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Chapter 1

Iteration and fixed points.

1.1 Square roots.

Perhaps the oldest algorithm in recorded history is the Babylonian algorithm
(circa 2000BCE) for computing square roots: If we want to find the square root
of a positive number a we start with some approximation, x0 > 0 and then
recursively define

xn+1 =
1
2

(
xn +

a

xn

)
. (1.1)

This is a very effective algorithm which converges extremely rapidly.

Here is an illustration. Suppose we want to find the square root of 2 and
start with the really stupid approximation x0 = 99. We get:

99.00000000000000
49.51010101010101
24.77524840365297
12.42798706655775
6.29445708659966
3.30609848017316
1.95552056875300
1.48913306969968
1.41609819333465
1.41421481646475
1.41421356237365
1.41421356237309
1.41421356237309

1.1.1 Analyzing the steps.

For the first seven steps we are approximately dividing by two in passing from
one step to the next, also (approximately) cutting the error - the deviation from
the true value - in half.

9
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After line eight the accuracy improves dramatically: the ninth value, 1.416 . . .
is correct to two decimal places. The tenth value is correct to five decimal places,
and the eleventh value is correct to eleven decimal places.

To see why this algorithm works so well (for general a > 0), first observe
that the algorithm is well defined, in that we are steadily taking the average of
positive quantities, and hence, by induction, xn > 0 for all n. Introduce the
relative error in the n−th approximation:

en :=
xn −

√
a√

a

so
xn = (1 + en)

√
a.

As xn > 0, it follows that
en > −1.

Then

xn+1 =
√
a

1
2

(1 + en +
1

1 + en
) =
√
a(1 +

1
2

e2
n

1 + en
).

This gives us a recursion formula for the relative error:

en+1 =
e2
n

2 + 2en
. (1.2)

This implies that en+1 > 0 so after the first step we are always overshooting the
mark. Now 2en < 2 + 2en for n ≥ 1 so (1.2) implies that

en+1 <
1
2
en

so the error is cut in half (at least) at each stage after the first, and hence, in
particular,

x1 > x2 > · · · ,
the iterates are steadily decreasing.

Eventually we will reach the stage that

en < 1.

From this point on, we use the inequality 2 + 2en > 2 in (1.2) and we get the
estimate

en+1 <
1
2
e2
n. (1.3)

So if we renumber our approximation so that 0 ≤ e0 < 1 then (ignoring the 1/2
factor in (1.3)) we have

0 ≤ en < e2n

0 , (1.4)

an exponential rate of convergence.

If we had started with an x0 < 0 then all the iterates would be < 0 and we
would get exponential convergence to −

√
a. Of course, had we been so foolish

as to pick x0 = 0 we could not get the iteration started.
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1.2 Newton’s method.

This is a generalization of the above algorithm to find the zeros of a function
P = P (x) and which reduces to (1.1) when P (x) = x2 − a. It is

xn+1 = xn −
P (xn)
P ′(xn)

. (1.5)

If we take P (x) = x2 − a then P ′(x) = 2x the expression on the right in (1.5)
is

1
2

(
xn +

a

xn

)

so (1.5) reduces to (1.1).

Here is a graphic illustration of Newton’s method applied to the function
y = x3 − x with the initial point 2. Notice that what we are doing is taking
the tangent to the curve at the point (x, y) and then taking as our next point,
the intersection of this tangent with the x-axis. This makes the method easy to
remember.

T

Caveat: In the general case we can not expect that “most” points will converge
to a zero of P as was the case in the square root algorithm. After all, P might
not have any zeros. Nevertheless, we will show in this section that if we are
“close enough” to a zero - that P (x0) is “sufficiently small” in a sense to be
made precise - then (1.5) converges exponentially fast to a zero.
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1.2.1 A fixed point of the iteration scheme is a solution to
our problem.

Notice that if x is a “fixed point” of this iteration scheme, i.e. if

x = x− P (x)
P ′(x)

then P (x) = 0 and we have a solution to our problem. To the extent that xn+1

is “close to” xn we will be close to a solution (the degree of closeness depending
on the size of P (xn)).

1.2.2 The guts of the method.

Before embarking on the formal proof, let us describe what is going on, on the
assumption that we know the existence of a zero - say by graphically plotting
the function. So let z be a zero for the function f of a real variable, and let x
be a point in the interval (z − µ, z + µ) of radius µ about z. Then

−f(x) = f(z)− f(x) =
∫ z

x

f ′(s)ds

so
−f(x)− (z − x)f ′(x) =

∫ z

x

(f ′(s)− f ′(x))ds.

Assuming f ′(x) 6= 0 we may divide both sides by f ′(x) to obtain(
x− f(x)

f ′(x)

)
− z =

1
f ′(x)

∫ z

x

(f ′(s)− f ′(x))ds. (1.6)

Assume that for all y ∈ (z − µ, z + µ) we have

|f ′(y)| ≥ ρ > 0 (1.7)
|f ′(y1)− f ′(y2)| ≤ δ|y1 − y2| (1.8)

µ ≤ ρ/δ. (1.9)

Then setting x = xold in (1.6) and letting

xnew := x− f(x)
f ′(x)

in (1.6) we obtain

|xnew − z| ≤
δ

ρ

∫ z

xold

|s− xold|ds =
δ

2ρ
|xold − z|2.

Since |xold − z| < µ it follows that

|xnew − z| ≤
1
2
µ
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by (1.9). Thus the iteration

x 7→ x− f(x)
f ′(x)

(1.10)

is well defined. At each stage it more than halves the distance to the zero and
has the quadratic convergence property

|xnew − z| ≤
δ

2ρ
|xold − z|2.

The above argument was posited on the assumption that there is a zero z of f
and that certain additional hypotheses were satisfied. But f might not have any
zeros. Even if it does, unless some such stringent hypotheses are satisfied, there
is no guarantee that the process will converge to the nearest root, or converge
at all. Furthermore, encoding a computation for f ′(x) may be difficult. In
practice, one replaces f ′ by an approximation, and only allows Newton’s method
to proceed if in fact it does not take us out of the interval. We will return to
these points, but first rephrase the above argument in terms of a vector variable.

1.2.3 A vector version.

Now let f a function of a vector variable, with a zero at z and x a point in the
ball of radius µ centered at z. Let vx := z − x and consider the function

t :7→ f(x+ tvx)

which takes the value f(z) when t = 1 and the value f(x) when t = 0. Differ-
entiating with respect to t using the chain rule gives f ′(x + tvx)vx (where f ′

denotes the derivative =(the Jacobian matrix) of f . Hence

−f(x) = f(z)− f(x) =
∫ 1

0

f ′(x+ tvx)vxdt.

This gives

−f(x)− f ′(x)vx = −f(x)− f ′(x)(z − x) =
∫ 1

0

[f ′(x+ tvx)− f ′(x)]vxdt.

Applying [f ′(x)]−1 (which we assume to exist) gives the analogue of (1.6):

(
x− [f ′(x)]−1f(x)

)
− z = [f ′(x)]−1

∫ 1

0

[f ′(x+ tvx)− f ′(x)]vxdt.

Assume that ‖[f ′(y)]−1‖ ≤ ρ−1 (1.11)
‖f ′(y1)− f ′(y2)‖ ≤ δ‖y1 − y2‖ (1.12)
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for all y, y1, y2 in the ball of radius µ about z, and assume also that µ ≤ ρ/δ
holds. Setting xold = x and

xnew := xold − [f ′(xold)]−1f(xold)

gives

‖xnew − z‖ ≤
δ

ρ

∫ 1

0

t‖vx‖‖vx‖dt =
δ

2ρ
‖xold − z‖2.

From here on we can argue as in the one dimensional case.

1.2.4 Problems with the implementation of Newton’s method.

We return to the one dimensional case.
In numerical practice we have to deal with two problems: it may not be easy

to encode the derivative, and we may not be able to tell in advance whether the
conditions for Newton’s method to work are indeed fulfilled.

In case f is a polynomial, MATLAB has an efficient command “polyder” for
computing the derivative of f . Otherwise we replace the derivative by the slope
of the secant, which requires the input of two initial values, call them x− and
xc and replaces the derivative in Newton’s method by

f ′app(xc) =
f(xc)− f(x−)

xc − x−
.

f ′app(xc) =
f(xc)− f(x−)

xc − x−
.

So at each stage of the Newton iteration we carry along two values of x, the
“current value” denoted say by “xc” and the “old value” denoted by “x−”. We
also carry along two values of f , the value of f at xc denoted by fc and the value
of f at x− denoted by f−. So the Newton iteration will look like

fpc=(fc-f−)/(xc-x−);
xnew=xc-fc/fpc;
x−-=xc; f−=fc;
xc=xnew; fc=feval(fname,xc);

In the last line, the command feval is the MATLAB evaluation of a function
command: if fname is a “script” (that is an expression enclosed in ‘ ‘) giving
the name of a function, then feval(fname,x) evaluates the function at the point
x.

The second issue - that of deciding whether Newton’s method should be used
at all - is handled as follows: If the zero in question is a critical point, so that
f ′(z) = 0, there is no chance of Newton’s method working. So let us assume
that f ′(z) 6= 0, which means that f changes sign at z, a fact that we can verify
by looking at the graph of f . So assume that we have found an interval [a, b]
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containing the zero we are looking for, and such that f takes on opposite signs
at the end-points:

f(a)f(b) < 0.

A sure but slow method of narrowing in on a zero of f contained in this interval
is the “bisection method”: evaluate f at the midpoint 1

2 (a + b). If this value
has a sign opposite to that of f(a) replace b by 1

2 (a + b). Otherwise replace a
by 1

2 (a + b). This produces an interval of half the length of [a, b] containing a
zero.

The idea now is to check at each stage whether Newton’s method leaves us
in the interval, in which case we apply it, or else we apply the bisection method.

We now turn to the more difficult existence problem.

1.2.5 The existence theorem.

For the purposes of the proof, in order to simplify the notation, let us assume
that we have “shifted our coordinates” so as to take x0 = 0. Also let

B = {x : |x| ≤ 1}.

We need to assume that P ′(x) is nowhere zero, and that P ′′(x) is bounded. In
fact, we assume that there is a constant K such that

|P ′(x)−1| ≤ K, |P ′′(x)| ≤ K, ∀x ∈ B. (1.13)

Proposition 1.2.1. Let τ = 3
2 and choose the K in (1.13) so that K ≥ 23/4.

Let
c =

8
3

lnK.

Then if
|P (0)| ≤ K−5 (1.14)

the recursion (1.5) starting with x0 = 0 satisfies

xn ∈ B ∀n (1.15)

and
|xn − xn−1| ≤ e−cτ

n

. (1.16)

In particular, the sequence {xn} converges to a zero of P .

We will prove a somewhat more general result: We will let τ be any real
number satisfying

1 < τ < 2

and we will choose c in terms of K and τ to make the proof work. First of all
we notice that (1.15) is a consequence of (1.16) if c is sufficiently large. In fact,

xj = (xj − xj−1) + · · ·+ (x1 − x0)
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so
|xj | ≤ |xj − xj−1|+ · · ·+ |x1 − x0|.

Using (1.16) for each term on the right gives

|xj | ≤
j∑
1

e−cτ
n

<

∞∑
1

e−cτ
n

<

∞∑
1

e−cn(τ−1) =
e−c(τ−1)

1− e−c(τ−1)
.

Here the third inequality follows from writing τ = 1+(τ−1) so by the binomial
formula

τn = 1 + n(τ − 1) + · · · > n(τ − 1)

since τ > 1. The equality is obtained by summing the geometric series.
We have shown that

|xj | ≤
e−c(τ−1)

1− e−c(τ−1)
.

So if we choose c sufficiently large that

e−c(τ−1)

1− e−c(τ−1)
≤ 1, (1.17)

then (1.15) follows from (1.16).
This choice of c is conditioned by our choice of τ . But at least we now know

that if we can arrange that (1.16) holds, then by choosing a possibly larger value
of c (so that (1.16) continues to hold) we can guarantee that the algorithm keeps
going.

So let us try to prove (1.16) by induction. If we assume it is true for n, we
may write

|xn+1 − xn| = |SnP (xn)|

where we set
Sn = P ′(xn)−1. (1.18)

We use the first inequality in (1.13) which says that

|P ′(x)−1| ≤ K,

and the definition (1.5) for the case n − 1 (which says that xn = xn−1 −
Sn−1P (xn−1)) to get

|SnP (xn)| ≤ K|P (xn−1 − Sn−1P (xn−1))|. (1.19)

Taylor’s formula with remainder says that for any twice continuously differen-
tiable function f ,

f(y + h) = f(y) + f ′(y)h+R(y, h) where |R(y, h)| ≤ 1
2

sup
z
|f ′′(z)|h2
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where the supremum is taken over the interval between y and y + h. If we use
Taylor’s formula with remainder with

f = P, y = P (xn−1), and − h = Sn−1P (xn−1) = xn − xn−1

and the second inequality in (1.13) to estimate the second derivative, we obtain

|P (xn−1 − Sn−1P (xn−1))|

≤ |P (xn−1)− P ′(xn−1)Sn−1P (xn−1)|+K|xn − xn−1|2.

Substituting this inequality into (1.19), we get

|xn+1 − xn| ≤ K|P (xn−1)− P ′(xn−1)Sn−1P (xn−1)|+K2|xn − xn−1|2. (1.20)

Now since Sn−1 = P ′(xn−1)−1 the first term on the right vanishes and we get

|xn+1 − xn| ≤ K2|xn − xn−1|2 ≤ K2e−2cτn

.

Choosing c so that the induction works.

So in order to pass from n to n+ 1 in (1.16) we must have

K2e−2cτn

≤ e−cτ
n+1

or
K2 ≤ ec(2−τ)τn

. (1.21)

Since 1 < τ < 2 we can arrange for this last inequality to hold for n = 1 and
hence for all n if we choose c sufficiently large.

Getting started.

To get started, we must verify (1.16) for n = 1 This says

S0P (0) ≤ e−cτ

or

|P (0)| ≤ e−cτ

K
. (1.22)

So we have proved:

Theorem 1.2.1. Suppose that (1.13) holds and we have chosen K and c so
that (1.17) and (1.21) hold. Then if P (0) satisfies (1.22) the Newton iteration
scheme converges exponentially to a zero of P in the sense that (1.16) holds.

If we choose τ = 3
2 as in the proposition, let c be given by K2 = e3c/4 so

that (1.21) just holds. This is our choice in the proposition. The inequality
K ≥ 23/4 implies that e3c/4 ≥ 43/4 or

ec ≥ 4.
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This implies that

e−c/2 ≤ 1
2

so (1.17) holds. Then
e−cτ = e−3c/2 = K−4

so (1.22) becomes |P (0)| ≤ K−5 completing the proof of the proposition.

1.2.6 Review.

We have put in all the gory details, but it is worth reviewing the argument, and
seeing how things differ from the special case of finding the square root. Our
algorithm is

xn+1 = xn − Sn[P (xn)] (1.23)

where Sn is chosen as (1.18). Taylor’s formula gave (1.20) and with the choice
(1.18) we get

|xn+1 − xn| ≤ K2|xn − xn−1|2. (1.24)

In contrast to (1.4) we do not know that K ≤ 1 so, once we get going, we can’t
quite conclude that the error vanishes as

rτ
n

, 0 < r < 1

with τ = 2. But we can arrange that we eventually have such exponential
convergence with any τ < 2.

1.2.7 Basins of attraction.

The more decisive difference has to do with the “basins of attraction” of the
solutions. For the square root, starting with any positive number ends us up
with the positive square root. This was the effect of the en+1 <

1
2en argument

which eventually gets us to the region where the exponential convergence takes
over. Every negative number leads us to the negative square root. So the “basin
of attraction” of the positive square root is the entire positive half axis, and the
“basin of attraction” of the negative square root is the entire negative half axis.
The only “bad” point belonging to no basin of attraction is the point 0.

Even for cubic polynomials the global behavior of Newton’s method is ex-
traordinarily complicated. For example, consider the polynomial

P (x) = x3 − x,

with roots at 0 and ±1. We have

x− P (x)
P ′(x)

= x− x3 − x
3x2 − 1

=
2x3

3x2 − 1
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so Newton’s method in this case says to set

xn+1 =
2x3

n

3x2
n − 1

. (1.25)

There are obvious “bad” points where we can’t get started, due to the vanishing
of the denominator, P ′(x). These are the points x = ±

√
1/3. These two points

are the analogues of the point 0 in the square root algorithm.
We know from the general theory, that any point sufficiently close to 1 will
converge to 1 under Newton’s method and similarly for the other two roots, 0
and -1.

If x > 1, then 2x3 > 3x2 − 1 since both sides agree at x = 1 and the left
side is increasing faster, as its derivative is 6x2 while the derivative of the right
hand side is only 6x. This implies that if we start to the right of x = 1 we will
stay to the right. The same argument shows that

2x3 < 3x3 − x

for x > 1. This is the same as

2x3

3x2 − 1
< x,

which implies that if we start with x0 > 1 we have x0 > x1 > x2 > · · · and
eventually we will reach the region where the exponential convergence takes
over. So every point to the right of x = 1 is in the basin of attraction of the
root x = 1. By symmetry, every point to the left of x = −1 will converge to −1.

But let us examine what happens in the interval −1 < x0 < 1. For example,
suppose we start with x0 = − 1

2 . Then one application of Newton’s method
gives

x1 =
−.25

3× .25− 1
= 1.

In other words, one application of Newton’s method lands us on the root x = 1,
right on the nose. Notice that although −.5 is halfway between the roots −1
and 0, we land on the farther root x = 1. In fact, by continuity, if we start with
x0 close to −.5, then x1 must be close to 1. So all points, x0, sufficiently close
to −.5 will have x1 in the region where exponential convergence to x = 1 takes
over. In other words, the basin of attraction of x = 1 will include points to the
immediate left of −.5, even though −1 is the closest root.

Here are the results of applying Newton’s method to the three close points
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0.4472 , 0.4475 and 0.4480 with ten iterations:

0.4472 0.4475 0.4480
−0.4471 −0.4489 −0.4520

0.4467 0.4577 0.4769
−0.4443 −0.5162 −0.6827

0.4301 1.3699 −1.5980
−0.3576 1.1105 −1.2253

0.1483 1.0146 −1.0500
−0.0070 1.0003 −1.0034

0.0000 1.0000 −1.0000
−0.0000 1.0000 −1.0000

0.0000 1.0000 −1.0000

Periodic points.

Suppose we have a point x which satisfies

2x3

3x2 − 1
= −x.

So one application of Newton’s method lands us at −x, and a second lands us
back at x. The above equation is the same as

0 = 5x3 − x = x(5x2 − 1)

which has roots, x = 0,±
√

1/5. So the points ±
√

1/5 form a cycle of order two:
Newton’s method cycles between these two points and hence does not converge
to any root. In fact, in the interval (−1, 1) there are infinitely many points that
don’t converge to any root. We will return to a description of this complicated
type of phenomenon later.

1.2.8 Cayley’s complex version

If we apply Newton’s method to cubic or higher degree polynomials and to com-
plex numbers instead of real numbers, the results are even more spectacular.
This phenomenon was first discovered by Cayley, and was published in a short
article which appeared in the second issue of the American Journal of Mathe-
matics in 1879. After describing Newton’s method, Cayley writes, concerning a
polynomial with roots A,B,C... in the complex plane:

The problem is to determine the regions of the plane such that P,
taken at pleasure anywhere within one region, we arrive ultimately
at the point A, anywhere within another region we arrive at the
point B, and so for the several points representing the root of the
equation.

The solution is easy and elegant for the case of a quadric equation;
but the next succeeding case of a cubic equation appears to present
considerable difficulty.
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This paper of Cayley’s was the starting point for many future investigations.

With the advent of computers, we can see how complicated the problem
really is. The next figure shows, via color coding, the regions corresponding
to the three roots of 1, i.e. the results of applying Newton’s method to the
polynomial x3 − 1. The roots themselves are indicated by the + signs.

Here is a picture of the great man:

Arthur Cayley (August 16, 1821 - January 26, 1895)
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1.3 The implicit function theorem via Newton’s
method.

Let us return to the positive aspect of Newton’s method. You might ask, how
can we ever guarantee in advance that an inequality such as (1.14) holds? The
answer comes from considering not a single function, P , but rather a parame-
terized family of functions: Suppose that u ranges over some interval, or more
generally, over some region in a vector space. To fix the notation, suppose that
this region contains the origin, 0. Suppose that P is a function of u and x, and
depends continuously on (u, x). Suppose that as a function of x, the function
P is twice differentiable and satisfies (1.13) for all values of u (with the same
fixed K). ∣∣∣∣∣

(
∂P

∂x

)−1
∣∣∣∣∣ ≤ K,

∣∣∣∣ ∂2P

∂(x)2

∣∣∣∣ ≤ K, ∀x ∈ B, u. (1.13)

Finally, suppose that
P (0, 0) = 0. (1.26)

Then the continuity of P guarantees that for |u| and |x0| sufficiently small, the
condition (1.14) holds, that is

|P (u, x0)| < r

where r is small enough to guarantee that x0 is in the basin of attraction of
a zero of the function P (u, ·) In particular, this means that for |u| sufficiently
small, we can find an ε > 0 such that all x0 satisfying |x0| < ε are in the basin
of attraction of the same zero of P (u, ·). By choosing a smaller neighborhood,
given say by |u| < δ, starting with x0 = 0 and applying Newton’s method to
P (u, ·), we obtain a sequence of x values which converges exponentially to a
solution of

P (u, x) = 0. (1.27)

satisfying
|x| < ε.

Furthermore, starting with any x0 satisfying |x0| < ε we also get exponential
convergence to the same zero. In particular, there can not be two distinct
solutions to (1.27) satisfying |x| < ε, since starting Newton’s method at a zero
gives (inductively) xn = x0 for all n. Thus we have constructed a unique
function

x = g(u)

satisfying
P (u, g(u)) ≡ 0. (1.28)

This is the guts of the implicit function theorem. We have proved it under
assumptions which involve the second derivative of P which are not necessary for
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the truth of the theorem. (We will remedy this later in the book.) However these
stronger assumptions that we have made do guarantee exponential convergence
of our algorithm.

1.3.1 The continuity, differentiability of the implicit func-
tion, and the computation of its derivative.

For the sake of completeness, we discuss the basic properties of the function g
given by the implicit function theorem: its continuity, differentiability, and the
computation of its derivative.

Continuity.

We wish to prove that g is continuous at any point u in a neighborhood of 0.
This means: given β > 0 we can find α > 0 such that

|h| < α⇒ |g(u+ h)− g(u)| < β. (1.29)

We know that this is true at u = 0, where we could choose any ε′ > 0 at will,
and then conclude that there is a δ′ > 0 with |g(u)| < ε′ if |u| < δ′.

To prove (1.29) at a general point, just choose (u, g(u)) instead of (0, 0) as
the origin of our coordinates, and apply the preceding results to this new data.

We obtain a solution f to the equation P (u+ h, f(u+ h)) = 0 with f(u) =
g(u) which is continuous at h = 0. In particular, for |h| sufficiently small, we
will have |u + h| ≤ δ, and |f(u + h)| < ε, our original ε and δ in the definition
of g. The uniqueness of the solution to our original equation then implies that
f(u+ h) = g(u+ h), proving (1.29).

Differentiability.

Suppose that P is continuously differentiable with respect to all variables. We
have

0 ≡ P (u+ h, g(u+ h))− P (u, g(u)

so, by the definition of the derivative,

0 =
∂P

∂u
h+

∂P

∂x
[g(u+ h)− g(u)] + o(h) + o[g(u+ h)− g(u)].

If u is a vector variable, say ∈ Rn, then ∂P
∂u is a matrix. The terminology o(s)

means some expression which approaches zero so that o(s)/s→ 0. So

g(u+h)−g(u) = −
[
∂P

∂x

]−1 [
∂P

∂u

]
h−o(h)−

[
∂P

∂x

]−1

o[g(u+h)−g(u)]. (1.30)

As a first pass through this equation, observe that by the continuity that we
have already proved, we know that [g(u + h) − g(u)] → 0 as h → 0. The
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expression o([g(u+ h)− g(u)]) is, by definition of o, smaller than any constant
times |g(u+h)− g(u)| provided that |g(u+h)− g(u)| itself is sufficiently small.
This means that for sufficiently small [g(u+ h)− g(u)] we have

|o[g(u+ h)− g(u)]| ≤ 1
2K
|g(u+ h)− g(u)|

where we may choose K so that∣∣∣∣∣
[
∂P

∂x

]−1
∣∣∣∣∣ ≤ K.

So bringing the last term in (1.30) over to the other side gives

|g(u+ h)− g(u)| − 1
2
|g(u+ h)− g(u)| ≤ |

[
∂P

∂x

]−1 [
∂P

∂u

]
h|+ o(|h|),

and we get an estimate of the form

|g(u+ h)− g(u)| ≤M |h|

for some suitable constant, M . So the term o[g(u + h) − g(u)] becomes o(h).
Plugging this back into our equation (1.30) shows that g is differentiable with

∂g

∂u
= −

[
∂P

∂x

]−1 [
∂P

∂u

]
. (1.31)

Statement of the theorem.

To summarize, the the version of the implicit function theorem that we have
proved says:

Theorem 1.3.1. The implicit function theorem. Let P = P (u, x) be a
differentiable function with P (0, 0) = 0 and

[
∂P
∂x

]
(0, 0) invertible. Then there

exist δ > 0 and ε > 0 such that P (u, x) = 0 has a unique solution with |x| < ε for
each |u| < δ. This defines the function x = g(u). The function g is differentiable
and its derivative is given by (1.31).

We have proved the theorem under more stringent hypotheses than neces-
sary for the truth of the implicit function in order to get an exponential rate
of convergence to the solution. We will provide the details of the more gen-
eral version, as a consequence of the contraction fixed point theorem, later on.
We should point out now, however, that nothing in our discussion of Newton’s
method or the implicit function theorem depended on x being a single real vari-
able. The entire discussion goes through unchanged if x is a vector variable.
Then ∂P/∂x is a matrix, and (1.31) must be understood as matrix multiplica-
tion. Similarly, the condition on the second derivative of p must be understood
in terms of matrix norms. We will return to these points later.

For now we will give some interesting applications of the implicit function
theorem to the problem of iteration of maps.



1.4. ATTRACTORS AND REPELLERS. 25

1.4 Attractors and repellers.

Over the next two chapters we will study the behavior of iterations of a map of
an interval of the real line into the real line. But we will let this map depend on
a parameter. So we will be studying the iteration (in x) of a function, F , of two
real variables x and µ . We will need to make various hypothesis concerning the
differentiability of F . We will always assume it is at least C2 (has continuous
partial derivatives up to the second order). We may also need C3 in which case
we explicitly state this hypothesis. We write

Fµ(x) = F (x, µ)

and will be interested in the change of behavior of Fµ as µ varies.

We begin by studying the case of a single map. In other words we are holding
µ fixed. Here is some notation which we will be using: Let

f : X → X

be a differentiable map where X is an interval on the real line.

1.4.1 Attractors.

A point p ∈ X is called a fixed point if

f(p) = p.

A fixed point a is called an attractor or an attractive fixed point or a stable
fixed point if

|f ′(a)| < 1. (1.32)

The reason for this terminology is that points sufficiently close to an attractive
fixed point, a, converge to a geometrically upon iteration. Indeed,

f(x)− a = f(x)− f(a) = f ′(a)(x− a) + o(x− a)

by the definition of the derivative. Hence taking b < 1 to be any number
larger than |f ′(a)| then for |x − a| sufficiently small, |f(x) − a| ≤ b|x − a|. So
starting with x0 = x and iterating xn+1 = f(xn) gives a sequence of points with
|xn − a| ≤ bn|x− a|.

1.4.2 The basin of attraction of an attractor.

The basin of attraction of an attractive fixed point is the set of all x such
that the sequence {xn} converges to a where x0 = x and xn+1 = f(xn). Thus
the basin of attraction of an attractive fixed point a will always include a neigh-
borhood of a, but it may also include points far away, and may be a very
complicated set as we saw in the example of Newton’s method applied to a
cubic.
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1.4.3 Repellers.

A fixed point, r, is called a repeller or a repelling or an unstable fixed point if

|f ′(r)| > 1. (1.33)

Points near a repelling fixed point are pushed away upon iteration.

1.4.4 Superattractors.

An attractive fixed point s with

f ′(s) = 0 (1.34)

is called superattractive or superstable. Near a superstable fixed point, s,
the iterates converge faster than any geometrical rate to s.

For example, in Newton’s method,

f(x) = x− P (x)
P ′(x)

so

f ′(x) = 1− P ′(x)
P ′(x)

+
P (x)P ′′(x)

(P ′(x)2
=
P (x)P ′′(x)
P ′(x)2

.

So if a is a zero of P , then it is a superattractive fixed point.

1.4.5 Notation for iteration.

The notation f◦n will mean the n-fold composition,

f◦n = f ◦ f ◦ · · · ◦ f (ntimes).

1.4.6 Periodic points.

A fixed point of f◦n is called a periodic point of period n . If p is a periodic
point of period n, then so are each of the points

p, f(p), f◦2(p), . . . , f◦(n−1)(p)

and the chain rule says that at each of these points the derivative of f◦n is the
same and is given by

(f◦n)′(p) = f ′(p)f ′(f(p)) · · · f ′(f◦(n−1)(p)).

If any one of these points is an attractive fixed point for fn then so are all the
others. We speak of an attractive periodic orbit. Similarly for repelling.

A periodic point will be superattractive for f◦n if and only if at least one of
the points p, f(p), . . . f◦(n−1)(p) satisfies f(′q) = 0.
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Figure 1.1: p=.2

1.5 Renormalization group

We illustrate these notions in an example: consider a hexagonal lattice in the
plane. This means that each lattice point has six nearest neighbors. Let each
site be occupied or not independently of the others with a common probability
0 ≤ p ≤ 1 for occupation. In percolation theory the problem is to determine
whether or not there is a positive probability for an infinitely large cluster of
occupied sites. (By a cluster we mean a connected set of occupied sites.) We
plot some figures with p = .2, .5, and .8 respectively. For problems such as this
there is a critical probability pc: for p < pc the probability of of an infinite cluster
is zero, while it is positive for for p > pc. One of the problems in percolation
theory is to determine pc for a given lattice.

For the case of the hexagonal lattice in the plane, it turns out that pc = 1
2 .

We won’t prove that here, but arrive at the value 1
2 as the solution to a problem

which seems to be related to the critical probability problem in many cases. The
idea of the renormalization group method is that many systems exhibit a similar
behavior at different scales, a property known as self similarity. Understanding
the transformation properties of this self similarity yields important information
about the system. This is the goal of the renormalization group method. Rather
than attempt a general definition, we use the hexagonal lattice as a first and
elementary illustration:

Replace the original hexagonal lattice by a coarser hexagonal lattice as fol-
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Figure 1.2: p=.5

Figure 1.3: p=.8
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Figure 1.4: The original hexagonal lattice organized into groups of three adja-
cent vertices.

lows: pick three adjacent vertices on the original hexagonal lattice which form
an equilateral triangle. This then organizes the lattice into a union of disjoint
equilateral triangles, all pointing in the same direction, where, alternately, two
adjacent lattice points on a row form a base of a triangle and the third lattice
point is a vertex of a triangle from an adjacent row . The center of these tri-
angles form a new (coarser) hexagonal lattice, in fact one where the distance
between sites has been increased by a factor of three. See Figures 1.4 and 1.5.

Each point on our new hexagonal lattice is associated with exactly three
points on our original lattice. Now assign a probability, p′ to each point of our
new lattice by the principle of majority rule: a new lattice point will be declared
occupied if a majority of the associated points of the old lattice are occupied.
Since our triangles are disjoint, these probabilities are independent. We can
achieve a majority if all three sites are occupied (which occurs with probability
p3) or if two out of the three are occupied (which occurs with probability p2(1−p)
with three choices as to which two sites are occupied). Thus

p′ = p3 + 3p2(1− p). (1.35)

This has three fixed points: 0, 1, 1
2 . The derivative at 1

2 is 3
2 > 1, so it is repelling.

The points 0 and 1 are superattracting. So starting with any p > 1
2 , iteration

leads rapidly towards the state where all sites are occupied, while starting with
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Figure 1.5: The new hexagonal lattice with edges emanating from each vertex,
indicating the input for calculating p′ from p.
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p < 1
2 leads rapidly under iteration towards the totally empty state. The point

1
2 is an unstable fixed point for the renormalization transformation.

1.6 Iteration for kindergarten.

Suppose that we have drawn a graph of the map f , and have also drawn the
x-axis and the diagonal line y = x. The iteration of f starting with an initial
point x0 on the x-axis can be visualized as follows:

• Draw the vertical line from x0 until it hits the graph (at (x0, f(x0)).

• Draw the horizontal line to the diagonal (at f(x0), f(x0)).

• Call this new x value x1, so x1 = f(x0).

• Draw the vertical line to the graph (at (x1, f(x1)).

• Continue.

This method is known as graphical iteration.

We illustrate this for the graphical iteration of the quadratic map f(x) =
x2 + .15 starting with the initial point .75. The fixed points of f are obtained
by solving the quadratic equation

x2 − x+ .15 = 0

and hence are given by

p± =
1
2
±
√
.1.

The derivative of f is 2x so p+ is an unstable fixed point while p− is a stable
fixed point.

Notice that we are moving away from the unstable fixed point, and as we
continue then iteration we move towards the stable fixed point.
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Figure 1.6: The first few steps.

Figure 1.7: More iterations lead to the attractive fixed point.



Chapter 2

Bifurcations.

In this chapter we will study the behavior of iterations of a map of an interval of
the real line into the real line. But we will let this map depend on a parameter.
So we will be studying the iteration (in x) of a function, F , of two real variables x
and µ . As mentioned above, we will need to make various hypothesis concerning
the differentiability of F . We will always assume it is at least C2 (has continuous
partial derivatives up to the second order). We may also need C3 in which case
we explicitly state this hypothesis. We write

Fµ(x) = F (x, µ)

and are interested in the change of behavior of Fµ as µ varies. Before developing
a general theory, we study a famous example.

2.1 The logistic family.

In population biology one considers iteration of the logistic function

Lµ(x) := µx(1− x). (2.1)

Here 0 < µ is a real parameter and x represents a proportion of a population, so
we are mainly interested in 0 ≤ x ≤ 1. For any fixed value of µ, the maximum
of Lµ as a function of x is achieved at x = 1

2 and the maximum value is 1
4µ. On

the other hand, Lµ(x) ≥ 0 when µ ≥ 0 and 0 ≤ x ≤ 1. So for any value of µ
with 0 ≤ µ ≤ 4, the map

x 7→ Lµ(x)

maps the unit interval into itself. For µ > 4, portions of [0, 1] are mapped into
the range x > 1. A second operation of Lµ maps these points to the range x < 0
and then are swept off to −∞ under successive applications of Lµ. So for now,
we will restrict attention to 0 ≤ µ ≤ 4. We will deal with µ > 4 later.

33
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Figure 2.1: µ = .5.

For any value of µ the fixed points of Lµ are 0 and 1 − 1
µ . Since L′µ(x) =

µ− 2µx,

L′µ(0) = µ, L′µ(1− 1
µ

) = 2− µ. (2.2)

2.1.1 0 < µ ≤ 1.

For 0 < µ < 1, 0 is the only fixed point of Lµ on [0, 1] since the other fixed
point, 1− 1

µ , is negative. On this range of µ, the point 0 is an attracting fixed
point since 0 < L′µ(0) = µ < 1. Under iteration, all points of [0, 1] tend to 0
under the iteration. The population “dies out”.

2.1.2 µ = 1.

For µ = 1 we have
L1(x) = x(1− x) < x, ∀x > 0.

Each successive application of L1 to an x ∈ (0, 1] decreases its value. The limit
of the successive iterates can not be positive since 0 is the only fixed point. So
all points in (0, 1] tend to 0 under iteration, but ever so slowly, since L′1(0) = 1.
In fact, for x < 0, the iterates drift off to more negative values and then tend
to −∞.

2.1.3 µ > 1.

For all µ > 1, the fixed point, 0, is repelling, and the unique other fixed point,
1− 1

µ , lies in [0, 1].
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Figure 2.2: µ = 1.5.

For 1 < µ < 3 we have

|L′µ(1− 1
µ

)| = |2− µ| < 1,

so the non-zero fixed point is attractive.

We will see that the basin of attraction of 1 − 1
µ is the entire open interval

(0, 1), but the behavior is slightly different for the two domains, 1 < µ ≤ 2 and
2 < µ < 3:

In the first of these ranges there is, eventually, a steady approach toward the
fixed point from one side or the other; in the second, the iterates (eventually)
bounce back and forth from one side to the other as they converge in towards
the fixed point. The graphical iteration spirals in. Here are the details:

2.1.4 1 < µ < 2.

For 1 < µ < 2 the non-zero fixed point lies between 0 and 1
2 and the derivative

at this fixed point is 2 − µ and so lies between 1 and 0. Figure 2.2 gives the
graph for µ = 1.5:

Behavior when the initial point is < 1− 1
µ .

Suppose that x lies between 0 and the fixed point, 1 − 1
µ . For this range of x

we have
1
µ
< 1− x

so, multiplying by µx we get

x < µx(1− x) = Lµ(x).



36 CHAPTER 2. BIFURCATIONS.

Also, Lµ is monotone increasing for 0 < x < 1
2 . So for x < 1 − 1

µ , Lµ(x) <
Lµ(1− 1

µ ) = 1− 1
µ . Thus the iterates steadily increase toward 1− 1

µ , eventually
converging geometrically with a rate close to 2− µ.

Behavior when the initial point satisfies 1− 1
µ < x < 1

µ .

If
1− 1

µ
< x

then 1− x < 1
µ so, multiplying by µx gives

Lµ(x) < x.

If, in addition,

x ≤ 1
µ

then
Lµ(x) ≥ 1− 1

µ
.

To see this observe that the function Lµ has only one critical point, and that is
a maximum. Since Lµ(1− 1

µ ) = Lµ( 1
µ ) = 1− 1

µ , we conclude that the minimum
value is achieved at the end points of the interval [1− 1

µ ,
1
µ ].

So on the range 1 − 1
µ < x < 1

µ the iterates steadily decrease towards the
fixed point, eventually converging to the fixed point at a geometric rate close to
2− µ.

If x = 1
µ then Lµ(x) = 1− 1

µ . So with one application of Lµ we hit the fixed
point on the nose.

Behavior when the initial point satisfies 1
µ < x < 1.

On this range 0 < Lµ(x) < 1− 1
µ , and then, after the first application of Lµ the

iterates steadily increase toward the fixed point.

Of course, for any value of µ we have Lµ(1) = 0, which is a fixed point (in
our case unstable).

Summary.

So on the range 1 < µ < 2 the behavior of Lµ is as follows: All points 0 <
x < 1− 1

µ steadily increase toward the fixed point, 1− 1
µ . All points satisfying

1 − 1
µ < x < 1

µ steadily decrease toward the fixed point. The point 1
µ satisfies

Lµ( 1
µ ) = 1 − 1

µ and so lands on the non-zero fixed point after one application.
The points satisfying 1

µ < x < 1 get mapped by Lµ into the interval 0 < x <

1 − 1
µ , In other words, they overshoot the mark, but then steadily increase

towards the non-zero fixed point. Of course Lµ(1) = 0 which is always true.
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Figure 2.3: Graphical iteration of L2.5 with initial point .75.

2.1.5 µ = 2 - the fixed point is superattractive.

When µ = 2, the points 1
µ and 1− 1

µ coincide and equal 1
2 with L′2( 1

2 ) = 0. There
is no “steadily decreasing” region, and the fixed point, 1

2 is superattractive - the
iterates zoom into the fixed point faster than any geometrical rate.

2.1.6 2 < µ < 3.

Here the fixed point 1− 1
µ >

1
2 while 1

µ <
1
2 . The derivative at this fixed point

is negative:

L′µ(1− 1
µ

) = 2− µ < 0.

So the fixed point 1 − 1
µ is an attractor, but as the iterates converge to the

fixed points, they oscillate about it, alternating from one side to the other. The
entire interval (0, 1) is in the basin of attraction of the fixed point. To see this
will take some work.

Before going into the details of the argument, we illustrate the result in
Figure 2.3 via graphical iteration with µ = 2.5 and initial point x0 = .75.
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Figure 2.4: µ = 2.5, 1
µ = .4, 1− 1

µ = .6.

Proof that the entire open interval (0, 1) is the basin of attraction of
the fixed point 1− 1

µ .

The graph of Lµ lies entirely above the line y = x on the interval (0, 1− 1
µ ]. In

particular, it lies above the line y = x on the subinterval [ 1
µ , 1 −

1
µ ] and takes

its maximum at 1
2 . So µ

4 = Lµ( 1
2 ) > Lµ(1 − 1

µ ) = 1 − 1
µ . Hence Lµ maps the

interval [ 1
µ , 1−

1
µ ] onto the interval [1− 1

µ ,
µ
4 ]. The map Lµ is decreasing to the

right of 1
2 , so it is certainly decreasing to the right of 1 − 1

µ . Hence it maps
the interval [1− 1

µ ,
µ
4 ] into an interval whose right hand end point is 1− 1

µ and
whose left hand end point is Lµ(µ4 ). We claim that

Lµ(
µ

4
) >

1
2
.

This amounts to showing that

µ2(4− µ)
16

>
1
2

or that
µ2(4− µ) > 8.

So we need only check the values of µ2(4−µ) at the end points, 2 and 3, of the
range of µ we are considering, where the values are 8 and 9.

So we have proved that the image of [ 1
µ , 1 −

1
µ ] is the same as the image of

[ 1
2 , 1−

1
µ ] and is [1− 1

µ ,
µ
4 ]. The image of this interval is the interval [Lµ(µ4 ), 1− 1

µ ],
with 1

2 < Lµ(µ4 ). If we apply Lµ to this interval, we get an interval to the right
of 1 − 1

µ with right end point L2
µ(µ4 ) < Lµ( 1

2 ) = µ
4 . The image of the interval
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[1− 1
µ , L

2
µ(µ4 )] must be strictly contained in the image of the interval [1− 1

µ ,
µ
4 ],

and hence we conclude that

L3
µ(
µ

4
) > Lµ(

µ

4
).

Continuing in this way we see that under even powers, the image of [ 1
2 , 1 −

1
µ ]

is a sequence of nested intervals whose right hand end point is 1− 1
µ and whose

left hand end points are

1
2
< Lµ(

µ

4
) < L3

µ(
µ

4
) < · · · .

We claim that this sequence of points converges to the fixed point, 1 − 1
µ . If

not, it would have to converge to a fixed point of L2
µ different from 0 and 1− 1

µ .
We shall show that there are no such points. Indeed, a fixed point of L2

µ is a
zero of

L2
µ(x)− x = µLµ(x)(1− Lµ(x)) = µ[µx(1− x)][1− µx(1− x)]− x.

Two roots of this quartic polynomial, are the fixed points of Lµ,which are 0
and 1− 1

µ . So the quartic polynomial factors into a quadratic polynomial times
µx(x− 1 + 1

µ ). A check shows that this quadratic polynomial is

−µ2x2 + (µ2 + µ)x− µ− 1.

The b2 − 4ac for this quadratic function is

µ2(µ2 − 2µ− 3) = µ2(µ+ 1)(µ− 3) (2.3)

which is negative for 2 < µ < 3 so the quadratic has no real roots. We thus
conclude that the iterates of any point in ( 1

µ ,
µ
4 ] oscillate about the fixed point,

1− 1
µ and converge in towards it, eventually with the geometric rate of conver-

gence a bit less than µ− 2. The graph of Lµ is strictly above the line y = x on
the interval (0, 1

µ ] and hence the iterates of Lµ are strictly increasing so long as
they remain in this interval. Furthermore they can’t stay there, for this would
imply the existence of a fixed point in the interval and we know that there is
none. Thus they eventually get mapped into the interval [ 1

µ , 1 −
1
µ ] and the

oscillatory convergence takes over.
Finally, since Lµ is decreasing on [1− 1

µ , 1], any point in [1− 1
µ , 1) is mapped

into (0, 1− 1
µ ] and so converges to the non-zero fixed point.

Summary

In short, every point in (0, 1) is in the basin of attraction of the non-zero fixed
point and (except for the points 1

µ and the fixed point itself) eventually converge
toward it in a “spiral” fashion.
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Figure 2.5: µ = 3.3, graphs of y = x, y = Lµ(x), y = L)µ(2)(x). The graph of
L

(2)
µ has four points of intersection with the line y = x: the two (repelling) fixed

points of Lµ and two points of period two.

2.1.7 µ = 3.

