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PREFACE 
 
  
Industrial Biotechnology is an interdisciplinary topic to which 
tools of modern biotechnology are applied for finding proper 
proportion of raw mix of chemicals, determination of set points, 
finding the flow rates etc., This study is significant as it results 
in better economy, quality product and control of pollution. The 
authors in this book have given only methods of industrial 
biotechnology mainly to help researchers, students and chemical 
engineers. Since biotechnology concerns practical and diverse 
applications including production of new drugs, clearing up 
pollution etc. we have in this book given methods to control 
pollution in chemical industries as it has become a great health 
threat in India. In some cases, the damage due to environmental 
pollution outweighs the benefits of the product.  

This book has six chapters. First chapter gives a brief 
description of biotechnology. Second chapter deals will proper 
proportion of mix of raw materials in cement industries to 
minimize pollution using fuzzy control theory. Chapter three 
gives the method of determination of temperature set point for 
crude oil in oil refineries. Chapter four studies the flow rates in 
chemical industries using fuzzy neutral networks. Chapter five 
gives the method of minimization of waste gas flow in chemical 
industries using fuzzy linear programming. The final chapter 
suggests when in these studies indeterminancy is an attribute or 
concept involved, the notion of neutrosophic methods can be 
adopted. The authors feel that the reader should be well versed 
with fuzzy models like neural networks, fuzzy relational 
equations, fuzzy control theory, fuzzy linear programming and 
neutrosophic fuzzy models like NRE together with a knowledge 
of the technical functioning of chemical industries.  

The authors are deeply indebted to Dr. Kandasamy, Kama 
and Meena for their sustained cooperation.   
  

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 
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Chapter One 
 
 
 
 
 

INTRODUCTION  
 
 
 
 
 
In keeping with the definition that “biotechnology is really no 
more than a name given to a set of techniques and processes”, 
the authors apply some set of fuzzy techniques to chemical 
industry problems such as finding the proper proportion of raw 
mix to control pollution, to study flow rates, to find out the 
better quality of products. We use fuzzy control theory, fuzzy 
neural networks, fuzzy relational equations, genetic algorithms 
to these problems for solutions.  

When the solution to the problem can have certain concepts 
or attributes as indeterminate, the only model that can tackle 
such a situation is the neutrosophic model. The authors have 
also used these models in this book to study the use of 
biotechnology in chemical industries. 

The new biotechnology revolution began in the 1970s and 
early 1980s when scientists learned to precisely alter the genetic 
constitution of living organisms by processes out with 
traditional breeding practices. This “genetic engineering” has 
had a profound impact on almost all areas of traditional 
biotechnology and further permitted breakthroughs in medicine 
and agriculture, in particular those that would be impossible by 
traditional breeding approaches.  
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There are evidences to show that historically biotechnology 
was an art rather than a science, exemplified in the manufacture 
of wines, beers, cheeses etc. It is well comprehended by one and 
all that biotechnology is highly multi disciplinary, it has its 
foundations in many fields including biology, microbiology, 
biochemistry, molecular biology, genetics, chemistry and 
chemical and process engineering. It is further asserted that 
biotechnology will be the major technology of the twenty first 
century.  

The newly acquired biological knowledge has already made 
very important contributions to health and welfare of human 
kind. 

Biotechnology is not by itself a product or range of 
products; it should be regarded as a range of enabling 
technologies that will find significant application in many 
industrial sectors. 

Traditional biotechnology has established a huge and 
expanding world market and in monetary terms, represents a 
major part of all biotechnology financial profits. ‘New’ aspects 
of biotechnology founded in recent advances in molecular 
biology genetic engineering and fermentation process 
technology are now increasingly finding wide industrial 
application.  

In many ways, biotechnology is a series of embryonic 
technologies and will require much skilful control of its 
development but the potentials are vast and diverse and 
undoubtedly will play an increasingly important part in many 
future industrial processes. 

It is no doubt an interaction between biology and 
engineering. The developments of biotechnology are proceeding 
at a speed similar to that of micro-electronics in the mid 1970s. 
Although the analogy is tempting any expectations that 
biotechnology will develop commercially at the same 
spectacular rate should be tempered with considerable caution. 
While the potential of new biotechnology cannot be doubted a 
meaningful commercial realization is now slowly occurring and 
will accelerate as we approach the end of the century. New 
biotechnology will have a considerable impact across all 
industrial uses of the life sciences. In each case the relative 
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merits of competing means of production will influence the 
economics of a biotechnological route. There is no doubt that 
biotechnology will undoubtedly have great benefits in the long 
term in all sectors. The growth in awareness of modern 
biotechnology parallels the serious worldwide changes in the 
economic climate arising from the escalation of oil prices since 
1973. 

Biotechnology has been considered as one important means 
of restimulating the economy whether on a local, regional 
national or even global basis using new biotechnological 
methods and new raw materials. Much of modern biotechnology 
has been developed and utilized by large companies and 
corporations.  

However many small and medium sized companies are 
realizing that biotechnology is not a science of the future but 
provides real benefits to their industry today. In many industries 
traditional technology can produce compounds causing 
environmental damage whereas biotechnology methods can 
offer a green alternative promoting a positive public image and 
also avoiding new environmental penalties. 

Biotechnology is high technology par excellence. Science 
has defined the world in which we live and biotechnology in 
particular will become an essential and accepted activity of our 
culture. Biotechnology offers a great deal of hope for solving 
many of the problems our world faces!. As stated in the 
Advisory Committee on Science and Technology Report 
Developments in Biotechnology, public perception of 
biotechnology will have a major influence on the rate and 
direction of developments and there is growing concern about 
genetically modified products. Associated with genetic 
manipulation are diverse question of safety, ethics and  
welfare. 

Public debate is essential for new biotechnology to grow up 
and undoubtedly for the foreseeable future, biotechnology will 
be under scrutiny. We have only given a description of the 
biotechnology and the new biotechnology. We have highly 
restricted ourselves from the technical or scientific analysis of 
the biotechnologies as even in the countries like USA only less 
than 10% of the population are scientifically literate, so the 
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authors have only described it non-abstractly and in fact we are 
not in anyway concerned to debate or comment upon it as we 
acknowledge the deep and dramatic change the world is facing 
due to biotechnology and new biotechnology. 

For more of these particulars please refer [1, 2, 13, 15, 17].  
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Chapter Two  
 
 
 
 
 

BIOTECHNOLOGY IN CHEMICAL 
INDUSTRIES  
 
 
 
 
 
The chemical industries have become a great threat in India. For 
the problems they cause on environmental pollution is much 
more than the benefit derived by their product. Some of them 
damage other living organisms like fishes, plants and animals; 
some cause health hazards to people living around the industries 
like respiratory ailments, skin problems and damage to nervous 
systems. So we have chosen to illustrate the minimization of 
pollution by CKD in cement Industries. Most of these problems 
can be controlled provided one takes the proper proportion of 
the mix of raw materials, which would minimize the pollution.  

Cement kiln dust (CKD) emits nitrogen, carbon etc., that are 
pollutants of the atmosphere and the waste dust affects the 
smooth kiln operation of the cement industry system and it 
reduces the production of clinker quality. Hence the 
minimization of waste CKD in kiln is an important one in the 
cement industry. The control of the waste CKD in a kiln is an 
uncertainty. Researchers approach this problem by 
mathematical methods and try to account the waste CKD in a 
cement kiln. But, most of their methods do not properly yield 
results about the waste CKD in kiln. Further, the control of the 
waste CKD in kiln is a major problem for this alone can lead to 
the minimization of atmospheric pollution by the cement 
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industry. So in this chapter we minimize the waste CKD in kiln 
and account for the waste CKD in kiln using fuzzy control 
theory and fuzzy neural networks. 
 In this chapter fuzzy control theory (FCT) is used to study 
the cement kiln dust (CKD) problem in cement industries. 
Using fuzzy control method this chapter tries to minimize the 
cement kiln dust in cement industries. Cement industries of our 
country happens to be one of the major contributors of dust. The 
dust arising in various processing units of a cement plant varies 
in composition. In 1990 the national average was 9 tons of CKD 
generated for every 100 tons of clinker production. The control 
of cement kiln dust is a very important issue, because of the 
following reasons : 1. CKD emits nitrogen, carbon etc., which 
are pollutants of the atmosphere, 2. The waste dust affects the 
smooth kiln operation of the cement industry system and it 
reduces the production of clinker quality. The following creates 
mainly this waste dust in three ways in cement industries : (a) 
Cement kiln dust when not collected in time and returned into 
the kiln, cause air pollution, (b) Process instability and 
unscheduled kiln shutdowns and (c) Mixing of raw materials. 

The data obtained from Graft R. Kessler [12] is used in this 
chapter to test the result. After using the data from Kessler [12] 

this chapter tries to minimize the CKD in cement factory. The 
minimization of CKD plays a vital role in the control of 
pollution in the atmosphere. 

W.Kreft [21] used the interruption of material cycles 
method for taking account and further utilization of the waste 
dust in the cement factory. But this method does not properly 
account the waste CKD. Kesslar [12] has used volatile analysis 
to reduce CKD. In the volatile analysis method the alkali ratio is 
used to indicate the waste amount of CKD in clinker. 

Kesslar [12] classifies the raw data under investigation in 
four ways : 

I. Monitor and control of the system 
II. Burning zone and fuel combustion improvements 

III. CKD reprocessing 
IV. Find the mix of raw materials in proper proportion. 

 The ratio of alkali should be lying between 0.5 to 1.5 in 
Kiln load material. But in this method the CKD was 
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approximately estimated up to 40%. He has not exactly 
mentioned the percentage of CKD according to the alkali ratio 
in an online process. So this method has affected largely the kiln 
system. 
 In this chapter, in order to account for the waste CKD, the 
variables are expressed in terms of membership grades. This 
chapter considers all the four ways of waste CKD mentioned by 
Kesslar [12] and converts it into a fuzzy control model. This 
chapter consists of five sections. In section 1 we describe the 
cement kiln system and the nature of chemical waste dust which 
pollutes the atmosphere. In section 2 we adopt the fuzzy control 
theory to monitor and control the system and give suggestion 
for the improvement of burning and combustion zone. Section 3 
deals with the determination of gas volume set point and 
temperature set point for CKD reprocessing which is vital for 
the determination of percentage of net CKD. The amount of 
waste dust depends largely on the mix of raw materials in 
proper proportion of raw material mix is shown in section 4. 
The final section deals with results and conclusion obtained 
from our study. 
 
 
2.1 Description of waste CKD in cement kiln 
 
The data available from any cement industry is used as the 
information and also as the knowledge about the problem. This 
serves as the past experience for our study for adapting the 
fuzzy control theory in this section. This chapter analysis the 
data via membership functions of fuzzy control method and 
minimizes the waste CKD in cement industries. Since the 
cement industry, emits the cement kiln dusts into the 
atmosphere, this waste dust pollutes the atmosphere. 
 This analysis not only estimates the cement kiln dust in 
cement industries but also gives condition to minimize the 
waste CKD so that the industry will get maximum profit by 
minimizing the waste CKD in cement industry. 
 CKD is particulate matter that is collected from kiln exhaust 
gases and consist of entrained particles of clinker, raw materials 
and partially calcined raw materials. The present pollution in 
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environment is generated by CKD along with potential future 
liabilities of stored dust and this should make CKD reduction a 
high priority. Here we calculate and minimize the net CKD in 
kiln system. This chapter tackles the problem of minimizing 
waste CKD in kiln system in four stages. At the first stage we 
monitor and control the system. In the second stage we adopt 
time-to- time improved techniques in burning zone and 
combustion. At the third stage CKD reprocessing is carried out 
and in the fourth stage we optimize the mix of raw materials in 
proper proportion using fuzzy neutral network. The above stage-
by-stage process is shown in the following figure 2.1.1. Fuzzy 
control theory and fuzzy neutral network (FNN) is used in this 
chapter for the above – described method to minimize the CKD 
in kiln system. 
 

 
The fuzzy controller is composed of linguistic control rule, 
which are conditional linguistic statements of the relationship 
between inputs and outputs. One of the attractive properties of 
fuzzy controller is its ability to emulate the behaviour of a 
human operator. Another important characteristic of a fuzzy 
controller is its applicability to systems with model uncertainty 
or even to unknown model systems. The use of fuzzy control 

 
CKD 

Reduction 
Final Step 

Step 1: Monitor 
and control of the 
system 

Step 2: Burning 
zone and 
combustion 
improvement  

Step 3: CKD 
Reprocessing  
 

Step 4: Optimize 
and mix the raw 
material in proper 
proportion  

FIGURE 1: CKD Reduction using fuzzy control
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applications has expanded at an increasing rate in recent years. 
In this chapter we use fuzzy control to monitor waste dust in 
cement kiln system and CKD reprocessing. The fuzzy control in 
kiln system is described in the figure 2.1.2. We use fuzzy neural 
network method and tries to find a proper proportion of material 
mix in cement industries.  

The authors aim to achieve a desired level of lime saturation 
factor (LSF), silica modulus (SM) and alumina modulus (AM) 
of the raw mix, to produce a particular quality of the cement by 
controlling the mix proportions of the raw materials. To achieve 
an appropriate raw mix proportion is very difficult, due to the 
inconsistency in the chemical composition ratio given for the 
raw materials.  

Fuzzy neural network model is used to obtain a desired 
quality of clinker. The raw mix as per the norms of cement 
industries should maintain the ranges like LSF 1.02 to 1.08, SM 
2.35 to 2.55 and AM 0.95 to 1.25, which are the key factors for 
the burnability of clinker to obtain a good quality of cement. 
Fuzzy control theory method is used to minimize waste cement 
kiln dust. Fuzzy control theory allows varying degrees of set 
membership based on a membership function defined over a 
range of values. The membership function usually varies from 0 
to 1. 
 
 

 
 
 

Dust 
Collector 

Fuzzy 
Control 
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Net 
CKD  

Gross CKD

Recycled CKD 

Gross CKD

Recycled CKD 

Burning zone 

Clinker 
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FIGURE 2: Fuzzy control in kiln system
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2.2 Monitoring and control of the system using FCT 
and improvement of burning zone and combustion 
 
Monitoring and control of the system is the most effective 
method towards CKD reduction in environment. CKD consists 
mainly of raw materials, which contain volatile compounds, 
therefore, tracking and control of the volatile compounds 
throughout the system often allows for the minimal CKD. The 
initial step in our plan towards CKD reduction is to identify the 
amount of the CKD. Here the indirect weighing method is 
applied to identify the amount of the CKD. Calculating 
sulphur/alkali ratio is a good indication of a possible imbalance. 
This ratio is calculated as the molar ratio of SO3/(K2O)+Na2O) 
in kiln load material. 
 
 

CKD VOLATILE ANALYSIS 
 

Volatile Molecular Weight 
Na2O 62 
K2O 94.2 
SO3 80 

 
 

Ratio of alkali = SO3 /K2O + Na2O = 80/156.2 = 0.512 
 
 This ratio should be between the values 0.5 to 1.5 in Kiln 
load material. The industry knows upto 40% of CKD exits, 
when the alkali ratio is between the values 0.5 to 1.5. But they 
cannot say exactly how much percentage of CKD waste comes 
from kiln by using the ratio of alkali in the online process. If 
industry knows this correct percentage of CKD in the online 
process, they can change some condition in the kiln and thus 
reduce the CKD in the online process. We adopt fuzzy control 
to estimate the percentage of CKD by using the ratio of alkali. 
The alkali ratio, kiln load material in tons and percentage of 
CKD are measured from the past happening process in kiln on a 
scale from 0.5 to 1.5, 5 to 25 tons and 0 to 40% respectively. 
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That is we assign the sulphur/alkali ratio shortly termed as alkali 
ratio, alkali ratio to be approximately low (L) when its value is 
0.5, medium (M) when its value is 1 high (H) when its value is 
1.5. In a similar way we give kiln load material ≅ {5 tons [first 
stage (FS)], 15 tons [second stage (SS)] and 25 tons [third stage 
(TS)]}. Percentage of CKD ≅ {0 [very less (VL)], 10 [less (L)], 
20 [medium (M)], 30 [high (H)] and 40 [very high (VH)]}. (‘≅’ 
Denotes approximately equal). The terms of these parameters 
are presented in figures 2.2.1, 2.2.2 and 2.2.3. 
 

 

 
 
 

0.5  1 1.5

1 

L  M  H 

M
S
G 

X Alkali ratio 

Legend 
MSG – Membership grade 
L-low, M-medium, H-high 

FIGURE 2.2.1: Alkali ratio- input parameter 

5 15 25 

1 

FS  SS  TS

M
S
G 

Y Kiln load material in tons 

Legend 
MSG – Membership grade 
FS- First stage, SS-Second 
stage, TS- Third Stage  

FIGURE 2.2.2: Kiln load material in tons-output parameter 
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 For the terms of alkali ratio, kiln load material in tons and 
percentage of CKD we give the following membership 
functions: 
 
 

( )

L

Malkali  ratio

H

(X) (1 X) 0.5        0.5 X 1
(X 0.5) 0.5   0.5 X 1

X (X)
(1.5 X) 0.5   1 X 1.5

(X) (X 1) 0.5        1 X 1.5

μ = − ≤ ≤⎧
⎪ − ≤ ≤⎧⎪μ = μ =⎨ ⎨ − ≤ ≤⎩⎪
⎪μ = − ≤ ≤⎩

  (2.2.1) 

 
 

( )

( )

( )

( )

FS

ki ln  SS
ratio  in tons 

TS

Y (15 Y) 10   5 Y 15
(Y 5) 10  5 Y 15

Y Y
(25 Y) 10  15 Y 25

Y (Y 15) 10    15 Y 25

⎧ μ = − ≤ ≤
⎪

− ≤ ≤⎧⎪μ = μ =⎨ ⎨ − ≤ ≤⎩⎪
⎪μ = − ≤ ≤⎩

 (2.2.2) 

 

0 10 20 30 40 

1 

VL  L  M  H VH

M
S
G 

Z Percentage of CKD 

Legend 
MSG – Membership grade 
VL- very less, L-low, M-medium, 
H-high, VH- very high  

FIGURE 2.2.3: Percentage of CKD – output parameter 
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( )

( )

( )

( )

( )

( )

VL

L

percentage M
of CKD 

H

VH

Z (10 Z) 10    0 Z 10
Z 10        0 Z 10

Z
(20 Z) 10  10 Z 20

(Z 10) 10   10 Z 20
ZZ

(30 Z) 10   20 Z 30

(Z 20) 10    20 Z 30
Z

(40 Z) 10     30 Z 40
Z (Z 30) 10     30 Z 40

⎧ μ = − ≤ ≤
⎪

≤ ≤⎧
μ = ⎨ − ≤ ≤⎩

− ≤ ≤⎧
μ =μ = ⎨⎨ − ≤ ≤⎩

− ≤ ≤⎧
μ = ⎨ − ≤ ≤⎩
μ = − ≤ ≤

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎩

  (2.2.3) 

 
By applying the “if … and … then” rules [refer 11] to the three-
membership functions μ(X), μ(Y) and μ(Z) we get the 
following table of rules. 
 
