


UML 2 SEMANTICS
AND APPLICATIONS

Edited by

KEVIN LANO

A JOHN WILEY & SONS, INC., PUBLICATION





UML 2 SEMANTICS
AND APPLICATIONS





UML 2 SEMANTICS
AND APPLICATIONS

Edited by

KEVIN LANO

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

UML 2 semantics and applications / edited by Kevin Lano.
p. cm.

Includes bibliographical references and index.
lSBN 978–0–470–40908–4
1. Computer software–Development. 2. Application software–Development. 3. UML (Computer

science) 4. Formal languages–Semantics. I. Lano, K.
QA76.76.D47U39 2009
005.13’1–dc22 2009008870

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/

permission
http://www.wiley.com


CONTENTS

CONTRIBUTORS xi

PREFACE xiii

1 INTRODUCTION TO THE UNIFIED MODELING LANGUAGE 1
Kevin Lano

1.1 Introduction 1
1.2 Class Diagrams 1
1.3 Object Diagrams 9
1.4 Use Cases 10
1.5 State Machines 11
1.6 Object Constraint Language 16
1.7 Interaction Diagrams 20
1.8 Activity Diagrams 22
1.9 Deployment Diagrams 22
1.10 Relationships Between UML Models 23
1.11 Summary 24

2 THE ROLE OF SEMANTICS 27
Kevin Lano

2.1 Introduction 27
2.2 Different Semantic Approaches 28
2.3 Applications of Semantics 29

v



vi CONTENTS

2.4 UML Semantics 30
2.5 Applications of Semantics to UML 35
2.6 Application of Semantics to the Use of UML 38
2.7 Summary 39

3 CONSIDERATIONS AND RATIONALE FOR A UML
SYSTEM MODEL 43
Manfred Broy, María Victoria Cengarle, Hans Grönniger,
and Bernhard Rumpe

3.1 Introduction 43
3.2 General Approach to Semantics 43
3.3 Structuring the Semantics of UML 45
3.4 The Math Behind the System Model 47
3.5 What Is the System Model? 48
3.6 Usage Scenarios 55
3.7 Concluding Remarks 56

4 DEFINITION OF THE SYSTEM MODEL 61
Manfred Broy, María Victoria Cengarle, Hans Grönniger,
and Bernhard Rumpe

4.1 Introduction 61
4.2 Notational Conventions 62
4.3 Static Part of the System Model 62
4.4 Control Part of the System Model 70
4.5 Messages and Events in the System Model 78
4.6 Object State 81
4.7 Event-Based Object Behavior 84
4.8 Timed Object Behavior 86
4.9 The System Model Definition 89
Appendix A.1 State Transition Systems 90
Appendix A.2 Timed State Transition Systems 91

5 FORMAL DESCRIPTIVE SEMANTICS OF UML AND
ITS APPLICATIONS 95
Hong Zhu, Lijun Shan, Ian Bayley, and Richard Amphlett

5.1 Introduction 95
5.2 Definition of Descriptive Semantics in FOPL 98
5.3 The LAMBDES Tool 108
5.4 Applications Using Model and Metamodel Analysis 111
5.5 Conclusions 119

6 AXIOMATIC SEMANTICS OF UML CLASS DIAGRAMS 125
Kevin Lano

6.1 Introduction 125



CONTENTS vii

6.2 Real-Time Action Logic 128
6.3 Semantics of Class Diagrams 140
6.4 Application of the Semantics 156
6.5 Related Work 156
6.6 Conclusions 157

7 OBJECT CONSTRAINT LANGUAGE: METAMODELING
SEMANTICS 163
Anneke Kleppe

7.1 Introduction 163
7.2 Metamodeling Semantics 164
7.3 OCL Semantics: Types and Values 168
7.4 OCL Semantics: Expressions and Evaluations 171
7.5 Summary and Conclusions 176

8 AXIOMATIC SEMANTICS OF STATE MACHINES 179
Kevin Lano and David Clark

8.1 Introduction 179
8.2 State Machine Semantics 181
8.3 Extended State Machines 186
8.4 Semantics for Extended State Machines 187
8.5 Solutions for Semantic Problems 191
8.6 Structured Behavior State Machines 194
8.7 Related Work 200
8.8 Summary 200

9 INTERACTIONS 205
María Victoria Cengarle, Alexander Knapp, and Heribert Mühlberger

9.1 Introduction 205
9.2 Trace-Based Semantics 206
9.3 Alternative Semantics 235
9.4 Implementation and Refinement 240
9.5 Verification and Validation 242

10 CO-ALGEBRAIC SEMANTIC FRAMEWORK FOR
REASONING ABOUT INTERACTION DESIGNS 249
Sun Meng and Luís S. Barbosa

10.1 Introduction 249
10.2 Why Co-algebras? 250
10.3 A Semantics for UML Sequence Diagrams 260
10.4 New Sequence Diagrams from Old 266
10.5 Coercions and Designs 270



viii CONTENTS

10.6 A Calculus for Interactions 273
10.7 Concluding Remarks 277

11 SEMANTICS OF ACTIVITY DIAGRAMS 281
Kevin Lano

11.1 Introduction 281
11.2 Semantics of Structured Activities 282
11.3 Semantics of Intermediate Activities 285
11.4 Data Flow Semantics 290
11.5 Semantic Analysis 291
11.6 Related Work 292
11.7 Summary 292

12 VERIFICATION OF UML MODELS 295
Kevin Lano

12.1 Introduction 295
12.2 Class Diagrams 296
12.3 State Machine Diagrams 303
12.4 Sequence Diagrams 309
12.5 Summary 311

13 DESIGN VERIFICATION WITH STATE INVARIANTS 317
Emil Sekerinski

13.1 Introduction 317
13.2 Preliminaries 320
13.3 Statechart Structure 322
13.4 Configurations and Operations 325
13.5 State Invariant Verification 332
13.6 Accumulated Invariants 333
13.7 Verification Condition Generation 336
13.8 Priority Among Transitions 341
13.9 Conclusions 343

14 MODEL TRANSFORMATION SPECIFICATION AND
VERIFICATION 349
Kevin Lano

14.1 Introduction 349
14.2 Categories of Model Transformation 350
14.3 Specification of Model Transformations 351
14.4 Refinement Transformations 361
14.5 Quality Improvement Transformations 379
14.6 Design Patterns 388



CONTENTS ix

14.7 Enhancement Transformations 390
14.8 Implementation of Model Transformations 391
14.9 Summary 393

INDEX 397





CONTRIBUTORS

Richard Amphlett, Department of Computing and Electronics, School of
Technology, Oxford Brookes University, Oxford, UK

Luís S. Barbosa, Department of Informatics, Minho University, Braga, Portugal

Ian Bayley, Department of Computing and Electronics, School of Technology,
Oxford Brookes University, Oxford, UK

Manfred Broy, Institut für Informatik, Technische Universität München, München,
Germany

María Victoria Cengarle, Institut für Informatik, Technische Universität
München, München, Germany

David Clark, Department of Computer Science, King’s College London,
London, UK

Hans Grönniger, Lehrstuhl Informatik 3 (Softwaretechnik), RWTH Aachen
University, Aachen, Germany

Anneke Kleppe, Independent Consultant, The Netherlands

Alexander Knapp, Institut für Informatik, Universität Augsburg, Augsburg,
Germany

Kevin Lano, Department of Computer Science, King’s College London,
London, UK

Sun Meng, CWI, Amsterdam, The Netherlands

Heribert Mühlberger, Institut für Informatik, Universität Augsburg, Augsburg,
Germany

xi



xii CONTRIBUTORS

Bernhard Rumpe, Lehrstuhl Informatik 3 (Softwaretechnik), RWTH Aachen
University, Aachen, Germany

Emil Sekerinski, Department of Computing and Software, McMaster University,
Hamilton, Ontario, Canada

Lijun Shan, Department of Computer Science, National University of Defense
Technology, Changsha, China

Hong Zhu, Department of Computing and Electronics, School of Technology,
Oxford Brookes University, Oxford, UK



PREFACE

The Unified Modeling Notation (UML) is the most widely adopted software model-
ing notation in use today, and is an international standard, whose development and
maintenance is managed by the Object Management Group (OMG).

UML was introduced to solve the incompatibilities between the hundreds of dif-
fering modeling notations that came into use in the 1980s and early 1990s, notations
such as OMT, Booch, Syntropy, and object-oriented versions of earlier methods, such
as SSADM. This multiplicity of methods meant that tools and developer expertise
could not be transferred easily from project to project, and that documentation in one
notation might become valueless if the notation was no longer supported.

The advent of UML in the mid-late 1990s partially solved this problem: One
standardized notation was now available for software engineers. However, other
compatibility issues became apparant:

• Do two different developers use UML constructs in the same way, with the same
semantics?

• How can we check that the graphical UML models of a system correctly express
the requirements and that the meaning of these models is correctly implemented
in an executable implementation of the system?

• If a transformation is applied to a model to improve its quality or refine it to
code, how can we verify that the starting model is correctly expressed in the
transformed model?

The UML documents concentrated on defining the syntax of models: how the
diagram elements could be validly combined (e.g., that no cycles of inheritance are
possible). The semantics was only defined informally, and in many cases semantic

xiii



xiv PREFACE

variation and interpretation were deliberately built into UML (e.g., a composite state
might, or might not, be the “abstract” superstate of its contained states).

Semantic correctness became increasingly important with the definition of model-
driven architecture and model-driven development. These use model transformations
as a central element, principally to transform high-level models toward more
implementation-oriented models, but also to improve the quality of models at a
particular level of abstraction.

A large number of semantics have been developed or proposed for parts of UML to
solve these problems. These semantics include transformational semantics, by which
a semantics for UML models is provided by translating them into a representation that
already has a precise semantics. Translations of UML to B, SMV, finite state machines,
Petri nets, and many other formalisms have been defined for this purpose. Another
approach is to define, ab initio, a semantic domain and a semantic interpretation of
UML in this domain, a denotational semantics approach, as followed by the UML
semantics project. A related approach is the axiomatic semantics technique, which
defines an interpretation of UML into a mathematical formalism such as first-order
set theory. The metamodeling approach uses a subset of UML itself as a semantic
domain for UML.

In the first part of the book we introduce UML notations considered as subjects for
semantic definition: class diagrams, state machines, interactions, use cases, OCL and
activity diagrams. We also provide an overview of different semantic approaches and
the role of semantics in contributing to the definition of UML and to supporting the
use of UML.

In the main part of the book we present a range of semantic approaches to defining
the semantics of UML models. These include well-established approaches (denota-
tional, operational, transformational, and axiomatic) and two more novel approaches
(metamodeling and co-algebraic). In Chapter 3 the UML Semantics Project approach
to defining a unified semantics for UML is introduced, and in Chapter 4 we give
the technical details of the definition of the system model upon which this semantics
is based. This is a mathematically defined abstract execution environment in which
the underlying semantic concepts of UML, such as objects and behavior, can be rep-
resented precisely. Chapter 5 focuses on an alternative approach to a unified UML
semantics, by directly expressing the structure of models and metamodels in first-order
logic. In Chapter 6 we introduce an axiomatic semantics for UML and use this to define
a semantics for a large part of the UML class diagram notation and OCL. In Chapter 7
we describe and explain the metamodeling approach to semantics and apply this in
particular to the semantics of OCL. In Chapter 8 we introduce an axiomatic semantics
for a large part of UML state machine notation, and discuss problems of semantic
ambiguity with the notation and describe how these can be resolved. In Chapter 9
we give a detailed denotational semantics for UML interactions and use this to iden-
tify problems with the UML standard for interactions and to consider improvements
in the standard. In Chapter 10 we introduce the co-algebraic approach to semantics
and define a co-algebraic semantics for interaction diagrams, then use this to prove
algebraic properties of interaction operators. Chapter 11 defines a transformational
semantics for activity diagrams by mapping these into state machines.
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The remaining chapters are concerned with applications of UML semantics.
Chapter 12 is an overview of verification techniques for UML. In Chapter 13 we
define detailed verification techniques for state machines using a translation to B
notation, and in Chapter 14 we use a semantics-driven approach to specify and verify
a number of widely used model transformations.

Kevin Lano





CHAPTER 1

INTRODUCTION TO THE UNIFIED
MODELING LANGUAGE
KEVIN LANO
Department of Computer Science, King’s College London, London, UK

1.1 INTRODUCTION

In this chapter we describe the primary notations of the Unified Modeling Language
(UML): class diagrams, state machines, use cases, interaction diagrams, activity
diagrams, and deployment diagrams.

The UML consists of a large collection of notations whose purpose is to model
software systems in all their aspects: data, state, behavior, communication, services
provided, timing properties, and deployment configurations. Each notation itself
forms a complex language, and the notations are interrelated and interdependent,
making the task of providing a unified semantics for the UML very challenging.

1.2 CLASS DIAGRAMS

Class diagrams are probably the most important of the UML notations. They can
be used to describe the entities, data, and static structure of a system at all levels of
abstraction from specification to implementation, and together with Object Constraint
Language (OCL) constraints can also define the functionality of operations by pre-
and postconditions.

As metamodels, class diagrams together with OCL can be used to define the syntax
of all the UML notations. The class diagram notation has many elements, based on
notations for entities (represented as UML classes), drawn as rectangles, and notations
for relationships (represented as UML associations) between entities, drawn as lines
between the classes of the related entities. Figure 1.1 shows a class diagram with
four classes—Lift, Door, LightSet, and Light—and associations between them. This
diagram describes lifts with an associated set of light sets (e.g., one light set inside

UML 2 Semantics and Applications. Edited by Kevin Lano
Copyright © 2009 John Wiley & Sons, Inc.
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2 INTRODUCTION TO THE UNIFIED MODELING LANGUAGE

Lift

LightSet

Light

fps: Integer
dest: Integer

* {ordered} 

*

lightsets

lit: Boolean

lm: LMState

1

Door

dm: DMState
dos: Boolean
dcs: Boolean

lights0..1

1door

<<enumeration>>
DMState

opening
closing
stopped

<<enumeration>>
LMState

up

stop
down

FIGURE 1.1 Class diagram of a lift system.

the lift and others on each floor) to indicate the current position of the lift. Each light
set consists of a sequence of individual lights. Figure 1.2 shows part of the UML 2.1
metamodel for class diagrams.

Definitions of the metaclasses Class and Association [2] follow:

• Class: describes a set of objects that share the same specifications of features,
constraints, and semantics.

• Association: declares that there can be links between objects of the classes it
connects. A link is a tuple with one value for each end of the association; each
value is an instance of the class at that end.

In other words, a class represents a collection of things that all have a common
structure and common properties. The things in the collection are called the objects
of the class, or instances of the class. An association also represents a collection of
things: tuples defining connections between objects.
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4 INTRODUCTION TO THE UNIFIED MODELING LANGUAGE

In Figure 1.1 the classes (instances of the metaclass Class in Figure 1.2) are Lift,
Door, LightSet, and Light, the associations (instances of the metaclass Association)
are Lift_Door, Lift_LightSet, and LightSet_Light. The memberEnd sequence for each
association identifies its ends (two or more Property instances). These can be named
in the class diagram or given the default name of the class at that end. In the lift
system, Lift_Door has ends door and lift.

The internal structure of each class comprises several factors:

• Attribute: specifies a structural feature of a classifier, declaring that all instances
of the classifier have a value of the given name and type.

• Operation: a behavioral feature of a classifier that specifies the name, type,
parameters, and constraints for invoking a specified behavior.

An attribute represents a property that is common to all objects of a class. All Lift
instances have an integer attribute fps : Integer representing the floor at which the lift
is currently; and an attribute dest : Integer representing the next destination floor of
the lift. ax.att is written to denote the value of an attribute att of an object ax.

In terms of the metamodel, the local attributes of a class c : Class are given by
c.ownedAttribute, whose elements are Property instances. Attributes can be given
initial values, written after their type:

fps : Integer = 0

for example.
An operation represents behavior that can be invoked on all objects of a class,

with a common name and parameters and semantics (effect or result). In terms of the
metamodel, the local operations of a class c :Class are given by c.ownedOperation,
whose elements are Operation instances. Classes are drawn as rectangles, with their
name in the top section of the rectangle, attributes in the next section, and operations
in the final section.

Associations represent relationships between objects (belonging to the same class
or to different classes). Assocations are drawn as straight lines between the classes
that they link, possibly with multiple segments. Associations have the following
annotations:

• A name, written near the mid point of the association. This can be omitted from
a class diagram.

• Association end names (or rolenames), one at each end of the association, which
name the set of objects of the class at that end in the association relative to an
object at the other end. A rolename at one end of an association can be considered
to be a feature of the class at the other end of the association. In other words,
the Property instances p1 and p2, which are elements of r.memberEnd for an
association r, indicate that p1 is a feature of the class p2.type of the class located
at p2’s end of r, and p2 is a feature of the class p1.type.



1.2 CLASS DIAGRAMS 5

• Multiplicities, one at each end of the association, which identify the size of the
set of objects of the class at that end in the association relative to an object at the
other end. These multiplicities can be

— 1

— n

— a..b

— *

— a..*

where a, b, and n are particular natural numbers. ∗ represents an unlimited
number and is the most general multiplicity. These are parts (meta-attributes
lower and upper) of each Property, since this metaclass inherits from Multiplic-
ityElement. A feature defined by an association end is termed many-valued if its
multiplicity is not 1, and single-valued if its multiplicity is 1. In versions of UML
before UML 2, multiplicities with discontinuous ranges were also possible, such
as m, n..p (allows m instances, or any number between n and p inclusive).

A feature of a class is therefore any attribute of the class, any operation of the
class, or any opposite association end of an association connected to the class. This
definition includes inherited features (see Section 1.2.2).

Attributes and association ends can be annotated with the constraint {readOnly}
(in older versions of UML this was {frozen}) to indicate that they cannot be modified
after being set initially (e.g., someone’s date of birth). Such features are like constants
in programming languages. Association ends with multiplicities other than 1 can be
marked as {addOnly} to indicate that elements cannot be removed from them, only
added.

Operations come in two varieties:

• Query operations, which only return a value, and do not modify the state of any
object.

• Update operations, which normally do not return a value, but which modify the
object state. Update operations that return a value are also possible.

A query operation is indicated by the constraint {query} following the operation in
its class box, corresponding to isQuery= true in the metamodel.

Some standard update operations are setatt(attx : T ) to set the value of a nonfrozen
attribute att : T to attx, and addr(bx : B) to add bx to a nonfrozen association end r
(of multiplicity not equal to 1).

Attributes and operations may be static (in previous versions of UML this was
referred to as class scope); this means that they are not specific to individual objects
of the class, but instead, are independent of such objects. Class scope is indicated by
underlining the attribute or operation. A typical example is a constructor operation
of a class, which produces a new instance of the class.



6 INTRODUCTION TO THE UNIFIED MODELING LANGUAGE

1.2.1 Enumerations

A special kind of classifier is an enumeration, which defines a fixed set of distinct
values. Enumerations have the stereotype� enumeration� above the class name, to
indicate that they are instances of the Enumeration metamodel class. Enumerations
can be used as the types of attributes elsewhere in the model: for example, LMState
and DMState in the lift example.

1.2.2 Inheritance

Inheritance is denoted by an open-headed arrow pointing from one class (the subclass)
to another (the superclass). This is used to express the fact that one class represents
a special case of the concept represented by another. All the attributes, roles, and
operations of the superclass automatically become attributes, roles, and operations of
the subclass. Every instance of the subclass is also an instance of the superclass: If
x : B holds, where B is a subclass of A, then x : A holds also.

Inheritance of class c by class d is represented in the metamodel by c : Class having
c= g.general for some g : Generalization, where d= g.specific. Inheritance cannot
be cyclic: If a class A is a subclass, directly or indirectly, of class B, then B cannot be a
subclass of A. However, several classes can be subclasses of the same class (multiple
subclassing), and one class can be a direct subclass of several other classes (multiple
inheritance).

A class may be abstract, meaning that it has no direct instances of its own, only
instances of its subclasses. The notation for an abstract class is to place the class
name in italic font, as shown in Figure 1.3. This diagram also shows an example
of an abstract operation, maximumLoad() : Integer. Such operations have no defini-
tion in the superclass, but have (potentially different) definitions in the subclasses.
Abstract operations are also written in italic. (The meta-attribute isAbstract is shown
for BehavioralFeature in Figure 1.6.)

In general, an operation op(x : T ) in a subclass D may redefine an operation with
the same name and parameters in its superclasses, so that the definition given in D is
used whenever op is invoked on an object that actually belongs to D. This is known
as operation overriding.

A special form of classifier, similar to an abstract class in that it cannot be instan-
tiated directly, is the interface, which is a classifier whose purpose is to specify a set
of operations that will be defined (implemented) in subclasses of the interface, and
which all users (clients) of the interface can rely on being implemented. Interfaces
form a bridge between one subsystem of a system (the services of this subsystem are
specified as operations in the interface) and other subsystems, which wish to use the
services of this subsystem. Interfaces are marked with an� interface� stereotype.
An interface may be implemented by a number of behaviored classifiers via a relation-
ship of InterfaceRealization (analogously to Generalization). c : BehavioredClassifier
implements i : Interface if there is r : InterfaceRealization such that i= r.contract and
c= r.implementingClassifier. All features owned by an interface must be public.
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Lift

PassengerLift ServiceLift

dest: Integer
fps: Integer
lm: LMState

maximumLoad():
Integer

maximumLoad():
Integer

maximumLoad():
Integer

FIGURE 1.3 Abstract class example.

It is normal for the base class of a class hierarchy (i.e., the class at the top of the
hierarchy, without ancestors) to be abstract. Such classes define the common structure
and properties of all their subclasses. A class is termed concrete if it is not abstract.

1.2.3 Identity and Derived Attributes

A useful concept that can be defined in UML is that of identity attributes. These have
the property that their values can be used to identify objects, because no two objects of
their class will have the same attribute value. For example, the bank account number
of an account within a bank should be unique: No two different accounts can have
the same account number. The constraint {identity} after an attribute defines it as an
identity. These can be expressed as a Constraint in terms of the metamodel: Each
model element may have any number of constraints attached.

The formal property of an identity attribute att of a class C is

x : C and y : C and x.att = y.att implies x = y

The concept is the same as that of a primary key in a database. Normally, only one
attribute within a class is an identity attribute.

Another special form of attribute is the derived attribute, attributes whose value
can be computed from the values of other elements in a model. Derived attributes are
shown annotated by a leading “/.” This is expressed by the isDerived meta-attribute
shown in Figure 1.2. Roles can also be derived, and such roles are shown with a “/”
before their name.
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1.2.4 Ordered and Qualified Associations

Often, there is some ordering or sequence on the elements of one class that are linked
to an element of another via an association. For example, the lights in a light set are
ordered by the floor they represent (Figure 1.1). The constraint {ordered} attached to
an association end indicates that the association end is ordered. To refer to a particular
position within such an ordered sequence r, we use the OCL notation r→at(i), where
i ranges from 1 to the size of r. The constraint {sorted} can be used instead of
{ordered} to specify that the association end is always ordered in ascending order of
its elements.

Qualified associations occur less often, but can sometimes be useful. They express
that given some object at one end of an association, plus a qualifier index (a simple
value such as a string or number), a particular object or set of objects can be identified
at the other end. They are represented by the qualifier self-association on Property
in the metamodel. The notation role[index] is used to denote the element or elements
obtained by qualifying role by index.

1.2.5 Aggregation

Another special form of association is an aggregation or composition. The differ-
ence with normal associations is conceptual: A normal association expresses “has a”
relationships (e.g., a Lift has a set of LightSets that indicate its position). An aggrega-
tion expresses “is part of”/“is composed of” relationships, such as a LightSet being
composed of Lights.

The main semantic aspect of such relationships is that the “whole” side, marked
with a black lozenge, always has multiplicity at most 1, and that deletion of an object
of this class also deletes all part objects aggregated to it (the deletion propagation
property). If the multiplicity is 1 at the whole end, part objects cannot exist without
being attached to a whole object. In the metamodel, the metafeature aggregation has
the value composite for the association end representing the whole side.

UML also has a weaker notion of simple aggregation, represented using an unfilled
diamond at the container/whole end (aggregation= shared). This does not have the
strong semantic property of deletion propagation, but is used to indicate that the
association has a whole/part aspect. At most one end of an association can be a
composition or aggregation.

1.2.6 Association Classes

An association class is an association that is also a class, and it can have attributes and
operations in the same way as has any class. Effectively, each link (pair of objects) in
the association is able to have its own attributes and operations, just as does a normal
object of a class. A class box is attached to the association by a dashed line, and the
features of the association class are written in this box.
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1.2.7 Stereotypes

A diagram element in UML may be marked with a label in double angle brackets, such
as � enumeration �. These are called stereotypes of the element and indicate that
the element is a specialized form of the diagram element that uses the same graphical
notation: An enumeration is a specialized kind of class, and an implicit association is
a specialized kind of association, for example.

Stereotypes enable the basic UML notation to be extended with new notations.
This is especially useful in platform-specific models, in order to mark certain model
elements as being of a particular kind in this platform (� session bean � in a Java
Enterprise Edition PSM, for example, or� form � in a Web application PSM).

1.3 OBJECT DIAGRAMS

Object diagrams are variants of class diagrams in which object specifications are
denoted instead of classes. Object specifications describe particular objects by means
of their attribute values, expressed as equalities,

att = val

and by their links to other objects, expressed as lines between the connected objects.
Object specifications are labeled with an optional name and the name of their class,
all underlined. Figure 1.4 shows a lift system with two lifts and five floors as an object

lift1: Lift lift2: Lift

door1: Door door2: Door

ls3: LightSet

ls4: LightSet

ls5: LightSet

ls6: LightSet

ls1: LightSet
ls7: LightSetls8: LightSet

ls9: LightSet

ls10: LightSet

ls11: LightSet

ls12: LightSet

ls2: LightSet

FIGURE 1.4 Object diagram of a specific lift system.
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diagram. Notice that a model such as Figure 1.1 can be considered to be an object
diagram relative to the UML metamodel as a class diagram.

1.4 USE CASES

Use cases are often the earliest UML modeling notation used within a development.
Use cases identify how a system will be used and which categories of external agents
(human users or other external agents) can interact with the system. The notation is
quite simple, using ovals to represent the use cases and stick figures to represent the
agents (known as actors in UML).

Figure 1.5 shows the use case diagram of the lift system. This diagram indicates
that a user of the system can carry out three functionalities by interacting with it: to
request a lift to come to the floor (external request), to request a lift to go to a floor
(internal request), and to raise an alarm. Use cases provide a “black box” view of the
functionality of the system, omitting the internal details of how the functionality is
carried out by the execution of interacting objects.

One use case may inherit from another if it represents a special case of its ancestor.
Similarly, one actor may inherit from another actor, to represent that it is a specialized
form of its ancestor. In particular, it will inherit all the connections that its ancestor
has with use cases.

Part of the metamodel for use cases is shown in the metamodel of Figure 1.6, which
includes many of the dynamic modeling elements of UML 2.1. Textual notations can
also be used to add further details of use cases, such as pre- and postconditions, events
that trigger the use case, and the data transfered within an interaction.

Lift System

Request lift at floor

Request lift to go to floor

Raise alarm

User

FIGURE 1.5 Use cases of a lift system.
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*
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FIGURE 1.6 UML 2.1 behavior metamodel.

1.5 STATE MACHINES

State machines describe how an object or system changes over time and what events
(such as operation calls) it may respond to and how it responds to them. Figure 1.6
shows a metamodel for state machines. Note that this metamodel is additive to the class
diagram metamodel: Where a metaclass such as BehavioralFeature occurs in both
metamodels, it is considered to have all the features and generalization relationships
specified in both. Figure 1.7 shows the behavior of an individual lift as a state machine.

1.5.1 State Machine Notation

There are two key metaclasses in the state machine notation:

• State: models a situation during which some (possibly implicit) invariant
condition holds.
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idle

Moving up

Moving down

Doors opening

Doors open

Doors closing after(30)

doors open

doors close

doors close
[no requests above or below]

arrive at
requested
floor

arrive at requested
floor

doors close
[requests below and
not above]

request below 

request
above

[requests above]

at requested
floor

FIGURE 1.7 State machine of a lift.

• Transition: a directed relationship between a source-state configuration and a
target-state configuration, representing how the state machine responds to an
occurrence of an event of a particular type when the state machine is in the
source state.

A state represents some phase during the lifetime of an object or system which
is significant for its behavior (it may have different behavior in different states). A
state is occupied for some interval of time, and is entered and exited by means of
transitions. The notation for a state is a rounded rectangle, and transitions are drawn
as arrows from their source state to their target state. The initial state, from which the
behavior begins, is indicated by a transition whose source is shown by a black circle.
An initial state is expressed in the metamodel as a Pseudostate with kind= initial.

State machine diagrams can be used to model both the environment of a system
and the system’s behavior. The description can be of the behavior of an individual
operation (in which case, states in the diagram represent intermediate states during
execution of the operation, and transitions represent steps in the algorithm of the
operation) or of the behavior of an object over all possible operation executions (states
represent states of the object when no operations are executing on it, and transitions
show what happens when an operation executes).

States have names, and can also have invariants, written within square brackets
inside the state. Invariants of a state are conditions that hold true while the system is
in the state.
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Transitions are labeled

event(parameters)[guard]/actions

where event represents the event that triggers the transition. If the state machine
models the environment, this event can be some real-world event. In models of
object/system behavior it is usually an operation call on the object or system described
by the state machine. The parameters are then the formal parameters of the operation.

A guard is an additional condition that must be true for the transition to take place,
and actions are actions (such as operation calls on the same or other objects) that take
place when the transition is followed (the effect of a transition in the metamodel).
Alternatively, for protocol transitions, a postcondition [Post] can be specified. All of
these parts of the transition label can be omitted.

In the situation that an operation has some transition in a state machine, but there
is no transition with a true guard for this operation from the current state of this state
machine, there are three variations on the semantics:

1. The operation can take place, but has no effect, either on the state or on the values
of any feature of any object (skip semantics, also known as ignore semantics).

2. The operation can take place but has an undefined effect (error or precondition
semantics).

3. The operation cannot take place; any caller of the operation is blocked if they
try to execute it in such a case (blocking semantics).

Error semantics is the most general; it requires that we explicitly add transitions
for all cases (guard conditions) of an operation from a state if the operation has
some transition in the model. Blocking semantics is appropriate for shared objects in
concurrent systems (e.g., an object that is attempting to place messages in a buffer
should be blocked if the buffer is already full).

If an operation has no transition in a model, it is assumed to be state independent
and not to change the state (it may, however, change the values of attributes according
to the definition of its postcondition in the class diagram).

State machines can describe the detailed steps of an operation; that is, they can
define an algorithm (platform independent or specific). In such state machines the
transitions have no explicit triggers; instead, they are triggered when their source state
is occupied, all internal activity of the state has been completed, and the transition
guard is true.

In UML there are two distinct varieties of state machine:

1. Protocol state machines: used to specify the intended pattern of calls on an
object. In such state machines the transitions have postconditions instead of
actions.

2. Behavior state machines: used to define object and operation behavior. These
have actions instead of postconditions. States in behavior state machines may
have entry actions, which are executed whenever the state is entered, and exit
actions, which are executed whenever the state is exited. They may also have
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a do action, which starts when the state is entered and is terminated when the
state is exited (if it has not already finished execution). Skip semantics is usually
assumed for behavior state machines.

Transitions may be triggered by time-based events such as timeouts. A transition
with trigger after(t) leaving a state s means that the transition is triggered whenever
s has been occupied continuously for t time units.

A transition may be internal to a state, which means that when it occurs it does
not cause exit or entry of the state (or entry or exit of any state contained in the state).
Internal transitions of a state are written inside the state, without an arrow.

A local transition does not exit its composite source state, but may exit or enter
states within the composite state. Local transitions are drawn within the composite
state, starting at its boundary and ending at a state within the composite state.

1.5.2 Composite States

States may have an internal structure of states, which represent subphases of the phase
(of an object/system life cycle or operation processing) represented by the state. The
substates of a state are analogous to the subclasses of a class. In terms of a metamodel
(Figure 1.6), a composite state s has s.region nonempty; the elements r.subvertex for
r ∈ s.region are then the substates of s, which can be normal states or pseudostates.

Two special forms of state are final states, denoted by a bull’s-eye symbol, which
denotes termination of the containing state, and the history state, denoted by the
H symbol. A transition to a history state has as actual target the most recently occupied
substate of the composite state containing the history state.

Composite states with single regions (region has size 1) are termed OR states;
composite states with multiple regions are termed AND states. When the system is
in an OR state, it is in exactly one direct substate of this state; when it is in an AND
state, it is in all regions of the state.1 AND states are divided into concurrent parts
(the regions), which describe parts of the life cycle of an object (or operation) that
can happen semi-independently.

It is possible to have any number of regions in a concurrent state, and to refer to
the state of one region within another. Figure 1.8 shows a lift state machine with three
states organized as substates of an OR composite state At floor. A transition from a
composite state, such as doors close, abbreviates a set of transitions, one from each
of the immediate substates of the composite state.

Transitions may have multiple sources and multiple targets, but all the sources must
be in different regions of some AND state, and similarly for the targets. By default, a
region of anAND composite state is entered at its initial state, an action termed implicit
entry. An example of an AND state is shown in Figure 1.9, where the lift and the lift
door are represented as two regions of the same AND composite state. The initial
state of this composite state is the tuple (idle,closed) of the initial states of its regions.

1 UML 2 allows a variant semantics in which membership of an OR state is possible without membership
of any contained state (concrete OR state), but this is unusual.
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FIGURE 1.8 State machine of a lift with an OR state.
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FIGURE 1.9 State machine of a lift with an AND state.
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s1
s op

op

t2

t1

FIGURE 1.10 Priority example.

1.5.3 Transition Priorities

Sometimes, transitions can exist for the same event both on a state and on a state
contained within it (e.g., for the operation op in Figure 1.10, there are transitions from
both s and s1). In these cases the transition with the source most closely enclosing
the current state is considered to have the highest priority and to take effect. Thus, in
state s1, if op is triggered, a transition to t2 takes place.

1.6 OBJECT CONSTRAINT LANGUAGE

The Object Constraint Language (OCL) is a textual notation used to supplement the
graphical elements of UML models and to define in more detail the properties of
elements of these models. Constraints written in OCL notation can be attached to any
elements of a UML model, but their normal uses are:

• Class invariants: constraints attached to a class that define for each object of the
class what logical properties its features should satisfy at time points when no
operation is executing on the object.

• Operation preconditions: constraints attached to an operation that define what
properties should be true at initiation of the operation for it to execute normally.

• Operation postconditions: constraints attached to an operation that define what
properties should be true at termination of the operation when it executes
normally.

• State invariants: constraints attached to states that define what properties should
be true of an object when it is in the state.

• Transition guards: constraints attached to a transition that define what properties
should be true at initiation of the transition for it to execute normally.

• Transition postconditions: constraints attached to a transition that define what
properties should be true at termination of the transition when it executes
normally.
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FIGURE 1.11 Lift class diagram with constraints.

A version of the lift class diagram, enhanced with constraints, is shown in
Figure 1.11. The class invariant of Door expresses that the door open sensor dos
and door closed sensor dcs are never both on:

dos = true implies dcs = false

The class invariant of Lift specifies that the doors are always closed when the lift is
moving:

lm �= stop implies door.dcs = true

The constraint on LightSet expresses that at most one light in the set is lit:

lights→select(lit = true)→size() ≤ 1

The precondition of switchon(i : Integer) expresses that i is an index of a light in
the set:

1 ≤ i and i ≤ lights→size()
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FIGURE 1.12 State machine of a lift with invariants.

TABLE 1.1 Example Operators on OCL Basic Types

Type Operations

Integer *, +, −, /, abs()
Real *, +, −, /, floor()
Boolean and, or, implies, not
String size(), concat(s: String), substring(lower: Integer, upper: Integer)

The postcondition sets light i to lit:

lights→at(i).lit = true

Figure 1.12 shows the use of state invariants in a lift state machine.
OCL provides the basic types Boolean, Integer, Real, and String and the usual

operations on these, such as+ between numbers and obtaining a substring of a string
(Table 1.1).

There are also four types of collection (Table 1.2), corresponding to the four
possible combinations of the isOrdered and isUnique meta-attributes of a Property
in the metamodel. Sets or bags arise as the values of unordered association ends (e.g.,
l.lightsets for a lift l), while ordered sets or sequences arise as the values of ordered
association ends (e.g., s.lights for a light set s).
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TABLE 1.2 OCL Collection Types

Type Properties

Set unordered collections, without duplicate elements
Bag unordered collections, possibly with duplicate elements
Sequence ordered collections, possibly with duplicate elements
OrderedSet ordered collections, without duplicate elements

TABLE 1.3 OCL General Collection Operations

Operator Meaning

s→size() Number of elements in s, including duplicates
s→includes(x) True if x ∈ s, false otherwise
s→excludes(x) not(s→includes(x))
s→count(x) Number of times x occurs in s
s→isEmpty() True if s has no elements, false otherwise
s→notEmpty() True if s has elements, false otherwise
s→sum() + combination of all elements of s (numerics)
s→forAll(P) True if all elements of s satisfy P
s→exists(P) True if some element of s satisfies P
s→select(P) Collection of elements of s

for which P is true
s→collect( f ) Collection formed by applying f

to each element of s

TABLE 1.4 OCL Specialized Collection Operations

Operator Meaning

s→union(t) For sets: s∪ t; for bags: bag union; for ordered sets and
sequences: the elements of s followed by those of t

s→at(i) The ith element of sequence or ordered set s

Table 1.3 shows some operators that apply to all types of collection. Collection
operators are written following an arrow symbol (→) from the collection in which
they operate.

Collect expressions are abbreviated in the common case that one feature is applied
after another [e.g.: l.lightsets.lights abbreviates l.lightsets→collect(lights)]. These
may result in bags or sequences. In this example the result is effectively a set (a bag
without duplicates) because two different lightsets will have disjoint collections of
lights. Sets and sequences have additional specialized operators (Table 1.4).
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1.7 INTERACTION DIAGRAMS

Interaction diagrams represent the detailed behavior of a system in terms of objects,
messages between objects, operation executions, states that hold at particular times,
and durations between time points. Two specialized forms of interaction are used in
UML: communication diagrams (termed collaboration diagrams in earlier versions
of UML), which focus on the ordering of messages, and sequence diagrams, which
explicitly represent time.

1.7.1 Sequence Diagrams

The basic elements of a sequence diagram interaction are specifications of operation
executions, messages, or points at which conditions hold, on one or more object
lifelines (Figure 1.13). In addition, the points at which an object is created or destroyed
can be specified. It is also possible to specify the duration between two time points.

Time is shown visually by the y-axis of the diagram, increasing from top to bottom.
The vertical lines denote (the lifelines of) objects and are identified by an object
name and a class: object : Class. Messages are shown as arrows between the object
lifelines. Returns from synchronous operation calls are shown as dotted-line arrows
in the direction opposite to the call, as in Figure 1.13. The execution of an operation

ax: A

bx: B

[ G ]

m()op()

m_return()

{0..10}

m()

FIGURE 1.13 Sequence diagram.
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message
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(return from
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message (operation
Synchronous

Asynchronous

FIGURE 1.14 Message types.

on an object is shown as a shaded rectangle on the lifeline, representing the duration
of the execution.

Durations can be specified by identifying two time points; the notation {a..b} then
refers to the minimum a and maximum b allowed difference between these times. In
Figure 1.13 the duration specification asserts that the time between the sending of m()
to bx and the reception of the result of this message is no more than 10. Figure 1.14
shows the various types of message that can be drawn between lifelines.

Interactions can be combined by a number of operators:

1. Ordering along lifelines. An event time vertically above another on the same
lifeline is considered to precede it.

2. Parallel composition. par(I1, I2) combines two interactions, I1 and I2, without
any order restrictions on the relative times of their elements. Ordering within
I1 and I2 is maintained.

3. Strict sequencing. The strict sequential composition strict(I1, I2) places I1

entirely above I2; every event time from I1 precedes every event time of I2.

4. Weak sequencing. The weak sequential composition seq(I1, I2) of two interac-
tions is the union of I1 and I2, together with the restriction that for each lifeline,
every event time from I1 on the lifeline precedes every event time of I2 on the
same lifeline.

5. Alternative. The meaning of alt(E, I1, I2) is the same as I1 if E holds at the first
event occurrence of the interaction; otherwise, it is that of I2.

6. Negation. The traces of I are forbidden traces of neg(I).

Interactions are used to describe intended scenarios of system behavior, such as
different cases of execution of a use case.
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1.7.2 Communication Diagrams

Communication diagrams are a form of interaction diagram that shows interactions
between objects by means of messages and numbering of these messages, instead of
by representing time graphically. The elements of these diagrams are:

• Object specifications
• Links of associations between objects
• Messages, with a number sequence and other, optional annotations, such as a

condition

The ordering of successive messages is shown by numbering: Messages numbered
1.1, 1.2, 1.3, and so on, are substeps of message 1, executed in order. If, in turn,
message 1.1 had subparts, these would be numbered 1.1.1, 1.1.2, and so on.

Conditions placed on a message mean that the message is sent only if the condition
is true. Concurrency can be indicated by alphabetical indexes: messages 1.1a and 1.1b
execute concurrently within message 1.1.

As on sequence diagrams, asynchronous messages are shown by open arrowheads,
and synchronous messages are shown by filled black arrowheads.

Iteration is shown by a condition ∗[i= 1..n], meaning that a message is to be sent
n times.

1.8 ACTIVITY DIAGRAMS

Activity diagrams provide a means to describe behavior composed of collections of
tasks (such as the algorithms of operations, or the workflows of business processes),
in a graphical manner. UML Superstructure 2.0 [2] defines activities and actions as:

• Activity: specification of parameterized behavior as the coordinated sequencing
of subordinate units whose individual elements are actions.

• Action: represents a single step within an activity: that is, one that is not further
decomposed within the activity. An action may be complex in its effect and not
atomic.

Activities are a generalization of sequential programming constructs such as
sequencing, conditionals, and loops. They can also be regarded as a generalization of
state machines in which the states represent actions within the activity. Figure 1.15
shows an activity describing a workflow. The arrowed lines denote sequencing of
actions, and there are also choice points (diamonds) and parallel flows (starting and
ending at vertical bars).

1.9 DEPLOYMENT DIAGRAMS

Deployment diagrams show how the artifacts (i.e., executable code, data sources, etc.)
of a system are allocated to nodes (computational resources). They show a specific
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FIGURE 1.15 Problem workflow.

physical architecture of devices upon which the system will operate. Artifacts are
drawn as class rectangles with the stereotype�artifact�.

Nodes are drawn as three-dimensional cubes. Nodes may represent devices or
execution environments; devices are hardware components with computational capa-
bilities, such as a computer or modem. Execution environments are software platforms
upon which specific forms of software artifacts can be deployed (e.g., a database server
can host particular databases).

Communication paths between nodes are drawn as solid lines, with directionality
and multiplicity of the ends indicated. Such paths may represent physical wired
connections or wireless data transmission. Deployment of an artifact on a node can
be shown by drawing the artifact within the node or by a dashed �deploy� arrow
from the artifact to the node.

1.10 RELATIONSHIPS BETWEEN UML MODELS

Typically, a UML specification will consist of a set of interrelated UML models
(Figure 1.16):

• A class diagram (CD).
• One or more use cases associated with a CD. Each use case will be related to one

of more classes of CD, using instances of these classes and operations on these
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FIGURE 1.16 Relationships between UML models.

instances. The use cases may be given detailed definitions using behavior state
machines, or activities, or examples of their behavior can be given by means of
sequence diagrams or interactions.

• Each class and interface of CD may have an associated protocol state machine
that defines the intended life cycles of its instances. This state machine may
be refined to a behavior state machine. Operation behavior can be shown both
in the class diagram, using pre- and postconditions, and on the (protocol or
behavior) state machine of the class. It is usual to show state-independent and
local behavior in the class diagram, and state-dependent behavior and invocation
of supplier operations in the state machine.

• Operations of classes in CD may have associated behavior state machines which
define detailed algorithms for these operations. These algorithms should satisfy
any pre- or postspecification of the operations.

1.11 SUMMARY

In this chapter we have described the main features of the class diagram, state machine
diagram, use case, activity diagram, sequence diagram, communication diagram, and
deployment diagram notations of UML 2.
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CHAPTER 2

THE ROLE OF SEMANTICS
KEVIN LANO
Department of Computer Science, King’s College London, London, UK

2.1 INTRODUCTION

In this chapter we explain semantics and the role it plays in the definition and
application of a modeling language: specifically, UML.

The term semantics has been used in many different, inconsistent ways in com-
puting. For example, static semantics is used in UML documents to mean additional
syntactic constraints on the notation elements. In this book, semantics is defined as
follows:

• Semantics: a precisely defined mapping of the elements of a language into a
precisely defined domain of values.

The mapping is termed the semantic mapping. The domain of values is termed
the semantic domain. To each construction that it is possible to form in the language
(e.g., each model that obeys the UML 2.0 metamodel), the semantic mapping gives
a precise semantic representation or denotation (Figure 2.1).

Language
(eg, as defined by 
metamodel or 
other syntax 
definition)

Semantic domain
(eg, set−theoretic 

mathematical
formalism)

structures or other 

Semantic mapping

FIGURE 2.1 Semantics of a language.

UML 2 Semantics and Applications. Edited by Kevin Lano
Copyright © 2009 John Wiley & Sons, Inc.
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Often, the mapping is neglected in considerations of semantics, but it is an essential
part of a semantic definition of a language, and it should be defined so that there are
no ambiguities or gaps in the semantic assignment.

The semantic domain may consist of purely mathematical constructs, such as sets,
functions, or algebras, or it may itself be a language, such as B, Object-Z, or even
a subset of the source language. For example, a UML class C could be interpreted as
a set C, as an Object-Z class, or as a B module.

A semantics is often defined in a compositional manner; that is, the elements of
a complex language construct are mapped into their own individual representations;
then the semantics of the construct as a whole is assembled, according to a rule, from
these. The semantics of expressions is usually defined in this way. For example, the
OCL expression s->union(t) could be given the semantics s ∪ t, where s and t are the
semantic denotations of the expressions s and t, as mathematical collections, and ∪
is the mathematical collection union operator.

2.2 DIFFERENT SEMANTIC APPROACHES

The following are some alternative approaches to assigning semantics to a language
that have been used for UML:

• Algebraic: maps the language constructs into a mathematical algebra. For exam-
ple, Meng and Barbosa [29] interpret sequence diagrams as elements of a
co-algebra.

• Axiomatic: maps language constructs into logical theories, consisting of mathe-
matical structures together with axioms defining their properties. For example,
Lano [23] interprets UML models as theories in a real-time logic.

• Metamodeling: defines a language L1 and its semantics as a model in a language
L2 (possibly the same language as L1) [5].

• Operational: maps a language into structures of an abstract execution environ-
ment. For example, Lilius and Paltor [26] define the semantics of state machines
using abstract programming constructs.

• Transformational: maps a language L1 into another language L2, which already
has a semantics, in order to assign a semantics to L1 [13].

Different approaches have different advantages and disadvantages and support
different forms of analysis. Algebraic approaches are particularly good for reasoning
about the equality of models (e.g., for demonstrating the commutivity and associativ-
ity laws for sequence diagram operators) [29]. Axiomatic approaches support general
reasoning and a comprehensive expression of language features, but at the cost of
using elaborate formalisms for which support tools may not exist. Metamodelling
and transformation approaches require the existence of a language L2 with a well-
defined semantics. Use can then be made of tools for L2 to analyze models in L1.
If L1 and L2 are quite different (e.g., UML and B), the mapping of languages may
be difficult to define and apply. Results of semantic analysis performed in the second
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language may also be difficult to relate to the original language. If the languages are
the same, or L2 is a subset of L1, the reduction of L1 to L2 introduces a semantic
circularity, which must be resolved by giving an independent semantics to L2.

2.3 APPLICATIONS OF SEMANTICS

The definition of a semantics for any significant language is a substantial task, so
we could ask why it is necessary or useful. There are two general categories of
application of a language semantics: (1) to the language itself, to ensure its soundness
and correctness, and (2) to the use of the language (e.g., to support the definition of
tools to create and process models in the language).

In the first category are the following applications:

• Language validity. Languages are constructed for a purpose, to enable language
users to express concepts using appropriate notations. Defining a semantics for
the language can help to check that the notations are complete (they express the
full range of concepts they are intended to express) and consistent (the notation
is unambiguous).

• Improving a language. The semantics may uncover cases where the language
has unclear or ambiguous meanings (e.g., the rules for compound transition
priorities in UML state machines, or for history states) [6]. Corrections to these
problems can be based on the semantics [21].

In the second category are:

• Model validity. A semantics provides a way to analyze the meaning of individual
models in a language, to check that these models are internally consistent or have
other desirable semantic properties. For example, if we translated the class of
Figure 2.2 into B, we could apply a theorem-proving tool that would quickly

C

x: Integer

x <= 15

incx()
post: x = x@pre + 1

FIGURE 2.2 Inconsistent class.
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uncover the inconsistency between the definition of the operation postcondition
and the class invariant.

• Validating transformations. Transformations of one model into another should
normally preserve the semantic properties of the starting model. Proposed trans-
formations can therefore be checked for correctness by comparing the semantics
of the start and result models. The situation is similar for code generation from
models if a semantics for the resulting implementation language exists.

• Language tool definition. Semantics can be used to define tools for the lan-
guage to ensure that analyses and transformations supported by the tools are
semantically correct.

2.4 UML SEMANTICS

The documents of the UML 2 standard use metamodeling to define the syntax of
UML and some parts of the semantics. Informal natural language is also used to
define the semantics. Specifically, the UML is defined as a model of the metaob-
ject framework (MOF) metamodel, which is itself defined using a subset of UML
notation (Figure 2.3). For example, the concept of a class is defined in the UML
metamodel by the metaclass Class, with associated sequences of ownedAttributes,
ownedOperations, and other features (Figure 2.4).

This metamodel is itself defined in a subset of the class diagram notation of
UML. The UML infrastructure document [36] precisely defines this metacircular

M3
(MOF)

M2
(UML)

M1
(User model)

M0
(Run−time instances)

Class

Attribute

Person

name: String

p1

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

Class

FIGURE 2.3 UML metamodel levels.
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32 THE ROLE OF SEMANTICS

construction, which ultimately relies on an intuitive understanding of the elemen-
tary UML constructs of MOF to resolve the circularity. “In order to understand the
description of the UML semantics, you must understand some UML semantics”
[36, p. 22].

The semantics is described primarily in natural language, which explains the sig-
nificance of the syntactic elements defined using metamodeling. For example, the
semantics of a class is defined as follows [36, p. 94]:

Classes have attributes and operations and participate in inheritance hierarchies. Multi-
ple inheritance is allowed. The instances of a class are objects. When a class is abstract
it cannot have any direct instances. Any direct instance of a concrete (i.e., non-abstract)
class is also an indirect instance of its class’s superclasses. An object has a slot for each of
its class’s direct and inherited attributes. An object permits the invocation of operations
defined in its class and its class’s superclasses. The context of such an invocation is the
invoked object. A class cannot access private features of another class, or protected fea-
tures on another class that is not its supertype. When creating and deleting associations,
at least one end must allow access to the class.

This description is quite informal and could not be used to prove properties about
classes, especially since some terms are left undefined. Does access mean that the
feature can be used in a class invariant or other constraint of the class, for example?
The description is also incomplete and says nothing about the dynamic semantics of
classes, such as the effect of object creation or deletion.

Two additional problems with the semantic descriptions in the official UML doc-
uments are that they are scattered in many pieces throughout the documents: To
understand the semantics of classes it is necessary to refer to the descriptions of oper-
ations, constraints, generalizations, and other elements upon which classes depend. A
formal semantics usually integrates all these aspects. In addition, semantic variation
points are defined, where two or more alternative meanings are allowed for the same
construct to accommodate alternative existing uses and interpretations of the notation.
For example, different interpretations of feature redefinition are given [36, p. 76]. Any
semantics must therefore choose one specific interpretation or provide the flexibility
to specify any of the alternative interpretations, that are allowed. Apart from these
general difficulties, particular problems remain with individual UML notations and
with the relationships of these notations to each other.

2.4.1 Class Diagrams

Class diagrams have a generally clear and unambiguous semantic meaning in terms of
sets of objects and relationships between these sets, and most work on the semantics
of class diagrams has agreed on the meaning of the main elements of these diagrams.
However, particular concepts, such as aggregation and composition, can be given sev-
eral different semantics, each of which appears consistent with the UML documents
[1]. Other concepts, such as the definition of generalization set disjointness, seem to
be stated incorrectly in the UML standard.
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The notation is necessarily extensive and complex since it serves multiple purposes,
being used for system specification, design, and implementation in addition to domain
and environment modeling. Some aspects, such as association end ownership and
navigability, are relevant primarily to the design uses of class diagrams and so can be
omitted from formal semantics of class diagrams used for specification.

2.4.2 State Machines

UML state machines have been given semantics primarily in an operational manner
[21, 26]. However, these semantics have uncovered a considerable number of semantic
unclarities, ambiguities, and excessive complexities in state machine semantics: for
example, in the definitions of transition priorities, history states [6], and the entry
and exit actions executed when composite states are entered and exited. In addition,
a large number of syntactically similar state machine and state chart notations exist
with divergent semantics [4]. These problems may be an indication that state machine
concepts, especially those dealing with composite states and history states, need
revision and simplification.

Extensions of state machine notation have been proposed as a result of semantic
development; in particular, the introduction of state invariants for all forms of UML
state machine would be useful to improve the capabilities for state machine verifi-
cation of operations and objects (Chapters 8 and 13). There may also be scope for
rationalization of the state machine metamodel using the similarity of the State and
Classifier metaclasses, for example.

2.4.3 Use Cases

Use case diagrams can be given a semantics by using semantics for class diagrams,
state machines, and other behavior notations for UML, since use-case actors are a
special kind of Classifier, and use cases are special kinds of BehavioredClassifier,
with an attached Behavior, such as a state machine. The relationships includes and
extends between use cases can be given a general meaning in terms of execution
occurrences (every execution of the including use case contains an execution of the
included use case, and there exists an execution of the extended use case that con-
tains an execution of the extension use case). Fine-grained semantics of use cases is
inappropriate, since the notation is intended for use at early stages of development,
not for detailed design [39].

2.4.4 Interactions

Interaction diagrams have been given denotational or algebraic semantics which
attempt to formalize particular interpretations of the semantics intended for these
diagrams described in the UML standard, based on sets of allowed and forbidden
traces. The UML documents appear to allow different interpretations, especially for
the forbidden traces of interaction operators. The notation itself can be considered
misleading, as the use of vertical position in a sequence diagram to indicate relative
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m1

m2

c: C d: D

FIGURE 2.5 Misleading sequence diagram.

time of occurrence of events does not always apply if the events are on different life-
lines. For example, Figure 2.5 appears to show that the “receive” of m1 occurs before
the “send” of m2, but this is not actually specified by the diagram, which allows the
receive of m1 to occur after the send of m2. In addition, the diagrams do not pro-
vide an unambiguous way to connect the reception of a message and the operation
execution triggered by it. In Figure 2.5 the temporally first operation execution on d
may actually arise from m2, not from m1. Hence, protocols such as “First come, first
served” cannot be specified. Further semantic problems with the notation, such as the
lack of a notation for event queueing, are identified in Chapter 9.

Unlike state machines and class diagrams, there is also ambiguity over how interac-
tions should be used: Are they simply describing examples of expected or forbidden
behavior of a system, or are they specifying in a complete manner the behavior
required? For real-time and critical systems the latter would be desirable, but this
seems to require revision of the notation [22].

2.4.5 Object Constraint Language

For OCL, different semantics have been defined, and two different semantic defi-
nitions, based on metamodeling and set theory, are given in the OCL standard. In
general, OCL has a clear and unambiguous semantics, although its semantics depends
to a degree on the semantics of the notations with which it is used. The specification
notation and semantics of OCLMessage remain incomplete: No timestamps of send
or receive times are associated with the message or with the identity of the caller.



2.5 APPLICATIONS OF SEMANTICS TO UML 35

2.4.6 Unified Semantics for UML

There have been few attempts at a unified semantics of UML because of the size
and complexity of the entire language and the unclear relationships between several
models. The overlap between state machines and activities and between the various
forms of interaction diagram is one example, as is the lack of a precise relationship
between state machines and interactions. Two attempts at a unified semantics are
described in this book: the UML Semantics Project system model (Chapters 3 and 4),
which defines a mathematical model of the informal global semantics described by
the OMG [33, chapter on common behaviors], and the axiomatic semantics for class
diagrams and state machines described in Chapters 6 and 8. These do not, however,
cover all cases of activity diagrams or interactions.

The current state of UML semantics research enables a “safe” subset of UML to
be defined, on which a complete mathematical semantics supporting proof, model
checking, and other analyses can be assigned. This subset would include class dia-
grams using the metamodel of Figure 2.4, state machines without composite states,
use cases, and a large subset of OCL.

2.5 APPLICATIONS OF SEMANTICS TO UML

In this section we survey research that has used a precise semantic analysis to identify
flaws, such as inconsistencies and incompleteness, in the UML language itself, and
to identify possible improvements for future versions of UML.

2.5.1 Core Metamodeling Semantics of UML:The pUML Approach

Evans and Kent [5] propose a precise denotational semantics for a core of UML and
use this to identify incompleteness in the informal semantics of the UML documents,
particularly with regard to inheritance and instantiation. Two specific omissions from
the UML semantics are (1) a constraint enforcing that instances of a classifier should
also be indirect instances of the parents of this classifier, and (2) a constraint expressing
the fact that instances cannot be instantiated from arbitrary classifiers, only from a
direct classifier and its parents. Evans and Kent propose additional OCL constraints
to enforce these properties. Incompleteness in the semantics of packages is also
addressed.

2.5.2 A UML Semantics FAQ

Gogolla et al. [9] identified several semantic inconsistencies between various UML
documents and incompleteness in the informal semantics contained in these docu-
ments. One example of incompleteness identified is that it is impossible to determine
from the informal semantics if the two alternative ways of entering and exiting an
orthogonal state (Figure 2.6) are semantically equivalent. A precise semantics would
be able to answer this question.
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FIGURE 2.6 Alternative orthogonal state models.

2.5.3 Detecting OCL Traps in the UML 2.0 Superstructure

Bauerdick et al. [2] apply the software tool USE (UML-based specification environ-
ment) to a semantic analysis of the OCL constraints used in the definition of the UML
2.0 superstructure. Many errors were discovered, ranging from incorrect use of OCL
operators to inconsistent use of names for metaclasses and metafeatures between the
OCL constraints and the superstructure class diagrams. Syntax and type errors were
mainly uncovered; neither theorem proving nor animation was carried out to identify
more subtle flaws.

An example of a type error is the OCL defining the operation visibleMembers() :
Set(PackageableElement) of Package:

visibleMembers(): Set(PackageableElement) =
member->select( m | self.makesVisible(m))

However, member of Package has type Set(NamedElement), a supertype of the
result type required. This problem remains in version 2.1.1 of UML [33, p. 110].
A total of 361 specific errors were found in the 246 OCL constraints in the UML 2.0
superstructure document.

2.5.4 29 New Unclarities in the Semantics of UML 2.0
State Machines

Fecher et al. [6] identify semantic problems with the UML state machine notation,
in particular in the definitions of transition priority and the meaning of history states.
The authors point out that the informal definitions in the UML documents are incom-
plete and ambiguous: “The priority of joined transitions is based on the priority
of the transition with the most transitively nested source state” [32, p. 547]. UML
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FIGURE 2.7 Priority examples [6].

superstructure 2.0 [32, p. 548] provides an algorithm for calculating the fired set of
transitions when an event occurs. This algorithm involves starting from “innermost
nested simple states,” which does not resolve cases such as Figure 2.7. We assume
that all the transitions are triggered by the same event and have true guards.

Fecher et al. also identify problems with the semantics of history states:

1. It is not clear if default transitions from history states must go to normal states
(not pseudostates or final states).

2. The notion of “last active” state is ambiguous; it is not clear if this can include
final states of composite states.

3. Do history states of nested states affect deep history entry to these states?

4. Does the reset of the last active state in a composite state p on entry to p’s final
state also reset the records of the last active state in its substates?

2.5.5 Semantics of OCL Specified with QVT

Markovic and Baar [28] define a semantic mapping from OCL to a semantic domain
by utilizing model transformations to express the evaluation of OCL expressions. The
transformations apply to abstract syntax tree representations of OCL expressions and
define how value bindings propagate through these trees as composite expressions
are evaluated from the values of their components. The transformations are defined
using the QVT graphical specification notation for transformations.

To define this semantics, the OCL metamodel needed to be extended to support
convenient evaluation of expressions. An interesting point raised is that OCL as
defined does not specify if dynamic binding is to be used to evaluate query operations
on objects defined in an inheritance hierarchy.
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2.6 APPLICATION OF SEMANTICS TO THE USE OF UML

A wide range of formally based analysis tools now exist for UML, which provide
error detection, animation, and proof capabilities for UML specifications, primarily
for class diagrams with OCL, and for state machines.

2.6.1 Validating UML and OCL Models in USE

Gogolla et al. [10] describe application of the USE tool to the validation of UML
models. Snapshots of possibly complex class diagrams can be constructed, as object
diagrams satisfying the class diagram, and OCL formulas are then evaluated on the
snapshots to check that required validation properties hold. The emphasis is on testing
the class diagram at the specification stage and hence finding defects at an early
stage of development, thus saving costs in design and implementation of incorrect
specifications. The underlying semantics used for OCL is the denotational semantics
of Richters and Gogolla [37].

2.6.2 vUML: A Tool for Verifying UML Models

Lilius and Paltor [27] define a technique for verifying UML state machine models
automatically, by translating these to the PROMELA language of the SPIN model
checker. The model checker can then detect flaws in the state machine, such as
deadlocks, livelocks, reaching unintended states, violation of state invariants, event
queue overflows, and sending messages to terminated objects. The results of output
are presented as sequence diagrams, so users do not need to know the PROMELA
notation or use SPIN directly. The operational state machine semantics [26] is used to
underpin the translation and verification. A related approach is presented by Jussila
et al. [15].

2.6.3 Model Checking UML State Machines and Collaborations

Shafer et al. [38] also use PROMELA and SPIN to verify state machines but encode an
operational semantics for state machines as a process (type) in PROMELA instead of
statically translating individual state machines into PROMELA. This makes the trans-
lation more explicit and visible and easier to modify. The disadvantage is increased
computation time. Shafer et al. identified various problems in the state machine lan-
guage, in particular that the lack of a specified order in many cases of concurrently
executed actions (e.g., exit actions of regions of the same AND state) causes ineffi-
ciency in verification, since a verifier must consider all possible alternative orders of
execution.

2.6.4 Automated Formal Verification of Model Transformations

Varro and Pataricza [45] define a model-checking technique for testing that a transfor-
mation preserves selected properties on a model-per-model basis. UML statecharts
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are translated into Petri nets, with model checking of selected semantic correctness
properties p on the source model, and of a corresponding property q on the target
model, to verify that p is preserved, in interpreted form, in the target model.

This technique does not provide a means to verify transformations on a global
basis (that all properties of the source model are preserved in the target). By con-
sidering model transformations as operations on metamodels, specified by pre- and
postconditions, we could in principle apply standard verification techniques to prove
these operations correct (e.g., by translation into the language of a proof tool such as
B) [18].

2.7 SUMMARY

In this chapter we have introduced the concepts of semantics that are used in the
remainder of the book and have described some of the issues that need to be addressed
when defining semantics for UML. Despite the problems that remain with UML
semantics (formal or informal), the UML is the most comprehensive and well devel-
oped notation for software modeling. The current state of semantics research for
UML already provides a basis for precise specification within a substantial subset of
UML and has contributed to the development of powerful analysis tools for UML,
and to the evolution of UML itself. Further revision of UML to improve its seman-
tics will extend the scope of research and applications of UML semantics to more
comprehensive subsets of the language.
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CHAPTER 3

CONSIDERATIONS AND RATIONALE
FOR A UML SYSTEM MODEL
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3.1 INTRODUCTION

Semantics definition for the Unified Modeling Language (UML) [8,33] is not an easy
task. Although considerable effort has been made, starting in the late 1990s [1,2,19],
no commonly agreed formal and integrated UML semantics exists. Broy et al. [3]
defined a system model as a semantic domain for the UML. The system model is
supposed to form a possible core and foundation of the UML semantics definition.
For that purpose, the definitions are targeted toward UML, which means that central
concepts of UML have been formalized as theories of the system model.

In this chapter we discuss the general approach and highlight the main decisions.
This material is important for an understanding of the system model definition given
in Chapter 4. Our work in this chapter is based on the second version of the system
model [3], which is the result of a major effort to define the structure, behavior, and
interaction of object-oriented, possibly distributed systems abstract enough to be of
general value, but also in sufficient detail for a semantic foundation of the UML. The
first version of the system model can be found in the work of Broy et al. [4–6].

3.2 GENERAL APPROACH TO SEMANTICS

The semantics of any formal language consists of the following basic parts [44]:

• The syntax of the language in question (here: UML), be it graphical or textual
• The semantic domain, a domain well known and understood based on a well-

defined mathematic theory

UML 2 Semantics and Applications. Edited by Kevin Lano
Copyright © 2009 John Wiley & Sons, Inc.
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• The semantic mapping: a functional or relational definition that connects both
the elements of the syntax and the elements of the semantic domain

This technique of giving meaning to a language is the basic principle of denota-
tional semantics: Every syntactic construct is mapped onto a semantic construct. As
discussed in the literature, there are many flavors of these three elements. Syntax can,
for example, be specified by grammars or metamodels. To stay formal, our approach
intends to use the abstract syntax of UML in a mathematical form that resembles
context-free grammars (examples are given by Cengarle et al. [10,11]). The term
system model was first used by Klein et al. [24] to denominate a semantic domain;
it defines a family of systems, describing their structural and behavioral issues. Each
concrete syntactic instance (in our case, an individual UML diagram, or even a part
of it) is interpreted by the semantic mapping as a predicate over the set of systems
defined by the system model. As explained by Harel and Rumpe [21], the semantic
mapping has the form

Sem : UML → P(Systemmodel)

and thus functionally relates any item in the syntactic domain to a set of constructs
of the semantic domain. The semantics of a model m ∈ UML is therefore Sem(m).

Given any two models m, n ∈ UML combined into a complex m ⊕ n (for any
composition operator ⊕ of the syntactic domain), the semantics of m ⊕ n is defined
by Sem(m⊕ n) = Sem(m)∩ Sem(n). This definition also works for sets of UML docu-
ments, which allows easy treatment of views on a system specified by multiple UML
diagrams. The semantics of several views (i.e., several UML documents) is given as
Sem({doc1, . . . , docn})= Sem(doc1)∩ · · ·∩Sem(docn). A set of UML models docs is
consistent if systems exist that are described by the models, so Sem(docs) �=Ø. As a
consequence, the system model supports both view integration and model consistency
verification.

In the same way, n ∈ UML is a (structural or behavioral) refinement of m ∈ UML,
exactly if Sem(n) ⊆ Sem(m). Formally, refinement is nothing other than “n is provid-
ing at least the information about the system that m does.” These general mechanisms
provide a great advantage, as they simplify any reasoning about composition and
refinement operators.

The system model described in this document identifies the set of all pos-
sible object-oriented (OO) systems that can be defined using a subset of UML
which we call “clean UML” described below. It relies on earlier work on system
models [1,2,9,20,24,40].

To capture and integrate all the orthogonal aspects of a system modeled in UML,
the semantic domain must have a certain complexity. Related approaches very often
contain a relatively small and specialized semantic domain, such as (pairs of) sets
of traces for UML interaction [22], template semantics based on hierarchical state
machines [42] or Kripke structures [43] for UML state machines, or sets of inequa-
tions to give semantics to class diagrams focusing on the satisfiability of association
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cardinality [8,18,30,38]. However, these approaches fail to give an integrated seman-
tics for different types of UML notations. Approaches with a broader scope are, for
example, those of Damm et al. [14], who define a UML subset called krtUML and
associate with each model a symbolic transition system. Kuske et al. [27] combine
class, object, and state machine diagrams using graph transformations. Engels et al.
[15] use dynamic metamodeling (also based on graph transformations) to define the
operational semantics of, for example, UML activities. Semantics for class and state
machine diagrams have been developed for different purposes. Snook and Butler
[39] examine the refinement of associations. Fecher et al. [17] provide a compo-
sitional semantics that considers activity groups. Lano [28] additionally supports
sequence diagrams and considers timing issues. Consistency between (simplified)
state machines and sequence diagrams is checked by Zhao et al. [45] using a model
checker. Consistency conditions are also proposed [29,35].

3.3 STRUCTURING THE SEMANTICS OF UML

Our long-term goal is to define the semantics of a comprehensive core of
well-defined concepts of UML. The overall strategy of giving semantics to a modeling
language is depicted in Figure 3.1. The basic idea expressed by this diagram is as
follows:

• Full UML is restricted to a subset (called clean UML) that can be treated
semantically without overly sophisticated constructs.

• Clean UML is mapped by transformations into simplified UML. In doing so,
derived constructs of UML are replaced by their definition in terms of constructs
of the core so that notational extensions and derived concepts can be eliminated.
UML provides a number of derived operators that do not enhance the expres-
siveness of the language, only the comfort of its use. Derived constructs can be
defined in terms of constructs of the core; for example, state hierarchy of UML’s
state transition diagrams can be neglected without losing expressiveness.

• Finally, simplified UML is mapped to the system model using a predicative
approach.

FIGURE 3.1 General strategy for the definition of the semantics of UML 2.0.
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The system model describes the “universe (set) of all possible semantic struc-
tures (each with its behavior).” The semantic mapping interprets a UML model as a
predicate that restricts the universe to a certain set of structures, which represents the
meaning of the UML model. To be able to map concepts faithfully from UML to the
system model, the system model has to cover a number of basic concepts expressible
in UML. Otherwise, the semantic mapping cannot be defined adequately.

The system model itself is defined in a modular fashion. From a global viewpoint,
a system in the system model is a state transition system. This semantic universe
is introduced in layers of mathematical theories, which are shown in Figure 3.2.
Note that this figure shows the full set of theories as defined by Broy et al. [3]; we
shorten the definitions slightly, in this chapter. The rectangles in Figure 3.2 contain
the names of the theories; the arrows show a relationship among concepts that could
be paraphrased as “is defined in terms of.” For instance, basic theories for types and
objects used to define the data, control, and event state of a system are used in turn to
define the state space for the transition systems.

When defining the constituents of the system model, we will state the decisions
that have to be made and those that can be left open or do not even occur when
staying informal. We clearly identify those decisions either directly or mark them
as a variation point and leave it to the user of the system model to choose or adopt
a variation. The variation points may correspond very nicely to stereotypes on the
language side, such that the language designer (and semantics definer) can transfer
the freedom of choice to the actual modeler.

FIGURE 3.2 Theories that constitute the system model.
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3.4 THE MATH BEHIND THE SYSTEM MODEL

A precise description of the system model calls for a precise instrument. For our
purposes, mathematics is exactly appropriate because of its power and flexibility.
Admittedly, reading and understanding mathematics is an effort that requires some
training, but it makes it possible to describe things precisely and abstractly that cannot
be defined using UML itself. Using UML itself to describe the semantics of UML
might seem a pragmatic approach. This approach is somewhat metacircular, however,
and necessarily calls for a kind of bootstrap, typically mathematics again. Moreover,
understanding the semantics of UML in terms of UML itself demands a very good
knowledge of the language whose semantics is about to be given formally. Besides,
UML does not conveniently provide the appropriate mechanisms we need (e.g., to
handle scheduling and distributed systems, and to deal with underspecification in a
precisely controllable way). Of course, whenever appropriate, we use diagrams to
illustrate some mathematically defined concepts, but the diagrams do not replace the
mathematical formulas.

Instead of relying on basic mathematics, related work often proposes the use of
specialized formalisms. Bruel and France [7] and Evans et al. [16] translate UML
to the formal language Z, while Sarstedt and Guttmann [37] map to B. Graph trans-
formations are used by Kuske et al. [27]. Activities have been formalized using the
π-calculus [26], Petri nets [41], and abstract state machines (ASMs) [37]. Trace-based
semantics for interactions have been presented [12,22], and metamodeling techniques
have been employed [15]. Template semantics [42] that are based on state machines
allow for describing semantic variation points.

We intentionally avoided the use of more specialized notations such as Z, B, and
ASMs for two reasons:

1. It is not clear that any of these notations is general and comfortable enough to
allow a satisfactory and adequate expression of all concepts in UML.

2. Arguably, all these notations have a certain bias (e.g., for state-based formal
specification, analysis with a theorem prover, analysis with a model checker);
we kept the system model free of this bias to ensure that we obtain a true
reference semantics that, if useful, enables the future use of other notations for,
among other uses, analysis purposes.

For these reasons we decided to use only mathematics. The following principles
have proven to be useful when defining a system model:

1. Mathematics is used to define the system model. Its subtheories are built on
numbers, sets, relations, and functions. Additional theories are built in a layered
form. That is, only notation and mathematical definitions, and neither new syn-
tax nor language, are introduced or used in the system model. Diagrams are used
occasionally to clarify things but do not contribute formally to the system model.

2. The system model does not constructively define its elements, but introduces
the elements and characterizes their properties. That is, abstract terms are used
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whenever possible. For example, instead of using a record to define the structure
of an object, we introduce an abstract set of objects and a number of selector
functions. Properties of the set are then defined through such selectors. Based
on our background and knowledge, we claim that we can transform this sys-
tem model into a constructive version (and actually do this, see the work of
Cengarle et al. [9]), but that would probably be more awkward to read and less
intuitive, as it requires a lot more mathematical machinery. This will satisfy
“constructivists,” who aim to make everything constructive or executable.

3. Everything important is given an appropriate name. For example, to deal with
classes there is a “universe of class names,” UCLASS, and similarly, there is a
“universe of type names,” UTYPE, which is, however, just a set of names (and
not types); see Sections 4.3.4 and 4.3.1.

4. To the best of our knowledge, any underlying assumptions were avoided,
according to the slogan: “What is not specified explicitly does not need to
hold.” If, for example, we do not state explicitly that two sets are disjoint, the
two sets might have elements in common. Sometimes these loose (underspeci-
fied) ends are helpful to specialize or strengthen the system model and are there
on purpose. If you need a property, (a) check whether it is there; (b) if absent,
check whether it can be inferred as an emerging property; (c) if not, check if it is
absolutely necessary; and (d), if yes, you may add it as an additional restriction.

5. Generally, deep embedding (or explicit representation) is used. This means that
the semantics of the embedded language (i.e., UML) is formalized completely
within the supporting language: in our case, mathematics. As one consequence,
although there are similar concepts in the language describing the system model
(which is mathematics) and the language described (UML), these need not be
related. For instance, the system model characterizes the type system of UML;
however, it does not itself have, and does not need, a type system.

6. Specific points where the system model could be strengthened further have
been marked as variation points, which deal with additional elements that can
be defined within the system model. We may introduce additional machinery
that need not be present in each system modeled. Prominent examples of such
variations are the existence of a predefined top-level class called “Object” or
an enhanced type of system, including, for example, templates. Furthermore,
variations describe changes of definitions that lead to a slightly different system
model. Variation points allow us to describe specialized variants of the system
model that may not generally be valid, but hold for a large part of possible
systems. Examples are single inheritance hierarchies or type-safe overriding of
operations in subclasses, which may not be assumed in general.

3.5 WHAT IS THE SYSTEM MODEL?

As indicated in Section 3.3, the system model is a hierarchy of theories that capture
a large number of concepts typically found in distributed object-oriented systems.
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To obtain an adequate semantic domain, the system model defines concepts such as
types and values, classes with attributes and methods, objects, messages and events,
or threads.

An object-oriented system can be described basically using one of various existing
paradigms. We opted for the paradigm of a global state transition system in order
to accommodate a global (and perhaps distributed) state space. The system model
thus defines a universe of state transition systems. A state transition system is given
by its state space, its initial states, and its state transition function. Note that our
notion of state transition system is more basic and does not relate directly to the state
machines the UML provides. If detailed enough, the global state transition system is
perfectly appropriate to model parallel, independent, and distributed computations.
In principle, a system of communicating elementary transition systems could be con-
sidered more convenient than a single global machine for describing the semantics
of UML models. It is also possible to construct a global transition system by inte-
grating elementary models; however, this is a nontrivial operation. Therefore, it is
more appropriate to employ the concept or metaphor of one state transition system
at a higher, nonelementary level. In fact, we introduce a composition operator on
transition systems representing fragments of larger systems such that these transition
systems can be composed, leading to larger systems.

3.5.1 Static and Dynamic Issues

The types and classes are static (i.e., they do not change over the lifetime of a sys-
tem). Similarly, the sets of defined operations, methods, messages, and events do not
change. This information is called the static information of a state transition system.

The set of existing objects, the values of the attributes, the computational state of
invoked methods, and dispatched and not yet delivered messages passed from one
object to another are dynamic (i.e., they may change in transition steps). This is called
the dynamic information of a state transition system and is encoded in the states of the
system. In the database realm, the static part is called schema and the dynamic part
is the instance. The schema instantiation is changeable, whereas the schema itself
is not. Schema changes (usually called schema evolution in the literature) are not
considered, as they usually do not occur within a running system but when evolving
and/or reconfiguring it.

Summarizing, the state space of the transition system will be defined in terms
of its orthogonal constituents, namely, control and events. Each of these theories
contributes static and dynamic information to the system model definitions.

3.5.2 Types, Classes, Objects, and DataStore

The first part of the system model definition (see Section 4.3) is concerned with defin-
ing type names, their carrier sets, classes, objects, associations, and the component of
a system state that stores information about existing objects and their variable values.
Although we do not deal with the peculiarities of various type systems, strong or weak
typing, and so on, we outline basic assumptions on the underlying type system, as
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we need to map the type information of UML to this type system. In that respect, we
use a deep embedding of the type system of UML, by representing it through type
names and a universe of values only. By “deep embedding” we mean that we do not
map types of the UML to a type system of the underlying mathematical structure, but
explicitly model types as first-class elements.

Occasionally, we make assumptions that simplify matters but are careful not to
lose generality. For example, we assume global variables in the system. In practice,
it would be relatively inconvenient if every variable name could be used only once
in a program. We then would see a global namespace and thus not have any hiding
concepts in the language. In the system model, however, we may accept such a
restriction and handle it as follows. As in ordinary programming languages, variables
shadow each other when a new variable with the same name is introduced in an inner
scope. We assume static binding; thus, each variable name can be statically resolved
(as opposed to dynamic binding of variables, by which the resolution of a variable
name depends not on the environment of its definition but on the environment of its
use, and thus variable resolution can occur only at runtime). Generally, we assume
that in the modeling languages we deal with, a consistent and model-wide redefinition
of variable names is possible in such a way that each variable is used only once. Then
variable shadowing does not occur and any variable is unique. We may handle that
systematically through encoding the place of definition or the namespace within each
variable. Quite the same thing is done by many compilers anyway.

Class names in the system model are introduced in an abstract fashion. Each class
name is associated with a set of object identifiers and with a set of attributes. This is
sufficient to define the structure of objects belonging to a class in the form of a tuple,
consisting of an object identifier and a mapping of attributes to values.

In the system model, classes are also types. Together with a subclassing relation,
the carrier set of a class is the set of object identifiers belonging to the class or to one of
its subclasses. This makes it possible to store subclass identifiers polymorphically in
places where superclass identifiers are expected. As a consequence, we require object
identifiers to be values. However, objects will not be forced to be values. We leave
open whether objects are also to be treated as values (variation point). Our relational
point of view concerning subclassing also supports multiple inheritance, which is
covered by several binary inheritance relationships. As we assume global attribute
names, we avoid name conflicts that otherwise could arise.