Much of the analysis of the preceding case applies here. The differences are:
the quadratic equation (2.3) for seeking points of period two now has a (double)
root. But this root is 2

3 = 1 − 1
µ which is the fixed point. So there is still no

point of period two other than the fixed points. The iterates continue to spiral
in, but now ever so slowly since L′µ( 2

3 ) = −1.

2.1.8 µ > 3, points of period two appear.

For µ > 3 we have

L′µ(1− 1
µ

) = 2− µ < −1

so both fixed points, 0 and 1− 1
µ are repelling. But now (2.3) has two real roots

which are

p2± =
1
2

+
1

2µ
± 1

2µ

√
(µ+ 1)(µ− 3).

Both points p± of period two lie in (0, 1).
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Figure 2.6: Graphical iteration for µ = 3.3, nine steps.

The derivative of L(2)
µ at these points of period two is given by

(L(2)
µ )′(p2±) = L′µ(p2+)L′µ(p2−)

= (µ− 2µp2+)(µ− 2µp2−)
= µ2 − 2µ2(p2+ + p2−) + 4µ2p2+p2−

= µ2 − 2µ2(1 +
1
µ

) + 4µ2 × 1
µ2

(µ+ 1)

= −µ2 + 2µ+ 4.

This last expression equals 1 when µ = 3 as we already know. It decreases as µ
increases reaching the value −1 when µ = 1 +

√
6.

2.1.9 3 < µ < 1 +
√

6.

In this range the fixed points are repelling and both period two points are
attracting. There will be points whose images end up, after a finite number of
iterations, on the non-zero fixed point. All other points in (0, 1) are attracted
to the period two cycle. We omit the proof.
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Figure 2.7: Graphical iteration for µ = 3.3, twenty five steps.



2.1. THE LOGISTIC FAMILY. 43

2.1.10 Superattracting period two points.

Notice also that there is a unique value of µ in this range where

p2+(µ) =
1
2
.

Indeed, looking at the formula for p2+ we see that this amounts to the condition
that

√
(µ+ 1)(µ− 3) = 1 or

µ2 − 2µ− 4 = 0.

The positive solution to this equation is given by µ = s2 where

s2 = 1 +
√

5.

At s2, the period two points are superattracting, since one of them coincides
with 1

2 which is the maximum of Ls2 .

2.1.11 1 +
√

6 < µ.

Once µ passes 1 +
√

6 = 3.449499... the points of period two become unstable
and (stable) points of period four appear. Initially these are stable, but as µ
increases they become unstable (at the value µ = 3.544090...) and bifurcate into
period eight points, initially stable.

2.1.12 Reprise.

The total scenario so far, as µ increases from 0 to about 3.55, is as follows:
For µ < b1 := 1, there is no non-zero fixed point. Past the first bifurcation
point, b1 = 1, the non-zero fixed point has appeared close to zero. When µ
reaches the first superattractive value , s1 := 2, the fixed point is at .5 and is
superattractive. As µ increases, the fixed point continues to move to the right.
Just after the second bifurcation point, b2 := 3, the fixed point has become
unstable and two stable points of period two appear, one to the right and one
to the left of .5. The leftmost period two point moves to the right as we increase
µ, and at µ = s2 := 1 +

√
5 = 3.23606797... the point .5 is a period two point,

and so the period two points are superattractive. When µ passes the second
bifurcation value b2 = 1 +

√
6 = 3.449.. the period two points have become

repelling and attracting period four points appear.
In fact, this scenario continues. The period 2n−1 points appear at bifurcation

values bn. They are initially attracting, and become superattracting at sn > bn
and become unstable past the next bifurcation value bn+1 > sn when the period
2n points appear.

Figure 2.9 gives the graph of the first four bifurcations:
Here is a MATLAB program for producing Figure 2.9, modified very slightly

from Lynch.
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Figure 2.8: Graphical iteration for µ = 3.46, twenty five steps. The attractive
period four points become evident.
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Figure 2.9: The graph of the first four bifurcations: For each value of r ranging
in steps of .005 from 0 to 3.55 the values of L◦kr (x0) were computed for 100
values of k (where x0 was chosen as 0.4). Then only the last 30 values were
kept, and these were plotted against r.
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clear, itermax=100;
finalits=30;finits=itermax-(finalits-1);
for r=0:0.005:4
x=0.4; xo=x; for n=2:itermax
xn=r*xo*(1-xo);
x=[x xn];
xo=xn;
end
plot(r*ones(finalits),x(finits:itermax),’.’,’MarkerSize’,1)
hold on
end
fsize=15; set(gca,’xtick’,[0:1:4],’FontSize’,fsize), set(gca,’ytick’,[0,0.5,1],’FontSize’,fsize)
xlabel(’mu’,’FontSize’,fsize), ylabel(’itx’,’FontSize’,fsize), hold off

The (numerically computed) bifurcation points and superstable points are
tabulated as:

n bn sn
1 1.000000 2.000000
2 3.000000 3.236068
3 3.449499 3.498562
4 3.544090 3.554641
5 3.564407 3.566667
6 3.568759 3.569244
7 3.569692 3.569793
8 3.569891 3.569913
9 3.569934 3.569946
∞ 3.569946 3.569946

The values of the bn are obtained by numerical experiment. Later, we shall
describe a method for computing the sn using Newton’s method.

We should point out that this is still just the beginning of the story. For
example, an attractive period three cycle appears at about 3.83. We shall come
back to all of these points, but first go back and discuss theoretical problems
associated to bifurcations, in particular, the “fold bifurcation” and the “period
doubling bifurcation”.

2.2 The fold bifurcation.

As mentioned, we will be studying the iteration (in x) of a function, F , of two
real variables x and µ . To repeat once more: we will need to make various
hypothesis concerning the differentiability of F . We will always assume it is at
least C2 (has continuous partial derivatives up to the second order). We may
also need C3 in which case we explicitly state this hypothesis. We write

Fµ(x) = F (x, µ)
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Figure 2.10: y = x2 + µ for µ = .5, .25 and 0.

and are interested in the change of behavior of Fµ as µ varies.

Before embarking on the study of bifurcations let us observe that if p is a
fixed point of Fµ and F ′µ(p) 6= 1, then for ν close to µ, the transformation Fν has
a unique fixed point close to p. Indeed, the implicit function theorem applies to
the function

P (x, ν) := F (x, ν)− x

since
∂P

∂x
(p, µ) 6= 0

by hypothesis. We conclude that there is a curve of fixed points x(ν) with
x(µ) = p.

The first type of bifurcation we study is the fold bifurcation where there
is no (local) fixed point on one side of the bifurcation value, b, where a fixed
point p appears at µ = b with F ′µ(p) = 1, and at the other side of b the map Fµ
has two fixed points, one attracting and the other repelling.

As an example consider the quadratic family

Q(x, µ) = Qµ(x) := x2 + µ.

Fixed points must be solutions of the quadratic equation

x2 − x+ µ = 0,

whose roots are

p± =
1
2
± 1

2

√
1− 4µ.

For

µ > b =
1
4



48 CHAPTER 2. BIFURCATIONS.

these roots are not real. The parabola x2 + µ lies entirely above the line y = x
and there are no fixed points.

At µ = 1
4 the parabola just touches the line y = x at the point ( 1

2 ,
1
2 ) and so

p =
1
2

is a fixed point, with Q′µ(p) = 2p = 1.
For µ < 1

4 the points p± are fixed points, with Q′µ(p+) > 1 so it is repelling,
and Q′µ(p−) < 1. We will have Q′µ(p−) > −1 so long as µ > − 3

4 , so on the
range − 3

4 < µ < 1
4 we have two fixed points, one repelling and one attracting.

We will now discuss the general phenomenon. In order not to clutter up the
notation, we assume that coordinates have been chosen so that b = 0 and p = 0.
So we make the standing assumption that p = 0 is a fixed point at µ = 0, i.e.
that

F (0, 0) = 0.

Theorem 2.2.1. (Fold bifurcation). Suppose that at the point (0, 0) we have

(a)
∂F

∂x
(0, 0) = 1, (b)

∂2F

∂x2
(0, 0) > 0, (c)

∂F

∂µ
(0, 0) > 0.

Then there are non-empty intervals (µ1, 0) and (0, µ2) and ε > 0 so that
(i) If µ ∈ (µ1, 0) then Fµ has two fixed points in (−ε, ε).
One is attracting and the other repelling.
(ii) If µ ∈ (0, µ2) then Fµ has no fixed points in (−ε, ε).

Proof of the fold bifurcation theorem, step I.

The proofs in this section and the next will be applications of the implicit
function theorem. For our current theorem, set

P (x, µ) := F (x, µ)− x.

Then by our standing hypothesis we have

P (0, 0) = 0

and condition (c) says that
∂P

∂µ
(0, 0) > 0.

The implicit function theorem gives a unique function µ(x) with µ(0) = 0 and

P (x, µ(x)) ≡ 0.

The formula for the derivative in the implicit function theorem gives

µ′(x) = −∂P/∂x
∂P/∂µ
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Figure 2.11: Graph of the function x 7→ µ(x).

which vanishes at the origin by assumption (a). We then may compute the
second derivative, µ′′, via the chain rule; using the fact that µ′(0) = 0 we obtain

µ′′(0) = −∂
2P/∂x2

∂P/∂µ
(0, 0).

This is negative by assumptions (b) and (c).

Proof of the fold bifurcation theorem, step II.

In other words,
µ′(0) = 0, and µ′′(0) < 0

so µ(x) has a maximum at x = 0, and this maximum value is 0. In the (x, µ)
plane, the graph of µ(x) looks locally approximately like a parabola in the lower
half plane with its apex at the origin.

Proof of the fold bifurcation theorem, step III - rotate the picture.

If we rotate this picture clockwise by ninety degrees, this says that there are
no points on this curve sitting over positive µ values, i.e. no fixed points for
positive µ, and two fixed points for µ < 0.

Proof of the fold bifurcation theorem, step IV.

We have established that for |µ| small there are two fixed points for µ < 0 and
no fixed points for µ > 0. We must now show that one of these fixed points is
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Figure 2.12: Rotating the preceding figure.

attracting and the other repelling.

For this, consider the function ∂F
∂x (x, µ(x)). The derivative of this function

with respect to x is

∂2F

∂x2
(x, µ(x)) +

∂2F

∂x∂µ
(x, µ(x))µ′(x).

Assumption (b) says that ∂2F
∂x2 (0, 0) > 0, and we know that µ′(0) = 0. So

the above expression is positive at 0.

Proof of the fold bifurcation theorem, step V, completion of the proof.

We know that ∂F
∂x (x, µ(x)) is an increasing function in a neighborhood of the

origin while ∂F
∂x (0, 0) = 1. But this says that

F ′µ(x) < 1

on the lower fixed point and

F ′µ(x) > 1

at the upper fixed point, completing the proof of the theorem. 2
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Figure 2.13: The period doubling bifurcation.

2.3 The period doubling bifurcation.

2.3.1 Description of the period doubling bifurcation.

The fold bifurcation arises when the parameter µ passes through a value where
Fµ(x) = x and F ′µ(x) = 1.

Under the appropriate hypotheses, the period doubling bifurcation de-
scribes what happens when µ passes through a bifurcation value b where Fb(x) =
x and F ′µ(x) = −1.

On one side of b there is a single attractive fixed point. On the other side
the attractive fixed point has become a repelling fixed point, and an attractive
periodic point of period two has arisen.

An example.

Before stating the period doubling bifurcation theorem, we look at an example
we have already considered: the first period doubling bifurcation in the logistic
family, the bifurcation at µ = 3. In Figure 2.14 we plot the function L◦2µ for
the values µ = 2.9 and µ = 3.3. For µ = 2.9 the curve crosses the diagonal at
a single point, which is in fact a fixed point of Lµ and hence of L◦2µ . This fixed
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Figure 2.14: Plots of L◦2µ at µ = 2.9 (dotted curve) and µ = 3.3.

point is stable. For µ = 3.3 there are three crossings. The non-zero fixed point
of Lµ has derivative smaller than −1, and hence the corresponding fixed point
of L◦2µ has derivative greater than one. The two other crossings correspond to
the stable period two orbit.

2.3.2 Statement of the period doubling bifurcation theo-
rem.

We now turn to the general theory: We are now assuming that µ = 0 has 0 as
a fixed point with F ′0(0) = −1. So the partial derivative of F (x, µ) − x with
respect to x is −2 at (0, 0). In particular it does not vanish, so we can locally
solve for x as a function of µ; there is (locally) a unique branch of fixed points,
x(µ), passing through the origin.

Let λ(µ) denote the derivative of Fµ with respect to x at the fixed point,
x(µ), i.e. define

λ(µ) :=
∂F

∂x
(x(µ), µ).

Recall that as notation, we are writing

F ◦2µ := Fµ ◦ Fµ
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and we define
F ◦2(x, µ) := F ◦2µ (x).

Notice that
(F ◦2µ )′(x) = F ′µ(Fµ(x))F ′µ(x)

by the chain rule so
(F ◦20 )′(0) = (F ′0(0))2 = 1.

Hence
(F ◦2µ )′′(x) = F ′′µ (Fµ(x))F ′µ(x)2 + F ′µ(Fµ(x))F ′′µ (x) (2.4)

which vanishes at x = 0, µ = 0. In other words,

∂2F ◦2

∂x2
(0, 0) = 0. (2.5)

Let us absorb the import of this equation. One might think that if we set
Gµ = F ◦2µ , then G′µ(0) = 1, so all we need to do is apply the fold bifurcation
theorem to Gµ. But (2.5) shows that the key condition (b) in the fold bifurcation
theorem, namely:

∂2F

∂x2
(0, 0) > 0,

is violated, and hence we must make some alternative hypotheses. The hypothe-
ses that we will make will involve the second and the third partial derivatives
of F , and also that λ(µ) really passes through −1, i.e. dλ

dµ (0) 6= 0. To under-
stand the hypothesis we will make involving the partial derivatives of F , let us
differentiate (2.4) once more with respect to x to obtain

(F ◦2µ )′′′(x) =

F ′′′µ (Fµ(x))F ′µ(x)3 + 2F ′′µ (Fµ(x))F ′′µ (x)F ′µ(x)

+F ′′µ (Fµ(x))F ′µ(x)F ′′µ (x) + F ′µ(Fµ(x))F ′′′µ (x).

At (x, µ) = (0, 0) this simplifies to

−

[
2
∂3F

∂x3
(0, 0) + 3

(
∂2F

∂x2
(0, 0)

)2
]
. (2.6)

Theorem 2.3.1. [Period doubling bifurcation.] Suppose that F is C3, that

(d)F ′0(0) = −1 (e)
dλ

dµ
(0) > 0, and

(f) 2
∂3F

∂x3
(0, 0) + 3

(
∂2F

∂x2
(0, 0)

)2

> 0.

Then there are non-empty intervals (µ1, 0) and (0, µ2) and ε > 0 so that
(i) If µ ∈ (µ1, 0) then Fµ has one repelling fixed point and one attracting

orbit of period two in (−ε, ε)
(ii) If µ ∈ (0, µ2) then F ◦2µ has a single fixed point in (−ε, ε) which is in

fact an attracting fixed point of Fµ.
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The conclusions of the theorem are summarized in Figure 2.13.

The proof of the period doubling bifurcation theorem is considerably harder
than the proof of the fold bifurcation theorem.

2.3.3 Proof of the period doubling bifurcation theorem.

Step I.

Let
H(x, µ) := F ◦2(x, µ)− x.

Then by the remarks before the statement of the theorem, H vanishes at the
origin together with its first two partial derivatives with respect to x. Formula
(2.6) (which used condition (d)) together with condition (f) gives

∂3H

∂x3
(0, 0) < 0.

One of the zeros of H(x, µ) := F ◦2(x, µ) − x at the origin corresponds to the
fact that (0, 0) is a fixed point. Let us factor this out: Define P (x, µ) by

H(x, µ) = (x− x(µ))P (x, µ). (2.7)

Step II.

Then

∂H

∂x
= P + (x− x(µ))

∂P

∂x
∂2H

∂x2
= 2

∂P

∂x
+ (x− x(µ))

∂2P

∂x2

∂3H

∂x3
= 3

∂2P

∂x2
+ (x− x(µ))

∂3P

∂x3
.

So P vanishes at the origin together with its first partial derivative with respect
to x, while

∂3H

∂x3
(0, 0) = 3

∂2P

∂x2
(0, 0)

so
∂2P

∂x2
(0, 0) < 0. (2.8)

Step III.

We claim that
∂P

∂µ
(0, 0) < 0, (2.9)

so that we can apply the implicit function theorem to P (x, µ) = 0 to solve for
µ as a function of x. This will allow us to determine the fixed points of F ◦2µ



2.3. THE PERIOD DOUBLING BIFURCATION. 55

which are not fixed points of Fµ, i.e. the points of period two. To prove (2.9)
we compute ∂H

∂x both from its definition H(x, µ) = F ◦2(x, µ)−x and from (2.7)
to obtain:

∂H

∂x
=

∂F

∂x
(F (x, µ), µ)

∂F

∂x
(x, µ)− 1

= P (x, µ) + (x− x(µ))
∂P

∂x
(x, µ).

Recall that x(µ) is the fixed point of Fµ and that λ(µ) = ∂F
∂x (x(µ), µ). So

substituting x = x(µ) into the preceding equation gives

λ(µ)2 − 1 = P (x, µ).

Differentiating with respect to µ and setting µ = 0 gives

∂P

∂µ
(0, 0) = 2λ(0)λ′(0) = −2λ′(0)

which is < 0 by (e).

Step IV.

By the implicit function theorem, (2.9) implies that there is a C2 function ν(x)
defined near zero as the unique solution of P (x, ν(x)) ≡ 0. Recall that P and its
first derivative with respect to x vanish at (0, 0). We now repeat the arguments
of the preceding section: We have

ν′(x) = −∂P/∂x
∂P/∂µ

so
ν′(0) = 0

and

ν′′(0) = −∂
2P/∂x2

∂P/∂µ
(0, 0) < 0

since this time both numerator and denominator are negative.
So the curve ν has the same form as in the proof of the fold bifurcation

theorem. This establishes the existence of the (strictly) period two points for
µ < 0 and their absence for µ > 0.

Step V.

We now turn to the question of the stability of the fixed points and the period
two points. Condition (e):

dλ

dµ
(0) > 0,
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together with the fact that λ(0) = −1 imply that λ(µ) < −1 for µ < 0 and
λ(µ) > −1 for µ > 0 so the fixed point is repelling to the left and attracting to
the right of the origin. As for the period two points, we wish to show that

∂F ◦2

∂x
(x, ν(x)) < 1

for x < 0.
Now (2.5) and ν′(0) = 0 imply that 0 is a critical point for this function, and

the value at this critical point is λ(0)2 = 1. To complete the proof we must show
that this critical point is a local maximum. So we must compute the second
derivative at the origin.

Step VI, completion of the proof.

Calling this function φ we have

φ(x) :=
∂F ◦2

∂x
(x, ν(x))

φ′(x) =
∂2F ◦2

∂x2
(x, ν(x)) +

∂2F ◦2

∂x∂µ
(x, ν(x))ν′(x)

φ′′(x) =
∂3F ◦2

∂x3
(x, ν(x)) + 2

∂3F ◦2

∂x2∂µ
(x, ν(x)ν′(x)

+
∂3F ◦2

∂x∂µ2
(x, ν(x))(ν′(x))2 +

∂2F ◦2

∂x∂µ
(x, ν(x))ν′′(x).

The middle two terms vanish at 0 since ν′(0) = 0. The last term becomes

dλ

dµ
(0)ν′′(0) < 0

by condition (e) and the fact that ν′′(0) < 0. We have computed the the first
term, i.e. the third partial derivative, in (2.6) using condition (d) and then (f)
implies that this expression is negative. This completes the proof of the period
doubling bifurcation theorem. 2

Variants.

There are obvious variants on the theorem which involve changing signs in
hypotheses (e) and or (f). Thus we may have an attractive fixed point merging
with two repelling points of period two to produce a repelling fixed point, and/or
the direction of the bifurcation may be reversed.

2.4 Newton’s method and Feigenbaum’s constant.

Although the bifurcation values bn for the logistic family are hard to compute
except by numerical experiment, the superattractive values can be found by
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applying Newton’s method to find the solution, sn, of the equation

L◦2
n−1

µ (
1
2

) =
1
2
, Lµ(x) = µx(1− x). (2.10)

This is the equation for µ which says that 1
2 is a point of period 2n−1 of Lµ. Of

course we want to look for solutions for which 1
2 does not have lower period.

So we set
P (µ) = L◦2

n−1

µ (
1
2

)− 1
2

and apply the Newton algorithm

µk+1 = N (µk), N (µ) = µ− P (µ)
P ′(µ)

.

with ′ now denoting differentiation with respect to µ.
As a first step, must compute P and P ′. For this we define the functions

xk(µ) recursively by

x0 ≡
1
2
, x1(µ) = µ

1
2

(1− 1
2

), xk+1 = Lµ(xk),

so, we have

x′k+1 = [µxk(1− xk))]′

= xk(1− xk) + µx′k(1− xk)− µxkx′k
= xk(1− xk) + µ(1− 2xk)x′k.

Let
N = 2n−1

so that
P (µ) = xN −

1
2
, P ′(µ) = x′N (µ).

Thus, at each stage of the iteration in Newton’s method we compute P (µ)
and P ′(µ) by running the iteration scheme

xk+1 = µxk(1− xk) x0 = 1
2

x′k+1 = xk(1− xk) + µ(1− 2xk)x′x x′0 = 0

for k = 0, . . . , N − 1. We substitute this into Newton’s method, get the next
value of µ, run the iteration to get the next value of P (µ) and P ′(µ) etc.

Suppose we have found s1, s2, ...., sn. What should we take as the initial
value of µ? Define the numbers δn, n ≥ 2 recursively by δ2 = 4 and

δn =
sn−1 − sn−2

sn − sn−1
, n ≥ 3. (2.11)

We have already computed

s1 = 2, s2 = 1 +
√

5 = 3.23606797 . . . .
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We take as our initial value in Newton’s method for finding sn+1 the value

µn+1 = sn +
sn − sn−1

δn
.

The following facts are observed:
For each n = 3, 4, . . . , 15, Newton’s method converges very rapidly, with no

changes in the first nineteen digits after six applications of Newton’s method for
finding s3, after only one application of Newton’s method for s4 and s5, and at
most four applications of Newton’s method for the computation of each of the
remaining values.

Suppose we stop our calculations for each sn when there is no further change
in the first 19 digits, and take the computed values as our sn. These values are
strictly increasing. In particular this implies that the sn we have computed do
not yield 1

2 as a point of lower period.
The sn approach a limiting value, 3.569945671205296863.

The δn approach a limiting value,

δ = 4.6692016148.

This value is known as Feigenbaum’s constant. While the limiting value of
the sn is particular to the logistic family, δ is “universal” in the sense that it
applies to a whole class of one dimensional iteration families. We shall go into
this point in the next section, where we will see that this is a “renormalization
group” phenomenon.

2.5 Feigenbaum renormalization.

We have already remarked that the rate of convergence to the limiting value
of the superstable points in the period doubling bifurcation, Feigenbaum’s con-
stant, is universal, i.e. not restricted to the logistic family. That is, if we let

δ = 4.6692....

denote Feigenbaum’s constant, then the superstable values sr in the period
doubling scenario satisfy

sr = s∞ −Bδ−r + o(δ−r)

where s∞ and B depend on the specifics of the family, but δ applies to a large
class of such families.

There is another “universal” parameter in the story. Suppose that our family
fµ consists of maps with a single maximum, Xm, so that Xm must be one of
the points on any superstable periodic orbit. (In the case of the logistic family
Xm = 1

2 .) Let dr denote the difference between Xm an the next nearest point
on the superstable 2r orbit; more precisely, define

dr = f2r−1

sr
(Xm)−Xm.
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Figure 2.15: From a powerpoint presentation by Prof. Coppersmith, reproduced
with her permission.

Then dr ∼ D(−α)r where

α
.= 2.5029...

is again universal. This would appear to be a scale parameter (in x) associated
with the period doubling scenario.

To understand this scale parameter, examine the central portion of Figure
2.5 , and observe that the graph of L◦2µ looks like an (inverted and) rescaled
version of Lµ, especially if we allow a change in the parameter µ.

Before going into the rescaling operator on functions, I would like to give
an elementary formulation of what is going on, following a beautiful paper by
S.N. Coppersmith A simpler derivation of Feigenbaum’s renormalization group
equation for the period-doubling bifurcation sequence which appeared in the
American Journal of Physics, Vol 67 (1999) 53. Also see her powerpoint pre-
sentation available on the web.

Take µ = 3.569946 and plot the values Ljµ(.5)− .5 against j. Then plot every
other value with the ordinate upside down and rescaled by a factor of 2.502 907
9. The graphs look the same: In the left hand of the figure, every j is plotted;
in the right figure, every other j is plotted with the ordinate upside down.

We can check this numerically by computing the vector y (say of length 21)
with y(1) = .5 and y(n+ 1) = Lµ(y(n)), then the vector z with z(i) = y(i)− .5
and then comparing the first 11 entries of z with the vector k obtained by taking
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every other entry of z and multiplying by -2.502. The results are:

0 0
0.3925 0.3939
−0.1574 −0.1566

0.3040 0.2976
0.0626 0.0626
0.3785 0.3783
−0.1190 −0.1189

0.3420 0.3380
−0.0250 −0.0250

0.3903 0.3914
−0.1512 −0.1505

The existence of the scaling (together with some argumentation) determines the
scale parameter as follows: We presume to have

−αz2j = zj

which, replacing j by j+1 gives −αz2j+2 = zj+1. Write zj+1 = g(zj). The
second equation gives −αg(g(z2j) = g(zj) and we can substitute z2j = −zj/α
from the first equation to get

−αg(g(−zj/α)) = g(zj).

If we expect this to hold not just for zj but for all values of z we get the
functional equation:

−αg(g(−z/α)) = g(z).

If we assume that g has a power series expansion, and we compute up to terms
of second order in z, we get an approximate value for α.

The rescaling is centered at the maximum, so in order to avoid notational
complexity, let us shift this maximum (for the logistic family) to the origin by
replacing x by y = x− 1

2 . In the new coordinates the logistic map is given by

y 7→ Lµ(y +
1
2

)− 1
2

= µ(
1
4
− y2)− 1

2
.

Let R denote the operator on functions given by

R(h)(y) := −αh(h(y/(−α))). (2.12)

In other words, R sends a map h into its iterate h ◦ h followed by a rescaling.
We are going to not only apply the operator R, but also shift the parameter

µ in the maps

hµ(y) = µ(
1
2
− y2)− 1

2
from one supercritical value to the next. So for each k = 0, 1, 2, . . . we set

gk0 := hsk
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and then define

gk,1 = Rgk+1,0

gk,2 = Rgk+1,1

gk,3 = Rgk+2,1

...
...

It is observed (numerically) that for each k the functions gk,r appear to be
approaching a limit, gk i.e.

gk,r → gk.

So
gk(y) = lim(−α)rg2r

sk+r
(y/(−α)r).

Hence
Rgk = lim(−α)r+12r+1gsk+r

(y/(−α)r+1) = gk−1.

It is also observed that these limit functions gk themselves are approaching a
limit:

gk → g.

Since Rgk = gk−1 we conclude that

Rg = g,

i.e. g is a fixed point for the Feigenbaum renormalization operator R.
Notice that rescaling commutes with R: If S denotes the operator (Sf)(y) =

cf(y/c) then

R(Sf)(y) = −α(c(f(cf(y/(cα))/c) = S(R)f(y).

So if g is a fixed point, so is Sg. We may thus fix the scale in g by requiring
that

g(0) = 1.

The hope was then that there would be a unique function g (within an appro-
priate class of functions) satisfying

Rg = g, g(0) = 1,

or, spelling this out,

g(y) = −αg◦2(−y/α), g(0) = 1. (2.13)

Notice that if we knew the function g, then setting y = 0 in (2.13) gives

1 = −αg(1)

or
α = −1/g(1).
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In other words, assuming that we were able to establish all these facts and
also knew the function g, then the universal rescaling factor α would be deter-
mined by g itself. Feigenbaum assumed that g has a power series expansion in
x2 took the first seven terms in this expansion and substituted in (2.13). He
obtained a collection of algebraic equations which he solved and then derived α
close to the observed “experimental” value. Indeed, if we truncate (2.13) we will
get a collection of algebraic equations. But these equations are not recursive,
so that at each stage of truncation modification is made in all the coefficients,
and also the nature of the solutions of these equations is not transparent.

So theoretically, if we could establish the existence of a unique solution to
(2.13) within a given class of functions the value of α is determined. But the
numerical evaluation of α is achieved by the renormalization property itself,
rather than from g(1) which is not known explicitly.

The other universal constant associated with the period doubling scenario,
the constant δ was also conjectured by Feigenbaum to be associated to the fixed
point g of the renormalization operator; this time with the linearized map J ,
i.e. the derivative of the renormalization operator at its fixed point.

Later on we will see that in finite dimensions, if the derivative J of a non-
linear transformation R at a fixed point has k eigenvalues > 1 in absolute
value, and the rest < 1 in absolute value, then there exists a k-dimensional R
invariant surface tangent at the fixed point to the subspace corresponding to the
k eigenvalues whose absolute value is > 1. On this invariant manifold, the map
R is expanding. Feigenbaum conjectured that for the operator R (acting on the
appropriate infinite dimensional space of functions) there is a one dimensional
“expanding” submanifold, and that δ is the single eigenvalue of J with absolute
value greater than 1.

In the course of the past thirty five years, these conjectures of Feigenbaum
have been verified using high powered techniques from complex analysis, thanks
to the combined effort of such mathematicians as Douady, Hubbard, Sullivan,
McMullen, and others. See, for example, [McMullen].



Chapter 3

Sarkovsky’s theorem,
Singer’s theorem,
intermittency.

The logistic map Lµ develops a period three orbit as µ increases above 1 +
√

8,
and this orbit is initially stable. According to a theorem of Sarkovsky, if a
continuous map of a compact interval on the real line has an orbit of period
three, then it has orbits of all periods. Nevertheless, we do not see these other
periodic orbits near 1 +

√
8. The reason is that they are all unstable. In fact, a

theorem of Singer implies that Lµ can have at most one stable periodic orbit.
In this chapter we explain these ideas, and also describe what happens to the
period there orbits when we decrease µ from slightly above the critical value
1 +
√

8 to slightly below it.
Throughout this chapter, f will denote a continuous function on the reals

whose domain of definition is assumed to include the given intervals in the
various statements.

3.1 Period 3 implies all periods.

Lemma 3.1.1. If I = [a, b] is a compact interval and I ⊂ f(I) then f has a
fixed point in I.

Proof. For some c, d ∈ I we have f(c) = a, f(d) = b. So f(c) ≤ c, f(d) ≥ d. So
f(x)− x changes sign from c to d hence has a zero in between.

Lemma 3.1.2. If J and K = [a, b] are compact intervals with K ⊂ f(J) then
there is a compact subinterval L ⊂ J such that f(L) = K.

Proof. Let c be the greatest point in J with f(c) = a. If f(x) = b for some
x > c, x ∈ J let d be the least. Then we may take L = [c, d]. If not, f(x) = b for

63
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some x < c, x ∈ J . Let c′ be the largest. Let d′ be the the smallest x satisfying
x > c′ with f(x) = a. Notice that d′ ≤ c. We then take L = [c′, d′].

Notation. If I is a closed interval with end points a and b we write

I =< a, b >

when we do not want to specify which of the two end points is the larger.

Theorem 3.1.1. [Sarkovsky.] Period three implies all periods.

Proof. Suppose that f has a 3-cycle

a 7→ b 7→ c 7→ a 7→ · · · .

Let a denote the leftmost of the three, and let us assume that

a < b < c.

Reversing left and right (i.e. changing direction on the real line) and cycling
through the points makes this assumption harmless. Indeed, if a < c < b then
we have the cycle, b 7→ c 7→ a 7→ b with b > c > a. So we assume that a < b < c.
Let

I0 = [a, b], I1 = [b, c]

so we have
f(I0) ⊃ I1, f(I1) ⊃ I0 ∪ I1.

By Lemma 2 the fact that f(I1) ⊃ I1 implies that there is a compact interval
A1 ⊂ I1 with f(A1) = I1. Since f(A1) = I1 ⊃ A1 there is a compact subinterval
A2 ⊂ A1 with f(A2) = A1. So

A2 ⊂ A1 ⊂ I, f◦2(A2) = I1.

By induction proceed to find compact intervals with

An−2 ⊂ An−3 ⊂ · · · ⊂ A2 ⊂ A1 ⊂ I1

with
f◦(n−2)(An−2) = I1.

Since f(I0) ⊃ I1 ⊃ An−2 there is an interval An−1 ⊂ I0 with f(An−1) = An−2.
Finally, since f(I1) ⊃ I0 there is a compact interval An ⊂ I1 with f(An) =
An−1. So we have

An → An−1 → · · · → A1 → I1

where each interval maps onto the next and An ⊂ I1. By Lemma 3.1.1, fn has
a fixed point, x, in An. But f(x) lies in I0 and all the higher iterates up to n
lie in I1 so the period can not be smaller than n. So there is a periodic point of
any period n ≥ 3.

Since f(I1) ⊃ I1 there is a fixed point in I1, and since f(I0) ⊃ I1, f(I1) ⊃ I0
there is a point of period two in I0 which is not a fixed point of f .
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A more refined analysis which we will omit shows that period 5 implies the
existence of all periods greater than 5 and period 2 and 4 (but not period 3). In
general any odd period implies the existence of periods of all higher order (and
all smaller even order).

3.1.1 The Sarkovsky ordering

In fact, Sarkovsky introduced the following ordering on the positive integers,
and proved that the existence of a periodic point of f with (minimal) period
equal to any integer implies the existence of periodic points with periods equal
to any integer later in the ordering. Here is his ordering:

3, 5, 7, 9, 11, . . .
2 · 3, 2 · 5, 2 · 7 . . .

22 · 3, 22 · 5, 22 · 7 . . .
...

. . . , 2n . . . , 23, 22, 2, 1.

We will not prove Sarkovski’s theorem here, but refer to the literature. For
example to [Devaney(1989)], page 63.

Notice that Sarkovky’s theorem implies that if there are only finitely many
periodic points, their periods must be powers of two. This was illustrated in
the period doubling bifurcation at the beginning of the logistic family.

3.1.2 Periodic points of period three for the logistic fam-
ily.

It is easy to graph the third iterate of the logistic map to see that it crosses
the diagonal for µ > 1 +

√
(8) (in addition to the crossing corresponding to the

fixed point). In fact, one can prove that that at µ = 1 +
√

(8) the graph of L◦3µ
just touches the diagonal and strictly crosses it for µ > 1 +

√
(8) = 3.8284 . . ..

Hence in this range there are periodic points of all periods. Here are plots of Lµ
for µ = 3.7, 3.81, 3.83, 3.84: For µ = 1 +

√
8 + .002 the eight roots of P (x) − x

where P := L◦3µ and the values of P ′ at these roots are given by

xj = roots of P (x)− x P ′(x)

0 56.20068544683054
0.95756178779471 0.24278522730018
0.95516891475013 1.73457935568109
0.73893250871724 −6.13277919589328
0.52522791460709 1.73457935766594
0.50342728916956 0.24278522531345
0.16402371217410 1.73457935778151
0.15565787278717 0.24278522521922
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Figure 3.1: Graphs of L◦3µ for values of µ near 1 +
√

8.
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We see that there is a attractive period three orbit consisting of the points
0.1556 . . . , .5034 . . . , .9575 . . . .. The fixed points 0 and .7389... are unstable and
there is an unstable period three orbit.

There are, in fact, no other attractive periodic orbits of any period. We
discuss the theoretical reason for this in the next section. It turns out, as a
consequence of a theorem of David Singer (1978), which we discuss in the next
section, there can no more than one attractive periodic orbit of Lµ for any value
of µ!

3.2 Singer’s theorem.

3.2.1 The Schwarzian derivative and some of its proper-
ties.

Let f be a function defined on some interval J and have three continuous con-
tinuous derivatives there. Define

(Sf)(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

. (3.1)

S(f)(x) is called the Schwarzian derivative of f at x whenever it exists as
a number or as ±∞.

The Schwarzian derivative of the composite of two functions.

An important property of the Schwartzian derivative relates to the composite
of two functions. Namely

S(f(g)) = S(f)(g)[g′]2 + S(g). (3.2)

As a consequence, if both S(f) and S(g) are negative, so is S(f(g)). Here is
the messy but straightforward proof of this fact: Using the formula for the
derivative of f ◦ g we have

(f ◦ g)′(x) = [f ′(g(x)])g′(x),
(f ◦ g)′′(x) = [f ′′(g(x))]g′(x)2 + [f ′(g(x)]g′′(x),
(f ◦ g)′′′(x) = [f ′′′(g(x))]g′(x)3 + 3[f ′′(g(x))][g′(x)][g′′(x)] + [f ′(g(x))]g′′′(x).

so from the definition (3.1) we have S(f ◦ g)(x) =

[f ′′′(g(x))]g′(x)3 + 3[f ′′(g(x))][g′(x)][g′′(x)] + [f ′(g(x))]g′′′(x)
f ′(g(x)])g′(x)

−3
2

(
[f ′′(g(x))]g′(x)2 + [f ′(g(x)]g′′(x)

[f ′(g(x)])g′(x)

)2

Collecting terms gives (3.2). 2

A consequence of (3.2) is
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Proposition 3.2.1. If S(f) < 0 and S(g) < 0 then S(f ◦ g) < 0.

It follows by induction that if S(f) < 0 at all points then so is S(f◦n) for
any positive integer n. So if we want to prove something about periodic cycles
of a function f with S(f) < 0, then it will frequently be enough to prove a
theorem about fixed points (of f◦n).

The idea of the statement and proof of Singer’s theorem is that if f satisfies
Sf < 0 (as we will assume until the end of this section) then all but 2 of the
attracting cycles of f contain a critical point in their basin of attraction. The
goal of the next few lemmas is to establish the existence of critical points (points
where f ′(x) = 0) from the existence of fixed points.

In what follows, we are assuming that S(g) < 0. In particular, since S(`) ≡ 0
for any linear function `, a function g satisfying S(g) < 0 can not be identically
equal to x on any open interval. We follow the treatment in [Gulick].

Critical points and fixed points for functions with negative Schwarzian
derivative.

Lemma 3.2.1. Let g be such that S(g) < 0. If g′ has a relative minimum at
x∗ then g′(x∗) < 0. If g has a relative maximum at x∗ then g′(x∗) > 0.

Proof. If x∗ is an extremal value of g′, then g′′(x∗) = 0 so

S(g)(x∗) =
g′′′(x∗)
g′(x∗)

.

At a relative minimum of g′, the numerator must be ≥ 0 so S(g) < 0 implies
that the numerator is > 0 and the denominator is < 0. The reverse at a relative
maximum.

We continue to assume that S(g) < 0.

Lemma 3.2.2. Let a < b < c be fixed points of g. If g′(b) ≤ 1 then g has a
critical point in (a, c).

Proof. Notice that g(x) − x vanishes at a and b, so the mean value theorem
implies that there is an r with a < r < b with g′(r) = 1. Similarly, there is an
s with b < s < c and g′(s) = 1. If g′(b) ≤ 1 then g′ has a relative minimum in
(s, t) which must be negative by Lemma 3.2.1. But since g′(s) = g′(t) = 1 > 0,
there must be a point in (s, t) where g′ = 0.

Lemma 3.2.3. Suppose that a < b < c < d are fixed points of g. Then g has a
critical point on (a, d).

Proof. If g′(b) ≤ 1 then g has a fixed point on (a, c) by Lemma 3.2.2, and if
g′(c) ≤ 1 then g has a fixed point on (b, d) by the same lemma. So we need to
prove the lemma only in the case where g′(b) > 1 and g′(c) > 1. The fact that
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g′(b) = b and g′(b) > 1 implies that for r > b and sufficiently close to b we have
g(r) > r. Similarly, for t < c and sufficiently close to c we have g(t) < t. By
the mean value theorem, there is a point s with r < s < t such that g′(s) < 1.
Since g′(b) > 1 and g′(c) > 1, the function g′ must have a relative minimum at
some point y ∈ (b, c). By Lemma 3.2.1, g′(y) < 0. Since g′(y) < 0 and g′(c) > 0
there must be some z ∈ (y, c) such that g′(s) = 0.

To summarize: If S(g) < 0 then four fixed points on an interval I implies
the existence of a critical point in the interior of I.

Lemma 3.2.4. f f has a finitely many critical points, then so does f◦m for any
m.

Proof. If x is a critical point of f◦2 then by the chain rule either x or f(x)
is a critical point of f . There can be only finitely many points x, y, · · · with
f(x) = f(y) = . . . since f(x) = f(y) imples that there is a z between x and y
with f ′(z) = 0. So f◦2 has only finitely many critical points. Now proceed by
induction.

Lemma 3.2.5. If f has finitely many critical points and Sf < 0 then f◦m has
finitely many fixed points for any m.

Proof. f◦m has finitely many critical points by Lemma 6. List the fixed points
a1 < a2 < · · · of f◦m in increasing order. Between a1 and a4 there is a critical
point by Lemma 3. Between a4 and a7 there is another critical point by the
same lemma. Etc. So there can not be infinitely many fixed points.

3.2.2 Proof and statement of Singer’s theorem.

Let f satisfy S(f) < 0 where f is defined on a closed interval J = [A,B], −∞ ≤
A, B ≤ +∞, and suppose that f(J) ⊂ J .

The following argument will show that any attracting fixed point p of f◦m

must contain a critical point in its basin of attraction, except possibly for an
attracting fixed point in an interval of the form [A, a) or an interval of the form
(b, B].

So let p be an attracting fixed point of g := f◦m. Let (L,R) be the largest
open interval containing p all of whose points are attracted to p by g. So there
are three possibilities:

• g(L) = L and g(R) = R,

• g(L) = R and g(R) = L, or

• g(L) = g(R).
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In the first case, L, p and R are fixed points of g, so there is a critical point z of
g in (L,R) by Lemma 2. So one of the points z, f(z), . . . f◦m−1(z) is a critical
point of f , and one of them is attracted to p by iterates of g. So we have found
a critical point of f which is attracted to the orbit of p under f .

In the second case, g◦2(L) = L and g◦2(R) = R and we can apply the
preceding argument.

In the third case, since L 6= R and g(L) = g(R) there must be a critical
point of g in (L.R) by the mean value theorem. So we have proved:

Theorem 3.2.1. [David Singer.] If p is an attractive fixed point of some
iterate of f such that the largest open interval (L,R) in its basin of attraction
satisfies A < L and R < B then there is a critical point of f which is attracted
to the corresponding orbit of f . Since a point can be attracted to at most one
orbit, it follows that if there are n critical points, there can be at most n + 2
attractive cycles, the two possible additional attractive periodic orbits have basins
of attraction containing intervals of the form [A, a) or (b, B].

3.2.3 Application to the logistic family.

For the logistic function f = fµ = µx(1 − x) we have f ′′′ ≡ 0, so S(f) < 0 for
x 6= 1

2 while limx→ 1
2
S(f)(x) = −∞ which also counts as S(f)(x)) < 0. Also

the only critical point is at x = 1
2 .

We know that for µ ≤ 1 the point 0 is the only fixed point and attracts the
whole interval. 0 becomes repelling for µ > 1 and so there is no periodic cycle
which contains [0, a) in its basin of attraction. Since f(1) = 0, we also know
that there is no periodic cycle which contains an interval of the form (b, 1] in
its basin of attraction. So the two possible additional cases in Singer’s theorem
are excluded, and Lµ has at most one attractive cycle for any µ.

3.3 Intermittency.

In this section we describe what happens to the period three orbits of Lµ as we
decrease µ from slightly above the critical value 1 +

√
8 to slightly below it. For

µ = 1 +
√

8 + .002 recall that there is a stable period three orbit consisting of
the points

0.1556 . . . , .5034 . . . , .9575 . . . .