The rules given in Table 2.2.1 read as follows :  
 
 

Table 2.2.1 
 Y 
X 

FS SS TS 

L VL M H 
M L M H 
H M H VH

 
 
For example : 
 
If alkali ratio is L and kiln load material in tons is FS then 
percentage of CKD is VL. If alkali ratio is H and kiln load 
material in tons is TS then percentage of CKD is VH; and so on. 
 Rules of evaluation using the membership functions defined 
by the equation (2.2.1) and (2.2.2), if alkali ratio is 1.2 and kiln 
load material is 17 tons we get the fuzzy inputs as μM(1.2) = 0.6, 
μH(1.2) = 0.4, μSS(17) = 0.8 and μTS(17) = 0.2. Induced decision 
table for percentage of CKD is as follows. 
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      Table 2.2.2 

   Y 
X 0 μSS (17) = 0.8 μTS(17) = 0.2

0 0 0 0 

μM(1.2)=0.6 0 μM(Z) μH(Z) 
μH(1.2)=0.4 0 μH(Z) μVH(Z) 

 
 
Conflict resolutions of the four rules is as follows: 
 
 Rule 1 : If X is M and Y is SS then Z is M 
 Rule 2 : If X is M and Y is TS then Z is H 
 Rule 3 : If X is H and Y is SS then Z is H 
 Rule 4 : If X is H and Y is TS then Z is VH 
 
Now, using Table 2.2.2 we calculate the strength values of the 
four rules as 0.6, 0.2, 0.4 and 0.2. Control output for the 
percentage of CKD is given in table 2.2.3. 
 
      Table 2.2.3 

  Y 
X 0 μSS (17) = 0.8 μTS(17) = 0.2 

0 0 0 0 

μM(1.2)=0.6 0 min{[0.6, μM(Z)]} min{[0.2, μH(Z)]} 

μH(1.2)=0.4 0 min{[0.4, μH(Z)]} min{[0.2, μVH(Z)]} 
  
 To find the aggregate(agg) of the control outputs, we obtain 
the maximum of the minimum. This is given by the following 
figure 2.2.4, that is μagg (Z) = max {min {[0.6, μM(Z)] min {[0.4, 
μH(Z)],)], min [0.2, μvH(Z)]}. By applying the mean of 
maximum method for defuzzification that is the intersection 
points of the line μ = 0.6 with the triangular fuzzy number 
μM(Z) in equation (2.2.3) we get the crisp output to be 20%. 
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Rules of evaluation using the membership function defined by 
the equation (1) and (2), if alkali ratio is 0.5 and kiln load 
material is 5 tons we get the fuzzy inputs as μL(0.5) = 1, μH(0.5) 
= 0, μrs(5) = 1 and μss(5) = 0. Induced decision table for 
percentage of CKD is as follows. 
 

Table 2.2.4 
    Y 
X μFS(5) = 1 μSS(5) = 0 0

μL(0.5) = 1 μVL(Z) μM(Z ) 0
μM(0.5 )= 0 μL(Z) μM(Z ) 0
0 0 0 0

 
Conflict resolutions of the four rules is as follows: 
 

Rule 1 : If X is L and Y is FS then Z is VL 
Rule 2 : If X is L and Y is SS then Z is M 
Rule 3 : If X is M and Y is FS then Z is L 
Rule 4 : If X is M and Y is SS then Z is M. 

 
 Now, using Table 2.2.4 we calculate the strength values of 
the four rules as 1, 0, 0 and 0. Control output for the percentage 
of CKD is given in Table 2.2.5. 

0 10 20 30 40 

1 

VL  L  M  H VH

M
S
G 

Z Percentage of CKD 

FIGURE 2.2.4: Aggregated output and defuzzificztion for 
the percentage of CKD  
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       Table 2.2.5 

 Y 
X μFS (5) = 1 μSS(5) = 0 0 

μL (0.5) = 1 min {[1, μVL(Z)]} min {[0, μM(Z)]} 0 
μH(0.5) = 0 min {[0, μL(Z)]} min {[0, μM(Z)]} 0 

0 0 0 0 
     
  
To find the aggregate of the control outputs, we obtain the 
maximum of the minimum. This is given by the following 
figure 2.2.5 that is μagg (Z) = {min {l, μVL(Z)]}, min{[0, 
μM(Z)]}, min {[0, μL (Z)]}. By applying the mean of maximum 
method for defuzzification that is the intersection points of the 
line μ =1 with the triangular fuzzy number μVL(Z) in equation 
(3) and get the crisp output to be 0%. 
 
 

 
 Rules of evaluation using the membership function defined 
by the equations (1) and (2), if alkali ratio is 1 and kiln load 
material is 15 tons we get the fuzzy inputs as μL(1) = 0, μH (1) = 
0 and μm (1) = 1, μFS (15) = 0, μSS(15) = 1, μTS (15) = 0, Induced 
decision table for percentage of CKD is as follows. 
 

0 10 20 30 40 

1 

VL  L  M  H VH

M
S
G 

Z Percentage of CKD 

FIGURE 2.2.5: Aggregated output and defuzzificztion for 
the percentage of CKD  
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Table 2.2.6 
  Y 
X μFS(15) = 0 μSS(15) = 1 μTS(15) = 0

μL(1) = 0 μVL(Z) μM(Z ) μH(Z ) 
μM(1) = 1 μL(Z) μM(Z ) μH(Z ) 
μH(1) = 0 μM(Z ) μH(Z ) μVH(Z ) 
 

Conflict resolutions of the nine rules is as follows : 
 

Rule 1 : If X is L and Y is FS then Z is VL 
Rule 2 : If X is L and Y is SS then Z is M 
Rule 3 : If X is L and Y is TS then Z is H 
Rule 4 : If X is M and Y is FS then Z is L. 
Rule 5 : If X is M and Y is SS then Z is M. 
Rule 6 : If X is M and Y is TS then Z is H. 
Rule 7 : If X is H and Y is FS then Z is L. 
Rule 8 : If X is H and Y is SS then Z is M. 
Rule 9 : If X is H and Y is TS then Z is H. 

 
Now, using Table 2.2.6 we calculate the strength values of the 
nine rules as 0, 0, 0, 0, 1, 0, 0, 0, 0. Control output for the 
percentage of CKD is given in Table 2.2.7. 
 

Table 2.2.7 
 Y 
X μFS (15) = 0 μSS(15) = 1 μTS(15) = 1 

μL (1)=0 min{[0,μVL(Z)]} min{[0,μM(Z)]} min{[0,μH(Z)]} 

μM(1)=1 min{[0,μL(Z)]} min{[0,μM(Z)]} min{[0,μH(Z)]} 

μH(1)=0 min{[0,μM(Z)]} min{[0,μH(Z)]} min{[0,μH(Z)]} 
       
 
 To find the aggregate of the control outputs, we obtain the 
maximum of the minimum. This is given by the following 
figure 2.2.6, that is μagg (Z) = max {min {0, μVL(Z)]}, min{[0, 
μM(Z)]}, min {[0, μL(Z)]}, {min {l, μH(Z)]}, min{[0, μVH(Z)]}. 
By applying the mean of maximum method for defuzzification 
that is the intersection points of the line μ =1 with the triangular 
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fuzzy number μVL(Z) in equation (2.2.3) and get the crisp output 
to 20%. 
 

 
 
Rules of evaluation using the membership function defined by 
the equations (2.2.1) and (2.2.2), if alkali ratio is 1.5 and kiln 
load material is 25 tons we get the fuzzy inputs as μM (1.5) = 0, 
μH (1.5) = 1, μSS (25) = 0 and μTS (25) = 1. Induced decision 
table for percentage of CKD is as follows. 
 

Table 2.2.8 
 

  Y 
X 0 μSS(25) = 0 μTS(25) = 1

0 0 0 0 
μM(1.5) = 0 0 μM(Z) μH(Z ) 
μH(1.5) = 1 0 μH(Z) μVH(Z ) 

 
Conflict resolutions of the four rules is as follows : 
 

Rule 1 : If X is M and Y is SS then Z is M 
Rule 2 : If X is M and Y is TS then Z is H 
Rule 3 : If X is H and Y is SS then Z is H 
Rule 4 : If X is H and Y is TS then Z is VH. 
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FIGURE 2.2.6: Aggregated output and defuzzification for 
the percentage of CKD  
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 Now, using Table 2.2.8 we calculate the strength values of 
the four rules as 0, 0, 0 and 1 Control output for the percentage 
of CKD is given in Table 2.2.9. 
 
      Table 2.2.9 

 Y 
X 0 μSS(25) = 0 μTS(25) = 1 

0 0 0 0 
μM(1.5) = 0 0 min [0, μM(Z)] min [0, μH(Z)] 
μH(1.5) = 1 0 min [0, μH(Z)] min [1, μVH(Z)]

 
 To find the aggregate of the control outputs, we obtain the 
maximum of the minimum. This is given by the following 
figure 2.2.7, that is μagg (Z) = max {min {0, μM(Z)]} , min {[0, 
μH(Z)]}, min{[1, μVH (Z)]}. By applying the mean of maximum 
method for defuzzification that is the intersection points of the 
line μ =1 with the triangular fuzzy number μVH(Z) in equation 
2.2.3 and get the crisp output to 40%. 
 

 
 From our study we suggest in the online process to reduce 
(or) minimize the amount of CKD in the industry one should 
change the condition of fuel burning system and other system in 
kiln from time to time depending on the percentage of CKD in 
tons given above. 
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FIGURE 2.2.7: Aggregated output and defuzzification for 
the percentage of CKD  
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2.3 Determination of gas volume setpoint and 
temperature set point for CKD processing 
 
The total CKD dust carried out from the kiln is again returned to 
the kiln as a feed (Recycled CKD). After recycled process, we 
get some amount of remaining CKD from kiln, which is 
disposed in the environment(as a waste polluting the 
environment). Most of the cement factory uses electrostatic 
precipitator(ESP) method for recycling process of CKD, as it 
operates by gas volume and temperature. In ESP, we mainly 
concentrate on gas volume in m3/minute and temperature degree 
in celsius. The range of gas volume is varying from 11865 to 
15174 m3/minute and temperature is varying from 350oC to 
450oC. When in the recycle; the clinker is got from the 
reproduced dust to clinker by pre heater in dust collector(ESP). 
Generally an industry to minimize the net CKD dust upto 20% 
by reprocessing method randomly chooses the gas volume and 
temperature from the range of gas volume (11865 to 15174 
m3/minute) and temperature (350oC to 450oC) respectively. 
Since the gas volume and temperature are main concerns on 
ESP, the reprocessing directly depends on gas volume and 
temperature. The randomly choosing of the gas volume set point 
and temperature set point from the ranges of gas volume and 
temperature is uncertain and does not usually give the desired 
outcomes so, this gas volume and temperature affect the CKD 
reprocessing largely. In order to over come these problems we 
use fuzzy control to find the set point of gas volume and 
temperature in ESP, which is described in the following. The 
ranges of gas volume, temperature and percentage of net CKD 
are measured from the past happening data in ESP on a scale, 
are 11865 to 15174 m3/minute, 350oC to 450oC and 0 to 20% 
respectively. Temperature ≅ {350oC [low (L)], 400oC [medium 
(M)] and 450oC [high (H)]}. Gas volume ≅ 11865 to 
15174m3/min [first stage (FS)], 13020 m3/min [second stage 
(SS)], and 15174 m3/min [third stage (TS)}. Percentage of net 
CKD ≅ {0[very less (VL)], 5 [less (L), 10[medium (M)], 15 
[high (H)] and 20 [very high (VH)}. The terms of these 
parameters are presented in figures 2.3.1 or 2.3.3. 
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FIGURE 2.3.3: Percentage of net CKD-output parameter  
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FIGURE 2.3.1: Temperature - input parameter 
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FIGURE 2.3.2: Gas Volume- input parameter 
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For the terms of temperature, gas volume and percentage of net 
CKD we give the following membership functions : 
 

( )

L

Mtemperature

H

(X) (400 X) 50    350 X 400
(X 350) 50  350 X 400

X (X)
(450 X) 50  400 X 450

(X) (X 400) 50    400 X 450

μ = − ≤ ≤⎧
⎪ − ≤ ≤⎧⎪μ = μ =⎨ ⎨ − ≤ ≤⎩⎪
⎪μ = − ≤ ≤⎩

 (2.3.1) 

 
FS

gas SS
volume

TS

(Y) (13020 Y) 1155   11865 Y 13020
(Y 11865) 1155 11865 Y 13020

(Y) (Y)
(15174 Y) 2154 13020 Y 15174

(Y) (Y 13020) 2154  13020 Y 15174

μ = − ≤ ≤⎧
⎪ − ≤ ≤⎧⎪μ = μ =⎨ ⎨ − ≤ ≤⎩⎪
⎪ μ = − ≤ ≤⎩

             (2.3.2)  

( )

VL

L

percentage M
of net CKD 

H

VH

(Z) (5 Z) 5     0 Z 5
Z 5       0 Z 5

(Z)
(10 Z) 5   5 Z 10

(Z 5) 5      5 Z 10
(Z)Z

(15 Z) 5     10 Z 15

(Z 10) 5     10 Z 15
(Z)

(20 Z) 5   15 Z 20
(Z) (Z 15) 5    15 Z

μ = − ≤ ≤

≤ ≤⎧
μ = ⎨ − ≤ ≤⎩

− ≤ ≤⎧
μ =μ = ⎨ − ≤ ≤⎩

− ≤ ≤⎧
μ = ⎨ − ≤ ≤⎩
μ = − ≤ ≤ 20

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

  (2.3.3)

   
 
By applying the if … and … then rules to the three-membership 
function μ(X), μ(Y) and μ(Z), we get the following table of 
rules. The rules given in Table 2.3.1 read as follows: 
 

Table 2.3.1 
 Y 
X FS SS TS 

L VL M H 
M L M H 
H M H VH
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For example: 
If temperature is L and gas volume is SS then percentage of 

net CKD is M.  
If temperature is M and gas volume is TS then percentage 

of net CKD is H; and so on. 
 Rules of evaluation using the membership functions defined 
by the equation (2.3.1) and (2.3.2), if temperature is 430oC and 
gas volume is 13080 m3/min we get the fuzzy inputs as μM(430) 
= 0.4, μH(430) = 0.6, μSS(13080) = 0.97 and μTS(3080) = 0.02. 
Induced decision table for percentage of net CKD is as follows. 

 
Table 2.3.2 

   Y 
X 0 μSS(13080)= 0.97 μTS(13080)= 0.02 

0 0 0 0 
μM(430)=0.04 0 μM(Z) μH(Z ) 
μH(430)=0.06 0 μH(Z) μVH(Z ) 

 
Conflict resolutions of the four rules is as follows : 
 

Rule 1 : If X is M and Y is SS then Z is M 
Rule 2 : If X is M and Y is TS then Z is H 
Rule 3 : If X is H and Y is SS then Z is H 
Rule 4 : If X is H and Y is TS then Z is VH. 
 

Now, using Table 2.3.2 we calculate the strength values of 
the four rules as 0.4, 0.02, 0.06 and 0.02. Control output for the 
percentage of net CKD is given in Table 2.3.3. 
       
       Table 2.3.3 

 

  Y 
X 0 μSS (13080) = 0.97 μTS(13080) = 0.02 

0 0 0 0 

μM(430)=0.4 0 min {[0.4, μM(Z)]} min {[0.02, μH(Z)]} 

μH(430)=0.6 0 min {[0.6, μH(Z)]} min{[0.02, μVH(Z)]} 
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 To find the aggregate of the control outputs, we obtain the 
maximum of the minimum. This is given by the following 
figure 2.3.4, that is μagg (Z) = max{min [0.4, μM(Z)]}, min{[0.6, 
μM(Z)]}, min {[0.02, μVH (Z)]}. We apply the mean of 
maximum method for defuzzification that is the intersection 
points of the line μ = 0.6 with the triangular fuzzy number 
μH(Z) in equation (2.3.3) and get the crisp output as 15 to 20%. 
 

 
Rules of evaluation using the membership functions defined by 
the equation (2.3.1) and (2.3.2), if temperature is 350oC and gas 
volume is 11865 m3/min we get the fuzzy inputs as μL(350) = 1, 
μH(350) = 0, μFS(11865) = 1 and μSS(11865) = 0. Induced 
decision table for percentage of net CKD is as follows. 
 
      Table 2.3.4 

    Y 
X μFS (11865) = 1 μSS(11865) = 0 0

μL(350) = 1 μVL(Z) μM(Z) 0

μM(350) = 0 μL(Z) μM(Z) 0
0 0 0 0

 
Conflict resolutions of the four rules is as follows : 
 
  Rule 1 : If X is L and Y is FS then Z is VL 
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FIGURE 2.3.4: Terms of the output and defuzzification for 
the percentage of net CKD  
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  Rule 2 : If X is L and Y is SS then Z is M 
  Rule 3 : If X is M and Y is FS then Z is L 
  Rule 4 : If X is M and Y is SS then Z is M. 
 

Now, using Table 2.3.4 we calculate the strength values of 
the four rules as 1, 0, 0 and 0. Control output for the percentage 
of net CKD is given in table 2.3.5. 
      

