
and parity-encoded outputs can be systematically designed for a combinational cir-
cuit, which is given as a netlist of gates.

It was explained that basically the predicted output parity of ordinary parity
checking has to be replaced by the XOR-sum of the input parity and the predicted
output parity where this XOR-sum can be either jointly or separately optimized with
the functional circuit.

It was demonstrated how for serial connections code-disjoint circuits with either
two or three additional outputs can be implemented.

To also detect input errors, errors due to transient faults in the combinational part
and soft errors directly induced by radiation in the output registers the concept of
code-disjoint partially duplicated circuits was explained.

3.6 Error Detection by Complementary Circuits

This section presents the method of error detection by complementary circuits.
It will be shown how for an arbitrarily given functional circuit such a complemen-

tary circuit can be determined such that the componentwise XOR-sum of the outputs
of the functional and complementary circuits will be a code word of a chosen code,
as long as no error occurs. Errors in the functional or complementary circuit are
detected by a code checker if the componentwise XOR-sum of the outputs of the
functional and complementary circuits is a non-code word. The number of inputs of
the checker is only equal to the number of outputs of the functional circuit, and no
additional control bits have to be added.

Almost arbitrary codes such as m-out-of-n codes, Berger codes, systematic and
non-systematic linear codes can be used and the error detection can be easily
adapted to the codes that already used in the system.

3.6 Error Detection by Complementary Circuits 85

It will be explained that a complementary circuit for a completely defined func-
tional circuit is only “partially specified” since for every input the XOR-sum of the
outputs of the functional circuit and of the complementary circuit has not to be a
specific but an arbitrary code word. If the number of code words of the considered
code is N then for every input the corresponding output of the functional circuit can
be complemented by N different possible outputs of the complementary circuits.
For all these possible N outputs of the complementary circuit the XOR-sum with the
output of the functional circuit is one of the N code words of the code. One of these
N possible outputs has to be selected to specify the complementary circuit such
that the complementary circuit has a small area. It remains a challenging problem
to utilize this plurality of possible specification of the complementary circuit for a
systematic circuit optimization.

This is different to the traditional method of error detection by use of systematic
codes. In this method, where only systematic codes and, for instance, no m-out-of-
n code can be used, the predictor and generator circuits are completely specified
by the given functional circuit and the chosen systematic code, and in this case
the design of an optimal error detection circuit is reduced to the standard CAD
problem to optimize the completely specified generator and predictor circuits in
Fig. 3.12.

It will be explained in detail how the method of error detection by complementary
circuits can be applied for a 1-out-of-n code.

It will be explained how the circuit outputs can be divided into groups of three
outputs and how for these groups the corresponding complementary outputs are
determined. Thereby different heuristics for the determination of the complementary
circuit will be discussed where the functional circuits are supposed to be given as a
netlist of gates.

Until now error detection by complementary circuits is the only method of error
detection for which necessary and sufficient conditions for the existence of totally
self-checking checkers can be proven.

This proof will be given in this section for a 1-out-of-n code. Also very simple
sufficient conditions will be derived.

It will be shown that these conditions are very weak and that they are fulfilled for
almost all circuits.

The new method of error detection by complementary circuits is a method with
great potential which needs further investigation.

3.6.1 Error Detection by Use of Complementary Circuits

Error detection by use of complementary circuits was introduced in [61, 62].
This method is shown in Fig. 3.34.
For a given functional circuit fC a complementary circuit gC is determined in

such way that the componentwise XOR-sum of the corresponding outputs of the
functional circuit fC and of the complementary circuit gC is an element or a code

86 3 Principles of Concurrent Checking

Ch
gC

z1

z2

y1

y2

yn

zn hn

h2

h1

yn

y1

y2

x m

error
signal

Checker
Code

fC

Fig. 3.34 Error detection by a complementary circuit

word of a chosen code as long as no error occurs. The code checker Ch checks the
code word property.

The functional circuit fC has m binary inputs x = (x1, . . . ,xm) ∈ {0,1}m and n
outputs y = (y1, . . . ,yn). fC implements the n Boolean functions

y1(x) = f1(x),
...

yn(x) = fn(x).

The complementary circuit gC has the same m binary inputs x = (x1, . . . ,xm) ∈
{0,1}m and gC has the n outputs z = (z1, . . . ,zn). gC implements at its outputs the n
Boolean functions

z1(x) = g1(x),
...

zn(x) = gn(x).

Consequently, the complementary circuit gC has to be designed in such a way
that for all inputs x ∈ X the XOR-sum

h1(x) = f1(x)⊕g1(s),
...

hn(x) = fn(x)⊕gn(x)

of the outputs of the functional circuit fC and of the complementary circuit gC is an
element or code word of the considered code Cod.

Every block code of length n can be used as a code. Examples of possible codes
are m-out-of-n codes with n > m > 0, arbitrary linear block codes or Berger codes
of block length n.

3.6 Error Detection by Complementary Circuits 87

We emphasize that the componentwise XOR-sum of the outputs of fC and gC

must not be a specific code word of the considered code but an arbitrary code word.
Therefore, even if the considered code Cod is already selected, the complementary
circuit gC is only “partially specified”.

This will now be explained in more detail.
Let Cod = {C1, . . . ,CN} be the considered code of N code words

C1 = (c1
1, . . . ,c

1
n),

...

CN = (cN
1 , . . . ,cN

n)

of length n. Then the Boolean functions g1(x), . . . ,gn(x) have to be determined such
that for x ∈ X

h1(x) = f1(x)⊕g1(x),
...

hn(x) = fn(x)⊕gn(x)

for h(x) =
(

h1(x), . . . ,hn(x)
)
∈ Cod = {C1, . . . ,CN}.

Although the Boolean functions f1(x), . . . , fn(x) implemented by the functional
circuit fC are completely specified for all x ∈ X we have for every x ∈ X N different
choices for the output values g1(x), . . . ,gn(x) of gC to form one of the N code words
of Cod.

With X = {0,1}m there are N2m
functionally different complementary circuits

gC, and until now it was a challenging problem to utilize these huge number of
possibilities for an optimum design of a complementary circuit gC for a given
combinational circuit fC.

(Remember that the situation is completely different for the design of an error
detection circuit by use of a predictor and a generator circuit. The predictor Pr and
the generator Gen are functionally completely specified by the check bits of the
chosen systematic code. The determination of the predictor and the generator circuit
is reduced to the optimization of a full functionally specified combinational circuit
by a CAD tool.)

3.6.2 Complementary Circuits for 1-out-of-3 Codes

Next we describe how the method of error detection by complementary circuits can
be practically applied for a 1-out-of-3-code [63, 64].

88 3 Principles of Concurrent Checking

First we explain the method for a functional circuit fC with three outputs y1, y2

and y3 only.
At the outputs y1, y2 and y3 the circuit fC implements the Boolean functions

y1(x) = f1(x),
y2(x) = f2(x)

and

y3(x) = f3(x).

We suppose that the functional circuit fC is given as a netlist of gates and we
show in Fig. 3.35 how a complementary circuit gno

C that has not yet been optimized
can be derived from fC.

gno
C implements at its outputs z1, z2 and z3 the Boolean functions

z1(x) = g1(x) = 0,

z2(x) = g2(x) =
(

f1(x)∧ f2(x)
)
∨

(
f1(x)∨ f2(x)∨ f3(x)

)
,

and

z3(x) = g3(x) =
(

f1(x)∨ f2(x)
)
∧ f3(x).

The complementary circuit gC is obtained by optimizing the circuit gno
C by an

available synthesis tool.
Concurrent checking by use of the complementary circuit gC is presented in

Fig. 3.36.
The inputs h1,h2 and h3 of the 1-out-of-3 checker are determined as

h1(x) = y1(x)⊕ z1(x) = f1(x)⊕0 = f1(x),
h2(x) = y2(x)⊕ z2(x) =

= f2(x)⊕
((

f1(x)∧ f2(x)
)
∨

(
f1(x)∨ f2(x)∨ f3(x)

))

2

y = f (x)1 1

y = f (x)3 3

C
y = f (x)2

x m

"0"

optimize !

f

g
C
no

z1

z2

z3

Fig. 3.35 Complementary circuit for a 1-out-of-3 code not yet optimized

3.6 Error Detection by Complementary Circuits 89

C
he

ck
er

C

g
C

y1

h1

y1

z3

y3 y3

h3

y2 y2

h2z2

x m

error
signal

1−
ou

t−
of

−
3

f

Fig. 3.36 Error detection by a complementary circuit for a 1-out-of-3 code

and

h3(x) = f3(x)⊕ z3(x) =

= f3(x)⊕
((

f1(x)∨ f2(x)
)
∧ f3(x)

)
= f3(x)∧

(
f1(x)∨ f2(x)

)
.

The output z1(x) = 0 does not have to be implemented.

Now we show that
(

h1(x), h2(x), h3(x)
)

is always a 1-out-of-3 code word. We

consider the following cases:

1. f1(x) = 1.
Then we have

h1(x) = f1(x) = 1

and

h2(x) = f2(x)⊕
(

f2(x)∨0
)

= f2(x)⊕ f2(x) = 0,

h3(x) = f3(x)∧0 = 0.

2. f1(x) = 0.
Then we conclude

h1(x) = f1(x) = 0

and

h2(x) = f2(x)⊕
(

f2(x)∨ f3(x)
)
,

h3(x) = f3(x)∧ f 2(x).

There are two possible cases, f2(x) = 1 or f2(x) = 0. f2(x) = 1 implies h2(x) = 1
and h3(x) = 0. For f2(x) = 0 we have h2(x) = f 3(x) and h3(x) = f3(x), and either
h2(x) of h3(x) but not both are equal to 1.

90 3 Principles of Concurrent Checking

For a circuit with n, n > 3 outputs y1, . . . ,yn we divide the n outputs into p disjoint
groups of 3 outputs G j = {y j1,y j2,y j3}, j = 1, . . . , p and l remaining outputs yk1, ykl

with l ≤ 2.
For every group G j of three outputs the first output y j1 is not complemented and

the complementary circuit gC j determines two complementary outputs g j2 and g j3

to complement the outputs y j2, y j3.
The remaining l outputs yk1, ykl are duplicated with inverse values.
We expect that the necessary area for the implementation of the complementary

output g j2 is correlated to the number of ones of the expression

f j1(x)∧ f j2(x).

For j = 1, . . . , p the groups of three outputs are determined as follows according
to [63]:

1. As the first output y j1 of the group G j we choose from the outputs of fC not yet
selected an output that is implemented with a maximum number of literals. To
this output no complementary output will be added modulo 2.

2. As the second output y j2 of G j we choose an output from the outputs of fC not
yet selected for which under 10000 pseudo random inputs the number of ones
of the expression f k1

j1 (x)∧ f k2
j2 (x) with k1, k2 ∈ {0,1} is minimal. Thereby we

denote f 0
ji = f ji, and f 1

ji = f ji. For k1 = 1 an inverter will be added at the output
y j1 and for k2 = 1 at the output y j2. For k1 = 0 (k2 = 0) the output y j1 (y j2) will
not be inverted.
(We expect that the on-set of f k1

j1 (x)∧ f k2
j2 (x) is small and that this function can

be implemented with a small area overhead.)
3. Similarly, we determine the third output of G j. Again, for 10000 pseudo random

inputs we select the output y j3 from the outputs not yet selected for which the

number of ones in the expression
(

f k1
j1 (x)∨ f k2

j2 (x)
)
∧ f k3

j3 (x) is minimal. For k3 =
1 the output y j3 will be inverted.

(We again expect that the on-set of
(

f k1
j1 (x)∨ f k2

j2 (x)
)
∧ f k3

j3 (x) and therefore also

the necessary area for the implementation of this function will be small.)

For 1-out-of-4 codes and for Berger Codes similar results are described in [61,
62].

3.6.3 Conditions for the Existence of Totally Self-Checking Error
Detection Circuits by Complementary Circuits

This section, which is based on [65], describes the conditions necessary and suf-
ficient for the existence of totally self-checking error detection circuits. The error
detection circuits are designed by use of complementary circuits for a 1-out-of-n
code.

3.6 Error Detection by Complementary Circuits 91

First we consider a combinational circuit fC with three inputs (x1,x2,x3) = x and
four outputs (y1,y2,y3,y4) = y. The truth table for the Boolean functions

y1 = f1(x),

y2 = f2(x),

y3 = f3(x),

y4 = f4(x)

implemented at the outputs of fC is presented in Table 3.6.
A totally self-checking checker cannot be designed in the traditional way for the

circuit fC for either a systematic code or for a non-systematic code.
Since for every input one or two outputs are equal to 1 the circuit fC can be

checked by means of a 2-out-of-5 code. As shown in Table 3.6 a single additional
output z with

z = x1 ∨ x2x3 ∨ x2x3

has to be added. The possible output vectors are now (1,0,0,0,1), (0,0,0,1,1),
(0,1,0,0,1) and (0,0,1,1,0).

These four output vectors are the input vectors of the 2-out-of-5 checker. The
length of a complete test for single stuck-at faults for an arbitrary m-out-of-n checker
has to be at least t, t ≤ n with n = 5 [66].

Since only four different input vectors are available at the inputs of the 2-out-of-5
checker this checker is not completely tested during normal operation.

For a Berger code the number of different input vectors for the Berger code
checker is also too small to guarantee the self-testing property of the checker [67].

If the circuit fC is checked by use of a linear systematic code, the check bits of
that code are determined by some XOR-trees from the outputs of fC by the generator
circuit. At least two binary outputs of fC have to be directly XORed by an XOR-gate
XOR′. To test XOR′ all the four possible input combinations 00, 01, 10 and 11 must
be applied at its inputs. From Table 3.6 it can be seen by inspection that for every
pair of outputs of fC only three different input combinations occur. There is no pair

Table 3.6 Example for which no traditional totally self-checking checker exists

inputs outputs

x1 x2 x3 f1 f2 f3 f4 z

1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 1 0 0 0 0 1 1
4 0 1 1 0 1 0 0 1
5 1 0 0 0 1 0 0 1
6 1 0 1 0 0 1 1 0
7 1 1 0 0 0 1 1 0
8 1 1 1 1 0 0 0 1

92 3 Principles of Concurrent Checking

of outputs of fC which outputs all the four input combinations 00, 01, 10 and 11
needed to test the gate XOR′.

Contrary to the result that no totally self-checking checker can be designed for
fC by the well-known traditional methods, a totally self-checking checker can be
designed by a complementary circuit for a 1-out-of-4 code.

The complementary circuit gC with four outputs z1, z2, z3, z4 implements the
Boolean functions g1, g2, g3, g4 such that

h1(x) = f1(x)⊕g1(x),

h2(x) = f2(x)⊕g2(x),

h3(x) = f3(x)⊕g3(x)

and

h4(x) = f4(x)⊕g4(x)

are elements of a 1-out-of-4 code.
Table 3.7 is the truth table for f1, f2, f3, f4, g1, g2, g3, g4, h1, h2, h3, h4.
All the XOR-gates XORing fi ⊕ gi for i = 1, . . . ,4 are completely tested since

all four possible input values 00, 01, 10, 11 occur at the output pairs fi,gi and also
all the possible 1-out-of-4 code words 1000, 0100, 0010, 0001 are generated at the
outputs of the complemented circuit as inputs of the 1-out-of-4 checker.

For this example it was shown that a totally self-checking checker can be de-
signed by a complementary circuit although for the traditional methods a totally
self-checking checker does not exist.

Now we describe the necessary and sufficient conditions for the existence of a
totally self-checking checker for a combinational circuits fC by use of a comple-
mentary circuit and a 1-out-of-n code as shown in Fig. 3.37.

The circuit fC has n outputs y1, . . . ,yr,yr+1, . . . ,yn. The first outputs y1, . . . ,yr

are complemented by the r outputs z1, . . . ,zr of the complementary circuit gC. The
remaining n− r outputs yr+1, . . . ,yn of fC are not complemented.

For i = 1, . . . ,r the output yi of fC and zi of gC is XORed into hi by the XOR-gate
XORi.

Table 3.7 Example of Table 3.6 with a totally self-checking checker by a complementary circuit

x1 x2 x3 f1 g1 f2 g2 f3 g3 f4 g4 h1 h2 h3 h4

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
3 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0
4 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0
5 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1
6 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0
7 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0
8 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0

3.6 Error Detection by Complementary Circuits 93

r

yn
yn

yr

y2

y1

fC

y1

y2

yr

z1

z2

zr

yr+1 yr+1

hr+1

hn

hr

h2

h1

mx

1−
ou

t−
of

−
n

C
he

ck
erXOR

error
signal

XOR

XOR 1

2
gC

Fig. 3.37 Complementary circuit for a 1-out-of-n code

The necessary and sufficient conditions for the existence of a totally self-checking
checker are expressed by the following

Theorem 3.1. [65] Let fC be a combinational circuit implementing at its n outputs
y1, . . . ,yn the Boolean functions y1 = f1(x), . . . ,yn = fn(x) where all these Boolean
functions are not constant for x ∈ χ and where χ is the set of inputs actually applied
to fC during normal operation.

It is then possible to design a totally self-checking error detection circuit by
use of a complementary circuit gC for a 1-out-of-n code where the complementary
circuit gC implements at its r, 2 ≤ r ≤ n, outputs z1, . . . ,zr Boolean functions z1 =
g1(x), . . . ,zr = gr(x) such that the n− r Boolean functions yr+1 = fr+1(x), . . . ,yn =
fn(x) are not complemented and that the outputs y1 = f1(x), . . . ,yr = fr(x) are com-
plemented by the r outputs z1 = g1(x), . . . ,zr = gr(x) if and only if the following
conditions are satisfied:

1. For n > r + 1 the non-complemented functions fi, f j with i, j ∈ {r + 1, . . . ,n},
i �= j are pairwise orthogonal,

∑
x∈χ

fi(x) f j(x) = 0 for i, j ∈ {r +1, . . . ,n} and i �= j,

2. Let χ̃ be the subset of inputs for which one of the non-complemented functions
yr+1 = fr+1(x), . . . ,yn = fn(x) is equal to 1,

χ̃ =
{

x ∈ χ, ∃i ∈ {r +1, . . . ,n}, with fi(x) = 1
}

.

Then for every complemented output yi = fi(x), i ∈ {1, . . . ,r} of fC there exists
a subset of inputs

94 3 Principles of Concurrent Checking

κi = {x1
i ,x

0
i } ⊂ χ \ χ̃ with fi(x1

i) = 1, fi(x0
i) = 0

and
κi ∩κ j = /0 for i, j ∈ {1, . . . ,r} and i �= j.

3. For every i = 1, . . . ,r we have

|On(fi)| ≤ 2 and |O f f (fi)| ≤ 2.

Proof:
We prove here that only the conditions of Theorem 3.1 are necessary. That these
conditions are also sufficient is shown in [65, 68].

To detect all single stuck-at faults of the 1-out-of-n checker all the n 1-out-of-n
code words have to be applied to the checker and therefore to be generated at the
outputs h1, . . . ,hn of the complemented circuit.

To test all the XOR-gates XOR1, . . . ,XORr all the four inputs 00, 01, 10, 11 have
to be applied to these XOR-gates.

It is obvious that the non-complemented outputs yr+1 = fr+1(x), . . . ,yn = fn(x)
have to be orthogonal. Otherwise a non-code word would be generated for some
input.

Now we distinguish whether the inputs are from χ̃ or from χ \ χ̃ .

1. Let x ∈ χ̃ .
Then exactly one of the outputs

yr+1 = fr+1(x),

...

yn = fn(x)

is equal to 1 and we have

y1 = h1(x) = 0,

...

yr = hr(x) = 0.

Otherwise no 1-out-of-n code word will be generated. For i = 1, . . . ,r we have

hi(x) = fi(x)⊕gi(x) = 0

or
fi(x) = gi(x)

and the XOR-gate XORi will not be tested by 01 and 10.

3.6 Error Detection by Complementary Circuits 95

2. Let now x ∈ χ \ χ̃ .
Then the non-complemented outputs

yr+1 = fr+1(x),

...

yn = fn(x)

are all equal to 0.
One of the complemented outputs, say hi(x) = fi(x)⊕ gi(x), i ∈ {1, . . . ,r}

has to be 1, and all the other complemented outputs h j(x) = f j(x) ⊕ g j(x),
j ∈ {1, . . . ,r} with i �= j have to be 0.
This is only possible for

fi(x) = 1 and gi(x) = 0

or for
fi(x) = 0 and gi(x) = 1

and for f j(x) = g j(x), i �= j, i, j ∈ {1, . . . ,r}.
To test the XOR-gate XORi by 10 and 01 we conclude that there must exist

two different inputs x1
i and x0

i , with x1
i , x0

i ∈ χ \ χ̃ and

fi(x1
i) = gi(x

1
i) = 1

and
fi(x0

i) = gi(x
0
i) = 0.

For i �= j we have

f j(x1
i) = g j(x1

i),

f j(x0
i) = g j(x0

i).

We set κi = {x1
i ,x

0
i }.

Since all the r 1-out-of-n code words

1 0 . . . 0︸ ︷︷ ︸
r

0 . . . 0︸ ︷︷ ︸
n−r

,

...

0 . . . 0 1︸ ︷︷ ︸
r

0 . . . 0︸ ︷︷ ︸
n−r

have to be generated for some x ∈ χ \ χ̃ , all the XOR-elements XOR1, . . . ,XORr

have to be tested and the r sets

96 3 Principles of Concurrent Checking

κ1 = {x1
1,x

0
1},

...

κr = {x1
r ,x

0
r}

have to exist.
Since for x ∈ κi we have fi(x) = gi(x) and f j(x) = g j(x) for i �= j the sets

κ1, . . . ,κr are mutually disjoint.
To guarantee that the XOR-elements XOR1, . . . ,XORr are also tested by 00 and

11 for i ∈ {1, . . . ,r} there have to exist besides the inputs x1
i and x0

i with fi(x1
i) =

gi(x1
i) = 1 and fi(x0

i) = gi(x0
i) = 0 two additional inputs x̃1

i , x̃
0
i with

fi(x̃1
i) = gi(x̃1

i) = 1

and
fi(x̃0

i) = gi(x̃0
i) = 0.

This implies |On(fi)| ≤ 2 and |O f f (fi)| ≤ 2, which finishes the proof that the
conditions are necessary.

Simple sufficient conditions for the existence of a totally self-checking error de-
tection circuit by use of a 1-out-of-n code are given in Theorem 3.2.

Theorem 3.2. [65] Let fC be a combinational circuit with the set χ of actually
applied inputs implementing at its n outputs y1, . . . ,yn the Boolean functions y1 =
f1(x), . . . ,yn = fn(x) and let

X0
1 = {x,x ∈ χ ∧ f1(x) = 0},

X1
1 = {x,x ∈ χ ∧ f1(x) = 1},

...

X0
n = {x,x ∈ χ ∧ fn(x) = 0},

X1
n = {x,x ∈ χ ∧ fn(x) = 1}.

If the subsets X0
1 ,X1

1 , . . . ,X0
n ,X1

n are ordered with respect to their number of
elements in ascending order as X ′

1,X
′
2, . . . ,X

′
2n and if |X ′

1| ≥ 2 and |X ′
k| ≥ k for

k = 2, . . . ,2n then there exists a totally self-checking error detection circuit by use
of a complementary circuit for a 1-out-of-n code.

Proof:
We assume that all the outputs of fC are complemented and we show that the con-
ditions 2 and 3 of Theorem 3.1 are valid.

We determine for j = 1, . . . ,n the set κ j.
Let X ′

1 = Xci1
i1 where ci1 ∈ {0,1}. Then we choose an arbitrary element xi1 ∈ Xci1

i1
as an element of κi1 with fi1(xi1) = ci1.

Now we remove the set X ′
1 = Xci1

i1 from the sets X ′
1,X

′
2, . . . ,X

′
2n, we delete the

input xi1 from all the remaining sets X ′
2, . . . ,X

′
2n, we order the remaining sets with

3.6 Error Detection by Complementary Circuits 97

the already deleted element xi1 again with respect to their numbers of elements in
ascending order and we obtain X ′

2, . . . ,X
′
2n.

Let now X ′
2 = Xci2

i2 where ci2 ∈ {0,1}. Then we choose an arbitrary element xi2 ∈
Xci2

i2 as an element of κi2 with fi2(xi2) = ci2.
Now we remove the set X ′

2 = Xci2
i2 from the sets X ′

2, . . . ,X
′
2n, we delete the input xi2

from all the remaining sets X ′
3, . . . ,X

′
2n, we order the remaining sets with the already

deleted element xi2 again with respect to their numbers of elements in ascending
order and we obtain X ′

3, . . . ,X
′
2n.

We continue until all the sets X ′
j are removed and all the sets κ1,κ2, . . . ,κ2n are

determined. We have κi ∩κ j = /0 for i �= j and |κi| = 2 for i = 1, . . . ,2n by construc-
tion and the condition 2 of Theorem 3.1 is fulfilled.

Since we assumed |X ′
1| ≥ 2 and |X ′

k| ≥ k for k = 2, . . . ,2n also condition 3 is valid,
which concludes the proof.

For practical applications for circuits with a large number of inputs the exact
sets X0

1 , X1
1 , . . ., X0

n , X1
n may be replaced by subsets of theses sets determined for

N ≈ 10000 pseudo random inputs.
In this section the method of error detection by complementary circuits was de-

scribed.
The definition of a complementary circuit for a given functional circuit and a

considered code was given and it was explained how a complementary circuit can be
determined such that the componentwise XOR-sum of the outputs of the functional
and of the complementary circuit is a code word of a chosen code as long as no error
occurs.