If we choose our initial value of x close to .5034 . . . and plot the successive
199 iterates of Lµ applied to x we obtain the upper graph in Figure 3.2. The
lower graph gives x(j + 3) − x(j) for j = 1 to 197. We will now decrease
the parameter µ by .002 so that µ = 1 +

√
8 is the parameter giving the on-

set of period three. For this value of the parameter, the graph of P = L◦3µ
just touches the line y = x at the three double roots of P (x) − x which are
at 0.1599288 . . . , 0.514355 . . . ., 0.9563180 . . .. (Of course, the eighth degree
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polynomial P (x)−x has two additional roots which correspond to the two (un-
stable) fixed points of Lµ; these are not of interest to us.) Since the graph of
P is tangent to the diagonal at the double roots, P ′(x) = 1 at these points,
so the period three orbit is not strictly speaking stable. But using the same
initial seed as above, we do get slow convergence to the period three orbit, as
is indicated by the Figure 3.3: Most interesting is what happens just before
the onset of the period three cycle. Then P (x) − x has only two real roots
corresponding to the fixed points of Lµ. The remaining six roots are complex.
Nevertheless, if µ is close to 1 +

√
8 the effects of these complex roots can be

felt. In Figure 3.4 we have taken µ = 1 +
√

8 − .002 and used the same initial
seed x = .5034 and again plotted the successive 199 iterates of Lµ applied to
x in the upper graph. Notice that there are portions of this graph where the
behavior is almost as if we were at a point of period three, followed by some
random looking behavior, then almost period three again and so on. This is
seen more clearly in the bottom graph of x(j + 3) − x(j). Thus the bottom
graph indicates that the deviation from period three is small on the j intervals
j = [1, 20], [41, 65], [96, 108], [119, 124], [148, 159], [190, ?]. This phenomenon
is known as intermittency. We can understand how it works by graphically
iterating P = L◦3µ . As we pass close to a minimum of P lying just above the
diagonal, or to a maximum of P lying just below the diagonal it will take many
iterative steps to move away from this region - known as a bottleneck. Each
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Figure 3.5: Graphical iteration of P = L◦3µ with µ = 1 +
√

8 − .002 and initial
point .5034. The solid lines are iteration steps of size less than .07 representing
bottleneck steps. The dotted lines are the longer steps.

such step corresponds to an almost period three cycle. After moving away from
these bottlenecks, the steps will be large, eventually hitting a bottleneck once
again. See the Figures 3.5 and 3.6.

The solid lines are iteration steps of size less than .07 representing bottleneck
steps. The dotted lines are the longer steps.
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Chapter 4

Conjugacy.

We now embark on a question which will occupy us a lot in this book: When
are two dynamical systems “the same”?

Here is an example of what I mean:

4.1 Affine equivalence.

An affine transformation of the real line is a transformation of the form

x 7→ h(x) = Ax+B

where A and B are real constants with A 6= 0. So an affine transformation
consists of a change of scale (and possibly direction if A < 0) given by the
factor A, followed by a shift of the origin given by B. In the study of linear
phenomena, we expect that many of the essentials of an object be invariant
under a change of scale and a shift of the origin of our coordinate system.

For example, consider the logistic transformation, Lµ(x) = µx(1 − x) and
the affine transformation

hµ(x) = −µx+
µ

2
.

We claim that
hµ ◦ Lµ ◦ h−1

µ = Qc (4.1)

where
Qc(x) = x2 + c (4.2)

and where c is related to µ by the equation

c = −µ
2

4
+
µ

2
. (4.3)

In other words, we are claiming that if c and µ are related by (4.3) then we have

hµ(Lµ(x)) = Qc(hµ(x)).

77
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To check this, the left hand side expands out to be

−µ[µx(1− x)] +
µ

2
= µ2x2 − µ2x+

µ

2
,

while the right hand side expands out as

(−µx+
µ

2
)2 − µ2

4
+
µ

2
= µ2x2 − µ2x+

µ

2

giving the same result as before, proving (4.1).
We say that the transformations Lµ and Qc, c = −µ

2

4 + µ
2 are conjugate by

the affine transformation, hµ.

4.1.1 Conjugacy in general.

More generally, let f : X → X and g : Y → Y be maps of the sets X and Y to
themselves, and let h : X → Y be a one to one map of X onto Y . We say that
h conjugates f into g if

h ◦ f ◦ h−1 = g,

or, what amounts to the same thing, if

h ◦ f = g ◦ h.

We shall frequently write this equation in the form of a commutative diagram

X
f−−−−→ X

h

y yh
Y −−−−→

g
Y

The statement that the diagram is commutative means that going along the
upper right hand path (so applying h ◦ f) is equal to traversing the left lower
path (which is g ◦ h).

Notice that if h ◦ f ◦ h−1 = g, then

g◦n = h ◦ f◦n ◦ h−1.

So the problem of studying the iterates of g is the same (up to the transformation
h) as that of f , provided that the properties we are interested in studying are
not destroyed by h.

Certainly affine transformations will always be allowed. Let us generalize
(4.1) by showing that any quadratic transformation (with non-vanishing leading
term) is conjugate (by an affine transformation) to a transformation of the form
Qc for suitable c. More precisely:
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Figure 4.1: The tent transformation.

Proposition 4.1.1. Let f = ax2 + bx + d then f is conjugate to Qc by the
affine map h(x) = Ax+B where

A = a, B =
b

2
, and c = ad+

b

2
− b2

4
.

Proof. Direct verification shows that h ◦ f = Qc ◦ h.

Let us understand the importance of this result. The general quadratic
transformation f depends on three parameters a, b and d. But if we are inter-
ested in the qualitative behavior of the iterates of f , it suffices to examine the
one parameter family Qc. Any quadratic transformation (with non-vanishing
leading term) has the same behavior (in terms of its iterates) as one of the Qc.
The family of possible behaviors under iteration is one dimensional, depending
on a single parameter c. We may say that the family Qc (or for that matter
the family Lµ) is universal with respect to quadratic maps as far as iteration is
concerned.

4.2 The tent transformation and L4.

Let T : [0, 1]→ [0, 1] be the map defined by

T (x) = 2x, 0 ≤ x ≤ 1
2
, T (x) = −2x+ 2,

1
2
≤ x ≤ 1.

So the graph of T looks like a tent, hence its name. It consists of the straight
line segment of slope 2 joining x = 0, y = 0 to x = 1

2 , y = 1 followed by the
segment of slope −2 joining x = 1

2 , y = 1 to x = 1, y = 0.
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Figure 4.2: h(x) = sin2
(
πx
2

)
.

Of course, here L4 is our old friend, L4(x) = 4x(1 − x). We wish to show
that

L4 ◦ h = h ◦ T

where

h(x) = sin2
(πx

2

)
.

In other words, we claim that the our diagram above commutes when f =
T, g = L4 and h is as given. The function sin θ increases monotonically from 0
to 1 as θ increases from 0 to π/2. So, setting

θ =
πx

2
,

we see that h(x) increases monotonically from 0 to 1 as x increases from 0 to 1.
It therefore is a one to one continuous map of [0, 1] onto itself, and thus has a
continuous inverse. It is differentiable everywhere with h(x) > 0 for 0 < x < 1.
But h′(0) = h′(1) = 0. So h−1 is em not differentiable at the end points, but is
differentiable for 0 < x < 1. To verify our claim, we substitute
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L4(h(x)) = 4 sin2 θ(1− sin2 θ)
= 4 sin2 θ cos2 θ

= sin2 2θ
= sin2 πx.

So for 0 ≤ x ≤ 1
2 we have verified that

L4(h(x)) = h(2x) = h(T (x))

For 1
2 < x ≤ 1 we have

h(T (x)) = h(2− 2x)
= sin2(π − πx)
= sin2 πx

= sin2 2θ
= 4 sin2 θ(1− sin2 θ)
= L4(h(x))

where we have used the fact that sin(π−α) = sinα to pass from the second line
to the third. So we have verified our claim in all cases. 2

Here is another example of a conjugacy, this time an affine conjugacy. Con-
sider

V (x) = 2|x| − 2.

V is a map of the interval [−2, 2] into itself. Consider

h2(x) = 2− 4x.

So h2(0) = 2, h2(1) = −2. In other words, h2 maps the interval [0, 1] in a one
to one fashion onto the interval [−2, 2].

We claim that
V ◦ h2 = h2 ◦ T.

Indeed,
V (h2(x)) = 2|2− 4x| − 2.

For 0 ≤ x ≤ 1
2 this equals 2(2 − 4x) − 2 = 2 − 8x = 2 − 4(2x) = h2(Tx). For

1
2 ≤ x ≤ 1 we have V (h2(x)) = 8x − 6 = 2 − 4(2 − 2x) = h2(Tx). So we have
verified the required equation in all cases. The effect of the affine transformation,
h2 is to enlarge the graph of T , shift it, and turn it upside down. But as far as
iterations are concerned, these changes do not effect the essential behavior.

4.3 Chaos.

4.3.1 Transitivity.

A transformation F is called (topologically) transitive if for any two open (non
empty) intervals, I and J , one can find initial values in I which, when iterated,
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Figure 4.3: V (x) = 2|x| − 2.

will eventually take values in J . In other words, we can find an x ∈ I and an
integer n so that Fn(x) ∈ J .

The tent map is transitive.

For example, consider the tent transformation, T . Notice that T maps the
interval [0, 1

2 ] onto the entire interval [0, 1], and also maps the interval [ 1
2 , 1] onto

the entire interval, [0, 1]. So T ◦2 maps each of the intervals [0, 1
4 ], [ 1

4 ,
1
2 ], [ 1

2 ,
3
4 ]

and [ 3
4 , 1] onto the entire interval [0, 1]. More generally, T ◦n maps each of the 2n

intervals [ k2n ,
k+1
2n ], 0 ≤ k ≤ 2n − 1 onto the entire interval [0, 1]. But any open

interval I contains some interval of the form [ k2n ,
k+1
2n ] if we choose n sufficiently

large. For example it is enough to choose n so large that 3
2n is less than the

length of I. So for this value on n, T ◦n maps I onto the entire interval [0, 1],
and so, in particular, there will be points, x, in I with F (x) ∈ J .

Transitivity and conjugacy.

Proposition 4.3.1. Suppose that g ◦ h = h ◦ f where h is continuous and
surjective, and suppose that f is transitive. Then g is transitive.

Proof. We are given non-empty open I and J and wish to find an n and an
x ∈ I so that g◦n(x) ∈ J . To say h is continuous means that h−1(J) is a
union of open intervals. To say that h is surjective implies that h−1(J) is not
empty. Let L be one of the intervals constituting h−1(J). Similarly, h−1(I) is
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a union of open intervals. Let K be one of them. By the transitivity of f we
can find an n and a y ∈ K with f◦n(y) ∈ L. Let x = h(y). Then x ∈ I and
g◦n(x) = g◦n(h(y)) = h(f◦n(y)) ∈ h(L) ⊂ J .

Homeomorphisms.

Many interesting properties of a transformation are preserved under conjugation
by a homeomorphism. (A homeomorphism is a bijective continuous map with
continuous inverse.) For example, if p is a periodic point of period n of f , so
that f◦n(p) = p, then

g◦n(h(p)) = h ◦ f◦n(p) = h(p)

if h ◦ f = g ◦ h. So periodic points are carried into periodic points of the
same period under a conjugacy by a homeomorphism. The previous proposition
implies that if f is conjugate to g by a homeomorphism, then f is transitive if
and only if g is transitive.

We will consider several other important properties of a transformation as
we go along, and will prove that they are invariant under such a conjugacy. So
what our result means is that if we prove these properties for T , we conclude
that they are true for Lµ. Since we have verified that L4 is conjugate to Q−2

and V , we conclude that they hold for Q−2 and V as well.

4.3.2 Density of periodic points.

A set S of points is called dense if every non-empty open interval, I, contains
a point of S. The behavior of density under continuous surjective maps is also
very simple:

Proposition 4.3.2. If h : X → Y is a continuous surjective map, and if D is
a dense subset of X then h(D) is a dense subset of Y .

Proof. Let I ⊂ Y be a non-empty open interval. Then h−1(I) is a union of open
intervals. Pick one of them, K and then a point y ∈ D ∩K which exists since
D is dense. But then f(y) ∈ f(D) ∩ I.

We define PER(f) to be the set of periodic points of the map f (including
the fixed points). If h ◦ f = g ◦ h, then f◦n(p) = p implies that g◦n(h(p)) =
h(f◦n(p)) = h(p) so

h[PER(f)] ⊂ PER(g).

In particular, if h is continuous and surjective, and if PER(f) is dense, then so
is PER(g).

4.3.3 A definition of chaos.

There are various mathematical definitions of the popular word “chaotic”. We
will pick one:
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Following Devaney and J. Banks et.al. Amer. Math. Monthly 99 (1992)
332-334, let us call f chaotic if f is transitive and PER(f) is dense. It follows
from the above discussion that

Proposition 4.3.3. Let h : X → Y is surjective and continuous. If f : X → X
is chaotic, and if h ◦ f = g ◦ h, then g is chaotic.

Important remark. Notice that the proposition does not require that h−1

exists or, if it does, that h−1 be continuous.

The tent map is chaotic.

We have already verified that the tent transformation, T , is transitive. We
claim that PER(T ) is dense on [0, 1] and hence that T is chaotic. To see this,
observe that Tn maps the interval [ k2n ,

k+1
2n ] onto [0, 1]. In particular, there is a

point x ∈ [ k2n ,
k+1
2n ] which is mapped into itself. In other words, every interval

[ k2n ,
k+1
2n ] contains a periodic point for T . But any non-empty open interval I

contains an interval of the type [ k2n ,
k+1
2n ] for sufficiently large n. Hence T is

chaotic.

From the above propositions it follows that L4, Q−2, and V are all chaotic.

4.3.4 The sawtooth transformation and the shift.

The sawtooth transformation.

Define the sawtooth function S by

S(x) = 2x, 0 ≤ x < 1
2
, S(x) = 2x− 1,

1
2
≤ x ≤ 1. (4.4)

The sawtooth map and the tent map.

The map S is discontinuous at x = .5. However, we can find a continuous,
surjective map, h, such that h ◦S = T ◦h. In fact, we can take h to be T itself!
In other words we claim that

I
S−−−−→ I

T

y yT
I −−−−→

T
I

commutes where I = [0, 1].
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Figure 4.4: The sawtooth function S.

To verify this, we successively compute both T ◦ T and T ◦ S on each of the
quarter intervals:

T (T (x)) = T (2x) = 4x for 0 ≤ x ≤ 0.25
T (S(x)) = T (2x) = 4x for 0 ≤ x ≤ 0.25
T (T (x)) = T (2x) = −4x+ 2 for 0.25 < x < 0.5
T (S(x)) = T (2x) = −4x+ 2 for 0.25 ≤ x < 0.5
T (T (x)) = T (−2x+ 2) = 4x− 2 for 0.5 ≤ x ≤ 0.75
T (S(x)) = T (2x− 1) = 4x− 2 for 0.5 ≤ x ≤ 0.75
T (T (x)) = T (−2x+ 2) = −4x+ 4 for 0.75 < x ≤ 1
T (S(x)) = T (2x− 1) = −4x+ 4 for 0.75 < x ≤ 1

The h that we are using (namely h = T ) is not one to one. That is why our
diagram can commute even though T is continuous and S is not.

The one-sided shift.

Let X be the set of infinite (one sided) sequences of zeros and ones. So a point of
X is a sequence {a1a2a3 . . . } where each ai is either 0 or 1. However we exclude
all points with a tail consisting of infinite repeating 1′s. So a sequence such as
{00111111111 . . . } is excluded. We will identify X, as a set, with the half open
interval [0, 1) by assigning to each point x ∈ [0, 1) its binary expansion, where
we agree that all points of the form k

2n have binary expansions ending in zeros.
(See below for further details).
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Conversely, we assign to each sequence a = {a1a2a3 . . . } the number

h(a) =
∑ ai

2i
.

The map
h : X → [0, 1)

just defined is clear. The inverse map, assigning to each real number between
0 and 1 its binary expansion deserves a little more discussion: Take a point
x ∈ [0, 1). If x < 1

2 the first entry in its binary expansion is 0. If 1
2 ≤ x then

the first entry in the binary expansion of x is 1. Now apply S. If S(x) < 1
2

(which means that either 0 ≤ x < 1
4 or 1

2 ≤ x <
3
4 ) then the second entry of the

binary expansion of x is 0, while if 1
2 ≤ S(x) < 1 then the second entry in the

binary expansion of x is 1. Thus the operator S provides the algorithm for the
computation of the binary expansion of x.

Let us consider, for example, x = 7
16 . Then the sequence {Sk(x)}, k =

0, 1, 2, 3, . . . is
7
16
,

7
8
,

3
4
,

1
2
, 0, 0, 0, . . . .

In general it is clear that for any number of the form k
2n , after n− 1 iterations

of the operator S the result will be either 0 or 1
2 . So all Sk(x) = 0, k ≥ n. In

particular, no infinite sequence with a tail of repeating 1’s can arise. We see
that the binary expansion of h(a) gives us a back, so we may (and shall) identify
X with [0, 1).

A topology on X.

Notice that we did not start with any independent notion of topology or metric
on X. But the map h : X → [0, 1), suggests a notion of distance on X: For
example, if the binary expansions of x and y agree up to the kth position, then

|x− y| < 2−k.

So we define the distance d(a, b) between two sequences a and b to be 2−k where
k is the first place they do not agree. (Of course we define the distance from an
a to itself to be zero.)

The map h is continuous.

If h(a) = x and |y − x| < ε, choose k such that 2−k < ε. If d(a, b) < 2−k

then h(b) has the same binary expansion as x up to order k which implies that
|x− h(b)| < ε.

The map h−1, although it exists, is not continuous: If we take x = .1000000 · · ·
and y = .011111111 · · · 1000000 · · · then |x− y| can be made as small as we like
by choosing a large enough collection of 1’s. But d(h−1(x), h−1(y)) = 1

2 .
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The shift.

Consider the map Sh : X → X defined as follows:

Sh(a1a2a3a4 . . . ) := a2a3a4a5 . . . .

In other words, Sh consists of lopping off the first entry of a and shifting all the
rest one unit to the left. For this reason it is called the shift map.

If d(a, b) < 2−k−1 then d(Sh(a),Sh(b)) < 2−k, showing that Sh is continu-
ous.

The periodic points of Sh are very easy to describe: A point a is periodic
with period n under the shift map if and only if it consists of a repeating finite
sequence of length n. A point of period three, for example, has the form

a1a2a3a1a2a3a1a2a3 · · · .

The shift map is chaotic.

Given a ∈ X we can find a periodic point (of period k) within distance 2−k by
simply taking the first k entries in a and then repeating them indefinitely. This
shows that PER(Sh) is dense in X.

Let J be a set containing all points c of distance less than 2−n about a point
b, and let I be a set containing all points of distance less than 2−n about a point
a. Consider the point

c = a1a2 · · · anan+1b1b2b3b4 · · · .

Then c ∈ I and Sh◦(n+1) = b. This shows that Sh is transitive.

Conclusion: Sh is chaotic.

Confession: In the above discussion I have generalized the concepts involving
chaos from an interval to a metric space. I hope that a formal redefinition is
not necessary.

Back to the sawtooth map.

The expression of the sawtooth map S in terms of the binary representation is
very simple:

S : .a1a2a3a4 . . . 7→ .a2a3a4a5 . . . .

It consists of throwing away the first digit and then shifting the entire sequence
one unit to the left.

The map h : X → [0, 1) consists of putting a period in front of the sequence
a. This shows that

S ◦ h = h ◦ Sh.
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In other words, we have the commutative diagram

X
Sh−−−−→ X

h

y yh
[0, 1) −−−−→

S
[0, 1)

showing that S is chaotic on [0, 1).
Of course, once we know that S is chaotic on the open interval [0, 1), we

know that it is chaotic on the closed interval [0, 1] since the addition of one
extra point (which gets mapped to 0 by S) does not change the requirements of
being chaotic.

Going to the unit circle.

Now consider the map t 7→ e2πit of [0, 1] onto the unit circle, S1. Another way
of writing this map is to describe a point on the unit circle by eiθ where θ is an
angular variable, that is θ and θ + 2π are identified. Then the map is t 7→ 2πt.
This map, h, is surjective and continuous and is one to one except at the end
points: 0 and 1 are mapped into the same point of S1.

Clearly
h ◦ S = D ◦ h

where
D(θ) = 2θ.

Or, if we write z = eiθ, then in terms of z, the map D sends

z 7→ z2.

So D is called the doubling map or the squaring map. We have proved that it
is chaotic.

The doubling map and Q−2.

We can use the fact that D is chaotic to give an alternative proof of the fact
that Q−2 is chaotic. Indeed, consider the map h : S1 → [−2, 2]

h(θ) = 2 cos θ.

It is clearly surjective and continuous. We claim that

h ◦D = Q−2 ◦ h.

Indeed,

h(D(θ)) = 2 cos 2θ = 2(2 cos2 θ − 1) = (2 cos θ)2 − 2 = Q−2(h(θ)).

This gives an alternative proof that Q−2 (and hence L4 and T ) are chaotic.
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4.4 Sensitivity to initial conditions

In this section we prove that if f is chaotic, then f is sensitive to initial conditions
in the sense of the following:

Proposition 4.4.1. ([Sensitivity.]) Let f : X → X be a chaotic transfor-
mation. Then there is an δ > 0 such that for any x ∈ X and any open set
J containing x and some points other than x, there is a point y ∈ J and an
integer, n with

d(f◦n(x), f◦n(y)) > δ. (4.5)

In other words, we can find points arbitrarily close to x which move a distance
at least d away under some interation of f . This for any x ∈ X. For the proof,
we begin with a lemma.

Lemma 4.4.1. Let f : X → X be a transformation with at least two distinct
periodic orbits. There is a c > 0 with the property that for any x ∈ X there is
a periodic point p such that

d(x, f◦k(p)) > c, ∀k.

Proof of the lemma. Choose two periodic points, r and s with distinct
orbits, so that d(f◦k(r), f◦`(s)) > 0 for all k and `. Choose c so that 2c <
min d(f◦k(r), f◦`(s)). Then for all k and ` we have

2c < d(f◦k(r), f◦`(s))
≤ d(f◦k(r), x) + d(x, f◦`(s)) by the triangle inequality.

If x is within distance c of any of the points f◦`(s) then it must be at a greater
distance than c from all of the points f◦k(r) and similarly, if x is within distance
c of any of the points f◦k(r) it must be at a greater distance than c from all of
the points f◦`(s). So one of the two, (or both) of the r or s will work as the p
for x. 2

Proof of Proposition 4.4.1 with δ = c/4. Let x be any point of X and
J any open set containing x. Since the periodic points of f are dense, we can
find a periodic point q of f in

U = J ∩Bd(x),

where Bδ(x) denotes the open “ball” of length r centered at x,

Bδ(x) = {y ∈ X|d(x, y) < δ}.

Let n be the period of q. Let p be a periodic point whose orbit is of distance
greater than 4δ from x, and set

Wi = Bδ(f◦i(p)).
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Since f◦i(p) ∈ Wi, i.e. p ∈ f−i(Wi) := (f◦i)−1(Wi) for all i, we see that the
open set V := f−1(W1) ∩ f−2(W2) ∩ · · · ∩ f−n(Wn)
is not empty.

Now we use the transitivity property of f applied to the open sets U and
V . By assumption, we can find a z ∈ U and a positive integer k such that
f◦k(z) ∈ V . Let j be the smallest integer so that k < nj. In other words,

1 ≤ nj − k ≤ n.

So

f◦nj(z) = f◦(nj−k)(f◦k(z)) ∈ f◦(nj−k)(V ).

But

f◦(nj−k)(V ) = f◦(nj−k)
(
f−1(W1) ∩ f−2(W2) ∩ · · · ∩ f−n(Wn)

)
⊂ f◦(nj−k)(f−(nj−k)Wnj−k)
= Wnj−k.

In other words, d(fnj(z), fnj−k(p)) < δ.

On the other hand, fnj(q) = q, since n is the period of q. Thus

d(fnj(q), fnj(z)) = d(q, fnj(z))

≥ d(x, f◦(nj−k)(p))− d(f◦(nj−k)(p), fnj(z))− d(q, x)

by the triangle inequality since

d(q, x) ≤ d(x, f◦(nj−k)(p)) + d(f◦(nj−k)(p), f◦nj(z)) + d(q, f◦nj(z)).

So

d(fnj(q), fnj(z)) ≥ 4δ − δ − δ = 2δ.

But this inequality implies that either

d(f◦nj(x), f◦nj(z)) ≥ δ

or

d(f◦nj(x), f◦nj(q) ≥ δ

for if f◦nj(x) were within distance < δ from both of these points, they would
have to be within distance < 2δ from each other, contradicting the top inequality
above. So one of the two, z or q will serve as the y in the proposition with
m = nj.
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Philosophical implications.

Much is made in the popular literature of the property of sensitivity to initial
conditions having to do with issues of determinism. The idea is that a transfor-
mation like L4 is “bad” because it is unpredictable in the sense a small change
in the “initial conditions” implies that after a while, there is a large deviation
in the final results. This is known as the “butterfly effect”.

While L4 may be “bad” in this sense, it does have very nice statistical
properties as will be explained in the next chapter. So as is frequently true in
life, the nature of the answer depends on how the question is posed.

4.5 Conjugacy for monotone maps.

We begin this section by showing that if f and g are continuous strictly mono-
tone maps of the unit interval I = [0, 1] onto itself, and if their graphs are both
strictly below (or both strictly above) the line y = x in the interior of I, then
they are conjugate by a homeomorphism. Here is the precise statement:

Proposition 4.5.1. Let f and g be two continuous strictly increasing functions
defined on [0, 1] and satisfying

f(0) = 0
g(0) = 0
f(1) = 1
g(1) = 1
f(x) < x ∀x 6= 0, 1
g(x) < x ∀x 6= 0, 1.

Then there exists a continuous, monotone increasing function h defined on [0, 1]
with

h(0) = 0, h(1) = 1,

and
h ◦ f = g ◦ h.

Proof. Choose any point (x0, y0) in the open square

0 < x < 1, 0 < y < 1.

If (x0, y0) is to be a point on the curve y = h(x), then the equation h◦ f = g ◦h
implies that the point (x1, y1) also lies on this curve, where

x1 = f(x0), y1 = g(y0).

By induction so will the points (xn, yn) where

xn = f◦n(x0), yn = g◦n(y0).
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By hypothesis
x0 > x1 > x2 > ...,

and since there is no solution to f(x) = x for 0 < x < 1 the limit of the xn,
as n → ∞ must be zero. Also for the yn. So the sequence of points (xn, yn)
approaches (0, 0) as n → +∞. Similarly, as n → −∞ the points (xn, yn)
approach (1, 1). Now choose any continuous, strictly monotone function

y = h(x),

defined on
x1 ≤ x ≤ x0

with
h(x1) = y1, h(x0) = y0.

Extend its definition to the interval x2 ≤ x ≤ x1 by setting

h(x) = g(h(f−1(x))), x2 ≤ x ≤ x1.

Notice that at x1 we have

g(h(f−1(x1))) = g(h(x0)) = g(y0) = y1,

so the definitions of h at the point x1 are consistent. Since f and g are monotone
and continuous, and since h was chosen to be monotone on x1 ≤ x ≤ x0,
we conclude that h is monotone on x2 ≤ x ≤ x1 and hence continuous and
monotone on all of x2 ≤ x ≤ x0. Continuing in this way, we define h on the
interval xn+1 ≤ x ≤ xn, n ≥ 0 by

h = gn ◦ h ◦ f−n.

Setting h(0) = 0, we get a continuous and monotone increasing function defined
on 0 ≤ x ≤ x0. Similarly, we extend the definition of h to the right of x0 up
to x = 1. By its very construction, the map h conjugates f into g, proving the
proposition.

Notice that as a corollary of the method of proof, we can conclude

Corollary 4.5.1. Let f and g be two monotone increasing functions defined in
some neighborhood of the origin and satisfying

f(0) = g(0) = 0, |f(x)| < |x|, |g(x)| < |x|, ∀x 6= 0.

Then there exists a homeomorphism, h defined in some neighborhood of the
origin with h(0) = 0 and

h ◦ f = g ◦ h.

Indeed, just apply the method (for n ≥ 0) to construct h to the right of the
origin, and do an analogous procedure to construct h to the left of the origin.
As a special case we obtain
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Theorem 4.5.1. Let f and g be differentiable functions with f(0) = g(0) = 0
and

0 < f ′(0) < 1, 0 < g′(0) < 1. (4.6)

Then there exists a homeomorphism h defined in some neighborhood of the origin
with h(0) = 0 and which conjugates f into g.

Proof. The mean value theorem guarantees that the hypotheses of the preceding
corollary are satisfied.

I is clear that we can replace (4.6) by any of the conditions

1 < f ′(0), 1 < g′(0)
0 > f ′(0) > −1, 0 > g′(0) > −1
−1 > f ′(0), −1 > g′(0),

and the conclusion of the theorem still holds.

It is important to observe that if f ′(0) 6= g′(0), then the homeomorphism,
h, can not be a diffeomorphism. That is, h can not be differentiable with
a differentiable inverse. In fact, h can not have a non-zero derivative at the
origin. Indeed, differentiating the equation g ◦ h = h ◦ f at the origin gives

g′(0)h′(0) = h′(0)f ′(0),

and if h′(0) 6= 0 we can cancel it form both sides of the equation so as to obtain

f ′(0) = g′(0). (4.7)

What is true is that if (4.7) holds, and if

|f ′(0)| 6= 1, (4.8)

then we can find a differentiable h with a differentiable inverse which conjugates
f into g.

These theorems are among my earliest mathematical theorems. A complete
characterization of transformations of R near a fixed point together with the
conjugacy by smooth maps if (4.7) and (4.8) hold, were obtained and submit-
ted for publication in 1955 and published in the Duke Mathematical Journal.
The discussion of equivalence under homeomorphism or diffeomorphism in n-
dimensions was treated for the case of contractions in 1957 and in the general
case in 1958, both papers appearing in the American Journal of Mathematics.
We will return to these matters later.

4.6 Sequence space and symbolic dynamics.

In this section we will illustrate a powerful method for studying dynamical
systems by examining the quadratic transformation

Qc : x 7→ x2 + c
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Figure 4.5: Q3.

for values of c < −2.

For any value of c, the two possible fixed points of Qc are

p−(c) =
1
2

(1−
√

1− 4c), p+(c) =
1
2

(1 +
√

1− 4c)

by the quadratic formula. These roots are real with p−(c) < p+(c) for c < 1/4.
The graph of Qc lies above the diagonal for x > p+(c), hence the iterates of

any x > p+(c) tend to +∞. If x0 < −p+(c), then x1 = Qc(x0) > p+(c), and
so the further iterates also tend to +∞. Hence all the interesting action takes
place in the interval [−p+, p+]. The function Qc takes its minimum value, c, at
x = 0, and

c = −p+(c) = −1
2

(1 +
√

1− 4c)

when c = −2. For −2 ≤ c ≤ 1/4, the iterate of any point in [−p+, p+] remains
in the interval [−p+, p+]. But for c < −2 some points will escape, and it is this
latter case that we want to study. o visualize the what is going on, draw the
square whose vertices are at (±p+,±p+) and the graph of Qc over the interval
[−p+, p+]. The bottom of the graph will protrude below the bottom of the
square. Let A1 denote the open interval on the x-axis (centered about the
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Figure 4.6: Q3 and Q◦23 .

origin) which corresponds to this protrusion. So

A1 = {x|Qc(x) < −p+(c)}.

Every point of A1 escapes from the interval [−p+, p+] after one iteration.

Let
A2 = Q−1

c (A1).

Since every point of [−p+, p+] has exactly two pre-images under Qc, we see that
A2 is the union of two open intervals. To fix notation, let

I = [−p+, p+]

and write
I\A1 = I0 ∪ I1

where I0 is the closed interval to the left of A1 and I1 is the closed interval
to the right of A1.Thus A2 is the union of two open intervals, one contained
in I0 and the other contained in I1. Notice that a point of A2 escapes from
[−p+, p+] in exactly two iterations: one application of Qc moves it into A1 and
another application moves it out of [−p+, p+]. Conversely, suppose that a point
x escapes from [−p+, p+] in exactly two iterations. After one iteration it must
lie in A1, since these are exactly the points that escape in one iteration. Hence
it must lie in A2.
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Figure 4.7: Q3, Q
◦2
3 and Q◦33 .

The escapees in three or less iterations are pictured in Figure 4.7. In general,
let

An+1 = Q−◦nc (A1).

Then An+1 is the union of 2n open intervals and consists of those points which
escape from [−p+, p+] in exactly n + 1 iterations. If the iterates of a point x
eventually escape from [−p+, p+], there must be some n ≥ 1 so that x ∈ An. In
other words, ⋃

n≥1

An

is the set of points which eventually escape. The remaining points, those lying
in the set

Λ := I\
⋃
n≥1

An,

are the points whose iterates remain in [−p+, p+] forever. The thrust of the rest
of this section, is to study Λ and the action of Qc on it.

Λ is closed and is not empty.

Since Λ is defined as the complement of an open set, we see that Λ is closed.
Let us show that Λ is not empty. Indeed, the fixed points, p± certainly belong
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to Λ and hence so do all of their inverse images, Q−nc (p±).

Λ is totally disconnected.

Next we will prove

Theorem 4.6.1. If

c < −5 + 2
√

5
4

.= −2.368 . . . (4.9)

then Λ is totally disconnected, that is, it contains no interval.

In fact, the theorem is true for all c < −2 but, following [Devaney(1992)] I
will only present the simpler proof when we assume (4.9). For this we use

Lemma 4.6.1. If (4.9) holds then there is a constant λ > 1 such that

|Q′c(x)| > λ > 1, ∀x ∈ I\A1. (4.10)

Proof of the Lemma. We have |Q′c(x)| = |2x| > λ > 1 if |x| > 1
2λ for all

x ∈ I\A1. So we need to arrange that A1 contains the interval [− 1
2 ,

1
2 ] in its

interior. In other words, we need to be sure that

Qc(
1
2

) < −p+.

The equality

Qc(
1
2

) = −p+

translates to
1
4

+ c = −1 +
√

1− 4c
2

.

Solving the quadratic equation gives

c = −5 + 2
√

5
4

as the lower root. Hence if (4.9) holds, Qc( 1
2 ) < −p+. 2

Proof of Theorem 4.6.1. Suppose that there is an interval, J , contained in
Λ. Then J is contained either in I0 or I1. In either event the map Qc is one to
one on J and maps it onto an interval. For any pair of points, x and y in J , the
mean value theorem implies that

|Qc(x)−Qc(y)| > λ|x− y|.

Hence if d denotes the length of J , then Qc(J) is an interval of length at least λd
contained in Λ. By induction we conclude that Λ contains an interval of length
λnd which is ridiculous, since eventually λnd > 2p+ which is the length of I. 2

Proof of the theorem. Suppose that there is an interval, J , contained in Λ.
Then J is contained either in I0 or I1. In either event the map Qc is one to one
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on J and maps it onto an interval. For any pair of points, x and y in J , the
mean value theorem implies that

|Qc(x)−Qc(y)| > λ|x− y|.

Hence if d denotes the length of J , then Qc(J) is an interval of length at least
λd contained in Λ. By induction we conclude that Λ contains an interval of
length λnd which is ridiculous, since eventually λnd > 2p+ which is the length
of I. 2 Now consider a point x ∈ Λ. Either it lies in I0 or it lies in I1. Let us
define

s0(x) = 0 ∀x ∈ I0
and

s0(x) = 1 ∀x ∈ I1.

Since all points Q◦nc (x) are in Λ, we can define sn(x) to be 0 or 1 according to
whether Q◦nc (x) belongs to I0 or I1. In other words, we define

sn(x) :=

 0 if Q◦nc (x) ∈ Io

1 if Q◦nc (x) ∈ I1
. (4.11)

4.6.1 A new sequence space.

So let us introduce the sequence space, Σ, defined as

Σ = {(s0s1s2 . . . ) | sj = 0 or 1}.

Notice that in contrast to the space X we introduced earlier, we are not exclud-
ing any sequences.

A metric on Σ.

Define the notion of distance or metric on Σ by defining the distance between
two points

s = (s0s1s2 . . . )

and
t = (t0t1t2 . . . )

to be

d(s, t)
def
=

∞∑
i=0

|si − ti|
2i

.

It is immediate to check that d satisfies all the requirements for a metric: It
is clear that d(s, t) ≥ 0 and d(s, t) = 0 implies that |si − ti| = 0 for all i, and
hence that s = t. The definition is clearly symmetric in s and t. And the usual
triangle inequality

|si − ui| ≤ |si − ti|+ |ti − ui|
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for each i implies the triangle inequality

d(s,u) ≤ d(s, t) + d(t,u).

Notice that if si = ti for i = 0, 1, . . . , n then

d(s, t) =
∞∑

j=n+1

|sj − tj |
2j

≤
∞∑

j=n+1

1
2j

=
1
2n
.

Conversely, if si 6= ti for some i ≤ n then

d(s, t) ≥ 1
2j
≥ 1

2n
.

So if
d(s, t) <

1
2n

then si = ti for all i ≤ n.

4.6.2 The itinerary map.

Getting back to Λ, define the map

ι : Λ→ Σ

by
ι(x) = (s0(x)s1(x)s2(x)s3(x) . . . ) (4.12)

where the si(x) are defined by (4.11).

The point ι(x) is called the itinerary of the point x.

For example, the fixed point, p+ lies in I1 and hence do all of its images
under Qnc since they all coincide with p+. Hence its itinerary is

ι(p+) = (111111 . . . ).

The point −p+ is carried into p+ under one application of Qc and then stays
there forever. Hence its itinerary is

ι(−p+) = (01111111 . . . ).

The itenerary map and the shift.

It follows from the very definition that

ι(Qc(x)) = S(ι(x))

where S is our old friend, the shift map,

S : (s0s1s2s3 . . . ) 7→ (s1s2s3s4 . . . )



100 CHAPTER 4. CONJUGACY.

applied to the space Σ. In other words,

ι ◦Qc = S ◦ ι.

The map ι conjugates Qc, acting on Λ into the shift map, acting on Σ. To show
that this is a legitimate conjugacy, we must prove that ι is a homeomorphism.
That is, we must show that ι is one-to one, that it is onto, that it is continuous,
and that its inverse is continuous:

One-to one:

Suppose that ι(x) = ι(y) for x, y ∈ Λ. This means that Qnc (x) and Qn(y) always
lie in the same interval, I0 or I1. Thus the interval [x, y] lies entirely in either
I0 or I1 and hence Qc maps it in one to one fashion onto an interval contained
in either I0 or I1. Applying Qc once more, we conclude that Q2

c is one-to-one
on [x, y]. Continuing, we conclude that Qnc is one-to-one on the interval [x, y],
and we also know that (4.9) implies that the length of [x, y] is increased by a
factor of λn. This is impossible unless the length of [x, y] is zero, i.e. x = y. 2

Onto:

We start with a point s = (s0s1s2 . . . ) ∈ Σ. We are looking for a point x with
ι(x) = s. Consider the set of y ∈ Λ such that

d(s, ι(y)) ≤ 1
2n
.

This is the same as requiring that y belong to

Λ ∩ Is0s1...sn

where Is0s1...sn
is the interval

Is0s1...sn
= {y ∈ I| y ∈ Is0 , Qc(y) ∈ Is1 , . . . Q◦nc (y) ∈ Isn

}.

So

Is0s1...sn = Is0 ∩Q−1
c (Is1) ∩ · · · ∩Q−nc (Isn)

= Is0 ∩Q−1
c (Is1 ∩ · · · ∩Q−(n−1)

c (Isn))
= Is0 ∩Q−1

c (Is1...sn) (4.13)
= Is0s1...sn−1 ∩Q−nc (Isn) ⊂ Is0...sn−1 . (4.14)

The inverse image of any interval, J under Qc consists of two intervals, one
lying in I0 and the other lying in I1. For n = 0, Is0 is either I0 or I1 and hence
is an interval. By induction, it follows from (4.13) that Is0s1...sn is an interval.
By (4.14), these intervals are nested. By construction these nested intervals
are closed. Since every sequence of closed nested intervals on the real line has a
non-empty intersection, there is a point x which belongs to all of these intervals.
Hence all the iterates of x lie in I, so x ∈ Λ and ι(x) = s. 2
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Continuity of ι.

The above argument shows that the interiors of the intervals Is0s1...sn
(inter-

sected with Λ) form neighborhoods of x that map into small neighborhoods of
ι(x)

Continuity of ι−1.

Conversely, any small neighborhood of x in Λ will contain one of the intervals
Is0...sn and hence all of the points t whose first n coordinates agree with s = ι(x)
will be mapped by ι−1 into the given neighborhood of x.

Summary.

To summarize: we have proved

Theorem 4.6.2. Suppose that c satisfies (4.9). Let Λ ⊂ [−p+, p+] consist of
those points whose images under Qnc lie in [−p,p+] for all n ≥ 0. Then Λ is a
closed, non-empty, disconnected set. The itinerary map ι is a homeomorphism
of Λ onto the sequence space, Σ, and conjugates Qc to the shift map, S.

Just as in the case of the space X above, the periodic points for S are
precisely the periodic or “repeating” sequences. Thus we can conclude from the
theorem that there are exactly 2n points of period (at most) n for Qc. Also, the
same argument as above shows that the periodic points for S are dense in Σ,
and hence the periodic points for Qc are dense in Λ. Finally, the same argument
as we gave in Section 4.4 shows that S is transitive on Σ. Hence, the restriction
of Qc to Λ is chaotic.
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Chapter 5

Space and time averages.

5.1 Histograms and invariant densities.

5.1.1 Historgrams of iterations.

Let us consider a map, F : [0, 1] → [0, 1], pick an initial seed, x0, and compute
its iterates, x0, x1, x2, . . . , xm under F . We would like to see which parts of the
unit interval are visited by these iterates, and how often. For this purpose let
us divide the unit interval up into N subintervals of size 1/N given by

Ik =
[
k − 1
N

,
k

N

)
, k = 1, . . . , N − 1, IN =

[
N − 1
N

, 1
]
.

We count how many of the iterates x0, x1, . . . , xm lie in Ik. Call this number
nk. There are m+ 1 iterates (starting with, and including, x0) so the numbers

pk =
nk

m+ 1

add up to one:
p1 + · · ·+ pN = 1.

We would like to think of the pk as “probabilities” - the number pk representing
the “probability” that an iterate belongs to Ik. Strictly speaking, we should
write pk(m). In fact, we should write pk(m,x0) since the procedure depends
on the initial seed, x0. But the hope is that as m gets large the pk(m) tend
to a limiting value which we denote by pk, and that this limiting value will be
independent of x0 if x0 is chosen “generically”.

We will continue in this vague, intuitive, vein a while longer before passing
to a precise mathematical formulation. If U is a union of some of the Ik, then
we can write

p(U) =
∑
Ik⊂U

pk

103
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and think of p(U) as representing the “probability” that an iterate of x0 belongs
to U . If N is large, so the intervals Ik are small, every open set U can be closely
approximated by a union of the Ik’s, so we can imagine that the “probabilities”,
p(U), are defined for all open sets, U .

If we buy all of this, then we can write down an equation which has some
chance of determining what these “probabilities”, p(U), actually are: A point
y = F (x) belongs to U if and only if x ∈ F−1(U). Thus the number of points
among the x1, . . . , xm+1 which belong to U is the same as the number of points
among the x0, . . . , xm which belong to F−1(U). Since (we hope that) our lim-
iting probability is unaffected by this shift from 0 to 1 or from m to m + 1 we
get the equation

p(U) = p(F−1(U)). (5.1)

To understand this equation, let us put it in a more general context. Suppose
that we have a “measure”, µ, which assigns a size, µ(A), to every open set,
A. Let F be a continuous transformation. We then define the push forward
measure, F∗µ by

(F∗µ)(A) = µ(F−1(A)). (5.2)

Without developing the language of measure theory, which is really necessary
for a full understanding, we will try to describe some of the issues involved in
the study of equations (5.2) and (5.1) from a more naive viewpoint. Consider,
for example, F = Lµ, 1 < µ < 3. If we start with any initial seed other than
x0 = 0 or x0 = 1, it is clear that the limiting probability is

p(Ik) = 1,

if the fixed point,1− 1
µ ∈ Ik and

p(Ik) = 0

otherwise.

Similarly, if 3 < µ < 1 +
√

6, and we start with any x0 other than 0, 1, 1/µ,
or the fixed point, 1− 1

µ then clearly the limiting probability will be p(I) = 1 if
both points of period two belong to I, p(I) = 1

2 if I contains exactly one of the
two period two points, and p(I) = 0 otherwise.

Discrete measures.

These are all examples of discrete measures in the sense that there is a finite
(or countable) set of points, {zk}, each assigned a positive number, m(zk) and

µ(I) =
∑
zk∈I

m(zk).

We are making the implicit assumption that this series converges for every
bounded interval.



5.1. HISTOGRAMS AND INVARIANT DENSITIES. 105

The “integral” with respect to a discrete measure.

The integral of a function, φ, with respect to the discrete measure, µ, denoted
by 〈φ, µ〉 or by

∫
φµ is defined as∫

φµ =
∑

φ(xk)m(xk).

