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Foreword

This book contains two sets of revised and augmented notes prepared for the
Advanced Course on Limit Cycles and Differential Equations given at the Centre
de Recerca Matemàtica in June 2006, as part of its year-long research programme
on Hilbert’s 16th problem. The common goal of the two sets of notes is to help
young mathematicians enter a very active area of research lying on the borderline
between dynamical systems, analysis and applications.

The first part of the book, by Colin Christopher, considers some of the topics
which surround the Poincar center-focus problem for polynomial systems, a subject
closely tied with the integrability of polynomial systems. The second part, by
Chengzhi Li, is devoted to the introduction of some basic concepts and methods
in the study of Abelian integrals and applications to the weak Hilbert’s 16th
problem.

Besides our indebtedness to the Centre de Recerca Matemàtica, thanks are
due to Jaume Llibre and Armengol Gasull, the course co-ordinators, for giving
us this challenging but rewarding opportunity and for providing such a pleasant
environment during the programme.
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Part I

Around the
Center-Focus Problem

Colin Christopher



Preface

My aim in these notes is to consider some of the topics which surround the Poincaré
center-focus problem for polynomial systems. That is, given a polynomial system

ẋ = P (x, y), ẏ = Q(x, y),

with a critical point whose linearization gives a center, under what conditions can
we conclude that the point is a center for the nonlinear system?

Clearly, the subject is closely tied with what mechanisms underlie the local
integrability of polynomial systems, since the existence of a center implies the
existence of a local analytic first integral.

Because these systems are defined algebraically, we expect these mechanisms
to be algebraic too, in some sense. This indeed seems to be the case, but the
situation is far from being understood except for a growing number of explicit
examples.

The choice of topics covered in these notes is very much a personal one, be-
ing in the main problems that I have been involved in myself or found interesting.
Unfortunately, this has meant that there is much that is missing from this presen-
tation which I felt less competent to comment on. In particular, very little is said
on the many detailed analyses of particular systems, nor on the more far-reaching
work on holomorphic foliations.

The first part of the notes considers the two main mechanisms known to pro-
duce centers in polynomial systems, namely Darboux integrability and algebraic
symmetries. The second part considers several topics loosely associated with the
idea of monodromy. Though diverse, they share a common theme of teasing out
concrete global information from trying to extend the known local behavior, surely
one of the most beguiling aspects of the center-focus problem.



Chapter 1

Centers and Limit Cycles

In this chapter I want to give a general background to the center-focus problem,
and then to show why the problem is interesting: both in what it tells us about
the distinctive algebraic features of polynomial vector fields, and also in the simple
concrete estimates it gives of the number of limit cycles which can exist in these
vector fields.

1.1 Outline of the Center-Focus Problem

Let X be a polynomial vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
, (1.1)

where P and Q are real polynomials of degree at most d. We will identify this
vector field with the pair of first-order differential equations

ẋ = P (x, y), ẏ = Q(x, y). (1.2)

We are interested in the situation where this vector field has a critical point
which we can choose, without loss of generality, to be at the origin.

The associated linearized system at the origin is given by calculating the
Jacobian matrix J(0,0) where

J(x,y) =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
.

Then (
ẋ
ẏ

)
= J(0,0)

(
x
y

)
+ O(2),

where O(2) represents terms of degree 2 or higher in x and y.
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If the determinant of J(0,0) is non-zero (the critical point is non-degenerate),
then the Hartman–Grossman theorem tells us that in a sufficiently small neigh-
borhood of the origin, the system is topologically equivalent to its linear part (i.e.
we can ignore the terms of higher order) as long as the eigenvalues of J(0,0) are
not pure imaginary. That is, as long as the linear parts do not give a center. This
result also holds when P and Q are just continuously differentiable.

The center-focus problem asks for the criteria which determine whether a
critical point whose linear parts give a center, really is a center.

If the critical point is either a center or focus, we shall use the more general
term monodromic to cover both cases. The following proposition is straightforward
from the Hartman–Grossman theorem. A focus whose linearization gives a center
is called a weak focus.

Proposition 1.1. Suppose that the polynomial system (1.2) has a non-degenerate
critical point at the origin. If the critical point is monodromic, then we can bring
the vector field to the form

ẋ = −y + λx + p(x, y), ẏ = x + λy + q(x, y), (1.3)

by a linear transformation, where p and q are polynomials without constant or
linear terms. The case when λ = 0 corresponds to a weak focus or a center.

From now on we take our polynomial system in the form (1.3) with p and q
polynomials of degree at most n.
Example 1.1. The linear parts of the system

ẋ = −y + x3, ẏ = x + y3, (1.4)

about the origin give a center, but for the nonlinear system we have

d

dt
(x2 + y2) = 2(x4 + y4), (1.5)

and so trajectories travel away from the origin, and the system has therefore an
unstable focus there.

For differentiable systems, the behavior at the origin can be hard to determine
as the following well-known example shows.
Example 1.2. The C∞ system

ẋ = −y + xf(x, y), ẏ = x + yf(x, y), (1.6)

with
f(x, y) = sin(

1
x2 + y2

)e−1/(x2+y2),

has an infinite number of limit cycles, x2 + y2 = 1/nπ, for n ∈ Z+ accumulating
at the origin.
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However for polynomial (or analytic) systems, this situation does not occur.
A critical point whose linear parts give a center is either asymptotically stable,
asymptotically unstable or it is a center. This can be most easily seen by computing
the return map at the origin.

That is, we choose a one-sided analytic transversal at the origin with a local
analytic parameter c, and represent the return map by an expansion

c �→ h(c) = c +
∞∑

i=1

αi ci. (1.7)

By expressing (1.3) in polar coordinates,

ṙ = λr + O(r2), θ̇ = 1 + O(r), (1.8)

and invoking standard theorems on analytic dependence on parameters for solu-
tions of the system (1.8), we see that the map (1.7) is analytic in c and also in the
parameters of the system, so the expansion (1.7) is valid.

The stability of the origin is clearly given by the sign of the first non-zero αi,
and if all the αi are zero, then the origin is a center.

However, we can say more. The terms α2k are just analytic functions (with
zero constant term) of the previous αi, so the only interesting functions are the
ones of the form α2i+1. If α2k+1 is the first non-zero one of these, then at most
k limit cycles can bifurcate from the origin. We call this a weak focus of order k.
Provided we have sufficient choice in the coefficients αi, we can also obtain that
many limit cycles in a simultaneous bifurcation from the critical point.

We call the functions α2i+1 the Lyapunov quantities of the critical point, and
denote them L(i). If all the L(i) vanish, then the critical point clearly is a center.
When λ = 0, the L(i) turn out to be polynomials in the parameters of the system.
By the Hilbert basis theorem, the vanishing of all the L(i) must be equivalent to
the vanishing of the first N of them, for some integer N . Thus the set of points
where we have a center must be an algebraic set, which we call the center variety.

It would appear that one part of the center-focus problem is therefore quite
easy, as the calculation of the L(i) is computationally straightforward and has
been implemented by many authors. However, this is deceptive in two ways. First,
because the actual calculation of the common zeros of the first N Lyapunov quan-
tities is computationally intensive (and in general intractable for even quite simple
systems), and second because the Hilbert Basis Theorem gives us no explicit value
for N . That is, we have no idea in practice when to stop calculating values of L(i).

In order to remedy the second problem, we need to know what mechanisms
in polynomial systems force the origin to be a center, then we can show that a
particular set of parameter values do indeed give a center. Here lies the main inter-
est in the center-focus problem. This is because these mechanisms should reflect
something of the algebraic nature of the systems in which they arise. And indeed,
this seems to be the case, at least for the families of systems whose centers have
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been classified to date. In contrast a generic finite dimensional family of analytic
systems of the form (1.3) will have only trivial centers, because the existence of a
center has an arbitrarily high codimension generically.

It is conjectured that there are only two main mechanisms which underlie the
existence of a center. One is the existence of enough invariant algebraic solutions
that an integrating factor can be constructed from them; we consider this case in
the next chapter. That is, we seek a first integral or an integrating factor of the
form

eg/h
∏

f li
i ,

where fi, f and g are polynomials, and fi = 0 and h = 0 define invariant algebraic
curves in system (1.3). We call such a function a Darboux function, and the center
a Darboux center.

The second mechanism is the existence of an algebraic symmetry, that is a
map (x, y) �→ (X(x, y), Y (x, y)), where X and Y are algebraic functions of x and
y, which keeps the system fixed but “reverses” time. Any critical points which lie
on the set of fixed points of this transformation will be forced to be centers. We
consider this case in more detail in Chapter 4. Both these mechanisms clearly have
important global consequences for the systems which exhibit them.

We shall see below that the calculation of the Lyapunov quantities can be
made purely algebraic, and their vanishing corresponds to the algebraic fact of the
existence of a formal power series φ such that X(φ) = 0. Seen in this light, the
center-focus problem becomes an algebraic question of showing that the existence
of a formal local first integral implies the global existence of algebraic solutions
or symmetries. It is this fascinating, and unobvious, connection between the local
and global properties of polynomial systems that underlies part of the fascination
of the center-focus problem.

The other spur to understand what underlies centers in more detail is that
they seem a natural “organizing center” for the dynamics of polynomial systems.
Due to their algebraic structure, they are also much easier to analyze by pertur-
bation methods. Indeed, many of the strongest conclusions about Hilbert’s 16th
problem on the number of limit cycles of (1.2) have come exactly from analyzing
bifurcations from centers. We give examples of this at the end of this chapter.

With this background in hand, the main conjecture for the center focus prob-
lem was first formally stated by Żo�la̧dek. I have replaced the original rationally
reversible by the more general algebraic symmetries as it seems we really do need
these in more complex examples.

Conjecture 1.2 (Żo�la̧dek). Suppose (1.2) has a center; then the center is either
Darboux, or arises from an algebraic symmetry.
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1.2 Calculating the Conditions for a Center

In practice, the computation of the Lyapunov quantities from the return map h(c)
is not the most efficient way to proceed. Instead we use a method which turns out
to be equivalent. It is clear that to find a center, we only need to calculate the
Lyapunov quantities L(k) modulo the previous L(i), i < k. In particular, L(0) is
a multiple of λ and so we can assume that λ = 0 when we calculate the L(k) for
k > 0.

We seek a function V = x2 + y2 + · · · such that for our vector field

X = (−y + p(x, y))
∂

∂x
+ (x + q(x, y))

∂

∂y
,

we have
X(V ) = η4(x2 + y2)2 + η6(x2 + y2)3 + · · · , (1.9)

for some polynomials η2k. The calculation is purely formal, and the choice of V can
be made uniquely if, for example, we specify that V (x, 0)− x2 is an odd function.
It turns out that the polynomials η2k+2 for k > 0 are equivalent to L(k)/π modulo
the previous L(i) with i < k.

This can be seen by taking the polar coordinates as for the return map and
then taking

ρ =
√

V (r cos θ, r sin θ) = r + O(r2),

to give
ρ̇ = η2k+2ρ

2k+1/2 + O(ρ2k+2)

where η2k is the first non-vanishing of the η2i. Calculation of the return map in
the new coordinate system gives the result.

Though this is a purely algebraic way to calculate the Lyapunov quantities,
it turns out that if the origin is a center, then the expression for V converges to an
analytic function. Thus the existence of a formal first integral V and an analytic
one are equivalent in this case. This justifies our assertion that the center-focus
problem is a purely algebraic phenomena.

If the linear parts of the system are not quite in the form of (1.3), then rather
than transform the system to (1.3), we can replace the terms x2 + y2 in expansion
of V by the equivalent positive definite quadratic form which is annihilated by the
linear parts of X .

We note that if we have a center at the origin with first integral V as above,
we can always choose coordinates X and Y such that V = X2 + Y 2. The system
is thus orbitally equivalent to the linear center:

Ẋ = −Y, Ẏ = X.

That is, the system can be brought to this form after multiplying by some analytic
function h(X, Y ) with h(0, 0) �= 0.
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Thus, from the analytic point of view all centers are equivalent. It is only as
we restrict our attention to algebraic phenomena that we see the richness of the
various center types.

1.3 Bifurcation of Limit Cycles from Centers

As mentioned above, for a generic family of analytic vector fields, the existence
of a center has infinite codimension, and therefore centers will not appear. But
in polynomial systems, the set of parameters which give centers form significant
strata in the set of all polynomial vector fields. The strata therefore are likely orga-
nizing centers for the behavior of the systems in their neighborhood in parameter
space.

In this last section, we give a nice application of how the knowledge of a
strata of the center variety in a family of systems can give good estimates of the
number of limit cycles in the whole family.

If we count free parameters in the expression for the return map h(c) in (1.7),
we would expect that in general the codimension of the center variety should be
one more than the number of limit cycles that can bifurcate from the center as
we move away from the center variety. Though this is not true in general, it does
seem to hold in many cases. Furthermore, as we show below, it is often sufficient
just to look at the linearization of the Lyapunov quantities to determine this.

Suppose that the coefficients of (1.3) depend polynomially on a finite set of
parameters Λ, which includes the parameter λ. We choose a transversal at the
origin and calculate the return map h(c) as before. The limit cycles of the system
are locally given by the roots of the expression

P (c) = h(c) − c = α1 c +
∞∑

i=2

αk ck,

where the αi are analytic functions of Λ.
We are interested in a fixed point of the parameter space, K, which we can

without loss of generality choose to be the origin (λ must be zero at a bifurcation
point, and the other parameters can be translated appropriately).

More detailed calculations show that α1 = e2πλ − 1 = 2πλ (1 + O(λ)) and
that

αk = βk +
k−1∑
i=1

βiwik, (k > 1)

where the βi are polynomials in the coefficients of p and q. The wik are analytic
functions of Λ. We set β1 = 2πλ. Furthermore, β2k always lies in the ideal gener-
ated by the previous βi (1 ≤ i ≤ 2k − 1) in the polynomial ring generated by the
coefficients in Λ. This means that in the calculations below the β2i turn out to be
almost redundant. The β2i+1 are of course just the Lyapunov quantities L(i).
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Suppose now that at the origin of K, we have L(i) = 0 for all i, then the
critical point is a center. Let R[Λ] denote the coordinate ring generated by the
parameters Λ = {λ0, . . . , λr}, with λ0 = λ, and I the ideal generated in this ring
by the Lyapunov quantities. As above, the Hilbert basis theorem shows that there
is some number N for which the first N of the L(i) generate I.

Since all the β2k’s lie in the ideal generated by the L(i) with i < k, we can
write

P (c) =
N∑

i=0

b2i+1c
2i+1(1 + Ψ2i+1(c, λ0, . . . , λr)), (1.10)

where the functions Ψ2i+1 are analytic in their arguments and Ψ(0, 0) = 0. A
standard argument from [4] shows that at most N limit cycles can bifurcate.

To find the cyclicity of the whole of the center variety, not only is it necessary
to know about the zeros of the L(i), but also the ideal that they generate. It is no
surprise therefore that few examples are known of center bifurcations [4, 60].

However, if we work about a specific point on the center variety, we can
simplify these calculations greatly. Instead of taking the polynomial ring generated
by the L(i), we can take the ideal generate by the L(i) in R{{Λ}}, the power
series ring of Λ about 0 ∈ K instead. This also has a finite basis, by the equivalent
Noetherian properties of power series rings.

What makes this latter approach so useful is that in many cases this ideal
will be generated by just the linear terms of the L(i). In which case we have the
following theorem.

Theorem 1.3. Suppose that s ∈ K is a point on the center variety and that the
first k of the L(i) have independent linear parts (with respect to the expansion of
L(i) about s); then s lies on a component of the center variety of codimension at
least k, and there are bifurcations which produce k− 1 limit cycles locally from the
center corresponding to the parameter value s.

If, furthermore, we know that s lies on a component of the center variety of
codimension k, then s is a smooth point of the variety, and the cyclicity of the
center for the parameter value s is exactly k − 1.

In the latter case, k − 1 is also the cyclicity of a generic point on this com-
ponent of the center variety.

Proof. The first statement is obvious. As above we can without loss of generality
choose s to be the origin. Since the theorem is local about the origin of K, we can
perform a change of coordinates so that the first k of the L(i) are given by λi.

Now since we can choose the λi independently, we can take λi = miε
2(k−i) for

some fixed values mi (0 ≤ i ≤ k − 1), and mk = 1. The return map will therefore
be an analytic function of ε and c. From (1.10) above, we see that

P (c)/c =
k∑

i=0

mic
2iε2(k−i) + Φ(c, ε).
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Here Φ contains only terms of order greater than 2k in c and ε. For appropriate
choices of the mi, the linear factors of

∑r
i=0 mic

2iε2(k−i) can be chosen to be
distinct and real, and none tangent to ε = 0; whence P (c)/c has an ordinary 2k-
fold point at the origin as an analytic function of c and ε. Now it is well known
that in this case each of the linear factors c− viε of the terms of degree 2k can be
extended to an analytic solution branch c = viε + O(ε2) of P (c)/c = 0. This gives
2k distinct zeros for small ε, and the second statement follows.

The third statement follows from noticing that the first k of the L(i) must
form a defining set of equations for the component of the center variety. Any L(i)
for i > k must therefore lie in the ideal of the L(i) if we work over R{{Λ}}. The
result follows from Bautin’s argument mentioned above [4].

The last statement follows from the fact that the points where the center
variety is not smooth, or where the linear terms of the first k Lyapunov quantities
are dependent, form a closed subset of the component of the center variety we are
on. �

Armed with this result, we can do two things. One is to try to find complete
components of the center variety by comparing the dimension of a known algebraic
subset of the center variety with its codimension calculated above. Another is to
try to find some family of centers of high codimension to see how many limit cycles
we can produce. We give two examples of the latter.

Theorem 1.4. There exists a class of cubic systems with 11 limit cycles bifurcating
from a critical point. There exists a class of quartic systems with 15 limit cycles
bifurcating from a critical point.

Proof. We first consider the family of cubic systems C31 in Żo�la̧dek’s most recent
classification [62]. These systems have a Darboux first integral of the form

φ =
(xy2 + x + 1)5

x3(xy5 + 5xy3/2 + 5y3/2 + 15xy/8 + 15y/4 + a)2
. (1.11)

There is a critical point at

x =
6(8a2 + 25)
(32a2 − 75)

, y =
70a

(32a2 − 75)
.

If we translate this point to the origin and put a = 2 we find we have the system,

ẋ = 10(342 + 53x)(289x− 2112y + 159x2 − 848xy + 636y2),
ẏ = 605788x− 988380y + 432745xy − 755568y2 + 89888xy2 − 168540y3,

whose linear parts give a center.
We consider the general perturbation of this system in the class of cubic

vector fields. That is, we take a parameter for each quadratic and cubic term and
also a parameter to represent λ above, when the system is brought to the normal
form (1.3).
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Routine computations now show that the linear parts of L(0), . . . , L(11) are
independent in the parameters and therefore 11 limit cycles can bifurcate from
this center.

For the quartic result, we look at a system whose first integral is given by

φ =
(x5 + 5x3 + y)6

(x6 + 6x4 + 6/5xy + 3x2 + a)5
. (1.12)

The form is inspired by Żo�la̧dek’s system C45 in [61]. We take a = −8 which gives
a center at x = 2, y = −50, which we move to the origin. This gives a system

ẋ = −510x− 6y − 405x2 − 3xy − 120x3 − 15x4,

ẏ = 49950x + 510y + 22500x2 − 1335xy − 15y2

+2850x3 − 630x2y − 300x4 − 105x3y. (1.13)

This time we take a general quartic bifurcation and find that the linear parts of
L(0) to L(15) are independent. Hence we can produce 15 limit cycles from this
center by bifurcation. �
Remark 1.5. The results in this section can be generalized to take second-order
terms in the Lyapunov quantities. If we do so, we find that the quartic system
above can actually generate 17 limit cycles.

We give one final result, which uses centers given by both Darboux first
integrals and symmetries.

Theorem 1.6. There exists a quartic system with 22 limit cycles. The cycles appear
in two nests of 6 cycles and one nest of 10.

Proof. We work with the cubic center C4,5, which was the one considered in
Żo�la̧dek in [63]. This is of the form

ẋ = 2x3 + 2xy + 5x + 2a, ẏ = −2x3a + 12x2y − 6x2 − 4ax + 8y2 + 4y, (1.14)

with first integral

φ =
(x4 + 4x2 + 4y)5

(x5 + 5x3 + 5xy + 5x/2 + a)4
. (1.15)

When a = 3, the system has a center at the point (−3/2,−11/4). We translate the
system by (x, y) �→ (x − 1, y + 3), which brings the critical point to (−5/2, 1/4).
Now we perform a singular transformation (x, y) �→ (x, y2). After multiplying the
resulting equation through by y we get the quartic system

ẋ = y(2x3 + 6x2 + 2xy2 + 5x + 2y2 + 7),
ẏ = −3x3 + 6x2y2 − 30x2 + 12xy2 − 57x + 4y4 − 16y2. (1.16)

This system has a center at the origin, and we calculate that the linear parts of
the Lyapunov quantities L(0) to L(11) are independent.
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Now, suppose we add perturbation terms to the system (1.14) in such a way
that applying the same transform as that given above we still obtain a system of
degree 4. Clearly any perturbation of this form does not affect the center of (1.16)
which is given by symmetry.

Furthermore, we can calculate that the new perturbation terms have the
linear parts of L(0) to L(7) independent and so can produce 6 limit cycles, which
will be doubled by the singular transformation. Thus we have 22 limit cycles in
all. �

Notes

The calculation of center conditions for quadratic and homogeneous cubic systems
is well known and we do not repeat them here. Recent accounts can be found
in [56, 57]. A similar result for cubic systems is well beyond the computational
capabilities of even the most powerful computers. Apart from these “standard”
results, there are a very large number of finite families of polynomial systems
for which center conditions have been calculated. We do not try to summarize
them here. A common e-resource for known center conditions (especially the many
families of cubic systems that have been discovered) put in a common format and
classified according to type would be a real bonus to further research in this area.

The calculation of Lyapunov quantities is also well-trodden ground. Algo-
rithms have been implemented in various ways by many authors. Again, we do
not attempt to survey them here. Generally, speaking the generation of Lyapunov
quantities is usually the straightforward part. The real computational difficulties
arise as we try to find their common zeros. A book by Romanovski and Shafer
explaining these techniques and results is currently in preparation [52].

We have not considered at all the equivalent of the center-focus problem for
degenerate centers. That is, degenerate critical points with neighborhoods consist-
ing of closed trajectories. The decision problem for whether a general family of
monodromic critical points is a center or not for certain parameter values has been
shown to be non-algebraic by Il’yashenko (see the account in [1]). There have also
been attempts to apply holonomy techniques in the analytic case to show that
such points can have more complicated mechanisms which govern the production
of a center [5].

More details of the calculations for the center bifurcations can be found in
[19], from which the examples in the last section were drawn.

Although our interest is at the moment in real centers, there are good reasons
for working over the complex numbers. We can take the existence of a local analytic
first integral as the definition of a center in this case. In the case of a real saddle
which has a local first integral, we will also use the term integrable saddle. We can
bring a complex saddle with 1:-1 eigenvalues to the form

ẋ = x + p(x, y), ẏ = −y + q(x, y), (1.17)
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which is the complex analog of a weak focus or center. One can calculate Lya-
punov quantities for (1.17) exactly as before; these are better known as saddle
quantities in this case. It seems that the various classes of complex centers arising
in quadratic and symmetric cubic systems intersect much more naturally with the
real integrable saddles than with the real centers [25].

There is a very close connection between the study of planar polynomial
systems and the theory of holomorphic foliations of codimension 1. We will will
only mention one nice application of the center-focus problem to holomorphic
foliations here. Suppose ω is an integrable polynomial 1-form in Cn of degree 2:
that is, dω∧ω = 0. Since ω is integral, about any non-singular point in Cn we have
a local analytic first integral. Restricting to a general 2-plane, we get a quadratic
system whose critical points must be integrable. Cerveau and Lins Neto [13] have
shown that from the knowledge of the classification of centers of quadratic systems
it is possible to classify all the possible forms ω can take.



Chapter 2

Darboux Integrability

In this chapter, we consider one of the two main mechanisms which seem to un-
derlie the existence of centers in polynomial vector fields. We only hint at the
historical side, which is covered in detail by Schlomiuk [57].

2.1 Invariant Algebraic Curves

We consider the system (1.2). For the statements of the following definitions and
propositions it is often more convenient to work with the associated vector field
(1.1).

Definition 2.1. Let f ∈ C[x, y]. If the algebraic curve f = 0 is invariant by a vector
field X of degree d, then X(f)/f is a polynomial of degree at most d − 1. In this
case we say that f = 0 is an invariant algebraic curve of X and Lf = X(f)/f is
its cofactor.

Note that, if the vector field X has several invariant algebraic curves of differ-
ent degrees, the cofactors will all lie in Cd−1[x, y], the vector space of polynomials
of degree at most d− 1. This allows us to reduce the problem of Darboux integra-
bility to one of linear algebra. The proof of the next proposition is clear.

Proposition 2.2. Let f ∈ C[x, y] and f = fn1
1 · · · fnr

r be its factorization in irre-
ducible factors. Then, for a vector field X, f = 0 is an invariant algebraic curve
with cofactor Lf if, and only if fi = 0 is an invariant algebraic curve for each
i = 1, . . . , r with cofactor Lfi . Moreover Lf = n1Lf1 + · · · + nrLfr .

Definition 2.3. Let f, g ∈ C[x, y]; we say that e = exp(g/f) is an exponential factor
of the vector field X of degree d, if X(e)/e is a polynomial of degree at most d−1.
This polynomial is called the cofactor of the exponential factor e, which we denote
by Le. The quotient g/f is an exponential coefficient of X .

Exponential factors represent the coalescence of two or more invariant al-
gebraic curves and so appear natural in families of vector fields with invariant
algebraic curves.



18 Chapter 2. Darboux Integrability

Proposition 2.4. If e = exp (g/f) is an exponential factor for the vector field X,
then f is an invariant algebraic curve and g satisfies the equation

X(g) = gLf + fLe , (2.1)

where Lf is the cofactor of f .

2.2 The Darboux Method

We are interested in the role of invariant algebraic curves in constructing first
integrals and integrating factors of Darboux type: that is, functions which are
expressible as products of invariant algebraic curves and exponential factors. We
recall the following definitions.

Definition 2.5. Let P/Q be a rational function in x and y, with P and Q coprime,
then its degree is the maximum of the degrees of P and Q.

Definition 2.6. A (multi-valued) function is said to be Darboux if it is of the form

eg/h
r∏

i=1

f li
i , (2.2)

where the fi, g and h are polynomials, and the li are complex numbers.

We shall see in the next chapter that the set of such functions is precisely
the set of exponentials of integrals of closed rational 1-forms in x and y.

Definition 2.7. Let U be an open subset of C2. We say that a non-constant function
H : U → C is a first integral of a vector field X on U if, and only if, X |U (H) = 0.
When H is the restriction of a rational (resp. Darboux) function to U , then we
say that H is a rational (resp. Darboux) first integral.

Definition 2.8. We say that a non-zero function R : U → C is an integrating factor
of a vector field X on U if, and only if, X(R) = −divX ·R on U , where div denotes
the divergence of the vector field.

If we know an integrating factor we can compute by quadrature a first integral
of the system up to a constant. Reciprocally, if H is a first integral of the vector
field (1.2), then there is a unique integrating factor R satisfying

R a =
∂H

∂y
and R b = −∂H

∂x
. (2.3)

Such R is called the integrating factor associated to H .
A theorem of Singer [58] shows that if H is a Liouvillian function, then the

integrating factor is Darboux. In an earlier work, Prelle and Singer [50] show that
if H is an elementary function, then the integrating factor is the N -th root of a
rational function. We shall demonstrate Singer’s theorem in the next chapter.
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The idea behind the Darboux method is to use the invariant algebraic curves
of the system to find an integrating factor of the form (2.2). This, in turn, is purely
a matter of linear algebra from Proposition 2.2 as all the cofactors lie in Cd−1[x, y].
A simple introduction to these things can be found in [20].

For example, we can find a Darboux first integral (2.2) if we can find constants
li and mi such that

r∑
i=1

liLfi +
s∑

j=1

mjLej = 0,

where the Lfi and Lej represent the cofactors of fi and exp(gj/hj) respectively. In
particular, this will always happen if there are more than d(d + 1)/2 such curves
or exponential factors.

Proposition 2.9. Let X be a vector field. If X admits p distinct invariant algebraic
curves fi = 0, for i = 1, . . . , p, and q independent exponential factors ej, for
j = 1, . . . , q. Then the following statements hold.

(a) There are λi, ρj ∈ C, not all zero, such that
p∑

i=1

λiLfi +
q∑

j=1

ρjLej = 0 if and

only if the (multi-valued) function fλ1
1 · · · fλp

p eρ1
1 · · · eρq

q is a first integral of
the vector field X.

(b) There are λi, ρj ∈ C, not all zero, such that
p∑

i=1

λiLfi +
q∑

j=1

ρjLej = −div(X)

if and only if the function fλ1
1 · · · fλp

p eρ1
1 · · · eρq

q is an integrating factor of X.

Thus, the problem of finding first integrals or integrating factors is reduced
to a question of linear algebra on the set of cofactors. In order to reduce the
dimension of this space we introduce the following concepts from [15].

Proposition 2.10. Let p be a critical point of the vector field X. Then if f is an
invariant algebraic curve of X which does not vanish at p, its cofactor Lf must
vanish at p. Furthermore, if e = exp(g/f) is an exponential factor of X, then Le

must vanish at p too.

Proof. This follows directly from the equations X(f) = Lff and X(g) = Lfg +
Lef . �

Definition 2.11. Let X be a vector field of degree d, and S ⊂ C2 a finite set of
points (possibly empty). The restricted cofactor space with respect to S, ΣS , is
defined by

ΣS = ∩p∈Smp ∩ Cd−1[x, y] ,

where mp is the maximal ideal of C[x, y] corresponding to the point p.
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If S consists of s points, then we say that they are independent with respect
to Cd−1[x, y] if

σ := dimΣS = dim Cd−1[x, y] − s =
1
2
(d + 1)(d + 2) − s .

Theorem 2.12. Let X be a vector field of degree d. Assume that X has p dis-
tinct invariant algebraic curves fi = 0, i = 1, . . . , p and q exponential factors
ei = exp(gi/hi), i = 1, . . . , q, where each hi is equal to fk for some k. Suppose,
furthermore, that there are s critical points p1, . . . , pr which are independent with
respect to Cd−1[x, y], and fj(pk) �= 0 for j = 1, . . . , p and k = 1, . . . , r. Then the
following statements hold.

(a) If p + q ≥ σ + 2, then X has a rational first integral.

(b) If p + q ≥ σ + 1, then X has a Darboux first integral.

(c) If p + q ≥ σ, and div(X) vanishes at the pi, then X has either a Darboux
first integral or a Darboux integrating factor.

Proof. Statements (b) and (c) follow from counting dimensions and applying
Proposition 2.9. One has just to observe that all possible cofactors are contained
in ΣS by Proposition 2.10.

When p + q ≥ σ + 2, we apply (b) to obtain two independent Darboux
first integrals, say H1 and H2. We can see easily that the integrating factor Ri

associated to log Hi is a rational function. Since the quotient of two integrating
factors is a first integral, the statement (a) follows from the independence of H1

and H2. �
Definition 2.13. If (1.2) has a center given by a Darboux first integral or integrating
factor, we call it a Darboux center.

Unfortunately, given the degree of the system, there is no bound on the
degree of the invariant algebraic curves. In fact systems are known with curves of
arbitrary degree. This causes problems in trying to find all Darboux centers.

The following conjecture would at least show that the systems (1.2) with
invariant algebraic curves form an algebraic subset in the set of parameters.
Conjecture 2.14. There is a number N(d) such that if (1.2) has an invariant
algebraic curve, then it has an invariant algebraic curve of degree at most N(d).

A similar conjecture would also be useful for applications to the center-focus
problem.
Conjecture 2.15. There is a number N(d) such that if (1.2) has an invariant
algebraic curve of degree greater than N(d), then it has a Darboux first integral
or integrating factor.

Of course, in both cases we would prefer to have some concrete way of de-
termining N(d).

A quadratic system with an invariant algebraic curve of degree 12 but not
Darboux integrable is given in [23].
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2.3 Multiple Curves and Exponential Factors

If we are interested in families of Darboux centers, then we need to be able to
understand how the family will change at the points where one or more curves of
the system coalesce. In general, this will give rise to exponential factors, as the
following simple example makes clear.

Example 2.1. Consider the vector field

X = x
∂

∂x
+ ((1 + 
)y + x)

∂

∂y

with invariant algebraic curves x = 0 and x+
y = 0. As 
 tends to zero, then these
two curves coalesce. However we can recover an exponential factor, by taking the
limit of the Darboux function ((x + 
y)/x)1/� which tends to exp(y/x).

In general, we would hope that an exponential factor exp(f/g) corresponds
to the coalescence of two invariant algebraic curves f = 0 and f + 
g = 0 as 

tends to zero. That is, we consider exp(f/g) as

exp(f/g) = lim
�→0

((f + 
g)/f)1/�.

Although a general explanation of this phenomena is not yet known, we give
here a summary of the case when f = 0 is given by an irreducible polynomial f .
The proofs of these results and precise definitions can be found in [21].

Suppose X = Xλ depends on a parameter λ. If Xλ has m invariant algebraic
curves fλ,i = 0, i = 1, . . . , m, which converge to the curve f = 0 as λ tends to
zero, then we say that the curve f = 0 of X0 has multiplicity m.

It turns out that a multiple curve of multiplicity m will have associated to it
m − 1 exponential factors of the form exp(gi/f i) for gi a polynomial of degree at
most i deg(f).

How do we detect such multiple curves without knowing a priori a family
which they lie in? It turns out that there are several equivalent definitions of
multiplicity of an algebraic curve and a couple of these are very computational in
form.

First, we can associate to a multiple curve a generalized invariant algebraic
curve of the form

F = f0 + εf1 + · · · + εk−1fk−1, f0 = f,

where each of the polynomials fi have degree at most deg(f), and ε is an alge-
braic quantity with εk = 0. That is, we have a curve with some “infinitesimal”
information attached. This generalized invariant algebraic curve satisfies

X(F ) = FLF , LF = L0 + εL1 + · · · + εk−1Lk−1.
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Conversely, it is easy to see that if we have such a generalized curve satisfying the
above equation, then the coefficients of εi of

log(F ) = log(f0) + ε
f1

f0
+ ε2 f2 − f2

1 /2
f2
0

+ · · ·

give m − 1 exponential factors.
A more computational approach to finding this multiplicity is given by com-

puting the extactic:

Endet

⎛
⎜⎜⎜⎝

v1 v2 · · · vl

X(v1) X(v2) · · · X(vl)
...

... · · · ...
X l−1(v1) X l−1(v2) · · · X l−1(vl)

⎞
⎟⎟⎟⎠ , (2.4)

where n = deg(f), and v1, v2, . . . , vl is a basis of Cn[x, y], the C-vector space of
polynomials in C[x, y] of degree at most n, and we take l = (n + 1)(n + 2)/2,
X0(vi) = vi and Xj(vi) = Xj−1(X(vi)). It turns out that the multiplicity can
also be given by the maximum power of f appearing in En.

Finally, computations of multiplicity can also be obtained from the holon-
omy group, which we examine in Chapter 9. Here we also need to impose some
restrictions on the critical points which can appear on f = 0. Further details for
all these equivalent definitions can be found in [21].

Notes

Darboux functions are ubiquitous in the area of polynomial systems. For example,
when the system is non-integrable, but has sufficient limit cycles, they can be
used to give geometric non-existence results for limit cycles [20]. Another area of
application is for showing not only integrability but linearizability [41]. Here we
look for substitutions of the form

X = xm(x, y), Y = y n(x, y),

where m and n are Darboux functions, in order to bring the system to a linear
form.

Movasati [45] has shown that given integers di, i = 1, . . . , r with
∑

di = d+1,
the set of centers which have a Darboux first integral

r∏
i=1

f li
i , deg(fi) = di

form a complete component of the center variety.
I’d like to mention one problem here which is quite intriguing though of minor

importance. Given a system (1.2) with a Darboux integrating factor, what can be
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said about its first integral. In the case where the invariant algebraic curves fi = 0
are in generic position, and we have no exponential factors, we can also find a
Darboux first integral.

