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Preface to the Fourth Edition

This book was first published in 1971 and last revised in 1992. During
the span of over 30 years, it seems fair to say that the book has made a
meaningful contribution to the teaching and learning of nonpara-
metric statistics. We have been gratified by the interest and the
comments from our readers, reviewers, and users. These comments
and our own experiences have resulted in many corrections,
improvements, and additions.

We have two main goals in this revision: We want to bring the
material covered in this book into the 21st century, and we want to
make the material more user friendly.

With respect to the first goal, we have added new materials
concerning the quantiles, the calculation of exact power and simulated
power, sample size determination, other goodness-of-fit tests, and
multiple comparisons. These additions will be discussed in more detail
later. We have added and modified examples and included exact

v



solutions done by hand and modern computer solutions using MINI-
TAB,* SAS, STATXACT, and SPSS. We have removed most of the
computer solutions to previous examples using BMDP, SPSSX, Ex-
ecustat, or IMSL, because they seem redundant and take up too much
valuable space. We have added a number of new references but have
made no attempt to make the references comprehensive on some
current minor refinements of the procedures covered. Given the sheer
volume of the literature, preparing a comprehensive list of references
on the subject of nonparametric statistics would truly be a challenging
task. We apologize to the authors whose contributions could not be
included in this edition.

With respect to our second goal, we have completely revised a
number of sections and reorganized some of the materials, more fully
integrated the applications with the theory, given tabular guides for
applications of tests and confidence intervals, both exact and approx-
imate, placed more emphasis on reporting results using P values,
added some new problems, added many new figures and titled all
figures and tables, supplied answers to almost all the problems, in-
creased the number of numerical examples with solutions, and written
concise but detailed summaries for each chapter. We think the problem
answers should be a major plus, something many readers have re-
quested over the years. We have also tried to correct errors and in-
accuracies from previous editions.

In Chapter 1, we have added Chebyshev’s inequality, the Central
Limit Theorem, and computer simulations, and expanded the listing of
probability functions, including the multinomial distribution and the
relation between the beta and gamma functions. Chapter 2 has been
completely reorganized, starting with the quantile function and the
empirical distribution function (edf), in an attempt to motivate the
reader to see the importance of order statistics. The relation between
rank and the edf is explained. The tests and confidence intervals for
quantiles have been moved to Chapter 5 so that they are discussed
along with other one-sample and paired-sample procedures, namely,
the sign test and signed rank test for the median. New discussions of
exact power, simulated power, and sample size determination, and
the discussion of rank tests in Chapter 5 of the previous edition
are also included here. Chapter 4, on goodness-of-fit tests, has been
expanded to include Lilliefors’s test for the exponential distribution,

* MINITAB is a trademark of Minitab Inc. in the United States and other countries and
is used herein with permission of the owner (on the Web at www.minitab.com).
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computation of normal probability plots, and visual analysis of good-
ness of fit using P-P and Q-Q plots.

The new Chapter 6, on the general two-sample problem, defines
‘‘stochastically larger’’ and gives numerical examples with exact and
computer solutions for all tests. We include sample size determination
for theMann-Whitney-Wilcoxon test. Chapters 7 and8 are the previous-
edition Chapters 8 and 9 on linear rank tests for the location and scale
problems, respectively, with numerical examples for all procedures. The
method of positive variables to obtain a confidence interval estimate of
the ratio of scale parameters when nothing is known about location has
been added to Chapter 8, along with a much needed summary.

Chapters 10 and 12, on tests for k samples, now include multiple
comparisons procedures. The materials on nonparametric correlation
in Chapter 11 have been expanded to include the interpretation of
Kendall’s tau as a coefficient of disarray, the Student’s t approximation
to the distribution of Spearman’s rank correlation coefficient, and the
definitions of Kendall’s tau a, tau b and the Goodman-Kruskal coeffi-
cient. Chapter 14, a new chapter, discusses nonparametric methods for
analyzing count data. We cover analysis of contingency tables, tests for
equality of proportions, Fisher’s exact test, McNemar’s test, and an
adaptation of Wilcoxon’s rank-sum test for tables with ordered
categories.

Bergmann, Ludbrook, and Spooren (2000) warn of possible
meaningful differences in the outcomes of P values from different sta-
tistical packages. These differences can be due to the use of exact versus
asymptotic distributions, use or nonuse of a continuity correction, or use
or nonuse of a correction for ties. The output seldom gives such details of
calculations, and even the ‘‘Help’’ facility and themanuals do not always
give a clear description or documentation of the methods used to carry
out the computations. Because this warning is quite valid, we tried to
explain to the best of our ability any differences between our hand cal-
culations and the package results for each of our examples.

As we said at the beginning, it has been most gratifying to re-
ceive very positive remarks, comments, and helpful suggestions on
earlier editions of this book and we sincerely thank many readers
and colleagues who have taken the time. We would like to thank
Minitab, Cytel, and Statsoft for providing complimentary copies
of their software. The popularity of nonparametric statistics
must depend, to some extent, on the availability of inexpensive and
user-friendly software. Portions of MINITAB Statistical Software
input and output in this book are reprinted with permission of
Minitab Inc.

PREFACE TO THE FOURTH EDITION vii



Many people have helped, directly and indirectly, to bring a
project of this magnitude to a successful conclusion. We are thankful to
the University of Alabama and to the Department of Information
Systems, Statistics and Management Science for providing an en-
vironment conducive to creative work and for making some resources
available. In particular, Heather Davis has provided valuable assis-
tance with typing. We are indebted to Clifton D. Sutton of George
Mason University for pointing out errors in the first printing of the
third edition. These have all been corrected. We are grateful to Joseph
Stubenrauch, Production Editor at Marcel Dekker for giving us ex-
cellent editorial assistance. We also thank the reviewers of the third
edition for their helpful comments and suggestions. These include
Jones (1993), Prvan (1993), and Ziegel (1993). Ziegel’s review in
Technometrics stated, ‘‘This is the book for all statisticians and stu-
dents in statistics who need to learn nonparametric statistics— . . .. I
am grateful that the author decided that one more edition could al-
ready improve a fine package.’’ We sincerely hope that Mr. Ziegel and
others will agree that this fine package has been improved in scope,
readability, and usability.

Jean Dickinson Gibbons
Subhabrata Chakraborti
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Preface to the Third Edition

The third edition of this book includes a large amount of additions and
changes. The additions provide a broader coverage of the nonpara-
metric theory and methods, along with the tables required to apply
them in practice. The primary change in presentation is an integration
of the discussion of theory, applications, and numerical examples of
applications. Thus the book has been returned to its original fourteen
chapters with illustrations of practical applications following the
theory at the appropriate place within each chapter. In addition, many
of the hand-calculated solutions to these examples are verified and
illustrated further by showing the solutions found by using one or
more of the frequently used computer packages. When the package
solutions are not equivalent, which happens frequently because most
of the packages use approximate sampling distributions, the reasons
are discussed briefly. Two new packages have recently been developed
exclusively for nonparametric methods—NONPAR: Nonparametric
Statistics Package and STATXACT: A Statistical Package for Exact
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Nonparametric Inference. The latter package claims to compute exact
P values. We have not used them but still regard them as a welcome
addition.

Additional new material is found in the problem sets at the end of
each chapter. Some of the new theoretical problems request verifica-
tion of results published in journals about inference procedures not
covered specifically in the text. Other new problems refer to the new
material included in this edition. Further, many new applied problems
have been added.

The new topics that are covered extensively are as follows. In
Chapter 2 we give more convenient expressions for the moments of
order statistics in terms of the quantile function, introduce the em-
pirical distribution function, and discuss both one-sample and two-
sample coverages so that problems can be given relating to exceedance
and precedence statistics. The rank von Neumann test for randomness
is included in Chapter 3 along with applications of runs tests in ana-
lyses of time series data. In Chapter 4 on goodness-of-fit tests, Lillie-
fors’s test for a normal distribution with unspecified mean and
variance has been added.

Chapter 7 now includes discussion of the control median test as
another procedure appropriate for the general two-sample problem.
The extension of the control median test to k mutually independent
samples is given in Chapter 11. Other new materials in Chapter 11 are
nonparametric tests for ordered alternatives appropriate for data
based on k5 3 mutually independent random samples. The tests
proposed by Jonckheere and Terpstra are covered in detail. The pro-
blems relating to comparisons of treatments with a control or an un-
known standard are also included here.

Chapter 13, on measures of association in multiple classifica-
tions, has an additional section on the Page test for ordered alter-
natives in k-related samples, illustration of the calculation of Kendall’s
tau for count data in ordered contingency tables, and calculation of
Kendall’s coefficient of partial correlation. Chapter 14 now includes
calculations of asymptotic relative efficiency of more tests and also
against more parent distributions.

For most tests covered, the corrections for ties are derived and
discussions of relative performance are expanded. New tables included
in the Appendix are the distributions of the Lilliefors’s test for
normality, Kendall’s partial tau, Page’s test for ordered alternatives in
the two-way layout, the Jonckheere-Terpstra test for ordered
alternatives in the one-way layout, and the rank von Neumann test for
randomness.
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This edition also includes a large number of additional refer-
ences. However, the list of references is not by any means purported to
be complete because the literature on nonparametric inference pro-
cedures is vast. Therefore, we apologize to those authors whose con-
tributions were not included in our list of references.

As always in a new edition, we have attempted to correct pre-
vious errors and inaccuracies and restate more clearly the text and
problems retained from previous editions. We have also tried to take
into account the valuable suggestions for improvement made by users
of previous editions and reviewers of the second edition, namely,
Moore (1986), Randles (1986), Sukhatme (1987), and Ziegel (1988).

As with any project of this magnitude, we are indebted to many
persons for help. In particular, we would like to thank Pat Coons and
Connie Harrison for typing and Nancy Kao for help in the bibliography
search and computer solutions to examples. Finally, we are indebted to
the University of Alabama, particularly the College of Commerce and
Business Administration, for partial support during the writing of this
version.

Jean Dickinson Gibbons
Subhabrata Chakraborti
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Preface to the Second Edition

A large number of books on nonparametric statistics have appeared
since this book was published in 1971. The majority of them are
oriented toward applications of nonparametric methods and do not
attempt to explain the theory behind the techniques; they are essen-
tially user’s manuals, called cookbooks by some. Such books serve a
useful purpose in the literature because non-parametric methods have
such a broad scope of application and have achieved widespread
recognition as a valuable technique for analyzing data, particularly
data which consist of ranks or relative preferences and=or are small
samples from unknown distributions. These books are generally used
by nonstatisticians, that is, persons in subject-matter fields. The more
recent books that are oriented toward theory are Lehmann (1975),
Randles and Wolfe (1979), and Pratt and Gibbons (1981).

A statistician needs to know about both the theory and methods of
nonparametric statistical inference. However, most graduate programs

xiii



in statistics can afford to offer either a theory course or a methods
course, but not both. The first edition of this book was frequently used
for the theory course; consequently, the students were forced to learn
applications on their own time.

This second edition not only presents the theory with corrections
from the first edition, it also offers substantial practice in problem
solving. Chapter 15 of this edition includes examples of applications of
those techniques for which the theory has been presented in Chapters
1 to 14. Many applied problems are given in this new chapter; these
problems involve real research situations from all areas of social, be-
havioral, and life sciences, business, engineering, and so on. The Ap-
pendix of Tables at the end of this new edition gives those tables of
exact sampling distributions that are necessary for the reader to un-
derstand the examples given and to be able to work out the applied
problems. To make it easy for the instructor to cover applications as
soon as the relevant theory has been presented, the sections of
Chapter 15 follow the order of presentation of theory. For example,
after Chapter 3 on tests based on runs is completed, the next assign-
ment can be Section 15.3 on applications of tests based on runs and the
accompanying problems at the end of that section. At the end of
the Chapter 15 there are a large number of review problems arranged
in random order as to type of applications so that the reader can obtain
practice in selecting the appropriate nonparametric technique to use
in a given situation.

While the first edition of this book received considerable acclaim,
several reviewers felt that applied numerical examples and expanded
problem sets would greatly enhance its usefulness as a textbook. This
second edition incorporates these and other recommendations. The
author wishes to acknowledge her indebtedness to the following re-
viewers for helping to make this revised and expanded edition more
accurate and useful for students and researchers: Dudewicz and
Geller (1972), Johnson (1973), Klotz (1972), and Noether (1972).

In addition to these persons, many users of the first edition have
written or told me over the years about their likes and=or dislikes
regarding the book and these have all been gratefully received and
considered for incorporation in this edition. I would also like to express
my gratitude to Donald B. Owen for suggesting and encouraging this
kind of revision, and to the Board of Visitors of the University of
Alabama for partial support of this project.

Jean Dickinson Gibbons
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Preface to the First Edition

During the last few years many institutions offering graduate pro-
grams in statistics have experienced a demand for a course devoted
exclusively to a survey of nonparametric techniques and their justifi-
cations. This demand has arisen both from their own majors and from
majors in social science or other quantitatively oriented fields such as
psychology, sociology, or economics. Although the basic statistics
courses often include a brief description of some of the better-known
and simpler nonparametric methods, usually the treatment is neces-
sarily perfunctory and perhaps even misleading. Discussion of only a
few techniques in a highly condensed fashion may leave the impres-
sion that nonparametric statistics consists of a ‘‘bundle of tricks’’
which are simply applied by following a list of instructions dreamed up
bysomegenieasapanacea forall sorts of vagueand ill-definedproblems.

One of the deterrents to meeting this demand has been the lack
of a suitable textbook in nonparametric techniques. Our experience at
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the University of Pennsylvania has indicated that an appropriate text
would provide a theoretical but readable survey. Only a moderate
amount of pure mathematical sophistication should be required so
that the course would be comprehensible to a wide variety of graduate
students and perhaps even some advanced undergraduates. The
course should be available to anyone who has completed at least the
rather traditional one-year sequence in probability and statistical in-
ference at the level of Parzen, Mood and Graybill, Hogg and Craig, etc.
The time allotment should be a full semester, or perhaps two seme-
sters if outside reading in journal publications is desirable.

The texts presently available which are devoted exclusively to
nonparametric statistics are few in number and seem to be pre-
dominantly either of the handbook style, with few or no justifications,
or of the highly rigorous mathematical style. The present book is an
attempt to bridge the gap between these extremes. It assumes the
reader is well acquainted with statistical inference for the traditional
parametric estimation and hypothesis-testing procedures, basic prob-
ability theory, and random-sampling distributions. The survey is not
intended to be exhaustive, as the field is so extensive. The purpose of
the book is to provide a compendium of some of the better-known
nonparametric techniques for each problem situation. Those deriva-
tions, proofs, and mathematical details which are relatively easily
grasped or which illustrate typical procedures in general nonpara-
metric statistics are included. More advanced results are simply stated
with references. For example, some of the asymptotic distribution
theory for order statistics is derived since the methods are equally
applicable to other statistical problems. However, the Glivenko Can-
telli theorem is given without proof since the mathematics may be too
advanced. Generally those proofs given are not mathematically rig-
orous, ignoring details such as existence of derivatives or regularity
conditions. At the end of each chapter, some problems are included
which are generally of a theoretical nature but on the same level as the
related text material they supplement.

The organization of the material is primarily according to the
type of statistical information collected and the type of questions to be
answered by the inference procedures or according to the general type
of mathematical derivation. For each statistic, the null distribution
theory is derived, or when this would be too tedious, the procedure one
could follow is outlined, or when this would be overly theoretical, the
results are stated without proof. Generally the other relevant math-
ematical details necessary for nonparametric inference are also in-
cluded. The purpose is to acquaint the reader with the mathematical
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logic on which a test is based, those test properties which are essential
for understanding the procedures, and the basic tools necessary for
comprehending the extensive literature published in the statistics
journals. The book is not intended to be a user’s manual for the ap-
plication of nonparametric techniques. As a result, almost no numer-
ical examples or problems are provided to illustrate applications or
elicit applied motivation. With the approach, reproduction of an ex-
tensive set of tables is not required.

The reader may already be acquainted with many of the non-
parametric methods. If not, the foundations obtained from this book
should enable anyone to turn to a user’s handbook and quickly grasp
the application. Once armed with the theoretical background, the user
of nonparametric methods is much less likely to apply tests indis-
criminately or view the field as a collection of simple prescriptions. The
only insurance against misapplication is a thorough understanding.
Although some of the strengths and weaknesses of the tests covered
are alluded to, no definitive judgments are attempted regarding the
relative merits of comparable tests. For each topic covered, some re-
ferences are given which provide further information about the tests
or are specifically related to the approach used in this book. These
references are necessarily incomplete, as the literature is vast. The
interested reader may consult Savage’s ‘‘Bibliography’’ (1962).

I wish to acknowledge the helpful comments of the reviewers and
the assistance provided unknowingly by the authors of other textbooks
in the area of nonparametric statistics, particularly Gottfried E.
Noether and James V. Bradley, for the approach to presentation
of several topics, and Maurice G. Kendall, for much of the material
on measures of association. The products of their endeavors greatly
facilitated this project. It is a pleasure also to acknowledge my
indebtedness to Herbert A. David, both as friend and mentor. His
training and encouragement helped make this book a reality. Parti-
cular gratitude is also due to the Lecture Note Fund of the Wharton
School, for typing assistance, and the Department of Statistics and
Operations Research at the University of Pennsylvania for providing
the opportunity and time to finish this manuscript. Finally, I thank my
husband for his enduring patience during the entire writing stage.

Jean Dickinson Gibbons
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of the importance of speed, simplicity and cost factors, and the non-
existence of a fixed and universally acceptable criterion of good per-
formance. Box and Anderson (1955) state that ‘‘to fulfill the needs of
the experimenter, statistical criteria should (1) be sensitive to change
in the specific factors tested, (2) be insensitive to changes, of a mag-
nitude likely to occur in practice, in extraneous factors.’’ These prop-
erties, usually called power and robustness, respectively, are generally
agreed upon as the primary requirements of good performance in hy-
pothesis testing. Parametric tests are often derived in such a way that
the first requirement is satisfied for an assumed specific probability
distribution, e.g., using the likelihood-ratio technique of test con-
struction. However, since such tests are, strictly speaking, not even
valid unless the assumptions are met, robustness is of great concern in
parametric statistics. On the other hand, nonparametric tests are in-
herently robust because their construction requires only very general
assumptions. One would expect some sacrifice in power to result. It is
therefore natural to look at robustness as a performance criterion for
parametric tests and power for nonparametric tests. How then do we
compare analogous tests of the two types?

Power calculations for any test require knowledge of the prob-
ability distribution of the test statistic under the alternative, but the
alternatives in nonparametric problems are often extremely general.
When the requisite assumptions are met, many of the classical para-
metric tests are known to be most powerful. In those cases where
comparison studies have been made, however, nonparametric tests are
frequently almost as powerful, especially for small samples, and
therefore may be considered more desirable whenever there is any
doubt about assumptions. No generalizations can be made for mod-
erate-sized samples. The criterion of asymptotic relative efficiency is
theoretically relevant only for very large samples. When the classical
tests are known to be robust, comparisons may also be desirable for
distributions which deviate somewhat from the exact parametric as-
sumptions. However, with inexact assumptions, calculation of power of
classical tests is often difficult except by Monte Carlo techniques, and
studies of power here have been less extensive. Either type of test may
be more reliable, depending on the particular tests compared and type
or degree of deviations assumed. The difficulty with all these com-
parisons is that they can be made only for specific nonnull distribution
assumptions, which are closely related to the conditions under which
the parametric test is exactly valid and optimal.

Perhaps the chief advantage of nonparametric tests lies in their
very generality, and an assessment of their performance under
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conditions unrestricted by, and different from, the intrinsic postulates
in classical tests seems more expedient. A comparison under more
nonparametric conditions would seem especially desirable for two or
more nonparametric tests which are designed for the same general
hypothesis testing situation. Unlike the body of classical techniques,
nonparametric techniques frequently offer a selection from inter-
changeable methods. With such a choice, some judgments of relative
merit would be particularly useful. Power comparisons have been
made, predominantly among the many tests designed to detect loca-
tion differences, but again we must add that even with comparisons
of nonparametric tests, power can be determined only with fairly
specific distribution assumptions. The relative merits of the different
tests depend on the conditions imposed. Comprehensive conclusions
are thus still impossible for blanket comparisons of very general
tests.

In conclusion, the extreme generality of nonparametric techni-
ques and their wide scope of usefulness, while definite advantages in
application, are factors which discourage objective criteria, particu-
larly power, as assessments of performance, relative either to each
other or to parametric techniques. The comparison studies so fre-
quently published in the literature are certainly interesting, in-
formative, and valuable, but they do not provide the sought-for
comprehensive answers under more nonparametric conditions. Per-
haps we can even say that specific comparisons are really contrary to
the spirit of nonparametric methods. No definitive rules of choice will
be provided in this book. The interested reader will find many perti-
nent articles in all the statistics journals. This book is a compendium
of many of the large number of nonparametric techniques which have
been proposed for various inference situations.

Before embarking on a systematic treatment of new concepts,
some basic notation and definitions must be agreed upon and the
groundwork prepared for development. Therefore, the remainder of
this chapter will be devoted to an explanation of the notation adopted
here and an abbreviated review of some of those definitions and terms
from classical inference which are also relevant to the special world of
nonparametric inference. A few new concepts and terms will also be
introduced which are uniquely useful in nonparametric theory. The
general theory of order statistics will be the subject of Chapter 2, since
they play a fundamental role in many nonparametric techniques.
Quantiles, coverages, and tolerance limits are also introduced here.
Starting with Chapter 3, the important nonparametric techniques will
be discussed in turn, organized according to the type of inference
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problem (hypothesis to be tested) in the case of hypotheses not invol-
ving statements about parameters, or the type of sampling situation
(one sample, two independent samples, etc.) in the case of distribution-
free techniques, or whichever seems more pertinent. Chapters 3 and 4
will treat tests of randomness and goodness-of-fit tests, respectively,
both nonparametric hypotheses which have no counterpart in classical
statistics. Chapter 5 covers distribution-free tests of hypotheses and
confidence interval estimates of the value of a population quantile in
the case of one sample or paired samples. These procedures are based
on order statistics, signs, and signed ranks.When the relevant quantile
is the median, these procedures relate to the value of a location
parameter and are analogies to the one-sample (paired-sample) tests
for the population mean (mean difference) in classical statistics. Rank-
order statistics are also introduced here, and we investigate the re-
lationship between ranks and variate values. Chapter 6 introduces the
two-sample problem and covers some distribution-free tests for the
hypothesis of identical distributions against general alternatives.
Chapter 7 is an introduction to a particular form of nonparametric test
statistic, called a linear rank statistic, which is especially useful for
testing a hypothesis that two independent samples are drawn from
identical populations. Those linear rank statistics which are particu-
larly sensitive to differences only in location and only in scale are the
subjects of Chapters 8 and 9, respectively. Chapter 10 extends this
situation to the hypothesis that k independent samples are drawn
from identical populations. Chapters 11 and 12 are concerned with
measures of association and tests of independence in bivariate and
multivariate sample situations, respectively. For almost all tests the
discussion will center on logical justification, null distribution and
moments of the test statistic, asymptotic distribution, and other re-
levant distribution properties. Whenever possible, related methods of
interval estimation of parameters are also included. During the course
of discussion, only the briefest attention will be paid to relative merits
of comparable tests. Chapter 13 presents some theorems relating to
calculation of asymptotic relative efficiency, a possible criterion for
evaluating large sample performance of nonparametric tests relative
to each other or to parametric tests when certain assumptions are met.
These techniques are then used to evaluate the efficiency of some of
the tests covered earlier. Chapter 14 covers some special tests based on
count data.

Numerical examples of applications of the most commonly used
nonparametric test and estimation procedures are included after the
explanation of the theory. These illustrations of the techniques will
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E
Xn
i¼1

aiXi

 !
¼
Xn
i¼1

aiEðXiÞ

var
Xn
i¼1

aiXi

 !
¼
Xn
i¼1

a2i varðXiÞ þ 2
XX

14 i<j4n

aiaj covðXi;XjÞ

cov
Xn
i¼1

aiXi;
Xn
i¼1

biXi

 !

¼
Xn
i¼1

aibi varðXiÞ þ
XX
14 i<j4n

ðaibj þ ajbiÞcovðXi;XjÞ

PROBABILITY FUNCTIONS

Some special probability functions are shown in Table 2.1, along with
the corresponding mean, variance, and moment-generating function.
Both discrete and continuous distributions are included; for a discrete
distribution the probability function means the pmf, whereas for a
continuous distribution the probability function stands for the corres-
ponding pdf. The term standard normal will designate the particular
member of the normal family where m ¼ 0 and s ¼ 1. The symbols fðxÞ
and FðxÞ will be reserved for the standard normal density and
cumulative distribution functions, respectively.

Three other important distributions are:

Student’s tn: fXðxÞ ¼ n�1=2ð1þ x2=nÞ�ðnþ1Þ=2

Bðn=2; 1=2Þ n > 0

Snedecor’s Fðn1; n2Þ:

fXðxÞ ¼ n1
n2

	 
n1=2

xn1=2�1
ð1þ n1x=n2Þ�ðn1þn2Þ=2

Bðn1=2; n2=2Þ x > 0; n1; n2 > 0

Fisher’s zðn1; n2Þ:

fXðxÞ ¼ 2
n1
n2

	 
n1=2

en1x
ð1þ n1e2x=n2Þ�ðn1þn2Þ=2

Bðn1=2; n2=2Þ x > 1; n1; n2 > 0

The gamma and beta distributions shown in Table 2.1 each contains a
special constant, denoted by GðaÞ and Bða; bÞ respectively. The gamma
function, denoted by GðaÞ, is defined as

GðaÞ ¼
Z 1

0

xa�1e�x dx for a > 0
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PðjX � mj5 kÞ4 s2

k2

Note that the finite variance assumption guarantees the existence of
the mean m.

The following result, called the Central Limit Theorem (CLT), is
one of the most famous in statistics. We state it for the simplest i.i.d.
situation.

CENTRAL LIMIT THEOREM

Let X1;X2; . . . ;Xn be a random sample from a population with mean m
and variance s2 > 0 and let �XXn be the sample mean. Then for n ! 1,
the random variable

ffiffiffi
n

p ð�XXn � mÞ=s has a limiting distribution that is
normal with mean 0 and variance 1.

For a proof of this result, typically done via the moment gen-
erating function, the reader is referred to any standard graduate
level book on mathematical statistics. In some of the non-i.i.d. si-
tuations there are other types of CLTs available. For example, if the
X’s are independent but not identically distributed, there is a CLT
generally attributed to Liapounov. We will not pursue these any
further.

POINT AND INTERVAL ESTIMATION

A point estimate of a parameter is any single function of random
variables whose observed value is used to estimate the true value. Let
ŷyn ¼ uðX1;X2; . . . ;XnÞ be a point estimate of a parameter y. Some
desirable properties of ŷyn are defined as follows for all y.

1. Unbiasedness: EðŷynÞ ¼ y for all y.
2. Sufficiency: fX1; X2;...;Xnjŷyn

ðx1; x2; . . . ; xnjŷynÞ does not depend on y, or,
equivalently,

fX1;X2;...;Xn
ðx1; x2; . . . ; xn; yÞ ¼ gðŷyn; yÞHðx1; x2; . . . ; xnÞ

where Hðx1; x2; . . . ; xnÞ does not depend on y.
3. Consistency (also called stochastic convergence and convergence in

probability):

lim
n!1Pðjŷyn � yj > eÞ ¼ 0 for every e > 0
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a. If ŷyn is an unbiased estimate of y and limn!1 varðŷynÞ ¼ 0,
then ŷyn is a consistent estimate of y, by Chebyshev’s
inequality.

b. ŷyn is a consistent estimate of y if the limiting distribution of ŷyn

is a degenerate distribution with probability 1 at y.
4. Minimum mean squared error: E½ðŷyn � yÞ2�4E½ððŷy�n � yÞ2�, for any

other estimate ŷy�n.
5. Minimum variance unbiased: varðŷynÞ4 varðŷy�nÞ for any other

estimate ŷy�n where both ŷyn and ŷy�n are unbiased.

An interval estimate of a parameter y with confidence coefficient
1� a, or a 100ð1� aÞ percent confidence interval for y, is a random
interval whose end points U and V are functions of observable random
variables (usually sample data) such that the probability statement
PðU < y < VÞ ¼ 1� a is satisfied. The probability PðU < y < VÞ should
be interpreted as PðU < yÞ þ PðV > yÞ since the confidence limits U
and V are random variables (depending on the random sample) and y
is a fixed quantity. In many cases this probability can be expressed in
terms of a pivotal statistic and the limits can be obtained via tabulated
percentiles of standard probability distributions such as the standard
normal or the chi-square. A pivotal statistic is a function of a statistic
and the parameter of interest such that the distribution of the pivotal
statistic is free from the parameter (and is often known or at least
derivable). For example, t ¼ ffiffiffi

n
p ðX � mÞ=S is a pivotal statistic for

setting up a confidence interval for the mean m of a normal population
with an unknown standard deviation. The random variable t follows a
Student’s tðn�1Þ distribution and is thus free from any unknown
parameter. All standard books on mathematical statistics cover the
topic of confidence interval estimation.

A useful technique for finding point estimates for parameters
which appear as unspecified constants (or as functions of such con-
stants) in a family of probability functions, say fXð:; yÞ, is the method of
maximum likelihood. The likelihood function of a random sample of
size n from the population fXð:; yÞ is the joint probability function of the
sample variables regarded as a function of y, or

Lðx1; x2; . . . ; xn; yÞ ¼
Yn
i¼1

fXðxi; yÞ

A maximum-likelihood estimate (MLE) of y is a value ŷy such that for
all y,

Lðx1; x2; . . . ; xn; ŷyÞ5Lðx1; x2; . . . ; xn; yÞ
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nonparametric hypothesis testing, some confusion might arise if these
distinctions were adhered to here. So the symbol a will be used to
denote either the size of the test or the significance level or the
probability of a type I error, prefaced by the adjective ‘‘exact’’ whenever
supy2o aðyÞ ¼ a.

The power of a test is the probability that the test statistic will
lead to a rejection of H0, denoted by PwðyÞ ¼ PðT 2 RÞ. Power is of
interest mainly as the probability of a correct decision, and so the
power is typically calculated when H0 if false, or H1 is true, and then
PwðyÞ ¼ PðT 2 R j y 2 O � oÞ ¼ 1� bðyÞ. The power depends on the
following four variables:

1. The degree of falseness of H0, that is, the amount of discrepancy
between the assertions stated in H0 and H1

2. The size of the test a
3. The number of observable random variables involved in the test

statistic, generally the sample size
4. The critical region or rejection region R

The power function of a test is the power when all but one of these
variables are held constant, usually item 1. For example, we can study
the power of a particular test as a function of the parameter y, for a
given sample size and a. Typically, the power function is displayed as a
plot or a graph of the values of the parameter y on the X axis against
the corresponding power values of the test on the Y axis. To calculate
the power of a test, we need the distribution of the test statistic under
the alternative hypothesis. Sometimes such a result is either un-
available or is much too complicated to be derived analytically; then
computer simulations can be used to estimate the power of a test. To
illustrate, suppose we would like to estimate the power of a test for the
mean m of a population with H0: m ¼ 10. We can generate on the
computer a random sample from the normal distribution with mean 10
(and say variance equal to 1) and apply the test at a specified level a. If
the null hypothesis is rejected, we call it a success. Now we repeat this
process of generating a same size sample from the normal distribution
with mean 10 and variance 1, say 1000 times. At the end of these 1000
simulations we find the proportion of successes, i.e., the proportion of
times when the test rejects the null hypothesis. This proportion is an
empirical estimate of the nominal size of a test which was set a priori.
To estimate power over the alternative, for example, we can repeat the
same process but with samples from a normal distribution with, say,
mean 10.5 and variance 1. The proportion of successes from these
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logarithm is one of the most commonly used g(.) functions. The
likelihood-ratio test is always a function of sufficient statistics, and
the principle often produces a uniformly most powerful test when
such exists. A particularly useful property of T for constructing
tests based on large samples is that, subject to certain regularity
conditions, the probability distribution of �2 lnT approaches the
chi-square distribution with k1 � k2 degrees of freedom as n ! 1,
where k1 and k2 are, respectively, the dimensions of the spaces O
and o; k2 < k1.

All these concepts should be familiar to the reader, since they are
an integral part of any standard introductory probability and in-
ference course. We now turn to a few concepts which are especially
important in nonparametric inference.

P VALUE

An alternative approach to hypothesis testing is provided by com-
puting a quantity called the P value, sometimes called a probability
value or the associated probability or the significance probability.
A P value is defined as the probability, when the null hypothesis H0 is
true, of obtaining a sample result as extreme as, or more extreme than
(in the direction of the alternative), the observed sample result. This
probability can be computed for the observed value of the test statistic
or some function of it like the sample estimate of the parameter in the
null hypothesis. For example, suppose we are testing H0: m ¼ 50 ver-
sus H1: m > 50 and we observe the sample result for X is 52. The
P value is computed as PðX 5 52 j m ¼ 50Þ. The appropriate direction
here is values of X that are greater than or equal to 52, since the
alternative is m greater than 50. It is frequently convenient to simply
report the P value and go no further. If a P value is small, this is
interpreted as meaning that our sample produced a result that is
rather rare under the assumption of the null hypothesis. Since the
sample result is a fact, it must be that the null hypothesis statement is
inconsistent with the sample outcome. In other words, we should
reject the null hypothesis. On the other hand, if a P value is large, the
sample result is consistent with the null hypothesis and the null
hypothesis is not rejected.

If we want to use the P value to reach a decision about whether
H0 should be rejected, we have to select a value for a. If the P value is
less than or equal to a, the decision is to reject H0; otherwise, the
decision is not to reject H0. The P value is therefore the smallest
level of significance for which the null hypothesis would be rejected.
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number of jump points in the cdf of the test statistic. These exact
probabilities will be called exact a values, or natural significance
levels. The region can then be chosen such that either (1) the exact a
is the largest number which does not exceed the nominal a or (2) the
exact a is the number closest to the nominal a. Although most sta-
tisticians seem to prefer the first approach, as it is more consistent
with classical test procedures for a composite H0, this has not been
universally agreed upon. As a result, two sets of tables of critical
values of a test statistic may not be identical for the same nominal a;
this can lead to confusion in reading tables. The entries in each table
in the Appendix of this book are constructed using the first approach
for all critical values.

Disregarding that problem now, suppose we wish to compare the
performance, as measured by power, of two different discrete test
statistics. Their natural significance levels are unlikely to be the same,
so identical nominal a values do not ensure identical exact prob-
abilities of a type I error. Power is certainly affected by exact a, and
power comparisons of tests may be quite misleading without identical
exact a values. A method of equalizing exact a values is provided by
randomized test procedures.

A randomized decision rule is one which prescribes rejection of
H0 always for a certain range of values of the test statistic, rejection
sometimes for another nonoverlapping range, and acceptance other-
wise. A typical rejection region of exact size as a might be written
T 2 R with probability 1 if T5 t2, and with probability p if t14T < t2,
where t1 < t2 and 0 < p < 1 are chosen such that

PðT5 t2jH0Þ þ pPðt14T < t2jH0Þ ¼ a

Some random device could be used to make the decision in practice,
like drawing one card at random from 100, of which 100p are labeled
reject. Such decision rules may seem an artificial device and are
probably seldom employed by experimenters, but the technique is
useful in discussions of theoretical properties of tests. The power of
such a randomized test against an alternative H1 is

PwðyÞ ¼ PðT5 t2jH1Þ þ pPðt14T < t2jH1Þ

A simple example will suffice to explain the procedure. A random
sample of size 5 is drawn from the Bernoulli population. We wish to
test H0 : y ¼ 0:5 versus H1 : y > 0:5 at significance level 0.05. The test
statistic is X, the number of successes in the sample, which has the
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binomial distribution with parameter y and n ¼ 5. A reasonable
rejection region would be large values of X, and thus the six exact
significance levels obtainable without using a randomized test from
Table C of the Appendix are:

A nonrandomized test procedure of nominal size 0.05 but exact size

a ¼ 1=32 ¼ 0:03125

has rejection region

X 2 R for X ¼ 5

The randomized test with exact a ¼ 0:05 is found with t1 ¼ 4 and
t2 ¼ 5 as follows:

PðX 5 5jy ¼ 0:5Þ þ pPð44X < 5Þ ¼ 1=32þ pPðX ¼ 4Þ ¼ 0:05

so,

1=32þ 5p=32 ¼ 0:05 and p ¼ 0:12

Thus the rejection region is X 2 R with probability 1 if X ¼ 5 and with
probability 0.12 if X ¼ 4. Using Table C, the power of this randomized
test when H1: y ¼ 0:6 is

Pwð0:6Þ ¼ PðX ¼ 5jy ¼ 0:6Þ þ 0:12 PðX ¼ 4jy ¼ 0:6Þ
¼ 0:0778þ 0:12ð0:2592Þ ¼ 0:3110

CONTINUITY CORRECTION

The exact null distribution of most test statistics used in nonpara-
metric inference is discrete. Tables of rejection regions or cumulative
distributions are often available for small sample sizes only. However,
in many cases some simple approximation to these null distributions is
accurate enough for practical applications with moderate-sized sam-
ples. When these asymptotic distributions are continuous (like
the normal or chi square), the approximation may be improved by

c 5 4 3 2 1 0

PðX 5 cjy ¼ 0:5Þ 1=32 6=32 16=32 26=32 31=32 1
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introduction a correction for continuity. This is accomplished by
regarding the value of the discrete test statistic as the midpoint of an
interval. For example, if the domain of a test statistic T is only integer
values, the observed value is considered to be t� 0:5. If the decision
rule is to reject for T5 ta=2 or T4 t0a=2 and the large-sample

approximation to the distribution of T�EðTjH0Þ
sðTjH0Þ is the standard normal

under H0, the rejection region with continuity correction incorporated
is determined by solving the equations

ta=2� 0:5�EðTjH0Þ
sðTjH0Þ ¼ za=2 and

t0a=2þ 0:5�EðTjH0Þ
sðTjH0Þ ¼ �za=2

where za=2 satisfies Fðza=2Þ ¼ 1� a=2. Thus the continuity-corrected,
two-sided, approximately size a rejection region is

T5EðTjH0Þ þ 0:5þ za=2sðTjH0Þ or

T4EðTjH0Þ � 0:5� za=2sðTjH0Þ

One-sided rejection regions or critical ratios employing continuity
corrections are found similarly. For example, in a one-sided test with
rejection region T5 ta, for a nominal size a, the approximation to the
rejection region with a continuity correction is determined by solving
for ta in

ta � 0:5� EðTjH0Þ
sðTjH0Þ ¼ za

and thus the continuity corrected, one-sided upper-tailed, approxi-
mately size a rejection region is

T5EðTjH0Þ þ 0:5þ zasðTjH0Þ
Similarly, the continuity corrected, one-sided lower-tailed, approxi-
mately size a rejection region is

T4EðTjH0Þ � 0:5� zasðTjH0Þ
The P value for a one-sided test based on a statistic whose null

distribution is discrete is often approximated by a continuous dis-
tribution, typically the normal, for large sample sizes. Like the rejec-
tion regions above, this approximation to the P value can usually be
improved by incorporating a correction for continuity. For example,
if the alternative is in the upper tail, and the observed value of an
integer-valued test statistic T is t0, the exact P value PðT5 t0jH0Þ is
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approximated by PðT5 t0 � 0:5jH0Þ. In the Bernoulli case with
n ¼ 20; H0: y ¼ 0:5 versus H1: y > 0:5, suppose we observe X ¼ 13
successes. The normal approximation to the P value with a continuity
correction is

PðX 5 13jH0Þ ¼ PðX > 12:5Þ ¼ P
X � 10ffiffiffi

5
p >

12:5� 10ffiffiffi
5

p
	 


¼ PðZ > 1:12Þ
¼ 1� Fð1:12Þ ¼ 0:1314

This approximation is very close to the exact P value of 0.1316 from
Table C. The approximate P value without the continuity correction is
0.0901, and thus the continuity correction greatly improves the P value
approximation. In general, let t0 be the observed value of the test
statistic Twhose null distribution can be approximated by the normal
distribution. When the alternative is in the upper tail, the approx-
imate P value with a continuity correction is given by

1� F
t0 � EðTjH0Þ � 0:5

sðTjH0Þ
� �

In the lower tail, the continuity corrected approximate P value is given
by

F
t0 � EðTjH0Þ þ 0:5

sðTjH0Þ
� �

When the alternative is two-sided, the continuity corrected approx-
imate P value can be obtained using these two expressions and
applying the recommendations given earlier under P value.
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2
Order Statistics, Quantiles,
and Coverages

2.1 INTRODUCTION

Let X1;X2; . . . ;Xn denote a random sample from a population with
continuous cdf FX . First let FX be continuous, so that the probability is
zero that any two or more of these random variables have equal
magnitudes. In this situation there exists a unique ordered arrange-
ment within the sample. Suppose that Xð1Þ denotes the smallest of the
set X1;X2; . . . ;Xn; Xð2Þ denotes the second smallest; . . . and XðnÞ
denotes the largest. Then

Xð1Þ < Xð2Þ < � � � < XðnÞ

denotes the original random sample after arrangement in increasing
order of magnitude, and these are collectively termed the order sta-
tistics of the random sample X1;X2; . . . ;Xn. The rth smallest, 14 r4n,
of the ordered X ’s, XðrÞ, is called the rth-order statistic. Some familiar
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applications of order statistics, which are obvious on reflection, are as
follows:

1. XðnÞ, the maximum (largest) value in the sample, is of interest in
the study of floods and other extreme meteorological phenomena.

2. Xð1Þ, the minimum (smallest) value, is useful for phenomena
where, for example, the strength of a chain depends on the
weakest link.

3. The sample median, defined as X½ðnþ1Þ=2� for n odd and any number
between Xðn=2Þ and Xðn=2þ1Þ for n even, is a measure of location and
an estimate of the population central tendency.

4. The sample midrange, defined as ðXð1Þ þ XðnÞÞ=2, is also a measure
of central tendency.

5. The sample range XðnÞ � Xð1Þ is a measure of dispersion.
6. In some experiments, the sampling process ceases after collecting

r of the observations. For example, in life-testing electric light
bulbs, one may start with a group of n bulbs but stop taking
observations after the rth bulb burns out. Then information is
available only on the first r ordered ‘‘lifetimes’’ Xð1Þ < Xð2Þ < � � �
< XðrÞ, where r4n. This type of data is often referred to as cen-
sored data.

7. Order statistics are used to study outliers or extreme observations,
e.g., when so-called dirty data are suspected.

The study of order statistics in this chapter will be limited to
their mathematical and statistical properties, including joint and
marginal probability distributions, exact moments, asymptotic mo-
ments, and asymptotic marginal distributions. Two general uses of
order statistics in distribution-free inference will be discussed later in
Chapter 5, namely, interval estimation and hypothesis testing of po-
pulation percentiles. The topic of tolerance limits for distributions,
including both one-sample and two-sample coverages, is discussed
later in this chapter. But first, we must define another property of
probability functions called the quantile function.

2.2 THE QUANTILE FUNCTION

We have already talked about using the mean, the variance, and other
moments to describe a probability distribution. In some situations we
may be more interested in the percentiles of a distribution, like the
fiftieth percentile (the median). For example, if X represents
the breaking strength of an item, we might be interested in knowing
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the median strength, or the strength that is survived by 60 percent of
the items, i.e., the fortieth percentile point. Or we may want to know
what percentage of the items will survive a pressure of say 3 lb. For
questions like these, we need information about the quantiles of a
distribution.

A quantile of a continuous cdf FX of a random variable X is a real
number that divides the area under the pdf into two parts of specific
amounts. Only the area to the left of the number need be specified
since the entire area is equal to one. The pth quantile (or the 100pth
percentile) of FX is that value of X, say Xp, such that 100p percent of
the values of X in the population are less than or equal to Xp, for any
positive fraction pð0 < p < 1Þ. In other words, Xp is a parameter of the
population that satisfies PðX 4XpÞ ¼ p, or, in terms of the cdf
FXðXpÞ ¼ p. If the cdf of X is strictly increasing, the pth quantile is the
unique solution to the equation Xp ¼ F�1

X ðpÞ ¼ QXðpÞ, say. We call
QXðpÞ; 0 < p < 1, the inverse of the cdf, the quantile function (qf ) of
the random variable X.

Consider, for example, a random variable from the exponential
distribution with b ¼ 2. Then Table 2.1 in Chapter 1 indicates that the
cdf is

FXðxÞ ¼
0 x < 0

1� e�x=2 x5 0

(

Since 1� e�Xp=2 ¼ p for x > 0, the inverse is Xp ¼ �2 lnð1� pÞ for
0 < p < 1, and hence the quantile function is QXðpÞ ¼ �2 lnð1� pÞ.
The cdf and the quantile function for this exponential distribution are
shown in Figures 2.1 and 2.2, respectively.

Suppose the distribution of the breaking strength random vari-
able X is this exponential with b ¼ 2. The reader can verify that the
fiftieth percentile QXð0:5Þ is 1.3863, and the fortieth percentile QXð0:4Þ
is 1.0217. The proportion that exceeds a breaking strength of 3 pounds
is 0.2231.

In general, we define the pth quantile QXðpÞ as the smallest X
value at which the cdf is at least equal to p, or

QXðpÞ ¼ F�1
X ðpÞ ¼ inf ½x : FXðxÞ5p� 0 < p < 1

This definition gives a unique value for the quantile QXðpÞ even when
FX is flat around the specified value p, whereas the previous definition
would not give a unique inverse of FX at p.

Some popular quantiles of a distribution are known as the
quartiles. The first quartile is the 0.25th quantile, the second quartile
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is the 0.50th quantile (the median), and the third quartile is the 0.75th
quantile. These are also referred to as the 25th, the 50th, and the 75th
percentiles, respectively. Extreme quantiles (such as for p ¼ 0:95, 0.99,
or 0.995) of a distribution are important as critical values for some test
statistics; calculating these is important in many applications.

The cdf and the qf provide similar information regarding the
distribution; however, there are situations where one is more natural
than the other. Note that formulas for the moments of X can also be
expressed in terms of the quantile function. For example,

EðXÞ ¼
Z 1

0

QXðpÞdp and EðX2Þ ¼
Z 1

0

Q2
XðpÞdp ð2:1Þ

so that s2 ¼ R 10 Q2
XðpÞdp� ½R 10 QXðpÞdp�2.

Fig. 2.1 The exponential cdf with b ¼ 2.
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The following result is useful when working with the qf. Let
fXðpÞ ¼ F0

XðpÞ be the pdf of X.

Theorem 2.1 Assuming that the necessary derivatives all exist, the
first and the second derivatives of the quantile function QXð pÞ
are

Q0
XðpÞ ¼

1

fX ½QXðpÞ� and Q00
XðpÞ ¼ � f 0X ½QXðpÞ�

ffX ½QXðpÞ�g3

The proof of this result is straightforward and is left for the
reader.

It is clear that given some knowledge regarding the distri-
bution of a random variable, one can try to use that information,
perhaps along with some data, to aid in studying properties of such
a distribution. For example, if we know that the distribution of X is
exponential but we are not sure of its mean, typically a simple random
sample is taken and the population mean is estimated by the sample
mean �XX. This estimate can then be used to estimate properties of the
distribution. For instance, the probability PðX 4 3:2Þ can be estimated

Fig. 2.2 The exponential quantile function with b ¼ 2.
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by 1� e�3:2=�XX, which is the estimated cdf of X at 3.2. This, of course, is
the approach of classical parametric analysis. In the field of non-
parametric analysis, we do not assume that the distribution is ex-
ponential (or anything else for that matter). The natural question then
is how do we estimate the underlying cdf ? This is where the sample
distribution function (sdf ) or the empirical cumulative distribution
function (ecdf ) or the empirical distribution function (edf ) plays a
crucial role.

2.3 THE EMPIRICAL DISTRIBUTION FUNCTION

For a random sample from the distribution FX , the empirical dis-
tribution function or edf, denoted by SnðxÞ, is simply the proportion of
sample values less than or equal to the specified value x, that is,

SnðxÞ ¼ number of sample values 4 x

n

In the above example, Snð3:2Þ can be used as a point estimate of
PðX 4 3:2Þ. The edf is most conveniently defined in terms of the order
statistics of a sample, defined in Section 2.1. Suppose that the n
sample observations are distinct and arranged in increasing order so
that Xð1Þ is the smallest, Xð2Þ is the second smallest, . . . , and XðnÞ is the
largest. A formal definition of the edf SnðxÞ is

SnðxÞ ¼
0 if x < Xð1Þ

i=n if Xði�1Þ 4 x < XðiÞ; i ¼ 1; 2; . . . ;n

1 if x5XðnÞ

8><>: ð3:1Þ

Suppose that a random sample of size n ¼ 5 is given by 9.4, 11.2,
11.4, 12, and 12.6. The edf of this sample is shown in Figure 3.1.
Clearly, SnðxÞ is a step (or a jump) function, with jumps occuring at the
(distinct) ordered sample values, where the height of each jump is
equal to the reciprocal of the sample size, namely 1=5 or 0.2.

When more than one observation has the same value, we say
these observations are tied. In this case the edf is still a step function
but it jumps only at the distinct ordered sample values Xð jÞ and the
height of the jump is equal to k=n, where k is the number of data
values tied at Xð jÞ.

We now discuss some of the statistical properties of the edf SnðxÞ.
Let TnðxÞ ¼ nSnðxÞ, so that TnðxÞ represents the total number of
sample values that are less than or equal to the specified value x.
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Theorem 3.1 For any fixed real value x, the random variable TnðxÞ has
a binomial distribution with parameters n and FXðxÞ.

Proof For any fixed real constant x and i¼ 1, 2, . . . , n, define the
indicator random variable

diðxÞ ¼ I½Xi 4 x� ¼
1 if Xi 4 x

0 if Xi > x

�
The random variables d1ðxÞ; d2ðxÞ; . . . ; dnðxÞ are independent and
identically distributed, each with the Bernoulli distribution with
parameter y, where y ¼ P½diðxÞ ¼ 1� ¼ PðXi 4 xÞ ¼ FXðxÞ. Now, since
TnðxÞ ¼

Pn
i¼1 diðxÞ is the sum of n independent and identically

distributed Bernoulli random variables, it can be easily shown that
TnðxÞ has a binomial distribution with parameters n and y ¼ FXðxÞ.

From Theorem 3.1, and using properties of the binomial dis-
tribution, we get the following results. The proofs are left for the
reader.

Corollary 3.1.1 The mean and the variance of SnðxÞ are

(a) E½SnðxÞ� ¼ FXðxÞ

Fig. 3.1 An empirical distribution function for n ¼ 5.
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(b) Var½SnðxÞ� ¼ FXðxÞ½1� FXðxÞ�=n

Part (a) of the corollary shows that SnðxÞ, the proportion of
sample values less than or equal to the specified value x, is an un-
biased estimator of FXðxÞ. Part (b) shows that the variance of SnðxÞ
tends to zero as n tends to infinity. Thus, using Chebyshev’s inequality,
we can show that SnðxÞ is a consistent estimator of FXðxÞ.

Corollary 3.1.2 For any fixed real value x; SnðxÞ is a consistent esti-
mator of FXðxÞ, or, in other words, SnðxÞ converges to FXðxÞ in
probability.

Corollary 3.1.3 E½TnðxÞTnð yÞ� ¼ nFXðxÞFXðyÞ, for x < y.

The convergence in Corollary 3.1.2 is for each value of x in-
dividually, whereas sometimes we are interested in all values of x,
collectively. A probability statement can be made simultaneously for
all x, as a result of the following important theorem. To this end, we
have the following classical result [see Fisz (1963), for example, for a
proof].

Theorem 3.2 (Glivenko-Cantelli Theorem) SnðxÞ converges uniformly to
FXðxÞ with probability 1, that is,

P½ lim
n!1 sup

�1<x<1
jSnðxÞ � FXðxÞj ¼ 0� ¼ 1

Another useful property of the edf is its asymptotic normality,
given in the following theorem.

Theorem 3.3 As n ! 1, the limiting probability distribution of the
standardized SnðxÞ is standard normal, or

lim
n!1P

ffiffiffi
n

p ½SnðxÞ � FXðxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FXðxÞ½1� FXðxÞ�

p 4 t

( )
¼ FðtÞ

Proof Using Theorem 3.1, Corollary 3.1.1, and the central limit

theorem, it follows that the distribution of
½nSnðxÞ � nFXðxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nFXðxÞ½1� FXðxÞ�

p ¼ffiffiffi
n

p ½SnðxÞ � FXðxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FXðxÞ½1� FXðxÞ�

p approaches the standard normal as n ! 1.
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THE EMPIRICAL QUANTILE FUNCTION

Since the population quantile function is the inverse of the cdf and the
edf is an estimate of the cdf, it is natural to estimate the quantile
function by inverting the edf. This yields the empirical quantile
function (eqf ) QnðuÞ; 04u < 1, defined below.

QnðuÞ ¼

Xð1Þ if 0 < u4 1

Xð2Þ if
1

n
< u4

2

n

Xð3Þ if
2

n
< u4

3

n
. . . . . . . . . . . . . . . . . . . . . . . .

XðnÞ if
n� 1

n
< u4 1

8>>>>>>>>>>><>>>>>>>>>>>:
Thus QnðuÞ ¼ inf ½x : SnðxÞ5u�. Accordingly, the empirical (or the
sample) quantiles are just the ordered values in a sample. For exam-
ple, if n ¼ 10, the estimate of the 0.30th quantile or the 30th percentile
is simply Q10ð0:3Þ ¼ Xð3Þ; since 2

10 < 0:34 3
10. This is consistent with

the usual definition of a quantile or a percentile since 30 percent of the
data values are less than or equal to the third order statistic in a
sample of size 10. However, note that according to definition, the
0.25th quantile or the 25th percentile (or the 1st quartile) is also equal
to Xð3Þ since 2=10 < 0:254 3=10.

Thus the sample order statistics are point estimates of the corre-
spondingpopulationquantiles. For this reason, a studyof theproperties of
order statistics is as important in nonparametric analysis as the study of
the properties of the samplemean in the context of a parametric analysis.

2.4 STATISTICAL PROPERTIES OF ORDER STATISTICS

As we have outlined, the order statistics have many useful applica-
tions. In this section we derive some of their statistical properties.

CUMULATIVE DISTRIBUTION FUNCTION (CDF) OF XðrÞ

Theorem 4.1 For any fixed real t

PðXðrÞ 4 tÞ ¼
Xn
i¼r

P½nSnðtÞ ¼ i�

¼
Xn
i¼r

n

i

	 

½FXðtÞ�i½1� FXðtÞ�n�i �1 < t < 1 ð4:1Þ
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This theorem can be proved in at least two ways. First, XðrÞ 4 t if
and only if at least r of the X ’s are less than or equal to t, and Theorem
3.1 gives the exact distribution of the number of X ’s less than or equal
to t. This result holds even if the underlying distribution is discrete.
A second proof, using mathematical statistical results about order
statistics, is given later.

PROBABILITY DENSITY FUNCTION (PDF) OF XðrÞ

Theorem 4.2 If the underlying cdf FX is continuous with F0
XðxÞ ¼ fXðxÞ;

the pdf of the rth-order statistic is given by

fXðrÞ ðxÞ ¼
n!

ðr� 1Þ!ðn� rÞ! ½FXðxÞ�r�1½1� FXðxÞ�n�rfXðxÞ

�1 < x < 1 ð4:2Þ
This can be proved from Theorem 4.1 by differentiation and some

algebraic manipulations. A more direct derivation is provided later.
Theorems 4.1 and 4.2 clearly show that the sample quantiles are

not distribution free. Because of this, although intuitively appealing as
point estimators of the corresponding population quantiles, these
statistics are often not convenient to use except in very special si-
tuations. However, they frequently provide interesting starting points
and in fact are the building blocks upon which many distribution-free
procedures are based. The study of order statistics is thus vital to the
understanding of distribution-free inference procedures.

Some important simplification occur when we assume that the
sample comes from the continous uniform population on (0,1). Note
that for this distribution FXðtÞ ¼ t for 0 < t < 1. Thus, from
Theorem 4.1, the cdf of XðrÞ is

FXðrÞ ðtÞ ¼ PðXðrÞ 4 tÞ ¼
Xn
i¼r

P½nSnðtÞ ¼ i�

¼
Xn
i¼r

n

i

	 

tið1� tÞn�i 0 < t < 1

and when F is continuous, the pdf of XðrÞ is a beta distribution given by

fXðrÞ ðtÞ ¼
n!

ðr� 1Þ!ðn� rÞ! t
r�1ð1� tÞn�r 0 < t < 1 ð4:3Þ

This is summarized in Theorem 4.3.

Theorem 4.3 For a random sample of size n from the uniform ð0;1Þ
distribution, the rth order statistic XðrÞ follows a beta ðr; n� rþ 1Þ
distribution.
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The following result follows from Theorems 4.1 and 4.3.

Corollary 4.3.1

Xn
i¼r

n

i

	 

tið1� tÞn�i ¼ 1

Bðr; n� rþ 1Þ
Z t

0

xr�1ð1� xÞn�r dx ð4:4Þ

The integral on the right is called an incomplete beta integral and is
often written as Itðr; n� rþ 1Þ. This function has been tabulated by
various authors. It can be verified that 1� Itða; bÞ ¼ I1�tðb;aÞ; we leave
the verification as an exercise for the reader (Problem 2.3).

2.5 PROBABILITY-INTEGRAL TRANSFORMATION (PIT)

Order statistics are particularly useful in nonparametric statistics
because the transformation UðrÞ ¼ FðXðrÞÞ produces a random variable
which is the rth-order statistic from the continuous uniform popula-
tion on the interval (0,1), regardless of what F actually is (normal,
gamma, chi-square, etc.); therefore UðrÞ is distribution free. This
property is due to the so-called probability-integral transformation
(PIT), which is proved in the following theorem.

Theorem 5.1 (Probability-Integral Transformation) Let X be a random
variable with cdf FX. If FX is continous, the random variable Y
produced by the transformation Y ¼ FXðXÞ has the continuous
uniform probability distribution over the interval ð0;1Þ.

Proof Since 04FXðxÞ4 1 for all x, letting FY denote the cdf of Y,
we have FYð yÞ ¼ 0 for y4 0 and FYð yÞ ¼ 1 for y5 1. For
0 < y < 1, define u to be the largest number satisfying FXðuÞ ¼ y.
Then FXðXÞ4 y if and only if X 4u, and it follows that

FYðyÞ ¼ P½FðXÞ4 y� ¼ PðX 4uÞ ¼ FXðuÞ ¼ y

which is the cdf of the continuous uniform distribution defined
over (0,1). This completes the proof.

This theorem can also be proved using moment-generating functions
when they exist; this approach will be left as an exercise for the reader.

As a result of the PIT, we can conclude that if X1;X2; . . . ;Xn is a
random sample from any population with continuous distribution FX ,
then FXðX1Þ;FXðX2Þ; . . . ;FXðXnÞ is a random sample from the uniform
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population. Similarly, if Xð1Þ < Xð2Þ < � � � < XðnÞ are the order statistics
for the original sample, then

FXðXð1ÞÞ < FXðXð2ÞÞ < � � � < FXðXðnÞÞ
are the order statistics from the continuous uniform distribution on
(0,1) regardless of the original distribution FX as long as it is con-
tinuous.

The PIT is a very important result in statistics, not only in the
theoretical derivations of the properties of order statistics and the like,
but also in practical applications such as random number generation.
Two examples are now given to illustrate the utility of the PIT.

Example 5.1 Suppose we wish to calculate the probability Pð2 <
X 4 3Þ, where X follows a chi-square distribution with 3 degrees of
freedom (df). Suppose FXðXÞ deonotes the cdf of X. Since FXðXÞ has the
uniform distribution on (0,1) and FX is nondecreasing, the probability
in question is simply equal to FXð3Þ � FXð2Þ. Using the CHIDIST
function with df¼ 3 in the software package EXCEL (note that EXCEL
gives right-tail probabilities) we easily get FXð2Þ ¼ 1� 0:5724 ¼
0:4276 and FXð3Þ ¼ 1� 0:3916 ¼ 0:6084, so that the required prob-
ability is simply 0:6084� 0:4276 ¼ 0:1808. Thus transforming the
original probability in terms of a probability with respect to the uni-
form distribution helps simplify the computation.

Example 5.2 An important practical application of the PIT is gen-
erating random samples from specified continuous probability dis-
tributions. For example, suppose we wish to generate an observation X
from an exponential distribution with mean 2. The cdf of X is
FXðxÞ ¼ 1� e�x=2, and by the PIT, the transformed random variable
Y ¼ 1� e�X=2 is distributed as U, an observation from the uniform
distribution over the interval (0,1). Now set 1� e�X=2 ¼ U and solve for
X ¼ �2 lnð1�UÞ. Using a uniform random number generator (most
software packages and some pocket calculators provide one), obtain a
uniform random number U and then the desired X from the trans-
formation X ¼ �2 lnð1�UÞ. Thus, for example, if we get u ¼ 0:2346
using a uniform random number generator, the corresponding value of
X from the specified exponential distribution is 0.5347.

In order to generate a random sample of 2 or more from a spe-
cified continuous probability distribution, we may generate a random
sample from the uniform (0,1) distribution and apply the appropriate
transformation to each observation in the sample. Several other
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applications of the probability-integral transformation are given in
Problem 2.4.

2.6 JOINT DISTRIBUTION OF ORDER STATISTICS

The joint distribution of order statistics is specified through the joint
pdf. Since the observations X1;X2; . . . ;Xn in a random sample from a
continuous populaiton with pdf fX are independent and identically
distributed random variables, their joint pdf is

fX1;X2; ...; Xn
ðx1; x2; . . . ; xnÞ ¼

Yn
i¼1

fXðxiÞ

The joint pdf of the n-order statistics Xð1Þ < Xð2Þ < � � � < XðnÞ
is not the same as the joint pdf of X1;X2; . . . ;Xn since the order sta-
tistics are obviously neither independent nor identically distributed.
However, the joint pdf is easily derived using the method of Jacobians
for transformations.

The set of n order statistics is produced by the transformation

Y1 ¼ smallest of ðX1;X2; . . . ;XnÞ ¼ Xð1Þ
Y2 ¼ second smallest of ðX1;X2; . . . ;XnÞ ¼ Xð2Þ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yr ¼ rth smallest of ðX1;X2; . . . ;XnÞ ¼ XðrÞ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yn ¼ largest of ðX1;X2; . . . ;XnÞ ¼ XðnÞ

This transformation is not one to one. In fact, since there are in total n!
possible arrangements of the original random variables in increasing
order of magnitude, there exist n! inverses to the transformation.

One of these n! permutations might be

X5 < X1 < Xn�1 < � � � < Xn < X2

The corresponding inverse transformation is

X5 ¼ Y1

X1 ¼ Y2

Xn�1 ¼ Y3

. . . . . . . . . . . .

Xn ¼ Yn�1
X2 ¼ Yn
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The Jacobian of this transformation is the determinant of an n � n
identity matrix with rows rearranged, since each new Yi is equal to
one and only one of the original X1; X2; . . . ;Xn. The determinant
therefore equals �1. The joint density function of the random vari-
ables in this particular transformation is thus

fX1X2;...;Xn
ðy2;yn; . . . ;y3;yn�1ÞjJj ¼

Yn
i¼1

fXðyiÞ for y1 < y2 < � � �< yn

It is easily seen that the same expression results for each of the n!
arrangements, since each Jacobian has absolute value 1 and multi-
plication is commutative. Therefore, applying the general Jacobian
technique described in Chapter 1, the result is

fXð1Þ;Xð2Þ;...;XðnÞ ðy1;y2; . . . ; ynÞ¼
X

over all n! inverse
transformations

Yn
i¼1

fXðyiÞ

¼n!
Yn
i¼1

fXðyiÞ for y1< y2< � � �< yn

ð6:1Þ
In other words, the joint pdf of n order statistics is n! times the joint
pdf of the original sample. For example, for a random sample of size n
from the normal distribution with mean m and variance s2, we have

fXð1Þ;Xð2Þ;...;XðnÞ ðy1;y2; . . . ; ynÞ

¼ n!

ð2ps2Þn=2
e�

1
2s2

Pn

i¼1ðyi�mÞ2 for �1< y1 < y2 < � � �< yn <1

The usual method of finding the marginal pdf of any random
variable can be applied to the rth order statistic by integrating out the
remaining ðn � 1Þ variables in the joint pdf in (6.1). For example, for
the largest (maximum) element in the sample, XðnÞ, we have

fXðnÞ ðynÞ¼n!fXðynÞ
Z yn

�1

Z yn�1

�1
�� �
Z y3

�1

Z y2

�1

Yn�1
i¼1

fXðyiÞdyi

¼n!fXðynÞ
Z yn

�1

Z yn�1

�1
�� �
Z y3

�1
½FXðy2ÞfXðy2Þ�

�
Yn�1
i¼3

fXðyiÞdy2 � � �dyn�1
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¼ n! fXðynÞ
Z yn

�1

Z yn�1

�1
� � �
Z y4

�1

½FXðy3Þ�2
2ð1Þ fXðy3Þ

�
Yn�1
i¼4

fXðyiÞdy3 � � �dyn�1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

¼ n!fXðynÞ ½FXðynÞ�n�1
ðn � 1Þ!

¼ n! ½FXðynÞ�n�1fXðynÞ ð6:2Þ
Similary, for the smallest (minimum) element, Xð1Þ, we have

fXð1Þ ðy1Þ¼n!fXðy1Þ
Z 1

y1

Z 1

y2

� � �
Z 1

yn�2

Z 1

yn�1

Yn
i¼2

fXðyiÞdyndyn�1 � � �dy3dy2

¼n!fXðy1Þ
Z 1

y1

Z 1

y2

� � �
Z 1

yn�2
½1�FXðyn�1Þ�fXðyn�1Þ

�
Yn�2
i¼2

fXðyiÞdyn�1dyn�2 � � �dy2

¼n!fXðy1Þ
Z 1

y1

Z 1

y2

� � �
Z 1

yn�3

½1�FXðyn�2Þ�2
2ð1Þ fXðyn�2Þ

�
Yn�3
i¼2

fXðyiÞdyn�2 � � �dy2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

¼n!fXðy1Þ ½1�FXðy1Þ�n�1
ðn�1Þ!

¼n! ½1�FXðy1Þ�n�1fXðy1Þ ð6:3Þ
In general, for the rth-order statistic, the order of integration which is
easiest to handle would be 1 > yn > yn�1 > � � � > yr followed by
�1 < y1 < y2 < � � � < yr, so that we have the following combination of
techniques used for XðnÞ and Xð1Þ:

fXðrÞðyrÞ ¼ n! fXðyrÞ
Z yr

�1

Z yr�1

�1
� � �
Z y2

�1

Z 1

yr

Z 1

yrþ1
� � �
Z 1

yn�1

�
Yn
i¼1
i6¼r

fXðyiÞdyn � � �dyrþ2 dyrþ1 dy1 � � �dyr�1
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¼ n! fXðyrÞ ½1� FXðyrÞ�n�r

ðn � rÞ!
Z yr

�1

Z yr�1

�1
� � �

Z y2

�1

Yr�1
i¼1

fXðyiÞdy1 � � �dyr�2 dyr�1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

¼ n! fXðyrÞ ½1� FXðyrÞ�n�r

ðn � rÞ!
½FXðyrÞ�r�1
ðr� 1Þ!

¼ n!

ðr� 1Þ!ðn� rÞ! ½FXðyrÞ�r�1½1� FXðyrÞ�n�rfXðyrÞ ð6:4Þ

It is clear that this method can be applied to find the marginal
distribution of any subset of two or more order statistics and it is re-
latively easy to apply when finding the joint pdf of a set of successive
order statistics, such as Xð1Þ;Xð2Þ; . . . ;Xðn�2Þ. In this case we simply
integrate out Xðn�1Þ and XðnÞ as

Z 1

xn�2

Z 1

xn�1
fXð1Þ;Xð2Þ; ...; XðnÞ ðx1; x2; . . . ; xnÞdxðnÞ dxðn�1Þ

The approach, although direct, involves tiresome integration.
A much simpler method can be used which appeals to probability

theory instead of pure mathematics. The technique will be illustrated
first for the single-order statistic XðrÞ. Recall that by definition of a
derivative, we have

fXðrÞðxÞ ¼ lim
h!0

FXðrÞ ðxþ hÞ � FXðrÞ ðxÞ
h

¼ lim
h!0

Pðx < XðrÞ 4 x� hÞ
h

ð6:5Þ

Suppose that the x axis is divided into the following three disjoint
intervals:

I1 ¼ ð�1; x�
I2 ¼ ðx; xþ h�
I3 ¼ ðxþ h; 1Þ
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The probability that X lies in each of these intervals is

p1 ¼ PðX 2 I1Þ ¼ FXðxÞ
p2 ¼ PðX 2 I2Þ ¼ FXðxþ hÞ � FXðxÞ
p3 ¼ PðX 2 I3Þ ¼ 1� FXðxþ hÞ

respectively. Now, XðrÞ is the rth-order statistic of the set X1;X2; . . . ;Xn

and lies in the interval I2 if and only if exactly r� 1 of the original X
random variables lie in the interval I1, exactly n� r of the original X ’s
lie in the interval I3 and XðrÞ lies in the interval I2. Since the original X
values are independent and the intervals are disjoint, the multinomial
probability distribution with parameters p1;p2, and p3 can be used to
evaluate the probability in (6.5). The result is

fXðrÞ ðxÞ ¼ lim
h!0

n

r� 1; 1; n� r

 !
pr�1
1 p2p

n�r
3

¼ n!

ðr� 1Þ!ðn � rÞ! ½FXðxÞ�r�1

� lim
h!0

FXðxþ hÞ � FXðxÞ
h

½1� FXðx þ hÞ�n�r

� �
¼ n!

ðr� 1Þ!ðn � rÞ! ½FXðxÞ�r�1fXðxÞ½1� FXðxÞ�n�r ð6:6Þ

whichagreeswith the resultpreviously obtained in (6.4) andTheorem4.2.
For the joint distribution, let XðrÞ and XðsÞ any two-order statistics

from the set Xð1Þ < Xð2Þ < � � � < XðnÞ. By the definition of partial deri-
vatives, the joint pdf can be written

fXðrÞ;XðsÞ ðx;yÞ

¼lim
h!0
t!0

FXðrÞ;XðsÞ ðxþh;yþtÞ�FXðrÞ;XðsÞ ðx;yþtÞ�FXðrÞ;XðsÞ ðxþh;yÞþFXðrÞ;XðsÞ ðx;yÞ
ht

¼lim
h!0
t!0

Pðx<XðrÞ4xþh;XðsÞ4yþtÞ�Pðx<XðrÞ4xþh;XðsÞ4yÞ
ht

¼lim
h!0
t!0

Pðx<XðrÞ4xþh;y<XðsÞ4yþtÞ
ht

ð6:7Þ

For any x < y, the x axis can be divided into the following five
disjoint intervals with the corresponding probabilities that an original
X observation lies in that interval:
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With this interval separation and assuming without loss of generality
that r < s; XðrÞ and XðsÞ are the rth- and sth-order statistics, respec-
tively, and lie in the respective intervals I2 and I4 if and only if the n X
values are distributed along the x axis in such a way that exactly r� 1
lie in I1, 1 in I2, 1 in I4, and n� s in I5 since the one in I4 is the sth in
magnitude, and the remaining s� r� 1 must therefore lie in I3.
Applying the multinomial probability distribution to these five types of
outcomes with the corresponding probabilities, we obtain

n
r� 1; 1; s� r� 1; 1;n� s

	 

pr�1
1 p2 p

s�r�1
3 p4 p

n�s
5

Substituting this for the probability in (6.7) gives

fXðrÞ;XðsÞ ðx; yÞ¼
n

r�1;1;s� r�1;1;n� s

 !
½FXðxÞ�r�1

� lim
h!0
t!0

FXðxþhÞ�FXðxÞ
h

½FXðyÞ�FXðxþhÞ�s�r�1
� �

� lim
h!0
t!0

FXðyþ tÞ�FXðyÞ
t

½1�FXðyþ tÞ�n�s

� �

¼ n!

ðr�1Þðs� r�1Þ!ðn� sÞ! ½FXðxÞ�r�1½FXðyÞ�FXðxÞ�s�r�1

�½1�FXðyÞ�n�s fXðxÞfXðyÞ for all x< y ð6:8Þ
This method could be extended in a similar manner to find the

joint distribution of any subset of the n order statistics. In general, for
any k4n, to find the joint distribution of k-order statistics, the x axis
must be divided into kþ ðk� 1Þ þ 2 ¼ 2kþ 1 disjoint intervals and the
multinomial probability law applied. For example, the joint pdf of
Xðr1Þ;Xðr2Þ; . . . ;XðrkÞ, where 14 r1 < r2 < � � � < rk 4n and 14 k4n is

Interval I PðX 2 IÞ

I1 ¼ ð�1; x� p1 ¼ FXðxÞ
I2 ¼ ðx; xþ h� p2 ¼ FXðxþ hÞ � FX ðxÞ
I3 ¼ ðxþ h; y� p3 ¼ FXðyÞ � FXðxþ hÞ
I4 ¼ ðy; yþ t� p4 ¼ FXðyþ tÞ � FXðyÞ
I5 ¼ ðyþ t;1Þ p5 ¼ 1� FXðyþ tÞ
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fXðr1Þ;Xðr2Þ;...;XðrkÞ
ðx1; x2; . . . ; xkÞ

¼ n!

ðr1 � 1Þ!ðr2 � r1 � 1Þ! � � � ðn � rkÞ! ½FXðx1Þ�r1�1

� ½FXðx2Þ � FXðx1Þ�r2�r1�1 � � � ½1� FXðxkÞ�n�rk

� fXðx1ÞfXðx2Þ � � � fXðxkÞ x1 < x2 < � � � < xk

In distribution-free techniques we are often interested in the case
where Xð1Þ < Xð2Þ < � � � < XðnÞ are order statistics from the continuous
uniform distribution over the interval (0, 1). Then FXðxÞ ¼ x and so
the marginal pdf of XðrÞ and the joint pdf of XðrÞ and XðsÞ for r < s are,
respectively,

fXðrÞ ðxÞ ¼
n!

ðr� 1Þ!ðn � rÞ! x
r�1ð1� xÞn�r 0 < x < 1 ð6:9Þ

fXðrÞ;XðsÞ ðx; yÞ ¼
n!

ðr� 1Þðs� r� 1Þ!ðs� 1Þ! x
r�1ðy� xÞs�r�1ð1� yÞn�s;

0 < x < y < 1 ð6:10Þ
from (6.4) and (6.8).

The density function in (6.9) will be recognized as that of the beta
distribution with parameters r and n� rþ 1. Again, this agrees with
the result of Theorem 4.3.

2.7 DISTRIBUTIONS OF THE MEDIAN AND RANGE

As indicated in Section 2.1, the median and range of a random sample
are measures based on order statistics which are descriptive of the
central tendency and dispersion of the population, respectively. Their
distributions are easily obtained from the results found in Section 2.6.

DISTRIBUTION OF THE MEDIAN

For n odd, the median of a sample has the pdf of (6.4) with
r ¼ ðnþ 1Þ=2. If n is even and a unique value is desired for the sample
median U, the usual definition is

U ¼ Xðn=2Þ þ X½ðnþ2Þ=2�
2

so that the distribution of U must be derived from the joint density
function of these two-order statistics. Letting n ¼ 2m, from (6.8) we
have for x < y
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fXðmÞ;Xðmþ1Þ ðx; yÞ ¼
ð2mÞ!

½ðm� 1Þ!�2 ½FXðxÞ�m�1½1� FXðyÞ�m�1fXðxÞfXðyÞ

Making the transformation

u ¼ xþ y

2
v ¼ y

and using the method of Jacobians, the pdf of the median U for n ¼
2m is

fUðuÞ ¼ ð2mÞ!2
½ðm� 1Þ!�2

Z 1

u

½FXð2u� vÞ�m�1½1� FXðvÞ�m�1

� fXð2u� vÞfXðvÞdv ð7:1Þ
As an example, consider the uniform distribution over (0,1). The

integrand in (7.1) is nonzero for the intersection of the regions

0 < 2u � v < 1 and 0 < v < 1

The region of integration then is the intersection of the three regions

u < v;
v

2
< u <

ðvþ 1Þ
2

; and 0 < v < 1

which is depicted graphically in Figure 7.1. We see that the limits
on the integral in (7.1) must be u < v < 2u for 0 < u < 1

2 and u < v < 1
for 1

2 < u < 1. Thus if m ¼ 2, say, the pdf of the median of a sample of
size 4 is

Fig. 7.1 Region of integration is the shaded area.
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fUðuÞ ¼ 8u2ð3� 4uÞ for 0 < u4 1=2
8ð4u3 � 9u2 þ 6u� 1Þ for 1=2 < u < 1

�
ð7:2Þ

In general, for any integer m ¼ 1; 2; . . . one can obtain

fUðuÞ¼

Pm�1

k¼0

ð2mÞ!2
k!ðm�1Þ!ðm�k�1Þ!ðkþmÞ

�ð2u�1Þm�k�1½ð1�uÞkþm�ð1�2uÞkþm� if 0<u41=2

Pm�1

k¼0

ð2mÞ!2
k!ðm�1Þ!ðm�k�1Þ!ðkþmÞ

�ð2u�1Þm�k�1ð1�uÞkþm if 1=2<u<1

8>>>>>>>>>>><>>>>>>>>>>>:
Verification of these results is left for the reader.

DISTRIBUTION OF THE RANGE

A similar procedure can be used to obtain the distribution of the range,
defined as

R ¼ XðnÞ � Xð1Þ

The joint pdf of Xð1Þ and XðnÞ is

fXð1Þ;XðnÞ ðx; yÞ ¼ nðn � 1Þ½FXðyÞ � FXðxÞ�n�2fXðxÞfXðyÞ x < y

Now we make the transformation

u ¼ y� x

v ¼ y

and obtain, by integration out v, the pdf of the range is

fRðuÞ ¼
Z 1

�1
nðn� 1Þ½FXðvÞ � FXðv� uÞ�n�2fXðv� uÞfXðvÞdv

for u > 0 ð7:3Þ
For the uniform distribution, the integrand in (7.3) is nonzero for

the intersection of the regions

0 < v� u < 1 and 0 < v < 1

but this is simply 0 < u < v < 1. Therefore, the pdf of the range is

fRðuÞ ¼ nðn � 1Þun�2ð1� uÞ for 0 < u < 1 ð7:4Þ
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which is the beta distribution with parameters n� 1 and 2. Thus the
result for the uniform distribution is quite easy to handle. However,
for a great many distributions, the integral in (7.3) is difficult to
evaluate. In the case of a standard normal population, Hartley (1942)
has tabulated the cumulative distribution of the range for sample sizes
not exceeding 20. The asymptotic distribution of the range is discussed
in Gumbel (1944).

2.8 EXACT MOMENTS OF ORDER STATISTICS

Expressions for any individual or joint moments of continuous order
statistics can be written down directly using the definition of moments
and the specified pdf. The only practical limitation is the complexity of
integration involved. Any distribution for which FXðxÞ is not easily
expressible in a closed form is particularly difficult to handle. In some
cases, a more convenient expression for the moments of XðrÞ can be
found in terms of the quantile function QXðuÞ ¼ F�1

X ¼ F�1
X ðuÞ defined

in Section 2.2.

KTH MOMENT ABOUT THE ORIGIN

The kth moment about the origin of the rth-order statistic from FX is

EðXk
ðrÞÞ ¼

n!

ðr� 1Þ!ðn� rÞ!
Z 1

�1
yk½FXðyÞ�r�1½1� FXðyÞ�n�rfXðyÞdy

¼ n!

ðr� 1Þ!ðn� rÞ!
Z 1

�1
yk½FXðyÞ�r�1½1� FXðyÞ�n�r dFXðyÞ

¼ n!

ðr� 1Þ!ðn� rÞ!
Z 1

0

½QXðuÞ�kur�1ð1� uÞn�r du

¼ E½QXðUÞ�k ð8:1Þ
where the random variable U has a beta distribution with parameters
r and n � rþ 1. This shows an important relationship between the
moments of the order statistics from any arbitrary continuous dis-
tribution and the order statistics from the uniform (0,1) distribution.
In some cases it may be more convenient to evaluate the integral in
(8.1) by numerical methods, especially when a closed-form expression
for the quantile function and=or the integral is not readily available.

As an example consider the case of the uniform distribution on
the interval (0,1). In this case QXðuÞ ¼ u identically on (0,1) and hence
the integral in (8.1) reduces to a beta integral with parameters rþ k
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and n� rþ 1. Thus, using the relationship between the beta and the
gamma functions and factorials,

EðXk
ðrÞÞ ¼

n!

ðr� 1Þ!ðn� rÞ!Bðrþ k;n� rþ 1Þ

¼ n!

ðr� 1Þ!ðn� rÞ!
ðrþ k � 1Þ!ðn� rÞ!

ðnþ kÞ!

¼ n!ðrþ k� 1Þ!
ðnþ kÞ!ðr� 1Þ!

for any 14 r4n and k. In particular, the mean is

EðXk
ðrÞÞ ¼

r

nþ 1
ð8:2Þ

and the variance is

varðXðrÞÞ ¼ rðn � rþ 1Þ
ðn þ 1Þ2ðnþ 2Þ ð8:3Þ

One may immediately recognize (8.2) and (8.3) as the mean and the
variance of a beta distribution with parameters r and n � rþ 1. This is
of course true since as shown in Theorem 4.3, the distribution of XðrÞ,
the rth-order statistic of a random sample of n observations from the
uniform (0,1) distribution, is a beta distribution with parameters r and
n� rþ 1.

COVARIANCE BETWEEN XðrÞ AND XðsÞ

Now consider the covariance between any two order statistics XðrÞ and
XðsÞ; r < s; r; s ¼ 1; 2; . . . ;n, from an arbitrary continuous distribution.
From (6.8) we have

EðXðrÞXðsÞÞ ¼ n!

ðr� 1Þ!ðs� r� 1Þ!ðn� sÞ!
�
Z 1

�1

Z y

�1
xy½FXðxÞ�r�1½FXðyÞ � FXðxÞ�s�r�1

� ½1� FXðyÞ�n�s fXðxÞfXðyÞdxdy

We now write fXðxÞdx ¼ dFXðxÞ, fXðyÞdy ¼ dFXðyÞ and substitute
FXðxÞ ¼ u and FXðyÞ ¼ v, so that x ¼ f�1X ðuÞ ¼ QXðuÞ and y ¼ F�1

X ðvÞ
¼ QXðvÞ. Then the above expression reduces to
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n!

ðr� 1Þ!ðs� r� 1Þ!ðn� sÞ!

�
Z 1

0

Z QX ðvÞ

0

QXðuÞQXðvÞur�1ðv� uÞs�r�1ð1� vÞn�s dudv ð8:4Þ

As remarked before, (8.4) may be more convenient in practice for the
actual evaluation of the expectation.

Specializing to the case of the uniform distribution on (0,1) so
that QXðuÞ ¼ u and QXðvÞ ¼ v, we obtain

EðXðrÞXðsÞÞ ¼ n!

ðr�1Þ!ðs� r�1Þ!ðn� sÞ!

�
Z 1

0

Z v

0

urvðv�uÞs�r�1ð1� vÞn�s dudv

After substituting z ¼ u=v and simplifying, the inner integral reduces
to a beta integral and the expectation simplifies to

n!

ðr� 1Þ!ðs� r� 1Þ!ðn� sÞ!Bðrþ 1; s� rÞ
Z 1

0

vsþ1ð1� vÞn�s dv

¼ n!

ðr� 1Þ!ðs� r� 1Þ!ðn� sÞ!Bðrþ 1; s� rÞBðsþ 2;n� sþ 1Þ

¼ n!r!ðs� r� 1Þ!ðsþ 1Þ!ðn� sÞ!
ðr� 1Þ!ðs� r� 1Þ!ðn� sÞ!s!ðnþ 2Þ!

¼ rðsþ 1Þ
ðnþ 1Þðnþ 2Þ ð8:5Þ

Now the covariance is found using the formula

covðXðrÞ;XðsÞÞ ¼ EðXðrÞ;XðsÞÞ � EðXðrÞÞEðXðsÞÞ
which yields, for the uniform (0,1) distribution

covðXðrÞ;XðsÞÞ ¼ rðsþ 1Þ
ðn þ 1Þðnþ 2Þ �

rs

ðnþ 1Þ2

¼ rðn � sþ 1Þ
ðn þ 1Þ2ðnþ 2Þ for r < s ð8:6Þ

Thus the correlation coefficient is

corrðXðrÞ;XðsÞÞ ¼ ðnr� sþ 1Þ
sðn� rþ 1Þ
� �1=2

for r < s ð8:7Þ
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In particular then, the correlation between the minimum and max-
imum value in a sample of size n from the uniform (0,1) distribution is

corrðXð1Þ;XðnÞÞ ¼ 1=n

which shows that the correlation is inversely proportional to the
sample size.

We noted earlier that when the population is such that the cdf
FXðxÞ or the quantile function QXðuÞ cannot be expressed in a closed
form, evaluation of the moments is often tedious or even impossible
without the aid of a computer for numerical integration. Since the
expected values of the order statistics from a normal probability dis-
tribution have especially useful practical applications, these results
have been tabulated and are available, for example, in Harter (1961).
For small n, these normal moments can be evaluated with appropriate
techniques of integration. For example, if n ¼ 2 and FX is the standard
normal, the mean of the first-order statistic is

EðXð1ÞÞ ¼ 2

Z 1

�1
x 1�

Z x

�1

1ffiffiffiffiffiffi
2p

p eð�1=2Þt
2

dt

� �
1ffiffiffiffiffiffi
2p

p eð�1=2Þx
2

dx

¼ 1

p

Z 1

�1

Z 1

x

xeð�1=2Þðt
2þx2Þ dt dx

Introducing a change to polar coordinates with

x ¼ r cos y t ¼ r sin y

the integral above becomes

EðXð1ÞÞ ¼ 1

p

Z 5p=4

p=4

Z 1

0

r2 cos yeð�1=2Þr
2

drdy

¼
ffiffiffi
2

pffiffiffi
p

p
Z 5p=4

p=4
cos y

1

2

Z 1

�1

r2ffiffiffiffiffiffi
2p

p eð�1=2Þr
2

dr dy

¼ 1ffiffiffiffiffiffi
2p

p
Z 5p=4

p=4
cos ydy

¼ 1ffiffiffiffiffiffi
2p

p � 1ffiffiffi
2

p � 1ffiffiffi
2

p
	 


¼ � 1ffiffiffi
p

p

Since EðXð1Þ þ Xð2ÞÞ ¼ 0, we have EðXð2ÞÞ ¼ 1=
ffiffiffi
p

p
.

Other examples of these techniques will be found in the
problems.
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In nonparametric statistics, we do not assume a parametric form
for the underlying population and therefore approximation to the
moments of the order statistics is important.

2.9 LARGE-SAMPLE APPROXIMATIONS TO THE MOMENTS OF ORDER

STATISTICS

Evaluation of the exact moments of XðrÞ directly from the pdf could
require numerical integration for many FX of interest. Thus for
practical applications and in theoretical investigations, approxima-
tions to the moments of XðrÞ are needed. The PIT plays an important
role here since the rth-order statistic from any continuous distribution
is a function of the rth-order statistic from the uniform distribution.
Letting UðrÞ denote the rth-order statistic from a uniform distribution
over the interval (0,1), this functional relationship can be expressed as

XðrÞ ¼ F�1
X ðUðrÞÞ ¼ QXðUðrÞÞ ð9:1Þ

Now since the moments of UðrÞ are easily evaluated and XðrÞ is a
function of UðrÞ, the idea is to approximate the moments of XðrÞ in
terms of some function of the moments of UðrÞ. In other words, in
studying the moments (or other statistical properties) of XðrÞ we try to
take advantage of the facts that XðrÞ is a ‘‘nice’’ transformation (func-
tion) of the random variable UðrÞ and that the properties of UðrÞ are
easily found.

Consider first the general case of any random variable Z and any
continuous function gðZÞ of Z. Since the function gðZÞ is continuous,
the Taylor series expansion of gðZÞ about a point m is

gðZÞ ¼ gðmÞ þ
X1
i¼1

ðZ � mÞi
i!

gðiÞðmÞ ð9:2Þ

where gðiÞðmÞ ¼ digðZÞ=dZijz¼m, and this series converges if

lim
n!1

ðZ � mÞn
n!

gðnÞðz1Þ ¼ 0 for m < z1 < Z

Now if we let EðZÞ ¼ m and varðZÞ ¼ s2 and take the expectation of
both sides of (9.2), we obtain

E½gðZÞ� ¼ gðmÞ þ s2

2!
gð2ÞðmÞ þ

X1
i¼3

E½ðZ� mÞi�
i!

gðiÞðmÞ ð9:3Þ
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From this we immediately see that

1. A first approximation to E½gðZÞ� is gðmÞ.
2. A second approximation to E½gðZÞ� is gðmÞ þ s2

2
gð2ÞðmÞ.

To find similar approximations to var(Z), we form the difference
between equations (9.2) and (9.3), square this difference, and then
take the expectation, as follows:

gðZÞ�E½gðZÞ�¼ðZ�mÞgð1ÞðmÞþgð2ÞðmÞ 1
2!
½ðZ�mÞ2�varðZÞ�

þ
X1
i¼3

gðiÞðmÞ
i!

fðZ�mÞi�E½ðZ�mÞi�g

fgðZÞ�E½gðZÞ�g2¼ðZ�mÞ2½gð1ÞðmÞ�2þ1
4½gð2ÞðmÞ�2½var2ðZÞ

�2varðZÞðZ�mÞ2��gð1ÞðmÞgð2ÞðmÞvarðZÞðZ�mÞþhðZÞ

so that

var½gðZÞ� ¼ s2½gð1ÞðmÞ�2 � 1
4 ½gð2ÞðmÞ�2s4 þ E½hðZÞ� ð9:4Þ

where E½hðZÞ� involves third or higher central moments of Z.
The first approximations to E½gðZÞ� and var[g(Z)] are
E½gðZÞ� ¼ gðmÞ

and

var½gðZÞ� ¼ ½gð1ÞðmÞ�2s2

The second approximations to E½gðZÞ� and var½gðZÞ� are

E½gðZÞ� ¼ gðmÞ þ gð2ÞðmÞ
2

s2

and

var½gðZÞ� ¼ ½ gð1ÞðmÞ�2s2 � gð2ÞðmÞs2
2

� �2
respectively. The goodness of any of these approximations of course
depends on the magnitude of the terms ignored, i.e., the order of the
higher central moments of Z.

In order to apply these generally useful results for any random
variables to the rth-order statistic of a sample of n from the continuous
cdf FX , we simply take Z ¼ UðrÞ and note that the functional re-
lationship XðrÞ ¼ F�1

X ðUðrÞÞ implies that our g function must be the
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quantile function, gð:Þ ¼ QXð:Þ. Further, the moments of UðrÞ were
found in (8.2) and (8.3) to be

m ¼ EðUðrÞÞ ¼ r

nþ 1

and

s2 ¼ varðUðrÞÞ ¼ rðn� rþ 1Þ
ðnþ 1Þ2ðn þ 2Þ

Also, since the function g is the quantile function given in (9.1), the
first two derivatives of the function g, gð1Þ and gð2Þ, are obtained
directly from Theorem 2.1. Evaluating these derivatives at m ¼
r=ðnþ 1Þ we obtain

gð1ÞðmÞ ¼ fX F�1
X

r

nþ 1

	 
� �� ��1

gð2ÞðmÞ ¼ � f�1X F�1
X

r

nþ 1

	 
� �
FX F�1

X

r

nþ 1

	 
� �� ��3

Substituting these results in the general result above, we can obtain
the first and the second approximations to the mean and the variance
of XðrÞ. The first approximations are

EðXðrÞÞ ¼ F�1
X

r

nþ 1

	 

ð9:5Þ

and

varðXðrÞÞ ¼ rðn� rþ 1Þ
ðnþ 1Þ2ðnþ 2Þ fX F�1

x

r

nþ 1

	 
� �� ��2
ð9:6Þ

Using (8.1), the third central moment of UðrÞ can be found to be

E½ðUðrÞ � mÞ3� ¼ rð2n2 � 6nrþ 4nþ 4r2 � 6rþ 2Þ
ðn þ 1Þ3ðn þ 2Þðnþ 3Þ ð9:7Þ

so that for large n and finite r or r=n fixed, the terms from (9.3) and
(9.4) which were ignored in reaching these approximations are of
small order. For greater accuracy, the second- or higher-order
approximations can be found. This will be left as an exercise for the
reader.

The use of (9.5) and (9.6) is particularly simple when fX and FX

are tabulated. For example, to approximate the mean and variance of
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the fourth-order statistic of a sample of 19 from the standard normal
population, we have

EðXð4ÞÞ � F�1ð0:20Þ ¼ �0:84

varðXð4ÞÞ � 4ð16Þ
202ð21Þ ½jð�0:84Þ�

�2 ¼ 0:16

21
0:2803�2 ¼ 0:097

The exact values of the means and variances of the normal order
statistics are widely available, for example, in Ruben (1954) and
Sarhan and Greenberg (1962). For comparison with the results in this
example, the exact mean and variance of Xð4Þ when n ¼ 19 are �0.8859
and 0.107406, respectively, from these tables.

2.10 ASYMPTOTIC DISTRIBUTION OF ORDER STATISTICS

As we found in the last section for the moments of order statistics,
evaluation of the exact probability density function of XðrÞ is sometimes
rather complicated in practice and it is useful to try to approximate its
distribution. When the sample size n is large, such results can be
obtained and they are generally called the asymptotic or the large
sample distribution of XðrÞ, as n goes to infinity. Information con-
cerning the form of the asymptotic distribution increases the useful-
ness of order statistics in applications, particularly for large sample
sizes. In speaking of a general asymptotic distribution for any r,
however, two distinct cases must be considered:

Case 1 : As n�!1; r=n�!p; 0 < p < 1:

Case 2 : As n�!1; r or n � r remains finite:

Case 1 would be of interest, for example, in the distribution of quan-
tiles, whereas case 2 would be appropriate mainly for the distribution
of extreme values. Case 2 will not be considered here. The reader is
referred to Wilks (1948) for a discussion of the asymptotic distribution
of XðrÞ for fixed r under various conditions and to Gumbel (1958) for
asymptotic distributions of extremes.

Under the assumptions of case 1, we show in this section that the
distribution of the standardized rth-order statistic from the uniform
distribution approaches the standard normal distribution. This result
can be shown in either of two ways. The most direct approach is to
show that the probability density function of a standardized UðrÞ ap-
proaches the function jðuÞ. In the density for UðrÞ,
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fUðrÞ ðuÞ ¼
n!

ðr� 1Þ!ðn� rÞ!u
r�1ð1� uÞn�r 0 < u < 1

we make the transformation

ZðrÞ ¼
UðrÞ � u

s

and obtain, for all z,

fZðrÞ ðzÞ ¼
n!

ðr� 1Þ!ðn � rÞ! ðszþ mÞr�1ð1� sz� mÞn�rs

¼ n
n� 1

r� 1

	 

smr�1ð1� mÞn�r 1þ sz

m

	 
r�1
1� sz

1� m

	 
n�r

¼ n
n� 1

r� 1

	 

smr�1ð1� mÞn�rev ð10:1Þ

where

v ¼ ðr� 1Þ ln 1þ sz

m

	 

þ ðn� rÞ ln 1� sz

1� m

	 

ð10:2Þ

Now using the Taylor series expansion

lnð1þ xÞ ¼
X1
i¼1

ð�1Þi�1 x
i

i

which converges for �1 < x4 1, and with the notation

s
m
¼ c1

s
1� m

¼ c2

we have

v¼ðr�1Þ c1z� c21
z2

2
þ c31

z3

3
��� �

	 

�ðn� rÞ c2zþ c22

z2

2
þ c32

z3

3
þ�� �

	 

¼ z½c1ðr�1Þ� c2ðn� rÞ��z2

2
½c21ðr�1Þþ c22ðn� rÞ�

þz3

3
½c31ðr�1Þ� c32ðn� rÞ�� � � � ð10:3Þ

Since we are going to take the limit of v as n ! 1; r=n ! p fixed,
0 < p < 1; c1 and c2 can be approximated as

c1 ¼ ðn � rþ 1Þ
rðnþ 2Þ

� �1=2
� 1� p

pn

	 
1=2
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c2 ¼ r

ðn� rþ 1Þðnþ 2Þ
� �1=2

� p

ð1� pÞn
� �1=2

respectively. Substitution of these values in (10.3) shows that as
n ! 1, the coefficient of z is

ðr� 1Þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� p

pffiffiffiffiffiffi
np

p � ðn� rÞ ffiffiffi
p

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� pÞp ¼ r� np � ð1� pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p ffiffiffiffiffiffi
np

p ! 0

the coefficient of �z2=2 is

ðr� 1Þð1� pÞ
np

þ ðn � rÞp
nð1� pÞ ¼ ð1� pÞ � ð1� pÞ

np
þ p ¼ 1� ð1� pÞ

np
! 1

and the coefficient of z3=3 is

ðr�1Þð1�pÞ3=2
ðnpÞ3=2

� ðn�rÞp3=2
½nð1�pÞ�3=2

¼ðnp�1Þ
n3=2

1�p

p

	 
3=2
� p3=2

½nð1�pÞ�1=2
!0

Substituting these results back in (10.3) and ignoring terms of order
n�1=2 and higher, the limiting value is

lim
n!1 v ¼ �z2=2

For the limiting value of the constant term in (10.1), we must use
Stirling’s formula

k! �
ffiffiffiffiffiffi
2p

p
e�kkkþ1=2

for the factorials, which is to be multiplied by

smr�1ð1� mÞn�r ¼ rr�1=2ðn� rþ 1Þn�rþ1=2

ðnþ 1Þnðnþ 2Þ1=2
� rr�1=2ðn� rþ 1Þn�rþ1=2

ðnþ 1Þnþ1=2

So, as n ! 1, the entire constant of (10.1) is written as

n
n�1
r�1

	 

smr�1ð1�mÞn�r

¼ ðnþ1Þ!
r!ðn�rþ1Þ!

rðn�rþ1Þ
nþ1 smr�1ð1�mÞn�r

�
ffiffiffiffiffiffi
2p

p
e�ðnþ1Þðnþ1Þnþ3=2

2pe�rrrþ1=2e�ðn�rþ1Þðn�rþ1Þn�rþ3=2
rrþ1=2ðn�rþ1Þn�rþ3=2

ðnþ1Þnþ3=2
¼ 1ffiffiffiffiffiffi

2p
p
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Thus we have the desired result

lim
n!1 fzðrÞðzÞ ¼ 1ffiffiffiffiffiffi

2p
p e�ð1=2Þz2

and hence the pdf of the standardized UðrÞ approaches the pdf of the
standard normal distribution or, in other words,

lim
n!1PðUðrÞ 4 tÞ ¼ F

t� m
s

	 

To summarize, for large n, the distribution of UðrÞ can be approximated
by a normal distribution with mean m and variance s2.

For the rth-order statistic from any continuous distribution FX ,
the relationship XðrÞ ¼ F�1

X ðUðrÞÞ allows us to conclude that the
asymptotic distribution of XðrÞ is also approximately normal as long
as the appropriate mean and variance are substituted. The key to
this argument is the result that if a random variable is approxi-
mately normally distributed then a smooth function of it (a trans-
formation) is also approximately normally distributed with a certain
mean and variance. Using the approximate mean and variance found
in (9.5) and (9.6) and using the fact that r=n ! p as n ! 1, we get

EðXðrÞÞ ! F�1
X ðpÞ and varðXðrÞÞ � ½pð1� pÞ�½fxðmÞ��2

n

and state the following theorem.

Theorem 10.1 Let XðrÞ denote the rth-order statistic of a random
sample of size n from any continuous cdf FX. The if r=n ! p

as n ! 1; 0 < p < 1, the distribution of n
pð1�pÞ
h i1=2

fXðmÞ½XðrÞ � m�
tends to the standard normal, where m ¼ F�1

X ðpÞ.
Using this result it can be shown that XðrÞ is a consistent esti-

mator of m ¼ F�1
X ðpÞ if r=n ! p as n ! 1.

For the asymptotic joint distribution of any two-order statistics
XðrÞ and XðsÞ; 14 r < s4n, Smirnov (1935) obtained a similar result.
Let n ! 1 in such a way that r=n ! p1 and s=n ! p2; 0 < p1 < p2 < 1,
remain fixed. Then XðrÞ and XðsÞ are (jointly) asymptotically bivariate

normally distributed with means mi, variances pið1� piÞ½fXðmiÞ��2=n,
and covariance p1ð1� p2Þ½nfXðm1ÞfXðm2Þ��2, where mi satisfies

FXðmiÞ ¼ pi for i ¼ 1; 2.
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2.11 TOLERANCE LIMITS FOR DISTRIBUTIONS AND COVERAGES

An important application of order statistics is in setting
tolerance limits for distributions. The resulting procedure does not
depend in any way on the underlying population as long as the
population is continuous. Such a procedure is therefore distribution
free.

A tolerance interval for a continuous distribution with tolerance
coefficient g is a random interval (given by two endpoints that are
random variables) such that the probability is g that the area between
the endpoints of the interval and under the probability density func-
tion is at least a certain preassigned value p. In other words, the
probability is g that this random interval covers or includes at least a
specified percentage (100p) of the underlying distribution. If the
endpoints of the tolerance interval are two-order statistics XðrÞ and
XðsÞ; r < s, of a random sample of size n, the tolerance interval satisfies
the condition

P½XðrÞ < X < XðsÞ 5p� ¼ g ð11:1Þ
The probability g is called the tolerance coefficient. We need to find the
two indices r and s, for a given tolerance coefficient, subject to the
conditions that 14 r < s4n. If the underlying distribution FX is
continuous, we can write

P½XðrÞ < X < XðsÞ� ¼ PðX < XðsÞÞ � PðX < XðrÞÞ
¼ FXðXðsÞÞ � FXðXðrÞÞ
¼ UðsÞ �UðrÞ

according to the PIT. Substituting this result in (11.1), we find that the
tolerance interval satisfies

P½UðsÞ �UðrÞ 5p� ¼ g ð11:2Þ
Thus, the question of finding the indices r and s, for any arbitrary
continuous distribution reduces to that of finding the indices for the
uniform (0,1) distribution. This is a matter of great simplicity, as we
show in Theorem 11.1.

Theorem 11.1 For a random sample of size n from the uniform ð0;1Þ
distribution, the difference UðsÞ �UðrÞ, 14 r < s4n, is dis-
tributed as the ðs� rÞth-order statistic Uðs�rÞ and thus has a beta
distribution with parameters s � r and n � s� rþ 1.
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Proof We begin with the joint distribution of UðrÞ and UðsÞ found
in (6.8). To prove the theorem we make the transformation

U ¼ UðsÞ �UðrÞ and V ¼ UðsÞ

The joint distribution of U and V is then

fU;Vðu; vÞ ¼ n!

ðr� 1Þ!ðs� r� 1Þ!ðn� sÞ! ðv� uÞr�1us�r�1ð1� vÞn�s

0 < u < v < 1
and so

fUðuÞ ¼ n!

ðr� 1Þ!ðs� r� 1Þ!ðn� sÞ!u
s�r�1

Z 1

u

ðv� uÞr�1ð1� vÞn�s dv

Under the integral sign, we make the change of variable
v� u ¼ tð1� uÞ and obtain

fUðuÞ ¼ n!

ðr� 1Þ!ðs� r� 1Þ!ðn� sÞ!u
s�r�1ð1� uÞr�1

�
Z 1

0

tr�1½ð1� uÞ � tð1� uÞ�n�sð1� uÞ dt

¼ n!

ðr� 1Þ!ðs� r� 1Þ!ðn� sÞ!u
s�r�1ð1� uÞn�sþrBðr;n � sþ 1Þ

¼ n!

ðs� r� 1Þ!ðn� sþ 1Þ!u
s�r�1ð1� uÞn�sþr 0 < u < 1

ð11:3Þ
This shows that U has a beta distribution with parameters s� r
and n � sþ rþ 1, which is also the distribution of Uðs�rÞ by
Theorem 4.3. Thus the required result in (11.2) can be written
simply as

g ¼ PðU5 pÞ ¼
Z 1

p

n!

ðs� r� 1Þ!ðn� sþ rÞ!u
s�r�1ð1� uÞn�sþr du

We can solve this for r and s for any given values of p and g, or we
can find the tolerance coefficient g for given values of p, r, and s.
Note that all of the above results remain valid as long as the
underlying cdf is continuous so that the PIT can be applied and
hence the tolerance interval is distribution free.
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Corollary 11.1.1 UðrÞ �Uðr�1Þ has a beta distribution with parameters
1 and n.

ONE-SAMPLE COVERAGES

The difference FXðXðsÞÞ � FXðXðrÞÞ ¼ UðsÞ �UðrÞ is called the coverage of
the random interval ðXðrÞ;XðsÞÞ, or simply an s� r cover. The coverages
are generally important in nonparametric statistics because of their
distribution-free property. We define the set of successive elementary
coverages as the differences.

Ci ¼ FXðXðiÞÞ � FXðXði�1ÞÞ ¼ UðiÞ �Uði�1Þ i ¼ 1; 2; . . . ;nþ 1

where we write Xð0Þ ¼ �1;Xðnþ1Þ ¼ 1, Thus,

C1 ¼ FXðXð1ÞÞ ¼ Uð1Þ

C2 ¼ FXðXð2ÞÞ � FXðXð1ÞÞ ¼ Uð2Þ �Uð1Þ

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Cn ¼ FXðXðnÞÞ � FXðXðn�1ÞÞ ¼ UðnÞ �Uðn�1Þ

Cðnþ1Þ ¼ 1�UðnÞÞ

ð11:4Þ

Corollary 11.1.1 shows that the distribution of the ith elementary
coverage Ci does not depend on the underlying cdf FX , as long as FX is
continuous and thus the elementary coverages are distribution-free.
In fact, from Corollary 11.1.1 and properties of the beta distribution (or
directly), it immediately follows that

EðCiÞ ¼ 1

n þ 1

From this result, we can draw the interpretation that the n-order
statistics Xð1Þ;Xð2Þ; . . . ;XðnÞ partition the area under the pdf into nþ 1
parts, each of which has the same expected proportion of the total
probability.

Since the Jacobian of the transformation defined in (11.4) map-
ping Uð1Þ;Uð2Þ; . . . ;UðnÞ onto Cð1Þ;Cð2Þ; . . . ;CðnÞ is equal to 1, the joint
distribution of the n coverages is

fC1;C2;...;Cn
ðc1; c2; . . . ; cnÞ ¼ n! for ci 5 0;

i ¼ 1; 2; . . . ;n and
Xnþ1
i¼1

ci ¼ 1
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A sum of any r successive elementary coverages is called an r coverage.
We have the sum Ci þ Ciþ1 þ � � � þ Ciþr ¼ UðiþrÞ �UðiÞ; iþ r4n. Since
the distribution of C1;C2; . . . ;Cn is symmetric in c1; c2; . . . ; cn, the
marginal distribution of the sum of any r of the coverages must be the
same for each fixed value of r, in particular equal to that of

C1 þ C2 þ � � � þ Cr ¼ UðrÞ

which is given in (6.9). The expected value of an r coverage then is
r=ðnþ 1Þ, with the same interpretation as before.
TWO-SAMPLE COVERAGES

Now suppose that a random sample of size m, X1;X2; . . . ;Xm is avail-
able from a continuous cdf FX and that a second independent random
sample of size n, Y1;Y2; . . . ;Yn is available from another continuous cdf
FY . Let Yð1Þ;Yð2Þ; . . . ;YðnÞ be the Y-order statistics and let
I1 ¼ ð�1;Yð1Þ�; I2 ¼ ðYð1Þ; Yð2Þ�; . . . ; In ¼ ðYðn�1Þ;YðnÞ�; Iðnþ1Þ ¼ ðYðnÞ;1Þ
denote the ðnþ 1Þ nonoverlapping blocks formed by the n Y-order
statistics. The number of X observations belonging to the ith block, Ii,
is called the ith block frequency and is denoted by Bi, say. Thus there
are ðnþ 1Þ block frequencies B1;B2; . . . ;Bnþ1, where
Bnþ1 ¼ m� B1 � B2 � � � � � Bn. A particularly appealing feature of the
block frequencies is their distribution-free property, summarized in
Theorem 11.2.

Theorem 11.2 When FX ¼ FY, that is, the underlying distributions are
identical, the joint distribution of B1;B2; . . . ;Bnþ1 is given by

PðB1 ¼ b1;B2 ¼ b2; . . . ;Bnþ1 ¼ bnþ1Þ ¼ 1

mþ n
n

� �
where 04 bj 4m and

Xnþ1
j¼1

bj ¼ m

In fact, one can show that when FX ¼ FY , the joint distribution of
any t of the random variables B1;B2; . . . ;Bnþ1, say B�

1;B
�
2; . . . ;B

�
t, is

given by

PðB�
1 ¼ b�

1;B
�
2 ¼ b�

2; . . . ;B
�
t ¼ b�

t Þ ¼
mþ n� b�

1 � b�
2 � � � � � b�

t

n� 1

	 

mþ n

n

� �
where 04 b�

j 4m
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For proofs of these and other related results see, for example,
Wilks (1962, pp. 442–446).

We will later discuss a number of popular nonparametric tests
based on the block frequencies. Some problems involving the block
frequencies are given at the end of this chapter.

RANKS, BLOCK FREQUENCIES, AND PLACEMENTS

The ranks of observations play a crucial role in nonparametric sta-
tistics. The rank of the ith observation Xi, in a sample of m observa-
tions, is equal to the number of observations that are less than or
equal to Xi. In other words, using the indicator function,

rankðXiÞ ¼
Xm
j¼1

IðXj 4XiÞ ¼ mSmðXiÞ

where SmðXiÞ is the edf of the sample. For the ordered observation XðiÞ,
the rank is simply equal to the index i. That is,

rankðXðiÞÞ ¼
Xm
j¼1

IðXj 4XðiÞÞ ¼ mSmðXðiÞÞ ¼ i

Thus, ranks of ordered observations in a single sample are similar to
an empirical (data-based) version of the one-sample coverages studied
earlier. We provide a functional definition of rank later in Chapter 5
and study some of its statistical properties.

