


In Praise of VLSI Test Principles and Architectures: Design for Testability

Testing techniques for VLSI circuits are today facing many exciting and complex challenges.
In the era of large systems embedded in a single system-on-chip (SOC) and fabricated in
continuously shrinking technologies, it is important to ensure correct behavior of the whole
system. Electronic design and test engineers of today have to deal with these complex and
heterogeneous systems (digital, mixed-signal, memory), but few have the possibility to study
the whole field in a detailed and deep way. This book provides an extremely broad knowledge
of the discipline, covering the fundamentals in detail, as well as the most recent and advanced
concepts.

It is a textbook for teaching the basics of fault simulation, ATPG, memory testing, DFT and
BIST. However, it is also a complete testability guide for an engineer who wants to learn the
latest advances in DFT for soft error protection, logic built-in self-test (BIST) for at-speed
testing, DRAM BIST, test compression, MEMS testing, FPGA testing, RF testing, etc.

Michel Renovell, Laboratoire d’Informatique, de Robotique et de Microélectronique de
Montpellier (LIRMM), Montpellier, France

This book combines in a unique way insight into industry practices commonly found in
commercial DFT tools but not discussed in textbooks, and a sound treatment of the technical
fundamentals. The comprehensive review of future test technology trends, including self-
repair, soft error protection, MEMS testing, and RF testing, leads students and researchers
to advanced DFT research.

Hans-Joachim Wunderlich, University of Stuttgart, Germany

Recent advances in semiconductor manufacturing have made design for testability (DFT)
an essential part of nanometer designs. The lack of an up-to-date DFT textbook that covers
the most recent DFT techniques, such as at-speed scan testing, logic built-in self-test (BIST),
test compression, memory built-in self-repair (BISR), and future test technology trends, has
created problems for students, instructors, researchers, and practitioners who need to master
modern DFT technologies. I am pleased to find a DFT textbook of this comprehensiveness
that can serve both academic and professional needs.

Andre Ivanov, University of British Columbia, Canada

This is the most recent book covering all aspects of digital systems testing. It is a “must read”
for anyone focused on learning modern test issues, test research, and test practices.

Kewal K. Saluja, University of Wisconsin-Madison

Design for testability (DFT) can no longer be considered as a graduate-level course. With
growing design starts worldwide, DFT must be also part of the undergraduate curricu-
lum. The book’s focus on VLSI test principles and DFT architectures, while deemphasizing
test algorithms, is an ideal choice for undergraduate education. In addition, system-on-
chip (SOC) testing is one among the most important technologies for the development of
ultra-large-scale integration (ULSI) devices in the 21st century. By covering the basic DFT
theory and methodology on digital, memory, as well as analog and mixed-signal (AMS) test-
ing, this book further stands out as one best reference book that equips practitioners with
testable SOC design skills.

Yihe Sun, Tsinghua University, Beijing, China
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PREFACE

Beginning with the introduction of commercial manufacturing of integrated circuits
(ICs) in the early 1960s, modern electronics testing has a history of more than 40
years. The integrated circuit was developed in 1958, concurrently at Texas Instru-
ments (TI) and Fairchild Semiconductor. Today, semiconductors lie at the heart of
ongoing advances across the electronics industry. The industry enjoyed a banner
year in 2005, with almost $230 billion in sales worldwide.
The introduction of new technologies, especially nanometer technologies with

90nm or smaller geometry, has allowed the semiconductor industry to keep pace
with increased performance-capacity demands from consumers. This has bright-
ened the prospects for future industry growth; however, new technologies come
with new challenges. Semiconductor test costs have been growing steadily. Test
costs can now amount to 40% of overall product cost. In addition, product quality
and yield could drop significantly if these chips are not designed for testability and
thoroughly tested.
New problems encountered in semiconductor testing are being recognized

quickly today. Because very-large-scale integration (VLSI) technologies drive test
technologies, more effective test technologies are key to success in today’s compet-
itive marketplace. It is recognized that, in order to tackle the problems associated
with testing semiconductor devices, it is necessary to attack them at earlier design
stages. The field of design for testability (DFT) is a mature one today. Test cost
can be significantly reduced by inserting DFT in earlier design stages; thus, it is
important to expose students and practitioners to the most recent, yet fundamen-
tal, VLSI test principles and DFT architectures in an effort to help them design
better quality products now and in the future that can be reliably manufactured in
quantity.
In this context, it is important to make sure that undergraduates and practition-

ers, in addition to graduate students and researchers, are introduced to the variety
of problems encountered in semiconductor testing and that they are made aware
of the new methods being developed to solve these problems at earlier stages of
design. A very important factor in doing so is to ensure that introductory textbooks
for semiconductor testing are kept up to date with the latest process, design, and
test technology advances.
This textbook is being made available with this goal in mind. It is a fundamental

yet comprehensive guide to new DFT methods that will show readers how to design
a testable and quality product, drive down test cost, improve product quality and
yield, and speed up time-to-market and time-to-volume. Intended users of the book
include undergraduates, engineers and engineering managers who have the need
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to know; it is not simply for graduate students and researchers. It focuses more on
basic VLSI test concepts, principles, and DFT architectures and includes the latest
advances that are in practice today, including at-speed scan testing, test compres-
sion, at-speed built-in self-test (BIST), memory built-in self-repair (BISR), and test
technology trends. These advanced subjects are key to system-on-chip (SOC) designs
in the nanometer age.
The semiconductor testing field is quite broad today, so the scope of this textbook

is also broad, with topics ranging from digital tomemory to AMS (analog andmixed-
signal) testing. This book will allow the readers to understand fundamental VLSI
test principles and DFT architectures and prepare them for tackling test problems
caused by advances in semiconductor manufacturing technology and complex SOC
designs in the nanometer era.
Each chapter of this book follows a specific template format. The subject matter

of the chapter is first introduced, with a historical perspective provided, if needed.
Then, related methods and algorithms are explained in sufficient detail while keep-
ing the level of intended users in mind. Examples are taken from the current
DFT tools, products, etc. Comprehensive reference sources are then provided. Each
chapter (except Chapter 12) ends with a variety of exercises for students to solve to
help them master the topic at hand.
Chapter 1 provides a comprehensive introduction to semiconductor testing. It

begins with a discussion of the importance of testing as a requisite for achieving
manufacturing quality of semiconductor devices and then identifies difficulties in
VLSI testing. After the author explains how testing can be viewed as a design moving
through different abstraction levels, a historical view of the development of VLSI
testing is presented.
Chapter 2 is devoted to introducing the basic concepts of design for testability

(DFT). Testability analysis to assess the testability of a logic circuit is discussed.
Ad hoc and structured approaches to ease testing are then presented, which leads
to scan design, a widely used DFT method in industry today. The remainder of
the chapter is then devoted to scan cell designs, scan architectures, scan design
rules, and scan synthesis and verification. Following a discussion of scan cost issues,
special-purpose scan designs suitable for delay testing, system debug, and soft error
protection, RTL DFT techniques are briefly introduced.
Chapter 3 and Chapter 4 are devoted to the familiar areas of logic/fault simulation

and automatic test pattern generation (ATPG), respectively. Care is taken to describe
methods and algorithms used in these two areas in an easy-to-grasp language while
maintaining the overall perspective of VLSI testing.
Chapter 5 is completely devoted to logic built-in self-test (BIST). After a brief

introduction, specificBIST design rules are presented.On-chip test pattern generation
and output response analysis are then explained. The chapter puts great emphasis
on documenting important on-chip test pattern generation techniques and logic
BIST architectures, as these subjects are not yet well researched. At-speed BIST
techniques, a key feature in this chapter, are then explained in detail. A design
practice example provided at the end of the chapter invites readers to design a logic
BIST system.
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Chapter 6 then jumps into the most important test cost aspect of testability inser-
tion into a scan design. How cost reduction can be achieved using test compression
is discussed in greater detail. Representative, commercially available compression
tools are introduced so readers (practitioners) can appreciate what is best suited to
their needs.
Chapter 7 delves into the topic of logic diagnosis. Techniques for combinational

logic diagnosis based on cause–effect analysis, effect–cause analysis, and chip-level
strategy are first described. Then, innovative techniques for scan chain diagnosis
and logic BIST diagnosis are explained in detail.
Chapter 8 and Chapter 9 cover the full spectrum of memory test and diagnosis

methods. In both chapters, after a description of basic memory test and diagnosis
concepts,memory BIST andmemory BISR architectures are then explained in detail.
Memory fault simulation, a unique topic, is also discussed in Chapter 8.
Chapter 10 covers boundary scan and core-based testing for board-level and

system-level testing. The IEEE 1149 standard addresses boundary-scan-based test-
ing; after a brief history, the boundary-scan standards (IEEE 1149.1 and 1149.6)
are discussed. The newly endorsed IEEE 1500 core-based testing standard is then
described.
Chapter 11 is devoted to analog and mixed-signal testing. Important analog cir-

cuit properties and their defect mechanisms and fault models are described first.
Methods for analog circuit testing are then explained. Mixed-signal circuit testing
is introduced by a discussion of ADC/DAC testing. The IEEE 1057 standard for dig-
itizing waveform recorders is then explained. A related standard, IEEE 1149.4, and
instructions for mixed-signal test buses are covered in detail. Special topics related
to ADC/DAC testing, including time-domain ADC testing and frequency-domain ADC
testing, are also touched on in this chapter.
Chapter 12 is devoted to test technology trends in the nanometer age. It presents

an international test technology roadmap to put these new trends in perspective
and predicts test technology needs in the coming 10 to 15 years, such as better
methods for delay testing, as well as coping with physical failures, soft errors, and
reliability issues. The emerging field of FPGA and MEMS testing is briefly touched
upon before the chapter jumps into other modern topics such as high-speed I/O
testing and RF testing.
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This book is designed to be used as a text for undergraduate and graduate students
in computer engineering, computer science, or electrical engineering. It is also
intended for use as a reference book for researchers and practitioners. The book
is self-contained, with most topics covered extensively from fundamental concepts
to current techniques used in research and industry. We assume that the students
have had basic courses in logic design, computer science, and probability theory.
Attempts are made to present algorithms, where possible, in an easily understood
format.
In order to encourage self-learning, readers are advised to check the Elsevier

companion Web site (www.books.elsevier.com/companions) to access up-to-date
software and presentation slides, including errata, if any. Professors will have addi-
tional privileges to assess the solutions directory for all exercises given in each
chapter by visiting www.textbooks.elsevier.com and registering a username and
password.

Laung-Terng (L.-T.) Wang
Cheng-Wen Wu
Xiaoqing Wen
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ABOUT THIS CHAPTER

The introduction of integrated circuits (ICs), commonly referred to as microchips
or simply chips, was accompanied by the need to test these devices. Small-scale
integration (SSI) devices, with tens of transistors in the early 1960s, and medium-
scale integration (MSI) devices, with hundreds of transistors in the late 1960s,
were relatively simple to test. However, in the 1970s, large-scale integration (LSI)
devices, with thousands and tens of thousands of transistors, created a number of
challenges when testing these devices. In the early 1980s, very-large-scale integra-
tion (VLSI) devices with hundreds of thousands of transistors were introduced.
Steady advances in VLSI technology have resulted in devices with hundreds of
millions of transistors and many new testing challenges. This chapter provides an
overview of various aspects of VLSI testing and introduces fundamental concepts
necessary for studying and comprehending this book.

1.1 IMPORTANCE OF TESTING

Following the so-called Moore’s law [Moore 1965], the scale of ICs has doubled
every 18 months. A simple example of this trend is the progression from SSI to VLSI
devices. In the 1980s, the term “VLSI” was used for chips having more than 100,000
transistors and has continued to be used over time to refer to chips with millions
and now hundreds of millions of transistors. In 1986, the first megabit random-
access memory (RAM) contained more than 1 million transistors. Microprocessors
produced in 1994 contained more than 3 million transistors [Arthistory 2005]. VLSI
devices with many millions of transistors are commonly used in today’s computers
and electronic appliances. This is a direct result of the steadily decreasing dimen-
sions, referred to as feature size, of the transistors and interconnecting wires from
tens of microns to tens of nanometers, with current submicron technologies based
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on a feature size of less than 100 nanometers (100nm). The reduction in feature size
has also resulted in increased operating frequencies and clock speeds; for example,
in 1971, the first microprocessor ran at a clock frequency of 108KHz, while current
commercially available microprocessors commonly run at several gigahertz.
The reduction in feature size increases the probability that a manufacturing

defect in the IC will result in a faulty chip. A very small defect can easily result in a
faulty transistor or interconnecting wire when the feature size is less than 100nm.
Furthermore, it takes only one faulty transistor or wire to make the entire chip fail
to function properly or at the required operating frequency. Yet, defects created
during the manufacturing process are unavoidable, and, as a result, some number
of ICs is expected to be faulty; therefore, testing is required to guarantee fault-
free products, regardless of whether the product is a VLSI device or an electronic
system composed of many VLSI devices. It is also necessary to test components at
various stages during the manufacturing process. For example, in order to produce
an electronic system, we must produce ICs, use these ICs to assemble printed
circuit boards (PCBs), and then use the PCBs to assemble the system. There is
general agreement with the rule of ten, which says that the cost of detecting a
faulty IC increases by an order of magnitude as we move through each stage of
manufacturing, from device level to board level to system level and finally to system
operation in the field.
Electronic testing includes IC testing, PCB testing, and system testing at the

various manufacturing stages and, in some cases, during system operation. Testing
is used not only to find the fault-free devices, PCBs, and systems but also to improve
production yield at the various stages of manufacturing by analyzing the cause of
defects when faults are encountered. In some systems, periodic testing is performed
to ensure fault-free system operation and to initiate repair procedures when faults
are detected. Hence, VLSI testing is important to designers, product engineers, test
engineers, managers, manufacturers, and end-users [Jha 2003].

1.2 TESTING DURING THE VLSI LIFECYCLE

Testing typically consists of applying a set of test stimuli to the inputs of the circuit
under test (CUT) while analyzing the output responses, as illustrated in Figure 1.1
Circuits that produce the correct output responses for all input stimuli pass the
test and are considered to be fault-free. Those circuits that fail to produce a correct
response at any point during the test sequence are assumed to be faulty. Testing is

Pass/FailCircuit
Under

Test (CUT)

Input
Test

Stimuli

Output
Response
Analysis

Output1

Outputm

Input1

Inputn

� FIGURE 1.1

Basic testing approach.
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performed at various stages in the lifecycle of a VLSI device, including during the
VLSI development process, the electronic system manufacturing process, and, in
some cases, system-level operation. In this section, we examine these various types
of testing, beginning with the VLSI development process.

1.2.1 VLSI Development Process
The VLSI development process is illustrated in Figure 1.2, where it can be seen that
some form of testing is involved at each stage of the process. Based on a customer or
project need, a VLSI device requirement is determined and formulated as a design
specification. Designers are then responsible for synthesizing a circuit that satisfies
the design specification and for verifying the design. Design verification is a pre-
dictive analysis that ensures that the synthesized design will perform the required
functions when manufactured. When a design error is found, modifications to the
design are necessary and design verification must be repeated. As a result, design
verification can be considered as a form of testing.
Once verified, the VLSI design then goes to fabrication. At the same time, test

engineers develop a test procedure based on the design specification and fault mod-
els associated with the implementation technology. A defect is a flaw or physical
imperfection that may lead to a fault. Due to unavoidable statistical flaws in the
materials andmasks used to fabricate ICs, it is impossible for 100% of any particular
kind of IC to be defect-free. Thus, the first testing performed during the manu-
facturing process is to test the ICs fabricated on the wafer in order to determine
which devices are defective. The chips that pass the wafer-level test are extracted
and packaged. The packaged devices are retested to eliminate those devices that
may have been damaged during the packaging process or put into defective pack-
ages. Additional testing is used to assure the final quality before going to market.
This final testing includes measurement of such parameters as input/output timing

Design Verification

Wafer Test

Final Testing

Package Test

Design Specification

Design

Fabrication

Quality Assurance

Packaging

� FIGURE 1.2

VLSI development process.
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specifications, voltage, and current. In addition, burn-in or stress testing is often
performed where chips are subjected to high temperatures and supply voltage. The
purpose of burn-in testing is to accelerate the effect of defects that could lead to
failures in the early stages of operation of the IC. Failure mode analysis (FMA) is
typically used at all stages of IC manufacturing testing to identify improvements
to processes that will result in an increase in the number of defect-free devices
produced.
Design verification and yield are not only important aspects of the VLSI develop-

ment process but are also important in VLSI testing. The following two subsections
provide more detail on verification and yield, while their relationship to and impact
on testing are discussed throughout this chapter.

1.2.1.1 Design Verification

A VLSI design can be described at different levels of abstraction, as illustrated in
Figure 1.3. The design process is essentially a process of transforming a higher
level description of a design to a lower level description. Starting from a design
specification, a behavioral (architecture) level description is developed in very high
speed integrated circuit hardware description language (VHDL) or Verilog or as
a C program and simulated to determine if it is functionally equivalent to the spec-
ification. The design is then described at the register-transfer level (RTL), which
contains more structural information in terms of the sequential and combinational
logic functions to be performed in the data paths and control circuits. The RTL
description must be verified with respect to the functionality of the behavioral
description before proceeding with synthesis to the logical level.
A logical-level implementation is automatically synthesized from the RTL descrip-

tion to produce the gate-level design of the circuit. The logical-level implementation
should be verified in as much detail as possible to guarantee the correct func-
tionality of the final design. In the final step, the logical-level description must be
transformed to a physical-level description in order to obtain the physical place-
ment and interconnection of the transistors in the VLSI device prior to fabrication.

Design Specification

Behavioral (Architecture) Level

Register-Transfer Level

Logical (Gate) Level

Physical (Transistor) Level

� FIGURE 1.3

Design hierarchy.
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This physical-level description is used to verify that the final design will meet timing
and operating frequency specifications.
There are many tools available to assist in the design verification process includ-

ing computer-aided design (CAD) synthesis and simulation tools, hardware emu-
lation, and formal verification methods; however, design verification takes time,
and insufficient verification fails to detect design errors. As a result, design verifi-
cation is economically significant as it has a definite impact on time-to-market. It
is interesting to note that many design verification techniques are borrowed from
test technology because verifying a design is similar to testing a physical product.
Furthermore, the test stimuli developed for design verification of the RTL, logical,
and physical levels of abstraction are often used, in conjunction with the associ-
ated output responses obtained from simulation, to test the VLSI device during the
manufacturing process.

1.2.1.2 Yield and Reject Rate

Some percentage of the manufactured ICs is expected to be faulty due to manufac-
turing defects. The yield of a manufacturing process is defined as the percentage
of acceptable parts among all parts that are fabricated:

Yield= Number of acceptable parts

Total number of parts fabricated

There are two types of yield loss: catastrophic and parametric. Catastrophic yield
loss is due to random defects, and parametric yield loss is due to process variations.
Automation of and improvements in a VLSI fabrication process line drastically
reduce the particle density that creates random defects over time; consequently,
parametric variations due to process fluctuations become the dominant reason for
yield loss.
When ICs are tested, the following two undesirable situations may occur:

1. A faulty device appears to be a good part passing the test.

2. A good device fails the test and appears as faulty.

These two outcomes are often due to a poorly designed test or the lack of design for
testability (DFT). As a result of the first case, even if all products pass acceptance
test, some faulty devices will still be found in the manufactured electronic system.
When these faulty devices are returned to the IC manufacturer, they undergo FMA
for possible improvements to the VLSI development and manufacturing processes.
The ratio of field-rejected parts to all parts passing quality assurance testing is
referred to as the reject rate, also called the defect level:

Reject rate= Number of faulty parts passing final test

Total number of parts passing final test

The reject rate provides an indication of the overall quality of the VLSI testing
process [Bushnell 2000]. Generally speaking, a reject rate of 500 parts per million
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(PPM) chips may be considered to be acceptable, while 100PPM or lower represents
high quality. The goal of six sigma manufacturing, also referred to as zero defects,
is 3.4 PPM or less.

1.2.2 Electronic System Manufacturing Process
An electronic system generally consists of one or more units comprised of PCBs on
which one or more VLSI devices are mounted. The steps required to manufacture
an electronic system, illustrated in Figure 1.4, are also susceptible to defects. As
a result, testing is required at these various stages to verify that the final product
is fault-free. The PCB fabrication process is a photolithographic process similar in
some ways to the VLSI fabrication process. The bare PCBs are tested in order to
discard defective boards prior to assembly with expensive VLSI components. After
assembly, including placement of components and wave soldering, the PCB is tested
again; however, this time the PCB test includes testing of the various components,
including VLSI devices, mounted on the PCB to verify that the components are
properly mounted and have not been damaged during the PCB assembly process.
Tested PCBs are assembled in units and systems that are tested before shipment
for field operation, but unit- and system-level testing typically may not utilize the
same tests as those used for the PCBs and VLSI devices.

1.2.3 System-Level Operation
When a manufactured electronic system is shipped to the field, it may undergo
testing as part of the installation process to ensure that the system is fault-free before
placing the system into operation. During system operation, a number of events can
result in a system failure; these events include single-bit upsets, electromigration,
andmaterial aging. Suppose the state of system operation is represented as S, where
S = 0 means the system operates normally and S = 1 represents a system failure.
Then S is a function of time t, as shown in Figure 1.5.

PCB Fabrication Bare Board Test

PCB Assembly Board Test

System Assembly System Test

Unit Assembly Unit Test

� FIGURE 1.4

Manufacturing process.
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� FIGURE 1.5

System operation and repair.

Suppose the system is in normal operation at t = 0, it fails at t1, and the nor-
mal system operation is recovered at t2 by some software modification, reset, or
hardware replacement. Similar failure and repair events happen at t3 and t4. The
duration of normal system operation (Tn), for intervals such as t1− t0 and t3− t2, is
generally assumed to be a random number that is exponentially distributed. This
is known as the exponential failure law. Hence, the probability that a system will
operate normally until time t, referred to as reliability, is given by:

P�Tn > t�= e−�t

where � is the failure rate. Because a system is composed of a number of com-
ponents, the overall failure rate for the system is the sum of the individual failure
rates (�i) for each of the k components:

�=
k∑

i=0

�i

The mean time between failures (MTBF) is given by:

MTBF =
�∫

0

e−�tdt= 1

�

Similarly, the repair time (R) is also assumed to obey an exponential distribution
and is given by:

P�R > t�= e−�t

where � is the repair rate. Hence, the mean time to repair (MTTR) is given by:

MTTR= 1

�

The fraction of time that a system is operating normally (failure-free) is the system
availability and is given by:

System availability= MTBF

MTBF+MTTR
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This formula is widely used in reliability engineering; for example, telephone sys-
tems are required to have system availability of 0.9999 (simply called four nines),
while high-reliability systems may require seven nines or more.
Testing is required to ensure system availability. This testing may be in the form

of online testing or offline testing, or a combination of both. Online testing is
performed concurrently with normal system operation in order to detect failures
as quickly as possible. Offline testing requires that the system, or a portion of the
system, be taken out of service in order to perform the test. As a result, offline testing
is performed periodically, usually during low-demand periods of system operation.
In many cases, when online testing detects a failure, offline test techniques are
then used for diagnosis (location and identification) of the failing replaceable
component to improve the subsequent repair time. When the system has been
repaired, the system, or portion thereof, is retested using offline techniques to verify
that the repair was successful prior to placing the system back in service for normal
operation.
The faulty components (PCBs, in most cases) replaced during the system repair

procedure are sometimes sent to the manufacturing facility or a repair facility for
further testing. This typically consists of board-level tests, similar to the board-level
test used to test the manufactured PCBs. The goal in this case is to determine the
location of the faulty VLSI devices on the PCB for replacement and repair. The PCB
is then retested to verify successful repair prior to shipment back to the field for use
as a replacement component for future system repairs. It should be noted that this
PCB test, diagnosis, and repair scenario is viable only when it is cost effective, as
might be the case with expensive PCBs. The important point to note is that testing
goes on long after the VLSI development process and is performed throughout the
life cycle of many VLSI devices.

1.3 CHALLENGES IN VLSI TESTING

The physical implementation of a VLSI device is very complicated. Figure 1.6 illus-
trates the microscopic world of the physical structure of an IC with six levels of
interconnections and effective transistor channel length of 0�12�m [Geppert 1998].
Any small piece of dust or abnormality of geometrical shape can result in a defect.
Defects are caused by process variations or random localized manufacturing imper-
fections. Process variations affecting transistor channel length, transistor threshold
voltage, metal interconnect width and thickness, and intermetal layer dielectric
thickness will impact logical and timing performance. Random localized imperfec-
tions can result in resistive bridging between metal lines, resistive opens in metal
lines, improper via formation, etc.
Recent advances in physics, chemistry, and materials science have allowed pro-

duction of nanometer-scale structures using sophisticated fabrication techniques. It
is widely recognized that nanometer-scale devices will have much higher manufac-
turing defect rates compared to conventional complementary metal oxide semicon-
ductor (CMOS) devices. They will have much lower current drive capabilities and
will be much more sensitive to noise-induced errors such as crosstalk. They will
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� FIGURE 1.6

IBM CMOS integrated circuit with six levels of interconnections and effective transistor channel length
of 0�12�m [Geppert 1998].

be more susceptible to failures of transistors and wires due to soft (cosmic) errors,
process variations, electromigration, and material aging. As the integration scale
increases, more transistors can be fabricated on a single chip, thus reducing the
cost per transistor; however, the difficulty of testing each transistor increases due
to the increased complexity of the VLSI device and increased potential for defects,
as well as the difficulty of detecting the faults produced by those defects. This
trend is further accentuated by the competitive price pressures of the high-volume
consumer market, as well as by the emergence of system-on-chip (SOC) imple-
mentations; mixed-signal circuits and systems, including radiofrequency (RF); and
microelectromechanical systems (MEMSs).

1.3.1 Test Generation
A fault is a representation of a defect reflecting a physical condition that causes
a circuit to fail to perform in a required manner. A failure is a deviation in the
performance of a circuit or system from its specified behavior and represents an
irreversible state of a component such that it must be repaired in order for it
to provide its intended design function. A circuit error is a wrong output signal
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produced by a defective circuit. A circuit defect may lead to a fault, a fault can
cause a circuit error, and a circuit error can result in a system failure.
To test a circuit with n inputs and m outputs, a set of input patterns is applied

to the circuit under test (CUT), and its responses are compared to the known
good responses of a fault-free circuit. Each input pattern is called a test vector.
In order to completely test a circuit, many test patterns are required; however, it
is difficult to know how many test vectors are needed to guarantee a satisfactory
reject rate. If the CUT is an n-input combinational logic circuit, we can apply all 2n

possible input patterns for testing stuck-at faults; this approach is called exhaustive
testing. If a circuit passes exhaustive testing, we might assume that the circuit does
not contain functional faults, regardless of its internal structure. Unfortunately,
exhaustive testing is not practical when n is large. Furthermore, applying all 2n

possible input patterns to an n-input sequential logic circuit will not guarantee
that all possible states have been visited. However, this example of applying all
possible input test patterns to an n-input combinational logic circuit also illustrates
the basic idea of functional testing, where every entry in the truth table for the
combinational logic circuit is tested to determine whether it produces the correct
response. In practice, functional testing is considered by many designers and test
engineers to be testing the CUT as thoroughly as possible in a system-like mode of
operation. In either case, one problem is the lack of a quantitative measure of the
defects that will be detected by the set of functional test vectors.
A more practical approach is to select specific test patterns based on circuit

structural information and a set of fault models. This approach is called structural
testing. Structural testing saves time and improves test efficiency, as the total
number of test patterns is decreased because the test vectors target specific faults
that would result from defects in themanufactured circuit. Structural testing cannot
guarantee detection of all possible manufacturing defects, as the test vectors are
generated based on specific fault models; however, the use of fault models does
provide a quantitative measure of the fault-detection capabilities of a given set of
test vectors for a targeted fault model. This measure is called fault coverage and
is defined as:

Fault coverage= Number of detected faults

Total number of faults

It may be impossible to obtain a fault coverage of 100% because of the existence
of undetectable faults. An undetectable fault means there is no test to distinguish
the fault-free circuit from a faulty circuit containing that fault. As a result, the fault
coverage can be modified and expressed as the fault detection efficiency, also
referred to as the effective fault coverage, which is defined as:

Fault detection effeciency= Number of detected faults

Total number of faults−number of undetectable faults

In order to calculate fault detection efficiency, let alone reach 100% fault coverage,
all of the undetectable faults in the circuit must be correctly identified, which is
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usually a difficult task. Fault coverage is linked to the yield and the defect level by
the following expression [Williams 1981]:

Defect level = 1−yield�1−fault coverage�

From this equation, we can show that a PCB with 40 chips, each having 90% fault
coverage and 90% yield, could result in a reject rate of 41.9%, or 419,000PPM. As
a result, improving fault coverage can be easier and less expensive than improving
manufacturing yield because making yield enhancements can be costly; therefore,
generating test stimuli with high fault coverage is very important.
Any input pattern, or sequence of input patterns, that produces a different output

response in a faulty circuit from that of the fault-free circuit is a test vector, or
sequence of test vectors, that will detect the faults. The goal of test generation is to
find an efficient set of test vectors that detects all faults considered for that circuit.
Because a given set of test vectors is usually capable of detecting many faults in a
circuit, fault simulation is typically used to evaluate the fault coverage obtained
by that set of test vectors. As a result, fault models are needed for fault simulation
as well as for test generation.

1.3.2 Fault Models
Because of the diversity of VLSI defects, it is difficult to generate tests for real
defects. Fault models are necessary for generating and evaluating a set of test
vectors. Generally, a good fault model should satisfy two criteria: (1) It should
accurately reflect the behavior of defects, and (2) it should be computationally
efficient in terms of fault simulation and test pattern generation. Many fault models
have been proposed [Abramovici 1994], but, unfortunately, no single fault model
accurately reflects the behavior of all possible defects that can occur. As a result, a
combination of different fault models is often used in the generation and evaluation
of test vectors and testing approaches developed for VLSI devices.
For a given fault model there will be k different types of faults that can occur at

each potential fault site (k = 2 for most fault models). A given circuit contains n
possible fault sites, depending on the fault model. Assuming that there can be only
one fault in the circuit, then the total number of possible single faults, referred to
as the single-fault model or single-fault assumption, is given by:

Number of single faults= k×n

In reality of course, multiple faults may occur in the circuit. The total number of
possible combinations of multiple faults, referred to as the multiple-fault model,
is given by:

Number of multiple faults= �k+1�n−1

In the multiple-fault model, each fault site can have one of k possible faults or be
fault-free, hence the (k+1) term. Note that the latter term in the expression (the
“−1”) represents the fault-free circuit, where all n fault sites are fault-free. While the
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multiple-fault model is more accurate than the single-fault assumption, the number
of possible faults becomes impractically large other than for a small number of
fault types and fault sites. Fortunately, it has been shown that high fault coverage
obtained under the single-fault assumption will result in high fault coverage for
the multiple-fault model [Bushnell 2000]; therefore, the single-fault assumption is
typically used for test generation and evaluation.
Under the single-fault assumption, two or more faults may result in identical

faulty behavior for all possible input patterns. These faults are called equivalent
faults and can be represented by any single fault from the set of equivalent faults.
As a result, the number of single faults to be considered for test generation for
a given circuit is usually much less than k×n. This reduction of the entire set
of single faults by removing equivalent faults is referred to as fault collapsing.
Fault collapsing helps to reduce both test generation and fault simulation times. In
the following subsections, we review some well-known and commonly used fault
models.

1.3.2.1 Stuck-At Faults

The stuck-at fault is a logical fault model that has been used successfully for decades.
A stuck-at fault affects the state of logic signals on lines in a logic circuit, including
primary inputs (PIs), primary outputs (POs), internal gate inputs and outputs,
fanout stems (sources), and fanout branches. A stuck-at fault transforms the correct
value on the faulty signal line to appear to be stuck at a constant logic value, either a
logic 0 or a logic 1, referred to as stuck-at-0 (SA0) or stuck-at-1 (SA1), respectively.

Consider the example circuit shown in Figure 1.7, where the nine signal lines
representing potential fault sites are labeled alphabetically. There are 18 (2× 9)
possible faulty circuits under the single-fault assumption. Table 1.1 gives the truth
tables for the fault-free circuit and the faulty circuits for all possible single stuck-at
faults. It should be noted that, rather than a direct short to a logic 0 or logic 1
value, the stuck-at fault is emulated by disconnection of the source for the signal
and connection to a constant logic 0 or 1 value. This can be seen in Table 1.1, where
SA0 on fanout branch line d behaves differently from SA0 on fanout branch line
e, while the single SA0 fault on the fanout source line b behaves as if both fanout
branches line d and line e are SA0.

x1
x2

x3

y  

a 
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d

e f

g

h

i

� FIGURE 1.7

Example circuit.
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TABLE 1.1 � Truth Tables for Fault-Free and Faulty Circuits of
Figure 1.7

x1x2x3 000 001 010 011 100 101 110 111

y 0 1 0 0 0 1 1 1

a SA0 0 1 0 0 0 1 0 0

a SA1 0 1 1 1 0 1 1 1

b SA0 0 1 0 1 0 1 0 1

b SA1 0 0 0 0 1 1 1 1

c SA0 0 0 0 0 0 0 1 1

c SA1 1 1 0 0 1 1 1 1

d SA0 0 1 0 0 0 1 0 0

d SA1 0 1 0 0 1 1 1 1

e SA0 0 1 0 1 0 1 1 1

e SA1 0 0 0 0 0 0 1 1

f SA0 0 0 0 0 0 0 1 1

f SA1 0 1 0 1 0 1 1 1

g SA0 0 1 0 0 0 1 0 0

g SA1 1 1 1 1 1 1 1 1

h SA0 0 0 0 0 0 0 1 1

h SA1 1 1 1 1 1 1 1 1

i SA0 0 0 0 0 0 0 0 0

i SA1 1 1 1 1 1 1 1 1

The truth table entries where the faulty circuit produces an output response
different from that of the fault-free circuit are highlighted in gray. As a result, the
input values for the highlighted truth table entries represent valid test vectors to
detect the associated stuck-at faults. With the exception of line d SA1, line e SA0,
and line f SA1, all other faults can be detected with two or more test vectors;
therefore, test vectors 011 and 100 must be included in any set of test vectors that
will obtain 100% fault coverage for this circuit. These two test vectors detect a total
of ten faults, and the remaining eight faults can be detected with test vectors 001
and 110; therefore, this set of four test vectors obtains 100% single stuck-at fault
coverage for this circuit.
Four sets of equivalent faults can be observed in Table 1.1. One fault from each

set can be used to represent all of the equivalent faults in that set. Because there
is a total of ten unique faulty responses to the complete set of input test patterns,
then ten faults constitute the set of collapsed faults for the circuit. Stuck-at fault
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collapsing typically reduces the total number of faults by 50 to 60% [Bushnell
2000]. Fault collapsing for stuck-at faults is based on the fact that a SA0 at the input
to an AND (NAND) gate is equivalent to the SA0 (SA1) at the output of the gate.
Similarly, a SA1 at the input to an OR (NOR) gate is equivalent to the SA1 (SA0)
at the output of the gate. For an inverter, a SA0 (SA1) at the input is equivalent
to the SA1 (SA0) at the output of the inverter. Furthermore, a stuck-at fault at the
source (output of the driving gate) of a fanout-free net is equivalent to the same
stuck-at fault at the destination (gate input being driven). Therefore, the number of
collapsed stuck-at faults in any combinational circuit constructed from elementary
logic gates (AND, OR, NAND, NOR, and inverter) is given by:

Number of collapsed faults= 2× �number of POs+number of fanout stems�
+ total number of gate �including inverter� inputs
− total number of inverters

The example circuit in Figure 1.7 has one primary output and one fanout stem. The
total number of gate inputs is 7, including the input to the one inverter; therefore,
the number of collapsed faults = 2× �1+ 1�+ 7− 1 = 10. Note that single-input
gates, including buffers, are treated the same as an inverter in the calculation of the
number of collapsed faults because all faults at the input of the gate are equivalent
to faults at the output.
A number of interesting properties are associated with detecting stuck-at faults

in combinational logic circuits; for example, two such properties are described by
the following theorems [Abramovici 1994]:

Theorem 1.1

A set of test vectors that detects all single stuck-at faults on all primary inputs of a
fanout-free combinational logic circuit will detect all single stuck-at faults in that
circuit.

Theorem 1.2

A set of test vectors that detect all single stuck-at faults on all primary inputs and
all fanout branches of a combinational logic circuit will detect all single stuck-at
faults in that circuit.

The stuck-at fault model can also be applied to sequential circuits; however, high
fault coverage test generation for sequential circuits is much more difficult than
for combinational circuits because, for most faults in a sequential logic circuit, it
is necessary to generate sequences of test vectors. Therefore, DFT techniques are
frequently used to ease sequential circuit test generation.
Although it is physically possible for a line to be SA0 or SA1, many other defects

within a circuit can also be detected with test vectors developed to detect stuck-at
faults. The idea of N-detect single stuck-at fault test vectors was proposed to detect
more defects not covered by the stuck-at fault model [Ma 1995]. In an N-detect
set of test vectors, each single stuck-at fault is detected by at least N different
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test vectors; however, test vectors generated using the stuck-at fault model do not
necessarily guarantee the detection of all possible defects, so other fault models are
needed.

1.3.2.2 Transistor Faults

At the switch level, a transistor can be stuck-open or stuck-short, also referred to
as stuck-off or stuck-on, respectively. The stuck-at fault model cannot accurately
reflect the behavior of stuck-open and stuck-short faults in CMOS logic circuits
because of the multiple transistors used to construct CMOS logic gates. To illustrate
this point, consider the two-input CMOS NOR gate shown in Figure 1.8. Suppose
transistor N2 is stuck-open. When the input vector AB = 01 is applied, output Z
should be a logic 0, but the stuck-open fault causes Z to be isolated from ground
(VSS). Because transistors P2 and N1 are not conducting at this time, Z keeps its
previous state, either a logic 0 or 1. In order to detect this fault, an ordered sequence
of two test vectors AB= 00→ 01 is required. For the fault-free circuit, the input 00
produces Z = 1 and 01 produces Z = 0 such that a falling transition at Z appears.
But, for the faulty circuit, while the test vector 00 produces Z = 1, the subsequent
test vector 01 will retain Z = 1 without a falling transition such that the faulty
circuit behaves like a level-sensitive latch. Thus, a stuck-open fault in a CMOS
combinational circuit requires a sequence of two vectors for detection rather than
a single test vector for a stuck-at fault.
Stuck-short faults, on the other hand, will produce a conducting path between

VDD and VSS. For example, if transistor N2 is stuck-short, there will be a conducting
path between VDD and VSS for the test vector 00. This creates a voltage divider at
the output node Z where the logic level voltage will be a function of the resistances
of the conducting transistors. This voltage may or may not be interpreted as an
incorrect logic level by the gate inputs driven by the gate with the transistor fault;
however, stuck-short transistor faults may be detected by monitoring the power
supply current during steady state, referred to as IDDQ. This technique of monitor-
ing the steady-state power supply current to detect transistor stuck-short faults is
referred to as IDDQ testing.

VDD

VSS

B

P1

P2

N2N1

A

Z

� FIGURE 1.8

Two-input CMOS NOR gate.
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The circuit in Figure 1.8 has a total of eight (2×4) possible single transistor faults;
however, there are equivalent faults at the transistor level, as stuck-open faults in
a group of series transistors (such as P1 and P2) are indistinguishable. The same
holds true for stuck-short faults in a group of parallel transistors (such as N1 and
N2); therefore, fault collapsing can be applied to transistor-level circuits [Stroud
2002]. The number of collapsed transistor faults in a circuit is given by:

Number of collapsed faults= 2×T−TS+GS−TP+GP

where T is the total number of transistors, TS is the total number of transistors in
series,GS is the total number of groups of transistors in series, TP is the total number
of transistors in parallel, and GP is the total number of groups of transistors in
parallel. For the two-input NOR gate of Figure 1.8, there are four transistors (T = 4),
two transistors (P1 and P2) in the only group of series transistors (TS= 2 andGS= 1),
and two transistors (N1 and N2) in the only group of parallel transistors (TP = 2 and
GP = 1); hence, the number of collapsed faults is 6. The fault equivalence associated
with the transistors can also be seen in Table 1.2, which gives the behavior of
the fault-free circuit and each of the 8 possible faulty circuits under the single-
fault assumption. Note that table entries labeled “last Z” indicate that the output
node will retain its previous value and would require a two-test vector sequence
for detection. Similarly, entries labeled “IDDQ” indicate that the output node logic
value will be a function of the voltage divider of the conducting transistors and can
be detected by IDDQ testing. Because both N1 and N2 stuck-short faults as well as
P1 and P2 stuck-open faults can be tested by the same test set, the collapsed fault
count is 6, as proven above.

1.3.2.3 Open and Short Faults

Defects in VLSI devices can include opens and shorts in the wires that interconnect
the transistors forming the circuit. Opens in wires tend to behave like transistor

TABLE 1.2 � Truth Tables for Fault-Free and Faulty
Circuits of Figure 1.8

AB 00 01 10 11

Z 1 0 0 0

N1 stuck-open 1 0 Last Z 0

N1 stuck-short IDDQ 0 0 0

N2 stuck-open 1 Last Z 0 0

N2 stuck-short IDDQ 0 0 0

P1 stuck-open Last Z 0 0 0

P1 stuck-short 1 0 IDDQ 0

P2 stuck-open Last Z 0 0 0

P2 stuck-short 1 IDDQ 0 0
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stuck-open faults when the faulty wire segment is interconnecting transistors to
form gates. On the other hand, opens tend to behave like stuck-at faults when
the faulty wire segment is interconnecting gates. Therefore, a set of test vectors
that provide high stuck-at fault coverage and high transistor fault coverage will
also detect open faults; however, a resistive open does not behave the same as a
transistor or stuck-at fault but instead affects the propagation delay of the signal
path, as will be discussed in the next subsection.
A short between two elements is commonly referred to as a bridging fault. These

elements can be transistor terminals or connections between transistors and gates.
The case of an element being shorted to power (VDD) or ground (VSS) is equivalent
to the stuck-at fault model; however, when two signal wires are shorted together,
bridging fault models are required. In the first bridging fault model proposed, the
logic value of the shorted nets was modeled as a logical AND or OR of the logic
values on the shorted wires. This model is referred to as the wired-AND/wired-OR
bridging fault model. The wired-AND bridging fault means the signal net formed
by the two shorted lines will take on a logic 0 if either shorted line is sourcing a
logic 0, while the wired-OR bridging fault means the signal net will take on a logic
1 if either of the two lines is sourcing a logic 1. Therefore, this type of bridging fault
can be modeled with an additional AND or OR gate, as illustrated in Figure 1.9a,
where AS and BS denote the sources for the two shorted signal nets and AD and BD
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Bridging fault models.
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TABLE 1.3 � Truth Tables for Bridging Fault Models of Figure 1.9

ASBS 0 0 0 1 1 0 1 1

ADBD 0 0 0 1 1 0 1 1

Wired-AND 0 0 0 0 0 0 1 1

Wired-OR 0 0 1 1 1 1 1 1

A dominates B 0 0 0 0 1 1 1 1

B dominates A 0 0 1 1 0 0 1 1

A dominant-AND B 0 0 0 0 1 0 1 1

B dominant-AND A 0 0 0 1 0 0 1 1

A dominant-OR B 0 0 0 1 1 1 1 1

B dominant-OR A 0 0 1 1 1 0 1 1

denote the destinations for the two nets. The truth tables for fault-free and faulty
behavior are given in Table 1.3.
The wired-AND/wired-OR bridging fault model was originally developed for bipo-

lar VLSI and does not accurately reflect the behavior of bridging faults typically
found in CMOS devices; therefore, the dominant bridging fault model was pro-
posed for CMOS VLSI where one driver is assumed to dominate the logic value on
the two shorted nets. Two fault types are normally evaluated per fault site, where
each driver is allowed to dominate the logic value on the shorted signal net (see
Figure 1.9b). The dominant bridging fault model is more difficult to detect because
the faulty behavior can only be observed on the dominated net, as opposed to both
nets in the case of the wired-AND/wired-OR bridging fault model. However, it has
been shown, and can be seen from the faulty behavior in Table 1.3, that a set of
test vectors that detects all dominant bridging faults is also guaranteed to detect all
wired-AND and wired-OR bridging faults.
The dominant bridging fault model does not accurately reflect the behavior of

a resistive short in some cases. A recent bridging fault model has been proposed
based on the behavior of resistive shorts observed in some CMOS VLSI devices
[Stroud 2000]. In this fault model, referred to as the dominant-AND/dominant-OR
bridging fault, one driver dominates the logic value of the shorted nets but only for
a given logic value (see Figure 1.9c). While there are four fault types to evaluate for
this fault model, as opposed to only two for the dominant and wired-AND/wired-
OR models, a set of test vectors that detect all four dominant-AND/dominant-OR
bridging faults will also detect all dominant and wired-AND/wired-OR bridging
faults at that fault site.
Bridging faults commonly occur in practice and can be detected by IDDQ testing.

It has also been shown that many bridging faults are detected by a set of test
vectors that obtains high stuck-at fault coverage, particularly with N-detect single
stuck-at fault test vectors. In the presence of a bridging fault, a combinational logic
circuit can have a feedback path and behave like a sequential logic circuit, making
the testing problem more complicated. Another complication in test generation for
bridging faults is the number of possible fault sites versus the number of realistic



Introduction 19

fault sites. While there are many signal nets in a VLSI circuit, it is impractical to
evaluate detection of bridging faults between any possible pair of nets; for example,
a circuit with N signal nets would have N-choose-2 = N× �N−1�/2 possible fault
sites, but a bridging fault between two nets on opposite sides of the device may
not be possible. One solution to this problem is to extract likely bridging fault sites
from the physical design after physical layout.

1.3.2.4 Delay Faults and Crosstalk

Fault-free operation of a logic circuit requires not only performing the logic function
correctly but also propagating the correct logic signals along paths within a specified
time limit. A delay fault causes excessive delay along a path such that the total
propagation delay falls outside the specified limit. Delay faults have become more
prevalent with decreasing feature sizes.
There are different delay fault models. In the gate-delay fault and the transition

fault models, a delay fault occurs when the time interval taken for a transition
from the gate input to its output exceeds its specified range. It should be noted that
simultaneous transitions at inputs of a gate may change the gate delay significantly
due to activation of multiple charge/discharge paths. The differences between the
gate-delay and transition fault models will be discussed inmore detail in Chapter 12.
The other model is path-delay fault, which considers the cumulative propagation
delay along a signal path through the CUT—in other words, the sum of all gate
delays along the path; therefore, the path-delay fault model is more practical for
testing than the gate-delay fault (or the transition fault) model. A critical problem
encountered when dealing with path-delay faults is the large number of possible
paths in practical circuits. This number, in the worst case, is exponential for the
number of lines in the circuit, and in most practical cases the number of paths in
a circuit makes it impossible to enumerate all path-delay faults for the purpose of
test generation or fault simulation.
As with transistor stuck-open faults, delay faults require an ordered pair of test

vectors to sensitize a path through the logic circuit and to create a transition along
that path in order to measure the path delay. For example, consider the circuit in
Figure 1.10, where the fault-free delay associated with each gate is denoted by the
integer value label on that gate. The two test vectors, v1 and v2, shown in the figure

0   0 x1
0   1 x2

v2 v1

1   1 
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� FIGURE 1.10

Path-delay fault test.
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are used to test the path delay from input x2, through the inverter and lower AND
gate, to the output y. Assuming the transition between the two test vectors occurs at
time t= 0, the resulting transition propagates through the circuit with the fault-free
delays shown at each node in the circuit such that we expect to see the transition
at the output y at time t= 7. A delay fault along this path would create a transition
at some later time, t > 7. Of course, this measurement could require a high-speed,
high-precision test machine.
With decreasing feature sizes and increasing signal speeds, the problem of mod-

eling gate delays becomes more difficult. As technologies approach the deep sub-
micron region, the portion of delay contributed by gates reduces while the delay
due to interconnect becomes dominant. This is because the interconnect lengths
do not scale in proportion to the shrinking area of transistors that make up the
gates. In addition, if the operating frequencies also increase with scaling, then the
on-chip inductances can play a role in determining the interconnect delay for long
wide wires, such as those in clock trees and buses. However, wire delays can be
taken into account in the path-delay fault model based on the physical layout, as
interconnections are included in paths. As a result, it is no longer true that a path
delay is equal to the sum of all delays of gates along the path.
The use of nanometer technologies increases cross-coupling capacitance and

inductance between interconnects, leading to severe crosstalk effects that may result
in improper functioning of a chip. Crosstalk effects can be separated to two cate-
gories: crosstalk glitches and crosstalk delays. A crosstalk glitch is a pulse that is
provoked by coupling effects among interconnect lines. The magnitude of the glitch
depends on the ratio of the coupling capacitance to the line-to-ground capacitance.
When a transition signal is applied on a line that has a strong driver while stable
signals are applied at other lines that have weaker drivers, the stable signals may
experience coupling noise due to the transition of the stronger signal. Crosstalk
delay is a signal delay that is provoked by the same coupling effects among inter-
connect lines, but it may be produced even if line drivers are balanced but have
large loads. Because crosstalk causes a delay in addition to normal gate and inter-
connect delay, it is difficult to estimate the true circuit delay, which may lead to
severe signal delay problems. Conventional delay fault analysis may be invalid if
these effects are not taken into consideration based on the physical layout. Several
design techniques, including physical design and analysis tools, are being devel-
oped to help design for margin and minimization of crosstalk problems; however, it
may be impossible to anticipate in advance the full range of process variations and
manufacturing defects that may significantly aggravate the cross-coupling effects.
Hence, there is a critical need to develop testing techniques for manufacturing
defects that produce crosstalk effects.

1.3.2.5 Pattern Sensitivity and Coupling Faults

Manufacturing defects can be of a wide variety and manifest themselves as faults
that are not covered by the specific fault models for digital circuits discussed thus
far. This is particularly true in the case of densely packed memories. In high-
density RAMs, the contents of a cell or the ability of a memory cell to change
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can be influenced by the contents of its neighboring cells, referred to as a pattern
sensitivity fault. A coupling fault results when a transition in one cell causes the
content of another cell to change. Therefore, it is necessary when testing memories
to add tests for pattern sensitivity and coupling faults in addition to stuck-at faults.
Extensive work has been done onmemory testing andmanymemory test algorithms
have been proposed [van de Goor 1991] [Bushnell 2000]. One of the most efficient
RAM test algorithms, in terms of test time and fault detection capability, currently
in use is the March LR algorithm illustrated in Table 1.4. This algorithm has a test
time on the order of 16N, whereN is the number of address locations, and is capable
of detecting pattern sensitivity faults, intra-word coupling faults, and bridging faults
in the RAM. For word-oriented memories, a background data sequence (BDS)
must be added to detect faults within each word of the memory. The March LR
with BDS shown in Table 1.4 is for a RAM with 2-bit words. In general, the number
of BDSs= log2�K�+1, where K is the number of bits per word.

1.3.2.6 Analog Fault Models

Analog circuits are constructed with passive and active components. Typical analog
fault models include shorts, opens, and parameter variations in both active and
passive components. Shorts and opens usually result in catastrophic faults that
are relatively easy to detect. Parameter variations that cause components to be out
of their tolerance ranges result in parametric faults. An active component can
suffer from both direct current (DC) faults and alternate current (AC) faults. Op
amps typically occupy a much larger silicon area in monolithic ICs than passive
components and, hence, are more prone to manufacturing defects. As is the case
with a catastrophic fault, a single parametric fault can result in a malfunctioning
analog circuit; however, it is difficult to identify critical parameters and to sup-
ply a model of process fluctuations. Furthermore, because of the complex nature
of analog circuits, a direct application of digital fault models, other than shorts
and opens, is inadequate in capturing faulty behavior in analog circuits. It is also
difficult to model all practical faults.

TABLE 1.4 � March LR RAM Test Algorithm

Test Algorithm March Test Sequence

March LR w/o BDS �(w0); ↓(r0, w1); ↑(r1, w0, r0, r0, w1);

↑(r1, w0); ↑(r0, w1, r1, r1, w0); ↑(r0)

March LR with BDS �(w00); ↓(r00, w11); ↑(r11, w00, r00, r00, w11);

↑(r11, w00); ↑(r00, w11, r11, r11, w00);

↑(r00, w01, w10, r10); ↑(r10, w01, r01); ↑(r01)

Notation: w0=write 0 (or all 0’s); r1= read 1 (or all 1’s); ↑= address up; ↓= address
down; �= address either way.
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1.4 LEVELS OF ABSTRACTION IN VLSI TESTING

In the design hierarchy, a higher level description has fewer implementation details
butmore explicit functional information than a lower level description. As described
in Section 1.2.1.1, the various levels of abstraction include behavioral (architecture),
register-transfer, logical (gate), and physical (transistor) levels. The hierarchical
design process lends itself to hierarchical test development, but the fault models
described in the previous section are more appropriate for particular levels of
abstraction. In this section, we discuss test generation and the use of fault models
at these various levels of abstraction.

1.4.1 Register-Transfer Level and Behavioral Level
The demand for CAD tools for the design of digital circuits at high levels of
abstraction has led to the development of synthesis and simulation technologies.
The methodology in common practice today is to design, simulate, and synthesize
application-specific integrated circuits (ASICs) of millions of gates at the RTL.
So-called “black boxes” or intellectual property (IP) cores are often incorporated
in VLSI design, especially in SOC design, for which there may be very little, if any,
structural information. Traditional automatic test pattern generation (ATPG) tools
cannot effectively handle designs employing blocks for which the implementation
detail is either unknown or subject to change; however, several approaches to test
pattern generation at the RTL have been proposed. Most of these approaches are
able to generate test patterns of good quality, sometimes comparable to gate-level
ATPG tools. It is the lack of general applicability that prevents these approaches
from being widely accepted. Although some experimental results have shown that
RTL fault coverage can be quite close to fault coverage achieved at the gate level
when designs are completed and mapped to a technology library, it is unrealistic
to expect that stuck-at fault coverage at the RTL will be as high as at the gate level
[Min 2002].
To illustrate the importance of knowledge of the gate-level implementation on

test generation, consider the two example circuits of Figure 1.11 which implement
the following logic function, where x represents a “don’t care” product term:

f = abc+abc+xabc

Because both circuits are valid implementations of the functional description,
the gate-level implementation is not unique for a given RTL description. As a
result, it may be difficult to generate tests at the RTL and achieve stuck-at fault
coverage as high as at the gate level, as the stuck-at fault model is defined at the
gate level. For example, if the “don’t care” product term is assigned a logic 0, we
obtain the logic equation along with resultant implementation and associated set
of test vectors to detect all stuck-at faults shown in Figure 1.11a. If the “don’t care”
term is assigned a logic 1, on the other hand, we obtain the logic equation, gate-
level implementation, and set of test vectors shown in Figure 1.11b. Note that the
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Example of different implementations and their test vectors.

set of test vectors for Figure 1.11b is a subset of those required for Figure 1.11a
and, as a result, would not detect the four SA1 faults shown in the gate-level
implementation of Figure 1.11a. This example can also be illustrated by considering
Theorems 1.1 and 1.2. If ATPG assumes that a combinational logic circuit will
be fanout free based on the functional description, it could produce test vectors
to detect stuck-at faults for all primary inputs based on Theorem 1.1. Yet, if the
synthesized circuit contains fanout stems, the set of test vectors produced by the
APTG may not detect stuck-at faults on all fanout branches and, as a result of
Theorem 1.2, may not detect all stuck-at faults in the circuit. Note that the four
SA1 faults in Figure 1.11a not detected by the test vectors in Figure 1.11b are
located on the additional fanout branches in Figure 1.11a. Therefore, if the ATPG
is based on the functional description, test vectors can be generated based on
assumptions that may not necessarily hold once the gate-level implementation is
synthesized. Regardless, it is desirable to move ATPG operations toward higher
levels of abstraction while targeting new types of faults in deep submicron devices.
Because the main advantages of high-level approaches are compact test sets and
reduced computation time, it is expected that this trend will continue.

1.4.2 Gate Level
For decades, traditional IC test generation has been at the gate level based on the
gate-level netlist. The stuck-at fault model can easily be applied for which many
ATPG and fault simulation tools are commercially available. Very often the stuck-
at fault model is also employed to evaluate the effectiveness of the input stimuli
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used for simulation-based design verification. As a result, the design verification
stimuli are often also used for fault detection during manufacturing testing. In
addition to the stuck-at fault model, delay fault models and delay testing have
been traditionally based on the gate-level description. While bridging faults can
be modeled at the gate level, practical selection of potential bridging fault sites
requires physical design information. The gate-level description has advantages of
functionality and tractability because it lies between the RTL and physical levels;
however, it is now widely believed that test development at the gate level is not
sufficient for deep submicron designs.

1.4.3 Switch Level
For standard cell-based VLSI implementations, transistor fault models (stuck-open
and stuck-short) can be applied and evaluated based on the gate-level netlist. When
the switch-level model for each gate in the netlist is substituted, we obtain an
accurate abstraction of the netlist used for physical layout. In addition, transmission
gate and tristate buffer faults can also be tested at the switch level. For example,
it may be necessary to place buffers in parallel for improved drive capabilities. In
most gate-level models, these buffers will appear as a single buffer, but it is possible
to model a fault on any of the multiple buffers at the switch level. Furthermore,
a defect-based test methodology can be more effective with a switch-level model
of the circuit as it contains more detailed structural information than a gate-level
abstraction and will yield a more accurate defect coverage analysis. Of course, the
switch-level description is more complicated than the gate-level description for both
ATPG and fault simulation.

1.4.4 Physical Level
The physical level of abstraction is the most important for VLSI testing because it
provides the actual layout and routing information for the fabricated device and,
hence, themost accurate information for delay faults, crosstalk effects, and bridging
faults. For deep submicron IC chips, in order to characterize electrical properties of
interconnections, a distributed resistance–inductance–capacitance (RLC) model
is based on the physical layout. This is then used to analyze and test for potential
crosstalk problems. Furthermore, interconnect delays can be incorporated for more
accurate delay fault analysis.
One solution to the problem of determining likely bridging fault sites is to extract

the capacitance between the wires from the physical design after layout and routing
[Maxwell 1994]. This provides an accurate determination of those wires that are
adjacent and, therefore, likely to sustain bridging faults. In addition, the value of
the capacitance between two adjacent wires is proportional to the distance between
the wires and/or the length of adjacency. As a result, fault sites with the highest
capacitance value can be targeted for test generation and evaluation as these sites
have a higher probability of incurring bridging faults.
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1.5 HISTORICAL REVIEW OF VLSI TEST TECHNOLOGY

VLSI testing includes two processes: test generation and test application. The goal
of test generation is to produce test patterns for efficient testing. Test application
is the process of applying those test patterns to the CUT and analyzing the output
responses. Test application is performed by either automatic test equipment (ATE)
or test facilities in the chip itself. This section gives a brief historical review of VLSI
test technology development.

1.5.1 Automatic Test Equipment
Automatic test equipment (ATE) is computer-controlled equipment used in the
production testing of ICs (both at the wafer level and in packaged devices) and
PCBs. Test patterns are applied to the CUT and the output responses are compared
to stored responses for the fault-free circuit. In the 1960s, when ICs were first
introduced, it was foreseen that testing would become a bottleneck to high-volume
production of ICs unless the tasks normally performed by technicians and labora-
tory instruments could be automated. An IC tester controlled by a minicomputer
was developed in the mid-1960s, and the ATE industry was established. Since then,
with advances in VLSI and computer technology, the ATE industry has developed
electronic subassemblies (PCBs and backplanes), test systems, digital IC testers,
analog testers, and SOC testers. A custom tester is often developed for testing a
particular product, but a general-purpose ATE is often more flexible and enhances
the productivity of high-volume manufacturing. Generally, ATE consists of the fol-
lowing parts:

1. Computer—A powerful computer is the heart of any ATE for central control
and for making the test and measurement flexible for different products and
different test purposes.

2. Pin electronics and fixtures—ATE architectures can be divided into two major
subcomponents, the data generator and the pin electronics. The data genera-
tor supplies the input test vectors for the CUT, while the pin electronics are
responsible for formatting these vectors to produce waveforms of the desired
shape and timing. The pin electronics are also responsible for sampling the
CUT output responses at the desired time. In order to actually touch the pads
of an IC on a wafer or the pins of a packaged chip during testing, it is neces-
sary to have a fixture with probes for each pin of the IC under test. Current
VLSI devices may have over 1000 pins and require a tester with as many as
1024 pin channels. As a result, the pin electronics and fixtures constitute the
most expensive part of the ATE.

3. Test program—In conjunction with the pin electronics, ATE contains wave-
form generators that are designed to change logic values at the setup and
hold times associated with a given input pin. A test pattern containing logic
1’s and 0’s must be translated to these various timing formats. Also, ATE cap-
tures primary output responses, which are then translated to output vectors
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for comparison with the fault-free responses. These translations and some
environment settings are controlled by the central computer; therefore, a
test program, usually written in a high-level language, becomes an important
ingredient for controlling these translations and environment settings. Algo-
rithmically generated test patterns may consist of subroutines, pattern and
test routine calls, or sequenced events. The test program also specifies the
timing format in terms of the tester edge set. An edge set is a data format with
timing information for applying new data to a chip input pin and includes
the input setup time, hold time, and the waveform type.

4. Digital signal processor (DSP)—Powerful 32-bit DSP techniques have been
widely applied to analog testing for capturing analog characteristics at high
frequencies. Digital signals are converted to analog signals and applied to the
analog circuit inputs, while the analog output signals are converted to digital
signals for response analysis by the DSP.

5. Accurate DC and AC measurement circuitry—ATE precision is a performance
metric specifying the smallest measurement that the tester can resolve in a
very low noise environment, especially for analog and mixed-signal testing.
For example, a clock jitter (phase noise) of no more than 10ps is required to
properly test ICs that realize more than 100Mb/s data rates. This requirement
is even higher for today’s high-performance ICs. The application of vectors
to a circuit with the intent of verifying the timing compliance depends on
the operational frequency of the ATE (e�g�, 200MHz, 500MHz, or 1GHz).
Ideally, the ATE operational frequency should be much higher than that of
the ICs under test. Unfortunately, this is a difficult problem because the ATE
itself is also constructed from ICs and limited by their maximum operating
frequency.

Automatic test equipment can be very expensive. To satisfy the needs of advanced
VLSI testing, the following features form the basis for keeping ATE costs under
control:

1. Modularization—Modular systems give users the flexibility to purchase and
use only those options that are suitable for the products under test.

2. Configurability—Test system configurability is essential for many test plat-
forms. As testing needs change, users can reconfigure the test resources for
particular products and continue to use the same basic framework.

3. Parallel test capabilities—Testing multiple devices in parallel improves the
throughput and productivity of the ATE. Higher throughput means lower
overall test cost.

4. Third-party components—The use of third-party hardware and software per-
mits adopting the best available equipment and approaches, thus giving rise
to competition that lowers test cost over time.
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From a test economics point of view, there has been a systematic decrease in
the capital cost of manufacturing a transistor over the past several decades as
we continue to deliver more complex devices; however, testing capital costs per
transistor have remained relatively constant. As a result, test costs are becoming an
increasing portion of the overall industry capital requirement per transistor, to the
extent that currently it costs almost as much to test as to manufacture a transistor.
From a test technology point of view on the other hand, ATE in the early 1980s

had resolution capabilities well in excess of the component requirements. In 1985,
for example, when testing a then fast 8-MHz 286 microprocessor, a 1-ns accuracy in
the control of input signal transitions, referred to as edge placement, was available
in ATE with very low yield loss due to tester tolerances. Later, for testing 700-MHz
Pentium III microprocessors, only a 100-ps edge placement accuracy was available
in ATE; thus, the hundredfold increase in CUT speed was accompanied by only a
tenfold increase in the tester accuracy [Gelsinger 2000].

1.5.2 Automatic Test Pattern Generation
In the early 1960s, structural testing was introduced and the stuck-at fault model
was employed. A complete ATPG algorithm, called the D-algorithm, was first pub-
lished [Roth 1966]. The D-algorithm uses a logical value to represent both the
“good” and the “faulty” circuit values simultaneously and can generate a test for
any stuck-at fault, as long as a test for that fault exists. Although the computational
complexity of the D-algorithm is high, its theoretical significance is widely recog-
nized. The next landmark effort in ATPG was the PODEM algorithm [Goel 1981],
which searches the circuit primary input space based on simulation to enhance
computation efficiency. Since then, ATPG algorithms have become an important
topic for research and development, many improvements have been proposed, and
many commercial ATPG tools have appeared. For example, FAN [Fujiwara 1983]
and SOCRATES [Schulz 1988] were remarkable contributions to accelerating the
ATPG process. Underlying many current ATPG tools, a common approach is to start
from a random set of test patterns. Fault simulation then determines how many of
the potential faults are detected. With the fault simulation results used as guidance,
additional vectors are generated for hard-to-detect faults to obtain the desired or
reasonable fault coverage. The International Symposium on Circuits and Systems
(ISCAS) announced combinational logic benchmark circuits in 1985 [Brglez 1985]
and sequential logic benchmark circuits in 1989 [Brglez 1989] to assist in ATPG
research and development in the international test community. A major problem
in large combinational logic circuits with thousands of gates was the identification
of undetectable faults. In the 1990s, very fast ATPG systems were developed using
advanced high-performance computers which provided a speed-up of five orders of
magnitude from the D-algorithm with 100% fault detection efficiency. As a result,
ATPG for combinational logic is no longer a problem; however, ATPG for sequential
logic is still difficult because, in order to propagate the effect of a fault to a primary
output so it can be observed and detected, a state sequence must be traversed with
the fault undertaken. For large sequential circuits, it is difficult to reach 100% fault
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coverage in reasonable computational time and cost unless DFT techniques are
adopted [Breuer 1987].

1.5.3 Fault Simulation
A fault simulator emulates the target faults in a circuit in order to determine which
faults are detected by a given set of test vectors. Because there are many faults
to emulate for fault detection analysis, fault simulation time is much greater than
that required for design verification. To accelerate the fault simulation process,
improved approaches have been developed in the following order. Parallel fault
simulation uses bit-parallelism of logical operations in a digital computer. Thus,
for a 32-bit machine, 31 faults are simulated simultaneously. Deductive fault
simulation deduces all signal values in each faulty circuit from the fault-free circuit
values and the circuit structure in a single pass of true-value simulation augmented
with the deductive procedure. Concurrent fault simulation is essentially an event-
driven simulation to emulate faults in a circuit in the most efficient way. Hardware
fault simulation accelerators based on parallel processing are also available to
provide a substantial speed-up over purely software-based fault simulators.
For analog and mixed-signal circuits, fault simulation is traditionally performed

at the transistor level using circuit simulators such as HSPICE. Unfortunately,
analog fault simulation is a very time-consuming task and, even for rather simple
circuits, a comprehensive fault simulation is normally not feasible. This problem
is further complicated by the fact that acceptable component variations must be
simulated along with the faults to be emulated, which requires many Monte Carlo
simulations to determine whether the fault will be detected. Macro models of circuit
components are used to decrease the long computation time. Fault simulation
approaches using high-level simulators can simulate analog circuit characteristics
based on differential equations but are usually avoided due to lack of adequate fault
models.

1.5.4 Digital Circuit Testing
The development of digital circuit testing began with the introduction of the stuck-
at fault model which was followed by the first bridging fault model, the transistor
fault model, and finally by delay fault models. Digital testing now typically uses
a combination of tests developed for different fault models because tests for any
given fault model cannot assure the detection of all defects. For example, current
testing practices by some manufacturers include stuck-at fault tests with 99% fault
coverage in conjunction with path-delay fault tests with greater than 90% fault
coverage.
Digital testing is also improved by monitoring the quiescent power supply

current (IDDQ). Normally, the leakage current of CMOS circuits under a quiescent
state is very small and negligible. When a fault occurs, such as a transistor stuck-
short or a bridging fault, and causes a conducting path from power to ground, it
may draw an excessive supply current. IDDQ testing became an accepted test method
for the IC industry in the 1980s; however, normal fault-free IDDQ has become quite
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large for current, complex VLSI devices due to the collective leakage currents of
millions of transistors on a chip. This makes the detection of the additional IDDQ

current due to a single faulty transistor or bridging fault difficult; hence, IDDQ testing
is becoming ineffective.
A similar approach is transient power supply current (IDDT) testing. When a

CMOS circuit switches states, a momentary path is established between the sup-
ply lines VDD and VSS that results in a dynamic current IDDT. The IDDT waveform
exhibits a spike every time the circuit switches with the magnitude and frequency
components of the waveform dependent on the switching activity; therefore, it is
possible to differentiate between fault-free and faulty circuits by observing either
the magnitude or the frequency spectrum of IDDT waveforms. Monitoring the IDDT

of a CMOS circuit may also provide additional diagnostic information about pos-
sible defects unmatched by IDDQ and other test techniques [Min 1998]; however,
IDDT testing suffers many of the same problems as IDDQ testing as the number of
transistors in VLSI devices continues to grow.

1.5.5 Analog and Mixed-Signal Circuit Testing
Analog circuits are used in various applications, such as telecommunications, multi-
media, and man–machine interfaces. Mixed-signal circuits include analog circuitry
(e�g�, amplifiers, filters) and digital circuitry (e�g�, data paths, control logic), as well
as digital-to-analog converters (DACs) and analog-to-digital converters (ADCs).
Due to the different types of circuitry involved, several different schemes to test
a mixed-signal chip are usually required. Test methods for analog circuitry and
converters have not achieved maturity comparable to that for digital circuitry. Tra-
ditionally, the analog circuitry is tested by explicit functional testing to directly
measure performance parameters, such as linearity, frequency response (phase and
gain), or signal-to-noise ratio. The measured parameters are compared against the
design specification tolerance ranges to determine if the device is faulty or opera-
tional within the specified limits. Long test application times and complicated test
equipment are often required, making functional testing very expensive. Recently,
defect-oriented test approaches based on fault models, similar to those used in
digital testing (such as shorts and opens), have been investigated for reducing the
cost for functional testing of the analog components and converters [Stroud 2002].

1.5.6 Design for Testability
Test engineers usually have to construct test vectors after the design is completed.
This invariably requires a substantial amount of time and effort that could be
avoided if testing is considered early in the design flow to make the design more
testable. As a result, integration of design and test, referred to as design for testa-
bility (DFT), was proposed in the 1970s.
To structurally test circuits, we need to control and observe logic values of internal

lines. Unfortunately, some nodes in sequential circuits can be very difficult to
control and observe; for example, activity on the most significant bit of an n-
bit counter can only be observed after 2n−1 clock cycles. Testability measures of
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controllability and observability were first defined in the 1970s [Goldstein 1979]
to help find those parts of a digital circuit that will be most difficult to test and
to assist in test pattern generation for fault detection. Many DFT techniques have
been proposed since that time [McCluskey 1986]. DFT techniques generally fall into
one of the following three categories: (1) ad hoc DFT techniques, (2) level-sensitive
scan design (LSSD) or scan design, or (3) built-in self-test (BIST).

Ad hoc methods were the first DFT techniques introduced in the 1970s. The goal
was to target only those portions of the circuit that would be difficult to test and
to add circuitry to improve the controllability or observability. Ad hoc techniques
typically use test point insertion to access internal nodes directly. An example of
a test point is a multiplexer inserted to control or observe an internal node, as
illustrated in Figure 1.12.
Level-sensitive scan design, also referred to as scan design, was the next, and

most important, DFT technique proposed [Eichelberger 1977]. LSSD is latch based.
In a flip-flop-based scan design, testability is improved by adding extra logic to
each flip-flop in the circuit to form a shift register, or scan chain, as illustrated in
Figure 1.13. During the scan mode, the scan chain is used to shift in (or scan in) a

(a) controllability test point (b) observability test point

Primary
output

Normal system
data

Internal node to
be observed

Test mode select

0

1

Internal
node to be
controlled

Test data input

Test mode select

0 

1 

Normal system
data

� FIGURE 1.12

Ad hoc DFT test points using multiplexers.
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test vector to be applied to the combinational logic. During one clock cycle in the
system mode of operation, the test vector is applied to the combinational logic and
the output responses are clocked into the flip-flops. The scan chain is then used in
the scan mode to shift out (or scan out) the combinational logic output response to
the test vector while shifting in the next test vector to be applied. As a result, LSSD
reduces the problem of testing sequential logic to that of testing combinational
logic and thereby facilitates the use of ATPG developed for combinational logic.
Built-in self-test was proposed around 1980 [Bardell 1982] [Stroud 2002] to inte-

grate a test-pattern generator (TPG) and an output response analyzer (ORA) in
the VLSI device to perform testing internal to the IC, as illustrated in Figure 1.14.
Because the test circuitry resides with the CUT, BIST can be used at all levels of
testing, from wafer through system-level testing.

1.5.7 Board Testing
Like the VLSI fabrication process, PCBmanufacturing is a capital-intensive process
with minimum human intervention. Once a high-volume batch has been started, the
process is totally unmanned. Potential problems that could cause a line stoppage
or poor yield are monitored throughout the process. In the 1970s and 1980s, PCBs
were tested by probing the backs of the boards with probes (also called nails) in a
bed-of-nails tester. The probes are positioned to contact various solder points on
the PCB in order to force signal values at the component pins and monitor the
output responses. Generally, a PCB tester is capable of performing both analog and
digital functional tests and is usually designed to be modular and flexible enough
to integrate different external instruments.
Two steps were traditionally taken before testing an assembled PCB. First, the

bare board was tested for all interconnections using a PCB tester, primarily tar-
geting shorts and opens. Next, the components to be assembled on the PCB were
tested. After assembly, the PCB was tested by using a PCB tester. In the modern
automated PCB production process, solder paste inspection, automated optical and
x-ray inspections, and in-circuit (bed-of-nails) testing are used for quality control.
With the advent of surface-mount devices on PCBs in the mid-1980s, problems
arose for PCB in-circuit testing, as the pins of the package did not go through the
board to guarantee contact sites on the bottom of the PCB. These problems were
overcome with the introduction of boundary scan.
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� FIGURE 1.14

Basic BIST architecture.
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1.5.8 Boundary Scan Testing
In the mid-1980s, the Joint Test Action Group (JTAG) proposed a boundary scan
standard, approved in 1990 as IEEE Standard 1149.1 [IEEE 1149.1-2001]. Bound-
ary scan, based on the basic idea of scan design, inserted logic to provide a scan
path through all I/O buffers of ICs to assist in testing the assembled PCB. A typical
boundary scan cell is illustrated in Figure 1.15 with regard to its application to a
bidirectional I/O buffer. The scan chain provides the ability to shift in test vectors
to be applied through the pad to the pins and interconnections on the PCB. The
output responses are captured at the input buffers on other devices on the PCB and
subsequently shifted out for fault detection. Thus, boundary scan provides access
to the various signal nodes on a PCB without the need for physical probes.
The test access port (TAP) provides access to the boundary scan chain through

a four-wire serial bus interface (summarized in Table 1.5) in conjunction with
instructions transmitted over the interface. In addition to testing the interconnec-
tions on the PCB, the boundary scan interface also provides access to DFT features,
such as LSSD or BIST, designed and implemented in the VLSI devices for board
and system-level testing. The boundary scan description language (BSDL) pro-
vides a mechanism with which IC manufacturers can describe testability features in
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Basic boundary scan cell applied to a bidirectional buffer.

TABLE 1.5 � Boundary Scan Four-Wire
Interface

BS pin I/O Function

TCK Input Test clock

TMS Input Test mode select

TDI Input Test data in

TDO Output Test data out
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a chip [Parker 2001]. In 1999, another boundary scan standard, IEEE 1149.4, was
adopted for mixed-signal systems; it defines boundary scan cells as well as a TAP
for the analog portion of the device [IEEE 1149.4-1999] [Mourad 2000]. In 2003,
an extended boundary scan standard for the I/O protocol of high-speed networks,
namely 1149.6, was approved [IEEE 1149.6-2003].
System-on-chip implementations face test challenges in addition to those of nor-

mal VLSI devices. SOCs incorporate embedded cores that may be difficult to access
during testing. The IEEE P1500 working group was approved in 1997 to develop a
scalable wrapper architecture and access mechanism similar to boundary scan for
enabling test access to embedded cores and the associated interconnect between
embedded cores. This proposed P1500 test method, approved as an IEEE 1500
standard in 2005 [IEEE 1500-2005], is independent of the underlying functionality
of the SOC or its individual embedded cores and creates the necessary testability
requirements for detection and diagnosis of faults for debug and yield enhancement.

1.6 CONCLUDING REMARKS

This chapter provides an overview of VLSI testing as an area of both theoretical
and great practical significance. The importance and challenges of VLSI testing at
different abstraction levels were discussed along with a brief historical review of
test technology development. New and continuing testing challenges, along with the
critical mind of the test community, drive creative advances in test technology and
motivate further developments for nanometer technology. Why do we need VLSI
testing? How difficult is VLSI testing? What are the fundamental concepts and
techniques for VLSI testing? Although many of these issues were briefly reviewed
in this chapter, a more detailed discussion of these questions can be found in the
following chapters of this book.

1.7 EXERCISES

1.1 (Stuck-At Fault Models) Consider the combinational logic circuit in
Figure 1.16. How many possible single stuck-at faults does this circuit have?
How many possible multiple stuck-at faults does this circuit have? How many
collapsed single stuck-at faults does this circuit have?
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z 

� FIGURE 1.16

Circuit for Problem 1.1.



34 VLSI Test Principles and Architectures
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� FIGURE 1.17

Circuit for Problem 1.4.

1.2 (Bridging Fault Models) Show an example where a combinational logic
circuit will become a sequential circuit in the presence of a bridging fault.

1.3 (Automatic Test-Pattern Generation) Generate a minimum set of test vec-
tors to completely test an n-input NAND gate under the single stuck-at fault
model. How many test vectors are needed?

1.4 (Automatic Test-Pattern Generation) Generate a minimum set of test vec-
tors to detect all single stuck-at faults for a cascade of (n− 1) exclusive-
OR gates for an n-bit parity checker, as shown in Figure 1.17, where each
exclusive-OR gate is implemented by elementary logic gates (AND, OR, NAND,
NOR, NOT). How many test vectors are needed?

1.5 (Mean Time between Failures) The number of failures in 109 hours is a unit
(abbreviated FITS) that is often used in reliability calculations. Calculate the
MTBF for a system with 500 components where each component has a failure
rate of 1000 FITS.

1.6 (Mean Time to Repair)On average, how long would it take to repair a system
each year if the availability of the system is 99.999%?

1.7 (Defect Level) What percentage of all parts shipped will be defective if the
yield is 50% and the fault coverage is 90% for the set of test vectors used to
test the parts?
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ABOUT THIS CHAPTER

This chapter discusses design for testability (DFT) techniques for testing modern
digital circuits. These DFT techniques are required in order to improve the quality
and reduce the test cost of the digital circuit, while at the same time simplifying the
test, debug and diagnose tasks. The purpose of this chapter is to provide readers
with the knowledge to judge whether a design is implemented in a test-friendly
manner and to recommend changes in order to improve the testability of the design
for achieving the above-mentioned goals. More specifically, this chapter will allow
readers to be able to identify and fix scan design rule violations and understand the
basics for successfully converting a design into a scan design.
In this chapter, we first cover the basic DFT concepts andmethods for performing

testability analysis. Next, following a brief yet comprehensive summary of ad hoc
DFT techniques, scan design, the most widely used structured DFT methodology,
is discussed, including popular scan cell designs, scan architectures, scan design
rules, scan design flow, and special-purpose scan designs. Finally, advanced DFT
techniques for use at the register-transfer level (RTL) are presented in order to
further reduce DFT design iterations and test development time.

2.1 INTRODUCTION

During the early stages of integrated circuit (IC) production history, design and test
were regarded as separate functions, performed by separate and unrelated groups
of engineers. During these early years, a design engineer’s job was to implement the
required functionality based on design specifications, without giving any thought
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to how the manufactured device was to be tested. Once the functionality was imple-
mented, the design information was transferred to test engineers. A test engineer’s
job was to determine how to efficiently test each manufactured device within a
reasonable amount of time, in order to screen out the parts that may contain man-
ufacturing defects and ship all defect-free devices to customers. The final quality of
the test was determined by keeping track of the number of defective parts shipped to
the customers, based on customer returns. This product quality, measured in terms
of defective parts per million (PPM) shipped, was a final test score for quantifying
the effectiveness of the developed test.
While this approach worked well for small-scale integrated circuits that mainly

consisted of combinational logic or simple finite-state machines, it was unable to
keep up with the circuit complexity as designs moved from small-scale integra-
tion (SSI) to very-large-scale integration (VLSI). A common approach to test these
VLSI devices during the 1980s relied heavily on fault simulation to measure the
fault coverage of the supplied functional patterns. Functional patterns were devel-
oped to navigate through the long sequential depths of a design, with the goal of
exercising all internal states and detecting all possible manufacturing defects. A
fault simulation or fault grading tool was used to quantify the effectiveness of the
functional patterns. If the supplied functional patterns did not reach the target fault
coverage goal, additional functional patterns were further added. Unfortunately,
this approach typically failed to improve the circuit’s fault coverage beyond 80%,
and the quality of the shipped products suffered.
Gradually, it became clear that designing devices without paying much attention

to test resulted in increased test cost and decreased test quality. Some designs that
were otherwise best in class with regard to functionality and performance failed
commercially due to prohibitively high test cost or poor product quality. These
problems have since led to the development and deployment of DFT engineering in
the industry.
The first challenge facing DFT engineers was to find simpler ways of exercising

all internal states of a design and reaching the target fault coverage goal. Various
testabilitymeasures and ad hoc testability enhancementmethods were proposed
and used in the 1970s and 1980s to serve this purpose. These methods were mainly
used to aid in the circuit’s testability or to increase the circuit’s controllability and
observability [McCluskey 1986] [Abramovici 1994]. While attempts to use these
methods have substantially improved the testability of a design and eased sequential
automatic test pattern generation (ATPG), their end results at reaching the target
fault coverage goal were far from being satisfactory; it was still quite difficult to
reach more than 90% fault coverage for large designs. This was mostly due to the
fact that, even with these testability aids, deriving functional patterns by hand or
generating test patterns for a sequential circuit is a much more difficult problem
than generating test patterns for a combinational circuit [Fujiwara 1982] [Bushnell
2000] [Jha 2002].
For combinational circuits, many innovative ATPG algorithms have been devel-

oped for automatically generating test patterns within a reasonable amount of
time. Automatically generating test patterns for sequential circuits met with limited
success, due to the existence of numerous internal states that are difficult to set
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and check from external pins. Difficulties in controlling and observing the internal
states of sequential circuits led to the adoption of structured DFT approaches in
which direct external access is provided for storage elements. These reconfigured
storage elements with direct external access are commonly referred to as scan cells.
Once the capability of controlling and observing the internal states of a design is
added, the problem of testing the sequential circuit is transformed into a problem
of testing the combinational logic, for which many solutions already existed.
Scan design is currently the most popular structured DFT approach. It is imple-

mented by connecting selected storage elements of a design into multiple shift
registers, called scan chains, to provide them with external access. Scan design
accomplishes this task by replacing all selected storage elements with scan cells,
each having one additional scan input (SI) port and one shared/additional scan
output (SO) port. By connecting the SO port of one scan cell to the SI port of the
next scan cell, one or more scan chains are created.
Since the 1970s, numerous scan cell designs and scan architectures have been

proposed [Fujiwara 1985] [McCluskey 1986]. A design where all storage elements
are selected for scan insertion is called a full-scan design. A design where almost
all (e�g�, more than 98%) storage elements are selected is called an almost full-
scan design. A design where some storage elements are selected and sequential
ATPG is applied is called a partial-scan design. A partial-scan design where storage
elements are selected in such a way as to break all sequential feedback loops [Cheng
1990] and to which combinational ATPG can be applied is further classified as
a pipelined, feed-forward, or balanced partial-scan design. As silicon prices
have continued to drop since the mid-1990s with the advent of deep submicron
technology, the dominant scan architecture has shifted from partial-scan design to
full-scan design.
In order for a scan design to achieve the desired PPM goal, specific circuit struc-

tures and design practices that can affect fault coverage must be identified and
fixed. This requires compiling a set of scan design rules that must be adhered
to. Hence, a new role of DFT engineer emerged, with responsibilities including
identifying and fixing scan design rule violations in the design, inserting or synthe-
sizing scan chains into the design, generating test patterns for the scan design, and,
finally, converting the test patterns to test programs for test engineers to perform
manufacturing testing on automatic test equipment (ATE). Since then, most of
these DFT tasks have been automated.
In addition to being the dominant DFT architecture used for detecting manufac-

turing defects, scan design has become the basis of more advanced DFT techniques,
such as logic built-in self-test (BIST) [Nadeau-Dostie 2000] [Stroud 2002] and test
compression. Furthermore, as designs continue to move towards the nanometer
scale, scan design is being utilized as a design feature, with uses varying from
debug, diagnosis, and failure analysis to special applications, such as reliability
enhancement against soft errors [Mitra 2005]. A few of these special-purpose
scan designs are included in this chapter for completeness.
Recently, design for testability has started to migrate from the gate level to

the register-transfer level (RTL). The motivation for this migration is to allow
additional DFT features, such as logic BIST and test compression, to be integrated
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at the RTL, thereby reducing test development time and creating reusable and
testable RTL cores. This further allows the integrated DFT design to go through
synthesis-based optimization to reduce performance and area overhead.

2.2 TESTABILITY ANALYSIS

Testability is a relative measure of the effort or cost of testing a logic circuit.
In general, it is based on the assumption that only primary inputs and primary
outputs can be directly controlled and observed, respectively. Testability reflects
the effort required to perform the main test operations of controlling internal
signals from primary inputs and observing internal signals at primary outputs.
Testability analysis refers to the process of assessing the testability of a logic
circuit by calculating a set of numerical measures for each signal in the circuit.
One important application of testability analysis is to assist in the decision-

making process during test generation. For example, if during test generation it
is determined that the output of a certain AND gate must be set to 0, testability
analysis can help decide which AND gate input is the easiest to set to 0. Another
application is to identify areas of poor testability to guide testability enhancement,
such as test point insertion, for improving the testability of the design. For this
purpose, testability analysis is performed at various design stages so testability
problems can be identified and fixed as early as possible.
Since the 1970s, many testability analysis techniques have been proposed

[Rutman 1972] [Stephenson 1976] [Breuer 1978] [Grason 1979]. The Sandia Con-
trollability/Observability Analysis Program (SCOAP) [Goldstein 1979] [Goldstein
1980] was the first topology-based program that popularized testability analysis
applications. Enhancements based on SCOAP have also been developed and used
to aid in test point selection [Wang 1984] [Wang 1985]. These methods perform
testability analysis by calculating the controllability and observability of each sig-
nal line, where controllability reflects the difficulty of setting a signal line to a
required logic value from primary inputs and observability reflects the difficulty of
propagating the logic value of the signal line to primary outputs.
Traditionally, gate-level topological information of a circuit is used for testability

analysis. Depending on the target application, deterministic or random testability
measures are calculated. In general, topology-based testability analysis, such as
SCOAP or probability-based testability analysis, is computationally efficient but
can produce inaccurate results for circuits containing many reconvergent fanouts.
Simulation-based testability analysis, on the other hand, can generate more accu-
rate results by simulating the circuit behavior using deterministic, random, or
pseudo-random test patterns but may require a long simulation time.
In this section, we first describe the method for performing SCOAP testability

analysis. Next, probability-based testability analysis and simulation-based testa-
bility analysis are discussed. Finally, because the capability to perform testability
analysis at the RTL is becoming increasingly important, we discuss how RTL testa-
bility analysis is performed.
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2.2.1 SCOAP Testability Analysis
The SCOAP testability analysis program [Goldstein 1979] [Goldstein 1980] calcu-
lates six numerical values for each signal s in a logic circuit:

� CC0(s)—combinational 0-controllability of s

� CC1(s)—combinational 1-controllability of s

� CO(s)—combinational observability of s

� SC0(s)—sequential 0-controllability of s

� SC1(s)—sequential 1-controllability of s

� SO(s)—sequential observability of s

Roughly speaking, the three combinational testability measures (CC0, CC1, and
CO) are related to the number of signals that must be manipulated in order to
control or observe s from primary inputs or at primary outputs, whereas the three
sequential testability measures (SC0, SC1, and SO) are related to the number of
clock cycles required to control or observe s from primary inputs or at primary
outputs [Bushnell 2000]. The values of controllability measures range between 1 and
infinite, while the values of observability measures range between 0 and infinite.
As a boundary condition, the CC0 and CC1 values of a primary input are set to 1,
the SC0 and SC1 values of a primary input are set to 0, and the CO and SO values
of a primary output are set to 0.

2.2.1.1 Combinational Controllability and Observability Calculation

The first step in SCOAP is to calculate the combinational controllability measures
of all signals. This calculation is performed from primary inputs toward primary
outputs in a breadth-first manner. More specifically, the circuit is levelized from
primary inputs to primary outputs in order to assign a level order for each gate.
The output controllability of each gate is then calculated in level order after the
controllability measures of all of its inputs have been calculated. The rules for
combinational controllability calculation are summarized in Table 2.1, where a 1 is
added to each rule to indicate that a signal passes through one more level of logic
gate. From this table, we can see that CC0(s)≥1 and CC1(s)≥1 for any signal s. A
larger CC0(s) or CC1(s) value implies that it is more difficult to control s to 0 or 1
from primary inputs.
Once the combinational controllability measures of all signals are calculated,

the combinational observability of each signal can be calculated. This calculation
is also performed in a breadth-first manner while moving from primary outputs
toward primary inputs. The rules for combinational observability calculation are
summarized in Table 2.2, where a 1 is added to each rule to indicate that a signal
passes through one more level of logic gate. From this table, we can see that
CO�s� ≥ 0 for any signal s. A larger CO�s� value implies that it is more difficult to
observe s at any primary output.
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TABLE 2.1 � SCOAP Combinational Controllability Calculation Rules

0-Controllability (Primary Input,
Output, Branch)

1-Controllability (Primary Input,
Output, Branch)

Primary Input 1 1

AND min {input 0-controllabilities} + 1
∑

(input 1-controllabilities} + 1

OR
∑

(input 0-controllabilities) + 1 min {input 1-controllabilities} + 1

NOT Input 1-controllability + 1 Input 0-controllability + 1

NAND
∑

(input 1-controllabilities) + 1 min {input 0-controllabilities} + 1

NOR min {input 1-controllabilities} + 1
∑

(input 0-controllabilities) + 1

BUFFER Input 0-controllability + 1 Input 1-controllability + 1

XOR min {CC1(a) + CC1(b), CC0(a) + CC0(b)} + 1 min �CC1�a�+CC0�b��CC0�a�+CC1�b��+1

XNOR min {CC1(a) + CC0(b), CC0(a) + CC1(b)} + 1 min �CC1�a�+CC1�b��CC0�a�+CC0�b��+1

Branch Stem 0-controllability Stem 1-controllability

Note: a and b are inputs of an XOR or XNOR gate.

TABLE 2.2 � SCOAP Combinational Observability Calculation Rules

Observability (Primary Output, Input, Stem)

Primary Output 0

AND/NAND
∑

(output observability, 1-controllabilities of other inputs) + 1

OR/NOR
∑

(output observability, 0-controllabilities of other inputs) + 1

NOT/BUFFER Output observability + 1

XOR/XNOR a	
∑

�output observability�min �CC0�b��CC1�b���+1

b	
∑

�output observability�min �CC0�a��CC1�a���+1

Stem min {branch observabilities}

Note: a and b are inputs of an XOR or XNOR gate.

Figure 2.1 shows the combinational controllability and observability measures of
a full-adder. The three-value tuple v1/v2/v3 on each signal line represents the signal’s
0-controllability (v1), 1-controllability (v2), and observability (v3). The boundary
condition is set by initializing the CC0 and CC1 values of the primary inputs A,
B, and Cin to 1 and the CO values of the primary outputs Sum and Cout to 0. By
applying the rules given in Tables 2.1 and 2.2 and starting with the given bound-
ary condition, one can first calculate all combinational controllability measures
forward and then calculate all combinational observability measures backward in
level order.
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SCOAP full-adder example.

2.2.1.2 Sequential Controllability and Observability Calculation

Sequential controllability and observability measures are calculated in a similar
manner as combinational measures, except that a 1 is not added as we move from
one level of logic gate to another; rather, a 1 is added when a signal passes through
a storage element. The difference is illustrated using the sequential circuit example
shown in Figure 2.2, which consists of an AND gate and a positive-edge-triggered D
flip-flop. The D flip-flop includes an active-high asynchronous reset pin r. SCOAP
measures of a D flip-flop with a synchronous, as opposed to asynchronous, reset
are shown in [Bushnell 2000].
First, we calculate the combinational and sequential controllability measures of

all signals. In order to control signal d to 0, either input a or b must be set to
0. In order to control d to 1, both inputs a and b must be set to 1. Hence, the
combinational and sequential controllability measures of signal d are:

CC0�d�=min �CC0�a�	CC0�b�
+1

SC0�d�=min �SC0�a�	SC0�b�


CC1�d�= CC1�a�+CC1�b�+1

SC1�d�= SC1�a�+SC1�b�

Reset

CK

d
Q q

r

a
b D

� FIGURE 2.2

SCOAP sequential circuit example.
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In order to control the data output q of the D flip-flop to 0, the data input d
and the reset signal r can be set to 0 while applying a rising clock edge (a 0-to-1
transition) to the clock CK. Alternatively, this can be accomplished by setting r to
1 while holding CK at 0. Because a clock pulse is not applied to CK, a 1 is not
added to the sequential controllability calculation in the second case; therefore, the
combinational and sequential 0-controllability measures of q are:

CC0�q�=min �CC0�d�+CC0�CK�+CC1�CK�+CC0�r�	CC1�r�+CC0�CK�


SC0�q�=min �SC0�d�+SC0�CK�+SC1�CK�+SC0�r�+1	SC1�r�+SC0�CK�


Here, CC0(q) measures how many signals in the circuit must be set to control q to
0, whereas SC0(q) measures how many flip-flops in the circuit must be clocked to
set q to 0. The only way to control the data output q of the D flip-flop to 1 is to set
the data input d to 1 and the reset signal r to 0 while applying a rising clock edge
to the clock CK. Hence,

CC1�q�= CC1�d�+CC0�CK�+CC1�CK�+CC0�r�

SC1�q�= SC1�d�+SC0�CK�+SC1�CK�+SC0�r�+1

Next, we calculate the combinational and sequential observability measures of
all signals. The data input d can be observed at q by holding the reset signal r at 0
and applying a rising clock edge to CK. Hence,

CO�d�= CO�q�+CC0�CK�+CC1�CK�+CC0�r�

SO�d�= SO�q�+SC0�CK�+SC1�CK�+SC0�r�+1

The asynchronous reset signal r can be observed by first setting q to 1 and
then holding CK at the inactive state 0. Again, a 1 is not added to the sequential
controllability calculation because a clock pulse is not applied to CK:

CO�r�= CO�q�+CC1�q�+CC0�CK�

SO�r�= SO�q�+SC1�q�+SC0�CK�

There are two ways to indirectly observe the clock signal CK at q: (1) set q to 1, r to
0, and d to 0 and apply a rising clock edge at CK; or (2) set both q and r to 0, set d
to 1, and apply a rising clock edge at CK. Hence,

CO�CK�= CO�q�+CC0�CK�+CC1�CK�+CC0�r�

+min �CC0�d�+CC1�q�	CC1�d�+CC0�q�


SO�CK�= SO�q�+SC0�CK�+SC1�CK�+SC0�r�

+min �SC0�d�+SC1�q�	SC1�d�+SC0�q�
+1
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To observe an input of the AND gate at d requires setting the other input to 1;
therefore, the combinational and sequential observability measures for both inputs
a and b are:

CO�a�= CO�d�+CC1�b�+1

SO�a�= SO�d�+SC1�b�

CO�b�= CO�d�+CC1�a�+1

SO�b�= SO�d�+SC1�a�

It is important to note that controllability and observability measures calculated
using SCOAP are heuristics and only approximate the actual testability of a logic
circuit. When scan design is used, testability analysis can assume that all scan
cells are directly controllable and observable. It was also shown in [Agrawal 1982]
that SCOAP may overestimate testability measures for circuits containing many
reconvergent fanouts; however, by being able to perform testability analysis in
O(n) computational complexity for n signals in a circuit, SCOAP provides a quick
estimate of the circuit’s testability that can be used to guide testability enhancement
and test generation.

2.2.2 Probability-Based Testability Analysis
Topology-based testability analysis techniques, such as SCOAP, have been found to
be extremely helpful in test generation, which is the main topic of Chapter 4. These
testability measures are able to analyze the deterministic testability of the logic
circuit in advance. On the other hand, in logic built-in self-test (BIST), which is
the main topic of Chapter 5, random or pseudo-random test patterns are generated
without specifically performing deterministic test pattern generation on any signal
line. In this case, topology-based testability measures using signal probability to
analyze the random testability of the circuit can be used [Parker 1975] [Savir
1984] [Seth 1985] [Jain 1985]. These measures are often referred to as probability-
based testability measures or probability-based testability analysis techniques.
For example, given a random input pattern, one can calculate three measures for
each signal s in a combinational circuit as follows:

� C0(s)—probability-based 0-controllability of s

� C1(s)—probability-based 1-controllability of s

� O(s)—probability-based observability of s

Here, C0(s) and C1(s) are the probability of controlling signal s to 0 and 1 from
primary inputs, respectively. O(s) is the probability of observing signal s at primary
outputs. These three probabilities range between 0 and 1. As a boundary condition,
the C0 and C1 probabilities of a primary input are typically set to 0.5, and the
O probability of a primary output is set to 1. For each signal s in the circuit,
C0�s�+C1�s�= 1.
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Many methods have been developed to calculate the probability-based testability
measures. A simple method is given below, whose basic procedure is similar to the
one used for calculating combinational testability measures in SCOAP except that
different calculation rules are used. The rules for probability-based controllability
and observability calculation are summarized in Tables 2.3 and 2.4, respectively.
In Table 2.3, p0 is the initial 0-controllability chosen for a primary input, where
0< p0 < 1.
Compared to SCOAP testability measures, where non-negative integers are used,

probability-based testability measures range between 0 and 1. The smaller a
probability-based testability measure of a signal, the more difficult it is to control or
observe the signal. Figure 2.3 illustrates the difference between SCOAP testability

TABLE 2.3 � Probability-Based Controllability Calculation Rules

0-Controllability (Primary Input,
Output, Branch)

1-Controllability (Primary Input,
Output, Branch)

Primary Input p0 p1= 1 – p0

AND 1 – (output 1-controllability)
∏

(input 1-controllabilities)

OR
∏

(input 0-controllabilities) 1 – (output 0-controllability)

NOT Input 1-controllability Input 0-controllability

NAND
∏

(input 1-controllabilities) 1 – (output 0-controllability)

NOR 1 – (output 1-controllability)
∏

(input 0-controllabilities)

BUFFER Input 0-controllability Input 1-controllability

XOR 1 – 1-controllability
∑

�C1�a�×C0�b��C0�a�×C1�b��

XNOR 1 – 1-controllability
∑

�C0�a�×C0�b��C1�a�×C1�b��

Branch Stem 0-controllability Stem 1-controllability

Note: a and b are inputs of an XOR or XNOR gate.

TABLE 2.4 � Probability-Based Observability Calculation Rules

Observability (Primary Output, Input, Stem)

Primary Output 1

AND/NAND
∏

(output observability, 1-controllabilities of other inputs)

OR/NOR
∏

(output observability, 0-controllabilities of other inputs)

NOT/BUFFER Output observability

XOR/XNOR a:
∏

(output observability, max {0-controllability of b, 1-controllability of b})

b:
∏

(output observability, max {0-controllability of a, 1-controllability of a})

Stem max {branch observabilities}

Note: a and b are inputs of an XOR or XNOR gate.
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Comparison of SCOAP and probability-based testability measures: (a) SCOAP combinational measures,
and (b) probability-based measures.

measures and probability-based testability measures of a three-input AND gate. The
three-value tuple v1/v2/v3 of each signal line represents the signal’s 0-controllability
(v1), 1-controllability (v2), and observability (v3).

Signals with poor probability-based testability measures tend to be difficult to
test with random or pseudo-random test patterns. The faults on these signal lines
are often referred to as random-pattern resistant (RP-resistant) [Savir 1984]. That
is, either the probability of these signals randomly receiving a 0 or 1 from primary
inputs or the probability of observing these signals at primary outputs is low,
assuming that all primary inputs have the equal probability of being set to 0 or 1
and are independent from each other.
The existence of such RP-resistant faults is the main reason why fault coverage

using random or pseudo-random test patterns is low compared to using determin-
istic test patterns. In applications such as logic BIST, in order to solve this low fault
coverage problem, test points are often inserted in the circuit to enhance the cir-
cuit’s random testability. A few commonly used test point insertion techniques are
discussed in Section 2.3. Interested readers can find more information in Chapter 5.

2.2.3 Simulation-Based Testability Analysis
In the calculation of SCOAP and probability-based testability measures as described
above, only the topological information of a logic circuit is explicitly explored.
These topology-based methods are static, in the sense that they do not use input test
patterns for testability analysis. Their controllability and observability measures can
be calculated in linear time, thus making them very attractive for applications that
require fast testability analysis, such as test generation and logic BIST. However, the
efficiency of these methods is achieved at the cost of reduced accuracy, especially
for circuits that contain many reconvergent fanouts [Agrawal 1982].
As an alternative or supplement to static or topology-based testability analysis,

dynamic or simulation-based methods that use input test patterns for testability
analysis or testability enhancement can be performed through statistical sam-
pling. Logic simulation and fault simulation techniques can be employed. Logic
simulation and fault simulation are both covered in Chapter 3.
In statistical sampling, a sample set of input test patterns are selected that are

either generated randomly or derived from a given pattern set, and logic simulation
is conducted to collect the responses of all or part of signal lines of interest. The
commonly collected responses are the number of occurrences of 0’s, 1’s, 0-to-1
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transitions, and 1-to-0 transitions, which are then used to statistically profile the
testability of a logic circuit. These data are then analyzed to find locations of poor
testability. If a signal line exhibits only a few transitions or no transitions for the
sample input patterns, it might be an indication that the signal likely has poor
controllability.
In addition to logic simulation, fault simulation has also been used to enhance

the testability of a logic circuit using random or pseudo-random test patterns.
For example, a random resistant fault analysis (RRFA) method has been suc-
cessfully applied to a high-performance microprocessor to improve the circuit’s
random testability in logic BIST [Rizzolo 2001]. This method is based on statis-
tical data collected during fault simulation for a small number of random test
patterns. Controllability and observability measures of each signal in the circuit are
calculated using the probability models developed in the statistical fault analysis
(STAFAN) algorithm [Jain 1985], which is described in Section 3.4.8 (STAFAN is
the first method able to give reasonably accurate estimates of fault coverage in
combinational circuits purely using input test patterns and without running fault
simulation). With these data, RRFA identifies signals that are difficult to control
or observe, as well as signals that are statistically correlated. Based on the analysis
results, RRFA then recommends test points to be added to the circuit to improve
the circuit’s random testability.
Because it can take a long simulation time to run through all input test patterns,

these simulation-based methods are in general used to guide testability enhance-
ment in test generation or logic BIST when it is necessary to meet a very high
fault coverage goal. This approach is crucial for life-critical and mission-critical
applications, such as in the healthcare and defense/aerospace industries.

2.2.4 RTL Testability Analysis
The testability analysis methods discussed earlier are mostly used for logic circuits
described at the gate level. Although they can be used to ease test generation and
guide testability enhancement, testability enhancement at the gate level can be
costly in terms of area overhead and possible performance degradation. In addition,
it may require many DFT iterations and increase test development time. In order
to address these problems, many RTL testability analysis methods have been
proposed [Stephenson 1976] [Lee 1992] [Boubezari 1999].
The RTL testability analysis method described in [Lee 1992] can be used to

improve data path testability. This method begins by building a structure graph
to represent the data transfer within an RTL circuit, where each vertex represents
a register, and each directed edge from vertex vi to vertex vj represents a functional
block from register vi to register vj. The maximum level in a structure graph,
referred to as the sequential depth, can be used to reflect the difficulty of testing
the RTL circuit. This approach ignores all the details of the functional block.
The RTL testability analysis method discussed in [Boubezari 1999] can be used

to improve the random-pattern testability of a scan-based logic BIST circuit, in
which the outputs and inputs of all storage elements are treated as primary inputs
and outputs, respectively. A directed acyclic graph (DAG) is constructed for each
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functional block in order to represent the flow of information and data dependen-
cies. Each internal node of a DAG corresponds to a high-level operation (such as
an arithmetic, relational, data transfer, and logical operation) of multiple bits, and
each edge represents a signal, which can be composed of multiple bits. This mod-
eling method keeps useful high-level information about a functional block while
ignoring the details of the gate-level implementation. This information is then used
to compute the 0-controllability, 1-controllability, and observability of each bit in
a signal line.
As an example, consider the n-bit ripple-carry adder shown in Figure 2.4, which

consists of n 1-bit full-adders. By considering the minterms leading to a 1 on the
respective output, the probability-based 1-controllability measures of si and ci+1,
denoted by C1(si) and C1(ci+1), respectively, are calculated as follows [Boubezari
1999]:

C1�si�= �+C1�ci�−2× ��×C1�ci��

C1�ci+1�= �×C1�ci�+C1�ai�×C1�bi�

where

�= C1�ai�+C1�bi�−2×C1�ai�×C1�bi�

Here, � is the probability that �ai⊕bi�= 1 and, consequently, C1(si) is the probability
that �ai⊕bi⊕ ci� = 1. By applying the above formulas from the leftmost full-adder
toward the rightmost full-adder in the n-bit ripple-carry adder, the 1-controllability
of each output is obtained. This calculation can be completed in linear time in terms
of the number of inputs. The probability-based 0-controllability of each output l,
denoted by C0(l), in the n-bit ripple-carry adder is 1−C1�l�.
Next, we consider the probability-based observability of an input l on an output

si, denoted by O(l, si), in the n-bit ripple-carry adder. O(l, si) is defined as the
probability that a signal change on l will result in a signal change on si. According
to the Boolean function of a 1-bit adder, the change on any input ai, bi, or ci is
always observable at si. Hence, we have:

O�ai	 si�=O�bi	 si�=O�ci	 si�=O�si�

a0 b0

c0

s0

ai bi

ci ci  + 1

si

an  – 1 bn  – 1

cn  – 1 cout

sn – 1

sn

c1
• • • • • •

� FIGURE 2.4

Ripple-carry adder composed of n full-adders.
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where i = 0, 1, � � � , n−1. On the other hand, the probability-based observability
of an input l at stage i on an output sk—O(l, sk), where k > i—depends on the
propagation of the carry output from stage i to the output sk. This calculation is
left as a problem at the end of this chapter.
In general, RTL testability analysis can sometimes lead to more accurate results

than gate-level testability analysis. The reason is that the number of reconvergent
fanouts in an RTL model is usually much less than that in a gate-level model. RTL
testability analysis is also more time efficient than gate-level testability analysis
because an RTL model is much simpler than an equivalent gate-level model; how-
ever, the practical application of RTL testability analysis for testability enhancement
in complex RTL designs remains a challenging research topic.

2.3 DESIGN FOR TESTABILITY BASICS

As discussed in the previous section, the testability of combinational logic decreases
as the level of the combinational logic increases. A more serious issue is that good
testability for sequential circuits is difficult to achieve. Because many internal states
exist, setting a sequential circuit to a required internal state can require a very
large number of input events. Furthermore, identifying the exact internal state of
a sequential circuit from the primary outputs might require a very long checking
experiment. Hence, a more structured approach for testing designs that contain
a large amount of sequential logic is required as part of a methodical design for
testability (DFT) approach [Williams 1983].
Initially, many ad hoc techniques were proposed for improving testability. These

techniques relied on making local modifications to a circuit in a manner that was
considered to result in testability improvement. While ad hoc DFT techniques do
result in some tangible testability improvement, their effects are local and not
systematic. Furthermore, these techniques are not methodical, in the sense that they
have to be repeated differently on new designs, often with unpredictable results.
Due to the ad hoc nature, it is also difficult to predict how long it would take to
implement the required DFT features.
The structured approach for testability improvement was introduced to allow

DFT engineers to follow a methodical process for improving the testability of a
design. A structured DFT technique can be easily incorporated and budgeted for as
part of the design flow and can yield the desired results. Furthermore, structured
DFT techniques are much easier to automate. To date, electronic design automa-
tion (EDA) vendors have been able to provide sophisticated DFT tools to simplify
and speed up DFT tasks. Scan design, which is the main topic in this chapter, has
been found to be one of the most effective structured DFT methodologies for testa-
bility improvement. Not only can scan design achieve the targeted fault coverage
goal, but it also makes DFT implementation in scan design manageable. In the
following two subsections, we briefly introduce a few typical ad hoc DFT tech-
niques, followed by a detailed description of the structured DFT approach, focusing
specifically on scan design.
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2.3.1 Ad Hoc Approach
The ad hoc approach involves using a set of design practice and modification
guidelines for testability improvement. Ad hoc DFT techniques typically involve
applying good design practices learned through experience or replacing a bad design
practice with a good one. Table 2.5 lists some typical ad hoc techniques. In this
subsection, we describe test point insertion, which is one of the most widely used
ad hoc techniques. A few other techniques are further described in Section 2.6.
Additional ad hoc techniques can be found in [Abramovici 1994].

TABLE 2.5 � Typical Ad hoc DFT Techniques

A1 Insert test points

A2 Avoid asynchronous set/reset for storage elements

A3 Avoid combinational feedback loops

A4 Avoid redundant logic

A5 Avoid asynchronous logic

A6 Partition a large circuit into small blocks

2.3.1.1 Test Point Insertion

Test point insertion (TPI) is a commonly used ad hoc DFT technique for improv-
ing the controllability and observability of internal nodes. Testability analysis is
typically used to identify the internal nodes where test points should be inserted,
in the form of control or observation points.
Figure 2.5 shows an example of observation point insertion for a logic circuit

with three low-observability nodes. OP2 shows the structure of an observation point
that is composed of a multiplexer (MUX) and a D flip-flop. A low-observability node
is connected to the 0 port of the MUX in an observation point, and all observation
points are serially connected into an observation shift register using the 1 port of
the MUX. An SE signal is used for MUX port selection. When SE is set to 0 and
the clock CK is applied, the logic values of the low-observability nodes are captured
into the D flip-flops. When SE is set to 1, the D flip-flops within OP1, OP2, and
OP3 operate as a shift register, allowing us to observe the captured logic values
through OP_output during sequential clock cycles. As a result, the observability of
the circuit nodes is greatly improved.
Figure 2.6 shows an example of control point insertion for a logic circuit with

three low-controllability nodes. CP2 shows the structure of a control point (CP)
that is composed of a MUX and a D flip-flop. The original connection at a low-
controllability node is cut, and a MUX is inserted between the source and destina-
tion ends. During normal operation, the test mode (TM) is set to 0 so that the value
from the source end drives the destination end through the 0 port of the MUX.
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During test, TM is set to 1 so that the value from the D flip-flop drives the destina-
tion end through the 1 port of the MUX. The D flip-flops in OP1, OP2, and OP3 are
designed to form a shift register so the required values can be shifted into the flip-
flops using CP_input and used to control the destination ends of low-controllability
nodes. As a result, the controllability of the circuit nodes is dramatically improved.
This, however, results in additional delay to the logic path. Hence, care must be
taken not to insert control points on a critical path. Furthermore, it is preferable
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to add a scan point, which is a combination of a control point and an observation
point, instead of a control point, as this allows us to observe the source end as well.
Some other test point designs are described in [Abramovici 1994] and [Nadeau-

Dostie 2000]. In addition, test points can be shared among multiple internal nodes;
for example, a network of XOR gates can be used to merge a few low-observability
nodes together to share one observation point. This can potentially reduce the area
overhead, although in some cases it might increase routing difficulty.

2.3.2 Structured Approach
The structured DFT approach attempts to improve the overall testability of a circuit
with a test-oriented design methodology [Williams 1983] [McCluskey 1986]. This
approach is methodical and systematic with much more predictable results.
Scan design, the most widely used structured DFT methodology, attempts to

improve testability of a circuit by improving the controllability and observability of
storage elements in a sequential design. Typically, this is accomplished by convert-
ing the sequential design into a scan design with three modes of operation: normal
mode, shift mode, and capture mode. Circuit operations with associated clock
cycles conducted in these three modes are referred to as normal operation, shift
operation, and capture operation, respectively.
In normal mode, all test signals are turned off, and the scan design operates in

the functional configuration. In both shift and capture modes, a test mode signal
TM is often used to turn on all test-related fixes that are necessary to simplify the
test, debug, and diagnosis tasks, improve fault coverage, and guarantee the safe
operation of the circuit under test. These circuit modes and operations are distin-
guished using additional test signals or test clocks. The details are described in the
following sections.
In order to illustrate how scan design works, consider the sequential circuit

shown in Figure 2.7. This circuit contains combinational logic and three D flip-flops.
Assume that a stuck-at fault f in the combinational logic requires the primary input
X3, flip-flop FF2, and flip-flop FF3 to be set to 0, 1, and 0, respectively, to capture
the fault effect into FF1. Because the values stored in FF2 and FF3 are not directly
controllable from the primary inputs, a long sequence of operations may have to
be applied in order to set FF2 and FF3 to the required values. Furthermore, in order
to observe the fault effect on the captured value in flip-flop FF1, a long checking
experiment may be required to propagate the value of FF1 to a primary output.
From this example, it can be seen that the main difficulty in testing a sequential
circuit stems from the fact that it is difficult to control and observe the internal
state of the circuit.
Scan design, whose concept is illustrated in Figure 2.8, attempts to ease this

difficulty by providing external access to selected storage elements in a design. This
is accomplished by first converting selected storage elements in the design into scan
cells and then stitching them together to form one or more shift registers, called
scan chains. In the scan design illustrated in Figure 2.8, the n storage elements are
now configured as a shift register in shift mode. Any test stimulus and test response
can now be shifted into and out of the n scan cells in n clock cycles, respectively,
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Scan design concept.

without having to resort to applying an exponential number of clock cycles to force
all storage elements to a desired internal state. Hence, the task of detecting fault f
in Figure 2.7 becomes a simple matter of: (1) switching to shift mode and shifting
in the desired test stimulus, 1 and 0, to FF2 and FF3, respectively; (2) driving a 0
onto primary input X3; (3) switching to capture mode and applying one clock pulse
to capture the fault effect into FF1; and, finally, (4) switching back to shift mode
and shifting out the test response stored in FF1, FF2, and FF3 for comparison with
the expected response.
Because scan design provides access to internal storage elements, test generation

complexity is reduced. In the following two sections, a number of popular scan cell
designs and scan architectures for supporting scan design are described in more
detail.
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2.4 SCAN CELL DESIGNS

As mentioned in the previous section, in general, a scan cell has two different
input sources that can be selected. The first input, data input, is driven by the
combinational logic of a circuit, while the second input, scan input, is driven by
the output of another scan cell in order to form one or more shift registers called
scan chains. These scan chains are made externally accessible by connecting the
scan input of the first scan cell in a scan chain to a primary input and the output
of the last scan cell in a scan chain to a primary output.
Because there are two input sources in a scan cell, a selection mechanism must

be provided to allow a scan cell to operate in two different modes: normal/capture
mode and shift mode. In normal/capture mode, data input is selected to update
the output. In shift mode, scan input is selected to update the output. This makes
it possible to shift in an arbitrary test pattern to all scan cells from one or more
primary inputs while shifting out the contents of all scan cells through one or more
primary outputs. In this section, we describe three widely used scan cell designs:
muxed-D scan, clocked-scan, and level-sensitive scan design (LSSD).

2.4.1 Muxed-D Scan Cell
The D storage element is one of the most widely used storage elements in logic
design. Its basic function is to pass a logic value from its input to its output when a
clock is applied. A D flip-flop is an edge-triggered D storage element, and a D latch
is a level-sensitive D storage element. The most widely used scan cell replacement
for the D storage element is the muxed-D scan cell. Figure 2.9a shows an edge-
triggered muxed-D scan cell design. This scan cell is composed of a D flip-flop
and a multiplexer. The multiplexer uses a scan enable (SE) input to select between
the data input (DI) and the scan input (SI).
In normal/capture mode, SE is set to 0. The value present at the data input DI is

captured into the internal D flip-flop when a rising clock edge is applied. In shift
mode, SE is set to 1. The SI is now used to shift in new data to the D flip-flop while
the content of the D flip-flop is being shifted out. Sample operation waveforms are
shown in Figure 2.9b.
Figure 2.10 shows a level-sensitive/edge-triggered muxed-D scan cell design,

which can be used to replace a D latch in a scan design. This scan cell is com-
posed of a multiplexer, a D latch, and a D flip-flop. Again, the multiplexer uses a
scan enable input SE to select between the data input DI and the scan input SI;
however, in this case, shift operation is conducted in an edge-triggered manner,
while normal operation and capture operation are conducted in a level-sensitive
manner.
Major advantages of using muxed-D scan cells are their compatibility to modern

designs using single-clock D flip-flops, and the comprehensive support provided by
existing design automation tools. The disadvantage is that each muxed-D scan cell
adds a multiplexer delay to the functional path.
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Level-sensitive/edge-triggered muxed-D scan cell design.

2.4.2 Clocked-Scan Cell
An edge-triggered clocked-scan cell can also be used to replace a D flip-flop in a
scan design [McCluskey 1986]. Similar to a muxed-D scan cell, a clocked-scan cell
also has a data input DI and a scan input SI; however, in the clocked-scan cell,
input selection is conducted using two independent clocks, data clock DCK and
shift clock SCK, as shown in Figure 2.11a.
In normal/capture mode, the data clock DCK is used to capture the value present

at the data input DI into the clocked-scan cell. In shift mode, the shift clock SCK
is used to shift in new data from the scan input SI into the clocked-scan cell, while
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Clocked-scan cell design and operation: (a) clocked-scan cell, and (b) sample waveforms.

the current content of the clocked-scan cell is being shifted out. Sample operation
waveforms are shown in Figure 2.11b.
As in the case of muxed-D scan cell design, a clocked-scan cell can also be made

to support scan replacement of a D latch. The major advantage of using a clocked-
scan cell is that it results in no performance degradation on the data input. The
major disadvantage, however, is that it requires additional shift clock routing.

2.4.3 LSSD Scan Cell
While muxed-D scan cells and clocked-scan cells are generally used for edge-
triggered, flip-flop-based designs, an LSSD scan cell is used for level-sensitive,
latch-based designs [Eichelberger 1977] [Eichelberger 1978] [DasGupta 1982].
Figure 2.12a shows a polarity-hold shift register latch (SRL) design described in
[Eichelberger 1977] that can be used as an LSSD scan cell. This scan cell contains
two latches, a master two-port D latch L1 and a slave D latch L2. Clocks C, A, and B
are used to select between the data input D and the scan input I to drive +L1 and
+L2. In an LSSD design, either +L1 or +L2 can be used to drive the combinational
logic of the design.
In order to guarantee race-free operation, clocks A, B, and C are applied in a

nonoverlapping manner. In designs where +L1 is used to drive the combinational
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Polarity-hold SRL design and operation: (a) polarity-hold SRL, and (b) sample waveforms.

logic, the master latch L1 uses the system clock C to latch system data from the data
input D and to output this data onto +L1. In designs where +L2 is used to drive
the combinational logic, clock B is used after clock A to latch the system data from
latch L1 and to output this data onto +L2. In both cases, capture mode uses both
clocks C and B to output system data onto +L2. Finally, in shift mode, clocks A and
B are used to latch scan data from the scan input I and to output this data onto
+L1 and then latch the scan data from latch L1 and to output this data onto +L2,
which is then used to drive the scan input of the next scan cell. Sample operation
waveforms are shown in Figure 2.12b.
The major advantage of using an LSSD scan cell is that it allows us to insert

scan into a latch-based design. In addition, designs using LSSD are guaranteed to
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be race-free, which is not the case for muxed-D scan and clocked-scan designs.
The major disadvantage, however, is that the technique requires routing for the
additional clocks, which increases routing complexity.

2.5 SCAN ARCHITECTURES

In this section, we describe three popular scan architectures. These scan architec-
tures include: (1) full-scan design, where all storage elements are converted into scan
cells and combinational ATPG is used for test generation; (2) partial-scan design,
where a subset of storage elements is converted into scan cells and sequential ATPG
is typically used for test generation; and (3) random-access scan design, where a
random addressing mechanism, instead of serial scan chains, is used to provide
direct access to read or write any scan cell.

2.5.1 Full-Scan Design
In full-scan design, all storage elements are replaced with scan cells, which are
then configured as one or more shift registers (also called scan chains) during the
shift operation. As a result, all inputs to the combinational logic, including those
driven by scan cells, can be controlled and all outputs from the combinational logic,
including those driving scan cells, can be observed. The main advantage of full-scan
design is that it converts the difficult problem of sequential ATPG into the simpler
problem of combinational ATPG.
A variation of full-scan design, where a small percentage of storage elements

(sometimes only a few) are not replaced with scan cells, is referred to as almost
full-scan design. These storage elements are often left out of scan design for
performance reasons, such as storage elements that are on critical paths, or for
functional reasons, such as storage elements driven by a small clock domain that
are deemed too insignificant to be worth the additional scan insertion effort. In
this case, these storage elements may result in fault coverage loss.

2.5.1.1 Muxed-D Full-Scan Design

Figure 2.13 shows a sequential circuit example with three D flip-flops. The corre-
sponding muxed-D full-scan circuit is shown in Figure 2.14a. The three D flip-flops,
FF1, FF2, and FF3, are replaced with three muxed-D scan cells, SFF1, SFF2, and
SFF3, respectively.
In Figure 2.14a, the data input DI of each scan cell is connected to the output of

the combinational logic as in the original circuit. To form a scan chain, the scan
inputs SI of SFF2 and SFF3 are connected to the outputsQ of the previous scan cells,
SFF1 and SFF2, respectively. In addition, the scan input SI of the first scan cell SFF1

is connected to the primary input SI, and the output Q of the last scan cell SFF3

is connected to the primary output SO. Hence, in shift mode, SE is set to 1, and
the scan cells operate as a single scan chain, which allows us to shift in any com-
bination of logic values into the scan cells. In capture mode, SE is set to 0, and the
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scan cells are used to capture the test response from the combinational logic when
a clock is applied.
In general, combinational logic in a full-scan circuit has two types of inputs:

primary inputs (PIs) and pseudo primary inputs (PPIs). Primary inputs refer to
the external inputs to the circuit, while pseudo primary inputs refer to the scan
cell outputs. Both PIs and PPIs can be set to any required logic values. The only
difference is that PIs are set directly in parallel from the external inputs, and PPIs
are set serially through scan chain inputs. Similarly, the combinational logic in a
full-scan circuit has two types of outputs: primary outputs (POs) and pseudo pri-
mary outputs (PPOs). Primary outputs refer to the external outputs of the circuit,
while pseudo primary outputs refer to the scan cell inputs. Both POs and PPOs
can be observed. The only difference is that POs are observed directly in parallel
from the external outputs, while PPOs are observed serially through scan chain
outputs.
Figure 2.14b shows a timing diagram to illustrate how the full-scan design is

utilized to test the circuit shown in Figure 2.14a for stuck-at faults. During test, the
test mode signal TM (not shown) is set to 1, in order to turn on all test-related fixes
(see Table 2.6). Two test vectors, V1 and V2, are applied to the circuit. In order to
apply V1, SE is first set to 1 to operate the circuit in shift mode (marked by S in
Figure 2.14b), and three clock pulses are applied to the clock CK. As a result, the
PPI portion of V1, denoted by V1:PPI, is now applied to the combinational logic. A
hold cycle is introduced between the shift and capture operations. During the hold
cycle, SE is switched to 0 such that the muxed-D scan cells are operated in capture
mode, and the PI portion of V1, denoted by V1:PI, is applied. The purpose of the
hold cycle is to apply the PI portion of V1 and to give enough time for the globally
routed SE signal to settle from 1 to 0. At the end of the hold cycle, the complete
test vector is now applied to the combinational logic, and the logic values at the
primary outputs PO are compared with their expected values. Next, the capture
operation is conducted (marked by C in Figure 2.14b) by applying one clock pulse
to the clock CK in order to capture the test response of the combinational logic to
V1 into the scan cells. A second hold cycle is added in order to switch SE back to
1 and to observe the PPO value of the last scan cell at the SO output. Next, a new
shift operation is conducted to shift out the test response captured in the scan cells
serially through SO, while shifting in V2:PPI, which is the PPI portion of the next
test pattern V2.

TABLE 2.6 � Circuit Operation Type and Scan Cell Mode

Circuit Operation Type Scan Cell Mode TM SE

Normal Normal 0 0

Shift operation Shift 1 1

Capture operation Capture 1 0
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2.5.1.2 Clocked Full-Scan Design

Figure 2.15 shows a clocked full-scan circuit implementation of the circuit given
in Figure 2.13. Clocked-scan cells are shown in Figure 2.11a. This clocked full-scan
circuit is tested using shift and capture operations, similar to a muxed-D full-scan
circuit. The main difference is how these two operations are distinguished. In a
muxed-D full-scan circuit, a scan enable signal SE is used, as shown in Figure 2.14a.
In the clocked full-scan circuit shown in Figure 2.15, these two operations are
distinguished by properly applying the two independent clocks SCK andDCK during
shift mode and capture mode, respectively.

2.5.1.3 LSSD Full-Scan Design

It is possible to implement LSSD full-scan designs, based on the polarity-hold SRL
design shown in Figure 2.12a, using either a single-latch design or a double-
latch design. In single-latch design [Eichelberger 1977], the output port +L1 of
the master latch L1 is used to drive the combinational logic of the design. In this
case, the slave latch L2 is used only for scan testing. Because LSSD designs use
latches instead of flip-flops, at least two system clocks C1 and C2 are required to
prevent combinational feedback loops from occurring. In this case, combinational
logic driven by the master latches of the first system clock C1 are used to drive the
master latches of the second system clock C2, and vice versa. In order for this to
work, the system clocks C1 and C2 should be applied in a nonoverlapping fashion.
Figure 2.16a shows an LSSD single-latch design.
Figure 2.16b shows an example of LSSD double-latch design [DasGupta 1982].

In normal mode, the C1 and C2 clocks are used in a nonoverlapping manner,
where the C2 clock is the same as the B clock. The testing of an LSSD full-scan
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LSSD designs: (a) LSSD single-latch design, and (b) LSSD double-latch design.

circuit is conducted using shift and capture operations, similar to a muxed-D
full-scan circuit. The main difference is how these two operations are distin-
guished. In a muxed-D full-scan circuit, a scan enable signal SE is used, as shown
in Figure 2.14a. In an LSSD full-scan circuit, these two operations are distin-
guished by properly applying nonoverlapping clock pulses to clocks C1, C2, A,
and B. During the shift operation, clocks A and B are applied in a nonoverlap-
ping manner, and the scan cells SRL1 ∼ SRL3 form a single scan chain from SI
to SO. During the capture operation, clocks C1 and C2 are applied in a nonover-
lapping manner to load the test response from the combinational logic into the
scan cells.
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As mentioned in Section 2.4.3, the operation of a polarity-hold SRL is race-free
if clocks C and B as well as A and B are nonoverlapping. This characteristic is
used to implement LSSD circuits that are guaranteed to have race-free operation
in normal mode as well as in test mode. The required design rules [Eichelberger
1977] [Eichelberger 1978] are briefly summarized below:

� All storage elements must be polarity-hold latches.

� The latches are controlled by two or more nonoverlapping clocks such that
any two latches where one feeds the other cannot have the same clock.

� A set of clock primary inputs must exist from which the clock ports of all SRLs
are controlled either through a single clock tree or through logic that is gated
by SRLs and/or non-clock primary inputs. In addition, the following three
conditions should be satisfied: (1) all clock inputs to SRLs must be inactive
when clock PIs are inactive, (2) the clock input to any SRL must be controlled
from one or more clock primary inputs, and (3) no clock can be ANDed with
another clock or its complement.

� Clock primary inputs must not feed the data inputs to SRLs either directly or
through combinational logic.

� Each system latch must be part of an SRL, and each SRL must be part of a
scan chain.

� A scan state exists under the following conditions: (1) each SRL or scan output
SO is a function of only the preceding SRL or scan input SI in its scan chain
during the scan operation, and (2) all clocks except the shift clocks are disabled
at the SRL clock inputs.

2.5.2 Partial-Scan Design
Unlike full-scan design where all storage elements in a circuit are replaced with
scan cells, partial-scan design only requires that a subset of storage elements be
replaced with scan cells and connected into scan chains [Trischler 1980] [Abadir
1985] [Agrawal 1987] [Ma 1988] [Cheng 1989] [Saund 1997]. Partial-scan design
was used in the industry long before full-scan design became the dominant scan
architecture. It can also be implemented using muxed-D scan cells, clocked-scan
cells, or LSSD scan cells. Depending on the structure of a partial-scan design, either
combinational ATPG or sequential ATPG, both of which are described in Chapter 4,
should be used.
An example of muxed-D partial-scan design is shown in Figure 2.17. In this

example, a scan chain is constructed with two scan cells SFF1 and SFF3, while flip-
flop FF2 is left out. Because only one clock is used, typically sequential ATPG has
to be used to control and observe the value of the non-scan flip-flop FF2 through
SFF1 and SFF3 in order to detect faults related to FF2. This increases test generation
complexity for partial-scan designs [Cheng 1995]. It is possible to reduce the test
generation complexity by splitting the single clock into two separate clocks, one for
controlling all scan cells, the other for controlling all non-scan storage elements;
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Partial-scan design.

however, this may result in the additional complexity of routing two separate clock
trees during physical implementation.
In order to reduce the test generation complexity, many approaches have been

proposed for determining the subset of storage elements for scan cell replacement.
Scan cell selection can be conducted by using a functional partitioning approach, a
pipelined or feed-forward partial-scan design approach, or a balanced partial-scan
design approach.
In the functional partitioning approach, a circuit is viewed as being composed

of a data path portion and a control portion. Typically, because storage elements
on the data path portion cannot afford too much delay increase, especially when
replaced with muxed-D scan cells, they are left out of the scan cell replacement
process. On the other hand, storage elements in the control portion can be replaced
with scan cells. This approach makes it possible to improve fault coverage while
limiting the performance degradation due to scan design.
In the pipelined or feed-forward partial-scan design approach [Cheng 1990],

a subset of storage elements to be replaced with scan cells is selected to make
the sequential circuit feedback-free. This is accomplished by selecting the storage
elements to break all sequential feedback loops so that test generation complexity
is reduced and the silicon area overhead is kept low. In order to select these storage
elements, a structure graph is first constructed for the sequential circuit, where each
vertex represents a storage element and each directed edge from vertex vi to vertex
vj represents a combinational logic path from vi to vj. For a feedback-free sequential
circuit, the structure graph is a directed acyclic graph, where the maximum level
in the structure graph is referred to as sequential depth. On the other hand, the
structure graph of a sequential circuit containing feedback loops is a directed cyclic
graph (DCG). Figure 2.18a shows a block diagram of a feedback-free sequential
circuit; its corresponding structure graph is shown in Figure 2.18b with a sequential
depth of 3.
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Sequential circuit and its structure graph: (a) sequential circuit, and (b) structure graph.

The sequential depth of a circuit is equal to the maximum number of clock cycles
that must be applied in order to control and observe values to and from all non-
scan storage elements. In a full-scan design, because all scan cells can be controlled
and observed directly in shift mode, the sequential depth of a full-scan circuit is
0. Similarly, the sequential depth of a combinational logic block is also 0. In a
partial-scan design, replacing a storage element with a scan cell is equivalent to
removing its corresponding vertex from the structure graph.
In general, the difficulty of sequential ATPG is largely due to the existence

of sequential feedback loops. By breaking all feedback loops, test generation for
feedback-free sequential circuits becomes computationally efficient; hence, the scan
cell selection problem can be expressed as finding the smallest set of vertices to
break all feedback loops in a structure graph. The selected vertices are the storage
elements that must be replaced with scan cells in order to produce a pipelined or
feed-forward partial-scan design; however, a design can contain many self-loops
or small loops. Breaking all feedback loops may result in large area overhead.
The authors of [Cheng 1990] and [Agrawal 1995] have demonstrated that breaking
only large loops, while keeping self-loops or small loops, can produce equally good
results. As reported in [Cheng 1990], fault coverage as high as over 95% can be
achieved by replacing roughly 25 to 50% of all storage elements with scan cells for
a small design.
In the balanced partial-scan design approach, a target sequential depth (e�g�,

3 to 5) is used to further simplify the test generation process for the pipelined or
feed-forward partial-scan design. In this approach, additional vertices are removed
from the structure graph by replacing their corresponding storage elements with
scan cells so the target sequential depth is met. By keeping the sequential depth
under a small limit, one can apply combinational ATPG using multiple time frames
to further increase the fault coverage of the design [Gupta 1990].
To summarize, the main advantage of partial-scan design is that it reduces silicon

area overhead and performance degradation. The main disadvantage is that it can
result in lower fault coverage and longer test generation time than a full-scan
design. In practice, functional test vectors often have to be added in order to meet
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the target fault coverage goal. In addition, partial-scan design offers less support
for debug, diagnosis, and failure analysis.

2.5.3 Random-Access Scan Design
Full-scan design and partial-scan design can be classified as serial scan design, as
test pattern application and test response acquisition are both conducted serially
through scan chains. The major advantage of serial scan design is its low routing
overhead, as scan data is shifted through adjacent scan cells. Its major disadvan-
tage, however, is that individual scan cells cannot be controlled or observed without
affecting the values of other scan cells within the same scan chain. High switching
activities at scan cells can cause excessive test power dissipation, resulting in cir-
cuit damage, low reliability, or even test-induced yield loss. Random-access scan
(RAS) attempts to alleviate these problems by making each scan cell randomly and
uniquely addressable, similar to storage cells in a random-access memory (RAM).
Traditional RAS design [Ando 1980] is illustrated in Figure 2.19. All scan cells are

organized into a two-dimensional array, where they can be accessed individually
for observing (reading) or updating (writing) in any order. This full-random access
capability is achieved by decoding a full address with a row (X) decoder and a
column (Y ) decoder. A �log2n�-bit address shift register, where n is the total number
of scan cells, is used to specify which scan cell to access.
The RAS design significantly reduces test power dissipation and simplifies the

process of performing delay tests because two independent test vectors can be
applied consecutively. Its major disadvantage, however, is high overhead in scan
cell design and routing required to set up the addressing mechanism. In addition,
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there is no guarantee that the test application time can be reduced if a large number
of scan cells have to be updated for each test vector or the addresses of scan cells
to be consecutively accessed have little overlap.
Recently, the progressive random-access scan (PRAS) design [Baik 2005] was

proposed in an attempt to alleviate the problems associated with the traditional
RAS design. The PRAS scan cell, as shown in Figure 2.20a, has a structure similar
to that of a static random access memory (SRAM) cell or a grid-addressable latch
[Susheel 2002], which has significantly smaller area and routing overhead than the
traditional scan cell design [Ando 1980]. In normal mode, all horizontal row enable
RE signals are set to 0, forcing each scan cell to act as a normal D flip-flop. In test
mode, to capture the test response from D, the RE signal is set to 0 and a pulse is
applied on clock , which causes the value on D to be loaded into the scan cell. To
read out the stored value of the scan cell, clock  is held at 1, the RE signal for the
selected scan cell is set to 1, and the content of the scan cell is read out through
the bidirectional scan data signals SD and SD. To write or update a scan value into
the scan cell, clock  is held at 1, the RE signal for the selected scan cell is set to 1,
and the scan value and its complement are applied on SD and SD, respectively.

The PRAS architecture is shown in Figure 2.20b, where rows are enabled in a
fixed order, one at a time, by rotating a 1 in the row enable shift register. That is, it is
only necessary to supply a column address to specify which scan cell in an enabled
row to access. The length of the column address, which is �log2m� for a circuit with
m columns, is considerably shorter than a full (row and column) address; therefore,
the column address is provided in parallel in one clock cycle instead of providing a
full address in multiple clock cycles. This reduces test application time. In order to
minimize the need to shift out test responses, the scan cell outputs are compressed
with a multiple-input signature register (MISR). More details on MISRs can be
found in Section 5.4.3 of Chapter 5.
The test procedure of the PRAS design is shown in Figure 2.20c. For each test

vector, the test stimulus application and test response compression are conducted
in an interleaving manner when the test mode signal TM is enabled. That is, all
scan cells in a row are first read into the MISR for compression simultaneously,
and then each scan cell in the row is checked and updated if necessary. Repeating
this operation for all rows compresses the test response to the previous test vector
into the MISR and sets the next test vector to all scan cells. Next, TM is disabled
and the normal clock is applied to conduct test response acquisition. It can be
seen that the smaller the number of scan cells to be updated for each row, the
shorter the test application time. This can be achieved by reducing the Hamming
distance between the next test vector and the test response to the previous test
vector. Possible solutions include test vector reordering and test vector modification
[Baik 2004] [Baik 2005].
It was reported in [Baik 2005] that on average, PRAS design achieved a 37.1%,

64.9%, 85.9%, and 99.5% reduction in test data volume, test application time, peak
switching activity, and average switching activity, respectively, when compared with
full scan design for several benchmark circuits. The costs were a 25.6% increase in
routing overhead and an 11.0% increase in area overhead. Similar results with a
different RAS architecture were reported in [Mudlapur 2005]. These results indicate
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for each test vector vi (i = 1, 2, ···, N ) {
 /* Test stimulus application */
 /* Test response compression */
 enable TM;
 for each row rj ( j = 1, 2, ···, m ) {
  read all scan cells in r j / update MISR;
  for each scan cell SC in rj
  /* v

 
(SC): current value of SC */

  /* vi (SC): value of SC in vi  */
  if v (SC) ≠ vi (SC)
  update SC;
 }
 /* Test response acquisition */
 disable TM;
 apply the normal clock;
 }
scan-out MISR as the final response;

(c)

� FIGURE 2.20

Progressive random-access scan design: (a) PRAS scan cell design, (b) PRAS architecture, and (c) PRAS
test procedure.
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that RAS design achieves significant reduction in test power dissipation, as well
as a good reduction in test data volume and test application time. As test power
and delay fault testing are becoming crucial issues in nanometer designs, the RAS
approach represents a promising alternative to serial scan design and thus deserves
further research.

2.6 SCAN DESIGN RULES

In order to implement scan into a design, the design must comply with a set
of scan design rules [Cheung 1996]. In addition, a set of design styles must be
avoided, as they may limit the fault coverage that can be achieved. A number of
scan design rules that are required to successfully utilize scan and achieve the
target fault coverage goal are listed in Table 2.7. In this table, a possible solution
is recommended for each scan design rule violation. Scan design rules that are
labeled “avoid” must be fixed throughout the shift and capture operations. Scan
design rules that are labeled “avoid during shift” must be fixed only during the
shift operation. Detailed descriptions are provided for some critical scan design
rules.

TABLE 2.7 � Typical Scan Design Rules

Design Style Scan Design Rule Recommended Solution

Tristate buses Avoid during shift Fix bus contention during shift

Bidirectional I/O ports Avoid during shift Force to input or output
mode during shift

Gated clocks (muxed-D full-scan) Avoid during shift Enable clocks during shift

Derived clocks (muxed-D full-scan) Avoid Bypass clocks

Combinational feedback loops Avoid Break the loops

Asynchronous set/reset signals Avoid Use external pins

Clocks driving data Avoid Block clocks to the data portion

Floating buses Avoid Add bus keepers

Floating inputs Not recommended Tie to VDD or ground

Cross-coupled NAND/NOR gates Not recommended Use standard cells

Non-scan storage elements Not recommended
for full-scan design

Initialize to known states,
bypass, or make transparent
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2.6.1 Tristate Buses
Bus contention occurs when two bus drivers force opposite logic values onto a
tristate bus, which can damage the chip. Bus contention is designed not to happen
during the normal operation and is typically avoided during the capture operation,
as advanced ATPG programs can generate test patterns that guarantee only one
bus driver controls a bus. However, during the shift operation, no such guarantees
can be made; therefore, certain modifications must be made to each tristate bus in
order to ensure that only one driver controls the bus. For example, for the tristate
bus shown in Figure 2.21a, which has three bus drivers (D1, D2, and D3), circuit
modification can be made as shown in Figure 2.21b, where EN1 is forced to 1 to
enable the D1 bus driver, while EN2 and EN3 are set to 0 to disable both D2 and D3

bus drivers, when SE=1.
In addition to bus contention, a bus without a pull-up, pull-down, or bus keeper

may result in fault coverage loss. The reason is that the value of a floating bus is
unpredictable, which makes it difficult to test for a stuck-at-1 fault at the enable
signal of a bus driver. To solve this problem, a pull-up, pull-down, or bus keeper
can be added. The bus keeper added in Figure 2.21b is an example of fixing this
problem by forcing the bus to preserve the logic value driven onto it prior to when
the bus becomes floating.

2.6.2 Bidirectional I/O Ports
Bidirectional I/O ports are used in many designs to increase the data transfer band-
width. During the capture operation, a bidirectional I/O port is usually specified as
being either input or output; however, conflicts may occur at a bidirectional I/O
port during the shift operation. An example is shown in Figure 2.22a, where a bidi-
rectional I/O port is used as an input and the direction control is provided by the
scan cell. Because the output value of the scan cell can vary during the shift opera-
tion, the output tristate buffer may become active, resulting in a conflict if BO and
the I/O port driven by the tester have opposite logic values. Figure 2.22b shows an
example of how to fix this problem by forcing the tristate buffer to be inactive when
SE=1, and the tester is used to drive the I/O port during the shift operation. During
the capture operation, the applied test vector determines whether a bidirectional
I/O port is used as input or output and controls the tester appropriately.

2.6.3 Gated Clocks
Clock gating is a widely used design technique for reducing power by elimi-
nating unnecessary storage element switching activity. An example is shown in
Figure 2.23a. The clock enable signal (EN) is generated at the rising edge of CK
and is loaded into the latch LAT at the failing edge of CK to become CEN. CEN is
then used to enable or disable clocking for the flip-flop DFF. Although clock gating
is a good approach for reducing power consumption, it prevents the clock ports
of some flip-flops from being directly controlled by primary inputs. As a result,
modifications are necessary to allow the scan shift operation to be conducted on
these storage elements.



72 VLSI Test Principles and Architectures

CK

Q

SFF1

DI
SI

SE

EN2

EN 3

Bus

DI

Q

SFF2

SI
SE

DI

Q

SFF3

SI

SESE

SI

EN1

D1

D2

D3

Functional
enable
logic

(a)

SFF1

SFF2

EN1

EN2

Functional
enable
 logic

CK

DI

QSI

SE

Bus

DI

QSI
SE

DI
Q

SFF3

SI

SESE

SI EN3

D1

D2

D3

Bus keeper

(b)

� FIGURE 2.21

Fixing bus contention: (a) original circuit, and (b) modified circuit.
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Fixing gated clocks: (a) original circuit, and (b) modified circuit.

The clock gating function should be disabled at least during the shift operation.
Figure 2.23b shows how the clock gating can be disabled. In this example, an OR
gate is used to force CEN to 1 using either the test mode signal TM or the scan
enable signal SE. If TM is used, CEN will be held at 1 during the entire scan test
operation (including the capture operation). This will make it impossible to detect
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faults in the clock gating logic, causing fault coverage loss. If SE is used, CEN
will be held at 1 only during the shift operation but will be released during the
capture operation; hence, higher fault coverage can be achieved but at the expense
of increased test generation complexity.

2.6.4 Derived Clocks
A derived clock is a clock signal generated internally from a storage element or
a clock generator, such as phase-locked loop (PLL), frequency divider, or pulse
generator. Because derived clocks are not directly controllable from primary inputs,
in order to test the logic driven by these derived clocks, these clock signals must be
bypassed during the entire test operation. An example is illustrated in Figure 2.24a,
where the derived clock ICK drives the flip-flops DFF1 and DFF2. In Figure 2.24b, a
multiplexer selects CK, which is a clock directly controllable from a primary input,
to drive DFF1 and DFF2 during the entire test operation when TM=1.

2.6.5 Combinational Feedback Loops
Depending on whether the number of inversions on a combinational feedback loop
is even or odd, it can introduce either sequential behavior or oscillation into a
design. Because the value stored in the loop cannot be controlled or determined
during test, this can lead to an increase in test generation complexity or fault cov-
erage loss. Because combinational feedback loops are not a recommended design
practice, the best way to fix this problem is to rewrite the RTL code generating
the loop. In cases where this is not possible, a combinational feedback loop, as
shown in Figure 2.25a, can be fixed by using a test mode signal TM. This signal
permanently disables the loop throughout the entire shift and capture operations
by inserting a scan point (i�e�, a combination of control and observation points) to
break the loop, as shown in Figure 2.25b.
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Fixing derived clocks: (a) original circuit, and (b) modified circuit.
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Fixing combinational feedback loops: (a) original circuit, and (b) modified circuit.

2.6.6 Asynchronous Set/Reset Signals
Asynchronous set/reset signals of scan cells that are not directly controlled from
primary inputs can prevent scan chains from shifting data properly. In order to
avoid this problem, it is required that these asynchronous set/reset signals be forced
to an inactive state during the shift operation. These asynchronous set/reset signals
are typically referred to as being sequentially controlled. An example of a sequen-
tially controlled reset signal RL is shown in Figure 2.26a. A method for fixing this
asynchronous reset problem using an OR gate with an input tied to the test mode
signal TM is shown in Figure 2.26b. When TM=1, the asynchronous reset signal
RL of scan cell SFF2 is permanently disabled during the entire test operation.

The disadvantage of using the test mode signal TM to disable asynchronous
set/reset signals is that faults within the asynchronous set/reset logic cannot be
tested. Using the scan enable signal SE instead of TM makes it possible to detect
faults within the asynchronous set/reset logic, because during the capture operation
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Fixing asynchronous set/reset signals: (a) original circuit, and (b) modified circuit.
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�SE = 0� these asynchronous set/reset signals are not forced to the inactive state.
However, this might result in mismatches due to race conditions between the clock
and asynchronous set/reset ports of the scan cells. A better solution is to use an
independent reset enable signal RE to replace TM and to conduct test generation in
two phases. In the first phase, RE is set to 1 during both shift and capture operations
to test data faults through the DI port of the scan cells while all asynchronous
set/reset signals are held inactive. In the second phase, RE is set to 1 during the
shift operation and 0 during the capture operation without applying any clocks to
test faults within the asynchronous set/reset logic.

2.7 SCAN DESIGN FLOW

Although conceptually scan design is not difficult to understand, the practice of
inserting scan into a design in order to turn it into a scan design requires careful
planning. This often requires many circuit modifications where care must be taken
in order not to disrupt the normal functionality of the circuit. In addition, many
physical implementation details must be taken into consideration in order to guar-
antee that scan testing can be performed successfully. Finally, a good understanding
of scan design, with respect to which scan cell design and scan architecture to use,
is required in order to better plan in advance which scan design rules must be com-
plied with and which debug and diagnose features must be included to facilitate
simulation, debug, and fault diagnosis [Crouch 1999].
The shift operation and the capture operation are the two key scan operations

where care needs to be taken in order to guarantee that the scan design can oper-
ate properly. The shift operation, which is common to all scan designs, must be
designed to perform successfully, regardless of the clock skew that exists within the
same clock domain and between different clock domains. The capture operation is
also common to all scan designs, albeit with more stringent scan design rules in
some scan designs as compared to others. It must be designed such that the ATPG
tool is able to correctly and deterministically predict the expected responses of the
generated test patterns. This requires a basic understanding of the logic simulation
and fault models used during ATPG, as well as the clocking scheme used during
the capture operation.
A typical design flow for implementing scan in a sequential circuit is shown in

Figure 2.27. In this figure, scan design rule checking and repair are first performed
on a presynthesis RTL design or on a postsynthesis gate-level design, typically
referred to as a netlist. The resulting design after scan repair is referred to as a
testable design. Once all scan design rule violations are identified and repaired,
scan synthesis is performed to convert the testable design into a scan design.
The scan design now includes one or more scan chains for scan testing. A scan
extraction step is used to further verify the integrity of the scan chains and to
extract the final scan architecture of the scan chains for ATPG. Finally, scan
verification is performed on both shift and capture operations in order to verify
that the expected responses predicted by the zero-delay simulator used in test
generation or fault simulation match with the full-timing behavior of the circuit
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Typical scan design flow.

under test. The steps shown in the scan design flow are described in the following
subsections in more detail.

2.7.1 Scan Design Rule Checking and Repair
The first step in implementing a scan design is to identify and repair all scan
design rule violations in order to convert the original design into a testable design.
Repairing these violations allows the testable design to meet target fault coverage
requirements and guarantees that the scan design will operate correctly. These
scan design rules were described in the previous section. In addition to these scan
design rules, certain clock control structures may have to be added for at-speed
delay testing. Typically, scan design rule checking is also performed on the scan
design after scan synthesis to confirm that no new violations exist.
Upon successful completion of this step, the testable design must guarantee the

correct shift and capture operations. During the shift operation, all clocks control-
ling scan cells of the design are directly controllable from external pins. The clock
skew between adjacent scan cells must be properly managed in order not to cause
any shift failure. During the capture operation, fixing all scan design rule violations
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should guarantee correctness for data paths that originate and terminate within the
same clock domain. For data paths that originate and terminate in different clock
domains, additional care must be taken in terms of the way the clocks are applied
in order to guarantee the success of the capture operation. This is mainly due to
the fact that the clock skew between different clock domains is typically large.
A data path originating in one clock domain and terminating in another might
result in a mismatch when both clocks are applied simultaneously, and the clock
skew between the two clocks is larger than the data path delay from the originating
clock domain to the terminating clock domain. In order to avoid the mismatch,
the timing governing the relationship of such a data path shown in the following
equation must be observed:

clock skew < data path delay + clock-to-Q delay �originating clock�

If this is not the case, a mismatch may occur during the capture operation. In
order to prevent this from happening, clocks belonging to different clock domains
can be applied sequentially (using the staggered clocking scheme), as opposed to
simultaneously, such that any clock skew that exists between the clock domains
can be tolerated during the test generation process. It is also possible to apply
only one clock during each capture operation using the one-hot clocking scheme.
On the other hand, a design typically contains a number of noninteracting clock
domains. In this case, these clocks can be applied simultaneously, which can reduce
the complexity and final pattern count of the pattern generation and fault simu-
lation process. Clock grouping is a process used to identify all independent or
noninteracting clocks that can be grouped and applied simultaneously.
An example of the clock grouping process is shown in Figure 2.28. This example

shows the results of performing a circuit analysis operation on a testable design
in order to identify all clock interactions, marked with an arrow, where a data
transfer from one clock domain to a different clock domain occurs. As seen in
Figure 2.28, the circuit in this example has seven clock domains (CD1 ∼ CD7) and
five crossing-clock-domain data paths (CCD1 ∼CCD5). From this example, it can be
seen that CD2 and CD3 are independent from each other; hence, their related clocks
can be applied simultaneously during test as CK2. Similarly, clock domains CD4

through CD7 can also be applied simultaneously during test as CK3. Therefore in
this example, three grouped clocks instead of seven individual clocks can be used
to test the circuit during the capture operation.

2.7.2 Scan Synthesis
When all the repairs have been made to the circuit, the scan synthesis flow is com-
menced. The scan synthesis flow converts a testable design into a scan design with-
out affecting the functionality of the original design. Static analysis tools and equiv-
alency checkers, which can compare the logic circuitry of two circuits under certain
constraints, are typically used to verify that this is indeed the case. Depending on
the type of scan cells used and the type of scan architecture implemented, minor
modifications to the scan synthesis flow shown in Figure 2.27 may be necessary.
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Clock grouping example.

During the 1990s, this scan synthesis operation was typically performed using a
separate set of scan synthesis tools, which were applied after the logic synthesis tool
had synthesized a gate-level netlist out of an RTL description of the design. More
recently, these scan synthesis features are being integrated into the logic synthesis
tools, and scan designs are synthesized automatically from the RTL. The process
of performing scan synthesis during logic synthesis is often referred to as one-pass
synthesis or single-pass synthesis. The scan synthesis flow shown in Figure 2.27
includes four separate steps: (1) scan configuration, (2) scan replacement, (3) scan
reordering, and (4) scan stitching. Each of these steps is described below in more
detail.

2.7.2.1 Scan Configuration

Scan configuration describes the initial step in scan chain planning, where the
general structure of the scan design is determined. The main decisions that are
made at this stage include: (1) the number of scan chains used; (2) the types of
scan cells used to implement these scan chains; (3) storage elements to be excluded
from the scan synthesis process; and (4) the way the scan cells are arranged within
the scan chains.
The number of scan chains used is typically determined by analyzing the input

and output pins of the circuit to determine how many pins can be allocated for
the scan use. In order not to increase the number of pins of the circuit, which is
typically limited by the size of the die, scan inputs and outputs are shared with
existing pins during scan testing. In general, the larger the number of scan chains
used, the shorter the time to perform test on the circuit. This is due to the fact
that the maximum length of the scan chains dictates the overall test application
time required to run each test pattern. One limitation that can preclude many scan
chains from being used is the presence of high-speed I/O pads. The addition of any
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wire load to the high-speed I/O pad may adversely affect the timing of the design.
An additional limitation is the number of tester channels available for scan testing.
The second issue regarding the types of scan cells to use typically depends on

the process library. In general, for each type of storage element used, most process
libraries have a corresponding scan cell type that closely resembles the functionality
and timing of the storage element during normal operation.
The third issue relates to which storage elements to exclude from scan synthesis.

This is typically determined by investigating parts of the design where replacing
storage elements with functionally equivalent scan cells can adversely affect timing.
Therefore, storage elements lying on the critical paths of a design where the timing
margin is very tight are often excluded from the scan replacement step, in order to
guarantee that the manufactured device will meet the restricted timing. In addition,
certain parts of a design may be excluded from scan for many different reasons,
including security reasons (e�g�, parts of a circuit that deal with encryption). In
these cases, individual storage element types, individual storage element instances,
or a complete section of the design can be specified as “don’t scan.”
The remaining issue is to determine how the storage elements are arranged within

the scan chains. This typically depends on how the number of clock domains relates
to the number of scan chains in the design. In general, a scan chain is formed out
of scan cells belonging to a single clock domain. For clock domains that contain a
large number of scan cells, several scan chains are constructed, and a scan-chain
balancing operation is performed on the clock domain to reduce the maximum
scan-chain length. Oftentimes, a clock domain will include both negative-edge and
positive-edge scan cells. If the number of negative-edge scan cells in a clock domain
is large enough to construct a separate scan chain, then these scan cells can be
allocated as such. In cases where a scan chain has to include both negative-edge
and positive-edge scan cells, all negative-edge scan cells are arranged in the scan
chains such that they precede all positive-edge scan cells in order to guarantee that
the shift operation can be performed correctly.
Figure 2.29a shows an example of a circuit structure comprising a negative-edge

scan cell followed by a positive-edge scan cell. The associated timing diagram,
shown in Figure 2.29b, illustrates the correct shift timing of the circuit structure.
During each shift clock cycle, Y will first take on the state X at the rising CK
edge before X is loaded with the SI value at the falling CK edge. If we acciden-
tally place the positive-edge scan cell before the negative-edge scan cell, both scan
cells will always incorrectly contain the same value at the end of each shift clock
cycle.
In cases where scan chains must include scan cells from several different clock

domains, a lock-up latch is inserted between adjacent cross-clock-domain scan cells
to guarantee that any clock skew between the clocks can be tolerated. Clock skew
between different clock domains is expected, as clock skew is controlled within
a clock domain to remain below a certain threshold, but not controlled across
different clock domains. As a result, a race caused by hold time violation could
occur between these two scan cells if a lock-up latch is not inserted.
Figure 2.30a shows an example of a circuit structure having a scan cell SCp

belonging to clock domain CK1 driving a scan cell SCq belonging to clock
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Mixing negative-edge and positive-edge scan cells in a scan chain: (a) circuit structure, and (b) timing
diagram.
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domain CK2 through a lock-up latch. The associated timing diagram is shown in
Figure 2.30b, where CK2 arrives after CK1, to demonstrate the effect of clock skew
on cross-clock-domain scan cells. During each shift clock cycle, X will first take on
the SI value at the rising CK1 edge, then Z will take on the Y value at the rising
CK2 edge. Finally, the new X value is transferred to Y at the falling CK1 edge to
store the SCp contents. If CK2 arrives earlier than CK1, Z will first take on the Y
value at the rising CK2 edge. Then, X will take on the SI value at the rising CK1

edge. Finally, the new X value is transferred to Y at the falling CK1 edge to store
the SCp contents. In both cases, the lock-up latch design in Figure 2.30a allows
correct shift operation regardless of whether CK2 arrives earlier or later than CK1.
It is important to note that this scheme works only when the clock skew between
CK1 and CK2 is less than the width (duty cycle) of the clock pulse. If this is not the
case, then slowing down the shift clock frequency or enlarging the duty cycle of
the shift clock can guarantee that this approach will work for any amount of clock
skew. Other lock-up latch and lock-up flip-flop designs can also be used.
Once the clock structure of the scan chains is determined, it is still necessary to

determine which scan cells should be stitched together into one scan chain and the
order in which these scan cells should be placed. In some scan synthesis flows, a
preliminary layout placement is used to allocate scan cells to different scan chains
belonging to the same clock domain. Then, the best order in which to stitch these
scan cells within the scan chains is determined in order to minimize the scan
routing required to connect the output of each scan cell to the scan input of the
next scan cell. In cases where a preliminary placement is not available, scan cells
can be assigned to different scan chains based on an initial floor plan of the testable
design, by grouping scan cells in proximate regions of the design together. Once the
final placement is determined, the scan chains can then be reordered and stitched,
and the scan design is modified based on the new scan chain order.