For the data store, we abstract from a number of details, such as storage layout and
physical distribution. We use an abstract global store to denote the data state of an
object system. Even if there is no such concept in a real, possibly distributed system,
we can conceptually model the system that way by organizing all instances in this
single global store. We also allow interleaving, as well as concurrent activities, as can
be seen in the control part of the system model in Section 4.4.

Intuitively, the data store models the data state of a system at a certain point in
time. Normally, at each point of time the store contains real objects for a finite subset
of the universe of all object identifiers. We will, however, see that the data store is
not enough to describe the system, but a control store and an event store need to be



3.5 WHAT IS THE SYSTEM MODEL? 51

added. In these stores time progress is modeled by state transitions of the overall state
machine.

At each point in time (i.e., in each state of the state machine), when an instance
exists, we assume that its attributes are present and their values are defined, but it is not
necessarily the case that we know about these values. They may be left underspecified.
In particular, it may be that after creation of an instance, its attributes still need to
be initialized, that is, come into a known (and thus well-defined) state. Note that
this is a usual modeling technique used (e.g., in verification systems to avoid explicit
handling of a pseudovalue “undefined” [32]). It also resembles reality; that is, when
an uninitialized variable of type int is accessed, we do know that it contains an integer,
but we do not have a clue which one it is.

One of the core concepts of UML are associations. Associations are relations
between classes; and links, which can be regarded as instances of associations, are
the corresponding relations between object identifiers at runtime. Although associa-
tions are mostly binary, they may be of any arity; in addition, they may be qualified
in various ways and may have additional attributes on their own. Furthermore, an
association can be “owned” by one or more of the participating objects/classes or can
stand on its own, not owned by any of the related objects. In an implementation a basic
mechanism for managing those relations is to use direct links or collection classes,
but there are other possibilities as well. To capture different variants of realizations
of associations semantically, we use a generalized, extensible approach: Retrieval
functions extract links from the store. We allow for a variety of realizations of these
functions. This approach is very flexible as, on the one hand, it abstracts away from
the owner of associations as well as from how associations are stored, and on the other
hand, does not restrict possible forms of an association. As a big disadvantage of this
approach, we cannot capture all forms of associations in one uniform characterization
but need to provide a number of standard patterns that cover the most important cases.
If no standard case applies (e.g., for a new stereotype for associations), the stereotype
developer has to describe his or her interpretation of the stereotype directly in terms
of the system model. We demonstrate this approach by defining variants of binary
associations below.

The retrieval function relOf depends on the concrete realization of the association.
Even after quite a number of years of studying formalizations of object orientation,
there is so far no really satisfactory approach that describes all variants of associa-
tion implementations. Therefore, we provide this abstract function and impose some
properties on the function without discussing the internal storage structure. The only
decision we made so far is that associations are somehow contained within the store
(i.e., they are somehow part of objects, and association relations do not extend the
store). This is pretty much in the spirit of the system model, where higher-level con-
cepts are explained using lower-level concepts. To retrieve the links of an association,
the state of multiple objects may have to be examined. From the viewpoint of a single
object, this is not possible since it has access only to its own state. Hence, we assume
that links may be retrieved using an API, a set of special methods that can be called
by an object and that return the links.
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3.5.3 Operations, Methods,Threads, and ControlStore

The control part defines the constituents of the structure used to model control informa-
tion such as operations and methods. The control store contains additional information
needed to determine the state of a system during computation. In particular, we pro-
vide means to express how control flows (as part of method calls) through active
and passive objects; what it means for an object to be active or passive; how mes-
sages are passed, delayed, and handled; how events are handled; how threads work
in a distributed setting; and how synchronization of all these concepts takes place
(see Section 4.4).

One result of this section is a flexible mechanism to describe control structures of
various kinds, resembling quite a number of implementation languages. This variabil-
ity is enforced by the UML and leads to a rather complex formalization of control. In
fact, UML does not allow us to abstract away from control primitives. In the systems
we describe with UML, we do not only have various types of control and interaction,
but also very often have their combinations within a single system. Unfortunately,
we need rather detailed definitions for stacks, events, and threads that are not very
elegant and do not give us much abstraction. However, this lack of elegance covers
accurately the lack of elegance in distributed object-oriented systems where method
calls, asynchronous signals, and threads of activity are orthogonal concepts that can
be mixed in various ways. On the one hand, these concepts provide the system devel-
oper with great flexibility. On the other hand, they make it difficult to understand the
behavior of the resulting systems. In addition, many orthogonal concepts make it very
awkward to describe a system model that uses all of them, because any combination
(useful or not) needs to be covered. The resulting complexity becomes apparent in
modeling the control part of the system model.

We define operations (signatures) and methods (implementations) as separate enti-
ties. Operations are named and have a list of parameter types and one return type.
Methods additionally define parameter names and may have an implementation.
This approach does not explicitly specify overloading, signature and implementa-
tion inheritance, overriding and dynamic binding, but allows specializations in a
flexible way to various mechanisms of method binding, that are actually used. This
even includes binding mechanisms such as that in Modula-3. These concepts are thus
to be decided and defined by the time the mapping from UML to the system model
is devised.

In UML, interestingly, subclassing does not impose clear constraints on method
implementations, as the implementation may be redefined according to some
“compatibility” notion. This notion, however, is a semantic variation point that we
therefore also leave open to a semantic specialization (e.g., by adding additional con-
straints for redefined method behavior). Subclassing in general allows for renaming
of parameters in the implementation, as these are not part of the signature. The sig-
natures (in the form of lists of types), however, are either equal or in a generalization
or specialization relation. The types of parameters can be generalized, and the type
of the return value can be specialized. This is the well-known co/contravariant way
(see, e.g., [7]) that ensures type safety in a language. We also impose this constraint
in the system model.
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UML furthermore provides “out” and “in/out” parameters. However, many authors
advise against the use of (in/)out parameters. The recommendation in the present con-
text is to use a variation point where, if several “out”-values are to be assigned, each of
these is assigned through method call or message passing. In this way, object encapsu-
lation is kept. However, if needed, the system model allows us to encode these param-
eters by passing locations of the variables where the “out”-values are to be stored.

In UML there is also the notion of object behavior, which, strictly speaking, is
not a method. However, for simplification we assume that object behavior can be
encoded as a special kind of operation associated with the object whose parameters
define the signature of the operation.

The computational state of a method is stored in a frame with the obvious informa-
tion, such as sender, receiver, and values of local variables and parameters. A thread
in the system model is associated with a stack of frames. The control store is the part
of a system model state that stores information about which threads currently execute
methods in which objects.

There are quite a number of approaches to combining object orientation and con-
currency. Some approaches argue that each object is a unit of concurrency on its
own. Others group passive objects into regions around single active objects, allowing
operation calls only within a region and message passing only between regions. The
programming languages that are commonly used today, however, have concurrency
concepts that are completely orthogonal to objects. This means that various con-
current threads may independently and even simultaneously “enter” the very same
object. The system model is abstract enough to allow specializations to any of these
approaches. We do, however, have the basic assumption that there is a notion of
atomic action. These atomic actions are the basic units for concurrency; their exact
definition is deferred to the UML actions definitions. On top of atomic actions, we
assume forms of concurrency control that are provided through appropriate concepts
in UML (e.g., “synchronized” in Java). However, UML currently does not provide
sufficient mechanisms to actually define scheduling and atomicity of actions conve-
niently. Possible units of concurrency, for example, would be a variable assignment
or an operation invocation.

3.5.4 Messages, Events, and EventStore

One crucial question is the choice of the appropriate communication or interaction
mechanism. Two basic flavors are asynchronous and synchronous communication.
There is no definitive answer as to which one of these two possibilities is better, and
both approaches can model each other. The system model is based on the asynchronous
approach because of its abstractness. Synchronous method calls within the system
model are encoded as asynchronous message passing.1

The UML specification distinguishes between event (types) and event occur-
rences (see [8, Sec. 6.4.2]) and provides a rather general notion of events and event

1 Message passing is the general term; in the system model, events (which include message events) are
passed.
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occurrences. An event may be a message (which resembles a method call with param-
eters or return values), a timeout, a simple signal, or a spontaneous state change.
Event occurrences, for example, are sending of a message or reception of a message.
In Section 4.5.1 we introduce events and subsets of events that contain messages
(which may further contain method calls and returns) as well as signals.

The last constituent of the state of an object is the event store. For each existing
object, the event store stores a buffer that contains the events that still need to be
processed. Event occurrences correspond to system states in which an event has just
been added (sent) or removed (received) from the event store.

3.5.5 States

The state of a system is defined straightforwardly to consist of one data store, one
control store, and one event store (see Section 4.6). So in each system state we capture
the attribute values, the computational state, and the event buffer of each object. Given
a system state, the state of an individual object is consequently the part of each store
that holds information for that object. One of the main features of the system model is
its compositionality. This means that an object state can be described on an individual
basis as well as in any (meaningful) group.

3.5.6 Transition Systems

We provide two different types of transition systems to define object behavior. Event-
based state transition systems (see Section 4.7) are suitable to explain object behavior
on a fine-grained level. Objects react to incoming events, and their next computational
activity is triggered explicitly by a scheduling event. The scheduling may be defined
for groups of objects (belonging to the same processor, virtual processor, scheduling
domain, etc.). Specific scheduling strategies, however, have not yet been defined.

As with object states, object behavior can be described on an individual basis
as well as in groups. Behavior for compositions of groups of objects into larger
components can be defined. For this purpose we use the time-aware version of state-
transition systems, called timed STS (TSTS) (see Section 4.8). Although asynchronous
communication is assumed in the system model, the time-based approach allows the
use of a simple abstraction on the time scale to look at communication as being
synchronous. Communication between objects is dealt with by channels. Channels,
on the one hand, help to compose groups of objects into larger units and hide their
internal communication. On the other hand, UML provides linguistic constructs such
as “pins” in some of its diagrams; the pins resemble communication lines between
objects and can be mapped to channels.

3.5.7 Further Extensions

Of course, this system model that can be seen as a hierarchy of algebras may and
probably should be extended by adding further functional machinery to ease descrip-
tion of the mapping of UML constructs to the system model. However, we wanted to
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keep the system model rather simple and therefore did not concentrate much on this
additional machinery. “Users” of the system model are really invited to add whatever
they feel appropriate. There are also a number of loopholes and particular variation
points that can be investigated further by providing additional machinery to clarify a
mapping of UML concepts to the system model.

3.6 USAGE SCENARIOS

After discussing the general approach to define the semantics of UML and highlighting
the main characteristics of the system model, in this section we present usage scenarios
of a system-model-based UML semantics.

3.6.1 Analysis

Assuming that we have defined the semantics for UML using the system model,
we are able to express precisely if a model A is well formed [i.e., Sem(A) �=Ø].
Similarly, models A and B are consistent if Sem(A) ∩ Sem(B) �=Ø. It is well known
that for models to be well formed, a necessary but not sufficient condition is that they
correspond to the language’s grammar or metamodel. However, additional syntactic
conditions, called context conditions, need to be fulfilled. So the challenge is to
develop a set of context conditions coco that, if fulfilled, guarantees well formedness,
[e.g., coco(A, B)⇒ Sem(A)∩Sem(B) �=Ø]. Analyzing the well formedness of models
can then be reduced to checking syntactic conditions. Unfortunately, undecidable
conditions exist that cannot be checked automatically but, instead, require verification.

3.6.2 Verification

As pointed out above, system-model-based verification of UML models can be neces-
sary to verify context conditions that cannot be checked automatically. In general, we
are also interested in proving properties of concrete models using the UML seman-
tics. The semantics characterizes all properties of systems s realizing model(s) A,
from which we then try to infer the property of interest φ [i.e., ∀s ∈ Sem(A) : φ s].
Verification can also be used to prove transformations or generators correct. Assume,
for example, a transformation � that refines model A to B: We have to show that
∀A, B : A � B ⇒ Sem(B) ⊆ Sem(A).

3.6.3 Simulation

The system model is deliberately not defined in an executable way, to support under-
specification. It is, however, possible to resolve this underspecification and to encode
the declarative specification into an executable simulator that is highly customizable
with respect to semantic variation points [9]. Given a mapping from UML to the exe-
cutable system model, we can validate models and experiment with different choices
for semantic variation points via simulation.
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FIGURE 3.3 Approach with tool support.

3.6.4 Tool Support

The general approach to defining the semantics of UML has been outlined in
Sections 3.2 and 3.3. To summarize, a precise and adequate semantics is made up of
equally precise and adequate definitions for the syntax, the semantic domain, and the
semantic mapping. The most flexible way of defining these constituents is by using
pencil and paper. To keep most of the flexibility but to benefit from the advantages of a
machine-readable semantics that can be (type) checked, used for automated verifica-
tion, and so on, we use Isabelle/HOL [32] to formalize the system model definitions
and also the semantic mapping. As a front end for defining the syntax of the language,
MontiCore [25], a framework for the development of modeling languages is used.
The overall approach is depicted in Figure 3.3.

1. The syntax is specified as a grammar in the MontiCore grammar definition
language, which is basically a context-free grammar.

2. The framework then generates a data type in Isabelle/HOL that represents the
abstract syntax.

3. The semantics developer then uses this abstract syntax and the available for-
malization of the system model theories in Isabelle to encode the semantics of
the syntactic constructs as predicates over system models.

3.7 CONCLUDING REMARKS

In this chapter we described our approach to UML semantics and discussed the ratio-
nale underlying the system model definition. The system model describes the structure
and behavior of object systems on a very detailed and fine-grained basis. It uses the
general notion of (timed) state transition systems, which is integrated with the data,
control, and event stores. As a general result of system model theory, we have a com-
plete description of how systems are decomposed into objects, what states objects



3.7 CONCLUDING REMARKS 57

may have, and how objects interact. As motivated in the introduction, the mathemat-
ical theory is developed in layers, each building up an algebra that introduces some
universe of elements, functions, and laws for these functions. The detailed definitions
are provided in Chapter 4.

The key features are support for underspecification and a modular and flexibly
extensible definition that is not biased by the choice of a concrete formal language
or tool. Even the use of mathematical theories probably will bias the semantics a
little, but we hope as little, as possible. Such bias creeps in easily, and we tried
very hard to avoid it. In particular, we did not address executability because this
includes one of the biggest biases that a modeling language can have: A model
should have the ability for underspecification and should be open for a specification
of many different implementations. An executable semantics for an underspecified
UML model must therefore necessarily contain implicit choices added by the semantic
mapping.

To prevent the executability bias, we chose a specific style of description. This
form of description allows us to leave open quite a number of definitions. We usually
introduce a universe and then characterize the properties of its elements without fully
determining how many elements it has or what these elements look like. Sometimes,
we describe only a subset of the elements and allow other types of elements to be in
the universe as well.

This gives us the chance to specialize variation points according to specific sit-
uations. To put it in UML jargon, we could for example define a “system model
profile” that specializes the general definitions to sequential, single threaded systems,
to static systems without creation of new objects, to systems without subclassing,
etc. While the system model is an underlying basis for these kinds of systems, it
does not provide such specialization directly; this is matter of further work. Indeed,
as one of the results of this work, we have been able to make a number of varia-
tion points explicit. Although there are a lot more variation points to explore and
their bandwidth to clarify, we regard this approach as a first important step to the
formalization and clarification of variation points. On the other hand, the complex-
ity of the system model shows that the integration of objects, threads, state-based
behavior and concurrency is complex, has many variations and is therefore some-
what arbitrary. It is particularly complex to model the possible interactions between
these, leading us to the assumption that it is particularly difficult to master these not
so well integrated concepts. We also described usage scenarios and discussed how
a system-model-based UML semantics can be used to analyze, verify, and validate
UML models.

The system model defined by Broy et al. [3] and the previous version [4–6] have
been used actively to define the semantics of UML sublanguages such as class dia-
grams [10] and statecharts [11]. A simulator for UML models has been developed by
Cengarle et al. [9] based on the system model definitions. This work has been carried
out in the context of the DFG rUML project. UML actions have been formalized by
Crane and Dingel [13] using the system model as a semantic domain. The system
model also forms the basis for characterizing the semantics of model composition [23]
as part of the MODELPLEX project.
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4.1 INTRODUCTION

This chapter is devoted to the definition of a system model tailored toward UML.
The hierarchy of theories that compose the system model is introduced setp by step.
These theories are combined into a theory of sophisticated state transition systems.
The semantics of a word in a UML sublanguage (i.e., a diagram) can then be defined
by a set of such transition systems. Given two or more actual diagrams, possibly
forming a complete UML model, the semantics of them together is defined by the
intersection of their translations into the system model. In other words, consistency
of a model is defined by nonempty intersection of the sets containing the transition
systems that implement the diagrams individually.

The system model supports underspecification in two manners. On the one hand,
the fact that the semantics of a single UML diagram or of a complete UML model is
not univocal is a form of underspecification. On the other hand, at the metalevel, the
system model can be further constrained in such a way that the ambiguity inherent to
the language is reduced or even eliminated. The latter ambiguities are called variation
points, and the choice of a particular variant reduces the range of possibilities.

Chapter 3 motivates and explains the system model that is introduced below. The
system model in this chapter is a simplification of the one presented by Broy et al.
[1]. In that work, a number of variation points are also presented. These include,
among others, records and Cartesian products within the type system of the system
model, subclassing observing structure, objects as values, locations and reference
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types, qualified and ordered binary associations, active vs. passive objects, and single
vs. multithreaded computation.

This chapter is organized as follows. Section 4.3 includes a definition of the
structural part of the system model. Sections 4.4 and 4.5 cover the control- and
communication-related definitions which form a basis for the description of the state
of a system in Section 4.6. Two variants of state transition systems are introduced to
define object behavior in Sections 4.7 (event based) and 4.8 (timed).

4.2 NOTATIONAL CONVENTIONS

This section covers the conventions used to structure the mathematical theories that
constitute the system model. Definitions, presented as shown in Definition 4.2.1,
usually contribute new elements to the system model and/or add constraints to existing
elements. Noteworthy derived properties following from a definition are stated as
lemmas, presented in a manner similar to that for definitions.

Definition 4.2.1 (This Is a Definition)

DefinitionName
introduction of new elements (sets, functions, ...)

Notation:
additional notational abbreviations (optional)

definition of properties that hold

informal, textual explanation (optional)

To simplify the notation, if a formula contains a symbol whose value is irrelevant
for the purpose of the fomula, the symbol is replaced by a wildcard ∗. For example,
∀a : P(a, ∗, ∗) stands for ∀a : ∃y, z : P(a, y, z), where the variables y and z are unused
within the predicate P and are existentially quantified at the innermost level. Also, a
number of container structures are used, such as P(.) for powerset, Pf (.) for the set of
finite subsets of a given set, and List(.), Stack(.), and Buffer(.) for the usual constructs.
These structures are defined in mathematical terms with appropriate manipulation and
selection functions. For details on these basics, the reader is referred to the work of
Broy et al [1].

4.3 STATIC PART OF THE SYSTEM MODEL

The static part of the system model contains the unalterable information regarding the
intended systems. The static part is composed of, among other things, some universes
of elements that are assumed given and not fully described here. Furthermore, prop-
erties of and relationships between those universes may be assumed. Universes are,
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for example, the universe of type names UTYPE, the universe of values UVAL, a rela-
tion CAR that associates a set of values to each type name (see Definition 4.3.1),
the universe of class names UCLASS, and the universe of object identifiers
UOID (see Definition 4.3.5). The primitive concept of name is not prescribed
further.

Definition 4.3.1 (Tupes and Values)

Type1

UTYPE
UVAL
CAR : UTYPE→P(UVAL)

∀u ∈ UTYPE : CAR(u) �= Ø

UTYPE is the universe of type names.
UVAL is the universe of values.
CAR maps type names to nonempty carrier sets; carrier sets need not be disjoint.

4.3.1 Type Names and Carrier Sets

A type name identifies a carrier set that contains simple or complex data elements
called members or values of (or associated with) the type name. The universe of all
type names is denoted by UTYPE. Members of all type names are gathered in the
universe UVAL of values; see Definition 4.3.1.

Any T ∈UTYPE is a type name, not a type, but may be referred to as type T . In
particular, the types of the system model explicitly encode UML types (i.e., deep
embedding of types is used).

The definitions above leave open quite a number of possibilities to characterize
types. Broy et al. [1] show a few examples which are not formal parts of the system
model. For example, we may wish to express that integer and float are type names,
that integer and floating-point values are values in the system model, and that integer
values are also floats: Int, Float ∈UTYPE, CAR(Float)=R, and CAR(Int)=Z⊆
R⊆UVAL.

The value void is usually needed when giving semantics to procedures or meth-
ods with no return value. This is customary in the semantics of programming
languages.

4.3.2 Basic Type Names and Type Name Constructors

Basic type names for basic values such as Boolean and integer values (see
Definition 4.3.2) are given by default, together with their typical operations, such
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as logical connectives and arithmetic operators (not detailed here). The carrier set
associated with Void, a further basic type name, is a singleton; see Definition 4.3.3.

Definition 4.3.2 (Basic Types)

BoolInt
Bool, Int ∈UTYPE
true, false∈UVAL

CAR(Bool)= {true,false}

true �= false

CAR(Int)=Z⊆UVAL

UTYPE contains at least the type names Bool and Int.
UVAL contains at least Boolean and integer values.

Definition 4.3.3 (Basic Type Void)

Void
Void ∈UTYPE
void ∈UVAL

CAR(Void)={void}
void can be used, for example, to return control without an actual return value.

4.3.3 Variables

The notion of variable (see Definition 4.3.4) permits the encoding of object attributes,
method parameters, and method local variables. Each variable name has an associated
unique type name.

4.3.4 Class Names and Objects, Subclass Relation

Definition 4.3.5 introduces the universes UCLASS of class names, UOID of object
identifiers, and INSTANCE of instances. A class name is associated with a finite set of
attributes, which simply are variables. Each class name is, moreover, associated with
a set of object identifiers. By use of the association mechanism (see Section 4.3.7),
class names can be related to each other. Also, methods can be associated with class
names; see Definition 4.4.2.
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Definition 4.3.4 (Variables, Attributes, Parameters)

Variable
UVAR
vtype : UVAR→UTYPE
vsort : UVAR→P(UVAL)
VarAssign= (v : UVAR ⇀ vsort(v))

Notation:
a : T denotes “a is a variable of type T” [i.e., vtype(a)= T ].

∀v∈UVAR : vsort(v)=CAR(vtype(v)) ∧ ∀val ∈VarAssign : val(v)∈ vsort(v)

UVAR is the universe of all variable names, each with a unique type associated.
VarAssign is the set of all total and partial assignments of values for variables.

Definition 4.3.5 (Classes and Instances)

Class
UCLASS
UOID
INSTANCE
attr : UCLASS→Pf (UVAR)
oids : UCLASS→P(UOID)
objects : UCLASS→P(INSTANCE)
objects : UOID→P(INSTANCE)
classOf : INSTANCE→UCLASS
classOf : UOID ⇀ UCLASS

∀oid ∈ oids(C) : classOf (oid) = C∧
objects(oid) = {(oid, r) | r ∈ VarAssign ∧ dom(r) = attr(C)}

∀o ∈ objects(C) : classOf (o) = C

UCLASS is the universe of class names.
attr assigns a finite set of attributes to each class name.
UOID is the universe of object identifiers.
INSTANCE is the universe of objects of the form o= (oid, r), where oid is an object
identifier and r is a variable assignment for the attributes of the class name
associated with oid.
oids assigns a set of object identifiers to a class name.
classOf enforces uniqueness of the class (name) associated with each object and
with each identifier.
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Except for the object identifier Nil (see Definition 4.3.7), there is a bijection
between the universes UOID and INSTANCE. Thus, besides Nil, there are no dan-
gling references. As a consequence, each object belongs to exactly one class,1 and this
does not vary over time, whereas the object value can vary, and dereferencing from
an object identifier is state dependent. (In particular, structurally equivalent classes
are distinguished.)

More precisely, UOID contains references to all possible objects, and in a similar
way, INSTANCE contains all possible objects. These sets are usually infinite because
they represent the possible existence of objects. Furthermore, INSTANCE contains all
object values, thus describing many different object values using the same identifier.
At each point in time only a finite subset of objects will actually exist in the data store
(see Section 4.3.6) and there will be at most one instance for any identifier.

Definition 4.3.6 introduces the mechanisms for accessing the attributes of an object.
A distinguished term is this, which can be treated as if it is an attribute although it is
not [and thus does not appear in attr(C)]. In particular, no type name is associated
with this; thus, a number of conceptual difficulties, such as recursive type definitions,
are avoided. Definition 4.3.7 introduces the special identifier Nil and constrains UOID
to consist exactly of object identifiers and INSTANCE of objects only.

Definition 4.3.6 (Attribute Access)

Attribute
this : INSTANCE→UOID
getAttr : INSTANCE×UVAR ⇀ UVAL
attr : INSTANCE→Pf (UVAR)
attr : UOID→Pf (UVAR)

Notation:

o.this is shorthand for this(o)

o.a is shorthand for getAttr(o, a)

∀o, (oid, r) ∈ INSTANCE :

this((oid, r)) = oid

getAttr((oid, r), a) = r.a

attr(oid) = attr(classOf (oid))

attr(o) = attr(classOf (o))

o.this is written in the spirit of attribute selection but is treated differently: this is
not an actual attribute of the class.

1 Polymorphism is introduced in Section 4.3.5.
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4.3.5 Subclass Relation

The subclass (or inheritance) relation sub is introduced in Definition 4.3.8. There, a
type name constructor is also introduced, which associates a type name with each class
name; this type name collects in its carrier set all the object identifiers associated with
the class name or any of its subclass names. Therefore, object identifiers are values
(i.e., UOID ⊆ UVAL).

Definition 4.3.7 (Introduction of Nil)

Nil
Nil ∈ UOID

∀C ∈ UCLASS : Nil �∈ oids(C)

∀o ∈ INSTANCE : o.this �= Nil

UOID = {Nil} ∪⋃
C∈UCLASS oids(C)

INSTANCE =⋃
C∈UCLASS objects(C)

Nil is a distinguished object identifier, the only one not associated to any class or
any object. UOID and INSTANCE consist only of object identifiers and objects,
respectively.

Thus, the subclass relation allows a precise definition of the type of a class: The
object identifiers associated with the class and any of its subclasses belong to a carrier
of the type assigned to the class.

Definition 4.3.8 leaves a number of questions open and thus allows further refine-
ment. For example, the binary relation sub is not enforced to be antisymmetric
(although this is the case in any implementation language today). Furthermore, sub-
classing is not based on a structural definition: The sets of attributes of two classes
may be in the subset relation; nevertheless, the classes may be unrelated by sub.

Definition 4.3.8 (Subclass Relation)

Subclassing
sub⊆UCLASS×UCLASS
·& : UCLASS → UTYPE

UOID ⊆ UVAL

transitive(sub) ∧ reflexive(sub)

∀C ∈ UCLASS : CAR(C&) = {Nil} ∪⋃
C1 sub C oids(C1)

sub is the transitive and reflexive subclass relation.
The carrier set associated with the type name C& contains all object identifiers that
belong to the carrier set of class name C or any of its subclass names.
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Definition 4.3.9 (The Data Store)

DataStore1
DataStore ⊆ (UOID ⇀ INSTANCE)
oids : DataStore → P(UOID)

∀ds ∈ DataStore : oids(ds) = dom(ds)

∀o ∈ UOID, ds ∈ DataStore : ds(o).this = o

DataStore is the set of all data stores or possible snapshot values.
oids(ds) is the set of existing objects in a given data store ds.

The technique of defining sub as a subset relation on object identifiers instead of
objects permits a great simplification on the type system within the system model.
Furthermore, it allows a redefinition of attribute structures in subclasses without an
otherwise necessary loss of the substitution principle.

4.3.6 Data Store Structure

Intuitively, a data store is a snapshot of the data state of a running system. Defini-
tion 4.3.9 introduces data stores as functions assigning objects to object identifiers.
Any such function assigns an object o to an object identifier oid only if this is the
identifier of that object, which can be retrieved using o.this.

A number of convenient retrieval and update functions for data stores are given in
Definition 4.3.10. They deal basically with lookup and change of attribute values as
well as “creating” a new object in the store.

Various restrictions on the use of retrieval and update functions apply. They involve
the use of values of appropriate type, attributes that actually exist in a class, and so
on. However, we refrain from defining these restrictions here.

4.3.7 Associations

Definition 4.3.11 introduces the universe UASSOC of association names. The func-
tion classes associates a list of class names with each association name; given an
association name R, classes(R)= [C1, . . . , Cn] is sometimes called the signature of
R. classes assigns a list, not a set, of class names to an association name. The order
of the classes is relevant as in a self-association such as “parent–child.”

Additional values that accompany an association name can be retrieved using
the function extraVals. Additional values permit qualified associations using one (or
more) of them as a qualifier. They also allow nonunique associations: By introducing
a value as a distinguishing flag, a tuple can be duplicated.

Given a system snapshot (i.e., a data store), the relation retrieval function relOf
returns the tuples that constitute the (instantiation of) the association name, each one
together with the additional values extraVals, in that data store. These tuples contain
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Definition 4.3.10 (DataStore Infrastructure)

DataStore
val : DataStore× UOID× UVAR ⇀ UVAL
setval : DataStore× UOID× UVAR× UVAL ⇀ DataStore
addobj : DataStore× INSTANCE → DataStore

Notation:

ds(oid.at) is shorthand for val(ds, oid, at)

ds[oid.at = v] is shorthand for setval(oid, at, v)

∀ds ∈ DataStore, oid ∈ oids(ds), at ∈ attr(oid), v ∈ CAR(vtype(at))) :

val(ds, oid, at) = ds(oid).at

setval(ds, oid, at, v) = ds⊕ [oid = (oid, π2(ds(oid))⊕ [at = v])]

o.this �∈ oids(ds) ⇒ addobj(ds, o) = ds⊕ [o.this = o]

val retrieves the value for a given object and attribute.
setval updates a value for a given object and attribute.
addobj adds a new object.

Definition 4.3.11 (Basic Definitions for Associations)

Association
UASSOC
classes : UASSOC → List(UCLASS)
extraVals : UASSOC → P(UVAL)
relOf : UASSOC × DataStore → P(UVAL × UVAL)

∀R ∈ UASSOC, Ci ∈ UCLASS(i = 1, . . . , n), ds ∈ DataStore :

classes(R) = [C1, . . . , Cn] ⇒
relOf (R, ds) ⊆ (CAR(C&

1 )× · · · × CAR(C&
n ))× extraVals(R)

UASSOC is the universe of association names.
classes returns the list of class names related by a given association name.
extraVals of a given association name is the set of further values that accompany
the association name.
relOf is the retrieval function to derive the actual links for an n-ary association
based on the current store.
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values of the corresponding types; these types, in turn, are obtained from the class
names in the signature of the association name using the type name constructor ·&. This
means that the tuples of an instantiation of the association name may include object
identifiers whose classOf is a subclass of the corresponding class in the signature of
the association name.

Restrictions on the changeability of an association such as UML class diagrams
may impose can be observed or checked only when two consecutive DataStores
are compared. This means that the semantics of a class diagram cannot be defined
completely using only one snapshot of the DataStore.

4.3.7.1 Variation Point: Simple Associations Only Variation Point 4.3.1 is
not formally part of the system model but shows how to refine it by adding further
constraints. Each constraint may be imposed individually. These constraints restrict
the instantiations of association names to finite sets of tuples, disallow additional
values for association names, and force association names to be binary or all associ-
ation names to have multiplicity 1-to-* (which includes 1-to-1) but not *-to-*. Other
variation points may define binary, qualified, and ordered association names as well
as realization techniques for them.

Variation Point 4.3.1 (Simplified Associations)

[SimplAssociation]

∀ R ∈ UASSOC, ds ∈ DataStore : #relOf(R, ds) ∈ N

∀ R ∈ UASSOC : #extraVals(R) = 1

∀ R ∈ UASSOC : #classes(R) = 2

∀ R ∈ UASSOC, ds ∈ DataStore, oid ∈ UOID :

#{(oid1,oid2,x) ∈ relOf(R,ds) | oid= oid1} = 1

4.4 CONTROL PART OF THE SYSTEM MODEL

Having defined the data part, in this and the following section, we focus on the control
part of the system model. The control part defines the structure used to store control
information. Roughly speaking, this structure is divided into a control store and an
event store. The control store contains all the information needed to determine the
state of a system during computation.

That is, in addition to its data store as introduced in Definition 4.3.10, a state
machine of the system model has a control store. This store contains information
about the behavior of the intended system and is used by the state machine to decide
which transition to perform next. A control store consists of:

• A stack of method/operation calls, each with its arguments and local variables
• The progress of the running program (e.g., a program counter)
• Possibly information about one or more threads
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In any setting, be it distributed or not, any state machine of the system model also
has to deal with receiving and sending events that trigger activities in objects. General
events such as “message arrived” or “timeout” must be handled by any object. These
events are put into an event store, which consists of an event buffer for each object
where handling of events is managed. The event store, which is the last constituent
of the state of an object, is defined in Section 4.5.

4.4.1 Operations

Objects are accessed through their methods and operations. Here operation refers
to the signature (or head), whereas method also refers to the implementation (or
body). Operations can be called, and they may provide a return value as given by the
corresponding implementation. Each operation has a name and a signature (which
includes arguments and a return value that may be of type Void).

Definition 4.4.1 specifies signatures, which consist of a (possibly empty) list of
types for parameters and a type for the return value. Note that parameter names are
not present in the signature; parameter names are only part of the implementation.
For each operation, its signature, its implementation, and the class it belongs to are
specified uniquely.

Definition 4.4.1 (Operations)

Operation
UOPN
UOMNAME
nameOf : UOPN → UOMNAME
classOf : UOPN → UCLASS
parTypes : UOPN → List(UTYPE)
params : UOPN → P(List(UVAL))
resType : UOPN → UTYPE

∀op ∈ UOPN : parTypes(op) = [T1, . . . , Tn] ⇒
params(op) = {[v1, . . . , vn] : vi ∈ CAR(Ti)(i = 1, . . . , n)}

UOPN is the universe of operations.
UOMNAME the universe of operation (or method) names.
nameOf returns the name of a given operation.
classOf returns the class to which a given operation belongs.
parTypes returns the list of types of the parameters of a given operation.
params returns all possible arguments of a given operation.
resType returns the result type of a given operation.
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The subclassing mechanism lets subclasses inherit operations from their super-
classes. This means that subclassing imposes a constraint on signatures and, in many
languages, also a constraint on the promised behavior of its related classes. Defini-
tion 4.4.2 relates operations in super- and subclasses in a co- and contravariant way
(see, e.g., the book of Meyer [7]). An inherited operation in the subclass may accept
a superset of parameter values and may return a subset of return values, compared
to the possible values of the superclass operation. In this way, the subclass operation
can safely substitute the superclass operation.

Definition 4.4.2 (Type Safety on Operations)

TypeSafeOps
∀op1 ∈ UOPN , c ∈ UCLASS : c sub classOf (op1) ⇒
∃op2 ∈ UOPN : classOf (op2) = c ∧

nameOf (op1) = nameOf (op2) ∧
CAR(resType(op1)) ⊇ CAR(resType(op2)) ∧
params(op1) ⊆ params(op2)

Any class type-safely inherits operations from any of its superclasses.

Although rather general, Definition 4.4.2 needs not hold in all object-oriented
languages. In particular, languages such as Smalltalk, exhibiting “Message not
understood” errors to which a program can react, do not enforce this type of safety
requirement.

In the system model, operations have exactly one return value. Multiple return
values, can be encoded, however: for example, by packing them in a class or record.

4.4.2 Methods

As we noted earlier, operation refers only to the signature, whereas method also refers
to the implementation of an operation. Thus, methods have both a signature and an
internal implementation. The signature of a method consists of a list of parameter
names with their types. Projected on the list of types, this list coincides with the
parameter type list of the associated operation(s).

To provide all information necessary for a detailed understanding of method
interactions, a binding mechanism between arguments and corresponding formal
parameters is needed, as well as a store for local variables and an abstract notion of a
program counter, as given in Definition 4.4.3. Furthermore, a method is equipped with
the class name to which it belongs and where it is implemented. Note that localsOf
and parOf result in variable assignments that contain mappings of variables to appro-
priate values. For convenience, parameters, attributes, and local variables of a method
are assumed disjoint (which is allowed by syntactic resolution).
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Definition 4.4.3 (Methods)

Method1
UMETH
UPC
nameOf : UMETH → UOMNAME
definedIn : UMETH → UCLASS
parNames, localNames : UMETH → List(UVAR)
parOf : m : UMETH → P(VarAssign|set(parNames(m)))
localsOf : m : UMETH → P(VarAssign|set(localNames(m)))
resType : UMETH → UTYPE
pcOf : UMETH → Pf (UPC)

∀m ∈ UMETH , v ∈ UVAR, val ∈ parOf (m) :

v ∈ dom(val) ⇔ v ∈ set(parNames(m))

∀m ∈ UMETH , v ∈ UVAR, val ∈ localsOf (m) :

v ∈ dom(val) ⇔ v ∈ set(localNames(m))

parNames(m) ∩ localNames(m) = Ø

parNames(m) ∩ attr(definedIn(m)) = Ø

localNames(m) ∩ attr(definedIn(m)) = Ø

UMETH is the universe of methods.
UPC is the universe of program counter values.

Given a method, definedIn returns the class to which the method (implementation)
belongs (and where it was defined).
parNames returns the formal parameter variables of a given method.
localNames returns local variables of a given method.
parOf and localsOf return sets of variable assignments of formal parameters and
of local variables, respectively, of a given method.
resType returns the result type of a given method.
pcOf is the (finite) set of possible program counter values of a method.
Pairwise disjointness of parNames, localNames and attr is assumed for
convenience.

The concepts of method (implementation) and operation (signature) are fully
decoupled, which allows their mutually independent description. However, there
usually is a strong link between methods and operations: A method can only imple-
ment operations with compatible signatures. Nevertheless, as implementations can
be inherited, multiple operations can refer to the same method as its implementation.
In this way, on the one hand, the operation signature can be adapted (e.g., made more
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specific) without changing the implementations, and on the other, the implementation
can be redefined using a new method in a subclass. Definition 4.4.4 describes this
relation through a function impl that associates a method with a signature; if the class
can be instantiated, all operations of that class need to have implementations.

Definition 4.4.4 (Relationship Between Method and Operation)

Method
impl : UOPN ⇀ UMETH

∀op ∈ UOPN : m = impl(op) ⇒
nameOf (m) = nameOf (op) ∧
classOf (op) sub definedIn(m) ∧
CAR(resType(m)) ⊆ CAR(resType(op)) ∧
n = length(parNames(m)) ⇒
{[val(parNames(m)1), . . . , val(parNames(m)n)] : val ∈ parOf (m)}
⊇ params(op)

∀c ∈ UCLASS, op ∈ UOPN : oids(c) �= Ø ∧ classOf (op) = c ⇒
op ∈ dom(impl)

impl assigns a method implementation to each operation.

The signature params(op) of an operation op is a set of lists of values, whereas
the parameter list parNames(m) of the corresponding method implementation m =
impl(op) is a single list of variables.

4.4.3 Stacked Method Calls

A stack is a well-known mechanism to store the structure necessary to handle chained
and (mutually) recursive method calls. A control stack is indispensable for a descrip-
tion of nested operation calls and, in particular, object recursion.2 Object recursion is
a common principle in object orientation and provides much flexibility and expres-
siveness. Almost all design patterns (e.g., that of Gamma et al. [4]) as well as callback
mechanisms of frameworks (e.g., that of Fontoura et al. [3]) rely on this principle.

Thus, the information needed in order for computation to resume after a method
has finished is generally stored in a stack. The notion of stack used is abstract; the
information stored in the stack is organized in frames which include, among others,
program counter values. Although using abstractions, the matter is complicated

2 That is, a method calls another method of the same object. By contrast, in method recursion, a method
that has not yet finished execution is called from a method of another object.
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enough to justify an incremental definition of the method call mechanism. First the
single-threaded case is considered.

A stack frame, introduced in Definition 4.4.5, contains the relevant information
about the method in execution. A frame on top refers to a method executing at the
moment or to be started now. A frame below the top of the stack refers to a method
executing at the moment that has passed control and is blocked. The relevant informa-
tion in a frame includes the object identifier to which the method belongs, the name
of the method, the current program counter value of the method, the object identifier
of the calling object, and the (current) variable assignment for formal parameters and
local variables of the method. StackFrame defines the minimal information needed for
a description of stack frames; additional conditions can be added to further constrain
stack frames.

Definition 4.4.5 (Stack Frames)

StackFrame
FRAME = UOID× UOMNAME × VarAssign× UPC × UOID
framesOf : UMETH → P(FRAME)

framesOf (m) = {(callee, nameOf (m), val, pc, caller) |
∃op ∈ UOPN : m = impl(op)∧

callee ∈ oids(classOf (op)) ∧ pc ∈ pcOf (m)∧
val ∈ parOf (m)⊕ localsOf (m) }

FRAME is the universe of frames;

framesOf is the set of possible frames for a given method.

Derived:
framesOf (m) =⋃

op∈UOPN ,m=impl(op) oids(classOf (op))× {nameOf (m)} ×
(parOf (m)⊕ localsOf (m))× pcOf (m)

In the case of a single-threaded system, the only existing thread can be defined
as an element of type Stack(FRAME). A method may fork several control flows.
Nevertheless, frames have only one program counter. When a fork takes place, a new
thread is started. Each thread is then represented by its own stack of frames, each of
which again contains only one program counter. Therefore, the definition of frames
also suffices for the multithreaded case; the only difference is that there is more than
one stack of such frames.

4.4.4 Multiple-Thread Computation: Centralized View

The concurrency concept of the system model is orthogonal to objects; that is, vari-
ous concurrent threads may independently and even simultaneously “enter” the same
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object. In the following, a model of threads is added to the system model defini-
tion introduced so far. The increment is general enough to allow specialization to
other approaches and is based on an assumed notion of atomic action (whose precise
definition is deferred to the definition of UML actions).

In Definition 4.4.6, an (abstract) universe of possibly infinitely many threads is
introduced. The control store maps a stack of frames to each thread. These stacks
satisfy the following condition: For any two adjacent frames in the stack, the calling
object above is the called object below. A central control store with concurrently
executing threads is illustrated in Example 4.4.1.

Definition 4.4.6 (Control Store in the Centralized Version)

Thread
UTHREAD
CentralControlStore ⊆ (UTHREAD → Stack(FRAME))

∀ccs ∈ CentralControlStore, t ∈ UTHREAD :

∀n < #ccs(t) : ∃oid ∈ UOID :

ccs(t)[n] = (oid, ∗, ∗, ∗, ∗) ∧ ccs(t)[n+ 1] = (∗, ∗, ∗, ∗, oid)

UTHREAD is the universe of threads.
CentralControlStore assigns a stack of frames to each thread.

Example 4.4.1 (Centralized View on Concurrently Executing Threads) The
figure below illustrates the situation where two threads are active, and both object
recursion as well as concurrency occurs. Here “Framex.y” denotes that the frame is
in thread x at position y, where the highest y-numbers denote the active frames.

4.4.5 Multiple-Thread Computation, Object-Centric View

The central control store defined above is rather general but so far does not cover how
concurrent threads are executed within an object. To enable a general mechanism



4.4 CONTROL PART OF THE SYSTEM MODEL 77

for scheduling and definition of priorities, the representation of thread-based stacks
is rearranged by providing a different view on threads. The key idea is to use an
object-centric view of stacks instead of the current thread-centric view as shown in
Definition 4.4.7. As an important side effect, objects are then described in a self-
contained way. This means that the control information in the system and the object
state in full provide a compositional view of object-oriented systems.

Definition 4.4.7 (Control Store in the Object-Centric Version)

ControlStore
ControlStore ⊆ (UOID ⇀ UTHREAD → Stack(FRAME))
. ∼ . ⊆ CentralControlStore× ControlStore

ccs ∼ cs ⇔
∀oid ∈ UOID, t ∈ UTHREAD :

cs(oid)(t) = filter({(oid, ∗, ∗, ∗, ∗)}, ccs(t))

ControlStore splits each stack in parts that belong to objects.

. ∼ . relates two representations of the control store by essentially filtering the
centralized stack with regard to individual objects.

Lemma 4.4.1 (Control Store Representations Are Equivalent)

∀ccs ∈ CentralControlStore : ∃1cs ∈ ControlStore : ccs ∼ cs
∀cs ∈ ControlStore : ∃1ccs ∈ CentralControlStore : ccs ∼ cs

For a ControlStore cs the stack cs(oid)(t) contains exactly those frames where a
method from object oid was called in thread t. Note that the relation . ∼ . defines
an isomorphism as formulated in Lemma 4.4.1. Decentralization into a control store
is by definition a function. However, the original stacks can also be reconstructed
uniquely because the caller object identifier is part of the frame of the called object.
So both representations of the control store provide exactly the same information
arranged differently. Example 4.4.2 shows the Example 4.4.1 as represented by an
object-centered control store.

According to Definition 4.5.3, an object can easily recognize that it is being called a
second time within the same thread. This is important when, for example, scheduling
or blocking incoming messages from other threads. The Java synchronization model
distinguishes recursive calls from other threads and calls from the same threads, and
blocks the former but not the latter.
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Example 4.4.2 (Object-Centric View on Concurrently Executing Threads)

4.5 MESSAGES AND EVENTS IN THE SYSTEM MODEL

In this section, messages and events are specified as well as how they are stored and
handled within objects.

4.5.1 Messages, Events, and the Event Store

A uniform handling of events and messages is allowed when messages are considered
as events as well, and this gives rise to a general concept also called “events.” Events
can be handled by an operation being executed, a blocked operation resuming execu-
tion (in case of a return event), or ignored. They need not be consumed in the order in
which they appear, and a more sophisticated management (scheduling) can be defined
individually for each object: Event occurrences may be handled immediately, or their
handling may be delayed until it is made possible, or they can even be ignored.

To capture this rather general notion, a universe of events occurring in systems
is introduced. Events are not yet structured further; below, certain types of events,
such as method call and return, are introduced as special forms of events. Further
specializations are left open.

In Definition 4.5.1, the universes UEVENT of events and EventStore of event stores
are introduced. An event store buffers events that have occurred and are waiting to be
processed. A buffer is a rather general structure to store and handle messages, deal with
priorities, and so on. Event occurrences are instances of events that may store infor-
mation such as the time the instance occurred and possibly other state information.
In the system model, hence, event occurrences correspond to system states in which
the event has just been added (sent) to or removed (received) from the event store.

Definition 4.5.2 introduces the universe UMESSAGE of messages and the function
MsgEvent. Messages are a general mechanism to encode any kind of synchronous
method call as well as asynchronous message passing. Each message has a unique
sender and a unique receiver. That is, a direct description of broadcasting or
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multicasting is not possible. This means no restriction, though: Multicasting, for
example, can be simulated by sending the same message repeatedly to different
addressees. Moreover, no further distinction between the various possible forms of
messages is enforced.

Definition 4.5.1 (EventStore and Object Event Signature)

EventStore
UEVENT
eventsIn : UOID → P(UEVENT )
eventsOut : UOID → P(UEVENT )
EventStore ⊆ (UOID ⇀ Buffer(UEVENT ))

events(oid) = eventsIn(oid) ∪ eventsOut(oid)

∀es ∈ EventStore : oid ∈ dom(es) ⇒ es(oid) ∈ Buffer(events(oid))

UEVENT is the universe of events.
eventIn are the events that an object may receive.
eventOut are the events that an object may generate.
EventStore maps an object identifier to a buffer of processable events.

Definition 4.5.2 (Object Message Signature)

Message
UMESSAGE
MsgEvent : UMESSAGE → UEVENT
sender, receiver : UMESSAGE → UOID
msgIn, msgOut : UOID → P(UMESSAGE)

∀m ∈ UMESSAGE, oid ∈ UOID :

sender(m) = oid ⇔ MsgEvent(m) ∈ eventsOut(oid)

receiver(m) = oid ⇔ MsgEvent(m) ∈ eventsIn(oid)

msgIn(oid) = {m | receiver(m) = oid}
msgOut(oid) = {m | sender(m) = oid}

UMESSAGE is the universe of messages.
MsgEvent wraps messages into events that can then be adequately stored. sender
and receiver enforce uniqueness of sender and receiver, respectively, of any
message.
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4.5.2 Method Call and Return Messages

Common kinds of messages describe method call and return. The well-known tech-
nique of encoding method call and return into messages, as practiced in distributed
systems, supports, among other things, remote procedure calls.

Call messages carry the usual information, such as caller and called objects,
method name, parameter values, and thread. All possible invocations for a given
caller object, called object, operation, and thread are packed by the function callsOf
into an appropriate message; see Definition 4.5.3.

Definition 4.5.3 (Method Call Messages)

MethodCall
callsOf : UOID× UOPN × UOID× UTHREAD → P(UMESSAGE)
callsOf : UOID → P(UMESSAGE)

∀r, s ∈ UOID, op ∈ UOPN , th ∈ UTHREAD :

callsOf (r, op, s, th) ⊆ UOID×UOMNAME×List(UVAL)×UOID×UTHREAD

callsOf (r, op, s, th) = {(r, nameOf (op), pars, s, th) |
r ∈ oids(classOf (op)) ∧
pars ∈ params(op)}

callsOf (r, op, s, th) ⊆ msgIn(r)

callsOf (r, op, s, th) ⊆ msgOut(s)

callsOf (r) =⋃
op∈UOPN ,s∈UOID,th∈UTHREAD callsOf (r, op, s, th)

callsOf defines the set of all possible method calls from object s to r with operation
signature op and run in thread th.

Return messages carry the return value, the thread, and the sender and receiver of
the result value. So Definition 4.5.4 differs only slightly from the previous definition
of method calls. According to the definition of returnsOf , the receiver r of the return
message was the sender of the original method call.

The concepts of method calls and returns, on the one hand, and of messages, on
the other, can be gathered into a single concept of message passing. Message passing
allows handling of the composition of objects and provides a clear interface definition
for objects and object groups. Method calls and returns are then just special kinds of
messages and can be treated together with other kinds of incoming messages.

4.5.3 Asynchronous Messages

Formally, signals are just asynchronous messages that do not transfer control. There-
fore, not every message needs to carry a thread marker. There may, moreover, exist
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Definition 4.5.4 (Return Messages)

MethodReturn
returnsOf : UOID× UOPN × UOID× UTHREAD → P(UMESSAGE)
returnsOf : UOID → P(UMESSAGE)

∀r, s ∈ UOID, op ∈ UOPN , th ∈ UTHREAD :

returnsOf (r, op, s, th) ⊆ UOID× UVAL × UOID× UTHREAD

returnsOf (r, op, s, th) = {(r, v, s, th) |
s ∈ oids(classOf (op)) ∧ v ∈ CAR(resType(op))}

returnsOf (r, op, s, th) ⊆ msgIn(r)

returnsOf (r, op, s, th) ⊆ msgOut(s)

returnsOf (r) =⋃
op∈UOPN ,s∈UOID,th∈UTHREAD returnsOf (r, op, s, th)

returnsOf defines the set of all possible returns from object s to r that may occur
as a response to a method call in thread th.

signals that an object may accept. In this case, the object needs to be “active” in the
sense that it already has an internal thread to process the stimulus. It is, furthermore,
possible that the object is not itself active, but belongs to a group of objects that has a
common scheduling concept for the processing of messages that come from outside
the group. This concept resembles the situation in classical language realizations,
where one process contains many objects. A concept of regions allows a description
of such a common scheduling strategy.

In Definition 4.5.5 the universe USIGNAL of signals is introduced, which is a
subset of the universe of messages.

Definition 4.5.5 (Signals as Asynchronous Messages)

Signal

USIGNAL ⊆ UMESSAGE

callsOf (∗, ∗, ∗, ∗) ∩ USIGNAL = Ø

returnsOf (∗, ∗, ∗, ∗) ∩ USIGNAL = Ø

4.6 OBJECT STATE

Objects may have an individual state, and groups of objects may have a collective
state.
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4.6.1 Individual Object States

The signature and the state space of an object comprises data, control, and event
stores. The three stores are defined as mappings from UOID to the respective state
elements. Thus, the state of an object is fully described by a value of OSTATE as
given in Definition 4.6.1.

Definition 4.6.1 (State Space of An Individual Object)

ObjectStates1
STATE ⊆ DataStore× ControlStore× EventStore
oids : STATE → P(UOID)
OSTATE = INSTANCE × (UTHREAD → Stack(FRAME))

×Buffer(UEVENT )
state : STATE × UOID → OSTATE
states : UOID → P(OSTATE)

STATE = {(ds, cs, es) | dom(ds) = dom(cs) = dom(es)}
oids(ds, cs, es) = oids(ds) = dom(ds)

∀oid ∈ oids(us) : state((ds, cs, es), oid) = (ds(oid), cs(oid), es(oid))

states(oid) = {state(us, oid) | us ∈ STATE ∧ oid ∈ oids(us)}
The state of an object consists of its actual attribute values, events, and the threads
belonging to an object. states defines the potential states of an object.

Derived:

oids(ds, cs, es) = dom(ds) = dom(cs) = dom(es)

4.6.2 Grouped Object States

The functions state and states, introduced in Definition 4.6.2, can be generalized to
define the actual and potential set of states for groups of objects. These generaliza-
tions use a mapping from object identifiers to their respective contents and are thus
structurally equivalent to STATE. The structural equivalence of STATE and states(os)
raises the possibility of using a composition on object states in Lemma 4.6.1 that can
also be used to compose state machines in the following section. In particular, f ⊕ g
is well defined, as state(us, osi) is equal on the common objects os1 ∪ os2. This also
allows us to regard the possible set of object states in states as a cross product, where
the common object identifiers need to coincide in their state.
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Definition 4.6.3 (State Space of Sets of Objects)

ObjectStates2
state : STATE × P(UOID) → (UOID ⇀ OSTATE)
states : P(UOID) → P(UOID ⇀ OSTATE)

∀os ⊆ UOID, us ∈ STATE, oid ∈ UOID :

state(us, os)(oid) = state(us, oid)

∀os ⊆ UOID :

states(os) = {state(us, os) | us ∈ STATE ∧ os ⊆ oids(us)}
Function state and states can be generalized to define the actual and potential set
of states for groups of objects.

Derived:

∀os ⊆ UOID, us ∈ STATE : dom(state(us, os)) = os ∩ dom(us)
∀os ⊆ UOID, f ∈ states(os) : dom(f ) = os ∩ dom(us)

Lemma 4.6.1 (State Space Composition)

ObjectStates

∀os1, os2 ⊆ UOID, us ∈ STATE :

state(us, os1 ∪ os2) = state(us, os1)⊕ state(us, os2)
∀os1, os2 ⊆ UOID, os1 ∩ os2 = Ø ⇒

states(os1 ∪ os2) = {f1 ⊕ f2 | fi ∈ states(osi), i = 1, 2}
Function state and states are compositional with respect to the state of objects.

Derived:

∀os, os1, os2 ⊆ UOID : os = os1 ∩ os2 ⇒
states(os1 ∪ os2)

= {f1 ⊕ (f2 |os2\os1 ) |fi ∈ states(osi)}
= {(f1 |os1\os2 )⊕ f2 |fi ∈ states(osi)}
= {(f1 ⊕ f2) |fi ∈ states(osi) ∧ f1 |os = f2 |os}
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Definition 4.6.2 identifies states(o) and states({o}) as equivalent, as the latter is a
function with a singleton argument only.

4.7 EVENT-BASED OBJECT BEHAVIOR

Based on the notions of state for each object and the corresponding incoming and
outgoing events, the behavior of an object is specified in the form of a state transition
system. For this purpose the theory of state transition systems (STSs) defined in
Appendix A.1 in this chapter is used.

An STS-based representation of basic actions is required. For that purpose an
ordinary programming language such as Java is used. The special actions of UML
(see [8, Chap. 11]) were disregarded because of the better expressiveness of Java.

4.7.1 Control Flow State Transition Systems

As objects react to incoming events, an STS describing object behavior is basically
event based and does not necessarily describe timing aspects. To trigger the next
execution step for thread th within an object, a pseudoevent †(th) is used as given in
Definition 4.7.1. With this trigger as explicit input of an STS, the scheduling can be
defined in a separate entity.

Definition 4.7.1 (Stepper for an STS)

STSStepper
† : UTHREAD → STEP

injective(†)

†(th) is used as a trigger for the next execution step in thread th.

Transitions within the control flow STS (CFSTS) are regarded as atomic actions.
A CFSTS is defined such that an object has no direct access to an attribute of any
other object but may call methods and send events as desired. The state of a CFSTS
is defined by the object’s own attributes and the currently active frame. Variation
Point 4.7.1 introduces CFSTS and uses STS as introduced in Definition A.1.1.

Note that there are alternative ways to describe the result of method execution:
for example, by using actions as defined by the Object Management Group [8, Chap.
11]. An action language may encompass an ordinary programming language but allow
additional actions that deal with manipulation of associations, timing and scheduling,
and so on.

Indeed, to define such high-level “model-aware” actions is useful, as otherwise
such concepts need to be emulated through lower-level concepts if at all possible. This
would mean, for example, that associations are encoded as attributes, with scheduling
managed through an API of an ordinary object serving as scheduler.3

3 In Java this would be a Thread object.
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Variation Point 4.7.1 (Control Flow STS for Methods)

[CFSTS]
cfsts : UMETH × UOID× UTHREAD ⇀ STS(S, I , O)

∀m ∈ UMETH , oid ∈ UOID, th ∈ UTHREAD :

classOf (oid) sub classOf (m) ∧ cfsts(m, oid, th) = (S, I , O, δ, s0) ⇒
S = {(o, fr) ∈ objects(oid)× framesOf (m) |

fr = (oid, ∗, ∗, ∗, ∗)} ∧
s0 = {(o, fr) ∈ S | ∃start ∈ StartPC : fr = (∗, ∗, ∗, start, ∗)} ∧
I = {MsgEvent call | call ∈ callsOf (oid, m, ∗, th)} ∪ STEP ∧
O = eventsOut(oid)

cfsts assigns a possibly underspecified CFSTS to each method. This describes the
implemented behavior of that method in the form of a state machine.

Variation Point 4.7.1 is not constraining CFSTS. Certainly, many states of the
CFSTS will never be reached, many outputs that are included in O will not be made.
However, it is relatively accurate on the input, as it describes all information about
the context that is known.

Note that one CFSTS for each method implementation is attached to each object
individually. This gives some freedom, allowing different behaviors for objects of the
same class. In practice, however, objects of one class are assigned the same CFSTS.
Furthermore, objects of subclasses whose methods are not overridden are assigned
the same CFSTS as their superclass objects. This resembles method inheritance on
the level of behavior through CFSTS.

4.7.2 Event-Based State Transition Systems

Objects react to incoming events and can therefore be described by an STS. This
behavior does not describe timing aspects. An event-based STS (ESTS) handles
execution within a single object. Definition 4.7.2 specifies the general structure and

Definition 4.7.2 (Event-Based STS for Objects)

EventSTS
ests : UOID → STS(S, I , O)

∀oid ∈ UOID :

ests(oid) ∈ STS(states(oid), eventsIn(oid) ∪ STEP, eventsOut(oid))

ests assigns a possibly underspecified STS to each oid, thus making it possible to
describe externally visible behavior for an object as a state machine.
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signature of ESTS. An ESTS operates on the full object state and is triggered either
by real events or by steps indicated by a dagger. Those steps denote only scheduling
of steps, not timing.

The nondeterministic transition function δ of an ESTS supports underspecification
and thus multiple possible behaviors within the STS. This underspecification may be
totally or partially resolved during design time by the developer or during runtime
by the system itself, choosing transitions according to some circumstances, sensor
input, and so on.

Compared to the CFSTS defined previously, this notion of ESTS is rather general.
It embodies all data, control, and event states on a very general level and thus can
describe interference of parallel executions as well as handling of incoming events
in the buffer. In contrast to an CFSTS, an ESTS embodies the complete object state
including the control state and event buffer. A detailed description of the relationship
between an CFSTS and an ESTS has been given by Broy et al. [1], who also provided
a variation point for ESTS that is composed of several CFSTSs.

4.8 TIMED OBJECT BEHAVIOR

In this section we present a time-aware version of STS, timed STS (TSTS), defined
in Appendix A.2. TSTS allows a description of individual object behavior and the
composition thereof.

A discrete global time is assumed available. Each step of transition of the TSTS
corresponds to progress of one time unit. A system executes in steps, each step
consuming a fixed amount of time. TSTS are transition systems that deal with this
paradigm. Roughly speaking, in each step a finite set of input events is provided to a
TSTS, and a finite set of output events is produced by the TSTS.

As a further mechanism, communication channels allow a description of the inter-
action (communication flow) between parts of the objects and thus of the behavior
of objects on a very fine-grained level. As a general result, a complete description of
how systems are decomposed into objects is provided, as well as what states objects
may have and how objects interact.

4.8.1 Object Behavior in the System Model

In the system model, the object and component instances cooperate by asynchronous
message passing. Method invocation is already modeled by the exchange of two
events, the method invocation event and the method return event.

Communication between objects is dealt with by channels. A communication
channel is a unidirectional communication connection between two objects. The
system model defines a universe UCN of channels and leaves open how many channels
are used between objects.

Each channel has a name (e.g., c ∈ UCN), and the type of events that may flow
through c is given by csort(c). Each object has a number of incoming and outgoing
channels, and each event is associated with the channel through which it flows (see
Definition 4.8.1).
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Definition 4.8.1 (Channel Signatures of Objects)

Channels
UCN
sender, receiver : UCN→UOID
channel : UEVENT → UCN
inC, outC : UOID → P(UCN)
csort : UCN → P(UEVENT )

∀m ∈ UEVENT , oid ∈ UOID :

sender(m) = oid ⇒ sender(channel(m)) = oid

receiver(m) = oid ⇒ receiver(channel(m)) = oid

∀c ∈ UCN :

inC(oid) = {c | receiver(c) = oid}
outC(oid) = {c | sender(c) = oid}
csort(c) = {m ∈ UEVENT | channel(m) = c}

UCN denotes the universe of channel names.
sender and receiver assign a sending and a receiving object to each channel.
channel assigns a channel to each event.
inC and outC denote the channel signature of each object.
The type of each channel csort(c) describes the possible events flowing over
that channel.

As an important consequence of the definitions above, each channel is in the
output signature of only one object, since events are associated with a channel not
only but also with its originating object. This ensures the applicability of composition
techniques for TSTS, which work only if the output channels of composed objects
are disjoint.

Based on channels and their type, the behavior of a single object is defined in
Definition 4.8.2. This definition is based on the assumption of a time granularity fine

Definition 4.8.2 (Behavior of Individual Object)

ObjBehavior
beh : UOID → Bcsort(I , O)

∀oid ∈ UOID :

beh(oid) ∈ Bcsort(inC(oid), outC(oid))

beh(oid) denotes the behavior of a single object.
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enough to ensure the independence of the output in one step from the input received
in that step. In this way, strong causality is preserved between input and output.
Moreover, the composition of state machines is simplified since feedback within one
time unit is ruled out, and thus causal inconsistencies are avoided. The actual (real-)
time occurrence of events can be abstracted away; thus, only the untimed behavior of
objects needs be considered.

Definition 4.8.3 provides a flexible concept of components, including, for example,
classical sequential systems (in this case, there is only one input and one output
channel). Input and output flow of events can be further restricted, allowing the
reception or the dispatch of at most one event in each step. At the other extreme,
highly concurrent systems with a large number of input and output events in one state
transition step can also be described.

4.8.2 State-Based Object Behavior

The behavior of an object oid is defined precisely as beh(oid). The relationship of
this behavior to a state-based view is not yet defined. For this purpose, a timed state
transition system to each object is attached as shown in Definition 4.8.4. According
to this definition, each object oid ∈ UOID can be described by a nondeterministic
TSTS as introduced in Appendix A.2.

Definition 4.8.3 (Behavior of Object Compositions)

CompBehavior
beh : P(UOID) → Bcsort(I , O)
inC, outC : P(UOID) → P(UCN)

∀os ⊂ UOID :

I = inC(os) = {c | receiver(c) ∈ os ∧ sender(c) �∈ os}
O = outC(os) = {c | sender(c) ∈ os ∧ receiver(c) �∈ os}
beh(os) = ⊕oid∈osbeh(oid)

beh(os) denotes the behavior of a group of objects where internal communication
is not visible anymore.
inC describes the incoming channels for a group of objects; outC describes the
outgoing channels.

The axiom S(tsts(oid)) = beh(oid) for any oid states that the behavior of
each object is defined by an appropriate TSTS. It can be shown that the composi-
tion of TSTS and of I/O-behaviors is compatible. This means that it can be switched
between a state-based and a purely I/O-based view of object behavior, and moreover,
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Definition 4.8.4 (Behavior as TimedSTS)

TimedSTS
tsts : UOID → TSTScsort(S1, I1, O1)
tsts : P(UOID) → TSTScsort(S, I , O)

∀oid ∈ UOID :

tsts(oid) ∈ TSTScsort(states(oid), inC(oid), outC(oid))

S(tsts(oid)) = beh(oid)

∀os ⊂ UOID :

tsts(os) = ⊕oid∈oststs(oid)

tsts(oid) denotes the TSTS-based description of behavior of a single object.
The definition is then generalized to a set of objects.

the behavior of objects or groups (components) can be specified individually and
afterward composed meaningfully.

Note that each object oid has exactly one single TSTS tsts(oid). However, as
tsts(oid) is a nondeterministic state machine, it allows various forms of underspec-
ification. Therefore, there is no need to add a further concept of underspecification
by, for example, assigning a set of possible TSTS to each object. Any UML model,
however, may have an impact on the elements of a TSTS. For instance, the sets of
reachable states can be constrained, the initial states restricted to be a singleton, or
the nondeterminism reduced by enforcing a behavior that is deterministic in reaction
and time.

With this last part of the system model, a TSTS for the entire system is available
that includes all snapshots and all system states and is thus capable of describing any
behavioral and structural restrictions by tsts(UOID). The overall system tsts(UOID)
does not have any external channels; it incorporates all “objects.” This includes objects
that have direct connections to interfaces to other systems, mechanical devices, or
users and thus can act as surrogates for the context of the system. In other words,
the overall system makes a closed-world assumption. Rumpe [9] discusses how to
deal with a closed-world assumption to describe open, reactive systems, and what
advantages are implied by this assumption. A general mapping from event-based to
TSTS is defined by Broy et al. [1].

4.9 THE SYSTEM MODEL DEFINITION

Finally, Definition 4.9.1 introduces the universe of system models.
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Definition 4.9.1 (The System Model as a Universe)

SYSMOD
SYSMOD

sm ∈ SYSMOD ⇒
sm =

(UTYPE, UVAL, CAR,

UVAR, vtype, vsort,

UCLASS, UOID, attr, oids, classof ,

sub, &,

UASSOC, classes, extraVals, relOf ,

UOPN , UOMNAME, nameOf , classof , parTypes, params, resType,

UMETH, UPC, nameof , definedIn, parNames,

localNames, resType, pcOf , impl,

UTHREAD,

UVENT , eventIn, eventsOut,

UMESSAGE, MsgEvent, USIGNAL,

ests,

UCN ,

tsts)

such that all constraints defined above are fulfilled.

APPENDIX A.1: STATE TRANSITION SYSTEMS

As objects react on incoming events, state transition systems are an appropriate way
of describing object behavior. Several forms of state transition systems and their
compositions are used in theory. Therefore, we introduce the basics of STS as a
general technique.

A.1.1. STS Definition

The theory used here is based on the theory of automata but was partly enhanced by
Rumpe [9] to describe a form of automata, called I/O∗-automata, where transitions
are triggered by one incoming event and the effect of this event: a sequence of possible
outputs is the output of the same transition. In contrast to I/O-automata [6], this form
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allows us to abstract away from many internal states of the automaton, which are
necessary if each output is triggered by an individual transition. The application of
I/O∗-automata to our description of objects is given in Definition A.1.1.

Definition A.1.1 (I/O∗-STS)

STS
STS(S, I , O) =
{(S, I , O, δ, s0) | s0 ⊆ S ∧ s0 �= Ø
∧ δ ∈ S × I → P(S × O∗)
∧∀s ∈ S, i ∈ I : δ(s, i) �= Ø}

Notation:

δ : s
i/o−→ t is shorthand for (o, t) ∈ δ(s, i)

STS(S, I , O) is the set of all, possibly underspecified STSs with given state, input,
and output sets. An STS has a complete transition relation as δ(s, i) �= Ø for all s, i.

As can be seen from the definition, the transition function is nondeterministic.
This allows us to model underspecification and thus multiple behaviors in the STS.
As discussed by Rumpe [9], this underspecification may be resolved during design
time by the developer or during runtime by the system itself taking the choice
according to some random circumstances, sensor input, or other factor.

The semantics of such an STS is defined by Rumpe [9] using stream processing
functions in the form developed by Broy et al. [2]. These stream processing functions
allow composition, behavioral refinement, and other operations of interest. However,
STS themselves are not fully compositional regarding the compositionality of the
state space. But there are quite a number of techniques to combine smaller STSs into
a larger STS.

APPENDIX A.2: TIMED STATE TRANSITION SYSTEMS

Timed state transition systems do not use events directly to make their steps, but time
progress. A timed state machine equidistantly performs its steps as time progresses
and consumes all events arriving at that time. As a big advantage, we cannot only
integrate time into the specification technique, but also have composition operators
at hand that are compatible with the composition of streams.

A.2.1. Definition of Timed State Transition Systems

A timed state transition system (TSTS) is an STS in which each transition resembles a
time step. Such a time step can handle several input events and produce several outputs.
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TSTSs are defined in Definition A.2.1. Here I and O play the roles of channels, which
are typed by the channel typing function c : (I ∪ O) → P(M).

Definition A.2.1 (Timed STS)

TSTS1
TSTSc(S, I , O) = {(S, T c(I), T c(O), δ, s0) ∈ STS(S, T c(I), T c(O)) |
∀δ : s

i/o−→ t ⇒ #o = 1 ∧
∀δ : s

i/o−→ t, i′ : ∃t′ : δ : s
i′/o−→ t′

}

TSTSc(S, I , O) is the set of all, possibly underspecified STSs that resemble timed
object behavior. A TSTS has a complete transition relation.

The restriction #o= 1 in TSTS is not a real one, as by definition o∈ (T (O))∗, which
can be regarded as equivalent to o ∈ T (O). Instead, we could also use a flattening
operator on o. The simplified representation of the timed transition function δ, which
will now be used, is thus

δ : (S × T c(I)) → P(S × T c(O))

where T c(I) denotes the set of channel time slices for the channels in I .
The second restriction models the fact that the state transition function describes

the behavior of a Moore machine [5]. The output o therefore depends only on the start
state s, not on the input x, as for all other inputs x′ the same output y is happening, too.

One way to interpret this rule is that the granularity of time is fine enough to trace
state changes in such a detailed way that the reaction to an input is always delayed by at
least one time unit (one state transition step). As an immediate consequence, feedback
cycles include a time step and thus preserve causality. Another consequence is that
the output of a transition is independent of the input of this transition and intermediate
storage for either the input before being processed or the resulting output in the state
space is therefore inevitable.
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5.1 INTRODUCTION

What is the meaning of a UML diagram? Consider the simple class model of a library
system, shown in Figure 5.1. One may interpret its meaning as follows: The system
has two classes, called Member and Book. There is an association between them,
which is called Borrows. The multiplicity upper bound of the Borrows association at
the Book end is 10, and the multiplicity upper bound of Borrows at the Member end
is 1. An alternative interpretation of the model is: There are two types of objects in
the system, called Member and Book. Members can borrow books. Each member can
only borrow up to 10 books at any time, and each book can be borrowed by at most
one member at any time.

In general, “a model is a set of statements about some system under study,” to
quote Seidewitz [22]. However, the statements themselves differ according to which
formalization of UML is being used, and comparing the two interpretations above,
we can identify two types.

• Descriptive statements describe a system based on a set of basic concepts, such
as class, association, and multiplicity upper bound. Such statements can be used
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Member

Book

0..10

0..1
Borrows

FIGURE 5.1 Library system.

to determine which system in a given subject domain is an instance of a model.
For example, consider the statement above that “the system contains two classes,
Member and Book.” This is a description of the system based on the concept
of class without further information about what a class is, but by making an
assertion about its construction.

• Functional statements define how a system functions at runtime. An example
is the statement above that “there are two types of objects in the system, called
Member and Book.” This makes an assertion about the system’s runtime behavior
(i.e., the existence of two types of runtime entities).

The differences between these two types of statements become clearer when they
are formalized in predicate logic. The statement “the system contains two classes,
Member and Book” can be formalized as follows:

Class(Member) ∧ Class(Book)

where Class(x) is a predicate that asserts that an element x is a class. The formal
representation of the statement “there are two types of objects in the system, called
Member and Book” in predicate logic would be

∃x ·Member(x) ∧ ∃y · Book(y)

where the predicates Member(x) and Book(x) mean that element x is of type Member
and Book, respectively. Obviously, the difference between these two statements lies
in the domain of the predicates.

These two types of statements reflect two aspects of the semantics of UML: The
functional semantics defines how an instance of a model behaves, while the descriptive
semantics describes what an instance of a model “looks like” (i.e., it determines which
system in a given subject domain is an instance of a model).

As far as we know, all existing work on the formalization of UML semantics has
focused on using functional statements in various formalisms to define the functions
of modeled systems. As discussed briefly in Section 5.5, such works are interesting
and important for the definition of UML’s semantics, especially since they deepen
significantly our understanding of object-oriented concepts. However, a number of
issues connected with the semantics of UML are neglected, and they are best addressed
by descriptive semantics.
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(a) Program P1 (b) Program P2 (c) Program P3 

class Member
{...}
class Staff extends Member 
{...}
class Student extends Member 
{...}

class Member 
{...}
class Staff extends Member 
{...}
class Student extends Member 
{...}
class MScStudent extends Student 
{...}

class Member { 
public enum MemberType { 
Staff, Student } 

public MemberType 
TypeOfMember;

...
}

FIGURE 5.2 Java-like programs.

Member

Staff Student

FIGURE 5.3 Classification of members.

For example, consider the Java-like programs depicted in Figure 5.2. Which can be
regarded as an instance of the model in Figure 5.3? Unfortunately, the documentation
of UML does not answer this question.

To answer questions like this, we proposed [23] an approach to specifying the
semantics of UML formally in first-order predicate logic (FOPL) and reported a
preliminary version of an automated software tool called LAMBDES for the logic
analysis of UML models. The theory and the tool focus on the descriptive semantics
of UML and address the following open problems in the formalization of UML
semantics.

First, UML models are not limited to modeling computer software systems, and
each UML model can be interpreted in many different subject domains. For exam-
ple, the class diagram of Figure 5.1 can be regarded as a model of libraries in both
the physical world and in a computer information system. So the definition of the
semantics of UML must be flexible enough to be interpreted in all subject domains.

Second, UML is intended to provide a holistic modeling approach to object-
oriented software development. It is designed for use at all stages of software
development and to support all software development and maintenance activities.
This imposes further flexibility requirements on a formal definition of its semantics.
For example, if the model in Figure 5.3 is used as a requirements specification, all
three programs in Figure 5.2 should be considered as a correct implementation of the
model. If the same model is regarded as a design of a software system, program P3
would be regarded as not following the design faithfully, so it would be an incorrect
implementation. But programs P1 and P2 should both be regarded as correct instances
of the model. If the diagram is the result of reverse engineering through source code
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analysis, it is a correct model only for program P1. So a good definition of UML’s
semantics should be flexible enough to cover all these situations and many more.

Finally, UML is designed to be extensible through the use of profile definitions
and new stereotypes in the metamodel. The definition of UML semantics must also
cover these extension mechanisms.

In this chapter we present the theory behind and a method for the formal definition
of UML’s descriptive semantics using FOPL to demonstrate how the difficulties above
are overcome in our approach. We report the current state in the development of the
tool LAMBDES, which translates graphic models into descriptive semantics in FOPL
and enables the formal analysis of models in FOPL by integration with a theorem
prover. We also demonstrate how the semantics and the tool together support formal
analysis of both models and metamodels in FOPL.

The remainder of this chapter is organized as follows. In Section 5.2 we present
the descriptive semantics of UML class diagrams, interaction diagrams, and state
machine diagrams. In Section 5.3 we describe the tool LAMBDES, in Section 5.4
demonstrate applications of the semantics and the tool by some examples, and in
Section 5.5 conclude the chapter with a discussion of related and future work.

5.2 DEFINITION OF DESCRIPTIVE SEMANTICS IN FOPL

In this section we first outline our approach to a formal definition of UML’s seman-
tics and then present mappings from models and metamodels to their descriptive
semantics. Then we discuss how to deal with the semantics of models in different
development contexts and extension mechanisms.

5.2.1 The Framework

As in all existing approaches to the formalization of UML in FOPL, we define the
descriptive semantics of UML through a mapping from UML models to a set of FOPL
statements which are constructed from a set of predicate and constant symbols via
logic connectives and quantifiers. However, in our approach, these symbols represent
the basic concepts of the modeling language rather than the concepts in the system
to be modeled. For example, a predicate Class(x) is defined to represent the concept
class in UML. Moreover, our approach differs from existing work in the way that
the atomic predicate symbols are derived. Instead of determining the signature of the
FOPL system manually, we derive the atomic predicate and constant symbols from the
metamodels because the concepts of OO modeling are specified in UML metamodels.
The collection of rules that are used to derive signatures from a metamodel is called
signature mapping.

A metamodel defines not only a collection of concepts but also their interrelation-
ships. The interrelationships between the concepts are properties that all models must
satisfy and thus are the axioms of models. We also derive these axioms from a meta-
model systematically with a set of rules called axiom rules, and we represent them
in the FOPL using atomic predicates and constants in the signature derived. These
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FIGURE 5.4 Overview of the approach to formalizing UML semantics.

axioms are called axioms of descriptive semantics to distinguish them from axioms
of functional semantics, which define the functional semantics using the runtime
properties of the basic concepts. A typical axiom of descriptive semantics is

∀x · (Class(x) → Classifier(x))

which means that if x is a class, it is also a classifier. In contrast, here is an example
of an axiom of functional semantics:

∀A, B · (Class(A) ∧ Class(B) ∧ Inherits(A, B) → ∀x · (A(x) → B(x)))

which means that if class A inherits class B, every instance of A is also an instance
of B. A full treatment of the functional semantics is beyond the scope of this chapter
and will be reported elsewhere.

The descriptive semantics of a UML model is a set of formulas in FOPL that can be
derived systematically by applying a set of rules called translation rules. In addition,
we specify the context in which the model is used by a set of formulas in formal
logic using the same signature. These formulas can also be derived from the model
by a set of rules, so they are mappings from the model to the formulas and are called
hypothesis mappings. In different contexts, different rules are applied. Figure 5.4
illustrates the overall structure of our approach to the definition of UML semantics.

5.2.1.1 Notation: In the sequel we use � and AxmD to denote the signature and
axioms of the descriptive semantics, derived from a given metamodel that a model
M is considered as its instance. We also use T (M) to denote the translation mapping
from models to �-sentences and H(M) to denote a hypothesis mapping from models
to �-sentences that represent the context in which model M is to be used.

Given a formal definition of UML’s semantics in the framework described above,
the semantics of a model is defined as in Definition 5.2.1.
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Definition 5.2.1 (Descriptive Semantics of a Model) The descriptive semantics
of a model M under the hypothesis H is [[M]]H=AxmD ∪ T (M)∪H(M).

A key concept of the semantics of modeling languages is the satisfaction of a model
by a system. This is defined in terms of the evaluation of the truth value of the state-
ments in the context of the system. Given a domain of systems, the evaluation of atomic
predicates is based on their interpretation in a given subject domain and provides a
means of determining the value of an application of an atomic predicate. The evalu-
ation of compound formulas constructed from atomic predicates and constants using
logic connectives and equality is defined as usual in the FOPL. The details are omitted
for the sake of space. Formally, the notion of subject domain and the interpretation
of a formal logic in a subject domain are defined as in Definitions 5.2.2 and 5.2.3.