When there are two samples, say m X’s and n Y’s, the rank of an
observation is often defined with respect to the combined sample of
ðmþ nÞ observations, say Z’s. In this case the rank of a particular
observation can be defined again as the number of observations (X ’s
and Y’s) less than or equal to that particular observation. A functional
definition of rank in the two sample case is given later in Chapter 7.
However, to see the connection with two-sample coverages, let us ex-
amine, for example, the rank of YðjÞ in the combined sample. Clearly
this is equal to the number of X ’s less than or equal to Yð jÞ plus j, the
number of Y’s less than or equal to Yð jÞ, so that

rankðYð jÞÞ ¼
Xm
i¼1

IðXi 4Yð jÞÞ þ j

However, Sm
i¼1IðXi 4YðjÞÞ is simply equal to r1 þ r2 þ � � � þ rj where ri is

the frequency of the ith block ðYði�1Þ;YðiÞ�, defined under two-sample
coverages. Thus we have
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rankðYðjÞÞ ¼ r1 þ r2 þ � � � þ rj þ j

and hence the rank of an ordered Y observation in the combined
sample is a simple function of the block frequencies. Also let Pð jÞ ¼
mSmðYðjÞÞ denote the number of X ’s that are less than or equal to YðjÞ.
The quantity Pð jÞ is called the placement of Yð jÞ among the X obser-
vations (Orban and Wolfe, 1982) and has been used in some non-
parametric tests. Then, PðjÞ ¼ rj � rj�1 with r0 ¼ 0 and rankðYð jÞÞ ¼
Pð jÞ þ j. This shows the connection between ranks and placements.
More details regarding the properties of placements are given as
problems.

2.12 SUMMARY

In this chapter we discussed some mathematical-statistical concepts
and properties related to the distribution function and the quantile
function of a random variable. These include order statistics, which
can be viewed as sample estimates of quantiles or percentiles of the
underlying distribution. However, other methods of estimating popu-
lation quantiles have been considered in the literature, primarily
based on linear functions of order statistics. The reader is referred to
the summary section in Chapter 5 for more details.

PROBLEMS

2.1. Let X be a nonnegative continuous random variable with cdf FX . Show that

EðXÞ ¼
Z 1

0
½1� FXðxÞ�dx

2.2. Let X be a discrete random variable taking on only positive integer values. Show
that

EðXÞ ¼
X1
i¼1

PðX 5 iÞ

2.3. Show that

Xn
x¼a

n

x

� �
pxð1� pÞn�x ¼ 1

Bða; n� aþ 1Þ
Z p

0
ya�1ð1� yÞn�a dy

for any 04p4 1. The integral on the right is called an incomplete beta integral and
written as Ipða; n� aþ 1Þ. Thus, if X is a binomial random variable with parameters n
and p, the probability that X is less than or equal to a ða ¼ 0; 1; . . . ;nÞ is

1� Ipðaþ 1; n� aÞ ¼ I1�pðn� a;aþ 1Þ
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2.4. Find the transformation to obtain, from an observation U following a uniform
ð0;1Þ distribution, an observation from each of the following continuous probability
distributions:

(a) Exponential distribution with mean 1.

(b) Beta distribution with a ¼ 2 and b ¼ 1. The probability density function is
given by

f ðxÞ ¼ 2x 0 < x < 1

(c) The logistic distribution defined by the probability density function

f ðxÞ ¼ e�ðx�aÞ=b

b½1þ e�ðx�aÞ=b�2 �1 < x < 1; �1 < a < 1;0 < b < 1

(d) The double exponential distribution defined by the probability density
function

f ðxÞ ¼ 1

2b
e�ðjx�ajÞ=b �1 < x < 1; �1 < a < 1;0 < b < 1

(e) The Cauchy distribution defined by the probability density function

f ðxÞ ¼ b

p½b2 þ ðx� aÞ2� �1 < x < 1; �1 < a < 1;0 < b < 1

2.5. Prove the probability-integral transformation (Theorem 5.1) by finding the mo-
ment-generating function of the random variable Y ¼ FX ðXÞ, where X has the con-
tinuous cumulative distribution FX and a moment-generating function that exists.

2.6. If X is a continuous random variable with probability density function
fX ðxÞ ¼ 2ð1� xÞ;0 < x < 1, find the transformation Y ¼ gðXÞ such that the random
variable Y has the uniform distribution over (0,2).

2.7. The order statistics for a random sample of size n from a discrete distribution are
defined as in the continuous case except that now we have Xð1Þ 4Xð2Þ 4 � � � 4XðnÞ.
Suppose a random sample of size 5 is taken with replacement from the discrete dis-
tribution fXðxÞ ¼ 1=6 for x ¼ 1; 2; . . . ;6. Find the probability mass function of Xð1Þ, the
smallest order statistic.

2.8. A random sample of size 3 is drawn from the population
fX ðxÞ ¼ exp½�ðx� yÞ� for x > 0. We wish to find a 95 percent confidence-interval estimate
for the parameter y. Since the maximum-likelihood estimate for y is Xð1Þ, the smallest
order statistic, a logical choice for the limits of the confidence interval would be some
functions of Xð1Þ. If the upper limit is Xð1Þ, find the corresponding lower limit gðXð1ÞÞ such
that the confidence coefficient is 0.95.

2.9. For the n-order statistics of a sample from the uniform distribution over ð0; y), show
that the interval ðXðnÞ; XðnÞ=a1=nÞ is a 100 ð1� aÞ percent confidence-interval estimate of
the parameter y.

2.10. Ten points are chosen randomly and independently on the interval (0,1).

(a) Find the probability that the point nearest 1 exceeds 0.90.

(b) Find the number c such that the probability is 0.5 that the point nearest zero
will exceed c.
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2.11. Find the expected value of the largest order statistic in a random sample of size 3
from:

(a) The exponential distribution fXðxÞ ¼ expð�xÞfor x5 0
(b) The standard normal distribution

2.12. Verify the result given in (7.1) for the distribution of the median of a sample of
size 2m from the uniform distribution over (0,1) whenm ¼ 2. Show that this distribution
is symmetric about 0.5 by writing (7.1) in the form

fUðuÞ ¼ 8ð0:5� ju� 0:5jÞ2ð1þ 4ju� 0:5jÞ 0 < u < 1

2.13. Find the mean and variance of the median of a random sample of n from the
uniform distribution over (0,1):

(a) When n is odd

(b) When n is even and U is defined as in Section 2.7.

2.14. Find the probability that the range of a random sample of size n from the po-
pulation fX ðxÞ ¼ 2e�2x for x50 does not exceed 4:

2.15. Find the distribution of the range of a random sample of size n from the ex-
ponential distribution fXðxÞ ¼ 4expð�4xÞ for x50.

2.16. Give an expression similar to (7.3) for the probability density function of the
midrange for any continuous distribution and use it to find the density function in the
case of a uniform population over (0,1).

2.17. By making the transformation U ¼ nFXðXð1ÞÞ; V ¼ n½1� FX ðXðnÞÞ� in (6.8) with
r ¼ 1, s ¼ n, for any continuous FX , show that U and V are independent random vari-
ables in the limiting case as n ! 1, so that the two extreme values of a random sample
are asymptotically independent.

2.18. Use (9.5) and (9.6) to approximate the mean and variance of:

(a) The median of a sample of size 2mþ 1 from a normal distribution with mean
m and variance a2.

(b) The fifth-order statistic of a random sample of size 19 from the exponential
distribution fX ðxÞ ¼ expð�xÞ for x5 0.
2.19. Let XðnÞ be the largest value in a sample of size n from the population fx.

ðaÞ Show that limn!1 Pðn�1XðnÞ 4 xÞ ¼ expð�a=pxÞ if fXðxÞ ¼ a=½pða2 þ x2Þ�
(Cauchy).

ðbÞ Show that limn!1 Pðn�2XðnÞ 4 xÞ ¼ expð�a
ffiffiffiffiffiffiffiffiffiffiffi
2=px

p Þ if fXðxÞ ¼
ða= ffiffiffiffiffiffi

2p
p Þx�3=2 expð�a2=2xÞ for x5 0.

2.20. Let XðrÞ be the rth-order statistic of a random sample of size n from a continuous
distribution FX .

ðaÞ Show that PðXðrÞ 4 tÞ ¼
Xn
k¼r

n

k

� �
½FXðtÞ�k½1� FX ðtÞ�n�k.

ðbÞ Verify the probability density function of XðrÞ given in (6.4) by differentiation
of the result in (a).

ðcÞ By considering PðXðrÞ > t=nÞ in the form of (a), find the asymptotic
distribution of XðrÞ for r fixed and n ! 1 if FX ðxÞ is the uniform distribution over
(0,1).
2.21. Let Xð1Þ < Xð2Þ < � � � < XðnÞ be order statistics for a random sample from the
exponential distribution FXðxÞ ¼ expð�xÞ for x50.

ðaÞ Show that XðrÞ and XðsÞ � XðrÞ are independent for any s > r.
ðbÞ Find the distribution of Xðrþ1Þ � XðrÞ.
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ðcÞ Show that EðXðiÞÞ ¼
Pi

j¼1 1=ðnþ 1� jÞ.
ðdÞ Interpret the significance of these results if the sample arose from a life test

on n light bulbs with exponential lifetimes.
2.22. Let Xð1Þ < Xð2Þ < � � � < XðnÞ denote the order statistics of a sample from a con-
tinuous unspecified distribution FX . Define the n random variables

Vi ¼
FXðXðiÞÞ

FXðXðiþ1ÞÞ
for 14 i4n� 1 and Vn ¼ FX ðXðnÞÞ

ðaÞ Find the marginal distribution of Vr;14 r4n.
ðbÞ Find the joint distribution of Vr and FXðXðr�1ÞÞ; 14 r4n� 1, and show that

they are independent.
ðcÞ Find the joint distribution of V1;V2; . . . ;Vn.
ðdÞ Show that V1;V2; . . . ;Vn are independent.
ðeÞ Show that V1;V

2
2 ;V

3
3 ; . . . ;V

n
n are independent and identically distributed with

the uniform distribution over (0,1).
2.23. Find the probability that the range of a random sample of size 3 from the uniform
distribution is less than 0.8.

2.24. Find the expected value of the range of a random sample of size 3 from the
uniform distribution.

2.25. Find the variance of the range of a random sample of size 3 from the uniform
distribution.

2.26. Let the random variable U denote the proportion of the population lying between
the two extreme values of a sample of n from some unspecified continuous population.
Find the mean and variance of U.

2.27. Suppose that a random sample of size m, X1; X2; . . . ; Xm, is available from a
continuous cdf FX and a second independent random sample of size n, Y1;Y2; . . . ;Yn, is
available from a continuous cdf FY . Let Sj be the random variable representing the
number of Y blocks I1; I2; . . . ; Inþ1 (defined in the section on two-sample coverages) that
contain exactly j observations from the X sample, j ¼ 0;1; . . . ;m.

ðaÞ Verify that S0 þ S1 þ � � � þ Sm ¼ nþ 1 and S1 þ 2S2 þ � � � þmSm ¼ m.
ðbÞ If FX ¼ FY , show that the joint distribution of S0;S1; . . . ;Sm is given by

ðnþ 1Þ!
s0!s1! � � � sm!

mþ n

n

� ��1
ðcÞ In particular show that, if FX ¼ FY , the marginal distribution of S0 is given

by
�
nþ 1
s0

��
mþ 1
n� s0

�� mþ n

n

� �
for s0 ¼ n�mþ 1;n�mþ 2; . . . ;n. (Wilks, 1962)

A simple distribution-free test for the equality of FX and FY can be based on S0, the
number of blocks that do not contain any X observation. This is the ‘‘empty block’’ test
(Wilks, 1962, pp. 446–452).

2.28. Exceedance Statistics. Let X1;X2; . . . ;Xm and Y1;Y2; . . . ;Yn be two independent
random samples from arbitrary continuous cdf ’s FX and FY , respectively, and let SmðxÞ
and SnðyÞ be the corresponding empirical cdf ’s. Consider, for example, the quantity
m½1� SmðY1Þ�, which is simply the count of the total number of X ’s that exceed (or do not
precede) Y1 and may be called an exceedance statistic. Several nonparametric tests
proposed in the literature are based on exceedance (or precedence) statistics and these
are called exceedance (or precedence) tests. We will study some of these tests later.
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Let Yð1Þ < Yð2Þ < � � � < YðnÞ be the order statistics of the Y sample. Answer parts (a)
through (h) assuming FX ¼ FY .

ðaÞ Show that SmðYiÞ; i ¼ 1; 2; . . . ;n, is uniformly distributed over the set of
points ð0;1=m;2=m; . . . ; 1Þ.

ðbÞ Show that the distribution of SmðYðjÞÞ � SmðYðkÞÞ; k < j, is the same as the
distribution of SmðYðj�kÞÞ. (Fligner and Wolfe, 1976)

ðcÞ Show that the distribution of PðiÞ ¼ mSmðYðiÞÞ is given by

P½PðiÞ ¼ j� ¼
mþ n� i� j

m� j

� �
iþ j� 1

j

� �
mþ n

n

� � j ¼ 0;1; . . . ;m

The quantity PðiÞ is the count of the number of X ’s that precede the ith-order statistic in
the Y sample and is called the ‘‘placement’’ of YðiÞ among the observations in the X
sample. Observe that PðiÞ ¼ r1 þ � � � þ ri, where ri is the ith block frequency and thus
ri ¼ PðiÞ � Pði�1Þ.

ðdÞ Show that

EðPðiÞÞ ¼ m
i

nþ 1
and varðPðiÞÞ ¼ iðn� iþ 1Þmðmþ nþ 1Þ

ðnþ 1Þ2ðnþ 2Þ
(Orban and Wolfe, 1982)

ðeÞ Let T1 be the number of X observations exceeding the largest Y observation,
that is, T1 ¼ m½1� SmðYðnÞÞ� ¼ m� PðnÞ. Show that

PðT1 ¼ tÞ ¼
mþ n� t� 1

m� t

� �
mþ n

m

� �
ðf Þ Let T2 be the number of X ’s preceding (not exceeding) the smallest Y

observation; this is, T2 ¼ mSmðYð1ÞÞ ¼ Pð1Þ. Show that the distribution of T3 ¼ T1 þ T2 is
given by

PðT3 ¼ tÞ ¼ ðtþ 1Þ
mþ n� t� 2

m� t

� �
mþ n

m

� � (Rosenbaum, 1954)

ðgÞ Let T4 be the number of X ’s in the interval I ¼ ðYðrÞ;Yðnþ1�rÞ�, where YðrÞ is
the pth sample quantile of the Y’s. The interval I is called the interquartile range of the
Y’s. Note that T4 ¼ m½SmðYðnþ1�rÞÞ � SmðYðrÞÞ�. Show that the distribution of T4 is given
by

PðT4 ¼ tÞ ¼
mþ 2r� t� 1

m� t

� �
nþ t� 2r

t

� �
mþ n

m

� � t ¼ 0; 1; . . . ;m
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ðhÞ Show that

EðT4Þ ¼ 2m

nþ 1
and varðT4Þ ¼ 2mðn� 1Þðmþ nþ 1Þ

ðnþ 1Þ2ðnþ 2Þ
(Hackl and Katzenbeisser, 1984)

The statistics T3 and T4 have been proposed as tests for H0:FX ¼ FY against the
alternative that the dispersion of FX exceeds the dispersion of FY .

2.29. Let SmðxÞ be the empirical cdf of a random sample of size m from a continuous cdf
FX . Show that for �1 < x < y < 1,

cov½SmðxÞ; SmðyÞ� ¼ FXðxÞ½1� FXðyÞ�
m

2.30. Let X1;X2; . . . ;Xn be a random sample from the exponential distribution
fX ðxÞ ¼ ð2yÞ�1e�x=2y; x5 0; y > 0, and let the ordered X ’s be denoted by
Y14Y24 � � � 4Yn. Assume that the underlying experiment is such that Y1 becomes
available first, then Y2, and so on (for example, in a life-testing study) and that the
experiment is terminated as soon as Y is observed for some specified r.

ðaÞ Show that the joint probability density function of Y1;Y2; . . . ;Yr is

ð2yÞ�r n!

ðn� rÞ!exp�
Pr

i¼1 yi þ ðn� rÞyr

2y

� �
04y14 � � � 4yr <1

ðbÞ Show that y�1½Pr
i¼1 Yi þ ðn� rÞYr� has a chi-square distribution with 2r

degrees of freedom.

2.31. A manufacturer wants to market a new brand of heat-resistant tiles which may be
used on the space shuttle. A random sample of m of these tiles is put on a test and the
heat resistance capacities of the tiles are measured. Let Xð1Þ denote the smallest of these
measurements. The manufacturer is interested in finding the probability that in a future
test (performed by, say, an independent agency) of a random sample of n of these tiles, at
least k ðk ¼ 1;2; . . . ;nÞ will have a heat resistance capacity exceeding Xð1Þ units. Assume
that the heat resistance capacities of these tiles follows a continuous distribution with
cdf F.

ðaÞ Show that the probability of interest is given byXn
r¼k

PðrÞ

where

PðrÞ ¼ mn!ðrþm� 1Þ!
r!ðnþmÞ!

ðbÞ Show that

Pðr� 1Þ
PðrÞ ¼ r

rþm� 1
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a relationship that is useful in calculating PðrÞ.
ðcÞ Show that the number of tiles n to be put on a future test such that all of the

n measurements exceed Xð1Þ with probability p is given by

n ¼ mð1� pÞ
p

2.32. Define the random variable

eðxÞ ¼ 1
0

�
if x50
if x < 0

Show that the random function defined by

FnðxÞ ¼
Xn
i¼1

eðx� XiÞ
n

is the empirical distribution function of a sample X1;X2; . . . ;Xn, by showing that

FnðxÞ ¼ SnðxÞ for all x
.
2.33. Prove that cov½SnðxÞ; SnðyÞ� ¼ c½FXðxÞ; FXðyÞ�=n where

cðs; tÞ ¼ minðs; tÞ � st ¼ sð1� tÞ
tð1� sÞ

�
if s4 t
if s5 t

and Snð:Þ is the empirical distribution function of a random sample of size n from the
population Fx.

2.34. Let SnðxÞ be the empirical distribution function for a random sample of size n from
the uniform distribution on (0,1). Define

XnðtÞ ¼
ffiffiffi
n

p jSnðtÞ � tj

ZnðtÞ ¼ ðtþ 1ÞXn
t

tþ 1

	 

for all 0 4 t4 1

Find E½XnðtÞ� and E½ZnðtÞ�; var½XnðtÞ� and var½ZnðtÞ�, and conclude that
var½XnðtÞ�4var½ZnðtÞ� for all 04 t4 1 and all n.
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The two-tailed critical region is a combination of the above with za
replaced by za=2.

Example 2.1 The recorded high temperature in a Florida resort
town for each of 10 consecutive days during the month of January
of this year is compared with the historical average high for the
same days in previous years and noted as either above historical
average (A) or below average (B). For the data A A B A B B A A A
B, test the null hypothesis of random direction of deviation from
average high temperature against the alternative of nonrandom-
ness, using level 0.05.

Solution Since the data consist of six A’s and four B’s, B will be
called the type 1 element to make n1 ¼ 4;n2 ¼ 6. The total number
of runs observed is R ¼ 6. Table D shows that PðR4 2Þ ¼ 0:010
and PðR5 9Þ ¼ 0:024, and these are the largest respective prob-
abilities that do not exceed 0.025; the rejection region is then
R4 2 or R5 9 with exact level 0.034. Our R ¼ 6 does not fall into
this region, so we do not reject the null hypothesis of randomness
at the 0.05 level.

The STATXACT solution to Example 2.1 is shown below. The
reader can verify using Table D that the exact right-tailed P value is
PðR5 6Þ ¼ 0:595 and the asymptotic P value from (2.11) with a con-
tinuity correction is PðZ5 �0:2107Þ ¼ 0:5952.
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Q ¼ 3:6010 with 3 degrees of freedom; we start out with k � 1 ¼ 5
degree of freedom and lose one for estimating y and one more for
combining the last two categories. Table B shows the 0.05 critical
value for the chi-square distribution with 3 degrees of freedom is 7.81.
Our Q ¼ 3:6010 is smaller than this value, so we cannot reject the null
hypothesis. In terms of the P value, the approximate P value is the
right-tail probability PðQ5 3:601Þ where Q follows a chi square dis-
tribution with 3 degrees of freedom. Using EXCEL, for example, the P
value is found as 0.3078. Note that using Table B, we could say that
the P value is between 0.25 and 0.50. Thus, our conclusion about the
Poisson distribution is that we cannot reject the null hypothesis.

Solution to ðbÞ The null hypothesis is that the number of defectives
in each sample of 13 follows the binomial distribution with n ¼ 13 and
p is the probability of a defective in any sample. The maximum-
likelihood estimate of p is the total number of defectives, which we
found in (a) to be 65, divided by the 50ð13Þ ¼ 650 observations, or
p ¼ 65=650 ¼ 0:1. This is the value we use in the binomial distribution
(or Table C) to find ŷ and ê ¼ 50ŷ in Table 2.2. The final result is
Q ¼ 2:9680, again with 3 degrees of freedom, so the critical value at
the 0.05 level is again 7.81. The approximate P value using EXCEL is
0.3966. Our conclusion about the binomial distribution is that we
cannot reject the null hypothesis.

This example illustrates a common result with chi-square good-
ness-of-fit tests, i.e., that each of two (or more) different null hy-
potheses may be accepted for the same data set. Obviously, the true
distribution cannot be both binomial and Poisson at the same time.
Thus, the appropriate conclusion on the basis of a chi-square
goodness-of-fit test is that we do not have enough information to dis-
tinguish between these two distributions.

Table 2.2 Calculation of Q for Example 2.1(b)

Defects f ŷ ê ð f � êÞ2=ê

0 10 0.2542 12.710 0.5778
1 24 0.3671 18.355 1.7361
2 10 0.2448 12.240 0.4099
3 4 0.0997 4.986 0.1950
4 1 0.0277 g0.0342 1.385 g1.710 0.0492
5 or more 1 0.0065 0.325

2.9680
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The STATXACT solutions to Example 2.1 are shown below. Note
that the numerical value of Q in each case agrees with the hand
calculations. Each printout shows the degrees of freedom as 4 instead
of 3 because the computer did not know that the expected frequencies
entered were calculated by estimating one parameter from the data in
each case. The P values do not agree because the degrees of freedom
are different.

4.3 THE KOLMOGOROV-SMIRNOV ONE-SAMPLE STATISTIC

In the chi-square goodness-of-fit test, the comparison between
observed and expected class frequencies is made for a set of k groups.
Only k comparisons are made even though there are n observations,
where k4n. If the n sample observations are values of a continuous
random variable, as opposed to strictly categorical data, comparisons
can be made between observed and expected cumulative relative fre-
quencies for each of the different observed values. The cumulative
distribution function of the sample or the empirical distribution
function defined in Section 2.3 is an estimate of the population cdf.
Several goodness-of-fit test statistics are functions of the deviations
between the observed cumulative distribution and the corresponding
cumulative probabilities expected under the null hypothesis. The
function of these deviations used to perform a test might be the sum of
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which is equivalent to the stated integral.
This result is tedious to evaluate as it must be used with care.

For the sake of illustration, consider n ¼ 2. For all 04 i4 3=4,

PðD2 < 1=4þ nÞ ¼ 2!

Z 1=4þn

1=4�n

Z 3=4þn

3=4�n
du2 du1

0 < u1 < u2 < 1

The limits overlap when 1=4þ n5 3=4� n, or n5 1=4 When 04 n <
1=4, we have u1 < u2 automatically. Therefore, for 04 n < 1=4,

PðD2 < 1=4þ nÞ ¼ 2

Z 1=4þn

1=4�n

Z 3=4þn

3=4�n
du2 du1 ¼ 2ð2nÞ2

But for 1=44 n4 3=4, the region of integration is as illustrated in
Figure 3.1. Dividing the integral into two pieces, we have for 1=44
n < 3=4 ,

PðD2 < 1=4þ nÞ ¼ 2

Z 1=4þn

3=4�n

Z 1

u1

du2du1þ
Z 3=4�n

0

Z 1

3=4�n
du2du1

" #
¼�2n2þ 3n� 1=8

Collecting the results for all n,

PðD2 < 1=4þ nÞ ¼
0 for n4 0

2ð2nÞ2 for 0 < n < 1=4

�2n2 þ 3n� 0:125 for 1=44 n < 3=4

1 for n5 3=4

8>><>>:

Fig. 3.1 Shaded area is region of integration for n ¼ 2.
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Corollary 3.5 If FX is any continuous distribution function, then for
every d5 0, the limiting distribution of V ¼ 4nDþ2

n , as n ! 1, is
the chi-square distribution with 2 degrees of freedom.

Proof We have Dþ
n < d=

ffiffiffi
n

p
if and only if 4nDþ2

n < 4d2 or V < 4d2.
Therefore

lim
n!1PðV < 4d2Þ ¼ lim

n!1P

	
Dþ

n < d=
ffiffiffi
n

p 

¼ 1� e�2d

2 ¼ 1� e�4d
2=2

lim
n!1PðV < cÞ ¼ 1� e�c=2 for all c > 0

The right-hand side is the cdf of a chi-square distribution with 2
degrees of freedom.

As a numerical example of how this corollary enables us to ap-
proximate Dþ

n;a, let a ¼ 0:05. Table B of the Appendix shows that 5.99
is the 0.05 critical point of chi square with 2 degrees of freedom. The
procedure is to set 4nDþ2

n;0:05 ¼ 5:99 and solve to obtain

Dþ
n;0:05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4975=n

p
¼ 1:22=

ffiffiffi
n

p

4.4 APPLICATIONS OF THE KOLMOGOROV-SMIRNOV ONE-SAMPLE

STATISTICS

The statistical use of the Kolmogorov-Smirnov statistic in a goodness-
of-fit type of problem is obvious. Assume we have the random sample
X1;X2; . . . ;Xn and the hypothesis-testing situation H0: FXðxÞ ¼ F0ðxÞ
for all x, where F0ðxÞ is a completely specified continuous distribution
function.

Since SnðxÞ is the statistical image of the population distribution
FXðxÞ, the differences between SnðxÞ and F0ðxÞ should be small for all x
except for sampling variation, if the null hypothesis is true. For the
usual two-sided goodness-of-fit alternative.

H1: FXðxÞ 6¼ F0ðxÞ for some x

large absolute values of these deviations tend to discredit the
hypothesis. Therefore, the Kolmogorov-Smirnov goodness-of-fit test
with significance level a is to reject H0 when Dn > Dn;a. From the
Glivenko-Cantelli theorem of Chapter 2, we know that SnðxÞ converges
to FXðxÞ with probability 1, which implies consistency.
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Solution Since the mean and variance are not specified, the most
appropriate test is the Lilliefors’s test. The first step is to calculate �xx
and s. From the data we get

P
x ¼ 124; 800 and

Pðx� �xxÞ2 ¼ 84;600;000
so that �xx ¼ 10;400 and s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

84;600;000=11
p ¼ 2;773:25. The corres-

ponding standard normal variable is then z ¼ ðx� 10;400Þ=2;773. The
calculations needed for Dn are shown in Table 5.1 (p. 132). We find
Dn ¼ 0:1946 and P > 0:10 for n ¼ 12 from Table O. Thus, the null
hypothesis that incomes are normally distributed is not rejected.

The following computer printouts illustrate the solution to
Example 5.1 using the SAS and MINITAB packages.

Note that both the MINITAB and SAS outputs refer to this as the
K-S test and not the Lilliefors’s test. Both calculate a modified K-S
statistic using formulas given in D’Agostino and Stephens (1986); the
results agree with ours to two decimal places. SAS also provides the
results for two other tests, called the Anderson-Darling and
the Cramér-von Mises tests (see Problem 4.14). In this particular ex-
ample, each of the tests fails to reject the null hypothesis of normality.
In MINITAB one can go from Stat to Basic Statistics to Normality Test
and the output is a graph, called Normal Probability Plot. The grid on

9,800 10,200 9,300 8,700 15,200 6,900
8,600 9,600 12,200 15,500 11,600 7,200
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printout) is shown to be greater than 0.15. Thus, as with the hand
calculations, we reach the same conclusion that there is not sufficient
evidence to reject the null hypothesis of an exponential distribution.
SAS uses internal tables that are similar to those given by D’Agostino
and Stephens (1986) to calculate the P value. Linear interpolation is
used in this table if necessary. SAS provides the values of two other
test statistics, called the Cramér-von Mises and Anderson-Darling
tests; each fails to reject the null hypothesis and the P values are
about the same.

We now redo Example 6.1 for the null hypothesis of the ex-
ponential distribution with mean specified as m ¼ 5:0. This is a simple
null hypothesis for which the original K-S test of Section 4.5 is ap-
plicable. The calculations are shown in Table 6.2 (p. 142). The K-S test
statistic is Dn ¼ 0:2687 with n ¼ 10, and we do not reject the null
hypothesis since Table F gives P > 0:200.

The SAS solution in this case is shown below. Each of the
tests fails to reject the null hypothesis and the P values are about the
same.
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Finally suppose that we want to test the hypothesis that the
population is exponential with mean m ¼ 3:0. Again, this is a simple
null hypothesis for which SAS provides three tests mentioned earlier
and all of them reject the null hypothesis. However, note the difference
in the magnitudes of the P values between the K-S test and the other
two tests.

Table 6.2 Calculations for the K-S test with m ¼ 5:0 for the data in Example 6.1

x z ¼ x/m SnðxÞ F0ðzÞ jSnðxÞ � F0ðzÞ j jSnðx� eÞ � F0ðzÞ

1.5 0.30 0.1 0.2592 0.1592 0.2592
2.3 0.46 0.2 0.3687 0.1687 0.2687
2.5 0.50 0.3 0.3935 0.0935 0.1935
4.2 0.84 0.4 0.5683 0.1683 0.2683
4.6 0.92 0.5 0.6015 0.1015 0.2015
6.5 1.30 0.6 0.7275 0.1275 0.2275
7.1 1.42 0.7 0.7583 0.0583 0.1583
8.4 1.68 0.8 0.8136 0.0136 0.1136
9.3 1.86 0.9 0.8443 0.0557 0.0443
10.4 2.08 1.0 0.8751 0.1249 0.0249
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Currently MINITAB does not provide a direct goodness-of-fit test
for the exponential distribution but it does provide some options under
a general visual approach. This is called probability plotting and is
discussed in the next section.

4.7 VISUAL ANALYSIS OF GOODNESS OF FIT

With the advent of easily available computer technology, visual
approaches to statistical data analysis have become popular. The sub-
ject is sometimes referred to as exploratory data analysis (EDA),
championed by statisticians like JohnTukey. In the context of goodness-
of-fit tests, the EDA tools employed include dot plots, histograms,
probability plots, and quantile plots. The idea is to use some graphics
to gain a quick insight into the underlying distribution and then, if
desired, carry out a follow-up analysis with a formal confirmatory test
such as any of the tests covered earlier in this chapter. Dot plots and
histograms are valuable exploratory tools and are discussed in almost
all statistics books but the subject of probability and quantile plots is
seldom covered, even though one of the key papers on the subject was
published in the 1960s [Wilk and Gnanadesikan (1968)]. In this section
we will present a brief discussion of these two topics. Fisher (1983)
provided a good review of many graphical methods used in nonpara-
metricstatisticsalongwithextensivereferences.Notethattherearetwo-
sample versions of each of these plots butwe do not cover that topic here.
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In what follows we distinguish between the theoretical and the
empirical versions of a plot. The theoretical version is presented to
understand the idea but the empirical version is the one that is
implemented in practice. When there is no chance of confusion, the
empirical plot is referred to as simply the plot.

Two types of plots are popular in practice. The first is the so-
called probability plot, which is actually a probability versus prob-
ability plot, or a P-P plot. This plot is also called a percent-percent plot,
for obvious reasons. In general terms, the theoretical P-P plot is the
graph of a cdf FðxÞ versus a cdf GðxÞ for all values of x. Since the cdf ’s
are probabilities, the P-P plot is conveniently confined to the unit
square. If the two cdfs are identical, the theoretical P-P plot will be the
main diagonal, the 45 degree line through the origin.

The second type of plot is the so-called quantile plot, which is
actually a quantile versus quantile plot, or a Q-Q plot. The theoretical
Q-Q plot is the graph of the quantiles of a cdf F versus the corre-
sponding quantiles of a cdf G, that is, the graph ½F�1ðpÞ;G�1ðpÞ� for
0 < p < 1. If the two cdf ’s are identical, the theoretical Q-Q plot will
be the main diagonal, the 45-degree line through the origin. If
FðxÞ ¼ G x�m

s

 �
, it is easily seen that F�1ðpÞ ¼ mþ sG�1ðpÞ, so that the

pth quantiles of F and G have a linear relationship. Thus, if two dis-
tributions differ only in location and=or scale, the theoretical Q-Q plot
will be a straight line with slope s and intercept m.

In a goodness-of-fit problem, there is usually a specified target
cdf, say F0. Then the theoretical Q-Q plot is the plot ½F�1

0 ðpÞ;F�1
X ðpÞ�;

0 < p < 1. Since FX is unknown, we can estimate it with the em-
pirical cdf based on a random sample of size n, say Sn. Noting that
the function Sn jumps only at the ordered values XðiÞ, the empirical
Q-Q plot is simply the plot of F�1

0 ði=nÞ on the horizontal axis versus
S�1

n ði=nÞ ¼ XðiÞ on the vertical axis, for i ¼ 1; 2; . . . ;n. As noted before,
F0 is usually taken to be the standardized form of the hypothesized
cdf, so that to establish the Q-Q plot (location and=or scale), under-
lying parameters do not need to be specified. This is one advantage of
the Q-Q plot. The quantities ai ¼ i=n are called plotting positions. At
i ¼ n, there is a problem since an ¼ F�1

0 ð1Þ ¼ 1; modified plotting
positions have been considered, with various objectives. One simple
choice is ai ¼ i� 0:5=n; other choices include ai ¼ i=nþ 1 and
ai ¼ ði� 0:375Þ=n þ 0:25, the latter being highly recommended by
Blom (1958). We found that many statistical software package graph
F�1
0 ði� 0:375Þ=ðnþ 0:25ð ÞÞ; XðiÞ

� $
as the empirical Q-Q plot. For a

given standardized cdf F0, the goodness-of-fit null hypothesis FX ¼ F0
is not rejected if this plot is approximately a straight line through
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the origin. Departures from this line suggest the types of differences
that could exist between FX and F0. For example, if the plot re-
sembles a straight line but with a nonzero intercept or with a slope
other than 45 degrees, a location-scale model is indicated. This
means FX belongs to the specified family of distributions but the
location and the scale parameters of FX , namely m and s, are dif-
ferent from the standard values. When the empirical Q-Q plot is
reasonably linear, the slope and the intercept of the plot can be used
to estimate the scale and location parameter, respectively. When F0 is
taken to be the standard normal distribution, the Q-Q plot is called a
normal probability plot. When F0 is taken to be the standard ex-
ponential distribution ðmean ¼ 1Þ, the Q-Q plot is called an ex-
ponential probability plot.

In summary, either the empirical P-P or Q-Q plot can be used
as an informal tool for the goodness-of-fit problem but the Q-Q plot
is more popular. If the plots appear to be close to the 45 degree
straight line through the origin, the null hypothesis FX ¼ F0 is
tentatively accepted. If the Q-Q plot is close to some other straight
line, then FX is likely to be in the hypothesized location-scale family
(as F0) and the unknown parameters can be estimated from the
plot. For example, if a straight line is fitted to the empirical Q-Q
plot, the slope and the intercept of the line would estimate the
unknown scale and the location parameter, respectively; then the
estimated distribution is bFX ¼ F0

x�intercept
slope

� �
. An advantage of the Q-

Q plot is that the underlying parameters do not need to be specified
since F0 is usually taken to be the standard distribution in a family
of distributions. By contrast, the construction of a P-P plot requires
specification of the underlying parameters, so that the theoretical
cdf can be evaluated at the ordered data values. The P-P plot is
more sensitive to the differences in the middle part of the two
distributions (the data distribution and the hypothesized distribu-
tion), whereas the Q-Q plot is more sensitive to the differences in
the tails of the two distributions.

One potential issue with using plots in goodness-of-fit problems is
that the interpretation of a plot, with respect to linearity or near lin-
earity, is bound to be somewhat subjective. Usually a lot of experience
is necessary to make the judgment with a reasonable degree of con-
fidence. To make such an assessment more objective, several proposals
have been made. One is based on the ‘‘correlation coefficient’’ between
the x and y coordinates; see Ryan and Joiner (1976) for a test in the
context of a normal probability plot. For more details, see D’Agostino
and Stephens (1986, Chap. 5).
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Example 7.1 For the sample data given in Example 6.1 using
ai ¼ ði� 0:375Þ=ðn þ 0:25Þ, the calculations for a normal and
exponential Q-Q plots are shown in Table 7.1. The two Q-Q plots are
plotted in EXCEL and are shown in Figures 7.1 and 7.2. In each case a
least-squares line is fitted to the plot. The slope and the intercept of

Table 7.1 Calculations for normal and exponential Q-Q plot for data in Example 6.1

Ordered
data
y i

Plotpos
ai ¼ i�:375

10:25

Standard
normal quantiles

F�1ðaiÞ

Standard exponential
quantiles
� lnð1� aiÞ

1.5 1 0.060976 �1.54664 0.062914
2.3 2 0.158537 �1.00049 0.172613
2.5 3 0.256098 �0.65542 0.295845
4.2 4 0.353659 �0.37546 0.436427
4.6 5 0.451220 �0.12258 0.600057
4.5 6 0.548780 0.12258 0.795801
7.1 7 0.646341 0.37546 1.039423
8.4 8 0.743902 0.65542 1.362197
9.3 9 0.841463 1.00049 1.841770
10.4 10 0.939024 1.54664 2.797281

Fig. 7.1 Normal Q-Q plot for Example 7.1.
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4.9. Prove that

D�
n ¼ max max

14 i4n
FX ðXðiÞÞ � i� 1

n

� �
;0

� �
4.10. Prove that the probability distribution of D�

n is identical to the distribution of D
þ
n :

(a) Using a derivation analogous to Theorem 3.4
(b) Using a symmetry argument

4.11. Using Theorem 3.3, verify that

lim
n!1P Dn > 1:07=

ffiffiffi
n

p � ¼ 0:20

4.12. Find the minimum sample size n required such that PðDn < 0:05Þ50:99.

4.13. Use Theorem 3.4 to verify directly that PðDþ
5 > 0:447Þ ¼ 0:10. Calculate this

same probability using the expression given in (3.5).

4.14. Related goodness-of-fit test. The Cramér-von Mises type of statistic is defined for
continuous FXðxÞ by

o2n ¼
Z 1

�1
½SnðxÞ � FXðxÞ�2fXðxÞdx

(a) Prove that o2n is distribution free.
(b) Explain how o2n might be used for a goodness-of-fit test.
(c) Show that

no2n ¼ 1

12n
þ
Xn
i¼1

FX XðiÞ � 2i� 1

n

	 
� �2
This statistic is discussed in Cramér (1928), von Mises (1931), Smirnov (1936), and
Darling (1957).

4.15. Suppose we want to estimate the cumulative distribution function of a con-
tinuous population using the empirical distribution function such that the probability is
0.90 that the error of the estimate does not exceed 0.25 anywhere. How large a sample
size is needed?

4.16. If we wish to estimate a cumulative distribution within 0.20 units with prob-
ability 0.95, how large should n be?

4.17. A random sample of size 13 is drawn from an unknown continuous population
FXðxÞ, with the following results after array:

3:5;4:1; 4:8; 5:0; 6:3;7:1;7:2;7:8;8:1; 8:4; 8:6; 9:0

A 90% confidence band is desired for FXðxÞ. Plot a graph of the empirical distribution
function SnðxÞ and resulting confidence bands.
4.18. In a vibration study, a random sample of 15 airplane components were subjected
to severe vibrations until they showed structural failures. The data given are failure
times in minutes. Test the null hypothesis that these observations can be regarded as a
sample from the exponential population with density function f ðxÞ ¼ e�x=10=10 for x5 0.
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Be brief but specific about which statistical procedure to use and why it is preferred and
outline the steps in the procedure.

4.29. Compare and contrast the chi-square and Kolmogorov-Smirnov goodness-of-fit
procedures.

4.30. For the data x : 1:0;2:3;4:2;7:1; 10:4, use the most appropriate procedure to test
the null hypothesis that the distribution is

(a) Exponential F0ðxÞ ¼ 1� e�lx (estimate l by 1=�x)
(b) Normal

In each part, carry the parameter estimates to the nearest hundredth and the dis-
tribution estimates to the nearest ten thousandth.

4.31. A statistics professor claims that the distribution of final grades from A to F in a
particular course invariably is in the ratio 1:3:4:1:1. The final grades this year are 26 A’s,
50 B’s, 80 C’s, 35 D’s, and 10 F’s. Do these results refute the professor’s claim?

4.32. The design department has proposed three different package designs for the
company’s product; the marketing manager claims that the first design will be twice as
popular as the second design and that the second design will be three times as popular as
the third design. In a market test with 213 persons, 111 preferred the first design, 62
preferred the second design, and the remainder preferred the third design. Are these
results consistent with the marketing manager’s claim?

4.33. A quality control engineer has taken 50 samples, each of size 13, from a pro-
duction process. The numbers of defectives are recorded below.

(a) Test the null hypothesis that the number of defectives follows a Poisson
distribution.

(b) Test the null hypothesis that the number of defectives follows a binomial
distribution.

(c) Comment on your answers in (a) and (b).

4.34. Ten students take a test and their scores (out of 100) are as follows:

95; 80;40;52;60; 80; 82;58;65;50

Test the null hypothesis that the cumulative distribution function of the proportion of
right answers a student gets on the test is

F0ðxÞ ¼
0 x < 1
x2ð3� 2xÞ 04 x4 1
1 x > 1

(

Number of defects Sample frequency

0 9
1 26
2 9
3 4
4 1
5 1
6 or more 0
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5
One-Sample and Paired-Sample
Procedures

5.1 INTRODUCTION

In the general one-sample problem, the available data consist of a
single set of observations, usually a random sample, from a cdf FX on
which inferences can be based regarding some aspect of FX . The tests
for randomness in Chapter 3 relate to inferences about a property of
the joint probability distribution of a set of sample observations which
are identically distributed but possibly dependent, i.e., the probability
distribution of the data. The hypothesis in a goodness-of-fit study in
Chapter 4 is concerned with the univariate population distribution
from which a set of independent variables is drawn. These hypotheses
are so general that no analogous counterparts exist within the realm
of parametric statistics. Thus these problems are more suitable to be
viewed under nonparametric procedures. In a classical one-sample
inference problem, the single-sample data are used to obtain infor-
mation about some particular aspect of the population distribution,
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usually one or more of its parameters. Nonparametric techniques are
useful here too, particularly when a location parameter is of interest.

In this chapter we shall be concerned with the nonparametric
analog of the normal-theory test (variance known) or Student’s
t test (variance unknown) for the hypotheses H0: m ¼ m0 and
H0: mX � mY ¼ mD ¼ m0 for the one-sample and paired-sample pro-
blems, respectively. The classical tests are derived under the as-
sumption that the single population or the population of differences
of pairs is normal. For the nonparametric tests, however, only certain
continuity assumptions about the populations need to be postulated
to determine sampling distributions of the test statistics. The hy-
potheses here are concerned with the median or some other quantile
rather than the mean as the location parameter, but both the mean
and the median are good indexes of central tendency and they do
coincide for symmetric populations. In any population, the median
always exists (which is not true for the mean) and it is more robust
as an estimate of location. The procedures covered here include
confidence intervals and tests of hypotheses about any specified
quantile. The case of the median is treated separately and the pop-
ular sign test and the Wilcoxon signed-rank test, including both
hypothesis testing and confidence interval techniques, are presented.
The complete discussion in each case will be given only for the single-
sample case, since with paired-sample data once the differences of
observations are formed, we have essentially only a single sample
drawn from the population of differences and thus the methods of
analysis are identical.

We also introduce rank-order statistics and present a measure of
the relationship between ranks and variate values.

5.2 CONFIDENCE INTERVAL FOR A POPULATION QUANTILE

Recall from Chapter 2 that a quantile of a continuous random variable
X is a real number that divides the area under the probability density
function into two parts of specified amounts. Only the area to the left
of the number need be specified since the entire area is equal to 1. Let
FX be the underlying cdf and let kp, for all 0 < p < 1, denote the pth
quantile, or the 100pth percentile, or the quantile of order p of FX .
Thus, kp is defined to be any real number which is a solution to the
equation FXðkpÞ ¼ p, and in terms of the quantile function,
kp ¼ QXðpÞ ¼ F�1

X ðpÞ. We shall assume here that a unique solution
(inverse) exists, as would be the case for a strictly increasing function
FX . Note that kp is a parameter of the population FX , and to emphasize
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this point we use the Greek letter kp instead of the Latin letter QXð pÞ
used before in Chapter 2. For example, k0:50 is the median of the dis-
tribution, a measure of central tendency.

First we consider the problem where a confidence interval esti-
mate of the parameter kp is desired for some specified value of p, given
a random sample X1;X2; . . . ;Xn from the cdf FX . As discussed in
Chapter 2, a natural point estimate of kp would be the pth sample
quantile, which is the ðnpÞth-order statistic, provided of course that np
is an integer. For example, since 100p percent of the population values
are less than or equal to the pth population quantile, the estimate of kp

is that value from a random sample such that 100p percent of the
sample values are less than or equal to it. We define XðrÞ to be the pth
sample quantile where r is defined by

r ¼ np if np is an integer
½npþ 1� if np is not an integer

�
and [x] denotes the largest integer not exceeding x. This is just a
convention adopted so that we can handle situations where np is not
an integer. Other conventions are sometimes adopted. In our case, the
pth sample quantile QXð pÞ is equal to XðnpÞ if np is an integer, and
Xð½npþ1�Þ if np is not an integer.

A point estimate is not sufficient for inference purposes. We know
from Theorem 10.1 of Chapter 2 that the rth-order statistic is a con-
sistent estimator of the pth quantile of a distribution when n ! 1 and
r=n ! p. However, consistency is only a large-sample property. We
would like a procedure for interval estimation of kp which will enable
us to attach a confidence coefficient to our estimate for the given (fi-
nite) sample size. A logical choice for the confidence interval endpoints
are two order statistics, say XðrÞ and XðsÞ; r < s, from the random
sample drawn from the population FX . To find the 100ð1� aÞ% con-
fidence interval, we must then find the two integers r and
s; 14 r < s4n, such that

PðXðrÞ < kp < XðsÞÞ ¼ 1� a

for some given number 0 < a < 1. The quantity 1� a, which we fre-
quently denote by g, is called the confidence level or the confidence
coefficient. Now the event XðrÞ < kp occurs if and only if either
XðrÞ < kp < XðsÞ or kp > XðsÞ, and these latter two events are clearly
mutually exclusive. Therefore, for all r < s,

PðXðrÞ < kpÞ ¼ PðXðrÞ < kp < XðsÞÞ þ Pðkp > XðsÞÞ
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or, equivalently,

PðXðrÞ < kp < XðsÞÞ ¼ PðXðrÞ < kpÞ � PðXðsÞ < kpÞ ð2:1Þ
Since we assumed that FX is a strictly increasing function,

XðrÞ < kp if and only if FXðXðrÞÞ < FXðkpÞ ¼ p

But when FX is continuous, the PIT implies that the probability dis-
tribution of the random variable FXðXðrÞÞ is the same as that of UðrÞ,
the rth-order statistic from the uniform distribution over the interval
(0,1). Further, since FXðkpÞ ¼ p by the definition of kp, we have

PðXðrÞ < kpÞ ¼ P½FXðXðrÞÞ < p�

¼
Z p

0

n!

ðr� 1Þ!ðn� rÞ! x
r�1ð1� xÞn�r dx ð2:2Þ

Thus, while the distribution of the rth-order statistic depends on the
population distribution FX , the probability in (2.2) does not. A con-
fidence-interval procedure based on (2.1) is therefore distribution free.

In order to find the interval estimate of kp, substitution of (2.2)
back into (2.1) indicates that r and s should be chosen such thatZ p

0

n
n� 1

r� 1

	 

xr�1ð1� xÞn�r dx

�
Z p

0

n
n� 1

s� 1

	 

xs�1ð1� xÞn�s dx ¼ 1� a ð2:3Þ

Clearly, this one equation will not give a unique solution for the two
unknowns, r and s, and additional conditions are needed. For example,
if we want the narrowest possible interval for a fixed confidence
coefficient, r and s should be chosen such that (2.3) is satisfied and
XðsÞ � XðrÞ, or E½XðsÞ � XðrÞ�, is as small as possible. Alternatively, we
could minimize s� r.

The integrals in (2.2) or (2.3) can be evaluated by integration
by parts or by using tables of the incomplete beta function. However,
(2.2) can be expressed in another form after integration by parts as
follows:

PðXðrÞ < kpÞ¼
Z p

0

n
n�1
r�1

	 

xr�1ð1�xÞn�r dx

¼n
n�1
r�1

	 

xr

r
ð1�xÞn�r

���p
0
þn� r

r

Z p

0

xrð1�xÞn�r�1dx

� �
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¼ n

r

	 

prð1� pÞn�r þ n

n � 1

r

	 

xrþ1

rþ 1
ð1� xÞn�r�1

���p
0

�
þ n � r� 1

rþ 1

	 
Z p

0

xrþ1ð1� xÞn�r�2 dx

�
¼ n

r

	 

prð1� pÞn�r þ n

rþ 1

	 

prþ1ð1� pÞn�r�1

þ n
n� 1

rþ 1

	 
Z p

0

xrþ1ð1� xÞn�r�2 dx

After repeating this integration by parts n� r times, the result
will be

n

r

	 

prð1� pÞn�r þ n

rþ 1

	 

prþ1ð1� pÞn�r�1 þ � � �

þ n

n� 1

	 

pn�1ð1� pÞ þ n

n� 1

n� 1

	 
Z p

0

xn�1ð1� xÞ0 dx

¼
Xn�r

j¼0

n

rþ j

	 

prþjð1� pÞn�r�j

or, after substituting rþ j ¼ i,

PðXðrÞ < kpÞ ¼
Xn
i¼r

n
i

	 

pið1� pÞn�i ð2:4Þ

In this final form, the integral in (2.2) is expressed as the sum of
the last n � rþ 1 terms of the binomial distribution with parameters
n and p. Thus, the probability in (2.1) can be expressed as

PðXðrÞ < kp < XðsÞÞ ¼
Xn
i¼r

n

i

	 

pið1� pÞn�i �

Xn
i¼s

n

i

	 

pið1� pÞn�i

¼
Xs�1
i¼r

n

i

	 

pið1� pÞn�i

¼ Pðr4K 4 s� 1Þ ð2:5Þ

where K has a binomial distribution with parameters n and p. This
form is probably the easiest to use in choosing r and s such that s� r
is a minimum for fixed a. Note that from (2.5) it is clear that this
probability does not depend on the underlying cdf as long as it is
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continuous. The resulting confidence interval is therefore distribution
free.

In order to find the confidence interval for kp based on two-order
statistics, the right-hand side of (2.5) is set equal to 1� a and the
search for r and s is begun. Because of the discreteness of the binomial
distribution, the exact nominal confidence level frequently cannot be
achieved. In such cases, the confidence level requirement can be
changed from ‘‘equal to’’ to ‘‘at least equal to’’ 1� a. We usually let
g5 1� a denote the exact confidence level.

The result obtained in (2.4) found by integration of (2.2) can also
be obtained by arguing as follows. This argument, based on simple
counting, is used frequently in the context of various nonparametric
procedures where order statistics are involved. Note that for any p, the
event XðrÞ < kp occurs if and only if at least r of the n sample values,
X1;X2; . . . ;Xn, are less than kp. Thus

PðXðrÞ < kpÞ ¼ Pðexactly r of the n observations are < kpÞ
þ Pðexactly ðrþ 1Þ of the n observations
are < kpÞ þ � � �

þ Pðexactly n of the n observations are < kpÞ
In other words,

PðXðrÞ < kpÞ ¼
Xn
i¼r

Pðexactly i of the n observations are < kpÞ

This is a key observation. Now, the probability that exactly i of
the n observations are less than kp can be found as the probability of i
successes in n independent Bernoulli trials, since the sample ob-
servations are all independent and each observation can be classified
either as a success or a failure, where a success is defined as any ob-
servation being less than kp. The probability of a success is
PðXi < kpÞ ¼ p. Thus, the required probability is given by the binomial
probability with parameters n and p. In other words,

Pðexactly i of the n sample values are < kpÞ ¼ n
i

	 

pið1� pÞn�i

and therefore

PðXðrÞ < kpÞ ¼
Xn
i¼r

n
i

	 

pið1� pÞn�i

This completes the proof.
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In summary, the ð1� aÞ100% confidence interval for the pth
quantile is given by ðXðrÞ;XðsÞÞ, where r and s are integers such that
14 r < s4n and

PðXðrÞ < kp < XðsÞÞ ¼
Xs�1
i¼r

n
i

	 

pið1� pÞn�i 5 1� a ð2:6Þ

As indicated earlier, without a second condition, the confidence
interval endpoints will not be unique. One common approach in this
case is to assign the probability a=2 in each (right and left) tail. This
yields the so-called ‘‘equal-tails’’ interval, where r and s are the largest
and smallest integers ð14 r < s4nÞ respectively such that

Xr�1
i¼0

n
i

	 

pið1� pÞn�i 4

a
2

and
Xs�1
i¼0

n
i

	 

pið1� pÞn�i 5 1� a

2

ð2:7Þ
respectively. These equations are easy to use in conjunction with
Table C of the Appendix, where cumulative binomial probabilities are
given. The exact confidence level is found from Table C as

Xs�1
i¼r

n

i

	 

pið1� pÞn�i

¼
Xs�1
i¼0

n

i

	 

pið1� pÞn�i �

Xr�1
i¼0

n

i

	 

pið1� pÞn�i ¼ g ð2:8Þ

If the sample size is larger than 20 and therefore beyond the
range of Table C, we can use the normal approximation to the binomial
distribution with a continuity correction. The solutions are

r ¼ npþ 0:5� za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
and s ¼ npþ 0:5þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p ð2:9Þ

where za=2 satisfies Fðza=2Þ ¼ 1� a=2, as defined in Chapter 3. We
round the result in (2.9) down to the nearest integer for r and round up
for s in order to be conservative (or to make the confidence level at
least 1� a).

Example 2.1 Suppose n ¼ 10;p ¼ 0:35, and 1� a ¼ 0:95. Using (2.7)
with Table C shows that r� 1 ¼ 0 and s� 1 ¼ 7, making r ¼ 1 and
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s ¼ 8. The confidence interval for the 0.35th quantile is ðXð1Þ;Xð8ÞÞ with
exact confidence level from (2.8) equal to 0:9952� 0:0135 ¼ 0:9817.
The normal approximation gives r ¼ 1 and s ¼ 7 with approximate
confidence level 0.95.

Now suppose that n ¼ 10;p ¼ 0:10, and 1� a ¼ 0:95. Table C
shows that s� 1 ¼ 3 and no value of r� 1 satisfies the left-hand con-
dition of (2.7) so we take the smallest possible value r� 1 ¼ 0. The
confidence interval for the 0.10th quantile is then ðXð1Þ;Xð4ÞÞ with ex-
act confidence 0:9872� 0 ¼ 0:9872.

Another possibility is to find those values of r and s such that
s� r is a minimum. This requires a trial-and-error solution in making
(2.8) at least 1� a. In the two situations described in Example 2.1, this
approach yields the same values of r and s as the equal-tails approach.
But if n ¼ 11;p ¼ 0:25 and 1� a ¼ 0:95, (2.7) gives r ¼ 0 and s ¼ 7
with exact confidence coefficient 0.9924 from (2.8). The values of r and
s that make s� r as small as possible and make (2.8) at least 0.95 are
r ¼ 0 and s ¼ 6, with exact confidence coefficient 0.9657. The reader
can verify these results.

5.3 HYPOTHESIS TESTING FOR A POPULATION QUANTILE

In a hypothesis testing type of inference concerned with quantiles, a
distribution-free procedure is also possible. Given the order statistics
Xð1Þ < Xð2Þ < � � � < XðnÞ from any unspecified but continuous distribu-
tion FX , a null hypothesis concerning the value of the pth quantile is
written

H0: kp ¼ k0p

where k0p and p are both specified numbers. Under H0, since k0p is the
pth quantile of FX , we have, by definition, PðX 4 k0pÞ ¼ p and therefore
we expect about np of the sample observations to be smaller than k0p if
H0 is true. If the actual number of sample observations smaller than
k0p is considerably smaller than np, the data suggest that the true pth
quantile is larger than k0p or there is evidence againstH0 in favor of the
one-sided upper-tailed alternative

H1: kp > k0p

This implies it is reasonable to reject H0 in favor of H1 if at most r� 1
sample observations are smaller than k0p, for some r. Now if at most
r� 1 sample observations are smaller than k0p, then it must be true
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that the rth-order statistic XðrÞ in the sample satisfies XðrÞ > k0p.
Therefore an appropriate rejection region R is

XðrÞ 2 R for XðrÞ > k0p ð3:1Þ
For a specified significance level a, the integer r should be chosen such
that

PðXðrÞ > k0p jH0Þ ¼ 1� PðXðrÞ 4 k0p j H0Þ4 a

or, using (2.4), r is the largest integer such that

1�
Xn
i¼r

n
i

	 

pið1� pÞn�i ¼

Xr�1
i¼0

n
i

	 

pið1� pÞn�i 4 a ð3:2Þ

We now express the rejection region in another form in order to
be consistent with our later presentation in Section 5.4 for the sign
test. Note that XðrÞ > k0p if and only if at most r� 1 of the observations
are less than k0p, so that at least n� ðr� 1Þ ¼ n� rþ 1 of the ob-
servations are greater than k0p. Define the random variable K as the
total number of plus signs among the n differences XðiÞ � k0p (the
number of positive differences). Then the rejection region in (3.1) can
be equivalent stated as

K 2 R for K 5n� rþ 1

The differences Xi � k0p; i ¼ 1; 2; . . . ;n, are independent random vari-
ables, each having either a plus or a minus sign, and the probability of
a plus sign under H0 is

PðXi � k0p > 0Þ ¼ PðXi > k0pÞ ¼ 1� p

Hence, since K is the number of plus signs, we can write
K ¼Pn

i¼1IðXi > k0pÞ where IðAÞ ¼ 1 when the event A occurs and is 0
otherwise. From the preceding discussion, the indicator variables
IðXi > k0pÞ; i ¼ 1; 2; . . . ;n, are independent Bernoulli random variables
with probability of success 1� p under H0. Thus under H0, the dis-
tribution of K is binomial with parameters n and 1� p and so r must
be chosen to satisfy

PðK 5n� rþ 1jH0Þ ¼
Xn

i¼n�rþ1

n
i

	 

ð1� pÞipn�i 4 a ð3:3Þ

which can be shown to agree with the statement in (3.2), by a change
of summation index from i to n� i. The advantage of using (3.2) is that
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cumulative binomial probabilities are directly involved and these are
given in Table C.

On the other hand, if many more than np observations are
smaller than k0p, there is support against H0 in favor of the one-sided
lower-tailed alternative H1: kp < k0p. Then we should reject H0 if the
number of sample observations smaller than k0p is at least, say s. This
leads to the rejection region

XðsÞ 2R for XðsÞ < k0p

but this is equivalent to saying that the number of observations larger
than k0p must be at most n � s. Thus, based on the statistic K , defined
before as the number of positive differences, the appropriate rejection
region for the one-sided lower-tailed alternative H1: kp < k0p is

K 2R for K 4n � s

where s is the largest integer such that

PðK 4n� sjH0Þ ¼
Xn�s

i¼0

n
i

	 

ð1� pÞipn�i 4 a ð3:4Þ

For the two-sided alternative H1: kp 6¼ k0p, the rejection region
consists of the union of the two pieces specified above,

K 2R for K 4n � s or K 5n� rþ 1 ð3:5Þ
where r and s are integers such that each of (3.2) and (3.4) is less than
or equal to a=2.

Note that Table C can be used to find the exact critical values for
n4 20, where y ¼ p in (3.2) and y ¼ 1� p in (3.4). For example sizes
larger than 20 the normal approximation to the binomial distribution
with a continuity correction can be used. The rejection region for
H1: kp > k0p is

K 5 0:5þ nð1� pÞ þ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
For H1: kp < k0p, the rejection region is

K 4 � 0:5þ nð1� pÞ � za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
The rejection region for H1: kp 6¼ k0p is the combination of these two
with za replaced by za=2. Note that in all these formulas the standard
normal deviate, say zb, is such that the area to the right is b; in other
words, zb is the 100ð1� bÞth percentile [or the ð1� bÞth quantile] of
the standard normal distribution.
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Table 3.1 (p. 167) summarizes the appropriate rejection regions
for the quantile test and the corresponding P values, both exact and
approximate, where K0 is the observed value of the statistic K, the
number of positive differences.

Example 3.1 The Educational Testing Service reports that the 75th
percentile for scores on the quantitative portion of the Graduate Re-
cord Examination (GRE) is 693 in a certain year. A random sample of
15 first-year graduate students majoring in statistics report their GRE
quantitative scores as 690, 750, 680, 700, 660, 710, 720, 730, 650, 670,
740, 730, 660, 750, and 690. Are the scores of students majoring in
statistics consistent with the 75th percentile value for this year?

Solution The question in this example can be answered either by a
hypothesis testing or a confidence interval approach. We illustrate
both approaches at the 0.05 level. Here we are interested in the 0.75th
quantile (the third quartile) so that p ¼ 0:75, and the hypothesized
value of the 0.75th quantile, k00:75, is 693. Thus, the null hypothesis
H0: k0:75 ¼ 693 is to be tested against a two-sided alternative
H1: k0:75 6¼ 693. The value of the test statistic is K ¼ 8, since there are
eight positive differences among Xi � 693, and the two-sided rejection
region is K 2 R for K 4n� s or K 5n� rþ 1, where r and s are the
largest integers that satisfy (3.2) and (3.4) with a=2 ¼ 0:025. For
n ¼ 15;p ¼ 0:75, Table C shows that 0.0173 is the largest left-tail
probability that does not exceed 0.025, so r� 1 ¼ 7 and hence r ¼ 8;
similarly, 0.0134 is the largest left-tail probability that does not exceed
0.025 for n ¼ 15 and 1� p ¼ 0:25 (note the change in the success
probability) so that n� s ¼ 0 and s ¼ 15. The two-sided critical region
then is K 4 0 or K 5 8, and the exact significance level for this dis-
tribution-free test is (0.0134þ 0.0173) = 0.0307. Since the observed
K ¼ 8 falls in this rejection region, there is evidence that for this year,
the scores for the graduate majors in statistics are not consistent with
the reported 75th percentile for all students in this year.

In order to find the P value, note that the alternative is two-sided
and so we need to find the two one-tailed probabilities first. Using
Table C with n ¼ 15 and y ¼ 0:25 we find PðK 4 8jH0Þ ¼ 0:9958 and
PðK 5 8jH0Þ ¼ 1� 0:9827 ¼ 0:0173. Taking the smaller of these two
values and multiplying by 2, the required P value is 0.0346, which also
suggests rejecting the null hypothesis.

In order to find a 95% confidence interval for k0:75, we use
(2.7). For the lower index r, the inequality on the left applies. From
Table C with n¼ 15 and y¼ 0.75, the largest value of x such that
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Table 3.1 Hypothesis testing guide for quantiles

Alternative Rejection region P value

Exact Exact
kp > k0p XðrÞ > k0p

or

K 5n� rþ 1;

r from ð3:2Þ

PU ¼
Xn
k¼KO

n

k

 !
ð1� pÞkpn�k

Approximate Approximate

K 5 0:5þ nð1� pÞ
þ za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� pÞp

p P�
U¼1�F

K0�0:5�nð1�pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1�pÞp !

Exact Exact
kp > k0p XðsÞ < k0p

or

K 4n� s;

s from ð3:4Þ

PL ¼
XKO

k¼0

n

k

 !
ð1� pÞkpn�k

Approximate Approximate

K 4 � 0:5þ nð1� pÞ
� za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� pÞp

p P�
L ¼ F

K0 þ 0:5� nð1� pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp !

Exact Exact
kp 6¼ k0p XðrÞ > k0p or XðsÞ < k0p

or

K 5n� rþ 1 or K 4n� s;

r and s from ð3:5Þ

2 min (PU, PL)

Approximate Approximate

K 5 0:5þ nð1� pÞ
þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� pÞp

p
or

K 4 � 0:5þ nð1� pÞ
� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� pÞp

p

2 min ðP�
U ;P

�
LÞ
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the cumulative probability is less than or equal to 0.025 is 7, which
yields r¼ 8 with corresponding probability 0.0173. For the upper
index s, the inequality on the right in (2.7) applies, again with
n¼ 15 and y¼ 0.75. From Table C, the smallest value of x such that
the cumulative probability is greater than or equal to 0.975 is 14, so
that s¼ 15 with corresponding probability 0.9866. The desired 95%
confidence interval endpoints are X(8) and X(15) which are 700 and
750, respectively. The exact confidence level using (2.8) is
g¼ 0.9866� 0.0173¼ 0.9693. Thus we have at least 95% confidence,
or exactly 96.93% confidence, that the 75th percentile (or the 0.75th
quantile) score of students majoring in statistics lies somewhere
between 700 and 750. Note that, on the basis of this confidence
interval we would again reject H0: k0:75 ¼ 693 in favor of the alter-
native H1: k0:75 6¼ 693, since the hypothesized value of the 75th
percentile lies outside of the confidence interval.

One of the special quantiles of a distribution is the median (the
0.5th quantile or the 50th percentile). The median is an important and
useful parameter in many situations, particularly when the under-
lying distribution is skewed. This is mainly because the median is a far
more robust estimate of the center of a distribution than the mean.
Quantile tests and confidence intervals discussed earlier can both be
applied to the case of the median with p ¼ 0:5: However, because of its
special importance, the case for the median is treated separately in the
next section.

5.4 THE SIGN TEST AND CONFIDENCE INTERVAL FOR THE MEDIAN

Suppose that a random sample of N observations X1;X2; . . . ;XN is
drawn from a population FX with an unknown median M, where FX is
assumed to be continuous and strictly increasing, at least in the vici-
nity of M. In other words, the N observations are independent and
identically distributed, and F�1

X ð0:5Þ ¼ M, uniquely. The total sample
size notation is changed from n to N in this section in order to be
consistent with the notation in the rest of this book.

The hypothesis to be tested concerns the value of the population
median

H0: M ¼ M0

where M0 is a specified value, against a corresponding one- or two-
sided alternative. Since by assumption FX has a unique median, the
null hypothesis states thatM0 is that value of X which divides the area
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under the pdf into two equal parts. An equivalent symbolic repre-
sentation of H0 is

H0: y ¼ PðX > M0Þ ¼ PðX < M0Þ ¼ 0:50

Recalling the arguments used in developing a distribution-free test for
an arbitrary quantile, we note that if the sample data are consistent
with the hypothesized median value, on the average half of the sample
observations will lie above M0 and half below. Thus the number of
observations larger than M0, denoted by K, can be used to test the
validity of the null hypothesis. Also, when the sample observations are
dichotomized in this way, they constitute a set of n independent ran-
dom variables from the Bernoulli population with parameter
y ¼ PðX > M0Þ, regardless of the population FX . The sampling dis-
tribution of the random variable K then is the binomial probability
distribution with parameters N and y, and y equals 0.5 if the null
hypothesis is true. Since K is actually the number of plus signs among
the N differences Xi �M0; i ¼ 1; 2; . . . ;N; the nonparametric test
based on K is called the sign test.

The rejection region for the upper-tailed alternative

H1: M > M0 or y ¼ PðX > M0Þ > PðX < M0Þ
is

K 2 R for K 5 ka

where ka is chosen to be the smallest integer which satisfies

PðK 5 ka j H0Þ ¼
XN
i¼ka

N

i

	 

ð0:5ÞN 4 a ð4:1Þ

Any table of the binomial distribution, like Table C of the Appendix,
can be used with y ¼ 0:5 to find the particular value of ka for the given
N and a, but Table G of the Appendix is easier to use because it gives
probabilities in both tails. Similarly, for a one-sided test with the
lower-tailed alternative

H1: M < M0 or y ¼ PðX > M0Þ < PðX < M0Þ

the rejection region for an a-level test is

K 2 R for K 4 k0
a
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where k0
a is the largest integer satisfyingXk0

a

i¼0

N

i

	 

ð0:5ÞN 4 a ð4:2Þ

If the alternative is two-sided,

H1: M 6¼ M0 or y ¼ PðX > M0Þ 6¼ PðX < M0Þ
the rejection region is K 5 ka=2 or K 4 k0

a=2, where ka=2 and k0
a=2 are

respectively, the smallest and the largest integers such that

XN
i¼ka=2

N

i

	 

ð0:5ÞN 4

a
2

and
Xk0
a=2

i¼0

N

i

	 

ð0:5ÞN 4

a
2

ð4:3Þ

Obviously, we have the relation ka=2 ¼ N � k0
a=2.

The sign test statistics with these rejection regions are consistent
against the respective one- and two-sided alternatives. This is easy to
show by applying the criterion of consistency given in Chapter 1. Since
EðK=NÞ ¼ y and varðK=NÞ ¼ yð1� yÞ=N ! 1 as N ! 1;K provides a
consistent test statistic.

P VALUE

The P value expressions for the sign test can be obtained as in the case
of a general quantile test with p ¼ 0:5. The reader is referred to
Table 3.1, with n replaced by N throughout. For example, if the
alternative is upper-tailed, H1: M > M0, and KO is the observed value
of the sign statistic, the P value for the sign test is given by the
binomial probability in the upper-tail

XN
i¼KO

N
i

	 

ð0:5ÞN

This value is easily read as a right-tail probability from Table G for the
given N.

NORMAL APPROXIMATIONS

We could easily generate tables to apply the exact sign test for any
sample size N. However, we know that the normal approximation to
the binomial is especially good when y ¼ 0:50. Therefore, for moderate
values of N (say at least 12), the normal approximation to the binomial
can be used to determine the rejection regions. Since this is a continuous
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approximation to a discrete distribution, a continuity correction of 0.5
may be incorporated in the calculations. For example, for the alter-
native H1: M > M0;H0 is rejected for K 5 ka, where ka satisfies

ka ¼ 0:5N þ 0:5þ 0:5
ffiffiffiffiffi
N

p
za ð4:4Þ

Similarly, the approximate P value is

1� F
KO � 0:5� 0:5Nffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:25N
p

	 

ð4:5Þ

ZERO DIFFERENCES

A zero difference arises whenever Xi ¼ M0 for at least one i. Theore-
tically, zero differences do not cause a problem because the population
was assumed to be continuous in the vicinity of the median. In reality,
of course, zero differences can and do occur, either because the
assumption of continuity is in error or because of imprecise mea-
surements. Many zeros can be avoided by taking measurements to a
larger number of significant figures.

The most common treatment of zeros is simply to ignore them
and reduce N accordingly. The inferences are then conditional on the
observed number of nonzero differences. An alternative approach is to
treat half of the zeros as plus and half as minus. Another possibility is
to assign to all that sign which is least conducive to rejection of H0;
this is a strictly conservative approach. Finally, we could let chance
determine the signs of the zeros by, say, flipping a balanced coin. These
procedures are compared in Putter (1955) and Emerson and Simon
(1979). A complete discussion, including more details on P values, is
given in Pratt and Gibbons (1981). Randles (2001) proposed a more
conservative method of handling zeros.

POWER FUNCTION

In order to calculate the power of any test, the distribution of the test
statistic under the alternative hypothesis should be available in a
reasonably tractable form. In contrast to most nonparametric tests,
the power function of the quantile tests is simple to determine since, in
general, the random variable K follows the binomial probability dis-
tribution with parameters N and y, where, for the pth quantile,
y¼P(Xi> kp). For the sign test the quantile of interest is the median
and y¼P(Xi>M0). For illustration, we will only consider the power of
the sign test against the one-sided upper-tailed alternativeH1:M>M0.
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The power of the test is a function of the unknown parameter y, and
the power curve or the power function is a graph of power versus
various values of y, under the alternative. By definition, the power of
the sign test against the alternative H1 is the probability

PwðyÞ ¼ PðK 5 kajH1Þ

Under H1, the distribution of K is binomial with parameters N and
y¼P(Xi>M0 jH1) so the expression for power can be written as

PwðyÞ ¼
XN
i¼ka

N
i

	 

yið1� yÞN�i

where ka is the smallest integer such thatXN
i¼ka

N
i

	 

ð0:5ÞN 4 a

Thus, in order to evaluate the power function for the sign test, we
first need to find the critical value ka for a given level a, say 0.05. Then
we need to calculate the probability y ¼ PðXi > M0jH1Þ. If the power
function is desired for a more parametric type of situation where the
population distribution is fully specified then y can be calculated. Such
a power function would be desirable for comparisons between the sign
test and some parametric test for location.

As an example, we calculate the power of the sign test of
H0: M ¼ 28 versus H1: M > 28 for N ¼ 16 at a significance level 0.05,
under the assumption that the population is normally distributed with
standard deviation 1 and the median is M¼ 29.04. Table G shows that
the rejection region at a¼ 0.05 is K5 12 so that ka ¼ 12 and the exact
size of this sign test is 0.0384. Now, under the assumptions given, we
can evaluate the underlying probability of a success y as

y ¼ PðX > 28jH1Þ
¼ P

X � 29:04

1
>
28� 29:04

1

	 

¼ PðZ > �1:04Þ
¼ 1� Fð�1:04Þ ¼ 0:8505

¼ 0:85; say

Note that the value of y is larger than 0.5, which is in the legitimate
region of the alternative H1. Thus,
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Pwð0:85Þ ¼
X16
i¼12

16
i

	 

ð0:85Þið0:15Þ16�i

¼ 1�
X11
i¼0

16
i

	 

ð0:85Þið0:15Þ16�i ¼ 0:9209

This would be directly comparable with the normal theory test of
H0: m ¼ 28 versus H1: m ¼ 29:04, say with s¼ 1, since the mean and
median coincide for the normal distributions. The rejection region for
this parametric test with a¼ 0.05 is �X > 28þ z0:05=

ffiffiffiffiffiffi
16

p ¼ 28:41, and
the power is

Pwð29:04Þ ¼ P½�X > 28:41jX � normalð29:04;1Þ�

¼ P
�X � 29:04

1=
ffiffiffiffiffiffi
16

p >
28� 29:04

0:25

 !
¼ PðZ > �2:52Þ
¼ 0:9941

Thus, the power of the normal theory test is larger than the power of
the sign test, which is of course expected, since the normal theory test
is known to be the best test when the population is normal. The pro-
blem with a direct comparison of the exact sign test with the normal
theory test is that the powers of any two tests are comparable only
when their sizes or significance levels are the same or nearly the same.
In our case, the sign test has an exact size of 0.0384 whereas the
normal theory test has exact size 0.05. This increase in the size of the
test inherently biases the power comparison in favor of the normal
theory test.

In order to ensure a more fair comparison, we might make the
exact size of the sign test equal to 0.05 by using a randomized version
of the sign test (as explained in Chapter 1). Alternatively, we might
find the normal theory test of size a¼ 0.0384 and compare the power of
that test with the sign-test power of 0.9209. In this case, the rejection
region is �X > 28þ z0:0384=

ffiffiffiffiffiffi
16

p ¼ 28:44 and the power is Pwð29:04Þ ¼
0:9918. This is still larger than the power of the sign test at a¼ 0.0384
but two comments are in order. First and foremost, we have to assume
that the underlying distribution is normal to justify using the normal
theory test. No such assumption is necessary for the sign test. If the
sample size N is larger, the calculated power is an approximation to
the power of the normal theory test, by the central limit theorem.
However, for the sign test, the size and the power calculations can be
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made exactly for all sample sizes and no distribution assumptions are
needed other than continuity. Further, the normal theory test is af-
fected by the assumption about the population standard deviation s,
whereas the sign test calculations do not demand such knowledge. In
order to obtain the power function, we can calculate the power at
several values ofM in the alternative region (M> 28) and then plot the
power versus the values of the median. This is easier under the normal
approximation and is shown below.

Since under the alternative hypothesis H1, the sign test statistic
K has a binomial distribution with parameters N and y ¼
PðX > M0jH1Þ, and the binomial distribution can be well approxi-
mated by the normal distribution, we can derive expressions to ap-
proximate the power of the sign test based on the normal
approximation. These formulas are useful in practice for larger sample
sizes and=or y values for which exact tables are unavailable, although
this appears to be much less of a problem with currently available
software. We consider the one-sided upper-tailed case H1: M1 > M0 for
illustration; approximate power expressions for the other cases are left
as exercises for the reader. The power for this alternative can be
evaluated using the normal approximation with a continuity correc-
tion as

PwðM1Þ ¼ PðK 5 kajH1: M1 > M0Þ

¼ P Z >
ka �Ny� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nyð1� yÞp !

¼ 1� F
ka �Ny� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nyð1� yÞp !
ð4:6Þ

where y ¼ PðX > M1jM1 > M0Þ and ka is such that

a ¼ PðK 5 kajH0Þ

¼ P Z >
ka �N=2� 0:5ffiffiffiffiffiffiffiffiffiffi

N=4
p !

¼ 1� F
2ka �N � 1ffiffiffiffiffi

N
p

	 

ð4:7Þ

The equality in (4.7) implies that ka ¼ ½N þ 1þ ffiffiffiffiffi
N

p
F�1ð1� aÞ�=2.

Substituting this back into (4.6) and simplifying gives
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PwðM1Þ ¼ P Z >
0:5½N þ 1þ ffiffiffiffiffi

N
p

F�1ð1� aÞ� �Ny� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nyð1� yÞp( )

¼ 1� F
Nð0:5� yÞ þ 0:5

ffiffiffiffiffi
N

p
zaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nyð1� yÞp" #
ð4:8Þ

where za ¼ F�1ð1� aÞ is the (1� a)th quantile of the standard normal
distribution. For example, z0:05 ¼ 1:645 and z0:85 ¼ �1:04. Note that
za ¼ �z1�a. The approximate power values are calculated and shown
in Table 4.1 for N¼ 16 and a¼ 0.05. A graph of the power function is
shown in Figure 4.1.

Table 4.1 Normal approximation to power of the sign test for the median when
N ¼ 16

y 0.5 0.55 0.6 0.65 0.70 0.75 0.80 0.85 0.90
Power 0.0461 0.0918 0.1629 0.2639 0.3960 0.5546 0.7255 0.8802 0.9773

Fig. 4.1 Normal approximation to the power function of the sign test for the median.
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It should be noted that the power of the sign test depends on the
alternative hypothesis through the probability y ¼ PðX > M0jH1:
M1 > M0Þ. Under H0, we have y¼ 0.5, whereas y> 0.5 under H1, since
if M1>M0,

PðX > M0jH1: M ¼ M1 > M0Þ > PðX > M1jH1: M ¼ M1 > M0Þ

and therefore y ¼ PðX > M0jH1Þ > PðX > M1jH1Þ ¼ 0:5: Thus, the
power of the sign test depends on the ‘‘distance’’ between the values of
y under the null hypothesis (0.5) and under the alternative and spe-
cification of a value of y> 0.5 is necessary for the power calculation.
Noether (1987) suggested choosing a value of y based on past infor-
mation or a pilot study, or based on an ‘‘odds-ratio.’’ In the normal
theory test (such as the t test), however, the power depends directly on
the ‘‘distance’’ M1�M0, the values of the median under the null
hypothesis and under the alternative. Note also that the approximate
power is exactly equal to the nominal size of the test when y¼ 0.5 (i.e.,
the null hypothesis is true). Expressions for approximate power
against other alternatives are left as exercises for the reader.

SIMULATED POWER

The power function for the sign test is easily found, particularly when
the normal approximation is used for calculations. For many other
nonparametric tests, however, the power function can be quite difficult
to calculate. In such cases, computer simulations can be used to
estimate the power. Here we use a MINITAB Macro program to
simulate the power of the sign test when the underlying distribution is
normal with mean¼median¼M and variance s2. The null hypothesis
is H0: M ¼ M0 and the alternative is H0: M ¼ M1 > M0. First we need
to find the relationship between M0, M1 and y. Recall that
y ¼ PðXi > M0jH1Þ, so assuming X is normally distributed with var-
iance s2, we get

y ¼ P
X �M1

s
>

M0 �M1

s

	 

¼ F

M1 �M0

s

	 

This gives ðM1 �M0Þ=s ¼ F�1ðyÞ. Now let us assume arbitrarily that
M0 ¼ 0:5 and s2 ¼ 1. Then if y¼ 0.55, say, F�1(0.55)¼ 0.1256 and
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M1 ¼ 0:6256. Next we need to specify a sample size and probability of a
type I error for the test. We arbitrarily choose N¼ 13 and a¼ 0.05.
From Table G, 0.0461 is closest to 0.05 and this gives a test with
rejection region K5 10 for exact size 0.0461.

First we generate 1000 random samples, each of size 13, from a
normal distribution with M¼ 0.6256 and compute the value of the
sign test statistic for each sample generated, i.e., the number of Xi in
that sample for which Xi �M0 ¼ Xi � 0:5 > 0. Then we note whether
or not this count value is in the rejection region K5 10. Then we
count the number of times we found the count value in the rejection
region among the 1000 random samples generated. This count di-
vided by 1000 is the simulated power at the point y¼ 0.55 (which
corresponds to M1¼ 0.6256) in the case N¼ 13, M0¼ 0.50, s¼ 1, and
a¼ 0.0461. Using a MINITAB Macro program, this value was found
as 0.10. Note that from Table 4.1, the normal approximation to the
power in this case is 0.0918. The program code is shown below for
this situation:
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To run such a program, type the statements into a plain text file,
using a text editor (not a word processor) and save it with a .mac ex-
tension to a floppy disk, say, in drive a. Suppose the name of the file is
sign.mac. Then in MINITAB, go to edit, then to command line editor
and then type % a:nsign.mac and click on submit. The program will
print the simulated power values as well as a power curve. Output
from such a simulation is shown later in Section 5.7 as Figure 7.1.

SAMPLE SIZE DETERMINATION

In order to make an inference regarding the population median using
the sign test, we need to have a random sample of observations. If we
are allowed to choose the sample size, we might want to determine the
value of N such that the test has size a and power 1�b, given the null
and the alternative hypotheses and other necessary assumptions. For
example, for the sign test against the one-sided upper-tailed alter-
native H1: M > M0, we need to find N such that
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XN
i¼ka

N
i

	 

ð0:5ÞN 4 a and

XN
i¼ka

N
i

	 

yið1� yÞN�i 5 1� b

where a, 1�b and y ¼ PðX > M0jH1Þ are all specified. Note also that
the size and the power requirements have been modified to state ‘‘at
most’’ a and ‘‘at least’’ 1�b, in order to reflect the discreteness of the
binomial distribution. Tables are available to aid in solving these
equations; see for example, Cohen (1972). We illustrate the process
using the normal approximation to the power because the necessary
equations are much easier to solve.

Under the normal approximation, the power of a size a sign
test with H1: M > M0 is given in (4.8). Thus we require that 1�
F
�
Nð0:5� yÞ þ 0:5

ffiffiffiffiffi
N

p
za=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nyð1� yÞp $ ¼ 1� b or, solving for N, we get

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞp

F�1ðbÞ � 0:5za
0:5� y

" #2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞp

zb þ 0:5za
0:5� y

" #2
ð4:9Þ

which should be rounded up to the next integer. The approximate
sample size formula for the one-sided lower-tailed alternative
H1: M < M0 is the same except that here y ¼ PðX > M0jH1Þ < 0:5. A
sample size formula for the two-sided alternative is the same as (4.9)
with a replaced by a=2. The derivation is left as an exercise for the
reader.

For example, suppose y¼ 0.2. If we set a¼ 0.05 and b¼ 0.90, then
za ¼ 1:645 and zb ¼ 1:282. Then (4.9) yields

ffiffiffiffiffi
N

p ¼ 4:45 and N¼ 19.8.
Thus we need at least 20 observations to meet the specifications.

CONFIDENCE INTERVAL FOR THE MEDIAN

A two-sided confidence-interval estimate for an unknown population
median can be obtained from the acceptance region of the sign test
against the two-sided alternative. The acceptance region for a two-
sided test of H0: M ¼ M0, using (4.3), is

k0
a=2 þ 14K 4 ka=2 � 1 ð4:10Þ

where K is the number of positive differences among Xi �M,
i ¼ 1; 2; . . . ;N and k0

a=2 and ka=2 are integers such that

Pðk0
a=2 þ 14K 4 ka=2 � 1Þ5 1� a

As we found for the quantile test, the equal-tailed confidence interval
endpoints for the unknown population median are the order statistics
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X(r) and X(s) where r and s are the largest and smallest integers
respectively, such thatXr�1

i¼0

N
i

	 

ð0:5ÞN 4

a
2

and
XN
i¼s

N
i

	 

ð0:5ÞN 4

a
2

ð4:11Þ

We note that r� 1 and s are easily found from Table G in the columns
labeled Left tail and Right tail, respectively.

For larger sample sizes,

r ¼ k0
a=2 þ 1 ¼ 0:5þ 0:5N � 0:5

ffiffiffiffiffi
N

p
za=2 ð4:12Þ

and

s ¼ ka=2 ¼ 0:5þ 0:5N þ 0:5
ffiffiffiffiffi
N

p
za=2 ð4:13Þ

We round down for r and round up for s for a conservative solution.
In order to contrast the exact and approximate confidence in-

terval endpoints suppose N¼ 15 and 1�a¼ g¼ 0.95. Then, using
Table G with y¼ 0.5, r¼ 4 for significance level 0.0176 so that the exact
endpoints of the 95% confidence interval are X(4) and X(12) with exact
confidence level g¼ 0.9648. For the approximate confidence interval
r¼ 0.5þ 7.5�0.5 ffiffiffiffiffiffi

15
p

(1.65)¼ 4.21 which we round down. So the con-
fidence interval based on the normal approximation is also given by
(X(4), X(12)) with exact confidence level g¼ 0.9648.

PROBLEM OF ZEROS

Zeros do not present a problem in finding a confidence interval esti-
mate of the median using this procedure. As a result, the sample size
N is not reduced for zeros and zeros are counted as many times as they
occur in determining confidence-interval endpoints. If the real interest
is in hypothesis testing and there are many zeros, the power of the test
will be greater if the test is carried out using a confidence-interval
approach.

PAIRED-SAMPLE PROCEDURES

The one-sample sign-test procedures for hypothesis testing and con-
fidence interval estimation of M are equally applicable to paired-
sample data. For a random sample of N pairs (X1,Y1), . . . ,( XN,YN), the
N differences Di ¼ Xi � Yi are formed. If the population of differences
is assumed continuous at its median MD so that PðD ¼ MDÞ ¼ 0, and y
is defined as y ¼ PðD > MDÞ, the same procedures are clearly valid
here with Xi replaced everywhere by Di.
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It should be emphasized that this is a test for the median dif-
ference MD, which is not necessarily the same as the difference of the
two medians MX and MY. The following simple example will serve to
illustrate this often misunderstood fact. Let X and Y have the joint
distribution

fX;Yðx; yÞ ¼
1=2 for y � 14 x4 y;�14 y4 1

or yþ 14 x4 1;�14 y4 0
0 otherwise

8<:
Then X and Y are uniformly distributed over the shaded region in
Figure 4.2. It can be seen that the marginal distributions of X and Y
are identical, both being uniform on the interval (�1,1), so that
MX ¼ MY ¼ 0. It is clear that where X and Y have opposite signs, in
quadrants II and IV,

PðX < YÞ ¼ PðX > YÞ
while in quadrants I and III, X<Yalways. For all pairs, then, we have
PðX < YÞ ¼ 3=4, which implies that the median of the population of
differences is smaller than zero. It will be left as an exercise for the
reader to show that the cdf of the difference random variable
D ¼ X � Y is

FDðdÞ ¼

0 for d4 � 1

ðd þ 1Þðd þ 3Þ=4 for � 1 < d4 0

3=4 for 0 < d4 1

dð4� dÞ=4 for 1 < d4 2

1 for d > 2

8>>>>><>>>>>:
ð4:14Þ

Fig. 4.2 Region of integration is the shaded area.
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The median difference is that value MD, of the distribution of D, such
that FDðMDÞ ¼ 1=2. The reader can verify that this yields
MD ¼ �2þ ffiffiffi

3
p

.
In general, then, it is not true that MD ¼ MX �MY . On the other

hand, it is true that amean of differences equals the difference ofmeans.
Since the mean and median coincide for symmetric distributions, if the
X and Y populations are both symmetric and MX ¼ MY , and if the dif-
ference population is also symmetric,1 then MD ¼ MX �MY and
MX ¼ MY is a necessary and sufficient condition for MD ¼ 0. Note that
for the case where X and Yare each normally distributed, the difference
of their medians (or means) is equal to the median (or mean) of their
difference X � Y, since X � Y is also normally distributed with median
(or mean) equal to the difference of the respective medians (or means).

Earlier discussions of power and sample size also apply to the
paired-sample data problems.

APPLICATIONS

We note that the sign test is a special case of the quantile test with
p¼ 0.5, since the quantile specified is the population median. This test
is easier to apply than the general quantile test because the binomial
distribution for y¼ 0.5 is symmetric for any N. We write the null
hypothesis here as H0: M ¼ M0. The appropriate rejection regions in
terms of K, the number of plus signs among X1 �M0;X2 �M0; . . . ;
XN �M0, and corresponding exact P values, are summarized as follows:

Table C with y¼ 0.5 and n (representing N) can be used to determine
the critical values. Table G is simpler to use because it gives both left-
tail and right-tail binomial probabilities for N4 20 when y ¼ 0:5.

Alternative Rejection region Exact P value

M > M0 K 5ka
PN

i¼KO

N
i

	 

ð0:5ÞN

M < M0 K 4k0
a

PKO

i¼0
N
i

	 

ð0:5ÞN

M 6¼ M0 K 4 k0
a=2 or K 5 ka=2 2(smaller of the one-tailed

P values)

1The difference population is symmetric if X and Y are symmetric and independent or if
fX;Yðx; yÞ ¼ fX;Yð�x;�yÞ.

182 CHAPTER 5



For large sample sizes, the appropriate rejection regions and the
P values, based on the normal approximation to the binomial dis-
tribution with a continuity correction, are as follows:

If any zeros are present, we will ignore them and reduce N ac-
cordingly. As we have seen, a prespecified significance level a often
cannot be achieved with nonparametric statistical inference because
most of the applicable sampling distributions are discrete. This pro-
blem is avoided if we determine the P value of a test result and use
that to make our decision.

For a two-sided alternative, the common procedure is to define
the P value as twice the smaller of the two one-sided P values, as
described in the case for general quantiles. The ‘‘doubling’’ is parti-
cularly meaningful when the null distribution of the test statistic is
symmetric, as is the case here. For example, suppose that we observe
four plus signs among N¼ 12 nonzero sample differences. Table G
shows that the left-tail P value is 0.1938; since there is no entry in the
right-tail column, we know that the right-tail P-value exceeds 0.5.
Thus the two-sided P value is 2 times 0.1938, or 0.3876.

Another way of looking at this is as follows. Under the null hy-
pothesis the binomial distribution is symmetric about the expected
value of K, which here is N(0.5)¼ 6. Thus, for any value of K less than
6, the upper-tail probability will be greater than 0.5 and the lower-tail
probability less than 0.5. Conversely, for any value of K greater than 6,
the upper-tail probability is less than 0.5 and the lower-tail probability
is greater than 0.5. Also, by symmetry, the probability of say 4 or less
is the same as the probability of 8 or more. Thus, to calculate the P
value for the two-sided alternative, the convention is to take the
smaller of the two one-tailed P values and double it. If instead we used
the larger of the P values and doubled that, the final P value could
possibly be more than 1.0, which is not acceptable. Note also that when
the observed value of K is exactly equal to 6, the two-sided P value will
be taken to be equal to 1.0.

Alternative Rejection region Approximate P value

M > M0 K 5 0:5N þ 0:5þ 0:5za
ffiffiffiffiffi
N

p
1� F

KO � 0:5N � 0:5

0:5
ffiffiffiffiffi
N

p
	 


M < M0 K 5 0:5N � 0:5� 0:5za
ffiffiffiffiffi
N

p
F

KO � 0:5N þ 0:5

0:5
ffiffiffiffiffi
N

p
	 


M 6¼ M0 Both above with za=2 2(smaller of the one-tailed
P values)
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In our example, the observed value 4 for N¼ 12 is less than 6, so
the smaller one-tailed P value is in the lower tail and is equal to 0.1938
and this leads to a two-sided P value of 0.3876 as found earlier. If we
have a prespecified a, and wish to reach a decision, we should reject H0

whenever the P value is less than or equal to a and accept H0 other-
wise.

The exact distribution-free confidence interval for the median
can be found from Table C but is particularly easy to find using
Table G. The choice of exact confidence levels is limited to 1�2P, where
P is a tail probability in Table G for the appropriate value of N. From
(4.10), the lower confidence limit is the ðk0

a=2 þ 1Þth ¼ rth-order sta-
tistic in the sample, where k0

a=2 is the left-tail critical value of the sign
test statistic K from Table G, for the given a and N such that the
P figure is less than or equal to a=2. But since the critical values are all
of the nonnegative integers, k0

a=2 þ 1 is simply the rank of k0
a=2 among

the entries in Table G for that N. The calculation of this rank will
become clearer after we do Example 4.1.

For consistency with the results given later for confidence in-
terval endpoints based on other nonparametric test procedures, we
note that r is the rank of the left-tail entry in Table G for this N, and
we denote this rank by u. Further, by symmetry, we have
XðsÞ ¼ XðN�rþ1Þ. The confidence interval endpoints are the uth from the
smallest and the uth from the largest order statistics, where u is the
rank of the left-tail critical value of K from Table G that corresponds to
P4 a=2. The corresponding exact confidence coefficient is then
g ¼ 1� 2P. For sample sizes outside the range of Table G we have

u ¼ 0:5þ 0:5N � 0:5
ffiffiffiffiffi
N

p
za=2 ð4:15Þ

from (4.4), and we always round the result of (4.15) downward.
For example, for a confidence level of 0.95 with N ¼ 15;

a=2 ¼ 0:025, the P figure from Table G closest to 0.025 but not ex-
ceeding it is 0.0176. The corresponding left-tail critical value is 3,
which has a rank of 4 among the left-tail critical values for this N.
Thus u ¼ 4 and the 95% confidence interval for the median is given by
the interval ðXð4Þ;Xð12ÞÞ. The exact confidence level for this distribution-
free interval is 1� 2P ¼ 1� 2ð0:0176Þ ¼ 0:9648.

Note that unlike in the case of testing hypotheses, if zeros occur
in the data, they are counted as many times as they appear for de-
termination of the confidence interval endpoints.

Example 4.1 Suppose that each of 13 randomly chosen female regis-
tered voters was asked to indicate if she was going to vote for
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candidate A or candidate B in an upcoming election. The results show
that 9 of the subjects preferred A. Is this sufficient evidence to con-
clude that candidate A is preferred to B by female voters?

Solution With this kind of data, the sign test is one of the few sta-
tistical tests that is valid and can be applied. Let y be the true prob-
ability that candidate A is preferred over candidate B. The null
hypothesis is that the two candidates are equally preferred, that is,
H0: y ¼ 0:5 and the one-sided upper-tailed alternative is that A is
preferred over B, that is H1: y > 0:5. The sign test can be applied here
and the value of the test statistic is K ¼ 9. Using Table G with N ¼ 13,
the exact P value in the right-tail is found to be 0.1338; therefore this
is not sufficient evidence to conclude that the female voters prefer A
over B, at a commonly used significant level such as 0.05.

Example 4.2 Some researchers claim that susceptibility to hypnosis
can be acquired or improved through training. To investigate this
claim six subjects were rated on a scale of 1 to 20 according to their
initial susceptibility to hypnosis and then given 4 weeks of training.
Each subject was rated again after the training period. In the ratings
below, higher numbers represent greater susceptibility to hypnosis. Do
these data support the claim?

Solution The null hypothesis is H0: MD ¼ 0 and the appropriate al-
ternative is H1: MD > 0 where MD is the median of the differences,
after trainingminus before training. The number of positive differences
is KO ¼ 4 and the right-tail P value for N ¼ 6;KO ¼ 4 from Table G is
0.3438. Hence the data do not support the claim at any level smaller
than 0.3438 which implies that 4 is not an extreme value ofK underH0;
rejection of the null hypothesis is not warranted. Also, from Table G, at
a ¼ 0:05, the rejection region is K 5 6, with exact size 0.0156. Since the
observed value of K equals 4, we again fail to reject H0.

The following computer printouts illustrate the solution to Ex-
ample 4.2 based on the STATXACT, MINITAB, and SAS packages. The

Subject Before After

1 10 18
2 16 19
3 7 11
4 4 3
5 7 5
6 2 3
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STATXACT solution agrees with ours for the exact one-sided P value.
Their asymptotic P value (0.2071) is based on the normal approx-
imation without the continuity correction. The MINITAB solution
agrees exactly with ours. The SAS solution gives only the two-tailed
P values. The exact sign test result in 2 times ours; they also give
P values based on Student’s t test and the signed-rank test discussed
later in this chapter.

Now suppose we wanted to know, before the investigation star-
ted, how many subjects should be included in the study when we plan
to use the sign test for the median difference at a level of significance
a ¼ 0:05, and we want to detect PðD > 0Þ ¼ 0:6 with a power 0.85.
Note that PðD > 0Þ ¼ 0:6 means that the median difference, MD, is
greater than 0, the hypothesized value, and thus the test should have
an upper-tailed alternative. With y ¼ 0:6; z0:05 ¼ 1:645, and z0:15 ¼
1:0365, Eq. (4.9) gives N ¼ 176:96 which we round up to 177.

The MINITAB solution to this example is shown below. It also
uses the normal approximation and the result 177 agrees with ours.
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The solution also shows N ¼ 222 observations will be required for a
two-tailed test. The reader can verify this. The solution is labeled ‘‘Test
for One Proportion’’ instead of ‘‘Sign Test’’ because it is applicable for a
test for a quantile of any order p (as in Section 5.3).

Example 4.3 Nine pharmaceutical laboratories cooperated in a study
to determine the median effective dose level of a certain drug. Each
laboratory carried out experiments and reported its effective dose. For
the results 0.41, 0.52, 0.91, 0.45, 1.06, 0.82, 0.78, 0.68, 0.75, estimate
the interval of median effective dose with a confidence level 0.95.

Solution We go to Table G with N ¼ 9 and find P ¼ 0:0195 is the
largest entry that does not exceed 0.025, and this entry has rank
u ¼ 2. Hence the second smallest and second largest (or the
9� 2þ 1 ¼ 8th smallest) order statistics of the sample data, namely
Xð2Þ and Xð8Þ, provide the two endpoints as 0:45 < M < 0:91 with exact
confidence coefficient 1� 2ð0:0195Þ ¼ 0:961. The MINITAB solution
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shown gives the two confidence intervals with the exact confidence
coefficient on each side of 0.95, as well as an exact 95% interval, based
on an interpolation scheme between the two sets of endpoints, lower
and upper, respectively. This latter interval is indicated by NLI on the
output. The interpolation scheme is a nonlinear one due to Hett-
mansperger and Sheather (1986).

5.5 RANK-ORDER STATISTICS

The other one-sample procedure to be covered in this chapter in the
Wilcoxon signed-rank test. This test is based on a special case of what
are called rank-order statistics. The rank-order statistics for a random
sample are any set of constants which indicate the order of the
observations. The actual magnitude of any observation is used only in
determining its relative position in the sample array and is thereafter
ignored in any analysis based on rank-order statistics. Thus any sta-
tistical procedures based on rank-order statistics depend only on the
relative magnitudes of the observations. If the jth element Xj is the ith
smallest in the sample, the jth rank-order statistics must be the ith
smallest rank-order statistic. Rank-order statistics might then be
defined as the set of numbers which results when each original
observation is replaced by the value of some order-preserving function.
Suppose we have a random sample of N observations X1;X2; . . . ;XN .
Let the rank-order statistics be denoted by rðX1Þ; rðX2Þ; . . . ; rðXNÞ
where r is any function such that rðXiÞ4 rðXjÞ whenever Xi 4Xj. As
with order statistics, rank-order statistics are invariant under mono-
tone transformations, i.e., if rðXiÞ4 rðXjÞ, then r½FðXiÞ�4 r½FðXjÞ�, in
addition to F½rðXiÞ�4F½rðXjÞ�, where F is any nondecreasing function.

For any set ofN different sample observations, the simplest set of
numbers to use to indicate relative positions is the first N positive in-
tegers. In order to eliminate the possibility of confusion and to simplify
and unify the theory of rank-order statistics, we shall assume here that
unless explicitly stated otherwise, the rank-order statistics are always
a permutation of the first N integers. The ith rank-order statistic rðXiÞ
then is called the rank of the ith observation in the original unordered
sample. The value it assumes, rðxiÞ, is the number of observations
xj; j ¼ 1; 2; . . . ;N, such that xj 4 xi. For example, the rank of the ith-
order statistic is equal to i, or rðxðiÞÞ ¼ i. A functional definition of the
rank of any xi in a set of N different observations is provided by

rðXiÞ ¼
XN
j¼1

Sðxi � xjÞ ¼ 1
X
j 6¼1

Sðxi � xjÞ ð5:1Þ
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where

SðuÞ ¼ 0 if u < 0
1 if u5 0

�
ð5:2Þ

The random variable rðXiÞ is discrete and for a random sample from a
continuous population it follows the discrete uniform distribution, or

P½rðXiÞ ¼ j� ¼ 1=N for j ¼ 1; 2; . . . ;N

Although admittedly the terminology may seen confusing at the
outset, a function of the rank-order statistics will be a called a rank
statistic. Rank statistics are particularly useful in nonparametric in-
ference since they are usually distribution free. The methods are ap-
plicable to a wide variety of hypothesis-testing situations depending
on the particular function used. The procedures are generally simple
and quick to apply. Since rank statistics are functions only of the ranks
of the observations, only this information is needed in the sample data.
Actual measurements are often difficult, expensive, or even impossible
to obtain. When actual measurement are not available for some reason
but relative positions can be determined, rank-order statistics make
use of all of the information available. However, when the funda-
mental data consist of variate values and these actual magnitudes are
ignored after obtaining the rank-order statistics, we may be concerned
about the loss of efficiency that may ensue. One approach to a judg-
ment concerning the potential loss of efficiency is to determine the
correlation between the variate values and their assigned ranks. If the
correlation is high, we would feel intuitively more justified in the re-
placement of actual values by ranks for the purpose of analysis. The
hope is that inference procedures based on ranks alone will lead to
conclusions which seldom differ from a corresponding inference based
on actual variate values.

The ordinary product-moment correlation coefficient between
two random variables X and Y is

rðX;YÞ ¼ E½ðX � mXÞðY � mYÞ�
sXsY

¼ EðXYÞ � EðXÞEðYÞ
sXsY

Assume that for a continuous population denoted by a cdf FX ( pdf fX )
we would like to determine the correlation between the random vari-
able X and its rank rðXÞ. Theoretically, a random variable from an
infinite population cannot have a rank, since values on a continuous
scale cannot be ordered. But an observation Xi, of a random sample of
size N from this population, does have a rank rðXiÞ as defined in (5.1).
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The distribution of Xi is the same as the distribution of X and the rðXiÞ
are identically distributed though not independent. Therefore, it is
reasonable to define the population correlation coefficient between
ranks and variate values as the correlation between Xi and Yi ¼ rðXiÞ,
or

r½X; rðXÞ� ¼ EðXiYiÞ � EðXiÞEðYiÞ
sXsYi

ð5:3Þ

The marginal distribution of Yi for any i is the discrete uniform,
so that

fYi
ð jÞ ¼ 1

N
for j ¼ 1; 2; . . . ;N ð5:4Þ

with moments

EðYiÞ ¼
XN
j¼1

j

N
¼ N þ 1

2
ð5:5Þ

EðY2
i Þ ¼

XN
j¼1

j2

N
¼ ðN þ 1Þð2N þ 1Þ

6

varðYiÞ ¼ ðN þ 1Þð2n þ 1Þ
6

� ðN þ 1Þ2
4

¼ N2 � 1

12
ð5:6Þ

The joint pdf of Xi and its rank Yi is

fXi;Yi
ðx; jÞ ¼ fXijYi¼jðxj jÞfYi

ð jÞ ¼ fXð jÞ ðxÞ
N

for j ¼ 1; 2; . . . ;N

where Xð jÞ denotes the jth-order statistic of a random sample of size N
from the cdf FX . From this expression we can write

EðXiYiÞ ¼ 1

N

Z 1

�1

XN
j¼1

jxfXð jÞ ðxÞdx ¼
XN
j¼1

jEðXð jÞÞ
N

ð5:7Þ

Substituting the results (5.5), (5.6), and (5.7) back into (5.3), we obtain

r½X; rðXÞ� ¼ 12

N2 � 1

	 
1=2 PN
j¼1 jEðXð jÞÞ � ½NðN þ 1Þ=2�EðXÞ

NsX
ð5:8Þ
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Sincetheresulthere is independentof i,ourdefinitionin(5.3)maybecon-
sidered a true correlation. The same result is obtained if the covariance
between X and rðXÞ is defined as the limit as M approaches infinity of
the average of theM correlations that can be calculated between sample
values and their ranks when M samples of size N are drawn from this
population. This method will be left as an exercise for the reader.

The expression given in (5.8) can be written in another useful
form. If the variate values X are drawn from a continuous population
with distribution FX , the following sum can be evaluated:

XN
i¼1

iEðXðiÞÞ¼
XN
i¼1

iN!

ði�1Þ!ðN�iÞ!

�
Z 1

�1
x½FXðxÞ�i�1½1�FXðxÞ�N�ifXðxÞdx

¼
XN�1

j¼0

ðjþ1ÞN!

j!ðN�j�1Þ!
Z 1

�1
x½FXðxÞ�j½1�FXðxÞ�N�j�1fXðxÞdx

¼
XN�1

j¼1

N!

ðj�1Þ!ðN�j�1Þ!

�
Z 1

�1
x½FXðxÞ�j½1�FXðxÞ�N�j�1fXðxÞdx

þ
XN�1

j¼0

N!

j!ðN�j�1Þ!
Z 1

�1
x½FXðxÞ�j½1�FXðxÞ�N�j�1fXðxÞdx

¼ NðN � 1Þ
Z 1

�1
xFXðxÞ

�
XN�1

j¼1

N � 2

j� 1

	 

½FXðxÞ�j�1½1� FXðxÞ�N�j�1fXðxÞdx

þN

Z 1

�1
x
XN�1

j¼0

N � 1

j

	 

½FXðxÞ�j½1� FXðxÞ�N�j�1fXðxÞdx

¼ NðN � 1Þ
Z 1

�1
xFXðxÞfXðxÞdxþN

Z 1

�1
xfXðxÞdx

¼ NðN � 1ÞE½XFXðxÞ� þNEðXÞ ð5:9Þ
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If this quantity is now substituted in (5.8), the result is

r½X;rðXÞ�¼ 12

N2�1
	 
1=2 1

sX
ðN�1ÞE½XFXðXÞ�þEðXÞ�Nþ1

2
EðXÞ

� �
¼ 12

N2�1
	 
1=2 1

sX
ðN�1ÞE½XFXðXÞ��N�1

2
EðXÞ

� �
¼ 12ðN�1Þ

Nþ1
� �1=2 1

sX
E½XFXðXÞ��1

2
EðXÞ

� �
ð5:10Þ

and

lim
N!1

r½X; rðXÞ� ¼ 2
ffiffiffi
3

p

sX
E½XFXðXÞ� � 1

2
EðXÞ

� �
ð5:11Þ

Some particular evaluations of (5.11) are given in Stuart (1954).

5.6 TREATMENT OF TIES IN RANK TESTS

In applying tests based on rank-order statistics, we usually assume
that the population from which the sample was drawn is continuous.
When this assumption is made, the probability of any two observations
having identical magnitudes is equal to zero. The set of ranks as
defined in (5.1) then will be N different integers. The exact properties
of most rank statistics depend on this assumption. Two or more
observations with the same magnitude are said to be tied. We may say
only that theoretically no problem is presented by tied observations.
However, in practice ties can certainly occur, either because the
population is actually discrete or because of practical limitations on
the precision of measurement. Some of the conventional approaches to
dealing with ties in assigning ranks will be discussed generally in this
section, so that the problem can be ignored in presenting the theory of
some specific rank tests later.

In a set of N observations which are not all different, arrange-
ment in order of magnitude produces a set of r groups of different
numbers, the ith different value occurring with frequency ti, whereP

ti ¼ N. Any group of numbers with ti 5 2 comprises a set of tied
observations. The ranks are no longer well defined, and for any set of
fixed ranks of N untied observations there are

Q
ti! possible assign-

ments of ranks to the entire sample with ties, each assignment leading
to its own value for a rank test statistic, although that value may be
the same as for some other assignment. If a rank test is to be per-
formed using a sample containing tied observations, we must have
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either a unique method of assigning ranks for ties so that the test
statistic can be computed in the usual way or a method of combining
the many possible values of the rank test statistic to reach one deci-
sion. Several acceptable methods will be discussed briefly.

RANDOMIZATION

In the method of randomization, one of the
Q

ti! possible assignments
of ranks is selected by some random procedure. For example, in the set
of observations

3:0; 4:1; 4:1; 5:2; 6:3; 6:3; 6:3; 9

there are 2!ð3!Þ or 12 possible assignments of the integer ranks 1 to 8
which this sample could represent. One of these 12 assignments is
selected by a supplementary random experiment and used as the
unique assignment of ranks. Using this method, some theoretical
properties of the rank statistic are preserved, since each assignment
occurs with equal probability. In particular, the null probability dis-
tribution of the rank-order statistic, and therefore of the rank statistic,
is unchanged, so that the test can be performed in the usual way.
However, an additional element of chance is artificially imposed,
affecting the probability distribution under alternatives.