This has been shown algebraically in [22], however it also has a nice geometric
interpretation. Let D be the Darboux integrating factor, then

φ =
∫

D(P dy − Q dx)

defines a multi-valued integral outside the set Z of zeros of the curves {fi = 0}.
The effect of passing around a non-trivial loop γ in the complement of Z takes
φ to hγ(φ) = aγφ + bγ for some constants aγ and bγ . If the set Z together with
the line at infinity has only nodal singularities (which will be true in the generic
case when the fi = 0 are smooth and intersect transversally with each other and
infinity), it is well known that the complement of Z has an abelian fundamental
group. This means that the maps hγ must commute. It is then straightforward to
show that either aγ = 1 for all γ or the addition of a constant to φ makes all the
bγ vanish. In the first case, φ −∑ ci log(fi) is single-valued for some constants ci

given by the bγ , and in the second, φ/
∏

fmi

i is single-valued for some constants
mi given by the aγ . Application of growth estimates shows that these functions are
therefore rational and hence gives either exp(φ) or φ as a Darboux first integral.
In the case when D contains exponential terms, then it is necessary to use the
extended monodromy group of Żo�la̧dek [65].

In general, it seems that the first integrals have the property that they are a
sum of a Darboux function plus a sum of several one-dimensional integrals of the
form ∫ h(x,y)

es(u)
∏

ri(u)λ
i ,

where h, s and the ri are rational functions. Żo�la̧dek calls these Darboux–Schwartz–
Christoffel integrals, and conjectures that all first integrals of Darboux centers can
be obtained in this form. Interesting examples can be found in [65].
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Liouvillian Integrability

In this chapter we want to prove that Darboux integrability corresponds to the
notion of Liouvillian integrability, or ”solution by quadratures”.

3.1 Differential Fields and Liouvillian Extensions

Let (K, ∆) be a differential field. That is, a field K equipped with a set of com-
muting operators δ : K → K, δ ∈ ∆, called derivations satisfying

δ(x + y) = δx + δy, δ(xy) = (δx)y + x(δy).

We shall assume that all fields have characteristic zero.
A differential field extension (K ′, ∆′) ⊃ (K, ∆) is a field extension K ′ ⊃ K

for which the restriction of each δ′ ∈ ∆′ to K is given by some δ ∈ ∆. Because
of this compatibility condition we can use ∆ to represent both sets of derivations
without confusion.

From now on we will drop the explicit references to the derivations ∆ of the
differential fields unless necessary.
Example 3.1. If K ′ is an algebraic extension of a differential field K, then the
derivations of K extend to K ′ in an unique way. This does not hold true if the
characteristic of the field is different from zero.
Example 3.2. If K is a differential field, we can form the extension field K ′ = K(t),
for some t transcendental over K. To say that this is a differential extension is
to say that there are elements aδ ∈ K(t) such that δt = aδ for all δ ∈ ∆. The
commutativity of the derivations means that δ1aδ2 = δ2aδ1 for all δ1, δ2 ∈ ∆.

Definition 3.1. A differential field extension K ⊃ k is called Liouvillian if it can
be written as a tower of differential extensions

k = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K,
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where at each step we have one of the following conditions:

(i) Ki+1 is a finite algebraic extension of Ki.

(ii) Ki+1 = Ki(t) for some t with δt/t ∈ Ki for all δ ∈ ∆.

(iii) Ki+1 = Ki(t) for some t with δt ∈ Ki for all δ ∈ ∆.

That is, our new field contains functions which can be got by successive (i)
solutions of algebraic equations, (ii) exponentials of integrals and (iii) integrals.

In our applications we will always take the extensions starting from the field
K0 = C(x, y) with the standard derivations ∆ = {∂/∂x, ∂/∂y}. We shall write
∂f/∂x for (∂/∂x)f .

We say that (1.2) has a Liouvillian first integral if there exists a function
φ in some Liouvillian extension of C(x, y) such that X(φ) = 0, where X is the
associated vector field in (1.1), and at least one of ∂φ/∂x and ∂φ/∂y is not zero.

Theorem 3.2 (Singer [58]). The system (1.2) has a Liouvillian first integral, if and
only if it has a Darboux integrating factor.

In fact, Singer’s original proof [58] shows slightly more than this. He proves
that if a polynomial system has a trajectory whose phase curve is given by the
zeros of a Liouvillian function, then the trajectory is either algebraic, or we have
a Liouvillian first integral. This demonstrates something of the importance of
invariant algebraic curves in the analysis of polynomial systems.

The “if” statement in the theorem is clear: if D is our Darboux integrating
factor, then δD/D is a rational function and we can therefore add D to our field
by one extension of type (ii). The converse will be proved in the next section.

3.2 Proof of Singer’s Theorem

Proposition 3.3. If the system (1.2) has a Liouvillian first integral, then it has an
integrating factor of the form

exp
(∫

U dx + V dy
)
,

∂U

∂y
=

∂V

∂x
,

where U and V are rational functions.

Proof. From the hypothesis of the theorem, there exists a φ in some Liouvillian
extension field K of C(x, y) with X(φ) = 0. Thus,

h
∂φ

∂x
= Q, h

∂φ

∂y
= −P,

for some h ∈ K. Thus, putting

A =
1
h

∂h

∂x
, B =

1
h

∂h

∂y
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we have elements A and B in K such that

PA + QB =
∂P

∂x
+

∂Q

∂y
,

∂A

∂y
=

∂B

∂x
. (3.1)

We want to show that if the above equation can be satisfied for A and B in Ki+1 it
can be satisfied in Ki. The conclusion follows directly from the case i = 0, putting
U = A and V = B.

We consider each type of extension in turn. Without loss of generality, we
can assume that the extensions in (ii) and (iii) are transcendental, else we consider
them under (i).

(i) Let K̃i+1 be the normal closure of Ki+1. Let Σ be the set of automorphisms
of Ki+1 fixing Ki. We also write N for |Σ|. Then,

∑
σ∈Σ

σ(PA + QB) = N(
∂P

∂x
+

∂Q

∂y
),

and
∂σ(A)

∂y
=

∂σ(B)
∂x

,

for all σ in Σ. Hence, taking

Ā =
1
N

∑
σ∈Σ

σ(A), B̄ =
1
N

∑
σ∈Σ

σ(B),

we have

PĀ + QB̄ =
∂P

∂x
+

∂Q

∂y
,

∂Ā

∂y
=

∂B̄

∂x
,

where Ā and B̄ must lie in Ki.

(ii) We have A = a(t) and B = a(t) for some rational functions a and b with
coefficients in Ki. Since t is transcendental, we can expand a(t) and b(t)
formally as Laurent series in t. Let a0 and b0 be the coefficients of t0 in the
expansions of a(t) and b(t) respectively, then the coefficient of t0 in (3.1) can
be seen to give

Pa0 + Qb0 =
∂P

∂x
+

∂Q

∂y
,

∂a0

∂y
=

∂b0

∂x
.

(iii) We take A = a(t) and B = b(t) as above, but now expand formally as
a Laurent series in 1/t. Let r be the highest power of t appearing in the
expansion of either a(t) or b(t), and let ar and br be the respective coefficients
of tr in these expansions. Equating powers of tr in (3.1), we get

Par + Qbr = 0,
∂ar

∂y
=

∂br

∂x
,
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for r �= 0, and

Pa0 + Qb0 =
∂P

∂x
+

∂Q

∂y
,

∂a0

∂y
=

∂b0

∂x
,

for r = 0. In the latter case the inductive step is complete, and in the former
we can find an element h ∈ Ki such that

P = −brh, Q = arh.

Then
∂P

∂x
+

∂Q

∂y
= P

1
h

∂h

∂x
+ Q

1
h

∂h

∂y
,

and taking

A =
1
h

∂h

∂x
, B =

1
h

∂h

∂y
,

we complete the inductive step in this case also.

Thus we can repeat the inductive step until we can find solutions to (3.1) in
K0 = C(x, y) and we are finished. �

To finish the proof of Theorem 3.2 we need the following proposition.

Proposition 3.4. If the system (1.2) has an integrating factor of the form

exp
(∫

U dx + V dy
)
,

∂U

∂y
=

∂V

∂x
,

where U and V are rational functions of x and y, then there exists an integrating
factor of the form

exp(g/f)
∏

fi
li ,

where g, f and the fi are polynomials in x and y.

Proof. Let K be a normal algebraic extension of C(y) which is a splitting field for
the numerators and denominators of U and V considered as polynomials in x over
C(y). We can thus rewrite U and V in their partial fraction expansions

U =
r∑

i=1

ni∑
j=1

αi,j

(x − βi)j
+

N∑
i=0

γix
i, V =

r̄∑
i=1

n̄i∑
j=1

ᾱi,j

(x − βi)j
+

N̄∑
i=0

γ̄ix
i,

where the αi,j , ᾱi,j , βi, γi and γ̄i are elements of K. By taking αi,j , ᾱi,j , γi and
γ̄i to be zero outside their defined values, we can neglect the explicit mention of
the summation limits without confusion.

We now apply the condition Uy = Vx to the above expressions. Gathering
terms and using the uniqueness of the partial fraction expansion, we see that (using
f ′ to denote df/dx)

γ′
i = γ̄i+1(i + 1), α′

i,j+1 + jβ′
iαi,j + jᾱi,j = 0. (3.2)
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In particular we have α′
i,1 = 0.

We now write down a function and show that it is indeed the integral
∫

U dx+
V dy. Let φ be given by

φ =
∑

αi,1 log(x − βi) +
∑ αi,j

(x − βi)j−1

( −1
j − 1

)
+
∑ γix

i+1

i + 1
+
∫

γ̄0 dy,

where the last term represents any primitive of γ̄. It is easy to verify that ∂φ/∂x =
U and ∂φ/∂y = V using (3.2).

We now let Σ represent the group of automorphisms of K over C(y), and let
N = |Σ|. As in the previous proof, we define

φ̄ =
1
N

∑
σ∈Σ

σ(φ),

where we note that

σ(αi,1 log(x − βi)) = αi,1 log(x − σ(βi)),

and
σ(
∫

γ̄0 dy) =
∫

σ(γ̄0) dy,

is only defined up to an arbitrary constant.
It is clear that we still have ∂φ̄/∂x = U and ∂φ̄/∂y = V . Furthermore we

have
φ̄ =

∑
li log(Ri(x, y)) + R(x, y) +

∫
S(y) dy,

where Ri, R and S are rational functions. We can evaluate the integral in the last
term via the partial fraction expansion of S as∫

S(y) dy =
∑

αi log(Si(y)) + S0(y),

where the Si are polynomials in y. Taking exponentials, the integrating factor
obtained is of the form desired. �

3.3 Riccati equations

We mention briefly here another possible mechanism which guarantees that a
critical point is a center. However, although we shall give non-trivial examples of
this mechanism for the integrability of a saddle, we do not know of any non-trivial
example of such a case for real centers. These systems exhibit both properties of
symmetric systems in that there is a reduction to a simpler system, and Darboux
systems, in that there is a first integral in the form of a Darboux first integral,
but where the factors are solutions of a second-order differential equation.

We first give an example of a 1 : −λ resonant saddle which is integrable via
the solutions of a Riccati equation.



30 Chapter 3. Liouvillian Integrability

Example 3.3. The system

ẋ = x(1 − x), ẏ = −λy + d1x
2 + d2xy + y2, (3.3)

with λ > 0 but not an integer has a first integral

φ = xλ (y − αx)F1(x) + x(1 − x)F ′
1(x)

(λ − y + (α − λ)x)F2(x) − x(1 − x)F ′
2(x)

, (3.4)

where F1(x) = F (a, b; c; x) and F2(x) = F (a − c + 1, b − c + 1; 2 − c; x) where
F (a, b; c; x) is the Gauss hypergeometric function

F (a, b; c; x) =
∞∑

n=0

(a)n(b)n

(c)nn!
xn

with

(a)n =

{
a(a + 1) . . . (a + n − 1) n ≥ 1
1 n = 0

and similarly for (b)n and (c)n. Here we define α as a root of α2−(λ−d2)α+d1 = 0,
c = λ + 1 and a and b are the roots of A2 − (1 + 2α + d2)A + α(λ + 1) = 0.

It is easy to see that a transformation x �→ Xn will give non-trivial examples
of integrable 1 : −1 saddles. The functions in the numerator and denominator
of (3.4) satisfy a similar equation to the polynomials defining invariant algebraic
curves. In particular, they have polynomial cofactors.

The following example appears quite naturally in the class of cubic systems
with a 1 : −1 saddle (see [51]).

Example 3.4. Consider the system

ẋ = x − 9bx3 − ay3, ẏ = −y + bxy − 6b2x2y. (3.5)

We perform a transformation

X = y3(1 − 3bx)−2, Y = x − aX/4,

which brings the system to the form

Ẋ = −3X − 6abX2, Ẏ = Y +
39
16

a2bX2 +
9
2
abXY + 3bY 2,

which can be brought to the form of Example 3.3 by a simple scaling of the X
and Y axes.

It would be interesting to consider extending the work in the previous chapter
to include solutions of second-order linear differential equations to see if the above
types of integrals are the only ones.
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Notes

There are several simplified proofs of Singer’s theorem in the literature [12, 48, 64].
We have followed loosely the one in Pereira [48]. Singer’s original proof is in [58].
The proof can be carried over very simply to the case of holomorphic foliations of
codimension 1, and has been done so by several of the authors cited.

If we restrict items (ii) and (iii) in Theorem 3.2 to just the addition of expo-
nentials and logarithms,

(ii)′ Ki+1 = Ki(t) for some t with δt/t = g for some g ∈ Ki and all δ ∈ ∆,

(iii)′ Ki+1 = Ki(t) for some t with δt = δg/g for some g ∈ Ki and all δ ∈ ∆,

we obtain the concept of an elementary first integral. This corresponds to integrals
in “closed form” (without quadratures). In an earlier paper, Prelle and Singer
[50] showed that all elementary first integrals have integrating factors which are
fractional powers of a rational function in x and y. The proof is similar to the
Liouvillian case. There have been attempts to implement these results as symbolic
integration routines. One indication of how this can be done is given in [40].
Liouvillian integrability is discussed in [3]. There are also some partial results
known about Liouvillian integrability for higher order differential equations (see
[2] for example).

The role of Riccati equations for the center problem was discussed by Żo�la̧dek
in [64], who also gives the example analyzed in Example 3.3.

Of course it would be interesting to examine other types of extensions. Casale
[12] gives results for extensions involving the solution of Riccati equations. The
question is closely tied with the existence of Godbillon–Vey sequences of finite
length. Those of length 1 correspond to Darboux integrable systems, and those of
length 2 to Riccati systems. It is not clear whether higher length sequences play
a role in planar systems or not. For some suggestive results in this direction see
[14].
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Symmetry

In this chapter we consider the second mechanism which gives rise to centers in
polynomial systems: the existence of an algebraic symmetry.

After some brief preliminary comments, we shall show that such symmetries
can be used to obtain a complete classification of centers in polynomial Liénard
systems.

4.1 Algebraic Symmetries

Let (x, y) �→ (X(x, y), Y (x, y)) be an analytic transformation which is a local
involution in the neighborhood of the origin. After a linear transformation we can
assume that

X = x + r(x, y), Y = −y + s(x, y).

Choosing new coordinates

ξ =
x + X(x, y)

2
= x + O(2), ζ =

y − Y (x, y)
2

= y + O(2),

the involution is brought to the form (ξ, ζ) �→ (ξ,−ζ) and so we have a symmetry
with respect to the line ζ = 0.

If the critical point at the origin is monodromic, then it is clear that the
symmetry condition implies that we have a center. However, we can see this in
another way which will also apply to the case of complex centers.

In the new coordinates, (1.2) becomes

ξ̇ = ζP̃ (ξ, ζ2)h(ξ, ζ), ζ̇ = Q̃(ξ, ζ2)h(ξ, ζ), (4.1)

with h(0, 0) �= 0. We can remove the factor h without loss of generality, as we
are only interested in the orbital behavior of the system. Doing this, and taking
Z = ζ2, we obtain (after again ignoring a common factor ζ) the reduced system

ξ̇ = P̃ (ξ, Z), Ż = 2Q̃(ξ, Z). (4.2)
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We call the map (ξ, ζ) �→ (ξ, ζ2) a reducing transformation. Now, (4.2) no longer
has a singular point at the origin, and hence there is a local first integral φ(ξ, Z) in
the neighborhood of the origin. The pull back of this first integral via the reducing
transformation gives a first integral φ(ξ, ζ2) of (4.1), and hence (4.1) has a center
at the origin.

We saw in Chapter 1 that every center is orbitally equivalent to the linear
center by an analytic change of coordinates, and hence every center has an analytic
symmetry. So the existence of an analytic symmetry does not carry with it much
information about the real “cause” of the center.

To understand the mechanisms behind a center-focus problem, we will only
be interested in functions X(x, y) and Y (x, y) which are algebraic over C(x, y).
This gives us a nice algebraic and global mechanism for a center.

Example 4.1. The Kukles’ system

ẋ = y, ẏ = −x + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy2 + a7y
3,

has a symmetry in the x-axis for a2 = a5 = a7 = 0, and a symmetry in the y-axis
for a1 = a3 = a5 = a7 = 0. From the symmetry in the x-axis we obtain a reducing
transformation Z = y2, and a reduced system

ẋ = 1, Ż = 2(−x + a1x
2 + a3Z + a4x

3 + a6xZ),

having removed a common factor y from the system.

Those centers which are given by algebraic symmetries seem to form com-
ponents of the center variety of relatively large dimension compared with the
Darboux centers. In the case of systems of low degree, however, the reduced sys-
tems tend to be sufficiently simple that they can be algebraically integrated, and
so are Darboux as well as symmetric.

We want to show that algebraic symmetries comprise all the centers for Poly-
nomial Liénard systems. In order to do this, we need a nice characterization of
analytic conditions for a center, given by Cherkas.

4.2 Centers for analytic Liénard equations

In this section we describe the analytic conditions for a center for the system

ẋ = y, ẏ = −g(x) − yf(x), (4.3)

where f and g are real polynomials in x. This was first obtained by Cherkas in
[16].

The system (4.3) arises from the second-order nonlinear equation

ẍ + f(x)ẋ + g(x) = 0, (4.4)
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which generalizes the van der Pol Oscillator, and is ubiquitous in the study of
polynomial systems.

Any critical point of (4.3) lies on the x-axis. We can assume, after a transla-
tion of the x-axis, that the critical point we are interested in is at the origin. The
condition that this critical point should be non-degenerate and a focus or center
implies that g(0) = 0 and g′(0) > 0. It also implies that f(0)2 < 4g′(0), however
we do not need this condition here.

We now wish to transform (4.3) into a more amenable form. Denote

F (x) =
∫ x

0

f(ξ) dξ, G(x) =
∫ x

0

g(ξ) dξ.

Under the Liénard transformation y �→ y + F (x), the system is brought to the
form

ẋ = y − F (x), ẏ = −g(x). (4.5)

We can simplify (4.5) further by a transformation which effectively removes
g. Let u be the positive root of 2G. From the conditions on g given above it is
clear that this root is well defined and analytic in a neighborhood of x = 0, Thus

u = (2G(x))1/2 sgn(x) = (g′(0))1/2x + O(x2) (4.6)

defines an invertible analytic transformation in a neighborhood of x = 0.
Let x(u) denote the inverse of this function. The transformation (4.6) takes

the system (4.5) to the system

u̇ =
g(x(u))

u
(y − F (x(u))) , ẏ = −g(x(u)).

Since g(x(u))/u = (g′(0))1/2 +O(u) is analytic and non-zero in a neighborhood of
the origin, we can rescale (4.6) by multiplying the right-hand side by u/g(x(u))
which gives

u̇ = y − F (x(u)), ẏ = −u. (4.7)

This system has exactly the same direction field as (4.6) in a neighborhood of the
origin, and hence the local qualitative behavior of the system, in particular the
existence of a center, is not altered by this scaling.

We write the power series for F (x(u)) as
∑∞

1 aiu
i. It turns out that the origin

of (4.7) is a center if and only if all the a2i+1 vanish. To see this we introduce
the function F ∗(u) =

∑∞
1 a2iu

2i, analytic in a neighborhood of the origin, and
consider the system

u̇ = y − F ∗(u), ẏ = −u. (4.8)

Since the flow of (4.8) is monodromic, it is clear that it must have a center at the
origin due to symmetry in the u-axis. However, the system (4.7) is rotated with
respect to (4.8) in a neighborhood of the origin unless all the terms a2i+1 vanish.
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Thus (4.7) cannot have a center at the origin unless all the a2i+1 vanish. On
the other hand if all the a2i+1 do vanish, then the system is a center by symmetry.

We can express this necessary and sufficient condition in a more geometrical
form:

Theorem 4.1. The system (4.3) has a center at the origin if and only if F (x) =
Φ(G(x)), for some analytic function Φ, with Φ(0) = 0.

Proof. The argument above shows that there is a center if and only if F (x(u)) =
φ(u2) for some analytic function φ, φ(0) = 0. But u2 = 2G(x), so set Φ(w) =
φ(2w). �

Now consider the function z(x) defined in a neighborhood of the origin by
z(x) = x(−u(x)). We can also describe z(x) as the unique analytic function which
satisfies

G(x) = G(z), (z(0) = 0, z′(0) < 0).

That this equation defines a unique analytic function z(x) is clear from the con-
ditions on g since

G(x) − G(z) = (x − z)
(

1
2g′(0)(x + z) + o(x, z)

)
= 0

has two analytic branches at the origin z = x and z = −x + o(x). The conditions
on z′(0) then selects the second of these. Now 2G(x(u)) = u2 = 2G(x(−u)) whence
G(x) = G(x(−u(x))). Furthermore, as x(−u(x)) = −x+O(x2), this solution must
be x(−u(x)).

We know that the origin is a center if and only if the function F (x(u)) is
even. That is, F (x(u)) − F (x(−u)) vanishes identically. But this is equivalent to
saying that F (x(u(x))) − F (x(−u(x))) = F (x) − F (z) = 0. Thus, we have the
following characterization of centers.

Theorem 4.2. The system (4.3) has a center at the origin if and only if there exists
a function z(x) satisfying

F (x) = F (z), G(x) = G(z), (z(0) = 0, z′(0) < 0). (4.9)

This result also works when f and g are only analytic functions in a neigh-
borhood of the origin. However, if f and g are also polynomials, then the solution
z(x) must correspond to a common factor between the functions F (x)−F (z) and
G(x) − G(z) other than (x − z). Thus, the following corollary is clear:

Corollary 4.3. If the system (4.3) with f and g polynomials has a center at the
origin, then it is necessary that the resultant of

F (x) − F (z)
x − z

and
G(x) − G(z)

x − z

with respect to x or z vanishes. This condition is sufficient if the common factor
of the two polynomials vanishes at x = z = 0.
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4.3 Centers for polynomial Liénard equations

Corollary 4.3 gives algebraic conditions for a center, but does not indicate how
systems satisfying these conditions arise. We now want to show that the centers
are in fact given by algebraic symmetries in the x variable.

Consider the subfield of R(x) generated by the polynomials F and G. Call
this field F . The field F shares an important property with F and G:

Lemma 4.4. Suppose there exists an analytic function z(x) with z(0) = 0, z′(0) < 0
such that both F (z(x)) = F (x) and G(z(x)) = G(x) in a neighborhood of x = 0,
Then for all elements H of the field F generated by F and G we have H(z(x)) =
H(x) considered as meromorphic functions of x about x = 0.

Proof. Note first that H(z(x)) = 0 if and only if H(x) = 0. Thus we need only ver-
ify that addition, multiplication and inversion of non-zero elements of F preserve
this property, which is clearly the case. �

Recall that Lüroth’s Theorem states that if k is a field, any subfield of k(x)
which strictly contains k is isomorphic to k(x). That is to say, the subfield is just
k(r) for some r ∈ k(x). But F is a subfield of R(x) strictly containing R, and so
we must have F = R(r) for some rational function r ∈ R(x).

Let us write r as A/B with A, B ∈ R[x]. The field generated over R by r can
also be generated by

αr + β

γr + δ
=

αA + βB

γA + δB

for any constants α, β, γ and δ, such that αδ − βγ �= 0. By choosing these con-
stants to ensure that the degree of the denominator is less than the degree of the
numerator, we can assume without loss of generality that B has degree less than
A. We can also assume that all common factors between A and B are canceled
and that B is monic.

Now F and G are in F , and so

F =
F1(A, B)
F2(A, B)

, G =
G1(A, B)
G2(A, B)

,

where the Fi and Gi are homogeneous polynomials which we choose to have no
common factors as polynomials in A and B. We now show that:

Lemma 4.5. B = 1.

Proof. We first factor the expressions for F1 and F2 over C[A, B] to obtain

F1(A, B) =
r∏

i=1

(λ1A + µiB), F2(A, B) =
r+s∏

i=r+1

(λ1A + µiB),

for some complex constants λi and µi.
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Now note that if λ1A+µ1B and λ2A+µ2B have a common factor as polyno-
mials in x, then they are multiples of each other, since A and B have no common
factors in x (over R and therefore over C too). However we chose F1 and F2 to
have no common factors as polynomials in A and B, hence they must have no
common factors as polynomials in x.

Thus the denominator of F as a rational function of x after cancellation with
the numerator is just F2(A(x), B(x)), and so

r+s∏
i=r+1

(λ1A + µiB) ∈ R.

Since the degree of A is larger than the degree of B, this can only happen when
λi = 0 for all i = r + 1, . . . , s and hence B must be a constant polynomial, and
therefore equal to 1. Similar considerations show that G2(A(x), B(x)) is also a
constant. �

Thus we have shown that both F and G are polynomials of some polynomial
A ∈ F . The final step follows.

Theorem 4.6. The system (4.3) with g(0) = 0 and g′(0) > 0 has a non-degenerate
center at the origin if and only if F (x) and G(x) are both polynomials of a poly-
nomial A(x) with A′(0) = 0 and A′′(0) �= 0.

Proof. By Theorem 4.2, if there is a center at the origin of (4.3), then there is
a function z(x) with z(0) = 0 and z′(0) < 0 such that F (z(x)) = F (x) and
G(z(x)) = G(x). By Lemma 4.4, the polynomial generator of F , A also satisfies
A(z(x)) = A(x), and hence its linear term must vanish. Now G(x) is a polynomial
in A with G′′(0) > 0, which means that the quadratic term of A cannot vanish.

Conversely, assume F and G are polynomials of a polynomial A with a non-
zero quadratic term but no linear term. From the conditions on A, we can find an
analytic function satisfying A(z(x)) = A(x) with z(0) = 0, z′(0) < 0. Clearly F
and G must then satisfy condition (4.9) of Theorem 4.2, and the origin is therefore
a center. �
Corollary 4.7. The system (4.3) has a non-degenerate center at the point x = p if
and only g(p) = 0, g′(p) > 0 and F and G are both polynomials of a polynomial
A which satisfies A′(p) = 0 with A′′(p) �= 0.

Proof. If we shift the x-axis to bring x = p to the origin, then it is clear that the
new F and G calculated will differ from the original ones only by a constant. The
rest follows quite easily from Theorem 4.6. �
Theorem 4.8. If the system (4.3) has a non-degenerate center at the origin, then
the transformation x �→ z(x), given from the conditions of Theorem 4.2, takes the
direction field of (4.3) into itself, reversing the directions. Thus the origin has a
generalized symmetry.
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Alternatively, the system (4.3) can be seen to have a center via the reducing
transformation w �→ h(x) for some polynomial h(x) = x2 +O(x3) from the system

ẇ = y, ẏ = −m(w) − l(w)y, (4.10)

after a scaling. Here l and m are polynomials m(0) > 0, and the transformation
v �→ h(x) takes a non-critical point at the origin of (4.10) and “unfolds” it into
the center of (4.3).

Proof. The first assertion is a direct calculation from condition (6) of Theorem 4.2.
The generalized symmetry condition means that trajectories lying in x ≥ 0 can
be mapped onto trajectories in x ≤ 0, with the points on x = 0 being fixed. If we
know that the flow encircles the origin, then trajectories sufficiently close to the
origin must be closed. Thus if the critical point is known to be of focal type, this
generalized symmetry is enough to imply the existence of a center.

For the second part, we take the polynomial A of Theorem 4.6, and consider

h(x) = 2
A(x) − A(0)

A′′(0)
= x2 + O(x3).

Clearly F and G are also polynomials of this polynomial, so that F = L(h(x))
and G = M(h(x)) for some polynomials L and M . From the condition on g′(0),
we see that M ′(0) > 0. Take l = L′ and m = M ′, then system (4.10) transforms
(after scaling by h′(x)) to

ẋ = y, ẏ = −h′(x)m(h(x)) − h′(x)l(h(x))y = −g(x) − f(x)y.

The origin of (4.10) is not a critical point, but locally the trajectories are of the
form

w = α − 1
2m(α)

y2 + O(y3)

for small values of α, where the O(y3) term is analytic in α as well as y. The
transformation takes these trajectories to the curves

x2 + O(x3) = α − 1
2m(α)

y2 + O(y3),

for α sufficiently small. These trajectories are thus closed curves approximating
the ellipses x2 + y2/(2m(0)) = α, and the origin is a center. �

Notes

The role of symmetries in proving the existence of centers is of course standard, but
a systematic investigation of algebraic symmetries was carried out by Żo�la̧dek[61],
who coined the name “rationally reversible” for this phenomenon. We have pre-
ferred to consider the more general concept of algebraic symmetries, as these seem
to be needed in some of the more complex center examples [26].

The classification of centers in Liénard systems can be found in [18].
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Cherkas’ Systems

In this chapter we give an extended example of a non-trivial classification of centers
which involves both Darboux and symmetry mechanisms for producing a center.
Further details can be found in [26], which we follow closely.

We first need a result concerning algebraic solutions to transcendental equa-
tions due to Rosenlicht [53].

Theorem 5.1. Let (k,′ ) be a differential field of characteristic zero with differ-
ential extension field (K,′ ) with the same field of constants and such that k is
algebraically closed in K, i.e. all elements in K which are algebraic over k also
lie in k. We also assume that K is a finite algebraic extension of k(t), where t is
transcendental over k and such that t′ ∈ k. Suppose that

n∑
i=1

ci
u′

i

ui
+ v′ ∈ k,

where c1, . . . cn are constants of k which are linearly independent over Q and
u1, . . . un and v are in K. Then u1, . . . , un ∈ k and v = ct + d, with c a con-
stant of k and d ∈ k.

In our applications, we shall take k = C to ensure that k is algebraically
closed. In particular, all elements of k are constants. The application we need of
this result could probably be obtained by an application of complex variables, but
we use the above result to emphasize the algebraic nature of the computations.

We consider the system

ẋ = y, ẏ = P0(x) + P1(x)y + P2(x)y2. (5.1)

We prove the following theorem for this system.



42 Chapter 5. Cherkas’ Systems

Theorem 5.2. A system of the form (5.1) with P0(0) = 0 and P ′
0(0) < 0, which

has a center at the origin, satisfies one of the following (possibly overlapping)
conditions.

(i) The system is algebraically reducible via the map (x, y) �→ (x, y2) and thus it
has a symmetry in the x-axis.

(ii) The system is algebraically reversible at the origin. In fact, it is algebraically
reducible via a map (x, y) �→ (r(x), y) for some polynomial r(x) over R.

(iii) There is a local first integral of Darboux type.

Proof. We break the proof into several steps.

Step 1. We perform the change of variables used by Cherkas,

y = Y exp (
∫ x

0

P2(ξ) dξ)

to arrive, after renaming the variable Y as y, at the system

ẋ = y, ẏ = g(x) + f(x)y.

Here

g(x) = P0(x) exp(−2
∫ x

0

P2(ξ) dξ), f(x) = P1(x) exp(−
∫ x

0

P2(ξ) dξ). (5.2)

We note that the transformation of Cherkas changed the system into one which is
polynomial in y but with coefficients in a Liouvillian differential field extension of
(C(x), d/dx) generated by adjoining the exponentials of integrals in (5.2). On the
other hand the above transformation reduced to the first degree, the polynomial in
y in the right side of the second differential equation, making it possible to apply
the result of Cherkas (Theorem 4.2).

Step 2. We now apply Cherkas’ Theorem.
It is easy to verify that the conditions on P0(x) given above imply the hy-

potheses of Theorem 4.2 on g(x). Therefore the conclusion of Theorem 4.2 tells
us that (5.1) has a center at the origin if and only if there is a real analytic func-
tion z(x) in the neighborhood of the origin, with z(0) = 0 and z′(0) = −1 which
simultaneously satisfies∫ x

0

f(ξ) dξ =
∫ z

0

f(ξ) dξ,

∫ x

0

g(ξ) dξ =
∫ z

0

g(ξ) dξ, (5.3)

or equivalently,
f(x) dx = f(z) dz, g(x) dx = g(z) dz. (5.4)
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We first dismiss the trivial case where f(x) vanishes identically, as this implies
that P1 is identically zero. The origin is, in this case, a center by symmetry in the
x axis. Alternatively, the system can be algebraically reduced to the system

˙̄x = 1, ˙̄y = 2P0(x̄) + 2P2(x̄)ȳ

by the map (x, y) �→ (x̄, ȳ) = (x, y2). This means that the first integral defined
at the origin of this system in (x̄, ȳ) can be pulled back to a first integral in a
neighborhood of the origin of (5.1), giving a center.

Thus we shall assume from now on that f and g do not vanish identically.
We shall also exclude the case where P2 vanishes identically in (5.1) as this has
been covered in the previous chapter. In fact this case is just a subcase of Case 1
below.

From (5.4) we obtain

g(x)/f(x) = g(z)/f(z), (5.5)

as local meromorphic functions in x around the origin (in the right side of (5.5) z
is actually z(x)) and hence z(x) satisfies the equation

P0(x)
P1(x)

exp
(
−
∫ x

0

P2(ξ) dξ

)
=

P0(z)
P1(z)

exp
(
−
∫ z

0

P2(ξ) dξ

)
. (5.6)

As a real local analytic function, z(x) may be considered as an element of
R{{x}} which determines an element of C{{x}} and hence a local complex analytic
function which we also denote by z(x). We now divide our investigation into two
cases: the first case is when z(x) is algebraic over C(x), and the second when z(x)
is transcendental over C(x).

Step 3. z(x) is algebraic over C(x). In this case we can apply the results of
Theorem 5.1. First note that

∫
P2(x) dx is a non-constant polynomial, and that

the equation (5.6) gives

P0(x)/P1(x)
P0(z)/P1(z)

exp
(
−
∫ x

0

P2(ξ) dξ +
∫ z

0

P2(ξ) dξ

)
= 1. (5.7)

Thus we have
Ψ(x) = R1(x, z(x))eR2(x,z(x)) = 1, (5.8)

where

R1(x, y) =
P0(x)/P1(x)
P0(y)/P1(y)

∈ R(x, y),

R2(x, y) =
∫ y

0

P2(ξ) dξ −
∫ x

0

P2(ξ) dξ ∈ R[x, y].

R1(x) = R1(x, z(x)) and R2(x) = R2(x, z(x)) therefore lie in the algebraic
differential field extension (C(x)[z(x)], d/dx) of (C(x), d/dx) generated by z(x).
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Below we denote the derivations in the two fields by ′. Considering now the ex-
pression for Ψ′/Ψ from (5.8) we obtain:

(R1)′/R1 + (R2)′ = 0. (5.9)

Thus, by Theorem 5.1 where we take k = C and K = C(x)[z], we get that
R1(x, z(x)) is a constant and R2(x, z(x)) is of the form cx + d, for constants c
and d. Substituting back into (5.9), we see that c must vanish. Furthermore, it
is clear that at x = 0, R2(x, z(x)) vanishes, and hence d = 0. Lastly, from (5.8),
R1(x, z(x)) = 1.

Thus, we have arrived at the equations

P0(x)/P1(x) = P0(z)/P1(z),
∫ x

0

P2(ξ) dξ =
∫ z

0

P2(ξ) dξ. (5.10)

Consider the subfield F of R(x) generated by all rational functions S(x) such that
S(x) = S(z(x)). By Lüroth’s theorem, the field is isomorphic to R(r/s), for some
function r(x)/s(x) with r(x), s(x) ∈ R[x, y]. Without loss of generality, we can
choose the degree of r to be greater than the degree of s, with r and s coprime.
Hence, we can write ∫ x

0

P2(ξ) dξ = φ(r(x)/s(x)), (5.11)

for some rational function φ over R, in one variable.
Now, working over C, the right-hand side of (5.11) can be written as

q∏
i=1

(αir + βis)
/ q∏

i=1

(γir + δis),

As in Section 4.3, if (αir + βis) shares a common factor with (γjr + δjs), these
two polynomials must differ by a constant, whence we can assume that the frac-
tion above allows no further cancellations. Since the left-hand side of (5.11) is a
polynomial,

∏
(γir + δis) must be a constant, and hence the denominator has no

dependence on r, and s must be a constant.
Without loss of generality, we can take s(x) = 1 and r(0) = 0. Furthermore,

from (5.11), we now see that φ must be a polynomial.
From (5.10), we must also have

P0(x)/P1(x) = ψ0(r/s)/ψ1(r/s) = ψ0(r)/ψ1(r)

for some polynomials in one variable ψ0 and ψ1 over R with (ψ0, ψ1) = 1. From
the equality above we get

P0(x)/ψ0(r(x)) = P1(x)/ψ1(r(x)) = K(x),

with K(x) a rational function in x over R. Thus,

P0(x) = K(x)ψ0(r(x)), P1(x) = K(x)ψ1(r(x)), (5.12)



45

which implies that K(x) is a polynomial over R.
Using the expression for P1 in (5.12) and replacing it into the second part of

(5.2) we have:

f(x) = K(x)ψ1(r(x)) exp(−
∫ x

0

P2(ξ) dξ).