Definition 5.2.2 (Subject Domain) A subject domain Dom is a triple 〈D, �, Eva〉,
where D is a collection of systems; � is a signature; Eva is an evaluation rule (i.e., a
mapping from systems s in D and �-formulas to the truth value True or False). Given
�-formula f and system s in D, Eva(f , s) is called the interpretation of the formula f
in s. We write s |=Eva f if Eva(f , s) = true.

When there is no risk of confusion, we omit the subscript Eva in |=Eva. For a set
F of formulas we write s |= F to denote that for all f in F, s |= f .

Definition 5.2.3 (Satisfaction of a Model) Let � be a given signature and Dom
a subject domain of �. A system s in D satisfies a model M under hypothesis H
according to a semantic definition [[M]]H if s |= [[M]]H (i.e., for all formulas f in
[[M]]H, s |= f ). We also say that s is an instance of model M, and write s |= M.

5.2.2 Semantics Mappings

We now elaborate the approach by defining the semantics mappings. We demonstrate
that the descriptive semantics of different types of diagrams can be defined using the
same set of semantics mappings.

5.2.2.1 Signature Mapping Given a metamodel, the signature of a formal logic
system can be derived by applying the following rules:

S1. For each metaclass C in the metamodel, a unary atomic predicate symbol
C(x) is defined to represent the fact that the model element x is an instance
of metaclass C.

S2. For each meta-attribute A of metaclass X with Y as its type, and each meta-
association from metaclass X to metaclass Y with A as the association end name
on Y , a binary predicate A(x, y) is defined to represent the relation between
model elements of type X and the elements of type Y .

S3. For each enumeration value V in the metamodel, a constant symbol V is defined.
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FIGURE 5.5 Simplified metamodel of UML class diagrams.

For example, consider the simplified metamodel of UML class diagrams shown in
Figure 5.5. The unary predicate Class(x) represents the metaclass Class. The binary
predicate specific(x, y) represents that the association named specific connects meta-
class x to metaclass y in Figure 5.5. Table 5.1 lists all the unary and binary predicates
derived from the metamodel of class diagrams shown in Figure 5.5.

Constant symbols in the signature are also derived from the metamodel. For exam-
ple, two enumeration values t and f (UML bTrue and bFalse) are defined in the
enumeration metaclass Boolean in Figure 5.5, so two constant symbols t and f are
derived.

The interpretation of the constant and predicate symbols must be defined in the con-
text of a subject domain. Taking the set of C++ programs as an example, the predicate
Class(User) is true if User is a class in the program. The statement isAbstract(User, t)
is true when the class User in the program is declared to be abstract. It is worth not-
ing that the formal definition of descriptive semantics is independent of the subject
domain and its interpretation. So we leave the definition of the interpretation open so
that a model can be interpreted in different subject domains.
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TABLE 5.1 Signature of a Simplified Class Diagram Metamodel

Unary Concrete Generalization, Parameter, Operation, Class,
predicates metaclasses Property, Association, DataType, Signal, Interface,

ParameterDirectionKind, AggregationKind, Boolean,
VisibilityKind, String, Dependency, InterfaceRealization

Abstract MultiplicityElement, TypedElement, Type,
metaclasses Classifier, DirectedRelationship, Feature, Relationship,

StructuralFeature, BehavioralFeature, NamedElement,
Element, RedefinableElement

Binary Meta-attributes isAbstract, direction, aggregation, visibility,
predicates Name, isLeaf, isStatic

Meta-associations type, general, specific, supplier, client, contract,
ownedParameter, ownedAttribute(2), ownedOperation(2),
memberEnd, implementingClassifier

Constants Enumeration in, out, inout, return, none, shared, composite,
values bTrue, bFalse, public, private, protected, package

5.2.2.2 Translation Mapping The translation mapping comprises the follow-
ing set of rules that when applied to a model generate a set of descriptive statements
in the �-sentences:

T1. For each element e in model M as an instance of metaclass C, formula C(e) is
in T (M).

T2. For each element e in model M as an instance of metaclass C, if Attr is a meta-
attribute of C and v is e’s value on the meta-attribute Attr, formula Attr(e, v) is
in T (M).

T3. For each pair e1 and e2 of elements in model M, formula R(e1, e2) is in T (M),
if there is an instance of meta-association R from e1 to e2 in M.

For example, consider the class diagram in Figure 5.6. The following formulas are
among the statements generated by applying the translation rules:

Class(User), Class(Bank), Class(BoxOffice), isAbstract(Clerk, f )

5.2.2.3 Axiom Mapping The axiom mapping for deriving axioms can be
defined by the following set of rules:

A1. If {C1, C2, . . . , Cn} is the set of concrete metaclasses in a metamodel, the
formula ∀x · (C1(x) ∨ C2(x) ∨ · · · ∨ Cn(x)) is an axiom.

A2. For each pair of different concrete metaclasses C �=C′, the formula ∀x ·
(C(x)→¬C′(x)) is an axiom.



5.2 DEFINITION OF DESCRIPTIVE SEMANTICS IN FOPL 103

Bank

+charge(cardNum: Integer, cost: Real): Bool

BoxOffice

+ticketList: List

+buyTicket(seatNum: Integer)
+refundTicket()

Customer

+cName: String
+creditCardNum: Integer

+getCardNum()

Ticket

+holder: String

+buy(customerName: String)
+refund()

Clerk

+cId: Integer

0..10..1

+businessClient

+bankServer

+ bOffice

+hasTicket0. .*

+pay(cost: Real)
+pay(cost: Real)

+server+client
User

+getName(): String
+pay(cost: Real)

FIGURE 5.6 Ticket office system: class model.

A3. For each generalization relation from metaclass A to B, the formula ∀x ·
(A(x)→B(x)) is an axiom.

A4. If A is an abstract metaclass and {B1, B2, . . . , Bk} is the set of metaclasses
specializing A, the following formula is an axiom:

∀x · (A(x) → (B1(x) ∨ B2(x) ∨ · · · ∨ Bk(x)))

A5. For each association A from metaclass C1 to C2, the formula ∀x, y · (A(x, y)∧
C1(x)→C2(y)) is an axiom.

A6. For each metaattribute Attr of type T in a metaclass C, the formula ∀x, y ·
(C(x) ∧ Attr(x, y)→ T (y)) is an axiom.

A7. For each association A from metaclass C1 to C2, if “e1 · ·e2” is its multiplicity
value, the following formula is an axiom:

∀x · (C1(x) → (e1 ≤ ||{y|A(x, y)}|| ≤ e2))

A8. For each meta-attribute Attr of type MT in a metaclass C, if “e1 · ·e2” is its
multiplicity value, the following formula is an axiom:

∀x · (C(x) → (e1 ≤ ||{y|(Attr(x) = y)}|| ≤ e2))

A9. For each pair of different literal values a and b of an enumeration metaclass,
the formula a �= b is an axiom.
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A10. For each enumeration value a defined in an enumeration metaclass E, the
formula E(a) is an axiom.

A11. For each enumeration metaclass E with literal values a1, a2, . . . , ak , the
following formula is an axiom:

∀x · (E(x) → ((x = a1) ∨ (x = a2) ∨ · · · ∨ (x = ak)))

A12. For each well-formedness rule formally specified in OCL, its corresponding
formula is an axiom.

For example, from the inheritance relation from Class to Classifier in the meta-
model shown in Figure 5.5, by applying rule A3 we can derive the axiom

∀x · (Class(x) → Classifier(x))

The following axiom can be obtained by applying rule A2:

∀x · (Property(x) → ¬Operation(x))

5.2.3 Context of Modeling

As discussed in Section 5.1, a UML model can be understood differently in different
contexts of software development. We argue that this variety of meanings can be rep-
resented by additional formulas, known as the hypothesis on the model. (Meanwhile,
the core meaning of a model is still captured in the formulas generated by the transla-
tion mapping plus the axioms that all models must satisfy.) Hypothesis mappings can
be designed and applied to models on a case-by-case basis to generate the formulas
that represent the contexts in which a model is used.

For example, when a model is obtained by reverse engineering all the classes in
the source code, we understand that the model is complete as a description of classes
in the system. We also assume that each class in the model represents a different class
in the source code. Such assumptions can be represented by the following formulas:

∀c · (Class(c) → c ∈ {c1, c2, . . . , ck})
∀c, c′ · (Class(c) ∧ Class(c′) ∧ (Name(c) �= Name(c′)) → (c �= c′))

where {c1, c2, . . . , ck} is the set of classes in the model M. Such formulas can be gen-
erated by transformation rules called hypothesis rules. Some examples of hypothesis
rules are as follows:

H1. Distinguishability. If e1, e2, . . . , ek is the set of instances of a concrete meta-
class C in the model, to assume that these elements in the model are all
different, the following set of formulas are generated as hypotheses:

{ei �= ej|i �= j ∈ {1, 2, . . . , k}}
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H2. Completeness of elements. If e1, e2, . . . , ek is the set of instances of a concrete
metaclass C in the model, to assume that this type of element in the model is
complete, the following formula is generated as a hypothesis:

∀x · (C(x) → ((x = e1) ∨ (x = e2) ∨ · · · ∨ (x = ek)))

H3. Completeness of relations. If {(e1, e′1), . . . , (en, e′n)} is the set of instances of
a relation R contained in the model, to assume the completeness of relation
R in the model, the following formula is generated as a hypothesis:

∀x, y · (R(x, y) → (((x = e1) ∧ (y = e′1)) ∨ · · · ∨ ((x = en) ∧ (y = e′n))))

Next we give examples of each of these rules in turn. First, in Figure 5.6,
if we assume that class Clerk is different from class Customer, the formula
Clerk �=Customer can be generated by applying rule H1. This hypothesis is applica-
ble if the model is considered as a design, as it forces the programmer to implement
the two classes Clerk and Customer separately, but not if it is a requirements spec-
ification instead, as then a program would satisfy the model with only one class
implementing both.

Second, the assumption that the model in Figure 5.6 contains all classes in the
system can be specified as follows and generated by applying rule H2:

∀x · (Class(x) → (x = Ticket) ∨ (x = Clerk) ∨ (x = Customer) ∨
(x = User) ∨ (x = Bank) ∨ (x = BoxOffice))

Third, for the model in Figure 5.6, if we believe that all the inheritance relations
in the system modeled are depicted in the diagram, we can generate the following
hypothesis by applying rule H3:

∀x, y · (specific(x, y) → (((x = CustomerUser) ∧ (y = Customer)) ∨
((x = ClerkUser) ∧ (y = Clerk)))

It is worth noting that the hypothesis rules above are just examples and are by no
means to be considered complete. The point here is that the flexibility of UML for
different uses can be revealed explicitly through a set of optional hypothesis mappings.
The manner in which the hypothesis rules are related to use of the modeling language
will be an interesting problem for further research.

5.2.4 Extendability and Integration of Multiple Views

There are two extension mechanisms in UML: metamodeling and profiles. The former
allows the language engineers to use UML class diagrams to define metamodels as far
as it can be consistent with the OMG meta object facility (MOF). The latter enables
limited extensions of a reference metamodel by introducing new metaclasses in the
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FIGURE 5.8 Simplified metamodel of state machine diagrams.

form of stereotypes, for the purpose of using models in various platforms or domains.
To demonstrate that our approach to formal descriptive semantics is applicable to all
metamodels, we apply the semantics mappings defined previously to the metamodels
of UML interaction and state machine diagrams, shown in Figures 5.7 and 5.8.

It is worth noting that for multiple-view modeling languages such as UML, each
view is often defined by using one metamodel that is linked to other metamodel(s)
by references to external metaclasses. For example, the metamodel for interaction
diagrams refers to the kernel, which is the metamodel of class diagrams. Also, the
metamodel of state machine diagrams refers to the metamodel of interaction diagrams.

The references to an existing metaclass in another metamodel may occur in one
of two forms: through an association and via inheritance. In the association case, the
axioms can be generated by applying exactly the same axiom rules as in the same
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TABLE 5.2 Summary of the Logic System for UML Diagrams

Class Interaction State
Type of Element Diagram Diagram Machine

Signature Unary predicate
Abstract metaclass 12 3 4
Concrete metaclass 16 6 9

Binary predicate
Meta-attribute 7 0 2
Meta-association 13 7 12

Constant symbol 13 0 8

Axioms Implication of specialization 26 3 4
Completeness of specialization 12 2 3
Disjointness of classification 120 15 36
Domain of binary predicate 21 7 14
Enumeration constants 33 0 37
Multiplicity of meta-associations 14 9 12
Completeness of classification 1 1 1

metamodel. However, caution must be paid when implementing the axiom rules
because the occurrences of a metaclass in two metamodel class diagrams may be
assigned with two different internal identifiers. To ensure that the new occurrences
are treated as identical to its original occurrence, the original identifier must be used.

If, on the other hand, a metaclass is referred to via inheritance, new concrete
metaclass(es) are introduced. Consequently, the axiom about completeness of the
classification of the modeling elements must be modified. In this case, the following
axiom rule for cross-metamodel references must be applied instead:

A2′. Let A be a metaclass depicted in two metamodels M1 and M2. If
{B1, B2, . . . , Bk} is the set of metaclasses that specialize A in metamodel M1,
and {C1, C2, . . . , Cp} is the set of metaclasses that specialize A in metamodel
M2, we have the following axiom for models defined by M1 and M2:

∀x · (A(x) → (B1(x) ∨ · · · ∨ Bk(x) ∨ C1(x) ∨ · · · ∨ Cp(x)))

As defined by the rules given above, the semantics mapping was applied success-
fully to these metamodels to generate the signatures and axioms. Table 5.2 summarizes
the results of applying the rules.

The same translation rules are applicable to interaction diagrams and state
machines to generate descriptive semantics of their corresponding models. For exam-
ple, Figure 5.9 depicts a simple sequence diagram and state machine for the ticket
office system. The following formulas are among those generated from the sequence
diagram:

Message(buyTicket), sender(buyTicket, c)

and the following formulas are among those generated from the state machine:

State(available), trigger(Transition7, refund), source(Transition7, unavailable)
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FIGURE 5.9 (a) Sequence diagram; (b) state machine.

5.3 THE LAMBDES TOOL

The descriptive semantics of UML class, interaction, and state machine diagrams
have been implemented in an automated software tool called LAMBDES (Logic
Analyzer of Models and metamodels Based on DEscriptive Semantics). Figure 5.10
shows its overall structure and main functions. The current version of the LAMBDES
toolkit consists of a GUI interface, a number of generators, and a repository of design
pattern specifications. It is integrated with the graphic modeling tool StarUML1 and
a theorem prover, SPASS.2 It takes the model or metamodel’s XMI representation
produced by StarUML as input to generate a logic system in the format of SPASS’s
input and invokes SPASS to perform logical analysis of the model and/or metamodel.

SPASS is a general-purpose theorem prover for FOPL with equality. Its input is a
text file that represents a logic system with the following parts:

1. Description: background information not used in logic inference by SPASS

2. Signature: declarations of the predicates and constant symbols of the logic
system

3. Premises: a list of formulas as the premises of logic inference

4. Conjectures: a list of formulas to be proved

Given an input, the execution of SPASS may terminate with a proof of the conjec-
ture from the premises, terminate with a failure to prove, or else run forever without
producing any results, because inference in FOPL is NP-hard. SPASS is refutation-
ally complete [28], which means that when it terminates with a failure to prove, the
conjecture cannot be proved from the premises in FOPL.

Figure 5.11 shows a snapshot of the tool’s interface, where the input XMI file of
the model is displayed on the left and the FOPL system generated in SPASS input

1 Available online at http://staruml.sourceforge.net/en/.
2 Available online at http://www.spass-prover.org/tutorial.html.
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FIGURE 5.11 Screen snapshot of the LAMBDES toolkit.
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format is displayed on the right. The analysis tool can be invoked either from the
tool’s menu or by pressing buttons.

The main functions of the key components of LAMBDES are as follows:

• The signature generator implements the signature mapping rules. When a meta-
model in a UML class diagram is provided by the user, this produces a signature
in the form of SPASS symbol declarations.

• The axiom generator implements the axiom mapping rules. When a metamodel
in a UML class diagram is provided, this generates a set of axioms in the form of
formulas in SPASS format using the symbols declared in the signature generated
by the signature generator.

• The formula generator implements the translation rules. When a model is pro-
vided, it analyzes the model and generates a set of formulas in the format of
SPASS input.

• The hypothesis generator takes the user’s input about the context of modeling to
generate the hypothesis formulas. Figure 5.12 shows the GUI interface through
which the user inputs information about the context of modeling.

• The conjecture generator takes the user’s indication of the analysis goal to gen-
erate the conjecture to be proved and merges the signature, axiom, and formulas
generated by other generators to form a complete input file to SPASS.

FIGURE 5.12 Setting the modeling context in the LAMBDES toolkit.
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• The design pattern specification repository stores a set of formal specifications
of design patterns in FOPL in the form of SPASS formulas. Currently, it contains
the specification of all 23 design patterns of the GoF book [11], based on the
work reported by Bayley and Zhu [5]. It supports proofs that a design model
conforms to a given design pattern.

• The domain generator takes a metamodel as input and generates a set of constant
symbols of various types of model elements and instances of various relations
to populate the domain when the metamodel is analyzed.

5.4 APPLICATIONS USING MODEL AND METAMODEL ANALYSIS

In this section we demonstrate some applications of descriptive semantics in the logic
analysis of models and metamodels.

5.4.1 Consistency Check of Models

Let F be a set of formulas in a signature �. As in FOPL, if we can deduce that if
F � false, then F is inconsistent. Thus, we can check if a model is or is not logically
consistent (Definitions 5.4.1 and 5.4.2).

Definition 5.4.1 (Logical Consistency) Model M is said to be logically inconsis-
tent in the descriptive semantics if [[M]]H � false; otherwise, we say that the model
is logically consistent in the descriptive semantics.

Definition 5.4.2 (Consistent Interpretation of Formulas in a Subject Domain)
Let Dom=〈D, Sig, Eva〉 be a subject domain. The interpretation of �-formulas
in Dom is consistent with respect to FOPL if and only if for all formulas q and
p1, p2, . . . , pk that p1, p2, . . . , pk � q, and for all systems s in D that Eva(pi, s)= true
for i = 1, 2, . . . , k, we always have Eva(q, s)= true.

Shan and Zhu [23] have proved that a logically inconsistent model is not satisfiable
in a subject domain, where a consistent interpretation of formulas is applied.

Theorem 5.4.1 (Unsatisfiability of an Inconsistent Model) A model M that is log-
ically inconsistent in descriptive semantics is not satisfiable on any subject domain
whose interpretation of formulas is consistent with respect to FOPL.

For example, using the LAMBDES tool, we generated the descriptive semantics
of the model of the ticket office shown in Figures 5.6 and 5.9 and invoked the SPASS
theorem prover to prove that each set of formulas generated from the three diagrams
in the model are logically consistent. Their union is also consistent. Therefore, the
model is consistent.

We have also made various minor changes to the diagrams in the model ticket
office. Some changes led to logically inconsistent sets of formulas, and these were
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TABLE 5.3 Summary of Using LAMBDES for Model Quality Checking

Error Description Represented Implemented

Severe errors
Abstract class not inherited Yes Yes
Circular association Yes Yes
Circular dependency Yes Yes
Abstract class inherits from concrete class Yes Yes
Class inherits from one or more nonbase classes Yes Yes
Interface to class expected but defined improperly Yes Yes
Two methods exist in the model with the same signature Yes Yes
Two objects exist in the model with the same name Yes Yes
Parent accessing attributes/operations of child class Yes Yes

Moderate errors
Number of associations above user-defined threshold No No
Number of attributes above user-defined threshold No No
Number of methods above user-defined threshold No No
Base artifact in an inheritance tree is concrete Yes Yes
Number of messages passed to a class above user-defined No No

threshold
Multiple inheritance Yes Yes
Operation has more arguments than user-defined threshold No No
Base class in inheritance tree has publicly accessible Yes Yes

attributes

Low-severity errors
A dependency has no declared stereotype Yes No
Interface not used Yes Yes
Missing associations Yes Yes
Missing dependencies Yes Yes
No classes are dependent on this class Yes Yes
Operation missing postconditions Yes No
Operation missing preconditions Yes No
A class’s methods or attributes are unused by other classes Yes Yes

detected by theorem prover SPASS. It is therefore possible to check the consistency
of models through logic inferences based on descriptive semantics. It is worth noting
in general, though, that logical consistency does not guarantee that the model is
satisfiable in a subject domain.

In addition to logical consistency, many other quality attributes of models can be
expressed in first-order logic and checked through logic inference. For example,
Cheng et al. [7] studied 25 quality problems in software models using the tool
DesignAdvisor. As shown in Table 5.3, among these quality problems, 20 attributes
can be represented in FOPL and 17 attributes are implemented in the LAMBDES
tool. Those quality attributes that cannot be checked by the LAMBDES tool include:
(1) five quality issues defined on the bases of metrics, which cannot be represented in
FOPL without arithmetics; (2) one quality issue related to stereotypes of dependence
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relations, which the current version of LAMBDES does not deal with; and (3) two
quality issues about the missing pre- and postconditions of methods, which are not
dealt with in the current implementation of the LAMBDES tool.

5.4.2 Validation of Consistency Constraints

It is often desirable to check models against consistency constraints. The following
examples of these consistency constraints show how such constraints can be formally
specified as �-formulas:

1. A lifeline must represent an instance of a class [8,25]:

∀x, y, z · (Lifeline(x) ∧ represent(x, y) ∧ type(y, z) → Class(z))

2. A message must represent an operation call of its receiver [8]:

∀x, y, z, u · (Message(x) ∧ event(x, y) ∧ SendOperationCall(y)

∧ receiver(x, z) ∧ type(z, u) → ownedOperation(u, y))

3. The classifier of a message’s sender must be associated to the classifier of its
receiver [8]:

∀x, y, z, u, v · (Message(x) ∧ sender(x, y) ∧ type(y, u)

∧ receiver(x, z) ∧ type(z, v) → ∃w, m, n · (Association(w)

∧ memberEnd(w, m) ∧ AssociateTo(m, u)

∧ memberEnd(w, n) ∧ AssociateTo(n, v)))

4. A protocol state transition must refer to an operation, and that operation must
apply to the context classifier of the state machine:

∀x, y, z · (ProtocolStateMachine(x) ∧ transition(x, y)

∧ trigger(y, z) ∧ context(x, u)

→ Operation(z) ∧ ownedOperation(u, z))

5. The order of messages in an interaction diagram must be consistent with the
order of triggers on transitions in the state machine [8,15]:

∀x, y, z, u · (Message(x) ∧ event(x, z)

∧ Message(y) ∧ event(y, u) ∧ after(x, y) → Trigs(z, u))

These cannot be derived from the axioms and are not required for logical consis-
tency, so we clearly do need a separate notion of consistency with respect to a set of
constraints (Definition 5.4.3).
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Definition 5.4.3 (Consistency with Respect to Consistency Constraints) Given
a set of consistency constraints C={c1, c2, . . . , cn}, the consistency of a model M
with respect to the constraints C in descriptive semantics is the consistency of the set
U = [[M]]H ∪C of �-formulas. In particular, we say that a model M fails on a specific
constraint ck if [[M]]H is consistent but [[M]]H ∪ {ck} is not.

It is important to know if a consistency constraint is valid and effective. Such formal
analysis becomes possible now that the descriptive semantics are defined formally.
First, for a consistency constraint to be valid, it must be consistent with the semantics
of the modeling language (Definition 5.4.4).

Definition 5.4.4 (Validity of Consistency Constraints) Let AxmD be the set of
axioms of descriptive semantics. A set C={c1, c2, . . . , cn} of consistency constraints
is valid if AxmD ∪C is logically consistent.

Second, a consistency constraint is not effective if it does not impose additional
restrictions on models. This is true if the constraint can be deduced from the axioms
in FOPL (Definition 5.4.5).

Definition 5.4.5 (Effectiveness of Consistency Constraints) Let Axm be a set of
axioms. A set C={c1, c2, . . . , cn} of consistency constraints is ineffective with respect
to the set Axm of axioms if Axm � C.

So a formal analysis of consistency constraints can be performed through logic
inference. For example, we have used the LAMBDES tool to prove that the constraints
given above are all valid. We have also proven that they are effective by detecting
models that are consistent with respect to the axioms but inconsistent with respect to
the constraints.

5.4.3 Consistency Check of Metamodels

The LAMBDES tool can also be used to analyze metamodels by proving or disproving
the consistency of the axioms generated from the metamodel. If the axioms derived
are inconsistent, the metamodel is not well defined.

We have conducted a case study with two metamodels. The first is the UML
2.0 metamodel defined in the Classes, Common Behaviors, Interactions, and State
Machines packages. The second is the profile of AspectJ proposed by Evermann
[10] for aspect-oriented modeling. This case study was intended to demonstrate the
applicability of descriptive semantics in the analysis of proper uses of profiles as
extension mechanisms. Table 5.4 summarizes the logic system generated from the
metamodels.

Two types of errors in the metamodels were detected: incompleteness errors and
inconsistency errors. For an example of incompleteness, in the UML 2.0 metamodel
the data types of meta-attributes are either enumeration types (e.g., VisibilityKind)



5.4 APPLICATIONS USING MODEL AND METAMODEL ANALYSIS 115

TABLE 5.4 Summary of the Logic Systems

UML 2.0 AspectJ
Type of Element Metamodel Profile

Signature Unary predicate
Abstract metaclass 27 6
Concrete metaclass 99 25

Binary predicate
Meta-attribute 58 11
Meta-association 255 12

Constant symbol 46 7
Total 485 61

Axioms Implication of specialization 133 26
Completeness of specialization 25 6
Disjointness of classification 4851 300
Domain of binary predicate 321 23
Enumeration constants 196 18
Multiplicity of meta-associations 222 18
Completeness of classification 1 1
Total 5740 392

or primitive types (e.g., String). The enumeration types are defined in the meta-
model, while the primitive types are used in the metamodel without definition. This
contradicts the statement in the Classes Package that “each metaclass is completely
described” [18]. Incompleteness errors were detected by the SPASS theorem prover
with error reports where symbol declarations were missing.

For an example of inconsistency, in the UML 2.0 metamodel, OccurrenceSpecifi-
cation is specified as an abstract metaclass in one diagram and as a concrete metaclass
in another. This error has been corrected in UML 2.1 [19]. A more subtle inconsistency
detected, this time within the AspectJ metamodel, is that there are two association
ends, both named composee: one on the association from PointCut to PointCutCon-
junction and the other on the association from PointCut to PointCutDisjunction. Since
an association end represents a directed relation that enables navigation between
elements, two association ends of the same name from the same metaclass cause
ambiguity in the direction of the navigation. This problem is detected by the theo-
rem prover SPASS when checking the consistency of the axioms generated from the
AspectJ metamodel, which include the following formulas:

∀x · (PointCutConjunction(x) → ¬PointCutDisjunction(x))

∀x · (PointCut(x) ∧ composee(x, y) → PointCutConjunction(x))

∀x · (PointCut(x) ∧ composee(x, y) → PointCutDisjunction(x))

Another form of inconsistency in metamodels is the violation of the principle of
strict modeling, which states that in an n-level modeling architecture M0, M1, . . . , Mn,
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TABLE 5.5 Summary of Ambiguity in the UML 2.0 Metamodel

Package Concrete Supermetaclasses Concrete Submetaclasses

Classes InstanceSpecification EnumerationLiteral
Class AssociationClass
Association AssociationClass
DataType PrimitiveType
Abstraction Realization
Realization Substitution
Dependency Usage

Common behaviors OpaqueBehavior FunctionBehavior
Constraint IntervalConstraint
IntervalConstraint TimeConstraint
Class Behavior

Interactions CombinedFragment ConsiderIgnoreFragment
InteractionUse PartDecomposition

State machines Transition ProtocolTransition
State FinalState
StateMachine ProtocolStateMachine

every element of an Mm-level model must be an instance-of exactly one element of an
Mm+1-level model, for all 0≤m < n− 1, and any relationship other than the instance-
of relationship between two elements X and Y implies that level(X)= level(Y ) [2].
According to this principle, each model element must belong to one and only one
concrete metaclass in the metamodel—hence the axiom mapping rules A1 and A2.
However, both UML 2.0 and AspectJ metamodels violate this principle. In particular,
they contain concrete metaclasses as subclasses of concrete metaclasses. There-
fore, a model element can belong to two concrete metaclasses, and the meaning
of the model element is ambiguous. Table 5.5 lists such ambiguities in the UML 2.0
metamodel.

5.4.4 Conformance of Design to Design Patterns

Software design patterns are frequently used to share design expertise. They document
solutions to commonly occurring design problems. Tool support for patterns has been
much reported at the code level [17] but not at the modeling and design stages,
and the latter is increasingly important with the advent of model-driven software
development methodologies. Here we demonstrate that the descriptive semantics of
UML and the LAMBDES tool can be applied to formally prove the conformance of
a design represented in a UML model to a pattern formally specified in the FOPL.
More details about a case study on this topic will be reported separately.

Bayley and Zhu [3,5], advanced an approach to the formal specification of design
patterns using FOPL on UML models. Here a design pattern P is specified as a
predicate p= Spec(P) such that a design model M conforms to a pattern P if the
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evaluation of the predicate p on model M is true. For example, the following is
Bayley and Zhu’s specification of the Template Method pattern [5]:

• Components

• AbstractClass ∈ classes

• templateMethod ∈ AbstractClass.opers

• others ⊆ AbstractClass.opers
• Static conditions

• templateMethod.isLeaf

• templateMethod �∈ others

• ∀o ∈ others . ¬o.isLeaf
• Dynamic conditions

• The template method calls the nonleaf operations:

∀o ∈ others . callsHook(templateMethod, o)

The static conditions relate to the class diagram, and the dynamic conditions relate
to the sequence diagram. Here, classes denotes the set of classes in the class diagram.
If C is a class, C.opers denotes the set of operations of class C. If o is an operation,
o.isLeaf is true when o is not redefined in a subclass. So the static conditions state that
there must be a class AbstractClass with a nonredefined operation templateMethod
that calls a set others of separate redefined operations.

Under dynamic conditions, the predicate callsHook(op, op′) used above is defined
as ∃C ∈ subs(C′) · calls(op, C.op′), where calls(op, op′) denotes that in the sequence
diagram, there exist messages m and m′ in messages, the set of messages, such that
m, labeled with operation op, calls m′, labeled with operation op′.

The mix of math and text forming the specification above is meant to be read as a
single (commented) predicate in which the variables AbstractClass, templateMethod,
and others are existentially quantified, and the four conditions are conjoined together
into a single predicate on those three variables. The general form for the predicate is

∃v1 : T1∃v2 : T2 · · · ∃vn : Tn · (Prs ∧ Prd)

where Prs and Prd are the static and dynamic conditions as predicates and the vi : Ti

are free variables in Prs and Prd .
An assignment α is a mapping from free variables in p to elements in model M. The

evaluation of a predicate p on a model M in the context of an assignment α, written
Evaα(M, p), is the truth value of p when the free occurrences of each variable x in p are
replaced by α(x). If Evaα(M, p)= true, we say that model M satisfies predicate p under
the assignment α, and write M |=α p. When there is no free variable in the predicate
p, its truth value is independent of the assignment, so the subscript α can be omitted.

From the discussion above it is apparent that although FOPL is used in both the
descriptive semantics of UML and the formal specification of design patterns [3–5],
the universes of discourses are different. To bridge the semantic gap, the formal
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specification of design patterns [5] must be translated into �-sentences (i.e., in the
syntax of the LAMBDES tool). The translation is fairly straightforward because both
languages use the same basic concepts of object orientation. For Template Method
pattern, we get the following:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Template Method Pattern Specification %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
formula(exists([
%Components:

xAbstractClass, xTemplateMethod, xOthers],
and(

%Static conditions:
Class(xAbstractClass),
ownedOperation(xAbstractClass,xTemplateMethod),
ownedOperation(xAbstractClass,xOthers),
isLeaf(xTemplateMethod,bTrue),
not(equal(xTemplateMethod,xOthers)),
isLeaf(xOthers,bFalse)

%Dynamic conditions:
callsHook(xTemplateMethod,xOthers)

))).

The translation mentioned above must meet the general correctness requirement
(Definition 5.4.6).

Definition 5.4.6 (Correctness of Translation) Let p be a predicate on models,
and p′ be a predicate on systems. The predicate p′ is a correct translation of p if for
all models M, we have M |= p ↔ ∀s ∈ D · (s |= ([[M]] → p′)), where D is a subject
domain.

Once a specification Spec(P) of pattern P is translated correctly into Spec′(P), then
given a design model M represented in UML diagrams, we can decide whether the
design M conforms to pattern P by proving or disproving the logic statement [[M]] →
Spec′(P) in FOL. For example, the translated specification of the Template Method pat-
tern can be deduced from the formulas generated from the class diagram in Figure 5.13.

+TemplateMethod()
+Others()

ConcreteclassXX
AbstractClassXX

FIGURE 5.13 Example design instance in a template method pattern.
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The following theorem states that if we can prove [[M]]→ Spec′(P) in FOPL for
model M and pattern P, every system that is an instance of M must conform to pattern
P. The proof is omitted for the sake of space.

Theorem 5.4.2 Suppose that Spec′(P) is a correct translation of the formal speci-
fication Spec(P) of pattern P. For all models M, if [[M]]⇒ Spec′(P) is true in FOPL,
then for all systems s∈D, s |= M and M |= Spec(P) imply that s |= Spec′(P).

We have translated into LAMBDES format Bayley and Zhu’s specifications [5]
for all 23 design patterns in the GoF book. They are stored in a pattern specification
repository. The conjecture generator of the LAMBDES tool is implemented to enable
the proof (or disproof) of the conformance of a UML design model to a pattern.
We have also conducted an experiment with the LAMBDES tool on its ability to
recognize patterns in design instances. The experimental results show that the false
negative error rate (for rejecting a pattern it should accept) is 0%, while the false
positive error rate (for accepting a pattern it should reject) is below 22%. Details of
the experiment are omitted here for the sake of space and will be reported separately.

5.4.5 Logic Analysis of Design Patterns

It is worth noting that the specification of a design pattern may contain errors. The
conditions to satisfy the pattern may be in conflict with the semantics of the modeling
language, or they may be in conflict with each other. Such logic errors can be detected
by using the LAMBDES tool and SPASS theorem prover. In particular, let Spec(P)
be a specification of a pattern P. If AxmD ∪ Spec(P) � false, we can conclude that
Spec(P) contains such errors.

In the development of the pattern specification repository, using LAMBDES and
SPASS we have proved that for all specifications of design patterns P in the repository,
AxmD∪Spec(P) �� false. So all the specifications in our repository are consistent with
the axioms of descriptive semantics.

Another application of LAMBDES and SPASS in the logic analysis of design
patterns is to prove relations between patterns: for example, to prove that one pattern
is a specialization of another. Bayley and Zhu [4] argued that the relationship that a
design pattern P is a specialization of pattern Q can be written as Spec(P) → Spec(Q).
Such a relationship can be proved formally by using LAMBDES and SPASS to infer
that AxmD ∪ Spec(P) � Spec(Q). In the context of descriptive semantics, we can now
prove the following property of the pattern specialization relation.

Theorem 5.4.3 Let Dom be a subject domain that is consistent with FOPL. If AxmD∪
Spec(P) � Spec(Q), then for all systems x ∈Dom, if x is an instance of P, x is also
an instance of pattern Q [i.e., ∀x · (x |= Spec(P) → x |= Spec(Q))].

5.5 CONCLUSIONS

In this chapter we presented a framework for the formalization of UML semantics and
defined a formal descriptive semantics of UML in FOPL. We introduce a tool called
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LAMBDES, which translates UML class, interaction, and state machine diagrams to
FOPL systems and is integrated with the theorem prover SPASS to enable various
logic analysis of models and metamodels. A number of applications of the descriptive
semantics and the tool LAMBDES were demonstrated.

5.5.1 Related Work

Remarkable efforts have been made in the past decade to formalize UML semantics so
as to address the underspecification and ambiguity in UML’s semantics. With regard
to the formalization of class diagrams, often considered to be the most important
type of UML diagram, a number of proposals have been advanced. Work by Evans
et al. defines classifier, association, generalization, and attribute in Z schemas [9].
Relations between objects and classifiers are specified as axioms. Diagrammatical
transformation rules are defined as deduction rules to prove properties of UML mod-
els. Amalio and Polack [1] survey various approaches to formalizing class diagrams
with Z or Object-Z. Berandi et al. used FOPL and description logics (DLs) to formal-
ize class diagrams [6]. By encoding UML class diagrams in DL knowledge bases,
DL reasoning systems can be used to reason about class diagrams.

The formalization of other types of diagrams has also been investigated, especially
on state machine diagrams. Varro proposed [26] a rule-based operational semantics
of state machines based on transition systems. Von der Beeck reported other work on
operational semantics of state machines [27]. A coalgebra framework for defining the
formal semantics of sequence diagrams was proposed by Mang and Barbosa [14].

Great efforts have also been made to formalize different diagrams in one semantic
framework. Considering the semantics of a UML model as a set of acceptable struc-
tured processes, Reggio et al. [21] map class diagrams and state machines into alge-
braic specifications in Casl-ltl [20]. Another work aiming at integrating the semantics
of class, object, and state machine diagrams is based on graph transformation [13].

To bridge the gap between UML and formal methods, the extensibility mecha-
nism of UML profiles is used to define specializations of UML. Snook and Butler
designed [24] a profile UML-B so that the semantics of specialized UML entities
could be defined via a translation into B. Muller et al. [16] used an integrated for-
mal method combining the process algebra CSP with the specification language
Object-Z as the intermediate specification language to link UML and Java. A UML
profile for CSP-OZ is designed with the aim of generating part of the CSP-OZ
specifications from the specialized UML models.

The existing methods described above define the semantics of UML by mapping
models into a specific semantic domain, such as labeled transition systems, or OO
software systems specified in a formal notation such as Z. The properties of OO
systems are specified as axioms and are used to reason about UML models. In other
words, they mostly address only the functional semantics of UML. Each method
focuses on certain properties of OO systems, so only a certain subset of UML is
formalized. However, it is difficult to see how these approaches could work either
alone or together for fully fledged UML. Most important, the ambiguity in descriptive
semantics is not addressed in these works. Instead, their formalization approaches are
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based on explicit or implicit assumptions about the descriptive semantics. They do
not achieve automatic translation of UML models to formal specifications, and this
is necessary to facilitate formal reasoning.

In comparison with the existing works, our approach separates descriptive seman-
tics from functional semantics so that the overall structure of semantics is much clearer
and simpler. It also conforms to the theory of institution proposed by Goguen and
Burstall [12] for the study of formal specification languages. As we have shown, our
approach successfully addressed problems related to the requirement for flexibility in
using models in different software development contexts by introducing hypothesis
mappings into the semantics framework. It also addressed successfully the problem
of extensibility of the semantics definition by defining semantics mappings from
the metamodel to the logic system so that when new stereotype metaclasses are
introduced, new atomic predicate and function symbols can be derived from profile
definitions or even from a completely new metamodel. The universality of seman-
tic mappings are clearly demonstrated by their application to class, interaction, and
state machine diagrams as well as in the AspectJ profile case study. Our approach is
also independent of the interpretation of the logic in any particular subject domain.
Therefore, the semantics can be interpreted in the subject domain of computerized
information systems, real-world objects and physical systems, human societies, and
so on, as far as the basic concepts of object orientation apply. These are open problems
that have not been solved in existing work.

Our approach is scalable, as shown in the case study of the main parts of UML 2.0
containing four large packages and the real example of AspectJ profile, all 23 design
patterns in the GoF category, and so on. Our approach is also highly automated in the
sense that a graphical model edited by the modeling tool StarUML can be input into
LAMBDES to generate formal semantics of the model and to invoke a theorem prover
to check its consistency, its conformance to design patterns, and similar factors. Our
approach applies not only to models but also to metamodels.

5.5.2 Future Work

We are investigating both how functional semantics can be specified formally and the
interplay between descriptive semantics and functional semantics. Static functional
semantics has also been developed, and this will be reported separately.

We are also studying the logic properties of the descriptive semantics reported
here. It is apparent that the axioms of descriptive semantics are consistent, as
proved in the experiment by using SPASS. The particular problems that we are
interested in include whether the axioms and various other semantics mappings are
complete.

One of the problems that we encounter in the case studies and experiments is
the inefficiency of the theorem prover. When the number of formulas in the logic
system is more than 1000, the proof that the formulas are consistent does not termi-
nate, and this would appear to be a bottleneck for practical use of the LAMBDES
tool.
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CHAPTER 6

AXIOMATIC SEMANTICS OF UML
CLASS DIAGRAMS
KEVIN LANO
Department of Computer Science, King’s College London, London, UK

6.1 INTRODUCTION

In this chapter we provide a semantics for the class diagram notation of UML, by
translating this notation into a first-order logic known as real-time action logic (RAL).

UML [62] is a large and complex notation in which many aspects of the semantics
remain incomplete or imprecise. Specific problems include the following:

1. Lack of semantic consistency properties for individual models and between
models of the same system [25]

2. Unclear semantics for transition priority in state machines [20] and for
substitutability of a subclass for a superclass

3. Lack of consistent interpretation of concepts [59]

The upgrade of UML to UML 2.0 rationalized the metamodel structure of UML
but introduced further semantic complexities by enlarging the UML notation: for
example, to include Petri net-style models.

We solve some of these problems by using the following semantics approach:

1. Use a semantic model that is very general and supports treatment of large parts
of UML, and extensions of UML, for real-time and hybrid systems.

2. Use structured theories to decompose the semantics of a model into subtheories
for individual classes and objects so that instance-level reasoning can be carried
out more efficiently.

We show how a complete semantics can be given to a large subset of the UML 2 class
diagram notation, including OCL constraints.

UML 2 Semantics and Applications. Edited by Kevin Lano
Copyright © 2009 John Wiley & Sons, Inc.
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Although real-time specification is not common in class diagrams (the duration of
operations can be specified by comparing now and now@pre in their postconditions,
however), UML contains a number of notations that refer to time, such as time-based
triggers in state machines and the notation for interactions [62, Sec. 14]. Specialized
UML profiles such as the UML profile for real time [64] also permit specification of
concurrent and real-time aspects of a system, such as:

1. Specification of durations of operation executions, and delay in a requested
operation being executed

2. Specification of periodic behavior

3. Specification of operation semantics as sequential, guarded, or concurrent

4. Specification of priority policies for request handling, such as “first come, first
served”

Therefore, our semantics will support representation of time and properties of
execution instances at a detailed level.

A large number of relevant formalisms exist, including real-time logic (RTL)
[3,34], temporal logic of actions (TLA) [36], duration calculus [18], and real-time
temporal logic [70,71]. We will use a simple but highly expressive formalism, RAL
[37], based on RTL.

RAL directly supports the assignment of times to method initiations and termi-
nations, and contains an embedding of linear temporal logic, by interpreting “next
time” as “next action invocation time.” RAL is an extension of modal logics such
as the object calculus of Fiadeiro and Maibaum [22]. RAL has been used to give
a semantics to the real-time object-oriented language VDM++ [37]. The semantics
described here is also used as the basis of the UML2Web tools [45]. In Section 6.2
we define the RAL formalism.

Figure 6.1 shows the metamodel for class diagrams that we will use: it is a subset
of the UML 2.1.1 class diagram metamodel. StructuralFeature also inherits from
MultiplicityElement. The metaclasses Extension, ExtensionEnd and Stereotype are
defined as in the Profiles package of UML 2.0 [61, Sec. 18].

The following simplifications are made to the UML 2.1.1 class diagram metamodel:

• Qualified associations and aggregation are omitted.
• Associations are binary:

memberEnd → size() = 2

Association ends are never static:

memberEnd → forAll(isStatic = false)

• Association ends are either sets (isUnique= true and isOrdered= false) or
sequences (isUnique= false and isOrdered= true).
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• Attributes always have multiplicities 1..1:

attribute → notEmpty() implies attribute.lower = 1 and attribute.upper = 1

• Navigability and visibility of elements are not represented.
• Behavioral features are assumed to have in parameters only, except for query

operations, which may also have a single return parameter. Exceptions are not
considered. A bodyCondition is expressed instead by a postcondition.

In Section 6.2 we define the RAL formalism and in Section 6.3 the semantics of
UML class diagrams in the restricted metamodel, using RAL.

6.2 REAL-TIME ACTION LOGIC

In this section we present the underlying RAL formalism used for UML 2 semantics.

6.2.1 Core Formalism

The core logic of RAL is an extension of the object calculus of Fiadeiro and Maibaum
[21,22] to cover durative actions and real-time constraints, based on RTL. The
syntactic elements of an RAL theory are type, function, attribute symbols denot-
ing time-varying data items, and action symbols denoting actions that may change
the value of these attributes. Each theory has a collection of axioms relating these
symbols.1

Formally, a signature � of an RAL theory is a finite set of symbols, with Att(�)
and Ac(�) the sets of attribute and action symbols in �. The sets of type, function,
and predicate symbols are, respectively, T(�), F(�), and P(�). Att(�)∩Ac(�)={},
Att(�)∩T(�)= {}, and similarly for the other subsets of �:

� = Att(�) ∪ Ac(�) ∪ T(�) ∪ F(�) ∪ P(�)

Each action symbol α ∈ Ac(�) has a (write) frame F(α)⊆Att(�), which is the set
of attributes whose value it may change. Each action, function, predicate, and attribute
symbol p has an arity arity(p) ∈ N, and a sequence parameters(p) ∈ seq(T(�)) of
parameter types. arity(p) is the length of parameters(p).

We include the usual type, function, and predicate symbols of predicate calculus
and ZF set theory in each RAL theory [57]. The function card gives the cardinality
of a set (the finite or infinite cardinal isomorphic to the set). Functions are defined as
particular sets of ordered pairs, as usual. The type of functions from D to R is denoted
D → R. The range of a function f is denoted ran(f ) and the domain is dom(f ). The
types N, Z, R and S (of strings) will usually be assumed to exist in T(�) with the
usual axioms. A “universal type” corresponding to OclAny [66] could also be added.

1 Theories are also termed modules in the following.
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We also assume that there is a type TIME of times, with N ⊆ TIME. TIME is
totally ordered by a relation <, with least element 0, and satisfying the axioms of a
totally ordered ring with addition + and unit 0, and multiplication operation ∗ with
unit 1. We will usually assume that there is an attribute now : TIME.

For each action α there are TIME-valued function symbols ←(α, i), →(α, i),
↑(α, i), and ↓(α, i), where the parameter i ranges over N1. These correspond to the
RTL event occurrence operators for operation events and have the following meanings:

1. ←(α, i) is the time of the invocation that created the ith instance of α. Equiva-
lently, it is the send time of the ith invocation instance of α, since we enumerate
these instances in the order of their creation.

2. →(α, i) is the time that the ith instance of α is received (by the specific target
object).

3. ↑(α, i) is the activation time of the ith invocation instance of α.

4. ↓(α, i) is the termination time of the ith invocation instance of α.

The parameters of these functions are those of α plus i : N1. Figure 6.2 shows a
simple example of these times, used as annotations on a sequence diagram.

In UML terms, (α, i) can be considered as an instance of the behavior denoted by
α, considered as a class [62, Sec. 13]. The times ←(α, i), →(α, i), ↑(α, i), ↓(α, i)
are the times of events associated with this instance (MessageEvent, CallEvent, and
ExecutionEvents, respectively). The semantics also relates directly to the concept of
a stimulus in the UML profile for performance and time [40,63].

Local attributes of (α, i) are written as (α, i).att and are represented as attributes of
the module, with parameters those of α, plus i, plus any defined for att itself. These
attributes can represent local variables of α or denote the identity (α, i).sender of the
sender of the request.

a: A b: B

−>(m(c),1)

(m(c),1)

(m(c),1)

−>(m(c),2)

(m(c),2)

(m(c),2)

(m(c),2)

(m(c),1)

<−(m(c),1)

<−(m(c),2)

c: C

FIGURE 6.2 Action invocation instance times.
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Notice that the←,→, ↑, ↓ times can be undefined (equivalently, equal to a non-
finite time∞ larger than any finite element of TIME, with the←,→, ↑, ↓ functions
defined as ranging over TIME∞= TIME ∪ {∞}):

• ←(α, i) undefined means that no more than i−1 instances of α are created in the
model.←(α, j) is then undefined for j > i, and the times→(α, i), ↑(α, i), ↓(α, i)
are also undefined.

• ←(α, i) can be defined, with →(α, i) undefined, meaning that the message is
never received at its target object (a lost message in terms of UML interactions).
In this case, ↑(α, i) and ↓(α, i) are also undefined.

• ←(α, i) and →(α, i) can be defined with ↑(α, i) undefined, meaning that the
message is received but is indefinitely delayed in being scheduled for execution.
In this case, ↓(α, i) is also undefined.

• ←(α, i),→(α, i), and ↑(α, i) can be defined with ↓(α, i) undefined, meaning that
the invocation starts execution but does not terminate.

We can denote by α the set of i : N1 such that ←(α, i) is defined. This is the set of
invocation instances of α created in the model.

In the following we usually only consider cases of actions where all the times are
defined. A quantification ∀i : N1 ·P(↑(α, i)) is taken to mean “for all i such that ↑(α, i)
is defined, P(↑(α, i))” and similarly for the other invocation times.

The only other elements of the core language are predicates of the form ϕ � t “ϕ
holds at time t : TIME,” where ϕ is a predicate; and terms of the form e � t “the value
of term e at time t : TIME.” Otherwise, terms and formulas are constructed as for
classical predicate calculus with equality and with connectives ∧, ∨,⇒, ¬, ∀, and ∃.
As usual, ∀x · x ∈ T ⇒ϕ is abbreviated to ∀x : T · ϕ. The connectives � and � bind
more closely than any other binary operators. Thus, x= y � t means that x= (y � t).

now has the characteristic property that

∀t : TIME · now � t = t

6.2.2 Derived Constructs

For each action instance we can express the delay in its activation and duration of its
execution:

delay(α, i) = ↑(α, i)−→(α, i)

duration(α, i) = ↓(α, i)− ↑(α, i)

We can express that one action always calls another when it executes

α ⊃ β ≡ ∀i : N1 · ∃j : N1 · ↑(α, i) = ↑(β, j) ∧ ↓(α, i) = ↓(β, j)

“α calls β.” This is also used to express that α is defined by a (composite) action β.
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The RTL event-occurrence operators ♣(ϕ := true, i) “the ith time that ϕ becomes
true” and ♣(ϕ := false, i) “the ith time that ϕ becomes false” can also be defined.

Some important properties of ⊃ are that it is transitive:

(α ⊃ β) ∧ (β ⊃ γ) ⇒ (α ⊃ γ)

and that statement constructs such as; and if then else (Section 6.2.8) are monotonic
with respect to it:

(α1 ⊃ α2) ∧ (β1 ⊃ β2) ⇒ (α1; β1 ⊃ α2; β2)

and

(α1 ⊃ α2) ∧ (β1 ⊃ β2) ⇒ if E then α1 else β1 ⊃ if E then α2 else β2

In UML terms the input pool of messages of an object obj received and waiting
to be processed are all those m(obj, x), i instances of operations of obj for which
→(m(obj, x), i) ≤ now and ↑(m(obj, x), i) > now. x are the data input parameter
values of the invocation of m.

We can define counters #req(α), #act(α), #fin(α), and #snd(α) for requests,
activations, terminations, and invocations of action α:

1. #req(α) � t= card({j : N1|→(α, j) ≤ t}) (the number of distinct request events
for α that have occurred so far)

2. #act(α) � t= card({j : N1|↑(α, j) ≤ t})
3. #fin(α) � t= card({j : N1|↓(α, j) ≤ t})
4. #snd(α) � t= card({j : N1|←(α, j) ≤ t})

The number of currently executing instances of α (at a time t) is therefore

#active(α) � t = #act(α) � t − #fin(α) � t

while the number waiting to be activated is

#waiting(α) � t = #req(α) � t − #act(α) � t

Using these counters, we can express a wide range of mutual exclusion, syn-
chronization, and prioritization properties. For example, a set S of actions are fully
mutually exclusive, fmutex(S) if at most one instance of these actions can be executing
at any time:

∀t : TIME · (#active(α1)+ · · · + #active(αn) ≤ 1) � t

where S={α1, . . . , αn}. In particular, if (the behavior of) an operation m is not reen-
trant, fmutex({m}) holds. Properties such as absence of deadlock and starvation can
also be expressed.
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The operators © (“next”), � (“always in the future”), and # (“eventually”) of
linear temporal logic can be defined in terms of the activation times of execution
instances. For example, �φ (“φ holds at all future instants”) is interpreted as meaning
“φ holds at all future activation times of an action of the system”:

(�Sφ) � t ≡ ∀i : N1 · ↑(α1, i) ≥ t ⇒ φ �↑(α1, i) ∧ · · · ∧
∀i : N1 · ↑(αn, i) ≥ t ⇒ φ �↑(αn, i)

where the set of actions is S={α1, . . . , αn}.
The motivation for this definition is that in a concurrent environment, invariant

properties of a module must be true at all time points where the state of a system
can be observed. At the specification level the effects of operations are defined by
comparing the state at initiation of the operation to the state at termination. So states
at the initiation and termination of operations are the critical “observable” points.

Similarly, we define ©Sφ and #Sφ. We usually drop the subscript S where it is
clear from the context.

There are corresponding temporal operators which refer to all times:

(�τϕ) � t ≡ ∀s : TIME · s ≥ t ⇒ ϕ � s

Finally, the weakest precondition operator, [α]P “every execution of α establishes
P” of B [1] and modal action logic [73] can be defined, where P may contain terms
of the form e@pre, denoting the value of expression e at the initiation of α:

([α]P) � t ≡ ∀i : N1 · ↑(α, i) = t ⇒ P[e �↑(α, i)/e@pre] �↓(α, i)

E[ex/v] denotes the substitution of expression(s) ex for identifier(s) v in E. In this
substitution each pre-state expression e@pre in P is replaced by the value e �↑(α, i)
of e at initiation of α.

The [] operator can be used to express properties of action invocations concisely
without requiring reference to the index of these invocations. It also provides a general
way of expressing the effect of actions. Notice that [α]false means that executions of
α started at the current time do not terminate.

6.2.3 Axioms of RAL

We take the axioms of classical predicate logic with equality in this language, with
the following modifications.

The predicate logic axiom ∀-elimination:

(∀v : T · ϕ) ⇒ ϕ[e/v]

is valid only if e is free for the variable v in ϕ, and the substitution does not introduce
new occurrences of attributes within modal operators (� and � in the core language)
in ϕ. Similarly, the equality axiom

e1 = e2 ⇒ (ϕ[e1/v] ≡ ϕ[e2/v])
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is asserted only when e1 and e2 are free for the variable v in ϕ, and all free occurrences
of v in ϕ are outside the scope of a modal operator:

(�τ(e1 = e2)) � 0 ⇒ (ϕ[e1/v] ≡ ϕ[e2/v])

for any formula ϕ, where e1 and e2 are terms free for the variable v in ϕ.
If vi is a variable not free in the terms e or t, then

∃vi · (vi = e) � t

The equality axiom

e = e

is valid for all terms e.
Variables act as logical constants over time:

∀vi : X · ∀t : TIME · vi = vi � t

The core logical axioms assumed are

(C1) : ∀i : N1 · ←(α, i) ≤←(α, i + 1)

for each action α. This expresses that the index i identifies an invocation instance of
α by the order in which the request for the execution is sent:

(C2) : ∀i : N1 · ←(α, i) ≤→(α, i) ≤ ↑(α, i) ≤ ↓(α, i)

for each action α. “Each invocation instance must be sent before it is requested,
requested before it can activate, and must activate before it can terminate”.

This axiom does not require that executions initiate in the order of their requests, or
are received in the order of their sending. These additional properties can be asserted
by a constraint if required.

The compactness condition is that for all p∈N there are only finitely many i : N1

and x : X such that ↑(α(x), i) < p for each action α. Similar conditions are required
for the→,←, and ↓ times.

The frame axioms express that attributes of a module M can only change in value
over intervals in which an action of M executes—these axioms are a form of locality
property in the sense of Fiadeiro and Maibaum [22]:

For each attribute att ∈ Att(�), where � is the signature of M, let α1, . . . , αn be
all the actions α ∈ Ac(�) which have att ∈ F(α). Then Frameatt is the axiom

∀t1, t2 : TIME ·
t1 < t2 ∧ att � t1 �= att � t2 ⇒
∃t : TIME · t1 ≤ t < t2 ∧

((#active(α1) > 0) � t ∨ · · · ∨ (#active(αn) > 0) � t)
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In words: “If the value of att changes from t1 to t2, there must be an action with att
in its write frame which executes in that interval”.2

These axioms are particularly relevant when defining the meaning of subclassing.
They are used to define a class as being an “open” or “extendible” type in the sense
of Simons [74]: New behavior and data can be added to a class but must preserve the
behavior of the superclass.

(C3): Axioms for �: for all t : TIME:

(ϕ � s) � t ≡ ϕ � (s � t)

(ϕ ∧ φ) � t ≡ ϕ � t ∧ φ � t

(ϕ ∨ φ) � t ≡ ϕ � t ∨ φ � t

(ϕ ⇒ φ) � t ≡ (ϕ � t ⇒ φ � t)

(¬ϕ) � t ≡ ¬ (ϕ � t)

(∀v : T · ϕ) � t ≡ ∀v : T · (ϕ � t)

(∃v : T · ϕ) � t ≡ ∃v : T · (ϕ � t)

In the last two cases, v must not be free in t.
(C4): Axioms for �:

ϕ � t ≡ ϕ∗t

where ϕ contains no modal operators, and ϕ∗t is ϕ with each outermost term e
occurring in a subformula replaced by e � t, where t : TIME has no free variables.

Also (C5):

g(e1, . . . , en) � t = g(e1 � t, . . . , en � t)

for each g ∈ F(�) of arity n, t : TIME.
C3, C4, and C5 are essential to prove the completeness of the RAL formalism

with respect to its denotational semantics [37].
The usual concept of inference, denoted by �, is taken. The inference rules are

those of classical predicate calculus: modus ponens and ∀-introduction. In addition,
there is the rule of �τ-introduction: From

� � ϕ

derive

� � ∀t : TIME · ϕ � t

6.2.4 Theory Refinement and Composition

RAL supports modular specification to decompose a system into analyzable parts.
We use this to structure the UML semantics into theories at the three levels of objects,

2 When αi has parameters xi : Xi, we use (∃xi : Xi · #active(αi(xi)) > 0) � t in the conclusion.
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classes, and subsystems (submodels). The principal way in which theories can be
combined is via morphisms between the theories.

6.2.5 Theory Morphisms

Let M and M ′ be two theories with signatures � and �′, respectively.
A signature morphism σ : � → �′ must map attribute symbols to attribute

symbols, action symbols to action symbols, and so on, and preserve the arities of
these symbols:

σ(|Att(�)|) ⊆ Att(�′)
σ(|Ac(�)|) ⊆ Ac(�′)
σ(|T(�)|) ⊆ T(�′)
σ(|P(�)|) ⊆ P(�′)
σ(|F(�)|) ⊆ F(�′)

with the arity in �′ of σ(f ) being the same as arity(f ) in � for each f ∈ F(�)∪P(�)∪
Ac(�) ∪ Att(�), and with parameter types also translated via σ for corresponding
function, predicate, attribute, and action symbols in the two theories.

Normally, σ maps the standard types TIME, N, and so on, in M to the corresponding
types in M ′.

For each action symbol α ∈ Ac(�),

F(σ(α)) ⊆ σ(|F(α)|)
In other words, the frame of an action may become more restrictive in M ′.

σ can be extended to general terms and formulas of M in the usual way, so that
σ(t) is a term of M ′ if t is a term of M, and so on.

σ is a theory morphism if

M � ϕ ⇒ M ′ � σ(ϕ)

for each formula ϕ of M.
In particular, this means that the frame axiom for each attribute att of M must be

true in interpreted form in M ′:

∀t1, t2 : TIME ·
t1 < t2 ∧ σ(att) � t1 �= σ(att) � t2 ⇒
∃t : TIME · t1 ≤ t < t2 ∧

((#active(σ(α1)) > 0) � t ∨ · · · ∨ (#active(σ(αn)) > 0) � t)

where the αi are all the actions of M with att in their write frame. In other words, (the
interpretation of) att can only change value over intervals where (the interpretation
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of) one of its updating actions of M is executing. But this means that every new
action

β ∈ Ac(�′) \ σ(|Ac(�)|)
which has σ(att) in F(β) coexecutes with (or calls) one of the σ(αi).

This form of encapsulation of data is similar to that found in languages such as
B [1], or in the subtyping definition of Liskov andWing [55]: Only the actions declared
in the same module as a particular data item can write that data directly. Actions of
other modules must invoke these actions in order to change the data. This enables
simpler proof of invariant properties of a class, by induction on the invocations of
operations that may affect the invariant.

6.2.6 Class and Instance Theories

In an object-oriented system, we may have theories IC representing a typical instance
(or object) of a class C, and a theory �C representing the class itself (including all its
current instances) [8].

RAL attributes will represent UML instance scope and class scope attributes, roles
(association ends), and query operations (collectively referred to as data features), and
RAL actions will represent instance and class scope update operations. An instance
theory IC will have an attribute att : X ′ for each declared attribute att : X in the text
of a UML class C for each query operation of C and for each opposite association
end of an association attached to C. X ′ is a semantic type corresponding to X. There
will be an action α(X ′) for each update operation with input parameter type X.

In instance theories, instance-level properties can be proved, independent of object
identity. In the class theory these properties then become available as theorems about
all objects of the class.

We represent class scope (static) features in the instance theories, since these
features are available at the instance level. Their special property is that their values
are always identical in every instance, this follows since there is a single semantic
representation of the static feature.

In the class theory �C , there will be a type @C of possible instances of C and an
attribute

C : F(@C)

representing the set of currently existing instances, together with actions killC(@C)
and createC(@C) to delete and add elements to this set. C corresponds to
C.allInstances() in OCL [65].

Every element of C will have an associated value for each data feature f : X
declared in the class. An additional parameter of type @C representing the object is
added to each (instance scope) attribute att : X ′ and action α(X ′) of IC to produce a
parameterized attribute or action of �C :

att(@C) : X ′

α(@C, X ′)
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For a in @C we usually write att(a) as a.att and α(a, x) as a.α(x) for consistency with
standard OO notation.

Attributes or actions that represent class scope (static) features do not gain the
additional parameter.

This general construction is termed an A-morphism [21], where A is the set of
object identifiers/references, and this involves a modified form of signature morphism
σ : �→ �′ in which

arity(σ(att)) = arity(att)+ 1

arity(σ(α)) = arity(α)+ 1

where att ∈ Att(�) and α ∈ Ac(�) are of instance scope. The new parameter has type
A ∈ T(�′) and is the first parameter of σ(att) or σ(α) in the second theory. Otherwise,
σ is as defined previously.

The analogy of a theory morphism in this case is that

M � ϕ ⇒ M ′ � ∀a : A · a.σ(ϕ)

where a.ψ is ψ with a substituted into each new parameter slot created by the
morphism.

We construct the class theory �C as a combination of IC via a @C-morphism, and
a generic class manager theory M via a theory morphism μ:

@X %−→ @C

X %−→ C

createX %−→ createC

killX %−→ killC

Figure 6.3 shows this structure.
M has type symbol @X , attribute X : F(@X), actions createX (@X) and killX (@X),

and axioms

(X = {}) � 0

∀a : @X · [createX (a)](X = X@pre ∪ {a})
∀a : @X · [killX (a)](X = X@pre− {a})

The frames of killX and createX are both {X}.

μIC

M

Γ@C−morphism
C

FIGURE 6.3 Class theory construction.
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6.2.7 Time Variables

In the specification of real-time or hybrid systems, two types of attributes can be
identified:

1. Discrete data, corresponding to discrete data in the real world, or discretized
approximations of continuous data

2. Continuous data, or “time variables”

Both can be represented by RAL attributes. However, whereas discrete variables
are conventional variables of a computational system, time variables represent phys-
ical quantities and may vary as arbitrary functions of time. The prime example of a
time variable, included in every instance theory, is the attribute now : TIME, which
satisfies the axiom

∀t : TIME · now � t = t

6.2.8 Composite and Procedural Actions

We introduce a small procedural language (Figure 6.4) to allow procedural-style
definitions of behavior for UML operations. Normally,←(S, i)=→(S, i)=↑(S, i) is
assumed for such composed actions S, since they are normally invoked by the same
object on which they execute.

Assignment t1 := t2 can be defined as the action αt1:=t2 , where t1 is an attribute
symbol, the write frame of this action is {t1}, and

∀i : N1 · t1 �↓(αt1:=t2 , i) = t2 �↑(αt1:=t2 , i)
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FIGURE 6.4 Statement metamodel.
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For formulas P without time variables, occurrences of modal operators or @pre, this
means that

([αt1:=t2 ]P) � t ≡ P[t2/t1] � t

as usual for assignment, if no other action coexecutes with this action.
Similarly, sequential composition ; and parallel composition || of actions can be

expressed as derived combinators:

∀i : N1 · ∃j, k : N1 · ↑(α; β, i) = ↑(α, j) ∧ ↓(α; β, i) = ↓(β, k) ∧ ↑(β, k) = ↓(α, j)

and

∀j, k : N1 · ↑(β, k) = ↓(α, j) ⇒ ∃i : N1 · ↑(α; β, i) = ↑(α, j) ∧ ↓(α; β, i) = ↓(β, k)

These two conditions yield the usual axiom that [α; β]ϕ ≡ [α][β]ϕ for ϕ without
occurrences of @pre.

For parallel γ =α||β ((i.e.), a SequenceStatement with kind = parallel):

∀i : N1 · ∃j, k : N1 ·
↑(γ , i) = ↑(α, j) ∧ ↑(γ , i) = ↑(β, k) ∧ ↓(γ , i) = ↓(β, k) ∧ ↓(γ , i) = ↓(α, j)

and

∀j, k : N1 · ↑(β, k) = ↑(α, j) ∧ ↓(β, k) = ↓(α, j) ⇒
∃i : N1 · ↑(γ , i) = ↑(α, j) ∧ ↓(γ , i) = ↓(α, j)

The usual property,

(P1 ⇒ [α]Q1) ∧ (P2 ⇒ [β]Q2) ⇒ (P1 ∧ P2 ⇒ [γ](Q1 ∧ Q2))

can be derived. The ; and || composite actions have as write frames the union of the
write frames of their component actions.

Unguarded choice α= S1[] S2 is represented by a SequenceStatement with kind =
choice. This is defined to have

forall i : N1 · ∃j : N1 · ↑(α, i) = ↑(S1, j) ∧ ↓(α, i) = ↓(S1, j) ∨
∃j : N1 · ↑(α, i) = ↑(S2, j) ∧ ↓(α, i) = ↓(S2, j)

together with the dual properties that every instance of S1 is an instance of α, and
every instance of S2 is an instance of α.

Conditional actions α representing if E then S1 else S2 are defined to have the
properties

∀i : N1 · E �↑(α, i) ⇒ ∃j : N1 · ↑(α, i) = ↑(S1, j) ∧ ↓(α, i) = ↓(S1, j)
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and

∀i : N1 · ¬E �↑(α, i) ⇒ ∃j : N1 · ↑(α, i) = ↑(S2, j) ∧ ↓(α, i) = ↓(S2, j)

Occurrences of if E then S1 else S2 are either occurrences of S1 if E holds at
commencement of this action, or occurrences of S2, if ¬E holds. This action has as
write frame the union of those of S1 and S2.

Occurrences of while E do S are a sequence of occurrences (S, i1), . . . , (S, in) of
S, where E holds at the commencement of each of these actions and where E fails to
hold at termination of (S, in). The while action has the same write frame as S. Bounded
loops can be defined in terms of unbounded loops.

Preconditioned actions β: pre Pre then S are defined to have

∀i : N1 · Pre �↑(β, i) ⇒ ∃j : N1 · ↑(β, i) = ↑(S, j) ∧ ↓(β, i) = ↓(S, j)

and

∀i : N1 · Pre �↑(S, i) ⇒ ∃j : N1 · ↑(β, j) = ↑(S, i) ∧ ↓(β, j) = ↓(S, i)

A guard has, in addition, the property that Pre always holds at the start of β:

∀i : N1 · Pre �↑(β, i)

The relationship

S1 invokes S2

between composed actions that S1 contains (syntactically) an invocation of S2 is
defined inductively by S invokes S, and that

S1 invokes S2 ⇒ C(S1) invokes S2

for any construct C of actions: sequence, parallel, conditional, loop, pre.

6.3 SEMANTICS OF CLASS DIAGRAMS

The semantics of a class diagram model M is constructed in a modular fashion [7]
from instance theories IC of typical instances of classes C of the model, and class
theories �C of these classes, and subsystem theories �S of subsystems S of the model.
These are composed together to define a theory �M of the complete model. In the
following sections we show how these theories are constructed incrementally from
the elements of a class diagram.
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6.3.1 Types

A model may define enumerated types T as enumerations of enumeration literals
val1, . . . , valn. That is, T is an instance of the Enumeration metatype, and

T .ownedLiteral = Sequence{val1, . . . , valn}
These types are represented in a theory �T with no action symbols and with a type

symbol T defined as the appropriate finite set:

(ETD) : T = {val1, . . . , valn}
The vali are defined as distinct constants of �T (attributes that are not in the write
frame of any action).

The primitive types Integer, Real, and Boolean are interpreted by the correspond-
ing mathematical data types Z, R, and B={TRUE, FALSE}. String is interpreted as
the type S of sequences of characters. B and S are disjoint from R and from any
enumerated type. All enumerated types are also disjoint from R, B, and S.

6.3.2 Data Features

If classifier C declares attributes att1 : T1, . . . , attn : Tn, that is,

C.ownedAttribute = Sequence{att1, . . . , attn}
with each atti : Property having atti.type= Ti, then IC has corresponding semantic
attributes att1 : T ′1, . . . , attn : T ′n where T ′ is the semantic interpretation of type T .

If an enumerated type T is used in an attribute declaration, IC is defined to extend
the theory �T .

If there is an association from C to a classifier D (Figure 6.5), r : Association with
r.memberEnd= Sequence{p1, p2} and p1.type=C, p2.type=D, any role p2 at the D
association end is represented in IC as an attribute

(RTD) : p2 : DT

where DT is a type built from the type symbol @D representing the type of possible
instances of D. Table 6.1 shows the different cases of possible multiplicities M of role
and the corresponding DT type, and any additional axiom included in IC .

D

M
att1 : T1
att2 : T2
...
attn : Tn

role
C

FIGURE 6.5 Classifier definitions in UML.
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TABLE 6.1 Representation of Role Multiplicities

Multiplicity M Semantic Type DT Axiom

1 @D
a..b F(@D) a ≤ card(p2) ∧ card(p2) ≤ b

a F(@D) a = card(p2)

a..* F(@D) a ≤ card(p2)

∗ F(@D)

When the D association end is {ordered}, the sequence type seq(@D) is used
instead of F(@D).

In IC we also include a Boolean attribute existsC : B, which indicates if self
currently exists as a valid object (i.e., if creation has occurred more recently than
deletion).

Query operations f (p1 : PT1, . . . , pn : PTn) : RT of C (i.e., f in C.ownedOperation
with f .isQuery = true) are also represented as (constant) attributes

(FTD) : f (p1 : PT ′1, . . . , pn : PT ′n) : RT ′

of IC , where T ′ denotes the semantic representation of type T .
The definition of f is assumed to be given by a pre-/postcondition pair in which

the result parameter is used in the postcondition to denote the intended value of the
query:

f (p : PT ) : RT
pre: Pref

post: Postf

This definition is expressed semantically by the axiom

(FDef ) : existsC = TRUE ⇒ (∀p : PT ′ · Pre′f ⇒ Post′f [f (p)/result])

For example:

factorial(x : Integer) : Integer
pre: x > 0
post: (x < 2 implies result = 1) and

(x >= 2 implies result = x ∗ factorial(x − 1))

defines the usual factorial function.
Local variables of update operations are also represented as instance theory

attributes.
UML attributes may have initial values defined in their declarations (i.e.,

att.initialValue : Expression). These values are defined using pure literal values
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without any feature occurrences. The collection of all such initializations atti= ei are
grouped together into a single new action initC , defined as

(InitDef ) : initC ⊃ att1 := e′1 || · · · || attn := e′n || existsC := TRUE

This has write frame {att1, . . . , attn, existsC}.
This action will in turn be invoked by the createC(a) action of the class theory

(Section 6.3.8).
A terminateC action destroys the object:

(TermDef ) : terminateC ⊃ existsC := FALSE

Its write frame is {existsC}.

6.3.3 Operations

For each modifiable attribute att : T of a class C there is assumed to be an operation
setatt(attx : T ) which has the effect post : att= attx. It has a write frame including
att, but may need to modify other attributes in addition (to maintain invariants). frozen
attributes do not have such operations. Similarly, for each modifiable rolename role
on the opposite end of an association incident to C, there is a setrole operation, and
addrole and removerole operations if role is not of multiplicity 1 (removerole is omitted
if role is addOnly). These operations all have a standard definition: for example,

addrole(rolex : D)
pre: (role→including(rolex))→size() ≤ b
post: role = role@pre→including(rolex)

in the case of an unordered role of maximum cardinality b. All of these operations
are represented as corresponding actions of IC .

If feature f has private visibility, so should its associated operations, and similarly,
the operations of protected and public features should have the same visibility as
their features. Any other class that modifies a feature of C should do so by invoking
its set operation or add/remove operations. This ensures the validity of the frame
axiom of C.

User-defined update operations of C are also represented by actions of IC , with
the same arity and set of input parameters. The declaration

m(x1 : X1, . . . , xn : Xn)
pre: Prem

post: Postm

yields an action symbol m(X ′1, . . . , X ′n) of IC and the axiom (OpD):

∀i : N1; x1 : X ′1; . . . ; xn : X ′n
(existsC = TRUE ∧ Pre′m) �↑(m(x1, . . . , xn), i) ⇒

Post′m[att �↑(m(x1, . . . , xn), i)/att@pre] �↓(m(x1, . . . , xn), i)
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In other words, if the precondition holds at the commencement of an execution of
m(x1, . . . , xn), the postcondition holds at termination, with each att@pre expression
interpreted as the value of att at commencement.

This is the usual concept of precondition, in which no properties of the execution of
the operation can be deduced if it is executed outside its precondition. This definition
is used in languages such as B and Eiffel [57]. Alternative possible semantics are
skip/ignore semantics (the operation is executed but has no effect if the precondition
fails) and blocking semantics (the operation blocks its caller and does not execute
until the precondition becomes true).

UML does not specify which interpretation of a precondition should be used:
“The behaviour of an invocation of an operation when a precondition is not satisfied
is a semantic variation point” [62, p. 107] and “. . . corresponds semantically to
a precondition violation, for which no predefined behaviour is defined in UML”
[62, p. 534].

The semantics of a precondition as a permission guard is stated [65, Sec. 12.7]:
“The precondition must evaluate to true whenever the operation starts executing.”
Instead, our semantics uses the most general assumption that it may be possible for
an operation to be executed when its precondition fails, but that no guarantee then
can be made about its behavior (an implementation may throw an exception, or skip,
or block, for example). A separate proof obligation requires that callers ensure that
the precondition is true at the point where they make the call.

The write frame of an operation is the set of modifiable (nonfrozen) attributes or
roles att that it may change. This is calculated as the set of those attributes att which
occur in one of two forms:

1. In prestate form att@pre in Postm.

2. In a writable modality in Postm, that is, in a subformula att= exp,
att→includes(exp), att→excludes(exp), att→excludesAll(exp) (except for
addOnly roles att in these last two cases), att→includesAll(exp), and where
exp does not involve att except in the form att@pre.

The in parameters of an operation cannot be modified in its postcondition.
If an update operation is defined by a procedural code using the metamodel of

Figure 6.4:

m(x : X)
pre Prem then Codem

this is also represented by an action symbol m(X ′) of IC with write frame calculated
from the form of Codem as for composite actions in Section 6.2.8

In either case, we assume that the operation definition is complete: Any change
to an attribute that is required to take place as a result of the operation is defined
explicitly in its postcondition or code: for example, changes to the value of a derived
attribute resulting from a direct update of one of its defining features.
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Codem can be interpreted as an RAL composite action Code′m in IC , and the effect
of m expressed by the axiom

(OpP) : ∀x : X ′ · m(x) ⊃ (pre existsC = true ∧ Pre′m then Code′m)

In other words, if m(x) is invoked when the object exists and the precondition holds,
we are guaranteed to get the behavior specified by Codem.

If Codem itself involves operation calls a.n(e) for a : D, or a collection a of
D objects, these are interpreted in Code′m as actions invoken(a′, e′) with empty
write frames. Similarly, a creation invocation newD(a) is interpreted as the action
create_invokeD(a′) with an empty write frame. These operations have no effect on
the local state but will be linked with the behaviors they invoke in subsystem theories
(Section 6.3.9).

Inconsistency between operation postconditions and class invariants can be
detected by internal consistency checking using a proof tool such as B [6]. Although
the semantics presented here can represent update operations defined in a self or
mutually recursive manner, these cannot be translated to B for semantic analysis,
since B does not permit such operations. However, query operations can be defined
recursively; these are translated as recursive functions (constant data) in B.

6.3.4 Expression Semantics

In this section we define the mathematical interpretation of OCL in our semantics. For
primitive literal expressions e: numbers, strings, Booleans, and elements of enumer-
ations, the semantic denotation e′ of e corresponds directly to e (Table 6.2). If v and
w are two distinct enumeration literals (of the same or different enumerations), their
semantic denotations satisfy v′ �=w′. If v and w are syntactically the same but belong
to two distinct enumerations, v′ �=w′. Otherwise, v′ =w′. The UML superstructure
leaves this semantic aspect undefined [62, Sec. 7.3.16].

Also, for any enumeration literal v, v′ /∈ R, v′ /∈ B, v′ /∈ S, and v′ /∈ @C for any
class C.

We consider only two kinds of collections (sets and sequences), and restrict these
to consist only of elements of a single type, as in UML OCL 2.0 [65]. This type

TABLE 6.2 Semantic Mapping for Primitive Literals

OCL Term e Semantics e′

number n n
true TRUE
false FALSE
String “t” Sequence denoted “t”

consisting of characters of t in
left to right order

val from enumeration T Representation of T :: val
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can be either a numeric type, Boolean type, string type, a particular enumeration, or a
particular class. Apart from elements of subclasses of a common superclass, mixtures
of elements of different types are not allowed.

Collection literal expressions have a direct interpretation: A set literal
Set{e1, . . . , en} is interpreted by the mathematical set {e′1, . . . , e′n}. This has type F(T ),
where T is the semantic representation of the common type of the elements of the set.
A sequence literal Sequence{e1, . . . , en} is interpreted by the mathematical sequence
s of length n, which has s(1) = e′1, . . . , s(n)= e′n. This is also written as [e′1, . . . , e′n].
The typing of s is a sequence 1..n → T , where T is the semantic representation of
the common type of the elements.

An identifier var denoting an attribute or role name of a class C is represented by
the corresponding RAL attribute var in IC .

Numeric operators such as *, +, /, − are represented as corresponding function
symbols of arity 2 on R. The definitions of UML OCL 2.0 [65] are used; likewise for
abs, floor, >, <, <=, >=, div, and mod. The logical operators are interpreted by the
corresponding semantic operators: and by ∧, or by ∨, not by ¬, and implies by⇒.

size, =, and + (concat) are defined on strings as in UML OCL 2.0 [65]. Equality
of strings means that they have the same characters in the same order (as in sequence
equality). Similarly, the Boolean operators or, and, not, and implies are defined
according to the usual truth tables on B.