This definition makes sense under the assumption that the series on the right
hand side is absolutely convergent.

The push forward of a discrete measure.

The rule for computing the push forward, F∗µ (when defined) is very simple.
Indeed, let {y`} be the set of points of the form y` = F (xk) for some k, and set

n(y`) =
∑

F (xk)=y`

m(xk).

Notice that there is some problem with this definition if there are infinitely
many points xk which map to the same yl. Once again we must make some
convergence assumption. For example, if the map F is everywhere finite-to-one,
there will be no problem. Thus the push forward of a discrete measure is a
discrete measure given by the above formula.

Absolutely continuous measures.

At the other extreme, a measure is called absolutely continuous (with respect
to Lebesgue measure) if there is an integrable function, ρ, called the density
so that

µ(I) =
∫
I

ρ(x)dx.

For any continuous function, φ we define the integral of φ with respect to µ as

〈φ, µ〉 =
∫
φµ =

∫
φ(x)ρ(x)dx

if the integral is absolutely convergent.

Push forward of an absolutely continuous measure.

Suppose that the map F is piecewise differentiable and in fact satisfies |F ′(x)| 6=
0 except at a finite number of points. These points are called critical points for
the map F and their images are called critical values.

Suppose that A is an interval containing no critical values, and to fix the
ideas, suppose that F−1(A) is the union of finitely many intervals, J` each of
which is mapped monotonically (either strictly increasing or decreasing) onto
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A. The change of variables formula from ordinary calculus says that for any
function g = g(y) we have∫

A

g(y)dy =
∫
Jk

g(F (x))|F ′(x)|dx,

where y = F (x).
So if we set g(y) = ρ(x)|1/F ′(x)| we get∫

ρ(x)
1

|F ′(x)|
dy =

∫
Jk

ρ(x)dx = µ(Jk).

Summing over k and using the definition (5.2) we see that F∗µ has the density
(on any interval not containing a critical value) given by

σ(y) =
∑

F (xk)=y

ρ(x)
|F ′(x)|

. (5.3)

Equation (5.3) is sometimes known as the Perron Frobenius equation, and the
transformation ρ 7→ σ as the Perron Frobenius operator.

If F : I → I and µ has the density σ, then the equation

F∗µ = µ

requires that

ρ(y) =
∑

F (xk)=y

ρ(x)
|F ′(x)|

. (5.4)

at regular values of F . We will see that this imposes severe and usable restric-
tions on ρ.

Back to the histogram

Getting back to our histogram, if we expect the limit measure to be of the
absolutely continuous type, so

p(Ik) ≈ ρ(x)× 1
N
, x ∈ Ik

then we expect that

ρ(x) ≈ lim
m→∞

nkN

m+ 1
, x ∈ Ik

as the formula for the limiting density.
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Figure 5.1: The histogram of L4 compared with the function σ.

5.2 The histogram of L4.

We wish to prove the following assertions:
(i) The measure, µ, with density

σ(x) =
1

π
√
x(1− x)

(5.5)

is invariant under L4. In other words it satisfies

L4∗µ = µ.

(ii) Up to a multiplicative constant, (5.5) is the only continuous density invariant
under L4

(iii) If we pick the initial seed generically, then the normalized histogram con-
verges to (5.5). The m-file logistic4histogram.m which you can download
from the website of this course will allow you to play with this result.

Figure 5.1 will give a typical result. We will give two proofs of (i). We wish
to prove that

ρ(y) =
∑

F (xk)=y

ρ(x)
|F ′(x)|

. (5.4)
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where
ρ(x) =

1
π
√
x(1− x)

. (5.5)

First proof of (i).

The first is a direct verification of (5.4) with y = F (x) = 4x(1− x) so |F ′(x)| =
|F ′(1−x)| = 4|1−2x|. Notice that the ρ given by (5.5) satisfies σ(x) = σ(1−x)
so (5.4) becomes

1
π
√

4x(1− x)(1− 4x(1− x))
=

2
π4|1− 2x|

√
x(1− x)

.

This follows immediately from the identity

1− 4x(1− x) = (2x− 1)2.

Second proof of (i).

The second proof is longer, but more instructive: Consider the tent transforma-
tion, T . For any interval, I contained in [0, 1], T−1(I) consists of the union of
two intervals, each of half the length of I. In other words the ordinary Lebesgue
measure is preserved by the tent transformation: T∗ν = ν where ν has density
ρ(x) ≡ 1. Put another way, the function ρ(x) ≡ 1 is the solution of the Perron
Frobenius equation

ρ(Tx) =
ρ(x)

2
+
ρ(1− x)

2
. (5.6)

It follows immediately from the definitions, that

(F ◦G)∗µ = F∗(G∗µ), (5.7)

where F and G are two transformations , and µ is a measure.
In particular, since h ◦ T = L4 ◦ h where

h(x) = sin2 πx

2
,

it follows that if T∗ν = ν, then L4∗(h∗ν) = h∗ν. So to solve L4∗µ = µ, we must
merely compute h∗ν. According to (5.3) this is the measure with density

σ(y) =
1

|h′(x)|
=

1
π sin πx

2 cos πx2
.

But since y = sin2 πx
2 this becomes

σ(y) =
1

π
√
y(1− y)

as desired.
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Proof of (ii).

To prove (ii), it is enough to prove the corresponding result for the tent trans-
formation: that ρ = const. is the only continuous function satisfying (5.6). To
prove this assertion about T , this, let us consider the binary representation of
T :

Let
x = 0.a1a2a3 . . .

be the binary expansion of x. If 0 ≤ x < 1
2 , so a1 = 0, then Tx = 2x or

T (0.0a2a3a4 . . . ) = 0.a2a3a4 . . . .

If x ≥ 1
2 , so a1 = 1, then

T (x) = −2x+ 2 = 1− (2x− 1) = 1− S(x) = 1− 0.a2a3a4 . . . .

Introducing the notation
0̄ = 1, 1̄ = 0,

we have
0.a2a3a4 · · ·+ 0.ā1ā2ā3 · · · = 0.1111 · · · = 1

so
T (0.1a2a3a4 . . . ) = 0.ā2ā3ā4 . . . .

In particular, T−1(0.a1a2a3 . . . ) consists of the two points

0.0a1a2a3 . . . and 0.1ā1ā2ā3 . . . .

Now let us iterate (5.6) with ρ replaced by f , and rewrite this equation as

f(x) =
1
2

[f(u) + f(v)]

where Tu = Tv = x. We want to show that the only continuous solution of this
equation is is f = constant. Using the notation

x = 0.a1a2 · · · = 0.a,

a repeated application of (5.6) gives:

f(x) =
1
2

[f(.0a) + f(.1ā)]

=
1
4

[f(.00a) + f(.01ā) + f(.10a) + f(.11ā)]

=
1
8

[f(.000a) + f(.001ā) + f(.010a) + f(.011ā) + f(.100a) + · · · ]

→
∫
f(t)dt.

But this integral is a constant, independent of x. 2
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What about (iii)?

The third statement, (iii), about the limiting histogram for “generic” initial
seed, x0, demands a more careful formulation. What do we mean by the phrase
“generic”? The precise formulation requires a dose of measure theory: the
word “generic” should be taken to mean “outside of a set of measure zero with
respect to µ”. The usual phrase for this is “for almost all x0”. Then assertion
(iii) becomes a special case of the famous Birkhoff ergodic theorem.

In our case, the Birkhoff ergodic theorem asserts that for almost all points,
p, the “time average”

lim
1
n

n−1∑
k=0

φ(Lk4p)

equals the “space average” ∫
φµ

for any integrable function, φ. Rather than proving this theorem, I will explain
a simpler theorem, von Neumann’s mean ergodic theorem, which motivated
Birkhoff to prove his theorem.

5.3 The mean ergodic theorem.

Let F be a transformation with an invariant measure, µ. By this we mean that
F∗µ = µ. We let H denote the Hilbert space of all square integrable functions
with respect to µ, so the scalar product of f, g ∈ H is given by

(f, g) =
∫
fḡµ.

The map F induces a transformation U : H → H by

Uf = f ◦ F

and
(Uf,Ug) =

∫
(f ◦ F )(g ◦ F )µ =

∫
fḡµ = (f, g).

In other words, U is an isometry of H. The mean ergodic theorem asserts that
the limit of

1
n

n−1∑
0

Ukf

exists in the Hilbert space sense, “convergence in mean”, rather than the almost
everywhere pointwise convergence of the Birkhoff ergodic theorem. Practically
by its definition, this limiting element f̂ is invariant, i.e. satisfies Uf̂ = f̂ .
Indeed, applying U to the above sum gives an expression which differs from
that sum by only two terms, f and Unf and dividing by n sends these terms
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to zero as n → ∞. If, as in our example, we know what the possible invariant
elements are, then we know the possible limiting values f̂

The mean ergodic theorem can be regarded as a smeared out version of the
Birkhoff theorem. Due to inevitable computer error, the mean ergodic theorem
may actually be the version that we want.

So we wish to prove:

Theorem 5.3.1. [von Neumann’s mean ergodic theorem.] Let U : H →
H be an isometry of a Hilbert space, H. Then for any f ∈ H , the limit

lim
1
n

∑
Ukf = f̂ (5.8)

exists in the Hilbert space sense, and the limiting element f̂ is invariant, i.e.
Uf̂ = f̂ .

The limit, if it exists, is invariant as we have seen. If U were a unitary
operator on a finite dimensional Hilbert space, H, then we could diagonalize U ,
and hence reduce the theorem to the one dimensional case. A unitary operator
on a one dimensional space is just multiplication by a complex number of the
form eiα. If eiα 6= 1, then

1
n

(1 + eiα + · · ·+ e(n−1)iα) =
1
n

1− einα

1− eiα
→ 0.

On the other hand, if eiα = 1, the expression on the left is identically one. This
proves the theorem for finite dimensional unitary operators.

Proof in general. For an infinite dimensional Hilbert space, we could apply
the spectral theorem of Stone (discovered shortly before the proof of the ergodic
theorem) and this was von Neumann’s original method of proof.

Actually, we can give the following proof due to F. Riesz:

Lemma 5.3.1. The orthogonal complement of the set, D, of all elements of the
form Ug − g, consists of invariant elements.

Proof of the lemma. If f is orthogonal to all elements in D, then,in
particular, f is orthogonal to Uf − f , so

0 = (f, Uf − f)

and
(Uf,Uf − f) = (Uf,Uf)− (Uf, f) = (f, f)− (Uf, f)

since U is an isometry. So

(Uf,Uf − f) = (f − Uf, f) = 0.

So
(Uf − f, Uf − f) = (Uf,Uf − f)− (f, Uf − f) = 0,
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or
Uf − f = 0

which says that f is invariant. 2 So what we have shown, in fact, is

Lemma 5.3.2. The union of the set D with the set, I, of the invariant functions
is dense in H.

Indeed, if f is orthogonal to D, then it must be invariant, and if it is orthog-
onal to all invariant functions it must be orthogonal to itself, and so must be
zero. So (D ∪ I)⊥ = 0, so D ∪ I is dense in H.

If f is invariant, then clearly the limit(5.8) exists and equals f . If f = Ug−g,
then the expression on the left in (5.8) telescopes into

1
n

(Ung − g)

which clearly tends to zero. Hence, as a corollary we obtain

Lemma 5.3.3. The set of elements for which the limit in (5.8) exists is dense
in H.

Completion of the proof of the mean ergodic theorem. Hence the
mean ergodic theorem will be proved, once we prove

Lemma 5.3.4. The set of elements for which the limit in (5.8) exists is closed.

Proof.
1
n

∑
Ukgi → ĝi,

1
n

∑
Ukgj → ĝj ,

and
‖ gi − gj ‖< ε,

then

‖ 1
n

∑
Ukgi −

1
n

∑
Ukgj ‖< ε,

so
‖ ĝi − ĝj ‖< ε.

So if {gi} is a sequence of elements converging to f , we conclude that {ĝi}
converges to some element, call it f̂ . If we choose i sufficiently large so that
‖ gi − f ‖< ε, then

‖ 1
n

∑
Ukf−f̂ ‖ ≤ ‖ 1

n

∑
Uk(f−gi) ‖ + ‖ 1

n

∑
Ukgi−ĝi ‖ + ‖ ĝi−f̂ ‖ ≤ 3ε,

proving the lemma and hence proving the mean ergodic theorem.
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5.4 The arc sine law.

The probability distribution with density

σ(x) =
1

π
√
x(1− x)

is called the arc sine law in probability theory because, if I is the interval
I = [0, u] then

Prob x ∈ I = Prob 0 ≤ x ≤ u =
∫ u

0

1
π
√
x(1− x)

=
2
π

arcsin
√
u. (5.9)

We have already verified this integration because I = h(J) where

h(t) = sin2 πt

2
, J = [0, v], h(v) = u,

and the probability measure we are studying is the push forward of the uniform
distribution. So

Prob h(t) ∈ I = Prob t ∈ J = v.

We could, of course, verify the integration directly.
The arc sine law plays a crucial role in the theory of fluctuations in random

walks. As a cultural diversion we explain some of the key ideas, following the
treatment in [Feller] very closely.

5.4.1 The random walk.

Suppose that there is an ideal coin tossing game in which each player wins
or loses a unit amount with (independent) probability 1

2 at each throw. Let
S0 = 0, S1, S2, . . . denote the successive cumulative gains (or losses) of the first
player. We can think of the values of these cumulative gains as being marked
off on a vertical s-axis, and representing the position of a particle which moves
up or down with probability 1

2 at each (discrete) time unit .
Let

α2k,2n

denote the probability that up to and including time 2n, the last visit to the
origin occurred at time 2k. Let

u2ν =
(

2ν
ν

)
2−2ν . (5.10)

So u2ν represents the probability that exactly ν out of the first 2ν steps were
in the positive direction, and the rest in the negative direction. In other words,
u2ν is the probability that the particle has returned to the origin at time 2ν.
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Using Stirling’s formula.

We can find a simple approximation to u2ν using Stirling’s formula for an ap-
proximation to the factorial:

n! ∼
√

2πnn+ 1
2 e−n

where the ∼ signifies that the ratio of the two sides tends to one as n tends to
infinity.

There are many proofs of Stirling’s formula. I will give two at the end of
this section. In the meanwhile, let’s take it for granted.

Then

u2ν = 2−2ν (2ν)!
(ν!)2

∼ 2−2ν

√
2π(2ν)2ν+ 1

2 e−2ν

2πν2ν+1e−2ν

=
1√
πν
.

The results we wish to prove in this section are:

Proposition 5.4.1. We have

α2k,2n = u2ku2n−2k, (5.11)

so we have the asymptotic approximation

α2k,2n ∼
1

π
√
k(n− k)

. (5.12)

If we set

xk =
k

n

then we can write

α2k,2n ∼
1
n
σ(xk). (5.13)

Thus, for fixed 0 < x < 1 and n sufficiently large∑
k<xn

α2k,2n
.=

2
π

arcsin
√
x. (5.14)

Proposition 5.4.2. The probability that in the time interval from 0 to 2n the
particle spends 2k time units on the positive side and 2n − 2k time units on
the negative side equals α2k,2n. In particular, if 0 < x < 1 the probability
that the fraction k/n of time units spent on the positive be less than x tends to
2
π arcsin

√
x as n→∞.
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Let us call the value of S2n for any given realization of the random walk,
the terminal point. Of course, the particle may well have visited this terminal
point earlier in the walk, and we can ask when it first reaches its terminal point.

Proposition 5.4.3. The probability that the first visit to the terminal point
occurs at time 2k is given by α2k,2n.

We can also ask for the first time that the particle reaches its maximum
value: We say that the first maximum occurs at time l if

S0 < Sl, S1 < Sl, . . . Sl−1 < Sl, Sl+1 ≤ Sl, Sl+2 ≤ Sl, . . . S2n ≤ Sl. (5.15)

Proposition 5.4.4. If 0 < l < 2n the probability that the first maximum occurs
at l = 2k or l = 2k + 1 is given by 1

2α2k,2n. For l = 0 this probability is given
by u2n and if l = 2n it is given by 1

2u2n.

Before proving these various facts, let us discuss a few of their implications
which some people find counterintuitive. For example, because of the shape
of the density, σ, the last result implies that the maximal accumulated gain is
much more likely to occur very near to the beginning or to the end of a coin
tossing game rather than somewhere in the middle. The fourth assertion implies
that the probability that the first visit to the terminal point occurs at time 2k is
that same as the probability that it occurs at time 2n− 2k and that very early
first visits and very late first visits are much more probable than first visits some
time in the middle.

In order to get a better feeling for the assertion of the first two propositions,
let us tabulate the values of 2

π arcsin
√
x for 0 ≤ x ≤ 1

2 .

x 2
π arcsin

√
x x 2

π arcsin
√
x

0.05 0.144 0.30 0.369
0.10 0.205 0.35 0.403
0.15 0.253 0.40 0.236
0.20 0.295 0.45 0.468
0.25 0.333 0.50 0.500

This table, in conjunction with our Propositions 5.4.1 and 5.4.2 says that if a
great many coin tossing games are conducted every second, day and night for a
hundred days, then in about 14.4 percent of the cases,the lead will not change
after day five.

5.4.2 The reflection principle.

The proof of all four propositions hinges on three lemmas. Let us graph (by a
polygonal path) the walk of a particle. So a “path” is a broken line segment
made up of segments of slope ±1 joining integral points to integral points in the
plane (with the time or t−axis horizontal and the s−axis vertical). If A = (a, α)
is a point, we let A′ = (a,−α) denote its image under reflection in the t−axis.
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Figure 5.2: Original path.

Lemma 5.4.1. The reflection principle. Let A = (a, α), B = (b, β) be points
in the first quadrant with b > a ≥ 0, α > 0, β > 0. The number of paths from A
to B which touch or cross the t− axis equals the number of all paths from A′ to
B.

Proof. For any path from A to B which touches the horizontal axis, let t be the
abscissa of the first point of contact. Reflect the portion of the path from A to
T = (t, 0) relative to the horizontal axis. This reflected portion is a path from
A′ to T , and continues to give a path from A′ to B. This procedure assigns
to each path from A to B which touches the axis, a path from A′ to B. This
assignment is bijective: Any path from A′ to B must cross the t−axis. Reflect
the portion up to the first crossing to get a touching path from A to B. This is
the inverse assignment.

A path with n steps will join (0, 0) to (n, x) if and only if it has p steps of
slope +1 and q steps of slope −1 where

p+ q = n, p− q = x.

The number of such paths is the number of ways of picking the positions of the
p steps of positive slope and so the number of paths joining (0, 0) to (n, x) is

Nn,x =
(
p+ q
p

)
=
(

n
n+x

2

)
.
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Figure 5.3: Reflected path.

It is understood that this formula means that Nn,x = 0 when there are no paths
joining the origin to (n, x).

Lemma 5.4.2. The ballot theorem. Let n and x be positive integers. There
are exactly

x

n
Nn,x

paths which lie strictly above the t axis for t > 0 and join (0, 0) to (n, x).

Proof. There are as many paths joining (0, 0) to (n, x) which are strictly above
the x-axis as there are paths joining (1, 1) to (n, x) which do not touch or cross
the t−axis. This is the same as the total number of paths which join (1, 1)
to (n, x) less the number of paths which do touch or cross. By the reflection
principle, the number of paths which do touch or cross is the same as the number
of paths joining (1,−1) to (n, x) which is Nn−1,x+1. Thus, with p and q as above,
the number of paths which lie strictly above the t axis for t > 0 and which join
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(0, 0) to (n, x) is

Nn−1,x−1 −Nn−1,x+1 =
(
p+ q − 1
p− 1

)
−
(
p+ q − 1

p

)
=

(p+ q − 1)!
(p− 1)!(q − 1)!

[
1
q
− 1
p

]
=

p− q
p+ q

× (p+ q)!
p!q!

=
x

n
Nn,x 2

The reason that this lemma is called the Ballot Theorem is that it asserts
that if candidate P gets p votes, and candidate Q gets q votes in an election
where the probability of each vote is independently 1

2 , and if P wins, i.e. if
p > q, then the probability that throughout the counting there are more votes
for P than for Q is given by

p− q
p+ q

.

Here is our last lemma:

Lemma 5.4.3. The probability that from time 1 to time 2n the particle stays
strictly positive is given by 1

2u2n. In symbols,

Prob {S1 > 0, . . . , S2n > 0} =
1
2
u2n. (5.16)

So
Prob {S1 6= 0, . . . , S2n 6= 0} = u2n. (5.17)

Also
Prob {S1 ≥ 0, . . . , S2n ≥ 0} = u2n. (5.18)

Proof. By considering the possible positive values of S2n which can range from
2 to 2n we have Prob {S1 > 0, . . . , S2n > 0}

=
n∑
r=1

Prob {S1 > 0, . . . , S2n = 2r}

= 2−2n
n∑
r=1

(N2n−1,2r−1 −N2n−1,2r+1)

= 2−2n (N2n−1,1 −N2n−1,3 +N2n−1,3 −N2n−1,5 + · · · )
= 2−2nN2n−1,1.

The passage from the first line to the second is the reflection principle, as
in our proof of the Ballot Theorem, from the third to the fourth is because the
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sum telescopes to N2n−1,1 −N2n−1,2n+1 and N2n−1,2n+1 = 0 because you can’t
get from 0 to 2n+ 1 in 2n− 1 steps.

So

Prob {S1 > 0, . . . , S2n > 0} = 2−2nN2n−1,1

=
1
2
p2n−1,1

=
1
2
u2n.

The p2n−1,1 on the next to the last line is the probability of ending up at
(2n − 1, 1) starting from (0, 0). The last equality is simply the assertion that
to reach zero at time 2n we must be at ±1 at time 2n − 1 (each of these has
equal probability, p2n−1,1) and for each alternative there is a 50 percent chance
of getting to zero on the next step. This proves (5.16).

Since a path which never touches the t−axis must be always above or always
below the t−axis, (5.17) follows immediately from (5.16).

Observe that a path which is strictly above the axis from time 1 on, must pass
through the point (1, 1) and then stay above the horizontal line s = 1. The prob-
ability of going to the point (1, 1) at the first step is 1

2 , and then the probability
of remaining above the new horizontal axis is Prob {S1 ≥ 0, . . . , S2n−1 ≥ 0}.
But since 2n− 1 is odd, if S2n−1 ≥ 0 then S2n ≥ 0. So, by (5.16) we have

1
2
u2n = Prob {S1 > 0, . . . , S2n > 0}

=
1
2

Prob {S1 ≥ 0, . . . , S2n−1 ≥ 0}

=
1
2

Prob {S1 ≥ 0, . . . , S2n−1 ≥ 0, S2n ≥ 0},

completing the proof of the lemma.

Proofs of the propositions.

Proof of Prop. 5.4.1. To say that the last visit to the origin occurred at time
2k means that

S2k = 0

and
Sj 6= 0, j = 2k + 1, . . . , 2n.

Recall that

u2ν =
(

2ν
ν

)
2−2ν

is the probability that the particle has returned to the origin at time 2ν.
By definition, the first 2k positions can be chosen in 22ku2k ways to satisfy

the condition S2k = 0. Taking the point (2k, 0) as our new origin, (5.17) says
that there are 22n−2ku2n−2k ways of choosing the last 2n − 2k steps so as to



120 CHAPTER 5. SPACE AND TIME AVERAGES.

satisfy the condition Sj 6= 0, j = 2k+1, . . . , 2n. Multiplying and then dividing
the result by 22n proves (5.11). 2

Proof of Prop. 5.4.2. We consider paths of 2n steps and let b2k,2n denote
the probability that exactly 2k sides lie above the t−axis. We want to show
that

b2k,2n = α2k,2n.

For the case k = n we have α2n,2n = u0u2n = u2n and b2n,2n is the probability
that the path lies entirely above the axis. So our assertion reduces to (5.18)
which we have already proved. By symmetry, the probability of the path lying
entirely below the the axis is the same as the probability of the path lying
entirely above it, so b0,2n = α0,2n as well.

So we need prove our assertion for 1 ≤ k ≤ n− 1. In this situation, a return
to the origin must occur. Suppose that the first return to the origin occurs at
time 2r. There are then two possibilities: the entire path from the origin to
(2r, 0) is either above the axis or below the axis. If it is above the axis, then
r ≤ k ≤ n − 1, and the section of the path beyond (2r, 0) has 2k − 2r edges
above the t−axis. The number of such paths is

1
2

22rf2r22n−2rb2k−2r,2n−2r

where f2r denotes the probability of first return at time 2r:

f2r = Prob {S1 6= 0, . . . , S2r−1 6= 0, S2r = 0}.

If the first portion of the path up to 2r is spent below the axis, the the remaining
path has exactly 2k edges above the axis, so n− r ≥ k and the number of such
paths is

1
2

22rf2r22n−2rb2k,2n−2r.

So we get the recursion relation

b2k,2n =
1
2

k∑
r=1

f2rb2k−2r,2n−2r +
1
2

n−k∑
r=1

f2rb2k,2n−2r 1 ≤ k ≤ n− 1. (5.19)

Now we proceed by induction on n. We know that b2k,2n = u2ku2n−2k = 1
2

when n = 1. Assuming the result up through n−1, the recursion formula (5.19)
becomes

b2k,2n =
1
2
u2n−2k

k∑
r=1

f2ru2k−2r +
1
2
u2k

n−k∑
r=1

f2ru2n−2k−2r. (5.20)

We claim that the probabilities of return and the probabilities of first return
are related by

u2n = f2u2n−2 + f4u2n−4 + · · ·+ f2nu0. (5.21)
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Indeed, if a return occurs at time 2n, then there must be a first return at some
time 2r ≤ 2n and then a return in 2n−2r units of time, and the sum in (5.21) is
over the possible times of first return. If we substitute (5.21) into the first sum
in (5.20) it becomes u2k while substituting (5.21) into the second term yields
u2n−2k. Thus (5.20) becomes

b2k,2n = u2ku2n−2k

which is our desired result. 2

Proof of Prop. 5.4.3. The probability in the Proposition is the probability
that S2k = S2n but Sj 6= S2n for j < 2k. Reading the path rotated through
180◦ about the end point, and with the endpoint shifted to the origin, this is
clearly the same as the probability that 2n − 2k is the last visit to the origin.
2

Proof of Prop. 5.4.3. The probability that the maximum is achieved at
0 is the probability that S1 ≤ 0, . . . , S2n ≤ 0 which is u2n by (5.18). The
probability that the maximum is first obtained at the terminal point, is, after
rotation and translation, the same as the probability that S1 > 0, . . . , S2n > 0
which is 1

2u2n by (5.16). If the maximum occurs first at some time l in the
middle, we combine these results for the two portions of the path - before and
after time ` - together with (5.11) to complete the proof. 2

A computer generated illustration..

Figure 5.4 shows a computer generated random walk with 100,000 steps. The
last zero is at time 3783. For the remaining 96,217 steps the path is positive.
According to the arc sine law, with probability 1/5, the particle will spend about
97.6 percent of its time on one side of the origin.

5.5 The Beta distributions.

The arc sine law is the special case a = b = 1
2 of the Beta distribution with

parameters a, b which has probability density proportional to

ta−1(1− t)b−1.

So long as a > 0 and b > 0 the integral

B(a, b) =
∫ 1

0

ta−1(1− t)b−1dt

converges, and was evaluated by Euler to be

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)
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Figure 5.4: A random walk with 100,000 steps.
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where Γ is Euler’s Gamma function. So the Beta distributions with a > 0, b > 0
are given by

1
B(a, b)

ta−1(1− t)b−1.

We characterized the arc sine law (a = b = 1
2 ) as being the unique probability

density invariant under L4. The case a = b = 0, where the integral does not
converge, also has an interesting characterization as an invariant density:

Consider transformations of the form

t 7→ at+ b

ct+ d

where the matrix (
a b
c d

)
is invertible. Suppose we require that the transformation preserve the origin
and the point t = 1. Preserving the origin requires that b = 0, while preserving
the point t = 1 requires that a = c + d. Since b = 0 we must have ad 6= 0 for
the matrix to be invertible. Since multiplying all the entries of the matrix by
the same non-zero scalar does not change the transformation, we may as well
assume that d = 1, and hence the family transformations we are looking at are

φa : t 7→ at

(a− 1)t+ 1
, a 6= 0.

Notice that
φa ◦ φb = φab.

Our claim is that, up to scalar multiple, the density

ρ(t) =
1

t(1− t)

is the unique density such that the measure

ρ(t)dt

is invariant under all the transformations φa.
Indeed,

φ′a(t) =
a

[1− t+ at]2

so the condition of invariance is

a

[1− t+ at]2
ρ(φa(t)) = ρ(t).

Let us normalize ρ by

ρ

(
1
2

)
= 4.
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Then

s = φa

(
1
2

)
⇔ s =

a

1 + a
⇔ a =

s

1− s
.

So taking t = 1
2 in the condition for invariance and a as above, we get

ρ(s) = 4((1− s)/s)[1
2

+
1
2

s

1− s
]2 =

1
s(1− s)

.

This elementary geometrical fact - that 1/t(1 − t) is the unique density
(up to scalar multiple) which is invariant under all the φa - was given a deep
philosophical interpretation by Jaynes, [Jaynes]: Suppose we have a possible
event which may or may not occur, and we have a population of individuals each
of whom has a clear opinion (based on ingrained prejudice, say, from reading the
newspapers or watching television) of the probability of the event being true.
So Mr. A assigns probability p(A) to the event E being true and (1-p(A)) as
the probability of its not being true, while Mr. B assigns probability P(B) to
its being true and (1-p(B)) to its not being true and so on.

Suppose an additional piece of information comes in, which would have a
(conditional) probability x of being generated if E were true and y of this infor-
mation being generated if E were not true. We assume that both x and y are
positive, and that every individual thinks rationally in the sense that on the ad-
vent of this new information he changes his probability estimate in accordance
with Bayes’ law, which says that the posterior probability p′ is given in terms
of the prior probability p by

p′ =
px

px+ (1− p)y
= φa(p) where a :=

x

y
.

We might say that the population as a whole has been “invariantly preju-
diced” if any such additional evidence does not change the proportion of people
within the population whose belief lies in a small interval. Then the density
describing this state of knowledge (or rather of ignorance) must be the density

ρ(p) =
1

p(1− p)
.

According to this reasoning of Jaynes, we take the above density to describe
the prior probability an individual (thought of as a population of subprocessors
in his brain) would assign to the probability of an outcome of a given experi-
ment. If a series of experiments then yielded M successes and N failures, Bayes’
theorem (in its continuous version) would then yield the posterior distribution
of probability assignments as being proportional to

pM−1(1− p)N−1

the Beta distribution with parameters M,N .
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5.6 Two proofs of Stirling’s formula

I am going to give two rather different looking proofs Stirling’s formula. Both
illustrate important methods in asymptotic analysis. A more elementary proof
can be found in [Feller]

5.6.1 The Euler-Maclauren summation formula.

Let f be a continuously differentiable function on [0, n]. Integration by parts
shows that for every integer k = 0, 1, . . . , n− 1 we have∫ k+1

k

[x− k − 1
2

]f ′(x)dx =
1
2

[fk + fk+1]−
∫ k+1

k

f(x)dx

where we have written fk for f(k) to shorten the formula.

Letting [x] denote the largest integer ≤ x we can write this as

1
2

[fk + fk+1] =
∫ k+1

k

f(x)dx+
∫ k+1

k

[x− [x]− 1
2

]f ′(x)dx.

Summing this from 0 to n − 1 and adding 1
2 [f0 + fn] gives (a baby version of)

the Euler-Maclauren formula

f0 + · · ·+ fn =
1
2

[f0 + fn] +
∫ n

0

f(x)dx+
∫ n

0

P1(x)f ′(x)dx

where
P1(x) := x− [x]− 1

2
.

The function P1(x) is periodic of period one and is continuous except at the
integers, and its integral over any interval of length one is zero. We will let P2

be an indefinite integral of P1. To be specific, let us define

P2(x) :=
1
2
x2 − 1

2
x+

1
12

0 ≤ x ≤ 1

and extended to be periodic of period one. Its integral over any interval of
length one is then also zero.

Deriving Stirling’s formula from the Euler-Maclauren summation for-
mula.

Let us apply the Euler-Maclauren summation formula to the function f(x) =
1

1+x and replace n by n− 1 in the formula. We get

log 1 + log 2 + ·+ log n =
∫ n

1

log xdx+
1
2

log n+
∫ n

1

P1(x)
x

dx
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= (n+
1
2

) log n− (n− 1) +
∫ n

1

P1(x)
x

dx.

Integration by parts gives∫ n

1

P1(x)
x

dx =
P2(x)
x

∣∣∣∣n
1

+
∫ n

1

P2(x)
x2

dx,

which shows that the integral converges as n→∞.

So log(n!) =
(
n+ 1

2

)
− n+ cn where cn → c for some value c as n→∞.

So
n! ∼ Cen+ 1

2 e−n

for some constant C.
We have shown that

n! ∼ Cen+ 1
2 e−n

for some constant C.

Stirling’s formula says that C =
√

2π. But we can conclude this from what
we already know. For if we go back and do our computations with a “general
C” we will find that the only way we could get a probability (i.e. that the
appropriate integrals are 1) is if C =

√
2π.

5.6.2 Euler’s integral and Stirling’s formula.

We will use Euler’s Gamma function:

Γ(s) =
∫ ∞

0

ts−1e−tdt

so that
Γ(n+ 1) = n!.

We are going to make a change of variable in

Γ(s+ 1) =
∫ ∞

0

tse−tdt.

Setting t = sτ this becomes

ss+1

∫ ∞
0

τse−τsdτ = ss+1e−s
∫ ∞

0

e−s(τ−1−log τ)dτ.

So

Γ(s+ 1) = ss+1e−s
∫ ∞

0

e−sf(τ)dτ

where
f(τ) = τ − 1− log τ.
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Here is the idea: The function f vanishes at τ = 1 and achieves a minimum
there, tending to ∞ as τ → 0 or as τ → ∞. So for large values of s we expect
that the contribution to the integral will come from τ near 1. Near 1 we will
approximate f by its quadratic term which will then lead to Gaussian integral.

Here is the idea: The function f vanishes at τ = 1 and achieves a minimum
there, tending to ∞ as τ → 0 or as τ → ∞. So for large values of s we expect
that the contribution to the integral will come from τ near 1. Near 1 we will
approximate f by its quadratic term which will then lead to Gaussian integral.

The following details are taken from Courant & Hilbert Methods of Mathe-
matical Physics Vol 1 pp. 522-524.

Let 0 < ε < 1
2 . For 1

2 < τ < 1 we have

τ − 1− log τ =
∫ 1

τ

(
1
u
− 1
)
du ≥

∫ 1

τ

(1− u)du

=
1
2

(τ − 1)2 ≥ 1
8

(τ − 1)2.

On the interval (0, 1 − ε) the integrand e−sf(τ) is less than its maximum value
which is e−sε

2/8. So ∫ 1−ε

0

e−sf(τ)dτ ≤ e−sε
2/8.

Similarly, for 1 ≤ τ ≤ 4

τ − 1− log τ =
∫ τ

1

(
1− 1

u

)
du ≥ 1

1
4

∫ τ

1

(u− 1)du =
1
8

(τ − 1)2.

Again replacing the integrand by its largest value shows that∫ 4

1+ε

e−sf(τ)dτ ≤ 3e−sε
2/8.

For τ ≥ 4, τ − 1− log τ ≥ 3
4τ − log τ ≥ 1

4τ . Hence for s > 4∫ ∞
4

e−sf(τ)dτ <

∫ ∞
4

e−sτ/4dτ < e−s < e−sε
2/8.

So if we take ε = s−2/5 we will have

ess−s−1Γ(s+ 1) =
∫ 1+ε

1−ε
e−sf(τ)dτ +O(e−s

1/5/8).

So we are left with the study of the integral
∫ 1+ε

1−ε e
−sf(τ)dτ. Now f(1) =

f ′(1) = 0 and f ′′(1) = 1. So we can write

f(τ) =
1
2

(τ − 1)2 + (τ − 1)3ψ(τ) where |ψ(τ)| ≤M on
1
2
≤ τ ≤ 3

2
.
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So on this interval we have

e−s(τ−1)2/2e−Ms−1/5
≤ e−sf(τ) ≤ e−s(τ−1)2/2eMs−1/5

and
e−sf(τ) = e−s(τ−1)2/2(1 +O(s−1/5)).

So ∫ 1+ε

1−ε
e−sf(τ)dτ = (1 +O(s−1/5))

∫ ε

−ε
e−su

2/2du.

We have shown that∫ 1+ε

1−ε
e−sf(τ)dτ = (1 +O(s−1/5))

∫ ε

−ε
e−su

2/2du.

If we make the change of variables v = s
1
2u the integral on the right becomes

s−1/2

∫ εs
1
2

−εs
1
2

e−v
2/2dv

and ∫ εs
1
2

−εs
1
2

e−v
2/2dv →

∫ ∞
−∞

e−v
2/2dv =

√
2π. 2



Chapter 6

The contraction fixed point
theorem.

Until now we have used the notion of metric quite informally. It is time for a
formal definition. For any set X, we let X ×X (called the Cartesian product
of X with itself) denote the set of all ordered pairs of elements of X. (More
generally, if X and Y are sets, we let X × Y denote the set of all pairs (x, y)
with x ∈ and y ∈ Y , and is called the Cartesian product of X with Y .)

6.1 Metrics and metric spaces.

A metric for a set X is a function d from X ×X to the real numbers R,

d : X ×X → R

such that for all x, y, z ∈ X

1. d(x, y) = d(y, x)

2. d(x, z) ≤ d(x, y) + d(y, z)

3. d(x, x) = 0

4. If d(x, y) = 0 then x = y.

The inequality in 2) is known as the triangle inequality since if X is the
plane and d the usual notion of distance, it says that the length of an edge of a
triangle is at most the sum of the lengths of the two other edges. (In the plane,
the inequality is strict unless the three points lie on a line.)

Condition 4. is in many ways inessential. It is often convenient to drop
it, especially for the purposes of some proofs. For example, we might want to
consider the decimal expansions .49999 . . . and .50000 . . . as different, but as

129
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having zero distance from one another. Or we might want to “identify” these
two decimal expansions as representing the same point.

A function d which satisfies only conditions 1) - 3) is called a pseudo-
metric.

A metric space is a pair (X, d) where X is a set and d is a metric on X.
Almost always, when d is understood, we engage in the abuse of language and
speak of “the metric space X”.

Similarly for the notion of a pseudo-metric space.

In like fashion, we call d(x, y) the distance between x and y, the function
d being understood.

Open balls, the topology on a pseudo-metric space X.

If r is a positive number and x ∈ X, the (open) ball of radius r about x is
defined to be the set of points at distance less than r from x and is denoted by
Br(x). In symbols,

Br(x) := {y| d(x, y) < r}.

If r and s are positive real numbers and if x and z are points of a pseudo-
metric space X, it is possible that Br(x) ∩ Bs(z) = ∅. This will certainly be
the case if d(x, z) > r+ s by virtue of the triangle inequality. Suppose that this
intersection is not empty and that

w ∈ Br(x) ∩Bs(z).

If y ∈ X is such that d(y, w) < min[r − d(x,w), s − d(z, w)] then the triangle
inequality implies that y ∈ Br(x) ∩ Bs(z). Put another way, if we set t :=
min[r − d(x,w), s− d(z, w)] then

Bt(w) ⊂ Br(x) ∩Bs(z).

Put still another way, this says that the intersection of two (open) balls is either
empty or is a union of open balls. So if we call a set in X open if either it
is empty, or is a union of open balls, we conclude that the intersection of any
finite number of open sets is open, as is the union of any number of open sets.
In technical language, we say that the open balls form a base for a topology on
X.

Continuous maps and Lipschitz maps.

A map f : X → Y from one pseudo-metric space to another is called continu-
ous if the inverse image under f of any open set in Y is an open set in X. Since
an open set is a union of balls, this amounts to the condition that the inverse
image of an open ball in Y is a union of open balls in X, or, to use the familiar
ε, δ language, that if f(x) = y then for every ε > 0 there exists a δ = δ(x, ε) > 0
such that

f(Bδ(x)) ⊂ Bε(y).
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Notice that in this definition δ is allowed to depend both on x and on ε. The
map is called uniformly continuous if we can choose the δ independently of
x.

An even stronger condition on a map from one pseudo-metric space to an-
other is the Lipschitz condition. A map f : X → Y from a pseudo-metric
space (X, dX) to a pseudo-metric space (Y, dY ) is called a Lipschitz map with
Lipschitz constant C if

dY (f(x1), f(x2)) ≤ CdX(x1, x2) ∀x1, x2 ∈ X.

Clearly a Lipschitz map is uniformly continuous.

An example. For example, suppose that A is a fixed subset of a pseudo-metric
space X. Define the function d(A, ·) from X to R by

d(A, x) := inf{d(x,w), w ∈ A}.

The triangle inequality says that

d(x,w) ≤ d(x, y) + d(y, w)

for all w, in particular for w ∈ A, and hence taking lower bounds we conclude
that

d(A, x) ≤ d(x, y) + d(A, y).

or
d(A, x)− d(A, y) ≤ d(x, y).

Reversing the roles of x and y then gives

|d(A, x)− d(A, y)| ≤ d(x, y).

Using the standard metric on the real numbers where the distance between a
and b is |a− b| this last inequality says that d(A, ·) is a Lipschitz map from X
to R with C = 1.

d(A, x)− d(A, y) ≤ d(x, y).

Closed sets, and the closure of a set.

A closed set is defined to be a set whose complement is open. Since the
inverse image of the complement of a set (under a map f) is the complement
of the inverse image, we conclude that the inverse image of a closed set under a
continuous map is again closed.

For example, the set consisting of a single point in R is closed. Since the
map d(A, ·) is continuous, we conclude that the set

{x|d(A, x) = 0}

consisting of all point at zero distance from A is a closed set. It clearly is a closed
set which contains A. Suppose that S is some closed set containing A, and y 6∈ S.
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Then there is some r > 0 such that Br(y) is contained in the complement of C,
which implies that d(y, w) ≥ r for all w ∈ S. Thus {x|d(A, x) = 0} ⊂ S.

In short {x|d(A, x) = 0} is a closed set containing A which is contained in
all closed sets containing A. This is the definition of the closure of a set, which
is denoted by A. We have proved that

A = {x|d(A, x) = 0}.

In particular, the closure of the one point set {x} consists of all points u such
that d(u, x) = 0.

Identifying points at zero distance.

The relation d(x, y) = 0 is an equivalence relation, call it R. (Transitivity being
a consequence of the triangle inequality.) This then divides the space X into
equivalence classes, where each equivalence class is of the form {x}, the closure
of a one point set. If u ∈ {x} and v ∈ {y} then

d(u, v) ≤ d(u, x) + d(x, y) + d(y, v) = d(x, y).

since x ∈ {u} and y ∈ {v} we obtain the reverse inequality, and so

d(u, v) = d(x, y).

In other words, we may define the distance function on the quotient space
X/R, i.e. on the space of equivalence classes by

d({x}, {y}) := d(u, v), u ∈ {x}, v ∈ {y}

and this does not depend on the choice of u and v. Axioms 1)-3) for a metric
space continue to hold, but now

d({x}, {y}) = 0⇒ {x} = {y}.

In other words, X/R is a metric space. Clearly the projection map x 7→ {x} is
an isometry of X onto X/R. (An isometry is a map which preserves distances.)
In particular it is continuous. It is also open.

In short, we have provided a canonical way of passing (via an isometry) from
a pseudo-metric space to a metric space by identifying points which are at zero
distance from one another.

Dense subsets.

A subset A of a pseudo-metric space X is called dense if its closure is the whole
space. From the above construction, the image A/R of A in the quotient space
X/R is again dense. We will use this fact in the next section in the following
form:

Proposition 6.1.1. If f : Y → X is an isometry of Y such that f(Y ) is a
dense set of X, then f descends to a map F of Y onto a dense set in the metric
space X/R.
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6.2 Completeness and completion.

Cauchy sequences.

A sequence {yn} is said to be Cauchy if for any ε > 0 there exists an N = N(ε
such that

d(yn, ym) < ε ∀ m,n > N.

The triangle inequality implies that every convergent sequence is Cauchy. But
not every Cauchy sequence is convergent. For example, we can have a sequence
of rational numbers which converge to an irrational number, as in the approxi-
mation to the square root of 2.

So if we look at the set of rational numbers as a metric space R in its own
right, not every Cauchy sequence of rational numbers converges in R. We must
“complete” the rational numbers to obtain R, the set of real numbers. We want
to discuss this phenomenon in general.

Complete metric spaces.

