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Preface

Future processors will become smaller, provide higher performance, and consume
less power than today’s devices. Such processors will spark off new applications in
particular in the area of everyday consumer devices. Personal digital assistants,
mobile consumer devices, and various smart personal appliances will soon be
widely used. Mobile telecommunication systems will increase their bandwidth
and will yield highly connected, ubiquitous computing appliances. Ubiquitous
computing induces a new way of thinking in system design: computers vanish
into the background hidden behind the habitual human environment.

These trends are the major topics of ARCS 2002, the ”International Confer-
ence on Architecture of Computing Systems”, which continues and replaces the
biennial series of German Conferences on Architecture of Computing Systems,
organized by the special interest group on ”Computer and System Architecture”
of the GI (Gesellschaft für Informatik – German Informatics Society) and the
ITG (Informationstechnische Gesellschaft – Information Technology Society).
The fifteen predecessor conferences (except the EuroArch in 1993) were national
conferences only, this is the first German conference on computer architecture
addressing the international research community. It serves as a forum to present
current work by researchers from around the world, this year being focused on
topics that are truly changing our perception of information processing – ”Trends
in Network and Pervasive Computing”.

The call for papers resulted in a total of 42 submissions from around the
world. Every submission was reviewed by four members of the program com-
mittee or additional reviewers. The program committee decided to accept 18
papers, which are arranged into 6 sessions with the result of a strong program.
The two keynote talks by Ralf Guido Herrtwich (DaimlerChrysler Research) and
Marc Fleischmann (formerly Transmeta, now Pixelworks) focus our attention on
an innovative application area (”Communicating Cars: A Case for Ubiquitous
Computing in the Automotive Domain”) and on innovative architectures (”Mi-
croprocessor Architectures for the Mobile Internet Era”).

The organizers gratefully acknowledge the support by ACM, IEEE, IFIP
TC10, CEPIS, and EUREL, and, in particular, the financial support by PEP
Modular Computers and by SAP.

The preparation of this conference has been heavily influenced by our col-
league Jochen Liedtke, who died much too early in June 2001. He strongly advo-
cated the international orientation of this conference, he was a major contributor
in shaping its thematic focus, and he helped significantly to form a truly inter-
national program committee. The research community on computer and system
architecture deeply regrets the loss of such an energetic and enthusiastic col-
league, who contributed numerous stimulating concepts and ideas, in particular
on the design of micro kernel architectures.



VIII Preface

We would like to thank all who contributed to the success of this conference,
in particular the members of the program committee and the additional referees
for carefully reviewing the contributions and selecting a high quality program.
Our Workshop and Tutorial Chair Uwe Brinkschulte did a perfect job in organiz-
ing the tutorials and coordinating the workshops. Our special thanks go to the
General Co-chair Lars Wolf and to the members of the organizing committee,
namely Michael Beigl and Martina Zitterbart, for their numerous contributions
as well as to Daniela Müller and André Wiesner for setting up the conference
software and for designing and maintaining the conference web-site. Faruk Bagci
and Jan Petzold did a perfect job concerning the preparation of this volume.

We hope that all participants enjoy a successful conference, make a lot of new
contacts, engage in fruitful discussions, and have a pleasant stay in Karlsruhe.

January 2002 Hartmut Schmeck
Theo Ungerer
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Keynote

Communicating Cars: A Case for Ubiquitous
Computing in the Automotive Domain

Ralf Guido Herrtwich

DaimlerChrysler AG
Alt-Moabit 96a, 10559 Berlin, Germany
ralf.herrtwich@daimlerchrysler.com

Abstract. Examples for ubiquitous computing applications usually
come from the household domain. Typical lists include microwave ovens
with integrated web-pads, refrigerators or washing machines with remote
Internet connections for maintenance access, and even instrumented cof-
fee mugs or clothes. While many of these examples have substantial en-
tertainment value, the likelihood of their realization and pervasive de-
ployment in the not too distant future is questionable. There is, however,
another application domain for ubiquitous computing which holds sub-
stantial promise, but is often overlooked: the automotive sector.
Cars are fairly attractive protagonists for ubiquitous computing: They
are large enough to have communication devices integrated in them, in
fact, a substantial portion of them has integrated phones today. They
come with their own power source which can also feed their communi-
cations equipment. Their price is some orders of magnitude higher than
that of the device to be included, so the relative price increase to make
them communicate is small. And, perhaps most importantly, some ser-
vices such as mayday, remote tracking, or tele-diagnosis make vehicle
connectivity desirable for car buyers and car manufacturers alike.
In this talk, we discuss how ubiquitous computing in the automotive do-
main can become a reality. We investigate the principal services resulting
from network-connected cars, focussing on vehicle-originated rather than
passenger-related communication as we believe that ubiquitous comput-
ing is more about communicating machines than communicating hu-
mans. Within the vehicle-centric services identified, we distinguish be-
tween client/server and peer-to-peer applications, resulting in different
communication requirements and system setups. We outline some net-
work solutions to meet these requirements, including technologies for
car-to-infrastructure and car-to-car communication in different regions
of the world. We conclude by discussing the overall effect which these
developments may have on the automotive industry.

H. Schmeck, T. Ungerer, and L. Wolf (Eds.): ARCS 2002, LNCS 2299, p. 3, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Keynote

Microprocessor Architectures for the Mobile
Internet Era

Marc Fleischmann

Vice President of Engineering, Pixelworks
7700 SW Mohawk St., Tualatin, OR 97062, USA

marcf@pixelworks.com

Abstract. The mobile Internet era is characterized by three core tech-
nology trends: First, wireless bandwidth growth is outpacing Moore’s
Law by an order of magnitude. Second, Moore’s Law itself is becoming
constrained, as continuously increasing chip transistor densities lead to
prohibitive heat density levels. And third, mobility, anytime, anyplace
and on any device, is rapidly becoming a key design requirement, calling
for smart, energy-aware placement of transistors across the network.
In the periphery of the Internet, these trends culminate in ubiquitous
Internet appliances that deliver dynamic content over persistent real-
time connections. Their requirements define the design imperatives of
future Internet microprocessors: high integration - to minimize form fac-
tors; high energy efficiency - to maximize battery life or computational
density; compatibility - with the full PC and Internet experience; and
flexibility - to quickly adapt to new devices, content types and usage
models.
The Crusoe microprocessor is an example for how these design imper-
atives can be realized. It uses a hybrid hardware/software architecture.
The hardware consists of a highly efficient VLIW core, which is comple-
mented by the Code Morphing Software. The latter currently implements
the x86 instruction set and a Java Virtual Machine. This architecture can
be extended into a self-optimizing, largely instruction set agnostic, ”soft”
core.

H. Schmeck, T. Ungerer, and L. Wolf (Eds.): ARCS 2002, LNCS 2299, p. 4, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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An Architecture for the Integration of
Physical and Informational Spaces

Scott M. Thayer and Peter Steenkiste

Carnegie Mellon University
5000 Forbes Avenue Pittsburgh, PA 15213

{sthayer,prs}@cs.cmu.edu
http://www.cs.cmu.edu/~aura

Abstract. While computer processing power, storage space, and band-
width capacities are experiencing exponential growth, individual human
processing capabilities are not increasing significantly. Pervasive com-
puting creates an environment that offers a wealth of computing re-
sources, I/O capabilities, and sensors.  This offers an opportunity for
applications to interact with and monitor the physical environment and
to provide a task-centric and mobile infrastructure for the modern user.
However, this rich environment can also be overwhelming and distract-
ing to users, in part because of a disconnect between the physical infra-
structure observed by users and the information space seen by applica-
tions.  In this paper we introduce AIPIS, an architecture for a techno-
logical bridge between the physical and informational realms of the hu-
man and the computer, respectively. The purpose of this bridge is two-
fold: (1) to provide to users a hands-free computing environment that
automates much of the drudgery associated with use of computers, and
(2) to focus human attention to only the critical aspects of task execu-
tion that require their input. We also describe the implementation of the
Aura desktop, a first prototype of the AIPIS architecture.

1 Introduction

Much of today�s computing systems and software are application centered. Commer-
cial pressures demand well-defined, shrink-wrapped products that can be readily and
repeatedly marketed to consumers in part drive this situation. With great diversifica-
tion in the software market, the typical computer is loaded with software from dozens
of different vendors. Some application integration is available, but typically it is
within a select bundle of applications from a major vendor with proprietary interfaces.
The problem with this model is that while performing tasks, users typically do not
work within the framework of a single application or even an application bundle. On
the contrary, users typically coordinate diverse applications in the daily execution of
tasks and projects under their charge. For example, the preparation of a multi-author
conference paper typically involves email and phone applications, spreadsheets, word
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processors, schedulers, scientific simulation and mathematics packages, photo editing,
typesetters, etc. The user wants a seamless interface between applications that can be
tailored to each particular task and configured with the current set of user preferences.
Even with the recent, rapid progress resulting in increasingly powerful computing
platforms and software, the state-of-the-art in system-wide, task-level interfaces to
computing and software applications from distinct vendors is somewhere between ftp
and file copy. The level of distraction and frustration associated with using a computer
to coordinate a reasonably complex task can be disconcerting for the veteran and
novice user alike.

An application-centered approach can never achieve the level of efficiency and
utility necessary to liberate people from computer drudgery in a task-based world.
This is a natural consequence of an approach that attempts to satisfy the needs of an
average user base with a common, commercial software base. In Aura [1,2,3], we
embrace an approach that attempts to weave applications into an infrastructure that is
pliable enough to represent user preferences and mobile enough to support user on the
go and intelligent enough to operate as viable resource in the execution of day-to-day
tasks [12].  Our approach to realizing this vision centers on the following principles:

Embedded Users. Users are embedded in a physical world and Aura must operate
within the limitations, constraints, and distractions of that world.

Mobile Users. Users are mobile and move within the physical world during the exe-
cution of tasks.

Task-Centered. Most users are not application or even bundle centered � they are
task centered and currently lack an intelligent interface that helps in the automated
execution of comprehensive user tasks.

One challenge is that we have to bridge the gap between two currently distinct do-
mains: informational and physical. Applications interact various sources and sinks of
information streams, while users interact with devices that have certain properties
(physical location, capabilities). Typically, these domains are not tightly coupled and
as a consequence, current computer interfaces inhibit the optimal benefit to the user.
In this paper we present an architecture called AIPIS, for Architecture for Integrating
Physical and Informational Spaces, that bridges the physical and informational spaces
in such a way that it becomes easier to develop applications that can interact with
humans in a more natural manner.  In the next section we first give an overview of the
CMU Aura project, which provided the motivation for AIPIS.  We then present the
AIPIS architecture and we describe a prototype implementation.  We conclude with
related work and conclusions.

2 Aura: Ubiquitous Invisible Computing

The Aura project is evolving a ubiquitous invisible computing infrastructure that sup-
ports mobile users in performing every day tasks.  Ubiquitous means that Aura is
present everywhere, although the level of support may vary significantly.  For exam-
ple, device-rich smart rooms will offer a wider range of modes of interaction than
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elevators and parks.  Invisible means that Aura will minimize the level of distraction
that it imposes on users. For example, it will only interrupt the user when necessary.

In this section we give a short overview of Aura, starting with a motivating exam-
ple. The remainder of the paper focuses on one aspect of Aura, the integration of
physical and informational space.

2.1 Motivating Example

Bob is on a plane, working on a large project that involves multiple documents.  When
the captain announces that they are about to land, he logs out.  Aura automatically
saves all the documents that are part of the task, and transmits them to a server.

When Bob walks into his office, he uses a finger print reader to authenticate him-
self. Aura knows that he is alone in the office and restores the files that he was work-
ing, opening them at the right point, on the large display in his office.  Aura also opens
his mail, since Bob always reads mail first.  While Bob was using a keyboard and
mouse on the plane, Aura switches to voice control since it is more appropriate for the
current task executed in the privacy of his office.  Aura can synthesize speech to pro-
vide an audio alert to Bob of certain events or even for more complex operations such
as reading back e-mail so Bob can have additional interaction with Aura while moving
around in his personal space.

At this point, Bradley walks towards Bob�s office.  Aura recognizes Bradley since
he is wearing an RF badge, but since badges do not provide strong authentication1,
Aura decides that the physical environment is no longer secure, and it iconifies Bob�s
e-mail client, thus hiding the confidential message that was being displayed.

Bradley drops by to work with Bob on a presentation that accompanies his project.
Bob and Bradley continue to use voice control to navigate the PowerPoint presenta-
tion, but Bob uses the touch screen for modifications, while Bradley uses his PDA to
annotate Bob�s changes.  When Bob and Bradley leave for lunch, Aura captures the
state of the project and stores it on a server so it is ready to be restored wherever Bob
decides to work on it next.

The current Aura prototype supports this scenario in a controlled environment.  In
the remainder of this paper we elaborate on the specific mechanisms used.

2.2 Overview of Aura

The motivating example shows some of the features of Aura.  First, we want to sup-
port a rich set of I/O interfaces for users to interact with the computer system.  This
makes it possible to pick the most appropriate form of interaction for the job at hand
(voice, keyboard/mouse, touchscreen, PDA).  However, the change between modes of
interaction should be seamless.  Second, the system should be �context aware�, i.e. it
should know about the environment so it can automatically take appropriate actions,
e.g. select the appropriate I/O device or hide confidential information.  Third, the
system has a notion of what the user is trying to achieve.  In Aura this is explicitly

                                                          
1 RF badge identification is only effective if each individual is wearing an appropriate badge.

We are extending Aura with video capabilities so we can detect people not wearing badges.
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represented in the form of a task, which is a first class object.  Finally, Aura has a
number of goals that are not explicit in the example and that are not central to this
paper. For example, applications in Aura automatically adapt to resource availability,
e.g. by using servers if the cycles are not available locally.  Similarly, QoS support can
be used to improve predictability in a resource-poor environment.

Figure 1 shows the Aura architecture.  The bottom layers are concerned with identi-
fying and managing the resources in the computing and physical environment.  This
includes support for networking, including network monitoring [20], and node man-
agement.  At a slightly higher level, Aura also supports intelligent information access
through Coda [18] and Odyssey [18], and adaptive remote execution capabilities
through Spectra [21]. The top of the picture represents user tasks and preferences.
The combination of low level system input and high-level user input allows the Aura
system to make decisions about what to do (what operations could be of help to the
user) and how to do it (what I/O devices to use, what CPUs to use, etc.)  In this paper,
we focus on the middle layer, i.e. the application support, which ties the physical envi-
ronment to the computing environment in the context of executing an everyday task,
such as preparing a presentation.

Figure 1. Aura�s task-level architecture

Prism
Task support, user intent, and high-level proactivity

App1 App2 App3

AIPIS: Application Support
Aura runtime support

Spectra
Remote Execution

Coda
Nomadic file access

Odyssey
Resource monitoring and adaptation

OS kernel

Intelligent Networking
Network throughput monitoring, network proactivity
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Figure 2. AIPIS: Integrating physical and information spaces

The application support component interacts with the physical environment in sev-
eral ways:

•  It has to handle I/O from a variety of devices and channel that information to
the right application or to the system itself.  Specifically, our prototype sup-
ports voice control, touch screen, and PDA input, besides the usual keyboard
and mouse input.

•  It channels input from sensors in the environment to applications that are in-
terested in the information.  In our current system, examples include input
from badges, finger print readers, motion detectors, etc.

In the remaining sections, we describe how we coordinate the flow information
between the physical environment and the computing systems.

3 Application Services

Aura is concerned with the automation of everyday tasks for the mobile user. This
concept is distinct from application and application-bundle automation services that
many vendors provide. For example, Microsoft provides common API�s that allow the
seamless transfer of information and control between application bundles, e.g. MS
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Office. What is missing from these is a set of rich automation services that provide
run-time support to applications such that they can leverage information provided by a
task-level support engine, e.g. user intent and preference within the current context,
the proactivity needed to support mobile users, and QoS support during infrastructure
transitions.