MIDRANKS

The midrank method assigns to each member of a group of tied
observations the simple average of the ranks they would have if dis-
tinguishable. Using this approach, tied observations are given tied
ranks. The midrank method is perhaps the most frequently used, as it
has much appeal experimentally. However, the null distribution of
ranks is affected. Obviously, the mean rank is unchanged, but the
variance of the ranks would be reduced. When the midrank method is
used, for some tests a correction for ties can be incorporated into the
test statistic. We discuss these corrections when we present the
respective tests.

AVERAGE STATISTIC

If one does not wish to choose a particular set of ranks as in the pre-
vious two methods, one may instead calculate the value of the test
statistic for all the

Q
ti! assignments and use their simple average as

the single sample value. Again, the test statistic would have the same
mean but smaller variance.
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AVERAGE PROBABILITY

Instead of averaging the test statistic for each possible assignment of
ranks, one could find the probability of each resulting value of the test
statistic and use the simple average of these probabilities for the
overall probability. This requires availability of tables of the exact null
probability distribution of the test statistic rather than simply a table
of critical values.

LEAST FAVORABLE STATISTIC

Having found all possible values of the test statistic, one might choose
as a single value that one which minimizes the probability of rejection.
This procedure leads to the most conservative test, i.e., the lowest
probability of committing a type I error.

RANGE OF PROBABILITY

Alternatively, one could compute two values of the test statistic: the
one least favorable to rejection and the one most favorable. However,
unless both fall inside or both fall outside the rejection region, this
method does not lead to a decision.

OMISSION OF TIED OBSERVATIONS

The final and most obvious possibility is to discard all tied observa-
tions and reduce the sample size accordingly. This method certainly
leads to a loss of information, but if the number of observations to be
omitted is small relative to the sample size, the loss may be minimal.
This procedure generally introduces bias toward rejection of the null
hypothesis.

The reader is referred to Savage’s Bibliography (1962) for dis-
cussions of treatment of ties in relation to particular nonparametric
rank test statistics. Pratt and Gibbons (1981) also give detailed dis-
cussions and many references. Randles (2001) gives a different ap-
proach to dealing with ties.

5.7 THE WILCOXON SIGNED-RANK TEST AND CONFIDENCE INTERVAL

Since the one-sample sign test in Section 5.4 utilizes only the signs of
the differences between each observation and the hypothesized med-
ian M0, the magnitudes of these observations relative to M0 are
ignored. Assuming that such information is available, a test statistic
which takes into account these individual relative magnitudes might
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be expected to give better performance. If we are willing to make the
assumption that the parent population is symmetric, the Wilcoxon
signed-rank test statistic provides an alternative test of location which
is affected by both the magnitudes and signs of these differences. The
rationale and properties of this test will be discussed in this section.

As with the one-sample situation of Section 5.4, we have a ran-
dom sample of N observations X1;X2; . . . ;XN from a continuous cdf F
with median M, but now we assume that F is symmetric about M.
Under the null hypothesis

H0: M ¼ M0

the differences Di ¼ Xi �M0 are symmetrically distributed about zero,
so that positive and negative differences of equal absolute magnitude
have the same probability of occurrence; i.e., for any c > 0,

FDð�cÞ ¼ PðDi 4 � cÞ ¼ PðDi 5 cÞ ¼ 1� PðDi 4 cÞ ¼ 1� FDðcÞ
With the assumption of a continuous population, we need not be
concerned theoretically with zero or tied absolute differences jDij.
Suppose we order these absolute differences jD1j; jD2j; . . . ; jDN j from
smallest to largest and assign them ranks 1; 2; . . . ;N, keeping track of
the original signs of the differences Di. If M0 is the true median of the
symmetrical population, the expected value of the sum of the ranks of
the positive differences Tþ is equal to the expected value of the sum of
the ranks of the negative differences T�. Since the sum of all the ranks
is a constant, that is, Tþ þ T� ¼PN

i¼1i ¼ NðN þ 1Þ=2, test statistics
based on Tþ only, T� only, or Tþ � T� are linearly related and
therefore equivalent criteria. In contrast to the ordinary one-sample
sign test, the value of Tþ, say, is influenced not only by the number of
positive differences but also by their relative magnitudes. When the
symmetry assumption can be justified, Tþ may provide a more effi-
cient test of location for some distributions.

The derived sample data on which these test statistics are based
consist of the set of N integer ranks f1; 2; . . . ;Ng and a corresponding
set of N plus and minus signs. The rank i is associated with a plus or
minus sign according to the sign of Dj ¼ Xj �M0, where Dj occupies
the ith position in the ordered array of absolute differences jDjj. If we
let rð:Þ denote the rank of a random variable, theWilcoxon signed-rank
statistic can be written symbolically as

Tþ ¼
XN
i¼1

ZirðjDijÞ T� ¼
XN
i¼1

ð1� ZiÞrðjDijÞ ð7:1Þ
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where

Zi ¼ 1 if Di > 0
0 if Di < 0

�
Therefore,

Tþ � T� ¼ 2
XN
i¼1

rjDij �NðN þ 1Þ
2

Under the null hypothesis, the Zi are independent and iden-
tically distributed Bernoulli random variables with PðZi ¼ 1Þ ¼
PðZi ¼ 0Þ ¼ 1=2 so that EðZiÞ ¼ 1=2 and varðZiÞ ¼ 1=4. Using the fact
that Tþ in (7.1) is a linear combination of these variables, its exact null
mean and variance can be determined. We have

EðTþ jH0Þ ¼
XN
i¼1

rðjDijÞ
2

¼ NðN þ 1Þ
4

Also, since Zi is independent of rðjDijÞ under H0 (see Probem 5.25), we
can show that

varðTþ j H0Þ ¼
XN
i¼1

½rjDij�2
4

¼ NðN þ 1Þð2N þ 1Þ
24

ð7:2Þ

A symbolic representation of the test statistic Tþ that is more
convenient for the purpose of deriving its mean and variance in gen-
eral is

Tþ ¼
XX

14 i4 j4N

Tij ð7:3Þ

where

Tij ¼ 1 if Di þDj > 0
0 otherwise

�
The Di’s are identically distributed under H0. Now define for all dis-
tinct i; j; k the probabilities

p1 ¼ PðDi > 0Þ
p2 ¼ PðDi þDj > 0Þ
p3 ¼ PðDi > 0 and Di þDj > 0Þ
p4 ¼ PðDi þDj > 0 and Di þDk > 0Þ

ð7:4Þ
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The moments of the indicator variables for all distinct i; j; k;h are then

EðTiiÞ ¼ p1 EðTijÞ ¼ p2

varðTiiÞ ¼ p1 � p21 varðTijÞ ¼ p2 � p22

covðTii;TikÞ ¼ p3 � p1 p2 covðTij;TikÞ ¼ p4 � p22
covðTij;ThkÞ ¼ 0

The mean and variance of the linear combination in (7.3) in terms of
these moments are

EðTþÞ ¼ NEðTiiÞ þNðN � 1ÞEðTijÞ
2

¼ Np1 þNðN � 1Þp2
2

ð7:5Þ

varðTþÞ ¼ NvarðTiiÞ þ
N

2

	 

varðTijÞ þ 2NðN � 1Þ covðTii;TikÞ

þ 2N
N � 1

2

	 

covðTij;TikÞ þ

N

4

	 

covðTij;ThkÞ

¼ Np1ð1� p1Þ þNðN � 1Þp2ð1� p2Þ
2

þ 2NðN � 1Þðp3 � p1p2Þ þNðN � 1ÞðN � 2Þðp4 � p22Þ
¼ Np1ð1� p1Þ þNðN � 1ÞðN � 2Þðp4 � p22Þ

þNðN � 1Þ
2

½p2ð1� p2Þ þ 4ðp3 � p1p2Þ� ð7:6Þ

The relevant probabilities from (7.4) are now evaluated under the
assumption that the population is symmetric and the null hypothesis
is true.

p1 ¼ PðDi > 0Þ ¼ 1=2

p2 ¼ PðDi þDj > 0Þ ¼
Z 1

�1

Z 1

�1
fDðuÞfDðvÞdudv

¼
Z 1

�1
½1� FDð�vÞ�fDðvÞdv

¼
Z 1

�1
FDðvÞfDðvÞdv ¼

Z 1

0

x dx ¼ 1=2

p3 ¼ PðDi > 0 and Di þDj > 0Þ
¼
Z 1

0

Z 1

�v

fDðuÞfDðvÞdudv ¼
Z 1

0

½1� FDð�vÞ�fDðvÞdv

¼
Z 1

0

FDðvÞfDðvÞdv ¼
Z 1

1=2

xdx ¼ 3=8
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p4¼PðDiþDj > 0 andDiþDk > 0Þ
¼Pð0<DiþDj <DiþDkÞþPð0<DiþDk <DiþDjÞ
¼ 2Pð�Di <Dj <DkÞ
¼ 2

Z 1

�1

Z 1

�w

Z 1

�v

fDðuÞfDðvÞfDðwÞdudvdw

¼ 2
Z 1

�1

Z 1

�w

½1�FDðvÞ�fDðvÞfDðwÞdvdw

¼ 2
Z 1

�1

Z 1

�w

fDðvÞfDðwÞdvdw�2
Z 1

�1

Z 1

�w

FDðvÞfDðvÞfDðwÞdvdw

¼ 2
Z 1

�1
½1�FDð�wÞ�fDðwÞdw�

Z 1

�1
f1�½FDð�wÞ�2gfDðwÞdw

¼ 2
Z 1

�1
FDðwÞdFDðwÞ�1þ

Z 1

�1
½1�FDðwÞ�2dFDðwÞ

¼ 2ð1=2Þ�1þð1=3Þ¼ 1=3
The reader may verify that substitution of these results back in (7.5)
and (7.6) gives the mean and variance already found in (7.2).

We use the method described in Chapter 1 to investigate the
consistency of Tþ.
We can write

E
2Tþ

NðN þ 1Þ
� �

¼ 2p1
N þ 1

þ ðN � 1Þp2
N þ 1

which equals 1
2 under H0 and var½2Tþ=NðN þ 1Þ� clearly tends to zero

as N ! 1. Therefore, the test with rejection region

Tþ 2 R for
2Tþ

NðN þ 1Þ �
1

2
5 k

is consistent against alternatives of the form p2 ¼ PðD1 þDj > 0Þ >
0.5. This result is reasonable since if the true population median
exceeds M0, the sample data would reflect this by having most of the
larger ranks correspond to positive differences. A similar two-sided
rejection region of Tþ centered on NðN þ 1Þ=4 is consistent against
alternatives with p2 6¼ 0:5.

To determine the rejection regions precisely for this consistent
test, the probability distribution of Tþ must be determined under the
null hypothesis

H0: y ¼ PðX > M0Þ ¼ 0:5
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The extreme values of Tþ are zero and NðN þ 1Þ=2, occurring when all
differences are of the same sign, negative or positive, respectively. The
mean and variance were found in (7.2). Since Tþ is completely deter-
mined by the indicator variables Zi in (7.1), the sample space can be
considered to be the set of all possible N-tuples fz1; z2; . . . ; zNg with
components either one or zero, of which there are 2N . Each of these
distinguishable arrangements is equally likely under H0. Therefore,
the null probability distribution of Tþ given by

PðTþ¼ tÞ ¼ uðtÞ=2N ð7:7Þ
where uðtÞ is the number of ways to assign plus and minus signs to the
first N integers such that the sum of the positive integers equals t.
Every assignment has a conjugate assignment with plus and minus
signs interchanged, and Tþ for this conjugate isXN

i¼1
ið1� ZiÞ ¼ NðN þ 1Þ

2
�
XN
i¼1

iZi

Since every assignment occurs with equal probability, this implies that
the null distribution of Tþ is symmetric about its mean NðN þ 1Þ=4.

Because of the symmetry property, only one-half of the null dis-
tribution need be determined. A systematic method of generating the
complete distribution of Tþ for N ¼ 4 is shown in Table 7.1.

fTþðtÞ ¼
1=16 t ¼ 0; 1; 2; 8; 9; 10

2=16 t ¼ 3; 4; 5; 6; 7

0 otherwise

8<:
Tables can be constructed in this way for all N.

To use the signed-rank statistics in hypothesis testing, the entire
null distribution is not necessary. In fact, one set of critical values is
sufficient for even a two-sided test, because of the relationship

Table 7.1 Enumeration for the distribution of Tþ

Value of Tþ
Ranks associated with

positive differences Number of sample points u(t)

10 1,2,3,4 1
9 2,3,4 1
8 1,3,4 1
7 1,2,4; 3,4 2
6 1,2,3; 2,4 2
5 1,4; 2,3 2
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Tþ þ T� ¼ NðN þ 1Þ=2 and the symmetry of Tþ about NðN þ 1Þ=4.
Large values of Tþ correspond to small values of T� and Tþ and T� are
identically distributed since

PðTþ 5 cÞ ¼ P Tþ �NðN þ 1Þ
4

5 c�NðN þ 1Þ
4

� �
¼ P

NðN þ 1Þ
4

� Tþ 5 c�NðN þ 1Þ
4

� �
¼ P

NðN þ 1Þ
2

� Tþ 5 c

� �
¼ PðT� 5 cÞ

Since it is more convenient to work with smaller sums, tables of the
left-tailed critical values are generally set up for the random variable
T, which may denote either Tþ or T�. If ta is the number such that
PðT4 taÞ ¼ a, the appropriate rejection regions for size a tests of
H0: M ¼ M0 are as follows:

T� 4 ta for H1: M > M0

Tþ 4 ta for H1: M < M0

Tþ 4 ta=2 or T� 4 ta=2 for H1 : M 6¼ M0

Suppose that N ¼ 8 and critical values are to be found for one-
or two-sided tests at nominal a ¼ 0:05. Since 28 ¼ 256 and
256ð0:05Þ ¼ 12:80, we need at least 13 cases of assignments of signs.
We enumerate the small values of Tþ in Table 7.2. Since
PðTþ 4 6Þ ¼ 14=256 > 0:05 and PðTþ 4 5Þ ¼ 10=256 ¼ 0:039; t0:05 ¼ 5;
the exact probability of a type I error is 0.039. Similarly, we find
t0:025 ¼ 3 with exact PðTþ 4 3Þ ¼ 0:0195.

Table 7.2 Partial distribution of Tþ
N for N ¼ 8

Value of Tþ
Ranks associated with

positive differences Number of sample points

0 1
1 1 1
2 2 1
3 3; 1,2 2
4 4; 1,3 2
5 5; 1,4; 2,3 3
6 6; 1,5; 2,4; 1,2,3 4
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When the distribution is needed for several sample sizes, a sim-
ple recursive relation can be used to generate the probabilities. Let Tþ

N
denote the sum of the ranks associated with positive differences Di for
a sample of N observations. Consider a set of N � 1 ordered jDij, with
ranks 1; 2; . . . ;N � 1 assigned, for which the null distribution of Tþ

N�1
is known. To obtain the distribution of Tþ

N from this, an extra ob-
servation DN is added, and we can assume without loss of generality
that jDN j > jDij for all i4N � 1. The rank of jDN j is then N. If
jDN j > 0, the value of Tþ

N will exceed that of Tþ
N�1 by the amount N for

every arrangement of the N � 1 observations, but if jDN j < 0;Tþ
N will

be equal to Tþ
N�1. Using the notation in (7.7), this can be stated as

PðTþ
N ¼ kÞ ¼ uNðkÞ

2N
¼ uN�1ðk�NÞPðDN > 0Þ þ uN�1ðkÞPðDN < 0Þ

2N�1

¼ uN�1ðk�NÞ þ uN�1ðkÞ
2N

ð7:8Þ

If N is moderate and systematic enumeration is desired, classi-
fication according to the number of positive differences Di is often
helpful. Define the random variable U as the number of positive dif-
ferences; U follows the binomial distribution with parameter 0.5, so
that

PðTþ¼ tÞ ¼
XN
i¼0

PðU ¼ i \ Tþ ¼ tÞ

¼
XN
i¼0

PðU ¼ iÞPðTþ ¼ t jU ¼ iÞ

¼
XN
i¼0

N

i

	 

ð0:5ÞNPðTþ ¼ t jU ¼ iÞ

A table of critical values and exact significance levels of the
Wilcoxon signed-rank test is given in Dunstan, Nix, and Reynolds
(1979) for N4 50, and the entire null distribution is given in Wilcoxon,
Katti, and Wilcox (1972) for N4 50. Table H of the Appendix of this
book gives left-tail and right-tail probabilities of Tþ (or T�) for N4 15.
From a generalization of the central-limit theorem, they asymptotic
distribution of Tþ is the normal. Therefore, in the null case, using the
moments given in (7.2), the distribution of

Z ¼ 4Tþ �NðN þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðN þ 1Þð2N þ 1Þ=3p ð7:9Þ
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approaches the standard normal as N ! 1. The test for, say,
H1: M > M0 can be performed for large N by computing (7.9) and
rejecting H0 for Z5 za. The approximation is generally adequate for N
at least 15. A continuity correction of 0.5 generally improves the
approximation.

THE PROBLEM OF ZERO AND TIED DIFFERENCES

Since we assumed originally that the random sample was drawn from
a continuous population, the problem of tied observations and zero
differences could be ignored theoretically. In practice, generally any
zero differences (observations equal to MO) are ignored and N is
reduced accordingly, although the other procedures described for the
ordinary sign test in Section 5.4 are equally applicable here. In the
case where two or more absolute values of differences are equal, that
is, jdij ¼ jdjj for at least one i 6¼ j, the observations are tied. The ties
can be dealt with by any of the procedures described in Section 5.6.
The midrank method is usually used, and the sign associated with the
midrank of jdij is determined by the original sign of di as before. The
probability distribution of T is clearly not the same in the presence of
tied ranks, but the effect is generally slight and no correction need be
made unless the ties are quite extensive. A thorough comparison of the
various methods of treating zeros and ties with this test is given in
Pratt and Gibbons (1981).

With large sample sizes when the test is based on the standard
normal statistic in (7.9), the variance can be corrected to account for
the ties as long as the midrank method is used to resolve the ties.
Suppose that t observations are tied for a given rank and that if they
were not tied they would be given the ranks sþ 1; sþ 2; . . . ; sþ t. The
midrank is then sþ ðtþ 1Þ=2 and the sum of squares of these ranks is

t sþ ðtþ 1Þ
2

� �2
¼ t s2 þ sðtþ 1Þ þ ðtþ 1Þ2

4

" #
If these ranks had not been tied, their sum of squares would have been

Xt

i¼1
ðsþ iÞ2 ¼ ts2 þ stðtþ 1Þ þ tðtþ 1Þð2tþ 1Þ

6

The presence of these t ties then decreases the sum of squares by

tðtþ 1Þð2tþ 1Þ
6

� tðtþ 1Þ2
4

¼ tðtþ 1Þðt� 1Þ
12

ð7:10Þ
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Therefore the reduced variance from (7.2) is

varðTþjH0Þ ¼ NðN þ 1Þð2N þ 1Þ
24

�
P

tðt2 � 1Þ
48

ð7:11Þ

where the sum is extended over all sets of t ties.

POWER FUNCTION

The distribution of Tþ is approximately normal for large sample sizes
regardless of whether the null hypothesis is true. Therefore a large
sample approximation to the power can be calculated using the mean
and variance given in (7.5) and (7.6). The distribution of X �M0 under
the alternative would need to be specified in order to calculate the
probabilities in (7.4) to substitute in (7.5) and (7.6).

The asymptotic relative efficiency of the Wilcoxon signed-rank
test relative to the t test is at least 0.864 for any distribution con-
tinuous and symmetric about zero, is 0.955 for the normal distribu-
tion, and is 1.5 for the double exponential distribution.

It should be noted that the probability distribution of Tþ is not
symmetric when the null hypothesis is not true. Further, Tþ and T�

are not identically distributed when the null hypothesis is not true. We
can still find the probability distribution of T� from that of Tþ, how-
ever, using the relationship

PðT� ¼ kÞ ¼ P
NðN þ 1Þ

2
� Tþ ¼ k

� �
ð7:12Þ

SIMULATED POWER

Calculating the power of the signed-rank test, even using the normal
approximation, requires a considerable amount of work. It is much
easier to simulate the power of the test, as we did for the sign test in
Section 5.4. Again we use a MINITAB Macro program for the calcu-
lations and in order to compare the results with those obtained for the
sign test, we use N ¼ 13; a ¼ 0:05;M0 ¼ 0:5 and M1 ¼ 0:6256.

Simulating the power of the signed-rank test consists of the fol-
lowing steps. First, we determine the rejection region of the signed-
rank test from Table H of the Appendix as Tþ 5 70 with exact
a ¼ 0:047. We generate 1000 random samples each of size N ¼ 13 from
a normal distribution with mean 0.6256 and variance 1 and calculate
the signed-rank statistic Tþ for each. For each of these statistics we
check to see if it exceeds the critical value 70 or not. Finally, we count
the number of times, out of 1000, that the signed-rank test rejects
the null hypothesis and divide this number by 1000. This gives a
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simulated (estimated) value of the power of the sign test with
N ¼ 13; a ¼ 0:0461;M0 ¼ 0:50;M1 ¼ 0:6256. The program code is
shown below. Note that the program also calculates the simulated
power of the sign test and plots the two simulated power curves on the
same graph. This graph is shown in Figure 7.1.

Fig. 7.1 Simulated power of the sign and the signed-rank rank test for the normal
distribution.

206 CHAPTER 5



ONE-SAMPLE AND PAIRED-SAMPLE PROCEDURES 207



The output from the MACRO is shown below; pow1 and pow2
are, respectively, the computed powers of the sign and the signed-rank
test, based on 1000 simulations.

SAMPLE SIZE DETERMINATION

In order to make an inference regarding the population median using
the signed-rank test, we need to have a random sample of observa-
tions. If we are allowed to choose the sample size, we might want to
determine the value of N such that the test has size a and power 1�b,
given the null and the alternative hypotheses and other necessary
assumptions. Recall that for the sign test against the one- sided upper-
tailed alternative, we solved for N such that

Size ¼
XN
i¼ka

N

i

	 

ð0:5ÞN 4 a

and power ¼
XN
i¼ka

N

i

	 

yið1� yÞN�i 5 1� b

where a, 1�b, and y ¼ PðX > M0jH1Þ are all specified. We noted there
that the solution is much easier to obtain using the normal approx-
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imation; the same is true for the Wilcoxon signed-rank test, as we now
illustrate. Note that the theory is presented here in terms of the
signed-rank statistic Tþ but the same approach will hold for any test
statistic whose distribution can be approximated by a normal dis-
tribution under both the null and the alternative hypotheses.

Under the normal approximation, the power of a size a signed-
rank test against the alternative H1 : M > M0 is PðTþ 5 m0 þ zas0jH1Þ,
where m0 and s0 are, respectively, the null mean and the null standard
deviation of Tþ. It can be easily shown (see Noether, 1987) that this
power equals a specified 1�b if

m0 � m
s

� �2
¼ ðza þ r zbÞ2 ð7:13Þ

where m and s are, respectively, the mean and the standard deviation
of Tþ under the alternative hypothesis. We denote the relation
between standard deviations by r¼s=s0. Since s is unknown and is
difficult to evaluate [see (7.6)], r is unknown. One possibility is to take
r equal to 1 and this is what is done; such an assumption is reasonable
for alternative hypotheses that are not too different from the null
hypothesis.

If we substitute the expressions for m0, s0, and m [see (7.5)] into
(7.13), we need to solve for N in

½Nðp1 � 0:5Þ þ ðNðN � 1Þðp2 � 0:5ÞÞ=2�2
NðN þ 1Þð2N þ 1Þ=24 ¼ ðza þ zbÞ2 ð7:14Þ

Note that p1 ¼ PðXi > M0Þ and p2 ¼ PðXi þ Xj > 2M0Þ under the
alternative H1 : M > M0. The sample size calculations from (7.14) are
shown in Table 7.3 for a¼ 0.05, 1�b¼ 0.95, assuming the underlying
distribution is standard normal. These calculations are the solution for
N in (7.14) done in EXCEL using the solver application. Note that the
answer for the sample size N, shown in the fifth column, needs to be
rounded up to that next larger integer. Thus, for example, assuming
normality and the M0 ¼ 0, M1 ¼ 0:5, a¼ 0.05, we need to have
approximately 33 observations in our sample for a power of 0.95 and a
one-sided alternative.

A similar derivation can be used to find a sample size formula
when the alternative is two-sided. The details are left to the reader as
an exercise.

It may be noted that the sample size formula in (7.14) is not
distribution-free since it depends on the underlying distribution
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through the parameters p1 and p2. Noether (1987) proposed approx-
imating the left-hand side of (7.14) as 3Nðp2 � 0:5Þ2 and solving for N,
which yields

N ¼ ðza þ zbÞ2
3ðp2 � 0:5Þ2 ð7:15Þ

This formula still depends on p2; Noether (1987) suggested a choice for
this parameter in terms of an ‘‘odds-ratio.’’ The reader is referred to his
paper for details.

For a two-sided test, we can use (7.15) with a replaced by a=2.
We illustrate the use of (7.15) for this example where a¼ 0.05,

1�b¼ 0.95. IfM1 ¼ 0:1 and p2 ¼ 0:579, we find N ¼ 578:12 from (7.15);
if M1¼1.0 and p2¼ 0.977, we find N¼ 15.86 from (7.15). The corres-
ponding values shown in Table 7.1 are N¼ 575.72 and N¼ 16.44,
respectively.

CONFIDENCE-INTERVAL PROCEDURES

As with the ordinary one-sample sign test, the Wilcoxon signed-rank
procedure lends itself to confidence-interval estimation of the
unknown population median M. In fact, two methods of interval
estimation are available here. Both will give the confidence limits as
those values of M which do not lead to rejection of the null hypothesis,
but one amounts to a trial-and-error procedure while the other is
systematic and provides a unique interval. For any sample size N, we
can find that number ta=2 such that if the true population median is M
and T is calculated for the derived sample values Xi �M, then

PðTþ 4 ta=2Þ ¼ a
2

and PðT� 4 ta=2Þ ¼ a
2

The null hypothesis will not be rejected for all numbersM which make
Tþ > ta=2 and T� > ta=2. The confidence interval technique is to find
those two numbers, say M1 and M2 where M1 < M2, such that when T
is calculated for the two sets of differences Xi �M1 and Xi �M2, at the
significance level a, Tþ or T�, whichever is smaller, is just short of
significance, i.e., slightly larger than ta=2. Then the 100ð1� aÞ percent
confidence-interval estimate of M is M1 < M < M2.

In the trial-and-error procedure, we simply choose some suitable
values of M and calculate the resulting values of Tþ or T�, stopping
whenever we get numbers slightly larger than ta=2. This generally does
not lead to a unique interval, and the manipulations can be tedious
even for moderate sample sizes. The technique is best illustrated by an
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example. The following eight observations are drawn from a con-
tinuous, symmetric population:

�1; 6; 13; 4; 2; 3; 5;9 ð7:16Þ

For N¼ 8 the two-sided rejection region of nominal size 0.05 was found
earlier by Table 7.2 to be ta=2 ¼ 3 with exact significance level

a ¼ PðTþ 4 3Þ þ PðT� 4 3Þ ¼ 10=256 ¼ 0:039

In Table 7.4 we try six different values for M and calculate Tþ or T�,
whichever is smaller, for the differences Xi �M. The example illus-
trates a number of difficulties which arise. In the first trial choice ofM,
the number 4 was subtracted and the resulting differences contained
three sets of tied pairs and one zero even though the original sample
contained neither ties nor zeros. If the zero difference is ignored, N
must be reduced to 7 and then the ta=2 ¼ 3 is no longer accurate for
a¼ 0.039. The midrank method could be used to handle the ties, but
this also disturbs the accuracy of ta=2. Since there seems to be no real
solution to these problems, we try to avoid zeros and ties by judicious
choices for our M values for subtraction. Since these data are all
integers, a choice for M which is noninteger valued obviously reduces
the likelihood of ties and makes zero values impossible. Since T� for
the differences Xi � 1:1 yields T� ¼ 3:5 using the midrank method, we
will choose M1¼1.5. The next three columns represent an attempt to
find an M which makes Tþ around 4. These calculations illustrate the
fact that M1 and M2 are far from being unique. Clearly M2 is in the
vicinity of 9, but the differences Xi � 9 yield a zero. We conclude there
is no need to go further. An approximate 96.1 percent confidence

Table 7.4 Trial-and-error determination of endpoints

XI Xi � 4 Xi � 1:1 Xi � 1:5 Xi � 9:1 Xi � 8:9 Xi � 8:95

�1 �5 �2.1 �2.5 �10.1 �9.9 �9.95
6 2 4.9 4.5 �3.1 �2.9 �2.95
13 9 11.9 11.5 3.9 4.1 4.05
4 0 2.9 2.5 �5.1 �4.9 �4.95
2 �2 0.9 0.5 �7.1 �6.9 �6.95
3 �1 1.9 1.5 �6.1 �5.9 �5.95
5 1 3.9 3.5 �4.1 �3.9 �3.95
9 5 7.9 7.5 �0.1 0.1 0.05

Tþ or T� 3 3.5 3 5 5
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interval on M is given by 1:5 < M < 9. The interpretation is that
hypothesized values of M within this range will lead to acceptance of
the null hypothesis for an exact significance level of 0.039.

This procedure is undoubtedly tedious, but the limits obtained
are reasonably accurate. The numbers should be tried systematically
to narrow down the range of possibilities. Thoughtful study of the
intermediate results usually reduces the additional number of trials
required.

A different method of construction which leads to a unique in-
terval and is much easier to apply is described in Noether [(1967), pp.
57–58]. The procedure is to convert the interval Tþ > ta=2 and
T� > ta=2 to an equivalent statement on M whose end points are
functions of the observations Xi. For this purpose we must analyze the
comparisons involved in determining the ranks of the differences
rðjXi �M0jÞ and the signs of the differences Xi ¼ M0 since Tþ and T�

are functions of these comparisons. Recall from (5.1) that the rank of
any random variable in a set fV1;V2; . . . ;VNg can be written sym-
bolically as

rðViÞ ¼
XN
k¼1

SðVi � VkÞ ¼
X
k 6¼i

SðVi � VkÞ þ 1

where

SðuÞ ¼ 1 if u > 0
0 if u4 0

�
To compute a rank, then we make N

2

	 

comparisons of pairs of

different numbers and one comparison of a number with itself. To

compute the sets of all ranks, we make N
2

	 

comparisons of pairs and

N identity comparisons, a total of N
2

	 

þN ¼ NðN þ 1Þ=2 compar-

isons. Substituting the rank function in (7.1), we obtain

Tþ ¼
XN
i¼1

Zi rðjXi �M0jÞ

¼
XN
i¼1

Zi þ
XN
i¼1

X
k 6¼i

Zi SðjXi �M0j � jXk �M0jÞ ð7:17Þ

Therefore these comparisons affect Tþ as follows:
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1. A comparison of jXi �M0j with itself adds 1 to Tþ if Xi �M0 > 0.
2. A comparison of jXi �M0j with jXk �M0j for any i 6¼ k adds 1 to Tþ

if jXi �M0j > jXk �M0j and Xi �M0 > 0, that is, Xi �M0 >
jXk �M0j. If Xk �M0 > 0, this occurs when Xi > Xk, and if
Xk �M0 < 0, we have Xi þ Xk > 2M0 or ðXi þ XkÞ=2 > M0. But
when Xi �M0 > 0 and Xk �M0 > 0, we have ðXi þ XkÞ=2 > M0

also.

Combining these two results, then, ðXi þ XkÞ=2 > M0 is a neces-
sary condition for adding 1 to Tþ for all i, k. Similarly, if
ðXi þ XkÞ=2 < M0, then this comparison adds 1 to T�. The relative
magnitudes of the NðN þ 1Þ=2 averages of pairs ðXi þ XkÞ=2 for all
i4 k, called theWalsh averages, then determine the range of values for
hypothesized numbersM0 which will not lead to rejection ofH0. If these
NðN þ 1Þ=2 averages are arranged as order statistics, the two numbers
which are in the (ta=2 þ 1Þ position from either end are the endpoints of
the 100ð1� aÞ percent confidence interval on M. Note that this proce-
dure is exactly analogous to the ordinary sign-test confidence interval
except that here the order statistics are for the averages of all pairs of
observations instead of the original observations.

The data in (7.16) for N ¼ 8 arranged in order of magnitude are
�1, 2, 3, 4, 5, 6, 9, 13, and the 36 Walsh averages are given in Table 7.5.
For exact a ¼ 0:039, we found before that ta=2 ¼ 3. Since the fourth
largest numbers from either end are 1.5 and 9.0, the confidence in-
terval is 1.5<M< 9 with exact confidence coefficient g¼ 1�2(0.039)¼
0.922. This result agrees exactly with that obtained by the previous
method, but this will not always be the case since the trial-and-error
procedure does not yield unique endpoints.

The process of determining a confidence interval on M by the
above method is much facilitated by using the graphical method of
construction, which can be described as follows. Each of the N ob-

Table 7.5 Walsh averages for data in (7.16)

�1.0 0.5 1.0 1.5 2.0 2.5 4.0 6.0
2.0 2.5 3.0 3.5 4.0 5.5 7.5
3.0 3.5 4.0 4.5 6.0 8.0
4.0 4.5 5.0 6.5 8.5
5.0 5.5 7.0 9.0
6.0 7.5 9.5
9.0 11.0
13.0
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servations xi is denoted by a dot on a horizontal scale. The closed in-
terval ½Xð1Þ;XðNÞ� then includes all dots. Form an isosceles triangle ABC
by lines joining xð1Þ at A and xðNÞ at B each with a point C anywhere on
the vertical line passing through the midrange value ðxð1Þ þ xðNÞÞ=2.
Through each point xi on the line segment AB draw lines parallel to AC
and BC, marking each intersection with a dot. There will be
NðN þ 1Þ=2 intersections, the abscissas of which are all the ðxi þ xkÞ=2
values where 14 i4 k4N. Vertical lines drawn through the
ðta=2 þ 1Þst intersection point from the left and right will allow us to
read the respective confidence-interval end points on the horizontal
scale. Figure 7.2 illustrates this method for the numerical data above.

PAIRED-SAMPLE PROCEDURES

The Wilcoxon signed-rank test was actually proposed for use with
paired-sample data in making inferences concerning the value of the
median of the population of differences. Given a random sample of N
pairs

ðX1;Y1Þ; ðX2;Y2Þ; . . . ; ðXN ;YNÞ
their differences are

X1 � Y1; X2 � Y2; . . . ;XN � YN

Fig. 7.2 Graphical determination of confidence interval.
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We assume these are independent observations from a population of
differences which is continuous and symmetric with median M0. In
order to test the hypothesis

H0: MD ¼ M0

form the N differences Di ¼ Xi � Yi �M0 and rank their absolute
magnitudes from smallest to largest using integers f1; 2; . . . ;Ng,
keeping track of the original sign of each difference. Then the above
procedures for hypothesis testing and confidence intervals are equally
applicable here with the same notation, except that the parameter MD

must be interpreted now as the median of the population of differences.

USE OF WILCOXON STATISTICS TO TEST FOR SYMMETRY

The Wilcoxon signed-rank statistics can also be considered tests for
symmetry if the only assumption made is that the random sample is
drawn from a continuous distribution. If the null hypothesis states
that the population is symmetric with median M0, the null distribu-
tions of Tþ and T� are exactly the same as before. If the null
hypothesis is accepted, we can conclude that the population is sym-
metric and has medianM0. On the other hand, if the null hypothesis is
rejected, we cannot tell which portion (or all) of the composite state-
ment is not consistent with the sample outcome. With a two-sided
alternative, for example, we must conclude that either the population
is symmetric with median not equal to M0, or the population is
asymmetric with median equal to M0, or the population is asymmetric
with median not equal to M0. Such a broad conclusion is generally not
satisfactory, and this is why in most cases the assumptions that justify
a test procedure are separated from the statement of the null
hypothesis.

APPLICATIONS

The appropriate rejection regions and P values for Tþ, called the sum
of the positive ranks, are given below. Note that t is the observed value
of Tþ.

Alternative Exact rejection region Exact P-value

M > M0 Tþ 5 ta PðTþ 5 tjH0Þ
M < M0 Tþ 4 t0a PðTþ 4 tjH0Þ
M 6¼ M0 Tþ 4 t0a=2 or Tþ 5 ta=2 2(smaller of the above)
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Table H gives the distribution of Tþ for N4 15 as left-tail probabilities
for Tþ 4NðN þ 1Þ=4 and right-tail for Tþ 5NðN þ 1Þ=4. This table can
be used to find exact critical values for a given a or to find exact P values.
For N > 15, the appropriate rejection regions and the P values based on
the normal approximation with a continuity correction are as follows:

If ties are present, the variance term in these rejection regions should
be replaced by (7.11).

The corresponding confidence interval estimate of the median
has endpoints which are ðta=2 þ 1Þst from the smallest and largest of
the Walsh averages, where ta=2 is the left-tail critical value in Table H
for the given N. The choice of exact confidence levels is limited to 1�2P
where P is a tail probability in Table H. Therefore the critical value ta=2
is the left-tail table entry corresponding to the chosen P. Since the
entries are all of the nonnegative integers, ðta=2 þ 1Þ is the rank of ta=2
among the table entries for that N.

Thus, in practice, the confidence interval endpoints are the
uth smallest and uth largest of the NðN þ 1Þ=2 Walsh averages
Wik ¼ ðXi þ XkÞ=2 for all 14 i, k4N, or

WðuÞ 4M4W½NðNþ1Þ=2�uþ1�

The appropriate value of u for confidence 1�2P is the rank of that left-
tail P among the entries in Table H for the given N. For N > 15, we find
u from

u ¼ NðN þ 1Þ
4

þ 0:5� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þð2N þ 1Þ

24

r
and round down to the next smaller integer if the result is not an
integer. If zeros or ties occur in the averages, they should all be
counted in determining the endpoints.

These Wilcoxon signed-rank test procedures are applicable to
paired samples in exactly the same manner as long as X is replaced by

Alternative
Approximate rejection

region Approximate P value

M > M0 Tþ 5 NðN þ 1Þ
4 þ 0:5þ za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1Þð2N þ 1Þ

24

r
1� F t� 0:5�NðN þ 1Þ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðN þ 1Þð2N þ 1Þ=24p" #

M < M0 Tþ 4 NðN þ 1Þ
4 � 0:5� za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1Þð2N þ 1Þ

24

r
F tþ 0:5�NðN þ 1Þ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðN þ 1Þð2N þ 1Þ=24p" #
M 6¼ 0 Both above with za=2 2(smaller of the above)
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the differences D ¼ X � Y and M is interpreted as the median MD of
the distribution of X � Y.

As in the case of the sign test, the confidence-interval estimate of
the median or median difference can be based on all N observations
even if there are zeros and=or ties. Thus a hypothesis test concerning a
value for the median or median difference when the data contain zeros
and=or ties will be more powerful if the decision is based on the con-
fidence-interval estimate rather than on a hypothesis test procedure.

Example 7.1 A large company was disturbed about the number of
person-hours lost per month due to plant accidents and instituted an
extensive industrial safety program. The data below show the number
of person-hours lost in a month at each of eight different plants before
and after the safety program was established. Has the safety program
been effective in reducing time lost from accidents? Assume the dis-
tribution of differences is symmetric.

Solution Because of the symmetry assumption, we can use the
Wilcoxon signed-rank test instead of the sign test on these data. We
take the differences D¼Before minus After and test H0: MD ¼ 0 ver-
sus H1: MD > 0 since the program is effective if these differences are
large positive numbers. Then we rank the absolute values and sum the
positive ranks. The table below shows these calculations.

Plant Before After

1 51.2 45.8
2 46.5 41.3
3 24.1 15.8
4 10.2 11.1
5 65.3 58.5
6 92.1 70.3
7 30.3 31.6
8 49.2 35.4

Plant D jDj rðjDjÞ

1 5.4 5.4 4
2 5.2 5.2 3
3 8.3 8.3 6
4 �0.9 0.9 1
5 6.8 6.8 5
6 21.8 21.8 8
7 �1.3 1.3 2
8 13.8 13.8 7
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We have Tþ ¼ 33 and Table H for N ¼ 8 gives the right-tail
probability as 0.020. The program has been effective at the 0.05 level.

The following computer printouts illustrate the solution
to Example 7.1 using the MINITAB, STATXACT and SAS packages.
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The MINITAB solution uses the normal approximation with a
continuity correction. The STATXACT solution gives the asymptotic
results based on the normal approximation without a continuity
correction. Only a portion of the output from SAS PROC UNI-
VARIATE is shown. This output provides a lot of information, in-
cluding important descriptive statistics such as the sample mean,
variance, interquartile range, etc., which are not shown. Note that
the SAS signed-rank statistic is calculated as Tþ � nðn þ 1Þ=4 ¼
33� 18 ¼ 15 (labeled S) and the P value given is two-tailed. The
required one-tailed P value can be found as 0.0391/2 = 0.1955, which
agrees with other calculations. It is interesting that for these data
both the t-test and the signed-rank test clearly lead to a rejection of
the null hypothesis at the 0.05 level of significance but the sign test
does not.

Example 7.2 Assume the data in Example 7.1 come from a symmetric
distribution and find a 90% confidence-interval estimate of the median
difference, computed as After minus Before.

Solution Table H for N ¼ 6 shows that P ¼ 0:047 for confidence
1� 2ð0:047Þ ¼ 0:906, and 0.047 has rank three in Table H so that
u ¼ 3. Thus the 90.6% confidence-interval endpoints for the median
difference are the third smallest and third largest Walsh averages.
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The 6ð7Þ=2 ¼ 21 Walsh averages of differences ðDi þDkÞ=2 are shown
in the table below.

So the third smallest and third largest Walsh averages are �1.0
and 5.5, respectively and the 90.6% confidence-interval for the median
difference is (�1.0, 5.5). Note that by listing the After minus Before
data in an array across the top row of this table of Walsh averages,
identification of the confidence-interval endpoints is greatly simplified.

The MINITAB and STATXACT solutions to this example are
shown below. The MINITAB solution agrees exactly with our hand
calculations. The STATXACT solution gives an asymptotic interval
that agrees with our exact solution; the interval labeled exact uses the
second smallest and the second largest Walsh averages, which pro-
vides the 93.8% confidence interval.

�2.0 �1.0 1.0 3.0 4.0 8.0
�1.5 0.0 2.0 3.5 6.0
�0.5 1.0 2.5 5.5
0.5 1.5 4.5
1.0 3.5
3.0
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5.8 SUMMARY

In this chapter we presented the procedures for hypothesis tests and
confidence interval estimates for the pth quantile of any continuous
distribution for any specified p, 0 < p < 1, based on data from one
sample or paired samples. These procedures are all based on using the
pth sample quantile as a point estimate of the pth population quantile
and use the binomial distribution; they have no parametric counter-
parts. The sample quantiles are all order statistics of the sample.
Other estimates of the population quantiles have been introduced in
the literature; most of these are based on linear functions of order
statistics, say

P
aiXðiÞ. The one proposed by Harrell and Davis (1982)

has been shown to be better than ours for a wide variety of distribu-
tions. Dielman, Lowry and Pfaffenberger (1994) present a Monte Carlo
comparison of the performance of various sample quantile estimators
for small sample sizes.

The pth quantile when p ¼ 0:5 is the median of the distribution
and we have inference procedures based on the sign test in Section 5.4
and the Wilcoxon signed-rank test in Section 5.7. Both tests are gen-
erally useful in the same experimental situations regarding a single
sample or paired samples. The assumptions required are minimal –
independence of observations and a population which is continuous at
M for the ordinary sign test and continuous everywhere and sym-
metric for the Wilcoxon signed-rank test. Experimentally, both tests
have the problem of zero differences, and the Wilcoxon test has the
additional problem of ties. Both tests are applicable when quantitative
measurements are impossible or not feasible, as when rating scales or
preferences are used. For the Wilcoxon test, information concerning
relative magnitudes as well as directions of differences is required.
Only the sign test can be used for strictly dichotomous data, like yes-
no observations. Both are very flexible and simple to use for hypoth-
esis testing or constructing confidence intervals. The null distribution
of the sign test is easier to work with since binomial tables are readily
available. The normal approximation is quite accurate for even mod-
erate N in both cases, and neither is particularly hampered by the
presence of a moderate number of zeros or ties.

For hypothesis testing, in the paired-sample case the hypothesis
need not state an actual median difference but only a relation between
medians if both populations are assumed symmetric. For example, we
might test the hypothesis that the X population values are on the
average p percent larger than Y values. Assuming the medians are a
reliable indication of size, we would write
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H0: MX ¼ ð1þ 0:01pÞMY

and take differences Di ¼ Xi � ð1þ 0:01pÞYi and perform either test on
these derived data as before.

Both tests have a corresponding procedure for finding a con-
fidence interval estimate of the median of the population in the one-
sample case and the median difference in the paired-sample case. We
have given expressions for sample size determination and power cal-
culations.

Only the Wilcoxon signed-rank statistics are appropriate for tests
of symmetry since the ordinary sign-test statistic is not at all related to
the symmetry or asymmetry of the population. We have
P½ðXi �MÞ > 0� ¼ 0:5 always, and the sole criterion of determining K
in the sign test is the number of positive signs, thus ignoring the
magnitudes of the plus and minus differences. There are other ex-
tensions and modifications of the sign-test type of criteria [see, for
example, Walsh (1949a,b)].

If the population is symmetric, both sign tests can be considered
to be tests for location of the population mean and are therefore direct
nonparametric counterparts to Student’s t test. As a result, compari-
sons of their performance are of interest. As explained in Chapter 1,
one way to compare performance of tests is by computing their
asymptotic relative efficiency (ARE) under various distribution as-
sumptions. The asymptotic relative efficiency of the ordinary sign test
relative to the t test is 2=p ¼ 0:637, and the ARE of the Wilcoxon
signed-rank test relative to the t test is 3=p ¼ 0:955, both calculated
under the assumption of normal distributions. How these particular
results were obtained will be discussed in Chapter 13. It is not sur-
prising that both ARE values are less than one because the t test is the
best test for normal distributions. It can be shown that the ARE of the
Wilcoxon signed-rank test is always at least 0.864 for any continuous
symmetric distribution, whereas the corresponding lower bound for
the ordinary sign test is only 1=3. The ARE of the sign test relative to
the Wilcoxon signed-rank test is 2=3 for the normal distribution and
1=3 for the uniform distribution. However, the result is 4=3 for the
double exponential distribution; the fact that this ARE is greater than
one means that the sign test performs better than the signed-rank test
for this particular symmetric but heavy-tailed distribution. Similarly,
the Wilcoxon signed-rank test performs better than the t test for some
nonnormal distributions; for example, the ARE is 1.50 for the double
exponential distribution and 1.09 for the logistic distribution, which
are both heavy-tailed distributions.
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PROBLEMS

5.1. Give a functional definition similar to (5.1) for the rank rðXiÞ of a random variable
in any set of N independent observations where ties are dealt with by the midrank
method. Hint: In place of SðuÞ in (5.2), consider the function

cðuÞ ¼
0 if u < 0
1=2 if u ¼ 0
1 if u > 0

(

5.2. Find the correlation coefficient between variate values and ranks in a random
sample of size N from

(a) The uniform distribution

(b) The standard normal distribution

(c) The exponential distribution

5.3. Verify the cumulative distribution function of differences given in (4.14) and
the result M ¼ �2þ ffiffiffi

3
p

. Find and graph the corresponding probability function of dif-
ferences.

5.4. Answer parts (a) through (e) using (i) the sign-test procedure and (ii) the Wilcoxon
signed-rank test procedure.

ðaÞ Test at a significance level not exceeding 0.10 the null hypothesis H0: M ¼ 2
against the alternative H1: M > 2, where M is the median of the continuous symmetric
population from which is drawn the random sample:

�3;�6;1; 9; 4;10; 12

ðbÞ Give the exact probability of a type I error in (a)

ðcÞ On the basis of the following random sample of pairs:

test at a significance level not exceeding 0.10 the null hypothesis H0: M ¼ 2 against the
alternative H1: M 6¼ 2, where M is the median of the continuous and symmetric popu-
lation of differences D ¼ X � Y.

ðdÞ Give the exact probability of a type I error in (c).

ðeÞ Give the confidence interval corresponding to the test in (c).

5.5. Generate the sampling distributions of Tþ and T� under the null hypothesis for a
random sample of six unequal and nonzero observations.

5.6. Show by calculations from tables that the normal distribution provides reasonably
accurate approximations to the critical values of one-sided tests for a ¼ 0:01; 0:05, and
0.10 when:

N ¼ 12 for the sign test

N ¼ 15 for the signed-rank test

5.7. A random sample of 10 observations is drawn from a normal population with mean
m and variance 1. Instead of a normal-theory test, the ordinary sign test is used for
H0: m ¼ 0, H1: m > 0, with rejection region K 2 R for K 5 8.

(a) Plot the power curve using the exact distribution of K.

(b) Plot the power curve using the normal approximation to the distribution of K.

X 126 131 153 125 119 102 116 163

Y 120 126 152 129 102 105 100 175
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(c) Discuss how the power functions might help in the choice of an appropriate
sample size for an experiment.

5.8. Prove that the Wilcoxon signed-rank statistic Tþ � T� based on a set of nonzero
observations X1;X2; . . . ;XN can be written symbolically in the formXX

14 i4 j4N

sgnðXi þ XjÞ

where

sgnðxÞ ¼ 1 if x > 0
�1 if x < 0

�
5.9. Let D1;D2; . . . ;DN be a random sample of N nonzero observations from some
continuous population which is symmetric with median zero. Define

jDij ¼ Xi if Di > 0
Yi if Di < 0

�
Assume there are mX values and nY values, where mþ n ¼ N and the X and Y value
are independent. Show that the signed-rank test statistic Tþ calculated for these Di is
equal to the sum of the ranks of the X observations in the combined ordered sample of
mX ’s and nY ’s and also that Tþ � T� is the sum of the X ranks minus the sum of the Y
ranks. This sum of the ranks of the X’s is the test criterion for the Wilcoxon statistic in
the two-sample problem to be discussed in Chapter 8. Show how Tþ might be used to test
the hypothesis that the X and Y populations are identical.

5.10. Hoskin et al. (1986) investigated the change in fatal motor-vehicle accidents
after the legal minimum drinking age was raised in 10 states. Their data were the
ratios of the number of single-vehicle nighttime fatalities to the number of licensed
drivers in the affected age group before and after the laws were changed to raise the
drinking age, shown in Table 1. The researchers hypothesized that raising the
minimum drinking age resulted in a reduced median fatality ratio. Investigate this
hypothesis.

5.11. The conclusion in Problem 5.10 was that the median difference (Before�After)
was positive for the affected age group, but this does not imply that the reduction
was the result of laws that raised the minimum legal drinking age. Other factors,

Table 1 Data for Problem 5.10

State Affected ages Ratio before Ratio after

Florida 18 0.262 0.202
Georgia 18 0.295 0.227
Illinois 19–20 0.216 0.191
Iowa 18 0.287 0.209
Maine 18–19 0.277 0.299
Michigan 18–20 0.223 0.151
Montana 18 0.512 0.471
Nebraska 19 0.237 0.151
New Hampshire 18–19 0.348 0.336
Tennessee 18 0.342 0.307
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counter measures, or advertising campaigns [like MADD (Mothers Against Drunk
Drivers] may have affected the fatality ratios. In order to investigate further, these
researchers compared the Before � After ratios for the affected age group with the
corresponding difference ratios for the 25–29 age group, who were not affected by the
law change, as shown in Table 2. Carry out an appropriate test and write a report of
your conclusions.

5.12. Howard, Murphy, and Thomas (1986) reported a study designed to investigate
whether computer anxiety changes between the beginning and end of a course on
introduction to computers. The student subjects were given a test to measure com-
puter anxiety at the beginning of the term and then again at the end of the 5-week
summer course. High scores on this test indicate a high level of anxiety. For the data
in Table 3 on 14 students, determine whether computer anxiety was reduced over the
term.

5.13. Twenty-four students took both the midterm and the final exam in a writing
course. Numerical grades were not given on the final, but each student was classified as
either no change, improvement, or reduced level of performance compared with the
midterm. Six showed improvement, 5 showed no change, and 13 had a reduced level of
performance. Find the P value for an appropriate one-sided test.

5.14. Reducing high blood pressure by diet requires reduction of sodium intake,
which usually requires switching from processed foods to their natural counterparts.

Table 2 Data for Problem 5.11

State Affected age group 25�29 age group

Florida 0.060 �0.025
Georgia 0.068 �0.023
Illinois 0.025 0.004
Iowa 0.078 �0.008
Maine �0.022 0.061
Michigan 0.072 0.015
Montana 0.041 �0.035
Nebraska 0.086 �0.016
New Hampshire 0.012 �0.061
Tennessee 0.035 �0.051

Table 3 Data for Problem 5.12

Student Before After Student Before After

A 20 20 H 34 19
B 21 18 I 28 13
C 23 10 J 20 21
D 26 16 K 29 12
E 32 11 L 22 15
F 27 20 M 30 14
G 38 20 N 25 17
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Listed below are the average sodium contents of five ordinary foods in processed form
and natural form for equivalent quantities. Find a confidence interval estimate of the
median difference (processed minus natural) with confidence coefficient at least 0.87
using two different procedures.

5.15. For the data in Problem 4.20, use both the sign test and the signed-rank test to
investigate the research hypothesis that median earnings exceed 2.0.

5.16. In an experiment to measure the effect of mild intoxication on coordination, nine
subjects were each given ethyl alcohol in an amount equivalent to 15.7ml=m2 of body
surface and then asked to write a certain phrase as many times as they could in 1min.
The number of correctly written words was then counted and scaled such that a zero
score represents the score a person not under the influence of alcohol would make, a
positive score indicates increased writing speed and accuracy, and a negative score in-
dicates decreased writing speed and accuracy. For the data below, find a confidence in-
terval estimate of the median score at level nearest 0.95 using the procedure
corresponding to the

(a) Sign test

(b) Wilcoxon signed-rank test where we assume symmetry

5.17. For the data in Example 4.3, test H0: M ¼ 0:50 against the alternative
H1 : M > 0:50, using the

(a) Sign test

(b) Signed-rank test and assuming symmetry

5.18. For the data in Example 7.1, find a confidence interval estimate of the median
difference Before minus After using the level nearest 0.90.

5.19. In a trial of two types of rain gauge, 69 of type A and 12 of type B were distributed
at random over a small area. In a certain period 14 storms occurred, and the average
amounts of rain recorded for each storm by the two types of gauge are as follows:

Natural food Processed food

Corn of the cob 2 Canned corn 251
Chicken 63 Fried chicken 1220
Ground Sirloin 60 All-beef frankfurter 461
Beans 3 Canned beans 300
Fresh tuna 40 Canned tuna 409

Subject Score Subject Score

1 10 6 0
2 �8 7 �7
3 �6 8 5
4 �2 9 �8
5 15
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Another user claims to have found that the type B gauge gives consistently higher
average readings than type A. Do these results substantiate such a conclusion? In-
vestigate using two different nonparametric test procedures, by finding the P value from

(a) Tables of the exact distribution

(b) Large sample approximations to the exact distributions

(A total of four tests are to be performed.) Discuss briefly the advisability of using
nonparametric versus parametric procedures for such an investigation and the relative
merits of the two nonparametric tests used. Discuss assumptions in each case.

5.20. A manufacturer of suntan lotion is testing a new formula to see whether it
provides more protection against sunburn than the old formula. The manufacturer chose
10 persons at random from among the company’s employees, applied the two types of
lotion to their backs, one type on each side, and exposed their backs to a controlled but
intense amount of sun. Degree of sunburn was measured for each side of each subject,
with the results shown below (higher numbers represent more severe sunburn).

(a) Test the null hypothesis that the difference (old – new) of degree of sunburn
has median zero against the one-sided alternative that it is negative, assuming that the
differences are symmetric. Does the new formula appear to be effective?

(b) Find a confidence interval for the median difference, assuming symmetry and
with confidence coefficient near 0.90.

(c) Do (a) and (b) without assuming symmetry.

5.21. Last year the elapsed time of long-distance telephone calls for a national retailer
was skewed to the right with a median of 3 min 15 sec. The recession has reduced sales,

Storm Type A Type B Storm Type A Type B

1 1.38 1.42 8 2.63 2.69
2 9.69 10.37 9 2.44 2.68
3 0.39 0.39 10 0.56 0.53
4 1.42 1.46 11 0.69 0.72
5 0.54 0.55 12 0.71 0.72
6 5.94 6.15 13 0.95 0.90
7 0.59 0.61 14 0.55 0.52

Subject Old formula New formula

1 41 37
2 42 39
3 48 31
4 38 39
5 38 34
6 45 47
7 21 19
8 28 30
9 29 25
10 14 8
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but the company’s treasurer claims that the median length of long-distance calls now is
even greater than last year. A random sample of 5625 calls is selected from recent re-
cords and 2890 of them are found to last more than 3 min 15 sec. Is the treasurer’s claim
supported? Give the null and alternative hypotheses and the P value.

5.22. In order to test the effectiveness of a sales training program proposed by a firm of
training specialists, a home furnishings company selects six sales representatives

at random to take the course. The data below are gross sales by these representatives
before and after the course.

(a) State the null and alternative hypotheses and use the sign test to find a P
value relevant to the question of whether the course is effective.

(b) Use the sign-test procedure at level nearest 0.90 to find a two-sided con-
fidence-interval estimate of the median difference in sales (after – before). Give the exact
level.

(c) Use the signed-rank test to do (a). What assumptions must you make?

(d) Use the signed-rank test procedure to do (b).

5.23. In a marketing research test, 15 adult males were asked to shave one side of their
face with a brand A razor blade and the other side with a brand B razor blade and state
their preferred blade. Twelve men preferred brand A. Find the P value for the alter-
native that the probability of preferring brand A is greater than 0.5.

5.24. Let X be a continuous random variable symmetrically distributed about y. Show
that the random variables jXj and Z are independent, where

Z ¼ 1 if X > y
0 if X 4 y

�
5.25. Using the result in Problem 5.24, show that for the Wilcoxon signed-rank test
statistic Tþ discussed in Section 5.7, the 2N random variables
Z1; rðjD1jÞ; Z2; rðjD2jÞ; . . . ;ZN rðjDN jÞ are mutually independent under H0.

5.26. Again consider the Wilcoxon signed-rank test discussed in Section 5.7. Show that
under H0 the distribution of the test statistic Tþ is the same as that of W ¼PN

i¼1 Wi,
where W1;W2; . . . ;WN are independent random variables with PðWi ¼ 0Þ ¼ PðWi ¼ iÞ
¼ 0:5, i ¼ 1; 2; . . . ;N.

5.27. A study 5 years ago reported that the median amount of sleep by American adults
is 7.5 hours out of 24 with a standard deviation of 1.5 hours and that 5% of the popu-
lation sleep 6 or less hours while another 5% sleep 9 or more hours. A current sample of
eight adults reported their average amounts of sleep per 24 hours as 7.2, 8.3, 5.6, 7.4, 7.8,
5.2, 9.1, and 5.8 hours. Use the most appropriate statistical procedures to determine

Representative Sales before Sales after

1 90 97
2 83 80
3 105 110
4 97 93
5 110 123
6 78 84
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whether American adults sleep less today than they did five years ago and justify your
choice. You should at least test hypothesis concerning the quantiles of order 0.05, 0.50,
and 0.95.

5.28. Find a confidence interval estimate of the median amount of sleep per 24 hours
for the data in Problem 5.27 using confidence coefficient nearest 0.90.

5.29. Let XðrÞ denote the rth-order statistic of a random sample of size 5 from any
continuous population and kp denote the pth quantile of this population. Find:

(a) PðXð1Þ < k0:5 < Xð5ÞÞ
(b) PðXð1Þ < k0:25 < Xð3ÞÞ
(c) PðXð4Þ < k0:80 < Xð5ÞÞ

5.30. For order statistics of a random sample of size n from any continuous population
FX , show that the interval ðXðrÞ; Xðn�rþ1Þ; r < n=2Þ, is a 100ð1� aÞ percent confidence-
interval estimate for the median of FX , where

1� a ¼ 1� 2n
n� 1
r� 1

	 
Z 0:5

0
xn�rð1� xÞr�1 dx

5.31. If X(1) and X(n) are the smallest and largest values, respectively, in a sample of
size n from any continuous population FX with median k0.50, find the smallest value of n
such that:

ðaÞ PðXð1Þ < k0:50 < XðnÞÞ5 0:99

ðbÞ P½FXðXðnÞÞ � FX ðXð1ÞÞ5 0:5�5 0:95

5.32. Derive the sample size formula based on the normal approximation for the sign
test against a two-sided alternative with approximate size a and power 1�b.

5.33. Derive the sample size formula based on the normal approximation for the signed
rank test against a two-sided alternative with approximate size a and power 1�b.
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6
The General Two-Sample Problem

6.1 INTRODUCTION

For the matched-pairs sign and signed-rank tests of Chapter 5 the
data consisted of two samples, but each element in one sample was
linked with a particular element of the other sample by some unit of
association. This sampling situation can be described as a case of two
dependent samples or alternatively as a single sample of pairs from a
bivariate population. When the inferences to be drawn are related only
to the population of differences of the paired observations, the first
step in the analysis usually is to take the differences of the paired
observations; this leaves only a single set of observations. Therefore,
this type of data may be legitimately classified as a one-sample pro-
blem. In this chapter we shall be concerned with data consisting of two
mutually independent random samples, i.e., random samples drawn
independently from each of two populations. Not only are the elements
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within each sample independent, but also every element in the first
sample is independent of every element in the second sample.

The universe consists of two populations, which we call the X and
Y populations, with cumulative distribution functions denoted by FX

and FY , respectively. We have a random sample of size m drawn from
the X population and another random sample of size n drawn in-
dependently from the Y population,

X1;X2; . . . ;Xm and Y1;Y2; . . . ;Yn

Usually the hypothesis of interest in the two-sample problem is that
the two samples are drawn from identical populations, i.e.,

H0: FYðxÞ ¼ FXðxÞ for all x

If we are willing to make parametric model assumptions con-
cerning the forms of the underlying populations and assume that the
differences between the two populations occur only with respect to
some parameters, such as the means or the variances, it is often
possible to derive the so-called best test in a Neyman-Pearson frame-
work. For example, if we assume that the populations are normally
distributed, it is well known that the two-sample Student’s t test for
equality of means and the F test for equality of variances are respec-
tively the best tests. The performances of these two tests are also well
known. However, these and other classical tests may be sensitive to
violations of the fundamental model assumptions inherent in the de-
rivation and construction of these tests. Any conclusions reached using
such tests are only as valid as the underlying assumptions made. If
there is reason to suspect a violation of any of these postulates, or if
sufficient information to judge their validity is not available, or if a
completely general test of equality for unspecified distributions is
desired, some nonparametric procedure is in order.

In practice, other assumptions are often made about the form of
the underlying populations. One common assumption is called the
location model, or the shift model. This model assumes that the X and
Y populations are the same in all other respects except possibly for a
shift in the (unknown) amount of say y, or that

FYðxÞ ¼ PðY4xÞ ¼ PðX4x� yÞ ¼ FXðx� yÞ for all x and y 6¼ 0

This means that X þ y and Y have the same distribution or that X is
distributed as Y � y. The Y population is then the same as the X
population if y ¼ 0, is shifted to the right if y > 0, and is shifted to
the left if y < 0. Under the shift assumption, the populations have the
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In practice, the sample pattern of arrangement of X ’s and Y ’s provides
information about the type of difference which may exist in the
populations. For instance, if the observed arrangement is that desig-
nated by either 1 or 10 in the above example, the X ’s and the Y ’s do
not appear to be randomly mixed, suggesting a contradiction to the
null hypothesis. Many statistical tests are based on some function of
this combined arrangement. The type of function which is most
appropriate depends on the type of difference one hopes to detect,
which is indicated by the alternative hypothesis. An abundance of
reasonable alternatives to H0 may be considered, but the type easiest
to analyze using distribution-free techniques states some functional
relationship between the distributions. The most general two-sided
alternative states simply

HA: FYðxÞ 6¼ FXðxÞ for some x

and a corresponding general one-sided alternative is

H1: FYðxÞ5FXðxÞ for all x

FYðxÞ > FXðxÞ for some x

In this latter case, we generally say that the random variable X is
stochastically larger than the random variable Y. We can write this as
Y >
ST X. Figures 1.1. and 1.2 are descriptive of the alternative that X is

stochastically larger than Y, which includes as a subclass the more
specific alternative mX > mY . Some authors define Y >

ST X to mean that
PðX > YÞ > PðX < YÞ. (For the reverse inequality on FX and FY , we
say X is stochastically smaller than Y and write X >

ST Y).
If the particular alternative of interest is simply a difference in

location, we use the location alternative or the location model

HL: FYðxÞ ¼ FXðx� yÞ for all x and some y 6¼ 0

Fig. 1.1 X is stochastically larger than Y.
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Under the location model, Y is distributed as X þ y, so that Y is sto-
chastically larger (smaller) than X if and only if y > 0 ðy < 0Þ. Simi-
larly, if only a difference in scale is of interest, we use the scale
alternative

HS: FYðxÞ ¼ FXðyxÞ for all x and some y 6¼ 1

Under the scale model, Y is distributed as X=y, so that Y is stochas-
tically larger (smaller) than X if and only if y < 1 ðy > 1Þ.

Although the three special alternatives H1;HL, and HS are the
most frequently encountered of all those included in the general class
HA, other types of relations may be considered. For example, the al-
ternative HLE: FYðxÞ ¼ ½FXðxÞ�k, for some positive integer k and all x,
called the Lehmann alternative, states that the Y random variables
are distributed as the largest of k X variables. Under this alternative,
Y is stochastically larger (smaller) than X if and only if k > 1 ðk < 1Þ.

The available statistical literature on the two-sample problem is
quite extensive. A multitude of tests have been proposed for a wide
variety of functional alternatives, but only a few of the best-known tests
have been selected for inclusion in this book. The Wald-Wolfowitz runs
test, the Kolmogorov-Smirnov two-sample test, the median test, the
controlmedian test, and theMann-WhitneyU testwill be covered in this
chapter. Chapters 7 and 8 are concerned with a specific class of tests
particularly useful for the location and scale alternatives, respectively.

6.2 THE WALD-WOLFOWITZ RUNS TEST

Let the two sets of independent random variables X1;X2; . . . ;Xm and
Y1;Y2; . . . ;Yn be combined into a single ordered sequence from smal-
lest to largest, keeping track of which observations correspond to the X
sample and which to the Y. Assuming that their probability distribu-
tions are continuous, a unique ordering is always possible, since

Fig. 1.2 X is stochastically larger than Y.
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theoretically ties do not exist. For example, with m ¼ 4 and n ¼ 5, the
arrangement might be

X Y Y X X Y X Y Y

which indicates that in the pooled sample the smallest element was an
X, the second smallest a Y, etc., and largest a Y. Under the null
hypothesis of identical distributions

H0: FYðxÞ ¼ FXðxÞ for all x

we expect the X and Y random variables to be well mixed in the
ordered configuration, since the mþ n ¼ N random variables con-
stitute a single random sample of size N from the common population.
With a run defined as in Chapter 3 as a sequence of identical letters
preceded and followed by a different letter or no letter, the total
number of runs in the ordered pooled sample is indicative of the
degree of mixing. In our arrangement X Y Y X X Y X Y Y, the total
number of runs is equal to 6 which shows a pretty good mixing of X ’s
and Y ’s. A pattern of arrangement with too few runs would suggest
that this group of N is not a single random sample but instead is
composed of two samples from two distinguishable populations. For
example, if the arrangement is X X X X Y Y Y Y Y so that all the
elements in the X sample are smaller than all of the elements in the Y
sample, there would be only two runs. This particular configuration
might indicate not only that the populations are not identical, but also
that the X ’s are stochastically smaller than the Y ’s. However, the
reverse ordering also contains only two runs, and therefore a test
criterion based solely on the total number of runs cannot distinguish
these two cases.

The runs test is appropriate primarily when the alternative is
completely general and two-sided, as in

HA: FYðxÞ 6¼ FXðxÞ for some x

We define the random variable R as the total number of runs in the
combined ordered arrangement of m X and n Y random variables.
Since too few runs tend to discredit the null hypothesis when the
alternative is HA, the Wald-Wolfowitz (1940) runs test for significance
level a generally has the rejection region in the lower tail as

R4 ca

where ca is chosen to be the largest integer satisfying

PðR4 ca jH0Þ4 a
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The P value for the runs test is then given by

PðR4RO j H0Þ
where RO is the observed value of the runs test statistic R.

Since the X and Y observations are two types of objects arranged
in a completely random sequence if H0 is true, the null probability
distribution of R is exactly the same as was found in Chapter 3, for the
runs test for randomness. The distribution is given in Theorem 2.2 of
Section 3.2 with n1 and n2 replaced bym and n, respectively, assuming
the X ’s are called type 1 objects and Y ’s are the type 2 objects. The
other properties of R discussed in that section, including the moments
and asymptotic null distribution, are also unchanged. The only dif-
ference here is that the appropriate critical region for the alternative
of different populations is too few runs. The null distribution of R is
given in Table D of the Appendix with n1 ¼ m and n2 ¼ n for m4n.
The normal approximation described in Section 3.2 is used for larger
sample sizes. A numerical example of this test is given below.

Example 2.1 It is easy to show that the distribution of a standardized
chi-square variable with large degrees of freedom can be approximated
by the standard normal distribution. This example provides an in-
vestigation of the agreement between these two distributions for
moderate degrees of freedom. Two mutually independent random
samples, each of size 8, were generated, one from the standard normal
distribution and one from the chi-square distribution with n ¼ 18
degrees of freedom. The resulting data are as follows:

Solution Before testing the null hypothesis of equal distributions,
the chi-square sample data must be standardized by subtracting the
mean n ¼ 18 and dividing by the standard deviation

ffiffiffiffiffiffi
2n

p ¼ ffiffiffiffiffiffi
36

p ¼ 6.
The transformed chi-square data are, respectively,

�2:18 �1:79 �1:66 �0:65 0:05 0:54 0:85 1:69

We pool the normal data and these transformed data into a single
array, ordering them from smallest to largest, underlining the trans-
formed chi-square data, as

�2:18; �1:91; �1:79; 1:66;�1:22;�0:96;�0:72;�0:65; 0:05;
0:14; 0:54; 0:82; 0:85; 1:45; 1:69; 1:86

Normal �1.91 �1.22 �0.96 �0.72 0.14 0.82 1.45 1.86

Chi square 4.90 7.25 8.04 14.10 18.30 21.21 23.10 28.12
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Because of the Gilvenko-Cantelli theorem (Theorem 3.2 of Section 2.3),
the test is consistent for this alternative. The P value is

PðDm;n 5DO jH0Þ

where DO is the observed value of the two-sample K-S test statistic. As
with the one-sample Kolmogorov-Smirnov statistic, Dm;n is completely
distribution free for any continuous common population distribution
since order is preserved under a monotone transformation. That is,
if we let z ¼ FðxÞ for the common continuous cdf F, we have
SmðzÞ ¼ SmðxÞ and SnðzÞ ¼ SnðxÞ, where the random variable Z, cor-
responding to z, has the uniform distribution on the unit interval.

In order to implement the test, the exact cumulative null dis-
tribution of mnDm;n is given in Table I in the Appendix for
24m4n4 12 or mþ n4 16, whichever occurs first. Selected quan-
tiles of mnDm;n are also given for m ¼ n between 9 and 20, along with
the large sample approximation.

The derivation of the exact null probability distribution of Dm;n is
usually attributed to the Russian School, particularly Gnedenko
(1954) and Korolyuk (1961), but the papers by Massey (1951b, 1952)
are also important. Several methods of calculation are possible, gen-
erally involving recursive formulas. Drion (1952) derived a closed ex-
pression for exact probabilities in the case m ¼ n by applying random-
walk techniques. Several approaches are summarized in Hodges
(1958). One of these methods, which is particularly useful for small
sample sizes, will be presented here as an aid to understanding.

To compute PðDm;n 5d jH0Þ, where d is the observed value of
maxx jSmðxÞ � SnðxÞj, we first arrange the combined sample of mþ n
observations in increasing order of magnitude. The arrangement can
be depicted graphically on a Cartesian coordinate system by a path
which starts at the origin and moves one step to the right for an x
observation and one step up for a y observation, ending at (m,n).
For example, the sample arrangement xyyxxyy is represented in
Figure 3.1. The observed values of mSmðxÞ and nSnðxÞ are, respec-
tively, the coordinates of all points (u,v) on the path where u and v are
integers. The number d is the largest of the differences
ju=m� v=nj ¼ jnu �mvj=mn. If a line is drawn connecting the points
(0,0) and (m,n) on this graph, the equation of the line is nx�my ¼ 0
and the vertical distance from any point (u,v) on the path to this line is
jv� nu=mj. Therefore, nd for the observed sample is the distance from
the diagonal line. In Figure 3.1 the farthest point is labeled Q, and the
value of d is 2=4.
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The total number of arrangements of m X and n Y random

variables is mþ n
m

	 

, and under H0 each of the corresponding paths is

equally likely. The probability of an observed value of Dm;n not less
than d then is the number of paths which have points at a distance

from the diagonal not less than nd, divided by mþ n
m

	 

.

In order to count this number, we draw another figure of the
same dimension as before and mark off two lines at vertical distance
nd from the diagonal, as in Figure 3.2. Denote by A(m,n) the number of
paths from (0,0) to (m,n) which lie entirely within (not on) these
boundary lines. Then the desired probability is

PðDm;n 5d jH0Þ ¼ 1� PðDm;n < d jH0Þ ¼ 1� Aðm;nÞ
mþ n

m

	 

A(m,n) can easily be counted in the manner indicated in Figure 3.2.
The number A(u,v) at any intersection (u,v) clearly statisfies the
recursion relation

Aðu;vÞ ¼ Aðu � 1; vÞ þ Aðu; v� 1Þ
with boundary conditions

Að0;vÞ ¼ Aðu;0Þ ¼ 1

Thus A(u,v) is the sum of the numbers at the intersections where
the previous point on the path could have been while still within the

Fig. 3.1 Path of xyyxxyy.
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ONE-SIDED ALTERNATIVES

A one-sided two-sample maximum-unidirectional-deviation test can
also be defined, based on the statistic

Dþ
m;n ¼ max

x
½SmðxÞ � SnðxÞ�

For an alternative that the X random variables are stochastically
smaller than the Y ’s,

H1: FYðxÞ4FXðxÞ for all x
FYðxÞ < FXðxÞ for some x

the rejection region should be

Dþ
m;n 5 ca

The one-sided test based on Dþ
m;n is also distribution free and con-

sistent against the alternative H1. Since either sample may be labeled
the X sample, it is not necessary to define another one-sided statistic
for the alternative that X is stochastically larger than Y. The entries in
Table I in the Appendix can also be used for a one-sided two-sample
Kolmogorov-Smirnov statistic since the probabilities in the tails of this
distribution are closely approximated using one-half of the corres-
ponding tail probabilities on the two-sided, two-sample Kolmogorov-
Smirnov statistic.

The graphic method described for Dm;n can be applied here to
calculate PðDþ

m;n 5dÞ. The point Qþ, corresponding to Q, would be the
point farthest below the diagonal line, and A(m,n) is the number of
paths lying entirely above the lower boundary line (see Problem 6.1).
Tables of the null distribution of Dþ

m;n are available in Goodman (1954)
for m ¼ n.

As with the two-sided statistic, the asymptotic distribution offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn=ðmþ nÞp

Dþ
m;n is equivalent to the asymptotic distribution offfiffiffiffiffi

N
p

Dþ
N , which was given in Theorem 3.5 of Section 4.3 as

lim
m;n!1P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn

mþ n

r
Dþ

m;n 4d

	 

¼ 1� e�2d

2

TIES

Ties within and across samples can be handled by considering only the
r distinct ordered observations in the combined sample as values of x
in computing SmðxÞ and SnðxÞ for r4m and r4n. Then we find the
empirical cdf for each different x and their differences at these
observations and calculate the statistic in the usual way.
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DISCUSSION

The Kolmogorov-Smirnov tests are very easy to apply, using the exact
distribution for any m and n within the range of the available tables
and using the asymptotic distribution for larger sample sizes. They are
useful mainly for the general alternatives HA and H1, since the test
statistic is sensitive to all types of differences between the cumulative
distribution functions. Their primary application then should be for
preliminary studies of data, as was the runs test. Gideon and Mueller
(1978) give a simple method for calculating Dm;n and Pirie (1979)
extends this method to samples with ties. The Kolmogorov-Smirnov
tests are more powerful than the runs tests when compared against
the Lehmann (1953) type of nonparametric alternatives for large
sample sizes. The large-sample performance of the Kolmogorov-
Smirnov tests against specific location or scale alternatives varies
considerably according to the population sampled. Capon (1965) has
made a study of these properties. Goodman (1954) has shown that
when applied to data from discrete distributions, these tests are con-
servative.

APPLICATIONS

Application of the Kolmogorov-Smirnov two-sample general test is
illustrated below with the data from Example 2.1.

Example 3.1 To carry out the Kolmogorov-Smirnov two-sample test
against the two-sided alternative, we calculate the two empirical dis-
tribution functions and their differences, as shown in Table 3.1. Note
that the first column shows the combined (pooled) ordered sample.
This is labeled t to avoid notational confusion. The maximum of the
last column is Dm;n ¼ 2=8 so that mnDm;n ¼ 16. Table I for m ¼ n ¼ 8,
shows that Pð64D8;85 32 jH0Þ ¼ 0:283, so the required P value,
Pð64D8;85 16 jH0Þ, must be greater than 0.283. Thus, we do not reject
the null hypothesis of identical distributions.

For the one-sided alternative, Dþ
m;n ¼ 2=8 and so the P value is at

least (0.283)=2¼ 0.142. Thus there is not sufficient evidence to reject
H0 against the one-sided alternative that the X ’s are stochastically
smaller than the Y ’s.

The STATXACT solution to Example 3.1 using the Kolmogorov-
Smirnov test is shown below. Note that for the two-sided alternative,
the exact and the asymptotic P values are shown to be 0.9801 and
0.9639, respectively, both strongly suggesting that there is no
significant evidence against the null hypothesis in these data. The
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exact two-sided P value is a Monte Carlo estimate; the algorithm is
described in Hilton, Mehta and Patel (1994). The asymptotic two-sided
P value is calculated using the Smirnov approximation, keeping only
the first few terms. The exact one-sided P value is calculated from
the permutation distribution of Dþ

m;n. The reader is referred to the
STATXACT user manual for details.

Table 3.1 Calculation of Dm;n for Example 3.1

t # X 4 t SmðtÞ # Y 4 t SnðtÞ SmðtÞ�SnðtÞ jSmðtÞ�SnðtÞj
�2:18 1 1=8 0 0 1=8 1=8

�1:91 1 1=8 1 1=8 0 0

�1:79 2 2=8 1 1=8 1=8 1=8

�1:66 3 3=8 1 1=8 2=8 2=8

�1:22 3 3=8 2 2=8 1=8 1=8

�0:96 3 3=8 3 3=8 0 0

�0:72 3 3=8 4 4=8 �1=8 1=8

�0:65 4 4=8 4 4=8 0 0

0.05 5 5=8 4 4=8 1=8 1=8

0.14 5 5=8 5 5=8 0 0

0.54 6 6=8 5 5=8 1=8 1=8

0.82 6 6=8 6 6=8 0 0

0.85 7 7=8 6 6=8 1=8 1=8

1.45 7 7=8 7 7=8 0 0

1.69 8 8=8 7 7=8 1=8 1=8

1.86 8 8=8 8 8=8 0 0
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6.4 THE MEDIAN TEST

In order to test the null hypothesis of identical populations with two
independent samples, the Kolmogorov-Smirnov two-sample test com-
pares the proportions of observations from each sample which do not
exceed some number x for all real numbers x. The test criterion was
the maximum difference (absolute or unidirectional) between the two
empirical distributions, which are defined for all x. Suppose that
instead of using all possible differences, we choose some arbitrary but
specific number d and compare only the proportions of observations
from each sample which are strictly less than d. As before, the two
independent samples are denoted by

X1;X2; . . . ;Xm and Y1;Y2; . . . ;Yn

Each of the mþ n ¼ N observations is to be classified according to
whether it is less than d or not. Let U and V denote the respective
numbers of X and Y observations less than d. Since the random vari-
ables in each sample have been dichotomized, U and V both follow the
binomial probability distribution with parameters

pX ¼ PðX < dÞ and pY ¼ PðY < dÞ
and numbers of trials m and n, respectively. For two independent
samples, the joint distribution of U and V then is

fU;Vðu;vÞ ¼
m

u

	 

n

v

	 

pu

Xpv
Yð1� pXÞm�uð1� pYÞn�v

u ¼ 0; 1; . . . ;m and v ¼ 0; 1; . . . ;n

ð4:1Þ

The random variables U=m and V=n are unbiased point estimates of
the parameters pX and pY , respectively. The difference U=m� V=n
then is appropriate for testing the null hypothesis

H0: pX � pY ¼ 0

The exact null probability distribution of U=m� V=n can easily be
found from (4.1), and for m and n large its distribution can be
approximated by the normal. The test statistic in either case depends
on the common value p ¼ pX ¼ pY , but the test can be performed by
replacing p by its unbiased estimate ðuþ vÞ=ðmþ nÞ. Otherwise there
is no difficulty in constructing a test (although approximate) based on
the criterion of difference of proportions of observations less than d.
This is essentially a modified sign test for two independent samples,
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with the hypothesis that d is the pth quantile point in both popula-
tions, where p is unspecified but estimated from the data.

This test will not be pursued here since it is approximate and is
not always appropriate to the general two-sample problem, where we
are primarily interested in the hypothesis of identical populations. If
the two populations are the same, the pth quantile points are equal for
every value of p. However, two populations may be quite disparate
even though some particular quantile points are equal. The value of d,
which is supposedly chosen without knowledge of the observations,
then affects the sensitivity of the test criterion. If d is chosen too small
or too large, bothU and V will have too small a range to be reliable. We
cannot hope to have reasonable power for the general test without a
judicious choice of d. A test where the experimenter chooses a parti-
cular value of p (rather than d), preferably a central value, would be
more appropriate for our general hypothesis, especially if the type of
difference one hopes to detect is primarily in location. In other words,
we would rather control the position of d, regardless of its actual value,
but p and d are hopelessly interrelated in the common population.

When the populations are assumed identical but unspecified, we
cannot choose p and then determine the corresponding d. Yet dmust be
known at least positionally to classify each sample observation as less
than d or not. Therefore, suppose we decide to control the position of d
relative to the magnitudes of the sample observations. If the quantity
U þ V is fixed by the experimenter prior to sampling, p is to some
extent controlled since ðu þ vÞ=ðmþ nÞ is an estimate of the common p.
If p denotes the probability that any observation is less than d, the
probability distribution of T ¼ U þ V is

fTðtÞ ¼ mþ n
t

	 

ptð1� pÞmþn�t t ¼ 0; 1; . . . ;mþ n ð4:2Þ

The conditional distribution of U given T ¼ t is (4.1) divided by (4.2).
In the null case where pX ¼ pY ¼ p, the result is simply

fUjTðujtÞ ¼
m
u

	 

n

t� u

	 

mþ n

t

	 
 u ¼ maxð0; t� nÞ; 1; . . . ;minðm;tÞ

ð4:3Þ
which is the hypergeometric probability distribution. This result
could also have been argued directly as follows. Each of the mþ n
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observations is dichotomized according to whether it is less than d or
not. Among all the observations, if pX ¼ pY ¼ p, every one of the

mþn
t

�
sets of t numbers is equally likely to comprise the less-than-d

group.
The number of sets that have exactly u from the X sample is

m
u

�
n

t�u

�
. Since U/m is an estimate of pX , if the hypothesis

pX ¼ pY ¼ p is true, u=m should be close to t=ðmþ nÞ. A test criterion
can then be found using the conditional distribution of U in (4.3) for
any chosen t.

So far nothing has been said about the value of d, since once t is
chosen, d really need not be specified to perform the test. Any number
greater than the tth and not greater than the ðtþ 1Þst order statistic in
the combined ordered sample will yield the same value of u. In prac-
tice, the experimenter would probably rather choose the fraction
t=ðmþ nÞ in order to control the value of p. Suppose we decide that if
the populations differ at all, it is only in location. Then a reasonable
choice of t=ðmþ nÞ is 0.5. But N ¼ mþ n may be odd or even, while t
must be an integer. To eliminate inconsistencies in application, d can
be defined as the ½ðN þ 1Þ=2�nd order statistic if N is odd, and any
number between the ðN=2Þnd and ½ðN þ 2Þ=2�nd order statistics for N
even. Then a unique value of u is obtained for any set of N observa-
tions, and d is actually defined to be the median of the combined
samples. The probability distribution of U is given in (4.3), where
t ¼ N=2 for N even and t ¼ ðN � 1Þ=2 for N odd. The test based on U,
the number of observations from the X sample which are less than the
combined sample median, is called the median test. It is attributed
mainly to Brown and Mood (1948, 1951), Mood (1950), and Westenberg
(1948) and is often referred to as Mood’s median test or the joint
median test.

The fact that d cannot be determined before the samples are ta-
ken may be disturbing, since it implies that d should be treated as a
random variable. In deriving (4.3) we treated d as a constant, but the
same result is obtained for d defined as the sample median value.
Denote the combined sample median by the random variable Z and the
cdf ’s of the X and Y populations by FX and FY , respectively, and as-
sume that N is odd. The median Z can be either an X or a Y random
variable, and these possibilities are mutually exclusive. The joint
density of U and Z for t observations less than the sample median
where t ¼ ðN � 1Þ=2 is the limit, as Dz approaches zero, of the sum of
the probabilities that (1) the X ’s are divided into three classifications,
u less than z, one between z and zþ Dz and the remainder greater than
zþ Dz, and the Y ’s are divided such that t� u are less than z, and (2)
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exactly u X ’s are less than z, and the Y ’s are divided such that t� u
are less than z, one is between z and zþ Dz, and the remainder are
greater than zþ Dz. The result then is

fU;Zðu;zÞ¼
m

u;1;m�1�u

	 

½FXðzÞ�ufXðzÞ

� ½1�FXðzÞ�m�1�u n

t�u

	 

½FYðzÞ�t�u½1�FYðzÞ�n�tþu

þ m

u

	 

½FXðzÞ�u½1�FXðzÞ�m�u n

t�u;1;n� tþu�1

	 
t�u

�½FYðzÞ�t�ufYðzÞ½1�FYðzÞ�n�tþu�1

The marginal density of U is obtained by integrating the above
expression over all z, and if FXðzÞ ¼ FYðzÞ for all z, the result is

fUðuÞ ¼ m
m� 1

u

	 

n

t� u

	 

þ n

m

u

	 

n� 1

t� u

	 
� �
�
Z 1

�1
½FðzÞ�t½1� FðzÞ�mþn�t�1f ðzÞdz

¼ m

u

	 

n

t� u

	 

½ðm� uÞ þ ðn� tþ uÞ�Bðtþ 1;mþ n� tÞ

¼ m

u

	 

n

t� u

	 

t!ðmþ n� tÞ!

ðmþ nÞ!

which agrees with the expression in (4.3).
Because of this result, we might say then that before sampling,

i.e., before the value of d is determined, the median test statistic is
appropriate for the general hypothesis of identical populations, and
after the samples are obtained, the hypothesis tested is that d is the
pth quantile value in both populations, where p is a number close to
0.5. The null distributions of the test statistic are the same for both
hypotheses, however.

Even though the foregoing discussion may imply that the median
test has some statistical and philosophical limitations in conception, it
is well known and accepted within the context of the general two-
sample problem. The procedure for two independent samples of mea-
surements is to arrange the combined samples in increasing order of
magnitude and determine the sample median d, the observation with
rank ðN þ 1Þ=2 if N is odd and any number between the observations
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The critical values c and c0 can easily be found from (4.4) or from
tables of the hypergeometric distribution [Lieberman and Owen
(1961)] or by using tables of the binomial coefficients. If N is even, we
choose c0a ¼ m� ca. Since the distribution in (4.4) is not symmetric for
m 6¼ n if N is odd, the choice of an optimum rejection region for a two-
sided test is not clear for this case. It could be chosen such that a is
divided equally or that the range of u is symmetric, or neither.

If m and n are so large that calculation or use of tables to find
critical values is not feasible, a normal approximation to the hy-
pergeometric distribution can be used. Using formulas for the mean
and the variance of the hypergeometric distribution (given in
Chapter 1) and the distribution in (4.4), the mean and variance of U
are easily found to be

EðU j tÞ ¼ mt

N
varðU j tÞ ¼ mntðN � tÞ

N2ðN � 1Þ ð4:5Þ

Ifm and n approach infinity in such a way thatm=n remains constant,
this hypergeometric distribution approaches the binomial distri-
bution for t trials with parameter m=N, which in turn approaches
the normal distribution. For N large, the variance of U in (4.5) is
approximately

varðU j tÞ ¼ mntðN � tÞ
N3

and thus the asymptotic distribution of

Z ¼ U �mt=N

½mntðN � tÞ=N3�1=2
ð4:6Þ

is approximately standard normal. A continuity correction of 0.5 may
be used to improve the approximation. For example, when the alter-
native is y < 0 (or MY < MX ), the approximate P value with a con-
tinuity correction is given by

F
UO þ 0:5�mt=Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mntðN � tÞ=N3
p !

ð4:7Þ

It is interesting to note that a test based on the statistic Z in (4.6)
is equivalent to the usual normal-theory test for the difference be-
tween two independent proportions found in most statistics books.
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This can be shown by algebraic manipulation of (4.6) with t ¼ uþ v as
follows

z ¼ Nu�mtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mntðN � tÞ=Np ¼ nu�mðt� uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mnNðt=NÞð1� t=NÞp
¼ u=m� v=nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðuþ vÞ=N�½1� ðu þ vÞ=N�N=mn
p

¼ u=m� v=nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þð1=mþ 1=nÞp

If a success is defined as an observation being less than d, u/m and v/
n are the observed sample proportions of successes, and p̂ ¼ ðuþ vÞ=N
is the best sample estimate of the common proportion. This then is the
same approximate test statistic that was described at the beginning of
this section for large samples, except that here u þ v ¼ t, a constant
which is fixed by the choice of d as the sample median.

The presence of ties either within or across samples presents no
problem for the median test except in two particular cases. If N is odd
and more than one observation is equal to the sample median, or if N
is even and the (N/2)nd- and ½ðN þ 2Þ=2�nd-order statistics are equal,
t cannot be defined as before unless the ties are broken. The con-
servative approach is recommended, where the ties are broken in all
possible ways and the value of u chosen for decision is the one which is
least likely to lead to rejection of H0.

APPLICATIONS

Example 4.1 The production manager of a small company that manu-
factures a certain electronic component believes that playing some
contemporarymusic in the production areawill help reduce the number
of nonconforming items produced. A group of workers with similar
background (training, experience, etc.) are selected and five of them are
assigned, at random, to work in the area while music is played. Then
from the remaining group, four workers are randomly assigned to work
in the usual way without music. The numbers of nonconforming items
produced by theworkers over aparticular period of timeare given below.
Test to see if themediannumber of nonconforming items producedwhile
music is played is less than that when no music is played.

Sample 1: Without music Sample 2: With music

3, 4, 9, 10 1, 2, 5, 7, 8
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Solution Let samples 1 and 2 denote the X and Y sample,
respectively. Assume the shift model and suppose that the null
hypothesis to be tested is MX ¼ MY against the alternative
MY < MX . Then, the P value for the median test is in the left tail.
Since N ¼ 9 is odd, t ¼ ð9� 1Þ=2 ¼ 4. The combined sample median
is equal to 5 and thus U ¼ 2. Using (4.4), the exact P value for the
median test is

PðU4 2 jH0Þ ¼

4

0

 !
5

4

 !
þ 4

1

 !
5

3

 !
þ 4

2

 !
5

2

 !
9

4

 !
¼ 105=126 ¼ 0:8333

There is not enough evidence in favor of the alternative H1 and we do
not reject H0. The reader can verify using (4.7) that the normal
approximation to the P value is Fð0:975Þ ¼ 0:8352, leading to the same
conclusion.

The MINITAB solution to Example 4.1 for the median test is
shown below. For each group the MINITAB output gives the median
and the interquartile range. Note that MINITAB does not calculate
the P value for the exact median test but provides the chi-square
approximation with df ¼ 1. The chi-square test statistic is the
square of the Z statistic in (4.6), based on the normal approximation
without a continuity correction. Calculations yield Z2 ¼ 0:09 and
from Table B of the Appendix, the critical value at a ¼ 0:05 is found
to be 3.84. Thus, the approximate test also fails to reject the null
hypothesis. Using the chi-square approximation for these small
sample sizes might not be advisable however. Using MINITAB, the
right-tail probability corresponding to the observed value of 0.09
under the chi-square distribution with df ¼ 1 is 0.7642 and this is
in fact the P value shown in the printout. MINITAB also provides a
95% confidence interval for each group median (based on the sign
test and interpolation) and for the difference in the medians. The
two individual confidence intervals overlap, and the interval for the
difference of medians includes zero, suggesting that the corre-
sponding population medians are the same. The MINITAB output
does not show the result of a median test but it does show a con-
fidence interval for the difference between the medians based on
a median test; this will be discussed next. For these data, the
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confidence interval is (�4.26, 8.26) which includes zero and this
suggests, as before, that the population medians are not different.

The STATXACT solution is shown next. STATXACT at present
does not provide the exact P value for the two-sample case directly.
However, a little programming can be used to find the exact P value as
shown below. Also, note that STATXACT bases the test on the chi-
square statistic and not on the count U.

Finally, the SAS output is shown. SAS determines S, the number
of observations that are above the combined sample median, for the
sample with the smaller sample size. In our case the X sample has the
smaller sample size and S ¼ 2. According to SAS documentation, a
one-sided P value is calculated as P1 ¼ P(Test Statistic5S jH0) if
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S >Mean, whereas if S4Mean, the one-sided P value is calculated as
P1 ¼ PðTest Statistic4S jH0Þ. The mean of the median test statistic
under H0 is mt/N which equals 4ð4Þ=9 ¼ 1:78 for our example. Thus,
SAS calculates the exact P value in the upper tail as
PðS5 2 jH0Þ ¼ 81=126 ¼ 0:6429. This equals 1� PðU4 1 jH0Þ and
thus does not agree with our hand calculations. However, on the basis
of S we reach the same conclusion of not rejecting H0, made earlier on
the basis of U. For the normal approximation to the P value, PROC
NPAR1WAY calculates the Z statistic by the formula
Z ¼ ðS �mt=NÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mntðN � tÞ=N2ðN � 1Þp
and incorporates a con-

tinuity correction unless one specifies otherwise. As with the exact
P value, the SAS P value under the normal approximation also does
not agree with our hand calculation based on U.
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where t ¼ N=2 or ðN � 1Þ=2 according as N is even or odd. Since H0 is
accepted for all U values in the interval cþ 14U4 c0 � 1, and this
acceptance region has probability 1� a under H0, a 100ð1� aÞ% con-
fidence-interval estimate for y consists of all values of y for which
the derived sample observations yield values of U which lie in the
acceptance region. This process of obtaining a confidence interval for a
parameter from the acceptance region (of a test of hypothesis) is
called inverting the acceptance region (of the test), and the
confidence interval thus obtained is referred to as a test-based con-
fidence interval.

To explicitly find the confidence interval, that is, the range of y
corresponding to the acceptance region cþ 14U4 c0 � 1, we
first order the two derived samples separately from smallest to largest
as

Xð1Þ;Xð2Þ; . . . ;XðmÞ and Yð1Þ � y;Yð2Þ � y; . . . ;YðnÞ � y

The t smallest observations of the N ¼ mþ n total number are made
up of exactly i X and t� i Y variables if each observation of the set

Xð1Þ; . . . ;XðiÞ;Yð1Þ � y; . . . ;Yðt�iÞ � y

is less than each observation of the set

Xðiþ1Þ; . . . ;XðmÞ;Yðt�iþ1Þ � y; . . . ;YðnÞ � y

The value of i is at least cþ 1 if and only if for i ¼ cþ 1, the largest X in
the first set is less than the smallest Y in the second set, that is,
Xðcþ1Þ < Yðt�cÞ � y. Arguing similarly, Xðc0Þ > Yðt�c0þ1Þ � y can be seen to
be a necessary and sufficient condition for having at most c0 � 1 X
observations among the t smallest of the total N (in this case the
largest Y in the first set must be smaller than the smallest X in the
second set). Therefore, the acceptance region for the median test cor-
responding to the null hypothesis of no difference between the two
distributions (with respect to location) at significance level a can be
equivalently written as

Xðcþ1Þ < Yðt�cÞ � y and Xðc0Þ > Yðt�c0þ1Þ � y

or as

Yðt�cÞ � Xðcþ1Þ > y and Yðt�c0þ1Þ � Xðc0Þ < y

The desired confidence interval ðYðt�c0þ1Þ � Xðc0Þ;Yðt�cÞ � Xðcþ1ÞÞ follows
from the last two inequalities. Now, using (4.8),
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1� a ¼ Pðcþ 14U4 c0 � 1 jH0Þ
¼ Pðcþ 14U4 c0 � 1 j y ¼ 0Þ
¼ PðYðt�c0þ1Þ � Xðc0Þ < y < Yðt�cÞ � Xðcþ1Þjy ¼ 0Þ

Since the last equality is also true for all values of y, we can make the
statement

PðYðt�c0þ1Þ � Xðc0Þ < y < Yðt�cÞ � Xðcþ1ÞÞ ¼ 1� a

where c and c0 are found from (4.8). Thus the endpoints of the con-
fidence interval estimate for y corresponding to Mood’s median test are
found simply from some order statistics of the respective random
samples.

Example 4.2 We calculate the 95% confidence interval for the median
difference for the data in Example 4.1. In order to find the constants c
and c0, we need to calculate the null distribution of U, using (4.3) for
m ¼ 4;n ¼ 5; t ¼ 4. The results are shown in Table 4.1. If we take c ¼ 0
and c0 ¼ 4, then (4.8) equals 0.04762 so that the confidence interval for
y ¼ MY �MX is ðYð1Þ � Xð4Þ;Yð4Þ � Xð1ÞÞ with exact level 0.95238. Nu-
merically, the intervals is ð�9;4Þ. Also, the 95.238% confidence interval
for y ¼ MX �MY is ð�4;9Þ. Note that the MINITAB output given be-
fore states ‘‘A 95.0% CI for median(1)�median(2): (�4:26; 8:26Þ.’’ This
is based on the median test but c and c0 are calculated using the
normal approximation. The results are quite close.

It may be noted that the median test is a member of a more
general class of nonparametric two-sample tests, called precedence
tests. Chakraborti and van der Laan (1996) provided an overview of
the literature on these tests. A precedence test is based on a statistic
Wr which denotes the number of Y observations that precede the rth-
order statistic from the X sample XðrÞ (alternatively, one can use the
number of X ’s that precede, say, YðsÞ). It can be seen, for example, that
Wr < w if and only if XðrÞ < YðwÞ so that a precedence test based on Wr

can be interpreted in terms of two order statistics, one from each
sample. The test is implemented by first choosing r, and then
determining w such that the size of the test is a. It can be shown that

Table 4.1 Null distribution of U for m ¼ 4;n ¼ 5; t ¼ 4

u 0 1 2 3 4

PðU ¼ uÞ 0.039683 0.31746 0.47619 0.15873 0.007937
5=126 40=126 60=126 20=126 1=126
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½ðYðt�c0þ1Þ � Xðc0ÞÞ; ðYðt�cÞ � Xðcþ1ÞÞ�
Thus, the power function of the median test in the location case is the
probability that this interval does not cover zero when y 6¼ 0, that is,

PwðyÞ ¼ PðYðt�c0þ1Þ �Xðc0Þ > 0 or Yðt�cÞ �Xðcþ1Þ < 0 when y 6¼ 0Þ
These two events, call them A and B, are mutually exclusive as we now
show. For any c0 > c, it is always true that Xðc0Þ 5Xðcþ1Þ and
Yðt�c0þ1Þ ¼ Yðt�½c0�1�Þ 4Yðt�cÞ. Thus if A occurs, that is, Yðt�c0þ1Þ > Xðc0Þ,
we must also have Yðt�cÞ 5Yðt�c0þ1Þ > Xðc0Þ 5Xðcþ1Þ which makes
Yðt�cÞ > Xðcþ1Þ, a contradiction in B. As a result, the power function can
be expressed as the sum of two probabilities involving order statistics:

PwðyÞ ¼ PðYðt�c0þ1Þ > Xðc0ÞÞ þ PðYðt�cÞ < Xðcþ1ÞÞ
Since the random variables X and Y are independent, the joint

distribution of, say, XðrÞ and YðsÞ is the product of their marginal dis-
tributions, which can be easily found using the methods of Chapter 2
for completely specified populations FX and FY or, equivalently, FX and
y since FYðxÞ ¼ FXðx� yÞ. In order to calculate the power function
then, we need only evaluate two double integrals of the following type:

PðYðsÞ < XðrÞÞ ¼
Z 1

�1

Z 1

�1
fYðsÞ ðyÞfXðrÞ ðxÞdydx

The power function for a one-sided test is simply one integral of this
type. For large sample sizes, since the marginal distribution of any
order statistic approaches the normal distribution and the order sta-
tistics XðrÞ and YðsÞ are independent here, the distribution of their
difference YðsÞ � XðrÞ approaches the normal distribution with mean
and variance

EðYðsÞÞ � EðXðrÞÞ and varðYðsÞÞ þ varðXðrÞÞ
Given the specified distribution function and the results in Chapter 2,
we can approximate these quantities by

EðXðrÞÞ ¼ F�1
X

r

mþ 1

	 

EðYðsÞÞ ¼ F�1

X

s

nþ 1

	 

varðXðrÞÞ ¼ rðm� rþ 1Þ

ðmþ 1Þ2ðmþ 2Þ fX F�1
X

r

mþ 1

	 
� �� ��2

varðYðsÞÞ ¼ sðn� sþ 1Þ
ðnþ 1Þ2ðnþ 2Þ fY F�1

X

s

nþ 1

	 
� �� ��2
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and an approximation to the power function can be found using nor-
mal probability tables.

It is clear that computing the exact or even the asymptotic power
of the median test is computationally involved. An easier alternative
approach might be to use computer simulations, as was outlined for
the sign and the signed rank test in Chapter 5. We leave the details to
the reader.

The asymptotic efficiency of the median test relative to Student’s
t test for normal populations is 2=p ¼ 0:637 (see Chapter 13). As a test
for location, this is relatively poor performance. The Mann-Whitney
test, discussed in Section 6.6, has greater efficiency for normal
populations.

6.5 THE CONTROL MEDIAN TEST

The median test, based on the number of X observations that precede
the median of the combined samples, is a special case of a precedence
test. A simple yet interesting alternative test is a second precedence
test, based on the number of X (or Y) observations that precede the
median of the Y (or X) sample. This is known as the control median test
and is generally attributed to Mathisen (1943). The properties and
various refinements of the test have been studied by Gart (1963),
Gastwirth (1968), and Hettmansperger (1973), among others.

Without any loss of generality, suppose the Y sample is the con-
trol sample. The control median test is based on V, the number of X
observations that precede the median of the Y observations. For sim-
plicity let n ¼ 2rþ 1, so that the ðrþ 1Þth-order statistic Yðrþ1Þ is the
median of the Y sample. Now Yðrþ1Þ defines two nonoverlapping blocks
½�1;Yðrþ1Þ� and ðYðrþ1Þ;1Þ in the sample, and the control median test
is based on V, the number of X observations in the first block. It may be
noted that V is equal to mSmðYðrþ1ÞÞ ¼ Pðrþ1Þ, called the placement of
Yðrþ1Þ, the median of the Y sample, among the X observations.

As with the median test, the control median test can be used to
test the null hypothesis H0: FYðxÞ ¼ FXðxÞ for all x against the general
one-sided alternative that for example, the Y ’s are stochastically lar-
ger than the X ’s. In this case, the number of X ’s preceding Yðrþ1Þ
should be large and thus large values of V provide evidence against the
null hypothesis in favor of the alternative. If we assume the shift
model FYðxÞ ¼ FXðx� yÞ then the problem reduces to testing the null
hypothesis H0: y ¼ 0 against the one-sided alternative hypothesis
H1: y > 0 and the appropriate rejection region consists of large values
of V.
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Z ¼ V �m=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ nÞ=4np ¼

ffiffiffi
n

p ð2V �mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ nÞp

is approximately standard normal.
Suppose we are interested in testing only the equality of the two

medians (or some other quantiles) and not the entire distributions. In
the context of location-scale models, the null hypothesis may concern
only the equality of location parameters, without assuming that the
scale parameters are equal. By analogy with a similar problem in the
context of normal distributions, this is a nonparametric Behrens-
Fisher problem. Note that under the current null hypothesis we still
have q ¼ 0:5 but the ratio fXðMÞ=fYðMÞ, where M is the common value
of the medians under the null hypothesis, does not necessarily equal
one. This implies that in order to use the control median test for this
problem we need to estimate this ratio of the two densities at M. Once
a suitable estimate is found, the asymptotic normality of V can be used
to construct an approximate test of significance. Several authors have
studied this problem, including Pothoff (1963), Hettmansperger
(1973), Hettmansperger and Malin (1975), Schlittgen (1979), Smit
(1980), and Fligner and Rust (1982).

CURTAILED SAMPLING

The control median test, or more generally any precedence test, is
particularly useful in life-testing experiments, where observations are
naturally time ordered and collecting data is expensive. In such
experiments, the precedence tests allow a decision to be made about
the null hypothesis as soon as a preselected ordered observation
becomes available. Thus the experiment can be terminated (or the
sampling procedure can be curtailed) before all of the data have been
collected, and precedence tests have the potential of saving time and
resources. Note that the decision made on the basis of the ‘‘curtailed
sample’’ is always the same as it would have been if all observations
had been available.

As an illustration consider testing H0: q ¼ 0:5 again the one-
sided alternative H1: q < 0:5. Using the normal approximation, the
control median test would reject H0 in favor of H1 if V 4d, where

d ¼ m

2
þ za=2

mðmþ nÞ
4n

� �1=2
ð5:2Þ

or equivalently if the median of the Y sample of size 2rþ 1 satisfies

Yðrþ1Þ 4XðdÞ
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where d is the solution from (5.2) after rounding down.
This restatement of the rejection region in terms of the X- and

Y-order statistics clearly shows that a decision can be reached based on
the control median test as soon as the median of the Y sample or the
dth order statistic of the X sample is observed, whichever comes first.
The index d is fixed by the size of the test and can be obtained exactly
from the null distribution of V or from the normal approximation
shown in (5.2). The null hypothesis is rejected if the median of the Y
sample is observed before the dth-order statistic of the X sample;
otherwise the null hypothesis is accepted.

Gastwirth (1968) showed that in large samples the control
median test always provides an earlier decision than the median test
for both the one- and two-sided alternatives. For related discussions
and other applications, see Pratt and Gibbons (1981) and Young
(1973).

POWER OF THE CONTROL MEDIAN TEST

Since the median test and the control median test are both precedence
tests, the power function of the control median test can be obtained in
a manner similar to that for the median test. If the alternative is one-
sided, say q < 0:5; the control median test rejects the null hypothesis
q ¼ 0:5 at significance level a if V 4da. Hence the power of this control
median test is PðV 4da j q < 0:5Þ. However, the event V 4da is
equivalent to Yðrþ1Þ 4Xðd�Þ, where d� ¼ ½da=m�, and therefore the
power of the test is simply

PwðyÞ ¼ P½Yðrþ1Þ 4Xðd�Þjq < 0:5�

where q ¼ FXðMYÞ and da satisfies PðV 4dajH0Þ4 a. Note that the
power of the control median test depends on this composite function
q ¼ FXðMYÞ, in addition to a,m and n, and q is not necessarily equal to
the difference of medians, not even under the shift model. The quan-
tity q can be thought of as a parameter that captures possible differ-
ences between the Y and the X distributions.

DISCUSSION

The control median test provides an alternative to the median test.
The ARE relative to the median test is one regardless of the
continuous parent distributions, and in this sense the test is as
efficient as the median test in large samples. In fact, the efficacy of the
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Since U is defined in (6.2) as a linear combination of these mn random
variables, the mean and variance of U are

EðUÞ ¼
Xm
i¼1

Xn
j¼1

EðDijÞ ¼ mnp ð6:9Þ

varðUÞ ¼
Xm
i¼1

Xn
j¼1

varðDijÞ þ
Xm
i¼1

XX
14 j 6¼k4n

covðDij;DikÞ

þ
Xn
j¼1

XX
14 i 6¼h4m

covðDij;DhjÞ

þ
XX

14 i 6¼h4m

XX
14 j6¼k4n

covðDij;DhkÞ ð6:10Þ

Now substituting (6.5) and (6.6) in (6.10), this variance is

varðUÞ ¼ mnpð1� pÞ þmnðn� 1Þðp1 � p2Þ þ nmðm� 1Þðp2 � p2Þ
¼ mn½p� p2ðN � 1Þ þ ðn� 1Þp1 þ ðm� 1Þp2� ð6:11Þ

Since EðU=mnÞ ¼ p and varðU=mnÞ ! 0 as m;n ! 1;U=mn is a
consistent estimator of p. Based on the method described in Chapter 1,
the Mann-Whitney test can be shown to be consistent in the following
cases:

In order to determine the size a critical regions of the Mann-
Whitney test, we must now find the null probability distribution of U.
Under H0, each of the

mþ n
m

�
arrangements of the random variables

into a combined sequence occurs with equal probability, so that

fUðuÞ ¼ PðU ¼ uÞ ¼ rm;nðuÞ
mþ n

m

	 
 ð6:13Þ

where rm;nðuÞ is the number of distinguishable arrangements of the
m X and n Y random variables such that in each sequence the number

Alternative Rejection region

p < 0:5 FY ðxÞ4FX ðxÞ U �mn=2 < k1

p > 0:5 FY ðxÞ5FX ðxÞ U �mn=2 > k2

p 6¼ 0:5 FYðxÞ 6¼ FXðxÞ U �mn=2 > k3

ð6:12Þ
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This recursive relation holds for all u ¼ 0; 1; 2; . . . ;mn and all integer-
valued m and n if the following initial and boundary conditions are
defined for all i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ;n.

rijðuÞ ¼ 0 for all u < 0

ri;0ð0Þ ¼ 1 r0;ið0Þ ¼ 1

ri;0ðuÞ ¼ 0 for all u 6¼ 0

r0;iðuÞ ¼ 0 for allu 6¼ 0

If the sample with fewer observations is always labeled the X
sample, tables are needed only for m4n and left-tail critical points.
Such tables are widely available, for example in Auble (1953) or Mann
and Whitney (1947).