Substituting the above in the first part of (5.4) we obtain:

K(x)ψ1(r(x)) exp(−
∫ x

0

P2(ξ) dξ) dx = K(z)ψ1(r(z)) exp(−
∫ z

0

P2(ξ) dξ) dz.

But r(x) = r(z(x)) and, using the second part of (5.10), we obtain:

K(x) dx = K(z) dz.

However, from r(x) = r(z), we also have r′(x) dx = r′(z) dz, and hence,

K(x)/r′(x) = K(z)/r′(z).

So K(z)/r′(z) is in the field F . This implies that K(x) = r′(x)χ(r(x)) for some
rational function χ over R, which in view of the preceding equality must be a
polynomial by a comparison of the degrees of r and r′. Since r(x) = r(z) with
z′(0) = −1, we must have r′(0) = 0. However, from the expression of P0(x)
in (5.12) and using the expression K(x) = r′(x)χ(r(x)) we get that P ′

0(0) =
r′′(0)χ(0)ψ(0) and hence r′′(0) �= 0. Without loss of generality, we can choose r
so that r′′(0) = 1.

Putting together this information, there exist polynomials A0, A1 and A2

such that

P0(x) = A0(r(x))r′(x), P1(x) = A1(r(x))r′(x), P2(r(x)) = A2(r(x))r′(x),

with Ai = χψi for i = 0, 1 and A2 = φ′. The system is then algebraically reducible.
Indeed the map (x, y) �→ (x̄, ȳ) = (r(x), y) reduces (5.1) to the system

˙̄x = ȳ, ˙̄y = A0(x̄) + A1(x̄)ȳ + A2(x̄)ȳ2.

This system is non-singular at the origin since the conditions on P0 imply that
A0(0) < 0.

Alternatively, the center can be seen to be given by a reversing transformation

(x, y, t) �→ (x̄, y,−t),

where r(x) = r(x̄), x̄(0) = 0 and x̄′(0) < 0. We have seen in the previous chapter
that the case when P2 vanishes identically follows the same pattern.

Step 4. z(x) is transcendental over C(x). In this case, we first consider some
consequences of (5.5). Differentiating (5.5) we obtain

(g/f)′(x) dx = (g/f)′(z) dz
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where here and also in the equality below, ′ in the right side just means the
differentiation with respect to z. This gives:

[ 1
f

(
g

f

)′ ]
(x) =

[ 1
f

(
g

f

)′ ]
(z),

which gives

[P2

P1

(
P0

P1

)
− 1

P1

(
P0

P1

)′ ]
(x) =

[P2

P1

(
P0

P1

)
− 1

P1

(
P0

P1

)′ ]
(z).

Since this is an algebraic equation between z and x and since both x and z are
transcendental over C, then both sides of the above equality must be a constant
c. In particular, the fraction P0/P1 must in fact be a polynomial.

Hence we consider the equality in R(x):

P2P0P1 + P0P
′
1 − P1P

′
0 = cP 3

1 . (5.13)

For k ∈ C we define
Ck = y + k(P0/P1).

We seek invariant algebraic curves in the family of curves Ck = 0. Recall that a
curve Ck = 0 is an invariant algebraic curve of the differential system (3.1) if and
only if DCk/Ck ∈ C[x, y], where D is the operator

y
∂

∂x
+ (P0 + P1y + P2y

2)
∂

∂y
.

We determine the condition on the constant k such that this be satisfied.
We first compute

DCk = k(P0/P1)′y + P0 + P1y + P2y
2.

Using (5.13) we have that

(P0/P1)′ = (P ′
0P1 − P0P

′
1)/P 2

1 = P2P0/P1 − cP1,

and hence
DCk = P2y

2 + k(P0P2/P1 − cP1)y + P0 + P1y. (5.14)

We search for polynomials Ak(x) and Bk(x) such that

DCk = Ck(Aky + Bk) = (y + kP0/P1)(Aky + Bk). (5.15)

Clearly, we have from conditions (5.14) and (5.15) that

Ak = P2, Bk = P1/k,
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and
−ckP1 + P1 = P1/k,

yielding
ck2 − k + 1 = 0.

Depending on the value of c this equation has one or two distinct solutions. If
c = 1/4 it has only one solution k = 2, and if c �= 1/4 it has two distinct solutions
k1 and k2. Thus

DCk = Ck(P2y + P1/k)

where k = 2 in case c = 1/4 and k = kj , j = 1, 2 in case c �= 1/4.
Before considering each one of these two cases we observe that the system

(5.1) admits the expression

C = exp
(∫ x

0

P2(x) dx

)

as an exponential factor, i.e., DC/C ∈ C[x, y]. Indeed, we have

DC = C (P2y).

We now consider the two possible cases. First let us suppose c �= 1/4. In this
case we construct a Darboux first integral from these three functions C, Ck1 and
Ck2 of the form(

y + k1(P0/P1)
)r1(

y + k2(P0/P1)
)r2

exp
(

r3

∫ x

0

P2(x) dx

)
.

It is immediately verified that if we take r1 = 1, r2 = −k2/k1 and r3 = −1+k2/k1,
then we have the linear combination of their corresponding cofactors

r1(P2y + P1/k1) + r2(P2y + P1/k2) + r3P2y = 0.

In the case c = 1/4 we only have one invariant algebraic curve, i.e. C2 = 0. We
recall that we also have the exponential factor C. We now consider the expression

C̃ = exp(P0/(P1y + 2P0)),

then C̃ is another Darboux exponential factor. Indeed calculations yield

DC̃ = C̃(−P1/4).

In this case we construct a Darboux first integral by using the curve C2 =
y + 2(P0/P1)(x) and the two exponential factors C and C̃ defined above. This
first integral is of the form

(C2)r1Cr2(C̃)r3 .
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It is easy to see that if we take r1 = 2, r2 = −1 and r3 = 1 we obtain the
following linear combination of their corresponding cofactors:

r1(−P1/4) + r2(P2y) + r3(P2y + P1/2) = 0.

These integrals are well defined and holomorphic in a neighborhood of the
origin, and hence, by Poincaré’s result the origin is a center. �

Notes

Further details can be found in the paper [26] where the more general case

ẋ = yP (x), ẏ = P0(x) + P1(x)y + P2(x)y2 + P2(x)y3,

with P (x) is a polynomial with P (0) �= 0, is also treated.
We note that in this latter case, the reducing transformations are no longer

polynomial, but only algebraic.
There is a method of also dealing with generalized Kukles’ systems

ẋ = yP4(x), ẏ = P0(x) + P1(x)y + P2(x)y2 + P3(x)y3,

where all the Pi are polynomials. The reduction stage is more delicate, but the
results are essentially the same: either there is a Darboux first integral, or there
is an algebraic symmetry. Unfortunately, there does not seem to be any method
for tackling more complex systems in this way.
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Monodromy

In this chapter we begin the second part of these notes, looking at some ideas based
on the concept of monodromy. Very roughly, this is the study of how objects de-
pending on a parameter, and which are locally constant in some sense, change as
the parameter moves around a non-trivial path. This idea is particulary appropri-
ate for the center-focus problem, as the essence of this problem is about trying to
make global extensions of local information. For example, we might näıvely hope
to be able to extend the local first integral at the origin to a global first integral.
This is not possible in general, but even if we could do so, the first integral would
certainly ramify as a global object. Our desire would then be to read off some
important information about the system from this global ramification.

Over the next five chapters we present several topics very loosely connected
with this idea. In this chapter we give two basic and classical examples of mon-
odromy, and then discuss an extended example related to the Model problem of
Briskin, Françoise and Yomdin. This is a problem which has close connections
with the center-focus problem.

6.1 Some Basic Examples

Our first example is the monodromy of an algebraic function of one variable, x(c)
say. The special case where x(c) satisfies f(x) = c, for some polynomial f , will be
used in the final section and in Chapter 8.
Example 6.1. Suppose, we have a polynomial F (x, c) in C[x, c]. Let ∆(c) denote
the discriminant of F as a polynomial in x over C(c), and n the degree of F with
respect to x. In a neighborhood of each value of c where ∆(c) �= 0, we can solve
F (x, c) = 0 to obtain n distinct roots xi(c), algebraic over c. As these roots do not
coalesce unless ∆(c) = 0, we have a locally constant picture as c varies in C − S,
where S is the set of c where ∆(c) = 0. That is, although the precise value of the
xi will change, of course, there is a unique way of associating the xi’s at each value
of c on a path in C − S. However, moving c around a loop which includes a point
in S, we find that the xi will swap amongst themselves in general.
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If we fix a base point c0, and consider the effect on the roots xi(c0) as we
move around non-trivial loops in C−S based at c0, we get a map from π1(C−S, c0)
to the symmetric group on n elements. This is called the monodromy group of the
algebraic function given by F (x, c) = 0. We will usually drop the reference to the
base point c0.

It can be shown (for example in [30]) that the monodromy group is equivalent
to the Galois group of C(x1(c), . . . , xn(c)) over C(c).

Our second example examines what happens to the topology of the level
curves of a polynomial as a parameter varies. It will be used and generalized in
the next two chapters
Example 6.2. Consider the level curves of the function x2+y2. That is, we consider
x2 + y2 = c as c varies. If we draw this as a two-sheeted covering of C, then we
have branch points at ±√

c and can consider a cut lying between these two points.
As c makes a loop around c = 0 these two branch points swap over.

Now consider two curves. One δ is the loop which surrounds the two branch
points, and the other δ′ is a loop which begins at ∞ on one sheet, passes through
the cut and ends at ∞ on the other sheet. We let (δ, δ′) denote the intersection
number of δ and δ′.

As c makes the tour around c = 0, δ is taken to itself, but δ′ tends to
δ′ + (δ′, δ)δ. This is a simple example of the Picard–Lefshetz formula. The trans-
formation on the surface itself (a cylinder) is called a Dehn twist.

6.2 The Model Problem

We now discuss a longer example where monodromy is used to tackle a problem
which is closely related to the center-focus problem.

We consider the Abel equation

dy

dx
= p(x)y2 + q(x)y3, a ≤ x ≤ b (6.1)

where p and q are polynomials and a is a fixed constant, We denote the solution
of (6.1) by y(x, c), where y(a, c) = c. Standard existence theorems ensure that
y(x, c) is well defined and analytic in both its arguments for c sufficiently small.
If y(b, c) = c, then we call y(x, c) a periodic solution. Likewise if y(b, c) ≡ c for all
c close to 0 we say that the system has a center between a and b. The numbers a
and b are not important; by a simple transformation we can always choose a = 0
and b = 1.

It is clear that this has strong connections with the center-focus problem. We
note that one strong motivation for studying Abel equations is that the family of
systems,

ẋ = −y + M(x, y), ẏ = x + N(x, y), (6.2)

where M and N are homogeneous polynomials of the same degree n, can be
brought to the form (6.1) with p and q trigonometric polynomials. Setting a = 0
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and b = 2π, the definitions of periodic solution and center for (6.1) coincide with
their usual definitions in the planar system (6.2).

The analogue of the center focus problem in this case is to see what conditions
the existence of a center in (6.1) imposes on the defining equations. We shall always
denote the antiderivative of the polynomials p and q as P and Q. That is:

P (x) =
∫ x

a

p(ξ) dξ, Q(x) =
∫ x

a

q(ξ) dξ.

The question of whether there is a center or not depends on computing the
expansion of y(1, c) =

∑
αic

i. This can be done as in the case of a center, but
involves similar difficulties to the center-focus problem. In the light of this, Briskin,
Françoise and Yomdin [7, 8, 9] have proposed a simplified center problem called
the model problem.

Here we ask for conditions that the center lies in a parametric family of
centers of the form

dy

dx
= p(x)y2 + εq(x)y3, 0 ≤ x ≤ 1, (6.3)

and has a center for all ε sufficiently small.
A study of the return map calculations described above shows that this con-

dition is equivalent to

P (1) = P (0) = 0,

∫ 1

0

P (x)nq(x) dx = 0, n = 0, 1, . . . . (6.4)

The problem is then to find out which P and Q can satisfy these equations.
One simple condition, which guarantees that we have a center, is that P and

Q are both polynomials of a polynomial A with A(0) = A(1). This is equivalent to
the symmetry condition discussed in Chapter 4. We say that the center satisfies
the composition condition in this case.

In fact, from the form of the return map, this problem turns out to be the
same as saying that the center at ε = 0 is not destroyed to first order by perturb-
ing ε.

We will use some simple ideas using monodromy to show that, if we assume
that both p(0) and p(1) are non-zero, then this symmetry condition comprises all
cases of centers for the model problem. That is, all centers of this form satisfy the
composition condition.

6.3 Applying Monodromy to the Model Problem

Let us assume that (6.4) holds with the additional assumption that p(0) and p(1)
are non-zero. Without loss of generality we can take P to be monic. Furthermore, if
(6.4) holds for some polynomial P (x), then it must also hold for any polynomial of
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the form P (x) + k, with k a constant; whence we can also assume that P (0) = 0.
The n = 0 equation of (6.4) implies that Q(0) = Q(1). In fact the condition
P (0) = P (1) is also deducible from the other conditions.

It is clear that the polynomial P − c can have no roots in the interval [0, 1]
for all c such that

|c| > K := sup
x∈[0,1]

|P (x)|.

Thus, if |c| > K, (P (x) − c)−1 has a well-defined expansion, and

I(c) =
∫ 1

0

q dx

P (x) − c
=
∑
i≥0

1
ci+1

∫ 1

0

P (x)iq(x) dx.

The hypothesis (6.4) is therefore equivalent to the condition

I(c) ≡ 0, |c| � 0.

Note that I(c) is related to the Melnikov function which describes the bifurcation
of periodic solutions of (6.3) for small ε.

We shall work over C from now on. Let S = {c0, c1, . . . , cn} be the critical
values of P (x); that is the values of P (x) when P ′(x) = 0. In addition we shall
also include in S the values c0 = P (0) = 0 and c1 = P (1), even if they are not
critical. For all values of c ∈ C−S the polynomial P (x)−c has distinct roots none
of which are 0 or 1.

Let αi(c) be the roots of the polynomial equation P (x) = c. Clearly these
functions are well defined and non-ramified on the universal cover of C−S, which
we denote C̃, with projection π : C̃ → C − S. We also lift c and I(c), (|c| > K)
to C̃. We shall show that I(c) has a well-defined expression over C̃ which, as it
vanishes identically in some domain, must vanish throughout C̃. The proof that
all centers satisfy the composition condition will follow from an examination of the
monodromy of this expression.

Clearly, on C̃,
P (x) − c =

∏
(x − αi).

We therefore obtain the following partial fraction expansion over C̃:

q(x)
P (x) − c

= r(x, c) +
∑

i

m(αi(c))
x − αi(c)

,

where r is a polynomial in x and c and m(x) = q(x)/p(x).
Using this expression, we fix a point c′ ∈ C̃ with |π(c′)| > K and find that

I(c) = R(c) +
∑

i

m(αi) lni(1 − 1
αi

), (6.5)

in a neighborhood of c′. Here R is a polynomial in c, and the lni’s are specific
branches of the logarithm, chosen individually for each αi. It is clear that each
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term of this expression can be analytically continued to C̃ as the only points of
indeterminacy are those where the algebraic functions αi(c) are ramified or where
one of the αi(c) attains the value 0 or 1. Both of these possibilities have been
taken care of by removing the set S from consideration.

It is an interesting fact that the remainder of the proof does not depend on
the specific choice of these logarithmic branches.

From standard results on algebraic functions, we know that for c sufficiently
close to 0, we can describe all the solutions of P (x) − c as Puisseaux expansions
in c. We label the distinct roots (except x = 1) of P (x) = 0 as xi, i = 0, . . . , r− 1.
Since P (0) = 0, we can choose x0 = 0 without loss of generality. If we also have
P (1) = 0, then we shall label this root xr. The contribution of this term in the
expressions derived below should be taken to be zero if P (1) �= 0. We write li for
the multiplicity of xi as a root of P (x) = 0.

About the point x = xi we have

c = ki(x − xi)li(1 + Ui(x − xi)), Ui(0) = 0,

for some constant ki �= 0 and some polynomial Ui. Close to c = 0, therefore, the
solutions of P (x) = c can be written as

xi,j − xi = ζj
i k

−1/li
i c1/li

(
1 + hi(ζ

j
i c1/li)

)
, i = 0, . . . , r, j = 0, . . . , li − 1

where hi is analytic with hi(0) = 0, and ζi is a primitive li-th root of unity. We
fix the choice of k

−1/li
i for each i. Clearly xi,j(0) = xj .

If we now analytically continue the expression (6.5) to a neighborhood of
c = 0, then the solutions αi of P (x) = c can be relabeled as the corresponding
xij(c). In the same way we write lni,j for the corresponding branch of the logarithm
given in (6.5). Thus,

I(c) = R(c) +
r∑

i=0

li−1∑
j=0

m(xi,j) lni,j(1 − 1
xi,j

). (6.6)

For ease of explanation, we shall evaluate the second index of xi,j modulo li.
Clearly, as c ∈ C − S moves around a sufficiently small circle about 0, γ say, the
xi,j , j = 0, . . . , li − 1 move around xi swapping roles as follows:

xi,j �→ xi,j+1, (j = 0, . . . li − 1).

Alternatively, we can consider the effect of the corresponding deck transformation
of C̃ on the right-hand side of (6.6). We denote this transformation by σ. Thus

σk lni,j(1 − 1
xi,j

) = lni,j(1 − 1
xi,j+k

).

If γ is sufficiently small, the paths of the xi,j , i �= 0, r will not encircle the
values 0 or 1. Thus, applying σ li to lni,j(1 − 1/xi,j) will return it to its original
value.
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However, when i = 0, r, the roots x0,j cycle around 0 and 1 and so

σl0 ln0,j(1 − 1
x0,j

) = ln0,j(1 − 1
x0,j

) − 2πi,

σlr lnr,j(1 − 1
xr,j

) = lnr,j(1 − 1
xr,j

) + 2πi.

Under the assumption that p(0) and p(1) are non-zero, we must have l0 = 1
and lr ≤ 1. Letting N be the lowest common multiple of the li we obtain

σN I(c) − I(c) = −2πNim(x0,0) + 2πNim(xr,0).

Now σN I(c) ≡ 0 ≡ I(c) and so m(x0,0) = m(xr,0). Since q(x0,0) cannot vanish,
the term xr,0 must also exist and so we deduce l0 = 1 and P (1) = 0.

Finally, we consider

M(c) = Q(x0,0) − Q(xr,0).

It is easy to see that

M ′(c) = m(x0,0) − m(xr,0) = 0, M(0) = 0,

and so M(c) is identically zero. We therefore have two polynomials P and Q for
which their values on x0,0(c) and xr,0(c) are the same. The set of all rational
functions for which this is true forms a subfield F of C(x), Following an identical
line of reasoning to that used in Chapter 4 we see that both P and Q must be
polynomials of a polynomial A in F . Furthermore, since A(x0,0) = A(xr,0), we
must have A(0) = A(1). This proves that the composition condition is a necessary
and sufficient condition for a center in this case (p(0), p(1) �= 0).

Notes

It was originally conjectured that the composition condition held for all systems
(6.1) with centers. However, Pakovich [47] has shown that this is not the case
(although there is still a non-trivial decomposition of P in his example). The
results on the model problem presented here first appeared in [17].

Much work has been carried out on Abel equations by the team of Briskin,
Françoise and Yomdin since the works [7, 8, 9]. In particular newer works take
the ideas gained from the polynomial Abel equations back to the trigonometry
equations, and in this way hope to obtain information about the center-focus
problem for the homogenous systems (6.2).

Ideas of monodromy are ubiquitous in mathematics occurring even in places
where they would seem unlikely (for example they play a key role in arithmetic
algebraic geometry).

Żo�la̧dek’s book [66] contains much more detail on many topics associated to
monodromy in differential equations, and further afield.



Chapter 7

The Tangential Center-Focus Problem

As is well known, the second part of Hilbert’s 16th problem is concerned with
bounding the number of limit cycles in a polynomial system (1.2) of degree n
in terms of n. This is a very hard problem, but Arnold has suggested a “Weak
Hilbert’s 16th problem” which seems far more tractable: to find a bound on the
number of limit cycles which can bifurcate from a first-order perturbation of a
Hamiltonian system,

ẋ = −∂H

∂y
+ εP, ẏ =

∂H

∂x
+ εQ, (7.1)

where the Hamiltonian, H , is a polynomial of degree n + 1 and the perturbation
terms, P and Q are polynomials of degree m.

Over time, the term “Tangential Hilbert’s 16th problem” seems to have be-
come the more popular (and descriptive) phrase for this problem. Although this is
still a very difficult problem, finiteness results are known in this case, and several
exact results have been obtained for Hamiltonians of low degree.

Recall that, to first order, the limit cycles appearing in the perturbed system
(7.1) are given by the zeros of the abelian integral

Ic =
∮

γc

P dy − Q dx, (7.2)

where γc is a family of closed loops in the level curves H = c of the Hamiltonian.
We want to suggest here an analogous “tangential center-focus problem”,

which seems to have a similar property of being much easier to tackle, whilst
retaining something of the structure of the original problem.

Suppose that the Hamiltonian H has a Morse point at the origin. That is,
∂H/∂x = ∂H/∂y = 0 at (0,0) and the matrix of second derivative of H is sign-
definite. Then (taking −H if necessary) we can write H = H(0, 0) + X2 + Y 2 for
some suitable choice of local coordinates, and the system (7.1) clearly has a center
at the origin for ε = 0. Without loss of generality we can take H(0, 0) = 0. The
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curves X2 + Y 2 = c, for c close to zero, give a family of closed curves tending to
the origin as c tends to zero. We call such curves vanishing cycles.

We call the origin a tangential center if∮
γc

P dy − Q dx ≡ 0, (7.3)

for γc the vanishing cycle X2 + Y 2 = c given above, and c sufficiently small.
The tangential center-focus problem then asks for the conditions on P and Q

which give a tangential center.
We shall sketch a proof in this chapter that for a generic Hamiltonian the

answer for this problem is quite simple: P and Q must satisfy the equation

P dy − Q dx = dA + B dH, (7.4)

for some polynomials A and B in x and y. In this case we say that the 1-form
P dy − Q dx is relatively exact.

The proof is due to Il’yashenko [36] who used the result to count the dimen-
sion of the space of non-trivial perturbations of the Hamiltonian system (7.1) and
hence give a lower bound on the maximum number of limit cycles which can be
produced by such perturbations.

Françoise [31] has shown that if the Hamiltonian has the property that every
tangential center must come from a relatively exact perturbation, then it is possible
to calculate the higher order perturbation terms of (7.1) as abelian integrals. This
is known not to be true in general. Françoise calls this property “condition (∗)”.

The interesting question is how degenerate a Hamiltonian needs to become
before condition (∗) does not hold. We shall show in the next chapter that, in the
case of hyperelliptic Hamiltonians, the failure of condition (∗) implies the existence
of a non-trivial symmetry.

7.1 Preliminaries

Suppose we have a tangential center (7.3) and want to investigate its global con-
sequences. Since (7.2) is analytic in c, we can extend the condition (7.3) up to the
boundary of the period annulus around the origin. However, if we want to extend
further, we can only do this by trying to work over the complex numbers.

If we do so, the level curves H(x, y) = c become Riemann surfaces, and the
curves γc closed curves on this surface. The equations (7.2) and (7.3) carry across
in an obvious way. By Cauchy’s theorem we only need to consider the curves γc

up to homotopy.
If we exclude a number of critical values, S = {c1, . . . , cr}, the map (x, y) �→

H(x, y) defines a fibration over C−S, with fibre H(x, y) = c of constant topological
type. If we consider the γc only up to homotopy, then there is a unique way to
transport the γc as c varies.
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If we move around a non-trivial loop in C−S, the curve γc will not in general
return to itself, but some other element in the homology group of the Riemann
surface.

Thus we get a map

σ : π1(C − S) → Aut(H1(φc, Z)), (7.5)

where H1(φc, Z) denotes the first homology group of the Riemann surface φc =
{H(x, y) = c} with Z coefficients.

Our aim will be to show that for a generic Hamiltonian we can generate
the whole homology group H1(φc, Z) from the one cycle γc. By this we mean the
following.

Definition 7.1. We say that γc generates the homology H1(φc, Z) if there exist
loops 
i, i = 1, . . . , lk, in π1(C − S) such that

k∑
i=1

Z σ(
i)γc = H1(φc, Z).

Similarly, we say that γc generates H1(φc, Q) if we can find 
i as above such that

k∑
i=1

Q σ(
i)γc = H1(φc, Q).

We first consider a simple case. Take the Hamiltonian

H = y2 + x2 + x3.

This has critical points at (0, 0) and (−2/3, 0). The critical values where the topol-
ogy of H = c changes are therefore c1 = 0 and c2 = 4/27.

Take γc as the vanishing cycle at the origin for 0 < c � 1 close to 0. We now
move c along a path which makes a positive loop around c = c2 and then c = c1.
At both the critical values there is a Dehn twist. Let γ′

c be the vanishing cycle at
c = c2, then the twist at c = c2 takes γc to γc + γ′

c. Then the twist at c = c1 takes
γc + γ′

c to γ′
c. Since γc and γ′

c form a basis for H1(φc, Z), we have shown that γc

generates H1(φc, Z).

7.2 Generic Hamiltonians

We want to generalize the construction in the previous section. We follow the
original paper of Il’yashenko [36].

Consider the space B of Hamiltonians of degree n+1 with only Morse singu-
larities, with distinct critical values, and whose highest order terms have no mul-
tiple factors. Equivalently, we require the equations ∂H/∂x = 0 and ∂H/∂y = 0
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to have n2 distinct solutions and the values of H on these solutions to also be dis-
tinct. These conditions are generic, and hence the complement of B in the space
of all polynomials of degree n + 1, C(n+2)(n+3)/2 is a proper algebraic subset. In
particular B is path connected.

Now it is clear by continuity that if we are in the space B, the property that
a vanishing cycle γc generates the homology is preserved under perturbation, so
that if it holds for any Hamiltonian in B it holds in all of them.

Let S = {c1, . . . , ck} be the critical values as above, and denote by C̃ the
universal cover of C = C − S.

Near to each critical value ci we have a vanishing cycle δi (unique up to
homotopy). We fix a point c̃0 ∈ C̃ with image c0 ∈ C and paths li in C from a
sufficiently small neighborhood of each of the ci to c0 in C. We denote the result
of transporting δi along li by δi(c̃0) and can extend this to a cycle δi(c̃) for all
c̃ ∈ C̃.

We say that the set of vanishing cycles is good if the cycles δi = δi(c̃0)
generate the homology H1(φc0 , Z) and we can connect any two cycles, di and dj

by a chain of cycles
δi = δn1 , δn2 , . . . , δnk

= δj ,

with (δnr , δnr+1) = ±1 for each r. Here, (δ′, δ) denotes the intersection number of
the curves δ and δ′ on the Riemann surface φc.

Clearly, if a Hamiltonian H ∈ B has a good set of cycles for c̃ = c̃0, they will
also be good for every value of c̃. Furthermore they will transport in an obvious
way to a good set of cycles for any Hamiltonian in B.

If we have a good set of cycles, then it is now easy to show that γc generates
the homology H1(φc0 , Z). Suppose we have two vanishing cycles δi and δj with
(δi, δj) = ±1. For each i, let l̄i be the path from c0 to itself which moves along
l−1
i , around ci in the positive sense and back along li to c0. Then σ(l̄j) takes δi to

δi + (δj , δi)δj ,

and σ(l̄i) takes this to

δi + (δj , δi)δj + (δi, δi + (δj , δi)δj)δi = ±δj,

where equality is taken in H1(φc0 , Z). Thus, since any two vanishing cycles can be
connected by a chain of cycles with intersection numbers ±1, we can generate the
homology H1(φc0 , Z) from any vanishing cycle.

To finish, we sketch the proof that we can find a good set of cycles. The idea
is to consider a Hamiltonian

H̃ =
n+1∏
i=1

ri,

given by the product of n + 1 real linear factors, such that the lines ri = 0 are
in general position. This Hamiltonian does not lie in the space B as the critical
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value c = 0 is very degenerate. However, we do not need that all the critical
values are distinct to define a good system of cycles. Since this system lies in the
complement of B it can be moved into B by a perturbation which will maintain
the good system of cycles.

Consider the Riemann surface for a general value of c. This is non-singular in
the finite plane with n+1 points of intersection with infinity and genus n(n−1)/2.
Thus it has Betti number

2
n(n − 1)

2
+ (n + 1) − 1 = n2.

Now we consider the level curves of H̃ = c. For c = 0 we have n(n + 1)/2 points
corresponding to the intersections of the ri = 0. The other n(n − 1)/2 vanishing
cycles come from the centers which lie in the bounded connected components of
H > 0 and H < 0. This gives us a full set of generators for the homology.

All critical values lie on the real line. We take c0 to be a point sufficiently
close to the origin and take paths from neighborhoods of the other critical points
to c0 passing c = 0 by making a half turn in the positive direction if necessary. It
can be readily verified that this will give us a good system of cycles.

Note that even if we have a good system of cycles for H̃ , it is not possible to
conclude that the vanishing cycles generate the homology, as we require that the
critical values be distinct in order to apply the argument above.

7.3 Relative exactness

We have shown that we can generate the homology H1(φc, Z) from the vanishing
cycle γc. Thus we are left to show that the condition (7.3) implies that the 1-
form P dy − Q dx is relatively exact. However, we have shown that γc generates
H1(φc, Z), and since (7.2) is analytic in c we must have∮

γ

P dy − Q dx = 0, (7.6)

for any closed curve γ in φc. We say that P dy −Q dx is topologically exact on φc.
We want to show that if a polynomial 1-form is topologically exact on φc

for all c in a continuum, then the 1-form must be relatively exact. We follow the
paper of Bonnet [6].

Proposition 7.2. If φc is a smooth irreducible curve, then any 1-form ω which is
topologically exact on φc can be written in the form

ω = dR + (H − c)η,

for some polynomial R and some polynomial 1-form η.
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Proof. The condition (7.6) means that we can integrate the 1-form ω on φc and get
a single-valued function R̄. The function R is analytic on φc, and by considering
the growth of R at infinity, it must be a rational function and therefore realizable
as the restriction of a rational function f/g in C2 whose denominator does not
vanish on φc. This latter condition implies that A(H − c) + Bg = 1 for some
polynomials A and B by the Nullstellensatz, and so the f/g = Bf on φc. We take
R = Bf whose restriction to φ is R̄. Then ω − dR vanishes on φc and hence the
result. �
Proposition 7.3. Suppose that there exist polynomials Rc and polynomial 1-forms
ηc such that

ω = dRc + (H − c)ηc, (7.7)

for an uncountable number of parameter values of c; then there exists a polynomial
P (H) such that

P (H)ω = dA + B dH,

for some polynomials A and B.

Proof. Consider the space of 1-forms ηc from (7.7). Since the space of polynomial
1-forms is countable, but the number of ηc are uncountable, then there must exist
λi and ci, i = 1, . . . , r, such that

r∑
i=1

λiηci = 0.

Hence,
r∑

i=1

λi

H − ci
ω =

r∑
i=1

λidRci

H − ci
.

On multiplying by the product of the H − ci and integrating by parts we obtain
the desired result. �
Theorem 7.4. Suppose that for all c, the curve φc = {H = c} is connected and
contains only finitely many singular points of H. If a 1-form is relatively exact on
φc for an uncountable number of values of c, then the 1-form is relatively exact.

Proof. From Proposition 7.3 we only need to show that if (H − c)ω is relatively
exact, then so is ω. Thus, suppose that

(H − c)ω = dA + B dH,

for some polynomials A and B. On H = c we have dA = 0 thus A is a constant
on H = c since H = c is connected. Thus A = k + (H − c)Ā for some constant k
and some polynomial Ā, and we can write

(H − c)ω = (H − c)dĀ + (Ā + B) dH.

Finally, since there are only a finite number of points on H = c where dH vanishes,
(H − c) must divide Ā + B and we are done. �
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The hypothesis for this theorem is satisfied if we assume that the Hamilto-
nian H lies in B and therefore we have shown that for a generic Hamiltonian all
tangential centers arise from relatively exact perturbation terms.

Notes

In the paper of Bonnet [6], a more detailed result is shown. Polynomial P (H) in
Proposition 7.3 can be reduced to

P (H) =
r∏

i=1

(H − ci)mi ,

where mi = 1 if H = ci contains infinitely many singular points of H ; mi is
arbitrary if H = ci is not connected; and mi = 0 otherwise.

That more complex things can happen for more general Hamiltonians is clear
in the case of the Hamiltonian H̃ mentioned in Section 7.2. In fact, taking

P dy − Q dx =
∑

αiKidri, Ki = H̃/ri,

for any constants αi, it is clear that on H̃ = c we have

P dy − Q dx =
∑

αicdri/ri,

and hence (7.3) holds for each of the real centers lying in the bounded regions of
H > 0 and H < 0. However the form cannot be relatively exact as the integrals
around the vanishing cycles for c = 0 will not vanish in general. Perturbations
from such Hamiltonians have been studied by Movasati [45] and Uribe [59].

Such 1-forms, which generalize the relatively exact 1-forms, seem to be the
tangential analog of the Darboux centers. We shall show in the next section that
the symmetric centers also have a prominent place in the tangential center-focus
problem. Thus although the tangential center-focus problem is a considerable sim-
plification of the original center-focus problem, much of the complexity of the full
center-focus problem is retained, suggesting that further investigation into this
subject would be very valuable.



Chapter 8

Monodromy of Hyperelliptic Abelian
Integrals

We want to show that in the case of Hamiltonians of the form

H(x, y) = y2 + f(x),

where f(x) is a polynomial of degree n, the existence of a tangential center implies
that either P dx − Q dy is relatively exact, or the polynomial f(x) is composite.
That is, it can be expressed as a polynomial of a polynomial, f(x) = a(b(x)), in a
non-trivial way.

The factorization is related to the existence of a symmetry in the Hamilto-
nian. That is, a factorization

H(x, y) = H̃(r(x, y), s(x, y)), (8.1)

where r(x, y) and s(x, y) are polynomials whose Jacobian vanishes at some point
in C2, and hence on some algebraic curve C.

Conversely, suppose we are given a factorization of a Hamiltonian H as in
(8.1). Let π : C2 → C2 be the projection (x, y) �→ (r(x, y), s(x, y)). Suppose further
that we have a family of vanishing cycles γc whose image under π is homotopic to
zero. Let w̃ be a polynomial 1-form on C2, and w = π∗w̃, then

∮
γc

w =
∮

π(γc)

w̃ ≡ 0,

thus the 1-form w gives a tangential center. However, in general this 1-form is not
relatively exact, since any family of vanishing cycles which are not sent to a curve
homotopic to zero can have non-trivial integrals given by the integral of w̃.

In this section we want to show the following result.
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Theorem 8.1. If the system (7.1), with H = y2 + f(x), has a tangential center
with associated vanishing cycle γc, then one of the following must hold.

(i) γc generates the homology H1(φc, Q).

(ii) f is decomposible.

(iii) f is a Chebyshev polynomial of prime degree.

Remark 8.2. Note that the theorem doesn’t say anything about the perturbation
terms, it is purely topological. However, in generic cases of (i) we can conclude that
the perturbation terms would have to be relatively exact. In case (ii) we would
expect that the 1-form given by the perturbation terms would be the pull back of
a 1-form on the factorized space. However we could not show this at present. In
case (iii) it is possible by analyzing the monodromy in more detail to show that
in fact we can reduce to Case (iii). However, in this case we do have a non-trivial
splitting of H1(φc, Q) into invariant subspaces over an extension of Q. It is not
clear whether splittings can occur for any other Hamiltonians not in Case(ii).

8.1 Some Group Theory

We recall some definitions from group theory.

Definition 8.3. (1) Let G be a group acting on a finite set S; then we say that
the action is imprimitive if there exists a non-trivial decomposition of S,
S =

⋃
Si, such that for each element of g and each i, g sends Si into Sj for

some j. The action is called primitive if it is not imprimitive.

(2) The action is transitive if, given any pair of elements of S, s1 and s2, there
is an element g ∈ G which sends s1 to s2.

(3) The action is 2-transitive if, given any two pairs of elements of S, (s1, s2) and
(s3, s4), there is an element g ∈ G which sends s1 to s3 and s2 to s4.