It was demonstrated that almost arbitrary codes such as m-out-of-n codes, Berger
codes, systematic and non-systematic linear codes can be used for the design of
complementary circuits. Therefore the error detection circuits can be easily designed
in accordance with the codes which are already used in the system. No code adap-
tation is necessary.

It was demonstrated that a complementary circuit for a completely defined func-
tional circuit is only “partially specified” since for every input the XOR-sum of the
outputs of the functional circuit and of the complementary circuit must not be a spe-
cific, but an arbitrary code word. It was shown that for a functional circuit with n
inputs and a code with N code words there are N2n

different complementary circuits
from which the “optimum” can be determined since for all these complementary
circuits the XOR-sum of the outputs of functional and of the complementary circuit
is a code word of the considered code. It remains a challenging synthesis problem
to utilize this plurality of possible specification of the complementary circuit for a
systematic circuit optimization. This optimization problem cannot be handled un-
til now by the available synthesis tools. Therefore heuristic solutions are needed,
which were described for the special case of a 1-out-of-3 code.

It was explained that the problem of circuit optimization is different for a com-
plementary circuit compared to the traditional method of error detection by use of
systematic codes. In the latter case the predictor and generator circuits for the con-
sidered code are completely specified and can be synthesized by a CAD tool from
the netlist of the functional circuit.

98 3 Principles of Concurrent Checking

For the example of a 1-out-of-3 code, heuristic solutions were described in detail.
It was explained how the outputs of the functional circuit can be divided into groups
of 3 outputs and how the corresponding outputs of the complementary circuit can
be determined.

It was shown that there are functional circuits for which no totally self-checking
checker can be designed using the traditional error detection methods, but for which
a totally self-checking checker can be designed by use of a complementary circuit.

For an arbitrarily given functional circuit necessary and sufficient conditions for
the existence of a self-checking checker are proven for a 1-out-of-n code and also
simple sufficient conditions were derived.

It was shown that these conditions are fulfilled for almost all circuits.
It was demonstrated that the method of error detection by complementary circuits

is a new method of error detection with many interesting properties. This method
needs further investigation.

3.7 General Method for the Design of Error Detection Circuits

In this section we will show how the design of an optimum error detection circuit
can be reduced to a classical design problem for a partially defined combinational
circuit. Only combinational circuits as functional circuits will be considered in this
section. For sequential circuits a similar method can be found in [69, 70].

It will be explained how a partially defined Boolean function, which is called the
error detection function, can be determined from the the functional circuit and from
the considered fault model. An optimum implementation of this partially defined
error detection function is the optimum error detection circuit. This error detection
circuit detects all the errors caused by the faults of the considered fault model.

It will be explained how the known methods of error detection - duplication and
comparison, error detection by codes and error detection by complementary circuits
- are special cases of this general approach.

In summary it will be shown that in principle the design of optimum error de-
tection circuits can be reduced to a standard CAD design problem. But the special
solutions described in the previous chapters of this book remain of interest since
until now the available synthesis tools do not generate better solutions for circuits
of realistic sizes.

3.7.1 Description of the Method

We now describe how an optimum error detection circuit for a given combinational
circuit with a given error model can be designed.

We consider an arbitrarily given combinational circuit fC with m binary inputs
x = (x1, . . . ,xm) and n binary outputs y = (y1, . . . ,yn).

3.7 General Method for the Design of Error Detection Circuits 99

The combinational circuit fC implements at its outputs the n Boolean functions

y1(x) = f1(x),

...

yn(x) = fn(x)

and we denote
y(x) = y1(x), . . . ,yn(x)

and
f (x) = f1(x), . . . , fn(x).

The set χ, with χ ⊆ X = {0,1}m is the set of inputs for which the behavior of fC
is of interest. For χ ⊂ X not all the possible inputs are really applied during normal
operation.

Φ = {ϕ1, . . . ,ϕL} is the set of considered faults.
In the presence of a fault ϕ ∈ Φ the outputs of fC under input x ∈ χ are

denoted by

y(ϕ,x) = y1(ϕ,x), . . . ,yn(ϕ,x) =

= f1(ϕ,x), . . . , fn(ϕ,x) = f (ϕ,x).

Now we define the error detection function F(x,y) by

F(x,y) =

⎧
⎪⎨

⎪⎩

0 for x ∈ χ and y = f (x),
1 for x ∈ χ ∃ϕ ∈ Φ , with y = f (ϕ,x) �= f (x),
∼ (don‘t care) otherwise.

The error detection function F(x,y) is equal to 0 if x is from the expected input
set χ and if the output of fC is correct. F(x,y) is equal to 1 if

1. x is from the expected input set χ ⊆ X
and

2. there exists a fault ϕ from the considered set of faults Φ such that y = f (ϕ,x),
and

3. if y = f (ϕ,x) is different from the expected correct output f (x).

In all other cases, i.e. for all inputs that are not from the expected input set χ ,
and for all faults that are not from the fault model Φ of the considered faults, the
error detection function F(x,y) is “don’t care”.

Here it is assumed that, in the presence of a fault, the faulty circuit remains com-
binational.

An “optimum” implementation of the error detection function F(x,y) by an avail-
able synthesis tool is an “optimum” error detection circuit for the given circuit fC
and the given fault model Φ .

100 3 Principles of Concurrent Checking

Thus, for an arbitrarily given combinational circuit fC and a given fault model
Φ = {ϕ1, . . . ,ϕL} the design of an “optimum” error detection circuit FC can in
principle be reduced to an optimum implementation of a partially defined error de-
tection function F(x,y).

The block diagram of the functional circuit fC monitored by the error detection
circuit FC is shown in Fig. 3.38.

The standard methods of error detection, duplication and comparison, error de-
tection with predictor and generator circuits, error detection by complementary cir-
cuits are all special cases of this general approach.

This will be explained by the following Figures.
Figure 3.39 shows error detection by duplication and comparison. The error de-

tection circuit FC here consists of the duplicated circuit fCd and the comparator.
Figure 3.40 presents error detection by systematic block codes. The predictor

Pr(x), the generator G and the comparator form the error detection circuit FC.
In the case of error detection by complementary circuits in Fig. 3.41 the error de-

tection circuit FC consists of the complementary circuit gC, the XOR-gates XORing
for i = 1, . . . ,n the outputs yi of fC and zi of gC and the code checker.

C
x n

FC

error detection circuit

y

error
signal

f
m

Fig. 3.38 General method of error detection for a combinational circuit fC

C
om

pa
ra

to
r

C

f
Cd

FC

x m y

error
signal

f
n

Fig. 3.39 Special case duplication and comparison

3.7 General Method for the Design of Error Detection Circuits 101

q

FC

x m y

error
signal

C
om

pa
ra

to
r

Pr(x)

Generator G

q

fC
n

Fig. 3.40 Special case error detection by systematic block codes

signal
gC

y1

yn
yn

y1

zn

z1

FC

x m

Checker
Code

error

fC

Fig. 3.41 Special case error detection by complementary circuits

Although in principle the design of an optimum error detection circuit can be
reduced to a standard problem of CAD, the optimum design of a partially spec-
ified Boolean function, special human designs are necessary. Although synthe-
sis tools are improving, the available CAD tools are not sufficiently adequate to
generate satisfactory solutions. This is a common experience and is emphasized
in [71].

In this section it was shown how an optimum error detection circuit can be de-
signed as an optimum implementation of a partially defined error detection function.
It was explained how this error detection function is determined by the functional
circuit and by the considered fault model chosen by the designer.

It was demonstrated that the known methods of error detection, such as duplica-
tion and comparison, error detection by systematic codes and error detection by use
of complementary circuits, are special cases of this general approach.

102 3 Principles of Concurrent Checking

3.8 Self-Dual Error Detection

In this section the method of error detection by means of self-dual Boolean func-
tions will be described. Self-dual Boolean functions are implemented as self-dual
combinational circuits.

It is shown how a Boolean function, if it is not self-dual, can be transformed into
a self-dual Boolean function and can be implemented as a “self-dual combinational
circuit”.

For error detection alternating inputs, i.e. the functional inputs and their cor-
responding componentwise inverted inputs are applied to the self-dual circuit. For
alternating inputs the circuit outputs of these self-dual circuits are alternating. If, due
to a fault in the self-dual circuit or at the input lines the outputs are not alternating,
a fault is detected.

Since in addition to the original inputs the corresponding alternating inputs (i.e.
the componentwise inverted inputs) are always subsequently applied to the circuit
inputs time redundancy is 100%, and the described method can only be applied
if time is not critical. This is often the case, for instance, in mechanical control
systems.

Two different methods for the transformation of an arbitrarily given combina-
tional circuit in a self-dual circuit are described. Here it is assumed that the circuits
are given as a netlist of gates.

In the first method, which was already introduced in [72], an additional input
variable is used.

In the second method according to [73] for the given combinational circuit a
complementary circuit is determined such that the componentwise XOR-sums of
the corresponding outputs of the original circuit and of the complementary circuit
are self-dual.

The componentwise XOR-sum of the outputs of the original circuit and of the
complementary circuit can be an arbitrary self-dual Boolean function. Therefore,
for a given functional circuit there are many different possibilities to determine a
complementary circuit. To utilize all these possibilities for circuit optimization re-
mains a challenging synthesis problem which is not yet considered in the available
synthesis tools. Some heuristic methods alone are described in this chapter.

Error detection by self-dual parity and self-dual duplication are considered in
more detail.

In ordinary parity prediction the parity of the outputs, which is determined by an
XOR-tree from the circuit outputs, is compared with the predicted parity, which is
determined from the circuit inputs.

In self-dual parity checking the predicted parity of ordinary parity checking is
replaced by a complementary function of the parity function such that the XOR-sum
of the complementary function and the output of the XOR-tree of the circuit outputs
is an arbitrary self-dual Boolean function. An optimum complementary function can
be selected from the large variety of possible self-dual complements.

Similarly, in self-dual duplication the duplicated circuit is replaced by a com-
plementary circuit (with the same number of outputs as the original circuit), such

3.8 Self-Dual Error Detection 103

that the componentwise XOR-sums of the outputs of the original circuit and of the
complementary circuit are all self-dual.

Separate and joint implementations of the original circuit and of the complemen-
tary circuit are also considered.

At the end of this section self-dual fault-secure circuits are introduced. It is shown
how a self-dual circuit can be transformed into a self-dual fault-secure circuit by a
simple circuit transformation.

Self-dual circuits can be operated in

1. a fast mode without error detection in which only the functional inputs and not
the alternating inputs are applied,

2. a slow error detection mode in which the functional inputs and also the alternat-
ing inputs are always applied

3. and in a self-test mode in which alternating inputs are applied only during the test.

3.8.1 Self-Dual Boolean Functions

First we recapitulate the definition of a self-dual Boolean function.

Definition 3.10. Let f (x), x = x1, . . . ,xm be a Boolean function of length m. Then
f (x) is called the dual function fd(x) of f (x),

fd(x) = f (x).

Definition 3.11. A Boolean function f (x) is self-dual if its dual function fd(x) is
equal to the original function f (x), i.e. if

f (x) = fd(x) = f (x),

or if
f (x) = f (x).

Figure 3.42 shows a combinational circuit fCsd implementing a self-dual Boolean
function f (x). Alternating inputs x and x are applied. The corresponding outputs of
fCsd are y = f (x) and y = f (x) and the outputs of fCsd are alternating for alternating
inputs.

y y
Csd

mx x nf

Fig. 3.42 Behavior of self-dual circuit

104 3 Principles of Concurrent Checking

Definition 3.12. A circuit fC implementing at its n outputs, n ≥ 1, the Boolean
functions

y1(x) = f1(x),

...

yn(x) = fn(x)

is called self-dual if all the Boolean functions f1, . . . , fn are self-dual.

3.8.2 Transformation of a Given Circuit into a Self-Dual Circuit

Now we describe two different methods how a combinational circuit can be trans-
formed into a self-dual circuit.

3.8.2.1 Self-Dual Circuits by Use of an Additional Input

The first method is based on the fact that an arbitrarily given Boolean function f (x)
can be transformed into a self-dual function Fsd(a,x) by use of an additional binary
variable a according to [72]. The self-dual function Fsd(a,x) is determined as

Fsd(a,x) = a f (x)∨a f (x) (3.30)

with a ∈ {0,1}, and we have

f (x) = Fsd(0,x)

and

f (x) = Fsd(1,x).

It is easy to show by direct calculation that Fsd(a,x) is a self-dual Boolean func-
tion.

Usually a circuit fC implementing the Boolean function f (x) is given as a netlist
of gates. If fC is implemented by AND-gates, OR-gates and INVERTERS and if all
the AND-gates are replaced by OR-gates and all the OR-gates by AND-gates the
transformed circuit fCd will implement the dual function fd(x) = f (x) [74].

Figure. 3.43 illustrates the design of a self-dual circuit according to this method.
The circuitry of Fig. 3.43 consisting of the original functional circuit fC, the dual
circuit fCd derived from fC, the AND and OR-gates with the additional input line a
have to be optimized by an available synthesis tool.

Functionally considered, the self-dual circuit in Fig. 3.43 is uniquely speci-
fied. The binary variable a selects as a control signal whether the outputs of the

3.8 Self-Dual Error Detection 105

optimized

a = 0, a = 1

m f
C

f
Cd f

Csd

y (x),n

y (x),1 y (x)1

y (x)n

x, x

y (x),1 y (x)1

y (x),n y (x)n

y (x),1 y (x)1

y (x),n y (x)n

Fig. 3.43 Transformation of a combinational circuit into a self-dual circuit

original circuit fC or the dual circuit fCd are connected to the circuit outputs.
First the input (x,a = 0) is applied, and the outputs y1(x), . . . ,yn(x) of fC are
connected to the circuit outputs. Next, for the alternating input (x,a = 1) the outputs
y1(x), . . . ,yn(x) = y1(x), . . . ,yn(x) of fCd are connected to the circuit outputs, and for
alternating inputs the outputs are also alternating.

3.8.2.2 Self-dual Circuits by Use of Complementary Circuits

A Boolean function f (x) can also be transformed into a self-dual function by use of
a self-dual complement [75].

Definition 3.13. Let f (x), x = x1, . . . ,xm be a Boolean function. Then the Boolean
function δ f (x) is a self-dual complement of f (x) if the Boolean function h(x), with

h(x) = f (x)⊕δ f (x) (3.31)

is self-dual.

It is well known that for x = x1, . . . ,xm there exist 22m−1
different self-dual func-

tions fsd(x) of length m.
This implies that for an arbitrarily given Boolean function f (x) of length m,

x = x1, . . . ,xm there also exist 22m−1
different self-dual complements δ f .

It is a challenging synthesis problem to determine from these 22m−1
different

self-dual complements the “optimum” one which results in a minimal area over-
head for the implementation of a self-dual circuit by use of a complementary
circuit.

106 3 Principles of Concurrent Checking

It can be proved by direct calculation that for i = 1, . . . ,m

δi(x) = xi ∧
(

f (x)⊕ f (x)
)

(3.32)

is a self-dual complement of f (x).
For these complements the number of input values x for which δi(x) is equal to

1 is minimal [75].
Also for i = 1, . . . ,m

δ̃i(x) = xi ∨
(

f (x)⊕ f (x)
)

(3.33)

is a self-dual complement of f (x).
The number of input values x for which δ̃i(x) is equal to 1 is maximal.
These self-dual complements δi(x) and δ̃i(x) can be determined for a circuit fC

which is given as a netlist of gates.
Figure 3.44 illustrates the determination of the circuit δiC implementing the self-

dual complement δi(x) = xi ∧
(

f (x)⊕ f (x)
)

from the original circuit fC.

We suppose for the simplicity of presentation that fC has a single output only.
From the original circuit fC (given as a netlist of AND, OR-gates and inverters)

the dual circuit fCd is derived by changing all AND-gates into OR-gates and all OR-
gates into AND-gates. The inputs x = x1, . . . ,xm are applied in parallel to both fC
and fCd and the outputs of fC and fCd are XORed. The output of that XOR-gate is
connected to the first input of an AND-gate. The ith component xi of the circuit input
is connected to the second input of that AND-gate. The circuit of Fig. 3.44 has to be
optimized by a synthesis tool.

For the self-dual complements δ̃i(x) = xi ∨
(

f (x)⊕ f (x)
)

the circuit δ̃iC can be

similarly determined.

d

C
fx

x

x

optimize !

C

m

i

1

f (x)

f
f (x)

δ (x)=xii (f (x) f (x))

δiC

Fig. 3.44 Special self-dual complement δiC

3.8 Self-Dual Error Detection 107

3.8.3 Self-Dual Error Detection Circuits

Figure 3.45 shows an error detection circuit by means of a complementary circuit
δ fC for a given combinational circuit fC implementing a Boolean function f (x).
The complementary circuit δ fC implements a self-dual complement δ f of f , and the
function

h(x) = f (x)⊕δ f (x)

has to be one of the 22m−1
self-dual functions of length m.

A fault is detected under alternating inputs (x,x) if

hϕ(x) = hϕ(x)

or if the output hϕ is not alternating where hϕ denotes the implemented function h
in the presence of a fault ϕ .

Unlike other (not code-disjoint) methods, faults at the input lines are also de-
tected with this method.

3.8.3.1 Self-Dual Parity

Now we explain how a self-dual complement can be used for error detection by
parity prediction [75].

Again we consider a combinational circuit fC with n outputs y = (y1, . . . ,yn) and
m inputs x = (x1, . . . ,xm).

Instead of checking fC by comparing the output parity

P(y) = y1 ⊕ y2 ⊕ . . .⊕ yn

of fC with the parity P(x) predicted from the inputs x1, . . . ,xm we design a self-dual
complement δP of the parity.

y(x)

δ (x)f

f
C

δfC

x m y = f(x)

h(x)

Fig. 3.45 Error detection circuit by use of a self-dual complement

108 3 Principles of Concurrent Checking

The output parity P(y) and the self-dual complement δP are added modulo 2
to form an (arbitrary) self-dual function h(x) of m variables. There are, as already
explained, 22m−1

possible self-dual complements of P(y) from which the “optimum”
has to be selected.

In practice, one of the 2×m self-dual complements according to equation (3.32)
or (3.33) can be selected.

In Fig. 3.46 error detection by self-dual parity is shown for a circuit fC with n = 5
outputs.

As a concrete example we consider a circuit which implements at its outputs the
following Boolean functions

y1(x) = x1x2x3x4 ∨ (x1 ∨ x2)x3x4 ∨ x1x3x4

y2(x) = (x1 ∨ x2)∨ x1x3x4 ∨ x1x3x4

y3(x) = x1x2x3x4 ∨ (x3 ∨ x4)∨ x1x2x3

y4(x) = x1x2x3 ∨ x1x3x4 ∨ x1x3x4 ∨ x1x3x4

y5(x) = (x3 ∨ x4)∨ (x3 ∨ x4)x1x2.

Then the predicted parity P(x) = y1(x)⊕ . . .⊕ y5(x) is

P(x) = x1x2 ∨ x1x3x4 ∨ x1x3x4 ∨ x1x3x4.

As a self-dual complement δP we select the function

δP(x) = x2 ∧
(

P(x)⊕P(x)
)

= x2x3x4.

which is much more simple than the predicted parity P(x).
To reduce necessary area overhead the self-dual complement δP can be jointly

implemented with the functional circuit fC as shown in Fig. 3.46. Thereby the fault-
coverage is not significantly reduced.

5

C

δP

δ (x)P

x m y (x)

h(x)

P(y)

y (x)

y (x)

y (x)

2

3

4

5

1

y (x)

y =f (x)

y =f (x)

y =f (x)

y =f (x)

y =f (x)

2

3 3

2

1 1

4 4

5

f

Fig. 3.46 Error detection by self-dual parity

3.8 Self-Dual Error Detection 109

For benchmark circuits the expected area for the implementation of self-dual par-
ity is only 15% of the original circuits and 23% of the optimized circuits compared
to 35% and 56% for ordinary parity [75].

3.8.3.2 Self-Dual Duplication

Self-dual duplication is illustrated in Fig. 3.47. For every output y1, . . . ,yn of a given
functional circuit fC a self-dual complement δ1, . . . ,δn is determined and XORed to
form a self-dual function h1, . . . ,hn.

The circuit δ fC implementing the self-dual complements δ1, . . . ,δn and the func-
tional circuit fC can be jointly or separately optimized. A joint implementation is
impossible for ordinary duplication and comparison.

For benchmark circuits the average area overhead is about 72% of the functional
circuit for a separate implementation and about 47% for a joint implementation.
Details are described in [76].

3.8.4 Self-Dual Fault-Secure Circuits

In this section we investigate the detectability of stuck-at faults in self-dual circuits.
We introduce the notion of a self-dual fault-secure circuit and we show how a

given self-dual circuit can be transformed into a “self-dual fault-secure”
circuit [77, 75].

We assume that the considered self-dual circuits are given as a netlist of AND,
OR, NAND, NOR-gates and INVERTERs. As faults we consider a set Φ of k single
stuck-at faults

Φ = {ϕ1, . . . ,ϕk}.
A gate G with a stuck-at fault ϕ ∈ Φ at an input or an output line will be denoted

by Gϕ .

1

fC

f
C

x m

y

yn

1

δ

δn

1

h

y

y

h

1

n

n

δ

Fig. 3.47 Error detection by self-dual duplication

110 3 Principles of Concurrent Checking

G(u) and Gϕ(u) are the Boolean functions implemented by the correct gate G
and the faulty gate Gϕ , where u = (u1,u2) are the input variables of G and Gϕ .

If the gate G is an AND, OR, NAND, NOR-gate or an INVERTER and if a
single stuck-at fault ϕ occurs for Gϕ , only one of the following situations is
possible:

1. For a subset of inputs for which the output of the correct gate G is 0 the output
of the faulty gate Gϕ is 1. Then for the subset of inputs for which the output of
the correct gate G is 1 the output of the faulty gate Gϕ is also 1.

2. For a subset of inputs for which the output of the correct gate G is 1 the output
of the faulty gate Gϕ is 0. Then for the subset of inputs for which the output of
the correct gate G is 1 the output of the faulty gate Gϕ is also 0.

More formally this can be expressed by the following

Theorem 3.3. Let U0 = {u ∈ {0,1}2,G(u) = 0} and U1 = {u ∈ {0,1}2,G(u) = 1}.
Then we have for a fault ϕ ∈ Φ either

1.

0 = G(u) �= Gϕ(u) f or u ∈ Ũ0 ⊆U0

and

1 = G(u) = Gϕ(u) f or u ∈U1

or
2.

1 = G(u) �= Gϕ(u) f or u ∈ Ũ1 ⊆U1

and

0 = G(u) = Gϕ(u) f or u ∈U0,

where Ũ0,Ũ1 are subsets of U0 and U1 respectively.

In the first (second) case the output 1 (0) of G remains always correct.
Theorem 3.3 can be proved by inspection for each of the considered gates and

for every single stuck-at fault.
As an example we consider the AND-gate in Fig. 3.48 with the input lines 1, 2

and the output line 3. The sets U0 and U1 are U0 = {00,01,10} and U1 = {11}.

Gi

u
u

v1

2

1

2

3

Fig. 3.48 AND-gate

3.8 Self-Dual Error Detection 111

The set of faults Φ consists of 6 single stuck-at faults

Φ = {1/1, 1/0, 2/1, 2/0, 3/1, 3/0}

where 1/1 denotes the stuck-at-1 fault at line 1.
For the following stuck-at faults we have:

• stuck-at fault 1/0:

1 = G(u) �= G1/0(u) for u ∈ Ũ1 = U1 = {11}
0 = G(u) = G1/0(u) for u ∈U0 = {00,01,10}.

• stuck-at fault 1/1:

0 = G(u) �= G1/1(u) for u ∈ Ũ0 = {01} ⊆U={00,01,10}
1 = G(u) = G1/1(u) for u ∈U1 = {11}.

• stuck-at fault 3/1:

0 = G(u) �= G3/1(u) for u ∈ Ũ0 = U0 = {00,01,10}
1 = G(u) = G3/1(u) for u ∈ Ũ1 = U1 = {11}.

In a similar way the remaining stuck-at faults of the AND-gate and also all single
stuck-at faults of the other gates mentioned have to be considered. (In [77] a more
general fault model of unidirectional gate faults is considered.)

Now the notion of a self-dual fault-secure circuit is introduced.
We consider a self-dual circuit fCsd implementing at its n outputs the n self-dual

Boolean functions

y1 = f1(x),
...

yn = fn(x).

The set of faults is denoted by Φ . In the presence of a fault ϕ ∈ Φ the faulty circuit
implements the Boolean function f1(ϕ,x), . . . , fn(ϕ,x).

An error at an output y j, j ∈ {1, . . . ,yn} will not be detected under the alternating
inputs x,x if we simultaneously have

f j(ϕ,x) �= f j(x) and f j(ϕ,x) �= f j(x).

In this case in the presence of the fault ϕ the output y j is erroneous under both
the inputs x and x but it remains alternating.

If such a situation cannot occur, the output y j is self-dual fault-secure.

Definition 3.14. The output y j of a self-dual circuit fCsd with the input set X is self-
dual fault-secure with respect to a fault ϕ ∈ Φ if for x ∈ X either

f j(ϕ,x) �= f j(x) and f j(ϕ,x) = f j(x),

112 3 Principles of Concurrent Checking

or
f j(ϕ,x) = f j(x) and f j(ϕ,x) �= f j(x),

or
f j(ϕ,x) = f j(x) and f j(ϕ,x) = f j(x). (3.34)

Definition 3.15. The output y j is self-dual fault-secure if y j is self-dual fault secure
for every fault ϕ ∈ Φ .

As the set of faults we consider here all single stuck-at faults.

Definition 3.16. A self-dual circuit fCsd is self-dual fault-secure if every output of
fCsd is self-dual fault-secure.