When m and n are too large for the existing tables, the asymp-
totic probability distribution can be used. Since U is the sum of
identically distributed (though dependent) random variables, a gen-
eralization of the central-limit theorem allows us to conclude that the
null distribution of the standardized U approaches the standard nor-
mal asm;n ! 1 in such a way that m=n remains constant (Mann and
Whitney, 1947). To make use of this approximation, the mean and
variance of U under the null hypothesis must be determined. When
FYðxÞ ¼ FXðxÞ, the integrals in (6.7) and (6.8) are evaluated as
p1 ¼ p2 ¼ 1=3. Substituting these results in (6.9) and (6.11) along with
the value p ¼ 1=2 from (6.4) gives

EðU jH0Þ ¼ mn

2
varðU jH0Þ ¼ mnðN þ 1Þ

12
ð6:15Þ

The large-sample test statistic then is

Z ¼ U �mn=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðN þ 1Þ=12p

whose distribution is approximately standard normal. This approx-
imation has been found reasonably accurate for equal sample sizes as
small as 6. Since U can assume only integer values, a continuity cor-
rection of 0.5 may be used.

THE PROBLEM OF TIES

The definition of U in (6.2) was adopted for presentation here because
most tables of critical values are designed for use in the way described
above. Since Dij is not defined for Xi ¼ Yj, this expression does not
allow for the possibility of ties across samples. If ties occur within one
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Suppose that the sample data are X: 1; 6; 7;Y: 2; 4; 9; 10; 12: In order to
find Dð2Þ and Dð14Þ systematically, we first order the x and y data se-
parately, then subtract from each y, starting with the smallest y, the
successive values of x as shown in Table 6.2, and order the differences.
The interval here is �4 < y < 9 with an exact confidence coefficient
of 0.928.

The straightforward graphical approach could be used to sim-
plify the procedure of constructing intervals here. Each of the mþ n
sample observations is plotted on a graph, the X observations on the
abscissa and Y on the ordinate. Then the mn pairings of observations
can be easily indicated by dots at all possible intersections. The line
y� x ¼ y with slope 1 for any number y divides the pairings into two
groups: those on the left and above have y� x < y, and those on the
right and below have y� x > y. Thus if the rejection region for a size a
test is U4 k, two lines with slope 1 such that k dots lie on each side of
the included band will determine the appropriate values of y. If the
two lines are drawn through the ðkþ 1Þst dots from the upper left and
lower right, respectively, the values on the vertical axis where these
lines have x intercept zero determine the confidence-interval end-
points. In practice, it is often convenient to add or subtract an arbi-
trary constant from each observation before the pairs are plotted, the
number chosen so that all observations are positive and the smallest is
close to zero. This does not change the resulting interval for y, since
the parameter y is invariant under a change in location in both the X
and Y populations. This method is illustrated in Fig. 6.1 for the above
example where k ¼ 1 for a ¼ 0:072.

SAMPLE SIZE DETERMINATION

If we are in the process of designing an experiment and specify the size
of the test as a and the power of the test as 1� b, we can determine
the sample size required to detect a difference between the populations
measured by p ¼ PðY > XÞ. Noether (1987) showed that an

Table 6.2 Confidence-interval calculations

yj � 1 yj � 6 yj � 7

1 �4 �5
3 �2 �3
8 3 2
9 4 3
11 6 5

276 CHAPTER 6



approximate sample size for a one-sided test based on the Mann-
Whitney statistic is

N ¼ ðza þ zbÞ2
12cð1� cÞðp� 1=2Þ2 ð6:18Þ

where c ¼ m=N and za; zb are the upper a and b quantiles, respectively,
of the standard normal distribution. The corresponding formula for a
two-sided test is found by replacing a by a=2 in (6.18). Verification of
this is left to the reader.

These formulas are based on a normal approximation to the
power of the Mann-Whitney test ‘‘near’’ the null hypothesis and can be
calculated easily. Note that if we take c ¼ 0:5, that is when m ¼ n, the

Fig. 6.1 Graphical determination of endpoints.
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interval procedure for estimating the difference in the medians. But
it is not very powerful compared to other nonparametric tests for
location. Conover, Wehmanen, and Ramsey (1978) examined the
power of eight nonparametric tests, including the median test, com-
pared to the locally most powerful (LMP) linear rank test when the
distribution is exponential for small sample sizes. Even though the
median test is asymptotically equivalent to the LMP test, it per-
formed rather poorly. Freidlin and Gastwirth (2000) suggest that the
median test ‘‘be retired’ from routine use’’ because their simulated
power comparisons showed that other tests for location are more
powerful for most distributions. Even the Kolmogorov-Smirnov two-
sample test was mroe powerful for most of the cases they studied.
Gibbons (1964) showed the poor performance of the median test with
exact power calculations for small sample sizes. Further, the hand
calculations for an exact median test based on the hypergeometric
distribution are quite tedious even for small sample sizes. The
median test continues to be of theoretical interest, however, because
it is valid under such weak conditions and has interesting theoretical
properties.

The Mann-Whitney test is far preferable as a test of location for
general use, as are the other rank tests for location to be covered later
in Chapter 8. The Mann-Whitney test also has a corresponding pro-
cedure for confidence interval estimation of the difference in popula-
tion medians. And we can estimate the sample size needed to carry out
a test at level a to detect a stated difference in locations with power
1� b.

PROBLEMS

6.1. Use the graphical method of Hodges to find PðDþ
m;n 5dÞ, where d is the observed

value of Dþ
m;n ¼ maxx½SmðxÞ � SnðxÞ� in the arrangement xyyxyx.

6.2. For the median-test statistic derive the complete null distribution of U for
m ¼ 6;n ¼ 7, and set up one- and two-sided critical regions when a ¼ 0:01; 0:05, and
0.10.

6.3. Find the large-sample approximation to the power function of a two-sided median
test for m ¼ 6;n ¼ 7;a ¼ 0:10, when FX is the standard normal distribution.

6.4. Use the recursion relation for the Mann-Whitney test statistic given in (6.14) to
generate the complete null probability distribution of U for all mþ n4 4.

6.5. Verify the expressions given in (6.15) for the moments of U under H0.

6.6. Answer parts ðaÞ to ðcÞ using ðiÞ the median-test procedure and (ii) the Mann-
Whitney test procedure (use tables) for the following two independent random samples
drawn from continuous populations which have the same form but possibly a difference
of y in their locations:
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7
Linear Rank Statistics and the General
Two-Sample Problem

7.1 INTRODUCTION

The general two-sample problem was described in Chapter 6 and some
tests were presented which were all based on various criteria related
to the combined ordered arrangement of the two sets of sample
observations. Many statistical procedures applicable to the two-
sample problem are based on the rank-order statistics for the com-
bined samples, since various functions of these rank-order statistics
can provide information about the possible differences between
populations. For example, if the X population has a larger mean than
the Y population, the sample values will reflect this difference if most
of the ranks of the X values exceed the ranks of the Y values.

Many commonly used two-sample rank tests can be classified as
linear combinations of certain indicator variables for the combined
ordered samples. Such functions are often called linear rank statistics.
This unifying concept will be defined in the next section, and then
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some of the general theory of these linear rank statistics will be pre-
sented. Particular linear rank tests will then be treated in Chapters 8
and 9 for the location and scale problems respectively.

7.2 DEFINITION OF LINEAR RANK STATISTICS

Assume we have two independent random samples, X1;X2; . . . ;Xm and
Y1;Y2; . . . ;Yn drawn from populations with continuous cumulative
distribution functions FX and FY , respectively. Under the null
hypothesis

H0:FXðxÞ ¼ FYðxÞ ¼ FðxÞ for all x;F unspecified

we then have a single set of mþ n ¼ N random observations from the
common but unknown population, to which the integer ranks
1; 2; . . . ;N can be assigned.

In accordance with the definition for the rank of an observation
in a single sample given in (5.1) of Section 5.5, a functional definition
of the rank of an observation in the combined sample with no ties can
be given as

rXYðxiÞ ¼
Xm
k¼1

Sðxi � xkÞ þ
Xn
k¼1

Sðxi � ykÞ

rXYðyiÞ ¼
Xm
k¼1

Sðyi � xkÞ þ
Xn
k¼1

Sðyi � ykÞ
ð2:1Þ

where

sðuÞ ¼ 0 if u < 0
1 if u5 0

�
However, it is easier to denote the combined ordered sample by a
vector of indicator random variables as follows. Let

Z ¼ ðZ1;Z2; . . . ;ZNÞ
where Zi ¼ 1 if the ith random variable in the combined ordered
sample is an X and Zi ¼ 0 if it is a Y, for 1; 2; . . . ;N, with N ¼ mþ n.
The rank of the observation for which Zi is an indicator is i, and
therefore the vector Z indicates the rank-order statistics of the com-
bined samples and in addition identifies the sample to which each
observation belongs.

For example, given the observations ðX1;X2;X3;X4Þ ¼ ð2;9;3;4Þ
and ðY1;Y2;Y3Þ ¼ ð1;6;10Þ, the combined ordered sample is (1,2,3,
4,6,9,10) or ðY1;X1;X3;X4;Y2;X2;Y3Þ, and the corresponding Z vector
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is (0,1,1,1,0,1,0). Since Z6 ¼ 1, for example, an X observation (in par-
ticular X2) has rank 6 in the combined ordered array.

Many of the statistics based on rank-order statistics which are
useful in the two-sample problem can be easily expressed in terms of
this notation. An important class of statistics of this type is called a
linear rank statistic, defined as a linear function of the indicator
variables Z, as

TNðZÞ ¼
XN
i¼1

aiZi ð2:2Þ

where the ai are given constants called weights or scores. It should be
noted that the statistic TN is linear in the indicator variables and no
similar restriction is implied for the constants.

7.3 DISTRIBUTION PROPERTIES OF LINEAR RANK STATISTICS

We shall now prove some general properties of TN in order to facilitate
the study of particular linear-rank-statistic tests later.

Theorem 3.1 Under the null hypothesis H0: FXðxÞ ¼ FYðxÞ ¼ FðxÞ for
all x, we have for all i ¼ 1; 2; . . . ; N;

EðZiÞ ¼ m

N
varðZiÞ ¼ mn

N2
covðZi;ZjÞ ¼ �mn

N2ðN � 1Þ ð3:1Þ

Proof Since

fZiðziÞ ¼
m=N if zi ¼ 1
n=N if zi ¼ 0 for i ¼ 1; 2; . . . ;N
0 otherwise

8<:
is the Bernoulli distribution, the mean and variance are

EðZiÞ ¼ m=N varðZiÞ ¼ mn=N2

For the joint moments, we have for i 6¼ j,

EðZiZjÞ ¼ PðZi ¼ 1 \ Zj ¼ 1Þ ¼
m
2

	 

N
2

	 
 ¼ mðm� 1Þ
NðN � 1Þ
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so that

covðZi;ZjÞ ¼ mðm� 1Þ
NðN � 1Þ �

m

N

� �2
¼ �mn

N2ðN � 1Þ

Theorem 3.2 Under the null hypothesis H0:FXðxÞ ¼ FYðxÞ ¼ FðxÞ for
all x,

EðTNÞ ¼ m
XN
i¼1

ai

N

varðTNÞ ¼ mn

N2ðN � 1Þ N
XN
i¼1

a2i �
XN
i¼1

ai

 !2
24 35 ð3:2Þ

Proof

EðTNÞ ¼
XN
i¼1

aiEðZiÞ ¼ m
XN
i¼1

ai

N

varðTNÞ ¼
XN
i¼1

a2i varðZiÞ þ
X
i 6¼j

X
aiaj covðZi;ZjÞ

¼ mn
PN

i¼1 a
2
i

N2
�mn

P
i 6¼j

P
aiaj

N2ðN � 1Þ

¼ mn

N2ðN � 1Þ N
XN
i¼1

a2i �
XN
i¼1

a2i �
X
i 6¼j

X
aiaj

 !

¼ mn

N2ðN � 1Þ N
XN
i¼1

a2i �
XN
i¼1

ai

 !2
24 35

Theorem 3.3 If BN ¼PN
i¼1 biZi and TN ¼PN

i¼1 aiZi are two linear rank
statistics, under the null hypothesis H0:FXðxÞ ¼ FYðxÞ ¼ FðxÞ for
all x,

covðBN ;TNÞ ¼ mn

N2ðN � 1Þ N
XN
i¼1

aibi �
XN
i¼1

ai

XN
i¼1

bi

 !
Proof

covðBN ;TNÞ ¼
XN
i¼1

aibi varðZiÞ þ
XX

i 6¼j

aibj covðZi;ZjÞ

¼ mn

N2

XN
i¼1

aibi � mn

N2ðN � 1Þ
XX

i 6¼j

aibi
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¼ mn

N2ðN � 1Þ N
XN
i¼1

aibi �
XN
i¼1

aibi �
XX

i 6¼j

aibj

 !

¼ mn

N2ðN � 1Þ N
XN
i¼1

aibi �
XN
i¼1

ai

XN
i¼1

bi

 !
Using these theorems, the exact moments under the null hy-

pothesis can be found for any linear rank statistics. The exact null
probability distribution of TN depends on the probability distribution
of the vector Z, which indicates the ranks of the X and Y random
variables. This distribution was given in Eq. (6.19) of Section 6.6 for
any distributions FX and FY . In the null case, FX ¼ FY ¼ F, say, and
the equation reduces to

PðZÞ ¼ m!n!

Z 1

�1

Z uN

�1
� � �
Z u2

�1

Ym
i¼1

f ðuriÞ
Yn
j¼1

f ðusjÞdu1 � � �duN

where r1; r2; . . . ; rm and s1; s2; . . . ; sn are the ranks of the X and Y
random variables, respectively, in the arrangement Z. Since the dis-
tributions are identical, the product in the integrand is the same for all
subscripts, or

PðZÞ ¼ m!n!

Z 1

�1

Z uN

�1
� � �
Z u2

�1

YN
i¼1

f ðuiÞdu1 � � � duN

¼ m!n!

N!
ð3:3Þ

The final result follows from the fact that except for the terms m!n!,
PðZÞ is the integral over the entire region of the density function of the
N order statistics for a random sample from the population F. Since
mþn
m

 � ¼ N
m

 �
is the total number of distinguishable Z vectors, i.e., dis-

tinguishable arrangements of m ones and n zeros, the result in (3.3)
implies that all vectors Z are equally likely under H0.

Since each Z occurs with probability 1
*

N
m

 �
, the exact probability

distribution under the null hypothesis of any linear rank statistic can
always be found by direct enumeration. The values of TNðZÞ are cal-
culated for each Z, and the probability of a particular value k is the
number of Z vectors which lead to that number k divided by N

m

 �
. In

other words, we have

P½TNðZÞ ¼ k� ¼ tðkÞ
�

N

m

	 

ð3:4Þ
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where tðkÞ is the number of arrangements of m X and n Y random
variables such that TNðZÞ ¼ k. Naturally, the tediousness of enu-
meration increases rapidly as m and n increase. For some statistics,
recursive methods are possible. STATXACT calculates the exact P
value for a linear rank test based on a complete enumeration of the
values of the test statistic. Here the data are permuted (rearranged) in
all possible ways under the null hypothesis that is being tested. The
value of the test statistic is calculated for each permutation of the data;
these values constitute the permutation distribution and allow calcu-
lation of the exact P value for any test based on ranks of any set of data.

When the null distribution of a linear rank statistic is known to
be symmetric, only one-half of the distribution needs to be generated.
The statistic is symmetric about its mean m if for every k 6¼ 0,

P½TNðZÞ � m ¼ k� ¼ P½TNðZÞ � m ¼ �k�
Suppose that for every vectorZ ofm ones and n zeros, a conjugate vector
Z0 of m ones and n zeros exists such that whenever TNðZÞ ¼ mþ k, we
have TNðZ0Þ ¼ m� k. Then the frequency of the number mþ k is the
same as that of m� k, and the distribution is symmetric. The condition
for symmetry of a linear rank statistic then is that

TNðZÞ þ TNðZ 0Þ ¼ 2m

The following theorem establishes a simple relation between the
scores which will ensure the symmetry of TNðZÞ.

Theorem 3.4 The null distribution of TNðZÞ is symmetric about its
mean m ¼ m

PN
i¼1 ai=N whenever the weights satisfy the relation

ai þ aN�iþ1 ¼ c c ¼ constant for i ¼ 1; 2; . . . ;N

Proof For any vector Z ¼ ðZ1;Z2; . . . ;ZNÞ of m ones and n zeros,
define the conjugate vector Z0 ¼ ðZ0

1;Z
0
2; . . . ;Z

0
NÞ, where

Z0
i ¼ ZN�iþ1. Then

TNðZÞ þ TNðZ0Þ ¼
XN
i¼1

aiZi þ
XN
i¼1

aiZN�iþ1

¼
XN
i¼1

aiZi þ
XN
j¼1

aN�jþ1Zj

¼
XN
i¼1

ðai þ aN�iþ1ÞZi ¼ c
XN
i¼1

Zi ¼ cm
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Since E½TNðZÞ� ¼ E½TNðZ0Þ�, we must have cm ¼ 2m, or

c ¼ 2m=m ¼ 2
PN

i¼1 ai=N.

The next theorem establishes the symmetry of any linear rank
statistic when m ¼ n.

Theorem 3.5 The null distribution of TNðZÞ is symmetric about its
mean for any set of weights if m ¼ n ¼ N=2.

Proof Since m ¼ n, we can define our conjugate Z0 with ith
component Z0

i ¼ 1� Zi. Then

TNðZÞ þ TNðZ0Þ ¼
XN
i¼1

aiZi þ
XN
i¼1

aið1� ZiÞ ¼
XN
i¼1

ai ¼ 2m

A rather special but useful case of symmetry is given as follows.

Theorem 3.6 The null distribution of TNðZÞ is symmetric about its
mean m if N is even and the weights are ai ¼ i for i4N=2 and
ai ¼ N � iþ 1 for i > N=2 .

Proof The appropriate conjugate Z0 has components Z0
i ¼ ZiþN=2

for i4N=2 and Z0
i ¼ Zi�N=2 for i > N=2. Then

TNðZÞ þ TNðZ0Þ ¼
XN=2

i¼1
iZi þ

XN
i¼N=2þ1

ðN � iþ 1ÞZi

þ
XN=2

i¼1
iZN=2þi þ

XN
i¼N=2þ1

ðN � iþ 1ÞZi�N=2

¼
XN=2

i¼1
iZi þ

XN
i¼N=2þ1

ðN � iþ 1ÞZi

þ
XN

j¼N=2þ1
j�N

2

	 

Zj þ

XN=2

j¼1

N

2
� j þ 1

	 

Zj

¼
XN=2

i¼1

N

2
þ 1

	 

Zi þ

XN
i¼N=2þ1

N

2
þ 1

	 

Zi

¼ m
N

2
þ 1

	 

¼ 2m

In determining the frequency tðkÞ for any value k which is
assumed by a linear-rank-test statistic, the number of calculations
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required may be reduced considerably by the following properties of
TNðZÞ, which are easily verified.
Theorem 3.7

Property 1: Let

T ¼
XN
i¼1

aiZi and T0 ¼
XN
i¼1

aiZN�iþ1

Then

T ¼ T0 if ai ¼ aN�iþ1 for i ¼ 1; 2; . . . ;N

Property 2: Let

T ¼
XN
i¼1

aiZi and T0 ¼
XN
i¼1

aið1� ZiÞ

Then

T þ T0 ¼
XN
i¼1

ai

Property 3: Let

T ¼
XN
i¼1

aiZi and T0 ¼
XN
i¼1

aið1� ZN�iþ1Þ

Then

T þ T0 ¼
XN
i¼1

ai if ai ¼ aN�iþ1 for i ¼ 1; 2; . . . ;N

For large samples, that is, m ! 1 and n ! 1 in such a way that
m=nremainsconstant,anapproximationexistswhichisapplicabletothe
distribution of almost all linear rank statistics. Since TN is a linear
combination of the Zi, which are identically distributed (though
dependent) random variables, a generalization of the central-limit the-
oremallows us to conclude that the probability distribution of a standar-
dized linear rank statistic TN � EðTNÞ=sðTNÞ approaches the standard
normal probability distribution subject to certain regularity conditions.

The foregoing properties of a linear rank statistic hold only in the
hypothesized case of identical populations. Chernoff and Savage
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(1958) have proved that the asymptotic normality property is valid
also in the nonnull case, subject to certain regularity conditions re-
lating mainly to the smoothness and size of the weights. The expres-
sions for the mean and variance will be given here, since they are also
useful in investigating consistency and efficiency properties of most
two-sample linear rank statistics.

A key feature in the Chernoff-Savage theory is that a linear rank
statistic can be represented in the form of a Stieltjes integral. Thus, if
the weights for a linear rank statistic are functions of the ranks, an
equivalent representation of TN ¼PN

i¼1 aiZi is

TN ¼ m

Z 1

�1
JN ½HNðxÞ�dSmðxÞ

where the notation is defined as follows:

1. SmðxÞ and SnðxÞ are the empirical distribution functions of the X
and Y samples, respectively.

2. m=N ! lN ; 0 < lN < 1:
3. HNðxÞ ¼ lNSmðxÞ þ ð1� lNÞSnðxÞ, so that HNðxÞ is the proportion

of observations from either sample which do not exceed the value
x, or the empirical distribution function of the combined sample.

4. JNði=NÞ ¼ ai.

This Stieltjes integral form is given here because it appears frequently
in the journal literature and is useful for proving theoretical proper-
ties. Since the following theorems are given here without proof any-
way, the student not familiar with Stieltjes integrals can consider
the following equivalent representation:

T0
N ¼ m

X
over all x such
that pðxÞ>0

JN ½HNðxÞ�pðxÞ

where

pðxÞ ¼
1=m if x is the observed value of an X random

variable
0 otherwise

(
For example, in the simplest case where ai ¼ i=N;JN ½HNðxÞ� ¼ HNðxÞ
and

TN ¼m

Z 1

�1
HNðxÞdSmðxÞ ¼m

N

Z 1

�1
½mSmðxÞþnSnðxÞ� dSmðxÞ
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¼m

N

Z 1

�1
ðnumber of observations in the combined sample4xÞ
� ð1=m if x is the value of an X random variable and

0 otherwiseÞ

¼ 1

N

XN
i¼1

iZi

Now when the X and Y samples are drawn from the continuous
populations FX and FY , respectively, we define the combined popula-
tion cdf as

HðxÞ ¼ lNFXðxÞ þ ð1� lNÞFYðxÞ

The Chernoff and Savage theorem stated below is subject to certain
regularity conditions not explicitly stated here, but given in Chernoff
and Savage (1958).

Theorem 3.8 Subject to certain regularity conditions, the most im-
portant of which are that JðHÞ ¼ limN!1 JNðHÞ,

JðrÞðHÞ�� �� ¼ drJðHÞ=dHrj j4K Hð1�HÞj j�r�1=2þd

for r ¼ 0; 1; 2 and some d > 0 and K any constant

which does not depend on m;n;N;FX ; or FY ;

then for lN fixed,

lim
N!1

P
TN=m� mN

sN
4 t

	 

¼ FðtÞ

where

mN ¼
Z 1

�1
J½HðxÞ�fXðxÞdx

Ns2N ¼ 2
1� lN

lN
lN

Z Z
�1<x<y<1

FYðxÞ½1� FYðyÞ�J0½HðxÞ�J0½HðyÞ�
8<:

� fXðxÞfYðyÞdxdy þ ð1� lNÞ
Z Z

�1<x<y<1
FXðxÞ½1� FXðyÞ�
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�J0½HðxÞ�J0½HðyÞ� fXðxÞfYðyÞdxdy

)
provided sN 6¼ 0.

Corollary 3.8 If X and Y are identically distributed with common
distribution FðxÞ ¼ FXðxÞ ¼ FYðxÞ, we have

mN ¼
Z 1

0

JðuÞdu

NlNs2N ¼ 2ð1� lNÞ
Z Z
0<x<y<1

xð1� yÞJ0ðxÞJ0ðyÞdxdy

¼ 2ð1� lNÞ
Z Z Z Z
0<u<x<y<v<1

J0ðxÞJ0ðyÞdxdydudv

¼ 2ð1� lNÞ
Z Z Z v

u
0<u<v<1

Z v

x

J0ðxÞJ0ðyÞdydxdudv

¼ 2ð1� lNÞ
Z Z Z v

u
0<u<v<1

½JðvÞ � JðxÞ�J0ðxÞdxdudv

¼ 2ð1� lNÞ
Z Z

0<u<v<1

JðvÞJðxÞ � J2ðxÞ
2

� �++++v

u

dudv

¼ ð1� lNÞ
Z Z

0<u<v<1

½J2ðvÞ � 2JðvÞJðuÞ þ J2ðuÞ�dudv

¼ ð1� lNÞ
Z 1

0

vJ2ðvÞdvþ
Z 1

0

ð1� uÞJ2ðuÞdu

�

�
Z 1

0

JðuÞdu

Z 1

0

JðvÞdv

�

¼ ð1� lNÞ
Z 1

0

J2ðuÞdu�
Z 1

0

JðuÞdu

� �2( )
These expressions are equivalent to those given in Theorem 3.2 for
ai ¼ JNði=NÞ.
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7.4 USEFULNESS IN INFERENCE

The general alternative to the null hypothesis in the two-sample
problem is simply that the populations are not identical, i.e.,

FXðxÞ 6¼ FYðxÞ for some x

or the analogous one-sided general alternative, which states a direc-
tional inequality such as

FXðxÞ4FYðxÞ for all x

The two-sample tests considered in Chapter 6, namely the Kolmogorov-
Smirnov, Wald-Wolfowitz runs, Mann-Whitney, and median tests, are
all appropriate for these alternatives. In most parametric two-sample
situations, the alternatives are much more specific, as in the t and F
tests for comparison of means and variances, respectively. Although all
of the two-sample rank tests are for the same null hypothesis,
particular test statistics may be especially sensitive to a particular
form of alternative, thus increasing their power against that type of
alternative.

Since any set of scores a1;a2; . . . ;aN may be employed for the
coefficients in a linear rank statistic, this form of test statistic lends
itself particularly well to more specific types of alternatives the user
might have in mind. The appropriateness of choice depends on the
type of difference between populations one hopes to detect. The sim-
plest type of situation to deal with is where the statistician has enough
information about the populations to feel that if a difference exists, it
is only in location or only in scale. These will be called, respectively,
the two-sample location problem and the two-sample scale problem.
In the following two chapters we shall discuss briefly some of the
better-known and more widely accepted linear rank statistics useful in
these problems. No attempt will be made to provide recommendations
regarding which to use. The very generality of linear rank tests makes
it difficult to make direct comparisons of power functions, since cal-
culation of power requires more specification of the alternative prob-
ability distributions and moments. A particular test might have high
power against normal alternatives but perform poorly for the gamma
distribution. Furthermore, calculation of the exact power of rank tests
is usually quite difficult. We must be able to determine the probability
distribution of the statistic TNðZÞ or the arrangement Z as in Eq. (6.19)
of Section 6.6 under the specified alternative and sum these prob-
abilities over those arrangements Z in the rejection region specified by
the test. STATXACT can be useful in calculating the exact power of
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linear rank tests. Isolated and specific comparisons of power between
nonparametric tests have received much attention in the literature,
and the reader is referred to Savage’s Bibliography (1962) for some
early references. However, calculation of asymptotic relative efficiency
of linear rank tests versus the t and F tests for normal alternatives is
not particularly difficult. Therefore, information regarding the ARE’s
of the tests presented here for the location and scale problems will be
provided.

PROBLEMS

7.1. One of the simplest linear rank statistics is defined as

WN ¼
XN
i¼1

iZi

This is the Wilcoxon rank-sum statistic to be discussed on the next chapter. Use
Theorem 3.2 to evaluate the mean and variance of WN .

7.2. Express the two-sample median-test statistic U defined in Section 6.4 in the form
of a linear rank statistic and use Theorem 3.2 to find its mean and variance. Hint: For
the appropriate argument k, use the functions SðkÞ defined as for (2.1).
7.3. Prove the three properties stated in Theorem 3.7.
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8
Linear Rank Tests for the Location
Problem

8.1 INTRODUCTION

Suppose that two independent samples of sizes m and n are drawn
from two continuous populations so that we have N ¼ mþ n obser-
vations in total. We wish to test the null hypothesis of identical dis-
tributions. The location alternative is that the populations are of the
same form but with a different measure of central tendency. This can
be expressed symbolically as follows:

H0 : FYðxÞ ¼ FXðxÞ for all x

HL: FYðxÞ ¼ FXðx � yÞ for all x and some y 6¼ 0

The cumulative distribution of the Y population under HL is
functionally the same as that of the X population but shifted to the
left if y < 0 and shifted to the right if y > 0, as shown in Figure 1.1.
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Therefore the Y ’s are stochastically larger than the X ’s when y > 0
and the Y ’s are stochastically smaller than the X ’s when y < 0. Thus,
when y < 0, for example, the median of the X population is larger than
the median of the Y population.

If it is reasonable to assume that FX is the cumulative normal
distribution, then the mean and median coincide and a one-sided
normal-theory test with equal but unknown variances of the hypothesis

mY � mX ¼ 0 versus mY � mX < 0

is equivalent to the general location alternative with y ¼ mY � mX < 0.
The best parametric test against this alternative is the t statistic with
mþ n� 2 degrees of freedom:

t ¼
�XX � �YYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm� 1Þs2X þ ðn� 1Þs2Y
mþ n� 2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ n
mn

r ð1:1Þ

The t test statistic has been shown to be robust under the as-
sumptions of normality and equal variances. However, there are many
good and simple nonparametric tests for the location problem which do
not require specification of the underlying population, such as assu-
ming normality. Many of these are based on ranks since the ranks of
the X ’s relative to the ranks of the Y ’s provide information about the
relative size of the population medians. In the form of a linear rank
statistic, any set of scores which are nondecreasing or nonincreasing
in magnitude would allow the statistic to reflect a combined ordered
sample in which most of the X ’s are larger than the Y ’s, or vice
versa. The Wilcoxon rank-sum test is one of the best known and
easiest to use, since it employs scores which are positive integers.
The other tests which will be covered in this chapter are the
Terry-Hoeffding-normal-scores test, inverse-normal-scores test, and

Fig. 1.1 FY ðxÞ ¼ FX ðx� yÞ. (a) FX normal, y < 0; (b) FX exponential, y > 0.
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percentile modified rank tests. There are many others discussed in the
literature.

8.2 THE WILCOXON RANK-SUM TEST

The ranks of the X ’s in the combined ordered arrangement of the two
samples would generally be larger than the ranks of the Y ’s if the
median of the X population exceeds the median of the Y population.
Therefore, Wilcoxon (1945) proposed a test where we accept the one-
sided location alternative HL: y < 0 ðX >

ST
YÞ if the sum of the ranks of

the X ’s is too large or HL: y > 0 ðX <
ST

YÞ if the sum of the ranks of the
X ’s is too small and the two-sided location alternative HL: y 6¼ 0 if the
sum of the ranks of the X ’s is either too large or too small. This
function of the ranks expressed as a linear rank statistic has the
simple weights ai ¼ i, i ¼ 1; 2; . . . ;N. In other words, the Wilcoxon
rank-sum test statistic is

WN ¼
XN
i¼1

iZi

where the Zi are the indicator random variables as defined for (7.2.2)
[Eq. (2.2) of Section 7.2].

If there are no ties, the exact mean and variance ofWN under the
null hypothesis of equal distributions are easily found from Theorem
7.3.2 to be

EðWNÞ ¼ mðN þ 1Þ
2

varðWNÞ ¼ mnðN þ 1Þ
12

Verification of these facts is left for the reader. If m � n, the value
of WN has a minimum of

Pm
i¼1 i ¼ mðmþ 1Þ=2 and a maximum ofPN

i¼N�mþ1 i ¼ ð2N �mþ 1Þ=2. Further, from Theorem 7.3.4, since

ai þ aN�iþ1 ¼ N þ 1 for i ¼ 1; 2; . . . ;N

the statistic is symmetric about its mean. The exact null probability
distribution can be obtained systematically by enumeration using
these properties. For example, suppose m ¼ 3, n ¼ 4. There are
7
3

 � ¼ 35 possible distinguishable configurations of 1’s and 0’s in the
vector Z, but these need not be enumerated individually. WN will
range between 6 and 18, symmetric about 12, the values occurring in
conjunction with the ranks in Table 2.1, from which the complete

298 CHAPTER 8



probability distribution is easily found. For example, Table 2.1 shows
that PðWN 5 17Þ ¼ 2=35 ¼ 0:0571:

Several recursive schemes are also available for generation of the
distribution. The simplest to understand is analogous to the recursion
relations given in (5.7.8) for the Wilcoxon signed-rank statistic and
(6.6.14) for the Mann-Whitney statistic. If rm;nðkÞ denotes the number
of arrangements ofm X and n Y random variables such that the sum of
X ranks is equal to k, it is evident that

rm;nðkÞ ¼ rm�1;nðk�NÞ þ rm;n�1ðkÞ
and

fWN
ðkÞ ¼ pm;nðkÞ ¼

�
rm�1;nðk�NÞ þ rm;n�1ðkÞ

$ mþ n

m

� �.
or

ðmþ nÞpm;nðkÞ ¼ mpm�1;nðk�NÞ þ npm;n�1ðkÞ ð2:2Þ
Tail probabilities for the null distribution of the Wilcoxon rank-sum
test statistic are given in Table J of the Appendix for m4n410. More
extensive tables are available in Wilcoxon, Katti, and Wilcox (1972).

For larger sample sizes, generation of the exact probability dis-
tribution is rather time-consuming. However, the normal approxima-
tion to the distribution or rejection regions can be used because of the
asymptotic normality of the general linear rank statistic (Theorem
7.3.8). The normal approximation for WN has been shown to be accu-
rate enough for most practical purposes for combined sample sizes N
as small as 12.

The midrank method is easily applied to handle the problem of
ties. The presence of a moderate number of tied observations seems to

Table 2.1 Distribution of WN

Value of WN Ranks of X’s Frequency

18 5,6,7 1
17 4,6,7 1
16 3,6,7;4,5,7 2
15 2,6,7;3,5,7;4,5,6 3
14 1,6,7;2,5,7;3,4,7;3,5,6 4
13 1,5,7;2,4,7;2,5,6;3,4,6 4
12 1,4,7;2,3,7;1,5,6;2,4,6;3,4,5 5
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have little effect on the probability distribution. Corrections for ties
have been thoroughly investigated (see, for example, Noether, 1967,
pp. 32–35).

If the ties are handled by the midrank method the variance ofWN

in the normal approximation can be corrected to take the ties into
account. As we found in (5.7.10), the presence of ties reduces the sum
of squares of the ranks by

P
tðt2 � 1Þ=12, where t is the number of X

and=or Y observations that are tied at any given rank and the sum is
over all sets of tied ranks. Substituting this result in (7.3.2) then gives

mn

N2ðN � 1Þ N
NðN þ 1Þð2N þ 1Þ

6
�
P

tðt2 � 1Þ
12

� �
� NðN þ 1Þ

2

� �2( )

¼ mnðN þ 1Þ
12

�mn
P

tðt2 � 1Þ
12NðN � 1Þ ð2:3Þ

The Wilcoxon rank-sum test is actually equivalent to the Mann-
Whitney U test discussed in Chapter 6, since a linear relationship
exists between the two test statistics. With U defined as the number of
times a Y precedes an X, as in (6.6.2), we have

U ¼
Xm
i¼1

Xn
j¼1

Dij ¼
Xm
i¼1

ðDi1 þDi2 þ � � � þDinÞ

where

Dij ¼ 1 if Yj < Xi

0 if Yj > Xi

�
Then

Pn
j¼1Dij is the number of values of j for which Yj < Xi, or the

rank of Xi reduced by ni, the number of X ’s which are less than or
equal to Xi. Thus we can write

U ¼
Xm
i¼1

½rðXiÞ � ni� ¼
Xm
i¼1

rðXiÞ � ðn1 þ n2 þ � � � þ nmÞ

¼
XN
i¼1

iZi � ð1þ 2þ � � � þmÞ

¼
XN
i¼1

iZi �m

2
ðmþ 1Þ

¼ WN �m

2
ðmþ 1Þ ð2:4Þ

300 CHAPTER 8



The statistic U (or WN) can be easily related to the placements
introduced in Chapter 2. To see this note that

Pn
j¼1Dij, which counts

the total number of Y ’s that are less than Xi, can be rewritten asPn
i¼1 nGnðXiÞ; where Gn is the empirical cdf of the Y sample. Now,

U ¼
Xm
i¼1

Xn
j¼1

nGnðXiÞ ¼
Xm
i¼1

Xn
j¼1

nGnðXðiÞÞ ¼
Xm
i¼1

½rankðXðiÞÞ � i�

ð2:5Þ
where rankðXðiÞÞ is the rank of the ith-ordered X observation in the
combined sample. The last equality in (2.5) also shows that the Mann-
Whitney U statistic is a linear function of the Wilcoxon rank-sum test
statistic. Thus, all the properties of the two tests are the same,
including consistency and the minimum ARE of 0.864 relative to the
t test. A confidence-interval procedure based on the Wilcoxon rank-
sum test leads to the same results as the one based on the Mann-
Whitney test.

The Wilcoxon rank-sum statistic is also equivalent to an ordinary
analysis of variance of ranks (see Problem 10.5), a procedure which is
easily extended to the case of more than two samples. This situation
will be discussed in Chapter 10.

APPLICATIONS

The appropriate rejection regions and P values for the Wilcoxon rank-
sum test statistic WN in terms of y ¼ mY � mX are as follows, where wO

is the observed value of WN .

The exact cumulative null distribution of WN is given in Table J
for m4n410, as left-tail probabilities for WN4mðN þ 1Þ=2 and right-
tail for WN 5mðN þ 1Þ=2. For larger sample sizes, the appropriate
rejection regions and P values based on the normal approximation
with a continuity correction of 0.5 are as follows:

Alternative Rejection region P value

y < 0 ðY<
ST

XÞ WN 5wa PðWN 5wOÞ
y > 0 ðY>

ST
XÞ WN4w0

a PðWN4wOÞ
y 6¼ 0 WN 5wa=2 or WN4w0

a=2 2(smaller of above)
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If ties are present, the correction for ties derived in (2.3) should
be incorporated in the variance term of the rejection regions and
P values.

Recall from Section 6.6 that the confidence-interval estimate of
y ¼ mY � mX based on the Mann-Whitney test has endpoints which are
the ðkþ 1Þst from the smallest and largest of the mn differences
yj � xi for all i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ;n. The value of k is the left-
tail rejection region cutoff point of a=2 in the null distribution of the
Mann-Whitney statistic. Let this a=2 cutoff point be ca=2. The corres-
ponding cutoff in terms of the Wilcoxon rank-sum statistic from the
relationship in (2.3) is ca=2 ¼ w0

a=2 �mðmþ 1Þ=2. Thus the value of k
can be found by subtractingmðmþ 1Þ=2 from the left-tail critical value
of WN in Table J of the Appendix for the given m and n with P ¼ a=2.
For example, if m ¼ 4, n ¼ 5, P ¼ 0:032, w0

0:032 ¼ 12, and c0:032 ¼
12� 10 ¼ 2, so that kþ 1 ¼ 3 and the confidence level is 0.936. Notice
that kþ 1 is always equal to the rank of w0

a=2 among the entries for the
given m and n in Table J because mðmþ 1Þ=2 is the minimum value of
the Wilcoxon rank-sum test statistic WN .

In practice then, the corresponding confidence interval end
points to estimate y ¼ mY � mX are the uth smallest and uth largest of
themn differences Yi � Xj for all i; j. The appropriate value for u is the
rank of that left-tail P among the entries in Table J for the givenm and
n, for confidence level 1� 2P. Form and n outside the range of Table J,
we find u from

u ¼ mn

2
þ 0:5� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðN þ 1Þ

12

r
ð2:6Þ

and round down to the next smaller integer if the result is not an
integer. Zeros and ties are counted as many times as they occur.

Example 2.1 A time and motion study was made in the permanent
mold department at Central Foundry to determine whether there was

Alternative Rejection region P value

y < 0 WN5mðNþ1Þ=2þ0:5þza
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðNþ1Þ=12p

1�F wO�0:5�mðNþ1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðNþ1Þ=12Þp !

y > 0 WN4mðNþ1Þ=2�0:5�za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðNþ1Þ=12p

F wO þ 0:5�mðN þ 1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðN þ 1Þ=12p !

y 6¼ 0 Both above with za replaced by za=2 2(smaller of above)
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a pattern to the variation in the time required to pour the molten
metal into the die and form a casting of a 6� 4 in. Y branch. The
metallurgical engineer suspected that pouring times before lunch were
shorter than pouring times after lunch on a given day. Twelve in-
dependent observations were taken throughout the day, six before
lunch and six after lunch. Find the P value for the alternative that
mean pouring time before lunch is less than after lunch for the data
below on pouring times in seconds.

Solution With equal sample sizesm ¼ n ¼ 6, either period can be called
the X sample. If X denotes pouring time before lunch, the desired alter-
native isH1: y ¼ mY � mX > 0 and theappropriateP value is in the left tail
forWN. The pooled array withX values underlined is 9.4, 11.2, 11.3, 11.4,
12.0, 12.6, 13.2, 13.4, 14.0, 14.1, 15.4, 16.4, and WN ¼ 1þ 2þ 4 þ
5þ 6þ 7 ¼ 25. The P-value is PðWN425Þ ¼ 0:013 from Table J for
m ¼ 6, n ¼ 6. Thus, the null hypothesis H0: y ¼ 0 is rejected in favor
of the alternativeH1: y > 0 at any significance level a5 0:013.

The MINITAB, STATXACT, and SAS solutions to Example 2.1
are shown below. Note that both SAS and MINITAB compute the one-
tailed P value as 0.0153 based on the normal approximation with a
continuity correction. It is interesting to note that the MINITAB
printout includes a confidence interval estimate of mX � mY that is
based on the exact distribution of TX and this agrees with what we
would find (see Problem 8.16), while the test result is based on the
normal approximation with a continuity correction. The STATXACT
solution gives the exact P value, which agrees with ours, and the
asymptotic P value based on the normal approximation without a
continuity correction. The SAS solution gives the exact P value, which
agrees with ours, and an asymptotic P value based on the normal
approximation with a continuity correction (and it tells us so!).
SAS also shows a t approximation based on what is called a
rank transformation. The idea behind a rank transformation is to first
replace the original X and Y data values by their ranks in the com-
bined sample and then calculate the usual t statistic from (1.1) using

Before lunch After lunch

12.6 11.2 16.4 15.4
11.4 9.4 14.1 14.0
13.2 12.0 13.4 11.3
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these ranks. The approximate P value is calculated from a t table with
N � 2 degrees of freedom. The rank transformation idea has been
applied to various other classical parametric tests thereby creating
new nonparametric tests. The reader is referred to Conover and Iman
(1981) for a good introduction to rank transformation and its appli-
cations. The SAS output also shows a two-sided result called the
Kruskal-Wallis test, which we will cover in Chapter 10.
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Example 2.2 In order to compare the relative effectiveness of a calorie-
controlled diet and a carbohydrate-controlled diet, eight obese women
were divided randomly into two independent groups. Three were
placed on a strictly supervised calorie-controlled diet and their
total weight losses in 2 weeks were 1, 6, and 7 lb; the others, on
a carbohydrate-controlled diet, lost 2, 4, 9, 10, and 12 lb. Find a
confidence-interval estimate for the difference in location between
Calorie Diet and Carbohydrate Diet, with confidence coefficient near
0.90.

Solution The X sample must be the calorie diet so thatm ¼ 34n ¼ 5.
The example requests a confidence interval for mX � mY. We will pro-
ceed by finding a confidence interval on mY � mX and then take the
negative of each endpoint. Table J of the Appendix shows that for
m ¼ 3;n ¼ 5, the closest we can get to confidence 0.90 is with
P ¼ 0:036 or exact confidence level 0.928; this entry has rank 2 so that
u ¼ 2: The 3(5)¼ 15 differences Y � X are shown below. The second
smallest difference is �4 and the second largest difference is 9, or
�44mY � mX49; the corresponding negative interval is �94mX � mY

44: Notice that by listing the Y values in an array and then sub-
tracting successively larger X values, the smallest and largest differ-
ences are easy to find.

The MINITAB and STATXACT solutions to this example are
shown below. Note that the MINITAB output shows a confidence level
0.926, which is almost equal to the exact level, 0.928. The MINITAB
confidence limits also do not match exactly with ours but are very
close. The STATXACT solution matches exactly with ours, although
the output does not seem to indicate what the exact confidence level is.
It is interesting to note that for this example, with such small sample
sizes, the exact and the asymptotic methods produced identical re-
sults. Note also that STATXACT calls this procedure the Hodges-
Lehmann estimate of the shift parameter.

Y Y�1 Y�6 Y�7

2 1 �4 �5
4 3 �2 �3
9 8 3 2
10 9 4 3
12 11 6 5
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8.3 OTHER LOCATION TESTS

Generally, almost any set of monotone-increasing weights ai, which
are adopted for a linear rank statistic, will provide a consistent test for
shift in location. Only a few of the better-known ones will be covered
here.

TERRY-HOEFFDING (NORMAL SCORES) TEST

The Terry (1952) and Hoeffding (1951) or the Fisher-Yates normal
scores test uses the weights ai ¼ EðxðiÞÞ, where xðiÞ is the ith-order
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statistic from a standard normal population; the linear rank test sta-
tistic is

c1 ¼
XN
i¼1

EðxðiÞÞZi ð3:1Þ

These expected values of standard normal order statistics are tabu-
lated for N4100 and some larger sample sizes in Harter (1961), so
that the exact null distribution can be found by enumeration. Tables of
the distribution of the test statistic are given in Terry (1952) and Klotz
(1964). The Terry test statistic is symmetric about the origin, and its
variance is

s2 ¼ mn

PN
i¼1½EðxðiÞÞ�2
NðN � 1Þ ð3:2Þ

The normal distribution provides a good approximation to the null
distribution for larger sample sizes. An approximation based on the
t distribution is even closer. This statistic is t ¼ rðN � 2Þ1=2=ð1� r2Þ1=2,
where r ¼ c1=½s2ðN � 1Þ�1=2 and the distribution is approximately
Student’s t with N � 2 degrees of freedom.

The Terry test is asymptotically optimum against the alternative
that the populations are both normal distributions with the same
variance but different means. Under the classical assumptions for a
test of location then, its ARE is 1 relative to Student’s t test. For
certain other families of continuous distributions, the Terry test is
more efficient than Student’s t test (ARE> 1) (Chernoff and Savage,
1958).

The weights employed for the Terry test EðxðiÞÞ are often called
expected normal scores, since the order statistics of a sample from the
standard normal population are commonly referred to as normal
scores. The idea of using expected normal scores instead of integer
ranks as rank-order statistics is appealing generally, since for many
populations the expected normal scores may be more ‘‘representative’’
of the raw data or variate values. This could be investigated by com-
paring the correlation coefficients between (1) variate values and
expected normal scores and (2) variate values and integer ranks for
particular families of distributions. The limiting value of the correla-
tion between variate values from a normal population and the
expected normal scores is equal to 1, for example (see Section 5.5).
Since inferences based on rank-order statistics are really conclusions
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about transformed variate values, that transformation which most
closely approximates the actual data should be most efficient when
these inferences are extended to the actual data.

Since the Terry test statistic is the sum of the expected normal
scores of the variables in the X sample, it may be interpreted as
identical to the Wilcoxon rank-sum test of the previous section when
the normal-scores transformation is used instead of the integer-rank
transformation. Other linear rank statistics for location can be formed
in the same way by using different sets of rank-order statistics for the
combined samples. An obvious possibility suggested by the Terry test
is to use the scores F�1½i=ðN þ 1Þ�, where FðxÞ is the cumulative
standard normal distribution, since we showed in Chapter 2 that
F�1½i=ðN þ 1Þ� is a first approximation to EðxðiÞÞ. If kp is the pth
quantile point of the standard normal distribution, FðkpÞ ¼ p and
kp ¼ F�1ðpÞ. Therefore here the ith-order statistic in the combined
ordered sample is replaced by the ½i=ðN þ 1Þ�st quantile point of the
standard normal. This is usually called the inverse-normal-scores
transformation and forms the basis of the following test.

VAN DER WAERDEN TEST

When the inverse normal scores are used in forming a linear rank
statistic, we obtain the van der Waerden (1952, 1953) XN test, where

XN ¼
XN
i¼1

F�1 i

N þ 1

	 

Zi ð3:3Þ

In other words, the constant ai in a general linear rank statistic is
given by the value on the abscissa of the graph of a standard normal
density function such that the area to the left of ai is equal to
i=ðN þ 1Þ. These weights ai are easily found from tables of the cumu-
lative normal distribution. Tables of critical values are given in van
der Waerden and Nievergelt (1956) for N450. The XN statistic is
symmetric about zero and has variance

s2 ¼ mn

PN
i¼1 F�1 i

Nþ1
� �h i2

NðN � 1Þ ð3:4Þ

For larger sample sizes, the null distribution of the standardized XN is
well approximated by the standard normal distribution.

The XN test is perhaps easier to use than the Terry test because
the weights are easily found for any N. Otherwise, there is little basis

LINEAR RANK TESTS FOR THE LOCATION PROBLEM 309



for a choice between them. In fact, the van der Waerden test is
asymptotically equivalent to the Terry test. Since varðxðiÞÞ ! 0 as N !
1; xðiÞ converges in probability to EðxðiÞÞ, the weights for the Terry test
statistic. However, by the probability-integral transformation, FðxðiÞÞ
is the ith-order statistic of a sample of size N from the uniform
distribution. Therefore from (2.8.2) and (2.8.3), E½FðxðiÞÞ� ¼ i=ðN þ 1Þ
and

var½FðxðiÞÞ� ¼
iðN � iþ 1Þ

ðN þ 1Þ2ðN þ 2Þ ! 0

as N ! 1. This implies that FðxðiÞÞ converges in probability to
i=ðN þ 1Þ and xðiÞ converges to F�1½i=ðN þ 1Þ�. We may conclude that
the expected normal scores and the corresponding inverse normal
scores are identical for all N as N ! 1. Thus, the large sample
properties, including the ARE, are the same for the Terry and the van
der Waerden tests.

It should be noted that the expected normal scores and inverse
normal scores may be useful in any procedures based on rank-order
statistics. For example, in the one-sample and paired-sample Wilcoxon
signed-rank test discussed in Section 5.7, the rank of the absolute
value of the difference jDij can be replaced by the corresponding ex-
pected value of the absolute value of the normal score EðjxðiÞjÞ (which is
not equal to the absolute value of the expected normal score). The sum
of those ‘‘ranks’’ which correspond to positive differences Di is then
employed as a test statistic. This statistic provides the asymptotically
optimum test of location when the population of differences is normal
and thus has an ARE of 1 relative to Student’s t test in this case.
Expected normal scores are also useful in rank-correlation methods,
which will be covered in Chapter 11.

Example 2.3 We illustrate the Terry and van der Waerden tests using
data from Example 2.1 on pouring times with m¼ 6 and n¼ 6. The
first six expected normal scores for the Terry test with N¼ 12 are
�1:6292;�1:1157;�0:7928;�0:5368;�0:3122, and �0:1026; the other
six are the same values but with positive signs by symmetry. For ex-
ample, the seventh expected normal score is 0.1026, the eighth is
0.3122, and so on. We calculate c1 ¼ �3:5939 from (3.1) with variance
s2 ¼ 2:6857 from (3.2). The z statistic for the normal approximation is
z ¼ �2:1930 with a one-sided P value PðZ4� 2:1930Þ ¼ 0:0142. For
the van der Waerden test, the first six inverse normal scores with
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N ¼ 12 are�1:4261;�1:0201;�0:7363;�0:5024;�0:2934, and�0:0966;
the remaining six are the same values but with positive signs by
symmetry. The test statistic is XN ¼ �3:242 from (3.3), with variance
s2 ¼ 2:1624, from (3.4). The z statistic for the normal approximation is
z ¼ �2:2047 with a one-tailed P value PðZ4�2:2047Þ ¼ 0:0137.

Note that we do not use a continuity correction in calculating
either of these two z statistics, because the weights ai for both of these
test statistics are continuous variables and not integers.

The SAS solution for the data in Example 2.1 using the van der
Waerden test is shown below. Note that it agrees exactly with ours.
STATXACT has an option called the normal scores test, but it uses the
inverse normal scores as weights, as opposed to the expected normal
scores. In other words, it calculates the van der Waerden statistic. This
solution is also shown below. Note also that both SAS and STATXACT
also provide exact P-values corresponding to the test statistic �3:242
and this one-tailed P-value is identical to the one found earlier in
Example 1.1 for the Wilcoxon rank-sum statistic.
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PERCENTILE MODIFIED RANK TESTS

Another interesting linear rank statistic for the two-sample location
problem is a member of the class of so-called percentile modified linear
rank tests (Gastwirth, 1965). The idea is as follows. We select two
numbers s and r, both between 0 and 1, and then score only the data
in the upper sth and lower rth percentiles of the combined sample.
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In other words, a linear rank statistic is formed in the usual way
except that a score of zero is assigned to a group of observations in the
middle of the combined array. Symbolically, we let S ¼ ½Ns� þ 1 and
R ¼ ½Nr� þ 1, where [x] denotes the largest integer not exceeding the
number x. Define Br and Ts, as

N odd:

Br ¼
XR
i¼1

ðR� iþ 1ÞZi

and

Ts ¼
XN

i¼N�Sþ1
½i� ðN � SÞ�Zi

ð3:3Þ
N even:

Br ¼
XR
i¼1

R � iþ 1=2ð ÞZi

and

Ts ¼
XN

i¼N�Sþ1
i� ðN � SÞ � 1=2½ �Zi

The combination Ts � Br provides a test for location, and Ts þ Br is a
test for scale, which will be discussed in the next chapter. It is easily
seen that if N is even and S ¼ R ¼ N=2, so that no observations are
assigned a score of zero, Ts � Br is equivalent to the Wilcoxon test.
WhenN is odd and all the sample data are used, the tests differ slightly
because of the different way of handing the middle observation zðNþ1Þ=2.

The mean and variance of the Ts � Br statistics can be calculat-
ing using Theorem 7.3.2 alone if S þ R4N, remembering that ai ¼ 0
for Rþ 14i4N � S. Alternatively, Theorems 7.3.2 and 7.3.3 can be
used on the pieces Ts and Br along with the fact that

varðTs � BrÞ ¼ varðTsÞ þ varðBrÞ � 2covðTs;BrÞ

The results for N even and S ¼ R are

EðTs � BrÞ ¼ 0 varðTs � BrÞ ¼ mnSð4S2 � 1Þ
6NðN � 1Þ ð3:4Þ
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By Theorem 7.3.4, the null distribution of Ts � Br is symmetric about
the origin for any m and n when S ¼ R. Tables of the null distribution
for m ¼ n46 are given in Gibbons and Gastwirth (1966). It is also
shown there empirically that for significance levels not too small, say
at least 0.025, the normal distribution may be used to define critical
regions with sufficient accuracy for most practical purposes when
m ¼ n5 6.

One of the main advantages of this test is that a judicious choice
of s and r may lead to a test which attains higher power than the
Wilcoxon rank-sum test without having to introduce complicated
scoring systems. For example, any knowledge of asymmetry in the
populations might be incorporated into the test statistic. The asymp-
totic relative efficiency of this test against normal alternatives reaches
its maximum value of 0.968 when s ¼ r ¼ 0:42; when s ¼ r ¼ 0:5, the
ARE is 0.955, as for the Wilcoxon rank-sum statistic.

8.4 SUMMARY

In this chapter we covered several additional tests for the two-sample
problem; all of them are linear rank tests. The two-sample tests cov-
ered in Chapter 6 are appropriate for general alternatives that do not
specify any particular kind of difference between the population dis-
tributions. The tests covered in this chapter are especially appropriate
for the location alternative.

The Wilcoxon rank-sum test of Section 8.2 is by far the best
known two-sample nonparametric test for location, and it is equivalent
to the Mann-Whitney U test covered in Section 6.6. The discussion of
power given there applies equally here. The expressions given there
for sample size determination also apply here. Other tests for location
covered in this chapter are the Terry-Hoeffding expected normal
scores test and the van der Waerden inverse normal scores test. These
two tests are asymptotically equivalent and their asymptotic relative
efficiency is one relative to the normal theory test for normal
distributions. Thus their ARE is somewhat higher than that of the
Wilcoxon test for normal distributions, but they can have lower power
for other distributions. These other tests are not as convenient to use
as the Wilcoxon test and are not very well known. Further, they do not
have a convenient procedure for finding a corresponding confidence
interval estimate for the difference in the medians. Finally, we cover
the percentile modified rank tests for location, which are simply gen-
eralizations of the Wilcoxon rank-sum test.
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PROBLEMS

8.1. Given independent samples of m X and n Y variables, define the following random
variables for i ¼ 1; 2; . . . ;m:

Ki ¼ rank of Xi among X1;X2; . . . ;Xm

Ri ¼ rank of Xi among X1;X2; . . . ;Xm;Y1;Y2; . . . ;Yn

Use Ki and Ri to prove the linear relationship between the Mann-Whitney and
Wilcoxon rank-sum statistics given in (2.4).

8.2. A single random sample D1;D2; . . . ;DN of size N is drawn from a population which
is continuous and symmetric. Assume there are m positive values, n negative values,
and no zero values. Define the mþ n ¼ N random variables

Xi ¼ Di if Di > 0

Yi ¼ jDij if Di < 0

Then the X1;X2; . . . ;Xm and Y1;Y2; . . . ;Yn constitute two independent random samples
of sizes m and n.

(a) Show that the two-sample Wilcoxon rank-sum statistic WN of (2.1) for these
two samples equals the Wilcoxon signed-rank statistic Tþ defined in (5.7.1).

(b) If these two samples are from identical populations, the median of the
symmetric D population must be zero. Therefore the null distribution of WN is identical
to the null distribution of Tþ conditional upon the observed number of plus and minus
signs. Explain fully how tables of the null distribution of WN could be used to find the
null distribution of Tþ. Since for N large, m and n will both converge to the constant
value N/2 in the null case, these two test statistics have equivalent properties asymp-
totically.
8.3. Generate by enumeration the exact null probability distribution of Ts � Br as
defined in (3.3) for m ¼ n ¼ 3, all S ¼ R < 3, and compare the rejection regions for
a40:10 with those for the Wilcoxon rank-sum test WN when m ¼ n ¼ 3.

8.4. Verify the results given in (3.4) for the mean and variance of Ts � Br when S ¼ R
and N is even and derive a similar result for S ¼ R when N is odd.

8.5. Show that the median test of Section 6.4 is a linear rank test.

8.6. Giambra and Quilter (1989) performed a study to investigate gender and age
difference in ability to sustain attention when given Mackworth’s Clock-Test. This clock
is metal with a plain white face and a black pointer that moves around the face in 100
discrete steps of 36 degrees each. During the test period the pointer made 23 double
jumps, defined as moving twice the normal distance or 7.2 degrees in the same time
period, at random and irregular intervals. Subjects were told that double jumps would
occur and asked to signal their recognition of occurrence by pressing a button. Scores
were the number of correct recognitions of the double jumps. The scores below are for 10
men in age groups 18–29 and 10 men in age group 50–59. Determine whether median
number of correct scores is larger for young men than for older men.

Age 18� 29 : 11;13;15; 15; 17;19;20;21;21; 22

Age 50� 59 : 8; 9; 10; 11;12;13;5;17;19;23

8.7. Elam (1988) conducted a double-blind study of 18 adult males to investigate the
effects of physical resistance exercises and amino acid dietary supplements on body
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mass, body fat, and composite girth. Ten of the subjects received the diet supplement and
eight received a placebo. All subjects participated in 15 resistance exercise workouts of
one hour each spread over a 5-week period. Workloads were tailored to abilities of the
individual subjects but escalated in intensity over the period. The data in Table 1 are
the changes (after minus before) in body mass, body fat, and composite body girth for the
amino acid (Treatment) group and placebo (Control) group of subjects. Were amino acid
supplements effective in reducing the body mass (kg), fat (%), and girth (cm)?

8.8. Howard, Murphy, and Thomas (1986) (see Problem 5.12) also investigated whether
pretest anxiety scores differed for students enrolled in two different sections of the in-
troduction to computer courses. Seven students were enrolled in each section, and the
data are shown below. Is there a difference in median scores?

Section 1 : 20;32;22;21; 27; 26; 38

Section 2 : 34;20;30;28; 25; 23; 29

8.9. A travel agency wanted to compare the noncorporate prices charged by two major
motel chains for a standard-quality single room at major airport locations around the
country. A random sample of five Best Eastern motels and an independent sample of six
Travelers’ Inn motels, all located at major airports, gave the approximate current total
costs of a standard single room as shown below. Find a 95% confidence interval estimate
of the difference between median costs at Best Eastern and Travelers’ Inn motels.

Best Eastern : $68; 75; 92;79;95

Travelers’ Inn : $69; 76;81;72;75; 80

8.10. Smokers are commonly thought of as nervous people whose emotionality is at least
partly caused by smoking because of the stimulating effect tobacco has on the nervous
system. Nesbitt (1972) conducted a study with 300 college students and concluded that
smokers are less emotional than nonsmokers, that smokers are better able to tolerate
the physiological effects of anxiety, and that, over time, smokers become less emotional
than nonsmokers. Subjects of both sexes were drawn from three different colleges and
classified as smokers if they smoked any number of cigarettes on a regular basis. In one

Table 1

Treatment group Control group

Subject Mass Fat Girth Subject Mass Fat Girth

1 �2.00 1.14 �17.00 1 1.00 �0.56 11.00
2 0.00 �2.64 2.00 2 0.50 0.87 5.00
3 �1.00 �1.96 23.00 3 �0.75 �0.75 1.00
4 �4.00 0.86 13.00 4 �2.00 �0.60 35.00
5 �0.75 �2.35 2.00 5 �3.00 0.00 �5.00
6 �1.75 �2.51 5.00 6 �2.50 �2.54 2.00
7 �2.75 0.55 8.00 7 0.00 �3.10 3.00
8 0.00 3.40 3.00 8 0.25 3.48 �7.00
9 �1.75 0.00 7.00
10 1.00 �4.94 10.00

316 CHAPTER 8



aspect of the experiment all subjects were given the Activity Preference Questionnaire
(APQ), a test designed to measure the emotionality of the subjects. The APQ is scored
using an ordinal scale of 0–33, with lower scores indicating less emotionality, that is,
greater sociopathy. The mean overall scores were 18.0 for smokers and 20.3 for non-
smokers. Suppose this experiment is repeated using a group of only 8 randomly chosen
smokers and 10 randomly chosen nonsmokers, and the score results are shown below. Do
these data support the same conclusion concerning emotionality as Dr. Nesbitt’s data?

Smokers : 16;18;21;14;25; 24; 27;12

Nonsmokers : 17;15; 28; 31;30;26;27; 20; 21; 19

8.11. A group of 20 mice are allocated to individual cages randomly. The cages are
assigned in equal numbers, randomly, to two treatments, a control A and a certain drug
B. All animals are infected, in a random sequence, with tuberculosis. The number of days
until the mice die after infection are given as follows (one mouse got lost):

Control A : 5;6; 7; 7;8;8;9; 12

Drug B : 7; 8; 8;8;9; 9; 12; 13;14;17

Since a preliminary experiment has established that the drug is not toxic, we can
assume that the drug group cannot be worse (die sooner) than the control group under
any reasonable conditions. Test the null hypothesis that the drug is without effect at a
significance level of 0.05 and briefly justify your choice of test.

8.12. The following data represent two independent random samples drawn from
continuous populations which are thought to have the same form but possibly different
locations.

X : 79;13;138; 129;59;76; 75; 53

Y : 96;141; 133;107; 102;129;110;104

Using a significance level not exceeding 0.10, test

(a) The null hypothesis that the two populations are identical and find the
P value (Do not use an approximate test)

(b) The null hypothesis that the locations are the same and find the appropriate
one-tailed P value

8.13. A problem of considerable import to the small-scale farmer who purchases young
pigs to fatten and sell for slaughter is whether there is any difference in weight gain for
male and female pigs when the two genders are subjected to identical feeding treat-
ments. If there is a difference, the farmer can optimize production by buying only one
gender of pigs for fattening. As a public service, an agricultural experiment station
decides to run a controlled experiment to determine whether gender is an important
factor in weight gain. They placed 8 young male pigs in one pen 8 young females in
another pen and gave each pen identical feeding treatments for a fixed period of time.
The initial weights were all between 35 and 50 lb, and the amounts of weight gain in
pounds for the two genders are recorded below. Unfortunately, one of the female pigs
died so there are only 7 observations in that group. Analyze the data below using both a
test and a confidence-interval approach with confidence coefficient near 0.90.

Female pigs: 9:31; 9:57;10:21;8:86; 8:52;10:53;9:21

Male pigs : 9:14;9:98; 8:46;8:93; 10:14; 10:17; 11:04; 9:43
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8.14. How would you find the confidence-interval end points for the parameter of in-
terest when the interval has confidence level nearest 0.90 and corresponds to:

(a) The sign text with n ¼ 11

(b) The Wilcoxon signed-rank test with n ¼ 11
(c) The Wilcoxon rank-sum test with m ¼ 5;n ¼ 6

In each case define the function Z of the observations, give the numerical values of
L and U for the order statistics Z(L) and Z(U), and give the exact confidence level.

8.15. A self-concept test was given to a random sample consisting of six normal sub-
jects and three subjects under psychiatric care. Higher scores indicate more self-esteem.
The data are as follows:

Normal: 62; 68; 78; 92;53;81

Psychiatric: 54;70;79

(a) Find a P value relevant to the alternative that psychiatric patients have
lower self-esteem than normal patients.

(b) Find a confidence interval for the difference of the locations (level nearest
0.90).

8.16. Verify the confidence interval estimate of mX � mY with exact confidence coeffi-
cient at least 0.95 given in the MINITAB solution to Example 2.1.
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9
Linear Rank Tests for the Scale Problem

9.1 INTRODUCTION

Consider again the situation of Chapter 8, where the null hypothesis is
that two independent samples are drawn from identical populations;
however, now suppose that we are interested in detecting differences in
variability or dispersion instead of location. Some of the tests presented
in Chapters 6 and 8, namely, the median, Mann-Whitney, Wilcoxon
rank-sum, Terry, van der Waerden, and TS � Br tests, were noted to be
particularly sensitive to differences in location when the populations
are identical otherwise, a situation described by the relation FY(x)¼FX

(x�y). These tests cannot be expected to perform especially well against
other alternatives. The general two-sample tests of Chapter 6, like the
Wald-Wolfowitz runs test or Kolmogorov-Smirnov tests, are affected by
any type of difference in the populations and therefore cannot be relied
upon as efficient for detecting differences in variability. Some other
nonparametric tests are needed for the dispersion problem.
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The classical test for which we are seeking an analog is the test
for equality of variances, H0: sX ¼ sY , against one- or two-sided al-
ternatives. If it is reasonable to assume that the two populations are
both normal distributions, the parametric test statistic is

Fm�1;n�1 ¼
Xm

i¼1
ðXi � �XXÞ2
m� 1

.Xn

i¼1
ðYi � �YYÞ2

n � 1

which has Snedecor’s F distribution with m�1 and n�1 degrees of
freedom. The F test is not particularly robust with respect to the
normality assumption. If there is reason to question the assumptions
inherent in the construction of the test, a nonparametric test of dis-
persion is appropriate.

The F test does not require any assumption regarding the loca-
tions of the two normal populations. The magnitudes of the two sample
variances are directly comparable since they are each computed as
measures of deviations around the respective sample means. The
traditional concept of dispersion is a measure of spread around some
population central value. The model for the relationship between the
two normal populations assumed for the F test might be written

FY�mY
ðxÞ ¼ FX�mX

sX

sY
x

	 

¼ FX�mX

ðy xÞ for all x and some y> 0

ð1:1Þ
where y ¼ sX=sY and FðX�mX Þ=sX

ðxÞ ¼ FðxÞ, and the null hypothesis to
be tested is H0: y ¼ 1. We could say then that we assume that the
distributions of X � mX and Y � mY differ only by the scale factor y for
any mX and mY , which need not be specified. The relationship between
the respective moments is

EðX � mXÞ ¼ yEðY � mYÞ and varðXÞ ¼ y2 varðYÞ
Since medians are the customary location parameters in distribution-
free procedures, if nonparametric dispersion is defined as spread
around the respective medians, the nonparametric model corres-
ponding to (1.1) is

FY�MY
ðxÞ ¼ FX�MX

ðyxÞ for all x and some y> 0 ð1:2Þ
Suppose that the test criterion we wish to formulate for this

model is to be based on the configuration of the X and Y random
variables in the combined ordered sample, as in a linear rank test. The
characteristics of respective locations and dispersions are inextricably
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mixed in the combined sample ordering, and possible location differ-
ences may mask dispersion differences. If the population medians
are known, the model (1.2) suggests that the sample observations
should be adjusted by

X 0
i ¼ Xi �MX and Y 0

j ¼ Yj �MY for i ¼ 1; 2; . . . ; m

and j ¼ 1; 2; . . . ; n

Then the X 0
i and Y 0

j populations both have zero medians, and the
arrangement of X 0 and Y 0 random variables in the combined ordered
sample should indicate dispersion differences as unaffected by location
differences. The model is then FY(x)¼FX (yx). In practice, MX and MY

would probably not be known, so that this is not a workable approach.
If we simply assume that MX¼MY¼M unspecified, the combined
sample arrangement of the unadjusted X and Y should still reflect
dispersion differences. Since the X and Y populations differ only in
scale, the logical model for this situation would seem to be the alter-
native

HS: FYðxÞ ¼ FXðy xÞ for all x and some y>0; y 6¼1 ð1:3Þ
This is appropriately called the scale alternative because the cumu-
lative distribution function of the Y population is the same as that of
the X population but with a compressed or enlarged scale according as
y > 1 or y < 1, respectively.

In Figure 1.1a, the relation FYðxÞ ¼ FXðyxÞ is shown for
FYðxÞ ¼ FðxÞ, the standard normal, and y >1. Since mX ¼ MX ¼ mY ¼ 0
and y ¼ sX=sY , this model is a special case of (1.1) and (1.2).

Fig. 1.1 FY ðxÞ ¼ FX ðyxÞ: ðaÞ FX normal, y > 1; ðbÞ FX exponential, y < 1.
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Figure 1.1b illustrates the difficulty in thinking any arbitrary dis-
tribution may be taken for the scale alternative in (1.3) to be inter-
preted exclusively as a dispersion alternative. Here we have a
representation of the exponential distribution in HS for y < 1, for ex-
ample, fXðxÞ ¼ e�x; x > 0, so that fYðxÞ ¼ y e�yx for some y < 1. Since
varðXÞ ¼ 1 and varðYÞ ¼ 1=y2, it is true that sY > sX . However,
EðXÞ ¼ 1 and EðYÞ ¼ 1=y > EðXÞ, and further MX ¼ ln 2 while
MY ¼ lnð2=yÞ > MX for all y < 1. The combined ordered arrangement
of samples from these exponential populations will be reflective of both
the location and dispersion differences. The scale alternative in (1.3)
should be interpreted as a dispersion alternative only if the population
locations are zero or very close to zero.

Actually, the scale model FYðxÞ ¼ FXðyxÞ is not general enough
even when the locations are the same. This relationship implies that
EðXÞ ¼ yEðYÞ andMX ¼ yMY , so that the locations are identical for all
y only if mX ¼ mY ¼ 0 orMX ¼ MY ¼ 0. A more general scale alternative
can be written in the form

HS: FY�MðxÞ ¼ FX�MðyxÞ for all x and some y > 0; y 6¼ 1

ð1:4Þ
where M is interpreted to be the common median. Both (1.3) and (1.4)
are called the scale alternatives applicable to the two-sample scale
problem, but in (1.3) we essentially assume without loss of generality
that M ¼ 0.

Many tests based on the ranks of the observations in a combined
ordering of the two samples have been proposed for the scale problem.
If they are to be useful for detecting differences in dispersion, we must
assume either that the medians (or means) of the two populations are
equal but unknown or that the sample observations can be adjusted to
have equal locations, by subtracting the respective location para-
meters from one set. Under these assumptions, an appropriate set of
weights for a linear rank-test statistic will provide information about
the relative spread of the observations about their common central
value. If the X population has a larger dispersion, the X values should
be positioned approximately symmetrically at both extremes of the Y
values. Therefore the weights ai should be symmetric, for example,
small weights in the middle and large at the two extremes, or vice
versa. We shall consider several choices for simple sets of weights of
this type which provide linear rank tests particularly sensitive to scale
differences only. These are basically the best-known tests—the Mood
test, the Freund-Ansari-Bradley-David-Barton tests, the Siegel-Tukey
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test, the Klotz normal-scores test, the percentile modified rank tests,
and the Sukhatme test. Many other tests have also been proposed in
the literature; some of these are covered in Section 9.9. Duran (1976)
gives a survey of nonparametric scale tests. Procedures for finding
confidence interval estimates of relative scale are covered in Section 9.8.
Examples and applications are given in Section 9.10.

9.2 THE MOOD TEST

In the combined ordered sample of N variables with no ties, the
average rank is the mean of the first N integers, ðN þ 1Þ=2. The
deviation of the rank of the ith ordered variable about its mean rank
is i� ðN þ 1Þ=2, and the amount of deviation is an indication of
relative spread. However, as in the case of defining a measure of
sample dispersion in classical descriptive statistics, the fact that the
deviations are equally divided between positive and negative numbers
presents a problem in using these actual deviations as weights in
constructing a linear rank statistics. For example, if Zi is the usual
indicator variable for the X observations and m ¼ n ¼ 3, the ordered
arrangements

X Y X Y X Y and X X Y Y Y X

both have
P6

i¼1 i� Nþ1
2

 �
Zi ¼ �1:5, but the first arrangement suggests

the variances are equal and the second suggests the X ’s are more
dispersed than the Y ’s. The natural solution is to use as weights either
the absolute values or the squared values of the deviations to give
equal weight to deviations on either side of the central value.

The Mood (1954) test is based on the sum of squares of the de-
viations of the X ranks from the average combined rank, or

MN ¼
XN
i¼1

i�N þ 1

2

	 
2
Zi ð2:1Þ

A large value of MN would imply that the X ’s are more widely dis-
persed, and MN small implies the opposite conclusion. Specifically, the
set of weights is as shown in Tables 2.1 and 2.2 for N even and N odd,
respectively. The larger weights are in the tails of the arrangement.
When N is odd, the median of the combined sample is assigned a
weight of zero. In that case, therefore, the middle observation is
essentially ignored, but this is necessary to achieve perfectly sym-
metric weights.
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The moments of MN under the null hypothesis are easily found
from Theorem 7.3.2 (Section 7.3) as follows:

NEðMNÞ ¼ m
XN
i¼1

i�N þ 1

2

	 
2
¼ m

X
i2 � ðN þ 1Þ

X
iþNðN þ 1Þ2

4

" #

¼ m
NðN þ 1Þð2N þ 1Þ

6
�NðN þ 1Þ2

2
þNðN þ 1Þ2

4

" #
Then 12NEðMNÞ ¼ mNðN þ 1ÞðN � 1Þ and

EðMNÞ ¼ mðN2 � 1Þ
12

ð2:2Þ
Further,

N2ðN � 1ÞvarðMNÞ

¼ mn N
XN
i¼1

i�N þ 1

2

	 
4
�
XN
i¼1

i�N þ 1

2

	 
2" #28<:
9=;

¼ mn N
X

i4 � 4
N þ 1

2

X
i3 þ 6

ðN þ 1Þ2
4

X
i2 � 4

ðN þ 1Þ3
8

"(

�
X

iþNðN þ 1Þ4
16

#
� NðN2 � 1Þ

12

� �2)

Table 2.1 Mood test weights for N even

i 1 2 3 . . . N
2 � 1 N

2

ai
N�1
2

 �2 N�3
2

 �2 N�5
2

 �2
. . . 3

2

 �2 1
2

 �2
i N

2 þ 1 N
2 þ 2 . . . N � 2 N � 1 N

ai
1
2

 �2 3
2

 �2
. . . N�5

2

 �2 N�3
2

 �2 N�1
2

 �2
Table 2.2 Mood test weights for N odd

i 1 2 3 . . . N�1
2

Nþ1
2

ai
N�1
2

 �2 N�3
2

 �2 N�5
2

 �2
. . . ð1Þ2 0

i Nþ3
2 . . . N � 2 N � 1 N

ai ð1Þ2 . . . N�5
2

 �2 N�3
2

 �2 N�1
2

 �2
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Using the following relations, which can be easily proved by
induction,

XN
i¼1

i3 ¼ NðN þ 1Þ
2

� �2
XN
i¼1

i4 ¼ NðN þ 1Þð2N þ 1Þð3N2 þ 3N � 1Þ
180

and simplifying, the desired result is

varðMNÞ ¼ mnðN þ 1ÞðN2 � 4Þ
180

ð2:3Þ

The exact null probability distribution of MN can be derived by
enumeration in small samples. The labor is somewhat reduced by
noting that since ai ¼ aN�iþ1, the properties of Theroem 7.3.7 apply.
From Theroem 7.3.5 the distribution is symmetric about NðN2 � 1Þ=24
when m ¼ n, but the symmetry property does not hold for unequal
sample sizes. Exact critical values are tabled in Laubscher, Steffens,
and DeLange (1968). For larger sample sizes, the normal approxima-
tion can be used with the moments in (2.2) and (2.3). Under the
assumption of normal populations differing only in variance, the
asymptotic relative efficiency of the Mood test to the F test is
15=2p2 ¼ 0:76.

9.3 THE FREUND-ANSARI-BRADLEY-DAVID-BARTON TESTS

In the Mood test of the last section, the deviation of each rank from its
average rank was squared to eliminate the problem of positive and
negative deviations balancing out. If the absolute values of these
deviations are used instead to give equal weight to positive and
negative deviations, the linear rank statistic is

AN ¼
XN
i¼1

i�N þ 1

2

���� ����Zi ¼ ðN þ 1Þ
XN
i¼1

i

N þ 1
� 1

2

���� ����Zi ð3:1Þ

There are several variations of this test statistic in the literature,
proposed mainly by Freund and Ansari (1957), Ansari and Bradley
(1960), and David and Barton (1958). There seems to be some confu-
sion over which test should be attributed to whom, but they are all
essentially equivalent anyway.
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The Freund-Ansari-Bradley test can be written as a linear rank
statistic in the form

FN ¼
XN
i¼1

N þ 1

2
� i�N þ 1

2

���� ����	 

Zi ¼ mðN þ 1Þ

2
� AN ð3:2Þ

or

FN ¼
X½ðNþ1Þ=2�

i¼1
iZi þ

XN
i¼½ðNþ1Þ=2�þ1

ðN � iþ 1ÞZi ð3:3Þ

where ½x� denotes the largest integer not exceeding the value of x.
Specifically the weights assigned then are 1 to both the smallest and
largest observations in the combined sample, 2 to the next smallest
and next largest, etc., N=2 to the two middle observations if N is even,
and ðN þ 1Þ=2 to the one middle observation if N is odd. Since the
smaller weights are at the two extremes here, which is the reverse of
the assignment for the Mood statistic, a small value of FN would
suggest that the X population has larger dispersion. The appropriate
rejection regions for the scale-model alternative

HS: FY�MðxÞ ¼ FX�MðyxÞ for all x and some y > 0; y 6¼ 1

are then

The fact that this test is consistent for these subclasses of alternatives
will be shown later in Section 9.7.

To determine the critical values for rejection, the exact null dis-
tribution of FN could be found by enumeration. From Theorem 7.3.6,
we note that the null distribution of FN is symmetric about its mean if
N is even. A recursion relation may be used to generate the null dis-
tribution systematically. For a sequence ofmþ n ¼ N letters occurring
in a particular order, let rm;nð f Þ denote the number of distinguishable
arrangements of m X and n Y letters such that the value of the FN

statistic is the number f, and let pm;nð f Þ denote the corresponding
probability. A sequence of N letters is formed by adding a letter to each

Subclass of alternatives Rejection region P value

y > 1 FN 4 k1 PðFN 4 f jH0Þ
y < 1 FN 5 k2 PðFN 5 f jH0Þ
y 6¼ 1 FN 4 k3 or FN 5 k4 2(smaller of above)
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sequence of N � 1 letters. If N � 1 is even (N odd), the extra score will
be ðN þ 1Þ=2, so that f will be increased by ðN þ 1Þ=2 if the new letter
is X and be unchanged if Y. If N � 1 is odd, the extra score will be N=2.
Therefore we have the relations

N odd: rm;nð f Þ ¼ rm�1;n f �N þ 1

2

	 

þ rm;n�1ð f Þ

N even: rm;nð f Þ ¼ rm�1;n f �N

2

	 

þ rm;n�1ð f Þ

These can be combined in the single recurrence relation

rm;nð f Þ ¼ rm�1;nð f � kÞ þ rm;n�1ð f Þ for k ¼ N þ 1

2

� �
Then in terms of the probabilities, the result is

pm;nð f Þ ¼ rm;nð f Þ
.�

mþ n
m

�
ðmþ nÞpm;nð f Þ ¼ mpm�1;nðf � kÞ þ npm;n�1ð f Þ

which is the same form as (6.6.14) and (8.2.2) for the Mann-Whitney
and Wilcoxon rank-sum tests, respectively. Tables of the null prob-
ability distributions for N4 20 are available in Ansari and Bradley
(1960).

For larger sample sizes the normal approximation to the dis-
tribution of FN can be used. The exact mean and variance are easily
found by applying the results of Theorem 7.3.2 to FN in the forms of
(3.3) and (3.2) as follows, where x ¼ ðN þ 1Þ=2.

NEðFnÞ ¼ m
X½x�
i¼1

iþ
XN

i¼½x�þ1
ðN � iþ 1Þ

24 35 ¼ m
X½x�
i¼1

iþ
XN�½x�

j¼1
j

" #

N even: EðFNÞ ¼ 2m
XN=2

i¼1

i

N
¼ mðN þ 2Þ

4

N odd: EðFNÞ ¼
m 2

PðN�1Þ=2
i¼1 iþ Nþ1

2

h i
N

¼ mðN þ 1Þ2
4N
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varðFNÞ ¼ varðANÞ

¼ mn

N2ðN � 1Þ

"
N
XN
i¼1

i�N þ 1

2

	 
2
�
XN
i¼1

i�N þ 1

2

���� ����
 !2 #

¼ mn

N2ðN � 1Þ
N2ðN2 � 1Þ

12
� N

m
EðANÞ

� �2( )

¼ mn

N2ðN � 1Þ
N2ðN2 � 1Þ

12
�
"
NðN þ 1Þ

2
� N

m
EðFNÞ

#28<:
9=;

N even: varðFNÞ ¼ mn

N2ðN � 1Þ
N2ðN2 � 1Þ

12
� N2

4

	 
2" #

¼ mnðN2 � 4Þ
48ðN � 1Þ

N odd: varðFNÞ ¼ mn

N2ðN � 1Þ
N2ðN2 � 1Þ

12
� N2 � 1

4

	 
2" #

¼ mnðN þ 1ÞðN2 þ 3Þ
48N2

Collecting these results, we have

N even N odd

EðFNÞ ¼ mðN þ 2Þ=4 EðFNÞ ¼ mðN þ 1Þ2=4N

varðFNÞ ¼ mnðN2 � 4Þ
48ðN � 1Þ varðFNÞ ¼ mnðN þ 1ÞðN2 þ 3Þ

48N2

ð3:4Þ

Another test which is almost identical is generally attributed to
David and Barton (1958). This test also assigns symmetric integer
weights but in the reverse order. That is, scores are given starting
from the middle with 1 for N even, and 0 for N odd, and going out in
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both directions. The David-Barton test can be written as a linear rank
statistic as

BN ¼
X½ðNþ1Þ=2�

i¼1

N þ 2

2

� �
� i

	 

Zi þ

XN
i¼½ðNþ1Þ=2�þ1

i� N þ 1

2

� �	 

Zi

ð3:5Þ

For N even, BN and FN have the exact same set of weights (but
rearranged), and therefore the means and variances are equal. But for
N odd this is not true because of the difference in relative assignment
of the one ‘‘odd’’ weight, i.e., the middle observation. BN assigns a
weight of 0 to this observation, while FN scores it as ðN þ 1Þ=2. The
following results are easily verified from Theorem 7.3.2:

N even N odd

EðBNÞ ¼ mðN þ 2Þ=4 EðBNÞ ¼ mðN2 � 1Þ=4N

varðBNÞ ¼ mnðN2 � 4Þ
48ðN � 1Þ varðBNÞ ¼ mnðN þ 1ÞðN2 þ 3Þ

48N2

ð3:6Þ

The exact relationship between BN and FN is

FN þ BN ¼ m ðN þ 2Þ=2½ � ð3:7Þ

Since this relation is linear, the tests are equivalent in properties.
Tables of the null distribution of BN are given in David and Barton
(1958) for m ¼ n4 8.

Since these three tests, FN ;BN , and AN , are all linearly related,
they all have equivalent properties. All are consistent against the
same alternatives. The asymptotic relative efficiency of each to the F
test is 6=p2 ¼ 0:608 for normal populations differing only in scale.

9.4 THE SIEGEL-TUKEY TEST

Even simpler than the use of positive integer weights symmetric about
the middle would be some arrangement of the first N integers. Since
these are the weights used in the Wilcoxon rank-sum test WN for
location, tables of the null probability distribution would then be
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readily available. Siegel and Tukey (1960) proposed a rearrangement
of the firstN positive integers as weights which does provide a statistic
sensitive to differences in scale. The rearrangement for N even is

and if N is odd, the middle observation in the array is thrown out and
the same weights used for the reduced N. This rearrangement
achieves the desired symmetry in terms of sums of pairs of adjacent
weights, although the weights themselves are not exactly symmetric.
Since the weights are smaller at the extremes, we should reject the
null hypothesis in favor of an alternative that the X’s have the greater
variability when the linear rank statistic is small.

In the symbolic form of a linear rank statistic, the Siegel-Tukey
test statistic is

SN ¼
XN
i¼1

aiZi

where

ai ¼

2i for i even; 1 < i4N=2

2i� 1 for i odd; 14 i4N=2

2ðN � iÞ þ 2 for i even;N=2 < i4N

2ðN � iÞ þ 1 for i odd; N=2 < i4N

8>>><>>>: ð4:1Þ

Since the probability distribution of SN is the same as that of the
Wilcoxon rank-sum statistic WN , the moments are also the same:

EðSNÞ ¼ mðN þ 1Þ
2

varðSNÞ ¼ mnðN þ 1Þ
12

ð4:2Þ

To find critical values of SN , tables of the distribution of WN may be
used, like that given in Table J of the Appendix for m4n4 10.

The asymptotic relative efficiency of the Siegel-Tukey test is
equivalent to that of the tests FN ;BN and AN , because of the following
relations. With N even, let S0

N be a test with weights constructed in the
same manner as for SN but starting at the right-hand end of the array,
as displayed in Table 4.1 for N=2 even.

i 1 2 3 4 5 � � � N=2* � � � N � 4 N�3 N�2 N�1 N

ai 1 4 5 8 9 � � � N � � � 10 7 6 3 2

*If N=2 is odd, i ¼ ðN=2Þ þ 1 here.
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If N/2 is odd, the weights aN=2 and a0
N=2 are interchanged, as are

a N=2ð Þþ1 and a0
N=2ð Þþ1. In either case, the weights ai þ a0

i þ 1
 �

=4 are
equal to the set of weights for FN when N is even, and therefore
the following complete cycle of relations is established for N even:

S00
N ¼ FN ¼ m

N

2
þ 1

	 

� BN ¼ m N þ 1ð Þ

2
� AN ð4:3Þ

9.5 THE KLOTZ NORMAL-SCORES TEST

The Klotz (1962) normal-scores test for scale uses the same idea as the
Mood test in that it employs as weights the squares of the weights
used in the inverse-normal-scores test for location [van der Waerden
test of (8.3.2)]. Symbolically, the test statistic is

KN ¼
XN
i¼1

F�1 i

N þ 1

	 
� �2
Zi ð5:1Þ

where FðxÞ is the cumulative standard normal probability distribu-
tion. Since the larger weights are at the extremes, we again reject H0

for large KN for the alternative that the X population has the larger

Table 4.1 Weights for Siegel-Tukey test

i

Test Weights 1 2 3 4 5 � � � N=2

SN ai 1 4 5 8 9 . . . N
S0

N a0
i 2 3 6 7 10 . . . N � 1

SN þ S0
N ai þ a0

i 3 7 11 15 19 . . . 2N � 1
S00

N ðai þ a0
i þ 1Þ=4 1 2 3 4 5 . . . N=2

i

Test Weights ðN=2Þ þ 1 � � � N � 4 N � 3 N � 2 N � 1 N

SN ai N � 1 . . . 10 7 6 3 2
S0

N a0
i N . . . 9 8 5 4 1

SN þ S0
N ai þ a0

i 2N � 1 . . . 19 15 11 7 3
S00

N ðai þ a0
i þ 1Þ=4 N=2 . . . 5 4 3 2 1
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spread. Tables of critical values for N4 20 are give in Klotz (1962).
The moments are

EðKNÞ ¼ m

N

XN
i¼1

F�1 i

N þ 1

	 
� �2

varðKNÞ ¼ mn

NðN � 1Þ
XN
i¼1

F�1 i

N þ 1

	 
� �4
� n

mðN � 1Þ ½EðKNÞ�2

Since this is an asymptotically optimum test against the alternative of
normal distributions differing only in variance, its ARE relative to the
F test equals 1 when both populations are normal.

An asymptotically equivalent test proposed by Capon (1961) uses
the expected values of the square of the normal order statistics as
weights orXN

i¼1
½Eðx2ðiÞÞ�Zi ð5:2Þ

where xðiÞ is the ith-order statistic from a standard normal distribu-
tion. This test is the scale analog of the Terry test for location in (8.3.1).
The weights are tabled in Teichroew (1956), Sarhan and Greenberg
(1962) for N4 20, and Tietjen, Kahaner, and Beckman (1977) for
N4 50.

9.6 THE PERCENTILE MODIFIED RANK TESTS FOR SCALE

If the Ts and Br statistics defined in (8.3.3) are added instead of sub-
tracted, the desired symmetry of weights to detect scale differences is
achieved. When N is even and S ¼ R ¼ N=2, T þ B is equivalent to the
David-Barton type of test. The mean and variance of the statistic for N
even and S ¼ R are

EðTs þ BrÞ ¼ mS2

N
varðTs þ BrÞ ¼ mnSð4NS2 �N � 6S3Þ

6N2ðN � 1Þ
The null distribution is symmetric for S ¼ R when m ¼ n. Tables for
m ¼ n4 6 are given in Gibbons and Gastwirth (1966), and, as for the
location problem, the normal approximation to critical values may be
used for m ¼ n5 6.

This scale test has a higher asymptotic relative efficiency than its
full-sample counterparts for all choices of s ¼ r < 0:50. The maximum
ARE (with respect to s) is 0.850, which occurs for normal alternatives
when s ¼ r ¼ 1=8. This result is well above the ARE of 0.76 for Mood’s
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test and the 0.608 value for the tests of Sections 9.3 and 9.4. Thus
asymptotically at least, in the normal case, a test based on only the 25
percent of the sample at each of the extremes is more efficient than a
comparable test using the entire sample. The normal-scores tests of
Section 9.5 have a higher ARE, of course, but they are more difficult to
use because of the complicated sets of scores.

9.7 THE SUKHATME TEST

A number of other tests have been proposed for the scale problem. The
only other one we shall discuss in detail here is the Sukhatme test
statistic. Although it is less useful in applications than the others, this
test has some nice theoretical properties. The test also has the
advantage of being easily adapted to the construction of confidence
intervals for the ratio of the unknown scale parameters.

When the X and Y populations have or can be adjusted to have
equal medians, we can assume without loss of generality that this
common median is zero. If the Y ’s have a larger spread than the X ’s,
those X observations which are negative should be larger than most of
the negative Y observations, and the positive observations should be
arranged so that most of the Y ’s are larger than the X ’s. In other
words, most of the negative Y ’s should precede negative X ’s, and most
of the positive Y ’s should follow positive X ’s. Using the same type of
indicator variables as for the Mann-Whitney statistic (6.6.2), we define

Di ¼ 1 if Yj < Xi < 0 or 0 < Xi < Yj

0 otherwise

�
and the Sukhatme test statistic (Sukhatme, 1957) is

T ¼
Xm
i¼1

Xn
j¼1

Dij ð7:1Þ

The parameter relevant here is

p ¼ PðY < X < 0 or 0 < X < YÞ

¼
Z 0

�1

Z x

�1
fYðyÞfXðxÞdydxþ

Z 1

0

Z 1

x

fYðyÞfXðxÞdydx

¼
Z 0

�1
FYðxÞdFXðxÞ þ

Z 1

0

½1�FYðxÞ�dFXðxÞ

¼
Z 0

�1
½FYðxÞ �FXðxÞ�dFXðxÞÞ þ

Z 1

0

½FXðxÞ �FYðxÞ�dFXðxÞ þ 1=4

ð7:2Þ
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Then the null hypothesis of identical populations has been
parameterized to H0: p ¼ 1=4, and T=mn is an unbiased estimator of
p since

EðTÞ ¼ mnp

By redefining the parameters p;p1, and p2 of the Mann-Whitney
statistic as appropriate for the present indicator variables Dij, the
variance of T can be expressed as in (6.6.10) and (6.6.11). The prob-
abilities relevant here are

p1 ¼P½ðYj <Xi < 0 or 0<Xi <YjÞ \ ðYk <Xi < 0 or 0<Xi <YkÞ�
¼P½ðYj <Xi < 0 or Yk <Xi < 0Þ�þP½ðYj >Xi > 0Þ \ ðYk >Xi > 0Þ�

¼
Z 0

�1
½FXðxÞ�2 dFXðxÞþ

Z 1

0

½1�FYðxÞ�2 dFXðxÞ ð7:3Þ

p2 ¼P½ðYj <Xi < 0 or 0<Xi <YjÞ\ ðYj <Xh < 0 or 0<Xh <YkÞ�
¼P½ðYj <Xi < 0Þ\ ðYj <Xk < 0Þ�þP½ðYj >Xi > 0Þ\ ðYj >Xk > 0Þ�

¼
Z 0

�1
½1=2�FXðyÞ�2 dFYðyÞþ

Z 1

0

½FXðyÞ�1=2�2 dFYðyÞ ð7:4Þ

Then from (6.6.11), the variance of T is

varðTÞ ¼ mn½p� p2ðN � 1Þ þ ðn� 1Þp1 þ ðm� 1Þp2� ð7:5Þ
Since EðT=mnÞ ¼ p and varðT=mnÞ ! 0 asm;n approach infinity,

the Sukhatme statistic provides a consistent test for the following
cases in terms of p in (7.2) and e ¼ p� 1=4 so that

e ¼
Z 0

�1
½FYðxÞ � FXðxÞ�dFXðxÞ þ

Z 1

0

½FXðxÞ � FYðxÞ�dFXðxÞ
ð7:6Þ

Subclass of alternatives Rejection region P value

p < 1=4 ðe < 0Þ ðy > 1Þ T �mn/44k1 PðT4 tjH0Þ
p > 1=4 ðe > 0Þ ðy < 1Þ T �mn/45k2 PðT5 tjH0Þ (7.7)

p 6¼ 1=4 ðe 6¼ 0Þ ðy 6¼ 1Þ T �mn=4j j5 k3 2(smaller of above)
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It would be preferable to state these subclasses of alternatives as
a simple relationship between FYðxÞ and FXðxÞ instead of this integral
expression for e. Although (7.6) defines a large subclass, we are par-
ticularly interested now in the scale alternative model where
FYðxÞ ¼ FXðyxÞ. Then

1. If y < 1, FYðxÞ > FXðxÞ for x < 0 and FYðxÞ < FXðxÞ for x > 0.
2. If y > 1, FYðxÞ < FXðxÞ for x < 0 and FYðxÞ > FXðxÞ for x > 0.

In both cases, the two integrands in (7.6) have the same sign and can
therefore be combined to write

e ¼ �
Z 1

�1
jFXðyxÞ � FXðxÞjdFXðxÞ ð7:8Þ

where the plus sign applies if y < 1 and the minus if y > 1. This
explains the statements of subclasses in terms of y given in (7.7).

The exact null distribution of T can be found by enumeration or a
recursive method similar to that for the Mann-Whitney test. The null
distribution of T is not symmetric for all m and n. The minimum value
of T is zero and the maximum value is

M ¼ UW þ ðm�UÞðn�WÞ ð7:9Þ

where U and W denote the number of X and Y observations respec-
tively which are negative. The minimum and maximum occur when
the X or Yvariables are all clustered. Tables of the exact distribution of
T are given in Laubscher and Odeh (1976) and these should be used to
find critical values for small samples.

Another test statistic which could be used for this situation is

T0 ¼
Xm
i¼1

Xn
j¼1

D0
ij ¼ M � T where D0

ij ¼
1 if Xi < Yj < 0

or 0 < Yj < Xi

0 otherwise

(
ð7:10Þ

where M is defined in (7.9). Then a two-sided critical region could be
written as T4 ta=2 or T0 4 t0a=2 where ta=2 and t0a=2 have respective left-
tail probabilities equal to a=2.

For larger sample sizes, U and W converge, respectively, to m=2
and n=2 and M converges to mn=2 while the distribution of T
approaches symmetry and the normal distribution. Laubscher and
Odeh (1976) showed that this approximation is quite good for m and n
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larger than ten. In the null case where FYðxÞ ¼ FXðxÞ for all x; p ¼ 1=4
and p1 ¼ p2 ¼ 1=12. Substituting these results in (7.5) gives the null
mean and variance as

EðTÞ ¼ mn=4 and varðTÞ ¼ ðmnðN þ 7ÞÞ=48

For moderate m and n, the distribution of

4
ffiffiffi
3

p ðT �mn=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðN þ 7Þp ð7:11Þ

may be well approximated by the standard normal.
Ties will present a problem for the T test statistic whenever an

Xi ¼ Yj, or Xi ¼ 0, or Yj ¼ 0. The T statistic could be redefined in a
manner similar to (6.6.16) so that a correction for ties can be in-
corporated into the expression for the null variance.

The Sukhatme test has a distinct disadvantage in application
inasmuch as it cannot be employed without knowledge of both of the
individual population medians MX and MY . Even knowledge of the
difference MY �MX is not enough to adjust the observations so that
both populations have zero medians. Since the sample medians do
converge to the respective population medians, the observations might
be adjusted by subtracting the X and Y sample medians from each of
the X and Y observations, respectively. The test statistic no longer has
the same exact distribution, but for large sample sizes the error in-
troduced by this estimating procedure should not be too large.

The Sukhatme test statistic can be written in the form of a linear
rank statistic by a development similar to that used in Section 8.2 to
show the relationship between the Wilcoxon and Mann-Whitney tests.
Looking at (7.1) now, we know that for all values of i,

Pn
j¼1 Dij is the

sum of two quantities:

1. The number of values of j for which Yj < Xi < 0, which is
rXYðXiÞ �Ui

2. The number of values of j for which Yj > Xi > 0, which is

N � rXYðXiÞ þ 1� Vi

where

Ui is the number of X’s less than or equal to Xi for all Xi < 0

Vi is the number of X’s greater than or equal to Xi for all Xi > 0
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Then for Zi ¼ 1 if the ith variable in the combined array is an X and
Zi ¼ 0 otherwise, we have

T ¼
Xm
i¼1
Xi<0

½rXYðXiÞ �Ui� þ
Xm
i¼1
Xi>0

½N � rXYðXiÞ þ 1� Vi�

¼
X
X<0

iZi þ
X
X>0

ðN � iþ 1ÞZi �
X

Ui �
X

Vi

¼
X
X<0

iZi þ
X
X>0

ðN � iþ 1ÞZi �UðU þ 1Þ
2

� VðV þ 1Þ
2

where
P

X<0 indicates that the sum is extended over all values of i
such that Xi < 0, U is the total number of X observations which are
less than zero, and V is the number of X observations which are
greater than zero. From this result, we can see that T is asymptotically
equivalent to the Freund-Ansari-Bradley test, since as N ! 1, the
combined sample median will converge in probability to zero, the
population median, and U and V will both converge to m/2, so that T
converges to FN �mðmþ 2Þ=4 with FN defined as in (3.3). The test
statistic is therefore asymptotically equivalent to all of the tests pre-
sented in Sections 9.3 and 9.4, and the large-sample properties are
identical, including the ARE of 6=p2. Note that inasmuch as con-
sistency is a large-sample property, the consistency of these other tests
follows also from our analysis for T here.

9.8 CONFIDENCE-INTERVAL PROCEDURES

If the populations from which the X and Y samples are drawn are
identical in every respect except scale, the nonparametric model of
(1.2) with MX ¼ MY ¼ M is

FY�MðxÞ ¼ FX�MðyxÞ for all x and some y > 0

Since y is the relevant scale parameter, a procedure for finding a
confidence-interval estimate of y would be desirable. In the above
model, we can assume without loss of generality that the common
median M is zero. Then for all y > 0, the random variable Y 0 ¼ Yy has
the distribution

PðY 0 4 yÞ ¼ PðY 4 y=yÞ ¼ FYðy=yÞ ¼ FXðyÞ
and Y 0 and X have identical distributions. The confidence-interval
estimate of y with confidence coefficient 1� a should consist of all
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values of y for which the null hypothesis of identical populations will
be accepted for the observations Xi and Yjy, i ¼ 1; 2; . . . ;m;
j ¼ 1; 2; . . . ;n. Using the Sukhatme test criterion of (7.1), here T
denotes the number of pairs ðxi; yjyÞ for which either yjy < xi < 0 or
0 < xi < yjy, or equivalently the number of positive pairs such that
xi=yj < y. Suppose the rejection region for a two-sided test of size a
based on the T criterion is to reject H0 for T4 k1 or T5 k2. The
appropriate confidence interval with coefficient 1� a is then

xi

yj

	 

ðkÞ
< y <

xi

yj

	 

ðk0Þ

ð8:1Þ

where ðxi=yjÞðkÞ and ðxi=yjÞðk0Þ denote the kth and k0th smallest in an
array made from only those ratios x/y which are positive. For small
sample sizes, k and k0 are found from the tables in Laubscher and
Odeh (1976). Ifm and n are larger than ten, the number k can be found
using the normal approximation given in (7.9); the result with a con-
tinuity correction of 0.5 is

k ¼ mn

4
þ 0:5� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðN þ 7Þ

48

r
ð8:2Þ

which should be rounded down to the next smaller integer. Then k0 is
found from k0 ¼ mn=2� kþ 1 since the approximate gives symmetric
endpoints to the confidence interval estimate.

One other approach to obtaining a confidence interval when
there is no information about location is given later in Section 9.10.

9.9 OTHER TESTS FOR THE SCALE PROBLEM

All the tests for scale presented so far in this chapter are basically of
the Mann-Whitney-Wilcoxon type, and except for the Mood and Klotz
tests all are asymptotically equivalent. Other tests have been pro-
posed—some are related to these while others incorporate essentially
different ideas. A few will be summarized here even though they do
not all fall within the category of linear rank statistics.

A test whose rationale is similar to the two-sample median test
can be useful to detect scale differences. In two populations differing
only in scale, the expected proportions of the two samples between two
symmetric quantile points of the combined sample would not be equal.
Since the total number of observations lying between the two quan-
tiles is fixed by the order of the quantile, an appropriate test statistic
could be the number of X observations lying between these two points.
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If these quantiles are the first and third quartiles and the sample sizes
are large so that the sample quartiles approach the corresponding
population parameters in the null case, then the statistic might be
considered asymptotically a test for equal population interquartile
ranges. The null distribution of the random variable U, the number of
X observations within the sample interquartile range, is the hyper-
geometric distribution, and the appropriate rejection region for the
alternative that the X’s are more widely dispersed is U4ua. If
mþ n ¼ N is divisible by 4, so that no observations equal the sample
quartile values, the distribution is

fUðuÞ ¼ m

u

� � n

N=2� u

	 

N

N=2

	 
�
ð9:1Þ

This test is usually attributed to Westenberg (1948).
Rosenbaum suggests that the number of observations in the

X sample which are either smaller than the smallest Y or larger than
the largest Y is a reasonable test criterion for scale under the
assumption that the population locations are the same. The null
probability that exactly r X values lie outside the extreme values of the
Y sample is

fRðrÞ ¼ nðn � 1Þ m

r

� �
Bðmþ n� 1� r; rþ 2Þ ð9:2Þ

This result is easily verified by a combinational argument (Problem
9.9). Tables of critical values are given in Rosenbaum (1953).

Another criterion, suggested by Kamat, is based on the pooled
sample ranks of the extreme X and Y observations. Let Rm and Rn

denote the ranges of the X ranks and Y ranks, respectively, in the
combined sample ordering. If the locations are the same, a test sta-
tistic is provided by

Dm;n ¼ Rm � Rn þ n ð9:3Þ

Tables of critical values are given in Kamat (1956). It should be
noted that when the X sample observations all lie outside the extremes
of the Y sample, we have Dm;n ¼ R þ n, where R is Rosenbaum’s sta-
tistic. The performance of these two tests is discussed in Rosenbaum
(1965).

These three tests, as well as the others presented earlier in this
chapter, are reasonable approaches to detecting dispersion differences
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only when the X and Y populations have the same location. If
the populations do not have the same location but some measure of
location is known for each population, say the medians MX and MY ,
these values can be subtracted from the respective X and Y sample
values to form samples from the X 0 ¼ X �MX and Y 0 ¼ Y �MY

populations which do have equal medians (in fact, zero). Then any of
the tests introduced earlier in this chapter can be performed on the X0

and Y0 variables. This is also true if the given data can be interpreted
as deviations from some specified value or norm (as in Example 10.1,
Section 9.10). In this case there is an alternative approach to testing
the null hypothesis of equal scale. The absolute values of the devia-
tions X 0 ¼ jX �MX j and Y 0 ¼ jY �MY j are themselves measures of
spread for the respective populations. Each of the sample deviations x0i
and y0j are estimates of the population deviation. If these sample de-
viations are arranged from smallest to largest in a single array, the
arrangement of x0 and y0 is indicative of relative spread between the
two populations. Thus any of the two-sample location tests from
Chapter 8 can be used on these absolute values to test for relative scale
differences. This procedure will be illustrated in Example 10.1 using
the Wilcoxon rank-sum test introduced in Section 8.2.

If the observations are adjusted before performing a test, say by
subtracting the respective sample medians, the tests are no longer
exact or even distribution-free. In fact, Moses (1963) shows that no test
based on the ranks of the observations will be satisfactory for the
dispersion problem without some sort of strong restriction, like equal
or known medians, for the two populations. There is one type of
approach to testing which avoids this problem. Although strictly
speaking it does not qualify as a rank test, rank scores are used. The
procedure is to divide each sample into small random subsets of equal
size and calculate some measure of dispersion, e.g., the variance,
range, average deviation, for each subsample. The measures for both
samples can be arranged in a single sequence in order of magnitude,
keeping track of which of the X and Y samples produced the measure.
A two-sample location test can then be performed on the result. For
example, if m and n are both divisible by 2, random pairs could be
formed and the Wilcoxon rank-sum test applied to the N/2 derived
observations of ranges of the form jxi � xjj; jyi � yjj. The test statistic
then is an estimate of a linear function of PðjXi � Xjj > jYi � YjjÞ. In
general, for any sample dispersion measures denoted byU and V when
computed for the X and Y subsamples, respectively, the Wilcoxon rank-
sum test statistic estimates a linear function of PðU > VÞ. Questions
such as the best subsample size and the best type of measure of
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dispersion remain to be answered generally. Tests of this kind are
called ranklike tests. Their ARE depends on the sizes of the random
subsets, and ranges from 0.304 to a limiting value of 0.955 when the
distributions are normal.

9.10 APPLICATIONS

The Siegel-Tukey test for scale differences in Section 9.4 is the most
frequently used procedure because it does not require a new set of
tables. The table for the distribution of the Wilcoxon rank-sum test,
given here as Table J of the Appendix, can be used. We note, however,
the limitation of this test in that it can detect scale differences only
when the locations are the same. The null hypothesis is H0: y ¼
sX=sY ¼ 1, and the test statistic is SN , the sum of the weights
assigned to the X sample in the pooled array, where the method of
assignment of all weights for mþ n ¼ N even is spelled out in
(4.1). The appropriate rejection regions and the P values for
m4n4 10 are as follows, where s denotes the observed value of the
test statistic SN .

For larger sample sizes, the appropriate rejection regions and P
values based on the normal approximation with a continuity correc-
tion of 0.5 are as follows:

Alternative Rejection region P value

y ¼ sX=sY < 1 SN 5wa PðSN 5 s jH0Þ
y ¼ sX=sY > 1 SN 4w0

a PðSN 4 s jH0Þ
y ¼ sX=sY 6¼ 1 SN 5wa=2 or SN 5w0

a=2 2(smaller of above)

Alternative Rejection region P value

y ¼ sX

sY
< 1 SN 5 mðN þ 1Þ

2
1� F s� 0:5�mðN þ 1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mnðN þ 1Þ=12p" #
þ 0:5þ za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðN þ 1Þ

12

r
y ¼ sX

sY
> 1 SN 4 mðN þ 1Þ

2
F sþ 0:5�mðN þ 1Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mnðN þ 1Þ=12p" #
� 0:5� za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mnðN þ 1Þ

12

r
y ¼ sX

sY
6¼ 1 Both above with za=2 2(smaller of above)
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Example 10.1 An institute of microbiology is interested in purchasing
microscope slides of uniform thickness and needs to choose between
two different suppliers. Both have the same specifications for median
thickness but they may differ in variability. The institute gauges the
thickness of random samples of 10 slides from each supplier using a
micrometer and reports the data shown below as the deviation from
specified median thickness. Which supplier makes slides with a
smaller variability in thickness?