3.1 AIPIS Architecture

The value of providing applications with a context-based or task-based mechanism for
application support is well understood [4, 11, 8]. In Aura, task level support is pro-
vided by Prism. Prism provides support for saving and restoring of a task in different
environments, where a task is a set of documents that are needed as a group to meet a
certain goal. An early version of Prism for the Windows environment is described in
[4]. Aura�s Architecture for the Integration of Physical and Information Spaces,
AIPIS, extends these results by providing task-focused, context-based run-time sup-
port to Aura aware applications and application bundles. The four fundamental blocks
of AIPIS, shown if Figure 2, coordinate between the Aura task layer, Prism, and the
individual applications to provide the following:

Application Interface Services. This component supports inter-application data
exchange and control protocols. It is also responsible for the human-machine interface
component.

Environment Control Services. This component realizes Aura�s bridge from the
information domain to the physical environment, e.g. lighting, temperature control,
access control, external displays, etc.

Context-Based Security Services. This component provides an integrated control
mechanism that provides context-aware access to physical, computational, and infor-
mation-based resources.

State and Versioning Services. This component manages the allocation/de-
allocation, transport, crash recovery, merging, and configuration of Aura aware appli-
cations.

The modules work in a loosely coupled, agent-based framework centered on the
application interface, which monitors control input from the physical world, including
user inputs, and the other AIPIS modules and provides this information to Aura�s task-
layer, Prism.  An example of such information, provided by the security module,
would be the privileges and identities of the set of known viewers of a presentation,
which contains some classified data. The state and versioning module also provides to
AIPIS the classification of each data set that is to be displayed in Aura, before it is
displayed and also the current suite of information protection modes available within
AIPIS, e.g. data hiding. The environmental module provides the set of devices, e.g.
displays, physical locks, notifications, etc. that Aura can leverage to protect the data
from the unauthorized viewers. The application interface aggregates this information
and relays application, environmental state, context, and security information to Prism.
These control signals are reconciled by Prism with attention to minimizing impact on
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the current task and routed to AIPIS through the Application Interface and on to ver-
sioning, environment, and security modules such that the appropriate actions are exe-
cuted such that the classified data is not exposed to unauthorized viewers. For exam-
ple, Prism could relay to AIPIS that sensitive data must not be shown in its current
form to a subset of users without proper privilege. AIPIS�s security module could then
chose instruct the application to remove the data from the presentation, the environ-
mental manager could be notified to switch displays, or the state manager instructed to
terminate the application depending on the high-level direction from Prism.

3.2 Application Interface & Environmental Control

Application interface & environmental service modules provides a uniform access to
input, output, and external control functions for Aura applications.  The associated
capability that any application can include for each of the managers provides is:

Application Input Manager. Speech recognition, handwriting recognition, gestures,
eye tracking, data mining, etc.

Application Output Manger. Speech synthesis, display management, environmental
settings, mobile messaging

The input manager coordinates a set of data sources that can provide input to appli-
cations. Input data is typed and data sources of the same type are basically indistin-
guishable from the perspective of the application.  For example, keyboard input,
speech synthesis, and handwriting recognition all provide ASCII input.  Similarly,
gesture recognition or eye tracking will provide input of type �location�.  The appli-
cation input manager controls what input source is used for an application.  This deci-
sion can be based on many factors, e.g. user preferences, availability of specific de-
vices in the environment, explicit user specification, etc.  Note that users can use a
specific data source for input to several applications.  For example, speech input can
be used control PowerPoint, a mail client, and the OS (e.g. application selection).  It is
up the input manager to keep track of what application is active.  We elaborate on this
in the next section when we discuss our prototype.

The output manager has a similar role as the input manager, but it controls the out-
put mode for applications.  For example, it controls what display to use for screen
output.

One can think of the data sources and output devices as I/O services.  The input and
output managers are basically responsible for deciding dynamically which I/O services
applications should currently use based on user level and context information.  They
can on the fly reconfigure the I/O services as desired.

3.3 Context-Based Security & State and Versioning

The security issues in a pervasive computing environment are fundamentally different
from those in a traditional distributed computing environment.  The reason is that
various ubiquitous I/O devices create new opportunities for privacy and security vio-
lations.  For example, large touch screens provide a convenient way for users to inter-
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act with the system, but they make it easier for third parties to get unauthorized access
to information.  Similarly, speech synthesis can be a convenient output device, but it
also similar privacy concerns.

Fortunately, devices can also help in addressing some of these new security and
privacy risks.  For example, fingerprint devices can provide convenient strong authen-
tication while cameras, motion detectors, and badges can be used to identify the pres-
ence of other people.  The challenge is to make this sensor information available to the
applications that need it.

Security in Aura is concerned with access to resources, e.g. space, devices, appli-
cations, and data. The current instance of the security monitoring systems has three
fundamental components that provide context-based security to Aura. They are:

Resource Monitor. Controls access to physical spaces, devices, and applications.
Access to resources in AIPIS is usually provided by a challenge of the person re-
questing resources with a password or ID badge �based verification

Information Monitor. The information monitor provides the same level of protection
for information that the resource monitor provides. The most advanced levels of secu-
rity in Aura assume the lowest common denominator from the group that is to view
Aura data and will employ data hiding or fuzzification to protect the release of unau-
thorized data to the group

Context-Monitor. AIPIS currently employees a simple context awareness that aggre-
gates group permissions and then decides the optimal sub-set of resources that AIPIS
is allowed to engage. In cases where security violations are present (sensitive data is
exposed to unauthorized viewers), AIPS adapts resources and information to fit the
current group security profile. The mechanisms employed are:

•  Display. Transport and hiding
•  Input. Mode suppression
•  Control. Soft lockout of sensitive applications.

AIPIS uses an application state and transport mechanism that is described by Wang
and Garlan in [4]. We describe how we use its capabilities in the next section.

4 Prototype Implementation: Aura Desktop

The Aura Desktop is a PC application that provides a hands-free gateway to many of
the features and capabilities of an Aura environment, including AIPIS run-time sup-
port. In its current manifestation, the Aura Desktop provides voice-control of four
common Microsoft applications, PowerPoint, Outlook, Word, and Excel. These appli-
cations support a wide range of documents.  The user can also select from a suite of
optional physical security devices including RF and IR tags, fingerprint readers, and
context-based security services provided directly by AIPIS. Security options are con-
figured during compilation. In addition, a context preserving mechanism is provided
that allows users to maintain the state of applications across Windows machine
boundaries, including PDAs, and infrastructure transitions thus enabling mobile users
to work from any resource equipped with the Aura Desktop.



An Architecture for the Integration of Physical and Informational Spaces      15

4.1 Application Interface & Environmental Control

Besides keyboard input and textual output on the screen, the Aura Desktop uses state-
of-the-art speech recognition and synthesis to provide both application navigation
capabilities and to provide feedback to the user in a hands free context. Speech recog-
nition is accomplished using a native Sphinx II OCX [15] with a small dictionary. The
top-level voice interface is designed to reliably provide the control of email and pres-
entations at the expense of generality. This allows Bob to us voice control for working
on this presentation in his office in the scenario of Section 2.1.  Applications such as
MS Word require continuous recognition with a much larger dictionary; they are cur-
rently not supported but they could be added easily to the AIPIS framework. Speech
synthesis was implemented using a client/server implementation of the popular Festi-
val speech synthesis system [16].   This is used to read back e-mail to Bob in the sce-
nario of Section 2.1

The services provided to applications that leverage our voice-control interface are:

PowerPoint Services. The Aura Desktop implements speech-based presentation
navigation, editing, and creation features such that drudgery of a large number of
manual tasks associated with these capabilities is eliminated.

Document Archive. The Aura Desktop can be configured such that user documents
(presentations, images, word and excel files, etc.) are stored in any network accessible
file folder.

Outlook Services. The Aura Desktop provides the user with a voice-controlled inter-
face to email as well. It also provides the ability to synthesize the email text and to
recite each email to the user. In speech control mode, the user is freed to perform
other tasks while sorting emails. In addition to recitation, a baseline set of sorting
features is implemented.

Excel & Word. The Aura Desktop has minimal support in the form of (1) transport,
(2) instantiation, (3) document hiding for security purposes, and (4) termination.

Digitized speech is provided asynchronously to the AIPIS application interface
module from Sphinx. This speech is then parsed for clues relating to the application
and the associated action(s) the user is trying to effect. Once application-context is
decoded speech strings are sent to an application specific analysis routine that extracts
any necessary data and action contexts from the string or inserts any implied data into
the action sequence. For example, the integrated AIPIS application interface module
may receive the command string, �Open the Aura Presentation� from the Sphinx
OCX. AIPIS parses the string for context: (1) the presence of the keyword �presenta-
tion� implies PowerPoint is the application to use on a Windows system, and (2) from
the keyword open in conjunction with the application context, AIPIS searches the set
of known presentation directories for presentations that contain references to �Aura�.
AIPIS then selects the best match and engages the state and versioning module to
transport the application to the appropriate combination of location, processor, and
display.

For graphical input and mouse control, the Aura desktop also supports PowerPoint
Commander and Pebbles interfaces [13, 14], besides the usual mouse and keyboard
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control. This makes it possible to support basic navigation and annotation of
PowerPoint from a PDA. This mode of interaction is sometimes more appropriate than
the keyboard and mouse mode, for example, when mobility is important such as dur-
ing a presentation.  In our scenario of Section 2.1, this allows Bob and Bradley to
work together on a presentation using (besides voice) three different modes of inter-
action: keyboard and mouse, touch screen capabilities, and a handheld PDA.   They
can pick their most appropriate mode of interaction based on what operation they plan
to perform and where they are physically present.

AIPIS makes extensive use of the Microsoft COM/D-COM interfaces to implement
application control within the MS Office suite. Speech recognition and synthesis mod-
ules are controlled through a sockets-based interface using client/server architecture.
In both cases, the implementation of the communication between applications in
AIPIS resides in C++ wrapper classes such that details are hidden from the main
AIPIS control loop.

4.2 Context-Based Security

AIPIS employs an integrated security mechanism that leverages passwords, RF-based
authentication [17], motion detection, and finger print readers. The security module
uses a two-tiered system for access where maximum access is provided by reliable
security mechanisms such as passwords or fingerprint ID readers. The RF badge is
treated strictly as a weak form of access that allows applications with sensitive infor-
mation to be suppressed when a weak user is identified. For example, an accountant is
reviewing a spreadsheet with current and recommended salaries for university staff.
The Aura Desktop can be configured to automatically suppress (un-map it from the
display) when an unauthorized employee enters the viewing space.   This was also
demonstrated in our scenario in Section 2.1.  Since Bob used a fingerprint reader for
authentication, so he had unlimited access to all information and applications. How-
ever, since Bradley was only identified using a badge (weak security), confidential
information was hidden.  Of course, once Bob recognizes Bradley, he can use the
touch screen or voice control to display any information that he thinks is appropriate.

Security in AIPIS uses an asynchronous, event-driven scheme coupled with a secu-
rity state matrix that encodes all the relevant relationships between user and applica-
tion. For example, a user with weak access might be granted navigation privileges in
PowerPoint, but would be blocked out from Outlook until he/she provides password
or fingerprint ID. Each new event is decoded and the state matrix is updated. The
security state vector for any affected application is then reconciled by taking an action
that alleviates the violation, e.g. the email application is terminated and the unauthor-
ized user is blocked from trying to access it.

A Security Warning Indicator (SWI), see Figure 3, is provided that warns the user
when an unauthorized person has entered a private workspace. The SWI has hooks for
the RF badge reader as well as external devices that the user might integrated, e.g. a
video camera running motion detection, for example. Also, a text list of current users
is displayed in the User Access Panel. In this panel, three levels of access are repre-
sented:
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Maximum. The specified user has been authenticated through a physical device such
as password or fingerprint ID. Full access to all Aura Desktop features is provided.

Weak. The specified user has been identified with an external authentication device
such as RF/IR tags or video recognition. Access to a navigation features is provided.

Unauthorized. An unidentified or identified but unauthorized individual has entered a
private workspace. No access to the Aura Desktop features is provided to that individ-
ual.

4.3 State and Versioning Support

Aura�s current state services center on the task transport necessary to support a mobile
user such that application state, including preferences and data, track the physical
movement of the user through an Aura enabled space [4]. Users can define a task as a
set of documents that belong together.  Aura keeps track of the task state, including
not only the contents of the documents, but also information such as cursor position
and window layout.  Aura can then restore the task on any Aura-capably Windows
platform, using one of four applications (MS Word, Powerpoint, Excel, and Outlook)
to handle the documents.  Even the current prototype is restricted to Windows, this is
already a powerful capability.  For example in our scenario, Bob�s tasks are automati-
cally moved from his laptop to his office desktop system.  Aura�s state manager pro-
vides the seamless transition necessary, as application transport is trigger by move-
ment in or out of Aura cells or user request. In the default case, Aura will try to main-
tain the default status of the user�s computing environment as closely as it can across
platform boundaries providing ubiquitous access to applications for the mobile user.

Work is in progress in extending task support so it works across heterogeneous
platforms, e.g. Windows and Linux.  This is a lot more challenging since often differ-
ent applications may have to be used and document translation may be necessary.

4.4 GUI and Configuration

Figure 3 shows a screen shot of the Aura Desktop management GUI.  It provides a
fairly minimal interface for managing speech synthesis and security and it is designed
primarily to support experimentation and evaluation.

Users can customize a remote Festival server with a favorite voice model by setting
the IP address and port name in the �Festival Speech Synthesis Server IP Address�
box (lower right corner of Figure 3).  The Aura Desktop will then send all future syn-
thesis requests to this preferred service provider.

Users can select the RF badge service by specifying its IP address in the lower left
corner. The top of the window shows the security of the user�s current physical con-
text. The window in the middle lists all nearby users and their status.  The rectangle in
the top right hand corner turns red if any unauthenticated users are in the vicinity and
is green otherwise.
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Figure 3. Screen shot of an instance of Aura Desktop GUI

5 Related Work

Besides Aura, a number of other projects are exploring pervasive computing.  MIT�s
Project Oxygen aims to �communicate with people using natural resources, such as
speech and vision�, to support users on the move, and to monitor and control the envi-
ronment [6,7]. Georgia Tech�s InfoSphere endeavors to �achieve nothing less than
radically enhancing human understanding through the use of information technology,
by making it dramatically more convenient for people to interact with information,
devices, and other people.�  They forward the idea of universal Information Utility
and explore the architecture in areas of �rapid decision making� and learning. They
define success in terms of the effectiveness of the �InfoSphere� to amplify human
intellect [9]. University of Washington�s Portolano project �seeks to create a test bed
for investigation into the emerging field of invisible computing [10]. Aura is distinct
from these efforts in that it seeks to service the needs of a mobile users engaged in
everyday tasks as they move through infrastructures of varying quality.

This paper describes the infrastructure between Aura�s task layer and the user ap-
plications that are registered within Aura. This infrastructure, AIPIS, provides con-
text-based security, versioning, interface, and environmental services sufficient to
coordinate the application base such the mobile user can continue to engage the world
with relative independence from infrastructure.
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6 Conclusions

We have presented an initial architecture and implementation of a system for hands-
free computing that transforms the focus of computing architectures from application-
based to task-based implementations. This is a critical first step in harnessing the tre-
mendous potential of a truly human-centered approach to computing. In additional to a
task bias, our architecture works to seamlessly integrate the physical-reality of humans
and the information spaces that encode much of our identity, knowledge, and re-
sources. Only with an efficient coordination of both physical and information domains
can the full potential of computing be realized. We, as users, must be allowed to move
throughout both the physical and information worlds with minimal constraints and
burdens. Further, we require a personal infrastructure that is capable of taking maxi-
mal advantage of the modalities presented to us at each point in the physical-
informational continuum such that we are empowered to engage tasks independent of
location, bandwidth, and the chains of deskbound computing.