Necessary and sufficient conditions for a self-dual circuit to be self-dual fault-
secure are given in [77, 78].

By use of the following theorem an arbitrarily given combinational self-dual cir-
cuit can be transformed into a self-dual fault-secure circuit by a simple circuit trans-
formation.

Theorem 3.4. Let fCsd be a self-dual circuit given as a netlist of M gates G1, . . . ,GM

and let y j be an output of fCsd .
Then the output y j of fCsd is self-dual fault-secure with respect to all single stuck-

at faults if for i = 1, . . . ,M on all paths from the output of the gate Gi to the output
y j of fCsd the parity or the modulo-2 sum of inverters is equal.

Proof:
If no fault occurs then

y j(x) = f j(x) �= f j(x) = y j(x)

for x ∈ X is valid.
If a single stuck-at fault ϕ is only stimulated by x (and not by x) we have

f j(x) = f (ϕ,x).

The fault is detected if f j(x) �= f (ϕ,x). For f j(x) = f (ϕ,x) no error occurs at the
output y j.

If ϕ is only stimulated by x, the considerations are similar.
Let us now assume that both x and x stimulate ϕ . Let Gi(x) = 0. Then, according

to Theorem 3.3 we have
Gi(ϕ,x) = Gi(ϕ,x) = 1.

In the notation of the D-algorithm [79], a D (1 instead of 0) has to be propagated by
x and by x to the output y j.

If the parity or the modulo-2 sum of the inverters on all the paths from Gi to y j is
even, D is propagated to y j, changing for x and also for x the correct output value 0
to the erroneous value 1. This is in contradiction to y j(x) �= y j(x) and it is impossible

3.8 Self-Dual Error Detection 113

that simultaneously f j(x) �= f j(ϕ,x) and f j(x) �= f j(ϕ,x) are valid. Either the fault
will be detected or no error occurs at the output y j. If the parity or the modulo-2 sum
of the inverters on all the paths from Gi to y j is odd, D is propagated to y j, changing
for x and also for x the correct output value 1 to the erroneous value 0, which is also
in contradiction to y j(x) �= y j(x).

Now we describe a simple method for the transformation of an arbitrarily given
self-dual circuit fCsd into a self-dual fault-secure circuit fCf s . In the transformed self-
dual fault-secure circuit fCf s the parity of inverters on all paths from the output of a
gate Gi to a circuit output y j is equal.

As previously described we assume that fCsd has the n outputs y1, . . . ,yn and is
given as a netlist of M gates G1, . . . ,GM .

The transformation of a given self-dual circuit into a self-dual fault-secure circuit
consists of the following steps:

1. Every gate Gi is duplicated in the gates G0
i and G1

1.
2. If the output of the gate Gk is directly connected to a circuit output yl , we connect

the output of G0
k to yl . If the output of the gate Gk is connected to the circuit output

yl via an inverter, we connect the output of G1
k to yl . (If, for instance, a NOR-gate

is connected to a circuit output, we interpret this connection as a connection via
an inverter).

3. If the output of a gate Gk is directly connected to an input of a gate Gl , then we
connect the output of G0

k with the corresponding input of G0
l and the output of

G1
k with the corresponding input of G1

l . If the output of a gate Gk is connected
via an inverter to an input of a gate Gl , then we connect the output of G0

k with
the corresponding input of G1

l and the output of G1
k with the corresponding input

of G0
l .

4. All gates not connected to a circuit output are deleted (step by step).

The described circuit transformation is very similar to the circuit transformation
already described in [19]. The transformation in [19] guarantees that every single
stuck-at fault of the transformed circuit results in an unidirectional error at the circuit
outputs, which can be detected by a Berger code checker.

Now we illustrate the described method using an example of a self-dual circuit
shown in Fig. 3.49.

2
1

10

4

3

9

6

8

x1

x2

x3

y1

y2

7

5

Fig. 3.49 Example of a self-dual circuit

114 3 Principles of Concurrent Checking

The circuit consists of 10 gates numbered from 1 to 10. The only gates for which
there are two different paths to a circuit output are the gates G1 and G7.

The paths p1
1 and p2

1 from G1 to the output y1 are

p1
1 = G1G2G3G4 and p2

1 = G1G5G6G3G4.

The modulo-2 sum of inverters is 1 for p1
1 and 0 for p2

1.
The paths p1

7 and p2
7 from G7 to the output y1 are

p1
7 = G7G6G3G4 and p2

7 = G7G8G4.

The modulo-2 sum of inverters is 0 for p1
7 and 1 for p2

7.
Now we duplicate for i = 1, . . . ,10 every gate Gi of the original circuit of

Fig. 3.49 in two gates G0
i and G1

i in Fig. 3.50.
Since in Fig. 3.49 the gate G4 is connected to the output y1 via an inverter, in

Fig. 3.50 G1
4 is connected to the output y1 and G0

4 is not connected to a circuit
output.

In the original circuit G3 is directly connected to G4. Therefore in Fig. 3.50 G0
3

is connected to G0
4 and G1

3 to G1
4.

In Fig. 3.50 G1
6 is connected to G0

3 and G0
6 is connected to G1

3 since in Fig. 3.49
G6 is connected via an inverter to to G3.

The other duplicated gates shown in Fig. 3.50 are connected in a similar way.
The gates G0

4, G0
3, G0

2, G1
6, G1

5, G0
8, G1

10, G1
9 are not connected to any circuit output

and removed.
The original non-self-dual fault-secure circuit of Fig. 3.49 consists of 10 gates

compared to the 12 gates of the self-dual fault-secure circuit of Fig. 3.50.

1

0

3

0

1

0

1

1 1

02

2

4

1

y2

05

5
1

1

0

6

6

0
8

4

1

x3

8

1

0

10

10

1

0

1

0

9

9

3

7

7

y1

x1

x2

Fig. 3.50 Transformation of the example of Fig. 3.49 into a self-dual fault-secure circuit

3.8 Self-Dual Error Detection 115

The gates G1 and G7 are duplicated in G0
1, G1

1 and G0
7, G1

7 respectively.
In the transformed circuit of Fig. 3.50 there are single paths from all the dupli-

cated gates G0
1, G1

1, G0
7, G1

7 to the circuit output y1.
A similar transformation can be used for transforming an arbitrarily given com-

binational circuit into a circuit for which all single gate faults, including all single
stuck-at faults, result in unidirectional faults at the circuit outputs [19].

In this section it was shown how the method of error detection using self-dual
Boolean functions can be implemented.

Alternating inputs have to be applied to the self-dual circuit. Under alternating
inputs the circuit outputs of these self-dual circuits are alternating. If, due to a fault
in the self-dual circuit or due to stuck-at faults at the input lines the outputs are not
alternating, a fault is detected.

Since for error detection always alternating inputs are applied, time redundancy
is 100%, and the described method can be applied if time is not critical as, for
instance, in mechanical control systems.

Two different methods for the transformation of an arbitrarily given combina-
tional circuit in a self-dual circuit were described. It was assumed that the circuits
were given as a netlist of gates.

In the first method (known for a long time) an additional input variable is added
and the self-dual circuit is functional completely specified. The optimization of the
self-dual circuit is reduced to the optimization of a completely specified Boolean
function.

In the second method a complementary circuit is added to the original circuit
such that the componentwise XOR-sums of the outputs of the original circuit and of
the complementary circuit are arbitrary self-dual functions.

It was shown that for a given functional circuit there are many different possibil-
ities to determine a complementary circuit that can be utilized for circuit optimiza-
tion. This remains a challenging synthesis problem that has not yet been solved by
the available synthesis tools. Some heuristical solutions based on the netlist of the
original circuit were described in this section.

Error detection by self-dual parity and self-dual duplication was considered in
more detail.

For error detection by ordinary duplication and comparison the original circuit
and the duplicated circuit have to be separately implemented. This is different for
self-dual duplication. Since the original circuit and the complementary circuit im-
plement completely different functions, a joint implementation of both these circuits
can be accomplished with a considerable reduction of the necessary area and a small
reduction in the error detection probability.

Self-dual fault-secure circuits were considered at the end of this chapter. It was
shown how a self-dual circuit, given as a netlist of gates, can be transformed into a
self-dual fault-secure circuit by a simple circuit transformation.

It was mentioned that self-dual circuits can be operated in a fast mode without
error detection and no reduction in speed, a slow error detection mode with alter-

116 3 Principles of Concurrent Checking

nating inputs and a self-test mode where only in the test mode alternating inputs are
applied and no test responses had to be stored.

3.9 Error Detection with Soft Error Correction

In this section we show how error correction of soft errors, which are directly in-
duced by radiation in the memory elements, and error detection by use of systematic
codes for the errors caused by transient faults in the combinational parts of the cir-
cuit can be combined.

The rapidly shrinking dimensions of VLSI make it possible to design incredibly
small chips. This trend of reduction in the size of transistors will continue at least in
the near future.

However, because of the rapidly shrinking transistor sizes the number of transient
faults in these small chips induced by radiation (not only in airplanes, but already
at sea level), α-particles, crossover, electromagnetic fields and other reasons will
dramatically increase in the near future.

A transient fault in the combinational part of the circuit will be reflected in the
behavior of the system if an erroneous value is memorised in a latch or flip-flop
of a register. This is only the case if logic, electrical and timing conditions are ful-
filled [16].

The number of soft errors directly generated in the latches is about 20–40 times
higher than the number of errors in the latches caused by transient faults in the
combinational parts of the circuit [80].

Since the soft errors generated directly in the memory elements are so frequent
in the evolving nano-technology of the near future, the applicability of traditional
error detection methods will be limited. The resulting frequent error indications and
the associated numerous interruptions of normal operation for frequent restarts of
the system are intolerable for many applications.

To overcome this problem we propose in this section to combine fault toler-
ance for soft errors generated directly in the memory elements and error detec-
tion for the errors caused by transient faults in the combinational parts of the
circuit.

The memory elements, and not the circuit itself, are duplicated and the soft errors
directly induced in the memory elements are corrected by use of C-elements. Errors
due to transient faults in the combinational part of the circuit are checked by error-
detecting codes. The correction logic is included in the error detection.

3.9.1 Description of the Method

Now we describe how according to [81] the correction of soft errors in memory
elements can be combined with error detection.

Soft errors in latches or flip-flops can be directly induced by radiation or caused
by transient faults in the combinational part of the circuit.

3.9 Error Detection with Soft Error Correction 117

D
Q

Q
clock

Fig. 3.51 D-latch

For error correction of soft errors directly induced in the memory elements the
memory elements are duplicated and serially connected to C-elements [32]. All the
other errors are checked by an error detection circuit.

Figure 3.51 shows a D-latch. If the clock signal clock = 1, the value D of the
data input determines the state of the latch and the latch is immune with respect to
radiation-induced errors in its state.

If the clock signal clock = 0, the state of the latch is disconnected from its input
and is vulnerable to radiation-induced errors.

Thus we can expect that in the case of a soft error the state of the latch is correct
in the first half of the clock cycle (for clock = 1) and erroneous in the second half of
the clock cycle (for clock = 0).

If the latch is now duplicated, we can assume in the case of a soft error for clock
= 1 that both of the duplicated latches are in the correct state and that for clock = 0
at most one of them is in an erroneous state.

To correct the erroneous value in one of the latches, the outputs of the duplicated
latches are connected to a C-element with two inputs and one output [80].

A possible implementation of a C-element is shown in Fig. 3.52 with the input-
output behavior given in Table 3.8.

If the two inputs yi, y′i are equal, yi = y′i = y the output ycorr
i of the C-element

is y. If the two inputs are not equal, yi �= y′i, the C-element outputs its previous
output value.

z

i

y i

y i
corr

Vdd Vdd

Gnd Gnd

y

Fig. 3.52 Implementation of a C-element

118 3 Principles of Concurrent Checking

Table 3.8 Input-output behavior of C-element

previous output yi y′i ycorr
i

– 0 0 0
0 0 1 0
1 0 1 1
0 1 0 0
1 1 0 1
– 1 1 1

error

c (x)

C
or

re
ct

or
1

C
or

re
ct

or
2

corry

corrc(y)

corrc (x)

f
C

mx n

R1

R2
y

y

Pr
p

c(x)
R

R

3

4

n

Gen

p

p

C
om

p
signal

Fig. 3.53 Error correction combined with error detection for a systematic block code

Since in the case of a soft error in a latch the states of the duplicated latches
in the first half of the clock cycle are correct and equal and since they are dif-
ferent in the second half of the clock cycle the soft error is corrected by the
C-element.

Different implementations of C-elements are described for instance in [82, 83].
Figure 3.53 shows how error detection by systematic codes for transient faults in

the combinational part of the circuit can be combined with error correction of soft
errors in the latches or registers.

The combinational part fC has m inputs x = (x1, . . . ,xm) and n outputs y =
(y1, . . . ,yn) and implements at its outputs the n Boolean functions of length m

y1 = f1(x),
...

yn = fn(x).

The outputs of fC are duplicated in y = y1, . . . ,yn and y′ = y′1, . . . ,y
′
n and captured

in the two n-bit latches R1 and R2.

3.9 Error Detection with Soft Error Correction 119

For i = 1, . . . ,n the i-th components yi, y′i of the duplicated outputs of R1 and R2

are connected to a C-element Ci, correcting yi, y′i as ycorr
i . The corrector Corrector1

consists of n C-elements C1, . . . ,Cn.
The generator Gen determines the p check bits

c(ycorr) = c1(ycorr), . . . ,cp(ycorr)

of the considered systematic block code from the n corrected information bits
ycorr

1 , . . . ,ycorr
n .

The predictor Pr determines the check bits c(x) = c1(x), . . . ,cp(x) from the inputs
variables x = (x1, . . . ,xm).

The check bits c(x) = c1(x), . . . ,cp(x) at the output of the predictor Pr are dupli-
cated in

c(x) = c1(x), . . . ,cp(x)

and
c′(x) = c′1(x), . . . ,c

′
p(x).

The duplicated check bits c(x) and c′(x) are stored in the p-bit latches R3 and R4.
For j = 1, . . . , p the components c j and c′j of the latches R3 and R4 are con-

nected to the j-th C-element Cj of the second corrector Corrector2 and corrected as
ccorr

j (x).
The corrected check bits

ccorr(x) = ccorr
1 (x), . . . ,ccorr

p (x)

and
c(ycorr) = c1(ycorr), . . . ,cp(ycorr)

are compared by a (self-checking) comparator Comp.
Let us now assume that a radiation-induced error occurs in the i-th latch of R1.

Then for clock = 1 the states of both the i-th latches in R1 and R2 are equal and
correct.

For clock = 0 the state of the i-th latch of R1 is erroneous and different from the
state of the i-th latch of R2. The error is corrected by the i-th C-element Ci of the
corrector Corrector1.

Similarly, all the other (multiple) soft errors in the latches are corrected either by
the first corrector Corrector1 or by the second corrector Corrector2 as long as only
one of the corresponding duplicated latches is faulty.

Let us now consider a transient fault in the combinational part fC. A transient
fault in the combinational part fC may result in a soft error that changes the state of
the i-th latches in both R1 and R2. Since the states of the i-th latches in both R1 and
R2 are equal and erroneous they are not corrected by the i-th C-element.

If the error is detectable by the considered systematic code, the error is detected
by comparing the check bits c(ycorr) and ccorr(x).

120 3 Principles of Concurrent Checking

Also transient faults in the predictor Pr, the correctors Corrector1, Corrector2
and the generator Gen are detected if they are propagated to their outputs and
latched.

Soft errors directly induced in the latches by radiation are about 20–40 times
more frequent than soft errors resulting from transient faults in the combina-
tional part.

If the soft errors directly induced in the registers would not be corrected, the
functional mode of the circuit fC would be interrupted too often by an error signal.

Correcting the soft errors frequently induced directly in the latches makes it pos-
sible to detect the transient faults generated in the combinational part of the circuit.

As an example of the proposed method we now consider error detection by a
parity code as shown in Fig. 3.54.

The parity predictor Pr determines a single parity bit P(x). The parity predictor
Pr can be designed as a serial connection of the combinational circuit fC and an
XOR-tree, which is optimized by an available synthesis tool.

The parity bit P(x) is duplicated in P(x) and P′(x) and stored in two latches L3

and L4.
The outputs of the latches L3 and L4 are connected to the corrector Correc-

tor2, which consists of a single C-element. The corrected parity P(x) is denoted
by Pcorr(x).

The generator Gen is an XOR-tree generating at its outputs P(ycorr).
The comparator for comparing Pcorr(x) and P(ycorr) is a single XOR-gate. If a

two-bit output is desired, no comparator is needed.
If the output of the parity predictor Pr is not duplicated and if the two latches L3,

L4 and the connected C-element are replaced by a single latch L, the error correct-
ing/detecting circuit is simplified. The simplified error correcting/detecting circuit
for a parity code is presented in Fig. 3.55.

A soft error in the latch L in Fig. 3.55 will not be corrected but detected by
comparing P(x) and P(ycorr).

P(x)

1 corry

P (x)

corr
P (x)

corrP(y)

f
C

mx n

R1

R2
y

y

Pr

P(x)
L

L

3

4

n

C
om

p error
signal

1

C
−

el
em

en
t

1

1

C
or

re
ct

or

Fig. 3.54 Error correction combined with error detection for a parity code

3.9 Error Detection with Soft Error Correction 121

L

1 corry

corrP(y)

corrP (x)

f
C

mx n

R1

R2
y

y

Pr

n

1

1

P(x)
1

C
or

re
ct

or

Fig. 3.55 Simplified error correction combined with error detection for a parity code

With a word length n of the n-bit latches R1 and R2 only 1 out of 2n+1 soft errors
will not be corrected but will be, as already pointed out, detected. Thus, for n = 32
only 1 out of 65 soft errors induced directly in the latches will not be corrected.

Using the described method of error detection with soft error correction for the
most frequent errors, error detection will remain a useful method for circuits with a
high soft-error rate of errors directly induced in the latches.

It was demonstrated in this section how error correction for soft errors directly
induced in the memory elements can be beneficially combined with error detection
for errors caused by transient faults in the combinational parts of the circuit by
systematic codes.

Only the memory elements, and not the complete circuit, were duplicated for
correction. Since soft errors can be expected to occur only in the second half of the
cycle time in one of the duplicated memory elements they are corrected by two-input
C-elements.

The number of soft errors directly induced in the latches is about 20–40 times
higher than the number of errors in the latches caused by transient faults in the
combinational part of the circuits. Therefore, most of the errors are corrected.

Only the relatively seldom errors due to transient faults in the combinational part
have to be detected by an error detection circuit based on a systematic error detecting
code. Restarts of the system are therefore also relatively seldom necessary. Errors
in the correcting logic are also detected.

It was shown that the described method of error detection with soft error correc-
tion is a realistic possibility for the implementation of error detection for circuits
with a high soft error rate.

Chapter 4
Concurrent Checking for the Adders

In this chapter it will be described how the general principles of concurrent checking
can be applied for the design of self-checking adders.

Adders are examples of regular circuits built up by 1-bit adder cells. The inter-
nal structure of adders is well known and functionally they can be described by
simple equations for the sum and carry bits. Therefore, the general methods for
concurrent checking as presented in Chapter 3 of this book can be adapted to the
internal structure of the different adder types. Also the adder cells and the inter-
nal structure of the adders can be modified to ease the design of error detection
circuits.

Different possibilities of adaptation of the general error detection methods to
self-checking adder designs, the modification of the internal structure for the com-
putation of the sum and carry bits and the modification of the adder cells will be
demonstrated in this chapter for the different adder types.

A high error detection probability for all errors caused by single stuck-at faults
and for soft errors directly induced in the registers combined with a small area over-
head and a short delay for the computation of the sum bits are the challenging design
goals.

The most interesting concrete results described in this chapter are as follows:

• It will be demonstrated how the general method of code-disjoint partial dupli-
cation with parity checking for the non-duplicated part can be efficiently used
for the design of self-checking adders. This will be shown for carry look-ahead
adders, carry skip adders and carry select adders.

• A new type of adder, the sum bit-duplicated adder, will be introduced and it will
be shown how this sum bit-duplicated adder can be used for the design of self-
checking carry look-ahead and carry select adders with soft error detection in the
output registers.
It will be explained that by use of this sum bit-duplicated adder, almost the same
error detection probability as duplication and comparison, but with a lower area
overhead can be achieved for partially duplicated adders.

• It will be shown how the already existing functionally redundant parts of carry se-
lect adders and the carry look-ahead adders which were implemented to improve

123

124 4 Concurrent Checking for the Adders

the speed of the adders without error detection can be efficiently exploited to
achieve a small additional area overhead for self-checking designs.

• It will be described how the area of a self-checking carry select adder can be
reduced by replacing the duplicated adder blocks for the carry-in signals 1 by
simple Add1-circuits.

The best possible state-of-the-art error detection circuits for the different adder
types will be presented in this chapter.

4.1 Basic Types of Adders

In this section the different types of adders without concurrent checking will be
described in brief.

Ripple adders, carry look-ahead adders, carry skip adders and carry select adders
will be considered.

In a carry ripple adder the delay for the computation of the most significant sum
bit is high. The most significant sum bit can only be computed if the carry signals
of all the preceding adder cells have already been determined. It will be shown how
this delay can be significantly reduced by use of a “fast ripple adder” for which the
carry signals of the adder cells are split into two different carry signals and for which
the delay is the delay of a single NAND-gate per adder cell.

In a carry look-ahead adder the carry-in signals of the adder cells are computed
in a special look-ahead unit. The hierarchical structure will be explained for this
look-ahead unit.

In a carry skip adder the carry-in signal of an adder block may skip the block if
all the propagate signals of the adder cells of this block are equal to 1. Carry skip
adders with constant and variable block sizes will be presented.

It will be explained how carry select adders with duplicated adder blocks for both
the carry-in signals 0 and 1 are designed and that the adder blocks for the carry-in
signal 1 can be replaced by much simpler Add1-circuits.

Addition is the most frequent and most important operation in digital computers.
With an n-bit adder two binary-encoded n-bit operands a = (a0, . . . ,an−1) and b =
(b0, . . . ,bn−1) are added to form the n-bit sum s = (s0, . . . ,sn−1).

The least significant bits (LSB) of the operands and the sum are a0, b0 and s0 re-
spectively. The corresponding most significant bits (MSB) are an−1, bn−1 and sn−1.

For an n-bit adder the n+1-bit carry vector c is denoted by c = (c−1,c0, . . . ,cn−2,
cn−1) with the carry-in signal c−1 = cin and with the carry-out signal cout = cn−1.

For i = 0, . . . ,n− 1 the i-th sum bit si and the i-th carry bit ci are functionally
determined as:

si = ai ⊕bi ⊕ ci−1 (4.1)

ci = aibi ∨ (ai ∨bi)ci−1 = (4.2)

= aibi ∨ (ai ⊕bi)ci−1.

4.1 Basic Types of Adders 125

The generate signal gi and the propagate signal pi are defined as

gi = aibi (4.3)

pi = ai ⊕bi. (4.4)

A carry signal ci will be generated in the i-th bit position from the operand bits ai

and bi if the generate signal gi = aibi is equal to 1. The propagate signal pi = ai⊕bi

determines whether the carry signal ci−1 of the (i−1)-th position will be propagated
to ci or not.

By use of the propagate and generate signals the i-th carry signal ci can be ex-
pressed as:

ci = gi ∨ pici−1. (4.5)

A 1-bit full adder that implements the equations (4.1) and (4.2) is shown in
Fig. 4.1.

For this adder the incoming carry ci−1 = 1 is not propagated to the outgoing carry
ci if ai = bi = 1. In this case we have pi = ai ⊕bi = 1⊕1 = 0. But for ai = bi = 1
the generate signal gi is equal to 1, gi = aibi = 1∧ 1 = 1, and although pi = 0, ci

remains correct.
In this section concurrent checking of the following types of adders is considered:

• carry ripple adders,
• carry look-ahead adders,
• carry skip adders

and
• carry select adders.

First we briefly describe these four types of adders without error detection. Here
we always assume that the word length of the operands and of the resulting sum
is n. A more detailed description of different adders can be found, for instance,
in [84, 85, 86, 87].

pi

gi

ci
carry−out

si sum−bit

ai bi

ci−1
carry−in

Fig. 4.1 1-bit full adder

126 4 Concurrent Checking for the Adders

In a carry ripple adder the delay for the computation of the most significant sum
bit is high. The most significant sum bit can only be computed if the carry signals
and the sum bits of all the preceding adder cells have already been determined. It
will be shown how this delay can be significantly reduced by use of a “fast ripple
adder” for which the carry signals of the adder cells are split into two different carry
signals.

The hierarchical structure of the look-ahead unit will be explained for carry look-
ahead adders.

Carry skip adders with constant and variable block sizes will be presented.
Traditional carry select adders with duplicated adder blocks for both the carry-in

signals 0 and 1 and carry select adders where the blocks for the carry-in signal 1 are
replaced by much simpler “Add1-circuits” will be described.

Carry Ripple Adder

The carry ripple adder is conceptually the simplest implementation of binary addi-
tion. A carry ripple adder consists of n 1-bit full adders cells Ai chained one after
another as shown in Fig. 4.2.

For i = 1, . . . ,n−1 the carry-in signal ci−1 of the i-th adder cell Ai is the carry-out
signal of the preceding adder cell Ai−1.

As an example of adder cells the 1-bit full adder of Fig. 4.1 can be used. The
number of adder cells corresponds to the length of the operands.

The main advantage of a carry ripple adder is its simplicity and the relatively low
area needed for its implementation.

The main disadvantage of the carry ripple adder is the high delay for the com-
putation of the most significant sum bit sn−1. For i = 0, . . . ,n−1 the sum bit si and
the carry-out signal ci can only be computed by the adder cell Ai when the carry-out
signal ci−1 is already determined by the preceding adder cell Ai−1.