Supplier X: 0.028, 0.029, 0.011, �0.030, 0.017, �0.012, �0.027,
�0.018, 0.022, �0.023

Supplier Y: �0.002, 0.016, 0.005, �0.001, 0.000, 0.008, �0.005,
�0.009, 0.001, �0.019

Solution Since the data given represent differences from specified
median thickness, the assumption of equal locations is tenable as long
as both suppliers are meeting specifications.

First, we use the Siegel-Tukey test. The data arranged from
smallest to largest, with X underlined, and the corresponding as-
signment of weights are shown in Table 10.1. The sum of the X weights
is SN ¼ 60, and Table J gives the left-tail probability for m ¼ 10,
n ¼ 10 as P ¼ 0:000. Since this is a left-tail probability, the appropriate
conclusion is to reject H0 in favor of the alternative H1: sX=sY > 1 or
sX > sY . The data indicate that supplier Y has the smaller variability
in thickness.

The STATXACT and SAS outputs for Example 10.1 are
shown below. The answers and the conclusions are the same as ours.

Table 10.1 Array of data and weights

Data Weight Data Weight

�0:030 1 0.000 19
�0:027 4 0.001 18
�0:023 5 0.005 15
�0.019 8 0.008 14
�0:018 9 0:011 11
�0:012 12 0.016 10
�0.009 13 0:017 7
�0.005 16 0:022 6
�0.002 17 0:028 3
�0.001 20 0:029 2
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Note that STATXACT provides both the exact and the asymptotic
P values and so does SAS. The asymptotic P value using the
STATXACT package is based on the value of the Z statistic without a
continuity correction (�3.402) while the SAS package solution does
use the continuity correction (�3.3639). It may be noted that at the
time of this writing MINITAB does not provide any nonparametric test
for scale.
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Second, we use the Sukhatme test on these same data. The first
step is to form separate arrays of the positive and negative deviations,
with the X sample underlined.

Negatives: �0:030, �0:027, �0:023, �0.019, �0:018, �0:012, �0.009,
�0.005, �0.002, �0.001

Positives: 0.000, 0.001, 0.005, 0.008, 0:011, 0.016, 0:017, 0:022, 0:028,
0:029

We find T ¼ 2þ 1 ¼ 3 from (7.1) and T0 ¼ 23þ 24 ¼ 47 from (7.10). The
normal approximation is z ¼ �2:93 without a continuity correction
and a one-tailed P value of 0.0017. (The corrected value is z ¼ �2:87
with P value¼ 0.0021.) The reader can verify the relation T þ T0 ¼ M
where M is the maximum value of T. We note that the result is quite
similar to the Siegel-Tukey test and the conclusion is the same.
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The Sukhatme test is not available in SAS or STATXACT at the time of
this writing.

Third, we give another alternative for equal scale. The data re-
present deviations X �M and Y �M for some common median M. If
the X and Y populations are both symmetric about M, each of the
differences is equally likely to be positive and negative. If, further, the
variables have the same scale, then the absolute values of these de-
viations jX �Mj and jY �Mj should have the same median value of
zero. Note that these absolute values are themselves measures of
variability. Thus we can use the Wilcoxon rank-sum test for location to
measure the scale difference. Then the weights should be the ordinary
ranks, i.e., the integers 1 to 20 in their natural order, and the pooled
ordered data and corresponding ranks are shown in Table 10.2. The
sum of the X ranks here is WN ¼ 149 and the corresponding exact
P value from Table J is 0.000, a right-tail probability, which makes us
conclude that the median variability measure for X is larger than the
median variability measure for Y. This result, while not the same as
that obtained with the Siegel-Tukey or Sukhatme tests, is consistent
with both previous conclusions. This will generally be true. We note,
however, that the Wilcoxon test for location on the absolute values is
consistent against scale alternatives only when the data are given in
the form X �M and Y �M or can be written this way because M is
known.

The advantage of this alternative procedure is that it has a cor-
responding confidence interval procedure for estimation of the ratio
y ¼ sX=sY under the assumption of symmetry, the scale model re-
lationship in (1.1), and the observations written in the form X �M
and Y �M for equal medians or X �MX and Y �MY in general.

Table 10.2 Array of absolute values of data and ranks

jDataj Rank jDataj Rank

0.000 1 0.016 11
0.001 2.5 0:017 12
0.001 2.5 0:018 13
0.002 4 0.019 14
0.005 5.5 0:022 15
0.005 5.5 0:023 16
0.008 7 0:027 17
0.009 8 0:028 18
0:011 9 0:029 19
0:012 10 0:030 20
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The procedure is to form the mn ratios jXi �MX j=jYj �MY j for all i, j,
and arrange them from smallest to largest. The confidence interval
end points are the uth smallest and uth largest among these ratios,
where u is found in exactly the same manner as it was in Section 8.2
using Table J or the normal approximation.

Confidence Interval Estimate for Example 10.1 The mn ¼ 10ð10Þ ¼
100 ratios of absolute values jY �Mj=jX �Mj are shown in Table 10.3.
Note that the ratios used are the reciprocals of the usual ratio and this
will give an interval on sY=sX ; this is done in order to avoid division by
zero. Note also that each set of sample data is written in increasing
order of their absolute magnitudes so that the uth smallest and uth
largest can be easily identified. For m ¼ 10, n ¼ 10 and confidence
coefficient nearest 0.95 say, Table J gives P ¼ 0:022 with rank 24 so
that u ¼ 24. The interval estimate is 0:064sY=sX 4 0:53 with con-
fidence coefficient 1� 2ð0:022Þ ¼ 0:956; taking the reciprocals we get
1:94sX=sY 4 16:7.

We also use these data to illustrate the confidence interval esti-
mate of sX=sY based on the Sukhatme test procedure. Here we take
only the positive ratios ðX �MÞ=ðY �MÞ shown in Table 10.4 and
there are 50 of them. In order to avoid division by zero, we form the
ratios ðY �MÞ=ðX �MÞ to find the interval on sY=sX , and then take
the reciprocal to obtain a confidence interval estimate of sX=sY . The
value of k from (8.2) for 95% confidence is 10.80 and we round down
and use k ¼ 10. The confidence interval is 0:04354sY=sX 4 0:571,

Table 10.3 Ratios of absolute Values

jX �Mj

jY �Mj 0:011 0:012 0:017 0:018 0:022 0:023 0:027 0:028 0:029 0:030

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.001 0.09 0.08 0.06 0.06 0.05 0.04 0.04 0.04 0.03 0.03
0.001 0.09 0.08 0.06 0.06 0.05 0.04 0.04 0.04 0.03 0.03
0.002 0.18 0.17 0.12 0.11 0.09 0.09 0.07 0.07 0.07 0.07
0.005 0.45 0.42 0.29 0.28 0.23 0.22 0.19 0.18 0.17 0.17
0.005 0.45 0.42 0.29 0.28 0.23 0.22 0.19 0.18 0.17 0.17
0.008 0.73 0.67 0.47 0.44 0.36 0.35 0.30 0.29 0.28 0.27
0.009 0.82 0.75 0.53 0.50 0.41 0.39 0.33 0.32 0.31 0.30
0.016 1.45 1.33 0.94 0.89 0.73 0.70 0.59 0.57 0.55 0.53
0.019 1.73 1.58 1.12 1.06 0.86 0.83 0.70 0.68 0.66 0.63
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and taking the reciprocals yields 1:754sX=sY 4 23:0. Note that this
interval is wider than the one based on the Wilcoxon rank-sum test.
This will frequently be the case.

The confidence interval procedure based on the Wilcoxon test
for location can also be used when the data given are not variations
from some central value and hence not measures of variability in
themselves, but are from populations that can take on only positive
values. Many variables fall into this category—for example, age,
height, weight, income, GPA, test scores, survival times, relative
efficiencies, and the like. For samples from such distributions, each
of the mn ratios Xi=Yj is itself a measure of the relative spread of
the X and Y populations in the sense that it is an estimate of the
range (measured from zero) of the X variable relative to the range of
the Y variable if both are positive variables. In other words, we are
looking at scale as measured by total spread, as opposed to spread
based on a central value. Then the confidence interval endpoints are
the uth smallest and the uth largest of the mn ratios X=Y, where u
is found from Table J or from the normal approximation using
(8.2.6). We call this the method of positive variables and illustrate it
by Example 10.2.

Table 10.4 Ratios ðY �MÞ=ðX �MÞ

Negatives
Y �M

X �M �0:019 �0:009 �0:005 �0:002 �0:001

�0:030 0.6333 0.3000 0.1667 0.0667 0.0333
�0:027 0.7037 0.3333 0.1852 0.0741 0.0370
�0:023 0.8261 0.3913 0.2174 0.0870 0.0435
�0:018 1.0556 0.5000 0.2778 0.1111 0.0556
�0:012 1.5833 0.7500 0.4167 0.1667 0.0833

Positives
Y �M

X �M 0:000 0:001 0:005 0:008 0:016

0.011 0 0.0909 04545 0.7273 1.4545
0.017 0 0.0588 0.2941 0.4706 0.9412
0.022 0 0.0455 0.2273 0.3636 0.7273
0.028 0 0.0357 0.1786 0.2857 0.5714
0.029 0 0.0345 0.1724 0.2759 0.5517
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Example 10.2 Two potential suppliers of streetlighting equipment,
A and B, presented their bids to the city manager along with the fol-
lowing data as a random sample of life length in months.

A: 35, 66, 58, 83, 71
B: 46, 56, 60, 49

Test whether the life length of suppliers A and B have equal varia-
bility.

Solution Before we can test for scale, we must determine whether we
can assume the locations can be regarded as equal. We will use the
Wilcoxon rank-sum test. Since supplier B has fewer observations, we
label it the X sample so thatm ¼ 4 and n ¼ 5. The pooled sample array
with X underlined is 35, 46, 49, 56, 58, 60, 66, 71, 83. The test statistic
is WN ¼ 15 and the one-tailed exact P value from Table J is P ¼ 0:143.
Thus there is no reason not to assume that the locations are the same,
and we use the Siegel-Tukey test for scale. The test statistic is SN ¼ 24
with a one-sided exact P value of P ¼ 0:206 from Table J. We conclude
that there is no difference in the scales of the A and B populations.
Now we will find a confidence interval estimate of sB=sA using the
method of positive variables with confidence coefficient near 0.95.
From Table J with m ¼ 4, n ¼ 5, we find u ¼ 3 for exact confidence
level 0.936. The 20 ratios are shown in Table 10.5. The confidence
interval estimate is 0:6484sB=sA 4 1:400. Note that this interval
includes the ratio one, as was implied by our hypothesis test. These
analyses imply that there is no basis for any preference between
suppliers A and B.

9.11 SUMMARY

In this chapter we have covered many different tests for the null
hypothesis that the scale parameters are identical for the two popu-
lations, sX=sY ¼ 1. Each of these procedures (except for ranklike

Table 10.5 Ratios B/A

A
B 35 58 66 71 83

46 1.314 0.793 0.697 0.648 0.554
49 1.400 0.845 0.742 0.690 0.590
56 1.600 0.966 0.848 0.789 0.675
60 1.714 1.034 0.909 0.845 0.723
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tests) required some assumption about the location of the two dis-
tributions. If we can assume that the locations are the same, then each
of the procedures in Sections 9.2 to 9.6 can be carried out even when
the common value is unknown or unspecified. When the locations are
not the same but their difference MX �MY is known, we can form
X 0 ¼ X � ðMX �MYÞ and carry out the same tests on X0 and Y because
X0 and Y now have the same location (in fact, equal to MY). When the
locations are not the same but are both known as, say, MX and MY ,
these values can be subtracted to form X 0 ¼ X �MX and Y 0 ¼ Y �MY ,
and all of the tests in this chapter can be carried out because the
locations of X 0 and Y 0 are now the same (in fact, equal to zero). If
the medians are unknown and unequal, we can estimate them from
the sample medians or use ranklike tests, but these are only ad hoc
procedures whose performance is unknown.

Recall from Chapter 1 that the confidence interval estimate of
any parameter is the set of all values of the parameter which, if stated
in the null hypothesis, would be accepted at the a level that corres-
ponds to one minus the confidence level. Therefore, in order to develop
a procedure for finding a confidence interval estimate for y ¼ sX=sY,
we must be able to generalize the test for y ¼ 1 to a test for y ¼ y0 6¼ 1.

1. First, assume that MX ¼ MY , unspecified. The natural approach
would be to form X 0 ¼ X=y0 so that sX 0=sY ¼ 1. But then
MX 0 ¼ MX=y0 must be equal to MY which cannot be true unless
y0 ¼ 1, a contradiction unless MX ¼ MY ¼ 0.

2. Second, assume that MX �MY is known but not equal to zero. The
natural approach would be to form X 0 ¼ ½X � ðMX �MYÞ�=y0 so
that sX 0=sY ¼ 1. But then MX 0 ¼ MY=y0 must be equal to MY ,
which cannot be true unless y0 ¼ 1, a contradiction unless
MX ¼ MY ¼ 0.

3. Third, assume that MX and MY are known. The natural approach
would be to form X 0 ¼ ðX �MXÞ=y0 and Y 0 ¼ Y �MY so that
sX 0=sY 0 ¼ 1. This makes MX 0 ¼ MY 0 ¼ 0 and hence we can have a
test of y ¼ y0 6¼ 1.

This argument shows thatMX andMY must both be known in order to
test the null hypothesis where y0 6¼ 1, and that we can have a corre-
sponding confidence interval procedure only in this case. The simplest
ones to use are those based on the Wilcoxon rank-sum test of the
absolute values and the Sukhatme test, since tables are available in
each case. The corresponding confidence interval procedures were
illustrated in Example 10.1.
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If we assume only that X=y and Y are identically distributed, we
can test the null hypothesis y ¼ y0 6¼ 1 and this gives us the confidence
interval based on the method of postive variables. This procedure was
illustrated by Example 10.2. But notice that this makes MX ¼ yMY ,
and hence the estimate of relative scale is based on spread about the
origin and not spread about some measure of central tendency.

The asymptotic relative efficiency of each of the Freund-Ansari-
Bradley-David-Barton tests of Section 9.3 is 0.608 relative to the F test
for normal populations differing only in scale, is 0.600 for the con-
tinuous uniform distribution, and is 0.94 for the double-exponential
distribution. The ARE for the Mood test of Section 9.2 is 0.76 for
normal distributions differing only in scale. The Klotz and Capon
tests of Section 5 have an ARE of 1.00 in this case. The ARE of the
percentile modified rank tests for scale against the F test for normal
alternatives differing only in scale reaches its maximum of 0.850
when s ¼ r ¼ 1=8.

PROBLEMS

9.1. Develop by enumeration for m ¼ n ¼ 3 the null probability distribution of Mood’s
statistic MN .

9.2. Develop by enumeration for m ¼ n ¼ 3 the null probability distribution of the
Freund-Ansari-Bradley statistic of (3.3).

9.3. Verify the expression given in (2.3) for varðMNÞ.
9.4. Apply Theorem 7.3.2 to derive the mean and variance of the statistic AN defined
in (3.1).

9.5. Apply Theorem 7.3.2 to derive the mean and variance of the statistic BN defined
in (3.5).

9.6. Verify the relationship between AN ;BN , and FN given in (4.3) for N even.

9.7. Use the relationship in (4.3) and the moments derived for FN for N even in (3.4) to
verify your answers to Problems 9.4 and 9.5 for N even.

9.8. Use Theorem 7.3.2 to derive the mean and variance of Ts þ Br for N even, S 6¼ R,
where SþR4N.

9.9. Verify the result given in (9.2) for the null probability distribution of Rosenbaum’s
R statistic.

9.10. Olejnik (1988) suggested that research studies in education and the social sci-
ences should be concerned with differences in group variability as well as differences in
group means. For example, a teacher can reduce variability in student achievement
scores by focusing attention and classroom time on less able students; on the other hand,
a teacher can increase variability in achievement by concentrating on the students with
greatest ability and letting the less able students fall farther and farther behind. Pre-
vious research has indicated that mean student achievement for classes taught by tea-
chers with a bachelor’s degree is not different from that of classes taught by teachers
with a master’s degree. The present study was aimed at determining whether variability
in student achievement is the same for these two teacher groups. The data below are the
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achievement scores on an examination (10¼ highest possible score) given to two classes
of ten students. Class 1 was taught by a teacher with a master’s degree and class 2 by a
teacher with a bachelor’s degree. The mean score is 5 for each class. is there a difference
in variability of scores?

9.11. The psychology departments of public universities in each of two different states
accepted seven and nine applicants, respectively, for graduate study next fall. Their
respective scores on the Graduate Record Examination are:

University X: 1200, 1220, 1300, 1170, 1080, 1110, 1130

University Y: 1210, 1180, 1000, 1010, 980, 1400, 1430, 1390, 970

The sample median and mean scores for the two universities are close to equal, so an
assumption of equal location may well be justified. Use the Siegel-Tukey test to see
which university has the smaller variability in scores, if either.

9.12. In industrial production processes, each measurable characteristic of any raw
material must have some specified average value, but the variability should also be
small to keep the characteristics of the end product within specifications. Samples of lead
ingots to be used as raw material are taken from two different distributors; each dis-
tributor has a specification of median weight equal to 16.0 kg. The data below represent
actual weight in kilograms.

X: 15.7, 16.1, 15.9, 16.2, 15.9, 16.0, 15.8, 16.1, 16.3, 16.5, 15.5

Y: 15.4, 16.0, 15.6, 15.7, 16.6, 16.3 16.4, 16.8, 15.2, 16.9, 15.1

(a) Use the deviations from specified median weight to find two different interval es-
timates of sX=sY with confidence coefficient nearest 0.95.

(b) Use the method of positive variables to find a confidence interval estimate of the
ratio X/Y of scale measured relative to zero.

9.13. Data on weekly rate of item output from two different production lines for seven
weeks are as follows:

Line I: 36, 36, 38, 40, 41, 41, 42

Line II: 29, 34, 37, 39, 40, 43, 44

We want to investigate the relative variability between the two lines.

Class 1 Class 2

7 3
4 6
4 7
5 9
4 3
6 2
6 4
4 8
3 2
7 6
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(a) Find a one-tailed P value using the Siegel-Tukey test and state all assump-
tions needed for an exact P.

(b) Find the one-tailed P value using the Wilcoxon procedure assuming the
population medians are MI ¼MII ¼ 40 and state all assumptions needed for an exact P.

(c) In (b), you should have found many ties. Is there another appropriate pro-
cedure for analyzing these data, one for which the ties present no problem? Explain fully
and outline the procedure.

(d) Find a 95% confidence interval estimate of the relative scales of line 1
relative to line 2 when spread is measured from zero.
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The location model for the k-sample problem is that the cdf’s are
Fðx� y1Þ;Fðx� y2Þ; . . . ;Fðx� ykÞ, respectively, where yi denotes a loca-
tion parameter of the ith population, frequently interpreted as the med-
ian or the treatment effect. Then the null hypothesis can be written as

H0: y1 ¼ y2 ¼ � � � ¼ yk

and the general alternative is

H1: yi 6¼ yj for at least one i 6¼ j

In classical statistics, the usual test for this problem is the ana-
lysis-of-variance F test for a one-way classification. The underlying
assumptions for this test are that the k populations are identical in
shape, in fact normal, and with the same variance and therefore may
differ only in location. The test of equal means or

H0: m1 ¼ m2 ¼ � � � ¼ mk

is, within the context of this model, equivalent to the hypothesis above
of k identical populations. Denoting the observations in the ith sample
by Xi1;Xi2; . . . ;Xini

, the ith-sample mean by �XXi ¼
Pni

j¼1ðXij=niÞ, and the
grand mean by �XX ¼Pk

i¼1
Pni

j¼1ðXij=NÞ, the classical analysis-of-var-
iance F test statistic may be written

F ¼

Pk

i¼1 nið�XXi � �XXÞ2
k� 1Pk

i¼1
Pni

j¼1ðXij � �XXiÞ2
N � k

¼ mean square between samples

mean square within samples

This test statistic follows the F distribution exactly, with k� 1 and
N � k degrees of freedom, under the parametric assumptions when H0

holds. The F test is robust for equal sample sizes, but it is known to be
sensitive to the assumption of equality of variances when the sample
sizes are unequal.

The nonparametric techniques which have been developed for this
k-sample problem require no assumptions beyond continuous popula-
tions and therefore are applicable under any circumstances, and they
involve only simple calculations. We shall cover here the extensions of
the two-sample median test and the control median test, the Kruskal-
Wallis analysis-of-variance test, some other extensions of rank tests
from the two-sample problem, and tests against ordered alternatives
including comparisons with a control or standard. Finally, the chi-
square test for equality of k proportions will be discussed. This latter
test is applicable only to populations where the random variables are
dichotomous, often called count data, and therefore does not fit within
the basic problem of k continuous populations as defined here. However,
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n1!

ðv10 � 1Þ!ðv11 � 1Þ! � � � ðv1q�1 � 1Þ!v1q! ½F1ðw1Þ�v10�1

� ½F1ðw2Þ � F1ðw1Þ�v11�1 � � � ½F1ðwqÞ � F1ðwq�1Þ�v1q�1�1½1� F1ðwqÞ�v1q

where �1 < w1 < w2 < � � � < wq < 1 and v1q ¼ n1 � ðv10 þ v11 þ � � � þ
v1q�1Þ. Given X

ð1Þ
1 ;X

ð2Þ
1 ; . . . ;X

ðqÞ
1 , the distribution of ðVi0;Vi1; . . . ;ViqÞ is

independent of that of ðVj0;Vj1; . . . ;VjqÞfor i 6¼ j. Thus we obtain the
unconditional joint distribution of the Vij’s as

P½Vij¼vij;i¼2;3;...;k; j¼0;1;...;q�

¼ n1!

v1q!
Qq�1

j¼0 ðvij�1Þ!

Z
���
A

Z Yq�1
j¼0

½F1ðwjþ1Þ�F1ðwjÞ�v1j�1½1�F1ðwqÞ�v1q

�
Yk
i¼2

ni!Qq
j¼0v1q!

Yq
j¼0

½Fiðwjþ1�FiðwjÞ�vij

" #Yq
j¼1

dF1ðwjÞ ð3:2Þ

where the region A is defined by �1 ¼ w0 < w1 < � � � < wq <
wqþ1 ¼ 1. Under H0, the unconditional joint distribution of the Vij’s
reduces to

Qk
i¼1 ni!

N!

vq!Qk
i¼1 viq!

Yq�1
j¼0

ðvj � 1Þ!
ðv1j�1Þ!

Qk
i¼2 vij!

" #
ð3:3Þ

where N ¼Pk
i¼1 ni and vj ¼

Pk
i¼1 vij for j ¼ 0; 1; . . . ; q.

As in the case of the median test, we reject the null hypothesis if
any or all of the Vij are too different from their expected values under
the null hypothesis. An exact P value can be calculated from (3.3)
corresponding to the observed values of the counts and hence we can
make a decision about rejecting H0 for a given level of significance. In
practice, however, such an implementation of the test is bound to be
tedious, especially for large k, q, and=or sample sizes.

Alternatively, we can use a test criterion defined as

Q� ¼
Xq
j¼0

p�1j

Xk
i¼1

ni
vij

ni
� vj

N

� �2
where pj ¼ v1j=ðn1 þ 1Þ for j ¼ 0; 1; . . . ; q. Massey (1951a) has con-
sidered an extension of the median test based on a similar criterion.
Under the null hypothesis, the distribution of Q� can be approximated
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by a chi-square distribution with ðk� 1Þq degrees of freedom, provided
that N tends to infinity with ni=N ! ci; 0 < c1; . . . ; ck < 1 and
p0; p1; . . . ; pq are all nonzero in the limit. Thus, an approximate size a
test is to reject H0 in favor of the general alternative if

Q�5w2ðk�1Þq,a

As with the median test, ties do not present any problems here
except perhaps in the choice of the quantiles from the first sample.
Also, the test is consistent against the general alternative under some
mild conditions on the cdf ’s. When the distributions belong to the lo-
cation family, FiðxÞ ¼ Fðx� yiÞ with H0: y1 ¼ y2 ¼ � � � ¼ yk ¼ 0, the test
is consistent against any deviations from H0. However, when the
distributions belong to the scale family, FiðxÞ ¼ FðyixÞ with
H0: y1 ¼ y2 ¼ � � � ¼ yk ¼ 1, the test is consistent provided either q52, or
q ¼ 1 but x1 6¼ 0, where F1ðx1Þ ¼ p0.

The asymptotic power of this test as well as efficacy expressions
are derived in Sen (1962). An important result is that when q ¼ 1 and
p0 ¼ p1 ¼ 1=2, the test is as efficient as the median test (ARE is one).
More generally, when the same set of quantiles (i.e., the same q and
the same set of p ’s) is used, this test is as efficient as the generalization
of the median test (based on q preselected quantiles of the pooled
sample) studied by Massey (1951a). Hence, when the sample sizes are
large, there is no reason, on the basis of efficiency alone, to prefer one
test over the other. However, as a practical matter, finding a quantile
or a set of quantiles is always easier in a single sample than in the
combined samples, and thus the control median test would be pre-
ferred, especially in the absence of any knowledge about the perfor-
mance of the tests when sample sizes are small. Finally, with regard to
a choice of q, the number of quantiles on which the test is based, there
is evidence (Sen, 1962) that even though the choice depends on the
class of underlying alternative specifications, q ¼ 1 or 2 is usually
sufficient in practice.

10.4 THE KRUSKAL-WALLIS ONE-WAY ANOVA TEST AND MULTIPLE

COMPARISONS

The median test for k samples uses information about the magnitude
of each of the N observations relative to a single number which is the
median of the pooled samples. Many popular nonparametric k-sample
tests use more of the available information by considering the relative
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where the sum is over all sets of ties in the population, and this
expression should be used in varð�RRiÞ for the denominator of Zi. In this
case (4.4) becomes

Xk
i¼1

N � ni

N

h
�RRi �NðN þ 1Þ

2

i2
ðN þ 1ÞðN � niÞ

12ni
� N � ni

niðN � 1Þ
P

tðt2 � 1Þ
12

8>><>>:
9>>=>>;

¼
Xk
i¼1

12ni

h
�RRi �NðN þ 1Þ

2

i2
NðN þ 1Þ �N

P
tðt2 � 1Þ

N � 1

¼ H

1�
P

tðt2 � 1Þ
NðN2 � 1Þ

ð4:5Þ

The details are left as an exercise for the reader. Hence the correction
for ties is simply to divide H in (4.2) by the correction
factor 1�Ptðt2 � 1Þ=NðN2 � 1Þ where the sum is over all sets of t tied
ranks.

When the null hypothesis is rejected, as in the normal theory
case, one can compare any two groups, say i and j (with 14 i<j4
k), by a multiple comparisons procedure. This can be done by calcu-
lating

Zij ¼ j�RRi � �RRjjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½NðN þ 1Þ=12�ð1=ni þ 1=njÞ
p ð4:6Þ

and comparing it to z� ¼ za=½kðk�1Þ�, the [a=k(k�1)]st upper standard
normal quantile. If Zij exceeds z�, the two groups are declared to be
significantly different. The quantity a is called the experimentwise
error rate or the overall significance level, which is the probability of at
least one erroneous rejection among the k(k�1)=2 pairwise compar-
isons. Typically, one takes a¼ 0.20 or even larger because we are
making such a large number of statements. We note that 1�a is the
probability that all of the statements are correct. It is not necessary to
make all possible comparisons, although we usually do. For con-
venience, we give the z� values to three decimal places for a total of d
comparisons at a¼ 0.20 as follows:

This multiple comparisons procedure is due to Dunn (1964).

d 1 2 3 4 5 6 7 8 9 10

z� 1.282 1.645 1.834 1.960 2.054 2.128 2.189 2.241 2.287 2.326
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APPLICATIONS

The Kruskal-Wallis test is the natural extension of the Wilcoxon test
for location with two independent samples to the situation of k
mutually independent samples from continuous populations. The null
hypothesis is that the k populations are the same, but when we
assume the location model this hypothesis can be written in terms of
the respective location parameters (or treatment effects) as

H0: y1 ¼ y2 ¼ � � � ¼ yk

H1:At least two y’s differ

To perform the test, all n1 þ n2 þ � � � þ nk ¼ N observations are
pooled into a single array and ranked from 1 to N. The test statistic
H is easier to calculate in the following form, which is equivalent
to (4.2):

H ¼ 12

NðN þ 1Þ
Xk
i¼1

R2
i

ni
� 3ðN þ 1Þ ð4:7Þ

for Ri being the sum of the ranks from the ith sample. The appropriate
rejection region is large values of H. The critical values or P values are
found from Table K for k¼ 3, each ni4 5. This statistic is asymptoti-
cally chi-square distributed with k� 1 degrees of freedom; the
approximation is generally satisfactory except when k ¼ 3 and the
sample sizes are five or less. Therefore, Table B can be used when
Table K cannot. When there are ties, we divide H by the correction
factor.

For multiple comparisons, using (4.6), we declare treatments i
and j to be significantly different in effect if

j�RRi � �RRjj5 z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

12

1

ni
þ 1

nj

	 
s
ð4:8Þ

If ni ¼ nj ¼ N=k for all i and j, the right-hand side of (4.6) reduces to

z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN þ 1Þ=6p

.

Example 4.1 For the experiment described in Example 2.2, use the
Kruskal-Wallis test to see if there any difference in the medians of the
four groups.
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Solution The data are already ranked from 1 to 40 in Table 2.1 so we
need only calculate the rank sums as R1 ¼ 260, R2 ¼ 122, R3 ¼ 90,
R4 ¼ 348. With n1 ¼ n2 ¼ n3 ¼ n4 ¼ 10, we get

H ¼ 12

40ð41Þð10Þ ½260
2 þ 1222 þ 902 þ 3482� � 3ð41Þ ¼ 31:89

with 3 degrees of freedom. The P value from Table B is P < 0:001, so
we reject the null hypothesis that the four medians are the same and
therefore do a follow-up analysis by a multiple comparisons of the
medians, using a ¼ 0:20. We have �RR1 ¼ 26:0, �RR2 ¼ 12:2, �RR3 ¼ 9:0 and
�RR4 ¼ 24:8 and the right-hand side of (4.8) is 11.125. The treatments
which have significantly different medians are 1 and 2, 1 and 3, 2
and 4.

The computer solutions to Example 4.1 are shown below using
the MINITAB, SAS, and STATXACT packages. All of the results for H
agree exactly.

MINITAB shows the value of the test statistics as H ¼ 31:89 and
the asymptotic P value of 0.000 based on the chi-square approximation
with 3 degree of freedom. If there had been ties in the data, MINITAB
would have shown H(adjusted), which is calculated from (4.5). MINI-
TAB also shows the median, average rank, and Z value for each group.
The Z values given are calculated from (4.3). This is the standardized
value of the deviation between the mean rank �RRi for the ith group and
its expected value ðN þ 1Þ=2 under the null hypothesis. The sign of the
Z statistic indicates whether the mean rank is larger or smaller than
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expected, and the magnitude measures the relative deviation. The
largest absolute Z value is 4.47, which indicates that the mean rank
for group 4, which is 34.8, differs from the average rank of 20.5 more
than that of any other group. And the smallest absolute Z value, 1.72,
shows that the average for group 1, 26.0, differs from the average rank
less than that of any other group.

Now we show the program code and the results for SAS and
STATXACT.
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Example 4.2 For the experiment described in Example 2.1, use the
Kruskal-Wallis test to see if there is any difference in the medians of
the three groups.

Solution The first step is to rank the data from 1 to 15, as shown
below, where rank 1 is given to the smallest score, which indicates the
most effective result.

We calculate
P

R2=n ¼ 5688=5 ¼ 1137:6 and H ¼ 12ð1137:6Þ=15ð16Þ�
3ð16Þ. Table K for k ¼ 3, n1 ¼ n2 ¼ n3 ¼ 5 shows that 0.001< P value <
0.010, so the null hypothesis of equal treatment effects should be
rejected. It appears that the chin strap is the most effective device in
reducing snoring since it has the smallest sum of ranks. Since the null
hypothesis was rejected, we carry out a multiple comparisons proce-
dure at the 0.20 level. We have z� ¼ 1.834 for d¼ 3 and the right-hand

Squeaker Wrist tie Chin strap

6 15 2
9 13 3
10 11 4
12 14 1
5 7 8

Sum 42 60 18
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10.5 OTHER RANK-TEST STATISTICS

A general form for any k-sample rank-test statistic which follows the
rationale of the Kruskal-Wallis statistic can be developed as follows.
Denote the

Pk
i¼1 ni ¼ N items in the pooled (not necessarily ordered)

sample by X1;X2; . . . ;XN, and put a subscript on the ranks as an
indication of which sample the observation is a member. Thus rjðXiÞ is
the rank of Xi where Xi is from the jth sample, for some j ¼ 1; 2; . . . ; k.
The rank sum for the jth sample, previously denoted by Rj would now
be denoted by

P
i rjðXiÞ. Since the rjðXiÞ for fixed j are a random sample

of nj numbers, for every j the sum of any monotone increasing function
g of rjðXiÞ should, if the null hypothesis is true, on the average be
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approximately equal to the average of the function for all N observa-
tions multiplied by nj. The weighted sum of squares of these deviations
provides a test criterion. Thus a general k-sample rank statistic can be
written as

Q ¼
Xk
j¼1

fPi g½rjðXiÞ� � njð
Pk

j¼1
P

i g½rjðXiÞ�Þ=Ng2
nj

ð5:1Þ

For simplicity, now let us denote the set of all N values of the function
g½rjðxiÞ� by a1;a2; . . . ;aN and their mean by

�aa ¼
XN
i¼1

ai

N
¼
Xk
j¼1

X
i

g½rjðxiÞ�
N

It can be shown (see Hajek and Sidak, 1967, pp. 170–172) that as
minimum ðn1;n2; . . . ;nkÞ ! 1, under certain regularity conditions the
probability distribution of

ðN � 1ÞQPN
i¼1 ðai � �aaÞ2

approaches the chi-square distribution with k � 1 degrees of freedom.
Two obvious possibilities for our function g are suggested by the

scores in the two-sample location problem for the Terry (normal
scores) and the van der Waerden (inverse normal scores) test statis-
tics. Since in both these cases the scores are symmetric about zero, �aa is
zero and the k-sample analogs are

T ¼ N � 1PN
i¼1½EðxðiÞÞ�2

Xk
j¼1

½Pi EðxðiÞÞj�2
nj

X ¼ N � 1PN
i¼1½f�1ð i

Nþ1Þ�2
Xk
j¼1

½Pi f
�1ð i

Nþ1Þj�2
nj

The T and X tests are asymptotically equivalent as before.

Example 5.1 For the data in Example 2.2, the normal scores test is
illustrated using STATXACT to see if there are any differences in the
medians of the four groups.
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The value of the T statistic is found to be 29.27 with an approximate P
value close to 0 and this leads to a rejection of the null hypothesis.
Recall that for these data, both the median test and the Kruskal-Wallis
test also led to a rejection of the null hypothesis.

So far we have discussed the problem of testing the hypothesis
that k continuous populations are identical against the general (om-
nibus) alternative that they differ in some way. In practice the ex-
perimenter may expect, in advance, specific kinds of departures from
the null hypothesis, say in a particular direction. For example, it
might be of interest to test for an increasing (or decreasing) effect of a
group of treatments on some response variable. Conceptually, some of
these problems can be viewed as generalizations of one-sided alter-
natives to the case of more than two samples. It seems reasonable to
expect that we will be able to construct tests that are more sensitive
(powerful) in detecting the specific departures (from the null hypoth-
esis) than an omnibus test, like the Kruskal-Wallis test, since the
latter does not utilize the prior information in a postulated ordering
(the omnibus tests are used to detect ‘‘any’’ deviations from homo-
geneity).

The problem of testing the null hypothesis of homogeneity
against alternative hypotheses that are more specific or restricted in
some manner than a global alternative (of nonhomogeneity) has been
an area of active research. The seminal work of Barlow, Bartholomew,
Bremner, and Brunk (1972) and the book by Robertson, Wright, and
Dykstra (1988) are excellent references to this subject. We will discuss
some of these problems in the following sections.
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of three groups. The first group of speakers were not allowed to use
any audiovisual aids, the second group of speakers were allowed to use
a regular overhead projector and a microphone, and the third group of
speakers could use a 35-mm color slide projector together with a mi-
crophone and a tape recorder (which played prerecorded audio mes-
sages). After a certain period of time, each of the speakers made a
presentation in an auditorium, on a certain issue, in front of a live
audience and a selected panel of judges. The contents of their pre-
sentations were virtually the same, so that any differences in effec-
tiveness could be attributed only to the audiovisual aids used by the
speakers. The judges scored each presentation on a scale of 30 to 100,
depending on their own judgment and the reaction of the audience,
with larger scores denoting greater effectiveness; the scores are given
below. It seems reasonable to expect that the use of audiovisual aids
would have some beneficial effect and hence the median score for
group 1 will be the lowest, that for group 3 the highest, and the median
score for group 2 somewhere in between.

Solution The hypotheses to be tested are H0: y1 ¼ y2 ¼ y3, where yi is
the median of the ith group, against H1: y14 y24 y3, where at least
one of the inequalities is strict. Here k ¼ 3 and in order to apply the JT
test the three two-sample Mann-Whitney statistics U12;U13, and U23

are needed. We find U12 ¼ 22;U13 ¼ 24, and U23 ¼ 21 and hence
B ¼ 67. The exact P value for the JT test from Table R of the Appendix
is PðB567jH0Þ < 0:0044. Thus H0 is rejected in favor of H1 at any
commonly used value of a and we conclude that audiovisual aids do
help in making a presentation more effective, and in fact, when all
other factors are equal, there is evidence that the more audiovisual
aids are used, the more effective is the presentation. Also, we have
E0ðBÞ ¼ 37:5 and var0ðBÞ ¼ 89:5833, so that using the normal ap-
proximation, z ¼ 3:1168 (without a continuity correction) and the ap-
proximate P value from Table A of the Appendix is
1� Fð3:12Þ ¼ 0:0009; the approximate JT test leads to the same con-
clusion. The SAS and STATXACT computer solutions shown below
agree exactly with ours.

Group 1 Group 2 Group 3

74, 58, 68, 60, 69 70, 72, 75, 80, 71 73, 78, 88, 85, 76
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test and reject H0 in favor of H1 if W is small. This test has been
proposed and studied by Chakraborti and Desu (1988b) and will be
referred to as the CD test. The exact (unconditional) distribution of the
sum statistic W is obtained by noting that the exact distribution of W
is simply the expectation of the joint distribution of the Wi’s,
i ¼ 2; 3; . . . ; k, with respect to T and that conditional on T, the Wi’s are
independent binomial random variables with parameter ni and FiðTÞ
This yields, for w ¼ 0; 1; . . . ; ðN � n1Þ

P½W ¼ w� ¼
XZ 1

�1

Yk
i¼2

ni

ai

	 

½FiðtÞ�ai ½1� FiðtÞ�ni�ai dFTðtÞ ð7:3Þ

where the sum is over all ai ¼ 0; 1; . . . ;ni; i ¼ 2; 3; . . . ; k, such that
a2 þ a3 þ � � � þ ak ¼ w.

Under the null hypothesis the integral in (7.3) reduces to a
complete beta integral and the exact null distribution of W can be
enumerated. However, a more convenient closed-form expression for
the null distribution of W may be obtained directly by arguing as
follows. The statistic W is the total number of observations in treat-
ment groups 2 through k that precede T. Hence the null distribution of
W is the same as that of the two-sample precedence statistic with
sample sizes n1 and N � n1 and this can be obtained directly from the
results in Problems 2.28c and 6.10a. Thus we have, when T is the ith
order statistic in the control sample,

P½W ¼ wjH0� ¼
h N � i�w

N � n1 �w

	 

iþw� 1

w

	 
i N

N � n1

	 
�
w ¼ 0;1; . . . ;N; i ¼ 1; 2; . . . ;n1

or equivalently,

P½W ¼ wjH0� ¼ n1
N

N � n1
w

	 

n1 � 1

i� 1

	 

N � 1

wþ i� 1

	 
�
ð7:4Þ

Also, using the result in Problem 2.28d we have

E0ðWÞ ¼ ðN � n1Þ i

nþ 1

	 

ð7:5Þ
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10.16. Prior to the Alabama-Auburn football game, 80 Alabama alumni, 75 Auburn
alumni, and 45 residents of Tuscaloosa who are not alumni of either are asked who they
think will win the game. The responses are as follows:

Do the three groups have the same probability of thinking Alabama will win?

10.17. Random samples of 100 insurance company executives, 100 transportation
company executives, and 100 media company executives were classified according to
highest level of formal education using the code 10¼ some college, 20¼ bachelor’s de-
gree, 30¼master’s degree, 40¼more than master’s. The results are shown below. De-
termine whether median education level is the same for the three groups at a ¼ 0:05.

10.18. Four different experimental methods of treating schizophrenia—(1) weekly
shock treatments, (2) weekly treatments of carbon dioxide inhalations, (3) biweekly
shock treatment alternated with biweekly carbon dioxide inhalations, and (4) tranqui-
lizer drug treatment—are compared by assigning a group of schizophrenic patients
randomly into four treatment groups. The data below are the number of patients who did

Table 3

Region Insults Persuades True picture

Northwest 3.69 4.48 3.69
Midwest 4.22 3.75 3.25
Northeast 3.63 4.54 4.09
Southwest 4.16 4.35 3.61
South Central 3.96 4.73 3.41
Southeast 3.78 4.49 3.64

Alabama Auburn Tuscaloosa

Alabama win 55 15 30
Auburn win 25 60 15

Education Insurance Transportation Media

10 19 31 33
20 20 37 34
30 36 20 21
40 25 12 12

Total 100 100 100

396 CHAPTER 10
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11
Measures of Association for
Bivariate Samples

11.1 INTRODUCTION: DEFINITION OF MEASURES OF ASSOCIATION IN

A BIVARIATE POPULATION

In Chapter 5 we saw that the ordinary sign test and the Wilcoxon
signed-rank test procedures, although discussed in terms of inferences
in a single-sample problem, could be applied to paired-sample data by
basing the statistical analysis on the differences between the pairs of
observations. The inferences then must be concerned with the popu-
lation of differences as opposed to some general relationship between
the two dependent random variables. One parameter of this popula-
tion of differences, the variance, does contain information concerning
their relationship, since

varðX � YÞ ¼ varðXÞ þ varðYÞ � 2 covðX;YÞ
It is this covariance factor and a similar measure with which we

shall be concerned in this chapter.
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In general, if X and Y are two random variables with a bivariate
probability distribution, their covariance, in a certain sense, reflects
the direction and amount of association or correspondence between the
variables. The covariance is large and positive if there is a high
probability that large (small) values of X are associated with large
(small) values of Y. On the other hand, if the correspondence is inverse
so that large (small) values of X generally occur in conjunction with
small (large) values of Y, their covariance is large and negative. This
comparative type of association is referred to as concordance or
agreement. The covariance parameter as a measure of association is
difficult to interpret because its value depends on the orders of mag-
nitude and units of the random variables concerned. A nonabsolute
or relative measure of association circumvents this difficulty. The
Pearson product-moment correlation coefficient, defined as

rðX;YÞ ¼ covðX;YÞ
½varðXÞ varðYÞ�1=2

is a measure of the linear relationship between X and Y. This coef-
ficient is invariant under changes of scale and location in X and Y,
and in classical statistics this parameter is usually used as the rela-
tive measure of association in a bivariate distribution. The absolute
value of the correlation coefficient does not exceed 1, and its sign is
determined by the sign of the covariance. If X and Y are independent
random variables, their correlation is zero, and therefore the mag-
nitude of r in some sense measures the degree of association.
Although it is not true in general that a zero correlation implies
independence, the bivariate normal distribution is a significant
exception, and therefore in the normal-theory model r is a good
measure of association. For random variables from other bivariate
populations, r may not be such a good description of relationship
since dependence may be reflected in a wide variety of types of
relationships. One can only say in general that r is a more descriptive
measure of dependence than covariance because r does not depend on
the scales of X and Y.

If the main justification for the use of r as a measure of asso-
ciation is that the bivariate normal is such an important distribution
in classical statistics and zero correlation is equivalent to indepen-
dence for that particular population, this reasoning has little sig-
nificance in nonparametric statistics. Other population measures of
association should be equally acceptable, but the approach to mea-
suring relationships might be analogous, so that interpretations are
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simplified. Because r is so widely known and accepted, any other
measure would preferably emulate its properties.

Suppose we define a ‘‘good’’ relative measure of association as one
which satisfies the following criteria:

1. For any two independent pairs (Xi;Yi) and (Xj;Yj) of random
variables which follow this bivariate distribution, the measure will
equal þ 1 if the relationship is direct and perfect in the sense that
Xi < Xj whenever Yi < Yj or Xi > Xj whenever Yi > Yj

This relation will be referred to as perfect concordance (agree-
ment).

2. For any two independent pairs, the measure will equal �1 if the
relationship is indirect and perfect in the sense that

Xi < Xj whenever Yi > Yj or Xi > Xj whenever Yi < Yj

This relation will be referred to as perfect discordance (disagree-
ment).

3. If neither criterion 1 nor criterion 2 is true for all pairs, the
measure will lie between the two extremes �1 and þ 1. It is also
desirable that, in some sense, increasing degrees of concordance
are reflected by increasing positive values, and increasing degrees
of discordance are reflected by increasing negative values.

4. The measure will equal zero if X and Y are independent.
5. The measure for X and Y will be the same as for Y and X, or �X

and �Y, or �Y and �X.
6. The measure for �X and Y or X and �Y will be the negative of the

measure for X and Y.
7. The measure will be invariant under all transformations of X and

Y for which order of magnitude is preserved.

The parameter r is well known to satisfy the first six of these
criteria. It is a type of measure of concordance in the same sense that
covariance measures the degree to which the two variables are asso-
ciated in magnitude. However, although r is invariant under positive
linear transformations of the random variables, it is not invariant
under all order-preserving transformations. This last criterion seems
especially desirable in nonparametric statistics, as we have seen that
in order to be distribution-free, inferences must usually be determined
by relative magnitudes as opposed to absolute magnitudes of the
variables under study. Since probabilities of events involving only
inequality relations between random variables are invariant under all
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order-preserving transformations, a measure of association which is
a function of the probabilities of concordance and discordance will
satisfy the seventh criterion. Perfect direct and indirect association
between X and Y are reflected by perfect concordance and perfect
discordance, respectively, and in the same spirit as r measures a
perfect direct and indirect linear relationship between the variables.
Thus an appropriate combination of these probabilities will provide
a measure of association which will satisfy all seven of these desirable
criteria.

For any two independent pairs of random variables ðXi;YiÞ and
ðXj;YjÞ, we denote by pc and pd the probabilities of concordance and
discordance, respectively.

pc ¼ Pf½ðXi < XjÞ \ ðYi < YjÞ� [ ½ðXi > XjÞ \ ðYi > YjÞ�
¼ P½ðXj � XiÞðYj � YiÞ > 0�
¼ P½ðXi < XjÞ \ ðYi < YjÞ� þ P½ðXi > XjÞ \ ðYi > YjÞ�

pd ¼ P½ðXj � XiÞðYj � YiÞ < 0�
¼ P½ðXi < XjÞ \ ðYi > YjÞ� þ P½ðXi > XjÞ \ ðYi < YjÞ�

Perfect association between X and Y is reflected by either perfect
concordance or perfect discordance, and thus some combination of
these probabilities should provide a measure of association. The
Kendall coefficient t is defined as the difference

t ¼ pc � pd

and this measure of association satisfies our desirable criteria 1 to 7.
If the marginal probability distributions of X and Y are continuous,
so that the probability of ties Xi ¼ Xj or Yi ¼ Yj within groups is
eliminated, we have

pc ¼ fPðYi < YjÞ � P½ðXi > XjÞ \ ðYi < YjÞ�
þ fPðYi > YjÞ � P½ðXi < XjÞ \ ðYi > YjÞ�g

¼ PðYi < YjÞ þ PðYi > YjÞ � pd

¼ 1� pd

Thus in this case t can also be expressed as

t ¼ 2pc � 1 ¼ 1� 2pd

How does t measure independence? If X and Y are independent
and continuous random variables, PðXi < XjÞ ¼ PðXi > XjÞ and further
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the joint probabilities in pc or pd are the product of the individual
probabilities. Using these relations, we can write

pc ¼ PðXi < XjÞPðYi < YjÞ þ PðXi > XjÞPðYi > YjÞ
¼ PðXi > XjÞPðYi < YjÞ þ PðXi < XjÞPðYi > YjÞ ¼ pd

and thus t ¼ 0 for independent continuous random variables. In gen-
eral, the converse is not true, but this disadvantage is shared by r. For
the bivariate normal population, however, t ¼ 0 if and only if r ¼ 0,
that is, if and only if X and Y are independent. This fact follows from
the relation

t ¼ 2

p
arcsin r

which can be derived as follows. Suppose that X and Y are bivariate
normal with variances s2X and s2Y and correlation coefficient r. Then
for any two independent pairs ðXi;YiÞ and ðXj;YjÞ from this population,
the differences

U ¼ Xi � Xjffiffiffi
2

p
sX

and V ¼ Yi � Yjffiffiffi
2

p
sY

also have a bivariate normal distribution, with zero means, unit var-
iances, and covariance equal to r. Thus rðU;VÞ ¼ rðX;YÞ. Since

pc ¼ PðUV > 0Þ
we have

pc ¼
Z 0

�1

Z 0

�1
jðx; yÞdxdyþ

Z 1

0

Z 1

0

jðx; yÞdxdy

¼ 2

Z 0

�1

Z 0

�1
jðx; yÞdxdy ¼ 2Fð0; 0Þ

where jðx; yÞ and Fðx; yÞ denote the density and cumulative distribu-
tions, respectively, of a standardized bivariate normal probability
distribution. Since it can be shown that

Fð0; 0Þ ¼ 1

4
þ 1

2p
arcsin r

we see that for the bivariate normal

pc ¼ 1

2
þ 1

p
arcsin r
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and

t ¼ 2

p
arcsin r

In this chapter, the problem of point estimation of these two po-
pulation measures of association, r and t, will be considered. We shall
find estimates which are distribution-free and discuss their individual
properties and procedures for hypothesis testing, and the relationship
between the two estimates will be determined. Another measure of
association will be discussed briefly.

11.2 KENDALL’S TAU COEFFICIENT

In Section 11.1, Kendall’s tau, a measure of association between ran-
dom variables from any bivariate population, was defined as

t ¼ pc � pd ð2:1Þ
where, for any two independent pairs of observations ðXi;YiÞ; ðXj;YjÞ
from the population,

pc ¼P½ðXj�XiÞðYj�YiÞ> 0� and pd ¼P½ðXj�XiÞðYj�YiÞ< 0�
ð2:2Þ

In order to estimate the parameter t from a random sample of n
pairs

ðX1;Y1Þ; ðX2;Y2Þ; . . . ; ðXn;YnÞ
drawn from this bivariate population, we must find point estimates of
the probabilities pc and pd. For each set of pairs (Xi,Yi), (Xj,Yj) of
sample observations, define the indicator variables

Aij ¼ sgnðXj � XiÞ sgnðYj � YiÞ ð2:3Þ
where

sgnðuÞ ¼
�1 if u < 0
0 if u ¼ 0
1 if u > 0

(

Then the values assumed by Aij are

aij ¼
1 if these pairs are concordant

�1 if these pairs are discordant
0 if these pairs are neither concordant nor

discordant because of a tie in either component

8><>:
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The marginal probability distribution of these indicator variables is

fAij
ðaijÞ ¼

pc if aij ¼ 1

pd if aij ¼ �1
1� pc � pd if aij ¼ 0

8<: ð2:4Þ

and the expected value is

EðAijÞ ¼ 1pc þ ð�1Þpd ¼ pc � pd ¼ t ð2:5Þ

Since obviously we have aij ¼ aji and aii ¼ 0, there are only n
2

 �
sets of

pairs which need be considered. An unbiased estimator of t is therefore
provided by

T ¼
XX
14 i<j4n

Aij

n
2

 � ¼ 2
XX
14 i<j4n

Aij

nðn� 1Þ ð2:6Þ

This measure of the association in the paired-sample observations is
called Kendall’s sample tau coefficient.

The reader should note that with the definition of Aij in (2.3) that
allows for tied observations, no assumption regarding the continuity of
the population was necessary, and thus T is an unbiased estimator of
the parameter t in any bivariate distribution. Since the variance of T
approaches zero as the sample size approaches infinity, T is also a
consistent estimator of t for any bivariate distribution, as we now
show.

In order to determine the variance of T, the variances and cov-
ariances of the Aij must be evaluated since T is a linear combination of
these indicator random variables. From (2.6), we have

n2ðn�1Þ2varðTÞ¼4
� XX
14i<j4n

varðAijÞþ
XXXX

14i<j4n

14h<k4n

i 6¼h or j6¼k

covðAij;AhkÞ
�

ð2:7Þ

Since the Aij are identically distributed for all i < j, and Aij and Ahk are
independent for all i 6¼ h and j 6¼ k (no pairs in common), (2.7) can be
written as
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n2ðn� 1Þ2 varðTÞ ¼ 4

�
n

2

	 

var
i<j

ðAijÞ þ
Xn�1
i¼1

Xn
j¼iþ1

Xn
k¼iþ1

j6¼k

covðAij;AikÞ

þ
Xn
j¼2

Xj�1
i¼1

Xj�1
k¼1

i 6¼k

covðAij;AkjÞ

þ
Xn
j¼2

Xj�1
i¼1

Xn
k¼jþ1

i 6¼k

covðAij;AjkÞ

þ
Xn�1
i¼2

Xn
j¼iþ1

Xi�1
k¼1

j 6¼k

covðAij;AkiÞ
�

ð2:8Þ

By symmetry, all of the covariance terms in (2.8) are equal. They are
grouped together according to which of the (X,Y) pairs are common to
the (Aij, Ahk) in order to facilitate counting the number of terms in each
summation set. Within the first set we have two distinct permutations,
(Aij,Aik) and (Aik,Aij), for each of the n

2

 �
choices of i 6¼ j 6¼ k, and

similarly for the second set. But the third and fourth sets do not allow
for reversal of the Aij and Ahk terms since this makes a different (X,Y)
pair in common, and so there are only n

3

 �
covariance terms in each of

these summations. The total number of distinguishable covariance
terms then is ð2þ 2þ 1þ 1Þ n

3

 � ¼ 6 n
3

 �
, and (2.8) can be written as

simply

n2ðn� 1Þ2 varðTÞ ¼ 4
n
2

	 

varðAijÞ þ 6

n
3

	 

covðAij;AikÞ

� �
or

nðn � 1ÞvarðTÞ ¼ 2 varðAijÞ þ 4ðn� 2ÞcovðAij;AikÞ ð2:9Þ
for any

i < j; i < k; j 6¼ k; i ¼ 1; 2; . . . ;n� 1; j ¼ 2; 3; . . . ;n; k ¼ 2; 3; . . . ;n

Using the marginal probability distribution of Aij given in (2.4),
the variance of Aij is easily evaluated as follows:

EðA2
ijÞ ¼ 1pc þ ð�1Þ2pd ¼ pc þ pd

varðAijÞ ¼ ðpc þ pdÞ � ðpc � pdÞ2
ð2:10Þ
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The covariance expression, however, requires knowledge of the joint
distribution of Aij and Aik, which can be expressed as

fAij;Aik
ðaij;aikÞ¼

pcc if aij¼aik¼1
pdd if aij¼aik¼�1
pcd if aij¼1; aik¼�1

or aij¼�1; aik¼1
1�pcc�pdd�2pcd if aij¼0; aik¼�1;0;1

or aij¼�1;0;1; aik¼0
0 otherwise

8>>>>>>>>><>>>>>>>>>:
ð2:11Þ

for all i < j, i < k, j 6¼ k, i ¼ 1; 2; . . . ;n, and some 04pcc;pdd;pcd 4 1.
Thus we can evaluate

EðAijAikÞ ¼ 12pcc þ ð�1Þ2pdd þ 2ð�1Þpcd

covðAij;AikÞ ¼ pcc þ pdd � 2pcd � ðpc � pdÞ2 ð2:12Þ
Substitution of (2.10) and (2.12) in (2.9) gives

nðn� 1Þ varðTÞ ¼ 2ðpc þ pdÞ þ 4ðn� 2Þðpcc þ pdd � 2pcdÞ
� 2ð2n� 3Þðpc � pdÞ2 ð2:13Þ

so that the variance of T is of order 1=n and therefore approaches zero
as n approaches infinity.

The results obtained so far are completely general, applying to all
random variables. If the marginal distributions of X and Y are conti-
nuous, P(Aij¼ 0)¼ 0 and the resulting identities

pc þ pd ¼ 1 and pcc þ pdd þ 2pcd ¼ 1

allow us to simplify (2.13) to a function of, say, pc and pcd only:

nðn� 1Þ varðTÞ ¼ 2� 2ð2n � 3Þð2pc � 1Þ2 þ 4ðn� 2Þð1� 4pcdÞ
¼ 8ð2n � 3Þpcð1� pcÞ � 16ðn� 2Þpcd ð2:14Þ

Since for X and Y continuous we also have

pcd ¼ PðAij ¼ 1 \ Aik ¼ �1Þ
¼ PðAij ¼ 1Þ � PðAij ¼ 1 \ Aik ¼ 1Þ
¼ pc � pcc
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another expression equivalent to (2.14) is

nðn � 1Þ varðTÞ ¼ 8ð2n� 3Þpcð1� pcÞ � 16ðn � 2Þðpc � pccÞ
¼ 8pcð1� pcÞ þ 16ðn� 2Þðpcc � p2c Þ ð2:15Þ

We have already interpreted pc as the probability that the pair
(Xi,Yi) is concordant with (Xj,Yj). Since the parameter pcc is

pcc ¼ PðAij ¼ 1 \ Aik ¼ 1Þ
¼ P½ðXj � XiÞðYj � YiÞ > 0 \ ðXk � XiÞðYk � YiÞ > 0� ð2:16Þ

for all i < j, i < k, j 6¼ k, i ¼ 1; 2; . . . ;n, we interpret pcc as the prob-
ability that the pair (Xi,Yi) is concordant with both (Xj,Yj) the (Xk,Yk).

Integral expressions can be obtained as follows for the prob-
abilities pc and pcc for random variables X and Y from any continuous
bivariate population FX,Y(x,y).

pc ¼ P½ðXi < XjÞ \ ðYi < YjÞ� þ P½ðXi > XjÞ \ ðYi > YjÞ�
¼
Z 1

�1

Z 1

�1
P½ðXi < xjÞ \ ðYi < yjÞ�fXi;Yi

ðxj; yjÞdxj dyj

þ
Z 1

�1

Z 1

�1
P½ðXj < xiÞ \ ðYj < yiÞ�fXi;Yi

ðxi; yiÞdxi dyi

¼ 2

Z 1

�1

Z 1

�1
FX;Yðx; yÞfX;Yðx; yÞdxdy ð2:17Þ

pcc¼ Pðf½ðXi<XjÞ\ðYi<YjÞ�[½ðXi>XjÞ\ðYi>YjÞ�g
\f½ðXi<XkÞ\ðYi<YkÞ[½ðXi>XkÞ\ðYi>YkÞ�gÞ

¼ P½ðA[BÞ\ðC[DÞ�
¼ P½ðA\CÞ[ðB\DÞ[ðA\DÞ[ðB\CÞ�
¼ PðA\CÞþPðB\DÞþ2PðA\DÞ
¼
Z 1

�1

Z 1

�1
fP½ðXj>xiÞ\ðYj>yiÞ\ðXk>xiÞ\ðYk>yiÞ�
þP½ðXj<xiÞ\ðYj<yiÞ\ðXk<xiÞ\ðYk<yiÞ�
þ2P½ðXj>xiÞ\ðYj>yiÞ\ðXk<xiÞ\ðYk<yiÞ�g

� fXi;Yi
ðxi;yiÞdxi dyi

¼
Z 1

�1

Z 1

�1
ðfP½ðX>xÞ\ðY>yÞ�g2þfP½ðX<xÞ\ðY<yÞ�g2

þ2P½ðX>xÞ\ðY>yÞ�P½ðX<xÞ\ðY<yÞ�ÞfX;Yðx;yÞdxdy
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¼
Z 1

�1

Z 1

�1
fP½ðX>xÞ\ðY>yÞ�þP½ðX<xÞ\ðY<yÞ�g2fX;Yðx;yÞdxdy

¼
Z 1

�1

Z 1

�1
½1�FXðxÞ�FYðyÞþ2FX;Yðx;yÞ�2fX;Yðx;yÞdxdy ð2:18Þ

Although T as given in (2.6) is perhaps the simplest form for
deriving theoretical properties, the coefficient can be written in a
number of other ways. In terms of all n2 pairs for which Aij is defined,
(2.6) can be written as

T ¼
Xn
i¼1

Xn
j¼1

Aij

nðn� 1Þ ð2:19Þ

Now we introduce the notation

Uij ¼ sgnðXj � XiÞ and Vij ¼ sgnðYj � YiÞ

so that Aij ¼ UijVij for all i, j. Assuming that Xi 6¼ Xj and Yi 6¼ Yj for all
i 6¼ j, we have

Xn
i¼1

Xn
j¼1

U2
ij ¼

Xn
i¼1

Xn
j¼1

V2
ij ¼ nðn � 1Þ

and (2.19) can be written in a form resembling an ordinary sample
correlation coefficient as

T ¼
Pn

i¼1
Pn

j¼1UijVijPn
i¼1
Pn

j¼1U
2
ij

� � Pn
i¼1
Pn

j¼1 V
2
ij

� �h i1=2 ð2:20Þ

Kendall and Gibbons (1990) often use T in still another form,
which arises by simply classifying sets of differences according to the
resulting sign of Aij. If C and Q denote the number of positive and
negative Aij for 14 i < j4n, respectively, and the total is S¼C�Q, we
have

T ¼ ðC �QÞ= n

2

� �
¼ S=

n

2

� �
ð2:21Þ

If there are no ties within either the X or Y groups, that is, Aij 6¼ 0 for

i 6¼ j, C þQ ¼ n

2

� �
and (2.21) can be written as
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T ¼ 2C
n
2

 �� 1 ¼ 1� 2Q
n
2

 � ð2:22Þ

These two forms in (2.22) are analogous to the expression in Section 1
for the parameter

t ¼ 2pc � 1 ¼ 1� 2pd

and C= n
2

 �
and Q= n

2

 �
are obviously unbiased estimators for pc and pd,

respectively. The quantity C is perhaps the simplest to calculate for a
given sample of n pairs. Assuming that the pairs are written from
smallest to largest according to the value of the X component, C is
simply the number of values of 14 i < j4n for which Yj � Yi > 0,
since only then shall we have aij ¼ 1.

Another interpretation of T is as a coefficient of disarray, since it
can be shown (see Kendall and Gibbons, 1990, pp. 30–31) that the total
number of interchanges between two consecutive Y observations re-
quired to transform the Y arrangement into the natural ordering from
smallest to largest, i.e., to transform the Y arrangement into the X
arrangement, is equal to Q, or n

2

 �ð1� TÞ=2. This will be illustrated
later in Section 11.6.

NULL DISTRIBUTION OF T

Suppose we wish to test the null hypothesis that the X and Y random
variables are independent. Since t ¼ 0 for independent variables, the
null distribution of T is symmetric about the origin. For a general
alternative of nonindependence, the rejection region of size a then
should be

T 2 R for jTj5 ta=2

where ta=2 is chosen so that

PðjTj5 ta=2jH0Þ ¼ a

For an alternative of positive dependence, a similar one-sided critical
region is appropriate.

We must now determine the random sampling distribution of T
under the assumption of independence. For this purpose, it will be
more convenient, but not necessary, to assume that the X and Y
sample observations have both been ordered from smallest to largest
and assigned positive integer ranks. The data then consist of n sets of
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pairs of ranks. The justification for this assumption is that, like t, T is
invariant under all order-preserving transformations. Its numerical
value then depends only on the relative magnitudes of the observa-
tions and is the same whether calculated for variate values or ranks.
For samples with no ties, the n! distinguishable pairings of ranks are
all equally likely under the null hypothesis. The value of T is com-
pletely determined by the value of C or S because of the expressions in
(2.21) and (2.22), and it is more convenient to work with C. Denote by
uðn; cÞ the number of pairings of n ranks which result in exactly c
positive aij, 14 i < j4n. Then

PðC ¼ cÞ ¼ uðn; cÞ
n!

ð2:23Þ

and

fTðtÞ ¼ PðT ¼ tÞ ¼ P C ¼ n
2

	 

tþ 1

2

� �
ð2:24Þ

We shall now find a recursive relation to generate the values of
uðnþ 1; cÞ from knowledge of the values of uðn; cÞ for some n and all c.
Assuming that the observations are written in order of magnitude of
the X component, the value of C depends only on the resulting per-
mutation of the Y ranks. If si denotes the rank of the Y observation
which is paired with the rank i in the X sample, for i ¼ 1; 2; . . . ;n; c
equals the number of integers greater than s1, plus the number of
integers greater than s2 excluding s1, plus the number exceeding s3
excluding s1 and s2, etc. For any given permutation of n integers which
has this sum c, we need only consider what insertion of the number
nþ 1 in any of the nþ 1 possible positions of the permutation
ðs1; s2; . . . ; snÞ does to the value of c. If nþ 1 is in the first position, c is
clearly unchanged. If n þ 1 is in the second position, there is one ad-
ditional integer greater than s1, so that c is increased by 1. If in the
third position, there is one additional integer greater than both s1 and
s2, so that c is increased by 2. In general, if n þ 1 is in the kth position,
c is increased by k � 1 for all k ¼ 1; 2; . . . ;nþ 1. Therefore the desired
recursive relation is

uðnþ 1; cÞ ¼ uðn; cÞ þ uðn; c� 1Þ þ uðn; c� 2Þ þ � � � þ uðn; c� nÞ
ð2:25Þ

In terms of s, since for a set of n pairs

s ¼ 2c� nðn� 1Þ
2

ð2:26Þ
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insertion of nþ 1 in the kth position increases c by k � 1, the new value
s0 of s for nþ 1 pairs will be

s0 ¼ 2c0 � nðnþ 1Þ
2

¼ 2ðcþ k � 1Þ � nðn þ 1Þ
2

¼ 2c� nðn� 1Þ
2

þ 2ðk� 1Þ � n ¼ sþ 2ðk� 1Þ � n

In other words, s is increased by 2ðk� 1Þ � n for k ¼ 1; 2; . . . ;n þ 1, and
corresponding to (2.25) we have

uðn þ 1; sÞ ¼ uðn; sþ nÞ þ uðn; sþ n� 2Þ þ uðn; sþ n� 4Þ
þ � � � þ uðn; s� nþ 2Þ þ uðn; s� nÞ ð2:27Þ

The distribution of S is symmetrical about zero, and from (2.26) it is
clear that S for n pairs is an even or odd integer according as
nðn� 1Þ=2 is even or odd. Because of this symmetry, tables are most
easily constructed for S (or T) rather than C or Q. The null distri-
bution of S is given in Table L of the Appendix. More extensive tables
of the null distribution of S or T are given in Kaarsemaker and Van
Wijngaarden (1952, 1953), Best (1973, 1974), Best and Gipps (1974),
Nijsse (1988), and Kendall and Gibbons (1990).

A simple example will suffice to illustrate the use of (2.25) or
(2.27) to set up tables of these probability distributions. When n ¼ 3,
the 3! permutations of the Y ranks and the corresponding values of C
and S are:

The frequencies then are:

Permutation 123 132 213 231 312 321

c 3 2 2 1 1 0

s 3 1 1 �1 �1 �3

c 0 1 2 3

s �3 �1 1 3

uð3; cÞ or uð3; sÞ 1 2 2 1
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For C, using (2.25), uð4; cÞ ¼P3
i¼0 uð3c� iÞ, or

uð4;0Þ ¼ uð3;0Þ ¼ 1

uð4;1Þ ¼ uð3;1Þ þ uð3;0Þ ¼ 3

uð4;2Þ ¼ uð3;2Þ þ uð3;1Þ þ uð3;0Þ ¼ 5

uð4;3Þ ¼ uð3;3Þ þ uð3;2Þ þ uð3;1Þ þ uð3;0Þ ¼ 6

uð4;4Þ ¼ uð3;3Þ þ uð3;2Þ þ uð3;1Þ ¼ 5

uð4;5Þ ¼ uð3;3Þ þ uð3;2Þ ¼ 3

uð4;6Þ ¼ uð3;3Þ ¼ 1

Alternatively, we could use (2.27), or uð4; sÞ ¼P3
i¼0 uð3; sþ 3� 2iÞ.

Therefore the probability distributions for n ¼ 4 are:

The way in which the uðn; s; or cÞ are built up by cumulative
sums indicates that simple schemes for their generation may be easily
worked out (see, for example, Kendall and Gibbons, 1990, pp. 91–92).

The exact null distribution is thus easily found for moderate n.
Since T is a sum of random variables, it can be shown using general
limit theorems for independent variables that the distribution of
a standardized T approaches the standard normal distribution as n
approaches infinity. To use this fact to facilitate inferences concerning
independence in large samples, we need to determine the null mean
and variance of T. Since Twas defined to be an unbiased estimator of t
for any bivariate population and we showed in Section 1 that t ¼ 0 for
independent, continuous random variables, the mean is EðT jH0Þ ¼ 0.
In order to find varðT jH0Þ for X and Y continuous, (2.15) is used with
the appropriate pc and pcc under H0. Under the assumption that X and
Y have continuous marginal distributions and are independent, they
can be assumed to be identically distributed according to the uniform
distribution over the interval (0,1), because of the probability-
integral transformation. Then, in (2.17) and (2.18), we have

pc ¼ 2

Z 1

0

Z 1

0

xy dxdy ¼ 1=2

pcc ¼
Z 1

0

Z 1

0

ð1� x� yþ 2xyÞ2 dxdy ¼ 5=18

ð2:28Þ

c 0 1 2 3 4 5 6
s �6 �4 �2 0 2 4 6

t �1 �2=3 �1=3 0 1=3 2=3 1

f ðc; s; or tÞ 1=24 3=24 5=24 6=24 5=24 3=24 1=24
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Substituting these results in (2.15), we obtain

nðn � 1Þ varðTÞ ¼ 2þ 16ðn� 2Þ
36

varðTÞ ¼ 2ð2nþ 5Þ
9nðn� 1Þ ð2:29Þ

For large n, the random variable

Z ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn � 1Þp

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2nþ 5Þp ð2:30Þ

can be treated as a standard normal variable with density jðzÞ.
If the null hypothesis of independence of X and Y is accepted, we

can of course infer that the population parameter t is zero. However, if
the hypothesis is rejected, this implies dependence between the ran-
dom variables but not necessarily that t 6¼ 0.

THE LARGE-SAMPLE NONNULL DISTRIBUTION OF KENDALL’S STATISTIC

The probability distribution of T is asymptotically normal for sample
pairs from any bivariate population. Therefore, if any general mean
and variance of T could be determined, T would be useful in large
samples for other inferences relating to population characteristics
besides independence. Since EðTÞ ¼ t for any distribution, T is parti-
cularly relevant in inferences concerning the value of t. The expres-
sions previously found for varðTÞ in (2.13) for any distribution and
(2.15) for continuous distributions depend on unknown probabilities.
Unless the hypothesis under consideration somehow determines
pc; pd; pcc; pdd, and pcd (or simply pc and pcc for the continuous case),
the exact variance cannot be found without some information about
fX;Yðx; yÞ. However, unbiased and consistent estimates of these prob-
abilities can be found from the sample data to provide a consistent
estimate ŝðTÞ of the variance of T. The asymptotic distribution of
ðT � tÞ=ŝðTÞ then remains standard normal.

Such estimates will be found here for paired samples containing

no tied observations. We observed before that C= n
2

 �
is an unbiased and

consistent estimator of pc. However, for the purpose of finding esti-
mates for all the probabilities involved, it will be more convenient now
to introduce a different notation. As before, we can assume without
loss of generality that the n pairs are arranged in natural order ac-
cording to the x component and that si is the rank of that y which is
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paired with the ith smallest x for i ¼ 1; 2; . . . ;n, so that the data are
ðs1; s2; . . . ; snÞ. Define

ai ¼ number of integers to the left of si and less than si

bi ¼ number of integers to the right of si and greater than si

Then
ci ¼ ai þ bi ¼ number of values of j ¼ 1; 2; . . . ;n such that ðxi; yiÞ

is concordant with ðxj; yjÞ. There are nðn � 1Þ distinguishable sets of
pairs, of which

Pn
i¼1 ci are concordant. An unbiased estimate of pc

then is

p̂c ¼
Xn
i¼1

ci
nðn� 1Þ ð2:31Þ

Similarly, we define

a0
i ¼ number of integers to the left of si and greater than si

b0
i ¼ number of integers to the right of si and less than si

and
di ¼ a0

i þ b0
i ¼ number of values of j ¼ 1; 2; . . . ;n such that ðxi; yiÞ

is discordant with ðxj; yjÞ. Then

p̂d ¼
Xn
i¼1

di

nðn� 1Þ ð2:32Þ

gives an unbiased estimate of pd.
An unbiased and consistent estimate of pcc is the number of sets

of three pairs ðxi; yiÞ; ðxj; yjÞ; ðxk; ykÞ for all i 6¼ j 6¼ k, for which the
products ðxi � xjÞðyi � yjÞ and ðxi � xkÞðyi � ykÞ are both positive, di-
vided by the number of distinguishable sets nðn� 1Þðn� 2Þ. Denote by
cii the number of values of j and k; i 6¼ j 6¼ k; 14 j; k4n, such that
ðxi; yiÞ is concordant with both ðxj; yjÞ and ðxk; ykÞ, so that

p̂cc ¼
Xn
i¼1

cii
nðn� 1Þðn� 2Þ

The pair ðxi; yiÞ is concordant with both ðxj; yjÞ and ðxk; ykÞ if:

Group 1: sj < si < sk for j < i < k
sk < si < sj for k < i < j
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Group 2: si < sj < sk for i < j < k
si < sk < sj for i < k < j

Group 3: sj < sk < si for j < k < i
sk < sj < si for k < j < i

Therefore cii is twice the sum of the following three corresponding
numbers:

1. The number of unordered pairs of integers, one to the left and one
to the right of si, such that the one to the left is less than si and the
one to the right is greater than si.

2. The number of unordered pairs of integers, both to the right of si,
such that both are greater than si.

3. The number of unordered pairs of integers, both to the left of si,
such that both are less than si.

Then, employing the same notation as before, we have

cii¼2 ai

1

� � bi

1

	 

þ bi

2

	 

þ ai

2

� �� �
¼ðaiþbiÞ2�ðaiþbiÞ¼c2i �ci¼ciðci�1Þ

and

p̂cc ¼
Xn
i¼1

ciðci � 1Þ
nðn� 1Þðn� 2Þ ð2:33Þ

Similarly, we can obtain

p̂dd ¼
Xn
i¼1

diðdi � 1Þ
nðn� 1Þðn� 2Þ ð2:34Þ

p̂cd ¼
Xn
i¼1

aib
0
i þ aia

0
i þ bia

0
i þ bib

0
i

nðn� 1Þðn� 2Þ ¼
Xn
i¼1

cidi

nðn � 1Þðn � 2Þ ð2:35Þ

Substituting the results (2.31) and (2.33) in (2.15), the estimated
variance of T in samples for continuous variables is

nðn� 1Þŝ2ðTÞ ¼ 8p̂c � 8p̂2c ð2n� 3Þ þ 16ðn� 2Þp̂cc

n2ðn� 1Þ2ŝ2ðTÞ ¼ 8 2
Xn
i¼1

c2i � 2n� 3

nðn� 1Þ
Xn
i¼1

ci

 !2

�
Xn
i¼1

ci

24 35 ð2:36Þ
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In order to obviate any confusion regarding the calculation of the
ci and cii to estimate the variance from (2.36) in the case of no tied
observations, a simple example is provided below for achievement
tests in Mathematics and English administered to a group of six
randomly chosen students.

The two sets of scores ranked and rearranged in order of increasing
Mathematics scores are:

The numbers ci ¼ ai þ bi are

c1¼0þ2 c2¼0þ2 c3¼0þ3 c4¼1þ2 c5¼4þ1 c6¼5þ0X
ci ¼ 20

X
c2i ¼ 76 n ¼ 6

p̂c ¼ 20

6ð5Þ ¼
2

3

p̂cc ¼ 76� 20

6ð5Þð4Þ ¼ 7

15

t ¼ 2ð2=3Þ � 1 ¼ 1=3

302ŝ2ðTÞ ¼ 8 2ð76Þ � 20� 9

6ð5Þ 20
2

� �
¼ 96

ŝ2ðTÞ ¼ 0:1067 ŝðTÞ ¼ 0:33

If we wish to count the cii directly, we have for cii ¼
2ðgroup 1þ group 2þ group 3Þ, the pairs relevant to c44, say, are

Group 1: (1,5)(1,6)
Group 2: (5,6)
Group 3: None

so that c44 ¼ 2ð3Þ ¼ 6 ¼ c4ðc4 � 1Þ.

Student A B C D E F

Math score 91 52 69 99 72 78
English score 89 72 69 96 66 67

Student B C E F A D

Math rank 1 2 3 4 5 6
English rank 4 3 1 2 5 6
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On the other hand, suppose the English scores corresponding to
increasing Math scores were ranked as

Then we can calculate

c1 ¼ c4 ¼ 3 c2 ¼ c3 ¼ c5 ¼ c6 ¼ 4

p̂c ¼ 11=15 p̂cc ¼ 1=2 t ¼ 7=15 ŝ2ðTÞ ¼ �32=1125
and the estimated variance is negative! A negative variance from
(2.15) of course cannot occur, but when the parameters p are replaced
by estimates p̂ and combined, the result can be negative. Since the
probability estimates are consistent, the estimated variance of T will
be positive for n sufficiently large.

Two applications of this asymptotic approximation to the nonnull
distribution of T in nonparametric inference for large samples are:

1. An approximate ð1� aÞ100 percent confidence-interval estimate of
the population Kendall tau coefficient is

t� za=2ŝðTÞ < t < tþ za=2ŝðTÞ
2. An approximate test of

H0:t ¼ t0 versus H1:t 6¼ t0

with significance level a is to reject H0 when

jt� t0j
ŝðTÞ 5 za=2

A one-sided alternative can also be tested.

TIED OBSERVATIONS

Whether or not the marginal distributions of X and Y are assumed
continuous, tied observations can occur within either or both samples.
Ties across samples do not present any problem of course. Since the
definition of Aij in (2.3) assigned a value of zero to aij if a tie occurs in
the (i; j) set of pairs for either the x or y sample values, T as defined
before allows for, and essentially ignores, all zero differences. With t
defined as the difference pc � pd;T as calculated from (2.6), (2.19), or
(2.21) is an unbiased estimator of t with variance as given in (2.13)
even in the presence of ties. If the occurrence of ties in the sample is

y 3 1 4 2 6 5
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attributed to a lack of precision in measurement as opposed to discrete
marginal distributions, the simplified expression for varðTÞ in (2.15)
may still be used. If there are sample ties, however, the expressions
(2.20) and (2.22) are no longer equivalent to (2.6), (2.19), or (2.21).

For small samples with a small number of tied observations, the
exact null distribution of T (or S) conditional on the observed ties can
be determined by enumeration. There will be mw pairings of the two
samples, each occurring with equal probability 1=mw, if there are m
and w distinguishable permutations of the x and y sample observa-
tions, respectively. For larger samples, the normal approximation to
the distribution of T can still be used but with corrected moments.
Conditional upon the observed ties, the parameters pc;Pd;pcc;pdd, and
pcd must have a slightly different interpretation. For example, pc

and pd here would be the probability that we select two pairs ðxi; yiÞ
and ðxj; yjÞ which do not have a tie in either coordinate, and under the
assumption of independence this is

1�
P

uðu� 1Þ
nðn� 1Þ

� �
1�

P
vðv� 1Þ

nðn� 1Þ
� �

where u denotes the multiplicity of a tie in the x set and the sum is
extended over all ties and v has the same interpretation for the y set.
These parameters in the conditional distribution can be determined
and substituted in (2.13) to find the conditional variance (see, for
example, Noether, 1967, pp. 76–77). The conditional mean of T, how-
ever, is unchanged, since even for the new parameters we have pc ¼ pd

for independent samples.
Conditional on the observed ties, however, there are not longer

n
2

 �
distinguishable sets of pairs to check for concordance, and thus if T

is calculated in the ordinary way, it cannot equal one even for perfect
agreement. Therefore an alternative definition of T in the presence of
ties is to replace the nðn � 1Þ in the denominator of (2.6), (2.19), or
(2.21) by a smaller quantity. To obtain a result still analogous to a
correlation coefficient, we might take (2.20) as the definition of T in
general. Since

Pn
i¼1
Pn

j¼1U
2
ij is the number of nonzero differences

Xj � Xi for all ði; jÞ, the sum is the total number of distinguish-
able differences less the number involving tied observations, or
nðn� 1Þ �Puðu� 1Þ. Similarly for the Y observations. Therefore our
modified T from (2.20) is

T ¼
Pn

i¼1
Pn

j¼1UijVij

f½nðn� 1Þ �Puðu� 1Þ�½nðn� 1Þ �P vðv� 1Þ�g1=2
ð2:37Þ
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which reduces to all previously given forms if there are no ties. The
modified T from (2.21) is

T ¼ C�Q

f½ðn2Þ �Pðu2Þ�½ðn2Þ �Pðv2Þ�g
1=2

ð2:38Þ

Note that the denominator in (2.38) is a function of the geometric
mean of the number of untied X observations and the number of
untied Y observations. The modified T in (2.37) or (2.38) is frequently
called taub in order to distinguish it from (2.20) or (2.21), which is
called taua and has no correction for ties.

The absolute value of the coefficient T calculated from (2.37) or
(2.38) is always greater than the absolute of a coefficient calculated
from (2.20) or (2.21) when ties are present, but it still may not be equal
to one for perfect agreement or disagreement. The only way to define a
tau coefficient that does always equal one for perfect agreement or
disagreement is to define

g ¼ C�Q

CþQ
ð2:39Þ

This ratio, the number of concordant pairs with no ties minus the
number of discordant pairs with no ties by the total number of untied
pairs, is called the Goodman-Kruskal gamma coefficient.

A RELATED MEASURE OF ASSOCIATION FOR DISCRETE POPULATIONS

In Section 11.1 we stated the criterion that a good measure of asso-
ciation between two random variables would equal þ 1 for a perfect
direct relationship and �1 for a perfect indirect relationship. In terms
of the probability parameters, perfect concordance requires pc ¼ 1, and
perfect discordance requires pd ¼ 1. With Kendall’s coefficient defined
as t ¼ pc � pd, the criterion is satisfied if and only if pc þ pd ¼ 1. But if
the marginal distributions of X and Y are not continuous,

pc þ pd ¼ P½ðXj � XiÞðYj � YiÞ > 0� þ P½ðXj � XiÞðYj � YiÞ < 0�
¼ 1� P½ðXj � XiÞðYj � YiÞ ¼ 0�
¼ 1� P½ðXi ¼ XjÞ [ ðYi ¼ YjÞ� ¼ 1� pt

where pt denotes the probability that a pair is neither concordant not
discordant. Thus t cannot be considered a ‘‘good’’ measure of associa-
tion if pt 6¼ 0.
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However, a modified parameter which does satisfy the criteria for
all distributions can easily be defined as

t� ¼ t
1� pt

¼ p�
c � p�

d

where p�
c and p�

d are, respectively, the conditional probabilities of
concordance and discordance given that there are no ties

p�
c ¼

pc

1� pt
¼ P½ðXj � XiÞðYj � YiÞ > 0�

P½ðXj � XiÞðYj � YiÞ 6¼ 0�
Since t� is a linear function of t, an estimate is provided by

T� ¼ T

1� p̂t
¼ p̂c � p̂d

p̂c þ p̂d

with p̂c and p̂d defined as before in (2.31) and (2.32). Since p̂c and p̂d

are consistent estimators, the asymptotic distribution of T=ð p̂c þ p̂dÞ is
equivalent to the asymptotic distribution of T=ðpc þ pdÞ, which we
know to be the normal distribution. Therefore for large samples,
inferences concerning t� can be made (see, for example, Goodman and
Kruskal, 1954, 1959, 1963).

USE OF KENDALL’S STATISTIC TO TEST AGAINST TREND

In Chapter 3 regarding tests for randomness, we observed that the
arrangement of relative magnitudes in a single sequence of time-
ordered observations can indicate some sort of trend. When the theory
of runs up and down was used to test a hypothesis of randomness, the
magnitude of each observations relative to its immediately preceding
value was considered, and a long run of plus (minus) signs or a
sequence with a large predominance of plus (minus) signs was con-
sidered indicative of an upward (downward) trend. If time is treated as
an X variable, say, and a set of time-ordered observations as the Y
variable, an association between X and Y might be considered indi-
cative of a trend. Thus the degree of concordance between such X and
Yobservations would be a measure of trend, and Kendall’s tau statistic
becomes a measure of trend. Unlike the case of runs up and down,
however, the tau coefficient considers the relative magnitude of each
observation relative to every preceding observation.

A hypothesis of randomness in a single set of n time-ordered
observations is the same as a hypothesis of independence between
these observationswhen paired with the numbers 1; 2; . . . ;n. Therefore,
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assuming that xi ¼ i for i ¼ 1; 2; . . . ;n, the indicator variables Aij

defined in (2.3) become

Aij ¼ sgnðj� 1Þ sgnðYj � YiÞ
and (2.6) can be written as

n

2

� �
T ¼

XX
14 i<j4n

sgnðYj � YiÞ

The exact null distribution of T is the same as before. If the alternative
is an upward trend, the rejection region consists of large positive
values of T, and T can be considered an unbiased estimate of t,
a relative measure of population trend. For a downward trend, we
reject for large negative values of T. This use of T is frequently called
the Mann Test.

11.3 SPEARMAN’S COEFFICIENT OF RANK CORRELATION

A random sample of n pairs

ðX1;Y1Þ; ðX2;Y2Þ; . . . ; ðXn;YnÞ
is drawn from a bivariate population with Pearson product-moment
correlation coefficient r. In classical statistics, the estimate commonly
used for r is the sample correlation coefficient defined as

R ¼
Pn

i¼1ðXi � �XÞðYi � �YÞPn
i¼1ðXi � �XÞ2Pn

i¼1ðYi � �YÞ2Þ
h i1=2 ð3:1Þ

In general, of course, the sampling distribution of R depends upon the
form of the bivariate population from which the sample of pairs is
drawn. However, suppose the X observations are ranked from smallest
to largest using the integers 1; 2; . . . ;n, and the Y observations are
ranked separately using the same ranking scheme. In other words,
each observation is assigned a rank according to its magnitude rela-
tive to the others in its own group. If the marginal distributions of X
and Y are assumed continuous, unique sets of rankings exist theore-
tically. The data then consist of n sets of paired ranks from which R as
defined in (3.1) can be calculated. The resulting statistic is then called
Spearman’s coefficient of rank correlation. It measures the degree of
correspondence between rankings, instead of between actual variate
values, but it can still be considered a measure of association between
the samples and an estimate of the association between X and Y in the
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continuous bivariate population. It is difficult to interpret exactly
what R is estimating in the population from which these samples were
drawn and ranks obtained, but the measure has intuitive appeal
anyway. The problem of interpretation will be treated in Section 11.4.

The fact that we know the numerical values of the derived ob-
servations from which Spearman’s R is computed, if not their scheme
of pairing, means that the expression in (3.1) can be considerably
simplified. Denoting the respective ranks of the random variables in
the samples by

Ri ¼ rankðXiÞ and Si ¼ rankðYiÞ
the derived sample observations of n pairs are

ðr1; s1Þ; ðr2; s2Þ; . . . ; ðrn; snÞ
Since addition is commutative, we have the constant values for all
samplesXn

i¼1
Ri ¼

Xn
i¼1

Si ¼
Xn
i¼1

i ¼ nðn þ 1Þ
2

�R ¼ �S ¼ n þ 1

2
ð3:2Þ

Xn
i¼1

ðRi � �RÞ2 ¼
Xn
i¼1

ðSi � �SÞ2 ¼
Xn
i¼1

i� ðn þ 1Þ
2

	 
2
¼ nðn2 � 1Þ

12

ð3:3Þ
Substituting these constants in (3.1), the following equivalent forms of
R are obtained:

R ¼ 12
Pn

i¼1ðRi � �RÞðSi � �SÞ
nðn2 � 1Þ ð3:4Þ

R ¼
12

Pn
i¼1RiSi � nðn þ 1Þ2=4

h i
nðn2 � 1Þ ð3:5Þ

R ¼ 12
Pn

i¼1RiSi

nðn2 � 1Þ � 3ðnþ 1Þ
n� 1

ð3:6Þ

Another useful form of R is in terms of the differences.

Di ¼ Ri � Si ¼ ðRi � �RÞ � ðSi � �SÞ
Substituting (3.3) in the expressionXn

i¼1
D2

i ¼
Xn
i¼1

ðRi � �RÞ2 þ
Xn
i¼1

ðSi � �SÞ2 � 2
Xn
i¼1

ðRi � �RÞðSi � �SÞ
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and using the result back in (3.4), the most common form of the
Spearman coefficient of rank correlation is obtained as

R ¼ 1� 6
Pn

i¼1D
2
i

nðn2 � 1Þ ð3:7Þ

We can assume without loss of generality that the n sample pairs are
labeled in accordance with increasing magnitude of the X component,
so that Ri ¼ i for i ¼ 1; 2; . . . ;n. Then Si is the rank of the Y observa-
tion that is paired with the rank i in the X sample, and Di ¼ i� Si.

In Section 11.1, criteria were defined for a ‘‘good’’ relative mea-
sure of association between two random variables. Although the
parameter analogous to R has not been specifically defined, we can
easily verify that Spearman’s R does satisfy the corresponding criteria
of a good measure of association between sample ranks.

1. For any two sets of paired ranks ði;SiÞ and ð j;SjÞ of random
variables in a sample from any continuous bivariate distribu-
tion, in order to have perfect concordance between ranks, the Y
component must also be increasing, or, equivalently,
si ¼ i and di ¼ 0 for i ¼ 1; 2; . . . ;n so that R equals 1.

2. For perfect discordance between ranks, the Yarrangement must
be the reverse of the X arrangement to have decreasing Y
components, so that si ¼ n� iþ 1 and

Xn
i¼1

d2i ¼
Xn
i¼1

½i� ðn� iþ 1Þ�2 ¼ 4
Xn
i¼1

i� nþ 1

2

	 
2
¼ nðn2 � 1Þ

3

from (3.3). Substituting this in (3.7), we find R ¼ �1.
3–6. Since R in, say, (3.7) is algebraically equivalent to (3.1) and the

value of (3.1) is in the interval ½�1; 1� for all sets of numerical
pairs, the same bounds apply here. Further, R is commutative
and symmetric about zero and has expectation zero when the X
and Y observations are independent. These properties will be
shown later in the section.

7. Since ranks are preserved under all order-preserving transfor-
mations, the measure R based on ranks is invariant.

EXACT NULL DISTRIBUTION OF R

If the X and Y random variables from which these n pairs of ranks
ðRi;SiÞ are derived are independent, R is a distribution-free statistic
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since each of the n! distinguishable sets of pairing of n ranks is equally
likely. Therefore, the random sampling distribution of R can be
determined and the statistic used to perform exact distribution-free
tests of independence. If we let ur denote the number of pairings which
lead to a value r for the statistic, the null probability distribution is

fRðrÞ ¼ ur

n!

The null distribution of R is symmetric about the origin, since the
random variable D ¼Pn

i¼1D
2
i is symmetric about nðn2 � 1Þ=6. This

property is the result of the fact that for any sets of pairs

ð1; s1Þ; ð2; s2Þ; . . . ; ðn; snÞ
withXn

i¼1
d2i ¼

Xn
i¼1

ði� siÞ2

there exists a conjugate set of pairs

ð1; snÞ; ð2; sn�1Þ; . . . ; ðn; s1Þ
withXn

i¼1
d02

i ¼
Xn
i¼1

ði� sn�iþ1Þ2 ¼
Xn
i¼1

ðn� iþ 1� siÞ2

The sums of squares of the respective sum and difference of rank
differences areXn

i¼1
ðdi þ d0

iÞ2 ¼
Xn
i¼1

ðnþ 1� 2siÞ2 ¼ 4
Xn
i¼1

si � nþ 1

2

	 
2
¼ nðn2 � 1Þ

3Xn
i¼1

ðdi � d0
iÞ2 ¼

Xn
i¼1

ð2i� n� 1Þ2 ¼ 4
Xn
i¼1

i� nþ 1

2

	 
2
¼ nðn2 � 1Þ

3

Substituting these results in the relation

Xn
i¼1

½ðdiþd0
iÞþðdi�d0

iÞ�2

¼4
Xn
i¼1

di
2¼
Xn
i¼1

ðdiþd0
iÞ2þ

Xn
i¼1

ðdi�d0
iÞ2þ2

Xn
i¼1

ðdi
2�d02

i Þ

MEASURES OF ASSOCIATION FOR BIVARIATE SAMPLES 425



we obtain

4
Xn
i¼1

d2i ¼ 2nðn2 � 1Þ
3

þ 2
Xn
i¼1

d2i � 2
Xn
i¼1

d02
i

or Xn
i¼1

d2i þ
Xn
i¼1

d02
i ¼ nðn2 � 1Þ

3
¼ constant

Further, R cannot equal zero unless n is even, since
Pn

i¼1 d
2
i is always

even because
Pn

i¼1 di ¼ 0, an even number.
The direct approach to determining ur is by enumeration, which

is probably least tedious for R in the form of (3.6). Because of the
symmetry property, only n!=2 cases need be considered. For n ¼ 3, for
example, we list the following sets (s1, s2, s3) which may be paired with
(1,2,3), and the resulting values of R.

The complete probability distribution then is

This method of generating the distribution is time consuming,
even for moderate n. Of course, there are more efficient methods of
enumeration (see, for example, Kendall and Gibbons, 1990, pp. 97–98).
The probability distribution of R is given in Table M of the Appendix as
tail probabilities for n4 10 and as critical values for 114n4 30. More
extensive tables of the exact null distribution of R or

P
D2 are given in

Glasser and Winter (1961), Owen (1962), De Jonge and Van Montfort
(1972), Zar (1972), Otten (1973a,b) Dunstan, Nix, and Reynolds (1979),
Neave (1981), Nelson (1986), Franklin (1988b), Ramsay (1989), and
Kendall and Gibbons (1990).

Although the general null probability distribution of R requires
enumeration, the marginal and joint distributions of any number of
the individual ranks of a single random sample of size n are easily

ðs1; s2; s3Þ
Pn

i¼1 isi r

1;2;3 14 1.0
1;3;2 13 0.5
2;1;3 13 0.5

r �1.0 �0.5 0.5 1.0

fRðrÞ 1=6 2=6 2=6 1=6
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determined from combinatorial theory. For example, for the Y sample,
we have

fSi
ðsiÞ ¼ 1

n
si ¼ 1; 2; . . . ;n ð3:8Þ

fSi;Sj
ðsi; sjÞ ¼ 1

nðn � 1Þ si; sj ¼ 1;2; . . . ;n; si 6¼ sj ð3:9Þ

Thus, using (3.2) and (3.3),

EðSiÞ ¼ nþ 1

2
varðSiÞ ¼ n2 � 1

12

For the covariance, we have for all i 6¼ j,

covðSi;SjÞ ¼ EðSiSjÞ � EðSiÞEðSjÞ

¼ 1

nðn � 1Þ
Xn
i¼1

Xn
j¼1

i 6¼j

ij� 1

n2

Xn
i¼1

i

 !2

¼ 1

n2ðn� 1Þ n
Xn
i¼1

i

 !2

�n
Xn
i¼1

i2 � ðn� 1Þ
Xn
i¼1

i

 !2
24 35

¼ �1
n2ðn� 1Þ

n2ðnþ 1Þð2n þ 1Þ
6

� n2ðnþ 1Þ2
4

" #
¼ �n þ 1

12

ð3:10Þ
The same results hold for the ranks Ri of the X sample. Under the null
hypothesis that the X and Y samples are independent, the ranks Ri

and Sj are independent for all i, j, and the null mean and variance of R
easily found as follows:

E
Xn
i¼1

RiSi

 !
¼ nEðRiÞEðSiÞ ¼ nðn þ 1Þ2

4
ð3:11Þ

var
Xn
i¼1

RiSi

 !
¼ n varðRiÞ varðSiÞ þ nðn� 1Þ covðRi;RjÞ covðSi;SjÞ

¼ nðn2 � 1Þ2 þ nðn � 1Þðn þ 1Þ2
144

¼ n2ðn � 1Þðn þ 1Þ2
144

ð3:12Þ
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Then using the form of R in (3.6)

EðR jH0Þ ¼ 0 varðR jH0Þ ¼ 1

n� 1
ð3:13Þ

ASYMPTOTIC NULL DISTRIBUTION OF R

Considering R in the form of (3.6), and as before assuming Si denotes
the rank of the Y observation paired with the ith smallest X observa-
tion, we see that the distribution of R depends only on the random
variables

Pn
i¼1 iSi. This quantity is a linear combination of random

variables, which can be shown to be asymptotically normally dis-
tributed (see, for example, Fraser, 1957, pp. 247–248). The mean and
variance are given in (3.11) and (3.12). The standardized normal
variable used for an approximate test of independence then is

Z ¼ 12
Xn
i¼1

iSi � 3n3

 !
n�5=2

or, equivalently,

Z ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
ð3:14Þ

There is some disagreement in the literature about the accuracy of this
approximation for moderate n. Some authors claim that the statistic

t ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

p

1� R2
ð3:15Þ

which has approximately Student’s t distribution with n�2 degrees of
freedom, gives more accurate results for moderate n.

TESTING THE NULL HYPOTHESIS

Since R has mean zero for independent random variables, the appro-
priate rejection region of size a is large absolute values of R for a
general alternative of nonindependence and large positive values of R
for alternatives of positive dependence. As in the case of Kendall’s
coefficient, if the null hypothesis of independence is accepted, we can
infer that rðX;YÞ equals zero, but dependence between the variables
does not necessarily imply that rðX;YÞ 6¼ 0. Besides, the coefficient of
rank correlation is measuring association between ranks, not variate
values. Since the distribution of R was derived only under the
assumption of independence, these results cannot be used to construct
confidence-interval estimates of rðX;YÞ or EðRÞ.
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TIED OBSERVATIONS

In all of the foregoing discussion we assumed that the data to be
analyzed consisted of n sets of paired integer ranks. These integer
ranks may be obtained by ordering observations from two continuous
population, but the theory is also equally applicable to any two sets of
n pairs which can be placed separately in a unique preferential order.
In the first case, ties can still occur within either or both sets of sample
measurements, and in the second case it is possible that no preference
can be made between two or more of the individuals in either group.
Thus, for practical purposes, the problem of ties within a set of ranks
must be considered.

If within each set of tied observations the ranks they would have
if distinguishable are assigned at random, nothing is changed since
we still have the requisite type of data to be analyzed. However, such
an approach has little intuitive appeal, and besides an additional
element of chance is introduced. The most common practice for deal-
ing with tied observations here, as in most other nonparametric pro-
cedures, is to assign equal ranks to indistinguishable observations. If
that rank is the midrank in every case, the sum of the ranks for each
sample is still nðn þ 1Þ=2, but the sum of squares of the ranks is
changed, and the expressions in (3.4) to (3.7) are no longer equivalent
to (3.1). Assuming that the spirit of the rank correlation coefficient is
unchanged, the expressions in (3.1) can be calculated directly from the
ranks assigned. However, a form analogous to (3.7) which is equiva-
lent to (3.1) can still be found for use in the presence of ties.

We shall investigate what happens to the sum of squares

Xn
i¼1

ðsi � �sÞ2 ¼
Xn
i¼1

s2i �
nðnþ 1Þ2

2

when there are one or more groups of u tied observations within the Y
sample and each is assigned the appropriate midrank. In each group of
u tied observations which, if not tied, would be assigned the ranks
pk þ 1;pk þ 2; . . . ;pk þ u, the rank assigned to all isXn

i¼1

pk þ i

u
¼ pk þ uþ 1

2

The sum of squares for these tied ranks then is

u pk þ uþ 1

2

	 
2
¼ u p2k þ pkðuþ 1Þ þ ðuþ 1Þ2

4

" #
ð3:16Þ
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and the corresponding sum in the absence of ties would beXu
i¼1

ðpk þ iÞ2 ¼ up2k þ pkuðuþ 1Þ þ uðuþ 1Þð2uþ 1Þ
6

ð3:17Þ

This particular group of u tied observations then decreases the sum of
squares by the difference between (3.17) and (3.16) or

uðu þ 1Þð2uþ 1Þ
6

� uðuþ 1Þ2
4

¼ uðu2 � 1Þ
12

Since this is true for each group of u tied observations, the sum of
squares in the presence of ties is

Xn
i¼1

ðsi � �sÞ2 ¼ nðn2 � 1Þ
12

� u0 ð3:18Þ

where u0 ¼Puðu2 � 1Þ=12 and the summation is extended over all
sets of u tied ranks in the Y sample. Letting t0 denote the corresponding
sum for the X sample, we obtain the alternative forms of (3.1) as

R ¼ 12½Pn
i¼1RiSi � nðnþ 1Þ2=4�

f½nðn2 � 1Þ � 12t0�½nðn2 � 1Þ � 12u0�g1=2
ð3:19Þ

or

R ¼ nðn2 � 1Þ � 6
Pn

i¼1D
2
i � 6ðt0 þ u0Þ

f½nðn2 � 1Þ � 12t0�½nðn2 � 1Þ � 12u0�g1=2
ð3:20Þ

analogous to (3.5) and (3.7), respectively, since hereXn
i¼1

D2
i ¼ nðn2 � 1Þ

6
� t0 � u0 � 2

Xn
i¼1

ðRi � �RÞðSi � �SÞ

Assuming this to be our definition of the sample coefficient of
rank correlation in the presence of ties, its probability distribution
under the null hypothesis of independence is clearly not the same as
the null distribution discussed before for n distinct ranks. For small n,
it is possible again to obtain by enumeration the exact null distribu-
tion conditional upon a given set of ties. This of course is very tedious.
The asymptotic distribution of our R as modified for ties is also normal
since it is still a linear combination of the Si random variables. Since
the total sum of ranks is unchanged when tied ranks are assigned by
the midrank method, EðSiÞ is unchanged and EðR jH0Þ is obviously
still zero. The fact that the variance of modified R is also unchanged in
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the presence of ties is not so obvious. The marginal and joint dis-
tributions of the ranks of the Y sample in the presence of ties can still
be written in the forms (3.8) and (3.9) except that that domain is now n
numbers, not all distinct, which we can write as s01; s

0
2; . . . ; s

0
n. Then

using (3.18),

varðSiÞ ¼
Xn
i¼1

ðs0i � �sÞ2
n

¼ nðn2 � 1Þ � 12u0

12n

For the covariance, proceeding as in the steps leading to (3.10),

covðSi;SjÞ ¼ 1

nðn � 1Þ
Xn
i¼1

Xn
j¼1

i 6¼j

s0is
0
j � �s2

¼ �
Pn

i¼1 ðs0i � �sÞ2
nðn� 1Þ ¼ �nðn2 � 1Þ � 12u0

12nðn� 1Þ
Similar results hold for the X ranks. Now using R in the form of (3.19),
we have

varðR jH0Þ¼ 144½nvarðRiÞ varðSiÞþnðn�1ÞcovðRi;RjÞ covðSi;SjÞ�
½nðn2�1Þ�12t0�½nðn2�1Þ�12u0�

and substitution of the appropriate variances and covariances gives as
before

varðR jH0Þ ¼ 1

n� 1

Thus for large samples with ties, a modified R
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
with R

calculated from (3.19) or (3.20) can still be treated as a standard
normal variable for testing a hypothesis of independence. However,
unless the ties are extremely extensive, they will have little effect on
the value of R. In practice, the common expression given in (3.7) is
often used without corrections for ties. It should be noted that the
effect of the correction factors is to decrease the value of R. This means
that a negative R is closer to �1, not to zero.

USE OF SPEARMAN’S R TO TEST AGAINST TREND

As with Kendall’s T, R can be considered a measure of trend in a single
sequence of time-ordered observations and used to test a null
hypothesis of no trend. This application is called Daniels’ test.
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11.4 THE RELATIONS BETWEEN R AND T; E(R), t, AND r

In Section 11.1 we defined the parameters t and r as two different
measures of association in a bivariate population, one in terms of
concordances and the other as a function of covariance, but noted that
concordance and covariance measure relationship in the same spirit at
least. The sample estimate of t was found to have exactly the same
numerical value and theoretical properties whether calculated in
terms of actual variate values or ranks, since the parameter t and its
estimate are both invariant under all order-preserving transforma-
tions. However, this is not true for the parameter r or for a sample
estimate calculated from (3.1) with variate values. The Pearson pro-
duct-moment correlation coefficient is invariant under linear trans-
formations only, and ranks usually cannot be generated using only
linear transformations.

The coefficient of rank correlation is certainly a measure of as-
sociation between ranks. It has a certain intuitive appeal as an esti-
mate of r, but it is not a direct sample analog of this parameter. Nor
can it be considered a direct sample analog of a ‘‘population coefficient
of rank correlation’’ if the marginal distributions of our random vari-
ables are continuous, since theoretically continuous random variables
cannot be ranked. If an infinite number of values can be assumed by a
random variable, the values cannot be enumerated and therefore
cannot be ordered. However, we still would like some conception,
however nebulous, of a population parameter which is the analog of
the Spearman coefficient of rank correlation in a random sample
of pairs from a continuous bivariate population. Since probabilities of
order properties are population parameters and these probabilities are
the same for either ranks or variate values, if R can be defined in
terms of sample proportions of types of concordance, as Twas, we shall
be able to define a population parameter other than r for which the
coefficient of rank correlation is an unbiased estimate.

For this purpose, we first investigate the relationship between R
and T for samples with no ties from any continuous bivariate popu-
lation. In (2.20), T was written in a form resembling R as

T ¼
Xn
i¼1

Xn
j¼1

UijVij

nðn� 1Þ ð4:1Þ

where

Uij ¼ sgnðXj � XiÞ and Vij ¼ sgnðYj � YiÞ ð4:2Þ
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To complete the similarity, we must determine the general relation
between Uij and Ri, Vij, and Si. A functional definition of Ri was given
in (5.5.1) as

Ri ¼ 1þ
Xn
j¼1
j 6¼i

SðXi � XjÞ ð4:3Þ

where

SðuÞ ¼ 0 if u < 0
1 if u5 0

�
In general, then the relation is

sgnðXj � XiÞ ¼ 1� 2SðXi � XjÞ for all 14 i 6¼ j4n

sgnðXi � XiÞ ¼ 0
ð4:4Þ

Substituting this form back in (4.3), we have

Ri ¼ nþ 1

2
� 1

2

Xn
j¼1

sgnðXj � XiÞ

or

Ri � �R ¼ �
Xn
j¼1

Uij

2

Using R in the form (3.4), by substitution we have

nðn2 � 1ÞR ¼ 12
Xn
i¼1

ðRi � �RÞðSi � �SÞ ¼ 3
Xn
i¼1

 Xn
j¼1

Uij

Xn
k¼1

Vik

!