Operators on a collection considered as a single object (such as its size) are written
following an arrow symbol from the collection: for example,

Set{1, 5, 6}→size()

is 3. max and min apply to nonempty sets of elements (numerics or strings) comparable
by ≤. For a nonempty set s, (s→max())′ is the unique element x of s′ such that

y ∈ s′ ⇒ y ≤ x

Similarly, (s→min())′ is the unique element z of s′ such that

y ∈ s′ ⇒ z ≤ y

On collections, the operators includes, excludes, includesAll, excludesAll, and
size are given the usual definitions of membership, nonmembership, subset, disjoint-
ness, and cardinality. Table 6.3 shows some examples of interpretations of collection
operators.

The operators union and intersection are defined in terms of their mathemat-
ical counterparts (Table 6.4); union on sequences is defined to be the same as
concatenation, as in UML OCL 2.0 [66].

Sequence-specific operations are defined in Table 6.5. including for a sequence is
defined as append. s→excluding(x) for sequence s is defined as s→select(self �= x)
(see Table 6.8).

Table 6.6 shows the semantics of navigation expressions on single objects.
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TABLE 6.3 Semantic Mapping for Collection Operations

OCL Term e Condition Semantics e′

s→size() collection s cardinality card(s′)
s→includes(x) set s x′ ∈ s′
s→excludes(x) set s x′ /∈ s′
s→includes(x) sequence s x′ ∈ ran(s′)
s→excludes(x) sequence s x′ /∈ ran(s′)
s→asSet() s set s′

s sequence ran(s′)
s→includesAll(t) sets s and t t′ ⊆ s′

sequences s and t ran(t′) ⊆ ran(s′)
s→excludesAll(t) sets s and t s′ ∩ t′ = {}

sequences s and t ran(s′) ∩ ran(t′) = {}
s→sum() set s sum of elements of s′

sequence s, card(s′) = n s′(1)+ · · · + s′(n)

TABLE 6.4 Semantic Mapping for Collection Construction
Operations

OCL Term e Condition Semantics e′

s→union(t) s and t sets s′ ∪ t′
s and t sequences s′ � t′

s→intersection(t) s and t sets s′ ∩ t′
s→excluding(t) s a set s′ − {t′}
s→including(t) s a set s′ ∪ {t′}

TABLE 6.5 Semantic Mapping for Sequence Operations

OCL Term e Condition Semantics e′

s = t s and t sequences s′ = t′ as maps
s→first() nonempty sequence s s′(1)
s→last() nonempty sequence s s′(card(s′))
s→front() nonempty sequence subsequence [s′(1), . . . , s′(card(s′)− 1)] of s′

or string s
s→tail() nonempty sequence subsequence [s′(2), . . . , s′(card(s′))] of s′

or string s
s→sort() sequence s reordering of s′ such that elements

are in nondescending < order
s→reverse() sequence s, n = card(s′) {i %→ s′(n− i + 1)|i ∈ dom(s′)}
s→append(x) sequence s s′ � [x′]
s→prepend(x) sequence s [x′] � s′
s→subSequence(i, j) sequence s subsequence [s′(i), ..., s′(j)] of s′
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TABLE 6.6 Semantic Mapping for Navigation Expressions on Objects

OCL Term e Condition Semantics e′

obj.att attribute att att(obj′)
obj.role 1-multiplicity role role(obj′)

unordered collection-valued role set role(obj′)
ordered collection-valued role sequence role(obj′)

TABLE 6.7 Semantics of Navigation Expressions on Collections

OCL Term e Condition Semantics e′

objs→collect(e) objs unordered {x.e′|x ∈ objs′}
objs ordered {i %→ (objs′(i)).e′|i ∈ dom(objs′)}

objs→at(i) objs ordered objs′(i′)
objs.att objs unordered {att(obj)|obj ∈ objs′}

objs ordered {i %→ att(objs′(i))|i ∈ dom(objs′)}
objs.role objs unordered {role(obj)|obj ∈ objs′}
role 1-multiplicity objs ordered {i %→ role(objs′(i))|i ∈ dom(objs′)}
objs.role objs unordered and

⋃
({role(obj)|obj ∈ objs′})

role not 1-multiplicity role unordered

objs.role objs unordered and
⋃

({ran(role(obj))|obj ∈ objs′})
role not 1-multiplicity role ordered

objs.role objs ordered and
⋃

({role(objs′(i))|i ∈ dom(objs′)})
role not 1-multiplicity role unordered

objs.role objs and role ordered conc({i %→ role(objs′(i))|i ∈ dom(objs′)})
role not 1-multiplicity

C.allInstances() C
C → size() card(C)

Table 6.7 shows the semantics of navigation expressions that start from sets of
objects. In the case of objs→collect(e), e is an expression that can be evaluated on
each element x of objs. The result is the collection of the values x.e.

In Table 6.7 conc(seqs) is a distributed concatenation of the sequences in seqs.
Navigations involving query operations are treated in a similar way to those with
attributes or roles.

Select expressions evaluate to sets or sequences, depending on the collection they
operate over (Table 6.8). Their first argument must denote a finite set or sequence.
contract(m) turns a map m : 1..n %→ T into a sequence sq by removing gaps in the
index set, maintaining the same order of elements. For example, contract({2 %→
a, 3 %→ b, 7 %→ c}) is [a, b, c].

The notation a.P denotes the class version of P with a substituted into each new
parameter slot; for example, a.(att > 10) is att(a) > 10. a.self is a.
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TABLE 6.8 Semantic Mapping for Select Expressions

OCL Term e Condition Semantics e′

objs→select(P) set objs {x|x ∈ objs′ ∧ x.P′}
sequence objs contract({i %→ x|(i %→ x) ∈ objs′ ∧ x.P′})

In a similar way we could define the semantics of collection operators for bags
and ordered sets.

6.3.5 Invariants

The following are proof obligations for consistency of a class, which a developer
must ensure, for example, by specifying that additional actions execute when the
initialization takes place or when some update operation takes place.

The invariant InvC of a class must be established by the initialization

(InitInv) : [initC]Inv′C

The invariant InvC must hold at the initiation and termination of every update
operation:

(PInv) : �S(existsC = TRUE ⇒ Inv′C) ∧
∀x1 : X1 · [α1(x1)](existsC = TRUE ⇒ Inv′C) ∧ · · · ∧

∀xn : Xn · [αn(xn)](existsC = TRUE ⇒ Inv′C)

where S = {α1, . . . , αn} is the set of actions representing the update operations of C,
which have corresponding parameters x1 : X1, and so on.

Because of the frame axioms, these two requirements ensure that the semantics
of an invariant in UML [65, Sec. 12] are valid: “The invariant must be true for each
instance of the classifier at any moment in time. Only when the instance is executing
an operation, this does not need to evaluate to true” (Section 7.3.3 of the UML OCL
2.0 [65] incorrectly omits the qualification).

6.3.6 Nested Classes

A class C may have a set of nested classifiers (a specialization of the ownedMember
role of Element), which are regarded as parts of C: If C is removed from a model,
so are these classifiers. For semantic purposes we simply consider these classes as
additional classes within the model, as if they had been declared in the outer level of
the model, but with each of their names qualified by C’s name.

6.3.7 Inheritance

If class C inherits from class D (i.e., C= g.specific and D= g.general for some
g : Generalization), then IC incorporates ID; similarly if a behaviored classifier
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C implements an interface D. In addition, there are axioms linking the creation,
destruction, and existence of objects of C and D:

(OIAx) : existsC = TRUE ⇒ existsD = TRUE

initC ⊃ initD

terminateD ⊃ terminateC

These correspond to the relationship C ⊆ D in the class theory and express the
semantics “each instance of the specific classifier is also an instance of the general
classifier” [63, p. 74].

This model of inheritance also has the consequence that “any constraint applying
to instances of the general classifier also applies to instances of the specific classifier”
[63, p. 74]. In particular, semantic data features att(d :@D) of ID can be supplied
with arguments of type @C in IC .

Despite the transitive nature of this concept of generalization, it is not the case that
UML generalization is transitive: It is possible for

a = g1.general ∧ b = g1.specific ∧ b = g2.general ∧ c = g2.specific

for classes a, b, and c and generalizations g1 and g2 without there being any
generalization between a and c.

Similar issues apply to interface realization, which also uses the “satisfaction
of all constraints” condition when comparing a classifier to an interface that it is
implementing [62, p. 88].

There are two points in UML 2 where relaxation of the “all constraints of the
general class should be satisfied in the specific” condition appears:

1. Attributes may have default values for their initialization [62, p. 52]. If these
defaults differ in a subclass and superclass, the semantics of the classes will also
differ. In our semantics any initialization performed in the superclass cannot be
varied by the subclass. There are no defaults.

2. Similarly, static features are permitted to change their values in subclasses [62,
p. 72]. This can be modeled by considering such redefinition as the declaration
of a new static feature, with a name qualified by the name of the redefining
class, and semantically unrelated to the feature it replaces.

We use the “one object” view of specialization [26]: Even though an object may be
classified by many classifiers (related in an inheritance hierarchy), it is represented as
the same semantic element in each. Its identity cannot change. It is, however, possible
for an object to move from one subclass of a class to another subclass (dynamic
classification) by the occurrence of create and kill actions of these subclasses on the
object.
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The axioms OIAx and OpD together imply that if an operation is defined both in the
superclass and subclass, both sets of the pre and post specifications apply when it is
used on an object of the subclass (existsC and existsD both true).A semantic variation in
which the subclass postcondition is allowed to override and contradict the superclass
postcondition could be considered, since this is common practice in OO programming
(cf. the redefinition of bodyCondition on page 107 of UCL OCL 2.0 [62]). However,
the subclass would not then be substitutable with regard to the superclass.

6.3.8 Class Theory of C

In the class theory �C of a class C we define the (finite) set C of existing objects of
C as an attribute of type F(@C), where @C is the type of all possible instances of C.
Initialization of a C object is carried out at object creation; termination takes place at
object destruction:

(CI) : ∀a : @C · createC(a) ⊃ initC(a)

∀a : @C · killC(a) ⊃ terminateC(a)

The constant self (@C) : @C is defined as a constant attribute (i.e., an attribute
that is not in the write frame of any action). self is the identity function:

(SelfD) : ∀a : @C · self (a) = a

existsC expresses that an object exists:

(ExistsD) : ∀a : @C · (existsC(a) = TRUE) ≡ (a ∈ C)

If an attribute att of C has an attached {identity} constraint, the axiom

(IdenD) : ∀a1, a2 : C · att(a1) = att(a2) ⇒ a1 = a2

is included in �C ; similarly if there is a group of attributes which together form a
compound primary key (a single identity constraint is attached to all elements of the
group).

6.3.9 Subsystem Theories

If class C uses class D as a supplier (i.e., there is an association directed from C to D),
�D and �C are combined in the theory �S of the subsystem of D and C together with
their linking association, and we connect the actions denoting calls with the actual
operations invoked:

(RSC) : ∀a : @D · invoken(a, e) ⊃ a.n(e)

and

(RCC) : ∀a : @D · create_invokeD(a) ⊃ createD(a)
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TABLE 6.9 Additional Axioms for Associations

Association Additional Axioms

A∗–r∗B ∀a : A · r(a) ∈ F(B)
A0..1–r∗B ∀a : A · r(a) ∈ F(B)

∀a1, a2 : A · r(a1) ∩ r(a2) �= {} ⇒ a1 = a2
A1–r∗B ∀a : A · r(a) ∈ F(B)

∀a1, a2 : A · r(a1) ∩ r(a2) �= {} ⇒ a1 = a2
∀b : B · ∃a : A · b ∈ r(a)

A∗–r
1B ∀a : A · r(a) ∈ B

A0..1–r
1B ∀a : A · r(a) ∈ B

∀a1, a2 : A · r(a1) = r(a2) ⇒ a1 = a2
A1–r

1B ∀a : A · r(a) ∈ B
∀a1, a2 : A · r(a1) = r(a2) ⇒ a1 = a2
∀b : B · ∃a : A · b = r(a)

TABLE 6.10 Axioms for Association Constraints

Association Additional Axiom

A∗–r∗B ∀a : A; b : B · b ∈ r(a) ⇒ a.(b.Inv)
A0..1–r∗B the same
A1–r∗B the same
A∗–r

1B ∀a : A · a.(r(a).Inv)
A0..1–r

1B the same
A1–r

1B the same

These model synchronous invocations with no communication delays between client
and supplier. The properties could be generalized to deal with distributed systems:
for example, by asserting

∀i : N1 · ∃j : N1 · ↑(invoken(a, e), i) =←(n(a, e), j)

and that invoken(a, e) terminates when a result message is received from a for this
request.

When invoken(objs, e) is used with a set objs of objects, it is interpreted as a
concurrent invocation of each of the individual object operations:

(MRSC) : invoken(objs, e) ⊃ ||a:objsn(a, e)

Additional axioms may be required in �S to define the properties of the association
from C to D, depending on its multiplicity at the C end (Table 6.9).

If a constraint Inv is attached to the association between a class A and a supplier
class B, an axiom expressing its meaning is included in �S , depending on the form
of association (Table 6.10). Inv may involve features of both A and B. The notation
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TABLE 6.11 Axioms for Bidirectional Associations

Association Additional Axiom

Aar∗ –br∗ B ∀a : A; b : B · a ∈ ar(b) ≡ b ∈ br(a)
Aar

1 –br∗ B ∀a : A; b : B · a = ar(b) ≡ b ∈ br(a)
Aar∗ –br

1 B ∀a : A; b : B · a ∈ ar(b) ≡ b = br(a)
Aar

1 –br
1 B ∀a : A; b : B · a = ar(b) ≡ b = br(a)

A B

A B
att : T

att : T

ar

a
1

M1

M1
ar"

M2
br

M2
br" 1

b
A_B

A_B

FIGURE 6.6 Transformation of association classes to associations.

a.(b.Inv) means that b is substituted into all new @B parameter slots in the class
version of Inv, and a into all new @A parameter slots.

In the case of bidirectional associations, there are properties relating the two direc-
tions (Table 6.11). The case of 0..1 multiplicity at an association end produces the
same axioms as for ∗.

The semantics of other forms of association between classes can also be expressed
in this semantics, by transforming them into simpler constructs. Association classes
are modeled as a class plus associations (Figure 6.6). The new axiom

(AssocClass) : ∀r1, r2 : A_B · a(r1) = a(r2) ∧ b(r1) = b(r2) ⇒ r1 = r2

holds in such a subsystem.
Qualified associations can also be modeled by introducing a new intermediate

class. We can also formalize the two key properties of composite aggregations [62,
p. 43]. The deletion propagation property of a composition (Figure 6.7) is expressed
by

∀w : W · killW (w) ⊃ ||p∈pr(w)killP(p)
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W P

*
pr

FIGURE 6.7 Composite aggregation association.

The property that there are no object-level loops in the extent of a composite that
is a self-association (on a class W ) can be expressed as

∀w : W · w /∈
⋃
n:N1

prn(w)

In the client–supplier construction, if D and C are the same class (the case of
a self-association), �S is simply �C extended with the additional axioms for any
self-associations on C.

A similar theory composition is used in the case that C inherits from D (i.e., there
is g : Generalization with g.general=D and g.specific=C). We include the axioms

(InheritD) : C ⊆ D

in �S , and identify @C and @D. This ensures that attributes and operations of D can
also be applied to elements of @C. Notice that if a ∈ C, a.m(e) is required to
obey the behavior of both the C and D definitions of m. In addition, due to the frame
axioms, operations of the subclass can modify data of the superclass only by invoking
(coexecuting with) update operations of the superclass which have that data in their
frames. This condition ensures the subtyping principle of Liskov and Wing [54].

In addition, if a class A is a superclass of classes A1, . . . , An, these classes should
all be represented in a single subsystem whose theory extends �A and each �Ai . If
A is {abstract}, the axiom

(AbsD) : A = A1 ∪ · · · ∪ An

is added to this subsystem theory.
In the general case of several inheritance relationships, all classes concerned are

represented in a single subsystem theory; only the classes C without superclasses
are represented by a type @C. When forming the theory of a system involving both
inheritance and associations, the inheritance construction should be applied to form
a composed subsystem theory before the clientship construction.

The notion of a generalization set in UML 2 places constraints on the possible
elements of a group of subclasses of a particular class. If gs : GeneralizationSet has
gs.generalization = gset, the elements (g : Generalization) of gset have the same
value sp of g.general, and the subclasses gset.specific of sp are constrained as follows:

• If gs.isCovering = true, all elements of sp must be elements of at least one
subclass in gset.specific:

Sp = Sb1 ∪ · · · ∪ Sbn
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A

A1

B

B1
br2

ar1

ar2

**

* *

br1

{subset}

FIGURE 6.8 Specialization of associations.

• If gs.isDisjoint = true, the subclasses have no element in common:

Sb1 ∩ · · · ∩ Sbn = {}

The latter condition appears to be the intended interpretation of disjointness [62,
p. 77]; however a more useful property is pairwise disjointness:

Sbi ∩ Sbj = {}

for each i �= j. This, together with the covering property, would then express that the
subclasses form a partition of the superclass.

One association can be a specialization of another (i.e., there may be r1, r2 :
Association and g : Generalization such that r1= g.general and r2= g.specific).

In this case the corresponding elements of ms1= r1.memberEnd and
ms2= r2.memberEnd must also be equal or related by generalizations:

ms1→at(1) = ms2→at(1) ∨
∃g1 : Generalization ·
g1.general = ms1→at(1).type ∧ g1.specific = ms2→at(1).type

and similarly for the second element of the member ends.
In this situation the rolenames of r2 are asserted to be subsets of the corresponding

rolenames of r1 (Figure 6.8); that is,

bx : B1 ⇒ ar2(bx) ⊆ ar1(bx)

and

ax : A1 ⇒ br2(ax) ⊆ br1(ax)
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The multiplicities on the ends of the specialized association must therefore be ≤ the
multiplicities on the corresponding ends of the generalized association. Equations
such as

br2(ax) = B1 ∩ br1(ax)

will not hold in general, since there may be other subclasses of B.
Other cases of subsystems arise if there are constraints attached to sets of asso-

ciations. In this case the collection of connected classes forms a subsystem, and the
association constraint is expressed semantically in this subsystem.

6.4 APPLICATION OF THE SEMANTICS

The semantics has been used as the basis of verified translations from UML to the
formal specification language B and to the SMV model checker [2]. These translations
enable checks on the consistency of UML models, and animation of the models.
However, in both cases there are restrictions on the models which can be analyzed:
For B it is not possible to have cycles in the operation calling relationship except for
query operations defined by recursion. Other forms of recursion or callbacks cannot
be translated. For translation to SMV it is necessary that all classes have a maximum
cardinality.

The semantics has also been used to justify a number of model transformations,
as described in Chapter 14.

6.5 RELATED WORK

Other work on UML class diagram semantics has used the following approaches:

1. Expression of UML semantics in a semantic representation outside UML, using
denotational [11,19,26,52,72], operational [17], axiomatic [36], or category-
theoretic [75] semantics.

2. Metamodeling, representing UML semantics in terms of a small-core UML
notation together with OCL [15]. This is the approach used in the UML 2
infrastructure and superstructure documents, although in these many of the
semantic definitions are informally expressed and not formalized in OCL (in
some cases OCL is unable to express the definitions).

Denotational semantics (e.g., [11,19,72]) are very useful as an underpinning for
axiomatic semantics; however, they can be very complex and difficult to understand
and implement directly, or to tailor to different semantic variation points of UML.
For this reason we prefer to give an axiomatic semantics, which is closely linked to
notations used for proof and semantic analysis (in classical mathematical and logical
notation, or in B).
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In comparison to the system model defined by the UML semantics project [11], we
use a more abstract and general semantic representation, avoiding low-level details
of data storage and behavior mechanisms.

In general, the strategy of restricting to a subset of UML is necessary, since some
of its notations, such as activities, have unclear semantics. However, the subset should
itself be a useful part of UML, so that the results of semantic analysis can be expressed
in a comprehensible manner to software developers. Translating interactions to state
machines, or flattening state machines, should be avoided for this reason. Our seman-
tics can represent directly the semantics of interactions [49] and unflattened state
machines [53].

As pointed out by Naumenko andWegmann [59], the self-referential metamodeling
approach can result in a semantics that fails to provide a consistent interpretation for
the terms of UML. Instead, we have taken the first approach and given a semantics
of an essential core of UML in a formalism that is entirely independent of UML
and based on well-established mathematical logic and set theory. In decomposing the
semantics of UML models into theories linked by morphisms, we are also using a
category-theoretic approach.

An approach closely related to ours is the formalization of UML and OCL in PVS
[35]. This deals with a restricted subset of class diagrams (association ends have
maximum multiplicity 1). The expression of the semantics in PVS can be complex
and difficult to relate to the UML source models, but automated proof can be applied
as with model checking.

Our semantics represents the extension of a class C as a element C of the semantics
but does not represent the intension of C [60] as an element within the semantics.
Instead, this is represented as the theory IC . This means that the semantics of concepts
such as leaf and root classes and operations cannot be expressed in our semantics.
private and public modalities of features are also not represented. However, the
correctness of models with regard to such constraints can be checked effectively by
diagram editing and syntax-level analysis tools, so the inability to represent such
concepts in our semantics does not impair the verifiability of UML models.

6.6 CONCLUSIONS

In this chapter we have shown that an axiomatic approach can be used to give a com-
prehensive semantics to UML class diagram notation in a way that is consistent with
the informal semantics expressed in the UML standard. Elements of class diagram
notation, such as qualified associations and associations of higher arity, which have
not been covered explicitly here, can be expressed in the subset of the notation which
has been assigned a semantics, so they can be given a semantics by transformation.
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CHAPTER 7

OBJECT CONSTRAINT LANGUAGE:
METAMODELING SEMANTICS
ANNEKE KLEPPE
Independent Consultant, The Netherlands

7.1 INTRODUCTION

In this chapter we explain the semantics defined in Section 10 of the Object Constraint
Language (OCL) specification [1]. This standard is freely available; therefore, we do
not describe the semantics in full. Instead, we give the reader some insights into the
reasoning behind these semantics as well as the formalism used to express them. As
such, this material serves as an introduction to Section 10 of the OCL standard.

The semantics is described here using a technique that was later called metamodel-
ing semantics [2]. Because this is a new and fairly unfamiliar formalism, this manner
of describing semantics is explained as well. Basically, in metamodeling semantics
not only the abstract syntax of the language, but also the semantic domain is specified
using a model. The actual semantic mapping is described as the relationship (defined
using associations) between the two models. The semantic domain model of the OCL
is explained as is its relationship with the OCL abstract syntax model or metamodel.

OCL is the OMG standard for specifying expressions that add vital information
to object-oriented models and other object-modeling artifacts. These expressions can
have the following types:

• Invariants, which state a fact that must always be true for a given object.
• Pre- and postconditions, which state a fact that must be true before and after

execution of an operation, respectively.
• Body expressions, which indicate how the result of a query operation must be

calculated.
• Initial value expressions, which indicate the initial value of an attribute or

association end.

UML 2 Semantics and Applications. Edited by Kevin Lano
Copyright © 2009 John Wiley & Sons, Inc.
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The first two expression types indicate a required situation; therefore, the value of
these expressions will always be of the Boolean type. The latter two expression types
indicate a value and may be of any type.

OCL is a side-effect-free language; evaluation or execution of its expressions may
not alter the system state. An expression is merely an indication of a value; in no way
is it an indication of how parts of the system are executed. Therefore, I prefer the use
of the term evaluation of an OCL expression to execution.

Given the side-effect-free nature of OCL, the semantics of OCL can be brought
down to a single question: What is the resulting value of evaluating an OCL expres-
sion? To answer this question, we must have a clear notion of what is meant by value.
Thus, the most important elements of the OCL semantic domain are the values: in
other words, the instances of the OCL types.

The semantics of OCL are described using a formalism that was later called meta-
modeling semantics [2]. Because this is a new and fairly unfamiliar formalism, it is
explained in Section 7.2. In Section 7.3 we explain the first part of the OCL semantic
domain model, of which values are the key ingredient. Section 7.4 covers the second
part of the OCL semantic domain, which describes evaluations of OCL expressions.
The chapter concludes with Section 7.5, which includes a short summary.

7.2 METAMODELING SEMANTICS

In the OCL specification the semantics are described using a new formalism, which
is based on metamodeling. In this section we explain this formalism briefly. Fur-
thermore, we describe the underlying definition of semantics as well as the way that
metamodeling semantics fits this definition. Furthermore, we define the term mogram.

7.2.1 What Is Semantics?

Semantics is just another word for meaning, so actually the question in the title is:
What is meaning? To answer it, we have to turn to philosophy. In 1923, Ogden and
Richards, two leading linguists and philosophers of their time, wrote the book The
Meaning of Meaning [3]. They state that there is a triangular relationship among ideas
(concepts), the real world, and linguistic symbols such as words, often referred to as
the meaning triangle. An example is shown in Figure 7.1, which depicts the triangular
relationship using the example of a larch tree.

The meaning triangle explains that every person links a real-world item to a word
(linguistic symbol) through a mental concept. Similarly, a word can be linked to
a real-world item via a concept. Imagine that you hear or read the word tricycle and
see a three-wheeled vehicle either in real life or in a photograph. At that moment you
build a mental image connecting the word and the real-world item.

An important understanding of Ogden and Richards is that ideas (concepts) exist
only in a person’s mind. In fact, they state that ultimately every person understands
the world around him or her in his or her own particular manner, a manner that no
other person is able to copy, because that understanding of a new concept is fed by
(based on) all other concepts that this person acquired previously. For example, the
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Concept: Larch tree

Linguistic symbol:

“The Larch”

Real world:

FIGURE 7.1 Ogden and Richards’ meaning triangle.

concept “tricycle” can be explained as a three-wheeled bicycle only when you know
what a bicycle is. A person who has no understanding of bicycles will still not grasp
this concept. Thus, one concept builds on another. As no person has exactly the same
knowledge as another person, each person’s understanding of the world will be differ-
ent. In fact, Ogden and Richards state that communication, which is understanding of
each other’s linguistic utterances, is fundamentally crippled. Therefore, my definition
of semantics is the following.

Definition 7.2.1 (Semantics Description) A description of the semantics of a
language L is a means to communicate an (subjective) understanding of the linguistic
utterances of L to another person or persons.

Definition 7.2.1 is based on the common understanding that a language is a set
of linguistic utterances; it originates from formal language theory (see, e.g., [4]). To
make absolutely clear that Definition 7.2.1 as well as metamodeling semantics can
be used not only for modeling languages but for any language, I introduced the term
mogram [5] to replace linguistic utterance. A mogram can be either a model or a
program, a database schema or a query, an XML file, or any other thing written in a
software language.

Following the meaning triangle, a semantics description of a language consists of
(1) a description of the real-world concepts, and (2) a description of the relationship
between every mogram of that language and the real-world concepts. The first part
of a semantics description is usually called the semantic domain; the second is called
the semantic mapping. The semantic domain describes the right-hand corner of the
meaning triangle, providing an understanding of the “real world.” In other words, the
semantic domain provides us with the mental concepts mentioned in the upper corner
of the semantic triangle. The left-hand corner of the meaning triangle is provided by
the language’s abstract syntax. The semantic mapping is a description of how a human
being should relate the abstract syntax to the semantic domain. In the next section we
look at how metamodeling semantics provides the two parts of a semantics description.
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7.2.2 What Is Metamodeling Semantics?

Metamodeling semantics originates from a study by Clark et al. in 2000 of the defi-
nition of UML as a family of languages [2]. I first used the formalism in a technical
report in 2001 [6], and in 2002 and 2003 the formalism was used to specify the OCL
semantics. It was also used by Hausmann in his Ph.D. dissertation [7]. Engels et al.
[8] coined the term metamodeling semantics.

Metamodeling semantics is a way to describe semantics that is similar to the way
in which popular languages like UML are defined. In metamodeling semantics, not
only the abstract syntax of the language, but also the semantic domain, is specified
using a model. The abstract syntax is usually called the metamodel of the language,
but because metamodeling semantics deals with a number of models that define the
language, I use the terms abstract syntax model (ASM) and semantic domain model
(SDM) (see Figure 7.2 for their position in the meaning triangle). Both ASM and
SDM are metamodels in the sense that both state information about the mograms of
the language. The ASM states whether a mogram has a statically valid structure; the
SDM states the possible meanings of a mogram.

Because both ASM and SDM are models, we have to be aware of the two levels at
which the meaning triangle occurs (see Figure 7.3): the model level and the instance
level. The ASM and SDM reside at the model level; the mogram and the part of the

Semantic
Mapping

Abstract Syntax Model 
(defines mograms)

Semantic Domain Model
(defines “real world”) 

Human Mental Concepts
(”understanding”)

FIGURE 7.2 Metamodeling semantics.

mogram

Abstract Syntax Model Semantic Domain Model

“real world” elements

Model-level

Instance-level

FIGURE 7.3 Metamodeling semantics has two levels.
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real world that represents the mogram’s meaning reside at the instance level. Just as
the mogram is an instance of the ASM, the elements of the real world are instances
of the SDM.

As an example of an SDM, consider the semantic domain of the OCL, which con-
sists of values and evaluations of expressions. In the SDM both values and evaluations
are modeled as metaclasses; the actual values and evaluations are instances of these
metaclasses.

In metamodeling semantics, the semantic mapping is given by associating each
metaclass in the ASM with one or more metaclasses in the SDM. Each association
between an ASM metaclass and an SDM metaclass states that the meaning of an
instance of the ASM metaclass is an instance of the SDM metaclass. For example, in
Figure 7.4 the metaclass OclExpression from the ASM is associated with the meta-
class OclExpEval from the SDM, stating that the meaning of an OCL expression is
given by an evaluation of this expression. The metaclass Classifier from the ASM is
associated with the metaclass Value, stating that the meaning of a classifier is given
by a set of values.

Of course, the associations in the semantic mapping are restricted by constraints.
The constraints specify which instance of the ASM metaclass is linked to which
instance of the SDM metaclass. In the example in Figure 7.4, each OclExpEval
instance defined in the SDM has a property resultValue of type Value, which
holds the actual value of the expression being evaluated. Similarly, each OclExpres-
sion instance defined in the ASM has a property type of type Classifier, which
indicates the type of the expression. The semantic mapping states that there is an
association between Value and Classifier as well as between OclExpEval and OclEx-
pression. This combination of associations is restricted by the following constraint,

OclExpEval

OclExpression

0..n

1

+instances

+model

Classifier

111

+type

1

Value
0..n

1

+resultValue

0..n

1

+instances

+model

Semantic Domain Model

Abstract Syntax Model

FIGURE 7.4 General associations between some ASM and SDM classes.
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which states that the result value of the evaluation of an OCL expression must be an
instance of the type of that expression:

context OclExpEval
inv: resultValue.isInstanceOf( model.type )

7.3 OCL SEMANTICS:TYPES AND VALUES

The OCL semantic domain is divided into two parts: values and evaluations. In this
section we describe the first part of the semantics domain. It explains the relationship
between OCL types and UML types and defines the semantics of OCL types.

7.3.1 OCL and Its Host Language

OCL is a special language in the sense that it is not a stand-alone language. OCL
can only be used in cooperation with another language that provides a type sys-
tem. Each of the types provided by this host language can be used in any OCL
expression and can be the type of any OCL expression. Therefore, part of OCL
semantics is the semantics of the host language. That is, to understand the semantics
of OCL, one must understand the semantics of the type system provided by the host
language.

OCL was created to be the constraint language for UML [9,10]; thus, UML is the
dedicated host language, but combinations with other host languages are feasible.
For this purpose the interface between OCL and its host language has deliberately
been kept to a minimum: It consists of associations and inheritance relationships
between only 13 metaclasses from the UML abstract syntax and the OCL meta-
classes. Currently, the OCL is used in combination with either the MOF [11] or the
UML. Furthermore, there are some OCL dialects that depend on other host lan-
guages: for example, eXpand in openArchitectureWare [12], which depends on
EMF, and the Orcas version of Visual Studio with C# 3.0 and the Linq library
(see [13]).

Figure 7.5 shows the Types package from the OCL abstract syntax model (the
figure can be found in Section 8 of the OCL specification). The gray classes belong
to OCL; the white classes belong to UML. Every type in OCL is a subclass from the
UML metaclass Classifier; thus, every OCL type must adhere to the semantics of this
UML metaclass, which are described elsewhere in the book.

7.3.2 Semantic Domain: Values

As explained in the preceding section, the semantics of the OCL types are given by
the semantics of the metaclass Classifier from UML or its substitute in another host
language. However, in correspondence with the extension of the UML type system
in the Types package in the OCL ASM, the semantics of the Classifier must also be
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FIGURE 7.6 Values package from the OCL semantic domain model.

extended. The semantics of OCL must specify, for example, the meaning of the OCL
CollectionType and TupleType metaclasses.

The basis for the semantics of the OCL types is the assumption that OCL is always
used in combination with a host language that adheres to the object-oriented ideas of
values being objects that can hold references to other objects. This basic idea is cap-
tured in the Values package in the SDM, which is shown in Figure 7.6. Every element
in the SDM inherits from the metaclass DomainElement, just as every metaclass in
the ASM inherits from ModelElement.

As shown in Figure 7.6, the abstract metaclass Value has three subclasses: Object-
Value, StaticValue, and OclVoidValue. OclVoidValue is the representation of the
undefined value (null, void, OclUndefined). Its intention is to define the semantic
domain for the OclVoid type. The metaclass StaticValue represents all values that are
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unchangeable. Its intention is to define the semantic domain for all datatypes. Finally,
the metaclass ObjectValue represents the basic object-oriented notion of any object
that can hold references to other objects.

The references to other objects that are held by a certain object can change over
time, and because OCL postconditions take time into account, we need to keep track
of these changes over time. For this purpose, each object value holds a list called
history of snapshots of the values of its references. Note that every snapshot is local
to a certain object: It contains only the references of one specific object. Each snapshot
contains a number of name–value bindings. Each binding is a combination of the name
by which the object knows the referenced object, and the referenced object itself.

To obtain the latest value of an object’s property, the following operation has been
defined on the SDM:

context ObjectValue::getCurrentValueOf(n: String): Value
body: result = history->last().bindings->any(name = n).value

7.3.3 Example 1: Values

As an example of how to interpret the Values package, think of yourself as an object of
class Person that has an attribute namedage of type Integer. This object is an instance
of the metaclass ObjectValue and the first snapshot in its history contains a name–
value binding{age, 0}. Assuming that you are over the age of 18, there will also be
a snapshot with the binding {age, 18}. Hopefully, at a certain point in time there
will be a snapshot containing the binding{age, 90}. In this example the referenced
values are unchangeable; that is, they are instances of the metaclass StaticValue.

Let’s now assume that the Person class also has a property called spouse of
type Person. In that case your first snapshot will contain not only the {age, 0}
binding, but also spouse, null, where null is an instance of the metaclass OclVoidValue.
Somewhere in the snapshot history there may be a change of this binding, in which
case the value of the binding would be another instance of the metaclass ObjectValue.
Thus, the instances of ObjectValue form the expected graph of objects as nodes and
references as edges.

To obtain the latest value of your spouse property, the following (meta) operation
call must be executed:

YOU.getCurrentValueOf(’spouse’)

To obtain your latest spouse’s age we need the following (meta)operation call:

YOU.getCurrentValueOf(’spouse’).getCurrentValueOf(’age’)

7.3.4 Example 2: OCL Set Values

In Section 7.3.2 I have stated the intention of the metaclasses ObjectValue, Static
Value, and OclVoidValue, which is to serve as the semantic domain for certain
metaclasses from the ASM. These intentions have been formalized for each abstract
syntax metaclass in the Types package in the form of associations and well-formedness
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rules. All of these can be found in the OCL specification. In this section only one
example is explained, that of the OCL Set type.

Informally, the meaning of the OCL Set type can be stated as: The OCL Set type
defines values each of which is unchangeable over time and each of which holds a
number of other values that must be unique within the set value. More formally, this
means that each set value is an instance of the SDM metaclass StaticValue, but this
is not enough because set values hold other values. Therefore, the SDM metaclass
SetTypeValue was introduced. It inherits its collection nature from the metaclass
CollectionValue, which is a subclass of StaticValue (see Figure 7.7).

A collection value is a list of values. In the metamodel, this list of values is shown
as an association from CollectionValue to Element. Element instances function as a
holder for a single part of a tuple value or collection value. An element has an index
number and a value.1 The purpose of the index number is to identify uniquely the
position of each element within the enclosing collection when it is used as an element
of a sequence or ordered set. Note that each collection has an implicit identity that is
different from the identity of each of its elements.

With this knowledge we are able to define the uniqueness of the set’s elements by
the following constraint:

context SetTypeValue
inv: self.element->isUnique(e : Element | e.value)

7.3.5 Mapping OCL Types to Values

Once theASM and SDM are specified in detail, the semantic mapping is relatively sim-
ple. The semantic mapping is described in the AS-Domain package (see Section 10.4
of the OCL specification). The package contains no extra metaclasses, only a large
number of associations between ASM metaclasses and SDM metaclasses and a num-
ber of well-formedness rules defined on these associations. Looking again at the OCL
Set type, the semantic mapping is given by the association between the ASM meta-
class SetType and the SDM metaclass SetTypeValue as shown in Fig. 7.7. There are
no well-formedness rules defined on this association.

7.4 OCL SEMANTICS: EXPRESSIONS AND EVALUATIONS

As stated in Section 7.3, the OCL semantic domain is divided into two parts: values
and evaluations. In this section we explain the second part, the evaluations, thus
defining the semantics of OCL expressions.

7.4.1 Semantic Domain: Evaluations and Their Context

The Evaluations package in the SDM provides the elements that represent a “cal-
culation” of the result of an OCL expression. Figure 7.8 shows the most important

1 A minor correction to the OCL specification is required. The class Element should also have a name
attribute. The name is used when the instance is part of a tuple value.
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element in this package: OclExpEval, the class that represents any evaluation of an
OCL expression. The value that results from an evaluation is represented by the prop-
erty resultValue of type Value. One could rightly state that the complete OCL
semantics is dedicated to describing the value of this property, thus answering the
question stated in the introduction: What is the resulting value of evaluating an OCL
expression?

7.4.1.1 Bindings To be able to determine the value of the property
resultValue, all variables in the expression need to be bound. Similar to the
binding of object values and their references, this binding is represented by a set of
instances of the class NameValueBinding. Figure 7.8 shows three different sets of
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FIGURE 7.8 Evaluations package from the SDM.
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bindings for one OclExpEval: environment, beforeEnvironment, and—via
ExpressionInOclEval—context.environment. The first contains the bindings
that are visible for this evaluation and the names by which they can be referenced. A
second set of bindings contains all bindings that were present at precondition time.
These are used only when the expression to be evaluated is a postcondition. The third is
a constant set of bindings that are given by the context in which the expression is used.
Note that because an expression can be part of a larger expression, names may become
invisible for the inner expression; that is, they are not included in its environment set
of bindings. Still, for every subexpression the context set of bindings is the same.

For example, focus on the subexpression child.age < self.age in the
following postcondition:

context Person::adoptChild(child : Person)
pre: child.age < 18 and self.age > 18
post: self.children->includes( child ) and
self.children->forAll( child | child.age < self.age )

The subexpression’s context bindings contain a single object: namely, the object
that has executed the operation adoptChild, named self of type Person. Using
the metaoperation getCurrentValueOf defined above, we can obtain the values
for its properties age and children, and for each of its children we can obtain the
value of the child’s properties.

The subexpression’s precondition bindings differ from the context bindings
because the set property children is still unchanged. It does not yet contain the
new child. The expression’s precondition bindings contain (a copy of) the self object,
whosehistoryproperty remains unchanged. Furthermore, the expression’s precon-
dition bindings contain a binding of the name child to the value of the operation’s
parameter as it was at precondition time.

The postcondition bindings for the given subexpression are the same as the context
bindings combined with a binding for the name child, not to the value of the
operation’s parameter at postcondition time but to one of the elements of the set
self.children. The declaration of the variable child within the forAll loop
hides the operation’s parameter.

7.4.1.2 Passing Bindings and ResultsThrough theTree Expressions and
subexpressions are structured as trees, of which the top is always an ExpressionInOcl
instance (defined in Section 12 of the OCL specification). A simple way of thinking
about evaluations is that they form a similar tree. In this tree the environment set of
bindings is passed down from the top of the tree to the bottom, sometimes changing
for a certain subexpression. The result value is calculated on the leaves and then
passed upward to the top, while at every node the result value of that subexpression is
calculated based on the result values of its branches. A well-formedness rule ensures
that the result value of the evaluation of an OCL expression is an instance of the type
of that expression:

context OclExpEval
inv: resultValue.isInstanceOf( model.type )
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7.4.2 Mapping Expressions to Evaluations

The semantic mapping of expressions to evaluations is described in the AS-Domain
package (see Section 10.4 of the OCL specification), as is the semantic mapping of
types to values. Figure 7.9 shows the associations that constitute the semantic mapping
for the abstract syntax metaclass OperationCallExp, which represent an operation
call. Well-formedness rules are put in place to ensure the correct configuration of
evaluations; for instance:

context PropertyCallExpEval
inv: source.model = model.source

The result value of an operation call expression is a complicated thing, because
of the existence of out and in/out parameters. If the operation has no out or in/out
parameters, its result value will have the type given by the Operation being called;
else the type will be a tuple containing all out or in/out parameters and the result
value. This is specified by the following well-formedness rule.

context OperationCallEval inv:
let outparameters : Set( Parameter ) =
referredOperation.parameter->select( p |

p.kind = ParameterDirectionKind::in/out or
p.kind = ParameterDirectionKind::out)

in
if outparameters->isEmpty()
then resultValue.model = model.referredOperation.parameter
->select(kind = ParameterDirectionKind::result).type

else resultValue.model.oclIsType( TupleType ) and
outparameters->forAll( p |
resultValue.model.attribute->exists( a |
a.name = p.name and a.type = p.type ))

endif
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As explained, the definition of the semantics of the operation call expression,
(i.e., the rule that gives the result value) depends on the definition of operation call
execution in the UML semantics. This is part of the UML infrastructure specification
and is not defined in the OCL specification.

7.4.3 Example 3: A Let Expression

The following let expression defines an invariant on the Person class which states that
the age of the spouse of a person must be over 18 and must not be equal to the age of
the person him- or herself.

context Person
inv: let spouse-age: Integer = self.spouse.age
in spouse-age <> self.age and spouse-age >= 18

This expression can be structured as shown in Figure 7.10. To evaluate this expres-
sion, the context must provide the value bindings for the self variable and the properties
of the self object. These bindings are available to every subexpression. The binding
of the name spouse-age to a particular value is present in the environment of
the subexpression in the in-part of the let clause and its subexpressions, but not to
the subexpression self.spouse.age. This is a general rule and is defined in the
semantics by the following well-formedness rule:2

context LetExpEval
inv: in.environment = self.environment ->add(

NameValueBinding( variable, initExpression.resultValue ))

The result of the expression is determined from the leaves of the tree. For instance,
the value of the subexpressionself.age is given by a call to the additional operation

let spouse-age: Integer = self.spouse.age
 in spouse-age < > self.age and spouse-age >= 18

self.spouse.age

spouse-age >= 18spouse-age < > self.age

self.agespouse-age

spouse-age < > self.age 
and

spouse-age >= 18

spouse-age 18

FIGURE 7.10 Let expression structured as a tree.

2 This rule is evidence of a second minor revision of the OCL specification. In the specification the new name
value binding is created as NameValueBinding( variable.varName, variable.initExpression.result-Value ).
The rule in this chapter is a correction thereof.
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mentioned in Section 7.3.2, which is defined in the semantics in the well-formedness
rule for AttributeCallExpEval:

context AttributeCallExpEval inv:
resultValue =

if source.resultValue->isOclType(ObjectValue)
then source.resultValue->asOclType(ObjectValue)

.getCurrentValueOf(referredAttribute.name)
else -- must be a tuple value

source.resultValue->asOclType( TupleValue )
.getValueOf(referredAttribute.name)

endif

Note that the source property of an AttributeCallExpEval is an OclExpEval
instance. In this example the result value of the source will be the self object. The
if-statement in the well-formedness rule is present to distinguish between the evalua-
tion of a property of an object and a property of a tuple value. Once the result values
of subexpressions self.age and spouse-age have been determined, the values
can be used to determine the result value of the subexpression spouse-age <>
self.age. This subexpression is an instance of the ASM metaclass OperationCall-
Exp and is evaluated by an OperationCallExpEval. Here again, the fact that OCL is not
a stand-alone language emerges. The semantics of an operation call must be provided
by the host language and is therefore not included in the OCL specification. The OCL
semantics assumes that the OperationCallExpEval obtains the correct result value.
However, the OCL semantics do state that the environments for the arguments of
an OperationCallExpEval are equal to the environment of the OperationCallExpEval
itself. The result values of the other subexpressions are determined in the same fash-
ion. Finally, the result value of the complete let expression can be obtained according
to the following well-formedness rule, which states that the result of a let expression
is the result of its in-part.

context LetExpEval inv:
resultValue = in.resultValue

7.5 SUMMARY AND CONCLUSIONS

The metamodeling approach is a new formalism to specify semantics. In the same way
that metamodeling was invented in the 1990s to define the abstract syntax of a lan-
guage, metamodeling semantics has emerged in the recent decade. Both are based on
creating a model that provides metainformation on the mogram or linguistic utterance.

The abstract syntax model defines the rules to determine whether a given mogram
is a valid element of the language. The semantic domain model provides the possible
values of the mogram, where the word values must be understood in a very broad
sense. The semantic mapping is given by associating the metaclasses in the abstract
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syntax model with the metaclasses in the semantic domain model. Part of the semantic
mapping are constraints that restrict these associations.

The OCL semantics provided in Section 10 of the standard are written using the
metamodeling formalism. The semantic domain model is divided into two parts,
values and evaluations. Each OCL expression type is associated with a specific eval-
uation type, which in turn is restricted by specific constraints. The value that results
from an evaluation can be considered to be the heart of the semantics of the expres-
sion. This value is represented by a property called resultValue of an evaluation.
Well-formedness rules specify how this property is calculated.

The metamodeling formalism for specifying the OCL semantics was preferred
over a purely mathematical approach (Appendix A in [14], written by Mark Richters)
because the metamodeling formalism is close to the formalisms known to users of
UML and readers of the UML and OCL specifications. However, it is still a young
and not very widely explored formalism. Further research is necessary to determine
the full possibilities of the metamodeling formalism.
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CHAPTER 8

AXIOMATIC SEMANTICS OF STATE
MACHINES
KEVIN LANO and DAVID CLARK
Department of Computer Science, King’s College London, London, UK

8.1 INTRODUCTION

In this chapter we provide an axiomatic semantics of UML 2 state machine notation
by translating this notation into the RAL formalism introduced in Chapter 6. Initially,
we consider “flat” state machines without state hierarchies, then extend the semantics
to include nested and concurrent states and compound transitions. The semantics is
used to resolve issues of ambiguity with the informal definitions of transition priority
and history states in the UML documents.

Figure 8.1 shows the state machine metamodel which we consider initially. Notice
that Behavior inherits from Class, so particular kinds of behavior, such as state
machines or interactions, can have local (owned) attributes and can be instantiated
and specialized. We represent behavior instances by invocation instances (α, i) of
the semantic action α representing the behavior (described in Chapter 6): This is
reasonable since there is always only a finite number of such instances in any system
execution, so they can be enumerated in order of their creation.

In this model, Parameter also inherits from TypedElement and MultiplicityElement.
State machines can have entry actions to states, and state invariants. Behavior state
machine transitions are written with the syntax

s −→ev[G]/acts t

where s is the source state, t the target state, ev a trigger event (an operation call),
G a guard condition, and acts a list of actions objs.op(p) to be performed on supplier
objects or on the self object. Protocol transitions have a postcondition in place of the
actions. The trigger, guard, and actions/postcondition can all be omitted. The default
guard is true.

UML 2 Semantics and Applications. Edited by Kevin Lano
Copyright © 2009 John Wiley & Sons, Inc.
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FIGURE 8.1 Restricted state machine metamodel.

The following restrictions apply compared to UML 2 state machines:

• Only state machines that consist only of basic (noncomposite) states are used.
Concurrent composite states are not permitted except at the top level of the
system specification:

region → size() = 1

is an invariant of StateMachine in Figure 8.1.
• There are no pseudostates such as history states. Initial states are represented by

the isInitial attribute of State.
• If a state machine describes the behavior of objects of a class, all the triggers of

its transitions are call events of operations of this class:

specification→ isEmpty() implies
region.transition→ forAll(trigger→ size() = 1) and
region.transition.trigger.event→ forAll(oclIsTypeOf (CallEvent)) and
context.feature→ includesAll(region.transition.trigger.event.operation)
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FIGURE 8.2 Lift state machine.

Active classes can also have timeout triggers in their state machine.
• If a state machine describes the behavior of an operation, its transitions have

no triggers (they are triggered by completion events of their source states
[49, p. 570]):

specification → notEmpty() implies region.transition.trigger = Set{}

A simple example of a protocol state machine for a class could be that for a lift
(Figure 8.2).

8.2 STATE MACHINE SEMANTICS

We consider initially the metamodel of Figure 8.1. This incorporates both protocol
and behavior state machines, and also permits behavior state machines to have state
invariants, which is a generalization of UML behavior state machine notation. We
consider this to be useful because behavior state machines may describe algorithms,
and therefore state invariants are useful to define loop invariants or other intermediate
pre- and postconditions.

We define the semantics of protocol and behavior state machines for a class C by
incorporating their semantics into theories representing the class diagram semantics
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of C. This enables semantic checks of the consistency of state machine models
compared to the class diagram model.

The real-time action logic (RAL) formalism will be used as the underlying seman-
tics (described in Chapter 6). This provides an axiomatic semantics which defines
the obligatory properties of state machines while avoiding commitment to particular
mechanisms of event queuing/dequeuing [1] or specific orderings of transition actions
where UML does not enforce particular orders for these.

8.2.1 Protocol State Machines

In the case of a protocol state machine SC of C (Figure 8.3), the axioms are as follows:

• States. The set of states is represented as a new enumerated type StateSC , and
a new attribute c_state of this type is added to the instance theory IC of C.
The axiom

c_state ∈ StateSC

holds. Local attributes of the state machine (i.e., the ownedAttributes of the
Behavior modeling the state machine) are represented as attributes of IC .

• Initialization. We specify the initialization c_state := initialSC of this attribute
to the initial state of SC. This initialization is invoked by initC (“When an
instance of a behaviored classifier is created, its classifier behavior is invoked”
[49, p. 434]).

• Transitions. Each transition tr from a state src to a state trg, triggered by m(x),
with guard G and postcondition Post, is represented as an additional pre- or
postspecification of m [49, p. 535],

(c_state = src ∧ G′)

initial

m(x)[G]/[Post]

trg

src
SC

p(y)[G1]/[Post1]

FIGURE 8.3 Protocol state machine example.
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as an additional disjunct of the semantic representation of the precondition of
m(x), and

(c_state = src ∧ G′)@pre ⇒ (c_state = trg ∧ Post′)

as an additional conjunct of the postcondition. G′ is the semantic interpretation
of G, as in Chapter 6. Axiom (OpD) of Chapter 6 applies with these extended
conditions. The write frame of m is extended to include c_state and any attributes
or roles in a writable modality in Post. Only operations with at least one transition
in the state machine have c_state in their write frame—other operations are
assumed not to change the state [49, p. 536].

• StateInv. State invariants Invs have the semantics

existsC = TRUE ∧ c_state = s ⇒ Inv′s

An alternative modeling approach would be to use actions to represent individual
transitions [30].

In the UML documents there is an apparent inconsistency regarding the time at
which guards are evaluated: “the guard is evaluated before the transition is trig-
gered” [49, p. 571], “the [guard] expression is evaluated at the moment the transition
attached to the guard is attempted” [51, Sec. 12.11], and another, similar statement
[49, p. 568]. The latter corresponds correctly with the equivalence of transition guards
and preconditions (for protocol state machines) and with our semantic interpreta-
tion. In practical implementation, the guard may be evaluated before the transition
is selected and starts executing; however, its truth value should not change over this
interval.

8.2.2 Behavior State Machines

In the case of a behavior state machine SC of a class C, transitions have an action
that executes when the transition is taken, instead of a postcondition. The transition
actions acts are sequences

obj1.op1(e1); . . .; objn.opn(en)

of operation calls on supplier objects, sets of supplier objects, or on the self object.
These can be represented as composite actions acts′ in RAL:

obj′1.op1(e′1); . . .; obj′n.opn(e′n)

where obj′i and e′j are interpretations of these expressions in RAL. In addition to state
invariants, there may be entry actions to states.

The axiomatic representation of a behavior state machine is:

• States. The set of states is represented as a new enumerated type StateSC .
• Initialization. A new attribute c_state of this type is added to IC , together with

the initialization c_state := initialSC of this attribute to the initial state of SC.
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An entry action entryinitialSC coexecutes with this update, if specified. Local
attributes of the state machine are represented as attributes of IC .

• Transitions. The transitions ti, i : 1..k, from states srci to states trgi, triggered by
m(x), with guard Gi and actions actsi, are represented as an additional operational
specification Codem of m:

(BSCOpP) : α(x) ⊃ Codem

where Codem is the action

if (existsC = TRUE ∧ c_state = src1 ∧ G′1)
then acts′1; c_state := trg1

else if ....
else if (existsC = TRUE ∧ c_state = srck ∧ G′k)
then acts′k ; c_state := trgk

where α represents m, and any entry action of trgi is included at the end of the
actsi sequence.

If there is already an existing procedural definition Dm of m in the class
C, the complete definition of each case in the definition of m is D′m; acts′j;
c_state := trgj [49, p. 436]; we assume that an existing pre- or postspecification
should, however, always refer to the entire span of execution of m.

• Invariants. The axioms (StateInv).

The semantics defined here corresponds to the usual “run to completion” seman-
tics of UML state machines: a transition completes execution only when all of its
(synchronously) generated actions do so [49, p. 562].

A behavior state machine SC attached to an operation op defines an explicit
algorithm for op. It is formalized as follows:

• States. The set of states is represented as a new enumerated type StateSC .
• Initialization. A new attribute op_state of this type is added to IC as a local vari-

able of op, together with the initialization op_state := initialSC of this attribute
to the initial state of SC. Local attributes of the state machine are represented as
local variables of op.

• Transitions. The state machine yields the operational definition

(BSCOpM) : op(p) ⊃ pre existsC = TRUE then Codeop

where Codeop is

entry′initialSC
;

op_state := initialSC ;
while op_state �= terms1 ∧ . . . ∧

op_state �= termsm
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do
if op_state = src1 ∧ G′1
then

act′1; entry′trg1
; op_state := trg1;

else if ...
else if op_state = srck ∧ G′k
then

act′k ; entry′trgk
; op_state := trgk ;

where the termsi are all the terminal (final) states of SC (i.e., states with no
outgoing transitions), and the transitions of SC are src1→[G1]/act1 trg1 up to
srck →[Gk ]/actk trgk .

Entry actions of a state must complete before the state machine is considered
to enter the state properly (“Before commencing a run-to-completion step, a state
machine is in a stable state configuration with all entry . . . activities completed”
[49, p. 561]. An entry action will often be used to ensure that the state invariant
holds.

• Invariants. The loop invariant of the while loop above is

(op_state = s1 ⇒ Inv′s1
) ∧ · · · ∧ (op_state = sn ⇒ Inv′sn

)

where s1 to sn are all the states of SC. This expresses that the local data of the
particular execution instance of op is in a consistent state, satisfying a particular
state invariant, when no transition or entry action is occurring.

8.2.3 Semantic Profiles for State Machine Semantics

The UML semantics for protocol state machines does not specify whether transition
guards are preconditions (sufficient conditions for valid execution of the actions of the
transition and entering the target state) or are permission guards (necessary conditions
for the transition to take place). In addition, the meaning of an omitted transition for
an operation is left open: It may mean that execution of the operation in that case is
not permitted, is undefined in its effect, or has no effect.

Our semantics assumes only the minimal properties given in [49]:

1. If a logical case is missing for the transitions triggered by an operation, leaving
a particular state, the state machine gives no information about the effect of
executing the operation in that state, and such an execution may not be possible
[49, p. 534].

2. Operations that do not appear on the state machine are assumed to be state-
insensitive in their behavior, and not to modify the state [49, p. 536].

To express the concept of a guard as permission for an operation to execute, addi-
tional specification notation is needed. A clause guard : G could be added as a new
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form of constraint to an operation op(x : X). The clause would have the semantics

(OpG) : ∀x : X · ∀i : N1 · G′�↑(op(x), i)

Alternatively, we could define the disjunction G of guards of the transitions leaving
a particular state s and triggered by op as constituting a permission guard for op on
that state (similar to the semantics of op being deferred in that state):

(PreAsGuard) : ∀x : X · ∀i : N1 · (c_state = s ⇒ G′) �↑(op(x), i)

The third alternative is that the operation is a “skip” for these missing cases, as in
behavior state machines [49, p. 561] (SkipCase):

∀x : X · ∀i : N1 · (c_state = s ∧ ¬G′) �↑(op(x), i) ⇒ (c_state = s) �↓(op(x), i)

op is permitted to take place if G fails in state s, but then it does not change the state.
These three alternatives form three “semantic profiles” which are alternative exten-

sions of the basic semantics. Each constitutes possible extra notations and additional
axioms. Developers should indicate which semantics they are adopting and record
this together with the models.

8.3 EXTENDED STATE MACHINES

In this section we consider a larger subset of UML state machine notation, including
additional features of composite states, deferred events, compound transitions (mod-
eled semantically as transitions with sets of sources and targets), history states, and
final states. Figure 8.4 shows the metamodel for such extended behavior models. We
consider first, transitions with postconditions instead of actions, and do not consider
entry, exit, or do actions. In Section 8.6 we address these further aspects.

A basic state is a state with region→ size()= 0; other states are composite states.
A composite state with one region is termed an OR state, and a composite state with
more than one region is termed an AND state. The default initial state of an OR state
or region s is denoted initials.

In addition to the UML constraints on the metamodel:

1. We require that regions and OR states always have a unique initial pseudostate,
a unique default initial state, and at most one final state.

2. We require that default transitions from history states target a top-level substate
of the container of the history state. The target state cannot be a pseudostate.

3. Similarly, the default transition from an initial state must target a normal state
in the same composite state at the same level as the initial pseudostate.

The notation s& s′ means that s= s′ or s is a (recursive) substate of s′.
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FIGURE 8.4 Extended behavior metamodel.

Normally, if one region r of an AND state has a final state, so should all regions
of the AND state; otherwise, a completion event from the AND state can never be
triggered by reaching the final state of r.

8.4 SEMANTICS FOR EXTENDED STATE MACHINES

We extend the semantics given to flat state machines to state machines with OR and
AND composite states, compound transitions, and history and final states. For each
OR state s in the state machine, we define a state attribute states : States, where
States represents the set of normal states (including final states) contained directly
in s. Regions of an AND state are also represented by a type and an attribute in the
same manner (so must be named). Each such OR state/region has a default initial
state initials, and each states is initialized to this value. If a final state is present, it
is denoted by finals. If s has a history pseudostate as a direct substate, an attribute
lasts : States ∪ {unset} is also introduced, to record the last active top-level substate
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TABLE 8.1 State Predicate

State s State Predicate ϕs

Top-level state state= s
Region of AND-state p ϕp

Immediate substate of ϕr ∧ stater = s
OR state/region r

TABLE 8.2 Initial State Predicate

State s InitialStates

OR state, initials basic states= initials
OR state, initials composite states= initials ∧ InitialStateinitials

AND state conjunction of InitialStater for each region r of s

of s. This is initialized to the value unset to indicate that no state of s has been occupied
previously. When a final state of s is entered, this attribute is reinitialized to unset.
If the history state is a deep history, a lastss variable is defined for each state ss such
that ss& s.

The top-level states of the state machine itself are also represented by an attribute
state : State (corresponding to the c_state in Section 8.2.1 for state machines of a
class). For each state x in the state machine diagram, a predicate ϕx can be defined,
which expresses that x is part of the current state configuration of the state machine
(Table 8.1). A guard condition G of the form in s for a state s then has semantic
interpretation G′ as ϕs.

A predicate InitialStates expresses that the (recursive) initial state of s is occu-
pied (Table 8.2). Using these predicates, the state-changing behavior of transitions
can be expressed as pre- and postconditions. The enabling condition enc(tr, s) of a
transition tr

s →op[G]/Post t

from state s is ϕs ∧G′, conjoined with¬ (ϕss ∧G′1) for each different transition tr′
from a state ss, ss �= s, ss& s, for the same trigger event:

ss →op[G1]/Post′ tt

This expresses that tr is enabled only if higher-priority transitions for the same event
are not enabled.

The precondition for operation op derived from a transition tr triggered by op is
then the conjunction

enc(tr) = ∧s∈sources(tr) enc(tr, s)

of the enc(tr, s) for each explicit source s of tr.
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TABLE 8.3 Target State Predicate

State t Targettr

composite state InitialStatet

basic nonhistory state ϕt

shallow history state in OR-state/region p (lastp@pre= unset⇒ Targettr0 )∧
with direct substates (lastp@pre= s1⇒ Targettr1 )∧
{s1, . . . , sm} . . . ∧

(lastp@pre= sm⇒ Targettrm )
deep history state in OR-state/region p (lastp@pre= unset⇒ Targettr0 )∧

(lastp@pre �= unset⇒ LastStatep)
final state finalp Targettf

TABLE 8.4 Last State Predicate

State s LastStates

OR state, lasts basic states= lasts
OR state, lasts composite states= lasts ∧ LastStatelasts

AND state conjunction of LastStater for each region r of s

The enabling condition is a critical semantic aspect that can be defined in different
ways to produce different semantic profiles for state machines. We could use an
alternative definition enc′(tr), which is the conjunction of enc(tr, s) for each explicit
and implicit source s of tr. Implicit sources are those AND state regions that contain
no explicit source of tr but will be exited when it takes place.

For the postcondition, there are several cases. A predicate Targettr expresses which
state(s) are entered directly because of a transition tr with target t (Table 8.3).

In the third and fourth cases, tr0 is a transition identical to tr except that it is
targeted at the default history state of p. In the third case, tri is a transition identical to
tr except that its target is si, the substate of p equal to lastp. The difference between
shallow and deep history is that in the former, composite substates of the last active
state will be entered at their initial state, while with deep history they are entered at
their last active state, defined by the predicate LastStatep (Table 8.4). In the final case,
tf is a transition composed from tr followed by any completion-triggered transitions
triggered by reaching t, from p or (recursively) from superstates of p. For transitions
with multiple targets, the conjunction of the Target predicate for each target is taken.

In addition to the postcondition describing the direct target, the transition may also
cause other states to be reinitialized. After taking account of the effect of history and
final states, for each AND composite state x, if transition tr causes x to be entered,
then all the regions of x that do not contain an actual target of tr must be reinitialized.
This additional effect (which may apply to several AND compositions) is expressed
by a predicate ReInittr .

The complete postcondition of tr is the conjunction�tr of its explicit postcondition,
its target state predicate(s), and ReInittr . The axioms regarding states and initialization
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in Section 8.2.1 can therefore be restated using the stater variables for each OR
state and region r. The axiom dealing with transitions applies with the pre- and
postconditions derived from each transition as described above;

enc(tr)

is added as an additional disjunct of the semantic representation of the precondition
of op(x), for each transition tr triggered by op(x), and

enc(tr)@pre ⇒ �tr

is added as an additional conjunct of the postcondition. This definition allows several
transitions triggered by op to execute together, provided that they do not conflict.

The axiom StateInv in Section 8.2.1 holds in the form

ϕs ⇒ Invs

for each state s.
Other elements of UML state machine notation can also be given a semantics:

1. If event e is deferred in state s, which also has a set of explicit transitions
tri : si→e[Gi]/Posti ti for e, where si& s, this means that e cannot be consumed
unless one of these transitions is enabled:

∀i : N1 · (ϕs ⇒ enc(tr1) ∨ · · · ∨ enc(trn)) �↑(e, i)

This is in accordance with the semantics of UML superstructure version 2.1.1
[49], whereby substates that accept an event override superstates that defer it.

2. Internal transitions→e[G]/Post of state s are expressed as pre- and postconditions
of e with the form ϕs ∧G′ and (ϕs ∧G′)@pre⇒ϕs ∧Post′.

3. Timeout transitions src→ after(T ) trg are given a semantics by defining that they
are fired as soon as ϕsrc has been true for duration T :

duration(ϕsrc) ≥ T

where duration(P) is defined as

duration(P) � t = max({0} ∪ {x : TIME | ∀y : TIME · y ∈ [t − x, t] ⇒ P � y})
4. If an operation of class C has a method (behavior) with isReentrant= false, the

action α representing the operation cannot coexecute with itself:

#active(α) ≤ 1

is an axiom of IC .

The semantic definition for behavior state machines is similar except that we define
the sequence of actions executed by a transition in addition to the target state predicate
(Section 8.6).
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8.5 SOLUTIONS FOR SEMANTIC PROBLEMS

Many of the semantic problems identified by Fecher et al. [7] remain in the UML
2 state machine notation definitions [49]. In particular, the definitions of transition
priority have not been improved and remain ambiguous: “The priority of joined
transitions is based on the priority of the transition with the most transitively nested
source state” [49, p. 562]. Page 563 of [49] gives an algorithm for calculating the
fired set of transitions when an event occurs involves starting from “innermost nested
simple states” [49, p. 563], but it does not resolve cases such as Figure 8.5. We assume
that all the transitions are triggered by the same event and have true guards.

Our semantics defines solutions to the problems of ambiguity and imprecision
of UML identified by Fecher et al. [7] for transition priority and history states. For
priority the semantics implies that a transition t has priority over another t′ in state s
if t is enabled in this state and t′ is not.

For history states, the semantics means that the history of an OR state/region is
always unset by entering a final state [49, p. 551], and that this history is independent
of the history of any other state in the model.

8.5.1 Transition Priorities

We define that transition t has priority over transition t′ (which has the same trigger)
in a state s if

ϕs =⇒ enc(t) ∧ ¬ enc(t′)

In the example of Figure 8.5, we have

enc(t0) ≡ stater1 = s1 ∧ states1 = ss1

enc(t1) ≡ stater1 = s1 ∧ states1 �= ss1 ∧ stater2 = s2 ∧ states2 �= ss2
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enc(t2) ≡ stater3 = s3 ∧ states3 = ss3 ∧ statess3 = sss3 ∧
statesss3 = ssss3 ∧ stater4 = s4 ∧ states4 �= ss4

enc(t3) ≡ stater3 = s3 ∧ states3 = ss3 ∧ statess3 = sss3 ∧
statesss3 �= ssss3 ∧ stater4 = s4 ∧ states4 = ss4

enc(t4) ≡ stater2 = s2 ∧ states2 �= ss2

enc(t5) ≡ stater2 = s2 ∧ states2 = ss2 ∧ stater3 = s3 ∧ states3 �= ss3

enc(t6) ≡ stater3 = s3 ∧ states3 = ss3 ∧ statess3 �= sss3

This means that when no clear highest-priority transition exists from a particular
state combination, such as s0, ss2, ssss3 and ss4, no transition is enabled.

Nondeterminism remains possible in UML state machines, in the cases:

1. Two transitions with the same priority can be enabled at the same time from
the same state (e.g., t0 and t4 and t6 are all enabled in the states ss1, s2, ss3,
and x4).

2. The order of entry actions to orthogonal regions, exit actions from orthogonal
regions, and actions on transitions executed in orthogonal regions as part of the
same event reaction are undefined [49, p.551].

3. The choice of enabled transitions exiting a choice point is not defined
[49, p. 538].

The first indicates a potential inconsistency in a state machine model and should
be eliminated: It can be checked statically, since the enabling conditions (omitting
transition guards) consist only of equalities and inequalities over finite sets. The
second can be modeled using the parallel execution operator ‖. The third indicates
an ambiguous model, which should be made unambiguous by refining the conditions
concerned.

If we take the stronger definition of enabling, enc′, from Section 8.4, then many
cases of transitions that conflict under the enc definition no longer conflict. t0, for
example, has the implicit source r2, which is disabled if t4 is enabled. However, this
definition is further from the visual representation, since it requires determination of
the (possibly nonobvious) implicit sources of transitions.

8.5.2 History States

There is some ambiguity in the UML documents regarding the meaning of history
states. Consider the statement “deepHistory represents the most recent active config-
uration of the composite state that directly contains this pseudostate (e.g., the state
configuration that was active when the composite state was last exited)” [49, p. 537].
This suggests a semantics where “most recent active” means “the state from which
the composite state was last exited.” But the document says, instead, that deep history
can be defined even if no exit from the composite state has taken place [49, p. 543].
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FIGURE 8.6 Example of history states.

We assume that “most recent active” means “most recently active before the transition
to the history state,” regardless of whether the transition came from inside or outside
the composite state.

Our semantics also resolves the problems of history states described by Fecher
et al. [7]. Figure 8.6 illustrates the problems identified by these authors.

The problems are:

1. It is not clear if default transitions from history states must go to normal states
(not pseudostates or final states). We have enforced this restriction.

2. The notion of “last active” state is ambiguous; it is not clear if this can include
final states of composite states (see Table 8.7). We enforce that final states
cannot be considered as being last active states; instead, entry to a final state
resets the record of the last active state in the composite state. The reason for
this decision is that we consider final states have meaning only as a signal that
the containing state has completed its activity.

3. Do history states of nested states affect deep history entry to these states? We
prescribe that they do not, only the last active states of these states determine
the target of a deep history entry to a state already visited (see Table 8.5).

4. Does the reset of the last active state in a composite state p on entry to p’s final
state also reset the records of last active state in its substates? We prescribe that
it does not, the reset only applies to p (see Table 8.6).

Tables 8.5 to 8.7 illustrate the effect of our semantics in some scenarios of
Figure 8.6. We assume that all transitions have different triggers and that only t8
has a completion event trigger.
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TABLE 8.5 History Example 1

Transition New State New Value of last2 New Value of last4

t0 1 unset unset
t3 2, 4, 6 4 6
t5 1 4 6
t2 2, 4, 5 4 5
t7 2, 3 3 5
t6 2, 3 3 5

TABLE 8.6 History Example 2

Transition New State New Value of last2 New Value of last4

t0 1 unset unset
t2 2, 4, 5 4 5
t10 2, final2 unset 5
t5 1 unset 5
t4 2, 4, 5 4 5

TABLE 8.7 History Example 3

Transition New State New Value of last2 New Value of last4

t0 1 unset unset
t2 2, 4, 5 4 5
t9 2, final2 unset unset
t5 1 unset unset
t1 2, 4, 6 4 6

8.6 STRUCTURED BEHAVIOR STATE MACHINES

In this section we consider transitions with actions as well as entry, exit, and do actions
for states. The semantics for structured behavior state machines defines the sequence
of actions caused by the firing of a transition, in addition to the target state predicate.
In general, these actions are all the actions caused by exiting the source state(s),
followed by explicit actions on the transition, followed by the actions caused by
entering the target state(s) [49, p. 527], although page 548 of the document seems to
contradict this by instead stating that exit actions are executed after transition actions,
however.

Transitions may consist of multiple segments joined by pseudostates such as join,
fork, and choice. Only one trigger is allowed on such a compound transition, although
multiple guard conditions and actions may exist along it. We represent such transitions
as single transitions with possibly multiple sources and targets. Two sources of a
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transition cannot be related by &, and their closest common containing state/region
must be an AND state, and similarly for target states. A fork with incoming action
act and outgoing actions act1 upto actn is considered to have combined action

act; (act1‖ · · · ‖actn)

(Figure 8.7), and similarly for joins. A dynamic choice point is simply represented
by a new basic state. Static choice points require the creation of new transitions, one
for each path starting from the choice point. The condition for this path is added to
the condition of the resulting transition.

Although UML state machines do not have an explicit notion of “microstep” as in
other statechart formalisms [2], the definition of transition execution in UML super-
structure 2.1.1 [49, pp. 562, 572] suggests that individual steps within a compound
transition do indeed constitute microsteps. In Figure 8.8, the system, if started in
states s1 and s3, will execute op2 and then op3 in two steps in response to a request
for op1, so that the successive actions

op1(); exits1; op2(); exits3; entrys4; op3(); exits4; entrys5; entrys2

take place.
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FIGURE 8.9 Complex completion transitions.

The existence of microsteps implies that transitions may fail in some intermediate
state (e.g., if op3 above were blocked, the overall transition would be unable to
proceed).

In the case of a sequence of completion transitions (e.g., Figure 8.9) it is not clear
that all the actions on these should be postponed until all the exit actions of the exited
states have been performed [49, p. 572]; however, we will assume that this is the case.
Hence, in this example, execution of the two e-triggered transitions in the same step
leads from the state configuration {s3, s2, s1, s4} to the configuration {finalr1, s5}, and
the sequence

((exit′s3; exit′s2; exit′s1)‖exit′s4); ((act1′; act2′; act3′)‖ act′4); entry′s5

of actions is performed as a result of this behavior.
Table 8.3 is used to compute the actual target state(s) in the case that history

states or completion transitions are involved in a transition behavior. The sequence
of actions resulting in such cases is given by sequential composition of the actions
on each individual transition when these are ordered sequentially. For transitions that
execute in two different regions of the same AND state, their actions are combined
by parallel composition.

A transition tr causes a state or region s to be entered (explicitly) if tr has s as
an explicit target, or it has a target contained in s, and some source not contained in
or equal to s. It causes a region r of an AND state p to be entered implicitly (at its
initial state) if p or another region of p is entered explicitly because of tr and there is
no explicit target of tr in r. When an OR state s is entered, its initial state is entered
implicitly unless there is an explicit target of tr within s. Internal transitions of a state
do not cause any state entry or exit.
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TABLE 8.8 Entry Actions for a Transition

State s Entry Actions Entrys,tr

Basic state entry′s
OR state/region: entry′s; Entrytrg,tr

one direct substate trg
is explicitly entered

OR state/region: entry′s; init′s; Entryinitials ,tr

implicitly entered
or explicit target

AND state entry′s; (Entryr1,tr || · · · ||Entryrn,tr)
with regions
r1, …, rn

TABLE 8.9 Exit Actions for a Transition

State s Exit Actions Exits,tr

Basic state exit′s
OR state/region exited: Exitsrc,tr ; exit′s

one direct substate src
is exited explicitly

Region exited implicitly Exitstates ,tr ; exit′s
OR state; some target Exitstates ,tr ; exit′s

is not& s
AND state (Exitr1,tr || . . . ||Exitrn,tr); exit′s

with regions
r1, …, rn

Table 8.8 defines the complete semantic action executed when a state s is entered
(having first taken into account the effects of history states and completion transitions,
as described in Table 8.3). inits is the action on the default initial transition of s, in
the third case (see [49, p. 551]). The parallel combinator ‖ is used in this definition
because UML 2 does not prescribe any relative ordering of the combined actions
[49, p. 551].

A transition with a source in one region of an AND state and a target in a different
region causes the AND state to be exited and entered. A transition tr causes a region r
of an AND state p to be implicitly exited (from its current state, stater) if p or another
region of p is exited because of tr and there is no explicit source of tr in r. An OR
state s will be exited if there is a tr source equal to s or within s and a target outside
s. If an OR state p is a source of tr, the currently occupied substate statep of p will be
exited unless all targets of tr are contained in or equal to this substate. p is not exited
if all targets of tr are contained in p [49, p. 570]. An external self-transition on a state
(drawn outside the state boundary) causes exit and entry of the state.

Table 8.9 defines of the complete action executed when a state s is exited. The
definitions of main source and main target of a transition given in UML superstructure



198 AXIOMATIC SEMANTICS OF STATE MACHINES

2.1.1 [49, p. 571] are used: The main source of a transition is a maximal state that is
exited because of the transition, and the main target is a maximal state that is entered
because of the transition. In the case of transitions between regions of the same AND
state p, the main source and target are both p: Exit and entry of the complete AND
state is carried out.

The following axiom on transitions defines the behavior of an operation resulting
from all the transitions for it. We assume that the operations invoked from these
transitions do not trigger any transition that conflicts with any of these transitions; that
is, these operations can only trigger events in regions orthogonal to all the transitions
triggered by the original operation call, as in the example of Figure 8.8.

If the transitions triggered by op(x) are tri, i : 1..k, with actions actsi, the behavior
of op(x) is defined as a composite action Codeop:

‖j:1..k(if enc(trj) then Exitj; acts′j; Entryj)

where each of the Exitj is an exit action Exitmsj ,trj from the main source msj of trj

(Table 8.9), and Entryj, entry action Entrymtj ,trj to the main target mtj of trj (Table 8.8).
This definition chooses a maximal set of enabled transitions to execute at each step

[49, p. 563]. If no transition is enabled, a skip is performed (in accordance with the
UML semantics of behavior state machines [49, p. 561]).

If we know that the enc(trj) are mutually exclusive, this can be simplified to

if enc(tr1)
then Exit′1; acts′1; Entry′1
else if ....
else if enc(trk)
then Exit′k ; acts′k ; Entry′k

because (if E1 then C1) ‖ (if E2 then C2) is equivalent to

if E1 ∧ E2 then C1 ‖ C2 else (if E1 then C1 else if E2 then C2)

For each transition tr triggered by an operation op(x), the pre- and postbehavior
due to tr is

∀i : N1 · enc(tr) � ↑(op(x), i) =⇒ �tr � ↓(op(x), i)

The complexity of the exit and entry definitions suggests that some simplification
of UML state machine notation should be made. Figure 8.10 illustrates some of the
situations that may arise.

In example (a), the transition does not exit s, so its main source is s1. s is entered,
at its initial state, however, so the main target is s.

In example (b), the actual source of the local transition tr is states, the current
state of s, so this is the main source (assuming that it is not s1). s itself is not exited
(according to [49, pp. 570 and 577]). s1 is entered, so it is the main target.
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FIGURE 8.10 Complex entry and exit.

A self-transition that exits and enters a state must be drawn on the outside of the
state boundary.

In example (c), transitions t0 and t2 both have main source and target p. For t1 the
main source is p, the main target is q.

We also need to define the effect of do-actions. These can execute only while their
state is occupied:

#active(do′s) > 0 =⇒ ϕs

and they initiate execution at the point where their state is entered [49, p. 548]:

∀i : N1 · ↑(do′s, i) = ♣(ϕs := true, i)

Axiom (StateInv) holds in the form

ϕs =⇒ Inv′s

for each state s.
The semantics of behavior state machines attached to operations is generalized to

structured state machines in the same way.
The semantics above can be used to give meaning to models that extend the UML

2 standard (e.g., where there are transitions that cross from one region of an AND
state to another [49, p. 572]).



200 AXIOMATIC SEMANTICS OF STATE MACHINES

8.7 RELATED WORK

Many approaches to defining the semantics of UML state machines use flattening to
reduce a state machine with composite states and features such as history states to
simple finite state machines in which there are only noncomposite states and simple
(single source, single target) transitions without pseudostates [4,42]. The problem
with this approach is that the structure of the original model will be lost and the
number of states and transitions to be considered may increase significantly.

Different flattening schemes can give different resolutions to the issues raised by
Fecher et al. [7]; however, the precise definition of aspects such as transition priority
can be difficult to extract from the scheme. In our semantics, the structure of the
model is not modified and a semantics is assigned directly to this model.

As far as possible, our semantics represents the meaning of state machines in
notations that are close to UML class diagram and OCL notations. The semantics
may therefore be more accessible to UML users than semantics that use external
formalisms such as Petri nets [42] or term algebras [39].An axiomatic semantics is also
well suited for use with logic-based semantic analysis tools such as B. Compared to
Lilius and Paltor [39], we do not represent sync states, however, we can express the
semantics of time-triggered transitions using the RAL formalism [35], extending the
work of Lilius and Paltor.

The approach by Le et al. [59] is close to ours, but translates directly into B
from statecharts instead of utilizing an underlying axiomatic semantics. Elements of
UML state machine notation, such as time triggers, which require a temporal logic
semantics, are not handled by this approach.