This Aura application architecture is a first step in the realization of ubiquitous,
hands free, and mobile computing tailored to user needs. In this first implementation,
both personal and desktop computing devices have been coordinated to automate a
simple task level interface for the creation and delivery of presentation materials. This
infrastructure utilizes speech-recognition and synthesis; MS PowerPoint, Word, and
Excel; portable computing; personal location and identification services; and applica-
tion transport software to generate the capability where a user working at a desktop
computer can create and edit a presentation from a voice-driven interface. The user
can then utilize the Aura infrastructure to tweak presentation material en route to the
speaking engagement with either his personal computing resources or salient and Aura
aware resources embedded in the environment. Upon arrival at the engagement, Aura
will install an audience appropriate version of the presentation material and allow the
user to navigate using a natural voice or PDA interface.
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Abstract. The possibilities that can be achieved by context information,
especially the location of mobile users, might lead to the attractive new
mobile services technologies like UMTS desperately look for in order
to foster the user demand for 3G networks. The EU IST research project
"YOUNGSTER" is developing a mobile services platform that will
employ a context subsystem that is able to handle (i.e. gather, process,
store, and deploy) not only location information, but the whole variety
of user context information in a generic way. In this article, the
requirements of a mobile services platform for a context system and the
design of this context subsystem are described.

1 Introduction
In order for the investments of several telecom operators in UMTS to pay off, a large
number of customers have to be willing to periodically spend a considerable amount
of money for the upcoming, new services. To this end these 3G services have to
provide a significant benefit to the already available GSM or Internet based services.
This can only be achieved if new mobile services are offered to the customers,
services that are both attractive to a large number of people and that require the
special abilities of UMTS. Apart from the promised ability of UMTS to being able to
allow broadband multimedia access, especially personalization and location-
awareness seem to be the most promising approaches that could enable these
attractive services.

The European Union funded project "Youngster" [YOU01] is targeting these two
aspects and focuses especially on a user-centric approach. The aim of Youngster is
twofold. First, an innovative, open active Mobile Service Platform (MSP) will be
developed that offers:

• accessibility from anywhere by a wide range of devices and networks
• personalized and highly adaptive delivery of services
• support of community functions
• support of  context-aware features (including location-awareness)
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Second, a new generation of enhanced mobile services will be developed using the
Mobile Service Platform. As the aimed target group consists of young people, the
implemented services will be specifically tailored to the need of youngsters. As it can
be anticipated that the current business models will not be ideal for the target group,
new business models will be examined, as young people cannot afford premium
services. To verify the services and the platform a field test will be conducted in
Norway. The results of the trials will be evaluated and success will be assessed in
terms of the response of the young people who participate and the use that they make
of the services. The Youngster consortium consists of the Heriot-Watt-University
(United Kingdom), NRK (Norway), Siemens (Germany), Sony (Germany), Steria
(France), Telenor (Norway), and T-Systems (Germany).

As personalization relies on context information and location-awareness is in fact a
form of context usage, one focus of the Youngster project lies on mechanisms to
support gathering, storing, and deployment of context information for usage in a
mobile services platform. In this article, the architecture of this context subsystem,
TCoS, will be presented.

Although the general structure of the context subsystem is rather similar to the
Context Toolkit approach (see [Dey00]), some differences exist that result mainly
from of the intended usage area, the mobile service platform. While the Context
Toolkit stemmed from a framework approach that intends to help an application to
use context data (and is, therefore, part of the application), the Trivial Context System
(TCoS) is a context service. A context service is an autonomous component that also
can be used by any application, but that exists independently of the application. To
allow a 24/7-type of operation, our architecture supports a dynamic association of
sensors to the processing infrastructure as well as an automatic configuration of this
infrastructure. As context data might be security and privacy sensitive, and as a
mobile service platform intended for commercial use has to cope with the fears of the
users, an access control component ensures that only authorized parties are able to
access context data. Finally, our system supports the access also to past context data.

The rest of this article is structured as follows. The next section will examine the
context concept and present a classification of context data. In the next section, the
requirements will be listed that result from the usage of a context system in a mobile
service platform. Then, the components of the context system architecture are
presented. Related work is presented in the next section. The last section concludes
the article and gives s brief overview over future work.

2 Context

A recent definition of context is due to [DA99] who defined it as �any information
that can be used to characterize the situation of an entity, where an entity can be a
person, place, physical or computational object�. From this point of view, almost all
information that occurs in the context of a specific system usage can be subsumed
under the term �context� (e.g. the current time and date, the usage history, the user
profile, the temperature at the user location, the position of the user, etc. pp.).
Following on from this, context can be used in several areas in context-aware
applications, including:
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• presenting the context information itself as content to the user (e.g. a map
showing the current position)

• adapting of presentation of information and services to a user (e.g. a GUI suitable
for the mobile phone the user is using currently)

• triggering actions on the occurrence of a context "constellation"
• tagging context to information for later retrieval (e.g. weather information when

taking a picture in order to let the photo lab adjust the development process)

While the term context denotes the set of all information characterizing the
situation of a focus entity. The single context unit can be called context element, i.e.
all context elements relating to a focus entity form the context of that entity. Context
elements have a context type which characterizes the context element. Context
elements occur in a certain context format, which denotes the structure of the context
data at the surface.

The component of a mobile service platform that deals with context is called the
context service or context system.

2.1 Classification of Context Data

Context data can be grouped into two pairs of excluding categories. These pairs are
(entity-defined/system-defined data) and (constant/dynamic data).

Entity-defined data denote context data the focus entity can specify to adapt
something to its wishes or abilities. Preferences change when the focus entity wishes
to change them. System-defined data denotes context data that the system determines
concerning the focus entity. This includes environmental data of the focus entity such
as the location or the time at the location as well as the current areas of interest the
system deduces from the documents the user accessed. One aspect of the distinction
entity-/system-defined is that it does not apply to context data by nature, but by
choice. The user e.g. might be able to specify his/her age, but this information might
also be derived by other data by the system.

Constant data denotes context data that never (or only rarely) changes, e.g. the age
of a user, his/her gender, the display resolution of a PDA, etc. In contrast to constant
data, dynamic data changes frequently (like the location of the focus entity). In
contrast to the distinction entity-/system defined, the distinction constant/dynamic
applies to context data by the nature of this data.

Obviously the two pairs are orthogonal. Nevertheless, it is more likely for entity-
defined context to be constant data as it is more likely for system-defined data to be
dynamic. Constant system-defined context might also occur as it allows to determine
constant data the entity does not specify. Dynamic entity-defined context also
sometimes occurs (e.g. when a user enters his/her current location manually), and it
helps to deal with the case that no sensors are available to sense certain context data,
but this mode of operation normally is unsatisfying.

Most context-awareness approaches consider only the present context of the focus
entity. A more general approach might also consider past context situations. Past
context data might include e.g. the history of services a human user used.
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3 Requirements for a Context System
by a Mobile Service Platform

While the Context Toolkit ([Dey00]) supports applications that use context
information, our approach is to be used as a part of a certain mobile service platform.
In this section, the additional requirements of this platform towards the context
system compared to the requirements described in [Dey00] will be briefly described.

In contrast to a general application, a service implies that some functionality is
generated from a service provider for a service client (by using a system of a platform
operator). In an environment where three and more parties interact, often (maybe not
always) commercial aspects play a crucial role. Therefore, one requirement is to let
the platform operate without the need of interruption due to minor events such as the
availability of a new sensor. This means for the context system that is has cope with a
rather dynamic environment (due to its extended operating time) where sensors
connect and disconnect, where context of new focus entities needs to be supported,
and so on, without the need of restarting the system.

As one of the aspects of the Youngster project is to support networked sensors,
also the ability to cope with sensors that change as e.g. the user moves, needs to be
supported.

To support the broadest range of mobile services, a context processing
infrastructure is needed that is both modular, flexible, and that can be configured
without manual work by a programmer.

Systems where context data producer, context data consumer, context data
processors and focus entities are different parties have to cope with the fear of the
focus entities to misuse their context data. Therefore an additional requirement is to
allow both a working (i.e. technically sound) and user-controllable possibility to
control the access to context data that is still easy to use even for non-technicians.

Finally, not only actual, but also past context needs to be supported as there are
services that require this information, but which shall not bear the burden of having to
implement this functionality themselves.

After having described the requirements, we will now have a look at an
architecture that satisfies these needs.

4 The Components of TCoS

In the Trivial Context System (TCoS) the following components are used (see   

Figure  1).

4.1 Context Servers

The context system consists of several context servers. A context server offers context
data related to a number of focus entities. Therefore, it is necessary to find the
corresponding context servers that store context data of a certain focus entity. This is
done by means of a context server lookup service.
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Context servers get context data from a number of sensors. Context clients query a
context server for context data related to certain context entities. To ensure access
control, an access controller unit accepts or rejects queries by the context clients.
When an application queries the value of a context attribute and the access control
accepts the query, the corresponding value is returned. Likewise the context client is
informed when it subscribed for a certain context attribute when the value changes.

4.2 Context Attributes

Context attributes store single context elements. When an attribute is created, an
infrastructure is generated by the Path Builder that connects the attribute logically
with one or more sensors. This infrastructure allows later on context data to be
delivered to the attribute. Context Attributes receive context data either from
components called Context Sources or from components called Context Interpreters.

4.3 Context Clients

Context clients are the components that want to access context information on context
servers. These clients can be application services, but also other components of the
mobile service platform. Context clients are able to:

• create/delete context attributes inside context servers
• query context servers for context information related to a certain focus entity
• feed context attributes with certain information

Context clients are able to query context data either in a request-response or a
publish-subscribe manner.
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4.4 Access Controller

To ensure the controllability of context information access, an Access Controller
ensures that only authorized context clients can access context information. The
access policy can be controlled by the focus entity of an attribute (or, if this entity is
not a human, by the user that is allowed to manage the attribute). Although full
control is possible, most users will probably not specify the complete access policy in
detail, but use prefabricated policy templates.

4.5 Sensors

Sensors are either physical devices or logical entities that sample data such as the
location of a device or the schedule of a human user. Sensors might be attached to the
entity about which context data is collected (type a), e.g. GPS sensors that sense the
position of a device. Other sensors (type b) might be part of the physical environment,
thus sensing environmental data. Sensors of type b can be subdivided into type b.1
sensors that sense context when asked by a focus entity itself (e.g. a mobile device
might ask an active badge [WFG91] system to track its position) and type b.2 sensors
that operate when a party asks them to do so. Finally, sensors might be located
elsewhere (type c), sensing context data like the schedule of the user. These sensors
might be part of the mobile service platform (e.g. in the case of type c sensors), or
might be located outside the platform. To insert user context data that exists in the
service portal for administrative reasons (e.g. user profile data and the service usage
history), normally, type c sensors are used that are connected to the corresponding
platform components.

4.6 Context Sources

Normally, sensors do not issue context data in a format the context system can
process. Therefore, a component is needed that translates the sensor-specific format
into a format that is understood by the context system (this translation does not need
to be a format conversion, but might be adding just some metadata, e.g. about the
used format). Additionally this component represents the sensor in the context system.
This component is called context source. Context sources can be located either on the
same device the sensor is attached to (if this device allows to add such a component)
or on a context server, thus allowing the sensor system to be used without
modification.

In case that a Context Source is located on a Context Server, there might be a
rather dynamic set of sensors that are connected to a Context Source. Either there are
several sensors that work in parallel delivering data of the same context type and
format (e.g. a GPS sensor and a GSM-based location sensor), or the sensor changes
over time, e.g. because the user is moving. This latter case occurs when e.g.
thermometers are used that are installed in different rooms.

Context sources deliver their data either directly to a certain context attribute or to
an intermediate component, the context interpreter.
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4.6.1 Finding Sensors

Although in most cases sensors simply deliver data to a Context Attribute via a
Context Source, it might be the case that the Context Source is sometimes asked to
deliver context data. This might happen when a user moved or when no data exists
inside a Context Attribute. In this case, the Context Source has to contact a
corresponding sensor to get data. In case there is a 1-to-1 connection between a sensor
and a Context Source, the latter might be able to contact the sensor directly.
Sometimes, the Context Source has first to find an appropriate sensor in order to
contact it (especially for type b.2 sensors). If the sensors cover a certain geographic
area, they can be found using the Global Area Service Directory and the current
position of e.g. a mobile user. In this case, a Context Source can be also a context
client, consuming location information.

4.7 Context Interpreters

Context interpreters are components that take context data from one or more context
sources or other context interpreters, process the context data and issue new context
data. Context sources and Interpreters offer the same interface, so they can be
"plugged together" in an arbitrary manner.

Context interpreters can be used for various purposes. Format converting
interpreters transform context data into a new format. The semantic of the context
remains (mainly) the same. Selecting interpreters take two or more data elements and
choose one of them. This can be used e.g. to issue the most exact location by
considering location information from a number of sources. Combining interpreters
take two or more data elements and combine them into one new data Deriving
interpreters finally consider one or more data elements and derive or infer a new data
element of a higher order. A classical example is an interpreter that tries to determine
whether a meeting takes place in a room by considering a motion detection sensor and
a microphone sensor detecting voice frequencies.

Interpreter structures are created by the Path Builder component.

4.8 Path Builder

When a Context Attribute is created, the Path Builder seeks Context Sources that are
able to deliver the needed information (i.e. that claim to offer data that fits into certain
context data schemes). If such a Context Source exists, i.e. is already running in the
Context server, the Attribute is simply connected to the Source. This means that the
source delivers future data also to the new Attribute. If not Context Source exists,
another component, the Interpreter Catalogue is consulted. This component offers
also descriptions of possible Context Sources that can be installed on demand. If one
of these descriptions fit into the context data scheme, the corresponding Context
Source is installed into the Context Server and connected to the corresponding
Context Attribute. It might be the case rather often that there are no Context Sources
that are able to satisfy the need of a Context Attribute. For this case, the Path Builder
seeks Context Interpreters to build a path from a Context Source via a chain of
Context Interpreters to the Context Attribute. For doing that, a scheme similar to the
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one used in Ninja (see [GWB00]) is used. In every step (trying to find the next
Interpreter), it is checked whether the corresponding Context Interpreter already exists
in the system or can be installed from the Interpreter Catalogue.

4.8.1 Context Data Schemes

A context data scheme consists of at least three parts: the specification of the focus
entity, the context type and the format of the data. The focus entity is important
because there might be sensors that deliver data only for a specific entity. This is
especially true for type a sensors, as they are attached to a user device. An example
for such a sensor is the GPS sensor connected to a PDA. The context type specifies
the "semantic" value of a context element. Context types establish class hierarchies
like in object-oriented systems (like 1D position - 2D position - 3D position). If a
context type class is specified, context data qualify if they are of this class or a
subclass. Additionally, multiple inheritance for context type classes is allowed as
sensors e.g. might deliver data that does not relate to each other (there are e.g. digital
compasses that deliver the heading, but also the temperature and the roll angle).

The context format finally specifies the structure of the context data. Typically,
there are different formats for the same context type. One example is location data
that can occur as WGS84- or as Gauss-Krueger-formatted data.

Context data schemes are used both to specify the need of Context Attributes and
Context Interpreters as well as to define the data that can be delivered by Context
Sources and Context Interpreters. Obviously, some of these components are able to
offer data that fit into a whole number of context data schemes, e.g. GSM network-
based location services that allow to locate a lot of mobile users. In this case, the
corresponding part of the context data scheme can be specified as "any value".