¼ 3
Xn
i¼1

Xn
j¼1

UijVij þ 3
Xn
i¼1

Xn
j¼1

Xn
k¼1
k 6¼j

UijVik

or from (4.1)

R ¼ 3

n þ 1
T þ 6

nðn2 � 1Þ
Xn
i¼1

Xn
j¼1
i<j

Xn
k¼1
k 6¼j

UijVik ð4:5Þ

Before, we defined two pairs ðXi;YiÞ and ðXj;YjÞ as being con-
cordant if UijVij > 0, with pc denoting the probability of concordance

MEASURES OF ASSOCIATION FOR BIVARIATE SAMPLES 433



and p̂c the corresponding sample estimate, the number of concordant
sample pairs divided by nðn � 1Þ, the number of distinguishable pairs,
and found T ¼ 2p̂c � 1. To complete a definition of R in terms of con-
cordances, because of the last term in (4.5), we must now define an-
other type of concordance, this time involving three pairs. We shall say
that the three pairs ðXi;YiÞ, ðXj;YjÞ and ðXk;YkÞ exhibit a concordance
of the second order if

Xi < Xj whenever Yi < Yk

or

Xi > Xj whenever Yi > Yk

or, equivalently, if

ðXj � XiÞðYk � YiÞ ¼ UijVik > 0

The probability of a second-order concordance is

pc2 ¼ P½ðXj � XiÞðYk � YiÞ > 0�

and the corresponding sample estimate p̂c2 is the number of sets of
three pairs with the product UijVik > 0 for i < j, k 6¼ j, divided by
n
2

 �ðn� 2Þ, the number of distinguishable sets of three pairs. The triple
sum in (4.5) is the totality of all these products, whether positive or
negative, and therefore equals

n
2

	 

ðn� 2Þ½ p̂c2 � ð1� p̂c2Þ� ¼

nðn� 1Þðn� 2Þð2p̂c2 � 1Þ
2

In terms of sample concordances, then, (4.5) can be written as

R ¼ 3

nþ 1
ð2p̂c � 1Þ þ 3ðn� 2Þ

nþ 1
ð2p̂c2 � 1Þ ð4:6Þ

and the population parameter for which R is an unbiased esti-
mator is

EðRÞ ¼ 3½tþ ðn� 2Þð2pc2 � 1Þ�
nþ 1

ð4:7Þ

We shall now express pc2 for any continuous bivariate population
FX;Yðx; yÞ in a form analogous to (2.17) for pc:

434 CHAPTER 11



pc2¼P½ðXi<XjÞ\ðYi<YkÞ�þP½ðXi>XjÞ\ðYi>YkÞ�

¼
Z 1

�1

Z 1

�1
fP½ðXi<xjÞ\ðYi<ykÞ�

þP½ðXi>xjÞ\ðYi>ykÞ�gfXj;Yk
ðxj;ykÞdxjdyk

¼
Z 1

�1

Z 1

�1
½FX;Yðx;yÞþ1�FXðxÞ�FYðyÞþFX;Yðx;yÞ�dFXðxÞdFYðyÞ

¼1þ2
Z 1

�1

Z 1

�1
FX;Yðx;yÞdFXðxÞdFYðyÞ�2

Z 1

�1
FXðxÞdFXðxÞ

¼2
Z 1

�1

Z 1

�1
FX;Yðx;yÞdFXðxÞdFYðyÞ ð4:8Þ

A similar development yields another equivalent form

pc2 ¼ 2

Z 1

�1

Z 1

�1
FXðxÞFYðyÞdFX;Yðx; yÞ ð4:9Þ

If X and Y are independent, of course, a comparison of these ex-
pressions with (2.17) shows that pc2 ¼ pc ¼ 1=2. Unlike pc, however,
which ranges between 0 and 1, pc2 ranges only between 1=3 and 2=3,
with the extreme values obtained for perfect indirect and direct linear
relationships, respectively. This result can be shown easily. For the
upper limit, since for all x, y,

2FXðxÞFYðyÞ4F2
XðxÞ þ F2

YðyÞ
we have from (4.9)

pc2 4 2

Z 1

�1

Z 1

�1
F2

XðxÞdFX;Yðx; yÞ ¼ 2=3

Similarly, for all x, y,

2FXðxÞFYðyÞ ¼ ½FXðxÞ þ FYðyÞ�2 � F2
XðxÞ � F2

YðyÞ
so that from (4.9)

pc2 ¼
Z 1

�1

Z 1

�1
½FXðxÞ þ FYðyÞ�2 dFX;Yðx; yÞ � 2=3

5
Z 1

�1

Z 1

�1
½FXðxÞ þ FYðyÞ�dFX;Yðx; yÞ

� �2
�2=3 ¼ 1=3

Now if X and Y have a perfect direct linear relationship, we can
assume without loss of generality that X ¼ Y, so that
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FX;Yðx; yÞ ¼ FXðxÞ if x4y
FXðyÞ if x > y

�
Then from (4.8)

pc2 ¼ 2ð2Þ
Z 1

�1

Z y

�1
FXðxÞfXðxÞfXðyÞdxdy ¼ 2=3

For a perfect indirect relationship, we assume X ¼ �Y, so that

FX;Yðx; yÞ ¼ FXðxÞ � FXð�yÞ if x5� y
0 if x<�y

�
and

pc2 ¼ 2

Z 1

�1

Z 1

�y

½FXðxÞ � FXð�yÞ�fXðxÞfXð�yÞdxdy

¼
Z 1

�1
f1� F2

Xð�yÞ � 2½1� FXð�yÞ�FXð�yÞgfXð�yÞdy

¼
Z 1

�1
½1� FXð�yÞ�2fXð�yÞdy ¼ 1=3

Substitution of these extreme values in (4.7) shows that for any con-
tinuous population r, t, and E(R) all have the same value for the fol-
lowing cases:

Although strictly speaking we cannot talk about a parameter for
a bivariate distribution which is a coefficient of rank correlation, it
seems natural to define the pseudo rank-correlation parameter, say r2,
as that constant for which R is an unbiased estimator in large samples.
Then from (4.7), we have the definition

r2 ¼ lim
n!1EðRÞ ¼ 3ð2pc2 � 1Þ ð4:10Þ

and for a sample of size n, the relation between EðRÞ, r2, and t is

EðRÞ ¼ 3tþ ðn� 2Þr2
nþ 1

ð4:11Þ

The relation between r2 (for ranks) and r (for variate values) depends
on the relation between pc2 and covariance. From (4.9), we see that

X,Y relation r ¼ t ¼ EðRÞ

Indirect linear dependence �1
Independence 0
Direct linear dependence 1
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pc2 ¼ 2E½FXðXÞFYðYÞ� ¼ 2 cov½FXðXÞ;FYðYÞ� þ 2E½FXðXÞ�E½FYðYÞ�
¼ 2 cov½FXðXÞ;FYðYÞ� þ 1=2

Since

var½FXðXÞ� ¼ var½FYðYÞ� ¼ 1=12

we have

6pc2 ¼ r½FXðXÞ;FYðYÞ� þ 3

and we see from (4.10) that

r2 ¼ r½FXðXÞ;FYðYÞ�
Therefore r2 is sometimes called the grade correlation coefficient, since
the grade of a number x is usually defined as the cumulative prob-
ability FXðxÞ.

11.5 ANOTHER MEASURE OF ASSOCIATION

Another nonparametric type of measure of association for paired
samples which is related to the Pearson product-moment correlation
coefficient has been investigated by Fieller, Hartley, Pearson, and
others. This is the ordinary Pearson sample correlation coefficient of
(3.1) calculated using expected normal scores in place of ranks or
variate values. That is, if xi ¼ EðUðiÞÞ, where UðiÞ is the ith order sta-
tistic in a sample of n from the standard normal population and Si

denotes the rank of the Y observation which is paired with the ith
smallest X observation, the random sample of pairs of ranks

ð1; s1Þ; ð2; s2Þ; . . . ; ðn; snÞ
is replaced by the derived sample of pairs

ðx1; xs1Þ; ðx2; xs2Þ; . . . ; ðxn; xsnÞ
and the correlation coefficient for these pairs is

RF ¼
Pn

i¼1 xixsiPn
i¼1 x

2
i

This coefficient is discussed in Fieller, Hartley, and Pearson (1957) and
Fieller and Pearson (1961). The authors show that the transformed
random variable
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ZF ¼ tanh�1 RF

is approximately normally distributed with moments

EðZFÞ ¼ tanh�1 r 1� 0:6

nþ 8

	 
� �

varðZFÞ ¼ 1

n� 3

where r is the correlation coefficient in the bivariate population from
which the sample is drawn.

The authors also show that analogous transformations on R
and T,

ZR ¼ tanh�1 R

ZT ¼ tanh�1 T

produce approximately normally distributed random variables, but in
the nonnull case the approximation for ZF is best.

11.6 APPLICATIONS

Kendall’s sample tau coefficient (Section 11.2) is one descriptive
measure of association in a bivariate sample. The statistic is calcu-
lated as

T ¼ 2S

nðn� 1Þ ¼
2ðC�QÞ
nðn� 1Þ

where C is the number of concordant pairs and Q is the number of
discordant pairs among ðXi;YiÞ and ðXj;YjÞ, for all i < j in a sample of n
observations. T ranges between �1 and 1, with �1 describing perfect
disagreement, 1 describing perfect agreement, and 0 describing no
agreement. The easiest way to calculate C and Q is to first arrange one
set of observations in an array, while keeping the pairs intact. A pair
in which there is a tie in either the X observations or the Y observa-
tions is not counted as part of either C or Q, and therefore with ties it
may be necessary to list all possible pairs to find the correct values for
C and Q. The modified T is then calculated from (2.37) and called taub.

The null hypothesis of independence between X and Y can be
tested using T. The appropriate rejection regions and P values for an
observed value t are as follows:
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The exact cumulative null distribution ofT is given inTableL of the
Appendix as right-tail probabilities for n4 10. Quantiles of T are also
given for 114n4 30. For n > 30, the normal approximation to the null
distribution of T indicates the following rejection regions and P values:

This test of the null hypothesis of independence can also be used
for the alternative of a trend in a time-ordered sequence of observa-
tions Y if time is regarded as X. The alternative of an upward trend
corresponds to the alternative of positive dependence. This use of
Kendalls’s tau is frequently called the Mann test for trend.

The Spearman coefficient of rank correlation (Section 11.3) is an
alternative descriptive measure of association in a bivariate sample.
Each set of observations is independently ranked from 1 to n, but the
pairs are kept intact. The coefficient is given in (3.7) as

R ¼ 1� 6
Pn

i¼1D
2
i

nðn2 � 1Þ

where Di is the difference of the ranks of Xi and Yi. If ties are present
we use (3.19). Interpretation of the value of R is exactly the same as for
T and the appropriate rejection regions are also in the same direction.
For small samples the null distribution of R is given in Table M in a
form similar to Table L. For large samples the rejection regions are
simply R5 za=2

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
for positive dependence and R4� za=2

ffiffiffiffiffiffiffiffiffiffiffiffi
n � 1

p
for negative dependence. When R is used as a test for trend, it is
frequently called the Daniels’ test for trend. Applications of both of
these statistics are illustrated in Example 6.1.

Alternative Rejection region P value

Positive dependence T5 ta PðT5 tÞ
Negative dependence T4 � ta PðT4 tÞ
Nonindependence T5 ta=2 or T4 � ta=2 2 (smaller of above)

Alternative Rejection region P value

Positive
dependence

T5 za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2nþ 5Þp

=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

Pðz5 3t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2nþ 5Þp

Negative
dependence

T4 � za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2nþ 5Þp

=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

Pðz4 3t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2nþ 5Þp

Nonindependence Both above with za=2 2 (smaller of above)
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Example 6.1 Two judges ranked nine teas on the basis of taste and
full-bodied properties, with 1 indicating the highest ranking. Calcu-
late the Kendall and Spearman measures of association, test the null
hypothesis of independence, and find the appropriate one-tailed P
value in each case, for the data shown below.

Solution The first step in calculating Kendall’s tau is to rearrange
the data for Judge 1 in an array, keeping track of the corresponding
rank of Judge 2 as shown below. Then the number of concordant pairs
is counted as the number of Y ranks that are below and larger than
each Y rank and then summed over all Y’s; the number of discordant
pairs is counted in the same manner but for ranks below and smaller.

We then calculate T ¼ 2ð20Þ=9ð8Þ ¼ 0:556. For the null hypothesis of
independence the right-tailed P value from Table L is 0.022.

The last two columns above show that
P

D2
i ¼ 34 and we com-

pute R ¼ 1� 6ð34Þ=9ð80Þ ¼ 0:717, which is larger than T as expected.

Alternative Rejection region P value

Positive dependence R5 za
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
PðZ5 r=

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p Þ
Negative dependence R4 � za

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
PðZ4 r=

ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p Þ
Nonindependence Both above with za=2 2 (smaller of above)

Tea A B C D E F G H I

Judge 1 1 5 9 7 4 6 8 2 3
Judge 2 4 3 6 8 2 7 9 1 5

Judge 1 Judge 2 C Q D D2

1 4 5 3 �3 9
2 1 7 0 1 1
3 5 4 2 �2 4
4 2 5 0 2 4
5 3 4 0 2 4
6 7 2 1 �1 1
7 8 1 1 �1 1
8 9 0 1 �1 1
9 6 3 9

28 8 0 34
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The right-tailed P value from Table M is P ¼ 0:018 for the alternative
of positive dependence.

At the time of this writing, MINITAB has no command for either
Kendall’s tau or Spearman’s rho. However, we can use MINITAB to
calculate Spearman’s rho by using the rank command on the data (for
Judges 1 and 2, respectively) and then calculating the Pearson
product-moment correlation coefficient on these ranks. The result
R ¼ 0:717 agrees with ours. The MINITAB P value is for a Pearson
correlation and does not apply for Spearman’s rho.

The STATXACT solution gives the coefficients and the exact P
values for a test of independence using both tau and rho, and all of
these agree with ours. Note that the printout shows calculation of both
ta and tb. These are equal because there are no ties in this example. The
solution also shows tc and Somers’ d, which apply for data in a con-
tingency table and are not covered in this book. For Kendall’s tau,
STATXACT shows the asymptotic P-value based on the normal ap-
proximation PðZ5 2:09Þ calculated from (2.30). For Spearman’s rho, it
shows the asymptotic P value based on the approximation given in
(3.15) using Student’s t distribution, Pðt5 2:72Þ with 7 degrees of
freedom. The expressions they use for calculating the asymptotic
standard errors and confidence interval estimates are not clear. The
reader may verify, however, that they did not use our (2.36) because
this gives an estimate of the variance of T which is negative in this
example. As explained earlier, the estimate can be negative for n small,
even though the exact value of the variance must be positive.
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We use the data in Example 6.1 to illustrate how T can be in-
terpreted as a coefficient of disarray, where Q, the number of dis-
cordant pairs, is the minimum number of interchanges in the Y ranks,
one pair at a time, needed to convert them to the natural order. The X
and Y ranks in this example are as follows.

In the Y ranks, we first interchange the 4 and 1 to put 1 in the correct
position. Then we interchange 2 and 5 to make 2 closer to its correct

X 1 2 3 4 5 6 7 8 9

Y 4 1 5 2 3 7 8 9 6

442 CHAPTER 11



position. Then we interchange 2 and 4. We keep proceeding in this
way, working to get 3 in the correct position, and then 4, etc. The
complete set of changes is as follows:

The total number of interchanges required to transform the Y ranks
into the natural order by this systematic procedure is 8, and this is the
value of Q, the total number of discordant pairs. We could make the
transformation using more interchanges, of course, but more are not
needed. It can be shown that Q ¼ 8 is the minimum number of
interchanges.

11.7 SUMMARY

In this chapter we have studied in detail the nonparametric coeffi-
cients that were proposed by Kendall and Spearman to measure
association. Both coefficients can be computed for a sample from a
bivariate distribution, a sample of pairs, when the data are numerical
measurements or ranks indicating relative magnitudes. The absolute
values of both coefficients range between zero and one, with increasing
values indicating increasing degrees of association. The sign of the
coefficient indicates the direction of the association, direct or inverse.
The values of the coefficients are not directly comparable, however. We
know that jRj5 jTj for any set of data, and in fact jRj can be as much
as 50 percent greater than jTj.

Both coefficients can be used to test the null hypothesis of in-
dependence between the variables. Even though the magnitudes of R
and T are not directly comparable, the magnitudes of the P values
based on them should be about the same, allowing for the fact that
they are measuring association in different ways. The interpretation
of T is easier than for R. T is the proportion of concordant pairs in the
sample minus the proportion of discordant pairs. T can also be inter-
preted as a coefficient of disarray. The easiest interpretation of R is as
the sample value of the Pearson product-moment correlation coeffi-
cient calculated using the ranks of the sample data.

Y 1 4 5 2 3 7 8 9 6
1 4 2 5 3 7 8 9 6
1 2 4 5 3 7 8 9 6
1 2 4 3 5 7 8 9 6
1 2 3 4 5 7 8 9 6
1 2 3 4 5 7 8 9 6
1 2 3 4 5 7 8 6 9
1 2 3 4 5 6 7 8 9
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An exact test of the null hypothesis of independence can be
carried out using either T or R for small sample sizes. Generation of
tables for exact P values was difficult initially, but now computers
have the capacity for doing this for even moderate n. For inter-
mediate and large sample sizes, the tests can be performed using
large sample approximations. The distribution of T approaches the
normal distribution much more rapidly than the distribution of R
and hence approximate P values based on R are less reliable than
those based on T.

Both T and R can be used when ties are present in either or both
samples, and both have a correction for ties that improves the normal
approximation. The correction with T always increases the value of T
while the R correction always decreases the value of R, making the
coefficients closer in magnitude.

If we reject the null hypothesis of independence by either T or R,
we can conclude that there is some kind of dependence or ‘‘association’’
between the variables. But the kind of relationship or association that
exists defies any verbal description in general. The existence of a re-
lationship or significant association does not mean that the relation-
ship is causal. The relationship may be due to several other factors, or
to no factor at all. Care should always be taken in stating the results of
an experiment that no causality is implied, either directly or indirectly.

Kendall’s T is an unbiased estimator of a parameter t in the bi-
variate population; t represents the probability of concordance minus
the probability of discordance. Concordance is not the same as corre-
lation, although both represent a kind of association. Spearman’s R is
not an unbiased estimator of the population correlation r. It is an
unbiased estimator of a parameter which is a function of t and the
grade correlation.

The tests of independence based on T and R can be considered
nonparametric counterparts of the test that the Pearson product-
moment correlation coefficient r is equal to zero in the bivariate nor-
mal distribution or that the regression coefficient b equals zero. The
asymptotic relative efficiency of these tests relative to the parametric
test based on the sample Pearson product-moment correlation coeffi-
cient is 9=p2¼ 0.912 for normal distributions and one for the con-
tinuous uniform distribution.

Both T and R can be used to test for the existence of trend in a set
of time-ordered observations. The test based on T is called the Mann
test, and the test based on R is called the Daniels’ test. Both of these
tests are alternatives to the tests for randomness presented in
Chapter 3.
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PROBLEMS

11.1. A beauty contest has eight contestants. The two judges are each asked to rank
the contestants in a preferential order of pulchritude. The results are shown in the table.
Answer parts (a) and (b) using (i) the Kendall tau-coefficient procedures and (ii) the
Spearman rank-correlation-coefficient procedures:

ðaÞ Calculate the measure of association.
ðbÞ Test the null hypothesis that the judges ranked the contestants indepen-

dently (use tables).
ðcÞ Find a 95 percent confidence-interval estimate of t.

11.2. Verify the result given in (4.9).

11.3. Two independent random samples of sizesm and n contain no ties. A set of mþn
paired observations can be derived from these data by arranging the combined samples
in ascending order of magnitude and (a) assigning ranks, (b) assigning sample indi-
cators. Show that Kendall’s tau, calculated for these pairs without a correction for ties, is
linearly related to the Mann-Whitney U statistic for these data, and find the relation if
the sample indicators are (i) sample numbers 1 and 2, (ii) 1 for the first sample and 0 for
the second sample as in the Z vector of Chapter 7.

11.4. Show that for the standardized bivariate normal distribution

Fð0;0Þ¼ 1
4þ 1

2p arcsin r

11.5. The Census Bureau reported that Hispanics are expected to overtake blacks as
the largest minority in the United States by the year 2030. Use two different tests to see
whether there is a direct relationship between number of Hispanics and percent of state
population for the nine states below.

Contestant

Judge A B C D E F G H

1 2 1 3 5 4 8 7 6
2 1 2 4 5 7 6 8 3

State Hispanics (millions)
Percent of state

population

California 6.6 23
Texas 4.1 24
New York 2.1 12
Florida 1.5 12
Illinois 0.8 7
Arizona 0.6 18
New Jersey 0.6 8
New Mexico 0.5 35
Colorado 0.4 11
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11.6. Company-financed expenditures in manufacturing on research and develop-
ment (R&D) are currently about 2.7 percent of sales in Japan and 2.8 percent of
sales in the United States. However, when these figures are looked at separately
according to industry, the following data from Mansfield (1989) show some large
differences.

ðaÞ Use the signed-rank test to determine whether Japan spends a larger per-
centage than the United States on R&D.

ðbÞ Determine whether there is a significant positive relationship between
percentages spent by Japan and the United States (two different methods).

11.7. The World Almanac and Book of Facts published the following divorce rates per
1000 population in the United States. Determine whether these data show a positive
trend using four different methods.

11.8. For the time series data in Example 4.1 of Chapter 3, use the Mann test based on
Spearman’s rank correlation coefficient to see if the data show a positive trend.

Industry Japan United States

Food 0.8 0.4
Textiles 1.2 0.5
Paper 0.7 1.3
Chemicals 3.8 4.7
Petroleum 0.4 0.7
Rubber 2.9 2.2
Ferrous metals 1.9 0.5
Nonferrous metals 1.9 1.4
Metal products 1.6 1.3
Machinery 2.7 5.8
Electrical equipment 5.1 4.8
Motor vehicles 3.0 3.2
Other transport equipment 2.6 1.2
Instruments 4.5 9.0

Year Divorce rate

1945 3.5
1950 2.6
1955 2.3
1960 2.2
1965 2.5
1970 3.5
1975 4.8
1980 5.2
1985 5.0
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11.9. Do Problem 11.8 using the Daniels’ test based on Kendall’s tau.

11.10. The rainfall measured by each of 12 gauges was recorded for 20 successive days.
The average results for each day are as follows:

Use an appropriate test to determine whether these data exhibit some sort of pattern.
Find the P value:

(a) Using tests based on runs with both the exact distribution and the normal
approximation.

(b) Using other tests that you may think are appropriate.
(c) Compare and interpret the results of ðaÞ and ðbÞ.

11.11 A company has administered a screening aptitude test to 20 new employees over
a two-year period. The record of scores and date on which the person was hired are
shown below.

Assuming that these test scores are the primary criterion for hiring, do you think that
over this time period the screening procedure has changed, or the personnel agent has
changed, or supply has changed, or what? Base your answer on an appropriate non-
parametric procedure (there are several appropriate methods).

11.12. Ten randomly chosen male college students are used in an experiment to in-
vestigate the claim that physical strength is decreased by fatigue. Describe the re-
lationship for the data below, using several methods of analysis.

Day Rainfall Day Rainfall

April 1 0.00 April 11 2.10
April 2 0.03 April 12 2.25
April 3 0.05 April 13 2.50
April 4 1.11 April 14 2.50
April 5 0.00 April 15 2.51
April 6 0.00 April 16 2.60
April 7 0.02 April 17 2.50
April 8 0.06 April 18 2.45
April 9 1.15 April 19 0.02
April 10 2.00 April 20 0.00

1=4=01 75 9=21=01 72 12=9=01 81 5=10=02 91
3=9=01 74 10=4=01 77 1=22=02 93 7=17=02 95
6=3=01 71 10=9=01 76 1=26=02 82 9=12=02 90
6=15=01 76 11=1=01 78 3=21=02 84 10=4=02 92
8=4=01 98 12=5=01 80 4=6=02 89 12=6=02 93
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11.13. Given a single series of time-ordered ordinal observations over several years,
name some nonparametric procedures that could be used and how in order to detect
a long-term positive trend. Name as many as you can think of.

11.14. Six randomly selected mice are studied over time and scored on an ordinal basis
for intelligence and social dominance. The data are as follows:

ðaÞ Find the coefficient of rank correlation.
ðbÞ Find the appropriate one-tailed P value for your result in ðaÞ.
ðcÞ Find the Kendall tau coefficient.
ðdÞ Find the appropriate one-tailed P value for your result in ðcÞ.

11.15. A board of marketing executives ranked 10 similar products, and an ‘‘in-
dependent’’ group of male consumers also ranked the products. Use two different non-
parametric procedures to describe the correlation between rankings and find a one-tailed
P value in each case. State the hypothesis and alternative and all assumptions. Compare
and contrast the procedures.

11.16. Derive the null distribution of both Kendall’s tau statistic and Spearman’s rho
for n¼3 assuming no ties.

Minutes between rest periods Pounds lifted per minute

5.5 350
9.6 230
2.4 540
4.4 390
0.5 910
7.9 220
2.0 680
3.3 590
13.1 90
4.2 520

Mouse Intelligence Social dominance

1 45 63
2 26 0
3 20 16
4 40 91
5 36 25
6 23 2

Product A B C D E F G H I J

Executive ranks 9 4 3 7 2 1 5 8 10 6
Independent male ranks 7 6 5 9 2 3 8 5 10 1
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11.17. A scout for a professional baseball team ranks nine players separately in terms
of speed and power hitting, as shown below.

ðaÞ Find the rank correlation coefficient and the appropriate one-tailed P value.
ðbÞ Find the Kendall tau coefficient and the appropriate one-tailed P value.

11.18. Twenty-three subjects are asked to give their attitude toward elementary school
integration and their number of years of schooling completed. The data are shown below.

As a measure of the association between attitude and number of years of schooling
completed:

ðaÞ Compute Kendall’s tau with correction for ties.
ðbÞ Compute Spearman’s R with correction for ties.

Player Speed ranking Power-hitting ranking

A 3 1
B 1 3
C 5 4
D 6 2
E 2 6
F 7 8
G 8 9
H 4 5
I 9 7

Number of years of
school completed at
the time

Attitude toward elementary school integration

Strongly
disagree

Moderately
disagree

Moderately
agree

Strongly
agree

0–6 5 9 12 16
7–9 4 10 13 18
10–12 or G.E.D. 10 7 9 12
Some college 12 12 12 19
College degree (4 yr) 3 12 16 14
Some Graduate 10 15
Graduate degree 14
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12
Measures of Association in Multiple
Classifications

12.1 INTRODUCTION

Suppose we have a set of data presented in the form of a complete two-
way layout of I rows and J columns, with one entry in each of the IJ
cells. In the sampling situation of Chapter 10, if the independent
samples drawn from each of I univariate populations were all of the
same size J, we would have a complete layout of IJ cells. However, this
would be called a one-way layout since only one factor is involved,
the populations. Under the null hypothesis of identical populations,
the data can be considered a single random sample of size IJ from the
common population. The parallel to this problem in classical statistics
is the one-way analysis of variance. In this chapter we shall study
some nonparametric analogs of the two-way analysis-of-variance
problem, all parallel in the sense that the data are presented in the
form of a two-way layout which cannot be considered a single random
sample because of certain relationships among elements.
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Let us first review the techniques of the analysis-of-variance
approach to testing the null hypothesis that the column effects are all
the same. The model is usually written

Xij ¼ mþ bi þ yj þ Eij for i ¼ 1; 2; . . . ; I and j ¼ 1; 2; . . . ;J

The bi and yj are known as the row and column effects, respectively. In
the normal-theory model, the errors Eij are independent, normally
distributed random variables with mean zero and variance s2E. The
test statistic for the null hypothesis of equal column effects or,
equivalently,

H0:y1 ¼ y2 ¼ � � � ¼ yJ

is the ratio

ðI � 1ÞIPJ
j¼1ð�xj � �xÞ2PI

i¼1
PJ

j¼1ðxij � �xi � �xj þ �xÞ2

where

�xi ¼
XJ
j¼1

xij

J
�xj ¼

XI

i¼1

xij

I
�x ¼

XI

i¼1

XJ
j¼1

xij

IJ

If all the assumptions of the model are met, this test statistic has the
F distribution with J�1 and (I�1)(J�1) degrees of freedom.

The first two parallels of this design which we shall consider are
the k-related or k-matched sample problems. The matching can arise
in two different ways, but both are somewhat analogous to the ran-
domized-block design of a two-way layout. In this design, IJ experi-
mental units are grouped into I blocks, each containing J units. A set
of J treatments is assigned at random to the units within each block in
such a way that all J assignments are equally likely, and the assign-
ments in different blocks are independent. The scheme of grouping
into blocks is important, since the purpose of such a design is to
minimize the differences between units in the same block. If the de-
sign is successful, an estimate of experimental error can be obtained
which is not inflated by differences between blocks. This model is often
appropriate in agricultural field experimentation since the effects of
a possible fertility gradient can be reduced. Dividing the field into I
blocks, the plots within each block can be kept in close proximity. Any
differences between plots within the same block can be attributed to
differences between treatments and the block effect can be eliminated
from the estimate of experimental error.

MEASURES OF ASSOCIATION IN MULTIPLE CLASSIFICATIONS 451



The first related-sample problem arises where IJ subjects are
grouped into I blocks each containing J-matched subjects, and within
each block J treatments are assigned randomly to the matched sub-
jects. The effects of the treatments are observed, and we let Xij denote
the observation in block i of treatment number j; i ¼ 1; 2; . . . ; I;
j ¼ 1; 2; . . . ;J. Since the observations in different blocks are in-
dependent, the collection of entries in column number j are in-
dependent. In order to determine whether the treatment (column)
effects are all the same, the analysis-of-variance test is appropriate if
the requisite assumptions are justified. If the observations in each row
Xi1;Xi2; . . . ;XiJ are replaced by their ranking within that row, a non-
parametric test involving the column sums of this I�J table, called
Friedman’s two-way analysis of variance by ranks, can be used to test
the same hypothesis. This is a k-related sample problem when J¼ k.
This design is sometimes called a balanced complete block design and
also a repeated measures design. The null hypothesis is that the
treatment effects are all equal or

H0: y1 ¼ y2 ¼ � � � ¼ yJ

and the alternative for the Friedman test is

H1: yi 6¼ yj for at least one i 6¼ j

A related nonparametric test for the k-related sample problem is
called Page’s test for ordered alternatives. The null hypothesis is the
same as above but the alternative specifies the treatment effects as
occurring in a specific order, as for example,

H1: y1 < y2 < � � � < yJ

For each of these problems the location model is that the re-
spective cdf ’s are Fðx� yi � bjÞ.

Another related-sample problem arises by considering a single
group of J subjects, each of which is observed under I different
conditions. The matching here is by condition rather than subject,
and the observation Xij denotes the effect of condition i on subject
number j; i ¼ 1; 2; . . . ; I; j ¼ 1; 2; . . . ;J. We have here a random sam-
ple of size J from an I-variate population. Under the null hypothesis
that the I variates are independent, the expected sum of the I ob-
servations on subject number j is the same for all j ¼ 1; 2; . . . ;J. In
order to determine whether the column effects are all the same, the
analysis-of-variance test may be appropriate. Testing the indepen-
dence of the I variates involves a comparison of J column totals,
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so that in a sense the roles of treatments and blocks have been re-
versed in terms of which factor is of interest. This is a k-related
sample problem when I¼ k. If the observations in each row are
ranked as before, Friedman’s two-way analysis of variance will pro-
vide a nonparametric test of independence of the k variates. Thus, in
order to effect consistency of results as opposed to consistency of
sampling situations, the presentation here in both cases will be for a
table containing k rows and n columns, where each row is a set of
positive integer ranks.

In this second related-sample problem, particularly if the null
hypothesis of the independence of the k variates is rejected, a measure
of the association between the k variates would be desirable. In fact,
this sampling situation is the direct extension of the paired-sample
problem of Chapter 11 to the k-related sample case. A measure of the
overall agreement between the k sets of rankings, called Kendall’s
coefficient of concordance, can be determined. This statistic can also be
used to test the null hypothesis of independence, but the test is
equivalent to Friedman’s test for n treatments and k blocks. An ana-
logous measure of concordance will be found for k sets of incomplete
rankings, which relate to the balanced incomplete-blocks design. An-
other topic to be treated briefly is a nonparametric approach to finding
a measure of partial correlation or correlation between two variables
when a third is held constant when there are three complete sets of
rankings of n objects.

12.2 FRIEDMAN’S TWO-WAY ANALYSIS OF VARIANCE BY

RANKS IN A k3n TABLE AND MULTIPLE COMPARISONS

As suggested in Section 12.1, in the first related-sample problem we
have data presented in the form of a two-way layout of k rows and n
columns. The rows indicate block, subject, or sample numbers, and the
columns are treatment numbers. The observations in different rows
are independent, but the columns are not because of some unit of
association. In order to avoid making the assumptions requisite for the
usual analysis of variance test that the n treatments are the same,
Friedman (1937, 1940) suggested replacing each treatment observa-
tion within the ith block by a number from the set f1; 2; . . . ;ng which
represents that treatment’s magnitude relative to the other observa-
tions in the same block. We denote the ranked observations by Rij;
i ¼ 1; 2; . . . ; k; j ¼ 1;2; . . . ;n, so that Rij is the rank of treatment
number j when observed in block number i. Then Ri1;Ri2; . . . ;Rin is a
permutation of the first n integers, and R1j;R2j; . . . ;Rkj is the set of
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ranks given to treatment number j in all blocks. We represent the data
in tabular form as follows:

Treatments

1 2 � � � n Row totals

1 R11 R12 � � � R1n nðnþ 1Þ=2
2 R21 R22 � � � R2n nðnþ 1Þ=2
: :

Blocks : ::::::::::::::::::::::::::::::::::: :

: :

k Rk1 Rk2 � � � Rkn nðnþ 1Þ=2
Column totals R1 R2 � � � Rn knðnþ 1Þ=2

ð2:1Þ

The row totals are of course constant, but the column totals are
affected by differences between treatments. If the treatment effects
are all the same, each expected column total is the same and equals
the average column total k(nþ 1)=2. The sum of deviations of observed
column totals around this mean is zero, but the sum of squares of these
deviations will be indicative of the differences in treatment effects.
Therefore we shall consider the sampling distribution of the random
variable.

S ¼
Xn
j¼1

Rj � kðnþ 1Þ
2

� �2
¼
Xn
j¼1

X
k
i¼1 Rij � nþ 1

2

	 
� �2
ð2:2Þ

under the null hypothesis of no difference between the n treatment
effects, that is,

H0: y1 ¼ y2 ¼ � � � ¼ yn

For this null case, in the ith block the ranks are assigned completely at
random, and each row in the two-way layout constitutes a random
permutation of the first n integers if there are no ties. There are then
a total of (n!)k distinguishable sets of entries in the k�n table, and
each is equally likely. These possibilities can be enumerated and the
value of S calculated for each. The probability distribution of S then is

fSðsÞ ¼ us

ðn!Þk

where us is the number of those assignments which yield s as the
sum of squares of column total deviations. A systematic method of
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generating the values of us for n, k from the values of us for n, k�1 can
be employed (see Kendall and Gibbons, 1990, pp. 150–151). A table of
the distribution of S is given here in Table N of the Appendix for n¼ 3,
k4 8 and n¼ 4, k4 4. More extensive tables for the distribution of Q,
a linear function of S to be defined later in (2.8), are given in Owen
(1962) for n¼ 3, k4 15 and n¼ 4, k4 8. Other tables are given in
Michaelis (1971), Quade (1972), and Odeh (1977) that cover the cases
up to k¼ 6, n¼ 6. However, the calculations are considerable even
using the systematic approach. Therefore, outside the range of exist-
ing tables, an approximation to the null distribution is generally used
for tests of significance.

Using the symbol m to denote (nþ 1)=2, (2.2) can be written as

S ¼
Xn
j¼1

Xk
i¼1

ðRij � mÞ2 þ 2
Xn
j¼1

XX
14 i<p4k

ðRij � mÞðRpj � mÞ

¼ k
Xn
j¼1

ð j� mÞ2 þ 2U

¼ knðn2 � 1Þ
12

þ 2U ð2:3Þ

The moments of S then are determined by the moments of U, which
can be found using the following relations from (3.2), (3.3), and (3.10)
of Chapter 11:

EðRijÞ ¼ nþ 1

2
varðRijÞ ¼ n2 � 1

12

covðRij;RiqÞ ¼ �nþ 1

12

Furthermore, by the design assumptions, observations in different
rows are independent, so that for all i 6¼ p the expected value of a
product of functions of Rij and Rpq is the product of the expected values
and covðRij;RpqÞ ¼ 0. Then

EðUÞ ¼ n
k

2

	 

covðRij;RpjÞ ¼ 0

so that varðUÞ ¼ EðU2Þ, where
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U2¼
Xn
j¼1

XX
14 i<p4k

ðRij�mÞ2ðRpj�mÞ2

þ2
XX
14 j<q4n

XX
14 i<p4k

XX
14r<s<k

ðRij�mÞðRpj�mÞðRrq�mÞðRsq�mÞ

ð2:4Þ
Since Rij and Rpq are independent whenever i 6¼ p, we have

EðU2Þ ¼
Xn
j¼1

XX
14 i< p4 k

varðRijÞvarðRpjÞ

þ 2
XX
14 j< q4n

k

2

	 

covðRij;RiqÞcovðRpj;RpqÞ ð2:5Þ

EðU2Þ ¼ n
k

2

	 
 ðn2 � 1Þ2
144

þ 2
n

2

	 

k

2

	 
 ðnþ 1Þ2
144

¼ n2
k

2

	 

ðnþ 1Þ2 ðn� 1Þ

144
ð2:6Þ

Substituting these results back in (2.3), we find

EðSÞ ¼ knðn2 � 1Þ
12

varðSÞ ¼ n2kðk� 1Þðn� 1Þðnþ 1Þ2
72

ð2:7Þ

A linear function of the random variables defined as

Q ¼ 12S

knðnþ 1Þ ¼
12
Pn

j¼1R
2
j

knðnþ 1Þ � 3kðnþ 1Þ ð2:8Þ

has moments EðQÞ ¼ n� 1; varðQÞ ¼ 2ðn� 1Þðk� 1Þ=k � 2ðn� 1Þ,
which are the first two moments of a chi-square distribution with
n� 1 degrees of freedom. The higher moments of Q are also closely
approximated by corresponding higher moments of the chi-square for
k large. For all practical purposes then,Q can be treated as a chi-square
variable with n� 1 degrees of freedom. Numerical comparisons have
shown this to be a good approximation as long as k > 7. The rejection
region for a test of equal treatment effects against the alternative that
the effects are not all equal with significance level approximately a is

Q 2 R for Q5 w2n�1;a

A test based on S or Q is called Friedman’s test.
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From classical statistics, we are accustomed to thinking of an
analysis-of-variance test statistic as the ratio of two estimated vari-
ances or mean squares of deviations. The total sum of squares of de-
viations of all nk ranks around the average rank is

st ¼
Xk
i¼1

Xn
j¼1

ðrij � �rÞ2 ¼ k
Xn
j¼1

j� nþ 1

2

	 
2
¼ kn

n2 � 1

12

and thus we could write Friedman’s test statistic in (2.8) as

Q ¼ ðn � 1ÞS
st

Even though st is a constant, as in classical analysis-of-variance pro-
blems, it can be partitioned into a sum of squares of deviations
between columns plus a residual sum of squares. Denoting the grand
mean and column means respectively by

�r ¼
Xk
i¼1

Xn
j¼1

rij
nk

¼ nþ 1

2
�rj ¼ rj

k
¼
Xk
i¼1

rij
k

we have

st ¼
Xk
i¼1

Xn
j¼1

ðrij � �rÞ2̂ ¼
Xk
i¼1

Xn
j¼1

ðrij � �rj þ �rj � �rÞ2

¼
Xk
i¼1

Xn
j¼1

ðrij � �rjÞ2 þ k
Xn
j¼1

ð�rj � �rÞ2 þ 2
Xn
j¼1

ð�rj � �rÞ
Xk
i¼1

ðrij � �rjÞ

¼
Xk
i¼1

Xn
j¼1

ðrij � �rjÞ2 þ
Xn
j¼1

frj � ½kðnþ 1Þ=2�g2
k

or

st ¼
Xk
i¼1

Xn
j¼1

ðrij � �rjÞ2 þ s

k
¼ kn

n2 � 1

12
ð2:9Þ

An analogy to the classical analysis-of-variance table is given in
Table 2.1.

The usual statistic for equal column effects is the ratio of the
column and residual mean squares, or
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ðk� 1ÞS
kst � S

ð2:10Þ

If the distributions are normal with equal variances, the null dis-
tribution of the statistic in (2.10) is Snedecor’s F with ðn� 1Þ and
ðn � 1Þðk � 1Þ degrees of freedom.

APPLICATIONS

Friedman’s two-way analysis of variance by ranks is appropriate for
the null hypothesis of equal treatment effects

H0: y1 ¼ y2 ¼ � � � ¼ yn

for data on n treatments applied in k blocks. We note that the word
treatment effect is used in a very general way and may not refer to a
real treatment. It may refer to the effect of a condition or characteristic
such as income level or race. The first step is to rank the data in each
block from 1 to n. These ranks are summed for each column to obtain
R1;R2; . . . ;Rn. One form of the test statistic is S, the sum of squares of
deviations of these totals from their mean, given in (2.2) but simplified
here for calculation to

S ¼
Xn
j¼1

R2
j �

k2nðnþ 1Þ2
4

ð2:11Þ

The null distribution of S is given in Table N for n ¼ 3; k4 8 and
n ¼ 4; k4 4 as right-tail probabilities since H0 should be rejected for
S large. For other n, k we can use Table B since the asymptotic
distribution of Q given in (2.8) is chi square with n� 1 degrees of
freedom.

If ties are present to the extent t, we use midranks. The test
statistic that incorporates the correction for ties is

Table 2.1 Analysis of variance table

Source of variation Degrees of freedom Sum of squares

Between columns n� 1 s=k
Between rows k� 1 0a

Residual ðn� 1Þðk� 1Þ st � s=k
Total nk�1 st

a There is no variation between rows here since the row sums are all equal.
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Q ¼ 12ðn � 1ÞS
knðn2 � 1Þ �PP

tðt2 � 1Þ ð2:12Þ

where the double sum is extended over all sets of t tied ranks in each
of the k blocks. This result will be derived in Section 12.4.

If the null hypothesis of equal treatment effects is rejected, we
may want to determine which pairs of treatments differ significantly
in effects and in which direction. Then we can use a multiple com-
parisons procedure to compare the nðn� 1Þ=2 pairs of treatments, as
we did in Section 10.4 for the one-way analysis-of-variance test for
equal medians.

The procedure is to declare that treatments i and j are sig-
nificantly different in effect if

jRi �Rjj5 z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knðnþ 1Þ=6

p
ð2:13Þ

where z� is found as in Section 10.4 as the negative of the
½a=nðn� 1Þ�th quantile of the standard normal distribution. As before,
a is generally chosen to be larger than in the typical hypothesis testing
situation, as around 0.15 or 0.20, because so many comparisons are
being made.

Example 2.1 An important factor in raising small children is to
develop their ability to ask questions, especially in groups so that
they will have this skill when they start school. A study of group size
and number of questions asked by preprimary children in a class-
room atmosphere with a familiar person as teacher consists of di-
viding 46 children randomly into four mutually exclusive groups of
sizes 24, 12, 6, and 4. The total number of questions asked by all
members of each group is recorded for 30 minutes on each of eight
different days. For the data shown in Table 2.2, test the null hy-
pothesis that the effect of the group size is the same in terms of total
number of questions asked.

Solution The days serve as blocks and the group sizes are the
treatments so that n ¼ 4; k ¼ 8. The null hypothesis is equal treatment
effects or H0: y1 ¼ y2 ¼ y3 ¼ y4. The first step is to rank the observa-
tions for each day from 1 to 4, using midranks for the few ties, and sum
the columns to find the Rj, as shown in Table 2.3.

We calculate the sum of squares from (2.11) as

S ¼ ð82 þ 172 þ 26:52 þ 28:52Þ � 82ð4Þð5Þ2
4

¼ 267:5
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and then

Q ¼ 12ð267:5Þ
8ð4Þð5Þ ¼ 20:1

from (2.8) with 3 degrees of freedom. Table B of the Appendix shows
that P < 0:001, so we reject the null hypothesis. It appears that the
larger the group size, the fewer the questions asked.

Notice that there are two sets of ties, occurring on days 1 and 7,
and each is of extent 2. Hence

PP
tðt2 � 1Þ ¼ 12 and the corrected

test statistic from (2.12) is Q ¼ 20:58. The P value is unchanged.
Since the difference between the n treatment effects has been

found to be significant, we can use the multiple comparisons procedure
to determine which pairs of treatments differ significantly. With
a ¼ 0:15 say, k ¼ 8;n ¼ 4, we have z� ¼ 2:241 and the right-hand side
of (2.13) is 11.572. The groups that differ significantly are sizes 6 and
24, and sizes 4 and 24.

Table 2.2 Data for Example 2.1

Group size

Day 24 12 6 4

1 14 23 26 30
2 19 25 25 33
3 17 22 29 28
4 17 21 28 27
5 16 24 28 32
6 15 23 27 36
7 18 26 27 26
8 16 22 30 32

Table 2.3 Ranks of data for Example 2.1

Group size

Day 24 12 6 4

1 1 2 3 4
2 1 2.5 2.5 4
3 1 2 4 3
4 1 2 4 3
5 1 2 3 4
6 1 2 3 4
7 1 2.5 4 2.5
8 1 2 3 4

Total 8 17 26.5 28.5
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The computer solutions to this example are shown below from the
MINITAB and STATXACT packages. We note that the correction for
ties was incorporated to calculate Q in STATXACT while MINITAB
gives the answer both with and without the correction. The exact P
value in STATXACT is based on the randomization distribution or
permutation distribution of the test statistic.
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12.3 PAGE’S TEST FOR ORDERED ALTERNATIVES

The alternative hypothesis for Friedman’s two-way analysis of var-
iance by ranks in a k� n table described in Section 12.2 is that the
treatment effects are not all the same, a two-sided alternative. Now
suppose that we want a one-sided alternative or an ordered alter-
native that the treatment effects yi occur in a specified order, e.g.,

H1: y14 y24 � � � 4 yn

with at least one inequality strict. Page (1963) suggested a test based
on a weighted sum of the column totals

L ¼
Xn
j¼1

YjRj ð3:1Þ

where the weight Yj is the hypothetical ranking of the jth treatment,
predicted from prior considerations. The null hypothesis should be
rejected in favor of this ordered alternative for large values of L.
Tables of exact critical values of L are given in Page (1963) for levels
0.001, 0.01, and 0.05 and reproduced here as Table Q in the Appendix.
For large values of k and n, the statistic (with a continuity correction)

Z ¼ 12ðL� 0:5Þ � 3knðnþ 1Þ2
nðnþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðn� 1Þp ð3:2Þ

is approximately standard normal and the appropriate rejection
region is right tail.

The test based on L can be shown to be related to the average of
the rank correlation coefficients between each ranking and the rank-
ing predicted by the alternative. This relationship is

rav ¼ 12L

kðn3 � nÞ �
3ðn þ 1Þ
n� 1

The Page test can also be used in the situation of Section 12.4
where we have k sets of rankings of n objects and the alternative
states an a priori ranking of the objects.

Example 3.1 This numerical example is based on one used by Page
(1963) to illustrate his proposed procedure. The research hypothesis
is that speed of learning is related to the similarity of practice
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material used in pretraining sessions to the test criterion learning
material. Group A used practice material most similar to that of
criterion learning, followed by groups B and C in that order, and
group D had no pretraining. Therefore the predicated ranking from
best to worst is A; B; C; D; or yD < yC < yB < yA, where rank 1 is
given to the least rapid learning. Note that Page’s article uses 1 to
denote most rapid, whereas we use 1 to denote least rapid. Six
different classes divided into these four groups gave the rankings
shown in Table 3.1.

We use (3.1) to compute L¼ 168. The critical value from Table Q
with n ¼ 4; k ¼ 6 and a ¼ 0:05 is 163, so we reject the null hypothesis
of equal treatment effects in favor of the ordered alternative. Using
the normal approximation with a continuity correction and a ¼ 0:05,
we reject when

L5
knðnþ 1Þ2

4
þ 0:5þ nðnþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðn� 1Þp
12

za

which equals 162.13 for our example ðz0:05 ¼ 1:645Þ. Again, we reject
the null hypothesis using the normal approximation.

The computer solution to this example is shown below with an
output from STATXACT; the value of the statistic 168 agrees with ours
and both the exact and the approximate P values suggest rejecting the
null hypothesis, which agree with our conclusions. The reader can

Table 3.1 Data for Example 3.1

Treatments

Classes A B C D

1 3 4 2 1
2 4 2 1 3
3 4 2 3 1
4 4 1 3 2
5 2 4 3 1
6 4 3 1 2

Rj 21 16 13 10
Yj 4 3 2 1
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verify that STATXACT does not use a continuity correction to calculate
the approximate P value.

Example 3.2 In light of our conjecture in Example 2.1, it will be in-
structive to repeat the data analysis for the alternative

H1: y244 y124 y64 y4

where y indicates the effect of the group size on asking questions and
the subscript indicates the size of the group. The test statistic for these
data is

L ¼ 1ð8Þ þ 2ð17Þ þ 3ð26:5Þ þ 4ð28:5Þ ¼ 235:5

and the P value from Table Q is less than 0.001. Our previous con-
jecture that the larger the group size, the fewer questions are asked
does appear to be correct.

The computer solution to this example is shown below with an
output from STATXACT. Our hand calculations and conclusions agree
with those obtained from the output.
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A different test for ordered alternatives was proposed by
Jonckheere (1954), but the Page test is easier to use.

12.4 THE COEFFICIENT OF CONCORDANCE FOR k SETS OF RANKINGS

OF n OBJECTS

The second k-related sample problem mentioned in Section 12.1
involves k sets of rankings of n subjects, where we are interested both
in testing the hypothesis that the k sets are independent and in
finding a measure of the relationship between rankings. In the com-
mon parlance of this type of sample problem, the k conditions are
called observers, each of whom is presented with the same set of n
objects to be ranked. The measure of relationship then will describe
the agreement or concordance between observers in their judgments
on the n objects.

Since the situation here is an extension of the paired-sample
problem of Chapter 11, one possibility for a measure of agreement is to
select one of the measures for paired samples and apply it to each of
the k

2

 �
sets of pairs of rankings of n objects. However, if k

2

 �
tests of the

null hypothesis of independence are then made using the sampling
distribution appropriate for the measure employed, the tests are not
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independent and the overall probability of a type I error is difficult to
determine but necessarily increased. Such a method of hypothesis
testing is then statistically undesirable. We need a single measure of
overall association which will provide a single test statistic designed to
detect overall dependence between samples with a specified sig-
nificance level. If we could somehow combine measures obtained for
each of the k

2

 �
pairs, this would provide a single coefficient of overall

association which can be used to test the null hypothesis of in-
dependence or no association between rankings if its sampling dis-
tribution can be determined.

The coefficient of concordance is such an approach to the problem
of relationship between k sets of rankings. It is a linear function of the
average of the coefficients of rank correlation for all pairs of rankings,
as will be shown later in this section. However, the rationale of the
measure will be developed independently of the procedures of the last
chapter so that the analogy to analysis-of-variance techniques will be
more apparent.

For the purpose of this parallel, then, we visualize the data as
presented in the form of a two-way layout of dimension k � n as in
(2.1), with row and column labels now designating observers and ob-
jects instead of blocks and treatments. The table entries Rij denote the
rank given by the ith observer to the jth object. Then the ith row is a
permutation of the numbers 1; 2; . . . ;n, and the jth column is the col-
lection of ranks given to object number j by all observers. The ranks in
each column are then indicative of the agreement between observers,
since if the jth object has the same preference relative to all other
objects in the opinion of each of the k observers, all ranks in the jth
column will be identical. If this is true for every column, the observers
agree perfectly and the respective column totals ðR1;R2; . . . ;RnÞ will be
some permutation of the numbers

1k; 2k; 3k; . . . ;nk

Since the average column total is kðn þ 1Þ=2, for perfect agreement
between rankings the sum of squares of deviations of column totals
from the average column total will be a constant

Xn
j¼1

jk� kðn þ 1Þ
2

� �2
¼ k2

Xn
j¼1

j� nþ 1

2

	 
2
¼ k2n

n2 � 1

12
ð4:1Þ

The actual observed sum of squares of these deviations is
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S ¼
Xn
j¼1

Rj � kðnþ 1Þ
2

� �2
ð4:2Þ

We found in (2.9) that

kst ¼ k2nðn2 � 1Þ
12

¼ sþ k
Xk
i¼1

Xk
j¼1

ðrij � �rjÞ2 ð4:3Þ

where st is the total sum of squares of deviations of all ranks around
the average rank. In terms of this situation, however, we see from (4.1)
that kst is the sum of squares of column total deviations when there is
perfect agreement. Therefore the value of S for any set of k rankings
ranges between zero and k2nðn2 � 1Þ=12, with the maximum value
attained when rj ¼ jk for all j, that is, when there is perfect agree-
ment, and the minimum value attained when rj ¼ kðn þ 1Þ=2 for all j,
that is, when each observer’s rankings are assigned completely at
random so that there is no agreement between observers. If the
observers are called samples, no agreement between observers is
equivalent to independence of the k samples.

The ratio of S to its maximum value

W ¼ S

kst
¼ 12S

k2nðn2 � 1Þ ð4:4Þ

therefore provides a measure of agreement between observers, or
concordance between sample rankings, or dependence of the samples.
This measure is called Kendall’s coefficient of concordance. It ranges
between 0 and 1, with 1 designating perfect agreement or concordance
and 0 indicating no agreement or independence of samples. As W
increases, the set of ranks given to each object must become more
similar because in the error term of (4.3),

Pk
i¼1ðrij � �rjÞ2 becomes

smaller for all j, and thus there is greater agreement between obser-
vers. In order to have the interpretation of this k-sample coefficient be
consistent with a two-sample measure of association, one might think
some measure which ranges from �1 toþ 1 with �1 designating per-
fect discordance would be preferable. However, for more than two
samples, there is no such thing as perfect disagreement between
rankings, and thus concordance and discordance are not symmetrical
opposites. Therefore the range 0 to 1 is really more appropriate for a
k-sample measure of association.
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RELATIONSHIP BETWEEN W AND RANK CORRELATION

We shall now show that the statistic W is related to the average of the
k
2

 �
coefficients of rank correlation which can be calculated for the k

2

 �
pairings of sample rankings. The average value is

rav ¼
PP

14 i<m4 k ri;m

k
2

	 
 ¼
Xk
i¼1

Xk
m¼1

i 6¼m

ri;m
kðk � 1Þ ð4:5Þ

where

ri;m ¼ 12

nðn2 � 1Þ
Xn
j¼1

rij � nþ 1

2

	 

rmj � nþ 1

2

	 

for all i 6¼ m

Denoting the average rank ðn þ 1Þ=2 by m, we have

rav ¼ 12
Xn
j¼1

Xk
i¼1

Xk
m¼1

i 6¼m

ðrij � mÞðrmj � mÞ
knðk� 1Þðn2 � 1Þ

¼ 12
Xn
j¼1

½Pk
i¼1ðrij � mÞ�2 �Pk

i¼1ðrij � mÞ2
knðk� 1Þðn2 � 1Þ

¼
Pn

j¼1ðrj � kmÞ2 � st

ðk � 1Þst ¼ s� st
ðk� 1Þst ¼

kw� 1

k � 1
ð4:6Þ

or

W ¼ rav þ 1� rav
k

¼ ravðk � 1Þ þ 1

k
ð4:7Þ

From this relation, we see that W ¼ 1 when rav ¼ 1, which can occur
only when ri;m equals 1 for all sets ði;mÞ of two samples, since always
ri;m 4 1. It is impossible to have rav ¼ �1, since ri;m ¼ �1 cannot occur
for all sets ði;mÞ simultaneously. Since we have already shown that
the minimum value of W is zero, it follows from (4.7) that the smallest
possible value of rav is �1=ðk� 1Þ.

TESTS OF SIGNIFICANCE BASED ON W

Suppose we consider each column in our k� n table to be the ranks of
observations from a k-variate population. With n columns, we can say
that ðR1j;R2j; . . . ;RkjÞ; j ¼ 1; 2; . . . ;n, constitute ranks of a random
sample of size n from a k-variate population. We wish to test the
null hypothesis that the variates are independent. The coefficient of
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concordance W is an overall measure of the association between the
ranks of the k variates or the k sets of rankings of n objects, which in
turn estimates somemeasure of the relationship between the k variates
in the population. If the variates are independent, there is no asso-
ciation and W is zero, and for complete dependence there is perfect
agreement and W equals 1. Therefore the statistic W may be used to
test the null hypothesis that the variates are independent. The
appropriate rejection region is large values of W.

In the null case, the ranks assigned to the n observations are
completely random for each of the k variates, and the ðn!Þk assign-
ments are all equally likely. The random sampling distribution of S (or
W) then is exactly the same as in Section 12.2. Table N of the Appendix
can therefore be used, and for k large the distribution of

Q ¼ 12S

knðnþ 1Þ ¼ kðn� 1ÞW

may be approximated by the chi-square distribution with n� 1
degrees of freedom.

Other approximations are also occasionally employed for tests of
significance. Although the mean and variance of W are easily found
using the moments already obtained for S in (2.7), it will be more in-
structive to determine the null moments of W directly by using its
relationship with Rav given in (4.7). From (11.3.13), the mean and
variance of Ri;m, the rank-correlation coefficient of any pairing of in-
dependent sets of ranks, are

EðRi;mÞ ¼ 0 varðRi;mÞ ¼ 1

n � 1
for all 14 i < m4 k

For any two independent sets of pairings of independent ranks, say
ði;mÞ and ðp; jÞ where 14 i < m4 k; 14 p < j4 k, the covariance is

covðRi;m;Rp;jÞ ¼ 0 unless i ¼ p and m ¼ j

Therefore, from the definition of Rav in (4.5), we have

EðRavÞ ¼ 0

k

2

	 
2
varðRavÞ ¼

X
14 i

X
<m4k

varðRi;mÞ

þ
X
14 i

X
<m4k

X
14p

X
< j4k

i 6¼p orm 6¼j

covðRi;m;Rp;jÞ ¼ k

2

	 
�
ðn�1Þ

and

470 CHAPTER 12



varðRavÞ ¼ 2

kðk� 1Þðn� 1Þ

Now using (4.7),

EðWÞ ¼ 1

k
varðWÞ ¼ 2ðk� 1Þ

k3ðn� 1Þ ð4:8Þ

The reader can verify that these are exactly equal to the mean
and the variance of the beta distribution with parameters

a ¼ kðn � 1Þ � 2

2k
and b ¼ ðk � 1Þ½kðn� 1Þ � 2�

2k

An investigation of the higher moments of W shows that they are
approximately equal to the corresponding higher moments of the beta
distribution unless kðn � 1Þ is small. Thus an approximation to the
distribution of W is the beta distribution, for which tables are avail-
able. However, if any random variable, say X, has the beta distribu-
tion with parameters a and b, the transformation Y ¼ bX=½að1� XÞ�
produces a random variable with Snedecor’s F distribution with
parameters v1 ¼ 2a and v2 ¼ 2b, and the transformed variable
Z ¼ ðlnYÞ=2 has Fisher’s z distribution with the same parameters.
Applying these transformations here, we find the approximate dis-
tributions

1. ðk� 1ÞW=ð1�WÞ is Snedecor’s F with n1 ¼ n� 1� 2=k and
n2 ¼ ðk� 1Þv1

2. ln½ðk� 1ÞW=ð1�WÞ�=2 is Fisher’s z with n1 ¼ n � 1� 2=k and
n2 ¼ ðk� 1Þv1

in addition to our previous approximation

3. kðn� 1ÞW is chi-square with n� 1 degrees of freedom.

Approximation 1 is not surprising, as we found in (2.10) that the
random variable

ðk� 1ÞS
kst � S

¼ ðk� 1ÞW
1�W

was the ratio of mean squares analogous to the analysis-of-variance
test statistic with n� 1 and ðn � 1Þðk � 1Þ degrees of freedom.
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ESTIMATION OF THE TRUE PREFERENTIAL ORDER OF OBJECTS

Assume that the coefficient of concordance is computed for some k
sets of rankings of n objects and the null hypothesis of no agree-
ment is rejected. The magnitude of this relative measure of
agreement implies that not all these particular observers ranked
the objects strictly randomly and independently. This might be
interpreted to mean that there is some agreement among these
observers and that perhaps some unique ordering of these objects
exists in their estimation. Suppose we call this the true preferential
ordering. If there were perfect agreement, we would know which
object is least preferred, which is next, etc., by the agreed-upon
ranks. Object number j would have the position m in the true
preferential ordering if the sum of ranks given object j is km. In
our k� n table of ranks, the ordering corresponds to the ranks of
the column sums. In a case of less-than-perfect agreement, then,
the true preferential ordering might be estimated by assigning
ranks to the objects in accordance with the magnitudes of the
column sums.

This estimate is best in the sense that if the coefficient of rank
correlation is calculated between this estimated ranking and each of
the k observed rankings, the average of these k correlation coefficients
is a maximum. To show this, we let re1; re2; . . . ; ren be any estimate of
the true preferential ordering, where rej is the estimated rank of object
number j. If Re;i denotes the rank-correlation coefficient between this
estimated ranking and the ranking assigned by the ith observer, the
average rank correlation is

Xk
i¼1

re;i
k

¼ 12
Xk
i¼1

Xn
j¼1

ðrej � mÞðrij � mÞ
knðn2 � 1Þ ¼ 12

Xn
j¼1

ðrej � mÞðrj � kmÞ
knðn2 � 1Þ

¼ 12
Pn

j¼1 rejrj
knðn2 � 1Þ � 3ðnþ 1Þ

ðn � 1Þ

where m ¼ ðnþ 1Þ=2 and rj is the jth column sum as before. This
average then is a maximum when

Pn
j¼1 rejrj is a maximum, i.e., when

the rej are in the same relative order of magnitude as the rj.
This estimate is also best in a least-squares sense. If rej is any

estimated rank of object j and the estimate is the true preferential
rank, the jth column sum would equal krej. A measure of the error in
this estimate then is the sum of squares of deviations
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Xn
j¼1

ðrj � krejÞ2 ¼
Xn
j¼1

r2j þ k2
Xn
j¼1

r2ej � 2k
Xn
j¼1

rjrej

¼
Xn
j¼1

r2j þ k2
Xn
i¼1

i2 � 2k
Xn
j¼1

rjrej

¼ c� 2k
Xn
j¼1

rjrej

where c is a constant. The error is thus minimized when
Pn

j¼1 rjrej is
a maximum, and the rej should be chosen as before.

TIED OBSERVATIONS

Up to now we have assumed that each row of our k � n table is a
permutation of the first n integers. If an observer cannot express any
preference between two or more objects, or if the objects are actually
indistinguishable, we may wish to allow the observer to assign equal
ranks. If these numbers are the midranks of the positions each set of
tied objects would occupy if a preference could be expressed, the
average rank of any object and the average column sum are not
changed. However, the sum of squares of deviations of any set of n
ranks is reduced if there are ties. As we found in (11.3.18), for any
i ¼ 1; 2; . . . ; k, the corrected value is

Xn
j¼1

rij � nþ 1

2

	 
2
¼ nðn2 � 1Þ �P tðt2 � 1Þ

12

The maximum value of s=k, as in (2.9), is then reduced to

st ¼
Xk
i¼1

Xn
j¼1

rij � nþ 1

2

	 
2
¼ knðn2 � 1Þ �PP

tðt2 � 1Þ
12

where the double sum is extended over all sets of t tied ranks in each
of the k rows. The relative measure of agreement in the presence of
ties then is W ¼ S=kst. The significance of the corrected coefficient W
can be tested using any of the previously mentioned approximations
for W.

APPLICATIONS

The coefficient of concordance is a descriptive measure of the agree-
ment between k sets of rankings of n objects and is defined in (4.4)
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where S is easily calculated from (2.11). To test the null hypothesis of
no association or no agreement between rankings against the alter-
native of agreement or positive dependence, Table N of the Appendix
can be used to find a right-tail critical value or P value for S in small
samples. For large samples, the test statistic Q in (2.8) or equivalently
kðn� 1ÞW can be used with Table B and n� 1 degrees of freedom.

Example 4.1 Eight graduate students are each given examinations in
quantitative reasoning, vocabulary, and reading comprehension. Their
scores are listed below. It is frequently claimed that persons who excel
in quantitative reasoning are not as capable with verbal, and vice
versa, and yet a truly intelligent person must possess all of these
abilities. Test these data to see if there is an association between
scores. Does there seem to be an indirect relationship between quan-
titative and verbal abilities?

Solution The first step is to rank the students from 1 (best) to 8 ac-
cording to their scores on each of the three skills. This will give us
k ¼ 3 sets of rankings of n ¼ 8 objects. Then we compute the rank
sums as shown below.

For these data
P

R2 ¼ 1510 and S from (2.11) is S ¼ 52, and
W ¼ 0:138 from (4.4) is a descriptive measure of the agreement
between rankings. To test the null hypothesis, we need Q from (2.8),

Student

Test 1 2 3 4 5 6 7 8

Quantitative 90 60 45 48 58 72 25 85
Vocabulary 62 81 92 76 70 75 95 72
Reading 60 91 85 81 90 76 93 80

Student

Test 1 2 3 4 5 6 7 8

Quantitative 1 4 7 6 5 3 8 2
Vocabulary 8 3 2 4 7 5 1 6
Reading 8 12 4 5 3 7 1 6

Total 17 9 13 15 15 15 10 14
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which is Q ¼ 2:89 with 7 degrees of freedom. The P value from Table B
is 0:50 < P < 0:90, so there appears to be no agreement between the
ranks. We might note that the greatest source of disagreement is the
Quantitative scores in comparison with the other two, as suggested by
the question about an indirect relationship between quantitative and
verbal abilities. One way to answer this question statistically is to
obtain a verbal score for each student as the sum of the vocabulary and
reading scores and compare this ranking with the quantitative rank-
ing using say the rank correlation coefficient. We do this now.

We have
P

R2 ¼ 158 and R ¼ �0:881 with P ¼ 0:004 from Table M.
There is a strong negative dependence between verbal and quantita-
tive scores.

The SPSSX and STATXACTcalculations of the Kendall coefficient
of concordance are shown below. Note that the statistic value agrees
exactly with hand calculations. The packages give the same asymptotic
P value, 0.8951, which leads to the same decision as ours. STATXACT
provides the exact P value, 0.9267, and the decision is the same.

Student

Test 1 2 3 4 5 6 7 8

Verbal score 122 171 177 157 160 151 188 152
Verbal rank 8 3 2 5 4 7 1 6
Quantitative rank 1 4 7 6 5 3 8 2
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12.5 THE COEFFICIENT OF CONCORDANCE FOR k SETS OF

INCOMPLETE RANKINGS

As an extension of the sampling situation of Section 12.4, suppose that
we have n objects to be ranked and a fixed number of observers to rank
them but each observer ranks only some subset of the n objects. This
situation could arise for reasons of economy or practicality. In the case
of human observers particularly, the ability to rank objects effectively
and reliably may be a function of the number of comparative judg-
ments to be made. For example, after 10 different brands of bourbon
have been tasted, the discriminatory powers of the observers may
legitimately be questioned.

We shall assume that the experimental design in this situation is
such that the rankings are incomplete in the same symmetrical way as
in the balanced incomplete-blocks design which is used effectively in
agricultural field experiments. In terms of our situation, this means
that:

1. Each observer will rank the same number m of objects for some
m < n.

2. Every objectwill be rankedexactly the same total number k of times.
3. Each pair of objects will be presented together to some observer a

total of exactly l times, l5 1, a constant for all pairs.

These specifications then ensure that all comparisons are made with
the same frequency.
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In order to visualize the design, imagine a two-way layout of p
rows and n columns, where the entry dij in (i,j) cell equals 1 if object j is
presented to observer i and 0 otherwise. The design specifications then
can be written symbolically as

1.
Pn

j¼1 dij ¼ m for i ¼ 1;2; . . . ;p

2.
Pp

i¼1 dij ¼ k for j ¼ 1; 2; . . . ;n

3.
Pp

i¼1 dijdir ¼ l for all r 6¼ j ¼ 1; 2; . . . ;n

Summing on the other subscript in specifications 1 and 2, we obtainXp
i¼1

Xn
j¼1

dij ¼ mp ¼ kn

which implies that the number of observers is fixed by the design to be
p ¼ kn=m. Now using specification 3, we have

Xp
i¼1

Xn
j¼1

dij

 !2

¼
Xp
i¼1

 Xn
j¼1

d2ij þ
Xn
j¼1

Xn
r¼1

j 6¼r

dij dir

!
¼ mp þ lnðn� 1Þ

and from specification 1, this same sum equals pm2. This requires the
relation

l ¼ pmðm� 1Þ
nðn � 1Þ ¼ kðm� 1Þ

n � 1

Since p and l must both be positive integers, m must be a factor of kn
and n� 1 must be a factor of kðm� 1Þ. Designs of this type are called
Youden squares or incomplete Latin squares. Such plans have been
tabulated (for example, in Cochran and Cox, 1957, pp. 520–544). An
example of this design for n ¼ 7; l ¼ 1;m ¼ k ¼ 3, where the objects
are designated by A, B, C, D, E, F, and G is:

Observer 1 2 3 4 5 6 7

Objects presented
for ranking

A B C D E F G
B C D E F G A
D E F G A B C
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We are interested in determining a single measure of the overall
concordance or agreement between the kn=m observers in their re-
lative comparisons of the objects. For simplification, suppose there is
some natural ordering of all n objects and the objects labeled accord-
ingly. In other words, object number r would receive rank r by all
observers if each observer was presented with all n objects and the
observers agreed perfectly in their evaluation of the objects. For per-
fect agreement in a balanced incomplete ranking then, where each
observer assigns ranks 1; 2; . . . ;m to the subset presented to him, ob-
ject 1 will receive rank 1 whenever it is presented; object 2 will receive
rank 2 whenever it is presented along with object 1, and rank 1
otherwise; object 3 will receive rank 3 when presented along with both
objects 1 and 2, rank 2 when with either objects 1 or 2 but not both,
and rank 1 otherwise, etc. In general, then, the rank of object j when
presented to observer i is one more than the number of objects pre-
sented to that observer from the subset of objects f1; 2; . . . ; j� 1g, for
all 24 j4n. Symbolically, using the d notation of before, the rank of
object j when presented to observer i is 1 for j ¼ 1 and

1þ
Xj�1
r¼1

dir for all 24 j4n

The sum of the ranks assigned to object j by all p observers in the case
of perfect agreement then is

Xp
i¼1

1þ
Xj�1
r¼1

dir

 !
dij ¼

Xp
i¼1

dij þ
Xj�1
r¼1

Xp
i¼1

dir dij
�k þ lðj� 1Þ

for j ¼ 1; 2; . . . ;n

as a result of the design specifications 2 and 3.
Since each object is ranked a fixed number, k, of times, the ob-

served data for an experiment of this type can easily be presented in
a two-way layout of k rows and n columns, where the jth column
contains the collection of ranks assigned to object j by those observers
to whom object j was presented. The rows no longer have any sig-
nificance, but the column sums can be used to measure concordance.
The sum of all ranks in the table is ½mðmþ 1Þ=2�½kn=m� ¼ knðmþ 1Þ=2,
and thus the average column sum is kðmþ 1Þ=2. In the case of perfect
concordance, the column sums are some permutation of the numbers

k; kþ l; kþ 2l; . . . ; k þ ðn� 1Þl
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and the sums of squares of deviations of column sums around their
mean is

Xn�1
j¼0

ðkþ jlÞ � kðmþ 1Þ
2

� �2
¼ l2nðn2 � 1Þ

12

Let Rj denote the actual sum of ranks in the jth column. A relative
measure of concordance between observers may be defined here as

W ¼ 12
Pn

j¼1½Rj � kðmþ 1Þ=2�2
l2nðn2 � 1Þ ð5:1Þ

If m ¼ n and l ¼ k so that each observer ranks all n objects, (5.1) is
equivalent to (4.4), as it should be.

This coefficient of concordance also varies between 0 and 1 with
larger values reflecting greater agreement between observers. If there
is no agreement, the column sums would all tend to be equal to the
average column sum and W would be zero.

TESTS OF SIGNIFICANCE BASED ON W

For testing the null hypothesis that the ranks are allotted randomly by
each observer to the subset of objects presented to him so that there is
no concordance, the appropriate rejection region is large values of W.
This test is frequently called the Durbin (1951) test.

The exact sampling distribution of W could be determined only
by an extensive enumeration process. Exact tables for 15 different
designs are given in van der Laan and Prakken (1972). For k large
an approximation to the null distribution may be employed for tests
of significance. We shall first determine the exact null mean and
variance of W using an approach analogous to the steps leading to
(2.7). Let Rij; i ¼ 1; 2; . . . ; k, denote the collection of ranks allotted to
object number j by the k observers to whom it was presented.
From (11.3.2), (11.3.3), and (11.3.10), in the null case then for all i, j,
and q 6¼ j

EðRijÞ ¼ mþ 1

2
varðRijÞ ¼ m2 � 1

12
covðRij;RiqÞ ¼ �mþ 1

12

and Rij and Rhj are independent for all j where i 6¼ h. Denoting
ðmþ 1Þ=2 by m, the numerator of W in (5.1) may be written as
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12
Xn
j¼1

Xk
i¼1

Rij � km

" #2

¼ 12
Xn
j¼1

Xk
i¼1

ðRij � mÞ
" #2

¼ 12
Xn
j¼1

Xk
i¼1

ðRij � mÞ2 þ 24
Xn
j¼1

XX
14 i<h4k

ðRij � mÞðRhj � mÞ

¼ pmðm2 � 1Þ þ 24U ¼ l2nðn2 � 1ÞW ð5:2Þ
Since covðRij;RhjÞ ¼ 0 for all i < h; EðUÞ ¼ 0. Squaring the sum
represented by U, we have

U2 ¼
Xn
j¼1

XX
14 i<h4 k

ðRij � mÞ2ðRhj � mÞ2 þ 2
XX
14 j<q4n

XX
14 i<h4k

�
XX
14 r<s4 k

ðRij � mÞðRhj � mÞðRrq � mÞðRsq � mÞ

and

EðU2Þ ¼
Xn
j¼1

XX
14 i<h4 k

varðRijÞ varðRhjÞ

þ 2
XX
14 j<q4n

l

2

	 

covðRij;RiqÞ covðRhj;RhqÞ

since objects j and q are presented together to both observers i and h
a total of l

2

	 

times in the experiment. Substituting the respective

variances and covariances, we obtain

varðUÞ ¼ EðU2Þ ¼
n

k

2

 !
ðm2 � 1Þ2 þ 2

n

2

 !
l

2

 !
ðmþ 1Þ2

144

¼ nkðmþ 1Þ2ðm� 1Þ ðm� 1Þðk� 1Þ þ ðl� 1Þ
288

From (5.2), the moments of W are

EðWÞ ¼ mþ 1

lðn þ 1Þ
varðWÞ ¼ 2ðmþ 1Þ2 ðm� 1Þðk� 1Þ þ ðl� 1Þ

nkl2ðm� 1Þðn þ 1Þ2
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As in the case of complete rankings, a linear function ofW has moments
approximately equal to the corresponding moments of the chi-square
distribution with n� 1 degrees of freedom if k is large. This function is

Q ¼ lðn2 � 1ÞW
mþ 1

and its exact mean and variance are

EðQÞ ¼ n� 1

varðQÞ ¼ 2ðn� 1Þ 1� mðn � 1Þ
nkðm� 1Þ

� �
� 2ðn� 1Þ 1� 1

k

	 

The rejection region for large k and significant level a then is

Q 2 R for Q5 w2n�1;a

TIED OBSERVATIONS

Unlike the case of complete rankings, no simple correction factor can
be introduced to account for the reduction in total sum of squares of
deviations of column totals around their mean when the midrank
method is used to handle ties. If there are only a few ties, the null
distribution ofW should not be seriously altered, and thus the statistic
can be computed as usual with midranks assigned. Alternatively, any
of the other methods of handling ties discussed in Section 5.6 (except
omission of tied observations) may be adopted.

APPLICATIONS

This analysis-of-variance test based on ranks for balanced incomplete
rankings is usually called the Durbin test. The test statistic here,
where l is the number of times each pair of treatments is ranked and
m is the number of treatments in each block, is most easily computed
as

Q ¼ 12
Pn

j¼1R
2
j

lnðmþ 1Þ �
3k2ðmþ 1Þ

l
ð5:3Þ

which is asymptotically chi-square distributed with n � 1 degrees of
freedom. The null hypothesis of equal treatment effects is rejected for
Q large.

Kendall’s coefficient of concordance descriptive measure for k in-
complete sets of n rankings, wherem is the number of objects presented
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for ranking and l is the number of times each pair of objects is ranked
together, is given in (5.1), which is equivalent to

W ¼ 12
Pn

j¼1R
2
j � 3k2nðmþ 1Þ2

l2nðn2 � 1Þ ð5:4Þ

and Q ¼ lðn2 � 1ÞW=ðmþ 1Þ is the chi-square test statistic with n� 1
degrees of freedom for the null hypothesis of no agreement between
rankings.

If the null hypothesis of equal treatment effects is rejected, we
can use a multiple comparisons procedure to determine which pairs of
treatments have significantly different effects. Treatments i and j are
declared to be significantly different if

jRi � Rjj5 z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmðm2 � 1Þ
6ðn� 1Þ

s
ð5:5Þ

where z� is the negative of the ½a=nðn� 1Þ�th quantile of the standard
normal distribution.

Example 5.1 A taste-test experiment to compare seven different kinds
of wine is to be designed such that no taster will be asked to rank more
than three different kinds, so we have n ¼ 7 and m ¼ 3. If each pair of
wines is to be compared only once so that l ¼ 1, the required number
of tasters is p ¼ lnðn� 1Þ=mðm� 1Þ ¼ 7. A balanced design was used
and the rankings given are shown below. Calculate Kendall’s coeffi-
cient of concordance as a measure of agreement between rankings and
test the null hypothesis of no agreement.

Solution Each wine is ranked three times so that k ¼ 3. We calculateP
R2

j ¼ 280 and substitute into (5.4) to get W ¼ 1, which describes

Wine

Taster A B C D E F G

1 1 2 3
2 1 3 2
3 3 2 1
4 2 3 1
5 1 3 2
6 2 1 3
7 1 3 2

Total 3 5 9 7 8 4 6
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perfect agreement. The test statistic from (5.3) is Q ¼ 12 with 6 de-
grees of freedom. The P value from Table B of the Appendix is
0:05 < P < 0:10 for the test of no agreement between rankings. At the
time of this writing, neither STATXACT nor SAS has an option for the
Durbin test.

12.6 KENDALL’S TAU COEFFICIENT FOR PARTIAL CORRELATION

Coefficients of partial correlation are useful measures for studying
relationships between two random variables since they are ordinary
correlations between two variables with the effects of some other
variables eliminated because these latter variables are held constant.
In other words, the coefficients measure association in the conditional
probability distribution of two variables given one or more other
variables. A nice property of Kendall’s tau coefficient of Section 11.2 is
that it can be easily extended to the theory of partial correlation.

Assume we are given m independent observations of triplets
ðXi;Yi;ZiÞ; i ¼ 1; 2; . . . ;m, from a trivariate population where the
marginal distributions of each variable are continuous. We wish to
determine a sample measure of the association between X and Y when
Z is held constant. Define the indicator variables

Uij ¼ sgnðXj � XiÞ Vij ¼ sgnðYj � YiÞ Wij ¼ sgnðZj � ZiÞ
and for all 14 i < j4m, let n(u,v,w) denote the number of values of
(i, j) such that uij ¼ u; vij ¼ v;wij ¼ w. Now we further define the count
variables

X11 ¼ nð1; 1; 1Þ
X22 ¼ nð�1;�1; 1Þ
X12 ¼ nð�1; 1; 1Þ
X21 ¼ nð1;�1; 1Þ

Then X11 is the number of sets of (i,j) pairs, 14 i < j4m, of each
variable such that X and Y are both concordant with Z;X22 is the
number where X and Y are both discordant with Z;X12 is the number
such that X is discordant with Z and Y is concordant with Z, and X21 is
the number where X is concordant with Z and Y is discordant with Z.
We present these counts in a 2� 2 table as shown in Table 6.1.
This table sets out the agreements of rankings X with Z, and rankings
Y with Z, and the same for the disagreements. Now we define the
partial rank correlation coefficient between X and Y when Z is held
constant as
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TXY:Z ¼ X11X22 � X12X21

ðX:1X:2X1:X2:Þ1=2
ð6:1Þ

The value of this coefficient ranges between �1 and þ 1. At either of
these two extremes, we have

ðX11 þ X21ÞðX12 þ X22ÞðX11 þ X12ÞðX21 þ X22Þ � ðX11X22 � X12X21Þ2
¼ 0

a sum of products of three or more nonnegative numbers whose
exponents total four equal to zero. This occurs only if at least two of the
numbers are zero. If Xij ¼ Xhk ¼ 0 for i=h or j = k, either X or Y is in
perfect concordance or discordance with Z. The nontrivial cases then
are where both diagonal entries are zero. If X12 ¼ X21 ¼ 0, the X and Y
sample values are always either both concordant or both discordant
with Z and TXY.Z ¼ 1. If X11 ¼ X22 ¼ 0, they are never both in the
same relation and TXY:Z ¼ �1. Maghsoodloo (1975, 1981) and Moran
(1951) give tables of the sampling distribution of the partial tau
coefficient. TXY:Z provides a useful relative measure of the degree to
which X and Yare concordant when their relation with Z is eliminated.

It is interesting to look at the partial tau coefficient in a different
algebraic form. Using the Xij notation above, the Kendall tau coeffi-
cients for the three different paired samples would be

m

2

	 

TXY ¼ ðX11 þ X22Þ � ðX12 þ X21Þ

m

2

	 

TXZ ¼ ðX11 þ X21Þ � ðX22 þ X12Þ

m

2

	 

TYZ ¼ ðX11 þ X12Þ � ðX22 þ X21Þ

Since
m
2

	 

¼ X11 þ X12 þ X12 þ X22 ¼ n, we have

Table 6.1 Presentation of data

Ranking X

Ranking Y Pairs Concordant with Z Pairs Discordant with Z Total

Pairs Concordant with Z X11 X12 X1.

Pairs Discordant with Z X21 X22 X2.

Total X .1 X .2 X ..¼N
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1� T2
XZ ¼ 4ðX11 þ X21ÞðX12 þ X22Þ

n2
¼ 4X:1X:2

n2

1� T2
YZ ¼ 4ðX11 þ X12ÞðX22 þ X21Þ

n2
¼ 4X1:X2:

n2

and

n2TXY ¼ ½ðX11 þ X22Þ � ðX12 þ X21Þ�½ðX11 þ X22Þ þ ðX12 þ X21Þ�
n2ðTXY � TXZTYZÞ ¼ 4ðX11X22 � X12X21Þ

Therefore (6.1) can be written as

TXY:Z ¼ TXY � TXZTYZ

½ð1� T2
XZÞð1� T2

YZÞ�1=2
ð6:2Þ

Some other approaches to defining a measure of partial correla-
tion have appeared in the journal literature. One of the more useful
measures is the index of matched correlation proposed by Quade
(1967).

The partial tau defined here has a particularly appealing prop-
erty in that it can be generalized to the case of more than three
variables. Note that the form in (6.2), with each T replaced by its
corresponding R, is identical to the expression for a Pearson product-
moment partial correlation coefficient. This is because both are special
cases of a generalized partial correlation coefficient which is discussed
in Somers (1959). With his generalized form, extensions of the partial
tau coefficient to higher orders are possible.

APPLICATIONS

The null hypothesis to be tested using TXY:Z in (6.2) is that X and Yare
independent when the effect of Z is removed. The appropriate rejection
regions are large values of TXY:Z for the alternative of positive
dependence and small values for the alternative of negative depen-
dence. The null distribution of TXY:Z is given in Table P of the
Appendix as a function of the number of rankings m.

Example 6.1 Maghsoodloo (1975) used an example with m ¼ 7 sets
of rankings on three variables. The data are given in Table 6.2, arran-
ged so that the ranking of the Z variable follows the natural order.
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Compute the partial correlation between X and Y given Z and test for
positive dependence. Compare the result with that for X and Y when
the effect of Z is not removed.

Solution We compute Kendall’s tau coefficient between each set of
pairs ðX;YÞ; ðX;ZÞ, and ðY;ZÞ in the usual way. For X and Z, the
number of concordant pairs is C ¼ 3 and the number of discordant
pairs is Q ¼ 18, giving TXZ ¼ �0:7143. For Y and Z, C ¼ 1 and Q ¼ 20
with TYZ ¼ �0:9048. For X and Y, C¼ 19 and Q ¼ 2 with TXY ¼ 0:8095
and P ¼ 0:005 from Table L with m ¼ 7, so there is a positive asso-
ciation between X and Y.

Now we compute the partial tau from (6.2) as

TXY:Z ¼ 0:8095� ð�0:7143Þð�0:9048Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ð�0:7143Þ2�½1� ð�0:9048Þ2�

q ¼ 0:548

From Table P the one-tailed P value is between 0.025 and 0.05. The
positive association previously observed between X and Y is much
weaker when the effect of Z is removed.

12.7 SUMMARY

In this chapter we have covered a number of different descriptive
and inferential procedures involving measures of association
in multiple classifications. First, in Section 12.2 we presented
Friedman’s test for equal treatment effects in the two-way analysis-
of-variance for the completely randomized design with k blocks and n
treatments. This design is frequently called the repeated measures
design in the behavioral and social sciences literature. If the null
hypothesis of equal treatment effects is rejected, we have a multiple

Table 6.2 Data for Example 6.1

Subject

Variable B D C A E G F

Z 1 2 3 4 5 6 7
X 6 7 5 3 4 1 2
Y 7 6 5 3 4 2 1
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comparisons procedure to determine which pairs of treatments differ
and in which direction, with one overall level of significance. If the
alternative states an a priori order for the treatment effects, we can
use Page’s test for ordered alternatives, covered in Section 12.3. If
the randomized block design is incomplete in a balanced way, so that
all treatments are not observed in each block but the presentation is
balanced, we can use the Durbin test covered in Section 12.5. A
multiple comparisons test is also available to compare the treatments
in this design.

The topic covered in Section 12.4 is measures of association for
k sets of rankings of n objects. The descriptive measure is Kendall’s
coefficient of concordance, which ranges between zero and one, with
increasing values reflecting increasing agreement among the k
rankings. When there is a significant agreement among the rank-
ings, we can estimate the overall ‘‘agreed upon’’ preference in ac-
cordance with the sample rank totals for the n objects. This is the
least-squares estimate. We found a linear relationship between this
coefficient of concordance and the average of the Spearman rank
correlation coefficients that could have been calculated for all of the
kðk� 1Þ=2 pairs of rankings. This situation is extended to the case of
k sets of incomplete rankings of n objects in Section 12.5. Then we
covered in Section 12.6 the topic of partial correlation for three
rankings of n objects. Here the Kendall coefficient of partial corre-
lation measures the association between two variables when the ef-
fect of a third variable has been removed or ‘‘averaged out.’’ This
descriptive measure ranges between �1 and þ 1, with increasing
absolute values reflecting a greater degree of association or depen-
dence between variables.

PROBLEMS

12.1. Four varieties of soybean are each planted in three blocks. The yields are:

Variety of soybean

Block A B C D

1 45 48 43 41
2 49 45 42 39
3 38 39 35 36
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Use Friedman’s analysis of variance by ranks to test the hypothesis that the four vari-
eties of soybean all have the same effect on yield.

12.2. A beauty contest has eight contestants. The three judges are each asked to rank
the contestants in a preferential order of pulchritude. The results are:

(a) Calculate Kendall’s coefficient of concordance between rankings.

(b) Calculate the coefficient of rank correlation for each of the three pairs of
rankings and verify the relation between rav and W given in (4.7).

(c) Estimate the true preferential order of pulchritude.

12.3. Derive by enumeration the exact null distribution of W for three sets of rankings
of two objects.

12.4. Given the following triplets of rankings of six objects:

(a) Calculate the Kendall coefficient of partial correlation between X and Y
from (6.1) and test for independence.

(b) Calculate (6.2) for these same data to verify that it is an equivalent
expression.

12.5. Howard, Murphy, and Thomas (1986) (see Problems 5.12 and 8.8) also wanted to
determine whether there is a direct relationship between computer anxiety and math
anxiety. Even though the two subjects involve somewhat different skills (clear, logical,
and serial thinking versus quantitative talent), both kinds of anxiety are frequently
present in persons who regard themselves as technologically alienated. The pretest
scores are shown in Table 1 for 14 students, with larger scores indicating greater
amounts of the trait.

(a) Determine the relationship between computer anxiety and math anxiety.
(b) Determine the relationship when the effect of technological alienation is

removed.

12.6. Webber (1990) reported results of a study to measure optimism and cynicism
about the business environment and ethical trends. Subjects, ranging from high

Contestant

Judge A B C D E F G H

1 2 1 3 5 4 8 7 6
2 1 2 4 5 7 6 8 3
3 3 2 1 4 5 8 7 6

X 1 3 5 6 4 2
Y 1 2 6 4 3 5
Z 2 1 5 4 6 3
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school students to executives, were asked to respond to a questionnaire with general
statements about ethics. Two questions related to subjects’ degree of agreement (5-
point scale) with general statements about ethics. Three questions related to how
others would behave in specific problematic situations and answers were multiple
choice. Three more questions, also multiple choice, related to how subjects themselves
would react to the same problematic situations. These answers were used to develop
an optimism index, where larger numbers indicate an optimistic feeling about current
and future ethical conditions, and a cynicism index that measures how subjects felt
others would behave relative to the way they themselves would behave (a cynicism
index of 2.0, for example, means subjects judged others twice as likely as themselves
to engage in unethical behavior). The author claimed an inverse relationship between
optimism and cynicism but also noted a relation to organizational status of re-
spondents as measured by age. Use the data in Table 2 to determine whether the
relationship between optimism and cynicism is still present when the effect of age is
removed.

Table 1 Data for Problem 12.5

Student Math anxiety Computer anxiety Technological alienation

A 20 22 18
B 21 24 20
C 23 23 19
D 26 28 25
E 32 34 36
F 27 30 28
G 38 38 42
H 34 36 40
I 28 29 28
J 20 21 23
K 29 32 32
L 22 25 24
M 30 31 37
N 25 27 25

Table 2 Data for Problem 12.6

Group Mean age Optimism index Cynicism index

Owners=managers 60þ 55 1.1
Corporate executives 44 59 1.4
Middle managers 34 41 1.4
MBA students 25 30 1.8
Undergraduates 20 23 2.2
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12.7. Eight students are given examinations on each of verbal reasoning, quantitative
reasoning, and logic. The scores range from 0 to 100, with 100 a perfect score. Use the
data below to find the Kendall partial tau coefficient between quantitative and logic
when the effect of verbal is removed. Find the P value. Compare the result to the P value
for quantitative and logic alone and interpret the comparison.

12.8. Automobile Magazine (July 1989) published results of a comparison test of 15
brand models of $20,000 sedans. Each car was given a subjective score out of a possible
60 points (60 ¼ best) on each of 10 characteristics that include factors of appearance,
comfort, and performance. The scores of the six best models are shown below. Determine
whether the median scores are the same. Which model(s) would you buy, on the basis of
this report?

12.9. A manufacturer of ice cream carried out a taste preference test on seven varieties
of ice cream, denoted by A, B, C, D, E, F, G. The subjects were a random sample of 21
tasters and each taster had to compare only three varieties. Each pair of varieties is
presented together three times, to a group of seven of the tasters, with the design shown
below used each of the three times.

Student

Score 1 2 3 4 5 6 7 8

Verbal 90 60 45 48 58 72 25 85
Quantitative 62 81 92 76 70 75 95 72
Logic 60 91 85 81 90 76 93 80

Model

Factor
Nissan

Maxima SE
Acura
Legend

Toyota
Cressida

Mitsubishi
Galant GS

Peugeot
405Mi16

Ford
Taurus

Exterior styling 55 40 38 32 43 41
Interior comfort 50 50 47 46 41 40
Fit and finish 51 54 53 49 39 42
Engine 53 51 53 48 38 58
Transmission 60 54 47 45 44 38
Steering 43 42 45 45 57 45
Handling 45 46 43 49 54 45
Quality of ride 48 48 50 43 44 41
Fun to drive 51 46 40 49 53 51
Value for money 53 51 47 53 42 47

Total 509 482 463 459 455 448
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The ranks resulting from the three repetitions are shown below with each
rank corresponding to the variety shown above. For example, the rank 3 by taster 12
is for variety E. Determine whether there is a positive association between the
rankings.

12.10. Ten graduate students take identical comprehensive examinations in their
major field. The grading procedure is that each professor ranks each student’s paper in
relation to all others taking the examination. Suppose that four professors give the
following ranks, where 1 indicates the best paper and 10 the worst.

(a) Is there evidence of agreement among the four professors?
(b) Give an overall estimate of the relative performance of each student.
(c) Will it be difficult to decide which students should be given a passing grade?

12.11. Show that if m¼n and l¼k in (5.3) so that the design is complete, then (5.3) is
equivalent to Q¼ 12S=kn(nþ1), as it should be.

Taster Varieties presented

1 A B D
2 B C E
3 C D F
4 D E G
5 E F A
6 F G B
7 G A C

Taster Ranks Taster Ranks Taster Ranks

1 2 1 3 8 2 1 3 15 2 1 3
2 1 2 3 9 2 1 3 16 1 2 3
3 2 3 1 10 1 3 2 17 3 2 1
4 3 2 1 11 3 2 1 18 2 1 3
5 3 1 2 12 3 1 2 19 2 1 3
6 1 3 2 13 2 3 1 20 2 1 3
7 1 3 2 14 1 3 2 21 2 1 3

Student

Professor 1 2 3 4 5 6 7 8 9 10

1 5 3 8 9 2 7 6 1 4 10
2 7 4 6 2 3 9 8 5 1 10
3 3 5 7 6 4 10 8 2 1 9
4 4 5 7 8 3 9 6 1 2 10
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12.12. A town has 10 different supermarkets. For each market, data are available
on the following three variables: X1¼ food sales, X2¼nonfood sales, and X3¼ size of
store in thousands of square feet. Calculate the partial tau coefficient for X1 and X2,
when the effects of X3 are eliminated.

12.13. Suppose in Problem 11.15 that an independent group of female consumers also
ranked the products as follows:

(a) Is there agreement between the three sets of rankings? Give a descriptive
measure of agreement and find a P value.

(b) Use all the data given to estimate the rank ordering of the products. In what
sense is this estimate a good one?

12.14. An experimenter is attempting to evaluate the relative effectiveness of four
drugs in reducing the pain and trauma of persons suffering from migraine headaches.
He gave seven patients each drug for a month at a time. At the end of each month, each
patient gave an estimate of the relative degree of pain suffered from migraines during
that month on a scale from 0 to 10, with 10 being the most severe pain. Test the null
hypothesis that the drugs are equally effective.

12.15. A study was made of a sample of 100 female students at a large college on the
relative popularity of four experimental types of service clubs having essentially the

Store no.
Size of store
(1000 ft2)

Food sales
($10,000)

Nonfood sales
($10,000)

1 35 305 35
2 22 130 98
3 27 189 83
4 16 175 76
5 28 101 93
6 46 269 77
7 56 421 44
8 12 195 57
9 40 282 31
10 32 203 92

Product A B C D E F G H I J

Independent
female ranks

8 9 5 6 1 2 7 4 10 3

Drug 1 2 3 4 5 6 7

A 7 10 7 9 8 8 8
B 7 6 5 8 7 5 7
C 3 7 3 5 4 6 3
D 4 3 2 1 0 1 0

492 CHAPTER 12



same goals. The types differed only with respect to the difficulty of achieving member-
ship, with type I having no membership requirements, . . . , and type IV having very rigid
and formidable membership requirements. The 100 students were assigned randomly
into four groups and each student received a letter asking her to come for an interview as
a prospective member of the club. At each interview, the goals and membership re-
quirements were outlined and the student was asked to rank on a 10-point scale how
eager she was to join the club described (1¼most eager, 10¼ least eager). The students
in group I were told about type I club, group II about type II, group III about type III, and
group IV about type IV, in order to make recording the data easier. The data for the
ratings of the 100 students are shown below.

The experimenter comes to you and asks you to:

(a) Comment about the design of the experiment, including any criticisms.
(b) Help him get some useful information from his study. Do the best you can

to help. You may want to use more than one kind of analysis.

Group

Rating I II III IV

1 0 0 0 0
2 0 0 3 1
3 0 2 4 1
4 2 2 5 8
5 3 6 3 10
6 5 5 1 0
7 5 5 4 4
8 7 3 4 1
9 3 2 1 0
10 0 0 0 0

Sum 25 25 25 25
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13
Asymptotic Relative Efficiency

13.1 INTRODUCTION

In Chapter 1 the concept of Pittman efficiency was defined as a cri-
terion for the comparison of any two test statistics. Many of the non-
parametric tests covered in this book can be considered direct analogs
of some classical test which is known to be most powerful under cer-
tain specific distribution assumptions. The asymptotic efficiencies of
the nonparametric tests relative to a ‘‘best’’ test have been simply
stated here without discussion. In this chapter we shall investigate the
concept of efficiency more thoroughly and prove some theorems which
simplify the calculation. The theory will then be illustrated by
applying it to various tests covered in earlier chapters in order to
derive numerical values of the ARE for some particular distributions.
The theory presented here is generally attributed to Pitman; Noether
(1955) gives important generalizations of the theory.
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Suppose that we have two test statistics, denoted by T and T�,
which can be used for similar types of inferences regarding simple
hypotheses. One method of comparing the performance of the two tests
was described in Chapter 1 as relative power efficiency. The power
efficiency of test T relative to test T� is defined as the ratio n�=n, where
n� is the sample size necessary to attain the power g at significance
level a when test T� is used, and n is the sample size required by test T
to attain the same values g and a.

As a simple numerical example, consider a comparison of the
normal-theory test T� and the ordinary sign test T for the respective
hypothesis-testing situations

H0: m ¼ 0 versus H1: m ¼ 1

and

H0:M ¼ 0 versus H1:M ¼ 1

The inference is to be based on a single random sample from a popu-
lation which is assumed to be normally distributed with known var-
iance equal to 1. Then the hypothesis sets above are identical. Suppose
we are interested in the relative sample sizes for a power of 0.90 and a
significance level of 0.05. For the most powerful (normal-theory) test
based on n� observations, the null hypothesis is rejected whenffiffiffiffiffi

n�p
�XX 5 1:64 for a ¼ 0:05. Setting the power g equal to 0.90, n� is found

as follows:

Pwð1Þ ¼ gð1Þ
¼ Pð ffiffiffiffiffi

n�p
�XX 5 1:64 j m ¼ 1Þ

¼ P½ ffiffiffiffiffin�p ð�XX � 1Þ5 1:64� ffiffiffiffiffi
n�p � ¼ 0:90

Fð1:64� ffiffiffiffiffi
n�p Þ ¼ 0:10 1:64� ffiffiffiffiffi

n�p ¼ �1:28 n� ¼ 9

The sign test T of Section 5.4 has rejection region K 5 ka, where
K is the number of positive observations Xi and ka is chosen so thatXn

k¼ka

n
k

	 

0:5n ¼ a ð1:1Þ

The power of the test T then isXn
k¼ka

n
k

	 

ykð1� yÞn�k ¼ gð1Þ ð1:2Þ
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where y ¼ PðX > 0 jM ¼ 1Þ ¼ 1� Fð�1Þ ¼ 0:8413, since the mean and
median coincide for a normal population. The number n and k0:05 will
be those values of n and ka, respectively, which simultaneously satisfy
(1.1) and (1.2) when a ¼ 0:05 and g ¼ 0:90. If y is rounded off to 0.85,
ordinary tables of the binomial distribution can be used instead of
actual calculations. Some of the steps relevant to finding the simul-
taneous solution are shown in Table 1.1.

If we do not wish to resort to the use of randomized decision
rules, we can either (1) choose values for n and ka such that a and g are
both as close as possible to the preselected numbers or (2) choose the
smallest value of n such that the smallest value of ka gives a and
b ¼ 1� g no larger than the preselected numbers. We obtain n ¼ 13
and k0:05 ¼ 10 using method 1 and n ¼ 16, k0:05 ¼ 12 with method 2.
These methods are undesirable for a number of obvious reasons, but
mainly because method 1 may not lead to a unique answer and method
2 may be too conservative with respect to both types of errors. A
preferable approach for the purposes of comparison would be to use
randomized decision rules. Then we can either make exact a ¼ 0:05 or
exact g ¼ 0:90 but probably not both. When deciding to make exact
a ¼ 0:05 and g ¼ 0:90, the procedure is also illustrated in Table 1.1.
Starting with the smallest n and the corresponding smallest ka for

}
}
}

}
}

}

Table 1.1 Power calculations

Randomized decision rule for
exact a ¼ 0:05

n ka a g ¼ 1� b
Probability of

rejection gð1Þ

17 13 0.0245 0.9013
12 0.0717 0.9681

16 12 0.0383 0.9211 1
0.9308

11 0.1050 0.9766 0.1754
15 12 0.0176 0.8226 1

0.9151
11 0.0593 0.9382 0.8010

14 11 0.0288 0.8535 1
0.8881

10 0.0899 0.9533 0.3470
13 10 0.0461 0.8820

9 0.1334 0.9650
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which simultaneously a4 0:05 and g5 0:90, the randomized decision
rule is found by solving for p in the expressionXn

k¼ka

n
k

	 

0:5n þ p

n
ka � 1

	 

0:5n ¼ 0:05

Then the power for this exact 0.05 size test is

Xn
k¼ka

n
k

	 

ð0:85Þkð0:85Þn�k þ p

n
ka � 1

	 

ð0:85Þkð0:15Þn�k

Do the same set of calculations for the next smaller n, etc., until
g4 0:90. The selected values of nmay either be such that g5 0:90 or g
is as close as possible to 0.90, as before, but at least here the choice is
always between two consecutive numbers for n. From Table 1.1 the
answers in these two cases are n ¼ 15 and n ¼ 14, respectively.

This example shows that the normal test here requires only nine
observations to be as powerful as a sign test using 14 or 15, so that the
power efficiency is around 0.60 or 0.64. This result applies only for the
particular numbers a and b (or g) selected and therefore is not in any
sense a general comparison even though both the null and alternative
hypotheses are simple.

Since fixing the value for a is a well-accepted procedure in sta-
tistical inference, we might perform calculations similar to those above
for some additional and arbitrarily selected values of g and plot the
coordinates (g;n) and (g;n�) on the same graph. From these points the
curves nðgÞ and n�ðgÞ can be approximated. The numerical processes
can be easily programmed for computer calculation. Some evaluation
of general relative performance of two tests can therefore be made for
the particular value of a selected. However, this power-efficiency ap-
proach is satisfactory only for a simple alternative hypothesis. Espe-
cially in the case of nonparametric tests, the alternative of interest is
usually composite. In the above example, if the alternative were
H1: m > 0 ðM > 0Þ, curves for the functions n½gðmÞ� and n�½gðmÞ� would
have to be compared for all m > 0 and a preselected a. General con-
clusions for any m and g are certainly difficult if not impossible. As a
result, we usually make comparisons of the power for m in a specified
neighborhood of the null hypothesis.

In many important cases the limit of the ratio n�=n turns out not
to be a function of a and g, or even the parameter values when
it is in the neighborhood of the hypothesized value. Therefore, even
though it is a large-sample property for a limiting type of alternative,
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the asymptotic relative efficiency of two tests is a somewhat more
satisfying criterion for comparison in the sense that it leads to a single
number and consequently a well-defined conclusion for large sample
sizes. It is for this reason that the discussion here will be limited to
comparisons of tests using this standard.

13.2 THEORETICAL BASES FOR CALCULATING THE ARE

Suppose that we have two test statistics Tn and T�
n, for data consisting

of n observations, and both statistics are consistent for a test of

H0: y 2 o versus H1: y 2 O� o

In other words, for all y 2 O� o

lim
n!1Pw½TnðyÞ� ¼ 1 and lim

n!1Pw½T
�
nðyÞ� ¼ 1

Suppose further that a subset of the space O can be indexed in terms of
a sequence of parameters fy0; y1; y2; . . . ; yn; . . .g such that y0 specifies
a value in o and the remaining y1; y2; . . . are in O� o and that
limn!1 yn ¼ y0. For example, in the case of a one-sided alternative
y > y0, we take a monotonic decreasing sequence of numbers y1; y2; . . . ;
which converges to y0 from above. If each yi specifies a probability
distribution for the test statistics, we might say that the alternative
distribution is getting closer and closer to the null distribution as n
approaches infinity. Under these conditions, a formal definition of the
ARE of T relative to T� can be given.

Definition Let PwnðyÞ and Pw�
nðyÞ be the power functions of two tests T

and T� (corresponding to the test statistics Tn and T�
n, respec-

tively), against a family of alternatives labeled by y, and let y0 be
the value of y specified by the null hypothesis. Also let T and T�

have the same level of significance a. Consider a sequence of al-
ternatives fyng and a sequence fn�g ¼ fhðnÞg of positive integers,
where h is some suitable function, such that

lim
n!1PwnðynÞ ¼ lim

n!1PW
�
nðyÞ

where it is assumed that the two limits exist and are not equal to
either 0 or 1. Then the asymptotic relative efficiency (ARE) of test
T relative to test T� is

AREðT;T�Þ ¼ lim
n!1

n�

n
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provided that the limit exists and is independent of the sequences
fyng; fng, and fn�g.
In other words, the ARE is the inverse ratio of the sample sizes

necessary to obtain any power g for the tests T and T�, respectively,
while simultaneously the sample sizes approach infinity and the se-
quences of alternatives approach y0, and both tests have the same
significance level. It is thus a measure of asymptotic and localized
power efficiency. In the case of the more general tests of hypotheses
concerning distributions like F ¼ Fy, the same definition holds.

Now suppose that our consistent size a tests Tn and T�
n are for the

one-sided alternative

H0: y ¼ y0 versus H1: y > y0

and have respective rejection regions of the form

Tn 2 R for Tn 5 tn;a and T�
n 2 R� for T�

n 5 t�n;a

where tn;a and t�n;a are chosen such that

PðTn 5 tn;ajy ¼ y0Þ ¼ a and PðT�
n 5 t�n;ajy ¼ y0Þ ¼ a

The following regularity conditions for the test Tn, and analogous ones
for T�

n, must be satisfied.

1. dEðTnÞ=dy exists and is positive and continuous at y0. All other
higher-order derivatives, drEðTnÞ=dyr; r ¼ 2; 3; . . . ; are equal to
zero at y0.

2. There exists a positive constant c such that

lim
n!1

dEðTnÞ=dyjy¼y0ffiffiffi
n

p
sðTnÞjy¼y0

¼ c

3. There exists a sequence of alternatives fyng such that for some
constant d > 0, we have

yn ¼ y0 þ dffiffiffi
n

p

lim
n!1

dEðTnÞ=dyjy¼yn

dEðTnÞ=dyjy¼y0

¼ 1

lim
n!1

sðTnÞjy¼yn

sðTnÞjy¼y0

¼ 1
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4. lim
n!1P

Tn � EðTnÞjy¼yn

sðTnÞjy¼yn

4 z y ¼ yn

" #
¼ FðzÞ

5. lim
n!1P½Tn 5 tn;ajy ¼ y0� ¼ a 0 < a < 1

Theorem 2.1 Under the five regularity conditions above, the limiting
power of the test Tn is

lim
n!1PwðTnjy ¼ ynÞ ¼ 1� Fðza � dcÞ

where za is that number for which 1� FðzaÞ ¼ a:

Proof The limiting power is

lim
n!1PðTn 5 tn;ajy ¼ ynÞ

¼ lim
n!1P

Tn � EðTnÞjy¼yn

sðTnÞjy¼yn

5
tn;a � EðTnÞjy¼yn

sðTnÞjy¼yn

" #
¼ 1� FðzÞ from regularity condition 4

where

z ¼ lim
n!1

tn;a � EðTnÞjy¼yn

sðTnÞjy¼yn

¼ lim
n!1

tn;a � EðTnÞjy¼yn

sðTnÞjy¼y0

sðTnÞjy¼y0

sðTnÞjy¼yn

" #

¼ lim
n!1

tn;a � EðTnÞjy¼yn

sðTnÞjy¼y0

from regularity condition 3

Expanding EðTnÞjy¼yn
in a Taylor’s series about y0 and using

regularity condition 1, we obtain

EðTnÞjy¼yn
¼ EðTnÞjy¼y0 þ ðyn � y0ÞdEðTnÞ

dy

����
y¼y�0

y0 < y�0 < yn

Substituting this in the above expression for z, we obtain

z ¼ lim
n!1

tn;a � EðTnÞ y¼y0j
sðTnÞ y¼y0j �

ðyn � y0Þ½dEðTnÞ=dy�
��
y¼y�0

sðTnÞ y¼y0j

( )
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¼ lim
n!1

tn;a � EðTnÞ y¼y0j
sðTnÞ y¼y0j

� �
� dc

using regularity conditions 1;2; and 3

¼ za � dc

Using regularity conditions 5 and 4, we have

a ¼ lim
n!1PðTn 5 tn;a y ¼ y0j Þ

¼ lim
n!1P

Tn � EðTnÞ y¼y0j
sðTnÞ y¼y0j 5

tn;a � EðTnÞ y¼y0j
sðTnÞ y¼y0j

� �
¼ 1� FðzaÞ
This completes the proof.

Theorem 2.2 If T and T� are two tests satisfying the regularity con-
ditions above, the ARE of T relative to T� is

AREðT;T�Þ ¼ lim
n!1

dEðTnÞ=dy y¼y0j
dEðT�

nÞ=dy y¼y0j
� �2s2ðT�

nÞ y¼y0j
s2ðTnÞ y¼y0j ð2:1Þ

Proof From Theorem 2.1, the limiting powers of tests T and T�,
respectively, are

1� Fðza � dcÞ and 1� Fðza � d�c�Þ
These quantities are equal if

za � dc ¼ za � d�c�

or, equivalently, for

d�

d
¼ c

c�

From regularity condition 3, the sequences of alternatives are the
same if

yn ¼ y0 þ dffiffiffi
n

p ¼ y�n ¼ y0 þ d�ffiffiffiffiffi
n�p

or, equivalently, for

dffiffiffi
n

p ¼ d�ffiffiffiffiffi
n�p or

d�

d
¼ n�

n

	 
1=2
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Since the ARE is the limit of the ratio of sample sizes when the
limiting power and sequence of alternatives are the same for both
tests, we have

AREðT;T�Þ ¼ n�

n
¼ d�

d

	 
2
¼ c

c�
� �2

¼ lim
n!1

dEðTnÞ=dy y¼y0jffiffiffi
n

p
sðTnÞ y¼y0j

ffiffiffi
n

p
sðT�

nÞ y¼y0j
dEðT�

nÞ=dy y¼y0j
� �2

¼ lim
n!1

½dEðTn=dy�2
s2ðTnÞ

���
y¼y0

½dEðT�
nÞ=dy�2

s2ðT�
nÞ

���
y¼y0

ð2:2Þ

which is equivalent to (2.1).

From expression (2.2) we see that when these regularity condi-
tions are satisfied, the ARE can be interpreted as the limit an n ap-
proaches infinity of the ratio of two quantities

AREðT;T�Þ ¼ lim
n!1

eðTnÞ
eðT�

nÞ
ð2:3Þ

where eðTnÞ is called the efficacy of the statistic Tn when used to test
the hypothesis y ¼ y0 and

eðTnÞ ¼ ½dEðTnÞ=dy�2 y¼y0j
s2ðTnÞ y¼y0j ð2:4Þ

Theorem 2.3 The statement in Theorem 2:2 remains valid as stated if
both tests are for a two-sided alternative, H1: y 6¼ y0, with rejection
region

Tn 2 R for Tn 5 tn;a1 or Tn 4 tn;a2

where the size of the test is still a, and a corresponding rejection
region is defined for T�

n with the same a1 and a2.