8.8 SUMMARY

We have given an axiomatic semantics for state machines based on the informal
UML semantics. Areas where the informal semantics are unclear or ambiguous have
been resolved, and precise “semantic profiles” have been given to the three semantic
variations permitted in UML, for the case in which no transition exists from a state
for a given trigger event that may occur in that state.
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9.1 INTRODUCTION

UML interactions describe possible message exchanges between system instances.
The UML 2 [45] offers a powerful interaction language, which, besides integrating
such standard operations as sequential, parallel, and iterative composition of inter-
actions, provides means to specify recursive and negative behavior (i.e., behavior
forbidden in system implementations).

The current UML 2 language for interactions is a complete overhaul of the interac-
tion language of earlier versions. The UML 1 dialect was, on the one hand, based on the
interaction diagrams of OOSE’s [31], on the abstract, visual programming languages
used by Fusion [13] and Syntropy [15], and also on ITU’s message sequence charts
(MSCs [30]). On the other hand, in the form of collaborations, it was also enriched
with notions from role modeling in OORam [2]. Quite some effort has been spent
on providing UML 1 sequence and collaboration diagrams with a formal semantics
(see, e.g., [19,21,34,47]), thus making them amenable for use in formally based soft-
ware development. However, it was realized that the language showed some defects
in expressivity for more complex software engineering purposes, in particular with
respect to modular modeling, describing alternatives, and combining interactions in
different ways.

The UML 2 interaction language countered the deficiencies in expressivity of
its previous version by incorporating and adapting many constructs of MSCs [30].
Additionally, means were introduced for distinguishing behavior that an implement-
ing system should show and behavior that the system must not show, which was
inspired by live sequence charts (LSCs [16]) and from software testing notions
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and notations [54]. The increase in expressivity, and also in complexity, of the
UML 2 interaction language spurred new efforts in providing it with a formal seman-
tics [12,20,23,36,39,40,43,49,50]. In particular, the division of behaviors into being
positive or valid for a system, negative or invalid, and finally, being inconclusive if it is
neither positive nor negative, has received much attention. All these types of behavior
are described by a single interaction, but it has not been clear how the different types
are to be combined and how they interact [12,36,49].

In the present chapter we provide and discuss the formal semantics for UML 2
interactions following the UML specification [45] as closely as possible and also inte-
grating the existing research results on the semantics of interactions. First, an
interleaved, trace-based, denotational semantics is detailed which is built in several
steps. The presentation starts from simple, basic interactions that are similar to what
was present in UML 1. It is then extended by considering different message types,
executions, combinations of interactions, and constraints. Finally, high-level interac-
tions are integrated. A discussion of some alternative proposals to a formal semantics
follows. In particular, an operational approach and a truly concurrent approach with
event structures are considered. UML 2 interactions are related briefly with MSCs
and LSCs. Finally, an overview of some notions of implementation and refinement
of interactions and their role in verification and animation are given.

9.2 TRACE-BASED SEMANTICS

A trace-based formal semantics for UML 2 interactions is developed. According to
the UML 2 specification document, an interaction describes valid (or positive) and
invalid (or negative) traces of event occurrences. The union of the two sets of valid and
invalid traces need not cover the entire universe of traces. A trace that is neither valid
nor invalid for an interaction is said to be inconclusive for the interaction. Moreover,
the semantics that we propose allows traces that are both valid and invalid for the
same interaction. Hence, our semantics is based on a four-valued logic.

In developing the semantics, we proceed in a step-by-step manner, beginning with
the core language constructs for describing basic interactions and then moving on
to different communication types, combined fragments (including negation), con-
straints, and high-level interactions. For a start, however, in the following subsection
we give a brief review of some mathematical concepts necessary to define appropriate
semantic domains.

9.2.1 Pomsets

The formal semantics that we propose for UML 2 interactions employs partially
ordered, labeled multisets which were introduced by Pratt [48] for modeling
concurrency.

A labeled partial order (abbreviated lpo) (X ,≤X , λX ) consists of a set X, a partial
order ≤X on X (i.e., a relation on X that is reflexive, antisymmetric, and transitive),
and a labeling function λX on X . An isomorphism between two lpos (X,≤X , λX )
and (Y ,≤Y , λY ) is a one-to-one mapping ϕ from X onto Y which is monotonic with
respect to ≤X and ≤Y , whose inverse mapping is also monotonic and which is label
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preserving [i.e., λX (x)= λY (ϕ(x)) for all x ∈X]. A partially ordered, labeled multiset,
or pomset is the isomorphism class of an lpo, denoted [(X,≤X , λX )].

A pomset p is said to be finite if for some (and hence, for all) (X,≤X , λX )∈ p the
basic set X is finite. A pomset p= [(X ,≤X , λX )] is said to be finitary if for all x ∈X
the set {x′ ∈X | x′ ≤X x} is finite. A pomset p is said to be linear or a trace if for some
(X,≤X , λX )∈ p the ordering ≤X is total on X . Let <> be a binary, symmetric relation
on labels. A pomset p= [(X ,≤X , λX )] is said to be <>-linear if it holds that ∀x1, x2 ∈X.
λX (x1) <> λX (x2) ⇒ x1 ≤X x2 ∨ x2 ≤X x1. A pomset q is said to be an extension of
a pomset p if there are two representatives (X ,≤X , λX )∈ p and (Y ,≤Y , λY ) ∈ q such
that X = Y and ≤X ⊆≤Y and λX = λY . A pomset q is said to be a linearization of
a pomset p if q is a linear extension of p. A pomset q is said to be a <>-linearization
of a pomset p if q is a <>-linear extension of p. The set of all linearizations or
<>-linearizations of p is denoted by p↓ and p<>↓, respectively. A function f that maps
labels to labels is lifted to pomsets by defining f ([(X,≤X , λX )])= [(X,≤X , f ◦ λX )].
Given a pomset p= [(X ,≤X , λX )] and a Boolean predicate π on labels, we define
the restriction of p with respect to π by p�π= [(X ′,≤X ∩ (X ′ ×X ′), λX�X ′)] with
X ′ = {x ∈ X|π(λX (x))}.

The empty pomset, represented by (Ø, Ø, Ø), is denoted by ε. Let p= [(X,≤X , λX )]
and q= [(Y ,≤Y , λY )] be pomsets such that X ∩ Y =Ø. The concurrence of p and q,
written as p ‖ q, is given by [(X ∪ Y ,≤X ∪≤Y , λX ∪ λY )]. The concatenation of p
and q, written as p ; q, is given by [(X ∪ Y ,≤X ∪≤Y ∪ (X × Y ), λX ∪ λY )]. Given a
binary, symmetric relation <> on labels, the <>-concatenation of p and q, written as p;<>
q, is given by [(X ∪ Y , (≤X ∪≤Y ∪ {(x, y)∈X × Y | λX (x) <> λY (y)})∗, λX ∪ λY )]. It is
easy to ascertain that these definitions do not depend on the choice of representatives.
Note that concatenation and <>-concatenation are associative, and concurrence is
associative and commutative.

A process is a set of pomsets. An n-ary function f that maps pomsets to pomsets
is lifted to processes P1, . . . , Pn by defining

f (P1, . . . , Pn)={f (p1, . . . , pn)|p1 ∈P1, . . . , pn ∈Pn}

(e.g., P1 <> P2={p1 <> p2|p1 ∈P1 ∧ p2 ∈P2}). For an n-ary function f that maps
pomsets to processes, the image elements of the lifting of f are “flat-
tened” [i.e., f (P1, . . . , Pn)= ⋃{f (p1, . . . , pn)|p1 ∈P1, . . . , pn ∈Pn}]. For instance,
P↓= ⋃{p↓|p∈P}. Furthermore, we define the n-fold <>-iteration of a process P,
written P(n), as follows: P(0)={ε} and P(n+1)=P <> P(n).

9.2.2 Core Language

9.2.2.1 Basic Interactions The sample basic interaction ex1 in Figure 9.1(a)
specifies two instances x and y, which exchange messages a and b. The dispatch of a
message (depicted by the arrow tail) and the arrival of a message (arrowhead) on the
lifeline of an instance (dashed line) are called event occurrences or, more precisely,
message event occurrences. The pictorial representation of a basic interaction carries
the intuitive meaning of a partially ordered set of event occurrences: The dispatch of
a message occurs before the arrival of the same message, and the event occurrences
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FIGURE 9.1 Basic interaction diagram (a), with labeled event occurrences (b), with an
additional general ordering (c), and with lost and found messages (d).

on the lifeline of an instance are ordered from top to bottom. Thus, if we symbolize
the dispatch of a from x by 1, the arrival of a at y by 2, the dispatch of b from x by 3,
and the arrival of b at y by 4 [see Figure 9.1(b)], the interaction ex1 defines two valid
traces: 1234 and 1324. All other traces are inconclusive for this interaction.

Additional ordering relations between event occurrences can be specified by means
of general orderings. Interaction ex2, shown in Figure 9.1(c), is essentially equal to
interaction ex1, except that a general ordering is added (depicted by a dotted line with
an arrowhead placed somewhere in the middle of the dotted line). The general ordering
in ex2 specifies that the arrival of message a has to occur before the dispatch of message
b. Hence, only the trace 1234 remains valid for interaction ex2, whereas the trace 1324
is inconclusive. Finally, messages can get lost (depicted by a small black circle at the
arrow end of the lost message) and messages can also be found (depicted by a small
black circle at the arrow tail of the found message) [see Figure 9.1(d)]. We interpret
a found message as a message whose origin lies outside the scope of the description.

9.2.2.2 Metamodel Figure 9.2 shows the fragment of the UML 2 metamodel that
comprises the core language constructs for describing basic interactions. Metaclass
Interaction is a subclass both of Behavior (from BasicBehaviors) and of Interaction-
Fragment, the latter being an abstract notion of the most general interaction unit.
An Interaction owns a set of Lifelines, a set of Messages, and an ordered set of
InteractionFragments.

A Lifeline represents a system instance which participates in the Interaction.
The mechanism by means of which these system instances are specified is not
self-explanatory because it is interwoven with the concept of the context clas-
sifier of the Interaction (see BasicBehaviors::Behavior::context). Syntactically, a
Lifeline references an instance of a concrete subclass of ConnectableElement (from
InternalStructures). There are two such concrete subclasses specified in the package
CompositeStructures, namely Property and Port. We discuss only the former here:
A Property (from InternalStructures) is a specification of a set S of instances that
are owned by a containing classifier instance. In the simplest case, this “contain-
ing classifier” coincides with the context classifier of the Interaction. If the Property
concerned is multivalued (i.e., S may contain more than one instance), the Lifeline
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FIGURE 9.2 Fragment of the UML 2 metamodel that comprises the core language constructs
for describing basic interactions.

may have an expression (the selector) that specifies which particular instance of S
is represented by the Lifeline. If the selector is omitted, this means that an arbitrary
representative of the multivalued Property is chosen. As already mentioned, Lifelines
are depicted by vertical dashed lines. The left Lifeline of Interaction ex1, for instance,
references a nonmultivalued Property named x which is typed by a Class named X;
see Figure 9.1(a).

A Message defines a particular communication between Lifelines of an Interaction.
A Message may, and usually does, associate two MessageEnds that are referenced
by sendEvent and receiveEvent. A MessageEnd can either be a MessageOccur-
renceSpecification or a Gate. The former specifies a message event occurrence, as
mentioned above; Gates are dealt with in Sections 9.2.4 and 9.2.6. Message has
a derived attribute messageKind whose value (complete, lost, found, or unknown)
depends on the presence or absence of the MessageEnds. If both MessageEnds are
present, messageKind is complete [see, e.g., message a in Figure 9.1(a)]. If only
sendEvent or only receiveEvent is present, messageKind has the values lost and
found, respectively [see message a (first dispatch) and message c in Figure 9.1(d),
respectively]. If both MessageEnds are absent, which preferably should not occur,
then messageKind is unknown. Message has also a second attribute called mes-
sageSort, which specifies the type of communication action used to generate the
message. The present section deals with asynchronous communication only (i.e., mes-
sageSort is asynchCall or asynchSignal); synchronous communication is treated in
Section 9.2.3. A Message may specify a Connector on which the Message is sent. If
both MessageEnds of a Message are specified as MessageOccurrenceSpecifications,
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the Connector must link the ConnectableElements represented by the Lifelines that
are covered by the two MessageEnds.

An InteractionFragment is an abstract notion of the most general interaction unit.
InteractionFragment is the root class of a composite pattern (see Section 9.2.4)
and has several direct subclasses. For the time being we are interested in basic
interactions;1 thus, Figure 9.2 shows only two of the direct subclasses of Interac-
tionFragment: namely, OccurrenceSpecification and Interaction. The former is an
abstract2 class that specifies the occurrence of an Event. An OccurrenceSpecifica-
tion covers (lies on) exactly one Lifeline, which represents the instance where the
specified event is to occur. The order of OccurrenceSpecifications along a Lifeline is
“significant, denoting the order in which these OccurrenceSpecifications will occur”
[45, p. 491].3

As mentioned above, the semantics of Interactions is based on traces. A trace is
a sequence of event occurrences. In general, the semantics of an Interaction or an
InteractionFragment is given by a pair of sets of traces: namely, a set of valid (or
positive) traces and a set of invalid (or negative) traces. However, negative traces
are associated only with the use of negative CombinedFragments (see Section 9.2.4).
In this section as well as in Section 9.2.3, the semantics of interactions are given
solely by a set of positive traces P because the set of negative traces is always
empty.

The UML specification document [45, p. 497] describes the semantics of an
OccurrenceSpecification to be “just the trace of that single OccurrenceSpecification,”
thereby identifying an event that occurs in a (semantic) trace with its specifying (syn-
tactic) OccurrenceSpecification. Although this identification is a legitimate approach,
we prefer to consider an OccurrenceSpecification o as a syntactic unit which specifies
(an occurrence of) a semantic event e, although this “event” is not only given by the
Event that is referenced by o but also contains information about the role that o plays
in the interaction, in particular, which Lifeline l is covered by o. Actually, e contains
the same information as o. Bearing this in mind, we declare that an OccurrenceSpec-
ification has only one trace, which consists of only one occurrence of the event e that
is specified by the OccurrenceSpecification (i.e., P={e}).

1 A basic interaction is defined as an Interaction that does not own CombinedFragments. For the purposes
of this section, however, a basic interaction is simply an Interaction whose constituent InteractionFragments
are all OccurrenceSpecifications.
2 Three class diagrams of the UML specification document [45] (the diagrams on pp. 460, 461, and 462)
treat OccurrenceSpecification as an abstract class. In contrast, the class diagram (p. 463) as well as the
specification text treat OccurrenceSpecification as a concrete class. We have decided to regard the metaclass
OccurrenceSpecification as abstract.
3 The authors of the present chapter are not absolutely certain of the necessity of the order designator
at the nonnavigable end of the association between OccurrenceSpecification and Lifeline (see Figure 9.2).
In our opinion, the order designator is redundant because the order of OccurrenceSpecifications along
a Lifeline is completely specified by weak sequencing of the InteractionFragments that are owned by an
Interaction.
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The semantics of a basic interaction is specified as follows: Let I be an Interaction
that owns pairwise distinct4 OccurrenceSpecifications o1, . . . , on (in this order) with
positive trace sets {e1}, . . . , {en}, respectively. A binary, temporal relation → on
O={oi|i= 1, . . . , n} is defined such that for all i, j ∈ {1, . . . , n}, oi → oj if, and only
if, at least one of the following conditions is satisfied:

1. oi and oj are referenced by a Message (with messageKind= complete) via
sendEvent and receiveEvent, respectively.

2. oi and oj are referenced by a GeneralOrdering via before and after, respectively.

3. oi and oj cover the same Lifeline and i < j (i.e., oi lies above oj).

The semantics of I can then be specified as the set of all traces eπ−1(1)ėπ−1(n) with
a permutation π on {1, . . . , n} such that for all i, j ∈ {1, . . . , n}, oi → oj implies that
π(i) < π( j). Quite evidently, such a permutation π can exist only if (O,→) is a directed
acyclic graph, with emphasis on acyclic. Calling (O,→) the specification graph of
basic interaction I , we end up with the following constraint: The specification graph
of a basic interaction must not have (directed) cycles.5

9.2.2.3 Example By instantiating the metamodel, we obtain the instance dia-
gram in Figure 9.3, which is (a part of) the abstract syntax of the basic interaction ex1
in Figure 9.1(a). For reasons of readability, the model elements for message b are
omitted. We assume that the collaboration C in Figure 9.4(a) underlies6 the interac-
tion ex1. Furthermore, we assume that the connector named “channel,” which is part
of C, is typed with association A of the class diagram in Figure 9.4(b).

9.2.2.4 Semantics We define a formal semantics of basic interactions by first
mapping the metamodel in Figure 9.2 to an appropriate domain of pomsets and then
defining valid traces as linearizations of these pomsets. For this purpose we assume

4 In terms of object identity.
5 Note that this constraint, albeit necessary, is not specified by the UML specification document. However,
the idea of this constraint underlies several passages in the specification text, such as the following notation
instruction: “A message is shown as a line from the sender message end to the receiver message end. The
line must be such that every line fragment is either horizontal or downwards when traversed from send
event to receive event” [45, p. 493].
6 An Interaction is an emergent behavior. Emergent behavior results from the interaction of one or more
participant objects. If the participating objects are parts of a larger composite object, an emerging behavior
can be seen as indirectly describing the behavior of the container object also (cf. [45, p. 419]). In this case,
the container object serves as a (pseudo-)execution context of the emergent behavior. The question arises
from which metaclass a container object has to be selected if it is supposed to serve as a pseudoexecution
context of an interaction of system instances contained in the container object. Since the object has to be
referenced by Behavior::context it has to be selected as a BehavioredClassifier (from BasicBehaviors) Since
the object contains system instances that are represented by ConnectableElements, it has to be selected as a
StructuredClassifier (from InternalStructures). Consequently, the object must be an instance of a metaclass
which is a specialization of both BehavioredClassifier and StructuredClassifier. Metaclass Collaboration
(from Collaborations) meets these requirements.
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x:X
channel

y:Y

C

(a) (b)

Y0..10..1X
A myYmyX

FIGURE 9.4 Underlying Collaboration C (a) of interaction ex1 and a class diagram (b)
containing an association A for the purpose of typing the Connector “channel” in C and in
Figure 9.3.

two primitive domains for instances I and messages M. Metavariables s, r, l range
over I and m ranges over M. Using ŝ, r̂ ∈ Î ::= l | −, the domain of (message) events
E is defined as follows:

e ∈ E ::= snd(s, r̂, m)
| rcv(ŝ, r, m)

An event of the form snd(s, r, m) or rcv(s, r, m) represents the dispatch and arrival
of a message m (with messageKind= complete) from sender instance s to receiver
instance r, respectively. An event of the form snd(s,−, m) represents the dispatch
of a message m (with messageKind= lost) from sender instance s. An event of the
form rcv(−, r, m) represents the arrival of a message m (with messageKind= found)
at receiver instance r. We define:

α : E −→ ℘(I) μ : E −→ M

α(snd(s, r̂, m)) = {s} μ(snd(s, r̂, m)) = m

α(rcv(ŝ, r, m)) = {r} μ(rcv(ŝ, r, m)) = m

If α(e)={l}, the instance l is said to be active for event e. Since we identify instances
with their representing lifelines, we call α the lifeline function. If instance l is active
for event e, we also say that e lies on lifeline l. We define a binary, symmetric conflict
relation <> ⊆ E×E as follows: e1 <> e2 if, and only if, α(e1)∩α(e2) �=Ø. Hence, two
events are in conflict if, and only if, they lie on the same lifeline.

The domain D comprises all finitary pomsets [(O,≤O, λO)] such that ran (λO)⊆E,
with ran (λO) denoting the range of λO. An element o∈O of the basic set
of a representative (O,≤O, λO) of a pomset p∈D denotes an occurrence of
event λO(o). A pomset p∈D is said to be locally linear if it is <>-linear. We define
P={p∈D | p is locally linear} and T={p∈D | p is a trace}. Clearly, T⊆P⊆D and
ε∈T. By identifying a pomset [({o},≤{o}, λ{o})] with event λ{o}(o) we can regard E

as a subset of T. Given n events e1, e2, . . . , en ∈E with n≥ 1, we also write the finite
trace e1 ; e2 ; . . . ; en as e1e2 · · · en.
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TABLE 9.1 Formal Semantics
of Basic Interactions

P[[−]] : Basic → ℘(T)
P[[B]] =B↓

A pomset p∈D is said to be well formed if there is n∈N and m1, . . . , mn ∈M and
(ŝ1, r̂1), . . . , (ŝn, r̂n)∈ (Î× Î)\{(−,−)} such that7

p ∈ (M(ŝ1, r̂1, m1) ‖ · · · ‖M(ŝn, r̂n, mn))<>↓
where M(ŝ, r̂, m) is defined as follows: M(s, r, m)= snd(s, r, m) ; rcv(s, r, m),
M(s,−, m)= snd(s,−, m), and M(−, r, m)= rcv(−, r, m). Well-formed pomsets are
obviously finite and locally linear.

For the purpose of developing our semantics, basic interactions are given syntac-
tically by well formed pomsets. We define Basic={B ∈ P |B is well formed} and
use B as a metavariable that ranges over Basic. The formal semantics of basic inter-
actions is given by a semantic function P[[−]] which maps basic interactions to sets
of positive (valid) traces (see Table 9.1). As mentioned above, basic interactions do
not have negative traces.

The question remains how the metamodel in Figure 9.2 is to be mapped into the
new (syntactic) domain Basic: Let I be a basic interaction and (O,→) the specification
graph of I; see Section 9.2.2.2. Since (O,→) is an acyclic graph, the O-reflexive-
transitive closure of→ is a partial order on O; we define≤O by→∗. Basic interaction I
is then mapped to [(O,≤O, λO)], where λO is a labeling function O → E, whose defi-
nition is straightforward; in particular, synchronous messages (see Section 9.2.3) and
coregions (see [45]) can be dealt with easily. The only interesting issue in defining
λO is how a Message M is to be mapped to a message identificator m∈M. One
possibility would be to use the Message M itself (i.e., the object identificator). How-
ever, we define m as the set of any information that is conveyed by the message and
can be used by the receiver to distinguish between two messages coming from the
same sender. In particular, m comprises the name of M, arguments, and any kind of
message content. Note that the resulting mapping of the metamodel into Basic is not
injective (see Figure 9.5). A receiver instance cannot determine the order in which it
receives two completely identical messages.

9.2.3 Synchronous and Asynchronous Messages

9.2.3.1 Communication Types The sample interaction ex4 in Figure 9.6
models the establishing of a connection between a client instance x and a server
instance y and the subsequent processing of a client request by an instance z that has
been created by y for this very purpose. Unlike the previous examples, which used
only asynchronous communication (depicted by open arrowheads), interaction ex4

7 The concurrence of n= 0 pomsets is defined by the empty pomset ε.
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sdsd

s r

m

m
m

m

s r

FIGURE 9.5 Two structurally distinct basic interaction diagrams that are both mapped to
the same element snd(s, r, m) snd(s, r, m) rcv(s, r, m) rcv(s, r, m) ∈ Basic.

y:Yx:X

sd ex4

create(x)
connect()

start()
connect():ok

ready
request()

callback()

z:Z

delegate()

op() synchronous call
op()to operation

op() asynchronous call
to operation op()

s
asynchronous send action
signal s

create

the creation of an instance
message designating

reply message
to an operation call

op():rv reply message to a call to
operation op() delivering

created by an

a return value

destruction event

execution of action

execution of a behavior

rv

Legend of symbols:

doSth doSth

logConnect

FIGURE 9.6 Sample interaction diagram that uses different types of communication.

also specifies messages reflecting synchronous calls to operations (depicted by filled
arrowheads). These messages are connect(), request(), callback(), and delegate(). A
synchronous call to an operation typically results in a reply message, which is shown
graphically by a dashed line. Reply message connect():ok, for instance, delivers a
return value ok, indicating that a connection with the server has been established
successfully. Messages start() and ready represent an asynchronous call to an oper-
ation and a signal, respectively. Message create(x) designates the creation of a new
instance z, with the argument x informing z what its communication partner is. The

at the bottom of the lifeline of z depicts a destruction event that represents the
destruction of instance z.

An execution specification (also known as activation bar or focus of control) is a
notation that can appear on a lifeline to indicate the time during which an instance
is active (i.e., executes a behavior or performs an action). In the case of a behavior, the
execution specification is called a behavior execution specification, which is depicted
by a thin rectangle that covers a part of a lifeline (e.g., instance x is active right from
the start). In the case of an action, the execution specification is called an action
execution specification, which is depicted by a wider, labeled rectangle, where the
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x:X y:Y

connect()

connect():ok

sd ex6sd ex5

x:X y:Yu:U

connect():ok

connect()

stillWaiting

(a) (b)

FIGURE 9.7 In diagram (a), which is not a legal UML 2 diagram, we used shading to indicate
that an execution specification is blocked. In contrast, diagram (b) is legal UML 2, but it may
be considered bad style.

label identifies the action that is executed (see action logConnect, which represents
the writing of log data to a database).

The intuitive semantics of synchronous calls to operations is that after dispatching
the synchronous message connect() the behavior execution specification on life-
line x is blocked until the corresponding reply message connect():ok is received. In
Figure 9.7(a), shading is used to indicate the part of the behavior execution specifica-
tion on lifeline x that is blocked by message connect(). Note that this form of shading
is not a legal UML 2 notation, although it has actually been used in the literature
(see, e.g., [51]). Regardless of how a blocked execution specification is depicted, the
question arises whether message arrows may depart from positions on a lifeline where
the lifeline is covered by a blocked execution specification; see, for example, mes-
sage stillWaiting in Figure 9.7(b), which informs a user u that client x is still waiting
for a reply message from server y. At first sight, from a sequential operational point
of view, the dispatch of message stillWaiting would be unimplementable because the
behavior execution specification on lifeline x is blocked by the synchronous message
connect(). This view on synchronous messages, although legitimate, is by no means
mandatory, because one and the same execution specification may represent behavior
that emerges from several concurrent subbehaviors (e.g., parallel regions of a state
machine). Even if one of the concurrent subbehaviors is blocked by a synchronous
call, the other subbehaviors can still be active and send messages (although this may
be considered bad style).

9.2.3.2 Metamodel Figure 9.8 shows the fragment of the UML 2 metamodel
that is relevant to the new language constructs introduced by Figure 9.6. Model
elements that have already appeared in our previous metamodel diagrams are shaded.
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Attribute Message::messageSort specifies the type of communication action that
was used to generate a message. It has the enumeration type MessageSort with values
synchCall, asynchCall, asynchSignal, createMessage, deleteMessage, and reply.
These values are read, respectively, as follows: A synchronous call to an operation
as in the case of message connect() (see Figure 9.6); an asynchronous call to an
operation such as start(); an asynchronous send action as in the case of ready; a
pseudomessage standing for the creation of another lifeline instance such as create(x);
a pseudomessage standing for the termination of another lifeline (not shown); and a
reply message to an operation call such as connect():ok.

Metaclasses ExecutionSpecification, BehaviorExecutionSpecification, and Action-
ExecutionSpecification correspond directly to the graphical model elements of the
same name (written as separate, uncapitalized words). An ExecutionOccurrence-
Specification represents a point in time at which an action or a behavior starts or
finishes. The duration of an ExecutionSpecification is represented by two Execu-
tionOccurrenceSpecifications: the “start ExecutionOccurrenceSpecification” (upper
end of an activation bar) and the “finish ExecutionOccurrenceSpecification” (lower
end of an activation bar). These two ExecutionOccurrenceSpecifications reference
the ExecutionSpecification to which they belong via ExecutionOccurrenceSpecifica-
tion::execution.8 Start ExecutionOccurrenceSpecification and finish ExecutionOccur-
renceSpecification may coincide9 if they belong to an ActionExecutionSpecification.

The semantics of an ExecutionSpecification is given by the trace sf where s and f are
the start ExecutionOccurrenceSpecification and the finish ExecutionOccurrenceSpec-
ification of the ExecutionSpecification, respectively (and s �= f ). In the case of s= f ,
the semantics is simply given by the trace s. An ExecutionSpecification references
two OccurrenceSpecifications via ExecutionSpecification::start and ExecutionSpec-
ification::finish (for short: start and finish). Based on our interpretation,10 start and

8 We adjusted the multiplicity value at the nonnavigable end of the directed association between Execu-
tionOccurrenceSpecification and ExecutionSpecification; compare Figure 9.8 with the class diagram of the
UML specification document [45, p. 463].
9 In terms of object identity.
10 To the authors of the present chapter, the text of the UML specification document [45] that refers
to metaclass ExecutionSpecification has appeared difficult to interpret consistently. On the one hand,
the specification document states that “the duration of an ExecutionSpecification is represented by two
ExecutionOccurrenceSpecifications” (p. 478). This is in line with the description of ExecutionOccurrence-
Specifications as “moments in time at which actions or behaviors start or finish” (p. 478). On the other hand,
the class diagram on p. 463 of the specification document specifies a multiplicity of 1 at the nonnavigable
end of the directed association between ExecutionOccurrenceSpecification and ExecutionSpecification. Fur-
thermore, the type of the association ends ExecutionSpecification::start and ExecutionSpecification::finish is
specified as OccurrenceSpecification—not as ExecutionOccurrenceSpecification, as one might expect. This
means that MessageOccurrenceSpecifications as well as ExecutionOccurrenceSpecifications may “desig-
nate” (p. 479) the start or the finish of a behavior or an action. The question arises whether this actually
means that MessageOccurrenceSpecifications may specify the boundary points of the time interval during
which a behavior is executed. Two considerations weigh against this interpretation. First, a MessageOc-
currenceSpecification cannot reference an ExecutionSpecification. Second, even if the arrival of a message
causes execution of a behavior, typically some time elapses between the arrival of the message and the
start of the execution.
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sd ex7sd ex7

x:Xx:X

con start

conne

connect()

y:Y
y:Y

ok finishconnec

ct

(a) (b)

FIGURE 9.9 Suggested interpretation of (a) start and (b) finish.

finish generally do not coincide with s and f , respectively. Instead, start references an
OccurrenceSpecification which lies so closely above s that the time interval between
start and s is smaller than the resolution limit of the diagram. Typically start is a
MessageOccurrenceSpecification of an incoming Message which causes the speci-
fied behavior to start [see Figure 9.9(a)]. Association end finish has a similar meaning:
It references an OccurrenceSpecification which lies so closely above f that the time
interval between finish and f is smaller than the resolution limit of the diagram. Typi-
cally, finish is a MessageOccurrenceSpecification of an outgoing reply message with
a return value [see Figure 9.9(b)]. The authors of the present chapter want to point
out that the meaning of start and finish which is conveyed by Figure 9.9 is just a
suggestion for a consistent interpretation of the UML specification text. We further
wish to stress that UML interactions do not imply statements about causality. They
merely deal with temporal relationships.

A few notes about delete messages and destruction events are necessary. Since
DestructionEvent is a specialization of Event – and not of ExecutionEvent – and since
ExecutionOccurrenceSpecification::event redefines OccurrenceSpecification::event,
a DestructionEvent cannot be referenced by an ExecutionOccurrenceSpecification.
Since we decided11 to regard the metaclass OccurrenceSpecification as abstract, a
DestructionEvent can only be referenced by a MessageOccurrenceSpecification. This
means that a destruction event cannot occur separately on a lifeline (as it is depicted,
for example, in Figure 9.6). Actually, a message head is supposed to point at the
destruction event. A delete message lends itself to this purpose. Whenever an instance
decides to destruct itself, it has to send itself a delete message.12

9.2.3.3 Semantics We define a domain MSort={sc, ac, as, cm, dm, r} that cor-
responds directly to enumeration type MessageSort. The values listed between the

11 For a (very) short discussion of this question, see footnote 2.
12 As a matter of fact, this pseudocommunication has little to do with actual processes in a runtime
environment.
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braces stand for synchCall, asynchCall, asynchSignal, createMessage, deleteMes-
sage, and reply, respectively. Futhermore, we assume a domain for executions X

which is the union of two disjoint, primitive subdomains for behavior executions
and action executions. To facilitate a stepwise expansion of our semantics, we intro-
duce a domain of information sets i∈ Info, which for the purposes of this section
is defined as Info=℘fin(X)×℘fin(X). If (start, finish) is the information set of
an event occurrence o, start and finish represent the sets of all executions whose
ExecutionSpecification references the OccurrenceSpecification of o via Execution-
Specification::start and ExecutionSpecification::finish, respectively. The domain of
events E is defined as follows:

e ∈ E ::= snd(s, r̂, m, ms, i)
| rcv(ŝ, r, m, ms, i)
| exec(l, x, i)

An occurrence of an event of the form snd(s, r̂, m, ms, (start, finish)) means:

1. In the case of r̂= r: Dispatch of a message m (with messageKind= complete
and messageSort=ms) from sender instance s to receiver instance r.

2. In the case of r̂=−: Dispatch of a message m (with messageKind= lost and
messageSort=ms) from sender instance s.

An occurrence of an event of the form rcv(ŝ, r, m, ms, (start, finish)) means:

3. In the case of ŝ= s: Arrival of a message m (with messageKind= complete and
messageSort=ms) from sender instance s at receiver instance r.

4. In the case of ŝ=−: Arrival of a message m (with messageKind= found and
messageSort=ms) at receiver instance r.

Finally, an occurrence of an event of the form exec(l, x, (start, finish)) means:

5. If x is a behavior execution, the occurrence denotes an (upper or lower) boundary
point of the time interval during which the behavior is executed by instance l.

6. If x is an action execution, the occurrence denotes the (idealized) point in time
at which the action is performed by instance l.

Using m̂∈ M̂ ::=m | −, the lifeline function α and the message function μ are
redefined as follows:

α : E −→ ℘(I) μ : E −→ M̂

α(snd(s, r̂, m, ms, i)) = {s} μ(snd(s, r̂, m, ms, i)) = m
α(rcv(ŝ, r, m, ms, i)) = {r} μ(rcv(ŝ, r, m, ms, i)) = m
α(exec(l, x, i)) = {l} μ(exec(l, x, i)) = −
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critical

m4

m2
loop(1,3) alt

m1

z:Zy:Yx:X
sd ex8

m5neg

m3
g

FIGURE 9.10 Sample interaction diagram using combined fragments.

9.2.4 Combined Fragments

9.2.4.1 Complex Interactions All interaction diagrams that have been dis-
cussed in previous sections are basic interaction diagrams. In the present section, we
turn to complex interactions, which are characterized by the presence of combined
fragments. A combined fragment defines an expression of interaction fragments. It
is depicted by a solid-outline rectangle, in which an interaction operator is specified
in a pentagon in the upper left-hand corner of the rectangle (pentagon descriptor).
If the arity of this operator is greater than 1, the interaction operands are sepa-
rated from each other graphically by dashed horizontal lines. More than one operator
may be specified in the pentagon descriptor. This is shorthand for nesting combined
fragments.

In addition to message m1, the sample interaction ex8 in Figure 9.10 specifies
four combined fragments of kind loop(1,3), alt, critical, and neg.13 The combined
fragment with operator kind loop(1,3) has only one operand, which is a com-
bined fragment with operator kind alt. The latter, in turn, has two operands: (1)
a basic interaction consisting of message m2, and (2) a combined fragment of
type critical together with a message m3 which enters the combined fragment via
a combined fragment gate named g. No notation is specified for gates. They are
merely points on the frame of a combined fragment. However, they may have explicit
names.

13 We postpone an explanation of the semantics of these operators to the following section.
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9.2.4.2 Metamodel Figure 9.11 shows the fragment of the UML 2 metamodel
that comprises the language constructs for describing complex interactions with gates.
As already mentioned in Section 9.2.2.2, InteractionFragment is the abstract notion
of the most general interaction unit. InteractionFragment is the root class of a com-
posite pattern and has seven direct subclasses: Interaction, OccurrenceSpecification,
ExecutionSpecification (see Section 9.2.3), CombinedFragment, InteractionOperand,
StateInvariant (see Section 9.2.5), and Continuation.14 A CombinedFragment ref-
erences at least one InteractionOperand via CombinedFragment::operand. Each
InteractionOperand is itself an InteractionFragment, and may, moreover, reference
any finite number of InteractionFragments via InteractionOperand::fragment.

The semantics of an InteractionFragment is given by a pair of sets of traces: namely,
a set of valid (or positive) traces and a set of invalid (or negative) traces. These sets
need not be disjoint nor their union cover the entire universe of traces. The semantics
of InteractionOperands as well as the semantics of Interactions are compositional
in the sense that the semantics of an InteractionOperand (or an Interaction) is built
mechanically from the semantics of its constituent InteractionFragments.15 The con-
stituent InteractionFragments are ordered and combined by an implicit seq-operation
(weak sequencing).

Given an ordered set of traces t1= e1,1e1,2 . . . e1,l1 , . . . , tn = en,1en,2 . . . en,ln , the
weak sequencing of t1, . . . , tn is defined by the set of all traces eπ(1)eπ(2) · · · eπ(l),
where l= l1+ · · · + ln, and π is a bijection (i.e., a one-to-one and onto mapping),
π : {1, 2, . . . , l} → {(1, 1), . . . , (1, l1), . . . , (n, 1), . . . , (n, ln)}, i %→ (π1(i), π2(i)) such
that for all 1 ≤ i < j ≤ l, the following conditions hold:

1. If eπ(i) and eπ( j) lie on the same lifeline, then π1(i) ≤ π1(j).

2. If π1(i) = π1( j), then π2(i) < π2( j).

The semantics of a CombinedFragment depends on the value of its attribute inter-
actionOperator. This attribute has the enumeration type InteractionOperatorKind with
the values strict, seq, par, loop, alt, ignore, neg, assert, critical, break, opt, and
consider. A description of the semantics of these operators can be found in the UML
specification document 2.1.2 [45, pp. 468–470].16 We restrict ourselves to citing some
defining phrases in Table 9.2, and refer to our formal semantics in Section 9.2.4.4 for
the rest.

9.2.4.3 Abstract (Term) Syntax We assume a primitive domain for gates G

and use g as a metavariable that ranges over G. The domains IG and ÎG are defined by
rG, sG ∈ IG ::= l | g and by r̂G, ŝG ∈ ÎG ::= l | g | −, respectively. The definition of the

14 A Continuation allows the concatenation of branches in alternatives; as it is a mere syntactic entity, it
is not covered in this chapter.
15 See UML specification document 2.1.2 [45, pp. 482, 486].
16 These three pages are a veritable wellspring of hermeneutical problems.
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TABLE 9.2 Semantics of Interaction Operators in Combined Fragments

strict “strict designates [read means] that the CombinedFragment represents a strict
sequencing between the behaviors of the operands.”

seq “seq designates that the CombinedFragment represents a weak sequencing
between the behaviors of the operands.”

par “par designates that the CombinedFragment represents a parallel merge
between the behaviors of the operands.”

loop “loop designates that the CombinedFragment represents a loop. The loop
operand will be repeated a number of times.”

alt “alt designates that the CombinedFragment represents a choice of behavior.”
ignore “ignore designates that there are some message types that are not shown

within this combined fragment.”
neg “neg designates that the CombinedFragment represents traces that are defined

to be invalid.”
assert “assert designates that the CombinedFragment represents an assertion. The

sequences of the operand of the assertion are the only valid continuations.
All other continuations result in an invalid trace.”

critical “critical designates that the CombinedFragment represents a critical region.
A critical region means that the traces of the region cannot be interleaved by
other OccurrenceSpecifications.”

break “break designates that the CombinedFragment represents a breaking scenario
in the sense that the operand is a scenario that is performed instead of the
remainder of the enclosing InteractionFragment.”

opt “opt designates that the CombinedFragment represents a choice of behavior
where either the (sole) operand happens or nothing happens.”

consider “consider designates which messages should be considered within this
combined fragment. This is equivalent to defining every other message to
be ignores.”

Source: Excerpts from UML specification document 2.1.2 [45, pp. 468–470, 473].

domain of events E is extended as follows:

e ∈ E ::= er | ep

er ∈ Er ::= snd(s, r̂G, m, ms, i)
| rcv(ŝG, r, m, ms, i)
| exec(l, x, i)

ep ∈ Ep ::= gsnd(g, rG, m, ms, i)
| grcv(sG, g, m, ms, i)

An event e is either a real event er or a pseudoevent ep, where real events are
of the form snd(s, r̂, m, ms, i), rcv(ŝ, r, m, ms, i), and exec(l, x, i), as introduced in
Section 9.2.3.3. Now, a real event of the form snd(s, g, m, ms, i) represents the dispatch
of a message m (with messageKind= complete and messageSort=ms) from sender
instance s to gate g. Similarly, a real event of the form rcv(g, r, m, ms, i) represents
the arrival of a message m (with messageKind= complete and messageSort=ms)
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TABLE 9.3 Abstract Syntax of Interaction Terms

T ∈ IFragment ::= Bq

| CF
| O

CF ∈ CFragment ::= strictq(O1, O2)
| seqq(O1, O2)
| parq(O1, O2)
| loopq(m, n̂, O)
| altq(O1, O2)
| ignoreq(M, O)
| negq(O)
| assertq(O)
| criticalq(O)
| breakq(O1, O2)

O ∈ IOperand ::= T

from gate g at receiver instance r. A pseudoevent of the form grcv(sG, g, m, ms, i)
occurs whenever a message m coming from sender sG enters (i.e., arrives at) a gate g.
A pseudoevent of the form gsnd(g, rG, m, ms, i) occurs whenever a message m has
passed through a gate g and leaves the gate on the other side in the direction of rG.
The definitions of the lifeline function α and the message function μ are extended as
follows:

α : E → ℘(IG) μ : E → M̂

α(snd(s, r̂, m, ms, i)) = {s} μ(snd(s, r̂, m, ms, i)) = m
α(rcv(ŝ, r, m, ms, i)) = {r} μ(rcv(ŝ, r, m, ms, i)) = m
α(exec(l, x, i)) = {l} μ(exec(l, x, i)) = −
α(gsnd(g, rG, m, ms, i)) = {g} μ( gsnd (g, rG, m, ms, i)) = m
α(grcv(sG, g, m, ms, i)) = {g} μ( grcv (sG, g, m, ms, i)) = m

The definition of the conflict relation <> given in Section 9.2.2 remains unchanged.
Note that we consider gate identifiers g as a form of pseudolifelines.

The abstract syntax of interactions is given by the grammar in Table 9.3. Therein,
T ranges over terms representing interaction fragments (terms for short), B ranges
over terms representing basic interactions (basic terms or leaf terms for short),
CF ranges over terms representing combined fragments (combined terms for short),
O ranges over terms representing interaction operands,17m ranges over natural num-
bers, n̂ ranges over natural numbers or∞, and M ranges over℘fin(M). The occurrences
of metavariable q that adorn each operator symbol constitute a numbering schema that
allows us to identify each basic term uniquely and each loop-operator inside a term.
For this purpose we define the domain of paths by q∈ Path ::= ε | q n, n∈ {1, 2}, with
1 denoting a left (or sole) operand and with 2 denoting a right operand. The concatena-
tion of two paths q, q′ is written q.q′. Each operator symbol inside a term is annotated

17 In Section 9.2.5, constraints (i.e., guard expressions) are added to the syntax of these terms.
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with a unique path identifier q (see Table 9.3). The function top : IFragment → Path
(“topmost operator path”) maps a term T to the path q with the topmost (or outer-
most) operator of T is annotated. We inductively define a unary predicate “is well
numbered” on terms as follows:

1. Bq is well numbered.

2. If T is a well-numbered term and uop∈ {loop, ignore, neg, assert, critical}, and
if there is a path r such that top(T )= q.1.r, then uopq(T ) is a well-numbered
term.

3. If T1 and T2 are well-numbered terms and bop∈ {strict, seq, par, alt, break}, and
if there are paths r1 and r2 such that top(T1)= q.1.r1 and top(T2)= q.2.r2, then
bopq(T1, T2) is a well-numbered term.

In the following, we always use terms with the implicit understanding that these
terms are well numbered. Furthermore, we use the name Empty for the term that
represents the empty (basic) interaction; Empty is given by [(Ø, Ø, Ø)]. opt(T )
abbreviates alt (Empty, T ), and consider (M, T ) abbreviates ignore (M \M, T ).

9.2.4.4 Intermediate Semantics We define a formal semantics of complex
interactions by employing a two-step approach: First, we compositionally define
two semantic functions Pi[[−]], Ni[[−]] : IFragment→℘(T), which map interaction
terms to sets of positive and negative traces, respectively. The pair (Pi[[T ]], Ni[[T ]]) is
said to be the intermediate semantics of a term T . In a second step, filtering functions
℘(T)→℘(T) are employed to map the intermediate semantics to the (definitive)
semantics. Pseudoevents and gate identifiers may occur in the intermediate semantics,
but they do not occur in the (definitive) semantics.

Both specification of the formal semantics of critical regions that occur in the
body of a loop and of the handling of gates require event occurrences to be equipped
with additional semantic information. For this purpose, we redefine the domain of
information sets as follows:

Info = ℘fin(X)× ℘fin(X)× ℘fin(Path)× [Path → N]× Path

Let (start, finish, region, loop, basic) be the information set of an event occurrence o.
Then region is the set of all paths that identify critical-operators whose operands
contain the syntactic specification of o. The function loop maps a path that identifies
a loop-operator to the iteration number of the loop to which the event occurrence o
belongs. loop is a partial function, with loop(q)= 0 meaning “loop is not defined at q”
because either q does not identify a loop-operator or the operand of the loop-operator
does not contain the syntactic specification of o. The path basic identifies the basic
term that contains the syntactic specification of o. The meanings of start and finish
remain unchanged (see Section 9.2.3).

Let q∈ Path and n∈N. Moreover, let fq, gq,n, and hq denote three functions
E→E, which are defined as follows. If e∈E is an event with information set
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i= (start, finish, region, loop, basic), then fq(e) is the event that is obtained from e
by substituting (start, finish, region∪ {q}, loop, basic) for i; gq,n(e) is obtained from e
by substituting (start, finish, region, loop[q %→ n], basic) for i; and hq(e) is obtained
from e by substituting (start, finish, region, loop, q) for i. We lift fq, gq,n, and hq to pom-
sets (see Section 9.2.1), and for each p∈D we let (p)q be defined by fq(p), p[q %→ n]
be defined by gq,n(p), and [p]q be defined by hq(p). Furthermore, we define the n-fold
iteration of a process P⊆D with respect to q, written P(n)

q , as follows: P(0)
q ={ε} and

P(n+1)
q =P[q %→ n+ 1] ;<> P(n)

q .
Let M ⊆M be a set of messages. On pomsets in D, the filtering relation mfilter (M) :

D → ℘(D) removes some elements of p whose labels show a message in M. More
precisely, we first define mfilter (M) on event-labeled sets as follows. Let O be a
set and λ : O → E a labeling function. Then O′ ∈ mfilter (M)(O, λ) if O′ ⊆O and
μ(λ(o)) ∈ M for any o∈O \ O′. For an event-labeled partial order (O,≤O, λO), we
set (O′,≤O ∩ (O′ ×O′), λO�O′)∈ mfilter (M)(O,≤O, λO) if O′ ∈ mfilter (M)(O, λO).
Finally, we extend these definitions to event-labeled pomsets p∈D by setting
p∈ mfilter (M)([(O,≤O, λO)]) if there is (O′,≤O′ , λO′ ) ∈ mfilter (M)(O,≤O, λO) such
that p= [(O′,≤O′ , λO′ )]. The relation mfilter (M) obviously is well defined. Given
a pomset p∈D, by mfilter (M)−1(p) we denote {q∈D | p∈ mfilter (M)(q)}. This
“inverse relation” is lifted to processes in the usual way (see Section 9.2.1). Given a
process P⊆D, we write P〈M〉 for mfilter (M)−1(P). Furthermore, we define �(P) to
be the prefix closure of P.

The intermediate semantics of complex interactions is given by a pair of seman-
tic functions Pi[[−]] and Ni[[−]] that map interaction terms to sets of positive and
negative traces, respectively; see Tables 9.4 and 9.5. These sets constitute an inter-
mediate semantics since their traces may contain pseudoevents as well as gate
identifiers.

The semantics of the positive fragment of the language closely follows the tex-
tual description of the specification (see Table 9.2). Indeed, the literature [12,36,49]
shows a broad consensus on the semantics of this fragment. On the contrary, for
the negative fragment the specification leaves room for different interpretations, and
consequently diverging proposals have been made (see also [27]). In line with Kobro
Runde et al. [36], we have adopted the view that a trace is negative for an interaction
fragment whenever it has exhaustively traversed a negative subfragment. Only assert
is an exception to this rationale, since, following the specification, it makes negative
everything that is not explicitly positive.

9.2.4.5 Filtering Let Tr be the set of all traces of occurrences of real events that
do not contain gate identifiers. We define a filter Fgate : ℘(T) → ℘(Tr). This filter (1)
removes all pseudoevents from a trace, (2) replaces all gate identifiers in events of the
form snd(s, g, m, ms, i) and rcv(g, r, m, ms, i) with the lifelines of the actual receiver
and the actual sender of the message, respectively, and (3) discards the trace if the
actual sender or the actual receiver of a message cannot be determined or if the trace
is malformed for some other reason. This “gate filter” works as follows. Let P ⊆ T be
a process consisting of traces. For each trace t ∈ P, the following rewriting rule (R)
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TABLE 9.4 Intermediate Semantics of Complex Interactions
(Positive Fragment)

Pi[[−]] : IFragment → ℘(T)
Pi[[Bq]] = [B↓]q

Pi[[strictq(O1, O2)]] = Pi[[O1]] ; Pi[[O2]]
Pi[[seqq(O1, O2)]] = (Pi[[O1]] ;<> Pi[[O2]])↓
Pi[[parq(O1, O2)]] = (Pi[[O1]] ‖Pi[[O2]])↓
Pi[[loopq(m, n̂, O)]] = ⋃

m≤i<n̂+ 1((Pi[[O]])(i)
q )↓

Pi[[altq(O1, O2)]] = Pi[[O1]]∪Pi[[O2]]
Pi[[ignoreq(M, O)]] = (Pi[[O]]〈M〉)↓
Pi[[negq(O)]] = {ε}
Pi[[assertq(O)]] = Pi[[O]]
Pi[[criticalq(O)]] = (Pi[[O]])q

Pi[[breakq(O1, O2)]] = Pi[[O1]]∪ (�(Pi[[O1]]) ;<> Pi[[O2]])↓

TABLE 9.5 Intermediate Semantics of Complex Interactions
(Negative Fragment)

Ni[[−]] : IFragment → ℘(T)
Ni[[Bq]] = Ø
Ni[[strictq(O1, O2)]] = (Pi[[O1]] ; Ni[[O2]])∪ (Ni[[O1]] ; Pi[[O2]])

∪ (Ni[[O1]] ; Ni[[O2]])
Ni[[seqq(O1, O2)]] = (Pi[[O1]] ;<> Ni[[O2]])↓∪ (Ni[[O1]] ;<> Pi[[O2]])↓

∪ (Ni[[O1]] ;<> Ni[[O2]])↓
Ni[[parq(O1, O2)]] = (Pi[[O1]] ‖Ni[[O2]])↓∪ (Ni[[O1]] ‖Pi[[O2]])↓

∪ (Ni[[O1]] ‖Ni[[O2]])↓
Ni[[loopq(m, n̂, O)]] = ⋃

m≤i<n̂+1 ((Pi[[O]]∪Ni[[O]])(i)
q )↓ \ ((Pi[[O]])(i)

q )↓
Ni[[altq(O1, O2)]] = Ni[[O1]]∪Ni[[O2]]
Ni[[ignoreq(M, O)]] = (Ni[[O]]〈M〉)↓
Ni[[negq(O)]] = Pi[[O]]∪Ni[[O]]
Ni[[assertq(O)]] = (T \ Pi[[O]])∪Ni[[O]]
Ni[[criticalq(O)]] = (Ni[[O]])q

Ni[[breakq(O1, O2)]] = Ni[[O1]]∪ (�(Pi[[O1]]) ;<> Ni[[O2]])↓
∪ (�(Ni[[O1]]) ;<> Pi[[O2]])↓
∪ (�(Ni[[O1]]) ;<> Ni[[O2]])↓

is iteratively applied to t as long as the rule matches:

(R) t1 a t2 b t3 c t4 d t5 −→ t1 a′ t2 t3 t4 d′ t5
where a = snd(s, g, m, ms, (start, finish, region, loop, q)),

b = grcv(s, g, m, ms, (_, _, _, _, q)),

c = gsnd(g, lG, m, ms, (_, _, _, _, q′)),
d = k(g, lG, m, ms, (start′, finish′, region′, loop′, q′))
a′ = snd(s, lG, m, ms, (start, finish, region, loop, q)),

d′ = k(s, lG, m, ms, (start′, finish′, region′, loop′, q′)),
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TABLE 9.6 Semantics of Complex
Interactions

P[[−]], N [[−]] : IFragment −→ ℘(Tr)
P[[−]] = Fcrit ◦Fgate ◦Pi[[−]]
N [[−]] = Fcrit ◦Fgate ◦Ni[[−]]

with ((k= rcv and lG ∈ I) or (k= grcv and lG ∈ G)), and t1, t2, t3, t4 ∈T do not
contain a, b, c, d, respectively. If the resulting trace is an element of Tr (i.e., if it does
not contain pseudoevents or gate identifiers), the trace is retained as an element of
Fgate(P); otherwise, the trace is discarded.

A filter Fcrit : ℘(Tr) → ℘(Tr) is required to prevent traces from violating atomicity
constraints specified by critical-constructs. For the purpose of defining this filter, let � :
E → ℘fin(Path) and � : E → [Path → N] be two functions that map an event e to the
third and fourth components of the information set of e, respectively. For each path q,
the set prefix(q)={q′ | ∃q′′. q = q′q′′ } contains all prefixes of q; in particular, q ∈
prefix(q). We say that a (finite) trace t= e1e2 · · · en ∈ Tr preserves atomicity if for all
1≤ i≤ j≤ k≤ n and for all q ∈ Path, q ∈ �(ej) and �(ei)� prefix(q)= �(ej)� prefix(q)
whenever q ∈ �(ei) ∩ �(ek) and �(ei)� prefix(q) = �(ek)� prefix(q). Given a process
P ⊆ Tr, we define Fcrit(P) by {t ∈ P | t preserves atomicity}.
9.2.4.6 Semantics The semantics of complex interactions is given by a pair of
semantic functions P[[−]] and N [[−]] that map terms to sets of positive and negative
traces of occurrences of real events, respectively (see Table 9.6). Therein, Pi[[−]] and
Ni[[−]] are the semantic functions defined in Tables 9.4 and 9.5, respectively. The
filtering functions Fgate and Fcrit are defined in Section 9.2.4.5.

9.2.5 Constraints

9.2.5.1 Guards and State Invariants The sample interaction ex9 in Fig-
ure 9.12 illustrates the use of guards and state invariants. The combined fragment
of type alt which is contained in ex9 has two guarded operands: The first (upper)
operand has the guard z.p >= 1; the second (lower) operand has an else-guard. These
guards have the following meanings:

1. If the upper operand is chosen and the dispatch of m2 occurs before the dispatch
of m3, the Boolean expression z.p >= 1 has to be true with respect to the global
state of the system that exists directly before the dispatch of m2.

2. If the upper operand is chosen and the dispatch of m3 occurs before the dispatch
of m2, the Boolean expression z.p >= 1 has to be true with respect to the global
state that exists directly before the dispatch of m3.

3. If the lower operand is chosen, the Boolean expression z.p >= 1 has to be false
with respect to the global state directly before the dispatch of m4.

The state invariant 2 > z.p >= 0 on the lifeline of z is evaluated in the global state
of the system that exists directly before the next event occurs on the same lifeline



230 INTERACTIONS

sd ex9

alt

x:X

m1

[z.p >= 1]

[else]

m2

m3

m4

m5

{2 > z.p >= 0}

y:Y z:Z

FIGURE 9.12 Sample interaction diagram using guards and state invariants.

after the state invariant. This may be the dispatch of m2, the dispatch of m4, or the
arrival of m5.

9.2.5.2 Metamodel Figure 9.13 shows the fragment of the UML 2 metamodel
that is relevant to guards and state invariants. Considering the class diagram, an

+cover
*

*

1

1 *

0..1

edBy
+fragment *

0..1Operand
+enclosing

1

+invariant

+covered

{ordered}

+covered

Interaction

Operand

State

Invariant

Kernel::

Constraint

Kernel::Value

Specification

InteractionFragment

Lifeline

Constraint

Interaction

Combined

Fragment

0..1

0..1

+maxint

+minint

0..1 1..*

+ope
rand

0..1

0..1

+guard 0..1

FIGURE 9.13 Fragment of the UML 2 metamodel relevant to guards and state invariants.
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InteractionConstraint may be assigned only to an InteractionOperand (as a whole).18

We therefore recommend placing a guard anywhere in the frame of an interaction
operand.

9.2.5.3 Abstract Syntax We assume a domain of constraints C ∈Constraint
whose syntax is left unspecified, except for the requirement that the domain contains
the logical connectives ∨, ¬, and the logical expression true. Interaction operands
are equipped with these constraints as follows (see Table 9.3):

O ∈ IOperand ::= [C]T

The constraint C that occurs in an interaction operand [C]T acts as a guard for T . If
an InteractionOperand (for fragments represented by T ) does not specify a guard, the
InteractionOperand is translated into our term syntax as [true]T .A CombinedFragment
of type k ∈ {strict, seq, par}with more than two InteractionOperands is translated using
the following syntactic transformation:

k([C1]T1, . . . , [Cn]Tn)

= k([C1]T1, [true]k([C2]T2, . . . , [true]k([Cn−1]Tn−1, [Cn]Tn) . . . ))

A CombinedFragment of type alt with n≥ 0 InteractionOperands is interpreted as
alt ([C1]T1, . . . , [Cn]Tn, [¬(C1 ∨ · · · ∨ Cn)]Empty).19 If n ≥ 2, the latter is trans-
lated using the syntactic transformation given above. A CombinedFragment of type
loop with operand [C]T , lower bound m, and upper bound n̂ is translated using the
following syntactic transformation:20

loop (m, n̂, [C]T ) = seq(T , . . . , seq (T ,︸ ︷︷ ︸
m times

loop (0, n̂− m, [C]T )) . . . )

Furthermore, a new sort of pseudoevent is introduced, which represents a state
invariant C lying on lifeline l (see Section 9.2.4.3):

ep ∈ Ep ::= . . . | stateinv (l, C, i)

We define α(stateinv(l, C, i)) by {l}, and μ(stateinv(l, C, i)) by −.

18 However, several passages in the UML specification document indicate that an InteractionConstraint is—
at least graphically—assigned to a particular lifeline: namely, “the lifeline where the first event occurrence
[of the interaction operand] will occur” [45, p. 484]. In addition, there is a formal constraint specifying
that a “guard must be placed directly prior to (above) the OccurrenceSpecification that will become the
first OccurrenceSpecification within this InteractionOperand” [45, p. 486]. Since the minimum of a partial
order of event occurrences is, in general, not determined uniquely, the quoted passages of the specification
document appear ill-formed to the authors of the present chapter.
19 UML specification document 2.1.2 [45, p. 468] states that if “none of the operands [of a combined
fragment of kind alt] has a guard that evaluates to true, […] the remainder of the enclosing Interaction-
Fragment is executed.” This means that the set of positive traces of such an alt-fragment is {ε} (and not Ø).
20 UML specification document 2.1.2 [45, p. 470] states that “a loop will iterate minimum ‘minint’ number
of times […]. After the minimum number of iterations have executed and the Boolean expression is false
the loop will terminate.” In our opinion, this means that the Boolean expression is not to be evaluated
during the first ‘minint’ iterations.
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9.2.5.4 Semantics Let � be the set of all global states of the overall system.
We assume a semantic function C[[−]] : Constraint → (�→{tt, ff }) which maps a
constraint and a global state to a Boolean value.21 Furthermore, we assume that C[[−]]
interprets C1 ∨ C2, ¬C, and true in the canonical way.

A pair (σ, e) ∈ �×E is said to be a stateful event. We define E by �×E and use e
as a metavariable that ranges over E. The lifeline function α, the message function μ,
and the functions � and � (see Section 9.2.4.5) are defined on stateful events (σ, e) by
applying the respective functions to the second component e. Two stateful events e1
and e2 are in conflict, written e1 <> e2, if α(e1)∩α(e2) �= ∅. The domains of E-labeled
pomsets D, P, and T correspond directly to D, P, and T, respectively. For each (σ, e)
that occurs in a trace t ∈ T, the state σ denotes the global state of the overall system
directly before the event e occurs. If the occurrence of e depends on whether a certain
constraint C evaluates to tt in the state σ, the evaluation of C (to tt) and the event e
occur atomically.

A compositional definition of the semantics of interaction operands [C]T—namely,
the one whose term T produces an empty trace ε—requires a refined definition of
events:

e ∈ E ::= er | ep | ε(i)

Therein, er and ep range over real events and pseudoevents, respectively, as they are
defined in Section 9.2.4.3. A stateful event (σ, ε(i)) is said to be a state marker. A
state marker is a special form of pseudoevent that occurs only in traces, but not in
syntactic terms. We set α(σ, ε(i))=Ø (i.e., a state marker does not conflict with any
event). An occurrence of a state marker (σ, ε(i)) in a trace t ∈T indicates that the
state of the system at this point of the trace is σ. A state marker (σ, ε(i)) is inserted
in a trace automatically whenever the constraint C of an interaction operand [C]T is
evaluated in a state σ, the result of the evaluation is tt, and the term T produces an
empty trace.22

For each C ∈ Constraint, we define a filter FC : ℘(T) → ℘(T) which (1) discards
each nonempty trace that starts with a stateful event (σ, e) such that C is false in σ,
and (2) replaces the empty trace ε (if any) with the set of all state markers (σ, ε(Ø))
such that C is true in σ. The symbol Ø denotes an information set with an empty
region component and a totally undefined loop component. Formally, we define

FC(P) ={t ∈ P | ∃σ ∈ �, e ∈ E, t′ ∈ T. t = (σ, e)t′ ∧ C[[C]]σ = tt}
∪ {(σ, ε(Ø)) | ε ∈ P ∧ σ ∈ � ∧ C[[C]]σ = tt}

21 The proposal by Calegari García et al. [9] uses OCL/RT, an extension of OCL for real time (see [11,44]),
which in fact is based on a three-valued logic.
22 The latter is indicated by the symbol ε in the state marker.
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TABLE 9.7 Intermediate Semantics
of Interactions with Constraints
(Positive Fragment)a

Pi[[−]] : IFragment → ℘(T)
Pi[[Bq]] = �([B↓]q)
Pi[[[C]T ]] = FC (Pi[[T ]])

aOnly clauses differing from Table 9.4
are shown.

TABLE 9.8 Intermediate Semantics of Interactions
with Constraints (Negative Fragment)a

Ni[[−]] : IFragment → ℘(T)
Ni[[assertq(O)]] = T \ Pi[[O]]
Ni[[[C]T ]] = F¬C (Pi[[T ]]) ∪Ni[[T ]]

aOnly clauses differing from Table 9.5 are shown.

A mapping �(−) is defined that transforms an E-labeled pomset p∈D into a set of
E-labeled pomsets, thereby pairing off the labels e of p with all possible combina-
tions of states σ ∈ �, that is, �(ε)={ε} and �(p)={[(O,≤O, λ′O)] | ∃ σO : O →
�.λ′O= (σO, λO)} for each p= [(O,≤O, λO)] ∈ D\{ε}.

The intermediate semantics of interactions with constraints is given by a pair of
semantic functions Pi[[−]] and Ni[[−]] that map interaction terms to sets of positive
and negative traces, respectively (see Tables 9.7 and 9.8).23

9.2.6 High-Level Interactions

9.2.6.1 References to Interactions The sample interaction ex10 shown in
Figure 9.14(a) references another interaction ex11 shown in Figure 9.14(b) in a ref.
Intuitively, the referenced interaction is expanded into the place where it is referred
to. In fact, the UML specification also allows to use arguments for formal parameters
of interactions; we do not handle parameters in this chapter.

9.2.6.2 Metamodel Figure 9.15 shows the fragment of the UML 2 metamodel
that is relevant to high-level interactions. An InteractionUse refers to an Interaction
via refersTo. The InteractionUse must cover all Lifelines of the enclosing Interaction
that appear within the referred Interaction. An InteractionUse has an ordered set of
arguments that must correspond to the parameters of the referred Interaction. Further-
more, an InteractionUse has a set of actualGates that must match the formalGates of

23 The set of traces positively associated with a constrained interaction coincides with the definition by
Calegari García et al. [9]. On the contrary, the set of traces negatively associated with a constrained
interaction does not; in that work, Ni[[[C]T ]]= F¬C (T) ∪Ni[[T ]].
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x:X
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sd ex10

y:Y x:X

sd ex11
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ex11

y:Y

(a) (b)

FIGURE 9.14 (a) Sample interaction diagram ex10 using references to (b) another interaction
(ex11).
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FIGURE 9.15 Fragment of the UML 2 metamodel relevant to high-level interactions.

the referred Interaction. Since parameters and gates are mere syntactic constructs, we
do not handle them in our formal semantics.

9.2.6.3 Semantics Let us assume a syntactic category Name of names. The
abstract syntax of interactions is given by the grammar in Table 9.9. An interaction
environment ν is a set of interactions sd (n, T ) where all interactions in ν have a
different name n.

Let q ∈ Path. A function fq : E → E is defined as follows: If e ∈ E is an event
with information set i = (start, finish, region, loop, basic), then fq(e) is the event that
is obtained from e by substituting (start, finish, region′, loop′, basic′) for i, with basic′,

TABLE 9.9 Abstract Syntax of
High-Level Interaction Terms

n ∈ Name
S ∈ Interaction ::= sd(n, T )
T ∈ IFragment ::= . . . | ref(n)
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TABLE 9.10 Intermediate Semantics of High-
Level Interactions (Positive Fragment)a

Pi[[−]] : Interaction → (IEnvironment → ℘(T))
Pi[[refq(n)]]ν= (Pi[[T ]]ν)q· if sd(n, T ) ∈ ν

aOnly clauses differing from Table 9.4 are shown.

TABLE 9.11 Intermediate Semantics of High-
Level Interactions (Negative Fragment)a

Ni[[−]] : Interaction → (IEnvironment → ℘(T))
Ni[[refq(n)]]ν= (Ni[[T ]]ν)q· if sd(n, T ) ∈ ν

aOnly clauses differing from Table 9.5 are shown.

region′, and loop′ being defined as q.basic, {q.q′ | q′ ∈ region}, and

loop′(q′′) :=
{

loop(q′) if q′′ = q.q′
0 otherwise

respectively. The function f ′q : E → E is defined on stateful events (σ, e) by applying
the function fq to the second component e. We lift f ′q to pomsets (see Section 9.2.1).
For each p ∈ D we define (p)q· by f ′q(p).

The intermediate semantics of high-level interactions is given by a pair of semantic
functions Pi[[−]] and Ni[[−]] which map interaction terms to sets of positive and
negative traces, respectively (see Tables 9.10 and 9.11).

It appears that the specification treats interaction uses by macro expansion (“The
InteractionUse is a shorthand for copying the contents of the referred Interaction
where the InteractionUse is” [45, p. 487]). If also (mutually) recursive interactions
are to be handled, some notion of fixpoint in constructing the semantics has to be
involved. The semantic functions Pi[[−]] and Ni[[−]] can be rendered as a monotonic
F : ℘(T)×℘(T) → ℘(T)×℘(T), where ℘(T)×℘(T) is equipped with the ordering
(X1, X2) ⊆ (X ′1, X ′2) if, and only if, X1⊆X ′1 and X2⊆X ′2; thus, we are assured that the
least and the greatest fixpoint exist. If the least fixpoint is chosen, only finite (stateful)
traces can be produced; if the greatest fixpoint is chosen, infinite (stateful) traces are
also possible.

9.3 ALTERNATIVE SEMANTICS

9.3.1 Operational Semantics

An operational semantics for a part of the positive fragment of the term language of
UML interactions is defined. The reduced syntax of the term language is given in
Table 9.12. Therein, B ranges over Basic (as defined in Section 9.2.2) and p ranges
over Path (see Section 9.2.4).
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TABLE 9.12 Reduced Syntax of
Interaction Terms

T ∈ IFragment ::= Bq

| strictq(T1, T2)
| seqq(T1, T2)
| parq(T1, T2)
| loopq(T )
| altq(T1, T2)

9.3.1.1 Domains and Restriction Functions We define the domain Eτ of
events and the silent event τ as E∪{τ}. The domain Dτ comprises all finitary pomsets
labeled with events from Eτ . We define α(τ)=Ø (i.e., the silent event does not conflict
with any event). The domains Pτ and Tτ comprise all pomsets p ∈ Dτ such that p is
locally linear and a trace, respectively. We extend the lifeline function α to pomsets
p= [(O,≤O, λO)] ∈ Dτ by α(p)= ⋃

o∈O α(λO(o)). Given a process P ⊆ Dτ , we set
α(P)= ⋃

p∈P α(p). On processes in ℘(Dτ) and for a set of lifelines L, the restriction
function restr(L) : ℘(Dτ) → ℘(Dτ) removes all those pomsets from a process which
show an event that lies on a lifeline of L [i.e., restr(L)(P)={p∈P |α(p) ∩ L=Ø}].
We also write P[L] for restr(L)(P).

Transition rules regarding the construct seqq(T1, T2) can only be correct (with
respect to the denotational semantics) if it is guaranteed that after execution of an
event e of the term T2, no event e′ of T1 is executed that conflicts with e. If a non-
deterministic choice construct (alt or loop) occurs in term T1, it may happen that both
traces containing events conflicting with e (type 1) and traces not containing such
events (type 2) occur in the positive evaluation set of T1. The desired completeness
of the transition rules necessitates retaining traces of type 2, even though traces of
type 1 have to be discarded. One possible solution to this problem is based on a
syntactic transformation RL : Term → Term such that P[[RL (T )]]=P[[T ]][L], where
Term is an appropriate extension of the language IFragment and L is a set of lifelines.
Typically, this “syntactic restriction function” is defined by RL (T )= restr (L, T ),
where restr (L, T ) is a language extension whose denotational semantics is given by
P[[restr (L, T )]]=P[[T ]][L] and whose operational semantics is given by the following
rule:

(restr)
T

ē−→ T ′

restr(L, T )
ē−→ restr(L, T ′)

if α(ē) ∩ L = Ø

However, we choose a slightly different approach using a language extension None
whose denotational semantics is given by D[[None]]=Ø. The operational semantics
is given simply by the fact that there is no rule for None. The definition of the syntactic
restriction function RL is shown in Table 9.13. Therein, uop is a unary operator and
bop is a binary operator. By induction on the structure of T ∈ Term, it can easily be
shown that P[[RL(T )]]=P[[T ]][L].
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TABLE 9.13 Syntactic Restriction Function (for
L ⊆ I)

RL : Term −→ Term
RL(Noneq) = Noneq

RL(Bq) =
{

Bq if α(B) ∩ L=Ø
Noneq otherwise

RL(uopq(T )) = uopq(RL(T ))
RL(bopq(T1, T2)) = bopq(RL(T1), RL (T2))

Furthermore, we introduce a function ren : Path×{1, 2}×Term −→ Term, which
is defined as follows:

ren(p, n, const) = const

ren(p, n, uopq(T )) =
{

uopp.n.q′ (ren(p, n, T )) if q = p.q′
uopq(T ) otherwise

ren(p, n, bopq(T1, T2)) =
⎧⎨⎩

bopp.n.q′ (ren(p, n, T1),
ren(p, n, T2)) if q = p.q′

bopq(T1, T2) otherwise

We also write p.n T for ren(p, n, T ).

9.3.1.2 Transition System A configuration of our operational small-step
semantics is a term T ∈Term. The only terminal configuration is Empty, which is

defined by ε. Transitions are of the form T
ē−→ T ′ with T , T ′ ∈Term, T �= Empty, and

ē∈Eτ . The rules for the transition relation are shown in Table 9.14. In these rules
the variously decorated metavariables range as follows: T over Term, e over E, and
ē over Eτ . Given a locally linear pomset B, Min (B) is defined as the set of all events
of B that are minimal with respect to the ordering of B. B\{e} is obtained from B by
removing the (unique) occurrence of e.

9.3.2 Event Structures

An alternative definition of the formal semantics of UML 2.0 interactions is given by
Küster Filipe [39,40]. The language is enriched with OCL constraints (see also [10])
as well as locations and temperature as defined for LSCs (see [16]). These additions
serve the needs of expressing liveness properties such as progress of a lifeline or
the requirement that a sent message may or must be received. The approach con-
centrates on positive behavior; that is, it does not consider negative traces as in the
semantics defined above. Then Küster Filipe [40] purposely disregards some inter-
action building operators: neg since forbidden behavior can be expressed by a false
state invariant appended to the interaction modeling that behavior, and assert since
mandatory behavior can be indicated by a hot interaction fragment. The presentation
is, moreover, simplified by the omission of loop and strict, which can be integrated. In
other words, only alt, par, and seq are considered. The operator alt can have more than
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TABLE 9.14 Operational Semantics of Interactions (Part of Positive Fragment)

(basic) Bq
e−→ (B\{e})q if e ∈ Min (B)

(strict1)
T1

ē−→ T ′1
strictq(T1, T2)

ē−→ strictq(T ′1, T2)
(strict2) strictq(Emptyq′ , T2)

τ−→ T2

(seq1)
T1

ē−→ T ′1
seqq(T1, T2)

ē−→ seqq(T ′1, T2)
(seq2) seqq(Emptyq′ , T2)

τ−→ T2

(seq3)
T2

ē−→ T ′2
seqq(T1, T2)

ē−→ seqq( Rα(ē) (T1), T ′2)

(par1)
T1

ē−→ T ′1
parq(T1, T2)

ē−→ parq(T ′1, T2)
(par2)

T2
ē−→ T ′2

parq(T1, T2)
ē−→ parq(T1, T ′2)

(par3) parq(Emptyq′ , T2)
τ−→ T2 (par4) parq(T1, Emptyq′ )

τ−→ T1

(loop1) loopq(T )
τ−→ Emptyq (loop2) loopq(T )

τ−→ seqq(T , loopq.2( q.2 T ))

(alt1) altq(T1, T2)
τ−→ T1 (alt2) altq(T1, T2)

τ−→ T2

two operands, each of them must be accompanied by a precondition, and at most one
of them is executed. The semantic domain is that of labeled event structures, a true-
concurrent model that naturally captures alternative and parallel behavior (see [55]).
Labeled event structures are nothing but labeled pomsets (see [48]) equipped with
a binary conflict relation. The abstract syntax for interactions is considerably more
involved than the one given above; in return, there is a relatively easy way to define,
given an interaction term, the conditions on a labeled event structure that, on the
one hand, satisfy the interaction and, on the other, may possibly lose cold messages.
Besides this logic for interobject communication, Küster Filipe [40] defines a home
logic for the description of intraobject behavior.

Küster Filipe expands her semantics by including the ref operator [39]. This oper-
ator references an interaction fragment which appears in a different diagram. This
fragment is called an interaction use. By means of ref, interactions can be decom-
posed or, put the other way, defined hierarchically and reused. Furthermore, ref allows
the decomposition of lifelines, whose messages can trespass the diagram boundaries
through gates. Lifeline decomposition can be used for modeling components whose
internals are hidden or unknown. Küster Filipe addresses refinement by means of a
categorical construction over two categories of labeled event structures [39]. In this
setting, refinement consists of solving references to interactions and gates. This defi-
nition aims at formal reasoning and verification of complex scenario-based interobject
behavioral models; these matters have not been worked out yet.

This semantics over event structures, restricted to the simplest operators, is com-
parable to the positive semantics presented in the sections above. Beyond the core
constructs, the proposals seem to diverge, as different language fragments and
extensions are considered in each case.
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9.3.3 Other Formalisms: MSCs and LSCs

The language of message sequence charts (MSCs [30]) is designed to describe the
interaction between a number of independent message-passing instances. MSC is a
graphical scenario language, equipped with a formal semantics (see [24,25,32,41], to
name a few) and nevertheless of practical use. MSC captures interobject communica-
tion patterns typically emerging from use cases, and is easily used in conjunction with
other methods and notations. An MSC basic diagram usually contains an MSC head-
ing, a representation for one or more instances, possibly a condition, input and output
events including perhaps messages to the environment, and in some cases instance
terminations. An MSC diagram may refer to another one, and messages arising from
a referred diagram exit this diagram through a gate. The MSC language became
more sophisticated, allowing, besides higher-order diagrams, alternatives and restric-
tive conditions, general ordering, inline expressions, data, time, object orientation,
remote method calls, and so on.

Although widely used in industry, MSCs are expressively weak, as they permit
only the specification of sample scenarios that are based semantically simply on the
notion of partial order of events. MSCs allegedly turn from existential into universal
specification of behavior as the requirements evolve to a more formal and/or specific
design (see [7]). In particular, the language of MSCs leaves a number of questions
open like, such as specification of mandatory behavior, safety and liveness properties,
and activation time.

Live sequence charts (LSCs, [16]) increase the expressive power of MSCs by the
addition of constructs that allow the specification of liveness properties. LSCs impose
a clear distinction between possible and mandatory behavior and at both the global
and local levels.

As with basic MSCs, the elementary building blocks of an LSC are instances and
messages. Instances are depicted by an instance head, a lifeline, and possibly an
instance end. Messages are represented by arrows connecting lifelines. There are two
types of messages, synchronous and asynchronous. The former are associated with
horizontal arrows (→), the latter with slanted arrows with half stick heads (⇀ ). LSCs
allow the specification of time constraints either in the form of an MSC-style timer
or in interval notation. Mandatory behavior is specified by universal charts, possible
scenarios by an existential chart. Along lifelines a number of locations are identified:
for example, the point depicting the arrival of a message. Locations, messages, and
conditions have a temperature, hot or cold. Hot locations enforce progress (i.e., the
instance must move beyond the location), whereas at cold locations the instance need
not move farther. Hot messages imply that the message, if sent, will be received,
whereas cold messages may be lost. Hot conditions must be met; cold conditions that
fail to hold imply that the chart is to be exited.

An LSC consists, in general, of a pre-chart and a chart. The live interpretation
of such an LSC requires that the behavior specified by the chart must be exhibited
by a system whenever the system has shown the behavior specified by the pre-chart.
Live elements, called hot (indicating that progress is enforced), make it possible to
define forbidden scenarios. Mandatory and possible conditions, invariants, and other
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finesses, such as simultaneous regions and coregions, activation, and quantification
may also be specified.

The formal semantics of LSCs is based on the concept of timed Büchi automata
(see [7]). The acceptance criterion for Büchi automata takes the infiniteness of the
words into account. Timed Büchi automata also take the occurrence times of the
letters of words into account.

The language of LSCs is thus much more expressive than that of MSCs or of
UML 2.0 interactions. Consequently, LSCs require a more involved domain for the
definition of a formal semantics. Complexity and expressive power of LSCs have
been studied by a number of people (see, e.g., [6,17,28]). Additionally, Harel and
Maoz [27] treat the constructs assert and neg not as operators but as modalities, give
an interpretation of them into LSCs, and define a UML 2.0 profile for the positive
fragment of the language of interactions that includes those modalities; the resulting
language is called modal sequence diagrams (MSDs).

9.4 IMPLEMENTATION AND REFINEMENT

The trace-based semantics of the preceding section assigns a pair of sets of traces to
each interaction: positive and negative traces. This semantics has been developed by
following the UML 2 specification as closely as possible. However, the specification
does not tell under which circumstances a given system can be said to be complying
with an interaction, or, put differently, when a system is an implementation of an
interaction. Moreover, it would be rather useful to also have a notion of refinement
for interactions.

9.4.1 Implementation

For discussing possible notions of implementation we take a system abstractly to be
a set of traces over stateful events E (see Section 9.2.5.4); that is, we assume that
implementations and the interpretation of interactions are grounded in a common
semantic domain. For concrete systems this representation in terms of traces may be,
at least partially, achieved by appropriate instrumentation in order to monitor their
particular stateful event occurrences.