(4) The action is regular if, given two elements s1 and s2 of S, there is a unique
element g of G which sends s1 to s2.

Clearly, if G is transitive and imprimitive, then all the sets Si must be of the
same size.

Recall that the affine group Aff(Zp) is the group of all affine transformations
of Zp to itself. That is, it is the group of all maps from Zp to itself of the form
x �→ ax + b for a, b ∈ Zp with multiplication given by composition.

Theorem 8.4 (Burnside–Schur). Every primitive finite permutation group contain-
ing a regular cyclic subgroup is either 2-transitive or permutationally isomorphic
to a subgroup of the affine group Aff(p), where p is a prime.

Proof. See [29] or [28]. �
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8.2 Monodromy groups of polynomials

Let f(x) be a polynomial of degree n > 0, and consider the solutions, xi(c), of the
equation f(x) = c. Let S be the set of critical points c ∈ C for which f(x) = c
and f ′(x) = 0 has a common solution. Clearly there are at most n(n− 1) of these
points. As c takes values in C − S the functions xi(c) are well defined. The group
G = π1(C − S) acts on the xi(c). The action is always transitive if we consider
large values of c.

Definition 8.5. Let G be as above, then the action of G on the set of xi is called
the monodromy group of the polynomial f , denoted Mon(f).

As mentioned in Chapter 6, we have the following theorem [30].

Theorem 8.6. The monodromy group is isomorphic to the Galois group of f(x)−c
considered as a polynomial over C(c).

Definition 8.7. We say that a polynomial f(x) is decomposable if and only if there
exist two polynomials g and h, both of degree greater than 1, such that f(x) =
g(h(x)).

Proposition 8.8. Let f be a polynomial as above and let G be its monodromy group.
Then:

(i) the action of G is imprimitive if and only if the polynomial f is decomposable;

(ii) the action is 2-transitive if and only if the divided differences polynomial
H(x, y) = (f(x) − f(y))/(x − y) is irreducible.

We do not prove this proposition as we do not need the results below, however
we note that quantities of the form (f(x) − f(y))/(x − y) were also the ones
appearing in Chapter 3.

Definition 8.9. The unique polynomial Tn(x) which satisfies Tn(cos(θ)) = cos(nθ)
is called the Chebyshev polynomial of degree n. Equivalently Tn((z + z−1)/2) =
Tn((zn + z−n)/2).

From the definition, the Chebyshev polynomial Tn has n−1 distinct turning
points when Tn = ±1. Hence

T ′2
n | (Tn(x)2 − 1).

Conversely, any polynomial with this property is equivalent to a Chebyshev poly-
nomial after composing with a linear function.

Theorem 8.10. Let f(x) be a polynomial of degree n and G = Mon(f), then one
of the following holds.

(i) The action of G on the xi is 2-transitive.

(ii) The action of G on the xi is imprimitive.
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(iii) f is equivalent to a Chebyshev polynomial Tp where p is prime.

(iv) f is equivalent to xp where p is prime.

Remark 8.11. In particular, the question of whether f is a composite polynomial or
not, can be solved very simply by considering whether or not the divided differences
polynomial factorizes or not, having excluded the two exceptional cases above.
“Equivalence” refers to pre- and post- composition by linear functions.

Proof. When c is large the xi can be expanded as

xi = ωrc1/n + O(c(1/n)−1),

where ω is an n-th root of unity. Thus, taking a sufficiently large loop in C − C,
we obtain an element of G which is an n-cycle. This element generates a subgroup
Zn of G which acts regularly on the roots of f = c.

Thus we can apply the Burnside–Schur Theorem above to show that the
group must be 2-transitive, imprimitive, or a subgroup of Aff(Zp). In the latter
case we note that every element of Aff(Zp) fixes at most one element of Zp. This
means that for every critical value of f there is at most one xi that remains fixed
as we turn around this value.

Now, suppose f has r distinct critical values, c1, . . . , cr, and f has ri distinct
turning points associated to the critical value ci. Let the multiplicities of the roots
of f ′ at these turning points be mi,1, . . . , mi,ri . Since a root of multiplicity mi,j

gives a cycle of order m + 1, then for all i we must have

n − 1 ≤
ri∑

j=1

(mi,j + 1) ≤ n, (8.2)

since at most one of the xi remains fixed turning around each critical value. Sum-
ming these equations over i we obtain

r(n − 1) ≤
r∑

i=1

ri∑
j=1

(mi,j + 1) ≤ rn. (8.3)

But the number of turning points of f counted with multplicity is just the sum of
the mi,j , and hence

r(n − 1) ≤ (n − 1) +
r∑

i=1

ri ≤ rn. (8.4)

Since the sum of the ri is at most n − 1 we must have r ≤ 2.
If r = 1, then (8.4) shows that r1 = 1, and therefore f(x) must have a root

of multiplicity n. This is just Case (iv).
If r = 2 we need n − 1 ≤ r1 + r2 ≤ n + 1. But since ri can be no more

than n/2 this means that both ri lie between (n − 1)/2 and n/2. This implies
that every turning point must have multiplicity 1 and the polynomial must be
Chebyshev. �
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8.3 Proof of the theorem

We consider the level curves of the Hamiltonian H = y2−f(x) = c as a two-sheeted
covering of the complex plane C given by projection onto the x-axis. The sheets
ramify at the roots of f(x) = c. Taking S to be the set of critical points as above,
we let c vary in C−S, and follow the effect on the homology group H1(φc, Z). We
wish to relate this group to the monodromy group of the polynomial f(x). As x
tends to infinity along the positive real axis, we can distinguish the two sheets as
“upper” and “lower” depending on whether y = ±xn/2. We let t denote the deck
transformation which takes y to −y fixing x.

��

����

��

����

Figure 8.1: The loops Li.

Let Hc
1(φc, Z) represent the closed homology group of φc over Z. This can

be obtained from H1(φc, Z) by adding curves starting and finishing at infinity.
Let xi(c) be the roots of f(x) = c. Generically, the xi will have distinct imaginary
parts, and so any closed path in C−S can be deformed so that only two of the xi’s
have the same imaginary part at the same time. In other words, we can decompose
every element of Mon(f) as a number of swaps of xi’s with neighboring real values.

Suppose that the xi are initially numbered in order of decreasing imaginary
part for a value of c close to zero. We let Li represent the path from infinity (from
the direction of the positive real axis) on the upper sheet, turning around xi in the
positive direction and returning to infinity on the lower sheet. Clearly t(Li)+Li is
homotopic to zero, and so the Li generate Hc

1(φc, Z). Furthermore, the elements
Li − Li+1 generate H1(φc, Z).
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The effect of a swap of xi and xi+1 is to take Li+1 to Li and Li to 2Li−Li+1.
This is a little too complex to analyze in general, except for very specific systems.
Instead we shall work for the moment over Z2. That is, we consider the images of
the Li in Hc

1(φc, Z2) and Hc
1(φc, Z2).

Working modulo 2 means that a swap of xi and xi+1 takes Li+1 to Li and
Li to Li+1. That is, the action of Mon(f) on the Li (mod 2) is exactly the same
as the action on the xi.

We now apply the results of Theorem 8.10 in order to prove Theorem 8.1.
According to Theorem 8.10 we only need to consider four cases. The last two of
these are easy. In the case (iii) holds, we trivially have case (iii) of Theorem 8.1, and
in case (iv) the Hamiltonian does not have a Morse point, and hence no tangential
center. We shall show that the cases (i) and (ii) of Theorem 8.10 correspond to
cases (i) and (ii) of Theorem 8.1, and the proof is complete.

Case (i). If the monodromy group of f is 2-transitive, then we can find a transfor-
mation which takes any two xi’s to any other two. Since, working modulo 2, the
action on the loops Li is the same as the action on the xi, we can find an element
of the monodromy group which takes Li − Li+1 to Lj − Lj+1 modulo 2 for all i
and j.

Now, the vanishing cycle γc occurs at the coalescence of two of these xi’s and
so must correspond to one of the Lk − Lk+1 for some k. Thus, there exist paths

i in C − C such that

σ(
i)γc = Li − Li+1 (mod 2),

for all i.
Now let N = 2�(n − 1)/2�. Then Li − Li+1 form a basis of H1(φc, Z). From

the discussion above, we have⎛
⎜⎜⎜⎝

σ(
1)γc

σ(
2)γc

...
σ(
N )γc

⎞
⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎝

L1 − L2

L2 − L3

...
LN − LN+1

⎞
⎟⎟⎟⎠ ,

where the matrix A reduces to the identity matrix if we reduce modulo 2. In
particular, A is invertible, and we can express the basis of H1(φc, Z) as sums of
the σ(
i)γc with coefficients in Q. That is, γc generates H1(φc, Q). This gives us
Case (i) of Theorem 8.1.

Case (ii). In this case Mon(f) is imprimitive (but nevertheless transitive) on the
set of roots, S = {x1, . . . , xn}. Let S1 be one of the subsets in the decomposition
S =

⋃
Si, and let s = xk be an element of S1. We denote Gs and H the subgroups

of G = Mon(f) which leave s and S1 fixed respectively. Then Case (iii) implies
that

Gs � H � G. (8.5)
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As stated in Section 8.2, the group G = Mon(f) is just the Galois group of
C(x1(c), . . . , xn(c)) over C(c). We consider the corresponding fixed fields of the
groups in (8.5) under the Galois correspondence, to obtain

C(xk(c)) � K � C(c), (8.6)

where K is the fixed field of H . From Lüroth’s theorem, we must have K =
C(r(xk)), for some rational function r(xk) ∈ C(ck). Then (8.6) implies that c =
s(r(xk)) for some rational function s. Thus f(x) = s(r(x)), and a similar argument
to the one given in Lemma 4.5 shows that s and r can in fact be chosen to be
polynomials.

This completes the proof of Theorem 8.1. �

Notes

The monodromy group of a polynomial is an object of some interest in the inverse
Galois problem (see, for example, the work of Müller [46], from whom I first learnt
about the Burnside–Schur results).

Complete details of the above result together with an analysis of the Cheby-
shev case and other related results can be found in [24].



Chapter 9

Holonomy and the Lotka–Volterra
System

In this section we give another idea related to monodromy. This is the holonomy
of the foliation P dy−Q dx = 0 associated to the system (1.2) in the neighborhood
of an invariant curve. This object, roughly speaking, is the nonlinear analog to the
monodromy of the solutions of a linear differential equation as they turn around
a singular point. Alternatively, it can be thought of as a kind of Poincaré return
map for foliations.

We shall define the holonomy in the next section and give a very basic the-
orem which will guarantee the integrability of a critical point. Recall this means
the following:

Definition 9.1. The origin of the analytic system

ẋ = P (x, y) = x + P̃ (x, y), ẏ = Q(x, y) = −λy + Q̃(x, y), (9.1)

where P̃ and Q̃ contain terms of order 2 or higher, is integrable if there exists an an-
alytic change of coordinates (X, Y ) = (x+o(x, y), y+o(x, y)) in the neighborhood
of the origin transforming the system into

Ẋ = Xh(X, Y ), Ẏ = −λY h(X, Y ), (9.2)

where h = 1 + O(X, Y ). Alternatively, the origin of (9.1) is integrable if and only
if there exist holomorphic functions X = x+ o(x, y) and Y = y + o(x, y) such that
XλY is a first integral of (9.1).

When λ = p/q we call (9.1) a p:-q saddle. If (9.1) it is not linearizable, we call
it a resonant saddle. The problem of finding whether a p : −q saddle is integrable
or not is in exact analogy to the center-focus problem. Indeed, if we take x = Xp

and y = Y q we obtain a new system (after scaling time by a constant factor p).

ẋ = X + P̃ (Xp, Y q), Ẏ = −Y + Q̃(Xp, Y q)q/p, (9.3)
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and the origin of (9.1) is integrable if and only if the origin of (9.3) is integrable
(i.e., it is complex center). We can therefore apply the same techniques of com-
puting Lyapunov quantities etc., in order to detect whether the system (9.1) is
integrable or not.

The holonomy around the separatrix of a saddle turns out to be linearizable
if and only if the saddle is integrable. Furthermore, if the separatrix is known, then
we can relate this holonomy to the holonomy of the other critical points on the
separatrix. Under favorable conditions, we can show that the original holonomy
must be linearizable and hence give a potentially new method of finding integrable
critical points.

We apply our results to the origin of the Lotka–Volterra system

ẋ = x(1 + ax + by), ẏ = y(−λ + cx + dy), (9.4)

and show that this technique seems to explain many of the cases of integrability
when λ = p/q for p+q ≤ 12, apart from a small number of (apparently exceptional)
Darboux cases.

Further details can be found in [25] from whence the material is drawn.

9.1 The monodromy group of a separatrix

In this section we consider a saddle point with a separatrix given by either an
invariant line or a non-singular conic and give sufficient conditions for the inte-
grability of a saddle point by looking at the monodromy group of the separatrix.
We apply this to the Lotka–Volterra equations, to obtain four classes of explicit
conditions which give integrable critical points.

The surprising thing is that, even though these conditions on the monodromy
groups are elementary, they comprise all the known cases of integrability for the
Lotka–Volterra equations, except for the case where the system has an invariant
straight line and two exceptional Darboux integrable cases [11, 44].

Consider the foliation on CP2 generated by the 1-form associated to the
vector field. Let Γ be an invariant line or conic for the 1-form, and Q1, . . . , Qn

be the singular points of the foliation which lie on Γ. For (9.4) we have three
such lines: the two axes and the line at infinity. Clearly Γ′ = Γ − {Q1, . . . , Qn} is
isomorphic to an n-punctured sphere.

Choose a family of analytic transversals, Σx, through each point x in Γ′, and
fix a base point, P , in Γ′, and an analytic parameterization z of ΣP with z = 0
corresponding to the point P . For each path γ in π(Γ′, P ), we can define a map
from a neighborhood of P in ΣP to ΣP by lifting the path γ to the leaf of the
foliation though s ∈ ΣP via the transversals Σx, x ∈ γ. Using the parameter z,
this map can be identified with the germ of a diffeomorphism from C to itself,
fixing z = 0. We call the set of all such diffeomorphisms Diff(C, 0).

Clearly the map M : π(Γ′, P ) → Diff(C, 0) is in fact a group homomorphism.
We denote the image of the path γ by Mγ . The monodromy group is the image
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of M . The monodromy of one singular point Qi is Mγ where γ is a loop turning
around Qi exactly once in the positive direction and not containing any other
singular point in its interior.

The map Mγ depends only on the homotopy type of γ in Γ′. If we use a
different base point P1, then the two monodromy groups are conjugate. Likewise
a different choice of transversals and their parameterizations has the effect of
conjugating the group. Thus the following notions for the monodromy of a singular
point are intrinsic:

• the monodromy of the singular point is the identity;

• the monodromy of the singular point is linearizable.

Theorem 9.2. Consider a polynomial system with a saddle point at the origin

ẋ = x(1 + P (x, y)) = x(1 + O(x, y)),
ẏ = −λy + Q(x, y) = −λy + o(x, y),

(9.5)

where λ > 0. If all singular points of the system on the y-axis except the origin are
integrable and if all of them but one have identity monodromy maps corresponding
to the invariant y-axis, then the origin is also integrable.

Proof. We consider the completion of the line x = 0 as the Riemann sphere S1.
Let Q1, . . . , Qn be the singular points of the system on that leaf.

Let Qi be a point of saddle or node type. It is known that Qi is integrable
if and only if the corresponding monodromy map is linearizable (this is proved in
[43] and [49] for a saddle. For a node it can easily be proved by considering the
analytic normal form at the node).

Take a base point y0 ∈ S1 − {Q1, . . . , Qn} and loops γi from y0 winding
once around the singular points Qi in the positive sense; then γ1 is homotopic
to γ−1

n ◦ · · · ◦ γ−1
2 , with appropriate re-labelling of the Qi. As a result Mγ1 is

conjugate to M−1
γn

◦ · · · ◦M−1
γ2

. Since all of them are the identity except one which
is linearizable, then the map Mγ1 is linearizable. �

9.2 Integrable points in Lokta–Volterra systems

We apply these results to the Lotka–Volterra family (9.4). This family is invariant
under

(x, y, t, λ, a, b, c, d) �→ (−λy,−λx,− t

λ
,
1
λ

, d, c, b, a) (9.6)

and corresponding cases under this invariance are called dual.

Lemma 9.3. A node is linearizable if and only it it has two analytic separatrices.

Proof. A node with eigenvalues λ1, λ2 whose quotient is in R+ can always be
brought to normal form by an analytic change of coordinates. When λ2

λ1
/∈ N∪1/N,
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then the normal form is linear and the two axes are analytic separatrices. When
λ2
λ1

= n ∈ N the normal form is

ẋ = λ1x,
ẏ = λ2y + αxn.

(9.7)

If α = 0, then the system is linear as before and all integral curves through the
origin are analytic, while if α �= 0 the curve x = 0 is the unique analytic integral
curve through the origin. Similarly for λ2

λ1
∈ 1/N. �

Theorem 9.4. We consider the Lotka–Volterra system (9.4) with λ > 0. Then the
origin is integrable if one of the following conditions is satisfied.

(An). λ + c
a = n with n ∈ N, 2 ≤ n < λ + 1.

(Bn). b
d + 1

λ = n with n ∈ N, 2 ≤ n < 1
λ + 1.

(Cn). c
a + n = 0 with n ∈ N ∪ {0} and n < λ and λ �= n + 1

m with m ∈ N.
If λ = n + 1

m , then an additional condition is necessary for integrability.

(Dn). b
d + n = 0 with n ∈ N ∪ {0} and n < 1

λ and 1
λ �= n + 1

m with m ∈ N.
If 1

λ = n + 1
m , then an additional condition is necessary for integrability.

(En,m). λ + c
a = n and 1 − b

d = 1
m with n, m ∈ N, n > 1 and 0 < (c−a)(d−b)

ad−bc �∈ N.

(Fn,m). 1
λ + b

d = n and 1 − c
a = 1

m with n, m ∈ N, n > 1 and 0 < (c−a)(d−b)
ad−bc �∈ N.

(Gn,m). λ + c
a = n, 1 − b

d > 0 and ad−bc
(c−a)(d−b) = m with m, n ∈ N − {1}.

(Hn,m). 1
λ + b

d = n, 1 − c
a > 0 and ad−bc

(c−a)(d−b) = m with n, m ∈ N − {1}.
(Note that some strata with different names may be identical for some values of λ
and of the indices. This can for instance happen with (En,m) and (Gn,m′).)

Proof. To apply the previous theorem and corollary we need to calculate the Ja-
cobian matrix and the eigenvalues at all singular points along the axes and along
infinity. On each separatrix there are three critical points: the one at the origin
with ratio of eigenvalues −λ, one in the finite plane, and one where the axes cross
the line at infinity. The Jacobians for the finite critical points P1 = (− 1

a , 0) (resp.
P2 = (0, λ

d )) on the x-axis (resp. y-axis) are( −1 − b
a

0 −λ − c
a

)
resp.

(
1 + λ b

d 0
λ c

d λ

)
, (9.8)

showing that the monodromy of the finite critical points on the x-axis (resp. y-axis)
is the identity if λ + c

a = n (resp. b
d + 1

λ = n) with n ∈ N, n ≥ 2.
We now study the singular points at infinity. For that purpose we first con-

sider the chart (u, z) = (y/x, 1/x) to calculate the Jacobian matrix at the inter-
section of the line at infinity with the x-axis, which we denote Px = (0, 0). We can
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also calculate the Jacobian at the other critical point P∞ = (a−c
d−b , 0) on the line

at infinity. After multiplication by z, the system becomes:

u̇ = (c − a)u + (d − b)u2 − (1 + λ)uz,
ż = −az − buz − z2,

(9.9)

yielding the following Jacobian matrices for Px and P∞:(
c − a ∗

0 −a

)
resp.

( −(c − a) ∗
0 ad−bc

b−d

)
. (9.10)

Similarly the chart (v, w) = (x/y, 1/y) is used to study the infinite singular point
Py along the y-axis. Its Jacobian matrix is given by(

b − d ∗
0 −d

)
. (9.11)

We can represent the ratios of eigenvalues on the diagram below, where the
arrows represent the direction of the eigenvalue which is the numerator of the
eigenvalue ratio.

Note that the sum of the eigenvalue ratios along any line is equal to 1. This
follows from the index formula of Lins Neto [38].

We now prove the cases (A)–(H) given above. We may remove the indices
when they are not necessary.

Case (An)/(Bn): In Case (An), the condition implies that the monodromy
of P1 corresponding to the invariant x-axis is the identity and the critical point Px

is a node. It is always linearizable since there are two analytic separatrices. Case
(Bn) is the dual of Case (An).

Case (Cn)/(Dn): Case (Cn) is similar to Case (A), but now the monodromy
at Px is the identity corresponding to the invariant x-axis, and P1 is a node. It is
linearizable if λ �= n + 1

m with m ∈ N, otherwise (the case of a resonant node) the
obstruction to linearizability consists of only one condition. Case (Dn) is the dual
of Case (Cn).

Case (En,m)/(Fn,m): Case (En,m) requires a double application of Theo-
rem 9.2. The conditions imply that the monodromy of P1 corresponding to the
invariant x-axis is the identity. Thus the monodromy at the origin is conjugate to
the inverse of the monodromy of Px corresponding to the invariant x-axis. Now,
this monodromy is linearizable if and only if Px is integrable. This is the case if
and only if the monodromy of Px corresponding to the other separatrix (in this
case, the line at infinity) is linearizable. Now, the conditions given in Case (En,m)
guarantee that the monodromy of Py corresponding to the line at infinity is the
identity. (Py is a node with ratio of eigenvalues m ∈ N .) Hence the origin is in-
tegrable if and only if the monodromy of P∞ is linearizable corresponding to the
line at infinity. Now the final condition in Case (En,m) guarantees that P∞ is a
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Figure 9.1: Ratio of eigenvalues for the Lotka–Volterra system

non-resonant node, and therefore linearizable. Case (Fn,m) is the dual of Case
(En,m).

Case (Gn,m)/(Hn,m): Case (Gn,m) is the same as Case (E) except that
now, the monodromy of P∞ corresponding to the line at infinity is the identity
and the point Py is a node (necessarily linearizable). Case (Hn,m) is the dual of
Case (Gn,m). �

We have the following conjecture.
Conjecture 9.5. The Lotka–Volterra system (9.4) with λ ∈ Q+ is integrable if and
only if either

1. the system has a third invariant line, i.e.,

λab + (1 − λ)ad − cd = 0; (9.12)

2. one of the conditions of Theorem 9.4 is satisfied;

3. or there is an invariant algebraic curve, f = 0.
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The first and third items above will give Darboux centers. In fact, we know
from the lists given in [11, 44] that there are essentially only two cases (with
λ = 8/7 and 13/7 and their duals) where this last condition holds, which are not
contained in the previous two conditions. These (after scaling) are the systems

ẋ = x(1 − 2x + y),
ẏ = y(− 8

7 + 4x + y), (9.13)

with invariant cubic

F (x, y) = 1372xy(3x− y) − 1764xy − 63y − 72 = 0, (9.14)

and

ẋ = x(1 − 2x + y),
ẏ = y(− 13

7 + 4x + y), (9.15)

with the invariant quartic

F (x, y) = 343x2y(3x − y) − 588x2y + 21xy + 18x − 9 = 0, (9.16)

together with their duals.

Theorem 9.6. The conjecture is proved for λ = p
q with p + q ≤ 12 and all λ = n

2

and λ = 2
n for n ∈ N.

Proof. The proof consists in calculating the Lyapunov quantities for the origin of
(9.4) and finding their common roots. As many as three quantities are needed to
give complete conditions. The conditions for λ = 1/n and 2/n for n ∈ N were given
in [32] and [34] respectively. In these cases we can prove by a counting argument
that the list of conditions is necessary and sufficient: it is easy to prove that
the first two saddle quantities cannot vanish elsewhere than the known sufficient
conditions. Independent calculations of some of these cases have been done in
[39]. �

Notes

It is not clear whether the cases proved to be a center by these monodromy argu-
ments comprise new types of centers or whether they can be related to the other
known mechanisms. A more detailed examination of the Lotka–Volterra system
can be found in [25].

It would be also interesting to know if there can be non-trivial real centers
given by monodromy arguments.

There are many applications of holonomy techniques to the whole area of
integrability of polynomial vector fields. In particular, there is a nice dictionary
which in generic cases matches Liouvillian solutions in a neighborhood of an in-
variant algebraic curve to the solvability of its monodromy group.
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The general analytic classification of resonant saddles and their holonomy
has been done by Martinet and Ramis [42], however we do not need to use this
work here, as we are only interested in integrable saddles and these have only
linear holonomy maps. The classification of saddles for irrational λ is much more
complex and is not known in general.



Chapter 10

Other Approaches

In this final chapter I want to mention briefly three other approaches to the general
center-focus problem. In the first, we try to identify whole components of the
center variety by finding their intersections with specific subsets of parameter
space and then showing that the type of center is “rigid”. In the second approach,
we try to see the consequences of a center on its bounding graphic. Monodromy-
type arguments play an implicit role in both of these approaches. The last section
describes an experimental approach to the center-focus via intensive computations
using modular arithmetic and an application of the Weil conjectures. It makes a
fitting conclusion to our range of monodromy techniques, since the arithmetic
analog of monodromy was an essential ingredient in Deligne’s proof of the Weil
conjectures [27].

10.1 Finding components of the center variety

In order to be able to use results from algebraic geometry, we shall consider the
center-focus problem for systems (1.2) with complex coefficients. We shall also
compactify the space of parameters to CP(N) for some N . This can be done, for
example, by taking the space of coefficients of P and Q in (1.2) modulo the action
of C∗ obtained by multiplying all coefficients by a constant (which of course does
not affect the existence of a center).

Now, the closure of the center variety therefore becomes an algebraic subset
of CP(n), which we denote Σ. Suppose Σ1 is an irreducible component of Σ of
dimension r, and let H be a subspace of CP(n) of dimension s; then if r + s > n
the two spaces must intersect in a non-empty space of dimension r + s − n.

In particular, if we restrict our attention to H , we can see a trace of all
components of the center variety whose dimension is n − s or greater. However,
it might be possible that more than one component intersects H in the same
subset, and so we cannot distinguish between the different components of Σ by
just looking at H .
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In order to be able to improve this result we need to be able to show that
certain types of centers are “rigid”. That is, if we know that at a certain parameter
value we have this type of center, then all centers lying close to this value will also
have a center of this type.

The most general result in this direction comes from the work of Movasati
[45]. In his paper, he shows that for a polynomial system (1.2) of degree d, the
subset Σ(d1, . . . , dr) of the center variety which is composed of Darboux centers
given by the curves fi = 0 of degree di, i = 1, . . . , r with d + 1 =

∑
di and their

limits is a full component of the center variety.
Thus any point in Hwhich has a center which is a generic point of Σ(d1,. . ., dr)

cannot also be in the intersection of H with any other component of the center
variety. Unfortunately, in [45], no method is given of determining whether a point
is generic or not. This would be an interesting topic to understand much better.

The proof is based on a reduction to exactly the case in Chapter 7 where the
Hamiltonian has d+1 invariant lines in general position. The author then examines
the tangent space of the center variety at that point using similar arguments to the
ones given there, but including higher degree perturbations. The conclusion is that
the tangent cone of Σ at this point is exactly spanned by the spaces Σ(d1, . . . , dr)
as the di run over all subsets of integers summing to d+1. This is enough to show
that the Σ(d1, . . . , dr) are complete components of Σ.

We note that a similar idea has been suggested in [10] for Abel systems (6.1).
Here the authors consider the limit of families of centers of the form (6.3) as ε
tends to infinity. Alternatively, after a rescaling, we could consider the systems

dy

dx
= εp(x)y2 + q(x)y3, 0 ≤ x ≤ 1, (10.1)

as ε tends to zero. The situation is slightly more subtle than the one we have
described above, as the limiting case always has a center. Thus the authors take the
“tangential” part of the center conditions in order to define a “center at infinity”.
They then show that these centers must be solutions to the moment problem
(6.4), which give centers of (6.3) for all ε. Every component of the variety of
centers at infinity of dimension n must therefore extend to a component of the
center variety of (6.3) of dimension n + 1. Some more work is needed to show
that this is the unique component which intersects in this way with the centers
at infinity. Conversely, every component of the center variety of dimension n + 1
must correspond to a component of the variety of centers at infinity of dimension n.
Thus, the only centers which do not satisfy (6.4) exist only for discrete parameter
values.

10.2 Extending Centers

A second approach is to analyze what happens at the boundary of a period annulus.
Our hope is that the effect of a separatrix cycle having an identity return map
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has strong global consequences for the system. We could even hope that the local
first integral of the center could be extended, in some ramified way, past these
boundaries to obtain further global consequences of a center.

In general this seems a very difficult problem, but in one case this problem is
quite easy. This is when the boundary of the center is a homoclinic loop attached
to a saddle.

The nature of the return map in the neighborhood of a saddle in this case
is well known [37, 54, 55]. In particular, the asymptotics are governed by two sets
of interleaving terms. One set comes from the loop and the others are essentially
governed by the Lyapunov quantities of the saddle. In order for the return map
for a homoclinic loop to be the identity (or even analytic), we need to have all
the Lyapunov quantities vanish, and therefore we can conclude that the saddle is
integrable.

Thus in this case, the local integrability of the center has a global effect on
a neighboring critical point. Furthermore, since the saddle is integrable, the local
first integral of the center can be extended beyond the boundary of the homoclinic
loop and hopefully could give further information about the system.

Example 10.1. We give an application of this idea to the problem of the center for
the Abel equations (6.1). We assume that q(x) does not vanish at x = a or x = b,
and has at most one root in (a, b) with q′ < 0 at this root, and show that the
system must then satisfy the composition condition of Chapter 6. We take a = 0
and b = 1 as before.

In order to prove this result, we note that the transformation z = 1/y brings
(6.1) to the form

ẋ = z, ż = −q − zp. (10.2)

If y(x, c) is the solution of (6.1), the solution of (10.2) is given by z(x, c) =
1/y(x, 1/c) with z(0, c) = c for c sufficiently large. Thus, if there is a center for
(6.1), then there is a band of trajectories of (10.2) which passes between x = 0
and x = 1 with z(1, c) = z(0, c) for c sufficiently large. We shall first show that
the boundary of this band of trajectories must consist of a non-degenerate saddle
and two of its separatrices.

Consider the path of the trajectory z(x, c) as c decreases. Elementary consid-
erations show that such a trajectory which crosses the line z = 0 in (0, 1) cannot
pass from x = 0 to x = 1. On the other hand, since all the critical points of the
system lie on the line z = 0, we can certainly decrease c until z(x, c) impinges
on z = 0 at some point. Clearly there are only two possibilities: either we can
decrease c to zero, with z(x, 0) ≥ 0 in (0, 1) and z(0, 0) = z(1, 0) = 0 or the trajec-
tory z(x, c) tends to a critical point on z = 0 as c tends to c0 > 0, which must be
a saddle by the conditions on q′(x). In the former case, since the direction of the
trajectories across z = 0 is given by −q, we would have a root with non-negative
derivative between 0 and 1, contradicting the hypothesis. In the latter case, the
boundary of the band of solutions z(x, c0) must comprise the saddle and two of
its trajectories as stated above. Let (p, 0) denote the position of this saddle.
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Now suppose for some value k in (0, 1) we have z(k, c) = c for all c sufficiently
large. Clearly this cannot be at k = p since the boundary must touch the z axis
at x = p, but crosses the line x = 0 at c0 > 0. Thus both of the regions [0, k] and
[k, 1] satisfy the hypothesis, but they cannot both contain saddles. Thus for any
k ∈ (0, 1) the system cannot have a center between 0 and k or k and 1.

We now consider the return map near the trajectory z(x, c0). As the return
map is analytic, the saddle can contribute no non-analytic terms, and hence it is
integrable. We can now adapt the arguments of Chapter 4 to show that P and
Q must be polynomials of a polynomial A = (x − p)2 + O((x − p)3). Once again
from the conditions on q, A′ has only one root at x = p. Thus the transformation
u =

√
A sgn(x − p) is well defined and analytic in [0, 1], and P and Q are now

polynomials of u2.
Let P = f(u2) and Q = g(u2); then the transformation brings (6.1) to the

form
dy

du
= 2uf ′(u2)y2 + 2ug′(u2)y3. (10.3)

Clearly this equation is symmetric with respect to the transformation u → −u.
Therefore, there is a center between any two points u = −
 and u = 
. Under this
transformation the points x = 0 and x = 1 correspond to the values u0 and u1

with u0 < 0 < u1. If −u0 < u1, then it is clear that u(k) = −u0 for some k in
(p, 1). But then we have a center of (6.1) with a = k corresponding to the center of
(10.3) between −u0 and u(k), which cannot happen; thus −u0 ≥ u1. In a similar
manner −u0 ≤ u1 and so −u0 = u1. Hence, A(0) = u2

0 = u2
1 = A(1) and we have

proved the existence of a symmetry (the composition condition of Chapter 6) in
this case. �

When the center bounds on a separatrix cycle with two saddles, then it can
be shown that the two saddles have equivalent holonomies. That is, there is a map
taking the neighborhood of one critical point into the other. If the holonomies are
both linearizable, then we can find a local Darboux first integral. If they are not
linearizable, then the maps taking one saddle to the other are more restricted and
we might hope that they could be extended to a symmetry of the separatrix cycle.
Conjecture 10.1. Suppose a center is bounded by a separatrix cycle consisting of
two curves 
1 = 0 and 
2 = 0 which intersect in two saddles p1 and p2. Then there
exists a neighborhood U of the separatrix cycle with either a local Darboux first
integral 
λ

1
2, or a symmetry of the system f : U → U swapping p1 and p2.
The conjecture is the simplest case of a “center-focus problem” for period

annuli. If true, it would be a satisfying first step in trying to see how to extract
the right sort of global information from the existence of a center.

10.3 An Experimental Approach

The final approach we want to discuss is based around some recent work of H.C.
Graf v. Bothmer [33]. It allows one to obtain information about the dimensions
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of specific components of the center variety which are inaccessible with more con-
ventional computer algebra.

We calculate the Lyapunov quantities as before, but now modulo a prime
number p. It turns out [33] that an algorithm for computing the Lyapunov quan-
tities can be found which works modulo p up to L((p − 3)/2) (after which the
denominators may vanish).

Let Σ be the center variety as before (considered as an affine space again), and
let Σ(Zp) denote the points in Σ with coefficients in Zp. Let np denote the fraction
of Zp points in Σ compared with ZN

p , where N is the number of parameters. That
is,

np = |Σ(Zp)|/pN .

One consequence of the Weil conjectures [3, 35] is that

np = r
(1

p

)c

+ O
((1

p

)c+1)
, (10.4)

where c is the lowest codimension amongst the components of Σ and r is the
number of components of that codimension.

This number can be estimated by computing a number of random points in
ZN

p and calculating the empirical fraction of these which lie in Σ(Zp). We denote
this number by ñp. This quantity ñp allows us to make estimates of r and c via
(10.4).

However, we would like also to be able to say something about the compo-
nents of the center variety with higher codimensions. This can be done as follows.
Suppose we want to calculate the number of components r′ of Σ which have codi-
mension c′. We need to exclude all points on components of Σ which have codimen-
sion less than c′. However this can be done in a nice way: given a point on Σ(Zp)
we can calculate the tangent space to Σ(Zp) at that point. If the codimension of
this tangent space is less than c′ we reject this point.

The reason this works is that the codimension of the tangent space at a
point on a component of Σ is always less than or equal to the codimension of the
component itself. For a generic point however the codimension will be the same.
Thus if we reject all points whose tangent spaces have codimension less than c′,
we are rejecting precisely all points on components with codimension less than c′

and some non-generic points of the other components.
We calculate the fraction of points satisfying the codimension criteria above

and estimate r′ and c′ from (10.4) as before.
This method has been shown to give accurate results for quadratic systems

(where the complete classification is known) and also for cubic systems up to
codimension 7, tying in with known irreducible components of the center variety
[45, 62].

Higher codimension cases will require much more computational power, but
the rate of growth of the complexity is much more favorable than using more
standard symbolic routines.
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Notes

It is clear that the general solution to the center-focus problem seems very far
away, in spite of a growing number of techniques and known cases.

A more realistic goal over the next few years would be to classify all centers
in cubic systems. All three of the approaches suggested above could be used in this
task, but some new ideas will probably be needed to bridge the still wide compu-
tational gap between what has been achieved to date, and the full complexity of
cubic systems.

Perhaps this is a case where a coordinated effort by the many researchers
who have an interest in this area could yield some very tangible results in the
not-too-distant future.
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Preface

The second part of Hilbert’s 16th problem, asking for the maximum H(n) of
the numbers of limit cycles and their relative positions for all planar polynomial
differential systems of degree n, is still open even for the quadratic case (n = 2).