2.7.2.2 Scan Replacement

After scan configuration is complete, scan replacement replaces all original storage
elements in the testable design with their functionally equivalent scan cells. The
testable design after scan replacement is often referred to as a scan-ready design.
Functionally equivalent scan cells are the scan cells that most closely match power,
speed, and area requirements of the original storage elements. The scan inputs
of these scan cells are often tied to the scan outputs of the same scan cell to
prevent floating inputs from being present in the circuit. These connections are
later removed during the scan stitching step. In cases where one-pass or single-pass
synthesis is used, scan replacement is transparent to tool users. Recently, some RTL
scan synthesis tools have implemented scan replacement at the RTL, even before
going to the logic/scan synthesis tool, in order to reflect the scan design changes in
the original RTL design.

2.7.2.3 Scan Reordering

Scan reordering refers to the process of reordering scan cells in scan chains, based
on the physical scan cell locations, in order to minimize the amount of interconnect
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wires used to implement the scan chains. During design implementation, if the
physical location of each scan cell instance is not available, a “random” scan order
based purely on the module-level and bus-level connectivity of the testable design
can be used. However, if a preliminary placement is available, scan cells can be
assigned to different scan chains based on the initial floor plan of the design. Only
after the final placement process of the physical implementation is performed on
this testable design is the physical location of each scan cell instance taken into
consideration. During the routing process of the physical implementation, scan
reordering can be performed using intra-scan-chain reordering, inter-scan-chain
reordering, or a combination of both. Intra-scan-chain reordering, in which scan
cells are reordered only within their respective scan chains, does not reorder any
scan cells across clock or clock-polarity boundaries. Inter-scan-chain reordering,
in which scan cells are reordered among different scan chains, must make sure
that the clock structure of the scan chains is preserved. In both intra-scan-chain
reordering and inter-scan-chain reordering, care must be also taken to limit the
minimum distance between scan cells to avoid timing violations that can destroy
the integrity of the shift operation.
Advanced techniques have also been proposed to further reduce routing conges-

tion while avoiding timing violations during the shift operation [Duggirala 2002]
[Duggirala 2004]. For deep submicron circuits, the capacitance of the scan chain
interconnect must also be taken into account to guarantee correct shift operation
[Barbagallo 1996].

2.7.2.4 Scan Stitching

Finally, the scan stitching step is performed to stitch all scan cells together to
form scan chains. Scan stitching refers to the process of connecting the output
of each scan cell to the scan input of the next scan cell, based on the scan order
specified above. An additional step is also performed by connecting the scan input
of the first scan cell of each scan chain to the appropriate scan chain input port
and the scan output of the last scan cell of each scan chain to the appropriate scan
chain output port to make the scan chains externally accessible. In cases where
a shared I/O port is used to connect to the scan chain input or the scan chain
output, additional signals must be connected to the shared I/O port to guarantee
that it always behaves as either input or output, respectively, throughout the shift
operation. As mentioned earlier, it is important to avoid using high-speed I/O ports
as scan chain inputs or outputs, as the additional loading could result in a degra-
dation of the maximum speed at which the device can be operated. In addition
to stitching the existing scan cells, lock-up latches or lock-up flip-flops are often
inserted during the scan stitching step for adjacent scan cells where clock skew may
occur. These lock-up latches or lock-up flip-flops are then stitched between adjacent
scan cells.

2.7.3 Scan Extraction
When the scan stitching step is complete, the scan synthesis process is complete. The
original design has now been converted into a scan design; however, an additional
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step is often performed to verify the integrity of the scan chains, especially if any
design changes are made to the scan design. Scan extraction is the process used for
extracting all scan cell instances from all scan chains specified in the scan design.
This procedure is performed by tracing the design for each scan chain to verify
that all the connections are intact when the design is placed in shift mode. Scan
extraction can also be used to prepare for the test generation process to identify
the scan architecture of the design in cases where this information is not otherwise
available.

2.7.4 Scan Verification
When the physical implementation of the scan design is completed, including place-
ment and routing of all the cells of the design, a timing file in standard delay
format (SDF) is generated. This timing file resembles the timing behavior of the
manufactured device. This is then used to verify that scan testing can be successfully
performed on the manufactured scan design.
Other than the trivial problems of scan chains being incorrectly stitched, veri-

fication errors during the shift operation are typically due to hold time violations
between adjacent scan cells, where the data path delay from the output of a driving
scan cell to the scan input of the following scan cell is smaller than the clock skew
that exists between the clocks driving the two scan cells. In cases where the two
scan cells are driven by the same clock, this may indicate a failure of the clock
tree synthesis (CTS) process in guaranteeing that the clock skew between scan
cells belonging to the same clock domain be kept at a minimum. In cases where
the two scan cells are driven by different clocks, this may indicate a failure of
inserting a required lock-up latch between the scan cells of the two different clock
domains.
Apart from clock skew problems, other scan shift problems can occur. Often,

they stem from (1) an incorrect scan initialization sequence that fails to put the
design into test mode; (2) incomplete scan design rule checking and repair, where
the asynchronous set/reset signals of some scan cells are not disabled during shift
operation or the gated/generated clocks for some scan cells are not properly enabled
or disabled; or (3) incorrect scan synthesis, where positive-edge scan cells are placed
before negative-edge scan cells.
Scan capture problems typically occur due to mismatches between the zero-delay

model used in the test generation and fault simulation tool, and the full-timing
behavior of the real device. In these cases, care must be taken during the scan
design and test application process to: (1) provide enough clock delay between the
supplied clocks such that the clock capture order becomes deterministic, and (2)
prevent simultaneous clock and data switching events from occurring. Failing to
take clock events into proper consideration can easily result in a breakdown of the
zero-delay (cycle-based) simulator used in the test generation and fault simulation
process. More detailed information regarding scan verification of the shift and
capture operations is described below.
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2.7.4.1 Verifying the Scan Shift Operation

Verifying the scan shift operation involves performing flush tests using a full-
timing logic simulator during the shift operation. A flush test is a shift test where
a selected flush pattern is shifted all the way through the scan chains in order to
verify that the same flush pattern arrives at the end of the scan chains at the correct
clock cycle. For example, a scan chain containing 1000 scan cells requires 1000
shift cycles to be applied to the scan chain for the selected flush pattern to begin
arriving at the scan output. If the data arrive early by a number of shift cycles, this
may indicate that a similar number of hold time problems exist in the circuit.
To detect clock skew problems between adjacent scan cells, the selected flush

pattern is typically a pattern that is capable of providing both 0-to-1 and 1-to-0
transitions to each scan cell. In order to ensure that a 0-to-0 or 1-to-1 transi-
tion of a scan cell does not corrupt the data, the selected flush pattern is further
extended to provide these transitions. A typical flush pattern that is used for testing
the shift operation is “01100,” which includes all four possible transitions. Dif-
ferent flush patterns can also be used for debugging different problems, such as
the all-zero and all-one flush patterns used for debugging stuck-at faults in the
scan chain.
Because observing the arrival of the data on the scan chain output cannot pinpoint

the exact location of any shift error in a faulty scan chain, flush testbenches are
typically created to observe the values at all internal scan cells to identify the
locations at which the shift errors exist. By using this technique, the faulty scan
chain can be easily and quickly diagnosed and fixed during the scan shift verification
process; for example:

� Scan hold time problems that exist between scan cells belonging to different
clock domains indicate that a lock-up latch may be missing. Lock-up latches
should be inserted between these adjacent scan cells.

� Scan hold time and setup time problems that exist between scan cells belong-
ing to the same clock domain indicate that the CTS process was not performed
correctly. In this case, either CTS has to be redone or additional buffers need
to be inserted between the failing scan cells to slow down the path.

� Scan hold time problems due to positive-edge scan cells followed by negative-
edge scan cells indicate that the scan chain order was not performed correctly.
Lock-up flip-flops rather than lock-up latches can be inserted between these
adjacent scan cells or the scan chains may have to be reordered by placing all
negative-edge scan cells before all positive-edge scan cells.

An additional approach to scan shift verification that has become more popular
in recent years involves performing static timing analysis (STA) on the shift path
in shift mode. In this case, the STA tool can immediately identify the locations of all
adjacent scan cells that fail to meet timing. The same solutions mentioned earlier
are then used to fix problems identified by the STA tool.
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2.7.4.2 Verifying the Scan Capture Operation

Verifying the scan capture operation involves simulating the scan design using a
full-timing logic simulator during the capture operation. This is used to identify the
location of any failing scan cells where the captured response does not match the
expected response predicted by the zero-delay logic simulator used in test gener-
ation or fault simulation. To reduce simulation time, a broadside-load testbench
is often used, where a test pattern is loaded directly into all scan cells in the scan
chains and only the capture cycle is simulated. Because the broadside-load test
does not involve any shift cycle in the test pattern, broadside-load testbenches often
include at least one shift cycle in the capture verification testbench to ensure that
each test pattern can at least shift once. This requires loading the test pattern into
the outputs of the previous scan cells, rather than directly into the outputs of the
current scan cells. In addition, verifying the scan capture operation often includes
a serial simulation, in which a limited number of test patterns, typically three to
five or as many as can be simulated within a reasonable time, are simulated. In this
serial simulation, a test pattern is simulated exactly how it would be applied on the
tester by shifting in each pattern serially through the scan chains inputs. Next, a
capture cycle is applied. The captured response is then shifted out serially to verify
that the complete scan chain operation can be performed successfully.
As mentioned before, mismatches in the capture cycle indicate that the zero-delay

simulation model used by the test generator and fault simulator failed to capture
all the details of the actual timing occurring in the device. Debugging these types
of failures is tedious and may involve observing all signals of the mismatching scan
cells as well as signal lines (also called nets) driving these scan cells. One brute-force
method commonly used by designers for removing these mismatches is to mask off
the locations by changing the expected response of the mismatching location into
an unknown (X) value. A new approach that has become more popular is to use
the static timing analysis tool for both scan shift and scan capture verification.

2.7.5 Scan Design Costs
The price of converting a design into a scan design involves numerous costs, includ-
ing area overhead cost, I/O pin cost, performance degradation cost, and design
effort cost. However, these costs are far outweighed by the benefits of scan, in terms
of the increased testability, lower test development cost, higher product quality
with a smaller number of defective parts shipped, and reduced fault diagnosis and
failure analysis time. As a result, implementing scan on a design has become almost
mandatory. The costs of implementing scan are summarized below:

� Area overhead cost—This cost comes primarily in two forms. The first is the
scan cell overhead cost due to the replacement of a storage element with
a scan cell. The second is the routing cost, which is caused by additional
routing of the scan chains, the scan enable signal, and additional shift clocks.
Layout-based scan reordering techniques typically do a good job of reducing
the overhead due to scan chain routing.
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� I/O pin cost—Scan design typically requires a dedicated test mode pin to
indicate when scan testing is performed. Some designers have been able to
get around this need by developing an initialization sequence that is capable
of putting the design into test mode. Additional I/O cost is due to the possible
performance degradation of pins where scan inputs and scan outputs are
shared.

� Performance degradation cost—The additional scan input of a scan cell may
require placing an additional delay on the functional path. The effects of this
delay can be alleviated by embedding the scan replacement step in logic/scan
synthesis such that the logic optimization process can be aggressively per-
formed to reduce the effect of the added delay.

� Design effort cost—Implementing scan requires additional steps to be added
to the typical design flow to perform scan design rule checking and repair,
scan synthesis, scan extraction, and scan verification. Additional effort may
also be required by the layout engineers in order to perform global routing
of the scan enable signal or additional shift clocks, which must be designed
to reach all scan cells in the design while having the ability to switch value
within a reasonable time. As mentioned before, this cost is far outweighed
by the savings in test development efforts that would otherwise have to be
performed.

2.8 SPECIAL-PURPOSE SCAN DESIGNS

As discussed above, scan design allows us to use a small external interface to control
and observe the states of scan cells in a design which dramatically simplifies the
task of test generation. In addition, scan design can be used to reduce debug and
diagnosis time and facilitate failure analysis by giving access to the internal states of
the circuit. A few other scan methodologies have been proposed for special-purpose
testing. In this section, we describe three special-purpose scan designs—namely,
enhanced scan, snapshot scan, and error-resilient scan—used for delay testing,
system debug, and soft error protection, respectively.

2.8.1 Enhanced Scan
Testing for a delay fault requires applying a pair of test vectors in an at-speed
fashion. This is used to generate a logic value transition at a signal line or at
the source of a path, and the circuit response to this transition is captured at
the circuit’s operating frequency. Applying an arbitrary pair of vectors as opposed
to a functionally dependent pair of vectors, generated through the combinational
logic of the circuit under test, allows us to maximize the delay fault detection
capability. This can be achieved using enhanced scan [Malaiya 1983] [Glover 1988]
[Dervisoglu 1991].
Enhanced scan increases the capacity of a typical scan cell by allowing it to store

two bits of data that can be applied consecutively to the combinational logic driven
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Enhanced-scan architecture.

by the scan cells. For a muxed-D scan cell or a clocked-scan cell, this is achieved
through the addition of a D latch.

Figure 2.31 shows a general enhanced-scan architecture using muxed-D scan
cells. In this figure, in order to apply a pair of test vectors <V1, V2> to the design,
the first test vector V1 is first shifted into the scan cells (SFF1 ∼ SFFs) and then
stored into the additional latches (LA1 ∼ LAs) when the UPDATE signal is set to
1. Next, the second test vector V2 is shifted into the scan cells while the UPDATE
signal is set to 0, in order to preserve the V1 values in the latches (LA1 ∼ LAs). Once
the second vector V2 is shifted in, the UPDATE signal is applied to change V1 to
V2 while capturing the output response at-speed into the scan cells by applying CK
after exactly one clock cycle.
The main advantage of enhanced scan is that it allows us to achieve high delay

fault coverage, by applying any arbitrary pair of test vectors, that otherwise would
have been impossible. The disadvantages, however, are that each enhanced-scan cell
requires an additional scan-hold D latch and that maintaining the timing relation-
ship between UPDATE and CK for at-speed testing may be difficult. An additional
disadvantage is that many false paths, instead of functional data paths, may be
activated during test, causing an over-test problem. In order to reduce over-test, the
conventional launch-on-shift (also called skewed-load in [Savir 1993]) and launch-
on-capture (also called broad-side in [Savir 1994] or double-capture in Chapter 5)
delay test techniques using normal scan chains can be used. These conventional
delay test techniques are described in more detail in Chapters 4 and 5.

2.8.2 Snapshot Scan
Snapshot scan is used to capture a snapshot of the internal states of the storage
elements in a design at any time without having to disrupt the functional operation
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Scan-set architecture.

of the circuit. This is done by adding a scan cell to each storage element of interest
in the circuit. These scan cells are connected as one or more scan chains that can
be used to shift in and shift out any required test data or internal state snapshot
of the design. A snapshot scan design technique, called scan set, was proposed
in [Stewart 1978]. An example of scan-set architecture implemented by adding
clocked-scan cells to the system latches (two-port D latches) for snapshot scan is
shown in Figure 2.32.
In this figure, four different operations are possible: (1) Test data can be shifted

into and out of the scan cells (SFF1∼SFFs) from the SDI and SDO pins, respectively,
using TCK. (2) The test data can be transferred to the system latches (L1 ∼ Ls) in
parallel through their 2D inputs using UCK. (3) The system latch contents can be
loaded into the scan flip-flops through their 1D inputs usingDCK. (4) The circuit can
be operated in normal mode using CK to capture the values from the combinational
logic into the system latches (L1 ∼ Ls).
During normal (system) operation, the contents of the system latches can be

captured into the scan flip-flops any time DCK is applied. The captured response
stored in the scan cells (SFF1 ∼ SFFs) can then be shifted out for analysis. This
provides a powerful means of getting a snapshot of the system status that is very
helpful in system debug. It is also possible to shift in test data to the system latches
to ease fault diagnosis and failure analysis when UCK is applied to the system
latches. In addition, by adding observation scan cells that are connected to specific
circuit nodes, the scan-set technique makes it possible to capture the logic value
at any circuit node of interest and to shift it out for observation. As a result, the
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observability at nonstorage circuit nodes can be dramatically improved. Hence,
the scan-set technique can significantly improve the circuit’s diagnostic resolution
and silicon debug capability. These advantages have made the approach attractive
to high-performance and high-complexity designs [Kuppuswamy 2004], despite
the increased area overhead. The technique has also been extended to the LSSD
architecture [DasGupta 1981].

2.8.3 Error-Resilient Scan
Soft errors are transient single-event upsets (SEUs) caused by various types of
radiation. Cosmic radiation has long been regarded as the major source of soft
errors, especially in memories [May 1979], and chips used in space applications
typically use parity or error-correcting code (ECC) for soft error protection. As
circuit features begin to shrink into the nanometer ranges, error-causing activa-
tion energies are reduced. As a result, terrestrial radiation, such as alpha particles
from the packaging materials of a chip, is also beginning to cause soft errors with
increasing frequency. This has created reliability concerns, especially for micropro-
cessors, network processors, high-end routers, and network storage components.
Error-resilient scan, proposed in [Mitra 2005], can also be used to allow scan
design to protect a device from soft errors during normal system operation.
Error-resilient scan is based on the observation that soft errors either: (1) occur

in memories and storage elements and manifest themselves by flipping their stored
states, or (2) result in a transient fault in a combinational gate, as caused by an
ion striking a transistor within the combinational gate, and can be captured by a
memory or storage element [Nicolaidis 1999]. Data from [Mitra 2005] show that
combinational gates and storage elements contribute to a total of 60% of the soft
error rate (SER) of a design manufactured using current state-of-the-art technology
versus 40% for memories. Hence, it is no longer enough to consider soft error
protection only for memories without considering any soft error protection for
storage elements, as well.
Figure 2.33 shows an error-resilient scan cell design [Mitra 2005] that reduces

the impact of soft errors affecting storage elements by more than 20 times. This
scan cell consists of a system flip-flop and a scan portion, each comprised of a
one-port D latch and a two-port D latch, a C-element, and a bus keeper. This scan
cell supports two operation modes: system mode and test mode.
In test mode, TEST is set to 1, and the C-element acts as an inverter. During the

shift operation, a test vector is shifted into latches LA and LB by alternately applying
clocks SCA and SCB while keeping CAPTURE and CLK at 0. Then, the UPDATE
clock is applied to move the content of LB to PH1. As a result, a test vector is written
into the system flip-flop. During the capture operation, CAPTURE is first set to 1,
and then the functional clock CLK is applied which captures the circuit response
to the test vector into the system flip-flop and the scan portion simultaneously.
The circuit response is then shifted out by alternately applying clocks SCA and
SCB again.
In system mode, TEST is set to 0, and the C-element acts as a hold-state

comparator. The function of the C-element is shown in Table 2.8. When inputs O1



Design for Testability 91

LA

1D
C1

2D
C2

Q

C1

1D
Q

LB

1D
C1
2D
C2

Q

O 2

Scan portion 

System flip-flop

O 1

C1
1D

Q

CLK

D

UPDATE

CAPTURE

SCA
SI

SCB

C-element Keeper

TEST

Q

SO 

PH2

PH1

� FIGURE 2.33

Error-resilient scan cell.

TABLE 2.8 � C-Element Truth Table

O1 O2 Q

0 0 1

1 1 0

0 1 Previous value retained

1 0 Previous value retained

and O2 are unequal, the output of the C-element keeps its previous value. During
this mode, a 0 is applied to the SCA, SCB, and UPDATE signals, and a 1 is applied
to the CAPTURE signal. This converts the scan portion into a master-slave flip-flop
that operates as a shadow of the system flip-flop. That is, whenever the functional
clock CLK is applied, the same logic value is captured into both the system flip-flop
and the scan portion. When CLK is 0, the outputs of latches PH1 and LB hold their
previous logic values. If a soft error occurs either at PH1 or at LB, O1 and O2 will
have different logic values. When CLK is 1, the outputs of latches PH2 and LA hold
their previous logic values, and the logic values drive O1 and O2, respectively. If a
soft error occurs either at PH2 or at LA, O1 and O2 will have different logic values.
In both cases, unless such a soft error occurs after the correct logic value passes
through the C-element and reaches the keeper, the soft error will not propagate to
the output Q and the keeper will retain the correct logic value at Q.

Error-resilient scan is one of the first online test techniques developed for soft
error protection. While the error-resilient scan cell requires more test signals,
clocks, and area overhead than conventional scan cells, the technique paves the way
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to develop more advanced error-resilient and error-tolerant scan and logic BIST
architectures to cope with the physical failures of the nanometer age.

2.9 RTL DESIGN FOR TESTABILITY

During the 1990s, the testability of a circuit was primarily assessed and improved
at the gate level. The reason was because the circuits were not too large that the
logic/scan synthesis process took an unreasonable amount of time. As device size
grows toward tens to hundreds of millions of transistors, tight timing, potential
yield loss, and low power issues begin to pose serious challenges. When combined
with increased core reusability and time-to-market pressure, it is becoming imper-
ative that most, if not all, testability issues be fixed at the RTL. This allows the
logic/scan synthesis tool and the physical synthesis tool, which takes physical lay-
out information into consideration, to optimize area, power, and timing after DFT
repairs are made. Fixing DFT problems at the RTL also allows designers to create
testable RTL cores that can be reused without having to repeat the DFT checking
and repair process for a number of times.
Figure 2.34 shows a design flow for performing testability repair at the gate level.

It is clear that performing testability repair at the gate level introduces a loop in
the design flow that requires repeating the time-consuming logic synthesis process
every time testability repair is made. This makes it attractive to attempt to perform
testability checking and repair at the RTL instead so testability violations can be
detected and fixed at the RTL, as shown in Figure 2.35, without having to repeat
the logic synthesis process.
An additional benefit of performing testability repair at the RTL is that it allows

scan to be more easily integrated with other advanced DFT features implemented
at the RTL, such as memory BIST, logic BIST, test compression, boundary scan,
and analog and mixed-signal (AMS) BIST. This allows us to perform all testabil-
ity integration at the RTL, as opposed to the current practices of integrating the

Logic synthesis

Gate-level design

Testable design

RTL design

Testability repair

Scan design

Scan synthesis

� FIGURE 2.34

Gate-level testability repair design flow.
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Testable RTL design

RTL design

Testability repair

Scan design

Logic/scan synthesis

� FIGURE 2.35

RTL testability repair design flow.

advanced DFT features at the RTL, and later integrating them with scan at the gate
level. In the following, we describe the RTL DFT problems by focusing mainly on
scan design.
Some modern synthesis tools now incorporate testability repair and scan synthe-

sis as part of the logic synthesis process, such that a testable design free of scan
rule violations is generated automatically. In this case, if the DFT fixes made are
acceptable and do not have to be incorporated into the RTL, the flow can proceed
directly to test generation and scan verification.

2.9.1 RTL Scan Design Rule Checking and Repair
In order to perform scan design rule checking and repair at the RTL, a fast syn-
thesis step of the RTL is usually performed first. In fast synthesis, combinational
RTL code is mapped onto combinational primitives and high-level models, such
as adders and multipliers. This allows us to identify all possible scan design rule
violations and infer all storage elements in the RTL design.
Static solutions for identifying testability problems at the RTL without having to

perform any test vector simulation or dynamic solutions that simulate the structure
of the design through the RTL have been developed. These solutions allow us to
identify almost all testability problems at the RTL. While a few testability problems
remain that can be identified only at the gate level, this approach does reduce the
number of iterations involving logic synthesis, as shown in Figure 2.35. In addition,
it has become common to add scan design rules as part of RTL “lint” tools that
check for good coding and reusability styles, as well as user-defined coding style
rules [Keating 1999]. To further optimize testability results, clock grouping can also
be performed at the RTL as part of scan design rule checking [Wang 2005a].
Automatic methods for repairing RTL testability problems have also been devel-

oped [Wang 2005a]. An example of this is shown in Figure 2.36. The RTL code
shown in Figure 2.36a, which is written in the Verilog hardware description lan-
guage (HDL) [IEEE 1463-2001], represents a generated clock. In this example, a
flip-flop clk_15 can be inferred, whose value is driven to 1 when a counter value
q is equal to “1111.” The output of this flip-flop is then used to trigger the sec-
ond “always” statement, where an additional flip-flop can be inferred. Figure 2.36b
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always @(posedge clk)
if (q ==4'b1111)

clk_15 <=  1;
else

begin
clk_15 <= 0;
q < = q + 1;

end
always @(posedge clk_15)

d < = start; 

clk

Q Q
start

d
Dclk_15

(a)

always@(posedge clk)
if(q == 4'b1111)

clk_15 <= 1;
else

begin
clk_15 <= 0;
q <= q + 1;   

end
assign clk_test = (TM)? clk : clk_15;

always @(posedge clk_test)
d <= start;

(c)

(b)

(d)

clk

Q Q
start

d 
Dclk_15

0

1

TM

0

1
clk_test

� FIGURE 2.36

Automatic repair of a generated clock violation at the RTL: (a) generated clock (RTL code), (b) generated
clock (schematic), (c) generated clock repair (RTL code), and (d) generated clock repair (schematic).

shows a schematic of the flip-flop generating the clk_15 signal, as well as the flip-
flop driven by the generated clock, which is likely to be the structure synthesized
out of the RTL using a logic synthesis tool. This scan design rule violation can
be fixed using the test mode signal TM by modifying the RTL code as shown in
Figure 2.36c. The schematic for the modified RTL code is shown in Figure 2.36d.

2.9.2 RTL Scan Synthesis
When storage elements have been identified during RTL scan design rule check-
ing, either RTL scan synthesis or pseudo RTL scan synthesis can be performed.
In RTL scan synthesis, the scan synthesis step as described in Section 2.7.2 is
performed. The only difference is that the scan equivalent of each storage ele-
ment does not refer to a library cell but to an RTL structure that is equivalent
to the original storage element in normal mode. In this case, the scan chains are
inserted into the RTL design. In pseudo RTL scan synthesis, the scan synthesis
step is not performed; only pseudo primary inputs and pseudo primary outputs are
specified and stitched to primary inputs and primary outputs, respectively. This
approach is becoming more appealing to designers nowadays, because it can cope
with many advanced DFT structures, such as logic BIST and test compression,
where scan chains are driven internally by additional test structures synthesized
at the RTL. Once all advanced DFT structures are inserted at the RTL, a one-pass
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or single-pass synthesis step is performed using the RTL design flow, as shown in
Figure 2.35.
Several additional steps are actually performed in order to identify the storage

elements in the RTL design. First, all clocks are identified, either explicitly by
tracing from specified clock signal names, or implicitly by analyzing the sensitivity
list of all “always” blocks. When the clocks have been identified, all registers, each
consisting of one or more storage elements in the RTL design, are inferred by
analyzing all “assign” statements to determine which assignments can be mapped
onto a register while keeping track of the clock domain to which each register
belongs. In addition, the clock polarity of each register is determined.
When all registers have been identified and each converted into its scan equiva-

lent at the RTL, the next step is to stitch these individual scan cells into one or more
scan chains. One approach is to allocate scan cells to different scan chains based
on the driving clocks and to stitch all scan cells within a scan chain in a random
fashion [Aktouf 2000]. Although this approach is simple and straightforward, it can
introduce wiring congestion as well as high interconnect area overhead. In order to
solve these issues, it is better to take full advantage of the rich functional informa-
tion available at the RTL [Roy 2000] [Huang 2001]. Because storage elements are
identified as registers as opposed to a large number of unrelated individual storage
elements, it is beneficial to connect the scan cells (which are scan equivalence of
these storage elements) belonging to the same register sequentially in a scan chain.
This has been found to dramatically reduce wiring congestion and interconnect
area overhead.

2.9.3 RTL Scan Extraction and Scan Verification
In order to verify the scan-inserted RTL design (also called RTL scan design), both
scan extraction and scan verification must be performed. Scan extraction relies on
performing fast synthesis on the RTL scan design. This generates a software model
where scan extraction can be performed by tracing the scan connections of each
scan chain in a similar manner as scan extraction from a gate-level scan design.
Scan verification relies on a flush testbench that is used to simulate flush tests on
the RTL scan design. Because the inputs and outputs of the RTL scan design should
match the inputs and outputs of its gate-level scan design, the same flush testbench
can be used to verify the scan operation for both RTL and gate-level designs. It is
also possible to apply broadside-load tests for verifying the scan capture operation
at the RTL. In this case, either random test patterns or deterministic test patterns
generated at the RTL can be used [Ghosh 2001] [Ravi 2001] [Zhang 2003].

2.10 CONCLUDING REMARKS

Design for testability (DFT) has become vital for ensuring product quality. Over
the past decades, we have seen DFT engineering evolve in order to bridge the gap
between design engineering and test engineering. An early task of DFT engineering
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was to quantify testability. This led to the development of testability analysis, used
to identify design areas of poor controllability and observability. These techniques
have since proven effective in test generation, logic built-in self-test (BIST), and
fault coverage estimation.
When it was recognized that generating test patterns for a sequential circuit was a

much more difficult problem than generating test patterns for a combinational cir-
cuit, ad hoc DFT techniques were proposed but were met with limited success. Scan
design, which has proven to be the most powerful DFT technique ever invented,
allowed the transformation of sequential circuit testing into combinational circuit
testing and has since become an industry standard.
In this chapter, we have presented a comprehensive discussion of scan design.

This included scan cell designs, scan architectures, scan design rules, and a typical
scan design flow. The RTL DFT techniques that include RTL testability analysis
and RTL design for testability were briefly touched upon; these techniques are used
to guide testability enhancement and enable DFT integration at the RTL. Finally,
we examined promising random-access scan architecture along with a number of
special-purpose scan designs, hoping to shed some light on future DFT research.
As we continue to move towards even smaller geometries, new design and test

challenges have started to evolve. Novel and advanced DFT architectures will be
required to further reduce test power, test data volume, and test application time.
We anticipate that advanced at-speed scan and logic BIST architectures [Wang
2005b], low-power scan and logic BIST architectures [Girard 2002] [Wen 2005],
and novel error-resilient and error-tolerant architectures [Breuer 2004] will be of
growing importance in the coming decades to help us cope with the physical failures
of the nanometer design era.

2.11 EXERCISES

2.1 (Testability Analysis) Calculate the SCOAP controllability and observability
measures for a three-input XOR gate and for its NAND–NOR implementation.

2.2 (Testability Analysis) Use the rules given in Tables 2.3 and 2.4 to calculate
the probability-based testability measures for a three-input XNOR gate and
for its NAND–NOR implementation. Assume that the probability-based con-
trollability values at all primary inputs and the probability-based observability
value at the primary output are 0.5 and 1, respectively.

2.3 (Testability Analysis) Solve Problem 2.2 again for the full-adder circuit shown
in Figure 2.1.

2.4 (Testability Analysis) Calculate the combinational observability of input ai

at output sk, denoted by O(ai, sk), where k > i, for the n-bit ripple-carry adder
shown in Figure 2.4.

2.5 (Ad Hoc Technique) Use an example to show why a combinational feedback
loop in a combinational circuit can cause low testability.
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2.6 (Test Point Insertion) Show an implementation where a single observation
point is used to observe the three low-observability nodes A, B, and C in
Figure 2.5 using XOR gates.

2.7 (Clocked-Scan Cell) Show a possible gate-level implementation of the
clocked-scan cell shown in Figure 2.11a.

2.8 (LSSD Scan Cell) Show a possible CMOS implementation of the LSSD scan
cell shown in Figure 2.12a.

2.9 (Full-Scan Design) Calculate the number of clock cycles required for testing
a full-scan design with n test vectors. Assume that the full-scan design has m
scan chains, each having the same length L, and that scan testing is conducted
in the way shown in Figure 2.14b.

2.10 (Full-Scan Design) Explain the main differences between an LSSD single-
latch design and an LSSD double-latch design.

2.11 (Random-Access Scan) Assume that a sequential circuit with n storage ele-
ments has been reconfigured as a full-scan design as shown in Figure 2.14a
and a random-access scan design as shown in Figure 2.19. In addition, assume
that the full-scan circuit has m balanced scan chains and that a test vector
vi is currently in the scan cells of both scan designs. Now consider the appli-
cation of the next test vector vi+1. Assume that vi and vi+1 are different in d
bits. Calculate the number of clock cycles required for applying vi+1 to the
full-scan design and the random-access scan design, respectively.

2.12 (Combinational Feedback Loop) Show an algorithm that checks whether a
sequential circuit contains combinational feedback loops.

2.13 (Lock-Up Latch) Suppose that a scan chain is configured as SI→ SFF1 →
SFF2→ SFF3→ SFF4→ SFF5→ SO, where SFF1 through SFF5 are muxed-D
scan cells, and SI and SO are the scan input pin and scan output pin, respec-
tively. Suppose that this scan chain fails scan shift verification in which
the flush test sequence <t1t2t3t4t5>=<01010> is applied but the response
sequence is <r1r2r3r4r5>=< 01100 >. Identify the scan flip-flops that may
have caused this failure, and show how to fix this problem by using a
lock-up latch.

2.14 (Lock-Up Latch) A scan chain may contain both positive-edge-triggered and
negative-edge-triggered muxed-D scan cells. If, by accident, all positive-edge-
triggered scan flip-flops are placed before all negative-edge-triggeredmuxed-D
scan cells, show how to stitch them into one single scan chain. (Hint: Positive-
edge-triggered muxed-D scan cells and negative-edge-triggered muxed-D scan
cells should be placed in two separate sections.)

2.15 (Lock-Up Latch) Refer to Figure 2.30. The scheme works only when the
clock skew between CK1 and CK2 is less than the width (duty cycle) of the
clock pulse. If CK2 is delayed more than the duty cycle of CK1 (i�e�, CK1 and
CK2 become nonoverlapping), show whether or not it is possible to stitch the
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two cross-clock-domain scan cells into one single scan chain using a lock-up
latch. If not, can it be done using a lock-up flip-flop instead?

2.16 (Scan Stitching) Use examples to show why a scan chain may not be able to
perform the shift operation properly if two neighboring scan cells in the scan
chain are too close to or too far from each other. Also describe how to solve
these problems.

2.17 (Test Signal) Describe the difference between the test mode signal TM and
the scan enable signal SE used in scan testing.

2.18 (Clock Grouping) Show an algorithm to find the smallest number of clock
groups in clocking grouping.

2.19 (RTL Testability Enhancement) Read the following Verilog HDL code and
draw its schematic. Then determine if there is any scan design rule violation.
If there is any violation, modify the RTL code to fix the problem, then draw
the schematic of the modified RTL code.

reg [3:0] tri_en;
always @(posedge clk)
begin

case (bus_sel)
0: tri_en[0] = 1’bl;
1: tri_en[1] = 1’bl;
2: tri_en[2] = 1’bl;
3: tri_en[3] = 1’bl;
endcase

end
assign dbus = (tri_en[0])? d1 : 8’bz;
assign dbus = (tri_en[1])? d2 : 8’bz;
assign dbus = (tri_en[2])? d3 : 8’bz;
assign dbus = (tri_en[3])? d4 : 8’bz;

2.20 (A Design Practice) Use the scan design rule checking programs
and user’s manuals contained on the companion Web site
to show if you can detect any asynchronous set/reset signal
violations and bus contention. Try to redesign a Verilog circuit

to include such violations. Then, fix the violations by hand, and see whether
the problems disappear.

2.21 (A Design Practice) Use the scan synthesis programs and user’s
manuals contained on the companionWeb site to convert the two
ISCAS-1989 benchmark circuits s27 and s38417 [Brglez 1989]
into scan designs. Perform scan extraction and then run Verilog

flush tests and broadside-load tests on the scan designs to verify whether the
generated testbenches pass Verilog simulation.
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ABOUT THIS CHAPTER

Simulation is a powerful set of techniques that are used heavily in digital circuit
verification, test development, design debug, and diagnosis. During the design stage,
logic simulation is performed to help verify whether the design meets its speci-
fications and contains any design errors. It also helps locate these design errors
that escape to fabrication during design debug. In test development, faulty circuit
behavior is simulated with a set of test patterns to assess the pattern quality and
guide further pattern development. Simulation of faulty circuits is referred to as
fault simulation and is also used during fault diagnosis, where test results are used
to locate manufacturing defects within the hardware.
This chapter begins with a discussion of logic simulation. After an introduction

to the logic circuit models, the popular compiled-code and event-driven logic
simulation techniques are described. This is followed by a description of hazards,
the undesirable transient pulses (glitches) that can occur in circuits, what causes
them, and how they can be detected during logic simulation. The second half of the
chapter discusses fault simulation. Although fault simulation is rooted in logic sim-
ulation, many techniques have been developed to quickly simulate all possible faulty
behaviors. A discussion of the serial, parallel, deductive, concurrent, and differ-
ential fault simulation techniques is followed by qualitative comparisons between
their advantages and drawbacks. The chapter concludes with alternative techniques
to fault simulation. These techniques trade accuracy for reduced execution time
which is crucial for managing the complexity of large designs. By working through
this chapter, the reader will learn about the major logic and fault simulation tech-
niques. This background will be valuable in selecting the simulation methodology
that best meets the design needs.
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3.1 INTRODUCTION

Simulation is the process of predicting the behavior of a circuit design before
it is physically built. For digital circuits, simulation serves dual purposes. First,
during the design stage, logic simulation helps the designer verify that the design
conforms to the functional specifications. Second, during test development, fault
simulation is used to simulate faulty circuits. (For this reason, logic simulation
is generally referred to as fault-free simulation.) Given a set of test patterns, fault
simulation determines its efficiency in detecting the modeled faults of interest.
Furthermore, fault simulation is also an important component of automatic test
pattern generator (ATPG) programs.

3.1.1 Logic Simulation for Design Verification
The main application of logic simulation is design verification, the process of
verifying the correctness of a digital design prior to its physical realization in the
form of silicon, a printed circuit board (PCB), or even a system. Tomanage growing
design complexity, logic simulation or design verification is generally performed at
each design stage, ranging from the behavioral down to the switch level. During each
design stage, the design is described in a suitable description language that captures
the required functional specification for fulfilling the design goal of that stage.
In general, design verification begins at the behavioral level or electronic system

level (ESL). At this level, the behavioral model of the target design is described
in ESL languages such as C/C++, SystemC [SystemC 2006], and SystemVerilog
[SystemVerilog 2006]. Once the behavioral model has been verified to an accept-
able confidence level, the verification process moves to the register-transfer level
(RTL) design stage. The circuit at this stage is described in hardware descrip-
tion languages (HDLs) (e.g., Verilog [IEEE 1463-2001] [Thomas 2002] and VHDL
[IEEE 1076-2002]), in terms of blocks such as registers, counters, data process-
ing units, and controllers, as well as the data/control flow between these blocks.
Because ESL/RTL verification usually does not involve detailed timing analysis,
design verification of the ESL or RTL is also referred to as functional verification
[Wile 2005].
Logic/scan synthesis comes into play after the RTL design stage. The gate-

level netlist of the RTL design that includes scan cells is synthesized from logic
elements provided in a cell library. For high-performance designs, the switch-level
model may be employed for the timing-critical portions. A switch-level network is
described as the interconnection of MOS switches. Finally, at the transistor level,
the circuit is described as interconnections of devices such as transistors, resistors,
and capacitors. The transistor-level description provides the most accurate model
for the design under development, but transistor-level simulation is much slower
than gate-level simulation. Thus, transistor-level simulation is usually only used
for characterizing cell libraries, including SRAMs and DRAMs. For digital system
designs, in general, logic simulation at the gate level suffices.
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Logic simulation for design verification.

The flow of using logic simulation for digital circuit design verification is shown
in Figure 3.1. The functional specification documents the required functionality
and performance for the target design. During each design stage, a corresponding
circuit description that contains ESL code for the behavioral design, HDL code for
the RTL design, a netlist for the gate-level design, or SPICE models for the switch-
and transistor-level design is generated in conformance with the given specification.
To ensure conformance, verification testbenches consisting of a set of input stimuli
and expected output responses are created. The logic simulator then takes the circuit
description and the input stimuli as inputs and produces the simulated responses.
Any discrepancy between the simulated and expected responses (detected by the
response analysis process) indicates the existence of a design bug. The circuit is
then redesigned or modified until no more design errors exist. The design process
then advances to the next design stage.

3.1.2 Fault Simulation for Test and Diagnosis
The major difference between logic simulation and fault simulation lies in the
nature of the nonidealities they deal with. Logic simulation is intended for iden-
tifying design errors using the given specifications or a known good design as
the reference. Design errors may be introduced by human designers or EDA tools
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and should be caught prior to physical implementation. Fault simulation, on the
other hand, is concerned with the behavior of fabricated circuits as a consequence
of inevitable fabrication process imperfections. Manufacturing defects (e.g., wire
shorts and opens), if present, may cause the circuits to behave differently from the
expected behavior. Fault simulation generally assumes that the design is function-
ally correct.
The capability of fault simulation to predict the faulty circuit behavior is of great

importance for test and diagnosis. First, fault simulation rates the effectiveness of
a set of test patterns in detecting manufacturing defects. The quality of a test set is
expressed in terms of fault coverage, the percentage of modeled faults that causes
the design to exhibit observable erroneous responses if the test set is applied. In
practice, the designer employs the fault simulator to evaluate the fault coverage
of a set of input stimuli (test vectors or test patterns) with respect to the modeled
faults of interest. Because fault simulation concerns the fault coverage of a test set
rather than the detection of design bugs, it is also termed fault grading. Low fault
coverage test patterns will jeopardize the manufacturing test quality and eventu-
ally lead to unacceptable field returns from customers. Second, fault simulation
helps identify undetected faults which is especially important when the achieved
fault coverage is unacceptable. In this case, either the designer or the ATPG has
to generate additional test vectors to improve the fault coverage (i�e�, to detect
the undetected faults). Third, fault simulation allows one to compress the test set
without sacrificing fault coverage. As part of the test compaction process, fault
simulation identifies redundant test patterns, which are discarded with no negative
impact on the fault coverage. With the above capabilities and applications, fault
simulation is one of the crucial components of ATPG. In fact, implementation of
an ATPG program usually starts with the fault simulator. Finally, fault simulation
assists fault diagnosis, which determines the type and location of faults that best
explain the faulty circuit behavior of the device under diagnosis. The fault simu-
lation results are compared against the observed circuit responses to identify the
most likely faults. The fault type and location information can then be used as a
starting point for locating the defects that cause the circuit malfunction.
Although fault simulation can also be used to fault-grade analog and mixed-signal

circuits, this chapter will only focus on themost popular fault simulation techniques
for digital circuits. Readers interested in analog and mixed-signal testing should
refer to Chapter 11.

3.2 SIMULATION MODELS

In this section, we discuss the gate-level circuit simulation models for combina-
tional and sequential networks, which have widespread acceptance in the integrated
circuit testing community. Gate-level circuit descriptions contain sufficient circuit
structure information necessary to capture the effects of many realistic manufac-
turing defects. On the other hand, the abstraction level of gate-level models is high
enough to permit development of efficient simulation techniques.
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The gate-level model of the combinational circuit N.

3.2.1 Gate-Level Network
A gate-level network is described as the interconnections of logic gates, which are
circuit elements that realize Boolean operations or expressions. The available gates
to realize a Boolean expression range from the standard gates (AND, OR, NOT,
NAND, and NOR) to complex gates such as XOR and XNOR. For example, the
combinational circuit N1 in Figure 3.2 is composed of an OR gate (G1), an AND
gate (G2), an inverter (G3), and a NOR gate (G4). The Boolean expression associated
with the network can be obtained after a few Boolean algebraic manipulations2:

K = �A ·E+E′�′

= �A+E′�′

= A′ · �B+C�

3.2.1.1 Sequential Circuits

Most logic designs are sequential circuits, which differ from combinational
circuits in that their outputs depend on both the current and past input values; that
is, they have memories. Sequential circuits are divided into two categories: syn-
chronous and asynchronous. Here, we limit our discussion to synchronous circuits
due to their widespread acceptance.
Figure 3.3 illustrates the Huffman model of a synchronous sequential circuit.

The sequential circuit is comprised of two parts: the combinational logic and the
flip-flops synchronized by a common clock signal. The inputs to the combinational
logic consist of the primary inputs (PIs) x1, x2, � � � , xn and the flip-flop outputs
y1, y2, � � � , yl, also called the pseudo primary inputs (PPIs) to the combinational
logic. The outputs are comprised of the primary outputs (POs) z1, z2, � � � , zm and
the flip-flop inputs Y1, Y2, � � � , Yl, also called the pseudo primary outputs (PPOs)
to the combinational logic. Assuming that the flip-flops are edge triggered, upon

1 Circuit N will be the example network throughout this chapter, unless specifically mentioned.
2 The three basic Boolean operations (i�e�, AND, OR, and NOT) are represented by the multiplication
(·), addition (+), and prime (′) operators, respectively.
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The Huffman model of a sequential circuit.

the active clock transition the states of all the flip-flops are updated according to
the PPO values at that time and the flip-flop characteristic functions (e.g., yi = Yi

for a D flip-flop).
In the gate-level description, a flip-flop may be modeled as a functional block or

as the interconnections of logic gates. Figure 3.4 shows the NAND implementation
of the positive-edge-triggered D flip-flop and its functional symbol. Besides data (D)
and clock (Clock) inputs, the D flip-flop also has active low asynchronous preset
(PresetB) and clear (ClearB) inputs. Its outputs are the uncomplemented �Q� and
complemented (QB) data.

3.2.2 Logic Symbols
The basic mathematics for most digital systems is the two-valued Boolean algebra
(referred to as Boolean algebra hereafter for convenience). In Boolean algebra, a
variable can assume only one of the two values, true or false, which are represented
by the two symbols “1” and “0,” respectively. Note that “1” and “0” here do not
represent numerical quantities. Physical representations of the two symbols depend
on the logic family of choice. Consider the most popular CMOS logic as an example;
the two symbols “1” and “0” represent two distinct voltage levels, Vdd and ground,3

respectively. Whether a signal’s value is 1 or 0 depends on which voltage source it
is connected to.4

3 Assume that positive logic is used.
4 In the following discussion, it is assumed that the CMOS logic family is chosen.
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Positive-edge-triggered D flip-flop.

In addition to 1 and 0, logic simulators often include two more symbols:
u (unknown) and Z (high-impedance); the former represents the uncertain circuit
behavior, and the latter helps resolve the behavior of tristate logic. For cases when
0, 1, u, and Z are insufficient to meet the required simulation accuracy, intermediate
logic states that incorporate both value and strength may be utilized.

3.2.2.1 Unknown State u

Almost all practical digital circuits contain memory elements (e�g., flip-flops and
memories) to store the circuit state; however, when these circuits are powered up,
the initial states of their memory elements are usually unknown. To handle such
situations, the logic symbol u is introduced to indicate an unknown logic value. By
associating u with a signal, we mean that the signal is 1 or 0, but we are not sure
which one is the actual value.
Basic Boolean operations for ternary logic (0, 1, and u) are straightforward.

First, the three symbols are viewed as three sets of symbols: 0 as {0}, 1 as {1}, and
u as {0, 1}. Then, the outcome of a ternary logic operation is the union of the results
obtained by applying the same operation to the elements of the sets; for example,
the result of 0 ·u is derived as follows:

0 ·u= �0
 · �0	1

= �0 ·0	0 ·1

= �0	0


= �0


= 0
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TABLE 3.1 � Basic Boolean Operations for Ternary Logic

AND 0 1 u OR 0 1 u NOT 0 1 u

0 0 0 0 0 0 1 u 1 0 u
1 0 1 u 1 1 1 1
u 0 u u u u 1 u

The input/output relationships of the three basic Boolean operations using ternary
logic are summarized in Table 3.1. From Table 3.1, one can observe that for an
AND operation, the output is determined if one of the inputs is 0. Thus, we say
that 0 is the controlling value of the AND operation. Similarly, 1 is the controlling
value of an OR operation.
Simulation based on ternary logic is pessimistic; it may report that a signal is

unknown when in fact its value can be uniquely determined as 0 or 1 [Breuer
1972]. To illustrate the information loss caused by ternary logic, the example circuit
N is redrawn in Figure 3.5. Let the input vector be ABC = 1u0. Ternary logic
simulation (Figure 3.5a) will report that the output K is unknown; however, recall
that ABC= 1u0 represents two possibilities: ABC= 100 and 110. Figure 3.5b shows
the simulation results for both cases using binary logic; K equals 0 regardless of
the value of B, be it 0 or 1. Apparently, ternary logic simulation causes information
loss in this example.

(b) Enumerate all possible cases (B = 0 and 1): K = 0

(a) Ternary logic simulation: K = u

0

0

0 or 1

0 or 1

0 or 1
1 or 0

A

B

C

G2

G1
G3

G4 K 

1

A
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C
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u
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G1
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G4 K 

0

1

� FIGURE 3.5

Information loss caused by ternary logic.
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To resolve the problem of information loss, one would have to assign to each
flip-flop a unique unknown symbol ui and associate with ui the following rules:

NOT�ui�= u′i

NOT�u′i�= ui

ui ·u′i = 0

ui+u′i = 1

Let us revisit the example in Figure 3.5. Based on the above rules, the output
of G3 will be u′ instead of u, and finally one has K = 0, the correct answer. The
problem with this approach is that signals that are affected by multiple unknown
symbols have to be expressed as Boolean expressions of ui’s. As the number of
unknown symbols grows, the required symbolic simulation becomes cumbersome.

3.2.2.2 High-Impedance State Z

Until now, the logic signal states that we have discussed are 1 and 0, indicating that
the signal is connected to either Vdd or ground. (The unknown symbol indicates
uncertainty; however, the signal of interest is still 1 or 0.) In addition to 1 or 0,
tristate gates have a third, high-impedance state, denoted by logic symbol Z. Tristate
gates permit several gates to time-share a common wire, called a bus. A signal is in
the Z state if it is connected to neither Vdd nor ground.
Figure 3.6 depicts a typical bus application. In this example, three bus drivers

(G1, G2, and G3) drive the bus wire y. Each driver Gi is controlled by an enable
signal ei, and its output oi is determined as follows:

oi =
{
xi if ei = 1
Z if ei = 0

pull-up
or down

DFF
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Function

� FIGURE 3.6

Tristate circuits.
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That oi = Z indicates that Gi has no effect on the bus wire y, leaving the control to
other drivers.
For the bus to function correctly, there should not be more than one active

tristate control at a time. If multiple drivers are enabled and they intend to drive
the bus to the same value, the bus wire is assigned the active drivers’ output value;
however, if at least two drivers drive the bus wire to opposite binary values, a bus
conflict occurs. Such situations may cause the circuit to be permanently damaged.
Finally, if no driver is activated, the bus is in a floating state because it is not
connected to Vdd or ground. A pull-up or down network that connects the bus wire
to Vdd or ground via a resistor may be added to provide a default 1 or 0 logic value
(Figure 3.6); otherwise, the bus wire will retain its previous value as a result of
trapped charge in the parasitic wire capacitance.
In addition to design errors, abnormal bus states could occur during testing when

the circuit is not in its normal operating environment and may receive illegal input
sequences; for example, e1, e2, and e3 may come from the outputs of flip-flops fed
by mutual exclusion logic. However, during test, the flip-flops may have random
values scanned into them, producing a bus conflict.
To facilitate logic simulation of tristate buses, one may insert a resolution func-

tion into the circuit description for each bus wire (Figure 3.6). When the simulator
encounters a bus signal, the resolution function will check the outputs (and other
necessary information) of all the drivers to determine the bus signal. Depending on
the simulation requirement, the accuracy of the resolution functions varies. In the
simplest form, it may report the occurrence of a bus conflict. To achieve higher sim-
ulation accuracy, more sophisticated resolution functions utilize multiple-valued
logic systems to represent intermediate logic states.

3.2.2.3 Intermediate Logic States

To model the intermediate logic states that may occur in tristate buses, switch-
level networks, and defective circuits, logic simulators employ multiple-valued logic
systems that include symbols carrying information of not only signal values but
also strengths.
Consider the 21-valued logic system in [Miczo 2003]. Six symbols are used to

represent six distinct logic levels: strong, weak, and floating 1’s and 0’s. The strong
1 and 0 are the same as the 1 and 0 that we have been using. The weak signals, on
the other hand, drive circuit nodes with less strength and are overridden by strong
signals. Floating signals denote trapped charge and are the weakest. Besides the six
logic levels, 15 symbols are introduced to model uncertain circuit behavior. Each of
the symbols corresponds to a subrange bounded by a pair of the 6 logic levels. For
example, the subrange bounded by strong 1 and 0 denotes the most uncertainty.

3.2.3 Logic Element Evaluation
Logic element evaluation (or gate evaluation) is the process of computing the out-
put of a logic element based on its current input and state values. The choice of
evaluation technique depends on the considered logic symbols and the types and
models of the logic elements.
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3.2.3.1 Truth Tables

Using the truth table is the most straightforward way to evaluate logic elements.
Assuming only binary values, an n-input combinational logic element requires a
2n-entry truth table to store the output value with respect to all possible input
combinations. (For a sequential element, n corresponds to the number of its input
and state variables.) In practice, the truth table is stored in an array of size 2n. To
access the array, the values of the n input variables are packed in a word that serves
as the index to access the array. For example, consider the array TNAND3 to store
the truth table of a three-input NAND gate. Then, the output value with respect to
input pattern 010 is obtained by:

TNAND3 �0102�= TNAND3 �2�

where the subscript 2 indicates the binary number system.
For a multivalued logic system with k symbols, the required array size for an

n-input element is calculated as follows. Letm be the number of bits needed to code
the k logic symbols; that is, m is the smallest integer such that 2m ≥ k. The n input
values will be packed into anm ·n-bit word; therefore, the array size is 2mn, although
only kn entries are needed. For example, a nine-valued logic system requires four
bits to code the nine symbols (i.e., m= 4). For a five-input element, an array of size
24×5= 220 is needed to store the 95 = 19,683 truth table entries. Truth-table-based
logic element evaluation techniques are fast; however, their usage is limited because
the requiredmemory grows exponentially with respect to the number of gate inputs.

3.2.3.2 Input Scanning

Recall that the outputs of AND and OR gates (and similarly NAND and NOR gates)
can be determined if any of their inputs has a controlling value. The idea of input
scanning is to scan through the inputs and determine the corresponding output
based on the presence of the controlling and unknown values in the gate input list.
In addition to the controlling value, denoted by c, we need the inversion value,

denoted by i, to characterize the AND, OR, NAND, and NOR gates. The c and i
parameters of these gates are summarized in Table 3.2. The input scanning algo-
rithm determines the gate output value according to the following rules:

1. If any of the inputs is the controlling value, the gate output is c⊕ i.

2. Otherwise, if any of the inputs is u, the gate output is u.

3. Otherwise, the gate output is c′ ⊕ i.

TABLE 3.2 � The c and i Values of Basic Gates

c i

AND 0 0
OR 1 0
NAND 0 1
NOR 1 1
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The input scanning algorithm.

The input scanning algorithm flow is depicted in Figure 3.7. The scanning process
(the shaded region) detects the existence of controlling and unknown inputs. If an
unknown input is encountered, the u_in variable is set to true. On the other hand,
once a controlling input is detected, the algorithm will exit the loop and return c⊕ i.
If there is no controlling input, the output value depends on whether there is any
unknown input.

3.2.3.3 Input Counting

Examining the input scanning algorithm, one can observe that knowing the number
of controlling and unknown inputs is sufficient to evaluate the output of AND, OR,
NAND, and NOR gates. Based on this observation, the input counting algorithm
maintains, for each gate, the number of controlling and unknown inputs, denoted
by c_count and u_count, respectively. During logic simulation, the two counts are
updated if the value of any gate input changes. Consider the NAND gate as an
example. If one of its inputs switches from 0 to u, then c_count will be decremented
and u_count incremented. Finally, the same rules as those for the input scanning
algorithm are applied to determine the output value.

3.2.3.4 Parallel Gate Evaluation

One way to speed up logic simulation is to implement simulation concurrency on
the host computer. Because modern computers process data in the unit of a word,
usually 32- or 64-bits wide, one can store in a single word multiple copies of a
signal (with respect to different input vectors) and process them at the same time.
This is referred to as parallel simulation or bitwise parallel simulation.
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Parallel gate evaluation.

Figure 3.8 depicts how parallel simulation is realized to simulate circuit N with
binary logic on a computer with a 4-bit word. Because one bit is sufficient to
code binary logic symbols, four vectors can be stored in a word and processed
in parallel. In this example, the four input vectors to be simulated are ABC =
��110�,�010�,�011�,�100�
, and next to each signal is the 4-bit data word that stores
the values corresponding to the four input vectors. Bitwise logic operations are
performed to evaluate the gate outputs.
Parallel simulation is more complicated for multi-valued logic. Consider the

ternary logic for which two bits are needed to code the three symbols. One possible
coding scheme is:

v0 = �00�

v1 = �11�

vu = �01�

Assume that the word width of the host computer is w. For each signal, two
words, denoted by X1 and X2 for signal X , are allocated to store w signal values,
with X1 storing the first bit of each symbol and X2 storing the second bit. Under this
symbol coding and packing scheme, the AND and OR operations can be realized by
directly applying the same bitwise operation. For example, evaluation of an AND
gate with inputs A and B and output C is performed as follows:

C1 = AND�A1	B1�

C2 = AND�A2	B2�

If A= 00 and B= 11, then C= 00. If A= 01 and B= 11, then C= 01. The complement
operation (say, C= A′), on the other hand, is realized by:

C1 =NOT�A2�

C2 =NOT�A1�

Interchanging A1 and A2 ensures that the inversion of an unknown is still unknown.
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3.2.4 Timing Models
Delay is a fact of life for all electrical components, including logic gates and inter-
connection wires. In this section, we discuss the commonly used gate and wire
delay models.

3.2.4.1 Transport Delay

The transport delay refers to the time duration it takes for the effect of gate input
changes to appear at gate outputs. Several transport delay models characterize this
phenomenon from different aspects. The nominal delay model specifies the same
delay value for the output rising and falling transitions and thus is also referred to
as the transition-independent delaymodel. Consider the AND gateG in Figure 3.9
as an example. Here B is fixed at 1; thus, the output of G is only affected by A.
Assuming that G has a nominal delay of dN = 2ns and A is pulsed to 1 for 1ns, the
corresponding simulation result is shown in Figure 3.9a. Using the nominal delay
model, the output waveform at F is simply a version of A delayed by 2ns.
For cases where the rising and falling times are different (e.g., the pull-up and

pull-down transistors of the gate have different driving strengths), one may opt for
the rise/fall delaymodel. In Figure 3.9b, the setup is the same as that in Figure 3.9a,
except that the rise/fall delay model is employed instead; the rise and fall delays are
dr = 2ns and df = 1�5ns, respectively. Due to the difference between the two delays,
the duration of the output pulse shrinks from 1 to 0.5 ns.
If the gate transport delay cannot be uniquely determined (e.g., due to process

variations), one may employ the min–max delay model. In the min–max delay

(a) Nominal delay

(b) Rise/fall delay

(c) Min–Max delay
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Transport delay models.
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model, the minimum and maximum gate delays (dmin and dmax) are specified to
represent the ambiguous time interval in which the output change may occur. In
Figure 3.9c, the minimum and maximum delays are 1 and 2ns, respectively, and a
1.5-ns pulse is applied at A. In response to the delay uncertainty, two ambiguous
intervals (the shaded regions), corresponding to the rising and falling transitions,
are observed at output F. Within the two ambiguous intervals, the exact output
value is unknown.
Note that one may combine the min–max and rise/fall delay models to represent

more complicated delay behaviors.

3.2.4.2 Inertial Delay

The inertial delay is defined as the minimum input pulse duration necessary for the
output to switch states. Pulses shorter than the inertial delay cannot pass through
the circuit element. The inertial delay models the limited bandwidth of logic gates.
Figure 3.10 illustrates this filtering effect. Assume that the AND gate has an inertial
delay of 1.5 ns and a nominal delay of 3 ns. Let us fix B at 1 and apply a pulse on A.
In Figure 3.10a, the 1-ns pulse is filtered and the output remains at a constant 0.
In Figure 3.10b, the pulse is long enough (2ns) and an output pulse is observed
3ns later.

3.2.4.3 Wire Delay

In the past, when gate delays dominated circuit delay, the interconnection wires
were regarded as ideal conductors with no signal propagation delay. In reality,
wires are three-dimensional structures that are inherently resistive and capacitive.
Furthermore, they may interact with neighboring conductors to formmutual capac-
itance. Figure 3.11a illustrates the distributed RLC model of a metal wire. In the

(a) Pulse duration less than dI

(b) Pulse duration longer than dI
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Inertial delay.



120 VLSI Test Principles and Architectures

(a) Distributed wire delay model

(b) Fanout delay modeling
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Wire delay model.

presence of the passive components, it takes finite time, called the propagation
delay, for a signal to travel from point p to point q.
In general, wire delays are specified for each connected gate output and gate

input pair because the physical distances and thus the propagation delays between
the driver and receiver gates vary. In Figure 3.11b, the inverter output a branches
out to drive three gates. To model the wire delays associated with the three signal
paths, one may insert delay elements da−b, da−c, and da−d into the fanout branches.
For convenience, wire delays may also be viewed as the receiver gate input delays
and become part of the receiver gate delay model.
Thanks to the advance of integrated-circuit fabrication technology, continuous

device scaling has significantly reduced gate delays; however, wire delays do not
benefit as much from device scaling. As a result, wire delays have replaced gate
delays as the dominant performance-limiting factor. The challenge of wire delay
modeling is that accurate delay values are not available until the physical design
stage when the functional blocks are placed and signal nets are routed. Very often,
the designers have to go back to earlier design stages to fix the timing violations, a
time-consuming process.

3.2.4.4 Functional Element Delay Model

Functional elements, such as flip-flops, have more complicated behaviors than
simple logic gates and require more sophisticated timing models. In Table 3.3, the
I/O delay model of the positive-edge-triggered D flip-flop (Figure 3.4) is depicted.
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TABLE 3.3 � The D Flip-Flop I/O Delay Model

Input Condition Present State Outputs Delays (ns)

CommentsD Clock PresetB ClearB q Q QB to Q to QB

X X ↓ 1 0 ↑ ↓ 1.6 1.8 Asynchronous preset
X X 1 ↓ 1 ↓ ↑ 1.8 1.6 Asynchronous clear
1 ↑ 1 1 0 ↑ ↓ 2 3 Q	 0→ 1
0 ↑ 1 1 1 ↓ ↑ 3 2 Q	 1→ 0

Note: X indicates “don’t care.’’

Take the asynchronous preset operations (second row) as an example. Regardless
of the Clock and D values, if the current flip-flop state (q) is 0 and ClearB remains
1, changing PresetB from 1 to 0 (denoted by the down arrow) will cause output
transitions atQ andQB after 1.6 and 1.8 ns, respectively. Besides the input-to-output
transport delay, the flip-flop timing model usually contains timing constraints, such
as setup/hold times and inertial delays for each input.

3.3 LOGIC SIMULATION

In this section, we will discuss two commonly used gate-level logic simulation
methodologies: compiled-code and event-driven. The reader should note that,
although not included in this chapter, hardware emulation and acceleration
approaches are often employed to speed up the logic simulation process, especially
for large designs.

3.3.1 Compiled-Code Simulation
The idea of compiled-code simulation is to translate the logic network into a
series of machine instructions that model the functions of the individual gates and
interconnections between them. The compiled-code simulation flow is illustrated
in Figure 3.12a. In each clock cycle, the compiled code program together with the
input pattern is executed in the host machine. The simulation results are displayed
or stored for later analysis. The code generation flow is depicted in Figure 3.12b.
Note that logic optimization and levelization are performed prior to the actual code
generation process.

3.3.1.1 Logic Optimization

The purpose of logic optimization is to enhance the simulation efficiency. A typical
optimization process consists of the following transformation [Wang 1987]:

1. Remove gate inputs that are tied to noncontrolling values (Figure 3.13a).

2. Convert a one-input gate into an inverter or buffer (Figure 3.13b).

3. Remove a gate with one or more inputs tied to its controlling value, and
replace the gate’s output with 1 or 0 (Figure 3.13c).
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Logic optimization.

4. Replace three consecutive inverters with a single one (Figure 3.13d); this case
is common in clock trees.

5. Replace a buffer with a single wire (Figure 3.13e).

6. Remove logic gates that drive unobservable or floating outputs.
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Because each gate corresponds to one or more statements in the compiled code,
logic optimization reduces the program size and execution time.

3.3.1.2 Logic Levelization

To avoid unnecessary computations, logic gates must be evaluated in an order such
that a gate will not be evaluated until all its driving gates have been evaluated. For
circuit N, the evaluation order:

G1→G2→G3→G4

satisfies this requirement. For most networks, there exists more than one evaluation
order that meets the requirement; for example, for N:

G1→G3→G2→G4

The logic levelization algorithm shown in Figure 3.14 can be utilized to produce
the desired gate evaluation order. At the beginning of the algorithm, all the PIs
are assigned level 0, and all the PI fanout gates are appended to the first-in/first-out
queue Q that stores the gates to be processed. While Q is non-empty, the first gate
g in Q is popped out. If all the driving gates of g are levelized and the maximum
level is l, g is assigned level l+ 1 and all of the fanout gates of g are appended
to Q; otherwise, g is put back in Q to be processed later. The levelization process
repeats until Q is empty. Note that for gates assigned the same level, their order

start

assign level 0 to
all PI′s

put all PI fanout
gates in Q

Q empty?

end

yes

yes

no

no
append g to Q

ready to
 levelize g ?

pop next gate g
 from Q

append g ′s fanout
 gates to Q

1. l = maximum of
    g ′s driving gate
    levels
2. assign l + 1 to g

� FIGURE 3.14

The logic levelization algorithm.
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TABLE 3.4 � The Levilization Process of Circuit N

Step A B C G1 G2 G3 G4 Q

0 0 0 0 <G2, G1>
1 0 0 0 <G1, G2>
2 0 0 0 1 <G2, G3>
3 0 0 0 1 2 <G3, G4>
4 0 0 0 1 2 2 <G4>
5 0 0 0 1 2 2 3 < >

of evaluation does not matter. This levelization process is also referred to as rank
ordering.

The levelization process for circuit N is shown step by step in Table 3.4. At the
beginning, PIs are assigned level 0, and their fanout gates G1 and G2 are appended
to Q. In step 1, G2 is not ready and put back to Q because G1 is not levelized yet.
In step 2, G1 is assigned level 1 because it is driven by level 0 PIs only. At the end
of the process, the following orders are produced:

G1→G2→G3→G4

G1→G3→G2→G4

3.3.1.3 Code Generation

Depending on performance, portability, and maintainability needs, different code
generation techniques may be used [Wang 1987]. Three approaches for code gen-
eration are described below:

� Approach 1—High-level programming language source code. The net-
work to be simulated is described in a high-level programming language,
such as C. The advantage is that it is easier to debug and can be ported to
any target machine that has a C compiler. The compilation time could be a
severe limitation for fault simulators that require recompilation for each faulty
circuit.

� Approach 2—Native machine code. This approach generates the target
machine code directly without the need of compilation, which makes it a
more viable solution to fault simulation. High simulation efficiency can be
achieved if code optimization techniques are utilized to maximize the usage
of the target machine’s data registers.

� Approach 3—Interpreted code. In this approach, the target machine is a
software emulator. During simulation, the instructions are interpreted and
executed one at a time. This approach offers the best portability and main-
tainability at the cost of reduced performance.
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Shown below is the pseudo code for circuit N. In the actual implementation,
each statement is replaced with the corresponding language constructs or machine
instructions, depending on the adopted code generation approach:

while(true) do
read(A, B, C);
E←OR(B, C);
H←AND(A, E);
J←NOT(E);
K←NOR(H, J);

end

Compiled-code simulation is most effective when binary logic simulation suffices.
In such cases,machine instructions are readily available for Boolean operations (e.g.,
AND, OR, and NOT). Its main limitations include its incapability of timingmodeling
and low simulation efficiency. The compiled-code simulation methodology cannot
handle gate andwire delaymodels. As a result, it fails to detect timing problems such
as glitches and race conditions. The low efficiency of compiled-code simulation is
because the entire network is evaluated for each input vector, despite the fact that in
general only 1 to 10% of input signals change values between consecutive vectors.

3.3.2 Event-Driven Simulation
In contrast to compiled-code simulation, event-driven simulation exhibits high
simulation efficiency by performing gate evaluations only when necessary. We will
use Figure 3.15 to illustrate the event-driven simulation concept. In this example,
two consecutive input patterns ABC = 001 and 111 are applied to circuit N and
the corresponding signal values are shown. Note that the application of the second
vector does not change the input of G3, so G3 is not evaluated for the second vector.
In event-driven simulation, the switching of a signal’s value is called an event, and
an event-driven simulator monitors the occurrences of events to determine which
gates to evaluate.
Figure 3.16 depicts the zero-delay event-driven simulation flow. (A zero-delay

simulation is one in which gates and interconnect are assumed to have zero delay.)
At the beginning of the simulation flow, the initial signal values, which may be given

B
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G3G1
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G4 K : 1 → 0

H : 0 → 1
0 → 1

0 → 1

1

� FIGURE 3.15

Signal transitions between consecutive inputs.
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Zero-delay event-driven simulation.

or simply unknown, are read in and assigned. Then, a new input vector is loaded
and the primary inputs at which events occur (called active PIs) are identified. To
propagate the events toward primary outputs, gates driven by active primary inputs
are put in the event queue Q, which stores the gates to be evaluated. As long as Q
is not empty, a gate g is popped from Q and evaluated. If the output of g changes
(i�e�, a new event occurs), the fanout gates of g are placed in Q. When Q becomes
empty, the simulation for the current input vector is finished, and the simulator
proceeds to process the next input vector.
Doing only the necessary work, event-driven simulation is more efficient than

compiled-code simulation. Besides simulation efficiency, the biggest advantage of
event-driven simulation is its capability to simulate any delay model.

3.3.2.1 Nominal-Delay Event-Driven Simulation

The scheduler is an important component of an event-drive simulator. It keeps
track of event occurrences and schedules the necessary gate evaluations. For zero-
delay simulation, the event queue is a good enough scheduler because timing is not
considered. For nominal-delay simulation, however, a more sophisticated scheduler
is required to determine not only which gates to evaluate but also when to evaluate
them. Because events must be evaluated in chronological order, the scheduler is
implemented as a priority queue.
Figure 3.17 depicts one possible priority queue implementation for a nominal

delay event-driven simulator. In the priority queue, the vertical list is an ordered
list that stores the time stamps when events occur. Attached to each time stamp
ti is a horizontal list of events that occur at time ti. During simulation, a new
event that will occur at time ti is appended to the event list of time stamp ti. For
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Priority queue event scheduler.

example, in Figure 3.17, the value of signal w will switch to v+w at ti. If ti is not in
the time stamp list yet, the scheduler will first place it in the list according to the
chronological order.
For the priority queue scheduler in Figure 3.17, the time needed to locate a time

stamp to insert an event grows with the circuit size. To improve the event scheduler
efficiency, one may use, instead of a linked list, an array of evenly spaced time
stamps. Although some entries in the array may have empty event lists, the overall
search time is reduced because the target time stamp can be indexed by its value.
Further enhancement is possible with the concept of timing wheel [Ulrich 1969].
Let the time resolution be one time unit and the array size M. A time stamp that is
d time units ahead of current simulation time (with array index i) is stored in the
array and indexed by (i+d) mod5 M if d is less than M; otherwise, it is stored in
an overflow remote event list similar to that is shown in Figure 3.17. Remote event
lists are brought into the timing wheel once their time stamps are within M− 1
time units from current simulation time.
A two-pass strategy for nominal delay event-driven simulation is depicted in

Figure 3.18. When there are still future time stamps to process, the event list LE of
next time stamp t is retrieved. LE is processed in a two-pass manner. In pass one
(the left shaded box), the simulator determines the set of gates to be evaluated. The
notation (g, v+g ) indicates that the output of gate g is to become v+g . For each event
(g, v+g ), if v

+
g is the same as g’s current value vg, this event is false and is discarded.

On the other hand, if v+g �= vg (i�e�, (g, v
+
g ) is a valid event), then vg is updated to v+g ,

and the fanout gates of g are appended to the activity list LA. In the second pass
(the right shaded box), gates are evaluated and new events are scheduled. While the
activity list LA is non-empty, a gate g is retrieved and evaluated. Let the evaluation
result be v+g . The scheduler will schedule the new event (g, v+g ) at time stamp t +
delay(g), where delay(g) denotes the nominal delay of gate g. The two-pass strategy
avoids repeated evaluation of gates with events on multiple inputs.

5 “mod” denotes modulo operation. The array is referred to as the timing wheel due to the modulo-M-
induced circular structure.
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Two-pass event-driven simulation strategy.

In the following, we will use circuit N to demonstrate the two-pass event-driven
strategy. In this example, the nominal delays for G1, G2, G3, and G4 are 8, 8, 4,
and 6ns, respectively, and there are four input events (see Figure 3.19): (A, 1, 0),
(C, 0, 2), (B, 0, 4), and (A, 0, 8), where the notation (w, v′w, t) represents the event
that signalw switches to v′w at time t. The simulation progress is shown in Table 3.5.
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� FIGURE 3.19

Flow of events and voided events.
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TABLE 3.5 � Two-Pass Event-Driven Simulation

Time LE LA Scheduled Events

0 {(A, 1)} {G2} {(H, 1, 8)}
2 {(C, 0)} {G1} {(E, 1, 10)}
4 {(B, 0)} {G1} {(E, 0, 12)}
8 {(A, 0), (H, 1)} {G2, G4} {(H, 0, 16), (K, 0, 14)}

10 {(E, 1)}
12 {(E, 0)} {G2, G3} {(H, 0, 20), (J, 1, 16)}
14 {(K, 0)}
16 {(H, 0), (J, 1)} {G4} {(K, 0, 22)}
20 {(H, 0)}
22 {(K, 0)}

At time 0, there is only one primary input event (A, 1). Because A drives G2, G2

is added to activity list LA. Evaluation of G2 returns H = 1; therefore, the event
(H, 1) is scheduled at time 8 (i�e�, 8 ns, the delay of G2 after the current time.) At
time stamps 2 and 4, the two input events at C and B are processed in the same
way. There are two events at time 8: the input event (A, 0) and the scheduled event
(H, 1) from time stamp 0. As both events are valid, the two affected gates, G2 and
G4, are put in LA for evaluation. The corresponding events (H, 0) and (K, 0) are
scheduled at time 16 and 14, respectively. Note that the event (E, 1) at time 10 is
false because it does not cause a signal transition; therefore, no gate evaluation is
performed.
In Figure 3.19, the detailed signal waveforms are drawn to illustrate the flow

of events and the unnecessarily scheduled false events: (E, 1, 10), (H, 0, 20), and
(K, 0, 22). One way to avoid false events is to compare the gate evaluation result
with the last scheduled value of that gate. A new event is scheduled only if the two
values differ.

3.3.3 Compiled-Code versus Event-Driven Simulation
Compiled-code and event-driven simulation each have their advantages and dis-
advantages. Compiled-code simulation is good for cycle-based simulation, where
only the circuit behavior at the end of each clock cycle is of interest and zero-delay
simulation can be used. Compiled-code simulation is also good for hiding the details
of a simulation model, such as a processor core. Compiled-code simulation is also
good when the circuit activity is high or when bitwise parallel simulation is used.
The overhead of compilation restricts compiled-code simulation to applications
where a large number of input vectors will be simulated. Event-driven simulation is
the best approach for implementing general delay models, and detecting hazards.
It is also the best approach for circuits with low activity, such as low-power circuits
that employ clock gating. Event-driven simulation is also the best approach dur-
ing circuit debug, when frequent edit-simulate-debug cycles occur and simulation
startup time is important.



130 VLSI Test Principles and Architectures

3.3.4 Hazards
Because of the difference in delays along reconvergent signal paths, input transi-
tions may cause unwanted transient pulses or glitches, called hazards, to appear
at internal signals or primary outputs. We will use circuit N to illustrate the cause
of hazards. In this example, the inverter has a nominal delay of 3 ns, and the other
gates have nominal delays of 2 ns. At first, the input vector to circuit N is ABC= 110
and the output value is K = 0. After circuit N stabilizes, the second input vector
ABC= 100 is applied. Without considering the gate delays, the simulator will report
that K remains unchanged; however, as shown in Figure 3.20, a delay-aware simu-
lator will reveal the existence of a spurious one pulse at K, called a static 0-hazard.

Hazards are divided into two categories: static and dynamic. A static hazard
refers to the transient pulse on a signal line whose static value does not change.
Depending on what the signal’s static value is, a static hazard may be a static
1-hazard or a static 0-hazard. A dynamic hazard, on the other hand, refers to
the transient pulse during a 0-to-1 or 1-to-0 transition. Figure 3.21 illustrates the
possible outputs of a network with hazards. In the figures, only one hazard pulse
is shown, but in general there can be multiple pulses. The presence of hazards may
cause a sequential network to malfunction. Following the above example, if the
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output signal K is connected to the active high clear input of a flip-flop, the flip-flop
may be erroneously cleared by the 1 spike.
Hazard detection is straightforward if the network timing information is avail-

able and supported by the simulator; however, the accuracy of this approach suffers
from gate delay deviations caused by process variations. In the following, we dis-
cuss multivalued logic-based hazard detection techniques that perform worst-case
hazard analysis regardless of the timing model.

3.3.4.1 Static Hazard Detection

Recall that hazards are caused by the difference of delays associated with recon-
vergent paths (e.g., E→ H → K and E→ J → K in circuit N). (The event flow
corresponding to the two paths are shown in Figure 3.20.) One must therefore ana-
lyze the transient behavior of the network for hazard detection; however, without
the correct delay information, it is impossible to predict the exact moment at which
a signal transition occurs. One solution to this difficulty is to model the network’s
transient behavior by associating an uncertainty interval to each input signal transi-
tion [Yoeli 1964] [Eichelberger 1965]; that is, a 0→ 1 transition becomes 0→u→ 1.
(Similarly, a 1→ 0 transition becomes 1→ u→ 0.) Because 0u1 may be 001 or 011
(a slower and a faster transition, respectively), the added u signifies the fact that
we do not know exactly when the transition occurs.
Let V1 = v11v

1
2 � � � v

1
n and V2 = v21v

2
2 � � � v

2
n be two consecutive input vectors. The

extra input vector V+ = v+1 v
+
2 � � � v

+
n that models the transition uncertainty is

obtained in the following way:

v+i =
{
v1i if v1i = v2i
u if v1i �= v2i

When V+ is available, the modified input sequence V1V+V2 is simulated. If the 0u0
or 1u1 pattern is observed at any primary output, the static hazard is detected.
Note that the above method performs a worst-case analysis independent of the
delay model.
Now, let us apply this procedure to circuit N with input sequences V1 = 110

and V2 = 100. Following the above procedure, one has V+ = 1u0. Simulating the
V1V+V2 sequence (using ternary logic) reports that K = 0u0; thus, a static 0-hazard
is detected in this example, which agrees with the simulation results in Figure 3.20.
Based on the same idea, a simulator may utilize the six-valued logic to detect

static hazards [Hayes 1986]. The symbols and interpretations of the six-valued logic
are listed in Table 3.6 The results of Boolean operations on the six symbols can
be obtained by applying the same operation bitwise. For example, the outcome of
AND(F,1*) is derived as follows:

AND�F	1∗� = AND��1u0
	 �1u1
�

= �1u0


= F
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TABLE 3.6 � Multivalued Logic for Hazard Detection

Symbol Interpretation Six-Valued Logic Eight-Valued Logic

0 Static 0 {000} {0000}

1 Static 1 {111} {1111}

R Rise transition �001,011�= 0u1 {0001,0011,0111}

F Fall transition �100,110�= 1u0 {1110,1100,1000}

0* Static 0-hazard �000,010�= 0u0 {0000,0100,0010,0110}

1* Static 1-hazard �111,101�= 1u1 {1111,1011,1101,1001}

R* Dynamic 1-hazard {0001,0011,0101,0111}

F* Dynamic 0-hazard {1000,1010,1100,1110}

3.3.4.2 Dynamic Hazard Detection

A dynamic hazard causes an unwanted pulse to appear during a 0-to-1 or 1-to-0
transition. To detect dynamic hazards, four-bit sequences are necessary. The eight-
valued logic [Hayes 1986] that covers all the 4-bit sequences necessary for dynamic
hazard detection is shown in Table 3.6. Compared to six-valued logic, two symbols
R* and F* are added to denote the dynamic 1- and 0-hazard, respectively. The result
of a Boolean operation on the eight-valued logic symbols is the union of the results
obtained by applying the same operation to all possible sequence pairs of the two
operands. For example, the process of deriving OR(0*, F) is shown below:

OR �0∗	 F�=OR

⎛
⎜⎜⎝
⎧⎪⎪⎨
⎪⎪⎩
0000
0100
0010
0110

⎫⎪⎪⎬
⎪⎪⎭ 	

⎧⎨
⎩
1110
1100
1000

⎫⎬
⎭
⎞
⎟⎟⎠=

⎧⎪⎪⎨
⎪⎪⎩
1110
1100
1000
1010

⎫⎪⎪⎬
⎪⎪⎭= F∗

3.4 FAULT SIMULATION

Fault simulation is a more challenging task than logic simulation due to the added
dimension of complexity; that is, the behavior of the circuit containing all the
modeled faults must be simulated. When simulating one fault at a time, the amount
of computation is approximately proportional to the circuit size, the number of
test patterns, and the number of modeled faults. Because the number of modeled
faults is roughly proportional to the circuit size, the overall time complexity of fault
simulation is O(pn2), for p test patterns and n logic gates, which becomes infeasible
for large circuits.
To improve fault simulation performance, various fault simulation techniques

have been developed. In the following sections, we restrict our discussion to the
single stuck-at fault model and illustrate the key fault simulation techniques. Before
introducing these techniques, we would like to clarify terminology. Although the
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terms “test vectors” and “test patterns” are interchangeable in most cases, for the
subject of logic simulation the term “test vectors” is preferred, because test vectors
are mostly written by human designers for design verification. For fault simulation,
on the other hand, the term “test patterns” is used, as the fault simulators frequently
work with ATPG to grade test patterns.

3.4.1 Serial Fault Simulation
Serial fault simulation is the simplest fault simulation technique. It consists of fault-
free and faulty circuit simulations. Initially, fault-free logic simulation is performed
on the original circuit to obtain the fault-free output responses. The fault-free
responses are stored and later employed to determine whether a test pattern can
detect a fault or not. After fault-free simulation, a serial fault simulator simulates
faults one at a time. For each fault, fault injection is first performed, which mod-
ifies the original circuit to mimic the circuit behavior in the presence of the fault.
Then, the faulty circuit is simulated to derive the faulty responses of the current
fault with respect to the given test patterns. This process repeats until all faults in
the fault list have been simulated.
The serial fault simulation process is demonstrated using the example circuit N.

In this example, the fault list is comprised of two faults, A stuck-at one (denoted
by f ) and J stuck-at zero (denoted by g), which are depicted in Figure 3.22. Note
that, although both faults are drawn in the figure, only one fault is present at a time
under the single stuck-at fault model. The test set consists of three test patterns
(denoted by P1, P2, and P3 and shown in the “Input” columns of Table 3.7).

The serial fault simulator starts from fault-free simulation. The fault-free
responses are Kgood = �1, 1, 0
 for input patterns P1, P2, and P3, respectively. After the
fault-free responses are available, fault f is processed; fault injection is achieved by
forcing A to a constant one and the obtained faulty circuit is simulated. The circuit
responses for fault f are Kf = �0, 0, 0
 with respect to the three input patterns.
Compared with the fault-free responses (the “Output” column in Table 3.7), it is
observed that patterns P1 and P2 detect fault f but pattern P3 does not. After fault
f has been simulated, circuit N is restored by removing fault f . The next fault, g, is
then injected by forcing J to zero. Simulation of the resulting faulty circuit is then

B

A
f :A stuck-at 1

L

C
G1 E F J

G2
H

K G4

g :J stuck-at 0
G3

� FIGURE 3.22

An example circuit with two faults.
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TABLE 3.7 � Serial Fault Simulation Results for Figure 3.22

Input Internal Output

Pattern No. A B C E F L J H Kgood Kf Kg

P1 0 1 0 1 1 1 0 0 1 0 1

P2 0 0 1 1 1 1 0 0 1 0 1

P3 1 0 0 0 0 0 1 0 0 0 1

performed to obtain the faulty outputs Kg = �1,1,1
 (also listed in Table 3.7). Fault
g is detected by pattern P3 but not P1 and P2.
In this example, nine simulation runs are performed: three fault-free and six

faulty circuit simulations. These nine simulation runs can be divided into three
simulation passes. In each simulation pass, either the fault-free or the faulty circuit
is simulated for the whole test pattern set; thus, the first simulation pass consists of
fault-free simulations for P1, P2, and P3, and the second and third passes correspond
to the faulty circuit simulations of faults f and g, respectively, for P1, P2, and P3.

By careful inspection of the simulation results in Table 3.7, one can observe
that, if we are only concerned with the set of faults that is detected by the test set
{P1, P2, P3}, simulations of the faulty circuit with fault f for patterns P2 and P3 are
redundant because f is already detected by P1. (It is assumed that the test patterns
are simulated in the order P1, P2, and then P3.) Halting simulation of detected
faults is called fault dropping. For the purpose of fault grading, fault dropping
dramatically improves fault simulation performance, as most faults are detected
after relatively few test patterns have been applied. Fault dropping, however, should
be avoided in fault diagnosis applications in which the entire fault simulation
results are usually required to facilitate the identification of the fault type and
location.
The simplified serial fault simulation flow is depicted in Figure 3.23. Prior to fault

simulation, fault collapsing is executed to reduce the size of the fault list, denoted
by F. Fault-free simulation is then performed for all test patterns to obtain the
correct responses Ogood. The algorithm then proceeds to fault simulation. For each
fault f in F, if there exists a test pattern whose output response Of differs from that
of the corresponding good circuit Ogood, f is removed from F, indicating that it is
detected. When all patterns have been simulated, the remaining faults in F are the
undetected faults.
The major advantage of serial fault simulation is its ease of implementation; a

regular logic simulator plus fault injection and output comparison procedures will
suffice. In addition, serial fault simulation can handle a wide range of fault models,
as long as the fault effects can be properly injected into the circuit. The major
disadvantage of serial fault simulation is its low performance. As is discussed in
the following sections, practical fault simulation techniques exploit parallelism or
similarities among the faulty circuits to speed up the fault simulation process.
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The serial fault simulation algorithm flow.

3.4.2 Parallel Fault Simulation
Similar to parallel logic simulation, fault simulation can take advantage of the
bitwise parallelism inherent in the host computer to reduce fault simulation time.
For example, in a 32-bit wide CPU, logic operations (AND, OR, or XOR) can be
performed on all 32 bits at once. There are two ways to realize bitwise parallelism
in fault simulation: parallelism in faults and parallelism in patterns. These two
approaches are referred to as parallel fault simulation and parallel pattern fault
simulation.

3.4.2.1 Parallel Fault Simulation

Parallel fault simulation was proposed as early as the 1960s [Seshu 1965]. Assuming
that binary logic is utilized, one bit is sufficient to store the logic value of a signal.
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Thus, in a host computer using w-bit wide data words, each signal is associated
with a data word of which w− 1 bits are allocated for w− 1 faulty circuits and
the remaining bit is reserved for the fault-free circuit. This way, w−1 faulty and
one fault-free circuit can be processed in parallel using bitwise logic operations
which correspond to a speedup factor of approximately w−1 compared to serial
fault simulation. A fault is detected if its bit value differs from that of the fault-free
circuit at any of the outputs.
We will reuse the example from serial fault simulation to illustrate the parallel

fault simulation process. Assuming that the width of a computer word is three bits,
the first bit stores the fault-free (FF) circuit response, and the second and third
bits store the faulty responses in the presence of faults f and g, respectively. The
simulation results are shown in Table 3.8. Because fault f , A stuck-at one, uses
the second bit, it is injected by forcing the second bit of the data word of signal
A to 1 during fault simulation (shown in the “Af ” column with the forced value
underlined; the “A” column corresponds to the fault-free case). Similarly, the “Jg”
column depicts how fault g is injected by forcing the third bit to 0.

As we have mentioned, parallel fault simulation is performed using bitwise logic
operations. For example, the logic value of signal H is obtained by a bitwise AND
operation on the data words of signals A and L (A, L, andH are circled in Table 3.8).
The faulty response of the first pattern is {1, 0, 1}. This means that fault f is detected
(the second bit) but fault g (the third bit) is not. Similarly, the outputs of P2 and P3

are {1, 0, 1} and {0, 0, 1}, respectively. In this example, three simulations (in one
simulation pass) are performed. Compared to serial fault simulation, which requires
nine simulations, parallel fault simulation saves two-thirds of the simulation time.
To perform parallel fault simulation using regular parallel logic simulators, one

may inject the faults by adding extra logic gates. Figure 3.24 shows how this is
done for faults f and g in N. To inject f , a stuck-at one fault, an OR gate (Gf ) is

TABLE 3.8 � Parallel Fault Simulation for Figure 3.22
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� FIGURE 3.24

Fault injection for parallel fault simulation.

inserted. To force the second bit of Af to one without affecting the other two bits,
the side input of Gf is set to be 010. Note that the injection of fault fdoes not affect
the fault-free circuit and the faulty circuit with fault g. Similarly, injecting fault g, a
stuck-at zero fault, is achieved by adding the AND gate Gg and setting its side input
to be 110.
Note that the parallel fault simulation technique is applicable to the unit or zero

delay models only. More complicated delay models cannot be modeled because
several faults are evaluated at the same time. Furthermore, a simulation pass cannot
terminate unless all the faults in this pass are detected. For example, we cannot
drop fault f alone after simulating pattern P1 because fault g is not detected yet.
Parallel fault simulation is best used for simulating the beginning of the test pattern
sequence, when a large number of faults are detected by each pattern.

3.4.2.2 Parallel-Pattern Fault Simulation

Bitwise parallelism can be used to simulate test patterns in parallel. For a host
computer with aw-bit data width, the signal values for a sequence ofw test patterns
are packed into a data word. For the fault-free or faulty circuit, w test patterns can
be simulated in parallel by utilizing bitwise logic operations. This approach was
first reported in [Waicukauski 1985], in which it is called parallel-pattern single-
fault propagation (PPSFP), as one fault at a time is simulated. This approach is
especially useful for combinational circuits or full-scan sequential circuits.
In PPSFP, logic simulations on the fault-free circuit are first performed on the

first w test patterns, and the circuit outputs are recorded. Then, the faults are
simulated one at a time on these w test patterns. For each fault, the simulation
results are compared with the correct responses to determine if the fault is detected.
Simulation continues until the fault is detected or all the test patterns are simulated.
The faulty circuit is restored to its original state and the next fault is processed.
The same procedure repeats until all faults in the fault list are simulated.
The PPSFP results of the fault simulation example are shown in Table 3.9. The

“Fault-free” row lists the fault-free simulation results. Note that the three patterns
are packed into one single word and thus are evaluated simultaneously using bitwise
logic operations. The “f ” row represents the simulation results with fault f injected.
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TABLE 3.9 � PPSFP for Figure 3.22

In PPSFP, faults are injected by activating rising or falling events, depending on
the stuck-at value, at the faulty signal. Thus, fault f , A stuck-at one, is injected by
activating two rising events on input A. The faulty responses are {0, 0, 0} which
indicates that fault f is detected by the first and second patterns but not the third
one. After fault f is simulated, fault f is removed by activating two falling events
on input A at patterns P1 and P2. Then, fault g is injected by activating one falling
event on signal J at pattern P3. Three simulation runs are carried out.

Figure 3.25 illustrates the simplified PPSFP flow. Again, fault collapsing is first
executed to obtain the collapsed fault list F. Then, the first w patterns are simulated
on the fault free circuit in parallel and the good outputs (Ogood) are stored. Then,
each fault f in fault list F is simulated one by one using the same w test patterns.
A fault is dropped and not simulated against the remaining test patterns if its
output response Of is different from Ogood. To fault simulate the next fault, the
fault effect of the current fault is removed and the next fault is injected. This
process continues until all faults are either detected or simulated against all test
patterns. If the number of test patterns is not an even multiple of the machine word
width, only part of the machine word is used when simulating this last batch of
patterns.
Parallel-pattern single-fault propagation is best suited for simulation of test pat-

terns that come later in the test sequence, where the fault drop rate per pattern is
lower. Parallel fault simulation does not work well in this situation because it can-
not terminate a simulation pass until all w−1 faults being processed are detected.
PPSFP is not suitable for sequential circuits because the circuit state for test pattern
i in the w-bit word is dependent on the previous i−1 patterns in the word, and this
state is not available when the patterns are processed in parallel.
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The PPSFP flowchart.

3.4.3 Deductive Fault Simulation
Deductive fault simulation [Armstrong 1972], unlike the fault simulation techniques
described above, takes a very different approach; it is based on logic reasoning
rather than simulation. For a given test pattern, deductive simulation identifies, all
at once, the faults that can be detected. Deductive fault simulation can be very fast
because only fault-free simulations have to be performed.
In deductive fault simulation, a fault list (Lx) is associated with a signal x. Lx is

the set of faults that causes x to differ from its fault-free value. Figure 3.26 shows
the fault list of each signal with respect to test pattern P1. Fault A/1 appears in LA

because its presence causes the value of primary input A to deviate from its correct
value of zero. Fault A/0 is not in the fault list because the value of A remains correct
when the fault A/0 is present. The fault lists for inputs B and C are derived in the
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Deductive fault simulation (P1).

same way. Based on logic reasoning, the process of deriving the fault list of a gate
output from those of the gate inputs is called fault list propagation; for example,
the fault list of gate output E is the union of the fault list of B and the E/0 fault.
Clearly, the E/0 fault should be included in LE as the correct value of E is one.
On the other hand, because the fault-free value of C is a noncontrolling value of
G1, the fault effect of each fault in LB will propagate to E (which causes E to be 1);
therefore, all faults in LB are propagated to LE. LC is not propagated to the gate
output because the other input B holds the controlling value (one) of gate G1.
Similarly, the fault list LE is propagated to signals L and F. The fanout branches

do nothing but add faults L/0 and F/0 to LL and LF, respectively. The fault list of gate
output H contains A/1 and H/1; the fault list of A is propagated through G2 because
L is one, and the fault list of L is discarded because A is zero. Finally, the fault list
of primary output K is the union of the fault lists of the two gate inputs; that is,
LK = LH ∪ LJ = �A/1, H/1, B/0, E/0, F/0, J/1, K/0
 because both gate inputs of G4

are zeros; all the fault effects at the gate inputs are propagated to the gate output.
By definition, we can conclude that pattern P1 detects the seven faults in LK . From
this simple example, we can see the advantage of deductive fault simulation—all
faults detected by a test pattern are obtained in one fault list propagation pass.
Note that, for ease of explanation, no fault collapsing is performed in this example.
In practice, however, the faults are collapsed before deductive fault simulation and
only the collapsed faults are considered during fault list propagation.
In Figure 3.27, the deductive fault simulation results for test pattern P2 are shown.

The notable difference is that those faults previously detected by pattern P1 are
dropped and not taken into account. The fault list of K indicates that one more
fault, C/0, is detected by P2. The fault simulation results for pattern P3 are depicted
in Figure 3.28. Three more faults �F/1, J/0, K/1
 are detected.
Figure 3.29 illustrates the deductive fault simulation flow. For each test pattern,

fault-free simulation is first performed to obtain the correct values of each signal.
Fault list propagation is then conducted. A fault is detected and removed from the
fault list if it appears in any primary output’s fault list. The same process repeats
until all test patterns are simulated or all faults are detected.
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Deductive fault simulation (P2).
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Deductive fault simulation (P3).

Although in our simple example, the fault list propagation rules are demonstrated
only for two-input gates, they can be generalized to multiple input gates. Let I and
z be the set of gate inputs and the gate output, respectively. Equation 3.1 shows the
fault list propagation rule when all gate inputs hold noncontrolling values:

Lz =
( ⋃

j∈ I
Lj

)
∪ �z/�c⊕ i�
 (3.1)

In Equation 3.1, c and i are the controlling and inversion values of the gate. (See
Table 3.2 for the c and i values of basic gates.) Because no controlling value appears
in the gate inputs, the fault lists at the inputs are propagated to the fault list of the
gate output Lz, represented by the term

⋃
j∈ I

Lj. At the same time, the correct value

of z is c⊕ i; therefore, the fault z stuck-at c⊕ i, denoted by z/�c⊕ i�, is added to Lz.
(Recall that �c⊕ i′�′ = c⊕ i.) According to the rule, the fault list of the NOR gate G4

in Figure 3.26 is simply LK = LH ∪LJ ∪ �K/0
.
For cases where at least one gate input holds the controlling value, the fault list

propagation rule is depicted in Equation 3.2, where S and I−S stand for the sets of
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Deductive fault simulation flowchart.

gate inputs that hold the controlling and noncontrolling values, respectively, and
the minus sign represents the set difference operation:

Lz =
[( ⋂

j∈S
Lj

)
−
( ⋃

j∈ I−S
Lj

)] ⋃
�z/c⊕ i′
 (3.2)

The term
( ⋂

j∈S
Lj

)
−
( ⋃

j∈ I−S
Lj

)
represents the set of faults in the gate input fault

lists that will propagate to the gate output. First, a fault cannot be observed unless
it appears in every fault list of gate inputs in S, represented by the term

⋂
j∈S

Lj;

otherwise, some gate inputs will retain the controlling value and block the fault
effect propagation. Second, the fault lists of the noncontrolling gate inputs (i�e�,
I−S) cannot propagate to the gate output, represented by the

⋃
j∈ I−S

Lj term and

the set difference operation, because these faults prevent the gate output from
being changed. Applying Equation 3.2 to the NOR gate G4 in Figure 3.28, one has
LK = �LJ−LH�∪ �K/1
; the faults in LH are taken out of LJ because flipping H does
not change the value of output K.

Although deductive fault simulation is efficient in that it processes all faults at
the same time, it has several limitations. The first problem is that unknown values
are not easily handled. For each unknown value, both cases must be considered
(i�e�, when the unknown is a controlling or noncontrolling value). The logic rea-
soning becomes even more complicated if more than one unknown appears. See
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[Abramovici 1994] for more detailed discussions of this problem. The second prob-
lem is that deductive fault simulation is only suitable for the zero-delay timing
model, because no timing information is considered during the deductive fault
propagation process. Finally, deductive fault simulation has a potential memory
management problem. Because the size of fault lists cannot be predicted in advance,
there can be a large variation in memory requirements during algorithm execution.

3.4.4 Concurrent Fault Simulation
Because a fault only affects the logic in the fanout cone from the fault site, the
good circuit and faulty circuits typically only differ in a small region. Concur-
rent fault simulation exploits this fact and simulates only the differential parts
of the whole circuit [Ulrich 1974]. Concurrent fault simulation is essentially an
event-driven simulation with the fault-free circuit and faulty circuits simulated
altogether.
In concurrent fault simulation, every gate has a concurrent fault list, which

consists of a set of bad gates. A bad gate of gate x represents an imaginary copy
of gate x in the presence of a fault. Every bad gate contains a fault index and the
associated gate I/O values in the presence of the corresponding fault. Initially, the
concurrent fault list of gate x contains local faults of gate x. The local faults of
gate x are faults on the inputs or outputs of gate x. As the simulation proceeds, the
concurrent fault list contains not only local faults but also faults propagated from
previous stages. Local faults of gate x remain in the concurrent fault list of gate x
until they are detected.
Figure 3.30 illustrates the concurrent simulation of the example circuit for

test pattern P1. For clear illustration, we demonstrate three faults in this exam-
ple: A stuck-at one, C stuck-at zero, and J stuck-at zero faults. The concurrent
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Concurrent fault simulation (P1).
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fault lists with bad gates in gray are drawn beside the good gates. The fault
indices are labeled in the middle of bad gates and their associated bad gate I/O
values are labeled beside their I/O pins. The fault list of G1, G2, and G3 ini-
tially contains their local faults: C/0, A/1, and J/0. When we apply the first pat-
tern, three events occur in the primary inputs: u→ 0 on A, u→ 1 on B, and
u→ 0 on C. They are good events because they happen in the good circuit.
The output of good gate G1 changes from unknown to one. In the presence of fault
C/0, the output of faulty G1 is the same as that of good G1. A bad gate is invisible
if its faulty output is the same as the good output. The bad gates C/0 and J/0 are
both invisible so they are not propagated to the subsequent stages.
The output of G2 changes from unknown to zero. In the presence of fault A/1,

the faulty output changes from unknown to 1. Because the faulty output differs
from the good output, bad gate A/1 becomes visible. A bad gate is visible if its
faulty output is different from the good output. The visible bad gate A/1 creates
a bad event u→ 1 on net H (in gray). A bad event does not occur in the good
circuit; it only occurs in the faulty circuit of the corresponding fault. A new copy
of bad gate A/1 is added to the concurrent fault list of G4 because it has one input
different from the good gate. It is said that bad gate A/1 diverges from its good
gate. Finally, fault A/1 is detected because the faulty output K is different from
the good output. At this time, we could drop detected fault A/1 but we keep it for
illustration purposes.
Figure 3.31 illustrates the concurrent fault simulation for test pattern P2. Two

good events occur in this figure: 0→ 1 on C and 1→ 0 on B. The bad gate C/0, which
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Concurrent fault simulation (P2).
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was invisible in pattern P1, now becomes newly visible. The newly visible bad gate
creates a bad event—net E falls to zero, which in turn creates two divergences in
G2 and G3. The former is invisible but the latter creates a bad event—net J rises
to one. Finally, the concurrent fault list of G4 contains two bad gates; both faults
A/1 and C/0 are detected. Again, we keep A/1 and C/0 faults for demonstrating the
simulation of pattern P3.

For the last test pattern P3 (Figure 3.32), two good events occur at primary inputs
A and C. The bad gate C/0 now becomes invisible. The bad gate C/0 is deleted from
the concurrent fault list of G3. A bad gate converges to its good gate if it is not a
local fault and its I/O values are identical to those of the good gate. Similarly, the
other bad gates of C/0 also converge to G2 and G4. Note that bad gate C/0 does not
converge to G1 because it is a local fault for G1. The bad gate A/1 can be examined
in the same way. For gate G3, although the faulty output of bad gate J/0 does not
change, the good event 0→ 1 on J makes bad gate J/0 newly visible. The newly
visible event (in gray) is propagated to G4 and a new bad gate J/0 diverges from G4.
Eventually, the fault J/0 is detected by pattern P3.
Figure 3.33 shows a simplified concurrent fault simulation flowchart. The fault

simulator applies one pattern at a time. The concurrent fault simulation is an event-
driven simulation with both good events and bad events simulated at the same time.
The events on the gate inputs are first analyzed. A good event affects both good and
bad gates but a bad event only affects bad gates of the corresponding fault. After
the analysis, events are then executed. The diverged bad gates and converged bad
gates are added to or deleted from the fault list, respectively. Determining whether
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Concurrent fault simulation (P3).
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Concurrent fault simulation flowchart.

a bad gate diverges or converges depends on three factors: the visibility, the bad
event, and the concurrent fault list (see [Abramovici 1994] for more details). After
the event execution, new events are computed at the gate output. If an event reaches
the primary outputs, detected faults can be removed from concurrent fault lists of
all gates. This process repeats until there are no more test patterns or no undetected
faults.

3.4.5 Differential Fault Simulation
Concurrent fault simulation constructs the state of the faulty circuit from that of
the same faulty circuit of the previous test pattern. Concurrent fault simulation has
a potential memory problem because the size of the concurrent fault list changes
at run time. In contrast, the single fault propagation technique constructs the
state of the faulty circuit from that of the good circuit. For sequential circuits,
the single fault propagation technique would require a large overhead to store
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Differential fault simulation.

the states of the good circuit. Neither of the above two techniques is good for
sequential fault simulation. Differential fault simulation combines the merits of
concurrent fault simulation and single fault propagation techniques [Cheng 1989].
The idea is to simulate in turn every faulty circuit by tracking only the difference
between a faulty circuit and the last simulated one. An event-driven simulator
can easily implement differential fault simulation with the differences injected as
events.
Figure 3.34 illustrates how differential fault simulation works. First, the first

pattern P1 is simulated on the good circuit G1 and the good primary outputs are
stored. Then a faulty circuit (F1,1) is simulated with fault f1 injected as an event. The
first subscript indicates the fault and the second subscript indicates the pattern.
The difference of states between G1 and F1,1 is stored. Note that only the states of
memory elements, such as flip-flops, are stored, so the memory required is small
compared to concurrent fault simulation. If the primary outputs of F1,1 and G1

are not the same, then fault f1 is detected. Following F1 the second faulty circuit
(F2,1) is simulated with f1 removed and f2 injected. Similarly, the difference of states
between F1 and F2 is stored. The above process continues until pattern P1 has been
simulated for all faults ( f1 to fm).
Following the first pattern, the state of the good circuit (G2) is restored and the

second pattern P2 is applied. After the fault-free simulation, the primary outputs of
G2 are stored. The state of faulty circuit F1,2 is restored by injecting the difference
of G1 and F1,1. The fault f1 is again injected as an event. The differential fault
simulation for P2 is the same as that of pattern P1. Differential fault simulation goes
in the direction of the arrows in Figure 3.34: Gi, F1,i, F2,i, � � � , Fm,i, Gi+1, F1,i+1, � � � .

Figure 3.35 shows a simplified flowchart for differential fault simulation. For
every test pattern, a fault-free simulation is performed first, then the faulty circuits
are simulated one after another. The states of every circuit are restored from the
last simulation. If the faulty circuit outputs are different from the good outputs, the
fault is detected and dropped. The state difference of every circuit is stored. With
fault dropping, the state difference of the dropped fault must be accumulated into
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Differential fault simulation flowchart.

the state differences of its next undetected fault. This process repeats until there
are no test patterns or no undetected faults.
The problem with differential fault simulation is that the order of events caused

by fault sites is not the same as the order of the timing of their occurrence. If the
circuit behavior depends on the gate delay of the circuit, the timing information of
every event must be included. This solution, however, can potentially require high
memory consumption.

3.4.6 Fault Detection
In the previous sections, we defined fault detection as an output value being differ-
ent from the good value. In the simple example we used to illustrate fault simulation
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techniques, making the fault detection decision is easy because the faults are hard
detected; that is, the outputs of the fault-free and faulty circuits are either 1 or 0
and are different. In practical cases, the fault detection decision is more difficult.
For example, consider the stuck-at-zero fault that occurs at the enable input of a
tristate buffer. With its enable input forced to 0, the tristate buffer’s output is in a
floating state. It is unclear whether the fault is detected, because the logic value of
a floating signal may be the same as the correct value by accident; however, if the
fault is simulated against many test patterns, it is very likely that it will eventually be
detected. For this reason, some fault simulators regard this kind of fault as poten-
tially detected. Faults that cause the circuit to oscillate (called oscillation faults)
also complicate the fault detection decision because it is impossible to predict the
faulty circuit outputs. Finally, some faults may cause the faulty circuit behavior
to deviate significantly from the correct behavior—for example, stuck-at faults on
clock signals. Called hyperactive faults, this type of fault makes the fault simula-
tion process extremely time and memory consuming, due to the large number of
differences between the good and faulty circuit. Hyperactive faults are in general
easily detected, so they are regarded as detected without actual fault simulation, to
avoid memory explosion in the fault simulator.

3.4.7 Comparison of Fault Simulation Techniques
The reader may have realized that the major concerns of fault simulation tech-
niques are the simulation speed and the required memory. In practice, factors such
as multivalued logic simulation capability, delay model simulation capability, func-
tional model simulation compatibility, and sequential fault simulation capability
should be considered as well. Also, the choice of the most suitable fault simulation
technique depends on the system memory space, the simulation time constraint,
the presence of unknown or high-impedance states, the delay model, the circuit
characteristics (sequential or combinational), and the presence of functional level
descriptions in the circuit. In the following, we make a qualitative comparison of
the previously discussed fault simulation techniques.
In terms of simulation speed, it is apparent that serial fault simulation is the

slowest among all the techniques. Deductive fault simulation can be faster than
parallel fault simulation as their complexities are O�n2� and O�n3�, respectively
[Goel 1980], where n is the number of logic gates in a circuit. There is no direct
comparison between the deductive and concurrent fault simulation techniques. It is
suspected, however, that the latter is faster than the former because concurrent fault
simulation only deals with the “active” parts of the circuit that are affected by faults.
Deductive fault simulation, in contrast, performs deduction on the entire circuit
whenever the input patterns change. Differential fault simulation is shown to be up
to twelve times faster than concurrent fault simulation and PPSFP [Cheng 1989].
Memory usage is in general not a problem for serial fault simulation because

it deals with one fault at a time. Similarly, parallel fault simulation and PPSFP
do not require much more memory than the fault-free simulation. The memory
requirement of deductive fault simulation, in contrast, can be a problem because
the fault lists are dynamically created at run time and their sizes are difficult
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to predict prior to simulation. Concurrent fault simulation has even more severe
memory problems than deductive fault simulation because the concurrent fault
list is larger than the deductive fault list. Furthermore, the I/O values of every bad
gate in concurrent fault simulation must be recorded. Differential fault simulation
relieves the memory management problem of concurrent fault simulation because
only the difference in flip-flips is stored.
When the unknown (X) or high-impedance (Z) values are present in the circuit,

multivalued fault simulation becomes necessary. Serial fault simulation has no
problem in handling multivalued fault simulation because it can be realized with
a regular logic simulator. In contrast, to exploit bitwise word parallelism, it is
more difficult for parallel fault simulation or PPSFP to handle X or Z. Deductive
fault simulation, as mentioned earlier, becomes awkward in the presence of X
and Z. In concurrent fault simulation, dealing with multivalued simulations is
straightforward because every bad gate is evaluated in the same way as in the fault-
free simulation. Finally, differential fault simulation can simulate X or Z without a
problem as it is based on event-driven simulation.
From the aspect of delay and functional modeling capability, serial fault simula-

tion does not encounter any difficulty. Parallel fault simulation and PPSFP cannot
take delay or functional models into account as they pack the information of mul-
tiple faults or test patterns into the same word and rely on bitwise logic operations.
Based on logic deduction, a deductive fault simulator can deal with neither delay
nor functional models. Being event driven, both concurrent and differential fault
simulation techniques are capable of handling functional models; however, only
the former is able to process circuit delays.
When sequential circuits are of concern, serial as well as parallel fault simulation

techniques do not have a problem. The PPSFP technique, however, is not suited
for sequential circuit simulation because a large memory space is required to store
the states of the fault-free circuit. Deductive fault simulation might get very com-
plicated because sequential circuits usually contain many unknowns. Concurrent
and differential fault simulations are able to perform sequential fault simulation
without difficulty.
Based on the above discussions, PPSFP and concurrent fault simulation tech-

niques are currently themost popular fault simulation techniques for combinational
(full-scan) circuits. On the other hand, differential and concurrent fault simulation
techniques have been widely adopted for sequential circuits. Algorithm switching
has also been employed to improve performance. Parallel fault simulation can be
used when the fault drop rate per test pattern is high, and then PPSFP is employed
when more patterns are required to drop each fault.
Even for fault simulation techniques that are efficient in time and memory, the

problems of memory explosion and long simulation time still exist as the com-
plexity of integrated circuits continues to grow. To overcome the memory prob-
lem, the multiple-pass fault simulation approach is often adopted. The idea of
multiple-pass fault simulation is to partition the faults into small groups, each of
which is simulated independently. If the faults are well partitioned, multiple-pass
fault simulation prevents the memory explosion problem. To further reduce the
fault simulation time, distributed fault simulation approaches may be employed.
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Distributed fault simulation divides the entire fault simulation into smaller tasks,
each of which is performed independently on a separate processor.

3.4.8 Alternatives to Fault Simulation
Because fault simulation is very time consuming and difficult for large circuits,
alternatives to avoid “true” fault simulation have been developed. These alternatives
require only one fault-free simulation or very few fault simulations, so the run time
is significantly reduced. The alternatives give approximate fault coverage numbers.
It should be noted that these alternatives are probably acceptable if the purpose
of fault simulation is to estimate the quality of test patterns (i�e�, fault grading).
These alternatives are probably not acceptable when it comes to diagnosis. This is
because diagnosis requires exact information about which patterns detect which
faults. (Please see Chapter 7 for more detailed information about diagnostic fault
simulation.)

3.4.8.1 Toggle Coverage

Toggle coverage is a popular technique to evaluate the quality of test patterns
because it requires only one single fault-free simulation. There are two definitions
for toggling. The relaxed definition says that a net is toggled if its value has been set
to 0 and 1 (the order does not matter) during the fault-free simulation. The stringent
definition requires that the net have both a 0-to-1 transition and a 1-to-0 transition
(the order does not matter) during the fault-free simulation. Both definitions can be
used to calculate the toggle coverage. The toggle coverage is the number of toggled
nets over the number of total nets in the circuit. Please note that toggling a net does
not guarantee its fault propagation so we do not know the relationship between the
toggle coverage and the fault coverage.

3.4.8.2 Fault Sampling

The fault sampling technique was proposed to simulate only a sampled group of
faults [Butler 1974]. The real fault coverage is approximated by the simulation result
of the sampled group of faults. Fault sampling is like polling before an election. The
error of the polling depends on two factors: (1) the sample size, and (2) whether
the sample is biased or not.
Let M be the total number of faults in the circuit and K be the number of faults

detected by the test set. The true fault coverage is therefore FC=K/M. Suppose that
m is the number of sampled faults, and k is the number of sampled faults detected
in the simulation. The estimated fault coverage is fc= k/m.

Based on probability theory, the random variable k follows the hypergeometric
distribution. When M is much greater than m, random variable k can be approx-
imated by a normal random variable, of which the mean is �k =mK/M =mFC;
therefore, the mean of the simulated fault coverage is �fc=�k/m=FC. The standard
deviation � of fc is approximately

√
FC�1−FC�/m. From the normal distribution

assumption, we know that the confidence level of the ±3� interval is 99.7%. This
means that the probability that the mean of simulated fault coverage �fc falls in the
±3� interval of the true fault coverage FC is 99.7%.
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3.4.8.3 Critical Path Tracing

Critical path tracing is another alternative to fault simulation [Abramovici 1984].
Given a test pattern t, net x has a critical value v if and only if the x stuck-
at v′ fault is detected by t. A net that has a critical value is a critical net. The
critical path is a path that consists of nets with critical values. Tracing the crit-
ical path from PO to PI gives a list of critical nets and hence a list of detected
faults.
Critical path tracing is demonstrated in Figure 3.36. All the critical values

are circled. The primary output K is certainly critical, as any change in K is
observed. Both gate inputs H and J of gate G4 are critical because flipping either
one of them would change the primary output K. It can be seen that E, F, A,
and B are all critical. Note that L is not critical, because changing L would not
change the primary output. After the critical path tracing, seven critical nets
are identified and their associated faults �A/1, H/1, B/0, E/0, F/0, J/1, K/0
 are
detected.
Special attention is needed when fanout branches reconverge. Figure 3.37 shows

the example circuit for pattern P3. As is the case in pattern P1, nets K, J, and F
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Critical path tracing �P1�.
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Critical path tracing �P3�.



Logic and Fault Simulation 153

are critical nets; however, L and E are not critical because changing their values
does not affect the circuit output. The critical path tracing is stopped due to the
reconvergence of fanout branches L and F. Eventually, faults �F/1, J/0, K/1
 are
detected. One solution to this fanout reconvergence is to partition the circuit into
fanout-free subcircuits. The detailed implementation of the critical path tracing
can be found in [Abramovici 1984]. A modified critical path tracing technique that
is linear time, exact, and complete can be found in [Wu 2005].

3.4.8.4 Statistical Fault Analysis

Instead of performing actual fault simulation, the statistical fault analysis
(STAFAN) approach proposes to use probability theory to estimate the expected
value of fault coverage [Jain 1985]. The detectability of fault f (df ) is the probability
that fault f is detected by a random pattern. STAFAN calculates the detectability
of a fault by two numbers: controllability and observability. The 1-controllability
of net x, C1�x�, is the probability of setting net x to 1 by a random pattern. The
0-controllability of net x, C0�x�, is the probability of setting net x to 0 by a random
pattern. STAFAN runs one fault-free simulation and keeps track of the number of
1’s and 0’s of every net. After the simulation, C1�x� is the number of 1’s divided by
the number of patterns, and C0�x� is the number of 0’s divided by the number of
patterns.
The observability of net x,O�x�, represents the probability that the given patterns

propagate the fault effect on net x to the primary outputs. During the fault-free sim-
ulation, STAFAN counts the number of times that every gate input is sensitized to
its gate output. The sensitization probability, S�x�, is then obtained by dividing the
sensitization count of gate input x by the number of test patterns. The observability
of primary outputs is 1, because fault effects on primary outputs will certainly be
observed. The observability of a gate input x is S�x� times the observability of its
gate output. The observability of every net can be calculated from primary outputs
to primary inputs.
The observability calculation becomes complicated in the presence of fanout

branches. The lower bound of the observability of a fanout stem is the maximum
value of the observability of its fanout branches. The upper bound of a fanout stem
is the “union” of the observability of its fanout branches. This upper bound assumes
that observing the fault effect via each fanout branch is independent. For example,
the observability of a fanout stem with two branches is O�x� = O�x1�+O�x2�−
O�x1�O�x2�, where x1 and x2 are the fanout branches of x. Finally, the observability
of a fanout stem is a linear combination of its upper bound and its lower bound.
In the presence of fanout reconvergence, the independent observation of fanout
branches is not a valid assumption.
Eventually, the detectability (df ) of the net x stuck-at zero fault is C1�x� times

O�x�. The detectability of the net x stuck-at one fault is C0�x� times O�x�. Given a set
of n independent patterns, the probability of detecting fault f is dn

f = 1− �1−df �
n.

The expected fault coverage is the summation of dn
f of all faults in the circuit over

the number of total faults. Statistical data show that more than 91% of faults that



154 VLSI Test Principles and Architectures

have detectability higher than 0.9 are actually detected, while less than 25% of faults
that have a detectability lower than 0.1 are actually detected for single stuck-at fault
test sets.

3.5 CONCLUDING REMARKS

We have presented two fundamental subjects, logic simulation and fault simulation,
that are important for readers to design quality digital circuits. Logic simulation
checks whether the design will behave as predicted before its physical implementa-
tion is built, while fault simulation tells us in advance how effective the given test
pattern set is in detecting faults.
For logic simulation, event-driven simulation that can take timing (delay) models

and sequential circuit behavior into consideration is the technique most widely
used in commercially available logic simulators. Examples of logic simulators
include Verilog-XL, NC-Verilog (both from Cadence [Cadence 2006]), ModelSim
(fromMentor Graphics [Mentor 2006]), and VCS (from Synopsys [Synopsys 2006]).
These logic simulators can accept gate-level models as well as RTL and behav-
ioral descriptions of the circuits written in hardware description languages, such
as Verilog and VHDL, both IEEE standards. HDLs are beyond the scope of this
book but are important for digital designers to learn. More detailed descriptions
of both languages can be found in books or Web sites, such as [Palnitkar 1996],
http://www.verilog.com, and http://www.verilog.net.
For fault simulation, both event-driven simulation and compiled-code simulation

techniques can be found in commercially available electronic design automation
applications. The fault simulators can be standalone tools or can be used as an
integrated feature in the ATPG programs. As a standalone tool, concurrent fault sim-
ulation using the event-driven simulation technique is used in Verifault-XL (from
Cadence) and TurboFault and TurboScan (both from SynTest [SynTest 2006]). As
an integrated feature in ATPG, bitwise parallel simulation using the compiled-code
simulation technique is widely used in Encounter Test (from Cadence), FastScan
(from Mentor Graphics), and TetraMAX (from Synopsys).
As we move to the nanometer age, we have begun to see nanometer designs that

contain hundreds of millions of transistors. We anticipate that the semiconductor
industry will completely adopt the scan methodology for quality considerations.
As a result, it is becoming imperative that advanced techniques for both logic
simulation and fault simulation be developed to address the high-performance
and high-capacity issues, in particular, for addressing new fault models, such as
transition faults [Waicukauski 1986], path-delay faults [Schulz 1989], and bridging
faults [Li 2003]. At the same time, more innovations are needed in developing
advanced concurrent fault simulation techniques, as designs today that are based
on the scan methodology are still not 100% scan testable. Fault simulation using
functional patterns remains important in order to meet excellent quality and parts-
per-million defect level goals.
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3.6 EXERCISES

3.1 (Parallel Gate Evaluation) Consider a logic simulator with four logic symbols
(0, 1, u, and Z) that are coded as follows:

v0 = �00�

v1 = �11�

vu = �01�

vZ = �10�

Assume that the host computer has a word width of w. To simulate w input
vectors in parallel, two words (X1 and X2) are allocated for each signal X to
store the first and second bits of the logic symbol codes, respectively.

(a) Derive the gate evaluation procedures for AND, OR, and NOT operations.

(b) Derive the evaluation procedures for complex gates such as a 2-to-1 mul-
tiplexer, XOR, and tristate buffer.

Note that the simulator is based on ternary logic; therefore, Z-to-u conversions
may be necessary to convert Z inputs to u’s prior to gate evaluations.

3.2 (Timing Models) For circuit M shown in Figure 3.38, complete the following
timing diagram (Figure 3.39) with respect to each timing model given below:

(a) Nominal delay—Two-input gate, 1 ns; three-input gate, 1.2 ns; inverter,
0.6 ns.
Inertial delay—All gates, 0.3 ns.

(b) Rise delay—Two-input gate, 0.8 ns; three-input gate, 1 ns; inverter, 0.6 ns.
Fall delay—Two-input gate, 1 ns; three-input gate, 1.2 ns; inverter, 0.8 ns.
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Example circuit M.
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The timing diagram.

(c) Minimum delay—Two-input gate, 0.8 ns; three-input gate, 1 ns; inverter,
0.6 ns.
Maximum delay—Two-input gate, 1 ns; three-input gate, 1.2 ns; inverter,
0.8 ns.

3.3 (Compiled-Code Simulation) Apply logic levelization on circuit M given in
Figure 3.38. Assign a level number to each gate starting from level 1 at the
primary inputs. Assume that a target machine can only support basic logic
operations using two-input AND/OR and inversion. What is the pseudo code
for circuit M if it is to be simulated in the target machine?

3.4 (Event-Driven Simulation) Redo Problem 3.2a using the nominal-delay
event-driven simulation technique. Show all events and activity lists of each
time stamp.

3.5 (Hazard Detection) Use eight-valued logic to detect static and dynamic haz-
ards in circuit M in response to an input change of ABC from {101} to {010}.

3.6 (Hazard Detection) For the circuit and test patterns given in Figure 3.40
below, determine whether there is a static or dynamic hazard, assuming there
are no faults present in the design.

3.7 (Parallel-Pattern Single-Fault Propagation) For the circuit and two given
stuck-at faults shown in Figure 3.40, use the parallel-pattern single-fault prop-
agation fault simulation technique to identify which faults can be detected by
the given test patterns.
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Example circuit.
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Circuit for Problem 3.9.

3.8 (Parallel Fault Simulation) Repeat Problem 3.7 using parallel fault
simulation.

3.9 (Deductive Fault Simulation) Write the fault list propagation rule for the
three-input NOR gate given in Figure 3.41.

3.10 (Deductive Fault Simulation) Repeat Problem 3.7 using deductive fault
simulation.

3.11 (Concurrent Fault Simulation) Repeat Problem 3.7 using concurrent fault
simulation.

3.12 (Critical Path Tracing) For the circuit in Problem 3.7, circle all the critical
values for the three test patterns. What faults are detected?

3.13 (A Design Practice) Repeat Problem 3.7 using the logic simu-
lation program provided on the Web site. What are the correct
outputs of the circuit?

3.14 (A Design Practice) Repeat Problem 3.7 using the fault simula-
tion program provided on theWeb site. What is the fault coverage
of this test set?

3.15 (A Design Practice) For the circuit given in Problem 3.2, use any
commercially available logic simulator, such as Verilog-XL, VCS,
or ModelSim, to simulate the circuit behavior. Show the correct
outputs of the circuit on a waveform display. Do they agree with
your answers?
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3.16 (A Design Practice) For the circuit given in Problem 3.7, use the
fault simulation program (TurboFault) provided on the Web site
to simulate the faulty output in the presence of fault �. Is the
fault detected?
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TEST GENERATION
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ABOUT THIS CHAPTER

Test generation is the task of producing an effective set of vectors that will achieve
high fault coverage for a specified fault model. While much progress has been made
over the years in automatic test pattern generation (ATPG), this problem remains
an extremely difficult one. Without powerful ATPGs, chips will increasingly depend
on design for testability (DFT) techniques to alleviate the high cost of generating
vectors. This chapter deals with the fundamental issues behind the design of an
ATPG, as well as the underlying learning mechanisms that can improve the overall
performance of ATPG.
This chapter is organized as follows. First, an overview of the problem of test

generation is given, followed by random test generation. Next, deterministic algo-
rithms for test generation for stuck-at faults are explained, including techniques that
enhance the deterministic engines such as static and dynamic learning. Simulation-
based test generation is covered next, where genetic algorithms are used to derive
intelligent vectors. Test generation for other fault models such as delay faults is
explained, including ATPG for path-delay faults and transition faults. A brief dis-
cussion on bridging faults is also included. Finally, advanced test generation topics
are briefly discussed.

4.1 INTRODUCTION

Due to the imperfect manufacturing process, defects may be introduced during
fabrication, resulting in chips that could potentially malfunction. The objective of
test generation is the task of producing a set of test vectors that will uncover any
defect in a chip. Figure 4.1 illustrates a high-level concept of test generation. In
this figure, the circuit at the top is defect free, and for any defective chip which
is functionally different from the defect-free one there must exist some input that
can differentiate the two. Generating effective test patterns efficiently for a digital
circuit is thus the goal of any automatic test pattern generation (ATPG) system.



162 VLSI Test Principles and Architectures
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can produce a logic 1Inputs
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Defect-free

Defective

: Defect

� FIGURE 4.1

Conceptual view of test generation.

As this problem is extremely difficult, design for testability (DFT) methods have
been frequently used to relieve the burden on the ATPG. In this sense, a powerful
ATPG can be regarded as the holy grail in testing, with which all DFT methods
could potentially be eliminated. In other words, if the ATPG engine is capable of
delivering high-quality test patterns that achieve high fault coverages and small test
sets, DFT would no longer be necessary. This chapter thus deals with the algorithms
and inner workings of an automatic test pattern generator. Both the underlying
theory and the implementation details are covered.
As it is difficult and unrealistic to generate vectors targeting all possible defects

that could potentially occur during the manufacturing process, automatic test gen-
erators operate on an abstract representation of defects referred to as faults. The
single stuck-at fault model is one of the most popular fault models and is discussed
first in this chapter, followed by discussion of test generation for other fault models.
In addition, only a single fault is assumed to be present in the circuit to simplify
the test generation problem.
Consider the single stuck-at fault model: Any fault simply denotes that a circuit

node is tied to logic 1 or logic 0. Figure 4.2 shows a circuit with a single stuck-at
fault in which signal d is tied to logic 0 �d/0�. A logic 1 must be applied from the
primary inputs of the circuit to node d if there is to be a difference between the
fault-free (or good) circuit and the circuit with the stuck-at fault present. Next, in
order to observe the effect of the fault, a logic 0 must be applied to signal c so if

a

e

c

b

stuck-at 1

d

� FIGURE 4.2

Example of a single stuck-at fault.
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the fault d/0 is present it can be detected at the output e. Test generation attempts
to generate test vectors for every possible fault in the circuit. In this example, in
addition to the d/0 fault, faults such as a/1	 b/1	 c/0, etc. are also targeted by the test
generator. As some of the fault in the circuit can be logically equivalent, no test can
be obtained to distinguish between them. Thus, equivalent fault collapsing is often
used to identify equivalent faults a priori in order to reduce the number of faults that
must be targeted [Abramovici 1994] [Bushnell 2000] [Jha 2003]. Subsequently, the
ATPG is only concerned with generating test vectors for each fault in the collapsed
fault list.

4.2 RANDOM TEST GENERATION

Random test generation (RTG) is one of the simplest methods for generating
vectors. Vectors are randomly generated and fault-simulated (or fault-graded) on
the circuit under test (CUT). Because no specific fault is targeted, the complexity
of RTG is low. However, the disadvantages of RTG are that the test set size may
grow to be very large and the fault coverage may not be sufficiently high, due to
difficult-to-test faults.
In RTG, logic values are randomly generated at the primary inputs, with equal

probability of assigning a logic 1 or logic 0 to each primary input. Thus, the random
vectors are uniformly distributed in the test set. Note that the random test set is
not truly random because a pseudo-random number generator is generally used.
In other words, the random test set can be repeated with the same pseudo-random
number generator. Nevertheless, the vectors generated hold the necessary statistical
properties of a random vector set.
The level of confidence one can have on a random test set T can be measured as

the probability that T can detect all the stuck-at faults in the circuit. For N random
vectors, the test quality tN indicates the probability that all detectable stuck-at
faults are detected by these N random vectors. Thus, the test quality of a random
test set highly depends on the circuit under test.
Consider a circuit with an eight-input AND gate (or equivalently a cone of seven

two-input AND gates), illustrated in Figure 4.3. While achieving a logic 0 at the
output of the AND gate is easy, getting a logic 1 is difficult. A logic 1 would require
all the inputs to be at logic 1. If the RTG assigns each primary input with an equal
probability of logic 0 or logic 1, the chance of getting eight logic 1’s simultaneously
would only be 0�58 = 0�0039. In other words, the AND gate output stuck-at-0 fault
would be difficult to test by the RTG. Such faults are called random-pattern
resistant faults.
As discussed earlier, the quality of a random test set depends on the underlying

circuit. More random-pattern resistant faults will more likely reduce the quality of
the random test set.
To tackle the problem of targeting random-pattern resistant faults, biasing is

required so the input vectors are no longer viewed as uniformly distributed. Consider
the same eight-input AND gate example again. If each input of the AND gate has a
muchhigherprobability of receiving a logic 1, theprobability of getting a logic 1 at the
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� FIGURE 4.3

Two equivalent circuits.

output of the AND gate significantly increases. For example, if each input has a 75%
probability of receiving a logic 1, then getting a logic 1 at the output of the AND gate
now becomes 0�758 = 0�1001, rather than the previous 0.0039.
Determining the optimal bias values for each primary input is not an easy task.

Thus, rather than trying to obtain the optimal set of values, the objective is fre-
quently to increase the probabilities for those difficult-to-control and difficult-to-
observe nodes in the circuit. For instance, suppose a circuit has an eight-input AND
gate; any fault that requires the AND gate output equal to logic 1 for detection will
be considered difficult to test. It would then be beneficial to attempt to increase
the probability of obtaining a logic 1 at the output of this AND gate.
Another issue regarding random test generation is the number of random vectors

needed. Given a circuit with n primary inputs, there are clearly 2n possible input
vectors. One can express the probability of detecting fault f by any random vector
to be:

df =
Tf

2n

where Tf is the set of vectors that can detect fault f . Consequently, the probability
that a random vector will not detect f (i.e., f escapes a random vector) is:

ef = 1−df

Therefore, given N random vectors, the probability that none of the N vectors
detects fault f is:

eNf = �1−df �
N

In other words, the probability that at least one out of N vectors will detect fault f
is:

1− �1−df �
N
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� FIGURE 4.4

Detection of a fault.

If the detection probability, df , for the hardest fault is known, N can be readily
computed by solving the following inequality:

1− �1−df �
N ≥ p

where p is the probability that N vectors should detect fault f .
If the detection probability is not known, it can be computed directly from the

circuit. The detection probability of a fault is directly related to: (1) the control-
lability of the line that the fault is on, and (2) the observability of the fault-effect
to a primary output. The controllability and observability computations have been
introduced previously in the chapter on design for testability.

It is worth noting that the minimum detection probability of a detectable fault f
can be determined by the output cone in which f resides. In fact, if f is detectable,
it must be excited and propagated to at least one primary output, as illustrated in
Figure 4.4. It is clear that all the primary inputs necessary to excite f and propagate
the fault-effect must reside in the cone of the output to which f is detected. Thus,
the detection probability for f is at least �0�5�m, where m is the number of primary
inputs in the cone of the corresponding primary output. Taking this concept a step
further, the detection probability of the most difficult fault can be obtained with
the following lemma [David 1976] [Shedletsky 1977].

Lemma 1

In a combinational circuit with multiple outputs, let nmax be the number of primary
inputs that can lead to a primary output. Then, the detection probability for the
most difficult detectable fault, dmin, is:

dmin ≥ �0�5�nmax

Proof

The proof follows from the preceding discussion.
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4.2.1 Exhaustive Testing
If the combinational circuit has few primary inputs, exhaustive testing may be
a viable option, where every possible input vector is enumerated. This may be
superior to random test generation as RTG can produce duplicated vectors and
may miss certain ones.
In circuits where the number of primary inputs is large, exhaustive testing

becomes prohibitive. However, based on the results of Lemma I, it may be possible
to partition the circuit and only exhaust the input vectors within each cone for
each primary output. This is called pseudo-exhaustive testing. In doing so, the
number of input vectors can be drastically reduced. When enumerating the input
vectors for a given primary output cone, the values for the primary inputs that
are outside the cone are simply assigned random values. Therefore, if a circuit has
three primary outputs, each of which has a corresponding primary output cone.
Note that these three primary output cones may overlap. Let n1	 n2, and n3 be the
number of primary inputs corresponding to these three cones. Then the number of
pseudo-exhaustive vectors is simply at most 2n1 +2n2 +2n3 .

4.3 THEORETICAL BACKGROUND: BOOLEAN DIFFERENCE

Consider the circuit shown in Figure 4.5. Let the target fault be the stuck-at-0 fault
on primary input y. Recall the high-level concept of test generation illustrated in
Figure 4.1, where the objective is to distinguish the fault-free circuit from the faulty
circuit. In the example circuit shown in Figure 4.5, the faulty circuit is the circuit
with y stuck at 0.

Note that the circuit output can be expressed as a Boolean formula:

f = xy+yz

Let f ′ be the faulty circuit with the fault y/0 present. In other words,

f ′ = f�y= 0��

In order to distinguish the faulty circuit f ′ from the fault-free counterpart f , any
input vector that can make f⊕ f ′ = 1 would suffice. Furthermore, as the aim is test

y

f

w

x

z

� FIGURE 4.5

Example circuit to illustrate the concept of Boolean difference.
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generation, the target fault must be excited. In this example, the logic value on
primary input y must be logic 1 to excite the fault y/0. Putting these two conditions
together, the following equation is obtained:

y · f�y= 1�⊕ f�y= 0�= 1� (4.1)

Note that f�y= 1�⊕ f�y= 0� indicates the exclusive-or operation on the two functions
f�y= 1� and f�y= 0�; it evaluates to logic 1 if and only if the two functions evaluate
to opposing values. In terms of ATPG, this is synonymous to propagating the fault
effect at node y to the primary output f . Therefore, any input vector on primary
inputs x, y, and z that can satisfy Equation (4.1) is a valid test vector for fault y/0:

y · f�y= 1�⊕ f�y= 0�= y · �x⊕ z�

= y · �xz+xz�

= xyz+xyz

In this running example, the two vectors xyz= �110	011
 are candidate test vectors
for fault y/0.
Formally, f�y= 1�⊕ f�y= 0� is called the Boolean difference of f with respect to

y and is often written as:

df

dy
= f�y= 1�⊕ f�y= 0��

In general, if f is a function of x1	 x2	 � � � 	 xn, then:

df

dxi
= f�x1	 x2	 � � � 	 xi	 � � � 	 xn�⊕ f�x1	 x2	 � � � 	 xi	 � � � 	 xn�

In terms of test generation, for any target fault on some fault �/v, the set of all
vectors that can propagate the fault-effect to the primary output f is then those
vectors that can satisfy:

df

d�
= 1

(Note that this is independent of the polarity of the fault, whether it is stuck-at-0 or
stuck-at-1.) Next, the constraint that the fault must be excited, � set to value v, must
be added. Subsequently, the set of test vectors that can detect the fault becomes all
those input values that can satisfy the following equation:

��= v� · df
d�
= 1 (4.2)

Consider the same circuit shown in Figure 4.5 again. Suppose the target fault is
w/0. The same analysis can be performed for this new fault. The set of test vectors
that can detect w/0 is simply:

w · df
dw

= 1

⇒ w · �f�w= 1�⊕ f�w= 0��= 1
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⇒ w · �1⊕xy�= 1

⇒ w · �xy�= 1

⇒ w · �x+y�= 1

⇒ wx+wy= 1

Now,w can be expanded from the circuit shown in the figure to bew= y ·z. Plugging
this into the equation above gives us:

w ·x+w ·y= 1

⇒ y · z ·x+y · z ·y= 1

⇒ x ·y · z+y · z= 1

⇒ y · z= 1

Therefore, the set of vectors that can detect w/0 is �001	101
.

4.3.1 Untestable Faults
If the target fault is untestable, it would be impossible to satisfy Equation 4.2.
Consider the circuit shown in Figure 4.6. Suppose the target fault is z/0. Then the
set of vectors that can detect z/0 are those that can satisfy:

z · df
dz
= 1

⇒ z · �f�z= 1�⊕ f�z= 0��= 1

⇒ z · �xy⊕xy�= 1

⇒ z ·0= 1

⇒ UNSATISFIABLE

In other words, there exists no input vectors that can satisfy z · df
dz
= 1, indicating

that the fault z/0 is untestable.

f 

z

y

x

� FIGURE 4.6

Example circuit for an untestable fault.
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4.4 DESIGNING A STUCK-AT ATPG FOR COMBINATIONAL CIRCUITS

In deterministic ATPG algorithms, there are two main tasks. The first is to excite
the target fault, and the second is to propagate the fault-effect to a primary out-
put. Because the logic values in both the fault-free and faulty circuits are needed,
composite logic values are used. For each signal in the circuit, the values v/vf are
needed, where v denotes the value for the signal in the fault-free circuit, and vf
represents the value in the corresponding faulty circuit. Whenever v= vf , v is suf-
ficient to denote the signal value. To facilitate the manipulation of such composite
values, a 5-valued algebra was proposed [Roth 1966], in which the five values are
0, 1, X , D, and D; 0, 1, and X are the conventional values found in logic design
for true, false, and “don’t care.” D represents the composite logic value 1/0 and D
represents 0/1. Boolean operators such as AND, OR, NOT, XOR, etc., can work on
the 5-valued algebra as well. The simplest way to perform Boolean operations is
to represent each composite value into the v/vf form and operate on the fault-free
value first, followed by the faulty value. For example, 1 AND D is 1/1 AND 1/0.
AND-ing the fault-free values yields 1 AND 1 = 1, and AND-ing the faulty values
yields 1 AND 0 = 0. So the result of the AND operation is 1/0 = D. As another
example,

D OR D= 1/0 OR 0/1

= 1/1

= 1

Tables 4.1, 4.2, and 4.3 show the AND, OR, and NOT operations for the 5-valued
algebra, respectively. Operations on other Boolean conjunctives can be constructed
in a similar manner.

4.4.1 A Naive ATPG Algorithm
A very simple and naive ATPG algorithm is shown in Algorithm 1, where combina-
tional circuits with fanout structures can be handled.

TABLE 4.1 � AND Operation

AND 0 1 D D X

0 0 0 0 0 0

1 0 1 D D X

D 0 D D 0 X

D 0 D 0 D X

X 0 X X X X
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TABLE 4.2 � OR Operation

OR 0 1 D D X

0 0 1 D D X

1 1 1 1 1 1

D D 1 D 1 X

D D 1 1 D X

X X 1 X X X

TABLE 4.3 � NOT Operation

NOT

0 1

1 0

D D

D D

X X

Algorithm 1 Naive ATPG �C� f �

1: while a fault-effect of f has not propagated to a PO and all possible vector combinations have
not been tried do

2: pick a vector, v, that has not been tried;
3: fault simulate v on the circuit C with fault f;
4: end while

Note that in an ATPG, the worst-case computational complexity is exponential, as
all possible input patterns may have to be tried before a vector is found or that the
fault is determined to be undetectable. One may go about line #2 of the algorithm in
an intelligent fashion, so a vector is not simply selected indiscriminately. Whether
or not intelligence is incorporated, some mechanism is needed to account for those
attempted input vectors so no vector would be repeated. If it is possible to deduce
some knowledge during the search for the input vector, the ATPG may be able to
mark a set of solutions as tried and thus reduce the remaining search space. For
instance, after attempting a number of input vectors, this naive ATPG realizes that
any input vector with the first primary input set to logic 0 cannot possibly detect
the target fault and it can safely mark all vectors with the first primary input equal
to 0 as a tried input vector. Subsequently, only those vectors with the first primary
input set to 1 will be selected.
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In certain cases, it may not be possible for the ATPG to deduce that all vectors
with some primary input set to a given logic value definitely do not qualify to be
solution vectors. However, it may be able to make an intelligent guess that input
vectors with primary input #i set to some specific logic value are more likely to
lead to a solution. In such a case, the ATPG would make a decision on primary
input #i. Because the decision may actually be wrong, the ATPG may eventually
have to alter its decision, trying the vectors that have the opposite Boolean value
on primary input #i.
The process of making decisions and reversing decisions will result in a decision

tree. Each node in the decision tree represents a decision variable. If only two
choices are possible for each decision variable, then the decision tree is a binary
tree. However, there may be cases where multiple choices are possible in a general
search tree.
Figure 4.7 shows an example decision tree. While this figure only allows decisions

to be made at the primary inputs, in general this may not be the case. This is
used simply to allow the reader to have a clearer picture of the concept behind
decision trees. At each decision, the search space is halved. For example, if the
circuit has n primary inputs, then there is a total of 2n possible vectors in the
solution space. After a decision is made, the solution spaces under the two branches
of a decision node are disjoint. For instance, the space under the decision a = 1
does not contain any vectors with a = 0. Note that the decision tree for a solution
vector may not require the ATPG to exhaustively enumerate every possible vector;
rather, it implicitly enumerates the vectors. If a solution vector exists, there must
be a path along the decision tree that leads to the solution. On the other hand, if
the fault is undetectable, every path in the decision tree would lead to no solution.
It is important to note that a fault may be detected without having made all

decisions. For example, the circuit nodes that do not play a role in exciting or prop-
agating the fault would not have to be included in the decision process. Likewise,
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� FIGURE 4.7

An example decision tree.
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it may not require all decision variables before the ATPG can determine that it is
on the wrong path. For example, if a certain path already sets a value on the fault
site such that the fault is not excited, then no value combination on the remaining
decision variables can help to excite and propagate the fault. Using Figure 4.7 as an
example again, suppose the path a= 0, c= 1, d= 1 cannot excite the target fault �.
Then, the rest of the decision variables, b	 e	 f	 � � � , cannot undo the effect rendered
by a= 0, c= 1, d= 1.

4.4.1.1 Backtracking

Whenever a conflict is encountered (i.e., a path segment leading to no solution),
the search must not continue searching along that path, but must go back to some
earlier point and re-decide on a previous decision. If only two choices are possible
for a decision variable, then some previous decision needs to be reversed, if the
other branch has not been explored before. This reversal of decision is called a
backtrack. In order to keep track of where the search spaces have been explored
and avoid repeating the search in the same spaces, the easiest mechanism is to
reverse the most recent decision made. When reversing any decision, the signal
values implied by the assignment of the previous decision variable must be undone.
Consider the decision tree illustrated in Figure 4.8 as an example. Suppose the

current decisions made so far are a = 0, c = 1, d = 0, and this causes a conflict in
detecting the target fault. Then, the search must reverse the most recently made
decision, which is d = 0. When reversing d = 0 to d = 1, all values resulted from
d = 0 must be first undone. Then, the search continues with the path a = 0, c = 1,
d = 1. If the reversal of a decision also caused a conflict (in this case, reversing
d= 0 also caused a conflict), then it means a= 0, c= 1 actually cannot lead to any
solution vector that can detect the target fault. The backtracking mechanism would
then take the search to the previous decision and attempt to reverse that decision.
In the running example, it would undo the decision on d, assigning d to “don’t
care,” followed by reversing of the decision c= 1 and searching the portion of the
search space under a= 0, c= 0. Finally, if there is no previous decision that can be
reversed, the ATPG concludes that the target fault is undetectable.

a

d

c

0

0

1

Conflict

backtrack

1

� FIGURE 4.8

Backtrack on a decision.
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Technically, whenever a decision is reversed, say d = 0 is reversed to d = 1 as
shown in Figure 4.8, d = 1 is no longer a decision; rather, it becomes an implied
value by a subset of the previous decisions made. The exact subset of decisions
that implied d= 1 can be computed by a conflict analysis [Marques-Silva 1999b].
However, the details of conflict analysis are beyond the scope of this chapter and
are thus omitted. The reader can refer to [Marques-Silva 1999b] for details of this
mechanism. In addition, intelligent conflict analysis can also allow for nonchrono-
logical backtracking.

4.4.2 A Basic ATPG Algorithm
Given a target fault g/v in a fanout-free combinational circuit C, a simple procedure
to generate a vector for the fault is shown in Algorithm 2, where JustifyFanoutFree()
and PropagateFanoutFree() are both recursive functions.

Algorithm 2 Basic Fanout Free ATPG (C, g/v)

1: initialize circuit by setting all values to X;
2: JustifyFanoutFree�C� g� v�; /* excite the fault by justifying line g to v */
3: PropagateFanoutFree�C� g�; /* propagate fault-effect from g to a PO */

The JustifyFanoutFree�g	 v� function recursively justifies the predecessor signals
of g until all signals that need to be justified are indeed justified from the primary
inputs. The simple outline of the JustifyFanoutFree routine is listed in Algorithm 3.
In line #10 of the algorithm, controllability measures can be used to select the best
input to justify. Selecting a good gate input may help to reach a primary input
sooner.
Consider the circuit C shown in Figure 4.9. Suppose the objective is to justify

g = 1. According to the above algorithm, the following sequence of recursive calls
to JustifyFanoutFree() would have been made:
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d

� FIGURE 4.9

Example fanout-free circuit.
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Algorithm 3 JustifyFanoutFree�C� g� v�

1: g = v;
2: if gate type of g == primary input then
3: return;
4: else if gate type of g == AND gate then
5: if v == 1 then
6: for all inputs h of g do
7: JustifyFanoutFree�C� h�1�;
8: end for
9: else �v == 0�

10: h= pick one input of g whose value == X;
11: JustifyFanoutFree�C� h�0�;
12: end if
13: else if gate type of g == OR gate then
14: 
 
 

15: end if

call #1: JustifyFanoutFree�C	 g	1�
call #2: JustifyFanoutFree�C	a	1�
call #3: JustifyFanoutFree�C	 f	1�
call #5: JustifyFanoutFree�C	 c	0�

After these calls to JustifyFanoutFree(), abcd= 1X0X is an input vector that can
justify g= 1.
Consider another circuit C shown in Figure 4.10. Note that the circuit is not

fanout-free, but the above algorithm will still work for the objective of trying to
justify the signal g= 1. According to the algorithm, the following sequence of calls
to the JustifyFanoutFree function would have been made:

call #1: JustifyFanoutFree�C	 g	1�
call #2: JustifyFanoutFree�C	a	1�
call #3: JustifyFanoutFree�C	 f	1�
call #4: JustifyFanoutFree�C	d	0�
call #5: JustifyFanoutFree�C	 c	0�
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� FIGURE 4.10

Example circuit with a fanout structure.
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d

� FIGURE 4.11

Circuit with a constant circuit node.

After these five calls to JustifyFanoutFree(), abc = 1X0 is an input vector that can
justify g= 1.
Note that in a fanout-free circuit, the JustifyFanoutFree() routine will always

be able to set g to the desired value v and no conflict will ever be encountered.
However, this is not always true for circuits with fanout structures. This is because
in circuits with fanout branches, two or more signals that can be traced back to the
same fanout stem are correlated, and setting arbitrary values on these correlated
signals may not always be possible. For example, in the simple circuit shown in
Figure 4.11, justifying d= 1 is impossible, as it requires both b= 1 and c= 1, thereby
causing a conflict on a.
Consider again the circuit shown in Figure 4.10. Suppose the objective is to

set z = 0. Based on the JustifyFanoutFree() algorithm, it would first justify both
g = 0 and h = 0. Now, for justifying g = 0, suppose it picks the signal f for jus-
tifying the objective g = 0; it would eventually assign c = 1 through the recursive
JustifyFanoutFre() function. Next, for justifying h= 0, it no longer can choose e= 0
as a viable option, because choosing e = 0 will eventually cause a conflict on sig-
nal c. In other words, a different decision has to be made for justifying h = 0.
In this case, b = 0 should be chosen. While this example is very simple, it illus-
trates the possibility of making poor decisions, causing potential backtracks in the
search. In the rest of this chapter, more discussion on avoiding conflicts will be
covered.
In the above running example, suppose the target fault is g/0, and

JustifyFanoutFree(C, g, 1) would have successfully excited the fault. With the fault
g/0 excited, the next step is to propagate the fault-effect to a primary output.
Similar to the JustifyFanoutFree() function, PropagateFanoutFree() is a recursive
function as well, where the fault-effect is propagated one gate at a time until it
reaches a primary output. Algorithm 4 illustrates the pseudo-code for one possible
implementation of the propagate function.
Again, although the PropagateFanoutFree() routine is meant for fanout-free cir-

cuits, it is sufficient for the running example. Using the PropagateFanoutFree()
function on the fault-effect D at signal g, listed in Algorithm 3, the following calls
to the JustifyFanoutFree and PropagateFanoutFree functions would have been
made:

call #1: PropagateFanoutFree(C, g)
call #2: JustifyFanoutFree(C, h, 0)
call #3: JustifyFanoutFree(C, b, 0)
call #4: PropagateFanoutFree(C, z)
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Algorithm 4 PropagateFanoutFree(C, g)

1: if g has exactly one fanout then
2: h= fanout gate of g;
3: if none of the inputs of h has the value of X then
4: backtrack;
5: end if
6: else �g has more than one fanout�
7: h= pick one fanout gate of g that is unjustified;
8: end if
9: if gate type of h== AND gate then

10: for all inputs, j, of h, such that j �= g do
11: if the value on j == X then
12: JustifyFanoutFree(C, j, 1);
13: end if
14: end for
15: else if gate type of h== OR gate then
16: for all inputs, j, of h, such that j �= g do
17: if the value on j == X then
18: JustifyFanoutFree(C, j, 0);
19: end if
20: end for
21: else if gate type of h== 
 
 
 gate then
22: 
 
 

23: end if
24: PropagateFanoutFree(C, h);

Because the fault-effect has successfully propagated to the primary output z, the
fault g/0 is detected, with the vector abc= 100.

The reader may notice that once g/0 has been excited, it is also propagated to z as
well, because c = 0 also has made h = 0. In other words, the JustifyFanoutFree(C,
h, 0) step is unnecessary. However, this is only possible if logic simulation or
implication capability is embedded in the BasicFanoutFreeATPG() algorithm. For
this discussion, it is not assumed that logic simulation is included.
Using the same circuit shown in Figure 4.10, consider the fault g/1. The Basic-

FanoutFreeATPG() algorithm will again be used to generate a test vector for this
fault. In this case, the ATPG first attempts to justify g= 0, followed by propagating
the fault-effect to z. During the justification of g = 0, the ATPG can pick either a
or f as the next signal to justify. At this point, the ATPG must make a decision.
Testability measures discussed in an earlier chapter can be used as a guide to
make more intelligent decisions. In this example, choosing a is considered to be
better than f , because choosing a requires no additional decisions to be made. Note
that testability measures only serve as a guide to decision selection; they do not
guarantee that the guidance will always lead to better decision selection.
It is important to note that in circuits with fanout structures, because the sim-

ple JustifyFanoutFree() and PropagateFanoutFree() functions described above are
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meant for fanout-free circuits, will not always be applicable as illustrated in some
of the examples above due to potential conflicts. In order to generate test vectors for
general combinational circuits, there must be mechanisms that will allow the ATPG
to avoid conflicts, as well as get out of a conflict when a conflict is encountered. To
do so, the corresponding decision tree must be constructed during the search for
a solution vector, and backtracks must be enforced for any conflict encountered.
The following sections describe a few ATPG algorithms.

4.4.3 D Algorithm
The D algorithm was proposed to tackle the generation of vectors in general com-
binational circuits [Roth 1966] [Roth 1967]. As indicated by the name of the algo-
rithm, the D algorithm tries to propagate a D or D of the target fault to a primary
output. Note that because each detectable fault can be excited, a fault-effect can
always be created. In the following discussion, propagation of the fault-effect will
take precedence over the justification of the signals. This allows for enhanced effi-
ciency of the algorithm as well as for simpler discussion.
Before proceeding to discussing the details of the D algorithm, two important

terms should be defined: the D-frontier and the J-frontier. The D-frontier consists
of all the gates in the circuit whose output value is x and a fault-effect (D or D) is
at one or more of its inputs. In order for this to occur, one or more inputs of the
gate must have a “don’t care” value. For example, at the start of the D algorithm,
for a target fault f there is exactly one D (or D) placed in the circuit corresponding
to the stuck-at fault. All other signals currently have a “don’t care” value. Thus,
the D-frontier consists of the successor gate(s) from the line with the fault f . Two
scenarios of a D-frontier are illustrated in Figure 4.12. Clearly, at any time if the
D-frontier is empty, the fault no longer can be detected. For example, consider
Figure 4.12a. If the bottom input of gate a is assigned a value of 0, the output of
gate a will become 0, and the D-frontier now becomes empty. At this time, the
search must backtrack and try a different search path.
The J-frontier consists of all the gates in the circuit whose output values are

known (can be any of the five values in the 5-valued logic) but is not justified by its
inputs. Figure 4.13 illustrates an example of a J-frontier. Thus, in order to detect
the target fault, all gates in the J-frontier must be justified; otherwise, some gates
in the J-frontier must have caused a conflict, where these gates cannot be justified
to the desired values.
Having discussed the two fundamental concepts of the D-frontier and the

J-frontier, the explanation for the D algorithm can begin. The D algorithm begins
by trying to propagate the initial D (or D) at the fault site to a primary output.
For example, in Figure 4.14, the propagation routine will set all the side inputs of
the path necessary (gates a→ b→ c) to propagate the fault-effect to the respective
noncontrolling values. These side input gates, namely x, y, and z, thus form the
J-frontier as they are not currently justified. And as the D is propagated to the
primary output, the D-frontier eventually becomes the output gate.
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Illustrations of D-frontier.
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Illustration of J-frontier.