So we say that a (pseudo-)metric space is complete if every Cauchy sequence
converges. The key result of this section is that we can always “complete” a
metric or pseudo-metric space. More precisely, we claim that

Proposition 6.2.1. Any metric (or pseudo-metric) space can be mapped by a
one to one isometry onto a dense subset of a complete metric (or pseudo-metric)
space.

By Proposition 6.1.1, it is enough to prove this for a pseudo-metric space X.

Let Xseq denote the set of Cauchy sequences in X, and define the distance
between the Cauchy sequences {xn} and {yn} to be

d({xn}, {yn}) := lim
n→∞

d(xn, yn).

It is easy to check that d defines a pseudo-metric on Xseq. Let f : X → Xseq

be the map sending x to the sequence all of whose elements are x;

f(x) = (x, x, x, x, · · · ).

It is clear that f is one to one and is an isometry. The image is dense since by
definition

lim d(f(xn), {xn}) = 0.

Since f(X) is dense in Xseq, it suffices to show that any Cauchy sequence
of points of the form f(xn) converges to a limit. But such a sequence converges
to the element {xn}. 2
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6.2.1 Normed vector spaces.

Of special interest are vector spaces which have a metric which is compatible
with the vector space properties and which is complete: Let V be a vector space
over the real numbers. A norm is a real valued function

v 7→ ‖v‖

on V which satisfies

1. ‖v‖ ≥ 0 and > 0 if v 6= 0,

2. ‖rv‖ = |r|‖v‖ for any real number r, and

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ ∀ v, w ∈ V .

Then d(v, w) := ‖v−w‖ is a metric on V , which satisfies d(v+u,w+u) = d(v, w)
for all v, w, u ∈ V . The ball of radius r about the origin is then the set of all v
such that ‖v‖ < r. A vector space equipped with a norm is called a normed
vector space and if it is complete relative to the metric it is called a Banach
space.

6.3 The contraction fixed point theorem.

We now come to the theorem which, despite the simplicity of its formulation
and proof, should be considered as the central theorem of this book:

Let X and Y be metric spaces. Recall that a map f : X → Y is called a
Lipschitz map or is said to be “Lipschitz continuous”, if there is a constant C
such that

dY (f(x1), f(x2)) ≤ CdX(x1, x2), ∀ x1, x2 ∈ X.
If f is a Lipschitz map, we may take the greatest lower bound of the set of all
C for which the previous inequality holds. The inequality will continue to hold
for this value of C which is known as the Lipschitz constant of f and denoted
by Lip(f).

A map K : X → Y is called a contraction if it is Lipschitz, and its Lipschitz
constant satisfies Lip(K) < 1.

Suppose K : X → X is a contraction, and suppose that Kx1 = x1 and
Kx2 = x2. Then

d(x1, x2) = d(Kx1,Kx2) ≤ Lip(K)d(x1, x2)

which is only possible if d(x1, x2) = 0, i.e. x1 = x2. So a contraction can have
at most one fixed point. The contraction fixed point theorem asserts that if the
metric space X is complete (and non-empty) then such a fixed point exists.

Theorem 6.3.1. [The contraction fixed point theorem.] Let X be a non-
empty complete metric space and K : X → X a contraction. Then K has a
unique fixed point.
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Proof. Choose any point x0 ∈ X and define

xn := Knx0

so that
xn+1 = Kxn, xn = Kxn−1

and therefore
d(xn+1, xn) ≤ Cd(xn, xn−1), 0 ≤ C < 1

implying that
d(xn+1, xn) ≤ Cnd(x1, x0).

Thus for any m > n we have

d(xm, xn) ≤
m−1∑
n

d(xi+1, xi) ≤
(
Cn + Cn+1 + · · ·+ Cm−1

)
d(x1, x0)

≤ Cn d(x1, x0)
1− C

.

This says that the sequence {xn} is Cauchy. Since X is complete, it must
converge to a limit x, and Kx = limKxn = limxn+1 = x so x is a fixed point.
We already know that this fixed point is unique.

6.3.1 Local contractions.

We often encounter mappings which are contractions only near a particular
point p. If K does not move p too much we can still conclude the existence of
a fixed point, as in the following:

Theorem 6.3.2. Let D be a closed ball of radius r centered at a point p in
a complete metric space X, and suppose K : D → X is a contraction with
Lipschitz constant C < 1. Suppose that

d(p,Kp) ≤ (1− C)r.

Then K has a unique fixed point in D.

Proof. We simply check that K : D → D and then apply the preceding theorem
with X replaced by D: For any x ∈ D, we have

d(Kx, p) ≤ d(Kx,Kp) + d(Kp, p) ≤

Cd(x, p) + (1− C)r ≤ Cr + (1− C)r = r.

Here is another version:
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Theorem 6.3.3. Let B be an open ball or radius r centered at p in a complete
metric space X and let K : B → X be a contraction with Lipschitz constant
C < 1. Suppose that

d(p,Kp) < (1− C)r.

Then K has a unique fixed point in B.

Proof. Restrict K to any slightly smaller closed ball centered at p and apply
the preceding theorem.

Estimating the distance to the fixed point.

Corollary 6.3.1. Let K : X → X be a contraction with Lipschitz constant C of
a complete metric space. Let x be its (unique) fixed point. Then for any y ∈ X
we have

d(y, x) ≤ d(y,Ky)
1− C

.

Proof. We may take x0 = y and follow the proof of Theorem 6.3.1. Alternatively,
we may apply Prop. 6.3.2 to the closed ball of radius d(y,Ky)/(1−C) centered
at y. Prop. 6.3.2 implies that the fixed point lies in the ball of radius r centered
at y.

Future applications of the Corollary.

The Corollary we just proved will be of use to us in proving continuous depen-
dence on a parameter in the next section

Later, when we study iterative function systems for the construction of frac-
tal images, the corollary becomes the “collage theorem”. We might call our
corollary the “abstract collage theorem”.

6.4 Dependence on a parameter.

Suppose that the contraction “depends on a parameter s”. More precisely,
suppose that S is some other metric space and that

K : S ×X → X

with

dX(K(s, x1),K(s, x2)) ≤ CdX(x1, x2), 0 ≤ C < 1, ∀s ∈ S, x1, x2 ∈ X. (6.1)

(We are assuming that the C in this inequality does not depend on s.) If we
hold s ∈ S fixed, we get a contraction

Ks : X → X, Ks(x) := K(s, x).

This contraction has a unique fixed point, call it ps. We thus obtain a map

S → X, s 7→ ps

sending each s ∈ S into the fixed point of Ks.
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Theorem 6.4.1. [Continuous dependence of the fixed point on the
parameter.] Suppose that for each fixed x ∈ X, the map

s 7→ K(s, x)

of S → X is continuous. Then the map

s 7→ ps

is continuous.

Proof. Fix a t ∈ S and an ε > 0. We must find a δ > 0 such that dX(ps, pt) < ε
if dS(s, t) < δ. Our continuity assumption says that we can find a δ > 0 such
that

dX(K(s, pt), pt) = dX(K(s, pt),K(t, pt) ≤ (1− C)ε

if dS(s, t) < δ. This says that Ks moves pt a distance at most (1 − C)ε. But
then the “abstract collage theorem”, Prop. 6.3.1, says that

dX(pt, ps) ≤ ε.

6.5 The Lipschitz implicit function theorem.

In this section we follow the treatment in [Shub]

6.5.1 The inverse function theorem.

We begin with the inverse function theorem whose proof contains the guts of
the argument.

Consider a map F : Br(0) → E where Br(0) is the open ball of radius r
about the origin in a Banach space, E, and where F (0) = 0. Under suitable
conditions on F , wish to conclude the existence of an inverse to F , defined on
a possible smaller ball by means of the contraction fixed point theorem.

For example, suppose that F is continuously differentiable with derivative
A at the origin which is invertible. Replacing F by A−1F we may assume that
the derivative of F at 0 is the identity map, id.

So F − id vanishes at the origin together with its derivative. Hence the mean
value theorem implies that we can arrange that F − id has Lipschitz constant
as small as we like. This justifies the hypotheses of the following theorem:

Theorem 6.5.1. Let F : Br(0)→ E satisfy F (0) = 0 and

Lip[F − id] = λ < 1. (6.2)
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Then the ball Bs(0) is contained in the image of F where

s = (1− λ)r (6.3)

and F has an inverse, G defined on Bs(0) with

Lip[G− id] ≤ λ

1− λ
. (6.4)

Proof. Let us set F = id + v so

id + v : Br(0)→ E, v(0) = 0, Lip[v] < λ < 1.

We want to find a w : Bs(0)→ E with

w(0) = 0

and
(id + v) ◦ (id + w) = id.

This equation is the same as

w = −v ◦ (id + w).

Let X be the space of continuous maps of Bs(0)→ E satisfying

u(0) = 0

and

Lip[u] ≤ λ

1− λ
.

Then X is a complete metric space relative to the sup norm, and, for x ∈ Bs(0)
and u ∈ X we have

‖u(x)‖ = ‖u(x)− u(0)‖ ≤ λ

1− λ
‖x‖ ≤ r.

Thus, if u ∈ X then
u : Bs → Br.

If w1, w2 ∈ X,

‖ −v ◦ (id +w1) + v ◦ (id +w2) ‖≤ λ ‖ (id +w1)− (id +w2) ‖= λ ‖ w1 −w2 ‖ .

So the map K : X → X

K(u) = −v ◦ (id + u)

is a contraction. Hence there is a unique fixed point. This proves the inverse
function theorem.
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6.5.2 The implicit function theorem.

The setup.

We want to solve the equation F (x, y) = 0 for y as a function of x. In other
words, we are looking for a function y = g(x) such that F (x, g(x)) ≡ 0.

Here x and y are vector variables, say x ranges over an open ball A in a
Banach space X and y ranges over and open ball B in some other Banach space
Y .

Here F : A×B → Z where Z is some third vector space.

To keep the notation simple, we will assume that A and B are open balls
about the origin(s) and that

F (0, 0) = 0.

The assumptions about F .

We assume that

• F is continuous as a function of (x, y).

• ∂F
∂y exists and is continuous as a function of (x, y). Remember that ∂F

∂y is
a linear transformation. For example, it is a matrix if B is some ball in
Rn.

• ∂F
∂y (0, 0) is invertible.

The method.

We set T := ∂F
∂y (0, 0) and define

K(x, y) := y − T−1F (x, y).

So K is a continuous map from A×B → Y and

K(x, y)y = y ⇐⇒ F (x, y) = 0.

K is a continuous map from A × B → Y and ∂K
∂y is a continuous Y -valued

function of (x, y) with
∂K

∂y
(0, 0) = 0.

So by choosing smaller balls (which we now rename as A and B) we can arrange
that ∥∥∥∥∂K∂y (x, y)

∥∥∥∥ < 1
2

for all (x, y) ∈ A×B. The mean value theorem implies that
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K is a contraction in its second variable with Lipschitz constant 1
2 .

Let r denote the radius of the ball B. Since K(x, y)−y is a continuous function
of x and K(0, 0)− 0 = 0, we can shrink the ball A still further (and reuse A as
the name of the shrunken ball) so that

‖K(x, y)− y‖ < r

2

for all (x, y) ∈ A×B.

We now recall a version of the contraction fixed point theorem with a slight
change in notation suitable for our case:

Proposition 6.5.1. Suppose that K : A×B → Y is continuous, satisfies

‖K(x, y1)−K(x, y2)‖ ≤ ‖y1 − y2‖C, 0 ≤ C < 1, ∀s ∈ S,

and
‖K(x, y)− y‖ < (1− C)r, ∀ x ∈ A.

Then for each x ∈ A there is a unique yx ∈ B such that K(x, y) = yx, and the
map x 7→ yx is continuous.

We have verified the hypotheses of the proposition with C = 1
2 . So we have

proved:

Theorem 6.5.2. [The Lipschitz implicit function theorem.]Let (x, y) 7→
F (x, y) ∈ Z be a continuous map defined on an open set of X × Y where
X,Y , and Z are Banach spaces and such that ∂F

∂y is continuous. Suppose that
F (x0, y0) = 0 at some point (x0, y0) and ∂F

∂y (x0, y0) is invertible. Then there are
open balls A and B about x0 and y0 such that for each x ∈ A there is a unique
y = g(x) ∈ B such that F (x, y) = 0. The map g so defined is continuous.

By the arguments we gave in Chapter I, we know that if F is continuously
differentiable in both variables then g is differentiable near x0 and we know how
to compute its derivative.

6.6 The local existence theorem for solutions of
differential equations.

The set up.

A is an open subset of a Banach space X, I ⊂ R is an open interval and

F : I ×A→ X

is continuous. We want to study the differential equation

dx

dt
= F (t, x).
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A solution of this equation is a map f : J → A, where J is an open subinterval
of I such that f ′(t) exists for all t ∈ J and

f ′(t) = F (t, f(t)).

If f ′ exists then f must be continuous, and the the right hand side of the above
equation is then continuous. So any solution must be continuously differentiable.

The hypothesis.

The function F is uniformly Lipschitz in the second variable. That is, there is
a constant c independent of t such that

‖F (t, x1)− F (t, x2)‖ ≤ c‖x1 − x2‖ ∀ x1, x2 ∈ A.

The conclusion.

Theorem 6.6.1. For any (t0, x0) ∈ I ×A there is a neighborhood U of x0 such
that for any sufficiently small interval J containing t0 there is a unique map
f : J → U such that f is a solution to the differential equation and

f(t0) = x0.

The idea of the proof.

If f is a solution to our differential equation defined on the interval J , then

f(t)− f(t0) =
∫ t

t0

F (s, f(s))ds.

If f(t0) = x0 then we get

f(t) = x0 +
∫ t

t0

F (s, f(s))ds.

Conversely, if f satisfies this last equation, then f(t0) = x0 and also f is differ-
entiable and is a solution to our differential equation.

So for any interval J about t0 let B(J) denote the space of bounded, con-
tinuous maps from J to X and try to define the map

K : B(J)→ B(J)

by

K(g)(t) = x0 +
∫ t

t0

F (s, g(s))ds.

If we can arrange by suitable choice of U that for small enough J the map K
is defined and is a contraction, then the fixed point theorem gives us a unique
solution to our differential equation with initial condition.
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The proof.

Choose U to be a ball of radius r about x0 and an interval L about t0 so that
F is bounded on L× U with bound m. Recall that c is the Lipschitz constant
of F in its second variable.

Let x0 denote the constant function of t with value x0 i.e.

x0(t) ≡ x0.

Let Br be the ball of radius r in B(J) about x0 relative to the sup norm

‖g − h‖∞ := l.u.b.t∈J‖g(t)− h(t)‖.

So for any g ∈ Br, g(t) ∈ U for all t ∈ J and so F (t, g(t)) is defined.
Let δ denote the length of J . If g1, g2 ∈ Br then K(g1) and K(g2) are

defined, and for t ∈ J we have

‖K(g1)(t)−K(g2)(t)‖ =
∥∥∥∥∫ t

t0

(F (s, g1(s))− F (s, g2(s))) ds
∥∥∥∥

≤ cδ‖g1 − g2‖∞.

Taking the least upper bound with respect to t gives

‖Kg1 −Kg2‖∞ ≤ cδ‖g1 − g2‖∞.

In other words, K is Lipschitz with Lipschitz constant C = cδ. We need to
choose δ so that C = cδ < 1 if we want K to be a contraction.

Now let’s see how far K moves the center, x0 of Br: We have

‖K(x0)(t)− x0(t)‖ =
∥∥∥∥∫ t

t0

F (s, x0)ds
∥∥∥∥ ≤ δm

so
‖K(x0)− x0‖∞ ≤ δm.

We will apply Theorem 6.3.2. So we want to choose δ small enough that

δm ≤ (1− C)r = (1− δc)r.

The condition δm ≤ (1− δc)r translates into δ(m+ cr) ≤ 1 so if we choose

δ <
r

m+ cr

then C = δc < 1 and ‖K(x0)− x0‖∞ < (1− C)r so K satisfies the conditions
of the theorem and there is a unique fixed point. 2



Chapter 7

The Hausdorff metric and
Hutchinson’s theorem.

7.1 The Hausdorff metric.

Compact sets and their collars.

Let X be a complete metric space. Let H(X) denote the space of non-empty
compact subsets of X. For any A ∈ H(X) and any positive number ε, let

Aε = {x ∈ X|d(x, y) ≤ ε, for some y ∈ A}.

We call Aε the ε-collar of A. Recall that we defined

d(x,A) = inf
y∈A

d(x, y)

to be the distance from any x ∈ X to A. So we can write the definition of the
ε-collar as

Aε = {x|d(x,A) ≤ ε}.

Notice that the infimum in the definition of d(x,A) is actually achieved, that
is, there is some point y ∈ A such that

d(x,A) = d(x, y).

This is because A is compact. For a pair of non-empty compact sets, A and B,
define

d(A,B) = max
x∈A

d(x,B).

So
d(A,B) ≤ ε ⇐⇒ A ⊂ Bε.

Notice that this condition is not symmetric in A and B.

143
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The Hausdorff metric h(A,B).

So Hausdorff introduced

h(A,B) = max{d(A,B), d(B,A)} (7.1)
= inf{ε | A ⊂ Bε and B ⊂ Aε}. (7.2)

as a distance on H(X). He proved

Theorem 7.1.1. The function h on H(X) × H(X) satsifies the axioms for a
metric and makes H(X) into a complete metric space. Furthermore, if

A,B,C,D ∈ H(X)

then
h(A ∪B,C ∪D) ≤ max{h(A,C), h(B,D)}. (7.3)

Proof of (7.3). If ε is such that A ⊂ Cε and B ⊂ Dε then clearly
A ∪ B ⊂ Cε ∪Dε = (C ∪D)ε. Repeating this argument with the roles of A,C
and B,D interchanged proves (7.3). 2

We prove that h is a metric: h is symmetric, by definition. Also, h(A,A) = 0,
and if h(A,B) = 0, then every point of A is within zero distance of B,and hence
must belong to B since B is compact, so A ⊂ B and similarly B ⊂ A. So
h(A,B) = 0 implies that A = B.

Proof of the triangle inequality. For this it is enough to prove that

d(A,B) ≤ d(A,C) + d(C,B),

because interchanging the role of A and B gives the desired result. Now for any
a ∈ A we have

d(a,B) = min
b∈B

d(a, b)

≤ min
b∈B

(d(a, c) + d(c, b)) ∀c ∈ C

= d(a, c) + min
b∈B

d(c, b) ∀c ∈ C

= d(a, c) + d(c,B) ∀c ∈ C
≤ d(a, c) + d(C,B) ∀c ∈ C.

The second term in the last expression does not depend on c, so minimizing
over c gives

d(a,B) ≤ d(a,C) + d(C,B).

Maximizing over a on the right gives

d(a,B) ≤ d(A,C) + d(C,B).

Maximizing on the left gives the desired

d(A,B) ≤ d(A,C) + d(C,A). 2
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bfA sketch of the proof of completeness. Let An be a sequence of compact
non-empty subsets of X which is Cauchy in the Hausdorff metric. Define the
set A to be the set of all x ∈ X with the property that there exists a sequence
of points xn ∈ An with xn → x. It is straighforward to prove that A is compact
and non-empty and is the limit of the An in the Hausdorff metric.

7.1.1 Contractions and the Hausdorff metric.

Suppose that K : X → X is a contraction. Then K defines a transformation
on the space of subsets of X (which we continue to denote by K):

K(A) = {Kx|x ∈ A}.

Since K continuous, it carries H(X) into itself. Let c be the Lipschitz constant
of K. Then

d(K(A),K(B)) = max
a∈A

[min
b∈B

d(K(a),K(b))]

≤ max
a∈A

[min
b∈B

cd(a, b)]

= cd(A,B).

Similarly, d(K(B),K(A)) ≤ c d(B,A) and hence

h(K(A),K(B)) ≤ c h(A,B). (7.4)

In other words, a contraction on X induces a contraction on H(X) with the
same Lipschitz constant.

7.2 Hutchinson’s theorem.

The previous remark together with the following observation is the key to
Hutchinson’s remarkable construction of fractals:

Proposition 7.2.1. Let T1, . . . , Tn be a collection of contractions on H(X) with
Lipschitz constants c1, . . . , cn, and let c = max ci. Define the transformation T
on H(X) by

T (A) = T1(A) ∪ T2(A) ∪ · · · ∪ Tn(A).

Then T is a contraction with Lipschitz constant c.

Proof. By induction, it is enough to prove this for the case n = 2. By (7.3) we
have

h(T (A), T (B)) = h(T1(A) ∪ T2(A), T1(B) ∪ T2(B))
≤ max{h(T1(A), T1(B)), h(T2(A), T2(B))}
≤ max{c1h(A,B), c2h(A,B)}
= h(A,B) max{c1, c2} = c · h(A,B)

.
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Putting the previous facts together we get Hutchinson’s theorem:

Theorem 7.2.1. Let K1, . . . ,Kn be contractions on a complete metric space
and let c be the maximum of their Lifschitz contants. Define the Hutchinson
operator, K, on H(X) by

K(A) = K1(A) ∪ · · · ∪Kn(a).

Then K is a contraction with Lipschtz constant c.

7.3 Affine examples.

In this section we describe several examples in which X is a subset of a vector
space and each of the Ti in Hutchinson’s theorem are affine transformations of
the form

Ti : x 7→ Aix+ bi

where bi ∈ X and Ai is a linear transformation.

7.3.1 The classical Cantor set.

Take X = [0, 1], the unit interval. Take

T1 : x 7→ x

3
, T2 : x 7→ x

3
+

2
3
.

These are both contractions, so by Hutchinson’s theorem there exists a unique
closed set C invariant under T . This is the Cantor set.

Cantor’s original construction.

To relate it to Cantor’s original construction, let us go back to the proof of the
contraction fixed point theorem applied to T acting on H(X). It says that if
we start with any non-empty compact subset A0 and keep applying T to it, i.e.
set An = TnA0 then An → C in the Hausdorff metric, h. Suppose we take the
interval I itself as our A0. Then

A1 = T (I) = [0,
1
3

] ∪ [
2
3
, 1].

in other words, applying the Hutchinson operator T to the interval [0, 1] has
the effect of deleting the “middle third” open interval (1

3 ,
2
3 ). Applying T once

more gives

A2 = T 2[0, 1] = [0,
1
9

] ∪ [
2
9
,

1
3

] ∪ [
2
3
,

7
9

] ∪ [
8
9
, 1].

In other words, A2 is obtained from A1 by deleting the middle thirds of each
of the two intervals of A1 and so on. This was Cantor’s original construction.
Since An+1 ⊂ An for this choice of initial set, the Hausdorff limit coincides with
the intersection.
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Using triadic expansions.

But of course Hutchinson’s theorem (and the proof of the contractions fixed
point theorem) says that we can start with any non-empty closed set as our
initial “seed” and then keep applying T . For example, suppose we start with
the one point set B0 = {0}. Then B1 = TB0 is the two point set

B1 = {0, 2
3
},

B2 consists of the four point set

B2 = {0, 2
9
,

2
3
,

8
9
}

and so on. We then must take the Hausdorff limit of this increasing collection
of sets.

To describe the limiting set C from this point of view, it is useful to use
triadic expansions of points in [0, 1]. Thus

0 = .0000000 · · ·
2/3 = .2000000 · · ·
2/9 = .0200000 · · ·
8/9 = .2200000 · · ·

and so on. Thus the set Bn will consist of points whose triadic exapnsion has
only zeros or twos in the first n positions followed by a string of all zeros.

Thus a point will lie in C (be the limit of such points) if and only if it
has a triadic expansion consisting entirely of zeros or twos. This includes the
possibility of an infinite string of all twos at the tail of the expansion. for
example, the point 1 which belongs to the Cantor set has a triadic expansion 1 =
.222222 · · · . Simialrly the point 2

3 has the triadic expansion 2
3 = .0222222 · · ·

and so is in the limit of the sets Bn. But a point such as .101 · · · is not in the
limit of the Bn and hence not in C. This description of C is also due to Cantor.

Since C (according to Cantor’s second description) is closed, the uniqueness
part of the fixed point theorem guarantees that the second description coincides
with the first.

Self-similarity of the Cantor set.

Notice that for any point a with triadic expansion a = .a1a2a2 · · ·

T1a = .0a1a2a3 · · · , while T2a = .2a1a2a3 · · · .

Thus if all the entries in the expansion of a are either zero or two, this will also
be true for T1a and T2a. This shows that the C (given by this second Cantor
description) satisfies TC ⊂ C. On the other hand,

T1(.a2a3 · · · ) = .0a2a3 · · · , T2(.a2a3 · · · ) = .2a2a3 · · ·
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which shows that .a1a2a3 · · · is in the image of T1 if a1 = 0 or in the image of
T2 if a1 = 2. This shows that TC = C.

The statement that TC = C is frequently formulated as saying that C is is
self-similar, a notion emphasized and popularized by Mandelbrot.

More on this later.

7.3.2 The Sierpinski gasket.

Consider the three affine transformations of the plane:

T1 :
(
x
y

)
7→ 1

2

(
x
y

)
, T2 :

(
x
y

)
7→ 1

2

(
x
y

)
+

1
2

(
1
0

)
,

T3 :
(
x
y

)
7→ 1

2

(
x
y

)
+

1
2

(
0
1

)
.

The fixed point of the Hutchinson operator for this choice of T1, T2, T3 is called
the Sierpinski gasket, S.

If we take our initial set A0 to be the right triangle with vertices at(
0
0

)
,

(
1
0

)
, and

(
0
1

)
then each of the TiA0 is a similar right triangle whose linear dimensions are one-
half as large, and which shares one common vertex with the original triangle.

In other words,
A1 = TA0

is obtained from our original triangle be deleting the interior of the (reversed)
right triangle whose vertices are the midpoints of our original triangle. Just
as in the case of the Cantor set, successive applications of T to this choice of
original set amounts to sussive deletions of the “middle” and the Hausdorff limit
is the intersection of all them: S =

⋂
Ai.

We can also start with the one element set

B0

{(
0
0

)}
Using a binary expansion for the x and y coordinates, application of T to B0

gives the three element set{(
0
0

)
,

(
.1
0

)
,

(
0
.1

)}
.

The set B2 = TB1 will contain nine points, whose binary expansion is obtained
from the above three by shifting the x and y expansions one unit to the right
and either inserting a 0 before both expansions (the effect of T1), insert a 1
before the expansion of x and a zero before the y or vice versa.

Proceeding in this fashion, we see that Bn consists of 3n points which have
all 0 in the binary expansion of the x and y coordinates, past the n-th position,
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and which are further constrained by the condition that at no earler point do
we have both xi = 1 and y1 = 1. Passing to the limit shows that S consists of
all points for which we can find (possible inifinite) binary expansions of the x
and y coordinates so that xi = 1 = yi never occurs.

For example x = 1
2 , y = 1

2 belongs to S because we can write x = .10000 · · · , y =
.011111 . . . . Again, from this (second) description of S in terms of binary ex-
pansions it is clear that TS = S.

7.3.3 A one line code for creating the Sierpinski gasket.

The following slide gives a matlab m file for doing the first seven approximations
to the Sierpinksi gasket (in a slightly different orientation) as a movie. Notice
that that iterative scheme is encoded in the single line

J=[J J;J zeros(2i, 2i)];.

The other instructions are for the graphics, etc. This shows the power of
Hutchinsons theorem.

J=[10];
image(J);colormap(colorcube(17))
pause(3)
for i=0:6
J=[J J;J zeros(2i, 2i)];
image(J);
colormap(colorcube(17));
pause(3)
end

Here are the (first seven) successive images:
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7.4 Hausdorff dimension.

Let X be a metric space. Let B be a countable collection of balls Bi of radii
ri < ε which cover X, meaning that

X ⊂
⋃
i

Bi.

(We assume that at least one such countable cover exists.)

For each non-negative real number t let

mt(B) :=
∑
i

rti

where this sum might be infinite. Define

Mt,ε(X) = g.l.b.{mt(B)}

where we are taking the greatest lower bound over all possible countable covers
of X by balls of radius at most ε. So Mt,ε(X) can be infinite, or be any non-
negative real number, including 0. By its definition, Mt,ε is non-decreasing as
ε → 0, so there is a limit (again possibly infinite or zero or any non-negative
real number). Call this limit Mt(X).



154CHAPTER 7. THE HAUSDORFF METRIC AND HUTCHINSON’S THEOREM.

Theorem 7.4.1. If 0 < s < t and Ms(X) <∞ then Mt(X) = 0.

Proof. For any cover B by balls of radius at most ε we have∑
i

rti =
∑
i

rt−si rsi ≤ εt−s
∑
i

rsi .

So Mt,ε ≤ εt−sMs,ε. Passing to the limit gives the theorem.

The contrapositive assertion is that if 0 < s < t and Mt(X) > 0, then
Ms(X) =∞.

Taken together they imply that there is a number d (possibly zero or ∞)
such that Mt(X) = 0 for all t > d and Ms(X) = ∞ for s < d. This number d
is called the Hausdorff dimension of X.

Easy arguments will show that the Hausdorff dimension of Rn is n.
For further information about this, and about the material in the remainder

of this chapter, see the excellent book Measure, Topology, and Fractal Geometry
by Gerald A. Edgar, published by Springer.

7.5 Similarity dimension of contracting ratio lists.

7.5.1 Contracting ratio lists.

A finite collection of real numbers

(r1, . . . , rn)

is called a contracting ratio list if

0 < ri < 1 ∀ i = 1, . . . , n.

Theorem 7.5.1. Let (r1, . . . , rn) be a contracting ratio list. There exists a
unique non-negative real number s such that

n∑
i=1

rsi = 1. (7.5)

The number s is 0 if and only if n = 1.

Proof. If n = 1 then s = 0 works and is clearly the only solution. If n > 1,
define the function f on [0,∞) by

f(t) :=
n∑
i=1

rti .

We have f(0) = n and limt→∞ f(t) = 0 < 1. Since f is continuous,
there is some postive solution to (7.5). To show that this solution is unique, it
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is enough to show that f is monotone decreasing. This follows from the fact
that its derivative is

n∑
i=1

rti log ri < 0.

Similarity dimension.

The number s in (7.5) is called the similarity dimension of the ratio list
(r1, . . . , rn).

7.6 Iterated function systems and fractals.

A map f : X → Y between two metric spaces is called a similarity with
similarity ratio r if

dY (f(x1), f(x2)) = rdX(x1, x2) ∀ x1, x2 ∈ X.

(Recall that a map is called Lipschitz with Lipschitz constant r if we only had
an inequality, ≤, instead of equality in the above.)

7.6.1 Realizations of a contracting ratio list.

Let X be a complete metric space, and let (r1, . . . , rn) be a contracting ratio
list. A collection

(f1, . . . , fn), fi : X → X

is called an iterated function system which realizes the contracting ratio
list if

fi : X → X, i = 1, . . . , n

is a similarity with ratio ri. We also say that (f1, . . . , fn) is a realization of
the ratio list (r1, . . . , rn).

Using Hutchinson.

It is a consequence of Hutchinson’s theorem, that

Theorem 7.6.1. If (f1, . . . , fn) is a realization of the contracting ratio list
(r1, . . . , rn) on a complete metric space, X, then there exists a unique non-
empty compact subset K ⊂ X such that

K = f1(K) ∪ · · · ∪ fn(K).

In fact, as we have seen, Hutchinson’s theorem and the contraction fixed
point theorem asserts the corresponding result where the fi are merely assumed
to be Lipschitz maps with Lipschitz constants (r1, . . . , rn) all < 1.
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7.7 Fractals and fractal dimension.

The setK is sometimes called the fractal associated with the realization (f1, . . . , fn)
of the contracting ratio list (r1, . . . , rn).

Here are some facts. For more details and the proofs, I refer to the book [?]
mentioned above.

dim(K) ≤ s (7.6)

where dim denotes Hausdorff dimension, and s is the similarity dimension of
(r1, . . . , rn). In general, we can only assert an inequality here, for the the set K
does not fix (r1, . . . , rn) or its realization.

For example, we can repeat some of the ri and the corresponding fi. This
will give us a longer list, and hence a larger s, but will not change K. But
we can demand a rather strong form of non-redundancy known as Moran’s
condition: There exists an open set O such that

O ⊃ fi(O) ∀ i and fi(O) ∩ fj(O) = ∅ ∀ i 6= j. (7.7)

Then

Theorem 7.7.1. If (f1, . . . , fn) is a realization of (r1, . . . , rn) on Rd and if
Moran’s condition holds then

dimK = s.

The Hausdorff dimension of the Cantor set and of the Sierpinski gas-
ket.

In both of these examples the Moran condition is satisfied. So

• For the Cantor set we are looking for an s such that
(

1
3

)s +
(

1
3

)s = 1
which says that 2

3s = 1. Taking logarithms gives log 2− s log 3 = 0 so the
Hausdorff dimension of the Cantor set is log 2/ log 3.

• For the Sierpinski gasket the equation becomes 3 · 1
2s = 1 so the Hausdorff

dimension of the Sierpinski gasket is log 3/ log 2.
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Chapter 8

Hyperbolicity.

Let E be a Banach space. A linear map A : E → E is called hyperbolic
if we can find closed subspaces S and U of E which are invariant under A such
that we have the direct sum decomposition

E = S ⊕ U (8.1)

and a positive constant a < 1 so that the estimates

‖As‖ ≤ a < 1, As = A|S (8.2)

and

‖A−1
u ‖ ≤ a < 1, Au = A|U (8.3)

hold. (Here, as part of hypothesis (8.3), it is assumed that the restriction of A
to U is an isomorphism so that A−1

u is defined.)
If p is a fixed point of a diffeomorphism f , then it is called a hyperbolic

fixed point if the linear transformation dfp is hyperbolic.
The main purpose of the first part of this chapter is to prove that any

diffeomorphism, f is conjugate via a local homeomorphism to its derivative, dfp
near a hyperbolic fixed point. A more detailed statement will be given below.
We discussed the one dimensional version of this in Section 4.5. The theorem is a
special case (C0) of my old theorem about Ck conjugacy near a hyperbolic fixed
point. See my paper “The structure of local homeomorphisms, II” American
Journal of Mathematics vol 80 (1958) pp. 623-632. I will state (without proof)
the C∞ version later in this chapter.

8.1 The conjugacy theorem.

Our treatment will follow the exposition in [Shub].

159
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8.1.1 A global version.

We begin with a global conjugacy theorem. We will then pass from the global
to the local.

Theorem 8.1.1. Let A be a hyperbolic isomorphism (so that A−1 is bounded)
with a as above, and let

ε <
1− a
‖A−1‖

. (8.4)

If φ and ψ are bounded Lipschitz maps of E into itself with

Lip[φ] < ε, Lip[ψ] < ε

then there is a unique solution to the equation

(id + u) ◦ (A+ φ) = (A+ ψ) ◦ (id + u) (8.5)

in the space, X of bounded continuous maps of E into itself. If φ(0) = ψ(0) = 0
then u(0) = 0.

Proof. If we expand out both sides of (8.5) we get the equation

Au− u(A+ φ) = φ− ψ(id + u).

Let us define the linear operator, L, on the space X by

L(u) := Au− u ◦ (A+ φ).

So we wish to solve the equation

L(u) = φ− ψ(id + u).

So we wish to solve the equation

L(u) := Au− u ◦ (A+ φ). (8.6)

We shall show that L is invertible with

‖L−1‖ ≤ ‖A
−1‖

(1− a)
. (8.7)

Assume, for the moment that we have proved (8.7). We are then looking for a
solution of

u = K(u)

where
K(u) = L−1[φ− ψ(id + u)].

We have

‖K(u1)−K(u2)‖ = ‖L−1[φ− ψ(id + u1)− φ+ ψ(id + u2)]‖
= ‖L−1[ψ(id + u2)− ψ(id + u1)]‖
≤ ‖L−1‖ · Lip[ψ] · ‖u2 − u1‖
< c‖u2 − u1‖, c < 1
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if we combine (8.7) with (8.4). Thus K is a contraction and we may apply the
contraction fixed point theorem to conclude the existence and uniqueness of the
solution to (8.5).

So we must turn our attention to the proof that L is invertible and of the
estimate (8.7). Let us write

Lu = A(Mu)

where
Mu = u−A−1u ◦ (A+ φ).

Composition with A is an invertible operator and the norm of its inverse is
‖A−1‖. So we are reduced to proving that M is invertible and that we have the
estimate

‖M−1‖ ≤ 1
1− a

. (8.8)

Proof of 8.8. Let us write

u = f ⊕ g, f : E → S, g : E → U

in accordance with the decomposition (8.1). If we let Y denote the space of
bounded continuous maps from E to S, and let Z denote the space of bounded
continuous maps from E to U , we have

X = Y ⊕ Z

and the operator M sends each of the spaces Y and Z into themselves since
A−1 preserves S and U .

Let Ms denote the restriction of M to Y , and let Mu denote the restriction
of M to Z. It will be enough for us to prove that each of the operators Ms and
Mu is invertible with a bound (8.8) with M replaced by Ms and by Mu. For
f ∈ Y let us write

Msf = f −Nf, Nf = A−1f ◦ (A+ φ).

We will prove:

Lemma 8.1.1. The map N is invertible and we have

‖N−1‖ ≤ a.

We will break the proof of the lemma into several pieces:

• The map A+ φ is injective. Indeed

‖Ax‖ ≥ 1
‖A−1‖

‖x‖

so

‖Ax+ φ(x)−Ay − φ(y)‖ ≥
[

1
‖A−1‖

− Lip[φ]
]
‖x− y‖

≥ a

‖A−1‖
‖x− y‖

by (8.4.
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• The map A+ φ is surjective with continuous inverse. To solve

Ax+ φ(x) = y

for x, we apply the contraction fixed point theorem to the map

x 7→ A−1(y − φ(x)).

The estimate
ε <

1− a
‖A−1‖

. (8.4)

shows that this map is a contraction, so we can solve for x as function of
y. Hence A + φ is surjective. In fact, this argument shows that the map
A+ φ a homeomorphism with Lipschitz inverse.

• Recall that the map N was defined by Nf = A−1f ◦ (A+ φ).

So the map N is invertible, with

N−1f = Asf ◦ (A+ φ)−1.

Since ‖As‖ ≤ a, we have

‖N−1f‖ ≤ a‖f‖.

(This is in terms of the sup norm on Y .) In other words, in terms of
operator norms,

‖N−1‖ ≤ a,

completing the proof of the lemma.

Recall that Msf := f −Nf .

We can now find M−1
s by the geometric series

M−1
s = (I −N)−1

= [(−N)(I −N−1)]−1

= (−N)−1[I +N−1 +N−2 +N−3 + · · · ]

and so on Y we have the estimate

‖M−1
s ‖ ≤

a

1− a
.

The restriction, Mu, of M to Z is

Mug = g −Qg

with
‖Qg‖ ≤ a‖g‖
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so we have the simpler series

M−1
u = I +Q+Q2 + · · ·

giving the estimate

‖Mu‖ ≤
1

1− a
.

Since
a

1− a
<

1
1− a

the two pieces together give the desired estimate

‖M‖ ≤ 1
1− a

,

completing the proof of the first part of the theorem.
Since evaluation at zero is a continuous function on X, to prove the last

statement of the proposition it is enough to observe that if we start with an
initial approximation satisfying u(0) = 0 (for example u ≡ 0) Ku will also
satisfy this condition and hence so will Knu and therefore so will the unique
fixed point.

This completes the proof of the theorem.

We now pass from the global to the local.

8.1.2 The local version.

Let f be a differentiable, diffeomorphism defined in some neighborhood of 0
with f(0) = 0 and df0 = A where A is hyperbolic. So we assume that A satisfies
conditions (8.2) and (8.3) relative to a decomposition (8.1). We may write

f = A+ φ

where
φ(0) = 0, dφ0 = 0.

We wish to prove

Theorem 8.1.2. There exists neighborhoods U and V of 0 and a homeomor-
phism h : U → V such that

h ◦A = f ◦ h. (8.9)

In short, the theorem asserts that a diffeomorphism near a hyperbolic fixed
point is conjugate to its linear part via a homeomorphism.
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Plan of the proof.

We prove this theorem by modifying φ outside a sufficiently small neighborhood
of 0 in such a way that the new φ is globally defined and has Lipschitz constant
less than ε where ε satisfies condition (8.4). We can then apply the preceding
theorem to find a global h which conjugates the modified f to A, and h(0) = 0.
But since we will not have modified f near the origin, this will prove the local
assertion of the theorem. For this purpose, choose some function ρ : R → R+

with

ρ(t) = 0 ∀ t ≥ 1

ρ(t) = 1 ∀ t ≤ 1
2

|ρ′(t)| < K ∀ t

where K is some number,
K > 2.

For a fixed ε let r be sufficiently small so that the on the ball, Br(0) we have
the estimate

‖dφx‖ <
ε

2K
,

which is possible since dφ0 = 0 and dφ is continuous.

The modification.

Define

ψ(x) := ρ

(
‖x‖
r

)
φ(x)

for ‖x‖ ≤ r, and continuously extend to all of E by setting

ψ(x) = 0, ‖x‖ ≥ r.

Notice that
ψ(x) = φ(x), ‖x‖ ≤ r

2
.

Checking the Lipschitz constant.

We check the Lipschitz constant of ψ. There are 3 alternatives: If x1 and x2

both belong to Br(0) we have ‖ψ(x1)− ψ(x2)‖

=
∥∥∥∥ρ(‖x1‖

r

)
φ(x1)− ρ

(
‖x2‖
r

)
φ(x2)

∥∥∥∥
≤

∣∣∣∣ρ(‖x1‖
r

)
− ρ

(
‖x2‖
r

)∣∣∣∣ ‖φ(x1)‖+ ρ

(
‖x2‖
r

)
‖φ(x1)− φ(x2)‖

≤ (K‖x1 − x2‖/r)× ‖x1‖ × (ε/2K) + (ε/2K)× ‖x1 − x2‖
≤ ε‖x1 − x2|.
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If x1 ∈ Br(0), x2 6∈ Br(0), then the second term in the expression on the second
line above vanishes and the first term is at most (ε/2)‖x1 − x2‖. If neither x1

nor x2 belong to Br(0) then ψ(x1)− ψ(x2) = 0− 0 = 0. We have verified that
Lip[ψ] < ε and so have proved the theorem. 2

8.1.3 C∞ conjugacy.

We started out with a diffeomorphism but only ended up with a conjugacy
via a homeomorphism. Suppose we start out with an infinity differentiable
diffeomorphism in Theorem 8.1.2. Can we say that f is locally conjugate to its
linear part via an infinitely differentiable diffeomorphism? It turns out that (in
general) a “non-resonance” condition must be satisfied for this to hold. The
condition is the following: We assume that E is a finite dimensional space. Let
λ1, . . . , λn are the eigenvalues of A. The condition is

λi 6= λm1
1 λm2

2 · · ·λmn
n (8.10)

for any non-negative integers mi with
∑
imi ≥ 2. The C∞ version of the

theorem in my 1958 paper asserts that under this non-resonance condition f is
indeed conjugate to its linear part via a C∞ diffeomorphism.

8.2 Invariant manifolds.

Let p be a hyperbolic fixed point of a diffeomorphism, f . The stable manifold
of f at p is defined as the set

W s(p) = W s(p, f) = {x| lim
n→∞

fn(x) = p}. (8.11)

Similarly, the unstable manifold of f at p is defined as

Wu(p) = Wu(p, f) = {x| lim
n→∞

f−n(x) = p}. (8.12)

We have defined W s and Wu as sets. We shall see later on in this section that
in fact they are submanifolds, of the same degree of smoothness as f . The
terminology, while standard, is unfortunate. A point which is not exactly on
W s(p) is swept away under iterates of f from any small neighborhood of p. This
is the content of our first proposition below. So it is a very unstable property
to lie on W s. Better terminology would be “contracting” and “expanding”
submanifolds. But the usage is standard, and we will abide by it. In any event,
the sets W s(p) and Wu(p) are, by their very definition, invariant under f .

In the case that f = A is a hyperbolic linear transformation on a Banach
space E = S ⊕ U , then W s(0) = S and Wu(0) = U as follows immediately
from the definitions. The main result of this section will be to prove that in the
general case, the stable manifold of f at p will be a submanifold whose tangent
at p is the stable subspace of the linear transformation dfp.

Notice that for a hyperbolic fixed point, replacing f by f−1 interchanges the
roles of W s and Wu. So in much of what follows we will formulate and prove
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theorems for either W s or for Wu. The corresponding results for Wu or for W s

then follow automatically.

More details in the linear case.

Let A be a hyperbolic linear transformation on a Banach space E = S⊕U , and
consider any ball, Br = Br(0) of radius r about the origin. If x ∈ Br does not
lie on S ∩Br, this means that if we write x = xs ⊕ xu with xs ∈ S and xu ∈ U
then xu 6= 0. Then

‖Anx‖ = ‖Anxs‖+ ‖Anxu‖
≥ ‖Anxu‖
≥ cn‖xu‖.