Table 2.3.5 

 
 
 To find the aggregate of the control outputs, we obtain the 
maximum of the minimum.  
 This is given by the following figure that is μagg (Z) = 
{min{[1, μVL (Z)]}, min{[0, μM (Z)]}, min {[0, μL (Z)]}. We 
apply the mean of maximum method for defuzzification that is 
the intersection points of the line μ = 1 with the triangular  
fuzzy number μVL(Z) in equation (2.3.3) and get the crisp output 
as 0 to 5%. 

  Y 
X μFS (11865) = 1 μSS(11865 ) = 0 0 

μL(350)=0.4 min {[1, μVL(Z)]} min {[0, μM(Z)]} 0 
μM(350)= 0.6 min {[0, μL(Z)]} min {[0, μM(Z)]} 0 

0 0 0 0 
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FIGURE 2.3.5: Terms of the output and defuzzification for 
the percentage of net CKD  
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 Rules of evaluation using the membership functions defined 
by the equation (4) and (5), if temperature is 400oC and gas 
volume is 13020 m3/min we get the fuzzy inputs as μL(400) = 0, 
μM(400) = 1, μH(400) = 0, μFS(13020) = 0, μSS(13020) = 1 and 
μTS(13020) = 0. Induced decision table 2.3.6 for percentage of 
net CKD is as follows. 

 
Table 2.3.6 

   Y 
X μFS(13020)=0 μSS(13020)=1 μTS(13020)=0 

μL(400)=0 μVL(Z) μM(Z) μH(Z ) 
μM(400)=1 μL(Z) μM(Z) μH(Z ) 
μH(400)=0 μM(Z) μH(Z) μVH(Z ) 

 
Conflict resolutions of the nine rules is as follows: 
 

Rule 1 : If X is L and Y is FS then Z is VL 
Rule 2 : If X is L and Y is SS then Z is M 
Rule 3 : If X is L and Y is TS then Z is H 
Rule 4 : If X is M and Y is FS then Z is L. 
Rule 5 : If X is M and Y is SS then Z is M. 
Rule 6 : If X is M and Y is TS then Z is H. 
Rule 7 : If X is H and Y is FS then Z is M. 
Rule 8 : If X is H and Y is SS then Z is H. 
Rule 9 : If X is H and Y is TS then Z is VH. 

 
 Now, using Table 2.3.6 we calculate the strength values of 
the nine rules as 0, 0, 0, 0, 1, 0, 0, 0, 0. Control output for the 
percentage of net CKD is given in Table 2.3.7. 

 
Table 2.3.7 

 Y 
 X μFS(13020) = 0 μSS(13020) = 1 μTS(13020) = 0 

μL(400) =0 min{[1,μVL(Z)]} min{[0,μM(Z)]} min{[0,μH(Z)]} 
μM(400)=1 min{[0, μL(Z)]} min{[1,μM(Z)]} min{[0,μH(Z)]} 
μH(400)=0 min{[0, μM(Z)]} min{[0,μH(Z)]} min{[0,μvH(Z)]} 
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 To find the aggregate(agg) of the control outputs, we obtain 
the maximum of the minimum.  
 This is given by the following figure 2.3.6, that is μagg (Z) = 
max {min {[0, μVL(Z)]}, min {[1, μM(Z)],)], min {[0, μL(Z)]}, 
min {[0, μH(Z)]}, min {[0, μVH(Z)]}. We apply the mean of 
maximum method for defuzzification that is the intersection 
points of the line μ = 1 with the triangular fuzzy number μM(Z) 
in equation (2.3.3) we get the crisp output to be 10 % to 15 %. 
 

 
 Rules of evaluation using the membership functions defined 
by the equation (2.3.1) and (2.3.2), if temperature is 450oC and 
gas volume is 15174 m3/min we get the fuzzy inputs as μM(450) 
= 0, μH(450) = 1, μSS(15174) = 0 and μTS(15174) = 1. Induced 
decision table for percentage of net CKD is as follows. 
 
      Table 2.3.8 

   Y 
X 0 μSS (15174) = 0 μTS(15174) = 1 

0 0 0 0 

μM(450) = 0 0 μM(Z) μH(Z) 
μH(450)= 1 0 μH(Z) μVH(Z) 

 
Conflict resolutions of the four rules is as follows: 
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FIGURE 2.3.6: Aggregated output and defuzzification for 
the percentage of net CKD  
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  Rule 1 : If X is M and Y is SS then Z is M 
  Rule 2 : If X is M and Y is TS then Z is H 
  Rule 3 : If X is H and Y is SS then Z is H 
  Rule 4 : If X is H and Y is TS then Z is VH. 
 
Now, using Table 2.3.8 we calculate the strength values of the 
four rules as 0, 0, 0 and 1. Control output for the percentage of 
net CKD is given in Table 2.3.9. 
 

Table 2.3.9 
   Y 
X 0 μSS(15174) = 0 μTS(15174) = 0 

0 0 0 0 
μM(450)=0 0 min[0, μM(Z)] min[0,μH(Z)] 
μH(400)= 1 0 min[0, μH(Z)] min[1,μVH(Z)] 

      
 To find the aggregate(agg) of the control outputs, we obtain 
the maximum of the minimum.  
 This is given by the following figure 2.3.7, that is μagg (Z) = 
max{min{[0, μM(Z)]}, min{[0, μH(Z)],)], min{[1, μVH(Z)]}. We 
apply the mean of maximum method for defuzzification that is 
the intersection points of the line μ = 1 with the triangular fuzzy 
number μM(Z) in equation (2.3.3) we get the crisp output to be 
20 %. 
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FIGURE 2.3.7: Aggregated output and defuzzification for 
the percentage of CKD  
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2.4 Finding the MIX of raw materials in proper proportion 
and minimize the waste dust using fuzzy neural network 
 
The study of proper proportions of material mix during the 
clinkerization process is very difficult due to inconsistency in 
the chemical and mineralogical composition and the variation of 
these characteristic affects kiln operation, fuel consumption, 
clinker quality and above all the amount of CKD vent into the 
atmosphere. Further the raw mix should maintain a fixed range 
for a specific quality of cement. The problem of satisfying this 
range involves lot of randomness and uncertainty, which in turn 
speaks about the desired quality of the clinker. Chemical and 
mineralogical composition contains SiO2, Al2O3, Fe2O3, CaO, 
MgO, K2O and Na2O. Since all terms used to determine the 
proper proportions of material mix is very ambiguous, we felt it 
would be proper to use fuzzy theory approach to study the 
problem. We adopt fuzzy relational neural network method to 
find the correct proportion of raw mix so that the desired quality 
of the clinker is achieved. This is done by taking experts 
opinion about the proportions and then by giving fuzzy weights. 
This membership grades are varied a finite number of times till 
the error function reaches zero, which is equivalent to studying 
the set point values. The clinker of desired chemical 
composition is expected to satisfy the following modulus related 
to the chemical composition of the raw mix. 
Lime saturation factor (LSF), 
 

2 2 3 2 3

CaO  100LSF
2.8 SiO 1.2 Al O 0.65Fe O

×
=

+ +
 (2.4.1) 

 
 A high LSF requires high heat consumption for clinker 
burning inside the kiln and this gives more strength to the 
cement. 
Silica Modulus (SM)    

2

2 3 2 3

SiOSM
Al O Fe O

=
+

      (2.4.2) 
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A higher SM decreases the liquid phase content, which 
impairs the burnability of the clinker and reduces the cement 
setting time. 
Alumina Modulus (AM)   

 2 3

2 3

Al OAM
Fe O

=         (2.4.3) 

 
The value of AM determines the composition of liquid phase in 
the clinker. 
 Here we describe the working of the block schematic of raw 
mill processing. The raw mill grinder receives raw materials 
such as limestone, silica, iron and bauxite for the production of 
cement in separate feeders, called weigh feeders. All the raw 
materials are ground in a raw mill grinder to a powder form. A 
sample of this ground raw mix is collected at the output of the 
raw mill grinder by an auto sampler, and a sample is prepared 
after being finely ground by vibration mill and pressed by 
hydraulic press and then is analysed in the laboratory by an X-
ray sequential spectrometer. The results of X-ray analysis, 
which are obtained through sampling and analysing the 
equipment, are fed to the computer through a data 
communication line, for the required control action. The entire 
process is illustrated in figure 2.4.1. 

Raw mill Storage & 
Blending 

Plant 

Sequential 
X-Ray 

Spectrometer 

Computer 
System  

Sample 
Preparation

Auto 
Sampler  

Weigh 
feeders  

FIGURE 2.4.1 Block schematic of raw mill processing steps 
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The past researchers developed a control algorithm for raw 
mixing proportion based of singular value decomposition(SVD) 
methods. The purpose of this algorithm is to calculate the 
change in raw materials in each of the weigh feeders to achieve 
the raw mixing that is LSF, SM and AM. 
 Singular value decomposition(SVD) is one of the most 
basic and important tools in the analysis and solution of the 
problems in numerical linear algebra, and are finding increasing 
applications in control and digital signal processing. The 
potential of SVD technique is first exploited in the domain of 
linear algebra, where it provides a reliable determination of the 
rank of the matrix, thereby leading to accurate solutions of 
linear equations.  
 Here we adopt raw mix proportion control algorithm to our 
problem. The purpose of this algorithm is to calculate the 
change in raw materials in each of the weigh feeders to achieve 
the target value of the chemical composition ratio (or) module 
of LSF, SM and AM.  

Suppose at any instant the action of the control system gives 
rise to the composition change as dLSF', dSM' and dAM' in 
response to the required composition change as dLSF, dSM and 
dAM respectively then the total mean square error at that instant 
will be  
 
E = (dLSF – dLSF')2+(dSM – dSM')2 + (dAM – dAM')2  (2.4.4) 
 
The problem now is to minimize E with respect to the change in 
the feeder content(dw;: i = 1, 2, …, n). Differentiating equation 
(2.4.4) with respect to dw and equating to zero, we will have 
dLSF' = dLSF, dSM' = dSM and dAM' = dAM. As mentioned 
earlier, the values of LSF, SM and AM of the raw material, 
change constantly.  

Our objective is to keep the values of LSF, SM and AM of 
the raw mix at the raw mill outlet fixed by changing the quantity 
of the raw material in the weigh feeders. So the module LSF, 
SM and AM are functions of the change in the raw material in 
different feeders. This can be represented as  
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n

i
i 1 i

LSFdSLF dLSF dw
w=

∂′ = =
∂∑      (2.4.5) 

 
n

i
i 1 i

SMdSM dSM dw
w=

∂′ = =
∂∑        (2.4.6) 

 
n

i
i 1 i

AMdAM dAM  dw
w=

∂′ = =
∂∑        (2.4.7) 

 
n

i
i 1

dw = 0
=
∑            (2.4.8) 

 
LLi ≤ dwi ≤ HLi         (2.4.9) 
 
 
where wi is the mix ratio of raw material in the feeder, LLi and 
HLi are the lower limit and the higher limit respectively of the 
raw material change possible for the ith feeder(i = 1, 2, …, n). 
The composition change, for example in LSF is given by  
 
  dLSF' = LSFsp - LSFmeas     (2.4.10) 
 

Here ‘sp’ stands for set point that is the desired value  
and ‘meas’ stands for the measured value that is the value 
achieved. 
 Now consider the solution of equation (2.3.5) to (2.3.8). The 
number of unknowns is the same as the number of weigh 
feeders. If there are four unknowns then there are four weigh 
feeders, we have the following set of equations with four 
unknowns. 
 

1 2 3 4
1 2 3 4

LSF LSF LSF LSFdw dw dw dw dLSF
w w w w

∂ ∂ ∂ ∂ ′+ + + =
∂ ∂ ∂ ∂

 

             (2.4.11) 
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1 2 3 4
1 2 3 4

SM SM SM SMdw dw dw dw dSM
w w w w

∂ ∂ ∂ ∂ ′+ + + =
∂ ∂ ∂ ∂

  

             (2.4.12) 
 

1 2 3 4
1 2 3 4

AM AM AM AMdw dw dw dw dAM
w w w w

∂ ∂ ∂ ∂ ′+ + + =
∂ ∂ ∂ ∂

  

             (2.4.13) 
 

1 2 3 4dw dw dw dw 0+ + + =        (2.4.14) 
 
Rearranging equations (2.4.11) to (2.4.14) in matrix form yields 
 

1 2 3 4
1

2
1 2 3 4

3

4
1 2 3 4

LSF LSF LSF LSF
w w w w

dw dLS F
SM SM SM SM

dw dS M
w w w w

dw dA M
AM AM AM AM

dw 0w w w w
1 1 1 1

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ′⎡ ⎤ ⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂ ⎢ ⎥ ⎢ ⎥′′⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥′
⎢ ⎥∂ ∂ ∂ ∂ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.4.15) 

 
If the stacker reclaimed, a macline that feeds limestone of 
constant chemical composition to the weigh feeders is available, 
then LSF value will more(or) less remain constant; So in this 
case, one must give importance to achieving desired value for 
SM and AM. To cope with this situation in SVD method one 
can simply ignore equation(2.4.11). Also this method can be 
used in the event of feeder failure, or the addition of a feeder. In 
these cases, the number of feeder is simply changed and the 
corresponding equations, similar to equation (2.4.11) are added 
(or) deleted as appropriate. 
 The value is the amount of change for that modulus with 
unit change in raw material mix proportion sent into the grinder. 
This can be obtained from the calculation of the composition of 
the raw materials, but in cement production process the 
composition of the raw materials fed into the mill changes 
constantly. So it is not possible to get fixed values for these 
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differential factors. Raw materials from a particular quarry have 
the composition varying over very narrow ranges for your 
purpose we have chosen a typical composition of raw material 
with its values as the average value of the material received 
from the quarry. The raw materials in each feeder consist of 
CaO, SiO2, Al2O3, and Fe2O3 thus affecting all the three moduli 
such as LSF, SM and AM as given in equations (2.4.1, 2.4.2 and 
2.4.3) so these moduli can now be redefined as  
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where n is the number of feeders. Now the differential 
coefficients of equation (2.4.11), (2.4.12) and (2.4.13) can be 
obtained by differentiating the equation (2.4.16), (2.4.17) and 
(2.4.18) with respect to wi. 
 
Adaptation of fuzzy neural network to raw mix proportion 
control algorithm : 
 Let P represent the coefficient of raw mixing ratio that is 

i

LSF
w

∂
∂

, 
i

SM
w

∂
∂

, 
i

AM
w

∂
∂

 where i = 1, 2, 3, 4, Q represents the 

unknown quantities for four weigh feeders that is dw1, dw2, dw3 
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and dw4 and R represents the known values that is dLSF', dSM' 
and dAM'. Generally researchers used some other non-fuzzy 
method to estimate the unknowns dw1, dw2, dw3 and dw4 but 
since one is not always certain of solving these equations, fuzzy 
neural network model is adopted. By this method one is always 
guaranteed of a solution. 
 The problem is tackled in two stages according as if a 
solution exist using fuzzy relation equations P°Q = R then all 
the quantities for four weigh feeders are determined. If P°Q = R 
does not give solution the fuzzy neural network method is 
adapted to the fuzzy relation equation as the second stage. By 
adopting fuzzy neural network method to the fuzzy relation 
equation, unknown quantities for four weigh feeders are 
determined. 
 We get the matrices according to P ° Q = R. 
 

1 2 3 4
1

2
1 2 3 4

3

4
1 2 3 4

LSF LSF LSF LSF
w w w w
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1
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we in this problem minimize the error between the rise to the 
composition change and required composition change. The 
membership value pij ∈ [0,1] are given by experts. 
 
Equation (2.4.19) can be rewritten as  
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It can partitioned into 4 equations. 
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and  
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If the above partitioned equation do not satisfy the condition 
max qik < rik (where qik are unknown quantities for weigh 
feeders and rik are known values that is dLSF', dSM' and dAM') 
then the system of equations has final solution. If the above 
partitioned equation satisfy this condition max qik < rik where qik 
are unknown quantities for weigh feeders and rik are known 
values that is dLSF', dSM' and dAM' then the system of 
equations has no solution. In this case fuzzy neural network 
method is adopted for fuzzy relation equation as the second 
stage. 
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The linear activation function f defined earlier gives the output 
yi=f[max (wij xj)], i ∈ Nn. First calculate w11x1, w12x2, w13x3, and 
w14x4 then find y1= f [max(w1j xj)] which gives dw1. Similarly 
calculate w21x1, w22x2, w23x3, and w24x4 to find y2=f [max (w2j 
xj)] which gives dw2, calculate w31x1, w32x2, w33x3, and w34x4 to 
find y3=f [max (w3j xj)] which gives dw3 and calculate w41x1, 
w42x2, w43x3, and w44x4 to find y4=f [max (w4j xj)] which gives 
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dw4. Then we can find out using equation (2.4.4) that is whether 
the error function reaches 0 or not, suppose the error function 
does not reach 0, we change the weights that is the membership 
grades till the error reaches zero, which is explained in 
figure(2.4.8). Thus to achieve the value of error function to be 
zero, we give different membership grades to the weigh feeders 
(finite number of times) and make the value of required 
composition change to be equal to the raise in composition 
change. 
 

 
 
2.5 Conclusions 
 
The fuzzy control method described and defined in this chapter 
has the following problem: 
 

1) Monitoring and control of the system 
2) CKD reprocessing 
 

Monitoring and control : 
 We have analyzed the alkali ratio (0.5 to 1.5) in kiln load 
material. The alkali ratio and the kiln load material in tons are 
considered as the two input parameter of fuzzy control. The 

Figure 2.4.2: The feed forward neural network 
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output, is the percentage of CKD. The estimated results are as 
follows : 
1) When the alkali ratio is 0.5 in the 5 tons of kiln load 

material, the estimated percentage of CKD is 0. 
2) When the alkali ratio is 1 in the 15 tons of kiln load 

material, the estimated percentage of CKD is 20. 
3) When the alkali ratio is 1.2 in the 17 tons of kiln load 

material, the estimated percentage of CKD is 20. 
4) When the alkali ratio is 1.5 in the 25 tons of kiln load 

material, the estimated percentage of CKD is 40. 
 From our study we suggest in the online process to reduce 
or minimize the amount of CKD in the industry one should 
change the condition of fuel burning system and other system in 
kiln from time to time depending on the percentage of CKD in 
tons. 
 