A weak form of this problem, proposed by Arnold, asking for the maximum
Z(m, n) of the numbers of isolated zeros of Abelian integrals of all polynomial
1-forms of degree n over algebraic ovals of degree m, is also extremely hard to
grasp. The number Z̃(n) = Z(n + 1, n) can be chosen as a lower bound of H(n);
so far only Z̃(2) = 2 has been proved.

These lecture notes are devoted to the introduction of some basic concepts
and methods in the study of Abelian integrals and applications to the weak
Hilbert’s 16th problem. In Chapter 1 we briefly introduce Hilbert’s 16th prob-
lem and its weak form. In Chapter 2 we explain the relation between the study
of Abelian integrals and the study of limit cycles. In Chapter 3 we use several
methods to study the number of zeros of the Abelian integrals associated with
perturbations of the Bogdanov–Takens system. At last, in Chapter 4 we intro-
duce a proof of Z̃(2) = 2, the method of the proof is unified for all regions of the
parameter space.
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Peking University for numerous discussions and cooperation, especially to Zhifen
Zhang and Tongren Ding who led me to the research field many years ago and
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Chapter 1

Hilbert’s 16th Problem
and Its Weak Form

1.1 Hilbert’s 16th Problem

Consider the planar differential systems

ẋ = Pn(x, y), ẏ = Qn(x, y), (1.1)

where Pn and Qn are real polynomials in x, y and the maximum degree of P and
Q is n. The second half of the famous Hilbert’s 16th problem, proposed in 1900,
can be stated as follows (see [70]):

For a given integer n, what is the maximum number of limit cycles of system
(1.1) for all possible Pn and Qn ? And how about the possible relative positions of
the limit cycles ?

Usually, the maximum of the number of limit cycles is denoted by H(n), and
is called the Hilbert number. Recall that a limit cycle of system (1.1) is an isolated
closed orbit. It is the ω- (forward) or α- (backward) limit set of nearby orbits.
In many applications the number and positions of limit cycles are important to
understand the dynamical behavior of the system. Note that the problem is trivial
for n = 1: a linear system may have periodic orbits but have no limit cycle, so we
assume n ≥ 2.

This problem is still open even for the case n = 2, and there is no answer if
H(2) is finite or not. In [158] S. Smale said: “Except for the Riemann hypothesis
it seems to be the most elusive of Hilbert’s problems” (see also [157]).

Below we list some results, among a lot of works on this problem.
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1.1.1 The finiteness problem

• In 1923 H. Dulac [36] claimed the individual finiteness of limit cycles, i.e.,
for a given system (1.1) the number of limit cycles is finite. A gap in his
arguments was found in the early 1980s.

• In 1985 R. Bamon [6] proved this individual finiteness property for the qua-
dratic case (n = 2).

• In the early 1990s Yu. Ilyasenko and J. Ecale published, independently in
two long papers [86] and [50], new proofs of the individual finiteness theorem,
filling up the gap in Dulac’s paper. This “is the most spectacular and the most
general fact established so far in connection with the Hilbert 16th problem”
(see S. Yakovenko [169]); and “these two papers have yet to be thoroughly
digested by the mathematical community” (see S. Smale [158]). Naturally,
the next step is to prove the uniform finiteness , i.e., H(n) < ∞.

• In 1988 R. Roussarie [141] proposed a program to prove the uniform finiteness
by reducing this problem, via the compactification of the systems and of
the parameter space, to the problem of proving the finite cyclicity of limit
periodic sets (see also J.-P. Françoise & C.C. Pugh [53]). F. Dumortier, R.
Roussarie & C. Rousseau in [47, 48] started this program for the quadratic
case and listed 121 graphics as all limit periodic sets which are necessary
in this study. A series of papers, among them [37, 38, 39, 144, 145, 190],
continue this program, and about 85 of the 121 graphics have been studied.
The remaining graphics are more degenerate and the study of them is more
difficult.

For a detailed introduction to the finiteness problem we refer to a recent
article by D. Schlomiuk (the first chapter of [153]).

1.1.2 Configuration of limit cycles

There are many papers dealing with the related positions of limit cycles for
system (1.1). A general result was obtained by J. Llibre and G. Rodŕıguez
[116] in 2004. Let us briefly introduce their result.

A configuration of limit cycles is a finite set C = {C1, . . . , Cm} of disjoint
simple closed curves of the plane such that Ci ∩ Cj = ∅ for all i �= j.

Given a configuration of limit cycles C = {C1, . . . , Cm} the curve Ci

is primary if there is no curve Cj of C contained in the bounded region
limited by Ci. Two configurations of limit cycles C and C′ are (topologically)
equivalent if there is a homeomorphism in R2, mapping C to C′.

A system (1.1) realizes the configuration of limit cycles C if the set of
all its limit cycles is equivalent to C.
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Theorem 1.1 ([116]). Let C be a configuration of limit cycles, and let r be its
number of primary curves. Then C = {C1, . . . , Cm} is realizable as algebraic
limit cycles by a polynomial system (1.1) of degree n ≤ 2(m + r) − 1.

This theorem can be seen as a partial answer to the position question
of the second part of Hilbert’s 16th problem. The remaining question is : For
a fixed integer n what kinds of configurations of limit cycles of systems (1.1)
are possible ? In the next subsection there is some information about this
question in the quadratic case.

1.1.3 Some results on quadratic systems

• In 1952 H.H. Bautin [7] proved a fundamental fact for quadratic systems: at
most three limit cycles can bifurcate from a weak focus or center of system
(1.1) for n = 2. A weak focus means a focus at which the linear part of the
system has a center. See [51] for a computation of the focal values in Bautin’s
formula.

• In 1955 I.G. Petrovskii & E.M. Landis [135] attempted to prove that “H(2) =
3”.

• In 1959 C. Tung [161] found some important properties of quadratic systems:
a closed orbit is convex; there is a unique singularity in the interior of it; two
closed orbits are similarly (resp. oppositely) oriented if their interiors have
(resp. do not have) common points. Hence, the distribution of limit cycles of
quadratic systems have only one or two nests.

• In the 1960s Y. Ye classified the quadratic systems into 3 classes: any qua-
dratic system with limit cycle(s) can be transformed into the form ẋ =
−y + δx + lx2 + mxy + ny2, ẏ = x(1 + ax + by). It belongs to class I if
a = b = 0, to class II if b = 0, a �= 0 and to class III if b �= 0. It was proved
in [18, 170] that at most one limit cycle exists for systems in class I, see also
[171].

• In 1979 S. Shi [155], L. Chen & M. Wang [17] found counter-examples to
the result of Petrovskii–Landis. In both examples the four limit cycles are
located in two nests, with at least three in one nest and at least one in another
(called (3,1)-distribution of limit cycles). Nowadays most mathematicians in
this field believe that H(2) = 4. If this were true, then how about the (4,0)-
and (2,2)- distribution of limit cycles ?

• In 1986 C. Li [94] proved that there is no limit cycle surrounding a weak
focus of third order for any quadratic system, which gives no possibility to
construct (4,0)-distribution of limit cycles by perturbing a quadratic system
with a weak focus of third order, because there is no limit cycle surrounding
the focus before perturbation.
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• Around 2000, in a series of papers (see [176, 177]), P. Zhang proved that
there is at most one limit cycle surrounding a weak focus of second order for
any quadratic system, and if a quadratic system has two nests of limit cycles,
then at least one nest contains a unique limit cycle, hence (2,2)-distribution
of limit cycles for a quadratic system is impossible.

• There is a series of papers towards a systematic study of the global geometry
of quadratic differential systems. Among them, R. Roussarie & D. Schlomiuk
[143] and D. Schlomiuk [152] give a general framework of study of the class of
all quadratic systems; D. Schlomiuk and N. Vulpe [154] studies the geometry
of quadratic systems in the neighborhood of infinity; in the paper [152] D.
Schlomiuk gives a short history of invariant theory and motivation for using
invariants in the global theory; J. Llibre & D. Schlomiuk [117] determines
the global geometry of quadratic systems with a weak focus of third order;
J.C. Artés, J. Llibre & D. Schlomiuk [5] makes a global study of the closure
of systems having a weak focus of second order within quadratic systems.
The global geometry of this class reveals interesting bifurcation phenomena;
for example, all phase portraits with limit cycles obtained in this class can
be produced by perturbations of symmetric (reversible) quadratic systems
with a center. The study of perturbations of centers is an important part of
the study of the weak Hilbert’s 16th problem, which is the main topic of this
discussion.

1.1.4 Some results on cubic and higher degree systems

• In 1954 K.C. Sibirskii [156] proved that at most five limit cycles can appear
by a Hopf bifurcation for cubic systems without quadratic terms. In 1987 J.
Li & Q. Huang [104] constructed an example showing H(3) ≥ 11. The 11
limit cycles form “compound eyes”: a big limit cycle surrounds two smaller
limit cycles, each of them surrounds two nests, with at least two limit cycles
in each nest. In 2005 P. Yu & M. Han [174] gave an example for H(3) ≥ 12,
with (6,6)-distribution of limit cycles.

• In 1995 H. Żo�la̧dek [192] proved that surrounding a focus of a cubic system
there may exist 11 limit cycles. Recently C. Christopher [27] confirmed this
result, and established a quartic system with 17 limit cycles bifurcating from
a non-degenerate center, and another quartic system with at least 22 limit
cycles globally. Hence H(4) ≥ 22.

• In 1954 N.F. Otrokov [128] proved that H(n) ≥ 1
2 (n2 + 5n − 14) for n ≥ 6

even, and H(n) ≥ 1
2 (n2 + 5n − 26) for n ≥ 7 odd. In his study, all the limit

cycles are located in a small neighborhood of one singular point. In 1995
C. Christopher & N.G. Lloyd [28] proved that H(n) ≥ k n2 lnn for some
constant k. In this result, the limit cycles surround many singular points.
In 2003 J. Li improved this result in a survey paper [103], and proved that
H(n) ≥ 1

4 (n + 1)2(1.442695 ln(n + 1) − 1
6 ) + n − 2

3 .
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1.1.5 Some results on Liénard equations

• For the generalized Liénard equation ẍ + f(x) ẋ + g(x) = 0 (or equivalently,
the planar systems ẋ = y − F (x), ẏ = −g(x), where F (x) =

∫ x

0 f(x) dx), Z.
Zhang [178, 179] proved a theorem in 1958 that if f(x)/g(x) is monotone,
then the limit cycle (if it exists) is unique. In particular, if g(x) = x and F is
a cubic polynomial, then f(x)/x is monotone, so the corresponding Liénard
equation has no more than one limit cycle. This theorem and different forms
of its generalization were used widely, for example in [18, 170, 176, 177]. Note
that if a quadratic system is transformed to a Liénard equation, the functions
F and g, in general, are no longer polynomials.

• Concerning the number of limit cycles for a polynomial Liénard equation
(i.e., F and g are polynomials), there is the so-called Lins–De Melo–Pugh
conjecture in [107]: if g(x) = x and degF = 2n + 1 or 2n + 2 (n ≥ 1) then
the maximal number of limit cycles is n. See also [157]. This conjecture was
proved only for the case degF=3 in the same paper [107]. Note that this
result can be proved by the theorem of [178] as mentioned above. Recently
a counterexample to this conjecture was found in [45] for the case degF=7
with four limit cycles.

• Concerning the number of small amplitude limit cycles in Liénard systems
there is a series of works by N.G. Lloyd, C. Christopher and S. Lynch, see for
example [27, 28, 29, 118, 119], and by Y. Liu and J. Li, see [109, 110, 111].
Related to this topic, there are a lot of works by J. Llibre, A. Gasull and the
research group in Barcelona, see for example [31, 56, 59, 61, 69, 114].

For more details about limit cycles and Hilbert’s 16th problem, we refer
to the survey papers [11, 23, 33, 87, 103, 113, 152], and the books [1, 24, 35,
71, 88, 90, 105, 120, 138, 142, 150, 171, 172, 180].

1.2 Weak Hilbert’s 16th Problem

Now we turn to a weak version of the problem. Let H = H(x, y) be a polynomial
in x, y of degree m ≥ 2, and the level curves γh ⊂ {(x, y) : H(x, y) = h} form a
continuous family of ovals {γh} for h1 < h < h2. Consider a polynomial 1-form
ω = f(x, y)dy−g(x, y)dx, where max(deg(f),deg(g)) = n ≥ 2. V.I. Arnold in [2, 3]
proposed the following problem:

For fixed integers m and n find the maximum Z(m, n) of the numbers of
isolated zeros of the Abelian integrals

I(h) =
∮

γh

ω. (1.2)

Recall that an Abelian integral is the integral of a rational 1-form along an
algebraic oval. Note that in the above problem one must consider all possible H
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with all possible families of ovals {γh}, and arbitrary f and g. So it does not
matter if we put − or + before g in ω. Remark also that the function I(h) may
be multivalued since it is possible that several ovals lie on the same level curve
H−1(h).

At a first look, this problem has no relation with Hilbert’s 16th problem at
all. We will explain in the next section how these two problems are related to each
other. Roughly speaking, the function I(h), given by the Abelian integral (1.2), is
the first approximation in ε of the “displacement function” of the Poincaré map
on a segment transversal to γh (at least locally) for the system

ẋ = −∂H(x, y)
∂y

+ εf(x, y), ẏ =
∂H(x, y)

∂x
+ εg(x, y), (1.3)

where H , f and g are the same as above when defining the Abelian integral I(h).
Hence the number of isolated zeros of I(h) (taking into account the multiplicities)
gives an upper bound of the number of limit cycles of system (1.3) with small ε.

It is clear that if one takes m = n + 1, then system (1.3) is a special form of
system (1.1), close to Hamiltonian for small ε. In this sense the second problem
usually is called the weak (or tangential, infinitesimal) Hilbert’s 16th problem,
and the number Z̃(n) = Z(n+1, n) can be chosen as a lower bound of the Hilbert
number H(n).

A. Varchenko and A. Khovanskii proved that for given m and n the number
Z(m, n) is uniformly bounded with respect to the choice of the polynomial H , the
family of ovals {γh} and the 1-form ω.

Theorem 1.2 ([92, 164]). Z(m, n) < ∞.

This result certainly is important. However, it is a purely existential state-
ment, giving no information on the number Z(m, n). To find an explicit expression
for Z(m, n) in general, even to find an explicit bound to Z(m, n), is extremely hard.
There are many works dealing with restricted versions of the problem (restriction
on H or ω), some of them will be briefly introduced in these notes. It is natural to
think about a possibility to find Z̃(n) = Z(n+1, n) for lower n, and this was done
by several authors over a period of about 10 years and only for n = 2. We will first
introduce this result in the next subsection, then give more detailed information
about a unified proof in Chapter 4.

1.2.1 The study of Z̃(2) = 2

We consider all cubic polynomials H(x, y) with a continuous family of ovals {γh}
in H−1(h) for hc < h < hs, where hc and hs correspond to the critical values
of the corresponding quadratic Hamiltonian system XH (i.e., (1.3) for ε = 0) at
a center and a saddle loop respectively (the discussion below and Figure 1 show
that this is the case for generic quadratic Hamiltonian systems). The family of the
ovals forms an annulus. We first give a definition of the cyclicity of the annulus.
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Definition 1.3. For 0 < ε � 1 let Nε be the maximum number of limit cycles which
bifurcate from the compact region ∪h∈[hc+ε,hs−ε] γh of XH by quadratic pertur-
bations. The cyclicity of the period annulus of XH under quadratic perturbations
is sup0<ε�1 Nε.

Recall that the quadratic systems with at least one center are always inte-
grable. They can be classified into the following five classes : Hamiltonian (QH

3 ),
reversible (QR

3 ), generalized Lotka–Volterra (QLV
3 ), co-dimension 4 (Q4) and the

Hamiltonian triangle ([79] by using the terminology from [191], see also [151]).

Definition 1.4. ([79]) A quadratic integrable system is said to be generic if it
belongs to one of the first four classes and does not belong to other integrable
classes. Otherwise, it is called degenerate.

It was shown by I.D. Iliev in [79] that if XH ∈ QH
3 is generic, then the

number Z̃(2) gives the cyclicity of the period annulus of XH . E. Horozov and I.D.
Iliev proved in [74] that any cubic Hamiltonian, with at least one period annulus
contained in its level curves, can be transformed into the following normal form,

H(x, y) =
1
2
(x2 + y2) − 1

3
x3 + axy2 +

1
3
by3,

where a, b are parameters lying in the region

Ḡ =
{

(a, b) : −1
2
≤ a ≤ 1, 0 ≤ b ≤ (1 − a)

√
1 + 2a

}
,

and moreover, their respective vector fields XH are generic if (a, b) ∈ G = Ḡ \ ∂Ḡ
and degenerate if XH ∈ ∂Ḡ. Figure 1 shows all possible phase portraits of XH for

a

b

O

N

P

T

G1
G2 G3

l2

l2

l∞

l∞

Figure 1. The phase portraits of XH ∈ QH
3 .
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different ranges of a and b, where G is divided into three regions G1, G2 and G3

by two curves l2 and l∞ (l2 and l∞ also belong to G). Along l2 two singularities
of XH coincide, and when (a, b) tends to l∞ a finite singularity of XH coalesces
with an infinite singularity. Hence, besides the two critical situations along l2 and
l∞, XH has one, two or three saddle points if (a, b) ∈ G1, G2 or G3 respectively.
XH has two period annuli if (a, b) ∈ G2 and the arcPN on ∂Ḡ, and one period
annulus in the other cases.

Theorem 1.5. Z̃(2) = 2.

E. Horozov and I.D. Iliev [74] proved that the least upper bound of the
number of zeroes of related Abelian integrals is 2 for (a, b) ∈ G3, then L. Gavrilov
[64] obtained the same conclusion for (a, b) ∈ G1 ∪ G2 (the method is also valid
for (a, b) ∈ G3). Since a basic assumption in [74] and [64] is that H(x, y) has four
distinct critical values (in the complex plane), the cases (a, b) ∈ l2 ∪ l∞ must be
considered separately. Papers [125] and [182] independently gave different proofs
for (a, b) ∈ l∞, and [102] proved the same conclusion for the last case (a, b) ∈ l2.
A unified proof appears recently in [15].
Remark 1.6. If XH is degenerate (i.e., (a, b) ∈ ∂Ḡ), then it is not difficult to show
that I(h) has at most one zero. But this gives no information about the cyclicity of
the period annulus, higher approximations must be considered. Iliev in [79] gives
formulas (called second- or third- order Melnikov function, which will be discussed
in Chapter 2) to determine the cyclicity for all degenerate cases. The cyclicity of
the period annulus (or annuli) is 3 for the Hamiltonian triangle case ([78]), and is
2 for all other seven cases (see [65], [77], [188], [189], [25] and a recent paper [97]).
Remark 1.7. XH has two period annuli when (a, b) ∈ G2. To prove Z̃(2) still is 2
in this case, implying that only (1,1)-distribution of limit cycles is possible if there
are two nests of limit cycles after perturbation, [64] uses a result in [175] while [15]
gives a direct proof. There is a similar study in [25] for the period annuli bounded
by the elliptic-segment loops.
Remark 1.8. By a result of R. Roussarie [140] and P. Mardesic [121] the conclusion
of Theorem 1.5 can be extended to the the case h ∈ [hc, hs] if (a, b) ∈ G1∪G2∪G3,
i.e., the period annulus terminates at a homoclinic loop of a hyperbolic saddle.
This means that the perturbed system has at most two limit cycles, including
that bifurcating from the saddle loop. A similar conclusion holds if (a, b) belongs
to the open segment NT on ∂Ḡ. But the problem of the number of limit cycles
bifurcating from heteroclinic loop(s) or from infinity is still open; only some partial
results appear in [66, 99].

1.2.2 Perturbations of elliptic and hyperelliptic Hamiltonians

Now we restrict the function H to the following form:

H(x, y) =
y2

2
+ Pm(x), (1.4)
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where Pm is a polynomial in x of degree m. The level curves of H are rational for
m = 1, 2, elliptic for m = 3, 4 and hyperelliptic for m ≥ 5. We assume m ≥ 2 since
the level curves have no oval if m = 1.

We first give a general lemma.

Lemma 1.9. Suppose that for the function H defined in (1.4) there is a family of
ovals γh ⊂ H−1(h), and ω is an arbitrary polynomial 1-form of degree n; then

∮
γh

ω =

{ ∮
γh

p1(x) y dx, n = 2,∮
γh

pk(x, h) y dx, n ≥ 3,

where p1 is a linear function in x, and pk(x, h) is a polynomial in x and h of
degree k = m(n−1)

2 if n is odd and k = m(n−2)
2 + 1 if n is even.

Proof. For any integers i, j ≥ 0 it is easy to see that

∮
γh

xi yj dy =

{
0, i = 0,

− i
j+1

∮
γh

xi−1 yj+1 dx, i ≥ 1.

Hence, without loss of generality we only consider ω = f(x, y)dx, where f is a
polynomial in x and y of degree n. On the other hand, we have

∮
γh

xi yj dx =

{
0, j = 2l,∮

γh
xi [2(h − Pm(x))]ly dx, j = 2l + 1.

The statements of the lemma immediately follow. �
(i) The case m = 2.

In this case we may choose H = x2+y2

2 (to put the center of XH at the origin).
The ovals are circles {x2 + y2 = h2}. Suppose that the 1-form ω is of degree n,
then by using the polar coordinates one finds that∮

γh2

ω = h2Qn−1(h),

where Qn−1(h) is a polynomial in h of degree (n − 1), but depends only on h2

by symmetry. I(h) has at most [(n − 1)/2] zeros except the trivial zero at h = 0,
which corresponds to the singularity at the origin.

(ii) The elliptic Hamiltonian of degree 3.
In this case if we suppose that the level curves of H contains a continuous

family of ovals, then the two singularities of the corresponding vector field XH

must be a center and a saddle, which is chosen (without loss of generality) at
(−1, 0) and (1, 0) respectively, and the elliptic Hamiltonian reads as

H(x, y) =
y2

2
− x3

3
+ x. (1.5)
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In this case the continuous family of ovals is given by

{γh} = {(x, y) : H(x, y) = h, −2/3 ≤ h ≤ 2/3}, (1.6)

see Figure 2. By Lemma 1.9 the Abelian integral I(h) can be expressed in the form

Figure 2. The family of ovals in case m = 3.

∮
γh

pk(x, h)ydx, where pk is a polynomial in x and h. An important observation
is that along γh,

0 ≡ dH = Hxdx + Hydy = (1 − x2)dx + ydy,

which implies (1 − x2)ydx + y2dy ≡ 0, hence I2(h) ≡ I0(h), where we define
Ij(h) =

∮
γh

xjydx. Similarly, we have

∮
γh

xk(x2 − 1)ydx =
∮

γh

xky2dy =
∮

γh

xk(2h + 2x3/3 − 2x)dy.

Using integration by parts on the right-hand side we find the following induction
formula,

(2k + 9)Ik+2(h) − 3(2k + 3)Ik(h) + 6khIk−1(h) = 0,

where k ≥ 1. Hence, it is not hard to prove the following result.

Lemma 1.10 ([130]). Suppose that I(h) is the Abelian integral of the polynomial
1-form ω of degree at most n over the ovals γh defined in (1.6), then

I(h) = Q0(h)I0(h) + Q1(h)I1(h),

where Q0 and Q1 are polynomials, degQ0 ≤ [n−1
2 ], deg Q1 ≤ [n

2 ]−1, and as usual
[ξ] means the integer part of ξ.

If we denote [n−1
2 ] = n0 and [n

2 ] − 1 = n1, then n0 + n1 = n − 2, and any
I(h), defined in Lemma 1.10, can be expressed as a linear combination of the n
independent functions

I0(h), hI0(h), h2I0(h), . . . , hn0I0(h); I1(h), hI1(h), h2I1(h), . . . , hn1I1(h).

Hence, it is possible to find a special I(h), having n − 1 zeros for h ∈ (− 2
3 , 2

3 ).
On the other hand, one may expect that all such I(h) have at most n − 1 zeros,
counting their multiplicities. This result was proved by Petrov in [132]. Before
stating his result we recall a definition.
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Definition 1.11. ([123]) A (k+1)-tuple of smooth functions (J0, . . . , Jk) defined on
some interval (h0, h1), is a Chebychev system, if for any 
 ≤ k, a nontrivial linear
combination of the 
 + 1 functions (J0, . . . , J�) has at most 
 zeros in (h0, h1)
counting their multiplicities.

The simplest example is the set of monomials (1, x, x2, . . . , xk), which is a
Chebychev system on any interval.

Theorem 1.12 ([131, 132]). The space of functions {I(h)}, defined in Lemma 1.10,
has the Chebyshev property on h ∈ (−2/3, 2/3). This means that any nontrivial
I(h) has at most n − 1 zeros, and there exists a 1-form ω, such that I(h) has
exactly n − 1 zeros.

In fact, Petrov made an analytic extension of I(h) from (−2/3, 2/3) to a
domain D in the complex plane, and proved by using the Argument Principle
that the space of extended functions has the Chebyshev property in D. We will
introduce this proof in Chapter 3.

Remark 1.13. One motivation for studying the perturbations of the elliptic Hamil-
tonians comes from the so-called Bogdanov–Takens bifurcation, see [8, 160]. If a
C∞ planar system has a nilpotent linear part, a truncated normal form up to
degree 2 looks like

ẋ = y, ẏ = ax2 + bxy. (1.7)

If ab �= 0, then the problem has codimension 2, and by a scaling (a, b) can be
changed to (1,±1). A universal unfolding (in C∞ function class) could be (see, for
example, [24])

ẋ = y,
ẏ = µ1 + µ2y + x2 + xyF (x, µ) + y2G(x, y, µ), (1.8)

where µ = (µ1, µ2) are small parameters, F, G ∈ C∞, and F (0, 0) = ±1 = sgn(ab).
There is no bifurcation for µ1 > 0 and the saddle-node bifurcation happens for
µ1 = 0. The most interesting phenomenon appears for µ1 < 0, in this case by a
change of coordinates and parameters

µ1 = −ε4, µ2 = αε2, x = ε2x̄, y = ε3ȳ, t = t̄/ε,

where ε > 0 small, system (1.8) (changing (x̄, ȳ, t̄) back to (x, y, t)) becomes

ẋ = y,
ẏ = −1 + x2 + ε(α ± x)y + O(ε2), (1.9)

which is exactly the perturbation of XH with H in the form (1.5), and the corre-
sponding Abelian integral is

I(h) = αI0(h) ± I1(h). (1.10)
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As a typical example, we will introduce several methods to study the number of
zeros of this Abelian integral in Chapter 3.

If b = 0 in (1.7), then the problem has higher codimension; the study of the
bifurcations for codimensions 3 and 4 (not only the study of zeros of the corre-
sponding Abelian integrals, but also the number of limit cycles and the bifurcation
diagrams) was given in [49] and [100], respectively.

(iii) The elliptic Hamiltonian of degree 4.

In this case we may take the function H in the form

H(x, y) =
y2

2
+ a

x4

4
+ b

x3

3
+ c

x2

2
, (1.11)

where a �= 0. There are five types of continuous families of ovals on the level curves
of H , shown in Figure 3 depending on the values of the parameters (a, b, c), called
the truncated pendulum case, the saddle loop case, the global center case, the
cuspidal loop case, and the figure-eight loop (Duffing oscillator) case, respectively.

Figure 3. The families of ovals for the case m = 4.

The first two cases correspond to a < 0 while the last three casescorrespond to
a > 0. Note that in the figure-eight loop case the corresponding Abelian integral
is a multi-valued function, since an oval in the left annulus and an oval in the right
annulus (surrounded by the figure-eight loop) may correspond to a same value of
h.

In [133] and [134] G.S. Petrov considered the figure-eight loop case (a > 0,
b < 0 and H(x, 0) has only three real different critical values), and the case
(a, b, c) = (1, 1, 1), a special case of the global center, respectively. In the first
case he obtained the result concerning the two annuli surrounded by the figure-
eight loop. Recently C. Liu in [108] studied the region outside the figure-eight loop,
and considered the total number of zeros for the ovals in the two annuli surrounded
by the figure-eight loop. We state their results in the following theorems.
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Theorem 1.14 ([133]). Let H be as in (1.11) with the figure-eight loop. Then the
space of the elliptic integral I(h) of a 1-form of degree n over cycles vanishing
at one of the two singularities of XH surrounded by the figure-eight loop has the
Chebyshev property on the corresponding interval of h. This means that the number
of zeros of nontrivial I(h) is less than the dimension of the space. This dimension
is n + [(n − 1)/2].

The conclusion of [134] for (a, b, c) = (1, 1, 1) (a global center case) is similar,
the dimension of the space of Abelian integrals in this case is 2[(n − 1)/2] + 1.

Theorem 1.15 ([108]). Let H be as in (1.11) with the figure-eight loop and ω be a
polynomial 1-form of degree n. Then the following statements hold.

(A) The total number of zeros of I(h) (taking into account their multiplicity) for
the ovals in the two annuli surrounded by the figure-eight loop does not exceed
2n − 1 for n even, or 2n + 1 for n odd.

(B) The number of zeros (taking into account their multiplicity) of I(h) for the
ovals outside the figure-eight loop does not exceed 2n+1 for n even, or 2n+3
for n odd.

There is a series of papers dealing with the exact number of zeros of the
Abelian integrals over all types of ovals in Figure 3, but which only consider 1-
forms of degree 3 as follows.

ω = (α + βx + γx2) y dx. (1.12)

Comparing with the general 1-form of degree 3, one term, y3dx, is omitted. Let
us first explain why the 1-form (1.12) is interesting. Consider a cubic Liénard
equation with a small quadratic damping:

ẍ + ε p2(x) ẋ + p3(x) = 0,

where ε is a small parameter and pk is a polynomial in x of degree k. This equation
is equivalent to the planar system

ẋ = y, ẏ = −p3(x) − εp2(x) y. (1.13)

The study of the number of limit cycles of system (1.13) naturally leads to the
study of the Abelian integral of 1-form (1.12) over the ovals of (1.11).

Theorem 1.16. Let I(h) be an Abelian integral of the polynomial 1-form (1.12)
over the ovals contained in the level curves of the elliptic Hamiltonian of degree
4 (1.11). Then the maximal number of zeros of I(h) (taking into account their
multiplicity) is

(A) 1 in the truncated pendulum case ([73]);

(B) 2 in the saddle loop case ([40]);
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(C) 4 in the global center case, and the four zeros of the elliptic integral can be
simple or multiple exhibiting a complete unfolding of a zero of multiplicity
four ([41]);

(D) 4 in the cuspidal loop case, moreover, if restricting to the level curves “in-
side” and “outside” the cuspidal loop, we found the sharp upper bound to be,
respectively, 2 and 3 ([42]);

(E) 5 in the figure-eight loop case, and there are three kinds of zeros for the elliptic
integrals, depending on the integral over compact level curves inside the left
loop, inside the right loop, or outside the figure-eight loop. We denote their
respective number by n1, n2, n3 respectively, then n1 + n2 ≤ 2, n3 ≤ 4 and
n1 + n2 + n3 ≤ 5 (see [43] for a precise description).

Remark 1.17. The results in Theorem 1.16 are valid for b �= 0. If b = 0, then
the Hamiltonians (1.11) are symmetric (called also reversible); this may happen
for the cases (i), (iii) and (v) of Figure 3. If 0 < b � 1, the parameter b breaks
this symmetry in a generic way, one has to add it into the parameter space of
perturbations, and for a description of the bifurcation diagram of the unfolding in
a full neighborhood of the origin in the parameter space, see [83, 98].

(iv) The hyperelliptic case.

In this case the polynomial P (x) in (1.4) has degree at least 5. To find the
exact number of zeros of the Abelian integrals for small n or to give an explicit
upper bound of the number of zeros in general, such as introduced above for
m = 3, 4, is extremely hard. The only general result was announced by D. Novikov
and S. Yakovenko as follows:

Theorem 1.18 ([126]). For any real polynomial P (x) ∈ R[x] of degree m and any
polynomial 1-form ω of degree n, the number of real ovals γ ⊂ {y2 + P (x) = h}
yielding an isolated zero of the integral I(h) =

∮
γ

ω, is bounded by a primitive
recursive (in fact, elementary) function B(m; n) of two integer variables m and n,
provided that all critical values of P are real.

The authors of [126] explained that “the function B(m; n) grows no faster
than a certain tower function (iterated exponent) of height 5 or perhaps 6. In any
case, this bound is too excessive to believe that it might be realistic: this is the
main reason why we never tried to write it explicitly”.

There are some other works ([89, 127], for example) which give an explicit
upper bound of the number Z(m, n) by certain tower functions, not restricted to
the hyperelliptic case, but with other restrictions on the Hamiltonians.

Before closing this chapter we introduce a result concerning a lower bound
for ñ = Z(n + 1, n).
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Theorem 1.19 ([84]). If H ∈ R[x, y] is a Morse polynomial of degree n+1 transver-
sal to infinity, then for any N = 1

2 (n + 1)(n− 2) real ovals {γh ⊂ H−1(h)} on R2

one can construct a form ω = P (x, y)dx+Q(x, y)dy, P, Q ∈ R[x, y], deg P, Q ≤ n,
such that the perturbation {dH + εω = 0} produces at least N limit cycles which
converge to the specified ovals as ε → 0.

Note that a Morse function means all its critical points are non-degenerate,
and all critical values are different (see [4], for example); a polynomial f ∈ C[x, y]
of degree n + 1 ≥ 2 is called transversal to infinity, if one of the two equivalent
conditions holds:

(1) Its principal homogeneous part factors out as the product of n + 1 pairwise
different linear forms.

(2) Its principal homogeneous part has an isolated critical point of multiplicity
n2 at the origin.



Chapter 2

Abelian Integrals and Limit Cycles

In this chapter we will explain the relation between the number of zeros of the
Abelian integrals and the number of limit cycles of the corresponding planar poly-
nomial differential systems.

2.1 Poincaré–Pontryagin Theorem

Now we consider a polynomial H(x, y) of degree m as in the previous chapter, the
corresponding Hamiltonian vector field XH :

dx

dt
= −∂H(x, y)

∂y
,

dy

dt
=

∂H(x, y)
∂x

, (2.1)

and a perturbed system

dx

dt
= −∂H(x, y)

∂y
+ εf(x, y),

dy

dt
=

∂H(x, y)
∂x

+ εg(x, y), (2.2)

where f and g are polynomials in x, y of degrees at most n, and ε is a small
parameter.

Suppose that there is a family of ovals, γh ⊂ H−1(h), continuously depending
on a parameter h ∈ (a, b). Then we may define the Abelian integral as before

I(h) =
∮

γh

f(x, y)dy − g(x, y)dx. (2.3)

It is clear that all γh, filling up an annulus for h ∈ (a, b), are periodic orbits of the
Hamiltonian system (2.1).

Consider the question: How many orbits keep being unbroken and become
the periodic orbits of the perturbed system (2.2) for small ε ? Note that if the
number of such orbits is finite, then they are limit cycles of (2.2).

This question can be proposed in the converse way: Is it possible to find a
value h ∈ (a, b), and some periodic orbits Γε of the perturbed systems (2.2), such



112 Chapter 2. Abelian Integrals and Limit Cycles

that Γε tends to γh (in the sense of Hausdorff distance) as ε → 0 ? And how many
such Γε for a same h ?

To answer this question, we take a segment σ, transversal to each oval γh.
We choose the values of the function H itself to parameterize σ, and denote by
γ(h, ε) a piece of the orbit of the perturbed system (2.2) between the starting
point h on σ and the next intersection point P (h, ε) with σ, see Figure 4. The

γ(h, ε)

σ h P (h, ε)

Figure 4. Construction of displacement function.

“next intersection” is possible for sufficiently small ε, since γ(h, ε) is close to γh.
As usual, the difference d(h, ε) = P (h, ε) − h is called the displacement function.

Theorem 2.1 (Poincaré–Pontryagin [136, 137]). We have that

d(h, ε) = ε (I(h) + εφ(h, ε)), as ε → 0, (2.4)

where φ(h, ε) is analytic and uniformly bounded for (h, ε) in a compact region near
(h, 0), h ∈ (a, b).

Proof. By the construction above, the displacement function is given by the dif-
ference of the function H between the endpoints of γ(h, ε), that is

d(h, ε) =
∫

γ(h,ε)

dH =
∫

γ(h,ε)

(
∂H

∂x

dx

dt
+

∂H

∂y

dy

dt

)∣∣∣∣
(2.2)

dt.

Substituting (2.2) into the right-hand side, we find

d(h, ε) = ε

∫
γ(h,ε)

(
∂H

∂x
f +

∂H

∂y
g

)∣∣∣∣
(2.2)

dt.

Note that γ(h, ε) converges to γh uniformly as ε → 0 since γh is compact, and
Hxdt = dy, Hydt = −dx along γh by (2.1) , we immediately obtain (2.4), where
I(h) is given by (2.3). �
Remark 2.2. Note that the number of zeros of the displacement function is inde-
pendent of the choice of the transversal segment σ.