4.9 Event Management

On a context server, context clients can subscribe for events, so they are informed in
case the event happens. The occurrence of these events is checked if one of the
participating Context Attributes changes its value. The "basic events" that occur
during the operation of a context server are:

• changes in the value of a context attribute (either any changes or such that
overstep a certain threshold)

• the connection/disconnection of a new sensor
• the creation/deletion of a context attribute
• the occurrence/deletion of a context interpreter or source in the Interpreter

Catalogue

5 Sample Applications

In this section we will present three sample applications that illustrate the benefit of
our context system.
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5.1 Context-Aware Answering Machine

Often, an answering machine shall be turned on as soon as the last person leaves the
house. Unfortunately, humans sometimes forget to do this. An answering machine
that has a connection to the context system of the house can subscribe for being
informed when the last person leaves and then turn on itself.

5.2 Shopping List Reminder

In order to remind a person to buy needed goods, a service uses the event mechanism
of a context system to notify this person as soon as he/she approaches a certain shop
when it offers the needed goods and is open. This notification can be sent to any
device of this person, a mobile phone, a PDA, a car radio, even a video camera using
a wireless connection.

5.3 Context-Aware Video Camera

Metadata for audio and video recordings is getting more and more important. A video
camera that is able to access the context systems of surrounding devices via Bluetooth
can store any context data along the recording, like the location and heading of the
camera, the names of the persons that appear in the recording, etc.

6 Security and Privacy

Security and privacy aspects occur at different areas in the context system. The
relevant questions are:

1. Which context server is allowed to access sensor data?

From a sensor's point of view, context servers are information sinks (i.e. clients).
If this context data relates to a human person, this person might want to control
who can access this information (like he/she wants to control which application
can access context information at the context server). Here, either a general trust
model can be used (like the assumption that every user has to trust the platform),
or the person authorizes single context servers (e.g. the one that is employed by
this person). If a sensor is attached to a user device (e.g. a thermometer), this
information can relate to that user implicitly ("Where have you been last night?
You told me that you stay overnight at a schoolmate, but the temperature at your
device was about 0 C on 3am...").

Another aspect is that the owner of a sensor (e.g. a thermometer owner) might
want to control the access to his/her sensor (e.g. for commercial reasons).

2. Can we achieve for type b.1 sensors that the sensor does not have the knowledge
about the identity of the tracked entity?

This can be done by using random, temporary entity identifiers. The relation of
these identifiers to the global entity names is known only to the entity and the
Context Server, but not to the sensor.
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3. How to protect the transport of sensor data from sensors to context servers if done
via an insecure network?

While context data are transported from sensors to context servers, sometimes
insecure networks might be used. Therefore, it is necessary to protect these data
from being read by an attacker, from being modified, and from being inserted.
This can be achieved by means of traditional public-key cryptography.

4. Which context client is allowed to access context data on a context server?

Already discussed in the section about the Access Controller.

5. How to protect the transport of context data from context servers to context clients
if done via an insecure network?

While Context Clients might be located most often on the same computer as the
Context Server, sometimes the two components might want to communicate
remotely being located on different machines. In this case, the same problem
occurs as for sensors that have to submit context data to remote Context Servers.
Therefore, the same mechanisms can be used.

6. Do we reveal already too much information by returning the corresponding
context server when queried using the name of a focus entity in the Context Server
Lookup Service?

This might be perhaps a very specific question. Nevertheless, such an information
can be used to e.g. harm the Context Server containing context about a certain
focus entity by using a Denial-of-Service attack.

7 Related Work

Currently, only a small number of architectures exist that aim at providing generic
context support for applications. In this section, we will shortly present three of them
and the relation of our context architecture to their approaches.

7.1 Telenor Context Architecture

The context architecture (see [BMU00]) proposed by the Norwegian telecom operator
Telenor is based on code mobility and tuple space technologies. This approach differs
from ours in the fact that this system supports applications on mobile devices whereas
our architecture is focused on supporting services that run on a mobile service
platform.

7.2 CHANSE

CHANSE (Context Handling Architecture for Networking Service Environment, see
[NMI00]) is a general architecture that supports applications that need access to
context information. Compared to our approach CHANSE offers the more detailed
context model and incorporates various components to match the context data
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specification with the context data offered by sensors. While the distribution structure
of CHANSE employs a single central server that mediates context data requests, our
approach uses a single mediation point per focus entity. Finally, we employ an easier
context model and an easier component structure.

7.3 Context Fabric

A recent paper ([HL01]) argues why an "infrastructure" approach of context support
offers advantages over the "library" approach of the Context Toolkit and describes
five challenges for building such an infrastructure. Our approach in fact is an
infrastructure according to the definition in [HL01] and tackles these five challenges,
e.g. by offering an automatic path creation.

7.4 Context Toolkit

The Context Toolkit (see [Dey00]) is an architecture that allows applications to
access an open number of context sensors in an uniform manner. This is achieved by
having a generic abstraction of a context sensor, the so-called Context Widget (see
Figure below). Aggregators allow to bundle context information which relate to a
particular entity, e.g. a person. Finally, interpreters allow to deduce information out of
a number of context information  provided by an application or Context Widget. The
deduced information is returned to the component (i.e. application or widget) that
called the interpreter.

Our architecture is in some aspects very similar to the Context Toolkit approach (in
fact we tried to use the same terms for components that have the same functionality).
The main differences of our approach to the Context Toolkit are the dynamic
association of sensors to the processing infrastructure, the automatic configuration of
this infrastructure, the access control component, and the access also to past context
data.

Figure 2. Components of the Context Toolkit Architecture [DA99]

8 Conclusion & Outlook
In this article, the design of a context system architecture for the mobile service
platform of the Youngster project was presented. To that end, we first examined the
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context concept and presented a classification of context data. The requirements were
listed that result from the usage of a context system in a mobile service platform.
Then, the components of the context system architecture were presented. Finally, the
existing work was presented and related to the presented approach.

Conceptually, the context system stores context data only, but as "context" is more
an agreement than a natural attribute, the system presented in this article can be used
to store also other, e.g. constant data.

The context system, of which the design was presented here, is partially
implemented for the mobile service platform of the Youngster project and will be
finished in early 2002. Afterwards it will be used to implement some context-aware
mobile services that will be evaluated in a field test in Norway.

In a later stage, extensions of the context data schemes by more parameters of a
context type will be examined and probably incorporated. These parameters (e.g.
accuracy, level-of-detail and cost) will allow to select context data sources in a finer
granularity.
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Abstract. Context modeling and detection will play a major role for
pervasive computing. This paper proposes an approach to reveal the
user’s context in a self-organized sensor network without a central point
of control. A uniform communication scheme, referred to as Smart Con-
text-Aware Packet’s (sCAP’s), allows single sensors to share sensed data
and to cooperate in order to build a meaningful context model from
manifold inputs. In this approach, sCAP’s are injected into the sensor
network by the context inquirer. In particular, sCAP’s contain a retriev-
ing plan specifying which types of sensors should be visited to obtain
the desired context information. The paper concentrates on the rout-
ing concepts which allow to deal with breakdowns of sensor nodes and
continuous changes of the network topology.

1 Introduction

Processors and sensors are becoming smaller, cheaper, less power consuming,
unobtrusive, and perhaps even invisible. Consequently, computing resources and
devices metamorphose to a matter of course, vanish to the background and blend
one in another. Several computing paradigms can be envisioned. The notion
of proactive computing for example [29] assumes, that humans get out of the
interaction loop but get serviced specifically according to their needs. Or, a shift
from explicit to implicit human-computer interaction may be achieved [25] by
using the context, the task and the user situation directly as input to the system.

Often, users desire to access computing resources anytime and anywhere in
an ubiquitous [31] manner without restricting their mobility. Users want to get
supported in everyday tasks by manifold services tailored to their specific needs.
We argued in [23] that services should be aligned to the user’s task. In particular,
the system should independently discover and execute services considering the
user’s context [6]. Therefore, services should be offered in a user-centric way.

The vision of pervasive computing [12] poses several important research is-
sues. Challenges such as service discovery and interface description have been
partly solved by various discovery protocols as JINI [14], IETF SLP [26], SDS [5],
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abstract devices [3], among others. Another challenge is context-aware service
provision which goes beyond location based services. More general context de-
tection as well as context modeling is still at an unsatisfying stage. Applying
multiple distributed sensors for revealing context [28] is still in its infancy.

Advances in wireless networking, microfabrication (e.g. MEMS [17]) facilitate
a new generation of large sensor networks [32,2,27]. Application of those sensors
networks range from tracking and identification to sensing applications. Thus,
deploying large numbers of sensors in everyday environments becomes feasible.
Those sensors might be used for context detection.

Today, research in wireless sensor networks [32] mainly focuses on power con-
sumption and routing. In this work we want to go beyond that. We propose an
approach of exploiting manifold sensors attached to everyday devices, referred
to as Smart-Its [27], for revealing the user’s context. Often [30] sets of sen-
sors are treated as a black box. This paper describes a uniform communication
scheme, by which many sensors can share sensed data among them. Context
detection and routing takes place in a self-organized sensor network without
requiring a central point of control. In our approach, so-called Smart Context--
Aware Packet’s (sCAP’s) are injected onto a sensor network. The packets are
governed by an enclosed retrieving plan, specifying which sensors to visit for
gaining a specific piece of context information. The underlying routing concept
is capable to deal with breakdowns of individual nodes and with changes of the
network topology. This paper mainly focuses on these routing issues.

The next section motivates the problem of context detection. We present
our vision of pervasive computing and sensor networks, talk about benefits to
humans, and describe several scenarios. Section 3 summarizes the general con-
cept of our packet oriented sCAP approach. This is followed by a discussion and
detailed presentation of the Smart Stack Routing (SSR). Finally, the approach
is summarized and an outlook is given.

2 Problem Statement

This section gives a motivation to the problem we address with this work. For
common understanding, first we present our vision of a pervasive environment.
Secondly we motivate the role of users in these environments and give a short
overview on scenarios.

2.1 The Envisioned Environment

We envision a pervasive environment instrumented with computing empowered
sensors [8], so-called Smart-Its [27]. A large number of those autonomous units
form a wireless sensor network [19] with distributed processing capabilities. Due
to wireless communication, the sensor network can be easily deployed. Accord-
ingly, single sensors are close to the phenomena, which should be monitored by
the network.
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In particular, the Smart-Its are attached to everyday devices such as cups,
tables, chairs etc.; they can be equipped with various sensors for perceiving a
range of inputs as temperature, light, audio, co-location, movement and so on.
The sensor units deliver defined abstractions of sensed information as simple
feature values (loudness, brightness, speed...).

Further, these tiny devices are supplied with a wireless communication such
as RF or Bluetooth [4]. Accordingly, the connectivity of the network is con-
strained by the reach of wireless communication.. Due to the fact of mobile
nodes and incremental addition and removal, the communication quality may
be weak and encounter intermittent disconnection. The stability of the network
is unpredictable.

An on board micro-controller provides computing power and enables simple
feature calculation from the sensors inputs. These features, loudness, brightness,
speed, temperature etc., are described by discrete number values. The envisioned
Smart-Its operate autonomously with no central point of control, there is no
directory service giving information about the sensors available in the current
environment. Cooperation among sensor nodes is a general goal, as streamlining
the activity of several nodes can increase performance of the entire network.
Each device is self-aware, such that it knows about its own sensing capabilities
and can report those, if inquired, to its neighbors.

Finally, there exist two different types of globally unique identifiers: one for
distinguishing Smart-It units, the other one for distinguishing types of feature
values Smart-Its are capable to deliver.

2.2 Bringing the User into the Play: Scenarios for
Context-Awareness

The Smart-Its environment as described above is predestined for mobile com-
puting [7]. Combining the output of manifold sensors, which are deployed in
the environment, can be used for revealing the user’s current context [6]. By
making use of the term context, it is important for us to go beyond pure loca-
tion awareness but taking more meaningful measures as the semantic proximity
hierarchy [24] into account. Context may be used as an invocation context for
configuring services the user intends to access. This section gives a brief overview
on how (mobile) users may benefit from our environment.

Smart Chemical Lab In today’s biology laboratories information is both cre-
ated and consumed at the lab bench. As workers are focused on the their task at
hand, currently it is extremely tedious to interface with computer at the same
time. On the other hand, biologists need to access and disseminate informa-
tion in digital form, which is performed in a traditional office. The vision of
a smart chemical lab, as Labscape [15], might bridge the gap between today’s
laboratories and traditional offices. In the Smart Chemical Lab embedded
technology is available in a pervasive way, such that the process of experiments
can be observed, recorded, and triggered in a flexible manner. Facilities in the
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lab may be equipped with Smart-Its, which have the potential to assist biologists
in laboratory work and promote new forms of collaboration.

Smart Warehouse Factory warehouses can become smart [9], such that items
are located automatically, tracked for location history or significant changes
in inventory levels are reported. This information could be further processed in
consecutive steps, such as revealing long-term correlations between workflows. In
smart environment approaches as [1] sensors are attached to infrastructure such
as walls, or embedded in floors and ceilings. We rather focus on the stocking items
themselves and want to make them become smart. Then, these items themselves
can perceive characteristics of their stock environment, can sense their neighbors
and further maintain their stocking history: the items are self-aware. Based on
that information the items themselves can alert wether they are going to expire
or dangerous conditions occur, such as chemicals get too close to each other or
environmental conditional are getting hazardous. The full sensor network based
system provides valuable data about the entire warehouse. But in contrast to
common systems working with identifier tags where one central server owns the
entire information, in our approach the information is distributed among the
goods. The goods are self-aware.

Support-System for Individual Drivers As individual traffic is constantly
raising, support systems for individual drivers are needed. Attaching smart-its
to vehicles could provide different aspects of information, such as location, ve-
hicle size and speed. State of the art systems collect and process the data in
a central unit. The support system we are envisioning could calculate traffic
densities, plan alternate routes, estimate trip times locally at each vehicle and
warn of hazardous driving conditions. When vehicles pass each other they could
exchange this information. Based on local communication the application would
scale as the number of vehicles grows. In contrast to central server concepts
where information would be derived in one place, we believe that collecting and
processing data at the individual car would lead to more immediate feedback
tailored to the driver’s needs.

3 Revealing Context
Using Smart Context-Aware Packet’s

As this paper builds on top of the notion of Smart Context-Aware Packet ’s
(sCAP’s) [18], this section summarizes the main concepts of those packets and
motivates why a special routing scheme will be needed.

3.1 The Concept of Smart Context-Aware Packet’s

In contrast to mobile code concepts as [21] ours is more lightweight. sCAP’s do
not feature the mobile code concept, sCAP’s are passive packets. Our concept is a
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Packet Trace

Context Hypothesis

Retrieving Plan

Fig. 1. Decomposition of a Smart Context-Aware Packet

document-based approach [11], as sCAP’s act as passive containers for collecting
feature values from manifold sensors.

As Figure 1 depicts, an sCAP document is organized into three parts: re-
trieving plan, context hypothesis, packet trace. The retrieving plan
embodies the execution plan that determines the sensor types being involved
into the context detection. It describes which types of sensors have to be queried
for revealing the current context. Due to single sensor percepts this retrieving
plan can be continuously refined at each receiving sensor unit, such that the
detection process can adapt to the actual sensor inputs.

The context hypothesis is represented by the accumulation of feature val-
ues retrieved from several sensors. At dedicated units in the sensor network the
value set of the context hypothesis can be shifted to another level of inter-
pretation1. As yet, the context hypothesis is simply represented by a list of
perceived features. Each feature is described by following entries: Feature ID,
Feature value, Sensor type ID, Smart-It ID, Sensor location and timestamp. The
packet trace section is organized of two stacks which have the following func-
tions. The first stack maintains a route history of traveled units in the wireless
network. The second stack directs an sCAP according to a given route. If the
second stack is empty the packet just strays the network in order to meet mean-
ingful sensors by random. Both stacks aim to provide a rough estimate of the
current topology in the highly unstable wireless network. In fact, the packet
trace is core for our Smart Stack Routing algorithm presented in section 4.