Whenever there are paths to choose from in advancing the D-frontier, observ-
ability values can be used to select the corresponding gates. However, this does not
guarantee that the more observable path will definitely lead to a solution.
When a D or a D has reached a primary output, all the gates in the J-frontier must

now be justified. This is done by advancing the J-frontier backward by placing pre-
decessor gates in the J-frontier such that they justify the previous unjustified gates.
Similar to propagation of the fault-effect, whenever a conflict occurs, a backtrack
must be invoked. In addition, at each step, the D-frontier must be checked so the D
(or D) that has reached a primary output is still there. Otherwise, the search returns
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Propagation of D- and J-frontier.

to the propagation phase and attempts to propagate the fault-effect to a primary
output again. The overall procedure for the D algorithm is shown in Algorithms 5
and 6.
Note that the above procedure has not incorporated any intelligence in the

decision-making process. In other words, sometimes it may be possible to deter-
mine that some value assignments are not justifiable, given the current circuit state.
For instance, consider the circuit fragment shown in Figure 4.15. Justifying gate
a= 1 and gate b= 0 is not possible because a= 1 requires both of its inputs set to
logic 1, while b= 0 requires both of its inputs set to logic 0. Noting such conflicting
scenarios early can help to avoid future backtracks. Such knowledge can be incor-
porated into line #1 of the D-Alg-Recursion() shown in Algorithm 6. In particular,
static and dynamic implications can be used to identify such potential conflicts,
and they are used extensively to enhance the performance of the D algorithm (as

Algorithm 5 D-Algorithm(C, f )

1: initialize all gates to don’t-cares;
2: set a fault-effect (D or D) on line with fault f and insert it to the D-frontier;
3: J-frontier = �;
4: result = D-Alg-Recursion(C);
5: if result == success then
6: print out values at the primary inputs;
7: else
8: print fault f is untestable;
9: end if
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Algorithm 6 D-Alg-Recursion�C�

1: if there is a conflict in any assignment or D-frontier is ∅ then
2: return failure;
3: end if
4: /* first propagate the fault-effect to a PO */
5: if no fault-effect has reached a PO then
6: while not all gates in D-frontier has been tried do
7: g = a gate in D-frontier that has not been tried;
8: set all unassigned inputs of g to non-controlling value and add them to the J-frontier;
9: result = D-Alg-Recursion�C�;

10: if result == success then
11: return (success);
12: end if
13: end while
14: return (failure);
15: end if �fault-effect has reached at least one PO�
16: if J-frontier is ∅ then
17: return (success);
18: end if
19: g = a gate in J-frontier;
20: while g has not been justified do
21: j = an unassigned input of g;
22: set j = 1 and insert j = 1 to J-frontier;
23: result = D-Alg-Recursion�C�;
24: if result == success then
25: return (success);
26: else try the other assignment
27: set j = 0;
28: end if
29: end while
30: return(failure);

b

a 1

0

� FIGURE 4.15

Conflict in the justification process.

well as other ATPG algorithms). The implications of these procedures are discussed
later in this chapter.
Consider the multiplexer circuit shown in Figure 4.10. If the target fault is f

stuck-at-0, then, after initializing all gate values to x, the D algorithm places a D on



Test Generation 181

line f . The algorithm then tries to propagate the fault-effect to z. First it will place
a = 1 in the J-frontier, followed by h = 0 in the J-frontier. At this time, the fault-
effect has reached the primary output. Now, the ATPG tries to justify all unjustified
values in the J-frontier. Because a is a primary input, it is already justified. The
other signals in the J-frontier are f =D and h= 0. For f =D	d= 0, thereby making
c= 0. For h= 0, either e= 0 or b= 0 is sufficient. Whichever one it picks, the search
process will terminate, as a solution has been found.
Consider the same multiplexer circuit (Figure 4.10) again. Suppose the target

fault now is f stuck-at-1. Following the similar discussion as the previous target fault
f/0, the algorithm initializes the circuit and places a D on f . Next, to propagate the
fault-effect to a primary output, it likewise inserts a= 1 and h= 0 into the J-frontier.
Now, the ATPG needs to justify all the gates in the J-frontier, which includes a= 1,
f = D, and h = 0. Because a is a primary output, it is already justified. For f = D,
d= 1. For h= 0, suppose it selects e= 0. At this time, the J-frontier consists of two
gate values: d = 1 and e = 0. No value assignment on c can satisfy both d = 1 and
e= 0; therefore, a conflict has occurred, and backtrack on the previous decision is
needed. The only decision that has been made is e= 0 for h= 0, as there were two
choices possible for justifying h = 0. At this time, the value on e is reversed, and
b = 0 is added to the J-frontier. The process continues and all gate values in the
J-frontier can be successfully justified, ending the process with the vector abc= 101.
Note that, in the above example, if some learning procedure (such as implications)

is present, the decision for h= 0 would not result in e= 0, because the ATPG would
have detected that e= 0 would conflict with d= 1. This knowledge could potentially
improve the performance of the ATPG, which will be discussed later in this chapter.
Consider another example circuit shown in Figure 4.16. Suppose the target fault is

g/1. After circuit initialization, the D algorithm places a D on g. Now, the J-frontier
consists of g=D and the D-frontier consists of h. In order to advance the D-frontier,
f is set to logic 1; f = 1 is added to the J-frontier, and the D-frontier is now i.
Next, to propagate the fault-effect to the output, c = 1 is added to the J-frontier.
At this time, the fault-effect has been propagated to the output, and the task is
to justify the signal values in the J-frontier: �g = D	 f = 1	 c = 1
. To justify g = D,
two choices are possible: a = 0 or b = 0. If a = 0 is selected, it is necessary to
justify f = 1	 b= 1. Finally, c= 1 remains in the J-frontier which is still unjustified.
At this time, a contradiction has occurred (a= 0 and c= 1), and the search reverses
its last decision, changing a = 0 to a = 1. The search discovers that this reversal
also causes a conflict. Thus, a backtrack occurs where line b is chosen instead

a h
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s-a-1

� FIGURE 4.16

Example circuit.
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of a for the previous decision, so a is reset to “don’t care.” By assigning b = 0,
a conflict is observed. Reversing b also cannot justify all the J-frontier. At this time,
backtracking on b leads to no prior decisions. Thus, target fault g/1 is declared to
be untestable.

4.4.4 PODEM
In the D algorithm, the decision space encompasses the entire circuit. In other
words, every internal gate could be a decision point. However, noting that the end
result of any ATPG algorithm is to derive a solution vector at the primary inputs and
that the number of primary inputs generally is much fewer than the total number
of gates, it may be possible to arrive at a very different ATPG algorithm that makes
decisions only at primary inputs rather than at internal nodes of the circuit.
PODEM [Goel 1981] is based on this notion and makes decisions only at the

primary inputs. Similar to the D algorithm, a D-frontier is kept. However, because
decisions are made at the primary inputs, the J-frontier is unnecessary. At each
step of the ATPG search process, it checks if the target fault is excited. If the
fault is excited, it then checks if there exists an X-path from at least one fault-
effect in the D-frontier to a primary output, where an X-path is a path of “don’t
care” values from the fault-effect to a primary output. If no X-path exists, it means
that all the fault-effects in the D-frontier are blocked, as illustrated in Figure 4.17,
where both possible propagation paths of the D have been blocked. Otherwise,
PODEM will pick the best X-path to propagate the fault-effect. Note that if the
target fault has not been excited, the first steps of PODEM will be to excite the
fault.
The basic flow of PODEM is illustrated in Algorithms 7 and 8. It is also based on

a branch-and-bound search, but the decisions are limited to the primary inputs. All
internal signals obtain their logic values via logic simulation (or implications) from
the decision points. As a result, no conflict will ever occur at the internal signals
of the circuit. The only possible conflicts in PODEM are either (1) the target fault
is not excited, or (2) the D-frontier becomes empty. In either of these cases, the
search must backtrack.

D

0

1

� FIGURE 4.17

No X path.
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Algorithm 7 PODEM�C� f�

1: initialize all gates to don’t-cares;
2: D-frontier = ∅;
3: result = PODEM-Recursion�C�;
4: if result == success then
5: print out values at the primary inputs;
6: else
7: print fault f is untestable;
8: end if

Algorithm 8 PODEM-Recursion�C�

1: if fault-effect is observed at a PO then
2: return (success);
3: end if
4: �g� v�= getObjective�C�;
5: �pi� u�= backtrace�g� v�;
6: logicSimulate_and_imply�pi� u�;
7: result = PODEM-Recursion�C�;
8: if result == success then
9: return(success);

10: end if
11: /* backtrack */
12: logicSimulate_and_imply�pi� u�;
13: result = PODEM-Recursion�C�;
14: if result == success then
15: return(success);
16: end if
17: /* bad decision made at an earlier step, reset pi */
18: logicSimulate_and_imply�pi� x�;
19: return(failure);

According to the algorithm in PODEM, the search starts by picking an objective,
and it backtraces from the objective to a primary input via the best path. Control-
lability measures can be used here to determine which path is regarded as the best.
Gradually more primary inputs will be assigned logic values. At any time the target
fault becomes unexcited or the D-frontier becomes empty, a bad decision must have
been made, and reversal of some previously decisions is needed. The backtracking
mechanism proceeds by reversing the most recent decision. If reversing the most
recent decision also causes a conflict, the recursive algorithm will continue to back-
track to earlier decisions, until no more reversals are possible, at which time the
fault is determined to be undetectable.
Three important functions in PODEM-Recursion() are getObjective(), back-

trace(), and logicSimulate_and_imply(). The getObjective() function returns the
next objective the ATPG should try to justify. Before the target fault has been excited,
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the objective is simply to set the line on which the target fault resides to the value
opposite to the stuck value. Once the fault is excited, the getObjective() function
selects the best fault-effect from the D-frontier to propagate. The pseudo-code for
getObjective() is shown in Algorithm 9.

Algorithm 9 getObjective�C�

1: if fault is not excited then
2: return �g� v�;
3: end if
4: d = a gate in D-frontier;
5: g = an input of d whose value is x;
6: v = non-controlling value of d;
7: return �g� v�;

The backtrace() function returns a primary input assignment from which there
is a path of unjustified gates to the current objective. Thus, backtrace() will never
traverse through a path consisting of one or more justified gates. From the objec-
tive’s point of view, the getObjective() function returns an objective, say g= v, which
means the current value of g is “don’t care.” If g were set to v, g= vwould have never
been selected as an objective, as it conflicts with gate g’s current value. Now, if g= x
currently, and the objective is to set g = v, there must exist a path of unjustified
gates from at least one primary input to g. This backtrace() function can simply be
implemented as a loop from the objective to some primary inputs through a path
of “don’t cares.” Algorithm 10 shows the pseudo-code for the backtrace() routine.
Finally, the logicSimulate_and_imply() function can simply be a regular logic

simulation routine. The added imply is used to derive additional implications, if
any, that can enhance the getObjective() routine later on.
Consider the multiplexer circuit shown in Figure 4.10 again. Consider the tar-

get fault f stuck-at-0. First, PODEM initializes all gate values to x. Then, the first

Algorithm 10 backtrace�C�

1: i = g;
2: num_inversion = 0;
3: while i �= primary input do
4: i = an input of i whose value is x;
5: if i is an inverted gate type then
6: num_inversion++;
7: end if
8: end while
9: if num_inversion == odd then

10: v = v;
11: end if
12: return�i� v�;
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TABLE 4.4 � PODEM Objectives and Decisions for f Stuck-At-0

getObjective() backtrace() logicSim() D-frontier

f = 1 c = 0 d = 0, f = D,
e= 0, h= 0

g

a= 1 a= 1 g = D, z = D f/0 detected

objective would be to set f = 1. The backtrace routine selects c= 0 as the decision.
After logic simulation, the fault is excited, together with e = h = 0. The D-frontier
at this time is g. The next objective is to advance the D-frontier, thus getObjective()
returns a= 1. Because a is already a primary input, backtrace() will simply return
a = 1. After simulating a = 1, the fault-effect is successfully propagated to the pri-
mary output z, and PODEM is finished with this target fault with the computed
vector abc = 1X0. Table 4.4 shows the series of objectives and backtraces for this
example.
Consider the circuit shown in Figure 4.11. Suppose the target fault is b stuck-

at-0. After circuit initialization, the first objective is b = 1 to excite the fault. The
backtrace() returns a= 0. After logic simulation, although the target fault is excited,
there is no D-frontier, because c = d = 0. At this time, PODEM reverses its last
decision a = 0 to a = 1. After logic simulating a = 1, the target fault is not excited
and the D-frontier is still empty. PODEM backtracks but there is no prior decision
point. Thus, it concludes that fault b/0 is undetectable. Table 4.5 shows the steps
made for this example, and Figure 4.18 shows the corresponding decision tree.
Consider again the circuit shown in Figure 4.16 with the target fault g/1. After

circuit initialization, the first objective is to excite the fault; in other words, the
objective is g= 0. The backtrace() function backtraces from the objective backward
to a primary input via a path of “don’t cares.” Suppose the backtrace reaches a= 0.
After logic simulation, g= 0, c= d= 0, and i= 0. The D-frontier is h. However, note
that there is no path of “don’t cares” from any fault-effect in the D-frontier to a
primary output! If the PODEM algorithm is modified to check that any objective
has at least a path of “don’t cares” to one or more primary outputs, some needless

TABLE 4.5 � PODEM Objectives and Decisions for b Stuck-At-0

getObjective() backtrace() logicSim() D-frontier

b= 1 a= 0 b= 1, c = 0, d = 0 ∅
a= 1 (reversal) — b= 0, c = 1, d = 0 ∅

a
0 1

Conflict Conflict

� FIGURE 4.18

Decision tree for fault b/0.
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TABLE 4.6 � PODEM Objectives and Decisions for g Stuck-At-1

getObjective() backtrace() logicSim() D-frontier
g = 0 a= 0 g = D, c = 0

d = 0, i = 0
h (but no

X-path to PO)
a= 1 (reversal) — c = 1, d = 1 ∅

searches can be avoided. For instance, in this example, if the next objective was
f = 1, even after the decision of b= 1 is made, the target fault still would not have
been detected, as there was no path to propagate the fault-effect to a primary
output even before the decision b= 1 was made. In other words, the search could
immediately backtrack on the first decision a = 0. In this case, a = 1, and the
objective is still g = 0. Backtrace() will now return b = 0. After logic simulation,
g = 0, c = 1, f = 0, h = 0, i = 0. Again, there is no propagation path possible. As
there is no earlier decision to backtrack to, the ATPG concludes that fault g/1 is
untestable. Table 4.6 shows the steps for this example.

4.4.5 FAN
While PODEM reduces the number of decision points from the number of gates in
the circuit to the number of primary inputs, it still can make an excessive number
of decisions. Furthermore, because PODEM targets one objective at a time, the
decision process may sometimes be too localized and miss the global picture. The
FAN (Fanout-Oriented TG) algorithm [Fujiwara 1983] extends the PODEM-based
algorithm to remedy these shortcomings.
To reduce the number of decision points, FAN first identifies the headlines in

the circuit, which are the output signals of fanout-free regions. Due to the fanout-
free nature of each cone, all signals outside the cone that do not conflict with
the headline assignment would never require a conflicting value assignment on
the primary inputs of the corresponding fanin cone. In other words, any value
assignment on the headline can always be justified by its fanin cone. This allows the
backtrace() function to backtrace to either headlines or primary inputs. Because
each headline has a corresponding fanin cone with several primary inputs, this
allows the number of decision points to be reduced.
Consider the circuit shown in Figure 4.19. If the current objective is to set z= 1,

the corresponding decision tree based on the PODEM algorithm will involve many
decisions at the primary inputs, such as a= 1, c= 1, d= 1, e= 1, f = 1. On the other
hand, the decision based on the FAN algorithm is significantly smaller, involving
only two decisions: x= 1 and y= 1. If z= 1 was not the first objective, there would
have been other decisions made earlier. In other words, if there was a poor decision
made in an earlier step, PODEM would need to reverse and backtrack many more
decisions compared to FAN.
The next improvement that FAN makes over PODEM is the simultaneous satis-

faction of multiple objectives, as opposed to only one target objective at each step.
Consider the circuit fragment shown in Figure 4.20. Without taking into account
multiple objectives, the backtrace() routine may choose the easier path in trying
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Circuit with identified headlines.
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Multiple backtrace to avoid potential conflicts.

to justify k = 0. The easier path may be through the fanout stem b. However, this
would cause a conflict later on with the other objective m = 1. In FAN, multiple
objectives are taken into account, and the backtrace routine scores the nodes visited
from each objective in the current set of objectives. The nodes along the path with
the best scores are chosen. In this example, a= 0 will be chosen rather than b= 0,
even if a= 0 is less controllable.

4.4.6 Static Logic Implications
Logic implications capture the effect of assigning logic values on other gate values
in a circuit. They can be extremely helpful for the ATPG to make better decisions,
reduce the number of backtracks, etc. Over the past few decades, logic implications
have been applied and shown their effectiveness in several areas relevant to testing.
They include test-pattern-generation [Schulz 1988] [El-Maleh 1998] [Tafertshofer
2000], logic and fault simulation [Kajihara 2004], fault diagnosis [Amyeen 1999],
logic verification [Paul 2000] [Marques-Silva 1999a] [Arora 2004], logic optimiza-
tion [Ichihara 1997] [Kunz 1997], and untestable fault identification [Iyer 1996a]
[Iyer 1996b] [Peng 2000] [Hsiao 2002] [Syal 2004].
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A powerful implication engine can have a significant impact on the performance
of ATPG algorithms. Thus, much effort has been invested over the years in the
efficient computation of implications. The quality of implications was improved
with the computation of indirect implications in SOCRATES [Schulz 1988]. Static
learning was extended to dynamic learning in [Schulz 1989] and [Kunz 1993],
where some nodes in the circuit already had value assignments during the learning
process. A 16-valued logic was introduced by Cox et al. [Rajski 1990], and reduction
lists were used to dynamically determine the gate values. Chakradhar et al. proposed
a transitive closure procedure based on the implication graph. Recursive learning
was later proposed by Kunz et al. [Kunz 1994] in which a complete set of pair-wise
implications could be computed. In order to keep the computational costs low, a
small recursion depth can be enforced in the recursive learning procedure. Finally,
implications to capture time frame information in sequential circuits in a graphical
representation were proposed in [Zhao 2001] to compactly store the implications
in sequential circuits.
All of the aforementioned techniques require the proper understanding of logic

implications. As indicated earlier, logic implications identify the effect of asserting
logic values on gates in a circuit. Static logic implications, in particular, can be
computed as a one-time process before ATPG begins. At the end of the process,
relationships among a subset of signals in the circuit would have been learned.
Static logic implications have been categorized into direct, indirect, and extended
backward implications. Direct implications for a gate g simply denote logic rela-
tionships immediately on a circuit gate. On the other hand, indirect and extended
backward implications require circuit simulation and the application of transition
and contrapositive properties. Because they are more involved, they help to identify
the logical effect of asserting a value on g with nodes in the circuit that may not
be directly connected to g. The following terminology is used for the discussion on
logic implications:

1. �N	v	 t�: Assign logic value v to gate N in time frame t. In combinational
circuits, t is equal to 0 and can thus be dropped from the expression; that is,
if t= 0, �N	v	 t� is rewritten as �N	v�.

2. �N	v	 t1�→ �M	w	 t2�: Assigning logic value v to gate N in time frame t1 would
imply a logic value w to gate M in time frame t2.

3. Impl�N	v	 t�: The set of all implications resulting from the value assignment
of logic value v to gate N in time frame t. For t = 0, Impl�N	v	 t� is simply
represented as Impl�N	v�.

Consider an AND gate and its implication graph, shown in Figure 4.21. Because
the simple AND gate has three corresponding signals, a, b, and c, the associ-
ated implication graph has six nodes. An edge in the implication graph indi-
cates the implication relationship. For example, c = 1 has two implications: b = 1
and a= 1.
The following example will explain further the concepts of direct, indirect,

and extended backward implications. Note that the static logic implications are
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Sequential circuit fragment.

applicable to both combinational and sequential circuits. Given the sequential cir-
cuit fragment shown in Figure 4.22, consider gate f = 1:

1. Direct implications: A logic value of 1 on gate f would directly imply g= k= 1
because they are directly connected to gate f . In addition, f = 1→ d = 1
and e = 1. Thus, the set ��f	1	0�	 �g	1	0�	 �k	1	0�	 �d	1	0�	 �e	1	0�
 is the set of
direct implications for f = 1. Similarly, direct implications associated with
g = 1 can be computed to be ��g	1	0�	 �j	1	0�	 �f	1	0�
. These implications are
stored in the form of a graph, where each node represents a gate (with a logic
value). A directed edge between two nodes represents an implication, and a
weight along an edge represents the relative time frame associated with the
implication. Figure 4.23 shows the graphical representation of a portion of
direct implications for f = 1 in this example. The complete set of implications
resulting from setting f = 1 can be obtained by traversing the graph rooted
at node f = 1. Computing the set of all nodes reachable from this root node
�f = 1� (transitive closure on f = 1) would return the set Impl�f = 1�. Thus, the
complete set of direct implications using the implication graph shown in the
figure for f = 1 is: ��f	1	0�	 �d	1	0�	 �e	1	0�	 �g	1	0�	 �k	1	0�	 �j	1	0�	 �c	1	−1�
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Portion of implication graph for f = 1.

2. Indirect implications: Note that neither j= 1 nor k= 1 implies a logic value on
gate x individually. However, if they are taken collectively, they imply x = 1.
Thus, indirectly, f = 1 would imply x = 1. This is an indirect implication of
f = 1, and it can be computed by performing a logic simulation on the current
set of implications of the root node on the circuit. In this example, by inserting
the implications of f = 1 into the circuit, followed by a run of logic simulation,
x = 1 would be obtained as a result. This new implication is then added as
an additional outgoing dashed edge from f = 1 in the implication graph as
shown in Figure 4.24. Another nontrivial implication that can be inferred from
each indirect implication is based on the contrapositive law. According to
the contrapositive law, if �N	v�→ �M	w	 t1�, then �M	w�→ �N	v	−t1�. Because
�f	1�→ �x	1	0�, by the contrapositive law, �x	0�→ �f	0	0�.

3. Extended backward (EB) implications: Extended backward implications aim
to increase the number of implications for any single node by exploring the
unjustified implied nodes in the implication list. Using the same circuit shown
in Figure 4.22 again, in the implication list of f = 1, d= 1 is an unjustified gate
because none of d’s inputs has been implied to a value of logic 1. Thus, d is a
candidate for the application of extended backward implications. To obtain
extended backward implications on d, a transitive closure is first performed
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� FIGURE 4.24

Adding indirect implications for f = 1.
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for each of its unspecified inputs. In this case, impl�a = 1� and impl�b = 1�
are first computed. The implications of f = 1 are logic simulated together
with each of d’s unspecified input’s implication sets in turn, creating a set of
newly found logic assignments for each input of the chosen unjustified gate.
For this example, when the implications of �a= 1� and �f = 1� are simulated,
the new assignments �seta� found include �w	0	0� and �z	0	0�. Similarly, for
the combined implication set of �b = 1� and �f = 1�, the new assignments
�setb� found include �y	0	0� and �z	0	0�. All logic assignments that are not
already in Impl�f = 1� which are common to seta and setb are the extended
backward implications. These new implications are added as new edges to
the original node f = 1. In this running example, because �z	0	0� is common
in seta and setb, it is a new implication. The corresponding new implication
graph is illustrated in Figure 4.25, where the new implication is shown as a
dotted edge.

4.4.7 Dynamic Logic Implications
While static implications are computed one time for the entire circuit, dynamic
implications are performed during the ATPG process. At a given step in the ATPG
process, some signals in the circuit would have taken on values, including D or
D. This set of values may imply other signals which are currently unassigned to
necessary value assignments. In general, dynamic implications work locally around
assigned signals to see if any implication can be derived. For instance, consider
the simple AND gate c= a ·b. According to static logic implications, c= 0 does not
imply any value on either a or b. However, if a= 1 has been assigned by the current
decision process, then c = 0 would imply b = 0. This can be deduced readily. The
implicant, b= 0, may be propagated further to imply other signals.
The concept of direct, indirect, and extended backward implications can be

applied in dynamic implications as well. Consider the circuit shown in Figure 4.26.
Suppose c= 1 has been achieved by the decision process. Then, in order to achieve
z= 0, either d must be 0 or e must be 0. For d= 0, both a and b must be 0. On the
other hand, for e= 0, since c= 1, the only way for e= 0 is that b be assigned to 0.
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Adding extended backward implications for f = 1.
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Another dynamic implications example.

The intersection of �a= 0	 b= 0
 and �b= 0
 is �b= 0
. In other words, the dynamic
implication for z= 0 given c= 1 is b= 0.
Dynamic implications can also be applied to signals with a fault-effect. For

instance, consider the circuit shown in Figure 4.27. Suppose there is a D on signal b,
and this fault-effect is the only one for the current target fault. Then, in order to
propagate the fault-effect to the primary output z, f = 1 is a necessary condition.
This dynamic implication can be obtained via the following analysis. For b= D to
propagate to z, either a= 0 or c= 1 is needed, resulting in a fault effect at signal d
or e. Regardless of which path the fault effect propagates, signal f = 1 is a necessary
condition for the fault effect to propagate to z. Such an observation was made in
[Akers 1976] [Fujiwara 1983].
The work in [Hamzaoglu 1999] extended this concept of dynamic implications

a step further. Suppose the D-frontier for the current target fault consists of gates
g1	 g2	 � � � 	 gn. By a similar analysis as the previous example shown in Figure 4.27,
each gate gi ∈D-frontier would have a set of necessary assignments, Ai. Clearly, the
necessary assignment for any single fault-effect may not be necessary for detecting
the target fault. However, in order to propagate the fault effect to a primary output,
at least one fault effect in the D-frontier must be sensitized to the output. Subse-
quently, the intersection of all the necessary assignments for each of the gates in the
D-frontier would be the set of required assignments for detection of the target fault.
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In other words, ∩∀ gi∈D-frontier Ai is the set of necessary assignments for detecting the
target fault.
Finally, another form of dynamic learning consists of finding a partial circuit

decomposition in the form of a frontier called the evaluation frontier (or E-frontier
for short) [Giraldi 1990]. The idea behind this is that at any point in the decision
process there exists a frontier of evaluated gates, and that the same frontier may be
achieved by a different set of decision variables. For instance, three value assign-
ments are possible to achieve the output of an AND gate set to logic 0. Each frontier
can be associated with an edge in the decision tree. Suppose a set of E-frontiers
has been learned for fault fi and the corresponding decision tree for fi is available.
Now, for a different fault fj, if a similar E-frontier is obtained, where the E-frontier
has at least one fault effect as illustrated in Figure 4.28, the subtree for fj’s decision
tree could be directly copied from the subtree in fi’s decision tree, to which the
E-frontier was mapped. Note that the set of current primary input assignments is
sufficient to justify the E-frontier, and all nodes to the right of the E-frontier are all
“don’t cares.” In this figure, the only primary inputs that could have been used to
propagate the fault effect are a, b, and m. If there was an assignment on these three
primary inputs that was able to propagate the D for fault fi to a primary output,
then the same assignment would be able to propagate the D for fj as it had the same
E-frontier. In other words, the decision variables in the subtree corresponding to
this point in the decision process consisted of only these three variables outside the
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Example of evaluation frontier.
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E-frontier. Stated differently, the propagation of the fault effect could directly be
borrowed from a previous fault. The same concept can be extended to untestable
faults as well.

4.5 DESIGNING A SEQUENTIAL ATPG

4.5.1 Time Frame Expansion
Test generation for sequential circuits bears much similarity with that for com-
binational circuits. However, one vector may be insufficient to detect the target
fault, because the excitation and propagation conditions may necessitate some of
the flip-flop values to be specified at certain values.
The general model for a sequential circuit is shown in Figure 4.29, where flip-

flops constitute the memory/state elements of the design. All the flip-flops receive
the same clock signal, so no multiple clocks are assumed in the circuit model.
Figure 4.30 illustrates an example of a sequential circuit which is unrolled into
several time frames, also called an iterative logic array of the circuit. For each
time frame, the flip-flop inputs from the previous time frame are often referred to
as pseudo primary inputs with respect to that time frame, and the output signals
to feed the flip-flops to the next time frame are referred to as pseudo primary
outputs. Note that in any unrolled circuit, a target fault is present in every time
frame.
When the test generation begins, the first time frame is referred to as time frame 0.

An ATPG search similar to a combinational circuit is carried out. At the end of

Memory
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� FIGURE 4.29

Model of a sequential circuit.
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An ILA model.

the search, a combinational vector is derived, where the input vector consists of
primary inputs and pseudo primary inputs. The fault-effect for the target fault may
be sensitized to either a primary output of the time frame or a pseudo primary
output. If at least one pseudo primary input has been specified, then the search
must attempt to justify the needed flip-flop values in time frame −1. Similarly,
if fault-effects only propagate to pseudo primary outputs, the ATPG must try to
propagate the fault-effects across time frame +1. Note that this results in a test
sequence of vectors. As opposed to combinational circuits, where a single vector is
sufficient to detect a detectable fault, in sequential circuits a test sequence is often
needed.
One question naturally arises: Should the ATPG first attempt the fault excitation

via several time frames −1	−2, etc., or should the ATPG attempt to propagate the
fault-effect through time frames 1, 2, etc.? It can be observed that in propagating
the fault-effect in time frame 1, the search may place additional values on the
flip-flops between the boundary of time frames 0 and 1. These added constraints
propagate backward and may add additional values needed at the pseudo primary
inputs at time frame 0. In other words, if the ATPG first justifies the pseudo primary
inputs at time frame 0, it would have missed the additional constraints placed by
the propagation. Therefore, the ATPG first tries to propagate the fault-effect to a
primary output via several time frames, with all the intermediate flip-flop values
propagated back to time frame 0. Then, the ATPG proceeds to justify all the pseudo
primary input values at time frame 0.
While easy to understand, the process can be very complex. For example, if the

fault-effect has propagated forward for three time frames: time frames 1, 2, and
3. Now in time frame 4, suppose the ATPG successfully propagates the fault-effect
to a primary output (i.e., it has derived a vector at time frame 4), it must go back
to time frame 3 to make sure the values assigned to the flip-flops at the boundary
between time frames 3 and 4 are indeed possible. It must perform this check for
time frames 2, 1, and 0. If at any time frame a conflict occurs, the vector derived
at time frame 4 is actually invalid, as it is not justifiable from the previous vectors.
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At this time, a backtrack occurs in time frame 4 and the ATPG must try to find a
different solution vector #4. This process is repeated.
One way to reduce the complexity discussed above is to try to propagate the

fault-effect in an unrolled circuit instead of propagating the fault-effect time frame
by time frame. In doing so, a k-frame combinational circuit is obtained, say k= 256,
and the ATPG views the entire 256-frame circuit as one large combinational circuit.
However, the ATPG must keep in mind that the target fault is present in all 256
time frames. This eliminates the need to check for state boundary justifiability
and allows the ATPG to propagate the fault-effect across multiple time frames at a
time.
When the fault-effect has been propagated to at least one primary output, the

pseudo primary inputs at time frame 0 must be justified. Again, the justification
can be performed in a similar process of viewing an unrolled 256-frame circuit. As
before, the ATPG must ensure that the fault is present in every time frame of the
unrolled circuit.

4.5.2 5-Valued Algebra Is Insufficient
Because the fault is present in every time frame, it makes value justification tricky.
For example, when justifying the pseudo primary input vector 01X1, is it sufficient
to obtain the fault-free values of 01X1, or do the corresponding faulty values on
these inputs need to be at the same logic values as fault-free values? If the faulty
values can be different from the fault-free values, the 5-valued logic would be
insufficient for this task [Muth 1976]. In other words, to justify a fault-free value
of 1, the corresponding faulty value could be X and the justified state may still be
sufficient to propagate the fault-effect to the primary output. Consider the circuit
shown in Figure 4.31a. In the one-time-frame illustration of the sequential circuit,
the target fault is b/0. Because the fault is present in every time frame of the unrolled
ILA, the fault-free and faulty values arriving at the flip-flops in the previous time
frame may be different. Taking this into consideration, it may be possible to obtain
a value of 1/0 or 1/1 at signal a. However, when looking at this target fault, either
1/0 or 1/1 would be able to successfully propagate the fault effect at b to the output
of the AND gate. Therefore, a= 1/X is a sufficient condition and should be returned
by the getObjective() function of the ATPG. If a = 1/1 were the objective returned
by the getObjective() function, it may not be possible to derive this value from the
flip-flops, thus over-constraining the search space. By a similar discussion, the b/1
fault shown in Figure 4.31b only requires a = X/1 in order to propagate the fault
effect.
HITEC [Niermann 1991] is a popular sequential test generator that performs the

search similar to the discussedmethodologies with a 9-valued algebra. In addition, it
uses the concept of dominators to help reduce the search complexity. A dominator
for a target fault is a gate in the circuit through which the fault-effect must traverse
[Kirkland 1987]. Therefore, for a given target fault, all inputs of any dominator
gate that are not in the fanout cone of the fault must be assigned to noncontrolling
values in order to detect the fault.
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The need for 9-valued algebra in sequential circuits.

The concept of controllability and observability metrics can be extended to
sequential circuits such that the backtrace routine would prefer to backtrace toward
primary inputs and those easy-to-justify flip-flops. Using sequential testability met-
rics allows the ATPG to narrow the search space by favoring the easy-to-reach states
and avoiding getting into difficult-to-justify states.
The computational complexity of a sequential ATPG is intuitively higher than

that of the combinational ATPG. Therefore, aggressive learning can help to reduce
the computational cost. For instance, if a known subset of unreachable states is
available, this information can be used to allow the ATPG to backtrack much sooner
when an intermediate state is unreachable. This can avoid successive justification
of an unreachable state. Likewise, if a justification sequence has been successfully
computed for state S before, and a different target fault requires the same state
S, the previous justification sequence can be used to guide the search. Note that,
because the target faults are different, the justification sequence may not simply be
copied from the solution for one fault to another.

4.5.3 Gated Clocks and Multiple Clocks
All the algorithms for sequential ATPG thus far assumed the sequential circuit
has a single global clock. This assumption is simple as all memory elements (flip-
flops) switch synchronously at every clock; however, in modern digital systems, this
assumption is often not true. For instance, gated clocks (illustrated in Figure 4.32a)
and multiple clocks (Figure 4.32b) are becoming mainstream. Gated clocks are
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Non-traditional clocking schemes.

mostly used for power savings, such that not all memory elements will switch at
every clock. On the other hand, multiple clocks benefit performance, power, and
design as blocks can be partitioned to different clock domains.
If circuit modification is not possible, ATPG should be designed to perform some

circuit modeling as a preprocessing step to ease the ATPG process. Actually, this
is the approach taken by most current EDA vendors today. In other words, instead
of designing new ATPG algorithms that can handle designs with gated clocks and
multiple clocks, it may be easier to slightly modify the circuit such that the original
circuit is transformed to one that uses only a single, global clock such that the
transformed circuit is functionally equivalent to the original design. For instance,
consider the gated clock case. The memory element that depends on a gated clock
can easily be modified to one that depends on a single global clock by adding
a small multiplexer, as shown in Figure 4.33. In the top half of the figure, the
gated clock with signal b is easily transformed to the one shown on the right. The
lower portion of the figure shows an example where the clock signal is an arbitrary
internal signal; this also can be transformed in a similar manner. Note that the
transformed designs shown on the right are functionally equivalent to the original
designs.
Likewise, for a circuit with multiple clocks, a transformation is possible with sim-

ilar design changes. Figure 4.34 illustrates the modification. The modified design
is one where the clock is modified. This can further be converted by adding a
multiplexer as done in the gated-clock scenario so the resulting design has a single
global clock. In particular, the “new a” and “new b” signals can be converted to
those having MUX-based inputs, as shown in Figure 4.33. The Clock1 and Clock2
signals may be used as the select signals for the multiplexers.
After a circuit with gated and/or multiple clocks has been modified, conventional

stuck-at ATPG algorithms (combinational or sequential) will be readily applicable.
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Transformation of gated clock.
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Transformation of multiple clocks.

Note, however, fault models other than the stuck-at model may not necessarily
benefit from this transformation.
Finally, alternatives to the above MUX-based modifications are possible for han-

dling designs with multiple clocks. They include the one-hot or the staggered clock-
ing schemes. The details of the clocking are described in Section 5.7. One-hot
clocking gives better fault coverage, but it suffers from potential large test sets.
On the other hand, staggered clocking results in slightly lower fault coverages, but
it can be applied using a combinational ATPG with circuit expansion. Sequential
ATPG may be used as well, but it may incur longer execution times.
In addition to one-hot and staggered clocking, simultaneous clocking allows for

all clocks to be run at the same time, but it marks unknowns (X’s) between clock
domains and uses one-time-frame combinational ATPG. EDA vendors tend to start
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with staggered or simultaneous clocking schemes, then a one-hot clocking scheme
is used to detect any remaining faults [Wang 2003].

4.6 UNTESTABLE FAULT IDENTIFICATION

Untestable faults are faults for which there exists no test pattern that can both
excite the fault and propagate its fault-effect to a primary output. Thus, a fault may
be untestable for any of the following three reasons:

� The conditions necessary to excite the fault are not possible.

� The conditions necessary to propagate the fault-effect to a primary output are
not possible.

� The conditions for fault excitation and fault propagation cannot be simulta-
neously satisfied.

In combinational circuits, untestable faults are due to redundancies in the circuit,
while in sequential circuits untestable faults may also result from the presence of
unreachable states or impossible state transitions.
From an ATPG’s point of view, the presence of untestable faults in a design can

degrade the performance of the ATPG tool. When considering untestable faults, an
ATPG engine must exhaust the entire search space before declaring such faults as
untestable. Thus, the performance of ATPG engines (as well as fault-simulators)
can be enhanced if knowledge of untestable faults is available a priori. In other
words, untestable faults can first be filtered from the fault list and the tools work
only on the remaining faults, which could be much fewer than the original number
of faults. There are additional benefits of untestable fault identification: Untestable
faults in the form of redundancies increase the chip area; they may also increase
the power consumption and the propagation delays through a circuit [Friedman
1967]. The presence of an untestable fault can potentially prevent the detection of
other faults in the circuit [Friedman 1967]. Finally, untestable faults may result in
unnecessary yield loss in scan-based testing. This is because even though the circuit
remains fully operational in the presence of untestable faults, scan-based testing
may detect such faults and reject the chip. As a result, significant effort has been
invested in the efficient identification of untestable faults.
The techniques that have been proposed in the past for untestable fault identifi-

cation can be classified into fault-oriented methods based on deterministic ATPG
[Cheng 1993] [Agrawal 1995] [Reddy 1999], fault-independent methods [Iyer 1996a]
[Iyer 1996b] [Hsiao 2002] [Syal 2003] [Syal 2004], and hybrid methods [Peng 2000].
The fault-independent methods generally are based on conflict analysis. While
the deterministic ATPG-based methods outperform fault-independent methods for
smaller circuits, the computational complexity of deterministic ATPGs makes them
impractical for large circuits. On the other hand, conflict-based analysis targets
the identification of untestable faults that require a conflicting scenario in the cir-
cuit. These methods do not target specific faults, thus they are fault-independent
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approaches. FIRE [Iyer 1996a] is a technique to identify untestable faults based on
conflict analysis. While the theory can be applicable to any conflicting scenario,
only single-line conflicts were implemented in FIRE. The basic idea behind FIRE
is very simple. Because it is impossible for a single line to take on both logic values
0 and 1 simultaneously, logic values 0 and 1 set on any signal would clearly be
a conflicting scenario. Subsequently, any fault that requires a signal set to both
logic values 0 and 1 for its detection would be untestable. In order to reduce the
computational cost, FIRE restricts its search to only fanout stems instead of every
gate in the circuit.
In the single-line conflict analysis, for each gate in the circuit, the following two

sets are computed:

� S0—Set of faults not detectable when signal g= 0.

� S1—Set of faults not detectable when signal g= 1.

Essentially, all the faults in each set Si require g = ī for their detection. Thus,
any fault that is in the intersection of sets S0 and S1 would be untestable because
it requires conflicting values on g as necessary conditions for its detection. The
following example illustrates the single line conflict analysis.
Consider the circuit shown in Figure 4.35. During static learning, the implications

for every gate can be computed as discussed earlier in this chapter. For example,
Impl�b	1	0�= ��b	1	0�	 �b1	1	0�	 �b2	1	0�	 �d	1	0�	 �x	0	0�	 �z	0	0�
.

� Faults unexcitable due to b = 1 �

With b = 1, it would not be possible to set line d = 0, as �b = 1
→ �d = 1
.
Thus, fault d/1 would be unexcitable when b = 1. In other words, this fault
requires b= 0 as a necessary condition for its detection. Essentially, if �k	 v	 t� ∈
Impl�N	w�, then fault k/v would be unexcitable in time frame t with N = w in
the reference time frame 0. Similarly, faults b/1	 b1/1	 b2/1	 d/1	 x/0	 z/0 would
be unexcitable with b= 1.

� Faults unobservable due to b = 1 �

Because �b= 1
→ �x= 0
, line y is blocked. Hence, faults y/0 and y/1 would
require b= 0 as a necessary condition for their detection. Similarly, any faults
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Example of single line conflict analysis.
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appearing on lines a, e1, e2, etc., would also be blocked due to implications of
b = 1. The unobservable information could be propagated backwards until a
fanout stem is reached at which the faults on the fanout stemmay no longer be
unobservable. The condition for checking if the fanout stem is unobservable
is to see if the stem can reach any of the blocking conditions for each of
the fanout branches. For instance, using the circuit illustrated in Figure 4.35,
if a = 1 and c = 0, both fanout branchs b1 and b2 would be unobservable.
However, because the fanout stem b cannot reach any of the conditions for
blocking any of the branches (i.e., the blocking condition for b1 is a = 1 and
the blocking condition for b2 is c = 0), stem b would still be unobservable.
The complete set of faults that cannot be propagated due to b= 1 is:

�a/0	 a/1	 e1/0	 e1/1	 y/0	 y/1	 e2/0	 e2/1	 e/0	 e/1	 c/0	 c/1	 b2/0	 b2/1
�

Thus, S1 is the union of the two sets computed above:

S1 = �b/1	 b1/1	 b2/1	 d/1	 x/0	 z/0	 a/0	 a/1	 e1/0	 e1/1	 y/0	 y/1	 e2/0	 e2/1	

e/0	 e/1	 c/0	 c/1	 b2/0	 b2/1
�

Now, consider the implications of b= 0:

Impl�b	0	0�= ��b	0	0�	 �b1	0	0�	 �b2	0	0�	 �e	0	0�	 �e1	0	0�	 �e2	0	0�	 �y	1	0�
�

Similar to the analysis performed for b = 1, faults that are unexcitable and
unobservable due to b= 0 can be computed, resulting in:

S0 = �b/0	 b1/0	 b2/0	 e/0	 e1/0	 e2/0	 y/1	 c/0	 c/1


Now that both S1 and S0 are computed, any fault that is in the inter-
section of the two sets would be untestable. In this example, S0

⋂
S1 =

�b2/0	 e/0	 e1/0	 e2/0	 y/1	 c/0	 c/1
. These faults are untestable because they
require a conflicting assignment on line b (b= 1 and b= 0 simultaneously) as
a necessary condition for their detection.

In a follow-up work to FIRE, FIRES [Iyer 1996b] targeted untestable faults
in sequential circuits based on single-line conflicts. In addition, FILL and
FUNI [Long 2000] adapted the concept of single-line conflicts to multiple
nodes on the state variables (flip-flops) because any illegal state in sequential
circuits is considered an impossible value assignment. As a result, any fault
that requires an illegal state necessary for its detection would be untestable.
A binary decision diagram (BDD)-based approach is used to identify illegal
states, and FUNI [Long 2000] utilized this illegal state space information to
identify untestable faults. MUST [Peng 2000] was built over the framework of
FIRES as a hybrid approach (fault-oriented and fault-independent) to iden-
tify untestable faults; however, the memory requirement for MUST can be
quadratic in the number of signals in the circuit. Next, Hsiao presented a
fault-independent technique to identify untestable faults using multiple-node
impossible value combinations [Hsiao 2002]. Finally, the concept of multiple-
node conflicts is extended in [Syal 2004] to identify more untestable faults.
The underlying concept of multiple line conflict is discussed next.
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4.6.1 Multiple-Line Conflict Analysis
The application of logic implications to quickly identifying untestable faults is
evident from the previous example. However, it is restricted to single-line conflicts.
The application of logic implications to the identification of untestable faults can be
taken to the next level, where impossible value combinations on multiple signals in
the circuit are used as conflicting scenarios. These impossible value combinations
are then used to identify untestable faults.
Finding trivial conflicting value assignments from the implication graph is easy,

but it will not help to find more untestable faults because the single-line con-
flict approach has already taken these conflicts into account. For instance, if the
implication set impl[x,0] includes [y,1], then the pair ��x	0�	 �y	0�
 naturally forms a
conflicting value assignment. However, in the original FIRE algorithm, if Set0 and
Set1 have been computed to be the faults that require x= 0 and x= 1, respectively,
then Set1 already contains all the faults that require y= 0 to be testable. This can be
explained as follows: Because the set of faults that require y= 0 are obtained as those
undetectable due to the value assignments in impl[y,1], and because y= 0→ x= 1,
by the contrapositive law x= 0→ y= 1 can be obtained. Thus, impl�y	1�⊆ impl�x	0�.
This leads to the following observation: The set of faults requiring x = 1, set1 (i.e.,
undetectable computed from impl[x,0]) must contain every fault that requires y= 0
as well.
Consequently, methods that can quickly identify non-trivial impossible com-

binations are needed in order to find more untestable faults. Finding arbitrary
value conflicts in the circuit can be computationally expensive, thus any algorithm
must limit the search for conflicting value assignments to computationally feasible
approaches. In [Hsiao 2002], the impossible value assignments are limited to those
associated with a single Boolean gate, making the algorithm of O�n� complexity,
where n is the number of gates in the circuit.
Consider the AND gate and its implication graph again, shown in Figure 4.36.

When considering a single-line-conflict algorithm, there are three such cases for the
AND gate: �a= 0	 a= 1
	 �b= 0	 b= 1
, and �c= 0	 c= 1
. (Recall that identification
of undetectable faults when a = 0 requires impl�a = 1�, as described earlier.) By
traversing the implication graph, the impossible value combination imposed by
the conflicting line assignment �a = 0	 a = 1
 includes the set �a = 0	 a = 1	 c = 0
.
Similarly, one can obtain the sets of impossible value combination for conflicting
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AND gate example.
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line assignments �b= 0	 b= 1
 and �c= 0	 c= 1
 as �b= 0	 b= 1	c= 0
 and �c= 0	
c= 1	 a= 1	 b= 1
, respectively.
Note that there exist other sets of impossible value combinations not covered by

any of these three single-line conflicts. Not all remaining conflicting combinations
are nontrivial. For example, consider the conflicting scenario �a = 0	 c = 1
. This
is a trivial value conflict because �a = 0�→ �c = 0� and �c = 1�→ �a = 1�. There-
fore, �a= 0	 c = 1
 is already covered by the single-line conflicts �a = 0	 a = 1
 and
�c= 0	 c= 1
.

There exists a conflicting assignment that is not covered by any single-line
conflicts: �a = 1	 b = 1	 c = 0
. In order to compute the corresponding impossible
value assignment set, it is necessary to compute the following implications:
impl�a= 0�	 impl�b= 0�, and impl�c= 1�. By traversing the implication edges in the
graph, the impossible value assignment set �a= 0	 b= 0	 c= 0	 c= 1	 a= 1	 b= 1
 is
obtained. This set has not been covered in any of the previous impossible value
assignment sets, and hence the value set �a = 1	 b = 1	 c = 0
 may be used for
obtaining additional untestable faults that require this conflict.
Impossible value combinations for other gate primitives and/or gates with differ-

ent number of inputs can be derived in a similar manner.
The technique would then identify the value combination of �a = 1	 b = 1	 c = 0


as impossible to achieve, and then untestable faults would be identified by creating
the following sets:

� S0—Set of faults not detectable when signal a= 0.

� S1—Set of faults not detectable when signal b= 0.

� S2—Set of faults not detectable when signal c= 1.

The faults in S0, S1, and S2 require a= 1, b= 1, and c= 0, respectively, as neces-
sary conditions for their detection. Then, the intersection of S0, S1, and S2 would
represent the set of untestable faults due to this conflicting value assignment.
Because the aim is to identify as many nontrivial conflicting value assignments

as possible, which leads to untestable faults, the new approach of maximizing local
impossibilities is performed on top of the single-line conflict FIRE algorithm, which
is described below in Algorithm 11.
In this algorithm, the implication graph is first constructed, with indirect implica-

tions computed and added to the graph. Then, a single-line conflict FIRE algorithm
is performed (line #3). Next, for each set of conflicting values not covered by the
single-line conflict for each gate, the set of faults untestable due to such conflicts
is computed. Because the algorithm on maximizing local value impossibilities is
performed once for each gate, the complexity is kept linear in the size of the cir-
cuit. For large circuits, the number of additional untestable faults identified can be
significant.
Maximizing local impossibilities can be extended further so the conflicting value

assignments are no longer local to a Boolean gate. Consider the circuit shown in
Figure 4.37. In [Hsiao 2002], the technique would identify the value combination
of �g= 1	 h= 1	 z= 0
 as impossible to achieve, and then untestable faults would be
identified correspondingly.
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Algorithm 11 MaxLocalConflicts()

1: construct implication graph (learn any additional implications via extended backward
impl, etc.);

2: for each line l in circuit do
3: identify all untestable faults using the single-line-conflict FIRE algorithm;
4: end for
5: /* maximizing impossibilities algorithm */
6: for for each gate g in circuit do
7: SIV = set of impossible value combinations not yet covered for gate g;
8: i = 0;
9: for each value assignment �a= v� in SIV do

10: seti = faults requiring a= v to be detectable;
11: i = i+1;
12: end for
13: untestable_faults = untestable_faults ∪�∩∀i seti�;
14: end for
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Circuit to illustrate multi-node impossible combination.

Now, it is interesting to note from Figure 4.37 that the value combination
��d = 0, e = 0�	 �f = 1	 c = 1�	 z = 0
 also forms a conflicting value assignment. In
addition, because Impl�f	0	0� ⊃ Impl�h	0	0� and Impl�c	0	0� ⊃ impl�h	0	0�, the set
of faults untestable due to f = 0 and c= 0 could potentially be greater than that due
to h= 0. Similarly, the set of faults that can be identified as untestable due to d= 1
and e= 1 could be greater than that untestable due to g= 0. Consequently, the set of
untestable faults identified using this new conflicting combination could be greater
than that identified with the original conflicting value set �g= 1	 h= 1	 z= 0
.
This comes at a small price: The number of sets for which intersection must be

performed for the conflict ��f = 1	 c= 1�	 �d= 0	 e= 0�	 z= 0
 would be greater than
that for �g = 1	 h = 1	 z = 0
. However, because set intersection can be performed
on the fly (with the faults computed for each implication set), the intersection
operation can be aborted as soon as the intersection becomes empty. A larger
conflicting value set might hurt the performance if each set intersection remains
non-empty until the last intersection is performed and the intersection becomes
empty only after the last intersection operation. However, this does not happen
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often, and the computational overhead due to a bigger set of impossible value
combinations remains acceptable.
Before proceeding to the algorithm, the following terms are first defined:

Definition 1

Nonterminating necessary condition set (NTC): NTC for an assignment x = v is
defined as the set of value assignments �ai = wi�wi ∈ �0	1

 that are necessary to
achieve x = v. However, there may exist other assignments that are necessary to
achieve some or all conditions in NTC.

For example, in Figure 4.37, h= 1 and g= 1 are necessary for z= 1. However, there
exist assignments ( f = 1, c= 1, d= 1, and e= 1) that are necessary to achieve h= 1
and g= 1. Thus, h= 1, g= 1 forms the NTC for z= 1.

Definition 2

Terminating necessary condition set (TNC): TNC for an assignment x = v is the
set of value assignments �ai = wi�wi ∈ �0	1

 necessary to achieve x = v such that
there exist no additional assignments that are necessary to achieve any conditions
in this set.

For example, in Figure 4.37, f = 1, c= 1, d= 0, and e= 0 form the TNC for z= 1.
According to Definitions 1 and 2, the set of conflicting conditions obtained in

[Hsiao 2002] would correspond to the NTC set for a gate x = v. These conflicting
conditions would form the TNC only if �NTC� = �TNC� for any x= v.
In the new approach [Syal 2004], the TNC for any assignment x = v is first

identified (rather than the NTC). Then the set �TNC	 x = v
 forms a conflicting
assignment. As the size of the TNC is greater than that of NTC, the new approach
may take more execution time than that taken by the previous approach in [Hsiao
2002], but the following definition and corresponding lemma guarantee that the
new approach always identifies at least as many (and potentially more) untestable
faults as identified in [Hsiao 2002].

Definition 3

Related elements: Gates a and b are related elements if there exists at least one
topological path from a to b.

Lemma 2

If two related elements a and b exist such that the assignment a = v is a part of
TNC for a gate g = u and b = w is a part of NTC for the same gate g = u, then
impl�a	 v�⊇ impl�b	w�.
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Algorithm 12 Multi-Line-Conflicts()

1: construct implication graph;
2: /* identification of impossible combinations */
3: for each gate assignment g = val do
4: identify the TNC for g = val;
5: Impossible Combination (IC) set = TNC, g = val;
6: i = 0, Suntest = ∅;
7: for each assignment a= w in IC do
8: Si = fault untestable with a= w;
9: if i == 0 then

10: Suntest = Suntest ∪ Si;
11: else
12: Suntest = Suntest ∩ Si;
13: end if
14: if Suntest = ∅ then
15: break;
16: else
17: i++;
18: end if
19: end for
20: end for

Proof

Because b=w is not a terminating necessary condition for g= u, there must exist
some necessary conditions to achieve b = w. Now, because a = v is a terminating
condition for g = u and because a and b are related, then a = v must be a part of
the conditions necessary to set b = w. This means that in order to set b = w, gate
a must be set to v, or in other words, �b	w	0�→ �a	 v	0�. By contrapositive law,
�a	 v	0�→ �b	w	0�. Thus, impl�a	 v	0�⊇ impl�b	w	0�.

Thus, according to Lemma 2, the implications of the complement of all elements in
a TNC are a superset of the complemented related elements in a NTC for any given
assignment. Therefore, the set of untestable faults obtained using TNCs is always
a superset of those using NTCs as used in [Hsiao 2002]. The complete algorithm
to identify untestable faults using a multiple-line conflict analysis is shown in
Algorithm 12.

4.7 DESIGNING A SIMULATION-BASED ATPG

In this section, we will discuss how simulation, as opposed to deterministic algo-
rithms, can be used for generating test vectors. This section begins with an overview
of how simulation can be used to guide the test generation process and then
discusses how tests can be generated in specific frameworks, such as genetic
algorithms, state partitioning, spectrum, etc.
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4.7.1 Overview
As we have already seen earlier in this chapter, the random test generator is a
simple type of simulation-based ATPG. The vectors are randomly generated and
simulated on the circuit under test, and any vector that is capable of detecting new
faults is added to the test set. While this concept is relatively simple, its applicability
is limited as random ATPG cannot generate vectors that target hard faults.
Simulation-based test generators were first proposed in 1962 by Seshu and

Freeman [Seshu 1962]. Subsequently, several other simulation-based test genera-
tors have been developed, including [Breuer 1971], [Schnurmann 1975], [Lisanke
1987], [Wunderlich 1990], [Snethen 1977], and [Agrawal 1989]. Each of these test
generators will be described in the following discussion.
Random vectors are simulated and selected using a fault simulator in [Breuer

1971]. Weighted random test generators were introduced in [Schnurmann 1975],
[Lisanke 1987], and [Wunderlich 1990], in which each bit is generated with a biased
coin (as opposed to an unbiased one in the simple random test pattern generator),
and high fault coverages were reported for combinational circuits. Specific faults
are targeted in the test generators proposed in [Snethen 1977] and [Agrawal 1989],
and the ATPGs only considered vectors of Hamming distance equal to one between
consecutive vectors. In other words, any two successive vectors can differ in only
a single bit. Finally, cost functions computed during fault simulation were used to
evaluate the generated vectors in [Agrawal 1989].
While these aforementioned simulation-based ATPGs were able to reduce the

test generation time, the test sets generated were typically much longer than those
generated by deterministic test generators. In addition, in sequential circuits, many
difficult-to-test faults were frequently aborted. Finally, even when simulation-based
test generators can be effective in detecting hard faults, simulation-based algo-
rithms, per their nature, cannot detect untestable faults. In this regard, determin-
istic algorithms will be needed to uncover any faults that are untestable.

4.7.2 Genetic-Algorithm-Based ATPG
A simple genetic algorithm (GA) can be used for the generation of individual
test vectors for combinational as well as sequential circuits. In a typical GA, a
population of individuals (or chromosomes) is defined, where each individual is a
candidate solution for the problem at hand. As the individual represents a test vector
for combinational circuit test generation, each character in the individual is mapped
to a primary input. If a binary coding is used, the individual simply represents
a test vector. Each individual is associated with a fitness, which measures the
quality of this individual for solving the problem. In the test generation context,
this fitness measures how good the candidate individual is for detecting the faults.
The fitness evaluation can simply be computed by logic or fault simulation. Based
on the evaluated fitness, the evolutionary processes of selection, crossover, and
mutation are used to generate a new population from the existing population. The
process is repeated until the fitness of the best individual cannot be improved or is
satisfactory.
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GA framework.

One simple application of GAs for test generation is to select the best test vectors
for each GA run. A simple view of a GA framework is illustrated in Figure 4.38.
The test generator starts with a random population of n individuals, and a (fault)
simulator is used to calculate the fitness of each individual. The best test vector
evolved in any generation is selected and added to the test set. Then, the fault set
is updated by removing the detected faults by the added vector(s). The GA process
repeats itself until no more faults can be detected.
Because a new random population is used initially, the GA process may not

guarantee that a successful vector can be found. Likewise, in sequential circuits, a
number of vectors may be necessary to drive the circuit to a state before the fault
can be excited. Therefore, a progress limit should be used to limit the amount of
execution allowed before the the entire process stops. When the population does
not start with a right combination of individuals, the GA process may not result
in an effective test vector. When this happens, the GA is reinitialized with a new
random population, and a new GA attempt proceeds. This overall procedure is
shown in Algorithm 13.
Note that in this procedure, the GA operators of selection, crossover, and muta-

tion are applied in each iteration. Rather than exposing the reader to the numerous
schemes for each GA operator, the following discussion will focus on the classic
methods. First, for the selection operator, two popular schemes are often used:
binary tournament selection and roulette wheel selection. In binary tournament
selection, to select one individual from the population, two individuals are first
randomly chosen from the population, and the one with the greater fitness value
is selected as a parent individual. This is repeated to select a second parent. Note
that, because a comparison is made in the process, selection is biased toward the
more fit individuals. In the roulette wheel selection scheme, the n individuals in
the population are mapped onto n slots on the wheel, where the size of each slot
corresponds to the fitness of the individual, as illustrated in Figure 4.39. Thus, when
the roulette wheel is spun, the position where the marker lands will determine the
individual selected. Note that both roulette wheel and binary tournament selections
may be conducted with or without replacement. When no replacement is used,
the individuals selected are not put back into the population for the subsequent
selection. In other words, an individual will not be selected more than once as a
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Algorithm 13 Simple_GA_ATPG

1: test set T = ∅;
2: while there is improvement do
3: initialize a random GA currentPopulation;
4: compute fitness of currentPopulation;
5: for i= 1 to maxGenerations do
6: add the best individual to test set T;
7: nextPopulation = ∅;
8: for j= 1 to populationSize/2 do
9: select parent1 and parent2 from currentPopulation;

10: crossover�parent1� parent2� child1� child2�;
11: mutate�child1�;
12: mutate�child2�;
13: place child1 and child2 to nextPopulation;
14: end for
15: compute fitness of nextPopulation;
16: currentPopulation = nextPopulation;
17: end for
18: end while
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Roulette wheel selection.

candidate parent individual. Finally, when comparing the effectiveness of roulette
wheel with binary tournament selections, the notion of selection pressure is nec-
essary. Selection pressure is the driving force that determines the convergence rate
of the GA population, in which the population converges to n identical (or very
similar) individuals. Note that fast convergence may not necessarily lead to a better
solution. Roulette wheel selection with replacement results in a higher selection
pressure than binary tournament selection when there are some highly fit individ-
uals in the population. On the other hand, when individuals’ fitnesses have a small
variance, binary selection will apply a higher selection pressure.
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The next GA operator to be discussed is the crossover operator. Again, the dis-
cussion will focus on classic crossover techniques. In essence, once two parent
individuals are selected, crossover is applied to the two parent individuals to pro-
duce two children individuals, where each child inherits parts of the chromosomes
from each parent. The idea behind crossover is that the building blocks from two
different solutions are combined in a random fashion to produce two new solu-
tions. Intuitively, a more fit individual contains more valuable building blocks when
compared with a less fit individual. Because the selection biases toward more fit
individuals, the building blocks from the more fit parents are passed down to the
next generation. When the valuable building blocks from different fit parents are
combined, more fit individuals may result. In the following, one-point, two-point,
and uniform crossover are explained.
Suppose the length of an individual is �. In one-point crossover, the two parents

are crossed at a randomly chosen point, r, between 1 and �−1. Consequently, the
first child inherits the first r bits from parent #1 and the final �− r bits from parent
#2, while the second child inherits the first r bits from parent #2 and the final �− r
bits from parent #1. Table 4.7 illustrates an example of the one-point crossover
scheme. The vertical line in the table indicates the crossover point.
Similar to the one-point crossover, two-point crossover works in a similar fashion

except that two points are chosen instead of one. The portion of the parent individ-
uals between the two points are swapped to produce the new individuals. Table 4.8
illustrates an example for the two-point crossover scheme. Again, the vertical lines
indicate the crossover point.
Finally, in uniform crossover, a crossover mask is first generated randomly, and

the bits between the two parent individuals are swapped whenever the correspond-
ing bit position in the crossover mask is one. Table 4.9 illustrates an example for
the uniform crossover scheme.
The reader is encouraged to try applying crossover on individuals over a few

generations to see how new individuals may be produced, similar to the examples
illustrated here.

TABLE 4.7 � One-Point Crossover

Parent #1 110011001100 110011001100
Parent #2 101010101010 101010101010

Child #1 110011001100 101010101010
Child #2 101010101010 110011001100

TABLE 4.8 � Two-Point Crossover

Parent #1 11001100 11001100 11001100
Parent #2 10101010 10101010 10101010

Child #1 11001100 10101010 11001100
Child #2 10101010 11001100 10101010
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TABLE 4.9 � Uniform Crossover

Mask 010011100100010011110101
Parent #1 110011001100110011001100
Parent #2 101010101010101010101010

Child #1 100010101000100010101000
Child #2 111011001110111011001110

TABLE 4.10 � Mutating Bit Position #3

Before mutation 110011001100110011001100
After mutation 111011001100110011001100

The third GA operator to be discussed is the mutation operator. It allows the
child individual to vary slightly from the two parents it had inherited. The mutation
operator simply selects a random bit position in an individual and flips its logic
value with a mutation probability. An example of mutating bit #3 is shown in
Table 4.10. Let � be the mutation probability. If � is too small, children individuals
that are produced after crossover may rarely see any mutation. In other words, it
is less likely that new genes (building blocks) will be produced. On the other hand,
if � is too large, too much random perturbation may occur, and the resemblance
may soon be lost after a few generations.

4.7.2.1 Issues Concerning the GA Population

The population size should be a function of the individual length. In sequential
circuits, the individual length is equal to the number of primary inputs in the circuit
multiplied by the test sequence length. The population size may be increased from
time to time to increase the diversity of the individuals, thereby helping to expand
the search space.
One pertinent issue in the GA population is the encoding of the individuals:

whether a binary or nonbinary coding should be used. In a binary coding, the
individual is simply the test vector itself (or a sequence of vectors in the case of
sequential circuits). Thus, the GA operates directly on that string. For instance, bit-
wise crossover and bitwise mutation can be used. (Bitwise mutation is simply the
flipping of a single bit in the vector.) On the other hand, in a nonbinary coding, sev-
eral bits are combined and represented by a separate character in the alphabet, and
the GA operates on the individual as a string of characters. Special operators are
needed for the nonbinary alphabet. For example, crossover can now occur only at
multi-bit boundaries, and mutation involves replacing a given character in an indi-
vidual with a randomly generated character. Finally, in a nonbinary coding, a larger
population size and mutation rate may be required to ensure adequate diversity.
Obtaining a compact test set is another concern; thus, an accurate fitness measure

is needed. As fault simulation is used to compute the fitness, computation of the
fitnesses in each GA generation can be costly. To reduce this cost, approximation
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can be used, in which a fault sample from the complete fault list may be used. In
doing so, fault simulation only has to consider the faults in the sample rather than
the entire fault list.
Another method to reduce the execution time is to use overlapping populations

in the GA. In overlapping populations, some individuals from the parent genera-
tion are copied over to the offspring generation. Therefore, only a fraction of the
population is replaced in each generation.
The success of using GAs to obtain the desired solution depends also on how the

GA parameters are chosen. First and foremost, the population size of the GA should
be such that adequate diversity is represented. In the context of test generation,
certain values on specific primary inputs may be necessary to excite a fault. If no
individual in the initial population has this specific combination, then none of the
strings in the population would have been able to excite the fault. As the number of
bit combinations increases exponentially with the vector length, the population size
should be large enough to appropriately reflect the embedded diversity. However,
the population should not be too large to the extent that the cost of evaluating
the fitnesses of individual becomes infeasible. These two factors must be carefully
considered when determining the GA population size.

4.7.2.2 Issues Concerning GA Parameters

The first GA parameter to be considered is the number of generations necessary
to achieve a desirable solution. Similar to population size, the number of genera-
tions necessary to obtain an individual with a specific bit pattern requires the GA
designer’s attention. For instance, if the target fault demands a pattern of “1011”
among four bits in the vector, and if this pattern is absent in the initial population,
it may take several generations before an individual arrives at this pattern. The
number of generations is also related to the population size. Larger populations
will likely require more generations to allow for more diverse pairs of individuals
to be as parent individuals. Thus, it may suffice to have a small population and a
small number of generations to target the easy to detect faults and then increase
both the population size and the number of generations when targeting the more
difficult faults.
The next two parameters are the crossover and mutation probabilities. A

crossover probability of 1.0 means that two parent individuals are always crossed
so that two children individuals are produced from the parents. Mutation is used
to introduce added diversity. A population after several generations will be more
likely to have individuals that are more fit than those in the initial population. As
the more fit individuals may have similarities, mutation can randomly flip certain
bits among the individuals to decrease their similarity. However, mutation can
also destroy those good patterns already achieved in some individuals. Thus, an
appropriate mutation probability is needed to achieve an appropriate balance.

4.7.2.3 Issues Concerning the Fitness Function

How the fitness values are computed for the individuals in the population is a very
important concern, as the search critically relies on the fitness values. An ill-defined
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fitness metric can mislead the GA to arrive at a suboptimal solution, or even no
solution at all. For instance, a population whose individuals’ fitnesses are similar
will not allow the selection process to identify more highly fit individuals to act as
parents. Furthermore, without a metric, the individuals may become indistinguish-
able even when they really are distinguishable. For example, if the fitness function
is simply a binary function, where an individual’s fitness is equal to one if the target
fault is excited and zero otherwise, this will result in many individuals with fitness
equal to zero if they do not excite the target fault. It is clear, however, that some
individuals may be closer to exciting the target fault than others. However, the
aforementioned binary fitness function would prevent the GA from distinguishing
those more fit individuals from the less fit ones.
At the start of the ATPG process, there may exist many easy-to-detect faults;

therefore, it may be advantageous to first detect them before targeting the harder
faults. In this regard, dividing the ATPG process into different phases would be
desirable. As an example, CONTEST [Agrawal 1989] targets test generation in three
phases, each having its own distinct fitness measure.
A two-stage ATPG process is described here. In the first stage, the aim is to detect

as many faults as possible. The fitness function could simply be the number of
faults detected. This fitness metric allows the GA to bias toward those vectors that
could potentially detect more faults. One can refine this fitness function to become:

Fitness= �×detected+�× excited

In this case, individuals that detect the same number of faults may be distinguished.
Initially, when there are still many easy faults undetected, many individuals will

have high fitness values. As vectors are added to the test set and detected faults
removed from the fault list, the average fitness of individuals will be expected to
come down. When this occurs, it will become increasingly difficult for the GA to
distinguish good individuals from the less fit individuals, as discussed earlier. Con-
sequently, the ATPG enters the second stage, where the goal is targeting individual
faults instead.
In the second stage, each GA process targets a specific fault. Thus, the fitness

function should also be adjusted similarly for this purpose. The fitness ought to
measure how close the individual is to exciting the fault, as well as how close it is
to propagating the fault-effect to a primary output. For measuring how close the
individual is to exciting the fault, one can check the number of necessary value
assignments. For instance, suppose the target fault is h/0 at the output of AND gate
h, as illustrated in Figure 4.40. Then, an individual that sets both inputs of h to
logic 0 (Case 2 in the figure) is further away from exciting the fault than another
individual that sets one input to logic 1 (Case 1 in the figure). For measuring how
close the individual propagates a fault effect to a primary output, the fitness can
measure the number of D or D present in the circuit generated by the individual,
together with the observability value associated with the lines to which the D�D�
has propagated.
For sequential circuits, it may be appropriate to have a stage zero where the

goal is to initialize all the flip-flops. The fitness of an individual is then simply the
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Fitness measure on how close a fault is excited.

number of additional flip-flops set to logic zero or logic one, as done in [Rudnick
1994a] [Rudnick 1994b]. Note that only logic simulation is needed in this stage.
For subsequent stages, the fitness function may take into account the fault-effects
that propagate to flip-flops as well, as it may take several time frames in order to
propagate the fault-effect to a primary output.
As calculating the fitnesses of individuals dominates the computational cost of the

GA, care must be taken when designing the fitness functions. Data structures that
allow for fast access to the fault-free and faulty values in the circuit, for instance,
would be desired. When fitness value calculation becomes prohibitive, one may
reduce the cost by estimating the fitness instead of computing the exact fitness. In
stage one, for example, fault samples may be used instead of simulating all faults.
Also, counting the number of events in logic simulation may be used to estimate
the number of faults excited; this may eliminate the high cost of fault simulation.
When using such fitness estimates, one must be aware of the potential loss in the
quality of the derived solution and that the final fault coverage may also be reduced.

4.7.2.4 CASE Studies

In the GA-based ATPG by Srinivas and Patnaik [Srinivas 1993], combinational cir-
cuits were targeted. Each individual represented a test vector. The fitness function
accounted for excitation of the fault and propagation of the fault effect. Depending
on the fitness of an individual, different crossover and mutation rates were used.
While test sets were large, high coverages were obtained.



216 VLSI Test Principles and Architectures

Genetic algorithms based on [Holland 1975] were used in CRIS [Saab 1992] in
which two individuals were evolved in each generation, which replaced the least fit
individuals with some probability. The fitness measure was based on the fault-free
activities in the internal nodes in the circuit. This allowed the fitness evaluation
to be simple, as only logic simulation is required, thus significantly reducing the
computation costs. The circuit is divided into various partitions based on each
primary output, and the fitness function favors those individuals that produce
similar levels of activity in each partition. It has been presumed that vectors that
induce high levels of activity are expected to result in higher fault coverage. As the
fitness metric is an estimate of fault coverage, the resulting test sets are longer and
may have lower fault coverage compared to deterministic test generators.
GATTO [Prinetto 1994] targeted sequential circuits and was based on GAs in

the fault propagation phase during the test generation process. First, a reset state
was assumed and random vectors were generated from the reset state until at least
one fault had been excited. Then, for a limited group of excited faults (up to at
most 64 faults), the GAs were used to propagate them toward the primary outputs
or flip-flops. If any fault-effect reached a primary output, the corresponding test
sequence was added to the test set. If the GAs were unsuccessful in propagating the
fault-effects to a primary output, the GA stopped and started over from the reset
state to obtain a different set of excited faults. GATTO was able to achieve higher
fault coverages compared to CRIS for some circuits.
A GA-based combinational test generator was developed by Pomeranz and Reddy

[Pomeranz 1997] in which problem-specific information was used. In this case,
circuit information played a significant role. For instance, primary inputs lying in
the same cone of logic were grouped together, and crossover was limited to pri-
mary input group boundaries. This enforced that fault excitation and propagation
information from effective individuals are preserved during and after crossover
operation. The grouping of the primary inputs was done carefully so that no group
was either too large or too small. Note that, because a primary input can belong
to multiple groups, care must be taken when copying bit values from a parent
individual to a child individual. Uniform crossover was used, and only individuals
that were shown to improve the fault coverage were added to the GA population.
Further, the population size increased dynamically and the GA process terminated
when all faults were detected or a given number of iterations had been reached.
A three-phased sequential test generator based on GAs was developed in GATEST

[Rudnick 1994a] [Rudnick 1994b] that is based on the PROOFS sequential circuit
fault simulator [Niermann 1992]. Table 4.11 shows the population sizes and muta-
tion probabilities used in GATEST as a function of the vector length. Tournament
selection without replacement and uniform crossover are used. In the initial phase
of GATEST, the aim is to initialize all the flip-flops. Thus, the fitness metric mea-
sures the number of new flip-flops initialized to a known value from a previously
unknown state. In this phase, only logic simulation is needed. When all flip-flops
have been initialized, GATEST exits phase one and enters the second phase. In
phase two, the goal is to detect as many faults as possible in any GA attempt. So the
fitness is simply the number of faults detected by the candidate individual and the
number of faults excited and propagated to flip-flops, with more emphasis placed
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TABLE 4.11 � GA Parameter Values

Vector Length (L) Population Size Mutation Probability

<4 8 1/8
4–16 16 1/16
17–49 16 1/L
50–63 24 1/L
64–99 24 1/64
>99 32 1/64

on fault detection. Phase two continues until no more faults can be detected, at
which point GATEST enters phase three. Similar to phase two, phase three aims to
detect as many faults as possible, except that the fitness function now accounts for
the fault-free and faulty circuit activities in addition to fault detection and prop-
agation. Individuals that induce more activity would have higher fitness values.
GATEST allows for phase three to exit and return to phase two when vectors are
found to detect additional faults. Finally, in phase four, sequences of vectors are
used as individuals, and the fitness function is similar to phase two, except that
the test sequence length is also factored in. The fitness of a candidate test for each
phase is calculated as follows:

� Phase 1—Fitness is a function of total new flip-flops initialized.

� Phase 2—Fitness is a function of the number of faults detected and the number
of faults propagated to flip-flops.

� Phase 3—Fitness is a function of the number of faults detected, the number of
faults propagated to flip-flops, and the number of fault-free and faulty circuit
events.

� Phase 4—Fitness is a function of the number of faults detected and the number
of faults propagated to flip-flops for a test sequence.

Because one fault is targeted at a time and the majority of time spent by the
GA is in the fitness evaluation, parallelism among the individuals can be exploited.
Parallel-fault simulation [Abramovici 1994] [Bushnell 2000] [Jha 2003] is used to
speed up the process.
High fault coverages and compact test sets have been obtained by GATEST for

combinational circuits. For some circuits, however, deterministic ATPGs could
achieve higher coverage in much less time. For sequential circuits, the number of
faults detected is either greater than or equal to that of deterministic test generators
for most circuits, and the test set sizes are much shorter. In most cases, GATEST
takes only a fraction of the execution time compared to deterministic test genera-
tors. Thus, GATEST can be used as a preprocessor in test generation to screen out
many faults before applying a more expensive deterministic test generator.
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4.8 ADVANCED SIMULATION-BASED ATPG

4.8.1 Seeding the GA with Helpful Sequences
Genetic algorithms have been shown to be effective for test generation in the above
discussion. However, for some difficult faults, the previous GA-based methods may
still underperform the deterministic ATPGs. For such faults, it may be helpful to
embed certain individuals in the initial population to guide the GA. This is called
seeding.
For example, suppose a fault has been excited and propagated to one or more

flip-flops in a sequential circuit, and now the GA attempts to drive the fault-effect
from those flip-flops to a primary output. If there are previously known sequences
that were successful in propagating fault-effects from a similar set of flip-flops, then
seeding these sequences into the initial population may tremendously help the GA.
The DIGATE [Hsiao 1996a] [Hsiao 1998] and the STRATEGATE test generators

[Hsiao 1997] [Hsiao 2000] aggressively apply seeding of useful sequences for the GA.
When there are no such sequences available, both DIGATE and STRATEGATE try
to genetically engineer such sequences. For example, initially, there are no known
sequences that could propagate a fault-effect from any flip-flop to a primary output.
So the test generator generates some of these sequences in a preprocessing step.
Essentially, propagating a fault-effect from a flip-flop to a primary output is the
same as trying to distinguish between two sets of states in the circuit. Two states,
S1 and S2, are said to be distinguishable if there exists a finite sequence T such
that the output sequence observed by applying T starting at state S1 differs from
the output sequence observed by applying T starting at state S2. If such a sequence
T exists, T is a candidate distinguishing sequence for states S1 and S2. Figure 4.41
illustrates an example of a distinguishing sequence for a state pair. The sequence of
four vectors, ‘1001, 0101, 1011, 0111’, distinguishes the state pair (11010, 11000).
In the context of test generation, consider a sequential circuit with five flip-

flops, ff1 through ff5. Suppose a fault has been excited and propagated to ff4, and
suppose the fault-free state at this time is ff1� � � ff5 = 11010. Then, the faulty state
must be 11000, in which the faulty value at ff4 differs from the fault-free value.
Thus if a sequence exists that can distinguish the state pair (11010, 11000), by
definition of a distinguishing sequence, it would be able to produce different output
sequences starting from these two states. In other words, the fault-effect at ff4
would likely be propagated to at least one primary output by the application of
this sequence. Note that this sequence may not detect the fault because the faulty
circuit is slightly different from the fault-free circuit. Therefore, the test generator
is trying to distinguish the state 11010 in the fault-free circuit from the state 11000
in the faulty circuit. Nevertheless, for most cases, the distinguishing sequence is
effective in propagating the fault-effect to a primary output.
Generating distinguishing sequences for sequential circuits can be a very difficult

task. As the main target is test generation, the underlying ATPG ought not spend
too much time on generating distinguishing sequences, but the focus should be on
generating those sequences that are sufficient to detect the set of hard faults. In
other words, to facilitate a fast generation of distinguishing sequences, one cannot
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A distinguishing sequence that distinguishes states 11010 and 11000.

afford to generate a distinguishing sequence for each possible state pair. Rather, the
search may simply be on finding those distinguishing sequences that are applicable
for distinguishingmany pairs of states. Using the above five-flip-flop circuit example
again, if a distinguishing sequence exists that can distinguish all pairs of states that
differ in ff4, this sequence would be a powerful distinguishing sequence for many
pairs of states. Although this type of distinguishing sequence can be computed prior
to the start of test generation, such sequences may not exist for every flip-flop in the
circuit. Thus, less powerful distinguishing sequences are also captured during test
generation dynamically. However, less powerful sequences may only be applicable
when the circuit is in a specific state.
In both DIGATE and STRATEGATE, distinguishing sequences are generated both

statically and dynamically during test generation with the help of the GA, and these
sequences are used as seeds for the GA whenever they are applicable to propagate
fault-effects from flip-flops to primary outputs. If a fault is excited and propagated
to multiple flip-flops, all relevant distinguishing sequences corresponding to these
flip-flops are seeded.Whenever newly distinguishing sequences are learned, they are
recorded and saved for future use. To avoid having a huge database of distinguishing
sequences, the list of distinguishing sequences is pruned dynamically such that less
useful sequences are removed from the database.
Results of DIGATE show very high fault coverages compared with previous GA-

based ATPGs. For those faults that have been excited and propagated to at least one
flip-flop, many of them would be detected via the help of the genetically engineered
distinguishing sequences. Note that generation of distinguishing sequences on the
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fault-free machine is possible using binary decision diagrams instead of GAs, as has
been done in [Park 1995] for the purpose of test generation. However, no pruning
of sequences was performed, and no procedure for modifying the sequences was
available to handle faulty circuits.
Despite the high coverages achieved by DIGATE, for some faults that were not

activated to any flip-flop, seeding of distinguishing sequences would not be useful.
These faults are those difficult-to-activate faults. They require specific states and
justification sequences to arrive at those states in order for the faults to be excited
and propagated to one or more flip-flops. For a number of circuits, previous GA-
based methods, including DIGATE, achieved low fault coverages due to the lack of
specific state justification successes with regard to exciting the difficult-to-activate
faults. The difference in fault coverages for some of these circuits was up to 30%.
Even when a GA was specifically targeted at state justification such as in [Rudnick
1995], the simple fitness function used was insufficient to successfully justify these
states.
Storing the complete state information for large sequential circuits is impractical,

as there could potentially be 2n states for circuits with n flip-flops. Likewise, keeping
a database of sequences capable of reaching each reachable state is infeasible. To
tackle this problem, the STRATEGATE test generator [Hsiao 1997] [Hsiao 2000]
was built on top of DIGATE for this very purpose. STRATEGATE uses the linear
list of states obtained by the test vectors generated during ATPG to guide state
justification. Thus, the storage requirement is only on the order of the number of
test vectors rather than exponential based on the number of flip-flops.
To facilitate the state justification, the set of visited states is stored in a table,

together with the corresponding list of vectors that took the circuit to the state, as
shown in Figure 4.42. During state justification, the aim is to engineer a sequence
that will justify the target state from the current state. At any given time during
ATPG, the current state reached by the current set of vectors in the test set is the
starting state. Suppose the current state has been reached at the end of vectors
i, k, and m. When justifying states that have been visited before, the target state
is the state reached at the end of vectors j and l in Figure 4.42. Either sequence
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� FIGURE 4.42

Data structure for dynamic state traversal.
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�i+1	 � � � 	 j� or sequence �k+1	 � � � 	 l� would suffice to drive the circuit to the target
ending state.
However, if the target state has not been visited before, STRATEGATE tries to

genetically engineer a sequence that can reach it. Note that a sequence that correctly
justifies one portion of the desired state may simultaneously set a different value on
the other portions, resulting in conflicts. Nevertheless, the justification sequences
for each partial state may be viewed as a set of partial solutions for finding the
justification sequence for the complete target state. In other words, the important
information about justifying specific portions of a state is intrinsically embedded
in each partial solution, and this information may be extremely helpful to the GA
in deriving the complete solution.
Based on the above discussion, during the state justification phase for a new

state, STRATEGATE first gathers the set of ending states that closely match (i.e.,
are similar to) the target state from the visited state table. Then, the sequences
corresponding to these states are seeded in the GA in an attempt to engineer a
valid justification sequence for the target state. Consider the example illustrated in
Figure 4.43 in which the state 1X0X10 has to be justified. Sequence T1 successfully
justifies all but the third flip-flop value; on the other hand, sequence T2 justifies all
but the final flip-flop value. As explained previously, these two sequences (T1 and T2)
may provide important information for reaching the complete solution, T3, which
justifies the complete state. T1 and T2 are thus used as seeds for the GA in an
attempt to genetically engineer the sequence T3 in the faulty circuit. Because the GA
performs simulation in the presence of the fault to derive a sequence, any sequence
derived will still be valid. Note that the GA may still abort on the state justification
step, in which it fails to justify the target state. When this happens, the GA enters
the single-time-frame mode, which is discussed next.
Essentially, the single-time-frame phase divides the state justification into two

steps. First, it attempts to derive a single-time-frame vector (consisting of the pri-
mary input and flip-flop values) that can excite the fault and propagate its fault-
effect to at least one flip-flop. Then, it tries to justify the state in the flip-flop portion
of the single-time-frame vector from the current state. Because an unjustifiable
state is undesirable, the fitness function also uses the dynamic controllability values
of the flip-flops to guide the search toward more easily justifiable states. Note that
the state portion of the vector is relaxed (some values are relaxed to “don’t cares”)
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Genetic justification of desired state.
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to ease the burden of state justification. The relaxed state is ensured by the engine
such that the target fault is still excited and propagated.
Even though STRATEGATE may not justify every required state, the embedded

dynamic state traversal for state justification allows it to close the 30% gap in fault
coverage difference among those circuits where previous GA-based approaches
failed. For other circuits, STRATEGATE has been able to achieve extremely high
fault coverages compared to other simulation-based and deterministic test genera-
tors. The STRATEGATE test sets are often more compact than those obtained by
deterministic test generators, even when higher fault coverages are achieved. The
test sets are more compact than those obtained by CRIS or DIGATE for most cir-
cuits. Finally, simulation-based test generation can be applied to design validation
rather than manufacturing test, such as the work reported in [Hsiao 2001], [Sheng
2002], and [Wu 2004].

4.8.2 Logic-Simulation-Based ATPG
The GA-based ATPGs discussed thus far use repeated fault simulation runs to gather
information related to targeted faults to guide the search for test sequences. As
fault simulation can be significantly more computationally intensive compared to
logic simulation, approaches that use logic simulation rather than fault simulation
have been proposed.
Logic-simulation-based test generators usually target some inherent “property”

in the fault-free circuit and try to derive test vectors that exercise these proper-
ties. It has been brought up earlier in the chapter that the CRIS test generator
attempts to maximize the circuit activity (events in logic simulation), as it has
been observed that circuit activities are correlated to fault excitation. In another
approach, LOCSTEP [Pomeranz 1995] made the observation that test sequences
for sequential circuits achieved higher coverage when more states are visited. This
is because difficult-to-test faults often require difficult-to-reach states in order to
be excited, propagated, etc. Thus, LOCSTEP tries to maximize the number of new
states visited. Because no fault simulation is invoked to remove the detected faults,
and also because the number of reachable states can be huge in large sequential
circuits, the number of vectors can potentially grow to be very large. In addition,
the fault coverage obtained can be inferior to that achieved by fault-simulation-
based test generators. Finally, in other ATPGs that target some properties, such
as in [Guo 1999] and [Giani 2001], compaction is used to identify useful vectors
that may be repeated to detect additional faults. However, repeated applications of
fault simulation are necessary in test set compaction. More discussion on the use
of compaction for test generation is provided later in the chapter.
As logic-simulation-based ATPGs do not call fault simulation on a regular basis,

we may end up with a large number of vectors, where many vectors may not
contribute to detection of new faults. The reason why the indiscriminate addition
of vectors may not contribute to the detection of new faults can be explained by
the following: Because some flip-flops belong to the data path and others to the
controller of the circuit, maximizing the number of new states on the data path
generally will not play as significant a role as maximizing those on the controller.
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State partition examples.

Different states on the datapath generally map to different operand values for
the functional units in the design, while different states in the controller dictate
different modes of operation for the circuit. This implies that the underlying ATPG
should not treat the entire state as one entity. In other words, treating the entire
state as one entity may mislead the test generator, particularly by the “noise” from
those unimportant states. Thus, partitioning of state will help to weed out the noise.
State partitioning can remove the noise and provide better guidance in the search
space, as shown in Figure 4.44.
In Figure 4.44, consider a circuit with eight flip-flops. Let the global state, S,

be partitioned into two partial states, S1 and S2, where the value of each partial
state can be expressed in a hexadecimal number; for example, a partial state “1010”
appearing on partition S1 is represented by the hexadecimal value ‘A’. The same
notation is used for S2. For the global state S, a pair �S1	 S2� is used to represent its
value. For example, the global state “0101 1010” is represented as (5, A).
Assume that the current test set has traversed the following global states in the

circuit: (0, 0), (1, 1), (1, 2), (2, 3). Correspondingly, the distinct partial states visited
on S1 and S2 are �0	1	2
 and �0	1	2	3
, respectively. Based on this partial state
information, the following two scenarios can occur.
First, suppose there are two new candidate sequences that drive the circuit from

the current state to two new, but different, global states: (2, 1) and (3, 1). While both
states are new, it may be possible that one is better than the other. If no distinction
is made about these two global states, the test generator would simply pick one
randomly. Now, considering state partition as discussed before, the two states can
be differentiated by noting that (3, 1) may be a more useful state because 3 brings a
new state in partition S1, while both 2 and 1 have been reached in the two separate
partitions already.
For the second scenario, suppose the two different global states reached by the

two candidate sequences are (3,0) and (2,4), and, similar to the first scenario, both
states are new global states; in addition, 3 is a new partial state on S1 and 4 is a
new partial state on S2. In other words, both states bring something new. However,
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if different weights are imposed on different state partitions, it may be possible to
differentiate them. A partition has a greater weight if it is deemed to have greater
influence on the circuit. Suppose the weight assigned to S1 is greater than S2, then
(3, 1) will be favored.
Based on the above discussion, a new test generator was proposed in [Sheng

2002b] that uses logic simulation as the core engine in the test generation process,
in addition to state partitioning. Ideally, a clear distinction between control path
flip-flops and the datapath flip-flops is desired. However, this may be difficult if the
higher levels of the circuit description are unavailable. Without complete knowledge
of controller and datapath, the partitioning is done in a different manner. One
possibility is to partition all the circuit’s flip-flops based on the controllability values
of the flip-flops. Flip-flops with similar ranges of controllability values are grouped
together. The reason behind this grouping is based on the observation that in a
given circuit, some state variables will be less controllable than others. Thus, less
activity will occur in those less-controllable flip-flops. In order to traverse more
useful states, it would be desirable to stimulate more activity on those less active
flip-flops. By grouping them together, any new partial state value reached in that
group will be regarded as valuable. Other partitioning methods exist, such as using
the circuit’s structure to group those flip-flops that belong in the same output
cone, etc.
In addition to state partitioning, the search must avoid repeated visits of certain

types of states, such as reset states. A technique called reset signal masking was
proposed in [Sheng 2002b] for this very task. It is based on the following obser-
vation. Digital circuit designers often put reset or partial reset input signals in
circuits for design for testability (DFT) purposes. When the circuit is extensively
reset or partially reset, the chance of visiting new states is significantly reduced.
Therefore, identifying the signals that can reset some of the flip-flops is necessary.
Then, during test generation, those primary input values that can reset some (or
all) flip-flops are avoided. This is the idea behind reset signal masking. Consider a
state space in which the circuit is currently traversing, illustrated in Figure 4.45. In
this figure, circles denote states, and edges denote transitions between the states.
Generally speaking, the circuit visits a set of easy states initially (which may contain
some reset or synchronizing states) such as those states in the dotted region of the
figure. Then, this set of reached states grows gradually as more states are visited.
As the goal is to expand the state space beyond the current frontier, the search
must avoid repeating the visit of any previously visited states, including reset states.
Using Figure 4.45 again, states A, B, and C are some of the states currently at the
frontier of the reached state space. Consider the frontier state B. In order to avoid
going back to a previously visited state, say A, the search must place constraints on
the primary inputs so that returning to state A will not occur.

The overall test generation procedures that incorporate reset signal masking and
state partitioning are given in Algorithm 14.
In this algorithm, static partitioning is used to obtain initial state partition.

The stop condition is either 100,000 vectors have been generated or the execution
time has reached a preset value. This is an efficient yet simple sequential circuit
test generator based on logic simulation and circuit state partitioning. Very high
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State space exploration.

Algorithm 14 LogicSimATPG

1: Identify reset signal masking for each primary input;
2: Partition the flip-flops (e.g., based on their controllability values.);
3: while stop condition not satisfied do
4: Generate test vectors that expand the search space the most using reset signal masking

information and partition information;
5: Re-partition the flip-flops if desired;
6: end while

fault coverage has been obtained for large sequential circuits with significantly less
computational effort. For some circuits, the highest fault coverage was obtained
compared with existing deterministic and simulation-based approaches.

4.8.3 Spectrum-Based ATPG
Similar to logic-simulation-based ATPG, spectrum-based ATPG tries to seek embed-
ded properties in the fault-free circuit that can help with the test generation process.
For spectrum-based ATPG, the underlying sequential circuit is viewed as a black-
box system that is identifiable and predictable from its input/output signals, rather
than the traditional view as a netlist of primitives. In studying a signal, the foremost
concern is the predictability of the signal. If the signal is predictable, then a portion
of it can be used to represent and reconstruct its entirety. Testing of sequential
systems, then, becomes a problem of constructing a set of waveforms which when
applied at the primary inputs of the circuit can achieve high fault coverages by
exciting and propagating many faults in the circuit.
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In order to capture the spectral characteristics of a signal, a clean representation
for that signal is desired (wider spectra lead to more unpredictable or random
signals). Thus, any embedded noise should be filtered from the signal. In the context
of test generation, static test set compaction can be viewed as a filter as it reduces the
size of the test set by removing any unnecessary vectors while retaining the useful
ones that achieve the same fault coverage as the original uncompacted test set. In
other words, static test set compaction filters unwanted noise from the derived test
vectors, leaving a cleaner signal (narrower spectrum) for analysis. Vectors that are
generated from the narrow spectrummay have better fault detection characteristics.
Frequency decomposition is the most commonly used technique in signal pro-

cessing. A signal can be projected to a set of independent waveforms that have
different frequencies. In the work by Giani et al. [Giani 2001], Hadamard transform
is used to perform frequency decomposition. The reader is referred to the cited
work for details of Hadamard transform, as it is beyond the scope of this chapter.
The overall framework of the spectrum-based test generation procedure is rela-

tively straightforward. Initially (iteration 0), the test set simply consists of random
vectors. A call to static compaction will filter any unnecessary vectors such that
no fault coverage is lost. Then, using the Hadamard transform on the obtained
compacted test set, each primary input is analyzed and the dominant frequency
components for each primary input are identified. Next, test vectors are generated
based on this identified spectrum. Any spectrum can be represented as a linear
combination of the basis vectors. Then, test vectors can be generated by spanning
the likely vector space using only the basis vectors. This process is repeated until
either a desired fault coverage is obtained or a maximum number of iterations is
reached. This approach has consistently achieved very high fault coverages and
small vector sets in short execution times for most sequential benchmark circuits.

4.9 HYBRID DETERMINISTIC AND SIMULATION-BASED ATPG

As both deterministic and simulation-based test generators have their ownmerits, in
terms of coverage, execution time, test set size, etc., it may be beneficial to combine
the two different types of ATPGs together. In general, deterministic ATPGs are
better suited for control-dominant circuits, while simulation-based ATPGs perform
better on data-dominant designs. In addition, circuits with many untestable faults
should not be handled by simulation-based test generators, unless the untestable
faults are first identified and removed from the fault list.
A simple combination of the two approaches would be to start with a fast run

of a simulation-based test generator, followed by a deterministic test generator
to improve the fault coverage and to identify untestable faults. For instance, a
quick run of a random TPG would remove many of the easy-to-detect faults, leav-
ing the deterministic ATPG only those more difficult and untestable faults. The
CRIS-hybrid test generator [Saab 1994] is also based on this notion. It switches
from simulation-based to deterministic test generation when a fixed number of
test vectors have been generated by the simulation-based ATPG without improving
the fault coverage. During the deterministic ATPG phase, in addition to generation
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of vectors for some undetected faults, some untestable faults are also identified.
Simulation-based test generation may resume after a test sequence is obtained from
the deterministic procedure.
There are of course other methods of combining simulation-based and determin-

istic algorithms for test generation. The GA–HITEC hybrid test generator [Rudnick
1995] uses deterministic algorithms for fault excitation and propagation and a GA
for state justification. Deterministic procedures for state justification are used if the
GA is unsuccessful. Instead of targeting one group of faults at a time, GA-HITEC
targets one fault at a time, as is generally done in deterministic ATPGs.
This particular method of combination in GA-HITEC is based on the observa-

tion that deterministic algorithms for combinational circuit test generation have
proven to be more effective than genetic algorithms [Rudnick 1994]. Furthermore,
in sequential circuits, state justification using deterministic approaches is known
to be very difficult and is vulnerable to many backtracks, leading to excessive exe-
cution times. Therefore, it makes sense to include the deterministic algorithm for
fault excitation and propagation, while the GA is used for state justification. Note
that this approach cannot identify some untestable faults.
In GA-HITEC, a fault is taken as a target. Then, the fault is excited by the

deterministic engine, followed by propagation to a primary output, perhaps through
several time frames, also by the deterministic engine. Through this process, several
primary inputs and flip-flop variables at time frame 0 would have been chosen as
decision points, as illustrated in Figure 4.46. The decisions made on the flip-flops
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at time frame 0 now become the target state to be justified. The GA is invoked at
this time to generate a justification sequence for the target state. If a sequence is
found that justifies the target state, then this sequence is concatenated with the
vectors derived for fault excitation and propagation, and the complete test sequence
is added to the test set. Faults that are detected by this sequence are removed from
the fault-list. On the other hand, if a justification sequence cannot be found by the
GA, then backtracks are made in the fault propagation phase in the deterministic
test generator, and attempts are made to justify any new state.
In the state justification phase, the GA evolves over four full generations for each

target state. Each individual in the population represents a candidate sequence of
vectors. A small population size of 64 is used, and the number of generations is
limited to four to reduce the execution time. The population size is doubled and
the number of generations increased to eight later for the more difficult faults. The
sequence length is also doubled.
During the GA search for a justification sequence, both fault-free and faulty states

are checked for each individual in the population. Note that this check is done for
every vector in an individual, which contains several vectors. Thus, if a match is
found, the length of the actual justification sequence may be less than the length
of the individual. For the purposes of the GA, the fitness function simply measures
how closely the final state matches the target state:

fitness = 9

10
�# flip-flops matched in fault-free circuit�

+ 1

10
�# flip-flop matches in faulty circuit��

A flip-flop is said to be matched if the value achieved is the same as the target
value. If the target value is “don’t care,” it is considered matched as well. Therefore,
if both the fault-free and faulty states match, the fitness will equal the total number
of flip-flops in the circuit. Note that unequal weights are given to the fault-free
and faulty states. Changing the weights will alter the search by placing emphases
differently. Again, during fitness evaluation, parallelism among the individuals can
be exploited, where 32 individuals may be simulated together to reduce the com-
putational cost.
Results of GA-HITEC have demonstrated that higher fault coverages can be

obtained as compared to pure deterministic HITEC for many circuits. Similar num-
bers of untestable faults were identified as well.

4.9.1 ALT-TEST Hybrid
ALT-TEST [Hsiao 1996b] is another hybrid approach that combines a GA-based test
generator and a deterministic engine. HITEC [Niermann 1991] is again used as the
deterministic test generator in ALT-TEST. The number of calls to the deterministic
test generator is very few, which differs significantly from the CRIS hybrid, where
hundreds of calls to the deterministic engines were made. ALT-TEST alternates
repeatedly between GA-based and deterministic test generation.
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A fast run of a GA-based test generator is followed by a run of a deterministic test
generator that targets faults that were left undetected by the previous GA-based test
generator. Any successful sequences derived by the deterministic test generator are
used as seeds for the successive GA-based ATPG run. The test sequences derived by
the deterministic engine typically will traverse previously unvisited states. Thus, the
deterministic test generator may be viewed as an external engine whose purpose
is mainly to guide the GA to new state spaces of the circuit that have not been
visited. By visiting new state spaces, the test generator can maximize the search
space. Furthermore, the use of a deterministic test generator also helps to identify
any untestable faults, thus saving the computational effort in the GA runs on those
faults that could never be detected.
The test generation process in ALT-TEST is divided into three stages; each of

the three stages is composed of alternating phases of GA-based and HITEC test
generation. The first stage attempts to detect as many faults as possible from the
fault list. The second stage tries to maximize the number of visited states and
propagate fault effects to flip-flops. Finally, the third stage tries to both detect the
remaining faults and visit new states. In each of the three stages, the GA is first run
until little or no more improvement is obtained, then the deterministic approach is
used to target undetected faults. A stage is finished when no more improvements
are made for the remaining undetected faults. The pseudo code for test generation
within a stage is given in Algorithm 15.
In each GA run, the initial population consists of: (1) the best sequence from

the previous GA run or the deterministic engine, (2) the sequences having fitness

Algorithm 15 ALT-TEST

1: while there is improvement in this stage do
2: /∗ GA-based test generation ∗/
3: while there is improvement in the GA phase do
4: for all undetected faults, in groups of 31 faults do
5: select next 31 undetected faults as target faults;
6: best-individual = GA-evolve();
7: add best-individual to test set;
8: seed the next GA population;
9: compute improvement;

10: end for
11: end while
12: /∗ deterministic test generation ∗/
13: select the hard-to-detect faults;
14: best-sequence = deterministic-ATPG(hard faults);
15: if a best-sequence is found then
16: add best-sequence to test set;
17: end if
18: seed best-sequence into the next GA;
19: compute improvement;
20: end while
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values greater than or equal to one-half of the best fitness from the previous GA
run, and (3) random individuals to fill the entire population if needed. Instead of
targeting individual faults, the GA tries to detect as many faults as possible by any
individual. Because the target is to generate a sequence that can detect as many
faults as possible, parallel-fault simulation (on 31 faults) is used during fitness
evaluation; 31 faults are used instead of 32 due to the nature of the embedded fault
simulator. A set of 31 undetected faults in the fault list are selected as target faults.
All individuals in the population would then target the same group of 31 faults.
For successive GA runs, faults are chosen cleverly so that efforts can be reduced.

For instance, if the best sequence added to the test set detected a total of 20 faults,
it may have also excited and propagated some faults to one or more flip-flops at the
end of that sequence. These activated faults should be placed in the next targeted
fault group, as faults that have propagated to at least one flip-flop are deemed to
have a greater chance of being detected. If the more than 31 faults have propagated
to the flip-flops, preference is given to those that have propagated to more flip-flops.
On the other hand, if fewer than 31 faults have propagated to the flip-flops, the
remaining faults in the group are filled from the undetected fault list.
After the GA phase, the deterministic test generator is activated that targets the

difficult-to-detect faults identified by the previous GA run. A difficult-to-detect fault
is one that has never been detected by any of the test sequences added to the test
set. The sequence generated by the deterministic test generator is also seeded to
the next GA run with hopes that it can help to expand the search space.
As the GA and deterministic phases alternate, the number of faults detected as

a function of time will experience periodic jumps, as illustrated in Figure 4.47 for
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Number of detections in alternating phases.
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a case in which the deterministic ATPG successfully finds a sequence for at least
one fault.
The fitness functions for the three separate stages of ALT-TEST depend on a vari-

ety of parameters. Because each stage targets a different goal, the set of parameters
that control the search will differ as well. The parameters that can affect the fitness
of an individual include the following:

P1—Number of faults detected
P2—Number of flip-flops to which fault effects have arrived
P3—Number of new states visited
P4—Number of flip-flops set to their difficult-to-control values

It can be seen that parameters P3 and P4 contribute to the expansion of the searched
state space. While P3 explicitly aims for visitation of more states, P4 guides the
search by favoring sequences that are able to set the difficult-to-control flip-flops
to values that have not yet been encountered. Consequently, a new state is likely to
be visited. All four parameters are given different weights across the three stages
of ALT-TEST:

Stage 1—Fitness = 0�8P1+0�1P2+0�1�P3+P4�.
Stage 2—Fitness = 0�1P1+0�45P2+0�45�P3+P4�.
Stage 3—Fitness = 0�4P1+0�2P2+0�4�P3+P4�.

In the first stage, because most faults have not yet been detected, the aim is
thus to detect as many faults as possible, which makes the parameter P1 the most
dominant. At the end of the first stage, little improvement in fault detection is
observed, indicating that the fitness function is no longer effective. In other words,
it is unlikely to detect faults without other ingredients added. Therefore, in the
second stage, maximizing visitation of new states and fault-effect propagation to
flip-flops becomes the aim. By doing this, the search tries to expand the state
space together with those states that can still excite and propagate the fault-effects.
Finally, in the third stage of ALT-TEST, the focus is shifted once again. Now the
target is detecting the remainder of the faults that have been difficult to detect
by the GA and the deterministic engine in the previous two stages. Therefore, the
fitness function weights fault detections and new state identifications more heavily.
ALT-TEST achieves high coverages compared with GA-HITEC for many circuits,
with the ability to identify untestable faults.

4.10 ATPG FOR NON-STUCK-AT FAULTS

4.10.1 Designing an ATPG That Captures Delay Defects
Today’s integrated circuits are seeing an escalating clock rate, shrinking dimen-
sions, increasing chip density, etc. Consequently, there arises a class of defects that
would affect the functionality of the design if the chip is run at a high speed. In
other words, the design is functionally correct when it is operated at a slow clock.
This type of defect is referred to as a delay defect. While the conventional stuck-at
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testing can catch some delay defects, the stuck-at fault model is insufficient to
model delay defects satisfactorily. This has prompted engineers and researchers to
propose a variety of methods and fault models for detecting speed failures. Among
the fault models are the transition fault [Levendel 1986] [Waicukauski 1987] [Cheng
1993], the path-delay fault [Smith 1985], and the segment delay fault [Heragu 1996].
This section is devoted to path-delay fault test generation.
The path-delay fault model considers the cumulative effect of the delays along a

specific combinational path in the circuit. If the cumulative delay in a faulty circuit
exceeds the clock period for the path, then the test pattern that can exercise this
path will fail the chip. The segment delay fault model targets path segments instead
of complete paths.
Because a transition has to be launched in order to propagate across a given path,

two vectors are needed. The first vector initializes the circuit nodes, and the second
vector launches a transition at the start of a path and ensures that the transition
is propagated along the given path. Given a path P, a signal is an on-input of P if
it is on P. Conversely, a signal is an off-input of P if it is an input to a gate in P
but is not an on-input of P. A path-delay fault can be a rising fault, where a rising
transition is at the start of the path, or a falling fault, where a falling transition is at
the start of the path. The rising and falling path-delay faults are denoted with the
up-arrow ↑ and the down-arrow ↓ before path P, respectively. For example, ↑ g1g4g7
is a rising path that traverses through gates g1	 g4, and g7.

Delay tests can be applied three different ways: launch-on-capture (also called
broadside or double-capture) [Savir 1994], launch-on-shift (also called skewed-
load) [Savir 1993], and enhanced-scan [Dervisoglu 1991]. In launch-on-capture-
based testing, the first n-bit vector is scanned in to the circuit with n scan flip-flops
at a slow speed, followed by another clock which creates the transition. Finally,
an at-speed functional clock is applied that captures the response. Thus, only one
vector has to be stored per test, and the second vector is directly derived from the
initial vector by pulsing the clock. In launch-on-shift-based testing, the first n−1
bits of an n-bit vector are shifted in at a slow speed. The final nth shift is performed,
and it is also used to launch the transition. This is followed by an at-speed quick
capture. Similar to launch-on-capture, only one vector has to be stored per test,
as the second vector is simply the shifted version of the first vector. Finally, in
enhanced-scan testing, both vectors in the vector pair �V1	V2� have to be stored in
the tester memory. The first vector is loaded into the scan chain, followed by its
immediate application to initialize the circuit under test. Next, the second vector
is scanned in, followed by an immediate application and capture of the response.
Note that the node values in the circuit is preserved during the shifting-in of the
second vector V2. In order to achieve this, a hold-scan design [Dervisoglu 1991] is
required.
Because both launch-on-capture and launch-on-shift place constraints on what

the second vector can be, they will achieve lower fault coverage when compared
with enhanced-scan. However, enhanced-scan comes at a price of hold-scan cells,
which consume more chip area. This may not be viewed as a huge negative in
microprocessors and some custom-designed circuits because hold-scan cells are
used to prevent the combinational logic from seeing the values being shifted. This
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is done because the intermediate state of the scan cells may cause contention in
some of the signals in the logic, as well as reducing the power consumption in
the combinational logic during the shifting of the data in scan cells. In addition,
hold-scan cells also help increase the diagnostic capability on failing chips in which
the data captured in the scan chain can be retrieved.
In terms of test data volume, enhanced-scan tests may actually require less storage

to achieve the same delay fault coverage. In other words, for launch-on-capture or
launch-on-shift to achieve the same level of fault coverage, many more patterns
may have to be applied.
Unlike stuck-at faults, where a fault is either detected or not detected by a given

test vector, a path-delay fault may be detected by different test patterns (consisting
of two vectors) with differing levels of quality. In other words, some test patterns
can detect a path-delay fault only with certain restrictions in place. Higher quality
test patterns place more restrictions on sensitization of the path. On the other
hand, similar to stuck-at faults, some paths may be untestable if the sensitization
requirement for a given path is not satisfiable.
For designs with two interactive clock domains, modifications can be made

to allow for test. For example, the following at-speed delay test approaches can
be used for both launch-on-capture and launch-on-shift architectures: one-hot
double-capture, aligned double-capture, and staggered double-capture [Bhawmik
1997] [Wang 2002]. Details of these architectures are further explained in
Chapter 5.

4.10.1.1 Classification of Path-Delay Faults

Given the above discussion, the path-delay faults can be classified into several
categories. A path P is said to be statically sensitizable if all the off-inputs of P can
be justified to their corresponding noncontrolling values for some test vector. If all
of the off-inputs of a path P cannot be justified to the respective noncontrolling
values, P is said to be a statically unsensitizable path. A false path is a path such
that no transition can propagate from the start to the end of the path. A path is false
because the values necessary on the off-inputs of the path are not realizable by the
circuit [Devadas 1993]. Note that a false path is always statically unsensitizable,
but not vice versa. Figure 4.48 illustrates an example of a statically unsensitizable
path ↓ abce, as signal d cannot be at the noncontrolling value in the second vector.
But this path is not false, because a transition can propagate from a to the end of
the path, e, via a multi-path from a to e.
A path P is single-path sensitizable if the values of the off-inputs in P can be

settled to their noncontrolling values in both vectors. This is the most stringent
requirement, thus there are few paths that would satisfy this condition.
In order to detect a delay defect along a path, it may be possible to relax the

constraint according to the single-path sensitizability. In other words, it may be
possible to detect the delay fault without having all off-inputs set to noncontrolling
values. Consider the circuit illustrated in Figure 4.49. The falling path ↓ bdfg is
the target path. Note that the value for signals a and e can be relaxed in the first
vector such that the transition on b can still be propagated to g. This is because the
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A robustly testable path.

propagation of the falling transition from b to d is independent of the value of a
in the first vector (and similarly for the transition from f to g). On the other hand,
a steady 1 (S1) is needed for both the first and second vectors on signal c. Relaxing
the value in the first vector could block the transition from d to f .
The target path in the above example is said to be robustly testable. More

specifically, the path is testable irrespective of other delay faults in the circuit
[Smith 1985] [Lin 1987]. In the same running example shown in Figure 4.49, if the
“don’t care” value in the first vector for signal a is a logic 1, the transition on b
would still be propagated to d, as the transition on d depends on the later of the
two transitions. In short, a delay on a will not prevent the target path from being
detected.
Given the above discussion, the value criteria for each off-input of P for a robustly

testable path are as follows:

� When the corresponding on-input of P has a controlling to noncontrolling
transition, the value in the first vector for the off-input can be “don’t care,”
with the value for the off-input as a noncontrolling value in the second
vector.
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Sensitization criteria.

� When the corresponding on-input of P has a noncontrolling to controlling
transition, the values for the off-input must be a steady noncontrolling value
for both vectors.

Because a robust test for a path P can detect P irrespective of any other delay
faults in the circuit, they are the most desirable tests. For most circuits, however,
the number of robustly testable paths is small. Thus, for those robustly untestable
paths, less restrictive tests must be sought.
Consider the AND gate shown in Figure 4.50. Suppose signal a is the on-input

and b is the off-input along some path. In the robust sensitization criterion, because
the on-input is going from a noncontrolling to a controlling value, the off-input
must be at steady noncontrolling value. As discussed before, such a restriction will
ensure that the path going through a, if testable, will be tested irrespective of any
other delay faults in the circuit. However, if such a test is not possible, one may
wish to relax the condition such that the target path is the only faulty path in the
circuit. In other words, if the off-input b is not late, then it may be possible to
relax the steady noncontrolling value somewhat. In this example, if the transition
on the target path through a is late, and if the transition on the off-input is on time,
then the output c will still have a faulty value. Therefore, it may be sufficient to
require the values of X1 for b instead of a steady 1. This sensitization condition is
called the nonrobust sensitization condition. Figure 4.51 illustrates an example
of a path, ↑ bcdf, that is robustly untestable but is nonrobustly testable. Note that
in a robustly testable path, a transition is present at every gate along the path. On
the other hand, in a nonrobustly testable path, some transitions may be lost along
the path. In the example shown in Figure 4.51, the transition is lost at f .
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A nonrobust path.
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Given the above discussion, the value criteria for each off-input of P for a nonro-
bustly testable path are as follows:

� Irrespective of the transition on the on-input, the value in the first vector
for the off-input can be “don’t care,” with the value for the off-input as a
noncontrolling value in the second vector.

There are other classes of path-delay faults, such as validatable nonrobustly testable
path-delay faults, functional sensitizable path-delay faults, multi-path-delay faults,
etc. They are not included in this discussion.

4.10.1.2 ATPG for Path-Delay Faults

Unlike stuck-at test generation, where only one vector is necessary and the value
on any signal can be 0, 1, D, D, or X , in path-delay fault test generation, two vectors
are required, and the vector pair only has to ensure that a transition is launched at
the start of the path and that the off-inputs satisfy the conditions specified by the
robust or non-robust tests.
For a given target path P, a test pattern (of two vectors) can be generated for

P. One can go about generating the two vectors separately, or a different logic
system may be used such that the two vectors can be derived simultaneously with
a single copy of the circuit. When the two vectors are generated separately, each
signal can be 0, 1, or X . The vector-pair generated must ensure that a transition is
launched at the start of P and that all off-inputs adhere to the robust or nonrobust
conditions specified by the test. The value justification of the off-inputs is similar
to the multi-objective value justification in stuck-at ATPG.
If two vectors are to be generated together, a value system different from the

three-value system can be used to represent values over two vectors [Lin 1987]. In
this case, a signal can be any of the following:

� S0—Initial and final values are both logic 0.

� S1—Initial and final values are both logic 1.

� U0—Initial logic can be either 0 or 1, but final value is logic 0.

� U1—Initial logic can be either 0 or 1, but final value is logic 1.

� XX—Both initial and final values are “don’t cares.”

Boolean operators also work on this new system of values. For example,
Tables 4.12, 4.13, and 4.14 show the AND, NOT, and OR operations over these five
values, respectively. Such tables can be generated for other Boolean operations as
well. Using the new 5-valued system, conventional ATPG algorithms can be applied
to generate path-delay tests.
Because many paths overlap and there may be an exponential number of paths, it

may be possible and helpful to reuse some of the knowledge gained from targeting
other paths. For instance, if it is known that a = 1 and b = 0 is not possible, then
any path that requires this combination would be untestable. Likewise, if two
paths share a segment, the two test patterns for the two paths may share bits in
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TABLE 4.12 � AND Operation

AND S0 U0 S1 U1 XX

S0 S0 S0 S0 S0 S0
U0 S0 U0 U0 U0 U0
S1 S0 U0 S1 U1 XX

U1 S0 U0 U1 U1 XX

XX S0 U0 XX XX XX

TABLE 4.13 � NOT Operation

NOT
S0 S1
U0 U1
S1 S0
U1 U0
XX XX

TABLE 4.14 � OR Operation

OR S0 U0 S1 U1 XX

S0 S0 U0 S1 U1 XX

U0 U0 U0 S1 U1 XX

S1 S1 S1 S1 S1 S1
U1 U1 U1 S1 U1 U1
XX XX XX S1 U1 XX

common. In RESIST [Fuchs 1994], this concept is taken into account such that
a recursion-based ATPG algorithm searches starting from a primary input. The
search progresses by targeting paths that differ only in the last segment; in other
words, they share the same initial subpath.
Essentially, RESIST starts at each primary input, and the circuit is traversed in

a depth-first fashion. Once a complete path P from a primary input to primary
output has been tested, a backtrack is invoked and a different path P2 that differs
from P in only one segment is tried. At the end, all the paths in the output cone of
the starting primary input would have been considered. In doing so, the decision
tree can be shared among different paths and knowledge is reused. Likewise, if
a subpath is found to be untestable, all paths that share the same initial subpath
would be untestable. Then, RESIST repeats for another primary input until all
primary inputs have been processed.
RESIST is efficient because it incorporates knowledge into the ATPG process,

and paths are handled such that much knowledge can be carried over from one
path to the next.
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4.10.2 ATPG for Transition Faults
If robust tests were possible for all the paths in a circuit, we would not need any
additional test vectors for capturing the delay defects. However, because very few
paths are robustly testable, there will be some delays that cannot be captured by
either robust or nonrobust path-delay fault tests. Consider the situation where some
small delay defects are distributed inside a circuit. If the circuit nodes lie on a
robustly untestable path or a less critical path, then the path-delay fault test vectors
may miss those faults. The segment delay fault model might also miss the faults
because there might not be a path along which the effect may be propagated.
A transition fault at node g assumes a delay defect is present at node g such

that the propagation of the transition at g will not reach the flip-flop or primary
output within the clock period. While the path-delay fault model considers the
cumulative effect of the delays along a specific path, the transition fault model
does not specify the path through which the fault is to be excited or propagated.
Today, the transition fault model is the most practical as the number of transition
faults is linear to the number of circuit nodes and commercial tools are available
for computing such tests. On the other hand, the number of path-delay faults is
exponential to the number of circuit lines, which makes critical path analysis and
identification procedures necessary. Finally, transition tests have been generated
to improve the detection of speed failures in microprocessors [Tendulkar 2002] as
well as application-specific integrated circuits (ASICs) [Hsu 2001]. These reasons
make transition faults popular in industry.
Similar to the stuck-at fault model, two transition faults are possible at each

node of the circuit: slow-to-rise and slow-to-fall. A test pattern for a transition fault
consists of a pair of vectors �V1	V2
 where V1 (called the initial vector) is required
to set the target node to an initial value, and V2 (called the test vector) is required
to launch the corresponding transition at the target node and also propagate the
fault effect to a primary output [Waicukauski 1987] [Savir 1993].

Lemma 3

A transition fault can be launched robustly or nonrobustly, or in neither way,
through the segment PI-fault site.

Proof

Consider a slow-to-rise transition fault at the output of the OR gate in Figure 4.52.
This transition can only be launched by having rising transitions at both inputs of
this gate. Hence, neither of two paths passing through the OR gate can be robustly
or nonrobustly tested.

Lemma 4

A detectable transition fault can be detected by a robust segment or nonrobust
segment, or in neither way, starting from the fault site to a primary output.
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Slow-to-rise transition at the input of an OR gate.
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Slow-to-fall transition propagation example.

Proof

Consider the circuit shown in Figure 4.53. A slow-to-fall transition fault at a is
propagated to the primary output and hence detected, but neither path from a to b
is robustly or nonrobustly testable due to off-path inputs at gate b.

The two above lemmas conclude that both the launching and propagation of a
transition fault can be done through multiple paths and none of the paths may be
tested robustly or nonrobustly [Gupta 2004]. Hence, there are some faults that can
be missed by the path-delay fault model and can only be captured by the transition
fault model. But, for small delay defects, an enhanced transition fault model is
needed to properly address the aforementioned issues.
Transition tests can also be applied in three different ways as for the other

delay fault models discussed earlier: launch-on-capture, launch-on-shift, and
enhanced-scan. As with path-delay tests, because both launch-on-capture and
launch-on-shift place constraints on what the second vector can be, they will achieve
lower transition fault coverage when compared with enhanced-scan.
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4.10.3 Transition ATPG Using Stuck-At ATPG
A transition fault can be modeled as two stuck-at faults. Thus, one can view testing
transition faults as testing two stuck-at faults. For example, a transition fault a slow-
to-rise can be modeled as exciting the fault a/1 in the first time frame and detecting
the fault a/0 in the second time frame. In other words, exciting a/1 requires setting
a = 0, and testing for a/0 requires setting a = 1 and propagating its effect to an
observable point.
With enhanced-scan, because the two vectors are not correlated, these two vectors

can be generated independently. For launch-on-capture or launch-on-shift, the two
time frames must be handled together. In the launch-on-capture-based test scheme,
one may view the excitation of the fault in the first time frame as a constraint
for the ATPG for detecting the fault in the second time frame. In other words, for
testing the transition fault a slow-to-rise, the stuck-at fault a/0 is the target fault
in the right (second) time frame of the two-time-frame unrolled circuit. A stuck-at
ATPG is invoked to detect a/0 with the constraint that the signal a in the first time
frame must be set to logic 0. A slow-to-fall transition can be modeled in a similar
manner.
On the other hand, in launch-on-shift, the two time frames are related in a

different way. The flip-flops of the second time frame are fed by a shifted version
of the first time frame. Other than that, the ATPG setup is similar to the launch-
on-capture-based test.

4.10.4 Transition ATPG Using Stuck-At Vectors
For enhanced-scan testing, because both vectors must be stored in the test equip-
mentmemory, there is considerable redundancy in the information stored. Consider
the test sequence shown in Table 4.15. In this test sequence, V2 and V3 are used
several times. Ideally, it would be desirable to store only one copy of V2 and V3.
However, storing only one copy of a vector would require the ATE to have the abil-
ity to index and reuse the vector in a random order; this functionality is currently
unavailable. Limited reuse of the information stored, however, may be possible.
Whenever two copies of the same vector are stored in consecutive locations in the
tester memory, it may be possible to store only one copy and scan in the vector
as many times as needed during consecutive scan cycles. Thus, with the running
example, the sequence �V1	V2∗	V3∗	V4	V3	V5	V1	V3
 can be restored and the vectors
marked with the asterisk �∗� are scanned in twice. Information about vectors that
must be scanned in multiple times is stored in the control memory of the tester. In
this example, only 8 out of 10 vectors have to be stored.
In this running example, the tester memory requirement was reduced at a price.

Because vectors that are scanned in repeatedly do not form a regular pattern, the
control memory necessary to store the asterisks can be costly. To avoid such a cost

TABLE 4.15 � Example Test Sequence

V1 V2 V2 V3 V3 V4 V3 V5 V1 V3
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we can do the following: Apply each vector twice except for the first and the last
vectors stored in the tester memory. Consider the sequence �V1	V2	V3	V4	V1	V3	V5
.
Because all but the first and the last vectors are applied twice, the set of transition
test patterns we obtain would be �V1	V2�, �V2	V3�, �V3	V4�, �V4	V1�, �V1	V3�, and
�V3	V5�. This set of patterns includes all the test patterns of Table 4.15, plus the
additional �V4	V1�. This example shows that 7 vectors (instead of 10 vectors) can
be sufficient to apply all the needed transition tests. Such sequences where all but
the first and the last vectors are applied twice are called transition test chains.

4.10.4.1 Transition Test Chains via Weighted Transition Graph

Because transition faults and stuck-at faults are closely related, it may be possible
to construct transition test sets directly from stuck-at test sets using the concept of
transition test chains [Liu 2005].
A weighted transition graph algorithm is used to construct transition test chains

from a given stuck-at test set. Rather than computing a set of vector pairs and
chaining them together as alluded to in the above examples, the weighted transition
graph algorithm maps the chains onto a graph traversal problem. The algorithm
first builds a weighted directed graph called the weighted transition-pattern graph.
In this graph, each node represents a vector in the stuck-at test set; a directed
edge from node Vi to node Vj denotes the transition test pattern �Vi	Vj�; and its
weight indicates the number of transition faults that can be detected by �Vi	Vj�. This
may potentially result in a complete graph, where a directed edge exists between
every pair of vertices. In order to reduce the graph size, a subset of the transition
faults that were not detected by the application of the original stuck-at test set may
be considered instead of considering all transition faults. The graph construction
procedure is described in Algorithm 16.
For example, consider a circuit with five gates, 10 stuck-at faults, and a stuck-at

test set consisting of 4 vectors V1, V2, V3, and V4. Let the excitation and detec-
tion dictionary obtained be as shown in Table 4.16. Assuming the test set order
is �V1	V2	V3	V4
, then only 3 of the 10 transition faults can be detected, namely c
slow-to-fall, e slow-to-fall, and c slow-to-rise. However, using Table 4.16, the non-
consecutive vectors can be combined to detect additional transition faults: �V1	V3�
can detect a slow-to-fall; �V3	V1� detects a slow-to-rise; �V1	V4� detects d slow-to-
fall; �V4	V2� detects d slow-to-rise; �V4	V1� detects a slow-to-rise, b slow-to-fall; and
�V2	V4� detects b slow-to-rise, e slow-to-rise, and d slow-to-fall. The corresponding
weighted transition graph is shown in Figure 4.54.
The weighted transition graph has a nice property that allows for formulation of

the following theorem.

Theorem 1

Faults detected by pattern �Vi	Vj� and pattern �Vj	Vk� are mutually exclusive.

Proof

This is proved by contradiction. Without loss of generality, suppose a fault f slow-
to-fall is detected by �Vi	Vj�. Thus, Vi must excite f s-a-0(sets line f to 1) and Vj must
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Algorithm 16 WeightedTransitionGraphConstruction(T)

Require: stuck-at test set T = �T1
 
 
 TN�
1: Perform transition fault simulation using pairs of vectors ∈ T��T1� T2��

�T2� T3�
 
 
 �TN−1� TN��;
2: UT = the set of undetected transition faults;
3: US = ∅;
4: if transition fault X slow-to-rise (or slow-to-fall) ∈ UT then
5: US = US ∪ �X/0�X/1�;
6: end if
7: Perform stuck-at fault simulation without fault dropping using the stuck-at test set T

on only the stuck-at faults in US.
8: for each stuck-at fault f ∈ US do
9: record the vectors in T that can excite f and the vectors that can detect f ;

10: end for
11: for each vector v ∈ T do
12: record the faults excited and detected by v;
13: end for
14: for all vector pairs Ti and Tj do
15: Insert a directed edge from Vi to Vj if test pattern �Ti� Tj� detects at least one

transition fault in UT ;
16: weight of inserted directed edge = number of transition faults detected

by �Ti� Tj�;
17: end for

TABLE 4.16 � Fault Dictionary Without Fault Dropping

Vectors Excited Faults Detected Faults

V1 a/0� b/1� c/1� d/0� e/0 a/0� b/1

V2 b/1� c/0� d/0� e/1 c/0� d/0� e/1

V3 a/1� c/1, a/1� c/1

V4 a/1� b/0� d/1� e/0 b/0� d/1� e/0

V1 V2

V4V3

3
1

211

V1 V2

V4V3

11

(b) Updated graph(a) Original graph

1

� FIGURE 4.54

Weighted transition-pattern graph example.
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detect f s-a-1. If �Vj	Vk� also detects the transition fault f slow-to-fall, the vector Vj

must set line f to 1, which is a contradiction.

A Eulerian trail in a graph is a path such that each edge in the graph is traversed
exactly once. Using this concept, a Eulerian trail in the transition-pattern graph
traverses all the (non-zero weight) edges in the graph exactly once. It is tempting
to conclude such a Euler trail in the weighted transition is the best transition test
chain. However, the Eulerian trail assumes that the edge weights in the graph
are static. This may not be true in the case of selecting test patterns, in which
some transition faults may be detectable by different patterns. For example, if
edge �Vi	Vj� is traversed (i.e., test �Vi	Vj� is selected), then a number of transition
faults would have been detected by this test pattern. This also means that the
weights on other edges should be modified because some other test patterns may
have detected similar faults as well. Some of the edge weights may even become
zero. Based on Theorem 1, edges whose weights will not change are only those
originating from Vj. Thus, after a directed edge �Vi	Vj� is selected, all other directed
edges that do not start at Vj must have their edge weights updated. This, however,
would involve extensive fault simulation, which could be expensive. To reduce the
cost of fault simulation, the edge weights could be updated periodically instead of
after traversing each edge. A simple algorithm is outlined in Algorithm 17 where
T is the transition test chain computed by the algorithm from the given stuck-at
test set.
The idea behind this algorithm is as follows: First identify a test sequence of

length 3 that can cover the most faults by traversing the weighted transition pattern
graph. For example, in the original weighted transition pattern graph shown in
Figure 4.54a �V2	V4	V1� is themaximal-weight test chain of length 3. After traversing
this chain, five transition faults (a slow-to-rise, b slow-to-rise, b slow-to-fall, d slow-
to-fall, and e slow-to rise) are detected. The updated graph is shown in Figure 4.54b.
It should be noted that in addition to removing the edges �V2	V4� and �V4	V1�, two
other edges (�V1	V4� and �V3	V1�) are also removed from the graph. This is because

Algorithm 17 TransitionTestGeneration

Require: T = �V1� 
 
 
 � Vn�;
1: G = WeightedTransitionGraphConstruction(T);
2: while transition FC < 100% AND number of iterations < N do
3: identify edge �Vi� Vj� ∈ G with the largest weight;
4: append vectors Vi and Vj to test set T;
5: for all edges that start at Vj do
6: search for an edge �Vj� Vk� with the largest weight;
7: end for
8: append vector Vk to test set T;
9: end while

10: return �T�;
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the fault d slow-to-fall, which can be detected by �V1	V4�, has already been detected
by selecting the test chain �V2	V4	V1�. Therefore, the edge �V1	V4� can be removed
from the weighted pattern graph because it no longer contributes to the detection of
other transition faults. Similar argument can be made for the edge �V3	V1�. Finally,
all the seven originally undetected faults in Table 4.16 are detected with the test
chain �V2	V4	V1	V3	V4	V2
.

4.10.5 Bridging Fault ATPG
Recall that bridging faults are those faults that involve a short between two signals
in the circuit. Given a circuit with n signals, there are potentially n × �n−1� possible
bridging faults. However, practically, only those signals that are locally close on
the die are more likely to be bridged. Therefore, the total number of bridging faults
can be reduced to be linear in the number of signals in the circuit.
Consider two signals x and y in the circuit that are bridged. This bridging fault

will not be excited unless different values are placed on x and y. Note that the
actual voltage at x and y may be different due to the resistance value of the bridge.
Subsequently, the logic that takes x as its input may interpret the logic value
differently from the logic that takes y as its input. In order to reduce the complexity,
five common bridging fault models are often used:

� AND bridge—The faulty value of the bridge for x′ and y′ is taken to be the
logical AND of x and y in the original fault-free circuit.

� OR bridge—The faulty value of the bridge for x′ and y′ is taken to be the logical
OR of x and y in the original fault-free circuit.

� x DOM y bridge—x dominates y; in other words, the faulty value of the bridge
for both x′ and y′ is taken to be the logic value of x in the fault-free circuit.

� x DOM1 y bridge—x dominates y if x = 1; in other words, the faulty value of
x′ is unaffected, but the faulty value for y′ is taken to be the logical OR of x
and y in the fault-free circuit.

� x DOM0 y bridge—x dominates y if x = 0; in other words, the faulty value of
x′ is unaffected, but the faulty value for y′ is taken to be the logical AND of x
and y in the fault-free circuit.

Figure 4.55 illustrates the faulty circuit models corresponding to each of these
five bridge types.
If there exists a path between x and y, then the bridging fault is said to be a feed-

back bridging fault. Otherwise, it is a non-feedback bridging fault. Figure 4.56
illustrates a feedback bridging fault. In this figure, if abc= 110, then in the fault-free
circuit z = 0. If the bridge is an AND-bridge, then a cycle would result. In other
words, a becomes 0 and in turn makes z = 1. And because a = 1 initially, it will
again try to drive z = 0, resulting in an infinite loop around the bridge. For the
following discussion, only nonfeedback bridging faults will be considered.
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A feedback bridging fault.

Testing for bridging faults is similar to a constrained stuck-at ATPG. In other
words, when testing for the AND-bridge�x	 y�, either (1) x/0 has to be detected with
y= 0 or (2) y/0 has to be detected with x= 0 [Williams 1973]. A conventional stuck-
at ATPG can be modified to handle the added constraint. Likewise, the ATPG can
be modified for other bridging fault types.
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4.11 OTHER TOPICS IN TEST GENERATION

4.11.1 Test Set Compaction
The vectors generated by any ATPG may include too many vectors. In other words,
it may be possible to reduce the length of the test set without compromising on the
fault coverage. Test compaction can be performed either statically or dynamically.
Static compaction attempts to combine and remove certain vectors after the test
set has been generated by an ATPG. Dynamic compaction, on the other hand, is
integrated within the ATPG, in which the ATPG tries to generate vectors such that
each vector detects as many faults as possible [Pomeranz 1991] [Rudnick 1999].
Obviously, static compaction can be performed even after dynamic compaction has
been used.
Static compaction for combinational test vectors involves the selection of the

minimal number of vectors that can detect all faults. Essentially, it is based on a
covering algorithm, in which a matrix is constructed where the rows denote the
vectors, and the columns denote the faults. A 1 is placed in element �i	 j� of the
matrix if vector i detects fault j. This matrix can be constructed by fault simulating
the test set without fault dropping. Then, the compaction is set up as a covering
problem with the following goal: Select a set of rows such that all columns (faults)
are covered. For example, Table 4.17 shows such a matrix. In this example, vector
v2 is unnecessary because the faults that it detects can be detected by other vectors
in the test set. Furthermore, vector v4 is an essential vector, as it detects one or
more faults that cannot be detected by any other vector.
Another form of static compaction is also possible in which compatible vectors

are identified in a test set made up of incompletely specified vectors. For instance,
vectors 11X1 and X101 are compatible. These two vectors can thus be combined,
and one vector is sufficient.
Dynamic compaction, on the other hand, tries to intelligently fill in the “don’t

care” bits in the vectors such that more undetected faults can be detected. For
example, when targeting fault fi, the vector 1x10x may be sufficient. By filling the
two “don’t care” bits in a clever manner, more faults could be detected.
Compaction for sequential circuits is more involved, since removing a vector may

not be permitted. Instead, any removal of a vector or sequence of vectors must be
validated with a fault simulation to ensure that fault coverage is retained.

TABLE 4.17 � Combinational Test
Compaction Matrix

f1 f2 f3 f4 f5 f6

v1 X X X

v2 X X

v3 X X X

v4 X X X X
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4.11.2 N-Detect ATPG
In order to enhance the quality of a test set, one may wish to derive different test sets
targeting different fault models as an attempt to capture potential defects that could
arise. However, this requires multiple ATPG engines, each targeting a different fault
model. While this may be theoretically possible, it may not be possible in practice.
Instead, to increase the coverage of all possible defects, one may generate a test

set that achieves multiple detections of every fault under a given fault model. A
fault is detected multiple times if it is detected with different vectors. By exciting
the fault and propagating the fault effect different ways, it is hoped that any defect
locally close to the target fault will have an increased change of being detected
[Franco 1995] [Chang 1998] [Dworak 2000]. For instance, detection of stuck-at
fault a/0 with b = 1 will not have detected the AND-bridge fault between a and b.
However, a different test that detects a/0 with b= 0 would have excited the bridge
by setting a= 1 and b= 0.
In an n-detect setup, each fault must be targeted multiple times by an ATPG. In

other words, all vectors generated that could detect a target fault are marked, and
a fault is removed from further consideration when it has been detected n times. It
has been shown that the size of an n-detect test set grows approximately linearly
with respect to n [Reddy 1997].

4.11.3 ATPG for Acyclic Sequential Circuits
An acyclic sequential circuit is a circuit whose S-graph has no cycles. In such
circuits, the sequential circuit may be transformed into a combinational circuit by
unrolling the sequential circuit k time frames, where k is the sequential depth of the
design [Kim 2001]. With the unrolled circuit, the circuit is inherently combinational
and sequential ATPG is no longer needed. However, a fault in the original design
may become a multiple stuck-at fault in the unrolled circuit, and the combinational
ATPG must handle the multiple fault in order to detect the corresponding fault
in the original sequential circuit. Several classes of acyclic circuits are studied in
[Kim 2001], and different approaches to handling the test generation problem are
reported.

4.11.4 IDDQ Testing
Unlike the test generation methods discussed thus far, which are focused on driving
specific voltage values to circuit nodes and observing the voltage levels at the
observable points such as the primary outputs, IDDQ testing targets the current
drawn in the fabricated chips. Given a good chip, an expected current can be
measured for a small set of input vectors. On defective chips, the currents drawn
may differ drastically. For example, consider a circuit with a p-transistor of an
inverter that is always on. Then, whenever the n-transistor of the inverter is switched
on, a power-to-ground short is created, and the measured current could surge.
Measuring the current is much slower than measuring the voltage, thus much fewer
vectors can be considered. Further, the noise in current measurement must also be
dealt with to ensure the quality of the test application.
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4.11.5 Designing a High-Level ATPG
Because of the exponentially complex nature of ATPG, its performance can be
severely limited to the size of the circuit. As a result, conventional gate-level ATPG
may produce unsatisfactory results for large circuit sizes. On the other hand, higher
level ATPGs have the advantages of fewer circuit primitives and easier access to
circuit functional information that may enhance the ATPG effort.
The circuit is first given in a high-level description such as VHDL, Verilog, or

SystemC. Then, the design is read in and an intermediate representation is con-
structed. Similar to gate-level ATPGs, the representation allows the high-level ATPG
to traverse through the circuit and make decisions on the search. However, because
the signals may not be Boolean, value justification and fault-effect propagation
must work on the integer level. Backtracking mechanisms also have to be modified.
An alternative to testing the design at the high level structurally is testing the

design with its finite state machine (FSM) as the circuit description. FSM-based
testing relies on the traversal of states and transitions in the FSM description. Given
a state diagram or flow-table of the FSM, any fault in the design will map to an error
in the FSM, where the error could be a wrong transition, a wrong output, etc. Based
on the FSM, sequences of vectors can be generated to traverse the state diagram.
With an initializing sequence, the FSM can be driven to a know state. Transfer
sequences are used to traverse the FSM. In addition, a distinguishing sequence is
used to ensure that the circuit has indeed arrived at the desired state. Each state
transition �Si→ Sj� in the FSM is targeted one at a time in the following steps:

Step 1—Go to state Si from the current state.

Step 2—Apply the input vector that takes the circuit from Si to Sj.

Step 3—Apply the distinguishing sequence to check if the circuit is indeed in
state Sj. Note that after the application of the distinguishing sequence the
circuit may no longer be in state Sj.

While this approach is simple, it may not be scalable when the FSM is enormous.
Furthermore, the test set generated by traversing the FSM may be very large.
Some success has been reported on some high-level ATPGs, where new value

logic has been proposed. Nevertheless, high-level ATPGs remain an area of research
in the days to come.

4.12 CONCLUDING REMARKS

This chapter describes in detail the underlying theory and implementation of an
ATPG engine. It starts out with random TPG, followed by deterministic ATPG for
combinational circuits, where branch-and-bound search is used. Several algorithms
are laid out with specific examples given. Next, sequential ATPG is discussed where
a combinational ATPG is extended to a 9-valued logic. Untestable fault identifica-
tion is covered in detail where static logic implications are aggressively applied to
help quickly identify untestable faults. Simulation-based ATPG is explained with
particular emphasis on genetic-algorithm-based approaches. ATPG for non-stuck-at
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faults is also covered, with emphasis on those fault models that address delay
defects, such as the path-delay fault and the transition fault. Finally, additional
topics are briefly addressed that relate to the topic of test generation.

4.13 EXERCISES

4.1 (Random Test Generation) Given a circuit with three primary outputs, x	 y,
and z, the fanin cone of x is �a	b	 c
, the fanin cone of y is �c	 d	 e	 f
, and the
fanin cone of z is �e	 f	 g
. Devise a pseudo-exhaustive test set for this circuit. Is
this test set the minimal pseudo-exhaustive test set?

4.2 (Random Test Generation) Using the circuit shown in Figure 4.10, compute
the detection probabilities for each of the following faults:

a. e/0

b. e/1

c. c/0

4.3 (Boolean Difference) Using the circuit shown in Figure 4.10, compute the
set of all vectors that can detect each of the following faults using Boolean
difference:

a. e/0

b. e/1

c. c/0

4.4 (Boolean Difference) Using the circuit shown in Figure 4.16, compute the
set of all vectors that can detect each of the following faults using Boolean
difference:

a. a/1

b. d/1

c. g/1

4.5 (Boolean Difference) Using the circuit shown in Figure 4.35, compute the
set of all vectors that can detect each of the following faults using Boolean
difference:

a. a/1

b. b1/1

c. e/0

d. e2/1
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4.6 (Boolean Difference) Assume a single-output combinational circuit, where
the output is denoted as f . If two faults, � and �, are indistinguishable, it
means that there does not exist a vector that can detect only one and not the
other. Show that f�⊕ f� = 0 if they are indistinguishable.

4.7 (D Algorithm) Construct the table for the XNOR operation for the 5-valued
logic similar to Tables 4.1, 4.2, and 4.3.

4.8 (D Algorithm) Using the circuit shown in Figure 4.35, use the D algorithm
to compute a vector for the fault b/1. Repeat for the fault e/0.

4.9 (D Algorithm) Consider a three-input AND gate g. Suppose g ∈ D-frontier.
What are all the possible value combinations the three inputs of g can take
such that g is a valid D-frontier?

4.10 (PODEM) Repeat Problem 4.8 using PODEM instead of the D algorithm.

4.11 (PODEM) Using the circuit shown in Figure 4.22, compute the vector that
can detect the fault f/0. Note that even though the circuit is sequential it can
be viewed as a combinational circuit because the D flip-flop does not have
an explicit feedback.

4.12 (Static Implications) Using the circuit shown in Figure 4.22 and given the
fact that the implications of f = 1 are shown in Figure 4.25, how could you
use this information as multiple objectives to speed up the test generation
for the fault f/0?

4.13 (Static Implications) Construct the static implication graph for the circuit
shown in Figure 4.57 with only indirect implications. Based on the implica-
tion graph:

a. What are all the implications for g= 0?

b. What are all the implications for f = 0?

c

b

a

e
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d
f

� FIGURE 4.57

Example circuit.
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4.14 (Static Implications) Construct the static implication graph for the circuit
shown in Figure 4.58 by considering:

a. Only direct implications

b. Direct and indirect implications, including those obtained by the contra-
positive law

z 
g

f

e

d

c
b

a

� FIGURE 4.58

Example circuit.

4.15 (Dynamic Implications) Consider the circuit shown in Figure 4.58. Suppose
justifying e= 1 via a= 0 is not possible due to some prespecified constraints.
Perform all dynamic implications for all signals based on the knowledge of
this constraint.

4.16 (Dynamic Implications) Prove that two faults, f and g, in a combinational
circuit with the same E-frontier that has at least oneD orD, can be propagated
to a primary output the same way.

4.17 (Untestable Fault Identification) Consider the circuit shown in Figure 4.58.

a. Compute the static logic implications of b= 0.

b. Compute the static logic implications of b= 1.

c. Compute the set of faults that are untestable when b= 0.

d. Compute the set of faults that are untestable when b= 1.

e. Compute the set of untestable faults based on the stem analysis of b.

4.18 (PODEM) Consider the circuit shown in Figure 4.58, and use PODEM to
generate a vector for each of the following faults:

a. c/0

b. c/1

c. d/0

d. d/1
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4.19 (Untestable Fault Identification) Consider the circuit shown in Figure 4.59.
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f

e

d

c

b

� FIGURE 4.59

Example circuit.

a. Compute the static logic implications of b= 0.

b. Compute the static logic implications of b= 1.

c. Compute the set of faults that are untestable when b= 0.

d. Compute the set of faults that are untestable when b= 1.

e. Compute the set of untestable faults based on the stem analysis of b.

4.20 (PODEM) Consider the circuit shown in Figure 4.59, and use PODEM to
generate a vector for each of the following faults:

a. k/1

b. k/0

c. g/1

d. g/0

4.21 (Untestable Fault Identification) Prove that any fault that is combination-
ally untestable is also sequentially untestable.

4.22 (FAN) Consider the circuit shown in Figure 4.19. Suppose the constraint that
y= 1→ x= 0 is given. How could one use this knowledge to reduce the search
space when trying to generate vectors in the circuit? For example, suppose
the target fault is y/0.

4.23 (Sequential ATPG) Consider the circuit shown in Figure 4.60. The target
fault is a/0.

a. Generate a test sequence for the target fault using only 5-valued logic.

b. Generate a test sequence for the target fault using 9-valued logic.
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D z a
Q

� FIGURE 4.60

Example sequential circuit.

4.24 (Sequential ATPG) Given a sequential circuit, is it possible that two stuck-at
faults, a/0 and a/1, are both detected by the same vector vi in a test sequence
v0	 v1	 � � � 	 vk?

4.25 (Sequential ATPG) Consider the sequential circuit shown in Figure 4.61.
If the initial state is de = 00, what is the set of reachable states? Draw the
corresponding state diagram for the finite state machine.
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� FIGURE 4.61

Example sequential circuit.

4.26 (Sequential ATPG) Consider an iterative logic array (ILA) expansion of a
sequential circuit, where the initial pseudo primary inputs are fully control-
lable. Show that the states reachable in successive time frames of the ILA
shrink monotonically.

4.27 (Simulation-Based ATPG) Design a simple genetic-algorithm based ATPG
for combinational circuits. Design the fitness to be the number of faults
detected. Adjust the GA parameters to observe the effectiveness of the test
generator.
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4.28 (Simulation-Based ATPG) Design a simple genetic-algorithm-based ATPG
for sequential circuits, where an individual is a concatenation of several
vectors. Design the fitness to be the number of faults detected. Adjust the GA
parameters to observe the effectiveness of the test generator.

4.29 (Advanced Simulation-Based ATPG) Illustrate an example where a
sequence that is able to propagate a fault-effect from a flip-flop FFi to a pri-
mary output for fault f1 cannot propagate a fault effect at the same flip-flop
FFi for a different fault fj.

4.30 (Hybrid ATPG) Consider a fault f that is aborted by both deterministic and
simulation-based test generators.

a. What characteristics can be said for f considering that it is aborted by a
deterministic ATPG?

b. What characteristics can be said for f considering that it is aborted by a
simulation-based ATPG?

c. Suppose a hybrid ATPG detects f ; what synergy is explored to detect f ?

4.31 (Path-Delay ATPG) Consider the circuit fragment shown in Figure 4.62.

a
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h
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j

� FIGURE 4.62

Example circuit.

a. Generate all paths in this circuit. Howmany paths are there in this circuit?

b. Which paths are functionally unsensitizable?

c. For those sensitizable paths, which ones are robustly testable, and which
ones are nonrobustly testable?

4.32 (Path-Delay ATPG) Given a combinational circuit with the knowledge of the
implication a= 1→ b= 1. How can this knowledge be used to deduce certain
paths are unsensitizable?
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4.33 (Path-Delay ATPG) Construct the table for the XNOR operation for the
5-valued system similar to Tables 4.12, 4.13, and 4.14.

4.34 (Path-Delay ATPG) Consider a full-scan circuit. Discuss how incidental
detection of a sequentially untestable path-delay fault in the full-scan mode
can lead to yield loss.

4.35 (Transition Test Chains) Consider the dictionary of excited and detected
stuck-at faults of a test set shown in Table 4.18. Construct the smallest set of
vectors that can detect as many transition faults as possible using only these
seven stuck-at vectors.

TABLE 4.18 � Fault Dictionary Without Fault Dropping

Vectors Excited Faults Detected Faults

V1 a/0� b/0� c/0� d/0 e/1� f/1

V2 c/0� f/0� g/0� h/0 e/1� f/1

V3 d/0� e/0� h/0� i/0 a/1� b/1� c/1� f/1� g/1

V4 a/0� b/0� g/0� i/0 d/1� e/1� f/1

V5 c/0� d/0� g/0 a/1� d/1� h/1� i/1

V6 d/0� e/0� i/0 a/1� b/1� c/1� f/1� g/1

V7 b/0� g/0 e/1� i/1

4.36 (Bridging Faults) Consider a bridging fault between the outputs of an AND
gate x= ab and an OR gate y= c+d. What values to abcd would induce the
largest current in the bridge?

4.37 (A Design Practice) Use the pseudo-random pattern generator
and the ATPG program provided online to generate test sets for
a number of combinational benchmark circuits. Compare and
contrast the execution time and fault coverage obtained by the

random TPG and the ATPG. What benefits does each have?

4.38 (A Design Practice) Repeat Problem 4.37 for sequential bench-
mark circuits.

4.39 (A Design Practice) Use the pseudo-random pattern generator
provided online to generate test sets for a number of combina-
tional benchmark circuits. Then, use the ATPG program also
provided online to generate test vectors only for those undetected

faults by the random vectors. Compare and contrast the execution time
and fault coverage obtained by such a combined random and deterministic
approach.

4.40 (A Design Practice) Repeat Problem 4.39 for sequential bench-
mark circuits.
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ABOUT THIS CHAPTER

Logic built-in self-test (BIST) is a design for testability (DFT) technique in which
a portion of a circuit on a chip, board, or system is used to test the digital logic
circuit itself. Logic BIST is crucial for many applications, in particular for life-
critical and mission-critical applications. These applications commonly found in
the aerospace/defense, automotive, banking, computer, healthcare, networking, and
telecommunications industries require on-chip, on-board, or in-system self-test to
improve the reliability of the entire system, as well as the ability to perform remote
diagnosis.
This chapter first introduces the basic concepts and design rules of logic BIST.

Next, we focus on a number of test pattern generation and output response anal-
ysis techniques suitable for BIST implementations. Test pattern generation tech-
niques discussed include exhaustive testing, pseudo-random testing, and pseudo-
exhaustive testing. Output response analysis techniques discussed include ones
count testing, transition count testing, and signature analysis. Specific logic BIST
architectures along with methods to further improve the circuit’s fault coverage are
then described, including the industry’s widely used STUMPS architecture.
Finally, various BIST timing control diagrams are shown to illustrate how to test

faults in a scan-based design containing multiple clock domains. This is particularly
important for slow-speed testing of structural faults, such as stuck-at faults and
bridging faults, as well as at-speed testing of timing-related delay faults, such as
path-delay faults and transition faults.
A primary objective of this chapter is to enable the reader to design a logic BIST

system comprised of a test pattern generator, output response analyzer, and logic
BIST controller; therefore, we include a design practice example at the end of the
chapter and show all necessary steps to arrive at the logic BIST system design,
verify its correctness, and improve its fault coverage.
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5.1 INTRODUCTION

With recent advances in semiconductor manufacturing technology, the production
and usage of very-large-scale integration (VLSI) circuits has run into a variety of
testing challenges during wafer probe, wafer sort, pre-ship screening, incoming test
of chips and boards, test of assembled boards, system test, periodic maintenance,
repair test, etc. Traditional test techniques that use automatic test pattern genera-
tion (ATPG) software to target single faults for digital circuit testing have become
quite expensive and can no longer provide sufficiently high fault coverage for deep
submicron or nanometer designs from the chip level to the board and system levels.
One approach to alleviate these testing problems is to incorporate built-in self-

test (BIST) features into a digital circuit at the design stage [McCluskey 1986]
[Abramovici 1994] [Bushnell 2000] [Mourad 2000] [Stroud 2002] [Jha 2003]. With
logic BIST, circuits that generate test patterns and analyze the output responses of
the functional circuitry are embedded in the chip or elsewhere on the same board
where the chip resides.
There are two general categories of BIST techniques for testing random logic:

(1) online BIST and (2) offline BIST. A general form of logic BIST techniques is
shown in Figure 5.1 [Abramovici 1994].
Online BIST is performed when the functional circuitry is in normal operational

mode. It can be done either concurrently or nonconcurrently. In concurrent online
BIST, testing is conducted simultaneously during normal functional operation. The
functional circuitry is usually implemented with coding techniques or with dupli-
cation and comparison [Abramovici 1994]. When an intermittent or transient error
is detected, the system will correct the error on the spot, rollback to its previously
stored system states, and repeat the operation, or generate an interrupt signal for
repeated failures. These techniques are discussed in more detail in Chapter 12. In
nonconcurrent online BIST, testing is performed when the functional circuitry is
in idle mode. This is often accomplished by executing diagnosis software routines
(macrocode) or diagnosis firmware routines (microcode) [Abramovici 1994]. The
test process can be interrupted at any time so that normal operation can resume.
Offline BIST is performed when the functional circuitry is not in normal mode.

This technique does not detect any real-time errors but is widely used in the industry

BIST

Offline Online

Concurrent NonconcurrentFunctional Structural

� FIGURE 5.1

Logic BIST techniques.
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for testing the functional circuitry at the system, board, or chip level to ensure
product quality.
Functional offline BIST performs a test based on the functional specification

of the functional circuitry and often employs a functional or high-level fault model.
Normally such a test is implemented as diagnostic software or firmware.
Structural offline BIST performs a test based on the structure of the functional

circuitry. There are two general classes of structural offline BIST techniques: (1)
external BIST, in which test pattern generation and output response analysis is
done by circuitry that is separate from the functional circuitry being tested, and (2)
internal BIST, in which the functional storage elements are converted into test
pattern generators and output response analyzers. Some external BIST schemes test
sequential logic directly by applying test patterns at the inputs and analyzing the
responses at its outputs. Such techniques are often used for board-level and system-
level self-test. The BIST schemes discussed here all assume that the functional
storage elements of the circuit are converted into a scan chain or multiple scan
chains for combinational circuit testing. Such schemes are much more common
than those that involve sequential circuit testing and are the primary focus of this
chapter.
Figure 5.2 shows a typical logic BIST system using the structural offline BIST

technique. The test pattern generator (TPG) automatically generates test patterns
for application to the inputs of the circuit under test (CUT). The output response
analyzer (ORA) automatically compacts the output responses of the CUT into a
signature. Specific BIST timing control signals, including scan enable signals and
clocks, are generated by the logic BIST controller for coordinating the BIST
operation among the TPG, CUT, and ORA. The logic BIST controller provides a
pass/fail indication once the BIST operation is complete. It includes comparison
logic to compare the final signature with an embedded golden signature, and often
comprises diagnostic logic for fault diagnosis. As compaction is commonly used
for output response analysis, it is required that all storage elements in the TPG,

Logic
BIST

Controller

Test Pattern Generator
(TPG)

Output Response Analyzer
(ORA)

Circuit Under Test
(CUT)

� FIGURE 5.2

A typical logic BIST system.
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CUT, and ORA be initialized to known states prior to self-test, and no unknown (X)
values be allowed to propagate from the CUT to the ORA. In other words, the CUT
must comply with additional BIST-specific design rules.
There are a number of advantages to using the structural offline BIST technique

rather than conventional scan:

� BIST can be made to effectively test and report the existence of errors on the
board or system and provide diagnostic information as required; it is always
available to run the test and does not require the presence of an external tester.

� Because BIST implements most of the tester functions on-chip, the origin of
errors can be easily traced back to the chip; some defects are detected without
being modeled by software. N-detect, a method for detecting a fault Ntimes,
is done automatically. At-speed testing, which is inherent in BIST, can be used
to detect many delay faults.

� Test costs are reduced due to reduced test time, tester memory requirements,
or tester investment costs, as most of the tester functions reside on-chip itself.

However, there are also disadvantages associated with this approach. More strin-
gent BIST-specific design rules are required to deal with unknown (X) sources
originating from analog blocks, memories, non-scan storage elements, asyn-
chronous set/reset signals, tristate buses, false paths, and multiple-cycle paths, to
name a few. Also, because pseudo-random patterns are mostly used for BIST pat-
tern generation, additional test points (including control points and observation
points) may have to be added to improve the circuit’s fault coverage.
While BIST-specific design rules are required and the BIST fault coverage may be

lower than that using scan, BIST does eliminate the expensive process of software
test pattern generation and the huge test data volume necessary to store the output
responses for comparison. More importantly, a circuit embedded with BIST cir-
cuitry can be easily tested after being integrated into a system. Periodic in-system
self-test, even using test patterns with less than perfect fault coverage, can diagnose
problems down to the level where the BIST circuitry is embedded. This allows
system repair to become trivial and economical.