Note that the result for the ARE in Theorem 2.2 is independent of
both the quantities a and g. Therefore, when the regularity conditions
are satisfied, the ARE does not suffer the disadvantages of the power-
efficiency criterion. However, it is only an approximation to relative
efficiency for any finite sample size and=or alternative not in the
neighborhood of the null case.
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In the two-sample cases, where the null hypothesis is equal
distributions, if the hypothesis can be parameterized in terms of y, the
same theorems can be used for either one- or two-sided test. The
limiting process must be restricted by assuming that as m and n ap-
proach infinity, the ratio m=n approaches l, a constant. When m is
approximately a fixed proportion of n regardless of the total sample
size mþn, the theory goes through as before for n approaching in-
finity. For two-sample linear rank tests, evaluation of the efficacies is
simplified by using the general results for mean and variance given in
Theorem 7.3.8.

In various k-sample problems where the null and the alternative
hypotheses involve more than one parameter, the result of Theorem
2.2 cannot be directly used to calculate the ARE of one test relative to
another. However, the general approach in Theorems 2.1 and 2.2 can
be used to derive the ARE in such cases. It may be noted that the
theory of asymptotic relative efficiency remains applicable in principle
as long as the two competing test statistics have the same form of
asymptotic distributions, not necessarily the normal. In this regard it
can be shown that when the asymptotic distributions of the test sta-
tistics are chi-square distributions, the ARE is equal to the ratio of the
noncentrality parameters. For details about these and related inter-
esting results, see, for example, Andrews (1954), Puri (1964), Puri and
Sen (1971), and Chakraborti and Desu (1991).

13.3 EXAMPLES OF THE CALCULATION OF EFFICACY AND ARE

We now give some examples of the calculation of efficacy and ARE. In
each case the appropriate regularity conditions are satisfied but we do
not verify this. This is left as an exercise for the reader.

ONE-SAMPLE AND PAIRED-SAMPLE PROBLEMS

In the one-sample and paired-sample problems treated in Chapter 5,
the null hypothesis concerned the value of the population median or
median of the population of differences of pairs. This might be called
a one-sample location problem with the distribution model.

FXðxÞ ¼ Fðx� yÞ ð3:1Þ
for some continous distribution F with median zero. Since FX then has
median y, the model implies the null hypothesis

H0: y ¼ 0

against one- or two-sided alternatives.
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The nonparametric tests for this model can be considered analogs
of the one-sample or paired-sample Student’s t test for location of
the mean or difference of means if F is any continuous distribution
symmetric about zero since then y is both the mean and median of
FX . For a single random sample of size N from any continuous popu-
lation FX with mean m and variance s2, the t test statistic of the null
hypothesis

H0: m ¼ 0

is

T�
N ¼

ffiffiffiffiffi
N

p
�XXN

SN
¼

ffiffiffiffiffi
N

p ð�XXN � mÞ
s

þ
ffiffiffiffiffi
N

p
m

s

" #
s
SN

where S2N ¼PN
i¼1 ðXi � �XXÞ2=ðN � 1Þ. Since limN!1ðSN=sÞ ¼ 1, T�

N is
asymptotically equivalent to the Z (normal-theory) test for s known.
The moments of T�

N , for large N, then are

EðT�
NÞ ¼

ffiffiffiffiffi
N

p
m

s
and varðT�

NÞ ¼
Nvarð�XXNÞ

s2
¼ 1

and

d

dm
EðT�

NÞjm¼0 ¼
ffiffiffiffiffi
N

p

s

Using (2.4), the efficacy of Student’s t test for observations from any
continuous population FX with mean m and variance s2 is

eðT�
NÞ ¼

N

s2
ð3:2Þ

The ordinary sign-test statistic KN of Section 5.4 is appropriate for the
model (3.1) with

H0 : M ¼ y ¼ 0

Since KN follows the binomial probability distribution, its moments
are

EðKnÞ ¼ Np and varðKNÞ ¼ Npð1� pÞ
where

p ¼ PðX > 0Þ ¼ 1� FXð0Þ
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If y is median of the population FX , FXð0Þ is a function of y, and for the
location model (3.1) we have

dp

dy

����
y¼0

¼ d

dy
1� FXð0Þ½ �

����
y¼0

¼ d

dy
1� Fð�yÞ½ �

����
y¼0

¼ f ðyÞ y¼0j ¼ f ð0Þ ¼ fXðyÞ
where y ¼ 0; p ¼ 0:5, so that varðKNÞ y¼0j ¼ N=4. The efficacy of the
ordinary sign test for N observation from any population FX with
median y is therefore

eðKNÞ ¼ 4Nf 2XðyÞ ¼ 2Nf 2ðyÞ ¼ 4Nf 2 F�1ð0:5Þ� $ ð3:3Þ
We now calculate the efficacy of the Wilcoxon signed-rank

test described in Section 5.7. Let X1;X2; . . . ;XN be a random sample
from a continuous cdf FXðxÞ ¼ Fðx�MÞ, where F is symmetrically
distributed about 0. Thus the Xis are symmetrically distributed about
the median M. The Wilcoxon signed-rank test based on Tþ

N is appro-
priate to test the null hypothesis H0: M ¼ M0 where M0 is specified.
However, in order to find the efficacy it will be more convenient to
work with Vþ

N ¼ Tþ
N

*ðN2Þ. It is clear that a test based on Tþ
N is equiva-

lent to a test based on Vþ
N and hence the two tests have the same

efficacy. The mean of Vþ
N is obtained from (5.7.5) as

EðVþ
NÞ ¼

2

N � 1

	 

PðDi > 0Þ þ PðDi þDj > 0Þ

¼ 2

N � 1

	 

1� Fð�MÞ½ � þ

Z 1

�1
½1� Fð�x�MÞ� dFðx�MÞ

¼ 2

N � 1

	 

½1� Fð�MÞ� þ

Z 1

�1
½1� Fð�y� 2MÞ� dFðyÞ

Thus, we obtain

dEðVþ
NÞ

dM
¼ 2

N � 1

	 

f ð�MÞ þ 2

Z 1

�1
f ð�y � 2MÞ� dFðyÞ

after interchanging the order of differentiation and integration. This
can be shown to be valid if f ðxÞ ¼ dFðxÞ=dx is bounded by some positive
quantity. Since F is symmetric about 0, f ðyÞ ¼ f ð�yÞ, and so
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dEðVþ
NÞ

dM

����
M¼0

: ¼ 2
f ð0Þ

N � 1
þ I

� �
where

I ¼
Z 1

�1
f ðyÞdFðyÞ ¼

Z 1

�1
f 2ðyÞdy

Also, from (5.7.6) the variance of Vþ
N under H0 is

ðN þ 1Þð2N þ 1Þ
6NðN � 1Þ2

Therefore, using (2.4), the efficacy of the Wilcoxon signed-rank test for
N observations from a continuous population which is symmetric
about y, is

24½ f ð0Þ=ðN � 1Þ þ I�2NðN � 1Þ2
ðN þ 1Þð2N þ 1Þ ð3:4Þ

We can use the efficacy results to calculate the asymptotic relative
efficiencies between any two of these tests. For example, from (3.3) and
(3.2), the ARE of the sign test relative to the Student’s t test is

AREðK;T�Þ ¼ 4 f F�1ð0:5Þ� $- /2
s2 ð3:5Þ

The ARE of the Wilcoxon signed-rank test relative to the Student’s
t test is obtained from (3.4) and (3.2) along with (2.3) as

AREðTþ;T�Þ

¼ lim
N!1

24½ f ð0Þ=ðN � 1Þ þ I�2NðN � 1Þ2=ðN þ 1Þð2N þ 1Þ
N=s2

¼ 12s2I2 ð3:6Þ
The quantity I2 appears frequently in the ARE expressions of many
well-known nonparametric tests. In practice, it may be of interest
to estimate I from the sample data in order to estimate the ARE.
This interesting problem has been studied by Aubuchon and
Hettmansperger (1984).

For the ARE of the sign test relative to the Wilcoxon signed-rank
test we obtain, using (3.4) and (3.3) and applying (2.3),

AREðK;TþÞ ¼ ½ ffF�1ð0:5Þg�2
3½R1�1 f 2ðyÞdy�2 ð3:7Þ
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We illustrate the calculations involved by computing the ARE of
the sign test relative to the t test, ARE(K ;T�), for the normal, the
uniform, and the double exponential distributions, respectively.

1. Normal distribution

FX is Nðy;s2Þ FXðxÞ ¼ F
x� y
s

	 

or FðxÞ ¼ F

x

s

� �
f ð0Þ ¼ ð2ps2Þ�1=2 eðKNÞ ¼ 2N=ps2

AREðK ;T�Þ ¼ 2=p

2. Uniform distribution

pt

fXðxÞ ¼ 1 for y� 1=2 < x < yþ 1=2

or

f ðxÞ ¼ 1 for � 1=2 < x < 1=2

f ð0Þ ¼ 1 varðXÞ ¼ 1=12

eðT�
NÞ ¼ 12N eðKNÞ ¼ 4N

AREðK;T�Þ ¼ 1=3

3. Double exponential distribution

fXðxÞ ¼ l
2
e�ljx�yj or f ðxÞ ¼ l

2
e�ljxj

f ð0Þ ¼ l=2 varðXÞ ¼ 2=l2

eðT�
NÞ ¼ Nl2=2 eðKNÞ ¼ Nl2

AREðK ;T�Þ ¼ 2

In order to facilitate comparisons among the tests, the ARE of the
Wilcoxon signed-rank test relative to the t test ½AREðTþ;T�Þ� and the
ARE of the sign test and the Wilcoxon signed-rank test ½AREðK;TÞ�
are calculated for the uniform, the normal, the logistic, and the double
exponential distributions. For the same purpose, the ARE of the sign
test relative to the t test is also calculated for the logistic distribution.
The ARE values are presented in Table 3.1; verification of these re-
sults will be left for the reader.

A closer examination of the ARE values in Table 3.1 reveals some
interesting facts. First, from the values in the first column it is evident
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that the Wilcoxon signed-rank test is a strong competitor to the pop-
ular Student’s t test when a large sample is available. In particular, for
the normal distribution, for which the t test is optimal, very little
seems to be lost in terms of efficiency when the Wilcoxon signed-rank
test is used instead. Moreover, for distributions with heavier tails than
the normal, like the uniform, logistic, and double exponential, the
signed-rank test is superior in that the ARE is greater than or equal
to 1. In fact, it may be recalled that AREðTþ;T�Þ is never less
than 0.864 for any continuous symmetric distribution (Hodges and
Lehmann, 1956).

From the ARE values in the second column of Table 3.1 we see
that the sign test is much less efficient than the t test for light to
moderately heavy-tailed distributions. In particular, for the normal
distribution the sign test is only 64% as efficient as the optimal t test.
This poor performance is not entirely unexpected since the simple sign
test does not utilize all of the sample information generally available.
Interestingly, however, this may lead to its superior performance in
the case of a heavy-tailed distribution such as the double exponential.
Hodges and Lehman (1956) have shown that AREðK;T�Þ5 1=3 for any
continuous unimodal symmetric distribution; the lower bound is
achieved for the uniform distribution.

Finally, from the third column of Table 3.1 we see that except for
the double exponential distribution, the signed-rank test is more ef-
ficient than the sign test.

We summarize by saying that the Wilcoxon signed-rank test is a
very viable alternative to the popular Student’s t test. The test is ap-
propriate under much milder assumptions about the underlying dis-
tribution and it either outperforms or comes very close in performance
to the t test, in terms of asymptotic relative efficiency, for many com-
monly encountered distributions. The sign test is usually less efficient;
perhaps it is a popular choice because of its ease of use more than its
performance.

Table 3.1 Values of ARE(Tþ, T*), ARE (K, T*), and ARE(K,Tþ) for some selected
probability distributions

Distribution AREðTþ;T�Þ AREðK;T�Þ AREðK;TþÞ

Uniform 1 1=3 1=3

Normal 3=p ¼ 0:955 2=p ¼ 0:64 2=3

Logistic p2=9 ¼ 1:097 p2=12 ¼ 0:82 3=4

Double exponential 1.5 2 4=3
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For the sampling situation where we have paired-sample data and the
hypotheses concern the median or mean difference, all results
obtained above are applicable if the random variable X is replaced by
the difference variable D ¼ X � Y. It should be noted that the para-
meter s2 in (3.2) then denotes the variance of the population of dif-
ferences,

s2D ¼ s2X þ s2Y � 2 covðX;YÞ
and the fXðyÞ in (3.3) now becomes fDðyÞ.

TWO-SAMPLE LOCATION PROBLEMS

For the general location problem in the case of two independent ran-
dom samples of sizes m and n, the distribution model is

FYðxÞ ¼ FXðx� yÞ ð3:8Þ
and the null hypothesis of identical distributions is

H0: y ¼ 0

The corresponding classical test statistic for populations with a com-
mon variance s2 is the two-sample Student’s t test statistic

T�
m;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn

mþm

r �YYn � �XXm

Smþn

	 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn

mþ n

r �YYn � �XXm � y
s

þ y
s

	 

s

Smþn

where

S2mþn ¼
Pm

i¼1ðXi � �XXÞ2 þPn
i¼1ðYi � �YYÞ2

mþ n � 2

is the pooled estimate of s2. Since Smþn=s approaches 1 as n ! 1;
m=n ! l, the moments of T�

m;n for n large, y ¼ mY � mX , are

EðT�
m;nÞ ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn=ðmþ nÞp

s

varðT�
m;nÞ ¼

mn

mþ n

s2=mþ s2=n
s2

¼ 1

Therefore

d

dy
EðT�

m;nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn=ðmþ nÞp

s

and the efficacy of Student’s t test for any continuous population is
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eðT�
m;nÞ ¼

mn

s2ðmþ nÞ ð3:9Þ
For the Mann-Whitney test statistic given in (6.6.2), the mean is

EðUm;nÞ ¼ mnPðY < XÞ ¼ mnPðY � X < 0Þ ¼ mnp

A general expression for p was given in (7.6.3) for any distributions.
For the location model in (3.4), this integral becomes

p ¼
Z 1

�1
FXðx� yÞfXðxÞdx

so that

d

dy
EðUm;nÞ

����
y¼0

¼ mn
dp

dy

����
y¼0

: ¼ �mn

Z 1

�1
f 2XðxÞdx

Under H0;p ¼ 0:5 and the variance is found from (6.6.15) to be

varðUm;nÞ ¼ mnðmþ nþ 1Þ
12

The efficacy then is

eðUm;nÞ ¼
12mn

R1
�1 f 2XðxÞdx

� $2
mþ nþ 1

ð3:10Þ

Using (3.10) and (3.9) and applying (2.4), we find that the ex-
pression for the ARE of the Mann-Whitney test relative to the Stu-
dent’s t test given by the expression for the ARE of the Wilcoxon
signed-rank test relative to the t test, with F replaced by FX. There-
fore, as before, the ARE of the Mann-Whitney test does not fall below
0.864 as long as FX is a continuous cdf. There is, however, one im-
portant difference between the one-sample and two-sample cases. In
the one-sample case with the Wilcoxon signed-rank test, the under-
lying F is assumed to be symmetric about 0, but no such assumption is
necessary about FX in the two-sample case with the Mann-Whitney
test. Thus, in the two-sample case one can evaluate the ARE expres-
sion for an asymmetric distribution like the exponential but that is not
allowed in the one-sample case.

Now let us find the efficacy of the median test. Recall that the test
is based on Um;n, the number of X observations that do not exceed Z,
the combined sample median. In order to find the efficacy, we examine
the mean of Um;n. It can be shown (Mood, 1954) that for largem and n,
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EðUm;nÞ ¼ mFXðcÞ
where c satisfies

mFXðcÞ þ nFYðcÞ ¼ mþ n

2
ð3:11Þ

Now

dEðUm;nÞ
dy

����
y¼0

¼ m
dFXðcÞ

dc

dc

dy

����
y¼0

¼ mfXðcÞ dc

dy

����
y¼0

ð3:12Þ

For the location model in (3.8) we have from (3.11)

mFXðcÞ þ nFXðc� yÞ ¼ mþ n

2
ð3:13Þ

Differentiating (3.13) with respect to y yields

mfXðcÞ dc

dy
þ nfXðc� yÞ dc

dy
� 1

	 

¼ 0

Therefore at y ¼ 0

dc

dy

����
y¼0

¼ n

mþ n
ð3:14Þ

Substituting (3.14) in (3.12), we obtain

dEðUM;NÞ
dy

����
y¼0

¼ mn

mþ n
fXðcÞ

����
y¼0

ð3:15Þ

Now from (3.13), when y ¼ 0, we have

mFXðcÞ þ nFXðcÞ ¼ mþ n

2
so that c ¼ F�1

X ð0:5Þ

and substitution in (3.15) gives

dEðUm;n

dy

����
y¼0

¼ mn

mþ n
fX F�1

X 0:5ð Þ� $ ð3:16Þ

From (6.4.5) the null variance of the median test statistic for
large m and n is found to be mn=4ðmþ nÞ. From (2.4) and (3.16), the
efficacy of the median test is then

eðUm;nÞ ¼ 4
mn

mþ n

	 

fX F�1

X 0:5ð Þ- /� $2 ð3:17Þ
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From (3.10), (3.17) and applying (2.4), we see that the ARE ex-
pression for the median test relative to the Mann-Whitney (hence of
the Wilcoxon rank sum) test is the same as the ARE expression for the
sign test relative to the Wilcoxon signed-rank test given in (3.7) with f
replaced by fX. Hence the efficiency values given in Table 3.1 and the
resulting comments made earlier for some specific distributions apply
equally to the present case.

The ARE of the Mann-Whitney test relative to Student’s t test
can be found by evaluating the efficacies in (3.9) and (3.10) for any
continuous population FX with variance s2. Since Student’s t test is
the best test for normal distributions satisfying the general location
model, we shall use this as an example. If FX is NðmX ;s

2Þ,Z 1

�1
f 2XðxÞdx ¼

Z 1

�1
ð2ps2Þ�1 exp � x� mX

s

� �2� �
dx

¼ 1ffiffiffiffiffiffiffiffiffi
2ps

p 2

ffiffiffi
1

2

r
¼ ð2 ffiffiffi

p
p

sÞ�1

eðT�
m;nÞ ¼

mn

s2ðmþ nÞ eðUm;nÞ ¼ 3mn

ps2ðmþ nþ 1Þ
AREðUm;n;T

�
m;nÞ ¼ 3=p

For the uniform and double exponential distributions, the relative
efficiencies are 1 and 3=2, respectively (Problem 13.1).

This evaluation of efficacy of the Mann-Whitney test does not
make use of the fact that it can be written as a linear rank statistic. As
an illustration of how the general results given in Theorem 7.3.8
simplify the calculation of efficiencies, we shall show that the Terry
and van der Waerden tests discussed in Section 8.3 are asymptotically
optimum rank tests for normal populations differing only in location.

The weights for the van der Waerden test of (8.3.2) in the nota-
tion of Theorem 7.3.8 are

ai ¼ F�1 i

N þ 1

	 

¼ F�1 i

N

N

N þ 1

	 

¼ JN

i

N

	 

The combined population cdf for the general location model of (3.4) is

HðxÞ ¼ lNFXðxÞ þ ð1� lNÞFXðx� yÞ
so that

J½HðxÞ� ¼ lim
N!1

JNðHÞ ¼ F�1½lNFXðxÞ þ ð1� lNÞFXðx� yÞ�
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Applying Theorem 7.3.8 now to this J function, the mean is

mN ¼
Z 1

�1
F�1½lNFXðxÞ þ ð1� lNÞFXðx� yÞ�fXðxÞdx

To evaluate the derivative, we note that since

F�1½gðyÞ� ¼ y if and only if gðyÞ ¼ FðyÞ
it follows that

d

dy
gðyÞ ¼ jðyÞdy

dy
or

dy

dy
¼ d½gðyÞ�=dy

jðyÞ
Therefore the derivative of mN above is

d

dy
mN

����
y¼0

¼
Z 1

�1

�ð1� lNÞf 2XðxÞ
jfF�1½FXðxÞ�g

dx ð3:18Þ

Now to evaluate the variance when y ¼ 0, we can use Corollary 7.3.8 to
obtain

NlNs
2
N ¼ ð1� lNÞ

Z 1

0

½F�1ðuÞ�2 du �
Z 1

0

F�1ðuÞdu

� �2( )

¼ ð1� lNÞ
Z 1

�1
x2jðxÞdx�

Z 1

�1
xjðxÞdx

� �2( )
¼ 1� lN

The integral in (3.18) reduces to a simple expression when FXðxÞ is
NðmX ;s

2Þ since then

FXðxÞ ¼ F
x� mX

s

� �
and fXðxÞ ¼ 1

s
j

x� mX

s

� �
d

dy
mN

����
y¼0

¼ � 1� lN

s2

Z 1

�1

j2½ðx� mXÞ=s�
j½ðx� mXÞ=s�

dx

¼ � 1� lN

s

Z 1

�1

1

s
j

x � mX

s

� �
dx ¼ � 1� lN

s

The efficacy of the van der Waerden XN test in this normal case is then

eðXNÞ ¼ NlNð1� lNÞ
s2

¼ mn

Ns2
ð3:19Þ

which equals the efficacy of the Student’s t test T�
m;n given in (3.9).
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TWO-SAMPLE SCALE PROBLEMS

The general distribution model of the scale problem for two indepen-
dent random samples is

FYðxÞ ¼ FXðyxÞ ð3:20Þ
where we are assuming without loss of generality that the common
location is zero. The null hypothesis of identical distributions then is

H0: y ¼ 1

against either one- or two-sided alternatives. Given two independent
random samples of sizes m and n, the analogous parametric test for
the scale problem is the statistic

T�
m;n ¼ ðn� 1ÞPm

i¼1ðXi � �XXÞ2
ðm� 1ÞPn

i¼1ðYi � �YYÞ2

Since X and Y are independent and in our model above

varðXÞ ¼ y2 varðYÞ
the expected value is

EðT�
m;nÞ ¼ E

Pm
i¼1ðXi � �XXÞ2

m� 1

" #
E

n� 1Pn
i¼1ðYi � �YYÞ2

" #

¼ ðn� 1ÞvarðXÞE 1Pn
i¼1ðYi � �YYÞ2

" #

¼ ðn� 1Þy2E varðYÞPn
i¼1ðYi � �YYÞ2

" #
¼ ðn� 1Þy2E 1

Q

	 


The probability distribution of Q depends on the particular distribu-
tion FX , but in the normal-theory model, where FXðxÞ ¼ FðxÞ;Q has
the chi-square distribution with n� 1 degrees of freedom. Therefore
we can evaluate

E
1

Q

	 

¼ 1

G n� 1
2

� �
2ðn�1Þ=2

Z 1

0

x�1e�x=2x½ðn�1Þ=2��1 dx ¼
G n� 3

2

� �
2G n� 1

2

� �
¼ 1

n� 3
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EðT�
m;nÞ ¼

ðn � 1Þy2
n� 3

d

dy
EðT�

m;nÞ
����
y¼1

¼ 2ðn� 1Þ
n � 3

In this normal-theory model, under the null hypothesis the distribu-
tion of T�

m;n is Snedecor’s F with m� 1 and n� 1 degrees of freedom.
Since the variance of the F distribution with n1 and n2 degrees of
freedom is

2n22ðn1 þ n2 � 2Þ
n1ðn2 � 4Þðn2 � 2Þ2

we have here

varðT�
m;nÞjy¼1 ¼

2ðn � 1Þ2ðN � 4Þ
ðm� 1Þðn� 5Þðn� 3Þ2

The statistic T�
m;n is the best test for the normal-theory model,

and its efficacy for this distribution is

eðT�
m;nÞ ¼

2ðm� 1Þðn � 5Þ
N � 4

� 2mn

N
¼ 2NlNð1� lNÞ ð3:21Þ

We shall now evaluate the efficacy of the Mood and Freund-
Ansari-Bradley-Barton-David-Siegel-Tukey tests by applying the
results of Theorem 7.3.8 to the two-sample scale model (3.20), for
which

HðxÞ ¼ lNFXðxÞ þ ð1� lNÞFXðyxÞ
For the Mood test statistic of Section 9.2, we write

M0
N ¼ N�2XN

i¼1
i�N þ 1

2

	 
2
Zi ¼ N�2MN

so that for M0
N

ai ¼ i

N
�N þ 1

2N

	 
2
¼ JN

i

N

	 


lim
N!1

JNðHÞ ¼ ðH � 0:5Þ2
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The mean of M0
N then is

mN ¼
Z 1

�1
lNFXðxÞ þ ð1� lNÞFXðyÞ � 0:5½ �2fXðxÞdx

and, after interchanging the order of differentiation and integration,
we have

dmN

dy

����
y¼1

¼ 2ð1� lNÞ
Z 1

�1
½FXðxÞ � 0:5� x f 2XðxÞdx

and the variance under the null hypothesis is

NlNs2N ¼ ð1� lNÞ
Z 1

0

ðu� 0:5Þ4 du�
Z 1

0

ðu� 0:5Þ2 du

� �2( )

¼ 1� lN

180

so that the efficacy for any continuous distribution FX with median
zero is

eðMNÞ ¼ 720NlNð1� lNÞ
Z 1

�1
½FXðxÞ � 1

2�xf 2XðxÞdx

� �2
ð3:22Þ

In order to compare the Mood statistic with the F test statistic, we
shall calculate eðMNÞ for the normal-theory model, where FXðxÞ ¼
FðxÞ: ThenZ 1

�1
½Fðx�0:5Þ�xj2ðxÞdx ¼

Z 1

�1
xFðxÞj2ðxÞdx� 1

2
ffiffiffiffiffiffi
2p

p
Z 1

�1
xjðx

ffiffiffi
2

p
Þdx

¼
Z 1

�1

Z x

�1
xjðtÞj2ðxÞdtdx

¼
Z 1

�1
jðtÞ

Z 1

t

x
1

2p
e�x2dx

	 

dt

¼ 1

4p

Z 1

�1
jðtÞ e�t2dt

¼ 1

4p

Z 1

�1

1ffiffiffiffiffiffi
2p

p e�3=2t
2

dt

¼ ð4p
ffiffiffi
3

p
Þ�1
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For normal distributions, the result then is

eðMNÞ ¼ 15NlNð1� lNÞ=p2 AREðMN ;T
�
m;nÞ ¼ 15=2p2

Using the same procedure for the tests of Section 9.3, we write
the weights for the test A0

N so that ðN þ 1ÞA0
N ¼ AN , where SN was

given in (9.3.1). The result is

ai ¼ i

N þ 1
� 1

2

���� ���� ¼ N

N þ 1

i

N
� 1

2
� 1

2N

���� ���� ¼ JN
i

N

	 


JðHÞ ¼ H � 0:5j j
The mean of A0

N is

mN ¼
Z 1

�1
lNFXðxÞ þ ð1� lNÞFXðyxÞ � 0:5j jfXðxÞdx

and, after interchanging the order of differentiation and integration,
we have

dmN

dy

����
y¼1

¼ ð1� lNÞ
Z 1

�1
jx fXðyxÞjfXðxÞdx

����
y¼1

¼ ð1� lNÞ
Z 1

�1
jxj f 2XðxÞdx

If fXðxÞ is symmetric about its zero median, this reduces to

dmN

dy

����
y¼1

¼ 2ð1� lNÞ
Z 1

0

x f 2XðxÞdx ð3:23Þ

The variance when y ¼ 1 is

NlNs
2
N ¼ ð1� lNÞ

Z 1

0

u� 0:5j j2 du�
Z 1

0

u� 0:5j jdu

	 
2" #

¼ 1� lN

48

For f ðxÞ ¼ jðxÞ, the integral in (3.23) is easily evaluated, and the
results are

eðANÞ ¼ 12NlNð1� lNÞ=p2

AREðA;T�Þ ¼ 6=p2 AREðA;MÞ ¼ 4=5

ASYMPTOTIC RELATIVE EFFICIENCY 517



13.4 SUMMARY

In this chapter we covered the concept of asymptotic relative efficiency
of nonparametric tests and showed how to calculate this for some
popular tests. The exact power of many nonparametric tests is difficult
to find and the ARE becomes a useful tool for comparing two competing
tests. Two most common criticisms of the concept of (Pitman-Noether)
asymptotic relative efficiency are that (1) the comparison is valid only
for large sample sizes and (2) the comparison is ‘‘local,’’ valid only in a
neighborhood close to the null hypothesis. These criticisms have led to
some other criteria in the literature for comparing nonparametric tests.
Notable among these is a concept of efficiency due to Bahadur (1960a,
1960b, 1967), often called Bahadur efficiency. For further readings on
Bahadur efficiency and an interesting comparison of the sign, Wilcoxon
signed-rank, and t tests on the basis of such efficiency, the reader is
referred to Klotz (1965). With regard to the first criticism that the ARE
is basically a tool for a comparison between tests for large sample sizes,
it may be noted that the power efficiency of nonparametric tests,
especially for small sample sizes, has been a topic of interest for a long
time and a vast amount of work, both analytical and empirical, has
been reported in the literature. The reader may refer, for example, to
the works of Klotz (1963), Gibbons (1964), Arnold (1965), Randles and
Hogg (1973), Randles and Wolfe (1979, p. 116), Blair and Higgins
(1980), and Gibbons and Chakraborti (1991), among others, where the
powers of some of the tests discussed in this chapter are examined for
finite sample sizes. Generally, for moderate sample sizes and common
significance levels, it appears that the relative power of nonparametric
tests is consistent with the results obtained from the corresponding
asymptotic relative efficiency. Nikitin (1995) is a good reference for
mathematical details related to asymptotic relative efficiency.

We close with a remark that, as noted earlier, when the ARE
between two competing tests is equal to one, a choice between the tests
cannot be made from the usual Pitman efficiency point of view. Hodges
and Lehmann (1970) have proposed a concept called deficiency which
is useful in these types of situations.

PROBLEMS

13.1 Use the results of Theorem 7.3.8 to evaluate the efficacy of the two-sample
Wilcoxon rank-sum test statistic of (8.2.1) for the location model FYðxÞ ¼ FXðx� yÞ
where:

(a) FX is NðmX ;s
2Þ or FXðxÞ ¼ F½ x� mX Þ=sð �

(b) FX is uniform, with
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FX ðxÞ ¼
0 x4 � 1=2

xþ 1=2 �1=2 < x41=2

1 x > 1=2

8<:
(c) FX is double exponential, with

FX ðxÞ ¼ ð1=2Þelx x4 0

1� ð1=2Þe�lx x > 0

�
13.2. Calculate the efficacy of the two-sample Student’s t test statistic in cases (b) and
(c) of Problem 13.1.

13.3. Use your answers to Problems 13.1 and 13.2 to verify the following results for the
ARE of the Wilcoxon rank-sum (or Mann-Whitney) test to Student’s t test:

Normal: 3=p

Uniform: 1

Double exponential: 3=2

13.4. Calculate the efficacy of the sign test and the Student’s t test for the location
model FXðxÞ ¼ Fðx� yÞ where y is the median of FX and F is the cdf of the logistic dis-
tribution

FðxÞ ¼ ð1� e�xÞ�1

13.5. Evaluate the efficiency of the Klotz normal-scores test of (9.5.1) relative to the F
test statistic for the normal-theory scale model.

13.6. Evaluate the efficacies of the MN and AN test statistics and compare their effi-
ciency for the scale model where, as in Problem 13.1:

(a) FX is uniform.
(b) FX is double exponential.

13.7. Use the result in Problem 13.4 to verify that the ARE of the sign test relative to
the Student’s t test for the logistic distribution is p2=12.

13.8. Verify the following results for the ARE of the sign test relative to the Wilcoxon
signed-rank test

Uniform: 1=3

Normal: 2=3

Logistic: 3=4

Double exponential: 4=3

13.9. Suppose there are three test statistics, T1;T2, and T3, each of which can be used
to test a null hypothesis Ho against an alternative hypothesisH1. Show that for any pair
of tests, say T1 and T3, when the relevant AREs exist,

AREðT1;T3Þ ¼ AREðT1;T2ÞAREðT2;T3Þ ¼ ½AREðT3;T1Þ��1

where we take 1=1 to be 0 and 1/0 to be 1.
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14
Analysis of Count Data

14.1 INTRODUCTION

In this chapter we present several different methods of analyzing
count data, that is, data representing the number of observations that
have one or more specified characteristics, or that respond in a certain
manner to a certain kind of stimulus. The simplest example of count
data is that used in the quantile tests and sign tests of Chapter 5. The
count data situations in this chapter are more involved.

We start with the basic analysis of data presented in a two-way
table with r rows and k columns, called an r� k contingency table,
where the cell counts refer to the number of sample observations
that have certain cross characteristics. Here we have a test for the
null hypothesis that the characteristics are independent or have no
association. We can also calculate the contingency coefficient or the
phi coefficient to measure the degree of association or dependence.
Then we present some special results for k� 2 contingency tables.
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Another special case of contingency tables is the 2� 2 table with fixed
row and column totals and we presents Fisher’s exact test for this
setting. We also cover McNemar’s test for comparing two probabilities
of success based on paired or dependent samples. Finally we present
some methods for analysis of multinomial data.

14.2 CONTINGENCY TABLES

Suppose we have a random sample of observations, and there are two
or more properties or characteristics of interest for each subject in the
sample. These properties, say A, B, C, . . . , are called sets or families of
attributes. Each of these sets has two or more categories of attributes,
say A1, A2, . . . , for family A, etc. These attributes may be measurable
or not, as long as the categories are clearly defined, mutually exclu-
sive, and exhaustive. Some number N of experimental units are
observed, and each unit is classified into exactly one category of each
family. The number of units classified into each cross-category con-
stitutes the sample data. Such a layout is called a contingency table
of order r1 � r2 � r3 � � � � if there are r1 categories of family A, r2 of
family B, etc. We are interested in a measure of association between
the families, or in testing the null hypothesis that the families are
completely independent, or that one particular family is independent
of the others. In general, a group of families of events are defined to be
completely independent if

PðAi \ Bj \ Ck \ � � �Þ ¼ PðAiÞPðBjÞPðCkÞ � � �
for all Ai � A, Bj � B, Ck � C, etc. For subgroup independence, say
that family A is independent of all others, the requirement is

PðAi \ Bj \ Ck \ � � �Þ ¼ PðAiÞPðBj \ Ck \ � � �Þ
For example, in a public-opinion survey concerning a proposed

bond issue, the results of each interview or questionnaire may be
classified according to the attributes of gender, education, and opinion.
Along with the two categories of gender, we might have three cate-
gories of opinion, e.g., favor, oppose, and undecided, and five categories
of education according to highest level of formal schooling completed.
The data may then be presented in a 2� 3� 5 contingency table of 30
cells. A tally is placed in the appropriate cell for each interviewee, and
these count data may be used to determine whether gender and edu-
cational level have any observable relationship to opinion or to find
some relative measure of their association.
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For convenience, we shall restrict our analysis to a two-way
classification for two families of attributes, as the extension to higher-
way layouts will be obvious. Suppose there are r categories of the type
A attribute and k categories of the B attribute, and each of N experi-
mental units is classified into exactly one of the rk cross-categories. In
an r� k layout, the entry in the (i, j) cell, denoted by Xi j, is the number
of items having the cross-classification Ai \ Bj. The contingency table
is written in the following form:

The total numbers of items classified respectively into the categories
Ai and Bj then are the row and column totals Xi: and X:j, where

Xi: ¼
Xk
j¼1

Xij and X:j ¼
Xr

i¼1
Xij

Without making any additional assumptions, we know that the
rk random variables X11;X12; . . . ;Xrk have the multinomial probability
distribution with parameters

yij ¼ PðAi \ BjÞ where
Xr

i¼1

Xk
j¼1

yij ¼ 1

so that the likelihood function of the sample is

Yr
i¼1

Yk
j¼1

ðyijÞxij

The null hypothesis that the A and B classifications are in-
dependent affects only the allowable values of these parameters yij.

B family

A family B1 B2 � � � Bk Row total

A1 X11 X12 � � � X1k X1:

A2 X21 X22 � � � X2k X2:

� � � � � � �
� � � � � � �
� � � � � � �

Ar Xr1 Xr2 � � � Xrk Xr:

Column total X:1 X:2 � � � X:k X:: ¼ N
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In view of the definition of independence of families, the hypothesis
can be stated simply as

H0:yij ¼ yi:y:j for all i ¼ 1; 2; . . . ; r and j ¼ 1; 2; . . . ; k

where

yi: ¼
Xk
j¼1

yij ¼ PðAiÞ y:j ¼
Xr

i¼1
yij ¼ PðBjÞ

If these yi: and y:j were all specified under the null hypothesis, this
would reduce to an ordinary goodness-of-fit test of a simple hypothesis
of the multinomial distribution with rk groups. However, the prob-
ability distribution is not completely specified under H0, since only a
particular relation between the parameters need be stated for the
independence criterion to be satisfied.

The chi-square goodness-of-fit test for composite hypotheses
discussed in Section 4.2 is appropriate here. The unspecified para-
meters must be estimated by the method of maximum likelihood and
the degrees of freedom for the test statistic reduced by the number of
independent parameters estimated. The maximum-likelihood esti-
mates of the ðr� 1Þ þ ðk� 1Þ unknown independent parameters are
those sample functions that maximize the likelihood function under
H0, which is

Lðy1:; y2:; . . . ; yr:; y:1; y:2; . . . ; y:kÞ ¼
Yr
i¼1

Yk
j¼1

ðyi:y:jÞxij ð2:1Þ

subject to the restrictions

Xr

i¼1
yi: ¼

Xk
j¼1

y:j ¼ 1

The maximum-likelihood estimates of these parameters are easily
found to be the corresponding observed proportions, or

ŷi: ¼ Xi:=N and ŷ:j ¼ X:j=N for i¼ 1;2; . . . ;r and j¼ 1;2; . . . ;k
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so that the rk estimated cell frequencies under H0 are

Nŷij ¼ Xi:X:j=N

By the results of Section 4.2, the test statistic then is

Q ¼
Xr

i¼1

Xk
j¼1

ðXij � Xi:X:j=NÞ2
Xi:X:j=N

¼
Xr

i¼1

Xk
j¼1

ðNXij � Xi:X:jÞ2
NXi:X:j

ð2:2Þ

which under H0 has approximately the chi-square distribution with
degrees of freedom rk� 1� ðr� 1þ k� 1Þ ¼ ðr� 1Þðk� 1Þ. Since non-
independence is reflected by lack of agreement between the observed
and expected cell frequencies, the rejection region with significance
level a is

Q 2 R for Q5 w2ðr�1Þðk�1Þ;a

As before, if any expected cell frequency is too small, say less than 5,
the chi-square approximation is improved by combining cells and
reducing the degrees of freedom accordingly.

The extension of this to higher-order contingency tables is ob-
vious. For an r1 � r2 � r3 table, for example, for the hypothesis of
complete independence

H0:yijk ¼ yi::y:j:y::k for all i ¼ 1; 2; . . . ; r1; j ¼ 1; 2; . . . ; r2;

k ¼ 1; 2; . . . ; r3

the estimates of expected cell frequencies are

Nŷijk ¼ Xi::X:j:X::k=N
2

and the chi-square test statistic isXr1
i¼1

Xr2
j¼1

Xr3
k¼1

ðN2Xijk � Xi::X:j:X::kÞ2=N2Xi::X:j:X::k

with

r1r2r3 � 1� ðr1 � 1þ r2 � 1þ r3 � 1Þ ¼ r1r2r3 � r1 � r2 � r3 þ 2

degrees of freedom. For the hypothesis that family A is independent
of B and C,

H0:yijk ¼ yi::y:jk
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the estimated expected cell frequencies are

Nŷijk ¼ Xi::X:jk=N

and the chi-square test statistic has

r1r2r3 � 1� ðr1 � 1þ r2r3 � 1Þ ¼ ðr1 � 1Þðr2r3 � 1Þ
degrees of freedom.

If the experimental situation is such that one set of totals is fixed
by the experimenter in advance, say the row totals in an r� k con-
tingency table, the test statistic for a hypothesis of independence is
exactly the same as for completely random totals, although the rea-
soning is somewhat different. The entries in the ith row of the table
constitute a random sample of size xi: from a k-variate multinomial
population. For each row then, one of the cell entries is determined by
the constant total. One of the observable frequencies is redundant
for each row, as is one of the probability parameters PðAi \ BjÞ for
each i. Since

PðAi \ BjÞ ¼ PðAiÞPðBj jAiÞ
and PðAiÞ ¼ xi:=N is now fixed, we shall redefine the relevant para-
meters as yij ¼ PðBj jAiÞ, where

Pk
j¼1yij ¼ 1. The dimension of the

parameter space is then reduced from rk� 1 to rðk� 1Þ. The B family
is independent of the Ai category if yij ¼ PðBj jAiÞ ¼ PðBjÞ ¼ yj for all
j ¼ 1;2; . . . ; k, where

Pk
j¼1 yj ¼ 1. Under H0 then, EðXijÞ ¼ xi:yj, and if

the yj were specified, the test statistic for independence between B
and Ai would beXk

j¼1

ðXij � xi:yjÞ2
xi:yj

ð2:3Þ

which is approximately chi square distributed with k � 1 degrees of
freedom. The B family is completely independent of the A family if
yij ¼ yj; j ¼ 1; 2; . . . ; k, for all i ¼ 1; 2; . . . ; r, so that the null hypothesis
can be written as

H0: y1 j ¼ y2 j ¼ � � � ¼ yrj ¼ yj for j ¼ 1; 2; . . . ; k

The test statistic for complete independence then is the statistic in
(2.3) summed over all i ¼ 1; 2; . . . ; r,

Xr

i¼1

Xk
j¼1

ðXij � xi:yjÞ2
xi:yj

ð2:4Þ
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which under H0 is the sum of r independent chi-square variables,
each having k� 1 degrees of freedom, and therefore has rðk� 1Þ
degrees of freedom. Of course, in our case the yj are not specified,
and so the test statistic is (2.4), with the yj replaced by their max-
imum-likelihood estimates and the degrees of freedom reduced by
k� 1, the number of independent parameters estimated. The like-
lihood function under H0 of all N observations with row totals fixed
is

Lðy1; y2; . . . ; ykÞ ¼
Yr
i¼1

Yk
j¼1

yxij

j ¼
Yk
j¼1

yx:j
j

so that ŷj ¼ X:j=N. Substituting this result in (2.4), we find the test
criterion unchanged from the previous case with random totals given
in (2.2), and the degrees of freedom are rðk� 1Þ � ðk� 1Þ ¼
ðr� 1Þðk� 1Þ, as before. By similar analysis, it can be shown that the
same result holds for fixed column totals or both row and column totals
fixed.

THE CONTINGENCY COEFFICIENT

As a measure of the degree of association between families in a con-
tingency table classifying a total of N experimental units, Pearson
(1904) proposed the contingency coefficient C, defined as

C ¼ Q

QþN

	 
1=2
ð2:5Þ

where Q is the test statistic for the hypothesis of independence. If the
families are completely independent, the values of Q and C are both
small. Further, increasing values of C imply an increasing degree of
association since large values of Q are a result of more significant
departures between the observed and expected cell frequencies.
Although clearly the value of C cannot exceed 1 for any N, a dis-
advantage of C as a measure of association is that it cannot attain the
value 1, as we now show.

For a two-way contingency table of dimension r� k, the max-
imum value of C is

Cmax ¼ t� 1

t

	 
1=2
where t ¼ minðr; kÞ
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Without loss of generality, we can assume r5 k. Then N must be
at least r so that there is one element in each row and each column
to avoid any zero denominators in the test statistic. Consider N
fixed at its smallest value r, so that xi: ¼ 1 for i ¼ 1; 2; . . . ; r, and xij is
0 or 1 for all i; j. The number of cells for which xij ¼ 1 for fixed j is x:j,
and the number for which xij ¼ 0 is r� x:j. The value of Q from (2.2)
then is

Xk
j¼1

ðr� x:jÞð0� x:j=rÞ2 þ x:jð1� x:j=rÞ2
x:j=r

¼
Xk
j¼1

x�jðr� x�jÞ½xj þ ðr� x:jÞ�
rx:j

¼ rðk� 1Þ

and the contingency coefficient has the value

C ¼ rðk � 1Þ
rk� rþ r

� �1=2
¼ k� 1

k

	 
1=2
As a result of this property, contingency coefficients for two dif-

ferent sets of count data are not directly comparable to measure as-
sociation unless minðr; kÞ is the same for both tables. For this reason,
some people prefer to use the ratio C=Cmax as a measure of association
in contingency tables. Another coefficient sometimes used to measure
association is the phi coefficient defined as

f ¼
ffiffiffiffiffiffiffiffiffiffiffi
Q=N

p
ð2:6Þ

The sampling distribution of C or f is not known. However, this
is of no consequence since C and f are both functions of Q, and a test of
significance based on Q would be equivalent to a test of significance
based on C2 or f2.

Example 2.1 Streissguth et al. (1984) investigated the effect of alcohol
and nicotine consumption during pregnancy on the resulting children
by examining the children’s attention span and reaction time at age
four. First, the 452 mothers in the study were classified as shown in
Table 2.1 according to their levels of consumption of alcohol and
nicotine. Test the null hypothesis of no association between levels of
consumption.
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Solution The expected frequencies under the null hypothesis are
calculated using the row and column totals in Table 2.1. The results
are shown in parentheses in Table 2.2. Note that none of the expected
frequencies is small, so there is no need to combine cells. The test
statistic is Q ¼ 42:250 with 6 degrees of freedom. The P value from
Table B of the Appendix is P < 0:001 and we condlude that asso-
ciation exists. The value of the contingency coefficient from (2.5) is
C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

42:250=494:25
p ¼ 0:2924, and the phi coefficient from (2.6) isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

42:250=452
p ¼ 0:3057.

The STATXACT solution is shown below. The results agree with
ours. The contingency coefficient is labeled Pearson’s CC and the phi
coefficient is labeled phi.

Table 2.1 Data for Example 2.1

Nicotine (mg=day)

Alcohol (oz.=day) None 1–15 16 or more Total

None 105 7 11 123
0.01–0.10 58 5 13 76
0.11–0.99 84 37 42 163
1.00 or more 57 16 17 90

Total 304 65 83 452
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14.3 SOME SPECIAL RESULTS FOR k32 CONTINGENCY TABLES

In a k� 2 contingency table, the B family is simply a dichotomy with
say success and failure as the two possible outcomes. Then it is a
simple algebraic exercise to show that the test statistic for indepen-
dence can be written in an equivalent form as

Q ¼
Xk
i¼1

X2
j¼1

ðXij � Xi:X:j=NÞ2
Xi:X:j=N

¼
Xk
i¼1

ðYi � nip̂Þ2
nip̂ð1� p̂Þ ð3:1Þ

where

Yi ¼ Xi1 ni � Yi ¼ Xi2 p̂ ¼
Xk
i¼1

Yi=N

If B1 and B2 are regarded as success and failure, and A1;A2; . . . ;Ak are
termed sample 1, sample 2, . . . , and sample k, we see that the chi-
square test statistic in (3.1) is the sum of the squares of k standardized
binomial variables with parameter p estimated by its consistent esti-
mator p̂. Thus the test based on (3.1) is frequently called the test for the
equality of k proportions, previously covered in Section 10.8 and illu-
strated here by Example 3.1.

Example 3.1 A marketing research firm has conducted a survey of
businesses of different sizes. Questionnaires were sent to 200 ran-
domly selected businesses of each of three sizes. The data on responses

Table 2.2 Expected frequencies

Nicotine

Alcohol 0 1–15 16 or more Total

0 105 (82.7) 7 (17.7) 11 (22.6) 123
0.01–0.10 58 (51.1) 5 (10.9) 13 (14.0) 76
0.11–0.99 84 (109.6) 37 (23.4) 42 (30.0) 163
1.00 or more 57 (60.5) 16 (12.9) 17 (16.5) 90

Total 304 65 83 452

Business size

Small Medium Large

Response 125 81 40
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are summarized below. Is there a significant difference in the pro-
portion of nonresponses by small, medium, and large businesses?

Solution The frequencies of nonresponses are 75, 119, and 160. The
best estimate of the common probability of nonresponse is (75þ 119þ
160)=600¼ 0.59. The expected numbers of nonresponse are then 118
for each size business. The value of Q from (3.1) is 74.70 with 2 degrees
of freedom. From Table B we find P < 0:001, and we conclude that the
proportions of nonresponse are not the same for the three sizes of
businesses.

If k ¼ 2, the expression in (3.1) can be written as

Q ¼ ðY1=n1 � Y2=n2Þ2
p̂ð1� p̂Þð1=n1 þ 1=n2Þ ð3:2Þ

Now the chi-square test statistic in (3.2) is the square of the difference
between two sample proportions divided by the estimated variance of
their difference. In other words, Q is the square of the classical stan-
dard normal theory test statistic used for the hypothesis that two
population proportions are equal.

Substituting the original Xij notation in (3.2), a little algebraic
manipulation gives another equivalent form for Q as

Q ¼ NðX11X22 � X12X21Þ2
X:1X:2X1:X2:

ð3:3Þ
This expression is related to the sample Kendall tau coefficient of
Chapter 11. Suppose that the two families A and B are factors or
qualities, both dichotomized into categories which can be called pre-
sence and absence of the factor or possessing and not possessing the
quality. Suppose further that we have a single sample of size N, and
that we make two observations on each element in the sample, one for
each of the two factors. We record the observations using the code 1 for
presence and 2 for absence. The observations then consist of N sets of
pairs, for which the Kendall tau coefficient T of Chapter 11 can be
determined as a measure of association between the factors. The
numerator of T is the number of sets of pairs of observations, say ðaibiÞ
and ðajbjÞ, whose differences ai � aj and bi � bj have the same sign but
are not zero. The differences here are both positive or both negative
only for a set (1,1) and (2,2), and are of opposite signs for a set (1,2) and
(2,1). If Xij denotes the number of observations where factor A was
recorded as i and factor B was recorded as j for i, j¼ 1,2, the number of
differences with the same sign is the product X11X22, the number of
pairs which agreed in the sense that both factors were present or both
were absent. The number of differences with opposite signs is X12X21,
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the number of pairs which disagreed. Since there are so many ties, it
seems most appropriate to use the definition of T modified for ties,
given in (11.2.37) and called tau b. Then the denominator of T is the
square root of the product of the numbers of pairs with no ties for each
factor, or X1:X2:X:1X:2. Therefore the tau coefficient is

T ¼ X11X22 � X12X21

ðX:1X:2X1:X2:Þ1=2
¼ Q

N

	 
1=2
ð3:4Þ

and Q=N estimates t2, the parameter of association between factors A
and B. For this type of data, the Kendall measure of association is
sometimes called the phi coefficient, as defined in (2.6).

Example 3.2 The researchers in the study reported in Example 2.1
really might have been more interested in a one-sided alternative of
positive dependence between the variables alcohol and nicotine.
Since the data are measurements of level of consumption, we could
regard them as 452 pairs of measurements with many ties. For
example, the 37 mothers in cell (3,2) of Table 2.1 represent the
pair of measurements (AIII, BII), where AIII indicates alcohol
consumption in the 0.11–0.99 range and BII represents nicotine
consumption at level 1–15. For these kinds of data we can then
calculate Kendall’s tau for the 452 pairs. The number of concordant
pairs C and the number of discordant pairs Q are calculated as
shown in Table 2.3. Because the ties are quite extensive, we need to
incorporate the correction for ties in the calculation of T from
(11.2.38). Then we use the normal approximation to the distribution
of T in (11.2.30) to calculate the right-tailed P value for this one-
sided alternative.

Table 2.3 Calculations for C and Q

C Q

105(5þ13þ 37þ42þ 16þ17)¼ 13,650 7(58þ 84þ57)¼ 1,393
7(13þ 42þ17)¼ 504 11(58þ84þ57þ 5þ 37þ16)¼ 2,827

58(37þ42þ 16þ17)¼ 6,496 58(84þ57)¼705
5(42þ 17)¼ 295 13(84þ 57þ37þ16)¼2,522
84(16þ17)¼2,2772 37(57)¼ 2,109

37(17)¼629 42(57þ16)¼3,066
24,346 12,622
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T¼ 24;346�12;622ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
452
2

� 

� 304

2

 �� 65
2

 �� 83
2

 ���
452
2

 �� 123
2

 �� 76
2

 �� 163
2

 �� 90
2

 ��s
¼0:1915

Z ¼ 3ð0:1915Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
452ð451Þpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð904þ 5Þp ¼ 6:08

We find P=0.000 from Table A of the Appendix.
There is also a relationship between the value of the chi-square

statistic in a 2� 2 contingency table and Kendall’s partial tau coeffi-
cient. If we compare the expression for TXY:Z in (12.6.1) with the ex-
pression for Q in (3.3), we see that

TXY:Z ¼
ffiffiffiffiffiffiffiffiffiffiffi
Q=N

p
for N ¼ m

2

� �
A test for the significance of TXY:Z cannot be carried out by using Q,
however. The contingency table entries in Table 6.1 of Chapter 12 are
not independent even if X and Y are independent for fixed Z, since all
categories involve pairings with the Z sample.

14.4 FISHER’S EXACT TEST

Suppose we have two independent samples of sizes n1 and n2, from two
binomial populations, 1 and 2, with probability of success y1 and y2,
respectively, and observed number of successes y1 and y2, respectively.
The data can be represented in a 2� 2 table as in Table 4.1. The row
totals in this table are fixed since they are the designated sample sizes.
As discussed in Section 14.3, the Q statistic in (3.2) can be used as an
approximate test of the null hypothesis that the success probabilities
are equal when the sample sizes are large.

Table 4.1 Presentation of data

Subject’s identification

Population Success Failure Total

1 y1 n1�y1 n1
2 y2 n2�y2 n2

Total y1þ y2 N�(y1þ y2) N
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We now present an exact test for this problem that can be used for
any sample sizes when the marginal column totals Y ¼ Y1 þ Y2 and
therefore also N � ðY1 þ Y2Þ are assumed fixed. This is known as
Fisher’s exact test. Fisher’s example of applications is where an ex-
periment is designed to test a human’s ability to identify (discriminate)
correctly between two objects, success and failure, when the subject is
told in advance exactly how many successes are in the two samples
combined. The subject’s job is simply to allocate the total number of
successes between the two groups. Under the null hypothesis, this
allocation is a random assignment; i.e., the subject is merely guessing.

Note that in the 2� 2 table, the marginal row totals are fixed at
the two given sample sizes. For a given value of y1 þ y2, the value of y1
determines the remaining three cell counts. Under the null hypothesis
H0: y1 ¼ y2 ¼ y, the conditional distribution of Y1 given the marginal
totals is the hypergeometric distribution

n1
y1

� �
n2
y2

� �
N
y

� � ð4:1Þ

where y is the sum of the values observed under the first column.
Inferences can be based on an exact P value calculated from (4.1) for
an observed y1. The premise here is that the observed 2� 2 table is one
of the many possible 2� 2 tables that could have been observed with
the row and the column totals fixed at their presently observed values.
The question then becomes how extreme the currently observed table
(value y1) is, in the appropriate direction, among all of the possible
tables with the same marginal totals. The more extreme it is, the more
is the evidence against the null hypothesis.

For example, if the alternative hypothesis is H1: y1 > y2, the null
hypothesis should be rejected if Y1 is large. The exact P value can be
calculated by finding the probability PðY15 y1O jY ¼ yÞ, where y1O is
the observed value of Y1. Again, this P value is calculated from all
possible 2� 2 tables with the same marginal totals as the observed
one, but having a value of Y1 as extreme as or more extreme than the
value y1O of Y1 for the observed table. We illustrate this test with the
famous data from Fisher’s tea testing experiment.

Example 4.1 Sir R. A. Fisher, the English statistician, has been called
the father of modern statistics. A famous story is that a colleague of
Fisher’s claimed that she could tell, while drinking tea with milk,
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whether milk or tea was poured into the cup first. An experiment was
designed to test her claim. Eight cups of tea were presented to her in
a random order; four of these had milk poured first while the other
four had tea poured first. She was told that there were four cups of
each type. The following data show the results of the experiment. She
was right 3 out of 4 times on both types. Is this sufficient evidence of
her claim of special power?

Solution The potential values of Y1 are (0,1,2,3,4) and the observed
value is 3, the number of cups with milk poured first that were correctly
guessed. Only one other 2� 2 table with the same marginal totals is
more extreme than the observed table, and this is shown below.

The exact P value is then the sum of the conditional probabilities for
these two results calculated from (4.1) or�

4

3

	 

4

1

	 

þ 4

4

	 

4

0

	 
��
8

4

	 

¼ 0:2286þ 0:0143 ¼ 0:2429

Hence there is not sufficient evidence to suggest that Fisher’s collea-
gue has any special power to determine whether tea or milk was
poured into the cup first. The value of the chi-square statistic calcu-
lated from (3.3) is Q¼ 2.0 with df¼ 1. The P value from Table B is
0.10<P< 0.25 but this is for a two-sided alternative. For a 2� 2 table
with such small frequencies and a one-sided alternative, the chi-
square approximation should be suspect.

Guess poured first

Poured first Milk Tea Total

Milk 3 1 4
Tea 1 3 4

Total 4 4 8

Guess poured first

Poured first Milk Tea Total

Milk 4 0 4
Tea 0 4 4

Total 4 4 8
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The STATXACT and the SAS outputs for this example are
shown below. Both show the exact P value for a one-sided test as
0.2429, which agrees with ours. Note that the probability that Y1

equals 3 (0.2286) also appears on both printouts, but STATXACT
labels it as the value of the test statistic. The Fisher statistic in the
STATXACT printout (1.807) is not the same as ours and should not
be interpreted as such.
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We note that the two-sample median test presented in Section 6.4
can be viewed as a special case of Fisher’s exact test where the value of
y1 þ y2 is the number of observations smaller than the sample median
of the two combined samples, which is fixed at N=2 if N is even and
(N�1)=2 if N is odd.

For further discussions on Fisher’s exact test, the reader is
referred to the review article by Gibbons (1982). STATXACT can
calculate the power of Fisher’s exact test for a given a;n1;n2; y1 ¼ p1
and y2 ¼ p2. For illustration, suppose n1 ¼ n2 ¼ 10 and a=0.05, and
let p1 ¼ 0:5 and p2 ¼ 0:8. The exact power of Fisher’s exact test is
0.13, as shown in the output labeled Figure 4.1. The latest version of
STATXACT also has options for calculating the sample size for a
given a;p1;p2 and power.

In the next section we consider the problem of comparing the
probabilities of success for two groups with paired or dependent
samples.

14.5 McNEMAR’S TEST

Suppose that a 2� 2 table of data arises when a success or failure
response is observed on each of N subjects before and after some
treatment. The paired data are dependent within a pair but indepen-
dent across pairs. Let X11 be the number of subjects whose responses
are successes both before and after the treatment and let X22 be the
number of subjects whose responses are failures both before and after
the treatment. Then X12 and X21 denote the numbers of reversals (or

Fig. 4.1 STATXACT output for the power of Fisher’s exact test.
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discordant pairs) in responses; that is, X12 is the number of subjects
whose initial (before treatment) response was success but became
failure after the treatment, and similarly for X21. The data can then be
summarized in the following 2�2 table.

The two groups of interest are the subjects before and after the
treatment, and the hypothesis of interest is that the probability of
success is the same before and after the treatment. Let
ðy11; y12; y21; y22Þ denote the four cell probabilities for the table, with
y11 þ y12 þ y21 þ y22 ¼ 1. The interpretation is that y11 say is the
probability of success before and after treatment. The sum
y:1 ¼ y11 þ y21 is the marginal probability of success after treatment
and y1: ¼ y11 þ y12 is the marginal probability of success before treat-
ment. The null hypothesis is then parameterized as H0: y1: ¼ y:1 but
this is the same as y12 ¼ y21. In other words the null hypothesis can be
viewed as testing that the probability of a reversal in either direction
is the same.

For the null hypothesis H0: y1: ¼ y:1 it is natural to consider a test
based on T ¼ ðX1: � X:1Þ=N, an unbiased estimator of the difference
y1: � y:1. Since X1: ¼ X11 þ X12 and X:1 ¼ X11 þ X21, T reduces to
T ¼ ðX12 � X21Þ=N, the difference between the proportions of dis-
cordant pairs (numbers in the off-diagonal positions divided by N).
Under the null hypothesis, the mean of T is zero and the variance of T
can be shown to be ðy12 þ y21Þ=N. McNemar’s test for H0 against the
two-sided alternative H1: y1: 6¼ y:1 is based on

ðX12 � X21Þ2=ðX12 þ X21Þ ð5:1Þ
which is approximately distributed as a chi-square with 1 degree of
freedom. The reader is warned about the inaccuracy of the chi-square
approximation for small expected cell frequencies.

We now derive the variance of T ¼ ðX12 � X21Þ=N. The distribu-
tions of X12 and X21 are each binomial with parameters N; y12 and
y21, respectively. Hence EðX12Þ ¼ Ny12; varðX12Þ ¼ Ny12ð1� y12Þ and

After treatment

Before treatment Success Failure Total

Sucess X11 X12 X1.
Failure X21 X22 X2.

Total X.1 X.2 N
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EðX21Þ ¼ Ny21; varðX21Þ ¼ Ny21ð1� y21Þ. This gives EðTÞ ¼ y12 � y21.
The variance of T will be found from

N2 varðTÞ ¼ varðX12Þ þ varðX21Þ � 2 covðX12;X21Þ ð5:2Þ
In order to find the covariance term, we note that the joint distribution
of the counts ðX11;X12;X21;X22Þ is a multinomial distribution with
probabilities ðy11; y12; y21; y22Þ. From this it follows that the joint dis-
tribution of X12 and X21 is a multinomial with probabilities ðy12; y21Þ.
The moment generating function of X12 and X21 was given in
Table 1.2.1 as

fy12et1 þ y21et2 þ ½1� ðy12 þ y21Þ�gN ð5:3Þ
The reader can verify that by taking the second partial derivative of
(5.3) with respect to t1 and t2 and setting t1 ¼ t2 ¼ 0, we obtain the
second joint moment about the origin as

EðX12X21Þ ¼ NðN � 1Þy12y21
Hence the covariance is

covðX12;X21Þ ¼ NðN � 1Þy12y21 � ðNy12ÞðNy21Þ ¼ �Ny12y21

Now substituting back in (5.2) gives

N2 varðTÞ ¼ Ny12ð1� y12Þ þNy21ð1� y21Þ � 2ð�Ny12y21Þ
¼ N½ðy12 þ y21Þ � ðy12 � y21Þ2� ð5:4Þ

Therefore T ¼ ðX12 � X21Þ=N has expectation y12 � y21 and variance

½ðy12 þ y21Þ � ðy12 � y21Þ2�=N
Under the null hypothesis y12 ¼ y21, T has zero expectation and var-
iance ðy12 þ y21Þ=N, which can be consistently estimated by
ðX12 þ X21Þ=N2. McNemar’s test statistic in (5.1) is the square of T
divided by this estimated variance.

A second motivation of McNemar’s test can be given as follows.
As noted before, the joint distribution of the counts ðX11;X12;X21;X22Þ
is a multinomial distribution with probabilities ðy11; y12; y21; y22Þ. Let
S ¼ X12 þ X21 denote the total number of discordant pairs. The reader
can verify that the conditional distribution of X12 given S is binomial

½S;p ¼ y12=ðy12 þ y21Þ�. Then, since y12 ¼ y21 under the null hypothesis,
an exact (conditional) P value can be calculated from the binomial

(S,0.5) distribution as the probability that X12 is as extreme as or more
extreme than its observed value, in the direction of the alternative.
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We are usually interested in a one-sided alternative that the treatment
is effective, that is H1: y:1 > y1:, and this is equivalent to H1: y12 < y21.

For this alternative, the exact P value is given by
Px12

j¼0
s
j

� �
ð0:5Þs, which

can be found from Table G of the Appendix for s4 20. For large sample
sizes, an approximate P value can be based on the normal approx-
imation to the binomial distribution with the statistic

Z ¼ X12 � 0:5Sffiffiffiffiffiffiffiffiffiffi
0:25

p
S

¼ X12 � X21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X12 þ X21

p ð5:5Þ

which is approximately standard normal, or, when using a continuity
correction,

Z ¼ X12 � X21 þ 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X12 þ X21

p ð5:6Þ

The squared value of (5.2) is the McNemar test statistic for matched
pairs in (5.1), which is approximately distributed as a chi square with
one degree of freedom.

For a one-sided alternative H1: y12 > y21, the appropriate rejec-
tion region is in the right-tail of Z in (5.5). STATXACT provides both
exact and approximate tests, as we show for Example 5.1.

Example 5.1 Suppose that a random sample of 100 subjects is eval-
uated for pain. Under a placebo, 35 of the subjects reported some relief
but the remaining 65 did not. Under a new drug, 55 of the subjects
reported some relief while 45 did not. Of the 65 people who reported no
relief under the placebo, 30 also reported no relief under the new drug.
Is there any evidence that the new drug is more effective from the
placebo?

Solution The data can be represented in the following 2� 2 table.
The alternative of interest is y:1 > y1: or y21 > y12:

New drug

Placebo Some relief No relief Total

Some relief 20 15 35
No relief 35 30 65

Total 55 45 100
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The value of the test statistic for a one-sided test is 15. The normal
approximation to the binomial probability of a value less than or equal
to 15, with a total of 50 observations, is calculated from (5.5) as

Z ¼ 15� 50ð0:5Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25ð50Þp ¼ �2:83

and thePvalue fromTableAof theAppendix is estimated tobe0.0023.The
corresponding approximation with a continuity correction from (5.3) is

Z ¼ ð15� 35Þ þ 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15þ 35

p ¼ �2:76

with a P value of 0.0029. In each case, there is sufficient evidence that
the new drug is more effective than the placebo.

The value of McNemar’s test statistic for a two-sided alternative
from (5.1) is

Z2 ¼ ð35� 15Þ2
35þ 15

¼ 8:0

Table B shows 0.001<P< 0.005.

The STATXACTand SAS outputs for this example are shown below.
In STATXACT, note that the value of the Z statistic is calculated without
the continuity correction. The approximate P values are the same as ours
and are fairly close to the exact values. The reader is referred to the
STATXACT user’s manual for details regarding the exact P value calcu-
lations. The value ofMcNemar’s statistic is shown on the SAS output and
it agrees with ours. The approximate P value is 0.0047, which is simply
twice that of the one-tailed P value associated with the Z statistic.
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The power of McNemar’s test has been studied by various au-
thors. A related issue is the determination of sample size. The reader
is referred to Lachin (1993) and Lachenbruch (1992) and the refer-
ences in these papers. The latest version of STATXACT has options for
calculating the power and the sample size for McNemar’s test.

14.6 ANALYSIS OF MULTINOMIAL DATA

Count data can also arise when sampling from a multinomial dis-
tribution where we have k possible categories or outcomes with
respective probabilities p1;p2; . . . ;pk, which sum to one. We can use the
chi-square goodness-of-fit in Section 4.2 to test the null hypothesis
that the sample data conform to specified values for these probabilities
(see Problems 4.1, 4.3 to 4.5, 4.27, 4.31, and 4.32).

If we have random samples from two or more multinomial dis-
tributions, each with the same k possible categories or outcomes, the
data can be presented in an r� k contingency table where the rows
represent the samples and the columns represent the categories. Now
Xij denotes the number of outcomes in category j for the ith sample,
and the probabilities of these outcomes for the ith sample are denoted
by pi1;pi2; . . . ;pik where 0 < pij < 1 and

P
j pij ¼ 1. We will consider

only the case where we have r¼ 2 samples of sizes n1 and n2. The data
can be presented in a 2� k table as in Table 6.1. Note that the row
totals are fixed by the sample sizes.

We are interested in testing the null hypothesis H0: p11 ¼ p21;
p12 ¼ p22; . . . ;p1k ¼ p2k: The common probability for the jth category is
estimated by ðX1j þ X2jÞ=N ¼ X:j=N, and the estimated cell frequencies
are n1X:j=N and n2X:j=N for samples 1 and 2, respectively. The chi-
square test statistic with df ¼ k � 1 is then

Q ¼
X2
i¼1

Xk
j¼1

ðXij � niX:j=NÞ2
niX:j=N

ð6:1Þ

Table 6.1 Presentation of data

Category or outcome

Sample 1 2 � � � k Total

1 X11 X12 � � � X1k n1
2 X21 X22 � � � X2k n2

Total X.1 X.2 � � � X.k N
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which is the same as (3.1), the test for equality of k proportions.

Example 6.1 Businesses want to maximize return on any money spent
on advertising. If the medium is a television commercial, they want
the audience to remember the main points of the commercial as long as
possible. Two versions of a commercial were test marketed on 100
volunteers. The volunteers were randomly assigned to two groups to
view commercials A or B so that each group had 50 volunteers. After 2
days the participants were telephoned and asked to classify
their recollection of the commercial as either ‘‘Don’t remember,’’ ‘‘Re-
member vaguely,’’ or ‘‘Remember key points.’’ The data are shown
below. Are commercials A and B equally effective as measured by
viewer recollection?

Solution The null hypothesis is H0: pA1 ¼ pB1;pA2 ¼ pB2;pA3 ¼ pB3,
against the alternative that they are not all equal. The expec-
ted frequencies under the null hypothesis and the ðnij � eijÞ2=eij terms,
called contributions (cont) from cell ði; jÞ to the Q statistic, are shown
below.

The test statistic is Q ¼ 0:17þ 0þ 0:10þ 0:17þ 0þ 0:10 ¼ 0:54 and
Table B of the Appendix with df ¼ 2 shows P > 0:50. This implies that
there is no significant difference between commercials A and B with
respect to recollection by viewers. The STATXACT and MINITAB
solutions are shown below. The answers agree with ours.

Don’t
remember

Remember
vaguely

Remember
key points Total

Commercial A 12 15 23 50
Commercial B 15 15 20 50

Total 27 30 43 100

Don’t
remember

Remember
vaguely

Remember
key points Total

Commercial A X11 ¼ 12 X12 ¼ 15 X13 ¼ 23 50
e11 ¼ 13:5 e12 ¼ 15 e13 ¼ 21:5
cont ¼ 0:17 cont ¼ 0 cont ¼ 0:10

Commercial B X21 ¼ 15 X22 ¼ 15 X23 ¼ 20 50
e21 ¼ 13:5 e22 ¼ 15 e23 ¼ 21:5
cont ¼ 0:17 cont ¼ 0 cont ¼ 0:10

Total 27 30 43 100
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ORDERED CATEGORIES

The three categories in Example 6.1 are actually ordered in terms of
degree of recollection. In comparing two multinomial distributions
when the categories are ordinal, we really are more interested in a
one-sided alternative, specifically that the degree of recollection is
greater for one commercial than the other, rather than the alternative
that the degree of recollection is not the same for the two commercials.
The chi-square test is appropriate only for the two-sided alternative.
The Wilcoxon rank-sum test presented in Section 8.2 can be adapted to
provide a test to compare two groups against a one-sided alternative.
We explain this approach in the context of Eaxmple 6.2. This is very
similar to what we did in Example 3.2 to calculate the Kendall tau
coefficient.

Example 6.2 Two independent random samples of 10 business ex-
ecutives are taken, one sample from executives under 45 years of age,
and the other from executives at least 45 years old. Each subject is
then classified in terms of degree of risk aversion, Low, Medium or
High, based on the results of a psychological test. For the data shown
below, the research hypothesis of interest is that the younger business
executives are more risk averse than their older counterparts.

Solution We call the Under 45 group the X sample and the Over 45
the Y sample. If we code (rank) the 3 degrees of risk aversion as
1¼ low, 2¼medium, and 3¼high, the six executives from the X and Y
samples combined who were classified as Low (column one) are all tied
at rank 1. If we use the midrank method to resolve the ties, each of
these six executives (in the first column) would be assigned rank
ð1þ 2þ 3þ 4þ 5þ 6Þ=6 ¼ 21=6 ¼ 3:5. For the second column category
(Medium), the midrank is ð7þ 8þ � � � þ 14Þ=8 ¼ 84=8 ¼ 10:5, and for
the third column, the midrank is ð15þ 16þ � � � þ 20Þ=6 ¼ 105=6 ¼
17:5. (Note that the midrank with integer ranks is always the average

Degree of risk aversion

Age Low Medium High Total

Under 45 2 3 5 10
Over 45 4 5 1 10

Total 6 8 6 20
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of the smallest and the largest ranks they would have had if they were
not tied.) The value of the Wilcoxon rank-sum test statistic for the X
sample is then WN ¼ 2ð3:5Þ þ 3ð10:5Þ þ 5ð17:5Þ ¼ 126. We can test
the significance of this result using the normal approximation to the
distribution of WN for m ¼ 10; n ¼ 10; N ¼ 20. The mean is
mðN þ 1Þ=2 and the variance is calculated from (8.2.3) with the cor-
rection for ties. The reader can verify that the mean is 105 and the
variance is 154.74, giving Z ¼ 1:688 without a continuity correction
and Z ¼ 1:648 with a continuity correction. The upper tail P values
from Table A are 0.046 and 0.050, respectively. This result does not
lead to any firm conclusion at the 0.05 level.

Our first result agrees with the STATXACT output shown below.
The output also shows the exact P value is 0.0785, which is not sig-
nificant at the 0.05 level. This exact test is carried out using the
conditional distribution of the cell counts given the column totals,
which is a multiple hypergeometric distribution [see Lehmann (1975),
p. 384]. The chi-square test for independence (a two-sided alternative)
shows no significant difference between the two age groups.

The Wilcoxon rank-sum test can be considered a special case of
a class of linear rank statistics of the form T ¼Pj wjX1j, where the
wj are some suitable scores or weights that are increasing in value.
Different weights give rise to different linear rank statistics. For the
Wilcoxon rank-sum test, the weights are the respective midranks.
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Other possible weights could be based on the expected normal scores
(Terry-Hoeffding) or inverse normal scores (van der Waerden).
Graubard and Korn (1987) studied three classes of scores and made
some recommendations. STATXACT 5.0 has options for calculating
the power and sample size for any linear rank test, including the
Wilcoxon rank-sum test.

PROBLEMS

14.1. An ongoing problem on college campuses is the instructor evaluation form. To aid
in the interpretation of the results of such evaluations, a study was made to determine
whether any relationship exists between the stage of a student’s academic career and his
attitude with respect to whether the academic work load in his courses was lighter than
it should be, at the appropriate level, or heavier than it should be. A stratified random
sample yielded the following results:

(a) Test the null hypothesis that there is no association between the stage of a
student’s program and his attitude with respect to the appropriateness of the academic
work load in his courses.

ðbÞ Measure the degree of association.

14.2. A manufacturer produces units of a product in three 8-hour shifts: Day, Evening,
and Night. Quality control teams check production lots for defects at the end of each shift
by taking random samples. For the data below, do the three shifts have the same pro-
portion of defects?

14.3. A group of 28 salespersons were rated on their sales presentations and then asked
to view a training film on improving selling techniques. Each person was then rated a
second time. For the data in Table 1 determine whether the training film has a positive
effect on the ratings.

14.4. An employer wanted to find out if changing from his current health benefit policy
to a prepaid policy would change hospitalization rates among his employees. A random
sample of 100 employees was selected for the study. During the previous year under the
current policy, 20 of them had been hospitalized and 80 had not been hospitalized. These

Sophomore Junior Senior

Believe work load is lighter
than it should be

5 8 11

Believe work load is at the
appropriate level

30 35 40

Believe work load is heavier
than it should be

25 17 9

Day Evening Night

Defects 70 60 80
Sample total 400 300 300
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same 100 employees were then placed on the prepaid policy and after one year, it was
found that among the 20, 5 had been rehospitalized, and among the 80, 10 had been
hospitalized. Test to see whether or not the prepaid policy reduces hospitalization rates
among the employees.

14.5. A sample of five vaccinated and five unvaccinated cows were all exposed to a
disease. Four cows contracted the disease, one from the vaccinated group and three from
the nonvaccinated group. Determine whether the vaccination had a significant effect in
protecting the cows against the disease.

14.6. A superintendent of schools is interested in revising the curriculum. He sends out
questionnaires to 200 teachers: 100 respond No to the question ‘‘Do you think we should
revise the curriculum?’’ The superintendent then held a weeklong workshop on curri-
culum improvement and sent out the same questionnaire to the same 200 teachers; this
time 90 responded No. Eighty teachers responded No both times. Investigate whether
the workshop significantly decreased the number of negative responses.

14.7. A retrospective study of death certificates was aimed at determining whether an
association exists between a particular occupation and a certain neoplastic disease. In a
certain geographical area over a period of time, some 1500 certificates listed the neo-
plastic disease as primary cause of death. For each of them, a matched control death
certificate was selected, based on age, race, gender, county of residence, and date of
death, and stating any cause of death other than the neoplastic disease. The occupation
of each decedent was determined. Only one matched pair had both the case and control
members in the specified occupation. There were 69 pairs in which the case pair member
was in the specified occupation while the control member was not. There were 30 pairs in
which the control member was in the occupation and the case pair member was not. In
all of the remaining 1400 pairs, neither the case nor the control member was in the
specified occupation. Test the null hypothesis that the proportion of case and control
members in the occupation is the same.

Table 1 Data for Problem 14.3

Rating after film

Rating before film Acceptable Not acceptable Total

Acceptable 5 4 9
Nonacceptable 13 6 19

Total 18 10 28

Table 2 Data for Problem 14.8

Firm asset size ($1000)

Less than 500 500–2000 Over 2000 Total

Debt less than equity 7 10 8 25
Debt greater than equity 10 18 9 37

Total 17 28 17 62
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14.8. A financial consultant is interested in testing whether the proportion of debt that
exceeds equity is the same irrespective of the magnitude of the firm’s assets. Sixty-two
firms are classified into three groups according to asset size and data in Table 2 are
obtained on the numbers with debt greater then equity. Carry out the test.

14.9. In a study designed to investigate the relationship between age and degree of job
satisfaction among clerical workers, a random sample of 100 clerical workers were in-
terviewed and classified according to these characteristics as shown in the table below.

ðaÞ Test whether there is any association between age and job satisfaction
using the chi-square test.

ðbÞ Calculate the contingency coefficient and the phi coefficient.
ðcÞ Calculate Kendall’s tau with correction for ties and test for association.
ðdÞ Calculate the Goodman-Kruskal coefficient.

14.10. A random sample of 135 U.S. citizens were asked their opinion about the current
U.S. foreign policy in Afghanistan. Forty-three reported a negative opinion and the others
were positive. These 135 persons were then put on a mailing list to receive an informative
newsletter about U.S. foreign policy, and then asked their opinion a month later. At the
time, 37 were opposed and 30 of these 37 originally had a positive opinion. Find the P
value for the alternative that the probability of a change from negative to positive is
greater than the corresponding probability of a change in the opposite direction.

14.11. A small random sample was used in an experiment to see how effective an in-
formative newsletter was in persuading people to favor a flat income tax bill. Thirty
persons were asked their opinion before receiving the letter and these same persons were
then asked again after receiving the letter. Before the letter, 11 were in favor. Five were in
favor both before and after receiving the newsletter, and 6 were opposed both times. Is
there evidence that the letter is effective in persuading people to favor a flat tax?

14.12. Twenty married couples were selected at random from a large population and
each person was asked privately whether the family would prefer to spend a week’s
summer vacation at the beach or at themountains. The subjectswere told to ignore factors
such as relative cost and distance so that their preference would reflect only their ex-
pected pleasure from each type of vacation. The husband voted for the beach 7 times and
hiswife agreed 4 times. The husband voted for themountains 13 times and his wife agreed
5 times. Determine whether family vacation preference is dominated by the husband.

14.13. A study was conducted to investigate whether high school experience with
calculus has an effect on performance in first-year college calculus. A total of 686 stu-

Job satisfaction (1¼ least satisfied)

Age 1 2 3 Total

Under 25 8 7 5 20
25–39 12 8 20 40
40 and over 20 15 5 40

Total 40 30 30 100
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dents who had completed their first year of college calculus were classified according to
their high school calculus experience as Zero (None), Brief (One semester), Year (Two
semesters), and AP (Advanced Placement); these same students were then classified
according to their grade in first year college calculus. Test to see whether high school
calculus experience has an effect on college grade.

14.14. For the data in Problem 14.8, investigate whether firms with debt greater than
equity tend to have more assets than other firms.

14.15. Derive the maximum likelihood estimators for the parameters in the likelihood
function of (2.1)

14.16. Show that (2.2) is still the appropriate test statistic for independence in a two-
way r�k contingency table when both the row and column totals are fixed.

14.17. Verify the equivalence of the expressions in (3.1), (3.2), and (3.3).

High school calculus

College grade Zero Brief Year AP

A 3 6 32 16
B 23 30 70 56
C 48 51 67 29
D 49 45 27 6
F 71 44 17 2
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Table A Normal Distribution
Each table entry is the tail probability P, right tail from the value of z to plus infinity, and
also left tail from minus infinity to �z, for all P4 :50. Read down the first column to the
first decimal value of z, and over to the correct column for the second decimal value; the
number at the intersection is P.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 0.9

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
3.5 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002

Source: Adapted from Table 1 of Pearson, E. S., and H. O. Hartley, eds. (1954),
Biometrika Tables for Statisticians, vol. 1, Cambridge University Press, Cambridge,
England, with permission of the Biometrika Trustees.
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Table B Chi-Square Distribution
Each table entry is the value of a chi-square random variable with v degrees of freedom
such that its right-tail probability is the value given on the top row.

Right-tail probability

n 0.95 0.90 0.50 0.25 0.10 0.05 0.01 0.005 0.001

1 0.004 0.016 0.45 1.32 2.71 3.84 6.63 7.88 10.83
2 0.10 0.21 1.39 2.77 4.61 5.99 9.21 10.60 13.82
3 0.35 0.58 2.37 4.11 6.25 7.81 11.34 12.84 16.27
4 0.71 1.06 3.36 5.39 7.78 9.49 13.28 14.86 18.47
5 1.15 1.61 4.35 6.63 9.24 11.07 15.09 16.75 20.52
6 1.64 2.20 5.35 7.84 10.64 12.59 16.81 18.55 22.46
7 2.17 2.83 6.35 9.04 12.02 14.07 18.48 20.28 24.32
8 2.73 3.49 7.34 10.22 12.36 15.51 20.09 21.96 26.12
9 3.33 4.17 8.34 11.39 14.68 16.92 21.67 23.59 27.88
10 3.94 4.87 9.34 12.55 15.99 18.31 23.21 25.19 29.59
11 4.57 5.58 10.34 13.70 17.28 19.68 24.72 26.76 31.26
12 5.23 6.30 11.34 14.85 18.55 21.03 26.22 28.30 32.91
13 5.89 7.04 12.34 15.98 19.81 22.36 27.69 29.82 34.53
14 6.57 7.79 13.34 17.12 21.06 23.68 29.14 31.32 36.12
15 7.26 8.55 14.34 18.25 22.31 25.00 30.58 32.80 37.70
16 7.96 9.31 15.34 19.37 23.54 26.30 32.00 34.27 39.25
17 8.67 10.09 16.34 20.49 24.77 27.59 33.41 35.72 40.79
18 9.39 10.86 17.34 21.60 25.99 28.87 34.81 37.16 42.31
19 10.12 11.65 18.34 22.72 27.20 30.14 36.19 38.58 43.82
20 10.85 12.44 19.34 23.83 28.41 31.41 37.57 40.00 45.32
21 11.59 13.24 20.34 24.93 29.62 32.67 38.93 41.40 46.80
22 12.34 14.04 21.34 26.04 30.81 33.92 40.29 42.80 48.27
23 13.09 14.85 22.34 27.14 32.01 35.17 41.64 44.18 49.73
24 13.85 15.66 23.34 28.24 33.20 36.42 42.98 45.56 51.18
25 14.61 16.47 24.34 29.34 34.38 37.65 44.31 46.93 52.62
26 15.38 17.29 25.34 30.43 35.56 38.89 45.64 48.29 54.05
27 16.15 18.11 26.34 31.53 36.74 40.11 46.96 49.64 55.48
28 16.93 18.94 27.34 32.62 37.92 41.34 48.28 50.99 56.89
29 17.71 19.77 28.34 33.71 39.09 42.56 49.59 52.34 58.30
30 18.49 20.60 29.34 34.80 40.26 43.77 50.89 53.67 59.70

For v > 30, a right-tail or left-tail probability for Q a chi-square variable can be found
from Table A with Z where Z ¼

ffiffiffiffiffiffiffi
2Q

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n� 1
p

.
Source: Adapted from Table 8 of Pearson, E. S. and H. O. Hartley, eds. (1954), Biometrika
Tables for Statisticians, vol. 1, Cambridge University Press, Cambridge, England, with
permission of the Biometrika Trustees.

APPENDIX OF TABLES 555



Table C Cumulative Binomial Distribution
Each table entry is the left-tail probability of x or less successes in n Bernoulli trials
where y is the probability of a success on each trial.

y

n x .05 .10 .15 .20 .25 .30 .35 .40 .45

1 0 .9500 .9000 .8500 .8000 .7500 .7000 .6500 .6000 .5500
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0 .9025 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025
1 .9975 .9900 .9775 .9600 .9375 .9100 .8775 .8400 .7975
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 .8574 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664
1 .9928 .9720 .9392 .8960 .8438 .7840 .7182 .6480 .5748
2 .9999 .9990 .9966 .9920 .9844 .9730 .9561 .9360 .9089
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915
1 .9860 .9477 .8905 .8192 .7383 .6517 .5630 .4752 .3910
2 .9995 .9963 .9880 .9728 .9492 .9163 .8735 .8208 .7585
3 1.0000 .9999 .9995 .9984 .9961 .9919 .9850 .9744 .9590
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503
1 .9774 .9185 .8352 .7373 .6328 .5282 .4284 .3370 .2562
2 .9988 .9914 .9734 .9421 .8965 .8369 .7648 .6826 .5931
3 1.0000 .9995 .9978 .9933 .9844 .9692 .9460 .9130 .8688
4 1.0000 1.0000 .9999 .9997 .9990 .9976 .9947 .9898 .9815
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 0 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277
1 .9672 .8857 .7765 .6554 .5339 .4202 .3191 .2333 .1636
2 .9978 .9842 .9527 .9011 .8306 .7443 .6471 .5443 .4415
3 .9999 .9987 .9941 .9830 .9624 .9295 .8826 .8208 .7447
4 1.0000 .9999 .9996 .9984 .9954 .9891 .9777 .9590 .9308
5 1.0000 1.0000 1.0000 .9999 .9998 .9993 .9982 .9959 .9917
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152
1 .9556 .8503 .7166 .5767 .4449 .3294 .2338 .1586 .1024
2 .9962 .9743 .9262 .8520 .7564 .6471 .5323 .4199 .3164
3 .9998 .9973 .9879 .9667 .9294 .8740 .8002 .7102 .6083
4 1.0000 .9998 .9988 .9953 .9871 .9712 .9444 .9037 .8471
5 1.0000 1.0000 .9999 .9996 .9987 .9962 .9910 .9812 .9643
6 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9994 .9984 .9963
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(Continued)
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Table C ðContinuedÞ
y

n x .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

1 0 .5000 .4500 .4000 .3500 .3000 .2500 .2000 .1500 .1000 .0500
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0 .2500 .2025 .1600 .1225 .0900 .0625 .0400 .0225 .0100 .0025
1 .7500 .6975 .6400 .5775 .5100 .4375 .3600 .2775 .1900 .0975
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 .1250 .0911 .0640 .0429 .0270 .0156 .0080 .0034 .0010 .0001
1 .5000 .4252 .3520 .2818 .2160 .1562 .1040 .0608 .0280 .0072
2 .8750 .8336 .7840 .7254 .6570 .5781 .4880 .3859 .2710 .1426
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 .0625 .0410 .0256 .0150 .0081 .0039 .0016 .0005 .0001 .0000
1 .3125 .2415 .1792 .1265 .0837 .0508 .0272 .0120 .0037 .0005
2 .6875 .6090 .5248 .4370 .3483 .2617 .1808 .1095 .0523 .0140
3 .9375 .9085 .8704 .8215 .7599 .6836 .5904 .4780 .3439 .1855
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 .0312 .0185 .0102 .0053 .0024 .0010 .0003 .0001 .0000 .0000
1 .1875 .1312 .0870 .0540 .0308 .0156 .0067 .0022 .0005 .0000
2 .5000 .4069 .3174 .2352 .1631 .1035 .0579 .0266 .0086 .0012
3 .8125 .7438 .6630 .5716 .4718 .3672 .2627 .1648 .0815 .0226
4 .9688 .9497 .9222 .8840 .8319 .7627 .6723 .5563 .4095 .2262
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 0 .0156 .0083 .0041 .0018 .0007 .0002 .0001 .0000 .0000 .0000
1 .1094 .0692 .0410 .0223 .0109 .0046 .0016 .0004 .0001 .0000
2 .3438 .2553 .1792 .1174 .0705 .0376 .0170 .0059 .0013 .0001
3 .6562 .5585 .4557 .3529 .2557 .1694 .0989 .0473 .0158 .0022
4 .8906 .8364 .7667 .6809 .5798 .4661 .3446 .2235 .1143 .0328
5 .9844 .9723 .9533 .9246 .8824 .8220 .7379 .6229 .4686 .2649
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 .0078 .0037 .0016 .0006 .0002 .0001 .0000 .0000 .0000 .0000
1 .0625 .0357 .0188 .0090 .0038 .0013 .0004 .0001 .0000 .0000
2 .2266 .1529 .0963 .0556 .0288 .0129 .0047 .0012 .0002 .0000
3 .5000 .3917 .2898 .1998 .1260 .0706 .0333 .0121 .0027 .0002
4 .7734 .6836 .5801 .4677 .3529 .2436 .1480 .0738 .0257 .0038
5 .9375 .8976 .8414 .7662 .6706 .5551 .4233 .2834 .1497 .0444
6 .9922 .9848 .9720 .9510 .9176 .8665 .7903 .6794 .5217 .3017
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(Continued)

APPENDIX OF TABLES 557



Table C ðContinuedÞ
y

n x .05 .10 .15 .20 .25 .30 .35 .40 .45

8 0 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084
1 .9428 .8131 .6572 .5033 .3671 .2553 .1691 .1064 .0632
2 .9942 .9619 .8948 .7969 .6785 .5518 .4278 .3154 .2201
3 .9996 .9950 .9786 .9437 .8862 .8059 .7064 .5941 .4770
4 1.0000 .9996 .9971 .9896 .9727 .9420 .8939 .8263 .7396
5 1.0000 1.0000 .9998 .9988 .9958 .9887 .9747 .9502 .9115
6 1.0000 1.0000 1.0000 .9999 .9996 .9987 .9964 .9915 .9819
7 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9993 .9983
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046
1 .9288 .7748 .5995 .4362 .3003 .1960 .1211 .0705 .0385
2 .9916 .9470 .8591 .7382 .6007 .4628 .3373 .2318 .1495
3 .9994 .9917 .9661 .9144 .8343 .7297 .6089 .4826 .3614
4 1.0000 .9991 .9944 .9804 .9511 .9012 .8283 .7334 .6214
5 1.0000 .9999 .9994 .9969 .9900 .9747 .9464 .9006 .8342
6 1.0000 1.0000 1.0000 .9997 .9987 .9957 .9888 .9750 .9502
7 1.0000 1.0000 1.0000 1.0000 .9999 .9996 .9986 .9962 .9909
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9992
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025
1 .9139 .7361 .5443 .3758 .2440 .1493 .0860 .0464 .0233
2 .9885 .9298 .8202 .6778 .5256 .3828 .2616 .1673 .0996
3 .9990 .9872 .9500 .8791 .7759 .6496 .5138 .3823 .2660
4 .9999 .9984 .9901 .9672 .9219 .8497 .7515 .6331 .5044
5 1.0000 .9999 .9986 .9936 .9803 .9527 .9051 .8338 .7384
6 1.0000 1.0000 .9999 .9991 .9965 .9894 .9740 .9452 .8980
7 1.0000 1.0000 1.0000 .9999 .9996 .9984 .9952 .9877 .9726
8 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9995 .9983 .9955
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 0 .5688 .3138 .1673 .0859 .0422 .0198 .0088 .0036 .0014
1 .8981 .6974 .4922 .3221 .1971 .1130 .0606 .0302 .0139
2 .9848 .9104 .7788 .6174 .4552 .3127 .2001 .1189 .0652
3 .9984 .9815 .9306 .8389 .7133 .5696 .4256 .2963 .1911
4 .9999 .9972 .9841 .9496 .8854 .7897 .6683 .5328 .3971
5 1.0000 .9997 .9973 .9883 .9657 .9218 .8513 .7535 .6331
6 1.0000 1.0000 .9997 .9980 .9924 .9784 .9499 .9006 .8262
7 1.0000 1.0000 1.0000 .9998 .9988 .9957 .9878 .9707 .9390
8 1.0000 1.0000 1.0000 1.0000 .9999 .9994 .9980 .9941 .9852
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9998 .9993 .9978
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9998
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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8 0 .0039 .0017 .0007 .0002 .0001 .0000 .0000 .0000 .0000 .0000
1 .0352 .0181 .0085 .0036 .0013 .0004 .0001 .0000 .0000 .0000
2 .1445 .0885 .0498 .0253 .0113 .0042 .0012 .0002 .0000 .0000
3 .3633 .2604 .1737 .1061 .0580 .0273 .0104 .0029 .0004 .0000
4 .6367 .5230 .4059 .2936 .1941 .1138 .0563 .0214 .0050 .0004
5 .8555 .7799 .6846 .5722 .4482 .3215 .2031 .1052 .0381 .0058
6 .9648 .9368 .8936 .8309 .7447 .6329 .4967 .3428 .1869 .0572
7 .9961 .9916 .9832 .9681 .9424 .8999 .8322 .7275 .5695 .3366
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 .0020 .0008 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000
1 .0195 .0091 .0038 .0014 .0004 .0001 .0000 .0000 .0000 .0000
2 .0898 .0498 .0250 .0112 .0043 .0013 .0003 .0000 .0000 .0000
3 .2539 .1658 .0994 .0536 .0253 .0100 .0031 .0006 .0001 .0000
4 .5000 .3786 .2666 .1717 .0988 .0489 .0196 .0056 .0009 .0000
5 .7461 .6386 .5174 .3911 .2703 .1657 .0856 .0339 .0083 .0006
6 .9102 .8505 .7682 .6627 .5372 .3993 .2618 .1409 .0530 .0084
7 .9805 .9615 .9295 .8789 .8040 .6997 .5638 .4005 .2252 .0712
8 .9980 .9954 .9899 .9793 .9596 .9249 .8658 .7684 .6126 .3698
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 .0010 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0107 .0045 .0017 .0005 .0001 .0000 .0000 .0000 .0000 .0000
2 .0547 .0274 .0123 .0048 .0016 .0004 .0001 .0000 .0000 .0000
3 .1719 .1020 .0548 .0260 .0106 .0035 .0009 .0001 .0000 .0000
4 .3770 .2616 .1662 .0949 .0473 .0197 .0064 .0014 .0001 .0000
5 .6230 .4956 .3669 .2485 .1503 .0781 .0328 .0099 .0016 .0001
6 .8281 .7340 .6177 .4862 .3504 .2241 .1209 .0500 .0128 .0010
7 .9453 .9004 .8327 .7384 .6172 .4744 .3222 .1798 .0702 .0115
8 .9893 .9767 .9536 .9140 .8507 .7560 .6242 .4557 .2639 .0861
9 .9990 .9975 .9940 .9865 .9718 .9437 .8926 .8031 .6513 .4013
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 0 .0005 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0059 .0022 .0007 .0002 .0000 .0000 .0000 .0000 .0000 .0000
2 .0327 .0148 .0059 .0020 .0006 .0001 .0000 .0000 .0000 .0000
3 .1133 .0610 .0293 .0122 .0043 .0012 .0002 .0000 .0000 .0000
4 .2744 .1738 .0994 .0501 .0216 .0076 .0020 .0003 .0000 .0000
5 .5000 .3669 .2465 .1487 .0782 .0343 .0117 .0027 .0003 .0000
6 .7256 .6029 .4672 .3317 .2103 .1146 .0504 .0159 .0028 .0001
7 .8867 .8089 .7037 .5744 .4304 .2867 .1611 .0694 .0185 .0016
8 .9673 .9348 .8811 .7999 .6873 .5448 .3826 .2212 .0896 .0152
9 .9941 .9861 .9698 .9394 .8870 .8029 .6779 .5078 .3026 .1019
10 .9995 .9986 .9964 .9912 .9802 .9578 .9141 .8327 .6862 .4312
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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12 0 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008
1 .8816 .6590 .4435 .2749 .1584 .0850 .0424 .0196 .0083
2 .9804 .8891 .7358 .5583 .3907 .2528 .1513 .0834 .0421
3 .9978 .9744 .9078 .7946 .6488 .4925 .3467 .2253 .1345
4 .9998 .9957 .9761 .9274 .8424 .7237 .5833 .4382 .3044
5 1.0000 .9995 .9954 .9806 .9456 .8822 .7873 .6652 .5269
6 1.0000 .9999 .9993 .9961 .9857 .9614 .9154 .8418 .7393
7 1.0000 1.0000 .9999 .9994 .9972 .9905 .9745 .9427 .8883
8 1.0000 1.0000 1.0000 .9999 .9996 .9983 .9944 .9847 .9644
9 1.0000 1.0000 1.0000 1.0000 1.0000 .9998 .9992 .9972 .9921
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9989
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 .5133 .2542 .1209 .0550 .0238 .0097 .0037 .0013 .0004
1 .8646 .6213 .3983 .2336 .1267 .0637 .0296 .0126 .0049
2 .9755 .8661 .7296 .5017 .3326 .2025 .1132 .0579 .0269
3 .9969 .9658 .9033 .7473 .5843 .4206 .2783 .1686 .0929
4 .9997 .9935 .9740 .9009 .7940 .6543 .5005 .3530 .2279
5 1.0000 .9991 .9947 .9700 .9198 .8346 .7159 .5744 .4268
6 1.0000 .9999 .9987 .9930 .9757 .9376 .8705 .7712 .6437
7 1.0000 1.0000 .9998 .9988 .9944 .9818 .9538 .9023 .8212
8 1.0000 1.0000 1.0000 .9998 .9990 .9960 .9874 .9679 .9302
9 1.0000 1.0000 1.0000 1.0000 .9999 .9993 .9975 .9922 .9797
10 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9987 .9959
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9995
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 .4877 .2288 .1028 .0440 .0178 .0068 .0024 .0008 .0002
1 .8470 .5846 .3567 .1979 .1010 .0475 .0205 .0081 .0029
2 .9699 .8416 .6479 .4481 .2811 .1608 .0839 .0398 .0170
3 .9958 .9559 .8535 .6982 .5213 .3552 .2205 .1243 .0632
4 .9996 .9908 .9533 .8702 .7415 .5842 .4227 .2793 .1672
5 1.0000 .9985 .9885 .9561 .8883 .7805 .6405 .4859 .3373
6 1.0000 .9998 .9978 .9884 .9617 .9067 .8164 .6925 .5461
7 1.0000 1.0000 .9997 .9976 .9897 .9685 .9247 .8499 .7414
8 1.0000 1.0000 1.0000 .9996 .9978 .9917 .9757 .9417 .8811
9 1.0000 1.0000 1.0000 1.0000 .9997 .9983 .9940 .9825 .9574
10 1.0000 1.0000 1.0000 1.0000 1.0000 .9998 .9989 .9961 .9886
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9994 .9978
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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12 0 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0032 .0011 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000
2 .0193 .0079 .0028 .0008 .0002 .0000 .0000 .0000 .0000 .0000
3 .0730 .0356 .0153 .0056 .0017 .0004 .0001 .0000 .0000 .0000
4 .1938 .1117 .0573 .0255 .0095 .0028 .0006 .0001 .0000 .0000
5 .3872 .2607 .1582 .0846 .0386 .0143 .0039 .0007 .0001 .0000
6 .6128 .4731 .3348 .2127 .1178 .0544 .0194 .0046 .0005 .0000
7 .8062 .6956 .5618 .4167 .2763 .1576 .0726 .0239 .0043 .0002
8 .9270 .8655 .7747 .6533 .5075 .3512 .2054 .0922 .0256 .0022
9 .9807 .9579 .9166 .8487 .7472 .6093 .4417 .2642 .1109 .0196
10 .9968 .9917 .9804 .9576 .9150 .8416 .7251 .5565 .3410 .1184
11 .9998 .9992 .9978 .9943 .9862 .9683 .9313 .8578 .7176 .4596
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0017 .0005 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0112 .0041 .0013 .0003 .0001 .0000 .0000 .0000 .0000 .0000
3 .0461 .0203 .0078 .0025 .0007 .0001 .0000 .0000 .0000 .0000
4 .1334 .0698 .0321 .0126 .0040 .0010 .0002 .0000 .0000 .0000
5 .2905 .1788 .0977 .0462 .0182 .0056 .0012 .0002 .0000 .0000
6 .5000 .3563 .2288 .1295 .0624 .0243 .0070 .0013 .0001 .0000
7 .7095 .5732 .4256 .2841 .1654 .0802 .0300 .0053 .0009 .0000
8 .8666 .7721 .6470 .4995 .3457 .2060 .0991 .0260 .0065 .0003
9 .9539 .9071 .8314 .7217 .5794 .4157 .2527 .0967 .0342 .0031
10 .9888 .9731 .9421 .8868 .7975 .6674 .4983 .2704 .1339 .0245
11 .9983 .9951 .9874 .9704 .9363 .8733 .7664 .6017 .3787 .1354
12 .9999 .9996 .9987 .9963 .9903 .9762 .9450 .8791 .7458 .4867
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0009 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0065 .0022 .0006 .0001 .0000 .0000 .0000 .0000 .0000 .0000
3 .0287 .0114 .0039 .0011 .0002 .0000 .0000 .0000 .0000 .0000
4 .0898 .0462 .0175 .0060 .0017 .0003 .0000 .0000 .0000 .0000
5 .2120 .1189 .0583 .0243 .0083 .0022 .0004 .0000 .0000 .0000
6 .3953 .2586 .1501 .0753 .0315 .0103 .0024 .0003 .0000 .0000
7 .6047 .4539 .3075 .1836 .0933 .0383 .0116 .0022 .0002 .0000
8 .7880 .6627 .5141 .3595 .2195 .1117 .0439 .0115 .0015 .0000
9 .9102 .8328 .7207 .5773 .4158 .2585 .1298 .0467 .0092 .0004
10 .9713 .9368 .8757 .7795 .6448 .4787 .3018 .1465 .0441 .0042
11 .9935 .9830 .9602 .9161 .8392 .7189 .5519 .3521 .1584 .0301
12 .9991 .9971 .9919 .9795 .9525 .8990 .8021 .6433 .4154 .1530
13 .9999 .9998 .9992 .9976 .9932 .9822 .9560 .8972 .7712 .5123
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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15 0 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001
1 .8290 .5490 .3186 .1671 .0802 .0353 .0142 .0052 .0017
2 .9638 .8159 .6042 .3980 .2361 .1268 .0617 .0271 .0107
3 .9945 .9444 .8227 .6482 .4613 .2969 .1727 .0905 .0424
4 .9994 .9873 .9383 .8358 .6865 .5155 .3519 .2173 .1204
5 .9999 .9978 .9832 .9389 .8516 .7216 .5643 .4032 .2608
6 1.0000 .9997 .9964 .9819 .9434 .8689 .7548 .6098 .4522
7 1.0000 1.0000 .9994 .9958 .9927 .9500 .8868 .7869 .6535
8 1.0000 1.0000 .9999 .9992 .9958 .9848 .9578 .9050 .8182
9 1.0000 1.0000 1.0000 .9999 .9992 .9963 .9876 .9662 .9231
10 1.0000 1.0000 1.0000 1.0000 .9999 .9993 .9972 .9907 .9745
11 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9995 .9981 .9937
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997 .9989
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 0 .4401 .1853 .0743 .0281 .0100 .0033 .0010 .0003 .0001
1 .8108 .5147 .2839 .1407 .0635 .0261 .0098 .0033 .0010
2 .9571 .7892 .5614 .3518 .1971 .0994 .0451 .0183 .0066
3 .9930 .9316 .7899 .5981 .4050 .2459 .1339 .0651 .0281
4 .9991 .9830 .9209 .7982 .6302 .4499 .2892 .1666 .0853
5 .9999 .9967 .9765 .9183 .8103 .6598 .4900 .3288 .1976
6 1.0000 .9995 .9944 .9733 .9204 .8247 .6881 .5272 .3660
7 1.0000 .9999 .9989 .9930 .9729 .9256 .8406 .7161 .5629
8 1.0000 1.0000 .9998 .9985 .9925 .9743 .9329 .8577 .7441
9 1.0000 1.0000 1.0000 .9998 .9984 .9929 .9771 .9417 .8759
10 1.0000 1.0000 1.0000 1.0000 .9997 .9984 .9938 .9809 .9514
11 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9987 .9951 .9851
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9998 .9991 .9965
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9991 .9994
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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15 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0005 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0037 .0011 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000
3 .0176 .0063 .0019 .0005 .0001 .0000 .0000 .0000 .0000 .0000
4 .0592 .0255 .0093 .0028 .0007 .0001 .0000 .0000 .0000 .0000
5 .1509 .0769 .0338 .0124 .0037 .0008 .0001 .0000 .0000 .0000
6 .3036 .1818 .0950 .0422 .0152 .0042 .0008 .0001 .0000 .0000
7 .5000 .3465 .2131 .1132 .0500 .0173 .0042 .0006 .0000 .0000
8 .6964 .5478 .3902 .2452 .1311 .0566 .0181 .0036 .0003 .0000
9 .8491 .7392 .5968 .4357 .2784 .1484 .0611 .0168 .0022 .0001
10 .9408 .8796 .7827 .6481 .4845 .3135 .1642 .0617 .0127 .0006
11 .9824 .9576 .9095 .8273 .7031 .5387 .3518 .1773 .0556 .0055
12 .9963 .9893 .9729 .9383 .8732 .7639 .6020 .3958 .1841 .0362
13 .9995 .9983 .9948 .9858 .9647 .9198 .8329 .6814 .4510 .1710
14 1.0000 .9999 .9995 .9984 .9953 .9866 .9648 .9126 .7941 .5367
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 1.0000 1.0000 1.0000

16 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0021 .0006 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3 .0106 .0035 .0009 .0002 .0000 .0000 .0000 .0000 .0000 .0000
4 .0384 .0149 .0049 .0013 .0003 .0000 .0000 .0000 .0000 .0000
5 .1051 .0486 .0191 .0062 .0016 .0003 .0000 .0000 .0000 .0000
6 .2272 .1241 .0583 .0229 .0071 .0016 .0002 .0000 .0000 .0000
7 .4018 .2559 .1423 .0671 .0257 .0075 .0015 .0002 .0000 .0000
8 .5982 .4371 .2839 .1594 .0744 .0271 .0070 .0011 .0001 .0000
9 .7728 .6340 .4728 .3119 .1753 .0796 .0267 .0056 .0005 .0000
10 .8949 .8024 .6712 .5100 .3402 .1897 .0817 .0235 .0033 .0001
11 .9616 .9147 .8334 .7108 .5501 .3698 .2018 .0791 .0170 .0009
12 .9894 .9719 .9349 .8661 .7541 .5950 .4019 .2101 .0684 .0070
13 .9979 .9934 .9817 .9549 .9006 .8729 .6482 .4386 .2108 .0429
14 .9997 .9990 .9967 .9902 .9739 .9365 .8593 .7161 .4853 .1892
15 1.0000 .9999 .9997 .9990 .9967 .9900 .9719 .9257 .8147 .5599
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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17 0 .4181 .1668 .0631 .0225 .0075 .0023 .0007 .0002 .0000
1 .7922 .4818 .2525 .1182 .0501 .0193 .0067 .0021 .0006
2 .9497 .7618 .5198 .3096 .1637 .0774 .0327 .0123 .0041
3 .9912 .9174 .7556 .5489 .3530 .2019 .1028 .0464 .0184
4 .9988 .9779 .9013 .7582 .5739 .3887 .2348 .1260 .0596
5 .9999 .9953 .9681 .8943 .7653 .5968 .4197 .2639 .1471
6 1.0000 .9992 .9917 .9623 .8929 .7752 .6188 .4478 .2902
7 1.0000 .9999 .9983 .9891 .9598 .8954 .7872 .6405 .4743
8 1.0000 1.0000 .9997 .9974 .9876 .9597 .9006 .8011 .6626
9 1.0000 1.0000 1.0000 .9995 .9969 .9873 .9617 .9081 .8166
10 1.0000 1.0000 1.0000 .9999 .9994 .9968 .9880 .9652 .9174
11 1.0000 1.0000 1.0000 1.0000 .9999 .9993 .9970 .9894 .9699
12 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9994 .9975 .9914
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9995 .9981
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9997
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 0 .3972 .1501 .0536 .0180 .0056 .0016 .0004 .0001 .0000
1 .7735 .4503 .2241 .0991 .0395 .0142 .0046 .0013 .0003
2 .9419 .7338 .4797 .2713 .1353 .0600 .0236 .0082 .0025
3 .9891 .9018 .7202 .5010 .3057 .1646 .0783 .0328 .0120
4 .9985 .9718 .8794 .7164 .5187 .3327 .1886 .0942 .0411
5 .9998 .9936 .9581 .8671 .7175 .5344 .3550 .2088 .1077
6 1.0000 .9988 .9882 .9487 .8610 .7217 .5491 .3743 .2258
7 1.0000 .9998 .9973 .9837 .9431 .8593 .7283 .5634 .3915
8 1.0000 1.0000 .9995 .9957 .9807 .9404 .8609 .7368 .5778
9 1.0000 1.0000 .9999 .9991 .9946 .9790 .9403 .8653 .7473
10 1.0000 1.0000 1.0000 .9998 .9988 .9939 .9788 .9424 .8720
11 1.0000 1.0000 1.0000 1.0000 .9998 .9986 .9938 .9797 .9463
12 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9986 .9942 .9817
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9987 .9951
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9998 .9990
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table C ðContinuedÞ
y

n x .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

17 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0012 .0003 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3 .0064 .0019 .0005 .0001 .0000 .0000 .0000 .0000 .0000 .0000
4 .0245 .0086 .0025 .0006 .0001 .0000 .0000 .0000 .0000 .0000
5 .0717 .0301 .0106 .0030 .0007 .0001 .0000 .0000 .0000 .0000
6 .1662 .0826 .0348 .0120 .0032 .0006 .0001 .0000 .0000 .0000
7 .3145 .1834 .0919 .0383 .0127 .0031 .0005 .0000 .0000 .0000
8 .5000 .3374 .1989 .0994 .0403 .0124 .0026 .0003 .0000 .0000
9 .6855 .5257 .3595 .2128 .1046 .0402 .0109 .0017 .0001 .0000
10 .8338 .7098 .5522 .3812 .2248 .1071 .0377 .0083 .0008 .0000
11 .9283 .8529 .7361 .5803 .4032 .2347 .1057 .0319 .047 .0001
12 .9755 .9404 .8740 .7652 .6113 .4261 .2418 .0987 .0221 .0012
13 .9936 .9816 .9536 .8972 .7981 .6470 .4511 .2444 .0826 .0088
14 .9988 .9959 .9877 .9673 .9226 .8363 .6904 .4802 .2382 .0503
15 .9999 .9994 .9979 .9933 .9807 .9499 .8818 .7475 .5182 .2078
16 1.0000 1.0000 .9998 .9993 .9977 .9925 .9775 .9369 .8332 .5819
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0007 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3 .0038 .0010 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000
4 .0154 .0049 .0013 .0003 .0000 .0000 .0000 .0000 .0000 .0000
5 .0481 .0183 .0058 .0014 .0003 .0000 .0000 .0000 .0000 .0000
6 .1189 .0537 .0203 .0062 .0014 .0002 .0000 .0000 .0000 .0000
7 .2403 .1280 .0576 .0212 .0061 .0012 .0002 .0000 .0000 .0000
8 .4073 .2527 .1347 .0597 .0210 .0054 .0009 .0001 .0000 .0000
9 .5927 .4222 .2632 .1391 .0596 .0193 .0043 .0005 .0000 .0000
10 .7597 .6085 .4366 .2717 .1407 .0569 .0163 .0027 .0002 .0000
11 .8811 .7742 .6257 .4509 .2783 .1390 .0513 .0118 .0012 .0000
12 .9519 .8923 .7912 .6450 .4656 .2825 .1329 .0419 .0064 .0002
13 .9846 .9589 .9058 .8114 .6673 .4813 .2836 .1206 .0282 .0015
14 .9962 .9880 .9672 .9217 .8354 .6943 .4990 .2798 .0982 .0109
15 .9993 .9975 .9918 .9764 .9400 .8647 .7287 .5203 .2662 .0581
16 .9999 .9997 .9987 .9954 .9858 .9605 .9009 .7759 .5497 .2265
17 1.0000 1.0000 .9999 .9996 .9984 .9944 .9820 .9464 .8499 .6028
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table C ðContinuedÞ
y

n x .05 .10 .15 .20 .25 .30 .35 .40 .45

19 0 .3774 .1351 .0456 .0144 .0042 .0011 .0003 .0001 .0000
1 .7547 .4203 .1985 .0829 .0310 .0104 .0031 .0008 .0002
2 .9335 .7054 .4413 .2369 .1113 .0462 .0170 .0055 .0015
3 .9868 .8850 .6841 .4551 .2631 .1332 .0591 .0230 .0077
4 .9980 .9648 .8556 .6733 .4654 .2822 .1500 .0696 .0280
5 .9998 .9914 .9463 .8369 .6678 .4739 .2968 .1629 .0777
6 1.0000 .9983 .9837 .9324 .8251 .6655 .4812 .3081 .1727
7 1.0000 .9997 .9959 .9767 .9225 .8180 .6656 .4878 .3169
8 1.0000 1.0000 .9992 .9933 .9713 .9161 .8145 .6675 .4940
9 1.0000 1.0000 .9999 .9984 .9911 .9674 .9125 .8139 .6710
10 1.0000 1.0000 1.0000 .9997 .9977 .9895 .9653 .9115 .8159
11 1.0000 1.0000 1.0000 1.0000 .9995 .9972 .9886 .9648 .9129
12 1.0000 1.0000 1.0000 1.0000 .9999 .9994 .9969 .9884 .9658
13 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9993 .9969 .9891
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9994 .9972
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9995
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000
1 .7358 .3917 .1756 .0692 .0243 .0076 .0021 .0005 .0001
2 .9245 .6769 .4049 .2061 .0913 .0355 .0121 .0036 .0009
3 .9841 .8670 .6477 .4114 .2252 .1071 .0444 .0160 .0049
4 .9974 .9568 .8298 .6296 .4148 .2375 .1182 .0510 .0189
5 .9997 .9887 .9327 .8042 .6172 .4164 .2454 .1256 .0553
6 1.0000 .9976 .9781 .9133 .7858 .6080 .4166 .2500 .1299
7 1.0000 .9996 .9941 .9679 .8982 .7723 .6010 .4159 .2520
8 1.0000 .9999 .9987 .9900 .9591 .8867 .7624 .5956 .4143
9 1.0000 1.0000 .9998 .9974 .9861 .9520 .8782 .7553 .5914
10 1.0000 1.0000 1.0000 .9994 .9961 .9829 .9468 .8725 .7507
11 1.0000 1.0000 1.0000 .9999 .9991 .9949 .9804 .9435 .8692
12 1.0000 1.0000 1.0000 1.0000 .9998 .9987 .9940 .9790 .9420
13 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9985 .9935 .9786
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9984 .9936
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9997 .9985
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9997
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table C ðContinuedÞ
y

n x .50 .55 .60 .65 .70 .75 .80 .85 .90 95

19 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0004 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3 .0022 .0005 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
4 .0096 .0028 .0006 .0001 .0000 .0000 .0000 .0000 .0000 .0000
5 .0318 .0109 .0031 .0007 .0001 .0000 .0000 .0000 .0000 .0000
6 .0835 .0342 .0116 .0031 .0006 .0001 .0000 .0000 .0000 .0000
7 .1796 .0871 .0352 .0114 .0028 .0005 .0000 .0000 .0000 .0000
8 .3238 .1841 .0885 .0347 .0105 .0023 .0003 .0000 .0000 .0000
9 .5000 .3290 .1861 .0875 .0326 .0089 .0016 .0001 .0000 .0000
10 .6762 .5060 .3325 .1855 .0839 .0287 .0067 .0008 .0000 .0000
11 .8204 .6831 .5122 .3344 .1820 .0775 .0233 .0041 .0003 .0000
12 .9165 .8273 .6919 .5188 .3345 .1749 .0676 .0163 .0017 .0000
13 .9682 .9223 .8371 .7032 .5261 .3322 .1631 .0537 .0086 .0002
14 .9904 .9720 .9304 .8500 .7178 .5346 .3267 .1444 .0352 .0020
15 .9978 .9923 .9770 .9409 .8668 .7369 .5449 .3159 .1150 .0132
16 .9996 .9985 .9945 .9830 .9538 .8887 .7631 .5587 .2946 .0665
17 1.0000 .9998 .9992 .9969 .9896 .9690 .9171 .8015 .5797 .2453
18 1.0000 1.0000 .9999 .9997 .9989 .9958 .9856 .9544 .8649 .6226
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
2 .0002 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
3 .0013 .0003 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
4 .0059 .0015 .0003 .0000 .0000 .0000 .0000 .0000 .0000 .0000
5 .0207 .0064 .0016 .0003 .0000 .0000 .0000 .0000 .0000 .0000
6 .0577 .0214 .0065 .0015 .0003 .0000 .0000 .0000 .0000 .0000
7 .1316 .0580 .0210 .0060 .0013 .0002 .0000 .0000 .0000 .0000
8 .2517 .1308 .0565 .0196 .0051 .0009 .0001 .0000 .0000 .0000
9 .4119 .2493 .1275 .0532 .0171 .0039 .0006 .0000 .0000 .0000
10 .5881 .4086 .2447 .1218 .0480 .0139 .0026 .0002 .0000 .0000
11 .7483 .5857 .4044 .2376 .1133 .0409 .0100 .0013 .0001 .0000
12 .8684 .7480 .5841 .3990 .2277 .1018 .0321 .0059 .0004 .0000
13 .9423 .8701 .7500 .5834 .3920 .2142 .0867 .0219 .0024 .0000
14 .9793 .9447 .8744 .7546 .5836 .3828 .1958 .0673 .0113 .0003
15 .9941 .9811 .9490 .8818 .7625 .5852 .3704 .1702 .0432 .0026
16 .9987 .9951 .9840 .9556 .8929 .7748 .5886 .3523 .1330 .0159
17 .9998 .9991 .9964 .9879 .9645 .9087 .7939 .5951 .3231 .0755
18 1.0000 .9999 .9995 .9979 .9924 .9757 .9308 .8244 .6083 .2642
19 1.0000 1.0000 1.0000 .9998 .9992 .9968 .9885 .9612 .8784 .6415
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Source: Adapted from Table 2 of Tables of the Binomial Distribution, ðJanuary 1950 with
Corrigenda 1952 and 1958), National Bureau of Standards, U.S. Government Printing
Office, Washington, D.C., with permission.
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Table D Total Number of Runs Distribution
Each table entry labeled P is the tail probability from each extreme to the value of R, the
total number of runs in a sequence of n ¼ n1 þ n2 symbols of two types for n14n2.