CKD Reprocessing : 
CKD reprocessing, mainly concentrates on gas volume and 
temperature set point using fuzzy control. The fuzzy control 
method suggests the following results to minimize the CKD in 
reprocessing. 
1) The suggested gas volume is 11865 m3/min and temperature 

set point 350oC for reprocessing of CKD. At the time of 
reprocessing with suggested gas volume and temperature set 
point, the percentage of net CKD occurs from 0 to 5. 

2) The suggested gas volume is 13020 m3/min and temperature 
set point 400oC for reprocessing of CKD. At the time of 
reprocessing with suggested gas volume and temperature set 
point, the percentage of net CKD occurs from 10 to 15. 

3) The suggested gas volume is 13080 m3/min and temperature 
set point 430oC for reprocessing of CKD. At the time of 
reprocessing with suggested gas volume and temperature set 
point, the percentage of net CKD is 20. 

4) The suggested gas volume is 15174 m3/min and temperature 
set point 450oC for reprocessing of CKD. At the time of 
reprocessing with suggested gas volume and temperature set 
point, the percentage of net CKD is 20. 
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Raw material mix using fuzzy network : 
The fuzzy neural network method defined has the following 
merits. The solution exists for all unknown weigh feeders and 
made the error between raise to the composition change and 
required composition change of the raw material close to zero. 
That means the change in raw materials in each of weigh 
feeders dw1, dw2, dw3, dw4 is achieved by the membership 
grade. This is very important one in cement industries to 
produce a desired quality of clinker. 
 
The merits of fuzzy control method : 
1) In earlier method the cement industry estimated the 

percentage of CKD approximately upto 40%. The industry 
did not know how much percentage of CKD occurs in each 
process. Using fuzzy control method, the estimated 
percentage of CKD in each process. By using this, the 
industry can change some internal condition of kiln and 
minimize the CKD in the online process. 

2) The earlier methods adopted by the cement industries, 
choose the temperature set point and gas volume randomly 
for electrostatic precipitator to minimize the net CKD in 
reprocessing. But the random choice did not in general give 
the desired out comes. Using fuzzy control method, gives 
exact temperature set point and set point of gas volume 
from the range of temperature set point and gas volume for 
electrostatic precipitator. By using this temperature set point 
and gas volume set point, the industry will get the desired 
outcomes. 

 
The merits of the fuzzy neural networks : 
1) Solution exists to all unknown weigh feeders. 
2) The target value of the chemical composition is achieved by 

minimizing the error between raise to the composition 
change and required composition change. 
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Chapter Three 
 
 
 
 
 

DETERMINATION OF TEMPERATURE SET 
POINTS FOR CRUDE OIL  
 
 
 
 
 
 
 
3.1 Introduction  
 
Study of Temperature set point in Chemical industries happen 
to be an important feature. Here we give an illustration how 
fuzzy control method is adopted for finding precise temperature 
set point to distil different crude in an oil refinery.  Oil that 
comes from the ground is called the “crude oil”. By cooking, the 
crude is converted to useful oil. Here the temperature set point 
plays a vital role at the time of cooking the crude oil. Since the 
quality and quantity of the crude is dependent on the 
temperature set point, the crude oil refinery has different 
temperature, set points to distil different crudes. Here, this 
chapter tries to determine a precise temperature set point for the 
crude oil refinery to maximise the distillation of the crude and 
the quantity of the crude for long hours. This chapter six 
sections.  

This study is significant because most of the crude oil 
refineries have common type of operating systems. The analysis 
of this study is focussed on Kalundborg Refinery [Ebbesen 
(1992)]. Here we approach the problem of finding the precise 
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temperature set point for different crudes using fuzzy control 
theory. The data is taken from Kalundborg Refinery [Ebbesen 
(1992)]. 

In 1995, Friedman developed a Mass and Enthalpy balance 
method and used it to improve the quality of crudes. In 1992, 
Ebbesen studied about the crude operating in Kalundborg 
Refinery. He made some derivations from the theory of 
Friedman. Finally he gave a range of temperature set points for 
the distillation of different crudes. However at the end of his 
study he made it clear that in the case of kerosene, 90% stayed 
within 10C of its set point of temperature, in the case of naphtha 
95% distillation stayed within 10C of its set point of 
temperature. After two hours, the quality during crude switches 
was different indicating a lower quality. 

Here we establish the result using the data taken from 
Ebbesen(1992). This gives temperature set point for the 
distillation of kerosens, naphtha and gasoil. The range of 
temperature set points and the various percentage of distillation 
are converted into the fuzzy control theory. Here membership 
grade is assigned to each temperature set point and percentage 
of distillation and fuzzy control rule is used to each temperature 
set point and percentage of distillation. Finally center max-min 
rule is used, to find the precise temperature set point for 
kerosene, naphtha and gasoil. 
 
 
3.2 Description of Crude Oil Refineries 
 
Using the data available from Ebbesen(1992) of the Kalundborg 
oil refinery, we analyse the data via fuzzy rules and membership 
grades of fuzzy control theory method and find the precise 
temperature set points for different crudes to maximize the 
quality and  distillation of crude for long hours. Crude oil 
refinery selects temperature set points randomly from the range 
of temperature set points for the distillation of the crude; as a 
result, the quality and quantity of the processed crude are 
maintained only for very few hours. Thus, to be more precise 
the aim to find the precise temperature set points for kerosene, 
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naphtha and gasoil using the data of Ebbesen (1992) from the 
Kalundborg oil refinery. 

Kalundborg oil refinery operates with different crudes on a 
regular basis. Here this crude oil refinery distils kerosene, 
naphtha and gasoil. A schematic diagram of various streams is 
shown in the following figure [Ebbessen(1992)]. 
 

  
 
where TPA – denotes the top pump-around, MPA – denotes mid 
pump-around and the BPA-bottom pump-around respectively. 
Q-denotes the heat removed. These are mainly used for 
controlling the temperature. 

The random choice of temperature set points for different 
crudes with distillation taken from Ebbesen(1992) are described 
for kerosene, naphtha and gasoil. 
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FIGURE 3.2.1: CRUDE REFINERY 
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Range of temperature set points for kerosene with the 
percentage of distillation 

 
The crude oil refinery gives 2270 C-temperature set point for 
distillation of kerosene. The crude oil refinery selects randomly 
this 2270 C temperature set point from the given range of set 
points {2200 C, 2210 C, 2220 C, 2230 C, 2240 C, 2250 C, 2260 C, 
2270 C, 2280 C, 2290 C, 2300 C}. This temperature set point 2270 

C gives 90% distillation and it says within 10 C of its set point of 
temperature. The temperature graph is given below. 

 
From this Ebbesen (1992) concludes that for the set point 2270 

C the distillation of kerosene was 90%. 
 
Range of temperature set point of naphtha with percentage 

of distillation 
 
The crude oil refinery gives 1600 C-temperature set point for the 
distillation of naphtha. The crude oil refinery selects randomly 
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this 160o C temperature set point from the given range of set 
points {155o C, 156o C, 157o C, 158o C, 160o C, 161o C, 162o C, 
163o C, 164o C, 165o C}. This temperature set point 160o C gives 
95% distillation and it stays within 1o C of its set point of 
temperature.  
 

The temperature graph is given below. 
 

 
 
From this Ebbesen(1992) concludes that for the set point 1600 C 
the distillation of naphtha was 95%. 
 
Range of temperature set point of gasoil with the percentage 

of distillation 
 
The temperature set point -4.50 C gives 95% distillation and it 
stays within 10 C of its set point temperature.  
 
The temperature graph is given below. 
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Graph 3.2.2: Graph depicting the 95% distillation of Naphtha  

X axis– time in minute and Y axis set point of temperature for 
naphtha. Set point was 160oC 

T
S
P 

165 



 52

 
 
From this Ebbesen(1992) concludes that for the set point -4.50 C 
the distillation of gasoil was 95%. 
 
 
 
3.3 Determination of Temperature Set-Point of Kerosene 
Resulting in Better Distillation Using Fuzzy Control Theory 
 
The given possible ranges of temperature set points are {2200 C, 
2210 C, 2220 C, 2230 C, 2240 C, 2250 C, 2260 C, 2270 C, 2280 C, 
2290 C, 2300 C} and possible percentages of distillation are 
(88%, 89%, 90%, 91%, 92%} in case of kerosene as observed 
by Ebbesen(1992). As fuzzy control theory is the tool adaptable 
only when the past performance data is available, now this 
chapter considers the given possible range of temperature set 
points and distillation as the inputs of fuzzy control theory. To 
identify the precise temperature set points from the possible 
range of temperature set points, this chapter assigns membership 
grades to each input of fuzzy control theory. Here, the fuzzy 
control theory is used to find a precise temperature set point for 
kerosene. 
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Graph 3.2.3: Graph depicting the 95% distillation of gasoil 
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In the procedure developed here membership grade is from 
the interval [0, 1] to the input of each temperature set point and 
each percentage of distillation. After membership grades are 
assigned to each input of temperature set points, the following 
graph results representing the membership grades of 
temperatures set point. 

 

 
After membership grades are assigned to each input of 
distillation, the following graph results representing the 
membership grades of distillation. 

 
The membership grade varies from 0 to 1.  

For getting precise temperature set point for kerosene the 
throttle variables(The grade of membership) are qualified into 
five subsets. Here fuzzy rules are used to find the possible 
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percentage of distillation for each temperature set point and the 
Center Max-Min rule is used to find a throttle membership 
grade for the existing fuzzy rules. To get the grade of 
membership to each existing fuzzy rule throttle variables are 
qualified into five subsets as follows: 

 

 
 

-1 0.5 0 0.5  1 
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FIGURE 3.3.3: Throttle values 

N3: Very Big Negative 
N2: Big Negative 
Z : Normal  
P2: Big Positive 
P3: very Big Positive  
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FIGURE 3.3.4:Fuzzy rules for the temperature set point 223oC 
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The following are the fuzzy rules : 
 
Rule -1 : If T is 2230 C temperature set point AND D is 87% 
THEN throttle is P3. 
Rule -2 : If T is 2230 C temperature set point AND D is 88% 
THEN throttle is P2.   
Rule -3 : If T is 2230 C temperature set point AND D is 89% 
THEN throttle is Z.   
Rule -4 : If T is 2230 C temperature set point AND D is 90% 
THEN throttle is N2.  
 
We conclude the throttle value to the temperature set point for 
2230 C, by the above stated rules, only rule -2, and rule-3 are 
applicable that is distillation is 88% and 89% respectively. 
 
Rule-2 
The throttle value to the temperature set point 2230 C for 88% 
distillation is calculated using figures 4.2 and 4.3. 
 
  Throttle = (0.41+0.38)/2 = 0.395 
 
The graphical representation of the membership grade of the 
temperature set point 2230 C for 88 percentage of distillation is 
as follows. 
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Graph 3.3.1: Graphical representation of Rule 2 
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Rule -3 
 
The throttle value to the temperature set point 2230 C for 89% 
distillation from figures 4.2 and 4.3 is as follows 
  Throttle=(0.47+.45)/2=0.46 
The graphical representation of the membership grade of the 
temperature set point 2230 C for 88% percentage  of distillation 
is as follows: 
 

 

1 

0 

M
S
G

Graph 3.3.2: The two outputs are then defuzzified  
by center max-min rule

Legend 
MSG: Membership grade 
 ■ ■     : 0.41 Membership grade 
 •  •     : 0.38 Membership grade 

0.47 

0.4 

0.46 Temperature

Distillation 

Throttle

0 

1 

0 

1 

0 

M
S
G

M
S
G

Graph 3.3.3: Graphical representation of Rule 3 



 57

 
Here, the Center Max-Min rule is used to find a precise 
temperature set point. 
Using Center Max-Min rule to find precise temperature set 
point for kerosene 
Throttle(grade of membership) = m(P3) × Location(P2) + m(Z) 
+ Location(N2) = 0.427. Graphs for the other rules have not 
been given explicitly but after calculations, the values are given 
as the same procedure is adopted. 
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227oC 
229oC 
231oC 

T: Temperature   D: Distillation 
FIGURE 3.3.5:Fuzzy rules for the temperature set point 225oC 
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The fuzzy rule for distillation of kerosene: 
 
Rule -1 : If T is 2250C temperature set point AND D is 88% 
THEN throttle is P3. 
Rule -2 : If T is 2250C temperature set point AND D is 89% 
THEN throttle is P2. 
Rule - 3 : If T is 2250C temperature set point AND D is 90% 
THEN throttle is Z. 
Rule - 4 : If T is 2250C temperature set point AND D is 91% 
THEN throttle is N2. 
 
Rule -2 
The throttle value to the temperature set point 2250C for 89% 
distillation is calculated as follows. 
  Throttle= (.47+.45)/2=0.46, 
Rule -3 
The throttle value to the temperature set point 2250C for 90% 
distillation is calculated as follows. 
  Throttle= (.51+.23)/2=0.37, 
 
Using Center Max-Min rule to find precise temperature set 
point for kerosene 
Throttle(grade of membership)  =  m(P3) × Location(P2) + 
         m(Z) + Location(N2)  

       =  0.415, 

 

Temperature 
set points 

Distillation 

88% 
89% 
90% 
91% 
92% 

If T is 227oC and D is 
89% then throttle is P3

If T is 227oC and D is 
90% then throttle is P2

If T is 227oC and D is 
91% then throttle is Z 

If T is 227oC and D is 
92% then throttle is N2

223oC 
225oC 
227oC 
229oC 
231oC 

FIGURE 3.3.6:Fuzzy rules for the temperature set point 227oC 
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The fuzzy rule for distillation of kerosene: 
 
Rule -1 : If T is 2270C temperature set point AND D is 89% 
THEN throttle is P3. 
Rule -2 : If T is 2270C temperature set point AND D is 90% 
THEN throttle is P2. 
Rule - 3 : If T is 2270C temperature set point AND D is 91% 
THEN throttle is Z. 
Rule - 4 : If T is 2270C temperature set point AND D is 92% 
THEN throttle is N2. 
 

Here we calculate the throttle value to the temperature set 
point for 2270 C, by the above stated rules, only rule -2, and 
rule-3 are applicable that is distillation is 90% and 91% 
respectively. 

 
Rule-2 
 
The throttle value to the temperature set point 2270 C for 90% 
distillation is calculated as follows:  
   

Throttle  = (0.51+0.23)/2 
= 0.37, 

 
Rule-3 
 
The throttle value to the temperature set point 2270 C for 91% 
distillation is calculated as follows. 
 
  Throttle  = (0.17+0.59)/2 

= 0.38, 
 
Using Center Max-Min rule to find precise temperature set 
point for kerosene 
 
Throttle(grade of membership) = m(P3) x Location(P2) + 
         m(Z) + Location(N2) 

   = 0.375, 
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Here we obtain the throttle value to the temperature set 

point for 2290 C, by the above stated rules, only rule -2, and 
rule-3 are applicable that is distillation is 91% and 92% 
respectively. 
 
Rule-2 
The throttle value to the temperature set point 2290 C for 91% 
distillation is calculated as follows. 

Throttle = (0. 17 + 0.59)/2 = 0.38, 
 
Rule-3 
The throttle value to the temperature set point 2290 C for 92% 
distillation is calculated as follows. 

Throttle = (0.4 + 0.4)/2 = 0.4, 
 
Using Center Max-Min rule to find precise temperature set 
point for kerosene 
 
Throttle(grade of membership) = m(P3) × Location(P2) + 
     m(Z) + Location(N2) 
    = 0.420, 
 
 We have taken the range of temperature set points for 
distillation of kerosene from the crude oil refinery [Ebbesen 

Temperature 
set points 

Distillation 

88% 
89% 
90% 
91% 
92% 

If T is 229oC and D is 
90% then throttle is P3

If T is 229oC and D is 
91% then throttle is P2

If T is 229oC and D is 
92% then throttle is Z 

If T is 229oC and D is 
93% then throttle is N2

223oC 
225oC 
227oC 
229oC 
231oC 

FIGURE 3.3.7:Fuzzy rules for the temperature set point 229oC 
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(1992)] to find a precise temperature set point. This data is 
analysed with rules of fuzzy control theory. The fuzzy rules 
expressed in terms of degree of membership grade to each 
temperature set point. Finally the ultimate membership grade 
was obtained using Center Max-Min rule for the distillation of 
kerosene. 

It has been observed that the highest membership grade 
using Center Max-Min rule was given  to the temperature set 
point 2230C. 

 
 
3.4 Determination of Temperature Set Point of Naphtha 
Resulting in Better Distillation using Fuzzy Control Theory 
 
The given possible ranges of temperature set points are {1550C, 
1560C, 1570C, 1590C, 1600C, 1610C, 1620C, 1630C, 1640C, 
1650C} and possible distillation are {93%, 94%, 95%, 96%, 
97%} in the case of naphtha as observed by Ebbesen(1992). 
Using this data as inputs of fuzzy control theory, we identify the 
precise temperature set points from possible range of 
temperature set points. Now membership grade is assigned to 
the input of each temperature set point and each percentage of 
distillation. The following graph is represents the membership 
grades of temperature set point. 
 

 
After assigning membership grades in the interval [0,1] to each 
input of the percentage of distillation the following graph is 

156oC 158oC 160oC 162oC 164oC 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
temperature 

M
S
G 

0 

FIGURE 3.4.1:  Membership grade of temperature set points 
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obtained representing the membership grades of percentage of 
distillation. 
 

The membership grade varies from 0 to 1. 
 For getting precise temperature set point for naphtha the 
throttle variables(the grade of membership) quantified into five 
subsets. Here fuzzy rules are used to find the possible 
percentage of distillation for each temperature set point and the 
Center Max-Min rule is used to find a throttle membership 
grade for the existing fuzzy rules. To get the grade of 
membership to each existing fuzzy rule, throttle variables are 
quantified into five subsets as follows: 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 distillation 0 

93% 94% 95% 96% 97%

M
S
G 

FIGURE 3.4.2: Membership function of percentage of distillation  

Legend 
MSG: Membership Grade 
T: Temperature set point 
D: Distillation  

-1 0.5 0 0.5  1 

M
S
G 

N3 N2 Z P2 P3 

FIGURE 3.4.3: Throttle values  

N3: Very Big Negative 
N2: Big Negative 
Z : Nominal  
P2: Big Positive 
P3: very Big Positive  
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The fuzzy rule for distillation of naphtha : 
 
Rule -1 : If T is 1560C temperature set point AND D is 92% 
THEN throttle is P3. 
Rule -2 : If T is 1560C temperature set point AND D is 93% 
THEN throttle is P2. 
Rule - 3 : If T is 1560C temperature set point AND D is 94% 
THEN throttle is Z. 
Rule - 4 : If T is 1560C temperature set point AND D is 95% 
THEN throttle is N2. 
 