5.2 BIST DESIGN RULES

Logic BIST requires much more stringent design restrictions when compared to
conventional scan. While many scan design rules discussed in Chapter 2 are optional
for scan designs, they are mandatory for BIST designs. The major logic BIST design
restriction relates to the propagation of unknown (X) values. Because any unknown
(X) value that propagates directly or indirectly to the output response analyzer will
corrupt the signature and cause the BIST design to malfunction, no unknown (X)
values can be tolerated. This is different from scan designs where unknown (X)
values present in a scan design only result in fault coverage degradation. Therefore,
when designing a logic BIST system, it is essential that the circuit under test meet
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all scan design rules and BIST-specific design rules, called BIST design rules. The
process of taking a scan-based design andmaking it meet all additionalBIST-specific
design rules turns the design into a BIST-ready core.

5.2.1 Unknown Source Blocking
There are many unknown (X) sources in a CUT or BIST-ready core. Any unknown
(X) source in the BIST-ready core, which is capable of propagating its unknown
(X) value to the ORA directly or indirectly, must be blocked and fixed using a DFT
repair approach often called X-bounding or X-blocking. Figure 5.3 shows a few of
the more typically used X-bounding methods for blocking an unknown (X) source:
The 0-control point forces an X source to 0; the 1-control point controls the X
source to 1; the bypass logic allows the output of the X source to receive both 0
and 1 from a primary input (PI) or an internal node; the control-only scan point
drives both 0 and 1 through a storage element, such as D flip-flop; and, finally, the
scan point can capture the X-source value and drive both 0 and 1 through a scan
cell, such as scan D flip-flop or level-sensitive scan design (LSSD) shift register
latch (SRL) [Eichelberger 1977].
Depending on the nature of each unknown (X) source, several X-bounding meth-

ods can be appropriate for use. The most common problems inherent in these
approaches include: (1) that they might increase the area of the design, and (2) that
they might impact timing.

5.2.1.1 Analog Blocks

Examples of analog blocks are analog-to-digital converters (ADCs). Any analog
block output that can exhibit unknown (X) behavior during test has to be forced to a

(b)

X

BIST_mode

(a)

X

BIST_mode

(d)

0

1

BIST_mode

X

D Q

CKCK

D

(c)

0

1

BIST_mode

X

from PI or
Internal node

(e)

0

1

BIST_mode

X

D Q

CKCK

D

0

1
SE

� FIGURE 5.3

Typical X-bounding methods for blocking an unknown (X) source: (a) 0-control point; (b) 1-control point;
(c) bypass logic; (d) control-only scan point; and (e) scan point.
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known value. This can be accomplished by adding a 0-control point, 1-control point,
bypass logic, or control-only scan point. We recommend the latter two approaches
because they yield higher fault coverage than the former two approaches.

5.2.1.2 Memories and Non-Scan Storage Elements

Examples of memories are dynamic random-access memories (DRAMs), static
random-access memories (SRAMs), or flash memories. Examples of non-scan stor-
age elements are D flip-flops or D latches. Bypass logic is typically used to block
each unknown (X) value originating from a memory or non-scan storage element.
Another approach is to use an initialization sequence to set a memory or non-scan
storage element to a known state. This is typically done to avoid adding delay to
critical (functional) paths. Care must be taken to ensure that the stored state is not
corrupted throughout the BIST operation.

5.2.1.3 Combinational Feedback Loops

All combinational feedback loops must be avoided. If they are unavoidable, then
each loop must be broken using a 0-control point, a 1-control point, or a scan point.
We recommend adding scan points because they yield higher fault coverage than
the other approaches.

5.2.1.4 Asynchronous Set/Reset Signals

As indicated in Chapter 2, asynchronous set or reset can destroy the data during
shift operation if a pattern causes the set/reset signal to become active. The asyn-
chronous set or reset can be disabled using an external set/reset disable (RE) pin
(see Figure 2.26). This set/reset disable pin must be set to 1 during shift opera-
tion. This may become cumbersome for BIST applications where there is a need
to use the pin for other purposes. Thus, we recommend using the existing scan
enable (SE) signal to protect each shift operation and adding a set/reset clock point
(SRCK) on each set/reset signal to test the set/reset circuitry, as shown in Figure 5.4
[Abdel-Hafez 2004].

Set / Reset
Circuitry

R
D Q
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CK

0

1
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� FIGURE 5.4

Set/reset clock point for testing a set/reset-type scan cell.
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� FIGURE 5.5

Example timing control diagram for testing data and set/reset faults.

In addition, we recommend testing all data and set/reset faults using two separate
BIST sessions, as shown in Figure 5.5. The timing diagram in this figure is used
for testing a circuit having one system clock (CK) and one added set/reset clock. To
test data faults in the functional logic, a clock pulse C1 is triggered from CK while
SRCK is held inactive in one capture window. Similarly, to test set/reset faults in
the set/reset circuitry, C2 is enabled while CK is held inactive in another capture
window. Using this approach, we can avoid races and hazards and prevent data in
scan cells from being destroyed by the set/reset signals.

5.2.1.5 Tristate Buses

Bus contention occurs when two drivers force different values on the same bus
which can damage the chip; hence, it is important to prevent bus conflicts during
normal operation as well as shift operation [Cheung 1996]. For BIST applications,
since pseudo-random patterns are commonly used, it is also crucial to protect the
capture operation [Al-Yamani 2002]. To avoid potential bus contention, it is best
to resynthesize each bus with multiplexers. If this is impractical, make sure only
one tristate driver is enabled at any given time. The one-hot decoder shown in
Figure 5.6 is an example of a circuit that can ensure that only one driver is selected
during each shift or capture operation.

(a) (b)
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� FIGURE 5.6

A one-hot decoder for testing a tristate bus with two drivers: (a) tristate bus, and (b) one-hot decoder.
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5.2.1.6 False Paths

False paths are not normal functional paths. They do no harm to the chip during
normal operation; however, for delay fault testing, a pseudo-random pattern might
adversely attempt to test a selected false path. Because false paths are not exercised
during normal circuit operation, they typically do not meet timing specifications,
which can result in a mismatch during logic BIST delay fault testing. To avoid this
potential problem, we recommend adding a 0-control point or 1-control point to
each false path.

5.2.1.7 Critical Paths

Critical paths are timing-sensitive functional paths. Because the timing of these
paths is critical, no additional gates are allowed to be added to the path, to pre-
vent increasing the delay of the critical path. In order to remove an unknown (X)
value from a critical path, we recommend adding an extra input pin to a selected
combinational gate, such as an inverter, NAND gate, or NOR gate, on the critical
path to minimize the added delay. The combinational gate is then converted to
an embedded 0-control point or embedded 1-control point as shown in Figure 5.7,
where an inverter is selected for adding the extra input.

5.2.1.8 Multiple-Cycle Paths

Multiple-cycle paths are normal functional paths but data are expected to arrive
after two or more cycles. Similar to false paths, they can cause mismatches if
exercised during delay fault testing, as they are intended to be tested in one cycle. To
avoid this potential problem, we recommend adding a 0-control point or 1-control
point to each multiple-cycle path or holding certain scan cell output states to avoid
those multiple-cycle paths.

5.2.1.9 Floating Ports

Neither primary inputs (PIs) nor primary outputs (POs) can be floating. These
ports must have a proper connection to power (VDD) or ground (VSS). Also, floating
inputs to any internal modules must be avoided. This has a potential chance to
propagate unknown (X) values to the ORA.

(a) (b) (c)

X X

BIST_mode

X

BIST_mode

� FIGURE 5.7

Embedded control points for testing a critical path having an inverter: (a) inverter; (b) embedded 0-control
point; and (c) embedded 1-control point.
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Forcing a bidirectional port to output mode.
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Re-timing logic among the TPG, CUT, and ORA.

5.2.1.10 Bidirectional I/O Ports

Bidirectional I/O ports are commonly used in a design. For BIST operations, make
sure to fix the direction of each bidirectional I/O port to either input or output mode.
Figure 5.8 shows an example of forcing a bidirectional I/O port to output mode.

5.2.2 Re-Timing
Because the TPG and the ORA are typically placed far from the CUT, races and
hazards caused by clock skews may occur between the TPG and the (scan chain)
inputs of the CUT as well as between the (scan chain) outputs of the CUT and
the ORA. To avoid these potential problems and ease physical implementation, we
recommend adding re-timing logic between the TPG and the CUT and between
the CUT and the ORA. The re-timing logic should consist of at least one negative-
edge pipelining register (D flip-flop) and one positive-edge pipelining register (D
flip-flop). Figure 5.9 shows an example of re-timing logic among the TPG, CUT,
and ORA, using two pipelining registers on each end. Note that the three clocks
(CK1, CK2, and CK3) could belong to one clock tree.

5.3 TEST PATTERN GENERATION

For logic BIST applications, in-circuit TPGs constructed from linear feedback
shift registers (LFSRs) are most commonly used to generate test patterns or test
sequences for exhaustive testing, pseudo-random testing, and pseudo-exhaustive
testing. Exhaustive testing always guarantees 100% single-stuck and multiple-
stuck fault coverage. This technique requires all possible 2n test patterns to be
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applied to an n-input combinational circuit under test (CUT), which can take too
long for combinational circuits where n is huge; therefore, pseudo-random testing
[Bardell 1987] is often used for generating a subset of the 2n test patterns and uses
fault simulation to calculate the exact fault coverage. In some cases, this might
become quite time consuming, if not infeasible. In order to eliminate the need for
fault simulation while at the same time maintaining 100% single-stuck fault cov-
erage, we can use pseudo-exhaustive testing [McCluskey 1986] to generate 2w or
2k−1 test patterns, wherew<k<n, when each output of the n-input combinational
CUT at most depends on w inputs. For testing delay faults, hazards must also be
taken into consideration.

Standard LFSR

Figure 5.10 shows an n-stage standard LFSR. It consists of n D flip-flops and a
selected number of exclusive-OR (XOR) gates. Because XOR gates are placed on the
external feedback path, the standard LFSR is also referred to as an external-XOR
LFSR [Golomb 1982].

Modular LFSR

Similarly, an n-stage modular LFSR with each XOR gate placed between two adja-
cent D flip-flops, as shown in Figure 5.11, is referred to as an internal-XOR LFSR
[Golomb 1982]. The modular LFSR runs faster than its corresponding standard
LFSR, because each stage introduces at most one XOR-gate delay.

Si0 Si1 Sin – 2 Sin – 1

hn – 1 hn – 2 h2 h1

� FIGURE 5.10

An n-stage (external-XOR) standard LFSR.

Si 0 Si 1 Sin – 2 Sin – 1

h1 h2 hn  – 2 hn – 1

� FIGURE 5.11

An n-stage (internal-XOR) standard LFSR.
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LFSR Properties

The internal structure of the n-stage LFSR in each figure can be described by
specifying a characteristic polynomial of degree n, f�x�, in which the symbol hi is
either 1 or 0, depending on the existence or absence of the feedback path, where:

f�x�= 1+h1x+h2x
2+ · · · +hn−1x

n−1+xn

Let Si represent the contents of the n-stage LFSR after ith shifts of the initial
contents, S0, of the LFSR, and let Si�x� be the polynomial representation of Si.
Then, Si�x� is a polynomial of degree n−1, where:

Si�x�= Si0+Si1x+Si2x
2+ · · · +Sin−2x

n−2+Sin−1x
n−1

If T is the smallest positive integer such that f�x� divides 1+xT , then the integer T
is called the period of the LFSR. If T = 2n−1, then the n-stage LFSR generating
the maximum-length sequence is called a maximum-length LFSR. For example,
consider the four-stage standard and modular LFSRs shown in Figure 5.12a and
Figure 5.12b, below. The characteristic polynomials, f�x�, used to construct both
LFSRs are 1+x2+x4 and 1+x+x4, respectively.
The test sequences generated by each LFSR, when its initial contents, S0, are set

to {0001} or S0�x�= x3, are listed in Figures 5.12c and 5.12d, respectively. Because

(a) (b)

0 0 0 1
1 0 0 0 
0 1 0 0 
1 0 1 0 
0 1 0 1 
0 0 1 0 
0 0 0 1
1 0 0 0 
0 1 0 0 
1 0 1 0 
0 1 0 1 
0 0 1 0 
0 0 0 1
1 0 0 0 
0 1 0 0 
1 0 1 0

0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0
0 1 1 1
1 1 1 1
1 0 1 1
1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(c) (d)

� FIGURE 5.12

Example four-stage test pattern generators (TPGs): (a) four-stage standard LFSR; (b) four-stage modular
LFSR; (c) test sequence generated by (a); and (d) test sequence generated by (b).
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the first test sequence repeats after 6 patterns and the second test sequence repeats
after 15 patterns, the LFSRs have periods of 6 and 15, respectively. This further
implies that 1+ x6 can be divided by 1+ x2 + x4, and 1+ x15 can be divided by
1+x+x4.
Define a primitive polynomial of degree n over Galois field GF(2), p�x�, as a

polynomial that divides 1+xT , but not 1+xi, for any integer i < T, where T = 2n−1
[Colomb 1982]. A primitive polynomial is irreducible. Because T = 15 = 24− 1,
the characteristic polynomial, f�x� = 1+x+x4, used to construct Figure 5.12b is a
primitive polynomial; thus, the modular LFSR is a maximum-length LFSR. Let:

r�x�= f�x�−1 = xnf�x−1�

Then r�x� is defined as a reciprocal polynomial of f�x� [Peterson 1972]. A reciprocal
polynomial of a primitive polynomial is also a primitive polynomial. Thus, the
reciprocal polynomial of f�x�= 1+x+x4 is also a primitive polynomial, with p�x�=
r�x�= 1+x3+x4.

Hybrid LFSR

Let a polynomial overGF(2), a�x�= 1+b�x�+c�x�, be said to be fully decomposable
if both b�x� and c�x� have no common terms and there exists an integer j such that
c�x�= xjb�x�, where j≥ 1. If f�x� is fully decomposable such that:

f�x�= 1+b�x�+xjb�x�

then a (hybrid) top–bottom LFSR [Wang 1988a] can be constructed using the
connection polynomial:

s�x�= 1+ ∧xj+xjb�x�

where ∧xj indicates that the XOR gate with one input taken from the jth stage output
of the LFSR is connected to the feedback path, not between stages. Similarly, if f�x�
is fully decomposable such that:

f�x�= b�x�+xjb�x�+xn

then a (hybrid) bottom–top LFSR [Wang 1988a] can be constructed using the
connection polynomial:

s�x�= b�x�+ ∧xn−j+xn

It was shown in [Wang 1988a] that if top–bottom LFSRs exist for a characteristic
polynomial, f�x�, then bottom–top LFSRs will exist for its reciprocal polynomial,
r�x�. Assume that a standard or modular LFSR uses m XOR gates, where m is an
odd number. If its characteristic polynomial, f�x�, is fully decomposable, then a
hybrid LFSR can be realized with only (m+1)/2 XOR gates. Figure 5.13 shows two
example five-stage hybrid LFSRs each using two, rather than three, XOR gates.
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(a)

 (b)

� FIGURE 5.13

Hybrid LFSRs: (a) five-stage top–bottom LFSR using s(x) =1+ ∧x2+x4+x5 for f(x) =1+x2+x3+x4+x5,
and (b) five-stage bottom–top LFSR using s(x) = 1+x 2+ ∧x4+x5 for f(x) = 1+x+x2+x3+x5.

Table 5.1 lists a set of primitive polynomials of degree n up to 100 [Bardell
1987]. A different set was given in [Wang 1988a]. Each polynomial can be used
to construct minimum-length LFSRs in standard, modular, or hybrid form. For
primitive polynomials of degree up to 300, consult [Bardell 1987].

5.3.1 Exhaustive Testing
Exhaustive testing requires applying 2n exhaustive patterns to an n-input combi-
national circuit under test (CUT). Any binary counter can be used as an exhaustive
pattern generator (EPG) for this purpose; however, because the order of genera-
tion of the inputs is not important, it may be more efficient to use an autonomous,
maximum-length LFSR that can cycle through all states. To do this, it is necessary to
modify the LFSR so that the all-zero state is included [McCluskey 1981] [McCluskey
1986]. A general procedure for constructing modified (maximum-length) LFSRs
that include the all-zero state is given in [Wang 1986b]. These modified LFSRs are
called complete LFSRs (CFSRs).

5.3.1.1 Binary Counter

Figure 5.14 shows an example of a 4-bit binary counter design [Wakerly 2000] for
testing a four-input combinational CUT. Binary counters are simple to design but
require more hardware than LFSRs.

5.3.1.2 Complete LFSR

Figures 5.15a and 5.15b show two complete LFSRs for testing the four-input CUT.
Each figure is reconfigured from a four-stage maximum-length LFSR such that
the resulting standard or modular CFSR has period 16. In each CFSR, an XOR
gate is inserted into the last stage of the LFSR, and a NOR gate (with n− 1 = 3
inputs from the first n−1 stages of the LFSR) is used as a zero-detector. With
this reconfiguration, both CFSRs insert the all-zero state right after state {0001} is
reached.
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TABLE 5.1 � Primitive Polynomials of Degree n up to 100

n Exponents n Exponents n Exponents n Exponents

1 0 26 8 7 1 0 51 16 15 1 0 76 36 35 1 0

2 1 0 27 8 7 1 0 52 3 0 77 31 30 1 0

3 1 0 28 3 0 53 16 15 1 0 78 20 19 1 0

4 1 0 29 2 0 54 37 36 1 0 79 9 0

5 2 0 30 16 15 1 0 55 24 0 80 38 37 1 0

6 1 0 31 3 0 56 22 21 1 0 81 4 0

7 1 0 32 28 27 1 0 57 7 0 82 38 35 3 0

8 6 5 1 0 33 13 0 58 19 0 83 46 45 1 0

9 4 0 34 15 14 1 0 59 22 21 1 0 84 13 0

10 3 0 35 2 0 60 1 0 85 28 27 1 0

11 2 0 36 11 0 61 16 15 1 0 86 13 12 1 0

12 7 4 3 0 37 12 10 2 0 62 57 56 1 0 87 13 0

13 4 3 1 0 38 6 5 1 0 63 1 0 88 72 71 1 0

14 12 11 1 0 39 4 0 64 4 3 1 0 89 38 0

15 1 0 40 21 19 2 0 65 18 0 90 19 18 1 0

16 5 3 2 0 41 3 0 66 10 9 1 0 91 84 83 1 0

17 3 0 42 23 22 1 0 67 10 9 1 0 92 13 12 1 0

18 7 0 43 6 5 1 0 68 9 0 93 2 0

19 6 5 1 0 44 27 26 1 0 69 29 27 2 0 94 21 0

20 3 0 45 4 3 1 0 70 16 15 1 0 95 11 0

21 2 0 46 21 20 1 0 71 6 0 96 49 47 2 0

22 1 0 47 5 0 72 53 47 6 0 97 6 0

23 5 0 48 28 27 1 0 73 25 0 98 11 0

24 4 3 1 0 49 9 0 74 16 15 1 0 99 47 45 2 0

25 3 0 50 27 26 1 0 75 11 10 1 0 100 37 0

Note: “24 4 3 1 0’’ means p(x) = x24+x4+x3+x1+x0 = x24+x4+x3+x+1.
Source: P. H. Bardell et al., Built-In Test for VLSI: Pseudorandom Techniques, John Wiley &
Sons, Somerset, NJ, 1987.

X1 X2 X3 X4

� FIGURE 5.14

Example binary counter as EPG.
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(a) (b)

(c) (d)

0 0 0 10 100

0 0 0 1 1 0 0 0

� FIGURE 5.15

Example complete LFSRs (CFSRs) as EPGs: (a) four-stage standard CFSR; (b) four-stage modular CFSR;
(c) minimized version of (a); and (d) minimized version of (b).

It is possible to further minimize both CFSR designs. For any standard CFSR,
this can be by Boolean minimization, as shown in Figure 5.15c. For any modular
CFSR, the minimization is done by replacing the XOR gate at the last stage by an
OR gate and reconnecting the tap to the OR-gate output, as shown in Figure 5.15d.
With this arrangement, the modular CFSR inserts the all-zero state right after state
{1000} is reached and then switches to state {0100} on the next clock.
If further minimization is necessary, then using the hybrid LFSR scheme pre-

sented above can save about half of the XOR gates required for the feedback
connection.
Exhaustive testing guarantees that all detectable, combinational faults (those that

do not change a combinational circuit into a sequential circuit) will be detected. This
approach is especially useful for circuits where the number of inputs, n, is a small
number (e�g�, 20 or less). When n is larger than 20, the test time may be prohibitively
long and is thus not recommended. The following techniques are aimed at reducing
the number of test patterns. They are recommended when exhaustive testing is
impractical.

5.3.2 Pseudo-Random Testing
One approach that can reduce test length but sacrifices the circuit fault cover-
age uses a pseudo-random pattern generator (PRPG) for generating a pseudo-
random sequence of test patterns [Bardell 1987] [Rajski 1998] [Bushnell 2000]
[Jha 2003]. Pseudo-random testing has the advantage of being applicable to both
sequential and combinational circuits; however, there are difficulties in determin-
ing the required test length and fault coverage. Schemes to estimate the random
test length required to achieve a certain level of fault detection or obtain a certain
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defect level can be found in [Savir 1984b], [Williams 1985], [Chin 1987], [Wagner
1987], and [Seth 1990]. Its effectiveness has been reported in [Lisanke 1987] and
[Wunderlich 1988].

5.3.2.1 Maximum-Length LFSR

Maximum-length LFSRs are commonly used for pseudo-random pattern genera-
tion. Each LFSR produces a sequence with 0.5 probability of generating 1’s (or
with probability distribution 0.5) at every output. The LFSR pattern generation
technique that uses these LFSRs in standard, modular, or hybrid form to generate
patterns for the entire design has the advantage of being very easy to implement.
Themajor problemwith this approach is that some circuits may be random-pattern
resistant (RP-resistant) [Savir 1984a]; that is, either the probability of certain nodes
randomly receiving a 0 or 1 or the probability of observing certain nodes at the
circuit outputs is low, assuming equi-probable inputs. For example, consider a five-
input OR gate. The probability of applying an all-zero pattern to all inputs is 1/32.
This makes it difficult to test the RP-resistant OR-gate output stuck-at-1.

5.3.2.2 Weighted LFSR

It is possible to increase fault coverage (and detect most RP-resistant faults) in
RP-resistant designs. A weighted pattern generation technique employing an
LFSR and a combinational circuit was first described in [Schnurmann 1975]. The
combinational circuit inserted between the output of the LFSR and the CUT is to
increase the frequency of occurrence of one logic value while decreasing the other
logic value. This approach may increase the probability of detecting those faults
that are difficult to detect using the typical LFSR pattern generation technique.
Implementation methods for realizing this scheme are further discussed in [Chin

1984]. The weighted pattern generation technique described in that paper mod-
ifies the maximum-length LFSR to produce an equally weighted distribution of
0’s and 1’s at the input of the CUT. It skews the LFSR probability distribution
of 0.5 to either 0.25 or 0.75 to increase the chance of detecting those faults that
are difficult to detect using just a 0.5 distribution. Better fault coverage was also
found in [Wunderlich 1987] where probability distributions in a multiple of 0.125
(rather than 0.25) are used. For some circuits, several programmable probabilities
or weight sets are required in order to further increase each circuit’s fault coverage
[Waicukauski 1989] [Bershteyn 1993] [Kapur 1994] [Lai 2005]. Additional discus-
sions on weighted pattern generation can be found in the books [Rajski 1998] and
[Bushnell 2000]. Figure 5.16 shows a four-stage weighted (maximum-length) LFSR
with probability distribution 0.25 [Chin 1984].

5.3.2.3 Cellular Automata

Cellular automata were first introduced in [Wolfram 1983]. They yielded bet-
ter randomness property than LFSRs [Hortensius 1989]. The cellular-automaton-
based (or CA-based) pseudo-random pattern generator (PRPG) “is attractive
for BIST applications” [Khara 1987] [Gloster 1988] [Wang 1989] [van Sas 1990]
because it: (1) provides patterns that look more random at the circuit inputs, (2) has
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� FIGURE 5.16

Example weighted LFSR as PRPG.

higher opportunity to reach very high fault coverage in a circuit that is RP-resistant,
and (3) has implementation advantages as it only requires adjacent neighbor com-
munication (no global feedback, unlike the modular LFSR case).
A cellular automaton (CA) is a collection of cells with forward and backward

connections. A general structure is shown in Figure 5.17a. Each cell can only
connect to its local neighbors (adjacent left and right cells). The connections are
expressed as rules; each rule determines the next state of a cell based on the state
of the cell and its neighbors. Assume cell i can only talk with its neighbors, I−1
and i+1. Define:

Rule 90 � xi�t+1�= xi−1�t�+xi+1�t�

and

Rule 150 � xi�t+1�= xi−1�t�+xi�t�+xi+1�t�

(a)

(b) (c)

‘0’ Cell
0

Cell
1

‘0’

Cell
n – 2

Cell
n – 1

X0 X1 X3X2

‘0’

‘0’

� FIGURE 5.17

Example cellular automation (CA) as PRPG: (a) general structure of an n-stage CA; (b) four-stage CA; and
(c) test sequence generated by (b).
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Then the two rules, rule 90 and rule 150, can be established based on the following
state transition table:

xi−1�t�xi�t�xi+1�t� 111 110 101 100 011 010 001 000

Rule 90 � xi�t+1� 0 1 0 1 1 0 1 0

26+24+23+21 = 90

Rule 150 � xi�t+1� 1 0 0 1 0 1 1 0

27+24+22+21 = 150

The terms rule 90 and rule 150 were derived from their decimal equivalents of the
binary code for the next state of cell i [Hortensius 1989]. Figure 5.17b shows an
example of a four-stage CA generated by alternating rules 150 (on even cells) and
90 (on odd cells). Similar to the four-stage modular LFSR given in Figure 5.12b, the
four-stage CA generates a maximum-length sequence of 15 distinct states, as listed
in Figure 5.17c.
It has been shown in [Hortensius 1989] that, by combining cellular automata

rules 90 and 150, an n-stage CA can generate a maximum-length sequence of 2n−1.
The construction rules for 4 ≤ n ≤ 53 can be found in [Hortensius 1989] and are
listed in Table 5.2.
[Serra 1990] and [Slater 1990] demonstrated an isomorphism between a one-

dimensional linear cellular automaton and a maximum-length LFSR having the
same number of stages; however, state sequencing may still differ between the CA
and the LFSR. CAs have much less shift-induced bit value correlation (only on
those left-/right-edge-cells built with rule 90) than LFSRs. The LFSR, however, can
be made more random by using a linear phase shifter [Das 1990].
The CA-based PRPG can be programmed as a universal CA for generating differ-

ent orders of test sequences. A universal CA-cell for generating patterns based on
rule 90 or rule 150 is given in Figure 5.18 [Wang 1989].When the RULE150_SELECT
signal is set to 1, the universal CA-cell will behave as a rule 150 cell; otherwise, it
will act as a rule 90 cell. This universal CA structure is useful for BIST applications

Xi

Xi – 1 D Xi

Xi + 1

RULE150_SELECT

Q

� FIGURE 5.18

A universal CA-cell structure.
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TABLE 5.2 � Construction Rules for Cellular Automata of Length n up to 53

n Rulea n Rulea

4 05 29 2,512,712,103

5 31 30 7,211,545,075

6 25 31 04,625,575,630

7 152 32 10,602,335,725

8 325 33 03,047,162,605

9 625 34 036,055,030,672

10 0,525 35 127,573,165,123

11 3,252 36 514,443,726,043

12 2,525 37 0,226,365,530,263

13 14,524 38 0,345,366,317,023

14 17,576 39 6,427,667,463,554

15 44,241 40 00,731,257,441,345

16 152,525 41 15,376,413,143,607

17 175,763 42 11,766,345,114,746

18 252,525 43 035,342,704,132,622

19 0,646,611 44 074,756,556,045,302

20 3,635,577 45 151,315,510,461,515

21 3,630,173 46 0,112,312,150,547,326

22 05,252,525 47 0,713,747,124,427,015

23 32,716,432 48 0,606,762,247,217,017

24 77,226,526 49 02,675,443,137,056,631

25 136,524,744 50 23,233,006,150,544,226

26 132,642,730 51 04,135,241,323,505,027

27 037,014,415 52 031,067,567,742,172,706

28 0,525,252,525 53 207,121,011,145,676,625

a Rule is given in octal format. For n = 7, Rule = 152 = 001,101,010 =
1,101,010, where “0’’ denotes a rule 90 cell and “1’’ denotes a rule 150 cell, or
vice versa.

where it is required to obtain very high fault coverage for RP-resistant designs or
detect additional classes of faults.

5.3.3 Pseudo-Exhaustive Testing
Another approach to reduce the test time to a practical value while retaining many
of the advantages of exhaustive testing is the pseudo-exhaustive test technique. It
applies fewer than 2n test patterns to an n-input combinational CUT. The technique
depends on whether any output is driven by all of its inputs. If none of the out-
puts depends on all inputs, a verification test approach proposed in [McCluskey
1984] can be used to test these circuits. In circuits where there is one output that
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� FIGURE 5.19

An (n, w) = (4, 2) CUT.

depends on all inputs or the test time using verification testing is still too long, a
segmentation test approach must be used [McCluskey 1981]. Pseudo-exhaustive
testing guarantees single-stuck fault coverage without any detailed circuit analysis.

5.3.3.1 Verification Testing

Verification testing [McCluskey 1984] divides the circuit under test into m cones,
where m is the number of outputs. It is based on backtracing from each circuit
output to determine the actual number of inputs that drive the output. Each cone
will receive exhaustive test patterns, and all cones are tested concurrently.
Assume the combinational CUT has n inputs and m outputs. Let w be the max-

imum number of input variables upon which any output of the CUT depends.
Then, the n-input m-output combinational CUT is defined as an (n, w) CUT, where
w< n. Figure 5.19 shows an �n	w�= �4	2� CUT that will be used as an example for
designing the pseudo-exhaustive pattern generators (PEPGs).

Syndrome Driver Counter

The first method for pseudo-exhaustive pattern generation was proposed in
[Savir 1980]. Syndrome driver counters (SDCs) are used to generate test patterns
[Barzilai 1981]. The SDC can be a binary counter, a maximum-length LFSR, or
a complete LFSR. This method checks whether some circuit inputs can share the
same test signal. If n−p inputs, p < n, can share the test signals with the other
p inputs, then the circuit can be tested exhaustively with these p inputs. In this
case, the test length becomes 2p if p = w or 2p−1 if p > w. Figure 5.20a shows a
three-stage SDC used to test the circuit given in Figure 5.19. Because both inputs
x1 and x4 do not drive the same output, one test signal can be used to drive both
inputs. In this case, p is 3, and the test length becomes 23−1= 7. Designs based on
the SDC method for in-circuit test pattern generation are simple. The problem with
this method is that when p is close to n, it may still take too long to test the circuit.

Constant-Weight Counter

To resolve the test length problem, a pattern generation technique using constant-
weight counters (CWCs) was proposed in [McCluskey 1982] and [Tang 1983].
Constant-weight counters are constructed using constant-weight code or
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� FIGURE 5.20

Example SDC and CWC as PEPGs: (a) three-stage syndrome driver counter, and (b) three-stage constant-
weight counter.

M-out-of-N code. An M-out-of-N code contains a set of N-bit codewords, each hav-
ing exactlyM 1’s. Figure 5.20b shows a three-stage constant-weight counter for gen-
erating a combination of 2-out-of-3 code and 0-out-of-3 code. The constant-weight
test set is shown to be a minimum-length test set for many circuits [McCluskey
1982]; however, for circuits requiring higher M-out-of-N codes (e�g�, a 10-out-of-20
code), CWCs can become very costly to implement.

Combined LFSR/SR

An alternative to the high implementation cost of CWCs that sacrifices the min-
imum test length requirement was proposed in [Barzilai 1983] and [Tang 1984].
A combined LFSR/SR approach using a combination of an LFSR and a shift
register (SR) is used for pattern generation. Figure 5.21a shows a four-stage com-
bined LFSR/SR and its generated test sequence. We can see any two outputs of the
LFSR/SR contain four input combinations, {00, 01, 10, 11}, and hence each output
cone of the (4, 2) CUT is tested exhaustively.
The method is most effective when w is much less than n (e�g�, w<n/2); however,

it usually requires at least two seeds (starting patterns). A similar method using
maximum-length LFSRs for pseudo-exhaustive pattern generation was given in
[Lempel 1985], [Chen 1986], [Golan 1988], and [Wang 1999]. The input register to
the combinational CUT is reconfigured as a shift register during self-test. [Wang
1999] proposed inserting an AND gate and a toggle flip-flop between the maximum-
length LFSR and the SR to reduce shift power. Test patterns are shifted in from
the LFSR. Designs based on this method are simple but require more test patterns
than when using other schemes.
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� FIGURE 5.21

Example combined LFSR/SR and combined LFSR/PS as PEPGs: (a) four-stage combined LFSR/SR, and
(b) three-stage combined LFSR/PS.

Combined LFSR/PS

This multiple seed problem can be solved using linear sums [Akers 1985] or linear
codes [Vasanthavada 1985]. A combined LFSR/PS approach using a combination
of an LFSR and a linear phase shifter (PS) is used for pattern generation, where the
linear phase shifter comprises a network of XOR gates. Figure 5.21b shows a three-
stage combined LFSR/PS and its associated test sequence. Once again, because
any two outputs contain all four combinations, {00, 01, 10, 11}, this (4, 2) CUT
can be tested exhaustively. Test lengths derived with this method are very close
to the LFSR/SR approach, but this method uses at most two seeds; however, the
implementation cost for most circuits, as in the case of using CWCs, is still high.

Condensed LFSR

The multiple seed and implementation cost problems can be solved by using the
condensed LFSR approach proposed in [Wang 1986a]. Condensed LFSRs are
constructed based on linear codes [Peterson 1972]. An (n, k) linear code over
GF(2) generates a code space C containing 2k distinct codewords (n-tuples) with the
following property: if c1 ∈ C and c2 ∈ C, then c1+c2 ∈ C. Define an (n, k) condensed
LFSR as an n-stage modular LFSR with period 2k−1. A condensed LFSR for testing
an (n, w� CUT is constructed by first computing the smallest integer k such that:

w≤ �k/�n−k+1��+�k/�n−k+1��
where �x� denotes the smallest integer equal to or greater than the real number x,
and �y� denotes the largest integer equal to or smaller than the real number y.
Then, by using:

f�x�= g�x�p�x�= �1+x+x2+· · ·+xn−k�p�x�
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� FIGURE 5.22

Example condensed LFSR as PEPG: (a) a (4, 3) condensed LFSR, and (b) test sequence generated by (a).

an (n, k) condensed LFSR can be realized, where g�x� is a generator polynomial
of degree n−k generating the (n, k) linear code, and p�x� is a primitive polynomial
of degree k.
Consider the (n, k)= (4, 3) condensed LFSR shown in Figure 5.22a used to test

the (n, w)= (4, 2) CUT. Because n = 4 and w = 2, we obtain k = 3 and �n− k� =
1. Selecting p�x� = 1+ x+ x3, we have f�x� = �1+ x��1+ x+ x3� = 1+ x2 + x3 + x4.
Figure 5.22b lists the generated period-7 test sequence. It is important to note that
the seed polynomial S0�x� of the LFSR must be divisible by g�x�. In the example,
we set S0�x�= g�x�= 1+x, or S0 to �1100
.
For any given (n, w) CUT, this method uses at most two seeds and has shown to

be effective when w≥ n/2. Designs based on this method are simple; however, this
technique uses more patterns than the LFSR/SR approach when w< n/2.

Cyclic LFSR

One approach for reducing the test length when w<n/2 is to use cyclic LFSRs for
test pattern generation [Chen 1987] [Wang 1988b] [Wang 1988c]. Define an (n, k)
cyclic LFSR as an n-stage LFSR with period 2k− 1. Cyclic LFSRs are based on
cyclic codes [Peterson 1972]. An (n, k) cyclic code over GF(2) contains 2k distinct
codewords (n-tuples) with the following property: If an n-tuple is a codeword, then
the n-tuple obtained by rotating the codeword one bit to the right is also a codeword.
Cyclic codes are a subset of linear codes. Each cyclic code has a minimum distance
or weight d [Peterson 1972].
A cyclic code does not exist for every integer n; it exists for every n′ = 2b−1	 b > 1.

To exhaustively test any (n, w) CUT using cyclic codes, one must start with the
smallest integer n′ ≥ n. This method: (1) finds a generator polynomial g�x� of largest
degree k′ (or smallest degree k) for generating an �n′	 k′�= �n′	 n′ −k� cyclic code that
divides 1+ xn

′
and has a design distance d ≥ w+1, from any coding theory book

such as [Peterson 1972]; (2) uses h�x� = �1+ xn
′
�/g�x� to generate an (n′	 k) cyclic

code, which is the dual code of the (n′	 n′ −k) cyclic code generated by g�x� [Hsiao
1977], and to construct an (n′	 k) cyclic LFSR using:

f�x�= h�x�p�x�= �1+xn
′
�p�x�/g�x�

where h�x� is the parity-check polynomial of g�x� that satisfies g�x�h�x� = 1+xn
′
;

and, finally, (3) shortens this (n′	 k) cyclic LFSR to an (n, k) cyclic LFSR by deleting
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TABLE 5.3 � Generator Polynomials for Given n ′, k ′, and d

n ′ k ′ d g (x)

7 4 3 1+x+x3

7 3 4 �1+x��1+x+x3�

7 1 6 �1+x7�/�1+x�

15 11 3 1+x+x4

15 10 4 �1+x��1+x+x4�

15 7 5 �1+x+x4��1+x+x2+x3+x4�

15 6 6 �1+x��1+x+x4��1+x+x2+x3+x4�

15 5 7 �1+x+x4��1+x+x2+x3+x4��1+x+x2�

15 4 8 �1+x��1+x+x4��1+x+x2+x3+x4��1+x+x2�

15 2 10 �1+x��1+x+x4��1+x+x2+x3+x4��1+x3+x4�

15 1 14 �1+x15�/�1+x�

the rightmost, middle, or leftmost n′ −n stages from the (n′	 k) cyclic LFSR. It was
demonstrated in [Wang 1988b] that deleting the middle n′ −n stages from the (n′	 k)
cyclic LFSR yields the lowest overhead.
Table 5.3 shows a partial list of (n′	 k′) cyclic codes generated by g�x�. It was

taken from Appendix D in [Peterson 1972]. Assume that an �n	w� = �8	3� CUT is
to be tested. Because a cyclic code does not exist for n = 8, we must choose an
(n′	 k′) cyclic code with the smallest integer n′ and largest integer k′ that has a
design distance d ≥w+1= 4 where n′ > n. From Table 5.3, we obtain n′ = 15 and
k′ = 10. This allows us to build an �n′, k′� = �n′, n′ −k� = �15, 10� cyclic code with
g�x� = �1+ x��1+ x+ x4� = 1+ x2+ x4+ x5, or an �n′, k� = �15, 5� dual code using
h�x� = �1+x15�/g�x�. Selecting p�x� = 1+x2+x3+x4+x5 from [Peterson 1972], we
can then construct an �n′, k�= �15	5� cyclic LFSR with f�x�= h�x�p�x�= 1+x3+x5+
x8+x9+x11+x12+x13+x15. This cyclic LFSR uses seven XOR gates.

Figure 5.23 shows an �n, k� = �8, 5� cyclic LFSR obtained by picking the first
six stages and the last two stages of the (15, 5) cyclic LFSR that uses the least
number of XOR gates. The figure was derived according to [Wang 1988b], who
described a procedure for choosing the stage positions to be deleted. The initial
state {10100100} shown in the figure is set to its corresponding state, S0�x�, of the

11 0 1 0 0 0 0

� FIGURE 5.23

Example (8, 5) cyclic LFSR as PEPG.
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(15, 5) cyclic LFSR, where S0�x�= h�x�= �1+x15�/g�x�= 1+x2+x5+x6+x8+x9+x10.
This (8, 5) cyclic LFSR has period 31 and only uses three XOR gates.
It was shown in [Wang 1987] that when n = 2b	 b > 2, an (n, k) cyclic LFSR can

produce a longer test length than using the combined LFSR/PS approach. In this
case, an (n, k−s) shortened cyclic LFSR can be employed, where s is the number
of information bits to be deleted from the (n, k) cyclic code, 1 ≥ s < k < n. The (8,
4) shortened cyclic LFSR shown in Figure 5.24 uses eight XOR gates, but its test
length has been reduced from 31 (in the cyclic LFSR case) to 15.

Compatible LFSR

Recall from [Savir 1980] that a p-stage syndrome driver counter can test each output
cone of an (n, w) CUT exhaustively, w≤ p < n, if n−p inputs can share test signals
with the other p inputs. This means that the SDC can detect all single-stuck-at
and multiple-stuck-at faults within each output cone. If we only consider single-
stuck-at faults, [Chen 1998] shows that additional inputs can be further combined
using a mapping logic without losing any single-stuck fault coverage. This method
requires finding the compatibility classes for all inputs and may require a detailed
fault simulation. The l-to-n mapping logic, l < p, can be implemented using simple
buffers or inverters. Additional decoders [Chakrabarty 1997] or a more general
combinational circuit [Hamzaoglu 2000] can also be used. An l-stage compatible
LFSR, which is a combination of an l-stage LFSR and an l-to-n mapping logic, can
now further reduce the test length for some (n, w) CUTs.
Consider the �n	w� = �5	4� CUT shown in Figure 5.25a [Jha 2003]. Because x1

and x5 do not drive the same output, we obtain p= 4. A four-stage SDC generating
2p − 1 = 15 patterns is required to detect all single-stuck-at and multiple-stuck-
at faults within each output cone; however, when only single-stuck-at faults are
considered, the two-stage compatible LFSR shown in Figure 5.25b generating 22= 4
patterns can be used to detect all faults [Chen 1998].

5.3.3.2 Segmentation Testing

There are circuits where either the test length using the previous techniques is still
too long or an output depends on all circuit inputs. For these circuits, a pseudo-
exhaustive test is still possible, but it is necessary to resort to a partitioning or
segmentation technique. Such a procedure is described in [McCluskey 1981]. This
technique relies on exhaustive testing by dividing the circuit into segments or
partitions in order to avoid excessively long test sequences. This is referred to

1 0 1 0 1 0 1 0

� FIGURE 5.24

Example (8, 4) shortened cyclic LFSR as PEPG.
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� FIGURE 5.25

Example compatible LFSR as PEPG: (a) (n, w)= (5, 4) CUT, and (b) two-stage compatible LFSR.

as segmentation testing. It differs from previous partitioning techniques in that
the partitions may divide the signal paths through the circuit rather than only
separating the signal paths from each other.
There are two techniques that can be used to achieve this partitioning: hard-

ware partitioning and sensitized partitioning [Bozorgui-Nesbat 1980] [McCluskey
1981]. Hardware partitioning is based on inserting multiplexers and connecting
the embedded inputs and outputs of the subcircuit to those primary inputs and
outputs that are not used by the subcircuit under test. Sensitized partitioning
refers to the technique in which circuit partitioning and subcircuit isolation can be
achieved by applying the appropriate input patterns to some of the input lines.
Partitioning the circuit into several subcircuits and exhaustively testing each such

subcircuit greatly simplifies the testing of the overall circuit; however, partitioning
VLSI circuits is an NP-complete problem [Patashnik 1983].

Hardware partitioning using multiplexers can reduce the operating speed of a
circuit and is costly to implement. Sensitized partitioning does not alter the func-
tional circuitry and is therefore the preferred technique. This technique has been
used in [Udell 1986] to develop pseudo-exhaustive test patterns. A reconfigurable
counter that automatically generates these test patterns was given in [Udell 1987].

5.3.4 Delay Fault Testing
The BIST pattern generation techniques described above mainly target structural
faults, such as stuck-at faults and bridging faults, which can be detected with one-
pattern vectors. For delay faults requiring two-pattern vectors for testing, these
methods do not provide adequate fault coverage. In this section, we discuss a few
approaches that can be used for delay fault testing.
Unlike structural fault testing that requires an exhaustive one-pattern set of 2n

test patterns, an exhaustive two-pattern set of 2n�2n−1� patterns is required to test
delay faults in an n-input CUT exhaustively. This means that, for delay fault testing,
one must use a test pattern generator (TPG) with 2n or more stages. A maximum-
length LFSR having 2n stages is called a double-length LFSR [Jha 2003].
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[Furuya 1991] has shown that when all even or odd stage outputs (called even
taps or odd taps) of a 2n-stage double-length LFSR are connected to the n-input
CUT, the LFSR can generate 22n−1 vectors to test the CUT exhaustively. While all
delay faults are tested exhaustively, there is a potential problem that the test set
could cause test invalidation due to hazards present in the design [Bushnell 2000].
Test invalidation or hazards can occur when more than one circuit inputs change
values. There are also risks that the power consumption during at-speed BIST can
exceed the power rating of the chip or package. Increased average power can cause
heating of the chip and increased peak power can produce noise-related failures
[Bushnell 2000] [Girard 2002].
To solve these problems, it is important to generate single-input change (SIC) or

one-transition patterns. [Breuer 1987] shows that when two-transition patterns are
applied at the circuit inputs, no additional paths are tested for delay faults which
could not be tested by one-transition test pairs. Due to complementary converging
effects, increasing the number of simultaneous input transitions applied may lead
to a reduction in the number of complete transition paths tested. [Breuer 1987]
further proved that a delay fault TPG will require one-transition patterns not more
than 2n2n+1 but not less than n2n+1.

A Gray code counter, comprised of a binary counter or maximum-length LFSR,
as well as a Johnson counter or ring counter are commonly used for this purpose
[Breuer 1987] [Bushnell 1995] [Virazel 2002]. An example delay fault TPG for
testing an n-input CUT is shown in Figure 5.26 [Bushnell 2000]. The standard
maximum-length LFSR can cycle through 2n−1 states. The n-bit Johnson counter
can generate 2n one-transition patterns. By properly selecting the control signal
TESTTYPE, the delay fault TPG can generate 2n�2n−1� one-transition patterns for
delay fault testing or 2n−1 patterns for stuck fault testing.

5.3.5 Summary
While many advantages for using exhaustive or pseudo-exhaustive testing exist,
pseudo-random testing is still the most practical and commonly used technique for
BIST pattern generation. Because this scheme generally leads to lower fault cover-
age, it is often required to augment pseudo-random test patterns, particularly for

X1 X2 Xn  – 1 Xn

hn – 1 hn – 2 h2 h1

0

1

TESTTYPE

� FIGURE 5.26

Example delay fault TPG as PRPG or PEPG.
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life-critical and mission-critical applications. Methods that have been proposed for
fault coverage enhancement include inserting test points or embedding determin-
istic patterns to the circuit under test. These approaches are discussed extensively
in Section 5.6.

5.4 OUTPUT RESPONSE ANALYSIS

In the previous chapters where we discussed logic and fault simulation and test
generation, our assumption was that output responses coming out of the circuit
under test are compared directly on a tester. For BIST operations, it is impos-
sible to store all output responses on-chip, on-board, or in-system to perform
bit-by-bit comparison. An output response analysis technique must be employed
such that output responses can be compacted into a signature and compared
with a golden signature for the fault-free circuit either embedded on-chip or stored
off-chip.
Compaction differs from compression in that compression is loss-less, while com-

paction is lossy. Compaction is a method for dramatically reducing the number of
bits in the original circuit response during testing in which some information is lost.
Compression is a method for reducing the number of bits in the original circuit
response in which no information is lost, such that the original output sequence
can be fully regenerated from the compressed sequence [Bushnell 2000]. Because
all output response analysis schemes involve information loss, they are referred to
as output response compaction; however, there is no general consensus in academia
yet as to when the terms “compaction” or “compression” are to be used. For exam-
ple, in the random-access scan architecture described in Chapter 2, the authors
prefer to use the term “compression” for output response analysis; however, for
output response analysis throughout the remainder of the book we will refer to the
lossy compression as “compaction.”
In this section, we present three different output response compaction techniques:

(1) ones count testing, (2) transition count testing, and (3) signature analysis.
We also describe the architectures of the output response analyzers (ORAs) that are
used. The signature analysis technique is described in more detail, as it is the most
popular compaction technique in use today.
When using compaction, it is important to ensure that the faulty and fault-free

signatures are different. If they are the same, the faults can go undetected. This
situation is referred to as error masking, and the erroneous output response is said
to be an alias of the correct output response [Abramovici 1994]. It is also important
to ensure that none of the output responses contain an unknown (X) value. If an
unknown value is generated and propagated directly or indirectly to the output
response analyzer (ORA), then the ORA can no longer function reliably. Therefore,
it is necessary to fix all unknown (X) propagation problems to ensure that the logic
BIST system will operate correctly by using the X-bounding techniques discussed
in Section 5.2.
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5.4.1 Ones Count Testing
Assume that the CUT has only one output and the output contains a stream of L
bits. Let the fault-free output response, R0, be �r0r1r2 � � � rL−1
. The ones count test
technique will only require a counter to count the number of 1’s in the bit stream.
For example, if R0 = �0101100
, then the signature or ones count of R0, OC�R0�, is 3.
If fault f1 present in the CUT causes an erroneous response R1 = �1100110
, then it
will be detected because OC�R1�= 4; however, fault f2 causing R2 = �0101010
 will
not be detected because OC�R2� = OC�R0� = 3. Let the fault-free signature or ones
count be m. There will be C�L, m� possible ways having m 1’s in an L-bit stream.
Assuming all faulty sequences are equally likely to occur as the response of the
CUT, the aliasing probability or masking probability of using ones count testing
having m 1’s [Savir 1985] can be expressed as:

POC�m�= �C�L	m�−1�/�2L−1�

In the previous example, where m=OC�R0�= 3 and L= 7, POC�m�= 34/127= 0�27.
Figure 5.27 shows the ones count test circuit for testing the CUT with T patterns.
The number of stages in the counter design must be equal to or greater than
�log2�L+1��.

5.4.2 Transition Count Testing
The theory behind transition count testing is similar to that for ones count testing,
except that the signature is defined as the number of 0-to-1 and 1-to-0 transitions.
The transition count test technique [Hayes 1976] simply requires using a D flip-
flop and an XOR gate connected to a ones counter (see Figure 5.28), to count the

SignatureCUTT Counter
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� FIGURE 5.27

Ones counter as ORA.
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� FIGURE 5.28

Transition counter as ORA.
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number of transitions in the output data stream. Consider the example given above.
Because R0 = �0101100
, the signature or transition count of R0	 TC�R0�, will be 4.
Assume that the initial state of the D flip-flop, r−1, is 0. Fault f1 causing an erroneous
response R1 = �1100110
 will not be detected because TC�R1�= TC�R0�= 4, but fault
f2 causing R2 = �0101010
 will be detected because TC�R2�= 6.
Let the fault-free signature or transition count be m. Because a given L-bit

sequence R0 that starts with r0 = 0 has L−1 possible transitions, the number of
sequences with m transitions can be given by C�L−1	m�. Because R0 can also start
with r0 = 1, there will be a total of 2C�L−1	m� possible ways to have m 0-to-1 and
1-to-0 transitions in an L-bit stream. Assuming all faulty sequences are equally likely
to occur as the response of the CUT, the aliasing probability or masking probability
of using transition count testing having m transitions [Savir 1985] is:

PTC�m�= �2C�L−1	m�−1�/�2L−1�

In the previous example, where m= TC�R0�= 4 and L= 7	 PTC�m�= 29/127= 0�23.
Figure 5.28 shows the transition count test circuit. The number of stages in the
counter design must be equal to or greater than �log2�L+1��.

5.4.3 Signature Analysis
Signature analysis is the most popular response compaction technique used today.
The compaction scheme, based on cyclic redundancy checking (CRC) [Peterson
1972], was first developed in [Benowitz 1975]. Hewlett-Packard commercialized
the first logic analyzer (the HP 5004A Signature Analyzer) based on the scheme
and referred to it as signature analysis [Frohwerk 1977]. In this section, we dis-
cuss two signature analysis schemes: (1) serial signature analysis for compacting
responses from a CUT having a single output, and (2) parallel signature analysis
for compacting responses from a CUT having multiple outputs.

5.4.3.1 Serial Signature Analysis

Consider the n-stage single-input signature register (SISR) shown in Figure 5.29.
This SISR uses an additional XOR gate at the input for compacting an L-bit

r0 rn – 2 rn – 1

h1 h2 hn – 2 hn – 1

M r1

� FIGURE 5.29

An n-stage single-input signature register (SISR).
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output sequence, M, into the modular LFSR. Let M = �m0m1m2 � � � mL−1
, and
define:

M�x�=m0+m1x+m2x
2+· · ·+mL−1x

L−1

After shifting the L-bit output sequence, M, into the modular LFSR, the contents
(remainder) of the SISR, R, is given as �r0r1r2 � � � rn−1
, or:

r�x�= r0+ r1x+ r2x
2+· · ·+ rn−1x

n−1

The SISR is basically a CRC code generator [Peterson 1972] or a cyclic code checker
[Benowitz 1975]. Let the characteristic polynomial of the modular LFSR be f�x�.
[Peterson 1972] has shown that the SISR performs polynomial division of M�x� by
f�x�, or:

M�x�= q�x�f�x�+ r�x�

The final state or signature in the SISR is the polynomial remainder, r�x�, of the
division. Consider the four-stage SISR given in Figure 5.30 using f�x� = 1+ x+
x4. Assuming M = �10011011
, we can express M�x� = 1+ x3+ x4+ x6+ x7. Using
polynomial division, we obtain q�x� = x2+ x3 and r�x� = 1+ x2+ x3 or R = �1011
.
The remainder {1011} is equal to the signature derived from Figure 5.30a when the
SISR is first initialized to a starting pattern (seed) of {0000}.
Now, assume fault f1 produces an erroneous output stream M′ = �11001011
 or

M′�x� = 1+ x+ x4+ x6+ x7, as given in Figure 5.30b. Using polynomial division,
we obtain q′�x� = x2+ x3 and r′�x� = 1+ x+ x2 or R′ = �1110
. Because the faulty
signature R′	 �1110
, is different from the fault-free signature R, {1011}, fault f1 is
detected. For fault f2 with M′′ = �11001101
 or M′′�x�= 1+x+x4+x5+x7 as given in
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A four-stage SISR: (a) fault-free signature; (b) signature for fault f1; and (c) signature for fault f2.
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Figure 5.30c, we have q′′�x�= x+x3 and r′′�x�= 1+x2+x3 or R′′ = �1011
. Because
R′′ = R, fault f2 is not detected.
The fault detection or aliasing problem of an SISR can be better understood by

looking at the error sequence E or error polynomial E�x� of the fault-free sequence
M and a faulty sequence M′. Define E=M+M′, or:

E�x�=M�x�+M′�x�

If E�x� is not divisible by f�x�, then all faults generating the faulty sequence M′

will be detected; otherwise, these faults are not detected. Consider fault f1 again.
We obtain E = �01010000
 = M+M′ = �10011011
+ �11001011
 or E�x� = x+ x3.
Because E�x� is not divisible by f�x�= 1+x+x4, fault f1 is detected. Consider fault
f2 again. We have E = �01010110
 =M+M′′ = �10011011
+ �11001101
 or E�x� =
x+x3+x5+x6. Because f�x� divides E�x�—that is, E�x�= �x+x2�f�x�—fault f2 is not
detected.
Assume that the SISR consists of n stages. For a given L-bit sequence, L > n,

there are 2�L−n� possible ways of producing an n-bit signature of which one is the
correct signature. Because there are a total of 2L−1 erroneous sequences in an L-bit
stream, the aliasing probability using an n-stage SISR for serial signature analysis
(SSA) is:

PSSA�n�= �2�L−n�−1�/�2L−1�

If L� n, then PSSA�n�≈ 2−n. When n= 20	 PSSA�n� < 2−20 = 0�0001%.

5.4.3.2 Parallel Signature Analysis

A common problem when using ones count testing, transition count testing, and
serial signature analysis is the excessive hardware cost required to test an m-output
CUT. It is possible to reduce the hardware cost by using an m-to-1 multiplexer, but
this increases the test time m times. Consider the n-stage multiple-input signa-
ture register (MISR) shown in Figure 5.31. The MISR uses n extra XOR gates for
compacting n L-bit output sequences, M0 to Mn−1, into the modular LFSR simulta-
neously.

M1 M2M0 Mn – 2 Mn – 1

h1 h2 hn – 2 hn – 1

r0 r1 rn – 1rn – 2

� FIGURE 5.31

An n-stage multiple-input signature register (MISR).
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[Hassan 1984] has shown that the n-input MISR can be remodeled as a single-
input SISR with effective input sequence M�x� and effective error polynomial E(x�
expressed as:

M�x�=M0�x�+xM1�x�+· · ·+xn−2Mn−2�x�+xn−1Mn−1�x�

and

E�x�= E0�x�+xE1�x�+· · ·+xn−2En−2�x�+xn−1En−1�x�

Consider the four-stageMISR shown in Figure 5.32 using f�x�= 1+x+x4. LetM0=
�10010
	M1 = �01010
	M2 = �11000
, and M3 = �10011
. From this information, the
signature R of the MISR can be calculated as {1011}. Using M�x�=M0�x�+xM1�x�+
x2M2�x�+x3M3�x�, we obtainM�x�= 1+x3+x4+x6+x7 orM= �10011011
, as shown
in Figure 5.33. This is the same data stream we used in the SISR example in
Figure 5.30a. Therefore, R= �1011
.
Assume there are mL-bit sequences to be compacted in an n-stage MISR, where

L > n ≥m ≥ 2. The aliasing probability for parallel signature analysis (PSA) now
becomes:

PPSA�n�= �2�mL−n�−1�/�2mL−1�

If L� n, then PPSA�n� ≈ 2−n. When n = 20	 PPSA�n� < 2−20 = 0�0001%. The result
suggests that PPSA�n� mainly depends on n, when L � n. Hence, increasing the
number of MISR stages or using the same MISR but with a different f�x� can
substantially reduce the aliasing probability [Hassan 1984] [Williams 1987].

M1 M2M0 M3

� FIGURE 5.32

A four-stage MISR.
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An equivalent M sequence.
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5.5 LOGIC BIST ARCHITECTURES

Several architectures for incorporating offline BIST techniques into a design have
been proposed. These architectures generally fall into four categories: (1) those that
assume no special structure to the circuit under test, (2) those that make use of
scan chains in the circuit under test, (3) those that configure the scan chains for
test pattern generation and output response analysis, and (4) those that use the
concurrent checking (implicit test) circuitry of the design.

In this section, we only discuss a few representative BIST architectures on each
category. A more comprehensive survey can be found in [McCluskey 1985] and
[Abramovici 1994]. To preserve integrity and continuity, we adopt the same naming
convention used in [Abramovici 1994].

5.5.1 BIST Architectures for Circuits without Scan Chains
The first BIST architecture uses a pseudo-random pattern generator as well as
a single-input signature register or multiple-input signature register for testing a
combinational or sequential circuit that does not assume any special structure. This
architecture is often used at the board or system level. Hewlett-Packard was among
the first companies to adopt this BIST architecture for board-level fault diagnosis
[Frohwerk 1977].

5.5.1.1 A Centralized and Separate Board-Level BIST Architecture

Figure 5.34a shows a BIST architecture described in [Benowitz 1975]. This is
referred to as a centralized and separate board-level BIST architecture (CSBL)
[Abramovici 1994]. Two LFSRs and two multiplexers are added to the circuit. The
firstmultiplexer (MUX) selects either the primary inputs (PIs) or the PRPG outputs
to drive the circuit under test (CUT). The CUT is typically a sequential circuit (S)
but can be a combinational circuit (C) as well. The second multiplexer routes the
primary outputs (POs) of the circuit to the SISR. Additional circuitry (not shown
in the figure) is used to compare the final signature of the SISR with an embedded
golden signature (known good signature). It also provides a pass/fail indication once
the test is complete.
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The centralized and separate board-level BIST (CSBL) architecture.
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5.5.1.2 Built-In Evaluation and Self-Test (BEST)

A similar BIST architecture is described in [Perkins 1980]. This architecture makes
use of a PRPG and a MISR that are external to the chip but could be located on
the same board. The logic being tested on the chip is typically a sequential circuit
but can be a combinational circuit as well. Pseudo-random patterns are applied
in parallel from the PRPG to the chip’s primary inputs, and a MISR is used to
compact the chip’s output responses. Both PRPG and MISR can also be embedded
inside the chip. This architecture, referred to as a built-in evaluation and self-test
(BEST), is shown in Figure 5.35.

5.5.2 BIST Architectures for Circuits with Scan Chains
For designs that incorporate scan chains, it is possible to make use of this scan
architecture for the BIST circuitry. The resulting BIST architecture is generally
referred to as a test-per-scan BIST system [Bushnell 2000].

5.5.2.1 LSSD On-Chip Self-Test

A BIST architecture that makes use of scan chains for the BIST circuitry was pro-
posed in [Eichelberger 1983] and shown in Figure 5.36. It was called an LSSD
on-chip self-test (LOCST) architecture [Abramovici 1994]. In addition to the inter-
nal scan chain comprised of LSSD shift register latches (SRLs), an external scan
chain comprised of all primary inputs and primary outputs of the circuit under test
(CUT) is required. The external scan chain input is connected to the scan output
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The built-in evaluation and self-test (BEST) architecture.
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The LSSD on-chip self-test (LOCST) architecture.



298 VLSI Test Principles and Architectures

of the internal scan chain. Pseudo-random patterns are generated by a PRPG and
are shifted into the combined scan chain. The system clocks are triggered and the
contents of the scan chain latches are shifted out to a SISR. The final signature
is then compared in the SISR with a precomputed fault-free signature in order to
generate a pass/fail error signal. The scan output is also connected to a pin so, in
case of a failure, intermediate signatures can be examined externally for diagnosis
purposes.

5.5.2.2 Self-Testing Using MISR and Parallel SRSG

A similar design was presented in [Bardell 1982]. This design, shown in Figure 5.37,
contains an PRPG (parallel shift register sequence generator [SRSG]) and a MISR.
The scan chains are loaded in parallel from the PRPG. The system clocks are then
triggered and the test responses are shifted to the MISR for compaction. New test
patterns are shifted in at the same time while test responses are being shifted out.
This BIST architecture is referred to as self-testing using MISR and parallel SRSG
(STUMPS) [Bardell 1982]. Due to the ease of integration with traditional scan
architecture, the STUMPS architecture is the only BIST architecture widely used
in industry to date. In order to further reduce the lengths of the PRPG and MISR
and improve the randomness of the PRPG, a STUMPS-based architecture that
includes an optional linear phase shifter and an optional linear phase compactor
is often used in industrial applications [Nadeau-Dostie 2000] [Cheon 2005]. The
linear phase shifter and linear phase compactor typically comprise a network of
XOR gates. Figure 5.38 shows the STUMPS-based architecture.

5.5.3 BIST Architectures Using Register Reconfiguration
A concern with BIST designs is the amount of test time required. One technique
for reducing the test time is to make use of the storage elements already in the
design for both test generation and response analysis. The storage elements are
redesigned so they can function as pattern generators or signature analyzers for
test purposes. This BIST architecture is generally referred to as a test-per-clock
BIST system [Bushnell 2000].
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The self-testing using MISR and parallel (STUMPS) architecture.
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A STUMPS-based architecture.

5.5.3.1 Built-In Logic Block Observer

The architecture described in [Könemann 1979] and [Könemann 1980] applies to
circuits that can be partitioned into independent modules (logic blocks). Each mod-
ule is assumed to have its own input and output registers (storage elements), or such
registers are added to the circuit where necessary. The registers are redesigned so
that for test purposes they act as PRPGs for test generation or MISRs for signature
analysis. The redesigned register is referred to as a built-in logic block observer
(BILBO).
The BILBO is operated in four modes: normal mode, scan mode, test generation

or signature analysis mode, and reset mode. A typical three-stage BILBO that is
reconfigurable into an TPG or a MISR during self-test is shown in Figure 5.39. It
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A three-stage built-in logic block observer (BILBO).
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is controlled by two control inputs B1 and B2. When both control inputs B1 and
B2 are equal to 1, the circuit functions in normal mode with the inputs Yi gated
directly into the D flip-flops. When both control inputs are equal to 0, the BILBO is
configured as a shift register. Test data can be shifted in via the serial scan-in port
or shifted out via the serial scan-out port. Setting B1 = 1 and B2 = 0 converts the
BILBO into a MISR. It can then be used in this configuration as a TPG by holding
every Yi input to 1. The BILBO is reset after a system clock is triggered when B1 = 0
and B2 = 1.
This technique is most suitable for testing circuits, such as RAMs, ROMs, or bus-

oriented circuits, where input and output registers of the partitionedmodules can be
reconfigured independently. For testing finite-state machines or pipelined-oriented
circuits, as shown in Figure 5.40, the signature data from the previous module
must be used as test patterns for the next module, because the test generation
and signature analysis modes cannot be separated. In this case, a detailed fault
simulation is required to achieve 100% single-stuck fault coverage.

5.5.3.2 Modified Built-In Logic Block Observer

One technique that overcomes the above BILBO problem is described in [McCluskey
1981]. It uses an additional control input to separate test generation from signature
analysis. Such a modified BILBO (MBILBO) design is shown in Figure 5.41. The
modification is obtained from the original BILBO by adding one more OR gate to
each Yi input. The control input B3 is always set to 0 except when the register has
to be configured into a TPG. In that case, B3 is set to 1. For testing the pipelined-
oriented circuit shown in Figure 5.40b, the MBILBO cells can now be used, and
CC1 and CC2 will be tested alternatively. However, this approach still cannot test
the finite-state machine of Figure 5.40a exhaustively, because the receiving BILBO
cell must be always in signature analysis mode.

5.5.3.3 Concurrent Built-In Logic Block Observer

The above BILBO and MBILBO problems can be resolved by using the concurrent
BILBO (CBILBO) approach [Wang 1986c]. It uses two storage elements to perform
test generation and signature analysis simultaneously. A CBILBO design is shown
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BILBO architectures: (a) for testing a finite-state machine, and (b) for testing a pipelined-oriented circuit.
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A three-stage modified built-in logic block observer (MBILBO).
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A three-stage concurrent BILBO (CBILBO).

in Figure 5.42, where only three modes of operation are considered: normal, scan,
and test generation and signature analysis. When B1 = 0 and B2 = 1, the upper D
flip-flops act as a MISR for signature analysis, whereas the lower two-port D flip-
flops form a TPG for test generation. Because signature analysis is separated from
test generation, an exhaustive or pseudo-exhaustive pattern generator (EPG/PEPG)
can now be used for test generation; therefore, no fault simulation is required
and it is possible to achieve 100% single-stuck fault coverage using the CBILBO
architectures shown in Figure 5.43. However, the hardware cost associated with
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CBILBO architectures: (a) for testing a finite-state machine, and (b) for testing a pipelined-oriented
circuit.

using the CBILBO approach is generally higher than for the BILBO or MBILBO
approach. A gate-level design of the CBILBO one-cell structure using D latches is
given in [Wang 1986c]. A CMOS version of the CBILBO structure can be found in
[Liu 1987].

5.5.3.4 Circular Self-Test Path (CSTP)

The hardware cost can be substantially reduced using the circular self-test path
(CSTP) architecture [Krasniewski 1989] shown in Figure 5.44a. In the CSTP con-
figuration, all primary inputs and primary outputs are reconfigured as external
scan cells. They are connected to the internal scan cells to form a circular path.
If the entire circular path has n scan cells, then it corresponds to a MISR with
characteristic polynomial f�x�= 1+xn.
During self-test, all primary inputs are connected as a shift register, whereas all

internal scan cells and primary outputs are reconfigured as a MISR. The MISR
consists of a number of self-test cells connected in series, where in self-test mode,
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The circular self-test path (CSTP) architecture: (a) CSTP architecture, and (b) self-test cell.
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each self-test cell takes as input from an XOR gate output of input Yi and its previous
scan cell output Xi−1, as shown in Figure 5.44b. One requirement for the CSTP
design is that all registers must be initialized to known states prior to self-test. After
initialization of all registers, the circuit runs for a number of clock cycles and then
the final signature is read out for analysis. Because the characteristic polynomial,
f�x� = 1+xn, is nonlinear, the CSTP design can lead to low fault coverage [Stroud
1988] [Pilarski 1992] [Carletta 1994] [Touba 2002].
The CSTP architecture is similar to the simultaneous self-test architecture

[Bardell 1982] and the circular BIST architecture [Stroud 1988]. The primary
differences in the three architectures are the functional modes of operation sup-
ported by the registers. Both simultaneous self-test and circular BIST architectures
included scan chain capabilities. As a result, the fault coverage obtained during
BIST operation could be augmented with additional scan vectors in the event that
low fault coverage was obtained for a given application.

5.5.4 BIST Architectures Using Concurrent Checking Circuits
For systems that include concurrent checking circuits, it is possible to use the
circuitry to verify the output response during explicit (offline) testing; hence, the
need to implement a separate response analysis circuit, such as a MISR, is avoided.

5.5.4.1 Concurrent Self-Verification

A BIST architecture shown in Figure 5.45, concurrent self-verification (CSV), was
described in [Sedmak 1979] and [Sedmak 1980]. A PRPG is applied to the func-
tional circuitry (CUT) and the duplicate circuitry. The duplicate circuitry is realized
in complementary form to reduce design and common-mode faults. Because the

Checking Circuitry

Functional Circuitry Duplicate Circuitry

m m

Two-rail code
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n

� FIGURE 5.45

The concurrent self-verification (CSV) architecture.
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TABLE 5.4 � Representative Logic BIST Architectures

Architecture Level TPG ORA Circuit BIST

CSBL B or C PRPG SISR C or S Test-per-clock

BEST B or C PRPG MISR C or S Test-per-clock

LOCST C PRPG SISR C Test-per-scan

STUMPS B or C PRPG MISR C Test-per-scan

BILBO C PRPG MISR C Test-per-clock

MBILBO C PRPG MISR C Test-per-clock

CBILBO C EPG/PEPG MISR C Test-per-clock

CSTP C PRPG MISR C or S Test-per-clock

CSV C PRPG Checker C or S Test-per-clock

checking circuitry recommended involves comparing the outputs of the two imple-
mentations, this technique avoids the aliasing problem and consequent loss of
effective fault coverage. The checking circuitry is a totally self-checking two-rail
checker [Abramovici 1994].

5.5.5 Summary
Many logic BIST architectures have been proposed in the 1980s. In this section, we
have presented a number of representative BIST architectures for testing combina-
tional or sequential circuits at the board or chip level. Table 5.4 shows some of the
main attributes of the BIST architectures presented. A BIST technique that can be
used for testing sequential circuits (S) can also be used for testing combinational
circuits (C). Similarly, a BIST technique suitable for board-level testing (B) is also
applicable for chip-level testing (C).
The CBILBO architecture is the only architecture that can be used for exhaustive

or pseudo-exhaustive testing. The CSV architecture is the only architecture that
does not require an additional SISR or MISR for output response analysis. Due to
its ease of integration with traditional scan architecture, the STUMPS architecture
is the only architecture widely used in industry to date; however, because pseudo-
random patterns are used, fault coverage is still a concern. This has prevented the
technique from being accepted across all industries.

5.6 FAULT COVERAGE ENHANCEMENT

In pseudo-random testing, the fault coverage is limited by the presence of random-
pattern resistant (RP-resistant) faults. If the fault coverage is not sufficient, then three
approaches can be used to enhance the fault coverage: (1) test point insertion,
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(2)mixed-modeBIST, and (3)hybridBIST. The first two approaches are applicable
for in-field coverage enhancement, and the third approach is applicable formanufac-
turing coverage enhancement.
Test point insertion adds control points and observation points for providing

additional controllability and observability to improve the detection probability of
RP-resistant faults so they can be detected during pseudo-random testing. Mixed-
mode BIST involves supplementing the pseudo-random patterns with some deter-
ministic patterns that detect RP-resistant faults and are generated using on-chip
hardware. When BIST is performed during manufacturing test where a tester is
present, hybrid BIST involves combining BIST and external testing by supplement-
ing the pseudo-random patterns with deterministic data from the tester to improve
the fault coverage. This third option is not applicable when BIST is used in the
field, as the tester is not present. Each of these approaches is described in more
detail in the following subsections.

5.6.1 Test Point Insertion
Test points can be used to increase the circuit’s fault coverage to a desired level.
Figure 5.46 shows two typical types of test points that can be inserted. A control
point can be connected to a primary input, an existing scan cell output, or a
dedicated scan cell output. An observation point can be connected to a primary
output through an additional multiplexer, an existing scan cell input, or a dedicated
scan cell input.
Figure 5.47b shows an example where one control point and one observation

point are inserted to increase the detection probability of a six-input AND-gate
given in Figure 5.47a. By splitting the six-input AND gate into two fewer-input AND
gates and placing a control point and an observation point between the two fewer-
input AND gates, we can increase the probability of detecting faults in the original
six-input AND gate (e�g�, output Y stuck-at-0 and any input Xi stuck-at-1), thereby
making the circuit more RP-testable. After the test points are inserted, the most
difficult fault to detect is the bottom input of the four-input AND gate stuck-at-1.
In that case, one of inputs X1	X2, and X3 must be 0, the control point must be
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Typical test points inserted for improving a circuit’s fault coverage: (a) test point with a multiplexer, and
(b) test point with AND–OR gates.
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Example of inserting test points to improve detection probability: (a) an output RP-resistant stuck-at-0
fault, and (b) example inserted test points.

0, and all inputs X4	X5, and X6 must be 1, resulting in a detection probability of
7/128 �= 7/8×1/2×1/2×1/2×1/2�.

5.6.1.1 Test Point Placement

Because test points add area and performance overhead, an important issue for
test point insertion is where to place the test points in the circuit to maximize
the coverage and minimize the number of test points required. Note that it is not
sufficient to only use observation points, as some faults require control points in
order to be detected. Optimal placement of test points in circuits with reconvergent
fanout has been shown to be NP-complete [Krishnamurthy 1987]. Several approx-
imation techniques for placement of test points have been developed. They can be
categorized depending on whether they use fault simulation or testability measures
to guide them.
Fault simulation guided techniques require that the TPG is known ahead of time

and can be simulated to determine the exact set of patterns that will be applied
during self-test. Given this set of patterns, fault simulation is used to identify which
faults will not be detected during self-test. Test points are then inserted to enable
those faults to be detected. The technique in [Iyengar 1989] uses fault simulation
to identify gates that block fault propagation and then inserts test points to allow
propagation. The technique in [Touba 1996] uses path tracing to identify a set of
test point solutions for each undetected fault, and then a covering algorithm is
used to select the smallest set of test points that will allow detection of all faults.
A limitation of fault simulation guided techniques is that the TPG must be known
ahead of time which is not always the case, especially for cores that may be used in
different system-on-chips (SOCs) with different BIST controllers. Also, if there are
any late engineering changes that alter the set of patterns that are applied during
self-test, then the fault coverage may be reduced.
Testability measure guided techniques avoid these problems because they do not

require any knowledge of the TPG. They focus on improving the detection proba-
bility of RP-resistant faults which is approximated with testability measures. The
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gradient technique in [Seiss 1991] forms a cost function based on the controlla-
bility/observability program (COP) testability measures [Brglez 1984] and then
computes, in linear time, the gradient of the function with respect to each possible
test point. The gradients are used to approximate the global testability impact for
inserting a particular test point. Based on these approximations, the test point that
has maximum benefit is inserted and the COP testability measures are recomputed.
The process continues iteratively adding additional test points until the testability
is satisfactory. Methods for speeding up this process are described in [Tsai 1998],
where a hybrid cost function is used to estimate the actual cost function, and in
[Nakao 1997], where several techniques including simultaneous selection of test
points and candidate reduction are used. The technique in [Tamarapalli 1996] uses
probabilistic fault simulation, which provides greater accuracy than COP testability
measures, to guide the selection of test points to maximize the number of faults
that exceed a specified detection probability threshold. In [Boubezari 1999], testa-
bility measures are computed and test points are inserted at the RTL. This has the
advantage of allowing RTL synthesis procedures to take the test points into consid-
eration when optimizing the design. In [Touba 1999], a logic synthesis procedure
is described which uses testability-driven factoring combined with test point inser-
tion to automatically synthesize random-pattern testable circuits. In [Xiang 2005],
observation points are inserted in the scan chains and multiple capture cycles are
used during shift operation.
One important concern with inserting test points is the impact on performance. If

a test point adds delay on a critical timing path, then the timing requirements may
not be satisfied. Timing-driven test point insertion techniques have been developed
to address this problem. The technique in [Tsai 1998] computes the timing slack
of each node and eliminates any node whose slack is not sufficiently long as a
candidate for test point insertion. As test points are inserted, the slack information
is updated. Because test points are not permitted in some locations due to timing
constraints, the number of test points that is inserted to achieve sufficient fault
coverage may be increased.

5.6.1.2 Control Point Activation

Once the test points have been inserted, the logic that drives the control points
must be designed. When a control point is activated, it forces the logic value at a
particular node in the circuit to a fixed value. During normal operation, all control
points must be deactivated. During testing, there are different strategies as to when
and how the control points are activated. One approach is random activation,
where the control points are driven by the pseudo-random generator. The drawback
of this approach is that when a large number of control points are inserted, they
can interfere with each other and may not improve the fault coverage as much as
desired. An alternative to random activation is to use deterministic activation. The
technique in [Tamarapalli 1996] divides the BIST into phases and deterministically
activates some subset of the control points in each phase. The technique in [Touba
1996] uses pattern decoding logic to activate the control points only for certain
patterns where they are needed to detect RP-resistant faults.
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5.6.2 Mixed-Mode BIST
A major drawback of test point insertion is that it requires modifying the circuit
under test. In some cases this is not possible or not desirable (e�g�, for hard cores,
macros, hand-crafted designs, or legacy designs). An alternative way to improve
fault coverage without modifying the CUT is to use mixed-mode BIST. Pseudo-
random patterns are generated to detect the RP-testable faults, and then some
additional deterministic patterns are generated to detect the RP-resistant faults.
There are a number of ways for generating deterministic patterns on-chip. Three
approaches are described below.

5.6.2.1 ROM Compression

The simplest approach for generating deterministic patterns on-chip is to store them
in a read-only memory (ROM). The problem with this approach is that the size of
the required ROM is often prohibitive. Several ROM compression techniques have
been proposed for reducing the size of the ROM in [Agarwal 1981], [Aboulhamid
1983], [Dandapani 1984], and [Edirisooriya 1992].

5.6.2.2 LFSR Reseeding

Instead of storing the test patterns themselves in a ROM, techniques have been
developed for storing LFSR seeds that can be used to generate the test patterns
[Könemann 1991]. The LFSR that is used for generating the pseudo-random pat-
terns is also used for generating the deterministic patterns by reseeding it with
computed seeds. The seeds can be computed with linear algebra as described in
[Könemann 1991]. Because the seeds are smaller than the test patterns themselves,
they require less ROM storage. One problem is that for an LFSR with a fixed
characteristic (feedback) polynomial, it may not always be possible to find a seed
that will efficiently generate the required deterministic test patterns. A solution to
that problem was proposed in [Hellebrand 1995a] in which a multiple-polynomial
LFSR (MP-LFSR), as illustrated in Figure 5.48, is used. An MP-LFSR is an LFSR
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Reseeding with multiple-polynomial LFSR.
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with a reconfigurable feedback network. A polynomial identifier is stored with each
seed to select the characteristic polynomial that will be used for that seed. Tech-
niques for further reductions in storage can be achieved by using variable-length
seeds [Rajski 1998], a special ATPG algorithm [Hellebrand 1995b], folding counters
[Liang 2001], and seed encoding [Al-Yamani 2005].

5.6.2.3 Embedding Deterministic Patterns

A third approach for mixed-mode BIST is to embed the deterministic patterns in the
pseudo-random sequence. Many of the pseudo-random patterns generated during
pseudo-random testing do not detect any new faults, so some of those “useless”
patterns can be transformed into deterministic patterns that detect RP-resistant
faults [Touba 1995]. This can be done by adding mapping logic between the scan
chains and the CUT [Touba 1995] or in a less intrusive way by adding the mapping
logic at the inputs to the scan chains to either perform bit-fixing [Touba 2001] or
bit-flipping [Kiefer 1998]. Figure 5.49 shows a bit-flipping BIST scheme taken from
[Kiefer 1998]. A bit-flipping function detects these “useless” patterns and maps
them to deterministic patterns through the use of an XOR gate that is inserted
between the LFSR and each scan chain.

5.6.3 Hybrid BIST
For manufacturing fault coverage enhancement where a tester is present, determin-
istic data from the tester can be used to improve the fault coverage. The simplest
approach is to perform top-up ATPG for the faults not detected by BIST to obtain
a set of deterministic test patterns that “top-up” the fault coverage to the desired
level and then store those patterns directly on the tester. In a system-on-chip, test
scheduling can be done to overlap the BIST run time with the transfer time for
loading the deterministic patterns from the tester [Sugihara 1998] [Jervan 2003].
More elaborate hybrid BIST schemes have been developed which attempt to store
the deterministic patterns on the tester in a compressed form and then make use
of the existing BIST hardware to decompress them. Such techniques are described
in [Das 2000], [Dorsch 2001], [Ichino 2001], [Krishna 2003], [Wohl 2003], [Jas
2004], and [Lei 2005]. More discussions on test compression can be found in
Chapter 6.
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Scan Chain

� FIGURE 5.49

Bit-flipping BIST.
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5.7 BIST TIMING CONTROL

While logic BIST can be used to reduce test costs by moving most of the tester
functionality onto the circuit under test, its real value is in providing at-speed
testing for high-speed and high-performance circuits. These circuits often contain
multiple clock domains, each running at a frequency that is either synchronous or
asynchronous to the other clock domains.
The most critical yet difficult part of using logic BIST is how to test intra-

clock-domain faults and inter-clock-domain faults thoroughly and efficiently with
a proper capture-clocking scheme. An intra-clock-domain fault originates at one
clock domain and terminates at the same clock domain. An inter-clock-domain
fault originates at one clock domain but terminates at another clock domain.

There are three basic capture-clocking schemes that can be used for testing
multiple clock domains: (1) single-capture, (2) skewed-load, and (3) double-capture.
We will illustrate with BIST timing control diagrams how to test synchronous and
asynchronous clock domains using these schemes.
Two clock domains are said to be synchronous if the active edges of both clocks

controlling the two clock domains can be aligned precisely or triggered simultane-
ously. Two clock domains are said to be asynchronous if they are not synchronous.
Throughout this section, we will assume that a STUMPS-based architecture is used
and that each clock domain contains one test clock and one scan enable signal.
The faults we will consider include structural faults, such as stuck-at faults and
bridging faults, as well as timing-related delay faults, such as path-delay faults and
transition faults.

5.7.1 Single-Capture
Single-capture is a slow-speed test technique in which only one capture pulse is
applied to each clock domain. It is the simplest for testing all intra-clock-domain
and inter-clock-domain structural faults. There are two approaches that can be
used: (1) one-hot single-capture, and (2) staggered single-capture.

5.7.1.1 One-Hot Single-Capture

Using the one-hot single-capture approach, a capture pulse is applied to only
one clock domain during each capture window, while all other test clocks are held
inactive. A sample timing diagram is shown in Figure 5.50. In the figure, because
only one capture pulse (C1 or C2) is applied during each capture window, this
scheme can only test intra-clock-domain and inter-clock-domain structural faults.
The main advantage of this approach is that the designer does not have to worry
about clock skews between the two clock domains during self-test, as each clock
domain is tested independently. The only requirement is that delays d1 and d2
be properly adjusted; hence, this approach can be used for slow-speed testing of
both synchronous and asynchronous clock domains. Another benefit of using this
approach is that a single, slow-speed global scan enable (GSE) signal can be used
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One-hot single-capture.

for driving both clock domains, which makes it easy to integrate with scan. A major
drawback is longer test time, as all clock domains have to be tested one at a time.

5.7.1.2 Staggered Single-Capture

The long test time problem using one-hot single-capture can be solved using the
staggered single-capture approach [Wang 2006]. A sample timing diagram is shown
in Figure 5.51. In this approach, capture pulses C1 and C2 are applied in a sequential
or staggered order during the capture window to test all intra-clock-domain and
inter-clock-domain structural faults in the two clock domains. For clock domains
that are synchronous, adjusting d2 will allow us to detect inter-clock-domain delay
faults between the two clock domains at-speed. In addition, because d1 and d3 can
be as long as desired, a single, slow-speed GSE signal can be used. This significantly
simplifies the logic BIST physical implementation for designs with multiple clock
domains. There may be some structural fault coverage loss between clock domains
if the ordered sequence of capture clocks is fixed for all capture cycles.

5.7.2 Skewed-Load
Skewed-load is an at-speed delay test technique in which a last shift pulse
followed immediately by a capture pulse, running at the test clock’s operating
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Staggered single-capture.
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frequency, are used to launch the transition and capture the output response [Savir
1993]. It is also referred to as launch-on-shift. This technique addresses the intra-
clock-domain delay fault detection problem which cannot be tested using single-
capture schemes. Skewed-load uses the value difference between the last shift pulse
and the next-to-last-shift pulse to launch the transition and uses the capture pulse
to capture the output response. In order for the last shift pulse to launch the transi-
tion, the scan enable signal associated with the clock domain must be able to switch
operations from shift to capture in one clock cycle. There are three approaches that
can be used: (1) one-hot skewed-load, (2) aligned skewed-load, and (3) staggered
skewed-load.

5.7.2.1 One-Hot Skewed-Load

Similar to one-hot single-capture, the one-hot skewed-load approach tests all
clock domains one by one [Bhawmik 1997]. A sample timing diagram is shown in
Figure 5.52. The main differences are: (1) It applies shift-followed-by-capture pulses
(S1-followed-by-C1 or S2-followed-by-C2) to detect intra-clock-domain delay faults,
and (2) each scan enable signal (SE1 or SE2) must switch operations from shift
to capture within one clock cycle (d1 or d2). Thus, this approach can only be used
for at-speed testing of intra-clock-domain delay faults in both synchronous and
asynchronous clock domains. The disadvantages are: (1) It cannot be used to detect
inter-clock-domain delay faults, (2) it has a long test time, and (3) it is incompatible
with scan, as a single, slow-speed GSE signal can no longer be used.

5.7.2.2 Aligned Skewed-Load

The disadvantages of one-hot skewed-load can be resolved by using the aligned
skewed-load scheme. One aligned skewed-load approach that aligns all capture
edges together is illustrated in Figure 5.53 [Nadeau-Dostie 1994] [Nadeau-Dostie
2000]. The approach is referred to as capture aligned skewed-load. The major
advantage of using this approach is that all intra-clock-domain and inter-clock-
domain faults can be tested. The arrows shown in Figure 5.53 indicate the delay
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One-hot skewed-load.
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Capture aligned skewed-load.

faults that can be tested. For example, the three arrows from S1 (CK1) to C are used
to test all intra-clock-domain delay faults in the clock domain controlled by CK1
and all inter-clock-domain delay faults from CK1 to CK2 and CK3. The remaining
six arrows shown from S2 (CK2) to C and from S3 (CK3) to C are used to test all
the remaining delay faults.
Because the active edges (rising edges) of the three capture pulses (see dash line

C) must be aligned precisely, the circuit must contain one reference clock, and the
frequency of all remaining test clocks must be derived from the reference clock.
In the example given here, CK1 is the reference clock operating at the highest
frequency, and CK2 and CK3 are derived from CK1 and designed to operate at
1/2 and 1/4 the frequency, respectively; therefore, this approach is only applicable
for at-speed testing of intra-clock-domain and inter-clock-domain delay faults in
synchronous clock domains.
A similar aligned skewed-load approach that aligns all last shift edges, rather

than capture edges, is shown in Figure 5.54 [Hetherington 1999] [Rajski 2003]. This
approach is referred to as launch aligned skewed-load. Similar to capture aligned
skewed-load, it is also only applicable for at-speed testing of intra-clock-domain
and inter-clock-domain delay faults in synchronous clock domains.
Consider the three clock domains, driven by CK1, CK2, and CK3, again. The

eight arrows among the dash line S and the three capture pulses (C1, C2, and C3)
indicate the intra-clock-domain and inter-clock-domain delay faults that can be
tested. Unlike Figure 5.53, however, in order to test the inter-clock-domain delay
faults from CK1 to CK3, a special shift pulse S1 (when SE1 is set to 1) is required.
As this method requires a much more complex timing-control diagram, a clock
suppression circuit is used to enable or disable selected shift or capture pulses
[Rajski 2003]. The dotted clock pulses shown in the figure indicate the suppressed
shift pulses.
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Launch aligned skewed-load.

5.7.2.3 Staggered Skewed-Load

While the above aligned skewed-load approaches can test all intra-clock-domain
and inter-clock-domain faults in synchronous clock domains, their physical
implementation is extremely difficult. There are two main reasons. First, in order
to effectively align all active edges in either capture or last shift, the circuit must
contain a reference clock. This reference clock must operate at the fastest clock
frequency, and all other clock frequencies must be derived from the reference
clock; such designs rarely exist. Second, for any two edges that cannot be aligned
precisely due to clock skews, we must either resort to a one-hot skewed-load
approach or add capture-disabling circuitry on the functional data paths of
the two clock domains to prevent the cross-domain logic from interacting with
each other during capture. This increases the circuit overhead, degrades the
functional circuit performance, and reduces the ability to test inter-clock-domain
faults.
The staggered skewed-load approach shown in Figure 5.55 relaxes these con-

ditions [Wang 2005b]. For test clocks that cannot be precisely aligned, a delay d3
is inserted, to eliminate the clock skew interaction between the two clock domains.
The two last shift pulses (S1 and S2) are used to create transitions at the outputs
of some scan cells, and the output responses to these transitions are captured by
the following two capture pulses (C1 and C2), respectively. Both delays d1 and
d2 are set to their respective clock domains’ operating frequencies; hence, this
scheme can be used to test all intra-clock-domain faults and inter-clock-domain
structural faults in asynchronous clock domains. A problem still exists, as each
clock domain requires an at-speed scan enable signal, which complicates physical
implementation.
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Staggered skewed-load.

5.7.3 Double-Capture
The physical implementation difficulty using skewed-load can be resolved by using
the double-capture scheme. Double-capture is another at-speed test technique
in which two consecutive capture pulses are applied to launch the transition and
capture the output response. It is also referred to as broad-side [Savir 1994] or
launch-on-capture. The double-capture scheme can achieve true at-speed test
quality for intra-clock-domain and inter-clock-domain faults in any synchronous
or asynchronous design and that is easy for physical implementation. Here, true
at-speed testing is meant to: (1) allow detection of intra-clock-domain faults within
each clock domain at its own operating frequency and detection of inter-clock-
domain structural faults or delay faults, depending on whether the circuit under
test is synchronous, asynchronous, or a mix of both; and (2) ease physical imple-
mentation for seamless integration with the conventional scan/ATPG technique.

5.7.3.1 One-Hot Double-Capture

Similar to one-hot skewed-load, the one-hot double-capture approach tests all
clock domains one by one. A sample timing diagram is shown in Figure 5.56. The
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� FIGURE 5.56

One-hot double-capture.
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main differences are: (1) Two consecutive capture pulses are applied (C1-followed-
by-C2 or C3-followed-by-C4) at their respective clock domains’ frequencies (of
period d1 or d2) to test intra-clock-domain delay faults, and (2) a single, slow-speed
GSE signal is used to drive both clock domains. Hence, this scheme can be used
for true at-speed testing of intra-clock-domain delay faults in both synchronous
and asynchronous clock domains. Two drawbacks remain: (1) It cannot be used to
detect inter-clock-domain delay faults, and (2) it has a long test time.

5.7.3.2 Aligned Double-Capture

The drawbacks of the one-hot double-capture scheme can be resolved by using an
aligned double-capture approach. Similar to the aligned skewed-load approach,
the aligned double-capture scheme allows all intra-clock-domain faults and inter-
clock-domain faults to be tested [Wang 2006]. The main differences are: (1) Two
consecutive capture pulses are applied, rather than shift-followed-by-capture pulses,
and (2) a single, slow-speed GSE signal is used. Figures 5.57 and 5.58 show two
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� FIGURE 5.57

Capture aligned double-capture.
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Launch aligned double-capture.
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sample timing diagrams. This scheme can be used for true at-speed testing of
synchronous clock domains. One major drawback is that precise alignment of
the capture pulses is still required. This complicates physical implementation for
designs with asynchronous clock domains.

5.7.3.3 Staggered Double-Capture

The capture alignment problem in the aligned double-capture approach can finally
be relaxed by using the staggered double-capture scheme [Wang 2005a] [Wang
2006]. A sample timing diagram is shown in Figure 5.59. During the capture
window, two capture pulses are generated for each clock domain. The first two
capture pulses (C1 and C3) are used to create transitions at the outputs of some
scan cells, and the output responses to the transitions are captured by the sec-
ond two capture pulses (C2 and C4), respectively. Both delays d2 and d4 are set
to their respective domains’ operating frequencies. Because d1, d3, and d5 can
be adjusted to any length, we can simply use a single, slow-speed GSE signal for
driving all clock domains; hence, true at-speed testing is guaranteed using this
approach for asynchronous clock domains. Because a single GSE signal is used, this
scheme significantly eases physical implementation and allows us to integrate logic
BIST with scan/ATPG easily in order to improve the circuit’s manufacturing fault
coverage.

5.7.4 Fault Detection
Scan ATPG and logic BIST are currently the two most widely used structural offline
test techniques for improving a circuit’s fault coverage and product quality. Unfor-
tunately, 100% single-stuck fault coverage using scan ATPG does not guarantee
perfect product quality (i�e�, no test escapes) [McCluskey 2000] [Li 2002]. Recent
investigations reported in [McCluskey 2004] further revealed that only 5% (15)
of the 324 defective ELF35 chips contained defects that acted as single-stuck-at
faults, while 35% (41) of the 116 defective Murphy chips acted as single-stuck-at
faults. The remaining defects were (1) timing dependent, (2) sequence dependent,
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Staggered double-capture.
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or (3) attributed to timing-independent, non-single-stuck-at faults, such as multiple-
stuck-at faults or non-feedback bridging faults.
Possible causes of timing-dependent defects are resistive opens, connections that

have significant higher resistance than intended or transistors with lower drive than
designed for. Possible causes of sequence-dependent defects are: (1) a defect that
acts like a stuck-open fault [Li 2002] or (2) one that causes a feedback bridging fault.
The paper found that all test sets using 15-detect (an N-detectmethod for detecting
a single stuck-at fault multiple times) [Ma 1995] or transition faults propagated
to all reachable outputs (TARO) [Tseng 2001] resulted in zero to three test escapes
on both devices. This suggests that in order to screen out more defects delay fault
testing is no longer optional. Test patterns targeting single-stuck-at faults multiple
times or all possible transition paths (not just critical paths) are also required. Logic
BIST automatically addresses these issues as it is able to detect defects that cannot
be modeled for scan ATPG.
Intra-clock-domain delay fault testing is relatively easy using any of the above

skewed-load and double-capture timing control schemes. Inter-clock-domain delay
fault testing, however, is more complex. [Wang 2005a] conducted an experiment
that showed that applying a single capture pulse to each clock domain, rather than
two pulses, as shown in Figure 5.60, yields the highest fault coverage. In this figure,
d has to be set correctly to detect inter-clock-domain faults between the two clock
domains.
Table 5.5 shows the type of faults that can be detected and the design styles that

must be adopted when using the above timing control schemes. Each scheme has
its advantages and disadvantages; for example,

1. One-hot single-capture yields the highest fault coverage for both intra-clock-
domain and inter-clock-domain structural faults.

2. Staggered single-capture yields the highest fault coverage for inter-clock-
domain delay faults.

3. One-hot skewed-load may yield the highest fault coverage for intra-clock-
domain delay faults but may over-test the circuit by creating more invalid
states in the functional circuitry than the one-hot double-capture approach.

GSE
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• • • • • •
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� FIGURE 5.60

Inter-clock-domain fault detection.
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TABLE 5.5 � Fault Detection Capability

Capture-Clocking Scheme
Intra-
Structural

Intra-
Delay

Inter-
Structural

Inter-
Delay

Sync.
Design

Async.
Design

One-hot single-capture
√

–
√

–
√ √

Staggered single-capture
√

–
√ √ √ √

One-hot skewed-load
√ √ √

–
√ √

Aligned skewed-load
√ √ √ √ √

–

Staggered skewed-load
√ √ √ √ √ √

One-hot double-capture
√ √ √

–
√ √

Aligned double-capture
√ √ √ √ √

–

Staggered double-capture
√ √ √ √ √ √

4. Aligned skewed-load and aligned double-capture are best suited for testing
synchronous clock domains.

5. Staggered skewed-load and staggered double-capture are best suited for test-
ing asynchronous clock domains.

To summarize, a hybrid double-capture scheme using staggered double-capture
and aligned double-capture seems to be the preferred scheme for true at-speed test-
ing of designs having a number of synchronous and asynchronous clock domains.
This hybrid approach makes physical implementation easier than other approaches
and allows for seamless integration with any conventional scan/ATPG technique to
further improve the circuit’s fault coverage.

5.8 A DESIGN PRACTICE

In this section, we show an example of designing a logic BIST system for testing a
scan-based design (core) comprised of two clock domains using s38417 and s38584.
The two clock domains are taken from the ISCAS-1989 benchmark circuits [Brglez
1989] and their statistics are shown in Table 5.6. The design we consider is described
at the register-transfer level (RTL). We show you all the necessary steps to arrive at
the logic BIST system design, verify its correctness, and improve its fault coverage.

TABLE 5.6 � Design Statistics

Clock Domain No. of PIs No. of POs No. of Flip-Flops No. of Gates

CD1 (s38417) 28 106 1636 22179

CD2 (s38584) 12 278 1452 19253
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5.8.1 BIST Rule Checking and Violation Repair
The first step is to perform logic BIST design rule checking on the RTL design. All
DFT rule violations of the scan design rules and BIST-specific design rules provided
in Section 2.6 of Chapter 2 and Section 5.2 must be repaired. Once all DFT rule
violations are repaired, the design should meet all scan and logic BIST design rules.
In addition, we should be aware of the following design parameters:

� The number of test clocks present in the design, each used for controlling one
clock domain.

� The number of set/reset clocks present in the design to be used for breaking
all asynchronous set/reset loops.

In the example given above, the design contains two test clocks and does not require
any additional set/reset clock. The new RTL design (core) after BIST rule repair is
performed is referred to as an RTL BIST-ready core.

5.8.2 Logic BIST System Design
The second step is to design the logic BIST system at the RTL. The decisions that
need to be made at this stage include:

� The type of logic BIST architecture to adopt.

� The number of PRPG–MISR (or PEPG–MISR) pairs to use.

� The length of each PRPG–MISR (or PEPG–MISR) pair.

� The faults to be tested and BIST timing control diagrams to be used for testing
these faults.

� The types of optional logic to be added in order to ease physical implementa-
tion and facilitate debug and diagnosis, as well as improve the circuit’s fault
coverage.

5.8.2.1 Logic BIST Architecture

In accordance with the logic BIST architectures summarized in Table 5.4, we
choose to implement a STUMPS-based architecture, as it is easy to integrate with
scan/ATPG and is the architecture widely used in the industry. We recommend
using one PRPG–MISR pair for each clock domain, whenever possible, as the
resulting BIST architecture is easier to debug. In addition, the use of one PRPG–
MISR pair for each clock domain can eliminate the need for additional design
efforts for managing clock skews between interactive clock domains, even when
they operate at the same frequency. If it is required to use a single PRPG–MISR
pair to test multiple clock domains, these clock domains should be placed within
physical proximity in order to simplify physical implementation. An example logic
BIST system based on the STUMPS architecture for testing the design given in
Table 5.6 is shown in Figure 5.61.
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A logic BIST system for testing a design with two cores.

The BIST architecture used for testing the BIST-ready core consists of a TPG for
generating test stimuli, an input selector for providing pseudo-random or ATPG
patterns to the core-under-test, an ORA for compacting the test responses, and a
logic BIST controller for coordinating the overall BIST operation. The logic BIST
controller consists of a test controller and a clock gating block. The test controller
initiates the BIST operation upon receiving a Start signal, issues a Finish signal
once the BIST operation is complete, and reports the pass/fail status of the test
through the Result bus. The clock gating block accepts internal PLL clocks (CK1
and CK2) derived from external functional clocks (SCK1 and SCK2) and generates
the required test clocks (TCK1 and TCK2) and controller clocks (CCK1 and CCK2)
for controlling the BIST-ready core and test controller, respectively. During normal
functional operation, both CK1 and CK2 can run faster or slower than SCK1 and
SCK2, respectively.

5.8.2.2 TPG and ORA

Next, we need to determine the length of each PRPG–MISR pair. Using a separate
PRPG–MISR pair for each clock domain allows us to reduce the length of each
PRPG and MISR. In the example shown in Figure 5.61, the linear phase shifters,
PS1 and PS2, and space expanders, SpE1 and SpE2, can be used to further reduce
the length of the PRPGs, whereas the space compactors, SpC1 and SpC2, can be
used to further reduce the length of the MISRs. Each space expander or space
compactor typically consists of an XOR-gate tree.
Now, suppose we decide to: (1) synthesize the two clock domains, CD1 and

CD2, each with 20 balanced scan chains; (2) run 100,000 pseudo-random pat-
terns to obtain very high BIST fault coverage by adding additional test points; and
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(3) perform top-up ATPG after BIST to further increase the circuit’s fault coverage.
Because CD1 has 28 PIs, a logical conclusion would be to expect the length of the
PRPG1 to be 48 for using a 48-stage PRPG to drive 28 PIs and 20 scan chains.
Because we plan to perform top-up ATPG, which requires sharing 20 out of the 28
PIs with scan inputs (SIs), and another 20 POs with scan outputs (SOs), another
possible length for the PRPG1 would be 28. What we need to determine is whether
a 28-stage PRPG, constructed from a maximum-length LFSR or CA, is adequate for
generating the required 100,000 pseudo-random patterns.
For CD1 with 20 balanced scan chains, 82 shift clock pulses are required (1636

flip-flops/20 scan chains) to scan-in a single pseudo-random pattern. This means
that a total of 8.2 million shift clock pulses are required to scan-in all 100,000
patterns. This number is much smaller than the 256 million �228−1� patterns gener-
ated using a 28-stage maximum-length LFSR or CA for the PRPG1. From Table 5.1,
we choose a 28-stage maximum-length LFSR with characteristic polynomial f�x�=
1+x3+x28.
A similar analysis applies for CD2. The main difference is that CD2 has 12 PIs.

Suppose we pick 10 out of the 12 PIs to share with 10 SIs for top-up ATPG. We
will need to use a 10-to-20 space expander (SpE2) for driving the 20 scan chains
and a 20-to-10 space compactor (SpC2) for driving the 10 SOs. Because testing this
clock domain requires a total of 7.3 million (1452/20×100,000) shift clock pulses,
we need to use at least a 23-stage maximum-length LFSR or CA as PRPG2 to drive
the 12 PIs. From Table 5.1, we choose a 25-stage maximum-length LFSR with
characteristic polynomial f�x�= 1+x3+x25.

As indicated in Section 5.4.3, each MISR can cause an aliasing problem, but
the problem is of less concern when the MISR length is greater than 20. Because
CD1 and CD2 both have 106 and 278 POs, we choose a 106-to-27 space compactor
(SpC1) and a 278-to-35 space compactor (SpC2), respectively. Thus, we will use a
47-stage MISR and a 45-stage MISR to compact the test responses from both CD1
and CD2, respectively, where 47= 27 (shared POs) + 20 (SOs) and 45= 35 (shared
POs) + 10 (SOs). From Table 5.1, we choose to implement the 47-stage MISR with
f�x� = 1+ x5+ x47 and the 45-stage MISR with f�x� = 1+ x+ x3+ x4+ x45. Table 5.7
shows the decisions made for each PRPG–MISR pair so far.

5.8.2.3 Test Controller

The test controller plays a central role in coordinating the overall BIST operation.
In general, a finite-state machine written at the RTL is used to implement the test

TABLE 5.7 � PRPG–MISR Choices

Clock
Domain

No. of Scan
Chains

No. of Shared
SIs or SOs

Maximum
Scan Chain

Length
PRPG
Length

MISR
Length

CD1 (s38417) 20 20 82 28 47

CD2 (s38584) 20 10 73 25 45
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controller for interfacing with all external signals, such as Start, Finish, and Result,
and generating the required timing control signals for controlling each PRPG–MISR
pair and the BIST-ready core. Comparison logic is included in the test controller
to compare the final signature with an embedded golden signature.

Often, these interface signals are controlled through an IEEE 1149.1 boundary-
scan-standard-based test access port (TAP) controller. In this case, all signals
can be assessed through the TAP: test data in (TDI), test data out (TDO), test
clock (TCK), and test mode select (TMS). Optionally, an IEEE 1500 standard-
based wrapper may be also embedded in each selected clock domain. Both IEEE
standards are discussed extensively in Chapter 10.
In order to test structural faults in the BIST-ready core, we choose the staggered

single-capture approach rather than the one-hot single-capture approach. The slow-
speed timing control diagram is shown in Figure 5.62, where test clocks TCK1 and
TCK2 are staggered and generated by the clock gating block shown in Figure 5.61.
In order to test delay faults in the BIST-ready core, we choose the staggered double-

capture approach if CD1 and CD2 are asynchronous or the aligned double-capture
approach if they are synchronous. This is due to the fact that either approach allows
us to operate a GSE signal at slow speed for driving all clock domains simultane-
ously, in both BIST and scan ATPG modes. The at-speed timing control diagrams
using the staggered double-capture and launch aligned double-capture schemes are
shown in Figures 5.63 and 5.64, respectively.

5.8.2.4 Clock Gating Block

In order to generate an ordered sequence of single-capture or double-capture clocks,
clock suppression [Rajski 2003] [Wang 2004], daisy-chain clock triggering, or token-
ring clock enabling [Wang 2005a] can be used. The clock suppression scheme
typically requires using a reference clock operating at the highest frequency. Daisy-
chain clock triggering means that a completion of one event automatically triggers
the next event, as the arrows show in Figure 5.65. The only difference between
daisy-chain clock triggering and token-ring clock enabling is that the former uses
a clock edge to trigger the next event, while the latter uses a signal level to enable
the next event.
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Slow-speed timing control using staggered single-capture.
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At-speed timing control using staggered double-capture.
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At-speed timing control using launch aligned double-capture.
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Daisy-chain clock triggering.

Figure 5.66 shows a daisy-chain clock-triggering circuit for generating the stag-
gered double-capture waveform given in Figure 5.65. When the BIST mode is acti-
vated, the SE1/SE2 generators and two-pulse controllers will generate the required
scan enable and double-capture clock pulses, per the arrows shown in Figure 5.65.
Each SE1/SE2 can be treated as a GSE signal for CD1/CD2.
Figure 5.67 shows a clock suppression circuit for generating the launch aligned

double-capture waveform given in Figure 5.64. This circuit uses a reference clock
(CK1) to program the capture window. The contents of the 8-bit shift register are
preset to {0011,1111} during each shift window. Due to its programmability, the
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A daisy-chain clock triggering circuit for generating the waveform given in Figure 5.65.
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A clock suppression circuit for generating the waveform given in Figure 5.64.

approach can also be used to generate timing waveforms for testing asynchronous
designs. One major requirement is that we guarantee that the delay measured by
the number of reference clock pulses will be longer than delay d between C2 and
C3, as shown in Figure 5.63.

5.8.2.5 Re-Timing Logic

The main difference between ATE-based scan testing and logic BIST is that the
latter requires that more complex BIST circuitry be implemented on the functional
circuitry. Successfully completing the physical implementation of the functional
circuitry of a high-speed and high-performance design is a challenge in itself. If
the BIST circuitry adds a large number of timing critical signals and requires strict
clock-skew management, the physical implementation of logic BIST can become
extremely difficult; therefore, we recommend adding two pipelining registers (see
Figure 5.9) between each PRPG and the BIST-ready core and two additional pipelin-
ing registers between the BIST-ready core and each MISR. In this case, the maxi-
mum scan chain length for each clock domain, CD1 or CD2, is effectively increased
by 2, not 4.

5.8.2.6 Fault Coverage Enhancing Logic and Diagnostic Logic

The drawback to using pseudo-random patterns is that the circuit may not meet
the target fault coverage goal. In order to improve the circuit’s fault coverage, we
recommend adding extra test points and additional logic for top-up ATPG support
at the RTL. A general rule of thumb is to add one extra test point every 1000
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TABLE 5.8 � Example Test Modes Supported by the Logic BIST System

Test Mode CD1 Effective Chain Count CD2 Effective Chain Count

Normal 0 0

BIST 20 20

ATPG 20 10

ATPG compression 20 20

Serial debug and diagnosis 1 1

gates. For top-up ATPG support, the inserted logic includes an input selector for
selecting test patterns either from the PRPGs or PIs/SIs, as shown in Figure 5.61,
as well as circuitry for reconfiguring the scan chains to perform top-up ATPG in:
(1) ATPG mode, or (2) ATPG compression mode, which is discussed in more detail
in Chapter 6.
We also recommend including diagnostic logic in the RTL BIST code to facilitate

debug and diagnosis. One simple approach is to connect all PRPG–MISR pairs
(and all scan chains) as a serial scan chain and make them externally accessible.
(Please refer to Chapter 7 for more advanced BIST diagnosis techniques.) Table 5.8
summarizes all possible test modes of the logic BIST system along with the effective
scan chain counts for each test mode.

5.8.3 RTL BIST Synthesis
Once all decisions regarding the logic BIST architecture are made, it is time to
create the RTL logic BIST code. At this stage, it is possible to either design the
logic BIST system by hand or generate the RTL code automatically using a (com-
mercially available) RTL logic BIST tool. In either case, the number of scan chains
for each clock domain should be specified along with the names of their associ-
ated scan inputs and scan outputs without inserting the actual scan chains into
the circuit. The scan synthesis task can be handled as part of the general synthesis
task, implemented using any commercially available synthesis tool for converting
the RTL BIST-ready core and the logic BIST system into a gate-level netlist.

5.8.4 Design Verification and Fault Coverage Enhancement
Finally, the synthesized netlist must be verified with functional or timing verifi-
cation to ensure that the logic BIST system functions as intended. If any pattern
mismatch occurs, the problem must be identified and resolved. Next, fault simu-
lation must be performed on the pseudo-random patterns generated by the TPG
in order to determine the circuit’s fault coverage. If the circuit does not reach the
target fault coverage goal, additional test points should be inserted or top-up ATPG
should be used. The extra test points that were added in advance at the RTL design
should allow you to achieve the target fault coverage goal; otherwise, the test point
insertion and fault simulation process may have to be repeated until the final fault
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Fault simulation and test point insertion flow.

coverage goal is reached. Once this process is complete, the golden signature can be
either recorded to be compared externally or hard-coded into the comparison logic.
The fault simulation and test point insertion flow are illustrated in Figure 5.68.

5.9 CONCLUDING REMARKS

Bardell and McAnney [Bardell 1982] are among the pioneers who have proposed
a widely adopted logic BIST architecture, called STUMPS, for scan-based designs.
The acceptance of this STUMPS architecture is mostly due to the ease of integration
of the BIST circuitry into a scan design; however, the efforts required to implement
the BIST circuitry and the loss of the fault coverage for using pseudo-random
patterns have prevented the STUMPS-based logic BIST architecture from being
widely used across all industries. As the semiconductor manufacturing technology
moves into the nanometer design era, it remains to be seen how the CBILBO-
based architecture proposed by Wang and McCluskey [Wang 1986c], which can
always guarantee 100% single stuck-at fault coverage and has the ability of running
10 times more BIST patterns than the STUMPS-based architecture, will perform.
Challenges lie ahead with regard to whether or not pseudo-exhaustive testing will
become a preferred BIST pattern generation technique.

5.10 EXERCISES

5.1 (BIST Design Rules) A scan design can contain many asynchronous set/reset
signals that may require adding two or more set/reset clock points to break all
ripple set/reset loops. A ripple set/reset loop is a combinational feedback loop.
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Assume that the design now contains two system clocks (CK1 and CK2) and
two set/reset clocks (SRCK1 and SRCK2). Derive two BIST timing control
diagrams, including a scan enable (SE) signal, to test all data faults and
set/reset faults controlled by these four clocks. Explain which timing control
diagram can detect more faults.

5.2 (BIST Design Rules) Design a one-hot decoder for testing a tristate bus with
four independent tristate drivers in BIST mode.

5.3 (BIST Design Rules) Design an X-bounding circuit for improving the fault
coverage of a bidirectional I/O port by forcing it to input mode during BIST
operation.

5.4 (Complete LFSR) Insert a zero-state into each hybrid LFSR given in
Figures 5.13a and 5.13b. Minimize each modified hybrid LFSR, called com-
plete LFSR, so it contains the least number of gates. What is the period of
each complete LFSR?

5.5 (Weighted LFSR) Design a four-stage weighted LFSR with each output hav-
ing a different weight of 0.75, 0.5, 0.25, or 0.125.

5.6 (Cellular Automata) Prove why the cellular automaton of length 5 given in
Table 5.2 can generate a maximum-length sequence of 25 − 1. Derive the
construction rules for cellular automata of lengths 54 and 55.

5.7 (Condensed LFSR) Design an (n, k) condensed LFSR to test each output
cone of an �n	w� = �8	3� CUT exhaustively. Compare its pros and cons with
the (8, 5) cyclic LFSR given in Figure 5.23.

5.8 (Cyclic LFSR) Derive how the (8, 5) cyclic LFSR given in Figure 5.23 is
shortened from the (15, 5) cyclic LFSR with g�x� = �1+ x��1+ x+ x4� = 1+
x2+x4+x5	 h�x�= �1+x15�/g�x�	 p�x�= 1+x2+x3+x4+x5, and f�x�= h�x�p�x�=
1+x3+x5+x8+x9+x11+x12+x13+x15.

5.9 (Shortened Cyclic LFSR) Assume that the number of information bits to
be deleted (s) is 1. Derive how the (8, 4) shortened cyclic LFSR given in
Figure 5.24 is shortened from the �n− s	 k− s�= �15−1	5−1�= �14	4� short-
ened cyclic LFSR with g�x�= �1+x��1+x+x4�= 1+x2+x4+x5	 p�x�= 1+x+
x4	 h�x�= �1+x15�/g�x�, and f�x�= h�x�p�x�.

5.10 (Compatible LFSR) Mark all collapsed single stuck-at faults in Figure 5.25a
with up and down arrows. Mark faults detected by each test pattern �X1	X3�=
�00	01	10	11
 given in Figure 5.25b.

5.11 (Ones Count Testing versus Transition Count Testing) Assume a fault-
free output response R0 = �01101111
 and a faulty response R1 = �00110001
.
Compute the ones-count and transition-count signatures; indicate which com-
paction scheme can detect the faulty response, and show the aliasing proba-
bility using either compaction scheme.
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5.12 (Serial Signature Analysis) Compute the signature of the SISR using f�x�=
1+x+x4 given in Figure 5.30 for a faulty sequence M′ = �11111111
. Explain
why M′ is detected or not detected.

5.13 (Parallel Signature Analysis) Let M′
0 = �00010
	 M′

1 = �00010
	 M′
2 =

�11100
, and M′
3 = �10000
. Compute the signature of the MISR using f�x�=

1+x+x4 given in Figure 5.32 and explain why M′ is detected or not detected.

5.14 (BILBO versus MBILBO versus CBILBO) Discuss further the advantages
and disadvantages of using the BILBO, modified BILBO (MBILBO), and con-
current BILBO (CBILBO) approaches for testing a pipeline-oriented circuit,
from the points of view of hardware cost, test time, and fault coverage.

5.15 (STUMPS versus BILBO) Compare the performance of a STUMPS design
and a BILBO design. Assume that both designs operate at 200MHz and the
circuit under test has 100 scan chains each having 1000 scan cells. Compute
the test time for each design when 100,000 test patterns are to be applied. In
general, the shift (scan) speed is much slower than a circuit’s operating speed.
Assume that the shift speed is 20MHz, and compute the test time for the
STUMPS design again. Explain further why the STUMPS-based architecture
is gaining more popularity than the BILBO-based architecture.

5.16 (Test Point Insertion) For the circuit shown in Figure 5.47, calculate the
detection probabilities, before and after test point insertion, for a stuck-at-0
fault present at input X3 and then for a stuck-at-1 fault at input X6.

5.17 (Test Point Insertion) For the circuit shown in Figure 5.69, insert two test
points so the minimum detection probability for any fault in the circuit is
greater than or equal to 1/16 and draw the resulting circuit. Assume control
points are randomly activated.

5.18 (Aligned Skewed-Load versus Aligned Double-Capture) Assume there are
four synchronous clock domains each controlled by a capture clock, CK1,
CK2, CK3, or CK4, and each is operated at a frequency F1= 2×F2= 4×F3=
8×F4. Derive BIST timing control diagrams using aligned skewed-load and
aligned double-capture to test all intra-clock-domain and inter-clock-domain
delay faults. Specify by arrows the delay faults that can be detected in the
diagram.

X1
X2
X3

X4
X5
X6

Y

� FIGURE 5.69

An example circuit for Problem 5.17.
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5.19 (Staggered Skewed-Load versus Staggered Double-Capture) Assume
there are four asynchronous clock domains each controlled by a capture clock,
CK1, CK2, CK3, or CK4, and each is operated at a frequency F1>F2>F3>F4.
Derive BIST timing control diagrams using staggered skewed-load and stag-
gered double-capture to test all intra-clock-domain and inter-clock-domain
delay faults. Specify by arrows the delay faults that can be detected in the
diagram.

5.20 (Hybrid Double-Capture) Assume there are four mixed synchronous and
asynchronous clock domains each controlled by a capture clock, CK1, CK2,
CK3, and CK4, operating at F1 = 100MHz	F2 = 50MHz	F3 = 60MHz, and
F4 = 30MHz, respectively. Derive a BIST timing control diagram using a
hybrid double-capture scheme comprised of staggered double-capture and
aligned double-capture to test all intra-clock-domain and inter-clock-domain
delay faults. Specify by arrows the delay faults that can be detected in the
diagram.

5.21 (A Design Practice) Use the logic BIST programs and user’s
manuals contained on the companionWeb site to design the logic
BIST system using staggered double-capture for the circuit given
in Section 5.8. Report the circuit’s BIST fault coverage every
10,000 increments up to 100,000 pseudo-random patterns.

5.22 (A Design Practice) Repeat Problem 5.21, but instead imple-
ment the two pseudo-random pattern generators, PRPG1
and PRPG2, with a 28-stage CA and a 25-stage CA, respec-
tively, using the construction rules given in Table 5.2. Explain

why the CA-based logic BIST system can or cannot reach higher BIST fault
coverage than the LFSR-based logic BIST system given in Problem 5.21.

5.23 (A Design Practice) Use the ATPG programs and user’s man-
uals contained on the Web site to report the circuit’s ATPG
fault coverage when the logic BIST system is reconfigured
in ATPG mode. If the BIST fault coverage in Problem 5.21

is lower than the ATPG fault coverage, insert as many test points as required
in the logic BIST system to reach the ATPG fault coverage; alternatively, run
top-up ATPG in both ATPG compression and ATPG modes and report the
circuit’s final fault coverage.

5.24 (A Design Practice) Write a C/C++ program to backtrace
from a circuit output (primary output or scan cell input)
to determine the maximum number of inputs (w, primary
inputs and scan cell outputs, excluding clocks and set/reset

ports) that drive the output. Assume the scan-based circuit under test (CUT)
has n inputs and m outputs. The n-input, m-output CUT is defined as an (n,
w) CUT, where w≤ n. Find out which (n, w) CUTs are for both clock domains
s38417 and s38584, given in Table 5.6.
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5.25 (A Design Practice) Use the logic BIST programs and user’s
manuals contained on the Web site with data provided in
Problem 5.24 to design a CBILBO-based logic BIST system using
staggered single-capture for the circuit given in Section 5.8.

Report the circuit’s BIST fault coverage every 10,000 increments up to 100,000
pseudo-exhaustive patterns. Compare the observed BIST fault coverage with
the ATPG fault coverage given in Problem 5.23, and explain why both methods
produce the same or different fault coverage numbers.
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ABOUT THIS CHAPTER

Test compression involves compressing the amount of test data (both stimulus
and response) that must be stored on automatic test equipment (ATE) for test-
ing with a deterministic (automatic test pattern generation [ATPG]-generated)
test set. This is done by adding some additional on-chip hardware before the
scan chains to decompress the test stimulus coming from the ATE and after the
scan chains to compress the response going to the ATE. This differs from built-in
self-test (BIST) and hybrid BIST in that the test vectors that are applied to the
circuit under test (CUT) are exactly the same as the test vectors in the original
deterministic (ATPG-generated) test set (no additional pseudo-random vectors are
applied). Test compression can provide a 10× or even 100× reduction in the amount
of test data stored on the ATE. This greatly reduces ATE memory requirements
and even more importantly reduces test time because less data has to be trans-
ferred across the limited bandwidth between the ATE and the chip. Moreover, test
compression methodologies are easy to adopt in industry because they are com-
patible with the conventional design rules and test generation flows used for scan
testing.
This chapter begins with an introduction to the basic concepts and principles of

test compression. Then we focus on test stimulus compression and describe three
different categories of schemes: (1) using data compression codes, (2) employ-
ing linear decompression, and (3) broadcasting the same value to multiple scan
chains. Next we focus on test response compaction and look at different ways for
dealing with unknown (nondeterministic) values in the output response. Finally,
we discuss commercial tools that are used for implementing test compression in
industry.
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6.1 INTRODUCTION

Automatic test equipment (ATE) has limited speed, memory, and I/O channels.
The test data bandwidth between the tester and the chip, as illustrated in Figure 6.1,
is relatively low and generally is a bottleneck with regard to how fast a chip can
be tested [Khoche 2000]. The chip cannot be tested any faster than the amount of
time required to transfer the test data which is equal to:

Amount of Test Data on Tester

�Number of Tester Channels��Tester Clock Rate�

The idea in test compression is to compress the amount of test data (both stimulus
and response) that is stored on the tester. This provides two advantages. The first
is that it reduces the amount of tester memory that is required. The second and
more important advantage is that it reduces test time because less test data has
to be transferred across the low bandwidth link between the tester and the chip.
Test compression is achieved by adding some additional on-chip hardware before
the scan chains to decompress the test stimulus coming from the tester and after
the scan chains to compact the response going to the tester. This is illustrated in
Figure 6.2. This extra on-chip hardware allows the test data to be stored on the
tester in a compressed form.
Test data is inherently highly compressible. Test vectors have many unspecified

bits that are not assigned values during ATPG (i.e., they are “don’t cares” that can be
filled with any value with no impact on the fault coverage). In fact, typically only 1
to 5% of the bits have specified (care) values, and even the specified values tend to
be highly correlated due to the fact that faults are structurally related in the circuit.
Consequently, lossless compression techniques can be used to significantly reduce
the amount of test stimulus data that must be stored on the tester. The on-chip
decompressor expands the compressed test stimulus back into the original test
vectors (matching in all the care bits) as they are shifted into the scan chains. Output

Tester

Test
Data

Test Data Bandwidth
= (# Channels* Clock Rate)

Chip

� FIGURE 6.1

Block diagram illustrating test data bandwidth.
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Architecture for test compression.

response is even more compressible than test stimulus because lossy compression
(also known as “compaction”) can be used. This is similar to the techniques used in
BIST as described in Chapter 5. Output response compaction converts long output
response sequences into short signatures. Because the compaction is lossy, some
fault coverage can be lost due to aliasing when a faulty output response signature
is identical to the fault-free output response signature; however, with proper design
of the compaction circuitry, the probability of aliasing can be kept negligibly small.
A more challenging issue for output response compaction is dealing with unknown
(nondeterministic) values (commonly referred to as X ’s) that might appear in the
output sequence, as they can corrupt compacted signatures. This can be addressed
by “X-blocking” or “X-bounding,” where the design is modified to eliminate any
sources of X ’s in the output as is done in BIST; however, this adds additional design
complexity. Alternatively, “X-masking” can be done to selectively mask off the X ’s
in the output sequence, or an “X-tolerant” compaction technique can be used. If it is
still impossible to prevent all X ’s from reaching the compactor, then an “X-impact”
compaction technique that uses ATPG assignments to avoid propagating X ’s can
be used. This technique is discussed further in Section 6.3.
Test compression differs from (logic) BIST and hybrid BIST. Traditional stand-

alone BIST does all the test pattern generation and output response analysis
on-chip, without requiring any tester storage. The advantage of stand-alone BIST
is that it can perform self-test out in the field where there is no access to the tester;
however, to achieve high fault coverage with stand-alone BIST, typically a lot of
overhead is required (either test points or deterministic pattern embedding logic).
Moreover, stringent BIST design rules are necessary in order to eliminate all X ’s
in the output response. If BIST is only going to be used for manufacturing test,
then hybrid BIST, where some data are stored on the tester to aid in detecting
random-pattern resistant faults, offers a more efficient solution. Hybrid BIST and
test compression are similar in that they both use on-chip hardware to reduce the
amount of data stored on the tester. The difference is that test compression applies
a precise deterministic (ATPG-generated) test set to the CUT whereas hybrid BIST
applies a large number of pseudo-random patterns plus a smaller number of deter-
ministic patterns for the random-pattern resistant faults. Hybrid BIST can reduce
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the amount of test data on the tester more than test compression, but it generally
requires longer overall test time because more test patterns are applied to the CUT
than with test compression (in essence, it trades off more test time for less tester
storage). The advantage of test compression is that the exact set of patterns that
are applied to the CUT is selected through ATPG and thus can be minimized with
respect to the desired fault coverage. Moreover, test compression is easy to adopt
in industry because it is compatible with the conventional design rules and test
generation flows used for scan testing.
The amount of test data required to test integrated circuits (ICs) is growing

rapidly in each new generation of technology. Increasing integration density results
in larger designs with more scan cells and more faults. Moreover, achieving high
test quality in ever smaller geometries requires more test patterns targeting delay
faults and other fault models beyond stuck-at faults. As the amount of test data has
increased, test compression has become very attractive as the additional hardware
overhead is relatively low and significant reductions (10× or even 100×) in the
amount of test data that must be stored on the tester can be achieved. One benefit of
test compression is that it can extend the life of older “legacy” testers that may have
limited memory by making it possible to fit all of the test data in the tester memory
(note that reloading the tester memory is very time consuming and thus highly
undesirable). Even for testers that have plenty of memory, test compression is still
very attractive because it can reduce the test time for a given test data bandwidth.

6.2 TEST STIMULUS COMPRESSION

A test cube is defined as a deterministic test vector in which the bits that are not
assigned values by the ATPG procedure are left as “don’t cares” (X ’s). Normally,
ATPG procedures perform random fill, in which all the X ’s in the test cubes are filled
randomly with 1’s and 0’s to create fully specified test vectors; however, for test
stimulus compression, random fill is not performed during ATPG so the resulting
test set consists of incompletely specified test cubes. The X ’s make the test cubes
much easier to compress than fully specified test vectors. As mentioned earlier, test
stimulus compression should be an information lossless procedure with respect to
the specified (care) bits in order to preserve the fault coverage of the original test
cubes. After decompression, the resulting test patterns shifted into the scan chains
should match the original test cubes in all the specified (care) bits. Many schemes
for compressing test cubes have been proposed. They can be broadly classified
into the three categories shown below; these schemes are described in detail in the
following subsections (shown in parentheses):

1. Code-based schemes (6.2.1)—These schemes use data compression codes to
encode the test cubes.

2. Linear-decompression-based schemes (6.2.2)—These schemes decompress
the data using only linear operations (e.g., linear feedback shift registers
[LFSRs] and exclusive-OR [XOR] networks).

3. Broadcast-scan-based schemes (6.2.3)—These schemes are based on broad-
casting the same value to multiple scan chains.
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6.2.1 Code-Based Schemes
One approach for test compression is to use data compression codes to encode
the test cubes. Data compression codes partition the original data into symbols,
and then each symbol is replaced with a codeword to form the compressed data.
The decompression is performed by having a decoder that simply converts each
codeword into the corresponding symbol.
Data compression codes can be classified into four categories, depending on

whether the symbols have a fixed size (i.e., each symbol contains exactly n bits) or
a variable size (i.e., different symbols have different numbers of bits) and whether
the codewords have a fixed or variable size. Table 6.1 provides examples of data
compression codes in each category. Note that the codes listed in Table 6.1 are
only representative examples of each category and are by no means an exhaustive
list. One representative example code from each category is described in detail in
this subsection. Brief descriptions and references for other codes that have been
proposed in each category are also provided.

6.2.1.1 Dictionary Code (Fixed-to-Fixed)

In fixed-to-fixed coding, the original test cubes are partitioned into n-bit blocks to
form the symbols. These symbols are then encoded with codewords that each have
b bits. In order to get compression, bmust be less than n. One can view each symbol
as an entry in a dictionary and each codeword as an index into the dictionary that
points to the corresponding symbol. There are 2n possible symbols and 2b possible
codewords, so not all possible symbols can be in the dictionary. If Sdictionary is the
set of symbols that are in dictionary and Sdata is the set of symbols that occur in
the original data, then if Sdata ⊆ Sdictionary, it is a complete dictionary; otherwise, it
is a partial dictionary. Compression can be achieved with a complete dictionary
provided that the number of distinct symbols that occur in the original data �Sdata�
is much less than 2n, the number of all possible symbols. The compression ratio
that can be achieved with a complete dictionary is equal to:

2n−�log2�sdata�� � 1

A test compression scheme that uses a complete dictionary was described in
[Reddy 2002]. The scheme is illustrated in Figure 6.3. There are n scan chains,
and the test cubes are partitioned into n-bit symbols such that each scan slice
corresponds to a symbol. Each scan slice is comprised of the n-bits that are loaded

TABLE 6.1 � Four Categories of Data Compression Codes

Category Example Data Compression Code Ref.

Fixed-to-fixed Dictionary code [Reddy 2002]
Fixed-to-variable Huffman code [Jas 2003]
Variable-to-fixed Run-length code [Jas 1998]
Variable-to-variable Golomb code [Chandra 2001a]
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� FIGURE 6.3

Test compression using a complete dictionary.

into the scan chains in each clock cycle as illustrated in Figure 6.3. The X ’s in the
test cubes are filled so as to minimize the number of distinct symbols (i.e., �Sdata�).
The size of each codeword is b bits, where b = �log2 �Sdata��. Note that, with this
scheme, b channels from the tester can be used to load n scan chains. Normally, b
channels from the tester can only load b scan chains. By having more scan chains,
the length of each scan chain becomes shorter, thus reducing the number of clock
cycles required to load each scan vector and therefore reducing the test time. This
is a good illustration of how test compression reduces not only tester storage but
also test time.
A drawback of using a complete dictionary is that the size of the dictionary

can become very large, resulting in too much overhead for the decompressor. In
[Li 2003], a partial dictionary coding scheme was proposed in which the size of
the dictionary is selected by the user based on how much area the user wants to
allocate for the decompressor. If the size of the dictionary is 2b, then the 2b symbols
that occur most frequently in the test cubes are placed in the dictionary. For any
symbol that is not in the dictionary, the symbol is left unencoded and the dictionary
is bypassed. An extra bit is added to each codeword to indicate whether or not to
use the dictionary.
In [Würtenberger 2004], a partial dictionary is used along with a “correction”

network that flips bits to convert a dictionary entry into the desired scan slice. By
using the correction network, the size of the dictionary can be reduced.

6.2.1.2 Huffman Code (Fixed-to-Variable)

In fixed-to-variable coding, the original test cubes are partitioned into n-bit blocks
to form the symbols. These symbols are then encoded using variable-length code-
words. One form of fixed-to-variable coding is statistical coding, where the idea
is to calculate the frequency of occurrence of the different symbols in the original
test cubes and make the codewords that occur most frequently have fewer bits and
those that occur least frequently more bits. This minimizes the average length of a
codeword. A Huffman code [Huffman 1952] is an optimal statistical code that is
proven to provide the shortest average codeword length among all uniquely decod-
able fixed-to-variable length codes. A Huffman code is obtained by constructing a
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Huffman tree as described in [Huffman 1952]. The path from the root to each
leaf in the Huffman tree gives the codeword for the binary string corresponding
to the leaf. An example of constructing a Huffman code can be seen in Table 6.2
and Figures 6.4 and 6.5. An example of a test set divided into 4-bit symbols is
shown in Figure 6.4. Table 6.2 shows the frequency of occurrence of each of the
possible symbols. The example shown in Figure 6.4 has a total of 60 4-bit sym-
bols. Figure 6.5 shows the Huffman tree for this frequency distribution, and the
corresponding codewords are shown in Table 6.2.
In [Jas 2003], a scheme for test compression based on Huffman coding was

described. The test cubes are partitioned into symbols and then the X ’s in the test
cubes are filled to maximally skew the frequency of occurrence of the symbols. A
selective Huffman code in which only the k most frequently occurring symbols
are encoded is used. The reason for this is that using a full Huffman code that
encodes all n-bit symbols requires a decoder with 2n−1 states. By only selectively
encoding the k most frequently occurring symbols, the decoder requires only n+k

TABLE 6.2 � Statistical Coding Based on Symbol Frequencies for
Test Set in Figure 6.4

Symbol Frequency Pattern Huffman Code Selective Code

S0 22 0 0 1 0 1 0 1 0
S1 13 0 1 0 0 0 0 1 1 0
S2 7 0 1 1 0 1 1 0 1 1 1
S3 5 0 1 1 1 0 1 0 0 0 1 1 1
S4 3 0 0 0 0 0 1 1 0 0 0 0 0 0
S5 2 1 0 0 0 0 1 1 1 0 1 0 0 0
S6 2 0 1 0 1 1 1 1 0 0 0 0 1 0 1
S7 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1
S8 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0
S9 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1
S10 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1
S11 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
S12 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1
S13 0 1 1 1 0 — —
S14 0 1 0 1 0 — —
S15 0 1 0 0 1 — —

0010 0100 0010 0110 0000 0010 1011 0100 0010 0100 0110 0010
0010 0100 0010 0110 0000 0110 0010 0100 0110 0010 0010 0000
0010 0110 0010 0010 0010 0100 0100 0110 0010 0010 1000 0101
0001 0100 0010 0111 0010 0010 0111 0111 0100 0100 1000 0101
1100 0100 0100 0111 0010 0010 0111 1101 0010 0100 1111 0011

� FIGURE 6.4

Example of test set divided into 4-bit blocks.
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Huffman tree for the code shown in Table 6.4.

states. It was shown in [Jas 2003] that a selective Huffman code achieves only
slightly less compression than a full Huffman code for the same symbol size while
using a much smaller decoder. Because the decoder size grows only linearly with
selective Huffman encoding, it is possible to use a much larger symbol size, which
significantly improves the effectiveness of the code thereby achieving much more
overall compression.
In selective Huffman coding, an extra bit is added at the beginning of each

codeword to indicate whether or not it is coded. As an example, consider selective
Huffman coding for the test set shown in Figure 6.4, where only the three most
frequency occurring symbols are encoded (i.e., k = 3). A Huffman tree is built
only for the three most frequently occurring symbols, as shown in Figure 6.6.
The codewords are then constructed as shown in Table 6.2. The first bit of the
codewords for the three most frequently occurring symbols is “1” to indicate that
they are coded (and hence must pass through the decoder). The first bit of the rest

42

22 20

13 7
s0

s1 s2

0 1

0 1

� FIGURE 6.6

Huffman tree for the three highest frequency symbols in Table 6.2.
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of the codewords is a “0” to indicate that they are not coded (i.e., the remainder of
the codeword is simply the unencoded symbol itself).
A method for improving the compression with a statistical code by modifying the

test cubes without losing fault coverage is described in [Ichihara 2000]. The goal
is to modify the specified bits in the test cubes in a way that maximally skews the
frequency distribution.
Another type of fixed-to-variable coding, which differs from statistical coding,

exploits the fact that most scan slices have a relatively small number of specified
bits. If there are b channels coming from the tester, the techniques described
in [Reda 2002], [Han 2005b], and [Wang 2005a] use a variable number of b-bit
codewords to decode the specified bits in each scan slice. Each b-bit codeword can
decode a small number of specified bits. For scan slices with very few specified
bits, a single b-bit codeword may be sufficient, while for more heavily specified
scan slices several b-bit codewords may be required to decode all the specified bits.
[Reda 2002] and [Han 2005b] actually encode the specified bits that differ between
the previous scan slice and the current scan slice to take advantage of correlation
between the scan slices.

6.2.1.3 Run-Length Code (Variable-to-Fixed)

In variable-to-fixed coding, the original test cubes are partitioned into variable-
length symbols, and the codewords are each b-bits long. In run-length coding, one
particular variable-to-fixed coding scheme, the symbols consist of runs of consec-
utive 0’s or 1’s. An example of a 3-bit run-length code for runs of 0’s is given in
Table 6.3. Each codeword is 3 bits long and encodes different length runs of 0’s.
As an example, the sequence 001 0001 01 0000001 1 000001 can be encoded into
010 011 001 110 000 101, which is a reduction from 23 bits to 18 bits. For very
long runs of 0’s (longer than 7), codeword 111 can be used repeatedly as needed.
Note that only data with an unbalanced number of 0’s and 1’s can be efficiently
compressed by a run-length code.
In [Jas 1998], test compression based on a run-length code was proposed using

a cyclical scan architecture as shown in Figure 6.7. The cyclical scan architecture
XORs the data currently being shifted in with the previous test vector. Thus, instead

TABLE 6.3 � 3-Bit Run-Length Code

Symbol Codeword

1 0 0 0
0 1 0 0 1
0 0 1 0 1 0
0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1
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� FIGURE 6.7

Cyclical scan architecture for applying difference vectors.

of applying the original test set, TD = �t1	 t2	 t3	 � � � 	 tn
, a difference vector set, Tdiff =
�t1	 t1 ⊕� t2	 t2 ⊕� t3	 � � � 	 tn−1 ⊕� tn
, is applied instead. The advantage of this is that the
test vectors can be ordered so similar test vectors come after each other so the dif-
ference vectors have many 0’s. This enhances the effectiveness of run-length coding.
Other types of variable-to-fixed codes that have been proposed for test stimulus
compression include LZ77 [Wolff 2002] and LZW [Knieser 2003].

6.2.1.4 Golomb Code (Variable-to-Variable)

In variable-to-variable coding, both the symbols and codewords have variable
length. A Golomb code [Chandra 2001] is a variable-to-variable code that evolved
from the run-length code. To construct a Golomb code, a specific parameter m,
called the group size (usually a power of 2), is first chosen. All the run-lengths
are divided into groups of size m denoted by A1	 A2	 A3	 � � � . The set of run-lengths
�0	1	2	m−1
 form the first group A1, the set of run-lengths �m	m+1	 � � � 	2m
 form
the second group A2, and so on. Each codeword of a Golomb code consists of two
parts: a group prefix and a tail. A run-length L that belongs to group Ak is assigned a
group prefix �k−1� of ones followed by a zero. The tail is an index of the run-length
in a group. If m is chosen to be a power of 2 (i.e., m = 2N for some integer N),
then each group contains 2N members, and a log2m-bit-long sequence (tail) can
uniquely identify each member within the group. Table 6.4 shows an example of
Golomb code in which each group contains four run-lengths.

Example 6.1

Figure 6.8 shows an example using the Golomb code of Table 6.4. In the original
test sequence TD, the run-length of the 0’s before the first 1 is 2. Based on Table 6.4,
the sequence “001” is encoded as “010,” in which the “0” is the prefix and “10” is
the tail. Similar procedures are repeated until all the run-lengths are processed. It
can be found that the length of the test sequence can be reduced from 43 to 32.
In a Golomb code, each group contains the same number of run-lengths and thus

may still be inefficient in some cases. In [Chandra 2003], a frequency-directed run-
length (FDR) code was proposed that has variable-length tails based on the group
index. It can be constructed such that a shorter run-length can be encoded into a
shorter codeword to give better compression. An even more optimized run-length
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TABLE 6.4 � Golomb Code with Four Run-Lengths for Each Group

Group Run-Length Group Prefix Tail Codeword

A1 0 0 0 0 0 0 0
1 0 1 0 0 1
2 1 0 0 1 0
3 1 1 0 1 1

A2 4 1 0 0 0 1 0 0 0
5 0 1 1 0 0 1
6 1 0 1 0 1 0
7 1 1 1 0 1 1

A3 8 1 1 0 0 0 1 1 0 0 0
9 0 1 1 1 0 0 1

10 1 0 1 1 0 1 0
11 1 1 1 1 0 1 1

… … … … …

 TD = 001 00001 0001 00001 00001 0000 01 001 00000001 00 01

l1 = 2 l2 = 4 l3 = 3 l4 = 4 l5 = 4 l6 = 5 l7 = 2 l8 = 7 l9 = 3 

Using Golomb code shown in Table 6.4 

TE = 010 1000 011 1000 1000 1001 010 1011 011

The length of TD is 43 bits

The length of TE is 32 bits

� FIGURE 6.8

A test sequence and its encoded test data using Golomb code.

code is the variable-length-input Huffman code (VIHC) described in [Gonciari
2003]. In [Würtenberger 2003], a hybrid approach that combines dictionary coding
with run-length coding was proposed. Other variable-to-variable codes that are
not based on run-length coding include packet-based codes [Volkerink 2002] and
nine-coded compression [Tehranipoor 2005].

6.2.2 Linear-Decompression-Based Schemes
Another class of test stimulus compression schemes is based on using linear
decompressors to expand the data coming from the tester to fill the scan chains.
Any decompressor that consists of only XOR gates and flip-flops is a linear decom-
pressor. Linear decompressors have a very useful property: Their output space (i.e.,
the space of all possible test vectors that they can generate) is a linear subspace
that is spanned by a Boolean matrix. In other words, for any linear decompressor
that expands an m-bit compressed stimulus from the tester into an n-bit stimulus
(test vector), there exists a Boolean matrix An×m such that the set of test vectors
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that can be generated by the linear decompressor is spanned by A. A test vector Z
can be compressed by a particular linear decompressor if and only if there exists
a solution to a system of linear equations, AX = Z, where A is the characteristic
matrix of the linear decompressor and X is a set of free variables stored on the tester
(every bit stored on the tester can be thought of as a “free variable” that can be
assigned any value, 0 or 1).
The characteristic matrix for a linear decompressor can be obtained by doing

symbolic simulation where each free variable coming from the tester is represented
by a symbol. An example of this is shown in Figure 6.9, where a sequential linear
decompressor containing an LFSR is used. The initial state of the LFSR is repre-
sented by the free variables X1−X4, and the free variables X5−X10 are shifted in
from two channels as the scan chains are loaded. After symbolic simulation, the
final values in the scan chains are represented by the equations for Z1−Z12. The
corresponding system of linear equations for this linear decompressor is shown in
Figure 6.10.
The symbolic simulation goes as follows. Assume that the initial seed X1−X4 has

been already loaded into the flip-flops. In the first clock cycle, the top flip-flop is
loaded with the XOR of X2 and X5, the second flip-flop is loaded with X3, the third
flip-flop is loaded with the XOR of X1 and X4, and the bottom flip-flop is loaded
with the XOR of X1 and X6. Thus, we obtain Z1 = X2⊕X5, Z2 = X3, Z3 = X1⊕X4, and
Z4 = X1⊕X6. In the second clock cycle, the top flip-flop is loaded with the XOR of

Z9 Z5 Z1

Z10 Z6 Z2

+

X1

X2

X3

X9 X7 X5

Z11 Z7 Z3

Z12 Z8 Z4
+

X4

+

X10 X8 X6

Z9 = X1 ⊕ X4 ⊕ X9 Z5 = X3 ⊕ X7 Z1 = X2 ⊕ X5

Z10 = X1 ⊕ X2 ⊕ X5 ⊕ X6 Z6 = X1 ⊕ X4 Z2 = X3

Z11 = X2 ⊕ X3 ⊕ X5 ⊕ X7 ⊕ X8 Z7 = X1 ⊕ X2 ⊕ X5 ⊕ X6 Z3 = X1 ⊕ X4

Z12 = X3 ⊕ X7 ⊕ X10 Z8 = X2 ⊕ X5 ⊕ X8 Z4 = X1 ⊕ X6

� FIGURE 6.9

Example of symbolic simulation for linear decompressor.
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0 1 0 0 1 0 0 0 0 0
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1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0
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� FIGURE 6.10

System of linear equations for the decompressor in Figure 6.9.

the contents of the second flip-flop �X3� and X7; the second flip-flop is loaded with
the contents of the third flip-flop �X1⊕X4�; the third flip-flop is loaded with the
XOR of the contents of the first flip-flop �X2⊕X5� and the fourth flip-flop �X1⊕X6�;
and the bottom flip-flop is loaded with the XOR of the contents of the first flip-flop
�X2⊕X5� and X8. Thus, we obtain Z5 = X3⊕X7, Z6 = X1⊕X4, Z7 = X1⊕X2⊕X5⊕X6,
and Z8 = X2⊕X5⊕X8. In the third clock cycle, the top flip-flop is loaded with the
XOR of the contents of the second flip-flop �X1⊕X4� and X9; the second flip-flop
is loaded with the contents of the third flip-flop �X1⊕X2⊕X5⊕X6�; the third flip-
flop is loaded with the XOR of the contents of the first flip-flop �X3⊕X7� and the
fourth flip-flop �X2⊕X5⊕X8�; and the bottom flip-flop is loaded with the XOR of
the contents of the first flip-flop �X3⊕X7� and X10. Thus, we obtain Z9 = X4⊕X9,
Z10 =X1⊕X6, Z11 =X2⊕X5⊕X8, and Z12 =X3⊕X7⊕X10. At this point, the scan chains
are fully loaded with a test cube, so the simulation is complete.
For a linear decompressor, finding an assignment for the free variables that will

encode a particular test cube can be done by solving the system of linear equations
for the specified bits in the test cube. Solving the linear equations can be done
with Gauss–Jordan elimination [Cullen 1997] in time complexity O�mn2�, where m
is the number of columns (free variables) and n is the number of rows (number
of specified bits in the test cube). Note that for Boolean matrices, XOR is used in
place of addition and AND is used in place of multiplication.

An example of solving the linear equations for a test cube is shown in Figure 6.11.
There are five specified bits in the test cube, so the five linear equations correspond-
ing to those bit positions must be simultaneously solved. One solution is shown, but
note that there are many solutions to this system of linear equations. In Figure 6.12,
an example of a test cube that does not have a solution is shown (note that row
three cannot be solved). In this case, it is not possible to encode that test cube with
this particular linear decompressor.

There are a few different strategies for handling unencodable test cubes. A sim-
ple approach is to just bypass the decompressor when applying those test cubes
(directly shift them in unencoded form); however, that can significantly degrade the



354 VLSI Test Principles and Architectures
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Z = 1--011-----0

1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1
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0 0 0 1 0 1 0 0 0 0 1
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X = 0111000001 

Gaussian
Elimination

� FIGURE 6.11

Example of solving system for linear equations.

0 1 0 0 1 0 0 0 0 0 1 
1 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1

Z = 1-0--1------

1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 

X = No Solution

Gaussian
Elimination

� FIGURE 6.12

Example of system of linear equations with no solution.

overall compression. Another approach is to rerun the ATPG for the unencodable
test cubes to try to find a different test cube that is encodable. A third approach
is to redesign the linear decompressor so it uses more free variables when decom-
pressing the test cubes, thereby making it easier to solve the linear equations. Note
that it is very unlikely to be able to encode a test cube that has more specified bits
than the number of free variables used to encode it. On the other hand, for linear
decompressors that have diverse linear equations (e.g., an LFSR with a primitive
polynomial), if the number of free variables is sufficiently larger than the number
of specified bits, the probability of not being able to encode the test cube becomes
negligibly small. For an LFSR with a primitive polynomial, it has been shown that
if the number of free variables is 20 more than the number of specified bits, then
the probability of not finding a solution is less than 10−6 [Chen 1986] [Könemann
1991].
A figure of merit for linear decompressors is encoding efficiency, which is

defined as follows:

Specified Bits in Test Set

Bits Stored on Tester

How close a linear decompressor’s encoding efficiency is to 1 is a measure of
its optimality. In general, it is not possible to achieve higher than an encoding
efficiency of 1 because the probability of solving the linear equations when there
are more specified bits than free variables is extremely low and would likely only
happen for very few test cubes in a test set.
Many different linear decompressor designs have been proposed. They can be

categorized based on whether they use combinational logic or sequential logic and
based on whether they use a fixed number of free variables when encoding each
test cube or whether the number of free variables varies for different test cubes.
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6.2.2.1 Combinational Linear Decompressors

The simplest linear decompressors use only combinational XOR networks. Each
scan chain is fed by the XOR of some subset of the channels coming from the
tester [Bayraktaroglu 2001] [Bayraktaroglu 2003] [Könemann 2003]. The advan-
tages compared with sequential linear decompressors are simpler hardware and
control. The drawback is that, in order to encode a test cube, each scan slice must
be encoded using only the free variables that are shifted from the tester in a sin-
gle clock cycle (which is equal to the number of channels). The worst-case most
highly specified scan slices tend to limit the amount of compression that can be
achieved because the number of channels from the tester has to be sufficiently large
to encode the most highly specified scan slices. Consequently, it is very difficult to
obtain a high encoding efficiency (typically it will be less than 0.25); for the other
less specified scan slices, a lot of the free variables end up getting wasted because
those scan slices could have been encoded with many fewer free variables.
One approach for improving the encoding efficiency of combinational linear

decompressors that was proposed in [Krishna 2003] is to dynamically adjust the
number of scan chains that are loaded in each clock cycle. So, for a highly specified
scan slice, four clock cycles could be used in which 25% of the scan chains are
loaded in each cycle, while for a lightly specified scan slice, only one clock cycle can
be used in which 100% of the scan slices are loaded. This allows a better matching
of the number of free variables with the number of specified bits to achieve a
higher encoding efficiency. Note that it requires that the scan clock be divided into
multiple domains.

6.2.2.2 Fixed-Length Sequential Linear Decompressors

Sequential linear decompressors are based on linear finite-state machines such
as LFSRs, cellular automata, or ring generators [Mrugalski 2004]. The advantage of
a sequential linear decompressor is that it allows free variables from earlier clock
cycles to be used when encoding a scan slice in the current clock cycle. This pro-
vides much greater flexibility than combinational decompressors and helps avoid
the problem of the worst-case most highly specified scan slices limiting the overall
compression. The more flip-flops that are used in the sequential linear decom-
pressor, the greater the flexibility that is provided. Results in [Krishna 2001] and
[Rajski 2004] have shown that a well-designed sequential linear decompressor with
a sufficient number of flip-flops can provide greater than 0.95 encoding efficiency.
A typical design of a sequential linear decompressor is shown in Figure 6.13.

Different variants of this were described in [Krishna 2001], [Könemann 2001], and
[Rajski 2004]. There are b channels from the tester that inject free variables into
a linear finite-state machine (in this case, it is shown as an LFSR, but it could
also be a cellular automaton or a ring generator). The LFSR is then followed by a
combinational linear XOR network that expands the outputs of the LFSR to fill the
scan chains. When decompressing each test cube, the state of the LFSR is first reset
and then a few initial clock cycles are used to load the LFSR with some initial free
variables. After that, in each clock cycle the scan chains are loaded as additional
free variables are injected into the LFSR. The total number of free variables that
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� FIGURE 6.13

Typical sequential linear decompressor.

are used to generate each test cube is equal to b�q+m�, where b is the number of
channels from the tester, q is the number of clock cycles used to initially load the
LFSR, and m is the length of the longest scan chain. The reason for resetting the
LFSR between test cubes is that it decouples the system of linear equations that
have to be solved when encoding each test cube. If the LFSR is not reset, then the
complexity of the linear equations would grow very large, as each test cube would
depend on all the free variables injected up to that point. The reason why q clock
cycles are used to initially load the LFSR before beginning to fill the scan chains is
to create a reservoir of free variables that can be drawn upon in case the first scan
slices are heavily specified.
The simplest way to perform sequential linear decompression is to just shift in

the same number of free variables for every test cube. The control logic in this
case is very simple because every test cube is decompressed in exactly the same
way. The drawback of this approach is that the encoding efficiency is limited by
the worst-case most heavily specified test cube. If smax is the maximum number of
specified bits in any test cube, then the number of free variables used to encode each
test cube would have to be at least smax. If savg is the average number of specified
bits in any test cube, then the highest encoding efficiency that can be achieved is
savg/smax because every test cube is encoded with at least smax free variables. If the
difference between savg and smax can be kept small, then high encoding efficiency
can be achieved. One way to do this is to constrain the ATPG so smax does not
become too large and stays near savg (this approach was taken in [Rajski 2004]).

6.2.2.3 Variable-Length Sequential Linear Decompressors

An alternative to using a fixed number of free variables for decompressing every
test cube is to use a sequential linear decompressor that can vary the number of
free variables that are used for each test cube. The advantage of this is that better
encoding efficiency can be achieved by using only as many free variables as are
needed to encode each test cube. The cost is that more control logic and control
information is needed.
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One approach for implementing variable-length sequential decompression that
was described in [Könemann 2001] and [Volkerink 2003] is to have an extra channel
from the tester that gates the scan clock. If there is a heavily specified scan slice
(or window of scan slices for [Volkerink 2003]), this extra gating channel can
be used to stop the scan shifting for one or more cycles to allow the LFSR to
accumulate a sufficient number of free variables to solve for the current scan slice
before proceeding to the next one. With this approach it is very easy to control
the number of clock cycles and hence the number of free variables that are used
for decompressing each test cube. The drawback is the need for the additional
gating channel, which diminishes the amount of test compression achieved in
proportion with the total number of channels being used (note that, if 16 channels
are used, then an additional channel would subtract around 6% from the overall
compression).
An alternative approach that eliminates the additional gating channel was

described in [Krishna 2004]. The idea is that, when decompressing a test cube, in
the first clock cycle the first b bits coming from the tester are used to specify how
many clock cycles should be used for decompressing the test cube. These first b
bits are used to initialize a counter that counts down until it reaches 0, at which
point the scan vector is applied to the CUT and the next test cube is decompressed.
As was mentioned earlier, the more flip-flops that are used in a sequential lin-

ear decompressor, the more flexibility it provides in solving the linear equations
because more free variables from earlier clock cycles are retained and can be uti-
lized. This improves the encoding efficiency. One idea for increasing the number
of flip-flops without incurring a lot of overhead is to configure the scan chains
themselves into a large LFSR as originally suggested in [Rajski 1998]. A particular
architecture for this was proposed in [Krishna 2004]; it involves constructing a
highly efficient three-stage linear decompressor as shown in Figure 6.14, where the
parts in gray are configured from the scan cells themselves. The three stages of
decompression are used to achieve high encoding efficiency for any distribution of
specified bits in a test cube. The first stage is a combinational linear decompressor,
the second stage is a vertical LFSR, and the third stage is a set of large horizontal
LFSRs. The combinational linear decompressor is designed in a way that makes
the large horizontal LFSRs linearly independent, thus allowing any test cube to be
decompressed with this architecture, including fully specified ones. Encoding effi-
ciencies greater than 0.99 can be obtained with this architecture without requiring
any constraints on the ATPG. The drawback is the need to add logic in the scan
chains to configure them as LFSRs.

6.2.2.4 Combined Linear and Nonlinear Decompressors

The amount of compression that can be achieved with linear decompression is
limited by the number of specified bits in the test cubes. While linear decompressors
are very efficient at exploiting “don’t cares” in the test set, they cannot exploit
correlations in the specified bits; hence, they cannot compress the test data to less
than the total number of specified bits in the test data. The specified bits tend to
be highly correlated, and one strategy that takes advantage of this is to combine



358 VLSI Test Principles and Architectures

(n /b)(m – 1)-bit LFSR

b-to-n
Comb.
Linear

Expand

m -bit Scan Length

b Channels
from Tester

L
F
S
R

n /b

(n /b)(m – 1)-bit LFSR

(n /b)(m – 1)-bit LFSR

1-bit

n /b

n /b

� FIGURE 6.14

Three-stage sequential linear decompressor [Krishna 2004].

linear and nonlinear decompression together to achieve greater compression than
either can alone.
In [Krishna 2002], the inputs to a linear decompressor are encoded using a

nonlinear code. A method is described in [Krishna 2002] for selecting the solution
to the system of linear equations for each test cube in such a way that they can be
effectively compressed by a statistical code. The statistical code reduces the number
of bits that must be stored on the tester for the linear decompressor.
In [Sun 2004], dictionary coding is combined with a linear decompressor. For

each scan slice, either the dictionary is used to generate it, or, if it is not present in
the dictionary, the linear decompressor is then used to generate it.
In [Li 2005] and [Ward 2005], a nonlinear decompressor is placed between the

linear decompressor and the scan chains as shown in Figure 6.15. In [Li 2005], the
nonlinear decompressor is constructed by identifying scan chains that are compat-
ible with a nonlinear combination of two other scan chains. For example, if scan
chain a can be driven by the AND of the scan-in of scan chains b and c (this is
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� FIGURE 6.15

One approach for combining linear and nonlinear decompressors.