The carry propagation path (shown in Fig. 4.2 as a thick line) goes through all
(n) adder cells.

The propagate signals pi, i = 0, . . . ,n− 1, of all the adder cells are determined
directly from the input operands a and b at the same time. In the first adder cell
A0 shown in Fig. 4.1 the carry-out bit c0 is ready after three gate delays. In every
adder cell Ai for the determination of ci two gate delays are added and cn−2 which is
needed for the computation of the most significant sum bit sn−1 is determined after

inc A0
0c

s0

0a b0

A1

s1

c1

a1 b1

sn−2

An−2
3n−

n−2 b

sn−1

An−1
cn−2

n−1 b

cout

carry propagation path

c

a 2n− a 1n−

Fig. 4.2 Carry ripple adder

4.1 Basic Types of Adders 127

−1

is

iA +1iA

si +1

C4i

C3i

C2 i +1

C1 i +1

carry propagation path

−1

iC2

C1i

ai bi
bi+1ai+1

Fig. 4.3 “Fast” ripple adder cells

3 + (n− 2)× 2 gate delays. The most significant sum bit sn−1 itself is computed
by XORing the carry signal cn−2 with the propagate signal pn−1 of the last adder
cell An−1.

To reduce the delay of a ripple adder two special adder cells as specified in [88]
can be used. The resulting adder is called a fast ripple adder. Two successive adder
cells of a “fast” ripple adder are shown in Fig. 4.3.

The main difference to a conventional adder is that the single carry signal c j of
a conventional ripple adder cell A j is replaced by two carry signals C1 j and C2 j

where j is even and by C3 j and C4 j where j is odd for a fast ripple adder:

c j =
{

C1 j ∧C2 j for j even
C3 j ∧C4 j for j odd

(4.6)

The adder is fast since the delay of the carry propagation is equal to the delay of a
single NAND-gate per bit only.

Carry Look-Ahead Adder

In a carry look-ahead adder, as shown in Fig. 4.4, the carry-in signals for the adder
cells and the carry-out signal of the n-bit adder are not determined by the corre-
sponding preceding adder cells but by a special carry look-ahead unit. The adder
cells A0, . . . ,An−1 of the carry look-ahead adder calculate the sum bits s0, . . . ,sn−1,
the propagate signals p0, . . . , pn−1 and the generate signals g0, . . . ,gn−1 as inputs for
the carry look-ahead unit. The carry look-ahead unit determines the carry-in sig-
nals c0, . . . ,cn−2 for the adder cells A1, . . . ,An−1 and the carry-out signal cn−1 of
the n-bit adder in accordance with the input carry c−1 = cin, the propagate signals
p0, . . . , pn−1 and the generate signals g0, . . . ,gn−1 of the adder cells. The input carry
cin is already known before the addition.

The propagate signals p0, . . . , pn−1 and the generate signals g0, . . . ,gn−1 are si-
multaneously determined in all the n adder cells A0, . . . ,An−1 from the operands
a0, . . . ,an−1 and b0, . . . ,bn−1 with a single gate delay only.

128 4 Concurrent Checking for the Adders

A0 A1 An−2 An−1

carry look−ahead unit

cin

s0

a0 b0

s1

a1 b1

n−2

ba 2n−2n−

s sn−1

bn−1n−a

cout

1

1n−
p g

n−12n− 2n−
gpg

1
g

0
p

0
p

1

c0 c1 3n− 2n−c c

Fig. 4.4 Carry look-ahead adder

The carry look-ahead unit can be hierarchically designed by use of several levels
of abstraction for the propagate and generate signals. The number of the levels de-
pends on the word length n of the operands. We describe the carry look-ahead unit
for the word lengths of 4, 16 and 64 bits.

For n = 4 the carries are determined as:

c0 = g0 ∨ p0cin

c1 = g1 ∨ p1g0 ∨ p1 p0cin

c2 = g2 ∨ p2g1 ∨ p2 p1g0 ∨ p2 p1 p0cin

c3 = g3 ∨ p3g2 ∨ p3 p2g1 ∨ p3 p2 p1g0 ∨ p3 p2 p1 p0cin. (4.7)

c0 in 4.7 is directly determined by equation (4.5). For c1 we have c1 = g1 ∨ p1c0

by equation (4.5) and with c0 = g0 ∨ p0cin we conclude c1 = g1 ∨ p1(g0 ∨ p0cin) =
g1 ∨ p1g0 ∨ p1 p0cin. Similarly c2 and c3 are determined. Equation (4.7) describes a
two-level implementation of the carry signals c0, c1, c3 and c4 in accordance with
the propagate signals p0, p1, p2, p3, the generate signals g0, g1, g2, g3 and the carry-
in signal cin of the 4-bit adder. The carry signal c3 is the carry-out signal cout of the
4-bit carry look-ahead adder considered.

A carry look-ahead unit for a word length of 16 bits is shown in Fig. 4.5.
The 16-bit carry look-ahead unit is designed by use of 16 adder cells A0, . . . ,A15.

The sixteen propagate signals p0, . . . , p15 from these 16 adder cells A0, A1, . . . ,A15

4 4 44 4 4 4 4

inc

c 0 c 1 c 2 c c cc 3 4 5 6 c 7 c c c8 9 10

cout

c 11 c c c12 13 14

[0,3] [0,3] [4,7] [4,7]
p

[8,11]
g

[12,15]
gp

[8,11] [12,15]
p

P
[0,3]

G
[0,3] [4,7] [4,7]

G GP P
[8,11]

P
[8,11] [12,15] [12,15]

2. level

1. level

c 15

gp g

G

Fig. 4.5 Schematic representation of a carry look-ahead unit for 16 bits

4.1 Basic Types of Adders 129

are divided into four groups [p0, . . . , p3], [p4, . . . , p7], [p8, . . . , p11] and [p12, . . . , p15].
For each group a group-propagate signal P[i,i+3] at the second level of abstraction is
determined as:

P[0,3] = p0 p1 p2 p3

P[4,7] = p4 p5 p6 p7

P[8,11] = p8 p9 p10 p11

P[12,15] = p12 p13 p14 p15 (4.8)

Also from the sixteen generate signals g0, . . . ,g15 four group-generate signals
G[0,3], G[4,7], G[8,11] and G[12,15] of the second level of abstraction are determined as:

G[0,3] = g3 ∨ p3g2 ∨ p3 p2g1 ∨ p3 p2 p1g0

G[4,7] = g7 ∨ p7g6 ∨ p7 p6g5 ∨ p7 p6 p5g4

G[8,11] = g11 ∨ p11g10 ∨ p11 p10g9 ∨ p11 p10 p9g8

G[12,15] = g15 ∨ p15g14 ∨ p15 p14g13 ∨ p15 p14 p13g12 (4.9)

The shaded boxes in Fig. 4.5 represent the implementation of these group-
propagate and group-generate signals.

The propagate and generate signals of the second level are used to determine the
following carry signals:

c3 = G[0,3] ∨P[0,3]cin

c7 = G[4,7] ∨P[4,7]G[0,3] ∨P[4,7]P[0,3]cin

c11 = G[8,11]∨P[8,11]G[4,7] ∨P[8,11]P[4,7]G[0,3] ∨P[8,11]P[4,7]P[0,3]cin

c15 = G[11,15]∨P[11,15]G[8,11]∨P[11,15]P[8,11]G[4,7] ∨
∨P[11,15]P[8,11]P[4,7]G[0,3] ∨P[11,15]P[8,11]P[4,7]P[0,3]cin (4.10)

The carries c0, c1, c2 are implemented as in (4.7). Other groups of the carry
signals [c4,c5,c6], [c8,c9,c10] and [c12,c13,c14] are determined in the same way, but
the corresponding propagate and generate signals of the first abstraction level and
the corresponding carries c3 or c7 or c11 or cin are used. The carry c15 is the carry-out
signal cout of the 16-bit carry look-ahead adder.

For n = 64 a third level of the abstraction for the determination of the propagate
and generate signals is used. The propagate and generate signals of this level are
determined for the groups of four propagate and generate signals of the second level
and used for the implementation of the carries c15, c31, c47 and c63, where c63 is the
carry-out signal cout of the 64-bit carry look-ahead adder.

The look-ahead unit requires a large hardware overhead. However, the adder cells
Ai, i = 0, . . . ,n−1 of the carry look-ahead adder are smaller than the adder cells in
a carry ripple adder since no carry-out signal has to be implemented by the adder
cells.

130 4 Concurrent Checking for the Adders

A good description of the structure of carry look-ahead adders can be found
in [84]. Concrete implementations of the carry look-ahead unit are given, for in-
stance, in [89].

Carry Skip Adder

In a carry skip adder the adder cells are divided into groups of equal or different
size.

Figure 4.6 shows an n-bit carry skip adder.
In Fig. 4.6 the groups consisting of 4 adder cells each are represented as the

blocks B j(4), j = 1, . . . ,n/4. Within every block B j(4) the adder cells are connected
as in a carry ripple adder. The adder cells are usually implemented as 1-bit adders
as shown for instance in Fig. 4.1. The “fast” ripple adder cells of Fig. 4.3 can also
be used. If all the propagate signals of a block B j(4) are equal to 1, the carry-out
signal of the previous block B j−1(4) can bypass or skip the block B j(4) to the next
block B j+1(4) and the carry-out signal of the block B j−1(4) is the carry-in signal of
the succeeding block B j+1(4).

A simple skip logic checks whether all the corresponding propagation signals are
equal to 1. If this condition is not fulfilled, the carry-out signal of the last adder
cell of the block B j(4) is the carry-in signal of the block B j+1(4). The long carry
propagation path of a carry ripple adder can be accelerated by this simple technique.

The maximum delay of the carry skip adder is shown in Fig. 4.6 as the critical
path. On the longest path the carry signal is generated in the least significant bit
position (in the adder cell A0). It ripples through the next three adder cells of the
first block, skips over the blocks B2(4), . . . ,Bn/4−1(4) in the middle of the adder and
ripples in the last block through the first three adder cells to the cell An−1 to take
part in the determination of the most significant sum bit sn−1.

The delay of the carry skip adder is linearly dependent on the adder size n. How-
ever, this linear dependence is reduced by a factor of 1/k.

The longest critical path of the carry skip adder can be minimized if blocks of
variable sizes are used. The first and the last blocks are smaller than the intermedi-
ate blocks. Under the assumption that the 1-bit adder cell (according to Fig. 4.1)
of the block has approximately the same delay as the skip logic [85], optimum
variable block sizes can be predicted. For an n-bit carry skip adder these optimal
variable block sizes are [85]:

k → (k +1) → . . . →
→ (k + t/2−1) → (k + t/2−1) → (k + t/2−2) → . . . →
→ (k +1) → k,

where t = 2
√

n and k is the size of the smallest block.
The expected delay of the carry skip adder with variable block sizes is now a

function of
√

n. To optimize the maximum delay in real designs the block sizes
have to be experimentally determined. Starting from the expected values of the block

4.1
B

asic
Types

of
A

dders
131

n−
n−

[
 −

8,

−
5]

n−
n−

[
 −

8,

−
5]

n− n−[−4, −1]

[−8,n−
 −5]n−

4n−

4n− 2n− 1n−3n−inc

p

B (4)2

4
[4,7]

skip
c3

c7

s [4,7]

44 4

[4
,7

]
a

[4
,7

]
b

7c
skip

4
p

n−5

s

4 4 4

[−8,n−
n− −5]

a b

c 9n−

A A A A0 1 2 3

s0 s3

a0 b0 3a 3b

B (4)1

0
p p

3

c3

s

/4

skip outccn−5

c

4
p

B (4)n/4−1

nB (4)

n−1s

4
n−

a b
4

n−

1
n−

a
1

n−
b

A A A A

critical path

skip

Fig. 4.6 Carry skip adder

132 4 Concurrent Checking for the Adders

sizes these block sizes have to be varied and the maximum delay is to be determined
by use of a CAD synthesis tool.

Multi-level skip adders can also be used to further accelerate the addition [85].
Compared to the carry ripple adder the carry skip adder requires a larger imple-

mentation area. However, compared to a carry look-ahead adder the necessary area
is relatively small.

For additional information about carry skip adders we recommend [85, 89, 87].

Carry Select Adder

Carry select adders are the fastest adders. The general structure of a carry select
adder is shown in Fig. 4.7.

In the carry select adder the operands a0, . . . ,an−1 and b0, . . . ,bn−1 are divided
into groups of length k. In Fig. 4.7 the size k of every groups is 4 bits. The addi-
tion of the bits a0, a1, a2, a3 and b0, b1, b2, b3 of the first (least significant) group
is performed by the adder block B1(4). The carry-in signal of this least signifi-
cant adder block B1(4) is 0 (or in general the carry-in signal cin of the carry select
adder).

All the other 4-bit adder blocks are duplicated. In the adder blocks B0
j(4), j =

2, . . . ,n/4, the corresponding groups of operands are added with a carry-in signal 0
for all theses blocks. In the duplicated adder blocks B1

j(4), j = 2, . . . ,n/4, the groups
of operands are added with a carry-in signal 1 for all theses blocks. All the adder
blocks compute their sum bits and carry-out signals in parallel.

The first block B1(4) implements the resulting sum bits s[0,3] and the carry-out
signal c3 of the first group directly.

Let us assume that the carry-out signal c3 of the first adder block is equal to 0.
This carry signal c3 is used as the control signal of the multiplexors which select the
sum bits s0

[4,7] and the carry-out signal c0
7 of the block B0

2(4) with carry-in “0” as the
resulting sum bits s[4,7] and the resulting carry-out signal c7 of the second group. For
c3 = 1 the multiplexor selects the sum bits s1

[4,7] and the carry-out signal c1
7 of the

block B1
2(4) with carry-in “1”. In a similar way, the carry-out signal of the previous

group of adder blocks is the control signal of the corresponding multiplexors that
select the resulting sum bits and the resulting carry-out bit of the next group.

A carry select adder is very fast. Its delay is determined by the delay for the im-
plementation of the carry-out signal of the first adder block and the sum of the delays
of the multiplexors in selecting the carry-out signals of the other adder blocks.

The delay of a carry select adder can be reduced if groups of variable block sizes
are used. The first two (least significant) groups have to be of the same size. Then
the control signal of the multiplexor, which is the carry-out signal of the first block,
and both the carry-out signals of the duplicated second block as the data inputs of
this multiplexor are available at the same time. While the selection of the carry-out
signal of the second group is performed, the adder blocks of the next groups have
some additional time (equal to the delay of a multiplexor) to compute more operand

4.1
B

asic
Types

of
A

dders
133

Fig. 4.7 Carry select adder

134 4 Concurrent Checking for the Adders

bits. Therefore, the size of these groups can be larger. The optimum sizes of the
groups are dependent on the technology used and the library of the CAD tool.

Often the adder blocks are designed as carry ripple adders. But other adder
types (“fast” ripple adder, carry look-ahead adder or carry skip adder) can also be
used.

The necessary area overhead for the implementation of a carry select adder is
very large since the adder blocks are duplicated and since additional multiplexors
are used.

To reduce the necessary area overhead of the carry select adder according to [90]
the duplicated adder blocks with the carry-in signals “1” can be replaced by much
more simple Add1-circuits.

For the outputs of the adder blocks B0
j(4) (with carry-in “0”) and B1

j(4) (with
carry-in “1”) of the cary-select adder in Fig. 4.7 we have for j = 2, . . . ,n/4,

s1
4 s1

5 s1
6 s1

7 c1
7 = s0

4 s0
5 s0

6 s0
7 c0

7 +1,

s1
8 s1

9 s1
10 s1

11 c1
11 = s0

8 s0
9 s0

10 s0
11 c0

11 +1,

...

s1
n−4 s1

n−3 s1
n−2 s1

n−1 c1
n−1 = s0

n−4 s0
n−3 s0

n−2 s0
n−1 c0

n−1 +1. (4.11)

According to (4.11) the outputs of the adder blocks B0
j(4) (with carry-in “0”)

and B1
j(4) (with carry-in “1”) B1

j(4) (with carry-in “1”) arithmetically differ by 1
and the outputs of the adder block B1

j(4) (with carry-in “1”) are obtained by adding
a “1” to the outputs of the adder block B0

j(4) (with carry-in “0”). If a “1” is added

to the outputs of the adder block B0
j(4) (with carry-in “0”), the least significant bits

of these outputs are inverted from the least significant bit to the first “0”.
Thus we have, for example:

+ 1 0 1 1 0
1

1 0 1 1 0 = 0 1 1 1 0

or
+ 1 1 1 0 1

1

1 1 1 0 1 = 0 0 0 1 1

The described modification of the outputs of the blocks B0
j(4) (with carry-in “0”)

is implemented by Add1-circuits. The adder blocks B1
j(4) (with carry-in “1”) are

replaced by Add1-circuits.
Of course the inputs of the Add1-circuit replacing the adder block B1

j(4) (with
carry-in “1”) are not the corresponding operand bits but the outputs of the adder
block B0

j(4) (with carry-in “0”).
The implementation of a block of 4 bits of a carry select adder by use of an

Add1-circuit is shown in Fig. 4.8.
The Add1-circuit consists of a simple transistor logic block TLB and some

XNOR-gates. The additional delay caused by the Add1-circuits is almost negligible.
Descriptions of carry select adders can be found, for instance, in [85, 86, 87, 89].

4.2 Parity Checking for Adders 135

MUX

10

MUX

01

MUX

01

MUX

01

MUX

01

TLB

0
j"0"

Add1−circuit

adder block B (4)

[+3]a

si

i,i

0 si+1
0 si+2

0 si+3
0

ci+3
0

ci+3

si+3si+2si+1si

ci−1

b[+3]i,i

Fig. 4.8 Carry select adder by using Add1-circuit

In this section the structure of carry ripple adders, carry look-ahead adders, carry
skip adders and carry select adders without concurrent checking were described.

It was shown that the large delay for the computation of the most significant
sum bit of a carry ripple adder can be significantly reduced by use of a “fast ripple
adder” for which the delay of the carry propagation per adder cell is only the delay
of a single NAND-gate.

For carry look-ahead adders the hierarchical structure of the look-ahead unit was
explained.

Carry skip adders with constant and variable block sizes were presented and it
was discussed that the overhead for carry skip adders is between carry ripple adders
and carry look-ahead adders.

Besides the traditional carry select adders with duplicated adder blocks for the
two carry-in signals 0 and 1 carry select adders in which the adder blocks for the
carry-in signal 1 are replaced by much simpler “Add1-circuits” were described.

4.2 Parity Checking for Adders

This section considers parity checking of adders. The basic equations for parity
checking will be given. Single stuck-at faults may cause odd-bit and even-bit errors.
It will be explained that odd-bit errors in the sum bits will be detected and that
single-bit errors in the carry bits can be detected either if the carry bits are duplicated
or if carry-dependent sum adder cells are used for the adder design.

Parity checking for adders was proposed in [91]. It is based on the equation

ps = pa ⊕ pb ⊕ pc, (4.12)

where ps, pa, pb and pc are the parities of the sum s, the input operands a and b and
the carries c respectively.

136 4 Concurrent Checking for the Adders

These parities are determined as

ps = s0 ⊕ . . .⊕ sn−1, (4.13)

pa = a0 ⊕ . . .⊕an−1, (4.14)

pb = b0 ⊕ . . .⊕bn−1, (4.15)

pc = cin ⊕ c0 ⊕ . . .⊕ cn−2. (4.16)

The general structure of a parity-checked adder is shown in Fig. 4.9. The in-
put operands a = (a0, . . . ,an−1) and b = (b0, . . . ,bn−1) are supposed to be parity-
encoded. The parities pa and pb of the input operands a and b are XORed to pa⊕ pb

and added modulo 2 with the parity pc of the carries. The parity pc of the carries
is determined by an XOR-tree from the carry-in signals of all the adder cells. The
modulo 2 sum pa ⊕ pb ⊕ pc of the parities pa, pb and pc is compared with the parity
ps of the sum s. A difference indicates an error.

The necessary area overhead is relatively low. Two n-input XOR-trees and two
XOR-gates are needed.

The parity-checked adder in Fig. 4.9 is code-disjoint [92] with respect to the
parity code. All odd input errors are detected. Even input errors are not detected.

If the input operands are not parity-encoded, the corresponding parity-checked
adder is not code-disjoint and input errors are not detected. In this case the parities
pa and pb, have to be determined by two additional n-input XOR-trees as shown in
Fig. 4.10.

The main problem of parity-checked adders is that single-bit errors in the carries
could not be detected by parity checking as described till now. According to equa-
tion (4.1) a single-bit error in a carry simultaneously also causes an error in the next
sum bit. Then the parities pc and ps are simultaneously erroneous, and the parity
check according to equation (4.12) cannot detect this error.

p
a

p
b

p
c

p
a

p
b

Register A Register B

an−1 b0

Adder

Register S

sn−1s0

cin

c0

cn−2

pc

ps =
?

cin

pa pb

a0 bn−1

Fig. 4.9 Parity checking for adders

4.2 Parity Checking for Adders 137

Register A Register B

an – 1 b0 pa

pb

pbpa

bn – 1a0

Fig. 4.10 Determination of the parities pa and pb for the non-parity-encoded input operands a
and b

Up until now there were two known solutions to also detect single-bit errors in
the carries. These are duplication and comparison of the carries and the design of
carry-dependent sum adders.

1. Carry duplication: The hardware for the generation of the carries is duplicated.
Errors in the carries are detected by comparing the duplicated carries by a (self-
checking) comparator.

2. Carry-dependent sum adder: As proposed in [93, 91] special carry-dependent
sum adder cells are used. A single error in a carry signal always results in an odd
number of erroneous sum and carry bits in a carry-dependent sum adder, which
are detected by parity checking according to equation (4.12).

In a carry-dependent sum adder the sum bit si is determined by use of a special
auxiliary function fi as:

si = fi ⊕ ci (4.17)

with

fi = aibici−1 ∨aibici−1 =
= (ai ⊕bi)∨ (ai ⊕ ci−1) =
= (ai ⊕bi)∨ (bi ⊕ ci−1). (4.18)

The dependencies between fi and ci with respect to an erroneous carry-in signal
ci−1 are expressed by

Lemma 1 If the carry-in ci−1 of the adder cell Ai is erroneous, then either the
auxiliary function fi or the carry-out ci of the adder cell Ai is in error but never
both.

Lemma 1 is true due to the functional dependencies between fi, ai, bi, and ci and
it is independent of the kind of implementation of the adder cell Ai. This can be
seen from Table 4.1. If ci−1 is erroneously changed into ci−1, either fi(ai,bi,ci−1)
is different from fi(ai,bi,ci−1) or ci(ai,bi,ci−1) is different from ci(ai,bi,ci−1) but
never both. The values of fi(ai,bi,ci−1), which are different from fi(ai,bi,ci−1), and
the values ci(ai,bi,ci−1), which are different from ci(ai,bi,ci−1), are underscored in
Table 4.1.

138 4 Concurrent Checking for the Adders

Table 4.1 Functional dependencies of fi and ci in a carry-dependent sum adder for error-free
carry-in ci−1 and for erroneous carry-in ci−1

ai bi ci−1 ci−1 fi(ai,bi,ci−1) fi(ai,bi,ci−1) ci(ai,bi,ci−1) ci(ai,bi,ci−1)

0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 1 0 1 1 1 0 1
0 1 1 0 1 1 1 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 0
1 1 0 1 1 0 1 1
1 1 1 0 0 1 1 1

In this section parity checking of adders was described. The basic equations for
parity checking were given and it was explained that odd sum bit errors and also
single errors of the carry bits are detected if either the carry bits are duplicated or if
carry-dependent sum adder cells were used for the adder design.

4.3 Self-Checking Adders

In this section self-checking carry look-ahead adders, carry skip adders and carry
select adders will be described.

4.3.1 Self-Checking Carry Look-Ahead Adders

A parity-checked carry look-ahead adder with duplicated carries, a parity-checked
carry look-ahead adder with carry-dependent sum adder cells and a sum bit-dupli-
cated carry look-ahead adder will be described. The inputs are supposed to be parity-
encoded and it will be shown that all the presented designs are code-disjoint with
respect to a parity code.

• Parity-checked carry look-ahead adder with duplicated carries
Unlike a carry look-ahead adder without error detection, inverted carries are also
generated in the adder cells. These inverted carries will be compared with the cor-
responding carries generated by the look-ahead unit by means of a self-checking
two-rail checker. The original parity pc and the inverted parity of the carries pc
are determined by this two-rail checker at its outputs. The input parities of the
operands are XORed with the parity of the carries and this XOR-sum will be
compared with the parity of the sum bits for error detection.

• Parity-checked carry look-ahead adder with carry-dependent sum adder cells
Instead of duplicating all the carries in the adder cells in this design carry-
dependent sum adder cells are used. The property that for a carry-dependent

4.3 Self-Checking Adders 139

sum adder either the sum bit or both the carry-out and the sum bit of a carry-
dependent sum adder cell are simultaneously erroneous is utilized in the design.
The adder cells are divided into groups connected as ripple adders. Only for the
inputs of these groups the (partial) look-ahead unit determines the corresponding
carries, which are compared with the carry-out signals of the preceding groups.
For larger groups the number of carries which have to be generated by the partial
look-ahead unit is smaller and the necessary area will decrease but with growing
group sizes the adder will become slower. On the contrary, for smaller groups of
adder cells the delay for the computation of the most significant sum bit will be
reduced, but the necessary area increases.