We calculate the throttle value to the temperature set point 
for 1560C. In the above stated rules, only rule -2, and rule-3 are 
applicable that is only we get 93% and 94% of distillation 
respectively. 
 
Rule-2 
The throttle value to the temperature set point 1560C for 93% 
distillation is calculated as follows. 
  Throttle = (0.34 + 0.57)/2 = 0.455, 
The graphical representation of the membership grade of the 
temperature set point 1560C for 93 percentage of distillation is 
as follows. 
 

Temperature 
set points 

Distillation 

93% 
94% 
95% 
96% 
97% 

IF T is 156oC AND D is 
92% THEN throttle is P3

IF T is 156oC AND D is 
93% THEN throttle is P2

IF T is 156oC AND D is 
94% THEN throttle is Z 

IF T is 156oC AND D is 
95% THEN throttle is N2

156oC 
158oC 
160oC 
162oC 
164oC 

FIGURE 3.4.4: Fuzzy rules for the temperature set point 156oC 



 64

 

 

 
 
 
Rule-3 
 
The throttle value to the temperature set point 1560C for 94% 
distillation is calculated as follows. 

Throttle = (0.59+0.42)/2 = 0.505, 

1 

0 

M
S
G

Graph 3.4.2: The two outputs are then defuzzified  
by center max-min rule

Legend 
MSG: Membership grade 
 ■ ■     : 0.34 Membership grade 
 •  •     : 0.57 Membership grade 

0.34 

0.5 

0.455 Temperature

Distillation 

Throttle

0 

1 

0 

1 

0 

M
S
G 

M
S
G 

Graph 3.4.1: Graphical representation of Rule 2 
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The graphical representation of the membership grade of the 
temperature set point 1560C for 94 percentage of distillation is 
as follows. 
 

 

 
 
Here, the Center Max-Min rule is used to find a precise 
temperature set point by grade f membership(throttle)value. 
Here, the Center Max-Min rule is used to find a precise 
temperature set point. 

0.59 

0.4 

0.505 Temperature

Distillation

Throttle

0 

1 

0 

1 

0 

M
S
G 

M
S
G 

Graph 3.4.3: Graphical representation of Rule 3 

1 

0 

M
S
G

Graph 3.4.4: The two outputs are then defuzzified  
by center max-min rule

Legend 
MSG: Membership grade 
 ■ ■     : 0.59 Membership grade 
 •  •     : 0.42 Membership grade 
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Using Center Max-Min rule to find precise temperature set 
point for naphtha 
 
Throttle(grade of membership) = m(P3) × Location(P2) + 
     m(Z) + Location(N2) 
    = 0.730. 
 

 
The fuzzy rule for distillation of naphtha : 
 
Rule -1 : If T is 1580C temperature set point AND D is 93% 
THEN throttle is P3. 
Rule -2 : If T is 1580C temperature set point AND D is 94% 
THEN throttle is P2. 
Rule - 3 : If T is 1580C temperature set point AND D is 95% 
THEN throttle is Z. 
Rule - 4 : If T is 1580C temperature set point AND D is 96% 
THEN throttle is N2. 
 

We calculate the throttle value to the temperature set point 
for 1580C. In the above stated rules, only rule -2, and rule-3 are 
applicable that is distillation is 94% and 95% respectively. 
 
Rule-2 
The throttle value to the temperature set point 1580C for 94% is 
calculated as follows: 
 

Temperature 
set points 

Distillation 

93% 
94% 
95% 
96% 
97% 

IF T is 158oC AND D is 
93% THEN throttle is P3

IF T is 158oC AND D is 
94% THEN throttle is P2

IF T is 158oC AND D is 
95% THEN throttle is Z 

IF T is 158oC AND D is 
96% THEN throttle is N2

156oC 
158oC 
160oC 
162oC 
164oC 

FIGURE 3.4.5: Fuzzy rules for the temperature set point 158oC 
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  Throttle = (0.59+0.42)/2 = 0.505, 
 
Rule-3 
 
The throttle value to the temperature set point 1580C for 95% 
distillation is calculated as follows. 
 
  Throttle = (0.5+0.35)/2 = 0.425, 
 
Using Center Max-Min rule to find precise temperature set 
point for Naphtha  
 
Throttle(grade of membership) = m(P3) × Location(P2) + 
     m(Z) + Location(N2) 
    = 0.717, 
 

 
The fuzzy rule for distillation of naphtha : 
Rule -1 : If T is 1600C temperature set point AND D is 94% 
THEN throttle is P3. 
Rule -2 : If T is 1600C temperature set point AND D is 95% 
THEN throttle is P2. 
Rule - 3 : If T is 1600C temperature set point AND D is 96% 
THEN throttle is Z. 
Rule - 4 : If T is 1600C temperature set point AND D is 97% 
THEN throttle is N2. 

Temperature 
set points 

Distillation 

93% 
94% 
95% 
96% 
97% 

IF T is 160oC AND D is 
94% THEN throttle is P3 

IF T is 160oC AND D is 
95% THEN throttle is P2 

IF T is 160oC AND D is 
96% THEN throttle is Z 

IF T is 160oC AND D is 
97% THEN throttle is N2 

156oC 
158oC 
160oC 
162oC 
164oC 

FIGURE 3.4.6: Fuzzy rules for the temperature set point 160oC 
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We obtain the throttle value to the temperature set point for 
1600C. In the above stated rules, only rule -2, and rule-3 are 
applicable that is distillation is 95% and 96% respectively. 
 
Rule-2 
The throttle value to the temperature set point 1600C for 95% 
distillation is calculated as follows. 

Throttle = (0.5+0.35)/2 = 0.425, 
Rule-3 
The throttle value to the temperature set point 1600C for 96% 
distillation is as follows. 

Throttle = (0.59+0.5)/2 = 0.55, 
 
Using Center Max-Min rule to find precise temperature set 
point for naphtha  
 
Throttle(grade of membership) = m(P3) × Location(P2) + 
     m(Z) + Location(N2) 
    = 0.7625, 
 

 
 

We calculate the throttle value to the temperature set point 
for 1620 C. In the above stated rule only rule -2, and rule-3 are 
applicable that is distillation is 96% and 97% respectively. 

 

Temperature 
set points 

Distillation 

93% 
94% 
95% 
96% 
97% 

IF T is 162oC AND D is 
95% THEN throttle is P3

IF T is 162oC AND D is 
96% THEN throttle is P2

IF T is 162oC AND D is 
97% THEN throttle is Z 

IF T is 162oC AND D is 
98% THEN throttle is N2

156oC 
158oC 
160oC 
162oC 
164oC 

FIGURE 3.4.9: Fuzzy rules for the temperature set point 162oC 
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Rule-2 
The throttle value to the temperature set point 1620 C for 96% 
distillation is calculated as follows. 

Throttle = (0.5+0.6)/2 = 0.55 
Rule -3 
The throttle value to the temperature set point 1620 C for 97% 
distillation is calculated as follows 

Throttle = (0.45+.55)/2 = 0.48. 
 
Using Center Max-Min rule to find precise temperature set 
point for kerosene 
Throttle(grade of membership)  = m(P3) × Location(P2) + 
     m(Z)+Location(N2) 
 Throttle  = 0.79, 
 

We have taken a range of temperature set points for the 
distillation of naphtha from the crude oil refinery to find a 
precise temperature set point. This data analyzed with rules of 
fuzzy control theory. The fuzzy rules are expressed in terms of 
the degree of membership grade to each temperature set point. 
Finally the ultimate membership grade was obtained using the 
centre max-min rule for the distillation of naphtha. 

We observe that the highest membership grade using Center 
Max-Min rule result in maximum distillation of naphtha for the 
temperature set point 1620C. 
 
 
3.5 Determination of Temperature Set-Point of Gasoil 
Resulting in Better Distillation Using Fuzzy Control Theory 
 

The given possible ranges of temperature set points are  
{–5.500C, –5.000C, –4.500 C, –4.000 C, –3.500C} and possible 
percentages of distillation are (93%, 94%, 95%, 96%, 97%} in 
the case of gasoil as observed by Ebbesen(1992). Using this 
data as input we use fuzzy control theory to find a precise 
temperature set point for gasoil. 

Now membership grade is assigned to the input of each 
temperature set point and each distillation. After membership 
grades are assigned to each input of temperature set points, the 
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following graph results representing the membership grades of 
temperatures set point.  

 
After membership grades are assigned to each input of 
temperature set points, the following graph results representing 
the membership grades of temperatures set point. 

 
The membership grade varies from 0 to 1. 
For getting the precise temperature set point for gasoil the 
throttle variables(the grade of membership) are quantified into 
five subsets. Here fuzzy rules are used to find the possible 
percentage of distillation for each temperature set point and the 
Centre Max-Min rule is used to find a throttle membership 
grade for existing fuzzy rules. To get the grade of membership 
to each existing fuzzy rule throttle variables are quantified into 
five subsets as follows. 

-5.50oC -5.00oC -4.50oC -4.00oC -3.50oC

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

temperature 

M
S
G 

0 

FIGURE 3.5.1:  Membership grade of temperature set points 

1 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 distillation 0 

93% 94% 95% 96% 97%

M
S
G 

FIGURE 3.5.2: Membership grades of percentage of distillation 

Legend 
MSG: Membership Grade 
T: Temperature set point 
D: Distillation  

1 
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The fuzzy rule for distillation of gasoil : 
Rule -1 : If T is -5.50 degree celsius temperature AND D is 92% 
THEN throttle is P3. 
Rule -2 : If T is -5.50 degree celsius temperature  AND D is 
93% THEN throttle is P2. 
Rule - 3 : If T is -5.50 degree celsius temperature AND D is 
94% THEN throttle is Z. 
Rule - 4 : If T is -5.50 degree celsius temperature  AND D is 
95% THEN throttle is N2. 

-1 0.5 0 0.5  1 

M
S
G 

N3 N2 Z P2 P3 

FIGURE 3.5.3: Throttle values  

N3: Very Big Negative 
N2: Big Negative 
Z : Nominal  
P2: Big Positive 
P3: very Big Positive  
 

Temperature 
set points 

Distillation 

93% 
94% 
95% 
96% 
97% 

IF T is –5.50oC AND D is 
92% THEN throttle is P3 

IF T is -.5.50oC AND D is 
93% THEN throttle is P2 

IF T is –5.50oC AND D is 
94% THEN throttle is Z 

IF T is –5.50oC AND D is 
95% THEN throttle is N2

–5.50oC 
–5.00oC 
–4.50oC 
–4.00oC 
–3.50oC 

FIGURE 3.5.4: Fuzzy rules for the temperature set point –5.50oC 
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We find the throttle value to the temperature set point -
5.500C. In the above stated rules, only rule -2, and rule-3 are 
applicable that is only we get 93% and 94% of distillation 
respectively. 
 
Rule-2 
The throttle value to the temperature set point -5.500C for 93% 
distillation is calculated as follows. 

Throttle = (0.3+0.4)/2=0.35, 
The graphical representation of the membership grade of the 
temperature set point -5.500C for 93 percentage of distillation is 
as follows. 
 

 
 

1 

0 

M
S
G

Graph 3.5.2: The two outputs are then defuzzified  
by center max-min rule

Legend 
MSG: Membership grade 
 ■ ■     : 0.3 Membership grade 
 •  •     : 0.4 Membership grade 

0.3 

0.4 

0.35 Temperature 

Distillation 

Throttle

0 

1 

0 

1 

0 

M
S
G 

M
S
G 

Graph 3.5.1: Graphical representation of Rule 2 
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Rule-3 
The throttle value to the temperature set point -5.500C for 94% 
distillation is as follows.   

Throttle = (0.2 + 0.6)/2 = 0.40, 
The graphical representation of the membership grade of the 
temperature set point –5.500C for 94 percentage of distillation is 
as follows. 

 
 
 

 
Here, the Centre Max-Min rule is used to find a precise 
temperature set point by grade of membership(throttle)value. 
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Graph 3.5.4: The two outputs are then defuzzified  
by center max-min rule

Legend 
MSG: Membership grade 
 ■ ■     : 0.34 Membership grade 
 •  •      : 0.57 Membership grade 
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Graph 3.5.3: Graphical representation of Rule 3 
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Using Center Max-Min rule to find precise temperature set 
point for gasoil 
Throttle(grade of membership) = m(P3) × Location(P2) + 
     m(Z) + Location(N2) 
    = 0.35 × 0.5 + 0.4 × 0.5  
    = 0.375 
 

 
The fuzzy rule for the distillation of gasoil : 
Rule -1: If T is -5.00 degree celsius temperature AND D is 93% 
THEN throttle is P3. 
Rule -2: If T is -5.00 degree celsius temperature AND D is 94% 
THEN throttle is P2. 
Rule -3: If T is -5.00 degree celsius temperature AND D is 95% 
THEN throttle is Z. 
Rule -4: If T is -5.00 degree celsius temperature AND D is 96% 
THEN throttle is N2.  

We calculate the throttle value to the temperature set point 
for –5.000 C. In the above stated rules, only rule -2, and rule-3 
are applicable that is distillation is 94% and 95% of distillation 
respectively. 
 
Rule-2 
The throttle value to the temperature set point -5.000 C for 94% 
distillation is as follows. 

Throttle = (0.6 + 0.5)/2 = 0.55 

Temperature 
set points 

Distillation 

93% 
94% 
95% 
96% 
97% 

IF T is –5.00oC AND D is 
93% THEN throttle is P3

IF T is –5.00oC AND D is 
94% THEN throttle is P2

IF T is –5.00oC AND D is 
95% THEN throttle is Z 

IF T is –5.00oC AND D is 
96% THEN throttle is N2

–5.50oC 
–5.00oC 
–4.50oC 
–4.00oC 
–3.50oC 

FIGURE 3.5.5: Fuzzy rules for the temperature set point -5.00oC
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Rule-3 
The throttle value to the temperature set point -5.000C for 95% 
distillation is as follows. 

Throttle = (0.35 + 0.4)/2 = 0.375, 
 
The graphical representation of the membership grade of the 
temperature set point -5.500C for 94 percentage of distillation is 
as follows. 
 
Using Center Max-Min rule to find precise temperature set 
point for gasoil 
 
Throttle(grade of membership) = m(P3) × Location(P2) + 
     m(Z) + Location(N2) 

Throttle  =  0.55 × 1 + 0.375 × 0.5 / 0.55 + 0.375 
 =   0.789. 
 

 
The fuzzy rule for the distillation of gasoil : 
Rule -1 : If T is -4.50 degree celsius temperature AND D is 94% 
THEN throttle is P3. 
Rule -2 : If T is -4.50 degree celsius temperature AND D is 95% 
THEN throttle is P2. 
Rule -3 : If T is -4.50 degree celsius temperature AND D is 96% 
THEN throttle is Z. 

Temperature 
set points 

Distillation 

93% 
94% 
95% 
96% 
97% 

IF T is –4.50oC AND D is 
94% THEN throttle is P3 

IF T is –4.50oC AND D is 
95% THEN throttle is P2 

IF T is –4.50oC AND D is 
96% THEN throttle is Z 

IF T is –4.50oC AND D is 
97% THEN throttle is N2 

–5.50oC 
–5.00oC 
–4.50oC 
–4.00oC 
–3.50oC 

FIGURE 3.5.6: Fuzzy rules for the temperature set point -4.50oC 
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Rule -4 : If T is -4.50 degree celsius temperature AND D is 97% 
THEN throttle is N2.  
 

We calculate the throttle value to the temperature set point 
for –4.500 C. In the above stated rules, only rule -2, and rule-3 
are applicable that is distillation is 95% and 96% of distillation 
respectively. 
 
Rule-2 
The throttle value to the temperature set point -4.500 C for 95% 
distillation is calculated as follows. 

Throttle = (0.35 + 0.4)/2 = 0.375 
 

Rule-3 
The throttle value to the temperature set point -4.500C for 96% 
distillation is calculated as follows. 

Throttle = (0.3 + 0.25)/2 = 0.277, 
 
Using Center Max-Min rule to find precise temperature set 
point for gasoil 
Throttle(grade of membership) = m(P3) × Location(P2) + 
     m(Z)+Location(N2) 
Throttle  = 0.375 × 0.5 + 0.277 × 0.5 / 0.375 + 0.277 
   =  0.5 
 

 

Temperature 
set points 

Distillation 

93% 
94% 
95% 
96% 
97% 

IF T is –4.00oC AND D is 
95% THEN throttle is P3

IF T is –4.00oC AND D is 
96% THEN throttle is P2

IF T is –4.00oC AND D is 
97% THEN throttle is Z 

IF T is –4.00oC AND D is 
98% THEN throttle is N2

–5.50oC 
–5.00oC 
–4.50oC 
–4.00oC 
–3.50oC 

FIGURE 3.5.7: Fuzzy rules for the temperature set point -4.00oC
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The fuzzy rule for the distillation of gasoil : 
 
Rule -1 : If T is -4.00 degree celsius temperature AND D is 95% 
THEN throttle is P3. 
Rule -2 : If T is -4.00 degree celsius temperature AND D is 96% 
THEN throttle is P2. 
Rule -3 : If T is -4.00 degree celsius temperature AND D is 97% 
THEN throttle is Z. 
Rule -4 : If T is -4.00 degree celsius temperature AND D is 98% 
THEN throttle is N2.  

Consider the temperature is -4.00 degree Celsius and the 
distillation of gasoil being 96% and 97%. Here rule-1 and rule-4 
are not applicable 
 
Rule-2 
The throttle value to the temperature set point -4.000 C for 96% 
distillation is calculated as follows. 