Test Compression 359

checked by making sure that, in any scan slice where scan chain a has a specified
“1,” neither scan chain b nor c has a specified “0”). A limitation of this approach is
that as the scan length and number of test patterns increase, it becomes increasingly
difficult to find such compatibility relationships among the scan chains. In [Ward
2005], a statistical code that compresses the number of specified bits is used. By
reducing the number of specified bits that the linear decompressor has to produce,
greater compression can be achieved because fewer free variables are required from
the tester to solve the linear equations.

6.2.3 Broadcast-Scan-Based Schemes
The third class of test stimulus compression schemes is based on broadcasting the
same value to multiple scan chains. This was first proposed in [Lee 1998] and [Lee
1999]. Due to its simplicity and effectiveness, this method has been used as the
basis of many test compression architectures, including some commercial design
for testability (DFT) tools.

6.2.3.1 Broadcast Scan

To illustrate the basic concept of broadcast scan, first consider two independent
circuits C1 and C2. Assume that these two circuits have their own test sets T1 =
<T11	 t12	 � � � 	 t1k> and T2 =<T21	 t22	 � � � 	 t2l>, respectively. In general, a test set may
consist of random patterns and deterministic patterns. In the beginning of the
ATPG process, usually random patterns are initially used to detect the easy-to-
detect faults. If the same random patterns are used when generating both T1 and
T2 then we may have t11 = t21	 t12 = t22	 � � � , up to some ith pattern. After most faults
have been detected by the random patterns, deterministic patterns are generated
for the remaining difficult-to-detect faults. Generally, these patterns have many
“don’t care” bits. For example, when generating t1�i+1�, many “don’t care” bits may
still exist when no more faults in C1 can be detected. Using a test pattern with bits
assigned so far for C1, we can further assign specific values to the “don’t care” bits
in the pattern to detect faults in C2. Thus, the final pattern would be effective in
detecting faults in both C1 and C2.
The concept of pattern sharing can be extended to multiple circuits as illustrated

in Figure 6.16. The problem is how to guide the ATPG tool to generate the patterns
to be shared. If the ATPG tool has an option that allows the user to place the
constraint that some inputs must always have the same values then the problem
is solved. Note that the inputs here may include the primary inputs as well as the
pseudo-primary inputs (i.e., the outputs of D flip-flops in a full-scan design). If the
ATPG tool does not have this property, the concept of a virtual circuit presented
in [Lee 1998] and [Lee 1999] can be used to deal with this problem. As shown in
Figure 6.17, one may connect the inputs of the circuits that are to share the test
patterns in a 1-to-1 mapping manner. This circuit is then handed to the ATPG tool
as a single circuit, with the number of inputs being the maximum number of inputs
among the circuits. The test compression can then be automatically done by the
ATPG tool which will target faults as if it were a single circuit. This way of “cheating”
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Broadcasting to scan chains driving independent circuits.
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Forcing ATPG tool to generate patterns for broadcast scan.

the ATPG tool to generate compact tests does not require any modification to the
ATPG program and hence can be applied to any ATPG tool.
One major advantage of using broadcast scan for independent circuits is that

all faults that are detectable in all original circuits will also be detectable with
the broadcast structure. This is because if one test vector can detect a fault in a
stand-alone circuit then it will still be possible to apply this vector to detect the
fault in the broadcast structure. Thus, the broadcast scan method will not affect
the fault coverage if all circuits are independent. Note that broadcast scan can also
be applied to multiple scan chains of a single circuit if all subcircuits driven by the
scan chains are independent. An example of this is the pipelined circuit shown in
Figure 6.18, where each scan chain is driving an independent circuit. The response
data from all subchains can be compacted by a multiple-input signature register
(MISR) or other space/time compactor.

6.2.3.2 Illinois Scan

If broadcast scan is used for multiple scan chains of a single circuit where the
subcircuits driven by the scan chains are not independent, then the property of
always being able to detect all faults is lost. The reason for this is that if two scan



Test Compression 361

Scan Input
CUTs

S
C

1 C1

MISR

S
C

2 C2

S
C

3 C3

S
C

k...

� FIGURE 6.18

Broadcast scan for a pipelined circuit.

chains are sharing the same channel, then the ith scan cell in each of the two scan
chains will always be loaded with identical values. If some fault requires two such
scan cells to have opposite values in order to be detected, it will not be possible to
detect this fault with broadcast scan.
To address the problem of some faults not being detected when using broadcast

scan for multiple scan chains of a single circuit, the Illinois scan architecture
was proposed in [Hamzaoglu 1999] and [Hsu 2001]. It got its name because the
authors are with the University of Illinois at Urbana–Champaign. The Illinois scan
architecture consists of two modes of operations, namely a broadcast mode and a
serial scan mode, which are illustrated in Figure 6.19. The broadcast mode is first
used to detect most faults in the circuit. During this mode, a scan chain is divided
into multiple subchains called segments and the same vector can be shifted into
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� FIGURE 6.19

Two modes of Illinois scan architecture.
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all segments through a single shared scan-in input. The response data from all
subchains are then compacted by a MISR or other space/time compactor. For the
remaining faults that cannot be detected in broadcast mode, the serial scan mode
is used where any possible test pattern can be applied. This ensures that complete
fault coverage can be achieved. The extra logic required to implement the Illinois
scan architecture consists of several multiplexers and some simple control logic to
switch between the two modes. The area overhead of this logic is typically quite
small compared to the overall chip area.
The main drawback of the Illinois scan architecture is that no test compression

is achieved when it is run in serial scan mode. This can significantly degrade the
overall compression ratio that is achieved depending on how many test patterns
must be applied in serial scan mode. To reduce the number of patterns that have
to be applied in serial scan mode, multiple-input broadcast scan or reconfigurable
broadcast scan can be used. These techniques are described next.

6.2.3.3 Multiple-Input Broadcast Scan

Instead of using only one channel to drive all scan chains, a multiple-input broad-
cast scan could be used where there is more than one channel [Shah 2004]. Each
channel can drive some subset of the scan chains. If two scan chains must be
independently controlled to detect a fault, then they could be assigned to different
channels. The more channels that are used and the shorter each scan chain is, the
easier it is to detect more faults because fewer constraints are placed on the ATPG.
Determining a configuration that requires the minimum number of channels to
detect all detectable faults is thus highly desired with a multiple-input broadcast
scan technique.

6.2.3.4 Reconfigurable Broadcast Scan

Multiple-input broadcast scan may require a large number of channels to achieve
high fault coverage. To reduce the number of channels that are required, a recon-
figurable broadcast scanmethod can be used. The idea is to provide the capability
to reconfigure the set of scan chains that each channel drives. Two possible recon-
figuration schemes have been proposed, namely static reconfiguration [Pandey
2002] [Samaranayake 2003], and dynamic reconfiguration [Li 2004] [Sitchinava
2004] [Wang 2004] [Han 2005a]. In static reconfiguration, the reconfiguration can
only be done when a new pattern is to be applied. For this method, the target fault
set can be divided into several subsets, and each subset can be tested by a single
configuration. After testing one subset of faults, the configuration can be changed
to test another subset of faults. In dynamic reconfiguration, the configuration can
be changed while scanning in a pattern. This provides more reconfiguration flexi-
bility and hence can in general lead to better results with fewer channels. This is
especially important for hard cores when the test patterns provided by core ven-
dor cannot be regenerated. The drawback of dynamic reconfiguration versus static
reconfiguration is that more control information is needed for reconfiguring at the
right time, whereas for static reconfiguration the control information is much less
because the reconfiguration is done only a few times (only after all the test patterns
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using a particular configuration have been applied). Dynamic reconfiguration is
illustrated in the following example.

Example 6.2

For the patterns shown in Figure 6.20, we only need four channels to drive the eight
scan chains if two broadcast configurations are used to control the generation of the
first five and last five bits for each scan chain, respectively. The first configuration
is: 1→ �2	3	6
	2→ �7
	3→ �5	8
	4→ �1	4
, where A→ �B1	B2	 � � � 	Bn
 means that
the Ath channel drives the B1th, B2th, � � � , Bnth scan chains. The other configuration
is: 1→ �1	6
	2→ �2	4
	3→ �3	5	7	8
. The block diagram of a multiplexer (MUX)
network for the above example is shown in Figure 6.21. It consists of five two-input
multiplexers. Because there are two configurations, only one control line for the
MUX network is required. In this example, when the control line is 0 (1), the first
(second) configuration is selected.

6.2.3.5 Virtual Scan

Rather thanusingMUXnetworks for test stimulus compression, combinational logic
networks can also be used as decompressors. The combinational logic network can
consist of any combination of simple combinational gates, such as buffers, invert-
ers, AND/OR gates, MUXs, and XOR gates. This scheme, referred to as virtual scan,
is different from reconfigurable broadcast scan and combinational linear decompres-
sion where pure MUX and XOR networks are allowed, respectively. The combina-
tional logic network can be specified as a set of constraints or just as an expanded cir-
cuit for ATPG. In either case, the test cubes that ATPG generates are the compressed
stimuli for the decompressor itself. There is no need to solve linear equations, and
dynamic compaction can be effectively utilized during the ATPG process.
The virtual scan scheme was proposed in [Wang 2002] and [Wang 2004]. In these

papers, the decompressor was referred to as a broadcaster. The authors also pro-
posed adding additional logic, when required, through VirtualScan inputs to reduce
or remove the constraints imposed on the decompressor (broadcaster), thereby
yielding very little or no fault coverage loss caused by test stimulus compression.
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Test patterns for example of dynamic reconfiguration.
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Block diagram of MUX network for Figure 6.20.

In a broad sense, virtual scan is a generalized class of broadcast scan, Illinois scan,
multiple-input broadcast scan, reconfigurable broadcast scan, and combinational
linear decompression. The advantage of using virtual scan is that it allows the ATPG
to directly search for a test cube that can be applied by the decompressor and allows
very effective dynamic compaction. Thus, virtual scan may produce shorter test
sets than any test stimulus compression scheme based on solving linear equations;
however, because this scheme may impose XOR constraints directly on the original
circuit, it may take longer than those based on solving linear equations to generate
test cubes or compressed stimuli.

6.3 TEST RESPONSE COMPACTION

Test response compaction is performed at the outputs of the scan chains. The
purpose is to reduce the amount of test response that must be transferred back to the
tester. While test stimulus compression must be lossless, test response compaction
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can be lossy. A large number of different test response compaction schemes have
been presented and described to various extents in the literature. The schemes
differ in the following attributes: time versus space, circuit-function-specific versus
circuit-function-independent, linearity versus nonlinearity.
Prior to describing the distinguishing attributes, it is useful to introduce some

notations. Consider the general case of compaction where an m×n matrix of test
data D = �dij� of m× n bits is transformed into a p× q matrix C = �cij� of p× q
bits, where p <m and/or q < n. Denote the transformation operator  as a matrix
operator such that C = �D�. We refer to the ratio m�p as the space compaction
ratio and the ratio n�q as the time compaction ratio.

� (I) Time versus space—The column index of test data matrix D is referred
to as the time dimension because it corresponds to the output bits from a
single circuit output resulting from the application of different input test
patterns. If is such that C has its time dimension q<n, then time compaction
occurs. The row index of the test data matrix D is referred to as the space
dimension because it corresponds to the output bits from different circuit
outputs resulting from the application of the input test pattern. Thus, if  is
such that C has its space dimension p <m, then space compaction occurs.

Figure 6.22 can help explain the difference between space compaction and time
compaction. A space compactor compacts an m-bit-wide output pattern to a p-bit-
wide output pattern (where p <m), whereas a time compactor compacts n output
patterns to q output patterns (where q < n).

It is possible to have both time and space compaction performed concurrently.
The scheme combining both time and space compaction is referred to as mixed
time and space compaction:

Test 
Patterns

m-bit wide 
output patterns

p-bit wide 
output patterns

Space 
Compactor

Test 
Patterns 

n output patterns q output patterns

Circuit Under 
Test

Time 
Compactor

Circuit Under
Test

� FIGURE 6.22

Time and space compaction schemes for response data.
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� (II) Circuit-function-specific versus circuit-function-independent—
Circuit-function-specific (CFS) is a characteristic referring to how a
particular  is selected. The compaction function  is circuit function inde-
pendent (CFI) (i�e�, not circuit function specific) if  is selected regardless of
the test data expected to originate from either the fault-free or faulty circuit.
A  that is CFI implies that it is selected independently from the circuit
functionality in test mode (i�e�, independently from the functionality resulting
from the application of a particular test set to the circuit). This is important,
because frequently the compactor is designed before the actual design of the
chip. If the compactor depends on the functionality of the design in the chip,
then last-minute design changes may require you to modify the compactor.
This may impact time-to-market.

� (III) Linearity versus nonlinearity—A (response) compactor is said to be
linear if it consists of only XOR gates and flip-flops. For linear compactors,
the compacting function  is such that each bit of the compacted data matrix
C can be expressed as a Boolean sum (XOR sum) of any number of bits of the
data matrix D. Thus, for linear compactors,  is a linear operator.

Using the above attributes, we classify a number of known compaction functions
in Table 6.5.
The test response bits are obtained by using a logic simulator to simulate the

fault-free design for the test stimulus. Unfortunately, for complex designs, logic sim-
ulators cannot always deterministically predict the logic values of all test response
bits. For example, the simulator may not accurately predict values due to float-
ing buses, uninitialized and uncontrollable storage elements, bus contention, or
multiple clock domains or simply because the simulation model is inaccurate. The
response bits whose logic values are not accurately predicted by the simulators are
also called unknown test response bits or X ’s. X ’s significantly complicate response

TABLE 6.5 � Taxonomy of Various Response Compaction Schemes

Compaction Scheme I II III

Space Time CFS CFI Linearity Nonlinearity

Zero-aliasing compactor
√ √ √

[Chakrabarty 1998] [Pouya 1998]
Parity tree [Karpovsky 1987]

√ √ √
Enhanced parity tree [Sinanoglu 2003]

√ √ √ √
X-Compact [Mitra 2004]

√ √ √
q-Compactor [Han 2003]
Convolutional compactor [Rajski 2005] √ √ √ √
OPMISR [Barnhart 2002]
Block compactor [Wang 2003]
i-Compact [Patel 2003]

√ √ √
Compactor for SA [Wohl 2001]

√ √ √ √
Scalable selector [Wohl 2004]

√ √ √
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compression. For example, one unknown test response can render a signature of a
MISR unknown and unusable.
Test response compaction may induce some loss of information. Although the

complete information of the original response is lost, the objective of fault detection
can be still achieved. Because of the loss, response compaction techniques face two
major challenges: (1) aliasing and (2) fault diagnosis.

� Aliasing is a problem where different uncompressed data A and uncompressed
data B yield the same compressed data C after compaction, C=�A�=�B�.
For example, a faulty circuit with an erroneous response can produce the
same signature as the fault-free circuit, preventing the faulty circuit from
being detected by the test. Hence, the response compaction techniques must
be employed in a way to minimize aliasing.

� Another important challenge for response compaction techniques is the abil-
ity to perform fault diagnosis. In response compaction, a better diagnosis is
to locate the failing scan cells in the scan chains from the outputs of the
compactor without configuring the chip in a special diagnosis mode.

In the following subsections, we will discuss in detail three types of response com-
paction techniques: (1) space compaction, (2) time compaction, and (3) mixed space
and time compaction.

6.3.1 Space Compaction
A space compactor is a combinational circuit for compacting m outputs of the
circuit under test to n test outputs, where n<m. Space compaction can be regarded
as the inverse procedure of linear expansion (which was described in Section 6.2.3).
It can be expressed as a function of the input vector (i�e�, the data being scanned
out) and the output vector (the data being monitored):

Y =�X�

where X is an m-bit input vector and Y is an n-bit output vector, n <m.
Some linear codes can be used to implement space compaction. Parity tree cir-

cuits have frequently been proposed for space compaction because of their good
error propagation properties; however, while experimental results indicate that a
high percentage of single stuck-at faults in typical logic circuits are detected with a
parity tree space compactor, zero-aliasing compaction is rarely achieved. To provide
better characteristics than a parity tree, a number of other compaction methods
have been developed [Wohl 2001] [Wohl 2003a] [Das 2003] [Mitra 2004]. These
include the enhanced single-error-correcting, double-error-detecting, or odd-error-
detecting codes methods, which can reduce the aliasing ratio.

6.3.1.1 Zero-Aliasing Linear Compaction

Consider a space compaction function Y = �X�. A space compactor is said to be
transparent if any two different values X1 and X2 that appear at its input produce
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different values Y1 and Y2 at its output, i.e., �X1� �= �X2�. If X1 is the compactor
input value in a correctly working circuit and X2 is the input value due to a fault, then
because the corresponding output vectors will always be different for a transparent
compactor it will be zero-aliasing [Chakrabarty 1998a,b].
For a space compaction function to guarantee zero-aliasing for the complete

input vector space, the number of output bits for the compactor will have to be
equal to or greater than the number of input bits. This means that if we want to
design a full zero-aliasing space compactor then we cannot obtain any benefit of
compaction. Therefore a practical space compactor cannot be zero-aliasing for all
possible errors. Thus, the objective is to make it zero-aliasing only for the set of
errors that can occur due to some set F of faults that actually occur in the circuit.
An upper bound on the number of outputs of a compactor, given a specified test

set T and a circuit C, is calculated in Theorem 6.1.

Theorem 6.1

For any test set T, for a circuit that implements function C, there exists a zero-
aliasing output space compactor for C with q outputs where q = �log2��T�+1��.

In the worst case, every fault-free response will be distinct. Each faulty input X
needs to be mapped to a different Y (using function C). This means that such a
space compactor guarantees zero-aliasing. It must produce �T�+1 different output
combinations, which implies that it must have at least �log2��T�+1�� output lines.
Theorem 6.1 gives an upper bound on the number of outputs of the space com-

pactor. This does not mean that we can only design the compactor with q outputs. A
more efficient space compaction circuit may be possible by taking the fault set into
account. This optimization can be realized by a graph model, also called a response
graph. The response graphG= �V	E� consists of the set of vertices V = �v1	 v2	 � � � 	 vn

corresponding to all possible responses of circuit C to test set T given fault set F,
and the set edges E where �vj	 vk� ∈ E if and only if there exists a test pattern t ∈ T
for which the fault-free response is vj, and a fault f ∈ F such that the faulty response
of C for test t is vk.
As an example, consider the ISCAS C17 benchmark circuit given in Figure 6.23.

Figure 6.23a shows the fault-free response R = �00	11	11	00� for the minimal test
set T = �10010	11010	10101	01111�. The response graph for this circuit is shown in
Figure 6.23b. In this figure, for example, if there is a stuck-at-1 (SA1) fault at X1,
the fault-free response is “00” and the erroneous response is “10,” so there is an edge
between the state “00” and “10.” Other edges can be concluded by the definition.

Theorem 6.2

Let G be a response graph. If G is 2q colorable, then there exists a q-output zero-
aliasing space compactor for the circuit C.

Every vertex v of G corresponds to an input vector X to the space compactor. The
color assigned to v can be associated with the output of the compactor for input X .
If G is 2q colorable, then the compactor realizes 2q different output values and can
be represented with q output bits. Moreover, every faulty input X ′ different from X
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An example of response graph: (a) The C17 circuit with a complete set of test patterns and fault-free
response, and (b) response graph.

produces a different output of the space compactor; therefore, all faults in C that
cause X ′ are detected. Hence, zero aliasing is ensured with q outputs.

The problem with the above compacters is that unknown test responses may pre-
vent error detectability. The next section presents a compaction tree that tolerates
unknown test responses.

6.3.1.2 X-Compact

X-compact [Mitra 2004] is an X-tolerant response compaction technique that
has been used in several designs. The combinational compactor circuit designed
using the X-compact technique is called an X-compactor. Figure 6.24 shows an
example of an X-compactor with 8 inputs and 5 outputs. It is composed of 4 3-input
XOR gates and 11 2-input XOR gates.
The X-compactor can be represented as a binary matrix (matrix with only 0’s

and 1’s) with n rows and k columns; this matrix is called the X-compact matrix.
Each row of the X-compact matrix corresponds to a scan chain and each column
corresponds to an X-compactor output. The entry in row i and column j of the
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An X-compactor with eight inputs and five outputs.

matrix is 1 if and only if the jth X-compactor output depends on the ith scan chain
output; otherwise, the matrix entry is 0. The corresponding X-compact matrix M
of the X-compactor shown in Figure 6.24 is:

M=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0

1 0 1 1 0

1 1 0 1 0

1 1 0 0 1

1 0 1 0 1

1 0 0 1 1

0 1 0 1 1

0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For a conventional sequential compactor, such as a MISR, there are two sources
of aliasing: error masking and error cancellation. Error masking occurs when
one or more errors captured in the compactor during a single cycle propagate
through the feedback path and cancel out with errors in the later cycles. Error
cancellation occurs when an error bit captured in a shift register is shifted and
eventually cancelled by another error bit. The error cancellation is a type of aliasing
specific to the multiple-input sequential compactor. Because the X-compactor is a
combinational compactor, it only results in error masking. To handle aliasing, the
following theorems provide a basis for systematically designing X-compactors.

Theorem 6.3

If only a single scan chain produces an error at any scan-out cycle, the X-compactor
is guaranteed to produce errors at the X-compactor outputs at that scan-out cycle,
if and only if no row of the X-compact matrix contains all 0’s.
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Theorem 6.4

Errors from any one, two, or an odd number of scan chains at the same scan-out
cycle are guaranteed to produce errors at the X-compactor outputs at that scan-out
cycle, if every row of the X-compact matrix is nonzero, distinct, and contains an
odd number of 1’s.

If all rows of the X-compact matrix are distinct and contain an odd number
of 1’s, then a bitwise XOR of any two rows is nonzero. Also, the bitwise XOR of
any odd number of rows is also nonzero. Hence, errors from any one or any two
or any odd number of scan chains at the same scan-out cycle are guaranteed to
produce errors at the compactor outputs at that scan-out cycle. Because all rows
of the X-compact matrix of Figure 6.16 are distinct and odd, then by Theorem 6.2
simultaneous errors from any two or odd scan chains at the same scan-out cycle
are guaranteed to be detected.
The X-compact technique is nonintrusive and independent of the test patterns

used to test the circuit. Insertion of the X-compactor does not require any major
change to the ATPG flow; however, the X-compactor cannot guarantee that errors
other than those described in Theorem 6.3 and Theorem 6.4 are detectable.

6.3.1.3 X-Blocking

Instead of tolerating X ’s on the response compactor, X ’s can also be blocked before
reaching the response compactor. During design, these potential X-generators
(X-sources) can be identified using a scan design rule checker. When an X-generator
is likely to reach the response compactor, it must be fixed [Naruse 2003] [Patel
2003]. The process is often referred to as X-blocking or X-bounding.

In X-blocking, the output of an X-source can be blocked anywhere along its prop-
agation paths before X ’s reach the compactor. An example is shown in Figure 6.25.
When the X-source has been blocked at a nearby location during test and will not
reach the compactor, there is no need to fix further; however, care must be taken to
ensure that no observation points are added between the X-source and the location
at which it is blocked. For example, a non-scan flip-flop is a potential X-generator
(X-source). If the non-scan flip-flop has two outputs (Q and QB), then one can add
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A simple illustration of the X-blocking scheme.
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a control point to each of the outputs and activate it in test mode. Alternatively,
if the flip-flip has an asynchronous set/reset pin, a control point can be added to
permanently force the flip-flip to 0 or 1 during test. While a control point can be
added to force the non-scan flip-flop to a constant value, it is recommended that
for better fault coverage inserting a MUX control point driven by a nearby existing
scan cell is preferred.
X-blocking can ensure that no X ’s will be observed; however, it does not pro-

vide a means for observing faults that can only propagate to an observable point
through the now-blocked X-source. This can result in fault coverage loss. If the
number of such faults for a given bounded X-generator justifies the cost, one or
more observation points can be added before the X-source to provide an observ-
able point to which those faults can propagate. These X-blocking or X-bounding
methods have been extensively discussed in Section 5.2 (BIST Design Rules) of
Chapter 5.

6.3.1.4 X-Masking

While it may not result in fault coverage loss, the X-blocking technique does add
area overhead and may impact delay due to the inserted logic. It is not surprising
to find that, in complex designs, more than 25% of scan cycles could contain
one or more X ’s in the test response. It is difficult to eliminate these residual
X ’s by DFT; thus, an encoder with high X-tolerance is very attractive. Instead of
blocking the X ’s where they are generated, the X ’s can also be masked off right
before the response compactor [Wohl 2004] [Han 2005c] [Volkerink 2005] [Rajski
2005]. An example X-masking circuit is shown in Figure 6.26. The mask controller
applies a logic value 1 at the appropriate time to mask off any scan output that
contains an X.
Mask data is required to indicate when the masking should take place. The

mask data can be stored in compressed format and can be decompressed using
on-chip hardware. Possible compression techniques are weighted pseudo-random
LFSR reseeding or run-length encoding [Volkerink 2005].
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� FIGURE 6.26

An example X-masking circuit.
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6.3.1.5 X-Impact

While X-compact, X-blocking, and X-masking each can achieve significant reduc-
tion in fault coverage loss caused by X ’s present at the inputs of a space compactor,
the X-impact technique described in [Wang 2004] is helpful in that it simply uses
ATPG to algorithmically handle the impact of residual X ’s on the space compactor
without adding any extra circuitry.

Example 6.3

An example of algorithmically handling an X-impact is shown in Figure 6.27. Here,
SC1 to SC4 are scan cells connected to a space compactor composed of XOR
gates G7 and G8. Lines a	b	 � � � 	 h are internal signals, and line f is assumed to be
connected to an X-source (memory, non-scan storage element, etc.). Now consider
the detection of the stuck-at-0 (SA0) fault f 1. Logic value 1 should be assigned to
both lines d and e in order to activate f 1. The fault effect will be captured by scan
cell SC3. If the X on f propagates to SC4, then the compactor output q will become
X and f 1 cannot be detected. To avoid this, ATPG can try to assign either 1 to line
g or 0 to line h in order to block the X from reaching SC4. If it is impossible to
achieve this assignment, ATPG can then try to assign 1 to line c, 0 to line b, and 0
to line a in order to propagate the fault effect to SC2. As a result, fault f 1 can be
detected. Thus, X-impact is avoided by algorithmic assignment without adding any
extra circuitry.

Example 6.4

It is also possible to use the X-impact approach to reduce aliasing. An example of
algorithmically handling aliasing is shown in Figure 6.28. Here, SC1 to SC4 are
scan cells connected to a compactor composed of XOR gates G7 and G8. Lines
a	b	 � � � 	 h are internal signals. Now consider the detection of the stuck-at-1 fault
f 2. Logic value 1 should be assigned to lines c, d, and e in order to activate f 2, and
logic value 0 should be assigned to line b in order to propagate the fault effect to
SC2. If line a is set to 1, the fault effect will also propagate to SC1. In this case,
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Handling of X-impact.
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Handling of aliasing.

aliasing will cause the compactor output p to have a fault-free value, resulting in an
undetected f 2. To avoid this, ATPG can try to assign 0 to line a in order to block the
fault effect from reaching SC1. As a result, fault f 2 can be detected. Thus, aliasing
can be avoided by algorithmic assignment without any extra circuitry.

6.3.2 Time Compaction
A time compactor uses sequential logic (whereas a space compactor uses combina-
tional logic) to compact test responses. Because sequential logic is used, one must
make sure that no unknown �X� values from the circuit under test will reach the
compactor. If that happens, X-bounding or X-masking must be employed.
The most widely adopted response compactor using time compaction is the

multiple-input signature register (MISR). Consider the n-stage MISR shown in
Figure 6.29. The internal structure of the n-stage MISR can be described by speci-
fying a characteristic polynomial of degree n, f�x�, in which the symbol hi is either
1 or 0, depending on the existence or absence of the feedback path, where

f�x�= 1+h1x+h2x
2+· · ·+hn−1x

n−1+xn

The MISR uses n extra XOR gates for compacting nm-bit output sequences,
M0 to Mm−1, into the modular LFSR simultaneously. The final contents stored in

M1 M2 Mn–2

rn–2

hn–2

Mn–1

rn–1

hn–1

M0

r0 r1

h1 h2

� FIGURE 6.29

An n-stage multiple-input signature register (MISR).
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M0 M1 M2 M3

� FIGURE 6.30

A four-stage MISR.

M0
M1
M2

M3

1 0 0 1 0
0 1 0 1 0

1 1 0 0 0
1 0 0 1 1

1 0 0 1 1 0 1 1M

� FIGURE 6.31

An equivalent M sequence.

the MISR after compaction are called the (final) signature of the MISR. For more
information on signature analysis and the MISR design, the reader is referred to
Section 5.4.3 (Signature Analysis) of Chapter 5.

Example 6.5

Consider the four-stage MISR shown in Figure 6.30 using f�x�= 1+x+x4. Let M0 =
�10010
	M1 = �01010
	M2 = �11000
, and M3 = �10011
. From this information, the
signature R of the MISR can be calculated as �1011
. Using the formula M�x� =
M0�x�+ xM1�x�+ x2M2�x�+ x3M3�x� as discussed in Section 5.4.3 of Chapter 5, we
obtain M�x�= 1+x3+x4+x6+x7 or M= �10011011
, as shown in Figure 6.31. The
final signature is stored in the rightmost four bits of the M sequence; therefore,
R= �1011
.

6.3.3 Mixed Time and Space Compaction
In the previous two sections, we introduced different kinds of compactors for
space compaction and time compaction independently. In this section, we introduce
mixed time and space compactors. A mixed time and space compactor combines
the advantages of a time compactor and a space compactor. Many mixed time
and space compactors have been proposed in the literature, including OPMISR
[Barnhart 2002], convolutional compactor [Rajski 2005], and q-compactor [Han
2003] [Han 2005c,d].
Because q-compactor is simple, this section uses it to introduce the conceptual

architecture of a mixed time and space compactor. Figure 6.32 shows an example
of a q-compactor assuming the inputs are coming from scan chain outputs. The
spatial part of the q-compactor consists of single-output XOR networks (called
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An example q-compactor with single output.

spread networks) connected to the flip-flops by means of additional two-input XOR
gates interspersed between successive storage elements. As can be seen, every error
in a scan cell can reach storage elements and then outputs in several possible ways.
The spread network that determines this property is defined in terms of spread
polynomials indicating how particular scan chains are connected to the register
flip-flops.
Different from a conventional MISR, the q-compactor presented in Figure 6.32

does not have a feedback path; consequently, any error or X injected into the
compactor is shifted out after at most five cycles. The shifted-out data will be
compared with the expected data and then the error will be detected.

Example 6.6

An example of a q-compactor with six inputs, one output, and five storage
elements—five per output—is shown in Figure 6.32. For the sake of simplicity, the
injector network is shown here in a linear form rather than as a balanced tree.

6.4 INDUSTRY PRACTICES (EDITED BY LAUNG-TERNG WANG)

During the last few years, several test compression products and solutions have been
introduced by some of the major DFT vendors in the CAD industry. These products
differ significantly with regard to technology, design overhead, design rules, and
the ease of use and implementation. A few second-generation products have also
been introduced by a few of the vendors. In this section, we briefly review a few
of the products introduced by companies such as Cadence [Cadence 2006], Mentor
Graphics [Mentor 2006], SynTest [SynTest 2006], Synopsys [Synopsys 2006], and
LogicVision [LogicVision 2006].
Current industry solutions can be grouped under twomain categories for stimulus

decompression. The first category uses linear-decompression-based schemes, and the
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secondcategoryemploysbroadcast-scan-basedschemes.Themaindifferencebetween
the two categories is themanner inwhich the ATPG engine is used. The first category
includes products such as ETCompression from LogicVision [LogicVision 2006],
TestKompress from Mentor Graphics [Rajski 2004], and SOCBIST from Synopsys
[Wohl 2003b]. The second category includes products such as OPMISR+ from
Cadence [Cadence 2006], VirtualScan [Wang 2004] and UltraScan [Wang 2005b]
from SynTest, and DFT MAX from Synopsys [Sitchinava 2004].
For designs using linear-decompression-based schemes, test compression is

achieved in two distinct steps. During the first step, conventional ATPG is used to
generate sparse ATPG patterns (called test cubes), in which dynamic compaction
is performed in a nonaggressive manner, while leaving unspecified bit locations
in each test cube as X . This is accomplished by not aggressively performing the
random fill operation on the test cubes which is used to increase coverage of indi-
vidual patterns and hence reduce the total pattern count. During the second step,
a system of liner equations that describe the hardware mapping from the external
scan input ports to the internal scan chain inputs is solved in order to map each
test cube into a compressed stimulus that can be applied externally. If a mapping
is not found, a new attempt at generating a new test cube is required.
For designs using broadcast-scan-based schemes, only a single step is required

to perform test compression. This is achieved by embedding the constraints intro-
duced by the decompressor as part of the ATPG tool such that the tool operates
with much more restricted constraints. Hence, while in conventional ATPG each
individual scan cell can be set to 0 or 1 independently, for broadcast-scan-based
schemes the values to which related scan cells can be set are constrained. Thus, a
limitation of this solution is that, in some cases, the constraints among scan cells
can preclude some faults from being tested. These faults are typically tested as part
of a later top-up ATPG process if required, similar to using linear-decompression-
based schemes.
On the response compaction side, industry solutions have utilized either space

compactors such as XOR networks or time compactors such as MISRs to compact
the test responses. Currently, space compactors have a higher acceptance rate in
the industry, as they do not involve the process of guaranteeing that no unknown
�X� values are generated in the circuit under test.
In this section, we briefly describe a number of test compression solutions and

products currently supported by the EDA DFT vendors, including OPMISR+ from
Cadence, TestKompress from Mentor Graphics, VirtualScan and UltraScan from
SynTest, DFT MAX from Synopsys, and ETCompression from LogicVision. A sum-
mary of the different compression architectures used in these commercial products
is listed at the end of the section.

6.4.1 OPMISR+1

OPMISR+ is the name of the test compression methodology that is a part of
Cadence Design System’s Encounter Test product. It has its roots in IBM’s logic

1 Contributed by Brion Keller.
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BIST and ATPG technology. Due to ever-increasing test data volume and test appli-
cation time, the company decided to go with on-chip compression in early 1999.
OPMISR+ originally was an intermediate step toward a more sophisticated

compression approach called SmartBIST [Barnhart 2000] [Könemann 2001].
SmartBIST combined the nearly complete output response compression of a
multiple-input shift register (MISR) with a combinational or sequential “decompres-
sion” scheme based on a linear (XOR) spreader network fed from the scan inputs,
optionally with a pseudo-random pattern generator (PRPG) in between. The struc-
ture of SmartBIST clearly borrows heavily from the STUMPS logic BIST archi-
tecture [Bardell 1982]. The first compression capability implemented, OPMISR
[Barnhart 2001], was released in late 2000; it included just the output compression
of a MISR. The enhanced version of OPMISR, called OPMISR+ [Barnhart 2002],
appeared a year later, adding space compaction (also part of the eventual Smart-
BIST) so that when broadcast scan was used, the composite MISR signatures could
be compared in a single tester cycle without requiring too many pins to do so.
The general scan architecture for OPMISR+ is shown in Figure 6.33. By fanning

out each scan input to multiple internal scan chains, it is possible to support many
more scan chains than scan pins. The scan chains scan out into a set of MISRs
that in aggregate create a signature for the whole design. Normally this signature
is checked after each test and then reset, but it is also possible to accumulate the
signature from many or all tests and check just the final signature for a go/no-
go assessment of each chip, similar to a logic BIST approach but with high fault
coverage and no need for test points to be inserted in the functional paths.
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Composite MISR Observe (MO)

Chip

…

Mask Mask Mask

MISR MISR MISR

……

Space Compactor
(XOR Network)

Broadcast Scan
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� FIGURE 6.33

OPMISR+ architecture.
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The architecture shown in Figure 6.33 shows the composite MISR signature being
visible at MISR Observe (MO) pins through a space compactor. These MO pins can
be shared with the scan-input (SI) pins to allow testing on reduced-pin testers. If
the composite signatures are read out only at the end of each test, there is very little
bandwidth needed for the MO pins, so they do not need to consume valuable tester
scan pin resources; this allows the limited set of tester scan pins to be all dedicated
to supplying input stimulus. For example, if a tester supports 32 scan pins, these
would typically support up to 16 scan chains, with 2 tester scan pins attached to
each chip scan chain. Because there is no need for any scan output pins, all 32
scan pins can be used to load scan data into the device, doubling the bandwidth for
loading each test; with no output drivers switching during scan, power and noise
during scan are also reduced. Doubling the number of scan-in pins in use helps to
mitigate any potential issues associated with scan correlation because fewer chains
have to share the same scan-in pin; even so, it is best to avoid fanout to scan chains
in the same physical locality of the design to reduce the chance of correlations
causing a problem. Also, like logic BIST, the signatures can be observed serially
(not shown in Figure 6.33) instead of in parallel through the space compactor,
which reduces the compression overhead at the cost of increased time to observe
the signatures.
Signatures become corrupted if they ever capture an unknown or unpredictable

�X� response value, so it is required that either the design be free of all such unpre-
dictability or that some means be provided to keep these values from corrupting the
MISR signatures. As Figure 6.33 shows, mask registers and associated logic between
the scan chain outputs and the MISRs can be used to eliminate these unknowns.
The mask registers can be loaded using the full bandwidth provided by the scan
input pins, and one or more Mask_Enable signals select between no masking and
use of one of the mask registers on each scan cycle. Each Mask_Enable consumes
a scan pin tester resource because they may change value on each scan cycle.
One additional capability made useful by having no scan output streams is to

utilize certain testers’ capability to repeat when the data values on all pins (both
stimulus and response) repeat on consecutive tester cycles. Filling the “don’t care”
bits in the scan-in stream by repeating the previous or next care bit value for each
scan-in pin has shown that application of a simple run-length encoding provides
an additional reduction in test data volume in the tester scan buffer.

6.4.2 Embedded Deterministic Test2

TestKompress® is the first commercially available on-chip test compression prod-
uct and was introduced by Mentor Graphics [Mentor 2006] in 2001. It uses the
embedded deterministic test (EDT) technology [Rajski 2002] [Rajski 2004] shown
in Figure 6.34. The EDT architecture consists of an on-chip decompressor located
between the external scan input ports and the internal scan chains, as well as an on-
chip selective compactor inserted between the internal scan chains and the external
scan output ports.

2 Contributed by Janusz Rajski.
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EDT (TestKompress®) architecture.

Because the decompressor determines the effectiveness of TestKompress stimuli
compression, it was designed to achieve high compression ratio, very high speed
of operation, very low silicon area, and high modularity. The decompressor, as
shown in Figure 6.35, performs continuous flow decompression; that is, it has the
ability to receive new information as the data are being decompressed and loaded
to the scan chains. This property reduces dramatically the hardware overhead.
The first silicon with EDT [Rajski 2002] used only a 20-bit ring generator with 5
injectors (external scan input ports) but was able to encode over 2000 positions
in the scan chains. Conventional reseeding would require an LFSR of length 2000
and a shadow register to match that encoding capacity in this case. The sequential
design of the decompressor provides a buffering function that enables sharing of
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7654

Phase Shifter 
(XOR Network)

� FIGURE 6.35

Ring generator.
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information between shift cycles that have very different numbers of specified bits.
The decompressor can operate in an overdrive mode [Rajski 2004] where the stimuli
of the input channels stay constant for a number of shift cycles. In this case, the
ratio of volume compression is not limited by the ratio of internal scan chains to
external channels.
The compression algorithm is tightly integrated with the dynamic compaction

of the ATPG engine. The linear equation solver works iteratively with ATPG to
maximize compression. Every time ATPG generates a test cube for a new fault, the
solver is invoked to compress it. As long as the solver can compress a test cube,
the ATPG algorithm attempts to target additional faults and specify more bits. The
solver operates incrementally. In every iteration, the system of linear equations
gradually increases.
The TestKompress compaction scheme, shown in Figure 6.36, is designed to

preserve fault coverage. It provides the ability to deterministically handle X-values
propagating to scan cells, eliminate aliasing effects completely, and support scan
chain and combinational logic diagnosis. It comprises a number of space com-
pactors driven by outputs of selected scan chains. While the space compactors are
essentially XOR trees, they are not necessarily combinational circuits. If the propa-
gation delay through the XOR tree becomes unacceptable with respect to the shift
frequency, the XOR tree can be pipelined to allow faster operation.
A distinct feature of the selective compactor is its ability to selectively mask some

scan chains to ensure detection of the captured fault effects on other scan chains.
This feature is implemented by gating logic that is capable of forcing some scan
chain outputs to 0 while allowing data stored in other scan chains to pass through
the compactor. The gating logic is controlled by a decoder driven by a select register
loaded by the decompressor. The compactor guarantees observability of any scan
cell regardless of the number and configuration of X-values. This functionality
is essential in achieving very high fault coverage in designs with X-values. It is
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Scan chains

Pipeline 
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� FIGURE 6.36

Selective compactor.
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especially important for at-speed testing of designs with false and multiple-cycle
paths.
In addition to traditional fault models, TestKompress supports bridging faults

extracted from layout as well as a wide range of fault models and functionality
needed for at-speed testing. That includes transition faults and path-delay faults
with an on-chip phase-locked loop (PLL) controlled launch and capture, small
delay defects with timing, and analysis of false and multiple-cycle paths defined by
design constraints. TestKompress also provides support for direct combinational
logic and scan chain diagnosis from fail log data for compressed patterns [Leininger
2005]. This functionality is very useful in high-volume diagnosis performed for yield
learning.

6.4.3 VirtualScan and UltraScan3

The VirtualScan and UltraScan test data volume and test application time reduction
solutions were introduced by SynTest in 2002 and 2005, respectively [SynTest 2006].
VirtualScan [Wang 2004] was the first commercial product based on the broadcast
scan scheme using combinational logic for pattern decompression. The VirtualScan
architecture consists of three major parts: (1) a full-scan circuit; (2) a broadcaster
with a 1-to-n scan configuration, which is driven by the external scan input ports
and which drives the internal scan chain inputs of the full-scan circuit; and (3)
a space compactor located between internal scan chain outputs of the full-scan
circuit and the external scan output ports. The broadcaster, comprised of a network
of combinational logic gates, is used to decompress an input compressed stimulus
into decompressed stimulus for driving the scan data into the scan cells of all scan
chains. The space compactor, comprised of a network of XOR gates, is used to
compact the captured test responses.
Figure 6.37 shows the general architecture of a VirtualScan circuit with a split

ratio of four. The broadcaster has a 1-to-4 scan configuration, meaning that the
broadcaster is used to split one original scan chain into four shorter balanced scan
chains. The broadcaster is used to drive the shorter scan chains by broadcasting
the m-bit input compressed stimulus to 4m-bit decompressed stimulus. This trans-
formation can be implemented using any number of combinational logic gates,
including AND, OR, NAND, NOR, MUX, XOR, and XNOR gates as well as buffers
and inverters. Because the longest scan chain length is reduced by four times, this
places a maximum limit on the maximum test data volume and test cycle reduc-
tion that can be achieved. Due to the stronger ATPG constraints introduced by
the broadcaster, the actual reduction ratio achieved for a split ratio of four would
typically be less than four. However, when required, additional logic provided by
extra VirtualScan inputs added to the broadcaster can be used to further reduce or
remove any fault coverage loss caused by test compression.
UltraScan [Wang 2005b] is an extended version of VirtualScan. The UltraScan

circuit consists of three major parts: (1) a VirtualScan circuit, (2) a time-division

3 Contributed by Laung-Terng Wang.
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VirtualScan architecture.

demultiplexer (TDDM) placed between the external scan input ports and the inter-
nal VirtualScan inputs, and (3) a time-division multiplexer (TDM) placed between
the internal VirtualScan outputs and the external scan output ports. It relies on the
fact that the frequency at which I/O pads are operated is typically much higher than
the frequency at which the scan chains are operated. By matching the bandwidth
difference between the I/O pad frequency and the scan chain shift clock frequency,
one can easily reduce the test application time by a factor that is determined by
dividing the frequency of the I/O pads by the frequency of the scan chains [Khoche
2002]. In general, the UltraScan technology can be applied to other test compression
solutions as well.
Figure 6.38 shows the general UltraScan architecture using the VirtualScan cir-

cuit with a split ratio of four. Surrounding the VirtualScan circuit, a time-division
demultiplexer and a time-division multiplexer (TDDM/TDM) pair have been added,
as well as a clock controller to create the UltraScan circuit. The TDDM and TDM
pair can be built out of combinational circuits such asmultiplexers and demultiplex-
ers or sequential circuits such as shift-registers for bandwidth matching [Khoche
2002] [Wang 2005b].
In this UltraScan circuit, a small number of high-speed input pads, typically 16

to 32, are used as external scan input ports, which are connected to the inputs of
the TDDM circuit. The TDDM circuit uses a high-speed clock, provided externally
or generated internally using a phase-locked loop, to demultiplex the high-speed
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UltraScan architecture.

compressed stimuli into compressed stimuli operating at a slower data rate for scan
shift. Similarly, the TDM circuit will use the same high-speed clock to capture
and shift out the test responses to high-speed output pads for comparison. The
demultiplexing ratio, the ratio between the high-speed data rate and the low-speed
data rate, is typically 16, which means that designers can generate 256 to 512
internal scan chains from the external scan I/O ports. The clock controller is used
to derive the scan shift clock by dividing the high-speed clock by the demultiplexing
ratio. In this example, for a desired scan shift clock frequency of 10MHz, the
external I/O pads are operated at 160MHz. Note that the TDDM/TDM circuit does
not compress test data volume but only reduces test application time or test pin
count. It is also possible to use UltraScan to reduce test power using a similar
approach as described in [Whetsel 1998] and [Khoche 2002].
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6.4.4 Adaptive Scan4

Adaptive scan [Sitchinava 2004] is the recent test compression architecture adopted
by Synopsys as part of their DFT MAX solution [Synopsys 2006]. This compression
solution is designed to be the next-generation scan architecture. To address the need
for reduced test data volume and test application time, combinational logic has been
added to traditional scan implementation to allow the small input–output interface
of scan to be used for a large number of scan chains. Multiplexers (MUXs) are
added on the input side to maintain the simple relationship between scan cells and
scan-in values. This allows for a simple upgrade to the highly tuned combinational
ATPG algorithms to support the needs for compression. XORs are added on the
output side to maintain the high observability of scan chains.
The adaptive scan architecture of DFT MAX is shown in Figure 6.39. The combi-

national MUX network for stimulus decompression is controlled by select lines that
allow mappings available through the data paths of the MUXs to be reconfigured
on a per-shift basis. This allows a very large number of scan configurations to be
implemented with very low area overhead. An X-tolerant XOR network for response
compaction allows for good fault coverage in the place of X ’s in the test response.
The output compactor used in adaptive scan consists of a network of XOR gates.

Unlike conventional compactors, adaptive scan adopts a space compactor that is
capable of compacting test responses while tolerating unknown �X� values [Mitra
2004]. This can reduce fault coverage loss caused by X ’s in the test response. While
mainstream designs have few X ’s, an optional masking control is available on the

Select Lines …

…

…

…

MUX Network 

XOR Network 

Scan 
Chains

� FIGURE 6.39

Adaptive scan architecture.

4 Contributed by Rohit Kapur.
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output side to provide a complete solution to the user when a larger number of X ’s
exist in the test response. The XOR circuitry of adaptive scan is designed to support
diagnosis of a high volume of scan pattern failures observed on the tester.
Because adaptive scan adds few combinational gates to existing scan flows, com-

pression can be tightly integrated—and delivered—within the company’s flagship
products, DFT compiler for one-pass scan synthesis, and TextraMAX for ATPG
[Synopsys 2006]. Every test capability that was available in conventional scan is also
available in the adaptive scan implementation; for example, PLL support, ATPG
compaction support, adjacent-fill, and physical integration are all inherited from
the previously available traditional scan implementation.

6.4.5 ETCompression5

Finally, LogicVision’s deterministic test compression solution, ETCompression,
builds upon their embedded logic test (ELT) technology [LogicVision 2006].
Figure 6.40 shows the ETCompression architecture. A pseudo-random pattern
generator drives the scan chains and has an autonomous (BIST) mode and a reseed-
ing mode. ETCompression can be used with or without support of the autonomous
mode. A multiple-input signature register (MISR) compresses the scan chain out-
put values in both modes. A run-time programmable X-masking circuit is used
to mask unknown �X� values that would corrupt the MISR signature. The input
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ETCompression architecture.

5 Contributed by Benoit Nadeau-Dostie.
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mask is used to load constant values in scan chains with hold-time problems. This
reduces the number of X-values propagating to other scan chains.
During the reseeding mode, the seed to be used for the next pattern is shifted at

low speed (typically 10 to 50MHz) from the tester to a shadow register in the test
access port (TAP) or wrapper TAP (WTAP) of an embedded block (or core). The
TAP and WTAP are implemented according to IEEE 1149.1 and 1500, respectively.
Both standards are the main topics in Chapter 10. In the meantime, the current
pattern is being decompressed by the PRPG and loaded in scan chains at a frequency
which is run time programmable and which is often higher than the tester speed.
This makes the PRPG reseeding approach attractive because it does not require
shifting test data in and out of the scan chains at the frequency imposed by the tester
interface. Using a faster frequency to load scan chains increases throughput and
allows operating the circuit at a power level that is representative of the functional
mode, which has been shown to be very useful in the characterization of power
grids [Nadeau-Dostie 2005].
The transfer of the seed from the shadow register to the PRPG is performed using

a simple asynchronous protocol because the frequency and phase of the clocks
might not be related. When the PRPG is not decompressing a pattern, the next seed
is transferred if it is available (i.e., SeedReady is active). If not, it waits until it is
available. The TAP (or WTAP) is then informed that the next seed can be shifted in
from the tester (i.e., SeedLoaded is active). The two signals are then reset and the
process repeats as many times as there are seeds.
The clocking used for both modes contributes a lot to the level of test compression

achievable beyond the calculation of seeds from test cubes. First, a launch-on-
shift (or skewed-load) approach is used which has been shown to require up to an
order of magnitude fewer patterns to achieve the same transition fault coverage
[Jayaram 2003]. The scan-enable signal is pipelined locally to each domain to
facilitate timing closure. Second, all multiple-cycle paths and cross-domain logic
are tested concurrently so there is no need to rerun patterns with different clock
edge placement and masking configurations. This is done in a such a way that
both fault simulation and test generation are purely combinational to minimize
run time. These techniques are explained in [Nadeau-Dostie 2000].
During the capture phase, all functional clocks are enabled to produce a burst

of five clock cycles. The burst is long enough to make sure that the supply has
time to stabilize before the launch and capture cycles [Rearick 2005]. For each
clock domain, the clock burst is configurable at run time to mimic the functional
mode of operation from a timing and power point of view. This is essential to
catch subtle problems related to crosstalk or IR drop, for example, as explained in
[Nadeau-Dostie 2005]. The alignment of synchronous clock domains is preserved.
In order to further improve test compression efficiency, ETCompression supports

test point insertion and the hierarchical test approach described in [Pateras 2003].
Test points are inserted in a nonoptimized gate-level representation of the circuit
using the algorithm proposed in [Seiss 1991]. Layout tools are now capable of
restructuring the logic and eliminating any timing impact. The hierarchical test
approach allows the use of the deterministic mode only on a few problematic blocks
while other blocks are tested in autonomous mode. The approach allows the use of
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TABLE 6.6 � Summary of Industry Practices

Industry Practice Stimulus Decompressor Response Compactor

OPMISR+ Broadcast scan (Illinois scan) MISR with XOR network
TestKompress Ring generator XOR network
VirtualScan Combinational logic network XOR network
DFT MAX Combinational MUX network XOR network
ETCompression (Reseeding) PRPG MISR
UltraScan TDDM TDM

Note: MISR, multiple-input signature register; MUX, multiplexer; PRPG, pseudo-random pat-
tern generator; TDDM, time-division demultiplexer; TDM, time-division multiplexer; XOR,
exclusive-OR.

functional flip-flops to provide isolation of the core. These flip-flops are then used
in both internal and external testing of the core and allow at-speed testing of the
interface with the rest of the circuit.

6.4.6 Summary
A summary of the different compression architectures used in the commercial
products is shown in Table 6.6. It can be seen that the solutions offered by the cur-
rent EDA DFT vendors are quite diverse on stimulus decompression and response
compaction. For stimulus decompression, OPMISR+, VirtualScan, and DFT MAX
are broadcast scan based, while TestKompress and ETCompression are linear
decompression based. For response compaction, OPMISR+ and ETCompression
include MISRs, while other solutions purely adopt (X-tolerant) XOR networks. For
at-speed delay testing, ETCompression uses the launch-on-shift (or skewed-load)
approach for ATPG, while other solutions support launch-on-capture (or double-
capture). The UltraScan TDDM/TDM architecture can be implemented on top of
any test compression solution to further reduce test application time and test pin
count.

6.5 CONCLUDING REMARKS

Test compression is an effective method for reducing test data volume and test
application time with relatively small cost. Due to these advantages, test compres-
sion is beginning to be adopted in different industrial designs. Many EDA vendors
have released first- and even second-generation tools for test compression and inte-
grated it successfully as part of the design flow. Test compression has proven to
be easy to implement and capable of producing high-quality tests and has been
demonstrated to be an efficient test structure for embedded hard cores. This has
allowed test compression to become more widely accepted than logic BIST. While
code-based test compression schemes produce good results, at present the indus-
try seems to favor solutions based on broadcast scan and linear decompression.
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One remaining issue for test compression is standardization. Currently, different
vendors have proposed their own proprietary solutions, which prevent users from
utilizing different ATPG compression software with different compression architec-
tures. Fortunately, a working group is now being organized by the IEEE to address
this problem.

6.6 EXERCISES

6.1 (Dictionary Coding) For the given test data, TD = 0000 0110 0000 0000 0
100 0000 0001 1100 0000 0100. If it is partitioned into 4-bit symbols, how
many entries would be required in a complete dictionary? What would be the
compression ratio using the complete dictionary?

6.2 (Golomb Coding) For the given test data, TD = 00000110000000000
10000000001110000000100. If a Golomb code with m = 4 is used for com-
pression, show the compressed test data TE and the compression ratio.

6.3 (Compatibility Analysis) Given two definitions:

a. Incompatible—For a scan chain segment Si, define Si�q� as the value of
the qth scan cell in Si. Two scan chain segments Si and Sj are said to be
incompatible, if ∃ q�1 ≤ q ≤ T � such that Si�q�⊕Sj�q� = 1, where T is the
largest number of scan cells in both scan chain segments.

b. CI-graph G(V, E)—Assuming that each node in a graph V represents a
scan chain segment, a CI-graph G�V	E� is constructed by associating an
edge E between any two nodes whose values, Vi and Vj, are incompatible.

If there are eight scan chains, each containing five scan cells, then for the
following test pattern, construct the corresponding CI-graph:

2nd1st 3rd 4th 5th

(X: don’t-care bit)

Chain 1 X1 X 1 X
Chain 2 1X X 0 X
Chain 3 1X X X X
Chain 4 01 1 X X
Chain 5 X0 X 1 X
Chain 6 XX 0 X 1
Chain 7 X0 X 0 X
Chain 8 XX X 1 X

6.4 (Linear Decompressor)What is the characteristic Amatrix for the sequential
linear decompressor shown below such that AX = Z?
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Z9 Z5 Z1

Z10 Z6 Z2

Z11 Z7 Z3

Z12 Z8 Z4

+

+

X1

X7 X6 X5

+

+

X2

X3

X4

6.5 (Linear Decompressor) For the sequential linear decompressor shown in
Figure 6.9 whose corresponding system of linear equations is shown in
Figure 6.10, find the compressed stimulus X1−X10 necessary to encode the
following test cube: <Z1	 � � � 	 Z12>=<0- - -1-0- -110>.

6.6 (X-Compactor) For the X-compact matrix of the compactor shown below,
design the corresponding X-compactor. What errors can the X-compactor
detect? ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0

0 1 0 1 1

1 1 0 0 1

1 1 0 1 0

1 0 1 0 1

1 0 0 1 1

1 0 1 1 0

0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.7 (X-Compactor) Prove the X-tolerant theorem of the X-compactor given in
Section 6.3.3.

6.8 (A Design Practice) Use the VirtualScan program and user’s
manuals provided online to split the ISCAS s38584 design [ISCAS
1989] into 4, 8, and 16 scan chains. Calculate the fault coverage
loss in each case. Then, perform top-up ATPG in each case

and report the additional number of test patterns required to uncover the
fault coverage loss. Report the actual compression ratio in each case.
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ABOUT THIS CHAPTER

Given a logic circuit that fails a test, logic diagnosis is the process of narrowing
down the possible locations of the defect. By reducing the candidate locations down
to possibly only a few, subsequent physical failure analysis becomes much faster
and easier when searching for the root causes of failure. For integrated circuit (IC)
products, logic diagnosis is crucial in order to ramp up the manufacturing yield
and in some cases to reduce the product debug time as well. This chapter begins
by introducing the basic concepts of logic diagnosis. We then review the diagnosis
techniques for combinational logic, scan chains, and logic built-in self-test (BIST).
For combinational logic, it is assumed that a fault-free scan chain is in place to
assist the diagnosis process. The two most commonly used paradigms—namely,
cause–effect analysis and effect–cause analysis—along with their variants are
introduced. Next, we describe three different methods for diagnosing faults within
the scan chains, including hardware-assisted, modified inject-and-evaluate, and
signal-profiling-based methods. Finally, we discuss the challenges of diagnosis in a
logic BIST environment.

7.1 INTRODUCTION

During the IC design and manufacturing cycle, a manufacturing test screens out
the bad chips. Diagnosis is used to find out why the bad chips failed, which is
especially important when the yield is low or when a customer returns a failed
chip. Typically, a successful IC product goes through two manufacturing stages: (1)
prototype or pilot-run stage, and (2) high-volume manufacturing stage.
During the prototype stage, a small number of samples are produced to validate

the functionality on the tester and on demo/prototype boards. During this stage, the
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prototype samples could fail badly due to design bugs or unstable manufacturing
processes. Some of the reasons for this include the following:

� Misunderstandings about the functionality. A complex product is generally
defined or built by multiple engineers. Because the specifications are usually
written in English, there can be ambiguities, inconsistencies, and contradic-
tions (as is true for anything that is created by humans). The actual hardware
description language (HDL) model (register-transfer level [RTL] code) or
gate-level netlist may not conform to the desired specification under certain
scenarios or the specification may simply have been misinterpreted. Func-
tional test generation and simulation are very time consuming. Designers may
not be able to verify their designs comprehensively before the tape-out; how-
ever, a rigorous functional verification methodology should be able to reduce
the probability of this type of failure.

� Timing failure and circuit marginality issues. Fabricated silicon may not
execute as fast as what is expected based on timing simulations, or it may not
operate properly at certain supply voltages or temperatures. The mismatch
between simulated behavior and actual behavior can be due to the inaccuracy
of the tools or signal integrity (SI) effects that were not considered appropri-
ately. For example, the voltage drop due to power grid resistance, coupling
effects among signals, and other effects could slow down the actual operating
speed of specific circuits within a chip. Such a timing failure requires the
identification of the failing segments or paths of a circuit to guide the circuit
optimization before respinning the design.

� Inappropriate layout design. For advanced nanometer technologies, the
actual geometries of the devices and interconnecting wires fabricated on sil-
icon will deviate from the drawn layout. This is due to optical effects during
the lithography process (using light that has a much longer wavelength than
the geometries that have to be printed). These mismatches give rise to poten-
tial shorts or opens, thereby leading to circuit failure. In light of this, certain
design-for-manufacturability (DFM) rules could be added to the design rule
set to ensure improved manufacturability; nevertheless, this is a slow learning
process for each new technology generation. Diagnosis is required to shed
some light on the layout patterns that may cause these types of failures in the
early stages.

During the design validation stage, the same failure may appear repeatedly for a
high percentage of the prototype chips. One can usually determine whether it is a
functionality failure or timing failure by turning down the clock speed. Sometimes,
certain circuit marginality issues also can be exposed by changes in the supply volt-
age or temperature, etc. Then, the diagnosis (or debugging) process is initiated by
a joint team that includes designers, layout editors, testing engineers, and perhaps
process engineers.
After a design has passed the prototype stage, bugs and circuit marginality issues

are mostly resolved and the product can ramp up to high-volume production.
During this ramp-up stage, the yield could be low or fluctuating. Yield improvement
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is necessary, and it can be accomplished by tuning the fabrication process. Even
when a product reaches the peak run rate, the manufacturing yield could still
fluctuate from one wafer to another. Continuous yield monitoring is necessary from
time to time to respond to any unexpected low-yield situations [Khare 1995]. At this
stage, the chip failures aremore or less due tomanufacturing imperfections, some of
which are catastrophic (e.g., shorts and opens) and some parametric due to process
variations. Published results for failure analysis have revealed a number of common
defect mechanisms, including via misalignment, via/contact voiding, missing region
of interconnecting metal (often called mouse-bites), oxide breakdown, and shorts
between the drain and source of a transistor [Segura 2002].
For yield improvement, yield/failure analysis engineers must actually inspect the

silicon by all means available (so they can identify the failure mechanisms and
figure out ways to rectify them); such methods would include etching away certain
layers, imaging the silicon surface by scanning electronic microscopy (SEM) or
focused ion beam (FIB) systems.1 The silicon de-layering and imaging process is
often laborious and time consuming. In a chip with millions of transistors, such a
process is doomed to fail if not guided by a good diagnosis tool.
The problem of diagnosis is illustrated in Figure 7.1, where we compare the

behavior of a fault-free model (which is a gate-level circuit or a transistor schematic)
with a failing chip. The fault-free model will be referred to as the circuit under
diagnosis (CUD). Under the application of certain test patterns, the failing chip
and CUD produce different responses at certain primary outputs. Similar to testing,
we need to incorporate design-for-testability circuitry to reduce the complexity of
diagnosis to amanageable level. For example, the interface signals between the logic

Question: Where are the defect locations?

fault-free 
model

test vectors
=

expected response

faulty response

No

� FIGURE 7.1

The problem of logic diagnosis.

1 The usage of FIB has been widespread in the semiconductor industry. It provides site-specific trim-
ming, milling, and deposition. In addition to defect analysis, FIB is also used for device trimming, circuit
modification, or even mask repair.
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components and embedded memories can be made controllable and observable,
and most flip-flops, if not all, should have been included in the scan chains. With
the DFT support, the question boils down to which logic gates or interconnect wires
are responsible for producing the mismatches between the circuit model and the
failing chip.
Most existing diagnosis tools try to solve the problem in the logic domain. After

analysis, some of them report a handful of candidates for the defect site, with each
candidate referring to a gate or a signal. All of these candidates are considered to
have equal probabilities of being a defect site. Some tools report a ranked list of
candidates. A candidate with a higher ranking is considered more likely to be a
defect site.
Throughout this chapter, we use the following terminology:

Definition 7.1 (Output Pair)

�z1	 z2� is called an output pair if z1 and z2 are corresponding outputs from the CUD
and the failing chip, respectively.

Definition 7.2 (Failing Test Vector)

A test vector v is called a failing test vector if it creates a mismatch at any output
pair.
The quality of a diagnosis tool can be measured in a number of ways. The most

important criterion is whether it is good at pinpointing the defect sites. The second
important criterion is whether it can complete the analysis within a reasonable time
period (e.g., overnight for a fairly large chip). When it comes to the first criterion
(i.e., the ability to pinpointing the defect sites), several different quality indexes
have been proposed in the literature:

� Diagnostic resolution—The total number of defect candidates reported by a
tool is defined as the diagnostic resolution. Ideally, the diagnostic resolution
is just 1. In some sense, this index shows how focused the diagnosis tool is;
however, a tool could have a good resolution (produce very few candidates)
but still miss the target all the time. So, good resolution does not necessarily
imply good accuracy.

� First-hit index—Diagnostic resolution has no meaning for a tool that only
reports a ranked list, rather than a small number of candidates. In this case,
the accuracy can be measured by how fast one can hit a true defect site. By
definition, the first-hit index refers to the index of the first candidate in the
ranked list that turns out to be a true defect site. The smaller this number (the
closer it is to the top of the list), the more accurate the diagnosis process.

� Top-10 hit—It is possible that the chip could containmultiple defects. Because
one cannot afford to target too many gates or signals during each inspecting
session, candidates beyond the top 10 are usually ignored in a reported ranked
list. Among the top-10 candidates, it is desirable that more than one defect
is hit; therefore, the top-10 hit is defined as the number of defects hit by the
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top-10 candidates as a quality index for multiple-defect diagnosis. The larger
this number, the better the diagnosis result.

� Success rate—The percentage of hitting at least one defect in one chip inspec-
tion session is defined as the success rate. This reflects the ultimate goal of
failure analysis; however, this index is more judgmental because the success
rate depends on how much time one is willing to spend. Also, the above
first-hit index or top-10 hit indexes are linked closely to the success rate. A
diagnosis algorithm with a better first-hit index or top-10 hit could translate
to a higher success rate.

Diagnosis has long been compared to the job of a criminal detective or medical
doctor. In both cases, one would like to identify the root cause by analyzing the
observed syndrome. Here, for logic diagnosis, the syndrome refers to when and for
what output the chip produces a wrong binary response during the test application.
These three types of jobs can be compared as follows:

� Logic diagnosis—(failing chip)→ (syndrome)→ (failing gates or wires)

� Criminal detection—(crime)→ (crime scene)→ (criminal)

� Medical diagnosis—(patient)→ (syndrome)→ (disease)

A chip failure can occur anywhere. It can be in the flip-flops, combinational logic,
or even the design for testability (DFT) circuitry (such as scan chains or logic BIST
circuitry). In the past, most diagnosis work has been focused on combinational
logic; however, the amount of DFT circuitry (e.g., scan chains and logic BIST) has
increased, and failures there have become increasingly likely.
In the rest of this chapter, we discuss combinational logic diagnosis and then

address the diagnosis of failing scan chains. Finally, we describe methods for diag-
nosis in a logic BIST environment.

7.2 COMBINATIONAL LOGIC DIAGNOSIS

In combinational logic diagnosis, we assume that the faults to be identified are
within the combinational logic (in between the scan flip-flops) that performs the
desired logic functionality. For the moment, we assume that the flip-flops and the
scan chains are fault free. Two major paradigms have been proposed: cause–effect
analysis and effect–cause analysis [Abramovici 1994]. After we have introduced
these two paradigms, we will discuss how to apply them to a fairly large chip with
multiple defects.

7.2.1 Cause–Effect Analysis
Cause–effect analysis begins by confining the causes of failure to a specific fault
type (generally stuck-at faults). Intensive fault simulation is performed to build a
fault dictionary for deriving and recording the test responses with respect to the
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applied test set and fault type. Once this dictionary is built, the effect or syndrome of
the failing chip is analyzed using table look-up. In other words, the syndrome of the
failing chip is matched up with the recorded possible syndromes in the dictionary.
The closest one implies the most likely fault; therefore, it is often also referred to
as the fault-dictionary based paradigm.

Example 7.1

Consider a circuit under diagnosis, as shown in Figure 7.2. The circuit has three
inputs �a	b	 c
 and one output �g
. Assume that five test vectors are generated in
advance �v1	 v2	 v3	 v4	 v5
. Based on the single stuck-at fault assumption, the fault
universe will be �f1	 f2	 f3	 f4	 f5
 after equivalent fault collapsing. Figure 7.2b shows
the full-response table of output signal g obtained by complete fault simulation,
including those for the fault-free circuit and the five faulty circuits. One row corre-
sponds to a circuit (either fault-free or faulty), whereas one column corresponds to
the response of one test vector. From these simulation results, we first conclude that
the test set has 100% fault coverage. Next, we will build a simple fault dictionary
to aid the diagnosis process.
A possible fault dictionary is shown in Figure 7.2c (this type of fault dictionary

is specifically called a diagnostic tree). Note that this dictionary may not be the
most economical in terms of size. We only use it to demonstrate the diagnosis
process. The basic idea is to refine the fault candidates iteratively. Initially, the
candidate set (as in an oval) contains all faults. After examining the response of

a
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c

g
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(b) Full-response  dictionary
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� FIGURE 7.2

Example of cause–effect analysis.
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the failing chip to the first test vector v1, we are able to narrow the candidate set
down to one of a number of groups. In this example, there are two candidate sets:
�f1	 f4	 f5
 and �f2	 f3
. Because the CUD has only one output, we can only achieve
binary partitioning; however, in general, the partitioning could be faster. In this
example, the refinement continues until we examine the responses of v1	 v2, and v4.
We stop here, as the cardinality of each candidate set has been reduced to 1. The
overall diagnosis process is simply a traversal from the root of this tree to one of
its leaf nodes, representing the final fault candidates. For example, if the response
of a failing chip at output signal g under the five test vectors �v1	 v2	 v3	 v4	 v5
 is
�0	1	1	0	1
, by traversing the diagnosis tree we can immediately deduce that the
only faulty circuit that could produce the observed failing syndrome is f5.
It may take time and space to construct the fault dictionary; however, once the

dictionary is built, conducting syndrome analysis is usually fast. Because the fault
dictionary is built once initially, the overall diagnosis process is computationally
efficient; however, for practical applications, this approach could be limited by a
number of problems:

� Dictionary size problem—A fault dictionary records every output response
of each modeled fault at each clock cycle. Without proper compaction, the size
is proportional to the product of three factors: �F·V·O�, where F is the number
of modeled faults, V is the number of test vectors, and O is the number of
outputs.2 In a logic chip with one million gates, 10,000 flip-flops, and 10,000
test vectors, the size will amount to 1012 bits, requiring extremely large storage.
The entire dictionary also has to be regenerated even if a small logic change
is made. With proper compression techniques, this problem can be relieved
to some extent [Richman 1985] [Pomeranz 1992] [Chess 1999]; however, the
excessive storage requirement and the inability to scale to ever-larger circuits
still pose a serious limitation.

� Unmodeled-fault problem—The dictionary is built using a single stuck-at
fault assumption. If the CUD truly contains a stuck-at fault only, then the
result is highly accurate. However, realistic defects may not behave as single
stuck-at faults, but often exhibit themselves as bridging faults (having two
or more interconnects shorted together). In addition, the defects may have
resistive characteristics [Aitken 1996]. These realistic defects compound the
ever-growing storage requirement and could easily lead to misleading results.
Although extensions have been proposed to resolve this problem to some
extent by targeting popular bridging faults [Wu 2000], in general, the diag-
nostic accuracy of this approach is not as good as effect–cause analysis.

7.2.1.1 Compaction and Compression of Fault Dictionary

We address the dictionary size problem in this subsection by showing how to
compact or compress a fault dictionary. With respect to terminology, compression

2 Here we assume that the CUD has full-scan chains. The input of a flip-flop is also considered a pseudo
output.
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refers to techniques that reduce the size of a fault dictionary without sacrificing
the diagnostic resolution for the modeled faults, whereas compaction refers to
techniques that could degrade the resolution.

Example 7.2 (Pass–Fail Dictionary)

The simplest way of compacting a dictionary is to replace an output response vector
by a single pass-or-fail bit. The size of the resulting dictionary is then independent
of the number of outputs and only proportional to the order of �F · V�, where F is
the total number of faults and V is the total number of test vectors. An example is
shown in Figure 7.3b.

Example 7.3 (P&R Compression Dictionary)

The above pass–fail dictionary leads to a high compaction ratio; however, it is
often a lossy technique, meaning that it may become infeasible to locate the root
causes of failure. Pomeranz and Reddy (P&R) [Pomeranz 1992] solved the problem
by selectively putting back a sufficient amount of output response information to
restore the full diagnostic resolution, thus making it a compression technique. The
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� FIGURE 7.3

P&R compression fault dictionary.
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restoration process begins by first putting every pass-or-fail-bit output column
with respect to each specific test vector into the dictionary. It then incrementally
takes one output column at a time until the full resolution is achieved. In the
example shown in Figure 7.3c, there are originally eight output columns, two for
each test vector. This algorithm chooses two of them to restore the full resolution
(i.e., z1 in response to test vector t1 and z2 in response to test vector t3�. It can be
seen that the diagnostic resolution is originally two in the full-response table (faults
f5 and f6 are not distinguishable). In the pass–fail dictionary, the resolution rises
to three, with the equivalence groups being �f1	 f2	 �f3	 f7�	 �f4	 f5	 f6�	 f8
. Finally, in the
compression dictionary the resolution has been reduced back to two again, with
the equivalence groups being �f1	 f2	 f3	 f4	 �f5	 f6�	 f7	 f8
.

Example 7.4 (Detection Dictionary)

Another popular dictionary organization is called a detection dictionary. It is based
on the idea that we only need to record the failing output vectors (i.e., the output vec-
tors that are different from their counterparts in the fault-free circuit). Statistically,
many output vectors may be fault free; therefore, we can drop a lot of unnecessary
information without sacrificing resolution. One drawback of a detection dictionary
is that the structure becomes irregular. As shown in Figure 7.4, we need to specify a
test vector identifier along with a failing output vector. For example, for fault f1, the
detection information is specified as (t1:10, t2:10, t4:10), meaning that the output
responses under test vectors t1, t2, and t4 are failing in the presence of fault f1. In
other words, the detection information for each fault is now a list of failing output
vectors. Sometimes, a drop-on-k heuristic may be used to further reduce the size
at the cost of some minor resolution degradation. The basic idea is to stop the
recording after k failing output vectors have been collected. The total size of such
a dictionary is on the order of �F · log�V � · k ·O�, where F is the total number of
modeled faults, log�V � is the number of bits for encoding a test vector identifier, k
is the maximum number of failing output vectors, and O is the output number.

7.2.2 Effect–Cause Analysis
Unlike the fault-dictionary-based paradigm, effect–cause analysis directly examines
the syndrome (i.e., the effect) of the failing chip to derive the fault candidates
(i.e., the cause) through Boolean reasoning on the CUD. Effect–cause analysis is
superior to the fault-dictionary-based paradigm in a number of aspects:

� It does not assume an a priori fault model and thus is more suitable to handle
non-stuck-at faults (e.g., bridging faults).

� It can be adapted to cases where there are multiple faults in the failing chip,
especially when these faults are structurally codependent.

� It can be adapted to partial-scan designs more easily.

The only minor drawback of effect–cause analysis is that it takes longer to com-
plete because a unique round of analysis is required for each failing chip. This
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Example of detection dictionary.

is a more dynamic process compared to the more static fault-dictionary-based
paradigm, in which certain information is reused constantly. Because logic diag-
nosis is used to guide the time-consuming physical silicon inspection, the analysis
time is in general not a very important factor.
In the following discussion, we assume that the CUD has been implemented

with full-scan and its functionality is represented as a combinational gate-level
circuit. The primary output (PO) signals of the CUD and the failing chip are
denoted as �zC1 	 z

C
2 	 � � � 	 z

C
m
 and �zF1 	 z

F
2 	 � � � 	 z

F
m
, respectively, where m is the total

number of primary outputs. We assume that the set of test vectors, denoted as
TV = �v1	 v2	 � � � 	 vt
, has been generated in advance.

Definition 7.3 (Mismatched Output)

An output pair �zFi 	 z
C
i � is said to bemismatched if there exists a test vector v such that

v, when applied to both CUD and the failing chip, produces different binary values
at zFi and zCi . In particular, we call the primary output zCi in the CUD a mismatched
output, whereas the primary output zFi in the failing chip is called a failing output.
In logic diagnosis, the failing chip is like a black box that cannot be analyzed. The
best we can do is to reason upon the circuit model under diagnosis.
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Example 7.5

In Figure 7.5, the test vector v, when applied to both the CUD and the failing chip,
produces mismatches at the first and the fifth output pairs.
In the rest of this subsection we first discuss a structural pruning technique

that can narrow down the potential fault candidate area in the CUD. Next, we
introduce an efficient backtrace algorithm. Finally, we present a versatile inject-
and-evaluate paradigm that can achieve higher accuracy.

7.2.2.1 Structural Pruning

The fanin cone of an output in the CUD refers to the collection of the logic gates
that can reach this output structurally. Depending on the number of faults in the
failing chip, we can employ cone intersection or cone union to prune out those
logic gates that could not possibly produce the faulty behavior [Waicukauski 1989].

Example 7.6

As illustrated in Figure 7.6, if there is only one fault, then we take the intersection
of the fanin cones of the mismatched outputs. The resulting area of gates is the
fault candidate area. On the other hand, if there is more than one fault in the failing
chip, then we should perform cone union instead. This is because every gate in the
fanin cone of any mismatched output could now be responsible for the observed
syndrome partially, if not completely. Obviously, the pruning capability of cone
intersection is much more effective than that of cone union; however, the number of
faults in a failing chip is not known in advance before the diagnosis process, so cone
union is a conservative and safer technique. As a matter of fact, cone intersection
could lead to an empty fault candidate area if there are multiple faults, as shown
in Figure 7.6b.

input 
vector

v

0 failing PO
0
0
0
0 failing PO

CUD

1 mismatched PO

0
0
0
1 mismatched PO

failing chip

� FIGURE 7.5

Illustration of mismatched outputs.



408 VLSI Test Principles and Architectures

(b) Cone union when there are multiple faults

z1

z2

z3

z1

z2

z3

z2

z3

z2

z3

(a) Cone intersection

primary 
inputs

primary 
inputs

Fault candidate set

Fault candidate setCUD

CUD

� FIGURE 7.6

Structural pruning techniques.

7.2.2.2 Backtrace Algorithm

Structural pruning techniques are often used as the first-step process in effect–
cause analysis so subsequent diagnosis can focus on a smaller area before applying
a more accurate procedure to pinpoint the fault locations. Backtrace is one such
functional pruning technique. By functional pruning, we mean that this method
disqualifies candidates from the fault candidate area by examining the signal values
inside the CUD with simulation.
Backtrace is similar to critical path tracing, which was originally proposed by

[Abramovici 1990] for fast fault simulation and then subsequently applied to logic
diagnosis [Kuehlmann 1994]. This algorithm iterates through each failing test vec-
tor. For each failing test vector, it performs fault-free simulation on the CUD first,
then it checks the mismatched outputs one at a time. From each mismatched out-
put, it traces the CUD backward to find the signals that can account for the output
mismatch.
Backtrace is based on two rules: the controlling rule and the noncontrolling rule.

When performing backtrace, complex cells (e.g., an AOI cell) are decomposed into
AND, OR, NAND, NOR, and NOT primitives first. Here, we explain the backtrace
rules for a NAND gate only; the implications for other types of gates are left as
exercises. Assume that we have reached a gate (say, g) with a binary value that is
either 0 or 1. Based on its value, we want to make decisions about which inputs of
g can be further held responsible if g has been classified responsible:

� Controlling case (i.e., 0 for a NAND gate)—Only fanin signals of g with
controlling values (i.e., 0) are considered responsible. On the other hand, those
fanin signals with noncontrolling values (i.e., 1) should not be held responsible
because the current value of signal g is not decided by these fanin signals.
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� Noncontrolling case (i.e., 1 for a NAND gate)—In this case, the current value
of signal g is determined by all fanin signals; therefore, every fanin signal is
held responsible.

Example 7.7

Figure 7.7 demonstrates the backtrace algorithm. Here, we make no distinction
between a logic gate and its output signal. The figure shows a trace starting from
signal e. At the end, the fault candidate area is marked by bold lines.
At the end of the backtrace there will be one fault candidate set for each mis-

matched output under a specific failing test vector. How to combine these fault
candidate sets into a final set is an issue. If a single fault is assumed, then the
intersection of all of these fault candidate sets will be determined to derive the final
fault candidate set. As we mentioned previously, if it turns out that this final set is
empty, it implies that there could be multiple faults in the failing chip.

7.2.2.3 Inject-and-Evaluate Paradigm

The backtrace algorithm is generally efficient; however, it may not be accurate
enough in some cases. To address this issue, [Pomeranz 1995] pioneered an alter-
native method, referred to here as the inject-and-evaluate paradigm. Computa-
tionally, it performs the diagnosis by a sequence of fault injections and evaluations.
This paradigm was further adopted and polished by a number of other researchers
[Huang 1997] [Venkataraman 1997] [Veneris 1997] [Boppana 1999] to achieve an
even higher accuracy or to deal with realistic defects, such as bridging fault diagno-
sis [Bartenstein 2001] or multiple-fault diagnosis [Huang 2001] [Wang 2003] [Liu
2005].
The basic outline of the inject-and-evaluate paradigm is shown in Figure 7.8.

The structural pruning technique is first used as a preprocessing step to derive
the initial candidate set. Then, the procedure enters two levels of loops. The outer
loop iterates through every failing test vector, whereas the inner loop examines one
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Demonstration of the backtrace algorithm.
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Step 2.3: calculate certain metrics /* ranking */
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Sort the candidate signals by the calculated metrics;

� FIGURE 7.8

The outline of an inject-and-evaluate paradigm.

candidate signal at a time. The key steps in the body of these loops are described
below:

� Step 1. For each failing test vector v, perform fault-free simulation on the
CUD, and record the value of each signal in the circuit structure.

� Step 2. For each candidate signal f , further perform the inject-and-evaluate
process in three minor steps:

Step 2.1. Flip the current fault-free value at signal f and create a value-change
event. This is the injection part of the process.
Step 2.2. Perform an event-driven simulation to evaluate the effect due to the
above injection. This is the evaluation part of the process.
Step 2.3. Calculate certain ranking metrics by examining the reactions of the
output signals in response to the injection made. This is the ranking part of
the process.

For diagnosis, we need to grade the possibility of a signal being one of the defect
sites. This requires a decision-making mechanism regarding which signals are more
responsible for the chip failure under a specific test vector. The existing variations of
the inject-and-evaluate paradigm may differ from one another in how the injection
is made and how the ranking metrics are calculated. Most of them, however, comply
with the following reproduction principle when it comes to the basic intuition.
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Definition 7.4 (Reproduction Principle)

A signal f is regarded as a likely fault candidate if one can reproduce the failing
syndrome on the CUD’s outputs by manipulating the signal value at f .
When there are multiple faults in the chip, we may not be able to find the perfect

spot that we can manipulate to reproduce the syndrome for every failing test vector.
In that case, certain metrics of partial reproduction should be used. From this point
of view, the inject-and-evaluate paradigm is similar to acupuncture:

� Inject-and-evaluate—(find a spot for injection)→ (reproduce the syndrome)

� Medical acupuncture—(find a point to inject hot needle)→ (cure the illness)

The only difference is that we cannot actually cure a failing chip. We can only
hope to make the CUD behave like the failing chip. In other words, we only want to
resolve the mismatch between the chip and the CUD by injections. In the following,
we first formally define resolving a mismatched output and curable output before
giving an example to illustrate the entire procedure.

Definition 7.5 (Resolving a Mismatched Output)

In the sequel, resolving a mismatched output zCi refers to a mechanism that injects
binary values to certain signals in the CUD, so the response of zCi becomes equivalent
to its counterpart in the failing chip, zFi .

Definition 7.6 (Curable Output)

Under a specific test vector v, a mismatched output is called a curable output of a
signal (say, f ) if the mismatch can be resolved by an injection at signal f . Such an
injection is referred to as a cure injection.
In [Pomeranz 1995], a signal with more curable outputs is regarded as being

more likely to be a fault location. That is, the curable output number is used as the
major ranking metric in the inject-and-evaluate paradigm.

Example 7.8

Consider the CUD shown in Figure 7.9. A failing test vector under consideration is
��x1	 x2	 x3	 x4���0	1	1	1�
. Assume that the response of the failing chip to this vector
is ��z1	 z2���0	1�
, whereas the response of the CUD is ��z1	 z2���1	1�
. As a result,
there is a mismatch at the first output pair. Now we want to determine if signal
f in the CUD is responsible for the mismatch. The value at this signal is changed
from 1 to 0. This effect ripples through the circuit and changes both output values
from 1 to 0; therefore, the mismatch at the first output is resolved (or cured). We
conclude that the curable output number for signal f is 1. Similar operations can
be performed for the other signals. The final candidate list is produced by sorting
the signals with their curable output numbers.
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An example of the inject-and-evaluate paradigm.

Computational Details

The implementation of the above event propagation could affect the efficiency
significantly. In detail, it involves the processing of one failing test vector v using
event-driven fault simulation.

� Step 1. Set the initial event queue to have only one signal-value pair, (f ,
f�v�′), where f is a candidate signal under consideration and f�v� is the original
fault-free value at this signal. The injection has been made by flipping f�v� to
f�v�′. Each event is also associated with a key, given by the topological level
of the signal in the signal–value pair. An event queue is an important data
structure in this process which can be implemented as an array maintaining
the minimum heap structure. In other words, the first element of the array is
always the event with the smallest key. Whenever an element (i.e., an event)
is inserted into this queue, the array needs to be adjusted to maintain its heap
property. This property makes the subsequent event retrieval more efficient.
Using a heap is only one method; one can also use other data structures (e.g.,
a two-dimensional linked list) to avoid unnecessary insertion time.

� Step 2. Perform an event-processing loop until there is no event left in the
event queue. The body in this loop consists of a number of subtasks. First, the
event of the minimum key (i.e., the first element in the array implementing
the event queue) is retrieved. Let the signal in this retrieved event be fevent.
Then, the logic gates driven by signal fevent are reevaluated. If any of these logic
gates results in a value different from its fault-free value after the reevaluation,
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then a new event is created. Every new event is inserted into the queue and
the queue is adjusted to satisfy the heap property. Such an adjustment has a
time complexity of O�log�queue-size��. The reason why we always retrieve the
event of minimum key first is to guarantee that the simulation is conducted
following the topological order in which logic gates closer to the primary
inputs are always processed before any gates in their fanout region. Without
enforcing this rule, the results could be erroneous.

� Step 3. Update the total number of curable outputs of the candidate signal
under consideration. When the event queue is exhausted, the computation of
the final values at the outputs of the CUD due to the flipping of a signal’s
value is completed. As defined previously, an output is counted as a curable
output if and only if it satisfies two conditions: (1) it is originally mismatched
with its counterpart in the failing chip, and (2) it flips after the event-driven
simulation.

� Step 4. Roll back the value of each signal of the CUD to its fault-free signal
before moving on to the next candidate signal. During the execution of the
loop in step 2, every new event including the initial event should be recorded
in a data structure called an event history to support an efficient roll back; for
example, we only need to roll back the fault-free values of those signals that
are changed during the event-driven fault simulation. Without such support,
one may need to roll back every signal’s fault-free value. In that case, the time
complexity of computing a signal’s curable measures will become O�n�, where
n is the total number of signals in the CUD, and the advantage of using event-
driven simulation may disappear because the computation is now dominated
by the roll-back process. After the roll back, the next fault-simulation run for
another candidate signal can then be started.

Curable-Vector-Based Metric

It has been found that an inject-and-evaluate method that is based on the number of
curable outputs is sometimes not accurate enough. This is because a signal reaching
out to a larger number of outputs tends to have a larger number of curable outputs
as well. These signals may overwhelm the true faulty signal. A better metric, based
on what is referred to as curable vectors here, was incorporated in [Bartenstein
2001], [Huang 2001], and [Venkataraman 2001].

Definition 7.7 (Curable Vector)

A test vector v is called a curable vector of a signal f if every mismatched output
in the CUD with respect to v can be resolved without creating new mismatched
outputs by an injection at f . A curable vector is called a SLAT (single location at
a time) pattern in [Bartenstein 2001].
Using the number of curable vectors is a better metric than using the number

of curable outputs in three aspects. First, it takes into account the side effect of
an injection (i.e., the newly created mismatch) when grading the effect. Second, it
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checks the reaction of all outputs simultaneously, instead of one by one. Third, it
can be proved that a signal f is not a single-fault candidate unless every failing test
vector is also a curable vector of signal f , assuming that there is only one fault in
the failing chip.

Example 7.9

Figure 7.10 illustrates a curable vector. During the fault-free simulation, the mis-
matched outputs of the CUD under a failing test vector v are marked by “×” and
the matched outputs are marked by “#.” After we flip the value of signal f from 1
to 0, the value-change event propagates to every mismatched output (i.e., the first,
fourth, and fifth outputs) but not to any originally matched output (i.e., the second
and third outputs). Therefore, the failing test vector v is curable by signal f .
For a failing chip with only one single fault, there always exists a signal in the

CUD that can cure all failing test vectors. This is based on an observation that, if
the failing syndrome is created by one fault, then one should be able to clean it
up completely at the fault site, too. In the following, we will further generalize this
idea to the cases where there are multiple faults.

Ranking Heuristic for Multiple-Fault Diagnosis

At the end of the entire inject-and-evaluate process, the number of curable vectors
and curable outputs for each signal has been calculated. These two metrics should
be combined to indicate how likely a signal would be a fault location. Experiments
show that the following rule can yield good results: A signal with a larger number
of curable vectors is ranked higher. When there is a tie, use the number of curable
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Illustration of a curable vector.
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outputs as the tie-breaker [Huang 2001]. The reason why the priority goes to the
number of curable vectors can be further explained from two points of view:

� The curable vector is a very stringent condition. If a signal is able to cure a
failing vector, it is a strong indication that the signal is one of the fault sites.
In some sense, one curable vector is considered stronger than many curable
outputs here because it is not easy for a non-fault site signal to possess a
curable vector.

� Even if there are multiple faults in the failing chip, it is very likely that certain
failing test vectors only activate a single fault, or, in other words, the failing
syndrome is contributed by only one fault. This kind of vector thus has a
higher value in diagnosis than others that activate multiple faults, because it
sends out a strong message by being a curable vector of the acting fault.

Reward-and-Penalty Principle

The ranking heuristic can be further refined with respect to the tie-breaking mech-
anism. Instead of simply considering the curable output count, we can take into
account the new mismatched output count as well. Based on the reward-and-penalty
principle, we can use the following rule for combining them as the second-level
ranking metric for each signal:

rank2= �Curable Output Count−0�5×New Mismatched Output Count�

Still, the curable vector count is used as the first-level metric without change. For
the second-level metric, a reward is granted to a signal with more curable outputs,
whereas a penalty is imposed on a signal with a relatively large number of new
mismatched outputs.

Example 7.10

Consider a CUD and a failing chip as shown in Figure 7.11. Again, a failing test
vector under consideration is ��x1	 x2	 x3	 x4���0	1	1	0�
 is applied to both of them.
Assume that the response of the failing chip is ��z1	 z2���0	1�
, whereas the response
of the CUD is ��z1	 z2���1	1�
. As a result, there is a mismatch at the first output pair.
After an injection is made at signal f , the mismatch at the first output is cured;
however, the originally matched output now becomes a new mismatched output.
As a result, we know that this test vector is not curable by signal f . Also, rank2 with
respect to this vector is �reward−0�5 ·penalty�= �1−0�5 ·1�= 0�5.
In summary, we have discussed the basic effect–cause analysis in this subsec-

tion, including the backtrace algorithm and the inject-and-evaluate paradigm. For
the latter, we also discussed several concepts for deriving the final ranked list of
candidates (e.g., the curable output, the curable vector, and the reward-and-penalty
principle). Unlike fault-dictionary-based methods, these approaches do not rely
on any specific fault model and thus can handle the real causes better. In terms
of accuracy, experimental results in the literature show that the first-hit index is
roughly seven if only the curable output count is used as the ranking metric. This
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Illustration of a new mismatched output.

can be improved to around five on average for ISCAS 1985 benchmark circuits
[Brglez 1985], if the curable vector concept is incorporated, and to three if the
reward-and-penalty principle is further applied [Huang 2001].

An Application to Bridging Fault Diagnosis Using Multiplets

A bridging defect is very common in an IC due to the routing characteristics of
today’s manufacturing process. When two interconnects are shorted by a defect,
the defect often affects the output signals of two logic cells. When it comes to the
diagnosis of such a defect, one may wish to identify both affected cells instead of
just one of them so as to pinpoint the exact location of the defect more accurately
by analyzing the layout.
An approach called the SLAT (single location at a time) paradigm [Bartenstein

2001] was proposed to address this issue quite effectively. The overall flow is shown
in Figure 7.12. It has two phases: (1) finding SLAT vectors, and (2) finding valid
fault multiplets.

In the first phase, finding SLAT vectors, the paradigm uses a procedure similar
to the aforementioned inject-and-evaluate paradigm to find out all possible curable
vectors (called SLAT vectors here) for each signal. The results can be viewed as a two-
dimensional table, as shown in Figure 7.13. This table is referred to as SLAT table.
The horizontal axis is the fault index, whereas the vertical axis is the failing input
vector index. For each row, the table shows all possible cure injection locations
(i.e., the signals where an injection exists to cure all output mismatches) for a
particular failing input vector. For each column, the table shows all SLAT vectors
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Flowchart of the SLAT paradigm for bridging fault diagnosis.
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Example of finding a valid fault multiplet.

for a particular signal. If there exists a signal in the SLAT table that is able to cure
all failing input vectors, then this signal is identified as a single-fix candidate.
There could be more than one single-fix candidate if there is only one fault in the
failing chip. These candidates are then reported as the final results; otherwise, the
process continues to the second phase.
In the second phase, finding fault multiplets, this algorithm aims to find a set

of signals, called a multiplet, so these signals can take turns explaining the failing
syndrome of each failing input vector. In other words, the union of the SLAT vectors
of signals in a valid fault multiplet will cover the entire failing input vector set. It
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starts by finding a signal pair (i.e., a double-fix candidate). If that is not possible,
it further increases the cardinality of the multiplets incrementally to three and to
four if necessary.

Example 7.11 (Finding Valid Fault Multiplets)

Consider the SLAT table given in Figure 7.13. We can first check to see if there is
any single-fix candidate. The answer is no. Hence, we can proceed to find double-fix
candidates. It turns out that the union of the SLAT vectors of signal pair �f3	 f5�
covers the entire failing input vector set. So, these two signals form a valid fault
multiplet.
It is possible that the SLAT approach could report zero valid fault multiplet if

there aremultiple faults in the failing chip. The reason is that theremight be a failing
input vector whose failing syndrome is jointly created by multiple signals such that
it cannot be perfectly explained by any single signal. However, this approach is
especially effective for bridging fault diagnosis. In a bridging fault (AND-bridging,
OR-bridging, or even dominant bridging), there is a victim signal (i.e., a signal
whose value flips erroneously due to the influence of a stronger aggressor through
the bridging defect) at all times. In light of this, every failing input vector should
be a SLAT vector of some signal in the CUD if there is only one bridging fault in
the chip under diagnosis.

7.2.3 Chip-Level Strategy
The previous methods are mostly at the block level and primarily aimed to identify
one fault only. Strategies on top of these block-level techniques are needed in order
to successfully diagnose a large chip targeting multiple faults simultaneously so as
to increase the success rate. In other words, we hope that more faults are included
in the final top-10 candidate list. In this subsection, we present such a strategy. It
proceeds in two phases. In the first phase we concentrate on the identification of
the so-called structurally independent faults (IFs) based on a concept referred to as
word-level prime candidate, while in the second phase we further trace the locations
of the more elusive structurally dependent faults (DFs). Experimental results show
that this strategy is able to find three to four faults within the top-10 list for three
real-life designs randomly injected with five node-type or stuck-at faults.

7.2.3.1 Direct Partitioning

A faulty chip might have more than one fault. Some of them may be structurally
dependent, while others are structurally independent. More precisely, a fault is
referred to as a structurally independent fault if the fanout cone of this fault does
not overlap with that of any other fault. On the other hand, a fault is referred to as
a structurally dependent fault if it is not a structurally independent fault. As demon-
strated in Figure 7.14, f1 is an independent fault, whereas f2 and f3 are dependent
faults.
Intuitively, an independent fault is easier to identify than a dependent fault. This

is mainly because an IF is the sole cause of the syndrome at its reachable outputs.
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Structurally independent and dependent faults.

For example, the mismatched output z1 in Figure 7.14 is only reachable by fault f1.
Hence, the syndrome at z1 is caused exclusively by fault f1. Provided that we know
the exact reachable outputs of an IF, we can trace back to the faulty location using
existing techniques. Based on the divide-and-conquer strategy [Wang 2003], a
multiple-fault diagnosis can be decomposed into a number of block-level single-fault
problems ideally. After that, we can try to identify one fault in each block.
The decomposition can be performed by partitioning the outputs into groups.

Each group of outputs and their respective fanin cones form a block for single-fault
diagnosis. As demonstrated in Figure 7.15, one can first construct a dependency
graph, with each node denoting amismatched output and each edge �zi	 zj� denoting

z1
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one connected component
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� FIGURE 7.15

Limitation of direct partitioning.
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the overlapping relationship between the fanin cones of two mismatched outputs zi
and zj. Each connected component in this dependence graph will then correspond
to a set of mismatched outputs, whose joint fanin cones form a diagnosis block.
In practice, such a direct partitioning may fail to isolate independent faults. As

demonstrated in Figure 7.15, faults f1 and f2 are independent faults, but it turns out
that they are included in the same diagnosis block. This phenomenon can be further
explained as follows. Let the reachable mismatched outputs of fault f1 be �z1
 and
the reachable mismatched outputs of fault f2 be �z2	 z3
. Although the reachable
mismatched output sets of these two faults are disjointed, satisfying the condition
of independent faults, the fanin cones of z1 and z2 are overlapped. As a result, the
logic blocks containing faults f1 and f2 are mixed together. Due to the mixture, the
subsequent block-level diagnosis may not be able to identify both of them easily.

7.2.3.2 Two-Phase Strategy

A two-phase strategy can overcome this limitation. The ultimate goal is to identify
every structurally independent fault and find dependent faults as much as possible.
In the first phase, a concept called prime candidate is used. Without performing
partitioning, certain structurally independent faults can be identified precisely using
this concept. In the second phase, the syndromes (i.e., the mismatched outputs and
their respective fanin cones) caused by the prime candidates are eliminated first.
Then, the dependency-graph-based partitioning becomes more effective and the
faults can be targeted one by one through a number of block-level diagnosis runs.
On average, this methodology will result in 2.6 faults in a design with 5 randomly
injected faults.

Definition 7.8 (Partially Curable Vector)

A failing test vector v is partially curable by a signal f if the mismatches at all
mismatched outputs reachable by f can be resolved by an injection at signal f . Here,
a partially curable vector differs from the conventional curable vector only in the
output range of interest. Instead of the entire output set, we confine it to the target
signal’s structurally reachable outputs.

Definition 7.9 (Structurally Independent Fault Candidate [SIC] Point)

A signal f is a SIC point if every failing test vector is a partially curable vector of
signal f .

Observation 7.1

A signal at a structurally independent fault site is a SIC point.

Observation 7.2

A SIC point is not necessarily a structurally independent fault site.
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These two observations imply the possibility of aliasing. That is, certain non-
faulty signals may disguise themselves as SIC points, thereby reducing the accuracy
of diagnosis. The following example illustrates this problem.

Example 7.12 (Aliasing SIC Points)

As shown in Figure 7.16a, faults f1 and f2 are two structurally independent faults.
After the inject-and-evaluate process, it may turn out that �f1	 f2	 f3
 are three SIC
points. Among them, f3 is aliasing. Similarly in Figure 7.16b, f1 and f2 are assumed
to be two structurally dependent faults. After diagnosis, the SIC points are �f3	 f4	 f5
.
These three SIC points are all aliasing and misleading. In this case, they are all
aliasing partially because they are closer to the outputs. With a small number of
reachable outputs, they have a greater chance of aliasing as a SIC point. A more
stringent filter is appropriate in order to screen out these false SIC points (i.e.,
signals that are not truly at the fault sites). We first eliminate the false SIC points
in the case of Figure 7.16a through a criterion called prime candidate.

Definition 7.10 (Prime Candidate)

A signal f is a prime candidate for a structurally independent fault if the following
two conditions are satisfied: (1) Signal f is a SIC point, and (2) the set of outputs
reachable by signal f is not a proper subset of that of any other SIC point.
In the example of Figure 7.16a, the SIC points are �f1	 f2	 f3
, while the prime

candidates are �f1	 f2
. The false SIC point f3 has been successfully screened out
from the prime candidate set; however, this condition does not eliminate the false
SIC points, as in the case of Figure 7.16b, in which the false SIC points are signals
closer to the outputs.

f1

f2

f3

f4

f5

f1

f2

f3

(b) dependent faults(a) independent faults

� FIGURE 7.16

The aliasing problem of SIC points.
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In order to screen out the false SIC points that are closer to outputs, we can
take advantage of a common practice that we often specify multiple-bit signals into
groups in a design. This implies that structural correlations exist among the output
signals of a CUD. Furthermore, these correlations can be easily recognized by their
names.

Example 7.13 (Output Group)

Assume that output signal Z and register R are specified in a design as follows:

Module design( Z, � � � )
output[31:0] Z;
reg[31:0] R;
� � �
Endmodule

Then, �Z�31�	 Z�30�	 � � � 	 Z�0�
 and �R�31�	R�30�	 � � � 	R�0�
 form two output groups in
the combinational circuit under diagnosis.
With the notion of output group, we can further define reachable output group

and word-level prime candidate to exploit the structural correlations among outputs.

Definition 7.11 (Reachable Output Group)

Let Z be an output group containing a number of outputs �z1	 z2	 � � � 	 zk
. Then Z
is called a reachable output group of a signal f if there exists a path from f to an
output in Z.

Definition 7.12 (Word-Level Prime Candidate)

A signal f is a word-level prime candidate if the following three conditions are
satisfied:

� Signal f is a SIC point.

� The set of reachable outputs of f is not a proper subset of that of any other
SIC point.

� Every mismatched output in the reachable output groups of signal f is also
reachable from signal f .

Intuitively, the above three conditions jointly require that a word-level prime
candidate should be able to cure all syndromes at its reachable output groups for all
failing test vectors, not just the syndromes at its reachable outputs. The following
example gives an illustration.

Example 7.14

Assume that the outputs have been divided into two groups, Z andR. In Figure 7.17a,
the prime candidates are �f1	 f2
. After taking into account the word-level informa-
tion, both prime candidates survive. On the other hand, the prime candidates in the
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(b) dependent faults(a) independent faults
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Note: Z and R are two word-level output groups.

� FIGURE 7.17

Circuit reduction after partitioning.

case of Figure 7.17b are originally �f3	 f4	 f5
. After taking into account the word-level
information, signals �f4	 f5
 are excluded from the candidate list because neither of
them can assume the full responsibility of the syndromes at their common reach-
able output group, R. In this example, f3 is assumed to cover all syndromes at
output group Z, thus it will survive as a word-level prime candidate.
The criterion of word-level prime candidate serves as a powerful filter. Experi-

ments on a crypto-processor reveal that on the average there are 72.3 prime can-
didates. On the other hand, there are only 3.7 word-level prime candidates. The
reduction from 72.3 to 3.7 is significant. Specifically, 2.4 out of the original 72.3
prime candidates are true fault locations, while 1.2 out of 3.7 word-level prime
candidates are true. It shows that certain true faults are still mistakenly screened
out when word-level information is exploited; however, this minor over-killing effect
is not catastrophic because of two considerations. First, the sharpness has been
greatly improved; failure analysis based on this guidance will be able to hit one
fault in less than four guesses, and this is the ultimate goal of diagnosis. Second,
it is possible that the true faults escaping the first phase of detection can still be
targeted in the second phase.
After having identified the word-level prime candidates, we perform a reduction

before moving on to the divide-and-conquer process. In this reduction, some sub-
circuits must be removed in the CUD. The subcircuits being removed include the
fanin cone of every mismatched output reachable by the identified word-level prime
candidates.

Example 7.15

Consider the example shown in Figure 7.18. Assume that f is a word-level prime
candidate. The mismatched outputs reachable by f are �y	 z
; hence, we remove all
fanin cones of �y	 z
. The reason why these logic gates in the CUD are removed
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� FIGURE 7.18

Circuit reduction based on word-level prime candidates.

from further consideration is because all the syndromes at �y	 z
 have been perfectly
explained by the identified word-level prime candidates.
Circuit reduction offers two advantages: (1) The subsequent diagnosis can be

focused on those mismatched outputs that are not well explained yet, and (2) it is
more likely to partition the remaining CUD into separate subcircuits because the
structural correlations among them have been eliminated to some extent.

7.2.3.3 Overall Chip-Level Diagnostic Flow

The overall procedure is shown in Figure 7.19. The inputs include a netlist as the
CUD, a set of failing test vectors, and the faulty response of the chip. First, we run
fault-free simulation on the CUD using every failing test vector to determine the
mismatched outputs. Second, we adopt the common structural pruning techniques
to narrow the fault candidate area down to the joint fanin cones of the mismatched
outputs. In other words, we use the concept of cone union instead of cone inter-
section. Only signals in the candidate area will be considered for further prime
candidate checking. In practice, structural pruning could be a powerful technique
that reduces the run time of the diagnosis dramatically. It allows one to focus on a
small subcircuit even though the CUD is extremely large.
In the first phase, fault simulation using each failing test vector is necessary in the

identification process of the word-level prime candidates. Fortunately, the number
of failing test vectors is not necessarily large, so this process may not be that time
consuming. Comprehensive experiments indicate that 32 failing test vectors are
normally enough.
In the second phase, the CUD reduction is quickly carried out through simple

structural analysis, then a dependency graph is incorporated to break down the
remaining CUD to one or several diagnosis blocks, as described previously. Each
diagnosis block requires a separate diagnosis session using block-level techniques.
Finally, one ranked list of candidates will be generated for each block. These ranked
lists are merged into a single one in an interleaved manner. For example, if the
word-level prime candidates are denoted as P= �p1	 p2	 � � � 	 pk
 and two extra ranked
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Phase 2: 
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Pre-processing:
  (1) Find mismatched outputs, (2) Structural pruning

� FIGURE 7.19

Overall chip-level diagnostic flow.

lists generated in the second phase are S1 = ��1	 �2	 � � � 	 �m
 and S2 = ��1	 �2	 � � � 	 �n
,
then the final list will be F = �p1	 p2	 � � � 	 pk��1	 �1	 �2	 �2	 � � � 
.
In summary, the concept of word-level prime candidate can be used as a chip-level

strategy for identifying structurally independent faults. Once such candidates are
found, they are removed along with their fanin cones to unlink the structural cor-
relations among mismatched outputs, thereby easing the subsequent partitioning
process. By doing so, other independent or dependent faults can be isolated and the
divide-and-conquer methodology can be more effective in finding other structurally
dependent faults in the second phase.

7.2.4 Diagnostic Test Pattern Generation
The diagnostic resolution is linked not only to the diagnosis algorithm but also to
the test set quality. It is often dictated by the maximum number of faults in an
equivalence class partitioned by the test set. Here, an equivalence class of faults is a
set of faults that cannot be differentiated from one another any further by the test
set. To be more specific, given two stuck-at faults f1 and f2, a test vector v is said
to differentiate these two faults if v produces at least one output mismatch when
applied to the two faulty circuits with f1 and f2, respectively.

It is common that the high-volume manufacturing test set is used for diagnosis
as well; however, such a high fault-coverage test set does not always guarantee a
high diagnostic resolution or accuracy. In order to enhance the diagnostic quality,
a diagnostic test pattern generation (DTPG) process might be needed. In general,
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DTPG augments the original test set by differentiating vectors that can further
refine the yet indistinguishable fault classes.

Definition 7.13

Given a pair of faults, f1 and f2, we would like to generate a differentiating vector.
This vector generation can be done in a model demonstrated in Figure 7.20, where
the inputs of the two faulty circuits have been merged, whereas each corresponding
output pair is connected to an XOR gate and every XOR gate is further connected
to an OR gate that produces the only final output denoted as z. It can be proved
that if a vector v can detect z/0 faults, then v is a differentiating vector for f1 and f2.

7.2.5 Summary of Combinational Logic Diagnosis
In this section, we have discussed methods for combinational logic diagnosis. We
have covered two major paradigms: cause–effect analysis and effect–cause analysis.
For cause–effect analysis, we described techniques for constructing a compact fault
dictionary so as to deal with large designs. For effect–cause analysis, we discussed
the structural pruning techniques, the basic backtrace algorithm, the powerful
inject-and-evaluate paradigm, and finally a chip-level divide-and-conquer strategy
for dealing with multiple faults.
For bridging fault diagnosis, one may desire to locate the exact signal pairs that

are shorted together as mentioned previously in the SLAT paradigm. There are
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Differentiating vector generation for diagnosis.
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many other approaches to diagnosing bridging faults [Millman 1990] [Chess 1995]
[Olson 2000] [Wu 2000] [Lavo 2002]. It is worth mentioning that a bridging fault
could sometimes give rise to an analog voltage level at the fault site. Such an
ambiguous signal could be interpreted differently either as a logic “0” or “1” by its
fanout gates with different threshold voltages, a phenomenon often referred to as
the Byzantine general’s phenomenon [Lavo 1996]. To cope with this phenomenon,
symbolic simulation can be incorporated inside the inject-and-evaluate paradigm
[Huang 2002] [Wen 2004] [Smith 2005]. The symbolic simulation techniques can be
further applied to the diagnosis of partial-scan designs, by a fading scheme [Huang
2004]. Open faults in an interconnecting wire are another common cause of failure.
An interconnecting wire physically branches out like a huge tree structure on the
silicon. For fault analysis purposes, we need to locate the fault down to a specific
segment. A formulation for such a segment-level open fault diagnosis can also be
found in [Huang 2003].

7.3 SCAN CHAIN DIAGNOSIS

Scan chains have long been touted as an effective aid for logic circuit testing and
diagnosis; however, it has been reported that scan chain failures account for almost
50% of chip failure in some cases. These failures are often revealed during the
normal flush test for a scan chain in which a set of random patterns are shifted in
and out of a flip-flop chain to ensure that scan shifting is not blocked. Even though
the test is simple, identifying where the scan chain is blocked is not. Locating
scan chain defects is also important for yield improvement. In this section we will
introduce three major types of scan chain diagnosis methods: (1) hardware-assisted,
(2) modified inject-and-evaluate paradigm, and (3) signal-profiling based.

7.3.1 Preliminaries for Scan Chain Diagnosis
For simplicity, without loss of generality, we assume that there is only one scan
chain in the circuit under diagnosis. As shown in Figure 7.21, there is a scan input
(SI) pin and a scan output (SO) pin. The flip-flops in the scan chain are ordered
from SI to SO sequentially, denoted as �q1	 q2	 � � � 	 qn�, assuming that there are n
flip-flops. We further define the snapshot image and the observed image of a given
scan chain as follows.

Definition 7.14 (Snapshot Image)

The snapshot image of a scan chain is the logic value combination of all the
scanned flip-flops at a particular time instance. Note that the snapshot image at any
clock cycle of the fault-free circuit under diagnosis is available through functional
simulation as long as a test sequence is given; however, the snapshot images of a
scan chain in a failing chip are obviously not available due to the blockage.
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Snapshot image and observed image of a scan chain.

Definition 7.15 (Observed Image)

The observed image of a scan chain is the scanned-out version of a snapshot image.
For a fault-free circuit, it is equivalent to the snapshot image. For a failing chip, it
consists of the bitstream collected at the scan output pin. These two images could
be different due to the presence of faults inside the scan chain or the combinational
logic.

Example 7.16

In Figure 7.21, a stuck-at fault in a scan chain acts as a signal distortion element
that produces an observed image different from its original snapshot image. In
this case, the snapshot image is originally ��q1	 q2	 q3	 q4���1	1	0	0�
, whereas the
observed image is ��q1	 q2	 q3	 q4���0	0	0	0�
.

In this section, we use the following test commands.

Definition 7.16 (Scan_Shift Command)

A command that serially applies a bit into the scan chain through the scan input pin
and retrieves a bit out of the scan chain from the scan output pin at the same time.
The traditional flush test can be regarded as a sequence of Scan_Shift commands.

Definition 7.17 (Capture Command)

A functional-mode command that forces each flip-flop to take its functional input,
instead of the scan input, as the content. A system clock (if different from the scan
clock) might be needed.
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Definition 7.18 (Apply Command)

The apply command is a functional-mode command that applies a vector to the
chip input pins of the circuit under diagnosis.
Like the diagnosis of faults inside the combinational logic, either cause–effect

analysis or effect–cause analysis can be applied to scan chain diagnosis based on
some fault models. As shown in Figure 7.22, a number of fault types have commonly
been targeted [Kundu 1993] [Huang 2003]. These fault types are usually classified
by two characteristics: (1) functional or timing, and (2) permanent or intermittent.
An intermittent fault refers to a fault that occurs nondeterministically or only under
a certain operating environment (e.g., when the power supply is noisy or unstable).
For functional faults, stuck-at and bridging faults are mostly used. For timing faults,
two types of timing violations associated with the flip-flops need to be considered:
setup time violation and hold-time violation. Setup time violation is mostly due
to late signal at a flip-flop’s input, while the hold-time violation is due to a too-early
signal change at a flip-flop’s output. Often, the setup time violation fault is further
divided into the two subtypes of slow-to-fall and slow-to-rise faults to reflect the
difference between the up-transition and down-transition driving strengths of the
logic cells.
Figure 7.23 illustrates a number of faulty syndromes observed at a scan output

pin under a number of common fault types. Here, we assume that we flush into
the scan chain a bitstream “0011001100110011” forming a pattern. Due to a fault
effect at certain flip-flop, the observed bitstream could be altered; for example, it
could become “001001001001” in the presence of a slow-to-rise fault. This means
that an up-transition at the output of a flip-flop cannot be finished in one clock
cycle. While a flush test is not a good vehicle for locating the fault, it can be used to
classify the fault type. For example, an all-0 syndrome indicates a stuck-at-0 fault,

Each fault could be permanent or intermittent.

Scan Chain Faults
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Setup-Time 
Violation Fault
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Slow-To-Rise 
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Hold-Time 
Violation Fault

� FIGURE 7.22

Common fault types in a scan chain.
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Example faulty syndromes of a scan chain.

and missing a few transitions indicates a transition fault. What is not modeled
in this figure is the common bridging fault (e.g., a flip-flop output unexpectedly
shorted with a logic cell’s output). Diagnosis of a bridging fault in the scan chain
is usually more challenging due to its huge possible fault candidate space and its
intermittent nature.
In addition to the fault models, the diagnostic test procedures also affect the

accuracy of diagnosis. In our discussion, we assume that one is free to mix any kind
of vectors, including functional vectors, scan vectors, and flush vectors, as long as
the faults can be properly revealed.

7.3.2 Hardware-Assisted Method
A number of hardware-assisted approaches have been proposed in the literature
[Schafer 1992] [Edirisooriva 1995] [Narayanan 1997] [Wu 1998]. The basic idea is
that a scan chain is difficult to diagnose, so one may need to insert extra logic to
facilitate the process. There are a number of reasons why scan chain diagnosis is
seemingly more difficult than combinational logic diagnosis.

� In combinational logic diagnosis, the scan chain is assumed to have been
validated, but when it comes to scan chain diagnosis we cannot assume the
integrity of the combinational logic. This implies that a good scan chain
diagnosis method should be robust enough to endure the harsh conditions
when certain cells in the combinational logic are also faulty.

� The observability of a scan chain is limited. We can only retrieve the failing
syndrome from the scan output pins. With less information, it is more difficult
to trace back to the cause of failure.
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� A simple fault in the scan chain could have global effects. For example, when
we flush the scan chain with a simple stuck-at-0 fault by a random bitstream,
then what we get at the scan output pin is an all-zero bitstream. This is because
every bit we observed passes through the faulty flip-flop and gets distorted.

A design-for-diagnosis (DFD) scheme augments a scan flip-flop, as shown in
Figure 7.24. An XOR gate is placed in the front and controlled by an extra control
signal Invert. This type of flip-flop has three modes of operation: (1) normal oper-
ation, (2) scan-shifting operation, and (3) inversion operation. Under inversion
operation, all flip-flops are inverted simultaneously, triggered by a global signal
Invert that connects to each scan cell.
With the extra supporting circuitry, the diagnostic test procedure using a modified

flush test can proceed as follows:

1. Prepare a flush pattern (e.g., all-1 pattern).

2. Scan in this pattern into the scan chain. If there are n flip-flops in the chain,
we need to apply n scan-shifting commands.

3. Invert the scan chain by setting signal invert to one.

4. Scan the image out of the scan chain. Check the observed image to see if there
is a stuck-at-0 flip-flop in the scan chain.

5. Repeat steps 1 to 4 by flushing the all-0 pattern to see if there is a stuck-at-1
flip-flop.

The following example illustrates how this procedure can successfully locate a
stuck-at fault.

MUX
(From logic)

(From scan chain) DFF

QD

SC

(a) A normal scan flip-flop

DFF
MUX

(From logic)

(From scan chain) QD

SC
Invert

(b) A modified scan flip-flop for diagnosis

� FIGURE 7.24

Augmentation of a scan flip-flop for diagnosis.
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Example 7.17

Assume that we have a stuck-at-0 fault at the fifth flip-flop counting from the scan
input side, and the bitstream to be flushed into the chain has an all-1 pattern.
The fault location divides the scan chain into two parts: SI-to-fault and fault-to-
SO, as shown in Figure 7.25. After we have scanned in the pattern, the snapshot
image in the failing chip will become (1111000000000000). This is because the
fault-to-SO part has been distorted by the stuck-at-0 fault, whereas the SI-to-fault
part is not affected. Before we do the scan-out, we invert this snapshot image
to (0000011111111111). Then, we scan it out and obtain an observed image as
(0000011111111111). The fault location is revealed at the edge between the 0’s
and 1’s.

7.3.3 Modified Inject-and-Evaluate Paradigm
The inject-and-evaluate paradigm can also be applied to scan chain diagnosis with
a specific fault model [Stanley 2001] [Huang 2003]. Unlike the hardware-assisted
method, this is a software method without any area overhead. As noted previously,
the flush test, although ineffective for fault location, can be used for classifying
the fault type first. Once the fault type is known, the subsequent fault injection
process can be more realistic and thus lead to a more accurate result. A diagnostic
test procedure of this type operates the same as normal scan testing, which goes
through a scan–capture–scan scenario for each test vector.

Example 7.18

An example is shown in Figure 7.26. We assume that there is a stuck-at-0 fault at
the output of the second flip-flop. After we have scanned in a bitstream (1011),
the snapshot image becomes (1000); that is, the two bits nearest the scan output
pin have been corrupted. Next, a system clock is applied to capture the next-state

(1) Original bitstream pattern = (1111111111111111)
(2) After scan-in: snapshot image = (1111000000000000)
(3) After inversion: snapshot image = (0000011111111111)
(4) After scan-out: observed image = (0000011111111111)

The fault location is at the edge between 0’s and 1’s.

SI SO

Stuck-at-0

A scan chain

Fault-to-SOSI-to-fault

� FIGURE 7.25

Fault location via inversion operation.
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The scan–capture–scan test procedure.

values to the flip-flops, thereby creating a new snapshot image, say (0110). Finally,
this new snapshot image is scanned out to become the observed image (0010).
It can be seen from the above process that the distortion on the observed image

is quite severe. This means that what we observed at the scan output pin could be
quite different from what we have anticipated from a fault-free chip. But, still, this
scan–capture–scan process maps a test vector (as a bitstream) to an output vector
(as the observed image). Based on this mapping relation, we can try to inject a
fault in the scan chain to see which one can faithfully reproduce the syndrome we
observed. When there is no perfect match, some ranking heuristic as discussed in
the subsection on combinational logic diagnosis can be applied here as well.
In light of the above discussion, we have the following inject-and-evaluate

paradigm for scan chain diagnosis:

1. Run a flush test to guess the type of the faults.

2. Pick one scan vector as a bitstream. Simulate the scan–capture–scan process
on the CUD to derive the fault-free (observed) image.

3. Pick one possible fault candidate. Inject the fault effect into the scan chain.

4. Simulate the scan–capture–scan process on the CUD and derive its failing
(observed) image.

5. Compare the failing image with the fault-free image. Accumulate thematching
score for each fault candidate.

6. Go back to step 3 if there are more candidates.

7. Go back to step 2 if there are more scan vectors.

8. Rank candidates based on their matching scores. The higher the score, the
higher the rank.
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In general, this paradigm is not as effective as that of the combinational logic
diagnosis, due to a number of reasons. First, it is not easy to find a universal
injection model to represent the fault effect of a scan chain fault. In combinational
logic diagnosis, the fault effects of different types of faults (e.g., stuck-at, bridging,
or interconnect open) can be denoted as a signal flipping at the fault locations when
they are activated. This, however, is not true for scan chain diagnosis. A stuck-at
fault and a bridging fault in the scan chain could behave totally differently. The fault
effect modeling for a bridging fault in the scan–capture–scan process is even more
challenging. Furthermore, unlike the single-cycle process in the combinational logic
diagnosis, a test session now takes multiple clock cycles to complete. It is not easy
to figure out at what clock cycle the bridging fault really takes the toll. Second,
the distortion is so severe that many faults could have similar effects on the final
observed image. As a result, the differentiation among faults may not be very
phenomenal.

7.3.4 Signal-Profiling-Based Method
Instead of using scan vectors as the vehicle, the signal-profiling-basedmethod drives
the failing chip through functional mode with selected diagnostic test sequences;
thus, the fault effect can be reflected to the observed image in a more systematic
way. After that, signal-processing techniques such as filtering and edge detection can
be applied to reveal the location of the faulty flip-flops. The entire flow consists of
two major parts: (1) the diagnostic test sequence selection, and (2) the subsequent
analysis of the observed syndromes.

7.3.4.1 Diagnostic Test Sequence Selection

The diagnostic test sequence in this method is literally the functional sequence
derived from the simulation testbench. It could start from a given reset state or an
unknown state. The primary objective for such a sequence is to bring the failing chip
through a state sequence as randomly as possible. The randomness is measured by
the signal-1 frequency of the flip-flops, illustrated by an example in Figure 7.27.

In this example, a three-vector sequence is applied to the CUD. In the time-frame
expansion model, the value of each flip-flop is shown. For example, the first flip-flop
goes through sequences of �0→ 0→ 0→ 0
 in four cycles, while the second flip-
flop goes through �0→ 1→ 0→ 1
. By counting the occurrences of signal-1’s, their
signal-1 probabilities over the time can be calculated as 0.0 and 0.5, respectively. In
other words, the second flip-flop has become randomized; however, the randomness
of the first one is not yet adequate. Sequences like this will be chosen one by one
until every flip-flop has a fairly random value.

7.3.4.2 Run-and-Scan Test Application

Unlike the traditional scan–capture–scan test procedure, this method adopts a pro-
cedure referred to as run-and-scan, meaning that the procedure involves running
a number of functional sequences followed by a number of scan-out operations. At
the end of each test sequence application, only the final snapshot image of the scan
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Illustration of signal frequencies at flip-flops.

chain is shifted out and recorded as the observed images. In this methodology, a
large number of test sequences (e.g., 100) are required to achieve accurate diagnosis
results.
Assume that a long functional sequence, denoted by �v1	 v2	 � � �� is provided by the

designer. During the design process, this long functional sequence is assumed to
have been simulated at the register-transfer level or gate level. The flip-flop values in
response to this sequence at each clock cycle are therefore available instantly, in the
form of a value–change–dump (VCD) file when performing scan chain diagnosis.
The test sequence selection is first done by selecting a number of clock cycles,

say {1, 4, 5, 7}, with an attempt to make the values of each flip-flop at these selected
clock cycles as random as possible. In other words, the signal-1 frequency of each
flip-flop at these selected clock cycles is as close to 0.5 as possible. Once this has been
done, we can generate their corresponding test sequences. For each selected clock
cycle j, we simply take the prefix of the functional sequence up to this clock cycle
as the corresponding sequence, such as �v1	 v2	 � � � 	 vj�. As illustrated in Figure 7.28,
one test sequence is generated for each selected clock cycle in {1, 4, 5, 7}. Each
of them starts from a known reset state or an unknown state. The final snapshot
image at the flip-flops in response to each test sequence will then be scanned out
for subsequent analysis. In this case, the snapshot images to be scanned out are
��q1	 q2���0	0�	 �1	0�	 �0	1�	 �1	1�
. The values of both q1 and q2 switch between 0 and
1 over the time; therefore, the goal of randomness is met to some extent.

7.3.4.3 Why Functional Sequences?

The reason why we use functional sequences can be explained by analyzing how
the fault effect manifests itself during the test application. As discussed in the
previous subsections, there are two stages during the run-and-scan test application,
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Example of test sequence selection.

i.e., (1) functional sequence stage, and (2) scan-shifting stage. In the first stage, the
snapshot image of the scan chain inside the failing chip is only slightly affected
by the fault. Such fault effects could be regarded as white noise that could slightly
affect a number of flip-flops only. On the other hand, the fault effect is much
more prominent during the scan-shifting stage, when a snapshot image is shifted
out to become the failing observed image. The distortion at this stage is usually
dramatically biased; therefore, it contains information about the fault location.
An image can be viewed as the composition of two parts, the SI-to-fault part and

the fault-to-SO part. When shifting out a snapshot image, the fault-to-SO part is not
affected, while the SI-to-fault part could be seriously distorted. As a result, it is very
likely that there will be a big difference between the failing image and fault-free
image for the SI-to-fault part but not for the fault-to-SO part.

Example 7.19

In the example shown in Figure 7.29, there are four flip-flops in the scan chain:
�q1	 q2	 q3	 q4
. Assume that the application of t test sequences gives rise to t cor-
responding snapshot images of the scan chain. The signal-1 frequencies of the
flip-flop bits among these t snapshot images are assumed to be (0.4, 0.5, 0.6, 0.4)
for the fault-free model and (0.41, 0.51, 0.61, 0.41) for the failing chip. This rep-
resents a likely condition that the failing snapshot image is only a perturbation of
the fault-free snapshot image in terms of the signal-1 frequency; however, after we
have shifted out the scan chain contents as the observed images, their difference is
more significant. In this illustration, it remains (0.4, 0.5, 0.6, 0.4) for the fault-free
model, but it becomes (0, 0, 0.61, 0.41) for the failing chip. Hence, we can infer
that the fault occurs at the second flip-flop that distorts the signals at the first two
bits dramatically.
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Global distortion due to scan shifting.

The above discussion implies that this approach could be relatively robust even
when there are also certain faults in the combinational logic. The reason is that such
fault is likely to cause white-noise type of fault effects on the flip-flops; therefore,
the biased fault effects during the scan shifting stage can still dominate the overall
failing syndrome at the chip’s output and thereby provide diagnosis information.
Because of this property of graceful degradation, our experiments even show that
this approach is applicable when the faults in the scan chain are intermittent (e.g.,
bridging faults).
The proposed approach is also applicable to designs without a completely known

reset state (e.g., a design without completely resettable data path registers). In that
case, we can resort to the three-valued logic simulation in deriving the diagnostic
test sequences and the snapshot images.

7.3.4.4 Profiling-Based Analysis

In this subsection we discuss how to perform signal processing on the observed
images to locate the faulty flip-flop. The overall procedure is shown in Figure 7.30:

� Step 1. Profile the signal-1 frequency of each flip-flop bit from the fault-free
observed images. The result is a fault-free profile, denoted as good�i�, where i
is the flip-flop index.

� Step 2. Profile the signal-1 frequency of each flip-flop bit from the set of
failing observed images. The result is a failing profile, denoted as bad�i�.

� Step 3. Compute the difference profile between the fault-free images and the
failing images. For a flip-flop qi, we calculate the frequency that its fault-free
value is different from its failing value as the difference frequency. Once the
difference frequency has been derived for each flip-flop, we can derive the
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Profiling-based analysis flow.

profile over the entire scan chain to analyze the trend for revealing the fault
location.

� Step 4. Perform filtering on the difference profile to eliminate the glitches.

� Step 5. Perform edge detection to derive a suspicion profile. In this profile, the
flip-flops with higher suspicion values are considered more likely to be a fault
location.

Example 7.20

Figure 7.31 shows the fault-free profile and failing profile of a real circuit. If the
fault to be diagnosed is a stuck-at fault, there might be an all-0 or all-1 region in the
failing profile closer to the scan input part. The boundary of the all-0 region shown
is right at the faulty flip-flop location.
A stuck-at fault can be easily detected from the failing profile; however, more

sophisticated analysis such as filtering and edge detection are required for bridging
faults or transition faults (e.g., slow-to-rise or slow-to-fall). Filtering is mainly used
to smooth out the difference profile in such a way that the small glitches can be
removed. A simple average-sum filtering is often adequate in this application.

Definition 7.19 (Average-Sum Filtering)

Assume that the difference profile is given and denoted as D�i�, where i is the index
of a flip-flop. We use the following formula to compute a smoothed difference profile,
SD[i]:

SD�i�= 0�2∗�D�i−2�+D�i−1�+D�i�+D�i+1�+D�i+2��
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Failing profile in the presence of a stuck-at fault.

The smoothed difference profile tends to have a trend that it is higher at the
left-hand side (i.e., the scan input side) and lower at the right-hand side (i.e., the
scan output side), with a transition region in between. The left-hand side is higher
because the flip-flops closer to the scan input pin could become more distorted
during the scan-shifting operations, whereas the flip-flops closer to the scan output
pin are mostly unaffected. The true location of the faulty flip-flop is likely to be the
left-boundary of the transition region in the difference profile. To detect this boundary,
we can use the simple edge detection formula defined below.

Definition 7.20 (Edge Detection)

On the smoothed difference profile SD[i], the following formula can be used to
compute the faulty frequency of each flip-flop as a suspicious profile:

suspicion�i�= �−1	−1	−1	1	1	1� ·

⎡
⎢⎢⎢⎢⎢⎢⎣

�SD�i�−SD�i−3��
�SD�i�−SD�i−2��
�SD�i�−SD�i−1��
SD�i�−SD�i+1�
SD�i�−SD�i+2�
SD�i�−SD�i+3�

⎤
⎥⎥⎥⎥⎥⎥⎦

This is a weighted-sum formula that tends to maximize at the left boundary of the
transition region in the difference profile. Intuitively, for a flip-flop at location i, we
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take three of its left neighbors (SD�i−3�	 SD�i−2�, and SD�i−1�) and three of its right
neighbors (SD�i+ 1�	 SD�i+ 2�, and SD�i+ 3�) in the computation of suspicion[i].
This formula is anticipated to peak at a flip-flop location where its left-hand side
neighbors are roughly the same as its SD value, while its right-hand side neighbors
are sharply lower. The calculation is on the reward-and-penalty basis:

� We add points to the overall score of a flip-flop i if its right-hand-side neigh-
bors’ values are lower than the current SD[i]. This is a reward mechanism.

� We deduct points from the overall score of a flip-flop i if its left-hand-side
neighbors’ values deviate from the current SD[i]. This is a penalty mechanism.

� The final suspicion degrees of the flip flops are then sorted in a decreasing
order as the final ranked list of fault candidates.

Figure 7.32 illustrates the difference profile, the smoothed difference profile, and
the suspicion profile for a scan chain with a stuck-at-1 fault at flip-flop 23. The
horizontal axis of each of these three profiles is the index of the flip-flops, ordered
from the scan input pin toward the scan output pin. In other words, a flip-flop
with a smaller index is a flip-flop closer to the scan input pin. It can be seen that
a peak in the suspicion profile clearly indicates the location of the faulty flip-flop.
Similarly, Figure 7.33 shows the profiles when there is a slow-to-rise fault in the
scan chain.

0

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1 6 11 16 21 26 31 36 41 46 51 56 61 66

0

0.6

0.5

0.4

0.3

0.2

0.1

1 6 11 16 21 26 31 36 41 46 51 56 61 66

0

1.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66

Difference Profile

Smoothed Profile

Suspicion Profile

Faulty FF
location

Scan input side Scan output side
FF index

1

0.5

–0.5

–1

� FIGURE 7.32

Profiles of a scan chain with a stuck-at fault.
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Profiles of a scan chain with a transition fault.

7.3.5 Summary of Scan Chain Diagnosis
Diagnosis of flip-flop faults in a scan chain is sometimes difficult because of two
reasons. First, the observation is limited at the scan output pins only. Second, the
fault effect could be global and overwhelming in the sense that it affects entire
observed images during the scan-shifting operation. Three basic methods have been
introduced in this section: hardware-assisted, modified inject-and-paradigm, and
signal-profiling-based. In general, techniques for scan chain diagnosis are not as
mature as those for combinational logic. Newmethods are still emerging. A number
of historical approaches proposed in the literature are worth reading. For example,
[Kundu 1993] used sequential automatic test pattern generation (ATPG) to find
a test sequence that sets the flip-flops to some proper values and then scans them
out for analysis. To overcome the high complexity of sequential ATPG, [Cheney
2000] proposed using random test patterns as the diagnostic test patterns. Fault
simulation and response-matching heuristics were then utilized to gauge the most
likely fault candidates. In general, such a process takes a long time because it has
to enumerate a large number of fault candidates in the faulty scan chain. [Stanley
2001] proposed taking advantage of the fault-free scan chains as the vehicle for set-
ting the values of the faulty chain, thereby reducing the difficulty of the diagnostic
test generation process. By doing so, only combinational ATPG is required for most
cases. [Guo 2001] further proposed powerful upper bounding and lower bounding
techniques to narrow the fault locations down to a small region, thereby reduc-
ing the fault simulation time significantly. [Huang 2003] [Huang 2004] enhanced
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the bounding techniques and introduced probability for modeling the intermittent
faults. More recently, [Li 2005b,c] further optimized this framework by incorporat-
ing the so-called single-excitation patterns and ATPG techniques to provide better
diagnosis resolution.

7.4 LOGIC BIST DIAGNOSIS

Built-in self-test (BIST) involves using on-chip hardware for both test pattern
generation and output response analysis (see Chapter 5 for details). The most eco-
nomical forms of logic BIST involve using a pseudo-random pattern generator
(PRPG) to apply a large number of test patterns and using a multiple-input sig-
nature register (MISR) to combine the output responses into a single signature.
If the resulting signature is incorrect, then the chip fails the test. Diagnosing the
cause of the failure in a logic BIST environment is very challenging because the
output response is so highly compacted. This section begins with an overview of
the problem of diagnosis in a logic BIST environment, and then describes practical
techniques for determining which test vectors failed (time information) and which
scan cells captured errors (space information).

7.4.1 Overview of Logic BIST Diagnosis
A BIST architecture that is widely used in industry is the STUMPS architecture
[Bardell 1982] which is illustrated in Figure 7.34. The core logic contains multiple
scan chains which are loaded from a PRPG. After a test vector has been shifted
in, the system clock is applied and the output response is captured back into the
scan chains. As the next test vector is shifted in, the output response gets shifted
out and compacted into a MISR. For diagnosis, a scan-in port can be connected to

All flip-flops are assumed to be observable
through scan chains.

MISR (Multiple-Input Signal Analyzer)

Core
Logic

scan out
(as the signature)

scan in

PRPG (Pseudo-Random Pattern Generator)

� FIGURE 7.34

An example of the logic BIST STUMPS architecture.
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the PRPG to externally load an initial seed (starting pattern), and a scan-out port
can be connected to the MISR to shift out a final signature for observation.
At the end of the BIST session, the final signature is so highly compacted that

very little information can be extracted from it for diagnostic purposes unless
the number of bits in error is very small. In general, there is no bound on the
multiplicity of errors during BIST because a single defect can cause a large number
of vectors to produce faulty responses and a large number of scan cells can capture
those faulty responses. Diagnosis in a BIST environment adds an extra level of
difficulty compared with diagnosis in a non-BIST environment because it requires
determining from compacted output responses which test vectors have produced a
faulty response (time information) or which scan cells have captured errors (space
information). For example, consider the case where 1million test vectors are applied
during a BIST session to a circuit with 20,000 scan cells. Time information would
refer to which of the 1 million vectors failed, and space information would refer to
which of the 20,000 scan cells captured a faulty response. Interval-based methods
can be used to obtain time information and are described in Section 7.4.2. Masking-
based methods used to obtain space information are described in Section 7.4.3.
One simple but highly inefficient way to perform BIST diagnosis is to just bypass

the MISR and shift out the full output response for every test vector to an external
tester. The problem with this approach is that typically a very large number of
test patterns are applied to the circuit during BIST (orders of magnitude more
than are applied in conventional deterministic testing); consequently, the tester
may not have sufficient memory to store the full output response data for every
vector. Moreover, the time required for collecting and processing all of this data is
generally not as cost effective as other more efficient BIST diagnosis approaches
that are described in the remainder of this section.

7.4.2 Interval-Based Methods
One general approach for diagnosis in a BIST environment is, instead of running
the entire BIST session to generate a single signature, to run the BIST in shorter
intervals and generate a signature for each interval [Savir 1997] [Song 1999] [Liu
2003]. If the signature for an interval is faulty, then it is known that the circuit
is failing for at least one test vector in the interval. Running the BIST for smaller
intervals requires being able to start the BIST from designated seeds (a seed is a
starting state for the PRPG; see Chapter 5 for more details) in addition to the normal
initial seed and being able to run the BIST for a designated length. This capability
can be provided by making both the PRPG and the pattern counter scannable (the
pattern counter counts down from its initial value to 0, at which point the BIST is
stopped).
One approach for finding the first failing test vector, which was described in

[Song 1999], involves performing a binary search using intervals. Given a circuit
that has failed the entire BIST session, the following search process is used:

� Step 1. Load the PRPG with the normal initial seed, but load the pattern
counter with only half the normal BIST length. This specifies an interval equal
to the first half of the normal BIST session.
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� Step 2. Run the BIST for the specified interval.

� Step 3. When the BIST is complete, see if the signature is correct.

� Step 4. If the signature is faulty, then the first failing vector exists in the first
half of the test vectors in the previous interval. Step 2 is then repeated using
the same initial seed as previously but only half the previous length. This
specifies a new interval equal to the first half of the previous interval.

� Step 5. If the signature is correct, then the first failing vector exists in the
second half of the test vectors in the previous interval. Step 2 is then repeated
using a seed that corresponds to the start of the second half of the patterns in
the previous interval, and only half the previous length is used. This specifies
a new interval equal to the second half of the previous interval.

� Step 6. The above procedure iterates until the interval becomes equal to only
a single pattern (i.e., the interval length is equal to 1). At this point, the first
failing pattern has been identified.

Example 7.21

Figure 7.35 illustrates the binary search process. Assume that the full BIST session
contains 28 test vectors and vector 4 is the first failing vector. In this case, five
interval BIST sessions are required, where the interval lengths go through the
sequence of �14→ 7→ 4→ 2→ 3
 test vectors to locate the first failing test vector
(in this case, vector 4). When the first failing test vector is found, an interval BIST
session is then run again to stop after vector 4. The contents of all the scan chains
(which hold the output response for vector 4) are then shifted out to the tester
for diagnosis. If necessary, the binary search process can be resumed to find the

Time (or test vector index)

Space
(or scan cell

index)

1st BIST session

2nd
3rd

BIST session length:
14 � 7 � 4 � 2 � 3
�First failing at vector #4

� FIGURE 7.35

A binary search process to locate the first failing test vector.
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second failing vector by initializing the PRPG with the seed of the fifth test vector,
instead of the initial seed.
The binary search method requires log2(BIST length) steps to identify each fail-

ing test vector. An interval-based method that requires only two steps to collect all
diagnostic information (although it requires more tester memory) was described
in [Wohl 2002]. It is called interval unloading and involves dividing the entire BIST
session into small fixed-size intervals (e.g., 32 patterns each). In the first step, the
BIST is run for each interval and the compacted signature for each interval is
scanned out to the tester for comparison with the fault-free signature to identify
the failing intervals. In the second step, the BIST is run for each failing interval,
and the full uncompacted output response for each failing interval is shifted out to
the tester. This approach requires much less tester memory than storing the entire
uncompacted output response for the whole BIST session on the tester because
only the output responses for the failing intervals are shifted out. The advantage of
interval unloading compared with the binary search method is that only two steps
are required to obtain all failing output responses, thereby saving time by avoiding
repeated tester runs. The drawback is that more tester memory and more post-
processing is required compared with the binary search method, which precisely
identifies the failing test vectors.

Example 7.22

Figure 7.36 shows a small example of interval unloading. It is assumed that there
are 28 test vectors in a BIST session which are divided into 7 intervals containing 4
patterns each. Among them, the first and fifth intervals are failing. After checking
the failing signatures in the first step, in the second step the tester runs the two
failing intervals again and stores their uncompacted output response. During the
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� FIGURE 7.36

A BIST session divided into intervals.
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second step, a total of 4×2 = 8 uncompacted output responses must be scanned
out as the source information for combinational logic diagnosis.

7.4.3 Masking-Based Methods
Another general approach for diagnosis in a BIST environment involves running
the entire BIST session multiple times while masking out the output response for
different sets of scan cells each time [Wu 1999] [Rajski 1999] [Ghosh-Dastidar
2000] [Bayraktaroglu 2002b] [Liu 2004]. In this approach, a single signature is
generated in each BIST run, but the set of scan cells whose output response is
compacted in the signature is different each time. With this method, it is possible
to obtain diagnostic information about which scan cells are capturing errors (i.e.,
space information) using only signatures; that is, it is not necessary to store and
postprocess any uncompacted output responses.
A masking based method that uses pseudo-random masking to obtain space infor-

mation very quickly in a single tester run was described in [Rajski 1999]. The idea
is to have a pseudo-random pattern generator (e.g., a linear feedback shift register
[LFSR]), which generates a selection signal during each BIST run. The selection
signal selects some scan cells whose output response is shifted into the signature
analyzer, while the output responses for the rest of the scan cells are masked out
so they do not affect the final signature. If the final signature for a BIST run is
correct, then all scan cells whose output responses were included in the signature
are considered to be fault free. By masking different sets of scan cells in each BIST
run, the process of elimination can be used to deduce which scan cells are capturing
errors. The accuracy in identifying the set of scan cells capturing errors for this
method depends on how many BIST runs are used, how many scan cells there are,
and how many scan cells produce errors. A nice feature of this method is that all
information needed for diagnosis can be obtained in a single tester run provided
the tester has sufficient memory to store the final signatures for all BIST runs.
If complete accuracy of the failing scan cells is desired, then a method that uses

deterministic masking, which was described in [Ghosh-Dastidar 2000], can be used.
Rather than pseudo-randomly selecting the scan cells whose output responses are
included in the signature for a BIST run, the scan cells are selected in a deterministic
manner using some scan cell partitioning logic that allows a binary search to be
used. The scan cells can be represented as a matrix, as shown in Figure 7.37, where
each column corresponds to a scan chain and each row corresponds to a scan slice
(i�e�, a set of scan cells that get shifted into the MISR in the same clock cycle).
The partitioning logic selects a set of scan chains (columns) and a consecutive
string of scan slices (rows). This partition is represented as a tuple (X , Y , Z) where
X is the set of scan chains in the partition, Y is the bottom-most scan slice in
the partition counting up from the MISR, and Z is the top-most scan slice in the
partition counting up from the MISR. In Figure 7.37, an example of a scan cell
partition corresponding to ({3, 4}, 2, 6) is shaded.
The additional design-for-diagnosis (DFD) circuitry required for this method

consists of the scan cell partitioning logic, which allows only the output response for
the scan cells in the selected partition to be compacted in the MISR while the output
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Matrix representation for scan cells.

responses for the rest of the scan cells are masked out. This DFD hardware shown in
Figure 7.38 consists of three registers (X , Y , Z), one counter, two comparators, and
some gating logic [Ghosh-Dastidar 2000]. For the example partition ��3	4
	2	6�, all
scan chains are masked off except scan chains 3 and 4. This is accomplished by
setting the third and the fourth bits in register X to logic 1, and all other bits to
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A DFD architecture for deterministic masking in logic BIST.
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logic 0. For these two selected scan chains, only scan slices 2 to 6 are allowed to
pass into the MISR. This is accomplished by setting the lower-bound register Y to
2 and the upper-bound register Z to 6. A counter is used to keep track of which scan
slice is being compacted into the MISR in each clock cycle. Only the scan slices
that fall between the lower-bound and upper-bound values can pass the gating logic
and enter the MISR.
Given the ability to deterministically partition the scan cells, a binary search

can be conducted to find the scan cells that capture errors. The binary search is
performed by partitioning the scan cells in half and running the BIST session to
generate a signature for the selected partition. If the selected partition has a faulty
signature, then it is partitioned in half and the process is repeated. If it has a fault-
free signature, then all of the scan cells in the partition are marked as fault-free,
the nonselected partition is partitioned in half, and the process is continued. The
worst-case number of BIST sessions that are required to identify all scan cells that
capture errors is equal to �2e��log2�N/e��+2e−1, where N is the total number of
scan cells, and e is the number of scan cells that capture errors.

One issue is how to determine the fault-free signature for each partition. This
can be done by using the superposition principle to reduce the complexity. This
principle states that the fault-free signature of a flip-flop partition shifted into the
MISR is simply the bitwise sum of the fault-free signature of each individual flip-
flop [Bardell 1987]. Based on this property, the fault-free signature of any selected
flip-flop segment can be formed rapidly without time-consuming simulation.
Deterministic masking [Ghosh-Dastidar 2000] is an adaptive diagnostic approach

where each step of the diagnosis depends on the results from the previous step.
In this case, each step of the binary search depends on the results of the previous
BIST run. The drawback is that multiple tester runs are required to obtain all
diagnostic information. Pseudo-random masking [Rajski 1999] is a nonadaptive
diagnostic approach where all diagnostic data can be obtained in a single tester run;
consequently, pseudo-random masking is faster, but it may not accurately identify
all scan cells that capture errors. The advantage of deterministic masking is that it
is guaranteed to find the exact set of scan cells capturing errors.

Example 7.23 (Binary Search Using Deterministic Masking)

Consider the example shown in Figure 7.39a, where the third and seventh flip-flops
of the fourth scan chain are assumed to capture errors. Binary search on just the
scan chains can be used to identify the scan chains that capture errors. In six BIST
sessions, the fourth scan chain can be identified as the only scan chain capturing
errors. The value of X is set to 4, and the next step is to determine which scan cells in
the fourth scan chain capture errors. As shown in Figure 7.39b, the search process
can be viewed as a tree structure where each node denotes a BIST session. The
associated scan cell partition is specified by its corresponding Y and Z values. In
this example, the two flip-flops capturing errors are identified after nine additional
BIST sessions (each corresponding to a node in the tree structure of Figure 7.39b).
In addition to this basic search strategy, a more sophisticated one can also be found
in [Ghosh-Dastidar 2000] in which structural information can be utilized to further
reduce the total number of BIST sessions.



Logic Diagnosis 449

MISR (Multiple-Input Signature Register)

Core
Logic

PRPG (Pseudo-Random Pattern Generator)

Scan cells
Capturing errors

(Y, Z  ) = (1, 7)

(Y, Z  ) = (1, 4) (Y, Z  ) = (5, 7)

(Y, Z  ) = (1, 2) (Y, Z  ) = (3, 4) (Y, Z  ) = (5, 6) (Y, Z  ) = (7, 7)

(Y, Z  ) = (3, 3) (Y, Z  ) = (4, 4) 9 BIST sessions

(b) The search tree

(a) Scan cells capturing errors in the fourth scan chain

� FIGURE 7.39

Example of the search process for scan cells capturing errors.

Once the failing scan cells have been identified, the principles of combinational
logic diagnosis discussed in the previous section can be applied to locate the faults
in the combinational logic. Under a single stuck-at fault assumption, each candidate
fault must satisfy two conditions [Bayraktaroglu 2002b]: (1) It causes a faulty
response at each of the scan cells that capture errors sometime during the BIST
session, and (2) it should not cause a faulty response at any of the scan cells that do
not capture errors during the entire BIST session. Checking these two conditions
can be done either by fault simulation or by table look-up from the fault dictionary
as discussed in Section 7.2. Note that the accuracy and resolution when using
only space information for diagnosis can be lower than when time information is
used, because time information identifies the test patterns for which the errors are
occurring, thereby adding more specific conditions for the candidate faults.

7.5 CONCLUDING REMARKS

Logic diagnosis is an important task for companies that design, test, and manufac-
ture ICs. It provides guidance for subsequent failure analysis for design debugging
and yield ramp-up. Over the years, logic diagnosis techniques have become more
and more mature in dealing with faults in the combinational logic. State-of-the-art
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approaches can capture not just stuck-at faults but also bridging faults and other
types of faults. Elegant solutions have been developed for a number of formerly
nasty problems (e.g., multiple fault diagnosis). Recently, major attention has been
focused on diagnosing scan chain problems. As for diagnosis in a scan-based logic
BIST environment, hardware support is often required to achieve satisfactory
results.
Looking forward to the future challenges, performance (speed) debug is an area

that is starting to attract some attention [Krstic 2003]. While speed debug is not
critical for diagnosing production fallout, it is the most important issue to be
resolved during early silicon debug as this impacts time-to-market greatly. Also,
on-chip test compression/decompression has been a common practice for reducing
the test volume on the tester. Information loss due to the use of the compres-
sion/decompression circuitry is adding another level of difficulty to diagnosis and
has emerged as another challenging problem to be solved [Cheng 2004]. To make
a diagnosis tool even more practical, it is necessary to consider the layout infor-
mation. Based on layout analysis, one can further identify a defect down to its
physical location, instead of just pointing out its hosting cell. The parametric yield
loss due to lithographic-induced variations is on the rise as technology advances to
the nanometer scale. Whether existing methods can adapt to these kinds of defects
or not remains to be seen [Vogels 2004].

7.6 EXERCISES

7.1 (Fault Dictionary Compaction) Consider a fault dictionary as shown in
Figure 7.40. There are 10 test vectors �t1	 � � � 	 t10
 and 16 faults �f1	 � � � 	 f16
.
Here, a “1” entry means an output response is failing, whereas “0” means not
failing. The detection fault dictionary attempts to represent only the failing
bits in the dictionary.

a. Calculate the compaction ratio using the detection fault dictionary.

b. Calculate the compression ratio if a drop-on-2 heuristic is further used.

7.2 (Single Fault Diagnosis) The backtrace algorithm discussed in this chapter
is not optimal even when the CUD has only one output and there is only one
fault in the failing chip. Construct an example (with a simple netlist and an
injected stuck-at fault) such that the backtrace algorithm exaggerates the fault
candidate list unnecessarily under a particular test vector.

7.3 (Bridging Fault Diagnosis) A bridging defect often affects two logic cells in
a chip, resulting in a multiple fault diagnosis problem. A test vector, however,
only activates one fault at any given time in most cases; that is, there could
be only one victim cell at a time due to the bridging defect. It is known that
every failing test vector should be curable by the real faulty signal if there
is only one fault in the chip. If the one-victim-at-a-time assumption is true,
generalize the above statement to the case when there is only one bridging
defect (that results in two cell faults, as discussed above) in the failing chip.
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A fault dictionary to be compacted.

7.4 (Diagnosis of Byzantine Faults) The inject-and-evaluate paradigm can be
modified to deal with the so-called Byzantine faults (i�e�, faults that exhibit
the Byzantine general’s phenomenon). As shown in Figure 7.41, an injection
at a suspect signal f is made by replacing each fanout of signal f by a dummy
variable �i�1� i� n�, where n is the total number of fanouts of signal f . The
effect of the symbolic injection can be evaluated by event-driven symbolic
evaluation. Assume that there are three outputs in a circuit under diagnosis
(CUD): �z1	 z2	 z3
. For a particular test vector v, the chip produces the fail-
ing response ��z1	 z2	 z3���1	0	0�
, and the CUD produces ��z1	 z2	 z3���1	1	0�
.
After we have made the symbolic injection and evaluation, the CUD’s out-
puts become ��z1 = �′1	 z2 = ��′1 ·�2�

′	 z3 = 0�
. Note that the response of each
output could become a Boolean function in terms of the injected variables,
��1	 �2	 �3
. These functions are called react functions because they represent
how the responses of the output will react to the value combinations of the
injected variables. Based on the above information, answer the following two
questions and explain your answers. (Refer to [Boppana 1999] and [Huang
2002].)

a. Is test vector v a curable vector of signal f if the Byzantine general’s
phenomenon is possible?

b. Is test vector v a curable vector of signal f if there is no Byzantine
general’s phenomenon?
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Diagnosis example for Problem 7.4.

7.5 (Interconnect Fault Modeling) The layout of a signal is assumed to be a
binary tree structure with one source and a number of destination fanout
points. An open defect in this tree structure may only affect part of it, while
leaving the rest intact (as shown in Figure 7.42); for example, an open defect
at the stem will be very different from a defect at a middle segment in the

G1
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G2G0

G1 G2 G3

G0 cell r owdriver

sink sinksink

(a) logic netlist

(b) layout of a signal

open segment
σ = 0 V

� FIGURE 7.42

Illustration of an open segment fault in the layout of a signal.
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tree, or at an ending branch. Consider the layout of a signal with k fanout
points. Determine how many different faulty behaviors an open defect could
cause, assuming a binary tree structure. Here, we assume that the voltage
of the undriven segments due to the open defect is 0 V. (Hint: This problem
can be formulated as a graph problem to solve it [Huang 2003].)

7.6 (Scan Chain Fault Classification) The flush test is often used as a classifier
before the scan chain diagnosis process. Consider the observed image in
response to a bitstream “0011001100110011” flushed into the scan chain in
the presence of a stuck-at-0 fault, a stuck-at-1 fault, a bridging fault, or a
slow-to-rise transition fault. Are these images distinct enough for fault type
classification? What are the rules you may use to make the differentiation?
(Note that a realistic bridging fault could act like AND-bridging at one time
and an OR-bridging at another.)

7.7 (Hold-Time Violation Fault) Draw a master–slave edge-trigger flip-flop
using only NAND gates and inverters. Mark clearly the input signal D, the
clock signal CLK, and the output signal Q. Describe one situation when the
hold-time constraint could be violated and discuss its resulting outcome in
terms of its impact on the scan chain shift operation.

7.8 (Logic BIST Diagnosis) Consider a BIST’ed logic design with 4 flip-flops
�q1	 q2	 q3	 q4
, and 10 stuck-at faults �f1	 f2	 � � � 	 f10
. Fault simulation indi-
cates that the set of faults that could ever cause flip-flop q1 to fail dur-
ing the entire BIST session is FS�q1� = �f1	 f2	 f3	 f4
. Similarly, FS�q2� =
�f1	 f3	 f7	 f9	 f10
	FS�q3� = �f1	 f2	 f5	 f7	 f8	 f9
, and FS�q4� = �f8	 f10
. A logic BIST
diagnosis algorithm identifies the failing flip-flops as q1 and q3 but not q2

and q4 for a failing chip. What can you conclude from the above information
about the fault location in this chip?

7.9 (A Diagnosis Practice andDesign Practice) Try to design a 32-bit
ripple-carry adder in Verilog. Inject one stuck-at fault at random
into the adder to mimic a failing chip. Use the diagnosis programs

and user’s manuals provided online to show if you can locate the fault
location.