If we choose n large enough, we will have cn‖xu‖ > r. So eventually, Anx 6∈ Br.
Put contrapositively,

S ∩Br = {x ∈ Br|Anx ∈ Br∀n ≥ 0}.

Back to the general case.

Now consider the case of a hyperbolic fixed point, p, of a diffeomorphism, f . We
may introduce coordinates so that p = 0, and let us take A = df0. By the C0

conjugacy theorem, we can find a neighborhood, V of 0 and homeomorphism

h : Br → V

with
h ◦ f = A ◦ h.

Then
fn(x) = h−1 ◦An ◦ h (x)

will lie in U for all n ≥ 0 if and only if h(x) ∈ S(A) if and only if Anh(x)→ 0.
This last condition implies that fn(x)→ p. We have thus proved:

Proposition 8.2.1. Let p be a hyperbolic fixed point of a diffeomorphism, f .
For any ball, Br(p) of radius r about p, let

Bsr(p) = {x ∈ Br(p)|fn(x) ∈ Br(p)∀n ≥ 0}. (8.13)

Then for sufficiently small r, we have

Bsr(p) ⊂W s(p).

Furthermore, our proof shows that for sufficiently small r the set Bsr(p) is
a topological submanifold in the sense that every point of Bsr(p) has a neigh-
borhood (in Bsr(p)) which is the image of a neighborhood, V in a Banach space
under a homeomorphism, H. Indeed, the restriction of h to S gives the desired
homeomorphism.
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An important remark. In the general case we can not say that Bsr(p) =
Br(p) ∩W s(p) because a point may escape from Br(p), wander around for a
while, and then be drawn towards p.

But the proposition does assert that Bsr(p) ⊂W s(p) and hence, since W s is
invariant under f−1, we have

f−n[Bsr(p)] ⊂W s(p)

for all n, and hence ⋃
n≥0

f−n[Bsr(p)] ⊂W s(p).

On the other hand, if x ∈ W s(p), which means that fn(x) → p, eventually
fn(x) arrives and stays in any neighborhood of p. Hence p ∈ f−n[Bsr(p)] for
some n. We have thus proved that for sufficiently small r we have

W s(p) =
⋃
n≥0

f−n[Bsr(p)]. (8.14)

We will prove that Bsr(p) is a submanifold. It will then follow from (8.14) that
W s(p) is a submanifold. The global disposition of W s(p), and in particular
its relation to the stable and unstable manifolds of other fixed points, is a key
ingredient in the study of the long term behavior of dynamical systems. Her
our focus is purely local, to prove something about the smooth character of the
set Bsr(p). We follow the treatment in[?, Shub]

In fact, we will prove the local Lipschitzian character of the invariant mani-
folds, and refer to [Shub] for the proof of their smooth charater.

8.2.1 The Lipschitzian case.

We will begin with the hypothesis that f is merely Lipschitz, and give a proof
(independent of the C0 linearization theorem) of the existence and Lipschitz
character of the Wu. We will work in the following situation: A is a hyperbolic
linear isomorphism of a Banach space E = S ⊕ U with

‖Ax‖ ≤ a‖x‖, x ∈ S, ‖A−1x‖ ≤ a‖x‖, x ∈ U,

where 0 < a < 1.

We let S(r) denote the ball of radius s about the origin in S, and U(r) the
ball of radius r in U .

We will assume that
f : S(r)× U(r)→ E

is a Lipschitz map with
‖f(0)‖ ≤ δ (8.15)

and
Lip[f −A] ≤ ε. (8.16)

We wish to prove:
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Theorem 8.2.1. Let c < 1. There exists an ε = ε(a) and a δ = δ(a, ε, r) so
that if f satisfies (8.15) and (8.16) then there is a map

g : Eu(r)→ Es(r)

with the following properties:
(i) g is Lipschitz with Lip[g] ≤ 1.
(ii) The restriction of f−1 to graph(g) is contracting and hence has a fixed point,
p, on graph(g).
(iii) We have

graph(g) =
⋂
fn(S(r)⊕ U(r)) = Wu(p) ∩ [S(r)⊕ U(p)].

The idea of the proof.

The idea of the proof is to apply the contraction fixed point theorem to the
space of maps of U(r) to S(r). We want to identify such a map, v, with its
graph (maybe we should write “cograph”):

graph(v) = {(v(x), x), x ∈ U(r)}.

Now
f [graph(v)] = {f(v(x), x)} = {(fs(v(x), x), fu(v(x), x))},

where we have introduced the notation

fs = ps ◦ f, fu = pu ◦ f,

where ps denotes projection onto S and pu denotes projection onto U .
Suppose that the projection of f [graph(v)] onto U is injective and its image

contains U(r). This means that for any y ∈ U(r) there is a unique x ∈ U(r)
with

fu(v(x), x) = y.

So we write
x = [fu ◦ (v, id)]−1(y)

where we think of (v, id) as a map of U(r)→ E and hence of

fu ◦ (v, id)

as a map of U(r)→ U . Then we can write

f [graph(v)] = {(fs(v([fu ◦ (v, id)]−1(y), y)} = [graphGf (v)]

where
Gf (v) = fs ◦ (v, id) ◦ [fu ◦ (v, id)]−1. (8.17)

The map v 7→ Gf (v) is called the graph transform (when it is defined). We
are going to take

X = Lip1(U(r), S(r))
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to consist of all Lipschitz maps from U(r) to S(r) with Lipschitz constant ≤ 1.
The purpose of the next few lemmas is to show that if ε and δ are sufficiently
small then the graph transform, Gf is defined and is a contraction on X. The
contraction fixed point theorem will then imply that there is a unique g ∈ X
which is fixed under Gf , and hence that graph(g) is invariant under f . We will
then find that g has all the properties stated in the theorem.

Estimates on the graph transform.

In dealing with the graph transform it is convenient to use the box metric, | |,
on S ⊕ U where

|xs ⊕ xu| = max{‖xs‖, ‖xu‖}
i.e.

|x| = max{‖ps(x)‖, ‖pu(x)‖}.
This is equivalent, as a metric, to the original metric on E, by the definition of
a direc sum decomposition.

We begin with

Lemma 8.2.1. If v ∈ X then

Lip[fu ◦ (v, id)−Au] ≤ Lip[f −A].

Proof. Notice that pu ◦A(v(x), x) = pu(As(v(x)), Aux) = Aux so

fu ◦ (v, id)−Au = pu ◦ [f −A] ◦ (v, id).

We have Lip[pu] ≤ 1 since pu is a projection, and

Lip(v, id) ≤ max{Lip[v],Lip[id]} = 1

since we are using the box metric.

Lemma 8.2.2. Suppose that 0 < ε < c−1 and

Lip[f −A] < ε.

Then for any v ∈ X the map fu ◦ (v, id) : Eu(r) → Eu is a homeomorphism
whose inverse is a Lipschitz map with

Lip
[
[fu ◦ (v, id)]−1

]
≤ 1
c−1 − ε

. (8.18)

Proof. Using the preceding lemma, we have

Lip[fu −Au] < ε < c−1 < ‖A−1
u ‖−1 = (Lip[Au])−1

.

By the Lipschitz implicit function theorem we conclude that fu ◦ (v, id) is a
homeomorphism with

Lip
[
[fu ◦ (v, id)]−1

]
≤ 1
‖A−1

u ‖−1 − Lip[fu ◦ (v, id)−Au]
≤ 1
c−1 − ε

by another application of the preceding lemma.
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We now wish to show that the image of fu ◦ (v, id) contains U(r) if ε and
δ are sufficiently small: By the Lipschitz inverse function theorem, Theorem
6.5.1, we know that the image of U(r) under fu ◦ (v, id) contains a ball of radius
r/λ about [fu ◦ (v, id)](0) where λ is the Lipschitz constant of [fu ◦ (v, id)]−1.
By the preceding lemma, r/λ = r(c−1 − ε). Hence fu ◦ (v, id)(U(r)) contains
the ball of radius

r(c−1 − ε)− ‖fu(v(0), 0)‖
about the origin.

But

‖fu(v(0), 0)‖ ≤ ‖fu(0, 0)‖+ ‖fu(v(0), 0)− fu(0, 0)‖
≤ ‖fu(0, 0)‖+ ‖(fu − puA)(v(0), 0)− (fu − puA)(0, 0)‖
≤ |f(0)|+ |(f −A)(v(0), 0)− (f −A)(0, 0)|
≤ |f(0)|+ εr.

The passage from the second line to the third is because puA(x, y) = Auy = 0
if y = 0. The passage from the third line to the fourth is because we are using
the box norm. So

r(c−1 − ε)− ‖fu(v(0), 0)‖ ≥ r(c−1 − 2ε)− δ

if (8.15) holds. We would like this expression to be ≥ r, which will happen if

δ ≤ r(c−1 − 1− 2ε). (8.19)

We have thus proved

Proposition 8.2.2. Let f be a Lipschitz map satisfying (8.15) and (8.16) where
2ε < c−1−1 and (8.19) holds. Then for every v ∈ X, the graph transform, Gf (v)
is defined and

Lip[Gf (v)] ≤ c+ ε

c−1 − ε
.

The estimate on the Lipschitz constant comes from

Lip[Gf (v)] ≤ Lip[fs ◦ (v, id)]Lip[(fu ◦ (v, id)]

≤ Lip[fs]Lip[v]Lip · 1
c−1 − ε

≤ (Lip[As] + Lip[ps ◦ (f −A)]) · 1
c−1 − ε

≤ c+ ε

c−1 − ε
.

In going from the first line to the second we have used the preceding lemma.
In particular, if

2ε < c−1 − c (8.20)

then
Lip[Gf (v)] ≤ 1.
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Let us now obtain a condition on δ which will guarantee that

Gf (v)(U(r) ⊂ S(r).

Since
fu ◦ (v, id)U(r) ⊃ U(r),

we have
[fu ◦ (v, id)]−1U(r) ⊂ U(r).

Hence, from the definition of Gf (v), it is enough to arrange that

fs ◦ (v, id)[U(r)] ⊂ S(r).

For x ∈ U(r) we have

‖fs(v(x), x)‖ ≤ ‖ps ◦ (f −A)(v(x), x)‖+ ‖Asv(x)‖
≤ |(f −A)(v(x), x)|+ c‖v(x)‖
≤ |(f −A)(v(x), x)− (f −A)(0, 0)|+ |f(0)|+ cr

≤ ε|(v(x), x)|+ δ + cr

≤ εr + δ + cr.

So we would like to have
(ε+ c)r + δ < r

or
δ ≤ r(1− c− ε). (8.21)

If this holds, then

Gf maps X into X.

When is Gf : X → X a contraction?

We now want conditions that guarantee that Gf is a contraction on X, where
we take the sup norm. Let (w, x) be a point in S(r)⊕U(r) such that fu(w, x) ∈
U(r). Let v ∈ X, and consider

|(w, x)− (v(x), x)| = ‖w − v(x)‖,

which we think of as the distance along S from the point (w, x) to graph(v).
Suppose we apply f . So we replace (w, x) by f(w, x) = (fs(w, x), fu(w, x)) and
graph(v) by f(graph(v)) = graph(Gf (v)). The corresponding distance along S
is ‖fs(w, x)−Gf (v)(fu(w, x)‖. We claim that

‖fs(w, x)−Gf (v)(fu(w, x))‖ ≤ (c+ 2ε)‖w − v(x)‖. (8.22)

Indeed,
fs(v(x), x) = Gf (v)(fu(v(x), x)
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by the definition of Gf , so we have

‖fs(w, x)−Gf (v)(fu(w, x))‖ ≤ ‖fs(w, x)− fs(v(x), x)‖+
+‖Gf (v)(fu((v(x), x)−Gf (v)(fu(w, x))‖

≤ Lip[fs]|(w, x)− (v(x), x)|+
+Lip[fu]|(v(x), x)− (w, x)|

≤ Lip[fs − psA+ psA]‖w − v(x)‖+
+Lip[fu − puA]‖w − v(x)‖

≤ (ε+ c+ ε)‖w − v(x)‖

which is what was to be proved.
Consider two elements, v1 and v2 of X. Let z be any point of U(r), and

apply (8.22) to the point

(w, x) = (v1([fu ◦ (v1, id)]−1](z)), [fu ◦ (v1, id)]−1](z))

which lies on graph(v1), and where we take v = v2 in (8.22). The image of
(w, x) is the point (Gf (v1)(z), z) which lies on graph(Gf (v1)), and, in particular,
fu(w, x) = z. So (8.22) gives

‖Gf (v1)(z)−Gf (v2)(z)‖

≤ (c+ 2ε)‖v1([fu ◦ (v1, id)]−1](z))− v2([fu ◦ (v1, id)]−1](z)‖.

Taking the sup over z gives

‖Gf (v1)−Gf (v2)‖sup ≤ (c+ 2ε)‖v1 − v2‖sup. (8.23)

Intuitively, what (8.22) is saying is that Gf multiplies the S distance between
two graphs by a factor of at most (c + 2ε). So Gf will be a contraction in the
sup norm if

2ε < 1− c (8.24)

which implies (8.20).

To summarize: we have proved that Gf is a contraction in the sup norm on
X if (8.19), (8.21) and (8.24) hold, i.e.

2ε < 1− c, δ < rmin(c−1 − 1− 2ε, 1− c− ε).

Notice that since c < 1, we have c−1 − 1 > 1− c so both expressions occurring
in the min for the estimate on δ are positive.

Now the uniform limit of continuous functions which all have Lip[v] ≤ 1 has
Lipschitz constant ≤ 1. In other words, X is closed in the sup norm as a subset
of the space of continuous maps of U(r) into S(r), and so we can apply the
contraction fixed point theorem to conclude that there is a unique fixed point,
g ∈ X of Gf . Since g ∈ X, condition (i) of the theorem is satisfied.
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As for (ii), let (g(x), x) be a point on graph(g) which is the image of the
point (g(y), y) under f , so

(g(x), x) = f(g(y), y)

which implies that
x = [fu ◦ (g, id)](y).

pu ◦ f|graph(g) = [fu ◦ (g, id)] ◦ (pu)|graph(g).

In other words, the projection pu conjugates the restriction of f to graph(g)
into [fu ◦ (g, id)]. Hence the restriction off−1 to graph(g) is conjugated by pu
into [fu ◦ (g, id)]−1. But, by (8.18), the map [fu ◦ (g, id)]−1 is a contraction since

c−1 − 1 > 1− c > 2ε

so
c−1 − ε > 1 + ε > 1.

The fact that Lip[g] ≤ 1 implies that

|(g(x), x)− (g(y), y)| = ‖x− y‖

since we are using the box norm. So the restriction of pu to graph(g) is an
isometry between the (restriction of) the box norm on graph(g)and the norm
on U . So we have proved statement (ii), that the restriction of f−1 to graph(g)
is a contraction.

We now turn to statement (iii) of the theorem. Suppose that (w, x) is a
point in S(r)⊕ U(r) with f(w, x) ∈ S(r)⊕ U(r). By (8.22) we have

‖fs(w, x)− g(fu(w, x)‖ ≤ (c+ 2ε)‖w − g(x)‖

since Gf (g) = g. So if the first n iterates of f applied to (w, x) all lie in
S(r)⊕ U(r), and if we write

fn(w, x) = (z, y),

we have
‖z − g(y)‖ ≤ (c+ 2ε)n‖w − g(x)‖ ≤ (c+ 2ε)r.

So if the point (z, y) is in
⋂
fn(S(r) ⊕ U(r)) we must have z = g(y), in other

words ⋂
fn(S(r)⊕ U(r)) ⊂ graph(g).

But
graph(g) = f [graph(g)] ∩ [S(r)⊕ U(r)]

so
graph(g) ⊂

⋂
fn(S(r)⊕ U(r)),
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proving that
graph(g) =

⋂
fn(S(r)⊕ U(r)).

We have already seen that the restriction of f−1 to graph(g) is a contraction,
so all points on graph(g) converge under the iteration of f−1 to the fixed point,
p. So they belong to Wu(p). This completes the proof of the theorem. 2

Notice that if f(0) = 0, then p = 0 is the unique fixed point.



Chapter 9

The Perron-Frobenius
theorem.

The theorem we will discuss in this chapter (to be stated below) about matrices
with non-negative entries, was proved, for matrices with strictly positive entries,
by Oskar Perron (1880-1975) in 1907 and extended by Ferdinand Georg Frobe-
nius (1849-1917) to matrices which have non-negative entries and are irreducible
(definition below) in 1912.

This theorem has miriads of applications, several of which we will study in
this book.

9.1 Non-negative and positive matrices.

We begin with some definitions.

We say that a real matrix T is non-negative (or positive) if all the entries
of T are non-negative (or positive). We write T ≥ 0 or T > 0. We will use
these definitions primarily for square (n × n) matrices and for column vectors
= (n× 1) matrices, although rectangular matrices will come into the picture at
one point.

The positive orthant.

We let
Q := {x ∈ Rn : x ≥ 0, x 6= 0}

so Q is the non-negative orthant excluding the origin, which( by abuse of lan-
guage) we will call the positive orthant . Also let

C := {x ≥ 0 : ‖x‖ = 1}.

So C is the intersection of the positive orthant with the unit sphere.

175
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9.1.1 Primitive and irreducible non-negative square ma-
trices.

A non-negative matrix square T is called primitive if there is a k such that all
the entries of T k are positive. It is called irreducible if for any i, j there is a
k = k(i, j) such that (T k)ij > 0.

If T is irreducible then I + T is primitive. Indeed, the binomial expansion

(I + T )k = I + kT +
k(k − 1)

2
T 2 + · · ·

will eventually have positive entries in all positions if k large enough.

9.1.2 Statement of the Perron-Frobenius theorem.

In the statement of the Perron-Frobenius theorem we assume that T is irre-
ducible. We now state the theorem:

Theorem 9.1.1. Let T be an irreducible matrix.

1. T has a positive (real) eigenvalue λmax such that all other eigenvalues of
T satisfy

|λ| ≤ λmax.

2. Furthermore λmax has algebraic and geometric multiplicity one, and has
an eigenvector x with x > 0.

3. Any non-negative eigenvector is a multiple of x.

4. More generally, if y ≥ 0, y 6= 0 is a vector and µ is a number such that

Ty ≤ µy

then
y > 0, and µ ≥ λmax

with µ = λmax if and only if y is a multiple of x.

5. If 0 ≤ S ≤ T, S 6= T then every eigenvalue σ of S satisfies

|σ| < λmax.

6. In particular, all the diagonal minors T(i) obtained from T by deleting
the i-th row and column have eigenvalues all of which have absolute value
< λmax.

7. If T is primitive, then all other eigenvalues of T satisfy

|λ| < λmax.
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9.1.3 Proof of the Perron-Frobenius theorem.

We now embark on the proof of this important theorem.

Let
P := (I + T )k

where k is chosen so large that P is a positive matrix. Then v ≤ w, v 6= w ⇒
Pv < Pw.

Recall that Q denotes the positive orthant and that C denotes the intersec-
tion of the unit sphere with the positive orthant. For any z ∈ Q let

L(z) := max{s : sz ≤ Tz} = min
1≤i≤n,zi 6=0

(Tz)i
zi

. (9.1)

By definition L(rz) = L(z) for any r > 0, so L(z) depends only on the ray
through z. If z ≤ y, z 6= y we have Pz < Py. Also PT = TP . So if sz ≤ Tz
then

sPz ≤ PTz = TPz

so
L(Pz) ≥ L(z).

Furthermore, if L(z)z 6= Tz then L(z)Pz < TPz. So L(Pz) > L(z) unless z is
an eigenvector of T with eigenvalue L(z).

This suggests a plan for the proof: that we look for a positive vector which
maximizes L, show that it is the eigenvector we want in the theorem and estab-
lish the properties stated in the theorem.

Finding a positive eigenvector.

Consider the image of C under P . It is compact (being the image of a compact
set under a continuous map) and all of the elements of P (C) have all their
components strictly positive (since P is positive). Hence the function L is
continuous on P (C). Thus L achieves a maximum value, Lmax on P (C). Since
L(z) ≤ L(Pz) this is in fact the maximum value of L on all of Q, and since
L(Pz) > L(z) unless z is an eigenvector of T , we conclude that

Lmax is achieved at an eigenvector, call it x of T and x > 0 with Lmax the
eigenvalue.

Since Tx > 0 and Tx = Lmaxx we have Lmax > 0.

Showing that Lmax is the maximum eigenvalue.

Let y be any eigenvector with eigenvalue λ, and let |y| denote the vector whose
components are |yj |, the absolute values of the components of y. We have
|y| ∈ Q and from

Ty = λy
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which says that
λyi =

∑
j

Tijyj

and the fact that the Tij ≥ 0 we conclude that

|λ|yi| ≤
∑
i

Tij |yj |

which we write for short as
|λ||y| ≤ T |y|.

Recalling the definition (9.1) of L, this says that |λ| ≤ L(|y|) ≤ Lmax. So we
may use the notation

λmax := Lmax

since we have proved that
|λ| ≤ λmax.

We have proved item 1 in the theorem.
Notice that we can not have λmax = 0 since then T would have all eigenvalues

zero, and hence be nilpotent, contrary to the assumption that T is irreducible.
So

λmax > 0.

Showing that 0 ≤ S ≤ T, S 6= T ⇒ λmax(S) ≤ λmax(T ).

Suppose that 0 ≤ S ≤ T . If z ∈ Q is a vector such that sz ≤ Sz then since
Sz ≤ Tz we get sz ≤ Tz so LS(z) ≤ LT (z) for all z and hence

0 ≤ S ≤ T ⇒ Lmax(S) ≤ Lmax(T ).

So
0 ≤ S ≤ T, S 6= T ⇒ λmax(S) ≤ λmax(T )

Showing that λmax(T †) = λmax(T ).

We may apply the previous results to T †, the transpose of T , to conclude that
it also has a positive maximum eigenvalue. Let us call it η. (We shall soon show
that η = λmax.) This means that there is a row vector w > 0 such that

w†T = ηw†.

Recall that x > 0 denotes the eigenvector with maximum eigenvalue λmax of T .
We have

w†Tx = ηw†x = λmaxw
†x

implying that η = λmax since w†x > 0.
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Proving the first two assertions in item 4 of the theorem.

Suppose that y ∈ Q and Ty ≤ µy. Then

λmaxw
†y = w†Ty ≤ µw†y

implying that λmax ≤ µ, again using the fact that all the components of w
are positive and some component of y is positive so w†y > 0. In particular, if
Ty = µy then then µ = λmax.

Furthermore, if y ∈ Q and Ty ≤ µy then µ ≥ 0 and

0 < Py = (I + T )n−1y ≤ (1 + µ)n−1y

so
y > 0.

This proves the first two assertions in item 4.

If µ = λmax then w†(Ty − λmaxy) = 0 but Ty − λmaxy ≤ 0 and therefore
w†(Ty − λmaxy) = 0 implies that Ty = λmaxy. Then the last assertion of item
4) - that y is a scalar multiple of x - will then follow from item 2) - that λmax

has multiplicity one - once we prove item 2), since we have shown that y must
be an eigenvector with eigenvalue λmax.

Proof that if 0 ≤ S ≤ T, S 6= T then every eigenvalue σ of S satisfies
|σ| < λmax.

Suppose that 0 ≤ S ≤ T and Sz = σz, z 6= 0. Then

T |z| ≥ S|z| ≥ |σ||z|

so
|σ| ≤ Lmax(T ) = λmax,

as we have already seen. But if |σ| = λmax(T ) then LT (|z|) = Lmax(T ) so
|z| > 0 and |z| is also an eigenvector of T with the same eigenvalue. But then
(T − S)|z| = 0 and this is impossible unless S = T since |z| > 0.

Replacing the i-th row and column of T by zeros give an S ≥ 0 with S < T
since the irreducibility of T precludes all the entries in a row being. This proves
the assertion that the eigenvalues of Ti are all less in absolute value that λmax.
zero.

A lemma in linear algebra.

Let T be a (square) matrix and let Λ be a diagonal matrix of the same size,
with entries λ1, . . . , λn along the diagonal. Expanding det(Λ−T ) along the i-th
row shows that

∂

∂λi
det(Λ− T ) = det(Λi − Ti)
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where the subscript i means the matrix obtained by eliminating the i-th row
and the i-th column from each matrix.

Setting λi = λ and applying the chain rule from calculus, we get

d

dλ
det(λI − T ) =

∑
i

det(λI − T(i))

So from linear algebra we know that

d

dλ
det(λI − T ) =

∑
i

det(λI − T(i)).

Showing that λmax has algebraic (and hence geometric) multiplicity
one.

Each of the matrices λmaxI − T(i) has Each of the matrices λmaxI − T(i) has
strictly positive determinant by what we have just proved. This shows that the
derivative of the characteristic polynomial of T is not zero at λmax, and therefore
the algebraic multiplicity and hence the geometric multiplicity of λmax is one.
This proves 2) and hence all but the last assertion of the theorem, which says
that if T is primitive, then all the other eigenvalues of T satisfy

|λ| < λmax.

Proof of the last assertion of the theorem.

The eigenvalues of T k are the k-th powers of the eigenvalues of T . So if we want
to show that there are no other eigenvalues of a primitive matrix with absolute
value equal to λmax, it is enough to prove this for a positive matrix. Dividing
the positive matrix by λmax, we are reduced to proving the following

Lemma 9.1.1. Let A > 0 be a positive matrix with λmax = 1. Then all other
eigenvalues of A satisfy |λ| < 1.

Proof of the lemma. Suppose that z is an eigenvector of A with eigenvalue
λ with |λ| = 1. Then |z| = |λz| = |Az| ≤ |A||z| = A|z| ⇒ |z| ≤ A|z|.
Let y := A|z| − |z| so y ≥ 0. Suppose (contrary to fact) that y 6= 0. Then
Ay > 0 and A|z| > 0 so there is an ε > 0 so that Ay > εA|z| and hence
A(A|z| − |z|) > εA|z| or

B(A|z|) > A|z|, where B :=
1

1 + ε
A.

This implies that BkA|z| > A|z| for all k. But the eigenvalues of B are all < 1
in absolute value, so Bk → 0. Thus all the entries of A|z| are ≤ 0 contradicting
the fact that A|z| > 0. So |z| is an eigenvector of A with eigenvalue 1.

But |Az| = |z| so |Az| = A|z| which can only happen if all the entries of z
are of the same sign. So z must be a multiple of our eigenvector x since there



9.2. GRAPHOLOGY. 181

are no other eigenvectors with all entries of the same sign other than multiples
of x So λ = 1. 2

This completes the proof of the theorem. We still must discuss what happens
in the non-primitive irreducible case. We will find that there is a nice description
also due to Frobenius. But first some examples:

Examples for two by two matrices.

To check whether a matrix with non-negative entries is primitive, or irreducible,
or neither, we may replace all of the non-zero entries by ones since this does not
affect the classification. The matrix(

1 1
1 1

)
is (strictly) positive hence primitive. The matrices(

1 0
1 1

)
and

(
1 1
0 1

)
both have 1 as a double eigenvalue so can not be irreducible.

The matrix
(

1 1
1 0

)
satisfies

(
1 1
1 0

)2

=
(

2 1
1 1

)

and so is primitive. Similarly for
(

0 1
1 1

)
.

The matrix
(

0 1
1 0

)
is irreducible but not primitive. Its eigenvalues are 1

and −1.

9.2 Graphology.

9.2.1 Non-negative matrices and directed graphs.

A directed graph is a pair consisting of a set V (called vertices or nodes)
and a subset E ⊂ V × V called (directed) edges. The directed edge (vi, vj)
“goes from vi to vj . We draw it as an arrow.

The graph associated to the non-negative square matrix M of size
n× n has V = {v1, . . . , vn} and the directed edge

(vj , vi) ∈ E ⇐⇒ Mij 6= 0.

(Notice the reversal of order in this convention. Sometimes the opposite con-
vention is used.)
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The adjacency matrix A of the graph (V,E) is the n×n matrix (where n
is the number of nodes) with Aij = 1 if (vj , vi) ∈ E and = 0 otherwise.

So if (V,E) is associated to M and A is its adjacency matrix, then A is
obtained from M by replacing its non-zero entries by ones.

Paths and powers.

A path from a vertex v to a vertex w is a finite sequence v0, . . . , v` with v0 =
v, v` = w where each (vi, vi+1) is an edge. The number `, i,e, the number of
edges in the path is called the length of the path.

If A is the adjacency matrix of the graph, then (A2)ij gives the number of
paths of length two joining vj to vi, and, more generally, (A`)ij gives the number
of paths of length ` joining vj to vi.

So M is irreducible ⇐⇒ its associated graph is strongly connected in
the sense that for any two vertices vi and vj there is a path (of some length)
joining vi to vj .

What is a graph theoretical description of primitivity? We now discuss this
question.

9.2.2 Cycles and primitivity.

A cycle is a path starting and ending at the same vertex.
Let M be primitive with, say Mk strictly positive. Then the associated

graph is strongly connected, indeed every vertex can be joined to every other
vertex by a path of length k. But then every vertex can be joined to itself by a
path of length k, so there are (many) cycles of length k.

But then Mk+1 is also strictly postive and hence there are cycles of length
k + 1. So there are (at least) two cycles whose lengths are relatively prime.

We will now embark on proving the converse:

Theorem 9.2.1. If the graph associated to M is strongly connected and has
two cycles of relatively prime lengths, then M is primitive.

We will use the following elementary fact from number theory whose proof
we will give after using it to prove the theorem:

Lemma 9.2.1. Let a and b be positive integers with g.c.d.(a, b) = 1. Then
there is an integer B such that every integer ≥ B can be written as an integer
combination of a and b with non-negative coefficients.

We will prove the theorem from the lemma by showing that for

k := 3(n− 1) +B

there is a path of length k joining any pair of vertices.
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We can construct a path going from v to w by going from v to a point x
on the first cycle, going around this cycle a number of times, then joining x to
a point y on the second cycle, going around this cycle a number of times, and
then going from y to w.

The paths from v to x, from x to y, from y to w have total lengths at most
3(n − 1). But then, by the lemma, we can make up the difference between
this total length and k by going around the cycles an appropriate number of
times. 2

Proof of the lemma. An integer n can be written as ia + jb with i and j
non-negative integers ⇐⇒ it is in one of the following sequences

0, b, 2b, . . . ,
a, b+ a, 2b+ a . . .
...
(b− 1)a, b+ (b− 1)a, 2b+ (b− 1)a, . . .

.

Since a and b are relatively prime, the elements of the first column all belong to
different conjugacy classes mod b, So every integer n can be written as n = ra+sb
where 0 ≤ r < b. If s < 0 then n < a(b− 1). 2

A mild extension of the above argument will show that if there are several
(not necessarily two) cycles whose greatest common denominator is one, then
M is primitive.

9.2.3 The Frobenius analysis of the irreducible non-primitive
case.

In this section I follow the exposition of Mike Boyle “NOTES ON THE PERRON-
FROBENIUS THEORY OF NONNEGATIVE MATRICES ” available on the
web.

The definition of the period on an irreducible matrix.

The period of an irreducible non-negative matrix A is the greatest common
divisor of the lengths of the cycles in the associated graph.

The Frobenius form of an irreducible non-primitive matrix.

Let A be an irreducible non-negative matrix A with period p > 1. Let v be any
vertex in the associated graph. For 0 ≤ i < p let

Ci := {u| there is a path of length n from u to v with n ≡ i mod p}.

Since A is irreducible, every vertex belongs to one of the sets Ci, and by the
definition of p, it can belong to only one. So the sets Ci partition the vertex
set. Let us relabel the vertices so that the first #(C0) vertices belong to C0, the
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second #(C1) vertices belong to C1 etc. This means that we have permutation
of the integers P so that PAP−1 has a block form with rectangular blocks which
looks something like a cyclic permutation matrix. For example, for p = 4, the
matrix PAP−1 would look like

0 A1 0 0
0 0 A2 0
0 0 0 A3

A4 0 0 0

 .

I want to emphasize that the matrices Ai are rectangular, not necessarily square.

The eigenvalues of an irreducible non-primitive matrix.

Since the spectral properties of PAP−1 and A are the same, we will assume from
now on that A is in the block form. To illustrate the next step in Frobenius’s
analysis, let us go back to the p = 4 example, and raise A to the fourth power,
and obtain a block diagonal matrix:

0 A1 0 0
0 0 A2 0
0 0 0 A3

A4 0 0 0


4

=


A1A2A3A4 0 0 0

0 A2A3A4A1 0 0
0 0 A3A4A1A2 0
0 0 0 A4A1A2A3

 .

Each of these diagonal blocks has period one and so is primitive. Also, if D(i)
denotes the i-th diagonal block, then there are rectangular matrices R and S
such that

D(i) = SR and D(i+ 1) = RS.

If we take i = 2 in the above example, S = A2 and R = A3A4A1.

Therefore, taking their k-th power, we have

D(i)k = S(RS)k−1R, and D(i+ 1)k = ((RS)k−1R)S.

This implies that D(i)k and D(i + 1)k have the same trace. Since the trace of
the k-th power of a matrix is the sum of the k-th power of its eigenvalues, we
conclude that the non-zero eigenvalues of each of the D(i) are the same.

Proposition 9.2.1. Let A be a non-negative irreducible matrix with period p
and let ω be a primitive p-th root of unity, for example ω = e2πi/p. Then the
matrices A and ωA are conjugate. In particular, if c is an eigenvalue of A with
multiplicity m so is ωc.
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The following computation for p = 3 explains the general case:ω−1I 0 0
0 ω−2I 0
0 0 I

 0 A1 0
0 0 A2

A3 0 0

ωI 0 0
0 ω2I 0
0 0 I



=

 0 ωA1 0
0 0 ωA2

ωA3 0 0

 = ω

 0 A1 0
0 0 A2

A3 0 0

 . 2

A supplement to the Perron-Frobenius theorem.

So we can supplement the Perron-Frobenius theorem in the case that A is a
non-negative irreducible matrix of period p by

Theorem 9.2.2. Let A be a non-negative irreducible matrix of period p with
maximum real eigenvalue λmax. The eigenvalues λ of A with |λ| = λmax are all
simple and of the form ωλmax as ω ranges over the p-th roots of unity.

The spectrum of A is invariant under multiplication by ω where ω is a prim-
itive p-th root of unity.

9.3 Asymptotic behavior of powers of a primi-
tive matrix.

Let A be a primitive matrix and r its maximal eigenvalue as given by the
Perron-Frobenius theorem. Let x > 0 be a (right-handed) eigenvector of A with
eigenvalue r, so Ax = rx and we choose x so that x > 0. Let y > 0 be a
(row) vector with yA = ry (also determined up to scalar multiple by a positive
number and let us choose y so that y · x = 1.

The rank one matrix H := x⊗ y† has image space R, the one dimensional
space spanned by x and

H2 = H

so H is a projection. The operator I −H is then also a projection whose image
is the null space N of H. Also AH = Ax ⊗ y = rx ⊗ y = x ⊗ ry = HA. So
we have the direct sum decomposition of our space as R⊕N which is invariant
under A. We have the direct sum decomposition of our space as R ⊕N which
is invariant under A.

The restriction of A to N has all its eigenvalues strictly less than r in absolute
value, while the restriction of A to the one dimensional space R is multiplication
by r. So if we set

P :=
1
r
A

then the restriction of P to N has all its eigenvalues < 1 in absolute value. The
above decomposition is invariant under all powers of P and the restriction of
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Figure 9.1: 5 age groups, the last two child bearing.

P k to N tends to zero as k →∞, while the restriction of P to R is the identity.
So we have proved

Theorem 9.3.1.

lim
k→∞

(
1
r
A

)k
= H.

We now turn to a varied collection of applications of the preceding result.

9.4 The Leslie model of population growth.

In 1945 Leslie introduced a model for the growth of a stratified population: The
population to consider consists of the females of a species, and the stratification
is by age group. (For example into females under age 5, between 5 and 10,
between 10 and 15 etc.) So the population is described by a vector whose size is
the number of age groups and whose i-th component is the number of females
in the i-th age group.

He let bi be the expected number of daughters produced by a female in the
i-th age group and si the proportion of females in the i-th age group who survive
(to the next age group) in one time unit.
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The Leslie matrix.

So the transition after one time unit is given by the Leslie matrix

L =


b1 b2 · · · bn−1 bn
s1 0 · · · · · · 0
0 s2 0 · · · 0
...

...
. . . . . .

...
0 0 · · · sn−1 0

 .

In this matrix we might as well take bn > 0 as there is no point in taking into
consideration those females who are past the age of reproduction as far as the
long term behavior of the populaton is concerned. Also we restrict ourselves to
the case where all the si > 0 since otherwise the population past age i will die
out.

The Leslie matrix is irreducible.

The graph associated to L consists of n vertices with v1 → v2 → · · · → vn with
vn (and possibly others) connected to v1 and so is strongly connected. So L is
irreducible.

What is the positive eigenvector?

We might as well take the first component of the positive eigenvector to be
1. The elements in the second to the last positions in Lx are then determined
recursively by

x2 = s1, x3 = s2x2, . . . .

Then the equation Lx = rx tells us that

x2 =
s1

r
, x3 =

s1s2

r2
, · · ·

and then the first component of Lx = rx tell us that r is a solution to the
equation

p(r) = 1

where

p(r) =
b1
r

+
b2s1

r2
+ · · ·+ bns1 · · · sn−1

rn
.

The function p(r) is defined for r > 0, is strictly decreasing, tends to ∞ as
r → 0 and to 0 as r → ∞ and so the equation p(r) = 1 has a unique positive
root as we expect from the general theory.
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9.4.1 When is the Leslie matrix primitive?

Each i with bi > 0 gives rise to a cycle of length i in the graph. So if there are
two i-s with bi > 0 which are relatively prime to one another then L is primitive.
(In fact, as mentioned above, an examination of the proof of the corresponding
fact in the general Perron-Frobenius theorem shows that it is enough to know
that there are i’s whose greatest common divisor is 1 with bi > 0.) In particular,
if bi > 0 and bi+1 > 0 for some i then L is primitive.

9.4.2 The limiting behavior when the Leslie matrix is
primitive.

If L is primitive with maximal eigenvalue r then we know from the general Per-
ron Frobenius theory that the total population grows (or declines) approximate
the rate rk and that the relative size of the age groups to the general population
is proportional to the positive eigenvector (as computed above).

Fibonacci.

The most famous and (ancient) Leslie matrix is the two by two matrix

F =
(

1 1
1 0

)

whose powers when applied to
(

1
0

)
generate the Fibonacci numbers. The eigen-

values of F are
1±
√

5
2

.

An imprimitive Leslie matrix.

If the females give birth only in the last time period then the Leslie matrix is
not primitive. For example, Atlantic salmon die immediately after spawning.
Assuming, for example, that there are three age groups, we obtain the Leslie
matrix

L =

 0 0 b
s1 0 0
0 s2 0

 .

The characteristic polynomial of this matrix is

λ3 − bs1s2

so if F is the real root of F 3 = bs1s2 the eigenvalues are

F, ωF, ω2F
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where ω is a primitive cube root of unity. So L is conjugate to the matrix0 0 F
F 0 0
0 F 0

 =

F 0 0
0 F 0
0 0 F

0 0 1
1 0 0
0 1 0

 .

So
1
F
L

is periodic with period 3.

For a thorough discussion of the implementation of the Leslie model, see the
book [?].

9.5 Markov chains in a nutshell.

A non-negative matrix M is a stochastic matrix if each of the row sums equal
1. Then the column vector 1 all of whose entries equal 1 is an eigenvector with
eigenvalue 1. So if M is irreducible 1 is the maximal eigenvalue since 1 has all
positive entries.

If M is primitive, then we know from the general theory that

Mk →


π1 π2 · · · πn
π1 π2 · · · πn
...

...
...

...
π1 π2 · · · πn


where p := (π1, π2, · · · , πn) is the unique vector whose entries sum to one and
satisfies pM = p.

9.6 The Google ranking.

In this section, we follow the discussion in Chapters 3 and 4 of [Langville and Meyer]

The issue is how to rank the “importance” of URL’s on the web. The idea
is to think of a hyperlink from A to B as an endorsement of B. So many inlinks
should increase the value of a URL. On the other hand, each inlink should
carry a weight. A recommendation should carry more weight if coming from an
important source, but less if the source is known to have many outlinks. (If I
am known to write many positive letters of recommendation then the value of
each decreases, even though I might be an “important” professor.)
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9.6.1 The basic equation.

So we would like the ranking to satisfy an equation like

r(Pi) =
∑

Pj∈BPi

r(Pj)
|Pj |

(9.2)

where r(P ) is the desired ranking, BPi is the set of “pages” pointing into Pi,
and |Pj | is the number of links pointing out of Pj .

The matrix H.

So if r denotes the row vector whose i-th entry is r(Pi) and H denotes the matrix
whose ij entry is 1/|Pi| if there is a link from Pi to Pj then (9.2) becomes

r = rH. (9.3)

The matrix H is of size n × n where n is the number of “pages”, roughly 12
billion of so at the current time. We would like to solve the above equation by
iteration, as in the case of a Markov chain. Despite the huge size, computing
products with H is feasible because H is sparse, i.e. it consists mostly of zeros.

9.6.2 Problems with H, the matrix S.

The matrix H will have some rows consisting entirely of zeros. These correspond
to the “dangling nodes”, pages (such as pdf. files etc.) which have no outgoing
links. Other than these, the row sums are one.

To fix this problem, Brin and Page, the inventors of Google, replaced the
zero rows by rows consisting entirely of 1/n (a very small number). So let a
denote the column vector whose i-th entry is 1 if the i-th row is dangling row,
and ai = 0 otherwise. Let e be the row vector consisting entirely of ones. Brin
and Page replace H by

S := H +
1
n

a⊗ e.

The matrix S is now a Markov chain matrix, all rows sum to one.

For example, suppose that node 2 is a dangling mode and that the matrix
H is

H =


0 1

2
1
2 0 0 0

0 0 0 0 0 0
1
3

1
3 0 0 1

3 0
0 0 0 0 1

2
1
2

0 0 0 1 0 0

 .
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Then

S =



0 1
2

1
2 0 0 0

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3 0 0 1

3 0

0 0 0 0 1
2

1
2

0 0 0 1 0 0


.

9.6.3 Problems with S, the Google matrix G.

The rows of S sum to one, but we have no reason to believe that S is primitive.
So Brin and Page replace S by

G := αS + (1− α)
1
n

J

where J is the matrix all of whose entries are 1, and 0 < α < 1 is a real number.
(They take α = 0.85).

For example, if we start with the 6×6 matrix H as above, and take α = .9,
the corresponding Google matrix G is

1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60

 .

The rows of G sum to one, and are all positive. So, in principle, Gk converges
to a matrix whose rows are all equal to s where s is a solution to

s = s ·G.

MATLAB gives the eigenvalues of G as

−0.3705, −0.0896, 0.6101, 1.0000, −0.4500, −0.4500.

The row vector giving the (left) eigenvector with eigenvalue 1 normalized to
have row sum 1 is

(0.0372, 0.0540, 0.0415, 0.3751, 0.2060, 0.2862).
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MATLAB computes G10 as
0.0394 0.0578 0.0440 0.3714 0.2044 0.2829
0.0384 0.0560 0.0429 0.3728 0.2053 0.2846
0.0389 0.0568 0.0435 0.3707 0.2060 0.2841
0.0370 0.0535 0.0412 0.3769 0.2049 0.2865
0.0370 0.0535 0.0412 0.3766 0.2052 0.2865
0.0370 0.0535 0.0412 0.3732 0.2083 0.2868

 .

This is close to, but not quite the limiting value.

MATLAB computes G20 as
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862

 ,

which has the correct limiting value to four decimal places in all positions. This
is what we would expect, since if we take the second largest eigenvalue, which
is 0.6101, and raise it to the 20th power, we get .000051.. . In our example, we
have seen that the stationary vector with row sum equal to one is

s =
(
.03721 .05396 .04151 .3751 .206 .2862

)
.

The interpretation of the first entry, for example, is that 3.721% of the time,
the random surfer visits page 1. The pages of this tiny web are therefore ranked
by their importance as (4,6,5,2,3,1).
But, in real life, where 6 is replaced by 12 billion, as G is not sparse, taking
powers of G is impossible due to its size.

9.6.4 Avoiding multiplying by G.

We can avoid multiplying with G. Instead, use the iterations scheme

sk+1 = sk ·G

= αsk · S +
1− α
n

skJ

= αsk ·H +
1
n

(αsk · a + 1− α)e

since J = e† ⊗ e and sk · e† = 1. Now only sparse multiplications are involved.

Why does this converge and what is the rate of convergence?