• Sum bit-duplicated carry-look ahead adder
The sum bit-duplicated adder is an example of error detection by partial du-
plication. The non-duplicated part of the combinational circuit is concurrently
checked by parity prediction. The sum bits of the adder cells are duplicated
in inverse form and stored in duplicated output registers. The inputs of the
i-th adder cell Ai are the corresponding bits ai and bi of the operands and
both the carries ci and ci−1, which are supplied by the carry look-ahead unit.
The main advantage of the sum bit-duplicated adder is that all soft errors
(even or odd) directly induced in the output registers are detected, and that
the error detection capability of the sum bit-duplicated carry look-ahead adder
is almost the same as for duplication and comparison but with a lower area
overhead.

Parity-Checked Carry Look-Ahead Adder with Duplicated Carries

The first design is based on parity checking with duplicated carries as introduced
in [94]. The structure of the parity-checked carry look-ahead adder according to [94]
is shown in Fig. 4.11.

The input operands a = (a0, . . . ,an−1) and b = (b0, . . . ,bn−1) are stored in the reg-
isters A and B respectively and supposed to be parity-encoded. The corresponding
parity bits of the operands are denoted by pa and pb respectively. The carry signals
are duplicated to also detect single-bit errors in the carries. The carry look-ahead
unit generates the carry signals for the adder cells A0, . . . ,An−1, and, differently to
a carry look-ahead adder without error detection, the adder cells A0, . . . ,An−2 im-
plement the inverted carries additionally to the sum bits. The most significant adder
cell An−1 implements both the inverted carry cn−1 and the non-inverted carry cn−1.
The input carry of the adder itself is also duplicated in c1

in and c2
in.

The pairs of the duplicated carries [c1
in c2

in], [c0 c0], . . . , [cn−2 cn−2] are compared
by a self-checking two-rail checker TRC. In [94] the self-checking two-rail checker
according to [27] is used.

This self-checking two-rail checker has the property that at its two outputs the
parity pc and the inverted parity pc of its inputs are implemented, and no additional
XOR-tree is needed to determine the parity pc of the internal carries of the adder
cells.

140 4 Concurrent Checking for the Adders

p a
p b

p a
p b

p c

Register A Register B
an −1 0b

ba

bn −10a

ca
rr

y
lo

ok
−

ah
ea

d
un

it T
R

C
tw

o−
ra

il
ch

ec
ke

r
Adder

Register S

sn −10s

ps

?
=sp

=
?

cin
1

in
2c

0c
c0

1c
c1

n−3c
cn−3

n−2c
cn−2

n−1c
cn −1

pc

=
?

r2

r1

g0

p0
A0

s 0

g1

p1
A1

s 1

g

pn

n

−2

−2
An−2

An−1

n−2

n−1

s

s

pp

Fig. 4.11 Parity-checked carry look-ahead adder with duplicated carry signals

In accordance with equation (4.12), the parities pa, pb and pc are XORed and
compared with the parity ps of the sum bits s = (s0, . . . ,sn−1), which is implemented
by an XOR-tree.

The carry look-ahead unit in the parity-checked carry look-ahead adder with the
duplicated carries is the same as for an ordinary carry look-ahead adder as described
in Section 4.1.

The adder cells Ai for i = 0, . . . ,n− 2 and An−1 are shown in Fig. 4.12. For i =
0, . . . ,n− 2 the adder cell Ai implements (Fig. 4.12a) the propagate signal pi and
generate gi signals (i = 0, . . . ,n−2) as inputs for the carry look-ahead unit, the sum
bit si and the inverted carry-out ci. The propagate signal pi is also used in the adder
cell for the generation of the sum bit si and the inverted carry-out bit ci. The generate
signal gi is not shared with any other signal. The most significant adder cell An−1

(Fig. 4.12b) implements the sum bit sn−1, the carry-out bit cn−1 and the inverted
carry-out bit cn−1. Also in this adder cell the propagate signal pn−1 is used for the
determination of the sum bit sn−1 and both the inverted and non-inverted carry-out
bits. The carry-out bit cn−1 is the output carry of the adder.

The parity-checked carry look-ahead adder with duplicated carries detects the
following errors:

• Odd errors in the input operands:
An input error changes the correct input operands a and b into the erroneous
operands a′ and b′. Since the error is assumed to be odd, we have pa ⊕ pb �=

4.3 Self-Checking Adders 141

(b) last adder cell An−1
(i = 0,..., n−2)

(a) Aiadder cell

biaici–1

gi

pi

si

ci

bn–1an–1

cn–1

cn–1

cn–2

sn–1

from look−ahead
unit

to
 lo

ok
−

ah
ea

d
un

it

from look−ahead
unit

pn–1pi

Fig. 4.12 Implementation of the cells of the parity-checked carry look-ahead adder in Fig. 4.11

pa′ ⊕ pb′ . The sum bits s′0, . . . ,s
′
n−1 and the carry-bits c′0, . . . ,c

′
n−1 and the inverted

carry bits c′0, . . . ,c
′
n−1 are determined for the erroneous operands a′ and b′. We

have p′s = pa′ ⊕ pb′ ⊕ pc′ �= pa ⊕ pb ⊕ pc′ , and the error is detected and the adder
is code-disjoint.

• All stuck-at faults in the carry look-ahead unit:
These faults change the internal carry signals c0, . . . ,cn−2 generated by the
look-ahead unit and they are detected by comparing the carry pairs [c0 c0], . . . ,
[cn−2 cn−2] with the two-rail checker T RC.

• All single stuck-at faults in the adder cells:

– faults in an adder cell Ai of Fig. 4.12a
Only faults in the XOR-gate generating the propagate signal pi can result in
multiple errors at the outputs pi, si and ci.
Let us assume that pi is erroneous. Since we have si = ai ⊕ pi and since the
operation ⊕ is uniquely invertible also the sum bit si is simultaneously er-
roneous. The carry signal ci and the inverted carry signal ci are functionally
determined by the erroneous propagation signal pi, the correct operand bits ai,
bi and the incoming carry bit ci by the carry look-ahead unit and in the adder
cell Ai. They are either both erroneous or both correct. If the carry signals are
both correct, only the sum bit si is erroneous and this error will be detected by
parity checking.
If both the carries ci and ci are erroneous, the sum bit si+1 = ai+1 ⊕bi+1 ⊕ ci

is also erroneous. Since now si, si+1 and ci are simultaneously erroneous the
error is detected by parity checking.
Every other single stuck-at fault can result in a single-bit error of one of the
output signals gi, si or ci only.
Errors of ci or ci are detected by comparing the carry signals generated by
the look-ahead unit and the inverted carry signal generated by the adder cells.

142 4 Concurrent Checking for the Adders

Errors of si are detected by parity checking and errors of gi if they for the
first time result in an erroneous carry signal of the look-ahead unit. Then this
erroneous carry signal generated by the look-ahead unit is compared with the
correct inverted carry signal from the corresponding adder cell.

– faults in the most significant adder cell An−1 of Fig. 4.12b
Similarly to the adder cell Ai of Fig. 4.12a only faults in the XOR-gate gen-
erating the propagate signal pn−1 can result in multiple errors at the out-
puts pn+1, sn+1, cn+1 and cn+1. Stuck-at faults at the inputs/output of the
XOR-gate, which implements the propagate signal pn−1, always results in
an erroneous sum bit sn−1. The erroneous sum bit sn−1 changes the par-
ity ps of the sum. The carry-out bit cn−1 and the inverted carry-out bit
cn−1 are not used for the determination of the parity pc of the internal car-
ries and do not influence pc (see Eq. 4.16). Therefore, the stuck-at faults
at the inputs/output of the XOR-gate, which implements the propagate sig-
nal pn−1, are detected by the comparison of ps with pa ⊕ pb ⊕ pc. This
comparison also checks the XOR-gate for the implementation of the sum
bit sn−1.
The stuck-at faults at the inputs/output of the gates for the implementation of
the carry-out bit cn−1 and for the implementation of the inverted carry-out bit
cn−1 are detected by the comparison of cn−1 with cn−1.

• all single stuck-at faults in the XOR-tree for the implementation of ps and of the
two XOR-gates for the implementation of pa⊕ pb⊕ pc are detected by comparing
ps with pa ⊕ pb ⊕ pc.

• all single stuck-at faults of the two-rail checker TRC are detected since the two-
rail checker according to [27] is self-checking.

• odd errors in the sum bit register S are detected
Since the register S is parity-protected only odd errors can be detected.

Compared to a carry look-ahead adder without error detection the additional
hardware for a parity-checked self-checking carry look-ahead adder consists of the
following:

• Two XOR-trees for determination of the input parities pa and pb of the operands
a and b if the inputs are not yet parity-encoded,

• 3×(n+1) additional two-input gates for the implementation of the inverted carry
signals in each of the n adder cells,

• a self-checking two-rail checker to compare the duplicated carries (two n-bit
words have to be compared),

• an XOR-tree for the implementation of the parity ps of the n sum bits,
• two XOR-gates for the implementation of the XOR-sum of the paritites pa, pb

and pc.

The propagate signals are simultaneously used for the implementation of the sum
bits and the inverted carry-out bits in the adder cells. Because of this additional fan-
out the computation of the sum s in the parity-checked carry look-ahead adder can

4.3 Self-Checking Adders 143

be expected to be somewhat delayed compared to a carry look-ahead adder without
error detection. But this delay is negligible. Parity checking and the comparison
of the duplicated carries by the two-rail checker are performed with some latency
compared to the calculation of the sum s.

Parity-Checked Carry Look-Ahead Adder with Carry-Dependent
Sum Adder Cells

The next design is also based on parity checking, but instead of duplicated carries
carry-dependent sum adder cells are used as proposed in [95]. The structure of the
parity-checked carry look-ahead adder according to [95] is shown in Fig. 4.13.

The input operands a = (a0, . . . ,an−1) and b = (b0, . . . ,bn−1) are again parity-
encoded with the corresponding parity bits pa and pb. The adder cells are divided
into groups of adder cells which are serially connected to carry ripple adders. In
Fig. 4.13 every group of these adder cells consists of four carry-dependent sum
adder cells. The duplicated carry-in signal c1

in of the adder is the carry-in signal for
the adder cell A0 of the first group. The carry-in signals for other groups of the
adder cells are implemented by a partial carry look-ahead unit. The partial carry
look-ahead unit determines not every carry signal, but only every fourth carry c′3,
c′7, . . . ,c

′
n−5, c′n−1. The inputs of the partial carry look-ahead unit are the duplicated

carry-in signal c2
in of the adder and for i = 0, . . . ,n−1 the propagate signals pi and

the generate signals gi of the adder cells Ai.
Every adder cell Ai also implements the sum bit si and the carry-out bit ci.
The carries c′3, c′7, . . . ,c

′
n−5, c′n−1 implemented by the partial carry look-ahead

unit and the carries c3, c7, . . . ,cn−5, cn−1 implemented by the adder cells A3,
A7, . . . ,An−5, An−1 are compared by a self-checking two-rail checker T RC accord-
ing to [27]. One of the outputs, say r2, of the two-rail checker TRC implements the
parity of the carries c3, c7, . . . ,cn−5. The comparison of the most significant car-
ries is separately implemented. The output r2 of the two-rail checker T RC is added
modulo 2 with the other non-duplicated carries to form the parity pc of the internal
carries of the adder cells. The parities pa, pb and pc are XORed and compared with
the parity ps of the sum bits s = (s0, . . . ,sn−1). The parity ps is implemented by an
XOR-tree.

A possible implementation of a carry-dependent sum adder cell Ai of the de-
scribed parity-checked carry look-ahead adder is given in Fig. 4.14. The adder cell
Ai implements the propagate signal pi, the generate signal gi for the partial carry
look-ahead unit, the carry-out bit ci and the sum bit si (si = fi ⊕ ci). The adder cell
consists of two separate subcircuits – one for the implementation of pi, gi and fi and
one for the implementation of ci. Every one of these subcircuits can be separately
optimized to reduce the necessary area overhead. A joint implementation of these
subcircuits can also be considered, but it may reduce the detectability of faults. (A
special joint implementation is used for the design of self-checking multipliers).

The adder cells A3, A7, . . . ,An−5,An−1 are the last adder cells in the groups. The
carry-out signals c3, c7, . . . ,cn−5, cn−1 of these adder cells are not used as carry-in

144 4 Concurrent Checking for the Adders

p a
p b

p c
p a

p b

Register A Register B
an −1 0b

ba

bn −10a

A0

A1

Adder

cin
1

in
2c

A

A

A

A

A

A

2

3

4

5

6

7

pa
rt

ia
l c

ar
ry

 lo
ok

−
ah

ea
d

un
it

−2nA

An−1

(g
en

er
at

es
 o

nl
y

ev
er

y
fo

ur
th

 c
ar

ry
 b

it)

ng

np

ng

np

−2

−1

−1

g

p
6

6

g

p
7

7

g

g

p

p

p

5

5

4

3

3

g

g

p

p

p

2

2

1

1

0

0

c

c

c

c

c

c

c

0

1

2

3

4

5

6

7

nc

c

4

3c

g

c7

cn−1

−3

−2

cn−2

cn−1

Register S

sn −10s

ps

=
?ps

g s0

s1

s

s

2

3

s

s

s

5

s6

7

4

s

s

n−2

n−1

=?

T
R

C
pc

=?
r2

r1

p p

Fig. 4.13 Parity-checked carry look-ahead adder with carry-dependent sum adder cells

signals for the next adder cells. These carry-out signals are compared with the
carry-out signals of the partial carry look-ahead unit. Therefore, the adder cells A3,
A7, . . . ,An−5,An−1 can also be implemented as shown in Fig. 4.12a. The number of
adder cells in a group can be chosen arbitrarily. For larger groups the number of
the carries implemented by the partial carry look-ahead unit is smaller and the area
overhead can be reduced. But in this case the delay for the calculation of the sum
is increased. For smaller groups of adder cells the delay is reduced, but the area
required increases.

4.3 Self-Checking Adders 145

i
c

−1

ia

b i

si

ci

p

g

i

i

f
i

Fig. 4.14 Implementation of the carry-dependent sum adder cell for the parity-checked carry look-
ahead adder in Fig. 4.13

If the last adder cells in the groups are implemented as shown in Fig. 4.12 and if
the number of the adder cells in the groups is equal to one, the described solution
for the self-checking carry look-ahead adder is equivalent to a self-checking carry
look-ahead adder with duplicated carries.

The parity-checked carry look-ahead adder with carry-dependent sum adder cells
detects the following errors:

• Odd errors in the input operands:
The explanation is the same as for the parity-checked carry look-ahead adder
with duplicated carries.

• All stuck-at faults in the partial carry look-ahead unit:
These faults change the carry signals c′3, c′7, . . . ,c

′
n−5, c′n−1 and they are detected

by the comparison of the carry pairs [c′3 c3], [c′7 c7], . . . , [c′n−5 cn−5], [c′n−1 cn−1]
by the two-rail-checker TRC.

• All single stuck-at faults in the adder cell Ai of Fig. 4.14:
The adder cell Ai in Fig. 4.14 consists of two separate subcircuits. One of them
implements the propagate pi and generate gi signals for the partial carry look-
ahead unit and the function fi. The other subcircuit implements the carry-out
bit ci.
Single stuck-at faults at the inputs/output of the gates of the first subcircuit can
result in an erroneous propagate pi signal, in an erroneous generate gi signal and
in an erroneous value of the function fi. In accordance with the propagate and
generate signals of the next adder cells of the group which contains the adder
cell Ai, an error of the propagate/generate pi/gi signal of the adder cell Ai will
or will not result in an erroneous carry-out signal, which is implemented by the
partial carry look-ahead unit. This erroneous carry-out signal is compared with
the correct carry-out signal of the last adder cell of the group. The self-checking
two-rail checker TRC detects the difference and indicates an error (r1 = r2). An
erroneous value of the function fi always results in an erroneous sum bit si and
the parity ps becomes also erroneous. This will be detected by the comparison of
ps with pa ⊕ pb ⊕ pc.

146 4 Concurrent Checking for the Adders

Single stuck-at faults at the inputs/output of the gates of the second subcircuit
result in an erroneous carry-out bit ci. It changes also the sum bit si and is the
carry-in signal for the next adder cell Ai+1. Since the adder cells are designed as
the carry-dependent sum adder cells either only the sum bit si+1 is erroneous or
both the bits si+1 and ci+1 are erroneous. If ci+1 is erroneous, also si+2, or both
si+2 and ci+2 are erroneous. This may be continued until the carry-out signal
of the last adder cell of a group is erroneous. An erroneous carry-out signal of a
group of adder cells will be detected by comparison with the corresponding carry
signal generated by the partial carry look-ahead unit. If the erroneous carry does
not propagate to an erroneous carry-out signal of the last adder cell of a group of
adder cells, the number of erroneous bits is odd and it will be detected by parity
checking.
A single stuck-at fault at the inputs/output of the XOR-gate for the implemen-
tation of the sum bit si changes the sum bit si. It will also be detected by the
comparison of ps with pa ⊕ pb ⊕ pc.

• All single stuck-at faults of the XOR-tree for the implementation of ps and all
single stuck-at faults of the XOR-tree for the implementation of pc and of two
XOR-gates for the implementation of pa ⊕ pb ⊕ pc:
These faults are detected by the comparison of ps with pa ⊕ pb ⊕ pc.

• All single stuck-at faults in the two-rail checker TRC:
The two-rail checker according to [27] is self-checking.

• Odd errors in the register S:
The register S is parity-protected and odd errors are detected.

Compared to a carry look-ahead adder without error detection the additional
hardware for a parity-checked self-checking carry look-ahead adder with carry-
dependent sum adder cells consists of:

• two XOR-trees for determination the input parities pa and pb of the operands a
and b if the inputs are not yet parity-encoded,

• the adder cells have to be designed as carry-dependent sum adder cells,
• a self-checking two-rail checker to compare the carries implemented by the par-

tial carry look-ahead unit with the carries implemented by the last adder cells of
the groups,

• an XOR-tree for the implementation of the parity ps of the n sum bits,
• two XOR-gates for the implementation of the XOR-sum of the paritites pa, pb

and pc.

The necessary area for the look-ahead unit is reduced since instead of a complete
look-ahead unit only a partial look-ahead unit has to be implemented.

The number of adder cells in the groups influences the necessary area overhead.
For smaller numbers of adder cells in the groups the area is larger and for larger
numbers of adder cells the area required is smaller.

Since the adder cells within the groups are connected as ripple adders, the calcu-
lation of the sum s in the self-checking carry look-ahead adder with carry-dependent

4.3 Self-Checking Adders 147

sum adder cells is delayed compared to a carry look-ahead adder without error
detection.

Self-Checking Sum Bit-Duplicated Carry Look-Ahead Adder

In a sum bit-duplicated carry look-ahead adder according to [38] the sum bits of the
adder cells are (inverted) duplicated and stored in duplicated output registers.

The main advantage of sum bit-duplicated adders is that soft errors directly in-
duced in the output registers by α-particles are detected.

The general structure of self-checking sum bit-duplicated carry look-ahead adder
according to [38] is shown in Fig. 4.15.

The input operands a = (a0, . . . ,an−1) and b = (b0, . . . ,bn−1) are supposed to be
parity-encoded with the corresponding parity bits pa and pb. The parity bits pa and
pb are added modulo 2 to form pa ⊕ pb of both the input operands. The carry-in
signal of the adder is assumed to be duplicated in c1

in and c2
in.

The sum bit-duplicated self-checking carry look-ahead adder also computes the
sum s = (s0, . . . ,sn−1) as the inverted sum s = (s0, . . . ,sn−1). The sum s and the
inverted sum s are stored in the corresponding output registers S and S.

The adder consists of the carry look-ahead unit and n adder cells Ai, i = 0, . . . ,
n−1.

p a
p bp(a b)

Register A Register B
an −1 0b

ba

bn −10a

ca
rr

y
lo

ok
−

ah
ea

d
un

it

c2
in

c1
in

Adder

Register S Register S

s
s 0

A0
0

1s
1sA1

s
s

n−1

n−1
An−1

g

p

n −1

n −1

0g

0p

1g

1p
1c

0c

c

c

n −2

n −1

?
=

sn −10s 0 sn −1s

p p

Fig. 4.15 Carry look-ahead adder with sum bit-duplication

148 4 Concurrent Checking for the Adders

The carry look-ahead unit determines the carries c0, . . . ,cn−1 from the duplicated
input carry-in signal c2

in and the propagate pi and generate gi signals of the adder
cells.

In a sum bit-duplicated carry look-ahead adder for i = 0, . . . ,n− 2 every adder
cell Ai has the two carry-in inputs ci and ci−1. The carry signal ci is applied to both
the adder cells Ai and Ai+1.

The adder cell Ai implements the sum bit si, the inverted sum bit si, and for the
carry look-ahead unit the propagate signal pi and the generate signal gi.

The propagate signals of all adder cells are XORed:

p0 ⊕ p1 ⊕ . . .⊕ pn−1 = (a0 ⊕b0)⊕ (a1 ⊕b1)⊕ . . .⊕ (an−1 ⊕bn−1) =

= (a0 ⊕a1 ⊕ . . .⊕an−1)⊕ (b0 ⊕b1 ⊕ . . .⊕bn−1) =

= p(a⊕b) (4.19)

According to (4.19) the XOR-sum p0 ⊕ p1 ⊕ . . .⊕ pn−1 of the propagate signals
is equal to the parity p(a⊕b) of the input operands a and b.

The XOR-sum pa ⊕ pb determined from the parities pa and pb of the input
operands and the parity p(a⊕b) of the input operands determined as the XOR-sum
p0 ⊕ p1 ⊕ . . .⊕ pn−1 of the propagate signals are compared.

Every odd error in the input operands will be detected by this comparison and
the proposed sum bit-duplicated carry look-ahead adder is code-disjoint.

Also, every odd error of the propagate signals will be detected by this comparison.
The adder cell Ai is shown in Fig. 4.16. The inputs of the adder cell are the corre-

sponding bits ai and bi of the operands, and, as already pointed out, the two carry-in
signals ci−1 and ci. The propagate signal pi and the generate signal gi are imple-
mented by a simple XOR and AND-gate respectively. The sum bit si is determined
from the propagate signal pi and the carry-in signal ci−1. To determine the inverted
sum bit si, both the carry-in signals ci−1 and ci and the propagate signal pi are used.
As can be seen from Fig. 4.16 the only signal which is shared by different outputs
of the adder cell Ai is the propagate signal pi.

The carry signal cn−2 generated by the carry look-ahead unit is the carry-out
signal of the considered adder.

The described sum bit-duplicated carry look-ahead adder detects the following
errors:

• Odd errors of the input operands:
Odd errors of the input operands of the adder are detected by the comparison of
the parities pa ⊕ pb and p(a⊕b).

• All stuck-at faults in the carry look-ahead:
These faults change the carry signals c0, . . . ,cn−1. Let imin be the minimum in-
dex for which the carry is erroneous. Then cimin−1 is correct and cimin is er-
roneous. In the adder cell Aimin for the implementation of the sum bit simin

(simin = pimin ⊕ cimin−1) the correct carry cimin−1 is used. Therefore, the sum bit
simin remains correct. In the same adder cell Aimin the inverted sum bit simin is

4.3 Self-Checking Adders 149

biia
ci−1

to
 lo

ok
−

ah
ea

d
un

it

ci
from look−ahead

unit
from look−ahead

unit

pi

Si Si

pi

gi

Fig. 4.16 Implementation of the adder cell Ai for the carry look-ahead adder with sum bit-
duplication in Fig. 4.15

determined as simin = (pimin ∨ (aimin ⊕ cimin−1)⊕cimin by use of the erroneous carry
cimin , and the inverted sum bit simin will be erroneous. By the comparing the sum
bit simin with the inverted sum bit simin the considered error due to the considered
stuck-at faults in the carry look-ahead unit will be detected.

• All single stuck-at faults in the adder cell Ai of Fig. 4.16:
The generate signal gi is implemented in the adder cell by an AND-gate. Single
stuck-at faults at the inputs/output of this AND-gate change the generate signal
gi to an erroneous value, and as a result erroneous carries will be produced by
the carry look-ahead unit. These errors are detected by comparing the sum bits
with the corresponding inverted sum bits as described previously.
Single stuck-at faults at the inputs/output of the XOR-gate for the implementation
of the propagate signal pi are detected by comparing the parity p(a⊕b) with the
parity pa ⊕ pb. (The parity p(a⊕b) will be erroneous due to these faults). Thus
the propagate signal pi is always checked, and it can be shared as an input signal
for the carry look-ahead unit, for the generation of the sum bit si and for the
implementation of the inverted sum bit si.
Single stuck-at faults at the inputs/output of the XOR-gate for the implementa-
tion of the sum bit si result in an erroneous sum bit si. This will be detected by
comparing the sum bit si with the inverted sum bit si. Single stuck-at faults at the
inputs/outputs of the remaining two XOR-gates and the NOR-gate for the imple-
mentation of the inverted sum bit si may erroneously change only the inverted
sum bit si. Again, the errors due to this faults are detected by comparing the sum
bit si with the inverted sum bit si.
Due to the structure of the adder cell Ai the sum bit si and the inverted sum bit si

can never be simultaneously erroneous due to a single stuck-at fault as long as pi

is correct. But if pi is erroneous, this error will be detected as described.

150 4 Concurrent Checking for the Adders

• All single stuck-at faults of the XOR-tree for the implementation of p(a⊕b) and
of the XOR-gate for the implementation of pa ⊕ pb:
These faults are detected by the comparison of p(a⊕b) with pa ⊕ pb.

• All (odd and even) errors in the register S or in the register S:
The carry look-ahead adder with sum bit-duplication computes the sum s (stored
in the register S) and the inverted sum s (stored in the register S). By the compar-
ison of the contents of the registers S and S (in the system) the considered errors
will be detected.
The content of the registers can be compared by additional hardware or at soft-
ware level.

We emphasize again that all soft errors directly induced in the registers, for in-
stance, by α-particles will be detected by the sum bit-duplicated adder.