7.10 (A Diagnosis Practice) Inject a bridging fault at random into the
adder you designed in Problem 7.9 to mimic a failing chip. Use the
diagnosis programs and user’s manuals provided online to show if

you can locate the fault locations.
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ABOUT THIS CHAPTER

Semiconductor memory testing research dates back to the early 1960s, with a
history aligned with the growth of IC industry. Although test time and test coverage
have always been major concerns, the industry basically enjoys mature techniques
and tools for manufacturing test of memory products. The introduction of system
chips did bring forth new problems for researchers. Both the number of embedded
memory cores and area occupied by memories are rapidly increasing on system
chips. The yield of on-chip memories thus determines chip yield. Go/no-go testing
is no longer enough for embedded memories in the system-on-chip (SOC) era. In
addition, memories have been widely used as the technology driver; that is, they
are often designed with a density that is at the extremes of the process technology.
Memory diagnosis is quickly becoming a critical issue, as far as manufacturing
yield and time-to-volume of SOC products are concerned. Effective memory diag-
nosis and failure analysis (FA) methodologies will help improve the yield of SOC
products, especially with rapid evolution in new product development and advanced
process technologies. These topics will be covered in this chapter and the next.
In this chapter we will first discuss memory fault models and test algorithms,

then we will present a memory fault simulator called random access memory
simulator for error screening (RAMSES), which consists of a simulation engine
and numerous fault descriptors. The simulation engine reads the test inputs and sets
the operation flags for each memory cell. Fault coverage is determined by checking
the fault descriptors for predefined conditions. The test algorithm generator by
simulation (TAGS) will then be presented, which is based on RAMSES and March
test algorithms. March tests have been widely considered to be the most efficient
for conventional RAM fault models. They are easy to generate and are normally
short.
We will also discussmemory built-in self-test (BIST), which has been considered

the best solution for testing embedded memories on system chips. As an example,
we will present a BIST design and its implementation for embedded DRAM in detail.
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It also supports built-in self-diagnosis (BISD) by feeding the errata information
to the external tester. Finally, a memory BIST compiler called BRAINS (Bist for
RAm IN Seconds) will be discussed, which supports major types of SRAM and
DRAM by using novel BIST templates and memory specification techniques.

8.1 INTRODUCTION

With the advent of deep submicron very-large-scale integration (VLSI) technol-
ogy, application-specific integrated circuit (ASIC) vendors are turning toward
the SOC solution. It is a natural direction of the integration. Meanwhile, with
multimillion-gate designs that are pad limited, we can see why embedded memory
is such an attractive solution. Because almost all system chips contain some types
of embedded memory, memories are considered one of the most universal cores.
The percentage of the value for embedded memories in the overall semiconductor
memory market is estimated to grow to 50% or more in the future. Because the
trend is widely agreed on, the testing of embedded memories is receiving growing
attention from the industry as well as the research community.
There are many challenges in merging memory (DRAM, flash memory, etc.)

with logic [Wu 1998]. In addition to process technology issues, guaranteeing the
performance, quality, and reliability of the embedded memory cores in a cost-
effective way requires further research efforts. Testing embedded memory is more
difficult than testing commodity memory. The first testing issue is accessibility.
Accessing the DRAM core from an external memory tester is costly—in terms of
pin/area overhead, performance penalty, and noise issues—when the DRAM core
is embedded in a CPU or ASIC and surrounded by logic blocks. Proper design-
for-testability (DFT) methodology must be provided for core isolation and tester
access, and a price has to be paid for the resulting hardware overhead, performance
penalty, and noise and parasitic effects. Even if these are manageable, memory
testers for full qualification and testing of embedded DRAM (EDRAM) will be much
more expensive due to increased speed and I/O data width, and if we also consider
engineering change the overall investment will be even higher. A promising solution
to this dilemma is BIST. With BIST, the tester requirement for EDRAM can be
minimized, and memory tester time can be greatly reduced throughout the entire
test flow of the EDRAM. Also, the total test time can be reduced because parallel
testing at the memory bank and chip levels is easier. Therefore, BIST has been
widely considered as a must for EDRAMs. Another advantage for BIST is that it
also is a good approach to protecting intellectual property (IP); that is, the IP
(EDRAM core in this case) provider needs only deliver the BIST activation and
response sequences for testing and diagnosis purposes without disclosure of the
design details.
Although BIST has been successfully applied to embedded SRAM (ESRAM), its

success in embedded DRAM, flash memory, CAM, etc., remains to be seen. Take
EDRAM, for example. The need for an external memory tester cannot be removed
unless redundancy analysis and repair can be done on-chip, in addition to AC
testing by BIST. This obviously cannot be achieved by the BIST schemes currently
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used for ESRAM. Also, new failure modes or faults may have to be tested, and
March algorithms such as those used in ESRAM BIST schemes are considered
insufficient.
Other challenges exist. For example, memory devices normally require burn-in

to reduce field failure rate, but for logic devices IddQ may be used instead. Using
IddQ for memories is not trivial. What, then, should be done when we merge
memory and logic to achieve the same reliability requirement? The combination
of built-in current sensor and BIST logic also is an interesting topic, and the sup-
port of memory burn-in by BIST logic is another. The next challenge is design
automation. Logic designers use synthesis tools while memory designers normally
use the full custom design approach. Integration of the two different flows requires
a lot of effort. Another challenge is the timing qualification, or AC testing, of an
asynchronous memory with the synchronous BIST logic, whose timing resolution
cannot compete with a typical external memory tester.

8.2 RAM FUNCTIONAL FAULT MODELS AND TEST ALGORITHMS

In memory functional testing, we normally need to characterize the device first in
order to determine the most likely failure modes of the circuit under test (CUT).
After the dominant failure modes are identified, we can select a set of tests to
detect these failure modes. For easy manipulation of the failure modes or defects,
we model them according to their faulty behavior. Although the functional fault
models are not widely used in the industry, where defects (physical faults) and
failure modes are more popular among the engineers, they are important tools for
efficient methodology development in solving many memory testing issues, as will
be presented in the rest of the chapter.

8.2.1 RAM Functional Fault Models
Semiconductor memories are widely considered to be one of the most important
types of microelectronic components in modern digital systems [Sharma 1997]. It
is reported that memories represent about 30% of the world-wide semiconductor
market [Prince 1991]. The growing need for storage in computer, communications,
consumer, and network applications is driving the continuous innovation of vari-
ous semiconductor memory technologies. Bigger and faster memories are always
desirable due to our insatiable appetites for voluminous transmission and storage
of data in these applications; that is, continuing technology innovations are likely
to increase the market share of commodity and embedded memories in the future.
The increasing size and density of memory chips will soon make their testing the
bottleneck of the entire production process. Yield loss is another issue due to the
increased size and density. Memories are more vulnerable to physical defects than
logic circuits because of their higher density and more complicated processing
steps. Therefore, investing in memory failure analysis, fault modeling and simu-
lation, test algorithm development and evaluation, DFT, BIST, diagnosis, etc., has
been considered one of the key factors in producing successful memory as well as
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SOC products. Tools for fault model evaluation and test algorithm generation are
fundamental for tackling the above issues efficiently.
Functional fault models are commonly used for memories. They define the func-

tional behavior of the faulty memory. More and more fault models are being pro-
posed to cover defects and failures in modern memory circuit and deep-submicron
process technologies. Test algorithms are also being developed to detect these faults.
Much work on fault models and test algorithms has been reported in the past
for random access memory (RAM), including SRAM and DRAM [Dekker 1988a]
[Nadeau-Dostie 1990] [van de Goor 1991] [Prince 1991] [Riedel 1995] [Sharma
1997] [Simonse 1998] [Huang 1999].
We consider faults that may occur in the address decoder, read/write circuitry,

and memory cell array of the DRAM core. Address decoder faults (AFs) can be
categorized as follows according to their functional behavior [Dekker 1988a] [van
de Goor 1993]: (1) no cell can be accessed by a certain address; (2) multiple cells
are accessed simultaneously by a certain address; (3) a certain cell is not accessible
by any address; and (4) a certain cell is accessible by multiple addresses. As to
the read/write circuitry (including buses, sense amplifiers, and write buffers), the
typical faults are equivalent to faults in the memory cell array. For faults in the
memory cell array, we follow the notation used in [van de Goor 1993]:

↑ — Denotes a rising transition of a cell (due to
a write operation).

↓ — Denotes a falling transition of a cell.
� — Denotes either a rising or a falling transi-

tion of a cell.
∀ — Denotes any operation at a cell.

<S/F> — Denotes a fault in a cell, where S is the value
or operation activating the fault, F is the
faulty value of the cell, S ∈ �0	1	↑	↓	�
, and
F ∈ �0	1
.

<S1	 � � � 	 Sm−1� Sm/F> — Denotes a fault involving m cells, where
S1	 � � � 	 Sm−1 are the conditions of the first
m− 1 cells, respectively, that are required
to activate the fault in cell m (whose state
is Sm), F is the faulty value/state of cell m,
and for all 0≤ i≤m−1	 Si ∈ �0	1	↑	↓	�
.

Typical faults in the memory cell array are as follows [Dekker 1988a] [van de
Goor 1993]:

1. Stuck-at fault (SAF)—A cell is stuck-at-1 or 0; <∀/1> denotes a stuck-at-1
and <∀/0> denotes a stuck-at-0.

2. Stuck-open fault (SOF)—A cell is not accessible due to, e.g., a broken word-
line or a permanent open switch.

3. Transition fault (TF)—A cell fails to transit; it can be <↑ /0> or <↓ /1>.
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4. Data retention fault (DRF)—A cell fails to retain its logic value after a pre-
specified period of time.

5. Coupling faults

a. Inversion coupling fault (CFin)—A transition in one cell inverts the con-
tent of another; that is, <↑ / �> or <↓ / �>.

b. Idempotent coupling fault (CFid)—A transition in one cell forces a con-
stant value (1 or 0) into another; that is, <↑�1/0>, <↑�0/1>, <↓�1/0>, or
<↓�0/1>.

c. State coupling fault (CFst)—A coupled cell or line is forced to a certain
value only if the coupling cell or line is in a given state; that is, <0�0/1>,
<1�0/1>	<0�1/0>, or <1�1/0>.

6. Read disturb fault (RDF)—The cell value will flip when being read (repeat-
edly) [van de Goor 1998a].

Note that for word-oriented memories, the above single-cell fault models still
apply. Also, coupling faults between cells in different words have the same behavior
as in a bit-oriented memory, but coupling between cells inside the same word will
virtually disappear if they can be erased by the write operation; that is, the fault can
be corrected by the write operation. In that case, the coupling fault can be detected
only when the coupling effect is stronger than the write operation. For example, if
a 4-bit word b3b2b1b0 has a CFst, <0�1/0>, where b3 couples b2, then writing 0101
to b3b2b1b0 will result in a faulty value of 0001 when CFst is stronger than the write
operation; otherwise, the fault effect will be masked.

8.2.2 RAM Dynamic Faults
A static fault is one that has a static behavior; that is, its behavior does not change
over time. A dynamic fault, on the other hand, has a dynamic behavior that may
change over time. We give a few examples here.
A recovery fault occurs when some part of the memory cannot recover fast

enough from a previous state. Popular recovery faults include: (1) sense amplifier
recovery fault—the sense amplifier saturates after reading or writing a long string
of 0’s or 1’s; and (2) write recovery fault—a write followed by a read or write at
a different location result in reading or writing at the same location due to slow
address decoder.
A retention (refresh) fault occurs when the memory loses its content sponta-

neously, not caused by the read or write operation. One example is the sleeping
sickness of MOS DRAM that is caused by, for example, charge leakage or environ-
ment sensitivity, where the DRAM cells lose information in less than the specified
hold (refresh) time—typically tens to hundreds of milliseconds. The problem usu-
ally affects a row or a column. Another example is the refresh line stuck-at fault,
which also can damage the refresh mechanism of the DRAM. For SRAM, there can
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also be static data losses, caused by a defective pull-up device that induces excessive
leakage currents which can change the state of a cell.
Another dynamic fault is the imbalance fault, where the bit-line voltage imbal-

ance causes read errors.

8.2.3 Functional Test Patterns and Algorithms
In Table 8.1 we show the comparison of test time for test algorithms with varying
complexity. We assume that the patterns are applied at a rate of 100M read/write
operations per second. The first column shows the memory size, and other table
entries are the test times with respect to different test algorithm complexities, where
“s” stands for seconds, “m” for minutes, “h” for hours, “d” for days, and “y” for
years. It is obvious that any test algorithm with a complexity over the linear-time
complexity cannot be tolerated anymore.
The simplest (linear-time) tests that detect SAFs, TFs, and CFs are part of a family

of tests called the Marches (i.e., the March tests).

Definition 1

A March test consists of a finite sequence of March elements, while a March
element is a finite sequence of operations applied to every cell in the memory array
before proceeding to the next cell. An operation can consist of writing a 0 into a
cell (w0), writing a 1 into a cell (w1), reading an expected 0 from a cell (r0), and
reading an expected 1 from a cell (r1).

TABLE 8.1 � Test Time as a Function of Memory Size

Size Complexity

n n n log n n 3/2 n 2

1 K 0.0001 s 0.001 s 0.0033 s 0.105 s

4 K 0.0004 s 0.0048 s 0.0262 s 1.7 s

16 K 0.0016 s 0.0224 s 0.21 s 27 s

64 K 0.0064 s 0.1 s 1.678 s 7.17 m

256 K 0.0256 s 0.46 s 13.4 s 1.9 h

1 M 0.102 s 2.04 s 1.83 m 1.27 d

4 M 0.41 s 9.02 s 14.3 m 20.39 d

16 M 1.64 s 39.36 s 1.9 h 326 d

64 M 6.56 s 2.843 m 15.25 h 14.3 y

256 M 26.24 s 12.25 m 5.1 d 229 y

1 G 1.75 m 52.48 m 40.8 d 3659 y
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Procedure ZERO-ONE
{
1: write 0 in all cells;
2: read all cells;
3: write 1 in all cells;
4: read all cells;
}

� FIGURE 8.1

The zero-one algorithm.

Note that anyMarch element can be done in either one of two address orders: the
ascending order �⇑� or descending order �⇓�. When the address order is irrelevant
(i.e., it can be either ascending or descending) then the symbol & is used.
We now present some well-known conventional RAM test algorithms (patterns).

The zero-one algorithm, also known as the memory scan (MSCAN) algorithm, is
shown in Figure 8.1. Using the March notation for MSCAN, we can rewrite it as:

�⇑ �w0��⇑ �r0��⇑ �w1��⇑ �r1�


Wewill discussMarch tests in detail later. TheMSCAN test algorithm is aminimal
test, whose complexity is O�4N�, assuming that there are N cells in the memory
(i.e., the total number of read/write operations is 4N). It is a rough estimate of the
test time. It can be shown that not all ↓ /1 TFs are covered by this simple test,
and not all CFs are covered, either. The SAFs are covered if the address decoder is
correct (however, not all AFs are covered by the test).

Theorem 1

A test detects all AFs if it contains the March elements ⇑ �rx	 � � � 	wx′� and ⇓
�rx′	 � � � 	wx�, and the memory is initialized to the proper value before each March
element.

The checkerboard algorithm (or checkerboard pattern) is similar to the zero-
one algorithm, except that, instead of writing the all-0 and all-1 patterns (called the
solid background), we write the 1’s and 0’s into alternate memory locations of the
cell array in a checkerboard pattern. It is shown in Figure 8.2. The time complexity
of the algorithm is also O�4N�. However, the checkerboard pattern is mainly used
for activating failures resulting from, for example, leakage, shorts between cells, and
data retention, though it also detects SAFs and half of the TFs. For that purpose, we
normally wait for several seconds before reading the data after the pattern has been
written into the cell array. Note that, as in MSCAN, we repeat the same operations
for complementary patterns. The algorithm is also considered as the starting point
for pattern sensitivity test (though it does not guarantee full coverage of pattern
sensitive faults). As MSCAN, it only detects some CFs, and is not good for AFs. An
important thing to note is that, when applying the checkerboard pattern, one must
create the true physical checkerboard, not the logical checkerboard; that is, one
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Procedure Checkerboard
�
while (i is odd && j is even)

� write 0 in cell[i]; write 1 in cell[j];
pause; read all cells;
complement all cells;
pause; read all cells; 





� FIGURE 8.2

The checkerboard algorithm.

must obtain the design information about the actual layout and then modify the
test addressing sequence accordingly.
The classical galloping (ping-pong) pattern (GALPAT) is shown in Figure 8.3.

In the algorithm the base cell (BC) is read alternately with every other cell in its
set—the entire cell array. The complexity is quadratic, so O�4N2�. It is a very long
sequence when N is large and is not a feasible test for almost all memory devices
we use today, though it may still be used for characterization (not production test)
of small chips. It is a strong test for most faults, though—all AFs, TFs, CFs, and
SAFs are detected and located. Instead of all cells in the array, the set may also be
a column, a row, or a diagonal.
An alternative to GALPAT is the walking pattern (WALPAT), which is similar to

galloping except that the BC is read only after all others are read. For WALPAT
(walking 1/0), if we consider the set as containing all cells in the RAM, then the
complexity isO�2N2�, which is not much better than GALPAT. Other alternatives are
the galloping diagonal, galloping row, and galloping column algorithms. They
are all based on GALPAT. Instead of shifting a 1 through the memory, a complete
diagonal (row, or column, respectively) of 1’s are shifted. The entire memory is read
after each shift. The complexity is reduced from O�4N2� to O�4N1�5�. They detect
all faults as GALPAT, except for some CFs. The sliding diagonal/row/column

Procedure GALPAT
�
1: write 0 in all cells;
2: for i = 0 to n−1

�
complement cell[i];
for j = 0 to n−1, j ! = i

� read cell[i]; read cell[j]; 

complement cell[i];



3: write 1 in all cells;
4: replay Step 2;



� FIGURE 8.3

The GALPAT algorithm.
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algorithm is similar to the galloping diagonal/row/column algorithm, but only those
cells that are supposed to contain 1 are read after each shift. The complexity is thus
further reduced to O�4N�. However, some CFs and TFs are not covered. More CFs
and all TFs can be covered if we repeat the algorithm with a complemented data
background.
The butterfly algorithm is shown in Figure 8.4. This test is also modified from

GALPAT, with the purpose to find only AFs and SAFs. Its time complexity is
O�5N logN�. All SAFs and some AFs are detected.
In the moving inversion (MOVI) algorithm, the memory is initialized to contain

all 0’s, then this string of 0’s is successively inverted to become all 1’s, and vice
versa. MOVI was designed as a shorter alternative for GALPAT. It has a complexity
of O�12N logN�. It can be used as both a functional test and an AC parametric test.
As a functional test, it ensures that no cell is disturbed by a read/write operation on
another unrelated cell, and it detects all AFs and SAFs. As a parametric test, it allows
for the determination of the best and worst access times together with the address
changes imposing these times. More details can be found in [van de Goor 1991].
Finally, the surround disturb algorithms attempt to examine how the cells in

a particular row/column are affected when complementary data are written into
adjacent cells of other rows/columns. The algorithms are designed on the premise
that DRAM cells are most susceptible to interference from their nearest neighbors;
thus we can eliminate global sensitivity checks to reduce complexity.

8.2.4 March Tests
A bit-oriented March C− algorithm is given in Table 8.2 as a March test exam-
ple [van de Goor 1993]. In Table 8.2 there are six March elements, denoted as

Procedure Butterfly
�
1: write 0 in all cells;
2: for i = 0 to n−1

� complement cell i;
dist = 1;
while dist <= maxdist

/* maxdist < 0.5* col/row length */
�
read cell at dist north from cell[i];
read cell at dist east from cell[i];
read cell at dist south from cell[i];
read cell at dist west from cell[i];
read cell[i];
dist *= 2; /* or dist += skip */



complement cell[i]; 

3: write 1 in all cells;
4: replay Step 2;



� FIGURE 8.4

The butterfly algorithm.
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TABLE 8.2 � The March C− Algorithm

& �w0�; ⇑ �r0w1�; ⇑ �r1w0�; ⇓ �r0w1�; ⇓ �r1w0�; & �r0�

M0 M1 M2 M3 M4 M5

M0	M1	 � � � 	M5. In each March element, we first specify the address sequence: ⇑
means that the address sequence is in ascending order, ⇓ means that the address
changes in descending order, and &means that either ⇑ or ⇓ is acceptable. Consider
M1, for example; the address sequence begins at the lowest address and changes in
ascending order toward the highest address. For each address (memory cell), per-
form a read operation (with an expected 0 in the fault-free case) and write back the
complemented bit immediately, then continue to the next address. The algorithm
is also called the March 10N algorithm as it requires 10N read/write operations,
where N is the number of memory cells (address locations).
March C− is known to completely detect SAFs, unlinked AFs, unlinked TFs, and

CFs (including CFins, CFids, and CFsts) [van de Goor 1993]. It also detects SOFs
if M1 is extended to r0w1r1, or M2 to r1w0r0. The resulting algorithm is called
the extended March C− algorithm. In order to reduce the test cost, appropriate
fault models and test algorithms should be chosen. Because the EDRAM is word
oriented, the 10N algorithm should be modified as:

& �wa�; ⇑ �rawa′�; ⇑ �ra′wa�; ⇓ �rawa′�; ⇓ �ra′wa�; & �ra�

where a represents a data word (i.e., the background word) and a′ is its comple-
ment. This word-oriented algorithm reduces to the bit-oriented one when a is a
single bit.
Background words are selected based on the defined fault models and required

fault coverage. Exhaustive data backgrounds normally are not affordable and not
necessary. Although the word-oriented March C− algorithm detects all the SAFs,
unlinked AFs, TFs, and SOFs, coupling faults in the same word may not be
detectable. The choice of data backgrounds determines the coverage of this kind of
faults. This will be discussed later. Some other March tests are summarized below
[van der Goor 1991]:

� Modified algorithmic test sequence (MATS)—�& �w0��& �r0	w1��& �r1�


� MATS+—�& �w0��⇑ �r0	w1��⇓ �r1	w0�


� Marching 1/0—�⇑ �w0��⇑ �r0	w1	 r1��⇓ �r1	w0	 r0��⇑ �w1��⇑ �r1	w0	 r0��⇓
�r0	w1	 r1�


� MATS++—�& �w0��⇑ �r0	w1��⇓ �r1	w0	 r0�


� March X—�& �w0��⇑ �r0	w1��⇓ �r1	w0��& �r0�


� March C—�& �w0��⇑ �r0	w1��⇑ �r1	w0��& �r0��⇓ �r0	w1��⇓ �r1	w0��& �r0�


� March C−—�& �w0��⇑ �r0	w1��⇑ �r1	w0��⇓ �r0	w1��⇓ �r1	w0��& �r0�




Memory Testing and Built-In Self-Test 471

� March A—�& �w0��⇑ �r0	w1	w0	w1��⇑ �r1	w0	w1��⇓ �r1	w0	w1	w0��⇓
�r0	w1	w0�


� March Y—�& �w0��⇑ �r0	w1	 r1��⇓ �r1	w0	 r0��& �r0�


� March B—�& �w0��⇑ �r0	w1	 r1	w0	 r0	w1��⇑ �r1	w0	w1��⇓ �r1	w0	w1	w0��⇓
�r0	w1	w0�


8.2.5 Comparison of RAM Test Patterns
The coverage of a March algorithm for its target faults is known by definition. How-
ever, to know its coverage of other faults will require further analysis. For example,
March X [van de Goor 1993] was designed to test all AFs, SAFs, TFs, and CFins, so
its coverage for these faults is 100%. If we want to know its coverage of CFids and
CFsts, then analysis is required. Moreover, for a word-oriented memory, as we are
discussing here, the fault coverage also depends on the selected data backgrounds.
Because there are so many possible faults and test algorithms (including address
sequences, read/write operations, and data patterns/backgrounds), determining the
best algorithm that balances the cost and test coverage is difficult, albeit important.
We group faults into two classes: (1) single cell faults, and (2) faults involving

two cells (e.g., coupling faults). Class 1 faults, such as SAF, can be tested by an
algorithm using any single data background, because all cells are tested in the same
way as for a bit-oriented memory. Class 2 faults, however, depend on the strength
of the write operation and the coupling effect. If the write operation erases the
coupling effect between two cells in the same word, such faults are redundant and
only coupling between two different words must be considered, so one background
is sufficient. On the other hand, if the coupling effect is stronger than the write
operation, coupling faults inside a word have to be considered. This is assumed in
the following analysis.
The fault coverage can be derived by manual analysis, but it is tedious and some-

times impractical for complex test algorithms and fault models. Instead of manual
analysis, we have implemented a novel memory fault simulator, RAMSES, for this
purpose. For a word-oriented memory with 4-bit words, the data backgrounds (pat-
terns) commonly used are 0000 �P1�, 0101 �P2�, and 0011 �P3�. To make the list
complete, we also consider 0110 �P4�, 0001 �P5�, 0010 �P6�, 0100 �P7�, and 1000
�P8�. We simulated several test algorithms by RAMSES, assuming a 1-Kb word-
oriented EDRAM with 4-bit words. Tables 8.3, 8.4, and 8.5 show the fault coverage
simulation results of three test algorithms, where Pi	j stands for �Pi	Pj
, Pi	j	k for
�Pi	Pj	 Pk
, and Pall for �P1	 P2	 � � � 	 P8
. We show only the results for some data back-
grounds, though extensive simulations have been done. We found that, in general,
P2 provides the highest fault coverage among single backgrounds, and P2	3 is the
best among double backgrounds. For triple backgrounds, P1	2	3 provides the highest
fault coverage. Intuitively, uniformity is not desirable as far as testing is concerned.
Note that for DRAMs, more faults may have to be considered, such as

neighborhood pattern-sensitive faults (NPSFs) and linked faults. If such faults are
to be targeted after failure analysis, then simulation for them should also be done
in order to select the best test algorithms.
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TABLE 8.3 � Fault Coverage of MATS++

Fault P1 P2 P3 P2�3 P1�2�3 Pall

SAF 100% 100% 100% 100% 100% 100%
SOF 100% 100% 100% 100% 100% 100%
TF 100% 100% 100% 100% 100% 100%
AF 99.7% 99.9% 99.9% 100% 100% 100%
CFin 100% 100% 100% 100% 100% 100%
CFid 37.5% 37.5% 37.5% 62.6% 75.9% 89.1%
CFst 50.0% 50.0% 50.0% 75.0% 87.5% 100%

TABLE 8.4 � Fault Coverage of March X

Fault P1 P2 P3 P2�3 P1�2�3 Pall

SAF 100% 100% 100% 100% 100% 100%
SOF 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%
TF 100% 100% 100% 100% 100% 100%
AF 99.7% 99.9% 99.9% 100% 100% 100%
CFin 100% 100% 100% 100% 100% 100%
CFid 50.0% 50.0% 50.0% 78.1% 90.7% 100%
CFst 62.5% 62.5% 62.5% 84.4% 93.0% 100%

TABLE 8.5 � Fault Coverage of March C−

Fault P1 P2 P3 P2�3 P1�2�3 Pall

SAF 100% 100% 100% 100% 100% 100%
SOF 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%
TF 100% 100% 100% 100% 100% 100%
AF 99.7% 99.9% 99.9% 100% 100% 100%
CFin 100% 100% 100% 100% 100% 100%
CFid 99.9% 99.9% 99.9% 99.95% 100% 100%
CFst 99.9% 99.9% 99.9% 99.95% 100% 100%

From the simulation results, using multiple data backgrounds significantly
increases the coverage of coupling faults for MATS++ [van de Goor 1993] andMarch
X as compared with single background. However, for March C−, the improvement
is minor; March C− with only a background P1 covers most of the faults (the SOF
fault coverage in Table 8.5 will reach 100% if M1 is extended to rawa′ra′). Using an
additional background will double the test time but detect only a very small per-
centage of additional faults (i.e., intra-word coupling faults). Also, for larger DRAMs
(with the same word length) the fault coverage of March C− does not decrease.
Rather, the fault coverage increases because the percentage of undetected faults
decreases.
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8.2.6 Word-Oriented Memory
For a word-oriented memory, we let N represent the number of data words in
the memory, each word having w bits. In this case, the read/write operations in the
March tests are extended to reading and writing a word (called the background
word, background pattern, or data background) instead of a bit at a time.
For example, the word-oriented MATS++ is represented as �& �wa��⇑ �ra	wa′��⇓
�ra′	wa	 ra�
, where a is a background word [Wu 2000]. Fault models listed above
were originally developed for bit-oriented memories. Faults that occur on a single
cell (e.g., SAF), can still be used for word-oriented memories. Faults involving two
or more cells, however, should be further classified according to whether they are
within the same word or not (i.e., intra-word or inter-word faults) [van de Goor
1998b]. For example, there are inter-word coupling and intra-word coupling faults,
as depicted in Figure 8.5 [Wu 2000]. Traditionally, standard data backgrounds are
used to test a word-oriented memory for intra-word coupling faults. However, using
RAMSES we have developed a more efficient class of test algorithms, the Cocktail–
March algorithms, and have derived the shortest one (the March–CW algorithm)
ever reported so far for covering SAF, AF, TF, SOF, CFst, CFid, and CFin [Wu 1999].

8.2.7 Multi-Port Memory
Conventionally, a multi-port RAM is tested similarly to a single-port RAM under
the same fault models, by applying the same test algorithm repeatedly to each port
or each pair of ports. This approach is insufficient for detecting inter-port faults.
A two-port memory array example is depicted in Figure 8.6, where the ports are
denoted as port A and port B. The inter-port short fault is likely to occur on adjacent
word lines or adjacent bit lines. Dedicated fault models are necessary if the detection
of inter-port shorts is desired [Wu 1997] [Zhao 2000]. Some other inter-port faults
have been investigated in [van de Goor 1998a], where a complete set of all possible
inter-port faults is also defined. The set is very large and the corresponding test is
quite long. In most cases only the shorts have to be considered. Here we consider
the inter-port shorts in addition to the single-port faults as mentioned above.
The inter-port shorts can be classified as the bit-line short fault (BSF) and word-

line short fault (WSF) [Wu 2001]. Figure 8.6 shows an example, in which some
defects result in a BSF and a WSF. The bit lines are drawn in a simplified way for
ease of presentation, though we actually consider differential pairs and all possible

inter-word coupling

intra-word coupling

Word B

Word A

� FIGURE 8.5

Inter-word and intra-word coupling faults in word-oriented memories.
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� FIGURE 8.6

A two-port memory array example.

shorts during fault simulation. When there is an inter-port WSF between cells 1
and 3 as shown in Figure 8.6, a possible result is as shown in Figure 8.7, when
we access cell 1 through port A and cell 2 through port B simultaneously. Due to
the short fault, port B has a multiple access to cell 2 and cell 3 when port A is
accessing cell 1. The resulting value of a Read to multiple cells depends on the
memory design: Possible faulty results are the logic-AND or logic-OR of the two
cells. Also, when the inter-port BSF (as in Figure 8.6) occurs, a possible result is as
shown in Figure 8.8. The port A address of cell � can simultaneously access cells
� and � as does the port B address of cell �. Again, the resulting value of a Read
to multiple cells can be the logic-AND or logic-OR of the two cells, depending on
the memory design. Note that an inter-port short can lead to multiple faults on the
same bit line or word line; for example, cell 2 discussed above can be any cell in
the column other than cells 1 and 3.

Faulty

Cell 1

Fault-Free

Cell 2

Address 3

Address 2

Cell 3

Address 1 Cell 1Address 1

Port B

Port A

Cell 3Address 3

� FIGURE 8.7

Behavior of an inter-port WSF.
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� FIGURE 8.8

Behavior of an inter-port BSF.

The size complexity of the fault models is crucial to the time complexity of the
fault simulation and test generation algorithms. Obviously, the complexity of single-
cell faults is O�N�, and that of (two-cell) coupling faults and address decoder faults
isO�N2�. The availability of physical (layout) information can reduce the complexity
of inter-port faults. When the address scrambling scheme is unknown, all possible
effects of shorts have to be considered. When there is no physical information,
from Figures 8.7 and 8.8 the complexities of inter-port word-line and bit-line shorts
are O�N3� and O�N2�, respectively, when they are mapped to functional faults.
On the other hand, when given the address scrambling scheme and layout, a test
algorithm can be developed to detect all possible shorts for the specific RAM. The
complexity is reduced to the order of the number of bit lines and word lines (i.e.,
between O�N

1
2 � and O�N�) depending on the aspect ratio of the memory layout

[Zhao 2000].

8.3 RAM FAULT SIMULATION AND TEST ALGORITHM GENERATION

Conventionally, fault coverage of test algorithms is proved by analysis using math-
ematical models such as state diagrams. Mathematical fault modeling and the
finite-state machine (FSM) method can be used to generate the March test for full
coverage of a certain set of faults, which can then be verified for completeness
or irredundancy. Manual analysis is time consuming and error prone. As memory
technologies are advancing very quickly, systematic approaches that can be auto-
mated are necessary to keep the test algorithms efficient and effective. For example,
a systematic approach that converts tests for bit-oriented RAM to those for word-
oriented RAM with complete fault coverage is proposed in [van de Goor 1998b].
In another work [Zarrineh 1998], a transition matrix model provides more detailed
description of the fault models and test sequence optimization. Though elegant,
these mathematical approaches cannot provide fault coverage figures during test
generation and verification or data background selection. When more new and
complex fault models are introduced, deriving a test algorithm becomes difficult.
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Test algorithm optimization is even more difficult, because the background selec-
tion for word-oriented memories and the port selection for multi-port memories are
quite complex and will vary for different memory architectures. Therefore, though
not as critical as logic fault simulators and ATPG, memory fault simulators and
ATPG are very helpful for memory product developers. This section is based on the
pioneering work reported in [Wu 2002].

8.3.1 Fault Simulation
Memory fault simulation is different from logic fault simulation in many ways.
First, unlike a logic circuit, memory has a regular structure. It consists of one or
more cell arrays and the peripheral read/write circuits. However, there are many
memory architectures and configurations that come with various address sizes,
word lengths, and port numbers. Second, in a logic circuit we usually use only
stuck-at faults, but there are multiple fault models for memories as discussed
above. Furthermore, instead of the single-fault models, we have to assume multiple
faults—each of the fault models can appear multiple times in the memory circuit at
different locations. Finally, parallel simulation techniques developed for logic fault
simulation are not suitable for simulating memory faults. Therefore, it is necessary
to develop fault simulation algorithms that are dedicated for memories.
In this section, we introduce the sequential fault simulation first, which is a

general and straightforward simulation algorithm. The space complexity and time
complexity are evaluated. After that, we present an improved fault simulation
algorithm for implementing RAMSES, the fast memory fault simulator. Fault sim-
ulation techniques for word-oriented memories and multi-port memories are also
presented.
In sequential fault simulation, faults are injected into the system one by one and

test patterns are applied to each and every faulty system. Outputs are then observed
for evaluating the fault coverage (FC) of the test patterns. Consider a memory
M that consists of N bits of data, with the list of target faults f0	 f1	 � � � 	 fk−1. The
sequence of test patterns is t0	 t1	 � � � 	 ts−1. The sequential fault simulation procedure
is shown as Figure 8.9.

for each i	 0 ≤ i ≤ k − 1, begin
inject fi to M;
for each j	 0 ≤ j ≤ s − 1, begin

apply tj to M;
if (output neq fault_free_output) begin

set_detect(fi);
break;

end-if
end-for

end-for

� FIGURE 8.9

The sequential fault simulation procedure.
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The time complexity of the sequential fault simulation is T = k×s, where k is the
fault count and s is the length of the test algorithm (i.e., number of test patterns).
For single-cell faults, k=O�N�, but for two-cell coupling faults, k=O�N2�. Also, for
March tests, s=O�N�. Therefore, the time complexity for sequential fault simulation
under March tests is T =O�N3�, when two-cell coupling faults are the most complex
faults in the target fault set. Furthermore, the space complexity of sequential fault
simulation is dominated by the fault count: O�N2�, in this case.
Due to the high complexity, sequential fault simulation is obviously not a practical

solution for real-world applications. Nevertheless, it is easy to implement and is
still useful for verifying the correctness of other simulation algorithms.
We have noted that it is feasible to simulate a smaller version of thememory under

test for the purpose of FC evaluation, because of the regularity in memory structures
[Wu1999].Simulation results of a smallmemory (e.g., 1Kb)are the same with a large
one (e.g., 16Mb) for most fault models, though scaling requires certain calculation
to avoid FC error. We also have noted that the sequential simulation algorithm has
a high percentage of redundancy. We present an improved algorithm next.

8.3.2 RAMSES
RAMSES is a fast memory fault simulator that features the notion of fault descrip-
tor. As illustrated in Figure 8.10, the simulator consists of the RAMSES simula-
tion engine and numerous fault descriptors. The simulation engine executes the
RAMSES simulation algorithm, which is not dedicated to a specific fault model.
Target fault models are defined by their specific fault descriptors. For a user-defined
memory specification and a test algorithm, RAMSES reports the FC for each fault
model that is defined by a fault descriptor.
A fault descriptor consists of four primary attributes:

1. The aggressor (AGR) is an operation or condition that can activate the fault
effect.

2. The victim (VTM) is the operation affected by the fault; that is, it will produce
an observable faulty output.

Memory spec Test algorithm

Fault 
descriptors

RAMSES 
Simulation 
Engine

Fault coverages

� FIGURE 8.10

RAMSES I/O.
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TABLE 8.6 � Two Fault Descriptors

RDF(r0/ ↑) CFin (↑��)
AGR 	= R0 AGR 	= UTR
SPT 	= @ SPT 	= ∗

VTM 	= R0 VTM 	= R0, R1
RCV 	= W0, W1 RCV 	= W0, W1

3. The suspect (SPT) is the possible location of the aggressor, and it also indi-
cates the possible victim location for each aggressor.

4. The recoverer (RCV) is the operation that can mask or recover the fault effect
on the victim.

Two fault descriptor examples are listed in Table 8.6. For the read disturb fault
(i.e., RDF (r0/ ↑)), a Read-0 operation activates the fault in the local cell, so the
aggressor is the Read-0 operation, and the suspect is the local cell represented by @.
The victim is also a Read-0 operation. Because the faulty cell’s value will be flipped
to 1 after the Read operation, a Read-0 operation can detect the fault. However, if
the cell is written a 0 or a 1 before the victim operation takes place, then the cell
value is recovered and the fault effect is erased. Therefore, the recoverer can be a
Write-0 operation or a Write-1 operation.
The second example shows that CFin(↑��) is activated by an up transition of the

cell. It can be observed by either a Read-0 or Read-1 operation at the victim cell and
can be recovered by either a Write-0 or Write-1 operation at the victim cell. The ∗

means that all other cells are possible coupling cells, and it also indicates that, for
any aggressor cell, all other cells are possible victim cells. The core algorithm for
RAMSES is summarized as Figure 8.11.

for each operation begin
set_op_flags;
if (AGR ⊂ op_flags) begin

for each victim cell begin
set victim flags;
set aggressor address;

end-for
end-if
if (OP eq RCV) begin

clear victim flag;
clear aggressor entry;
else if (OP eq VTM) begin

mark detected;
end-if

end-if
end-for

� FIGURE 8.11

The algorithm for RAMSES.
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The simulation algorithm is simple and extensible. For each test operation, vari-
ous operation flags are set. For example, the Write-1 (W1) flag is set for a Write-1
operation, and the up transition (UTR) flag is set for a Write-1 operation only
when it causes a 0 to 1 transition of a cell. There are more operation flags such as
down transition (DTR), last-read value (LRV), and last-write value (LWV). These
flags are updated for each test operation to record the current state of the cell. New
flags can be added easily if it is necessary for a certain memory architecture.
After setting the operation flags, the attributes described in the fault descriptors

are checked for the fault activation and fault detection conditions. If the AGR
matches in the operation flags, then the cell is in the aggressor mode, and the
victim flags should be set for all possible victims. The aggressor address is recorded
by each victim. If the RCV matches in the operation flags, the victim flag and
the aggressor entry are cleared for the memory cell. If the VTM matches in the
operation flags, the fault effect is observable and it is marked as detected.
An example of the fault simulation algorithm in execution under a simple two-

element test algorithm, for the fault CFin(↑��), is illustrated in Figure 8.12. There
are four memory cells under simulation: cells 0, 1, 2, and 3. The initial background
is all-0 after the first March element. The fault descriptor is shown in Table 8.6. In
the beginning of the second March element, a Read-0 is applied to cell 0, followed
immediately by a Write-1 to make an up transition in cell 0. The cell is in the
aggressor mode according to the fault descriptor, so RAMSES will set the victim
flags of all other cells. The aggressor address is recorded by the victim cells. Next,
a Read-0 is applied to cell 1, and the cell 0 to cell 1 coupling fault is marked as
detected by RAMSES. Note that the value of the cell is not changed to the faulty
value, and the fault detection condition is determined only by checking the flags.
After that, a Write-1 is applied to cell 1; and the up transition makes it an aggressor,
and its victim flag is cleared because of the Write-1. The victim flags are set for
all others and the victims record the aggressor address. In the final step shown
in the figure, a Read-0 is applied to cell 2, and two coupling faults are marked as
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� FIGURE 8.12

Fault simulation example for CFin(↑��).
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detected: the cell 0 to cell 2 coupling and the cell 1 to cell 2 coupling. The algorithm
continues like this until all cells have been visited.
For word-oriented memories, single cell faults can be simulated in the same way,

but the relative strength of the Write operation and the coupling effect should be
defined first in order to simulate intra-word coupling faults. If the Write operation
is stronger than the coupling effect, then the coupling effect will be masked by the
Write operation, and the fault is a redundant fault. Therefore, intra-word coupling
faults can be detected only when the coupling effect is stronger than the Write
operation. RAMSES deals with such coupling faults by disabling write recovery
when the aggressor is in the same word as the victim.
For multi-port memories, additional operation flags are required for inter-port

faults. Port specification also is necessary for the operation flags. For example,
a Read-0 operation must explicitly specify the port from which it reads—R0(A)
specifies a Read-0 from port A. Other attributes follow the same rule.

8.3.3 Test Algorithm Generation by Simulation
The test algorithm generator by simulation (TAGS) [Wu 2000] was developed
based on the notion of a March template. A March template is defined as
a sequence of Read/Write operations similar to a March test, but without the
explicit specification of address sequences and data backgrounds. For example,
(w)(rw)(rwr) is a March template. The template consists of one or more template
elements, such as (w) and (rw). From a March template, we can derive various
March tests by applying different data and address sequence combinations. The
FC of each test is calculated by RAMSES. Note that the generation of all possible
March templates or March tests has an exponential complexity for both time and
space. However, we have observed that most of the exhaustively generated March
tests are inefficient and can be discarded. Test generation options and filtering con-
ditions have been developed to greatly lower the complexity. We will introduce the
TAGS algorithm for bit-oriented memories first, then the extended ones to handle
word-oriented memories and multi-port memories.
The test generation procedure by TAGS is summarized as follows:

1. Initialize the test length as 1N. Let the template set contain a single template
t= �w�.

2. Increase the test length by 1N. For each template t in the template set, add
a Read/Write operation to t using one of the generation options (to be shown
later). Repeat the step for all possible cases to form a new template set, except
when any of the filtering conditions (to be shown later) is true.

3. A series of March tests is generated by assigning address orders in vari-
ous combinations to each template in the set, together with consistent data
backgrounds. When the address order for a stand-alone Read or Write can be
either ⇑ or ⇓, we use ⇑ by default.

4. Simulate the resulting March tests using RAMSES.
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5. Drop the tests that have no FC improvement over tests in the previous
iteration, or if the improvement is completely covered by another test in the
current iteration.

6. Repeat steps 2 to 5 using the new template set until the given fault set is 100%
covered or the test length limit is reached.

The generation options are heuristics for generating effective March templates.
Read/Write operations are inserted into an existing March template in many ways
that canmake it activatemorememory faults or observemore errors. There aremany
possible combinations of March templates even with very simple generation option;
therefore, some filtering conditions are necessary for dropping the ineffective tem-
plates to reduce the time complexity. We now describe the generation options and
filtering conditions that we apply for the target fault models. The generation options
are as follows; longer templates are derived from shorter ones by using only these
options:

� Insert a stand-alone Read operation (i.e., (r)) anywhere in t except in the
beginning.

� Pick a template element and insert a Read operation in the beginning or
append one at the end.

� Insert a stand-alone Write operation (i.e., (w)) anywhere in t except in the
beginning or at the end.

� Pick a template element and insert a Write operation in the beginning or
append one at the end.

The filtering conditions are as follows; ineffective templates are dropped if any
of the conditions is true:

� There are three consecutive Read operations, (· · · rrr · · · ), in a template element.

� There are three consecutive Read template elements, · · · �r��r��r� · · · , in the
template.

We show a simple example to delineate the TAGS approach. Assume that, before
we get to step 2, the template set contains only one template: ��w��r�
. After we
finish step 2, the new template set is ��w��wr�	 �w��rr�	 �w��rw�	 �w��r��r�	 �w��w��r�
.
Then, after step 3, the resulting March tests are as given in Table 8.7. After the
fault simulation by RAMSES, only three of these eight algorithms are selected (see
Table 8.8), and all the others are dropped. The procedure is repeated for the new
template set generated for each iteration.
The following example shows the complete result generated by TAGS. Given the

target faults, SAF, TF, AF, SOF, CFin, CFst, CFid, and RDF, and an unlimited test
length, the March test algorithms generated by TAGS are shown in Table 8.9, where
Mj

i represents the ith test algorithm with complexity jN. As shown in the table, a
series of tests is generated by TAGS, with increasing complexity (test length) and
FC. The test generation process stops at 12N, when the FC reaches 100%; that is,
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TABLE 8.7 � The 3N March Tests
Generated by TAGS After Step 3

No. Test

1 ⇑ �w0� ⇑ �w1� r1�
2 ⇑ �w0� ⇓ �w1� r1�
3 ⇑ �w0� ⇑ �r0� r0�
4 ⇑ �w0� ⇓ �r0� r0�
5 ⇑ �w0� ⇑ �r0�w1�
6 ⇑ �w0� ⇓ �r0�w1�
7 ⇑ �w0� ⇑ �r0� ⇑ �r0�
8 ⇑ �w0� ⇑ �w1� ⇑ �r1�

TABLE 8.8 � The 3N March
Tests Selected by RAMSES

No. Test

3 ⇑ �w0� ⇑ �r0� r0�
5 ⇑ �w0� ⇑ �r0�w1�
8 ⇑ �w0� ⇑ �w1� ⇑ �r1�

it returns a complete test M12
1 . The test is an irredundant March test for the above

faults—dropping any operation or element causes an FC loss.
RAMSES simulation results for the first test algorithm in every pass j (Mj

1) are
shown in Figure 8.13. The trade-off between test length and FC can be observed—in
general, the overall FC increases as the test length increases, using the presented
approach. However, the FC for a particular fault may stay the same until a certain
test element is added to the test; for example, SOF can be detected by & �r0	w1	 r1�
or & �r1	w0	 r0�, so its FC is almost 0 until the inclusion of any of the above
test elements (i.e., until the 12N algorithm is found). Of course, a different strat-
egy in TAGS can generate & �r0	w1	 r1� or & �r1	w0	 r0� in an earlier stage, but
then the full coverage of some other faults will be delayed during the test gen-
eration process. Note that a Read from a cell with SOF will get the data from
the previous Read [Dekker 1988a], so it is clear that any of the & �r0	w1	 r1� and
& �r1	w0	 r0� can fully detect SOF. However, what was not clear but can be reported
by TAGS is that some March elements other than & �ra	wa′	 ra� will also detect a
few SOFs.
For example, the SOF of the first cell on each word line (i.e., the one closest to

the address decoder) can be detected by the r1 operation of �& �r0	w1� ⇑ �r1	w0�
.
Therefore, the SOF coverage is very low but not zero before & �r0	w1	 r1� or &
�r1	w0	 r0� is included in the test.
Figure 8.13 shows only one test for each test length. In most cases, there are

more than one test for a given test length. For example, in Figure 8.14 we depict
the FC numbers for all 8N tests. In this figure, for example, M8

2 detects 75% of
CFid, because 3 out of the 4 March elements that are necessary for detecting CFid
are part of the test. Only the March element ⇓ �r1	w0� is missing. As a second
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TABLE 8.9 � Example Test Algorithms Generated by TAGS

1N M1
1 ⇑ �w0�

2N M2
1 ⇑ �w0� ⇑ �r0�

3N M3
1 ⇑ �w0� ⇑ �w1� ⇑ �r1�

3N M3
2 ⇑ �w0� ⇑ �r0� r0�

3N M3
3 ⇑ �w0� ⇑ �r0�w1�

4N M4
1 ⇑ �w0� ⇑ �r0� ⇑ �r0�w1�

4N M4
2 ⇑ �w0� ⇑ �w1� r1� ⇑ �r1�

4N M4
3 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1�

4N M4
4 ⇑ �w0� ⇑ �r0�w1� r1�

5N M5
1 ⇑ �w0� ⇑ �r0�w1� r1� ⇑ �r1�

5N M5
2 ⇑ �w0� ⇑ �r0�w1� ⇓ �r1�w0�

5N M5
3 ⇑ �w0� ⇑ �w1� ⇑ �r1�w0� ⇑ �r0�

5N M5
4 ⇑ �w0� ⇑ �w1� ⇑ �r1�w0� r0�

6N M6
1 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1�w0� r0�

6N M6
2 ⇑ �w0� ⇑ �r0� ⇑ �r0�w1� r1� ⇑ �r1�

6N M6
3 ⇑ �w0� ⇑ �r0� ⇑ �r0�w1� ⇓ �r1�w0�

6N M6
4 ⇑ �w0� ⇑ �w1� ⇑ �r1�w0� r0� ⇑ �r0�

6N M6
5 ⇑ �w0� ⇑ �r0�w1� r1� ⇓ �r1�w0�

6N M6
6 ⇑ �w0� ⇑ �w1� r1� ⇑ �r1�w0� r0�

6N M6
7 ⇑ �w0� ⇑ �r0�w1� ⇓ �r1�w0� ⇑ �r0�

6N M6
8 ⇑ �w0� ⇑ �r0�w1� r1�w0� ⇑ �r0�

6N M6
9 ⇑ �w0� ⇑ �r0�w1� r1� ⇑ �r1�w0�

6N M6
10 ⇑ �w0� ⇑ �w1� r1� ⇑ �r1�w0� ⇑ �r0�

6N M6
11 ⇑ �w0� ⇑ �r0�w1� ⇓ �r1�w0� r0�

7N M7
1 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1�w0� ⇓ �r0�w1�

7N M7
2 ⇑ �w0� ⇑ �r0�w1� r1� ⇑ �r1�w0� ⇑ �r0�

7N M7
3 ⇑ �w0� ⇑ �w1� r1� ⇑ �r1�w0� r0� ⇑ �r0�

7N M7
4 ⇑ �w0� ⇑ �r0�w1� ⇓ �r1�w0� r0� ⇑ �r0�

7N M7
5 ⇑ �w0� ⇑ �r0�w1� r1� ⇑ �r1�w0� r0�

7N M7
6 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1� ⇓ �r1�w0� ⇑ �r0�

7N M7
7 ⇑ �w0� ⇑ �r0� ⇑ �r0�w1� r1� ⇓ �r1�w0�

7N M7
8 ⇑ �w0� ⇑ �r0� ⇑ �r0�w1� ⇑ �r1� ⇓ �r1�w0�

7N M7
9 ⇑ �w0� ⇑ �r0�w1� ⇑ �w0� ⇓ �r0�w1� r1�

8N M8
1 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1� ⇓ �r1�w0� r0� ⇑ �r0�

8N M8
2 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1�w0� ⇓ �r0�w1� ⇑ �r1�

8N M8
3 ⇑ �w0� ⇑ �r0�w1� r1� ⇑ �r1�w0� r0� ⇑ �r0�

8N M8
4 ⇑ �w0� ⇑ �r0�w1� r1� ⇑ �r1�w0� ⇓ �r0�w1�

8N M8
5 ⇑ �w0� ⇑ �w1� r1� ⇑ �r1�w0� ⇑ �r0� ⇓ �r0�w1�

9N M9
1 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1�w0� ⇓ �r0�w1� ⇓ �r1�w0�

9N M9
2 ⇑ �w0� ⇑ �r0�w1� r1� ⇑ �r1�w0� ⇓ �r0�w1� ⇑ �r1�

9N M9
3 ⇑ �w0� ⇑ �r0�w1� r1� ⇑ �r1�w0� ⇑ �r0� ⇓ �r0�w1�

10N M10
1 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1�w0� ⇓ �r0�w1� r1� ⇓ �r1�w0�

10N M10
2 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1�w0� ⇓ �r0�w1� ⇓ �r1�w0� ⇑ �r0�

10N M10
3 ⇑ �w0� ⇑ �r0� r0�w1� r1� ⇑ �r1�w0� ⇓ �r0�w1� ⇑ �r1�

11N M11
1 ⇑ �w0� ⇑ �r0�w1� r1� ⇑ �r1�w0� ⇓ �r0�w1� ⇓ �r1�w0� ⇑ �r0�

11N M11
2 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1� r1�w0� r0� ⇓ �r0�w1� ⇓ �r1�w0�

12N M12
1 ⇑ �w0� ⇑ �r0�w1� ⇑ �r1�w0� r0� ⇓ �r0�w1� r1� ⇓ �r1�w0� ⇑ �r0�
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Fault coverage simulation results for the 8N tests.

example, 87.5% of CFst are detected by M8
2, with a 75% FC contributed by the same

March elements that detect CFid, and the other 12.5% contributed by the final
⇑ �r1� element. Again, the March element ⇓ �r1	w0� is missing in this test as far as
complete detection is concerned. We can generate various tests of the same length
with different fault detection capabilities. For example, if SAF, AF, SOF, and RDF
are the most important fault models, then M8

1 is the best 8N test. However, it is
not good for CFst or CFin as compared with other 8N tests. This information is
especially valuable when a 100% test of all faults is not affordable or necessary.
Selection of a test algorithm from the set can be based on the priority of faults
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that are considered, which is process and product dependent. Note also that the
real test time can vary even for algorithms with the same complexity, as different
memories have different Read/Write-mode implementations.
A word-oriented memory has Read/Write operations that access the memory

array by a word, instead of by a bit. Word-oriented memories can be tested by apply-
ing a bit-oriented test algorithm repeatedly with a set of different data backgrounds
[Dekker 1988a] [van de Goor 1991] [van de Goor 1998b]. The repeating procedure
multiplies the testing time. For example, three different data backgrounds (i.e.,
0000, 0101, and 0011) are required to test a 4-bit word-oriented memory. When
using a 10N test algorithm, the testing time will be 30N. We have shown in [Huang
1999] that testing word-oriented memories by repeatedly applying a single March
test with different data backgrounds is not cost effective. Most faults are covered
by the test even with only a single data background. Additional test runs with other
data backgrounds only cover a small number of additional faults (e.g., intra-word
coupling faults).
TheCocktail–Marchalgorithms [Wu1999]areaclassofmoreefficientMarch tests

for word-oriented memories. We have extended TAGS for word-oriented memories
based on the Cocktail–March algorithms; bymixing different test algorithms and dif-
ferent data backgrounds, the overall test length can be significantly reduced. For a
target fault set, the steps for TAGS to generate the test algorithms are as follows:

1. Construct the bit-oriented memory test algorithms.

2. Generate the initial Cocktail–March test (assuming the word length is m):

a. Generate a set of data backgrounds P= �p0	 p1	 � � � 	 pK
, where K =�log2w�.
For 1 ≤ j ≤ K, the background word pj is represented as pj = bm−1 · · ·b1b0,
where bi = 1 if i mod 2j < 2j−1, and bi = 0 otherwise. Table 8.10 shows
an example for 8-bit backgrounds, where the all-zero background is also
called the solid background.

b. Assign each and every data background, one by one, to the complete test
algorithm generated in step 1 (which is the initial candidate test algo-
rithm), as in the traditional method, resulting in a cascade of multiple
March algorithms.

TABLE 8.10 � 8-Bit Data
Backgrounds

pj b7b6b5b4b3b2b1b0

p0 00000000
p1 01010101
p2 00110011
p3 00001111
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3. Optimize the Cocktail–March test (which is now a cascade of multiple March
algorithms) for each pj, except p0:

a. Generate a new Cocktail–March test by replacing the March algorithm
having pj as its background with a shorter one from the set of algorithms
generated in step 1.

b. Run RAMSES for the new Cocktail–March.

c. Repeat steps 3a and 3b until the FC drops and cannot be recovered by any
other test algorithm of the same length.

d. Store the candidate test algorithms used in the previous step.

4. Optimize the Cocktail–March test from the previous step for p0 (the solid
background):

a. Generate a new Cocktail–March test by replacing the March algorithm
having p0 as its background with a shorter one from the set of test algo-
rithms generated in step 1. Repeat with every test candidate for other
backgrounds.

b. Run RAMSES for the new Cocktail–March.

c. Repeat steps 4a and 4b for all candidate test algorithms from step 3d until
the FC drops and cannot be recovered by any other test algorithm of the
same length or by selecting other candidates.

Wenowgiveanexample to illustrate the testgenerationprocedure.Again, the target
faultmodels areSAF,TF,AF,SOF,CFin,CFst,CFid, andRDF.Thememoryunder test
is an 8-bit word-orientedmemory. After step 1, a set of test algorithms is generated as
in Table 8.9. Step 2 generates a set of data backgrounds as shown in Table 8.10, then
initializes the Cocktail–March by assigning the bit-oriented complete test

(
M12

1

)
to all

data backgrounds. The initial 48N test algorithm is as follows:

Background p0 p1 p2 p3

Candidates M12
1 M12

1 M12
1 M12

1

We optimize it for p1 by replacing M12
1 with M11

1 	M11
2 	M10

1 , and M10
2 , one by one,

and calculate the FC values by RAMSES. This optimization procedure stops when
the test length drops to 5N, when we observe the occurrence of an FC drop. We
repeat the optimization step for p2 and p3, respectively. For each of p1	 p2, and p3,
usable 5N candidate tests are the same (M5

3 and M5
4), as shown below:

Background p0 p1 p2 p3

Candidates M12
1 M5

3M
5
4 M5

3M
5
4 M5

3M
5
4
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In step 4, the test algorithm for the solid background is optimized by the selection
of candidate tests for p1	 p2, and p3. Finally, the optimized Cocktail–March test is
generated, reducing the test length from 48N to 27N in this case (a 43.7% test time
reduction). The final Cocktail–March algorithm is as follows:

Background Test

p0�00000000� ⇑ �wa� ⇑ �ra�wa′� ra′� ⇑ �ra′�wa� ra� ⇓ �ra�wa′� ⇓ �ra′�wa� ⇑ �ra�
p1�01010101� ⇑ �wa� ⇑ �wa′� ⇑ �ra′�wa� ra�
p2�00110011� ⇑ �wa� ⇑ �wa′� ⇑ �ra′�wa� ra�
p3�00001111� ⇑ �wa� ⇑ �wa′� ⇑ �ra′�wa� ra�

In this case, single-cell faults and inter-word-related faults are already covered
by the bit-oriented test using just the solid background. Additional backgrounds
only cover a small number of extra intra-word faults. Figure 8.15 shows the FC
improvement of intra-word coupling faults with respect to the test length, while the
FC for other faults is already 100%. Note that a similar observation can be derived
from [van de Goor 1998b]. However, the test of intra-word related faults other than
the conventional faults is difficult to perform manually. The fault simulator makes
automatic test generation easy. With RAMSES, the coverage of even untargeted
faults also can be evaluated, and instead of “detected or not” the FC figures are
accurately reported.
For comparison, we now present two more cases for 8-bit memories. In case 1,

the target faults are SAF, AF, SOF, RDF, and CFst, and the TAGS results are listed
in Table 8.11. Note that with TAGS, test generation for different target faults is
fast. For example, in case 2 the target faults are SAF, TF, AF, SOF, and CFid, and
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Intra-word fault coverage improvement.
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TABLE 8.11 � Case 1 Test for SAF, AF, SOF, RDF, and CFst

Background Test

p0�00000000� ⇑ �wa� ⇑ �ra� ⇓ �ra�wa′� ⇑ �wa� ⇑ �ra�wa′� ra′� ⇑ �ra′�wa�
p1�01010101� ⇑ �wa� ⇑ �ra�wa′� ra′�
p2�00110011� ⇑ �wa� ⇑ �ra�wa′� ra′�
p3�00001111� ⇑ �wa� ⇑ �ra�wa′� ra′�

TABLE 8.12 � Case 2 Test for Case 2 for SAF, TF, AF, SOF, and CFid

Background Test

p0�00000000� ⇑ �wa� ⇑ �ra�wa′� ⇑ �ra′�wa� ⇓ �ra�wa′� ⇓ �ra′�wa� ⇑ �ra�
p1�01010101� ⇑ �wa� ⇑ �wa′� ⇑ �ra′�wa� ra�
p2�00110011� ⇑ �wa� ⇑ �wa′� ⇑ �ra′�wa� ra�
p3�00001111� ⇑ �wa� ⇑ �wa′� ⇑ �ra′�wa� ra�

TABLE 8.13 � FC Comparison Between Case 1 and Case 2 Tests for a 1-K RAM

SAF TF SOF RDF CFin CFst CFid AF

Case 1 1 1 1 1 1 1 0.797 1

Case 2 1 1 1 0.0 1 1 1 1

the generated test algorithm is shown in Table 8.12. Moreover, the test coverage
can easily be evaluated by RAMSES (see Table 8.13). When several test algorithms
are generated by TAGS, the coverage of untargeted faults can be considered for
algorithm selection.
The test length of word-oriented Cocktail–March is �12+5 log2B�N when the tar-

get faults include SAF, TF, AF, SOF, CFin, CFst, CFid, and RDF, where B is the
word length and N is the address count (address space) for word-oriented mem-
ories. As a comparison, in [van de Goor 1998b] the length of the test algorithm
based on March C− for intra-word CFid, CFst, and CFdst is �10+6 log2B�N. CFdst
is the disturb CF [van de Goor 1998b]. The 10N base algorithm they use is dif-
ferent simply because of the different set of target faults. Note that, with TAGS,
the length of the additional test for covering the intra-word faults is �5 log2B�N,
while the length of the extra test for covering the intra-word faults is �6 log2B�N
as reported in [van de Goor 1998b]. Note also that, in our case, though the
specified intra-word faults do not include CFdst, the generated test covers CFdst
as well.

8.4 MEMORY BUILT-IN SELF-TEST

Many built-in self-test (BIST) schemes have been presented in the past for embedded
memories [Dekker 1988b] [Nadeau-Dostie 1990] [Treuer 1993] [Camurati 1995]
[Tanoi 1997] [Dreibelbis 1998]. As an example, we present a BIST design and
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its implementation for EDRAM [Huang 1999] [Cheng 2000]. It supports BISD by
feeding the errata information to the external tester. Moreover, using a specific
test sequence the BIST scheme can test some critical timing faults of the EDRAM,
reducing the tester time for AC parametric test. Our BIST design supports wafer test,
pre-burn-in test, burn-in, and final test. Furthermore, it is field-programmable (i.e.,
test algorithms using predetermined test elements such as various March elements,
surround test elements, refresh modes, etc.) and can be programmed by the user.
The hardware can be optimized for any specific EDRAMwith a set of predetermined
test elements. This is different from the microprogram-controlled BIST as shown
in [Dreibelbis 1998] which has a higher flexibility as well as overhead. Note that the
BIST design begins at the register-transfer level (RTL), and test element insertion
(for higher test coverage) and deletion (for lower hardware overhead) can be done
relatively easily. We will also discuss briefly how to test the timing faults of the
DRAM core. Several March-based test algorithms are simulated for various fault
models as well as different word-oriented data backgrounds using RAMSES. As
discussed previously, using the March C− algorithm with only the solid 0 and 1
background patterns covers almost all the stuck-at faults (SAFs), transition faults
(TFs), address faults (AFs), and coupling faults (CFs). We will show that the area
overhead of the BIST circuit is very low — about 1.3% for a 1-Mb DRAM and below
0.3% for a 16-Mb one. With RAMSES and the BIST design approach, designing
and implementing appropriate BIST circuits for various EDRAMs can be done in
a systematic way with little effort.

8.4.1 RAM Specification and BIST Design Strategy
We use a 1M× 4 extended-data-out (EDO) DRAM as our example for explain-
ing the BIST design. Of course the BIST scheme can easily be applied to other
EDRAM architectures. The EDRAM is assumed to have four memory banks. Each
bank is organized as a 1-Mb array; that is, it has 256K addressable locations each
containing 4 bits. The block diagram of the EDRAMwith the BIST scheme is shown
in Figure 8.16, for which the BIST scheme will be explained later. The timing
controller controls the address buffers, data I/O buffers, and refresh mechanism
via the xRAS, xCAS, and xWE signals, which represent row address strobe, column
address strobe, and write enable, respectively. As shown in the figure, EDRAMs
normally use separate I/O channels instead of multiplexed pins as in commodity
DRAMs. Consequently, row and column addresses and data input (D) and output
(Q) channels are all separated.
One of the challenges in memory BIST is that the asynchronous memory core

(traditional RAMs are asynchronous) is to be tested by the synchronous BIST logic.
This is especially difficult in EDRAM BIST. To illustrate our strategy for coping
with this, typical EDO DRAM timing specifications are used as an example. Note
that the strategy is not limited to the given EDO DRAM architecture. We show the
typical EDO page-mode Read/Write cycle in Figure 8.17. Although in this case D
and Q are sharing the same I/O channel, our strategy still works (the timing control
of separate I/O channels is in fact easier). The values of the timing parameters
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Block diagram of the embedded EDO DRAM.

shown in Figure 8.17 are listed in Table 8.14. The timing of the EDO page mode
is mainly dependent on the edges of the four signals, namely xRAS, xCAS, xWE,
and xOE. They determine the time to latch the row address, column address,
and input data for the memory core, as well as the output data for use by other
cores.
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Timing diagram of the EDO page-mode Read/Write cycle.

TABLE 8.14 � Timing Parameter Values of the EDO Page-Mode Read/Write Cycle

Parameter Min (ns) Max (ns) Description

tAA 25 Access time from column address
tASC 0 Setup time for column address
tASR 0 Setup time for row address
tAWD 42 Column address to xWE delay
tCAC 13 Access time from xCAS
tCAH 10 Hold time for column address
tCAS 10 10000 Pulse width for xCAS active
tCP 10 Pulse width for xCAS precharge
tCWD 28 xCAS to xWE delay
tDH 10 Hold time for D
tDS 0 Setup time for D
tOD 0 12 Output disable
tOEA 12 Access time from xOE
tRAC 50 Access time from xRAS
tRASP 55 125000 Pulse width for xRAS (EDO page mode)
tRCD 12 Delay time from xRAS to xCAS
tRAH 10 Hold time for row address
tRP 30 Pulse width for xRAS precharge
tWP 5 Pulse width for write
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For the case of EDRAM, which has no pin count limitation, D and Q can be
separated to simplify the control, so the output enable signal (xOE) can be removed
without affecting the EDRAM functionality. The BIST logic, however, still requires
xOE to indicate the arrival of the output data.
We have to determine an appropriate clock period for BIST based on the xCAS

cycle time (period) of the EDO page mode (i.e., tCAS in Table 8.14). In our example,
the minimum tCAS is 10 ns, which can be used as the basis of the test clock period.
A test clock no faster than 100 MHz can be selected. With BIST, we need only
a simple logic tester instead of an expensive memory tester—a slower and less
expensive logic tester can be used to activate the BIST logic and receive the test
result. The BIST sequencer (i.e., timing sequence generator, which will be presented
later) generates timing signals based on the clock period; that is, a high or low
duration of a timing signal will be converted to a certain number of clock periods.
Therefore, once the conversion is done and fixed in a BIST design, the clock period
should be determined with care to avoid violation of the timing specifications of
the EDRAM. In our example, the clock period (and the xCAS period) is assumed to
be 20ns (though it can be reduced to close to 10ns). Once the clock period is fixed,
the other two related timing parameters (i.e., xRAS and xWE) can be determined
accordingly. Also, the address, D, and Q signals in the original timing diagram
(Figure 8.17) can be shifted and stretched according to the following rules. Before
we give the rules, note that, for example, tRAC is specified as no more than 50ns
(see Table 8.14). This means that the EDRAM design guarantees that Q is available
50ns after the falling transition of xRAS (see also Figure 8.17), so the sample of Q
should be done at least 50ns after xRAS:

1. The row address must be ready before xRAS is pulled down to low and the
column address must be ready before xCAS is pulled down to low. The time
for the address to be stable before the address strobe is usually more than 1
clock cycle, so it meets the 0-ns setup time requirement in our design. Also,
the address will be kept stable for more than one clock cycle to meet the 10-ns
hold time requirement.

2. The timing requirement for the input data, D, is the same as the column
address.

3. The major parameters related to the output data, Q, are tAA (access time from
column address), tRAC (access time from xRAS), and tCAC (access time from
xCAS), which are 25ns (max), 50ns (max), and 13ns (max), respectively. The
xCAS low period (tCAS) should span at least two clock cycles because Q will
settle at the beginning of the second cycle, and the clock cycle (20ns) is longer
than 13ns. Because the column address is ready one clock cycle before the
transition of xCAS (see the first rule), we let the time from xCAS to Q to be two
clock cycles to satisfy the tRAC constraint. Finally, the first falling transition
of xCAS in page mode is delayed for one more clock cycle, so there are at
least three clock cycles from xRAS to Q, and the tRAC specification also is
satisfied.
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4. If the write operation is considered (as in the page-mode Read/Write cycle),
the key parameters are tAWD and tCWD, which represent the column address to
xWE delay time and the xCAS to xWE delay time, respectively. Because Q is
sampled at the second clock after xCAS goes low, one more clock cycle has
to be inserted into the low period of xCAS, making it at least three.

Based on the above rules, the waveforms of those critical timing parameters
can be generated by the sequencer to meet the specification. Slight adjustments
may have to be made for other timing parameters to be considered. The waveform
diagram of rawa′ generated by the sequencer based on the above discussion is
shown in Figure 8.18, which is plotted by a timing simulator. Waveforms for other
March elements and the retention test and refresh test elements, for example, can
also be generated using similar rules.

8.4.2 BIST Architectures and Functions
Figure 8.19 shows the block diagram of the BIST design and the interface between
the BIST logic and the EDRAM. The BIST logic is activated by the BIST activation
control (BAC) input; that is, the EDRAM is in normal mode when BAC= 0, and it
is in BIST mode when BAC= 1. The BIST controller is a finite-state machine (FSM),
whose state transition is controlled by the BIST control selection (BCS) input. The
BIST controller also controls the scan chains—test patterns and commands can
be shifted in from the BIST scan-in (BSI) input and results can be shifted out
from the BIST scan-out (BSO) output. As shown in Figure 8.19, it has multiple
chains internally. The Decode Logic and Test Mode Selection modules determine
the proper data register to scan in the test commands and subsequently activate the
sequencer. The sequencer generates the timing sequence for the EDRAM, with the
help of some built-in counters and the timing generator. The output data (Q) from
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A timing diagram generated by the sequencer.
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Block diagram of the BIST scheme connected to the embedded EDO DRAM.

the EDRAM will be compared with the original input data (D) generated by the
sequence controller. The comparison is done by the comparator, which will report
any discrepancy.
Apart from BAC, BCS, BSI, and BSO, the BIST logic has three additional I/O

signals. The BIST ready flag (BRD∗) is used to indicate when the BIST sequence
is finished, so the Go/No-Go indicator signal (BGO) can be sampled to check
whether the EDRAM is functioning correctly or not. The BRS

∗
/SCAN signal is used

as both the reset and scan test control—all registers in the BIST controller FSM
are scanned, and before we use the BIST logic to test the EDRAM the logic itself is
scan tested. Finally, we need a BIST clock (BCK) input.

Note that BCK and BAC have to be dedicated; that is, these two input pins cannot
be shared (e.g., using multiplexers) by others, but BRD is optional and may be
removed if pin count is a concern (in that case, we can encode BGO to signal the
completion of the BIST sequence and show the test result). The reset (BRS

∗
) also is

optional, as a short synchronizing sequence for the BIST controller (an FSM) can
be used as the reset sequence. However, the SCAN pin is still required in that case.
Apart from BCK and BAC, all other I/O signals of the BIST logic can share pins
with signals outside the DRAM core (i.e., multiplexed pins can be used to reduce
pin overhead).
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The BIST supports the following test modes:

1. Scan test mode is used for testing the BIST logic. We use scan test to verify
BIST logic, except for the BIST control FSM. This test mode will be executed
at the beginning of the BIST sequence to ensure the correct functionality of
the BIST circuit. In addition, all the registers in the DRAM core can be tested
in this mode.

2. Memory BIST mode is used for functional testing of the DRAM using March-
based algorithms. Various operation modes of the DRAM are exercised (e.g.,
non-page mode test, page mode test, refresh test, retention test). Diagnosis
may also be supported in this mode. In that case, the BIST logic can shift
out the address of any faulty cell, column, or row to the external tester by the
scan mechanism. Retention faults can be tested in this mode or in a separate
test mode.

3. Burn-in (BI) mode is used for stress testing of the DRAM to screen out unreli-
able parts that may fail in their infancy. In this mode we use the BIST logic to
exercise the entire memory cell array in a more efficient way than the normal
Read/Write access. The default BI test is to use a March algorithm supported
in the memory BIST mode.

4. Timing fault test mode is used for testing some critical timing faults by running
the BIST clock at an appropriate speed. The timing faults to be tested include
incorrect setup time, hold time, data arrival time, etc., of various control and
data signals. Note that some of the timing faults, such as incorrect setup
time and hold time, can be detected simultaneously when we perform the
functional test (in the memory BIST mode). Some others can be tested by
using different BIST clock periods or by an external memory tester.

Other test modes can be included in the design if necessary, as the control scheme
is flexible. Of course, DC parameter testing still has to be done by the precision
measurement unit (PMU) of the external tester.

8.4.3 BIST Implementation
As shown in Figure 8.19, the BIST logic is divided into two parts: the controller
and the sequencer. The controller takes charge of the overall BIST flow, while
the sequencer generates the address, data, and timing sequences for the EDRAM.
At the ASIC level, logic BIST and memory BIST can share the same controller,
and the on-chip processor can function as the sequencer during the memory BIST
mode. However, for the DRAM core that is delivered as an IP to be embedded in
various chips, a complete BIST circuit has to be integrated with the DRAM core.
We consider the latter case.
The controller contains an FSM (labeled as the BIST controller in Figure 8.19).

After the SCAN test mode has been completed successfully, we enter the memory
BIST mode. The FSM actually controls the scan test and BIST flow to test the
rest of the BIST circuitry and the EDRAM. We show the state diagram of the



496 VLSI Test Principles and Architectures

BCS = 0

Initial

1

1

0

Decode

Apply

0

1

1

Test mode selection.

Command decoding.

Scan test application and BIST activation.

0

0

Test_Mode_In

Data_In_Out

1

1

0

1

0
1

Execute

Shift out results, 
or pause for retention test.

Pause for observation, or exit the 
execution phase.

0

Probe/Pause

Exit

Memory function test, BI, AC test, etc.

Initial/reset state: all BIST outputs retain 
safe values.

Data scan: shift in test inputs and 
shift out results.

� FIGURE 8.20

State diagram of the BIST controller.

FSM in Figure 8.20. Each arrow in Figure 8.20 represents a state transition that
is controlled by BCS. We first enter the Initial state by asserting BRS

∗
/SCAN low

or applying a synchronizing sequence—note that by applying four continuous 0’s
on BCS we can return to the Initial state from any other state. From the Initial
state, we can enter the Test_Mode_In state if BCS=1. In this state, the intended
test mode can be selected. All the internal control signals will be generated in the
Decode state, including those for the selection of the proper scan chain for the
data sequence to be shifted in. User-specified parameters and the test algorithm
are shifted in during the Data_In_Out state. Note that the Decode, Data_In_Out,
and Apply states form a loop for running the scan test. Other test modes are
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performed in the Execute state. For memory core testing and diagnosis, we enter
the bottom loop, which contains the Execute, Exit, and Probe/Pause states, and
collect the error information in the Probe/Pause state. We can also run retention
test in the Probe/Pause state, which allows pausing for a time interval determined
by the user. An alternative approach is to add an extra mode in the sequencer,
using a counter for measuring the time interval from, for example, xCAS to xWE.
Appropriate timing sequences can be derived using similar rules as for March tests.
When diagnosis is required, the sequencer will test the entire memory core; that is,
the process will not stop immediately when an error is detected. It is not necessary
to continue the testing process when an error is found if we perform testing but not
diagnosis—the sequencer will simply halt and indicate that an error is found, and
the controller can go back to the Decode state through the Exit state. From there
either the Initial state can be reached or we can re-enter the Data_In_Out state.
The Apply, Execute, Exit, and Probe/Pause states can be merged if diagnosis is not
required.
In Figure 8.21 we show the timing diagram (the entire control sequence) for the

BIST circuit. As discussed above, when BAC = 1, the EDRAM enters the memory
BIST mode, in which every signal is synchronized to the BIST clock, BCK. The
BRS/SCAN signal is pulled high at the beginning of the memory BIST mode to
perform the scan test to verify the correctness of BIST controller FSM, as depicted
in the figure. A scan chain is formed between BSI and BSO for applying patterns
and collecting responses in this phase. After the scan, BRS/SCAN is pulled low
to reset the BIST controller (BCS remains low to generate the reset sequence if
necessary). The BIST controller then performs scan test for the rest of the BIST
circuit. The test algorithm is subsequently applied according to the control flow
discussed above and the FSM shown in Figure 8.20. Finally, we let BAC = 0 to
return the EDRAM to normal mode after BRD is asserted high and BGO is sampled.
In the controller we have implemented several default Read/Write commands,

address orders, data backgrounds, and EDO DRAM access modes. The built-in
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Control sequence of the BIST circuit.
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Read/Write commands are ra (read the expected word a), wa (write word a), rawa′

(read word a, complement and then write back immediately), and rawa′ra′. The
default address orders include ⇑ and ⇓, which can be implemented by an up–down
counter. The built-in access modes to be used in conjunction with the address
orders are row scan, column scan, page-mode column scan, and refresh. The data
background word �a� is to be supplied online. EachMarch element is a combination
of the appropriate Read/Write command, address order, access mode, and data
background. In addition to the March commands, the BIST design also supports
diagnosis, BI, and retention test. Other test commands can be integrated easily. In
our BIST scheme, a test algorithm is a sequence of commands entered from the BSI
pin to the scan chains, and decoded and executed (see Figure 8.19). The end of a test
algorithm is detected when the controller encounters a special end-of-algorithm
(EOA) command. In the default implementation most of the March algorithms can
be programmed, such as the extended March C−, March X, March Y, MATS++, etc.
In designing the sequencer, our major goal has been flexibility. Our sequencer

design can be used for a wide range of DRAM cores—it is appropriate for various
operationmodes, memory dimensions, and timing specifications. Figure 8.22 shows
the state diagram of the sequence controller (i.e., the FSM used as the controller
in the sequencer) (see Figure 8.19). As shown in the state diagram, we have
implemented the timing sequence generation modules for the single Read/Write
commands and the page-mode Read/Write commands for the March elements
defined in the controller. Also, a refresh timing generation module is implemented
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State diagram of the sequence controller for March tests.
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for refresh tests. We show the default implementation of the sequence controller
for March tests. Extending it to other test algorithms can be done easily as will be
discussed below. An important concern for the DRAM core is that the outputs of
the sequencer have to be glitch free, and they have to be in high-impedance when
BIST is not in use (i.e., when the EDRAM is in normal operation mode). This has
been considered in the implementation. In Figure 8.22, the state transition is on
the rising edge of BCK while the control (timing) signals for the DRAM core are
applied on the falling edge of BCK. Consequently, the outputs of the sequencer are
guaranteed to be glitch free.
We now briefly describe the state diagram shown in Figure 8.22. When the

EDRAM is in normal mode, the sequence controller stays in the Idle state. It waits in
the Idle state until the BIST controller enters the Execute state, where the sequence
controller will fetch the March commands first, then enter the Reset state, followed
by the sequence for the specified memory access mode. For different memory
access modes, such as ra, wa, rawa′, and rawa′ra′, the timing waveform is periodic,
and the period depends on the row access cycle. Proper CAS-before-RAS (CBR)
refresh cycles are inserted to meet the refresh timing. The page-mode access cycle
is divided into the row access cycle and column access cycle. The row address is
latched first, then the column addresses of the whole page are latched one by one.
In the Self-Refresh/Hidden-Refresh/RAS-only-Refresh state, the EDRAM is tested
for its refresh mechanism.
As shown in Figure 8.19, the sequencer design is counter based. If the memory

size increases, only the lengths of the row address counter and column address
counter and the size of the comparator will increase. Note that only one additional
bit is required for an address counter when the memory size is doubled, so the
hardware overhead is low. The control counter is designed to meet the refresh time
specification (i.e., it is used for retention/refresh test). The refresh time specifica-
tions for different DRAMs currently in use do not differ much, regardless of their
sizes, so the area overhead of the sequencer actually drops when the size of the
DRAM core increases. In our example, a 21-bit counter suffices if the refresh cycle
does not exceed 32ms. The size of the entire BIST logic for the EDO DRAM core,
without supporting BI and redundancy analysis, is about 2 to 3 thousand gates.
The sequencer generates the required output signals for the DRAM core based on

the command decoded by the controller. Signal generation is done by a small look-
up table (LUT). The LUT-based design reduces the design effort and hardware cost
because new test commands can be added easily. When the timing specifications
change, the LUT content is generated automatically by a simple program. This
is an important step toward a BIST compiler for EDRAMs. It is configurable at
the RT level but does not modify the architecture. For non-March algorithms,
such as pseudo-random and surround-disturb tests, specific address counters or
counter configurations have to be designed and included in the sequencer, and new
commands have to be added to the state diagram shown in Figure 8.22.
We now discuss the area overhead of the BIST core. A commercial synthesis

tool and a single-poly triple-metal logic cell library is used to estimate the area of
the BIST circuit. Figure 8.23 shows the BIST area overhead percentage plot with
respect to various DRAM core sizes (from 1 to 64Mb). The numbers for the DRAM
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Area overhead figures of the BIST core.

area are based on existing 0�25�m and 0�35�m EDO DRAM chips reported by
major DRAM vendors. Note that the comparison is based on the area estimated
by the synthesis tool, so it is not exact. Also, it is impossible (and not necessary)
for us to project the precise size of the BIST circuits on all these DRAM chips.
Because the overhead is very low, as can be seen from the figure, we expect the
exact area overhead numbers to be close to those shown in the figure; that is, the
area overhead for the default BIST design is about 1.3% for a 1-Mb EDRAM, and it
is negligible for a 64-Mb EDRAM. Even for the 16-Mb DRAM, which is a popular
EDRAM candidate currently, the area overhead is less than 0.3%. Clearly, the larger
the DRAM core is, the smaller the BIST area overhead will be. Because the area
overhead is low, as illustrated in Figure 8.23, one can include more test modes
and algorithms to increase the test coverage if necessary, as long as test time does
not become a problem. The test time by non-page-mode March C−, for example,
is about 0.4 s for the 4-Mb DRAM core (assuming a 50-MHz clock). It increases
approximately in proportion to the address space. To reduce test time, parallel
testing of multiple banks or even multiple words by separate BIST sequencers can
be explored, but it requires modification of the memory core and should be done
very carefully. Note again that an important benefit of BIST is that, after dicing, an
external memory tester is not required until after burn-in.

8.4.4 BRAINS: A RAM BIST Compiler
Embedded memories, unlike commodity ones, are usually customized for different
ASIC or SOC applications. The BIST circuits also have to be customized in such
a case. An automatic BIST circuit generation tool thus is required to increase
productivity when embedded memory cores are frequently used.
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There are many commercial RAM BIST compilers (generators) in the market,
such as those from Mentor Graphics, SynTest, and VirageLogic. We present here
a memory BIST compiler called BRAINS (Bist for RAm IN Seconds), which sup-
ports SRAM and DRAM by using novel BIST templates and memory specification
techniques [Huang 1999] [Huang 2000]. As BRAINS is an academic work, details
can be discussed here. The compiler generates BIST design in a synthesizable HDL
(i.e., Verilog) upon receiving the memory specifications and test requirements pro-
vided by the user. The synthesizable BIST core can then be optimized for different
fabrication processes. It can be shared among multiple memory cores. The BIST
generated by BRAINS is programmable for various March tests. It is optimized
automatically for user-specified March elements. The March-based programmabil-
ity provides easy application of various March tests and is efficient in terms of area
and performance. Furthermore, BRAINS uses unified specification techniques to
generate BIST circuits for different types of embedded memory architectures and
configurations. In comparison, the microcode-based design offers higher flexibility
for programming non-March tests (at a lower speed), and the FSM-based design
achieves smaller area overhead (for some fixed test algorithms) [Zarrineh 1999a,b].
BRAINS is a BIST compiler for both SRAM and DRAM. It consists of four com-

ponents: (1) the BIST templates, (2) the memory library, (3) the BIST interme-
diate description (BID) data format, and (4) the compiler engine. When BRAINS
receives the memory specifications and the test requirements as inputs, it translates
them into the BID format, and then the compiler engine generates the BIST design
according to the inputs and the memory library by creating a custom BIST module
or by using an existing module from the set of BIST templates.
BRAINS generates the BIST circuit for March-based testing. It does so by using

various BIST templates as building blocks. In practice, design migration cannot be
done by simply changing the parameters. It usually requires more tedious adjust-
ments, especially for DRAM cores. The adjustments for the BIST compiler have to
be done within the BIST templates. Three different kinds of template are defined:
(1) the controller, (2) the sequencer, and (3) the test pattern generator (TPG). We
use the templates to construct the BIST architecture, as shown in Figure 8.24.
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BIST architecture using the three templates.
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The controller manages the overall operation of the BIST circuit. The test activa-
tion sequence (from tester) is received and handled by the controller, and the test
result is also produced by the controller. Different test algorithms, test modes (such
as BIST, burn-in, diagnosis, and repair analysis modes), data backgrounds, test
ports (for multi-port memory), and memory IDs (for multiple memory cores) can
be programmed into the controller. The control state machine is improved from
that presented in [Huang 1999], with a larger configuration space.
During a March test, the sequencer generates the address sequence (either ⇑

or ⇓ [van de Goor 1991]) and various memory access commands based on the
specifications of the memory under test. For example, the sequencer generates the
read, write, refresh, precharge, load_mode_register, active, and nop (no operation)
commands for an SDRAM, but only the read, write, and nop commands for a simple
single-port SRAM. Some standard memory access commands for typical memory
types are defined in the memory library, but customized commands specified by the
user can be included as well. The sequencer generates the high-level memory access
commands rather than the low-level memory access sequence (physical waveform).
The sequencer architecture (template) is shown in Figure 8.25. The control mod-

ule receives the March commands from the controller. It controls the address
generator, sequence generator, and memory command generator. The address gen-
erator generates the ascending �⇑� and descending �⇓� address sequences during
the March test as specified by the March elements. The sequence generator gen-
erates the Read/Write sequence in the March elements (such as wa	 rawa′	 rawa′ra′,
etc.). It also generates the initialization sequence for the memory core. The optional
error handling module in the sequencer is used to scan out the error address, error
signature, and the corresponding March operation that activated the fault to the
external tester for diagnosis and analysis.
The TPG (see Figure 8.26) converts the high-level memory access commands

provided by the sequencer to the low-level (physical) timing, address, and data
sequences that can be sent directly to the memory core. The timing, address, and
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Block diagram of the sequencer template.
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Block diagram of the test pattern generator.

data sequences can be high speed, double edge triggered, packetized, or even of
different signal levels. The TPG also compares the data output (Q) from the memory
with the original data pattern (D) to determine whether an error exists. In the
diagnosis mode, the error handling modules of the sequencer and TPG are used
to scan out the error information. Both the sequencer and the TPG are highly
modularized.
The I/O interface of advanced memories, such as double-data-rate (DDR) DRAM

and Rambus DRAM, are becoming more and more complex due to the need for
a wider application range and higher bandwidth. In BRAINS, the characteristics
of the memory interface can be modeled by the memory specification techniques.
The BIST circuit generated by BRAINS thus tests common SRAMs and DRAMs
via the specified memory interface, since testing the memory cell array directly
usually cannot be done. Note that the BIST circuit and the memory controller
can therefore share the memory test pattern generator (the TPG module), which
further reduces the overhead for the whole system. Using the memory specification
techniques, the access of different memory architectures can be done systematically
and automatically, even for customized and advanced memory architectures.
In the system-on-chip (SOC) design environment, integrating many memory cores

into a chip is common, especially for SRAM cores. BRAINS provides the configu-
ration that multiple memory cores can share the same Controller and/or the same
Sequencer according to the floorplan. Each of the memory cores has a unique ID
number in this configuration. The memory ID is scanned in with the test commands
and the BIST will activate the designated memory core to apply the March test and
block other cores. The overall area overhead and the control complexity of BIST
reduce because of the reduction of the number of Controllers and/or Sequencers.
The BIST intermediate description (BID) format is used for easy configuration

and composition of the BIST templates into the synthesizable design. The BID
format is the interface between the user data and the compiler engine. The BID file
can be generated by the user-data capture module (i.e., the user-interface software
module) after parsing the input data. It also can be converted from the user data
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by an experienced designer. Two input categories are defined inside the BID file:
the memory specifications and test requirements.

� Thememory specifications define thememory under test by thememory speci-
fication technique, includingmemoryarchitecture, configuration, IO labels and
description, timing parameters, and memory access commands. For a built-
in memory architecture (that exists in the library), there is no need to specify
the details of the memory access commands. For a customized memory, new
memory access commands can be defined, and existing ones can bemodified.

� The test requirements specify the architecture and the functional capability of
the BIST circuit. First, the desired test modes are specified. The default test
algorithm can be given to generate the BIST activation sequence and the test
bench. The compiler engine reads the test algorithm and determines which
March element will be provided. The March-based algorithm is used for its
simplicity and linear time complexity. The test coverage is guaranteed by gen-
erating an appropriate test algorithm using TAGS (Test Algorithm Generation
by Simulation) that we have developed previously [Wu 2000]. During field
test, a different March algorithm can be applied that consists of the specified
March elements. The user also can define a March element not in the specified
algorithm for future use. Primitive March elements are predefined in the com-
piler engine, however, newMarch elements can be created by simply assigning
their Read/Write sequences. The compiler engine will generate the memory
access commands for the new March elements with timing optimization.

In Figure 8.27 we give the BID file example for a customized memory architec-
ture. Memory architectures such as SRAM, EDO DRAM, SDRAM, DDR DRAM,
or a customized memory can be chosen. The access mode, diagnosis support,
and the shared configuration can also be specified. In the file, the parameter
operator specifies the memory size and configuration, the timing operator spec-
ifies the timing parameter limits, and the hold_time operator specifies the AC
characteristics of the RAM. The compiler engine will create the BIST circuit syn-
thesis script for the synthesis tool according to the specifications. Finally, the
March operator specifies the March test algorithm, in which the > and < sym-
bols stand for ascending (⇑) and descending �⇓� address sequences, respectively,
and the notation a represents the data background and b is its complement. In
this sample BID file, the customized memory access commands are defined by
the @custom_memory_command operator. The memory IO ports are defined by the
@custom_memory_pin operator, which specifies the port name (label), type, width,
and latency. The @custom_memory_task operator defines the memory task using
a combination of memory access commands. The compiler optimizes the March
element by arranging the different memory tasks with the timing requirement. New
March elements and initialization sequences thus can easily be created.
Built-in memory types include synchronous SRAM, asynchronous SRAM, dual-

port SRAM, two-port register file, EDO DRAM, SDRAM, and DDR DRAM. Each
of them is described by its own BID file with predefined @custom_memory_pin,
@custom_memory_command, and @custom_memory_task operators and other
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� FIGURE 8.27

The BID file example for a predefined memory architecture.
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default settings. The compiler engine loads the generic templates for the predefined
control and data paths of the BIST circuit, and configures it based on the BID
file. The user can make minor modifications for different configurations or cus-
tomized memory architectures. To customize the access timing for the newmemory
architecture, the BID file can be edited by inserting additional commands at the
memory-access-command level and/or modifying the custom timing sequence at
the physical-timing level. Consequently, only a small portion of the details have to
be dealt with by the user.
The BIST circuit compilation flow using BRAINS is given in Figure 8.28. The

memory specifications and test requirements are provided via the user inter-
face. The memory specifications include the timing parameters, memory architec-
ture (synchronous/asynchronous SRAM, single-port/multi-port SRAM, EDODRAM,
SDRAM, DDR DRAM, etc.), memory configuration (data width, address width), etc.
The test requirements include the test algorithm requirements (which affect the
choice of theMarch elements and the programmability), address ordering (counting
or pseudo-random, interleaved or non-interleaved), supported test modes (go/no-go
test, burn-in test, diagnosis test), etc.

Synthesis

BIST 
Templates

Comparison 
Verification

BID Format

Description Parser

Memory Spec Test Requirement

Cell 
Library

Netlist

Behavior 
Simulation

Timing 
Simulation

Synthesizable BIST Model
Activation Sequence
Testbench 
Synthesis Scripts 
Makefile for Integration

To User

Compiler Engine
Memory 
Library

� FIGURE 8.28

The BIST circuit compilation flow using BRAINS.
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After the memory specifications and test requirements are entered, the descrip-
tion parser (a preprocessor) generates a BID file which defines the BIST templates.
The user also can modify the BID file to customize the BIST circuit. The compiler
engine then parses the BID file and loads the BIST templates and memory library to
generate the controller, sequencer, and test pattern generator. The compiler engine
configures the programmability of the BIST circuit and refines the memory access
timing according to the timing specifications and test requirements, as discussed
above. It generates the synthesizable RTL model for the BIST circuit, BIST activa-
tion sequence, test bench, synthesis scripts, and the UNIX Makefile for integrated
command-level operations. The synthesizable BIST model is in the Verilog format.
The BIST activation sequence can be used to control the BIST from a simple tester
interface. Different test algorithms can be applied during field test. The test bench
contains stimuli that can be used for behavior-level and gate-level simulations.
Automatic synthesis can be done by a synthesis tool using the synthesis scripts. The
generated logic circuit (in the net-list level) is then simulated and compared with
the behavior-level result for design verification.
Table 8.15 shows the comparison among different memory architectures and

configurations from the experimental results of BRAINS. The first column shows
the four different memory architectures used in the experiments (i.e., single-port

TABLE 8.15 � Comparison Among Different Memory Architectures and Configurations

Architecture Configuration Diag. Bank Access Shared DQ # Gates Overhead

Single-port SRAM 8K×16 No – No 1438 2�60%
Single-port SRAM 8K×16 Yes – No 1940 3�70%
Single-port SRAM 16K×16 No – No 1474 1�41%
Single-port SRAM 16K×16 Yes – No 1988 1�88%
Two-port Register File 2K×32 No – No 1876 3�8%
Two-port Register File 2K×32 Yes – No 2590 5�25%
Two-port Register File 4K×32 No – No 1908 1�94%
Two-port Register File 4K×32 Yes – No 2628 2�66%
Asyn single-port SRAM 8K×16 No – No 1444 2�75%
Asyn single-port SRAM 8K×16 Yes – No 1989 3�79%
Asyn single-port SRAM 16K×16 No – No 1476 1�41%
Asyn single-port SRAM 16K×16 Yes – No 2039 1�95%
SDRAM 16M×4 No Non-interleaved Yes 1587 0�033%
SDRAM 16M×4 No Interleaved Yes 1693 0�036%
SDRAM 16M×4 Yes Non-interleaved Yes 2003 0�042%
SDRAM 16M×4 Yes Interleaved Yes 2175 0�046%
SDRAM 8M×8 No Non-interleaved Yes 1683 0�036%
SDRAM 8M×8 No Interleaved Yes 1766 0�038%
SDRAM 8M×8 Yes Non-interleaved Yes 2264 0�048%
SDRAM 8M×8 Yes Interleaved Yes 2375 0�051%
SDRAM 16M×8 No Non-interleaved Yes 1679 0�018%
SDRAM 16M×8 No Interleaved Yes 1813 0�020%
SDRAM 16M×8 Yes Non-interleaved Yes 2309 0�025%
SDRAM 16M×8 Yes Interleaved Yes 2421 0�026%
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TABLE 8.16 � Area Comparison Between Shared BIST and Non-Shared BIST

Controller Sequencer TPG Total area (# gates)

Non-shared 473×4 343×4 588×4 1404×4= 5616

Shared 496 423 606×4 3356

SRAM, two-port register file, asynchronous single-port SRAM, and SDRAM). The
second column lists the memory configurations. The third column shows whether
diagnosis is supported. The fourth column gives the bank access method: non-
interleaved or interleaved. The fifth column indicates whether or not the input data
(D) and output data (Q) are shared. Basically, shared DQ requires more complicated
implementation because of the tristate bidirectional data bus and more complex
timing. The last two columns list the area overhead of the BIST circuit in terms
of gate counts and the percentages, respectively. The results were obtained by a
popular synthesis tool using a 0�35�m CMOS standard cell library.

From Table 8.15, the area of the BIST circuit increases slightly when the size
of the memory doubles. In the BIST circuit, the area percentages of the controller,
sequencer, and TPG are approximately 34%, 25%, and 41%, respectively, for a typ-
ical �8K×16� SRAM configuration. When diagnosis support is specified, the error
handling module requires about 33% more of the original area for SRAM BIST.
For a 16M× 4 DRAM, the area percentages of the controller, sequencer, and

TPG are approximately 25%, 36%, and 39%, respectively. The percentage of the
sequencer increases due to more complex timing. From Table 8.15, doubling the
address space introduces 2.5% more area, while doubling the data width introduces
6% more area. Interleaved access costs around 7% more. In general, the area over-
head of BIST grows roughly in the log scale with respect to the memory size, so it
is relatively small for large memory cores.
Table 8.16 illustrates the case of testing multiple memory cores, assuming the

design of BIST for four identical 8K× 16 synchronous single-port SRAM cores.
Two implementations are applied: four identical BISTs for the four SRAMs and
shared controller and sequencer with four dedicated TPGs (see Figure 8.29). The
area of the shared controller and sequencer increases slightly, however, the overall
area overhead reduces greatly to about 60%.

8.5 CONCLUDING REMARKS

In this chapter we have discussed important aspects of semiconductor memory
testing, including fault models, test algorithms, fault simulation, automatic test
algorithm generation, and BIST. The BIST architecture presented in this chapter
supports March-based tests and diagnosis. By selecting an appropriate clock period,
it also tests the timing specifications. The approach is flexible because additional
test commands (other than March elements) can be included with little effort. It is
cost effective as the test time is short, the hardware overhead is low, and the test
coverage is high. Burn-in also can be supported if the design of the DRAM core can
be modified for that purpose.
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Architecture of the shared BIST for multiple memory cores.

A BIST compiler for embeddedmemories called BRAINS also has been presented,
which can be used for common SRAM and DRAM cores, such as synchronous
SRAM, asynchronous SRAM, dual-port SRAM, two-port register file, ZBT SRAM,
EDO DRAM, SDRAM, DDR DRAM, etc. Given the memory specifications and test
requirements, BRAINS generates the synthesizable RTL code for the BIST circuit
in Verilog, as well as its activation sequence, test bench, and synthesis scripts. It
performs at-speed testing and diagnosis of the RAM under test, and the March tests
are programmable. Such a tool can be used for a wide range of RAM architectures
and configurations. Also, BIST circuits can be shared among multiple memories to
reduce overall area overhead. Therefore, it is critical for SOC design.

8.6 EXERCISES

8.1 (Fault Models)

a. Show that a test detects all AFs if it contains the March elements ⇑
�rx	 � � � 	wx′� and ⇓ �rx′	 � � � 	wx�, and the memory is initialized to the
proper value before each March element. Show that MATS ��& �w0��&
�r0	w1��& �r1�
� detects all AFs.

b. What are the requirements for a March test to detect the TFs? Explain.

c. What are the requirements for a March test to detect the AFs linked with
TFs? Explain.

d. Design an irredundant March test to detect AFs, SAFs, and ↓ /1 TFs. Prove
that it is irredundant and complete.
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8.2 (Marching 1/0) Prove that Marching 1/0 is a redundant test for AFs, SAFs,
and TFs.

8.3 (MATS++) Prove that MATS++ is complete and irredundant for AFs, SAFs, and
TFs.

8.4 (March Element) Determine the March element type in the following proce-
dure. What faults can it detect?

Procedure My-March
{ for (i=0; i<n; i++) write 0 in cell[i];
pause; /* detects retention of 0 */
for (i=0; i<n; i++) read cell[i];
for (i=0 && j=n-1; i<n/2 && j>(n/2-1); i++ && j--)

{ write 1 in cell[i];
read cell[i];
write 1 in cell[j];
read cell[j]; }

pause; /* detects retention of 1 */
for (i=0; i<n; i++) read cell[i];
for (i = n/2-1 && j=n/2; i>=0 && j<n; i-- && j++)

{ write 0 in cell[i];
read cell[i];
write 0 in cell[j];
read cell[j]; } }

8.5 (Fault Coverage) Do the following four March tests have identical fault cov-
erage?

a. �⇑ �w0��⇑ �r0	w1��⇓ �r1	w0	 r0�


b. �⇑ �w1��⇑ �r1	w0��⇓ �r0	w1	 r1�


c. �⇓ �w0��⇓ �r0	w1��⇑ �r1	w0	 r0�


d. �⇓ �w1��⇓ �r1	w0��⇑ �r0	w1	 r1�


8.6 (Test Time) Can we save test time by testing a bit-oriented memory as a
word-oriented memory? Explain.

8.7 (Time Complexity)

a. What are the time complexities for MOVI, GALPAT, and Butterfly, respec-
tively?

b. What is the time for the Butterfly algorithm to test a 1-Gb bit-oriented
RAM, assuming the Read/Write access rate is 100M operations per
second?
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c. What is the time for the MOVI algorithm to test a 1-Gb word-
oriented RAM, assuming the Read/Write access rate is 100M opera-
tions per second and the word length is 16? Standard backgrounds are
used.

8.8 (Address Line Fault) A register file has 16 registers with 4 address lines
(A0	A1	A2, and A3). Design a simple March test to detect the SA0 fault on
address line A1.

8.9 (RAMSES and TAGS) Briefly describe how RAMSES and TAGS work, and
give their respective worst-case time complexity.

8.10 (Fault Descriptors) Give the fault descriptors for all the coupling faults
defined in this chapter.

8.11 (BIST Circuit) Design a BIST circuit at the behavioral RT level. Use the
March–CW test as the default test algorithm for the BIST circuit but allow the
user to program the March test algorithm from at least eight different March
elements:

� Memory size: 4K×16:

� Pin description:

Pin Description

A[11:0] Address �A11�=MSB�

D[15:0] Data Inputs �D15�=MSB�

CLK Clock Input

CEN Chip Enable

WEN Write Enable

Q[15:0] Data Outputs �Q15�=MSB)

� Function table:

CEN WEN Data Out Mode

H X Previous Data Standby

L L Data In Write

L H SRAM Data Read
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� Read-cycle timing diagram:

ta < 1.35 ns

WEN

ADD

tah > 0.01 nstas > 0.37 nstahtas

twh > 0 nstws > 0.33 nstws twh

ta

A

CEN

Q

t > 0.15t > 0.08
1.38ns

CLK

tcs > 0.31 ns tch > 0 nstchtcs

� Write-cycle timing diagram:

twh

CLK

1.38ns
t > 0.08 t > 0.15

Q

ta ta < 1.35ns

tws

ADD

tds tdh tds > 0.20ns tdh > 0ns

DATA

tws > 0.33ns twh > 0ns

tas tah tas > 0.37ns tah > 0.01ns

A

D

tcs tch
tcs > 0.31ns tch > 0ns

CEN

WEN

8.12 (A Design Practice) Repeat Problem 8.11 and use TurboBIST-
Memory provided online for the same SRAM, and compare the
results with respect to test algorithm, BIST circuit overhead,
timing penalty, fault coverage, design effort, etc.
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8.13 (FIFO Test) A FIFO has separate Read and Write ports. Each
port has its own address register that automatically increments
upon completion of a Read (Write) operation; that is, the Read
(Write) address increments upon completion of a Read (Write)

operation. Note that the Read address and Write address function inde-
pendently, and a Reset operation resets both the Read address and Write
address to 0.

a. What are the restrictions for March tests when applied to FIFOs?

b. Repeat the previous problem for a FIFO with similar specifications.

8.14 (Scrambling)

a. What is data scrambling? Why do we perform data scrambling?

b. What is address scrambling? Why do we perform address scrambling?

c. What are the faults for which scrambling must be considered during test-
ing? Explain.

8.15 (ROM BIST) Suppose we have a ROM of size 1K×35, and would like to test it
using signature analyzer-based BIST. Design the BIST circuit, where a 24-bit
signature is to be used for go/no-go comparison.
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MEMORY DIAGNOSIS AND BUILT-IN
SELF-REPAIR

Cheng-Wen Wu
National Tsing Hua University, Hsinchu, Taiwan

ABOUT THIS CHAPTER

The purpose ofmemory diagnosis is twofold: (1) locating failures and subsequently
repairing them, and (2) analyzing failures and defects and subsequently improving
design and process. Both are important for enhancing manufacturing yield.
In this chapter we first present a hybrid BIST design—with diagnosis support—

for embedded RAM. In association with the BIST design, we also will show a diag-
nosis system (called MECA) for automatic identification of the fault site and fault
type. The BIST design has a test mode that supports fault location for subsequent
laser repair or self-repair and an online programming mode for custom diagnostic
test commands. An efficient test algorithm was built in to cover all stuck-at, tran-
sition, state coupling, idempotent coupling, inversion coupling, address decoder,
and stuck-open faults of the word-oriented memory cores. The default algorithm
is March–CW, one of the Cocktail–March algorithms that we described previously
for efficient testing of word-oriented memories. The online programming mode
makes it possible for the user to apply more sophisticated diagnosis algorithms. In
addition to the fault locations necessary for repair, the syndromes of the detected
faults can also be exported by the BIST circuit. By recording the fault locations
and syndromes, the diagnosis system can identify the fault type of each faulty
cell.
Redundancy analysis (RA) algorithms are presented next, including a conven-

tional algorithm and a greedy algorithm that can be efficiently implemented on
chip, which is called the essential spare pivoting (ESP) algorithm. We will also
discuss a simulator for evaluating repair efficiency for different RA algorithms.
Finally, we present a built-in self-repair (BISR) scheme for memories with

two-dimensional redundancy structures. The BISR design is composed of a BIST
module and a built-in redundancy analysis (BIRA) module. It supports three test
modes: (1) main memory testing, (2) spare memory testing, and (3) repair. The
BIRAmodule also serves as the reconfiguration (address remapping) unit in normal
mode.
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9.1 INTRODUCTION

9.1.1 Why Memory Diagnosis?
Embedding predesigned and preverified cores into a system chip is currently a
popular methodology for system-on-chip (SOC). This reusemethodology is believed
to be indispensable for maintaining an affordable product development cycle.
Memories are among the most frequently used cores in SOC. Embedded memories
are occupying a major portion of the silicon area and consuming most of the
transistors of a typical SOC. Therefore, the yield of such a system chip is mainly
controlled by the embedded memories. Test and diagnosis of embedded memories
thus are important issues in SOC development.
We discussed BIST in the previous chapter. There are some important issues that

a pure BIST scheme does not solve, such as diagnosis and repair. High density,
high operating clock rate, and deep submicron technology are giving us more new
failures and faults in memory cores. Conventional memory automatic test equip-
ment (ATE) designed for mass production test provides only limited information
for failure analysis that usually is insufficient for fast debugging. Designers need a
diagnosis-supporting mechanism within the BIST circuit and sometimes a built-in
self-repair (BISR) scheme to increase product quality, reliability, and yield.

9.1.2 Why Memory Repair?
To avoid yield loss, redundant elements or spare elements (i.e., spare rows and
columns of storage cells) are often added so most faulty cells can be repaired (i.e.,
replaced by spare cells) [Cenker 1979] [Smith 1981] [Benevit 1982]. Redundancy,
however, adds to cost in another form. Analysis of redundancies to maximize yield
(after repair) and minimize cost is an important process during manufacturing.
Redundancy analysis (RA) using expensive memory testers is becoming inefficient
(and therefore not cost-effective) as chip density continues to grow. The use of
embedded memories creates yet another problem—embedded memories are even
more difficult to deal with using external testers [Huang 1999]. Although BIST is
a promising solution, if BIST schemes are only for functional testing, they cannot
replace external memory testers entirely. BIST with diagnosis support is still not
enough because of the large amount of diagnosis data that must be transferred
through the channel with limited bandwidth to external tester. Therefore, built-in
redundancy analysis (BIRA) and built-in self-repair (BISR) are now among the
top items to be incorporated with memory cores.

9.2 REFINED FAULT MODELS AND DIAGNOSTIC TEST ALGORITHMS

The functional fault models we use for the memory under test are the same as those
discussed in Chapter 8, including stuck-at fault (SAF), transition fault (TF), stuck-
open fault (SOF), address decoder fault (AF), inversion coupling fault (CFin),
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idempotent coupling fault (CFid), state coupling fault (CFst), etc. However, in
diagnosis we need to know not only the fault site but also the root cause of the fail-
ure. It is helpful to refine fault models so more detailed behavior can be identified.
A coupling fault can be expressed by the state or operations of the coupling cell

(called the aggressor), the state or operations of the coupled cell (called the victim),
and the fault content. For example, (↓ ; �) is a CFin where the victim is inverted
when the aggressor goes through a falling transition; (1;1/0) is a CFst where the
aggressor with state 1 forces the victim to transit from 1 to 0; and (↑ ;1/0) is a CFid
where the victim is forced to transit from 1 to 0 when the aggressor goes through
a rising transition. Table 9.1 lists all the fault models considered here, with the
notation for each specific fault type. In the table, Agr is the state of the aggressor,
Vtm the state of the victim (in the form of fault-free/faulty state or an inversion),
and Addr the relation between the aggressor address and victim address. Note that
for diagnosis, we need to specify the relation between the aggressor address and
victim address (i.e., which one is higher in the address space). In the Addr column
of the table, A > V means that the aggressor address is greater than the victim
address, and A < V means the other way around.
It has been shown that all the above faults can be completely and efficiently

tested by the March–CW algorithm [Wu 1999], which is a fast Cocktail–March test
algorithm extended from March C−. It consists of several conventional March tests,
each of them running on a specific data background. The March–CW algorithm for
8-bit word-oriented memories is shown in Figure 9.1.
Here, we focus on synchronous SRAM. Asynchronous SRAM is easier to deal with

as far as functional test is concerned, because they are conventional RAMs without
pipelining or sophisticated interface. By inspecting the timing specifications of
the asynchronous SRAM, an appropriate clock cycle can be determined and the
SRAM is tested as a synchronous one [Huang 1999]. This is quite similar to what a
memory controller does. The Read/Write timing between the BIST circuit and the
synchronous SRAM has to be synchronized by the system clock. During the Read
or Write cycle of the target SRAM (see Figure 9.2), the address and Output-Enable
(OE) signals should be asserted before the positive clock edge, and the data should
be ready at the next positive clock edge. In this particular case the input data (DI)
and output data (DO) use separate IO channels; therefore, the Write operation can
write to both the cell array (from the data input channel) and data output channel
if output is enabled. This is called the write-through operation.
The embedded synchronous SRAM may also have a pipelined access mode to

raise clock rate. In the pipelined architecture, Read/Write latency can be more than
one clock cycle. The corresponding data are ready after several cycles, when the
address and OE signals are asserted. Similarly, in burst access mode we can use a
single address and the Read/Write command to access a contiguous run of data. For
functional test and diagnosis, we run March tests using single Read/Write modes
(i.e., without pipelining or burst access), as it is effective and easy to implement.
The pipeline and burst-mode logic is not our concern here—it can be tested easily
(e.g., by a pipelined/burst-mode Read/Write sequence issued from an embedded
processor on the same SOC).
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TABLE 9.1 � Fault Models and Notation

Name Agr Vtm Addr

SAF0 — 1/0 —
SAF1 — 0/1 —
TF0 — ↓ /1 —
TF1 — ↑ /1 —
CFin0 ↓ � A < V
CFin1 ↓ � A > V
CFin2 ↑ � A < V
CFin3 ↑ � A > V
CFst0 0 1/0 A < V
CFst1 0 1/0 A > V
CFst2 0 0/1 A < V
CFst3 0 0/1 A > V
CFst4 1 1/0 A < V
CFst5 1 1/0 A > V
CFst6 1 0/1 A < V
CFst7 1 0/1 A > V
CFid0 ↓ 1/0 A < V
CFid1 ↓ 1/0 A > V
CFid2 ↓ 0/1 A < V
CFid3 ↓ 0/1 A > V
CFid4 ↑ 1/0 A < V
CFid5 ↑ 1/0 A > V
CFid6 ↑ 0/1 A < V
CFid7 ↑ 0/1 A > V
AF0 — — A < V
AF1 — — A > V
SOF0 — — addr= 0
SOF1 — — 0< addr <N−1
SOF2 — — addr= N−1

1. �& �wa1�; ⇑ �ra1	wa′1�; ⇑ �ra′1	wa1�; ⇓ �ra1	wa′1�; ⇓ �ra′1	wa1	 ra1�; & �ra1�


2. �& �wa2	wa′2	 ra
′
2	wa2	 ra2�


3. �& �wa3	wa′3	 ra
′
3	wa3	 ra3�


4. �& �wa4	wa′4	 ra
′
4	wa4	 ra4�


� FIGURE 9.1

March–CW for 8-bit word-oriented memories, where a1 = 00000000� a2 = 00001111� a3 = 00110011,
and a4 = 01010101.
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Block diagram of BIST and SRAM core.

9.3 BIST WITH DIAGNOSTIC SUPPORT

Figure 9.2 shows the architecture of the BIST design. It also shows connections
between BIST and the embedded SRAM. The clock of the synchronous SRAM can
be shared by the BIST circuit, so there is no need for an additional test clock. The
BIST core consists of three blocks: controller (CTR), test pattern generator (TPG),
and fault site indicator (FSI). It also has a set of multiplexers to form the test collar
for the SRAM, switching between the BIST and Normal operation modes under the
control of the BNS (BIST/Normal Select) signal. The test_se signal enables scan test
for the BIST circuit itself. In Scan-Test mode, the BIST Serial-In (BSI) terminal
takes the scan input data, and the BIST Serial-Out (BSO) terminal is the output
data port of the scan chain. The BIST scan chain can be linked to other scan chains
on the chip.

9.3.1 Controller
The CTR controls the overall test procedure and issues test commands for the test
pattern generator (TPG) that generates test patterns for the targeted SRAM. It has
two operation modes: Test and Analysis (or Diagnosis). The modes are selected by
the BIST Mode Select (BMS) signal. In Test mode, the CTR sends a set of built-in
commands to the TPG, based on the default test algorithm. In Analysis mode, the
test algorithm is user programmable, and test commands are shifted in from the
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Done = 0

Idle
cmd end

FinishGet_Cmd

Apply

Test mode

Done = 1

� FIGURE 9.3

The CTR state diagram in Test mode.

BSI input. Note that the built-in commands are also programmable at the RT level;
that is, they can be modified by the circuit designer before synthesis of the BIST
circuit, so, new fault models can be covered. State diagrams of the CTR in Test and
Analysis modes are shown in Figures 9.3 and 9.4, respectively.
In Test mode, the BIST State Control (BSC) input should stay at 1, and state

transition follows the default sequence automatically. By applying a 0 to BSC,
we force CTR to the Idle state (also known as the Reset state). The BIST Reset
(BRS) signal also drives CTR to the Idle state. From the Idle state, CTR goes to the
Get_Cmd state to fetch the first command from a look-up table and send it by the
CMD channel to TPG. It then goes to the Apply state to generate the handshaking
signal (ENA) to enable TPG. When TPG is executing the test command, CTR returns
to the Idle state. When TPG completes the test command, the DONE signal goes
high, and CTR enters the Get_Cmd state again to fetch the next command. The
process is repeated as long as there are commands to be executed. In the Get_Cmd
state, if all the commands have been executed, CTR goes to the Finish state and
sends the Null command to terminate Test mode. Also, the BIST Go/No-Go (BGO)
signal reports the testing result. The built-in test algorithm (i.e., March–CW) is
stored in a look-up table as a set of test commands.

BSC = 0

Idle

Analysis mode

Finish

BSC = 0

Active

BSC = 1Apply

BSC = 1Scan_in

BSC = 0

Done = 1

BSC = 0

BSC = 1

BSC = 1

BSC = 0

� FIGURE 9.4

The CTR state diagram in Analysis mode.
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In Analysis mode, the state transition of CTR is controlled by an external host
(tester) through the BSC signal. After the Idle state, CTR goes to the Active state and
then the Scan_In state if we apply 10 to BSC. In this state, CTR gets the command
serially from the BSI input, then goes to the Apply state to enable TPG in a similar
way as Test Mode. Note that CTR will go through the Idle and Active states again
before entering the Apply state. This allows one to pause at the Idle state before
applying test patterns. After the command is executed, BGO output will indicate
the completion of the test command. The host can then apply the next command.
A test command consists of a 1-bit March direction (ascending or descending), a

4-bit operation code (Opcode), and a data background word whose width depends
on the data width of SRAM, as shown in Figure 9.5. The 4-bit Opcode allows at most
16 different memory operations, such as wa	 rawa′	 rawa′ra′	warawa′ra′, etc. Note
that the Opcode set is configurable at the register transfer level like the built-in test
algorithm mentioned above. We can use the test commands to generate commonly
used March-based test/diagnosis algorithms.

9.3.2 Test Pattern Generator
The test pattern generator executes the test commands issued by CTR and generates
the corresponding SRAM input signals, including the data, address, and control
signals. A TPG state diagram is illustrated in Figure 9.6. Again, the Idle state is
the default state after resetting TPG. When it is enabled by CTR, TPG goes to
the Init state to initialize Address Counter and Session Counter. Session Counter
keeps track of the SRAM Read/Write operation (session) that is being executed on
the current address. For example, if the test command is rawa′, then the session
value is 0 for ra and 1 for wa′, respectively. The session value is used to select the
current operation being applied to the SRAM under test. Depending on the selected
operation, either the Write-Enable (WE) or Output-Enable (OE) signal is asserted.
After decoding the Opcode, we obtain the SRAM operation sequence. If the

Opcode is not a terminal command, TPG goes through the Ifetch, Exec, Dfetch, and
Compare states in sequence; otherwise, it goes to the Go state and sets the TGO (see
Figure 9.2) value to 1 (for Go) or 0 (for No-Go) depending on whether faults have
been detected. In the Ifetch-Exec-Dfetch-Compare state sequence, TPG fetches the
timing control data from the lookup table according to the current session value,
then waits in the Exec state for a period of time equal to the SRAM access latency.
In the experimental case the latency is one clock cycle. In the Dfetch state we get
the output data from SRAM, then compare it with the fault-free data to obtain the
error syndrome. If the syndrome value is non-zero (i.e., errors are found), TPG goes
to the Wait state and stores the information of the current operation in the Error

U/D OP Data
1 4 Wbits

� FIGURE 9.5

The test command format.
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The test pattern generator state diagram.

Operation Protocol (EOP) registers. The error operation information includes the
error address, the fault-detecting operation indicated by the session number, and
the output data from memory. The format of EOP registers is shown in Figure 9.7.
TPG resumes its execution cycle upon receiving the Continue (CONT) signal from
FSI. If the syndrome value is zero (i.e., no errors are found), the session number is
incremented by 1 and TPG repeats the Ifetch-Exec-Dfetch-Dfetch state loop until
we reach the last session for the current address. When the last session is reached,
the session counter is reset to 0 and we advance to the next address. After finishing
all addresses, TPG goes to the Idle state and sets the DONE signal to 1. Figure 9.8
shows the timing diagram of the waveform generated by TPG when executing the
rawa′ (write through) test element at address 000c, with the all-0 (i.e., solid) data
background. Note that TPG is easily configurable at the register transfer level to
accommodate SRAMs with different latencies.

9.3.3 Fault Site Indicator (FSI)
The fault site indicator receives error information from TPG and sends it to the BSO
output serially using a scan chain. When a fault is detected, TPG enters the Wait

Addr Session # Syndrome
WlogN 3bits

� FIGURE 9.7

The EOP register format.
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Timing diagram generated by TPG.

state, issues the Error (ERR) signal, and sets the Error Operation Protocol (EOP)
data for the FSI. FSI then sets the BIST Error Flag (BEF) signal and sends the
error information to the BSO output. After the EOP content is completely shifted
out, FSI sets the CONT signal to allow TPG to continue the execution of the current
test command. The timing diagram for FSI is shown in Figure 9.9.
When more area overhead is acceptable, the data compression function for error

syndromes [Li 2000a,b] can be implemented in FSI. Data compression can reduce
the size of the diagnosis data transmitted from the BIST circuit to the external tester.
Testing time and ATE memory requirement thus can be reduced significantly.

ERR

EOP 1001....10

BEF

BSO

CONT

CLK

� FIGURE 9.9

FSI timing diagram.
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9.4 RAM DEFECT DIAGNOSIS AND FAILURE ANALYSIS

After collecting the EOP data from FSI, the error bitmap of the faulty SRAM for
every Read operation can be obtained. If the SRAM has redundant resources (such
as spare rows/columns), it can be repaired according to these error addresses.
Moreover, the designers and process engineers can identify the fault type and
failure mode by offline analysis using the EOP data. Arranged properly, the error
data can be represented in the form of March syndromes [Wu 2000b]. A March
syndrome shows the comparison results of all Read operations, which are either
correct (represented by a 0) or incorrect (represented by a 1), during the testing
process. For example, if a particular address has a syndrome (1100), then it means
the first and second Read operations for this address return incorrect values. With
the help of RAMSES [Wu 1999], a fault dictionary can be generated from these
syndromes. The fault dictionary is constructed from the simulated responses under
the given test algorithm and fault models [Abramovici 1990]. The fault dictionary
approach for diagnosis is suited to memories, because the dictionary is just a small
table—there is no need to create a different entry for each different memory cell.
Table 9.2 shows the fault dictionary of the following March test called IFA9N:

E0 E1 E2 E3 E4 E5 E6 E7 E8

⇑ �w0�; ⇑ �r0	w1�; ⇑ �r1	w0�; ⇓ �r0	w1�; ⇓ �r1	w0�

In the table, E0 to E8 represent the nine Read/Write operations in the algorithm.
The value for a Write operation is always 0, because a March test will not detect
faults during the Write operation. In a normal situation only Read operations can
detect faults, and the Write operations can only activate faults; however, if the
SRAM has a write-through mechanism, then the Write operation may detect fault
in the write-through logic. The March signature for each fault model is the error-
domain response of the March test when the fault exists and is represented by the
corresponding row in the table. That is, the fault dictionary is the table of March
signatures for all target fault models. In a March signature for fault f , there is a 1
in the table entry Ei if and only if fault f is detected by the (Read) operation Ei. For
example, CFin3 is detected by E3 and E5, so its March signature is (000101000).

To measure the quality of a diagnosis test algorithm, we use the diagnosability
ratio (DR), defined as the ratio of the number of distinguishable fault types among
the number of total detectable fault types. For example, the DR of IFA9N is 10/27=
37%, which is quite low. All the equivalent classes of fault types are listed as follows:

�SAF1

�CFin2

�CFin3

�TF1	 SAF0

�SOF0	AF0

�SOF2	AF1	CFin1

�CFid6	CFst3	CFst6
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TABLE 9.2 � Fault Dictionary for IFA9N

Name/Operation E 0 E1 E2 E3 E4 E5 E6 E7 E8

SAF0 0 0 0 1 0 0 0 1 0
SAF1 0 1 0 0 0 1 0 0 0
TF0 0 0 0 0 0 1 0 0 0
TF1 0 0 0 1 0 0 0 1 0
CFin0 0 0 0 1 0 0 0 0 0
CFin1 0 0 0 0 0 1 0 1 0
CFin2 0 1 0 0 0 0 0 1 0
CFin3 0 0 0 1 0 1 0 0 0
CFst0 0 0 0 1 0 0 0 0 0
CFst1 0 0 0 0 0 0 0 1 0
CFst2 0 0 0 0 0 1 0 0 0
CFst3 0 1 0 0 0 0 0 0 0
CFst4 0 0 0 0 0 0 0 1 0
CFst5 0 0 0 1 0 0 0 0 0
CFst6 0 1 0 0 0 0 0 0 0
CFst7 0 0 0 0 0 1 0 0 0
CFid0 0 0 0 1 0 0 0 0 0
CFid1 0 0 0 0 0 0 0 1 0
CFid2 0 0 0 0 0 0 0 0 0
CFid3 0 0 0 0 0 1 0 0 0
CFid4 0 0 0 0 0 0 0 1 0
CFid5 0 0 0 1 0 0 0 0 0
CFid6 0 1 0 0 0 0 0 0 0
CFid7 0 0 0 0 0 1 0 0 0
SOF0 0 1 0 1 0 0 0 0 0
SOF1 0 0 0 0 0 0 0 0 0
SOF2 0 0 0 0 0 1 0 1 0
AF0 0 1 0 1 0 0 0 0 0
AF1 0 0 0 0 0 1 0 1 0

�CFst1	CFst4	CFid1CFid4

�TF0	CFid3	CFid7	CFst2	CFst7

�CFst0	CFst5	CFid0	CFid5	CFin0


The fault types in each group are indistinguishable under the simple IFA9N test
algorithm, as they have identical fault signatures. However, they may be distinguish-
able under other test algorithms. To distinguish them, a longer and more complex
algorithm is required. The IFA9N algorithm apparently is not a good diagnosis
algorithm. In [Li 2001c], a 17N algorithm is shown to be effective for the target
faults discussed here. Because the BIST circuit is programmable, the 17N diagnosis
algorithm can be applied easily.
We also have developed an automatic diagnosis system—the Memory Error

Catch and Analysis (MECA) system—that can identify fault types by comparing
the syndrome of each faulty cell with all March signatures in the fault dictionary
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[Wu 2000b]. When the syndrome of a faulty cell matches a March signature in the
dictionary, the system will report the corresponding fault type. For example, if a
faulty cell has a syndrome (000101000), then the system compares it with the fault
dictionary, and reports that the cell has a CFin3 fault.

From the ATE data log the error bitmaps can be obtained. Error analysis is a
procedure that takes the error bitmaps and the fault dictionary as input and gener-
ates fault bitmaps that contain fault locations and fault types. The MECA system
is shown in Figure 9.10. The main components are RAMSES (the memory fault
simulator [Wu 1999]), TAGS (the test algorithm generator [Wu 2000a]), and the
Analysis Engine. For any RAM under test, we have user-specified test requirements
(i.e., the target fault models, fault coverage, diagnosability ratio, and test length).
RAMSES evaluates the fault coverage and diagnosability ratio and generates the
fault dictionary for the March test. TAGS generates a March test based on RAMSES
results to meet the test requirements. After applying the test, the results are sent to
the Analysis Engine, which in turn generates error bitmaps and subsequently fault
bitmaps.
With the BIST circuit and MECA system, we can easily construct fault bitmaps

for RAM, one for each fault model. In each fault bitmap, the distribution of the
faulty cells is detailed by a visual diagram.
As an example, we use the IFA9N test algorithm for an industrial 16K×9 SRAM.

Table 9.3 shows the summary of diagnosis result of this memory chip. According
to the diagnosis result, we can see that more than 95% of the faults are SAF1, SAF0,
and TF1. The number of coupling faults is small compared with stuck-at faults
for this particular case. The address scrambling table was provided by the SRAM
designer, so we were able to generate fault bitmaps with the correct floorplan and
physical location of each cell.

TAGS

RAMSES

March Test

Tester

Data Log

March Test

Test Requirements

UUT

Fault Coverage & 
Diagnosis Resolution

Fault Maps

March 
Dictionary Analysis 

Engine

� FIGURE 9.10

The MECA system.
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TABLE 9.3 � Summary of Diagnosis Results Using
IFA9N

Equivalent Fault Class Instances

�SAF1� 51�7%

�TF1� SAF0� 43�9%

�SOF2� AF1� CFin1� 0�2%

�CFin2� 0�1%

�CFin3� 0�1%

�SOF0� AF0� 0�1%

�CFid6� CFst3� CFst6� 0�1%

�CFst1� CFst4� CFid1CFid4� 0�1%

�TF0� CFid3� CFid7� CFst2� CFst7� 0�1%

�CFst0� CFst5� CFid0� CFid5� CFin0� 0�1%

9.5 RAM REDUNDANCY ANALYSIS ALGORITHMS

9.5.1 Conventional Redundancy Analysis Algorithms
Conventionally, redundancy analysis (RA) is performed on a memory tester using
software. The tester stores the bitmap (a map of the faulty cells) after a diagnostic
test and performs redundancy analysis based on the bitmap. Software analysis is
slow, so normally only simple heuristic algorithms are used. Most such algorithms
consist of two phases: must-repair followed by final-repair. In the must-repair
phase, all faulty lines that must be repaired are identified first, limiting the number
of remaining faulty cells. In the final-repair phase, simple algorithms, such as
the fault-driven, row-first, and column-first algorithms, are used. For example, a
greedy redundancy analysis algorithm called the repair-most (RM) algorithm was
presented in [Tarr 1984]. The RM algorithm also consists of the must-repair phase
and final-repair phase. Error counters for the respective faulty rows and columns
are required in the RM analysis. The fault-driven algorithm (based on exhaustive
search) generates all possible spare allocations to find the optimal one [Day 1985].
The exhaustive search approach is slow. Also, finding that the optimal solution
is NP complete has been proven by transforming it in polynomial time to the
bipartite-graph clique problem [Kuo 1987]. Branch-and-bound and approximation
algorithms can be used to reduce search time. An improved approach called the
faulty-line covering technique and a heuristic criterion allowing fast repair were
later presented in [Huang 1990]. In addition, there are other redundancy analysis
techniques which are mainly for fast repairability decision [Wey 1987] [Haddad
1991]. Most of the conventional redundancy analysis approaches, however, assume
the availability of a memory tester with high computing power, memory capacity,
and flexibility. Suchmemory testers would be very expensive. It is clear that analysis
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time (or tester throughput) is critical as far as cost is concerned [Haddad 1991].
The use of BIRA (with BIST) will greatly increase tester throughput.
Before discussing more efficient approaches, we must first define the terminology

and notation. A memory block consists of M rows and N columns of storage cells
(i.e., an M×N array of cells). The origin of the cell array is the upper left corner.
There are r spare rows and c spare columns. We follow the definitions given in
[Huang 1990].

Definition 9.1

A faulty line l is either a row or a column in which one or more faulty cells exist.
The number of faulty cells in l is Fl. A faulty line is either a faulty row or a faulty
column.

Definition 9.2

A faulty line is said to be covered if all faulty cells on the line have been scheduled
to be repaired by specific spare rows and/or spare columns.

Definition 9.3

A faulty cell that does not share any row or column with any other faulty cell is
referred to as an orthogonal faulty cell.

Let the numbers of available spare rows and available spare columns during the
analysis process be denoted as ra and ca, respectively. Also, F denotes the total
number of faulty cells in the memory block, and F⊥ represents the number of
orthogonal faulty cells. Two important early termination conditions are as follows:

Condition 1. After must-repair phase, F > 2raca.
Condition 2. F⊥ > ra+ca.

If either condition is true, then the analysis process stops. Early termination con-
ditions help identify memories that cannot be repaired by available spares. Also,
during analysis, any faulty line that consists of k faulty cells requires either 1 spare
line in the same direction or k perpendicular spare lines. Therefore, any faulty row
(column) with k faulty cells, where k > ca�k > ra�, is a must-repair faulty line. We
thus have the following two additional early termination conditions:

Condition 3. nr > ra if ca = 0, where nr is the number of faulty rows not covered
so far.
Condition 4. nc > ca if ra = 0, where nc is the number of faulty columns not
covered so far.

If any of the above four conditions is true, then the memory block is unrepairable.
Unlike the fault-driven approach, the repair-most approach is straightforward

and simple. The Fl values of all faulty lines are calculated during bitmap con-
struction. The faulty lines are ordered according to their Fl values—the first line
to be repaired is the one with the largest Fl value. Row and column counters are
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A defective memory block of the worst case.

still required for keeping fault counts of the faulty lines. Apparently bitmap is a
necessary tool for repair-most analysis.
A defective memory block of the worst case is shown in Figure 9.11, where

F = 2raca, and all available spare rows and columns have to be used for repairing
the faulty lines. Specifically, available spare rows cover ra faulty rows, where each
faulty row has ca faulty cells, and among these faulty rows no cells share the same
column address. Therefore, the faulty cells in these rows are located in ca × ra
different columns. Similarly, the ca faulty lines covered by available spare columns
have ra× ca row addresses for the faulty cells. In this special case, the width of
the bitmap is cara+ ca and the height is raca+ ra. Therefore, in general, the size
of the bitmap can be limited to �raca+ ra�× �cara+ ca� instead of M×N after the
must-repair phase. Note that we assume Fr ≤ ca and Fc ≤ ra after must-repair phase,
where Fr�Fc� is the maximum number of faulty cells in a row (column).
In addition to the bitmap, a total of �raca+ ra� (each has log�ca+ 1� bits) row

counters and �cara+ca� (each has log�ra+1� bits) column counters are required. The
row counter for a faulty row l stores Fl, which is tagged by the logN-bit row address.
Similarly, the column counter for a faulty column l stores Fl, which is tagged by the
logM-bit column address. Note that, thanks to the must-repair phase, the maximum
Fl value of any faulty row (column) can be limited to c+1�r+1� without affecting
the result. Therefore, even if the must-repair phase is skipped, the maximum size
of the bitmap can still be limited to �r�c+1�+ r�× �c�r+1�+ c�. However, in that
case the complexity of on-chip analysis circuitry could be unaffordable due to the
high storage requirement of the repair-most algorithms.
For the fault-driven algorithms, including those using exhaustive search and those

using heuristics, the control (e.g., tree expansion) usually is complicated, so its
hardware is difficult to realize. Also, it is slow. Consequently, redundancy analysis
algorithms are based on the repair-most approach.

9.5.2 The Essential Spare Pivoting Algorithm
Storing full bitmap on-chip for the purpose of redundancy analysis obviously is
not feasible. The goal is for the BIRA circuit to properly allocate redundancies
in parallel with the BIST operation. The area overhead should be low and repair
efficiency should be high. The repair efficiency is defined as the repair rate with
respect to unit area overhead. Because repair-most algorithms rely on a bitmap as
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the basic tool for redundancy analysis, it seems that a bitmap is inevitable. This
is not true. We now present the essential spare pivoting (ESP) algorithm, which
does not use a bitmap [Huang 2003].
We observe the following general guidelines for redundancy analysis.

1. A faulty row is more suitable for row repair when there are more faults in the
row than in any of the columns of the corresponding faulty cells in the row.
Likewise, a faulty column is more suitable for column repair when there are
more faults in the column than in any of the rows of the corresponding faulty
cells in the column.

2. An orthogonal fault can be repaired by either a spare row or a spare column.
Orthogonal faults should be processed after all others.

The first guideline leads to the repair-most-based algorithms. A full bitmap or
various local bitmaps are required to perform analysis. Because our goal is to repair
without bitmaps, we revise the first guideline as follows:

� For any faulty row (column), if the number of faulty cells is greater than or
equivalent to a threshold number (Eth), repair it by a spare row (column).

This guideline is similar to the must-repair rule, except that the decision is based on
a customized threshold number, Eth, instead of ra and ca. In the analysis procedure,
we maintain a counter for the number of faults in each faulty line. When the
number reaches Eth, it is marked as an essential line. The second guideline shown
above states that an orthogonal fault should be recognized early but processed after
all others. The reason is that, for example, while ca > 0 and ra > 0, if we repair
an orthogonal fault by a spare row before repairing other nonorthogonal faults,
we may lose the chance to repair more faults with this spare row, because that
orthogonal fault can also be repaired by a spare column. Based on the discussion,
the greedy algorithm ESP is presented in Figure 9.12. Here, we assume the spare
memory is fault-free.
The function ESP_FC() collects the faulty-cell addresses and stores them in the

PR (row pivot) and PC (column pivot) register files. Both have r+c registers, and all
registers are initially empty. During the FC phase, if the number of faults exceeds
r+c, this memory is unrepairable and the process terminates. An incoming faulty-
cell address �R̂	 Ĉ� is compared with the existing row pivots and column pivots in
the register file. If there is a row-address match or column-address match, the
matched pivot is marked as an essential pivot (EP). If there is no match, the row
address and column address of the current faulty cell are stored in the PR and PC

registers, respectively. In ESP_FC() we apply the revised first guideline. Note that in
the algorithm shown in Figure 9.12, Eth is assumed to be 2, so threshold comparison
is greatly simplified. We will show in the next section that the repair rate is high in
this case. We need only a flag along with each pivot to indicate whether it is an EP.
The function ESP_SA() allocates spares to repair faults according to the contents

of the PR and PC registers. It consists of two stages. In the first stage we allocate
spare rows for the essential row pivots and spare columns for the essential column
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� FIGURE 9.12

The essential spare pivoting algorithm.

pivots. After the first stage, the pivot registers contain all and only the addresses
of orthogonal faults, because they have never matched other faulty-cell addresses.
We can repair these faults by either spare rows or spare columns. In ESP_SA(), we
simply allocate available spare rows before spare columns.

Example 9.1

Let the memory block under test be shown in Figure 9.13. The faulty cells detected
are, in sequence, cell(1,0), cell(1,6), cell(2,4), cell(3,4), cell(5,1), cell(5,2), cell(5,4),
cell(5,6), cell(5,7), and cell(7,3). The FC procedure is illustrated in Figure 9.14. In
the figure, the row_pivot and column_pivot registers are shown as the left and
right columns of the register array, respectively. For each faulty-cell address, the
row_pivot is stored in the left column and the column_pivot is stored in the right
column. There is a circle on a pivot if it is an essential pivot. In the beginning,
the register array is empty, so the first address (1,0) is stored in the first row
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A memory block with defective cells.
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Fault collection example in ESP.

of the array directly. The second address (1,6) matches (1,0) in the row address,
so the row_pivot of cell(1,0) is marked as an EP. Similarly, the address (2,4) is
inserted directly, while address (3,4) matches (2,4) in its column address, thus the
column_pivot of cell(2,4) is marked as an EP. This procedure continues until the
address (7,3) is recorded. The SA procedure is simple: first we allocate spares for
the EPs—row 1, row 5, and column 4, then we use a spare column to repair the
orthogonal fault on cell(7,3).
The major advantage of ESP is mainly its simplicity in implementation which

results in smaller area overhead than other algorithms. The revised first guideline
provides a simple search method for orthogonal faults. In the SA stage of the ESP
algorithm, orthogonal faults and nonorthogonal faults can be easily separated by
checking their EP flags. The automatic recognition for orthogonal faults greatly
increases the repair efficiency. These features make the ESP algorithm small, fast,
and easily implementable.
The BIRA algorithms are presented for localized redundancy architecture; how-

ever, the cost function in spare allocation can be easily adapted for the redundancy
architecture with global or shared spare resources. With the help of an evaluation
tool for repair efficiency, the most effective BIRA algorithmwith an optimized spare
architecture can be found for specific manufacturing processes systematically.
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9.5.3 Repair Rate and Overhead
A simulator such as BRAVES (Built-in Redundancy Analysis Verification and Eval-
uation System) [Huang 2003] can be used for analyzing the efficiency of the redun-
dancy analysis and repair algorithms. The distribution of defect sizes on memory
chips usually is modeled by mixed Poisson statistics using the Gamma distribution,
resulting in a Polya–Eggenberger distribution [Stapper 1980]. In BRAVES, a mixed
Poisson and exponential distribution is assumed, as the mixed Poisson and expo-
nential model is accurate enough for the said purpose, and different conditions can
be applied in the simulator for different redundancy analysis algorithms. There are
two types of faults that we can inject into the memory to be simulated: cell fault
and line fault. The cell fault represents an independent individual fault, while a
line fault occurs when multiple faults exist in the same line, such as the case of a
faulty wordline or bitline. Figure 9.15 shows a size distribution of cell faults using
a mixed Poisson and exponential distribution model. The size distribution for line
faults looks similar, except the probabilities are lower. With the simulator, we can
simulate a random collection of memory instances for a specified range of spare
count and failure patterns, given a test algorithm. A high repair rate implies a high
yield after repair, if the area overhead is roughly the same.
Figure 9.16 shows a particular simulation result from an example, where 1552

memory blocks with a core size of 1024×64 bits are simulated, assuming r= 10 and
c ranges from 2 to 6. The ESP result is compared with some other BIRA algorithms
reported in [Huang 2003], including the optimal and repair-most algorithms. The
ESP algorithm is close to optimal if most of the faults are independent cell faults,
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Size distribution for cell faults.
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Simulation result for r = 10.

as is assumed in this case. Note that the relative efficiency of these algorithms will
vary in different memory configurations and spare architectures.
As to hardware (area) overhead, the storage requirement is calculated for

estimating the hardware overhead because all the algorithms require storage cells
with matching capabilities, and the storage cells dominate the silicon area of the
BIRA circuit. A row address tag and a column address tag require �logM�+1 bits
and �logN�+ 1 bits, respectively. The orthogonal-fault heuristics require �r+ c�·
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��logM�+�logN�+1� storage cells. Therefore, the area overhead of the ESP algo-
rithm is estimated as follows:

AESP = �r+c� · ���logM�+1�+ ��logN�+1�� (9.1)

Aspare_register = ��logM�+1� · r+ ��logN�+1� ·c (9.2)

where Aspare_register denotes the area for the spare row and column registers, which
are required for all the three algorithms.

9.6 BUILT-IN SELF-REPAIR

9.6.1 Redundancy Organization
The redundancy organization of a RAM affects not only the repair rate but also the
area cost of the BIRA circuitry. Figure 9.17 shows a RAM cell array with redundancy
rows and columns. In the figure, a 512-bit RAM has two spare rows at the bottom
and four spare columns on the right. If there is a faulty row, any of the spare
rows (SR0 and SR1) can be used to replace it; however, spare columns are used
differently: We partition them into several spare column groups (SCGs). In the
figure, two spare columns are grouped into an SCG; the group size is 2—group
SCG0 (resp. SCG1) contains columns SC0 and SC1 (resp. SC2 and SC3). Also, a
word is divided into multiple subwords, where a subword contains consecutive bits
of the word, whose length is the same as the group size. For example, assume that
the number of words of a row in the RAM as shown in Figure 9.17 is four and the
word length is eight. Then a word can be divided into four subwords as shown in the
figure. Moreover, each SCG is logically divided into segments for better utilization;
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An example RAM with two spare rows and two spare column groups.
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that is, the segments of a spare column are not physically divided by local sense
amplifiers. The switching from main memory to spare column groups is controlled
by the BISR circuit, so only the multiplexers induce additional access time and area
cost. In Figure 9.17, one SCG has four segments (SEG0, SEG1, SEG2, and SEG3).
The segments are identified by the first two most significant bits (MSBs) of the
row address. Let the row addresses be a3a2a1a0, then a3a2 specifies the segment
where the addressed row sits. Different segments of an SCG can be used to repair
defective cells in different columns of the main memory. For example, if cells C0,
C1, C2, and C3 (see Figure 9.17) are faulty, then SEG0 and SEG1 of SCG0 can be
used to replace them.
If the number of segments of each SCG is increased, the utilization of SCGs is also

increased. Thus, better repair rates usually can be achieved. However, the hardware
complexity of BISR is increased, as more storage elements are required to store
redundancy information. Note that spare rows also can be logically divided into
segments, though this is not shown in the example. We have developed a simulator
for evaluating the RA algorithms of redundancy-repairable memories [Huang 2002]
[Huang 2003]. The simulator can help the user to determine a good redundancy
organization for the applied redundancy analysis algorithm.

9.6.2 BISR Architecture and Procedure
Figure 9.18 depicts the block diagram of the presented BISR scheme, including the
BIST module, BIRA module, and test wrapper for the memory. The BIST circuit
detects the faults in the main memory and spare memory. It is programmable at
the March element level [Huang 1999]. The BIRA circuit performs redundancy
allocation using a novel RA algorithm (to be discussed later). The test wrapper
switches the memory between test/repair mode and normal mode. In test/repair
mode the memory is accessed by the BIST module, while in normal mode the
wrapper selects the data outputs either from the main memory or the spare memory
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Block diagram of the presented BISR scheme.
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(replacing the faulty memory cells) depending on the control signals from the BIRA
module.
This BISR is a soft repair scheme; therefore, the BISRmodule will perform testing,

analysis, and repair upon every power-up. As Figure 9.18 shows, the BIST circuit is
activated by the Power-On Reset (POR) signal. More details of the BIST design are
provided in Section 9.6.3. The BISR procedure is shown in Figure 9.19. When we
turn on the power, the BIST module starts to test the spare memory. Once a fault is
detected, it informs the BIRA module to mark the defective spare row or column as
faulty through the Error (ERR) and Fault Syndrome (FS) signals. After finishing
the spare memory test, it tests the main memory. If a fault is detected (ERR outputs
a pulse), the test process pauses and the BIST module exports FS to the BIRA
module, which then performs the RA procedure. When the procedure is completed
and the memory testing is not yet finished, the BIRA module issues a Continue
(CNT) signal to resume the test process. During the RA procedure, if a spare row
is requested but there are no more spare rows, the BIRA module exports the faulty
row address through the Export Mask Address (EMA) and Mask Address Output
(MAO) signals. The memory will then be operated at a downgraded mode (i.e.,
with a smaller usable capacity) by software-based address remapping. For example,
assume that a memory with multiple blocks is used for buffering, and the blocks
are chained by pointers. If some block is faulty and should be masked, then the
pointers are updated to invalidate the block. The size of the memory is reduced, as
one block is removed. The system still works if a smaller buffer is allowed, though
performance may be affected. This approach effectively increases the product yield.
The number of blocks that can be invalidated normally depends on the performance
penalty that can be tolerated. If downgrade mode is not allowed, MAO is removed
and EMA indicates whether the memory is repairable.
When the main memory test and RA are finished, the Repair End Flag (REF)

signal goes high and the BIRA module switches to the normal mode. The BIRA
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Power-on BISR procedure.
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module then serves as the address remapper, and the memory can be accessed using
the original address (ADDR). When the memory is accessed, ADDR is compared
with the fault addresses stored in the BIRA module. If ADDR is the same as any of
the fault addresses, the BIRA module controls the wrapper to remap the access to
spare memory.
Subsequently, we will describe the redundancy analysis procedure. Before pro-

ceeding to the presentation of redundancy analysis, however, we must first define
subword. Let a subword be consecutive bits of a word, whose length is the same as
the group size. For example, in Figure 9.17 we assume that there are four words in
each row and each word has eight bits. There are two bits in each subword as the
group size is two, so a word has four two-bit subwords. To reduce complexity, we
use two row-repair rules:

1. The first row-repair rule is that if a row has multiple faulty subwords, we
repair the faulty row by a spare row if available. Take Figure 9.20a as an
example. If a word has two faulty subwords (marked “X” in the figure), we
actually could repair them using two spare column group segments. However,
for multiple spare column group segments, there can be many possible ways
to repair the faulty subwords, resulting in complex output multiplexing and
RA; thus, the memory performance is degraded and the cost of the BIRA
circuit increases.

2. The other row-repair rule is that, if there are multiple faulty subwords with the
same column address and different row addresses within a segment, the last
detected faulty subword should be repaired with an available spare row. In
Figure 9.20b, a faulty subword is detected and repaired with a spare column
segment first, and a faulty subword is then detected, where its column address
is the same as the column address of the repaired faulty subword but their row
addresses are different. The faulty subword will be repaired with an available
spare row. In this case, when the memory accesses cells in the overlapped
region in the functional mode, the address remapper gives priority to the
spare row.
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Faulty memory examples.
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Flow diagram of the BIRA procedure.

After the row-repair phase, spare allocation for the remaining faulty elements is
performed according to the repair-most rules [Tarr 1984]. Figure 9.21 provides a
flow diagram of the presented BIRA algorithm. The BIRA procedure consists of the
following major steps:

1. Run BIST; pause and jump to step 2 when it detects a fault. Stop when BIST
is done.

2. Check whether both row-repair rules can be applied. If so, go to step 4.

3. Allocate a spare row or spare column group segment to repair corresponding
faulty cells according to the repair-most rules. Resume step 1.

4. Check if there are available spare rows. If so, repair by a spare row and resume
step 1.

5. Export the corresponding faulty row address; resume step 1.

9.6.3 BIST Module
The BIST module block diagram is shown in Figure 9.22, which consists of a
controller (CTR) and a test pattern generator (TPG) for handling test operations and
generating test stimuli, respectively. In addition to Clock (CLK), the BIST only
requires the Power-On Reset (POR) signal to initiate the test procedure. Thus, POR
generates a pulse signal when power is turned on. The pulse triggers the BIST
circuit to initiate the test procedure. The BIST Done (BDN), ERR (error indicator),
FS (fault syndrome), and CNT (continue) are signals between the BIST and BIRA
modules. TPG output signals are connected to the memory under test. The BIST
Normal Selection (BNS) signal is used to switch the memory between test/repair
mode and normal mode.
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BIST module block diagram.

CTR is a typical finite state machine [Huang 1999] [Cheng 2000]. TPG executes
the test command (CMD) provided by CTR. When a fault is detected, it pauses and
sends the ERR and FS signals to inform the BIRA module to perform RA. When
RA finishes, the BIRA module sends the CNT signal to resume the TPG process.
The BIST implementation is typical, similar to our previous design [Huang 1999]
that is presented in chapter 8.

9.6.4 BIRA Module
The BIRA module has three components—multiple faulty subwords detector
(MFSD), process element (PE), and address remapping unit (ARU)—as shown in
Figure 9.23. When power is on, all flip-flops are reset to the initial state. Signal
normal is 0 and FS is connected to ARU. The Input Address (ADDR) is sent to ARU
when it is in normal mode �normal = 1�. Initially, signals solid_flag, faulty_flag,
repaired_flag, row_match, and col_match are all reset to 0. The PE evaluates the
status of these signals and issues control signals solid_en, repair_en, update, and
export_mask_addr to ARU, which then updates the status of its registers. Signals
REF (repair end flag), EMA (export mask address), and MAO (mask address output)
are connected to ATE.
The MFSD detects whether the number of faulty subwords on a row is larger

than one. The PE is implemented by a finite state machine (FSM), whose state
transition diagram is shown in Figure 9.24. The initial state is MONITOR, which
monitors the ERR signal from the BIST circuit. If a fault is detected, PE goes to
the DFETCH state to load the status data into the flip-flops. In the COMPARE
state, PE compares the faulty address with the previously stored addresses. If there
is a match, PE goes back to the MONITOR state through the CONTINUE state;
otherwise, it goes to the CHECK_RMR state. If the status is must-repair (by row),
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BIRA module block diagram.
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then it goes to the NO_SP_ROW state and checks whether there are available spare
rows. If no spare row is available, it sends a signal to ARU that will then export
the faulty row address for software-based repair later in the downgraded operation
mode. If, on the other hand, a spare row is available, then the faulty row is replaced
by the spare row in the ROW_REPAIR state, and PE goes back to the MONITOR
state through the CONTINUE state, where a continue signal is issued to the BIST
circuit. If, in the CHECK_RMR state, the must-repair conditions are not satisfied,
PE will go to the CHECK_FULL state to see if the solid flags (explained below)
in ARU are on—if all spare rows (resp. column segments) are full, spare column
segments (resp. rows) are used for repair (unless both are full). It then goes to either
the NO_SP_SCS state or NO_SP_ROW state. Note that if both are full, either spare
rows or spare column segments can be used for repair. In this case, spare column
segments are used for repair and then the FSM goes to NO_SP_SCS state. Finally,
in the MONITOR state, if the BIST module issues a done signal to PE, the FSM will
go to the NORMAL state through the FINAL_CHECK state. In the FINAL_CHECK
state, the FSM checks and sets the repair flags (explained below) of the remaining
faulty addresses which are not repaired.
In the test/repair mode, ARU stores the addresses of the faulty cells detected so

far and compares the current faulty-cell address with the stored ones. Figure 9.25
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Block diagram of ARU.
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shows an ARU block diagram, which mainly contains the storage elements (reg-
isters), comparators, and a signal generator. Each storage element stores faulty
cell information. Assume that there are M spare rows and N spare column group
segments. Then M row storage elements and N column storage elements are imple-
mented. Each storage element has three status flags: (1) the Fault Flag (FF) denotes
whether the corresponding spare element is defective �FF= 1� or fault-free �FF= 0�;
(2) the Repair Flag (RF) indicates whether the spare element is used to repair the
defective main memory �RF= 1� or not �RF= 0�; and (3) the Solid Flag (SF) shows
whether the storage element has loaded the faulty cell information �SF= 1� or not
�SF= 0�. Each column storage element has an identification (ID) field to store its
segment number.
When the system is operated in test/repair mode, the Row_addr_in (row address

input), Col_addr_in (column address input), and Faulty_subword_in (faulty sub-
word input) signals come from the BIST circuit, and the Row_r_en (row repair
enable), Row_s_en (row solid enable), Col_r_en (column repair enable), and
Col_solid_en (column solid enable) signals are from PE. The spare rows and
columns are first tested. If a fault is detected, the FF of its corresponding storage
element is set to 1. The main memory is tested next. If a fault is detected, the row
address, column address, and faulty subwords are compared with the data stored
in the storage elements with SF = 1 and FF = 0. The results are exported from the
Row_match and Col_match terminals to PE. If there is no match, fault information
is written into an empty storage element, and PE sets its SF �SF = 1� through the
Solid_r_en or Solid_c_en input.
The Row_addr_in and Col_addr_in inputs are the address inputs in normal mode.

When the memory is accessed, the address also is compared with those stored in
the storage elements. If it is the same as one of the stored addresses, the signal
generator triggers the control signals to reconfigure the I/Os between the main
memory and spare memory. Compared with the conventional laser repair scheme,
the presented BISR scheme must execute the address remapping operation, how-
ever, the address remapping operation and the main memory access operation are
executed in parallel. Moreover, the delay time of the access path through ARU and
the small spare memory usually is shorter than that through the main memory.
A slight performance degradation results from the wrapper, however. For example,
the performance degradation of the wrapper is about 0.3 ns for a typical 0�25�m
CMOS standard-cell design. This delay penalty can be minimized by implementing
the wrapper with a full-custom design.

9.6.5 An Industrial Case
We now show a repairable SRAM core with the presented BISR methodology.
Figure 9.26 shows the repairable SRAM, which is composed of two blocks with
8K×32 bits each. Four spare rows and two spare column groups—with a group size
of four—are implemented using two separate memory blocks. In the figure, data
input DI is broadcast to main memory and spare memory. The chip select signals
determine which memory the data should be written into. When the memory is in
normal mode, the data output may come from main memory or spare memory,
depending on the control signals sc_group and sr_csb.
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An 8K×64 repairable SRAM with 4 spare rows and 2 spare column groups.

The gate count of the BISR (including BIST) design is about 5.6K using a typical
synthesis procedure and a standard 0�25�m CMOS cell library. Figure 9.27 shows
the layout of the 8K×64 repairable SRAM. The areas of the SRAM (BANK 1 and
BANK 2), BISR module, and spare elements (SPARE ROW and SPARE COL) are
653836�m2, 301040�m2, and 298856�m2, respectively. The hardware overhead of

� FIGURE 9.27

Layout of the 8K×64 repairable SRAM.
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the spare elements �HOspare� and that of the BISR module �HObisr� are calculated
and shown below:

HOspare =
298856

6538362
×100%= 4�57%

HObisr =
301040

6538362
×100%= 4�6%

The total hardware overhead for this repairable SRAM is about 9.17%. We guar-
antee 100% repair rate if the number of random faults is no more than 10 (it will
be analyzed in the next section).
Figure 9.28 shows part of the timing diagram for MAO and EMA from post-layout

simulation. It shows that if spare rows are exhausted but a spare row is still required
to repair the defective memory, the address of the defective row is exported to
the ATE through the MAO output. When the BIRA circuit wants to export a mask
address, the EMA signal becomes 1 such that the ATE can correctly receive the valid
mask address. Figure 9.29 shows a waveform sample of the data inputs/outputs
and some control signals of the spare memories during the normal-mode memory
access. If sc_csb = 0, the 4-bit data out is from the Spare Column, controlled by
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000 141
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� FIGURE 9.28

A waveform sample of the EMA and MAO signals.
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A waveform sample showing normal-mode memory access.
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sc_group. In this example, sc_group = f7ff; that is, the 12th 4-bit data output is
from Qc[3:0] (data outputs of the Spare Column). If both sr_csb and sc_csb are 0,
the data output is from the Spare Row, controlled by sr_csb; that is, the data output
is from Qr[63:0] (data output of the Spare Row). This avoids data access conflict.