Let 1, λ2, . . . be the spectrum of S and let 1, µ2, . . . be the spectrum of G
(arranged in decreasing order, so that λ2 < 1 and µ2 < 1). We will show that
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Theorem 9.6.1.
λi = αµi, i = 2, 3, . . . , n.

This implies that λ2 < α since µ2 < 1. Since

(0.85)50 .= 0.000296

this shows that at the 50th iteration one can expect 2-3 decimal places of accu-
racy.

Proof of the theorem. Let f := e† so f is the column vector all of whose entries
are 1. Since the row sums of S equal 1, we have S · f = f . Let Q be an invertible
matrix whose first column is f , so Q = (f ,X) for some matrix X with n rows

and n − 1 columns. Write Q−1 as Q−1 =
(

y
Y

)
where y is a row vector

with n entries and Y is a matrix with n− 1 rows and n columns. The fact that
Q−1Q = I implies that

y · f = 1 and Y · f = 0.

We have

Q−1SQ =
(

y · f ySX
Y · f YSX

)
=
(

1 ySX
0 YSX

)
,

So the eigenvalues of YSX are λ2, λ3, . . . . Now J is a matrix all of whose
columns equal f . So Q−1J has ones in the top row and zeros elsewhere. So

Q−1JQ =
(

1 e ·X
0 0

)
Hence

Q−1HQ = Q−1(αS + (1− α)J)Q =
(

1 αySX + (1− α)e ·X
0 αYSX

)
.

So the eigenvalues of G are 1, αλ2, αλ3 . . . . 2

9.7 Eigenvalue sensitivity and reproductive value.

Let A be a primitive matrix, r its maximal eigenvalue, x a right eigenvector
with eigenvalue r, y a left eigenvector with eigenvalue r with y · x = 1 and H
the one dimensional projection operator H = x⊗ y so

H = lim
k→∞

(
1
r
A

)k
.

If ej is the (column) vector with 1 in the j-th position and zeros elsewhere, then

Hej = yjx.
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This equation has a “biological” interpretation due to R.A.Fisher: If we think
of the components of a column vector as referring to stages of development (as,
for example, in the Leslie matrix), then the components of y can be interpreted
as giving the relative “reproductive value” of each stage:

Think of different stages as alternate investment opportunities in long-term
population growth. If you could put one dollar into any one of these investments
( one individual in any of the stages) what is their relative payoff in the long
run (the relative size of the resulting population in the distant future)? The
above equation shows that it is proportional to yj .

Eigenvalue sensitivity to changes in the matrix elements.

The Perron-Frobenius theorem tells us that if we increase any matrix element
in a primitive matrix, A, then the dominant eigenvalue r increases. But by how
much? To answer this question, consider the equation

y ·A · x = r y · x = r.

In this equation, think of the entries of A as n2 independent variables, and x, y, r
as functions of these variables.

Take the partial derivative with respect to the ij-th entry, aij . The left hand
side gives

∂y

∂aij
·A · x+ y · ∂A

∂aij
· x+ y ·A · ∂x

∂aij
.

But ∂A
∂aij

is the matrix with 1 in the ij-th position and zeros elsewhere, and the
sum of the first and third terms above are (since Ax = rx and yA = ry)

r

(
∂y

∂aij
· x+ y · ∂x

∂aij

)
= r

∂(y · x)
∂aij

= 0

since y · x ≡ 1. So we have proved that

∂r

∂aij
= yixj . (9.4)

I will now present Fischer’s use of this equation to “explain” why we age. The
following discussion is taken almost verbatim from the book [Ellner and Guckenheimer]
pages 50-51. This explanation is derived by modeling a life cycle in which there
is no aging, and then asking whether a little bit of aging would lead to increased
Darwinian fitness as measured by r.



Chapter 10

Some topics in ordinary
differential equations.

This is not a text on ordinary differential equations. By contrast, a course on
dynamical systems given 40 years ago would consist almost entirely in the study
of ordinary differential equations. There are many excellent ode texts. In this
chapter I cover those topics in ode which I regularly teach in my dynamical
systems course. In the next chapter I deal with a more specialized topic - the
Lotka-Volterra equations and their generalizations.

We have proved the local existence theorem for equations of the form

x′(t) = F (t, x), x(0) = x0

under Lipschitz assumptions on F via the contraction fix point theorem. I begin
with an important special case.

10.1 Linear equations with constant coefficients.

10.1.1 Linear homogenous equations with constant coeffi-
cients.

These are equations of the form

x′ = Ax

where A is a constant bounded linear operator on a Banach space, X. You may
as well think of X as a finite dimensional vector space. We must also specify
the initial conditions, of course.

In case X = R, so A = a is a scalar, we know that the general solution to
the above equation is x(t) = ceat where the constant c is determined by the
initial condition, c = x(0) and

eat = 1 + at+
1
2
a2t2 +

1
3!
a3t3 + · · · ,

195
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where this series converges for all t.

Exactly the same method works in general!

The exponential series for an operator.

Define
etA = I + tA+

1
2
t2A2 +

1
3!
t3A3 + · · · .

Here I is the identity operator so e0A = I is the identity. The exact same proof
of the convergence of the exponential series in one variable shows that this series
converges for all t and that

e(s+t)A = esAetA.

It is not true in general that etAetB = et(A+B). This lack of equality stems
from the fact that A and B may not commute, and this fact is manifested in
the physical world by quantum mechanics. But if A and B do commute then
etAetB = et(A+B).

The derivative of the exponential.

We may differentiate the exponential series with respect to t term by term and
we find that

d

dt
etA = AetA = etAA.

In particular, if we set
x(t) = etAx0

then
x′(t) = Ax(t) and x(0) = x0.

So the study of linear homogeneous differential equations with constant coeffi-
cients reduces to the analysis of etA.

etPAP
−1

= PetAP−1.

Suppose that P is an invertible operator and

B = PAP−1.

then B2 = PA2P−1, B3 = PA3P−1 etc. so

etB = PetAP−1.

We know from linear algebra that (in finite dimensions) every B is of the
form B = PAP−1 where A has a “nice” normal form. So our study is reduced
to understanding etA for normal forms (and also understanding the effect of
conjugating by P ).

Here is a complete analysis in two (real) dimensions:
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10.1.2 etB where B is a two by two real matrix.

1. B has two real distinct eigenvalues.

Then B can be diagonalized, i.e. B = PAP−1 where

A =
(
a 0
0 b

)
and

etA =
(
eta 0
0 etb

)
.

The x and y axes are invariant.
Further analysis depends on signs of a and b:

• If a < 0 and b < 0 then etA for t > 0 contracts all points (at different
rates) toward the origin. The effect of the conjugation by P is to replace
the x and y axes by other lines through the origin.

• If a > 0 and b < 0 then etA is hyperbolic for t 6= 0. For t > 0 etA is
expanding in the x-direction and contracting in the y-direction (with the
reverse for t < 0). Again, the effect of the conjugation by P is to replace
the x and y axes by other lines through the origin.

• If a = 0 and b < 0 then points on the x-axis are stationary and points all
converge toward the x-axis as t→ +∞.

• Of course, if a = b = 0 so that A = 0, etA ≡ I.

This covers all cases (up to interchange of a and b and t and −t.)

B has two equal real eigenvalues.

Here there are two cases:

• If

A =
(
a 0
0 a

)
then

etA = etaI.

So uniform expansion (for t > 0) if a > 0, uniform contraction if a < 0
and etA ≡ I if a = 0. Since an A of this form commutes with all other
matrices, if B = PAP−1 then B = A.

• The second case is

A =
(
a 1
0 a

)
.
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This is of the form A = aI + C where

C =
(

0 1
0 0

)
so

etA = etaetC .

To compute etC observe that C2 = 0 so

etC =
(

1 t
0 1

)
.

Non-real eigenvalues.

If the eigenvalues are a± ib with b 6= 0 then a normal form is

A =
(
a b
−b 0

)
= aI + b

(
0 1
−1 0

)
.

So if

C =
(

0 1
−1 0

)
then

etA = etaetbC

so we must compute etC .
We claim that

e
t

0@ 0 1
−1 0

1A
=
(

cos t sin t
− sin t cos t

)
.

This follows from
C2 = −I so C3 = −C, C4 = I.

Thus

etC =

1− 1
2 t

2 + 1
4! t

4 + · · · t− 1
3! t

3 + · · ·

−t+ 1
3! t

3 − · · · 1− 1
2 t

2 + 1
4! t

4 + · · ·

 .

Thus if a = 0, the trajectories of etA are circles with velocity of rotation b. If
a < 0 the trajectories are circular spirals heading into the origin as t→∞ , and
if a > 0 the trajectories are circular spirals spiraling out.

The effect of conjugating by P is to replace the circles by ellipses and circular
spirals by elliptical spirals.
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10.2 Hyperbolicity for differential equations.

Let A be an n×n real matrix. If no eigenvalue of A has real part zero, then for
any t 6= 0, the linear map etA is hyperbolic in the sense of Chapter 8.

If
dx

dt
= F (x)

is a system of ordinary differential equations on Rn with F (0) = 0 and F ′(0) =
A, my old conjugacy theorems say that near 0 the solutions of this system are
conjugate to the corresponding linear system: Conjugacy via a homeomorphism
in general, and via smooth maps if appropriate non-resonance conditions are
satisfied. In fact, the differential equations case can be reduced to the discrete
mapping case. I will not go into this subject further here. For a nice discussion
of these theorems from the point of view of quantum mechanical scattering
theory, see [Nelson].

10.3 Bifurcations of differential equations.

Just as we studied in the behavior of maps in one dimension near fixed points
with f ′(p) = ±1 there is a similar study of bifurcations of non-hyperbolic zeros of
vector fields. A famous example is the Hopf bifurcation. Here is an illustration of
this phenomenon, without going into the technical details. Suppose our system
of differential equations is

x′ = ax+ y − x(x2 + y2)
y′ = ay − x− y(x2 + y2).

If a < 0, all trajectories spiral into the origin. If a > 0 and small, then
the origin has become an unstable fixed point, and all trajectories starting near
the origin spiral outward towards a periodic trajectory while points outside the
periodic trajectory spiral in towards it.

In other words, as a passes from negative to positive, an attractive fixed
point has become repulsive and a nearby attractive periodic orbit has appeared.

The study of bifurcations of differential equations is another extremely im-
portant topic which we will omit. Once again there are many excellent texts,
for example [Kuznetsov].

10.4 Variation of constants.

We studied the homogeneous equation

x′(t) = Ax(t), x(0) = x0.

Suppose we want to solve the “inhomogeneous” equation

d

dt
x(t) = Hx(t) + f(t)
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where f is given, and with the initial condition x(0) = x0. The solution is given
by Lagrange’s variation of constants formula

x(t) = etHx0 +
∫ t

0

e(t−s)Hf(s)ds

as can be checked by differentiating the right hand side. This formula is also
known as Duhamel’s formula.

10.4.1 The operator version.

If F is an operator valued function of t then the operator version of the above
says that

X(t) = etH +
∫ t

0

e(t−s)HF (s)ds (10.1)

is the solution to the differential equation

d

dt
X = HX + F

with the initial conditions
X(0) = I.

The Born series.

For example, suppose that H = H0 +H1 and we take F (t) = H1e
tH . We want

to find a solution to

d

dt
Y (t) = HY (t) = H0Y (t) +H1Y (t), Y (0) = I.

The variation of constants formula tell us that

Y (t) = etH0 +
∫ t

0

e(t−s)H0H1e
sHds. (10.2)

If we substitute this formula into itself (i.e. use this formula for the esH occurring
in the integral on the right) we get

etH = etH0 +
∫ t

0

e(t−s)H0H1e
sH0dt+

∫ t

0

∫ s

0

e(t−s)H0H1e
(s−τ)H0H1e

τHdτds.

Clearly we can keep going. The usefulness of this scheme is as follows. Sup-
pose that H1 is small, for example suppose that we can ignore all terms involving
three products of H1. Then in the above expression, replacing eτH by eτH0 on
the right, we get an approximate expression for etH in terms of integrals involv-
ing etH0 and products of H1. The corresponding series (and approximation)
is known as the Volterra series (or approximations) to mathematicians, and is
known as the Born series (or approximations) to physcists.
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10.4.2 The parametrix expansion.

Suppose we want to find etH and we only found an approximate solution - we
have found an operator valued function K(t) such that

dK(t)
dt

= HK(t) +R(t), K(0) = I.

The variation of constants formula tells us that

K(t) = etH +
∫ t

0

e(t−s)HR(s)ds

which we shall write as

etH = K(t)−
∫ t

0

e(t−s)HR(s)ds.

Substitute this back into itself to obtain

etH = K(t)−
∫ t

0

K(t− s)R(s)ds+
∫ t

0

∫ t−s

0

e(t−s−τ)HR(τ)R(s)dτds.

Keep going. This suggests the following: Let ∆k denote the k-simplex

∆k = {(t1, . . . , tk|0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1}.

If all the ti are unequal, there are k! ways of of reordering them. Since we may
ignore possible equalities in computing volume, this shows that the Euclidean
volume of ∆k is 1/k!.
So the volume of t∆k is tk/k!. Define the operators Q(k, t) by

Q(k, t) :=
∫
t∆k

K(t− tk)R(tk − tk−1) · · ·R(t)dt1 · · · dtk.

So this integral is over 0 ≤ t1 ≤ t2 · · · ≤ tk ≤ t. To shorten the formulas, I will
drop the dt1 · · · dtk.

If K and R are uniformly bounded, say by C, in the interval [0, T ], then the
Q(k, t) are bounded by Cktk/k! and so the series

∞∑
k=0

(−1)kQ(k, t)

converges uniformly. R(k, s) by

R(k, s) =
∫
s∆k−1

R(s− tk−1)rR(tk−1 − tk−2) · · ·R(t2 − t1)R(t1)

so that

Q(k, t) =
∫ t

0

K(t− s)R(k, s)ds.
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If we apply
(
d
dt −H

)
to Q(k, t) we get

R(k, s) +R(k + 1, s)

so the sum in [
d

dt
−H

]( ∞∑
k=0

(−1)kQ(k, t)

)
telescopes to zero. Hence

∞∑
k=0

(−1)kQ(k, t)

is a solution to our search for etH starting with an approximate solution. This
method is known as the parametrix expansion.

The rest of this chapter is devoted to the study of autonomous differential
equations, that is differential equations of the form

dx

dt
= F (x).

It is usual to consider the map x 7→ F (x) as a vector field, i.e a rule which assigns
a vector to each point x, and to emphasize this viewpoint, we will frequently
write V instead of F .

10.5 The Poincaré-Bendixon theorem.

The global behavior of bounded trajectories of an autonomous system of differ-
ential equations in the plane (i.e. of a time independent vector field, V ) have a
deceptively simple beautiful structure given by the Poincaré Bendixon theorem
which we shall state after a definition:

10.5.1 The ω-limit set.

If C = C(t) is a trajectory of a time independent vector field, we define the
omega limit set of C, denoted by ω(C), to consist of all points p such that
there exists a sequence tn →∞ such that

C(tn)→ p.

We will also use the notation ω(x) for ω(C) when x = C(t) for some t. These
definitions are valid in all dimensions.
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10.5.2 Statement of the Poincaré-Bendixon theorem.

Theorem 10.5.1. If C is a (forward) bounded trajectory of a vector field, V ,
in the plane, and if ω(C) contains no zeros of V then either:
(1) C (= ω(C)) is a periodic trajectory, or

(2) ω(C) consists of a periodic trajectory of V which C approaches spirally from
the inside or from the outside.

Suppose that V has a finite number of zeros and that ω(C) contains a zero, A,
of V . Then

(3) If ω(C) consists only of zeros of V , then, in fact, ω(C) consists of the single
point, A, and C(t) approaches A as t→∞. Otherwise

(4) ω(C) consists of a finite set {An} of zeros of V and a set of trajectories,
{Ca}, where, as t→ ±∞ each Ca approaches one of the zeros.

At a crucial point in the proof of the theorem we will need to make use of the
Jordan curve theorem in the plane, and this is why the theorem is peculiar to
the plane. But many of the preliminary results are of independent interest and
are valid in any number of dimensions. So I will begin with these more general
results, and will warn you when we come to special properties of the plane.

10.5.3 Properties of the omega limit set of a trajectory,
in the general case.

Lemma 10.5.1. The set ω(C) is closed and invariant under the flow generated
by V .

Proof that ω(C) is closed. Suppose that {An} is a sequence of points in ω(C)
which converge to a point A. We can find a sequence {tn} such that tn > n and
d(C(tn), An) < 1/n where d denotes distance. Then C(tn) → A, proving that
ω(C) is closed.

Proof that ω(C) is invariant. Suppose that A ∈ ω(C) and let D(t) be
the trajectory through A with D(0) = A. Let {tn} → ∞ be a sequence with
C(tn)→ A. Define

Cn(t) = C(t+ tn)

so that Cn is a reparametrization of the trajectory, C with

Cn(0)→ A.

For any fixed t, the continuous dependence of solutions of differential equations
upon initial conditions implies that

Cn(t)→ D(t).

But this is the same as saying that C(tn + t) → D(t) proving that D(t) ∈
ω(C). 2
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Lemma 10.5.2. If the forward trajectory of C is bounded, then ω(C) is con-
nected.

Proof. By the preceding lemma, ω(C) is closed, and by hypothesis it is bounded.
If it is not connected, then we can represent it as the union of two disjoint closed
subsets, ω(C) = M ∪N . Since M and N are closed, bounded, and disjoint, they
are at a positive distance from one another. Call this distance δ. Now we can
choose a monotonic sequence tn →∞ such that for all n sufficiently large,

d(C(tn),M) < δ/4, n odd, d(C(tn), N) < δ/4, n even.

By continuity, we can thus find a sequence sk →∞ with

t2k−1 < sk < t2k and d(C(sk),M ∪N) ≥ δ/2.

But this leads to a contradiction, since the sequence of points C(sk) is bounded,
and hence must contain a convergent subsequence whose limit, A, belongs to
ω(C) by definition, and yet is a postive distance from ω(C) = M ∪N .

Notice that this lemma implies part 3) of the Poincaré Bendixon theorem.
Indeed, since V is assumed to have only finitely many zeros, if ω(C) consists
only of zeros, it must consist of exactly one point if it is to be connected.

So this assertion is valid an any dimension.

Transversal surfaces (curves) to a vector field.

By a transversal, L, to the vector field V we mean a surface of codimension
one which is nowhere tangent to V . In the plane, this means that L is a curve.

In particular, the vector field, V does not vanish at any point of L. If
V (A) 6= 0, we can always find a transversal to V passing through A: Simply
choose a subspace of codimension one of the tangent space at A which does not
contain V (A), and then choose a surface tangent to this subspace at A. At all
points sufficiently near to A the vector field V will not be tangent to this surface
on account of continuity.

We will only be dealing with transversals locally, and locally every surface
has two sides. The vector field V points towards one of these two sides at A, and
hence by continuity must point to this same side at all points of the transversal.
In other words, the trajectories all cross the transversal in the same direction.

Lemma 10.5.3. For any bounded interval [a, b] a trajectory C can cross the
transversal, L, at most a finite number of times for a ≤ t ≤ b.

Proof. Suppose the contrary. We would then have an infinite sequence of times
a ≤ tn ≤ b with C(tn) ∈ L. By passing to a subsequence, we may assume
that the tn converge to some point s ∈ [a, b]. So the points C(tn) lie on L and
converge to C(s) ∈ L. If more than one of the points C(tn) coincides with C(s),
then C is a periodic trajectory, of some minimal period, say h. It can not be
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the case that infinitely many of the points tn have C(tn) = C(s), because the
difference between each successive such tn has to be a multiple of h, and so
these infinitely many tn’s could not lie in the bounded interval [a, b]. So in all
cases, we will have infinitely many of the tn with C(tn) 6= C(s). Passing to this
subsequence if necessary, we find a collection of secants (in local coordinates)
C(tn)C(s) whose limiting direction is tangent to C, but is also tangent to L, a
contradiction.

Lemma 10.5.4. Let A be a point of a transversal, L. For every ε > 0 there is
a neighborhood U of A such that every trajectory, C with C(0) ∈ U intersects
L at some time t with |t| < ε.

By choice of local coordinates we can arrange

• That A = 0,

• that the transversal is given by the equation y = 0 in terms of local
coordinates (x1, . . . , xn−1, y) = (x, y),

• and that the y coordinate of the vector field, V is positive.

With these choices we now proceed to the proof of the lemma:

Proof. Let C(x0, y0, t) denote the trajectory which passes through (x0, y0) at
t = 0, and let y(x0, y0, t) denote the y coordinate of C(x0, y0, t). Transversality
says that

∂y

∂t
(0, 0, 0) > 0.

By the implicit function theorem, the equation

y(x0, y0, t) = 0

has a unique continuous solution t(x0, y0) with |t| < ε for (x0, y0) in some
neighborhood of the origin.

We now come to results which are particular to the plane.

10.6 Proof of Poincaré-Bendixon.

So from now on V is vector field in the plane, and L will be a closed line segment
which is part of an open segment which is a transversal to V . We shall call L a
trnasversal segment.

Lemma 10.6.1. Suppose ω(C) contains a point A with V (A) 6= 0. If L is
a transversal segment through A, there exists a monotone sequence of times
tn → ∞ such that the points of intersection of C(t) with L for t ≥ 0 are
precisely the points C(tn). If C(t1) = C(t2) then C(tn) = A for all n and C is
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A

Figure 10.1: Crossing a transversal in the plane.

periodic. If C(t1) 6= C(t2) then all the points C(tn) are distinct, C(tn+1) lies
between C(tn) and C(tn+2) on L and the sequence of points C(tn) converges
monotonically on L to A. In particular, ω(C) ∩ L = {A}. In other words, the
transversal L contains only the single point A of ω(C).

Proof. Step 1. By definition, every neighborhood of A contains points of the
form C(t) with arbitrarily large t. Hence by the preceding lemma, the curve C(t)
will cross L infinitely many times with arbitrarily large t. By the lemma before
last, any finite interval of time contains only finitely many such intersections,
and so the intersection times are given by a monotone increasing sequence as
stated in the lemma. If C(t1) = C(t2) then C is periodic with period t2 − t1,
and, by definition the curve C does not cross L at any time between t1 and t2.
So C(tn) = C(t1) and as A is the limit of the C(tn) (by the preceeding lemma)
we conclude that A = C(t1). (So far we have not used properties particular to
the plane.)

Step 2. Suppose that C(t1) 6= C(t2). By definiton, C does not intersect
L for t1 < t < t2. So the curve formed by C(t), t1 ≤ t ≤ t2 and the segment
C(t1)C(t2) of L forms a simple closed curve, Γ.

We claim that the trajectory C(t), t > t2 can not cross Γ. Indeed, suppose
that for t > t2 but close to t2 the curve C(t) lies inside Γ. It can not cross the C
portion of Γ by the uniqueness theorem of ordinary differential equations, and
it can not cross the L portion in the direction opposite to the trajectories at t1
and t2.

Hence it lies entirely inside Γ for all time. In particular, C(t3) is inside Γ
and C(t2) lies between C(t1) and C(t3) on L. By induction, the C(tn) form
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Figure 10.2: The curve Γ.
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Figure 10.3: C is trapped inside Γ.
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a monotone sequence on L. If the curve starts outside Γ the same argument
shows that it must remain outside for all time and the same monotonicity holds,
completing the proof of the lemma.

We now turn to the proof of the Poincaré-Bendixon theorem and proceed
according to cases.

Suppose that ω(C) contains non zeros of V .

Let A be a point of ω(C), let D be the trajectory through A and consider
ω(D). Since ω(C) is closed and since D(t) ∈ ω(C) for large t, we conclude that
ω(D) ⊂ ω(C). If we suppose that ω(C) contains no zeros of V , then a point
B ∈ ω(D) is not a zero of V . The set ω(D) is not empty since the entire forward
trajectory through A is bounded, being contained in ω(C). Choose a transverse
segment L through B. By the preceeding lemma, L can intersect ω(C) in only
one point. In particular, L can intersect D in at most one point, and hence we
conclude that D is periodic. If C is periodic, we have C = D and we are in case
1) of the Poincaré Bendixon theorem.

If C is not periodic, it must lie either entirely inside or entirely outside the
closed curve, F given by the trajectory of D. Choose a point A ∈ F and a
transverse segment thrrough A. Then the preceeding lemma (together with the
Jordan curve theorem) shows that C spirals towards F giving case 2) of the
theorem.

Notice that our argument showed that if D is a trajectory contained in ω(C)
and if ω(D) contains a point, B with V (B) 6= 0 (so that we can pass a transversal
through B) then D must be periodic.

We have already proved part 3) in arbitrary dimensions. For the last asser-
tion we need

Lemma 10.6.2. If ω(C) contains a closed trajectory, D, it contains no other
points.

Proof. Suppose the contrary. Then ω(C)/D is not empty, and it can not be
closed since ω(C) is connected. So there is a point A lying on D which is a
limit point of points of ω(C)/D. Let L be a transverse segment through A.
Since every neighborhood of A contains points of ω(C)/D, it follows that the
trajectories of these points close enough to A cross L. But all of the points on
these trajectories lie in ω(C). Hence L contains more than one point of ω(C),
a contradiction.

Completion of the proof of Poincaré-Bendixon.

Now suppose that ω(C) contains a finite number of zeros of V and also some
points where V (A) 6= 0. Consider the trajectory through the point A. It can
not be periodic by the preceding lemma. But then, by the above argument, its
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omega limit set can not contain a point where V does not vanish. Hence by
part 3), its omega limit set consists of a single zero, which must be one of the
finitely many zeros contained in ω(C). Reversing time, we see that as t→ −∞
the trajectory also tends to a zero in our set. 2

10.7 The van der Pol and Lienard equations.

10.7.1 The van der Pol equation.

Van der Pol introduced his equation in 1920 to describe oscillations in a triode
circuit. He and van der Mark used this equation to describe the heart beat in
a paper entitled “The heartbeat considered as a relaxation oscillation, and an
electrical model of the heart” which appeared in The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science Ser.7, 6 (1928) 763-775.
The equation is

ẍ+ x = µ(1− x2)ẋ (10.3)

where µ > 0 is a positive parameter. Bringing the right hand side over to the
left we can write this as

ẍ+ f(x)ẋ+ x = 0, (10.4)

where f(x) := µ(x2 − 1). The properties of f that we shall use are:

a. F (x) =
∫ x

0
f(s)ds is an odd function. In particular, F (0) = 0.

b. F (x)→∞ as x→∞ and there is a zero , z, of F so that for x > z, F (x) > 0
and F is monotone increasing.

c. For 0 < x < z, we have F (x) < 0.

(For the case of the van der Pol equation, z =
√

3.)

10.7.2 The Lienard equations.

Let us set y = ẋ+ F (x) so the equation (10.4) becomes the system

ẋ = y − F (x) (10.5)
ẏ = −x (10.6)

These equations are known as the Lienard equations, where properties a-c are
assumed. They imply that origin is the only critical point, i.e. the only zero
of the vector field. Indeed, if ẏ = 0, equation (10.6) says that x = 0, and since
F (0) = 0, equation (10.5) then says that y = 0.

Figure 10.4 sketches the vector field corresponding to the van der Pol equa-
tion with µ = 1 near the origin. Notice that the vector field seems to generate
a flow spiraling outward from the origin and spiraling inward outside a neigh-
borhood of the origin. So we suspect the existence of a limit periodic solution.
This can be experimentally verified using Matlab’s ode45 differential equation
program. See Figure 4.5.
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Figure 10.4: The vector field for van der Pol (µ = 1) near the origin.
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Figure 10.5: Solutions using MATLAB’s ode45.
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10.7.3 Proofs.

Let us now justify these figures:

Solutions spiral outward from the origin.

This is a purely linear algebra problem. If we show that the matrix A giving the
derivative of the vector field at the origin has non-real eigenvalues with positive
real part, then, since the behavior near the origin, which is homeomorphic to
the solution of the linearized equations, will consist of outward spirals.

At the origin, the matrix of the linearized equation is(
−f(0) 1
−1 0

)
which has trace −f(0) and determinant 1 and so the eigenvalues are

−1
2
f(0)± 1

2

√
f2(0)− 4.

If f(0) 6= 0, then conditions a) and c) implies that f(0) < 0 and hence both
eigenvalues have positive real parts: orbits move out from the origin with in-
creasing time.

A better argument. In fact, we can conclude this from c without any as-
sumptions about f(0): Set

R =
1
2

(x2 + y2).

Then

Ṙ = xẋ+ yẏ

= x(y − F (x)) + y(−x)
= −xF (x)

which is positive for 0 < |x| < z. So points near the origin increase their radial
distance until at least |x| ≥ z.

Radial decrease from |x| > z. The same argument shows that the radial
distance is decreasing if |x| > z.

Trying to use Poincaré-Bendixon. So if a trajectory is to escape off to
infinity, it must do so by passing through the strip −z ≤ x ≤ z. We shall show
that this is impossible, and hence conclude that all trajectories remain bounded.
According to Poincaré -Bendixon, as there are no attractive zeros of our vector
field, the only possibility is a limit cycle. So by proving that all solution remain
bounded, we will conclude the existence of a periodic solution. Showing that no
trajectory can escape to infinity by passing through the strip −z ≤ x ≤ z is the
hard part of the argument. Our proof will follow the discussion in [Robinson]
pp.173 - 176.
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Figure 10.6: Regions A,B,C, and D.

Boundedness into the future.

We will prove:

Theorem 10.7.1. Under the above hypotheses, there exists one periodic solu-
tion which is the ω limit set of all non-zero trajectories.

The proof will occupy the rest of this section. vskip.1in Notice that the
Lienard equations

ẋ = y − F (x)
ẏ = −x

are unchanged under the map (x, y) 7→ (−x,−y). Let us divide the plane into
four regions: Region A is between the positive y-axis and the curve y = F (x),
Region B is between the curve y = F (x) and the negative y-axis, Region C is
between the negatve y-axis and the curve y = F (x) and region D is between
the curve y = F (x) and the positive y-axis, as in Figure 10.6. Starting on the
positive y-axis, x(t) is increasing, and after a small time, t1,

ẏ ≤ −x(t1) < 0
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so y is steadily decreasing as long as the solution lies in region A, so the solution
curve must eventually cross the curve y = F (x) and enter region B. It can never
go back across the curve y = F (x) in the right hand plane to get back from
region B to region A. In fact, once it leaves a small neighborhood of the curve,
it can not return to that neighborhood.

Throughout regions D and A we have ẋ > 0, and ẏ < 0, so going back in
time, any non-zero trajectory in A must have come from a point on the positive
y-axis.

Since in region B we have ẋ < 0, the x-coordinate is decreasing. So by
compactness, we will have ẋ < −c < 0 along the solution curve, so after a finite
amount of time the trajectory will have to cross the negative y-axis at a point
(0, y1), entering region C.

By symmetry of the equations, the trajectory then moves from C to D and
then crosses the y-axis again at some point (0, y2). To prove the boundedness of
all trajectories, it is enough to show that if y0 is sufficiently large, then y2 < y0.

The map β : y0 7→ y1.

Let β be the map of R+ → R− obtained by following the trajectory from (0, y0)
to (0, y1) := (0, β(y0)).

The trajectory though (0, y) on the positive y-axis will be a periodic trajec-
tory if and only if β(y) = −y. We shall prove that there is exactly one solution
to this equation. What amounts to the same thing, we will show that there is
exactly one y0 for which

1
2
y2

0 = R(0, y0) = R(0, y1) =
1
2
y2

1 .

Let

δ(y) := R((0, β(y))−R((0, y)) =
∫ t1(0,y)

0

Ṙ(x(t), y(t))dt

where t1 is the time it takes for the trajectory to go from (0, y) to (0, β(y)) and
the integral is along the trajectory. We want to show that δ(y) has a unique
zero, and that δ(y) is negative for large y.

Let r be the unique value of y such that the trajectory through (0, r) passes
through the unique point (0, z) where the curve y = F (x) crosses the x-axis.

The following lemma will give us more than enough information to prove
our theorem:

Lemma 10.7.1. 1. If 0 < y < r then δ(y) > 0.

2. For y ≥ r the function δ(y) is a monotone decreasing function of y.

3. δ(y)→ −∞ as y →∞.
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Lemma 10.7.2. 1. If 0 < y < r then δ(y) > 0.

2. For y ≥ r the function δ(y) is a monotone decreasing function of y.

3. δ(y)→ −∞ as y →∞.

Along any trajectory we have

Ṙ = xẋ+ yẏ = xy − xF (x)− xy

so
Ṙ = −xF (x).

Proof of 1. Let 0 < y ≤ r. The trajectory through (0, y) can not cross
the trajectory through (0, r) and hence along this trajectory x ≤ z and x = z
at only one point and that only if if y = r. So F ≤ 0 and is strictly negative
except for that one possibility. So Ṙ > 0 (except possibly at one point along
one trajectory) proving 1.

Proof of 2. Let r < y < y′ and break up the trajectory going from (0, y) to
(0, β(y)) into three pieces. part a until it crosses the line x = z, part b from the
first crossing until the second crossing and part c from the second crossing until
it hits the negative y-axis. Do the same for the trajectory starting at (0, y′).

Along parts a and c (and similarly a’ and c’) we can use x as a parameter
and

dR

dx
=
Ṙ

ẋ
=
−xF (x)
y − F (x)

.

We have ∫
a

L̇dt =
∫ z

0

−xF (x)
y − F (x)

dx <

∫ z

0

−xF (x)
y′ − F (x)

dx =
∫
a′
Ṙdt

(we are now using y and y′ as parameters along the trajectory) since y′ < y
throughout this portion of the trajectories.

Similarly along c and c′ we have y < y′ but x is decreasing so again∫
c

L̇dt <

∫
c′
L̇dt.

To compare the integrals along b and b’ we break b up into three pieces: b1
where b is above the horizontal line where b’ first touches the line x = z, then
the portion b2 between these horizontal lines, and then b3 the remaining portion
of b.

Along all of b and b’ we can use y as a coordinate and

dR

dy
=
(
∂R

∂x

)(
ẋ

ẏ

)
+
∂R

∂y
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Figure 10.7: Diagram for the proof of part 2 of the lemma.
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= x

(
y − F (x)
−x

)
+ y = F (x)

Along all of b we know that F ≥ 0 and y is decreasing so the contributions of
b1 and b3 are negative. So we need only compare the integral over b2 with the
corresponding integral over b′.

But the x values along b2 are greater than the corresponding x values along
b′ and F is monotone increasing for x > z by hypothesis. So the integral over
b3 is < the corresponding integral over b’ proving part 2 of the lemma.

Proof of 3. As the initial point along the positive y-axis move up to infinity,
all the x values on part b2 of the curve b move to the right and F →∞. So the
integral over this portion tends to −∞. This completes the proof of the lemma
and hence of the theorem. 2

10.7.4 Relaxation oscillations.

We now want to consider the effect of the parameter µ on the equations

ẋ = y − µF (x)
ẏ = −x.

Let us make the change of variable w = µy so that the equations become

ẋ = µ(w − F (x))

ẇ = − 1
µ
x.

Suppose that µ is large. In the portion of the periodic motion where w−F (x) >
ε > 0 and µε� 0 the trajectory is practically horizontal by the second equation,
and x is moving very fast to the right by the first equation. Once the trajectory
gets within O(µ−2) of the curve w = F (x) the right hand side of the first
equation is small and there is a slow motion (initially vertically downward as
we have seen) with x slowly decreasing. Eventually it will pull away from the
curve w = F (x) and x will rapidly decrease.

This is why this type of motion is called a “relaxation oscillation”.
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Balthasar van der Pol 

Born: 27 Jan 1889 in Utrecht, The Netherlands

Died: 6 Oct 1959 in Wassenaar, The Netherlands.
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Chapter 11

Lotka - Volterra.

The Lotka - Volterra predator prey equations were discovered independently by
Alfred Lotka and by Vito Volterra in 1925-26. These equations have given rise
to a vast literature, some of which we will sample in this chapter.

Here is how Volterra got to these equations: The number of predatory fishes
immediately after WWI was much larger than before the war. The question as
to why this was so was posed to the mathematician Volterra by his prospective
son-in-law Ancona who was a marine biologist.

Much of the more recent results (in the second part of this chapter) are taken
from the book [?] .

For a discussion of some of these issues at a level requiring less mathematics
that we require in this chapter (and hence without some of the proofs) see the
book Evolutionary Dynamics by Martin Nowak.

11.1 The original Lotka - Volterra equations.

Here is Volterra’s solution to the problem posed to him by his prospective son-
in-law:

Let x denote the density of prey fish and y denote the density of predator
fish. Assume the equations

ẋ = x(a− by)
(11.1)

ẏ = y(−c+ dx)

where
a, b, c, d > 0.

The idea of the first equation is that in the absence of predators, the prey
would grow at a constant rate a, but decreases linearly as a function of the
density y of the predators. Similarly, in the absence of prey, the density of

219
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predators would decrease but the rate increases proportional to the density of
the prey.

We are interested in solutions to these differential equations in the first
quadrant

R2
+ = {(x, y)|x ≥ 0, y ≥ 0}.

11.1.1 The null-clines and the zeros.

The null-clines (where either ẋ = 0 or ẏ = 0 are zero) are the coordinate axes
and the lines y = a/b and x = c/d. The first quadrant is invariant . The origin
is a saddle point.

The other point where the right hand side of (11.1) is zero is(
x
y

)
:=
(
c
d
a
b

)
where the linearized equation has matrix(

0 −bc/d
da/b 0

)
with purely imaginary eigenvalues ±i

√
ac.

If we multiply the first equation of (11.1) by (c − dx)/x and the second by
(a− by)/y and add we get( c

x
− d
)
ẋ+

(
a

y
− b
)
ẏ = 0

or
d

dt
[c log x− dx+ a log y − by] = 0.

Let
H(x) := x log x− x, G(y) := y log y − y,

and
V (x, y) := dH(x) + bG(y).

Then V is constant on flow lines.
Since

dH

dx
=
x

x
− 1,

d2H

dx2
= − x

x2
< 0

we see that H achieves a maximum at x and similarly G assumes a maximum at
y. Thus V has a unique maximum in the interior of the quadrant at the critical
point. Thus the level curves of V , which are solution curves, are closed curves:
all trajectories are periodic.

Here are some trajectories:



11.1. THE ORIGINAL LOTKA - VOLTERRA EQUATIONS. 221

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

3

Figure 11.1: The Lotka -Volterra vector field with a=2, b=1, c=.25,d=1.
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Figure 11.2: Some trajectories.
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The fixed point as an average.

Suppose we are on a trajectory of period T , so x(T ) = x(0). From

d

dt
log x =

ẋ

x
= a− by

it follows by integration that

0 = log x(T )− log x(0) = aT − b
∫ T

0

y(t)dt

or
1
T

∫ T

0

y(t)dt = y

and similarly
1
T

∫ T

0

x(t)dt = x.

11.1.2 Volterra’s explanation of why fishing decreases the
number of predators.

Fishing reduces the rate of increase of the prey, so a is replaced by a − k and
increases the rate of decrease of the predator, so c is replaced by c + m, but
does not change b or d - the interaction coefficients. So a/b is replaced by
(a − k)/b - the average number of predators is decreased by fishing and the
average number of prey is increased. Stoppage of fishing increases the average
number of predators and decreases average the number of prey.

A moral lesson.

If the prey are “pests” and the predators are their natural enemies, applying
non-specific insecticides may actually increase the pest population.

11.2 A more realistic model.

Suppose we make the equations more realistic by adding self competition terms
and so get the equations

ẋ = x(a− ex− by)
(11.2)

ẏ = y(−c+ dx− fy)

where
a, b, c, d, e, f > 0.
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Figure 11.3: The null-clines do not intersect in the first quadrant, so the preda-
tors become extinct.

The first quadrant is still invariant, and there is an equilibrium point on the
x-axis at x = a/e. There is no equilibrium point on the positive y-axis. The
null-clines are now the axes and the two lines

ex+ by = a, and dx− fy = c

the first with negative slope and the second with positive slope.

All hinges on whether or not they intersect in the first quadrant. If they
don’t, the quadrant is divided into three regions: in the region I to the right
of the line ẏ = 0 of positive slope, we have ẋ < 0 so a trajectory starting in
this region moves to the left, entering region II. It keeps moving to the left
until it crosses the line ẋ = 0, entering region III, where it points down and
to the right and heads toward the fixed point on the x-axis. The predators
become extinct. The second alternative is that the null-clines intersect in the
first quadrant, dividing it into four regions: In Figure 11.5 are some trajectories
draw with Matlab’s ode45. It looks as if trajectories (except those on the axes)
are spiraling in to the zero of the vector field. Let’s prove this: Label the fixed
point as (

x
y

)
.

With the same H,G and V as before, namely

H(x) := x log x− x, G(y) := y log y − y,
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Figure 11.4: The null-clines intersect in the first quadrant, dividing it into four
regions.
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Figure 11.5: Some trajectories from ode45.
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and
V (x, y) := dH(x) + bG(y)

we have
V̇ =

∂V

∂x
ẋ+

∂V

∂y
ẏ

= d(
x

x
− 1)x(a− by − ex) + b(

y

y
− 1)y(−c+ dx− fy).

Write a = ex+ by and c = dx− fy. We get

d(x− x)(by + ex− by − ex) + b(y − y)(−dx+ fy + dx− fy)

which simplifies giving

V̇ (x, y) = de(x− x)2 + bf(y − y)2.

This is non-negative, and strictly positive except at the equilibirum point. Hence
V is steadily increasing along each orbit, which must then head to the equilib-
rium point. 2

11.3 Competition between species.

If x and y denote the density of populations of two species competing for the
same resources, then the rates of growth ẋ/x and ẏ/y will be decreasing functions
of both x and y. The simplest assumption is that these decreases be linear which
leads to the equations

ẋ = x(a− bx− cy)
(11.3)

ẏ = y(d− ex− fy)

with
a, b, c, d, e, f > 0.

Again the first quadrant R2
+ is invariant. The x and y null-clines are given by

the lines

a− bx− cy = 0
d− ex− fy = 0

this time both of negative slope.

We will ignore the degenerate case where these lines are parallel. So we are
left with two possibilities:

• The point of intersection does not lie in R2
+.

• The point of intersection does lie in R2
+.
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Figure 11.6: Case 1: y becomes extinct and x survives.
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Figure 11.7: Case 2: x becomes extinct and y survives.



228 CHAPTER 11. LOTKA - VOLTERRA.

Each of these in turn leads to two possibilities:
If the null-clines do not intersect in the first quadrant then one or the other

species will become extinct: If the two null-clines intersect in R2 the point of
intersection is at

x =
af − cd
bf − ce

, y =
bd− ae
bf − ce

The Jacobian matrix at this point is

J =
(
−bx −cx
−ey −fy

)
with determinant

det(J) = xy(bf − ce).

The eigenvalues are real. We can have (case 3)- a saddle, or (case 4) a sink.

In case 3 one or the other species dominates depending on the initial condi-
tions:

11.4 The n-dimensional Lotka-Volterra equation.

In two dimensions, because of Poincaré-Bendixon, we can get more or less com-
plete answers to the global behavior of flows.

We will now embark on the study of the higher dimensional version of the
Lotka-Volterra equations where the answers are far less complete.

But we can say something:

11.4.1 A theorem of Liapounov.

We will use a theorem of Liapounov describing the ω-limit set in the presence
of a “Liapounov function”.

Theorem 11.4.1. Let X be a vector field on some open set O ⊂ Rn. Let
V : O → R be a continuously differentiable function. Let t 7→ x(t) be a trajectory
of X. If the derivative V̇ of the map t 7→ V (x(t)) satisfies V̇ ≥ 0 (for all t) then
ω(x) ∩O is contained in the set where XV = 0.

Remark. Along x(t) we have V̇ (t) = X(x(t))V .

Proof. If y ∈ ω(x) ∩O, there is a sequence tk →∞ with x(tk)→ y. Hence, by
continuity, (XV )(y) ≥ 0. If XV does not vanish at y, then (XV )(y) > 0 and
we must show that this can not happen.

If (XV )(y) > 0, then for small positive values of t we would have V (y(t)) >
V (y). Now by hypothesis V (x(s)) is a monotone increasing function of s, and
since x(tk)→ y and tk →∞, for any s and sufficiently large k we have

V (x(s)) ≤ V (x(tk))→ V (y).
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Figure 11.8: Case 3. One or the other species dominates depending on the
initial conditions.
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Figure 11.9: Case 4. Stable mututal coexistence.
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So
V (x(s)) ≤ V (y)

for all s.
Since x(tk)→ y we have (for small t > 0)

x(tk + t)→ y(t)

and hence
V (x(tk + t))→ V (y(t)) > V (y),

a contradiction.