From Theorem 2.1 we obtain the following result giving an answer to the
above question. We use XH and XH,ε to denote the Hamiltonian system (2.1) and
its perturbation (2.2) respectively, and first give a definition for convenience.
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Definition 2.3. If there exist an h∗ ∈ (a, b) and an ε∗ > 0 such that XH,ε has a
limit cycle Γε for 0 < |ε| < ε∗, and Γε tends to γh∗ as ε → 0, then we will say
that Γε bifurcates from γh∗ . We say that a limit cycle Γ of XH,ε bifurcates from
the annulus ∪h∈(a,b)γh of XH , if there is a h ∈ (a, b) such that Γ bifurcates from
γh.

Theorem 2.4. We suppose that I(h) is not identically zero for h ∈ (a, b), then the
following statements hold.

(A) If XH,ε has a limit cycle bifurcating from γh∗ , then I(h∗) = 0.

(B) If there exists an h∗ ∈ (a, b) such that I(h∗) = 0 and I ′(h∗) �= 0, then XH,ε

has a unique limit cycle bifurcating from γh∗ , moreover, this limit cycle is
hyperbolic.

(C) If there exists an h∗ ∈ (a, b) such that I(h∗) = I ′(h∗) = · · · = I(k−1)(h∗) = 0,
and I(k)(h∗) �= 0, then XH,ε has at most k limit cycles bifurcating from the
same γh∗, taking into account the multiplicities of the limit cycles.

(D) The total number (counting the multiplicities) of the limit cycles of XH,ε,
bifurcating from the annulus ∪h∈(a,b)γh of XH , is bounded by the maxi-
mum number of isolated zeros (taking into account their multiplicities) of
the Abelian integral I(h) for h ∈ (a, b).

Proof. (A) Suppose that a limit cycle Γε of XH,ε bifurcates from γh∗ . By Theorem
2.1, there exist an ε∗ > 0 and hε → h∗ as ε → 0, such that

d(hε, ε) = ε(I(hε) + εφ(hε, ε)) ≡ 0, 0 < |ε| < ε∗.

Dividing by ε on both sides, and taking the limit as ε → 0, we obtain I(h∗) = 0.

(B) Suppose that there exists an h∗ ∈ (a, b) such that I(h∗) = 0 and I ′(h∗) �=
0. Since we consider limit cycles for small ε and ε �= 0, instead of the displacement
function d(h, ε) we may study the zeros of d̃(h, ε) = d(h, ε)/ε. By Theorem 2.1 we
have

d̃(h, ε) = I(h) + εφ(h, ε),

where φ is analytic and uniformly bounded in a compact region near (h∗, 0). Since
d̃(h∗, 0) = I(h∗) = 0 and d̃ ′

h(h∗, 0) = I ′(h∗) �= 0, by the Implicit Function
Theorem, we find an ε∗ > 0, an η∗ > 0 and a unique function h = h(ε) defined in
U∗ = {(h, ε) : |h − h∗| ≤ η∗, |ε| ≤ ε∗}, such that h(0) = h∗ and d̃(h(ε), ε) ≡ 0 for
(h, ε) ∈ U∗. Hence, the unique h(ε) gives a unique limit cycle Γε of system (2.2) for
each small ε. We need to prove that the bifurcated limit cycle Γε is hyperbolic (for
small ε). This fact is easy to understand because it comes from a simple zero of
I(h) at h∗. We give a precise proof below. We write I(h) in (2.3) as I1(h)+ I2(h),
where

I1(h) =
∮

γh

f(x, y)dy, I2(h) = −
∮

γh

g(x, y)dx.
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In the first integral we treat x as a function of y and h, and along γh we have
Hxxh = 1 and dy = Hxdt. This gives

I ′1(h) =
∮

γh

fxxhdy =
∮

γh

fxdt.

Similarly we obtain

I ′2(h) = −
∮

γh

gyyhdx =
∮

γh

gydt.

Hence
∮

γh∗ (fx + gy)dt = I ′(h∗) �= 0, which implies

∮
Γε

trace(2.2)dt = ε

∮
Γε

(fx + gy)dt �= 0 0 < |ε| � 1,

since Γε → γh∗ as ε → 0. The hyperbolicity of Γε follows.

(C) Assume that there exists an h∗ ∈ (a, b) such that I(h∗) = I ′(h∗) = · · · =
I(k−1)(h∗) = 0, and I(k)(h∗) �= 0. We need to show that there exist a δ > 0 and
an η > 0, such that for any (h, ε) ∈ U = {|h − h∗| < η, |ε| < δ}, the displacement
function d(h, ε) has at most k zeros in h, taking into account their multiplicities.
Suppose the contrary, then for any integer j there exist εj > 0 and ηj > 0, εj → 0
and ηj → 0 as j → ∞, such that for any εj the function d(h, εj)/εj has at least
k + 1 zeros for |h− h∗| < ηj . By using the Rolle Theorem we find an hj such that
|hj − h∗| < ηj and

I(k)(hj) + εj
∂k

∂kh
φ(hj , εj) = 0,

which implies I(k)(h∗) = 0 by taking the limit as j → ∞, leading to a contradic-
tion.

(D) This statement is a consequence of the first three statements. In fact,
for any small σ > 0 we may consider the number of limit cycles bifurcating from
h ∈ [a + σ, b − σ] for small ε. By Theorem 1.2 this number is uniformly bounded.
We take the maximum of this number as σ → 0, then we get the cyclicity of the
period annulus, see Definition 1.3. �

Example. Consider the van der Pol equation

ẍ + ε(x2 − 1)ẋ + x = 0,

which is equivalent to the system

ẋ = y, ẏ = −x + ε(1 − x2)y. (2.5)

When ε = 0, equation (2.5) is a Hamiltonian system with a family of ovals

γh = {(x, y) : H(x, y) ≡ x2 + y2 = h2, h > 0}.
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By using the polar coordinates x = h cos θ, y = h sin θ, and noting that the orien-
tation of γh is clockwise, from formula (2.3) we have

I(h) = −
∮

γh

(1 − x2)ydx =
∫ 2π

0

(1 − h2 cos2 θ)h2(− sin2 θ)dθ = πh2

(
h2

4
− 1
)

.

The zero h = 0 corresponds to the singularity of the system and h = 2 is the
only positive zero of I(h). On the other hand, it is easy to find I ′(2) = 4π. Using
Theorem 2.4 we conclude that for small ε system (2.5) has a unique limit cycle
which is hyperbolic and tends to the circle of radius 2 as ε → 0.
Remark 2.5. If both the Hamiltonian and the perturbation are given without
parameters (except ε), as in the above example, then Theorem 2.4 works well to get
a definite result. But in many cases the perturbations are given in a function space
(with parameters), and the Hamiltonian may also depend on some parameters, this
causes some problem in using Theorem 2.4 and we explain it below.

Since the zeros of I(h) also depend on the parameters, appearing in pertur-
bations, they may tend to the endpoints of (a, b), corresponding to critical values
of H . At these special values the Implicit Function Theorem can not, in general,
be applied to the displacement function, so it is difficult to give a uniform estimate
of the number of zeros for h ∈ [a, b]. It is well known that if one of the endpoints,
say a, corresponds to the center of XH , then I(h) can be extended to the value a
analytically (see Lemma 20 of [12] for example), and nontrivial I(h) has at most
a finite number of zeros near a uniformly with respect to parameters, hence the
statement (C) of Theorem 2.4 can be extended to [a, b). On the other hand, if an
endpoint, say b, corresponds to a polycycle (homoclinic or heteroclinic orbit) of
XH , the better conclusions are the following. Statement (C) can be extended to
[a, b] if b corresponds to a homoclinic loop, see Roussarie [140] as we mentioned in
Remark 1.8; and in general it surely could not be extended to [a, b] if b corresponds
to a heteroclinic loop, as it has been shown by a counter-example with two-saddle
loop in the recent papers [46, 13], also see [72]. At last, if b = ∞ (the annulus
tends to infinity), we could make a conclusion about the number of limit cycles
only in any compact region of the annulus.

If H = Hν depends on some parameter ν, then for some special values,
say ν∗, Hν∗ may be degenerate, for example has some symmetries, see the cases
XH ∈ QH

3 ∩ {QR
3 ∪ QLV

3 } (i.e., (a, b) ∈ ∂Ḡ in Figure 2), or the cases (i), (iii)
and (v) in Figure 3 for some special values of the parameters of H . As Iliev
explained in [79] the degeneracy causes a lower bound for the number of zeros of
I(h) than the expected one, and the function I(h) (even in the case that I(h) is not
identically zero) can never yield the maximum number of zeros of the displacement
function d(h, ε) for the whole class of perturbations. In this case a higher order
(in ε) of approximation for d(h, ε) is needed, as in the study of the cyclicity of the
period annulus for XH ∈ QH

3 ∩ {QR
3 ∪ QLV

3 } (see Remark 1.6); or the parameters
which break down the symmetry of H and the perturbation parameters should
be considered together in higher dimensional space to give a “principal part” of
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the displacement function, as in the study of perturbations of symmetric elliptic
Hamiltonians of degree 4 in [98].
Remark 2.6. Theorems 2.1 and 2.4 were proved for the polynomial Hamiltonian
systems (2.1) and their polynomial perturbation (2.2), but there are essentially
the same proofs for analytic vector fields.

2.2 Higher Order Approximations

It is shown in the last section that the Abelian integral I(h), related to XH ,
gives the first order approximation of the displacement function of the perturbed
system XH,ε, hence the number of isolated zeros of I(h) gives an upper bound of
the number of limit cycles of XH,ε, if I(h) is not identically zero. In this section,
we continue the discussion of the problem if I(h) ≡ 0 for h ∈ (a, b).

It is very natural to express the displacement function in the form

d(h, ε) = ε I1(h) + ε2 I2(h) + · · · + εj Ij(h) + O(εj+1), (2.6)

where I1(h) ≡ I(h), ε small. The question is that if I1(h) ≡ 0, then how to compute
the second order approximation I2(h) and so on ?

The following algorithm to compute Ik+1(h), if Ij(h) ≡ 0 for j = 1, 2, . . . k,
was given by J.-P. Françoise in [52], see also [168].

Denote dH = Hxdx+Hydy, ω = fdy−gdx, where H , f and g are polynomials
in x and y, deg(H)=n+1, max(deg(f),deg(g))=n. Then equations (2.1) and (2.2)
can be written in Pfaffian forms dH = 0 and dH − εω = 0 respectively. As before,
we use γh to denote the family of ovals contained in the level curves H−1(h), σ a
segment transversal to γh and parameterized by H , and γ(h, ε) a piece of the orbit
of dH − εω = 0 between the starting point h on σ and the next intersection point
P (h, ε) with σ. By using these notations the theorem of Poincaré–Pontryagin can
be shown in brief as follows.

The integration of dH − εω = 0 over γ(h, ε) gives

d(h, ε) =
∫

γ(h,ε)

dH = ε

∫
γ(h,ε)

ω = ε

∫
γh

ω + O(ε2).

Following [52], we say that the polynomial H satisfies the condition (∗) if
and only if for all polynomial 1-forms ω:∫

γh

ω = 0 ⇔ there are polynomials q and R such that ω = qdH + dR. (∗)

Theorem 2.7 ([52]). Assume that H satisfies the condition (∗) and Ij(h) ≡ 0 (in
the formula (2.6)) for j = 1, 2, . . . , k. Then there are q1, . . . , qk; R1, . . . , Rk such
that ω = q1 dH + dR1, q1ω = q2 dH + dR2, . . . , qk−1ω = qk dH + dRk and

Ik+1(h) =
∫

γh

qk ω. (2.7)
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Proof. The proof can be done by induction.
(1) Assume that I1(h) ≡ 0. By the condition (∗) we find two polynomials q1

and R1 such that ω = q1 dH + dR1, which implies equality

(1 + εq1)(dH − ε ω) = d (H − εR1) − ε2q1 ω.

After integrating the above equality over γ(h, ε), along which dH − εω = 0, we
obtain the displacement function

d(h, ε) =
∫

γ(h,ε)

dH = ε2

∫
γ(h,ε)

q1ω + ε

∫
γ(h,ε)

dR1.

Treating dR1 = ∂R1
∂x dx + ∂R1

∂y dy as a polynomial 1-form and using I1(h) ≡ 0, we
get
∫

γ(h,ε)
dR1 = O(ε2). Thus we obtain

d(h, ε) = ε2

∫
γ(h,ε)

q1ω + O(ε3) = ε2

∫
γh

q1ω + O(ε3),

i.e., I2(h) =
∫

γh
q1ω.

(2) Suppose that qj−1 ω = qj dH + dRj (denote g0 = 1) and Ij(h) ≡ 0 for
j = 1, . . . , k. Then the former gives the equality

(1 + εq1 + · · · + εkqk)(dH − ε ω) = d (H − εR1 − · · · − εkRk) − εk+1qk ω,

and the latter gives
∫

γ(h,ε) d (εR1 + · · · + εkRk) = O(εk+2). Hence

d(h, ε) = εk+1

∫
γ(h,ε)

qkω + O(εk+2) = εk+1

∫
γh

qkω + O(εk+2),

i.e., Ik+1(h) =
∫

γh
qkω. �

Two important questions arise: (1) Is there an integer K such that the above
procedure stops at order K (i.e., if Ij(h) ≡ 0 for j = 1, . . . , K, then all Ij(h) ≡ 0
for j > K) ? (2) What kind of functions H satisfy the condition (∗) ?

The answer to the first question is positive, but a new problem is that there
is no efficient method to find such integer K. Usually, the condition Ij(h) ≡ 0 for
j = 1, . . . , l gives restrictions on the parameters which appear on the 1-form ω,
and one needs to check if dH − ε ω is integrable at this stage. If the answer is yes,
then K = l.

Concerning the second question, the following result by Gavrilov shows that
for “generic” polynomial Hamiltonian H , the condition (∗) holds. Before stating
the result, we need to give some definitions.

Definition 2.8. ([63]) A polynomial f ∈ R[x, y] is called weighted homogeneous of
weighted degree j and type (wx, wy) if there are wx, wy ∈ N+ and j ∈ N, such that

f(zwxx, zwyy) = zjf(x, y), ∀ z ∈ R.
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A polynomial f ∈ R[x, y] is called semiweighted homogeneous of weighted degree k

and type (wx, wy) if it can be written as f =
∑k

j=0 fj , where fj are weighted homo-
geneous polynomials of weighted degree j and type (wx, wy), and the polynomial
fk(x, y) has an isolated critical point at the origin.

Theorem 2.9 (Proposition 3.2 of [63]). Let γh ⊂ H−1(h) ⊂ R2 be a continu-
ous family of ovals surrounding a single critical point of H. If H ∈ R[x, y] is a
semiweighted homogeneous Morse polynomial with distinct critical values, then the
space of all real polynomial 1-forms satisfies the condition (∗).

The above result was obtained by Ilyashenko [84] when H is a polynomial of
degree m with (m−1)2 distinct critical points. Some further discussions concerning
Theorem 2.7 can be found in [68].

Example. It was shown in [63] that if Pm(x) is a polynomial of degree m with
m−1 distinct critical values, then the Hamiltonian function H(x, y) = 1

2y2+Pm(x)
satisfies the condition (∗). This result was found earlier in [52] for the case H =
1
2 (x2 + y2).

The result in Theorem 2.7 was generalized by I.D. Iliev in [80] to the case
ω = ω0 + εω1 + ε2ω2 + · · · . He considers polynomial perturbations of Hamiltonian
systems with elliptic or hyperelliptic Hamiltonians and gives a formula for the
second variation of the displacement function in terms of the coefficients of the
perturbations. We briefly introduce this result below.

Let H(x, y) = y2

2 −U(x), where U(x) is a polynomial of degree n, and n ≥ 2.
Consider the perturbations

ẋ = Hy + ε f(x, y, ε),
ẏ = −Hx + ε g(x, y, ε),

(2.8)

where f(x, y, ε) and g(x, y, ε) are polynomials in x, y and depend analytically on
a small parameter ε. System (2.8) can be written in a Pfaffian form

dH − ε ω = 0, ω = ω0 + εω1 + ε2ω2 + · · · , (2.9)

where ω0 = −f(x, y, 0)dy + g(x, y, 0)dx, ω1 = −fε(x, y, 0)dy + gε(x, y, 0)dx, . . ..
Suppose that the continuous family of ovals γh ⊂ H−1(h) for h ∈ (a, b), which

form an annulus D. If we take a transversal segment to {γh} and parameterize it
using the level value h, then, by Theorem 2.1, the displacement function for small
ε has the form

d(h, ε) = ε M1(h) + ε2 M2(h) + · · · ,

where M1(h) =
∮

γh
ω0.
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Theorem 2.10 ([80]). Under the above assumptions the following statements hold.

(A) If M1(h) ≡ 0, then there exist in D a continuous function q0(x, y) and a
locally Lipschitz continuous function Q0(x, y) such that the form ω0 can be
expressed as ω0 = q0 dH + dQ0, and

M2(h) =
∮

γh

(q0ω0 + ω1).

(B) If Mk(h) ≡ 0, 1 ≤ k ≤ m, then define the 1-forms Ω0, Ω1, . . . ,Ωm successively
as follows:

Ω0 = ω0, Ωk = ωk + Σi+j=k−1 qi ωj , 1 ≤ k ≤ m,

where, for 0 ≤ k ≤ m−1, the 1-form Ωk can be expressed as Ωk = qk dH+dQk

with qk, Qk as in statement (A), and

Mm+1(h) =
∮

γh

Ωm.

(C) The function M2(h), h ∈ (a, b) can be explicitly expressed as

M2(h) =
∮

γh

[G1h(x, y)P2(x, h) − G1(x, y)P2h(x, h)]dx

−
∮

γh

F (x, y)
y

[fx(x, y, 0) + gy(x, y, 0)]dx

+
∮

γh

gε(x, y, 0)dx − fε(x, y, 0)dy,

(2.10)

where

F (x, y) =
∫ y

0

f(x, s, 0)ds −
∫ x

0

g(s, 0, 0)ds, G(x, y) = g(x, y, 0) + Fx(x, y),

and G1(x, y) and G2(x, y) are the odd and even parts of G(x, y) with respect
to y:

G(x, y) = G1(x, y) + G2(x, y), G1(x, y) = y p1(x, y2), G2(x, y) = p2(x, y2).

Finally, P2(x, h) is the polynomial

P2(x, h) =
∫ x

0

p2(s, 2h + 2U(s))ds.

Note that G1h(x, y) = G1y(x, y)/y on the oval γ(h). If the divergence fx + gy

is either an odd or an even function of y, then formula (2.10) can be written in
the more compact form:

M2(h) = −
∮

γh

F (x, y)
y

[fx + gy]|ε=0 dx +
∮

γh

(gε dx − fε dy)|ε=0.
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Remark 2.11. In 1995, before the general result in Theorem 2.7, B. Li and Z.
Zhang [93] deduced the second order Melnikov function M2(h) for the codimension
2 Bogdanov–Takens bifurcation problem, see also [181]. We will introduce this
result in Section 3.3, together with a later result of [81] on Mk(h) for arbitrary k.
Remark 2.12. When the condition (∗) is not satisfied, it is also possible to use the
Françoise recursion formula (Theorem 2.7), but the functions qk and Rk may not
be polynomials, see [77] for example, where the fractional function and logarithm
function appear in qk and Rk. Of course, in this case the study of “generalized
Abelian integrals” is more difficult, see the next section.
Remark 2.13. By generalizing the Françoise procedure, A. Gasull and J. Torre-
grosa constructed a new algorithm of the computation of the Lyapunov constants
for some degenerate critical points in [59], and studied the relation between the de-
generate Hopf bifurcation and the method of Abelian integrals near the singularity
in [60].
Remark 2.14. In the paper [162] M. Viano, J. Llibre and H. Giacomini gave a
different recursive procedure for calculation of higher order Melnikov functions.

2.3 The Integrable and Non-Hamiltonian Case

To attack Hilbert’s 16th problem, we need to consider the cyclicity of period an-
nulus (or annuli) under polynomial perturbations not only from the polynomial
Hamiltonian systems, as we explained in the last two sections, but also from poly-
nomial integrable and non-Hamiltonian systems. To see it clearly, let us list all
integrable quadratic systems with at least one center. By using the terminology
from [191], Iliev [79] classified them into the following five classes using complex
notation:

(1) ż = −iz − z2 + 2|z|2 + (b + ic)z2, Hamiltonian (QH
3 )

(2) ż = −iz + az2 + 2|z|2 + bz2, reversible (QR
3 )

(3) ż = −iz + 4z2 + 2|z|2 + (b + ic)z2, |b + ic| = 2, codimension 4 (Q4)
(4) ż = −iz + z2 + (b + ic)z2, generalized Lotka − Volterra (QLV

3 )
(5) ż = −iz + z2, Hamiltonian triangle

where the parameters a, b and c are real, and z = x + i y.
An integrable quadratic system is called generic, if it belongs to one of the

first four classes and does not belong to other classes of the classification given
above. Otherwise, it is degenerate.

The discussions about Abelian integrals so far were only valid for the generic
Hamiltonian class. As an example of integrable and non-Hamiltonian case, we
consider the reversible class. Taking z = x+ iy, and the change t → −t, we obtain
from (2) that

ẋ = −y − (a + b + 2)x2 + (a + b − 2)y2,
ẏ = x − 2(a − b)xy.



2.3. The Integrable and Non-Hamiltonian Case 121

If c = a − b �= 0, then making the scaling (x, y) �→ (x/c, y/c) and changing the
parameters (−a+b+2

a−b , a+b−2
a−b ) �→ (a, b), we obtain

ẋ = −y + ax2 + by2,
ẏ = x(1 − 2y). (2.11)

Using the following coordinates and time scaling,

x =
1
2

x̄, y = −1
2

(ȳ − 1), t = 2 t̄,

and then writing (x, y, t) instead of (x̄, ȳ, t̄), we obtain

ẋ = ax2 + by2 − 2(b − 1)y + (b − 2),
ẏ = −2xy.

(2.12)

System (2.12) has an invariant straight line {y = 0}, and has a center at (0, 1).
The singularity (0,− 2−b

b ) is also a center if 0 < b < 2, and is a saddle if b < 0 or

b > 2. If a(2 − b) > 0, then the system has two saddles at (±
√

2−b
a , 0).

If a(a + 1)(a + 2) �= 0, then the first integral of system (2.12) is given by

F = |y|a(x2 + Ly2 + My + N) = h, (2.13)

where

L =
b

a + 2
, M =

2(1 − b)
a + 1

, N =
b − 2

a
. (2.14)

Note that if a �= 1, then system (2.12) is not Hamiltonian, and the integrating
factor is µ = |y|a−1. In the period annulus surrounding a center of system (2.12),
we denote the ovals by

Γh = {(x, y) ∈ R2 : F (x, y) = h, hc < h < hs},
where hc is the critical value of H at a center, and hs is the value of H for which
the period annulus ends at a separatrix polycycle or at infinity. We can suppose
that hc < hs, otherwise we can change the sign of H to ensure it.

We consider quadratic perturbations of (2.12):

ẋ = ax2 + by2 − 2(b − 1)y + (b − 2) + εf(x, y),
ẏ = −2xy + εg(x, y),

where ε is a small parameter, and f and g are quadratic polynomials in x and y.
If a �= 1, a+ b �= 0, (a, b) �= (−4, 2) and (a, b) �= (−2/3, 0), then the reversible

system (2.12) is generic. If, in addition, a(a+1)(a+2) �= 0, then the cyclicity of the
period annulus of (2.12) under quadratic perturbations is equal to the maximal
number of isolated zeros in (hc, hs), counting multiplicities, of the following integral
(see [79])

M(h) =
∫

Γh

|y|a−2(α + βy + γy2)xdy, (2.15)
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where α, β and γ are real constants, and the orientation of the integral is given
by the vector field.

It is clear now that for most values of a, say a is not an integer, both the first
integral F in (2.13) and the integrand function in (2.15) are no longer polynomials.
Hence, the integral M(h) is not an Abelian integral in the strict meaning. Usually it
is called generalized Abelian integral or pseudo-Abelian integral, or simply Abelian
integral as before.

Finally, let us give a general setting for the integrable and non-Hamiltonian
case. Suppose that the unperturbed system has a first integral F (x, y) with an
integrating factor µ(x, y) = 1/R(x, y); then the perturbed system can be written
in the form ⎧⎪⎨

⎪⎩
ẋ = −∂F (x, y)

∂y
R(x, y) + εf(x, y) ,

ẏ =
∂F (x, y)

∂x
R(x, y) + εg(x, y) ,

(2.16)

and associated to it we define the (generalized) Abelian integral

I(h) =
∫

γh

f(x, y)dy − g(x, y)dx

R(x, y)
, (2.17)

where {γh} are the family of ovals contained in the level curves {F (x, y) = h}.
By the same mechanisms as in the last sections, the integral I(h) gives the first
approximation of the displacement function.

Note that some traditional methods, such as the derivation of the Picard–
Fuchs equation or Picard–Lefschetz formula etc, fail for this generalized form of
Abelian integrals. For this reason, the study of perturbations from the reversible
class QR

3 is very difficult. On the other hand, this study, comparing with the
quadratic perturbations from other quadratic integrable classes, is the most in-
teresting one. We list some results concerning the quadratic perturbations from
the reversible system (2.11): [22] for the isochronous centers; [159] for the bifur-
cation curve of the unbounded heteroclinic loop; [44, 129, 173, 82] for a = −3
with different values of b; [16] for a ∼ 2 with different values of b. There are some
other works dealing with the perturbations from integrable and non-Hamiltonian
systems, among them [5, 32, 58, 95, 96, 106, 115, 187].

2.4 The Study of the Period Function

We use the same notation as before to denote a continuous family of ovals γh ⊂
H−1(h), where H is the Hamiltonian function (or the first integral) of a planar
Hamiltonian (or integrable) system. Each γh is a periodic orbit of the system,
so we have a period function T (h), parameterized by the same h ∈ (a, b). If the
period function is a constant for all h, then the period annulus is isochronous.
If the isochronous period annulus surrounds a center, then the center is called
isochronous. If the period function is strictly increasing or decreasing, then we say



2.4. The Study of the Period Function 123

that the period function is monotone. Otherwise, the period function has critical
points.

The study of the period function and the study of the Abelian integral have
some relations, at least from the following two points of view.

First, the study of the number of critical points of the period function by
perturbing an isochronous center inside a certain class of integrable systems, is
comparable to the study of the number of zeros of an Abelian integral by per-
turbing an integrable system inside a certain class of systems. We will introduce
a work by E. Freire, A. Gasull and A. Guillamon [54] on this aspect.

Secondly, the study of the period function is useful for the study of the
Abelian integral. For example, the Abelian integral I0(h) =

∮
γh

y dx gives the area
of the region surrounded by γh. Here we suppose the orientation of γh is clockwise,
γh ⊂ H−1(h), and the related Hamiltonian system is XH = Hy∂/∂x − Hx∂/∂y.
Hence, I0(h) > 0 for h > a and I ′0(h) > 0 gives the period of γh. In fact,

I ′0(h) =
∮

γh

∂y

∂h
dx =

∮
γh

(Hy)−1 dx =
∮

γh

dt = T (h).

If the period function is monotone, then I ′′0 (h) �= 0. In some studies of Abelian
integrals this information is needed to define a function by a ratio of two Abelian
integrals with second order derivative, see for example [15, 16, 25, 40, 41, 43, 82],
and section 4.2 below. If I ′′0 (h) has some zeros, i.e., the period function has critical
points, then the use of the ratio becomes complicated, see [42]. For this reason,
we will also briefly introduce some results on period functions.

Before stating the result of [54], we give the characterizations of isochronous
centers: A center point p of a planar smooth vector field X in an annulus D is an
isochronous center if and only if one of the following assertions holds:

(i) There exists a smooth change of coordinates in a neighborhood of p that
linearizes X (a classical result of Poincaré).

(ii) There exists a transversal vector field U , commuting with X , i.e., [X, U ] =
DUX − DXU = 0, see [146, 167].

(iii) There exists a transversal vector field U and a scale function µ such that
[X, U ] = µX and ∫ Tr

0

µ(x(t), y(t)) dt = 0,

where γ = {ϕ(t) = (x(t), y(t)), t ∈ [0, Tr]} is any period orbit of X in D, and
Tr is its period. In this case U is called a normalizer of X , see [55].

Theorem 2.15 ([54]). Suppose that a vector field X has an isochronous center of
period T0 in D. Consider a vector field U transversal to X such that [X, U ] = 0. Let
γ(t) := {ϕ(t; ψ(h)), t ∈ [0, T0]} be the set of periodic orbits of X in D parameterized
by the time flow of U . Consider the family of vector fields Xε = X + εY having
also a center; write Y as Y = aX + bU and denote by γε(h) a generic closed orbit
of Xε passing through ψ(h). The following statements hold:
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(i) The period function associated to γε(h) is

Tγε(h) = T0 + εT1(h) + O(ε2),

where

T1(h) = −
∫ T0

0

a(ϕ(t; ψ(h))) dt.

(ii) The derivative of T1 with respect to h is:

T ′
1(h) = −

∫ T0

0

∇a(x) · U(x)|{x=ϕ(t;ψ(h))}dt.

(iii) If h∗ is a simple zero of T ′
1(h), then for small ε there is exactly one critical

period of Xε close to h∗ which tends to h∗ as ε → 0.

Example ([54]). Consider the system

ẋ = −y,
ẏ = x + ε G′(x). (2.18)

Then, for ε sufficiently small the zeros of

I(s) =
∫ 2π

0

x(xG′′(x) − G′(x))
x2 + y2

∣∣∣∣
x=s cos t,y=s sin t

dt

give rise to critical periods of (2.18).
Moreover, if G′(x) is a polynomial of degree n vanishing at zero, then the

maximum number of simple zeros of I(s) is [(n − 3)/2], i.e., at most [(n − 3)/2]
critical periods bifurcate from the closed orbits of (2.18)ε=0 in any fixed compact
set in the annulus region.

The above result can be proved by Theorem 2.15. In fact, let X = (−y, x),
U = (x, y) and Y = (0, G′(x)). Then

a =
xG′(x)
x2 + y2

, b =
y G′(x)
x2 + y2

,

and

∇a · U =
x(xG′′(x) − G′(x))

x2 + y2
.

Taking ψ(h) = (eh, 0), ϕ(t; ψ(h)) = (eh cos t, eh sin t) and renaming eh by s, the
result follows by applying Theorem 2.15.

Now we list some results concerning the period function.

• A survey article about isochronous centers can be found in [14].
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• Every center of a polynomial Hamiltonian system of degree 4 (that is, with its
homogeneous part of degree 4 not identically zero) is non-isochronous ([91]).

• Suppose H(x, y) = F (x) + G(y) and the origin is a non-degenerate center
of XH . More concretely, if T (h) denotes the period of the periodic orbit
contained in H(x, y) = h, then [30] solved the inverse problem of charac-
terizing all systems with a given function T (h), characterized the limiting
behavior of T at infinity when the origin is a global center and applied this
result to prove, among other results, that there are no nonlinear polynomial
isochronous centers in this family.

• An analytic vector field has a finite number of critical periods in any compact
region inside an annulus ([21]).

• For elliptic Hamiltonian H = y2

2 +P (x), where P is a polynomial, the period
function of the corresponding system XH is monotone if deg(P ) = 3 and has
at most one critical point if deg(P ) = 4. In the latter case only the global
center (case (iii) of Figure 3) has a critical period ([26, 62]).

• If the Hamiltonian system with Hamiltonian H = y2

2 + V (x), where V is a
smooth function, has a non-degenerate relative minimum at x = 0, then the
period function is monotone if V/(V ′)2 is convex ([19]). This condition was
generalized in [30, 9].

The following results show the behavior of the period function for quadratic
integrable systems with period annulus (or annuli). The notation is introduced at
the beginning of the previous section.

• At most two local critical periods bifurcate from quadratic centers. Here local
means when the perturbation parameter ε tends to zero, the level curves with
bifurcating critical periods shrinks to the center point ([22]).

• It was conjectured in [19] that all the centers encountered in the family of
second order differential equations ẍ = V (x, ẋ), being V a quadratic polyno-
mial, should have a monotone period function, and some cases were solved in
that paper. The remaining cases were completely solved in [57]. Note that this
equation can be written as the planar system ẋ = y, ẏ = −x+ax2+bxy+cy2.

• The period function for the quadratic Hamiltonian systems (X ∈ QH
3 ) is

monotone ([34]).

• The period function for the quadratic codimension 4 systems (X ∈ Q4) is
monotone ([184]).

• The period function for the classical quadratic Lotka–Volterra systems is
monotone ([139, 148, 163]). But in general for X ∈ QLV

3 the problem is still
open. Some partial results about the monotonicity of the period function in
this class, especially the monotone property of the period function near the
saddle loop, were obtained in [165].
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• The behavior of the period function for X ∈ QR
3 (the family of quadratic

reversible systems) is more complicated. The first example in this family with
non-monotone period function was given in [20]. Then C. Chicone conjectured
that the reversible centers have at most two critical periods (see Math. Review
94h:58072). As it was shown in the previous section, QR

3 is a family of two
parameters. The papers [185, 186] analyze some 1-parameter families inside
QR

3 (including the example of [20]) and in them it is proved that at most
one critical period may happen. In [166] several two-dimensional regions in
the parameter plane were determined for which the corresponding center
has monotone period function. In the recent paper [124] the behavior of the
period function for X ∈ QR

3 is determined near the saddle loop. Some regions
in the parameter plane were determined, for which the corresponding system
has one or two critical periods near the saddle loop, and the local bifurcation
diagram was given.



Chapter 3

Estimate of the Number of Zeros of
Abelian Integrals

To study the weak Hilbert’s 16th problem by using Abelian integrals, it is crucial to
estimate the number of zeros of the Abelian integral. In this chapter, we introduce
several methods to study the number of zeros of the Abelian integral I(h) given
in (1.10), which is related to the codimension 2 Bogdanov–Takens bifurcation
problem, as we explained in subsection 1.2.2.

3.1 The Method Based on the Picard–Fuchs Equation

Recall that we consider the elliptic Hamiltonian of degree 3 in the form

H(x, y) =
y2

2
− x3

3
+ x, (3.1)

with the continuous family of ovals

{γh} = {(x, y) : H(x, y) = h, −2/3 ≤ h ≤ 2/3}, (3.2)

shown in Figure 2. We denote the corresponding Hamiltonian system by XH .
When h → −2/3 the oval γh shrinks to the center of XH at (−1, 0) while when
h → 2/3 the oval γh terminates at the homoclinic loop with saddle (1, 0). The
perturbation of XH has the form

ẋ = y,
ẏ = −1 + x2 + ε(α + x)y,

(3.3)

where α is a constant and ε is a small parameter. The corresponding Abelian
integral is

I(h) = αI0(h) + I1(h), Ij(h) =
∮

γh

xjy dx, j = 0, 1, 2, . . . (3.4)
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Since the orientation of γh is clockwise, by (3.3), by using the Green’s formula
it is easy to know that I0(h) is the area of the region surrounded by γh, hence
I0(h) > 0 for h > −2/3. Let (ξh, 0) and (ηh, 0) (ξh < −1 < ηh < 1) be the two
intersection points of γh with the x-axis, then by using (3.1) it is easy to find

Ij(h) = 2
∫ ηh

ξh

xjy(x, h) dx, I ′j(h) = 2
∫ ηh

ξh

xj

y(x, h)
dx, (3.5)

where y(x, h) ≥ 0 is determined from H(x, y) = h. Hence, limh→−2/3
I1(h)
I0(h) = −1,

and we may define the function

P (h) =

⎧⎨
⎩

I1(h)
I0(h)

, h ∈ (−2/3, 2/3];

−1, h = −2/3.

(3.6)

Then (3.3) can be written as

I(h) = I0(h)(α + P (h)). (3.7)

We will prove that P ′(h) > 0 for h ∈ (−2/3, 2/3), implying at most one zero of
I(h).

Lemma 3.1. I0(h) and I1(h) satisfy the Picard–Fuchs equation

(9h2 − 4)
d

dh

(
I0

I1

)
=
(

15h
2 7
5 21h

2

)(
I0

I1

)
. (3.8)

Proof. By using (3.5) and the fact that y2 = 2h + 2
3x3 − 2x along γh, we find

Ij(h) =
∫

γh

xjy2

y
dx = 2hI ′j(h) − 2I ′j+1(h) +

2
3
I ′j+3(h). (3.9)

On the other hand, using the formula of integration by parts and the fact
that ydy = (−1 + x2)dx along γh, we get

Ij(h) =
1

j + 1
(I ′j+1(h) − I ′j+3(h)). (3.10)

Removing I ′j+3(h) from (3.9) and (3.10), we obtain

(2j + 5)Ij(h) = 6hI ′j(h) − 4I ′j+1(h).