The necessary additional hardware for the design of a sum bit-duplicated self-
checking carry look-ahead adder compared to a carry look-ahead adder without er-
ror detection consists of:

• two XOR-trees for determination the input parities pa and pb of the operands a
and b if the inputs are not yet parity-encoded,

• additional gates for the implementation of the inverted sum bits of the adder cells,
• an additional XOR-tree for the implementation of the parity p0⊕ p1⊕ pn−1

of the propagate signals,
• an additional XOR-gate to determine the XOR-sum pa ⊕ pb of the input parities

pa and pb,
• an additional register S to store the inverted sum s.

Since the fan-out of the propagate signal pi within the adder cell is three and since
the carry signals are shared between two successive adder cells, the computation of
the sum s in the self-checking sum bit-duplicated carry look-ahead adder is delayed
compared to a carry look-ahead adder without error detection.

This section presented different self-checking designs for carry look-ahead adders.
Parity-checked carry look-ahead adders with duplicated carry signals or with

carry-dependent sum adder cells were considered in the first two designs. It was
shown that these adders are totally self-checking with respect to all single stuck-at
faults and with respect to odd errors in the sum bit stored in the output registers.

As a third design, a self-checking sum bit-duplicated carry look-ahead adder
was presented. Instead of duplicating the carry bits in this design, the sum bits of
the adder cell are duplicated in inverse form. The duplicated sum bits are stored
in duplicated output registers. It was demonstrated that the sum bit-duplicated
carry look-ahead adder is totally self-checking with respect to all single stuck-at
faults and with respect to all (even or odd) errors in the output register. It was
shown that the error detection capability of the sum bit-duplicated carry look-ahead
adder is almost the same as for duplication and comparison but with a lower area
overhead.

All the considered designs are code-disjoint with respect to parity codes.

4.3 Self-Checking Adders 151

4.3.2 Self-Checking Partially Duplicated Carry Skip Adder

This section describes a self-checking carry skip adder with parity-encoded input
operands according to [39].

It will be shown how the carry skip adder is partially duplicated. A first carry
skip adder is completely implemented with adder blocks of “fast” ripple adders as
shown in Fig. 4.3. The second carry skip adder utilizes the propagate signals of the
first adder, which are implemented only once. It is explained how these propagate
signals are used simultaneously to determine the sum bits of both of the partially
duplicated adders, to calculate the skip signals of the adder blocks in both adders
and to compute the parity of the input operands. It will be shown how the propagate
signals can be checked by comparing the XOR-sum of these propagate signals with
the XOR-sum of the input parity bits of the parity-encoded operands.

A carry skip adder without error detection is shown in Fig. 4.17. The adder cells
A0, A1, . . . of the carry skip adder are fast ripple adder cells.

The adder cells of a carry skip adder are divided into groups. The carry-in signal
of a group of adder cells can bypass the group if all the propagate signals of the
adder cells of that group are equal to 1. Figure 4.17 shows a group of four adder
cells A0, A1, A2, A3 (block B1(4)) and the first adder cell A4 of the next group.

Two types of fast adder cells are used for even and odd adder cells. The single
carry-out signal ci of a traditional adder cell (see for instances Fig. 4.2) is split into
two carry signals C4i, C3i (for odd adder cells) and C2i, C1i (for even adder cells).

With ci = C3i+1 ∧C4i+1 where i is odd and c j = C1 j+1 ∧C2 j+1 where j is even
the correctness of the adder of Fig. 4.17 can be proved by direct calculation.

If a carry is propagated in this adder step by step through a chain of successive
adder cells, the delay, which is accumulated in every step, is a gate delay of a single
NAND-gate, which is the smallest possible delay per adder cell.

All the inputs a0, b0, . . . ,an−1,bn−1 of the adder cells are available at the begin-
ning of the clock cycle. Since the signals (aibi)∧(ai+1⊕bi+1) or (a j ∨b j)∧(a j+1⊕
b j+1), which are contributing to the computation of the split carry signals depend
only on the inputs of their own adder cells the determination of these signals adds
only a constant delay to the time, which is needed to complete the computation of
the adder.

The input carry cin = 1 (cin =C2in∧C1in) can bypass the considered block B1(4)
of the “fast” carry skip adder in Fig. 4.17 if all the propagate signals p0, p1, p2 and
p3 of the block are equal to 1. To form the bypass (skip) signal the input carry cin and
the propagate signals p0, p1, p2 and p3 are connected by AND-gates. The bypass
signal is ORed with both carry-out signals C23 and C13 of the last adder cell A3 of
the block B1(4) to implement the carry-in signals C2′3 and C1′3 of the next block.
The input carry cin = 1 will result in the carry signal c3 = 1 (c3 = C2′3 ∧C1′3) of the
second block as soon as the bypass signal arrives this block. If at least one of the
propagate signals of B1(4) is equal to 0, the input carry cin = 1 will be blocked.

The delay of four “fast” ripple adder cells (delay of four NAND-gates) is almost
equal to the delay of the skip signal of a block. If we adapt the method for the

152
4

C
oncurrentC

hecking
for

the
A

dders

C11

C21 C42

C32

C44

C34

C23

C13

C23

C13C30

C40

C1in

C2in

p
2

s2

A

2 ba 2 a b33

A2 3

p
3

s3

4a b4

p
4

s 4

A4

skip

3c

B (4)1A

1a b1

p
1

s1

1A0

b00a

p0

s0

inc

Fig. 4.17 Fast carry skip adder

4.3 Self-Checking Adders 153

determination of optimum variable block sizes described in [85] for an n-bit “fast”
carry skip adder we can expect the following optimum variable block sizes:

k→ (k+4)→ (k+8)→ . . .→ (k+(t/2−1)4)→ (k+(t/2−1)4)→ . . .→ (k+8)→→ (k+4)→ k

where t ≈ 2
√ n

4 and k is the size of the smallest block.
For n = 64 we have to expect 8 blocks of size 2→ 6→ 10→ 14→ 14→ 10→ 6→ 2
or 7 blocks of size 4 → 8 → 12 → 16 → 12 → 8 → 4 as optimum for the “fast” carry
skip adder.

The structure of the partially duplicated carry skip adder according to [39] is
shown in Fig. 4.18.

A 64-bit adder is shown. The input operands a = (a0, . . . ,a63) and b = (b0, . . . ,
b63) are parity-encoded with the corresponding parity bits pa and pb. The parity
bits pa and pb are added modulo 2 to form the input parity pa ⊕ pb. The described
self-checking carry skip adder consists of two carry skip adders, a first complete
“fast” carry skip adder and a second partially duplicated carry skip adder. Both
these adders implement for the same input operands the corresponding sums s1 =
(s1

0, . . . ,s
1
63) and s2 = (s2

0, . . . ,s
2
63).

The sums s1 and s2 are stored in the output registers S1 and S2 respectively.
The blocks, which belong to the first “fast” carry skip adder, are denoted by
B1

j(block size), where j is the index of a block. B2
j(block size) are the blocks of

the second “fast” carry skip adder. The block sizes of both these “fast” carry skip
adders are 4 → 8 → 12 → 16 → 12 → 8 → 4.

The adder cells of the blocks B1
j(block size) of the first complete carry skip adder

and of the blocks B2
j(block size) of the partially duplicated carry skip adder are

slightly different. The propagate signals pi = ai ⊕ bi, i = 0, . . . ,63, are only imple-
mented in the adder cells of the first complete carry skip adder but not in the adder
cells of the second partially duplicated “fast” carry skip adder.

The propagate signals generated in the blocks B1
j(blocksize) of the first carry skip

adder are used:

• for computing the sum bits s1
i (s1

i = pi ⊕ ci−1) of the first carry skip adder,
• for computing the sum bits s2

i (s2
i = pi ⊕ c2

i−1) in the adder cells of the second
“fast” carry skip adder,

• for the determination of the skip signals of the blocks B2
j(blocksize) of the second

“fast” carry skip adder,
• for computing the input parity p(a⊕b) by an XOR-tree of the propagate signals

p0, . . . , p63.

Since the propagate signals p0, . . . , p63 are only implemented in the adder cells
of the first carry skip adder, 64 XOR-gates can be saved. The input parity p(a⊕b)
is implemented by an XOR-tree of the 65 propagate signals p0, . . . , p63 and not by
an XOR-tree of the 128 components a0, . . . ,a63, b0, . . . ,b63 of the input operands a
and b. Therefore, another 64 XOR-gates are saved.

154 4 Concurrent Checking for the Adders

p a
p b

in
1C2 C1in

1 C1in
2 C2in

2

p(
a

b)

Register S Register S

ss 0 ss63 630
1 1 2 2

1

C1out
1 C2out

2
out
1C2 C1out

2

Register A Register B
a 0b

ba

b0a

A0

B
 (

4)

A

A

2A

A0

A1

A

A

2

3

s

s

s

s

2

1

3

1 1

1

1

1
3

1

1

a0

b0
inc1 cin

2

0
1

1

1

1

b
[0,3]

[0,3]
a

4

4

2 1

2

2

2

B
 (

4)
2

2s3

2
2s

s1
2

2
0s

p
0

p

p

p

1

2

3

b
[0

,3
]

[0
,3

]
a

4

4

8

8

b
[4

,1
1]

a
[4

,1
1]

B
 (

8)
21

8

4

4

4

sk
ip

sk
ip

8

sk
ip

sk
ip

sk
ip

8

8

4

sk
ip

4

4

a0

b0

B
 (

8)
2 2

s

s[4,11]

[60,63]

[4,11]

[60,63]
s

s
1

1

2

2

[4,11]
p

[60,63]
p

B
 (

4)
1 7

[6
0,

63
]

b
[6

0,
63

]
a

B
 (

4)
2 7

63 63

[4,11]
a

[4,11]
b

[60,63]
a

b
[60,63]

c3
1 c3

2

c59
1 c59

2

sizes 12−16−12−8
4 blocks with

sizes 12−16−12−8
4 blocks with

=?

Adder

8 8 8

4 4 4

p p

2

Fig. 4.18 Partially duplicated carry skip adder (for n = 64)

The partially duplicated carry skip adder detects the following errors:

• Odd errors of the input operands:
Odd errors of the input operands of the adder are detected by comparing the
parities pa ⊕ pb and p0 ⊕ p1 ⊕ . . .⊕ pn−1 = p(a⊕b).

• All single stuck-at faults of the XOR-gates in the adder cells A1
i , i = 0, . . . ,63, of

the first “fast” carry skip adder (the blocks B1
j(blocksize)), which implement the

propagate signals p0, . . . , p63:
The faults are detected by comparing the parity pa ⊕ pb with the parity p(a⊕b).

4.3 Self-Checking Adders 155

• All the other single stuck-at faults in the adder cells A1
i , i = 0, . . . ,63 of the first

“fast” carry skip adder:
Due to these faults the sum s1 determined by the first “fast” carry skip adder
becomes erroneous and the sum s2 determined by the second partially duplicated
carry skip adder remains correct. These faults are detected by comparing the
contents of the registers S1 and S2.

• All single stuck-at faults in the adder cells A2
i , i = 0, . . . ,63 of the second “fast”

carry skip adder:
These faults result in an erroneous sum s2 of the second “fast” carry skip adder,
which is detected by comparing the contents of the registers S1 and S2.

• Single stuck-at faults in the skip logic “skip”:
The skip logic is implemented twice in the first and in the second carry skip adder.
Single stuck-at-1 faults will (for the corresponding inputs) result in an erroneous
sum in one of the adders. They are detected by comparing the sums s1 and s2 as
the contents of the duplicated output registers. A single stuck-at-0 fault of a skip
signal is functionally redundant. The correct skip signal which is also generated
by the corresponding adder block of the faulty adder and ORed with the value
0 of the erroneous skip signal remains correct. It will be detected if the timing
conditions for the computation of the sum bits are violated in the most significant
sum bit in the faulty carry skip adder and if the correct value determined by the
fault-free adder is compared with the previous values of the sum in the faulty
carry skip adder.

• All single stuck-at faults of the XOR-tree for the implementation of p(a⊕b) and
of the XOR-gate for the implementation of pa ⊕ pb are detected
These faults are detected by comparing p(a⊕b) with pa ⊕ pb.

• All single stuck-at faults of the XOR-tree for the implementation of p(a⊕b) and
of the XOR-gate for the implementation of pa ⊕ pb are detected
These faults are detected by comparing p(a⊕b) with pa ⊕ pb.

• All (odd and even) errors in the register S1 or in the register S2 are detected
These faults are detected by comparing the contents of the registers S1 and S2 in
the system by hardware or software.

The necessary additional hardware for the design of a partially duplicated self-
checking carry carry skip adder compared to a carry skip adder without error detec-
tion consists of:

• two XOR-trees for determination the input parities pa and pb of the operands a
and b if the inputs are not yet parity-encoded,

• the “fast” carry skip adder has to be (partially) duplicated, saving n XOR-gates
for the implementation of the n propagate signals p0, . . . , pn−1,

• an additional XOR-tree for the implementation of the parity p(a⊕b) = p0⊕ . . .⊕
pn−1 of the propagate signals,

• one XOR-gate for the implementation of the XOR-sum pa ⊕ pb,
• an additional n bit register S2 to store the sum s2 of the partially duplicated “fast”

carry skip adder.

156 4 Concurrent Checking for the Adders

Because of the fan-out 4 of the propagate signals pi, i = 0, . . . ,63 the computation
of the sums s1 and s2 in the described self-checking carry skip adder is delayed when
compared to a carry skip adder without error detection.

This section described a self-checking carry skip adder with parity-encoded input
operands.

The carry skip adder was partially duplicated. It it was demonstrated that the
propagate signals were used simultaneously to determine the sum bits of both the
partially duplicated adders, to calculate the skip signals of the adder blocks in both
adders and to compute the parity of the input operands and that the propagate sig-
nals can be checked by comparing the XOR-sum of the propagate signals with the
XOR-sum of the input parity bits of the parity-encoded operands. Since the sum
is computed twice and stored in a duplicated output register, all soft errors (even
and odd) in the output registers are detected. It was explained that single stuck-at-
0 faults of the skip signals are functionally redundant and that they are detected
if they cause a timing violation. All the other single stuck-at faults are always
detected.

4.3.3 Self-Checking Carry Select Adders

Three different designs for self-checking carry select adders will be presented in this
section. It will be shown how the duplicated adder blocks for the carry-in signals 0
and 1 of ordinary carry select adders without concurrent checking can be utilized
and modified for the design of self-checking carry select adders. In the first design
the adder blocks are checked modulo p. In the second design the adder blocks are
modified into sum bit-duplicated adders and in the third one the adder blocks for the
carry-in signals 1 are replaced by simpler “Add1-circuits” implemented at transistor
level.

• Modulo p-checked carry select adder
The two sums determined by the corresponding duplicated adder blocks of a
carry select adder for the carry-in signals 0 and 1 differ arithmetically by 1. If
these sums would be directly compared, a full adder for every pair of adder blocks
would be needed. In the proposed design these sums will be compared modulo
p and it will be shown how these two sums can be efficiently compared modulo
p by a special “modulo p check and select box” which also selects the correct
values of the corresponding sum bits according to the incoming carry signal. It
will be explained that for p = 3 a much simpler design as in the general case is
possible. There are no restrictions for the design of the adder blocks.

• Sum bit-duplicated carry select adder
In the described sum bit-duplicated carry select adder both the original sum of
the operands and the inverted sum of the operands will be determined. The input
operands are supposed to be parity-encoded and the adder is code-disjoint with

4.3 Self-Checking Adders 157

respect to a parity code. It will be shown how all necessary propagate signals for
the adder can be computed by a single propagate generator. It will be explained
that the remaining parts of the duplicated adder blocks for the carry-in signals
1 and 0 are all implemented as sum bit-duplicated adder blocks with dupli-
cated carry-out signals and how from these components the totally self-checking
carry select adder can be designed. All (even and odd) errors in the output reg-
isters will be detected additionally to all single stuck-at faults and odd input
errors .

• Sum bit-duplicated carry select adder by use of Add1-circuits
In this section an enhancement modification of the sum bit-duplicated carry se-
lect adder of the previous section will be presented. It will be shown how the
duplicated adder blocks for the carry-in signal 1 can be replaced by much sim-
pler Add1-circuits. The reason for this is that in a carry select adder the arithmetic
value of the sum bits generated by an adder block with a carry-in signal 0 differ
from the arithmetic value of the sum bits generated by the corresponding dupli-
cated adder block with the input signal 1 arithmetically by 1.
A possible implementation of an Add1-circuit by use of multiplexors and a spe-
cial transistor logic block TLB will be given.

Modulo p-Checked Carry Select Adder

The structure of a 64-bit modulo p-checked carry select adder according to [96, 97]
is shown Fig. 4.19.

In a carry select adder the resulting sum bits are, as already described, selected
from the groups of sum bits, which are computed in duplicated adder blocks for both
the carry-in signals “0” and “1”. These duplicated adder blocks, which already exist
in a carry select adder without error detection, are utilized for modulo p checking.
No restrictions are imposed on the structure of the adder blocks.

In Fig. 4.19 a modulo p-checked 64-bit carry select adder is shown.
The duplicated adder blocks B0

2(8), B1
2(8); B0

3(12), B1
3(12); B0

4(12), B1
4(12);

B0
5(12), B1

5(12) and B0
6(12), B1

6(12) are mutually checked by the corresponding
“modulo check and select boxes”. The carry signals c7, c15, c27, . . . ,c51 are du-
plicated in c71, c72, c151, c152, c271, c272, . . . ,c511, c512. Also the first adder block
B1(8) is duplicated in Bd

1(8) and the outputs of the duplicated first adder blocks
B1(8) and Bd

1(8) are compared modulo p.
The “modulo check and select boxes” also select in relation to their (duplicated)

carry-in signals the sum bits and the carry-out signals of the blocks, and they com-
pute the modulo p values of the sum bits and the carry-out signals of both the adders
of the blocks. These modulo p values are compared by a (self-checking) compara-
tor. The comparison of these modulo p signals can be carried out in the next time
cycle.

We explain the method of modulo p checking for the example of the duplicated
adder blocks B0

2(8) and B1
2(8).

158
4

C
oncurrentC

hecking
for

the
A

dders

B (8)B (8)

B (8) B (12)

B (12)

B (8)

B (12)

B (12)
c27

0

c63
1

c63
0

7c 2

c15
1

c15
0

7c 1

c152

c15

c272

c271 c511

c512

cin

cin

a [0,7] b [0,7]

a [0,7] b [0,7]

[0,7]s

[0,7]s

[0,7]s

a [8,15] b [8,15]

s0
[8,15]

[8,15]s1

a [8,15] b [8,15]

s [8,15]

s [16,27]
1

[16,27]s0

a [16,27] b [16,27]

a [16,27] b [16,27]

s [16,27]

[52,63]a b [52,63]

[52,63]s0

[52,63]s1

[52,63]a b [52,63]

[52,63]s

cout 2

cout 1

"1"

"0" "0"

"1"

"0"

"1"1
3

0
6

1
6

0
31

d

1

1
modulo check
and select box

modulo check
and select box

modulo check
and select box

2 2 2 2 2 22

COMPARATOR

m
od

 p
m

od
 pd

2

88

8

8

88
8

8 8

8

8

8 8
8

12

12

12

12

12

12
12

12 12

12

12

12 12
12

2
1

2
0

c27
1

Fig. 4.19 Modulo p-checked carry select adder for n = 64 (c©IEEE 2003)

4.3 Self-Checking Adders 159

The adder blocks B0
2(8) and B1

2(8) compute

s0
[8,15],c

0
15 = a[8,15] +b[8,15], (4.20)

s1
[8,15],c

1
15 = a[8,15] +b[8,15] +1, (4.21)

and we have
s1
[8,15],c

1
15 = s0

[8,15],c
0
15 +1. (4.22)

The sum and carry bits in the adder blocks B0
2(8) and B1

2(8) arithmetically dif-
fer by 1. Since the addition of a 1 can affect all the 9 bits of s0

[8,15],c
0
15, a direct

comparison of s1
[8,15],c

1
15 and s0

[8,15],c
0
15 +1 is not easy to implement.

Now we explain how these outputs can be compared modulo p.
From equation (4.22) we conclude

[s1
[8,15],c

1
15] mod p = [s0

[8,15],c
0
15 +1] mod p = [s0

[8,15],c
0
15] mod p⊕p 1, (4.23)

where ⊕p denotes the addition modulo p. The sum and carry-out bits of the dupli-
cated adder blocks B0

2(8) and B1
2(8) differ by 1 modulo p only.

Instead of adding arithmetically a 1 to s0
[8,15],c

0
15 with a word length of 9 we have

to add modulo p a 1 to ([s0
[8,15],c

0
15] modulo p) only.

In Fig. 4.20a the “modulo check and select box” is represented. The carry-in
signal from the preceding block is duplicated in cin1 and cin2 respectively, which
are the control signals for the multiplexors I, II, II′, III, IV and for the combina-
tional circuits V and V′ for modulo p computation. For cin1 = cin2 = 0 the circuit V
determines [s0

[8,15],c
0
15] mod p⊕p 1.

Since the control signal cin2 of the block V′ is inverted, this block for cin2 =
0 determines [s1

[8,15],c
1
15] mod p. According to equation (4.23) these results are

equal as long as no error occurs. Similarly for cin1 = cin2 = 1 the circuits V and
V′ determine [s1

[8,15],c
1
15] mod p and [s0

[8,15],c
0
15] mod p⊕p 1 respectively. Again,

according to equation (4.23) these results are equal as long as no error occurs. The
outputs of the combinational circuits V and V′ are to be compared by a self-checking
comparator or two-rail checker. The carry-out signal of the blocks is duplicated in
cout1 and cout2. These duplicated carry-out signals are selected by the multiplexors
II and II′ with the control signals cin1 and cin2.

A modification of the “modulo check and select box” is represented in Fig. 4.20b.
Only the combinational circuits V and V′ for the modulo p computation are modified
in the circuits VI and VI′ respectively. For the control signal cin1 = 0 the circuits
VI and VI′ determine as previously the circuits V and V′ [s0

[8,15],c
0
15] mod p⊕p

1 and [s1
[8,15],c

1
15] mod p. For the control signal cin1 = 1 the circuits VI and VI′

output [s1
[8,15],c

1
15] modulo p ⊕p (p− 1) and [s0

[8,15],c
0
15] modulo p. Because of

equation (4.23) we have

[s1
[8,15],c

1
15] modulo p⊕p (p−1) = [s0

[8,15],c
0
15 +1] modulo p⊕p (p−1) = [s0

[8,15],c
0
15] modulo p

160 4 Concurrent Checking for the Adders

0si

0

0

i+n
s 1

1cout

is 1

cin1
cin2

cout2

cout1

cin=0:

cin=1:

cin=1:

cin=0:

i+n
s 1

1cout

is 1

cin1
cin2

cout2

cout1

cin=0:

cin=1:

0

0

0

0

0

1

1

1

1

1

si si+n

b)

MUX

MUX

MUX

MUX

MUX
I

III

IV
pmod

mod 1p p

VI

VI

II

II

modp p p 1)(outc
i+ns

si

0

0

0

0

0

0

0

0

1

1

1

1

1

si si+n

a)

mod

MUX

MUX

I

MUX

MUX
III

MUX
IV

mod 1p p

p V

mod

mod 1p

p

p

V

II

II

outc
i+ns

Fig. 4.20 Modulo check and select boxes a and b (c©IEEE 2003)

4.3 Self-Checking Adders 161

and the outputs of the circuits VI and VI′ are equal as long as no error occurs.
Compared to Fig. 4.20a in Fig. 4.20b no control signal is needed for the circuit VI′.

In the following the case p = 3 is considered. For p = 3 the outputs of the “mod-
ulo check and select boxes” have the word length 2 only, and for a 64-bit self-
checking carry select adder a comparator for only two 12-bit words is needed. An
advantage for the choice p = 3 is also that a special “modulo check and select box”
without any additional control line can be used. This special “modulo check and
select box” is shown in Fig. 4.21.

We explain how the duplicated blocks B0
2(8) and B1

2(8) according to Fig. 4.21 for
the carry-in signals cin1 = cin2 = 0

(s0
8s0

9 . . .s0
15,c

0
15) mod 3 = (1s1

9 . . .s1
15,c

1
15) mod 3 (4.24)

and for the carry-in signals cin1 = cin2 = 1

(s1
8s1

9 . . .s1
15,c

1
15) mod 3 = (0s0

9 . . .s0
15,c

0
15) mod 3 (4.25)

are checked.
All the outputs of the carry select adder, either s0

8 . . .s0
15 for c71 = c72 = 0 or

s1
8 . . .s1

15 for c71 = c72 = 1 and also the carry-out signals c0
15 and c1

15 are completely
checked modulo 3.

We show that the equations (4.24) and (4.25) are valid.
First the case cin1 = cin2 = 0 is considered.
a. Let s0

8 = 0,s0
8 = 1.

Since
s1

8s1
9 . . .s1

15,c
1
15 = s0

8s0
9 . . .s0

15,c
0
15 +1 (4.26)

2

s 1
i+1

i+n
s 1

is 1

0
i+1s

s 0
i

i+ns 0

0
1

MUX

0
1

MUX

1cout

outc 0

1

1

MUX

MUX

mod3

mod3
2

si si+1 si+n

cin 1

cin 2

cout 1

cout 2

0

0

Fig. 4.21 Modulo check and select box c for p = 3 (c©IEEE 2003)

162 4 Concurrent Checking for the Adders

we have s1
8 = 1, s1

9 . . .s1
15, c1

15 = s0
9 . . .s0

15,c
0
15,

1s1
9 . . .s1

15,c
1
15 = s0

8s0
9 . . .s0

15,c
0
15 (4.27)

and the equation (4.24) is true.
b. Let now s0

8 = 1, s0
8 = 0.