Throttle = (0.25 + 0.3)/2 = 0.275 
 

Rule-3 
The throttle value to the temperature set point -4.000C for 97% 
distillation is calculated as follows. 

Throttle = (0.4+0.4)/2 = 0.4, 
 

Using Center Max-Min rule to find precise temperature set 
point for gasoil 
Throttle(grade of membership) = m(P3) × Location(P2) + 

     m(Z)+Location(N2) 
Throttle  =  0.275 × 0.5 + 0.4 × 0.5 / 0.275 + 0.4 
   = 0.501. 
 

We have taken a range of temperature set points for 
distillation of gasoil from the crude oil refinery [Ebbesen 
(1992)] to find a precise temperature set point. This data is 
analysed with rules of fuzzy control theory. The fuzzy rules are 
expressed in terms of degree of membership grade to each 
temperature set point. Finally the ultimate membership grade is 
obtained using Center Max-Min rule for the distillation of 
gasoil. 
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 The authors have observed that the highest membership 
grade for -5.000C using center max-min rule results in 
maximum distillation of gasoil and gives better quality. 
 
 
3.6 Conclusions 
 
Finding of precise set point temperatures for the distillation of 
kerosene, naphtha and gasoil have always remained to be 
uncertain in a crude oil refinery. Fuzzy control theory is able to 
predict the precise set point of temperature for kerosene, 
naphtha and gasoil, which guarantees the maximum percentage 
of distillation, and also the quality for long hours. By this 
method the random choice of temperature set point from the 
range of temperature set points, which affects the quality and 
quantity of crude is completely over come.  
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Chapter Four 
 
 
 
 
 

STUDY OF FLOW RATES  
IN CHEMICAL PLANTS  
 
 
 
 
 
This chapter has 3 sections. Use of FRE to estimate flow rates 
in chemical plants forms the section one of this chapter. In 
section two fuzzy neural networks are used to estimate velocity 
of flow distribution in a pipe network. The final section 
estimates the three-stage counter current extraction unit again 
using fuzzy neural networks.  
 
 
4.1 Use of FRE in Chemical Engineering 
 
The use of fuzzy relational equations (FRE) for the first time 
has been used in the study of flow rates in chemical plants. They 
have only used the concept of linear algebraic equations to 
study this problem and have shown that use of linear equations 
does not always guarantee them with solutions. Thus we are not 
only justified in using fuzzy relational equation but we are 
happy to state by adaptation of FRE we are guaranteed of 
solutions to the problem. We have adapted the fuzzy relational 
equations to the problem of estimation of flow rates in a 
chemical plant, flow rates in a pipe network and use of FRE in a 
3 stage counter current exaction unit [44]. 
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Experimental study of chemical plants is time consuming 
expensive and need intensive labor, researchers and engineers 
prefer only theoretical approach, which is inexpensive and 
effective. Only linear equations have been used to study: (1). A 
typical chemical plant having several inter-linked units (2). 
Flow distribution in a pipe network and (3). A three stage 
counter current extraction unit. Here, we tackle these problems 
in 2 stages. At the first stage we use FRE to obtain a solution. 
This is done by the method of partitioning the matrix as rows. If 
no solution exists by this method we as the second stage adopt 
Fuzzy Neural Networks by giving weightages. We by varying 
the weights arrive at a solution which is very close to the 
predicted value or the difference between the estimated value 
and the predicted value is zero. Thus by using fuzzy approach 
we see that we are guaranteed of a solution which is close to the 
predicted value, unlike the linear algebraic equation in which 
we may get a solution and even granted we get a solution it may 
or may not concur with the predicted value.  

To attain both solution and accuracy we tackle the problems 
using Fuzzy relational equations at the first stage and if no 
solution is possible by this method we adopt neural networks at 
the second stage and arrive at a solution.  

Consider the binary relation P(X, Y), Q(Y, Z) and R(X, Z) 
which are defined on the sets X = {xi / i ∈ I} Y = {yi / j ∈ J} 
and Z{zk /  k ∈ K} where we assume that I = Nn, J = Nr and K = 
Ns. Let the membership matrices of P, Q and R be denoted by P 
= [pij], Q = [qik] and R = [rik] respectively, where pij = P(xi, yj), 
qik = Q(yj, zk) and rik = R(xi, zk) for i ∈ I (= Nn), j ∈ J (= Nm) and 
k ∈ K (= Ns). Entries in P, Q and R are taken from the interval 
[0, 1]. The three matrices constrain each other by the equation  
 

P o Q = R     (1) 
 
(where o denotes the max-min composition) known as the fuzzy 
relation equation (FRE) which represents the set of equation  
 

Max pijqjk = rik    (2) 
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 for all i ∈ Nn, k ∈ Ns. If after partitioning the matrix and 
solving the equation (1) yields maximum of qjk < rik for some 
qjk, then this set of equation has no solution. So at this stage to 
solve the equation 2, we use feed-forward neural networks of 
one layer with n-neurons with m inputs shown in Figure 4.1.1.  

Inputs of the neuron are associated with real numbers Wij 
referred as weights. The linear activation function f is defined 
by  
 

0 if a 0
f (a) a if a [0, 1]

1 if a 1

<⎧ ⎫
⎪ ⎪= ∈⎨ ⎬
⎪ ⎪>⎩ ⎭

 

 

 
The output yi = f(max Wijxj), for all i ∈ Nn and j ∈ Nm. 

Solution to (1) is obtained by varying the weights Wij so that the 
difference between the predicted value and the calculated value 
is zero.  
 
FRE to estimate flow rates in a chemical plants  
 
A typical chemical plant consists of several interlinked units. 
These units act as nodes. The flowsheet is given in Figure 4.1.2.  
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Figure: 4.1.1 
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An experimental approach would involve measuring the 

nine flow-rates to describe the state of the plant which would 
involve more money and labor.  

While studying this problem in practice researchers have 
has neglected density variations across each stream. The mass 
balance equations across each node at steady state can be 
written as  

 
F3 – F2 = F1, 
F2 – F4 = F5,  
F4 – F7 = F6,  
F2 + F8 = F5,  
F8 = F9 – F6.     (3) 

 
Here Fi represents the volumetric flow rate of the ith stream. 

In equation (3) at least four variables have to be specified or 
determined experimentally.  

The remaining five can then be estimated from the equation 
(3), which is generated by applying the principle of 
conservation of mass to each unit. We assume F1, F5, F6 and F9 
are experimentally measured, equation (3) reads with known 
values on the right-hand side as follows: 
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Figure: 4.1.2 
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2 1

3 5

4 6

7 5

8 9 6

F F1 1 0 0 0
F F0 1 1 0 0
F F0 0 1 1 0

1 0 0 0 1 F F
0 0 0 0 1 F F F

⎡ ⎤− ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ =−
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (4) 

P o Q = R     (5)  
 
where, P, Q and R are explained. Using principle of 
conservation of mass balanced equation we estimate the flow 
rates of the five liquid stream. We in this problem aim to 
minimize the errors between the measured and the predicted 
value. We do this by giving suitable membership grades pij ∈ [0, 
1] and estimate the flow rates by using these pij’s in the equation 
3. Now the equation 4 reads as follows: 
 

 

2 111 12

3 522 23

33 34 4 6

41 45 7 5

55 8 9 6

F Fp p 0 0 0
F F0 p p 0 0

0 0 p p 0 F F
p 0 0 0 p F F
0 0 0 0 p F F F

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (6) 

 
where   P = (pij),  

Q = (qik) = [F2 F3 F4 F7 F8]t and  
R = (rik) = [F1 F5 F6 F5 F9 – F6]t.  

We now apply the partitioning method of solution to 
equation (6). The partitioning of P correspondingly partitions R, 
which is give by a set of give subsets as follows:  

 

[p11 p12 0 0 0]

2 1

3 5

4 9

7 5

8 9 6

F F
F F
F F
F F
F F F

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

, …  
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[0 0  0  0 p55] 

2 1

3 5

4 6

5 5

8 9 6

F F
F F
F F
F F
F F F

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

. 

 
Suppose the subsets satisfies the condition max qik < rik then it 
has no solution. If it does not satisfy, this condition, then it has a 
final solution. If we have no solution we proceed to the second 
stage of solving the problem using Fuzzy Neural Networks.  

When the FRE has no solution by the partition method, we 
solve these FRE using neural networks. This is done by giving 
weightages of zero elements as 0 and the modified FRE now 
reads as  

2 1

3 5

1 4 6

7 5

8 9 6

F F
F F

P F F
F F
F F F

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

o . 

 
The linear activation function f defined earlier gives the output 
yi = f (max Wij xj) (i ∈ Nn) we calculate max Wijxj as follows: 
 
1. W11x1 = 0.02F2, W12x2 = 0F2, W13x3 = 0F2 W14x4 = 0.045F2, 
W15x5 = 0F2 
  y1 = f (maxj∈Nm Wijxj) = f (0.02F2, 0F2, 0.045F2, 0F2) 
 
2. W21x1 = 0.04F3, W22x2 = 0.045F3, W23x3 = 0F3, W24x4 = 0.0F3, 
W15x5 = 0F3 
  y2 = f (maxj∈Nm Wijxj) = f (0.04F3, 0.045F3, 0F3, 0.0F3, 0F3) 
 
3. W31x1 = 0.0F4, W32x2 = 0.085F4, W33x3 = 0.15F4, W34x4 = 
0.0F4 W35x5 = 0F4 
  y3 = f (maxj∈Nm Wijxj) = f (0F4, 0.085F4, 0.15F4, 0F4, 0F4) 
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4. W41x1 = 0.0F7, W42x2 = 0F7, W43x3 = 0.2F7, W44x4 = 0.0F7, 
W45x5 = 0F7 
  y4 = f (maxj∈Nm Wijxj) = f (0F7, 0F7, 0.2F7, 0.0F7,  0F7) 
 
5. W51x1 = 0.0F8, W52x2 = 0F8, W53x3 = 0F8, W54x4 = 0.45F8, 
W55x5 = 0.5F8 
  y5 = f (maxj∈Nm Wijxj) = f (0F8, 0F8, 0F8, 0.45F8, 0.5F8) 
 
shown in Figure 4.1.2. Suppose the error does not reach 0 we 
change the weights till the error reaches 0. We continue the 
process again and again until the error reaches to zero.  

Thus to reach the value zero we may have to go on giving 
different weightages (finite number of time) till say sth stage Ps o 
Qs whose linear activation function f, makes the predicted value 
to be equal to the calculated value. Thus by this method, we are 
guaranteed of a solution which coincides with the predicted 
value.  
 
 
4.2 Fuzzy neural networks to estimate velocity of flow 
distribution in a pipe network  
 
In flow distribution in a pipe network of a chemical plant, we 
consider liquid entering into a pipe of length T and diameter D 
at a fixed pressure Pi, The flow distributes itself into two pipes 
each of length T1(T2) and diameter D1(D2) given in Figure 4.2.1.  
 

 
The linear equation is based on Ohm’s law, the drop in 

voltage V across a resistor R is given by the linear relation V = 

T 

Pa, D1, V1 

Pa, D2, V2 

Figure: 4.2.1 
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iR (Ohm’s law). The hydrodynamic analogue to the mean 
velocity v for laminar flow in a pipe is given by ∇p = v 
(32μT/D2). This is classical-Poiseulle equation. In flow 
distribution in a pipe network, neglecting pressure losses at the 
junction and assuming the flow is laminar in each pipe, the 
macroscopic momentum balance and the mass balance at the 
junction yields,  

P1 – Pa = (32μT/D2)v + (32μT1D1
2)v1,  

Pi – Pa = (32μT/D2)v + 32μT/D2
2)v2,  

D2v = D1
2v1 + v2D2

2 .       (1) 
 
Hence Pa is the pressure at which the fluid leaves the system at 
the two outlets. The set of three equation in (1) can be solved 
and we estimate v, v1, v2 for a fixed (Pi – Pa). The system reads 
as  

 
2 2

i a1 1
2 2

2 2 1 i a
2 1 2

2 2 2

p pv32 T / D 32 T / D 0
32 T / D 0 32 T / D v p p

D D D v 0

⎡ ⎤ −μ μ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥μ μ = −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

 
We transform this equation into a fuzzy relation equation. We 
use a similar procedure described earlier and obtain the result by 
fuzzy relation equation. We get max (0.2v, 0.025v, 0.03v), max 
(0.035v, 0v1, 0.04v1), max (0v2, 0.04v2, 0.045v2) by using neural 
networks for fuzzy relation equation described in [11]. Suppose 
the error does not reach to 0, we change the weights till the error 
reaches 0. We continue the process again and again till the error 
reaches zero.  
 
 
4.3 Fuzzy neural networks to estimate three stage counter 
current extraction unit 
 
Three-stage counter extraction unit is shown in Figure 4.3.1. 
The components A present in phase E (extract) along with a 
nondiffusing substance as being mixture.  
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It is extracted into R by a nondiffusing solvent. The 3 extraction 
stage is given by the three equation.  
 

EsY4 + RsXs = RsX3 + EsY3,  
EsY3 + RsX1 = Es + RsX2,  
EsY2 + RsX0 = EsY1 + RsX1   (1) 

 
Yi(Xi) = moles of A, The flow of each stage is denoted by Es(Rs) 
and this constant does not vary between the different stages. The 
assumption of a linear equilibrium relationship for the 
compositions leaving the ith stage equations  
 

Yi = KXi      (2)  
for i = 1, 2, 3 reads as  
 

1 s 0s s s

1

2s s s s

2

2 s s s 43

3

X R XR E 0 E 0 0
Y 0K 1 0 0 0 0
XR 0 R E 0 E 0
Y0 0 K 1 0 0 0

0 0 R 0 R E E YX
0 0 0 0 K 1 0Y

⎡ ⎤− ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− −

=⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
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Figure: 4.3.1 
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where {X1, Y1, X2, Y2, X3, Y3} can be obtained for a given Es, 
Rs and K. Since use of linear algebraic equation does not result 
in the closeness of the measured and predicted value, we use 
neural networks for fuzzy relation equations to estimate the 
flow-rates of the stream, moles of the three-stage counter 
extraction unit and velocity of the flow distribution in a pipe 
network. As neural networks is a method to reduce the errors 
between the measured value and the predicted value. This 
allows varying degrees of set membership (weightages) based 
on a membership function defined over the range of value. The 
(weightages) membership function usually varies from 0 to 1. 
We use the similar modified procedure described earlier and get 
result by fuzzy relation equation. We get max (0.2X1, 0.25X1, 
0.3X1, 0X1, 0X1, 0X1), max (0.35Y1, 0.4Y1, 0Y1, 0Y1, 0Y1, 0Y1) 
max (0X2, 0X2, 0.45X2, 0.5X2, 0.55X2, 0X2), max (0.6Y2, 0Y2, 
0.65Y5, 0.7Y2, 0Y2, 0Y2) max (0X3, 0X3, 0X3, 0X3, 0.75X3, 
0.8X3), max (0Y3, 0Y3, 0.85Y3, 0Y3, 0.9Y3, 0.95Y3) by neural 
networks for fuzzy relation equation. We continue this process 
until the error reaches zero or very near to zero.  
 
Thus we see that when we replace algebraic linear equations by 
fuzzy methods to the problems described we are not only 
guaranteed of a solution, but our solution is very close to the 
predicted value.  
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Chapter Five 
 
 
 
 
 

MINIMIZATION OF WASTE GAS FLOW IN 
CHEMICAL INDUSTRIES  
 
 
 
 
Chemical Industries and Automobiles are extensively 
contributing to the pollution of environment, Carbon monoxide, 
nitric oxide, ozone, etc., are understood as the some of the 
factors of pollution from chemical industries. The maintenance 
of clean and healthy atmosphere makes it necessary to keep the 
pollution under control which is caused by combustion waste 
gas. The authors have suggested theory to control waste gas 
pollution in environment by oil refinery using fuzzy linear 
programming. To the best of our knowledge the authors [43]are 
the first one to apply fuzzy linear programming to control or 
minimize waste gas in oil refinery. 
 An oil refinery consists of several inter linked units. These 
units act as production units, refinery units and compressors 
parts. These refinery units consume high-purity gas production 
units. But the gas production units produce high-purity gas 
along with a low purity gas. This low purity gas goes as a waste 
gas flow and this waste gas released in the atmosphere causes 
pollution in the environment. But in the oil refinery the quantity 
of this waste gas flow is an uncertainty varying with time and 
quality of chemicals used in the oil refinery. Since a complete 
eradication of waste gas in atmosphere cannot be made; here 
one aims to minimize the waste gas flow so that pollution in 
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environment can be reduced to some extent. Generally waste 
gas flow is determined by linear programming method. In the 
study of minimizing the waste gas flow, some times the current 
state of the refinery may already be sufficiently close to the 
optimum. To over come this situation we adopt fuzzy linear 
programming method. 
The fuzzy linear programming is defined by 
  Maximize  z = cx 