3.2 Applying Smart Context-Aware Packet’s

sCAP’s are injected into the network in order to gather context information. The
notion of sCAP’s fosters abstraction from the network composition and allows
to focus on the types of sensor information. As soon as an sCAP is received by a
sensor, sensed features values maybe added to it, if those are scope of the packet.
Then, the sensor node forwards the packet to all of its neighbors. Accordingly,
the sCAP accumulates meaningful sensor feature values. Combining the gained
features stored in the sCAP allows each node to make an assumption about
the current context. Based on that knowledge it can direct this sCAP to an
appropriate sensor for further investigation of the current context. Thus, there
1 We envision to have some computing empowered nodes, referred to as Compute-Its,
in our sensor network later on.
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is a permanent in network re-calculation of the context, which allows continuous
refinement [18] of the assumption and adaptation of the sCAP routing plan. As
soon as the accumulated information is complete it is returned to the inquirer
of this information. For processing sCAP’s we assume some computing unit at
each node in the sensor network as outlined in section 2.1.

Figure 2 gives an example. The user is interest in the audio and light context.
Accordingly he creates and sends out an sCAP to the network, the solid lines
in Figure 2 illustrate the connectivity. The packet is properly received by node
A. As A does neither have light or audio sensors, it cannot contribute to the
packet and forwards it to its neighbors B and E. The packet splits into P, which
continues to F, and P’, which heads to D. As D is equipped with an audio sensor,
it wraps sensed data into the packet and returns it to the user. The situation at
F is similar, it contributes light information to the packet. In this situation, one
copy (P”) is returned to the user, another one (P) is forwarded to G. Node G
contributes audio information, such that P is complete and can be returned to
the user as well.

Accordingly, the user receives P carrying audio and light, P’ carrying only
audio and P” carrying only light information. Further, all three packets know
their itinerary, such that the user may contact the nodes D, F and G directly
at another time. The sCAP approach is user-centric in that way, that the user
can acquire knowledge about the network’s topology. He either can rely on that
information or tackle dynamic changes by initiating other sCAP’s.

The itinerary information stored in the packet trace is provided by the
Smart Stack Routing strategy described in the consecutive section.

4 Routing of sCAP’s: Smart Stack Routing

This section describes our routing strategy, referred to as Smart Stack Rout-
ing (SSR), suitable for sCAP’s. As routing in general, SSR describes a process
of prescribing the routing path tailored to the means of sCAP’s. First we will

data

G

D

A
P’’

P’

P

P, P’, P’’

P

F
P

P

request

P’
H

Fig. 2. Application example: A user is asking for light and sound data



40 Florian Michahelles et al.

classify existing routing strategies and differentiate SSR from those. Thereupon
SSR will be discussed in section 4.2 in greater detail.

4.1 Classification of Routing Strategies

Instead of classifying the manifold state of the art routing protocols [22] we will
just focus those affecting our SSR approach. In Table 4.1 these protocols are
classified by their application environment they are most dedicated to. We dif-
ferentiate networks due to their topology and their participating nodes. We see a
network’s topology either to be totally connected or neighbor connected. Totally
connected means, that every node is in reach of every other node. In contrast to
that, neighbor connected defines, that nodes are clustered into neighborhoods,
which are defined by signal reach. Accordingly, communication between two
nodes only can happen, if they are in the same neighborhood, cross neighbor-
hood communication requires at least one intermediary node linking two neigh-
borhoods. The participating nodes may be static, such that their location is fixed
and nodes do not appear and disappear too frequently. Obviously, this results in
a pretty solid network. However, for sensor networks dynamic nodes, which can
appear and disappear rapidly and may change their position as well, seem to be
more realistic.

Gnutella The Gnutella network [10] is a fully-distributed information-sharing
technology. It enables private users to share files among each other on the inter-
net. Each user becomes part of the network by using a Gnutella client software,
each node is both a server and client. As users may enter and leave the net-
work, Gnutella is somewhere in between our definitions of dynamic and static
above. But on the other hand, the network is definitely totally connected, as
building upon the internet an IP address is assigned to each user. Each user is
assigned to a local cluster, which is constrained by the time-to-live of his initial
requests. Each user has this local view, but by accepting and forwarding search
and initiation packets of other users, connection to the entire network can be
established. Accordingly, the Gnutella network can be seen a sort of wading into
a sea of people. People as far as the eye can see. And further, but they disappear
over the horizon. In contrast to wireless networks, the Gnutella clusters are just
set up artificially because of performance reasons during search and initiation of

Table 1. Classification of routing strategies

static nodes dynamic nodes

neighbor connected
everybody to subset

Stack Routing
Directed Diffusion

Smart Stack Routing

totally connected
everybody to everybody

Gnutella Gnutella
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new users. In a second step, the file sharing itself is established by peer-to-peer
connection as the network is totally connected. However, the idea of local routing
tables tracking the last hundred incoming requests have been adopted to SSR.

Stack Routing Stack Routing [33] is another approach for distributed file-
sharing. Instead of setting up local clusters, two motions for sending packets are
introduced: undirected and directed. Undirected motion does not aim at specific
individuals or entities, but at anybody fulfilling certain criteria. Directed motion
follows one declared path. It is oriented toward specific entities. Stack Routing
uses undirected motion for sending out requests from the network. The packet
records its return path. Every node on the route pushes data onto the packet’s
stack. This data memorizes the previous node the packet came from. Conse-
quently, at any residing node the return path to the inquirer is stored on the
packet’s node. Again, a time-to-live counter in the packet is used to limit the
length of any path during undirected motion. Reaching the final receiver fulfilling
the criteria, the packet is returned by directed motion. Using two stacks allows to
establish bidirectional paths between nodes. One stack records the return path
(push stack) as described, the other one (pop stack) is either empty (undirected
motion) or contains a return path (directed motion). Thus, the direction of a
packet is reversed by swapping stacks. Though Stack Routing is very reasonable
for neighbor connected networks, it still assumes a more or less static network.
Otherwise, packets may get lost during directed motion to their inquirer. How-
ever, our work was very much influenced by the Stack Routing approach. We
also make use of stacks storing paths but we extended directed motion in order
to be more reactive towards dynamic changes in the network.

Directed Diffusion Directed Diffusion [13] belongs to the same category as
Stack Routing. However, Directed Diffusion seeks to be used for large sensor
networks. This approach is data-centric as each sensor node names its generated
data with one or more attributes. According to those attributes, other nodes
may express interests, which are propagated throughout the network. The path
of interest propagation sets up a reversed path for data matching that interest.
Interests establish gradients that direct the diffusion of data. Thus, a data paths
from sources to sinks are computed. Though Directed Diffusion is reactive to
changes in the network topology time evolves during updating the gradients
localized throughout the network. Directed Diffusion could be applied to improve
undirected motion constraining the choices by calculated gradients. In our current
approach We have not taken this into account yet, but this might be reasonable
for future work.

4.2 Smart Stack Routing (SSR)

This section gives details about SSR for routing sCAP’s in wireless sensor net-
works. SSR builds upon the routing strategies presented in the previous section,
but overcoming the shortcomings of those. Accordingly, SSR has to be capable
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for neighbor connected networks with highly dynamic participating nodes. We
have adopted the main ideas of Stack Routing: undirected motion and directed
motion, time to live for controlling the reach of sCAP’s,and the notion of push-
and pop stack. Further, we make use of unique identifiers existing in our Smart-
Its environment in order to distinguish network nodes. However, tailoring our
strategy to more unstable wireless networks. In the following we will introduce
several enhancements and illustrate those by an example, see Figure 3.

Request ID The Request ID is a non-ambiguous identifier of a single request.
The main purpose of this ID is to filter out same copies of packets finding there
way to the final receiver on different routes in the network. The Request ID is the
first element pushed onto the push stack by the data inquirer. It is assembled of
the inquirer’s identifier and a consecutively generated number for distinguishing
between several requests from the same node. However, as the validity of packets
is limited due to a time to live counter, the consecutive numbers may be reused
after a while.

Semi-directed Motion Semi-directed motion is a mixture of undirected motion
and directed motion. It aims at dealing with breakdowns of intermediary nodes
of given paths during directed motion. In this case, a dedicated token is pushed
on the pop stack indicating the packet is on semi-directed motion. From now on,
the packet is traveling the network in an undirected manner. It aims at strolling
the network for returning back to its origin return-path by skipping breakdowns
on detours. Due to that, the packet’s pop stack is continuously browsed for an
entry-point in order to switch back to directed motion again. As soon as a visited
node is part of the pop stack, all elements above this node entry are eliminated
from the stack and the packet is back in directed motion.

Dead-End Detection In wireless networks the topology may create dead-
ends. A packet going into a dead-end reaches a final node which has no other
neighbor than the packet arrived from. In this case the final node should delete
the packet: As we assume that every node is always propagating a packet to all of
his neighbors, it does not make sense to route a packet from a dead-end back to
the branching node. Before reaching the dead-end, the packet already has been
split and a copy is already on the way. Dead-end detection is very simple. If a
node is not the final receiver of a packet and it only can forward it to the node
it was received from, then the node is a dead-end and has to kill the packet.

A receiving table resides at each node. It keeps track of previous packets this
node has been final receiver.of. The size of this table also depends on the packets’
time to live.

Example We illustrate the concepts of SSR with the aid of an example scenario.
In the following, we assume a sample wireless network consisting of the nodes
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Fig. 3. Example connectivity of wireless nodes

A, B, C, D, E, F, G, H, and I. These nodes are connected to each other as the
solid lines depict in Figure 3.

Further, we assume to have some dynamics in the system, such that node
F breaks down after a while. Node A requests certain data which is assumed
to reside at node G. For an sCAP moving from A to G SSR works as follows.
Initially, both push- and pop stack are empty. Starting from A, there is only one
choice of connection. Before sending the packet from A to B, A indicates itself
as the inquirer of the data request by pushing its identifier, shown as A* in
Table 2, onto the push stack. B receives the packet from A but realizing that
it cannot contribute to the packet’s needs. Consequently, it pushes the return
path to A, represented by Ba in this case, onto the push stacks. After that it
forwards the packet to its neighbors. As there are two nodes reachable from B,
C and D, the primary packet splits. One is heading to C, referred to as P’, the
other one is continuing to D, denoted as P in Table 3.

As packet P’ reaches node H, see Table 3, a dead-end is detected and P’ is
removed from the network. Meanwhile, the other copy of the primary sCAP is
making it’s way to D. D also pushes its return path to the previous node B onto
the packet’s push stack.

As depicted in Figure 3, D branches to E and F, such that packet P is forked
again. P makes its way to G via F. Due to the fact that P” still has to make two
hops via E and I, we assume that it will reach G after P already has been there.
As P reaches G fulfilling the inquirer’s needs, the node F breaks down. G queries
its receiving table and recognizes that this request has not been accomplished
yet. Hence, G wraps the desired data into the sCAP’s context hypothesis part.

As shown in Table 2, G swaps the packet’s stacks and semi-directs P to I as
the primary return path is not valid anymore. Simultaneously2, P” reaches G.

Thereupon, G, queries its receiving table, identifies P” as an identical copy
of P and removes it, see Table 4. Meanwhile, P records its path from G to D
on its push stack. As D was part of the original path P was arriving from, it
is found on the pop stack and motion can be changed from semi-directed to
directed. Thence, D pushes it link to E onto the push stack and reveals B as the
node to route the packet to by popping this information from the pop stack.
2 We assume collision-detection to be handled by lower network layers, which is out
of scope of our work
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Table 2. Stack trace of packet P

Node Action Push
Stack

Pop
Stack

A push A*
send to B

A*

B
push Ba
send to D

Ba
A*

D
push Db
send to F

Db
Ba
A*

F send to G

Fd
Db
Ba
A*

node F breaks down

G

wrap data
swap stacks
push S*
semi-direct to E

S*
Fd
Db
Ba
A*

E
browse Pop Stack
push Eg
semi-direct to D

Eg

S*
Fd
Db
Ba
A*

D

browse Pop Stack
entry point found
revise Pop Stack
push De
pop Db
send to B

De
Eg

Ba
A*

B
pop Ba
push Bd
send to A

Bd
De
Eg

A*

A
push Ab
pop A*
unwrap data

Ab
Bd
De
Eg

Table 3. Stack trace of packet P’

Node Action Push
Stack

Pop
Stack

B
push Ba
send to C

Ba
A*

C
push Cb
send to H

Cb
Ba
A*

H kill packet

Hc
Cb
Ba
A*

Table 4. Stack trace of packet P”

Node Action Push
Stack

Pop
Stack

D
push Db
send to E

Db
Ba
A*

E
push Ed
send to I

Ed
Db
Ba
A*

I
push Ie
send to G

Ie
Ed
Db
Ba
A*

G
packet expires
kill packet

n/a n/a

Finally A receives P from B, identifies itself as the creator of the packet
and unwraps the data part. Further A can extract the return-path to G. It
may initiate a second data request, e.g. an information update, sending another
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packet in by using more efficient directed motion following that proven path.
Moreover, it seems to be reasonable to store proven paths in a trace table for
late use of directed motion.

5 Conclusion

Envisioning pervasive computing several challenges have to be be addressed. We
demand context-aware behavior of pervasive environments to service humans
in an adequate manner. Therefore, we described a packet oriented approach in
order to reveal the user’s context from sensors available in the environment.
Our work was influenced by Stack Routing [33] and inspired by the Smart-Its
project [27] assuming interconnected everyday objects that are instrumented
with embedded sensors in an unobtrusive manner. Building upon Smart Con-
text-Aware Packet’s [18] we developed a routing mechanism tailored to wireless
sensor networks. Our Smart Stack Routing approach promotes exchange of sen-
sor data throughout wireless sensor networks without central points of control.
Embedding the entire routing intelligence into sCAP’s, makes our approach pow-
erful to tackle break downs of single nodes in the sensor network.

6 Related Work and Outlook

This section gives short overview on related work and briefly reflects how it
relates to our work.

Using the publish-subscribe paradigm [16] for querying data in sensors net-
works is a more centralized approach than ours. The authors intend to provide
simpler communication interfaces and abstractions above raw network commu-
nication to application and system programs. It will be interesting to see, how
look-up service, composition service and dynamic adaptation service behave with
respect to changes and break downs in the network.

MADSN [21] is more similar to our packet approach. Mobile agents, which
could be interpreted as powerful sCAP’s, are used to execute a refined multi-
resolution integration algorithm. It aims to obtain a correct estimate of observed
parameters from a homogeneous set of partly faulty sensors. The authors demon-
strate in a case study, that their mobile agents reduce the network transfer com-
pared to conventional multi-resolution integration [20]. MADSN may serve as
building block in our framework to handle homogeneous sets of faulty sensors.

Directed Diffusion [13] constraints information flows propagating interests
and setting gradients accordingly, as already mentioned in section 4.1. Currently,
we envision directed diffusion as an underlying principle for optimizing flows of
sCAP’s during directed motion.

Finally we will investigate the integration of our SSR approach into scatter
networks, such as Bluetooth [4], which provide more powerful network topologies
than simple local broadcast topology.
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Abstract. The Eucalyptus architecture aims to support ubiquitous in-
teraction between devices ranging from tiny low power devices through
to fully fledged computer systems. Low power ad hoc networking presents
problems for conventional middleware protocols both in terms of perfor-
mance and of network availability. The work presented here addresses
the problem of efficient and interoperable communication between low
power devices, and describes interfaces and structures used to manage
distributed systems composed of such devices.