9.6.6 Repair Rate and Yield
Table 9.4 summarizes the repair rate (RR) for various redundancy configurations
based on the presented and exhaustive redundancy analysis algorithms. The number

TABLE 9.4 � Simulation Results

NSR NSC NSCG RR 1MA 2MA 3MA 4MA 5MA >5MA RR (Best)

0 4 1 44.90% 89 70 17 60 36 25 72.28%
0 8 2 81.45% 26 22 16 17 10 9 98.69%
0 12 3 95.73% 8 4 1 3 3 4 100%
1 0 0 18.37% 99 191 4 69 45 32 18.54%
1 4 1 73.10% 38 40 35 16 9 7 86.14%
1 8 2 94.43% 5 7 12 1 3 2 99.81%
1 12 3 99.26% 1 1 1 1 0 0 100%
2 0 0 36.55% 192 2 71 46 18 13 37.08%
2 4 1 86.09% 36 16 12 3 8 0 94.01%
2 8 2 99.26% 3 1 0 0 0 0 100%
2 12 3 100% 0 0 0 0 0 0 100%
3 0 0 72.17% 0 75 43 18 7 7 55.06%
3 4 1 96.10% 7 5 4 3 2 0 97.38%
3 8 2 99.81% 1 0 0 0 0 0 100%
3 12 3 100% 0 0 0 0 0 0 100%
4 0 0 72.36% 73 44 18 8 5 1 71.91%
4 4 1 98.52% 4 3 0 0 0 0 98.69%
4 8 2 100% 0 0 0 0 0 0 100%
4 12 3 100% 0 0 0 0 0 0 100%
5 0 0 85.90% 44 18 7 6 1 0 85.77%
5 4 1 99.81% 1 0 0 0 0 0 99.81%
5 8 2 100% 0 0 0 0 0 0 100%
5 12 3 100% 0 0 0 0 0 0 100%
6 0 0 94.06% 18 7 6 1 0 0 94.01%
6 4 1 100% 0 0 0 0 0 0 100%
6 8 2 100% 0 0 0 0 0 0 100%
6 12 3 100% 0 0 0 0 0 0 100%
7 0 0 97.40% 8 5 1 0 0 0 97.57%
7 4 1 100% 0 0 0 0 0 0 100%
7 8 2 100% 0 0 0 0 0 0 100%
7 12 3 100% 0 0 0 0 0 0 100%
8 0 0 98.70% 6 1 0 0 0 0 98.69%
8 4 1 100% 0 0 0 0 0 0 100%
8 8 2 100% 0 0 0 0 0 0 100%
8 12 3 100% 0 0 0 0 0 0 100%
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of injected random faults is from 1 to 10, and the number of memory samples is
534. The defect distribution assumed is pessimistic, which is used for evaluating
the presented scheme. Mature products have a far lower defect density. Note that
the exhaustive RA algorithm is simulated based on the assumption that a single
spare row and spare column can be used to repair any defective row and column,
respectively. It guarantees 100% RR under such type of redundancy organization
[Kawagoe 2000]. In the table, NSR, NSC, and NSCG denote the numbers of spare
rows, spare columns, and spare column groups. The RR column reports RR of the
presented approach. The results show that the RR difference between the presented
approach and the best (exhaustive search without grouping) is very small for most
of the redundancy configurations. In the xMA columns of Table 9.4, the values
represent the numbers of unrepairable memories for the respective spare configu-
rations that can still be used in the downgraded mode if we mask out x faulty-cell
row addresses. For example, the 1MA column shows the numbers of unrepairable
memories that can still be used if one masked address is allowed—the memory
thus has one less usable address. According to the table, if NSR = 2 and NSCG = 2,
the number of unrepairable memories is four. Among them, three can work in the
downgraded mode if one masked address is allowed, and one memory can work in
the downgraded mode if two masked addresses are allowed. In the industrial chip
design, NSR = 4 and NSCG = 2. Therefore, the BISR design can achieve 100% RR
with low area cost. However, if the CRESTA in [Kawagoe 2000] is implemented, it
requires C12

2 = 66 subanalyzers to try 66 possible solutions, resulting in very high
hardware cost.
We now discuss the relation between column group size and RR. Figure 9.30 plots

the RR for different spare configurations with a group size of two. The number
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RR comparison when the group size is two.
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RR comparison when the group size is four.

of injected random faults varies from 1 to 10 and the total number of memory
samples is 534. Note that the conventional algorithm being compared here is the
one without spare row or column grouping or segmentation, but an exhaustive
search is assumed. The figure shows that the RR of the presented approach is even
better than the conventional one in many instances. Figure 9.31 shows a similar
comparison, but now the group size is four. The result of our approach in this case
is not as good as the previous one; however, the area cost of the BIRA circuit is
lower. For example, if there are four spare columns, then the number of required
column storage elements for the case where group size is two (two spare column
groups) is larger than the one whose group size is four (only one spare column
group). Note also that the RR is in fact related to how the defects are distributed. An
analysis of the fail bit patterns of the target memory design and process technology
is required to achieve the most cost-effective solution.
According to the Poisson model, Y = e−AD, the chip yield Y decreases exponen-

tially with increasing area �A� and manufacturing defect density �D�. Let the defect
density of the memory and random logic be Dm and Dl, respectively, and Dm = 2Dl.
Thus, the yield �Ym� of the memory without BISR circuit can be estimated as:

Ym = e−AmDm

where Am is the memory area. We use the simplest model (the yield of a chip is the
product of the yield of all the constituent modules) to estimate the yield �Ymbisr� of
the memory with BISR circuit. Therefore, Ymbisr can be expressed as:

Ymbisr = Y ′m ·Ybisr

where Ybisr is the yield of the BISR circuit. The Ybisr can be calculated as Ybisr = e−AlDl ,
where Al is the area of the BISR circuit. Also, Y ′m is the yield of the memory after
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executing the BISR process. It is associated with the repair rate (RR) and can be
expressed as Y ′m = Ym+ �1−Ym�×RR, as RR is the ratio of the number of repaired
memories to the number of defective memories. Thus, Ymbisr can be estimated as
follows:

Ymbisr = �Ym+ �1−Ym�×RR� ·Ybisr

For example, consider the yield improvement of the case described in Section 9.6.5.
The ratio of the area of BISR circuit to the area of memory is about 4.6%. The yield
of the BISR circuit is shown as follows:

Ybisr = e−0�046Am×0�5Dm

= �e−AmDm�0�023

= Y 0�023
m

as Al = 0�046Am and Dm = 2Dl. Therefore, the Ymbisr of the design is:

Ymbisr = �Ym+ �1−Ym�×RR� ·Y 0�023
m

Note that the yield of spare elements is neglected. The reason is that the spare
elements of the presented design are tested first. Thus, a memory with defective
spare elements may be repairable or not depending on the number of defective
spare elements and the error pattern of the memory. For simplicity of analy-
sis, therefore, we do not consider the yield of spare elements. Figure 9.32 shows
the yields of the memory with the presented BISR scheme with respect to the
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repair rates, where the D1, D2, D3, D4, and D5 represent the defect densities 0.01,
0.03, 0.05, 0.07, and 0�09defect/�m2, respectively. As the figure shows, if high
RR can be achieved, the yield of the memories with BISR scheme can be greatly
enhanced.

9.7 CONCLUDING REMARKS

In this chapter, we have discussed BIST with diagnosis support, BIRA, and BISR
for RAM. Fault type identification is done by an offline diagnosis process using
the MECA system. It is useful for RAM designers and process engineers, as it
helps debug the RAM design and process for yield enhancement during both the
development and mass production stages. Note that diagnosis algorithms are usu-
ally more complex than ordinary test algorithms, and they are used only during
the product development phase, so hard-wiring the diagnosis algorithms does not
make sense. Thus, a programmable TPG scheme is desirable.
The ESP algorithm for BIRA is shown to be cost effective. It is a greedy-algorithm-

based approach that greatly simplifies the control circuit and results in relatively
low time and area overhead among the known BIRA schemes. It also achieves a
high repair rate for a mature fabrication process with small area overhead.
The BISR circuit discussed is composed of a BIST module and a BIRA mod-

ule. The BIST circuit supports three operation modes—main memory testing,
spare memory testing, and repair. The BIRA circuit executes the presented RA
algorithm for two-dimensional redundancy—spare rows and spare columns. The
spare columns are grouped and segmented. Compared with the conventional
approach (without grouping and segmentation) using exhaustive search, the dis-
cussed scheme outperforms in many instances and can be implemented with low
area cost.

9.8 EXERCISES

9.1 (March Dictionary) Construct the March dictionary based on MSCAN, con-
sidering the same test set (without TF) that we have used for the March 17N
algorithm.

9.2 (Repair)

a. Define the must-repair phase in redundancy allocation (RA) of a RAMwith
two-dimensional redundant (spare) elements (i.e., rows and columns).

b. Assume that the must-repair phase has been finished for a RAM with R
rows and C columns. Let there be n faulty cells, r available spare rows,
and c available spare columns. Derive the upper bound of n such that the
RAM is reparable.
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c. Derive the size of the smallest bitmap that we need to perform the bitmap-
based final-repair phase of the RA procedure to guarantee a 100% repair
rate for reparable RAMs.

d. Give any efficient final repair algorithm described in this chapter or any
other literature (except the row-first and column-first algorithms), assum-
ing that the must-repair phase has been finished.

9.3 (Repair Rate and Yield) The repair rate of a memory is denoted as R and
defined as the ratio of the number of repaired memories to the number of
defective memories in a product run. Note that the spare memory and BISR
circuit increases the area, thus reducing the yield if we do not consider the
repair mechanism. Let Y = e−AD, where Y , A, and D are the yield, area, and
defect density of the chip, respectively. Assume memory and logic circuits
have the same defect density, and Am	 Ar, and Ab denote the main memory
area, redundant memory area, and logic (BIST/BIRA) circuit area, respectively.
Derive the yield improvement ��Y� of the memory chip after repair.

9.4 (BISR Design) Based on the 4K×16 SRAM BIST circuit defined in Chapter 8,
design a BISR scheme assuming two spare rows and two spare columns. Pro-
vide the block diagrams and algorithms, and explain how the scheme works.
You can use any existing BIRA approach or develop your own.
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ABOUT THIS CHAPTER

Boundary scan, also known as the IEEE 1149.1 or JTAG standard, appears to
be the most successful test standard ever approved by the IEEE. Initially target-
ing board-level testing for digital circuits, this standard has now been adopted by
industry for use in most large IC chips and has been used to access many other
applications, including power management, clock control, debugging, verification,
and chip reconfiguration. An extended boundary-scan standard for the I/O proto-
col of high-speed networks (namely, 1149.6) has recently been established, and it
further enhances the applicability of boundary scan.
Core-based test problems arise when IC design shifts to the system-on-chip

(SOC) paradigm where cores or intellectual properties (IPs) become the building
blocks of a design. Because the relationships of chips to boards and cores to SOC
are analogous, a test standard similar to 1149.1 (namely, 1500) was approved by
the IEEE in 2005. This embedded-core-based test standard inherited most of the
properties of 1149.1 and additionally solves many new test problems related to SOC
design. It can be expected that in the near future an increasing number of SOC
designs will incorporate this standard.
This chapter begins with an introduction to the boundary-scan family of stan-

dards and their current status. The 1149.1 standard is then described in detail.
On-chip design to support scan and BIST by 1149.1 and board/system-level con-
troller design for 1149.1 are also covered. The IEEE 1149.6 extension is then
discussed. With regard to core-based testing, new test problems that have arisen
during the SOC era are examined. The kernel of the 1500 standard (i.e., the 1500
core wrapper) is then detailed. The Core Test Language, which standardizes the
description of core test information, is also presented. Test control architectures to
support 1500 design with the plug-and-play feature and hierarchical test structures
are then discussed. Finally, a comparison between 1149.1 and 1500 is made.
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10.1 INTRODUCTION

Testing a stand-alone chip is relatively easy because all I/O pins are controllable
and observable with external test equipment. Once a chip is mounted on a printed-
circuit board (PCB), the problem becomes much more complex. The conventional
“bed-of-nails” board-level test method by which testing relies on probing on-board
test pins and vias has already encountered difficulties in dealing with multiple-layer
boards. With the advent of surface mount packages and multiple chip modules
(MCMs), this method becomes infeasible as no or few through-hole pins are avail-
able for probing [Parker 2001].
In the mid-1980s, a group of test engineers from several European electronics

system companies began to get together to search for possible solutions to this
problem. This group, known as the Joint European Test Action Group (JETAG),
finally concluded that the best way to address this problem is to chain all the
boundary I/O pins of a chip into a shift register and use a concept similar to scan
design to gain back the I/O accessibility of the chip. In 1988, JETAG was joined
by representatives from North American companies who had also been working
on this problem and had come to a similar conclusion. The combined group was
renamed the Joint Test Action Group (JTAG). Through the efforts of JTAG, the idea
of “boundary scan” was formally converted into a test architecture and a set of
associated design rules, which were quickly approved by the IEEE as a test stan-
dard (Std. 1149.1) in 1990. Since then, the standard has been employed by most
electronics companies when building large chips. Today, almost all general-purpose
CPU, DSP, and FPGA andmany application-specific designs comply with the 1149.1
standard. Because boundary scan provides a simple and efficient protocol for data
communication, this standard has also been employed in many other applications,
including power management, embedded instrumentation control, clock/PLL con-
trol, debugging/diagnosis, verification, and chip reconfiguration [Rearick 2005].
Standard 1149.1, however, defines only a general-purpose boundary-scan imple-

mentation for digital chips. Several other boundary-scan standards for different,
more specific test objectives have also been established, as described next.

10.1.1 IEEE 1149 Standard Family
Boundary scan is in fact a family of test methodologies aimed at resolving a wide
range of test problems: from chip level to system level, from logic cores to intercon-
nects between cores, from digital circuits to analog or mixed-mode circuits, and
from ordinary digital designs to very high-speed designs. Table 10.1 provides an
overview of the boundary-scan family, now known as the IEEE 1149.x standards,
and their standard setup status.
Standard 1149.1, usually referred to as the digital boundary-scan standard, was

approved by the IEEE in 1990. Following approval of the standard, increasing
demand for a standard hardware description language to describe this standard has
motivated the development of the Boundary-Scan Description Language (BSDL).
Thus, soon after the first revision of the digital boundary-scan standard in 1993
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TABLE 10.1 � IEEE 1149 Standard Family

Number Main Objectives Status

1149.1 Testing of digital chips and interconnects
between chips

Std. 1149.1-1990
Std. 1149.1a-1993
Std. 1149.1b-1994 (BSDL)
Std. 1149.1-2001

1149.2 Extended digital serial interface Discontinued
1149.3 Direct access testability interface Discontinued
1149.4 Mixed-signal test bus Std. 1149.4-1999
1149.5 Standard module test and maintenance

(MTM) bus
Std. 1149.5-1995 (not endorsed by IEEE

since 2003)
1149.6 High-speed network interface protocol Std. 1149.6-2003

(1149.1a), the BSDL also became an IEEE standard (1149.1b) in 1994. These two
standards, however, have now been merged back to 1149.1 [IEEE 1149.1-2001]
[Parker 2001].
The 1149.2 (Extended Digital Serial Subset) standard was aimed primarily

at application-specific integrated circuits (ASICs) and tried to add high-speed
boundary-scan test capability, while 1149.3 targeted the direct access interface of
a chip, emphasizing system testability specifications. It was argued that some fea-
tures of 1149.2 could be covered by scan design [Dervisoglu 1992] [Petersen 1992]
and other features by 1149.1 [Ungar 2001], so it was discontinued in 1993. Stan-
dard 1149.3 started out as a system test bus but was also defunct shortly, due
to its overlap with 1149.5 [Petersen 1992] [Ungar 2001]. Standard 1149.4 [IEEE
1149.4-1999] defines the chip-level test architecture for circuits with analog I/O,
now referred to as analog boundary scan. This standard is discussed in Chapter 11
of this book. Standard 1149.5, approved in 1995, defines the test and maintenance
bus protocol at the module level. This standard, however, is no longer endorsed by
the IEEE (since 2003) due to the lack of industry support [Treuren 2005]. Stan-
dard 1149.6 [IEEE 1149.6-2003], approved by the IEEE in 2003, is an extension
of 1149.1 designed to standardize boundary scan for high-speed (1+ Gbps) I/O
designs [Eklow 2003a] [Eklow 2003b]. The objective of this standard is to ensure
simple, robust, and minimally intrusive boundary-scan testing of advanced digital
networks not adequately addressed by 1149.1, especially for those networks that
are AC-coupled, differential, or both. As currently high-speed I/O pins have reached
multiple-gigabit-per-second rates, this standard is gaining more and more popular-
ity in industry. Thus, in this chapter we focus on 1149.1 and 1149.6 with regard to
boundary-scan standards.

10.1.2 Core-Based Design and Test Considerations
In the SOC era, conventional gate-based or cell-based design methodologies are no
longer sufficient. The core-based design methodology, in which cores or intellectual
properties form the basic building blocks of a system, has become the main design
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Core-based SOC design.

methodology for complex SOC. As shown in Figure 10.1, a typical SOC design
may contain CPU, DSP, memory modules (RAM and ROM), mixed-signal devices
(ADC/DAC and PLL), some buses/interconnect modules, glue logic, ASIC cores, and
IPs. An IP or ASIC core may itself be a complex core containing processors, ASICs,
and local memories.
Many test problems are encountered in such a complex system that are not

seen in simpler designs. A SOC test developer (or integrator) has to consider how
to develop a complete test for cores provided by different vendors, delivered in
different formats (e.g., soft or hard cores), implemented with different technologies,
operating at different speeds, etc. The developer must also consider test application
issues, such as accessible test resources, allowable test time, tolerable test power,
and available automation tools.
In this chapter, we examine the test problems existing in a core-based design

and describe how to deal with these problems efficiently. We introduce a new
IEEE test standard: 1500 [IEEE 1500-2005]. This standard is similar to 1149.1 in
that its main objective is to standardize boundary test circuitry (called wrappers)
for cores. Standard 1500, however, further provides parallel access capability for
a core so test efficiency for an SOC can be significantly improved. Furthermore,
unlike 1149.1, where control signals are mainly generated by a finite state machine
that is controlled by a single input, in 1500 the control signals can be directly
applied to a core, thus providing more test flexibility. We also describe the Core
Test Language (CTL) [IEEE P1450.6-2001], which is a language for capturing and
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expressing test-related information for cores complying with 1500. By using CTL,
the SOC integrator or automation tools can successfully generate all information
and circuitry required to test the SOC. We also discuss several test control architec-
tures that support the 1500 wrappers. Examples of implementing hierarchical test
control with plug-and-play features are provided. Finally, we provide a comparison
between 1149.1 and 1500.

10.2 DIGITAL BOUNDARY SCAN (IEEE Std. 1149.1)

In this section we describe the digital boundary-scan standard based on the IEEE
Std. 1149.1-2001 version [IEEE 1149.1-2001].

10.2.1 Basic Concept
Standard 1149.1 defines a test access protocol and a boundary-scan architecture for
digital integrated circuits and the digital portions of mixed analog/digital integrated
circuits. As shown in Figure 10.2, the name boundary scan is due to the insertion of
a boundary-scan cell to each I/O pin of the original circuit and the chaining of these
cells into a shift register called the boundary-scan register. Chips complying with
this standard can be readily integrated into a PCB with their I/O accessible through
the boundary-scan registers. Figure 10.3 shows a board containing four ICs for
which the boundary-scan registers are interconnected into a single boundary-scan
chain. Through this chain the I/Os of each chip are controllable and observable via
serial scan and Capture/Update operations, thereby enabling the testing of internal
logic of each chip as well as interconnects among the chips. In addition, 1149.1 also
provides the important feature where the data capturing and shifting can be done
on the boundary-scan logic without interfering with the normal circuit operations.
This feature can greatly enhance the capabilities of design debugging and fault
diagnosis for the chips.

Internal
Logic

Boundary-scan cell

� FIGURE 10.2

Basic idea of boundary scan.
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A board containing four ICs with boundary scan.

10.2.2 Overall 1149.1 Test Architecture and Operations
In addition to the boundary-scan register described in the previous section, extra
control circuitry and data storage are required for each chip. Figure 10.4 shows a
chip with the boundary-scan architecture. The internal logic represents the original
circuit of the chip. It may contain some internal registers that can be supported
by boundary scan, such as scan chains, built-in self-test (BIST) generators or
compressors, or any other storage that will make use of the boundary-scan func-
tionality. The boundary-scan circuitry can be divided into four main hardware
components:

� A test access port (TAP), which consists of four mandatory terminals—test
data input (TDI), test data output (TDO), test mode select (TMS), and test
clock (TCK)—and one optional terminal, test reset (TRST∗)

� A TAP controller (TAPC)

� An instruction register (IR) and its associated decoder

� Several test data registers, including the mandatory boundary-scan register
and bypass register, and some optional miscellaneous registers, such as the
device-ID register, and some design-specific test data registers

The test access port, which defines the bus protocol of the boundary scan, con-
sists of additional I/O pins necessary for each chip employing the standard. The
TAP controller is a 16-state, finite-state machine that controls each step of the
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Boundary-scan architecture.

boundary-scan operations. Each instruction to be carried out by the boundary-scan
architecture must be serially loaded into the instruction register through the test
data input (TDI) pin. The test signals to configure the boundary-scan-related test
hardware for the current test instruction are provided by the associated decoder.
The test data registers are used to store test data or some system-related information
(such as the chip ID, company name, etc.).
In addition to the hardware components, IEEE Std. 1149.1 also defines a set of

test instructions, including four mandatory ones (BYPASS, SAMPLE, PRELOAD,
and EXTEST) and several optional ones, including INTEST, RUNBIST, CLAMP,
IDCODE, USERCODE, and HIGHZ. It also allows the users to define their own
instructions. An outline of a typical test procedure using boundary scan, which will
be detailed in the following sections, is as follows:

1. A boundary-scan test instruction is shifted into the IR through the TDI.

2. The instruction is decoded by the decoder associated with the IR to generate
the required control signals so as to properly configure the test logic.

3. A test pattern is shifted into the selected data register through the TDI and
then applied to the logic to be tested.

4. The test response is captured into some data register.
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5. The captured response is shifted out through the TDO for observation and, at
the same time, a new test pattern can be scanned in through the TDI.

6. Steps 3 to 5 are repeated until all test patterns are shifted in and applied, and
all test responses are shifted out.

Detailed structures and functions of the boundary-scan components are described
next. Figure 10.5 shows an example of the boundary-scan circuitry extracted from
Figure 10.4 which provides more detailed information and is used in the following
discussion.

10.2.3 Test Access Port and Bus Protocols
The TAP of 1149.1 contains four mandatory pins and one optional pin, as described
below:

� Test clock input (TCK) is a clock input to synchronize the test operations
between the various parts of a chip or between different chips on a PCB. This
input must be independent of the system clocks so the serial test data path
between components of a chip or different chips can be used independently
of the system clocks, which may vary significantly in frequency from one
component to another; so the board interconnect testing can be properly
carried out; and so the shifting and capturing of test data can be executed
concurrently with normal system operation, thereby facilitating online system
monitoring for a design without changing the state of the on-chip system logic.
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� FIGURE 10.5

Boundary-scan circuitry in a chip.
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� Test data input (TDI) is an input to allow test instructions and test data to be
serially loaded into the instruction register and the various test data registers,
respectively. Values presented at TDI are clocked into the selected register
on a rising edge of TCK. It is expected that the bus master (automatic test
equipment, on-board bus controller, etc.) will change the signal driven to the
TDI input on the falling edge of TCK. The design of the circuitry fed from TDI
shall be such that an undriven input produces a logical response equivalent
to a logic 1.

� Test data output (TDO) is an output to allow various test data to be driven
out. As shown in Figure 10.5, changes in the state of the signal driven through
TDO should occur only on the falling edge of TCK. Also, the TDO driver must
be set to its inactive driving state except when the scanning of data through
this terminal is in progress. The EN block controlled by the Enable signal
provides this capability. Note that data should be propagated from TDI to
TDO without inversion.

� Test mode select (TMS) is the sole test control input to the TAP controller.
All boundary-scan test operations such as shifting, capturing, and updating
of test data are controlled by the test sequence applied to this input. Signals
presented at TMS are sampled by the TAP controller on the rising edge of
TCK. It is also expected that the bus master will change the signal driven to
the TMS input on the falling edge of TCK. This input should also be driven to
logic 1 when it is inactivated.

� Test reset (TRST∗) is an optional pin used to reset the TAP controller. If the
TRST∗ pin is implemented, the TAP controller can be asynchronously reset to
the Test–Logic–Reset controller state (to be discussed later) when a logic “0” is
applied at TRST∗. This in turn will reset other boundary-scan logic to the state
required by the Test–Logic–Reset state. This pin should not be used to reset
the system logic so the test logic can be reset independently of the on-chip
system logic. If this input is omitted, the system must have some circuitry that
can reset the TAP controller during power-on. In Section 10.2.5, we show that
the TAP controller can also be synchronously reset.

10.2.4 Data Registers and Boundary-Scan Cells
Standard 1149.1 specifies several test data registers, as shown in Figure 10.5. Two
mandatory test data registers—the boundary-scan register and the bypass register—
must be included in any boundary-scan architecture. Other registers, such as the
device identification register and design-specific test data registers, can be added
optionally.
The boundary-scan register (BSR) is the collection of the boundary-scan cells

(BSCs) inserted at the I/O pins of the original circuit, as shown in Figure 10.4.
Various designs for the boundary-scan cells exist. A typical BSC is shown in
Figure 10.6. This cell can be used as either an input or output cell. As an input
BSC, the IN signal line corresponds to a chip input pad, and the OUT signal line
is tied to an input of the internal logic. As an output BSC, IN corresponds to the
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A typical boundary-scan cell (BSC).

output of the internal logic, and OUT is tied to an output pad. Data driven on the
OUT signal are controlled by the Mode signal. During the normal mode operation
�Mode = 0�, data passes from IN directly to OUT and the cell is transparent to
the functional logic. In Test mode �Mode = 1�, test data driven by the R2 flip-flop
pass through the multiplexer to the OUT signal. The test operations of a BSC are
controlled by three output signals of the TAP controller: ClockDR, ShiftDR, and
UpdateDR (see Figures 10.5 and 10.6). Three main test operations—Capture, Shift,
and Update—are defined. In the Capture operation, ShiftDR is set to 0, one clock
pulse is applied to ClockDR, and the test data at IN will be captured into the D-FF
R1 (known as the capture flip-flop). In the Shift operation, ShiftDR is set to 1 and
clock pulses are applied to ClockDR such that test data can be shifted in from SI
and the test response can be scanned out through SO. The boundary-scan register
is formed by connecting the SO of the previous cell to the SI of the next cell. In the
Update operation, the data stored in R1 are propagated to R2 (known as the update
flip-flop) by applying a clock pulse to UpdateDR. If the Mode is set to 1 at this
time, then the output of R2 is connected to OUT. Note that the Capture and Shift
operations can also be executed when the cell is in the normal mode operation, as
mentioned in Section 10.2.1. One can also latch test data in R2 (and at the OUT
terminal if Mode= 1) while other test data are shifted in/out.
Several other scan cell designs exist. Standard 1149.1-2001 defines ten boundary-

scan cells (BC1–BC10), which include observation-only and bidirectional cells
[IEEE 1149.1-2001].
The bypass register is a single-bit register that is used to bypass a chip when it is

not involved in the current test operation. This can significantly reduce test time
required to shift in/out test data through the long TDI–TDO path.
Standard 1149.1 also defines an optional data register called the device-ID regis-

ter, which can be used to load information about the product (the manufacturer,
part number, and version number) or the configuration of the chip. The loaded
information can be shifted out for observation after the chip is mounted onto a
board. One application of this register is to identify during the debugging and
diagnosis process the manufacturers and revisions of chips on a board that come
from multiple sources.
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10.2.5 TAP Controller
The TAP controller (TAPC) is a 16-state, finite-state machine that operates accord-
ing to the state diagram shown in Figure 10.7. The TAPC can change state only
on the rising edge of TCK. The next state is determined by the logic level of TMS.
The output signals of the TAPC determine the test operation to be carried out. As
shown in Figure 10.5, nine control signals—ClockDR, ShiftDR, UpdateDR, ClockIR,
ShiftIR, UpdateIR, Select, TCK, and Enable—as well as Reset∗ (optional) are pro-
duced by the TAPC. The main functions of the TAPC include:

� Resetting the boundary-scan architecture

� Providing control signals to load instructions into the instruction register

� Providing signals to perform test functions such as Capture and Update
(application) of test data

� Providing control signals to shift test data from TDI to TDO

Test-Logic-Reset
1

Run-Test/Idle

0
0

Select-DR-Scan1

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

1

0

1

1

0

1

1

0

1

0

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

1

0

1

1

0

1

1

0

1

0

11 0 0

Control of instruction registerControl of data registers

� FIGURE 10.7

State diagram of TAP controller.
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The 16 states can be divided into three parts. The first part (the 2 states at left)
contains the reset and the “Run-Test/Idle” states, the second (the 7 states in the
middle) and third (the 7 states at right) parts control the operations of the data and
instruction registers, respectively. Because the only difference between the second
and the third parts is the registers they deal with, only the states in the first and
second parts are described in the following text. Details about the third part can be
inferred from the descriptions about the second part.

� Test–Logic–Reset—In this state the boundary-scan circuitry is disabled and
the system operates in its normal mode. Whenever a 0 signal is applied to
the TRST∗ port, the TAPC enters this state. One should also notice that the
TAPC can also be synchronously reset; whatever state the TAP controller is
in, it will return to this state if a logic 1 is applied to TMS for five con-
secutive TCK cycles (i.e., five rising edges of TCK). It should also be noted
that during this state if a glitch occurs at TMS that forces the TAP con-
troller to enter the Run-Test/Idle state (discussed next), the TAP controller
can still return to this state if TMS is kept stable at 1 for the next three TCK
cycles.

� Run-Test/Idle—In this state, the boundary-scan circuitry is waiting for some
test operations synchronized with the TCK (such as BIST) to complete. It
is different from the Test–Logic–Reset in that during this state activities on
selected test logic may still be in progress.

� Select-DR-Scan—This is a temporary state in preparation for entering the
data register manipulation column (the middle part) of Figure 10.7.

� Capture-DR—In this state, data can be loaded in parallel to the data registers
selected by the current instruction. It is in this state where the current test
results and normal operation status are captured.

� Shift-DR—In this state, test data are scanned in series through the data reg-
isters selected by the current instruction. Upon entering this state, the TAP
controller will stay in this state as long as TMS= 0. For each clock cycle, one
bit of test data will be shifted into (out of) the selected data register through
TDI (TDO).

� Exit-DR—This is also a temporary state. All parallel-loaded (from the Capture-
DR state) or shifted (from the Shift-DR state) data are held in the selected
data register in this state in preparation to enter the update or pause state.

� Pause-DR—The boundary-scan logic pauses its function here to wait for some
external operations. For example, when a long sequence of test data is to be
loaded to the chips under test, the external tester may have to reload the data
from time to time. The Pause-DR is a state that allows the boundary-scan
architecture to wait for more data to shift in/out.

� Exit2-DR—This state either indicates completion of the current captur-
ing/shifting operation and allows the TAPC to enter the update state or
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represents the end of the Pause-DR operation, allowing the TAP controller to
go back to the Shift-DR state for more data to shift in/out.

� Update-DR—In this state, data are latched onto the parallel output of the
selected test data registers from the shift register path on the falling edge of
TCK; for example, the test data stored in the first stage of boundary-scan cells
(R1 in Figure 10.6) are loaded to the second stage (R2) in this state. Note that,
with a two-stage register design, test data can be held at the parallel output of
the selected register while other data are shifted in the associated shift register
path.

10.2.6 Instruction Register and Instruction Set
The instruction register is used to store the instruction to be executed. By the
standard, this register must be a two-stage design such that when a new instruc-
tion is being shifted in the current instruction can be latched at the parallel out-
put of the IR so as to prevent the possibility of having an indeterminate state
at the output of IR. Four mandatory boundary-scan test instructions (SAMPLE,
PRELOAD, BYPASS, and EXTEST) are defined in 1149.1. In addition, a com-
monly used instruction (namely, the INTEST instruction) is recommended. We will
describe these instructions in detail. There are other useful instructions, includ-
ing RUNBIST, CLAMP, IDCODE, USRCODE, and HIGHZ, which will also be
described.

� BYPASS—When dealing with board-level testing, it is often required to send
test data to or receive test results from only one or two specific chips. The
BYPASS instruction is used to “bypass” the boundary-scan registers on unused
chips so as to prevent long Shift operations, as shown in Figure 10.8. The
BYPASS register must capture a default bit of 0 at the Capture-DR state
when this instruction is executed. Furthermore, the instruction register must
be forced to contain the BYPASS instruction whenever the TAP is reset,
unless an IDCODE instruction (to be discussed later) is implemented, in
which case IDCODE is the default instruction to be loaded to the BYPASS
register.

� SAMPLE—Figure 10.9 illustrates execution of the SAMPLE instruction. The
SAMPLE operation can be completed by simply executing the Capture opera-
tion (on the rising edge of TCK in the Capture-DR state) such that the required
test data can be loaded in parallel to the selected data registers. This means
that a snapshot of the normal operation of the chip can be taken and exam-
ined. This instruction also allows the capture of the signals applied to the
primary inputs of a chip and capture of the responses appearing at the out-
put of the internal logic. It is required that when the SAMPLE instruction is
executed, the operation of the boundary-scan test logic must have no effect
on the internal logic or on the flow of signals between the internal logic and
the I/O pins of the chip.
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Execution of the BYPASS instruction.
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Execution of SAMPLE instruction.

� PRELOAD—The PRELOAD instruction allows test data to be shifted into
or out of the selected data register during the Shift-DR state without caus-
ing interference to the normal operation of the internal logic, as shown in
Figure 10.10. The shifted data are then latched to the parallel output (R2) of
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Execution of PRELOAD instruction.

the selected data registers (on the falling edge of TCK in the Update-DR con-
troller state) for immediate or later use. This allows an initial data pattern to
be placed at the latched parallel outputs of boundary-scan register cells using
the PRELOAD instruction before the selection of another boundary-scan test
operation (say, EXTEST). Without the PRELOAD instruction, indeterminate
data would be driven until the following operation, such as a sequence of Shift
operations, has been completed.

� EXTEST—The EXTEST instruction is used to test the circuitry external to
the chips, typically the interconnects between chips and between boards. Its
execution is illustrated in Figure 10.11. Assume that an interconnect line from
Chip1 to Chip2 as shown is to be tested. First, the test pattern is shifted into
the “driving terminals” of Chip1 through its TDI pin during the ShiftDR state
of the TAP controller. Second, an Update operation in Chip1 is executed on
the falling edge of the TCK such that the shifted test data bit is loaded to the
corresponding output pin of Chip1 (similar to the PRELOAD instruction). A
Capture operation is then executed in Chip2 on the rising edge of the TCK
and the test data bit is captured at the driven terminal of Chip2 (similar to the
SAMPLE instruction); therefore, there will be two and a half cycles of latency
between the Update operation of Chip1 and the Capture operation of Chip2
if they are controlled by the same TMS. Finally, the ShiftDR operation is
executed in Chip2 and the received test response can be scanned out through
the TDO of Chip2 for examination. New test patterns can also be shifted in at
this time and the cycle can be repeated.
Based on the above procedure, it can be found that the first two steps can

also be accomplished by using the PRELOAD instruction. In fact, before the
selection of the EXTEST instruction, data can be loaded onto the latched
parallel outputs using PRELOAD. Then, as soon as the EXTEST instruction
has been transferred to the parallel output of the instruction register, the
preloaded data are driven through the chip output pins. This ensures that the
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Execution of EXTEST instruction.

required test data are driven immediately when the change to the EXTEST
instruction takes place in the Update-IR controller state, hence preventing
the possible appearance of indeterminate data at the chip outputs during
the shifting operation if the EXTEST instruction was executed without first
executing the PRELOAD instruction.
Note that in the above description we only examine one interconnect.

Clearly, several interconnects can be examined simultaneously. The only
requirement is to shift and load the required data bits to the appropriate driv-
ing positions and then capture these data at the driven positions. The test
responses can then be scanned out through the TDO for further examination.
Methods to minimize test time for all interconnects can be found in [Jarwala
1989], [Chan 1992], and [Kim 2004].

� INTEST—Figure 10.12 shows the steps of the INTEST instruction. During the
first step, test data are shifted into the boundary-scan cells that drive internal
logic. In the second step, an Update operation is executed and the shifted data
are loaded to the second stage of the boundary-scan cell. At the same time
the data are applied to the internal logic. The TAP controller then goes back
to the Capture-DR state to capture the test result at the boundary-scan cells,
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Execution of INTEST instruction.

which receive data from internal logic. Finally, the Shift-DR operation shifts
the test results out for observation. This operation may be repeated for several
cycles.

� RUNBIST—The RUNBIST instruction provides a means of running a user-
accessible self-test function within the chip using a single instruction. This
permits all chips on a board that support the RUNBIST instruction to execute
their own self-test process concurrently, thereby greatly reducing the total
test time. It is also permitted to include further private or public instructions
which give access to individual self-test functions one at a time. Because this
is an optional instruction, the signals to control the BIST circuitry in each
chip have to be generated by user-designed logic. One way to accomplish this
is illustrated in Section 10.2.8.

� CLAMP—When the CLAMP instruction is executed, the state of all signals
driven from the output pins of the chip should be completely defined by
the data held in the boundary-scan register, preferably in a “safe” state. The
data may be shifted into the boundary-scan register by a previous PRELOAD
instruction. It should be pointed out that, similar to the BYPASS instruction,
the CLAMP instruction also places only the BYPASS register between TDI and
TDO, thus greatly reducing the shift length.

� IDCODE—This instruction shall be provided when the optional 32-bit device
identification register (device-ID register) is included in the chip. When the
IDCODE instruction is used, the vendor’s identification code (containing the
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manufacturer’s identity, the part number, and the version number of the chip)
prestored somewhere in the chip shall be loaded into the device-ID register,
which can then be shifted out for examination through the TDI–TDO shift
path. This instruction, if implemented, should be the default instruction in
the reset state.

� USERCODE—The USERCODE instruction allows a user-programmable 32-
bit identification code to be loaded into the user-defined device-ID register
and then shifted out for examination. This instruction is useful when the
chip can be programmed in various ways and it is necessary to determine
the way in which the chip is programmed. This instruction shall be used in
a programmable device such as an FPGA chip if programming the chip via
boundary-scan test logic is not allowed. When this instruction is included, it
is the responsibility of the chip provider to implement the code somewhere in
the chip.

� HIGHZ—When the HIGHZ instruction is selected for a chip, all output
pins of the chip shall be placed in an inactive-drive state. This will allow
an in-circuit system tester to drive the chip outputs to some desired state
(e.g., to test other chips) without damaging the chip. This instruction also
requires that the BYPASS register be the only register on the TDI–TDO
path.

10.2.7 Boundary-Scan Description Language
The boundary-scan description language (BSDL) has been included as part of
IEEE Std. 1149.1-2001. This VHSIC hardware description language (VHDL)-
compatible language provides information about how a boundary-scan IC is imple-
mented, which can be used by ATPG software or system integrators to develop the
test for the chip. Descriptions for mandatory logic, such as the TAP and BYPASS
registers, do not have to be provided. These are already provided in a standard
way. The designer only has to describe the design-specific attributes, such as the
length of boundary-scan register, the user-defined boundary-scan instructions, the
decoder for his or her own instructions, and the I/O pins assignment (e.g., which pin
is to be used as the TDI pin). In general these descriptions are quite easy to prepare.
Currently, many computer-aided design (CAD) tools already support automatic
generation of the boundary-scan design, thus it may not even be necessary for a
designer to write the BSDL file; the tools can automatically generate the necessary
boundary-scan circuitry as long as the specific boundary-scan information for the
chip is provided (in a setup file, for example).

10.2.8 On-Chip Test Support with Boundary Scan
Standard 1149.1 defines the test circuitry on the boundary of a chip but does not
describe how to use boundary-scan circuitry to support the DFT circuitry built
inside a chip, such as scan or BIST design. In Figure 10.13 we show a possible
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Scan and BIST support with boundary scan.

way to support these DFT operations. First, we may add new test instructions for
these operations such as RUNBIST and RUNSCAN. Second, the decoder for the
IR can be designed in such a way that one control line will be added for each new
instruction and each time a new instruction is loaded into the IR the corresponding
control line will be activated (set to 1, for example). Third, the control line can
then be used to enable a decoder specifically designed for the instruction such that
the control signals generated by the TAPC can be converted into the appropriate
control signals required by the associated DFT circuitry.
We can use the sample BIST circuitry shown in Figure 10.13 to illustrate this

design. When the RUNBIST instruction is loaded into the IR, the mbist signal will
be activated and the BIST decoder can be enabled. Initially, the TAP controller is
in the Test–Logic–Reset state which will provide a reset signal via the rst signal to
reset the BIST controller. If the compressor has to be initialized, we can either reset
it or place the TAPC into the shift mode and activate the bist-sel signal such that
an initial value can be sent to the Compressor through TDI and bist_si. Then, we
may put the TAPC in the Run-Idle/Test state and enable the BIST controller via the
bist_en signal to start the BIST operation. After the BIST operations are completed,
the TAPC is again put into the shift mode so as to shift out the compressed results
for evaluation. The hold signal shown in Figure 10.13 can be used to hold the BIST
controller when necessary (e.g., waiting for the TAP to reach some required state
or waiting for latency testing).
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The above design can be extended to execute BIST for multiple components—
concurrently, one by one, or in a mixed manner. Because 1149.1 allows the user to
define any number of test instructions, one can define different test instructions if
multiple test sessions are required.
For the scan support, similar mechanisms can be used as shown in Figure 10.13;

however, because only one test input (TDI) is available, the test time can be quite
long if a single scan chain is used. The test compaction techniques described in
Chapter 6, such as broadcast scan, can be used to reduce the test time.

10.2.9 Board and System-Level Boundary-Scan Control Architectures
When the 1149.1 test logic has been successfully integrated into the device, the next
problem the designer faces is how to provide test data and control signals to chips
on a board or system. There exist several test architectures for this purpose, as
shown in Figure 10.14 [Zak 1992] [O’Donnell 1994] [Gibbs 2003] [Treuren 2005].
These are described next.

� Single-ring architecture with shared TMS (Figure 10.14a)—In this archi-
tecture, all boundary-scan registers of chips are daisy-chained together and
the TMS signal is broadcast to all chips. All chips will always execute the same
Capture, Shift, or Update operation under the control of the TAPC. Note that
different chips may still receive different test instructions through the long
TDI–TDO chain; for example, some chips may receive the BYPASS instruction
while others receive the EXTEST instruction.
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Bus master for chips with boundary scan: (a) ring architecture with shared TMS; (b) ring architecture
with separate TMS; (c) star architecture; (d) multidrop architecture; (e) hierarchical architecture.
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� Single-ring architecture with separate TMS (Figure 10.14b)—In this archi-
tecture, each chip receives its own TMS signal, hence one can provide differ-
ent instructions to different chips as well as operate the chips with different
control signals. With this architecture, virtually all chips can be tested inde-
pendently. The single-ring architecture is easy to implement. It is generally
sufficient to test chips on a single board; however, for a system or back-
plane that contains a number of boards where each board contains ICs with
boundary-scan architectures, the single-ring configuration may become inef-
ficient due to the long and often cumbersome scan chain that has to pass
through all chips in all boards. This architecture also runs into problems when
boards are removed or added, as some type of jumper or bridge is required
when a board is removed; otherwise, the chain will be broken.

� Star (multi-ring) architecture (Figure 10.14c)—In the star-architecture,
every board in the system gets a dedicated set of boundary-scan data and
control signals. Though test for chips in each board can be efficiently carried
out as if only a single board exists, such an approach requires a larger num-
ber of (connection) traces in the backplane. The advantage of the ring and
star architectures is that they do not require any additional components or
new protocols beyond what is required by the boundary-scan specification.
This makes them straightforward to implement, but in a large multiple-board
system they are often too cumbersome to use.

� Multidrop architecture (Figure 10.14d)—A multidrop architecture uses only
one set of 1149.1 data and control signals which is wired in parallel to each
board in the system. To ensure that boundary-scan operations are applied to
only one board at a time, an addressable gateway device must be implemented
on each board. A special selection protocol is applied to the boundary-scan bus
by the system-level boundary-scan controller to connect the chosen board’s
scan chain to the bus. This solves the problemsmentioned above at the expense
of extra selection logic in each board. The multidrop architecture is the one
used most in industry; for example, the Addressable Shadow Port developed
by Texas Instruments (TI) [Whetsel 1992] [Joshi 2003] [TI 1999] [TI 2003]
and the Scan-Bridge developed by National Semiconductor (NS) [NS 2004a]
[NS 2004b] belong to this category.

� Hierarchical architecture (Figure 10.14e)—A hierarchical connection is
essentially a nested test structure, as shown in Figure 10.14e. This architec-
ture has the following advantages: For a complex system the bit length of the
serial scan path can become quite large. By breaking the single chains into
multiple hierarchical chains, chip access can become much more efficient.
The hierarchical structure is also helpful when performing system-level test
integration because a complex system is often designed in a top-down fashion
which naturally bears a hierarchical structure. The hierarchical architecture
can be implemented together with a multidrop system such that the scan path
of one board can be used to drive another entire level of multidrop test, as
shown in Figure 10.14e.
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All of the above-mentioned architectures use the boundary-scan protocol for
board or system testing with at least four dedicated lines required. Methods to test
chips by using a simplified bus and protocol not compliant to the 1149.1 standard
have also been proposed [Bäckström 2005]. The motivation behind such designs
lies in the fact that usually embedded go/no-go and efficient local diagnosis are
crucial in order to quickly identify and diagnose problems in a system; therefore
the information to be transferred at the backplane level can be as simple as the
initialization of a test procedure and the go/no-go report of the test results. The
solution presented in [Bäckström 2005] belongs to this category and requires only
two wires in the backplane.

10.3 BOUNDARY SCAN FOR ADVANCED NETWORKS (IEEE 1149.6)

10.3.1 Rationale for 1149.6
As serial data I/O have increased to multiple-gigabit-per-second rates, advanced
signaling techniques such as differential and AC-coupled networks have begun to
emerge. These signaling techniques present significant challenges for the IEEE
1149.1 standard [IEEE 1149.1-2001]. The presence of the coupling capacitor in
AC-coupled networks blocks DC signals. As a result, the DC level that is applied
to the net during a boundary-scan EXTEST instruction decays over time to an
undefined logic level. This is shown in Figure 10.15 [IEEE 1149.6-2003], where
“C” and “U” refer to the 1149.1 Capture logic (R1 flip-flop in Figure 10.6) and
Update logic (R2 flip-flop in Figure 10.6), respectively. In this case, the Capture-DR
state must occur within a minimum time after driving the signal in the Update-DR
state. This in turn places a minimum frequency requirement on TCK that cannot
be supported by the 1149.1 standard. The IEEE 1149.6 standard addresses this
issue by capturing the edges of data transitions instead of capturing data levels.
By capturing edges instead of levels, the minimum TCK frequency requirement is
removed.
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� FIGURE 10.15

Capturing an AC-coupled signal with IEEE 1149.1.
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In addition to AC-coupling, differential signaling presents problems for the 1149.1
standard because of its fault tolerance. Standard 1149.1 specifies two ways to
address differential networks:

� Placing boundary cells on both outputs of the driver and both inputs of the
receiver

� Placing a single boundary cell attached internally to the driver and another
boundary cell internally to the receiver (see Figure 10.16)

Only the second choice is practical for high-speed networks, as the boundary
cells would present an unreasonable load to the high-speed driver. Herein lies the
problem. With only a single boundary-scan cell connected to the output of the
differential receiving buffer, opens on either of the input pins may not be detected
due to the fault-tolerant nature of differential receivers. An open on one of the
two input pins will most likely result in that input to the receiver buffer being
terminated to a bias or threshold voltage. Assuming that the other input pin is
connected, the boundary-scan cell will still detect the correct state of the network.
While these faults are undetectable during a boundary-scan test, they will certainly
cause failures during operation at functional speeds.
A better boundary-scan circuit would consist of a single cell internal to the driver

and a boundary-scan cell on each input of the receiver. There is little performance
penalty on the driver side and better coverage on the receiver side. This circuit can
be implemented without violating the 1149.1 standard; however, the standard does
not discuss this implementation, and most 1149.1 tools do not recognize such a
configuration. This is the implementation that IEEE 1149.6 uses for differential
networks.
The following sections describe the four key components of the IEEE 1149.6

circuit: (1) analog test receiver, (2) digital driver logic, (3) digital receiver logic, and
(4) 1149.6 TAP. The analog test receiver and digital receiver logic replace the Rx
side boundary-scan logic shown in Figure 10.15. The digital driver logic replaces
the Tx side boundary-scan logic shown in Figure 10.15.

C U

TX RX

C U

� FIGURE 10.16

The IEEE 1149.1 configuration for differential signaling.
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10.3.2 1149.6 Analog Test Receiver
The analog test receiver is the most critical part of the 1149.6 implementation. It
is the test receiver that is able to capture transition edges (as described above). The
challenge for the test receiver is to capture the edges without the noise immunity
that is built into the differential receiver (as there is a test receiver on each input
pin). The test receiver uses a “self-referenced” comparator, along with voltage and
delay hysteresis, to capture a valid edge and filter any unwanted noise. The test
receiver uses a low-pass filter to create a delayed reference signal. An example
of the test receiver and its response to AC- and DC-coupled signals is shown in
Figure 10.17.

10.3.3 1149.6 Digital Driver Logic
The 1149.6 digital driver logic is a simple extension to the IEEE 1149.1 driver.
Unlike the 1149.1 driver, the 1149.6 driver is required to drive a pulse (or a sequence
of pulses) when it is executing the 1149.6 EXTEST_PULSE (or EXTEST_TRAIN)
instruction. The EXTEST_PULSE instruction is used to drive the output signal to
the opposite state, wait for the signal to fully decay, and then drive the signal to the
correct value (this is the value that gets captured). By allowing the signal to fully
decay, the maximum voltage swing is generated on the next driven edge, allowing
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Analog test receiver response to AC- and DC-coupled signals.
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for better capture by the analog test receiver. In rare cases, a continuous wave-
form may be required for some high-speed logic. In this case, the EXTEST_TRAIN
instruction is used instead of the EXTEST_PULSE. EXTEST_TRAIN will generate a
continuous waveform based on TCK. The TCK frequency must be adjusted to allow
for maximum decay without affecting the receiver side logic. The digital driver logic
must also support the 1149.1 EXTEST instruction. It simply extends the 1149.1
logic by multiplexing the 1149.6 signal into the 1149.1 shift/update circuit, after
the update flip-flop (see Figure 10.18). The 1149.6 driver logic is selected by setting
the ACMode signal to a logic 1. The ACMode signal is a new signal generated by the
TAPC in response to an EXTEST_PULSE or EXTEST_TRAIN instruction. RTI state
is also a new signal required for 1149.6. This signal is driven by the TAPC when
the controller is in the Run-Test/Idle state while executing an EXTEST_PULSE or
EXTEST_TRAIN instruction. The additional logic required for 1149.6 is circled in
the figure.

10.3.4 1149.6 Digital Receiver Logic
The digital receiver logic (with the analog test receiver) is shown in Figure 10.19.
The digital receiver logic takes the output of the analog test receiver and sets a
capture flip-flop to a corresponding logical zero or one. The digital test receiver
logic also ensures that a valid transition has been captured on every test vector
by initializing the state of the capture memory prior to the transition being driven
onto the net (this element is shown as the “hysteresis memory,” or Hyst Mem).
Without this initialization, it would be impossible to determine if two sequential
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Digital driver logic.
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transitions in the same direction (positive or negative) occurred or if only one
transition occurred; that is, if a positive transition occurs and is captured in the
memory, and the subsequent test vector also generates a positive transition, then
there is no way to determine if the second transition occurred without clearing
the contents of the hysteresis memory before the second transition occurs. The
capture memory is initialized with the contents of data shifted into the capture
flip-flop. The memory is set or cleared based on the transition detected by the
analog test receiver. The capture memory is then loaded into the capture flip-flop
corresponding to a rising TCK during the Capture-DR state.

10.3.5 1149.6 Test Access Port (TAP)
Changes were made to the 1149.1 TAP to allow the 1149.6 driver logic to generate
pulses. It was determined that the 1149.6 TAP would require an excursion through
the Run-Test/Idle state to allow for the generation of the pulse or pulses required
by the EXTEST_PULSE and EXTEST_TRAIN instructions. Entry into the Run-
Test/Idle state during the execution of either EXTEST_PULSE or EXTEST_TRAIN
would generate the AC Test signal, which was shown in Figure 10.18 (1149.6 Driver).
This would in turn cause the data that were driven onto the net during the Update-
DR state to be inverted upon entry into the Run-Test/Idle state (on the first falling
edge of TCK) and to be inverted again upon exiting Run-Test/Idle (on the first
falling edge of TCK in the Select-DR state). As mentioned previously, the data signal
is inverted and then allowed to fully decay in order to guarantee the maximum
transition from the driver. This behavior is shown in Figure 10.20.
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Driver behavior during EXTEST_PULSE instruction.
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10.3.6 Summary
The IEEE 1149.6 standard is an extension of the IEEE 1149.1 standard. The 1149.6
standard must comply with all 1149.1 rules. The 1149.6 logic allows for testing of
AC-coupled networks by capturing edges of pulses that are generated by 1149.6
drivers. A special analog test receiver is used to capture these edges. The 1149.6
receiver logic is placed on both inputs of the differential receiver logic. Special
hysteresis logic filters out noise and captures only valid transitions. These exten-
sions allow for an equivalent level of testing (to 1149.1) for high-speed digital
interconnects.

10.4 EMBEDDED CORE TEST STANDARD (IEEE Std. 1500)

10.4.1 SOC (System-on-Chip) Test Problems
As shown in Figure 10.1, a typical SOC design may contain a large number of
cores. The relationship between cores and SOCs appears to be analogous to that
between chips and boards/systems; hence, a test architecture similar to a boundary
scan should also be highly desirable for SOC testing. Many concepts developed for
boundary scan have indeed been applied to SOC testing; however, amajor difference
exists between core-based SOC testing and chip-based board/system testing. The
components in the latter are chips that have been manufactured and tested before
they are put on a board; thus, the main test problem for the system integrator is
the interconnects between chips on a board and between boards in a system. For
SOC testing, all cores are not manufactured before they are integrated into an SOC.
It is the responsibility of the system integrator to test all of the cores, as well as
the interconnects, after the chips are manufactured. Many test problems arise, as
discussed below [Zorian 1997] [Cheng 2001].

� Mixing technologies—An SOCmay contain cores with logic, processor, mem-
ory, and analog design/manufacturing technologies. All of these cores must be
tested after the SOC is manufactured. It is almost impossible for a system inte-
grator to develop all the tests alone. Assistance from the core providers must
be enforced, and a standard way to communicate between the core providers
and the system integrator must be established.

� Deeply embedded cores—A core may be deeply embedded in a chip. This
requires some kind of test access mechanism (TAM) through which the core
can be efficiently accessed and tested. It is preferred that the cores to be
integrated have a plug-and-play feature under the TAM so as to make system
integration manageable.

� Hierarchicalcores—Acoreitselfmaycontainsomecores inahierarchicalman-
ner. A TAM only for cores at the top level of a hierarchy is insufficient. An effi-
cient and effective hierarchical test structure is needed to test the cores at the
lower level of a hierarchy. It is also desired that the plug-and-play feature can
be carriedout for cores at anyhierarchical level to simplify the integrationwork.
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� Different core providers—Cores may come from different vendors. The cores
available to the system integrator may be soft cores, hard cores, or firm cores.
The integrator needs to know how to test these cores after putting them
together. Some kind of design and test standard is again essential for the
integration purpose.

� IP protection/test reuse—Detailed internal structural information of a core
is usually unavailable due to IP protection considerations. It is thus desirable
to be able to reuse the test provided by the core developer with very limited or
no modifications. A standard core test interface and protocol are also essential
to address this problem.

� Higher performance core I/Os than SOC pins—The clock rate inside a core
can be significantly higher than what can be provided from SOC pins; for
example, many contemporary CPUs are running multiple-gigahertz clocks
while their chip I/Os are still limited to the range of hundreds of megahertz.
Test clocks provided from external testers usually cannot support at-speed
testing even if the core can be isolated and well accessed through some TAM.
Raising the test clock rate using a dedicated phase-lock loop would signifi-
cantly complicate the design, resulting in unacceptable test costs. In this case,
employing normal functional units to create the required at-speed test envi-
ronment seems to be the only way to achieve efficient, effective, and economic
testing.

� Expensive and inefficient external automatic test equipment (ATE)—The
specifications of ATE for testing digital, analog, and memory devices are
significantly different. If the SOC testing relies solely on external ATE, then
the ATE must be capable of generating/examining all types of test signals
and hence will be extremely expensive. Moving some test control or test data
generation mechanism into the chip can potentially reduce the use of external
ATE and reduce the test cost.

� Long test application time—Clearly, long test application time is required
if the cores in an SOC are tested sequentially. This will worsen the already
acute problem of the extremely high cost of ATE. Moreover, this may seriously
affect the time-to-market, resulting in disastrous market loss. Parallel testing
or test scheduling is necessary to reduce test time and hence the adverse
effects described above.

� Large test power—While great efforts have been devoted to low power design,
test power issues have only recently gained attention. While parallel testing
of as many cores as possible is desired to reduce test time, excess test power
resulting in incorrect test results or even damaging the devices under test is
possible. A test schedule must be carefully planned so as not to violate any
constraint or limit of test power.

� Testable design automation—As SOC testing involves many new compli-
cated problems, new DFT insertion tools that solve these problems are highly
desirable. These tools should include the automatic generation of standard test
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circuitry, test architecture, and test plan or schedule. Test pattern generation
and formatting are also necessary for test reuse.

Many of the above problems strongly suggest that a standard be established such
that core developers and system integrators can communicate efficiently to address
issues of SOC testing. Other problems require a good test plan or schedule to carry
out actual test procedures as efficiently as possible while maintaining the integrity
of the test. The inefficiency and ineffectiveness of the external ATE also have to be
dealt with to prevent testing from becoming the bottleneck of SOC industry. In this
section, we focus on the standard for core-based testing.
Standard 1500 is a test standard approved by IEEE in 2005 which inherits most

of the properties of 1149.1 and can further address many of the SOC test problems
described above. The main goal of 1500 is to standardize a core test architecture
by defining a core test interface between an embedded core and the system so as to
facilitate test reuse for embedded cores through core access mechanisms, provide
testability for system interconnect and user-defined logic (UDL), and enable core
test with plug-and-play (PnP) protocols. The IEEE 1500 standard supports both
serial and parallel test access mechanisms and provides a rich set of instructions
for core and interconnect testing. It also defines features that enable core isolation
and protection. A system chip complying with 1500 should contain the following
hardware components:

� One standard test wrapper for each core

� Signal sources and sinks for test pattern provision and reception

� On-chip TAMs to connect the wrapper to the sources/sinks

In addition to the hardware components, the 1500 uses a test-specific lan-
guage called Core Test Language (CTL) to communicate information between core
providers and core users. This language is now considered part of the 1500 stan-
dard, and describing the 1500 wrapper as well as the test data for a reusable core
is required.
It should be noted that, similar to boundary scan, the 1500 standard itself only

standardizes the core test mechanism for core access/isolation protocols and test
mode control. The system-level test access mechanism still must be defined by the
system integrator. Also, any test methods inside each core must be defined and
implemented by the core providers.

10.4.2 Overall Architecture
Themost important feature of the 1500 standard is the provision of awrapper on the
boundary (I/O terminals) of each core, thereby allowing the test interface of the core
to be standardized and the test commands to be executed. An overall architecture
of IEEE 1500 is shown in Figure 10.21, where a system with N cores, each wrapped
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A system overview of the IEEE 1500 standard.

by an IEEE 1500 wrapper, is illustrated. The wrapper serial port (WSP) is a set of
I/O terminals of the wrapper for serial operations. It consists of the wrapper serial
input (WSI), thewrapper serial output (WSO), and severalwrapper serial control
(WSC) terminals. Each wrapper has a wrapper instruction register (WIR), which
is used to store the instruction to be executed in the corresponding core. The WSP
supports the serial test mode similar to that in a boundary-scan architecture, but
without using a TAP controller (i.e., the serial control signals of 1500 are directly
applied to the core without the conversion of the TAP controller). This is discussed
further in Section 10.4.3.
In addition to the serial test mode, the 1500 standard also supports a paral-

lel test mode by incorporating a user-defined, parallel test access mechanism
(TAM). Each core can have its own TAM-in and TAM-out ports consisting of a
number of data or control lines for parallel test operations. The user-defined, par-
allel TAM can transport test signals from the TAM-source to the cores through
TAM-in and from the cores to the TAM-sink through TAM-out. In Figure 10.22
the interface of a core is highlighted and both parallel and serial data/control
signals are indicated; the wrapper parallel control (WPC) and wrapper parallel
input (WPI) signals correspond to the TAM-in port, and the wrapper parallel out-
put (WPO) signals correspond to the TAM-out port in Figure 10.21. It should be
pointed out that for the 1500 standard the serial ports are mandatory while the
parallel ports are optional; however, the parallel interface represents one main dif-
ference between 1500 and 1149.1 that leads to a significant time reduction for SOC
testing.
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Test interface of a core wrapper.

10.4.3 Wrapper Components and Functions
Figure 10.23 shows the detailed hardware structure of the IEEE 1500 standard core
wrapper, which is comprised of five components, as described below.

1. A wrapper serial port (WSP), which consists of a wrapper serial input (WSI), a
wrapper serial output (WSO), and several wrapper serial control (WSC) termi-
nals. Similar to the TDI and TDO of 1149.1, the WSI and WSO terminals are
used to scan in and scan out wrapper test instructions and data. BothWSI and
WSO are mandatory for 1500. The WSC contains six mandatory control ter-
minals (WRSTN, WRCK, SelectWIR, CaptureWR, ShiftWR, and UpdateWR),
one optional control terminal (TransferDR), and some optional clock termi-
nals (AUXCKn). These terminals are described next. Some operations enabled
by these terminals will be described later.

� WRCK—This mandatory wrapper clock terminal is dedicated to the oper-
ation of the 1500 standard functions.

� AUXCKn—These optional auxiliary 1500 clocks can be used for some
implementations of wrapper boundary registers. The “n” indicates the
number of these auxiliary clocks that shall be indexed by 1	2	 � � � 	 n. These
clocks may be shared with the system clocks. When they are employed,
the user must clearly define the timing relation between these signals and
WRCK.
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Serial test circuitry of the 1500 standard for a core.

� WRSTN—This mandatory wrapper reset terminal resets the wrapper cir-
cuitry and puts the wrapper into the normal system mode when asserted.
The wrapper bypass instruction, which is similar to the bypass instruc-
tion in 1149.1, shall be automatically loaded into the wrapper instruction
register whenever WRSTN is asserted.

� SelectWIR—This mandatory terminal is used to determine whether
an instruction or data type of operation is to be performed. When
SelectWIR=1, WIR is selected and connected between WSI and WSO;
otherwise, some data register(s) is connected between WSI and WSO.

� CaptureWR—This mandatory terminal is used to enable the capture oper-
ation for the selected register(s).

� ShiftWR—This mandatory terminal is used to enable the Shift operation
for the selected register(s).
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� UpdateWR—This mandatory terminal is used to enable the Update oper-
ation for the selected register(s).

� TransferDR—This optional terminal enables the Transfer operation for
selected register(s) that implement the Transfer function.

Similar to 1149.1, correct timing is also critical for proper operation of
the 1500 circuitry. In the 1500 standard, it is required that the SelectWIR,
ShiftWR, CaptureWR, and TransferDR be sampled at the rising edge ofWRCK
and the UpdateWR be sampled at the falling edge of the WRCK.

2. A wrapper parallel port (WPP), which consists of user-defined wrapper par-
allel input (WPI) terminals, wrapper parallel output (WPO) terminals, and
wrapper parallel control (WPC) terminals. All of these terminals are optional.
A WPP may include the clock terminals of WSC (the WRCK and AUXCK
terminals) but may not replace other WSC terminals.

3. A wrapper instruction register (WIR), which is used to store the instruction
to be executed, similar to the instruction register in 1149.1. The WIR is uncon-
ditionally selected whenever the SelectWIR of WSC is set to 1, regardless
of the current wrapper instruction and selected wrapper/core data registers.
It is implemented using a two-stage design such that the shifting of a new
instruction will not interfere with the current instruction. The two main dif-
ferences between the instruction registers of 1149.1 and 1500 are described
below.

� First, because there is no finite-state machine in 1500, the control signals
provided by the WIR are derived from both the current wrapper instruc-
tion and the current states of the signals connected to the WSC terminals.
Figure 10.24 shows the circuitry design of a WIR. It consists of a shift
stage and a decode/update stage. Three sets of essential control signals
(DR_Select, WBY_Cntrl, and WBR_Cntrl) are used to select the appropri-
ate register(s), control the operations of the wrapper bypass register, and
control the operation of the wrapper boundary register, respectively. Other
control signals, such as those for other wrapper data registers (WDR),
those for core data registers (CDR), and those for the core itself, can also
be generated. Note that these control signals are defined in a quite flexible
way and the user may use different names for these signals.

� The second difference is that, in addition to the serial shift-in operation of a
new instruction through theWSI–WSO chain, the 1500 standard optionally
provides a parallel load mode, as shown in Figure 10.24. This permits the
WIR to capture test control information directly (remember that the WSC
terminals are also inputs to WIR) or to capture data that can be used to
test the WIR or other 1500 circuitry.

4. A wrapper bypass register (WBY), which bypasses test signals similar to the
bypass register in 1149.1. TheWBY should be selected and connected between
WSI andWSOwhenWRSTN is asserted or when the current instruction is the
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WIR circuitry design.

wrapper bypass instruction. It is also the default register to be put between
WSI and WSO when no other wrapper data register is selected or when an
unused wrapper instruction opcode appears in the WIR.

5. A wrapper boundary register (WBR), which consists of wrapper bound-
ary cells (WBCs) similar to the boundary-scan register in 1149.1. Each WBC
has four data terminals: cell functional input (CFI), cell functional out-
put (CFO), cell test input (CTI), and cell test output (CTO), as shown
in Figure 10.23. The functional modes and operation events of WBR are
described next.

Functional modes of WBR—Four modes are defined as follows:

� Normal mode—TheWBR is transparent to the system and the core executes
its normal functions.

� Inward facing mode—The test access is for the core itself; that is, the
functional inputs of the core are controlled and the functional outputs of
the core are observed by the WBR (see Figure 10.23).

� Outward facing mode—The test access is for external circuitry; that is, the
wrapper functional outputs and the wrapper parallel outputs (of WPP) are
controlled by the WBR, and the wrapper functional inputs and wrapper
parallel inputs are observed (or captured) by the WBR (see Figure 10.23).

� Nonhazardous (safe) mode—The functional inputs of the core and wrapper
functional outputs are controlled by WBR to a safe state.

Operation events of WBR and WBC—Five events (Shift, Capture, Update,
Transfer, and Apply) are supported by the WBR (or WBC) in 1500. We will use
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“bubble” diagrams to help illustrate these events. The four symbols shown in
Figure 10.25 are used to represent the structures of all WBCs, where a circle
represents a storage element, an arrow represents a data path, a vertical line
together with two or more input arrows and one output arrow represents a
decision point, and two arrows emerging from a single point represent two
data paths from the same signal source. Each circle may be characterized by
one or more characters from the set of S, C, U, T, and F to indicate that the
corresponding storage element is responsible for the Shift, Capture, Update,
Transfer, and any Functional event, respectively.
Several bubble diagrams representing different types of WBCs provided

in the IEEE 1500-2005 standard document are provided in Figure 10.26,
where their names are shown under each WBC. The events supported by each
WBC are indicated by the characters in the storage elements; for example,
Figure 10.26a shows a simple WBC that contains only one storage element
and supports only the Shift and Capture events, while Figure 10.26e shows a
WBC that contains three storage elements, two of which are used for the Shift
and Transfer events and the third one for the Update, Capture, and Functional
events. Note that Figure 10.26d corresponds to a boundary-scan cell shown
in Figure 10.6. Also note that Figure 10.26g does not support the Capture
event. This may represent a WBC for a core terminal that can be exempted
from being wrapped, such as a clock or a reset terminal of the core. These
five events are described below:

� Shift event—A mandatory event whereby the data stored in the WBR shift
path are advanced one storage position closer to the WBR’s serial test
output. The data present at the WBR’s serial test input are loaded into the
shift path storage element closest to the WBR’s input.

� Capture event—An event whereby the data present on the CFI or CFO of
a WBC are captured and stored in a storage element within the WBC; for
example, Figures 10.26a shows a WBC that captures data from CFI, while
Figure 10.26h shows a WBC that can capture data from both the CFI and
CFO. Unless the WBC is used for a terminal that can be exempted from
being wrapped such as a clock or reset terminal, this event is mandatory
for all WBCs.

� FIGURE 10.25

The four symbols used in bubble diagrams.
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Some typical WBCs represented by bubble diagrams.
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� Update event—An optional event whereby data stored in a WBC’s shift path
storage element closest to CTO are loaded into an off-shift-path storage
element of the WBC. Note that this event is optional in 1500; for example,
the WBCs in parts a, b, c, and g of Figure 10.26 do not support this event.

� Transfer event—An optional event that either moves data to the storage
element closest to the CTI of a WBC, if the data stored by the Capture
event are not on this storage element (Figure 10.26b,e), or moves the
data one storage position closer to the CTO (Figure 10.26c,e,f). There are
two purposes for the Transfer event. First, in order to preserve as many
capture values as there are storage elements in the shift path, captured
data should enter a WBC’s shift path via the storage element closest to CTI.
Second, to provide sequential stimuli data such as those required for delay
testing, Transfer moves data through the shift path so that each bit may
be sequentially loaded into the update storage element and then applied
to the CFO of the WBC.

� Apply event—A derivative event inferred from the operation of the other
four events (Shift, Update, Transfer, and Capture) whereby test data
become active and effective as test stimuli. While the wrapper is in inward
(outward) facing mode, the Apply event causes test data to be applied from
input (output) cells onto the functional inputs of the core (WBR’s func-
tional outputs). The test data are the data stored in the shift path storage
element closest to CTO unless the Update event is supported, in which case
the test data shall be the data stored in the off-shift-path storage element
by the Update event. It should be noted that the Apply event is a virtual
event inferred from other events and hence is not specifically represented
in the bubble diagrams shown in Figure 10.26.

In the following we give two examples to illustrate how the signals generated by
the WIR control the operations of the WBR and WBCs.

Example 10.1

In Figure 10.27, we provide an example of a WIR interface to the WBY, WBR,
WDRs, and CDRs of a core. The WSO of the core is connected to the serial output of
WIR (i.e., WIR_WSO) or the serial output of one of the data registers—WBY, WBR,
CDRs, or other WDRs (i.e., DR_WSO) under the direct control of the SelectWIR
signal. The serial output (DR_WSO) of the data registers is in turn controlled by
the Dr_Select�n � � � 0� generated by the WIR. All other signals are applied to the
data registers as described in the next example.

Example 10.2

In Figure 10.28, we show the schematic diagram of the WBC WC_SD2_CIO, the
bubble diagram for which is given in Figure 10.26b. In this design, the Mode signal
is generated by the WIR and is used to determine whether the cell is in the normal
or test mode operation. The IO_FACE signal, also generated by the WIR, is used
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Example of WIR interface with WBY, WBR, WDRs, and CDRs.
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Schematic diagram of WBC WC_SD2_CIO.

to determine whether the core is in the inward or outward facing configuration.
Both of these two signals are WBR_Cntrl signals, as they are generated for the
WBCs. The SHIFT, CAPTURE, and XFER signals, which are derived directly from
the ShiftWR, CaptureWR, and TransferDR signals, determine which event is being
executed. D1 and D2 flip-flops correspond to the storage elements closest to CTI
and CTO, respectively, as shown in Figure 10.26b. As D1 supports two events (S and
T in the bubble diagram), its input comes from three sources. When SHIFT is
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asserted, it receives data from CTI; when XFER is asserted, it receives data from
the output of D2; and when neither of these two signals is asserted, it holds its
current state. The D2 flip-flop supports three events (S, C, and T). It participates
in the Shift event whenever SHIFT is asserted; it captures the data at CFO when
CAPT is asserted and IO_FACT = 0 (the instruction is an inward facing one); and
it receives data from the D1 flip-flop when XFER is asserted and IO_FACT = 1.
When neither of these events is executed, it holds its state.

10.4.4 Instruction Set
The IEEE 1500 standard has a richer instruction set than 1149.1, as many
instructions have additional parallel options. In this section, all instructions
defined in 1500-2005 are described. These instructions follow the following naming
convention:

� W<S/P/H>_<Command>{_<Configuration>}—(e.g., WS_INTEST_RING),
where the first “W” is the preface for all 1500 instructions. S, P, and H
represent the serial, parallel, and hybrid test modes, respectively. A serial
instruction uses WSI, WSO, and WSC only. A parallel instruction mainly
uses WPI, WPO, and WPC and must have only the WBY between WSI and
WSO. A hybrid instruction involves the use of both serial and parallel ports.
An instruction simultaneously using parallel ports and configuring registers
other than WBY between WSI and WSO is considered to be a hybrid one.
In the following description, an “x” may be used for some instructions. In
these cases, the “x” should be replaced by S, P, or H. Command represents
the operation of the instruction (e.g., EXTEST or BYPASS). Configuration
describes the test configuration selected by the instruction. In 1500-2005,
this field only appears in the WS_INTEST_SCAN and WS_INTEST_RING
instructions where the “SCAN” in WS_INTEST_SCAN indicates that the
internal scan chain is included in the WSI–WSO chain in addition to the
WBR, while the “RING” in WS_INTEST_RING indicates that only the WBR
is between WSI and WSO. Next, we describe these instructions in more detail
with the help of Figure 10.29.

� WS_BYPASS: (Figure 10.29a)—This mandatory instruction is used to bypass
the test information and enables the normal functional configuration of the
wrapper. The WSI–WSO connection only passes through the WBY to allow
rapid data movement.

� WS_EXTEST (Figure 10.29b)—This mandatory instruction allows testing of
core-to-core interconnects and the off-chip user-defined logic (UDL) using a
single scan chain configuration. Only the WBR is connected for serial access
between WSI andWSO during the Shift operation. The test data can be loaded
into the WBR using a Wx_PREOLOAD instruction prior to the WS_EXTEST
instruction. The WBR shall be operated in the output facing mode, meaning
that the values present at the CFOs of the WBCs can be applied to the external
UDL or interconnects and the test results from these external circuits can be
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Test instructions for the 1500 standard: (a) WS_BYPASS, (b) WS_EXTEST, (c) WP_EXTEST, (d) WS_SAFE,
(e) WS_PRELOAD, (f) WP_PRELOAD, (g) WS_CLAMP, (h) WS_INTEST_RING, (i) WS_INTEST_SCAN.
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captured to the WBR through the CFIs of the WBCs. The execution of this
instruction is similar to that of the EXTEST instruction of 1149.1.

� WP_EXTEST (Figure 10.29c)—This optional instruction allows testing of
core-to-core interconnects and the off-chip UDL using a multiple scan chain
configuration. The WBR can be divided into multiple segments (multiple scan
chains) and the test data can be loaded into WBR using multiple WPI–WBR–
WPO paths under the control of a user-defined WPC. Other than the parallel
data transmission, this instruction mimics the WS_EXTEST instruction.

� Wx_EXTEST—When the “x” in this user-specified instruction is replaced by
S (P), this instruction is the same as the WS_EXTEST (WP_EXTEST) instruc-
tion and follows all rules defined in the 1500 standard.When the “x” is replaced
by H, the instruction becomes a hybrid one, which may allow more flexi-
ble capabilities to carry out the EXTEST operation using a mixed series and
parallel configuration.
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� WS_SAFE (Figure 10.29d)—This optional instruction provides a straight-
forward way for the core integrator to put a wrapper into a static and safe
state. If this instruction is present, the wrapper functional outputs of the WBR
shall be hardwired to constant values that have been predetermined when the
cores are wrapped. Note that the safe state can also be achieved by using a
preload instruction followed by a WS_CLAMP instruction as described below.

� WS_PRELOAD (Figure 10.29e)—This conditionally required instruction
allows test data to be serially loaded into the WBR without interfering with
the operation of cores or UDL attached to the WBR. It is mandatory when the
WBR is composed entirely of cells with a shift path supporting the Shift opera-
tion that keeps the WFO terminals static. Similar to the PRELOAD instruction
in 1149.1, this instruction can be used to load test data for external testing
prior to the WS_EXTEST instruction to prevent possible indeterminate states
at the wrapper functional outputs when loading the WS_EXTEST instruction
(see Section 10.2.6).

� WP_PRELOAD (Figure 10.29f)—This optional instruction allows the WBR
to be divided into multiple segments, and all segments can be loaded with
test data simultaneously. This instruction is typically utilized before some
defined instructions such as WP_EXTEST. It is usually preferred over the
WS_PRELOAD due to better data transfer efficiency. One can expect that with
the WP_PRELOAD and WP_EXTEST instructions, plus the parallel loading
capability of the WIR, interconnect and UDL testing can be carried out quite
efficiently.

� WS_CLAMP (Figure 10.29g)—This optional instruction allows the state of
signals driven by the wrapper functional outputs to be determined by the data
prestored in the WBR. The test control for this instruction shall be provided
by the WSC, and the WBY shall be connected for serial access between WSI
and WSO. The core with this instruction shall be put into a quiet mode (e.g.,
reset or clock off). It is the responsibility of the user of this instruction to
make sure the wrapper functional outputs of the WBR are in the desired state
(e.g., via Wx_PRELOAD) when this instruction is used.

� WS_INTEST_RING (Figure 10.29h)—This optional instruction allows single-
step testing of the core circuitry with each test pattern and response being
shifted through the WBR, where the single-step testing of the core means that
the core will move one step forward in its operation each time shifting of the
WBR is completed and applied. One such example is the single-step testing
for a CPU. The WBR shall be the only register connected between WSI and
WSO and shall be in the inward facing mode during this instruction. The test
pattern can be applied to the core and the response can be captured by the
WBR by enabling the Apply and the Capture events, respectively.

� WS_INTEST_SCAN (Figure 10.29i)—This instruction is the same as the
WS_INTEST_RING instruction except that an internal scan chain of the core
can be concatenated with the WBR to form a single scan chain. This allows
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more inside access to the core and can potentially provide better fault coverage
than the WS_INTEST_RING instruction.

� Wx_INTEST—For 1500, at least one INTEST instruction is required. This can
be a WS_INTEST_RING, a WS_INTEST_SCAN, or a user-defined instruction
with the name of Wx_TEST, where “x” can also be S, P, and H. Note that in the
1500-2005 standard, parallel INTEST instructions are not defined; however,
similar to the WP_EXTEST instruction, a WP_INTEST instruction would be
highly beneficial in reducing test time if a large number of test access lines
are available for the WPP.

10.4.5 Core Test Language (CTL)
The core test language (CTL) is a language for capturing and expressing test-related
information for reusable cores. It standardizes the description of all the informa-
tion that the core providers must give to system integrators or design automation
tools so a complete test for the embedded cores, interconnects among cores, and
any user-defined logic around the cores can be created. CTL is an extension of
the IEEE 1450 Standard Test Interface Language (STIL) standard [IEEE 1450-
1999] and is now defined in the IEEE draft standard P1450.6 (where “P” indicates
proposed). While STIL is a language mainly for representing IC test patterns and
waveforms, CTL provides additional information for core-specific controls to con-
figure a core and its surrounding logic, as well as the requirements and constraints
on the implementation of chip-level test interfaces for the core. Within CTL, one
can create enough information at the boundary of the core to allow for successful
(1) instantiation of a wrapper, (2) mapping of the core terminals to wrapper ter-
minals, (3) reuse of the core test data, and (4) testing of the user-defined logic and
wiring external to the core.
In addition to the basic information described by standard 1450 constructs, such

as Signals, Patterns, Macros, and Timing, the CTL description of a design can be
constructed by an environment statement consisting of various blocks that describe
global information or different operating modes of the design. Following is what a
CTL description of a design having two operation modes would look like:

STIL 1.0 {
}
Signals { //defines each of the signal names of the core
}
Patterns { //contains the parallel and scan data for testing the core
}
Timing { //defines the waveform and corresponding timing on each

// signal for each parallel or scan pattern
}
MacroDefs { //contains the protocol for applying test data to the core or

//chip
}
� � �
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Environment {
CTL {

//Common information of all CTL blocks within the Environment
}
CTL mode1 {

// Information about mode 1
}
CTL mode2 {

// Information about mode 2
}

}

The blocks before the Environment block are standard STIL descriptions of the
core I/O signals, test patterns, timing, and protocol to apply the patterns. Note
that the patterns and the protocol to apply the patterns are separated in CTL. The
core integrator only has to modify the latter without requiring significant changes
to the test patterns when integrating the core into a system. The Environment
block in this example contains one unnamed and two named blocks. The unnamed
block is used to describe global information that will be used by other blocks.
Each named block describes a test mode by specifying static attributes on the
boundary signals of the core and/or the sequence and pattern information for
the test mode. These attributes and information are described in the following
format:

CTL mode_name {
TestMode test_mode_name;
Internal {

//Describe information about the core itself
}
PatternInformation {

//Describe pattern information for the mode
}
External {

//Describe the outside environment expected for test integration
}
ScanInternal chain_name {

//Describe information of scan chain within the design
}
Relation {

//Describe the relation between signals or/and signal groups
}
TestResourceConstraints {

//Describe the constraints on the testability of the design
}
CoreInstance {

//Describe the internal level of hierarchy of the design
}

}
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Each named block in the Environment block shall specify its test mode
name with the TestMode parameter. The Internal, PatternInformation, and
External blocks are three essential blocks to specify the test mode as described
below:

� Internal—This block is used to describe the internal characteristics of the
core signals so the core integrator can determine the pertinent test information
for each terminal of the core without having to access the detailed design
information. Examples of these characteristics include wrapper type, signal
names, time accuracy requirements, and electrical characteristics such as
analog or digital.

� PatternInformation—This block is used to specify the purpose of each of
the test patterns provided and the test mode necessary for the execution of
each pattern. The fault model used, the number of faults considered, and the
fault coverage achieved can also be given in this block.

� External—This block describes the external characteristics that are expected
from the perspective of the core boundary. Examples include connections to
chip pins (input, output, or bidirectional), connections to another named core,
connections to TAM, and connections to UDL.

Other information specified in the CTL blocks includes the following:

� Information about the scan chains inside the core, which is described within
the ScanInternal block

� Relations between signals and signal groups within the scope of the CTL,
which are defined in the Relation block

� Internal level of reference to a hierarchy design, which is provided in the
CoreInstance block

� Test resource constraints, such as maximum scan length, maximum run time,
and maximum power consumption during testing, which are specified in the
TestResourceConstraint block

The IEEE 1500-2005 standard requires that the CTL description must be used for
any design with the 1500 wrappers. Several examples of CTL to describe the various
testmodesusing1500 test instructions are provided in the standard document [IEEE
1500-2005]. It is recommended that the reader refer to [Marinissen 1999], [Kapur
2001], and [IEEE P1450.6-2001] for more comprehensive descriptions of CTL.

10.4.6 Core Test Supporting and System Test Configurations
As mentioned in Section 10.4.1, unlike the chip-to-board relation in 1149.1, where
chips are tested before being mounted onto a board, it is the responsibility of the
test integrator to test all cores in an SOC. Fortunately, the 1500 standard does
provide an efficient solution for testing the cores by allowing parallel test access
with the user-defined WPP. Thus, the development of core testing in 1500 is easier
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than in 1149.1. For example, one can use the WPP to support the testing of a core
with multiple scan chains by directly connecting some WPI, WPO, and WPC to the
scan inputs, scan outputs, and scan enables of the core, respectively. Similarly, one
can also provide necessary interface signals directly to a core to carry out the BIST
operation of the core. The main problem here for 1500 is how to transfer test data
between system test sinks/sources and the wrappers (see Figure 10.21).
Because the serial mode of 1500 resembles that of 1149.1, the test configurations

described in Section 10.2.9 also apply to a 1500-based system; however, because
parallel access is allowed, it is beneficial to make use of the WPP to execute the
core testing more efficiently. Figure 10.30 shows a general test structure with both
WSP and WPP indicated. Because the WSP is mandatory and user-defined test
instructions can be loaded into the WIR to configure the core into any desired test
structure, it is advantageous for the user to use the WSI and WSC to enable the
cores to be tested through an ENA (enable) signal for simple test control of the
whole chip. This, of course, is not mandatory, and users may design their own test
enable protocols.
There are several user-defined parallel TAM configurations. Figure 10.31 shows

four such configurations: multiplexed, daisy-chained, direct-access (or distribution-
based), and locally controlled [Aerts 1998] [Waayers 2005]. In the multiplexed archi-
tecture, only one core can get access to the available SOC TAM wires at a time,
hence interconnect testing between cores is not easy to achieve. In the daisy-chain
architecture, all cores can access all TAM wires during a test session and each
core can be tested sequentially; however, if only a subset of cores is to be accessed
simultaneously, a mechanism to bypass parallel test data is required (which may
not be easy to design). Even if a parallel bypass mechanism is provided, a signifi-
cant increase in test time per test pattern will be inevitable, as analyzed in [Aerts
1998]. In the direct-access architecture, the available TAM wires are distributed
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WPP WPP WPP

WSP WSP WSP

Wrapper Wrapper Wrapper

User-Defined Test Access Mechanisms (TAM)

WPI WPC WPO WPI WPC WPO WPI WPC WPO
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WSI WSO

� FIGURE 10.30

General parallel TAM structure.
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� FIGURE 10.31

Various architectures for parallel TAM.

over the wrapped cores. The optimal number of TAM wires to be assigned to a core
depends on test requirements of the core (e.g., ATPG results and scan chain struc-
ture), and a test plan considering the requirements of all cores may be necessary
in order to minimize the total test time. In the locally controlled TAM, a dedicated
controller for each core is used, which allows the test procedures for all cores
to be carried out simultaneously. This, however, requires tremendous hardware
overhead.
Clearly, each of the above configurations has its own pros and cons. As a result,

a combination of these configurations and TAM reconfigurations during testing is
usually employed in a real system. For example, the Test Bus architecture presented
in [Varma 1998] uses both the multiplexing and the distribution configurations. The
TestRail proposed in [Marinissen 1998] can be connected in several ways following
the daisy-chain configuration, the distribution-based architecture, or a combina-
tion of the two. Many test architecture design algorithms have been proposed to
minimize the overall SOC test time for a given number of TAM wires by deter-
mining the number of distinct TAMs, their widths, and the assignment of these
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TAMs to cores. For example, optimization for Test Bus architectures can be found
in [Ivengar 2002], [Koranna 2002], and [Larsson 2002], whereas optimization of
TestRail architectures is described in [Goel 2002] and [Goel 2003a]. Further dis-
cussion on the optimization of the wrapper and TAM design can be found in [Goel
2003b], [Sehgal 2004], and [Waayers 2005].

10.4.7 Hierarchical Test Control and Plug-and-Play
Hierarchical design is a natural way to design a complex system starting from
the behavioral or architectural level of description. Testing for a hierarchical core
containing a number of internal cores may be achieved by flatting all cores during
testing. This, however, may require significantly more routing area because the
routing for testing is quite different from that for normal operation. On the other
hand, the 1500 standard has been designed to accommodate the easy plug-and-play
(PnP) of cores. Unless some test clocks (AUXCKn) and WBR are to be shared by
some system functional operation, PnP of a core into a SOC should be readily
applicable with the 1500 wrapper implemented in a flat design [IEEE 1500-2005].
To retain the PnP feature for a hierarchical core, however, is a nontrivial problem,
as one has to enable the cores to be tested in addition to transferring test data
between the SOC and the cores, preferably through the hierarchy. In this section,we
describe three test architectures that deal with this problem [Benabdenbi 2000]
[Lee 2000] [Li 2002].
In [Benabdenbi 2000], a test architecture called Core Access Switch (CAS) is

proposed, where each core is wrapped by a 1500 wrapper and a CAS block is
allocated to each core as shown in Figure 10.32. These CAS blocks are connected in
series with N test signals, and a test controller is used to provide the N test signals
to all CAS blocks (CAS 1, CAS 2, � � � ). Each CAS block can be operated in the
configuration, bypass, or test mode, as shown in Figure 10.33. In the beginning of a
test session, all CAS blocks are in the configuration mode, in which test instructions
are sent to all CAS blocks and each CAS is configured to the required configuration

CORE 1 CORE 2 CORE 3 CORE 4 CORE 5

CAS 1 CAS 2 CAS 3 CAS 4 CAS 5

Test 
ControllerN

P

� FIGURE 10.32

The Core Access Switch (CAS) architecture.
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according to the instruction it receives. When testing is carried out, each core is
either in the bypass mode or in the test mode, as shown in Figure 10.33.
For the test mode, CAS can support four test types according to the test require-

ments of the cores, as shown in Figure 10.34. Each CAS receives N test signals and
converts them into P signals in one of the following ways:

� For a core with k multiple scan chains, P= k and test data are provided to the
core through the k chains simultaneously.

� For a BISTed core, P can be as small as 1.

� For a core to be tested using external source and sink, P depends on the nature
of the source and sink.

� Forahierarchical core, theCAS techniqueallows the internal cores tobeCASed,
and in this configuration P is equal to the width of the internal test bus.

In the last option, the CAS structure allows hierarchical cores to be tested with a
single test controller. This poses a problem when the PnP feature in a hierarchical
structure is considered. Referring to Figure 10.34, if the entire circuit is to be used

Configuration mode Bypass mode Test mode

Instructionconfig config

� FIGURE 10.33

Different functional modes of CAS.
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Various types of test supporting using the CAS structure.
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as a core in a plug-and-play manner, the test controller in the circuit must also
be included in the inner core; thus, one has to define how two test controllers at
different hierarchical levels can cooperate in order to complete all test procedures.
This appears to be quite difficult in the CAS structure. For the CAS design to achieve
PnP in a hierarchical manner, no cores should be equipped with a test controller
except for the core at the highest level.
In [Lee 2000] a hierarchical test architecture that does allow PnP of a hierar-

chical core is proposed. As shown in Figure 10.35, this architecture supports cores
wrapped by the 1149.1 (JTAG) and 1500 (CTAG) standards. In addition, a hierar-
chical core can be plugged and played if it is wrapped by a proposed hierarchical
core (H-core) wrapper. The H-core wrapper contains a center test controller (CTC),
which consists of an 1149.1 TAP controller; a hierarchical test controller (HTC);
and a programmable switch, as shown in Figure 10.36. The I/O of a hierarchical
core contains the 5 required 1149.1 signals and 6 other signals (a total of 11 extra
signals). The 6 extra signals are mainly used to enable cores through the hierarchy
and provide test data and control signals similar to 1149.1 to the cores at the lower
level.
The CTC is the mechanism used to select the cores to be tested and to distribute

test signals to the selected cores. If a JTAG or CTAG core inside a hierarchical core
is to be tested, then the upper-level controller will send the TAP control signals
(TCS, including TCK, TRST, and TMS) to the hierarchical core. The CTC of the core
will either distribute the signals directly to the JTAG core or convert the signals to
wrapper control signals (WCSs) that are compatible with the CTAG core via the
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(H-Cores)
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TDI TDO

CHIP

TAM-BUS

Glue logic Glue logic

� FIGURE 10.35

A hierarchical test architecture supporting the plug-and-play feature.
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Detailed I/O and CTC of the hierarchical test architecture.

TAP controller of the CTC. If a hierarchical core inside a core is to be tested, then
the upper-level controller will send the hierarchical control signals (HCSs) to the
core and the CTC of the core will distribute the signals directly to the hierarchical
core. The programmable switch block contains switches controlled by the HTC that
will determine which cores are to be tested next and then set up the appropriate
connections. The extra signals provided to the hierarchical cores allow the enabling
of a core in a hierarchy directly from another core in an upper or lower level. This
can save a lot of setup time when a new core in a hierarchy is to be tested as it is
not necessary to send the new setup signals through cores outside the hierarchy. If
a direct enabling of a core in a hierarchy is not considered, then these extra signals
may not be necessary and fewer control signals can be used for implementing the
PnP feature for a hierarchical core.
In Figure 10.37, a hierarchical test architecture with only five extra I/Os is pro-

posed [Li 2002]. A hierarchical test manager (HTM) is used to generate the test
signals required by a hierarchical core so as to handle the test operations at a lower
level. Its upstream I/Os are compatible with the IEEE 1149.1 standard; that is, the
I/Os consist of the serial test control signals (denoted as TCS_UP and which include
TCK_UP, TMS_UP, and TRST_UP) and the serial test data signals (TDI_UP and
TDO_UP). Its downstream I/Os consist of the 1500 control signals (PCS), TCS_DN
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A hierarchical test architecture with I/Os compatible with 1149.1.

(including TCK_DN, TMS_DN, and TRST_DN), the serial data I/Os (TDI_H and
TDO_H) for the HTMs at the next level, and the serial data I/Os (TDI_C and TDO_C)
for the cores at the same level. The TAM provides parallel test data transport capac-
ity for the 1500 and BISTed memory cores.
When a hierarchical core is to be tested, the TCS_DN of the upper-level HTM is

encoded into the various required test signals (PCS and TCS_DN) of the lower-level
HTM. Also, the TDI_H (TDO_H) of the upper-level HTM is connected to TDI_C
(TDO_C) or TDI_H (TDO_H) of the lower-level HTM, according to the types of
cores to be tested. With this architecture, the hierarchical core test problem can be
solved with a core I/O that is compatible with the 1149.1 standard.

10.5 COMPARISONS BETWEEN THE 1500 AND 1149.1 STANDARDS

While 1500 is primarily targeted at core testing and 1149.1 at board-level test-
ing, the 1500 architecture was designed to allow interface compatibility with the
IEEE 1149.1 test access port (TAP) controller from the beginning. The wrapper’s
WSC interface signals can indeed be generated by the IEEE 1149.1 TAP controller
except for the optional TransferDR signal. Thus, while the IEEE 1500 standard
does not require or suggest it, the WSC interface may be controlled by an IEEE
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TABLE 10.2 � Comparison between 1500 and 1149.1

1149.1 1500

Main objective Board-level testing Core-based testing
Parallel mode No Yes
Extra data/control I/Os Four mandatory (TMS, TCK,

TDI, TDO) + one optional
(TRST)

Two mandatory (WSI, WSO) + six
mandatory WSC + one optional
(TransferDR) + optional
AUXCKn(s) + optional WPP

FSM (TAP controller) Yes No
Transfer mode No Optional
Latency between Shift,

Capture, and Update
operations

Yes (e.g., two and a half cycles
between Update and Capture)

No (due to the direct control of
WSC)

Mandatory instructions Four (EXTEST, BYPASS,
PRELOAD, SAMPLE)

Two (WS_EXTEST, WS_BYPASS)
+ one Wx_INTEST + one
conditionally required
WS_PRELOAD

1149.1 TAP controller if the system integrator of an SOC wishes to do so in order to
allow access to IEEE 1500 wrappers via the dedicated TAP pins on the SOC; how-
ever, there does exist a major difference between 1149.1 and 1500. With the direct
application capability of the 1500 WSP protocol, delay testing can be achieved via
executing a Capture event immediately after an Update or Transfer event, while the
two and a half cycles of IEEE 1149.1 test clock (TCK) latency between the TAP’s
UpdateDR and Capture-DR states limit the ability of the TAP protocol to execute
some delay tests. Table 10.2 lists the main differences between the 1500 and 1149.1
standards.

10.6 CONCLUDING REMARKS

This chapter focused on the 1149.1, 1149.6, and 1500 test standards. Test architec-
tures to support these standards were also discussed. Currently, boundary scan is
widely used throughout the industry; most commercial computer-aided test tools
now provide automatic synthesis capability for boundary-scan design; the 1500
standard is new but is becoming popular in the SOC paradigm. Given the perva-
siveness of the 1149.1 TAP, the expected popularity of 1500, and the ubiquity of
internal scan and BIST test features, it seems natural to build upon the foundation
of a boundary scan and 1500 to support TAP or wrapper-based access to internal
chip/core test features in a standardized manner. A framework for the extension
of the boundary scan standards has been launched by a working group called the
Internal JTAG (IJTAG-IEEE P1687) [Rearick 2005].
Issues that were discussed but not fully addressed in this chapter include long test

time, high test power, and the inefficiency of ATE. Many test scheduling algorithms
that aim at minimizing test time for an SOC under various constraints such as
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limited TAMwidth, maximum allowable test power, test execution precedence, etc.,
have been proposed [Larsson 2002] [Ivengar 2002] [Zou 2003] [Rosinger 2005].
Recently, the concept of a test platform that makes use of the resources of an SOC
such as embedded processors, memories, and bus structures to carry out on-chip,
at-speed testing, has also been proposed to deal with the inefficiency problem of
ATE [Huang 2001] [Tsai 2001] [Krstic 2002] [Tehranipour 2003] [Lee 2005].

10.7 EXERCISES

10.1 (1149.1 Boundary Scan) Given a printed-circuit board that has four chips
built with a boundary scan, such as the one shown in Figure 10.3, describe a
test procedure via the boundary scan to test each chip and the interconnects
between chips. Also, describe the instruction(s) used in each step of your
procedure for each chip. Assume external ATE is used to provide and receive
test data.

10.2 (1149.1 Boundary Scan) How many test cycles are needed to shift a 4-bit
test instruction into the instruction register of a boundary-scan architecture?
Assume that you start from the reset state and that after the instruction is
shifted in the TAP will be in the Select-DR-Scan state.

10.3 (1149.1 Boundary-Scan Instructions) Continue on Problem 10.2. Assume
that the loaded instruction is an INTEST instruction. Now you are going to
apply 100 patterns to the internal logic and observe the test results. If the
length of the boundary-scan register is 30, then how many test cycles will be
required to carry out the entire test procedure? Assume that the internal logic
is a combinational circuit and that after the test procedure the circuit will
return to the Test–Logic–Reset state.

10.4 (1149.1 Boundary-Scan Instructions) Give the timing diagrams for execut-
ing the SAMPLE and the PRELOAD instructions. Can these two instructions
be executed in one iteration of the seven states shown in the middle of
Figure 10.7?

10.5 (A Design Practice) Use the boundary-scan programs and user’s
manuals provided online to insert the boundary-scan circuit to
the ISCAS 1985 benchmark circuit, c499. Create its BSDL file and
generate a Verilog verification testbench. Use any commercially

available Verilog simulator to verify if the generated verification testbench
passes Verilog simulation. Repeat the same exercise for the ISCAS 1989 cir-
cuit, s38417.

10.6 (A Design Practice) Repeat Problem 10.5. What is the area
overhead for the c499 boundary-scan circuit? Compare its area
overhead with that in s38417.

10.7 (1149.6 Digital Receiver Logic) The drawing of the digital receiver logic
shown in Figure 10.38 was taken directly from the IEEE 1149.6-2003 standard
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Digital receiver logic.

(Figure 48 in the standard). An error in this figure was discovered by the
working group after the standard had been published. Try to determine the
error in the drawing and what can be done to fix it.

10.8 (1149.6 Test Access Port) Try to derive the AC Test signal of the timing
diagram shown in Figure 10.6 from the logic in Figure 10.4 and the transitions
through the TAP state machine. Also, see what happens if the EXTEST_TRAIN
instruction is used instead of EXTEST_PULSE.
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10.9 (1500 Wrapper Cells) Give gate-level designs for the WBCs shown in
Figures 10.26a and 10.26e. Compare their functionalities, gate counts, and
the control signals required.

10.10 (Delay Test with 1500 and 1149.1) Describe how to execute a delay test on
a core wrapped by a 1500 wrapper with a WBR consisting of WBCs shown
in Figure 10.28. Use a simple core that contains only a two-input OR gate
to illustrate the procedure. Give the timing diagram to show the waveforms
of related signals. After completing this work, discuss whether a similar
procedure can be applied to a circuit in compliance with 1149.1.

10.11 (1500 in Serial Mode) Similar to Problems 10.3 and 10.4, assume now that
the internal logic is wrapped by a 1500 wrapper. How many test cycles are
required to load the instruction and execute the scan operation using WSP
only?

10.12 (1500 in Parallel Mode) Similar to Problem 10.11, assume that there are
ten parallel TAM wires available for testing. How many test cycles will be
required? Draw your test configuration and clearly state any assumptions
that you made.

10.13 (Comparison between 1149.1 and 1500) Table 10.2 lists the main dif-
ferences between the 1149.1 boundary-scan and 1500 core-based test
standards. Except for the first difference (Objective), discuss the effects of
each difference.
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ANALOG AND MIXED-SIGNAL TESTING
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National Chiao Tung University, Hsinchu, Taiwan

ABOUT THIS CHAPTER

Analog and mixed-signal (AMS) circuits are becoming more critical in the system-
on-chip (SOC) era, although they are occupying less silicon area. AMS circuits are
designed using specialized techniques because a wide range of circuit structures are
possible. Dedicated customization is required for various process technologies to
satisfy performance requirements. Similarly, AMS testing depends strongly on the
circuit and so depends on specialized approaches. This chapter introduces AMS cir-
cuits, failuremodes, and fault models. It then addresses analog testing, including DC
and AC parametric testing. Waveform-oriented testing and specification-oriented
testing are considered. Then, mixed-signal circuits, analog-to-digital converters
(ADCs), digital-to-analog converters (DACs), and their testing approaches, are
discussed. Terminology and test approaches are consistent with the IEEE 1057
standard. Finally, the IEEE 1149.4 standard for mixed-signal test buses is studied.
Two analog test buses are employed to deliver test stimuli and test responses in
board-level analog interconnect testing and passive component measurement.

11.1 INTRODUCTION

Continuance and discreteness fundamentally distinguish analog from digital sig-
nals. Analog signals are continuous in time and amplitude, while digital signals are
discrete in both domains. Additionally, digital signals are mostly binary, with VDD

for logical high and GND for logical low. Mixed signals are quantizations of analog
signals. As digital signals, they are discrete in time and amplitude; however, they
have a much higher amplitude resolution than digital signals. Figure 11.1 presents
the waveforms of the three types of signals.
Due to the continuance property, analog circuits are commonly required to

behave uniformly across their operational range; for example, the gain should be
constant for various signal amplitudes within a particular range of frequencies.
This property is referred to as linearity. Theoretically, as a real number, a contin-
uous signal has an infinite resolution. Practically, such a requirement is excessive
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� FIGURE 11.1

Signals: (a) analog, (b) mixed-signal, and (c) digital.

because a human cannot perceive infinitesimal variations; therefore, distortion and
noise are introduced into the specification to allow some imperfection. The imper-
fection represents a gray area. It supports a tradeoff between cost and performance.
Tradeoffs reduce the complexity of a particular design but enlarge the design space,
meaning that more designs can be employed for a particular application; therefore,
an analog design is specific to fine-grain applications so analog testing is used.
Most digital function can be composed from a set of primitive gates such as

NAND and NOR gates. Even though different circuit structures can be used to
implement these gates, their inputs and outputs are the same in all cases. Analog
circuits are designed using a totally different philosophy. Special circuit structures
are required for particular applications; for example, an audio amplifier has high
resolution and low bandwidth, and a video amplifier has low resolution and high
bandwidth. A radiofrequency (RF) amplifier must satisfy totally different require-
ments related to impedance matching, noise figure, and power efficiency. Analog
and mixed-signal designs and testing involve particular approaches; in other words,
different design and test methodologies are required for different analog circuits.

11.1.1 Analog Circuit Properties
The fundamental difference between analog and digital signals has now been out-
lined. Now, let us consider the detailed properties of circuits that influence their
design and testing. Important analog properties are listed below.

� Continuous signals

� Large range of circuits

� Nonlinear characteristics

� Feedback ambiguity

� Complicated cause–effect relationship

� Absence of suitable fault model

� Accurate measurements required
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11.1.1.1 Continuous Signals

Analog signals are continuous. The interpretations of a particular waveform plotted
in Figure 11.2 differ with the domain: digital or analog. For a digital waveform,
the useful specifications are logical high and low voltages (VH and VL) and rise and
fall times (tLH and tHL). For an analog waveform, they are amplitude (VA), slew rate
(SR), overshoot (Vov), settling time (tSettle), bandwidth, phase, and others; therefore,
more parameters must be considered in the analog domain.

11.1.1.2 Large Range of Circuits

Analog circuits include generic modules such as operational amplifiers, filters, com-
parators, regulators, mixers, low noise amplifiers, power amplifiers, and switches.
Specialized modules include line drivers, variable gain amplifiers, oscillators, sen-
sors, and RF transceivers, among many others. Their functions and specifications
differ significantly. For each circuit, their particular characteristics must be con-
sidered; therefore, analog testing is knowledge intensive.

11.1.1.3 Nonlinear Characteristics

Analog active devices are nonlinear; for example, large signal models of diodes,
bipolar transistors, and MOS transistors are all nonlinear:

ID = Is · eVD/n×VT (11.1)

IC = Is · eVBE/VT (11.2)

ID =
1

2
�Cox

W

L
�Vgs−Vt�

2 (11.3)

A desired biasing current can be obtained by solving nonlinear equations to
determine a suitable biasing voltage. Although they are globally nonlinear, they are
approximately linear within a small operating range. Such a model is referred to as
a small signal model. Notably, the parameters of the linear model depend on the

(a) (b)

VH

VL

tLH tHL

SR

tSettle

VOV

VA

� FIGURE 11.2

Different interpretations of a step response: (a) digital, and (b) analog.
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bias. For example, the transconductance of a MOS transistor is gm =
√
2�Cox

W
L
ID.

Additionally, the second-order effects, including the body effect, channel length
modulation, mobility variation, subthreshold, hot electrons, and others, further
complicate the situation.

11.1.1.4 Feedback Ambiguity

Analog circuits use feedback extensively to increase linearity; for example, for an
operational amplifier in the inverting configuration, as presented in Figure 11.3, the

closed-loop gain is Af =
−A

1+ R1
R2A

, where A is the open-loop gain. If A is sufficiently

large, then the closed-loop gain approximates Af =−R2
R1 , a constant. However, when

the closed-loop gain is less than the specified value, determining whether R1 is too
large,R2 is too small, or A is too small, is difficult. A similar feedback scheme applies
to a phase-locked loop (PLL), automatic gain control (AGC), power regulators,
and others. More tests must be conducted to identify faulty components.

11.1.1.5 Complicated Cause–Effect Relationship

Nonlinearity and feedback complicate the cause–effect relationship. Many circuit
parameters associated with a signal parameter also complicate the cause–effect
relationship. Any single device failure will influence, if not all, most of the circuit
and signal parameters. So, any circuit or signal parameter failure can be caused by
the failure of any device; therefore, fault-specific test generation is more difficult
than for digital counterparts. Specification-oriented testing is still more popular
than other forms of testing, despite its being costly and time consuming.

11.1.1.6 Absence of Suitable Fault Model

In digital testing, the single-fault assumption has attracted consensus in the test
community because it is simple and effective. It might not be sufficiently accurate
for deep-submicron circuits, but it is satisfactory, considering the complexity of
other, more accurate fault models. No simple and effective nor generic and generally
acceptable analog fault model is available, because the range of circuits is large.

R1
R2

� FIGURE 11.3

Amplifier in inverting configuration.
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Establishing a model that fits all circuits and applications is difficult. Additionally,
even for the same type of circuits, the essential parameters vary by case.

11.1.1.7 Requirement for Accurate Instruments for Measuring Analog Signals

Due to their continuous characteristic, analog signals can be measured only using
highly accurate instruments. Additionally, different parameters may be measured
using different instruments; for example, oscilloscopes and digitizers are used to
make measurements in the time domain, and spectrum analyzers and network ana-
lyzers are used to make measurements in the frequency domain, thus increasing
the cost and barrier for analog testing. Given their characteristics, analog testing
and mixed-signal testing are not as extensively developed as digital testing. Ana-
log testing can only be conducted by knowledgeable and experienced engineers
who can handle such issues as nonlinearity, feedback ambiguity, complex cause–
effect relationships, and noise. Their experience is very important, especially in
diagnosis.

11.1.2 Analog Defect Mechanisms and Fault Models
Defects in integrated circuits (ICs) are caused by imperfections in the manufac-
turing process. Possible imperfections include the following:

� Material defects

� Cracks

� Crystal imperfection

� Surface impurities

� Ion migration

� Processing faults

� Oxide thickness

� Mobility change

� Impurity density

� Diffusion depth

� Dielectric constants

� Metal sheet resistance

� Missing contacts

� Dust
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� Time-dependent failures

� Dielectric breakdown

� Electron migration

� Packaging failures

� Contact degradation

� Seal leakage

Most of the defects listed above are more likely to have global effects than local
ones. Precise modeling at favorable cost is difficult. Some defects, such as dust
and surface impurities, have localized effects. Two categories of faults models, hard
faults and soft faults, are defined according to the degree of faulty effects, to simplify
fault modeling and fault simulation efforts. Before the fault model is considered,
defects caused by dust are used as examples in the discussion.
Figure 11.4a presents the layout of a CMOS inverter and possible defects caused

by dust. Depending on whether a negative or positive emulsion is used, dust that
blocks the light during lithography causes extra spots or missing spots in the layer
that is being processed. Figure 11.4b shows that the dust may cause missing spots
for poly and extra spots for diffusion and metal; these spots are referred to as
etching defects and extra defects, respectively. An etching defect is evidenced by
shrinking of the active region caused by the dust. Similarly, and extra defect occurs
when the active region is growing. The significance of the dust defects depends on
the sizes and locations of the dust. Hard faults and soft faults are categorized based
on size, as follows.

(b)

GND 

VDD
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B F

GND

VDD

A

B

Etching
Defect

Extra
Defect

(a)

F

� FIGURE 11.4

Layout of NOR-2 gate: (a) random dust on the layout, and (b) extra and etching defects associated with
dust.
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11.1.2.1 Hard Faults

If defects are to sufficiently change the circuit schematics, then they are classified
as hard faults. If the dust is too large, it may cause an opening or a short during
the metallization process for fabricating metal wires. During the implantation or
diffusion process, in which transistors are fabricated, transistors may disappear or
be improperly formed because of the dust; therefore, as in the example of the two-
stage OPAmp in Figure 11.5, four hard fault models are defined. They are open,
short, extra device, and missing device. These faults are classified as hard faults
because they alter the schematic circuit diagram. The circuit diagrams must be
modified to simulate the effects of the faults. Analog circuits are designed concisely
with a small margin, and hard faults are more likely to cause catastrophic errors
and system failure; therefore, they are quite easy to test.

11.1.2.2 Soft Faults

If defects are too minor to cause hard faults, they may change device parameters.
They are then classified as soft faults. For example, the largest dust presented in
Figure 11.4b does not entirely block the polysilicon line but shortens the effective
channel length; therefore, the device parameters are changed. Another example
is the opening of one of a set of parallel transistors. In advanced technology, a
large transistor is commonly implemented as a set of small transistors in parallel.
Although “open” is a hard fault, it does not completely alter the schematic. It only
changes the effective W/L ratio of the transistor.
Soft faults are further classified into parametric faults and deviation faults.

Parametric faults are used to model the variation in the parameter that governs a
device in the circuit of interest. For example, in Figure 11.5, a change of the biasing
current from 100�A to 80�A, caused by an open transistor in the current mirror

Open

Short

Extra 
Device

Missing 
Device

� FIGURE 11.5

Hard faults: open, short, extra device, missing device.
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that is comprised of five parallel devices, is a parametric fault. Another parametric
fault is a change in the effective channel length from 130nm to 100nm caused by
the dust presented in Figure 11.4b. Deviation faults refer to changes in the overall
performance of the entire circuit of interest. For example, the above parametric
faults and their simulations may indicate that the unit-gain bandwidth is reduced
from 100MHz to 70MHz and the DC gain has decreased from 80dB to 70dB. These
faults are referred to as deviation faults. Deviation faults and parametric faults
constitute an inference mechanism for hierarchical fault modeling. A deviation
fault of a child module is a parametric fault of the parent module. Higher level
faults can be derived from the faults at lower levels.
Hard faults and soft faults are not mutually exclusive. One fault may be classified

as both a hard fault and a soft fault. Resistive short or resistive open are popular
examples. Instead of 100% short or open, the fault site may produce resistive
behavior—for example, equivalent to being connected by a 10K-� resistor. Causes
include water on the wafer or the mask during the lithography process and an
excess of etching defects. The rule of thumb is that if the resistance is less than
one-tenth of that of the fault-free node then it is regarded as a resistive short. If
it is more than ten times the resistance of the fault-free node, it is regarded as a
resistive open. If the resistance is between that associated with a resistive short and
a resistive open, then it is a parametric fault.

[Wang 1997] studied hierarchical fault modeling approaches. He injected a cer-
tain number of dust particles at random locations on a circuit under test (CUT) to
cause realistic faults. The size of the dust was a random variable whose distribution
function was obtained by measuring dust collected from a fab. Random dusting
enabled the probability of hard faults and the distribution of parametric faults to
be determined.
Larger devices are less likely to have hard faults than are smaller ones; therefore,

tests focus on the more probable faults to lower the computational complexity.
Similarly, random dusting yields the distribution function of a parametric fault,
which helps to improve the accuracy and reduce the complexity of fault modeling
and test generation. Additionally, the distribution function of the referred devia-
tion faults can also be determined from the Monte Carlo simulation in SPICE™;
therefore, a comprehensive hierarchical fault model can be built based on random
dusting and the inference engine outlined below.
Figure 11.6 presents an example of hierarchical fault derivation. For simplicity,

an inverter amplifier is used as an example. After the random dusting of the layout
in Figure 11.6a, the distribution functions of the parametric faults of the K value
( 12�Cox

W
L
) of both transistors can be derived. Changes in Kn and Kp alter the gain

of the inverter amplifier. The distributions of these values yield the distribution
function of the gain via a Monte Carlo simulation. In summary, the parametric
faults are represented by changes inKn andKp, and the deviation fault is represented
by a change in the gain. They are both derived from the random dusting of the
layout.
This section has provided some background information on analog circuit char-

acteristics, defect mechanisms, and fault models. The following section addresses
analog circuit testing based on the information gathered herein.
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� FIGURE 11.6

Hierarchical fault model derivation: (a) layout with dusting, (b) circuit schematics, (c) effect of parametric
faults on the K values, and (d) effect of deviation fault on the gain.

11.2 ANALOG CIRCUIT TESTING

As stated in the preceding section, analog circuits exhibit very large variations in
function, structure, and performance, so methods of testing them vary significantly.
No simple, effective, or generally accepted analog fault model exists, so imple-
menting a fault-model-based analog test generation algorithm for general classes of
analog circuits is difficult. In practice, much manual engineering is still involved.
In this section, test approaches, test waveforms, and AC and DC parametric testing
are outlined.

11.2.1 Analog Test Approaches
Analog testing can be divided into two categories: specification-oriented testing
and waveform-oriented testing. Specification-oriented testing tests every specifi-
cation presented in the data sheet to determine the pass/failure of the circuit.
Figure 11.7 presents the data sheet of OP777 from Analog Devices (Norwood, MA).
Most of the test and measurement approaches can be found in the application notes
published by the chip vendors [ADI 1982]. The process is tedious and may depend
on accurate and extensive instrumentation setup; therefore, it is more suitable for
the bench test than the final test. Notably, the bench test is conducted in a lab-
oratory for the characterization purposes, and the final test is conducted in a test
house before the chips are shipped to customers.
Waveform-oriented testingmeasures particular parameters of response waveforms

to determine the pass/failure of the CUT. Figure 11.8 presents an example of a
waveform-oriented test. The CUT is a Sallen–Key second-order low-pass filter [TI
1999] and the test stimulus is a square waveform. Four test points are sampled: A,
B, C, and D. If all are within the predefined margin (marked in gray), then the CUT
is regarded to be fault free and to pass; otherwise, it is faulty and has failed.
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� FIGURE 11.7

Data sheet of Analog Devices’ OP777.
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� FIGURE 11.8

Waveform-oriented testing: (a) second-order Sallen–Key low-pass filter, and (b) response waveform and
sample points.
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The test points in waveform-oriented testing must be carefully chosen. Correla-
tion of the test points with specifications is important to improving the test yield
and reducing the defect level. Restated, each test point must be correlated with one
or more specifications. If they are so correlated, then those specifications are also
tested. In practice, critical specifications of the waveform-oriented testing are con-
sidered. For example, Table 11.1 presents the relationships between the four test
points and the circuit specifications shown in Figure 11.8b.
Waveform-oriented testing items are not limited to the sampled points of a

response waveform in the time domain. The amplitude and phase responses in the
frequency domain can also be measured. For example, the tested items for a 1-MHz
Sallen–Key second-order low-pass filter can include the amplitude responses at
0.1MHz, 1MHz, and 10MHz, from which, the DC gain, the 3-dB frequency, and
the stop-band attenuation rate can be derived and tested.
The margins of waveform-oriented testing are commonly obtained by correlat-

ing the results of specification-oriented testing with those of waveform-oriented
testing. A limited number of chips are tested using both methods. Those that pass
the specification-oriented test determine the margins for the waveform-oriented
testing. Such a method is referred to as correlation in testing. The margin can
also be obtained by fault simulation; however, great care must be taken because
the variation in the parasitic effects of the test environment can be large. These
variations include tester to tester, load board to load board, and pin to pin.

11.2.2 Analog Test Waveforms
Commonly used analog test waveforms include sine, ramp, step, triangular, chirp,
arbitrary, and synthesized waveforms, which are presented in Figure 11.9.
Sinusoidal waveforms are basic frequency-domain test waveforms. They are the

easiest to generate with high quality. Noise and harmonic distortion can be filtered
out using a band-pass filter with a high Q value. 1-KHz, 10-KHz, 100-KHz and
1-MHz sinusoidal waveforms are regarded as standard test waveforms and used
extensively. Step waveforms are basic time-domain test waveforms. Many time-
domain specifications are defined by the step responses. They are used to measure
the step response of filters and amplifiers. They are often square waveforms. A step
is not necessarily defined as a step change in voltage. For phase-locked loop (PLL)
or automatic gain control (AGC) circuits, step stimuli can be step changes in the
frequency from f1 to f2 or step changes in amplitude from VA1 to VA2. Accordingly,

TABLE 11.1 � Correlations between Test Points and
Specifications in Figure 11.8b

Test Point Specifications

A DC bias, input offset
B Slew rate, damping factor
C Overshoot, damping factor, bandwidth
D Settling time, DC gain
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(a)

(f)

(b) (c) (d)

(e) (g)

� FIGURE 11.9

Analog test waveforms: (a) sinusoidal, (b) square (step), (c) ramp, (d) triangular, (e) chirp (sweep sine),
(f) arbitrary, and (g) synthesized.

the transient responses of PLLs or AGCs can be tested to determine the behavior-
level parameters, including the acquisition time and damping factors. Figure 11.10
presents these waveforms.
One important issue regarding a step waveform is the edge rate of the input

step waveform. The edge rate is around f = 1

3�5Tr

. Herein, Tr is the rise time. For

example, for a rise time of 1�s, the edge rate is 286KHz; hence, the circuit must
have a bandwidth of at least 286KHz to allow a step with a rise time of 1�s to
pass through. The edge rate is derived as presented in Figure 11.11. The rising
edge is approximated as a sinusoidal waveform. For a sinusoidal wave, the gradient
between ±45# and ±60# is quite linear, and the period of the sine wave is three to
four times the rise time; therefore, the frequency of the edge can be approximated

by f = 1

3�5Tr

.

Ramp waveforms are commonly employed in analog–digital converter testing.
The sampling histograms can be used to determine the linearity of the conversion

(b)(a) (c)

� FIGURE 11.10

Step waveforms: (a) step in voltage, (b) step in frequency, and (c) step in amplitude.
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Tr

f =

f =
3.5Tr
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(4 ~ 3)Tr

1

θ = ± 45° ~ ± 60°

� FIGURE 11.11

Edge rate of a step.

curve. The details are discussed in the following section. Ramps are commonly
used as slow triangular waveforms, which have a much higher frequency than
ramps. The fundamental difference between a ramp and a triangular waveform
is that the ramp provides time for the circuit to reach its steady state whereas
a triangular waveform tests the dynamic response. A triangular waveform has a
frequency that is close to the circuit’s normal operating frequency. The frequency
of a ramp waveform is less than one-hundredth of the normal operating frequency.
Notably, the second moment of a triangular waveform is discontinuous (a square
waveform). These waveforms are of special use in testing systems of high order.
A chirp is also called a sweep sine. It is a sinusoidal waveform with a changing

frequency. It is often generated using a voltage-controlled oscillator (VCO). The
control signal can be a triangular or a sine wave. In most cases, a sine wave is
preferred because all of the high-order moments are continuous. Chirps can be
used to determine the frequency response of a filter.
Arbitrary waveforms are generated by arbitrary waveform generators (AWGs)

in which ADCs are the core modules. AWGs can also be used to generate the
waveforms described above. Synthesized waveforms are especially useful. They
are commonly referred to as RF-modulated signals, such as amplitude modulation
(AM), frequency modulation (FM), frequency shift keying (FSK), binary phase
shift keying (BPSK), and quadrature phase shift keying (QPSK), among others.
They are used in communication circuit testing.

11.2.3 DC Parametric Testing
DC parametric testing measures the DC characteristics of the CUT presented in
the data sheet. Common test items are associated with various circuits. Most are I/O
electric parameters, such as output rated voltage and current, input offset voltage
and current, input and output impedance, and others. Specific test items include
open-loop gain and unit gain bandwidth for operational amplifiers, line and load
regulations for voltage regulators, and differential and integral nonlinearity for
ADCs, among many others.
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TABLE 11.2 � Operational DC Parametric Test Items

Rated output current Rated output voltage
Open-loop gain Slewing rate
Unity gain full power response Unity gain small signal response
Overload recovery Input bias current
Input offset voltage Input offset current
Input noise Input impedance
Supply voltage sensitivity Common mode rejection
Maximum voltage between inputs Maximum common mode voltage
Temperature drift

Source: [Stata 1967].

The test items and test approaches are included in the application notes provided
by the IC vendors. Table 11.2 presents the test items for operational amplifiers from
Analog Devices as an example. AMS circuits cover a wide range of circuits and
applications, so they cannot all be studied herein; therefore, this section focuses on
some common and popular test items.

11.2.3.1 Open-Loop Gain Measurement

Figure 11.12 presents an open-loop gain measurement setup [Stata 1967]. An opera-
tional amplifier is typically a first-order system that is modeled by an open-loop gain
(DC gain) and a pole at its 3-dB frequency as shown in Figure 11.12a. The open-loop
gain Ao is 80 dB or 10,000, and the 3-dB frequency is 100Hz. Given the test setup
presented in Figure 11.12b, the voltage divider at the negative input �10K�/100��
enhances the sensitivityof the inputdifferential voltage.The inputsare low-frequency
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Vy Vx

� FIGURE 11.12

Open-loop gain measurement: (a) Bode plot of an operational amplifier, and (b) test setup.
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AC signals. The frequency is often lower than one-tenth of the 3-dB frequency of the
amplifier. Two inputs with different amplitude are applied and two measurements
are made. The open-loop gain is derived using the following equation:

Ao = 101 · �Vx

�Vy

(11.4)

As presented in Figure 11.12b, the load resistance isRL=
Vo

Io
. Here, Vo is themaximal

output voltage and Io is the maximal output current. Restated, the amplifier is
operated at its rated output voltage and current conditions.

11.2.3.2 Unit Gain Bandwidth Measurement

Unit gain bandwidth ft is the frequency at which the open-loop gain is unity. It
is also called the gain-bandwidth product. If the amplifier is a first-order system
with 6-dB/Octave roll-off as presented in Figure 11.12a, then:

ft = Ao · f3dB (11.5)

The term ft is also referred to as the small signal unit gain bandwidth, where
“small signal” relates to the fact that the signal is sufficiently small so that it exhibits
no distortion. Many nonideal characteristics may cause distortion. Herein, the slew
rate limitation is the most important factor. The slew rate (SR) is the maximal
rate at which the output waveform rises. Under the slew rate limitation, the input
amplitude is constrained as follows:

Vi ≤
SR

2�ft
(11.6)

Figure 11.13 presents two setups, in inverting and noninverting configurations,
for measuring the unit gain bandwidth. Stray capacitance is associated with the

(a) (b)

100

SRVi ≤ 2πft

Io

VoRf  = 

Rf

Vy Vx

100

SRVi ≤ 2πft
Io

VoRL =

1k

Vy Vx

� FIGURE 11.13

Test setup for measuring unit gain bandwidth: (a) inverting configuration, and (b) noninverting
configuration.
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feedback resistor in the inverting configuration and affects the accuracy of measure-
ment; therefore, the noninverting configuration is preferred because its parasitic
effects are smaller.
Full power unit gain bandwidth fP is the maximal frequency measured at a

closed-loop gain of unity for which the rated output voltage and current are obtained
without distortion, because the slew rate is limited. In addition to testing the unit
gain bandwidth, the setups in Figure 11.13 can also test the slew rate and maximal
common mode voltage.

11.2.3.3 Common Mode Rejection Ratio Measurement

If two differential inputs are connected to the same input, as presented in
Figure 11.14, then the output voltage should be zero for an ideal differential ampli-
fier. The shift in the biasing condition caused by the common mode input and the
slightly different gains of the positive and negative inputs cause the output to vary
slightly from zero.
For a change �VCM in the common mode, the output voltage changes by �Vo.

Dividing �Vo by the DC gain �Ao=R2/R1� yields the input referred commonmode
voltage:

VCM·i =
�Vo

Ao

= �Vo

/R2

R1
(11.7)

Restated, an input common mode change of �VCM has the same effect as a differen-
tial mode signal of �Vo/Ao; therefore, the common mode rejection ratio (CMRR)

100

VCM

R1

R1

R2

R2

ΔVoΔVCM

� FIGURE 11.14

Test setup for measuring common mode rejection ratio.
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is defined as the ratio of the common mode voltage to the input referred common
mode voltage (in dB):

CMRR= 20 log

(
Ao

/
�Vo

�VCM

)
(11.8)

CMRR specifies the extent to which a circuit is immune from common mode
variation.

11.2.3.4 Power Supply Rejection Ratio Measurement

The power supply rejection ratio (PSRR) is similar to CMRR. It shows the extent to
which a circuit is immune to supply voltage variation. Changing the supply voltage
changes the biasing current and voltage; therefore, a fluctuation in the supply
voltage occurs at the output. As presented in Figure 11.15, for a supply voltage
change of �VDD and an output voltage change of �Vo, the PSRR is defined as:

PSRR= 20 log

(
Ao

/
�Vo

�VDD

)
(11.9)

Restated, a fluctuation in the power supply of �VDD can be considered to be a
differential input with an amplitude of �VDD/PSRR.

11.2.4 AC Parametric Testing
AC parametric testing refers to the testing of the AC characteristics of a cir-
cuit. AC parametric testing relates to frequency and timing parameters, including
bandwidth, phase, distortion, noise, and other factors. Conventional AC parametric
testing uses dedicated instruments to make measurements. Today, most mixed-
signal testers have a built-in digital signal processing (DSP) module. The details of
DSP algorithms can be found elsewhere [Oppenheim 1989]. DSP-based test tech-
niques have also been described elsewhere [Mahoney 1987]. AC parametric tests
are commonly conducted using the setup presented in Figure 11.16.

VDD

ΔVDD ΔVo

� FIGURE 11.15

Test setup for measuring power supply rejection ratio.
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AWG CUT Digitizer

DSP

� FIGURE 11.16

Test setup for DSP based testing.

Test stimuli are synthesized using the DSP and generated by an arbitrary wave-
form generator (AWG). After the test waveforms have been applied, the test response
is captured and transformed into digital form using a digitizer. Then, they are
analyzed using a DSP processor. Many parameters can be evaluated by analyz-
ing a single-response waveform using various DSP programs. This concept is also
referred to as virtual instrumentation. The core modules of AWGs and digitizers
are DACs and ADCs.

11.2.4.1 Maximal Output Amplitude Measurement

Maximal output amplitude or maximal output swing is the maximal ampli-
tude of the distortion-free sinusoidal output waveform. Conventionally, the input
amplitude is increased slowly until the output is distorted. The approach is time
consuming because the search for the maximal input amplitude is iterative. Addi-
tionally, it requires a distortionmeter tomake themeasurements. DSP-based testing
is performed in the following steps (Figure 11.17 presents the block diagram):

1. A large-input sinusoidal waveform, usually at 1KHz, is applied to cause a
slight clipping of the output waveform.

2. The output waveform is digitized by the digitizer.

3. Fast Fourier transformation (FFT) transforms the time-domain response
waveform into a frequency-domain series.

The amplitude of the fundamental component is the maximal output amplitude.

AWG CUT Digitizer

� FIGURE 11.17

Maximal output amplitude measurement.
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The maximal output amplitude can detect the first-order defects. Any changes in
biasing current and/or voltage influence the output signal swing: For example, a
drop in the output biasing current increases the biasing voltage; therefore, the head-
room, which is the difference between VDD and DC bias, is reduced. The maximal
output swing is also reduced.

11.2.4.2 Frequency Response Measurement

Frequency response is conventionally measured using network and spectrum ana-
lyzers. The cost of this instrument is an issue, and the test time overhead is another
because of the frequency sweeping mechanism. A spectrum analyzer uses one
single-frequency test signal at a time to measure the amplitude response at a par-
ticular frequency. The response of the entire spectrum is determined after all of the
frequencies have been swept.
Frequency analysis is very important for a filter. Filters are of four generalized

types: low-pass, high-pass, band-pass, and band-reject or notch filters. Figure 11.18
plots their frequency-domain transfer functions. Consider the band-pass filter pre-
sented in Figure 11.19 as an example of how frequency-domain testing can be
conducted using the setup in Figure 11.16. For a filter, pass bands and stop bands
are first defined. Between them are the transition bands. The pass band is the
frequency range in which a signal can pass through with little attenuation. Pass-
band ripple models the variation of the amplitude response in the band. Signals
in the stop band are heavily attenuated. The attenuation from the pass band to the
stop band is defined as the stop-band rejection ratio (in dB). The gradient in the
transition band is determined by the order of the filter. It is 6 dB/Octave per order.
In frequency-domain testing, two masks, the upper limit mask and the lower limit

mask, are defined, as presented in Figure 11.20. The frequency response must fall

w
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� FIGURE 11.18

Frequency-domain transfer function of (a) low-pass filter, (b) high-pass filter, (c) band-pass filter, and
(d) notch or band-reject filter.
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� FIGURE 11.19

Frequency-domain transfer function of a band-pass filter.
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Upper and lower limit masks.

between these two limits to pass the test. A multitone signal, Eq. (11.10), is applied
to test a filter:

v�t�=∑Ai sin�2�fit+�i� (11.10)

Each tone has an amplitude of Ai, a frequency of fi, and a phase of �i. The
frequencies are carefully chosen such that those of greater interest have a higher
tone density. The corners of the transitions from the pass band to the stop band, or
vice versa, contain more information than pass and stop bands; therefore, their tone
densities are higher as well, as shown in Figure 11.21. The multitone waveform can
be precalculated or calculated online, then it can be generated using an AWG, as
presented in Figure 11.16.
Notably, the sampling rate of AWGs must be at least ten times the highest fre-

quency component to obtain a waveform of sufficient quality. Additionally, the
number of tones must not be too large to cause AWG to saturate. Here, the highest
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� FIGURE 11.21

Multitone test signals.

allowed voltage level is the sum of all Ai; therefore, a larger number of tones cor-
responds to a smaller Ai. As a result, the signal-to-noise ratio of a tone is lower
and the measurement is less accurate; thus, a tradeoff exists between frequency
resolution (number of tones) and measurement accuracy.
After the response waveform has been captured, digitized, and transformed into

the frequency domain, the resulting spectrum may look like that presented in
Figure 11.22. If all of the frequency components are between upper and lower limits,
then the filter is passed. If any tone is outside of these limits, then the test is failed.

11.2.4.3 SNR and Distortion Measurement

The signal-to-noise ratio (SNR) is the ratio of the signal power to the noise
power (represented in dB), indicating the purity of the signal. An electronic system

f

A(dB)
Upper Limit Mask

Lower Limit Mask 

� FIGURE 11.22

Multitone test response.
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has many noise sources. Common noise sources include thermal noise, flicker
noise, and shot noise. The integrated circuits may have noise due to power sup-
ply noise, circuit switching noise, substrate noise, and other types. Addition-
ally, distortions, including harmonic distortion and intermodulation distortion, also
reduce the SNR. Distortions are commonly caused by crossover distortion, clip,
saturation, and mismatches between differential signal paths. SNR and distortion
can be measured using the DSP technique as follows.
The setup of the AWG presented in Figure 11.16 generates a pure sinusoidal

waveform that is applied to the CUT. The response waveform is captured, digi-
tized, and transformed into the frequency domain. The resulting frequency-domain
response may look like that presented in Figure 11.23.
The frequency components of a sinusoidal waveform are classified into three

categories. F is the fundamental component, which is also the signal of interest; Hi

is the ith harmonic; and Ni represents the ith noise term. SNR and distortion can
be determined from the following equations:

SNR= 10 log
F2∑
N2

i

(11.11)

THD= 10 log
F2∑
H2

i

= 100× F2∑
H2

i

% (11.12)

SNDR= 10 log
F2∑

H2
i +

∑
N2

i

(11.13)

F is either a voltage or a current, and F2 is the corresponding power, given by P=
I2R= V2/R. Therefore, only noise components Ni are considered in the calculation
of SNR. THD is the total harmonic distortion. It is the ratio of signal power
to total harmonic power; therefore, harmonic terms Hi are included. THD can
be represented in either dB or as a percentage. SNDR is the signal-to-noise and
distortion ratio; both noise and distortion are included.
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� FIGURE 11.23

Spectrum with noise and distortion.
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Spectrum with noise and distortion.

In addition to SNR, THD, and SNDR, the peak harmonic is also an important
test item. Harmonics commonly have a peak at either the second or the third
harmonic, from which the source of the distortion can be determined. If the peak
corresponds to the second harmonic, then a crossover distortion or a symmetric
nonlinear distortion is more likely. If the peak corresponds to the third harmonic,
then the source of the distortion may be clipping or saturation.

11.2.4.4 Intermodulation Distortion Measurement

The nonlinear characteristics of a circuit cause the intermodulation of various com-
ponents of a signal, in what is called intermodulation distortion (IMD). IMD is of
special interest in relation to communication circuits because it may modulate the
tone into adjacent bands and cause interference. IMD testing uses multitone sig-
nals; however, only two or three tones are used. Figure 11.24 presents the spectrum
of the response waveform with two tones. The test signal is:

v�t�= A1 sin2�f1t+A2 sin2�f2t (11.14)

Any linear combinations of f1 and f2 may appear due to the intermodulation dis-
tortion. As presented in the figure, the closest intermodulation terms to the funda-
mental are the IM3 terms with frequencies at 2f1− f2 and 2f2− f1.

11.3 MIXED-SIGNAL TESTING

Mixed-signal circuits contain both analog and digital signals. Analog-to-digital con-
verters (ADCs) and digital-to-analog converters (DACs) are two prominent examples.
They allow digital circuits to interface directly with the real, analog world; how-
ever, many other circuits also contain mixed signals, such as phase-locked loops,
delay-locked loops, automatic gain control circuits, switched capacitor filters, and
frequency synthesizers, among others. They cannot all be discussed here; this work
focuses on the testing of ADCs and DACs, because these circuits are commonly
used and can be specified in the same way across various application domains and
a wide performance spectrum.
Both ADCs and DACs have a wide range of applications and performance require-

ments. A high bit length and a low data rate are two distinguishing features in
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audio applications. The bit length commonly exceeds 12 bits and can be as high
as 22 bits, and the conversion rate is around 1Mbps. For video applications, the
corresponding values are 8∼12 bits and 10 to 100Msps (mega samples per second).
For wireless communication, it is 8∼12 bits and 10 to 100Msps; for high-speed
data communication, it is 4∼6 bits and over Gsps (giga samples per second). Even
though they have wide application domains and a wide performance spectrum,
they are specified in the same way.

11.3.1 Introduction to Analog–Digital Conversion
The purpose of an ADC is to covert an analog signal to a digital one. An ADC
partitions a conversion range �VPP� into �2n−1� quantization steps (q). It is also
referred to as a least significant bit (LSB); therefore, an LSB is:

LSB= Vpp

2n−1
(11.15)

where n is the bit length. For a VPP of 1V and an n of 10, 1 LSB is around 1mV.
The resolution of an n-bit ADC is 2n. Figure 11.25 plots the transfer characteristic
curve of an ADC. Quantization proceeds as follows. For a voltage �K −0�5�LSB ≤
Vx < �K+0�5�LSB, it is regarded as K LSB; therefore, the maximal error is 0.5 LSB.
The error generated in the quantization process is called the quantization error.

It is also called the quantization noise. Figure 11.26 presents the quantized and
quantization error waveforms of a sine wave. The characteristics of the quantization
errors include the following:
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Transfer characteristic curve of an ADC.
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Quantization: (a) quantized waveform, and (b) quantization error.

� The quantization error � is −0�5LSB≤ � < 0�5LSB.

� The quantization error waveform contains many jumps.

� The error spectrum is much wider than the original signal.

� The bandwidth of the quantization error is proportional to the gradient of the
signal and inversely proportional to the quantization step q.

Following quantization using an n-bit ADC, the quantization noise can be derived
and transformed into the SNR. Suppose that the input sinusoidal waveform of
amplitude VA is quantized using an n-bit ADC with a conversion range of 2VA at
the maximal resolution. The quantization step size q is:

q= 2VA

2n
(11.16)

The signal power is:

PS =
V2

A

2
(11.17)

The quantization error is a sawtooth-like waveform, so its power can be approxi-
mated as a triangular waveform with an amplitude of 0�5q; therefore, the integrated
noise power is:

PN =
�q/2�2

3
= q2

12
= V2

A

3×22n
(11.18)

The signal power in Eq. (11.17) and the noise power in Eq. (11.18) yield the SNR:

SNR= 10 log
PS

PN

= 10 log�1�5×22n�= �1�76+6�02×n�dB (11.19)
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For example, for a 10-bit ADC, the theoretical SNR is 61.96dB after quantization.
Conventional wisdom is that each added bit improves the SNR by 6dB. With
reference to Eq. (11.19), a suitable bit length can be selected based on the analog
signal noise level. The rule of thumb is that the SNR should be chosen to be at
least 3∼6dB more than that of the analog signal to ensure that the signal does
not deteriorate. For example, if the analog signal has a SNR of 52dB, then the bit
length should be at least 9 bits to yield a SNR of 55.94dB.

11.3.2 ADC and DAC Circuit Structure
Figure 11.27 presents an ADC topology, which is comprised of a gain stage, a filter,
a multiplexer, a sample and hold circuit, and an ADC. The function of each module
is detailed as follows:

� Gain stage—The gain stage has two functions. First, it provides an offset to
shift the signal to the center of the conversion range. Second, it provides a
gain that enlarges the signal to the full conversion range. These two functions
allow the full range of ADC to be used and maximize the resolution. Issues
that require special consideration include the noise, the nonlinearity, and the
drift of the amplifier; therefore, calibration is required to minimize the error.

� Filter—The filter suppresses off-band noise. It is also referred to as an
anti-aliasing filter because it prevents the off-band noise from aliasing into
the signal band after sampling. The oversampling ratio (OSR) is defined
as the ratio of the sampling frequency to twice the signal bandwidth. The
higher the OSR is, the smaller order the filter can be. Figure 11.28 presents

Gain Filter
M 
U 
X

S/H

A 
D 
C

� FIGURE 11.27

An ADC architecture.

A(w ) A(w ) A(w )

(a) (b) (c)

Anti Aliasing Filter Anti Aliasing Filter

� FIGURE 11.28

Sampling spectrum and anti-aliasing filter: (a) signal spectrum, (b) Nyquist rate sampling, and (c) 4×
oversampling.
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the signal spectrum following sampling and the meeting of the anti-aliasing
filtering requirement. The Nyquist rate is twice of the maximal frequency of
the signal, according to the Nyquist theorem. As shown in Figure 11.28b, in
Nyquist rate sampling the off-band noise is aliased into the band even though
a very good filter is used. 4× oversampling in Figure 11.28c does not require
as high a stop-band attenuation rate as that in Figure 11.28b.

� MUX stage—The multiplexer (MUX) provides multiple channel access. The
main issue associated withMUX is signal coupling caused by stray capacitance
in the switches, especially CMOS switches. In CMOS switches, Cgs and Cgd

are the two main coupling capacitors. To reduce the channel resistance, the
transistors must be enlarged. Unfortunately, Cgs and Cgd are also increased.

� S/H Stage—The sample/hold (S/H) stage is used to sample the signal and hold
it steady for one sampling period. S/H can be placed before or after the MUX.
If it is placed before the MUX, then the coupling effect is minimized because
the signal at input of the MUX is held steady by the S/H, and no coupling
occurs. Figure 11.29 presents a S/H circuit and its operating mode.

During the sampling phase �t1∼t3�, the switch in Figure 11.29a is closed.
The hold capacitor CH is charged. At the aperture time t3	CH is charged to its
steady-state voltage within an acceptable tolerance. Normally, the tolerance is
under 0.5 LSB. The switch is then opened. �t1∼ t3� is called the acquisition
time. The aperture time is uncertain and may vary from t2 to t4. Such a timing
uncertainty is referred to as jitter. Another important specification of S/H is
the droop rate. It is caused by the leakage current ILeak. The rate is defined as:

Vdroop =
ILeak
CH

(11.20)

The leakage in a CMOS IC includes the subthreshold leakage of the channels,
the reverse bias saturation leakage of the PN junctions, and the dielectric
leakage of the gate oxide layer.

� ADC—ADC performs the actual analog-to-digital conversion. The important
specifications of an ADC include bit length, conversion range, conversion rate,
and signal bandwidth. A detailed discussion of ADC follows.

Sample
Hold

t1 t2 t3 t4

ΔVc ≤ X % · LSB

S

V

CH

R

� FIGURE 11.29

Sample and hold (S/H) circuit: (a) circuit structure, and (b) operational mode.
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Different ADC and DAC architectures are used for different conversion rates and
bit-length requirements. An example in each category is presented as a reference for
further discussion. Detailed information is available in ADC and DAC design-related
reference books and papers.

11.3.2.1 DAC Circuit Structure

Digital-to-analog converters convert a series of digital data to an analog waveform
to drive real-world devices with audio, video, and data communication applica-
tions. DACs are of three types: resistor network, capacitor network, and transistor
network. Most DACs implemented by resistor and capacitor networks are in voltage
mode, while DACs implemented by transistor networks are in current mode.
Here, a conventional resistor network is considered as an example. A resis-

tor network can be a binary weighted or resistive ladder network. Figure 11.30
presents an R-2R ladder DAC. The reference voltage �Vref � is divided into
�1/2�Vref 	 �1/4�Vref 	 �1/8�Vref , and others by the R-2R ladder. They are summed by
the summation circuit according to the digital data �S0∼S5�. The output voltage is
given by the following equation:

Vo = S5 ·
Vref

21
+S4 ·

Vref

22
+S3 ·

Vref

23
+S2 ·

Vref

24
+S1 ·

Vref

25
+S0 ·

Vref

26

= �S5 ·25+S4 ·24+S3 ·23+S2 ·22+S1 ·21+S0 ·20� · Vref

26
(11.21)

From the above equation, digital data �S0∼S5� are converted into an analog voltage.

11.3.2.2 ADC Circuit Structure

An ADC converts an analog signal into digital data. Three popular ADC architec-
tures are flash ADC, sigma-delta ADC, and pipelined ADC. A flash ADC compares
the input voltage to a set of reference voltages and generates a digital output based
on the results. It is also called a parallel ADC. The most significant feature of a
flash ADC is its high speed. The speed can be as high as 1Gsps (giga samples per
second). It performs parallel comparison, so the hardware complexity is exponen-
tially proportional to the bit length; therefore, the bit length is unlikely to be very

Vref

S5 S4 S3 S2 S1 S0

2R 2R 2R 2R 2R 2R
Rf = R

2RRRRRR

Vout

� FIGURE 11.30

6-bit R-2R ladder DAC.
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large. The bit length is commonly under 6 bits. Sigma-delta ADCs use sigma-delta
modulation with high oversampling rates to achieve high resolution. They are also
referred to as oversampling ADCs. The most important feature of a sigma-delta
ADC is its high resolution. The resolution exceeds 14 bits and can be as high as 22 to
24 bits. Pipelined ADCs exhibit performance between that of flash and sigma-delta
ADCs. It has a medium bit length and speed. Table 11.3 compares the performances
of the three types of ADCs.
Resolution and throughput are two conflicting requirements. Achieving high

throughput and high resolution simultaneously is difficult. Table 11.4 presents the
resolution and throughput selection matrix from the data sheet of Analog Devices.
Consider an 8-bit pipelined ADC as an example. Figure 11.31 presents the corre-

sponding block diagram. In each stage, the input is sampled by a sample/hold (S/H)
module, then it is coarsely quantized by a 3-bit ADC. The outcome is transformed
into a precise voltage by a 3-bit DAC. The DAC output is subtracted from the sam-
pled valued. The result is called a residue. The residue is amplified eight times and
sent to the next stage for finer quantization. The subtract-and-amplify module is
referred to as a residue amplifier. A (3, 3, 3, 2) architecture with digital correction
is used to minimize errors.

11.3.3 ADC/DAC Specification and Fault Models
As discussed above, ADCs and DACs are very complex mixed-signal circuits. Dif-
ferent circuit structures yield different resolutions and satisfy different throughput

TABLE 11.3 � Comparison of ADCs

ADC Bit Length Throughput

Flash ∼6bits 100+ M
Pipelined 8∼16bits 10∼100MHz
Sigma-delta 14+ bits ∼10M

TABLE 11.4 � ADC Selection Matrix from Analog Devices

Resolution/Throughput Selection Matrix

17+ • • • •
14–16 • • • • • •
12–13 • • • • •
10–11 • • • • •
8–9 • • • •
<8 •

<10Kbps 10 Kbps to
100 Kbps

100 Kbps to
1 Mbps

1 Mbps to
10 Mbps

10 Mbps to
100 Mbps

100+ Mbps



648 VLSI Test Principles and Architectures

S/H

ADC DAC

X 4

3 bits

S/H

ADC

X 4

3 bits

S/H

ADC DAC

X 4

3 bits

S/H

ADC 

2 bits

DAC

s1 s2 s3 s4da3da2da1
Vi

Calibration and Correction Circuit

d0 d7

� FIGURE 11.31

Eight-bit pipelined ADC.

requirements. Deriving a circuit-level fault model for all of them is difficult; there-
fore, a parametric fault model is defined based on the transfer function of ADCs.
Before the ADC fault model is outlined, consider AD775 as an example.

Figure 11.32 presents the data sheet for AD775, which is an 8-bit 20-Msps ADC.
The main specifications include resolution (8-bit), throughput (20Msps), integral
nonlinearity (1.3 bits), differential nonlinearity (0.5 bits), missing code (no), off-
set �−60∼45mV�, gain error (1%), phase error �0�5#�, SNDR �41∼47dB�, THD
�−42∼−51dB�, and others. These specifications are also used in fault models for
testing.

� Offset Error—The offset error is the input voltage that generates the first
code. It is represented in terms of mV or LSB. In the example presented in
Figure 11.33, the transfer curve is offset by −3 LSB, so every code that is
produced is 3 LSB less than the correct code.

� Gain error—Gain error is the deviation of the slope of the transfer curve from
the ideal one. It is also called the calibration error because the gain can be
calibrated. It is represented as the deviation of the code from the full scale
code when a full scale input is applied. In Figure 11.33, the gain error is 4 LSB
and is sometimes represented as a percentage.

� Nonlinearity error—An ideal transfer characteristic curve of an ADC is a
straight line; however, the nonlinearity of the devices that form the ADC may
cause the transfer curve to not be straight. As presented in Figure 11.33, the
transfer curve is nonlinear. Differential nonlinearity and integral nonlinearity
are defined to classify the nonlinear effects.

� Differential nonlinearity error (DNL)—Ideally, the code is increased by one
for every increase by a quantization step q (LSB) in the input voltage. Differ-
ential nonlinearity is the maximal deviation of the input voltage from 1 LSB
when the output code increases by 1, as presented in Figure 11.34. Herein,
the DNL is 0.8 LSB because the input voltage must increase by 1.8 LSB to
change the code from 1 to 2.
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� FIGURE 11.32

Data sheet for Analog Devices’ AD775.

� Integral nonlinearity error (INL)—Integral nonlinearity error is the maximal
deviation from the ideal transfer curve in LSB. In Figure 11.34, the INL is 2.0
LSB because when the input is 6 LSB the output code is 4 rather than 6.

� Temperature-dependent error—Temperature-dependent error models the
temperature sensitivity of solid-state devices. In general, the performance
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ADC transfer curves: (a) ideal, (b) linearity error, (c) gain error, and (d) offset error.
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Nonlinearity errors: (a) differential nonlinearity, and (b) integral nonlinearity.

decreases as the temperature increases; therefore, the gain depends on the
temperature. It exhibits the same behavior as the gain error except that the
magnitude of the error depends on temperature. For the example presented
in Figure 11.35, the temperature-dependent gain error is 4 LSB at 75#C. It is
also sometimes represented as a percentage.

� Load-dependent error—The load-dependent error models the improper
output impedance of the output drivers. For a voltage mode DAC, if the
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ADC faults: (a) hysteresis error, (b) temperature-dependent error, (c) load error, and (d) resolution error.

output impedance is too large, the gain decreases. The small load resistance
is regarded as a large load herein. Similarly, for a current mode DAC, the gain
decreases as the output impedance decreases. As presented in Figure 11.35,
the load error is 5.5 LSB at a load resistance of 500�, which is half of the
rated 1-K� load. Again, the load error can also be expressed as a percentage.

� Hysteresis error—The transfer curve may exhibit hysteresis behavior, as pre-
sented in Figure 11.35. For a push–pull class-AB amplifier, hysteresis phenom-
ena are common because the circuit that pulls up the signal differs from the
circuit that pulls down the signal. The model is similar to that of the nonlinear
error discussed above. The difference is that as the input signal ascends it
follows one path but follows another as it descends. The model is similar to
the INL, which models the maximal deviation from the ideal curve in LSB. In
the example, the hysteresis error is 2 LSB.

� Resolution error—The resolution error captures the inability to resolve a
small variation in the signal. For an n-bit ADC, the resolution is 2n; however,
noise and distortion reduce the resolution. As presented in Figure 11.35, the
resolution is halved. The resolution error is represented as an effective number
of bits, as discussed below.

� Missing code—Missing code refers to cases in which some codes are never
generated. It differs from resolution error, which refers to the random appear-
ance of codes below the resolution, and can be regarded as a random
noise. Missing code generates errors at a particular voltage level. For a sinu-
soidal input waveform, the error is periodic, as presented in Figure 11.36;
therefore, the error syndrome is the harmonic distortion in frequency
domain.



652 VLSI Test Principles and Architectures
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� FIGURE 11.36

Missing code error: (a) ideal waveform, (b) quantized waveform with missing codes, and (c) error waveform.

� Signal-to-noise ratio, signal-to-noise and distortion, total harmonic dis-
tortion, intermodulation distortion—These noise- and distortion-related
faults have the same definitions as used in analog AC parametric testing. They
were discussed in Section 11.2.4 and will not be repeated here. However, for
ADCs, the effective number of bits (ENOB) is defined based on the SNDR. As
derived in Eq. (11.19), SNR = �1�76+6�02n�dB, and the ENOB is defined as
follows:

ENOB= SNDR−1�76

6�02
(11.22)

For example, if the SNDR of a 14-bit ADC is 70dB, then the ENOB is 11.34
bits. Therefore, 2.66 bits of resolution error pertain, as defined above.

11.3.4 IEEE 1057 Standard
The IEEE 1057-1994 standard (IEEE Standard for Digitizing Waveform
Recorders) is a very important standard for understanding ADCs and methods of
testing them. It is described briefly as follows [IEEE 1057-1994].

� Scope—The instruments covered by the standard include electronic digitizing
waveform recorders, waveform analyzers, and digitizing oscilloscopes with
digital outputs. This standard applies to, but is not restricted to, general-
purpose waveform recorders and analyzers.

� Purpose—The purpose of this standard is to provide common methods
for testing and terminology for describing the performance of waveform
recorders, for the benefit of users and manufacturers of such devices. The
main body presents many performance features, sources of error, and test
methods.
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Manufacturer-Supplied Information

General Information

Model number
Dimensions and weight
Power requirement
Environmental conditions (temperature, humidity, EMC/EMI, …)
Any special or peculiar characteristics
Available options and accessories
Exceptions to the above parameters, where applicable
Calibration interval

Minimum Specifications

Number of digitizing bits Input impedance
Sample rates Analog bandwidth
Memory length Input signal ranges

Additional Specifications

Gain Fixed error in sample time
Offset Trigger delay and jitter
Differential nonlinearity Trigger sensitivity
Integral nonlinearity Trigger minimum rate of change
Harmonic distortion Trigger hysteresis band
Spurious response Trigger coupling to signal
Maximal static error Crosstalk
Signal to noise ratio Monotonicity
Effective bits Hysteresis
Peak error Overvoltage recovery
Random noise Word error rate
Frequency response Cycle time
Settling time Common mode rejection ratio
Slew limit Differential input impedance
Overshoot and precursors Maximum operating common
Aperture uncertainty Mode signal level
Long-term stability Transition duration of step response
Maximum common mode signal level

17 Test Methods

General methods Triggering
Input impedance Crosstalk
Gain and offset Monotonicity
Noise Hysteresis
Analog bandwidth Overvoltage recovery
Frequency response Word error rate
Step response parameters Cycle time
Time base errors Differential input specification
Linearity, harmonic distortion,
and spurious response

Source: [IEEE 1057-1994].
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Code bins: (a) code level, (b) bin count, and (c) code width.

The IEEE 1057 standard is a very wide-ranging standard. It covers a total of 39
specifications and 17 test methods. For reasons of limited space, only selected test
methods are described here.

11.3.5 Time-Domain ADC Testing
Time-domain ADC testing analyzes sampled data in the time domain to evalu-
ate circuit parameters. Histograms are commonly used in time-domain testing. A
periodic test waveform is applied here and the codes recorded. Commonly used
waveforms include ramp and sine waves. The test items include gain, offset, and
linearity errors. In IEEE 1057, code bins are defined as follows.

11.3.5.1 Code Bins

Figure 11.37 presents terms related to code bins. A code bin is a digital output that
corresponds to a particular set of input values. Consider code bin k as an example.
An input with value T�k�≤Vi < T�K+1� generates a digital output code k. Here, T�k�
is the code level k. It is also called the code transition level. T�k� distinguishes
code k from k−1. The code width k is defined as:

W�k�= T�k+1�−T�k� (11.23)

After an input waveform has been sampled n times, the number of occurrences of
code k is recorded in code bin k. Figure 11.37 presents the code bins of the samples
on the input sine wave.
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11.3.5.2 Code Transition Level Test (Static)

The code transition level test involves a programmable source, such as a DAC,
whose range and output parameters are compatible with the waveform recorders
and whose resolution is at least four times that of the recorder. The test step for
code level T�k� is as follows:

1. Apply an input voltage that is slightly lower than the expected code transition
level.

2. Record N data.

3. If, according to the recorded data, over 50% of the codes are under k, then
increase the level by 0�25q (0.25 LSB).

4. Repeat step 3 until the percentage drops to 50% or below.

5. The code level T�k� is linearly interpolation from the recorded percentages at
this level and the preceding level.

The number of samples determines the precision of the estimate. Table 11.5 presents
the relationship between the number of samples and the precision as an RMS noise
percentage.