Taking j = 0, 1, we have

5I0(h) = 6hI ′0(h) − 4I ′1(h),
7I1(h) = 6hI ′1(h) − 4I ′2(h). (3.11)

Note that along γh holds y2dy = (−1 + x2)ydx, which implies I2(h) ≡ I0(h).
Using I ′0(h) instead of I ′2(h) in (3.11), and solving I ′0(h) and I ′1(h) from this equa-
tion, one obtains (3.8). �



3.1. The Method Based on the Picard–Fuchs Equation 129

Theorem 3.2. The function P (h) defined in (3.6) is strictly increasing for h ∈
(−2/3, 2/3).

Proof. By definition (3.6) we have

P ′(h) =
I ′1(h)
I0(h)

− I ′0(h)
I0(h)

P (h).

Substituting (3.8) into the above equality, we obtain the Riccati equation

(9h2 − 4)P ′ = −7P 2 + 3hP + 5,

which is equivalent to the system

dP
dt = −7P 2 + 3hP + 5,
dh
dt = 9h2 − 4.

(3.12)

This system has the invariant lines {h = ±2/3}, and all four singularities of the
system are located on these two lines: a saddle at S−(−2/3,−1) and a node at
N−(2/3,−5/7) on the lower half plane while a saddle at S+(2/3, 1) and a node at
N+(−2/3, 5/7) on the upper half plane. Definition (3.6) shows that the graph of
the function P = P (h) is the stable manifold of the saddle S−, and it must go to

−2/3 O 2/3

h

S+

N+

P = P (h)

P = Q+(h)

S−

N−

P = Q−(h)

P = P̃ (h)

Figure 5. The behavior of the vector field (3.12) and of the function P (h).

the unstable node N− as h increases, since the vector field is upwards on the line
{(h, P ) : P = 0}, see Figure 5 (we need only the lower part of this figure in this
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proof, but we need the upper part in a proof of a lemma in section 3.3). On the
other hand, from the first equation of (3.12) one finds that the horizontal isocline
is given by the hyperbola with two branches P = Q±(h), where Q±(h) = (3h ±√

9h2 + 140)/14. The two branches divide the strip {(h, P ) : −2/3 < h < 2/3}
into three regions, and the vector field (3.12) is downwards on the top and lower
regions, and upwards in the middle region. A direct calculation shows that the
slope of the curve P = P (h) at the point S− is 1/8 while the slope of P = Q−(h)
at the same point is 1/4. Hence the curve P = P (h) is located below P = Q−(h)
near this point, therefore it remains below P = Q−(h) for all h ∈ (−2/3, 2/3), see
Figure 5. This implies P ′(h) > 0, since dP/dt < 0 below the branch P = Q−(h)
and dh/dt < 0 for all h ∈ (−2/3, 2/3). �

Remark 3.3. Since equation (3.12) has only regular singular points at h = ±2/3, it
is of Fuchsian type (see a detailed proof in Lemma 3.8 of section 3.3). A Fuchsian
equation is said to be of Picard–Fuchs type, provided that it possesses a funda-
mental set of solutions which are Abelian integrals, see [68] for example.

3.2 A Direct Method

To prove the monotonicity of the function P = P (h), defined as a ratio of two
Abelian integrals, one may hope to find some direct ways. For example to construct
an auxiliary function defined directly from the Hamiltonian and the integrand
functions, some property of the auxiliary function will give the monotonicity of
the ratio of the two Abelian integrals. The following result from [101] shows this
method under certain restriction on the form of the Hamiltonian.

We first consider the Hamiltonians with the form

H(x, y) = Φ(x) + Ψ(y), (3.13)

where Φ ∈ C2[α, A], Ψ ∈ C2[β, B]. Denote by {γh} the continuous family of ovals
contained in the level curves {(x, y) : H(x, y) = h, h1 < h < h2}. Assume that
there exist an a ∈ (α, A) and a b ∈ (β, B), such that the following hypothesis is
satisfied:

(H1) (i) Φ′(x)(x − a) > 0 (or < 0) for x ∈ (α, A)\{a},
(ii) Ψ′(y)(y − b) > 0 (or < 0) for y ∈ (β, B)\{b}.

This hypothesis implies that the point (a, b) is the center of XH . Suppose that
for each h ∈ (h1, h2), γh cuts the line {y = b} at the points (α(h), b) and (A(h), b)
and cuts the line {x = a} at the points (a, β(h)) and (a, B(h)) respectively, where
α ≤ α(h) ≤ a ≤ A(h) ≤ A, β ≤ β(h) ≤ b ≤ B(h) ≤ B; then for each x ∈ (α(h), a),
there exists a one-to-one mapping x �→ x̃ ∈ (a, A(h)), such that Φ(x) = Φ(x̃); and
for each y ∈ (β(h), b), there exists a one-to-one mapping y �→ ỹ ∈ (b, B(h)), such
that Ψ(y) = Ψ(ỹ).
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Now we consider the ratio of the two Abelian integrals

F (h) =
I2(h)
I1(h)

, Ik(h) =
∮

γh

fk(x)g(y)dx,

where fk(x) ∈ C1(α, A), k = 1, 2, g(y) ∈ C2(β, B).
The hypothesis (H1) implies that Φ(x)Φ′(x̃) < 0 and Ψ(y)Ψ′(ỹ) < 0 for

x ∈ (α(h), a) and y ∈ (β(h), b). We define two auxiliary functions:

ξ(x) =
f2(x)Φ′(x̃) − f2(x̃)Φ′(x)
f1(x)Φ′(x̃) − f1(x̃)Φ′(x)

, η(y) =
(g(ỹ) − g(y))Ψ′(ỹ)Ψ′(y)
g′(ỹ)Ψ′(y) − g′(y)Ψ′(ỹ)

,

where x̃ = x̃(x) and ỹ = ỹ(y) are defined above.
In order to guarantee that the denominators of ξ(x) and η(y) are different

from zero, we need two more hypotheses:
(H2) f1(x)f1(x̃) > 0 for x ∈ (α, a);
(H3) g′(y)g′(ỹ) > 0 for y ∈ (β, b).
Remark that the hypothesis (H2) implies I1(h) �= 0. If f2(x)f2(x̃) > 0 for

x ∈ (α, a), we may use the ratio I1(h)/I2(h) instead of I2(h)/I1(h).

Theorem 3.4 ([101]). Assume that H(x, y) has the form (3.13), and the hypotheses
(H1), (H2) and (H3) are satisfied, then ξ′(x)η′(y) > 0 (resp. < 0) for x ∈ (α, a)
and y ∈ (β, b) implies F ′(h) > 0 (resp. < 0) for h ∈ (h1, h2).

Proof. We just give a main idea of the proof. Consider

I ′2(h)I1(h) − I ′1(h)I2(h)

=
∫ A(h)

α(h)

f2(x)
(

g′(ỹ(x))
Ψ′(ỹ(x))

− g′(y(x))
Ψ′(y(x))

)
dx

∫ A(h)

α(h)

f1(x)(g(ỹ(x)) − g(y(x)))dx

−
∫ A(h)

α(h)

f1(x)
(

g′(ỹ(x))
Ψ′(ỹ(x))

− g′(y(x))
Ψ′(y(x))

)
dx

∫ A(h)

α(h)

f2(x)(g(ỹ(x)) − g(y(x)))dx

=
1
2

∫ A(h)

α(h)

∫ A(h)

α(h)

[G(x1, x2) + G(x2, x1)]dx1dx2,

where y = y(x) and y = ỹ(x) are the two branches of γh, and

G(x1, x2) = (g(ỹ(x2) − g(y(x2)))
(

g′(ỹ(x1))
Ψ′(ỹ(x1))

− g′(y(x1))
Ψ′(y(x1))

)
·(f2(x1)f1(x2) − f2(x2)f1(x1)).

By using the definition of x̃(x) and ỹ(y), and transforming the integration
limits of the double integral from [α(h), A(h)]× [α(h), A(h)] to [α(h), a]× [α(h), a],
we can get the result. �
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Now let us use this theorem for the same problem discussed in the last section.
Recall that we need to prove the monotonicity of the ratio of the two Abelian
integrals P (h) = I2(h)/I1(h), see (3.4). The Hamiltonian is given in (3.1). Hence
in this case we have Φ(x) = x− x3/3 and Ψ(y) = y2/2; (a, b) = (−1, 0); f1(x) ≡ 1
and f2(x) = x; g(y) = y. Hence all the conditions in (H1) − (H3) are satisfied.
And it is obvious that ỹ(y) = −y, which implies η(y) = y2 and η′(y) = 2y < 0,
since y < 0 < ỹ. On the other hand, it is easy to compute

ξ(x) =
(1 + xx̃)
x + x̃

.

Note that (H1) implies dx̃/dx = Φ′(x)/Φ′(x̃) < 0, hence

ξ′(x) =
1

(x + x̃)2

(
(x̃2 − 1) + (x2 − 1)

dx̃

dx

)
< 0,

since x < −1 < x̃ < 1. By Theorem 3.4, we obtain P ′(h) > 0.

Next, we extend the above result to the Hamiltonian of the form

H(x, y) = φ(x)y2 + Φ(x), (3.14)

where φ(x), Φ(x) ∈ C1, and φ(x) has a fixed sign. Without loss of generality, we
may assume φ(x) > 0. Consider the ratio of the Abelian integrals

K(h) =

∫
γh

f2(x)ydx∫
γh

f1(x)ydx
,

where γh is the same as before, and f1(x) and f2(x) are continuous.
If Φ(x) satisfies the hypothesis (H1)(i) and f1(x) satisfies (H2), then we can

define x̃ = x̃(x) by Φ(x) = Φ(x̃) for x < a < x̃ as before, and define

ζ(x) =
f2(x)

√
φ(x̃)Φ′(x̃) − f2(x̃)

√
φ(x)Φ′(x)

f1(x)
√

φ(x̃)Φ′(x̃) − f1(x̃)
√

φ(x)Φ′(x)
,

where x̃ = x̃(x) for α < x < a.

Theorem 3.5 ([101]). Suppose that H(x, y) has the form (3.14), and the hypotheses
(H1)(i) and (H2) are satisfied, then the increasing (resp. decreasing) of ζ(x) for
α < x < a implies the decreasing (resp. increasing) of K(h) for h1 < h < h2.

Remark 3.6. The monotonicity of the two Abelian integrals can give the unique-
ness of limit cycles in a codimension 2 bifurcation problem, as shown above. It is
also often used in higher codimension problems, for example see [40, 41, 42, 43,
82, 15] etc, and we will use it again in Chapter 4.
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3.3 The Method Based on the Argument Principle

In this section we introduce a method to study the number of zeros of Abelian
integrals which use the Argument Principle. G.S. Petrov used this method to study
the perturbations of elliptic Hamiltonian of degree 3 and degree 4 in a series of
papers [130]–[134], hence in some literature it is called Petrov’s Method. We will
use this method to study the same Hamiltonian (3.1), but the Abelian integral
I(h) is obtained by polynomial perturbations of arbitrary degree n. A part of the
proof below is from [183], we will explain it in a remark at the end of this section.

The main result in this section is the following theorem.

Theorem 3.7 ([131, 132]). Any nontrivial I(h), the Abelian integral of the polyno-
mial 1-form of degree at most n over the oval (3.2), has at most n − 1 zeros for
h ∈ (−2/3, 2/3).

We will prove that I(h) can be extended to the following domain D as a
single-valued analytic function.

D = C\{h ∈ R, h ≥ 2/3}.
We still use I(h) for the extended complex function in D. In order to apply the
Argument Principle to I(h), we define G = GR,ε ⊂ D (a simply connected region)
with ∂G = CR,ε a simple closed curve,

CR,ε = {CR} ∪ {Cε} ∪ {L±},
where CR = {h ∈ C, |h| = R � 1}, Cε = {h ∈ C, |h − 2/3| = ε � 1}, and L± are

Re h

Im h

O

CR

L+

L−

Cε

GR,ε

Figure 6. The domain GR,ε and its boundary.

the upper and lower banks of the cut {2/3 ≤ h ≤ R}, see Figure 6.
We first state some lemmas, then prove Theorem 3.7 by using these lemmas,

and finally give proofs of the lemmas.
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Lemma 3.8. I(h) can be extended to D as a single-valued analytic function. More-
over, I0(h) ∼ h5/6, I1(h) ∼ h7/6 for h in a neighborhood of the infinity.

Lemma 3.9 ([183]). Im I0(h) �= 0, Im I1(h) �= 0 for h ∈ L+ ∪ L−.

Lemma 3.10 ([183]). I0(h) �= 0 for h ∈ G\{−2/3}.
Lemma 3.11. Im (I1(h)/I0(h)) �= 0 for h ∈ L+ ∪ L−.

Proof of Theorem 3.7. By Lemma 1.10 (in subsection 1.2.2) the Abelian integral
I(h) can be expressed in the form

I(h) = Q0(h)I0(h) + Q1(h)I1(h), (3.15)

where Q0 and Q1 are polynomials, deg Q0 ≤ [n−1
2 ] = n0, degQ1 ≤ [n

2 ] − 1 = n1,
and Ij(h) are defined in (3.4). Note that n0 + n1 = n − 2. Here we may suppose
that Q0(h) and Q1(h) have no common factors.

By Lemma 3.10, h = −2/3 is the unique zero of I0(h), and the limit of
I1(h)/I0(h) is −1 as h → −2/3 (see (3.6)), hence, instead of I(h) in the above
form, we consider the number of zeros of the function

F (h) = Q0 + (I1/I0)Q1.

Note that the trivial zero of I(h) at h = −2/3 may be removed for F (h). Now
we use the Argument Principle for F (h) to GR,ε, with R and 1/ε positive and big
enough. We will prove that the rotation number of F when h turns around the
boundary of GR,ε is at most n − 1.

By virtue of Lemma 3.8, when the variable h moves counterclockwise along
CR the function F (h) makes at most max(n0, n1 + 1/3) rotations around zero.
By Lemma 3.11 the number of zeros of Im(F ) for h ∈ L+ ∪ L− is at most 2n1.
Since each complete turn of F (h) forces at least two zeros of Im(F (h)) we get
that the number of complete turns on these two banks is at most n1 + 1 (we add
less than one half turn on each bank). Finally, when h moves along Cε clockwise,
the number of complete turns of F goes to 0, when ε → 0, since I1/I0 tends to a
constant when h → 2/3, and Q2

0(2/3) + Q2
1(2/3) �= 0 (Q0(h) and Q1(h) have no

common factors). Summing up the above estimate, we get that the total number
of rotation is at most max(n0 +n1 +1, 2n1 +4/3) = n− 1. Note that the rotation
number must be an integer. �
Proof of Lemma 3.8. We know that I0(h) and I1(h) are real analytic on h ∈
(−2/3, 2/3). To extend them to a complex domain, we first deduce some differen-
tial equations satisfied by them. Rewrite (3.11) as(

I0

I1

)
=
(

6h
5 − 4

5

− 4
7

6h
7

)(
I0

I1

)′
. (3.16)

Taking derivatives with respect to h on both sides, we get( − 1
5 0

0 1
7

)(
I0

I1

)′
=
(

6h
5 − 4

5

− 4
7

6h
7

)(
I0

I1

)′′
. (3.17)
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Substituting (3.17) into (3.16) we obtain

I0 =
4
5

(4 − 9h2) I ′′0 , I1 =
4
7

(9h2 − 4) I ′′1 . (3.18)

It is clear now that if we try to extend h to the complex plane C, then the only
singularities of these two equations are located at h = ±2/3, and the equations are
of Fuchsian type. It is easy to check that near the point h = −2/3 both equations
have solutions in power series

∑∞
k=0 ak(h+2/3)k, which are convergent and ak ∈ C.

This means that the singularity h = −2/3 can be removed, and I0(h) and I1(h)
are holomorphic at this point (we omit the detailed computation). This fact can
also be obtained directly from Lemma 20 of [12]. Near the singularity h = 2/3,
corresponding to the saddle loop Γ of XH , if we restrict to h ∈ (−2/3, 2/3) then
the solutions of the above equations have the form (see [140, 121]):

I0(h) = a0 + b0 (2/3 − h) ln(2/3 − h) + o((2/3 − h) ln(2/3 − h)),
I1(h) = a1 + b1 (2/3 − h) ln(2/3 − h) + o((2/3 − h) ln(2/3 − h)), (3.19)

where a0 =
∮
Γ ydx �= 0 and a1 =

∮
Γ xydx �= 0. A computation shows that in our

case b0 = b1 = 1 and a0b1 − a1b0 �= 0. It is clear that I0(h) and I1(h) can not be
extended to C as a single-valued analytic function, unless we cut a ray, starting
at the point h = 2/3, from C. The first part of the statement of Lemma 3.8 is
proved. Now we still use the same I0(h) and I1(h) for the extended functions on
D.

To study the behavior of these two functions near infinity, we let t = 1/h
and Kj(t) = Ij(h), then I ′′j = t4K̈j + 2t3K̇j , where ′ = d/dh, · = d/dt, and the
first equation in (3.18) becomes

t2 K̈ + 2t K̇ + (5/36 + O(t2))K = 0.

The index ρ satisfies the equation ρ(ρ−1)+2ρ+5/36 = 0, which gives two indices
−1/6 and −5/6. Hence I0(h) ∼ h1/6 or h5/6 as h → ∞. Similarly, we find from
the second equation of (3.18) that I1(h) ∼ h5/6 or h7/6 as h → ∞. Comparing the
coefficients of the leading terms on both sides of (3.16) as h → ∞, we find that
the only possibility is I0(h) ∼ h5/6 and I1(h) ∼ h7/6 as h → ∞. �

Proof of Lemma 3.9. When h ∈ L+ ∪ L−, equation (3.8) is real analytic, hence
(ImI1, ImI0) is a solution of it, and P̃ =ImI1/ImI0 satisfies the same equation
(3.12). By (3.19) we find ImI1/ImI0 → 1 as h ∈ L+ ∪L− and h → 2/3 + 0, which
implies that the graph of P̃ =ImI1/ImI0 is the unstable manifold of the saddle
point S+(2/3, 1) of system (3.12), see Figure 5 in section 3.1. By the same analysis
as in the proof of Theorem 3.2 we conclude that when h > 2/3 this manifold
must stay between the horizontal isocline P = Q+(h) (the upper branch of the
hyperbola) and the ray {(h, P ) : P = 1, h ≥ 2/3}, along which the vector field
(3.12) is upwards. Hence we obtain that 1 < ImI1/ImI0 < ∞ for h ∈ L+∪L−. �
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Proof of Lemma 3.10. We use the same procedure as in the proof of Theorem 3.7
to consider the rotation number of I0(h) when h turns around the boundary of
GR,ε. By using Lemmas 3.8 and 3.9, one can easily obtain that the total rotation
number is not bigger than 5/6 + 1. Since this number is an integer, I0(h) has at
most one zero in G. As we already have I0(−2/3) = 0, hence I0(h) has no other
zeros in G. �

Proof of Lemma 3.11. We suppose the contrary: there exists an h∗ ∈ L+ ∪ L−
such that Im(I1(h∗)/I0(h∗)) = 0, which implies

Re(I0(h∗)) Im(I1(h∗)) − Re(I1(h∗)) Im(I0(h∗)) = 0.

This means the two vectors (Im(I0(h∗)), Im(I1(h∗))) and (Re(I0(h∗)), Re(I1(h∗)))
would be proportional. Note that for h ∈ L+ ∪L−, these two vector functions are
solutions of the real linear differential equation (3.16), hence, being proportional
at one point, they are proportional on the entire banks of the cut, i.e., I1(h)/I0(h)
is real for h ∈ L+ ∪L−. From (3.19) we find that for h ∈ L+ ∪L− and h near 2/3,

Im (I1(h)/I0(h)) ∼ c(a0b1 − a1b0)(2/3 − h),

where c is a non-zero real number. This gives a contradiction. �

Remark 3.12. By using the result in [140], P. Mardesic [121] generalized the con-
clusion about the number of zeros of an Abelian integral in this section to the
conclusion about the number of limit cycles. That is the maximal number of limit
cycles, including the ones bifurcated from the saddle loop, is also n − 1, if the
polynomial perturbation is of degree at most n.

Remark 3.13. We follow the basic idea of Petrov’s proof, but with some changes.
For example, there is a claim without proof in Lemma 6 of [132] that the function
ImI1(h) does not have zeros on the open cut, but this fact is not obvious. So we
use some proofs from [183].

Note that Theorem 3.7 gives the maximal number of zeros of the first vari-
ation of the displacement function (the first order Melnikov function M1(h)). As
discussed in Section 2.2 (Theorem 2.10), the displacement function has the form:

d(h, ε) = εM1(h) + ε2M2(h) + · · · . (3.20)

The following result gives an estimate of arbitrary order of the Melnikov func-
tion for the same Hamiltonian (3.1) under polynomial perturbations of arbitrary
degree n.

Theorem 3.14. The following statements hold.

(A) If M1(h) ≡ 0, then M2(h) has at most 2(n− 1) zeros for n even and at most
2n − 3 zeros for n odd, counting the multiplicities ([93]).
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(B) If Mk(h) is the first Melnikov function in (3.20) which does not vanish identi-
cally, then Mk(h) has no more than k(n−1) zeros, counting the multiplicities.
Moreover, if k ≥ 3 (or k ≥ 2 and n is odd) then Mk(h) has no more than
k(n − 1) − 1 zeros, counting the multiplicities ([81]).

Remark 3.15. In [93] B. Li and Z. Zhang gave results not only for the upper bound
of the number of zeros of the second order Melnikov function, but also extend them
to the maximal number of limit cycles by using the technique from [121] (if M2(h)
does not vanish identically). In [81] I.D. Iliev also mentioned this extension of the
result for k ≥ 3.

In [67] L. Gavrilov and I.D. Iliev studied two-dimensional Fuchsian systems
in a general setting: under certain conditions the function space of the Abelian
integrals obey the Chebyshev property, and there is no need to use the Argument
Principle each time. We briefly introduce their result below.

As in (3.15) we consider functions

I(h) = p1(h)I1(h) + p2(h)I2(h), h ∈ (a, b), (3.21)

where p1(h) and p2(h) are polynomials, I1(h) and I2(h) are complete Abelian
integrals over γh ⊂ H−1(h), defined as before, and the vector function I(h) =
(I1(h), I2(h))T satisfies a two-dimensional first-order Fuchsian system

I(h) = A(h) I′(h), ′ = d/dh, (3.22)

with a first-degree polynomial matrix A(h), as in (3.16).

The main assumptions on (3.22) are the following:

(H1) The matrix A′ is constant having real distinct eigenvalues.

(H2) The equation detA(h) = 0 has real distinct roots h0, h1 and the identity
trace A(h) ≡ (detA(h))′ holds.

(H3) The function I(h) is analytic in a neighborhood of h0.

The conditions that A′ is a constant matrix and detA(h) = 0 has distinct
roots imply that the singular points of the system

I′(h) = A−1(h) I(h)

(including ∞) are regular, i.e., it is of Fuchs type. The condition trace A(h) ≡
(detA(h))′ implies that the characteristic exponents of (3.22) at h0 and h1 are
{0, 1}. In the formulation here it is assumed for definiteness that h0 < h1. A
similar result holds if h0 > h1. Clearly if h0 < h1 and the function I(h) is analytic
in a neighborhood of h = h0, then it also possesses an analytic continuation in the
complex domain C\[h1,∞), as we proved for the special case of Lemma 3.8.

We reformulate the Chebyshev property as follows.
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Definition 3.16 ([67]). The real vector space of functions V is said to be Chebyshev
in the complex domain G ⊂ C provided that every function I ∈ V \{0} has at most
dim V −1 zeros in G. V is said to be Chebyshev with accuracy k in G if any function
I ∈ V \{0} has at most k+dimV − 1 zeros in G.

Definition 3.17 ([67]). Let I(h), h ∈ C be a function, locally analytic in a neigh-
borhood of ∞, and s ∈ R. Write I(h) � hs, provided that for every sector S
centered at ∞ there exists a non-zero constant CS such that |I(h)| ≤ Cs|h|s for
all sufficiently big |h|, h ∈ S.

For systems (3.22) satisfying (H1) and (H2), the characteristic exponents at
infinity are −λ and −µ where λ′ = 1/λ and µ′ = 1/µ are the eigenvalues of the
constant matrix A′. According to (H2), λ + µ = 2. Denote λ∗ = 2 if λ is integer
and λ∗ =max (|λ − 1|, 1 − |λ − 1|) otherwise.

Take s ≥ λ∗ and consider the real vector space of functions

Vs = {I(h) = P (h)I1(h) + Q(h)I2(h) : P, Q ∈ R[h], I(h) � hs},
where I(h) = (I1(h), I2(h))T is a non-trivial solution of (3.22), holomorphic in a
neighborhood of h = h0. As λ, µ /∈ {0, 1, 2} the vector function I(h) is uniquely
determined, up to multiplication by a constant, and I1(h0) = I2(h0) = 0. Clearly,
Vs is invariant under linear transformations in (3.22) and affine changes of the
argument h. The restriction s ≥ λ∗ is taken to guarantee that Vs is not empty.
Recall that h0 < h1 are the roots of det(A(h)) = 0.

Theorem 3.18 ([67]). Assume that conditions (H1)–(H3) hold. If λ /∈ Z, then
Vs is a Chebyshev vector space with accuracy 1 + [λ∗] in the complex domain
G = C\[h1,∞). If λ ∈ Z, then Vs coincides with the space of real polynomials of
degree at most [s] which vanish at h0 and h1.

As an application, we use this theorem for the case discussed in the first part
of the present section. From (3.16) we have that the matrix in (3.22) is

A(h) =
(

6h
5 − 4

5

− 4
7

6h
7

)
.

It is easy to check that all conditions (H1)–(H3) hold, and λ = 5/6. Hence, by
Theorem 3.18, an upper bound of the number of zeros of I(h) = Q0(h)I0(h) +
Q1(h)I1(h) is (n − 1) + 1 = n, since the dimension of the function space in this
case is n (see Lemma 1.10 and the explanation below it). If we remove the trivial
zero at h0 (in the proof of Theorem 3.7 the zero at h0 = −2/3 is removed), then
the upper bound is n − 1.

3.4 The Averaging Method

In this section we briefly introduce an application of the averaging method to the
study of the weak Hilbert’s 16th problem in [112] and [10]. Although this study
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is equivalent to the study by using Abelian integrals, in some cases one of them
is more convenient than the other. We first state some general theorems on the
averaging method, then use this method to study the quadratic perturbations of
a quadratic reversible and non-Hamiltonian system.

The setting of averaging theory is in general in an arbitrary dimensional
space. Since we will use it in an autonomous planar system, we will state it in
one-dimensional form. The following theorem gives a first order averaging; for a
proof, see [147].

Theorem 3.19. Consider the two initial value problems

ẋ = εf(t, x) + ε2h(t, x, ε), x(0) = x0, (3.23)

and
ẏ = εf0(y), y(0) = x0, (3.24)

where x, y, x0 ∈ D, D is an open subset of R, t ∈ [0,∞), ε ∈ (0, ε0], f and h are
periodic of period T in t, and

f0(y) =
1
T

∫ T

0

f(t, y)dt. (3.25)

Suppose that

(i) f, ∂f/∂x, ∂2f/∂x2 and ∂h/∂x are defined, continuous and bounded by a con-
stant independent of ε in [0,∞) × D and ε ∈ (0, ε0];

(ii) T is independent of ε;

(iii) y(t) belongs to D on the time-scale 1/ε.

Then the following statements hold.

(a) On the time-scale 1/ε we have that

x(t) − y(t) = O(ε), as ε → 0.

(b) If p is an equilibrium of the averaging system (3.24) such that

∂f0/∂y|y=p �= 0, (3.26)

then there exists a T -periodic solution φ(t, ε) of equation (3.23) which is close
to p such that φ(t, ε) → p as ε → 0.

(c) If (3.26) is negative, then the corresponding periodic solution φ(t, ε) in the
space (t, x) is asymptotically stable for ε sufficient small. If (3.26) is positive,
then it is unstable.

The next theorem provides a second order averaging; see [147] and [112] for
a proof.
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Theorem 3.20. Consider the two initial value problems

ẋ = εf(t, x) + ε2g(t, x) + ε3h(t, x, ε), x(0) = x0, (3.27)

and
ẏ = εf0(y) + ε2f10(y) + ε2g0(y), y(0) = x0, (3.28)

with f, g:[0,∞) × D → G : [0,∞) × D × (0, ε0] → R, D an open subset of R, f, g
and h periodic of period T in t, and

f1(t, x) =
∂f

∂x
y1(t, x) − ∂y1

∂x
f0(x),

where

y1(t, x) =
∫ t

0

(f(s, x) − f0(x))ds + z(x),

with z(x) a C1 function such that the averaging of y1 is zero. Besides, f0, f10 and
g0 denote the averaging functions of f, f1 and g, respectively, defined as in (3.25).
Suppose that

(i) ∂f/∂x is Lipschitz in x and all these functions are continuous on their do-
main of definition;

(ii) |h(t, x, ε)| is bounded by a constant uniformly in [0, L/ε)× D × (0, ε0];

(iii) T is independent of ε;

(iv) y(t) belongs to D on the time-scale 1/ε.

Then

(a) On the time-scale 1/ε we have that

x(t) = y(t) + εy1(t, y(t)) + O(ε2), as ε → 0.

If, in addition, f0(y) ≡ 0, then the following statements hold.

(b) If p is an equilibrium of the averaging system (3.28) such that

∂

∂y
(f10(y) + g0(y))

∣∣∣∣
y=p

�= 0, (3.29)

then there exists a T -periodic solution φ(t, ε) of equation (3.27) which is close
to p such that φ(t, ε) → p as ε → 0.

(c) If (3.29) is negative, then the corresponding periodic solution φ(t, ε) in the
space (t, x) is asymptotically stable for ε sufficient small. If (3.29) is positive,
then it is unstable.
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Now we consider a perturbation of a planar integrable system of the form

Xε : ẋ = P (x, y) + ε p(x, y),
ẏ = Q(x, y) + ε q(x, y), (3.30)

where P, Q, p, q ∈ C1(R2, R). We suppose that X0 has an integrating factor
µ(x, y) (�= 0), a first integral H and a continuous family of ovals {γh}:

γh ⊂ {(x, y) : H(x, y) = h, h1 < h < h2}. (3.31)

To study the number of limit cycles of system (3.30) for sufficiently small
ε by using the above theorems, a natural question is how do we transform this
system to the form (3.23) or (3.27). The following result gives an answer.

Theorem 3.21 ([10]). Assume that xQ(x, y) − yP (x, y) �= 0 for all (x, y) in the
period annulus formed by the ovals {γh}. Then there is a continuous function
ρ : (

√
h1,

√
h2) × [0, 2π) → [0,∞) such that

H(ρ(R, ϕ) cos ϕ, ρ(R, ϕ) sin ϕ) = R2, (3.32)

for all R ∈ (
√

h1,
√

h2) and all ϕ ∈ [0, 2π), and the differential equation which
describes the dependence between the square root of energy, R =

√
h, and the

angle ϕ for system (3.30) is

dR

dϕ
= ε

µ (x2 + y2)(Qp − Pq)
2R(Qx − Py)

(
1 − ε

qx − py

Qx − Py

)
+ O(ε3), (3.33)

where x = ρ(R, ϕ) cosϕ and y = ρ(R, ϕ) sin ϕ.

Example ([10]). Consider

ẋ = −y + x2 + ε p(x, y),
ẏ = x + xy + ε q(x, y), (3.34)

where p(x, y) = a1x−a3x
2 +(2a2+a5)xy+a6y

2 and q(x, y) = a1y+a2x
2 +a4xy−

a2y
2.

Note that when ε = 0 system (3.34) is reversible and non-Hamiltonian (the
center is isochronous), which has the first integral

H(x, y) =
x2 + y2

(1 + y)2
,

and the integrating factor is 2(1 + y)−3. We use Theorem 3.21 and taking the
transformation x = ρ cosϕ, y = ρ sinϕ, where

ρ = ρ(R, ϕ) =
R

1 − R cosϕ
, 0 < R < 1, ϕ ∈ [0, 2π),
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then system (3.34) becomes

dR

dϕ
= ε

a1R + a(ϕ)R2 + b(ϕ)R3

1 − R sin ϕ
+ O(ε2),

where
a(ϕ) = (−2a1 + 3a2 + a5) sin ϕ + (a4 + a6) cosϕ

−(4a2 + a5) sin3 ϕ − (a3 + a4 + a6) cos3 ϕ,
b(ϕ) = a1 + a2 − (a1 + 2a2) cos2 ϕ − a4 sinϕ cosϕ.

By integration one has the averaging function

f0(R) =
1
2π

∫ 2π

0

a1R + a(ϕ)R2 + b(ϕ)R3

1 − R sin ϕ
dϕ

=
1

2(R
√

1 − R2)
[2a2R

4 + (6a2 + a5 − 2a1)R2
√

1 − R2 − (10a2 + 2a5)R2

−(2a5 + 8a2)
√

1 − R2 + 8a2 + 2a5].

Note that R ∈ (0, 1). By the substitution ξ =
√

1 − R2 it is not hard to find that
f0(R) has at most two zeros for R ∈ (0, 1). Hence the system (3.34) has at most
two limit cycles for ε sufficiently small.

Before closing this chapter, we remark that the methods introduced in this
chapter mainly remain in the real domain (except for the use of the Argument
Principle). There is also a method based on complexification of the Abelian inte-
grals. The basic construction, see [4] for example, is the following. Consider the
Hamiltonian function H ∈ C[x, y] as a map C2 → C, and define the Abelian inte-
gral as an integral of the complex polynomial 1-form over some cycle on the level
set H−1(h) (a 1-dimensional complex manifold). This permits us to construct the
monodromy map, and it is possible to apply the Picard–Lefschetz formula and
to use the tools of algebraic topology. We list some works below in which this
complex method was successfully applied. In [85] Yu. Ilyashenko studied the codi-
mension two Bogdanov–Takens bifurcation (the same problem introduced in this
chapter). In [122] P. Mardesic gave an explicit bound for the multiplicity of zeros
of Abelian integrals under certain generic assumptions. In [64] L. Gavrilov studied
the quadratic perturbation of quadratic Hamiltonian systems (the weak Hilbert’s
16th problem for n = 2). In [126] D. Novikov and S. Yakovenko gave an explicit
upper bound of the polynomial perturbations of the hyperelliptic Hamiltonian
under some generic condition. For a more detailed introduction of this complex
theory we refer to an early work of Yu. Ilyaskenko [84], the lecture notes [169] and
the forthcoming book by Yu. Ilyashenko and S. Yakovenko [90].



Chapter 4

A Unified Proof of the Weak Hilbert’s
16th Problem for n=2

4.1 Preliminaries and the Centroid Curve

As we explained in Subsection 1.2.1, any cubic generic Hamiltonian, with at least
one period annulus contained in its level curves, can be transformed into the
normal form

H(x, y) =
1
2
(x2 + y2) − 1

3
x3 + axy2 +

1
3
by3, (4.1)

where a, b are parameters lying in the open region

G =
{

(a, b) : −1
2

< a < 1, 0 < b < (1 − a)
√

1 + 2a

}
. (4.2)

Figure 1 (in Subsection 1.2.1) shows all five possible phase portraits of XH in the
generic cases. Here XH is the Hamiltonian vector field corresponding to H , i.e.,

XH = Hy
∂

∂x
− Hx

∂

∂y
. (4.3)

The vector field XH has a center at the origin in the (x, y)-plane, and the contin-
uous family of ovals, surrounding the center, is

{γh} ⊂ {(x, y) : H(x, y) = h, 0 < h < 1/6}. (4.4)

The oval γh shrinks to the center as h → 0, and the oval γh terminates at the
saddle loop of the saddle point (1, 0) when h → 1/6.

We consider any quadratic perturbation of XH , i.e.,

Xε = XH + εYε, (4.5)

where
Yε = f(x, y, ε)

∂

∂x
+ g(x, y, ε)

∂

∂y
,
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with f and g polynomials in x and y of degree 2, and their coefficients depend
analytically on the parameter ε.

In this chapter we will study the Abelian integral

I(h) =
∮

γh

f(x, y, 0)dy − g(x, y, 0)dx, (4.6)

and prove the following theorem (see subsection 1.2.1 and [15]).

Theorem 4.1. For any cubic polynomial H with (a, b) ∈ G and any quadratic
polynomials f and g, the least upper bound of the number of zeros of the Abelian
integrals (4.6) is 2.