 Such that  Ax ≤ b 
      x ≤ 0 
where the coefficients A, b and c are fuzzy numbers, the 
constraints may be considered as fuzzy inequalities with 
variables x and z. We use fuzzy linear programming to 
determine uncertainty of waste gas flow in oil refinery which 
pollutes the environment. 
 Oil that comes from the ground is called “Crude oil”. 
Before one can use it, oil has to be purified at a factory called a 
“refinery”, so as to convert into a fuel or a product for use. The 
refineries are high-tech factories, they turn crude oil into useful 
energy products. During the process of purification of crude oil 
in an oil refinery a large amount of waste gas is emitted to 
atmosphere which is dangerous to human life, wildlife and plant 
life. The pollutants can affect the health in various ways, by 
causing diseases such as bronchitis or asthma, contributing to 
cancer or birth defects or perhaps by damaging the body’s 
immune system which makes people more susceptible to a 
variety of other health risks. Mainly, this waste gas affects 
Ozone Layer. Ozone (or Ozone Layer) is 10-50 km above the 
surface of earth. Ozone provides a critical barrier to solar 
ultraviolet radiation, and protection from skin cancers, cataracts, 
and serious ecological disruption. Further sulfur dioxide and 
nitrogen oxide combine with water in the air to form sulfuric 
acid and nitric acid respectively, causing acid rain. It has been 
estimated that emission of 70 percentage of sulfur dioxide and 
nitrogen oxide are from chemical industries. 
 We cannot stop this process of oil refinery, since oil and 
natural gas are the main sources of energy. We cannot close 
down all oil refineries, but we only can try to control the amount 
of pollution to a possible degree. In this paper, the authors use 
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fuzzy linear programming to reduce the waste gas from oil 
refinery. The authors describe the knowledge based system 
(KBS) that is designed and incorporate it in this paper to 
generate an on-line advice for operators regarding the proper 
distribution of gas resources in an oil refinery. In this system, 
there are many different sources of uncertainty including 
modeling errors, operating cost, and different opinions of 
experts on operating strategy. The KBS consists of sub-
functions, like first sub-functions, second sub-functions, etc. 
Each and every sub-functions are discussed relative to certain 
specific problems. 
 For example: The first sub-function is mainly adopted to the 
compressor parts in the oil refineries. Till date they were using 
stochastic programming, flexibility analysis and process design 
problems for linear or non-linear problem to compressor parts in 
oil refinery. Here we adopt the sub function to study the proper 
distribution of gas resources in an oil refinery and also use fuzzy 
linear programming (FLP) to minimize the waste gas flow. By 
the term proper distribution of gas we include the study of both 
the production of high-purity gas as well as the amount of waste 
gas flow which causes pollution in environment. 
 In 1965, Lofti Zadeh [115, 116] wrote his famous paper 
formally defining multi-valued, or “fuzzy” set theory. He 
extended traditional set theory by changing the two-values 
indicator functions i.e., 0, 1 or the crisp function into a multi-
valued membership function. The membership function assigns 
a “grade of membership” ranging from 0 to 1 to each object in 
the fuzzy set. Zadeh formally defined fuzzy sets, their 
properties, and various properties of algebraic fuzzy sets. He 
introduced the concept of linguistic variables which have values 
that are linguistic in nature (i.e. pollution by waste gas = {small 
pollution, high pollution, very high pollution}). 
 Fuzzy Linear Programming (FLP): FLP problems with 
fuzzy coefficients and fuzzy inequality relations as a multiple 
fuzzy reasoning scheme, where the past happening of the 
scheme correspond to the constraints of thee FLP problem. We 
assign facts (real data from industries) of the scheme, as the 
objective of the FLP problem. Then the solution process 
consists of two steps. In the fist step, for every decision 
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variable, we compute the (fuzzy) value of the objective function 
via constraints and facts/objectives. At the second step an 
optimal solution to FLP problem is obtained at any point, which 
produces a maximal element to the set of objective functions (in 
the sense of the given inequality relation). 
 The Fuzzy Linear Programming (FLP) problem application 
is designed to offer advice to operating personnel regarding the 
distribution of Gas within an oil refinery (Described in Figure 
5.1) in a way which would minimize the waste gas in 
environment there by reduce the atmospheric pollution . 
 GPUI, GPU2 and GPU3 are the gas production units and 
GGG consumes high purity gas and vents low purity gas. Gas 
from these production units are sent to some oil refinery units, 
like sulfur, methanol, etc. Any additional gas needs in the oil 
refinery must be met by the gas production unit GPU3. 
 The pressure swing adsorption unit (PSA) separates the 
GPU2 gas into a high purity product stream and a low purity tail 
stream (described in the Figure 5.1). C1, C2, C3, C4, C5, are 
compressors. The flow lines that dead –end is an arrow 
represent vent to flare or fuel gas. This is the wasted gas that is 
to be minimized. Also we want to minimize the letdown flow 
from the high purity to the low purity header  
 

GPU1 

GPU2 

GPU3 

CGG

ORU

ORU

ORU

GCG2

GCG2

PSA 

C4

C2 C3

C1 

Letdown 

Dead end 

Dead end 

C5

Figure: 5.1 
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 FLP is a method of accounting for uncertainty is used by the 
authors for proper distribution of gas resources, so as to 
minimize the waste gas flow in atmosphere. FLP allows varying 
degrees of set membership based on a membership function 
defined over a range of values. The membership function 
usually varies from 0 to 1. FLP allow the representation of 
many different sources of uncertainty in the oil refinery. These 
sources may (or) may not be probabilistic in nature. The 
uncertainty is represented by membership functions describing 
the parameters in the optimization model. A solution is found 
that either maximizes a given feasibility measure and 
maximizes the wastage of gas flow. FLP is used here to 
characterize the neighborhood of solutions that defines the 
boundaries of acceptable operating states. 
 
 Fuzzy Linear Programming (FLP) can be stated as; 
   

max imize z cx
s.t Ax b

x 0

= ⎤
⎥≤ ⎥
⎥≥ ⎦

  … (*) 

 
 The coefficients A, b and c are fuzzy numbers, the 
constraints may be considered as fuzzy inequalities. The 
decision space is defined by the constraints with c, x ∈ N, b ∈ 
Rm and A ∈ Rm, where N, Rm, and Rmxn are reals. 
 The optimization model chosen by the knowledge based 
system (KBS) is determined online and is dependent on the 
refinery units. This optimization method is to reduce the amount 
of waste gas in pollution. 
We aim to 
 

1. The gas (GCG2) vent should be minimized. 
2. The let down flow should be minimized and 
3. The make up gas produced by the as production unit 

(GPU3) should be minimized. 
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Generally the waste gas emitted by the above three ways 
pollute the environment. The objective function can be 
expressed as the sum of the individual gas waste flows. The 
constrains are given by some physical limitations as well as 
operator entries that describe minimum and maximum desired 
flows.  

The obtained or calculated resultant values of the decision 
variables are interpreted as changes in the pressure swing 
adsorption feed, and the rate that gas is imported to CGG and 
gas production unit (GPU3). But in the optimization model 
there is uncertainty associated with amount of waste gas from 
oil refinery, and also some times the current state of the refinery 
may already be sufficiently close to the optimum. 

For example to illustrate the problem, if the fuzzy 
constraints x1, the objects are taken along the x-axis are shown 
in the figures 5.2 and 5.3, which represent the expression. 

 
x1 ≤ 8 (with tolerance p = 2)    (1) 

 
 The membership function µ are taken along the y-axis i.e. 
µ(x1) lies in [0, 1] this can be interpreted as the confidence with 
which this constraint is satisfied (0 for low and 1 for high). The 
fuzzy inequality constraints can be redefined in terms of their α-
cuts. 

{Sα / α ε [0, 1]}, where Sα = {γ / (μ (γ) ≥ α)}. 
The parameter α is used to turn fuzzy inequalities into crisp 

inequalities. So we can rewrite equation (1) 
 

x1 ≤ 6 + 2 (2) (1– α) 
x1 ≤ 6 + 4 (1 – α) 
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where α ε [0, 1] expressed in terms of α in this way the fuzzy 
linear programming problem can be solved parametrically. The 
solution is a function on α 

  x* = f(α)     (2) 
 
with the optimal value of the objective function determined by 
substitution in equation (1). 
 

  z* = cx* = g(α).    (3) 
 
This is used to characterize the objective function. The result 
covers all possible solutions to the optimization problem for any 
point in the uncertain interval of the constraints. 

The α-cuts of the fuzzy set describes the region of feasible 
solutions in figures 5.2 and 5.3. The extremes (α = 0 and α = 1) 
are associated with the minimum and maximum values of x* 
respectively. The given equation (2) can also be found this, is 
used to characterize the objective function. The result covers all 
possible solutions to the optimization problem for any point in 
the uncertain interval of the constraints. 

Fuzzy Membership Function to Describe Uncertainty: The 
feasibility of any decision (µD) is given by the intersection of 
the fuzzy set describing the objective and the constraints. 

 
µD (x) = µz(x) ^µN (x) 

 
where ^ represents the minimum operator, that is the usual 
operation for fuzzy set intersection. The value of µN can be 
easily found by intersecting the membership values for each of 
the constraints. 

µN (x) = µ1(x) ^µ2 (x)^…^ µm (x). 
The membership functions for the objective (µz) however is 

not obvious z is defined in (2). Often, predetermined aspiration 
target values are used to define this function. Since reasonable 
values of this kind may not be available, the solution to the FLP 
equation (3) is used to characterize this function. 
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µz(x) = 

1 if z(x) b(0)
z(x) b(1) if b(1) z(x) b(0)
b(0) b(1)

0 if z(x) b(0).

⎡ ≥
⎢ −⎢ ≤ ≤
⎢ −
⎢

≤⎣

  (5) 

 
The result is that the confidence value increases as the value of 
the objective value increases. This is reasonable because the 
goal is to maximize this function the limits on the function 
defined by reasonable value is obtained by extremes of the 

objective value. 
 
 These are the results generated by the fuzzy linear 
programming. Since both µN and µz have been characterized, 
now our goal is to describe the appropriateness of any operation 
state. Given any operating x, the feasibility can be specified 
based on the objective value, the constraints and the estimated 
uncertainty is got using equation (4). The value of µD are shown 
as the intersection of the two membership functions. 

Defining the decision region based on the intersection we 
describe the variables and constraints of our problem. The 
variable x1 represents the amount of gas fed to pressure swing 
adsorption from the gas production unit. The variable x2 
represents the amount of gas production that is sent to CGG. 
This problem can be represented according to equation (*). The 
constraints on the problem are subjected to some degree of 
uncertainty often some violation of the constraints within this 
range of uncertainty is tolerable. This problem can be 

Figure: 5.4 
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represented according to equation (*). Using the given refinery 
data from the chemical plant. 

 

 
c = [-0.544 3] 

 

A = 
1 0
0 1

0.544 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

 

b  = 
33.652
23.050
4.743

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Using equation (*) we get 
Zc = – 0.544 x1 + 3x2 it represents gas waste flow. The gas 
waste flow is represented by the following three equations: 
 

i. x1 + 0x2 ≤ 33.652 is the total dead – end waste flow gas. 
ii. 0x1 + x2 = 23.050 is the total (GCG2) gas consuming 

gas – treaters waste flow gas. 
iii.  – 0544 x1 + x2 ≤ 4.743 is the total let-down waste flow 

gas.  
 
All flow rates are in million standard cubic feet per day. (i.e. 1 
MMSCFD = 0.3277 m3/s at STP). The value used for may be 
considered to be desired from operator experts opinion. The 

Figure: 5.5  
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third constraint represents the minimum let-down flow receiving 
to keep valve from sticking. The value to this limit cannot be 
given an exact value, therefore a certain degree of violation may 
be tolerable. The other constraints may be subject to some 
uncertainty as well as they represent the maximum allowable 
values for x1 and x2. In this problem we are going to express all 
constrains in terms of α, α, ε [0, 1]. We have to chose a value of 
tolerance on the third constraint as p3 = 0.1, then this constraint 
is represented parametrically as  
 

a3 x ≤ (b3 – p3) + 2p3 (1 - α). 
 

For example, if we use crisp optimization problem with the 
tolerance value p = 0.1 we obtain the following result: 

 

 
where x1 represents the amount of gas fed to PSA from gas 
production unit which is taken along the x axis, and x2 amount 
of gas sent to CGG which is taken along the y axis, 
we get x1 = 33.469, when x2 = 23.050 

x* = 
33.469
23.050

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

z = 50.941. Finally we compare this result with our fuzzy linear 
programming method. 

We replace two valued indicator function method by fuzzy 
linear programming. 

Figure: 5.6 
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Fuzzy Linear Programming is used now to maximize the 
objective function as well as minimize the uncertainty (waste 
flow gas). For that all of the constraints are expressed in terms 
of α, α, ∈ [0, 1]. 

a3 x ≤ (b3 – p3) + 2p3 (1 - α). α ∈ [0, 1] 
where a3 is the third row in the matrix A. i.e. = 0.544x1 + x2 ≤ 
4.843 – 0.2 α, when the tolerance p3 = 0.3, we fix the value of α 
ε [0.9,1], when the tolerance p3 = 0.1, we see α ε [0.300, 0.600]. 

where x1 represents the amount of gas fed to PSA from gas 
production unit which is taken along the x axis, and x2 amount 
of gas that is sent to CGG which is taken along the y axis, 
 
 When x2 = 23.050 and  α = 0.0, we get  x1 = 33.469. 
 When x2 = 23.050 and  α = 0.4, we get  x1 = 33.616 
The set (µz) is defined in equation 5. Fuzzy Linear 
Programming solution is  

x* = f(α) = 
33.469
23.050

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

this value is recommended as there is no changes in the 
operating policy. 

So we have to chose the value for α as 0.6 for the tolerance 
p3 = 0.1, we get the following graph where x1 represents the 
amount of gas fed to PSA from gas production unit which is 
taken along the x axis, and x2 amount of gas that sent to CGG 
which is taken along the y axis, 

Figure: 5.7  

22 

22.5 

23 

31.5 33 33.469 33.5 X1 

X2 μD 



 100

when x2 = 23.050 and α = 0.0 we get x1 = 33.469 
  when x2 = 23.050 and α = 0.6 we get x1 = 33.689. 
The operating region 

x* = f (0.6) = 
33.689
23.050

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

Now if the tolerance on the third constraint is increased to p3 = 
0.2. This results is the region shown in the following graph. As 
expected the region has increased to allow a larger range of 
operating states. 

when x2 = 23.050 and  α = 0.0 we get  x1 = 33.285 
when x2 = 23.050 and  α = 0.9 we get  x1 = 33.947.  

The operating region is  
 

Figure: 5.8 
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where x1 represents the amount of gas fed to PSA from gas 
production unit which is taken along the x axis, and x2 amount 
of gas that is sent to CGG which is taken along the y axis. 

 

x* = f (0.9) = 
33.947
23.050

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
The fuzzy linear programming solution is 

x* = f (α) = 
33.285
23.050

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
z* = 51.043. 

 
Finally we have to take α ε [0.9, 1.00]. 
Choose α = 0 and when the tolerance p3 = 0.3 we get the 
following graph when x2 = 23.050 we get x1 = 33.101. 
 

 
where x1 represents the amount of gas fed to PSA from gas 
production unit; and x2 amount of gas that is sent to CGG. 

When α = 1 and x2 = 23.050 we get x1 = 34.204. The 
operating region is  
 

x* = f (1.0) = 
33.204
23.050

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

Figure: 5.10 
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The fuzzy linear programming solutions are 
 

x* = f (α) = 
33.101
23.050

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

 
The fuzzy linear programming solutions are 
 

z* = g (α) = 51.143. 
 
We chose maximum value from the Fuzzy Linear Programming 
method i.e. z* = 51.143. 

Thus when we work by giving varying membership 
functions and use fuzzy linear programming we see that we get 
the minimized waste gas flow value as 33.101 in contrast to 
33.464 measured in million standard cubic feet per day and the 
maximum gas waste flow of system is determined to be 51.143 
in contrast to their result of 50.941 measured in million standard 
cubic feet per day. Since the difference we have obtained is 
certainly significant, this study when applied to any oil refinery 
will minimize the waste gas flow to atmosphere considerably 
and reduce the pollution. 
 



 103

 
 
 
 
Chapter Six 
 
 
 
 
 

USE OF NEUTROSOPHIC RELATIONAL 
EQUATIONS IN CHEMICAL ENGINEERING  
 
 
 
 
 
This chapter has 2 sections. Section one gives introduction to 
Neutrosophic Relational Equations (NRE) and section two gives 
use of NRE in chemical Engineering.  
 
 
6.1 Introduction to Neutrosophic Relation and their 
properties 
 
In this section we introduce the notion of neutrosophic relational 
equations and fuzzy neutrosophic relational equations and 
analyze and apply them to real-world problems, which are 
abundant with the concept of indeterminacy. We also mention 
that most of the unsupervised data also involve at least to certain 
degrees the notion of indeterminacy.  

Throughout this section by a neutrosophic matrix we mean 
a matrix whose entries are from the set N = [0, 1] ∪ I and by a 
fuzzy neutrosophic matrix we mean a matrix whose entries are 
from N’ = [0, 1] ∪ {nI / n ∈ (0,1]}. 

Now we proceed on to define binary neutrosophic relations 
and binary neutrosophic fuzzy relation.  
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A binary neutrosophic relation RN(x, y) may assign to each 
element of X two or more elements of Y or the indeterminate I. 
Some basic operations on functions such as the inverse and 
composition are applicable to binary relations as well. Given a 
neutrosophic relation RN(X, Y) its domain is a neutrosophic set 
on X ∪ I domain R whose membership function is defined by  
 

domR(x) = )y,x(Rmax N
IXy ∪∈

 

for each x ∈ X ∪ I.  
That is each element of set X ∪ I belongs to the domain of 

R to the degree equal to the strength of its strongest relation to 
any member of set Y ∪ I. The degree may be an indeterminate I 
also. Thus this is one of the marked difference between the 
binary fuzzy relation and the binary neutrosophic relation. The 
range of RN(X,Y) is a neutrosophic relation on Y, ran R whose 
membership is defined by  

ran R(y) = )y,x(Rmax N
Xx∈

 

for each y ∈ Y, that is the strength of the strongest relation that 
each element of Y has to an element of X is equal to the degree 
of that element’s membership in the range of R or it can be an 
indeterminate I.  

The height of a neutrosophic relation RN(x, y) is a number 
h(R) or an indeterminate I defined by  

hN(R) = 
y Y I x X I
max max
∈ ∪ ∈ ∪

RN(x, y). 

That is hN(R) is the largest membership grade attained by any 
pair (x, y) in R or the indeterminate I.  

 A convenient representation of the neutrosophic binary 
relation RN(X, Y) are membership matrices R = [γxy] where γxy 
∈ RN(x, y).  