With this in hand, we turn to the Lotka-Volterra equations for n species.
These are:

ẋi = xi

ri +
∑
j

aijxj

 , i = 1, . . . , n. (11.4)

Here xi denotes the density of the i-th species, ri is its intrinsic growth (or
decay) rate and the matrix A = (aij) is called the interaction matrix. .

Proposition 11.4.1. The positive orthant and its faces are invariant under
(11.4).

Proof. If xi(0) = 0, then xi(t) ≡ 0 is a solution of the i-th equation, and hence
by the uniqueness theorem of differential equations the only solution. So each
of the faces xi = 0 of the positive orthant Rn+ is invariant under the flow, and
hence so is the (interior of) the positive orthant itself.

The vector field given by the right hand side of the equations vanishes when

ri +
∑
j

aijxj = 0, (11.5)

and so zeros of the vector field in the positive orthant correspond to solutions
of these equations with all xi > 0.

Proposition 11.4.2. An interior α or ω point implies a solution of (11.5) with
all positive entries.

Proof. To prove this, it is enough to show that if there is no solution to the above
equation, then there is a “Liapounov function” V with XV > 0 everywhere,
since Liapounov’s theorem tells us that at any interior ω point we must have
XV = 0 (and similarly for α points). To construct V , let L be the map Lx = y
where

yi = rixi +
∑
j

aijxj .

The image of the positive orthant is some convex cone C. The assumption is
that C does not contain the origin. Since C is convex, there is a hyperplane
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separating it from the origin. Put another way, there is a vector c such that
c · y > 0 for all y ∈ C. Now define

V (x) :=
∑
i

ci log xi

for all x in the positive orthant. Then

V̇ =
∑

ci
ẋi
xi

=
∑

ciyi > 0

at all points.

In particular,

Corollary 11.4.1. If there is a periodic solution in the positive orthant, there
must also be a fixed point.

11.4.2 Food chains.

A food chain is a system where the first species is prey for the second, the second
is prey for the third , etc. up to the n-th which is at the top of the pyramid.
Taking competition within each species into account, the differential equations
are:

ẋ1 = x1(r1 − a11x1 − a12x2)
ẋ2 = x2(−r2 + a21x1 − a22x2 − a23x3)

...
...

... (11.6)
ẋj = xj(−rj + aj,j−1xj−1 − ajjxj − aj,j+1xj+1)

...
...

...
ẋn = xn(−rn + an,n−1xn−1 − annxn)

with all the ri and aij positive.

Theorem 11.4.2. If the food chain equations have an interior rest point

p =

p1

...
pn

 ,

i.e. a point p where the right hand side of the food chain equations vanish, then
p is globally stable in the sense that all orbits in the interior of the positive
orthant converge to p.

The proof will consist of constructing a Liapounov function of the form

V (x) =
∑

ci(xi − pi log xi)

for suitably chosen constants ci.
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Proof. Let V (x) =
∑
ci(xi − pi log xi). Then

V̇ (x) =
∑

ci

(
ẋi − pi

ẋi
xi

)
.

If we write the food chain equations as ẋi = xiwi this becomes

V̇ (x) =
∑

ci(xi − pi)wi.

By assumption, the wi vanish at p. So, for example, r1 = a11p1 + a22p2 hence

w1 = r1 − a11x1 − a12x2 = a11(p1 − x1) + a12(p2 − x2).

More generally we have

w1 = a11(p1 − x1) + a12(p2 − x2)
w2 = a21(x1 − p1)− a22(x2 − p2)− a23(x3 − p3)

...
...

...
wn = an,n−1(xn−1 − pn−1)− ann(xn − pn).

So if we set yi := xi − pi we get

V̇ = −c1a11y
2
1 − y1y2c1a12 − c2a22y

2
2 + c2a21y1y2c2 − a23y2y3

−c3a33y
2
3 + y2y3c3a32 − c3a34y3y4 + · · ·

Rearranging terms on the right hand side this becomes

V̇ = −
n∑
j=1

cjajjy
2
j +

n−1∑
j=1

yjyj+1(−cjaj,j+1 + cj+1aj+1,j).

Since all the aj,j+1 and aj+1,j are positive, we can choose cj > 0 recursively
such that −cjaj,j+1 + cj+1aj+1,j = 0, i.e. cj+1/cj = aj,j+1/aj+1,j . Then the
second summand above vanishes, and we have

V̇ = −
n∑
j=1

cjajjy
2
j ≤ 0

with strict inequality unless all the yi = 0.

By Liapounov’s theorem, the ω limit of every orbit in the interior of the
postive orthant is p.
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11.5 Replicator dynamics and evolutionary sta-
ble strategies.

11.5.1 The replicator equation.

We will let Sn denote the simplex consisting of all

x =

x1

...
xn


with xi ≥ 0 and

∑
i xi = 1. We want to think of a population as being

divided into n types E1, . . . , En and of xi as the frequency of the i-th type Ei.
The “fitness” fi of Ei will be a function of these frequencies, i.e. of x. If the
population is very large and the generations blend continuously into each other,
we may assume that x(t) is differentiable function of t. The rate of increase of
ẋi/xi is a measure of the evolutionary success of type Ei. The basic tenet of
Darwinism says that we may express this success as the difference between fi(x)
and the average fitness f(x) :=

∑
xifi(x). We obtain the replicator equation

ẋi = xi(fi(x)− f(x)). (11.7)

If we set S(x) := x1 + · · · + xn, then summing the above equations gives the
equation

Ṡ = (1− S)f.

The (unique) solution of this equation with S(0) = 1 is S(t) ≡ 1. So the set Sn
is preserved by the flow. Also, if xi(0) = 0 for some i, then xi(t) ≡ 0. Thus the
faces of Sn are preserved, and hence so is the open simplex

Sn := {x ∈ Sn|xi > 0 ∀i}.

11.5.2 Linear fitness.

For most of the rest of this chapter, I will assume that the fitnesses are linear
functions of x, i.e. there is a matrix A such that fi(x) = (Ax)i - the i-th
component of Ax. The replicator equations are then cubic equations in x:

ẋi = xi ((Ax)i − x ·Ax) .

We shall see that a change of variables will carry the orbits of the replicator
equation with linear fitness functions to the orbits of the Lotka-Volterra equa-
tions (which are quadratic) in one fewer variables, a result due to Hofbauer.

These equations are equivalent in the above sense, but some notions are
easier to formulate and understand in one setting, and some in the other.
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11.5.3 Hofbauer’s equivalence theorem.

Some preliminaries to the equivalence theorem.

Let us go back temporarily to the general replicator equation (11.7): If we add
a function h = h(x) to all the fi, this has the effect of replacing f by f + h
since

∑
xih = h as

∑
xi = 1. Thus the right hand side of the above equation

is unchanged. So adding a common function to all the fi does not change the
replicator equation.

In case fi = (Ax)i, if we add a constant c to all the entries in the j-th column
of A, this has the effect of adding the function cxi to all the fi, so does not change
the replicator equation. In particular, this means that (by subtracting off the
entry in the last row from each column) we can assume that our matrix A has
all entries in the bottom row zero, without changing the replicator equation.

Here is another useful fact about the general replicator equation (11.7): We
have (

xi
xj

).
=

ẋixj − xiẋj
x2
j

=
(fi − f)xixj − (fj − f)xixj

x2
j

=
(fi − fj)xixj

x2
j

so (
xi
xj

).
=
(
xi
xj

)
(fi(x)− fj(x)). (11.8)

Consider the map of the set {y ∈ Rn+|yn = 1} onto the set

Ŝn := {x ∈ Sn|xn > 0}

given by

xi =
yi∑
j yj

, i = 1, . . . , n.

The inverse map x 7→ y is given by

yi =
yi
yn

=
xi
xn
.

If x satisfies the general replicator equation then

ẏi = yi(fi(x)− fn(x))

by (11.8).
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Hofbauer’s theorem.

Now suppose that fi(x) = (Ax)i and we have chosen the matrix A to have its
bottom row all zero (which we can do without changing the equations). Then
fn(x) ≡ 0 and the preceding equations become

ẏi = yi

n∑
j=1

aijxj = yi

n−1∑
j=1

aijyj

xn.

The positive factor xn affects the speed with which the trajectories are traveled,
but not the shape of the trajectories themselves.

In other words, the trajectories in y space are given by

ẏi = yi

ain +
n−1∑
j=1

aijyj

 i = 1, . . . n− 1.

If we consider a general matrix (and then modify it to get the bottom row zero)
we have proved

Theorem 11.5.1. [Hofbauer.] The differentiable invertible map x 7→ y given
above maps the orbits of the replicator equation with linear fitness fi = (Ax)i
onto the orbits of the Lotka-Volterra equation

ẏi = yi

ri +
n−1∑
j=1

bijyj

 i = 1, . . . n− 1

where
ri = ain − ann and bij = aij − anj .

The steps in this passage from replicator equations to LV are reversible.

11.5.4 Nash equilibria.

Let us go back he replicator equations with linear fitnesses. The right hand side
of the equation ẋi = xi((Ax)i − x · Ax) vanishes if and only if all the (Ax)i
are equal (in which case they all equal x ·Ax). So the conditions for such a rest
point are the equations

(Ax)1 = · · · = (Ax)n, x1 + · · ·xn = 1, xi > 0 ∀ i,

n equations in n unknowns, which, therefore, will generically have one or no
solutions. These equations are related to certain concepts and equations in game
theory: For a given matrix A a point p ∈ Sn is called a Nash equilibrium if

x ·Ap ≤ p ·Ap ∀x ∈ Sn.
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If p is a Nash equilibrium, then taking x = ei (the i-th unit vector) in the above
inequality gives

(Ap)i ≤ p ·Ap.

Multiplying by pi and summing i gives us back p ·Ap. So we can not have strict
inequality for any i for which pi > 0. We must have

(Ap)i = p ·Ap ∀ i for which pi > 0.

Interior Nash equilibria are rest states of the replicator equation.

In particular, if p ∈ Sn (the interior of the simplex) - so that all the pi > 0)
then we have

(Ap)i = p ·Ap ∀ i,

and so the right hand side of the replicator equation vanishes at p.
More generally, if we consider the face of Sn spanned by those ei for which

pi > 0, we see that p is a rest point of the replicator equation (restricted ot the
interior of that face).

We know that for the Lotka-Volterra equations the existence of an interior
ω limit point of any orbit implies the existence of an interior rest point, and we
know that the replicator orbits have the same structure as the LV orbits. So we
have proved:

Theorem 11.5.2. If p ∈ Sn is a Nash equilibrium of A then it is a rest point
for the associated replicator equation.

We also have:

Theorem 11.5.3. If x(t)→ p ∈ Sn as t→∞ for some orbit then it is a Nash
equilibrium.

Proof. Suppose that p is not a Nash equilibrium. Then for some i we have
(Ap)i − p · Sp > 2ε > 0. Since x(t)→ p, this means that for sufficiently large t
we have ẋi/xi > ε which is clearly impossible.

11.6 Evolutionary stable states.

A point p ∈ Sn is called an evolutionary stable state if

p ·Ax > x ·Ax ∀ x 6= p, x ∈ Sn.

Theorem 11.6.1. [Zeeman.] If p is an evolutionary stable state then every
orbit of the associated replicator equation in the open simplex Sn converges to
p.
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For the proof of the theorem we will use the inequality

log x ≤ x− 1

for x > 0 with strict inequality when x 6= 1.
To prove this inequality observe that both sides are equal when x = 1. For

x > 1 the derivative of the right hand side is 1 while the derivative of the left
hand side is 1/x < 1, so the right hand side is increasing faster. For x < 1 we
have 1/x > 1 so the left hand side is increasing faster, and so is strictly below
x− 1. 2

A very important consequence of this simple inequality is the inequality∑
pi log xi ≤

∑
pi log pi with strict inequality unless xi = pi for all i.

(11.9)
. To prove this:∑

pi log xi −
∑

pi log pi =
∑

pi log
xi
pi
≤
∑

pi

(
xi
pi
− 1
)

=
∑

xi −
∑

pi = 1− 1 = 0.

The inequality becomes strict if any xi 6= pi. 2

So the function V (x) =
∑
pi log xi achieves its maximum at p. We shall

show that if p is an evolutionary stable state then V is a Liapounov function
for the associated replicator equation.

Proof of Zeeman’s theorem. Indeed,

V̇ =
∑

pi
ẋi
xi

=
∑

pi ((Ax)i − x ·Ax) = p ·Ax− x ·Ax > 0

if x 6= p. 2

Relation to information theory.

The function Ent(x) := −
∑
xi log xi (known as the entropy) plays a key role in

thermodynamics, statistical mechanics, and information theory. As a diversion,
I will spend the rest of this chapter trying to explain why and how this enters
into communication theory.

11.7 Entropy and communication.

11.7.1 Codes.

We use the following notations. W will be a set of “words”, W = {a, b, c, d, . . . }.
The number of elements in W will be denoted by N . A message is just a
concatenation of words, i.e. a string of elements of W .
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Σ will denote an alphabet of D symbols (usually D = 2 and the symbols are
0 and 1). A code or an encoding is a map from W to strings on Σ. It then
extends by concatenation to messages.

Example.

W = {a, b, c, d} φ : a 7→ 0, b 7→ 111, c 7→ 110, d 7→ 101.

Then
φ(aba) = 01110.

11.7.2 Uniquely decipherable codes and instantaneous codes.

A code, φ, is called uniquely decipherable (UD) if any string S on Σ has at
most one preimage under φ. A code is called instantaneous (INS) if no φ(w)
occurs as a prefix of the code for some other word. Clearly every instantaneous
code can be uniquely deciphered, each word as it arrives. Hence

UD ⊃ INS.

Example. W = {x, y},Σ = {0, 1}, φ : x 7→ 0, y 7→ 01. Then

00010101

deciphers from the end as xxyyy. But we needed to wait until the end of the
message to decode. If the last digit had been a 0 instead of a 1, it would have
decoded as xxyyxx. So the inclusion is strict.

11.7.3 The expected length of a code.

We let |S| denote the length (number of elements in) a string S. Suppose that
the messages sent are all such that each word w occurs with a relative frequency
f(w), so we think of f as a probability measure on W . So now f(w) denotes
frequency rather than fitness.

Then the expectation

E(|φ(w)|) = Ef (|φ(w)|) =
∑

f(w)|φ(w)|

is the “average length of the encoding φ”. We would like to make this as small
as possible.

We define
Ent(f) = E(− log f) = −

∑
w

f(w) log f(w)

as before.
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11.7.4 Shannon’s “first theorem”.

Theorem 11.7.1. For any UD code, φ we have

E(|φ(w)|) ≥ Ent(f)
logD

. (11.10)

There exists an INS code φ such that

E(|φ(w)|) ≤ Ent(f)
logD

+ 1. (11.11)

McMillan’s inequality.

I will prove (11.10) by first proving McMillan’s inequality: Let `1, . . . , `N be the
code word lengths of a UD code. Then McMillan’s inequality says that

N∑
1

D−`i ≤ 1. (11.12)

The proof of McMillan’s inequality will be by the method of generating func-
tions:

For any integer r we have

(
D−`1 +D−`2 + · · ·+D−`N

)r
=

r∑̀
1

biD
−i

where ` = max `j and where bi denotes the number of ways that a string of
length i can be constructed by concatenating r code words. Now there are Di

strings of length i in all. If the code is uniquely decipherable then there can’t
be more than Di messages whose code is a string of length i. Hence

bi ≤ Di

and plugging into the preceding equality gives(
D−`1 +D−`2 + · · ·+D−`N

)r ≤ r`.
Hence

D−`1 +D−`2 + · · ·+D−`N ≤ `1/rr1/r → 1

as r →∞. This proves McMillan’s inequality (11.12).

Now to the proof of Shannon’s inequality (11.10): Set

qi =
D−`i

D−`1 +D−`2 + · · ·+D−`N

so that ∑
qi =

∑
fi = 1
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where fi = f(wi) is the frequency of the i−th word. We have proved that

Ent(f) = −
∑

fi log fi ≤ −
∑

fi log qi = logD
∑

fi`i + log(
N∑
1

D−`i).

But (
∑N

1 D−`i) ≤ 1 and hence its logarithm is negative. We conclude that

Ent(f) ≤ logD × E(|φ(w)|)

which is just (11.10). 2

Krafts lemma.

We now show that there exists an instantaneous code satisfying (11.11). For
this we need Kraft’s lemma

Lemma 11.7.1. For any `i satisfying (11.12) there exists an instantaneous
code whose word lengths are `i.

Proof. Write (11.12) as ∑̀
1

njD
−j ≤ 1

where ni is the number of `i which are equal to j. Multiply through by D` and
move terms to the other side so the inequality becomes

n` ≤ D` − n1D
`−1 − · · · − n`−1D.

Now the n` which occurs on the left of the inequality is a non-negative (actually
positive) integer. So we certainly have the inequality

0 ≤ D` − n1D
`−1 − · · · − n`−1D.

Dividing by D and bringing n`−1 over to the other side gives

n`−1 ≤ D`−1 − n1D
`−2 − · · · − n`−2D.

So proceding in this way we get the string of inequalities

n` ≤ D` − n1D
`−1 − · · · − n`−1D

n`−1 ≤ D`−1 − n1D
`−2 − · · · − n`−2D

n`−2 ≤ D`−2 − n1D
`−3 − · · · − n`−3D

...
n3 ≤ D3 − n1D

2 − n2D

n2 ≤ D2 − n1D

n1 ≤ D.
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Let us read these inequalities in reverse order. The last inequality says
that we can encode n1 words each by a single letter from the alphabet Σ, with
D − n1 letters left over to serve as prefixes of code words. The next to last
inequality says that we can encode n2 words as two letter code words using the
D− n1 letters as first letters and choosing from the D letters as second letters,
D2 − n1D = (D − n1)D possibilities in all. This leave D2 − n1D − n2 possible
prefixes for three letter words, and the third from last inequality says that we
have enough room to encode n3 words as three letter code words. Proceeding
in this way back up to the top proves Kraft’s lemma.

Now to the proof of the second assertion in Shannon’s theorem. Choose
word lengths `i to be the smallest integers satisfying

f−1
i ≤ D`i .

This is equivalent to

`i logD ≥ − log fi

and

`i ≤ 1− log fi
logD

since we have chosen `i as small as possible. But

∑
D−`i ≤

∑
fi = 1

so (11.12) is satisfied, and we can find an instantaneous code with the word
lengths `i. For this code we have

∑
fi`i ≤

∑
fi

(
1− log fi

logD

)
= 1 +

Ent(f)
logD

. 2

A good book on the subject of this section is [Welsh].

Here are photographs of Lotka and Volterra
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Alfred James Lotka (1880 – 1949)
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Vito Volterra

1860 - 1940



Chapter 12

Symbolic dynamics.

We have already seen several examples where a dynamical system is conjugate
to the dynamical system consisting of a “shift” on sequences of symbols. It is
time to pin this idea down with some formal definitions.

Definition. A discrete compact dynamical system (M,F ) consists of a
compact metric space M together with a continuous map F : M → M . If F is
a homeomorphism then (M,F ) is said to be an invertible dynamical system.

If (M,F ) and (N,G) are compact discrete dynamical systems then a map
φ : M → N is called a homomorphism if

• φ is continuous, and

• G ◦ φ = φ ◦ F.

If the homomorphism φ is surjective it is called a factor. If φ a homeomor-
phism then it is called a conjugacy.

For the purposes of this chapter we will only be considering compact discrete
situations, so shall drop these two words.

12.1 Sequence spaces.

Let A be a finite set called an “alphabet”. The set AZ consists of all bi-infinite
sequences x = · · ·x−2, x−1, x0, x1, x2, x3, · · · . On this space let us put the metric
d(x, x) = 0 and, if x 6= y then

d(x, y) = 2−k where k = max
i

[x−i, xi] = [y−i, yi].

Here we use the notation [xk, x`] to denote the “block”

[xk, x`] = xkxk+1 · · ·x`

245



246 CHAPTER 12. SYMBOLIC DYNAMICS.

from k to ` occurring in x. (This makes sense if k ≤ `. If ` < k we adopt the
convention that [xk, x`] is the empty word.) Thus the elements x and y are close
in this metric if they agree on a large central block. So a sequence of points
{xn} converges if and only if, given any fixed k and `, the [xnk , x

n
` ] eventually

agree for large n.

From this characterization of convergence, it is easy to see that the space
AZ is sequentially compact: Let xn be a sequence of points of AZ, We must
find a convergent subsequence. The method is Cantor diagonalization: Since
A is finite we may find an infinite subsequence ni of the n such that all the
xni

0 are equal. Infinitely many elements from this subsequence must also agree
at the positions −1 and 1 since there are only finitely many possible choices of
entries. In other words, we may choose a subsequence nij of our subsequence
such that all the [x

nij

−1 , x
nij

1 ] are equal. We then choose an infinite subsequence
of this subsubsequence such that all the [x−3, x3] are equal. And so on. We
then pick an element N1 from our first subsequence, an element N2 > N1 from
our subsubsequence, an element N3 > N2 from our subsubsubsequence etc. By
construction we have produced an infinite subsequence which converges.

12.1.1 Exclusions.

In the examples we studied, we did not allow all sequences, but rather excluded
certain types. Let us formalize this. By a word from the alphabet A we simply
mean a finite string of letters of A. Let F be a set of words. Let

XF = {x ∈ AZ|[xk, x`] 6∈ F}

for any k and `. In other words, XF consists of those sequences x for which no
word of F ever occurs as a block in x.

12.1.2 Shifts.

From our characterization of convergence (as eventual agreement on any block)
it is clear that XF is a closed subset of AZ and hence compact. It is also clear
that XF is mapped into itself by the shift map

σ : AZ → AZ, (σx)k := xk+1.

It is also clear that σ is continuous. By abuse of language we may continue to
denote the restriction of σ to XF by σ although we may also use the notation
σX for this restriction. A dynamical system of the form (X,σX) where X = XF
is called a shift dynamical system.

Example: The full shift on two letters and the Baker’s transformation.

Consider the alphabet A = {0, 1} and the full sequence space AZ. A point of
AZ looks like

· · ·x−4x−3x−2x−1x0x1x2x3x4x5 · · · .
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I am going to rewrite this point by putting a “.” before the x0 and setting
yi = x−i for i > 0. I will then think of .x0x1x2x3 . . . as the binary expansion
of a point x in the interval [0, 1] and of .y1y2y3 . . . as the binary expansion of a
point y in the interval [0, 1]. In this way we have a map

h : AZ → [0, 1]× [0, 1].

So h maps our sequence space onto the unit square and is easily seen to be
continuous .

Let us examine the effect of the shift Sh on the unit square. In other words,
we are looking for a transformation b on the unit square such that b◦h = h◦Sh.
If x0 = 0, the effect of Sh on x is to replace it by 2x, while at the same time
to replace y by 1

2y. If x0 = 1, the effect on x is to replace it by 2x − 1 while
the effect on y is to replace it by 1

2y+ 1
2 . In other words, the transformation b,

known as the “bakers transformation” is the composition b = c ◦ sq where sq
squashes the square by multiplying x by 2 and y by 1

2 , then cutting the right
hand rectangle [1, 2]× [0, 1

2 ] and placing it on top of the rectangle [0, 1]× [0, 1
2 ].

The idea is that in kneading dough, the first step is to squash down and flatten
out the dough and then cut it and reassemble it. Then continue the process.

It is easy to check that the shift map is chaotic, and it follows from Prop.
4.3.3 that the Baker’s transformation is chaotic.

12.1.3 Homomorphisms between shifts are sliding block
codes.

Suppose that (X,σX) with X = XF ⊂ AZ and (Y, σY ) with Y = YG ⊂ BZ are
shift dynamical systems. What does a homomorphism φ : X → Y look like?
For each b ∈ B, let

C0(b) = {y ∈ Y |y0 = b}.

(The letter C is used to denote the word “cylinder” and the subscript 0 denotes
that we are constructing the so called cylinder set obtained by specifying that
the value of y at the “base” 0.) The sets C0(b) are closed, hence compact, and
distinct. The finitely many sets φ−1(C0(b)) are therefore also disjoint.

Since φ is continuous by the definition of a homomorphism, each of the sets
φ−1(C0)(b) is compact, as the inverse image of a compact set under a continuous
map from a compact space is compact. Hence there is a δ > 0 such that the
distance between any two different sets φ−1(C0(b)) is > δ. Choose n with
2−n < δ. Let x, x′ ∈ X. Then

[x−n, xn] = [x′−n, x
′
n]⇒ φ(x)0 = φ(x′)0

since then x and x′ are at distance at most 2−n and hence must lie in the same
φ−1(C0(b)). In other words, there is a map

Φ : A2n+1 → B
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such that
φ(x)0 = Φ([x−n, xn]).

But now the condition that σY ◦ φ = φ ◦ σX implies that

φ(x)1 = Φ([x−n+1, xn+1])

and more generally that

φ(x)j = Φ([xj−n, xj+n]). (12.1)

Such a map is called a sliding block code of block size 2n+1 (or “with memory
n and anticipation n”) for obvious reasons.

Conversely, suppose that φ is a sliding block code. It clearly commutes with
the shifts. If x and x′ agree on a central block of size 2N+1, then φ(x) and φ(y)
agree on a central block of size 2(N − n) + 1. This shows that φ is continuous.
In short, we have proved

Proposition 12.1.1. A map φ between two shift dynamical systems is a homo-
morphism if and only if it is a sliding block code.

The advantage of this proposition is that it converts a topological property,
continuity, into a finite type property - the sliding block code. Conversely, we
can use some topology of compact sets to derive facts about sliding block codes.

For example, it is easy to check that a bijective continuous map φ : X → Y
between compact metric spaces is a homeomorphism, i.e. that φ−1 is continuous.
Indeed, if not, we could find a sequence of points yi ∈ Y with yn → y and
xn = φ−1(yk) 6→ x = φ−1(y). Since X is compact, we can find a subsequence
of the xn which converge to some point x′ 6= x. Continuity demands that
φ(x′) = y = φ(x) and this contradicts the bijectivity. From this we conclude
that the inverse of a bijective sliding block code is continuous, hence itself a
sliding block code - a fact that is not obvious from the definitions.

12.2 Shifts of finite type.

Let M be any positive integer and suppose that we map XF ⊂ AZ into (AM )Z

as follows: A “letter” in AM is an M -tuplet of letters of A. Define the map
φ : XF → (AM )Z by letting φ(x)i = [xi, xi+M ]. For example, if M = 5 and we
write the 5-tuplets as column vectors, the element x is mapped to

. . . ,


x−1

x0

x1

x2

x3

 ,


x0

x1

x2

x3

x4

 ,


x1

x2

x3

x4

x5

 ,


x2

x3

x4

x5

x6

 , . . . .

This map is clearly a sliding block code, hence continuous, and commutes with
shift hence is a homomorphism. On the other hand it is clearly bijective since
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we can recover x from its image by reading the top row. Hence it is a conjugacy
of X onto its image. Call this image XM .

We say that X is of finite type if we can choose a finite set F of forbidden
words so that X = XF .

12.2.1 One step shifts.

If w is a forbidden word for X, then any word which contains w as a substring
is also forbidden. If M + 1 denotes the largest length of a word in F , we may
enlarge all the remaining words by adding all suffixes and prefixes to get words
of length M + 1. Hence, with no loss of generality, we may assume that all
the words of F have length M + 1. So F ⊂ AM+1. Such a shift is called an
M -step shift. But if we pass from X to XM+1, the elements of (A)M+1 are
now the alphabet. So excluding the elements of F means that we have replaced
the alphabet AM+1 by the smaller alphabet E , the complement of F in AM+1.
Thus XM+1 ⊂ EZ. The condition that an element of EZ actually belong to X
is easy to describe: An (M + 1)-tuplet yi can be followed by an (M + 1)-tuplet
yi+1 if and only if the last M entries in yi coincide with the first M entries in
yi+1. All words w = yy′ which do not satisfy this condition are excluded. All
these words have length two. We have proved that

the study of shifts of finite type is the same as the study of one step shifts.

12.3 Directed multigraphs.

We can rephrase the above argument in the language of graphs. For any shift
and any positive integer K and a shift X of finite type we let WK(X) denote
the set of all admissible words of length K. Suppose that X is an M -step shift.
Let us set

V :=WM (X),

and define
E =WM+1(X)

as before.
Define maps

i : E → V, t : E → V

to be
i(a0a1 · · · aM ) = a0a1 · · · aM−1 t(a0a1 · · · aM ) = a1 · · · aM .

Then a sequence u = · · ·u1u0u1u2 · · · ∈ EZ, where ui ∈ E lies in XM+1 if
and only if

t(uj) = i(uj+1) (12.2)

for all j.



250 CHAPTER 12. SYMBOLIC DYNAMICS.

Figure 12.1: A directed multigraph with two vertices and six edges.

So let us define a directed multigraph (DMG for short) G to consist of a
pair of sets (V, E) (called the set of vertices and the set of edges) together with
a pair of maps

i : E → V, t : E → V.

We may think the edges as joining one vertex to another, the edge e going
from i(e) (the initial vertex) to t(e) the terminal vertex. The edges are “ori-
ented” in the sense each has an initial and a terminal point. We use the phrase
“multi”graph since nothing prevents several edges from joining the same pair
of vertices. Also we allow for the possibility that i(e) = t(e), i.e. for “loops”.
Starting from any DMG G, we define YG ⊂ EZ to consist of those sequences
for which

t(uj) = i(uj+1) (12.2)

holds. This is clearly a step one shift.
We have proved that any shift of finite type is conjugate to YG for some

DMG G.

12.3.1 The adjacency matrix of a directed multigraph.

Suppose we are given V. Up to renaming the edges which merely changes the
description of the alphabet, E , we know G once we know how many edges go
from i to j for every pair of elements i, j ∈ V. This is a non-negative integer,
and the matrix

A = A(G) = (aij)

is called the adjacency matrix of G. The adjacency matrix f the graph in
Figures 12.1 and 12.2 is (

2 2
1 1

)
.

All possible information about G, and hence about YG is encoded in the matrix
A. Our immediate job will be to extract some examples of very useful properties
of YG from algebraic or analytic properties of A. In any event, we have reduced
the study of finite shifts to the study of square matrices with non-negative
integer entries.
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1 2

Figure 12.2: The preceding graph with the vertices labeled.

12.3.2 The number of fixed points.

For any dynamical system, (M,F ) let pn(F ) denote the number (possibly infi-
nite) of fixed points of Fn. These are also called periodic points of period n.
We shall show that if A is the adjacency matrix of the DMG G, and (YG, σY )
is the associated shift, then

pn(σY ) = trAn. (12.3)

To see this, observe that for any vertices i and j, aij denotes the number of
edges joining i to j. Squaring the matrix A, the ij component of A2 is∑

k

aikakj

which is precisely the number of words (or paths) of length two which start at
i and end at j. By induction, the number of paths of length n which join i to
j is the ij component of An. Hence the ii component of An is the number of
paths of length n which start and end at i. Summing over all vertices, we see
that trAn is the number of all cycles of length n. But if c is a cycle of length n,
then the infinite sequence y = · · · ccccc · · · is periodic with period n under the
shift. Conversely, if y is periodic of period n, then c = [y0, yn−1] is a cycle of
length n with y = · · · ccccc · · · . Thus pn(σY ) = the number of cycles of length
n = trAn. 2

12.3.3 The zeta function.

Let (M,F ) be a dynamical system for which pn(F ) <∞ for all n. A convenient
bookkeeping device for storing all the numbers pn(F ) is the zeta function

ζF (t) := exp

(∑
n

pn(F )
tn

n

)
.

This was introduced and studied by Artin and Mazur in 1965 -”On periodic
points”,Annals of Mathematics. Second Series 81 pp. 8299.
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At the moment, ζF is to be regarded as a formal power series in t. We
shall soon find an “Euler product” formula for ζF where the prime numbers are
replaced by orbits:

Let x be a periodic point (of some period) and let m = m(x) be the minimum
period of x. Let γ = γ(x) = {x, Fx, . . . , Fm−1x} be the orbit of x under F and
all its powers. So m = m(γ) = m(x) is the number of elements of γ. The
number of elements of period n which correspond to elements of γ is m if m|n
and zero otherwise. If we denote this number by pn(F, γ) then

exp

(∑
n

pn(F, γ)
tn

n

)
= exp

∑
j

m
tmj

mj

 =

exp

∑
j

tmj

j

 = exp (− log(1− tm)) =
1

1− tm
.

Now
pn(F ) =

∑
γ

pn(F, γ)

since a point of period n must belong to some periodic orbit. Since the expo-
nential of a sum is the product of the exponentials we conclude that

ζF (t) =
∏
γ

(
1

1− tm(γ)

)
.

This is the “Euler product” mentioned above.

The zeta function of a directed multipgraph.

Let us specialize to the case (YG, σY ) for some DMG, G. We claim that

ζσ(t) =
1

det(I − tA)
. (12.4)

Indeed,
pn(σ) = trAn =

∑
λni

where the sum is over all the eigenvalues (counted with multiplicity). Hence

ζσ(t) =
∏

exp
∑ (λit)n

n
=
∏(

1
1− λit

)
=

1
det(I − tA)

. 2

12.4 Topological entropy.

Let X be a shift space, and let Wn(X) denote the set of words of length n
which appear in X. Let wn = #(Wn(X) denote the number of words of length
n. Clearly wn ≥ 1 (as we assume that X is not empty), and

wm+n ≤ wm · wn
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and hence
log2(wm+n) ≤ log2(wm) + log2(wn).

This implies that

lim
n→∞

1
n

log2wn

exists on account of the following:

Lemma 12.4.1. Let a1, a2 . . . be a sequence of non-negative real numbers sat-
isfying

am+n ≤ am + an.

Then limn→∞
1
nan exists and in fact

lim
n→∞

1
n
an = lim

n→∞
inf
k≥n

1
k
ak.

Proof. Set a := limn→∞ infk≥n 1
kak. Since ark

rk ≤
ar

r by the hypothesis of the
lemma, we see that the non-decreasing sequence defining a is bounded, so a is
finite. For any ε > 0 we must show that there exists an N = N(ε) such that

1
n
an ≤ a+ ε ∀ n ≥ N(ε).

Choose some integer r such that

ar < a+
1
2
ε.

Such an r ≥ 1 exists by the definition of a. Using the inequality am+n ≤
am + an, we get, if 0 ≤ j < r

amr+j
mr + j

≤ amr
mr + j

+
aj

mr + j
.

Decreasing the denominator the right hand side is ≤
amr
mr

+
aj
mr

.

There are only finitely many aj which occur in the second term, and hence by
choosing m large we can arrange that the second term is always < 1

2ε. Repeated
application of the inequality in the lemma gives

amr
mr
≤ mar

mr
=
ar
r
< a+

1
2
ε.

Thus we define
h(X) = lim

n→∞

1
n

log2#(Wn(X)), (12.5)

and call h(X) the topological entropy of X. (This is a standard but un-
fortunate terminology, as the topological entropy is only loosely related to the
concept of entropy in thermodynamics, statistical mechanics or information the-
ory as discussed in the preceding chpater). To show that it is an invariant of X
we prove
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Theorem 12.4.1. Let φ : X → Y be a factor (i.e. a surjective homomorphism).
Then h(Y ) ≤ h(X). In particular, if h is a conjugacy, then h(X) = h(Y ).

Proof. We know that φ is given by a sliding block code, say of size 2m+1. Then
every block in Y of size n is the image of a block in X of size n+ 2m+ 1, i.e.

1
n

log2#(Wn(Y )) ≤ 1
n

log2#(Wn+2m+1(X)).

Hence

1
n

log2#(Wn(Y )) ≤
(
n+ 2m+ 1

n

)
1

n+ 2m+ 1
log2#(Wn+2m+1(X)).

The expression in parenthesis tends to 1 as n→∞ proving that h(Y ) ≤ h(X).
If φ is a conjugacy, the reverse inequality applies.

The topological entropy and the adjacency matrix.

The adjacency matrix of a DMG has non-negative integer entries, in partic-
ular non-negative entries. If a row consisted entirely of zeros, then no edge
would emanate from the corresponding vertex, so this vertex would make no
contribution to the corresponding shift. Similarly if column consisted entirely
of zeros. So without loss of generality, we may restrict ourselves to graphs whose
adjacency matrix contains at least one positive entry in each row and in each
column. This implies that if Ak has all its entries positive, then so does Ak+1

and hence all higher powers. Recall that a matrix with non-negative entries
which has this property is called primitive. Also recall that a matrix with
non-negative entries is called irreducible if for any ij there is some power n
(depending on i and j) such that (An)ij 6= 0. In terms of the graph G, the
condition of being primitive means that for all sufficiently large n any vertices
i and j can be joined by a path of length n. The slightly weaker condition of
irreducibility asserts that for any i and j there exist n = n(i, j)) and a path of
length n joining i and j.

Finally, recall the Perron-Frobenius Theorem which asserts every non-
negative irreducible matrix A has a positive eigenvalue λA such that λA ≥ |µ|
for any other eigenvalue µ and also that Av = λAv for some vector v all of
whose entries are positive, and that no other eigenvalue has an eigenvector with
all positive entries. We will use this theorem to prove:

Theorem 12.4.2. Let G be a DMG whose adjacency matrix A(G)is irre-
ducible. Let YG be the corresponding shift space. then

h(YG) = λA(G). (12.6)

Proof. The number of words of length n which join the vertex i to the vertex j
is the ij entry of An where A = A(G). Hence

#(Wn(YG)) =
∑
ij

(An)ij .
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Let v be an eigenvector of A with all positive entries, and let m > 0 be the
minimum of these entries and M the maximum. Also let us write λ for λA. We
have Anv = λnv, or written out∑

j

(An)ijvj = λnvi.

Hence
m
∑
j

(An)ij ≤ λnM.

Summing over i gives m#(Wn(YG)) ≤ rMλn where r is the size of the matrix
A. Hence

log2m+ log2#(Wn(YG)) ≤ log2(Mr) + nlog2λ.

Dividing by n and passing to the limit shows that

h(YG) ≤ λA.

On the other hand, for any i we have

mλn ≤ λnvi ≤
∑
j

(An)ijvj ≤M
∑
j

(An)ij .

Summing over i gives
rmλn ≤M#(Wn(YG)).

Again, taking logarithms and dividing by n proves the reverse inequality

h(YG) ≥ λA.

The Fibonacci example.

For example, if

A =
(

1 1
1 0

)
then

A2 =
(

2 1
1 1

)
so A is primitive. Its eigenvalues are

1±
√

5
2

so that

h(YG) =
1 +
√

5
2

.



256 CHAPTER 12. SYMBOLIC DYNAMICS.

1 2
a

b

c

Figure 12.3: The graph of the Fibonacci shift.

12.5 Factors of finite shifts.

Suppose that X is a shift of finite type and φ : X → Z is a surjective homomor-
phism, i.e. a factor. Then Z need not be of finite type. Here is an illustrative
example. Let A = {0, 1} and let Z ⊂ AZ consist of all infinite sequences such
that there are always an even number of zeros between any two ones. So the
excluded words are

101, 10001, 1000001, 100000001, . . .

(and all words containing them as substrings). It is clear that this can not be
replaced by any finite list, since none of the above words is a substring of any
other.

On the other hand, let G be the DMG associated with the matrix

A =
(

1 1
1 0

)
,

and let YG be the corresponding shift. We claim that there is a surjective
homomorphism φ : YG → Z. To see this, assume that we have labelled the
vertices of G as 1, 2, that we let a denote the edge joining 1 to itself, b the edge
joining 1 to 2, and c the edge joining 2 to 1. So the alphabet of the graph YG
is {a, b, c} and the excluded words are

ac bb, ba, cc

and all words which contain these as substrings. So if the word ab occurs in
an element of YG it must be followed by a c and then by a sequence of bc’s until
the next a. Now consider the sliding block code of size 1 given by

Φ : a 7→ 1, b 7→ 0, c 7→ 0.

From the above description it is clear that the corresponding homomorphism is
surjective.

We can describe the above procedure as assigning “labels” to each of the
edges of the graph G; we assign the label 1 to the edge a and the label 0 to the
edges b and c.
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1 2
a

b

c

1

0

0

Figure 12.4: The graph of the Fibonacci shift, labeled.

It is clear that this procedure is pretty general: a labeling of a directed
multigraph is a map:Φ : E → A from the set of edges of G into an alphabet
A. It is clear that Φ induces a homomorphism φ of YG onto some subshift of
Z ⊂ AZ which is then, by construction a factor of a shift of finite type.

Conversely, suppose X is a shift of finite type and φ : X → Z is a surjective
homomorphism. Then φ comes from some sliding block code. Replacing X by
XN where N is sufficiently large we may assume that XN is one step and that
the block size of Φ is one. Hence we may assume that X = YG for some G
and that Φ corresponds to a labeling of the edges of G. We will use the symbol
(G,L) to denote a DMG together with a labeling of its edges. We shall denote
the associated shift space by Y(G,L).

Unfortunately, the term sofic is used to describe a shift arising in this way,i.e.
a factor of a shift of finite type. (The term is a melange of the modern Hebrew
mathematical term sofi meaning finite with an English sounding suffix.)

12.6 The Henon map and symbolic dynamics.

The Henon map on the plane (depending on two parameters b and c) is defined
by

H = Hb,c : (x, y) 7→ (x2 − c− by, x).

The goal of this section is to show that for a suitable range of the parameters b
and c, there is a subset K = K(b, c) ⊂ R2 which is invariant under the Henon
map, and such that the restriction of H to K is conjugate to the full shift map
on two letters.

This is a theorem of Devaney and Nitecki “Shift automorphisms in the Hénon
mapping” Communications in Mathematical Physics67 (1979) pp. 137 - 146.
It is a special case of a theorem of Knill “Topological entropy of standard type
monotone twist maps” Transactions of the American Mathematical Society 348,
(1996) pp. 2999 - 3013.

We follow the treatment in [Knill].

A change of variables.

H = Hb,c : (x, y) 7→ (x2 − c− by, x).
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Change variables

(q, p) := a(x, y) a :=
1√
c
.

In these variables the map is

T = Ta,b : (q, p) 7→
(
q2 − 1
a
− bp, q

)
.

If we write
(
qn
qn−1

)
for the n-th iterate then

(
qn+1

qn

)
=

(
q2n−1
a − bqn−1

qn

)
yielding the recurrence relation

aqn+1 + abqn−1 = q2
n − 1.

Let
X = {−1, 1}Z

and let S be the shift map on X.

We look for a continuous map q : X → R such that qn = q(Snx), x ∈ X is
a solution of the above recurrence relation.

Our problem as an implicit function problem.

Let C(X) denote the space of continuous real valued functions on X, and let
F : R× C(X)→ C(X) be defined by

F (a, q)(x) : a · q((Sx)) + ab · q(S−1x)− (q(x)2 − 1).

We would like to find q such that

F (a, q) = 0.

For a = 0 a function q such that |q| ≡ 1 is a solution.
The partial derivative of F in the C(X) direction is

Fq(a, q)(u) = a · u ◦ S + ab · u ◦ S−1 − 2q · u.

At a = 0 we have
Fq(0, q)u = −2q · u

which is an invertible map. Indeed since |q| ≡ 1, dividing by −2q gives the
inverse, and this inverse is a bounded linear map. We shall fix a solution by
choosing q(x) ≡ x0. The implicit function theorem says that for sufficiently
small a we can find a q = qa depending continuously on a, such that

F (a, qa) ≡ 0
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and q0(x) ≡ x0.

We now use this solution qa to construct a conjugacy between S acting on
X and T acting on an invariant closed subset of R2. In what follows we will
write q instead of qa so as not to clutter up the formulas.

The conjugacy.

Define φ = φa : X → R2 by

φ(x) =
(

q(x)
q(S−1x)

)
.

φ is continuous, because q and S−1 are continuous. Using F (a, q) = 0, we check
that

(φ ◦ S)(x) =
(
q(Sx)
q(x)

)
=
(

1
a (q(x)2 − 1)− bq(S−1x)

q(x)

)
= T

(
q(x)

q(S−1x)

)
= (T ◦ φ)(x).

The map φ is injective because if two points x, y are mapped into the same
point in R2 then the fact that qa(x) is close to x0 and qa(y) is close to y0 implies
that x0 = y0. Then the conjugacy (φ ◦ Sn)(x) = Tn ◦ φ(x) and the fact that T
is a homeomorphism implies that xn = yn for all n, i.e. x = y.

φ has a continuous inverse because every continuous bijective map from a
compact space to a compact space has a continuous inverse. So the map φ is
indeed a homeomorphism from X to a closed subset K = φ(X) ⊂ R2 such that
K is invariant under T and

φ ◦ S = T ◦ φ.
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