From 4.26 we conclude s1
8 = 0 and we have

(s0
8s0

9 . . .s0
15,c

0
15) mod 3 = (s0

8s0
9 . . .s0

15,c
0
15 −1) mod 3 =

= (s0
8s0

9 . . .s0
15,c

0
15 +2) mod 3 =

= (s1
8s1

9 . . .s1
15,c

1
15 +1) mod 3 =

= (1s1
9 . . .s1

15,c
1
15) mod 3. (4.28)

and the equation (4.24) is also valid in this case.
Now the case cin1 = cin2 = 1 is considered.
a. Let s0

8 = 0, s0
8 = 1.

From equation (4.26) we have s1
8 = 1 and therefore

(s1
8s1

9 . . .s1
15,c

1
15) = (s1

8s1
9 . . .s1

15,c
1
15 −1) = (4.29)

= s0
8s0

9 . . .s0
15,c

0
15 = 0s0

9 . . .s0
15,c

0
15

and the equation (4.25) is valid.
b. Let now s0

8 = 1, s0
8 = 0.

Then we have from equation (4.26) s1
8 = 0 and

(s1
8s1

9 . . .s1
15,c

1
15) mod 3 = (s1

8s1
9 . . .s1

15,c
1
15 +1) mod 3 = (4.30)

= (s0
8s0

9 . . .s0
15,c

0
15 +2) mod 3 =

= (s0
8s0

9 . . .s0
15,c

0
15 −1) mod 3 =

= (0s0
9 . . .s0

15,c
0
15) mod 3.

and the equation (4.25) is true.
The modulo p-checked carry select adder detects the following errors:

• All errors due to single stuck-at faults in the “modulo check and select boxes”
are immediately detected.

• All errors of the carry-out bits are immediately detected.
• The error detection probability for errors of the sum bits due to single stuck-at

faults depends on the value of p and of the concrete implementation of the adder
blocks. In a concrete design for p=3 the error error detection probability for errors
due to single stuck-at faults in the adder blocks was 99.999% [96, 97].

Modulo p-checked carry select adders are not code-disjoint, and no errors at the
inputs of the adder are detected.

Compared to a carry select adder without error detection the area overhead for
the implementation of the modulo p-checked carry select adder consists of:

4.3 Self-Checking Adders 163

• the duplicated first adder block Bd
1(m), where m is the length of the block,

• the “modulo check and select boxes” to perform the modulo checking,
• a comparator to compare the modulo p values of the corresponding “modulo

check and select boxes”.

Advantages of the approach are that no restrictions are imposed on the structure
of the adder blocks and that the number of the signals to be compared can be sig-
nificantly reduced. Thus for p = 3 and a 64-bit carry select adder only two 12-bit
words are to be compared.

Compared to a carry select adder without error detection the computation of the
sum s is not delayed. The comparison of the modulo p values can be carried out in
the next time cycle.

Sum Bit-Duplicated Carry Select Adder

A self-checking sum bit-duplicated carry select adder was introduced in [98, 40, 99].
In Fig. 4.22 a 64 bit self-checking sum bit-duplicated adder is shown.

The input operands a = (a0, . . . ,a63) and b = (b0, . . . ,b63) are parity-encoded
with the corresponding parity bits pa and pb. The parity bits pa and pb are added
modulo 2 to form the parity pa⊕ pb. The adder also computes for the input operands
a and b the sum s = (s0, . . . ,s63) and the inverted sum s = (s0, . . . ,s63), which
are stored in the corresponding output registers S and S. The propagate signals
p0, . . . , p63 of the adder cells are not duplicated. They are implemented from the
input operands a and b by the “propagate generator” only once. The XOR-sum of
the propagate signals, which is equal to the parity p(a⊕b) of the operand bits

p0 ⊕ p1 ⊕ . . .⊕ p63 = a0 ⊕b0 ⊕a1 ⊕b1 ⊕ . . .a63 ⊕b63 = p(a⊕b),

is compared with pa ⊕ pb. Because of this comparison the described sum bit-
duplicated adder is code-disjoint, and all odd errors in the input operands are
detected.

The corresponding bits of input operands a and b and of the propagate signals
of the “propagate generator” are applied to the adder blocks of the sizes of 8, 8,
12, 12, 12 and 12 bits. Unlike the “ordinary” carry select adder, every adder block
of the described carry select adder implements the corresponding sum bits and the
inverted sum bits. To indicate this all the blocks will be denoted by SDB. The carry-
out signals of the blocks are duplicated.

The first block SDB1(8) computes from the operand bits a[0,7] = a0, . . . ,a7,
b[0,7] = b0, . . . ,b7 and from the propagate signals p[0,7] = p0, . . . , p7 the sum bits
s[0,7] = s0, . . . ,s7, the inverted sum bits s[0,7] = s0, . . . ,s7 and the duplicated carries
c71 and c72 of the block. The carry signal c71 of the block SDB1(8) selects the in-
verted sum bits s[8,15] of the adder and the internal carry signal c151. These signals
are selected from the inverted sum bits s0

[8,15] and carry-out signal c0
151 of the block

SDB0
2(8) and the inverted sum bits s1

[8,15] and carry-out signal c1
151 of the block

164
4

C
oncurrentC

hecking
for

the
A

dders

SDB (8)

SDB (8)

SDB (12)

SDB (8)

SDB (12)

7c 1

b [0,7]a [0,7]
8 8

[0,7]s[0,7]s

a [8,15] b [8,15]

8 8

a [8,15] b [8,15]

8 8

0c151

1c151

1c152

s0
[8,15]

[8,15]s1
[8,15]s1

s0
[8,15]

0
1

s [8,15] [8,15]s

0
1

0
1

0
1 1c15

0
1

0
1

0
1

0
1c511

c5122c15

0c 163

[52,63]a b [52,63]

12 12

1c632

1c631

s [52,63] [52,63]s

0c6320c152 1
c 63

2
c 63

=
?

cout
2cout

1

s0
[52,63] s0

[52,63]

[52,63]s1
[52,63]s1

Register A Register B
a 0b

p pba

b0a 63 63

cin
1 cin

2

[52,63]a b [52,63]

12 12

a [0,63] b [0,63]
6464

pa pb

p [52,63][8,15]p[0,7]p

p(a b)
=
?

88

2

1
2

0

8 8

8 8

"0"

"1"

8 8

12

12

"0"

"1"

1212

0
6

1
6

12

12

S Register S

s0s 0 ss

Register

63 63

Adder

propagate generator
8 8 12

1

7c 2

Fig. 4.22 Self-checking sum bit duplicated carry select adder (for n = 64)

4.3 Self-Checking Adders 165

SDB1
2(8). The second carry signal c72 of the block SDB1(8) selects the sum bits

s[8,15] of the adder and the second internal carry signal c152 from the correspond-
ing signals of the blocks SDB0

2(8) and SDB1
2(8). The opposite blocks SDB0

2(8) and
SDB1

2(8) compute the sum bits, the inverted sum bits and the duplicated carry-out
signals for carry-in “0” and carry-in “1” respectively. The selection of the remain-
ing sum bits and inverted sum bits of the adder and the duplicated internal carries is
performed identically.

The “fast” ripple adder cells of Fig. 4.3 are used for the implementation of the
adder blocks. The internal structure of the first adder block SDB1(8) is shown in
Fig. 4.23.

It consists of a first “fast” ripple adder for computing the eight sum bits s[0,7] and
the first carry-out signal c71 and a second “fast” ripple adder with inverted outputs
for computing the inverted eight sum bits s[0,7] and the duplicated carry-out signal
c72. Both these adders share the propagate signals p[0,7] of the “propagate gen-
erator”. The propagate signals are not generated internally in the cells. Therefore,
one XOR-gate per adder cell can be saved. As carry-in signals for the “fast” rip-
ple adders of the block, the duplicated input carries c1

in and c2
in of the carry select

adder are used. All the adder blocks SDB0
2(8), SDB1

2(8), . . . , SDB0
6(12), SDB1

6(12)
are identical to the sum bit-duplicated adder block in Fig. 4.23 with either a con-
stant carry-in signal “0” or “1”. For a constant carry-in signal the corresponding
sum bit-duplicated adder block can be optimized.

The described sum bit-duplicated carry select adder is totally self-checking with
respect to all single stuck-at faults and detects the following errors:

• Odd errors in the input operands:
If the correct input operands a and b are changed by odd errors into erroneous
input operands a′ and b′ with p(a⊕ b) �= p(a′ ⊕ b′), then we have pa ⊕ pb �=
p(a′ ⊕b′) and the errors are detected.

• All errors due to single stuck-at faults in the “propagate generator”:
These errors change the parity p(a⊕ b) and are detected by the comparison of
p(a⊕b) with pa ⊕ pb.

• All errors due to single stuck-at faults in the adder blocks:
These errors will be propagated to the sum s or to the inverted sum s of the carry
select adder and are detected by comparing s and s.
If a fault changes only one of the carry-out signals of a block, then this erroneous
carry-out signal is an erroneous select signal for the sum selection and it will also
be detected by comparing s and s in the next adder block.

• All errors due to faults in the multiplexors for the selection of the resulting sum
bits and inverted sum bits:
These faults result in an erroneous selection of the sum bits or the inverted sum
bits. The errors due to these faults will again be detected by comparing s and s.

• All single stuck-at faults in the multiplexors for the selection of the carry-out
signals:
These faults will result in erroneous control signals for the multiplexors for the
sum selection. Therefore, they will also be immediately detected by comparing

166
4

C
oncurrentC

hecking
for

the
A

dders

SDB (8)

6

6

s0 1 s6 s7

6 ba 6 p
7

8 8

s
1

C30

C40

C11

C21 C25

C15

C4

C36

C27

C17

C2in

C1in

s0 s1 s6 s7

C30

C40

C11

C21 C25

C15

C4

C36

C27

C17

C2in

C1in

p0 1a b1 p
1

p6 a b77

c72

c71

c2
in

c1
in

b00a

[0,7]s [0,7]s

Fig. 4.23 Sum bit-duplicated adder block SDB1(8)

4.3 Self-Checking Adders 167

s and s. The faults in the multiplexors, which select the duplicated output carries
of the adder, will be detected by the comparison of c1

out with c2
out .

• All (odd and even) errors in the register S or in the register S:
The considered errors will be detected by the comparison of the contents of the
registers S and S.

Special adder blocks are to be used for the design of a self-checking sum bit-
duplicated carry select adder. The adder blocks are implemented as duplicated “fast”
carry ripple adders and compute the sum bits as well as the inverted sum bits. Com-
pared to a carry select adder without error detection the necessary additional area
consists of:

• two XOR-trees for determination the input parities pa and pb of the operands a
and b if the inputs are not yet parity-encoded,

• one XOR-gate for the implementation of the XOR-sum pa ⊕ pb,
• an additional XOR-tree for the implementation of the parity p(a⊕b) = p0⊕ . . .⊕

pn−1 of the propagate signals p0, . . . , pn−1,
• a duplicated “fast” ripple adder in each adder block for the implementation of the

inverted sum bits and a second carry-out signal,
• additional multiplexors for the selection of the resulting inverted sum bits and of

the duplicated carry-out signals,
• an additional register S to store the inverted sum s.

The delay for the computation of the sum bits is not increased compared to a
carry select adder without error detection.

Sum Bit-Duplicated Carry Select Adder by Use of Add1-Circuits

The adder blocks of a carry select adder, which calculate the sum bits for the con-
stant carry-in signals “1” can be, as described in [90], replaced by Add1-circuits of
Fig. 4.8.

Now we describe how this idea can be utilized for the design of self-checking
carry select adders as proposed in [100]. Thereby modified Add1-circuits according
to [101] are used.

An efficient design of a modified four-bit Add1-circuit according to [101] is
shown in Fig. 4.24. The Add1-circuit is implemented as a simple transistor logic
block T LB.

In [101] it is already assumed that the adder blocks with the carry-in signals “0”
also compute the sum bits as the inverted sum bits. Therefore, the application of
sum bit-duplicated adder blocks fits very well to the design of self-checking carry
select adders by use of these modified Add1-circuits. The inputs of the modified
Add1-circuit are the sum bits and also the inverted sum bits of the corresponding
adder block and the carry-out signal of the preceding adder block. The Add1-circuit
now only component-wise selects the appropriate sum bits from the sum bits and

168 4 Concurrent Checking for the Adders

"0" B (4)j
0

b [+3]i,ia [+3]i,i

c 0
i+3

c 1
i+3

i −1
c

s
i
0

i
0
+1s

i
0
+1s i

0
+2s

i
0
+2s

i
0
+3s i

0
+3s

c
i+3

i
s

i +1s i +2s
i +3s

0101

100 110

01 01

TLB

10

adder block

4 4

Fig. 4.24 Multiplexor-based Add1-circuit for 4 bits according to [101]

the inverted sum bits that are already generated by the corresponding adder block
with the carry-in signal “0”.

A self-checking sum bit-duplicated carry select adder by use of Add1-circuits of
Fig. 4.24 is shown in Fig. 4.25.

The input operands a = (a0, . . . ,a63) and b = (b0, . . . ,b63) are again supposed
to be parity-encoded with the corresponding parity bits pa and pb. The parity
bits pa and pb are added modulo 2 to form pa ⊕ pb. The adder computes for
the input operands a and b the sum s = (s0, . . . ,s63) as well as the inverted sum
s = (s0, . . . ,s63), which are stored in the corresponding output registers S and S.

As in the previous design the propagate signals p0, . . . , p63 are generated only
once. They are determined from the input operands a and b by the “propagate
generator”. The XOR-sum of the propagate signals, which is equal to the parity
p(a⊕b) of the operand bits

p0 ⊕ p1 ⊕ . . .⊕ p63 = a0 ⊕b0 ⊕a1 ⊕b1 ⊕ . . .a63 ⊕b63 = p(a⊕b),

is compared with pa ⊕ pb.
The adder itself consists only of the adder blocks for the computation of the sum

under the constant carry-in signals “0”. They are implemented as the sum bit “fast”
ripple adders as shown in Fig. 4.23. Each adder block determines the corresponding
sum bits and the inverted sum bits. The sum bits and the inverted sum bits of the
first adder block SDB1(8) are the least significant 8 sum bit outputs s[0,7] and the
inverted sum bit outputs s[0,7] of the adder. The outputs of the sum bit-duplicated
adder block SDB0

2(8) are the inputs of the T LB2 and T LB′
2 circuits. The signals * of

the T LB2(T LB′
2)-circuit are the control signals for the multiplexors selecting bitwise

from s0
[8,15] and s0

[8,15] the value s1
[8,15](s

1
[8,15]). Here the blocks T LB2 and T LB′

2 are

identical. Finally the carry-out signal c72 of the block SDB1(8) selects the resulting

4.3
Self-C

hecking
A

dders
169

SDB (8)

SDB (8)

SDB (12)

c 2

7c 1

b [0,7]a [0,7]
8 8

[0,7]s[0,7]s

Register A Register B
a 0b

p pba

b0a 63 63

cin
1 cin

2

a [0,63] b [0,63]
6464

pa pb

[0,7]p

p(a b)
=
?

S Register S

s0s 0 ss

Register

63 63

0c 163

0c632
s0

[52,63] s0
[52,63]

[52,63]a b [52,63]

12 12

01 10

1001 01 01

1
c 63

2

1
c 63

1

[52,63]s

[52,63]s1
[52,63]s1

s [52,63]

1
c 63

2
c 63

=
?

cout
1 cout

2

a [8,15] b [8,15]

8 8 0c151

s0
[8,15]s0

[8,15]

0c152

[8,15]s

01 10

TLB 2

TLB 2

[8,15]s1

10

[8,15]s1

01 01 01

1
c 15

1

1
c 15

2
s [8,15]

[8,15]p p [52,63]

c511

c512

1c15

2c15

88

propagate generator
8

12

"0" 0
6

12

*

*

1212

12 12

TLB 6

TLB 6

2
0

8 8

"0"

*

*

88

8 8

8

Adder

12

1

7

Fig. 4.25 Self-checking sum bit-duplicated carry select adder by use of Add1-circuits (for n = 64)

170 4 Concurrent Checking for the Adders

sum s[8,15] by a multiplexor from s0
[8,15] and s1

[8,15], and the carry-out signal c152 from

c0
152 and c1

152. The inverted sum bits s[8,15] and the carry-out signal c151 are selected
by c71 from s0

[8,15] and s1
[8,15], and from c0

151 and c1
151 respectively. In a similar way,

the sum bits, the inverted sum bits and the corresponding duplicated carry-out sig-
nals of the other blocks are determined. The carry-out signals of the most significant
block SDB0

6(12) are the duplicated output carries of the carry select adder.
The described sum bit-duplicated carry select adder by use of Add1-circuits is to-

tally self-checking with respect to all single stuck-at faults and detects the following
errors:

• Odd errors in the input operands:
In the presence of an odd error the correct input operands a and b are changed
into erroneous input operands a′ and b′ with p(a⊕b) �= p(a′ ⊕b′). Therefore, we
have pa ⊕ pb �= p(a′ ⊕b′) and the errors are detected.

• All errors due to single stuck-at faults in the “propagate generator”:
These errors change the parity p(a⊕b) and are detected by comparing p(a⊕b)
with pa ⊕ pb.

• All errors due to single stuck-at faults in the adder blocks:
These errors will be propagated to the sum s or to the inverted sum s of the carry
select adder and detected by comparing s and s. If a fault changes only one of the
carry-out signals of a block, then this erroneous carry-out signal is an erroneous
select signal for the sum selection and it will also be detected by comparing s and
s in the next adder block.

• Errors in T LB-circuits:
These errors will result in an erroneous selection of a sum bit or inverted sum
bit for the case of the carry-in signal “1”. Such errors will again be detected by
comparing s and s.

• Errors due to single stuck-at faults in the multiplexors for the selection of the
resulting sum bits and inverted sum bits:
A fault in a multiplexor results in an erroneous selection of a sum bit or an in-
verted sum bit which will be detected by comparing s and s.

• Errors due to faults in the multiplexors for the selection of the carry-out signals:
The carry-out signals are the control signals for the selection of the sum bits
or the inverted sum bits. Erroneous control signals are detected by comparing s
and s.
Errors in the multiplexors selecting the duplicated output carries of the adder will
be detected by the comparison of c1

out with c2
out .

• All (odd and even) errors in the register S or in the register S:
These errors are detected by comparing the contents of the registers S and S.

Special adder blocks and Add1-circuits have to be used for the design of the sum
bit-duplicated carry select adder. The adder blocks are implemented as duplicated
“fast” carry ripple adders and compute the sum bits as well as the inverted sum bits.
Compared to a carry select adder without error detection the following additional
area is needed:

4.3 Self-Checking Adders 171

• two XOR-trees to determine the input parities pa and pb of the input operands if
the inputs are not yet parity-encoded,

• one XOR-gate for the implementation of pa ⊕ pb,
• an additional XOR-tree for the implementation of the parity p(a⊕b) = p0⊕ . . .⊕

pn−1 of the propagate signals,
• Add1-circuits for the implementation of the sum bits and inverted sum bits for

the carry-in signal “1”,
• additional multiplexors for the selection of the resulting inverted sum bits and the

selection of the duplicated carry-out signals,
• an additional register S to store the inverted sum s

The additional delay caused by the Add1-circuits is almost negligible.
This section presented three different designs for self-checking carry select

adders. It was shown how the duplicated adder blocks for the carry-in signals 0 and
1 of ordinary carry-select adders without concurrent checking can be utilized and
modified in different ways for the design of self-checking carry select adders. This
was demonstrated for a modulo p-checked carry select adder, a sum bit-duplicated
carry select adder and a a sum bit-duplicated carry select adder by use of Add1-
circuits. In the first design for the modulo p-checked carry select adder the dupli-
cated adder blocks were checked modulo p. In the sum bit-duplicated carry select
adder all the adder blocks are implemented as sum bit-duplicated adders. It was
described how a single propagate generator can generate all the necessary propa-
gate signal for the duplicated adder blocks and for checking the input parities of the
input operands. It was shown that besides all single stuck-at faults also all soft errors
(even or odd) in the duplicated output registers are also detected. In the third design
it was demonstrated how the duplicated adder blocks for the carry-in signals 1 can
be replaced by simple Add1-circuits.

Section 4.3 described the design of self-checking adders. Since adders are very
regular structures this chapter has also demonstrated how the methods of concurrent
checking can be adapted to regular structures. All types of practically relevant types
of adders were considered and new solutions for the self-checking adder design were
given. The design of self-checking carry look-ahead adders, self-checking carry skip
adders and self-checking carry select adders was presented. It was demonstrated
how the general method of code-disjoint partial duplication with parity checking
for the non-duplicated part can be efficiently applied to the design of self-checking
adders. It was shown how the special properties of the basic adder equations, the al-
ready existing functionally redundant parts of the adders (without error detection),
which were implemented to improve the speed of the adders, can be efficiently ex-
ploited to achieve optimum results with respect to error detection and additional
area overhead. A new adder, the sum bit-duplicated adder was used for concurrent
checking and especially for error detection of the soft errors directly induced in
the output registers. The best possible state-of-the-art self-checking adders for the
different types of adders were presented.

References

1. M. Abramovici, A. D. Friedman, and M. A. Breuer, Digital Systems Testing and Testable
Design. John Wiley & Sons Inc, 1994.

2. M. L. Bushnell and V. D. Agrawal, Essentials of Testing for Analog, Logic and Memory VLSI
Circuits. Kluwer Academic Publishers, 2000.

3. P. K. Lala, Digital Circuit Testing and Testability. San Diego: Academic Press, 1997.
4. D. Pradhan, Fault-Tolerant Computer System Design. Upple Saddle River: Prentice Hall,

1996.
5. P. K. Lala, Self-Checking and Fault-Tolerant Digital Design. Morgan Kaufmann Publishers,

2001.
6. I. Koren and C. Krishna, Fault-Tolerant Systems. Morgan Kaufmann Publishers, 2007.
7. E. S. Sogomonyan, “The Design of Discrete Devices with Diagnosis in the Course of Oper-

ation,” Automation and Remote Control, vol. 31, no. 10, pp. 1854–1860, 1970.
8. D. Marienfeld, E. S. Sogomonyan, V. Ocheretnij, and M. Gössel, “A New Self-Checking

Multiplier by Use of a Code-Disjoint Sum Bit-Duplicated Adder,” in Proceedings of 9th
IEEE European Test Symposium, pp. 73–78, 2004.

9. D. Marienfeld, E. S. Sogomonyan, V. Ocheretnij, and M. Gössel, “New Self-Checking
Output-Duplicated Booth Multiplier with High Fault Coverage for Soft Errors,” in Proceed-
ings of 14th IEEE Asian Test Symposium, (Calcutta), pp. 76–81, 2005.

10. D. Marienfeld, E. S. Sogomonyan, V. Ocheretnij, and M. Gössel, “A New Self-Checking and
Code-Disjoint Non-Restoring Array Divider,” in Proceedings of 12th IEEE International
On-line Test Symposium, (Como, Italy), pp. 23–28, 2006.

11. H. Vierhaus, W. Meyer, and U. Gläser, “CMOS Bridges and Resistive Transistor Faults:
IDDQ versus Delay Effects,” in Proceedings of International Test Conference, pp. 83–91,
1993.

12. M. Renovell, P. Huc, and Y. Bertrand, “The Concept of Resistance Interval: A New Para-
metric Model for Realistic Resistive Bridging Fault,” in Proceedings of 13th IEEE VLSI Test
Symposium, pp. 184–189, 1995.

13. C. Lee and D. Walker, “A PPSFP Simulator for Resistive Bridging Faults,” in Proceedings
of 18th IEEE VLSI Test Symposium, pp. 105–110, 2000.

14. I. Polian, P. Engelke, M. Renovell, and B. Becker, “Modelling Feedback Bridging Faults
With Non-Zero Resistance,” Journal of Electronic Testing: Theory and Applications, vol. 1,
pp. 57–69, 2005.

15. J. F. Wakerly, Digital Design. Upper Saddle River: Prentice Hall, 2001.
16. P. Lidén, P. Dahlgren, R. Johansson, and J. Karlsson, “On Latching Probability of Particle In-

duced Transients in Combinational Networks,” Fault-Tolerant Computing - FTSC-24, Digest
of Papers, pp. 340–349, 1994.

17. E. S. Sogomonyan, “Design of Built-In Self-Checking Monitoring Circuits for Combina-
tional Devices,” Automation and Remote Control, vol. 35, no. 2, pp. 280–289, 1974.

173

174 References

18. E. S. Sogomonyan and M. Gössel, “Design of Self-Testing and On-line Fault Detection Com-
binational Circuits with Weakly Independent Outputs,” Journal of Electronic Testing: Theory
and Applications (JETTA), vol. 4, pp. 267–281, 1993.

19. V. Saposhnikov, A. Morosov, V. Saposhnikov, and M. Gössel, “A New Design Method for
Self-Checking Unidirectional Combinational Circuits,” Journal of Electronic Testing: Theory
and Applications (JETTA), vol. 12, pp. 41–53, 1998.

20. M. Nicolaidis, I. Jansch, and B. Courtous, “Strongly Code-Disjoint Checkers,” in Symposium
on Fault-Tolerant Computing, 1984.

21. T. Nanya and T. Kawamura, “Error Secure/Propagating Concept and its Application to the
Design of Strongly Fault-Secure Processors,” IEEE Transactions on Computers, vol. 37,
no. 1, pp. 14–24, 1988.

22. P. Nigh and A. Gattiker, “Test Method Evaluation Experiments & Data,” in Proceedings of
International Test Conference, pp. 454–463, 2000.