1 Introduction

Improvements in processor technology made in the past ten to twenty years
have meant that the PDAs carried by users today and treated as little more
than electronic diaries are significantly more powerful than desktop computers
used to be.

Cheap processing technology not only means cheaper computing platforms
but means that some degree of “intelligence” can be embedded in even very tiny
and low-cost devices. Products built around cheap microprocessors are often
easier to develop than systems based around custom chips and can support
extra features much more easily.

By combining low-end microprocessors with low power wireless networks,
devices can be built which interoperate transparently with each other to perform
tasks. Such devices include sensors, home or office equipment and other consumer
electronics. Using short range networks, these devices can provide context-aware
features to their users, as well as cooperating to perform more conventional tasks.

Ad hoc systems of this kind, comprising often disconnected networks of roam-
ing devices pose problems for many traditional network protocols. Low power
wireless protocols tend to introduce significant latency in communications, ad-
versely affecting RPC (Remote Procedure Call) and similar protocols. Use of
short range radio networks allows context to be inferred from connectivity but
poses problems for lengthy interactions between mobile nodes.

H. Schmeck, T. Ungerer, and L. Wolf (Eds.): ARCS 2002, LNCS 2299, pp. 51–66, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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This paper presents a low power radio messaging layer, wide-area routing
services and a distributed control architecture suitable for home and office envi-
ronments.

2 The Prototype Embedded Network

PEN (Prototype Embedded Network) is a lightweight, low-power wireless radio
network designed to perform introduction and low bit-rate data transfer between
arbitrary devices. PEN may be embedded in devices from simple sensors, through
household appliances, to full computer systems. This distinguishes PEN from
more sophisticated technologies such as BlueTooth [2] or IEEE 802.11b1. PEN
shares similar design goals with the more recent PicoRadio [19] project. The
Smart Dust [16] project aims to support extremely tiny sensors using free space
optical links, rather than radio.

PEN’s short range allows a table of nearby devices to be constructed from
which context information may be inferred. The restricted radio range of PEN
allows the amplification stage to use less power, as well as increasing the ag-
gregate bandwidth available to applications by reducing the number of devices
sharing the medium.

2.1 Hardware

PEN components consist of a standard 418/433MHz radio module, a PIC (Pro-
grammable Interface Controller) to manage it, and a power source. The radio
module is calibrated to have a range of around 5 metres and provides a usable
data rate of 24Kbps. Simple PEN devices such as sensors could conceivably be
powered by either a coin-cell, or an ambient power source such as sunlight.

Prototype PEN units contain an embedded microprocessor, RAM and ROM
modules and serial communication ports. All results provided in this paper are
based these prototype units, used either stand-alone, connected to Psion Se-
ries 5/Compaq iPAQ 3600 PDAs or to PCs.

2.2 Software

Power consumption of active PEN prototype nodes is dominated in equal part
by the radio, CPU and memory subsystems. When fully active, a node con-
sumes 600mW of power. With these three subsystems idle, the same node can
consume as little as 16µW. The PEN runtime, EEK, therefore contains a demo-
cratic power management scheme, allowing applications and system components
to indicate when they require other components to remain active via vote. The
runtime is based around the µCOS [17] micro-kernel and has a similar modular
design to the more recent TinyOS [14].

Rather than accessing the radio interface directly, PEN applications use the
R-Layer (Rendezvous Layer) [21] [7], a low power rendezvous and messaging
1 IEEE 802.11b is commonly referred to by the “WaveLAN” product trademark.
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service. The R-Layer uses a specially designed rendezvous protocol to allow the
radio hardware to remain powered down for all but a few tens of milliseconds
out of every minute, while still providing useful functionality. This results for
typical applications in an average power consumption of around 1mW.

Like the base radio interface, the R-Layer supports only relatively small data-
grams. To support large datagrams, data streams or ad hoc multi-hop routing,
specialised extensions to the protocol stack are required, such as the PEN Trans-
port and Routing Layers [6].

2.3 Network Topology

The IrDA [15] and BlueTooth technologies both employ a star network topology.
Devices using these technologies are arranged into groups, each with a single
master device and a number of slaves, as shown in Fig. 2.3. All messages between
slaves must first be passed to the master, to be forwarded to the destination.
This doubles the bandwidth and power required to deliver messages, the brunt
of which is borne by the master device.

PEN instead assumes a totally decentralised network, in which all devices
communicate as peers. Since no central authority schedules communication, the
PEN Media Access Control (MAC) layer must take measures to avoid colli-
sions between transmissions. PEN uses a variant of the Singly-persistent Data
Sensing for Multiple Access (1-DSMA) scheme to achieve this, resulting in a
reduction in PEN’s effective bandwidth. Decentralised operation allows devices
to communicate directly without prior configuration, and removes the need for
a well-powered device such as a PDA or laptop to manage communications.

Slave

Master

Message

Link
to

Peer

Peer
Star

B B

A A

Fig. 1. Star vs Peer-to-Peer Network Topologies
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3 The R2 Low Power Messaging Layer

As part of the Eucalyptus project, a second low power messaging protocol has
been built, dubbed the R2-Layer [25]. The R2-Layer is a modular system pro-
viding a superset of the functionality provided by the more monolithic R-Layer.
In particular, the R2-Layer provides both transmitter-managed and receiver-
managed rendezvous implementations.

3.1 Transmitter-Managed Rendezvous

The original R-Layer provides a transmitter-managed rendezvous scheme for
messaging between nodes. Because PEN nodes spend most of their time “sleep-
ing”, unable to send or receive data, they must first arrange to wake simulta-
neously before they can communicate. Transmitter-managed schemes place the
responsibility for rendezvous with the sender. R-Layer nodes wishing to receive
data must wake to transmit broadcast beacon datagrams at regular intervals.
After each datagram the node must remain awake, listening for incoming data.
To send data, the transmitter first listens for a beacon from the target device,
then delivers the payload in the subsequent listen window

3.2 Receiver-Managed Mode

In addition to the transmitter-managed rendezvous scheme provided by the orig-
inal R-Layer, the R2-Layer provides a receiver-managed scheme designed to sup-
port extremely low power embedded sensors. Receiver-managed schemes require
devices wishing to obtain data from transmitters to arrange rendezvous with
them. The R2-Layer implements a simple receiver-managed scheme in which
nodes add a small payload to their regular beacons. Nearby recipients may then
synchronise with these beacons to receive their payloads.

3.3 Local Area vs Wide Area Communication

Both the R-Layer and R2-Layer provide ad hoc low power rendezvous and mes-
saging services directly between pairs of nodes. While the short range of the PEN
radio provides valuable context information for many applications, it severely
limits the number of services and other devices a node may communicate with.
Devices in otherwise isolated clusters of PEN nodes may use multi-hop routing to
extend their sphere of influence. Devices in environments with pre-configured in-
frastructure may instead use backbone routing services to perform long-distance
communication.

The APIDgate and R-Link services [23] provide wireless-to-wired and
wireless-through-wired routing for PEN. Both services use the Predator Location
Service [22] to track potentially very large numbers of devices on a world-wide
scale. Although PEN devices may communicate directly whether or not such
infrastructure is present, it may also be used to provide further power savings
over direct communication.
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4 The Koala Object Request and Event Broker

The PEN protocols previously described solve problems of rendezvous and mes-
saging between low power devices. In an ad hoc distributed system, it is not
sufficient to provide basic messaging services and expect appliances to cooperate
seamlessly.

Standards such as CORBA [8] specify standard programming models and
interoperability requirements suitable for conventional computer systems. The
Koala Object Request and Event Broker [24] builds on the core CORBA object
model but aims to support embedded low power devices. This presents problems
both of efficiency in use of storage and CPU cycles and of managing the high
latencies inherent in the operation of the underlying PEN protocols.

4.1 Object Model

The Koala object model closely matches that specified by the OMG’s CORBA
standard. Interfaces are defined in Interface Definition Language (IDL) [12], spec-
ifying sets of types, constant values, methods and attributes. The stub compiler
uses these interfaces to build servant skeleton code, on which interface imple-
mentations are based, and client stub code, through which remote methods are
invoked by clients. Objects are addressed by the device hosting them, the Ap-
plication Identifier (APID) through which they are contacted, and a per-object
key.

Most control interactions between objects and their clients occurs using Re-
mote Procedure Calls (RPC). RPC provides a convenient and familiar model
upon which to build distributed applications but has characteristics which limit
its applicability in high latency environments. The Koala ORB provides two
main additions to the CORBA object model to tackle this.

4.2 Asynchronous Remote Procedure Calls

Standard remote procedure calls cause the caller to “block” until the call has
been sent across the network, dispatched, and a result received. Each invocation
therefore incurs a single round-trip delay, equivalent in a deterministic network
to twice the network latency. Figure 4.2, shows the raw datagram fundamental
latency, the hard latency resulting from PEN’s plea/offer/beacon protocol, and
the soft latency incurred by low power operation. The soft latency in this case is
three orders of magnitude greater than that of a raw transmission. Since PEN
is already a relatively high latency network, this poses a considerable problem
for latency dependent protocols.

Many applications dispatch batches of logically independent invocations se-
quentially. This avoids the overhead of dispatching each in a separate thread,
and the complexities of existing asynchronous invocation mechanisms such as
the dispatch-and-callback and dispatch-and-poll schemes provided by the CORBA
Messaging Service, for example. However, it introduces artificial and unnecessary
dependencies between invocations, resulting in excessive numbers of round-trip
delays.
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Table 1. Fundamental, hard and soft latencies of the PEN protocols

Type Average Latency (ms)

Fundamental 7
Hard 21
Soft 5000

Dispatch-and-Callback Dispatch-and-callback RPC mechanisms allow clients
to pass a callback function to asynchronous invocations. When the invocation has
completed and its results are received, they are passed to the callback function
for processing.

Dispatch-and-Poll Dispatch-and-poll RPC mechanisms immediately return a
pollable object to clients calling asynchronous methods. The client then polls
the object periodically, until it indicates that the invocation has completed and
a result is available.

Block-by-Need The Koala ORB supports both dispatch-and-callback and
dispatch-and-poll methods of asynchronous invocation, in addition to its own
block-by-need scheme. Asynchronous Koala RPC immediately returns a result
object when an asynchronous method is invoked. The caller then stores this ob-
ject in the same way as it would any normal result from an invocation. When
the result must be used, the client dereferences it, perhaps using “*” in C++
or “()” in Python, to obtain the actual value it contains. If the result has not
been received by the time the object is first dereferenced then the calling thread
is blocked until it becomes available. This avoids much of the complication of
callbacks or polling while providing similar performance benefits. Results objects
nonetheless provide for applications suited to use of callbacks or polling.

4.3 Lazy Lists

In environments with multiple similar objects, it is often the case that a par-
ticular request is to be made to several objects, and the results collated. Using
sequential RPC, each object would be contacted in turn, resulting in latency
proportional to the number of objects contacted2. Using asynchronous RPC, all
invocations would first be dispatched and their results then collected using the
block-by-need mechanism. This reduces the latency of the operation to the that
of the slowest object to respond. As the number of objects contacted increases,
this will tend towards twice the beacon interval.

If such results require CPU-intensive post-processing then the caller could
benefit if each result were to be delivered as soon as it became available, rather
2 This assumes all devices hosting similar objects to share a common beacon interval
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than waiting for all results before returning any. Even if no post-processing is
required, it may be beneficial to provide feedback through a user interface, for
example, as data is received. The Koala ORB provides the lazy list primitive for
this purpose. Lazy lists consist of a value and a successor function and may have
either immediately available data or block-by-need result objects appended to
them.

When the successor function is called, the next item in the list is returned.
If this is immediate data then a value, successor pair is returned. If it is a result
object then it is first polled for availability. If the result is not ready then it
is moved to the back of the list and the next value in the list is considered. If
no items in the list are currently available then the successor blocks until one
becomes available.

Using lazy lists, distributed operations touching many objects may be dis-
patched asynchronously and their results processed as they become available via
a convenient and intuitive interface. If a lazy list containing pending result ob-
jects is destroyed by the recipient then Koala will notify host devices to indicate
that the corresponding replies are no longer required.

4.4 Attribute State Events

Distributed applications for wireless systems often take advantage of their in-
herent context aware features. Context-aware applications typically involve a
degree of monitoring of state of nearby devices, to which conventional RPC is
not ideally suited.

Although CORBA IDL has the syntactic notion of object “attributes”, their
semantics are described by the object model in terms of methods to set and
retrieve their value — CORBA attributes therefore have no real semantic sig-
nificance.

Koala extends the CORBA notion of attributes to give them more semantic
significance, in a similar manner to the Omni Object Services [5]. Interface def-
initions may inherit from the special “Watchable” interface, if they wish their
attributes to be “watchable”. Whenever an action occurs inside an object which
causes a watchable attribute to change, the implementation calls a notification
function supplied by the Koala skeleton code. The notification function dis-
patches an update event containing the current state of the object’s watchable
attributes to all interested event sinks.

Exactly how events reach clients depends upon the supported event trans-
port. Very simple sensor devices will typically use receiver-managed rendezvous
and embed event data in their beacon payload, while more complex devices might
use a counting-event scheme instead, to provide greater reliability. In order to
interoperate with event-based architectures such as SPIRIT [13] or LocALE [4]
running on conventional systems, events might be transfered using the standard
CORBA Event or Notification services [10] [11].
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5 The Eucalyptus Control Architecture

5.1 Overview

Eucalyptus assumes a world of roaming and static appliances, physical devices
hosting one or more components, as illustrated in Fig. 2 for a simple sensor appli-
cation. Components are objects derived from the Component interface, which cor-
respond to some functional capability of the appliance. The architecture builds
on the Koala object model and defines the syntax and semantics of a number of
standard interfaces designed to support efficient interoperability between appli-
ances.

5.2 Object Interfaces

Because Eucalyptus uses an object model with well defined semantics and which
employs static interfaces and typing, components need not provide complex re-
flexive functionality. The simplest Eucalyptus sensor might broadcast a pre-
formed beacon datagram at regular intervals. The datagram would include the
sensor’s supported interface types. The only dynamic component would be an
event containing the current sensor value. We assume that to use the sensor,
clients must be aware of the sensor’s interface. This is reasonable since, even
with dynamic interface information, clients must understand the semantics of
the interface in order to use it.

Although static typing is preferable to dynamic typing when linking com-
ponents together into a distributed system, dynamic typing provides benefits
when component browsers or gateways between object models are required. The
CORBA Dynamic Invocation Interface (DII) [9] is provided for just this purpose.
Better-equipped Eucalyptus devices may therefore make their interface details
available if they wish, via a standard Eucalyptus interface. When a browser or
gateway cannot obtain such information from a component directly, it may fall
back to fetching interface details from an interface repository.

Appliance

Component

Proxy Stub

Sensor Monitor

Sensors

Radio

Fig. 2. A simple sensor system using Eucalyptus
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5.3 Discovery

Eucalyptus is primarily designed for low power platforms such as PEN. Since
PEN devices spend most of their time inactive and unable to receive data, they
will usually hear beacons from other nodes only when explicitly listening for
them. The R2-Layer therefore provides modules to aid ad hoc discovery of nearby
devices. To discover components hosted by such devices, the Koala ORB assumes
that discovered devices which advertise the well-known Koala APID must host
a primary component with a well-known object key.

Locating Components The Koala ORB provides import traders for each sup-
ported network transport. These traders support queries for objects based on the
interfaces they support. Traders are partitioned into hierarchical name-spaces,
and queries may be made against all or part of a trader, as required. The PEN
import trader uses the R2-Layer’s discovery features to listen for local appli-
ances arriving and departing and populates itself with the primary components
of those which are currently local. Applications may watch the trader for changes
in order to be notified when new components become available.