As a first possible notion of implementation [12], we say that a system I ⊆ T

implements an interaction S, written as I |= S, if I ∩ P[[S]] �=Ø and I ∩ N [[S]]=Ø,
(i.e., if I shows at least one positive trace and does not show any negative trace).
The definition is sensible, since it can easily be verified by induction that in the
trace-based semantics each interaction shows at least one positive trace.24 Another
possibility [36] is to require a system simply not to show any negative traces but

24 When an interaction operator such as “refuse” [36] is introduced, which does not show positive traces,
the implementation relation |= may be weakened as follows: I |= S if P[[S]] �=Ø, I ∩ P[[S]] �=Ø, and
I ∩N [[S]]=Ø.
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to be indifferent to positive and inconclusive traces. This notion of implementation
assumes that an assert is used to rule out inconclusive traces.

Either definition allows us to handle interaction formulas, introducing boolean
connectives for interactions. Writing S1 ∧ S2 for “interaction S1 and interaction S2

must hold,” then I |= S1 ∧ S2 amounts to I |= S1 and I |= S2 in the classical sense
[i.e., I ∩ (P[[S1]] ∩ P[[S2]]) �=Ø and I ∩ (N [[S1]] ∪N [[S2]])=Ø]. Similarly, writing
¬S for “interaction S must not hold,” then I |=¬S, again interpreted classically,
amounts to I ∩P[[S]]=Ø or I ∩N [[S]] �=Ø. Note that I |= ¬ S and I |= neg(T ) [with
S= sd(n, T )] are quite different. We can also introduce an or connective S1 ∨ S2 as
an abbreviation for ¬((¬S1) ∧ (¬S2)), and again I |= S1 ∨ S2 is quite different from
I |= alt (T1, T2) [with S1= sd(n1, T1), S2= sd(n2, T2)].

However, a single interaction or a set of interactions to be interpreted conjunctively
rarely are used to describe an entire system. Generally, interactions are employed for
describing particular situations of communication and interaction, and these situa-
tions may come up only once in awhile in a system and need not cover its complete
behavior. This can be expressed in interactions by surrounding the interaction frag-
ment describing such a partial behavior by ignore or consider. But what is left open is
the possibility of identifying when a given interaction has to be obeyed during system
execution and when it is not relevant, that is, being able to define a precondition under
which an interaction takes effect (see the discussion on LSCs in Section 9.3.3). Let
us write S1 � S2 to mean informally: If interaction S1 occurs in an implementation,
then S2 has to occur afterward. This amounts formally to defining I |= S1 � S2 to hold
if for all t1 ∈T and t2 ∈T with t1 ;<> t2 ∈ I , if {t1} |= S1, then {t2} |= S2.

9.4.2 Refinement

Refinement is a well-known concept in computer science. Given any specification
formalism, be it a model or a program, refinement refers to the verifiable transforma-
tion of an abstract (high-level) word into a concrete (low-level) word of that language.
Refinement can also cross language boundaries and relate a specification with a pro-
gram; in this case the relation is sometimes called implementation. The emphasis here
is put on the verifiability of the transformation. For this purpose, a formal semantics
is indispensable.

An implementation relation between interaction diagrams (or interaction terms)
and sets of traces supplies the natural basis for the definition of refinement: An inter-
action S′ refines an interaction S, denoted by S � S′ if any implementation of S′ is also
an implementation of S (see [12]). Obviously, this refinement relation is reflexive,
transitive, and antisymmetric (i.e., a partial order). This definition is the classical,
model-theoretic notion; other possibilities are conceivable, like syntactical transfor-
mation of terms such that some conditions hold (e.g., the transformation rules are
semantics preserving or semantics narrowing).

On the one hand, S � S′ if I |= S′ implies that I |= S. On the other, I |= S if I ∩
P[[S]] �=Ø and I ∩ N [[S]]=Ø. Therefore, refinement is verifiable.

Notice that if associated with S′ there are more positive traces and fewer negative
traces than with S (i.e., if P[[S]] ⊆ P[[S′]] and N [[S′]] ⊆ N [[S]]), then S � S′. This is
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not necessarily the only possibility. The verification of refinement via computing the
sets of positive and negative traces can become very cumbersome. More interesting
than this type of mathematical gymnastics with pairs of pairs of arbitrarily big trace
sets is an inference system that allows the derivation of pairs of interaction terms in the
refinement relation. Unfortunately, the interaction-building operators do not possess
very useful properties in combination with a notion of refinement based on model
inclusion. For instance, in general they are not monotonic: that is S1 � S′1 does not
imply op(S1, . . . ) � op(S′1, . . . ) for every operator op. In some cases an inference is
possible; a number of rules is given by Calegari García et al. [9,12].

A different notion of refinement in terms of reduction of uncertainty is given by
Störrle: Two interactions are in the refinement relation when the sets of positive and
negative traces of the abstract interaction, respectively, are included in the sets of
positive and negative traces of the concrete interaction (see [49,50]). This definition
requires disjointness of the sets of positive and negative traces associated with an
arbitrary interaction.

In contrast, Kobro Runde et al. [36] require disambiguation of inconclusive traces
and/or narrowing of the set of positive traces, thus reducing underspecification. This
work includes an enlightening discussion on the differences between underspecifica-
tion, object of disambiguation by refinement, and inherent nondeterminism, which is
not to be removed from the abstract specification. The approach is part of STAIRS [37],
a framework for stepwise development based on refinement of interaction specifica-
tions. Some interaction-building operators are not monotonic with respect to this
notion of refinement, as discussed by Oldevik and Haugen [46]. Lund [43] presents a
trace generation algorithm which to a great extent conforms25 with the denotational
semantics for interactions defined in STAIRS, as well as algorithms for test generation
and test execution. Therein, trace generation and refinement à la STAIRS are used to
devise a method for refinement verification.

9.5 VERIFICATION AND VALIDATION

As descriptions of emergent behaviors, interactions lend themselves to be seen as
properties of a system that have to be verified. This view is also reflected by the
notions of implementation in Section 9.4.1. On the other hand, interactions may
also be interpreted as executable, high-level specifications, which should be used for
validation in system development.

9.5.1 Model Checking

To verify that a particular interaction is indeed satisfied by a given system, research has
concentrated mostly on the fully automatic technique of model checking. Interactions

25 The operational semantics for seq does not take into account possible interleavings of events in the two
operands [see rule (seq3

G) in Table 9.14].
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are turned into logical, temporal formulas or directly to some kind of automata that
then can be run against the system.

Model checking of MSCs and LSCs has been studied in great detail (see [5,7,
33,42]). For UML interactions based on this previous work, a translation of a frag-
ment of interactions into interaction automata has been developed [35]. The language
fragment handles basic interactions and the operators seq, par, strict, ignore, as well as
state invariants; loop is restricted to containing only basic interactions, as otherwise the
model-checking problem becomes undecidable [1]. The interaction automata, inter-
preted as Büchi automata, are checked against instrumented UML state machines
using the model translation tool Hugo/RT and the model checker Spin.

A similar goal is followed by Charmy [3]. The focus of Charmy is on architec-
tural descriptions and verification of their consistency. The semantics of interactions,
given by translation rules, however, deviates from the one presented here; currently,
combined fragments are not supported.

9.5.2 Animation

The most outstanding example of interaction animation is the Play Engine (see [29]).
The tool implements an extension of LSCs and supports two techniques. The first,
called play-in, allows the intended system to be supplied with scenario-based behavior
specificatons using a graphical user interface. The second, called play-out, permits
execution or animation of the behavior specified. These two techniques combined
constitute the play-in/play-out methodology.

The Play Engine can be used in more than one phase of system development: for
instance, for requirements elicitation and for prototyping and testing. The authors also
propose use of the Play Engine to program reactivity, which is based on interobject
communication and thus closer to the way in which systems and their behavior are
conceived. This is only possible because the language of LSCs was extended with
symbolic instances and allows a message to cause a change of state in the destination
instance. In this way, an instance can react to incoming messages also according to
its internal state.

The animation, or play-out, is highly nontrivial. The scenarios specified may
be very sophisticated, including the above-mentioned symbolic instances and state
changes caused by message processing as well as the entire paraphernalia of LSCs,
such as time and forbidden elements, may and must conditions, hot and cold messages,
and universal and existential charts.

The semantics of the LSCs extension is not given just in the form of a tool. The
Play Engine is accompanied by an operational semantics given as a transition system
whose definition is based on the concepts of object-oriented system modeling and
cut of a chart. There are two types of transitions, steps and supersteps. A superstep
is a sequence of steps, and a step is an event carried out by the system in response
to the input by the user. Once a stimulus has arrived, and due to underspecification
and/or nondeterminism, more than one superstep may be enabled. Some of these
enabled supersteps may, however, lead to an inconsistent system state that violates
a constraint. The smart play-out mechanism of the Play Engine uses formal analysis
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methods, mainly model checking, to find a correct superstep if one exists, or to prove
that a correct superstep does not exist. Complex case studies have been carried out
using the Play Engine, such as the one reported by Combes et al. [14].

Apart from the Play Engine there are other tools, like Rhapsody (see [4]) and
Unistep (see [52]), that support interaction animation. Because these tools are only
commercially available, details on the respective realizations are not public.

A further animation of interactions was reported by Burd et al. [8], focusing on
comprehensibility of interactions. An experiment was carried out which from a ped-
agogical point of view, showed that the number of misinterpretations considerably
declines when users are in front of an animated interaction instead of a static rep-
resentation. Animated interactions are also employed for requirements testing in the
spirit of control flow analysis (see [23]).

Some other approaches translate interactions into a formalism susceptible to ani-
mation. Fernandes et al. [20] translate interactions, possibly including the operators
opt, alt, par, and loop, and the interaction fragment ref, into colored Petri nets, which
are then animated. In a similar manner, a set of MSCs can be translated into a statechart
(see [26,38]) which is susceptible to animation (see, e.g., [4,18,53]).
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CHAPTER 10

CO-ALGEBRAIC SEMANTIC
FRAMEWORK FOR REASONING
ABOUT INTERACTION DESIGNS
SUN MENG
CWI, Amsterdam, The Netherlands

LUÍS S. BARBOSA
Department of Informatics, Minho University, Braga, Portugal

10.1 INTRODUCTION

The aphorism modeling is for reasoning, which even if in an implicit way, underlies
most research in formal methods, sums up the fundamental interconnection between
modeling and calculation. The former is understood as the ability to choose the
right abstractions for a problem domain. The latter concerns the need to express
such abstractions in a framework whose mathematical structure is sufficiently rich
to enable rigorous reasoning either to establish models’ properties or to transform
models toward effective implementations.

Recalling such an interconnection seems particularly appropriate with respect to
the formalization attempts of UML 2.0. The number and diversity of diagrams express-
ing a UML model makes it difficult to base its semantics on a single framework. On
the other hand, some of the formalizations proposed in the literature are essentially
descriptive and difficult to use.

There are at least two levels at which the contribution of a formal semantics for the
UML is deeply needed. One concerns model composition (their operators and the laws
that govern their behavior), the other model refactoring (i.e., model transformations
that preserve external behavior while improving their internal structure).

In this chapter we introduce a new, co-algebraic semantics for UML 2.0 interaction
models represented, as usual, by sequence diagrams. The semantics proposed was
partially sketched by Meng and Barbosa [25]. Moreover, a set of operators for such

UML 2 Semantics and Applications. Edited by Kevin Lano
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diagrams, described informally in UML superstructure 2.1.1 [30], is formally char-
acterized, settling the bases for a calculus to reason about them. Finally, we discuss
how both composition and refactoring laws for sequence diagrams can be dealt with
within the proposed framework. This extends previous work by the authors in seeking
a unifying co-algebraic semantics for UML, as reported in [4,41,42]. Those references
introduced a semantics for class diagrams, use cases, and statecharts based on co-
algebras [38] taken as a suitable mathematical structure for expressing the behavior
of state-based systems. A similar approach is taken here for sequence diagrams. In all
cases, the co-algebraic point of view puts forward a well-defined notion of behavior,
as equivalence classes for the bisimilarity relation induced by the particular functor
used, upon which properties of UML models can be formulated and checked.

Although the emphasis is placed on the formalization of sequence diagrams, this
chapter also intends to be an almost tutorial introduction to the use of co-algebraic
techniques in semantics. Main concepts and tools are introduced in Section 10.2, with
a UML class diagram acting as a running example.

Mathematically, co-algebras are the formal duals of algebras, exactly in the sense
that makes observation and construction symmetric notions. Differently from famil-
iar, inductive data types, which are completely defined by a set of constructors, the
sort of computational structures that co-algebras can describe admits only behavioral
characterizations, as we will see soon. Typical examples of such structures are pro-
cesses, transition systems, objects, streamlike structures used in lazy programming
languages, “infinite” or non-well-founded objects arising in semantics, and as we
want to argue in this chapter, interaction models among software systems, as seen
from the point of view of the working, model-based software architect.

The remainder of this chapter is organized as follows. In Section 10.2 we introduce
co-algebras and related notions of behavior and bisimulation. This is applied later to
the construction of a semantic model for sequence diagrams in Section 10.3 and
construction of their combinators in Section 10.4. Section 10.5 illustrates how UML
2.0 diagram annotations (such as typical neg or critical tags) can be incorporated within
the model. Finally, Section 10.6 covers semantics “in action,” illustrating its use to
prove properties of combinators and detailing the corresponding proof techniques.
Some pointers for current and future work are collected in Section 10.7.

10.2 WHY CO-ALGEBRAS?

10.2.1 Classes and Co-algebras

Our starting point is that any useful semantic framework for UML descriptions should
be able to address two factors:

• Diagram composition, defining and investigating operators and laws that govern
the behavior of the underlying models

• Diagram refactoring, in the sense of the original definition of this term given
by Opdyke almost two decades ago, understood as “the process of changing a
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FIGURE 10.1 An example class diagram.

software system in such a way that it does not alter the external behavior of the
code, yet improves its internal structure” [31].

In both cases a precise notion of behavior and a calculational approach to behav-
ioral equivalence and refinement is the key issue. Actually, such notions are at the
kernel of co-algebra theory [15,38], often suitably called the mathematics of dynamic
systems. In particular, co-algebra theory provides a standard notion of systems’behav-
ior in terms of the bisimilarity relation induced by the signature functor, a technical
way to capture a suitable notion of system’s interface. As explained below, refinement,
will correspond to the ability of a diagram to simulate another in a quite precise way.

Experience seems to validate our claim that co-algebra theory may provide an
expressive and powerful framework for studying the semantics of UML diagrams, as
widely documented [4,25,41,42]. Thus, before delving into the details of a semantics
for interaction designs, this section should be read as a tutorial introduction to the
co-algebraic framework for the working systems’ architect. Our running example to
introduce the main ideas and notation is a fragment of the class diagram depicted in
Figure 10.1, corresponding to a simplified model of a video rental e-business.

The model is certainly self-explanatory. In any case we focus only on class Mem-
bership. The aim of a class declaration is to introduce a signature of attributes and
methods. As a representation of object families, a class can actually be regarded as a
specification of state-based structures, encompassing the following basic elements:

• The presence of an internal state space that evolves and persists in time
• The possibility of interaction with other class instances through well-defined

interfaces and during the overall computation
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This favors adoption of a behavioral semantics: Class instances are inherently
dynamic, possess an observable behavior, but their internal configurations remain
hidden and should be identified if they are not distinguishable by observation. The
qualificative “state-based” is thus used in the sense that the word state has in automata
theory: the internal memory of the automaton which both constrains and is constrained
by the execution of system operations.

Class Membership in Figure 10.1 introduces two attributes and a method over
a state space, identified in the sequel by the variable U, which is made observable
exactly (and uniquely) by the attributes and methods it declares. Concretely,

joined : U −→ Date

lastHire : U −→ Date

pay : U × R −→ U

An alternative “black box” view hides U from the class environment and regards
each operation as a pair of input/output ports. Such a “port” signature of, for example,
the lastHire attribute is given by

lastHire : 1 −→ Date

where 1 stands for the nullary (or unit) datatype (i.e., a representation of the singleton
set). The intuition is that lastHire is activated with the simple pushing of a ‘button’ (its
argument being the class instance private state space), whose effect is the production
of a Date value in the corresponding output port. Similarly, typing pay as

pay : R −→ 1

means that an external argument is required on activation but no visible output is
produced, but for a trivial indication of successful termination. Such “port” signatures
are grouped together in the layout below, in which all occurrences of 1 are dropped:

⎧⎪⎨⎪⎩
joined : 1 −→ Date

lastHire : 1 −→ Date

pay : R −→ 1 •

�������	

Membership

Date× Date

R

This setup represents the class input interface (in the upper part) and its output interface
(in the lower part). The behavior of class Membership instances is given solely in terms
of these interface types. Let us detail how and why, making the state space explicit
once again. Note that the three declarations can be grouped into one through a split
construction:

〈joined, lastHire, pay〉 : U −→ Date× Date× UR (10.1)
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where the notation pay denotes the currying of pay.1 Therefore, we write

[[Membership]] = 〈joined, lastHire, pay〉 (10.2)

That is, the semantics of each instance of class Membership is given by the function
(10.1), which describes how it reacts to input stimuli, makes its attributes avail-
able, and changes state (i.e., as a co-algebra U −→TU for datatype transformer
T X =Date×Date×UR), as explained in the sequel.

The basic insight in co-algebraic modeling is that for an arbitrary T, a state-based
system can be represented by a function

p : U −→ TU (10.3)

For every state u∈U, the function p describes the observable effects of an elementary
step in the evolution of the system (i.e., a state transition). The possible outcomes of
such a step are captured by the notation TU. Technically, T is a functor.2 Intuitively,
it is a shape for the observations allowed.

Let us consider a few possible alternatives for T. An extreme case is the “opaque”
shape T= 1: no matter what one tries to observe through it, the outcome is always the
same. A slightly more interesting case is T= 2, which has the ability to classify states
into two different classes (say, “black” and “white”) and therefore to identify subsets
of U. Should an arbitrary set O be chosen, the possible observations become more
discriminating. Naturally, the same “universe” can be observed through different
attributes, and furthermore, such observations can be carried out in parallel, as in, for
example, T=O×O′.

The case of a “transparent” T (i.e., TU =U) is not particularly useful: Any function
p : U −→ U is a co-algebra for T. But this also means that by using p, the values
in the state space U can indeed be modified. On the other hand, the absence of
attributes makes any meaningful observation impossible. More interesting, however,
are interfaces able to model, for example, computational partiality (TU =U + 1) or
nondeterminism (TU =PU) for PU the finite powerset of U or input triggering
(TU =UI ), among many others. Technically:

1 To emphasize the dependency of the possible observations X from the input, we resort to the standard
mathematical notation XI for functional dependency instead of the equivalent I→X more familiar in
computing.

2 Note that our semantic constructions “live” in a space of typed functions, something one could model as
a graph with sets as nodes and set-theoretic functions as arrows. As functions (with the right types) can be
composed and, for each set S, one may single out a function ids (the identity on S) acting as the neutral
element for composition, this working universe has the structure of a (partial) monoid (i.e., a category).
In this setting a functor is simply a function T over this universe which preserves the graph and monoidal
structure (i.e., for each function f : A −→ B, Tf is typed as TA−→TB) and verifies

TidX = idtX and T(f · g) = Tf · Tg

As with most conceptual structures used in mathematics and computer science, this notion is borrowed
from category theory [22], where it can be appreciated in its full genericity.
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Definition 10.2.1 The pair 〈U, p : U −→ TU〉 constitutes a co-algebra for functor
T over carrier U. A morphism connecting two such co-algebras is a function between
their carriers making the following diagram commute:

U
p

��

h
��

TU

Th
��

U ′
p′

�� TU ′

(10.4)

T co-algebras and the corresponding morphisms form a category whose composi-
tion and identities are inherited from Set, the usual category of sets and functions.

Back to our class diagram, note that, in general, the semantics [[c]] of a class c is
given by a specification of a co-algebra

〈at, m〉 : U −→ A× UI (10.5)

where A is the attribute domain (Date×Date in the example above), and each method
accepts a parameter, of type I (R, above), and delivers a state change, that is, a
co-algebra for the functor3

T : X −→ A× XI (10.6)

Typically, I is a sum type, aggregating the input–output parameters of each method
declared. In its turn, A is usually a product type joining all attribute outputs in a way
that emphasizes that each of them is available independent of the others, and therefore
is always able to be accessed in parallel.

10.2.2 Behavior and Bisimulation

By now one may ask what a convenient functor for co-algebraic models of software
system interactions would be and what notion of system behavior such a choice would
enforce. These questions are discussed in detail in Section 10.3. For the moment,
however, let us stick to a few variants of an elementary, deterministic model in order
to introduce the basic ideas of co-algebraic modeling applied to software systems.

The simplest model one could think of is that of systems inspected by an attribute
at : U −→ O and reacting (deterministically) to a method (or action) m : U −→ U
with no external influence (but for, say, pushing a button). Those two functions can
be “glued” together leading to the co-algebra

p = 〈at, m〉 : U −→ O× U (10.7)

Successive observations of (or experiments with) system p reveals its behavioral
patterns.

3 In the general case, we should also consider methods producing visible outputs, in which case the relevant
functor becomes T : X −→A× (O×X)I , where O is the method output type, which was trivially 1 in the
Membership example; see the article by Meng and Barbosa [25] for details.
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For each state value u∈U, the behavior of p at u (more precisely, from u onward) —
represented by [(p)] u — is an infinite sequence of values of type O computed by
observing the successive state configurations, that is,

[(p)] u = <at u, at (m u), at (m (m u)), . . .> (10.8)

Thus, the space of all behaviors for this sort of system is the set of streams (infinite
sequences) of O (i.e., Oω).

Bringing input information into the scene leads to a mild sophistication of this
model. The result is known as a Moore transducer, a classical notion in automata
theory [28], where each state is associated to an output symbol. Generalizations of
Moore machines play a fundamental role in the semantics of UML diagrams. The
semantics of classes, as discussed above, is an example. As we will see in Section 10.3,
the semantics of sequence diagrams is another. Thus, it pays to take them as our
running example in the sequel.

Consider, then, an elementary Moore transducer

p = 〈at, m〉 : U −→ A× UI (10.9)

Its dynamics can be decomposed in the following transition relations:

u
i−→p u′ ⇔ m u i = u′ (10.10)

u ↓p b ⇔ at u = b (10.11)

On the other hand, the behavior of p at (from) a state u∈U is revealed by successive
observations (experiments) triggered on the input of different values i∈ I:

[(p)]u = <at u, at (m u i0), at (m (m u i0) i1), . . .> (10.12)

or, in a recursive definition,

[(p)]u nil = at u (10.13)

[(p)]u (i : t) = [(p)] (m u i) t (10.14)

Behaviors of Moore transducers organize themselves into tree-like structures, because
they depend on the sequences of input processed. Such trees, whose arcs are labeled
with I values and nodes with A values, can be represented by functions from sequences
of input type I to the attribute type A. In other words, the space of behaviors of Moore
machines (on I and A) is the set AI∗ .

Instantiating diagram (10.4) for functor (10.6) defines a morphism h : 〈at, m〉 −→
〈at′, m′〉 as a function connecting their state spaces, which satisfies the following
equations:

at′ · h = at (10.15)

m′ · (h× id) = h ·m (10.16)
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Clearly:

Lemma 10.2.1 Morphisms preserve attributes and transitions.

Proof:

u
i−→p u′ and u ↓p a

⇔ {definition}
m(u, i) = u′ and at u = a

⇔ {Liebniz}
h m(u, i) = h u′ and at u = a

⇔ {h is a morphism}
m′(h u, i) = h u′ and at′ h u = a

⇔ {definition}

h u
i−→q h u′ and h u ↓q a �

Observe now that set AI∗ of behaviors can itself be equipped with the structure of
a Moore machine as well. Actually, define

ω = 〈mω, atω〉 : AI∗ −→ A× (AI∗ )I (10.17)

where

atω f = f nil (i.e., the attribute value before any input is received)

mω f i = λ s · f (i : s) (i.e., every input determines its evolution)

Note that a state in ω is a function f . Therefore, the attribute is computed by function
application, whereas the method gives a new function that reacts to a sequence s of
inputs exactly as f would react to the appending of i to s.

Having turned the set of observations AI∗ into a co-algebra itself, it is not surprising
that every state of a machine p can be mapped into its behaviors in a “well-behaved”
way. In other words:

Lemma 10.2.2 The behavior [(p)] of a co-algebra p can be singled out as a morphism
from p to ω.

Proof: For [(p)] : p −→ ω, we check the corresponding instances of conditions
(10.15) and (10.16):

atω · [(p)] = at and mω · ([(p)]× id) = [(p)] ·m (10.18)
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Thus,

atω · [(p)] = at

⇔ {introduction of variables}
atω([(p)] u) = at u

⇔ {definition of atω}
([(p)] u)nil = at u

⇔ {definition of [(p)]}
true

and similarly,

mω · ([(p)]× id) = [(p)] ·m
⇔ {introduction of variables and application}

mω([(p)] u, i) = [(p)] m (u, i)

⇔ {definition of mω}
λ s · ([(p)] u) (i : s) = [(p)] m (u, i)

⇔ {introduction of variables and application}
([(p)]u)(i : t) = ([(p)] m (u, i)) t

⇔ {definition of [(p)]}
true �

Note that a fundamental result on co-algebra morphisms is behavior preservation.
Formally, given two co-algebras p and q and a morphism h : p −→ q between them,

[(p)]u = [(q)]hu (10.19)

This leads to a precise and generic notion of behavior: any two states generate the
same behaviour if they can be identified by a co-algebra morphism.

By induction on I∗, it can be proved that there is always a morphism [(p)] from any
p to ω and, as morphisms preserve behavior, such a morphism is unique. This makes
ω a very special Moore co-algebra: It is the only such co-algebra to which, from any
other one, there is one and only one morphism. We say that ω is the final Moore
machine. Finality is an example of a universal property4 which, up to isomorphism,
provides a complete characterization of ω.

4 Because, roughly speaking, it singles out an entity (ω) among a family of “similar” entities to which
every other member of the family can be reduced or traced back. The study of universal properties is the
“essence” of category theory.



258 CO-ALGEBRAIC SEMANTIC FRAMEWORK

Actually, suppose that finality is shared by two Moore co-algebras, ω and ω′. The
existence component of the property gives rise to two morphisms h and h′ connecting
both machines in reverse directions. On the other hand, uniqueness implies that
h · h′ = id and h′ · h= id, thus establishing h and h′ as isomorphisms. These two
aspects of finality provide both a definition scheme and a proof principle upon which
co-algebraic reasoning is based. In general:

Definition 10.2.2 Whenever the space of behaviors of a class of T co-algebras can
be turned into a T co-algebra itself (written as ωT : νT −→ TνT), this is the final
co-algebra: From any other T co-algebra p there is a unique morphism [(p)] making
the following diagram commute:

νT
ωT �� TνT

U
p

��

[(p)]

��

TU

T[(p)]

��

The universal property is, equivalently, captured by the following law:

k = [(p)]⇔ ωT · k = Tk · p (10.20)

Morphism [(p)] applied to a state value u gives, of course, the (observable) behavior
of a sequence of p transitions starting at u. It is called the coinductive extension of
p [44] or the anamorphism generated by p [23]. Co-algebra p is referred to as its
gene. In this context, equation (10.20) is the basic tool for calculating with behaviors.
Being an universal property, it asserts, for each gene co-algebra p, the existence and
uniqueness of its coinductive extension [(p)].

As we have already remarked, the existence part of this universal property pro-
vides a definition principle for functions to spaces of behaviors (technically, carriers
of final co-algebras). This is called definition by co-recursion and boils down to
equipping the source of the function to be defined with a co-algebra to capture the
“one-step” dynamics in the behavior-generation process. This is exactly the way
that component combinators will be defined in Section 10.4. Then the corresponding
anamorphism gives the rest. The uniqueness part, on the other hand, entails a powerful
proof principle: coinduction.

Behavioral equivalence can also be defined in terms of anamorphisms:

Definition 10.2.3 Two states u and v in the carriers of coalgebras 〈U, p〉 and 〈V , q〉,
respectively, are behaviorally equivalent, represented by u∼ v, iff [(p)] u= [(q)] v.

Therefore, the final co-algebra can be characterized alternatively as a co-algebra
whose carrier is composed by all equivalence classes of behavioral equivalence.
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By equality (10.19), a somewhat simpler way of establishing behavioral equiva-
lence, which has the advantage of not depending on the existence of final co-algebras,
is to look for a morphism h such that one of the states is the h-image of the other.
Once conjectured, h determines a relation R⊆U ×V such that

〈u, v〉 ∈ R ⇒ u ∼ v (10.21)

Such a relation is, of course, the graph of h (i.e., {〈x, h x〉| x ∈U}). Can this idea be
generalized? More precisely, what properties must a relation R have so that one can
conclude u∼ v simply by checking whether 〈u, v〉 is in R? Such a relation can be
characterized and is called a T-bisimulation. Formally,

Definition 10.2.4 A (T)-bisimulation relating co-algebras p and q is a relation over
their carriers which is closed for their dynamics, that is,

(x, y) ∈ R ⇒ (p x, q y) ∈ TR (10.22)

Getting rid of variables, (10.22) becomes the following inequality in the language
of the (pointfree) calculus of binary relations [2]:

R ⊆ p◦ · (TR) · q (10.23)

where p◦ stands for the relational converse of p. Applying the shunting rule of the
calculus on p◦, this simplifies to

p · R ⊆ (TR) · q (10.24)

Informally, two states of a T co-algebra (or of two different T co-algebras) are
related by a bisimulation if their observation produces equal results and this is main-
tained along all possible transitions (i.e., each one can mimic the other’s evolution).
Originally, the notion was introduced in a functional formulation by Segerberg [39]
and in a relational one by van Benthem [7]. Park’s landmark paper [32] made bisimu-
lation a basic tool in the context of process calculi. Later, Aczel and Mendler [1] gave
a categorical definition which applies not only to the type of transition systems under-
lying the operational semantics of process calculi, but also to arbitrary co-algebras.
Bisimulation acquired a shape: the shape of the chosen observation interface T.

10.2.3 Properties and Invariants

Co-algebra theory also provides a way to express and reason about properties of
systems. For example, to give semantics to the whole of a UML class diagram, such
as the one depicted in Figure 10.1, both constraints and associations must be taken into
account. The former are typically attached to class specifications and their semantic
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effect is to constrain what co-algebras count as valid implementations for the class.
Such is the case, for example, of constraint

balance > 0

attached to class Membership in our running example. Associations can also be
interpreted as constraints, with respect to the subdiagram formed by the relevant
associated classes, as discussed by Barbosa and Meng [4].

In general, constraints are predicates that are supposed to be preserved along
the system lifetime. Formally, they are incorporated in the semantics as invariants.
Following the approach recently proposed in by Barbosa et al. [5], such predicates,
once encoded as coreflexive relations, that is, fragments of the identity, according to

y �P x ≡ y = x ∧ P x

can be specified as invariants for a co-algebra q as follows:

q ·�P ⊆ T �P · q (10.25)

When reasoning about diagram transformations such as refactoring, constraints entail
proof obligations. For example,

[[balance > 0]] = [[Membership]] ·�balance>0 ⊆ T �balance>0 · [[Membership]]

needs to be discarded whenever justifying a refactoring involving class Membership.

10.2.4 Discussion

Only recently, co-algebra theory emerged as a common framework to describe
state-based dynamical systems. Its study, along the lines of universal algebra, was
initiated by Rutten [36,38]. There are a number of tutorials and lecture notes (see,
e.g., [10,15,19]) to which the interested reader can be referred to. The proceed-
ings of the Coalgebraic Methods in Computer Science workshop series, initiated
in 1998, document current research ranging from the study of concrete co-algebras
over different base categories [27,44] to the development of Set-independent (i.e.,
purely categorical) presentations of co-algebra theory (see, among others, [9,33,44]),
from co-algebraic logic (e.g., [20,29]) to applications. Application examples range
from automata [37] to objects [13,34], from process semantics [3,21,45] to hybrid
transition systems [12]. Jacobs and his group, following earlier work by Reichel
[11,34], have coined the term co-algebraic specification [14,16,35] to denote a style
of axiomatic specification involving equations up to bisimilarity acting as constraints
on the observable behavior.

10.3 A SEMANTICS FOR UML SEQUENCE DIAGRAMS

Graphically, a UML sequence diagram has two dimensions: a horizontal dimension
representing the participants in the scenario, and a vertical dimension representing
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:Consortium:Banksite

OnLineBankLogonsd

FIGURE 10.2 Annotated sequence diagram.

time. Participants evolve along lifelines, represented by vertical dashed lines. Interac-
tions between participants are shown as horizontal arrows called messages. A message
is a communication between two participants, and specifies both the type of commu-
nication (synchronous or asynchronous) and the associated sending and receiving
event occurrences. Events situated on the same lifeline are ordered in time from the
top down.

Figure 10.2 shows sequence diagrams that describe the interactions in the login
phase of an online banking scenario. A UML SD is represented as a rectangular
frame labeled by the keyword sd followed by the interaction name. The vertical
lines in the SD represent lifelines for the individual participants in the interaction.
Different SDs can be combined to describe complex scenarios; details are discussed in
Section 10.4.

A message defines a particular communication between lifelines of an interaction.
It can be either asynchronous or synchronous. Additionally, there are two special
types of messages, lost and found, with the obvious meaning, which are described by
a small black circle at the arrowhead, or origin, respectively.
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The signature of a UML sequence diagram is defined as follows:

Definition 10.3.1 A sequence diagram sd is given by a tuple

(I , Loc, Mes, Locini, loc, E,≤ )

where:

• I is a set of instance identifiers corresponding to the participants in the interaction
described by the diagram.

• Loc is a set of locations.
• Mes is a set of message labels.
• Locini⊆ Loc is a set of initial locations.
• loc : I→ 2Loc associates to each instance a set of locations. The function satisfies

the following conditions expressing disjointness and conformity with the initial
constraints, respectively,

∀i, j ∈ I , i �= j · loc(i) ∩ loc(j) = Ø (10.26)

∀i ∈ I · card(loc(i) ∩ Locini) = 1 (10.27)

where card(S) is the cardinality of S.
• E⊆ Loc×Mes× Loc is a relation such that the tuple (l1, m, l2) represents a

message m sent from location l1 to location l2.
• ≤⊆Loc× Loc is a partial order capturing the relative positions of locations

within each of the diagram lifelines.

Note that, in general, for an edge to represent a communication between partici-
pants in a sequence diagram, its source and target locations cannot be the same; that
is, the following property is assumed:

∀(l1, m, l2) ∈ E · l1 �= l2 (10.28)

On the other hand, local events, which by definition are relative to a unique participant,
are represented by reflexive edges at a particular location [e.g., (l, a, l)].

Within this model function, next : Loc→ Loc returns locations of a particular
participant and the next location in a particular lifeline,

next(l) = l′ iff ∃i ∈ I · l, l′ ∈ loc(i) ∧ l < l′ ∧ ∀l′′ ∈ loc(i) · l < l′′ ⇒ l′ ≤ l′′

Let l1, l2 range over Loc, and �m be the set of communication events relative to
messages exchanged in a sequence diagram sd. Such events have one of the following
forms:

1. 〈l1-→ l2, m〉—l1 sends asynchronously message m to l2.

2. 〈l1←- l2, m〉—l1 receives asynchronously message m from l2.
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3. 〈l1 �→ l2, m〉—l1 sends synchronously message m to l2.

4. 〈l1←� l2, m〉—l1 receives synchronously message m from l2.

Note that a lost, represented by •− (respectively, a found, represented by −•)
message corresponds to an asynchronous sending (respectively, receiving) event to
(from) an unknown location. The type of an arbitrary event e∈�m,

type(e) ∈ {-→,←-, �→,←�, •−,−•}
denotes the type of the event (respectively, sent/received/lost/found an asynchronous
message, and sent/received a synchronous message). Since sending and receiving a
synchronous message (i.e., events e=〈l1 �→ l2, m〉 and e=〈l2←� l1, m〉, respec-
tively) happen simultaneously, we resort to notation 〈e, e〉 to denote the occurrence
of such a pair of events. Finally, let �τ denote the set of local actions in a sequence
diagram. Such actions have the form 〈l � a〉, which means local action a happens at
location l. We use � as an abbreviation of �m ∪�τ . The set of all event occurrences
in a sequence diagram is denoted by � and defined as

�=� \ {e | type(e)=�→∨ type(e) =←�} ∪ {〈e, e〉 | type(e)=�→} (10.29)

For any event e∈�, the location at which e happens is defined by π(e)= l iff
e=〈l(· · ·)〉. This notation generalizes to a set of events �′ ⊆� as

π�′ = {π(e) | e ∈ �′}
and π(〈e, e〉)={π(e), π(e)}.

A configuration for a sequence diagram denotes a global state, joining together all
participants’ local states. For every configuration, there is a set of active events that
may happen.

Definition 10.3.2 A configuration G of a sequence diagram is a tuple of participants’
local states (locations).

Suppose that C denotes the set of all possible configurations, and let function ε :
C −→P (�) return the set of active events on a given configuration. A configuration
G is called final if ε(G)=Ø. For a configuration G and event e, π(e)∈G means that
π(e) is a location in G.

In this context, the semantics of a sequence diagram sd can be given by a split of
two functions over C:

〈ε, α〉 (10.30)

where ε was defined above and α : C −→ C� captures the diagram’s state transition
relation triggered by event occurrence. The pair

(C, 〈ε, α〉) (10.31)
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together with an initial configuration c0 (i.e., a tuple of initial locations, one per
diagram column), is a pointed co-algebra for the functor

TX =P�× X� (10.32)

The set of enabled events is recorded as a state attribute.
A fundamental observation is that (10.32) is an instance of a functor (10.5). There-

fore, the semantics of a sequence diagram can be regarded as yet another instance of
a Moore transducer.

One of the advantages of this semantics is to make explicit that a set of enabled
events is present in the initial state (i.e., before any interaction occurs). Another
advantage is the quite simple form taken by the carrier of the corresponding final
co-algebra, as discussed in Section 10.2.2:

ν =P�
�∗

(10.33)

(i.e., a function that relates each � traces to the set of enabled events upon completion
of its execution). As the empty trace 〈 〉 is a valid trace, one can talk of an initial set
of enabled events. To capture the intended semantics for sequence diagrams, this is
defined as

ε(c0) = {e | π(e) ∈ Locini ∧ type(e) �=←-} (10.34)

Finally, note there is a well-formedness condition on T co-algebras suitable as
models of sequence diagrams: In a given state s∈G, only events enabled in s can be
triggered. Formally,

〈∀e, s : e ∈ �, g ∈ G : e �∈ ε(s) ⇒ α(s, e) = s〉 (10.35)

Clearly, if at a given state s∈G the set of enabled events becomes empty [i.e.,
ε(s)=Ø], the diagram will remain indefinitely in the same state.

To define functions ε and α, we proceed by enumerating all possible transition
schemes. First, note that if an event e is not active in a configuration G [i.e., either
e �∈ ε(G) or π(e) �∈G], it will not be executed until by some other event occurrence,
e is added to the set of active events. This case is captured by a trivial transition

α(G, e) = G

and

ε(α(G, e)) = ε(G)

When a local action a happens at location l ∈ loc(i), the current location of
participant i is changed to next(l). Thus, for e=〈l � a〉 where l ∈ G,

α(G, e) = G[next(l)/l]
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and

ε(α(G, e)) = ε(G) \ {e} ∪ {e′ | π(e′) = next(l) ∧ type(e′) �=? ←})
Events modeling sending and receiving of a synchronous message occur simul-

taneously (i.e., in an atomic, noninterruptible way): No other event can occur
in between. So if the current configuration is G and both the sending event
e=〈l1 �→ l2, m〉 and the corresponding receiving event e=〈l2←� l1, m〉 are active
[i.e., e∈ ε(G), e∈ ε(G)], we have

α(G, 〈e, e〉) = G[next(l1)/l1, next(l2)/l2]

and

ε(α(G, 〈e, e〉)) = ε(G) \ {e, e} ∪
⎧⎨⎩e′ |

∨
k=1,2

π(e′) = next(lk) ∧ type(e′) �=←-
⎫⎬⎭

For asynchronous messages, however, when the sending event occurs, the location
of the sender will be updated to the next location in its lifeline, while locations of
the other participants will remain unchanged. The sending event is therefore removed
from the set of active events. On the other hand, the corresponding receiving event
will be added to such set. Furthermore, the events at the next location of the sender’s
lifeline will become active in the new configuration. If e=〈l1-→ l2, m〉 is active in
configuration (G), we have

α(G, e) = G[next(l1)/l1]

and

ε(α(G, e)) = ε(G) \ {e} ∪ {〈l2 ←- l1, m〉} ∪ {e′ | π(e′) = next(l1) ∧ type(e′) �=←-}
Dually, when an asynchronous message is received, the receiver will change to the

next location in its lifeline, while locations of all other participants remain unchanged.
Formally, if e=〈l1←-l2, m〉 is active in configuration G, we have

α(G, e) = G[next(l1)/l1],

and

ε(α(G, e)) = ε(G) \ {e} ∪ {e′ | π(e′) = next(l1) ∧ type(e′) �=←-}
The case of a lost message, represented by event e = 〈l •−, m〉, is similar to the

asynchronous communication: The sender updates its location and e is removed from
the set of active events. However, no corresponding receiving event becomes active.
Similarly, for a found message, when a receiving event e = 〈l −•, m〉 occurs, only
the location of the receiver is updated and e is removed from the set of active events.
Both cases are therefore handled by

α(G, e) = G[next(l)/l]
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and

ε(α(G, e)) = ε(G) \ {e} ∪ {e′ | π(e′) = next(l) ∧ type(e′) �=←-}
assuming that the corresponding events are enabled in configuration G.

10.4 NEW SEQUENCE DIAGRAMS FROM OLD

In the preceding section the semantics of an arbitrary sequence diagram sd was defined
by a pointed co-algebra

[[sd]] = (C, 〈ε, α〉 : C →P (�)× C�, c0) (10.36)

over the set C of sd configurations.
UML 2.0 sequence diagrams may contain subinteractions called interaction frag-

ments that can be structured and combined using a number of interaction operators.
Although the semantics of an interaction fragment depends on the set of operators
available, the precise definition of such a set is still an open topic in UML modeling.
Recently, the UML superstructure specification [30] proposed one such set and gave
an informal characterization of the associated behaviors as follows:

• The operator alt offers a choice of behavior alternatives represented by its two
operands. The chosen sd must have an explicit or implicit guard expression that
evaluates to true at this point in the interaction.

• The operator opt designates a choice between its (sole) operand or an idle
behavior.

• The operator par stands for the parallel merge of the behaviors of the sd acting
as its operands. Event occurrences in the different operands can be interleaved
in any way as long as the ordering imposed inside each sd is preserved.

• The operator seq represents a weak sequencing between the behaviors of the
operands (i.e., the ordering of event occurrences within each of the operands
is maintained in the result), whereas event occurrences on different lifelines in
different operands may come in any order. Event occurrences on the same lifeline
in different operands are ordered in such a way that an event occurrence of the
first operand comes before that of the second operand.

• The operator strict represents a strict sequencing of the behaviors: All events in
the first operand are made to occur before any event in the second.

• The loop operator specifies an iteration of sequential composition: The execution
of its operand repeats itself on completion.

The denotation of these operators in the envisaged semantic model formalizes an
algebra for building new sequence diagrams from old.

In the sequel, we assume, for sdi= (Ii, Loci, Mesi, Loci
ini, loci, Ei,≤i ), that

[[sdi]] = (Ci, 〈εi, αi〉 : Ci →P (�i)× Ci
�i , ci

0)
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where for any G∈Ci which denotes the tuple of local states of participants in sdi,
�i

A= εi(G) returns the set of events that are active in G. Moreover, we let εi(ci
0)=�i

0.
For a tuple of elements t= (e1, e2, . . . , em), we use the projection function πi, for
i= 1, . . . , m, to return the ith element ei. With such notational conventions we are
prepared to give the semantics of operators for combining interaction fragments.

Choice: alt(sd1, sd2) Denoting an alternative form of aggregation of sequence dia-
grams, it is required that c0

1= c0
2, and that all events in both �1

0 and �2
0 become active

in the initial configuration c0. Therefore, c0= c0
1 and C={c0}∪(C1\{c1

0})∪(C2\{c2
0}).

Formally,5

[[alt(sd1, sd2)]] = (C, 〈alt(ε1, ε2), alt(α1, α2)〉, c0)

with

alt(ε1, ε2)(x) =
⎧⎨⎩

x = c0 ⇒ �1
0 ∪�2

0
x ∈ C1 \ {c1

0} ⇒ ε1(x)
x ∈ C2 \ {c2

0} ⇒ ε2(x)

alt(α1, α2)(x, e) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = c0 ∧ e ∈ �i ⇒ αi(ci

0, e) for i = 1, 2

x ∈ C1 \ {c1
0} ∧ e ∈ �1 ⇒ α1(x, e)

x ∈ C2 \ {c2
0} ∧ e ∈ �2 ⇒ α2(x, e)

otherwise x

where x is a configuration in C, and e is an event in either �1 or �2.

Option: opt(sd1) The purpose of opt(sd1) is to offer an alternative between an
empty scenario (in which “nothing happens”) and the activation of its (sole) operand,
sd1. To formalize its meaning, we need to introduce a new event—skip—into the set
of events to capture the absence of effective behavior. Then

[[opt(sd1)]] = (C, 〈opt(ε1), opt(α1)〉, c0)

where C = C1 and c0 = c1
0. The transition structure is defined as

opt(ε1)(x) =
{

x = c0 ⇒ ε1(x) ∪ {skip}
otherwise ε1(x)

opt(α1)(x, e) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x �= c0 ∧ e ∈ �1 ⇒ α1(x, e)

x = c0 ∧ e = skip ⇒ let x′ = c1
0 in εx′ = Ø ⇒ x′

x = c0 ∧ e ∈ �1 ⇒ α1(c0, e)

otherwise x

5 To avoid an excessive notational burden, we use the same syntax for the combinator over sequence
diagrams and its denotation in the semantics proposed.
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Parallel: par(sd1, sd2) As one would expect, the state space for parallel composition
is a Cartesian product [i.e., C=C1×C2, with c0= (c1

0, c2
0)]. Then,

[[par(sd1, sd2)]] = (C, 〈par(ε1, ε2), par(α1, α2)〉, c0)

where the transition structure is defined as

par(ε1, ε2)(x) = ε1(π1x) ∪ ε2(π2x)

par(α1, α2)(x, e) =

⎧⎪⎨⎪⎩
e ∈ �1 ⇒ let x′ = α1(π1x, e) in (x′, π2x)

e ∈ �2 ⇒ let x′ = α2(π2x, e) in (π1x, x′)
otherwise x

Strict sequential composition: strict(sd1, sd2) The transition structure in

[[strict(sd1, sd2)]] = (C, 〈strict(ε1, ε2), strict(α1, α2)〉, c0)

is defined over C = C1 ∪ C2 \ {c | c ∈ C1 ∧ ε1(c) = Ø} and c0 = c1
0 as follows

strict(ε1, ε2)(x) =
{

x ∈ C1 ∧ ε1(x) �= Ø ⇒ ε1(x)

x ∈ C2 ⇒ ε2(x)

strict(α1, α2)(x, e) =

⎧⎪⎨⎪⎩
x ∈ C1 ⇒ let x′ = α1(x, e) in ε1x′ = Ø ⇒ c2

0

otherwise x′

otherwise α2(x, e)

Weak sequential composition: seq(sd1, sd2) The case for weak sequential com-
position seq(sd1, sd2) for sdi, i= 1, 2 is a bit more demanding because its definition
depends on whether the operands share a number of lifelines. If such is the case, that
is, if an identifier, say s, exists in I1 ∩ I2, all the event occurrences on s in sd1 should
happen before those on s in sd2. However, any other events on lifelines out of the
scope of both sd1 and sd2 may occur in any order. Note that if the operands involve
disjoint sets of participants, the weak sequencing reduces to a parallel merge.

Assume an identifier s such that I1 ∩ I2={s}, and function loc1 and loc2 assigning
locations to instances in sd1 and sd2, respectively. Let loc(s)= loc1(s) ∪ loc2(s).
Furthermore, and without loss of generality, let C1= loc1(s)× L and C2= loc2(s)×K
be the set of configurations for sd1 and sd2, respectively, where L= ∏

i∈I1\{s} loc1(i)
and K =∏

j∈I2\{s} loc2(j). Then define

[[seq(sd1, sd2)]] = (C, 〈seq(ε1, ε2), seq(α1, α2)〉, c0)

with C= loc(s)× L×K and c0= (〈π1, π2〉c1
0, π3c2

0). We use ε as an abbreviation for
seq(ε1, ε2), and for any G ∈ C,

ε(G) =
⋃

(ai ,πi+1G)∈Ci ,i=1,2

εi((ai, πi+1G)) \ {e | π(e) ∈ loc(s) ∧ π(e) �= π1(G)}



10.4 NEW SEQUENCE DIAGRAMS FROM OLD 269

where ai ∈ loci(s), i= 1, 2 are two locations such that

(a1, π2G) ∈ C1 ∧ (a2, π3G) ∈ C2 ∧ (π1G = a1 ∨ π1G = a2)

The transition structure is given by

seq(α1, α2)(x, e) =
let {s} = I1 ∩ I2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(e) ∩ loc(s) �= Ø ⇒⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

πε(x) ∩ loc1(s) �= Ø ⇒
let x′ = α1(〈π1, π2〉x, e), c2

0 = (l, t) in{
∀l′ ∈ loc1(s).l′ ≤ π(e) ∩ loc1(s) ⇒ (l, π2x′, π3x)

otherwise (π1x′, π2x′, π3x)

πε(x) ∩ loc2(s) �= Ø ⇒
let x′ = α2(〈π1, π3〉x, e) in (π1x′, π2x, π2x′)

π(e) ∩ loc(s) = Ø ⇒⎧⎪⎪⎪⎨⎪⎪⎪⎩
e ∈ �1 ⇒

let x′ = α1(〈π1, π2〉x, e) in (π1x′, π2x′, π3x)

e ∈ �2 ⇒
let x′ = α2(〈π1, π3〉x, e) in (π1x′, π2x, π2x′)

The definition can easily be generalized to an arbitrary number of shared lifelines
in sd1 and sd2.

On the other hand, if I1∩I2=Ø, the definition of the transition structure reduces to
the second branch of the case structure. By redefining the projection functions (since
there is no s in the configurations), we can find that

seq(sd1, sd2) = par(sd1, sd2) (10.37)

Furthermore, whenever I1= I2, we have

seq(sd1, sd2) = strict(sd1, sd2) (10.38)

The equalities above are in fact bisimulation equations between the corresponding
denotations; for example, for equation (10.37),

[[seq(sd1, sd2)]] ∼ [[par(sd1, sd2)]]

as such is the notion of equality in a co-algebraic setting.
They are, therefore, the first illustration of a calculus of sequence diagrams made

possible by the semantic definition. The issue is discussed further in Section 10.6.

Loop: loop(sd1). Finally, the semantics of the iteration combinator is given by

[[loop(sd1)]] = (C, 〈loop(ε1), loop(α1)〉, c0)
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over C=C1 and c0= c1
0, and with the following transition structure:

loop(ε1)(x) = ε1(x)

loop(α1)(x, e) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e ∈ loop(ε1)(x) ⇒ let x′ = α1(x, e) in

loop(ε1)(x′) = Ø ⇒ c0

otherwise x′

otherwise x

10.5 COERCIONS AND DESIGNS

The description of a sequence diagram in UML 2.0 can also be annotated with
some sort of coercion that restricts or expands the underlying possible behaviors.
In the UML tradition, such conditions are themselves specified as sequence diagrams
(instead of, say, through formulas in a logic). An example is depicted in Figure 10.3.
Note that although annotations such as critical or alt are syntactically similar, their
intended semantics is completely different: The former stands for a behavioral restric-
tion in the diagram, the latter for a composition operator. Annotated diagrams will
also be called designs.

In this section we show how such coercions can be accommodated in our semantic
framework. To be concise, we consider only the following, most common cases of
possible coercions on a diagram sd:

• Annotation neg, parametric on a sequence diagram p, which restricts the behavior
of sd to exclude all interactions specified by p. It is required that the set of events
�p of p is a subset of the corresponding set � in sd. In the example of Figure 10.3,
a neg rules out a sequence of confirmation message followed immediately by
the production of a receipt.

• Annotation critical, parametric on a sequence diagram p, which requires that all
interactions specified by p occur without interruption or interference of other
events in sd. Such is the case of pin validation in the example of Figure 10.3.

• Annotation ignore, parametric on a message m, which abstracts away the
behavior of sd of any occurrence of m.

We have already claimed that an advantage of adopting a co-algebraic framework
for diagram semantics is that once the functor is fixed, a canonical characterisation of
behavior pops out as the carrier of the final coalgebra. As discussed above, for T given

by (10.32), behaviors are elements of P�
�∗

. Thus, we may define the semantics of
an annotated diagram sd as a pair

〈[[sd]], β(sd)〉 (10.39)

where [[sd]] denotes the semantics of sd, as in (10.36), and ignoring any annotation,
and β(sd) is the behavior of the annotated diagram. The latter is, typically, but not



10.5 COERCIONS AND DESIGNS 271

FIGURE 10.3 Annotated sequence diagram.

always, a restriction of the behavior of [[sd]]. This, on the other hand, is, as you may
recall, canonically given as the coinductive extension of co-algebra [[sd]] applied to
the initial configuration of sd, denoted here by sd0 [i.e., [([[sd]])](sd0)]. For the sake
of uniformity, we can also present the semantics of a nonannotated diagram as a pair

〈[[sd]], [([[sd]])](sd0)〉 (10.40)

We shall now define the semantics of the three sorts of designs discussed here. In all
cases consider annotations over a diagram sd with sd0 as the initial configuration.

Also note that in the final model ν, we can rule out all sequences of events that
lead to empty sets of observations (i.e., of enabled events). This entails the definition
of the following function to compute the (allowed) traces of a sequence diagram sd
with initial configuration sd0:

traces = {t ∈ �∗| [([[sd]])](sd0)(t) �= Ø} (10.41)
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Thus:

Design: 〈neg(p)〉 sd. The intuition behind the definition below is that the set of
enabled events after completion of a particular trace t ∈ �

∗
in the annotated diagram

is purged of all events enabled by completion of t in (the coinductive extension
of) p. Eventually, this can reduce to zero the set of enabled events after a particular
trace, which, as discussed above, corresponds to ruling out such a trace as a possible
interaction for the annotated diagram. Or it may simply eliminate a few elements of
the event set, meaning that the completion of t still leads to a nondeadlocked state if
only a subset of interactions abstracted in t are represented in p. Formally,

[[〈neg(p)〉 sd]] = 〈[[sd]], [([[sd]])](sd0) . [([[p]])](p0)〉 (10.42)

where, for f , g : �∗ −→P�,

(f . g)t = f (t)− g(t) (10.43)

Notice that as behaviors are total functions, all possible interactions of p, which
correspond to traces on the domain of its behavior, are taken in consideration.

Design: 〈critical(p)〉 sd.

[[〈critical(p)〉 sd]] = 〈[[sd]], β〉 (10.44)

where

β(t) =
{

[([[p]])](p0)(t) ⇐ t ∈ traces(p)

[([[sd]])](sd0)(t) ⇐ otherwise
(10.45)

Notice that as all traces in p are taken into consideration and that the prefix of
a trace is also a trace, the dynamics of p will always override that of the original
sd whenever the latter involves events in the former. For example, suppose that sd
allows trace 〈a, z, b〉, but p has 〈a, b〉 as the unique trace starting with event a, thus
forcing it to occur with no interruption in the annotated diagram. Clearly, event z
is enabled in sd after a [i.e., z ∈ [([[sd]])] sd0(〈a〉)], but such is not the case in p,
where [([[p]])] p0(〈a〉)={b}. Therefore, traces 〈a, z〉 and 〈a, z, b〉 are not allowed in the
semantics of the annotated diagram.

Design: 〈ignore(m)〉 sd. In this design, the annotation is parametric on a single
message m ∈ �sd which is supposed to be ignored in any interaction specified by sd.
The behavior of this design will thus be defined over �sd−{m}: For each original trace
t ending in m, the enabled events of t and of its maximal prefix are joined together.
Formally,

[[〈ignore(m)〉 sd]] = 〈[[sd]], γ〉 (10.46)
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where

γ(t) = [([[p]])](p0)(t) ∪ [([[p]])](p0)(t � 〈m〉) (10.47)

The following result shows that compositional reasoning is still possible when
dealing with annotated diagrams:

Lemma 10.5.1 Annotations always sum up: that is, the design resulting from com-
posing two other designs with θ corresponds to the composition of the underlying
diagrams with θ to which both coercions are added afterward. Formally,

(〈coer1(p)〉 sd1) θ (〈coer2(q)〉 sd2) = 〈coer1(p)〉 〈coer2(q)〉 (sd1 θ sd2)

for coer ranging over neg, critical, and ignore.

Proof: Let θ be any of the sequence diagrams operators characterized in Section 10.4.
As annotations in a sequence diagram affect only disjoint subdiagrams, it is trivial to
check from the semantics of neg, critical, and ignore that restrictions act over disjoint
sets of events. Thus, their effects manifest themselves cumulatively. �

10.6 A CALCULUS FOR INTERACTIONS

10.6.1 Toward a Calculus of Diagram Composition

Equations (10.37) and (10.38) were our first examples of properties that establish,
under suitable conditions, equality of behavior between expressions denoting arbitrary
compositions of UML sequence diagrams. As mentioned there, such equalities are,
in fact, bisimulation equations relating the co-algebras that represent the diagrams’
semantics.

For functor T given by (10.32), the bisimulation definition (10.2.4) boils down to

(c, d) ∈ R⇒∀e∈� · ε(c) = ε(d) ∧ (φ(c, e), ϕ(d, e)) ∈ R (10.48)

for every pair of configurations (c, d), where α=〈ε, φ〉 and β=〈ε, ϕ〉. This provides
a rather simple way of testing behavioral equivalence for (the denotations of) UML
sequence diagrams.

Not surprisingly, some simple proofs, which proceed by the construction of
a witnessing bisimulation, establish a number of algebraic laws relating different
composition patterns. For example:

Lemma 10.6.1 Operators alt, par, and strict are associative. Formally,

tensor(tensor(sd1, sd2), sd3) = tensor(sd1, tensor(sd2, sd3)) (10.49)

for tensor = alt, par, strict.
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Proof: Let us consider the case for alt, that is,

[[alt(alt(sd1, sd2), sd3)]] ∼ [[alt(sd1, alt(sd2, sd3))]]

The set of configurations for both sides of this equation is C={c0} ∪ ⋃
1≤i≤3 (Ci \

{ci
0}), and the initial configuration, also in both cases, is c0. Let εi(ci

0)=�i
0 for

i= 1, 2, 3. For any x ∈C and event e, one gets, according to the definition,

alt (alt(ε1, ε2), ε3)(x)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = c0 ⇒ ⋃

1≤i≤3 �i
0

x ∈ C1 \ {c1
0} ⇒ ε1(x)

x ∈ C2 \ {c2
0} ⇒ ε2(x)

x ∈ C3 \ {c3
0} ⇒ ε3(x)

= alt(ε1, alt(ε2, ε3))(x)

alt (alt(α1, α2), α3)(x, e)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = c0 ∧ e ∈ �i ⇒ αi(ci
0, e) for i = 1, 2, 3

x ∈ C1 \ {c1
0} ∧ e ∈ �1 ⇒ α1(x, e)

x ∈ C2 \ {c2
0} ∧ e ∈ �2 ⇒ α2(x, e)

x ∈ C3 \ {c3
0} ∧ e ∈ �3 ⇒ α3(x, e)

otherwise x

= alt(α1, alt(α2, α3))(x, e) �

Similarly:

Lemma 10.6.2 Operators alt and par are commutative. Formally,

tensor(sd1, sd2) = tensor(sd2, sd1) (10.50)

for tensor = alt, par.

Proof: Again our task is to verify the bisimulation equation

[[par(sd1, sd2)]] ∼ [[par(sd2, sd1)]]

The sets of configurations for [[par(sd1, sd2)]] and [[par(sd2, sd1)]] are C=C1×C2

and D = C2×C1, respectively, where Gi is a configuration of sdi for i= 1, 2. Define
h : C → D as h=〈π2, π1〉. To prove the bisimulation equation, we only need to show
that h is a co-algebra morphism, that is, to prove that the equations

par(ε1, ε2)(x) = par(ε2, ε1)(h(x))

h · par(α1, α2)(x, e) = par(α2, α1)(h(x), e)
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are satisfied for any configuration x and event e. According to the definition of par,

par(ε2, ε1)(h(x))

= par(ε2, ε1)(〈π2, π1〉x)

= ε2(π1 · 〈π2, π1〉x) ∪ ε1(π2 · 〈π2, π1〉x)

= ε2(π2x) ∪ ε1(π1x)

= ε1(π1x) ∪ ε2(π2x)

= par(ε1, ε2)(x)

and for e ∈ �1,

par(α2, α1)(h(x), e)

= par(α2, α1)(〈π2, π1〉(x), e)

= let x′ = α1(π2 · 〈π2, π1〉x, e) in (π1 · 〈π2, π1〉x, x′)
= (π2x, α1(π1x, e))

= 〈π2, π1〉 · (α1(π1x, e), π2x)

= h · par(α1, α2)(x, e)

Similarly, for e ∈ �2, we also get par(α2, α1)(h(x), e)= h ·par(α1, α2)(x, e). And for
e /∈ �1 ∪ �2, the result is obvious: h(x)= h(x). The proof is complete, noting that
h(c1

0)= c2
0. �

Notice how in this second proof a quite handy technique of coinductive reasoning
was used: To establish bisimilarity it is enough to define a co-algebra morphism
connecting the two co-algebras. Such a technique is based on the fact that co-algebra
morphisms entail bisimulation, a direct consequence of (10.19).

Following a similar strategy, one can prove, for example, idempotence results,
reductions, and in particular, distribution of strict sequential and parallel composition
over choice. Formally,

alt(sd, sd) = sd (10.51)

alt(sd, ØIsd ) = opt (10.52)

strict(alt(sd1, sd2), sd3) = alt(strict(sd1, sd3), strict(sd2, sd3)) (10.53)

strict(sd1, alt(sd2, sd3)) = alt(strict(sd1, sd2), strict(sd1, sd3)) (10.54)

par(alt(sd1, sd2), sd3) = alt(par(sd1, sd3), par(sd2, sd3)) (10.55)

par(sd1, alt(sd2, sd3)) = alt(par(sd1, sd2), par(sd1, sd3)) (10.56)

In equation (10.52) we use ØIsd to denote the empty sequence diagram with the
same set of participants as sd, but no events. Suppose that sd= (I , Loc, Mes,
Locini, loc, E,≤): then ØIsd = (I , Locini, Ø, Locini, {i %→ li

0}, Ø,= ).
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10.6.2 Refactoring

Just as Section 10.6.1 was intended to illustrate how a calculus of UML sequence
diagrams can emerge from the proposed semantics, we focus now on another appli-
cation mentioned in Section 10.1: refactoring. Again we shall not be exhaustive, but
rather, suggest possible steps in this direction.

Introduced by Opdyke [31] in the context of OO programming, refactoring has been
widely used in modern software development processes such as the rational unified
process [18] and eXtreme Programming [6] to support iterative software development
and improve the quality of software artifacts. In [8] it is defined as “the process of
changing a software system in such a way that it does not alter the external behavior
of the code, yet improves its internal structure.” Later, interest in research shifted
from the code level to model refactoring [40,43,46].

In any case, typical refactoring laws are supposed to preserve behavior, and there-
fore they boil down to bisimulation equations such as the ones considered above.
Well-known examples are laws expressing fine-grained refactoring steps, such as
adding, removing, and moving elements in sequence diagrams. For example:

Lemma 10.6.3 A new lifeline can be introduced into a sequence diagram.

Proof: Suppose that sd= (I , Loc, Mes, Locini, loc, E,≤) is a sequence diagram.
Adding a new lifeline to sd means that a new instance identifier i is added to I .
Since there is no message exchange between i and other participants in the dia-
gram, it has only one location, the initial location li

0. So the resulting diagram is
sd′ = (I ∪ {i}, Loc ∪ {li

0}, Mes, Locini ∪ {li
0}, loc, E,≤). If G is a configuration for sd,

then 〈G, li
0〉 is a configuration for sd′. Let h=π1× id. This morphism maps every con-

figuration of sd′ to a configuration of sd and forms a co-algebra morphism between
them, which justifies the law. �

A similar argument justifies the dual law for removing lifelines:

Lemma 10.6.4 A lifeline that does not interact with other participants and has no
local actions can be removed from a sequence diagram.

Other refactoring laws, however, require preservation of behavior in a weaker
sense. Such is the case, for example, of refactorings involving the split of a lifeline
into a set of independent lifelines representing sections of noninterfering execution
and enforcing time constraints by specific message exchange.

In the semantic framework discussed here, such weak preservation of behavior
corresponds to relating (denotations of) sequence diagrams by refinement instead of
bisimilarity. Refinement for co-algebras has been studied by Meng and Barbosa in
[24,26]. In brief, the idea is to relax the co-algebra morphism condition in (10.3) by

Th · p ≤ p′ · h (10.57)
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where ≤ is called refinement preorder [24]. Function h is said to be a forward mor-
phism which is intended to preserve transitions from the source co-algebra but fails to
reflect them back. Relation≤, for functor T given in (10.32), is a preorder on functions
from events to configurations. A possible example requires one of the diagrams to
possess less active events than the other in related configurations, as captured by the
following (in)equations:

ε1(G1) ⊆ ε2(h(G1))

h · α1(G1, e) = α2(h(G1), e)

The existence of a forward morphism connecting two (co-algebraic denotations of)
sequence diagrams witnesses a refinement situation represented by preorder �. With
respect to this preorder, designs discussed in Section 10.5 can be related to the original
diagram by forward refinement. In particular:

Lemma 10.6.5

〈neg(p)〉 sd � sd (10.58)

〈critical(p)〉sd � sd (10.59)

sd � 〈ignore(m)〉sd (10.60)

In the references cited above, forward morphisms are shown to compose and
enjoy a number of calculational properties. In particular, they are powerful enough
(more exactly, weak enough!) to capture a great number of refactoring situations for
sequence diagrams, as refinement results.

10.7 CONCLUDING REMARKS

This chapter introduced a co-algebraic semantic framework for UML 2.0 sequence
diagrams, including the formalization of the recently proposed set of combinators for
such diagrams. It was also illustrated how coinductive techniques can be used to prove
properties of UML designs and develop a theory of sequence diagram composition
and refactoring. This piece of research is in line with our previous work on co-
algebraic semantics for other UML models [4,41,42] and can be regarded as part of a
major attempt to give a precise semantics to UML descriptions. Several proposals for
formalizing UML 2.0 sequence diagrams are known. Among them, we are particularly
interested in approaches, such as that of Knapp and Wuttke [17], which are also based
on translating sequence diagrams to a language of automata, therefore entailing, even
if implicitly, a co-algebraic perspective. A proper comparison with the approach
proposed in this chapter is in inorder.

For future work, we single out as a main open issue the need for a detailed clas-
sification of possible refactoring patterns and their formalization in this framework.
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Refactoring by (co-algebraic) refinement, as pointed out in Section 10.6, is also an
open field for further research.
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CHAPTER 11

SEMANTICS OF ACTIVITY DIAGRAMS
KEVIN LANO
Department of Computer Science, King’s College London, London, UK

11.1 INTRODUCTION

UML activity diagrams define behavior as structured collections of individual actions
such as operation invocations, assignments, and other state-modifying or state-
enquiry processing steps. Actions can be connected by control or data flows within an
activity. Activities can be used to define the behavior of objects or of operations, as
an alternative to state machines. They can also be used to define more general forms
of behavior, such as workflows of organizational tasks.

The UML 2 activity diagram notation is subdivided into five subnotations, which
define subsets of the complete notation:

• Fundamental activities: defines the notion of an Activity as a container of nodes,
which include actions.

• Basic activities: defines control sequencing and data flow between actions.
• Intermediate activities: defines activity diagrams with concurrent control and

data flow and decisions. It is similar to Petri nets with queuing. It builds on the
basic level.

• Complete activities: adds edge weights and streaming concepts to intermediate
activities.

• Structured activities: adds traditional control flow constructs of loops, sequenc-
ing, and conditionals to the fundamental level.

Two further levels, complete structured activities and extra structured activities, build
on both the structured and basic activity sublanguages.

In this chapter we are concerned primarily with structured activities. We consider
two alternative approaches to defining a semantics for these: (1) by transforming them

UML 2 Semantics and Applications. Edited by Kevin Lano
Copyright © 2009 John Wiley & Sons, Inc.
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to the state machine notation; and (2) by defining them in terms of semantic actions.
The first approach has the advantage of relating one UML model to another and of
being easily comprehensible to users of UML; however, it does not cover all possible
cases of activity diagrams. The second is more complex and further from UML
notation; however, it is comprehensive. We describe the two approaches in parallel.

11.2 SEMANTICS OF STRUCTURED ACTIVITIES

Figure 11.1 shows the metamodel of structured activity diagrams. The basis of the
semantic mapping to state machines will be to interpret actions as basic (unstruc-
tured) states and activities as composite states containing the states that represent the
component actions of the activity.

For each Activity A, we define a class CA that will act as a context for A if A does
not already have a context class, and a new state machine SA defining the classifier
behavior of CA. CA must be linked to any class used within A as data or as a supplier.

For each Action instance ac in A.node, we define a basic state st of SA whose
entry action st.entry carries out the behavior defined by ac (the entry action is used,
instead of the do activity of the state, since the behavior should be noninterruptible).
An InitialNode is mapped to an initial state, and an ActivityFinalNode is mapped to a
final state. Figure 11.2 shows the mapping of sequence, conditional, and loop nodes.

A SequenceNode instance sn with sequence sn.executableNode= ss of compo-
nent nodes maps to an OR composite state st which has st.region= Set{r}, and
r.subvertex= sts→ union(Set{ini, fin}), with each element of sts representing one
element of ss. The states sts are connected in sequence by transitions in the order
defined by ss. ini is an initial pseudostate, with a transition to the state representing
ss→at(1), and fin is a final pseudostate.

A ConditionalNode instance cn with a single clause: cn.clause= cls→ at(1),
where cls is a sequence of Clause objects linked in a linear chain by
predecessorClause/successorClause links, maps to an OR composite state st which
has st.region= Set{r}, and r.subvertex= sts→ union(tsts)→ union(Set{ini, fin}),
with each tsts element representing a corresponding element of cls.test (assuming that
there is one test for each clause) and each element of sts representing the correspond-
ing element of cls.body (to be executed if the test is true). sts→ size()= tsts→ size().
The states sts are the targets of transitions from the corresponding tsts, which are
taken if the test evaluates to true: otherwise, control flow goes to the state represent-
ing the successor clause. ini is an initial pseudostate, with a transition to the state
representing the first clause.

The mapping for (simplified) LoopNodes is similar. A state is introduced for each
of the setupPart, test, and bodyParts of the loop, with transitions connecting these
either into a while or until-loop structure, depending on the value of isTestedFirst.

The semantics in terms of actions defines a theory �A for A, with action symbols
for A and each ExecutableNode within A. The theory will import �X for each class
X used by A as data or as a supplier, and will contain attributes for each Variable in
A.variable.
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284 SEMANTICS OF ACTIVITY DIAGRAMS

Each invocation (A, i) of A will cause a set OccA,i(α)⊆N 1 of occurrences of
each action α, which represents a part of A (i.e., representing some ExecutableNode
s∈A.node).

These executions will be contained in that of A:

∀j : OccA,i(α) · ↑(α, j) ≥ ↑(A, i) ∧ ↓(α, j) ≤ ↓(A, i)

Similarly, the elements sn.node of a StructuredActivityNode sn within A must also
have their occurrences contained within an occurrence of sn [4, p. 409].

Action instances ac are interpreted as semantic actions αac, with write frame given
by the data that ac updates. They are asserted to invoke their associated actions:

αac ⊃ acts′

For example, an action may invoke an operation x.setatt(υ) on some object accessible
from CA, write output or read inputs, and so on.

An action s which accepts requests for an operation m could be defined to have

∀j : OccA,i(αs)·∃k : N1· ↑(αs, j) = ↑(m, k)∧↓(αs, j) = ↓(m, k)∧(m, k).sender �= self

A may have multiple initial nodes. The start of (A, i) is equal to the minimum start
time of any of its contained actions:

↑(A, i) = min{s ∈ A.node|min({ j ∈ OccA,i(αs)|↑(αs, j)})}
If A has an ActivityFinalNode, it is terminated by the first immediate predecessor

of such a node which terminates (and passes control to the final node). Otherwise, it

Sequence node representation: 

Conditional node representation:

s1 s2 s3

cl1

cl2

b1

b2

setup

test body

Loop node representation:

FIGURE 11.2 Mapping of structured activity nodes.



11.3 SEMANTICS OF INTERMEDIATE ACTIVITIES 285

is terminated when all its actions have terminated:

↓(A, i) = max{s ∈ A.node|max({ j ∈ OccA,i(αs)|↓(αs, j)})}
FlowFinal nodes do not have a semantic representation.

Sequence, conditional, and loop nodes are mapped to corresponding structured
semantic actions (Figure 6.4): for example, to αss1; αss2 for a sequence node with two
executable nodes, and to structured actions of the form

test1;
if result1 = true
then b1
else

test2;
if result2 = true
then b2

in the case of a conditional node as considered in Figure 11.2; similarly for loop
nodes.

11.3 SEMANTICS OF INTERMEDIATE ACTIVITIES

The mappings can be extended to model control flows between activities. In the
mapping to state machines these are simply represented as transitions between the
corresponding states; however, this only handles cases where fork and join nodes
are paired in a structured manner, and similarly for merge and decision nodes. Cases
where a single node participates in two separate activity flows (Figure 11.3) cannot
be mapped directly to state machines.

Control nodes of the form fork and join are modeled by defining new AND com-
posite states introduced to contain the groups of states that are linked by a fork/join
pair in parallel flows: For each separate parallel flow defined by a fork node, a separate
region of the new AND state is used to contain the states representing the nodes of
the flow (Figure 11.4 shows a complex example). AND states are defined for flows
starting from the fork/join pairs of largest scope, and then working inward from these.
Decision nodes are mapped to dynamic choice pseudostates, and hence to new basic
states. Merge nodes are also mapped to new basic or final states.

A

B

C

D

E

FIGURE 11.3 Unstructured parallel control flows.
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f1

j1

j2

s1

s3

s4 s6

s7

s1

s3

s4 s6

s7

f1j2

f1j1
s2

s2

s5

s5

FIGURE 11.4 Representing parallel control flows in a state machine.

In addition, the concept of a localPrecondition and localPostcondition of an action
can be expressed: the localPostcondition can be defined as the state invariant of the
state representing the action (it must be established by the entry action of the state).
localPrecondition is expressed as a precondition of the entry action, using the pre
statement form of Figure 6.4: The precondition must be established by each transition
to the state.

As an example of the mapping, Figure 11.5 shows a structured activity diagram
with fork and join, decision/merge, and sequence nodes.

A version of the workflow in Figure 11.5, expressed in state machine notation, is
shown in Figure 11.6. All the transitions are triggered by completion of the processing
of their source state. In the AND composite state, this means that the processing of
both regions of this state must be completed (they have both reached their final states)
before the transition to Release Fix can occur.

The mapping to semantic actions can represent all cases of activity control flow.
Figure 11.7 shows typical examples of decision, merge, fork, and join structures. One
node s1 followed by a single successor s2, joined by a control flow, has the semantics

∀i : N1; j : OccA,i(αs2) · ∃k : OccA,i(αs1) · ↓(αs1, k) = ↑(αs2, j)

∀i : N1; j : OccA,i(αs1) · ∃k : OccA,i(αs2) · ↓(αs1, j) = ↑(αs2, k)
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Register
Problem

Evaluate
Impact

Revise
Plan

Fix
Problem

Test
Fix

Release
Fix

[priority
  = 1]

[else]

FIGURE 11.5 Handling problem workflow.

Register
Problem

Fix
Problem

Test
Fix

Release
Fix

Check
Priority

Evaluate
Impact

Revise
Plan

[priority=1] [priority /= 1]

FIGURE 11.6 Handling problem workflow as a state machine.
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s1

s2

s3

[E]

[not(E)]

s1

s2

s3

s3

s3

s2

s2

s1

s1

Decision node Merge node

Fork node Join node

FIGURE 11.7 Decision, merge, fork, and join structures.

A decision node with predecessor (incoming) node s1 and successors (outgoing)
nodes s2 and s3 and condition E has the semantics (Decision1)

∀i : N1; j : OccA,i(αs2) · ∃k : OccA,i(αs1) · ↓(αs1, k) = ↑(αs2, j) ∧ E′�↓(αs1, k)

and similarly for s3 in the case that E is false at the decision point:

∀i : N1; j : OccA,i(αs3) · ∃k : OccA,i(αs1) · ↓(αs1, k) = ↑(αs3, j) ∧ ¬E′�↓(αs1, k)

The dual properties that an execution of s2 or s3 must follow that of s1 are also
asserted (Decision2):

∀i : N1; j : OccA,i(αs1) · E′�↓(αs1, j) =⇒ ∃k : OccA,i(αs2) · ↓(αs1, j) = ↑(αs2, k)

∀i : N1; j : OccA,i(αs1) · ¬E′�↓(αs1, j) =⇒ ∃k : OccA,i(αs3) · ↓(αs1, j) = ↑(αs3, k)

Since the decisionInput of a decision node cannot have side effects (UML 2.1.1
Superstructure standard p. 361), we can abstract these to an expression evaluation.

If the predecessor node is the initial node of A, we have the following axioms
instead for a decision node:

∀i : N1; j : OccA,i(αs2) · ↑(αs2, j) = ↑(A, i) ∧ E′�↑(A, i)

∀i : N1; j : OccA,i(αs3) · ↑(A, i) = ↑(αs3, j) ∧ ¬E′�↑(A, i)

with corresponding dual properties.
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A fork node with predecessor s1 and successors s2 and s3 initiates execution of
both (Fork1)

∀i : N1; j : OccA,i(αs2) · ∃k : OccA,i(αs1) · ↓(αs1, k) = ↑(αs2, j)

∀i : N1; j : OccA,i(αs3) · ∃k : OccA,i(αs1) · ↓(αs1, k) = ↑(αs3, j)

Again the dual properties are asserted (Fork2):

∀i : N1; j : OccA,i(αs1) · ∃k : OccA,i(αs2) · ↓(αs1, j) = ↑(αs2, k)

∀i : N1; j : OccA,i(αs1) · ∃k : OccA,i(αs3) · ↓(αs1, j) = ↑(αs3, k)

If s1 is the initial node of A, we have

∀i : N1; j : OccA,i(αs2) · ↑(A, i) = ↑(αs2, j)

∀i : N1; j : OccA,i(αs3) · ↑(A, i) = ↑(αs3, j)

Again the dual properties are asserted.
A merge node with predecessors s1 and s2 and successor s3 launches an execution

of s3 whenever either s1 or s2 terminates (Merge1):

∀i : N1; j : OccA,i(αs3) ·
∃k : OccA,i(αs1) · ↓(αs1, k) = ↑(αs3, j) ∨
∃k : OccA,i(αs2) · ↓(αs2, k) = ↑(αs3, j)

with the dual properties (Merge2)

∀i : N1; j : OccA,i(αs1) · ∃k : OccA,i(αs3) · ↓(αs1, j) = ↑(αs3, k)

∀i : N1; j : OccA,i(αs2) · ∃k : OccA,i(αs3) · ↓(αs2, j) = ↑(αs3, k)

A join node of this form instead requires that both its predecessors have terminated
(Join1)

∀i : N1; j : OccA,i(αs3) · ∃k : OccA,i(αs1); l : OccA,i(αs2)

· max(↓(αs1, k),↓(αs2, l)) = ↑(αs3, j)

and (Join2)

∀i : N1; j : OccA,i(αs1); k : OccA,i(αs2) · ∃l : OccA,i(αs3)

· max(↓(αs1, j),↓(αs2, k)) = ↑(αs3, l)

The number of control tokens at the input to the join from s1 is the number of
terminations of αs1, less the number of activations of αs3:

tokensA,i(s1) = #finA,i(αs1)− #actA,i(αs3)
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where #actA,i(α) only counts event occurrences from OccA,i(α), and similarly
for #fin.