Another useful representation of a binary neutrosophic 
relation is a neutrosophic sagittal diagram. Each of the sets X, Y 
represented by a set of nodes in the diagram, nodes 
corresponding to one set are clearly distinguished from nodes 
representing the other set. Elements of X’ × Y’ with non-zero 
membership grades in RN(X, Y) are represented in the diagram 
by lines connecting the respective nodes. These lines are labeled 
with the values of the membership grades.  
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An example of the neutrosophic sagittal diagram is a binary 
neutrosophic relation RN(X, Y) together with the membership 
neutrosophic matrix is given below.  
 

     y1      y2      y3     y4 

1

2

3

4

5

x I 0 0 0.5
x 0.3 0 0.4 0
x 1 0 0 0.2
x 0 I 0 0
x 0 0 0.5 0.7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 

The inverse of a neutrosophic relation RN(X, Y) = R(x, y) 
for all x ∈ X and all y ∈ Y. A neutrosophic membership matrix 
R–1 = [ 1

yxr− ] representing 1
NR− (Y, X) is the transpose of the 

matrix R for RN(X, Y) which means that the rows of R-1 equal 
the columns of R and the columns of R-1 equal rows of R. 
Clearly (R-1)-1 = R for any binary neutrosophic relation.  

 
Consider any two binary neutrosophic relations PN(X, Y) 

and QN(Y, Z) with a common set Y. The standard composition 
of these relations which is denoted by PN(X, Y) • QN(Y, Z) 
produces a binary neutrosophic relation RN(X, Z) on X × Z 
defined by  

 

FIGURE: 6.1.1 
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RN(x, z) = [P • Q]N(x, z) = 
y Y

max
∈

min[PN(x, y), QN(x, y)]  

 
for all x∈ X and all z ∈ Z.  

This composition which is based on the standard tN-norm 
and tN-co-norm, is often referred to as the max-min 
composition. It can be easily verified that even in the case of 
binary neutrosophic relations  

 
[PN(X, Y) • QN(Y, Z)]-1 

= 1
NQ− (Z, Y) • 1

NP− (Y, X). [PN(X, Y) • QN(Y, Z)] • RN(Z, W) 
= PN(X, Y) • [QN(Y, Z) • RN(Z, W)], 

 
that is, the standard (or max-min) composition is associative 

and its inverse is equal to the reverse composition of the inverse 
relation. However, the standard composition is not 
commutative, because QN(Y, Z) • PN(X, Y) is not well defined 
when X ≠ Z. Even if X = Z and QN (Y, Z) ° PN (X, Y) are well 
defined still we can have PN (X, Y) ° Q (Y, Z) ≠ Q (Y, Z) ° P 
(X, Y). 
 

Compositions of binary neutrosophic relation can the 
performed conveniently in terms of membership matrices of the 
relations. Let P = [pik], Q = [qkj ] and R = [rij] be membership 
matrices of binary relations such that R = P ° Q. We write this 
using matrix notation  

[rij] = [pik] o [qkj] 
where rij = minmax

k
(pik, qkj). 

 A similar operation on two binary relations, which differs 
from the composition in that it yields triples instead of pairs, is 
known as the relational join. For neutrosophic relation PN (X, Y) 
and QN (Y, Z) the relational join P * Q corresponding to the 
neutrosophic standard max-min composition is a ternary relation 
RN (X, Y, Z) defined by RN (x, y, z) = [P * Q]N (x, y, z) = min 
[PN (x, y), QN (y, z)] for each x ∈ X, y ∈ Y and z ∈ Z. 
 
This is illustrated by the following Figure 6.1.2. 
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In addition to defining a neutrosophic binary relation there 
exists between two different sets, it is also possible to define 
neutrosophic binary relation among the elements of a single set 
X. A neutrosophic binary relation of this type is denoted by 
RN(X, X) or RN (X2) and is a subset of X × X = X2. 

These relations are often referred to as neutrosophic 
directed graphs or neutrosophic digraphs. [42] 

Neutrosophic binary relations RN (X, X) can be expressed 
by the same forms as general neutrosophic binary relations. 
However they can be conveniently expressed in terms of simple 
diagrams with the following properties. 

 
I. Each element of the set X is represented by a single 

node in the diagram.  
II. Directed connections between nodes indicate pairs of 

elements of X for which the grade of membership in 
R is non zero or indeterminate.  

III. Each connection in the diagram is labeled by the 
actual membership grade of the corresponding pair in 
R or in indeterminacy of the relationship between 
those pairs.  

 
The neutrosophic membership matrix and the neutrosophic 

sagittal diagram is as follows for any set X = {a, b, c, d, e}. 
 

FIGURE: 6.1.2 
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0 .3 .2 0
1 0 0 .3

.2 0 0 0
0 .6 0 .3
0 0 0 .2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I
I

I
I

I

 

 
Neutrosophic membership matrix for x is given above and the 
neutrosophic sagittal diagram is given below. 

 
Neutrosophic diagram or graph is left for the reader as an 
exercise. 

The notion of reflexivity, symmetry and transitivity can be 
extended for neutrosophic relations RN (X, Y) by defining them 
in terms of the membership functions or indeterminacy relation.  
 
Thus RN (X, X) is reflexive if and only if RN (x, x) = 1 for all x ∈ 
X. If this is not the case for some x ∈ X the relation is 
irreflexive.  
A weaker form of reflexivity, if for no x in X; RN(x, x) = 1 then 
we call the relation to be anti-reflexive referred to as ∈-
reflexivity,   is sometimes defined by requiring that   

  RN (x, x) ≥ ∈ where 0 < ∈ < 1. 
 
A fuzzy relation is symmetric if and only if  

RN (x, y) = RN (y, x) for all x, y, ∈ X. 
 

Figure: 4.1.3 
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Whenever this relation is not true for some x, y ∈ X the relation 
is called asymmetric. Furthermore when RN (x, y) > 0 and RN (y, 
x) > 0 implies that x = y for all x, y ∈ X the relation R is called 
anti-symmetric. 

A fuzzy relation RN (X, X) is transitive (or more specifically 
max-min transitive) if  

 
RN (x, z) ≥ 

Yy∈
max min [RN (x, y), RN (y, z)] 

 
is satisfied for each pair (x, z) ∈ X2. A relation failing to satisfy 
the above inequality for some members of X is called non-
transitive and if RN (x, x) < 

Yy∈
max min [RN(x, y), RN(y, z)] for all 

(x, x) ∈ X2, then the relation is called anti-transitive  
Given a relation RN(X, X) its transitive closure R NT (x, X) 

can be analyzed in the following way. 
The transitive closure on a crisp relation RN (X, X) is 

defined as the relation that is transitive, contains  
 

RN (X, X) < 
Yy

max
∈

 min [RN (x, y) RN (y, z)] 

 
for all (x, x) ∈ X2, then the relation is called anti-transitive. 
Given a relation RN (x, x) its transitive closure NTR (X, X) can 
be analyzed in the following way. 

The transitive closure on a crisp relation RN (X, X) is 
defined as the relation that is transitive, contains RN and has the 
fewest possible members. For neutrosophic relations the last 
requirement is generalized such that the elements of transitive 
closure have the smallest possible membership grades, that still 
allow the first two requirements to be met. 

Given a relation RN (X, X) its transitive closure NTR (X, X) 
can be determined by a simple algorithm. 

Now we proceed on to define the notion of neutrosophic 
equivalence relation. 
 
DEFINITION 4.1.1: A crisp neutrosophic relation RN(X, X) that 
is reflexive, symmetric and transitive is called a neutrosophic 



 110

equivalence relation. For each element x in X, we can define a 
crisp neutrosophic set Ax which contains all the elements of X 
that are related to x by the neutrosophic equivalence relation. 
 
Formally Ax = [ y | (x, y) ∈ RN (X, X)}. Ax is clearly a subset of 
X. The element x is itself contained in Ax, due to the reflexivity 
of R because R is transitive and symmetric each member of Ax is 
related to all other members of Ax. Further no member of Ax is 
related to any element of X not included in Ax. This set Ax is 
clearly referred to as a neutrosophic equivalence class of RN (X, 
x) with respect to x. The members of each neutrosophic 
equivalence class can be considered neutrosophic equivalent to 
each other and only to each other under the relation R. 
 
 But here it is pertinent to mention that in some X; (a, b) may 
not be related at all to be more precise there may be an element 
a ∈ X which is such that its relation with several or some 
elements in X \ {a} is an indeterminate. The elements which 
cannot determine its relation with other elements will be put in 
as separate set. 

A neutrosophic binary relation that is reflexive, symmetric 
and transitive is known as a neutrosophic equivalence relation. 

Now we proceed on to define Neutrosophic intersections 
neutrosophic t – norms (tN – norms) 
 Let A and B be any two neutrosophic sets, the intersection 
of A and B is specified in general by a neutrosophic binary 
operation on the set N = [0, 1] ∪ I, that is a function of the form  
 

iN: N × N → N. 
For each element x of the universal set, this function takes as its 
argument the pair consisting of the elements membership grades 
in set A and in set B, and yield the membership grade of the 
element in the set constituting the intersection of A and B. Thus,  

 
(A ∩ B) (x) = iN [A(x), B(x)] for all x ∈ X. 

 
 In order for the function iN of this form to qualify as a fuzzy 
intersection, it must possess appropriate properties, which 
ensure that neutrosophic sets produced by iN are intuitively 
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acceptable as meaningful fuzzy intersections of any given pair 
of neutrosophic sets. It turns out that functions known as tN- 
norms, will be introduced and analyzed in this section. In fact 
the class of tN- norms is now accepted as equivalent to the class 
of neutrosophic fuzzy intersection. We will use the terms tN – 
norms and neutrosophic intersections inter changeably. 
 Given a tN – norm, iN and neutrosophic sets A and B we 
have to apply:  

(A ∩B) (x) = iN [A (x) , B (x)] 
 
for each x ∈ X, to determine the intersection of A and B based 
upon iN. 

However the function iN is totally independent of x, it 
depends only on the values A (x) and B(x). Thus we may ignore 
x and assume that the arguments of iN are arbitrary numbers  
a, b ∈ [0, 1] ∪ I = N in the following examination of formal 
properties of tN-norm.  

A neutrosophic intersection/ tN-norm iN is a binary operation 
on the unit interval that satisfies at least the following axioms 
for all a, b, c, d ∈ N = [0, 1] ∪ I. 
 

1N   iN (a, 1) = a 
2N   iN (a, I) = I 
3N   b ≤ d implies 

iN (a, b) ≤ iN (a, d) 
4N   iN (a, b) = iN (b, a) 
5N   iN (a, iN(b, d)) = iN (a, b), d). 

 
We call the conditions 1N to 5N as the axiomatic skeleton for 
neutrosophic intersections / tN – norms. Clearly iN is a 
continuous function on N \ I and iN (a, a) < a ∀a ∈ N \ I  

 
iN (I I) = I. 

 
If a1 < a2 and b1 < b2 implies iN (a1, b1) < iN (a2, b2). Several 
properties in this direction can be derived as in case of t-norms.  
 
The following are some examples of tN –norms  
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1.  iN (a, b) = min (a, b) 
 iN (a, I) = min (a, I) = I will be called as standard 

neutrosophic intersection. 
2. iN (a, b) = ab for a, b ∈ N \ I and iN (a, b)  = I for a, b ∈ 

N where a = I or b = I will be called as the neutrosophic 
algebraic product. 

3. Bounded neutrosophic difference. 
 iN (a, b) = max (0, a + b – 1) for a, b ∈ I  
 iN (a, I) = I is yet another example of tN – norm. 

1. Drastic neutrosophic intersection  
2.  

iN (a, b) = 

a when b 1
b when a 1
I when a I

or b I
or a b I

0 otherwise

=⎧
⎪ =⎪
⎪ =⎪
⎨ =⎪
⎪ = =
⎪
⎪⎩

 

 
As I is an indeterminate adjoined in tN – norms. It is not easy to 
give then the graphs of neutrosophic intersections. Here also we 
leave the analysis and study of these tN – norms (i.e. 
neutrosophic intersections) to the reader. 

The notion of neutrosophic unions closely parallels that of 
neutrosophic intersections. Like neutrosophic intersection the 
general neutrosophic union of two neutrosophic sets A and B is 
specified by a function  

µN: N × N → N where N = [0, 1] ∪ I. 
 
 The argument of this function is the pair consisting of the 
membership grade of some element x in the neutrosophic set A 
and the membership grade of that some element in the 
neutrosophic set B, (here by membership grade we mean not 
only the membership grade in the unit interval [0, 1] but also the 
indeterminacy of the membership). The function returns the 
membership grade of the element in the set A ∪ B.  

Thus (A ∪ B) (x) = µN [A (x), B(x)] for all x ∈ X. 
Properties that a function µN must satisfy to be initiatively 
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acceptable as neutrosophic union are exactly the same as 
properties of functions that are known. Thus neutrosophic union 
will be called as neutrosophic t-co-norm; denoted by tN – co-
norm. 

A neutrosophic union / tN – co-norm µN is a binary 
operation on the unit interval that satisfies at least the following 
conditions for all a, b, c, d ∈ N = [0, 1] ∪ I 

 
C1   µN (a, 0) = a 
C2   µN (a, I) = I 
C3   b ≤ d implies 

µN (a, b) ≤ µN (a, d) 
C4   µN (a, b) = µN (b, a) 
C5   µN (a, µN (b, d)) 

= µN (µN (a, b), d). 
 
Since the above set of conditions are essentially neutrosophic 
unions we call it the axiomatic skeleton for neutrosophic unions 
/ tN-co-norms. The addition requirements for neutrosophic 
unions are  

i. µN is a continuous functions on N \ {I} 
ii. µN (a, a) > a. 
iii. a1 < a2 and b1 < b2 implies µN (a1. b1) < µN (a2, b2); 

a1, a2, b1, b2 ∈ N \ {I} 
 
We give some basic neutrosophic unions. 
Let µN : [0, 1] × [0, 1] → [0, 1] 
 

µN (a, b) = max (a, b) 
µN (a, I) = I is called as the standard    
     neutrosophic union. 
µN (a, b) = a + b – ab and  
µN (a, I) = I . 

 
This function will be called as the neutrosophic algebraic sum. 

 
µN (a, b) = min (1, a + b) and µN (a, I) = I 
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will be called as the neutrosophic bounded sum. We define the 
notion of neutrosophic drastic unions  

 

µN (a, b) = 

a when b 0
b when a 0
I when a I

or b I
1 otherwise.

=⎧
⎪ =⎪⎪ =⎨
⎪ =⎪
⎪⎩

 

 
Now we proceed on to define the notion of neutrosophic 
Aggregation operators. Neutrosophic aggregation operators on 
neutrosophic sets are operations by which several neutrosophic 
sets are combined in a desirable way to produce a single 
neutrosophic set. 
 Any neutrosophic aggregation operation on n neutrosophic 
sets (n ≥ 2) is defined by a function hN: Nn → N where N = [0, 
1] ∪ I and Nn = 

n times

N ... N
−

× ×
14243

when applied to neutrosophic sets 

A1, A2,…, An defined on X the function hN produces an 
aggregate neutrosophic set A by operating on the membership 
grades of these sets for each x ∈ X (Here also by the term 
membership grades we mean not only the membership grades 
from the unit interval [0, 1] but also the indeterminacy I for 
some x ∈ X are included). Thus  

AN (x) = hN (A1 (x), A2 (x),…, An(x)) 
for each x ∈ X. 
 
 
6.2 Use of NRE in chemical engineering  
 
The use of FRE for the first line has been used in the study of 
flow rates in chemical plants. In this study we are only 
guaranteed of a solution but when we use NRE in study of flow 
rates in the chemical plants we are also made to understand that 
certain flow rates are indeterminates depending on the leakage, 
chemical reactions and the new effect due to chemical reactions 
which may change due to change in the density/ viscosity of the 
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fluid under study their by changing the flow rates while 
analyzing as a mathematical model. So in the study of flow rates 
in chemical plants some indeterminacy are also related with it. 
FRE has its own limitation for it cannot involve in its analysis 
the indeterminacy factor.  

We have given analysis in chapter 2 using FRE. Now we 
suggest the use of NRE and bring out its importance in the 
determination of flow rates in chemical plants. 

Consider the binary neutrosophic relations PN (X, Y) QN (Y, 
Z) and R (X, Z) which are defined on the sets X, Y and Z. Let 
the membership matrices of P, Q and R be denoted by P = [pij], 
Q = [qjk] and R = [rij] respectively where pij = P(xi, yj), qjk = Q 
(yj, rk) and rik = R (xi, zk) for i∈I = Nn, j∈J = Nm and k ∈ K = Nk 
entries of P, Q and R are taken for the interval [0 1] × FN. The 
three neutrosophic matrices constrain each other by the equation  

 
P o Q = R        (1) 

 
where ‘o’ denotes the max-min composition (1) known as the 
Neutrosophic  Relational Equation (NRE) which represents the 
set of equation  

max pij qjk = rik.        (2) 
 
For all i ∈ Nn and k ∈ Ns. After partitioning the matrix and 
solving the equation (1) yields maximum of qjk < rik for some 
qjk, then this set of equation has no solution so to solve equation 
(2) we invent and redefine a feed – forward neural networks of 
one layer with n-neurons with m inputs. The inputs are 
associated with wij called weights, which may be real, or 
indeterminates from RI. The neutrosophic activation function fN 
is defined by  

fN(a) = 

0 if a 0
a if a [01]
1if a 1
aI if a FN
I if aI I
0 if in aI, a 0.

<⎧
⎪ ∈⎪
⎪ >⎪
⎨ ∈⎪
⎪ >
⎪

<⎪⎩
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The out put yi = fN (max wij xj). Now the NRE is used to 
estimate the flow rates in a chemical plant. In places where the 
indeterminacy is involved the expert can be very careful and use 
methods to overcome indeterminacy by adopting more and 
more constraints which have not been given proper 
representation and their by finding means to eliminate the 
indeterminacy involved in the weights. 

In case of impossibility to eliminate these indeterminacy 
one can use the maximum caution in dealing with these values 
which are indeterminates so that all types of economic and time 
loss can be met with great care. In the flow rate problem the use 
of NRE mainly predicts the presence of the indeterminacy 
which can be minimized using fN; where by all other in-
descripancies are given due representation.  

We suggest the use of NRE for when flow rates are 
concerned in any chemical plant the due weightage must be 
given the quality of chemicals or raw materials which in many 
cases are not up to expectations, leakage of pipe, the viscosity or 
density after chemical reaction time factor, which is related with 
time temperature and pressure for which usually due 
representations, is not given only ideal conditions are assumed. 
Thus use of NRE may prevent accident, economic loss and 
other conditions and so on. 
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