Publishing Components Eucalyptus allows one or more components hosted
by an appliance to be published. If an appliance publishes only a single com-
ponent then that component is made the appliances primary component and is
thus implicitly advertised by the Koala ORB. If two or more components are
published then Eucalyptus instead creates an export trader as the primary com-
ponent and registers the published components with it. Figure 3 shows a single
appliance publishing multiple components via an advertised export trader.

Queries made to Koala traders which contain links to other traders will prop-
agate into them. Queries to import traders will therefore propagate into any
export traders discovered locally. This allows clients to search amongst all com-
ponents published by nearby devices. Koala traders return their results using the
ORB’s lazy list primitive, considerably reducing the effects of network latency.

Component

Trader

Radio

Appliance

Fig. 3. An appliance advertising components through a trader
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5.4 Specialist Traders

In contrast to the ANSA Trader [1] and those employed by Jini [18] and Blue-
Tooth [3], Eucalyptus traders do not provide attribute-matching trader facilities.
General attribute-matching presents to heavy a burden to impose on very simple
devices.

Suitably powerful devices may instead choose to support specialist traders.
These traders maintain up-to-date lists of objects supporting a particular inter-
face, and allow interface-specific attribute-based queries to be made by clients.
Specialist traders operating on different devices can cooperate to satisfy queries
efficiently, or may instead use the standard trader interface to index remote
objects.

5.5 Access Control

By default, any component may be monitored and controlled by any number
of clients. This allows components such as clocks and sensors to be treated as
freely available resources. More complex components, particularly configurable
devices, must arbitrate between conflicting requests in some way. Eucalyptus as-
sumes that conflict resolution is a sufficiently complex and personal task that no
appliance should provide it as an implicit function. Instead, Eucalyptus defines
the Device interface. This interface provides Reserve and Release methods.

The Device Interface The Koala ORB provides low level authentication of
incoming requests, assigning clients unique identifiers internally which may be
queried by method implementations. The standard Reserve implementation ver-
ifies that the object is not already reserved and, if successful, stores the unique
identifier of the caller. Subsequent invocations to other methods of the object
may check the caller’s ID against that stored, if required, to enforce access con-
trol. The standard device implementation therefore allows only one client to
reserve the device at any one time.

Delegated Ownership An extension to the base device implementation allows
delegated ownership. The device is first reserved by its administrative owner,
who indicates that they wish to allow the device to be re-reserved. When a
second client reserves the device, the reservation succeeds as if the device were
not previously reserved, but may be revoked at any time by the administrative
owner. While reserved by a second client, the device cannot be manipulated by
the owner, other than to revoke ownership, whereupon all sensitive internal state
must be destroyed [20].

Shared Devices When multiple clients must access a device, a proxy is added
to the system which assumes ownership of the original device and provides a
shared interface to it. The shared interface provides the same interface as the
device itself, but allows multiple clients to reserve it simultaneously and stores
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internal state for each. Manufacturers can thus provide multiple conflict resolu-
tion schemes and allow users to select one.

A home multimedia system may have a single speaker interface to which mul-
tiple audio sources must be “connected”. Depending upon their preference, the
user might choose between an intermediary component which switches between
audio sources, and one which mixes them into a single stream.

A personal data storage device might use a transactional model to allow
multiple pieces of information to be updated atomically. When reserved, the store
would maintain a separate copy of any data changed by the client, committing
it when the Commit method was invoked, and discarding it when the object was
released.

5.6 Domains

Infra-red systems can use the line-of-sight properties of the media as a heuristic
for the proximity and relevance of an appliance to the user. Short range radio
systems can use the availability of a connection between devices as a proximity
heuristic but this is not generally sufficient to indicate relevance. Because ra-
dio waves can propagate through walls and other materials, a device which is
“nearby” may in fact be hidden or even inaccessible to the user.

Eucalyptus allows devices to be grouped into domains. A domain might be
an office, building or company. Domains contain a pre-configured trader which
clients may query, to avoid the ambiguities of the radio proximity heuristic.
Domains will usually retain administrative ownership of the devices they contain,
allowing them to be revoked from use by malicious clients if required.

Each domain has a unique hierarchical name. A typical structure for the
name might be organisation, building, room, appliance. When a client discovers
multiple domains, it compares their names in order to establish the longest
common prefix. Subsequent queries to the import trader are then passed to all
domains matching the prefix. The current domain prefix may be overridden or
ignored entirely, in order to revert to normal ad hoc operation.

Automated configuration services also benefit from the domain mechanism.
In an ad hoc environment, such services activate configuration operations based
on which appliances are available locally. Using the domain mechanism devices
may be reconfigured dependent upon the current domain, reducing the scope for
conflicts between automated configuration changes.

5.7 Connections

A simple but nonetheless powerful abstraction in configuring Eucalyptus devices
is the notion of a connection between two components. Connections consist of a
source which produces data and a sink which accepts it. Multiple sinks may be
connected to a single source, in which case they will all receive the same data.
Each sink may be connected to only one source.

The Eucalyptus Source and Sink interfaces are used to connect data streams,
for example audio or video streams. High data rate connections will require
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a separate wireless or wired network between the source and sink in addition
to PEN. In this case, PEN is used only to configure the stream, allowing the
controlled devices to switch off their more power hungry data connection when
not connected.

The connection mechanism is also used to cause one Eucalyptus component
to “watch” another. This is mainly used to cause the sink devices to reconfigure
itself based the state of the source. We have, for example, built a PEN “clicker”,
which provides a monotonically increasing count of the number of times the user
has clicked it. Software running on a meeting-room PC can be connected to the
clicker so that each click causes the next slide in a presentation to be displayed.
The same clicker may instead be used to control the lighting in the room or to
power the meeting room equipment on or off, depending upon what is connected
to it.

Although we wish to provide generic connection interfaces to allow general-
purpose user interfaces to connect components without prior knowledge of their
types, we also wish to suppress connections between incompatible components
from being available to the user. It makes little sense, for example, to allow users
to attempt to connect a light switch to a speaker. We therefore provide the const
pragma which may be applied to any interface attribute. This pragma specifies
that the associated attribute is immutable and may therefore be passed to clients
as part of the object reference and cached for later use. The Source and Sink
interfaces may then have an immutable ConnectionType attribute which clients
can use to avoid attempting to connect incompatible components. ORBs which
do not implement the const pragma will implement immutable attributes in the
same way as mutable attributes, requiring clients to query their value via RPC.

6 Evaluation

To evaluate the performance of the Eucalyptus system, we have considered a
number of remote control and automation tasks. The simplest of these tasks is
to control a lamp based on the present light level. In our example we assume an
environment containing ten source devices and ten sinks, all using ten second
beacon intervals.

6.1 Configuration

Our PEN lamp and sensor both support Eucalyptus’ connection-oriented con-
figuration method. As well as providing the Sink interface, however, our lamp
also implements the Device interface, to provide access control. A wireless re-
mote controller is used to connect the two components. The controller contains
sufficient code to make connections between arbitrary sources and sinks.

Locating a Lamp The user interface application makes a query to the con-
troller’s import trader for all locally available components providing the Sink
interface. The list of components is then presented to the user to select from.
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The trader query requires that each available component is contacted to estab-
lish whether or not it provides the Sink interface. Using sequential RPC, this
task incurs 5s latency for each of twenty components. The user must wait for
over a minute before receiving any response.

Assuming that device’s beacons are evenly spread within each beacon inter-
val, performing the trader query using asynchronous RPC will take 9.5s, the
query latency being determined by the last component to respond.

Finally, using the lazy list mechanism, a new result will be returned every 1s
on average, since one component will respond roughly every 0.5s to the trader
and only half the components match the query. The lazy list mechanism provides
the obvious benefit of feedback to the user, who can see the list of available sinks
being populated, and may select a lamp from the list without waiting for the
query to complete.

Locating a Light Sensor Once a sink has been selected, the controller repeats
the query to locate suitable source components. Depending upon the amount
of memory available to the controller device, interface details may already be
cached for many local components, speeding up the operation. Only source com-
ponents whose ConnectionType matches that of the selected sink are presented
to the user. If immutable attributes are supported then this check is practically
instantaneous. If not then a delay of 5s is incurred while contacting the sensor.

Connecting a Lamp to a Sensor Once a lamp and sensor are selected, the
controller invokes the lamp’s Connect method to connect them. To do so, the
controller must first have reserved the lamp, an operation taking 5s. The effect
of this latency may be reduced by dispatching the reserve request asynchronously
as soon as the lamp has been selected, so that it occurs in parallel to selection
of a sensor.

6.2 Operation

After connecting the lamp and sensor, the controller may release the lamp com-
ponent and need take no further action. Upon receiving the Connect request
from the controller, the lamp arranges receiver-managed receipt of sensor data.
The R2-Layer will wake the lamp device at suitable intervals to hear the sensor’s
beacons, containing the sensor data. This increases the lamp’s power consump-
tion but does not affect the sensor. Since sensors will typically be smaller and
less well powered than other devices, this is a reasonable division of labour.

Using PEN’s raw radio interface and our prototype hardware platform, a
sensor can operate for only 18 hours on a 9V battery. Using transmitter-managed
messaging to deliver event data, the same sensor can operate for around four
months. Using the R2-Layer’s receiver-managed messaging for event distribution,
the sensor can operate for between one and two years. Enhancements to the PEN
hardware could improve this by an order of magnitude.
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7 Conclusions

The work presented here has been conducted as part of the Eucalyptus project.
The project aims to explore the potential applications of short range wireless
networks, and their requirements. To this end the project takes a vertical ap-
proach, ranging from power management issues at the messaging level up to
interoperability issues at the programming level.

Eucalyptus has been implemented natively for PEN devices, as well as for
PDA and PC platforms communicating via slaved PEN nodes. At the base of the
system, the R2-Layer provides a flexible low power messaging service suitable
for a variety of devices, including simple sensors, LCD display units and actua-
tors such as lamps and hi-fi equipment. The Koala ORB has been implemented
natively in C for use on PEN, and also in Python for use on PCs and PDAs,
both via PEN and TCP/IP. It provides both RPC and event-oriented interfaces,
as well as supporting several asynchronous invocation mechanisms which greatly
reduce the practical effects of latency for many applications.

By using an object-oriented programming model similar to the CORBA ob-
ject model, the Eucalyptus system makes management of large numbers of PEN
sensors, interfaces and actuators straightforward. Koala objects may be manip-
ulated directly from Python scripts in our prototype system, or may be accessed
by CORBA applications via a Koala-to-CORBA bridge. Equally, devices may
communicate directly without intervention from or reliance on infrastructural
services. Several lights in a room, for example, may be configured by a remote
controller or backbone services to monitor a light sensor in the room. The lights
will then operate based upon the sensor’s reading even when the remote con-
troller or backbone network are no longer available, if required.

Use of an object-oriented abstraction supporting multiple communications
mechanisms, in our implementation RPC and state-change events, allows
network-specific Koala mappings to make better use of available network prim-
itives. Our PEN mapping, for example, implements events both using receiver-
managed messaging and over RPC. The IP equivalent delivers events over stan-
dard TCP/IP streams but can also deliver them to hosts on the same subnet
via UDP, decreasing latency.

One issue we have not dealt with directly is that of disconnected operation.
The Eucalyptus system is designed to provide efficient communications between
diverse devices in a peer-to-peer fashion. In addition, existing backbone networks
can be employed by even the simplest nodes to support wide-area communica-
tion. The applications we have considered can be divided into those for which
disconnected operation is simply not possible e.g. remote control applications,
and those in which disconnection is used by the application itself to provide
context. We take the view that disconnected operation is best handled by appli-
cations themselves. Algorithms to support commonly-used forms of disconnected
operation merit attention in future research in this area.
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Abstract. An important requirement for pervasive computing systems
is the ability to adapt at runtime to handle varying resources, user mo-
bility, changing user needs, and system faults. In this paper we describe
an approach in which dynamic adaptation is supported by the use of
software architectural models to monitor an application and guide dy-
namic changes to it. The use of externalized models permits one to
make reconfiguration decisions based on a global perspective of the
running system, apply analytic models to determine correct repair
strategies, and gauge the effectiveness of repair through continuous
system monitoring. We illustrate the application of this idea to perva-
sive computing systems, focusing on the need to adapt based on per-
formance-related criteria and models.

1 Introduction
An important requirement for pervasive computing systems is the ability to adapt
themselves at runtime to handle such things as user mobility, resource variability,
changing user needs, and system faults. In the past, systems that supported self-
adaptation were rare, confined mostly to domains like telecommunications switches
or deep space control software, where taking a system down for upgrades was not an
option, and where human intervention was not always feasible. However, in a perva-
sive computing world more and more systems have this requirement, because they
must continue to run with only minimal human oversight, and cope with variable
resources as a user moves from one environment to another (bandwidth, server avail-
ability, etc.), system faults (servers and networks going down, failure of external
components, etc.), and changing user priorities (high-fidelity video streams at one
moment, low fidelity at another, etc.).

Traditionally system self-repair has been handled within the application, and at the
code level. For example, applications typically use generic mechanisms such as ex-
ception handling or timeouts to trigger application-specific responses to an observed
fault or system anomaly. Such mechanisms have the attraction that they can trap an
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error at the moment of detection, and are well-supported by modern programming
languages (e.g., Java exceptions) and runtime libraries (e.g., timeouts for RPC). How-
ever, they suffer from the problem that it can be difficult to determine the true source
of the problem, and hence the kind of remedial action required. Moreover, while they
can trap errors, they are not well-suited to recognizing �softer� system anomalies,
such as gradual degradation of performance over some communication path.

Recently several researchers have proposed an alternative approach in which sys-
tem models � and in particular, software architectural models � are maintained at
runtime and used as a basis for system reconfiguration and repair [25]. An architec-
tural model of a system is one in which the overall structure of a running system is
captured as a composition of coarse-grained interacting components [28]. As a basis
for self-repair the use of architectural models has a number of nice properties: An
architectural model can provide a global perspective on the system allowing one to
determine non-local changes to achieve some property. Architectural models can
make �integrity� constraints explicit, helping to ensure the validity of any change. By
�externalizing� the monitoring and adaptation of a system using architectural models,
it is possible to engineer adaptation mechanisms, infrastructure and policies inde-
pendent of any particular application, thereby reducing the cost and improving the
effectiveness of adding self-adaptation to new systems.

In this paper we illustrate how architecture-based adaptation can be applied to per-
vasive computing systems. Specifically, we show how to use the approach to support
adaptation of applications in a pervasive computing environment. This pervasive
environment consists of a set of mobile users accessing shared information through a
variety of devices. These devices communicate over a heterogeneous communications
infrastructure.
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2 Overview of Approach
Our approach is based on the 3-layer view illustrated in Figure 1.  The Runtime Layer
is responsible for observing a system�s runtime properties and performing low-level
operations to adapt the system. It consists of the system itself, together with its oper-
ating environment (networks, processors, I/O devices, communications links, etc.) (1).
Observed runtime information is propagated upwards using a monitoring infrastruc-
ture that condenses, filters, and abstracts those observations in order to render that
information in architecture-relevant terms (2).

The Model Layer is responsible for interpreting observed system behavior in terms
of higher-level, and more easily analyzed, properties. It forms the centerpiece of the
approach, consisting of one or more architectural models of the system (3), together
with respective architecture managers (4) that determine whether a system�s runtime
behavior is within the envelope of acceptable ranges. An architecture manager in-
cludes a constraint checker and a repair handler. The former determines when archi-
tectural constraints are violated; the latter determines how to adapt the system. Re-
pairs are propagated down to the running system (5).

The Task Layer is responsible for determining the quality of service requirements
for the task(s). A task is a high-level representation of a user�s computational needs,
and indicates the services required, as well as the desired performance profile for
those services. These profiles in turn determine the range of behavior permissible at
an architectural level.