The default semantics of the join in UML superstructure 2.1.1 [4] requires that
there are control tokens at both inputs to the join before the successor action can
activate (Join3):

∀i : N1; j : OccA,i(αs3) · (tokensA,i(s1) > 0 ∧ tokensA,i(s2) > 0) �↑(αs3, j)

Additional or alternative join conditions [4, pp. 382–384] can also be represented.
For example, if instead, repeated occurrences of a control token at one input should
be merged, we could define

mtokensA,i(s1) = card({ j : OccA,i(αs1)|↓(αs, j) < now ∧
¬∃k : OccA,i(αs3) · ↓(αs1, j) ≤ ↑(αs3, k) < now})

and use this in place of tokens in the axiom above.

11.4 DATA FLOW SEMANTICS

The main extension of activity diagrams over state machines is the possibility of data
flow between actions, whereby data (typically, objects) are queued at the inputs of
actions and consumed when the action is enabled to execute. The action may produce
data outputs for use by other actions. Data flow can be modeled by the use of explicit
variables holding collections of data items (tokens). Each object node (data store)
in the activity diagram is also represented by an explicit variable holding the set of
tokens at that node. A weight on an object flow from an object node to an action
indicates how many instances are required to be present at the object node before the
action can activate: The action will then consume these instances.

Figure 11.8 shows how an activity node s that waits for a condition G to become
true is expressed as a state machine. In the mapping to semantic actions, it is instead
modeled by the requirement

∀i : N1; j : OccA,i(αs) · G′�↑(αs, j)

[G]/activity

s1

s

[not(G)]

s0

FIGURE 11.8 Activity waiting for a condition.
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11.5 SEMANTIC ANALYSIS

The semantics can be used to analyze properties of the activity diagram—in particular:

• If an activity node is unreachable from the initial node.
• If the postcondition of one activity contradicts the precondition of an immediately

following activity.
• If the branch conditions of a decision node are consistent and complete.

These map via the translation to corresponding state machine properties and so can be
verified using state machine tools. In addition, tools for animation of state machines
could be used to animate the activity diagram via the translation. Similarly, proof tools
for RTL can be used to analyze the interpretation of activities as semantic actions.

Activity extension is referred to in UML superstructure 2.1.1 [4, Chap. 12] but is not
defined. A concept of activity diagram refinement could be derived from refinement
of the corresponding state machines. For example, replacing an action executable
node by a structured activity. This corresponds to decomposition of a basic state into
a composite state, which is a refinement [4, p. 563]. Similarly, adding a new parallel
stream of activity nodes to an activity corresponds to a state machine refinement,
adding a new orthogonal region to an AND state. Refinement can also be defined
using theory extension of the corresponding theories of the activities, using the second
semantics.

For example, we can show that a merge node can be replaced by explicit duplica-
tion of its successor node as a refinement transformation (Figure 11.9). The theory
interpretation ζ is that αs3 is interpreted by the choice αs4[]αs5. αs4 and αs5 are defined
to call the same actions as αs3.

ζ(Merge1) holds in the new model since every execution of ζ(αs3) is either one of
αs4 and is preceded by an execution of αs1, or is one of αs5 and is preceded by one of
αs2. ζ(Merge2) holds in the new model since every execution of αs1 is followed by
one of αs4 and hence by one of ζ(αs3), and every execution of αs2 is followed by one
of αs5 and hence by one of ζ(αs3).

We can also use reasoning using the compactness principle (Chapter 6) to show
that if an occurrence of an activity produces an unbounded set of action occurrences,
it cannot terminate (e.g., Figure 11.10).

s2

s1

s5
s2

s3

s1 s4

FIGURE 11.9 Remove merge node.
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s1

s2

FIGURE 11.10 Unbounded activity.

The addition of invariants to all activities (local Postcondition acts as such an
invariant for actions) would enable reasoning about the effect and correctness of
activities. Such invariants can be expressed as state invariants in translation of the
activity diagram to a state machine.

11.6 RELATED WORK

UML 2 activities have similarities to Petri nets, so it appears natural to provide them
with a semantics in terms of this formalism, as is done by Storrle and Hausmann
[5]. However, other notations of UML cannot easily be related to Petri nets, so
restricting the scope for analysis. Petri nets have also been considered inappropriate for
modeling activities for workflows because of their lack of capability for reactiveness
[1]. Other formalisms, such as the π-calculus, have also been used for activity diagram
semantics [2]. These are more complex than activity diagrams, and we consider it
more appropriate and useful to express activities in terms of simpler constructs within
the UML itself, taking advantage of the considerable overlap between the concepts
of activities and state machines.

A semantics in terms of semantic actions allows the semantics of activities to be
related to that of class diagrams (Chapter 6), state machines (Chapter 8), and sequence
diagrams [3].

11.7 SUMMARY

In this chapter we have shown how a large subset of the UML 2 activity diagram
notation can be expressed in terms of state machines and semantic actions, and hence
can be provided with a semantics by means of the axiomatic semantics defined in
Chapters 4 and 6. The first semantics has the advantage that it is expressed in terms
of a notation familier to UML users, and is compositional, retaining the structure of
the activity diagram in the translation. The second is less intuitive, but supports direct
semantic analysis.
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CHAPTER 12

VERIFICATION OF UML MODELS
KEVIN LANO
Department of Computer Science, King’s College London, London, UK

12.1 INTRODUCTION

In this chapter we describe conditions for the completeness and consistency of UML
models, both with respect to individual models and between several models of the
same system.

The correctness of a UML model generally concerns four types of properties:

1. Consistency. A model is inconsistent if there are contradictions present in the
model, which mean that no situation can ever satisfy it. In UML it is neces-
sary to consider both the consistency of an individual model (such as a class
diagram) and the consistency of this model when compared with other models
that describe other aspects of the same system (e.g., state machine models).

2. Completeness. A model is incomplete if there are missing elements of the
system, such as cases of behavior or missing subclasses, which should be
present to give an adequate specification.

3. Validation. Validation checks that the model formalizes the requirements
correctly.

4. Quality. The model must satisfy certain quality criteria, which will make it
more amenable to refinement, analysis, and adaption [10].

A wide range of techniques can be used to perform these checks, such as:

• Inspection (structured examination) of the model by one or more reviewer(s),
who should not have been involved in the creation of the model.

• Translation of the model to the notation of a proof tool [76], which will support
the proving of theorems about the model.

UML 2 Semantics and Applications. Edited by Kevin Lano
Copyright © 2009 John Wiley & Sons, Inc.
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• Animation of the model, to examine how situations can be constructed that satisfy
the model and how these evolve as determined by the model [26]. Animation cor-
responds to testing, at the specification level, and can include symbolic execution
of the specification.

• Translation to the notation of a model checker tool [2], which allows an automated
exploration of a large number of sequences of behavior of the model, as a form
of automated animation.

Proof can be used to identify incompleteness or inconsistency in a model: For
example, all operations of a class should preserve the invariant constraints of the class,
and an initialization operation should establish these constraints. If the proof of these
conditions fails, it identifies possible inconsistency between operation postconditions
and the class invariants, or incompleteness in the specification of the operations (e.g.,
that some cases of behavior have been omitted). Proof can also be used to check
that validation properties (formalized conditions which are expected to hold for the
system) are true.

Animation may also reveal inconsistency and incompleteness, as different test
scenarios for the system are “executed” using its specification. Some animation tools
can show the value (true or false) of each invariant in each state, so identifying
inconsistencies. The main use of animation is in validation, showing that the behavior
of the system is as intended in each test case scenario.

Model checking is used primarily to validate that certain required properties
hold in a model. If the properties do not hold, counterexample traces of the
history of the system are generated, which identify how the property can be
violated.

12.2 CLASS DIAGRAMS

The following are common errors in defining class diagrams:

• Misuse of the notation (e.g., confusing the notations for attributes and
operations)

• Incorrect modeling choices, such as using inheritance incorrectly to model a
situation that should be modeled by an association, or viceversa

• Unnecessary duplication, such as defining the same attributes in both a class and
its subclasses, or defining a feature of a class as both an association end owned
by the class and as an attribute of the class

• Incompleteness, such as defining an abstract class that has no concrete subclass:
Such a class will not be able to be used in a program

• Inconsistency in modeling, such as defining a setatt operation for a frozen
attribute att

• Semantic inconsistency, such as defining a postcondition of an operation that is
inconsistent with the invariant of the class
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At the design level there are errors of modeling that affect the quality of the design,
rather than its correctness, and so may make implementation, testing, or maintenance
unduly expensive or error-prone [10]; for example:

• Circular dependency between classes
• Abstract class inheriting from concrete class
• Parent class accessing features of a child class
• Operations with excessive numbers of parameters
• Concrete base class of an inheritance tree

12.2.1 Syntactic Correctness of Class Diagrams

The incorrect use of class diagram notations can be detected by tools that enforce the
UML metamodels, preventing the creation of incorrect models.

Some checks that should be made include the following:

• Two different classes must have different names within the same namespace.
• Two different enumerated types should not have same-named elements, and the

values within a single enumerated type should be distinct.
• If an attribute is declared in a class, it should not be declared in any subclass (it

is inherited and does not need to be redeclared).
• No cycles are possible in the inheritance relationship.
• If an operation is declared in both a class and a subclass of the class, these

declarations should be consistent: with the same input and output types, and
the postcondition of the subclass version should imply the postcondition of the
superclass version.

• If an association end is defined for both a superclass and a subclass, the multi-
plicity restrictions on the subclass version cannot be less restrictive than on the
superclass version. The opposite association end for the subclass version must
be attached to the same class as for the superclass version, or to a subclass of
it (i.e., the type of the role at that end cannot be enlarged in the subclass). If a
role is ordered for the superclass, it should also be ordered for the subclass, and
viceversa.

• A class containing an abstract operation must itself be abstract.
• An interface cannot inherit from a class.
• An abstract class must have a concrete subclass (direct or indirect).
• Expressions in constraints should be type correct (e.g., if an operation is defined

to have an Integer result, a postcondition result= 2.5 is an error).

Many of these errors can be detected automatically by a diagram-editor tool and
users warned whenever they try to save a model containing such flaws.

Incorrect choice of modeling elements can be detected by carrying out reviews of
the models by other developers and by comparison with the system requirements.
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12.2.2 Semantic Correctness of Class Diagrams

The semantic correctness of a class consists of the following conditions:

1. There is some possible object of the class; that is, it is possible to give values to
its structural (data) features which satisfy the typing constraints of these features
and all constraints in the model that depend on these features, in particular the
class invariants. The invariants of superclasses of the class are also considered
to apply to the class itself (Chapter 6), so these must be logically consistent
with its own constraints.

2. Any initial or default values assigned to the data features of the class must
satisfy all the applicable constraints (considered in condition 1).

3. The constraints themselves must be well defined. Any conditions necessary for
the valid execution of an operation should be specified in its precondition.

4. The precondition and postcondition of each operation must be consistent with
the class invariant.

5. If an explicit code definition Codeop is given for an operation op, this must
satisfy the pre- and postspecifications of the operation.

Semantic inconsistency violating the first condition can arise if two conflicting
requirements are formalized without their inconsistency being recognized; in this
case the requirements must be amended. For example, the model of Figure 12.1 is
inconsistent: It is impossible to instantiate the class A with even a single element ax
because then (via associations A_B and B_C) there must be 15 elements of C attached
to this A instance, but this violates the property that there are exactly 10 times as many
C instances as A instances, because of the A_C association.

Violation of the third condition can result if insufficient preconditions are given
for an operation; for example,

density(m: Real, vol: Real): Real
post: result = m/vol

A B

C

br

cr1

cr2

3

5

10

1

11

FIGURE 12.1 Inconsistent model.
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is ill defined when υol= 0. The operation should be corrected to

density(m: Real, vol: Real): Real
pre: vol > 0
post: result = m/vol

We can formalise the consistency conditions by using the notion of weakest
precondition of an update behavior. The notation [Code]P means that the operation or
program statements Code always establish the predicate P. Code can be a statement
using the syntax described by the metamodel of Figure 6.4 or some other behavior
specification language. [Code]P is called the “weakest precondition” of Code with
respect to P. The formula R =⇒ [Code]P means that if R is true when Code starts
to execute, P will be true when Code terminates.

The consistency rules of a class can be expressed precisely using this concept, as
follows:

1. The class invariant must be satisfiable; that is, there must exist at least one
combination of attribute/role values of C in which InvC is true:

∃υ1 : T1; . . . ; υn : Tn; rυ1 : DT1; . . . ; rυm : DTm · InvC[υ/att, rυ/role]

where the atti : Ti are the attributes (including inherited attributes) of C and the
rolej : DTj represent the roles of C and its ancestors. This also confirms that the
explicit invariant of C is consistent with superclass invariants, because these
are all conjoined to form the complete class invariant of C.

2. The initialization of a class always establishes the invariant:

[initC]InvC

where initC is the code defining the constructor of C.

3. Definedness obligations: The invariant of a class should always be well defined
(not contain applications of functions to elements outside their domain, such as
division by zero), and the precondition of an operation should ensure that the
postcondition or code definition of this operation is well defined.

4. The precondition and postcondition of each operation must be consistent with
the class invariant.

5. If an explicit code definition Codeop is given for an operation op, this must
satisfy the pre- and postspecification of the operation

InvC ∧ Preop =⇒ [Codeop]Postop

Incompleteness can arise if the data of a class or the effect of an operation omit
cases that are required. For example, in the lift system (Chapter 2) the class invariants
of Lift are incomplete, since they only determine the value of lm, the lift motor, in
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one case (the motor is always off if the doors are not closed):

door.dcs = false implies lm = stop

Further analysis of the system identifies constraints that determine when the motor
should be set to up or down:

dest > fps and door.dcs = true implies lm = up

dest < fps and door.dcs = true implies lm = down

However, there is still incompleteness since the disjunction of the antecedents of these
rules is

(dest > fps or dest < fps) and door.dcs = true or door.dcs = false

and the negation of this is

dest = fps and door.dcs = true

which is a possible state to which the system should respond. Therefore, we need an
additional rule with this condition as its antecedent:

dest = fps and door.dcs = true implies lm = stop

The following two principles can be defined to detect if a set of constraints are
complete:

1. For each attribute att that represents an output of the system (such as an actuator
in a reactive control system), some constraint should define its value. att will
occur on the succedent of such constraints and normally not in the antecedent.

2. The collection of constraints that define the value of att should cover all possible
conditions that could arise in the system: The disjunction of the antecedents
of the constraints defining att should be true or should be provable from other
constraints of the system. In particular, each possible combination of input
values (such as sensor attributes) should be considered.

The Door class invariant is also incomplete, as no constraint defines when the door
motor should be opening or closing. Similarly, constraints are needed to set the lights,
for example,

lightsets→forAll(lights→at( fps).lit = true)

Other data incompleteness in this example concerns the size of lightsets and the
possible range of values of fps and dest.

Another form of incompleteness is underspecification of operations. For example,
an operation to add a new student to a course could be specified as

addStudent(s: Student)
post: courselist->includes(s.name)
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where courselist is the list of names of students on the course. The operation does
require that the name of the student be placed in the courselist, but the operation
permits courselist to change in any other way, even to remove all other student names
from the list.

A more explicit and complete specification would be

addStudent(s: Student)
post: courselist = courselist@pre->append(s.name)

A check on the completeness of an operation is that

(Preop ∧ InvC)@pre ∧ Postop =⇒ InvC

“If the operation precondition and class invariant hold at the start of the operation,
and its postcondition holds at the operation termination, the class invariant should
also hold.”

For example, if an operation is defined to have postcondition x > x@pre, and the
class invariant is x > 0, the completeness check is

(x > 0)@pre ∧ x > x@pre =⇒ x > 0

which is clearly true.
However, if the postcondition was, instead,

x = x@pre+ y

where y is a numeric input parameter of the operation, we would also need a
precondition y≥ 0 to guarantee the invariant after the operation.

In many cases a complete definition of an operation can be generated automatically
from an incomplete definition by using the class invariants. This permits us to use
simple but incomplete definitions of operations initially (e.g., in a CIM), and then to
include the full definition when a PIM is produced.

If the CIM postcondition of an operation has the form

(E1 implies att1 = υ1 and ... and attm = υm) and ... and

(Ek implies att1 = υ(k−1)m+1 and ... and attm = υkm)

where the atti are some (not all) of the attributes of the class, and an invariant of the
class is A implies B, where A or B contain some of these attributes, an additional
postcondition

Ej and A[υ( j−1)m+1/att1, ..., υjm/attm] implies B[υ(j−1)m+1/att1, ..., υjm/attm]

should be added to the original postcondition, for j= 1, ..., k.
This process of adding extra postconditions to make an operation complete may

also identify cases of inconsistency between the effect of the operation and the
class invariants; in this case, additional preconditions may be needed to prevent the
operation from being invoked in situations that could produce inconsistency.
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Particular care is required when associations are modified from one end, because
the other end of the association will usually also need to be modified to maintain the
inverse relationship between the ends and any multiplicity constraints on the ends.

For example, if there is a 1-* association between classes A and B, with roles ar
at the A end and br at the B end, a postcondition

removebr(ax: A, bx: B)
pre: bx : ax.br
post: ax.br = (ax.br)@pre->excluding(bx)

contradicts that bx.ar must always be an element of A (since bx has been removed
from ax.br, bx.ar cannot be ax): the postcondition must be extended either to delete
bx from B, or to assign a new A value to bx.ar.

Similarly, if there is a composition aggregation from a class W to a class P, deletion
of an element of W will also require deletion of its attached P objects.

12.2.3 Verification Techniques

Verification of class diagrams can be carried out by translating the model into the nota-
tion of a formal analysis tool and carrying out proof, animation, or other analysis using
this tool. The B language has been used for class diagram analysis [38,76] because its
semantic base is consistent with many concepts of UML, and its tool support is among
the best available for any formal method. However, the structural mismatch between
the object-based structuring of B and the object-oriented structure of UML means that
analysis of global properties of large modules may be infeasible by this technique. It
is most useful for demonstrating local consistency of individual classes and detecting
incompleteness of operations (inadequate preconditions or postconditions).

The use of a translation to a different language requires that the translation preserves
the semantic meaning of the UML model in the new language, and that (ideally) the
analysis results obtained are reexpressed in terms of the UML model. Provided that
the translation is semantically sound, that is,

M1 �UML ψ =⇒ M2 �F ζ(ψ)

for each ψ, where M1 is the original UML model, M2 its translation in the new
formalism F, and ζ the interpretation of UML constraints in F, then contradictions
in the starting model will give rise to contradictions in the translation:

M1 �UML P and not(P)

means that also

M2 �F ζ(P and not(P))

and ζ will respect logical operators, so the consequent formula also has the form of
a contradiction. This implies that inconsistencies in M1 can in principle be detected
by analysis in M2, and that proof of consistency in M2 ensures that of M1.

General-purpose theorem provers such as SPASS [75] or PVS can be used to
analyze UML models using such a translation, as in Chapter 5.
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Analysis tools for UML that operate on the models without translation are also
available. The USE (UML-based specification environment) tool provides [26] type
checking, syntax checking, animation, and theorem-proving capabilities for OCL
constraints, relative to a given class diagram model. The KeY system [1] also provides
checks on the consistency of constraints and checks that constraints hold in a proposed
implementation. The UML2Web tools [47] generate Java implementations from OCL
constraints, and these implementations are correct by construction relative to the
constraints.

12.3 STATE MACHINE DIAGRAMS

Common errors in the definition of state machines include:

• Unreachable states within a state machine model—states for which there is no
possible path of transitions from the initial state to the state, so it can never be
occupied. This may arise because of mistakes made in defining guard conditions
or the direction of transitions.

• Failure to define a unique initial state for a state machine, or for composite
states/regions.

• Invalid use of transitions: for example, direct transitions from one region of a
composite state to another (Figure 12.2).

• Unstructured control flow in behavior state machines for operations, such as
loop structures with multiple entry and exit points.

• State invariants that contradict the guards of transitions exiting the state, so that
these transitions can never be enabled.

• State invariants that contradict the postconditions of transitions entering the state.
• State invariants that contradict an invariant of a superstate of the state, meaning

that it can never be occupied.

Because of the complexity of state machine semantics, it is more difficult to detect
such errors for state machine models by manual inspection, and some automated
analysis, such as model checking, may be necessary.

s1

s2

s3

s4

s5

s6

s7

3rr2r1

FIGURE 12.2 Invalid transition.
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The use of constructs such as history states and event deferral, which have complex
semantics, should be limited as far as possible, in order to improve the analyzability
of a model. In addition, situations where the behavior of a model depends on the
order of execution of actions on the initial transitions of different regions of an AND
composite state should be avoided, since UML does not specify the order in which
these should be executed; similarly for exit behavior of an AND state.

12.3.1 Syntactic Correctness of State Machines

Syntactic correctness conditions on state machines include:

• The states within a state machine model should have distinct names.
• If a transition has multiple sources, these must be in different regions of an AND

state: They cannot be in the same region/OR state; similarly for multiple targets
of a transition.

• States cannot overlap, except for a state and its substates, which must be entirely
contained within it.

• States should always be named, and have distinct names within each composite
state and at the top level of a state machine.

• OR states/regions must have an initial state.
• Transitions in protocol state machines and behavior state machines for objects

should have triggers, which are either timeout triggers or update operations of
the object.

• Transitions in behavior state machines for operations can have completion
(implicit) triggers or timeout triggers.

Syntactic consistency of a state machine with respect to a class diagram means that:

1. All operations appearing as triggers on the transitions of a state machine for a
class C are update operations of that class (or of an ancestor of the class), and
have the same parameters and parameter types in both diagrams.

2. The guards of transitions use only features of the class, together with input
parameters of the triggering operation, and query operations on supplier objects.
If the state machine describes an operation with a result parameter, this
parameter can also be used.

3. The postconditions/actions of transitions use only features of the class, together
with input parameters of the triggering operation. If the state machine describes
an operation with a result parameter, this parameter can also be used. Actions
can invoke operations of supplier classes. Postconditions may use @pre
versions of the class features and query operations on supplier objects.

4. The entry, exit, and do actions of states use only features of the class, or result
in the case of an operation state machine, and can invoke operations of supplier
classes.



12.3 STATE MACHINE DIAGRAMS 305

All syntactic conditions can be checked and enforced by diagram editors for state
machines.

12.3.2 Semantic Correctness of State Machines

Semantic correctness conditions for state machines include internal consistency, com-
pleteness, and consistency with other UML models of the same system, especially
class diagrams.

The following conditions should be satisfied:

• Consistency. Two transitions with the same source state and trigger event should
have nonoverlapping guards; it should not be possible for the guards to be true
at the same time.

• Completeness. The disjunction of the guards of the transitions leaving one state,
triggered by the same event, should be implied by the source state invariant.

• The invariant of an (abstract) OR state/region must be consistent with the dis-
junction of the invariants of its direct substates. The invariant of an AND state
must be consistent with the conjunction of the invariants of its regions.

There may be internal inconsistency in state machine diagrams due to conflicting
transitions: When two transitions with the same source state are both enabled to occur
at the same time, so that contradictory behaviors are defined.

Incompleteness may arise because of missing transitions if the adopted semantics
for a state machine is that missing cases of behavior indicate undefined behavior in
that case. Even if missing cases are taken to mean that an implicit skip (no state
change) occurs, the situation should be checked to ensure that this behavior is what
was intended.

A state machine may also be inconsistent with a class diagram, for example, the
invariant of a state may be inconsistent with the class invariant of the class that owns
the state machine.

Figure 12.3 shows an example of internal inconsistency: If x= y and the state is s,
both transitions for op are enabled, and the result state cannot be determined.

Figure 12.4 shows an example of incompleteness: If x= y and the state is s, no
transition for op is enabled, and its behavior in this case is not defined (the situation
is the same as a missing precondition, for protocol state machines), or is an implicit
skip (no state change).

An example of inconsistency between a class invariant and an operation postcon-
dition expressed by a state machine is when a class C has an invariant

br → size() ≤ n

limiting the size of a role br, but an operation op(x) has an unguarded transition
with postcondition br= br@pre→including(x). This can contradict the invariant if
br@pre→size() is n and x is not already in this set.

To avoid this conflict, a guard br→size() < n should be added to the transition.
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t1

t2
op[x <= y]s

op[x >= y]

FIGURE 12.3 Inconsistent state machine.

t1

t2

op[x > y]

op[x < y]s

FIGURE 12.4 Incomplete state machine.

The correctness conditions for state machines can be expressed precisely as
follows:

1. The consistency requirement for a state machine for a class C is that there
cannot be two different transitions from the same state triggered by the same
operation whose guards are both true at the same time:

c_state = s ∧ G1 =⇒ ¬G2

for the guards G1 and G2 of any two transitions for the same operation op(x : X)
from state s. More generally, enc(tr1) and enc(tr2) for two transitions triggered
by the same event can both be true only if the main source of tr1 is in an
orthogonal region to the main source of tr2.

2. The state machine is complete if for any operation op which has at least one
transition in the state machine, for each state s from which there is a transition
for op, the disjunction of the guards on the transitions for op from s is equivalent
to true (or to the invariant of the source state s, if there is one):

Invs =⇒ (G1 ∨ ··· ∨ Gm)
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This makes the behavior of op completely explicit in all cases, with no difference
between the three alternative state machine semantics, since there are no cases
of undefined behavior/implicit skips/implicit blocking.

3. There should exist possible data values that satisfy both the invariant of an OR
state/region r and the invariants of its direct substates s1, ..., sn:

∃υ : T · Invr ∧ (Invs1 ∨ ··· ∨ Invsn)

Similarly for an AND state s and its regions r1, ..., rm:

∃υ : T · Invs ∧ (Invr1 ∧ ··· ∧ Invrm)

4. If an explicit algorithm is provided for an operation op by a behavior state
machine, this algorithm Codeop must satisfy the pre- and postconstraints given
for the operation:

Preop =⇒ [Codeop]Postop

The initial state should usually satisfy Preop and the final states should satisfy
Postop. If Codeop includes calls of other operations, the preconditions of these
operations should be true at the point of call.

5. The actions of each state machine transition should establish the invariant of
the target state, if any:

Invs ∧ G =⇒ [op(x); exits; acts; entryt]Invt

for a transition s →op(x)[G]/acts t of a behavior state machine for an object.
For protocol state machines, the postcondition of a transition should be
consistent with the invariant of its target state.

6. The do-action of a state should preserve its invariant:

Invs =⇒ [dos]Invs

The same is true for any internal transitions of the state.

12.3.3 Algorithm Correctness

Reasoning using weakest preconditions ([ ]) can also be used to prove the correctness
of algorithms defined in a behavior state machine for an operation. For example,
considering the algorithm of Figure 12.5 for computing the quotient and remainder
of one positive integer y when divided by another x, we have:

1. The initialization establishes the loop invariant:

[q := 0; r := y]( y = q ∗ x + r ∧ r ≥ 0)



308 VERIFICATION OF UML MODELS

[r >= x]/r := r−x; q := q+1

Calculating

Done

/q:= 0; r:= y

[r < x]y = q*x + r]
[r >= 0 & 

FIGURE 12.5 Specification of a quotient remainder loop.

2. The loop invariant is maintained by the self-transition on the loop state:

(y = q ∗ x + r ∧ r ≥ 0) ∧ r ≥ x =⇒ [r := r − x; q := q + 1]

(y = q ∗ x + r ∧ r ≥ 0)

The conclusion holds because the new value of r is r− x, which is nonnegative
due to the guard r≥ x.

3. When the final state is reached, the postcondition of the operation is true:

r < x ∧ y = q ∗ x + r ∧ r ≥ 0

defining q and r as the quotient and remainder.

The attribute q holds the value of the quotient, and r the remainder. At termination
of the loop r < x holds, so together with the loop invariant, we know that q and r are
the correct quotient and remainder. For example, if y is 33 and x is 4, the final value
of q is 8 and of r is 1.

In general, we can use induction over a behavior state machine to establish that a
property holds in each state. If a state machine has states s1, ..., sn, and these have
proposed invariants Inv1, ..., Invn, these invariants are valid if:

1. For each initial transition→[G]/acts sk to an initial state sk ,

G =⇒ [acts; entrysk ]Invk

2. For any transition si →op(x)[G]/acts sj,

Invi ∧ G =⇒ [op(x); exitsi ; acts; entrysj ]Invj

3. For any transition si →[G]/acts sj,

Invi ∧ G =⇒ [exitsi ; acts; entrysj ]Invj
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4. For do actions of a state sk ,

Invk =⇒ [dosk ]Invk

Similarly for internal transitions of the state.

In Figure 12.5 we can therefore deduce that

r ≥ 0 ∧ y = q ∗ x + r ∧ r < x

is an invariant of Done.
Having established that the Invj are valid in their states, we can deduce that any

property I that is implied by all of these invariants is true in every state:

Inv1 ∨ ··· ∨ Invn =⇒ I

Termination of a loop in an algorithm can be proved by identifying a loop variant,
a nonnegative integer quantity which always decreases when any path from the loop
state to itself is taken. For example, in Figure 12.5, the quantity r is such a value. It
decreases each time the self-transition is taken, which means that this transition can
be taken only a finite number of times (as r is never increased by any transition), and
therefore the algorithm must terminate.

12.3.4 Verification Techniques

Many tools exist for state machine definition and syntactic analysis. Verification of
semantic properties can be carried out by translation to a notation such as B [38] or
Petri nets [69] for which animation and proof tools exist. Established commercial tools
exist for the classical statechart notation and the Rhapsody object-oriented version of
statecharts. However, the syntax and semantics of these notations differ significantly
from that of UML state machines, which limits the usefulness of such tools [14].

Automated model checking can be achieved by translating UML state machines
to the notations of tools such as SPIN [22] or SMV [2]. One disadvantage of model
checking is that the state space of the system must be finite. An alternative is symbolic
execution or interactive theorem proving [7].

A novel verification technique for state machines is state machine slicing [11,35].
This adapts the concepts of program slicing to state machines, in order to simplify the
state machines, removing all elements that do not contribute to the value of selected
data items at a particular state. So far the technique applies only to state machines
without composite states.

12.4 SEQUENCE DIAGRAMS

Syntactic correctness conditions for sequence diagrams include:

• The endpoint of a message must be at the same or lower vertical level as its
source.
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• Lifelines must have distinct names within a single sequence diagram.
• Conditions P attached to a lifeline must be evaluable on the object cx of the

lifeline (i.e., cx.P is well defined); similarly for conditions on messages with cx
as their starting point (parameters of the operation of the message can also be
used in the message condition).

A semantic correctness condition is that there should be no traces which are both
permitted and excluded by the same diagram.

Sequence diagrams can be checked for consistency with class diagrams and state
machine models by identifying if the execution scenarios they describe are permitted
by the other models.

Each lifeline in a sequence diagram must be an instance of a class in the class
diagram or an instance of an agent in the use case diagram.

If a message m is sent from object ax : A to object bx : B in a sequence diagram,
(1) m must be an operation of B or of one of its ancestors, with parameter types
including the parameter values of m, and (2) there must be a series of navigable
associations from ax to bx.

For each message m sent from object ax : A to object bx : B in a sequence diagram
I , it should be checked that there is a transition in the state machine for A which
includes an operation invocation bs.m in its generations, where bs is a set of B objects
or an individual B object. That is, there exists transition tr with actions acts such that

acts invokes bx.m

States and conditions specified in the sequence diagram must be consistent with the
state machine states at corresponding time points.

Alternatively, such a message send could be defined in the class diagram as part
of the operation definitions of A.

More generally, a sequence of message sends from ax in a sequence diagram
should be checked for consistency by identifying if there is a path in the state machine
model for the class of ax that can give rise to this behavior, with the same order of
message sends.

Conditions required to be true at time points or intervals on a lifeline for ax : A
must be consistent with the class invariant of A if they include times at which ax is
not executing any operation.

12.4.1 Completeness

Completeness checks include:

• There is at least one sequence diagram describing each use case of the system.
• Each valid variation of behavior of each use case should be shown in some

sequence diagram: in particular, each case of execution of an extension to a
primary use case.
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• Each explicitly forbidden behavior of a use case should be shown on an
interaction diagram marked as negated.

• For each state machine transition that invokes operations, there is some sequence
diagram containing this message send.

12.4.2 Validation

Validation checks can be carried out by animation of sequence diagrams, to identify if
expected properties hold, or by proof, using reasoning tools for real-time logic (RTL)
such as SDRTL [3].

A subset of RTL that uses only linear inequalities between event occurrence times
is decidable, permitting automated validation. We could express many real-time
constraints in this subset, pathRTL [57], which consists of inequations

e1+/−constant ≤ e2

where the ei are times @(event, j) of occurrences of events.

12.5 SUMMARY

In this chapter we have defined concepts of model correctness, completeness, quality,
consistency, and validity for UML class diagrams, state machines, and interactions,
and have described techniques for verification of these properties.
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CHAPTER 13

DESIGN VERIFICATION WITH STATE
INVARIANTS
EMIL SEKERINSKI
Department of Computing and Software, McMaster University, Hamilton,
Ontario, Canada

13.1 INTRODUCTION

This chapter is focused on statically verifying the design expressed by a statechart.
Statecharts extend finite state machines with clustering, expressed by XOR states,
with concurrency, expressed by AND states, and with broadcast communication.
Both XOR and AND states structure the states hierarchically: If a chart is in an XOR
state, it must be in exactly one of its children; if the chart is in an AND state, it must
be in all of its children. Transitions between states can assign to and depend on global
variables of arbitrary types, thus lifting the restriction to a finite number of states;
the statechart states partition the combined state of the chart and the variables into
modes. These extensions of finite state machines are meant to allow the requirements
of embedded systems to be expressed directly [6].

Statecharts are appealing to practitioners, as the underlying formalism of finite state
machines is well understood, as the visual designs are “easy to communicate to domain
experts,” and as statecharts can be executed directly through interpretation or compi-
lation. With their inclusion in UML, statecharts are used for object-oriented design.

Statecharts on their own do not immediately lead to opportunities for verifying
the safety of the design: If an event is received and no transition on that event can take
place, it is ignored. There is no intrinsic notion that an error occurs or an invalid state
is reached for a given sequence of events. This reflects the requirement that embedded
systems have to be robust and be prepared for arbitrary behavior of their environment.

In this chapter we explore design verification through state invariants. These are
conditions that are attached to individual states and specify what has to hold in that
state. If a state S has invariant I attached to it, every incoming transition must ensure
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that I holds. Dually, every outgoing transition can assume that I holds initially. This
gives a method for checking a chart against an annotation consisting of invariants
attached to states in the state hierarchy. Intuitively, state invariants document the
“purpose” of states. In UML, state invariants can be attached to behavioral state
machines and protocol state machines [18].

Consider the TV control example in Figure 13.1. The activity is partitioned into
two states, the Basic state Standby and the AND state Working. When in Working
state, the chart is in both Picture and Sound XOR states. Within Picture the chart is in
one of the basic states WarmingUp and Displaying; within Sound the system is in one
of the basic states Waiting, On, and Off . The invariant of Working is that whenever
Picture is in Displaying, Sound must not be in Waiting (i.e., must be in On or Off ).
The invariant of Sound states that the sound level lev must be between 1 and 10. The
event power causes the chart to flip between Standby and Working, no matter which
substates of Working the chart is in. The transition on the event warm broadcasts the
event soundOn. The transition on the events down can be taken only if lev > 1 and,
when taken, will decrement lev. The transition on power to Working sets Picture and
Sound to the default initial states WarmingUp and Waiting sets lev to 5.

State invariants can express the safety of an embedded system or consistency of a
software system. Compared to writing an equivalent combined invariant as a single
global predicate, state invariants allow a potentially large invariant to be decomposed
into parts that are in visual proximity to affected transitions, making complex invari-
ants more comprehensible. State invariants allow for shorter invariant expressions, as
state tests are implicit to the state to which an invariant is attached.

The interpretation of XOR andAND states carries over to state invariants: If a chart
is in an XOR state, its invariant and the invariant of exactly one of its children have to
hold; if the chart is in an AND state, its invariant and the invariants of all its children
have to hold. As a consequence, the attached invariant of a state is inherited by all
its children and thus all its descendants. Dually, the children of a state contribute to
a synthesized invariant that is passed on to their parent and thus all their ancestors.

Working | in Displaying ⇒ ¬ in Waiting

Picture

WarmingUp warm / soundOn Displaying

Sound | 1 ≤ lev ∧ lev ≤ 10

/ lev := 5 Waiting

On

down[lev > 1] / lev := lev − 1 up[lev < 10] / lev := lev + 1

Off

soundOn mute mute

Standby

power

power

FIGURE 13.1 Statechart with invariants for a TV set.
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The conjunction of the attached invariant, the inherited invariant, and the synthesized
invariant of a state is called the accumulated invariant. A contribution of this chapter
is to define accumulation formally and to justify it (Section 13.6).

State invariants can be used for verifying a design by testing or by static verification.
The use for testing is conceptually simple: After each transition the accumulated
invariant of the target states have to be checked; more precisely, for all leaf states in
which the chart ends up, the attached invariant of those states as well as the attached
invariant of all their ancestors have to hold. To check this at runtime, the evaluation
of invariants has to be sufficiently efficient. Here we consider static verification and
do not impose restrictions on the composition of invariants.

Static verification proceeds by generating a number of verification conditions from
the annotated chart and then showing that these hold. The verification conditions
depend on the definition of a transition, which in the presence of broadcasting can have
different interpretations. The interpretation taken here is that all transitions resulting
from broadcasts are to be taken simultaneously with the initiating transition, which we
call simultaneous broadcasting. Thus, if in the chart of Figure 13.1 the event warm is
received when the chart is initially in WarmingUp and Waiting, the transitions on warm
and soundOn are taken simultaneously and the invariant of Working is preserved.

Simultaneous broadcasting can be formalized using parallel composition of state-
ments. The B method subsumes an extension of guarded commands by parallel
composition [1]. A number of approaches define statecharts by translation to the
B method [9–11,13,15,17,20,24]. The (bounded) nondeterminism of guarded com-
mands allows nondeterminism in the choice of transitions to be reflected. As the B
method also supports proofs of invariants, such a translation leads to a method for
proving preservation of accumulated invariants, to be precise with one verification
condition per event. The second contribution of this chapter is a procedure that instead
generates several smaller, “more local” verification conditions per event and justifies
this in terms of the straightforward generation (Section 13.7). Automated theorem
provers are more effective at proving or disproving many small conditions than a few
large ones. Thus, the prospect is that state invariants not only make it easier to specify
correctness conditions for statecharts but also make it easier to verify them.

The original interpretation of broadcasting leads to a sequence of internal micro-
steps. In the example above this implies that first the transition on warm is taken,
resulting in Picture being in Displaying and Sound remaining in Waiting, hence
violating the invariant in Displaying⇒¬ in Waiting. Thus, the transition on soundOn
would be taken in a configuration when the accumulated invariant of its source state
does not hold. As the transition on soundOn follows immediately, this violation is not
observable from outside. This interpretation necessitates that the invariant be relaxed
to the following one, where gen E means that event E has been generated and is
awaiting processing:

Working | in Displaying ⇒ (¬ in Waiting) ∨ ( in Waiting ∧ gen soundOn)

The set of generated events needs to be kept in a global variable and determines the
next microstep in a loop that is executed as long as the set is not empty. A verification
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method that attempts to be complete needs to allow this sequence to be referred to in
invariants, such as through the function gen above. Simultaneous broadcasting does
not need such a set and allows events to be interpreted as operations (procedures).
While microsteps allow the same transition to be taken repeatedly within a macrostep,
potentially leading to nontermination, simultaneous broadcasting forbids this. As
intermediate states are not present with simultaneous broadcasting, it is more abstract
than sequencing microsteps. An implementation of simultaneous broadcasting would
still need to introduce intermediate states following the refinement rules of parallel
composition [1].

Nondeterminism arises in statecharts if more than one transition is enabled. Clas-
sical statecharts [4,7,19] and UML statecharts [18] resolve nondeterminism that can
arise due to transitions on different levels differently: Classical statecharts give pri-
ority to outer transitions, as this facilitates zooming in and out of complex states;
UML statecharts give priority to inner transition, as an inner state can “override”
the behavior of an outer state. As a third contribution of this chapter, we study the
consequences of resolving this nondeterminism either way for invariant verification
and code generation (Section 13.8).

The final contribution of this chapter is a discussion on when and how to use
state invariants (Section 13.9). After preliminaries (Section 13.2), we first define the
(syntactic) statechart structure (Section 13.3), the meaning of statecharts in term of
configurations and operations (Section 13.4), and the meaning of state invariants
(Section 13.5).

Formal verification of statecharts has been studied extensively (e.g., in [3,5,8,12,
14,16]; see [2] for a survey on model-checking approaches. These approaches specify
invariants globally rather than attaching them to states. However, they allow more
general temporal properties than the invariants that we consider here.

This line of work emerged from an attempt to generate comprehensible code from
statecharts, as a way of cross-checking the statechart design [22,23]. Compared to the
approach there, a preprocessing step that leads to normalized statecharts is eliminated,
as this step became awkward in an interactive tool. Here the translation scheme is
described more abstractly and the well-formedness criteria are revised and justified.
In this chapter we revise and extend our earlier approach to verification condition
generation [21].

13.2 PRELIMINARIES

We use generalized program statements to define the meaning of an event. Generalized
statements subsume those that may appear in a body of a transition. We are interested
in models that are sufficiently abstract that transition bodies do not contain loops
and recursion but may contain conditionals. To simplify matters, we assume that the
evaluation of expressions is always defined.

A (generalized) statement P is defined by a pair, a predicate or Boolean expres-
sion [P] relating the initial and final states, and a list α P of variables that are assigned
in P (Table 13.1). The initial and final states are referred to by unprimed and primed
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TABLE 13.1 Definition of Statements

P [P] α P Side Condition

skip true Ø
stop false Ø
xv := ev xv′ = ev xv
g→Q g∧ [Q] α Q
Q [] R [Q] ∧ xv′ = xv∨ α Q∪ α R xv= α R− α Q

[R] ∧ yv′ = yv yv= α Q− α R
Q ‖R [Q] ∧ [R] α Q∪ α R α Q∩ α R=Ø
Q ; R ∃xv′′ . [Q][xv′\xv′′]∧ α Q∪ α R xv= α Q∩ α R

[R][xv\xv′′]

variables. Let g be a Boolean expression, xv a list of unique variables, ev a list of
expressions of the same length as xv, and Q and R statements. The statement skip
can always be executed and does not change any variables. The statement stop can
never be executed (i.e., is always disabled). The multiple assignment xv := ev assigns
the values of ev simultaneously to the variables xv. The guarded statement g→Q
blocks if g does not hold, otherwise is as Q. The nondeterministic choice Q [] R
selects either operand that is enabled: If both are enabled, their choice is arbitrary;
if neither is enabled, Q [] R blocks. The parallel or independent composition Q ‖R
is well defined only if the variables assigned to in Q and R are disjoint. However, Q
and R may read the variables assigned by the other; in that case, their initial value
is read. The parallel composition is executed in one atomic step, without interleav-
ing. Parallel composition is a generalization of multiple assignment in the sense that
(x, y := e, f )= (x := e ‖ y := f ). The sequential composition Q ; R joins the final vari-
ables of Q with the initial variables of R formally expressed by renaming: e[xv\ev]
stands for expression e with each occurrence of a variable of xv replaced by the
corresponding expression in ev. Sequential composition is always well defined. The
conditional statement is defined in terms of the above:

if g then Q =̂ (g → Q) [] (¬g → skip)
if g then Q else R =̂ (g → Q) [] (¬g → R)

The enabledness domain en P is the domain of the relation of statement P:

en P = ∃xv′ . [P] where xv = α P

For example, en skip = true and en stop = false. The prioritizing composition P // Q
is like P if P is enabled; otherwise, it is like Q:

P // Q =̂ P [] ¬ en P → Q

As nondeterministic choice and parallel composition are associative and commutative,
they can be generalized to choice over a finite number of alternatives, [] i∈ s . P and to
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a parallel composition of a finite number of statements, ‖ i∈ s . P, where s is a finite
set. The correctness assertion {p} Q {r} states that under precondition p statement Q
terminates with postcondition r:

{p} Q {r} =̂ ∀xv′ . p ∧ [Q] ⇒ r[xv\xv′] where xv = α Q

The common verification rules for statements hold; for example:

{p} xv := ev {r} ≡ p ⇒ r[xv\ev]
{p} g → Q {r} ≡ {p ∧ g} Q {r}
{p} Q [] R {r} ≡ {p} Q {r} ∧ {p} R {r}
{p} Q // R {r} ≡ {p} Q {r} ∧ {p ∧ ¬ en Q} R {r}
{p} Q ; R {r} ≡ ∃q . {p} Q {q} ∧ {q} R {r}

13.3 STATECHART STRUCTURE

A statechart S is a structure (Basic, AND, XOR, Root, parent, Event, Transition,
default) with a number of constraints on the components, which we visit in turn.
The finite sets Basic, AND, and XOR are mutually disjoint sets of states. We
let Composite=AND∪XOR be the set of composite states and State=Basic∪
Composite be the set of all states. Among the XOR states is a distinguished root
state, Root ∈XOR.

The partial function (or functional relation) parent : State %→ State maps every
element of State except Root to a composite state, dom parent= State−{Root}
and ran parent=Composite. All states form a tree that is rooted in Root, formally
Root ∈ parent∗[{s}] for any s∈ State, where r∗ is the transitive and reflexive closure
of relation r and r[S] is the image of the set S under r. We let the relation children
be the inverse of parent (i.e., children= parent−1). The children of an AND state
are said to be concurrent; the children of an XOR state are said to be exclusive. The
children of an AND state must be XOR states.

The finite set Event is that of event names. The elements of the finite set Transition

are tuples t, represented as ss
t:E[g]/B−−−−→ ts, where ss= source(t)⊆ State is the set of

source states, ts= target(t)⊆ State is the set of target states, E= event(t)∈Event is
the transition event, guard(t)= g is a Boolean chart expression, the transition guard,
and body(t)=B is a chart statement, the transition body. The state Root must not be
the source or target of any transition, Root �∈ source(t) and Root �∈ target(t) for any
t ∈ Transition. All transitions must have at least one source state and one target state,
source(t) �= {} and target(t) �= {} for any t ∈ Transition.

The partial function default : XOR %→ Transition maps XOR states to default tran-
sitions. The source of a default transition of an XOR state s, if defined, is s itself,
source(default(s))={s}. A fat dot inside the source state is used to visualize the
source of a default transition. Certain XOR states are “required to have a default
transition”: A default transition must be defined for the root state and any XOR
state that is the target of some transition (default or regular) or that is being entered
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implicitly, as it has an AND ancestor that is being entered; this will be made pre-
cise shortly. The default transition of a state s, if defined, must go to a descendant
of s [i.e., target(default(s))⊆ children+[{s}], where r+ is the transitive closure of
relation r].

Chart expressions are composed of program variables, the state tests in S1, . . . , Sm,
where Si is any state except Root, and functions fn applied to zero or more arguments
(functions with zero arguments being constants). We assume that the functions include
common Boolean, arithmetic, and relational operators.

Ex ::= v | in S1, . . . , Sm | fn(Ex1, . . . , Exn)

Chart statements are the skip statement, the multiple assignment, the broadcast E,
with E ∈Event, the parallel composition, and the conditional:

St ::= skip | v1, . . . , vm := Ex1, . . . , Exm | E | St ‖ St | if Ex then St[else St]

In charts, we allow the specifications of the transition name t:, the transition guard
[g], and the transition body /B to be left out. If a transition guard is missing, it is
assumed to be true. If a transition body is missing, it is assumed to be skip. The event
and guard of a default transition do not play any role and are always left out.

The closest common ancestor cca(ss) of a set ss of states is the state that is a proper
ancestor of each state in ss and all other common ancestors are also its ancestor. We
write x r y for the pair (x, y) belonging to relation r.

c = cca(ss) ≡ c ∈ parent+[ss] ∧ (∀a ∈ State . a ∈ parent+[ss] ⇒ a parent∗ c)

The closest common ancestor exists and is unique for any nonempty set of states that
does not include the root state. States r, s are orthogonal, written r⊥ s, if their closest
common ancestor is an AND state and neither is an ancestor of the other. A set ss
of states is called orthogonal, written ⊥ ss, if every pair of distinct states of ss is
orthogonal. For any transition, both its source and target states must be orthogonal,
⊥ source(t) and ⊥ target(t) for all t ∈ Transition. This concludes the definition of
the statechart structure.

For example, in Figure 13.2, states X and Z are orthogonal, as their closest common
ancestor, V , is an AND state and neither is an ancestor of the other. States X and T are
not orthogonal, as their closest common ancestor, S, is an XOR state. States W and X

S

T
U

u: F

V
WX

YZ

t: E

FIGURE 13.2 Self-transition and interlevel transition.
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are not orthogonal, as W is an ancestor of X , although their closest common ancestor,
V , is an XOR state.

We continue with several useful definitions. The scope of a transition is the state
closest to the root through which the transition passes:

scope(t) =̂ cca(source(t) ∪ target(t))

The path from state s to a set ss of descendants of s is the set of those states that are
descendants of s and ancestors of states in ss, excluding s but including the states
of ss:

path(s, ss) =̂ children+[{s}] ∩ parent∗[ss]

The states entered by a transition are all the states on the path from the scope of the
transition to its targets. The states exited by a transition are all the states on the path
from the scope of the transition to its sources:

entered(t) =̂ path(scope(t), target(t))
exited(t) =̂ path(scope(t), source(t))

Figure 13.2 defines source(t)={U} and target(t)={X, Z}. The scope of t is the closest
common ancestor of {U, X , Z}, which is S, thus entered(t)={V , W , X, Y , Z} and
exited(t)={U, T}. We also have that source(u)={U}= target(u). The scope of u is
the closest common ancestor of {U}, which is T , thus entered(u)={U}= exited(u).

Given a state set ss, the implicit children are those children of AND states of ss
that are not in ss. If a chart is in ss, it is also in all its implicit children:

imp(ss) =̂ children[ss ∩ AND]− ss

The completion of a transition t is the set of all transitions that are taken when t is
taken: It adds all default transitions of XOR targets of t and all default transitions of
implicit targets of t.

comp(t) =̂ {t} ∪
(⋃

s ∈ (target(t) ∩ XOR) ∪ imp(entered(t)) . comp(default(s))
)

In Figure 13.3(a) we have that target(t)={U}, an XOR state, default(U)= u,
and therefore comp(t)={t, u}. In (b) we have that entered(t)={T , U, V , W , X} and
imp(entered(t))={Y}. As default(Y )= u, we get comp(t)={t, u}. In (c) we have that
entered(t)={T} and imp(entered(t))={U, V}. Thus, we get comp(t)={t, u, v}.

We are now in a position to define formally when an XOR state is “required to
have a default transition”: A default transition has to be defined for the root state,
Root ∈ dom default, and for all XOR targets s of t and all implicit targets imp(t), for
all transitions t, formally:

∀t ∈ Transition . (target(t) ∩ XOR) ∪ imp(entered(t))⊆ dom default
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S t: E / B

T
U
V

u: / C

S

T

UV

WX

YZ
u: / C

t: E / B
S

T
UVu: / C

WX
v: / D

t: E / B

(c)(b)(a)

FIGURE 13.3 Transition completion.
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a: E / i := 0

FIGURE 13.4 State hierarchy with transitions.

With this restriction on statecharts, comp(t) is well defined for any transition t, as in
the definition s in default(s) ranges over XOR states are required to have a default
transition. Furthermore, the recursion terminates as the level (i.e., the distance to the
root) of the scope of the parameter t increases with each call, and the depth of every
statechart is bounded.

13.4 CONFIGURATIONS AND OPERATIONS

The “state” of a statechart S is given by its configuration of states and by the state
of its global variables. A configuration can be defined as a maximal set of statechart
states such that (1) it contains the root state, (2) for any XOR state it contains exactly
one of its children, and (3) for any AND state it contains all of its children [7,19]. We
use here a different model that makes it easier to explain independent (concurrent)
updates of a configuration [20]. For every XOR state s, including Root, a variable
lc(s), ranging over uc(c) for every child c of s, is declared. We interpret lc(s) and uc(s)
to be the state s starting with a lowercase or an uppercase letter. For the statechart of
Figure 13.4 we get

root : {R, S} t : {U} v : {W , X} x : {Y , Z}

Note the use of X as a value of variable v and the use of x as a variable. Formally,
it is sufficient to assume that lc and uc are injective functions with disjoint ranges.
The function var is defined to map the variable names to the set of possible values
[e.g., var(root)={R, S}]. Thus, var defines the set of possible configurations. We
assume that these variables and their values are distinct from the global program
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variables. This model allows us to define the state test and state assignment for any
state s that is a child of an XOR state by inspecting and assigning the variable for that
state:

test(s) =̂ lc( parent(s)) = uc(s)
assign(s) =̂ lc( parent(s)) := uc(s)

In Figure 13.4, test(s) and assign(s) are defined for all states s except T and V :

test(R) ≡ root = R assign(R) = root := R
test(S) ≡ root = S assign(S) = root := R
test(U) ≡ t = U assign(U) = t := U
test(W ) ≡ v = W assign(W ) = v := W
test(X) ≡ v = X assign(X) = v := X
test(Y ) ≡ x = Y assign(Y ) = x := Y
test(Z) ≡ x = Z assign(Z) = x := Z

All other operations on configurations are expressed in terms of test and assign. The
predicate in(ss) tests if the current state is in the set ss; similarly, goto(ss) sets the
current state to ss.

in(ss) =̂ ∧
s ∈ ss ∩ children[XOR] . test(s)

goto(ss) =̂ ‖ s ∈ ss ∩ children[XOR] . assign(s)

The statement goto(ss) is well defined if the states of ss are not exclusive. For example,
in Figure 13.4, goto({U, X}) and goto({X , Y}) are well defined, but goto({Y , Z}) is not.

The trigger of a transition t is a predicate that checks if the transition guard holds
and if the system is in all source states; only all exited states are tested. The effect of
a statement t is to execute the body of t, to go to the states entered by t, and to repeat
this for all transitions of the completion of t.

trigger(t) =̂ in(exited(t)) ∧ guard(t)
effect(t) =̂ ‖ u ∈ comp(t) . body(u) ‖ goto(entered(u))

We allow ourselves to confuse the chart expression guard(t) with its meaning as an
expression and chart statement body(u) with its meaning as a statement, whereby a
broadcast of E occurring in a transition body is defined by op(E), to be made precise
further below, and a state test in S1, . . . , Sn occurring in the guard or body of transition
t, written int S1, . . . , Sn, is defined as testing being in S1, . . . , Sn relative to being in
source(t):

intS1, . . . , Sn =̂ in(parent∗[{S1, . . . , Sn}]− parent∗[source(t)])

The goto statement of effect(t) is always well defined as entered states are not
exclusive. For Figure 13.4, noting that comp(a)={a, c, f }, comp(b)={b}, and
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body(c)= skip = body( f ), we get

trigger(a) ≡ in({R}) ∧ true
≡ test(R)

effect(a) = body(a) ‖ goto({S, T , U}) ‖ goto({X}) ‖ goto({Z})
= i := 0 ‖ assign(S) ‖ assign(U) ‖ assign(X) ‖ assign(Z)

trigger(b) ≡ in({U}) ∧ inb Z
≡ test(U) ∧ test(X) ∧ test(Z)

effect(b) = body(b) ‖ goto({U})
= i := i + 1 ‖ assign(U)

The simplification carried out above is that skip ‖P=P for any statement P.
The operation of an event E is a statement that captures the joint effect of all

transitions in a chart on E. For brevity, let Trans(E, s) stand for the set of transitions
on event E with scope s:

Trans(E, s) =̂ {t ∈ Transition | event(t) = E ∧ scope(t) = s}
The operation op(E) is defined by recursively visiting all transitions on E, starting with
those on the outermost scope, Root. In case there is a choice between transitions with
the same scope, one is selected arbitrarily. In case there is a choice between transitions
on different scopes, transitions on outer scopes are given priority. All transitions on the
same event in concurrent states are taken in parallel. Of all transitions in an exclusive
state, at most one can be taken.

op(E) =̂ scopeop(E, Root)
scopeop(E, s) =̂ ( [] t ∈ Trans(E, s) . trigger(t) → effect(t)) // childop(E, s)
childop(E, s) =̂ case s of

Basic : skip
XOR : [] c ∈ children[{s}] . test(c) → scopeop(E, c)
AND : ‖ c ∈ children[{s}] . scopeop(E, c)

end

Figure 13.5 gives two examples. In Figure 13.4 there is one event, E, with four
transitions. With simplifications we get

op(E) = test(R) → i := 0 ‖ assign(S) ‖ assign(U) ‖ assign(X) ‖ assign(Z)
// ( test(R) → skip

[] test(S) →
( (test(U) ∧ test(X) ∧ test(Z) → i := i + 1 ‖ assign(U))

// skip
‖ ( test(W ) → assign(X) ‖ assign(Y )

[] test(X) ∧ i > 2 → assign(W ))
// skip ))

The simplifications are that choice over the empty range is stop, [] i∈ {} . P=
stop, that parallel composition over the empty range is skip, ‖ i∈ {} . P= skip, that
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S
T

U V
a: E / k := 3 F

W
X Y

b: F / l := 7

op(E) = test(S) →
(test(U) → k := 3 op(F) assign(V)
[] test(V) → skip)

op(F) = test(S) →
(test(X) → l := 7 assign(Y)
[] test(Y) → skip)

S
T

U V
a: E / k := 3

W
X Y

b: E / l := 7

op(E) = test(S) →
((test(U) → k := 3 assign(V)

[] test(V) → skip)
(test(X) → l := 7 assign(Y)
[]test(Y ) → skip))

FIGURE 13.5 Concurrent transitions and broadcasting.

skip ‖ P=P, that stop [] P=P, that stop // P=P, that g→P [] h→P= g∨ h→P,
and that true→P=P.

The semantics of statechart S is defined by the pair of functions var and op, with
var defining the possible configurations and op defining for each event a (possibly
nondeterministic) statement operating on the configuration.

13.4.1 Well-Definedness

The definition of op restricts the statecharts to which a meaning can be given. These
restrictions arise due to the use of parallel composition, which requires that operands
assign to distinct variables, and due to possible recursion in the definition of op, which
results from broadcasting. The following two conditions are sufficient and necessary:

1. effect(t) must be well defined for all transitions t.

2. effect(t) ‖ effect(u) must be well defined for all t, u such that event(t)= event(u)
and scope(t) ⊥ scope(u).

The first condition excludes transition bodies such as k := 3 ‖ k := 7 and the charts
of Figure 13.6: In (a), the broadcast of F results in two parallel assignments to k.
In (b), as the completion of a includes b, the effect of a again includes two parallel
assignments to k. In (c), transition a leads to assign(T ) ‖ assign(U), which would
result in parallel assignments to the same state variable, as is the case in (d) and (e).
In (f ), transition a leads to transitions c and b being taken, which results in assign(V ) ‖
assign(W ). More generally, this condition prohibits any direct or indirect recursion
among events, as these lead to parallel assignments to the same state variable.

The second condition excludes charts of Figure 13.7: In (a), on event E, both
transitions a and b would be taken, resulting in parallel assignments to k. In (b), on
event E, event F would be broadcast twice, resulting in assign(Z) ‖ assign(Z).

Condition 1 ensures that scopeop is well defined, provided that childop is well
defined. Condition 2 ensures that childop is well defined, provided that scopeop is
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FIGURE 13.6 Violations of well-definedness condition 1.

R
S

T U
a: E / k := 3

V
W X

b: E / k := 7

Q

R
S T

a: E / F

U
V W

b: E / F

X
Y

Z

c: F

(b)(a)

FIGURE 13.7 Violations of well-definedness condition 2.
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FIGURE 13.8 Violations of well-definedness condition 3.

well defined. Condition 1 also disallows any direct or indirect recursion among event
operations. Hence, these two conditions are sufficient and necessary. We nevertheless
consider a third condition:

3. If the body of transition t contains a broadcast of event E and u is a transition
on E, then t and u must be within concurrent states [i.e., scope(t)⊥ scope(u)].

In Figure 13.8(a), if the chart is in S and T , on event E both transitions a and b
would be taken, as the effect of a is assign(V ) ‖ assign(U). Similarly, in (b) on F both
transitions would be taken. In both cases the chart does not end up being in the targets
of transitions taken due to broadcasting of events with transitions at outer levels. The
condition above restricts broadcasting to events with transitions only in concurrent
states.
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13.4.2 Code Generation

The semantics of a chart can be expressed directly as a single MACHINE in the B
method. The VARIABLES of the machine are derived from the function var, and the
OPERATIONS define each event E by op(E) as follows. The code for scopeop(E, s)
is a SELECT statement:

( trigger(t1) → effect(t1)
[] . . .

[] trigger(tn) → effect(tn))
// childop(E, s)

SELECT trigger(t1) THEN effect(t1)
WHEN …
WHEN trigger(tn) THEN effect(tn)
ELSE childop(E, s)
END

The code for childop(E, s), for an XOR state s, is a CASE statement:

(r = S1 → scopeop(E, S1)
[] . . .

[] r = Sn → scopeop(E, Sn) )

CASE r OF
EITHER S1 THEN scopeop(E, S1)
OR . . .

OR Sn THEN scopeop(E, Sn)
END

END

The code generated can be simplified further. If there is only a single transition on
a level for an event, the code generated is of the form SELECT g THEN Q ELSE R
END and can be written as IF g THEN Q ELSE R END instead. CASE statements can
be simplified by leaving out all alternatives with body skip and adding ELSE skip
instead. CASE statements with a single alternative can be rewritten as IF statements.
An IF statement of the form IF b THEN Q ELSE skip END can be simplified to IF g
THEN Q END.

Figure 13.9 gives the code of the TV example as generated by the iState tool [23].
The code generated preserves the broadcasting structure by calling the operation of
the broadcast event rather than inlining it. As the B method does not allow calls of
operations within the same machine, this is expressed in terms of auxiliary DEFI-
NITIONS. The B method also requires that all variables be initialized. In case the
value of a state variable is initially irrelevant, a nondeterministic assignment is
generated.

For generating an executable implementation, the SELECT statement needs to
be refined by an IF statement in which the guards are evaluated in some arbitrary
order. An implementation of parallel composition by sequential composition requires
in general that copies of the involved state variables and global variables are made
such that their initial values are available to all statements of the parallel composition.
If there is no dependency on the initial values, these copies are not needed. For
example, in Figure 13.9 all parallel compositions can be implemented by sequential
compositions in any order. In principle the elimination of parallel composition can
be automated.
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SETS
ROOT = {Standby, Working};
PICTURE = {Displaying, WarmingUp};
SOUND = {Waiting, On, Off}

VARIABLES
root,
picture,
sound,
lev

INVARIANT
root : ROOT ^
picture : PICTURE ^
sound : SOUND ^
lev : INTEGER

INITIALISATION
root := Standby

picture :∈PICTURE

sound :∈SOUND

lev :∈INTEGER

DEFINITIONS
DEF_ soundOn ==

IF (root = Working) THEN
IF (sound = Waiting) THEN

sound := On
END

END

OPERATIONS
mute =

IF (root = Working) THEN
CASE sound OF

EITHER Off THEN
sound := On

OR On THEN
sound := Off

OR Waiting THEN
skip

END
END

END
;

power =MACHINE TV
CASE root OF

EITHER Working THEN
root := Standby

OR Standby THEN
lev := 5

root := Working

picture := WarmingUp

sound := Waiting
END

END
;
up =

IF (root=Working) THEN
IF (sound = On) THEN

IF (lev < 10) THEN
lev := (lev+ 1)

sound := On
END

END
END

;
down =

IF (root = Working) THEN
IF (sound = On) THEN

IF (lev > 1) THEN
lev := (lev − 1)

sound := On
END

END
END

;
soundOn =

DEF_soundOn
;
warm =

IF (root = Working) THEN
IF (picture = WarmingUp) THEN

DEF sound On

picture := Displaying
END

END

END

FIGURE 13.9 B code of TV example.
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13.5 STATE INVARIANT VERIFICATION

A statechart with invariants I , or invariantchart for short, is a statechart structure with
two additional components, inv and Gobal. The function inv maps every state to a
Boolean chart expression, the state invariant. Attaching chart expression I to state S,
visually S | I , defines inv(S) to be I . If no invariant is attached, inv(S) is assumed to
be true. Typically, we allow a richer set of Boolean expressions in invariants than in
guards, although we do not make such a distinction here. The set Global is a nonempty
subset of Event, the set of global events; all other events are local. The intention is that
only transitions on global events need to establish the invariants. Transitions on local
events can occur only as part of a transition on a global event, but not on their own.
The global events are the interface through which the environment asks the system
for a response.

We allow ourselves to confuse a chart expression attached to a state with its meaning
as an expression, whereby a state test in S1, . . . , Sn occurring in I attached to S,
indicated by writing inS S1, . . . , Sn, is defined as testing being in S1, . . . , Sn relative to
being in S:

inSS1, . . . , Sn =̂ in(parent∗[{S1, . . . , Sn}]− parent∗[{S}])

The chart invariant is defined by recursively visiting all attached invariants, starting
with that attached to Root. In case a state is an XOR state, the invariant attached to
some child has to hold as well. In case the state is an AND state, the invariant attached
to each child has to hold as well.

chartinv =̂ scopeinv(Root)
scopeinv(s) =̂ inv(s) ∧ childinv(s)
childinv(s) =̂ case s of

Basic : true
XOR :

∨
c ∈ children[{s}] . test(c) ∧ scopeinv(c)

AND :
∧

c ∈ children[{s}] . scopeinv(c)
end

Chart S is correct if the default transition of Root establishes the chart invariant and
all operations of global events preserve the chart invariant:

(a) {true} default(Root) {chartinv}
(b) ∀E ∈ Global . {chartinv} op(E) {chartinv}

For theTV example, we define Global={power, warm, down, up, mute}, which makes
soundOn the only local event, and have

inv(Working) ≡ test(Displaying) ⇒ ¬test(Waiting)
inv(Sound) ≡ 1 ≤ lev ∧ lev ≤ 10
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For all other states, including Root, the attached invariant is true. It follows that
scopeinv(s) for all Basic states s of the chart is true; for the other states we get

scopeinv(Picture) ≡ test(WarmingUp) ∨ test(Displaying)
scopeinv(Sound) ≡ inv(Sound) ∧ (test(Waiting) ∨ test(On) ∨ test(Off ))
scopeinv(Working) ≡ inv(Working) ∧ scopeinv(Picture) ∧ scopeinv(Sound)
scopeinv(Root) ≡ test(Standby) ∨ (test(Working) ∧ scopeinv(Working))

The last line defines the chart invariant. The B method allows this invariant to be
expressed in the INVARIANT section:

INVARIANT
(root = Standby) ∨
(root = Working ∧

(picture = Displaying ⇒ ¬(sound = Waiting)) ∧
(1 ≤ lev ∧ lev ≤ 10))

This leads to five correctness conditions, one for each event power, warm, down, up,
and mute, plus one for the initialization. The B tools generate these conditions and
allow them to be proven automatically or interactively.

The invariant above has been simplified. The definition of chartinv would generate
predicates such as picture=WarmingUp∨ picture=Displaying that arise from the
XOR case in childinv(Picture). Such tautologies can be eliminated during generation
with the following reformulation:

childinv(s) ≡ case s of
Basic : true
XOR :

∧
c ∈ children[{s}] . test(c) ⇒ scopeinv(c)

AND :
∧

c ∈ children[{s}] . scopeinv(c)
end

Now, if scopeinv(c) is true (which it is for every Basic state c without attached
invariant), test(c)⇒ scopeinv(c) is immediately true. If this is the case for all children
c of s, childinv(s) is immediately true.

13.6 ACCUMULATED INVARIANTS

The observation underlying a more targeted verification condition generation is that
sometimes it is sufficient to consider correctness of individual transitions rather than
that of an event operation, and that parts of the chart invariant may be irrelevant for
the correctness of transitions. To start with, let the base of a state set ss be ss together
with the implicit children of all ancestors of ss. That is, the base of ss adds to ss all
children of AND ancestors that are not ancestors of ss (i.e., the “AND uncles”). The
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(upward) closure of state set ss is the set of all ancestors of the base of ss, including
ss. That is, it is the set of states in which a chart must be if it is in ss.

base(ss) =̂ ss ∪ imp(parent+[ss])
closure(ss) =̂ parent∗[base(ss)]

If a chart is in state set ss, (1) it has to be in all ancestors of ss, (2) the attached
invariants of all states of the closure of ss have to hold, and (3) the child invariants
for all states of the base of ss have to hold. The invariant constructed in this way is
called the accumulated invariant of ss.

accinv(ss) =̂ in(parent∗[ss]) ∧(∧
s ∈ closure(ss) . inv(s)

) ∧(∧
s ∈ base(ss) . childinv(s)

)
The invariants that originate from the descendants of the base are the synthesized
invariants; those that originate from ancestors of the base are the inherited invariants.
For example, in Figure 13.10 we have

base({X}) = {T , X}
closure({X}) = {Root, S, T , W , X}
accinv({X}) = test(S) ∧ test(X) ∧

inv(Root) ∧ inv(S) ∧ inv(T ) ∧ inv(W ) ∧ inv(X) ∧
((test(U) ∧ inv(U)) ∨ (test(V ) ∧ inv(V )))

That is, the invariants of Root, S, and T are inherited in S and the invariants of U and
V are synthesized for X . The following property justifies accumulation: If a chart is
in state set ss, the chart invariant is reduced to the accumulated invariant of ss.

Theorem 13.6.1 For any nonempty state set ss,

chartinv ∧ in(parent∗[ss]) ≡ accinv(ss)

Rather than proving this theorem directly, we prove a more general one, but first state
a lemma about how the accumulated invariant of a state relates to the accumulated
invariant of its parent.

S
T

U V

W

X
Y

FIGURE 13.10 State hierarchy.
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Lemma 13.6.1 For any state s except Root:

accinv({parent(s)}) ∧ test(s) ≡ accinv({s}) if parent(s) ∈ XOR (a)

accinv({parent(s)}) ≡ accinv({s}) if parent(s) ∈ AND (b)

We omit the proof. The following theorem states how the accumulated invariant of a
state relates to the accumulated invariant of a set of descendants.

Theorem 13.6.2 For any state s and any nonempty state set ss with ss⊆
children∗[{s}]:

accinv({s}) ∧ in(path(s, ss)) ≡ accinv(ss)

Proof: The proof proceeds by induction over the maximal distance between s and ss,
under the assumption that ss⊆ children∗[{s}]. Let rn be relation r composed n times,
formally r0[p]= p and rn+1[p]= r[rn[p]]. Defining

p(s, ss) =̂ accinv({s}) ∧ in(path(s, ss)) ≡ accinv(ss)

we show that p(s, ss) holds for s∈ ⋃
i∈ [0..n] . parenti[ss] by induction over n. In

the base case, n= 0 implies that ss={s}; hence, p(s, ss) follows immediately. For
the induction step, suppose that p(s, ss) holds for all s∈ ⋃

i∈ [0..n] . parenti[ss]. We
show that p(parent(s), ss) holds:

accinv({parent(s)}) ∧ in(path(parent(s), ss)) ≡ accinv(ss)

≡ 〈from the definitions of in and path〉
accinv({parent(s)}) ∧ in(s) ∧ in(path(s, ss)) ≡ accinv(ss)

≡ 〈case parent(s) ∈ XOR and Lemma (a), case parent(s) ∈ AND and (b)〉
accinv({s}) ∧ in(path(s, ss)) ≡ accinv(ss)

Hence, p(s, ss) holds for s∈ parent[parentn[ss]]= parentn+1[ss]. With the induc-
tion assumption it follows that p(s, ss) holds for s∈ ⋃

i∈ [0..n+ 1] . parenti[ss],
which completes the induction step and allows us to conclude that p(s, ss) holds
for s∈ ⋃

i∈ nat . parenti[ss]. The theorem follows by noting that parent∗[ss]=⋃
i∈ nat . parenti[ss] and that s∈ parent∗[ss] follows from the assumption

ss⊆ children∗[{s}]. �

Theorem 13.6.1 follows from Theorem 13.6.2 by taking s=Root and observing
that chartinv≡ accinv(Root).
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For the TV chart we note that, for example,

base(Standby) = {Standby} closure(Standby) = {Root, Standby}
base(Working) = {Working} closure(Working) = {Working, Standby}
base(On) = {Picture, On} closure(On) = {Root, Working, Picture, Sound, On}
base(Off ) = {Picture, Off } closure(Off ) = {Root, Working, Picture, Sound, Off }
and we obtain the following accumulated invariants:

accinv({Standby}) ≡ test(Standby)
accinv({Working}) ≡ test(Working) ∧ (test(Displaying) ⇒ ¬test(Waiting))

∧ 1 ≤ lev ∧ lev ≤ 10
accinv({On}) ≡ test(Working) ∧ test(On) ∧ (test(Displaying)

⇒ ¬test(Waiting)) ∧ 1 ≤ lev ∧ lev ≤ 10
accinv({Off }) ≡ test(Working) ∧ test(Off ) ∧ (test(Displaying)

⇒ ¬test(Waiting)) ∧ 1 ≤ lev ∧ lev ≤ 10

13.7 VERIFICATION CONDITION GENERATION

The source invariant of a transition is the accumulated invariant of its source states.
The target invariant of transition t consists of the accumulated invariant of its target
states; if target states are composite states or if states are implicitly entered by t, the
accumulated invariant of the targets of the completion of t have to be added:

sourceinv(t) =̂ accinv(source(t))
targetinv(t) =̂ accinv

(⋃
u ∈ comp(t) . target(u)

)
We are now prepared to present an alternative way of checking the correctness of a
chart. The idea is to visit all transitions, starting with those that have the root state as
their scope, and then to descend to all children. The correctness condition of transition
t is, in the simplest case,

{sourceinv(t) ∧ guard(t)} effect(t) {targetinv(t)}
In two cases this correctness assertion is not adequate. First, when t is taken simul-
taneously with other transitions, other target invariants have to be established and
other source invariants can be assumed. Second, when an ancestor of scope(t) has
other transitions on event(t), these transitions have priority. In the recursive definition
below, the conjunction of the negations of all triggers on E of one scope, expressed
as

∧
t ∈ Trans(E, s) .¬trigger(t), is “assumed” when visiting the children:

correct(E) =̂ scopecorrect(E, Root)
scopecorrect(E, s) =̂ (∧

t ∈ Trans(E, s)
. {sourceinv(t) ∧ guard(t)} effect(t) {targetinv(t)})

∧ ((∧
t ∈ Trans(E, s) . ¬trigger(t)

)⇒ childcorrect(E, s)
)
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FIGURE 13.11 Transitions with different priorities.

childcorrect(E, s) =̂ case s of
Basic : true
XOR :

∧
c ∈ children[{s}] . scopecorr(E, c)

AND : {accinv({s})} childop(E, s) {accinv({s})}
end

Figure 13.11 illustrates the consequence of priorities on preconditions. We note
that ¬trigger(t)≡¬in(exited(t))∨¬guard(t). In (a), transition b has priority over
a; hence a is taken only if g does not hold, as ¬guard(b) is part of the precondi-
tion of the correctness assertion for a. In general, for any predicates q, p, and r and
statement Q,

g ⇒ {p} Q {r} ≡ {g ∧ p} Q {r}
In (b), transition a is taken only if T is in V and W is not in Y as ¬in(exited(b)) is
part of the precondition of the correctness assertion for a.

Theorem 13.7.1 For any E ∈Global:

{chartinv} op(E) {chartinv} ≡ correct(E)

Rather than proving this theorem directly, we prove a more general one: If we consider
only transitions at scope s or below, then {accinv({s})} scopeop(E, s) {accinv({s})}
and scopecorrect(E, s) are equivalent:

Theorem 13.7.2 For any state s:

{accinv({s})} scopeop(E, s) {accinv({s})} ≡ scopecorrect(E, s)

Proof: The proof proceeds by induction over the structure of charts. Defining

p(s) =̂ {accinv({s})} scopeop(E, s) {accinv({s})} ≡ scopecorrect(E, s)

the base case is that p(s) holds for Basic or AND state s and the induction step is
that p(s) holds for XOR state s provided that p(c) holds for all children c of s. To
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start with, we assume that
∧

a∈ parent+[{s}] .
∧

t ∈ Trans(E, a) .¬trigger(t) and
simplify:

p(s)
≡ 〈definition of scopeop, //〉
{accinv({s})}

( [] t ∈ Trans(E, s) . trigger(t) → effect(t)) []((∧
t ∈ Trans(E, s) . ¬trigger(t)

)→ childop(E, s)
)

{accinv({s})}
≡
scopecorrect(E, s)

≡ 〈verification rules for [],→, definition of trigger, scopecorrect〉(∧
t ∈ Trans(E, s) .

{accinv({s}) ∧ in(exited(t)) ∧ guard(t)} effect(t) {accinv({s})}) ∧((∧
t ∈ Trans(E, s) . ¬trigger(t)

) ⇒
{accinv({s})} childop(E, s) {accinv({s})}

≡(∧
t ∈ Trans(E, s) .

{sourceinv(t) ∧ guard(t)} effect(t) {targetinv(t)}) ∧((∧
t ∈ Trans(E, s) . ¬trigger(t)

)⇒ childcorrect(E, s)
)

⇐ 〈by Theorem 2: accinv({s}) ∧ in(exited(t)) ≡ sourceinv(t), (*)〉((∧
t ∈ Trans(E, s) . ¬trigger(t)

) ⇒
{accinv({s})} childop(E, s) {accinv({s})}

≡((∧
t ∈ Trans(E, s) . ¬trigger(t)

)⇒ childcorrect(E, s)
)

⇐ 〈logic〉
{accinv({s})} childop(E, s) {accinv({s})} ≡ childcorrect(E, s)

In the step (*) we use that effect(t) does indeed establish
∧

u∈ comp(t) . in(entered(u)),
which is given by the definition of effect(t), and does preserve accinv({s}), which is
guaranteed by well-formedness condition 3. Hence,

∧
u∈ comp(t) . in(entered(u))

can be conjoined to the postcondition accinv({s}). It is then straightforward to show
that by Theorem 13.6.2 and the definition of comp(t):

accinv({s}) ∧
(∧

u ∈ comp(t) . in(entered(u))
)
≡ targetinv(t)

We continue the proof with a case analysis. If s∈Basic, childop(E, s) simplifies to skip
and childcorrect(E, s) simplifies to true; hence, the last line follows immediately. If
s∈AND, childcorrect(E, s) is equivalent to {accinv({s})} childop(E, s) {accinv({s})};
hence, the last line follows immediately. If s∈XOR, we continue:

{accinv({s})} [] c ∈ children[{s}] . test(c) → scopeop(E, c) {accinv({s})}
≡(∧

c ∈ children[{s}] . scopecorr(E, c)
)

⇐ 〈verification rules for [],→〉
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c ∈ children[{s}] . {accinv({s}) ∧ test(c)} scopeop(E, c) {accinv({s})})

≡(∧
c ∈ children[{s}] . scopecorr(E, c)

)
⇐ 〈logic, by Theorem 2: accinv({s}) ∧ test(c) ≡ accinv({c}), (**)〉∧

c ∈ children[{s}] .

{accinv({c})} scopeop(E, c) {accinv({c})}) ≡ scopecorr(E, c)

In the step (**) we use the fact that scopeop(E, c) preserves accinv({c}), which is
guaranteed by well-formedness condition 3. The last line is exactly the induction
assumption. This concludes the induction step and the case analysis. �

Theorem 13.7.1 follows by taking s=Root and observing that chartinv≡
accinv(Root).