Since the orientation of the integral over γh is clockwise, and f and g are
polynomials in x and y of degree 2, we may rewrite the integral (4.6) into the form

I(h) = −
∫∫

Int(γh)

(
∂f

∂x
+

∂g

∂y

)∣∣∣∣
ε=0

dxdy =
∫∫

Int(γh)

(α + βx + γy) dx dy, (4.7)

where α, β and γ are arbitrary constants. Following the notation of [74], we define

M(h) =
∫∫

Int(γh)
dx dy, X(h) =

∫∫
Int(γh)

xdx dy,

Y (h) =
∫∫

Int(γh)
y dx dy, K(h) =

∫∫
Int(γh)

xy dx dy.

Since M(h) is the area of Int(γh) and M ′(h) is the period of γh, we have that
M(h) > 0 and M ′(h) > 0 for h ∈ (0, 1/6). Hence (4.7) can be written as

I(h) = αM(h) + βX(h) + γY (h) = M(h) [α + βp(h) + γq(h)] , (4.8)

where

p(h) =
X(h)
M(h)

, q(h) =
Y (h)
M(h)

. (4.9)

The following results are easily obtained from the definitions of I(h), p(h)
and q(h). The second claim of statement (3) was first proved in Theorem 2.4 of
[74], see also Lemma 4.1 of [102].

Lemma 4.2. For any (a, b) ∈ G we have:

(1) I(0) ≡ 0 for any constants α, β and γ.

(2) p(0) = limh→0+0 p(h) = 0 and q(0) = limh→0+0 q(h) = 0.

(3) 0 < p(h) < 1 and q(h) < 0 for h ∈ (0, 1/6].

(4) p, q ∈ C∞ [0, 1/6)
⋃

C0 [0, 1/6] .

Note that in the (x, y)-plane the point (p(h), q(h)) is the coordinate of the
center of mass of Int(γh) with uniform density, so following [74] we give the defi-
nition below.
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Definition 4.3. In the (p, q)-plane for (a, b) ∈ G the curve

Σa,b = {(p, q) : p = p(h), q = q(h), 0 ≤ h ≤ 1/6} (4.10)

is called a centroid curve.

The geometric meaning of this curve is that for any fixed (a, b) ∈ G, the pa-
rameter h gives a point on Σa,b, which is the center of mass of Int(γh) if we identify
the (p, q)-plane with the (x, y)-plane. Hence, it is natural that (p(h), q(h)) → (0, 0)
as h → 0; and (p(1/6), q(1/6)) is the center of mass of the region surrounded by
the saddle loop γ1/6.

It is obvious from (4.8) that for any constants α, β and γ the number of zeros
of I(h) for h > 0 (counting the multiplicities) equals the number of intersection
points (counting the multiplicities) of the curve Σa,b with the straight line

Lαβγ : α + βp + γq = 0 (4.11)

in the (p, q)-plane, where β2 + γ2 �= 0.

Definition 4.4. A plane curve is called sectorial, if it is smooth, and when running
it, the tangential vector rotates through an angle less than π.

If XH has only one period annulus, then Theorem 4.1 follows from the fol-
lowing result.

Theorem 4.5. For any (a, b) ∈ G the curve Σa,b is sectorial, and is strictly convex
with non-zero curvature.

For (a, b) ∈ G2, XH has two period annuli, hence there are two centroid
curves Σi

a,b for i = 1, 2. To finish the proof of Theorem 4.1, we also need the
following result, which was first proved in [76] based on some other results, and
we will give a direct proof in the last section of this chapter.

Theorem 4.6. For any (a, b) ∈ G2 both centroid curves are strictly convex with
non-zero curvature, and any straight line cuts Σ1

a,b ∪ Σ2
a,b at most at two points,

counting the multiplicities.

4.2 Basic Lemmas and the Geometric Proof of the

Result

Computation shows that it is impossible to deduce a third order Picard–Fuchs
equation satisfied by M(h), X(h) and Y (h). In fact, it is necessary to add one
more function, for example K(h) =

∫∫
Int(γh) xy dx dy, then one may deduce a

Picard–Fuchs equation of order 4. Thus, it is very difficult to study the global
behavior of the curve Σa,b, by using this Picard–Fuchs equation directly, except
for some of its local properties for h near 0 and near 1/6, shown in the following
result.
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Lemma 4.7. For any (a, b) ∈ G the curvature of Σa,b near its two endpoints is
non-zero.

This result is equivalent to saying that for a generic quadratic Hamiltonian
system the order of the Hopf bifurcation and of the homoclinic bifurcation is at
most 2, and it basically follows from [7] and [75], respectively.

Taking the derivative on I(h) twice, we get

I ′′(h) = αM ′′(h) + βX ′′(h) + γY ′′(h) = M ′′(h)
[
α + βν(h) + γω(h)

]
, (4.12)

where

ν(h) =
X ′′(h)
M ′′(h)

, ω(h) =
Y ′′(h)
M ′′(h)

. (4.13)

Note that M ′(h) is the period function of γh and it is monotone for quadratic
Hamiltonian vector fields (see [34]), hence M ′′(h) �= 0. By our choice of h, we have
M ′′(h) > 0. We define the curve in the (ν, ω)-plane

Ωa,b =
{(

ν, ω
)
(h) : 0 ≤ h ≤ 1/6

}
. (4.14)

Hence the number of zeros of I ′′(h) equals the number of intersection points (count-
ing multiplicities) of the curve Ωa,b with the straight line

L′
αβγ : α + βν + γω = 0 (4.15)

in the (ν, ω)-plane.

Lemma 4.8. For any (a, b) ∈ G the following statements hold, which imply the
regularity of the curve Ωa,b.

(1)
[
ω′(h)

]2 +
[
ν′(h)

]2 �= 0 for h ∈ (0, 1/6), and

(2) (ν, ω)(h1) �= (ν, ω)(h2) for h1 �= h2 and h1, h2 ∈ [0, 1/6].

To prove Theorem 4.5, we suppose the contrary: for some (a, b) ∈ G the curve
Σa,b has zero curvature at some points, and we denote by (p, q)(h∗) the nearest
such point to the endpoint (p, q)(0). By Lemma 4.7, h∗ ∈ (0, 1/6). Now we denote
the arc of Σa,b from h = 0 to h = h∗ by Σ∗

a,b. We will prove the following property
of Σ∗

a,b.

Lemma 4.9. For any (a, b) ∈ G the following statements hold.

(1) Along Σ∗
a,b for h ∈ (0, h∗) we have

d2q

dp2
> 0, k0(a, b) <

dq

dp
< k1(a, b), (4.16)

where

k0(a, b) = lim
h→0

dq

dp
=

b

a − 1
< 0, k1(a, b) = lim

h→1/6

dq

dp
=

−q(1/6)
1 − p(1/6)

> 0.

(4.17)
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(2) The curve Σ∗
a,b is smooth and p′(h) > 0 for h ∈ [0, h∗].

If such h∗ does not exist, then the above statements hold along Σa,b for h ∈ (0, 1/6).

One of the crucial steps in this proof is to identify the (p, q)-plane with the
(ν, ω)-plane, hence the two straight lines Lαβγ and L′

αβγ are identified. We denote
the set of tangent lines to Σa,b (resp. Ωa,b) by TΣa,b

(resp. TΩa,b
), that is

TΣa,b
= {ξh : the tangent line to Σa,b at (p, q)(h), h ∈ [0, 1/6]} , (4.18)

TΩa,b
= {ηh : the tangent line to Ωa,b at (ν, ω)(h), h ∈ [0, 1/6]} . (4.19)

We will prove

Lemma 4.10. For any (a, b) ∈ G we have :

(1) ξt ∩ Ωa,b �= ∅ for any t ∈ (0, 1/6).

(2) ξ0 ∩ Ωa,b = {(ν, ω)(0)}, ξ1/6

⋂
Ωa,b = {(ν, ω)(1/6)}, and the crossing is

transversal.

(3) {(ν, ω)(0) ∪ (ν, ω)(1/6)}⋂ ξh = ∅ for any ξh ∈ TΣ∗
a,b

and any h ∈ (0, h∗].

(4) Σ∗
a,b and Ωa,b have no common tangent line.

Now, assuming Lemmas 4.7–4.10 we may give a proof of the basic Theorem
4.5.

Proof of Theorem 4.5. If Σa,b is not globally convex with non-zero curvature for
all (a, b) ∈ G, then there exists a (a∗, b∗) ∈ G and an h∗ ∈ [0, 1/6] such that
the curvature of Σa∗,b∗ at h∗ is zero. By Lemma 4.7, h∗ ∈ (0, 1/6) and we may
choose it in such a way that it is the nearest one to the endpoint (p, q)(0) with zero
curvature. Lemma 4.9 implies the sectorial and convexity property (with non-zero
curvature) of the curve Σ∗

a∗,b∗ (i.e., a piece of the curve Σa∗,b∗ with h restricted
to [0, h∗)). We move ξt ∈ TΣ∗

a∗,b∗ with the tangent point (p, q)(t) along Σ∗
a∗,b∗ as t

increases from 0 to h∗, and consider the number of intersection points of ξt∩Ωa∗,b∗ .
By Lemma 4.10 (1) and (2) and Lemma 4.7, ξt ∩ Ωa∗,b∗ consists of exactly one
point if 0 < t � 1, counting its multiplicity. As we have supposed that Σ∗

a∗,b∗ has
zero curvature at h = h∗ ∈ (0, 1/6), by taking Lαβγ = ξh∗ the function I(h) has at
least a triple zero at h = h∗ plus a zero at h = 0 (Lemma 4.2 (1)), this implies that
ξh∗ ∩Ωa∗,b∗ consists of at least two points. By Lemma 4.10 (2),(3) and Lemma 4.9,
the two endpoints of Ωa∗,b∗ stay on different sides of ξh for all h ∈ (0, h∗]. Hence,
the increase in the number of intersection points of ξt ∩Ωa∗,b∗ , as t increases from
0 to h∗, causes the existence of an h′ ∈ (0, h∗) such that ξh′ ∈ TΣ∗

a∗,b∗ is also
tangent to Ωa∗,b∗ . This contradicts Lemma 4.10 (4). �

Before proving the lemmas, we give a more geometric explanation of the
above proof. By Lemma 4.2 for any α, β and γ we have I(0) = 0. If we choose
Lαβγ such that it is tangent to Σa,b at a point (p, q)(t), then the graph of I(h)
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O Ot t̃
t̃

h∗

I(h)I(h)

hh

(a) (b)

Figure 7. The behavior of curves I(h).

has at least one inflection point at some value t̃ ∈ (0, t), see Figure 7 (a). In
other words, in the identified (p, q)- and (ν, ω)-plane, the tangent line ξt to Σa,b at
(p, q)(t) must cross the curve Ωa,b at a point (ν, ω)(t̃) with 0 < t̃ < t, see Figure 8.

O

q, ω

p, ν

Σa,b
M

ξ1/6

ξ0

ξt

Ωa,b

A

B

C

D

Figure 8. The relative positions of Σa,b, Ωa,b and ξt.

If h∗ is the (first) zero-curvature point on Σa,b, then h∗ is at least a triple zero of
I(h), hence the graph of I(h) has at least two inflection points at h∗ and at some
value t̃ ∈ (0, h∗), see Figure 7 (b). This means that the tangent line ξt = Lαβγ of
Σa,b crosses the curve Ωa,b at least at two points. Lemma 4.10 tells us that the
tangent line ξ0 (to Σa,b at the endpoint (p, q)(0) = (0, 0)) crosses Ωa,b at its (left)
endpoint A while the tangent line ξ1/6 (to Σa,b at the endpoint M = (p, q)(1/6))
crosses Ωa,b at its (right) endpoint B, and when t moves from 0 to 1/6, the two
points A and B always stay (respectively) below and above the tangent line ξt.
Hence the increasing of the number of intersection points of ξt with Ωa,b must be
through a position that ξt is also tangent to Ωa,b. But Lemma 4.10 (4) excludes
this possibility, hence the transversality of ξt with Ω for 0 ≤ t � 1 remains true for
all t ∈ [0, 1/6], and this implies the non-zero curvature along Σa,b for all (a, b) ∈ G.
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4.3 The Picard–Fuchs Equation and the
Riccati Equation

When (a, b) ∈ G\l∞, by using a standard method, such as in Section 3.1, one can
obtain the following Picard–Fuchs equation of order 4, satisfied by X(h), Y (h),
M(h) and K(h) (see Lemma 3.3 of [74]):

−6bhM ′ + bX ′ − (a + 1)Y ′ − 2a(a + 1)K ′ + 4bM = 0,

(6λh + a + 1)Y ′ + (4a(a + 1)2 − λ)K ′ + b(a + 1)M − 6λY = 0,

bλ(6h − 1)X ′ + a(λ − 2a(a + 1))Y ′ + ((4a2 + 3a + 1)λ
−8a3(a + 1)2)K ′ − 6bλX + b(λ − 2a2(a + 1))M = 0,

((1 − 6h)λ2 − (8a3 + 12a2 + 5a + 1)λ + 16a3(a + 1)3)K ′ + a(4a(a + 1)2 − λ)
·(Y ′ + bM) + λ(−(a + 1)bX + 8λK + (4a2(a + 1) − λ)Y ) = 0,

(4.20)
where ′ = d

dh , and λ = 4a3 − b2. Note that λ = 0 corresponds to (a, b) ∈ l∞, and
in this case the last three equations in (4.20) are not independent, and a Picard–
Fuchs equation of order 3, similar to (4.20), can be obtained (K(h) and K ′(h)
do not appear). Hence the results, parallel to Lemma 4.11 and equation (4.25) in
this section, can be obtained for λ = 0. In fact, they are limits as λ → 0 of the
corresponding results here. Hence the discussions are valid for all (a, b) ∈ G.

For simplicity we use the notation

λ1(a, b) = (1 − a)2(2a + 1) − b2, λ2(a, b) = (3a + 1)2 + b2,
λ3(a, b) = (3a − 1)2 + 5b2 + 4.

(4.21)

Note that λ1(a, b) > 0 for (a, b) ∈ G. The following result follows from (4.20) (see
the proof of Lemma 2 of [40] or Lemma 3.3 of [74]).

Lemma 4.11. For 0 < h � 1 we have

p(h) = 1
2 (1 − a)h + 1

72 [−5(11a + 1)b2 − (a − 1)(63a2 + 18a + 55)]h2 + O(h3),
q(h) = − b

2h + b
72 (−55b2 − 183a2 + 42a + 5)h2 + O(h3).

Lemma 4.12. For (a, b) ∈ G we have:

(1) limh→0+0
dq

dp
=

b

a − 1
< 0.

(2) limh→0+0
d2q

dp2
=

20
3

bλ1(a, b)
(1 − a)3

> 0.

(3) limh→1/6−0
dq

dp
= − q(1/6)

1 − p(1/6)
> 0.

Proof. Statements (1) and (2) are easily deduced from Lemma 4.11. Statement
(3) can be proved by using the expansions of M(h), X(h) and Y (h) in h near 1/6
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as follows,

c1 + c2(h − 1/6) ln(1/6 − h) + c3(h − 1/6) + o(h − 1/6),

see [140] or (1.8) of [74]. �

Taking derivatives with respect to h in the first three equations of (4.20),
and removing M ′, we can express X ′′, K ′′ through M ′′, Y ′′ as follows,

X ′′ = d1(h)M ′′ + d2(h)Y ′′,
K ′′ = d3(h)M ′′ + d4(h)Y ′′, (4.22)

where

d1(h) =
6λ1(a, b)h

L(h)
,

d2(h) =
[12(3a2 + 2a + 1)b2 − 24a3(3a + 1)(a − 1)]h + (a − 1)λ2(a, b)

bL(h)
,

d3(h) =
−6b(a + 1)(6h − 1)h

L(h)
,

d4(h) =
6[12(4a3 − b2)h + b2 − 6a3 − 3a2 + 1]h

L(h)
,

L(h) = 12(a3 − 6a2 − 3a − b2)h + λ2(a, b).

(4.23)

Note that L(0) > 0, L(1/6) = λ1(a, b) > 0 (see (4.21)), hence the linear function
L(h) �= 0 for all h ∈ [0, 1/6].

Taking derivatives in (4.20) with respect to h once more, and using (4.22)
we get

T (h)
d

dh

(
M ′′

Y ′′

)
=
(

e1(h) e2(h)
e3(h) e4(h)

)(
M ′′

Y ′′

)
, (4.24)

where

T (h) = −6bh(6h− 1)L(h)T̄ (h),
T̄ (h) = 36(4a3 − b2)2h2 − 6[b4 + 2(6a2 + 3a + 1)b2 + 8a3(3a + 1)]h + λ2(a, b),

and

ei(h) =
4∑

k=0

eikhk,

with eik polynomials in a and b. We omit their expressions here; our readers can
find them in [15].

From the definition of ω(h) (see (4.13)), we have

ω′(h) =
(Y ′′(h))′

M ′′(h)
− (M ′′(h))′

M ′′(h)
ω(h).
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Combining this fact with (4.24), we obtain a 2-dimensional system of equations

ḣ = T (h), ω̇ = φ(h, ω), (4.25)

where φ(h, ω) = −e2(h)ω2 + (e4(h) − e1(h))ω + e3(h), and the dot denotes the
derivative with respect to an arbitrary variable s. Note that system (4.25) is equiv-
alent to a Riccati equation with dependent variable ω and independent h.
Remark 4.13. We note that T (h) �= 0 for h ∈ (0, 1/6), hence system (4.25) has no
singularities for h ∈ (0, 1/6). In fact, we have shown that L(h) has no zeros for
h ∈ (0, 1/6). If (a, b) ∈ G1, then T̄ (h) has no real roots. If (a, b) ∈ G2∪G3∪ l2∪ l∞,
then the roots of T̄ (h) correspond to other singularities of XH , besides the center
O(0, 0) and the saddle S(1, 0). By the monotonic property of the level curves of
the Hamiltonian vector field and the relative positions of the singularities, we
immediately obtain that the roots of T̄ (h) must be greater than 1/6.

By Remark 4.13 and direct computations we obtain the following result.

Lemma 4.14. For h ∈ [0, 1/6] system (4.25) has 4 singularities: two improper nodes
at (0, 0) and (1/6, 0) and two hyperbolic saddles at (0, ω0) and (1/6, ω1), where

ω0 =
−6b

λ3(a, b)
< 0, ω1 =

−6b(2a + 1)
5b2 − 82a3 − 93a2 − 36a− 5

. (4.26)

When 5b2 − 82a3 − 93a2 − 36a− 5 → 0, the singularity (1/6, ω1) goes to infinity.

We recall that an improper node is a node such that all the orbits arrive to
or exit from it in one direction.

Let

Cω = {(h, ω) : 0 ≤ h ≤ 1/6, ω = ω(h) is defined in (4.13)} . (4.27)

The following lemma can be proved in the same way as the proof of Lemma
3.1 in [102], except statement (2) which is a consequence of Lemma 4.21 below.
Statement (1) of the next lemma shows that Cω is the unstable manifold from the
saddle (0, ω0) to the improper node (1/6, 0) of system (4.25).

Lemma 4.15. (1) limh→0+0 ω(h) = ω0, limh→1/6−0 ω(h) = 0.

(2) ω(h) < 0 for h ∈ (0, 1/6).

(3) limh→0+0 ν(h) = ν0, limh→1/6−0 ν(h) = 1, where

ν0 =
6(1 − a)
λ3(a, b)

> 0. (4.28)

(4) We have

lim
h→0+0

ω′(h) =
5
2

bf1(a, b)
(λ3(a, b))2

, lim
h→0+0

ν′(h) =
5
2

f2(a, b)
(λ3(a, b))2

,
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lim
h→0+0

[ω′′(h)ν′(h) − ω′(h)ν′′(h)] =
175
6

bλ1(a, b)λ2(a, b)f3(a, b)
(λ3(a, b))3

,

where

f1(a, b) = 7b4 + (42a2 + 60a− 70)b2 − (189a4 − 180a3 + 174a2 + 12a− 67),
f2(a, b) = (7a − 67)b4 + (162a3 − 270a2 − 58a + 70)b2 + (a − 1)(3a + 1)

·(9a3 − 27a2 − 21a + 7),
f3(a, b) = 55b4 + (126a2 − 204a− 106)b2 − 81a4 + 324a3 + 162a2 − 204a + 55.

(5) We have

lim
h→1/6−0

ν′(h)
ω′(h)

= − (2a + 1)(3a + 1)
b

. �

From (4.22) and definition (4.13) we obtain the expression of ν(h) as a func-
tion of h and ω(h) as follows

ν(h) = d1(h) + d2(h)ω(h), (4.29)

where di(h) = di(h; a, b), i = 1, 2 are given in (4.23).
We consider the following transformation from the (h, ω)-plane to the (ν, ω)-

plane:
ν = d1(h) + d2(h)ω, ω = ω. (4.30)

It is easy to see that (4.30) maps the straight line {(h, ω) : h = h0} (h0 ∈ [0, 1/6])
in the (h, ω)-plane to a straight line in the (ν, ω)-plane. In particular, it maps
{(h, ω) : h = 0} to L0, and maps {(h, ω) : h = 1/6} to L3, where

L0 =
{
(ν, ω) : ν =

a − 1
b

ω
}
, L3 =

{
(ν, ω) : ν = − (2a + 1)(3a + 1)

b
ω + 1

}
.

(4.31)
We note that if a = 0, then L0 is parallel to L3, and if a �= 0, then L0 ∩ L3 =
{(ν̂, ω̂)}, where

ν̂ =
a − 1

6a(a + 1)
, ω̂ =

b

6a(a + 1)
. (4.32)

Let
Da,b = {(h, ω) ∈ R2 : 0 ≤ h ≤ 1/6; −∞ < ω < ∞ if a = 0,

−∞ < ω < ω̂ if a > 0, ω̂ < ω < ∞ if a < 0}.
Correspondingly, let D′

a,b be the region in the (ν, ω)–plane, which is the strip
− 1

b ω ≤ ν ≤ − 1
b ω + 1 if a = 0; and is the corresponding sector region, limited

by the two straight lines L0 and L3 with vertex at (ν̂, ω̂) if a �= 0, see Figure 9.
Note that the vertex (ν̂, ω̂) is not included in D′

a,b. The Jacobian of transformation
(4.30),

D(ν, ω)
D(h, ω)

= d′1(h) + d′2(h)ω = −6λ1(a, b)λ2(a, b)[6a(a + 1)ω − b]
bL2(h)

,
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Figure 9. From Da,b to D′
a,b through the transformation (4.30).

is non-zero if a = 0, and is zero only for ω = ω̂ if a �= 0. Hence, we immediately
have the following result.

Lemma 4.16. For any (a, b) ∈ G the transformation (4.30) from Da,b to D′
a,b is a

smooth diffeomorphism. Hence, system (4.25) in Da,b becomes the smooth system

ν̇ = ϕ1(ν, ω), ω̇ = ϕ2(ν, ω), (4.33)

in D′
a,b.

From Remark 4.13, Lemmas 4.14 and 4.16 we obtain the following result.

Lemma 4.17. For (a.b) ∈ G we have

(1) Any orbit of system (4.25), especially Cω, is transversal to all lines {h =
h0, h0 ∈ [0, 1/6)} in Da,b.

(2) Any orbit of system (4.33), especially Ωa,b, is transversal to all straight lines
between L0 and L3 in D′

a,b, the lines are parallel if a = 0, or are in the
sectorial region with vertex (ν̂, ω̂) if a �= 0, see Figure 9.

We denote by L∗
αβγ the part of the straight line L′

αβγ in the (ν, ω)-plane,
which is contained in D′

a,b. Let CU = {(h, ω) : 0 ≤ h ≤ 1/6, ω = U(h)} where

U(h) = U(h; a, b, α, β, γ) =
Z(h)
N(h)

≡ z1h + z0

n1h + n0
, (4.34)

with

z1 = 6b[2(b2 − a3 + 6a2 + 3a)α − λ1(a, b)β],
z0 = −bαλ2(a, b),
n1 = 12b(a3 − 6a2 − 3a− b2)γ + [12(3a2 + 2a + 1)b2 − 24a3(3a + 1)(a − 1)]β,
n0 = λ2(a, b)[(a − 1)β + bγ].

Lemma 4.18. For any (a, b) ∈ G and any constants α, β and γ, L∗
αβγ is tangent

to an orbit of system (4.33) of order k (in particular to Ωa,b, at a point (ν, ω)(h0)
for h0 ∈ (0, 1/6)), if and only if CU is tangent to the corresponding orbit of system
(4.25) of order k (in particular to Cω, at (h0, ω(h0))).
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Proof. Under the transformation (4.30) the line L′
αβγ becomes

α + βν + γω =
N(h)ω − Z(h)

bL(h)
= 0, (4.35)

where L(h) �= 0 for h ∈ [0, 1/6] is given in (4.23), and the linear functions N(h)
and Z(h) are defined in (4.34). If N(h0) �= 0, then for h near h0 we can rewrite
the above equality as

α + βν + γω =
N(h)
bL(h)

[ω − U(h)] = 0.

This means that the transformation (4.30) maps the straight line L∗
αβγ to the

curve CU , and the lemma is proved for h near h0 by Lemma 4.16. Next, we show
that we can skip all zero points of N(h) for h ∈ [0, 1/6]. In fact, if N(h0) = 0 but
Z(h0) �= 0, then equation (4.35) is not satisfied and we do not need to consider it.
If N(h0) = Z(h0) = 0, then the resultant of N(h) and Z(h) must be zero. By a
direct computation and using (a, b) ∈ G, we obtain

β [6a(a + 1)α + (a − 1)β + bγ] = 0.

If β = 0, then N(h) = bL(h)γ and Z(h) = −bL(h)α, which contradicts the non-
zero property of L(h) for h ∈ [0, 1/6]. If 6a(a + 1)α + (a − 1)β + bγ = 0, then
L∗

αβγ ∈ D′
a,b is parallel to L0 and L3 when a = 0, or passes through the vertex

(ν̂, ω̂) of the sector when a �= 0, see (4.31) and (4.32). By Lemma 4.17, there is
no orbit of system (4.33) tangent to it, and the assumption of the lemma is not
satisfied. �
Lemma 4.19. For any (a, b) ∈ G and any constants α, β, and γ, there exist at most
four points on L∗

αβγ, counting their multiplicities, such that at each of these points
the vector field (4.33) is tangent to L∗

αβγ. In particular, if one of the endpoints
of L∗

αβγ is (ν, ω)(0) or (ν, ω)(1/6), then the endpoint is included in these tangent
points.

Proof. By Lemma 4.18 we only need to consider the number of tangent points on
CU (corresponding to L∗

αβγ) with respect to the vector field (4.25) in the (h, ω)-
plane. By using (4.25) and (4.34) we obtain

ω̇ − U ′(h)ḣ
∣∣
ω=U(h)

= φ(h, U(h)) − U ′(h)T (h) =
b2L2(h)F (h)

N2(h)
, (4.36)

where F (h) = F (h; a, b, α, β, γ) is a polynomial in all its arguments, and of degree
4 in h. Besides, F (h) has the factor h or (h − 1/6) if L∗

αβγ has the endpoint
(ν, ω)(0) or (ν, ω)(1/6), respectively. Note that we may suppose that N(h) �= 0 for
h ∈ [0, 1/6], see the proof of Lemma 4.18. �

By using the variation argument and the fact that the function F (h) in (4.36)
is a polynomial in h of degree 4, we can prove the following results.
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Lemma 4.20. For any (a, b) ∈ G if Ωa,b has an inflection point, then the tangent
line to Ωa,b at this point does not pass through the point C, where {C} = ξ0 ∩ ξ1/6

(see Figure 8).

Lemma 4.21. For any (a, b) ∈ G:

(1) The curve Ωa,b is located in the region D′
a,b, i.e., between the lines ξ0 and

η1/6, and on the right-hand side of the line ξ1/6, except the endpoint {B} =
(ν, ω)(1/6) = (1, 0).

(2) The curve Σa,b is located inside the closed triangle with vertices O, C and B,
denoted by ∆a,b, see Figure 8.

4.4 Outline of the Proofs of the Basic Lemmas

Proof of Lemma 4.8. From (4.29) we see that the transformation (4.30) maps Cω

to Ωa,b, and by Lemmas 4.14 and 4.15, Cω, satisfying ḣ �= 0 for h ∈ (0, 1
6 ), is a

regular curve. Hence, by Lemma 4.16, to prove the regularity of Ωa,b it is enough to
show that Cω stays in Da,b, i.e., Cω does not meet the straight line {ω = ω̂} in the
(h, ω)-plane for a �= 0. This fact can be proved basically by using the 2-dimensional
system (4.25) and the equality (4.36), which gives the number of contact points
of system (4.25) with the curve ω = U(h). �

Proof of Lemma 4.9. (1) Lemma 4.21 shows that for any (a, b) ∈ G the cen-
troid curve Σa,b is located inside the triangle region ∆a,b (see Figure 8) and
the curve Ωa,b is located on the right-hand side of the straight line BC (i.e.,
ξ1/6). From Lemma 4.12 we see that d2q/dp2 > 0 and dq/dp at (p, q)(h) ∈ Σa,b

is increasing from k0(a, b) as h increases from 0, until h∗ or the first value h∞
that limh→h∞ dq/dp = ∞. We claim that the latter case is impossible. In fact,
dq/dp < k1(a, b) for any point on Σa,b. If this is not true, then we would find a
point on Σa,b, such that the tangent line at this point is parallel to ξ1/6, hence it
has no intersection with the curve Ωa,b, giving a contradiction, since any tangent
line to Σa,b must cross Ωa,b.

(2) By using the fact that any tangent line to Ωa,b does not pass through
the point D(ν̂, ω̂) (see Figure 8 and (4.32)) one can prove that p(h) < ν(h) for
h ∈ (0, h∗), implying p′(h) > 0 for h ∈ (0, h∗). In fact, Lemma 4.11 implies p(0) = 0
and p′(0) > 0 for (a, b) ∈ G. We suppose that h0 = infh∈(0,h∗){h : p′(h) = 0}, then
h0 > 0, p′(h0) = 0 and p′(h) > 0 for 0 < h0 − h � 1. By definitions (4.9) and
(4.13), X ′(h0)M(h0) − M ′(h0)X(h0) = 0, and for 0 < h0 − h � 1 we have

M2(h)p′(h) = (X ′(h)M(h) − M ′(h)X(h)) − (X ′(h0)M(h0) − M ′(h0)X(h0))

= (X ′′(θ)M(θ) − M ′′(θ)X(θ))(h − h0)

= M(θ)M ′′(θ)[ν(θ) − p(θ)](h − h0) < 0, θ ∈ (h, h0),
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since for all h ∈ (0, h∗) we have M(h) > 0 (the area of γh), M ′′(h) > 0 (the
derivative of the period function which is positive by [34]), and, by assumption,
ν(θ) − p(θ) > 0. This gives a contradiction. �

Proof of Lemma 4.10. Statement (1) was mentioned several times; it can be seen
clearly from Figure 7 (a) that for any double zero t (t > 0) of I(h) there exists
at least one inflection point of I(h) at some point t̃ ∈ (0, t). Statement (2) follows
from statements (1) and (3) of Lemma 4.12, and the transversality can be obtained
by direct computation. To prove statement (3), we note that Σ∗

a,b is convex, hence
(ν, ω)(0) ∩ ξh = ∅ for h ∈ (0, h∗] is obviously true. If (ν, ω)(1

6 ) ∩ ξh �= ∅ for some
h ∈ (0, h∗], then, by the facts that Σa,b is located inside the triangle region OCB
(see Figure 8) and the curve Ωa,b is located on the right-hand side of the straight
line ξ1/6, we conclude that the point B = (ν, ω)(1/6) is the only intersection point
of Ωa,b∩ξh, and this contradicts the fact that ξh must intersect Ωa,b at some point
(ν, ω)(t) with t ∈ (0, h).

Finally, we prove statement (4): there is no common tangent line for the
two curves Σa,b and Ωa,b. The idea is to consider the motion of the tangent line
ηh,with tangent point moving on Ωa,b, as h decreases from 1

6 . Since Ωa,b is on the
right-hand side of the line BC (see Figure 8), there are only two possibilities for
ηh also tangent to Σa,b: either ηh passes over the point C upwards, and enters
the triangle region OBC, or ηh passes the points B(1, 0), O(0, 0), and over Σa,b

downwards, and gets a tangent position. The latter case contradicts statement (2)
of Lemma 4.17. In the former case, by using a deformation argument we would
find a (ā, b̄) ∈ G, such that Ωā,b̄ has an inflection point, and its tangent line at
this point passes through the point C, contradicting Lemma 4.20. �

4.5 Proof of Theorem 4.6

For (a, b) ∈ G2, the Hamiltonian vector field XH has two centers C, C′, two saddles
S, S′, two saddle loops γ, γ′, and the corresponding period annuli D(γ), D(γ′).
Hence we have two centroid curves Σ ⊂ D(γ) and Σ′ ⊂ D(γ′). Since the convexity
does not change under affine transformations, we can move C or C′ (resp. S or S′)
to (0, 0) (resp. (1,0)) and obtain the normal form (4.1) by an affine transformation,
so from Theorem 4.5 we conclude that both Σ and Σ′ are strictly convex. Note
that XH is a quadratic system; the four singularities form a quadrilateral with
C and C′ as a pair of opposite vertices and S and S′ as another opposite pair
(see, for example [171]). If we exchange C to C′ and S to S′ by doing an affine
transformation, then we must reverse the direction of one coordinate axis (or with
a rotation π), hence Σ and Σ′ must be one convex and one concave.

Now we denote by Lc (resp. Ls) the straight line passing through C and C′

(resp. S and S′); by O the intersection point of Lc and Ls; by ∆ (resp. ∆′) the
interior of the triangle with vertices C, S and O (resp. C′, S′ and O). Next we
denote by tc the straight half-line which is tangent to Σ at C and points to the
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direction of the convexity; by ts the straight half-line from S to another endpoint
Z of Σ (the centroid point of D(γ)); by M the intersection point of tc and ts. By
Lemma 4.10(2), ts is tangent to Σ at Z (note that the point (ν, ω)(1

6 ) corresponds
to a saddle), and by Lemma 4.9, M is located on the same side of the convexity
of Σ. We similarly define the straight half-lines t′c, t′s and let {M ′} = t′c ∩ t′s, see
Figure 10.

O

C
D(γ)

Σ Z
S

ts M
tc

∆
Lc

Ls
∆′

t′c M ′ t′s

Z′ Σ′

D′(γ)
C′

S′

Figure 10. The relative positions of the two centroid curves.

As has been pointed out by Horozov and Iliev [76] to finish the proof of
Theorem 4.6, it is enough to show that for any (a, b) ∈ G2, M ∈ ∆ and M ′ ∈ ∆′.
This follows from the claims: (1) ts and t′s are located on different sides of Ls; and
(2) tc and t′c are located on different sides of Lc.

Claim (1) follows from the simple fact that for a quadratic system on any
straight line there are at most two points at which the vector field is tangent to
this line ([161, 33]). Now Ls passes through the two singular points S and S′, so
it must stay outside D(γ) and D′(γ). Otherwise, one orbit inside D(γ) or D′(γ)
would be tangent to it. On the other hand, the point Z (resp. Z ′) is inside D(γ)
(resp. D′(γ)). Claim (2) can be verified by means of a direct calculation. For the
normal form (4.1), C(0, 0) is a center and the slope of tc is k0 = b/(a − 1). Note
that the equations of l2 and l∞ are given by b =

√−4a(2a + 1),−1/2 < a < 0
and b = 2

√
a3, 0 < a < 1/2 respectively. We find that the condition for (a, b) ∈ G2

is : ξ1 ≡ b2 − 4a3 > 0, ξ2 ≡ b2 + 4a(2a+ 1) > 0 and ξ3 ≡ (1− a)2(2a +1)− b2 > 0,
where 0 < b < 1, and |a| < 1

2 . The other center is C′(x′, y′) with

x′ =
4a2 + b2 + b

√
ξ2

2ξ1
, y′ =

−(2ax′ + 1)
b

.
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Hence, the slope of Lc is k′ = y′/x′, and we have

k0 − k′ =
η1 + η2

√
ξ2

(1 − a)(4a2 + b2 + b
√

ξ2)
,

where η1 = b(2 − 6a2 − b2) and η2 = 2a − 2a2 − b2. From ξ3 > 0 we have
−b2 > 3a2 − 2a3 − 1, which implies η1 > b(1 − 2a)(a + 1)2 > 0 because |a| < 1

2
for (a, b) ∈ G2. Hence, if η2 ≥ 0, then we have k0 − k′ > 0. If η2 < 0, then a
computation gives

η2
1 − η2

2ξ2 = 4ξ1ξ3 > 0,

and we obtain the same conclusion. Since we may change t′c by tc through an affine
transformation, and reverse one coordinate axis as explained before, t′c must stay
on the other side of Lc.
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[191] H. Żo�la̧dek, Quadratic systems with centers and their perturbations, J. Diff.
Eqns. 109 (1994), 223–273.
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