11.3.5.3 Code Transition Level Test (Dynamic)

The code transition level is dynamically tested by applying a sinusoidal waveform
across the full scale, as presented in Figure 11.37. After M records have been
obtained, the code level k can be derived using the following equation:

T�k�= C−Acos

[
� ·Hc�k−1�

M

]
(11.24)

Here, M is the number of records, C is the offset, and Hc is the cumulative bin
count:

Hc�k�=
k∑

j=1
H� j� (11.25)

Notably, the M samples must be uniformly distributed into Mc integer periods of
the sine wave. M and Mc must not have a common factor.

TABLE 11.5 � Precision of Estimates of Code Transition Level

Record length 64 256 1024 4096
Precision 45% 23% 12% 6%

Source: [IEEE 1057-1994].
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11.3.5.4 Gain and Offset Test

Instead of a sine wave, a slow ramp with the full range can be applied to test the
gain and offset, as presented in Figure 11.38. The transfer characteristic is given by:

G ·T�k�+Vos+��k�=Q · �k−1�+T1 (11.26)

where G= gain, VOS = offset, ��k�= residual error, Q= quantization step, and T1 =
ideal code level for code 1.
Gain and offset errors can be derived using the following equations:

G=Q

(
2N−1

) 2N−1∑
k=1

kT �k�

�2N−1�
2N−1∑
k=1

T2 �k�−
(

2N−1∑
k=1

T �k�

)2
−Q

(
2N−1

) (
2N−1) 2N−1∑

k=1
T �k�

�2N−1�
2N−1∑
k=1

T2 �k�−
(

2N−1∑
k=1

T �k�

)2

(11.27)

Vos = T1+Q
(
2N−1

)− G

2N−1

2N−1∑
k=1

T �k� (11.28)

For a ramp signal, the histogram is a horizontal line without linearity errors.
Figure 11.39 presents the histogram for a ramp signal under various offset and gain
error conditions.
Figure 11.39a presents an ideal case of a flat histogram. For a 3-bit ADC, if 1024

samples are taken, then every bin has a count of 128 (1024/8) because the codes are
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The code bins for a ramp signal.
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� FIGURE 11.39

Ramp wave histogram: (a) ideal, (b) gain error, (c) offset error, and (d) gain + offset error.

evenly distributed to these 8 code bins. Figure 11.39b presents the case with a gain
error. If the gain error is 2 LSB, then the bin count is 0 for codes 6 and 7. A total
of 1024 records are evenly distributed to 6 bins with 171 or 170 records in each, so
the bin count is inversely proportional to the gradient of the transfer curve. Given
the offset error shown in Figure 11.39c, the bin counts for codes 1∼5 remain the
same: 128. Bin 0 has a count of 384 because the ADC fails to respond to signals
below 2 LSB. Similarly, the histogram in case Figure 11.39d, with gain and offset
errors, can be derived.

11.3.5.5 Linearity Error and Maximal Static Error

The test method presented in Figure 11.38 can also be used to test linearity errors
and maximal static error. The maximal static error (MSE) is the maximal dif-
ference between any code transition level and its ideal value, represented as a
percentage. The DNL, INL, and MSE errors are:

DNL�k�= G ·W�k�−Q′

Q′
(11.29)

DNL=max

∣∣∣∣G ·W�k�−Q′

Q′

∣∣∣∣ (11.30)

INL= 100
max ���k��

Q ·2N
(11.31)

MSE= 100
max �T�k�−Q · �k−1�−T1�

Q ·2N
(11.32)

where Q′ is the average width of a code bin.
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11.3.5.6 Sine Wave Curve-Fit Test

The digitized data in Figure 11.37 can be fitted to a three-parameter sine function.
The input analog sine wave has an amplitude of Ao, frequency of �o, and offset of
Co and is described by the function:

y�t�= Ao sin��ot�+Co (11.33)

The digitized sine wave can be curve-fitted using:

y′�t�= A sin��t�+Bcos��t�+C (11.34)

The curve-fitting criterion is to minimize the mean square error of y�t� and y′�t�.
The IEEE 1057 standard offers a comprehensive list of sine-fitting algorithms. After
the curve has been fit, offset, gain, phase, and frequency error can be derived as:

Gain error �

√
A2+B2−Ao

Ao

(11.35)

Offset error � C−Co (11.36)

Phase error � � = tan−1
(
−B

A

)
(11.37)

Frequency error �
��−�o�

�o

(11.38)

Here, the frequency error is the sampling frequency error. The sampling frequency
error can be equivalent to the signal frequency error being the same percentage.
For example, a 1% increase in the sampling frequency is equivalent to a 1% drop
in the signal frequency.

11.3.6 Frequency-Domain ADC Testing
The frequency-domain testing of ADCs is the same as the AC parametric testing
of analog circuits, described in Section 11.2.4. Similarly, the test items include
SNR, SNDR, THD, and others. The ENOB can be derived from SNDR. The main
difference is the item under test. In AC parametric testing, the response waveform
of the CUT is tested and analyzed. The digitizer or ADC is assumed to be ideal, while
in ADC testing the input waveform is assumed ideal. All the nonideal phenomena
are originated from the ADC under test. Given the similarity, the frequency-domain
test method will not be repeated again.

11.4 IEEE 1149.4 STANDARD FOR A MIXED-SIGNAL TEST BUS

The development of IEEE Std. 1149.4 began with a preliminary meeting in the
summer of 1991, when the need was recognized for a standardized structure to be
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incorporated into mixed-signal circuits to combat the testability problems posed
by such circuits. This meeting adopted as its mission the following [IEEE 1149.4-
1999]:

To define, document, and promote the use of a standard mixed-signal test bus
that can be used at the device and assembly levels to improve the controllability
and observability of mixed-signal designs and to support mixed-signal built-in
test structures in order to reduce both test development time and testing cost,
and to improve test quality.

The architecture and means of controlling and accessing both analog and digital
test data are described elsewhere [Osseiran 1999].

11.4.1 IEEE 1149.4 Overview
Figure 11.40 presents the context in which the IEEE 1149.4 standard is intended to
be applied. The figure presents an electrical circuit constructed as a printed circuit
assembly (PCA). The component that is subject to the standard is the shaded one
at the center of Figure 11.40.
The pins of a typical mixed-signal IC are connected to:

� Other mixed-signal components (M) which may or may not conform to this
standard

� Digital components (D) which may or may not conform to this standard

D

A

M

D

A

M
C

C

C

Interconnect

Discrete
Component

M: Mixed-signal Component   A: Analog Component   D: Digital Component

� FIGURE 11.40

Mixed-signal printed circuit assembly [IEEE 1149.4-1999].
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� Analog components (A) which are unlikely to contain any associated testability
features

� Discrete components (C) such as resistors and capacitors, which do not have
any associated testability features

The standard can be used in production tests and in the field service. The goal is
to supply a test signal to, and to collect test responses from, edge connects without
making direct physical contact with the component.

11.4.1.1 Scope of the Standard

This standard defines test features to provide standardized approaches to intercon-
nect testing, parametric testing, and internal testing of mixed-signal PCAs.

� Interconnect test—The primary goal of this standard is to support intercon-
nect testing for PCAs comprised of analog, digital, and mixed-signal com-
ponents. Any form of open and short, as presented in Figure 11.41, can be
detected and diagnosed.

� Parametric test—The second purpose is to characterize, measure, and test
the discrete components. Discrete components perform such functions as level
shifting, passive filtering, and AC coupling. They are regarded as extended
interconnects, in contrast to the simple interconnects of wires only. As pre-
sented in Figure 11.42, simple, extended, and differential interconnects are
included.

� Internal test—The third objective, internal testing, relates to the capacity to
perform comprehensive tests on the components either in isolation or while
mounted on a substrate. Figure 11.43 presents a board-level connection con-
figuration. The AT1 and AT2 ports of all of the analog chips are connected
to the bus. A signal source is connected to AT1 and a response analyzer is
connected to AT2. Notably, this is also a typical connection configuration for
1149.4. In internal testing, the test waveform is sent to the CUT via AT1 and
AB1. The response waveform is returned to the analyzer via AB2 and AT2. The
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� FIGURE 11.41

Interconnect testing: (a) open, and (b) short [IEEE 1149.4-1999].
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Interconnects: (a) simple, (b) extended, and (c) differential [IEEE 1149.4-1999].
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� FIGURE 11.43

Internal test configuration.

internal test raises two major issues. First, the stray capacitance associated
with the bus (AT1/AT2) may be very large; therefore, a high-quality signal is
unlikely to be sent through the bus. Second, doing so may require the incor-
poration of internal test structures whose impact on the cost and performance
of the circuit may be prohibitive; therefore, this aspect of the standard is not
mandatory, but the addition of a designer-defined test function is unlimited.

11.4.2 IEEE 1149.4 Circuit Structures
Figure 11.44 presents the structure of an 1149.4-compliant chip. It presents all of
the main mandatory components in the standard. An 1149.1 test access port (TAP)
that supports all 1149.1 functions for digital testing [IEEE 1149.1-1990]. IEEE
1149.4 extensions include analog boundary modules on every analog function pin,
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Structure of a basic 1149.4 chip [IEEE 1149.4-1999].

analog test access ports (AT1 and AT2), a test bus interface circuit, and a pair of
internal analog test buses (AB1 and AB2):

� Analog test access port (ATAP)—The ATAP is an analog port that enables the
test bus interface circuit to access an external analog test bus. It is comprised
of a minimum of one analog input connection and one analog output connec-
tion (AT1/AT2). AT1 and AT2 carry signals to and from the automatic test
equipment (ATE) and the CUT.

� Analog test buses (AB1/AB2)—AB1 and AB2 are two internal test buses. They
are connected to all of the analog boundary modules. They have a function
similar to that of ATAP except that they are delivering internal analog test
signals. AB1/AB2 carries the signals from ABMs to the test bus interface circuit
and then to AT1/AT2.

� Test bus interface circuit (TBIC)—The TBIC controls the connections
between ATAP and AB1/AB2. It provides a link between the external test bus
(AT1/AT2) and the internal test bus (AB1/AB2). Figure 11.45 presents the
circuit diagram. The mandatory part, on the right, provides cross-bar connec-
tions for AT1/AT2 and AB1/AB2. It also provides switches for clamping the
buses to VC. The optional part, on the left, is provided for interconnect testing.
It can send high �VH� or low �VL� voltages to AT1/AT2 and compare the voltage
level on the bus with a threshold voltage �VTH�.

� Analog boundary module (ABM)—The ABM is the heart of the standard
framework for mixed-signal testing. Figure 11.46 presents the circuit diagram
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Test bus interface circuit (TBIC) [IEEE 1149.4-1999].
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Analog boundary module (ABM) [IEEE 1149.4-1999].



664 VLSI Test Principles and Architectures

of an ABM. Six conceptual switches in an ABM allow the pin to be connected
to AB1, AB2, a high voltage �VH�, a low voltage �VL�, the reference quality
voltage �VG�, and the analog core. The switch that connects to the analog core
is the core disconnect (CD). It is responsible for isolating the internal core
from the pin in interconnect testing mode. This switch is the most critical,
because it is on the signal path. Performance degradation is the main concern.
The pin is also connected to a comparator to compare to a threshold voltage
�VTH�. Herein, VTH lies in the range:

VH+VL

2
− VH−VL

4
< VTH <

VH+VL

2
+ VH−VL

4
(11.39)

In general, VTH = VH+VL

2 is preferred. The switches to VH/VL and the comparator
enable open/short testing without AB1/AB2 or an external instrument. This
feature is discussed in detail below.

For a mixed-signal IC with a digital core, an analog core, and an ADC/DAC
circuitry, the 1149.4 DFT structure presented in Figure 11.47 is recommended. A
DBM chain separates ADC/DAC from the digital core, and the DAC inputs and
ADC outputs can be accessed via the digital boundary scan chain. This control is
equivalent to the direct control and observation of analog signals at the input of
ADC and the output of DAC; therefore, the mixed-signal test effort is reduced.
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Analog
Core

TDI TDO
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Digital
Outputs 
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ABM

� FIGURE 11.47

Circuit structure for mixed-signal ICs [IEEE 1149.4-1999].
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11.4.3 IEEE 1149.4 Instructions
The IEEE 1149.4 standard is a super-set of IEEE 1149.1, so each component
responds to the mandatory instructions defined in 1149.1 [IEEE 1149.1-1990].
Herein, three types of instruction are defined: mandatory instructions, optional
instructions, and user-defined instructions. The contents of these instructions have
already been defined in 1149.1. Their special functions, related to 1149.4, are
described below.

11.4.3.1 Mandatory Instructions
� BYPASS—When the BYPASS instruction is selected, all ATAP pins are isolated

from the internal analog test buses and from all test voltages. All analog pins
are connected to the core circuit and isolated from internal and external test
buses. The test logic and circuit have no effect on the operation of the core
circuit.

� SAMPLE/PRELOAD—As with BYPASS, ATAP and analog pins are isolated
from the analog DFT circuitry; however, this instruction has two functions.
The first function, SAMPLE, allows the comparator (1-bit digitizer) of the
ABM to capture a digitized snapshot of the analog signal. The second function,
PRELOAD, loads a digital data pattern to specify the operation of the ABM.

� EXTEST—When the EXTEST instruction is selected, the analog pin is discon-
nected from the core. Here, the core disconnect switch (CD) is opened. This
instruction allows the open/short of simple interconnects to be tested using
the voltage sources and comparator in the ABM. Additionally, the parame-
ters of the extended interconnects can be measured using ATE. The following
section details the test modes.

� PROBE—When the PROBE instruction is chosen, the analog pin is connected
to the core and the analog test buses (AB1/AB2) based on the control pattern
scanned in during RELOAD. The PROBE instruction allows analog pins to be
stimulated or monitored using AB1 and AB2 while the component is operated
in its normal mode.

11.4.3.2 Optional Instructions
� INTEST—When the INTEST instruction is chosen, the analog pin is connected

to the core and the analog test buses, according to the PROBE instruction.
The stimulus can be supplied via AB1 and/or the response monitored via AB2.
Figure 11.43 presents the configuration, which is used for testing the internal
analog core.

� Device identification register—The device identification register instructions
include the IDCODE and the USERCODE instructions, both of which are
identical to those of IEEE 1149.1.

� RUNBIST—As in 1149.1, the RUNBIST is self-contained and leaves a single
test result signature in the test data register identified by the instruction. In
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response to the RUNBIST instruction, all analog output signals are defined by
the data held in the boundary-scan register or placed in inactive drive states.

� CLAMP—When the CLAMP instruction is chosen, the signals of all analog
output pins are defined by the data held in the corresponding ABMs. Restated,
the possible output states are high impedance, VH, VL, or VG. No such state
should be changed during the CLAMP period.

� HIGHZ—When the HIGHZ instruction is chosen, all analog function pins are
disconnected from the core and from all test circuitry, such that all switches
in the ABM are opened. Similarly, the AT1/AT2 pins enter the high impedance
state, independently of the data held in the TBIC control register. The HIGHZ
instruction in 1149.4 is similar to the BYPASS instruction. They both iso-
late the chip from the rest of the circuits on the board. For example, in
Figure 11.43, only the CUT receives the INTEST instruction. The remaining
chips are placed under the HIGHZ instruction.

Users can define their own instructions. The user-defined instruction can be
treated as an extension of optional instructions. Users must follow the guidelines
specified in the IEEE 1149.1 and 1149.4 standards. These guidelines are defined
after, and do not conflict with, the mandatory instructions. Given the above manda-
tory and optional instructions, many test modes can be defined as follows.

11.4.4 IEEE 1149.4 Test Modes
Following the instructions described above, several modes for testing various items
in various configurations are described below.

11.4.4.1 Open/Short Interconnect Testing

Without an external instrument, the ABM can perform interconnect testing in
general and open/short in particular, as presented in Figure 11.48. The tested wire

AB1
AB2

VH      VL 

AB1 
AB2

VTH
Chip 1 Chip 2 

1
0

Inerconnect 
Under Test 

� FIGURE 11.48

Open/short test mode.
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is the bold wire that connects analog Pin1 of Chip1 to Pin2 of Chip2. ABMs are
associated with both pins. The three-step test procedure is as follows:

1. Switch VH to Pin1 and detect a logical 1 at the comparator of Pin2.

2. Switch VL to Pin1 and detect a logical 0 at the comparator of Pin2.

3. Switch VH to Pin1 and detect a logical 1 at the comparator of Pin2.

Notably, step 1 is exactly the same as step 3 because interconnect testing depends
on going through a 0-to-1 transition and a 1-to-0 transition to detect the open faults
that exhibit sequential behavior. An opened node is in a high-impedance state. At
high impedance, the charge is held in the stray capacitance and can be treated
as a dynamic latch; therefore, it must undergo a 0-to1 and a 1-to-0 transition to
guarantee that the driver is connected and functioning.
The open/short test mode is the most important test mode for 1149.4. It is also

the main feature of the ABM. VH and VL can be regarded as logical 1 and 0 in a
digital circuit. They are commonly set to VDD and GND. Additionally, if VTH is set to
0�5VDD, then it can be regarded as a logical gate with a threshold voltage of 0�5VDD

and thus becomes compatible with digital logic and 1149.1. Restated, if connected
to a DBM, it can output a logical 0 �VL� and a logical 1 �VH� and receive an input
digital signal with the comparator. In summary, with the ABM, the open/short of
analog interconnects can be tested using the digital interconnect testing approach.

11.4.4.2 Extended Interconnect Measurement

Extended interconnect measurement measures passive components, such as resis-
tors and capacitors, used in level shifting, passive filtering, and AC coupling. It
requires an external instrument. Figure 11.49 presents the test setup, and the pro-
cedure is presented as follows:

1. Condition TBIC and ABM such that AT1-AB1-APin and AT2-AB2-APin are
connected.

2. Supply test current I�t� from the signal source via AT1-AB1-APin to the DUT
(Device Under Test).

3. Measure response voltage V�t� from the DUT via APin-AB2-AT2 to the signal
analyzer.

4. Calculate the impedance from ZDUT�s�=
V�s�

I�s�
.

The preferred method of measuring impedance is to apply a current and mea-
sure voltage. Given sufficiently high output impedance, the test current can reach
the DUT with little attenuation. With sufficiently high input impedance, a voltage
meter can measure the voltage very accurately. Figure 11.50 presents an abstracted
schematic of the setup in Figure 11.49. Herein, ZP is the total parasitic impedance
of the buses (AT and AB) and switches.
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Parametric testing of grounded discrete component.
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Equivalent circuit diagram for Figure 11.49.

Based on the assumption that RSVI and RSVO do not interfere with current appli-
cation and voltage measurement, the current to the DUT and voltage measured are:

IDUT�t�= Is�t� ·
RSIO

RSIO+ZP1+ZDUT

(11.40)

Vm�t�= VDUT�t� ·
RSVI

RSVI+ZP2+ZDUT

(11.41)

The above equation shows that if RSVO and RSVI are sufficiently large, then IDUT

equals Is and Vm equals VDUT . Notably, an ideal current source has infinite output
impedance, and an ideal voltage meter has infinite input impedance.
In some cases, an extended interconnect is not grounded; rather, it is connected

between two pins as presented in Figure 11.51. Here, in this situation, ZDUT is
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Parametric testing of floating component with zero VG.

considered a floating component. For example, a coupling capacitor is a floating
component because it is placed between two pins to pass the AC part of the signal
and block the DC part.
Figure 11.51 presents the setup of testing a floating component. Here, VG is

connected to GND. The method and procedure for testing a floating component
using the setup in Figure 11.51 are the same as those for testing the grounded
component in Figure 11.49; however, if the floating component is active, then a
DC bias voltage must be applied to ensure its normal functioning. In that case, VG

must be connected to a voltage source to supply the desired DC bias, as presented
in Figure 11.52.
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� FIGURE 11.52

Parametric testing of floating component with non-zero VG.
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Parametric testing by applying voltage and measuring current.

An alternative means of measuring a floating component is to apply a voltage
and measure current. Figure 11.53 presents the measurement.
Care must be taken in using this configuration. Figure 11.54 presents the circuit

model that is equivalent to Figure 11.53. The voltage across the DUT and the current
are derived as follows:

VDUT�t�= Vs�t� ·
ZDUT

RSVO+ZP1+ZDUT+ZP2+RSII

(11.42)

Im�t�=
Vs�t�

RSVO+ZP1+ZDUT+ZP2+RSII

(11.43)

Although RSVO and RSII can both be very small, the parasitic impedance of the
bus and switches, ZP1 and ZP2, still affects the voltage across the DUT, VDUT , and

RSIIIm(t )

Vs(t ) V

RSVO ZP1

ZP 2

ZDUT

VDUT

IDUT

M

� FIGURE 11.54

Circuit diagram equivalent to Figure 11.53.
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the measured current. Notably, an ideal voltage source and an ideal current meter
have an output impedance of 0�. The degenerate equations are:

VDUT�t�= Vs�t� ·
ZDUT

ZP1+ZDUT+ZP2

(11.44)

Im�t�=
Vs�t�

ZP1+ZDUT+ZP2

(11.45)

Notably, a CMOS switch has a resistance of from 100� to 10K�. A 100-� switch
is considered to have very small resistance, even smaller than most pin drivers. A
typical pin driver has amaximal driving current of 1mA to 8mA, which is equivalent
to 1�8K� and 225� with a 1.8-V power supply; therefore, the test channel must
be precisely calibrated before such a measurement can be made. The calibrated
impedance is then considered when the measurement is made.

11.4.4.3 Complex Network Measurement

More general networks connected between pins can be measured similarly.
Figure 11.55 presents a typical two-port network connected between P1/P2 on
one chip and P3/P4 on another. All pins are assumed to be equipped with ABMs;
therefore, different setups can be employed to test various transfer characteris-
tics. Consider as an example the hybrid (H) parameters, which are defined as
follows:

h11 =
V1

I1

∣∣∣∣
V2=0

h21 =
I2
I1

∣∣∣∣
V2=0

h12 =
V1

V2

∣∣∣∣
I1=0

h22 =
I2
V2

∣∣∣∣
I1=0

(11.46)

Table 11.6 presents a measurement configuration for measuring the H parame-
ter based on Eq. (11.46). The measurements of other two-port networks, such as
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P3
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Z3 

I1
V1 V2 

I2 

� FIGURE 11.55

Testing two-port network.



672 VLSI Test Principles and Architectures

TABLE 11.6 � Configuration for Measuring H Parameters

H P1 P2 P3 P4

h11 Is/Vm GND GND GND
h12 Vm GND Vs GND
h21 Is GND Im GND
h22 Open GND Vs/Im GND

Note: Im, measure current; Is, apply current; Vm, measure voltage;
Vs, apply voltage.

short-circuit admittance (Y ), open-circuit impedance (Z), and inverse-hybrid (G), can
be made in a similar way.

11.4.4.4 High-Performance Configuration

As discussed above, CMOS switches have much higher impedance than metal wires.
Additionally, the stray capacitance of the test bus is a major concern. As presented
in Figure 11.43, the bus is routed all over the board and connected to every 1149.4
chip. The overall stray capacitance associated with the bus can be in the range of
tens of pF. A typical pin has a stray capacitance of 2∼4pF, a via has 0�5∼1pF, and a
1-cm wire has 0�25∼0�5pF; therefore, the bandwidth is severely limited by the stray
capacitance of the bus and the stray resistance of the switches. Accordingly, a high-
frequency signal cannot be delivered to test high-speed circuitry. For particular
circuitry, high-frequency test stimuli are required to trigger frequency-dependent
faults. In such cases, the standard recommends the replacement of passive switches
with active current buffers and voltage buffers. Figure 11.56 presents an example
of a buffered ABM and TBIC.

AB2 

VH VL VTHVG

AB1 

TBIC
ABM

Current Buffer 

Voltage Buffer 

� FIGURE 11.56

High-performance setup with current and voltage buffer.
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11.5 CONCLUDING REMARKS

Analog and mixed-signal testing requires specialized approaches and experienced
engineers, because of the large varieties of signals, the functions, and the ranges
of circuits. Generic and general module-like operational amplifiers provide a good
entry point for understanding the properties of analog circuits, their specifications,
and the test methods. Learning that DSP approaches are so pervasive that even
basic analog test items can be accomplished by the DSP-based virtual instrumen-
tation techniques is important. Mixed-signal circuits, mainly ADCs and DACs, are
key components of SOCs. IEEE 1057, with its formal terminologies and standard-
ized test methods, provides a solid theoretical background for ADC/DAC testing.
IEEE 1149.4 is one solution to extending and incorporating the digital counterpart.
Overall, in analog and mixed-signal testing, experience is as important as textbook
knowledge. More territory is undiscovered than has been discovered; therefore,
long-term commitment, in-depth investigation, and innovative thinking will be the
keys to success.

11.6 EXERCISES

11.1 (Analog Circuit Testing) For the circuit in Figure 11.12, if the amplifier
under test had the following circuit parameters, what would the measured
open-loop gain be?

Input impedance RI = 1K�
DC gain 100
Output impedance RO = 50�
Load resistance RL = 100�

11.2 (Analog Circuit Testing) For the unit gain bandwidth test construct pre-
sented in Figure 11.13a, suppose that the amplifier has an open-loop gain of
1000, a 3-dB bandwidth of 1KHz, and a slew rate of 1V/�s (other parameters
assumed ideal).

a. What is the unit gain bandwidth and the maximal input amplitude?

b. What is fMAX (the 3-dB frequency at which power output is maximal)?

11.3 (Analog Circuit Testing) For a regulator with an input of 6 to 9V, an output
of 5V±5%, a maximal load of 1 A, and a minimum load of 1 mA, what is:

a. The load regulation?

b. The line regulation?

c. The drop-out voltage?
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Vin (V) Load (A) Vout (V) Vin (V) Load Vout (V)

5.4 1 4�6 6.0 1mA 5�2
5.6 1 4�7 6.0 5mA 5�15
5.8 1 4�8 6.0 10mA 5�1
6.0 1 4�9 6.0 50mA 5�05
7.0 1 5�0 6.0 100mA 5�0
8.0 1 5�1 6.0 500mA 4�95
9.0 1 5�15 6.0 1A 4�9

11.4 (Analog Circuit Testing) For the power supply circuit in Figure 11.57 and
device parameter shown below:

a. What are the maximal and minimal output voltages?

b. What are the line regulation and load regulation?

c. What is the drop-out voltage?

Input 5∼10V (RMS), AC, 60Hz
Diode VD = 0�7V	RD = 0�
Zener diode VZ = 5�7V	RZ = 10�
BJT transistor VBE = 0�7V	 �= 100
Regulator R= 90�	C= 10	000�F

11.5 (Analog Circuit Testing) For the limiter circuit presented in Figure 11.58,
let VD = 0�7V	RD = 100� and RS = 1K� (the output impedance of the signal
source). (You may need SPICE simulation to solve this problem.)

a. For a sinusoidal waveform, what is the maximal distortion free amplitude?

b. For a realistic diode with VD = 0�7V at ID = 1mA, redo (a).

c. If the limiter is placed as the protection circuit before an ideal ADC, what
is the SNR and the maximal achievable bit length for a 2.7-V sinusoidal
input?

R 

C 

Vin Vout 

� FIGURE 11.57
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2V–2V

Vin Vout 

� FIGURE 11.58

11.6 (Mixed-Signal Testing) For the sample and hold circuit presented in
Figure 11.29, let R= 100� and CH = 10nF and ILeak = 1�A. The bit length of
the ADC is 10 and the error tolerance is 0.5 LSB. The conversion range is 1 V
and the conversion time is 1�s.

a. What is the droop rate and what is the maximal hold period such that the
voltage change is less than the tolerance?

b. What is the minimum acquisition time of the S/H?

c. What is the maximal conversion throughput of the S/H and ADC?

d. Suppose that the ADC has an unlimited bit length; for such an S/H, what
is the maximal achievable bit length with the ideal ADC?

e. What is the conversion rate in (d)?

11.7 (Mixed-Signal Testing) For a 10-bit ADC, the conversion range is 1V. Sup-
pose that the sampling clock has a jitter of 100ps. The input is a sinusoidal
waveform with an amplitude of 0.5V.

a. What are the errors in terms of LSB caused by the jitter for inputs of 1KHz
and 1MHz?

b. What is the maximal input signal frequency so the sampling error is less
than 0.5 LSB?

c. Suppose that the ADC has an unlimited bit length. What are the maximal
achievable bit lengths for 1-KHz and 1-MHz sinusoidal waveforms?

11.8 (Mixed-Signal Testing) For a 3-bit ADC, the test input is a ramp signal, and
a total of 1024 samples are taken uniformly. If the histogram is as follows,
what are the DNL and the INL (in terms of LSB)?

Code 000 001 010 011 100 101 110 111
Frequency 80 163 159 149 140 135 130 68
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11.9 (Mixed-Signal Testing) For a 4-bit ADC and a ramp input, draw the his-
togram in the following cases:

a. An offset error of 2 LSB.

b. A gain error of 2 LSB.

c. An offset error of 2 LSB and a gain error of 2 LSB.

d. Code i has a DNL error of (in LSB):{
DNLi = 0�5× i/7 i≤ 7

DNLi = 0�5−0�5× �i−8�/7 i > 7

e. Code i has a DNL error of (in LSB):

DNLi = 0�5× sin

(
i

16
·�
)

f. What are the INL values of (d) and (e)?

11.10 (Mixed-Signal Testing) For a 4-bit ADC, the ideal transfer characteristic
curve is Y = X for −0�5 ≤ X ≤ 0�5. Assume that the ADC under test has a
characteristic transfer curve of Y = X+0�1sin�2�X�.

a. Draw the 256-sample histogram of a ramp input with an amplitude of
±0�5. The samples are obtained at Xi =−0�5+ i/256 for 0 ≤ i ≤ 256. What
are the INL and DNL derived from the histogram?

b. For Y = X+0�1cos�2�X �, what are the gain and offset errors?

c. After the gain and offset errors in (b) have been calibrated, what are the
INL and the DNL?

11.11 (IEEE 1149.4 Standard for a Mixed-Signal Test Bus) Equation (11.46) and
Table 11.6 provide the definitions and test configurations for theH parameters
for a two-port network. For the following parameters, find the definitions and
derive the test configuration:

a. Y parameters.

b. Z parameters.

c. G parameters
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ABOUT THIS CHAPTER

Over the past three decades, we have seen semiconductor manufacturing technol-
ogy advance from 4 microns to 65 nanometers. The shrinkage of feature size has
made a dramatic impact on design and test. Now, we can see system-on-chip (SOC)
designs embed 100 million transistors running in the gigahertz range. Within the
next decade, there will be designs containing a billion transistors. These designs
can include all varieties of digital, analog, mixed-signal, memory, optical, micro-
electromechanical system (MEMS), field programmable gate array (FPGA), and
radiofrequency (RF) circuits. We can anticipate that testing for designs of this
complexity will be a significant challenge, if not a serious problem. Data have
shown it is beginning to require more than 20% of the development time and over a
month to generate production test patterns of sufficient fault coverage for detecting
manufacturing defects.
Today, the semiconductor industry relies heavily on two test technologies: scan

and built-in self-test (BIST). Scan will no longer be sufficient because small feature
size could cause physical failures that are difficult to detect by its single-fault model
assumption. BIST will begin to cause problems if its low-fault-coverage problem
is not soon solved. Faced with mountains of testing problems in the nanometer
design era, it is imperative that we seek viable test solutions now. In this chapter, we
discuss these test technologies by first reviewing the International Test Technology
Roadmap published by the Semiconductor Industry Association in 2004. Then,
promising test techniques will be presented to deal with highly complex nanometer
designs.
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12.1 TEST TECHNOLOGY ROADMAP

In 1965, Gordon Moore, Intel cofounder, predicted that the number of transistors
integrated per square inch on a die would double every year [Moore 1965]. In
subsequent years, the pace slowed down but the number of transistors has doubled
approximately every 18 months for the past two decades. This has become the
current definition of Moore’s law. Most experts expect that Moore’s law will hold
for at least two more decades. Die size will continue growing larger and larger, but
minimum feature size will shrink smaller and smaller. Although smaller transistor
size could result in smaller circuit delay, a smaller feature size for interconnects
does not reduce the signal propagation delay; thus, the signal propagation delay in
interconnects has been the dominant factor in determining the delay of a circuit.
To alleviate this problem, interconnects are made taller and taller to reduce the
sheet resistance. Unfortunately, this induces crosstalk noises between adjacent
interconnects due to capacitive and inductive coupling. This is referred to as a
signal integrity problem, and it is extremely difficult to detect [Chen 2002]. As the
clock frequency has been pushed up into the gigahertz range and supply voltage
has also been scaled down along with device scaling, the power supply voltage
drop caused by L�di/dt� can no longer be ignored. This has caused another power
integrity problem that again is extremely difficult to solve because finding test
patterns with maximum current changes is quite difficult [Saxena 2003].
As the manufacturing technology continues to advance, precise control of the

silicon process is becoming more challenging; for example, it is difficult to control
the effective channel length of a transistor, and the circuit performance, such as
power and delay, exhibits much larger variability. This is the process variation
problem, and it can make delay testing extremely complex [Wang 2004]. To reduce
the leakage power dissipation, many low-power design technologies have been
widely used. Unfortunately, low-power circuits might result in new fault models
that increase the difficulty of fault detection; for example, a drowsy cache that
can be supplied by low voltage (e.g., 0.36V) when it is idle has been proposed
recently to reduce the leakage current [Kim 2004]. Though the leakage current can
be reduced by several orders of magnitude, a new fault model called drowsy fault
that causes a memory cell to fall asleep forever can occur. Unfortunately, testing
drowsy faults requires excessively long test application times, as it is necessary
to drive the memory cells to sleep and then wake them up. As we move into the
nanometer age, in order to keep up with Moore’s law many new nanotechnologies
and circuit design techniques must be invented and adopted, all of which pose
severe test challenges that must be addressed concurrently. If these test issues are
not solved at the same time, the cost of test would eventually surpass the cost of
silicon manufacturing, as illustrated in Figure 12.1 [SIA 1997] [SIA 2004].
In 2004, the Semiconductor Industry Association (SIA) published an Inter-

national Technology Roadmap for Semiconductors (ITRS), which includes an
update to the test and test equipment trends for nanometer designs through 2010
and beyond [SIA 2004]. The ITRS is an assessment of the semiconductor tech-
nology requirements. The objective of the ITRS is to ensure advancements in the
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Fabrication capital versus test capital.

performance of integrated circuits. This assessment, also known as roadmapping,
is a cooperative effort of the global industry manufacturers and suppliers, govern-
ment organizations, consortia, and universities.
The ITRS identifies the technological challenges and needs facing the semicon-

ductor industry over the next 15 years. Difficult near-term and long-term test and
test equipment challenges were reported in [SIA 2004] and are listed in Tables 12.1
and 12.2. The near-term challenges for nanometer designs with feature size ≥ 45nm
through 2010 include high-speed device interfaces, highly integrated designs, relia-
bility screens, manufacturing test cost, andmodeling and simulation. The long-term
challenges for nanometer designs with feature size <45nm beyond 2010 include the
device under test (DUT) to automatic test equipment (ATE) interface, test method-
ologies, defect analysis, failure analysis, and disruptive device technologies. These
difficult challenges encompass a full spectrum of test technology trends impera-
tive for nanometer designs, including: (1) developing new design for testability
(DFT) and design for manufacturability (DFM)methods for digital circuits, analog

TABLE 12.1 � Test and Test Equipment Difficult Challenges – Near-Term

Five Difficult Challenges
≥ 45 nm/Through 2010

Summary of Issues

High-speed Device
Interfaces

A major roadblock will be the need for high frequency, high
pin count probes and test sockets; research and
development is urgently required to enable cost-effective
solutions with reduced parasitic impedance.

High-speed Device
Interfaces

High-speed serial interface speed and port count trends
will continue to drive high-speed analog source/capture
and jitter analysis instrument capability for
characterization. DFT/DFM techniques must be
developed for manufacturing.

Device interface circuitry must not degrade equipment
bandwidth and accuracy, or introduce noise, especially
for high-frequency differential I/O and analog circuits.
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TABLE 12.1 � Continued

Five Difficult Challenges
≥ 45 nm/Through 2010

Summary of Issues

Highly Integrated Designs Highly structured DFT approaches are required to enable
test access to embedded cores. Individual cores require
special attention when using DFT and BIST to enable
test.

Analog DFT and BIST techniques must mature to simplify
test interface requirements and slow ever-increasing
instrument capability trends.

Testing chips containing RF and audio circuits will be a
major challenge if they also contain large numbers of
noisy digital circuits.

DFT must enable test reuse for reusable design cores to
reduce test development time for highly complex
designs.

Reliability Screens Existing methodologies are limited (burn-in versus thermal
runaway, IDDQ versus background current increases).

Research is required to identify novel infant mortality
defect acceleration stress conditions.

Manufacturing Test Cost Test cell throughput enhancements are needed to reduce
manufacturing test cost. Opportunities include massively
parallel test, wafer-level test, wafer-level burn-in, and
others. Challenges include device interfacing/contacting,
power and thermal management.

Device test needs must be managed through DFT to enable
low-cost manufacturing test solutions; including reduced
pin cost test, equipment reuse, and reduced
test time.

Automatic test program generators are needed to reduce
test development time. Test standards are required to
enable test content reuse and manufacturing
agility.

Modeling and Simulation Logic and timing accurate simulation of the ATE, device
interface, and DUT is needed to enable pre-silicon test
development and minimize costly post-silicon test
content development/debug on expensive ATE.

High-performance digital and analog I/O and power
requirements require significant improvements to test
environment simulation capability to ensure signal
accuracy and power quality at the die.

Equipment suppliers must provide accurate simulation
models for pin electronics, power supplies, and device
interfaces to enable interface design.
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TABLE 12.2 � Test and Test Equipment Difficult Challenges – Long-Term

Five Difficult Challenges
< 45 nm/Beyond 2010

Summary of Issues

DUT to ATE Interface Probing capability for optical and other disruptive
technologies.

Support for massively parallel test—including full wafer
contacting.

Decreasing die size and increasing circuit density are
driving dramatic increases in die thermal density. This
problem is further magnified by the desire to enable
parallel test to maximize manufacturing throughput. New
thermal control techniques will be needed for wafer
probe and component test.

DFT to enable test of device pins not contacted by the
interface and test equipment.

Test Methodologies New DFT techniques (SCAN and BIST have been the
mainstay for over 20 years). New test methods for
control and observation are needed. Tests will need to be
developed utilizing the design hierarchy.

Analog DFT and BIST techniques must mature to simplify
test interface requirements and slow ever increasing
instrument capability trends.

Logic BIST techniques must evolve to support new fault
models, failure analysis, and deterministic test.

EDA tools for DFT insertion must support DFT selection
with considerations for functionality, coverage, cost,
circuit performance and ATPG performance.

Defect Analysis Defect types and behavior will continue to evolve with
advances in fabrication process technology. Fundamental
research in existing and novel fault models to address
emerging defects will be required.

Significant advances in EDA tools for ATPG capacity and
performance for advanced fault models and DFT
insertion are required to improve efficiency and reduce
design complexities associated with test.

Failure Analysis Real-time analysis of defects in multi-layer metal processes
is needed.

Failure analysis methods for analog devices must be
developed and automated.

Transition from a destructive physical inspection process to
a primarily non-destructive diagnostic capability.
Characterization capabilities must identify, locate, and
distinguish individual defect types.

Disruptive Device
Technologies

Develop new test methods for MEMS and sensors.
Develop new fault models for advanced/disruptive

transistor structures.
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circuits (including RF and audio circuits as well as high-speed serial interfaces),
MEMS, and sensors, (2) developing the means to reduce manufacturing test costs as
well as enhance device reliability and yield, and (3) developing techniques to facil-
itate defect analysis and failure analysis. The ITRS [SIA 2004] further summarizes
the design test challenges, as shown in Table 12.3.
In the following sections, we briefly present several promising test solutions to

address some of the DFT/DFM needs and the difficult challenges identified by the
ITRS. For more information, the reader should refer to the key references cited in
each section.

TABLE 12.3 � Design Test Challenges

Additional Challenges
<50 nm/Beyond 2009

Summary of Issues

Effective Speed Test with
Increasing Core Frequencies
and Widespread Proliferation of
Multi-GHz Serial I/O Protocols

P, S—Continuation (avoidance) of at-speed functional
test with increased clock frequencies.

P, S—At-speed structure test with increased clock
frequencies.

P, S, A—DFT, test and on-chip measurement techniques
for multi-gigahertz serial I/Os and non-deterministic
interfaces.

Capacity Gap Between DFT/Test
Generation/Fault Grading Tools
and Design Complexity

P, S—Better EDA tools for advanced (open, delay, etc.)
fault models.

P, S—DFT to enable low-cost ATE.
P, S—Non-intrusive logic BIST (including advanced

fault models).
A—AMS DFT/BIST, especially at beyond-baseband

frequencies.

Quality and Yield Impact due to
Test Process Diagnostic
Limitations

P, S—Power and thermal management during test.
P, S—Fault diagnosis and design for diagnosability.
S—Yield improvement and failure analysis tools and

methods.
All—Increasing difficulty to fault isolate and root cause

yield limiting defects.

Signal Integrity Testability and
New Fault Models

P, S—Signal integrity (noise, interference,
capacitive/inductive coupling, etc.) testability.

A—Fault models for analog (parametric) failures.

SOC and SIP Test S—Integration of SOC test methods into chip-level DFT.
S—Integration of multiple fabric-specific test

methodologies in cost-effective manufacturing flows.
A—DFT, BIST and test methods compatible with

core-based SOC environment and constraints.
M—Embedded memory (DRAM, SRAM, Flash) built-in

self-diagnosis and self-repair.
All—Test reuse in context of higher integration.
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TABLE 12.3 � Continued

Additional Challenges
<50 nm/Beyond 2009

Summary of Issues

Integrated Self-Testing for
Heterogeneous SOCs and
SIPs

A—Test of multi-gigahertz RF front ends on chip.
S—Use of on-chip programmable resources for SOC and

SIP self-test.
S, A—Dependence on self-test solutions for SOC

(including RF and analog).
A—(Analog) signal integrity test issues caused by

interference from digital to analog circuitry.
S—Test methods for heterogeneous SOC and SIP

including MEMS and EO components.

Diagnosis, Reliability
Screens, and Yield
Improvement

A—Diagnosis and failure analysis for AMS parts.
P, S—Electrical automated fault isolation techniques

below gate level.
P, S—Design for efficient and effective burn-in to

screen out latent defects.
P, S—Quality and yield impact due to test equipment

limits.
P, S—New timing-related fault models for defects/noise.

Fault Tolerance and Online
Testing

P, S—DFT and fault tolerant design for logic soft errors.
S—Logic self-repair using on-chip reconfigurability.
S—System-level online testing.

Note: This table summarizes challenges to the design process advances implied by the above four trends.
Each challenge is labeled with a list of the most relevant system drivers: S, system-on-chip; P, microprocessor;
A, analog/mixed-signal; M, memory.

12.2 DELAY TESTING

The objective of delay testing is to detect timing defects and ensure that the design
meets the desired performance specifications. The need for delay testing has evolved
from a common problem faced by the semiconductor industry: Designs that func-
tion properly at low clock frequencies might fail at the desired operational speed.
Traditionally, functional tests created for design verification are applied at system
operational speed to screen out parts with delay defects; however, applying func-
tional tests is becoming very expensive, given the need for a high-speed tester to
apply such tests. This approach is still used extensively for high performance parts,
such as microprocessors and digital signal processors (DSPs) for which the func-
tional tests can be loaded into on-chip caches and then applied with a low-cost
tester. Another problem with using functional tests is the lack of assurance for high
test quality. Several industrial experiments (e.g., [Maxwell 1991]) have shown that
tests not specifically targeting delay faults have limited success in detecting tim-
ing defects. The above-mentioned problems can be alleviated by using structurally
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based automatic test pattern generation (ATPG) tests that target specific delay
fault models and which can be applied through design for testability (DFT) struc-
tures using lower-cost testers. For the rest of the section, our discussion is focused
on such structurally based delay testing approaches.
The growing need for delay testing is a result of advances in very-large-scale

integration (VLSI) technology and an increase in the design speed. These factors
are also changing the target objectives of delay tests. In the early days, most defects
affecting the performance could be detected using tests for gross delay defects
[Waicukauski 1987]. Aggressive timing requirements of high-speed designs have
introduced the need to test smaller timing defects and distributed faults caused
by statistical process variations. The increase of the circuit size has resulted in
fault models that can detect distributed defects localized to a certain area of the
chip [Smith 1985] [Lin 1987]. With the introduction of deep submicron technology,
noise effects are becoming significant contributors to timing failures and they call
for further adaptations of the fault models and testing strategies.

12.2.1 Test Application Schemes for Testing Delay Defects
To observe delay defects, it is necessary to create and propagate transitions in the
circuit running at-speed (at its specified operating frequency). Creating transitions
requires application of a vector pair, V =<v1	 v2>, at the inputs of the combinational
part of the circuit. The first vector initializes the relevant internal signals to desired
initial logic values, while the second vector causes the desired transitions and
sensitizes the transition from the target fault site to an output. The test application
scheme for combinational circuits is shown in Figure 12.2. In normal operation,
only one clock (system clock) is used to control the input and output latches (in a
broader sense, storage elements), and its period is Tc. In this illustration, the input
and output latches are controlled by two different clocks in the test mode: the input
and output clocks, respectively. The period of these clocks, Ts, is assumed to be
larger than Tc. The input and output clocks are skewed by an amount equal to Tc.
The first vector, v1, is applied to primary inputs at time t0. The second vector, v2,

combinational 
circuit

input 
latches

output 
latches

inputs outputs

input clock output clock

input clock 

output clock 

t0 t1 t2
Ts Tc

� FIGURE 12.2

Testing scheme for combinational circuits.
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is applied at time t1. Time Ts = t1− t0 is assumed to be sufficient for all signals in
the circuit to stabilize under the first vector. After the second vector is applied, the
circuit is allowed to settle down only until time t2, where t2− t1 = Tc. At time t2,
the primary output values are observed and compared to a prestored response of a
fault-free circuit to determine if there is a defect.
Requiring separate clocks for input and output latches in the test mode may

not be feasible for modern designs, if both clocks are not already available during
normal operation; it might be too costly to resynthesize the clock trees just for the
test purpose. If the input and output latches use the same clock source in the test
mode, the scheme illustrated in Figure 12.2 still applies. There will be no skew
between the input and the output clocks, and Ts could be equal to or larger than Tc.
Times t0	 t1, and t2 would be at the rising edges of three consecutive clock pulses.
Testing delay faults in sequential circuits is more difficult than testing delay faults
in combinational circuits. Even for circuits with scan, application of an arbitrary
vector pair at inputs to the combinational part of the circuit is not possible.
Generating tests for delay faults for scan designs corresponds to a two-time-frame

sequential circuit test generation. In the first time frame, all primary inputs and
present state lines are fully controllable. In the second time frame, only the primary
inputs are fully controllable. Testing schemes for scan have been proposed in the
literature [Savir 1992a,b] [Cheng 1993] [Savir 1994]. These techniques use launch-
on-capture (also called broad-side test [Savir 1994]) or launch-on-shift (also called
skewed-load test [Savir 1992a,b]) to obtain the second vector. In launch-on-capture
which was referred to as double-capture in Chapter 5, the second vector is derived
using the capture mode and represents the set of next state values obtained after
the application of the first vector. In launch-on-shift, the second vector is obtained
by shifting the contents of the scan chain by one bit after the application of the
first vector using the scan-shift mode [Cheng 1993].

12.2.2 Delay Fault Models
Three delay fault models are considered: transition fault model, gate-delay fault
model, and path-delay fault model. It is assumed that in the nominal design each
gate has a given fall (rise) delay from each input to the output pin. Also, the
interconnects are assumed to have given rise (fall) delays. Because the gate pin-to-
pin delays and the interconnect delays can be combined together, the term “gate
delay” will be used to denote this sum. Transition and gate-delaymodels are used for
representing delay defects lumped at gates, while the path-delay model addresses
defects that are distributed over several gates. The advantages and disadvantages
of each model are discussed.
The transition fault model [Levendel 1986] [Waicukauski 1987] [Cheng 1993]

assumes that the delay fault affects only one gate in the circuit. There are two
transition faults associated with each gate: a slow-to-rise fault and a slow-to-fall
fault. It is assumed that in the fault-free circuit, each gate has some nominal delay.
Delay faults result in an increase of this delay. Under the transition fault model, the
extra delay caused by the fault is assumed to be large enough to prevent the transi-
tion from reaching any primary output at the time of observation. In other words,
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the delay fault can be observed independent of whether the transition propagates
through a long or a short path to any primary output; therefore, this model is also
referred to as the gross-delay fault model.

To detect a transition fault in a combinational circuit it is necessary to apply two
input vectors, V =<�1	 �2>. The first vector, �1, initializes the circuit, while the sec-
ond vector, �2, activates the fault and propagates its effect to some primary output.
Vector �2 can be found using stuck-at fault test generation tools. For example, for
testing a slow-to-rise transition, the first vector initializes the fault site to 0, and
the second vector is a test for a stuck-at-0 fault at the fault site. A transition fault
is considered detected if a transition occurs at the fault site and a sensitized path
extends from the fault site to some primary output.
The main advantage of the transition fault model is that the number of faults

in the circuit is relatively small (linear in terms of the number of gates). Also, the
stuck-at fault test generation and fault simulation tools can be easily modified for
handling transition faults. On the other hand, the expectation that the delay fault
is large enough for the effect to propagate through any path passing through the
fault site might not be realistic because short paths may have a large slack (slack is
defined as the difference between the clock period and the nominal delay of the path
for the fault-free circuit). The assumption that the delay fault only affects one gate
in the circuit might not be realistic either. A delay defect can affect more than one
gate, and even though none of the individual delay faults is large enough to affect
the performance of the circuit, several faults can together result in performance
degradation. For practical simplicity, the transition fault model is frequently used
as a qualitative delay model, and circuit delays are not considered in deriving tests.
The gate-delay fault model [Iyengar 1988a,b] assumes that the delay fault is

lumped at one gate in the circuit; however, unlike the transition model, the gate-
delay fault model does not assume that the increased delay will affect the perfor-
mance independent of the propagation path through the fault site. It is assumed
that only long paths through the fault site might cause performance degradation.
The gate-delay fault model is a quantitative model, as it takes into account the
circuit delays. To determine the ability of a test to detect a gate-delay defect, it is
necessary to specify the delay size of the fault. Methods for computing the smallest
delay fault size (detection threshold) guaranteed to be detected by some test have
been reported in the literature [Iyengar 1988a,b] [Pramanick 1997].
The limitations of the gate-delay fault model are similar to those for the transition

fault model. Because of the single gate-delay fault assumption, a test may fail to
detect delay faults that are a result of the sum of several small delay defects. The
main advantage of this model is that the number of faults is linear in the number
of gates in the circuit.
Under the path-delay fault model [Smith 1985], a circuit is considered faulty if

the delay of any of its paths exceeds a specified limit. A path is defined as an ordered
set of gates �g0	 g1	 � � � 	 gn
, where g0 is either a primary input or output of a flip-flop,
and gn is either a primary output or an input of a flip-flop. Also, gate gi is an input
to gate gi+1�0≤ i≤ n−1�. A delay defect on a path can be observed by propagating
a transition through the path; therefore, a path-delay fault specification consists of
a physical path and a transition that will be applied at the beginning of the path.
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The delay or length of the path represents the sum of the delays of the gates and
interconnections on that path.
Tests for the path-delay fault model can detect small distributed delay defects

caused by statistical process variations. A major limitation of this fault model is
that the number of paths in the circuit can be very large (possibly exponential in
the number of gates). For this reason testing all path-delay faults in the circuit
is impractical. Two strategies are commonly used for selecting the set of path-
delay faults for testing. One is to select a minimal set of paths such that for each
signal s in the circuit the longest path containing s is selected for testing [Li 1989]
[Yang 2004]. The other is to select all paths with expected delays greater than a
specified threshold [Sato 2005]. The reason behind selecting the longest paths is
that the delay defects on shorter paths might not be large enough to affect the
circuit performance. Also, if the defects on short paths are large and could affect
the performance, one expects that such defects would be detected by other tests
(e.g., transition or gate-delay tests) that precede the path-delay fault testing. This
strategy might work for circuits whose paths have very different delays so there is
only a small percentage of long paths; however, often in performance-optimized
designs almost all paths have long delays, and in these circuits not even all of the
longest paths can be tested [Park 1991].
Various experimental results reported from industry have strongly indicated that

stuck-at fault testing is not sufficient to guarantee high product quality require-
ments. Industrial data have shown that a large portion of the defects not detected
by stuck-at fault testing represents timing failures. Transition fault tests have been
shown to be effective for detecting gross-delay defects. For high-performance cir-
cuits with aggressive timing requirements, small process variations can lead to
failures at the system clock rate. These defects can be detected using tests for
path-delay faults. While the need for detecting delay defects is clear, the high cost
for detecting them remains a problem. A possible cost-effective strategy for delay
testing would include:

� Use of functional vectors that could be applied at the system’s operational
speed and should catch some delay defects (functional vectors should be
evaluated for transition fault coverage)

� Application of ATPG tests for undetected transition faults

� Application of ATPG tests for long path-delay faults

There are more sophisticated strategies for integrating different types of delay
tests. One of the drawbacks to transition fault testing is that the breadth-first
search algorithm typically used in ATPG tends to select short paths through each
fault site. As a result, when tested at-speed, many paths have considerable timing
slack, so only relatively large delay defects can be detected. One solution is to
generate one or more longest paths through each fault site [Sharma 2002] [Qiu
2003]; however, the increased path length increases test data volume [Qiu 2004].
Rather than maximizing the length of the tested paths, the alternative is to shrink
the capture clock timing to minimize the slack for each pattern [Mao 1990], but
the use of separate timing for each pattern drastically increases test data volume.
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An alternative is to group patterns into sets of almost equal-length paths [Kruseman
2004]. The user must trade off between the number of groups and test data volume.
Because the chip is being tested at faster than its operating speed, logic transitions
may still be occurring when the capture clock is applied. Those storage elements
fed by paths that exceed the cycle time or contain hazards must be masked off to
avoid mismatch. The faults that are not detected due to masking are targeted by
patterns run at the next slower clock speed [Barnhart 2004]. Applying transition
fault patterns at faster than the operating speed has been shown to catch small
delay defects that escape traditional transition fault tests [Kruseman 2004] [Amodeo
2005].

12.2.3 Summary
Delay testing is becoming an increasingly important part of the VLSI design testing
process. Continuously increasing circuit operating frequencies results in designs
in which performance specifications can be violated by very small defects. The
use of traditional fault models and test strategies becomes even more inadequate
as the current design trends move towards deeper submicron designs. The deep
submicron process introduces new failure modes and a new set of design and test
problems. Process variations are now more likely to cause marginal violations of
the performance specifications. The continuous shrinking of device feature size,
increased number of interconnect layers and gate density, increased current den-
sity, and higher voltage drop along the power nets give rise to noise faults, such as
distributed delay defects, power supply noise, ground bounce, substrate noise, and
crosstalk. Analysis shows that most of the excessive noise leads to delay faults; for
example, studies have shown that the increased coupling effects produce interfer-
ence between signals and may increase or decrease signal delays [Breuer 1997].
Testing delay defects continues to be a complex problem. Difficulties are related

to the fault modeling, the test generation, and the test application process. Solutions
currently in use still cannot satisfactorily address some of the new failure modes in
deep submicron designs. Especially, most of the existing techniques are based on
simplified, logic-level delay fault models and cannot be directly used to model and
test timing defects in high-speed designs based on deep submicron technologies.
Some of the main delay test challenges for multi-gigahertz devices are outlined in
[Mak 2004]. For interested readers, a comprehensive coverage of various topics
related to delay testing is available in [Krstic 1998]. The following is a subset of
research topics that must be further explored to address these challenges:

� Testing delay defects in high-speed circuits requires the availability of high-
speed testers; however, due to the high cost, testers in the test facilities are
usually slower than the new designs that need to be tested on them. Therefore,
there is a pressing need for developing practical solutions to testing fast chips
on slow testers. At the current rate of design performance increase and the
high cost of fast testers, the gap between the speed of the new designs and that
of the testers is not likely to disappear. One emerging solution is to include
the circuit’s internal phase-locked loop (PLL) for at-speed delay testing to
alleviate the dependency on high-performance external testers.
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� Small distributed delay defects can best be modeled using the path-delay fault
model; however, practical designs have a very large number of paths, and only
a small fraction of them can be tested. The selection of paths for testing is
especially difficult in performance-optimized designs because they often have
a large number of paths with long propagation delays.

� Selection of critical paths for testing requires accurate timing information
which is not easily available. Deep submicron process introduces new diffi-
culties into the critical path selection because noise factors, such as power
supply noise, ground bounce, and crosstalk, can significantly affect the signal
delays and some paths can be more sensitive to these effects than others.

� In delay testing it also becomes important to take into account signal speedups
or slowdowns resulting from various noise sources in deep submicron devices.
Recent research results [Liou 2003] indicate that incorporation of statistical
principles for delay testing is an effective way of addressing the issues caused
by process variations and noise. A new delay test paradigm under such a prin-
ciple, called statistical delay testing and diagnosis, has been investigated
in [Liou 2003] and [Krstic 2003]. Under this new delay test paradigm, timing
analysis, target-fault selection, and ATPG must be enhanced and built upon
statistical models.

In statistical timing analysis, the delays of basic circuit elements are modeled
as correlated random variables with presumably known probability density func-
tions (PDFs). The modeling structure for these random variables is general enough
to accommodate statistical information resulting from the manufacturing process,
noise, and new defect models resulting from nanometer technologies. Timing anal-
ysis is carried out to estimate the signal arrival time at each internal signal and
each primary output as a random variable, rather than as a single, worst-case value.
Under the statistical timing model, the definition of a critical path becomes prob-

abilistic. If N chips are manufactured, the sets of critical paths on different chip
instances could differ. In a recently developed framework [Liou 2002] [Liou 2003],
the task of statistical path selection is divided into two phases. In the path filter-
ing phase, most of the short or unsensitizable paths are quickly filtered out. The
result is a set of long paths that may affect the circuit timing outcome. During the
phase of true critical path selection, the tool attempts to select a minimal number
of paths from among those statistically long paths for high-quality test or diagnosis
applications.
Due to the statistical timing involved, delay along a target path is highly pattern

dependent. In order to produce high-quality patterns, we therefore need to generate
test patterns that not only sensitize the given set of statistical critical paths but
also exercise the worst-case delays along these paths; however, considering timing
during ATPG can significantly increase the complexity of the process. Also, with
statistical timing and statistical delay defect models, the notion of path sensitization
becomes probabilistic; thus, the key challenge is to develop a feasible statistically
constrained ATPG method where statistical timing-sensitization constraints can
be employed to guide the ATPG justification process.
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12.3 COPING WITH PHYSICAL FAILURES, SOFT ERRORS, AND
RELIABILITY ISSUES

Recall from Chapter 1 that defect level is a function of failure rate andmanufacturing
yield. Failure rate in turn is a function of fault coverage. Therefore, to cope with vast
likely physical failures in nanometer designs, we need to seriously reduce the defect
level to meet the defects per million (DPM) goal. This can be done by improving
the fault coverage of the chips (devices) under test, the manufacturing yield, or both;
however, not all chips passing manufacturing tests would function correctly in the
field. Reports have shown that chips could be exposed to alpha-particle radiation,
and nonrecurring transient errors caused by single or multiple event upsets, called
soft errors, could occur [May 1979]. For nanometer system-on-chip (SOC) designs,
there is also a growing concern whether one can find defect-free or error-free dies
[Breuer 2004]. Advanced test technologies are important now in order to meet yield
and DFM goals and ensure that defective chips will function correctly in the field.
There are two fundamentally complementary test technologies that can be taken

to meet our goals, similar to those approaches used to improve the reliability
of computer systems: design for testability (DFT) and fault tolerance [Lala 2001].
The fault tolerance approach aims at preventing the chip (computer system) from
malfunctioning despite the presence of physical failures (errors), while design for
testability uses design techniques to reduce defect level or the probability of chip
(system) failures during manufacturing.
In the following subsections, we first discuss promising test technologies to deal

with signal integrity and yield issues induced by physical failures. We then describe
promising schemes to cope with soft errors. Finally, we present fault tolerance
techniques as well as promising schemes for defect and error tolerance to ensure
that defective chips can still function in nanometer designs.

12.3.1 Signal Integrity and Power Supply Noise
Signal integrity is the ability of a signal to generate correct responses in a circuit.
Informally speaking, signal integrity indicates how clean or distorted a signal is.
A signal with good integrity stays within safe (acceptable) margins for its voltage
amplitude and transition delay. For example, an input signal to a flip-flop with
good integrity arrives early enough to satisfy the setup/hold time requirements and
does not have large undershoots that may cause erroneous logic readout or large
overshoots that affect the transistor’s life time.
Leaving the safe margins may not only cause failure in a system (e.g., unexpected

ringing) but also shorten the system’s life time. The latter is due to time-dependent
dielectric breakdown (TDDB) [Hunter 1999] or injection of high-energy electrons
and holes (also called hot-carriers) into the gate oxide. Such phenomena ultimately
cause permanent degradation of metal oxide semiconductor (MOS) transistors’ per-
formance and reliability. To quantify these, systematic methods can be employed
to perform the life-time analysis and measure performance degradation of logic
gates under stress (e.g., repeated overshoots) [Fang 1998].
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Signal integrity depends on many internal (e.g., interconnects, data, characteris-
tics of transistors) and external (e.g., environmental noise, power supply, interac-
tions with other systems) factors. By using accurate simulation in the design phase,
one can apply conservative techniques (e.g., stretched sizing, shielding) to minimize
the effect of integrity loss; however, such vast dependencies, especially when there
is a huge demand for faster chips, make it impossible (with our current state of
knowledge) to have a guaranteed remedy at the design phase. Thus, testing future
VLSI chips for signal integrity seems to be inevitable.

12.3.1.1 Integrity Loss Fault Model

True characteristics of a signal are reflected in its waveform. In practice, digi-
tal electronic components can tolerate certain levels of voltage swing and transi-
tion/propagation delay. Any portion of signal that exceeds these levels represents
integrity loss (IL). This concept has graphically been shown in Figure 12.3, in
which the horizontal and vertical shaded strips correspond to the amplitude- and
delay-safe margins, respectively. The black areas illustrate the time frames in which
the signal has left the safe margin and thus integrity loss has occurred.
Any portion of a signal f�t� that exits the safe margins contributes to the integrity

loss metric. So, conceptually we can define:

IL=∑
i

(∫ ei

bi

�Vi− f�t�� ·dt
)

where Vi is one of the acceptable amplitude levels (i.e., a border of safe margin)
and [bi, ei] is a time frame during which integrity loss occurs.
With the existing tools and computing devices, the analysis/simulation recom-

mended by this model would not be practical for real-world circuits; yet, it implies
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The concept of signal integrity loss.
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three main requirements in testing VLSI chips for signal integrity: (1) determine the
locations to sample and monitor IL, (2) carry out pattern generation to stimulate
extreme integrity loss, and (3) design integrity loss sensors/detectors and readout
circuitry. Almost all solutions presented in the literature so far point to the necessity
of a combination of the above three requirements. In what follows we elaborate on
these requirements.

12.3.1.2 Location

To have a practical evaluation of integrity loss we need to decide where to look and
what to look at. Various sources of signal integrity loss in VLSI chips have been
identified. The most important ones are:

� Interconnects that contribute to crosstalk (signal distortion due to cross-
coupling effects among signals), overshoot (signal rising momentarily
above the power supply voltage), and electromagnetic interference (resulting
from the antenna properties). At-speed testing of crosstalk in chip inter-
connects [Bai 2000], testing interconnect crosstalk defects using on-chip
processors [Chen 2001], a BIST method to test long interconnects for sig-
nal integrity [Nourani 2002], and using boundary scan and IDDT for testing
bus [Yang 2001] are some of the proposed methods. The experiments show
that short interconnects as well as long interconnects are susceptible to the
integrity problem. This will be a major challenge in future ultra-high-speed
deep submicron chips.

� Power supply noise, whose large fluctuations, mainly due to simultaneous
switchings, affect the functionality of some gates and eventually may lead to
failure [Senthinatharr 1994] [Zhao 2000a]. Various ways of estimating power-
supply noise (PSN) in limited forms and accuracy have been presented in the
literature. To name a few, [Chang 1997] uses a scaling model, [Chen 1997a]
employs a simulated switching model of power bus, and [Zheng 2000] focuses
on a distributed power network model. [Lee 2001] presents the generation
and characterization of three different types of noise induced by electrostatic
discharge in power-supply systems.

� Process variations, which are deviations of parameters from their desired
values due to imperfect nature of fabrication process. Sources of process
variations include random dopant fluctuation, annealing effects, lithographic
limitations, etc. [Borkar 2004a]. Researchers have studied the effect of pro-
cess variations on reliability [Borkar 2004b], clock skew/distribution [Bowman
2001] [Zanella 2000] [Zarkesh-Ha 1999], leakage current [Keshavarzi 2002],
performance [Murthy 1997], delay test [Lu 2004], and yield prediction [Jess
2003], among others.

12.3.1.3 Pattern Generation

Due to the nature of signal integrity loss (fault) and its intermittent occurrence,
integrity fault testing must be done at speed. The pin and probing limitations
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further restrict the accurate observation of signal integrity losses. Therefore, an on-
chip built-in self-test (BIST)–style mechanism is one possible choice. Conventional
pseudo-random pattern generators (PRPGs) to stimulate maximum integrity loss
on long interconnects have been tried [Nourani 2002]. In spite of the good test
quality that pseudo-random patterns can achieve, the random nature of process
prevents any test session from having a bound on the length.
The maximum aggressor (MA) fault model [Cuviello 1999] is one of the fault

models proposed for crosstalk. This model assumes a signal traveling on a victim
line may be affected by signals or transitions on other lines (aggressors) in its neigh-
borhood. The traditional MA model takes only coupling capacitors into account.
All aggressors are assumed to make simultaneous transitions in the same direction,
while the victim line is kept quiescent (for maximal ringing) or makes an opposite
transition (for maximal delay). Various approaches to analyze the crosstalk noise
are described in [Chang 1997], [Zhao 2000b], and [Nagaraj 2001]. An interconnect
design for integrated circuits operated in the gigahertz range is discussed in [Naf-
fziger 1999], where the author observed that chips could fail when a specific test
pattern (not included in the MA model) is applied to interconnects, due to the over-
all effect of coupling capacitances and mutual inductances. Similarly, according to
[Cao 2002], the worst-case switching pattern to handle inductive effects for mul-
tiple signal lines may not be included in the MA fault model. Several researchers
have worked on test pattern generation for crosstalk noise/delay and signal integrity
[Chen 1998] [Chen 1999] [Attarha 2002].
The MA model has been extended to the multiple transition (MT) model in

[Tehranipour 2004]. The MT pattern set is a superset of the MA set and is much
more capable of testing the capacitive and inductive coupling among interconnects.
The modified driving end boundary scan cells (PGBSCs) receive a few seeds and
generate MT patterns at-speed to stimulate integrity violations. These cells along
with new instructions extend the JTAG standard to include testing interconnects
for signal integrity.
To speed up the PSN analysis and test generation process, some works exploited

the concept of random search. For example, [Jiang 1997] and [Bai 2001] use a
genetic algorithm (with random basis) to stimulate the worst case PSN. Another
group of researchers, such as [Zhao 2000c], precharacterize cells using transistor-
level simulators and annotate the information into the PSN analysis phase. A tech-
nique for vector generation for power-supply noise estimation and verification is
offered in [Jiang 2001]. The authors used a genetic algorithm to derive a set of
patterns producing high power-supply noise. A pattern generation method to min-
imize the PSN effects during test is presented in [Krstic 2001]. In [Nourani 2005],
the authors identified three design metrics (i.e., level, fanin, and fanout) that cap-
ture realistic PSN. Then, they employed a greedy algorithm and conventional fault
simulator to quickly construct pattern pairs that simulate the worst-case PSN based
on circuit topology, regardless of its functional or testing mode.

12.3.1.4 Sensing and Readout

Because the integrity loss is a waveform-related metric, it must be captured (sam-
pled) right after creation. This will be practical by limiting the observation sites
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and by designing reasonable-cost sensors/readout circuits. Various types of sen-
sors, potentially useful for IL detection, are reported in the literature. A BIST-style
structure using D flip-flops has been proposed to detect the propagation delay devi-
ation of operational amplifiers [Rayane 1999]. A test methodology targeting bus
interconnect defects using IDDT and boundary scan has been presented in [Yang
2001]. In this work, a built-in sensor is integrated within the system; the sensor is
an on-chip current mirror converting the dissipated charges into the associated test
time.
The work presented in [Nourani 2002] offers inexpensive cells, called noise detec-

tor (ND) and skew detector (SD) cells, based on a modified cross-coupled P-channel
metal oxide semiconductor (PMOS) differential sense amplifier. The authors in
[Tabatabaei 2002] presented a more expensive but more accurate circuit to measure
jitter and skew in the range of few picoseconds. This circuit, called an embedded
time to digital converter (EDTC), samples signals in non-intrusive way and sends
out the test information through its low speed serial information. When cost is
not a concern, the concept of accurate signal monitoring has been followed up by
researchers even through the idea of on-chip oscilloscope [Caignet 2001].
The authors in [Tehranipour 2004] showed that each of such sensors can be

integrated within a boundary scan cell to form an observation boundary scan
cell (OBSC). In the signal integrity test mode, the OBSC collects and sends the
information on IL through the scan chain. While in this work the focus was on
interconnects, any non-modeled fault (inside or outside cores) that manifests itself
as integrity loss on interconnects will also be detected by that method.
A PSN monitor circuit presented in [Vazquez 2004] is claimed to catch high-

resolution (100-ps) PSN at the power/ground lines. A power supply distribution
model to control PSN has been also reported in the literature. The model presented
in [Chen 1997b] identifies the hot-spots on the chip and optimizes power-supply
distribution tominimize the noise. A cascaded power/ground ring for on-chip power
distribution is proposed in [Cao 1997]. Another methodology for multiple power-
supply distribution systems is presented in [Pham 2004]. The authors in [Zhao
2004] argue that the peak PSN can be significantly reduced based on the physi-
cal correlation of modules. They have proposed a power-supply noise-aware floor
planning methodology. An analytical way of combining the PSN of nonembedded
cores to estimate the PSN of a SOC (proportional to IL) is discussed in [Nourani
2005]. In addition to providing an estimate of PSN, this method can be used to
group cores and design a power-supply distribution network while keeping PSN
(and thus the corresponding IL) under control.

12.3.2 Parametric Defects, Process Variations, and Yield
Defects are physical defects that occur during manufacturing and can cause static
or timing physical failures. Examples of defects include partial or spongy via and
the presence of extra material between a signal line and the voltage line. Broadly
speaking, defects can be random or systematic, and they can be functional or para-
metric. Traditional treatment of defects is more on functional random (spot) defects,
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which lead to existing yield models. Growing process variations and other uncer-
tainty issues require that we look into the other three types of defects. In a narrow
sense, defects are caused by process variations or random localized manufacturing
imperfection [Sengupta 1999].
Process variations, such as transistor channel length variation, transistor thresh-

old voltage variation, metal interconnect thickness variation, and intermetal layer
dielectric thickness variation, have a big impact on device speed characteristics. In
general, the effect of process variation shows up first in the most critical paths in
the design, those with maximum and minimum delays.
Random imperfection, such as resistive bridging defects between metal lines,

resistive opens onmetal lines, improper via formations, and shallow trench isolation
defects, are yet another source of defects and are referred to as parametric defects.
Based on the parameters of the defect and neighboring parasitic, the defect may
result in a static or at-speed failure.

12.3.2.1 Defect-Based Test

In order to detect physical failures caused by both process variations and paramet-
ric defects, one common approach is to generate multiple test sets, each targeting
a fault model. A promising technique is to generate defect-based tests by enu-
merating likely defect sites (failures) from the layout [Sengupta 1999]. In either
case, at-speed tests, consisting of path-delay tests and transition tests, must be used
[Tendolkar 2000] [Lin 2003]. The at-speed tests can come from scan and/or BIST
[Wang 2005]. One study on a 733-MHz PowerPC microprocessor design showed
that if at-speed tests were removed from the test program, the escape rate went up
nearly 3% [Gatej 2002].
On the other hand, it is also critical to supplement the conventional stuck-at

tests with bridging tests [Sengupta 1999]. One of the most common defect types in
nanometer designs is the interconnect bridge. As the number of bridges is astro-
nomical, it is more realistic to enumerate likely bridging fault sites (physical bridging
faults) from layout and map them to logical bridging faults for fault simulation or
scan ATPG.
Moreover, it has been reported in [Ma 1995] thatN-detect stuck-at tests that detect

every stuck-at fault multiple (N) times are better at closing DPM holes than tests
that detect each fault only once. This approach, called N-detect, works because
each fault is generally targeted in several different ways, increasing the probability
that the conditions necessary to activate a particular defect will exist when the
observation path to the fault site opens up. N-detect at-speed tests can also be
used [Pomeranz 1999], but a promising study shows that by generating transition
tests, one for each reachable output for a given transition fault, transition fault
propagation to all reachable outputs (TARO) was able to detect all defective cores
that other tests could not on a test chip [Tseng 2001] [McCluskey 2004] [Park
2005]. TARO can be a good candidate for tests that require excessive thoroughness,
such as sample-based quality assurance tests. For logic diagnosis, TARO can offer
a much better resolution than other tests.
It is also possible to further improve yield by supplementing these tests with IDDQ

tests, which detect many types of defects, including some timing-related defects
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A defect-based test system architecture.

[Nigh 1998] [Nigh 2000]; however, the small geometry sizes of today’s devices have
caused many companies to abandon or rely less on IDDQ tests because a defective
device’s current will be difficult to distinguish from the normal quiescent current.
Functional testing, once the sole test method that allows for testing actual func-

tional paths at-speed, has begun to regain acceptance in the industry. In order to
meet aggressive yield and DPM goals, functional tests must be added to supplement
structural tests (at-speed tests, stuck-at tests, and bridging tests). Figure 12.4 shows
such a defect-based test system architecture [Sengupta 1999].
The key issue is how to generate these defect-based tests (structural tests and

functional tests) in a timely manner in order to meet time-to-market, DFM, yield,
and test budget goals all at the same time. In the nanometer age, we anticipate
that BIST and test compression no longer will be options. Active research will be
more directed toward coverage enhancement of logic BIST, reduction in scan ATPG
time and test power, physical fault modeling, and the speed-up of concurrent fault
simulation.

12.3.3 Soft Errors
Soft errors are the result of transients that are induced at the circuit when a radi-
ation particle strikes. This radiation can range from cosmic origin (when stars are
formed and die) or from every day material (e.g., lead isotopes) [Ziegler 2004].
When high-energy cosmic rays reach into our atmosphere, they collide and strip
off air molecules and send off neutrons. These neutrons continue their journey and
penetrate through most types of matter (so shielding is largely out of the question).
As these neutrons transverse through silicon, they ionize the silicon lattice and
leave a trail of holes and electrons behind. These will then be moved by the electric
field of surrounding diffusion and wells. As holes and electrons recombine, they
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charge or discharge the node appropriately. From a circuit standpoint, we just have
a glitch.
Radioactive isotopes emit alpha particles as the radioactive decay process occurs.

These alpha particles are larger and heavier so they will not have deep penetration;
however, due to the fact that they may exist (in a stray amount) in packaging
material (e.g., ceramic or solder), they are located very close to the die and can
lead to a relatively high error rate (in fact, early soft errors were first discovered in
radioactive elements in packaging material [May 1979]). A similar event happens
when alpha particles penetrate silicon. Due to their larger size, these alpha particles
will lose energy rapidly and be trapped inside the material, forming more stable
compounds. If such a glitch is induced in a memory element, its state can be
reversed. As an example, let us examine a SRAM cell that has two back-to-back
inverter pairs, as shown in Figure 12.5.
When the select transistors are off, this configuration will hold the state in a

stable configuration. If a glitch is introduced at the drain of the PMOS or the source
of the NMOS, the glitch can be picked up by the other inverter and the state of the
cell is reversed.
A similar problem can occur for all state-holding elements (storage elements),

such as D latches and D flip-flops (see Figure 12.6). If such a glitch strikes the
combinational logic elements, the resulting glitch will be evaluated and passed on
by the succeeding logic. Glitches are common for CMOS combinational circuits as
logic inputs arrive at different times. Depending on the strength of the originating
glitch, the glitch can be magnified (and passed along) or it can be filtered. The
glitch can also be blocked by all other fan-in logic. Only if the glitch arrives at
the time when the latch is closing is an erroneous state captured; otherwise, the
glitch hitting the combinational logic will not cause any harm (an exception is a
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Induced soft error on a SRAM cell.
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Induced soft error on a D latch.

domino-type circuit, where its logic states are held at every gate by a feedback
element).
Soft errors can happen to all memory and storage elements. Sometimes, they can

be benign (e.g., the memory elements are not used in the application); other times,
they can cause a system crash or even worse—a silent data corruption (SDC)—
if they are undetected. That is why we have to devise online detection (or fault
tolerant) mechanisms to protect against such transients. Such kinds of detection
and tolerant mechanisms are more fully discussed in the following section. Unlike
defects or other fault types, a soft error is a transient induced at one time at one
location; they are not repeatable, thus the term “soft error.” This property is well
utilized in the solution space.
Because the physics of soft errors involves node charging and discharging, the

amount of stored charge at a given node determines how sensitive it is to a particle
strike. The charge (Q) is represented by the following relationship with voltage (V)
and capacitance (C):

Q= CV

As processing technology scales, capacitance for a given node decreases. This is
good for performance but bad for soft error. Due to the hot electron type of degrada-
tion, reliability requirements also force Vcc to be lowered. This compounded effect
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will cause decrease in stored charge andwill increase the soft error rate (SER).With
scaling, we also get more transistors (roughly 2×) per chip, resulting in increase
in the soft error rate [Baumann 2005]. The only saving grace is that, because the
transistor junction area is also scaled, the ability for the node to collect stray charge
is also reduced; however, this is not sufficient to slow the increase in soft error
vulnerability. The Moore’s law prediction of doubling transistors with every pro-
cess generation [Moore 1965] will effectively double the soft error rate, so, not only
should SRAM cells (such as caches and registers) be protected, but protection on
storage elements as well as against glitches creeping through the combinational
logic is also important. These areas are now all hot research topics.
The implication of soft errors with regard to chip testing varies. From the sur-

face, soft errors really cannot be tested. Even good circuits are susceptible to soft
errors so there is nothing to screen for. Soft errors are also not easily exercisable
with electrical test stimulus. The natural occurrence of radiation also does not usu-
ally happen during the short test time of component testing. What really requires
attention is an online detection scheme or a fault-tolerant scheme.
Very often, the three types of redundancy—information, time, and spatial—

involve extra circuit elements. At a minimum, there is a self-checking checker, which
tells you whether there is any error. With information redundancy, there are extra
check bits (or code bits). With spatial redundancy, there is even duplicate circuitry.
Each redundancy circuitry has to be tested to make sure that the redundancy
scheme can detect soft errors and, when found, can signal that there is an error or
simply correct the error.
As it is difficult to test every redundancy circuitry and they are probably not

testable without appropriate DFT means, special attention must be given to such
redundancy circuitry so it is accounted for in the overall test strategy. If a redun-
dancy scheme is capable of correcting errors by itself, then even manufacturing
defects can hide behind the redundancy scheme, as output results are always cor-
rect. The undiscovered defects will consume the correction capability, and any
subsequent soft error hit to that functional circuitry or redundancy circuitry may
cause an unrecoverable error.

12.3.4 Fault Tolerance
One approach to improve the reliability of a chip is to remove the source of soft
errors. Because the early discovery of soft error was due to contaminated packaging
material, the solution was simple: Eliminate the radiation contaminant from pack-
aging material [May 1979]. However, trace amounts of radioactive isotopes do exist
in common processing and packaging materials, such as the boron in borophos-
phosilicate glass (BPSG) and ceramics and the lead in solder, and their removal
is very costly. Their radioactive decay still leads to some level of soft error rate.
Because alpha-particle radiation (see previous section) can be stopped on the sur-
face of the die, a die coating (epoxy resins that are deposited on the surface of the
die) was introduced and used for some period of time. Die coating is only effective if
the radiation comes from the outside and is of very limited value if the alpha emitter
is among the materials that transistors or interconnects are made of. As we move
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from wire bonding packaging to flip-chip solder (tin/lead) joint (or C4) packaging,
solders are never far away from the surface of the die and die coatings would have
no effect at all. Today, the primary alpha-particle source is solders (lead radiation
isotopes). Careful selection of raw material has resulted in low-alpha solder. Due to
environmental and health concerns over lead, tin/lead solder is being phased out in
packaging material which will help to reduce alpha-induced soft errors. However,
the other source of radiation, high energy neutrons, cannot be stopped by anything
associated with packaging.
All of these preventive measures combined with recent advances in manufac-

turing process technology have improved the system-level reliability substantially.
In the past, soft errors were not critical for most computer systems for terrestrial
applications. Thus, traditionally, only high-reliability applications, especially those
deployed in the financial transaction, transportation, and aerospace/defense indus-
tries, have required fault tolerance to prevent the systems from crashes and silent
data corruption errors.
There are three fundamental fault-tolerant schemes that can be used to protect

such systems from hard errors or soft errors: (1) spatial redundancy, (2) temporal
redundancy, and (3) information redundancy [Pradhan 1996] [Siewiorek 1998]
[Lala 2001].

� Spatial redundancy relies on the assumption that defects and radiation par-
ticles will only hit on a specific device and not another device (at least not
simultaneously). So, having a duplicate circuitry of the functional circuitry
and with their outputs compared using a self-checking checker (checking cir-
cuitry), mismatches will point to an error (hard or soft error) (see Figure 5.45
in Chapter 5). This can happen at the circuit level (e.g., one adder is compared
with another adder while both are fed the same data) or at the system level
(e.g., a processor’s front side bus is compared with another one on the same
bus while executing the same codes). Because the computation occurs in par-
allel, there is little or no penalty on the overall system performance, but there
has to be hardware duplication and a self-checking checker, resulting in higher
hardware costs and a higher level of power consumption.

� Temporal (time) redundancy relies on the assumption that even if a func-
tional circuitry receives a radiation strike it is very unlikely that the strike
will happen on the same circuitry again at a slightly later time, so the scheme
does not require another duplicate circuitry. In this case, the same compu-
tation is repeated on the same functional circuitry for a second time, and
the results of the first computation are not committed without comparison
to the second computation. This obviously has the benefit of not requiring
additional hardware, but the software must be coded to execute the program
twice, which means saving the results of the first computation on memory
or disk. One serious problem with this scheme is that it cannot detect hard
errors; the same erroneous result will happen when recomputed. Therefore,
temporal redundancy may give a false sense of security with regard to any
hard error that develops due to physical failures.
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� Information redundancy uses error detecting code (EDC) or error correc-
tion code (ECC) to represent information contents [Peterson 1972]. Some of
these coding properties are maintained even after computation, so by check-
ing these codes before and after one can determine if a hard or soft error has
occurred. Parity is one such code. Parity represents whether the number of
ones in a computer word is odd or even. Normally, this parity is computed
when the information is generated and stored in the memory system. Upon
reading the word, parity again is recalculated and compared against the ear-
lier stored parity bit. A mismatch identifies that an error has occurred. One
major benefit of using parity code is that a single parity bit can detect any odd
number of bit errors (caused by soft errors and hard errors) in each computer
word; however, there is always the danger that a single radiation strike could
affect more than a single bit, and when an even number of bits get flipped the
errors escape detection (because parity only counts odd or even). In this case,
more sophisticated codes (such as Hamming codes) can be used [Peterson
1972]. This code will allow detection of 2-bit errors as well as correction of
single-bit errors. This, in general, is referred to as the error correction code.
It requires the storage of more check bits (codes), and a computation unit
that does the check code generation. It is important to note that properties
such as parity or ECC are often embedded for arithmetic operations (such as
add/subtract/multiply) during normal operation. Thus, they are also used for
arithmetic computation protection. Because additional information is stored,
it can protect against both hard and soft errors.

Having detection capability is only half the story. After an error is detected, some
recovery actions have to be taken. The most common action is for the operating
system to stop the application, generate the necessary error message/log, and close
the application. This has varying degrees of system integrity implications, as par-
tially computed results may have been written to disk already. Of course, this is
better than simply letting the system crash, but we need better schemes that can
provide more integrity. Checkpointing and rollback comprise one such scheme.
Checkpointing is essentially taking a snapshot of the system states, which when
revoked (rollback) will cause the system to restart from that point without reboot or
terminating the application. What one has to ensure is that no error has occurred
(and the system is intact) before the checkpoint. One also has to consider where (or
how regular) checkpoints are done to optimize for performance (due to the check-
pointing process) as well as making sure that system states are not contaminated
before the checkpoint.
Thus, having explained the basic principle, what are some of the common fault-

tolerant schemes used in high reliability systems? As mentioned before, duplicate
and compare is one such method that is commonly used in mainframes and high-
end servers [Spainhower 1999] [Bartlett 2004]. For systems that cannot fail, a more
secure system is triple modular redundancy (TMR) [Sklaroff 1976] [Siewiorek
1998] [Lala 2001]. Consider the TMR example shown in Figure 12.7. Here we have
three pieces of compute units, and their results are constantly compared among
each other. Because we have three results, the two matched results will outvote the
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A triple modular redundancy (TMR) example.

mismatched result and the deemed correct result will be sent on. The aerospace
industry particularly favors this approach (for obvious reasons). More recently,
because a central processing unit (CPU) is capable of running multiple threads
(different streams of instructions that can be run in parallel on a CPU), one can
also send a redundant thread through another path (virtual compute units) and
check the results before retiring the thread/instructions. This is called redundant
multithreading (RMT) [Mukherjee 2002].
The incorporation of fault tolerance in a compute system did not begin with

the processor. It began with the circuit that had the highest transistor density
and the part of the system that had the most transistors—the main memory. The
protection scheme is the use of ECC, which is quickly followed by redundant array
of inexpensive disk (RAID). Even though the disk system does not necessarily have
the highest number of transistors, disk drives are susceptible to mechanical failures;
hence, it is essential to protect the data that it holds. Due to the need to have signals
routed over long wires or traces, buses and backplanes that interconnect various
subsystems are protected with parity. The networking communication protocols
also contain error codes, such as cyclic redundancy check (CRC) and checksum
(the sum of all the binary numbers in a particular packet of data). In the early
1990s, the importance of fault tolerance to CPUs became apparent, as on-chip cache
memories have become large enough to warrant their own ECC protection. On
some high-end server CPUs, register files are protected with parity, and duplicated
execution blocks help to identify errors [Spainhower 1999]. So, the last holdout
seems to be flip-flops and combinational logic. Researchers have come up with
hardened latch/flops [Calin 1997], where circuit design has decreased the internal
nodes’ vulnerability to a radiation strike. More recently, enhancing the scan cells to
fill the role of duplication (as the states are already duplicated) has been suggested
[Mitra 2005].
As we move toward the nanotechnology era, more and more system-level func-

tions (in the form of IP cores) will be integrated on a single piece of silicon (or
package). This has substantially exposed the nanometer SOC design to ever more
manufacturing defects and soft errors; therefore, it is becoming more and more
important to embed online detection or fault-tolerant schemes in these chips as the
distinction between computer systems and SOCs increasing narrows in nanometer
designs.
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12.3.5 Defect and Error Tolerance
A couple of tolerance terminologies have surfaced recently: defect tolerance
[Koren 1998] and error tolerance [Breuer 2004]. Defect tolerance is not new and
used to be referred to as redundancy repair. Defect tolerance allows increased prod-
uct yield (the percentage of good manufactured parts). Way back in the late 1980s,
redundancy techniques were used in the manufacture of DRAMs. By using spare
rows, columns, or blocks, defective elements can be identified during the manufac-
turing test process and fuses are blown to map the spare resources to replace those
that are defective. The use of these techniques becomes mandatory as DRAMs scale
to the gigabit level. We would not be able to buy and sell DRAMs at the price level
we enjoy today without the redundancy repair process.
A similar technique is also used in the manufacture of hard disk drives. Dur-

ing the drive test process, defective sectors are identified and a map containing
those defective sectors is stored permanently on the drive control electronics. These
defective sectors are mapped so the drive will not use them to store data. In both
situations, spare elements replace the defective elements. Other circuits that have
regular structures also can benefit from these defect-tolerant techniques, such as
FPGAs, cache memories, and processors. For field programmable gate arrays, test-
ing can identify bad cells or routing resources; thus, the mapping and routing tools
can work around those obstacles during the mapping process. For processors, it is
possible to sell the product with the fewer features (e.g., minus the floating-point
unit, or FPU) upon detection of a fault during manufacturing test; however, defect
tolerance has its limit. Not only can the regular circuit elements become faulty due
to defects, but the spare elements themselves can also be defective. As the percent-
age of spare elements increases, therefore, they will occupy more area of the die
and the larger die area will result in even more defects, affecting both the normal
circuit elements and the spare elements. Therefore, there is a point where the law
of diminishing returns begins to set in [Koren 1990] [Hirase 2001].
Error tolerance is a different concept. Conventional wisdom would seem to sug-

gest that if an error is injected and trapped in the logic it will not perform to
its intended functionality; however, some logic functionality would defy that con-
ventional wisdom. An example would be the processing or storage of any kind
of multimedia data (e.g., video, pictures, or music). Compression techniques (e.g.,
JPEG, MPEG, MP3) are generally used for these types of data, and these com-
pression algorithms are lossy in nature; that is, some details of the raw data are
lost in the compression process. A stuck bit in the least significant portion of the
data word may or may not be distinguishable from artifacts with the compression
process [Breuer 2004]. Also, these kinds of data appeal to our senses, and our
senses are usually not keen enough to spot minute variances (unless one looks for
them with an expert’s eyes or ears). This sort of error tolerance is very application-
specific, and general-purpose machines that are tolerant of all kinds of errors have
not yet been designed. For example, if an error occurs at the most significant bits
of the compressed data or within the control logic instead of data, the data pro-
cessing can still lead to incorrect processing and may yield unacceptable picture or
sound.
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12.4 FPGA TESTING

Field programmable gate arrays (FPGAs) are generally composed of a two-
dimensional array of programmable logic blocks (PLBs) interconnected by a pro-
grammable routing network with programmable I/O cells at the periphery of the
device, as illustrated in Figure 12.8. Typical array sizes in terms of the number of
PLBs range from 100 to over 22,000. A trend in most recent FPGAs is the addi-
tion of cores for specialized functions such as single- and dual-port RAMs, first-in
first-out (FIFO) memories, multipliers, DSPs, and microprocessors. Memory cores
vary in sizes from 128bit to 18Kbit, depending on the series of FPGAs where all
memory cores are the same size in a given series. The number of these specialized
cores is greater than 800 in the largest FPGAs currently available. As a result, the
larger FPGAs, with over 22,000 PLBs and 800 specialized cores, could easily reach
the 100-million transistor mark and pose a testing challenge in terms of their size
and diversity of functions.

12.4.1 Impact of Programmability
The system function performed by the FPGA is controlled by an underlying configu-
ration memory. In most of the current FPGAs, the configuration memory is a RAM
ranging in size from 32Kbits to 50Mbits. The system function can be changed at
any time by simply rewriting the configurationmemory with new data, referred to as
reconfiguration.Another trend isFPGAsthat support dynamic partial reconfiguration,
where a portion of the FPGA can be reconfigured while the remainder of the FPGA
is performing normal system operation, also referred to as runtime reconfiguration.
The size of the configuration memory is an important factor in testing FPGAs as the
total test time is usually dominated by the time required to download configuration
data; however, dynamic partial reconfiguration and partial configuration memory
readback capabilities can help reduce testing time as will be discussed later.
Each PLB consists of one or more look-up tables (LUTs) and flip-flops. The

LUT typically has three or four inputs and is used to implement combinational
logic. In some FPGAs, the LUT can also be programmed to function as a small
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= interconnect

� FIGURE 12.8

Typical FPGA architecture.
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RAM or shift register. The flip-flops, programmable as level-sensitive latches in
some FPGAs, are used to implement sequential logic. Typical PLB sizes range from
two three-input LUTs with one flip-flop to eight four-input LUTs with eight flip-
flop/latches. A considerable amount of additional logic is incorporated in the PLB
for implementing functions such as array multipliers, fast carry logic for adders,
combining LUTs to construct larger combinational logic functions, etc. In addition
to classical stuck-at faults in the PLB logic, the configuration memory bits that
control logic function performed by the PLB must also be tested for stuck-at-0 and
stuck-at-1 faults [Abramovici 2001]. For complete testing, the PLBs must be tested
in all of their modes of operation.
The programmable interconnect network consists of wire segments of various

lengths and programmable switches that connect or disconnect the wire segments
to form the signal nets required by the system function. Each programmable switch
is controlled by a bit in the configuration memory. The typical number of wire
segments associated with each PLB ranges from 50 to over 400, while the number
of programmable switches ranges from 80 to over 1000 per PLB. The number of
configuration memory bits associated with the programmable routing resources is
typically three to four times the number of configuration memory bits associated
with the PLBs. As a result, the programmable interconnect network poses a bigger
testing challenge than the programmable logic resources. The fault models used
for testing the routing resources include shorts (bridging faults) and opens in the
wire segments, stuck-at-1 and stuck-at-0 wire segments, and stuck-on and stuck-off
programmable switches, which include the controlling configuration memory bits
stuck-at-1 and stuck-at-0. While the programmable switch stuck-off fault can be
detected by a simple continuity test, stuck-on faults are similar to bridging faults
and require opposite logic values to be applied to the wire segments on both sides
of the switch while monitoring both wire segments in order to detect the stuck-on
fault [Stroud 2002b].
The programmability of FPGAs facilitates the implementation of a wide range

of applications and, as a result, presents a number of testing solutions as well as
a number of testing challenges. For example, FPGAs can be reprogrammed during
system-level offline testing to test other components and functions on a printed-
circuit board [Stroud 2002a]. Similarly, the PLBs and routing resources can be
reprogrammed to test the other embedded cores within the FPGA such as memory
and DSP cores [Stroud 2005b]. On the other hand, the programmability of the
FPGA poses a number of challenges when it comes to complete and comprehensive
testing of the FPGA itself. First, a large number of configurations must be down-
loaded into the FPGA to test the various programmable resources. Dynamic partial
reconfiguration can reduce the total time associated with downloading these test
configurations by writing only the portions of configuration memory that change
from one test configuration to the next. The FPGA testing problem is further compli-
cated by the growing size of FPGAs in terms of the PLB array, frequently changing
architectures, as well as the introduction of specialized embedded cores such as
RAMs and DSPs. If the FPGA can be completely tested and determined to be fault-
free, the intended system function can be programmed onto the FPGA with a high
probability of proper operation. When faults are detected, the system function can
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be reconfigured to avoid the faulty resources if the faults can be diagnosed (identi-
fied and located); therefore, diagnosis of the faulty resources is an important aspect
of FPGA testing in order to take full advantage of the fault and/or defect tolerant
potential of these devices.

12.4.2 Testing Approaches
Two types of testing approaches have been developed for FPGAs: external testing and
built-in self-test (BIST). In external testing approaches, the FPGA is programmed
for a given test configuration with the application of input test stimuli and the mon-
itoring of output responses performed by external sources such as a test machine
[Huang 1998] [Renovell 1998]. As a result, external test techniques are typically
used for manufacture testing only. For FPGAs with boundary scan that support
INTEST capabilities, the input test stimuli can be applied and output responses can
be monitored via the boundary scan interface; otherwise, the FPGA I/O pins must
be used, resulting in package-dependent testing. Most external test approaches seek
to test all programmable resources in the FPGA independent of the system appli-
cation to be programmed onto the FPGA, referred to as application-independent
testing. Application-dependent test approaches, on the other hand, seek to test only
those resources that will be used by the intended system function [Tahoori 2004].
This reduces the number of test configurations that must be applied as well as the
total test time.
The basic idea in BIST for FPGAs is to configure some of the PLBs as test pattern

generators (TPGs) and output response analyzers (ORAs). These BIST resources
are then used to detect faults in PLBs [Abramovici 2001], routing resources [Harris
2002] [Stroud 2002b] [Sun 2000], and special cores such as RAMs and DSPs [Stroud
2005b]. Once the programmable resources have been tested, the FPGA is recon-
figured for the intended system function without any overhead or performance
penalties due to the BIST circuitry. This facilitates system-level use of the BIST con-
figurations. Different BIST architectures are used for testing PLBs (often referred
to as logic BIST), routing resources (often referred to as routing BIST), and embed-
ded cores. It is important to note that the processes used in these BIST approaches
for reconfiguring and testing the specific target resources are very similar to those
used in application-independent external testing of FPGAs.

12.4.3 Built-In Self-Test of Logic Resources
The most frequently used logic BIST architecture is illustrated in Figure 12.9,
where the programmable logic blocks under test (BUTs) and ORAs are arranged
in alternating columns (or rows), and multiple identical TPGs are used to drive the
alternating columns (or rows) of BUTs [Abramovici 2001]. The output responses
of the identically programmed BUTs are monitored by comparison-based ORAs in
neighboring columns (or rows). During a given test session, the BUTs are repeat-
edly reconfigured in their various modes of operation until they are completely
tested. Dynamic partial reconfiguration can be used because only the BUTs must
be reconfigured while the TPGs, ORAs, and interconnections remain constant for
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(a) Test session 1 (b) Test session 2 (c) Comparison-based ORA
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FPGA logic BIST architecture.

the test session. During the next test session, the logic BIST architecture is flipped
and the roles of the PLBs are reversed such that those PLBs previously configured
as TPGs and ORAs become BUTs and vice versa. All PLBs can be tested in only two
test sessions when at least half the PLBs are configured as BUTs during a given test
session. The total number of test configurations in each test session typically ranges
from 5 to 15 depending on the complexity of the PLB. After the completion of each
BIST sequence the Pass/Fail contents of the ORAs can be read via either partial
configuration memory readback or a scan chain constructed by incorporating a
multiplexer at the input to the ORA flip-flop shown in Figure 12.9c [Stroud 2002a].
Alternatively, as a result of dynamic partial reconfiguration, the ORA contents can
be read at the end of each test session with a slight loss of diagnostic resolution;
faulty PLBs can still be identified but faulty modes of operation cannot. Faulty PLBs
can be identified based on the BIST results using a diagnostic procedure developed
for this logic BIST architecture [Abramovici 2001]. A similar architecture can be
used to test and diagnose other embedded cores in the FPGA such as memories
and DSPs [Stroud 2005b].

12.4.4 Built-In Self-Test of Routing Resources
Two routing BIST approaches have proven to be effective in testing the pro-
grammable interconnect resources in FPGAs including the wire segments, pro-
grammable switches, and configuration memory bits that control the switches. One
is a comparison-based approach, illustrated in Figure 12.10a, in which the TPG
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FPGA routing BIST architectures.
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drives exhaustive test patterns over two sets ofN wires under test that are compared
at the other end by comparison-based ORAs [Stroud 2002b]. The other approach
is parity based, as illustrated in Figure 12.10b, where the TPG sources exhaustive
test patterns over a set of N wires under test and produces a parity bit that is
sent to the ORA [Sun 2000]. The ORA generates parity over the data observed on
the wires under test and compares the generated parity with the parity bit sent by
the TPG. This approach was later modified to send the parity over a wire under
test for a total of N+ 1 wires under test during a given BIST configuration. As
in the case of logic BIST, the sets of wires under test are repeatedly reconfigured
to test the various routing resources (wire segments and programmable switches)
in the FPGA. The total number of test configurations required to completely test
the routing resources typically ranges from 50 to 300 depending on the complex-
ity of interconnect network and the PLB architecture used for constructing the
TPGs and ORAs. Dynamic partial reconfiguration can be used to reduce the time
to download test configurations. While both routing BIST approaches have been
proven to be effective in detecting faults, the comparison-based approach has been
extended to the diagnosis of faults in the programmable interconnect network for
fault-tolerant applications [Harris 2002]. By constructing many small routing BIST
circuits consisting of independent TPGs, ORAs, and sets of wires under test in the
FPGA, diagnostic resolution is improved because an ORA indicating the presence
of a fault also identifies the self-test area containing the fault [Stroud 2002b].

12.4.5 Recent Trends
More recent trends in FPGA testing include delay fault testing and the use of
embedded processor cores for on-chip test configuration generation and appli-
cation. Testing for delay faults in FPGAs is important because the transmission
gates used to construct the programmable switches in the interconnect network are
particularly susceptible to defects that affect the delay though the switches. Exter-
nal test techniques [Chmelar 2003] and BIST approaches [Abramovici 2003] have
been developed to detect delay faults in FPGAs. The incorporation of embedded
microprocessor cores that can write and read the FPGA configuration memory has
facilitated the algorithmic generation of test configurations from within the FPGA
instead of downloading test configurations. A relatively small program is stored
in the program memory of the embedded processor core which is then used to
reconfigure and test the programmable logic and routing resources as well as other
embedded cores such as memories and DSPs. The embedded processor can then
retrieve the test results and perform diagnosis [Stroud 2005a].
Recent complex programmable logic devices (CPLDs) are similar to FPGAs in

that they contain programmable logic and routing resources as well as embedded
cores such as RAMs and FIFOs. The only noticeable difference is that CPLDs use
programmable logic arrays (PLAs) for implementing combinational logic func-
tions instead of the LUTs typically found in FPGAs. In addition, the PLBs in CPLDs
tend to be larger in terms of the size of the PLAs and the number of flip-flops.
Slightly different test techniques are used to test the reprogrammable PLAs [Stroud
2002a], with the remainder of CPLD testing being the same as that for FPGAs.



Test Technology Trends in the Nanometer Age 711

Now that FPGAs are incorporating embedded cores such as memories, DSPs, and
microprocessors, FPGAs are more closely resembling system-on-chip (SOC) imple-
mentations. At the same time, SOCs are incorporating more embedded FPGA cores.
As a result, FPGA testing techniques are becoming increasingly important for a
broader range of system applications.

12.5 MEMS TESTING

MEMS is the acronym for a microelectromechanical system [Hsu 2002]. The prefix
“micro” indicates the most important feature of MEMS: its extremely small size.
The typical size of MEMS components is in the range of between 1 micron (�m) and
1 millimeter (mm). This means that the key feature size of a MEMS device is usually
smaller than the diameter of human hair. For feature size below 1�m, the quantum
effect cannot be ignored. It belongs to the recently emerged concept of a nanoelec-
tromechanical system (NEMS). Thus, MEMS devices primarily concentrate on the
feature sizes from 1 ∼1000�m. Further, the electronic and mechanical parts of a
MEMS device interact with each other, so it can be called a “system.” For example,
in aMEMS system, the signals in amechanical sensor can be sensed by an electronic
circuit, while the actuation instructions from the electronic circuit can be imple-
mented by a mechanical actuator. Thus, MEMS can incorporate the environment
data collection, signal processing, and actuation in the same “smart” system. When
compared with conventional electromechanical products, MEMS has the following
specific features and corresponding advantages: (1) small volume, low weight, and
high resolution; (2) high reliability; (3) low energy consumption and high efficiency;
(4) multifunction capabilities and intelligentization; and (5) low cost. Typical exam-
ples of commercial MEMS devices are the ADXL series accelerometers [Chau 1998]
which have been widely used in the world’s automobile market.

12.5.1 Basic Concepts for Capacitive MEMS Devices
A typical MEMS differential capacitance structure is shown in Figure 12.11 where
M represents the movable plate, F1 and F2 denote fixed plates, and B1 and B2 are
both beams of the MEMS device. As shown in Figure 12.11, movable plate M is

B1 B2
M
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d0 C2

C1

F2

F1

� FIGURE 12.11

Schematic diagram of a capacitive MEMS device.
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anchored to the substrate through two flexible beams, B1 and B2. It constitutes
differential capacitances C1 and C2 with the top and bottom fixed plates (F1 and F2).
In the static mode, the movable plate M is located in the center between F1 and F2,
thus:

C1 = C2 =
�0S

d0

where �0 is the dielectric constant of air, S is the overlap area between M and
F1/F2, and d0 represents the static capacitance gap between M and F1/F2. A vertical
stimulus (such as acceleration) will result in the deflection of beams and a certain
displacement of movable plate M along the vertical direction. Assume that the
central movable mass moves upward with a displacement of x. Given x <<d0	C1

and C2 under the test stimulus can be derived by:

C1 =
�0S

�d0−x�
≈ �0S

d0

(
1+ x

d0

)

C2 =
�0S

�d0+x�
≈ �0S

d0

(
1− x

d0

)

In order to sense the displacement x of movable plate M, modulation voltages
Vmp and Vmn are applied to F1 and F2 separately, and we have:

VF1 = Vmp = V0sqr��t�	

VF2 = Vmn =−V0sqr��t�

where V0 represents the modulation voltage amplitude, � denotes the frequency of
the modulation voltage, and t gives the time for operation. According to the charge
conservation law, the charges in capacitances C1 and C2 must be equal, so we have:

C1�VF1−VM�= C2�VM−VF2�

where VM is the voltage level sensed by movable plate M. Solving the above equa-
tions, we have:

VM = �x/d0�V0sqr��t�

It can be observed from this result that, under the abovemodulation voltage biasing,
the central movable plate, M, acts just as a voltage divider between the top and
bottom fixed plates, F1 and F2, respectively. By measuring voltage level VM at the
central movable electrode, we can find the displacement, x, of the central movable
plate, M, which in turn is directly proportional to the physical stimulus. Thus, we
can derive the value of the applied physical stimulus. This is the working principle
for most differential capacitive MEMS devices.
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12.5.2 MEMS Built-In Self-Test
12.5.2.1 Sensitivity BIST Scheme

In the sensitivity BISTmode, a certain amount of driving voltage Vd can be applied
to the driving plate to mimic the action of a physical stimulus (i.e., test pattern)
with electrostatic force. In Figure 12.11, if voltage Vd is applied to fixed plate F1,
and nominal voltage Vnom is applied to M, an electrostatic attractive force Fd will
be experienced by the central movable mass:

Fd =
�0SV

2
d

2d2

The electrostatic force is used to apply the input stimulus during the BIST mode,
and the device response to the electrostatic force is measured and compared with
the good device response to check whether the device is faulty. This is the basic
idea for the sensitivity test mode of a capacitive MEMS device. Note that the device
in Figure 12.11 cannot implement sensitivity BIST, as the device cannot work as a
sensor and actuator simultaneously. It is only used to show the basic idea about how
to sense acceleration and how to generate an input stimulus by electrostatic force.
To implement the sensitivity BIST technique, the device under test must contain at
least an actuator plate (to generate test patterns) and a sensor plate (to sense test
responses). This will be thoroughly explained in the discussion for the dual-mode
BIST scheme. For vertical electrostatic driving, the driving voltage cannot exceed
a threshold value by which the deflection exceeds 1/3 of the capacitance gap, d0;
otherwise, the movable plate will be stuck to the fixed plate through a positive
feedback, and a short-circuit will occur. More details for sensitivity BIST can be
found in [Charlot 2001].

12.5.2.2 Symmetry BIST Scheme

[Deb 2002] proposed a symmetry BIST scheme for capacitive MEMS devices uti-
lizing central mass partitioning. The following presentation is mainly based on the
idea of fixed-plate partitioning. A simplified MEMS capacitance structure for sym-
metry BIST is given in Figure 12.12, where S1 to S4 are fixed plates. As shown,
each of the top and bottom fixed capacitance plates is divided into two equal
portions. For simplification, the capacitance for electrostatic actuation that is nec-
essary for BIST implementations is omitted here. The basic idea of the symmetry
test scheme is to determine whether the two symmetric capacitances (e.g., C1 and
C2 in Figure 12.12) on the same side of the movable microstructure remain equal
all the time, after activation.
In Figure 12.12, fixed plates S1 and S2 lie on the same side of movable plate

M. The capacitance between M and S1 (S2) is defined as C1�C2�. The modulation
voltages Vmp and Vmn are applied to S1 and S2 separately. If the device is fault-free,
regardless of whether the movable plate is in rest or moving a certain displacement
along the vertical direction, the values of C1 and C2 should always remain equal.
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MEMS capacitance structure for our symmetry test scheme.

Take the voltage level on central movable plate M as VM; according to the charge
conservation law, charge Q1 and Q2 in capacitances C1 and C2 must remain equal:

C1�Vmp−VM�= C2�VM−Vmn�

Because Vmp =−Vmn, from the above equation we have:

VM = Vmp�C1−C2�/�C1+C2�

If C1 equals C2, then we have VM = 0. Under the above voltage biasing scheme, the
voltage level on the central movable plate is always zero for good devices; however,
if any local defect alters the symmetry of the device, the movable plate will tilt and
C1 will not be equal to C2, and output voltage VM will not be zero anymore. Thus,
by checking the voltage output on the movable plate, we can find any defect that
alters the symmetry of the device. Furthermore, according to the phase polarity of
VM, we can know whether the defect lies at the left or right side of the device. For
example, if a stiction defect in the right side (which introduces C2 in Figure 12.12)
of the mass causes C2 to be smaller than C1, VM will have the same phase polarity
as Vmp, and vice versa.
The above analysis is for checking both capacitances on the top side of the

device; however, verification of both bottom capacitances (C3 and C4) can be easily
performed in a similar way, and they should have the same result.

12.5.2.3 A Dual-Mode BIST Technique

A dual-mode BIST technique [Xiong 2004] for capacitive MEMS devices can be
implemented by dividing the fixed capacitance plates at each side of the movable
microstructure into three portions: one for electrostatic activation and the other
two equal portions for capacitance sensing, as shown in Figure 12.13. Note that M
is the movable plate, D1 and D2 are the fixed driving plates, and {S1, S2, S3, S4} are
the fixed sensing plates. As shown in Figure 12.13, after capacitance partitioning,
two BIST modes (sensitivity test and symmetry test) can be easily implemented on
the device. During normal operation, we have Test Enable (TE) signal = 0. If the
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Voltage biasing schemes for the three modes of MEMS device.

device is a sensor, the modulation voltage Vmp is applied to {S1, D1, S2}, and the
complementary modulation voltage Vmn is applied to {S3, D2, S4} (Figure 12.14a).
The voltage on central mass M is sensed as the output voltage Vout indicating the
device sensitivity. If the device is an actuator (e.g., microresonator), the driving
voltage Vdp is applied to {S1, D1, S2}, and the complementary driving voltage Vdn

is applied to {S3, D2, S4} separately to implement the electrostatic actuation in
normal operation. In short, the driving capacitance plates (D1 and D2) for BIST
will also participate in the normal operation, so there is no loss of capacitance area
due to the BIST implementation.
In the BIST mode �TE = 1�, the Test Selection (TS) signal can select one of the

two BIST modes. When TS = 0, the device is in the sensitivity test mode. Test
driving voltage Vd is applied to D1 to activate the device, modulation voltage Vmp

is applied to {S1, S2}, and Vmn is applied to {S3, S4} (Figure 12.14b). The voltage
level on movable electrode (i.e., plate) M is measured for the device sensitivity
analysis. Voltage VM is compared with the expected value (calibrated) within a
tolerance level to find whether the device is faulty. When TS = 1, the device is in
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the symmetry test mode. In this case, test driving voltage Vd is applied to D1 to
activate the device. Modulation voltage Vmp is applied to S1, and Vmn is applied
to S2 separately (Figure 12.14c). The voltage level, VM, of the movable electrode
is measured to see whether it is a constant zero. A non-zero voltage output on
movable electrode M indicates that a local defect is causing the asymmetry of the
device. Based on the value and polarity of VM, we can also get some idea about the
approximate location of the local defect. The above discussion is for the case where
the movable electrode is driven upward (Vd is applied to D1); however, when the
movable electrode is driven downward (Vd is applied to D2), the implementation
can be easily extended. Note that, in the BIST mode, the device should be driven
in both directions for a thorough test. Because the sensitivity test and symmetry
test each has its own defect coverage, by combining them together a more robust
testing result can be ensured [Xiong 2004]. The defect on driving electrodes D1 and
D2 can also be detected if it causes sensitivity change or left–right asymmetry in
the MEMS device. For example, if the left part of D1 is missing due to improper
photoetching, the mass will experience a larger electrostatic force in its right part
than its left part in BIST; hence, movable mass M will tilt, and a symmetry test can
detect the defect. To implement the BIST technique, a control circuit is required to
switch the device among the normal operation mode and both BIST modes. Such
a control circuit is not complex and only contains some switches made of analog
multiplexers.

12.5.3 A BIST Example for MEMS Comb Accelerometers
A typical surface-micromachined comb accelerometer [Kuehnel 1994] is shown
in Figure 12.15. The comb accelerometer is made of a thin layer of polysilicon on
the top of a silicon substrate. The thickness of the polysilicon structure layer is
about 2�m. The fixed portion of the device includes four anchors and many left
and right fixed fingers. The movable portion of the MEMS device includes four
tether beams, the central movable mass, and all movable fingers extruding out of
the mass. The entire movable portion floats about 1�5�m above the substrate. As
shown in Figure 12.15, the central movable mass is connected to the four anchors
through four flexible beams. The movable fingers extrude from both sides of the
central mass and can move together with it. There is a pair of fixed fingers around
the left and right sides of each movable finger. Each movable finger and its left and
right fixed fingers constitute a differential capacitance pair (c1 and c2), as shown in
Figure 12.16. In the static state, each movable finger stays in the middle position
between the left and right fixed fingers, and the capacitance gaps of both c1 and c2
are equal to d0. Let C1�C2� represent the sum of all c1�c2� capacitances. We have:

C1 = C2 =
nf �0�Lf −��h

d0

where nf is the total number of differential capacitance groups, �0 is the dielectric
constant of air, Lf is the length of each movable finger, � is the nonoverlapped
length at the root of each movable finger, and h is the thickness of the device.
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The schematic diagram of differential capacitance.

Assume that the mass of both the central movable mass and all the movable
fingers is M. If there is an acceleration a perpendicular to the beams and parallel to
the device plane, the central mass will experience an inertial force of −M ·a. This
will result in a certain amount of beam deflection along the direction of the inertial
force and an equivalent amount of displacement of the central mass and movable
fingers. Thus, each capacitance gap will be changed accordingly, which leads to the
change of corresponding capacitances (Figure 12.16).
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As shown in Figure 12.16, the inertial force results in a deflection of the beams
and a certain displacement x of movable fingers along the X direction. Given x<<d0,
C1 and C2 change as follows:

C1 =
nf �0

(
Lf −�

)
h

�d0+x�
≈ nf �0

(
Lf −�

)
h

d0

(
1− x

d0

)

C2 =
nf �0

(
Lf −�

)
h

�d0−x�
≈ nf �0

(
Lf −�

)
h

d0

(
1+ x

d0

)

By sensing the capacitance change of C1 and C2, we know displacement x and the
acceleration experienced. This is the working principle of aMEMS comb accelerom-
eter.
A comb accelerometer structure that can implement dual-mode BIST functions

is shown in Figure 12.17. Here, M1 to M8 are movable fingers, Ms is the central
mass, D1 to D8 are driving fingers, and S1 to S8 are sensing fingers. All beams are
connected to the substrate through four anchors. For simplicity, only four groups
of driving/sensing fingers are given here. The fixed portion of the device includes
driving fingers D1 to D8 and sensing fingers S1 to S8.
During normal operation �TE= 0�, modulation voltage Vmp is applied to {S1, S3,

S5, S7, D1, D3, D5, D7}, and Vmn is applied to {S2, S4, S6, S8, D2, D4, D6, D8}.
The voltage level in the movable fingers �VMs� is measured as the output voltage
to determine the acceleration. When TE = 1 and TS = 0, the device works in the
sensitivity test mode. A certain test driving voltage Vd is applied to {D1, D3, D5,
D7} to activate the device with electrostatic force. The modulation voltage �Vmp� is
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Structural diagram of a comb accelerometer.
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applied to {S1, S3, S5, S7}, while Vmn is applied to {S2, S4, S6, S8}. The output
voltage on movable mass Ms is measured for the device sensitivity. This value
is compared with the expected good device value within a certain tolerance level
to find whether the device is faulty. When TE = 1 and TS = 1, the device is in
the symmetry test mode. Test driving voltage Vd is applied to {D1, D3, D5, D7},
modulation voltage Vmp is applied to {S1, S5}, and Vmn is applied to {S3, S7}.
The sensing circuit checks whether the output voltage on the central mass is a
constant zero to detect any asymmetry caused by local defects. A non-zero voltage
on movable electrode Ms indicates the presence of local defects that are altering the
symmetry of the device. Defects on driving electrodes can also be detected, if they
cause sensitivity change or left–right asymmetry in the MEMS device. For example,
if part of D1 in Figure 12.17 is missing, the movable mass will experience a smaller
electrostatic force in its left part than its right part during BIST, and movable mass
Ms will tilt. Symmetry test can detect this defect.

12.5.4 Conclusions
Microelectromechanical systems have achieved tremendous progress in recent
decades. Various MEMS devices based upon different working principles have
been developed [Hsu 2002]. MEMS has also found broad applications in various
areas. With the rapid development of MEMS technology and its integration into
system-on-chip (SOC) designs, MEMS testing (especially BIST) is becoming an even
more important issue. An efficient and robust test solution is urgently needed for
MEMS; however, due to the great diversity of MEMS structures and their working
principles, various defect sources, multiple field coupling, and its essential analog
features, MEMS testing remains a very challenging work [Tewksbury 2001]. Vari-
ous efforts have been made in this area [Rosing 1999] [Rosing 2000] [Aikele 2001]
[Charlot 2001] [Deb 2002] [Puers 2002] [Xiong 2004], and more research in this
field must be invested in the near future.

12.6 HIGH-SPEED I/O TESTING

Even though Moore’s law [Moore 1965] has dictated neither performance nor I/O
channel bandwidth, system-level performance has been improving steadily with
faster transistors and integration. Integration brings together circuitry that used to
be on different chips, so the signals travel a shorter distance and encounter smaller
loads (within a chip), rather than going through the die pad, bond wires and solder
bumps, package, sockets, and printed-circuit board traces to the other components.
Along the way, it also has to interact with neighboring signals (consider a typical
PC motherboard), an effect called crosstalk. As a matter of fact, I/O bandwidth has
been the limiting factor in system-level performance for some time, at least the
last 10 to 15 years. Due to the need to control the cost of the PCB, many physical
effects, such as those that cause energy loss and coupling as well as contribute to
deterministic jitter (DJ) and random jitter (RJ), have been limiting the signaling
rate. In spite of this, signaling rates at the board level have improved, although it still
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lags far behind what is possible within the chip; for example, a current mainstream
processor runs at 3 to 4GHz internally, but the front-side bus (FSB) only runs up to
800Mbps. This has actually influenced the processor architecture to a great degree
(e.g., increasing the size of the cache to mitigate the FSB bandwidth requirement).

12.6.1 I/O Interface Technology and Trend
The most common signaling protocol is that of the common clock (CC) type (see
Figure 12.18). In the CC scheme, the signal is launched off one chip with the system
clock and received at another chip at the following clock edge. At the sending end,
there is a clock to signal delay specification, and at the receiving end there is setup
and hold time on either side of the following clock edge.
When the signaling rate goes up, a problem arises. The clock skew between the

sending component and the receiving component (board trace delay A–B) can cut
into the cycle time (see Figure 12.19). To compensate for this problem, I/O designers
have come up with source synchronous (SS) and clock forwarding (CF) schemes
[Ilkbahar 2001]. With such a scheme, not only will the sending component send the
signal, but another strobe (similar to a clock signal) also goes along with the signal.
The receiving component uses this strobe to clock the signal; hence, system-level
clock skew is out of the picture. The designer is concerned only with the differential
skew between the strobe and the signal. With careful design, (e.g., identically sized
drivers and matched layout), such signaling schemes have allowed the signaling
rate to rise gradually from below 10 to 50Mbps to today’s 800Mbps.
Although the new SS signaling scheme has improved system-level performance,

another problem has begun to appear. The parallel interface that we use to transfer
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Common clock (CC) signaling scheme.
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lots of data becomes a bottleneck itself. The parallel bits of data from the send-
ing/receiving component have to center around the strobes, and the skews among
these data bits due to uneven driving speed and propagation delay between parallel
channels become the limiter to increasing data rate (see Figure 12.20). The multiple
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Skew among data bits that limits the data rate of the SS interface.
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load nature of a parallel bus also creates noises that affect signal integrity (SI). It
is generally believed that beyond 1Gbps we will require new signaling technology.
Some signaling technology from the data communication industry was adopted

for computer I/Os, with enhancements made to consider the relative short distance
�<10m�, high volume, and low cost characteristics of those I/O devices. For a long
time, the data communication industry has used a signaling protocol that requires
sending only the encoded data bits, with the clock signal embedded in the data bit-
stream, and recovering them at the receiver through a clock recovery (CR) circuit.
This serial signaling [Athavale 2005] also minimizes noises by adhering to a clean
transmission line model with only the driver on one end and the receiver on the
other end (and matched impedance from the driver to the medium [wires or cables]
to the receiver). To improve the signal-to-noise ratio (SNR) further, a differential
signaling protocol over the twisted pair can cancel out common mode noises. For
use on short distance, the voltage swing can be made small to further improve
the edge rate and power consumption if the receiver sensitivity is ensured. Data
encoding (e.g., 8-bit to 10-bit encoding) is usually required to ensure that there are
enough signaling edge transitions so the circuitry at the other end can synchronize
to this incoming signal stream (see Figure 12.21). With this signaling technology,
the data rate can scale from 1∼ 10Gbps. Inherently, noises (in the form of jitters)
constitute a larger part of the cycle time, and it is possible that the data are inter-
preted incorrectly. To ensure that we have correct data, error checking circuits,
with cyclic redundancy check (CRC) or error correcting code (ECC) capabilities, are
usually necessary for error detection, and flow control/data request/resend proto-
col circuits are required for data recovery. These flow control and data recovery
protocol circuits comprise what is referred to as the link layer. The transmitter
and receiver circuits, as well as the medium, comprise the physical layer (PHY). As
long as the bit error rate (BER) is low enough, the system will still deliver a higher
level of performance as compared with previous technologies. A good CR circuit
at the receiver can also track the low-frequency jitter on the data signal and will
lower the receiver’s BER. The CR circuit and the data-sampling flip-flop constitute
a high-pass jitter receiver transfer function.
Phase-locked loop (PLL) is a commonly used CR circuit, especially for earlier

network-centric I/O links, such as fiber channel (FC), gigabit ethernet (GBE), syn-
chronized optical network (SONET), and optical internetworking forum (OIF).

To further improve the data rate and lower the BER, a phase tracking type of
circuit is employed (e.g., in SATA or PCI Express interfaces). Figure 12.22 shows the
link architecture of modern computer-centric Gbps I/O links, such as PCI Express
and FB DIMM, where phase interpolator (PI) is used to recover the clock [Li
2004] [Lin 2005]. In this architecture, a reference clock (e.g., 100MHz) is sent to
both transmitter and receiver multiplication PLLs (e.g., 25× for PCIe I). The mul-
tiplied clock (in this case, 2.5GHz) for the transmitter will be used to drive the
data signal. The multiplied 2.5-GHz clock at the receiver will first go through a PI
circuit to generate a clock that is phase aligned with the data and then used subse-
quently to retime (strobe) the data at the data-sampling flip-flop. If the propagation
delays from the reference clock to both transmitter and receiver are matched and
if the PLLs for the transmitter and receiver are also matched, then the jitter on
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the reference clock will be completely cancelled through this “phase differential”
signaling technique. Moreover, the PI circuit provides a first-order high-pass jitter
tracking capability so the low-frequency jitter will be reduced. With the adoption of
this advanced link architecture, combining inexpensive reference clocks, PLLs, and
digital PI-based receivers, we can reduce the cost of those links, as well as maintain
a high overall BER performance at 10−12 or lower.

12.6.2 I/O Testing and Challenges
Historically, I/O testing is handled by automatic test equipment (ATE) that mimics
the other side of the I/O interfaces. Because the ATE is a stored stimulus and
stored response system, it works well for the common clock interface. Clock is
generated from a tester channel and so are the test stimuli. As the device under
test (DUT) responds with its generated signals, the output responses are strobed
by the ATE with its own timing system, so this approach works perfectly with
common clock devices. With this scheme, ATE performance rises with the device
I/O performance, and this methodology has worked well for decades. Of course, to
get faster performance, the ATE requires more sophisticated devices (e.g., GaAs or
SiGe) that have driven up the cost of the ATE, but this is not a technology barrier.
The advent of the SS technology has turned the whole ATE test methodology

upside down. For the ATE to send SS signals, the scenario is the same as that of
the CC, and the ATE generates the strobes and the data. However, when it is time
for the DUT to send data, it sends out strobes and the ATE is supposed to use those
strobes to strobe the data. Here, the fixed timing system of the tester fails. Most
ATEs today cannot make use of incoming signals from any channel (be it strobes or
not) to strobe another channel. The ATE has to first measure where the strobe is (a
trial-and-error search process) and then set the ATE internal strobes to strobe the
data. Without this search methodology, the ATE cannot guess where the data are
located, and erroneous results will lead to failures and yield loss. Also, even if one
uses this search and timing remapping methodology, the metrology (measurement
errors involved with each measurement) will cost users precious timing margins
that are inherent with the SS timing signaling protocol [Ilkbahar 2001].
Although SS testing presents its own problems, the higher speed serial signaling

link approach is even more challenging. Consider again the test practices of the
data communication industry. Due to the complex signaling requirements, the test
process involves characterizing the output signals from the DUT and also generating
worst-case signals to test the receiver and its associated CR subsystem. This usually
involves a bench setup consisting of an oscilloscope (real-time digitizer or equivalent
sampling), timing interval analyzers (TIAs), or bit error rate tester (BERT) and
signal generators that are capable of deterministic and random pattern generation
as well as amplitude control and jitter injection. To aid in volume production,
the ATE industry must essentially reproduce the functionalities of this necessary
bench setup with a high-performance interface between the ATE driver/receiver
and DUT. Furthermore, serial I/O ATE has to handle the asynchronous nature of
this interface, which is different from conventional synchronous ATE. Such ATE
could be very expensive and misaligned with the end-user cost expectation.
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While this approach has worked for the data communication industry in the
past, certain economic and technical difficulties are associated with applying this
methodology in the general consumer electronic industry, where most computing
devices require more data bandwidth than a single data channel (e.g., PCI Express
has amaximum of 32 data channels, and amicroprocessormay have anywhere from
16 to 64 data channels). Because these high-performance serial channels are point
to point, to establish a multiple agent system (e.g., a multiple processor system),
we would need more than just one set of serial channels (possibly running into the
hundreds). This would increase the cost many times over and make it difficult to
come up with the relays/cabling requirements in the test head of the ATE. The test
time required for measuring jitters to predict the BER has further pushed designers
and test engineers to look for alternative solutions.

12.6.3 High-Performance I/O Test Solutions
In the early 1990s, IBM put forth an I/O structural test methodology called I/O wrap
[Gillis 1998]. Essentially this involves applying the transition fault test methodology
to the I/O circuitry. By tying an output to an input, the output data is launched
and latched back into the input buffer on the following clock. Because most signal
pads are I/O in nature, the I/O wrap methodology is very convenient. Input-only
or output-only pads may be connected with the DFT or on the test interface unit
(TIU). Designers have even incorporated the DFT insertion into their synthesis tools
and supported test pattern generation with their ATPG tools. The limitation is that,
because this delay path is tested with the clock, one cannot characterize the delay
without overstressing the rest of the peripheral circuits. So, this approach is limited
to testing for gross delay defects, and timing specifications cannot be measured.
By the early 2000s, a SS test methodology (dubbed AC I/O loopback testing)

had been proposed that uses the same loopback principle but with a twist [Tripp
2004]. Rather than just using the clock to launch and capture, the launch can
be carried out by a delayed version of the clock (or the capture be done with an
early version of the clock). By controlling the delay, one can actually measure the
relative delay between the strobes and data, all without the need for precision
timing measurement from ATE.
Essentially, this is transition fault testing of the I/O pair with a tighter clock cycle

(only for the I/O circuits, thus preventing false fails from other circuits as in the
case of speeding up the I/O wrap). Furthermore, this works very well with the SS
scheme, where the strobes are generated by the transmitting side. In SS signaling
protocol, the absolute delay of the I/O is not critical; instead, the relative delay of
the strobes and its associated data bits are important. These delay timings, denoted
as time valid before (Tvb) and time valid after (Tva), describe the relationship (see
Figure 12.23). So, by moving the strobes from their central position to the trailing
edges of the data, we are stressing Tva and the setup time of the receiver latch. If we
move the strobes toward the leading edge of the data, we are stressing Tvb and the
receiving latch’s hold time. By stressing this combined timing, we know how much
margin there is with the combined pair. If the induced delay to the clock/strobes
is calibrated, we can even have more accurate measurement of this combined loop



726 VLSI Test Principles and Architectures

Data

Strobe

Strobe#

All driven by
same bus

clock
& matched
signal paths

Tvb Tva TvaTvb

Tsetup Thold

� FIGURE 12.23

SS timing definition (Strobe# is the complement of Strobe and is sometimes added to define where the
timing reference point is).

time than external instrumentation. Because the failure mechanisms for signal
delay and input setup/hold time are different, the probability of aliasing is very low.
Furthermore, because we are not measuring each data bit independently (this

is a bus nonetheless), the delays of all of these data bits should be close to one
another unless there is a defect or local process variations. If a particular data bit is
substantially different from the other data bits, we can also conclude that a defect
or local process variation exists with that particular bit and declare that to be a
failure. So, this can also be viewed as a defect-based test method, especially if no
calibration is done to the induced delay (see Figure 12.24).
The authors who proposed AC I/O loopback testing also suggest that they can

extend the concept to serial signals (looping outputs back to inputs), but details have
not been published yet [Mak 2004a]. It is worth pointing out that those system-level
serial link tests using direct loopback do not offer the worst-case fault coverage.
Recent loopback methodology that has jitter injection capabilities offers better
fault coverage [Laquai 2001] [Cai 2002] [Cai 2005] [Lin 2005]; however, currently
available coverage is still far from what is needed. Most of the jitter injection
solutions today consider only one type of jitter or noise injection rather than all
types of jitter and noise injections at the same time to emulate worst-case signaling
in a real system.

12.6.4 Future Challenges
Because we need to match up the data bandwidth of the chip-to-chip connection to
that of the core operating speed, increasing use of serial signaling is expected. Very
soon, serial signaling will replace most buses and maybe even many of the control
signals as well. The methodologies for testing all of this high-speed serial signaling
must consider cost and quality. Increasingly, this points to more and more self-test
with DFT support [Kundu 2004], although its accuracy and fault coverage are not
at the desired level [Lin 2003].
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AC I/O loopback testing using a defect-based test method.

In order to maintain a low bit error rate (BER), lower cost structures, higher
channel counts, and more advanced architectures and silicon technologies are
expected to be developed for multiple-Gbps I/Os in the near future. In particular,
more aggressive equalizations—transmitter-based, receiver-based, or hybrid—are
expected to occur when the data rate increases. Furthermore, in order to reduce
crosstalk, reflection, and lossy-medium-induced jitter, the decision feedback equal-
izer (DFE) will be widely used in the receiver to reduce the BER; consequently,
test methodologies will have to advance to match and mimic future link and sili-
con architectures and technologies. In order to achieve an optimized test solution
with acceptable accuracy, fault coverage, throughput, and cost, it is anticipated
that both on-chip and off-chip test solutions will be necessary; for example, sim-
ple logical capabilities such as pattern generation and error detection should all
be made internal via DFT/BIST. Other functionalities, such as jitter and noise
generation and calibration, picosecond signal and jitter output measurement, and
component separation, may likely remain external, before better on-chip solutions
are found.
Another complication is that serial signaling comes with a layered communica-

tion protocol stack. The layer that connects to the pins is the physical layer (PHY).
Not only does this PHY layer drive the data and perform clock/data recovery during
receiving, but it also has to initialize, detect, and train/retrain between the sending
and receiving ends. There is also a need for a link layer where error detection and
correction, data flow control, etc., are handled. In addition, there is a need for a
protocol layer, which will turn the internal data transfer into data packets that can
then be handled by the link and PHY layers. A massive increase in logic contents will
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result from advances in I/O subsystems. To make matter worse, I/O subsystems run
on their own clocks, which are synchronized to the recovered clocks. This creates
multiple clock domains on a given chip with multiple I/O channels. Cross-domain
asynchronous clocking will result in nondeterministic chip responses and further
lead to mismatches and yield loss [Mak 2004b].

12.7 RF TESTING

In the last decade, we have witnessed major developments in the field of personal
mobile communication [Kasten 1998]. This has been accelerated by the signifi-
cant research and development in the field of radiofrequency (RF) devices. These
devices operate at very high frequencies (300MHz and beyond) and are ubiqui-
tous in the form of cellular phones, laptops with integrated wireless access, mobile
PDAs, and various other wireless devices. Apart from the uses described above, RF
circuits are used for numerous other applications (e.g., medical care, air traffic con-
trol in airports, radar applications, and satellite and deep space communications).
The convenience of radiofrequency identification (RFID) is contributing to its
increasing popularity for applications such as highway tollbooths, supermarkets,
and warehouses.
Production testing is an integral part of semiconductor manufacturing. To main-

tain an accurate and reliable environment for production testing of RF devices,
having a proper measurement setup and “right” RF test instrumentation is an
important factor. This involvesmaintaining proper impedancematching and shield-
ing during the measurement procedure. With the extra overhead involved, it is
estimated that as much as 40% of the manufacturing costs can be attributed to the
test of RF-integrated circuits and systems. The production testing problem is made
more difficult by the fact that most of the bench tests designed to characterize
an RF part must be performed in fractions of a second (if possible) on the pro-
duction floor and repeated reliably across the thousands of devices manufactured
each day. In addition, the tests must be performed on a “least-cost” commercial
tester in order to minimize tester maintenance and handling costs and to mini-
mize capital outlay for test. To ensure the performance of the manufactured ICs,
a predesigned test stimulus is applied to the device under test (DUT), and the test
response data are captured. Next, by analyzing the captured test response data, the
specification of the DUT is computed. This can be performed “on the fly” or as a
postprocessing step after the test is performed. The computed specification value
is compared to the standard specification value and, accordingly, the device is clas-
sified as good, marginal, or bad. This procedure is repeated for every specification
of the DUT. In a production test environment, the quality of the test measurement
system is evaluated according to its accuracy and repeatability, each of which is
described next.
To ensure that all good devices are classified as good and vice versa, the perfor-

mance metrics of the DUT must be measured with a high degree of accuracy. This
means that the amount of measurement noise added to the test response captured
by the ATE must be minimal to ensure high resolution of the captured test data
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and accuracy of the response analysis procedures. In addition to the need for a very
accurate test stimulus application and test response capture mechanism, the test
procedure must be highly repeatable. This means that, if the same test is applied
several times to the DUT and the same test response analysis is performed, then the
variance of the measured specification must be as small as possible. Of course, the
minimum variance is bounded by the variance (power) of the measurement noise
inherent to the test measurement system.
The challenges associated with RF testing have made it a pressing issue for the

manufacturing industry. As a result, RF testing has received considerable attention
from industry and academia in the recent past [Ferrario 2002] [Akbay 2004]. This
is because production testing of RF devices faces some of the toughest challenges
within the testing industry due to rapid upward scaling of frequencies of operation
and the large disparity between the ability to design high-frequency devices and
the lack of availability of “low-cost” testers to test them [Ozev 2001]. Currently,
rapid progress is being made by tester manufacturing companies to bridge this
gap. In addition, the packaging-driven integration of mixed technologies poses very
difficult test access issues. Specifically, testing embedded RF, MEMS and optics
subsystems is very difficult and challenging. Testing can, of course, be performed
for system-level performance metrics from the externally observable pins of an inte-
grated package; however, system-level performance metrics are usually very com-
plicated, incur relatively large test time (e.g., BER testing of a wireless transceiver
system), and generate little diagnostic information for debugging problems with
new designs.
In the following sections, first a brief overview of a wireless transreceiver system

is presented. Next, various tests performed for different building blocks of a wireless
system as well as the complete system are discussed. Finally, current test practices
in the semiconductor industry are presented, followed by future trends.

12.7.1 Core RF Building Blocks
This section gives a brief overview of wireless transceiver architectures and the dif-
ferent modules associated with generic transceivers. Next, the methods employed
during production test for measuring various specifications of the individual mod-
ules as well as the complete system are described. Figure 12.25 shows a typical
direct conversion transceiver [Razavi 1997]. The basic building blocks of the trans-
mitter shown in Figure 12.25 are the power amplifier (PA) and the up-conversion
mixer. For the receiver, the key components consist of the low noise amplifier
(LNA) and the down-conversion mixer. During production testing, the specifica-
tions of each individual module mentioned above, as well as those of the complete
RF front-end are measured. In addition to the specifications of the RF front-end,
numerous baseband specifications are also measured in order to ensure the qual-
ity of the modulated signal and the transmission link. Various specifications of
a transceiver system are listed in Table 12.4. A brief description of some of the
key specifications and standard test procedures for measuring the corresponding
specification values are described next [Razavi 1997].
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Block diagram of a direct down-conversion wireless transceiver.

TABLE 12.4 � System Components and Related Specifications

System Component Specifications of Interest

Receiver [Agilent Rx-2002] Gain, third-order intercept (TOI), error vector magnitude
(EVM), magnitude, and phase error

LNA Gain, TOI, noise figure
Mixer Conversion gain, TOI, noise figure
Transmitter [Agilent Tx-2002] Gain, TOI, EVM, adjacent channel power ratio (ACPR)

[RS 1EF40-1998]
PA Gain, output power [RS 1MA40-2002]
Mixer Conversion gain, TOI
System Bit error rate (BER), signal-to-noise ratio (SNR), sensitivity,

dynamic range

12.7.2 RF Test Specifications and Measurement Procedures
12.7.2.1 Gain

The gain measurement is probably the easiest for any device or a system. To mea-
sure the gain of a device, the DUT is stimulated with a single tone input, with the
power of the applied tone well within its linear region of operation. The ratio of
the output power and the input power is specified as the gain of the DUT. Because
gain is dependent on the frequency of operation, the gain measurement is specified
for a particular frequency (e.g., gain of LNA = 8dB @ 900MHz).



Test Technology Trends in the Nanometer Age 731

A note on dB and dBm: As the reader might note, the unit used to specify gain
is decibel (dB). Numbers are converted to decibels using the following formula:

NdB�in dB�= 20 log10�N�

Therefore, a gain of 8 dB essentially means a gain of approximately 2.5. The avid
reader might note that 20dB is 10, and 40dB is 100. A similar notation, called dBm
is also used to specify power in logarithmic units, using the following formula:

NdBm�in dBm�= 10 log10�N×1000�

where N is the power in watts; therefore, 1mW is 0dBm and 1W is 30dBm (readers
are encouraged to verify the numbers by themselves). The two units introduced
above are used very frequently in RF design and test, and it is important for
the reader to be familiar with these units for easier understanding of the subject
[Razavi 1997].

12.7.2.2 Conversion Gain

The conversion gain (CG) is measured for mixers (both up-conversion and down-
conversion) to specify the gain in signal power while frequency translation of the
signal is performed via the use of a local oscillator (LO) signal. Thus, conversion
gain is defined as the ratio of the output power of the translated frequency tone to
the power of the input tone. For example, if an up-conversion mixer is supplied an
input tone of 100KHz @ −10dBm and a LO signal at 1.575GHz @ 0dBm and it
generates an output at 1.5751GHz @ −6dBm, then the conversion gain of the mixer
is 4 dB (= �−6dBm�− �−10dBm�). This analysis is applicable to down-conversion
mixers as well. Conversion gain depends not only on the frequency of the input tone
but also on the frequency and power level of the LO signal. To completely specify
the conversion gain test, all the above parameters must be defined (e.g., CG= 4dB,
input = 100KHz @ −10dBm, LO= 1�575GHz @ 0dBm).

12.7.2.3 Third-Order Intercept

In any communication system, precise linearity of the front-end is a key require-
ment for ensuring high quality of transmission and reception. Effects of device
nonlinearities are generally observable in the form of harmonics and distortion
components at the output mode; however, these effects can be mitigated by filtering
unwanted tones. Third-order intermodulation distortion products are difficult to
get rid of due to the closeness of distortion frequency tones to the fundamental. To
understand the origin of nonlinearity in a system, we first describe a linear system
in terms of input/output responses as:

y�t�= A0+A×u�t�

where y�t� is the output, A0 is the DC offset from input to output, A denotes the
gain/loss of the system, and u�t� is the input.
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For a nonlinear system, in addition to the linear term (A), nonlinear terms of
higher order are also present. Such a system can be denoted as:

y�t�= A0+A1×u�t�+A2×u�t�2+A3×u�t�3+ � � � higher order terms

Usually, fourth and higher order terms are ignored as they have very little impact
on the overall system nonlinearity. Note that, of the three terms shown in the above
equation, A1 has the largest absolute magnitude, followed by A2, A3, and so on [Cho
2005].
If an input stimulus u�t� = a1× sin��1t�+a2× sin��2t� is applied to the DUT (�1

and �2 are close to each other), then one can find out from the above equation that
the output tones present after filtering will be �1, �2, 2�1−�2, and 2�2−�1 (the
rest of the tones are filtered out). To measure the third-order intercept (TOI), two
tones with the same amplitude and small difference in frequency are applied to
the DUT, the output of which can be very easily viewed using a spectrum analyzer
[Agilent SA-2005]. The output response of the DUT looks similar to Figure 12.26a.
The larger tones are the applied fundamental tones (i.e., �1, �2�, and the smaller
tones (intermodulation) appear due to the nonlinearity of the DUT (i.e., 2�1−�2,
2�2−�1�. An intuitive understanding of TOI can be seen in Figure 12.26b, where
as the input power is increased, the power of the intermodulation tones increases
faster (three times, hence the name third-order intercept) than the fundamental.
As opposed to gain measurement, during TOI test, the applied power of the input

tones is in the nonlinear region of operation of the DUT. From the output spectrum,
the TOI is calculated as:

TOI= Pout+��Pout−PIMD�/2�

where Pout denotes the output power of the fundamental tones, and PIMD denotes
the power of the intermodulation tones.
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(a) Output spectrum during TOI measurement, and (b) origin of TOI.
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The TOI depends on the frequency of interest. Although two tones are used to
determine the TOI, only the fundamental is specified, as the frequencies are very
closely spaced to the fundamental (10–100KHz apart). As an example, to test the
TOI of a device at 1880MHz, the tones used are 1879.9MHz and 1880.1MHz, and
the TOI of the device is specified as TOI= 6�8dBm @ 1880MHz.

12.7.2.4 Noise Figure

The noise figure (NF), also known as noise factor, characterizes the noise perfor-
mance of a device or a system. It is defined as:

NF = SNRin

SNRout

= Nout

Nin

where, SNR denotes the signal-to-noise ratio, Nout is the total output noise power,
and Nin is the amount of output noise due to input only (i.e., noise from the source).
The most common method for measuring noise figure relies on the use of a noise

figure analyzer (NFA). With the device/system biased using DC signal sources, a
band-limited noise signal is supplied as input to the DUT by a calibrated noise
source. The output of the DUT is measured by the NFA. As the input noise and the
signal-to-noise ratio of the input noise signal are known to the NFA, the noise figure
of the DUT can be calculated [Maxim 2003]. This method is capable of measuring
very low NF values. For measuring high NF values, other methods such as the gain
method [Maxim 2003] and the Y-factor [Agilent Y-2004] method can be used. NF is
also dependent on the operating frequency of the DUT and is defined at a specific
frequency (e.g., NF= 1�4dB 900MHz).

12.7.3 Tests for System-Level Specifications
12.7.3.1 Adjacent Channel Power Ratio

Wireless transmission is performed through communication channels created by
dividing the entire frequency band of communication into smaller sub-bands, also
known as channels. Usually, channel spacing is on the order of few hundreds of
kilohertz to few megahertz. The channels are allocated to different wireless users,
both spatially and temporally, depending on the wireless protocol; thus, it is imper-
ative for all transmitters to restrict the information within the channel allocated to
each (i.e., in-band). However, because of the inherent nonlinearity of RF devices,
the intermodulation tones created may fall into adjacent channels, thereby creat-
ing interference. The adjacent channel power ratio (ACPR) specifies the amount
of power leakage into adjacent bands of communication [RS 1EF40-1998]. To
test for ACPR, a pseudo-random bitstream is transmitted from the baseband DSP
(Figure 12.25) and the spectrum of the transmitter output is captured. From this
captured output spectral response, the in-band channel power and the out-of-band
channel power are measured. The ratio of these two quantities is specified as the
ACPR of the transmitter. ACPR depends on the communication protocol (i.e., the
frequency and output power of the transmitter, the baseband modulation scheme,
and the filter characteristics at the output of the PA).
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12.7.3.2 Error Vector Magnitude, Magnitude Error, and Phase Error

The error vector magnitude (EVM) is a system-level specification measured at
the baseband. It describes the quality of modulation and easily identifies any
nonidealities within the system [Agilent EVMa-2005] [Agilent EVMb-2000]. To
measure the EVM, a set of known bits is modulated in the transmitter baseband to
create constellation symbols. The symbols are indicated in Figure 12.27a as asterisks
(*) for QPSK modulation [Razavi 1997]. The black astericks show the ideal sym-
bol locations, and the grey astericks show the received and demodulated symbols.
Here, each symbol represents a pair of bits; the phase relationship between orthog-
onal sine and cosine waves is used to encode the two bits into four different phase
combinations. These are represented as four points in the constellation diagram
(Figure 12.27a). This information signal is up-converted through the transmitter,
received and down-converted by the receiver, and demodulated by the receiver
baseband. During the transmission process, the nonlinearities of the system, jitter,
phase noise of oscillators, and various other effects cause the modulated symbols
to deviate from the expected constellation points. EVM quantifies this amount of
deviation as [Halder 2005a]:

EVMRMS =
√√√√( 1

N

N∑
i=1

∣∣Videal	i−Vmeasured	i

∣∣2)/(
1

N

N∑
i=1

∣∣Videal	i

∣∣2)

where, Videal	i and Vmeasured	i are marked in Figure 12.27b. The gray dots in
Figure 12.27a show the received symbols.
Typical EVM values range from 3 to 15%. EVM also depends on the magnitude

and phase error. In cases when the system cannot deliver sufficient gain, the entire
constellation moves closer to the origin, whereas phase errors cause the constella-
tion to rotate on the same magnitude circle (see Figure 12.27b). These effects are
usually corrected by the DSP before computing the EVM; thus, EVM is specified
with the amount of magnitude error and phase error correction applied.
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(a) EVM constellation diagram, and (b) origin of EVM.
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12.7.4 Current and Future Trends
Various methods have been proposed in the past to address the issues related to
RF testing and simplify conventional specification measurement techniques in a
production test environment. Next, we discuss a few unique test methods that have
emerged in the last decade to address the various issues related to RF testing.
One of the methods, known as alternate test [Variyam 2002], relies on strong

correlation between the response of the DUT to an applied stimulus and its perfor-
mance metrics (i.e., specifications). To do so, the method finds a test input stimulus
using an optimization algorithm such that the sensitivity of the test response to
the specifications is maximized. It builds a regression-based mapping function to
directly compute the specifications from the observed test response. Numerous
applications of the proposed method have proven that this method is extremely
powerful in a production test environment.
In [Voorakaranam 2002], problems related to high-speed signal generation and

capture in RF test weremitigated by designing the test stimulus in the baseband (i.e.,
low frequency) using an optimization algorithm. The stimulus was up-converted
using a mixer, applied to the DUT (in this case, an LNA), and the response of the
DUTwas down-converted and captured (digitized). Using the captured response, the
specifications of the DUT were estimated using the alternate test method. Another
method suggested by [Cherubal 2004] generates multitone tests directly in the
RF domain by controlling the frequency and amplitude values. The underlying
assumption is that high-quality signal generation is possible at high frequencies
using RF signal generators. It demonstrated that up to 60% of the total test time
could be reduced by using this method.
The problem related to test generation for RF circuits is due to the long simu-

lation times required for RF netlist-level transient simulations. Although various
simulation techniques have been proposed (e.g., periodic steady state, harmonic
balance), test generation is still a bottleneck for RF DUTs. In [Halder 2003], a
frequency-domain behavioral simulation framework was developed. It has been
demonstrated that by using this method, test generation time can be significantly
reduced without loss of accuracy. Currently, similar methods are in use for test
generation purposes.
Testing system-level specifications is another difficult task to perform in RF

testing. A loopback test method was proposed for testing RF transceiver systems in
[Dabrowski 2003], but the method relied on spot defects only. Spot defects manifest
as constant high or low signals at specific circuit nodes. As the reader knows from
earlier sections, the notion of spot defects (i.e., stuck-at-1 and stuck-at-0) is well
understood in the realm of digital testing. RF circuits deal with signals that are
analog in nature but at a much higher frequency. Parametric variations, which
are a major cause of variations in RF devices, do not necessarily show up as spot
defects. A more detailed study based on the effects of parametric variations on
the RF system was performed in [Halder 2005b]. It was shown that by using an
alternative test-based approach, both system-level and module-level specifications
could be predicted with a high degree of accuracy.
In [Ferrario 2003], the authors used detectors to estimate various specifications

of the DUT. In [Yin 2005] and [Valdes-Garcia 2005], the authors designed and used
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sensors for on-chip self testing. A combination of the above two approaches and the
alternative test method has shown that test accuracy can be increased significantly
[Bhattacharya 2004]. The detectors were placed at specific circuit nodes using
an optimization algorithm, and the alternate test-based method was used for test
generation.
In addition, significant work is underway to minimize the cost of instrumen-

tations involved in the generation of RF test signals and signal capture/analysis.
In [Sylla 2003], a novel method has been presented where RF test signals were
generated using DSPs. Also, researchers are trying to minimize RF testing cost by
making wafer-probe testing more efficient so bad ICs are not packaged, thus sav-
ing packaging costs, which may be significant for RF SOCs [Lau 2002]. In [Ozev
2004], a loopback delay-insertion-based DFT method was proposed to minimize
the overall test cost.

12.7.4.1 Future Trends

The domain of RF testing is becoming increasingly difficult due to the rapid
introduction of new communication protocols with complex baseband modu-
lation techniques. In the last few years, various new protocols, such as Zig-
bee, ultrawideband (UWB) [Nekoogar 2005], radiofrequency identification (RFID),
and WiMAX [Agilent WiMax-2005], have either been newly introduced or gained
renewed interest in the design community. However, in contrast to the past,
the present implementations are all monolithic and hence the complexity of test
and characterization has elevated manifold. For system-level implementation of a
communications protocol, observability is limited and very little diagnosis infor-
mation can be obtained from test responses. A key issue related to testing newer
standards stems from the higher speeds of operation. At-speed testing and char-
acterization of the manufactured devices requires expensive test instrumentation
and equipment during production testing. For example, UWB devices operate up to
10.6GHz. At present, there are very few automatic test equipments in the industry
can work at such high speeds. Finally, as devices and protocols improve, test times
also become a major concern for the manufacturing industry due to the elevated
complexity and the tighter margins on the test limits. For example, high-speed
serializer–deserializer (SERDES) devices have a BER in the range of 10−12; there-
fore, typical test times for these devices are in the range of minutes, even hours. The
test industry needs to rethink the way these devices are tested and new solutions
are needed to keep up with continued advancements in the RF domain.
Within this context, built-in-self-test (BIST) is gaining increased attention from

test and design engineers alike [Veillette 1995]. BIST can potentially address all
the above issues with a small overhead in terms of calibration. The sensor-based
test methods described earlier have the potential to address the issues related to
diagnosis and at-speed testing. In addition, the test time for high-speed devices
can be reduced by applying the alternative test-based approach. [RS 7BM03-2002]
elaborates on the BER test, and [Bhattacharya 2005] describes an alternative test-
based method to reduce BER test time for UWB devices. Interested readers are
encouraged to look at various application notes and white papers from relevant
industries to keep abreast of the topic.
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12.8 CONCLUDING REMARKS

The Semiconductor Industry Association (SIA) published an International Technol-
ogy Roadmap for Semiconductors (ITRS) in [SIA 2004] which includes an update
to the test and test equipment needs and difficult challenges (see Tables 12.1 and
12.2) for nanometer designs through 2010 and beyond. The ITRS calls for: (1) new
design-for-testability (DFT) and design-for-manufacturability (DFM)methods for dig-
ital circuits and analog circuits (including radiofrequency (RF) and audio circuits),
as well as high-speed serial interface, MEMS, and sensors; (2) the means to reduce
manufacturing test costs as well as enhance device reliability and yield; and (3) tech-
niques to facilitate defect analysis and failure analysis.
The SIA also published an ITRS design roadmap in [SIA 2004] which includes an

update (see Table 12.3) to the design test challenges given in [SIA 2003]. Nanometer
process technology, increasing clock rate, and increasing system-on-chip (SOC) and
system-in-package (SIP) integrations were identified to present severe challenges to
design for test.
Today, almost all 0�13�m designs have implemented memory built-in self-test

(BIST), but not necessarily operated at-speed. For 90nm designs, we have found
that at-speed memory BIST, at-speed scan testing, and test compression have been
extensively adopted and are becoming a must. Unfortunately, at-speed logic BIST
and at-speed memory built-in self-repair (BISR) have not yet grown in popularity.
Testing continues to be a big challenge for multi-gigahertz serial I/O protocols
and analog and mixed-signal (AMS) circuits. As test time for AMS circuits is
currently reaching 80% of the total test time spent on an ATE, more research on
AMS DFT/BIST must be pursued immediately along with innovations on digital
and AMS diagnosis. In the near term, logic BIST and memory BIST/BISR must also
be extended to cover more realistic fault types, such as delay faults in logic BIST
and drowsy faults in memory cells. Noise faults caused by parametric variations
must be modeled and tested. Integration of SOC test methods (e.g., test reuse, core-
based testing) into chip-level DFT continues to be a challenge seeking an efficient
solution.
In the long term, by 2018, according to the ITRS [SIA 2004], 90% of silicon

will be embedded with BIST, so efforts should also be directed toward embedded
software-based self-testing utilizing on-chip programmable resources. Because SOC
and SIP integrations will be desperately needed, new DFT/BIST methods for field
programmable gate array (FPGA) testing, microelectromechanical system (MEMS)
testing, RF testing, and high-speed serial interface must be researched. As clock
rates of digital circuits are aggressively driven to the limit, signal integrity test issues,
especially timing-related faults and digital interference in analog circuits, must
be further investigated. Continued innovation of logic BIST/BISR and emerging
needs for AMS DFT/BIST/diagnosis are required. Fundamentally new long-term
solutions must be developed for reliability screen and may include significant on-
die hardware for stressing or special reliability measurements. Finally, as circuits
must coexist with defects in nanotechnology, fault tolerance and online testing must
be embedded into circuits, particularly for logic soft errors. In summary, the test
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industry must cope with an enormous spectrum of problems ranging from high-
level test synthesis to noise/interface and power dissipation, as listed in Table 12.3
[SIA 2003] [SIA 2004].
In this chapter, we have presented several promising techniques to address some

of the critical ITRS needs and challenges for testing nanometer designs. Due to
space limitations, we can only briefly cover techniques for delay testing; coping with
physical failures, soft errors, and reliability issues; FPGA testing; MEMS testing;
high-speed I/O testing; and RF testing. Other important test techniques, such as
software-based self-testing [Cheng 2006], design for manufacturability (DFM) [Gupta
2003], design for yield enhancement (DFY) [Director 1994] [Zorian 2004], and
design for debug and diagnosis (DFD) for AMS circuits [Vinnakota 1998], unfor-
tunately, have had to be left out of the discussion. As the test needs and challenges
facing the semiconductor industry in the nanometer age are so broad and difficult
in nature, conducting further research is imperative, and over the next 5 to 10 years
better solutions have to be found for all the subjects mentioned here.
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