Left-tail probabilities

n1 n2 R P n1 n2 R P n1 n2 R P n1 n2 R P

2 2 2 .333 2 18 2 .011 3 14 2 .003 4 10 2 .002
2 3 2 .200 3 .105 3 .025 3 .014

3 .500 4 .284 4 .101 4 .068
2 4 2 .133 3 3 2 .100 5 .350 5 .203

3 .400 3 .300 3 15 2 .002 6 .419
2 5 2 .095 3 4 2 .057 3 .022 4 11 2 .001

3 .333 3 .200 4 .091 3 .011
2 6 2 .071 3 5 2 .036 5 .331 4 .055

3 .286 3 .143 3 16 2 .002 5 .176
2 7 2 .056 4 .429 3 .020 6 .374

3 .250 3 6 2 .024 4 .082 4 12 2 .001
2 8 2 .044 3 .107 5 .314 3 .009

3 .222 4 .345 3 17 2 .002 4 .045
2 9 2 .036 3 7 2 .017 3 .018 5 .154

3 .200 3 .083 4 .074 6 .335
4 .491 4 .283 5 .298 4 13 2 .001

2 10 2 .030 3 8 2 .012 4 4 2 .029 3 .007
3 .182 3 .067 3 .114 4 .037
4 .455 4 .236 4 .371 5 .136

2 11 2 .026 3 9 2 .009 4 5 2 .016 6 .302
3 .167 3 .055 3 .071 4 14 2 .001
4 .423 4 .200 4 .262 3 .006

2 12 2 .022 5 .491 5 .500 4 .031
3 .154 3 10 2 .007 4 6 2 .010 5 .121
4 .396 3 .045 3 .048 6 .274

2 13 2 .019 4 .171 4 .190 4 15 2 .001
3 .143 5 .455 5 .405 3 .005
4 .371 3 11 2 .005 4 7 2 .006 4 .027

2 14 2 .017 3 .038 3 .033 5 .108
3 .133 4 .148 4 .142 6 .249
4 .350 5 .423 5 .333 4 16 2 .000

2 15 2 .015 3 12 2 .004 4 8 2 .004 3 .004
3 .125 3 .033 3 .024 4 .023
4 .331 4 .130 4 .109 5 .097

2 16 2 .013 5 .396 5 .279 6 .227
3 .118 3 13 2 .004 4 9 2 .003 5 5 2 .008
4 .314 3 .029 3 .018 3 .040

2 17 2 .012 4 .114 4 .085 4 .167
3 .111 5 .371 5 .236 5 .357
4 .298 6 .471

(Continued)
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Table D (continued)

Right-tail probabilities
n1 n2 R P n1 n2 R P n1 n2 R P n1 n2 R P

2 2 4 .333 4 8 9 .071 5 11 11 .058 6 12 12 .075
2 3 5 .100 8 .212 10 .154 11 .217

4 .500 7 .467 9 .374 10 .395
2 4 5 .200 4 9 9 .098 5 12 11 .075 6 13 13 .034
2 5 5 .286 8 .255 10 .181 12 .092
2 6 5 .357 4 10 9 .126 5 12 9 .421 11 .257
2 7 5 .417 8 .294 5 13 11 .092 10 .439
2 8 5 .467 4 11 9 .154 10 .208 6 14 13 .044
3 3 6 .100 8 .330 9 .465 12 .111

5 .300 4 12 9 .181 5 14 11 .111 11 .295
3 4 7 .029 8 .363 10 .234 10 .480

6 .200 4 13 9 .208 5 15 11 .129 7 7 14 .001
5 .457 8 .393 10 .258 13 .004

3 5 7 .071 4 14 9 .234 6 6 12 .002 12 .025
6 .286 8 .421 11 .013 11 .078

3 6 7 .119 4 15 9 .258 10 .067 10 .209
6 .357 8 .446 9 .175 9 .383

3 7 7 .167 4 16 9 .282 8 .392 7 8 15 .000
6 .417 8 .470 6 7 13 .001 14 .002

3 8 7 .212 5 5 10 .008 12 .008 13 .012
6 .467 9 .040 11 .034 12 .051

3 9 7 .255 8 .167 10 .121 11 .133
3 10 7 .294 7 .357 9 .267 10 .296
3 11 7 .330 5 6 11 .002 8 .500 9 .486
3 12 7 .363 10 .024 6 8 13 .002 7 9 15 .001
3 13 7 .393 9 .089 12 .016 14 .006
3 14 7 .421 8 .262 11 .063 13 .025
3 15 7 .446 7 .478 10 .179 12 .084
3 16 7 .470 5 7 11 .008 9 .354 11 .194
3 17 7 .491 10 .045 6 9 13 .006 10 .378
4 4 8 .029 9 .146 12 .028 7 10 15 .002

7 .114 8 .348 11 .098 14 .010
6 .371 5 8 11 .016 10 .238 13 .043

4 5 9 .008 10 .071 9 .434 12 .121
8 .071 9 .207 6 10 13 .010 11 .257
7 .214 8 .424 12 .042 10 .451
6 .500 5 9 11 .028 11 .136 7 11 15 .004

4 6 9 .024 10 .098 10 .294 14 .017
8 .119 9 .266 6 11 13 .017 13 .064
7 .310 8 .490 12 .058 12 .160

4 7 9 .045 5 10 11 11 .176 11 .318
8 .167 10 .126 10 .346 7 12 15 .007
7 .394 9 .322 6 12 13 .025 14 .025

(Continued)
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Table D (continued)

Right-tail probabilities
n1 n2 R P n1 n2 R P n1 n2 R P

7 12 13 .089 9 9 18 .00 10 13 13 .320
12 .199 17 .000 12 .500
11 .376 16 .003 10 12 21 .000

7 13 15 .010 15 .012 20 .000
14 .034 14 .044 19 .001
13 .116 13 .109 18 .006
12 .238 12 .238 17 .020
11 .430 11 .399 16 .056

8 8 16 .000 9 10 19 .000 15 .125
15 .001 18 .000 14 .245
14 .009 17 .001 13 .395
13 .032 16 .008 11 11 22 .000
12 .100 15 .026 21 .000
11 .214 14 .077 20 .000
10 .405 13 .166 19 .002

8 9 17 .000 12 .319 18 .007
16 .001 11 .490 17 .023
15 .004 9 11 19 .000 16 .063
14 .020 18 .001 15 .135
13 .061 17 .003 14 .260
12 .157 16 .015 13 .410
11 .298 15 .045 11 12 23 .000
10 .500 14 .115 22 .000

8 10 17 .000 13 .227 21 .000
16 .002 12 .395 20 .001
15 .010 10 10 20 .000 19 .004
14 .036 19 .000 18 .015
13 .097 18 .000 17 .041
12 .218 17 .001 16 .099
11 .379 16 .004 15 .191

8 11 17 .001 17 .019 14 .335
16 .004 16 .051 13 .493
15 .018 15 .128 12 12 24 .000
14 .057 14 .242 23 .000
13 .138 13 .414 22 .000
12 .278 10 11 21 .000 21 .001
11 .453 20 .000 20 .003

8 12 17 .001 19 .000 19 .009
16 .007 18 .003 18 .030
15 .029 17 .010 17 .070
14 .080 16 .035 16 .150
13 .183 15 .085 15 .263
12 .337 14 .185 14 .421

Source: Adapted from F. S. Swed and C. Eisenhart (1943), Tables for testing the
randomness of grouping in a sequence of alternatives, Annals of Mathematical
Statistics, 14, 66–87, with permission.
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Table E Runs Up and Down Distribution
Each table entry labeled P is the tail probability from each extreme to the value of R, the
total number of runs up and down in a sequence of n observations, or equivalently, n� 1
plus or minus signs.

n R Left-tail P R Right-tail P n R Left-tail P R Right-tail P

3 1 .3333 2 .6667 13 1 .0000
4 3 .4167 2 .0000

1 .0833 2 .9167 3 .0001 12 .0072
5 1 .0167 4 .2667 4 .0026 11 .0568

2 .2500 3 .7500 5 .0213 10 .2058
6 1 .0028 6 .0964 9 .4587

2 .0861 5 .1694 7 .2749 8 .7251
3 .4139 4 .5861 14 1 .0000

7 1 .0004 6 .1079 2 .0000
2 .0250 5 .4417 3 .0000
3 .1909 4 .8091 4 .0007 13 .0046

8 1 .0000 5 .0079 12 .0391
2 .0063 7 .0687 6 .0441 11 .1536
3 .0749 6 .3250 7 .1534 10 .3722
4 .3124 5 .6876 8 .3633 9 .6367

9 1 .0000 15 1 .0000
2 .0014 2 .0000
3 .0257 8 .0437 3 .0000
4 .1500 7 .2347 4 .0002
5 .4347 6 .5653 5 .0027 14 .0029

10 1 .0000 6 .0186 13 .0267
2 .0003 9 .0278 7 .0782 12 .1134
3 .0079 8 .1671 8 .2216 11 .2970
4 .0633 7 .4524 9 .4520 10 .5480
5 .2427 6 .7573 16 1 .0000

11 1 .0000 2 .0000
2 .0001 3 .0000
3 .0022 10 .0177 4 .0001 15 .0019
4 .0239 9 .1177 5 .0009 14 .0182
5 .1196 8 .3540 6 .0072 13 .0828
6 .3438 7 .6562 7 .0367 12 .2335

12 1 .0000 8 .1238 11 .4631
2 .0000 9 .2975 10 .7025
3 .0005
4 .0082 11 .0113
5 .0529 10 .0821
6 .1918 9 .2720
7 .4453 8 .5547

(Continued)
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Table E ðContinuedÞ
n R Left-tail P R Right-tail P n R Left-tail P R Right-tail P

17 1 .0000 21 1 .0000
2 .0000 2 .0000
3 .0000 3 .0000
4 .0000 4 .0000
5 .0003 16 .0012 5 .0000
6 .0026 15 .0123 6 .0000
7 .0160 14 .0600 7 .0003 20 .0002
8 .0638 13 .1812 8 .0023 19 .0025
9 .1799 12 .3850 9 .0117 18 .0154
10 .3770 11 .6230 10 .0431 17 .0591

18 1 .0000 11 .1202 16 .1602
2 .0000 12 .2622 15 .3293
3 .0000 13 .4603 14 .5397
4 .0000 22 1 .0000
5 .0001 2 .0000
6 .0009 17 .0008 3 .0000
7 .0065 16 .0083 4 .0000
8 .0306 15 .0431 5 .0000
9 .1006 14 .1389 6 .0000 21 .0001
10 .2443 13 .3152 7 .0001 20 .0017
11 .4568 12 .5432 8 .0009 19 .0108

19 1 .0000 9 .0050 18 .0437
2 .0000 10 .0213 17 .1251
3 .0000 11 .0674 16 .2714
4 .0000 12 .1661 15 .4688
4 .0000 13 .3276 14 .6724
5 .0000 18 .0005 23 1 .0000
6 .0003 17 .0056 2 .0000
7 .0025 16 .0308 3 .0000
8 .0137 15 .1055 4 .0000
9 .0523 14 .2546 5 .0000
10 .1467 13 .4663 6 .0000
11 .3144 12 .6856 7 .0000 22 .0001

20 1 .0000 8 .0003 21 .0011
2 .0000 9 .0021 20 .0076
3 .0000 10 .0099 19 .0321
4 .0000 11 .0356 18 .0968
5 .0000 12 .0988 17 .2211
6 .0001 19 .0003 13 .2188 16 .4020
7 .0009 18 .0038 14 .3953 15 .6047
8 .0058 17 .0218
9 .0255 16 .0793
10 .0821 15 .2031
11 .2012 14 .3945
12 .3873 13 .6127

(Continued)
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Table E ðContinuedÞ
n R Left-tail P R Right-tail P n R Left-tail P R Right-tail P

24 1 .0000 25 1 .0000
2 .0000 2 .0000
3 .0000 3 .0000
4 .0000 4 .0000
5 .0000 5 .0000
6 .0000 6 .0000
7 .0000 7 .0000 24 .0000
8 .0001 23 .0000 8 .0000 23 .0005
9 .0008 22 .0007 9 .0003 22 .0037
10 .0044 21 .0053 10 .0018 21 .0170
11 .0177 20 .0235 11 .0084 20 .0564
12 .0554 19 .0742 12 .0294 19 .1423
13 .1374 18 .1783 13 .0815 18 .2852
14 .2768 17 .3405 14 .1827 17 .4708
15 .4631 16 .5369 15 .3384 16 .6616

Source: Adapted from E. S. Edgington (1961), Probability table for number of runs of
signs of first differences, Journal of the American Statistical Association, 56, 156–159,
with permission.

APPENDIX OF TABLES 575



Table F Kolmogorov-Smirnov One-Sample Statistic
Each table entry is the value of a Kolmogorov-Smirnov one-sample statistic Dn for
sample size n such that its right-tail probability is the value given on the top row.

n .200 .100 .050 .020 .010 n .200 .100 .050 .020 .010

1 .900 .950 .975 .990 .995 21 .226 .259 .287 .321 .344
2 .684 .776 .842 .900 .929 22 .221 .253 .281 .314 .337
3 .565 .636 .780 .785 .829 23 .216 .247 .275 .307 .330
4 .493 .565 .624 .689 .734 24 .212 .242 .269 .301 .323
5 .447 .509 .563 .627 .669 25 .208 .238 .264 .295 .317
6 .410 .468 .519 .577 .617 26 .204 .233 .259 .290 .311
7 .381 .436 .483 .538 .576 27 .200 .229 .254 .284 .305
8 .358 .410 .454 .507 .542 28 .197 .225 .250 .279 .300
9 .339 .387 .430 .480 .513 29 .193 .221 .246 .275 .295
10 .323 .369 .409 .457 .489 30 .190 .218 .242 .270 .290
11 .308 .352 .391 .437 .468 31 .187 .214 .238 .266 .285
12 .296 .338 .375 .419 .449 32 .184 .211 .234 .262 .281
13 .285 .325 .361 .404 .432 33 .182 .208 .231 .258 .277
14 .275 .314 .349 .390 .418 34 .179 .205 .227 .254 .273
15 .266 .304 .338 .377 .404 35 .177 .202 .224 .251 .269
16 .258 .295 .327 .366 .392 36 .174 .199 .221 .247 .265
17 .250 .286 .318 .355 .381 37 .172 .196 .218 .244 .262
18 .244 .279 .309 .346 .371 38 .170 .194 .215 .241 .258
19 .237 .271 .301 .337 .361 39 .168 .191 .213 .238 .255
20 .232 .265 .294 .329 .352 40 .165 .189 .210 .235 .252

For n > 40, right-tail critical values based on the asymptotic distribution can be
calculated as follows:

:200 :100 :050 :020 :010
1:07=

ffiffiffi
n

p
1:22=

ffiffiffi
n

p
1:36=

ffiffiffi
n

p
1:52=

ffiffiffi
n

p
1:63=

ffiffiffi
n

p

Source: Adapted from L. H. Miller (1956), Table of percentage points of Kolmogorov
statistics, Journal of the American Statistical Association, 51, 111–121, with permission.
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Table G Binomial Distribution for u¼0.5
Each table entry labeled P is the tail probability from each extreme to the value of K, the
number of successes in N Bernoulli trials with probability of success y ¼ 0:5 on each
trial.

N Left tail P Right tail N Left tail P Right tail N Left tail P Right tail

1 0 .5000 1 12 0 .0002 12 17 0 .0000 17
2 0 .2500 2 1 .0032 11 1 .0001 16

1 .7500 1 2 .0193 10 2 .0012 15
3 0 .1250 3 3 .0730 9 3 .0064 14

1 .5000 2 4 .1938 8 4 .0245 13
4 0 .0625 4 5 .3872 7 5 .0717 12

1 .3125 3 6 .6128 6 6 .1662 11
2 .6875 2 13 0 .0001 13 7 .3145 10

5 0 .0312 5 1 .0017 12 8 .5000 9
1 .1875 4 2 .0112 11 18 0 .0000 18
2 .5000 3 3 .0461 10 1 .0001 17

6 0 .0156 6 4 .1334 9 2 .0007 16
1 .1094 5 5 .2905 8 3 .0038 15
2 .3438 4 6 .5000 7 4 .0154 14
3 .6562 3 14 0 .0000 14 5 .0481 13

7 0 .0078 7 1 .0009 13 6 .1189 12
1 .0625 6 2 .0065 12 7 .2403 11
2 .2266 5 3 .0287 11 8 .4073 10
3 .5000 4 4 .0898 10 9 .5927 9

8 0 .0039 8 5 .2120 9 19 0 .0000 19
1 .0352 7 6 .3953 8 1 .0000 18
2 .1445 6 7 .6047 7 2 .0004 17
3 .3633 5 15 0 .0000 15 3 .0022 16
4 .6367 4 1 .0005 14 4 .0096 15

9 0 .0020 9 2 .0037 13 5 .0318 14
1 .0195 8 3 .0176 12 6 .0835 13
2 .0898 7 4 .0592 11 7 .1796 12
3 .2539 6 5 .1509 10 8 .3238 11
4 .5000 5 6 .3036 9 9 .5000 10

10 0 .0010 10 7 .5000 8 20 0 .0000 20
1 .0107 9 16 0 .0000 16 1 .0000 19
2 .0547 8 1 .0003 15 2 .0002 18
3 .1719 7 2 .0021 14 3 .0013 17
4 .3770 6 3 .0106 13 4 .0059 16
5 .6230 5 4 .0384 12 5 .0207 15

11 0 .0005 11 5 .1051 11 6 .0577 14
1 .0059 10 6 .2272 10 7 .1316 13
2 .0327 9 7 .4018 9 8 .2517 12
3 .1133 8 8 .5982 8 9 .4119 11
4 .2744 7 10 .5881 10
5 .5000 6
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Table H Probabilities for the Wilcoxon Signed-Rank Statistic
Each table entry labeled P is the tail probability from each extreme to the value of T,
the Wilcoxon signed-rank statistic for sample side N, where T is interpreted as either Tþ

or T�.

N Left tail P Right tail N Left tail P Right tail N Left tail P Right tail

2 0 .250 3 7 0 .008 28 9 0 .002 45
1 .500 2 1 .016 27 1 .004 44

3 0 .125 6 2 .023 26 2 .006 43
1 .250 5 3 .039 25 3 .010 42
2 .375 4 4 .055 24 4 .014 41
3 .625 3 5 .078 23 5 .020 40

4 0 .062 10 6 .109 22 6 .027 39
1 .125 9 7 .148 21 7 .037 38
2 .188 8 8 .188 20 8 .049 37
3 .312 7 9 .234 19 9 .064 36
4 .438 6 10 .289 18 10 .082 35
5 .562 5 11 .344 17 11 .102 34

5 0 .031 15 12 .406 16 12 .125 33
1 .062 14 13 .469 15 13 .150 32
2 .094 13 14 .531 14 14 .180 31
3 .156 12 8 0 .004 36 15 .213 30
4 .219 11 1 .008 35 16 .248 29
5 .312 10 2 .012 34 17 .285 28
6 .406 9 3 .020 33 18 .326 27
7 .500 8 4 .027 32 19 .367 26

6 0 .016 21 5 .039 31 20 .410 25
1 .031 20 6 .055 30 21 .455 24
2 .047 19 7 .074 29 22 .500 23
3 .078 18 8 .098 28 10 0 .001 55
4 .109 17 9 .125 27 1 .002 54
5 .156 16 10 .156 26 2 .003 53
6 .219 15 11 .191 25 3 .005 52
7 .281 14 12 .230 24 4 .007 51
8 .344 13 13 .273 23 5 .010 50
9 .422 12 14 .320 22 6 .014 49
10 .500 11 15 .371 21 7 .019 48

16 .422 20 8 .024 47
17 .473 19 9 .032 46
18 .527 18 10 .042 45

(Continued)
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Table H ðContinuedÞ
N Left tail P Right tail N Left tail P Right tail N Left tail P Right tail

10 11 .053 44 11 28 .350 38 13 0 .000 91
12 .065 43 29 .382 37 1 .000 90
13 .080 42 30 .416 36 2 .000 89
14 .097 41 31 .449 35 3 .001 88
15 .116 40 32 .483 34 4 .001 87
16 .138 39 33 .517 33 5 .001 86
17 .161 38 12 0 .000 78 6 .002 85
18 .188 37 1 .000 77 7 .002 84
19 .216 36 2 .001 76 8 .003 83
20 .246 35 3 .001 75 9 .004 82
21 .278 34 4 .002 74 10 .005 81
22 .312 33 5 .002 73 11 .007 80
23 .348 32 6 .003 72 12 .009 79
24 .385 31 7 .005 71 13 .011 78
25 .423 30 8 .006 70 14 .013 77
26 .461 29 9 .008 69 15 .016 76
27 .500 28 10 .010 68 16 .020 75

11 0 .000 66 11 .013 67 17 .024 74
1 .001 65 12 .017 66 18 .029 73
2 .001 64 13 .021 65 19 .034 72
3 .002 63 14 .026 64 20 .040 71
4 .003 62 15 .032 63 21 .047 70
5 .005 61 16 .039 62 22 .055 69
6 .007 60 17 .0456 61 23 .064 68
7 .009 59 18 .055 60 24 .073 67
8 .0125 58 19 .065 59 25 .084 66
9 .016 57 20 .076 58 26 .095 65
10 .021 56 21 .088 57 27 .108 64
11 .027 55 22 .102 56 28 .122 63
12 .034 54 23 .117 55 29 .137 62
13 .042 53 24 .133 54 30 .153 61
14 .051 52 25 .151 53 31 .170 60
15 .062 51 26 .170 52 32 .188 59
16 .074 50 27 .190 51 33 .207 58
17 .087 49 28 .212 50 34 .227 57
18 .103 48 29 .235 49 35 .249 56
19 .120 47 30 .259 48 36 .271 55
20 .139 46 31 .285 47 37 .294 54
21 .160 45 32 .311 46 38 .318 53
22 .183 44 33 .339 45 39 .342 52
23 .207 43 34 .367 44 40 .368 51
24 .232 42 35 .396 43 41 .393 50
25 .260 41 36 .425 42 42 .420 49
26 .289 40 37 .455 41 43 .446 48
27 .319 39 38 .485 40 44 .473 47

39 .515 39 45 .500 46

(Continued)
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Table H ðContinuedÞ
N Left tail P Right tail N Left tail P Right tail N Left tail P Right tail

14 0 .000 105 14 46 .357 59 15 39 .126 81
1 .000 104 47 .380 58 40 .138 80
2 .000 103 48 .404 57 41 .151 79
3 .000 102 49 .428 56 42 .165 78
4 .000 101 50 .452 55 43 .180 77
5 .001 100 51 .476 54 44 .195 76
6 .001 99 52 .500 53 45 .211 75
7 .001 98 15 0 .000 120 46 .227 74
8 .002 97 1 .000 119 47 .244 73
9 .002 96 2 .000 118 48 .262 72
10 .003 95 3 .000 117 49 .281 71
11 .003 94 4 .000 116 50 .300 70
12 .004 93 5 .000 115 51 .319 69
13 .005 92 6 .000 114 52 .339 68
14 .007 91 7 .001 113 53 .360 67
15 .008 90 8 .001 112 54 .381 66
16 .010 89 9 .001 111 55 .402 65
17 .012 88 10 .001 110 56 .423 64
18 .0158 87 11 .002 109 57 .445 63
19 .018 86 12 .002 108 58 .467 62
20 .021 85 13 .003 107 59 .489 61
21 .025 84 14 .003 106 60 .511 60
22 .029 83 15 .004 105
23 .034 82 16 .005 104
24 .039 81 17 .006 103
25 .045 80 18 .008 102
26 .052 79 19 .009 101
27 .059 78 20 .011 100
28 .068 77 21 .013 99
29 .077 76 22 .015 98
30 .086 75 23 .018 97
31 .097 74 24 .021 96
32 .108 73 25 .024 95
33 .121 72 26 .028 94
34 .134 71 27 .032 93
35 .148 70 28 .036 92
36 .163 69 29 .042 91
37 .179 68 30 .047 90
38 .196 67 31 .053 89
39 .213 66 32 .060 88
40 .232 65 33 .068 87
41 .251 64 34 .076 86
42 .271 63 35 .084 85
43 .292 62 36 .094 84
44 .313 61 37 .104 83
45 .335 60 38 .115 82

Source: Adapted from F. Wilcoxon, S.K. Katti, and R. A. Wilcox (1973), Critical values and probability

levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test, pp. 171–259 in Institute of

Mathematical Statistics, ed., Selected Tables in Mathematical Statistics vol. I, American

Mathematical Society, Providence, Rhode Island, with permission.



Table I Kolmogorov-Smirnov Two-Sample Statistic
Each table entry labeled P is the right-tail probability of mnDm;n, the Kolmogorov-
Smirnov two-sample statistic for sample sizesm and n where m4n. The second portion
of the table gives the value of mnDm;n such that its right-tail probability is the value
given on the top row.

m n mnD P m n mnD P m n mnD P

2 2 4 .333 3 6 18 .024 4 5 20 .016
2 3 6 .200 15 .095 16 .079
2 4 8 .133 12 .333 15 .143
2 5 10 .095 3 7 21 .017 4 6 24 .010

8 .286 18 .067 20 .048
2 6 12 .071 15 .167 18 .095

10 .214 3 8 24 .012 16 .181
2 7 14 .056 21 .048 4 7 28 .006

12 .167 18 .121 24 .030
2 8 16 .044 3 9 27 .009 21 .067

14 .133 24 .036 20 .121
2 9 18 .036 21 .091 4 8 32 .004

16 .109 18 .236 28 .020
2 10 20 .030 3 10 30 .007 24 .085

18 .091 27 .028 20 .222
16 .182 24 .070 4 9 36 .003

2 11 22 .026 21 .140 32 .014
20 .077 3 11 33 .005 28 .042
18 .154 30 .022 27 .062

2 12 24 .022 27 .055 24 .115
22 .066 24 .110 4 10 40 .002
20 .132 3 12 36 .004 36 .010

3 3 9 .100 33 .018 32 .030
3 4 12 .057 30 .044 30 .046

9 .229 27 .088 28 .084
3 5 15 .036 24 .189 26 .126

12 .143 4 4 16 .029
12 .229

(Continued)
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Table I ðContinuedÞ
m n mnD P m n mnD P m n mnD P

4 11 44 .001 5 10 50 .001 6 10 60 .000
40 .007 45 .004 54 .002
36 .022 40 .019 50 .004
33 .035 35 .061 48 .009
32 .063 30 .166 44 .019
29 .098 5 11 55 .000 42 .031
28 .144 50 .003 40 .042

4 12 48 .001 45 .010 38 .066
44 .005 44 .014 36 .092
40 .016 40 .029 34 .125
36 .048 39 .044 7 7 49 .001
32 .112 35 .074 42 .008

5 5 25 .008 34 .106 35 .053
20 .079 6 6 36 .002 28 .212
15 .357 30 .026 7 8 56 .000

5 6 30 .004 24 .143 49 .002
25 .026 6 7 42 .001 48 .005
24 .048 36 .008 42 .013
20 .108 35 .015 41 .024

5 7 35 .003 30 .038 40 .033
30 .015 29 .068 35 .056
28 .030 28 .091 34 .087
25 .066 24 .147 33 .118
23 .166 6 8 48 .001 7 9 63 .000

5 8 40 .022 42 .005 56 .001
35 .009 40 .009 54 .003
32 .020 36 .023 49 .008
30 .042 34 .043 47 .015
27 .079 32 .061 45 .021
25 .126 30 .093 42 .034

5 9 45 .001 28 .139 40 .055
40 .006 6 9 54 .000 38 .079
36 .014 48 .003 36 .098
35 .028 45 .006 35 .127
31 .056 42 .014 8 8 64 .000
30 .086 39 .028 56 .002
27 .119 36 .061 48 .019

33 .095 40 .087
30 .176 32 .283

(Continued)
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Table I ðContinuedÞ
m¼n .200 .100 .050 .020 .010

9 45 54 54 63 63
10 50 60 70 70 80
11 66 66 77 88 88
12 72 72 84 96 96
13 78 91 91 104 117
14 84 98 112 112 126
15 90 105 120 135 135
16 112 112 128 144 160
17 119 136 136 153 170
18 126 144 162 180 180
19 133 152 171 190 190
20 140 160 180 200 220

For m and n large, right-tail critical values based on the asymptotic distribution can be
calculated as follows:

:200 :100 :050 :020 :010
1:07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=mn

p
1:22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=mn

p
1:36

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=mn

p
1:52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=mn

p
1:63

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=mn

p
Source: Adapted from P. J. Kim and R. I. Jennrich (1973), Tables of the exact sampling
distribution of the two-sample Kolmogorov-Smirnov criterion Dmnðm4nÞ, pp. 79–170,
in Institute of Mathematical Statistics, ed., Selected Tables in Mathematical Statistics,
Vol. I, American Mathematical Society, Providence, Rhode Island, with permission.
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Table J Probabilities for the Wilcoxon Rank-Sum Statistic
Each table entry labeled P is the tail probability from each extreme to the value of WN,
the Wilcoxon statistic for sample sizes m and n where m4n.

n Left tail P Right tail n Left tail P Right tail n Left tail P Right tail

m ¼ 1 m ¼ 2 m ¼ 2

1 1 .500 2 2 3 .167 7 8 3 .022 19
2 1 .333 3 4 .333 6 4 .044 18

2 .667 2 5 .667 5 5 .089 17
3 1 .250 4 3 3 .100 9 6 .133 16

2 .500 3 4 .200 8 7 .200 15
4 1 .200 5 5 .400 7 8 .267 14

2 .400 4 6 .600 6 9 .356 13
3 .600 3 4 3 .067 11 10 .444 12

5 1 .167 6 4 .133 10 11 .556 11
2 .333 5 5 .267 9 9 3 .018 21
3 .500 4 6 .400 8 4 .036 20

6 1 .143 7 7 .600 7 5 .073 19
2 .286 6 5 3 .048 13 6 .109 18
3 .429 5 4 .095 12 7 .164 17
4 .571 4 5 .190 11 8 .218 16

7 1 .125 8 6 .286 10 9 .291 15
2 .250 7 7 .429 9 10 .364 14
3 .375 6 8 .571 8 11 .455 13
4 .500 5 6 3 .036 15 12 .545 12

8 1 .111 9 4 .071 14 10 3 .015 23
2 .222 8 5 .143 13 4 .030 22
3 .333 7 6 .214 12 5 .061 21
4 .444 6 7 .321 11 6 .091 20
5 .556 5 8 .429 10 7 .136 19

9 1 .100 10 9 .571 9 8 .182 18
2 .200 9 7 3 .028 17 9 .242 17
3 .300 8 4 .056 16 10 .303 16
4 .400 7 5 .111 15 11 .379 15
5 .500 6 6 .167 14 12 .455 14

10 1 .091 11 7 .250 13 13 .545 13
2 .182 10 8 .333 12
3 .273 9 9 .444 11
4 .364 8 10 .556 10
5 .455 7
6 .545 6

(Continued)
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Table J ðContinuedÞ
n Left tail P Right tail n Left tail P Right tail n Left tail P Right tail

m ¼ 3 m ¼ 3 m ¼ 4

3 6 .050 15 8 6 .006 30 4 10 .014 26
7 .100 14 7 .012 29 11 .029 25
8 .200 13 8 .024 28 12 .057 24
9 .350 12 9 .042 27 13 .100 23
10 .500 11 10 .067 26 14 .171 22

4 6 .029 18 11 .097 25 15 .243 21
7 .057 17 12 .139 24 16 .343 20
8 .114 16 13 .188 23 17 .443 19
9 .200 15 14 .248 22 18 .557 18
10 .314 14 15 .315 21 5 10 .008 30
11 .429 13 16 .388 20 11 .016 29
12 .571 12 17 .461 19 12 .032 28

5 6 .018 21 18 .539 18 13 .056 27
7 .036 20 9 6 .005 33 14 .095 26
8 .071 19 7 .009 32 15 .143 25
9 .125 18 8 .018 31 16 .206 24
10 .196 17 9 .032 30 17 .278 23
11 .286 16 10 .050 29 18 .365 22
12 .393 15 11 .073 28 19 .452 21
13 .500 14 12 .105 27 20 .548 20

6 6 .012 24 13 .141 26 6 10 .005 34
7 .024 23 14 .186 25 11 .010 33
8 .048 22 15 .241 24 12 .019 32
9 .083 21 16 .300 23 13 .033 31
10 .131 20 17 .364 22 14 .057 30
11 .190 19 18 .432 21 15 .086 29
12 .274 18 19 .500 20 16 .129 28
13 .357 17 10 6 .003 36 17 .176 27
14 .452 16 7 .007 35 18 .238 26
15 .548 15 8 .014 34 19 .305 25

7 6 .008 27 9 .024 33 20 .381 24
7 .017 26 10 .038 32 21 .457 23
8 .033 25 11 .056 31 22 .543 22
9 .058 24 12 .080 30
10 .092 23 13 .108 29
11 .133 22 14 .143 28
12 .192 21 15 .185 27
13 .258 20 16 .234 26
14 .333 19 17 .287 25
15 .417 18 18 .346 24
16 .500 17 19 .406 23

20 .469 22
21 .531 21

(Continued)
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Table J ðContinuedÞ
n Left tail P Right tail n Left tail P Right tail n Left tail P Right tail

m ¼ 4 m ¼ 4 m ¼ 5

7 10 .003 38 9 10 .001 46 5 15 .004 40
11 .006 37 11 .003 45 16 .008 39
12 .012 36 12 .006 44 17 .016 38
13 .021 35 13 .010 43 18 .028 37
14 .036 34 14 .017 42 19 .048 36
15 .055 33 15 .025 41 20 .075 35
16 .082 32 16 .038 40 21 .111 34
17 .115 31 17 .053 39 22 .155 33
18 .158 30 18 .074 38 23 .210 32
19 .206 29 19 .099 37 24 .274 31
20 .264 28 20 .130 36 25 .345 30
21 .324 27 21 .165 35 26 .421 29
22 .394 26 22 .207 34 27 .500 28
23 .464 25 23 .252 33 6 15 .002 45
24 .536 24 24 .302 32 16 .004 44

8 10 .002 42 25 .355 31 17 .009 43
11 .004 41 26 .413 30 18 .015 42
12 .008 40 27 .470 29 19 .026 41
13 .014 39 28 .530 28 20 .041 40
14 .024 38 10 10 .001 50 21 .063 39
15 .036 37 11 .002 49 22 .089 38
16 .055 36 12 .004 48 23 .123 37
17 .077 35 13 .007 47 24 .165 36
18 .107 34 14 .012 46 25 .214 35
19 .141 33 15 .018 45 26 .268 34
20 .184 32 16 .027 44 27 .331 33
21 .230 31 17 .038 43 28 .396 32
22 .285 30 18 .053 42 29 .465 31
23 .341 29 19 .071 41 30 .535 30
24 .404 28 20 .094 40
25 .467 27 21 .120 39
26 .533 26 22 .152 38

23 .187 37
24 .227 36
25 .270 35
26 .318 34
27 .367 33
28 .420 32
29 .473 31
30 .527 30

(Continued)
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Table J ðContinuedÞ
n Left tail P Right tail n Left tail P Right tail n Left tail P Right tail

m ¼ 5 m ¼ 5 m ¼ 6

7 15 .001 50 9 15 .000 60 6 21 .001 57
16 .003 49 16 .001 59 22 .002 56
17 .005 48 17 .002 58 23 .004 55
18 .009 47 18 .003 57 24 .008 54
19 .015 46 19 .006 56 25 .013 53
20 .024 45 20 .009 55 26 .021 52
21 .037 44 21 .014 54 27 .032 51
22 .053 43 22 .021 53 28 .047 50
23 .074 42 23 .030 52 29 .066 49
24 .101 41 24 .041 51 30 .090 48
25 .134 40 25 .056 50 31 .120 47
26 .172 39 26 .073 49 32 .155 46
27 .216 38 27 .095 48 33 .197 45
28 .265 37 28 .120 47 34 .242 44
29 .319 36 29 .149 46 35 .294 43
30 .378 35 30 .182 45 36 .350 42
31 .438 34 31 .219 44 37 .409 41
32 .500 33 32 .259 43 38 .469 40

8 15 .001 55 33 .303 42 39 .531 39
16 .002 54 34 .350 41 7 21 .001 63
17 .003 53 35 .399 40 22 .001 62
18 .005 52 36 .449 39 23 .002 61
19 .009 51 37 .500 38 24 .004 60
20 .015 50 10 15 .000 65 25 .007 59
21 .023 49 16 .001 64 26 .011 58
22 .033 48 17 .001 63 27 .017 57
23 .047 47 18 .002 62 28 .026 56
24 .064 46 19 .004 61 29 .037 55
25 .085 45 20 .006 60 30 .051 54
26 .111 44 21 .010 59 31 .069 53
27 .142 43 22 .014 58 32 .090 52
28 .177 42 23 .020 57 33 .117 51
29 .218 41 24 .028 56 34 .147 50
30 .262 40 25 .038 55 35 .183 49
31 .311 39 26 .050 54 36 .223 48
32 .362 38 27 .065 53 37 .267 47
33 .416 37 28 .082 52 38 .314 46
34 .472 36 29 .103 51 39 .365 45
35 .528 35 30 .127 50 40 .418 44

31 .155 49 41 .473 43
32 .0185 48 42 .527 42
33 .220 47
34 .257 46
35 .297 45
36 .339 44
37 .384 43
38 .430 42
39 .477 41
40 .523 40
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Table J ðContinuedÞ
n Left tail P Right tail n Left tail P Right tail n Left tail P Right tail

m ¼ 6 m ¼ 6 m ¼ 7

8 21 .000 69 9 41 .228 55 7 28 .000 77
22 .001 68 42 .264 54 29 .001 76
23 .001 67 43 .303 53 30 .001 75
24 .002 66 44 .344 52 31 .002 74
25 .004 65 45 .388 51 32 .003 73
26 .006 64 46 .432 50 33 .006 72
27 .010 63 47 .477 49 34 .009 71
28 .015 62 48 .523 48 35 .013 70
29 .021 61 10 21 .000 81 36 .019 69
30 .030 60 22 .000 80 37 .027 68
31 .041 59 23 .000 79 38 .036 67
32 .054 58 24 .001 78 39 .049 66
33 .071 57 25 .001 77 40 .064 65
34 .091 56 26 .002 76 41 .082 64
35 .114 55 27 .004 75 42 .104 63
36 .141 54 28 .005 74 43 .130 62
37 .172 53 29 .008 73 44 .159 61
38 .207 52 30 .011 72 45 .191 60
39 .245 51 31 .016 71 46 .228 59
40 .286 50 32 .021 70 47 .267 58
41 .331 49 33 .028 69 48 .310 57
42 .377 48 34 .036 68 49 .355 56
43 .426 47 35 .047 67 50 .402 55
44 .475 46 36 .059 66 51 .451 54
45 .525 45 37 .074 65 52 .500 53

9 21 .000 75 38 .090 64 8 28 .000 84
22 .000 74 39 .110 63 29 .000 83
23 .001 73 40 .132 62 30 .001 82
24 .001 72 41 .157 61 31 .001 81
25 .002 71 42 .184 60 32 .002 80
26 .004 70 43 .214 59 33 .003 79
27 .006 69 44 .246 58 34 .005 78
28 .009 68 45 .281 57 35 .007 77
29 .013 67 46 .318 56 36 .010 76
30 .018 66 47 .356 55 37 .014 75
31 .025 65 48 .396 54 38 .020 74
32 .033 64 49 .437 53 39 .027 73
33 .044 63 50 .479 52 40 .036 72
34 .057 62 51 .521 51 41 .047 71
35 .072 61 42 .060 70
36 .091 60 43 .076 69
37 .112 59 44 .095 68
38 .136 58 45 .116 67
39 .164 57 46 .140 66
40 .194 56 47 .168 65

(Continued)
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Table J ðContinuedÞ
n Left tail P Right tail n Left tail P Right tail n Left tail P Right tail

m ¼ 7 m ¼ 7 m ¼ 8

8 48 .198 64 10 28 .000 98 8 36 .000 100
49 .232 63 29 .000 97 37 .000 99
50 .268 62 30 .000 96 38 .000 98
51 .306 61 31 .000 95 39 .001 97
52 .347 60 32 .001 94 40 .001 96
53 .389 59 33 .001 93 41 .001 95
54 .433 58 34 .002 92 42 .002 94
55 .478 57 35 .002 91 43 .003 93
56 .522 56 36 .003 90 44 .005 92

9 28 .000 91 37 .005 89 45 .007 91
29 .000 90 38 .007 88 46 .010 90
30 .000 89 39 .009 87 47 .014 89
31 .001 88 40 .012 86 48 .019 88
32 .001 87 41 .017 85 49 .025 87
33 .002 86 42 .022 84 50 .032 86
34 .003 85 43 .028 83 51 .041 85
35 .004 84 44 .035 82 52 .052 84
36 .006 83 45 .044 81 53 .065 83
37 .008 82 46 .054 80 54 .080 82
38 .011 81 47 .067 79 55 .097 81
39 .016 80 48 .081 78 56 .117 80
40 .021 79 49 .097 77 57 .139 79
41 .027 78 50 .115 76 58 .164 78
42 .036 77 51 .135 75 59 .191 77
43 .045 76 52 .157 74 60 .221 76
44 .057 75 53 .182 73 61 .253 75
45 .071 74 54 .209 72 62 .287 74
46 .087 73 55 .237 71 63 .323 73
47 .105 72 56 .268 70 64 .360 72
48 .126 71 57 .300 69 65 .399 71
49 .150 70 58 .335 68 66 .439 70
50 .176 69 59 .370 67 67 .480 69
51 .204 68 60 .406 66 68 .520 68
52 .235 67 61 .443 65 9 36 .000 108
53 .268 66 62 .481 64 37 .000 107
54 .303 65 63 .519 63 38 .000 106
55 .340 64 39 .000 105
56 .379 63 40 .000 104
57 .419 62 41 .001 103
58 .459 61 42 .001 102
59 .500 60 43 .002 101
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Table J ðContinuedÞ
n Left tail P Right tail n Left tail P Right tail n Left tail P Right tail

m ¼ 8 m ¼ 8 m ¼ 9

9 44 .003 100 10 36 .000 116 9 45 .000 126
45 .004 99 37 .000 115 46 .000 125
46 .006 98 38 .000 114 47 .000 124
47 .008 97 39 .000 113 48 .000 123
48 .010 96 40 .000 112 49 .000 122
49 .014 95 41 .000 111 50 .000 121
50 .018 94 42 .001 110 51 .001 120
51 .023 93 43 .001 109 52 .001 119
52 .030 92 44 .002 108 53 .001 118
53 .037 91 45 .002 107 54 .002 117
54 .046 90 46 .003 106 55 .003 116
55 .057 89 47 .004 105 56 .004 115
56 .069 88 48 .006 104 57 .005 114
57 .084 87 49 .008 103 58 .007 113
58 .100 86 50 .010 102 59 .009 112
59 .118 85 51 .013 101 60 .012 111
60 .138 84 52 .017 100 61 .016 110
61 .161 83 53 .022 99 62 .020 109
62 .185 82 54 .027 98 63 .025 108
63 .212 81 55 .034 97 64 .031 107
64 .240 80 56 .042 96 65 .039 106
65 .271 79 57 .051 95 66 .047 105
66 .303 78 58 .061 94 67 .057 104
67 .336 77 59 .073 93 68 .068 103
68 .371 76 60 .086 92 69 .081 102
69 .407 75 61 .102 91 70 .095 101
70 .444 74 62 .118 90 71 .111 100
71 .481 73 63 .137 89 72 .129 99
72 .519 72 64 .158 88 73 .149 98

65 .180 87 74 .170 97
66 .204 86 75 .193 96
67 .230 85 76 .218 95
68 .257 84 77 .245 94
69 .286 83 78 .273 93
70 .317 82 79 .302 92
71 .348 81 80 .333 91
72 .381 80 81 .365 90
73 .414 79 82 .398 89
74 .448 78 83 .432 88
75 .483 77 84 .466 87
76 .517 76 85 .500 86

(Continued)
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Table J ðContinuedÞ
n Left tail P Right tail n Left tail P Right tail n Left tail P Right tail

m ¼ 9 m ¼ 9 m ¼ 10

10 45 .000 135 10 78 .178 102 10 73 .007 137
46 .000 134 79 .200 101 74 .009 136
47 .000 133 80 .223 100 75 .012 135
48 .000 132 81 .248 99 76 .014 134
49 .000 131 82 .274 98 77 .018 133
50 .000 130 83 .302 97 78 .022 132
51 .000 129 84 .330 96 79 .026 131
52 .000 128 85 .360 95 80 .032 130
53 .001 127 86 .390 94 81 .038 129
54 .001 126 87 .421 93 82 .045 128
55 .001 125 88 .452 92 83 .053 127
56 .002 124 89 .484 91 84 .062 126
57 .003 123 90 .516 90 85 .072 125
58 .004 122 86 .083 124
59 .005 121 87 .095 123
60 .007 120 m ¼ 10 88 .109 122
61 .009 119 89 .124 121
62 .011 118 10 55 .000 155 90 .140 120
63 .014 117 56 .000 154 91 .157 119
64 .017 116 57 .000 153 92 .176 118
65 .022 115 58 .000 152 93 .197 117
66 .027 114 59 .000 151 94 .218 116
67 .033 113 60 .000 150 95 .241 115
68 .039 112 61 .000 149 96 .264 114
69 .047 111 62 .000 148 97 .289 113
70 .056 110 63 .000 147 98 .315 112
71 .067 109 64 .001 146 99 .342 111
72 .078 108 65 .001 145 100 .370 110
73 .091 107 66 .001 144 101 .398 109
74 .106 106 67 .001 143 102 .427 108
75 .121 105 68 .002 142 103 .456 107
76 .139 104 69 .003 141 104 .485 106
77 .158 103 70 .003 140 105 .515 105

71 .004 139
72 .006 138

Source: Adapted from F. Wilcoxon, S. K. Katti, and R. A. Wilcox (1973), Critical values
and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test,
pp. 172–259, in Institute of Mathematical Statistics, ed., Selected Tables in Mathema-
tical Statistics, vol. I, American Mathematical Society, Providence, Rhode Island, with
permission.
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Table K Kruskal-Wallis Test Statistic
Each table entry is the smallest value of the Kruskal-Wallis H such that its right-tail
probability is less than or equal to the value given on the top row for k¼3, each sample
size less than or equal to 5.

Right-tail probability for H

n1, n2, n3 0.100 0.050 0.020 0.010 0.001

2, 2, 2 4.571 — — — —
3, 2, 1 4.286 — — — —
3, 2, 2 4.500 4.714 — — —
3, 3, 1 4.571 5.143 — — —
3, 3, 2 4.556 5.361 6.250 — —
3, 3, 3 4.622 5.600 6.489 7.200 —
4, 2, 1 4.500 — — — —
4, 2, 2 4.458 5.333 6.000 — —
4, 3, 1 4.056 5.208 — — —
4, 3, 2 4.511 5.444 6.144 6.444 —
4, 3, 3 4.709 5.791 6.564 6.745 —
4, 4, 1 4.167 4.967 6.667 6.667 —
4, 4, 2 4.555 5.455 6.600 7.036 —
4, 4, 3 4.545 5.598 6.712 7.144 8.909
4, 4, 4 4.654 5.692 6.962 7.654 9.269
5, 2, 1 4.200 5.000 — — —
5, 2, 2 4.373 5.160 6.000 6.533 —
5, 3, 1 4.018 4.960 6.044 — —
5, 3, 2 4.651 5.251 6.124 6.909 —
5, 3, 3 4.533 5.648 6.533 7.079 8.727
5, 4, 1 3.987 4.985 6.431 6.955 —
5, 4, 2 4.541 5.273 6.505 7.205 8.591
5, 4, 3 4.549 5.656 6.676 7.445 8.795
5, 4, 4 4.668 5.657 6.953 7.760 9.168
5, 5, 1 4.109 5.127 6.145 7.309 —
5, 5, 2 4.623 5.338 6.446 7.338 8.938
5, 5, 3 4.545 5.705 6.866 7.578 9.284
5, 5, 4 4.523 5.666 7.000 7.823 9.606
5, 5, 5 4.560 5.780 7.220 8.000 9.920

For k>3, right-tail probabilities on H are found from Table B with k�1 degrees of
freedom.
Source: Adapted from R. L. Iman, D. Quade, and D. A. Alexander (1975), Exact
probability levels for the Kruskal-Wallis test, pp. 329–384, in Institute of Mathematical
Statistics ed., Selected Tables in Mathematical Statistics, vol. III, American Mathema-
tical Society, Providence, Rhode Island, with permission.
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Table L Kendall’s Tau Statistic
Each table entry labelled P is the right-tail probability for T, the Kendall tau statistic for
sample size n, and also the left-tail probability for �T. The second portion of the table
gives the value of T(�T) such that its right (left-tail) probability is the value given in the
top row.

n T P n T P n T P n T P

3 1.000 .167 7 1.000 .000 9 1.000 .000 10 1.000 .000
.333 .500 .905 .001 .944 .000 .956 .000

4 1.000 .042 .810 .005 .889 .000 .911 .000
.667 .167 .714 .015 .833 .000 .867 .000
.333 .375 .619 .035 .778 .001 .822 .000
.000 .625 .524 .068 .722 .003 .778 .000

5 1.000 .008 .429 .119 .667 .006 .733 .001
.800 .042 .333 .191 .611 .012 .689 .002
.600 .117 .238 .281 .556 .022 .644 .005
.400 .242 .143 .386 .500 .038 .600 .008
.200 .408 .048 .500 .444 .060 .556 .014
.000 .592 8 1.000 .000 .389 .090 .511 .023

6 1.000 .001 .929 .000 .333 .130 .467 .036
.867 .008 .857 .001 .278 .179 .422 .054
.733 .028 .786 .003 .222 .238 .378 .078
.600 .068 .714 .007 .167 .306 .333 .108
.467 .136 .643 .016 .111 .381 .289 .146
.333 .235 .571 .031 .056 .460 .244 .190
.200 .360 .500 .054 .000 .540 .200 .242
.067 .500 .429 .089 .156 .300

.357 .138 .111 .364

.286 .199 .067 .431

.214 .274 .022 .500

.143 .360

.071 .452

.000 .548

(Continued)

APPENDIX OF TABLES 593



Table L ðContinuedÞ
n .100 .050 .025 .010 .005

11 .345 .418 .491 .564 .600
12 .303 .394 .455 .545 .576
13 .308 .359 .436 .513 .564
14 .275 .363 .407 .473 .516
15 .276 .333 .390 .467 .505
16 .250 .317 .383 .433 .483
17 .250 .309 .368 .426 .471
18 .242 .294 .346 .412 .451
19 .228 .287 .333 .392 .439
20 .221 .274 .326 .379 .421
21 .210 .267 .314 .371 .410
22 .203 .264 .307 .359 .394
23 .202 .257 .296 .352 .391
24 .196 .246 .290 .341 .377
25 .193 .240 .287 .333 .367
26 .188 .237 .280 .329 .360
27 .179 .231 .271 .322 .356
28 .180 .228 .265 .312 .344
29 .172 .222 .261 .310 .340
30 .172 .218 .255 .301 .333

Source: The tail probabilities (n4 10) are adapted from M. G. Kendall (1948, 4th ed.
1970), Rank Correlation Methods, Charles Griffin & Co., Ltd., London and High
Wycombe, with permission. The quantiles (114n4 30) are adapted from L.
Kaarsemaker and A. van Wijngaarden (1953), Tables for use in rank correlation,
Statistica Neerlandica, 7, 41–54, with permission.
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Table M Spearman’s Coefficient of Rank Correlation
Each table entry labeled P is the right-tail probability for R, Spearman’s coefficient of
rank correlation for sample size n, and also the left-tail probability for �R. The second
portion of he table gives the value of Rð�RÞ such that its right-tail (left-tail) probability
is the value given on the top row.

n R P n R P n R P n R P

3 1.000 .167 7 1.000 .000 8 .810 .011 9 1.000 .000
.500 .500 .964 .001 .786 .014 .983 .000

4 1.000 .042 .929 .003 .762 .018 .967 .000
.800 .167 .893 .006 .738 .023 .950 .000
.600 .208 .857 .012 .714 .029 .933 .000
.400 .375 .821 .017 .690 .035 .917 .001
.200 .458 .786 .024 .667 .042 .900 .001
.000 .542 .750 .033 .643 .048 .883 .002

5 1.000 .008 .714 .044 .619 .057 .867 .002
.900 .042 .679 .055 .595 .066 .850 .003
.800 .067 .643 .069 .571 .076 .833 .004
.700 .117 .607 .083 .548 .085 .817 .005
.600 .175 .571 .100 .524 .098 .800 .007
.500 .225 .536 .118 .500 .108 .783 .009
.400 .258 .500 .133 .476 .122 .767 .011
.300 .342 .464 .151 .452 .134 .750 .013
.200 .392 .429 .177 .429 .150 .733 .016
.100 .475 .393 .198 .405 .163 .717 .018
.000 .525 .357 .222 .381 .180 .700 .022

6 1.000 .001 .321 .249 .357 .195 .683 .025
.943 .008 .286 .278 .333 .214 .667 .029
.886 .017 .250 .297 .310 .231 .650 .033
.829 .029 .214 .331 .286 .250 .633 .038
.771 .051 .179 .357 .262 .268 .617 .043
.714 .068 .143 .391 .238 .291 .600 .048
.657 .088 .107 .420 .214 .310 .583 .054
.600 .121 .071 .453 .190 .332 .567 .060
.543 .149 .036 .482 .167 .352 .550 .066
.486 .178 .000 .518 .143 .376 .533 .074
.429 .210 8 1.000 .000 .119 .397 .517 .081
.371 .249 .976 .000 .095 .420 .500 .089
.314 .282 .952 .001 .071 .441 .483 .097
.257 .329 .929 .001 .048 .467 .467 .106
.200 .357 .905 .002 .024 .488 .450 .115
.143 .401 .881 .004 .000 .512 .433 .125
.086 .460 .857 .005 .417 .135
.029 .500 .833 .008 .400 .146

(Continued)
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Table M ðContinuedÞ
n R P n R P n R P n R P

9 .383 .156 10 .964 .000 10 .636 .027 10 .309 .193
.367 .168 .952 .000 .624 .030 .297 .203
.350 .179 .939 .000 .612 .033 .285 .214
.333 .193 .927 .000 .600 .037 .273 .224
.317 .205 .915 .000 .588 .040 .261 .235
.300 .218 .903 .000 .576 .044 .248 .246
.283 .231 .891 .001 .564 .048 .236 .257
.267 .247 .879 .001 .552 .052 .224 .268
.250 .260 .867 .001 .539 .057 .212 .280
.233 .276 .855 .001 .527 .062 .200 .292
.217 .290 .842 .002 .515 .067 .188 .304
.200 .307 .830 .002 .503 .072 .176 .316
.183 .322 .818 .003 .491 .077 .164 .328
.167 .339 .806 .004 .479 .083 .152 .341
.150 .354 .794 .004 .467 .089 .139 .354
.133 .372 .782 .005 .455 .096 .127 .367
.117 .388 .770 .007 .442 .102 .115 .379
.100 .405 .758 .008 .430 .109 .103 .393
.083 .422 .745 .009 .418 .116 .091 .406
.067 .440 .733 .010 .406 .124 .079 .419
.050 .456 .721 .012 .394 .132 .067 .433
.033 .474 .709 .013 .382 .139 .055 .446
.017 .491 .697 .015 .370 .148 .042 .459
.000 .509 .685 .017 .358 .156 .030 .473

10 1.000 .000 .673 .019 .345 .165 .018 .486
.988 .000 .661 .022 .333 .174 .006 .500
.976 .000 .648 .025 .321 .184

(Continued)
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Table M ðContinuedÞ
n .100 .050 .025 .010 .005 .001

11 .427 .536 .618 .709 .764 .855
12 .406 .503 .587 .678 .734 .825
13 .385 .484 .560 .648 .703 .797
14 .367 .464 .538 .626 .679 .771
15 .354 .446 .521 .604 .657 .750
16 .341 .429 .503 .585 .635 .729
17 .329 .414 .488 .566 .618 .711
18 .317 .401 .474 .550 .600 .692
19 .309 .391 .460 .535 .584 .675
20 .299 .380 .447 .522 .570 .660
21 .292 .370 .436 .509 .556 .647
22 .284 .361 .425 .497 .544 .633
23 .278 .353 .416 .486 .532 .620
24 .275 .344 .407 .476 .521 .608
25 .265 .337 .398 .466 .511 .597
26 .260 .331 .390 .457 .501 .586
27 .255 .324 .383 .449 .492 .576
28 .250 .318 .376 .441 .483 .567
29 .245 .312 .369 .433 .475 .557
30 .241 .307 .363 .426 .467 .548

Source: The tail probabilities (n4 10) are adapted from M. G. Kendall (1948, 4th ed.
1970), Rank Correlation Methods, Charles Griffin & Co., Ltd., London and High
Wycombe, with permission. The quantiles (114n430) are adapted from G. J. Glasser
and R. F. Winter (1961), Critical values of the rank correlation coefficient for testing the
hypothesis of independence, Biometrika, 48, 444–448, with permission of the Biometrika
Trustees and the authors.
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Table N Friedman’s Analysis-of-Variance Statistic and Kendall’s Coefficient of
Concordance
Each table entry labeled P is the right-tail probability for the sum of squares S used in
Friedman’s analysis-of-variance statistic with n treatments and k blocks and in
Kendall’s coefficient of concordance with k sets of ranking of n objects.

n k S P n k S P n k S P n k S P

3 2 8 .167 3 7 98 .000 4 2 20 .042 4 4 80 .000
6 .500 96 .000 18 .167 78 .001

3 18 .028 86 .000 16 .208 76 .001
14 .194 78 .001 14 .375 74 .001
8 .361 74 .003 12 .458 72 .002

4 32 .005 72 .004 3 45 .002 70 .003
26 .042 62 .008 43 .002 68 .003
24 .069 56 .016 41 .017 66 .006
18 .125 54 .021 37 .033 64 .007
14 .273 50 .027 35 .054 62 .012
8 .431 42 .051 33 .075 58 .014

5 50 .001 38 .085 29 .148 56 .019
42 .008 32 .112 27 .175 54 .033
38 .024 26 .192 25 .207 52 .036
32 .039 24 .237 21 .300 50 .052
26 .093 18 .305 19 .342 48 .054
24 .124 14 .486 17 .446 46 .068
18 .182 8 128 .000 44 .077
14 .367 126 .000 42 .094

6 72 .000 122 .000 40 .105
62 .002 114 .000 38 .141
56 .006 104 .000 36 .158
54 .008 98 .001 34 .190
50 .012 96 .001 32 .200
42 .029 86 .002 30 .242
38 .052 78 .005 26 .324
32 .072 74 .008 24 .355
26 .142 72 .010 22 .389
24 .184 62 .018 20 .432
18 .252 56 .030
14 .430 54 .038

50 .047
42 .079
38 .120
32 .149
26 .236
24 .285
18 .355

Source: Adapted from M. G. Kendall (1948, 4th ed. 1970), Rank Correlation Methods,
Charles Griffin & Co., Ltd., London and High Wycombe, with permission.
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Table O Lilliefors’s Test for Normal Distribution Critical Values
Table entries for any sample size N are the values of a Lilliefors’s random variable with
right-tail probability as given in the top row.

Sample Size
Significance level

(N) 0.100 0.05 0.010 0.001

4 .344 .375 .414 .432
5 .320 .344 .398 .427
6 .298 .323 .369 .421
7 .281 .305 .351 .399
8 .266 .289 .334 .383
9 .252 .273 .316 .366
10 .240 .261 .305 .350
11 .231 .251 .291 .331
12 .223 .242 .281 .327
14 .208 .226 .262 .302
16 .195 .213 .249 .291
18 .185 .201 .234 .272
20 .176 .192 .223 .266
25 .159 .173 .202 .236
30 .146 .159 .186 .219
40 .127 .139 .161 .190
50 .114 .125 .145 .173
60 .105 .114 .133 .159
75 .094 .102 .119 .138
100 .082 .089 .104 .121

Over 100 :816=
ffiffiffiffiffi
N

p
:888=

ffiffiffiffiffi
N

p
1:038=

ffiffiffiffiffi
N

p
1:212=

ffiffiffiffiffi
N

p

Source: Adapted from R. L. Edgeman and R. C. Scott (1987), Lilliefors’s tests for
transformed variables, Brazilian Journal of Probability and Statistics, 1, 101–112, with
permission.
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Table P Significance Points of TXY.Z (for Kendall’s Partial Rank-Correlation Coeffi-
cient)

One-tailed level of significance

m 0.005 0.01 0.025 0.05

3 1 1 1 1
4 1 1 1 0.707
5 1 0.816 0.802 0.667
6 0.866 0.764 0.667 0.600
7 0.761 0.712 0.617 0.527
8 0.713 0.648 0.565 0.484
9 0.660 0.602 0.515 0.443
10 0.614 0.562 0.480 0.413
11 0.581 0.530 0.453 0.387
12 0.548 0.505 0.430 0.365
13 0.527 0.481 0.410 0.347
14 0.503 0.458 0.391 0.331
15 0.482 0.439 0.375 0.317
16 0.466 0.423 0.361 0.305
17 0.450 0.410 0.348 0.294
18 0.434 0.395 0.336 0.284
19 0.421 0.382 0.326 0.275
20 0.410 0.372 0.317 0.267
25 0.362 0.328 0.278 0.235
30 0.328 0.297 0.251 0.211

Source: Adapted from S. Maghsoodloo (1975), Estimates of the quantiles of Kendall’s
partial rank correlation coefficient and additional quantile estimates, Journal of
Statistical Computation and Simulation, 4, 155–164, and S. Maghsoodloo, and L. L.
Pallos (1981), Asymptotic behavior of Kendall’s partial rank correlation coefficient and
additional quantile estimates, Journal of Statistical Computation and Simulation, 13,
41–48, with permission.
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Table Q Page’s L Statistic
Each table entry for n treatments and k blocks is the value of L such that its right-tail
probability is less than or equal to 0.001 for the upper number, 0.01 for the middle
number, and 0.05 for the lower number.

n

k 3 4 5 6 7 8

109 178 269 388
2 60 106 173 261 376

28 58 103 166 252 362
89 160 260 394 567

3 42 87 155 252 382 549
41 84 150 244 370 532
56 117 210 341 516 743

4 55 114 204 331 501 722
54 111 197 321 487 701
70 145 259 420 637 917

5 68 141 251 409 620 893
66 137 244 397 603 869
83 172 307 499 757 1090

6 81 167 299 486 737 1063
79 163 291 474 719 1037
96 198 355 577 876 1262

7 93 193 346 563 855 1232
91 189 338 550 835 1204
109 225 403 655 994 1433

8 106 220 383 640 972 1401
104 214 384 625 950 1371
121 252 451 733 1113 1603

9 119 246 441 717 1088 1569
116 240 431 701 1065 1537
134 278 499 811 1230 1773

10 131 272 487 793 1205 1736
128 266 477 777 1180 1703
147 305 546 888 1348 1943

11 144 298 534 869 1321 1905
141 292 523 852 1295 1868
160 331 593 965 1465 2112

12 156 324 581 946 1437 2072
153 317 570 928 1410 2035

Source: Adapted from E. P. Page (1963), Ordered hypotheses for multiple treatments: A
significance test for linear ranks, Journal of the American Statistical Association, 58,
216–230, with permission.
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Table S Rank von Neumann Statistic
Each table entry for n410 is the exact left-tail or right-tail P value of the corresponding
listed value of NM. Only those values of NM that are close to the typical values of
a¼ 0.005, 0.01, 0.025, 0.05 and 0.10 are included. The table entries for n > 10 are the
left-tail critical values of RVN for the same typical a values. Since these entries are based
on a beta approximation which is symmetric about 2, corresponding right-tail critical
values are easily found. For example if n ¼ 40, a¼0.005, the left-tail critical value of
RVN is 1.22 and hence the right-tail critical value is 2.78.

P values for selected values of NM

n NM Left-tail P NM Right-tail P

4 3 0.0833 17 0.0833
6 0.2500 14 0.2500

5 4 0.0167 35 0.0333
7 0.0500 33 0.0667
10 0.1333 30 0.1333

6 5 0.0028 65 0.0028
8 0.0083 63 0.0083
11 0.0250 62 0.0139
14 0.0472 60 0.0194
16 0.0750 59 0.0306
17 0.0806 56 0.0361
19 0.1306 55 0.0694

52 0.0972
51 0.1139

7 14 0.0048 101 0.0040
15 0.0079 100 0.0056
17 0.0119 98 0.0087
18 0.0151 97 0.0103
20 0.0262 93 0.0206
24 0.0444 92 0.0254
25 0.0563 88 0.0464
31 0.0988 87 0.0536
32 0.1155 81 0.0988

80 0.1115

8 23 0.0049 149 0.0043
24 0.0073 148 0.0052
26 0.0095 144 0.0084
27 0.0111 143 0.0105
32 0.0221 136 0.0249
33 0.0264 135 0.0286
39 0.0481 129 0.0481
40 0.0529 128 0.0530
48 0.0978 120 0.0997

(Continued)
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Table S ðContinuedÞ
P values for selected values of NM

n NM Left-tail P NM Right-tail P

49 0.1049 119 0.1074
9 34 0.0045 208 0.0046

35 0.0055 207 0.0053
40 0.0096 202 0.0091
41 0.0109 201 0.0104
49 0.0236 191 0.0245
50 0.0255 190 0.0262
59 0.0486 181 0.0499
60 0.0516 180 0.0528
71 0.0961 169 0.0978
72 0.1010 168 0.1030

10 51 0.0050 282 0.0046
59 0.0100 281 0.0051
72 0.0242 273 0.0097
73 0.0260 272 0.0103
85 0.0493 259 0.0240
86 0.0517 258 0.0252
101 0.0985 246 0.0475
102 0.1017 245 0.0504

229 0.0990
228 0.1023

Left-tail critical values of RVN

n 0.005 0.010 0.025 0.050 0.100

10 0.62 0.72 0.89 1.04 1.23
11 0.67 0.77 0.93 1.08 1.26

12 0.71 0.81 0.96 1.11 1.29
13 0.74 0.84 1.00 1.14 1.32
14 0.78 0.87 1.03 1.17 1.34

15 0.81 0.90 1.05 1.19 1.36
16 0.84 0.93 1.08 1.21 1.38
17 0.87 0.96 1.10 1.24 1.40
18 0.89 0.98 1.13 1.26 1.41
19 0.92 1.01 1.15 1.27 1.43
20 0.94 1.03 1.17 1.29 1.44

(Continued)
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Table S ðContinuedÞ
Left-tail critical values of RVN

n 0.005 0.010 0.025 0.050 0.100

21 0.96 1.05 1.18 1.31 1.45
22 0.98 1.07 1.20 1.32 1.46
23 1.00 1.09 1.22 1.33 1.48
24 1.02 1.10 1.23 1.35 1.49
25 1.04 1.12 1.25 1.36 1.50
26 1.05 1.13 1.26 1.37 1.51
27 1.07 1.15 1.27 1.38 1.51
28 1.08 1.16 1.28 1.39 1.52
29 1.10 1.18 1.30 1.40 1.53
30 1.11 1.19 1.31 1.41 1.54
32 1.13 1.21 1.33 1.43 1.55
34 1.16 1.23 1.35 1.45 1.57
36 1.18 1.25 1.36 1.46 1.58

38 1.20 1.27 1.38 1.48 1.59
40 1.22 1.29 1.39 1.49 1.60
42 1.24 1.30 1.41 1.50 1.61
44 1.25 1.32 1.42 1.51 1.62
46 1.27 1.33 1.43 1.52 1.63
48 1.28 1.35 1.45 1.53 1.63
50 1.29 1.36 1.46 1.54 1.64
55 1.33 1.39 1.48 1.56 1.66
60 1.35 1.41 1.50 1.58 1.67
65 1.38 1.43 1.52 1.60 1.68
70 1.40 1.45 1.54 1.61 1.70
75 1.42 1.47 1.55 1.62 1.71
80 1.44 1.49 1.57 1.64 1.71
85 1.45 1.50 1.58 1.65 1.72
90 1.47 1.52 1.59 1.66 1.73
95 1.48 1.53 1.60 1.66 1.74
100 1.49 1.54 1.61 1.67 1.74

100a 1.48 1.53 1.61 1.67 1.74
100b 1.49 1.54 1.61 1.67 1.74

aUsing the Nð2; 4=nÞ approximation.
bUsing the N½2; 20=ð5nþ 7Þ� approximation.
Source: Adapted from R. Bartels (1982), The rank version of von Neumann’s ratio test
for randomness, Journal of the American Statistical Association, 77, 40–46, with
permission.
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Table T Lilliefors’s Test for Exponential Distribution Critical Values
Table entries for any sample size N are the values of a Lilliefors’s random variable with
right-tail probability as given in the top row.

Sample Size
Significance Level

N 0.100 0.050 0.010 0.001

4 .444 .483 .556 .626
5 .405 .443 .514 .585
6 .374 .410 .477 .551
7 .347 .381 .444 .509
8 .327 .359 .421 .502
9 .310 .339 .399 .460
10 .296 .325 .379 .444
11 .284 .312 .366 .433
12 .271 .299 .350 .412
14 .252 .277 .325 .388
16 .237 .261 .311 .366
18 .224 .247 .293 .328
20 .213 .234 .279 .329
25 .192 .211 .251 .296
30 .176 .193 .229 .270
40 .153 .168 .201 .241
50 .137 .150 .179 .214
60 .125 .138 .164 .193
75 .113 .124 .146 .173
100 .098 .108 .127 .150

Over 100 :980=
ffiffiffiffiffi
N

p
1:077=

ffiffiffiffiffi
N

p
1:274=

ffiffiffiffiffi
N

p
1:501=

ffiffiffiffiffi
N

p

Source: Adapted from R. L. Edgeman and R. C. Scott (1987), Lilliefors’s tests for
transformed variables, Brazilian Journal of Probability and Statistics, 1, 101–112, with
permission.
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Answers to Selected Problems

2.6 Y ¼ 4X � 2X2

2.7 7�x
6

 �5� 6�x
6

 �5
; x ¼ 1; 2; . . . ; 6

2.8 Xð1Þ � lnð20=3Þ
2.10 ðaÞ 1� ð0:9Þ10 ðbÞ 1� ð0:5Þ1=10
2.11 ðaÞ 11=6 ðbÞ 3=ð2 ffiffiffi

p
p Þ

2.12 8u2ð3� 4uÞ; 0 < u < 1=2
32u3 � 72u2 þ 48u� 8; 1=2 < u < 1

2.13 ðaÞ 1=2; 1=4ðnþ 2Þ
ðbÞ 1=2; n=4ðnþ 1Þ2

2.14 ðn� 1Þðe8 � 1Þ2=2
2.15 4ðn� 1Þe4uðe4u � 1Þ
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2.16 nð2uÞn�1; 0 < u < 1=2

n½2ð1� uÞ�n�1; 1=2 < u < 1

2.18 ðaÞ m; ps2=2ð2mþ 3Þ ðbÞ 0:2877; 0:016
2.23 0.66

2.24 0.50

2.25 0.05

2.26 nðn� 1Þ; 2ðn� 1Þ=ðnþ 1Þ2ðnþ 2Þ
3.15 ðaÞ P ¼ 0:0012

ðbÞ No, too many zeros
3.16 ðaÞ R ¼ 2; P ¼ 0:095

ðbÞ R ¼ 2; P ¼ 0:025

3.17 ðaÞ R ¼ 6; P ¼ 0:069; R ¼ 11; P ¼ 0:3770
ðbÞ R ¼ 4; P ¼ 0:054; R ¼ 10; P ¼ 0:452
ðcÞ R ¼ 5; P ¼ 0:024; R ¼ 12; P ¼ 0:3850

3.18 R ¼ 6; P > 0:5; R ¼ 5; P > 0:7573

4.1 Q ¼ 3:1526; 0:25 < P < 0:50

4.2 Q ¼ 7:242; 0:10 < P < 0:25

4.12 n ¼ 1; 063

4.18 D ¼ 0:2934; 0:10 < P < 0:20

4.20 ðaÞ D ¼ 0:3117; 0:05 < P < 0:10
ðbÞ D ¼ 0:1994; P > 0:20
ðcÞ ðiÞ 28 ðiiÞ 47

4.21 ðaÞ Q ¼ 76:89; df ¼ 9; P < 0:001 or Q ¼ 61:13,
df ¼ 7; P < 0:001

4.25 Q ¼ 0:27; df ¼ 1; P > 0:50

4.27 Q ¼ 35:54; P < 0:001

4.28 K-S

4.30 ðaÞ D ¼ 0:1813; P > 0:20
ðbÞ D ¼ 0:1948; P > 0:20

4.34 D ¼ 0:400; 0:05 < P < 0:10

5.2 ðaÞ ½ðN � 1Þ=ðN þ 1Þ�1=2 ðbÞ 1=ð2 ffiffiffi
p

p Þ
ðcÞ ½3ðN � 1Þ=4ðN þ 1Þ�1=2
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5.4 (i) ðaÞ Reject, K 5 6 ðbÞ 0:063
ðcÞ K ¼ 4, do not reject H0 ðdÞ 0:070
ðeÞ �44MD 4 16

(ii) ðaÞ Do not reject H0; T� ¼ 6 ðbÞ 0:08
ðcÞ Do not reject H0; Tþ ¼ 16:5 ðdÞ 0:039
ðeÞ � 1:54MD 4 7

5.10 Tþ ¼ 53; P ¼ 0:003; K ¼ 9; P ¼ 0:0107

5.12 K ¼ 12; P ¼ 0:0017

5.13 K ¼ 13; P ¼ 0:0835

5.14 2494MD 4 1157; g ¼ 0:9376
2734MD 4 779; g ¼ 0:876

5.15 K ¼ 4; P ¼ 0:1875

5.16 ðaÞ �84M4 10; g ¼ 0:961
ðbÞ �74M4 7:5; g ¼ 0:96

5.20 ðaÞ Tþ ¼ 48; P ¼ 0:019
ðbÞ 0:54MD 4 6; g ¼ 0:916
ðcÞ K ¼ 7; P ¼ 0:1719
ðdÞ �24MD 4 6; g ¼ 0:9786

5.21 P ¼ 0:0202

5.22 ðaÞ K ¼ 4; P ¼ 0:3438
ðbÞ �44MD 4 13; g ¼ 0:9688
ðcÞ Tþ ¼ 18; P ¼ 0:078
ðdÞ �34MD 4 9:5; g ¼ 0:906

5.23 P ¼ 0:0176

5.29 ðaÞ 15=16 ðbÞ 5233=45 ðcÞ ð0:8Þ4
6.1 0.75

6.6 (i) ðaÞ U ¼ 6, do not reject H0 ðbÞ 130=12; 870
ðcÞ �274 y4 80

(ii) ðaÞ U ¼ 12:5, reject H0 ðbÞ a ¼ 0:082
ðcÞ 124MY �MX 4 65

6.9 mnD ¼ 54; P ¼ 0:0015
R ¼ 4; P ¼ 0:010

6.14 P ¼ 0:07; 34 y4 9; g ¼ 0:857

8.9 �74MX �MY 4 19; g ¼ 0:97
�64MX �MY 4 15; g ¼ 0:948
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8.10 WN ¼ 60; P ¼ 0:086

8.13 WN ¼ 54; P ¼ 0:866

8.14 ðaÞ u ¼ 3; g ¼ 0:9346
ðbÞ u ¼ 14; g ¼ 0:916
ðcÞ u ¼ 6; g ¼ 0:918

8.15 ðaÞ WN ¼ 14; P ¼ 0:452
ðbÞ �174MD 4 24; g ¼ 0:904

9.11 P ¼ 0:042

9.13 ðaÞ 0:228 < P < 0:267
ðbÞ 0:159 < P < 0:191
ðcÞ K-S or chi square

10.12 Q ¼ 3:24

10.13 H ¼ 18:91

10.14 S ¼ 43:5; 0:77 < P < 0:094

10.16 ðaÞ Q ¼ 43:25; df ¼ 2; P < 0:001

10.17 H ¼ 16:7; Hc ¼ 17:96; df ¼ 2; P < 0:001

10.22 H ¼ 10:5; 0:001 < P < 0:01

11.1 (i) ðaÞ T ¼ 0:5 ðbÞ Do not reject H0

ðcÞ 0:434 t4 0:57

(ii) ðaÞ R ¼ 0:69 ðbÞ Do not reject H0

11.3 ðaÞ T ¼ 2ðmn� 2uÞ=NðN � 1Þ ðbÞ T ¼ ð2u�mnÞ= N
2

 �
11.5 R ¼ 0:25; P ¼ 0:26

Rc ¼ 0:244; P � 0:268
T ¼ 0:17; P ¼ 0:306
Tc ¼ 0:17; P � 0:3

11.6 ðaÞ Tþ ¼ 57; z ¼ 0:25; P ¼ 0:4013
ðbÞ T ¼ 0:648; P < 0:005

R ¼ 0:8038; P < 0:001

11.7 R ¼ 0:661; 0:029 < P < 0:033
T ¼ 0:479; 0:038 < P < 0:06
NM ¼ 24:75; P < 0:0045
R ðruns up and downÞ ¼ 3; P ¼ 0:0257

11.14 ðaÞ R ¼ 0:7143
ðbÞ P ¼ 0:068
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ðcÞ T ¼ 0:4667
ðdÞ P ¼ 0:136

11.15 R ¼ 0:6363; P ¼ 0:027
T ¼ 0:51; P ¼ 0:023

11.18 ðaÞ T ¼ 0:6687
ðbÞ R ¼ 0:7793

12.1 S ¼ 37; P ¼ 0:033

12.2 ðaÞ S ¼ 312; W ¼ 0:825

12.4 TXY ¼ 7=15; TXZ ¼ 5=15

TYZ ¼ 5=15; TXY:Z ¼ 2=5

12.5 (a) R ¼ 0:977

12.6 TXZ ¼ 0:80; TYZ ¼ �0:9487
TXY ¼ �0:7379; TXY:Z ¼ 0:1110

12.7 T12 ¼ �0:7143; T13 ¼ �0:5714
T23 ¼ 0:5714; T23:1 ¼ 0:2842
P > 0:05

12.8 Q ¼ 4:814; df ¼ 5; P > 0:30
QC ¼ 4:97; P > 0:30

12.9 Q ¼ 19:14; df ¼ 6; 0:001 < P < 0:005

12.13 ðaÞ W ¼ 0:80; P < 0:02 ðbÞ IADGBHCJFE
13.1 ðaÞ 1=2s ffiffiffi

p
p ðbÞ 3NlNð1� lNÞ ðcÞ 3NlNð1� lNÞl2=4

13.2 ðbÞ 1=12 ðcÞ s2
13.5 1

14.2 Q ¼ 8:94; df ¼ 2; 0:01 < P < 0:05

14.3 Zc ¼ 1:94; P ¼ 0:0262

14.4 Zc ¼ 0:80; P ¼ 0:2119

14.5 Exact P ¼ 0:2619

14.6 Zc ¼ 1:643; P ¼ 0:0505

14.7 Zc ¼ 3:82; P < 0:001

14.8 Q ¼ 0:5759; df ¼ 2; 0:50 < P < 0:70

14.9 ðaÞ Q ¼ 13:83; df ¼ 4; 0:005 < P < 0:01
ðbÞ C ¼ 0:35; f ¼ 0:37
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ðcÞ T ¼ �0:16; Z ¼ �2:39; P ¼ 0:0091
ðdÞ g ¼ �0:2366

14.10 Zc ¼ 0:62; P ¼ 0:2676

14.11 Exact P ¼ 0:0835

14.12 Exact P ¼ 0:1133

14.13 Q ¼ 261:27; df ¼ 12; P < 0:001

14.14 Z ¼ 2:01; P ¼ 0:0222
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Index

Analysis of variance by ranks

(see Friedman’s test;

Kruskal-Wallis k-sample

test)

Ansari-Bradley scale test, 325–329

ARE, 350

consistency of, 337

definition and rationale, 326

distribution theory, 326–327

recursive relation, 326–328

rejection regions, 326

relation with other scale tests,

329

table references, 327

ANOVA

one-way, 354

two-way, 450–451

ARE (asymptotic relative efficiency)

calculation, examples of

Ansari-Bradley test, 514–517

Mann-Whitney test, 509–513

median test, 509–513

Mood test, 514–517

sign test, 503–509

van der Waerden test, 512–513

Wilcoxon signed-rank test,

503–509

definition, 26

of control median test, 265–266

of Freund-Ansari-Bradley-

Barton-David tests, 350

of Klotz normal-scores test,

350

of Kruskal-Wallis test, 392–393
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[ARE]

of Mann-Whitney test, 278–279

of median test, 262

of median test extension, 363

of Mood test, 350

of percentile modified rank test:

for location, 314

for scale, 350

of Siegel-Tukey test, 330

of sign test, 223

of Sukhatme test, 337

of Terry-Hoeffding test, 314

of van der Waerden test, 314

of Wilcoxon rank-sum test, 301

of Wilcoxon signed-rank test, 223

theory for, 494–503

Associated probability, 23

Association

bivariate population parameters of

concordance, 402

contingency table measures of,

526–527

criteria for, 401

expected rank correlation, 434–437

grade correlation, 437

k-sample measures of, concordance

coefficient

applications, 473–476, 481–483

complete rankings, 466–476

incomplete rankings, 476–483

product-moment correlation, 11

tau, 402

two-sample measures of

applications, 438–443

Fieller coefficient, 437–438

product-moment correlation

coefficient, 11

rank correlation coefficient,

422–431

tau coefficient, 405–420

Asymptotic relative efficiency (see
ARE)

Bahadur efficiency, 518

Balanced incomplete block design, 452

Barton-David scale test (see
Ansari-Bradley scale test)

Bernoulli distribution, 13

Beta distribution, 15

Beta function, 16

Binomial distribution, 13

Bivariate population, association

measures

concordance, 402

correlation, product-moment, 11

covariance, 11

expected rank correlation, 434–437

grade correlation, 437

tau, 402–404

Block frequency, 67

Brown-Mood median test (see Median

test extension)

Central Limit Theorem, 18

Chebyshev’s inequality, 17–18

Chernoff-Savage theorem, 290–293

Chi-square distribution, 15

Chi-square goodness-of-fit test,

104–111

applications, 108–111

combining cells, 107

compared with K-S test, 147–150

for composite hypothesis, 108

grouping measurement data, 108

Chi-square test

for goodness of fit, 104–111

for independence in contingency

tables, 521–529

for k proportions, 390–392,

529–530

table, 555

Coefficient of disarray, 410, 442–443

Comparisons with a control, 383–390

Composite hypothesis, 20

Computer simulations, 21

Concordance, bivariate populations

definition, 400

estimate of, 404–405

probability of, 404

second order, 434–436
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Concordance coefficient

complete rankings, 466–476

applications, 473–476

definition and rationale,

467–468

distribution theory, 469–473

inference, 469–471

relation with average of rank

correlations, 469

table, 598

ties, 473

incomplete rankings, 476–483

applications, 481–483

definition and rationale, 476

design specifications, 476–477

distribution theory, 479–481

inference applications, 481–483

multiple comparisons, 482

ties, 481

Confidence bands for cdf, 124–125

Confidence interval

for location parameter, two-

sample case

Mann-Whitney test approach,

275–277

median test approach, 257–259

Wilcoxon rank-sum test

approach, 302

for median, one sample and paired-

sample cases

sign test approach, 179–180

Wilcoxon signed-rank test

approach, 211–215

for quantile, 157–163

for scale parameter, two-sample

case, 337–338, 345–348

for tau, 418

Conservative test, 196

Consistency

definition, 24

of Ansari-Bradley test, 337

of control median test, 263

of Jonckheere-Terpstra test, 379

of Kendall’s tau, 414–416

of Kolmogorov-Smirnov goodness-

of-fit test, 120

[Consistency]

of Kolmogorov-Smirnov two-

sample test, 241

of Mann-Whitney test, 270

of Siegel-Tukey test, 334

of sign test, 170

of Sukhatme test, 334

of Wald-Wolfowitz runs test, 239

of Wilcoxon rank-sum test, 301

of Wilcoxon signed-rank test,

200

Consistent test

definition, 24

general criteria for, 25

Contingency coefficient, 526–527

Contingency tables

applications, 527–529

association measures, 526–527

definition, 521–522

special results for k� 2 table,

529–532

test of independence in, 522–526

Continuity correction, 29–30

Continuous random variable, 10

Control median test

k samples, 360–363

two samples, 262–268

Correction for continuity, 29–30

Correlation (see also Association)

between ranks and variate values,

192–194

partial, 483–488

product-moment 11, 191, 400

rank, 422–431

Coverages, 66–68

Cramér-von Mises statistics, 152

Critical region, 20

Critical value, 20

Cumulative distribution function, 9

Cumulative distribution function test

(see Goodness-of-fit tests)

Curtailed sampling, 264–265

Daniels’ test for trend, 431

David-Barton test (see Barton-David

scale test)
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Disarray, coefficient of, 410, 442–443

Discordance, bivariate populations

definition, 400

estimate of, 404–405

probability of, 404

Discrete random variable, 10

Discrete uniform distribution, 14

Dispersion alternative (see Scale

alternative)

Dispersion tests (see Scale tests)

Distribution-free, definition, 3

Double exponential distribution, 15,

507

Durbin test, 481

Efficacy (see also ARE)

Efficiency (see ARE)

Empirical distribution function, 37–39

consistency of, 39

definition, 37

distribution theory, 38–39

moments, 39

uniform convergence of, 39

Empirical quantile function, 40

Empty block test, 72

Estimation, 18–19

Exact a, 28
Exact test, 21

Exceedance statistics, 72–73

Expected normal-scores test (Terry-

Hoeffding location test),

307–312

Expected value, 10

Exponential distribution, 15

Fieller measure of association,

437–438

Fisher’s exact test, 532–537

Fisher-Yates test, 307–312

Fisher’s z distribution, 12

Freund-Ansari-Bradley scale test (see
Ansari-Bradley scale test)

Friedman’s test, 453–462

applications, 458–462

definition and rationale, 453–458

distribution theory, 454–458

[Friedman’s test]

multiple comparisons, 459

table, 598

table references, 455

Gamma distribution, 14

Gamma function, 10, 16

Geometric distribution, 14

Glivenko-Cantelli theorem, 30

Goodman-Kruskal coefficient, 420

Goodness-of-fit tests

chi-square, 104–111

Cramér-von Mises, 152

Kolmogorov-Smirnov, 111–130

Lilliefors’ tests, 130–143

relative merits, 147–150

visual analysis of, 143–147

Grade correlation coefficient, 437

Hypergeometric distribution, 13

Identical population tests (see Chi-

square test for k proportions;

Jonckheere-Terpstra test;

Kruskal-Wallis k-sample test;

k-sample rank statistic,

generalized; Median test

extension; Page’s test;

Two-sample tests)

Incomplete beta integral, 42

Independence, tests of

applications, 438–443

concordance coefficient

complete rankings, 466–476

incomplete rankings, 476–483

in contingency tables, 522–526

rank correlation, 428–431

tau, 410–418

Interquartile range test (Westenberg

scale test), 338–339

Invariance, 20

Inverse-normal-scores tests

Klotz scale test, 331–332

k-sample location test, 373–375

van der Waerden location test,

309–312
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Jacobians, method of, 16–17

Jonckheere-Terpstra test, 376–383

Kamat scale test, 339

Kendall’s coefficient of confcordance

(see Concordance coefficient)

Kendall’s tau coefficient (see Tau)

Klotz normal-scores scale test,

331–332

Kolmogorov-Smirnov goodness-of-fit

test

applications, 120–130

compared with chi-square test,

147–150

consistency of, 120

discrete populations, 129

Kolmogorov-Smirnov one-sample

statistics

applications, 120–130

confidence bands, 124–125

consistency of, 120

definition, 112

distribution-free property, 112–113

distribution-theory, 112–120

goodness-of-fit test, 111–123

one-sided tests, 112–113, 122–123

sample size determination, 125–129

table, 576

Kolmogorov-Smirnov two-sample

test, 239–246

applications, 245–246

consistency of, 241

definition and rationale, 240

distribution theory, 241–243

recursive relation, 242

rejection regions, 240–241, 244

table, 581–583

k-related sample problem, definition,

353–355

Kruskal-Wallis k-sample test, 363–373

applications, 368–373

ARE, 392–393

definition and rationale, 363–366

distribution theory, 365–366

multiple comparisons, 367–368

[Kruskal-Wallis k-sample test]

table, 392

table references, 366

ties, 366–367

k-sample median test (see Median

test extension)

k-sample rank statistic, generalized,

373–375

k-sample tests (see Chi-square test for
k proportions; Jonckheere-

Terpstra test; Kruskal-Wallis

k-sample test; k-sample rank

statistic, generalized; Median

test extension; Page’s test)

Laplace distribution, 15

Lehmann alternative, 235

Length-of-longest-run test, 87–90

Lengths of runs, distribution of,

88–89

Likelihood function, 19

Likelihood-ratio test, 22

Lilliefors’s test for exponential,

133–143

Lilliefors’s test for normality, 130–133

Linear combinations, moments of,

11–12

Linear rank statistics

definition, 283–285

distribution theory

asymptotic, 290–293

exact null, 285–290

moments, null, 285–287

symmetry properties, 288–290

usefulness, general, 294–295

Location alternative, two-sample

definition, 296–297

distribution model, 296

tests useful for (see Control median

test, Mann-Whitney location

test; Median test; Percentile

modified rank test for location;

Terry-Hoeffding location test;

van der Waerden location test;

Wilcoxon rank-sum test)
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Location model

one-sample, 296–297

two-sample, 232–233

k-sample, 354

Location-scale model, 233

Location tests

k-sample

Kruskal-Wallis test, 363–373

k-sample rank statistic,

generalized, 373–375

median test extension, 355–360

one-sample

sign test, 168–179

Wilcoxonsigned-ranktest,196–221

two-sample

control median test, 262–268

distribution model, 232–233

Mann-Whitney test, 268–279

median test, 247–262

percentile modified rank test,

312–314

Terry-Hoeffding test, 307–309

van der Waerden test, 309–311

Wilcoxon rank-sum test, 298–307

Logistic distribution, 15

Mann test for trend, 422

Mann-Whitney location test, 268–279

ARE, 278–279

confidence-interval procedure,

275–276

consistency of, 270

definition and rationale, 268–270

distribution theory, 269–272

equivalence with Wilcoxon rank-

sum test, 300–301

power, 279

recursive relation, 272–273

rejection regions, 270–271

sample size determination,

276–278

table references, 273

ties, 273–275

Maximum-likelihood estimate, 19–20

McNemar’s test, 537–543

Median

distribution of, 50–52

tests for (see Location tests)

Median test

ARE, 262

confidence-interval procedure,

257–259

definition and rationale, 247–250

distribution theory, 247–250

power, 260–262

rejection regions, 251–252

table references, 252

ties, 253

Median test extension, 355–360

Midrange, 33

Midranks, 195

Moment-generating functions

definition, 11

table, 13–15

Moments, definition, 11

Monte Carlo techniques, 6

Mood scale test, 323–325

ARE, 325

definition and rationale, 323–325

distribution theory, 323–325

Multinomial distribution, 13

Multinomial test, 543–545

Multiple comparisons

one-way ANOVA, 367–368

two-way ANOVA, 459, 482

Natural significance level, 28

Nominal �, 27
Nonparametric procedures,

advantages of, 4–7

Nonparametric statistics, definition,

3–4

Nonrandomness, tests sensitive to

length-of-longest-run test, 87–90

number-of-runs test, 78–86

rank correlation, 428–431

rank von Neumann, 97–98

runs up and down, 90–97

tau, 410–418

Normal distribution, 14
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Normal-scores test

Klotz scale test, 331–332

k-sample location test,

373–375

Terry-Hoeffding location test,

309–312

van der Waerden location test,

309–312

Null distribution, 20

Number-of-runs test, 78–86

applications, 85–86

distribution theory, 78–84

moments, 81–83

table, 568–572

table references, 81

Number-of-runs-up-and-down test,

90–95

applications, 95–96

table, 573–578

One-sample coverages, 66–67

One-sample test

for goodness-of-fit (see Chi-square

goodness-of-fit test;

Kolmogorov-Smirnov one-

sample statistics; Lilliefors

test)

for median (see Sign test; Wilcoxon

signed-rank test)

for randomness (see Length-of-

longest run test; Number-of-

runs test; Rank correlation test

for independence; rank von

Neumann test; Runs up and

down; Tau test for

independence)

Order statistics

applications, 33

confidence-interval estimate of

quantiles, 157–163

coverages, 66–68

definition, 32

distribution theory

asymptotic, 57–63

exact, 40–56

[Order statistics]

moments

asymptotic, 57–60

exact, 53–57

tests for quantile value,

163–168

tolerance limits, 64–65

Ordered alternatives, 376, 462

Page’s test, 463–466

Paired-sample tests for median

difference

sign test, 180–182

Wilcoxon signed-rank test,

215–216

Paired samples, measures of

association

applications, 438–443

Fieller coefficient, 437–438

product-moment correlation

coefficient, 422

rank correlation coefficient,

423–424

tau coefficient, 405

Parameter, definition, 1

Parametric statistics, definition, 3

Partial correlation coefficient,

483–488

Partial tau, 483–488

Pearson product-moment correlation

coefficient, 191, 401

Percentile modified rank test

for location, 312–314

for scale, 332–333

Permutation distribution, 288

Phi coefficient, 527

Pitman efficiency, 26

Pivotal statistic, 19

Placement, 69, 73

Point estimate, 18

Positive variables, method of, 347–348

Power, 6, 21

Power efficiency, 26

Precedence statistics, 73

Precedence test, 259–260
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Prob value, 23

Probability distribution, 10

Probability functions

definition, 10

table of, 13–15

Probability-integral transformation,

42–43

Probability mass function, 10

Proportions, test for equality of,

390–392, 529–530

P value, 23

Quantile function, 34

Quantiles

confidence interval for, 157–163

definition, 34

tests of hypotheses for, 163–168

Quartile, 34–35

r coverage, 67

Random sample, 11

Random variable, definition, 9

Randomized decision rule, 28

Randomized test, 27–29

Randomness, tests of

length-of-longest-run test, 87–90

number-of-runs test, 78–86

rank correlation, 428–431

rank von Neumann, 97–98

runs up and down, 90–97

tau, 410–418

Range, distribution of, 52–53

Rank, definition, 68

Rank correlation coefficient,

422–431

applications, 438–443

definition, 423–424

distribution theory, 424–428

independence, use in testing,

428–431

population parameter analogy,

434–437

properties, 424

relation with sample tau,

432–433

table, 595–597

[Rank correlation coefficient]

table references, 426

ties, 429–431

trend, use in testing, 431

Rank correlation test for

independence

applications, 438–443

procedure, 428–431

Ranklike tests, 340–341

Rank-order statistics

correlation between ranks and

variate values, 191–194

definition, 189

expected normal scores,

308–309

inverse normal scores, 309–310

normal scores, 308

ranks, 191

ties, methods of resolving,

194–196

Rank statistic, 191

Rank-sum test (see Wilcoxon rank-

sum test)

Rank transformation, 303–304

Rank von Neumann test, 97–98

Rejection region, definition, 20

Repeated measures design, 452

Rho (Pearson product-moment

correlation coefficient), 11, 191,

400

Robustness, 6

Rosenbaum scale test, 339

Runs

definition, 76

tests based on

length-of-longest run, 87–90

number-of-runs, 78–80

runs up and down, 90–97

Wald-Wolfowitz runs test,

235–239

Runs up and down

applications, 96

definition, 90

distribution theory, 91–94

table, 573

table references, 94
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Sample distribution function (see
Empirical distribution

function)

Sample size determination

Mann-Whitney test, 276–278

sign test, 178–179

signed rank test, 208–211

Wilcoxon rank-sum test, 314

Sample space, 9

Scale alternative, two-sample

problem

definition, 321–322

distribution model, 320–322

tests useful for (see Ansari-Bradley

scale test; Kamat scale test;

Klotz normal-scores scale test;

Mood scale test; Percentile

modified rank test for scale;

Rosenbaum scale test; Siegel-

Tukey scale test; Sukhatme

scale test; Westenberg scale

test)

Scale model, 233, 320–322

Scale parameter, 320–322

Scale tests, two-sample

applications, 340–348

distribution model, 320–322

Freund-Ansari-Bradley-Barton-

David tests, 325

Kamat test, 339

Klotz normal-scores test,

331–332

locations unequal, 349

Mood test, 323–325

percentile modified rank test,

332–333

Rosenbaum test, 339

Siegel-Tukey test, 329–331

Sukhatme test, 333–335

Westenberg test, 339

Second precedence test, 262

Shift alternative (see Location

alternative)

Shift model (see Location model)

Siegel-Tukey scale test, 329–331

applications, 182–189

[Siegel-Tukey scale test]

ARE, 223

consistency of, 334

definition and rationale, 330–331

relation with other scale tests,

330–331

Signed-rank test (see Wilcoxon

signed-rank test)

Significance level, 20

Significance probability, 23

Sign test, 168–189

applications, 182–189

ARE, 223

compared with Wilcoxon signed-

rank test, 222–223

confidence-interval procedure,

179–180

consistency of, 170

definition and rationale, 168–169

distribution theory, 169–171

paired-sample procedure, 180–182

power, 171–178

rejection regions, 169–170,

182–183

sample size determination,

178–179

table, 577

zero differences, 171

Simple hypothesis, 20

Simulated power

sign test, 176–178

signed-rank test, 205–208

Size of a test, 20

Smirnov test (see Kolmogorov-

Smirnov two-sample test)

Snedecor’s F Distribution, 12

Spearman’s rho (see Rank correlation

coefficient)

Standard normal distribution, 12

Statistics

descriptive, 1

inductive, 2

Stirling’s formula, 62

Stochastically larger (smaller), 234

Student’s t distribution, 12
Sufficiency, 18
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Sukhatme scale test, 333–337

ARE, 337

confidence-interval procedure,

337–338

consistency of, 334

definition and rationale, 333

distribution theory, 333–334

medians unknown, 336

rejection regions, 334

relation with other scale tests,

336–337

table references, 335

ties, 336

Supremum, 20

Symmetry test, 216

Tau

population parameter

confidence-interval estimate of,

418

definition, 402

modified for discrete populations,

420–421

relation with expected rank

correlation, 434

relation with �, 403
sample estimate

applications, 438–443

consistency of, 405–407

contingency table application,

530–532

definition, 405

distribution theory, 410–418

independence, use in testing,

410–418

moments of, 405–409

partial correlation, 483–488

phi coefficient, 531

recursive relation, 411–413

relation with chi-square statistic

in 2� 2 contingency tables,

530–532

relation with rank correlation,

432–433

table, 593–594

table references, 412

[Tau]

ties, 418–420

trend, use in testing, 421–422

unbiasedness of, 405

Tau a, 420

Tau b, 420

Tau test for independence

applications, 438–443

procedure, 410–418

table, 593–594

Terpstra test, 376–383

Terry-Hoeffding location test,

307–312

Test-based confidence interval,

258

Ties

definition, 194

general resolution of

average probability, 196

average statistic, 195

least favorable statistic, 196

midranks, 195

omission, 196

randomization, 195

range of probability, 196

Tolerance coefficient, 64

Tolerance interval, 64

Tolerance limits, 64–65

Trend, tests for

Daniel’s test, 431

length-of-longest run test, 87–90

Mann test, 422

number-of runs test, 78–86

rank correlation, 431

rank von Neumann test, 97–98

runs up and down, 90–97

tau, 422

Two-sample coverages, 67–68

Two-sample problem

alternative hypotheses, 234–235

definition, 232–235

linear rank statistics, 283–295

location alternative, 296–297

location model, 232–233

scale alternative, 321–322

scale model, 233, 320–322
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Two-sample tests

general

Kolmogorov-Smirnov test,

239–246

Wald-Wolfowitz runs test,

235–239

for location (see Control median

test; Mann-Whitney location

test; Median test; Percentile

modified rank test for location;

Terry-Hoeffding location test;

van der Waerden location test;

Wilcoxon rank-sum test)

for scale (see Ansari-Bradley scale

test; Kamat scale test; Klotz

normal-scores scale test; Mood

scale test; Percentile modified

rank test for scale; Rosenbaum

scale test; Siegel-Tukey scale

test; Sukhatme scale test;

Westenberg scale test)

Unbiasedness, 18

Uniform distribution, 14

U test (see Mann-Whitney location

test)

van der Waerden location test, 309–

312

Visual analysis of goodness of fit,

143–147

Wald-Wolfowitz runs test, 235–239

Walsh averages, 214

Weibull distribution, 15

Westenberg-Mood median test (see
Median test)

Westenberg scale test, 339

Wilcoxon rank-sum test, 298–307

applications, 301–307

ARE, 301

confidence interval procedure, 302

consistency of, 301

definition and rationale,

298–301

distribution theory, 298–301

equivalence with Mann-Whitney

test, 300–301

recursive relation, 299

table, 584–591

table references, 299

ties, 299–300

Wilcoxon signed-rank test, 196–221

applications, 216–221

ARE, 223

compared with sign test, 222–223

confidence-interval procedure,

211–215

consistency of, 200

definition and rationale, 196–202

distribution theory, 197–204

paired-sample procedure,

215–216

power, 205–208

recursive relation, 203

rejection regions, 200–202,

216–218

sample size determination,

208–211

symmetry, use in testing for, 216

table, 578–580

table references, 203

ties and zero differences,

204–205

Youden square, 477
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