The recursion of scopecorrect stops when a Basic state or an AND state are
encountered. The condition for an AND child (second last line of childcorrect) is
equivalent to:

{accinv({s})} ‖ c ∈ children[{s}] . scopeop(E, c) {accinv({s})} (*)

In general, {p} Q ‖ R {r} cannot be split into one condition for Q and one for R,
as can be seen for {k= l} k := 7 ‖ l := 7 {k= l}. Figure 13.12(a) illustrates that the
correctness of b and d cannot be shown individually.

For the TV chart we have that

op(soundOn) = (test(Working) →
(test(Waiting) → assign(On)
[] test(On) → skip
[] test(Off ) → skip)

[] test(Standby) → skip)

and get the following correctness assertions, with some simplifications:

correct(power) ≡ {accinv({Standby})}
assign(Working) ‖ assign(WarmingUp) ‖
assign(Waiting) ‖ lev := 5

{accinv({Working})}

S | k = l
T

U V
a: / k := 3 b: E / k := 7

W
X Y

c: / l := 3 d: E / l := 7

R | p
S

T

U

a: E / O

V
W

X

b: E / P
Y

Z

c: E / Q

(b)(a)

FIGURE 13.12 Concurrent transitions and invariants.
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∧
{accinv({Working})}

assign(Standby)
{accinv({Standby})}

correct(warm) ≡ {accinv({Working})}
test(WarmingUp) → op(soundOn) ‖ assign(Displaying)

{accinv({Working})}
correct(down) ≡ {accinv({Working})}

test(On) → lev := lev− 1 ‖ assign(On)
{accinv({Working})}

correct(up) ≡ {accinv({Working})}
test(On) → lev := lev+ 1 ‖ assign(On)

{accinv({Working})}
correct(mute) ≡ {accinv({Working})}

( test(On) → assign(Off )
[] test(Off ) → assign(On))

{accinv({Working})}
The simplifications carried out are that verification conditions of the form {p}Q // skip
{p} are replaced by {p} Q {p}.

In the design of embedded systems, physical components are typically modeled
by concurrent states on outer levels. For such designs, the possibility for generating
targeted verification conditions by scopecorrect is limited, as the recursion stops as
soon as an AND state is encountered. Still, special cases exist:

1. If only one concurrent state contains transitions on event E, the parallel
composition in (*) disappears, resulting in

{accinv({s})} scopeop(E, s) {accinv({s})}

Theorem 13.7.2 can now be used to continue decomposing the verification
conditions according to scopecorrect.

2. Further splitting of the verification condition is possible according to the struc-
ture of scopeop(E, c). If an operand of the parallel composition contains a
nondeterministic choice with guards, we can use the fact that ‖ distributes
over []:

{p} P ‖ (g → Q [] h → R) {r} ≡ {p ∧ g} P ‖ Q {r} ∧ {p ∧ h} P ‖ R {r}

Figure 13.12(b) illustrates such a case: The operation of E in V contains a
choice over all children of V . Applying the rule above results in two verification
conditions, one with a parallel composition of a and b and one with a and c.
In general, if there are m concurrent states and each has n transitions on event
E, this results in m× n verification conditions. Hence, this approach has the
potential of generating a possibly large number of smaller conditions.
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3. The distributivity of ‖ over [] can also be applied for bodies containing condi-
tional statements, as if g then Q else R= (g→Q) [] (¬g→R). Hence, for each
transition the number of proof conditions involving that transition double with
each conditional statement that it contains.

For the TV example we note transitions on warm, down, up, mute occur only in
one concurrent state and apply rule 1 above. As warm broadcasts soundOn, we apply
rule 2 as well.

correct(warm) ≡ {accinv({WarmingUp})}
test(WarmingUp) → test(Working) →

test(Waiting) → assign(On) ‖ assign(Displaying)
{accinv({Displaying})}
∧
{accinv({WarmingUp})}

test(WarmingUp) → test(Working) → test(On) →
assign(Displaying)

{accinv({Displaying})}
∧
{accinv({WarmingUp})}

test(WarmingUp) → test(Working) → test(Off ) →
assign(Displaying)

{accinv({Displaying})}
correct(down) ≡ {accinv({On})} lev := lev− 1 ‖ assign(On) {accinv({On})}
correct(up) ≡ {accinv({On})} lev := lev+ 1 ‖ assign(On) {accinv({On})}
correct(mute) ≡ {accinv({On})} assign(Off ) {accinv({Off })}

∧
{accinv({Off })} assign(On)) {accinv({On})}

The two verification conditions for power are unchanged. Thus, this results in nine
verification conditions, compared to the original five, plus one for the initialization.

The proof conditions are now of the form {p} Q1‖ · · · ‖Qn {r}, where each Qi is
a multiple assignment statement, assigning to state variables or to global variables.
Using the fact that (x := e ‖ y := f ) = (x, y := e, f ), these can be merged into a single
multiple assignment. The verification rule for assignments then yields a plain predicate
that can be passed to a theorem prover.

13.8 PRIORITY AMONG TRANSITIONS

UML statecharts differ from the interpretation above in giving transitions with inner
scope priority over transitions with outer scope [18]. Thus, in Figure 13.13(a) tran-
sition a has priority over transition b, as ¬guard(a) is part of the precondition of the
correctness assertion for b. In (b), transition b is taken only if T is not in U or V
is not in X, as ¬in(exited(a)) is part of the precondition of the correctness assertion
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FIGURE 13.13 Transitions with different priorities.

for b. In this interpretation, the notion of a chart invariant remains the same, but op
and correct have to be adapted. Let Trans(E, s) be the set of all transitions on E with
scope below s:

Trans(E, s) =̂ {t ∈ Transition | event(t) = E ∧ scope(t) ∈ children+[{s}]}

The operation op(E) allows a transition to be taken only if no other transition
with lower scope is enabled. Formally, all transitions on scope s are guarded by∧

t ∈ Trans(E, s) .¬trigger(t). The choice among transitions with the same scope is
arbitrary.

op(E) =̂ scopeop(E, Root)
scopeop(E, s) =̂ ((∧

t ∈ Trans(E, s) . ¬trigger(t)
) →

[] t ∈ Trans(E, s) . trigger(t) → effect(t)
)

// childop(E, s)
childop(E, s) =̂ case s of

Basic : skip
XOR : [] c ∈ children[{s}] . test(c) → scopeop(E, c)
AND : ‖ c ∈ children[{s}] . scopeop(E, c)

end

The verification conditions reflect this by assuming that
∧

t ∈ Trans(E, s) .¬trigger(t)
holds for transitions with scope s:

correct(E) =̂ scopecorrect(E, Root)
scopecorrect(E, s) =̂ ((∧

t ∈ Trans(E, s) . ¬trigger(t)
) =⇒(∧

t ∈ Trans(E, s) .

{sourceinv(t) ∧ guard(t)} effect(t) {targetinv(t)})) ∧
childcorrect(E, s)

)
childcorrect(E, s) =̂ case s of

Basic : true
XOR :

∧
c ∈ children[{s}] . scopecorrect(E, c)

AND : {accinv({s})} childop(E, s) {accinv({s})}
end
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Working | 1 ≤ lev ∧ lev ≤ 10
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SoundOff
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FIGURE 13.14 Alternative state structure for a TV set.

Without proof we claim that the preservation of the chart invariant by op(E) can be
verified by correct(E):

Theorem 13.8.1 For any E ∈ Global:

{chartinv} op(E) {chartinv} ≡ correct(E)

The verification conditions from correct(E) are similar in complexity to those from
correct(E). However, if op(E) were used directly for code generation, the resulting
code would be more complex: As in the recursive definition, transitions on outer
scopes are visited first; the triggers of all transitions of lower scopes on that event
need to be evaluated before these are visited, where they are reevaluated.

13.9 CONCLUSIONS

Having an effective mechanism for verifying invariants begs the question of when and
how to use invariants. Sometimes the need for an invariant can be avoided altogether.
Figure 13.14 gives a chart that is equivalent to that of Figure 13.1 but avoids the invari-
ant originally attached to Working by restructuring the states of Working. If one were
not able to express and check invariants, one might prefer the restructured one, on the
grounds that by its mere structure it cannot lead to an invalid configuration. However,
the structure of concurrent states of the original chart reflects the structure of the
components of the application better, and one would believe that it is easier to design,
comprehend, and maintain. We could also avoid the invariant 1≤ lev∧ lev≤ 10 by
having 10 distinct On states, one for each level. Such a design would be awkward
at best and impossible if the range of variables were unbounded. In the presence of
global variables, invariants cannot be avoided through restructuring. After all, we
get confidence in a design by having descriptions with some redundancy—here by
state transitions and by invariants—and checking their consistency. By removing the
possibility for these checks through a “clever” design, the design will not be more
trustworthy.

We define two chart annotations to be equivalent if the resulting chart invariants are
equivalent, meaning that they lead to the same correctness conditions. Figure 13.15
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FIGURE 13.15 Equivalent annotations.
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FIGURE 13.16 Alternative annotation for a TV set.

illustrates two sets of equivalent chart annotations. Used as transformation rules, these
two equivalencies allow all invariants to be moved up to Root. This design freedom
leads to a question as to where best to attach invariants. Figure 13.16 provides an
annotation that is equivalent to that of Figure 13.1. The original invariant of Sound is
now attached to Working. However, only transitions within Sound are relevant for this
invariant: The invariant is above the scope of all affected transitions. In Figure 13.16,
the original invariant of Working has been moved to Displaying.Although this shortens
the invariant expression by leaving out the state tests, some relevant transitions are
now in a concurrent state, making the dependency less visual. These two observations
motivate the following rule: Invariants should be attached exactly to the scope of all
relevant transitions. Figure 13.1 follows this rule. We summarize the main points of
the approach:

1. Configurations are defined by state variables, and each event is defined as one
operation for all transitions on that event. This disallows Boolean combinations
of events as in classical statecharts, but is in line with UML statecharts.
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2. An operation of an event is defined by a “recursive descent” of the state hier-
archy. This favors giving priority to transitions on outer levels over transitions
on inner levels. This definition also serves as a scheme for code generation.

3. The state variables and event operations are mapped to one module (MACHINE
in the B method).

4. All transitions on an event are taken simultaneously rather than in a sequence of
microsteps. For this, all transitions taken simultaneously must be conflict-free.
In our experience this excludes some statecharts that would be of questionable
design.

5. Invariants can be attached to basic and composite states. The chart invariant is
derived from the attached invariants. All event operations have to preserve the
chart invariant.

6. The default transition of the root state has to establish the chart invariant; default
transitions are also used for establishing a local invariant. For this, default
transitions need to have a body.

7. Local verification conditions are computed from the accumulated invariant of
the source and target states. The justification of the local verification conditions
is in terms of the chart invariant.

An alternative to mapping the state variables and event operations to a single
module is to distribute them by certain design criteria among several modules with an
acyclic or tree dependency structure [10]. With invariants distributed among modules
as well, this also leads to more local verification conditions, but in a different way than
through accumulated invariants. Entry and exit actions, history states, and transitions
with segments remain future work.

Acknowledgments

The author is indebted to Kevin Lano for his patience and his help. Dai Tri Man Le
suggested the term accumulated invariant. Daniel Zingaro pointed out several errors.

REFERENCES

1. J.-R. Abrial. The B Book: Assigning Programs to Meaning. Cambridge University Press,
New York, 1996.

2. P. Bhaduri and S. Ramesh. Model Checking of Statechart Models: Survey and Research
Directions. Technical Report cs.SE/0407038, arXiv, July 2004.

3. E. Clarke and W. Heinle. Modular Translation of Statecharts to SMV. Technical Report
CMU-CS-00-XXX. School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, August 2000.

4. W. Damm, B. Jasko, H. Hungar, and A. Pnueli. A compositional real-time semantics of
STATEMATE designs. In W.-P. de Roever, H. Langmaack, and A. Pnueli, eds., Compo-
sitionality: The Significant Difference, Bad Malente, Germany, 1998. Lecture Notes in
Computer Science, vol. 1536, pp. 186–238. Springer-Verlag, New York, 1998.



346 DESIGN VERIFICATION WITH STATE INVARIANTS

5. N. Day and J. Joyce. The semantics of statecharts in HOL. In J. Joyce and C.-J. Seger, eds.,
Higher Order Logic Theorem Proving and Its Applications, Vancouver, British Columbia,
Canada, 1994. Lecture Notes in Computer Science, vol. 780, pp. 338–351. Springer-
Verlag, New York, 1994.

6. D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8:231–274, 1987.

7. D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM Transactions
on Software Engineering and Methodology, 5(5):293–333, 1996.

8. A. Knapp, S. Merz, and C. Rauh. Model checking timed UML state machines and col-
laborations. In W. Damm and E.-R. Olderog, eds., Formal Techniques in Real-Time and
Fault-Tolerant Systems, Oldenburg, Germany, 2002. Lecture Notes in Computer Science,
vol. 2469, pp. 395–416. Springer-Verlag, New York, 2002.

9. R. Laleau and A. Mammar. An overview of a method and its support tool for generating B
specifications from UML notations. In 15th IEEE International Conference on Automated
Software Engineering (ASE 2000), Grenoble, France. IEEE Computer Society Press, Los
Alamitos, CA, 2000.

10. K. Lano, K. Androutsopoulos, and P. Kan. Structuring reactive systems in B AMN. In
3rd IEEE International Conference on Formal Engineering Methods, York, UK. IEEE
Computer Society Press, Los Alamitos, CA, 2000.

11. K. Lano and D. Clark. Direct semantics of extended state machines. Journal of Object
Technology, 6(9):35–51, 2007.

12. D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioural subset of
UML statechart diagrams using the SPIN model-checker. Formal Aspects of Computing,
11(6):637–664, 1999.

13. H. Ledang and J. Souquières. Contributions for modelling UML state-charts in B. In Inte-
grated Formal Methods, Third International Conference, IFM ’2002, Turku, Finland,
May 2002. Lecture Notes in Computer Science, vol. 2335, pp. 109–127. Springer-Verlag,
New York, 2002.

14. J. Lilius and I. P. Paltor. Formalising UML state machines for model checking. In R. France
and B. Rumpe, eds., UML ’99: The Unified Modeling Language Beyond the Standard,
Fort Collins, CO, 1999. Lecture Notes in Computer Science, vol. 1723, pp. 430–445.
Springer-Verlag, New York, 1999.

15. E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B
specification. In J. Wing, J. Woodcock, and J. Davies, eds., World Congress on Formal
Methods in the Development of Computing Systems, FM’99, Toulouse, France, Sept.
1999. Lecture Notes in Computer Science, vol. 1708, pp. 875—895. Springer-Verlag,
New York, 1999.

16. E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann. Implementing statecharts in
Promela/Spin. In Second IEEE Workshop on Industrial-Strength Formal Specification
Techniques, Boca Raton, FL, 1998. IEEE Computer Society Press, Los Alamitos, CA,
1998.

17. H. P. Nguyen. Dérivation de spécifications formelles B à partir de spécifications semi-
formelles. Doctoral dissertation, INIST-CNRS, 1998.

18. OMG. Unified modeling language, superstructure, v2.1.2. http://www.omg.org/spec/
UML/2.1.2/Superstructure/PDF, 2007.



REFERENCES 347

19. A. Pnueli and M. Shalev. What is in a step: on the semantics of statecharts. In T. Ito and
A. Meyer, eds., Proceedings of the 1st International Conference on Theoretical Aspects of
Computer Software (TACS ’91), Sendai, Japan, 1991. Lecture Notes in Computer Science,
vol. 526, pp. 244–264. Springer-Verlag, New York, 1991.

20. E. Sekerinski. Graphical design of reactive systems. In D. Bert, ed., 2nd International B
Conference, Montpellier, France, 1998. Lecture Notes in Computer Science, vol. 1393,
pp. 182–197. Springer-Verlag, New York, 1998.

21. E. Sekerinski. Verifying statecharts with state invariants. In K. Breitman, J. Woodcock,
R. Sterritt, and M. Hinchey, eds., ICECCS ’08–13th IEEE International Conference on
Engineering of Complex Computer Systems, pp. 7–14, Belfast, Northern Ireland, Mar.
2008. IEEE Computer Society Press, Los Alamitos, CA.

22. E. Sekerinski and R. Zurob. iState: a statechart translator. In M. Gogolla and C. Kobryn,
eds., UML 2001: The Unified Modeling Language, 4th International Conference. Toronto,
Ontario, Canada, 2001. Lecture Notes in Computer Science, vol. 2185, pp. 376–390.
Springer-Verlag, New York, 2001.

23. E. Sekerinski and R. Zurob. Translating statecharts to B. In M. Butler, L. Petre, and K. Sere,
eds., Third International Conference on Integrated Formal Methods, Turku, Finland, 2002.
Lecture Notes in Computer Science, vol. 2335, pp. 128–144, Springer-Verlag, New York,
2002.

24. D. Snook and M. Butler. UML-B: formal modeling and design aided by UML. ACM
Transactions on Software Engineering and Methodology, 15(1):92–122, 2006.





CHAPTER 14

MODEL TRANSFORMATION
SPECIFICATION AND VERIFICATION
Kevin Lano
Department of Computer Science, King’s College London, London, UK

14.1 INTRODUCTION

Model transformations are becoming increasingly important in software development,
particularly as part of model-driven development. In this chapter we consider different
techniques for the specification of transformations, based on the semantics of class
diagrams and state machines, and formally describe several UML class and state
machine model transformations.

Model transformations are mappings of one software engineering model into
another, semantically related model. The models usually considered are constructed
using graphical languages such as the unified modeling language (UML) [34]. Ideally,
transformations should be specified so that they can be applied systematically to all
models that satisfy certain conditions, to produce a correct result.

The concepts of model-driven architecture (MDA) [33] and model-driven devel-
opment (MDD) use model transformations as a central element, principally to
transform high-level models [such as platform-Independent models (PIMs)] toward
more implementation-oriented models [platform-specific models (PSMs)], but also
to improve the quality of models at a particular level of abstraction. As part of the
MDA, a standard for queries, views, and transformations (QVT) was developed [36],
and different notations for specifying and implementing model transformations were
defined. QVT has been used for the specification of model transformations [4] and
model semantics [5]. However, issues of demonstrating the consistency and correct-
ness of transformations specified using QVT remain, and efficient implementation
of transformations to avoid unnecessary rework if changes are made to part of the
starting model is also an open problem [43].

Another important use of transformations is for the analysis and verification of
models, by translating them into a representation that supports these techniques.

UML 2 Semantics and Applications. Edited by Kevin Lano
Copyright © 2009 John Wiley & Sons, Inc.
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Translations of UML to B [27,39], SMV [1], finite state machines [20], Petri nets,
and many other formalisms have been defined for this purpose. Although this form
of reexpression transformation is not the main subject of this chapter, the concepts of
correctness defined in Section 14.3.3 also apply to these transformations.

Previous work on the classification of model transformations has focused on the
implementation of transformations as sets of rules or algorithms [14,43]. In this
chapter we separate the specification and implementation of model transformations
and classify transformations based on their purpose and their effect on models.

In Section 14.2 we summarize the various categories of model transformation,
in Section 14.3 present techniques for the specification of transformations, in Sec-
tion 14.4 present some widely used refinement transformations, in Section 14.5
present quality improvement transformations, in Section 14.6 present design pattern–
based transformations, and in Section 14.7 present enhancement transformations.

14.2 CATEGORIES OF MODEL TRANSFORMATION

Following a workshop on model-driven development, the following classifications of
model transformation approaches were defined [30]:

• The languages on which the transformation operates: that is, program-level ver-
sus model-level transformations, endogenous (source and target language are
the same) versus exogenous (different source and target languages), horizontal
(transformation does not change abstraction level) versus vertical (source and
target models are at different abstraction levels), and which technology is used
to support the transformation (e.g., XML versus MDA).

• The level of automation and complexity of the transformation, and the semantic
correctness of the transformation.

Criteria for the effectiveness of a transformation language and tool were also proposed,
including the ability to compose transformations and to demonstrate syntactic and
semantic correctness.

In this chapter we focus on semantically based criteria to classify transformations,
in particular the criteria of abstraction level and semantic relation between the source
and target models. These criteria will be used as classification features, following the
approach of Mens et al. [14] for the classification of model transformation implemen-
tations. The following two features of a model transformation from a source model
M1 to a target model M2 are therefore considered as significant for classifying its
purpose and use:

1. If M2 is at the same abstraction level as M1, at a lower abstraction level (e.g.,
is a PSM relative to M1 as a PIM), or at a higher abstraction level.

2. If M2 is an extension of M1, if the semantics of M2 is stronger than the semantics
of M1 (but M2 is not simply an extension of M1), if the semantics of the models
are equivalent, or if the semantics of M2 is weaker than that of M1.
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TABLE 14.1 Transformation Categories

Same Abstraction Level M2 Lower M2 Higher

M2 is extension of M1 Enhancement
M2 semantically stronger Specialization Refinement
M2, M1 equivalent Reexpression/ Refinement/ Abstraction

quality improvement Reexpression
M2 semantically weaker Generalization — Abstraction

Table 14.1 shows the possible combinations of these feature values. Using these
features, model transformations can be classified in the following general categories:

• Refinements: transformations used to refine a model toward an implementation:
for example, PIM-to-PSM transformations in the MDA. They may remove cer-
tain constructs or structures, such as multiple inheritance, from a model and
represent them instead by constructs that are available in a particular implemen-
tation platform. The semantics and language of the model may be changed, but
all the properties of the original model should be true in the new model, via some
interpretation.

• Specializations of a model: strengthen the logical properties of a model at one
level of abstraction. Some implementations that satisfy the original model will
not satisfy the new model. Generalization is the inverse of specialization.

• Quality improvements: transformations that usually operate on the same lan-
guage, do not change the abstraction level of a model, and preserve its semantics
(under a suitable interpretation) but improve its structure and organization (e.g.,
by factoring out duplicated elements).

• Enhancements: elaborate or extend a model at the same level of abstraction in
the same language by adding new elements while not restricting the existing
elements.

• Reexpressions: translate a model in one language into its nearest equivalent in a
different language. This is useful for reengineering, migration, validation, and
tool integration. Code generation (e.g., from a UML Java PSM to Java) can also
be considered to be in this category.

• Abstractions: the inverse of refinement transformations. These can be useful for
reverse engineering (e.g., from a PSM to a PIM).

Design patterns can be considered as transformations from a starting model (with-
out the pattern) to a target model that conforms to the pattern. These are usually
refinements or quality improvements; for example, the template method [18] can be
regarded as a quality improvement transformation.

14.3 SPECIFICATION OF MODEL TRANSFORMATIONS

14.3.1 Model Transformation Semantics

Transformations can be defined as relations between models. The models may be in the
same or in different modeling languages. Let L1 and L2 be the languages concerned
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(in the case of UML these will typically be defined as metamodels which are subsets
of the UML metamodels or variants of them, e.g., metamodels of older versions of
UML). A transformation τ then describes which models M1 of L1 correspond to
(transform to) which models M2 of L2.

Let ModelsL be the set of models that interpret the language (metamodel) L. The
elements of ModelsL are all structures M which have interpretations M.T for each
data type T of M, including a set M.E (of object identifiers) for each metaclass E of
L, and functions

fM : M.E → M.T

for each metafeature f : T specified for instances of E in L. The structures M should
contain no other additional elements not specified in L, and should satisfy any logical
properties defined for L. We may simply write M: L instead of M: ModelsL. fM (e) is
usually written as e.fM .

A model transformation τ from language L1 to language L2 can therefore be
expressed as a relation

Relτ : ModelsL1 ↔ ModelsL2

For example, consider the minimal language L of Figure 14.1. Models M of this
language consist of collections M.Entity of entities; each e : M.Entity has e.nameM :
M.String.

Consider a reexpression transformation τ(p: M.String) on this language, which
prefixes a particular string p to each entity name in the model. We could define this
first on an individual entity of the source model:

Relτ(p,e)(M1, M2) ≡
M1.Entity = M2.Entity ∧
e : M1.Entity ∧
e.nameM2 = p + ‘‘_” + e.nameM1 ∧
∀e′ : M1.Entity · e′ �= e =⇒ e′.nameM2 = e′.nameM1

This transforms one entity of M1 into the form required.

Entity

name: String

FIGURE 14.1 Basic metamodel L.
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A relation that transforms all the entities in one step is

Relτ(p)(M1, M2) ≡
M1.Entity = M2.Entity ∧
∀e : M1.Entity · e.nameM2 = p + ‘‘_” + e.nameM1

Relations that represent transformations are normally:

• Functions. The relation maps each source model to a unique target model.
• Irreflexive. They do not map all models to themselves.
• Nontransitive. Iterating the transformation produces different results.

Sequential composition τ; σ of transformations corresponds to relational compo-
sition of their representing relations. Transformations can also be combined using
conditional expressions:

if E then τ else σ

where E can be evaluated in the source model and by union (disjunction): τ ∪ σ,
provided that the resulting relation remains functional.

In general, it may be that only some models in L1 can have a transformation τ

applied to them validly, termed the applicability condition of τ. It is defined as

dom(Relτ) = {M : ModelsL1 |∃M ′ : ModelsL2 · Relτ(M, M ′)}

In the case of the example transformation above, the applicability condition is true:
It can always be applied to any model of L.

A transformation is invertible if it can be applied in the reverse direction. The
reversed transformation τ−1 is represented by the inverse Rel−1

τ relation, which is
only defined on the domain

ran(Relτ) = {M : ModelsL2 |∃M ′ : ModelsL1 · Relτ(M ′, M)}

The reversed relation may not be functional, since there may be many different models
of L1 that map to the same model of L2.

In the example above, the inverse relation is functional and well defined on
ran(Relτ); this transformation removes the p+ “_” prefix from names.

Another important property of a transformation is monotonicity: A transformation
is monotonic if extensions of the source model transform into extensions of the target
model. That is, given a model M ′

1 that extends a model M1 by enlarging entity type
interpretations and feature interpretations: M ′

1.E ⊇ M1.E for each metaclass E and
fM ′

1
⊇ fM1 for each metafeature f , M ′

1 transforms to a model M ′
2, which is an extension

of the transformation M2 of M1.
The example above is monotonic.
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Model
Element1

Class1 Association1Package1
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*

*

*

*

elements

elements

name: String

name: String

Model
Element2
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*

*
*

*

*

from

to

end1

end2 end1_directed: Boolean
end2_directed: Boolean

Association2

parents

parentsparents

* *

*

FIGURE 14.2 Metamodels L1 and L2.

The formalism we have introduced here permits ternary or higher-multiplicity
transformations: for example, a transformation

union : L× L↔ L

which produces a union of two models. In this chapter we consider only binary
transformations.

Another example of a transformation, shown in Figure 14.2, is based on a reex-
pression transformation of Tratt [43]. On the left-hand side is a metamodel for the
language L1, in which packages can be inherited by other packages, but associa-
tions are restricted to being unidirectional. On the right-hand side is a metamodel
for the language L2, in which packages cannot be inherited by other packages, but
associations can be unidirectional, bidirectional, and undirected.

If τ is being used to construct a new model M2 of L2 from a model M1 of L1, we
can define Relτ as

M2.Class2 = M1.Class1
M2.Association2 = M1.Association1
M2.ModelElement2 = M1.ModelElement1
M2.Package2 = M1.Package1

∀a: M2.Association2 ·
a.nameM2 = a.nameM1

a.end1_directedM2 = false
a.end2_directedM2 = true
a.fromM1 = a.end1M2

a.toM1 = a.end2M2

∀p: M2.Package2 ·
p.nameM2 = p.nameM1

p.elementsM2 = p.elementsM1 ∪ ⋃ {p1: p.parentsM1|p1.elementsM2}
∀c: M2.Class2 ·
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c.nameM2 = c.nameM1

c.parentsM2 = c.parentsM1

Provided that parentsM1 is noncyclic, this defines a relationship between the
respective sets of models of L1 and L2. The packages in the new model do not
have parent packages; instead, all the elements that were present in themselves or
any of their parents (recursively) are now included directly in themselves. The L1

expressions parents and elements on packages do not have an interpretation in L2.
This transformation is invertible, but has restricted application on L2 because

undirected and bidirectional associations in L2 have no representation in L1. The
inverse relation is nonfunctional since different arrangements of L1 packages can
produce the same L2 packages.

14.3.2 Approaches for Transformation Specification

The definition of model transformations by imperative rules was the main specifica-
tion approach prior to the OMG’s QVT initiative. These approaches defined graph
transformation steps, or term rewriting rules, to specify how the transformation should
be performed [13]. An alternative approach abstracts from the implementation of the
transformation and instead, expresses what relation between languages is intended
by the transformation [2]. In practice, some combination of these two approaches is
necessary, with the relational specification approach supplemented by strategies for
efficient implementation of the transformation relations.

The QVT standard [36] adopts such a hybrid approach, providing a declara-
tive Relations language to specify transformations as relations and an imperative
Operational Mappings language to specify transformation implementations. The
Relations language includes a graphical notation to describe transformations using
metaobject models. Figure 14.3 shows an example for the transformation τ. The left-
hand-side object model describes to which elements the transformation should be
applied; the right-hand side shows the effect of the transformation. A when clause on
the LHS can define additional applicability conditions using OCL. A where clause
defines further properties between the left- and right-hand sides which the transfor-
mation should establish, in this case that the association end classes are translated by
Class1ToClass2 (i.e., some one-to-one mapping from Class1 to Class2).

C denotes that the left-hand side (LHS) model is checked but not modified by
the transformation; E denotes that the right-hand side (RHS) model is modified if
necessary to enforce the transformation relationship between the models.

This representation specifies a mathematical relationship between the set of models
of language L1 and the set of models of L2, defining how models m1 : L1 (LHS)
correspond to models m2 : L2 (RHS) when they are in the relation.

An alternative specification notation is to use sets of constraints directly in a lan-
guage such as OCL to specify the LHS and RHS as predicates. For example, the LHS
of the example above could be defined as

a1 : Association1
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a2: Association2)
MapAssociation1ToAssociation2(a1: Association1,

c: Class1

a1:
Association1

d: Class1

c1: Class2

d1: Class2

a2:
Association2

from

to

end1

end2

Where:  MapClass1ToClass2(c,c1)  and  MapClass1ToClass2(d,d1)

m1: L1

C
end1_directed =

         false
end2_directed = 

         true

E

m2: L2

FIGURE 14.3 Transformation specification in QVT.

and the RHS as

a2 : Association2
a2.name = a1.name
MapClass1ToClass2(a1.from, a2.end1)
MapClass1ToClass2(a1.to, a2.end2)
a2.end1_directed = false
a2.end2_directed = true

These predicates can be used to define transformations as relations as follows. From
a pair L, R of predicates over models, we can derive the relation Relτ as

Relτ(M1, M2) ≡ M1.L ∧ (M1, M2).R

where expressions of the form e@pre in R are evaluated using M1. Elements x:
T which are defined in R but do not occur in L are assumed to be created by the
transformation, and are added to M2.T . Any free variables of the combined predicate
become parameters of the transformation.

Metaclasses and features that do not occur in L or R are assumed unchanged by
the transformation except when these need to change to ensure constraints of L2.
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In particular, we assume that opposite association end properties are modified appro-
priately when one end is changed explicitly [25]; for example, if a one–many
association with ends r1 (one) and r2 (many) has

x.r1 = y

specified in R, implicitly this also results in y.r2 being extended by x. If an object
of M1 is deleted, it must be removed from any role set in M2, and any part objects
of it must also be removed. For example, if a state s is deleted, so must be its state
invariant and entry and exit actions, and it must be removed from the subvertex set
of any containing region. Outgoing and ingoing transitions of s must be assigned
different sources or targets or be deleted, in order to maintain the UML 2 metamodel
constraints for state machines.

For convenience we usually specify transformations by such pairs of constraints
in this chapter, with diagrams (at the model level) used additionally to describe the
transformation step informally. The L predicate acts like a precondition of the trans-
formation, considered as a metalevel operation on models, and the R predicate as a
postcondition of this operation.

Logical operators such as conjunction and universal quantification can be applied
to transformations based on their definition by predicates. If transformation τ from
L1 to L2 is defined by predicates L1 and R1, and transformation σ from L1 to L2

by predicates L2 and R2, the transformation τ and σ, which applies both transfor-
mations simultaneously, is specified by the predicates L1 ∨ L2, (L1@pre =⇒
R1) ∧ (L2@pre =⇒ R2).

Similarly, a universal quantification can be applied to parameterized transfor-
mations. If τ(a : A) is a transformation from L1 to L2 defined by predicates
L and R, a transformation ∀a : A · τ(a) is defined by predicates ∃a : A · L and
∀a : A · (L@pre =⇒ R).

The transformation of Figure 14.2 can be constructed using these operators, from
separate transformations on packages and associations.

14.3.3 Model Transformation Correctness

The following notions of transformation correctness have been defined [44]:

• Syntactic correctness. The transformation always produces syntactically well-
formed models of the target language from valid models of the source language.

• Termination. The transformation (defined imperatively) terminates on each
source model.

• Uniqueness/confluence. The transformation produces a unique result from a
given starting model.

• Semantic correctness. For each property of the source model that should be
preserved (correctness properties), the target model satisfies the property, under
a fixed interpretation of the source language into the target language.
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In our relational setting, we can define these criteria precisely as follows for a
model transformation τ from L1 to L2:

Syntactic correctness. For each model that conforms to (is a model in the language)
L1, and to which the transformation can be applied, the transformed model
conforms to L2:

∀M1: L1; M2 · Relτ(M1, M2) =⇒ M2: L2

Termination (definedness). The applicability condition of Relτ is true: Its domain is
the complete collection of models of L1.

Uniqueness. Relτ is functional.
Semantic correctness. With respect to the semantics of L1 and L2 being used, if a

model M1 of L1 is transformed to a model M2 of L2, each model-level property
ϕ of M1 true under the L1 semantics is also true, under the interpretation ζ on
expressions induced by τ, in M2 under the L2 semantics:

∀M1: L1; M2: L2 · Relτ(M1, M2) ∧M1 |= ϕ =⇒ M2 |= ζ(ϕ)

The final property should be expected for refinement, specialization, enhancement,
quality improvement, and design pattern transformations. For abstractions it will
instead be the case that all M2 properties should be valid in M1. For reexpression
transformations there may be cases where M1 properties cannot be expressed in M2
(ζ will be a partial interpretation), but all expressible properties should be preserved
from M1 to M2.

Semantic correctness means that Figure 14.4 commutes: Each formula ϕ ∈ �1 has

�2 � ζ(ϕ)

where �1 is the semantics of M1 under Sem1 (e.g., a set of formulas in a language such
as OCL characterizing its meaning), and �2 is the semantics of M2 under Sem2. Only
model-level properties (properties that can be expressed at the M1 level in terms of the
UML four-layer metamodel [35]) should be considered; metamodel-level properties
(M2-level) will usually be invalidated by any metamodel change.

Notice that if τ and σ are semantically correct, so is their composition τ; σ if the
composition of the interpretations is used.

In the case of the prefixing transformation τ(p) on the language of Figure 14.1, a
unique names property is preserved by τ: If the constraint

e1 : Entity and e2: Entity and e1.name = e2.name implies e1 = e2

is added to the language, this is true in interpreted form, since nameM1 is interpreted
by nameM2 with the prefix removed.

An often-neglected consideration is that not only the graphical elements of models
change under a transformation, but also its constraints may need to change, in order
to be correct interpretations in the new model of the constraint in the source model.
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M1 M2
τ

ζ

Sem1 Sem2

Γ1 Γ2

FIGURE 14.4 Transformation correctness.

For example, a constraint from= to defining a self-association in L1 from Figure 14.2
would need to be transformed to end1= end2 in L2.

In general, a constraint ϕ should be transformed to ζ(ϕ) or to a predicate that
implies this. Markovic and Baar [4] consider the issue of when constraints need to
change as a result of a class diagram transformation, but does not investigate the
semantic correctness of the combined transformation. In this chapter we specify the
ζ interpretation for particular transformations and demonstrate the correctness of the
transformations with respect to this.

Varro and Pataricza [44] define a model-checking technique for testing that a
transformation preserves selected properties, on a model-per-model basis, but does
not provide a means to verify transformations on a global basis. By considering
transformations as operations on metamodels, specified by pre- and postconditions,
we can in principle apply standard verification techniques to prove these operations
correct (e.g., by translation into the language of a proof tool such as B) [22].

For example, the name prefixing transformation can be expressed in B as follows:

MACHINE L1L2
SETS ENTITY
VARIABLES entities, name1, name2
INVARIANT
entities <: ENTITY &
name1 : entities --> STRING &
name2 : entities --> STRING &
!(e1,e2).(e1 : entities & e2 : entities & name1(e1) = name1(e2) => e1 = e2) &
!(e1,e2).(e1 : entities & e2 : entities & name2(e1) = name2(e2) => e1 = e2)

INITIALISATION entities := {} || name1 := {} || name2 := {}
OPERATIONS
tau(p) =
PRE p: STRING
THEN
ANY name2x WHERE name2x : entities --> STRING &
!ex.(ex: entities => name2x(ex) = p + "_" + name1(ex))
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THEN name2 := name2x
END

END
END

The internal consistency proof of this machine will include the proof of cor-
rectness of the transformation. In general, precondition L and postcondition R of
a transformation can be expressed as an operation of the form

op(p) =
PRE p: PT & LL
THEN
ANY vx WHERE RR[vx/v]
THEN v := vx
END

END

where LL and RR express L and R in B notation. The metamodel data of L1 and
L2 can be separated into different machines and then combined into a machine that
defines the transformation, similar to the approach used by Akehurst and Kent [2].

Additional correctness properties can also be considered, to specify that there is no
conflict between two model transformations which can both be applied to a particular
model, and that the result of an individual transformation applied repeatedly to a
model does not depend on the order in which it is applied.

It is often the case that groups of related transformations are used together to
transform a model. For example, the transformations to form a relational database
schema from a class diagram (introduce primary and foreign keys, remove inheritance,
many–many associations, and association classes), described in Section 14.4, would
normally be used in this way. For such groups, the property of consistency is important:
It should not be the case that two transformations in the group can both be applied to
the same model and produce different results.

If a group fails to satisfy this property (e.g., as is the case for the “introduce primary
keys” and “amalgamate classes” transformations), a definite order of application or
priority scheme must be defined to remove such conflicts. In this case the ordering
could be:

1. Eliminate inheritance (removing multiple inheritance, then single inheritance).

2. Introduce primary keys.

3. Eliminate many–many associations and association classes (the primary keys
of the classes at the association ends can be used together as a compound key
of the intermediate class).

4. Implement many–one associations by foreign keys.

This defines an algorithm, which may be expressed as a behavior state machine
(Figure 14.5). The correctness of this algorithm can be shown by defining suitable
state invariants and loop variants.

Consistency is also an issue for individual transformations, if the transformation
could be applied in two different (possibly overlapping) regions of a model so that the
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FIGURE 14.5 Transformation algorithm.

result of performing the transformation on one region, and then the second, is different
from that when the regions are chosen in the reverse order. The removeInheritance()
transformation is an example of this.

In the following sections we provide a catalog of several UML transformations
in each of the categories described in Section 14.2, taken from published papers,
books, or tool descriptions. Each transformation is described, with a brief reference
to its purpose, effect, and provenance. For selected transformations of particular
significance, we also give a precise semantic definition of the transformation and a
semantic analysis of its correctness.

For design patterns, enhancements, specializations, and quality improvements,
the transformations usually operate within a single language (i.e., L1 = L2). For
refinements, abstractions, and reexpressions, the source and target languages may be
different.

14.4 REFINEMENT TRANSFORMATIONS

Refinement transformations have the general aim of refining a model to a more
implementation-oriented version. In the context of the MDA, this means transforming
a computation-independent model (CIM) to a PIM, or a PIM to a PSM. In moving
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from a PIM to a PSM, elements in the PIM that are not supported directly in the target
platform must be removed from the model and replaced by platform-specific ele-
ments which satisfy their semantics. For example, in refining a UML class diagram to
a relational database data model, we must replace explicit many–many associations,
association classes, qualified associations, and inheritance, and introduce primary
and foreign keys [7]. In refining a PIM to a Java PSM, we must eliminate multiple
inheritance and association classes. Other forms of refinement transformation replace
specification-level “what” descriptions by design-level “how” definitions: for exam-
ple, by introducing a specialized algorithm or particular communication strategy (as
in many design patterns).

14.4.1 Removing Association Classes

Removing association classes is a refinement transformation that removes an asso-
ciation class from a model. Association classes are replaced by a class plus new
associations (Figure 14.6). The matching predicate L in this case is

r : AssociationClass

The predicate R for the new model is, in part:

c : Class
c.name = r.name
c.ownedAttribute = r.ownedAttribute
c.ownedOperation = r.ownedOperation
c.generalization = r.generalization
c.specialization = r.specialization

A B

A B
att : T

att : T

ar

a
1

M1

M1
ar"

M2
br

M2
br" 1

b

A_B

A_B

FIGURE 14.6 Transformation of association classes to associations.
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Element.allInstances()→excludes(r)
a1, a2 : Association
e11, e12, e21, e22 : Property
a1.memberEnd = Sequence{ e11, e12 }
a2.memberEnd = Sequence{ e21, e22 }
e11.type = r.memberEnd→at(1).type
e22.type = r.memberEnd→at(2).type
e12.type = c
e21.type = c

This defines a new class c which has a copy of r’s features, defines that r itself is
removed from the model, and that there are two new associations a1 and a2 which
link c to the original end classes of r.

A new constraint InvA_B,

r1 : A_B and r2 : A_B and r1.a = r2.a and r1.b = r2.b implies r1 = r2

is introduced into the resulting model, replacing the corresponding property of the
association class.

The original role ar in Figure 14.6 is implemented by the composition ar′′.a; br is
implemented similarly by br′′.b. Attributes (ax, bx).att of elements of the association
class are implemented by cx.att, where cx: A_B is the unique element of this class
with cx.a= ax and cx.b= bx. In other words, ζ is the interpretation

ar %−→ ar′′.a
br %−→ br′′.b
(ax, bx).f %−→ cx.f where cx : A_B and cx.a = ax and cx.b = bx

for any feature f of the association class. Associations connected to the association
class remain connected to A_B in the new model without changing their multiplicities
or names. The invariant InvA_B is the same as that of the original association class
(note that the ends named a and b are present implicitly in the original model as
navigable ends from the association class to A and B). The pre- and post conditions
of operations of the association class remain unchanged in A_B.

The multiplicities M1 and M2 can be any multiplicities allowed in the modeling
language. The uniqueness property defined above ensures that the interpretation of
the multiplicity properties hold in the new model (e.g., br′′.b satisfies M2 if br does).

In addition, the mutual inverse property of the opposite ends of the association is
preserved:

ax : A and bx : B implies (ax : bx.ar ≡ bx : ax.br)

is true in interpreted form:

ax : A and bx : B implies (ax : bx.ar′′.a ≡ bx : ax.br′′.b)
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since

ax : bx.ar′′.a

implies that ax= cx.a for some cx : bx.ar′′, so cx : ax.br′′ by the opposite ends
property for a and br′′. But also bx= cx.b by the opposite ends property for ar′′
and b, and therefore bx : ax.br′′.b as required. Likewise for the opposite direction.
Semantic correctness therefore follows. This transformation is T20 in a paper by
Blaha and Premerlani [8]. A similar transformation, “Remove qualified association”
[27], refines away qualified associations by introducing a new intermediate class.

14.4.2 Amalgamating Subclasses into a Superclass

Amalgamating subclasses into a superclass is a refinement transformation that amal-
gamates all features of all subclasses of a class C into C itself, together with an
additional flag attribute to indicate to which class the current object really belongs. It
is one strategy for representing a class hierarchy in a relational database.

The matching condition L is

c : Class
c.generalization = Set{}
c.specialization→ notEmpty()

In addition, to remove possible inconsistency in application, each direct or indirect
subclass of c must have no superclass from outside the collection of direct or indirect
subclasses of c. An example of the transformation is shown in Figure 14.7. To ensure
semantic correctness, constraints of the subclasses must be reexpressed as constraints
of the amalgamated class, using the flag attribute, as illustrated in Figure 14.7.

The transformation can be applied in a series of steps, which each move one direct
subclass d of c up to c, together with the associations connected to d. For each subclass
removed, a new element is added to the enumerated type for the flag attribute.

The interpretation ζ maps features B :: f of subclasses into the corresponding new
features A :: f of the superclass. For class types it maps each subclass B of A to the set

A.allInstances()→collect(flag = isB)

The new invariant of the superclass is therefore

(flag = isA implies InvA) and . . . and (flag = isB implies InvB)

where each subclass of A is included in the conjunction.
The precondition of an operation m defined in some subclasses of A is expressed as

(flag = isB1 or . . . or flag = isBn) and

(flag = isB1 implies Prem,B1) and . . . and

(flag = isBn implies Prem,Bn)
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FIGURE 14.7 Amalgamating subclass transformation.

where the Bi are the subclasses—possibly including the original superclass—which
have a valid definition of m (it is defined in Bi or in one of its ancestors), and Prem,Bi

is the precondition of m in Bi.
The postcondition of m is expressed in the superclass as

(flag = isB1 and (Prem,B1)@pre implies Postm,B1) and . . . and

(flag = isBn and (Prem,Bn)@pre implies Postm,Bn)

where Postm,Bi is the postcondition of m in Bi.
An association end on a subclass B is lifted to an association end with the same

name, multiplicity, and other properties, attached to the superclass. The opposite end
(e.g., xr) of the association will have multiplicity ∗ if the original end had multiplicity
m..M. A constraint

flag = isB implies xr→size() ≥ m and xr→size() ≤ M

is added to ensure that the original multiplicity is provable for objects of A that
represent instances of B.

The state machine of A is formed as a superstate of the individual state machines
of its subclasses, each of which is represented as a separate state machine. The initial
transition is directed to enter the subclass state machine corresponding to the value
of the flag attribute initialization.
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This transformation is related to the collapsing hierarchy refactoring of Fowler
[15]. Other class diagram refactorings based on Fowler [15] are given for UML by
Markovic and Baar [29]: Rename (class, attribute, role, operation); PullUp (attribute,
role, operation); PushDown (attribute, role, operation); Extract (class, superclass);
Move (attribute, operation, role).

14.4.3 Replacing Inheritance by Association

Replacing inheritance by association is a refinement transformation that provides
an alternative way of removing inheritance. It replaces an inheritance relationship
between two classes by an association between the classes. This transformation is
useful when refining a PIM toward a PSM for a platform that does not support inher-
itance, such as the relational data model. It can also be used to remove multiple
inheritance for refinement to platforms that do not support multiple inheritance.

In contrast to the amalgamation approach, it allows a subclass and a superclass to be
represented in different database tables. This is useful if the classes will be processed
in different ways (e.g., in different use cases) in the application, or if amalgamating
them would produce tables with an excessive number of columns.

The L predicate for this transformation is

g : Generalization
c1 : Class
c2 : Class
c1 = g.general
c2 = g.specific

The R predicate is

a : Association
r1, r2 : Property
a.memberEnd = Sequence{r1, r2}
r1.classifier = c1
r2.classifier = c2
r1.type = c2
r2.type = c1
Element.allInstances()→excludes(g)

and r1 is defined to have 0..1 multiplicity and r2 to have 1 multiplicity. g is deleted
from the new model.

Figure 14.8 shows the metamodel fragment for this transformation. The transfor-
mation is invertible and monotone. However, not all 0..1 to 1 associations can be
validly converted into inheritances: The classes at the ends of the association must be
different, and the class at the 1 end must represent conceptually a generalization of
the other class. If both classes have primary keys, these should be the same.

Figure 14.9 shows an application of this transformation. The inheritance of B on
A is replaced by a 0..1 to 1 association from B to A.
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FIGURE 14.8 Replacing inheritance by association transformation.

To ensure semantic correctness, any expression in the original model that has B (or
a subclass of B) as a contextual classifier, and which uses a feature f inherited from
A, must be modified in the new model to use ar.f instead. That is, the interpretation
ζ maps f in the original model to ar.f in the new model.

The transformation is used in by Grand [18] to improve the quality of models
where inheritance would be misapplied, such as situations of dynamic and multiple
roles. It is related to the Role pattern of Bämer et al. [3].

14.4.4 Removing Many–Many Associations

Removing many–many associations is a refinement transformation that replaces a
many–many association with a new class and two many–one associations. Explicit
many–many associations cannot be implemented directly using foreign keys in a rela-
tional database—an intermediary table would be needed instead. This transformation
is the object-oriented equivalent of introducing such a table.

The transformation is shown in Figure 14.10 The L constraint is

r : Association
r.stereotypeNames→includes(‘‘explicit”)
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FIGURE 14.9 Replacing inheritance by association application.
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FIGURE 14.10 Removing a many–many association.

r.memberEnd→at(1).upper > 1
r.memberEnd→at(2).upper > 1

m.stereotypeNames gives the set of names of stereotypes attached to a model
element m.

The new class must link exactly those objects that were connected by the original
association and must not duplicate such links:

c1 : C and c2 : C and c1.ar = c2.ar and c1.br = c2.br implies c1 = c2
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In addition, any constraint with contextual classifier A or a subclass of A, which
refers to br, must replace this reference by cr1.br in the new model, and similarly for
navigations from B to A. ζ is

ar %−→ cr2.ar, br %−→ cr1.br

14.4.5 Introducing a Primary Key

Introducing a primary key is a refinement transformation that applies to any persistent
class. If the class does not already have a primary key (in the sense of a relational
database table primary key), it introduces a new identity attribute (an attribute that
always has a different value in different objects), usually of Integer or String type,
for this class, together with extensions of the constructor of the class, and a new get
method, to allow initialization and read access of this attribute.

This is an essential step for implementation of a data model in a relational database.
L in this case is

c : Class
c.stereotypeNames→includes(‘‘persistent”)
c.ownedAttribute.stereotypeNames→excludes(‘‘identity”)
c.feature.name→excludes(c.name + ‘‘Id”)

using the metamodel of UML 2 [34].
L will be true for any model element c that is a persistent class without an identity

attribute. For such elements the transformation defined by R will be applied to create a
new model from the old, in which a new identity attribute is added to the class selected:

a : Property
a.name = c.name + ‘‘Id”
a.stereotypeNames = Set{ ‘‘identity” }
c.ownedAttribute =

(c.ownedAttribute)@pre + Sequence{ a }
a.classifier = c
a.type = IntegerType

Because a occurs in R but not in L, it is assumed that it is created by the transformation.
We could write a.oclIsNew() to make this explicit. An example of this transformation
is shown in Figure 14.11.

To ensure semantic correctness of the transformation, a new constraint expressing
the primary key property is added to the new model:

A.allInstances()→size() = A.allInstances()→collect(akey)→size()

This must be maintained by the constructor, for example:

A(att1x : T1, att2x: T2, akeyx: Integer)
pre: akeyx /: A.allInstances()->collect(akey)
post: akey = akeyx and att1 = att1x and att2 = att2x

ζ is the identity interpretation.
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FIGURE 14.11 Introducing a primary key.

14.4.6 Replacing Association by a Foreign Key

Replacing association by a foreign key is a refinement transformation that expresses,
as a UML class diagram transformation, the representation of associations by foreign
keys in a relational database schema. It applies to any explicit many–one association
between persistent classes. It assumes that primary keys already exist for the classes
linked by the association. It replaces the association by embedding values of the key
of the entity at the “one” end of the association into the entity at the “many” end.

This is an essential step for implementation of a data model in a relational database.
The transformation is shown in Figure 14.12. The L constraint is

r : Association
r.stereotypeNames→includes(‘‘explicit”)
r.memberEnd→at(1).upper = 1
r.memberEnd→at(2).upper > 1

(together with the case that the member ends are in the opposite order). In the new
model a copy of the primary key of the first r.memberEnd.type class is added as a
foreign key to the second r.memberEnd class.

For instances a : A, b : B, b.akey is equal to a.akey exactly when a %→ b is in
the original association. This correspondence must be maintained by implementing
addbr and removebr operations in terms of the foreign key values.

To ensure semantic correctness, navigation from an A instance to its associated br
set must be replaced by

B.allInstances()→select(B :: akey = A :: akey)

in the new model, corresponding to an SQL SELECT statement, and similarly for
navigation from B to A.

The ζ interpretation is therefore

br %−→ B.allInstances()→select(B :: akey = A :: akey)
ar %−→ A.allInstances()→select(B :: akey = A :: akey)→any()
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FIGURE 14.12 Replacing association by a foreign key.

14.4.7 Replacing a Global Constraint by Local Constraints

Replacing a global constraint by local constraints is a transformation that refines a
class diagram by replacing a constraint that spans n classes, n > 1, by constraints
that are local to m classes, m < n. Local constraints are usually easier to implement
than global constraints.

L in this case is

c : Constraint
c.constrainedElements→size() > 1

A specific form of localization is when some global constraint can be replaced by
one or more (more local) constraints, which together ensure the global constraint
(Figure 14.13).

For example, in the case of integer-valued attributes aatt, batt, catt, the predicate
P(aatt, catt) could be aatt < catt, Q(aatt, batt) is aatt < batt, and R(batt, catt) is
batt ≤ catt. This transformation is semantically correct because the refined model
establishes all the properties of the original model: The local constraints imply the
global constraint when combined. Other transformations to simplify constraints are
given by Giese and Larsson [17].

14.4.8 Weakening Preconditions or Strengthening Postconditions

An operation precondition can be weakened (so that it is able to be applied in more
situations without error) and/or its postcondition strengthened (so that its effect is
determined more precisely) [31]. Both potentially move the method closer to imple-
mentation. Figure 14.14 shows a general situation. The semantic correctness of this
transformation is shown in [27].
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FIGURE 14.13 Localizing constraints.
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FIGURE 14.14 Weakening preconditions/strengthening postconditions.

14.4.9 Refining an Attribute into an Entity

Refining an attribute into an entity is a refinement transformation that replaces an
unstructured attribute att : T of a class C by a new entity CT and an association
to this (Figure 14.15). This is a common form of evolution that may occur during
development of a system, when a property of an entity that was originally modeled
as a simple value attached to each object of the class representing the entity is later
recognized to have internal structure and properties of its own, and so must be modeled
as an entity in its own right [9].
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FIGURE 14.15 Refining attribute to entity.

To ensure semantic correctness, references to att in constraints of the source model
should be replaced by attr.att when these constraints are restated in the target model.
The ζ interpretation is

att %−→ attr.att

14.4.10 Removing Ternary Associations

It is possible to define ternary associations in UML class diagrams, associations that
consist of triples (x, y, z) of objects, from three classes. These cannot be directly
implemented in a normal object-oriented programming language and must be refined
into a class and three new associations (Figure 14.16).

For objects b : B, c : C, the association end (b, c).r1 in the original model is
replaced by R.allInstances()→select(br = b and cr = c)→collect(ar) in the new
model, and similarly for r2 and r3. Associations of higher arity are handled similarly.

14.4.11 Other Class Diagram Refinement Transformations

Some further refinement/specialization transformations on class diagrams are:

• Decompose an attribute into two or more parts (e.g., a name into forename,
surname). This is Blaha and Premerlani’s “Transform a multi-valued
attribute” [8].

• Replace an enumeration-valued attribute by a set of boolean-valued attributes
plus a constraint to express that only one of these booleans can be true [8]. For
example, gender with values male and female replaced by two boolean attributes
isMale, isFemale and the constraint

isMale = true implies isFemale = false
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FIGURE 14.16 Removing ternary associations.

This transformation also applies in the reverse direction.

14.4.12 Replacing Transition Postconditions by Actions

Replacing transition preconditions by actions is a refinement transformation on a state
machine model that can be used to implement a protocol state machine by a behavior
state machine. Figure 14.17 shows an example. For each protocol transition

s1 →op(x)[Pre]/[Post] s2

s1 s2op()[Pre]/[Post]

s1 s2op()[Pre]/acts

FIGURE 14.17 Refining a protocol to a behavior state machine.
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the corresponding behavior transition is

s1 →op(x)[Pre]/acts s2

where acts are actions that establish Post,

Invs1 ∧ Pre =⇒ [acts]Post

and do not change any other features except those modified in Post. ζ in this case is
the identity interpretation.

14.4.13 Source Splitting

The source splitting transformation refines the behavior of a state machine by intro-
ducing substates of a state s and splitting a transition from s into cases for each of
these substates. The motivation for this transformation is that a simple behavior may
need to be refined into subcases, in particular if a new attribute or other structural
feature is introduced in a class.

A simple case with two states is shown in Figure 14.18. Any number of new states
and corresponding transitions can be introduced. The logical interpretation ζ is the
identity interpretation. To ensure semantic correctness, all new substates of s must
be sources of new transitions derived from the transition of s. These new transitions

BA e[G]/act

BA

A1

A2

e[G]/act

e[G]/act

FIGURE 14.18 Source splitting.
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can have additional postconditions/actions, but must have the same trigger and guard
as the original transition. The targets of the new transitions can be substates of the
original target. This transformation is due to Cook and Daniels [10].

14.4.14 Target Splitting

Target splitting is a transformation that replaces a single transition in a state machine by
two or more transitions distinguished by disjoint firing conditions, and with possibly
distinct actions and target states. It is used to refine behavior by making distinct
different cases which were amalgamated in the abstract model. It can be used to
define a state machine for a subclass so that the subclass state machine is behaviorally
compatible with the superclass machine.

Figure 14.19 shows the structure of this transformation in the case of a split into
two transitions. One state of the source model is split into two, and any transition into
the state is also split in two, such that G ≡ G1∨G2 and G1 =⇒ ¬G2. Postconditions
can be strengthened:

Post1 =⇒ Post

Post2 =⇒ Post

In behavior state machines, additional actions can be added in parallel to the existing
actions of the transition. Any number of new substates of t can be introduced. This
transformation is also due to Cook and Daniels [10].

s

t

s

t2t1

op(x)[G]/Post

op(x)[G2]/Post2op(x)[G1]/Post1

FIGURE 14.19 Target splitting.
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14.4.15 Expressing a State Machine in Pre- or Postconstraints

Expressing a state machine in pre- or postconstraints is a transformation that expresses
the protocol state machine SM of a class C, which only has call triggers on its
transitions, as new data and pre/post conditions of C. A new enumerated type, StatesC ,
is introduced, with an element for each basic state configuration of the state machine,
and an attribute stateC : StatesC of C, together with operation pre- and postconditions
(e.g., in OCL) expressing the behavior of all the state machine transitions.

If operation α(p) has transitions tα1, . . . , tαnα from state configurations
sα1, . . . , sαnα to state configurations pα1, . . . , pαnα with guards Gα1, . . . , Gαnα and
postconditions Postα1, . . . , Postαnα, the precondition of α is augmented with the
condition

(stateC = sα1 and Gα1) or . . . or (stateC = sαnα and Gαnα)

and the postcondition is augmented by the conjuncts

(stateC@pre = sαi and Gαi@pre) implies stateC = pαi and Postαi

for i = 1, . . . , nα. Each state invariant Invs of a state s becomes a new class invariant,

stateC = s implies Invs

and each attribute of SM becomes an attribute of C.
The encoding of the state machine as explicit data and updates to this can facilitate

the generation of executable code to ensure that objects of the class obey the dynamic
behavior it describes. This transformation is defined in UML superstructure 2.1.1
[34], together with other transformations, such as adding an orthogonal region to a
state.

14.4.16 Flattening a State Machine

Flattening a state machine is a transformation that removes composite states and
expresses their semantics in terms of their substates instead. A transition from a
composite state boundary becomes duplicated as a transition from each of the enclosed
states (if they do not already have a transition for that event). A transition to the
composite state boundary becomes a transition to its default initial state.

The transformation reduces the complexity of the constructs used to express
dynamic behavior, making this behavior easier to verify, although the size of the
model will be increased. Some results suggest that elimination of composite states
may nonetheless improve the comprehensibility of a model for nonexpert users [12].

Figure 14.20 shows a typical case of elimination of a composite state, and Figure
14.21 shows the elimination of a concurrent composite state.

In the case of flattening, ζ expresses a composite state of the original model as
a condition defined as the disjunction of all the state memberships of the flattened
states of which it is composed. In Figure 14.20, for example, in A is interpreted by
in A1 or in A2 or in A3.
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FIGURE 14.20 Eliminating a composite state.
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FIGURE 14.21 Flattening a concurrent composite state.
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14.5 QUALITY IMPROVEMENT TRANSFORMATIONS

Quality improvement transformations do not change the abstraction level of a model,
but rationalize and improve its structure and elements to make the model more flex-
ible, concise, comprehensible, or complete. The concept of slicing transformation as
defined in [19] also falls into this category, since these transformations aim to reduce
some complexity measure of the model while preserving the core semantics of the
model.

One subcategory of quality improvement transformation is that of factoring and
refactoring transformations. Factoring transformations introduce a new element that
captures commonalities between elements of the original model, which had no distinct
representation in that model. Inheritance in class diagrams, and state inclusion in state
machines, are typically used to carry out this factoring. Some design patterns, such
as template method, facade, and session facade [11], can also be seen as factoring
quality improvement transformations. Refactorings reorganize existing structure to
improve the factorization in the model instead of introducing new elements [15].

A second subcategory is the removal of redundancy from a model by removing
elements that duplicate information already present in the model. Transformations that
remove spurious elements of a model such as unreachable states in a state machine
can be employed to “clean up” a model after a transformation that may introduce such
elements (e.g., a slicing transformation).

14.5.1 Introducing a Superclass

Introducing a superclass is a quality improvement transformation that introduces a
superclass of several existing classes, to enable common features of these classes to be
factored out and placed in a single location. In general, this transformation should be
applied if there are several classes A, B, . . . which have common features and there
is no existing common superclass of these classes, and similarly if there is some
natural generalization of these classes that is absent in the model. It is particularly
useful for reorganizing and rationalizing a class diagram after some change to a system
specification [9].

Figure 14.22 shows a generic example where the existing classes have common
attributes, operations, and roles.

The features that are placed in the superclass must have the same intended meaning
in the various subclasses, rather than an accidental coincidence of names.

The properties of the features in the superclass are the disjunction of their
properties in the individual subclasses. For common roles, this means that their
multiplicity on the association from the superclass is the “strongest common gen-
eralization” of their multiplicities on the subclass associations. For example, if the
subclass multiplicities were m1..n1 and m2..n2, the superclass multiplicity would
be min(m1, m2)..max(n1, n2). For common operations, the conjunction of the indi-
vidual preconditions can be used as the superclass operation precondition, and the
disjunction of the individual postconditions as the superclass operation postcondition.
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FIGURE 14.22 General superclass introduction.

Common constraints of the subclasses can also be placed on the superclass. In
subclasses the original properties of roles and other features which are now owned
features of the superclass must be expressed as constraints, as with the restrictions on
cr→ size() in Figure 14.22.

Variations include situations where a common superclass already exists but some
common features of its subclasses are missing from it. In this case the common
features are simply moved up to the superclass. The pull-up method of refactoring
[15] is one example of this situation.

Other quality improvement refactorings of a class diagram, to rationalize class hier-
archies and remove optional association ends, are described by Lano and Bicarregui
[23].

14.5.2 Introducing Entry Actions of a State

Introducing entry actions of a state is a quality improvement transformation (Fig-
ure 14.23) that factors out common actions from all incoming transitions of a particular
state and makes them into an entry action of the state. If all transitions t1, …, tn into
a state s have the same final sequence act of actions, remove these actions from the
transitions and add act as the first actions of the entry action of s. Similarly, if all
outgoing transitions from a state have the same initial actions, these can be made into
exit actions of the state.
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FIGURE 14.23 Introducing entry and exit actions.

The new model has semantics identical to that of the original model, according to
Lano’s semantics [27]. The transformation is described with other UML refactorings
by Sunyé et al. [42].

14.5.3 Introducing a Superstate

If states s1, . . . , sn of a statechart all have a common set of outgoing transitions, that
is, for a nonempty set α1, …, αm of events they have transitions ts1,α1 , …, tsn,α1 , etc.,
such that for a given j, the tsi ,αj all have the same guards, actions, and target states,
introduce a new superstate s of the si, and replace the tsi ,αj by new transitions ts,αj from
s to the common target of the tsi ,αj , and with the same guard and actions. Common
invariants of the substates can be placed on the superstate. s is an abstract superstate
of the si: Membership of s implies membership of one of the si.

This transformation reduces the complexity of the diagram [the number of tran-
sitions is reduced by (n− 1)m] and may identify a conceptually significant state that
was omitted from the original model.

Figure 14.24 shows an example of this transformation.
A formal description of this transformation is split into two cases: (1) there already

exists a common superstate s of the si, in which case the duplicated transitions are
moved up to s, or (2) there is no such state, and it is created before applying (1).

For (1), the L predicate is

sts : Sequence(State)
ts : Sequence(Transition)
r : Region
sts→size() = ts→size()
sts→asSet()→size() > 1
ts→asSet()→size() > 1
(1..sts→size())→forAll(i | ts→at(i).source = sts→at(i))
ts.target→asSet()→size() = 1
ts.effect→asSet()→size() = 1
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FIGURE 14.24 Introducing a superstate.

ts.guard→asSet()→size() = 1
r.subvertex = sts→asSet()
r.state.region→size() = 1

The R predicate specifies the creation of a new transition t from r.state, replacing
the ti:

t : Transition
t.source = r.state
t.target = ts→at(1).target
t.effect = ts→at(1).effect
t.guard = ts→at(1).guard
Transition.allInstances() =

(Transition.allInstances()@pre − ts→asSet())→including(t)

ζ is the identity interpretation.

14.5.4 Removing an Unreachable State

If a basic state has no incoming transitions, it cannot be reached from the initial state
of a state machine, so no object can ever be in the state. This transformation eliminates
such states together with all outgoing transitions from the state.
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The L predicate is

s : State
s.region→size() = 0
s.incoming→size() = 0

The R predicate is

Element.allInstances()→excludes(s)
Element.allInstances()→excludesAll(s.outgoing)

14.5.5 Extending State Invariants

If a state s in a state machine has invariant Invs, and a transition from this state to a
state t has guard G and no actions/postconditions, then Invs and G is an invariant of t if
t has no other incoming transitions (and t is noninitial). This transformation is useful
when a state machine is used to represent an algorithm, and a loop invariant needs to
be carried over to the terminal states of the algorithm, to establish a postcondition.
The correctness of the transformation can be shown using the semantics of Chapter 8
to deduce that an object can enter state t only via a transition from s.

14.5.6 Simplifying Guards Using Invariants

Simplifying guards using invariants is a quality improvement transformation that
simplifies a guard G on a transition exiting a state s by taking account of the fact that
the invariant Invs of s will be true when the condition G is tested. Therefore, G can
be replaced by G1, where

Invs and G1 ≡ Invs and G

Figure 14.25 shows an example of this transformation. This and other state machine
refactoring transformations are defined by Lano and Bicarregui [23].

14.5.7 Disaggregation

A class may become large and unmanageable, with several loosely connected func-
tionalities. It should be split into several classes, such as a master/controller class and
helper classes, which have more coherent functionalities and data.

Figure 14.26 shows a typical example.
The transformation can be applied to a class C if the state machine for C is divided

into two or more concurrent components CM, CS1, …, CSn, where CM is a client of
the CSi: it queries the states of these components and invokes operations upon them,
but the CSi do not refer to CM.
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The helper/component objects must always exist when the master object delegates
operations to them. Constraints of A which refer to the attributes that have been
placed in auxillary classes must replace the attribute reference by a suitable navigation
expression: for example, att1 replaced by ar1.att1 in Figure 14.26. The state machine
of A will be factored into orthogonal regions for each new subordinate class. This
transformation is related to “extract class” 15] and “partition class” [8].

[I] [G]/acts

s
[I]

t
[G1]/acts

Where  G1 & I  <=> 
G & I

s

t

FIGURE 14.25 Simplifying guards.
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FIGURE 14.26 Disaggregation.
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14.5.8 Factoring out a Parameter Group

Factoring out a parameter group is a transformation that replaces a group p1: T1, …,
pn: Tn of parameters to an operation op of a class C, by a single parameter p : D,
where D is a new class which has attributes p1 : T1, …, pn: Tn and public set and get
operations for each parameter.

The transformation reduces the number of parameters of the operation. If several
operations use the same group of parameters, this factoring simplifies the interface of
the class significantly.

The group of parameters should have coherent meaning as an entity. References
to pi in the pre- and postconditions of the operation should be replaced by p ·pi. Calls
op(px1, . . . , pxn) of op are replaced by op(p), where p · p1= px1, …, p · pn= pxn.

The transformation is related to the Value Object pattern of [11], which introduces
a class to package up a group of data items which are passed between different
subsystems of an application to make this data transfer more efficient. It is also
known as Access Bean [40].

14.5.9 Factoring Out Suboperations

An operation may involve complex or repeated subcomputations. These can be fac-
tored into private helper operations of the same class, invoked from the operation.
Figure 14.27 shows a generic example where a complex expression exp is factored
out into a separate operation m1.

C

post:

m(x: T) : S

y : P

   y = f1(exp(x,y)) & 
   result = f2(exp(x,y))

post:

y : P

   y = f1(m1(x,y)) & 
   result = f2(m1(x,y))

m1(x: T, y: P): Q
m(x: T) : S

post:

   result = exp(x,y)

{query}

C

FIGURE 14.27 Factoring an operation.
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Before they are created, it should be checked that the helper operations do not
already exist in the class or in other classes. The helper operations should be query
operations.

This transformation, combined with “introduce superclass,” gives the template
method pattern in the case that methods in two separate classes have the same
remainder after their helper method code is factored out.

A similar transformation introduces derived features:

14.5.10 Introducing Derived Features

An expression e built from local features of a class, which reoccurs several times in a
specification, is replaced by a new derived feature f of the class, plus the constraint
f = e.

Complex repeated expressions lead to inefficient implementations. A derived fea-
ture representing the expression need only be recomputed when one of its defining
features changes value.

The interpretation ζ is the identity. Properties ϕ(e) of the initial model can be
proved from the corresponding properties ϕ(f ) of the new model because of the
defining equality of f .

14.5.11 Eliminating a Redundant Inheritance

If a class inherits another by two or more different paths of inheritance, remove all
but one path, if possible. A redundant inheritance conveys no extra information, but
complicates the model. This transformation is valid for transitive inheritance, in which
all features/properties of a superclass are inherited into the subclass.

Figure 14.28 shows a typical situation where class A inherits directly from class C
and also indirectly via a more specific class B. The first inheritance is redundant and
can be removed. (In some languages, such as Java, such inheritances would actually
be invalid.)

The axiom A⊆C of the original model follows from the axioms A⊆B and B⊆C
of the new model, so ensuring correctness. The inheritance removed (e.g., of E
inheriting from F) must be genuinely redundant (i.e., there must exist another chain
of inheritances from E to F via other intermediary classes).

14.5.12 Making Partial Roles Total

A 0..1 multiplicity role of a class A may be turned into a 1 multiplicity role either by
moving the role to a superclass of its current target, or by moving the other end to a
subclass of A on which the association is total. Total associations are generally easier
to implement and manage than partial associations.

Figure 14.29 shows the “generalize target” version of this transformation. Figure
14.30 the “specialize source” version.
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FIGURE 14.28 Redundant inheritance removal.

A

B

C

br

0..1

cr

0..1

A

C B

r
1 BorC

FIGURE 14.29 Making partial roles total.

In the first version we need the condition

br → isEmpty() implies not(cr → isEmpty())

r is the union of br and cr. In the second we need that

bx.cr → size() = 1

for bx : B, and cr is otherwise empty.
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FIGURE 14.30 Making partial roles total.

14.5.13 Factoring Out Transition Postconditions

Factoring out transition postconditions is a quality improvement transformation that
moves a common postcondition of the set of all transitions triggered by the same
operation into the class definition of the operation. This transformation can be used to
simplify the specification and ensure that only state-dependent behavior is described
in a state machine, with state-independent behavior described in a class diagram.
Figure 14.31 shows an example.

The postconditions should contain an identical factor for every state of the state
machine. The guards of the transitions for the operations should always be complete
(their disjunction should be true, or be implied by the state invariant) for each source
state.

14.6 DESIGN PATTERNS

Introducing a design pattern by reorganizing the elements of a model to conform to
the pattern can be regarded as a model transformation [26]. The L predicate of these
transformations expresses the conditions in which the pattern is relevant and should
be introduced. The R predicate expresses the structure of the system after introduction
of the pattern [6].

In some cases these transformations will be quality improvement transformations;
in other cases, refinements [41]. The Abstract Factory, Adapter, State, Mediator, and
Observer patterns are analyzed as transformations by Lano [26]. Here we consider
Facade and Singleton.
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FIGURE 14.31 Factor transition postconditions.

14.6.1 Introducing a Facade Pattern

This structural pattern is defined in [16]. It has the aim of reducing direct dependencies
between classes. It is an example of a factoring quality improvement transformation.

A generic facade with three client classes and two suppliers would be represented
as a transformation from the original model, which simply contains these five classes,
to a new model, where communication is via a facade class (right-hand side of Figure
14.32). Classes A and B are factored out into a new subsystem, which has boundary
(interface) class F.

The original C1 :: br role is implemented by the composition C1 :: fr.F :: br1 in
the new model, and similarly for the other suppliers and clients. ζ is

C :: ar %−→ C :: fr.F :: ar1

for each client class C and role ar from C to a supplier.
The significant effect of the transformation is that invocations br.op(x) in operation

definitions of clients C1, C2, and C3 in the original model become invocations fr.op(x)
in the new model, and op on F is defined to call the original op in A or B.

The number of dependencies in the model is potentially reduced, from C ∗ S to
C+ S, where C is the number of client classes, and S the number of suppliers. The L
predicate specifies that there is a set Cs of classes, and a (disjoint) set Ss of classes,
such that the elements of Cs have one or more owned properties which are ends of
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FIGURE 14.32 Facade pattern application.

associations with type one of the Ss, and such that the total number of these properties
is strictly greater than card(Cs)+ card(Ss).

14.6.2 Introducing a Singleton Pattern

The Singleton pattern gives a standard design for a class which must have only one
object instantiation. This pattern is a refinement transformation which implements a
constraint

C.allInstances() → size() ≤ 1

for a class C.
Figure 14.33 shows the structure of a typical Singleton class after application of

this pattern. The constraint is ensured by the definition of the constructor as private
and by the getInstance() operation.

14.7 ENHANCEMENT TRANSFORMATIONS

Enhancement transformations extend a model in a monotonic manner such that all
existing elements of the model remain in the new model, but new elements are added.
For example, new classes, associations, and attributes can be added, association
multiplicities made more precise, operation postconditions strengthened, targets of
transitions made more specific, and so on. The primitive transformations “Add con-
struct,” “Assert construct is derived” (together with the constraint that defines the
derivation), and “Reorder attributes” of Blaha and Premerlani [8] are further examples.

Not all additions to a diagram are valid enhancements. For example, adding a new
element to an enumerated type falsifies the semantics of the original model, as does
adding a new direct substate to a composite state with a single region. In both cases
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FIGURE 14.33 Introduction of a Singleton class.

the extended element already had an axiom expressing that it was complete in the
original model (although UML allows an alternative semantics for composite states
which does not enforce completeness).

14.7.1 Introducing a Constructor for a Class

Introducing a constructor for a class is an enhancement transformation that adds a new
constructor to a class based on the class invariant. If the class C has attributes att1 :
T1, . . . , attn : Tn, and class invariant InvC , a constructor createC(att1 : T1, . . . , attm :
Tm) can be defined, where m≤ n:

createC(attx1 : T1, ..., attxm : Tm)
pre: ∃ attxm+1 : Tm+1; ...; attxn : Tn · InvC[attx/att]
post: InvC[attx1/att1, ..., attxm/attm] and

att1 = attx1 and ... and attm = attxm

In other words, the condition for the constructor to execute normally is that there
do exist values for the other attributes of the class which satisfy the invariant when
the values supplied for the first m attributes are assigned to these. The effect of
the constructor is to carry out these assignments and to choose values for the other
attributes so that the invariant holds true.

14.8 IMPLEMENTATION OF MODEL TRANSFORMATIONS

Alternative implementation techniques and languages for implementing model trans-
formations are considered in [30]: The ability of tools to provide guidance on the
selection of appropriate transformations to apply to a particular model is considered
desirable, as is the ability for a user of the tool to customize existing transformations
and define new ones. The ability to group and compose transformations and to verify
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them is also considered as important properties of a transformation tool. Three imple-
mentation mechanisms are considered: functional programming, logic programming,
and graph transformation.

Model transformations have been implemented in a number of tools, such as
OptimalJ (Compuware). This tool uses standard UML as its modeling notation, and
supports construction of PIMs and J2EE PSMs, and generation of executable Java
code from PSMs. OptimalJ utilizes design patterns such as Facade to structure the
code that is generated.

Codagen Architect (http://www.codagen.com/products/architect/) supports UML
class, state machine, sequence, collaboration and use case diagrams, and code genera-
tion from UML models to Java, C#, C++, and Visual Basic. J2EE and .Net platforms
are supported. Like OptimalJ, it supports selective user adaption of generated code,
to enable manual maintenance of some sections of code.

SosyInc Modeler and Transformation Engine (http://www.sosyinc.com) use UML-
like notation to define class diagrams, from which code in Visual Basic or Java can be
generated automatically. It includes a specification of behavioral logic in a functional
model so that complete executable code can be produced.

UML2Web [25] supports transformations for UML class and state machine dia-
grams, for refinement and quality improvement. Transformations are specified as
pairs of predicates L, R, and the transformations which are applicable to a given
model (class diagram or state machine) are identified by evaluating the L predicates
of the transformations on the model. When an applicable transformation is selected by
the user, the R predicate of the transformation is then applied to the model to modify
it. New transformations can be defined by the user, although there is no mechanism
to verify these transformations (the predefined transformations have been already
verified as correct). The control of the ordering and application of transformations is
achieved by using state machines, as shown in Figure 14.5.

In general however the transformations supported by transformation tools are
‘hard coded’ into the tools, and it is not possible to add new transformations
or extend the transformations provided. The Together Architect tool for QVT
(http://www.borland.com) and the Converge system of Tratt [43] do permit a general
definition of transformations and their implementation, via the use of pattern-
matching and pattern-transformation facilities. Together Architect uses the QVT
notation of Section 14.3 to define transformations. These are then applied to the
elements of the model until no elements that match the LHS of the transformation
rule remain in the source model. Kermeta (http://www.kermeta.org) is similar in style.
The iterative approach of these tools (applying rules to elements, one by one) can pro-
duce a different result to the pure relational view of a transformation, which operates
simultaneously on all elements that satisfy the applicability condition. In particular,
the iterative approach may not terminate.

Other important aspects of transformation implementation are change propagation
and bidirectionality [43]. Change propagation means that a transformation can be used
to maintain consistency between a source and a target model under some changes
to the source, without needing to reapply the transformation to the entire source
model. Bidirectionality means that this also operates in the target-to-source direction.
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These are related to the monotonicity and invertability properties at the transformation
specification level: If a transformation is monotonic, extensions of the source model
that do not alter the elements matched by the transformation and do not affect the
application of the transformation can be copied to the target model without reexecuting
the transformation. Invertability with a functional inverse transformation means that
a transformation can be executed in reverse from the transformed model to obtain the
original model.

Approaches to support these implementation properties generally use tracing infor-
mation to identify exactly how a target model was produced from, and depends upon,
the source [36,37,43].

Automated application of transformations is generally desirable to improve the
efficiency of development; however, in some cases human intervention may be nec-
essary to resolve choices: for example, in the “introduce superstate” transformation,
there may be alternative (conflicting) ways of grouping states together based on their
outgoing transitions.

14.9 SUMMARY

We have defined a systematic representation and classification of model transfor-
mations, with all forms of model transformation being defined as relations at the
metamodel level. Different specification approaches have been described, and a large
number of common transformations have been defined, including examples of their
application and details of their use. The verification of transformations has been
shown, using the concept of a logical interpretation from the source language to the
target language.
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