23. I. Polian, J. Hayes, S. Kundu, and B. Becker, “Transient Fault Characterization in Dynamic
Noisy Environments,” in Proceedings of International Test Conference, pp. 1048–1057,
2005.

24. A. Diril, Y. Dhillon, A. Chatterjee, and A. Singh, “Design of Adaptive Nanometer Digital
Systems for Effective Control of Soft Error Tolerance,” in Proceedings of 23rd IEEE VLSI
Test Symposium, pp. 298–303, 2005.

25. M. Agarwal, M. Paul, M. Zhang, and S. Mitra, “Circuit Failure Prediction and its Application
to Transistor Aging,” in Proceedings of 25th IEEE VLSI Test Symposium, pp. 277–284, 2007.

26. C. Lisboa, F. Kastensmidt, E. H. Neto, G. Wirth, and L. Casrro, “Using Built-in Sensors
to Cope with Long Duration Transient Faults in Future Technologies,” in Proceedings of
International Test Conference, p. paper 24.3, 2007.

27. W. C. Carter and P. R. Schneider, “Design of dynamically checked computers,” in JFIP
Congress, (Edinburg, Scotland), pp. 878–883, 1968.

28. D. A. Anderson, “Design of Self-Checking Digital Networks Using Coding Techniques,”
Tech. Rep. 527, CSL/University of Illinois, 1971.

29. S. Kundu, E. S. Sogomonyan, M. Gössel, and S. Tarnick, “Self-Checking Comparator with
One Periodic Output,” IEEE Transactions on Computers, vol. C-45, no. 3, pp. 379–380,
1996.

30. C. Metra, M. Favalli, and B. Ricc, “Highly Testable and Compact Single Output Compara-
tor,” in Proceedings of 15th IEEE VLSI Test Symposium, pp. 210–215, 1997.

31. S. Matakias, Y. Tsiatouhas, T. Haniothakis, and A. Arapoyanni, “Ultra Fast and Low Cost
Parallel Two-Rail Code Checker Targeting High Fan-In Applicatons,” in Proceedings of
IEEE CS Annual Symposium on Emerging Trends in VLSI Systems Design (ISVLSI 04),
pp. 203–206, 2004.

32. D. E. Muller and W. S. Bartky, “A Theory of Asycronous Circuits,” in Proceedings of In-
ternational Symposium on the Theory of Switching, pp. 204–243, Harward University Press,
1959.

33. E. S. Sogomonyan and M. Gössel, “Schaltung zum Vergleichen von zwei n-stelligen binären
Datenwörtern,” Deutsche Patentschrift 10 2005 013 883, G06F 7/04, 20005/2006.

34. M. P. Kusko, B. J. Robbins, T. J. Koprowski, and W. V. Huott, “99% AC coverage using
only LBIST and the 16GHz IBM S/390 zSeries 900 Microprocessor,” in Proceedings of
International Test Conference, pp. 586–592, 2001.

35. F. F. Sellers(Jr.), M. Y. Hsiao, and L. W. Bearnson, Error Detection Logic for Digital Com-
puters. McGraw-Hill, 1968.

36. D. P. Siewiorek and R. S. Schwarz, The Theory and Practice of Reliable System Design.
Bedford: Design Press, 1982.

37. E. S. Sogomonyan and M. Gössel, “New Totally Self-Checking Ripple and Carry Look-
Ahead Adders,” in Proceedings of 3rd On-Line Testing Workshop, pp. 36–40, 1997.

38. E. S. Sogomonyan, V. Ocheretnij, and M. Gössel, “A New Code-Disjoint Sum Bit-Duplicated
Carry Look-Ahead Adder for Parity Codes,” in Proceedings of 10th Asian Test Symposium,
pp. 57–62, 2001.

References 175

39. D. Marienfeld, V. Ocheretnij, M. Gössel, and E. S. Sogomonyan, “Partially Duplicated Code-
Disjoint Carry Skip Adder,” in Proceedings of 7th IEEE International Symposium on DE-
FECT and FAULT TOLERANCE in VLSI Systems, pp. 78–86, 2002.

40. E. S. Sogomonyan, D. Marienfeld, V. Ocheretnij, and M. Gössel, “A New Self-Checking
Sum Bit-Duplicated Carry Select Adder,” in Proceedings of Design, Automation and Test in
Europe Conference – DATE, pp. 1360–1361, 2004.

41. H. Hartje, E. S. Sogomonyan, and M. Gössel, “Code-Disjoint Circuits for Parity Codes,” in
Proceedings of 6th Asia Test Symposium, pp. 100–105, 1997.

42. K. Mohanram and N. A. Touba, “Cost-Effective Approach for Reducing Soft Error Failure
Rate in Logic Circuits,” in Proceedings of International Test Conference, pp. 893–901, 2003.

43. W. W. Peterson and E. J. Weldon(Jr.), Error Correcting Codes. The MIT-Press, 1994.
44. S. Lin and D. J. Costello, Error Control Coding. Pearson US Imports & PHIPEs, 2004.
45. H. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing. Prentice

Hall, Englewood Cliffs, 1979.
46. M. Gössel and E. S. Sogomonyan, “A Non-linear Split Error Detection Code,” Fundamenta

Informatica, vol. 83, pp. 109–115, 2008.
47. J. M. Ashjaee and S. M. Reddy, “On Totally Self-checking Checkers for Separable Codes,”

IEEE Transactions on Computers, vol. 26, no. 8, pp. 737–744, 1977.
48. H. Fujiwara and A. Yanamoto, “Parity-Scan Design to Reduce the Cost of Test Application,”

in Proceedings of International Test Conference, pp. 283–292, 1992.
49. V. Moshanin, V. Ocheretnij, and A. Dmitriev, “The Impact of Logic Optimization on Concur-

rent Error Detection,” in Proceedings of 4th IEEE International On-Line Testing Workshop,
pp. 81–84, 1998.

50. E. V. Slabakov, “Design of Totally Self-checking Combinational Circuits by Use of Residual
Codes,” Automation and Remote Control, vol. 40, pp. 1333–1340, 1979.

51. M. Gössel and E. S. Sogomonyan, “Self-Parity Circuits for Self-Testing, Concurrent Check-
ing, Fault Detection and Parity-Scan-Design,” in Proceedings of 11th IEEE VLSI Test Sym-
posium, pp. 103–111, 1993.

52. N. Touba, “Logic Synthesis for Concurrent Error Detection,” tech. rep., CLS TN 93x/Center
for Reliable Computing, Stanford University, 1992.

53. P. Böhlau, “Zero Aliasing Compression Based on Groups of Weakly Independent Outputs in
Circuits with High Complexity for Two Fault Models,” Lecture Notes in Computer Science,
vol. 852, pp. 289–306, 1994.

54. J. Savir, “Shrinking Wide Compressors,” IEEE Transactions on Computer-Aided Design,
vol. 14, pp. 1379–1387, 1995.

55. K. Chakrabarty and J. P. Hayes, “Test Response Compaction Using Multiplexed Parity
Trees,” IEEE Transactions on Computer-Aided Design, vol. 15, pp. 1399–1408, 1996.

56. M. Seuring, M. Gössel, and E. S. Sogomonyan, “A Structural Approach for Space Com-
paction for Concurrent Checking and BIST,” in Proceedings of 16th IEEE VLSI Test Sympo-
sium, pp. 354–361, 1998.

57. S. M. Reddy, K. K. Saluja, and M. G. Karpovsky, “A Data Compression Technique for Built-
In Self-Test,” IEEE Transactions on Computers, vol. 37, pp. 1151–1156, 1988.

58. A. Dutta and N. A. Touba, “Synthesis of Non-Intrusive Concurrent Error Detection Using an
Even Error Detecting Function,” in Proceedings of International Test Conference, p. Paper
40.3, 2005.

59. H. Hartje, E. S. Sogomonyan, and M. Gössel, “Code-Disjoint Circuits for Parity Codes,” in
Proceedings of 6th Asian Test Symposium, pp. 100–105, 1997.

60. A. Morosov, M. Gössel, and H. Hartje, “Reduced Area Overhead of the Input Parity for Code-
Disjoint Circuits,” in Proceedings of 5th On-Line Testing Workshop, pp. 227–230, 1999.

61. M. Gössel, V. Saposhnikov, A. Dmitriev, and V. Saposhnikov, “A New Method for Concur-
rent Checking by Use of a 1-out-of-4 Code,” in Proceedings of 6th On-Line Testing Work-
shop, pp. 147–152, 2000.

62. A. Morosov, V. Saposhnikov, V. Saposhnikov, and M. Gössel, “New Self-Checking Circuits
by Use of Berger Codes,” in Proceedings of 6th On-Line Testing Workshop, pp. 141–146,
2000.

176 References

63. V. Saposhnikov, A. Morosov, V. Saposhnikov, and M. Gössel, “Concurrent Checking by Use
of Complementary Circuits for 1-out-of-3 Codes,” in Proceedings of 2nd IEEE International
Workshop on Design and Diagnostic of Electronic Circuits and Systems, pp. 404–407, 2002.

64. A. Morosov, V. Saposhnikov, V. Saposhnikov, and M. Gössel, “Complementary Circuits for
On-Line Detection for 1-out-of-3 Codes,” in Proceedings of ARCS - Organic and Pervasive
Computing, pp. 76–83, 2004.

65. V. Saposhnikov, V. Saposhnikov, A. Morosov, and M. Gössel, “Necessary and Sufficient
Conditions for the Existence of Self-Checking Circuits by Use of Complementary Circuits,”
in Proceedings of 10th International On-line Testing Symposium, pp. 25–30, 2004.

66. I. Visirew, “Design of Totally Self-Checking Checkers for Constant-Weight Codes,” Automa-
tion and Remote Control, vol. 16, 1982.

67. M. Marouf and A. Friedman, “Efficient Design of Self-Checking Checkers for a Berger
Code,” IEEE Transactions on Computer-Aided Design, vol. 27, pp. 482–490, 1978.

68. V. V. Saposhnikov, V. V. Saposhnikov, A. Morosov, and M. Gössel, “Necessary and Sufficient
Conditions for the Existence of Self-Checking Circuits by Use of Complementary Circuits,”
tech. rep., University of Potsdam, 2004.

69. S. Graf and M. Gössel, Fehlererkennungsschaltungen. Berlin: Akademie Verlag, 1987.
70. M. Gössel and S. Graf, Error Detection Circuits. London: McGraw-Hill, 1993.
71. S. Ahmikhahaizim, P. Drinedas, and Y. Makris, “Concurrent Error Detection for Combina-

tional and Sequential Logic via Output Compaction,” in Proceedings of International Sym-
posium on Quality Electronic Design, pp. 319–324, 2004.

72. D. Reynolds and G. Metze, “Fault Detection Capabilities of Alternating Logic,” IEEE Trans-
actions on Computers, vol. C-27, pp. 1093–1098, February 1978.

73. V. Saposhnikov, V. Saposhnikov, and M. Gössel, Self-Dual Discrete Devices. Saint Peters-
burg: EnergoAtomIzdat, in rus., 2001.

74. V. Moshanin, V. Saposhnikov, V. Saposhnikov, and M. Gössel, “Synthesis of Self-Dual Multi-
Output Combinational Circuits for On-line Testing,” in Proceedings of 2nd IEEE Interna-
tional On-Line Testing Workshop, pp. 107–111, 1996.

75. V. Saposhnikov, A. Dmitriev, M. Gössel, and V. Saposhnikov, “Self-Dual Parity Checking –
a New Method for On-Line Testing,” in Proceedings of 14th IEEE VLSI Test Symposium,
pp. 162–168, 1996.

76. V. Saposhnikov, V. Saposhnikov, A. Dmitriev, and M. Gössel, “Self-Dual Duplication for
Error Detection,” in Proceedings of 7th IEEE Asian Test Symposium, pp. 296–300, 1998.

77. A. Morosov, V. Saposhnikov, V. Saposhnikov, and M. Gössel, “Design of Self-Dual Fault-
Secure Combinational Circuits,” in Proceedings of 3rd IEEE International On-Line Testing
Workshop, pp. 233–237, 1997.

78. A. Morosov, V. Saposhnikov, V. Saposhnikov, and M. Gössel, “Self-Checking Circuits with
Unidirectionally Independent Outputs,” Journal VLSI Design, vol. 5, no. 4, pp. 333–345,
1998.

79. H. Fujiwara, Logic Testing and Design for Testabilty. The MIT-Press, 1985.
80. S. Mitra, M. Zhang, T. Mak, N. Seiert, V. Zia, and K. Kim, “Logic Soft Errors – a Major Bar-

rier to Robust Platform Design,” in Proceedings of International Test Conference, p. Paper
28.5, 2005.

81. E. S. Sogomonyan, D. Marienfeld, and M. Gössel, “Fehlererkennung mit Fehlerkorrek-
tur für Soft Errors,” GMM/GI/ITG Fachtagung “Zuverlässigkeit und Entwurf”, GMMM-
Fachbericht 52, pp. 185–186, 2007.

82. M. Shams, J. Ebergen, and M. Elmasry, “Optimizing CMOS Implementations of the
C-Element,” in Proceedings of International Conference on Computer Design (ICCD),
pp. 700–705, 1997.

83. M. Shams, J. Ebergen, and M. Elmasry, “Modelling and Comparison CMOS Implementa-
tions of the C-Element,” IEEE Transactions on VLSI Systems, vol. 6, pp. 563–567, December
1998.

84. D. A. Patterson and J. L. Hennessy, Computer Organization and Design. Morgan Kaufmann
Publishers, Inc., 1998.

References 177

85. B. Parhami, Computer Arithmetic. Algorithms and Hardware Designs. Oxford University
Press, 2000.

86. R. H. Katz, Contemporary Logic Design. The Benjamin/Cummings Publishing Company,
Inc., 1994.

87. I. Koren, Computer Arithmetic Algorithms. A.K.Peters, Natick, MA, 2002.
88. M. J. Smith, Application-Specific Integrated Circuits. Adison Wesley, Reading, MA, 1997.
89. A. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-Performance Microprocessor

Circuits. IEEE Press, 2001.
90. T. Y. Chang and M. J. Hsiao, “Carry-Select Adder Using Single Ripple-Carry Adder,” in IEE

Electronic Letters, vol. 34, No.22, pp. 2101–2103, 1998.
91. F. F. Sellers(Jr.), M. Y. Hsiao, and L. W. Bearnson, Error Detection Logic for Digital Com-

puters. McGraw-Hill, 1968.
92. T. R. N. Rao and E. Fujiwara, Error Control Coding for Computer Systems. Prentice Hall,

New-York, 1989.
93. M. Y. Hsiao and F. F. Sellers, “The Carry-Dependent Sum Adder,” IEEE Transactions on

Electronic Computers, vol. EC-12, pp. 265–268, June 1963.
94. M. Nicolaidis, “Efficient Implementations of Self-Checking Adders and ALU’s,” in Sympo-

sium on Fault-Tolerant Computing, pp. 586–595, 1993.
95. V. Ocheretnij, M. Gössel, and E. S. Sogomonyan, “Code-Disjoint Carry-Dependent Sum

Adder with Partial Look-Ahead,” in Proceedings of 7th International On-line Testing Work-
shop, pp. 147–152, 2001.

96. V. Ocheretnij, M. Gössel, E. S. Sogomonyan, and D. Marienfeld, “A Modulo p Checked
Self-Checking Carry Select Adder,” in Proceedings of 9th International On-line Testing Sym-
posium, pp. 25–29, 2003.

97. V. Ocheretnij, M. Gössel, E. S. Sogomonyan, and D. Marienfeld, “Modulo p=3 Checking
for a Carry Select Adder,” Journal of Electronic Testing: Theory and Applications, vol. 22,
pp. 101–107, 2006.

98. E. S. Sogomonyan, D. Marienfeld, V. Ocheretnij, and M. Gössel, “A New Self-Checking
Sum Bit-Duplicated Carry Select Adder,” in University of Potsdam, Preprint 005/2003, ISSN
0946-7580, 2003.

99. E. S. Sogomonyan, D. Marienfeld, V. Ocheretnij, and M. Gössel, “Self-Checking Carry Se-
lect Adder with Sum Bit-Duplication,” in Proceedings of ARCS - Organic and Pervasive
Computing, pp. 84–91, 2004.

100. V. Ocheretnij, D. Marienfeld, E. S. Sogomonyan, and M. Gössel, “Self-Checking Code-
Disjoint Carry Select Adder with Low Area Overhead by Use of Add1-Circuits,” in Pro-
ceedings of 10th International On-line Testing Symposium, pp. 31–36, 2004.

101. Y. Kim and L. S. Kim, “A Low Power Carry Select Adder with Reduced Area,” in Proceed-
ings of International Symposium on Circuits and Systems (ISCAS), pp. 218–221, 2001.

Index

α-particles, 31

Add1-circuit, 134, 167
adders, 4

“fast” ripple adder, 126, 127, 151, 165
carry look-ahead adder, 4, 126, 127, 138

carry look-ahead unit, 127, 128
carry ripple adder, 4, 126
carry select adder, 4, 126, 132, 156

modulo p-checked carry select adder, 156,
157

sum bit-duplicated carry select adder, 156,
163

carry skip adder, 4, 126, 130
multi-level skip adder, 132
skip logic, 130

carry-dependent sum adder, 137, 138, 143,
146

carry-duplicated adder, 4
full adder, 125, 126
sum bit-duplicated adder, 4, 167

sum bit-duplicated carry look-ahead adder,
138, 139, 147

alternating inputs, 102, 107
area, 3, 31, 32, 167, 170

area overhead, 162

C-element, 4, 35, 36, 117, 118
carry duplication, 137
check bits, 56, 57

duplicated check bits, 119
code-disjoint, 3, 4, 26, 27, 77, 136, 148, 163

code-disjoint circuits, 6
code-disjoint partially duplicated circuits,

40
codes, 42

m-out-of-n code, 49

1-out-of-3 code, 87
Berger Code, 46
block codes, 42
code checker, 84
code distance, 43
code word, 42, 44
error correction codes, 2
group parity codes, 3, 45
linear codes, 44
non-linear codes, 3, 44
non-linear split error detection codes, 42, 49
non-systematic codes, 91
parity codes, 3, 42, 44
systematic block codes, 3, 44, 56, 85, 91,

100, 118
comparator, 3, 31–33, 36, 56, 58, 65

comparator with single dynamic periodic
output, 35

comparators with a single dynamic periodic
output, 35

complementary circuits, 3, 84, 85, 90, 100,
102, 107

concurrent checking, 1, 13, 25
self-testing, 26, 71, 91

controlling value, 5, 7
correction, 4
corrector, 119

D-latch, 117
delay

maximum delay, 130
distance, 10
duplicated carries, 138, 139
duplication and comparison, 2, 3, 31–33, 41,

46, 100, 150
dynamic output, 36

179

180 Index

electrical condition, 22
equality checker, 37
error detection, 40
error detection circuit

optimal error detection circuit, 98
error detection function, 98
error detection probability, 3, 25, 32
error signal, 32
errors, 3, 43

error automaton, 24
error function, 23, 24
error vector, 43
even errors, 54, 58, 75, 76, 150, 155, 167,

170
functional error model, 3, 4, 6, 23
functional errors, 5
input errors, 26

even input errors, 136, 157
odd input errors, 136, 140, 145, 148, 154,

157, 165, 170
odd errors, 54, 58, 75, 76, 82, 142, 146, 148,

150, 155, 167, 170
propagated, 5, 8, 9
soft errors, 4, 6, 22, 31, 40, 41, 78, 116, 119,

139, 147
stimulated, 5, 8, 9

fault tolerance, 2
fault-secure, 6, 26
faults, 3, 5, 6

bridging faults, 3, 5, 6, 10, 13, 23
bridging between lines, 5
input-output bridging, 11, 13
wired AND, 10
wired OR, 10

broken lines, 5
crosstalk, 5, 22
delay faults, 3, 21, 22

gate delay faults, 6, 22
path delay faults, 6, 22

fault model, 6, 57
faults at input lines, 107
faults caused by α-particles, 5
non-modelled faults, 27
permanent faults, 1, 5
stuck-at faults, 3, 109, 141, 145, 148, 154,

155, 165, 170
single stuck-at faults, 5–7, 12, 27, 112,

142, 145, 146, 149, 150, 155, 157, 162,
170

transient faults, 1, 5, 22, 116, 119
transistor faults, 3

stuck-on faults, 3, 6, 19, 21
stuck-open faults, 3, 5, 19–21

generalized circuit graph, 3, 54, 60, 61, 71
generate signal, 125
generator, 56, 58, 59, 100, 119
generator circuit, 54, 55
GND, 17
group parity, 24, 53

Hamming distance, 43
Hamming weight, 43

information bits, 57

joint implementation, 72, 79, 103, 108, 109
joint optimization, 109

logic condition, 22

majority voter, 2
modulo p checking, 47

netlist of gates, 56
node splitting, 3, 55, 71
non-controlling value, 7–9

on-line detection, 2
oscillating signal, 5
output dependencies, 3, 6, 24, 62

functionally independent outputs, 63
independent outputs, 3, 6, 24, 55, 62

group of independent outputs, 24, 63
structurally independent outputs, 63, 64
unidirectionally independent outputs, 3, 6,

24, 25
weakly independent outputs, 3, 6, 24, 55,

62, 64, 66
group of weakly independent outputs, 65,

66, 73
overhead, 31

parity, 53, 65, 72, 75, 78, 82, 120, 135
input parity, 78

parity bit, 57
parity prediction, 4, 31, 40, 57, 59, 107, 108,

139
parity-checked adder, 136
partial duplication, 3, 4, 31, 40, 78, 139

partially duplicated circuits, 82, 151, 153
power consumption, 3, 31, 32
predictor, 56, 58, 59, 65, 100, 119
predictor circuit, 54, 55

parity predictor, 54, 75
propagate signal, 125

group propagate signal, 129
propagate generator, 163, 165, 168

self-checking, 27

Index 181

totally self-checking, 6, 26, 27, 93
self-dual

dual functions, 103, 104
self-dual Boolean functions, 102, 103
self-dual circuits, 102, 104, 109, 111
self-dual complement, 105–108
self-dual duplication, 4, 102, 109
self-dual error detection, 4
self-dual fault-secure circuits, 103, 109, 112,

113
self-dual fault-secure output, 112
self-dual functions, 103
self-dual parity, 4, 102, 107

self-testing, 6, 26
separate implementation, 59, 79, 103, 109
separate optimization, 109
short to ground, 5
short to power supply, 5
side-inputs, 8, 9
single event transition, 6
single event upset, 22
state machine, 11
static output, 36
switches, 18

testing, 1
n-detection testing, 6, 27
“exhaustively” tested, 12
Built-In Self-Test, 1

time redundancy, 102
timing condition, 22
totally self-checking checker, 91–93
transistor

drain, 19
n-net, 17
n-transistors, 17
p-net, 17
p-transistors, 17
source, 19

triple modular redundancy, 2
two-rail, 46
two-rail checker, 32, 33, 37, 142
two-rail logic, 39

undefined output, 18
undefined value, 6

VDD, 17

	1402084196
	Contents
	1. Introduction
	2. Physical Faults and Functional Errors
	2.1 Stuck-At Faults
	2.2 Bridging Faults
	2.2.1 Non-Resistive Bridging Faults
	2.2.2 Resistive Bridging Faults

	2.3 CMOS Stuck-Open and Stuck-On Faults
	2.4 Delay Faults
	2.5 Transient Faults
	2.6 Functional Error Model
	2.7 Output Dependencies
	2.8 Self-Testing and Self-Checking
	2.9 Faults and Errors in Submicron Technologies

	3. Principles of Concurrent Checking
	3.1 Duplication and Comparison
	3.1.1 Description of the Method
	3.1.2 Comparators and Two-Rail Checkers
	3.1.3 Method of Partial Duplication

	3.2 Block Codes for Error Detection
	3.2.1 Classical Error Detection Codes
	3.2.2 Non-linear Split Error Detection Codes

	3.3 Parity and Group Parity Checking
	3.3.1 Predictor and Generator Circuits
	3.3.2 Parity Prediction
	3.3.3 Generalized Circuit Graph
	3.3.4 Independent Outputs and Weakly Independent Outputs
	3.3.5 Determination of Groups of Weakly Independent Outputs
	3.3.6 Circuit Modification by Node-Splitting
	3.3.7 Further Methods for the Determination of Weakly Independent Outputs

	3.4 Odd and Even Error Detection
	3.4.1 Description of Odd and Even Error Detection

	3.5 Code-Disjoint Circuits
	3.5.1 Design of Code-Disjoint Circuits

	3.6 Error Detection by Complementary Circuits
	3.6.1 Error Detection by Use of Complementary Circuits
	3.6.2 Complementary Circuits for 1-out-of-3 Codes
	3.6.3 Conditions for the Existence of Totally Self-Checking Error Detection Circuits by Complementary Circuits

	3.7 General Method for the Design of Error Detection Circuits
	3.7.1 Description of the Method

	3.8 Self-Dual Error Detection
	3.8.1 Self-Dual Boolean Functions
	3.8.2 Transformation of a Given Circuit into a Self-Dual Circuit
	3.8.3 Self-Dual Error Detection Circuits
	3.8.4 Self-Dual Fault-Secure Circuits

	3.9 Error Detection with Soft Error Correction
	3.9.1 Description of the Method

	4. Concurrent Checking for the Adders
	4.1 Basic Types of Adders
	4.2 Parity Checking for Adders
	4.3 Self-Checking Adders
	4.3.1 Self-Checking Carry Look-Ahead Adders
	4.3.2 Self-Checking Partially Duplicated Carry Skip Adder
	4.3.3 Self-Checking Carry Select Adders

	References
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	S
	T
	U
	V

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