To illustrate how the approach works, consider a set of mobile users interacting
with a pervasive environment, each user currently performing one or more tasks that
require access to shared information. We will assume that this shared information is
provided by a set of server groups distributed over a pervasive network, as illustrated
in Figure 2(a). Each server group consists of a set of replicated servers (Figure 2(b)),
and maintains a queue of requests, which are handled in FIFO order by the servers in
the server group. Individual servers send their results back directly to the requesting
user.

 
Component ServerGrp1

(ServerGrpRep)

Server1 Server2 Server3

User1 User2 User3 User4 User5 User6

ServerGrp1 ServerGrp2 ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

User1 User2 User3 User4 User5 User6

ServerGrp1 ServerGrp2 ServerGrp3

(a) (b)

Fig. 2. Deployment Architecture (a) and Software Architecture (b) of the Example System

The pervasive computing environment that manages this overall infrastructure
needs to make sure that two inter-related system qualities are maintained. First, to
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guarantee the quality of service for each user, the request-response latency for users
must be under a certain threshold, which may vary depending on the task and user.
Second, to keep costs down, the set of currently active servers should be kept to a
minimum, subject to the first constraint.

Achieving these goals requires cooperation from three levels. The Task Layer has
knowledge of the kind of information a user requires and the quality of service re-
quirements for retrieving this information. This knowledge feeds into the Model
Layer, so that relevant analyses can be performed to determine the appropriate con-
figuration when a new task is created. The Model Layer then makes changes through
the Runtime Layer, to the executing system to fulfill those requirements.

Establishing the correct configuration for the system only when a task is created,
however, is not sufficient in a pervasive computing environment, since resources and
requirements change dynamically. For example, suppose that some user�s task re-
quires her to review a set of images and select some of them to be included in a re-
port. Suppose that initially this user is carrying out the task on a PDA, which commu-
nicates over a wireless network, and which can only display low-resolution grayscale
images. As the user moves through the environment, her PDA may move from a
wireless cell that has an access point getting good bandwidth to a server group to a
cell that is not. In this case, the environment may need to locate another server group
with a better bandwidth and move her requests to that server group. This change of
resources should be sensed automatically and the reconfiguration done transparently,
so that the user is not unnecessarily distracted. Furthermore, this same user might later
move into a resource-rich environment that contains a high-resolution color display.
The task layer may then want to change the user�s bandwidth requirements so that she
can view larger images on this screen. These new bandwidth requirements may force
a change in the Model Layer, which will invoke a concomitant change in the imple-
mentation.

The approach outlined above has a number of distinct advantages for the systems
builder over current approaches that hardwire adaptation mechanisms into the com-
ponents of the application. First, the use of architectural models permits non-local
properties to be observed, and non-local adaptations to be effected. For example,
suitable monitoring mechanisms can keep track of aggregate average behavior of a set
of components. Second, formal architectural models permit the application of analyti-
cal methods for deriving sound repair strategies. For example, a queuing-theoretic
analysis of performance can indicate possible points of adaptation for a performance-
driven application. Third, externalized adaptation (via architectural models) has sev-
eral important engineering benefits: adaptation mechanisms can be more easily ex-
tended; they can be studied and reasoned about independently of the monitored appli-
cations; they can exploit shared monitoring and adaptation infrastructure.

3 Architecture-Based Adaptation
The centerpiece of our approach is the use of stylized architectural models [26,28].
Although there are many proposed modeling languages and representation schemes
for architectures, we adopt a simple scheme in which an architectural model is repre-
sented as a graph of interacting components. This is the core architectural representa-
tion scheme adopted by a number of architecture description languages, including
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Acme [11], xADL [8], and SADL [23]. Nodes in the graph are termed components.
They represent the principal computational elements and data stores of the system:
clients, servers, databases, user interfaces, etc. Arcs are termed connectors, and repre-
sent the pathways of interaction between the components. A given connector may in
general be realized in a running system by a complex base of middleware and distrib-
uted systems support. For example, in the software architecture illustrated in Figure
2(b), the server group, servers, and users are components. The connector includes the
request queue and the network connections between users and servers.

To account for various behavioral properties of a system we allow elements in the
graph to be annotated with extensible property lists. Properties associated with a con-
nector might define its protocol of interaction, or performance attributes (e.g., delay,
bandwidth). Properties associated with a component might define its core functional-
ity, performance attributes (e.g., average time to process a request, load, etc.) or reli-
ability. In addition we associate with each architecture a set of constraints defined in a
first-order predicate logic augmented with a set of primitives appropriate for archi-
tectural specification [22]. These constraints can be attached to components or con-
nectors to express things like the fact that some property value must always lie be-
tween a given range of values.

In our system each architecture is identified with a particular architectural style. An
architectural style defines a set of types for components, connectors, interfaces, and
properties together with a set of rules that govern how elements of those types may be
composed. Requiring a system to conform to a style has many benefits, including
support for analysis, reuse, code generation, and system evolution [10,31,32]. Moreo-
ver, the notion of style often maps well to widely-used component integration infra-
structures (such as EJB, HLA, CORBA), which prescribe the kinds of components
allowed and the kinds of interactions that may take place between them.

One of the significant advantages of architectural descriptions is that they provide
opportunities for analysis, including system consistency checking [3], conformance to
architectural style constraints [1], conformance to quality attributes [7], and depend-
ence analysis [30].

We can model our example using a client-server architectural style. The architec-
tural style provides definitions for client, server, and server group components and the
connections between them. Properties include those required for queuing-theoretic
performance analysis, and integrity constraints include the necessity for each client to
be connected to one and only one server group.

As mentioned in our example, the Task Layer sets the performance profile for the
architecture. These profiles can be expressed as threshold constraints in the architec-
ture. These constraints can then be checked dynamically to see if the system is func-
tioning within bounds. In the context of our example, we desire each user to receive
no more than some maximum latency. This can be expressed in the architecture as a
constraint on each of the client�s connections to the server group. In the architecture
of our example, the constraint is of the form:

averageLatency < maxLatency.

This constraint appears on each client�s connection, and needs to be evaluated dy-
namically. In our approach, the Task Layer sets the value for maxLatency; the aver-
ageLatency value is an observed value determined by monitoring.
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3.1 Using Architectural Analysis to Guide System (Re)Configuration

As we argued above, one of the main benefits of using software architecture is that
the level of abstraction gives us the ability to use analytical methods to evaluate prop-
erties of a system�s architectural design. To illustrate how this works, consider our
example, where we have modeled the application in a style amenable to M/M/m per-
formance analysis [29]. The M/M indicates that the probability of a request arriving at
component s, and the probability of component s finishing a request it is currently
servicing, are assumed to be exponential distributions (also called �memoryless,�
independent of past events); requests are further assumed to be, at any point in time,
either waiting in one component�s queue, receiving service from one component, or
traveling on one connector.  The m indicates the replication of component s; that is,
component s is not limited to representing a single server, but rather can represent a
server group of m servers that are fed from a single queue.  Given estimates for cli-
ents� request generation rates and servers� service times (the time that it takes to
service one request), we can derive performance estimates for components.

Applying this M/M/m theory to the style used in our example tells us that with re-
spect to the average latency for servicing user requests, the key design parameters in
our style are (a) the replication factor m of servers within a server group, (b) the
communication delay between clients and servers, (c) the arrival rate of client re-
quests, and (d) the service time of servers within a server group.  We can use per-
formance analysis to decide (1) the number of replicated servers that must exist in a
server group so that it is properly utilized, and (2) where server groups should be
placed so that the bandwidth is sufficient to achieve the desired latency.

Given a particular service time and arrival rate, performance analysis of this model
gives a range of possible values for server utilization, replication, latencies, and sys-
tem response time. Say that the task layer for each user informs us that the arrival rate
is 180 requests/sec, the average request size is 0.5KB, and the average response size is
20KB. Assume also that the server service time is between 10ms and 20ms. Given
these values, then the performance analysis gives us the following bounds:

Initial server replication count= 3-5
Average Bandwidth = 10.5KB/sec

This analysis gives us parameters for a configuration of the architecture of the
software that satisfies the above requirements. We use this information to configure
the system to locate appropriate server groups, monitor the application to make sure it
is in conformance with these requirements, and attempt to adapt the system transpar-
ently as the user moves about the environment.

If the Task Layer changes the requirements, for example when the user begins us-
ing a large display, the analysis is performed again to determine a satisfactory recon-
figuration of the system. Again, this can be done transparently.

3.2 Using Architecture to Assist Adaptation

The representation schemes for architectures and analyses outlined above were origi-
nally created to support design-time development tools. As suggested above, these
schemes and analyses need to be made available at runtime. This section discusses an
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augmentation to architectures that allows them to function as runtime adaptation
mechanisms. This includes adaptation operations, based on the style of the architec-
ture, to change an architectural model, and repair strategies that apply these opera-
tions to adapt the architecture. These operations need to be translated into operations
on the runtime system. We consider the supporting runtime infrastructure needed to
make this work in practice in Section 3.3.

3.2.1 Architecture Adaptation Operators

The first extension is to augment an architectural style description with a set of op-
erators that define the ways in which one can change systems in that style. Such op-
erators determine a �virtual machine� that can be used at runtime to adapt an archi-
tectural design.

Given a particular architectural style, there will typically be a set of natural opera-
tors for changing an architectural configuration and querying for additional informa-
tion. In the most generic case, architectures can provide primitive operators for adding
and removing components and connections [24]. However, specific styles can often
provide higher-level operators that exploit the restrictions in that style and the in-
tended implementation base.

In terms of our example, we define the following operators:

addServer(): This operation is applied to a server group component and adds a new
replicated server component to its representation, ensuring that the architec-
ture is structurally valid.

move(to:ServerGroupT): This operation is applied to a client and deletes the role
currently connecting the client to the connector that connects it to a server
group and performs the necessary attachment to a connector that will connect
it to the server group passed in as a parameter.

remove(): This operation is applied to a server and deletes the server from its con-
taining server group. Furthermore, it changes the replication count on the
server group and deletes the binding.

The above operations all effect changes to the architectural model. The next opera-
tion queries the state of the running system:

findGoodSGroup(cl:ClientT,bw:float):ServerGroupT;  finds the server group with
the best bandwidth (above bw) to the client cli, and returns a reference to the
server group.

These operators reflect the style in question and the implementation base. First,
from the nature of a server group, we get the operations for activating or deactivating
a server within a group. Also, from the nature of the asynchronous request connectors,
we get the operations for adapting the communication path between particular clients
and server groups. Second, based on the knowledge of supported system change op-
erations, outlined in Section 3.3.2, we have some confidence that the architectural
operations are actually achievable in the executing system.
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3.2.2 Architecture Repair Strategies

The second extension is the specification of repair strategies that correspond to se-
lected constraints of the architecture. The key idea is that when an architectural con-
straint violation is detected, the appropriate repair strategy will be triggered.

A repair strategy has two main functions: first to determine the cause of the prob-
lem, second to determine how to fix it. Thus the general form of a repair strategy is a
sequence of repair tactics. Each repair tactic is guarded by a precondition that deter-
mines whether that tactic is applicable. The evaluation of a tactic�s precondition will
usually involve the examination of various properties of the architecture in order to
pinpoint the problem and determine applicability.  If it is applicable, the tactic exe-
cutes a repair script that is written as an imperative program using the style-specific
operators described above.

To handle the situation where several tactics may be applicable, the enclosing re-
pair strategy decides on the policy for executing repair tactics. It might apply the first
tactic that succeeds. Alternatively, it might sequence through all of the tactics, or use
some other style-specific policy.

One of the principal advantages of allowing the system designer to pick an appro-
priate style is the ability to exploit style-specific analyses to determine whether repair
tactics are sound. By sound, we mean that if executed the changes will help reestab-
lish the violated constraint.

In general an analytical method for an architecture will provide a compositional
method for calculating some system property in terms of the properties of its parts. By
looking at the constraint to be satisfied, the analysis can often point the repair strategy
writer both to the set of possible causes for constraint violation, and for each possible
cause, to an appropriate repair.

Illustrating this idea for our example, we can show how the repair strategy devel-
oped from the theoretical analysis. The equations for calculating latency for a service
request, derived from [4], indicate that there are four contributing factors: 1) the con-
nector delay, 2) the server replication count, 3) the average client request rate, and 4)
the average server service time. Of these we have control over the first two. When the
latency is high, we can decrease the connector delay or increase the server replication
count to decrease the latency. Determining which tactic depends on whether the con-
nector has a low bandwidth (inversely proportional to connector delay) or if the server
group is heavily loaded (inversely proportional to replication). These two system
properties form the preconditions to the tactics; we have thus developed a repair strat-
egy with two tactics.

Figure 3 illustrates the repair strategy and tactics associated with a latency thresh-
old constraint. Line 1 defines the constraint that the average latency must not be be-
low the maximum latency set by the task requirements. Line 2 calls the repair strategy
to be invoked if the constraint fails. The repair strategy in lines 4-14, fixLatency, con-
sists of two tactics. The first tactic, defined in lines 16-26, handles the situation in
which a server group is overloaded, identified by the precondition in lines 22-23. Its
main action in lines 24-25 is to create a new server in any of the overloaded server
groups. The second tactic, defined in lines 28-42, handles the situation in which high
latency is due to communication delay, identified by the precondition in lines 30-31.
It queries the architecture to find a server group that will yield a higher bandwidth
connection in lines 35-36. In lines 37-39, if such a group exists it moves the client-
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server connector to use the new group. The repair strategy uses a policy in which it
executes these two tactics sequentially: if the first tactic succeeds it commits the re-
pair strategy; otherwise it executes the second. The strategy will abort if neither tactic
succeeds, or if the second tactic finds that it cannot proceed since there are no suitable
server groups to move the connection to.

1 invariant r : averageLatency <= maxLatency
2 !! fixLatency(r);
3 
4 strategy fixLatency (badRole : ClientRoleT)={
5   let badClient : ClientT =
6     select one cli : ClientT in self.Components |
7       exists p : RequestT in cli.Ports |
8         attached(badRole, r);
9   if (fixServerLoad(badClient)) {
10     commit repair; }
11   else if (fixBandwidth(badClient,badRole) {
12     commit repair; }
13   else {abort ModelError;}
14 }
15 
16 tactic fixServerLoad (client :ClientT) :boolean={
17   let loadedServerGroups :set{ServerGroupT}=
18     select sgrp:ServerGroupT in
19         self.Components |
20           connected(sgrp,client) and
21           sgrp.load > maxServerLoad;

22   if (size(loadedServerGroups) == 0)
23     return false;
24   foreach sGrp in loadedServerGroups {
25     sgrp.addServer(); }
26   return (size(loadedServerGroups)>0);
27 
28 tactic  fixBandwidth(client:ClientT
29                                  role:ClientRoleT):boolean={
30   if (role.bandwidth>=minBandwidth) {
31     return false;}
32   let oldSGrp: ServerGroupT =
33     select one sGrp:ServerGroupT in
34       self.Components |  connected (client,sGrp);
35   let goodSGrp : ServerGroupT =
36     findGoodSGrp(client,minBandwidth);
37   if (goodSGrp != nil) {
38     client.move (oldSGrp,goodSGrp);
39     return true;
40   } else {
41     abort NoServerGroupFound;
42 }}

Fig. 3. Repair Strategy for High Latency

3.3 Bridging the Gap to Implementation

While the use of architectural models allows us to provide automated support for
adaptation at an architectural level, through use of constraints, operators, and analyti-
cal methods, we must furthermore relate model changes to the real world. There are
two aspects to this. The first is getting information out of the executing system so we
can determine when architectural constraints are violated. The second is propagating
architectural repairs into the system itself.

3.3.1 Monitoring

In order to provide a bridge from system level behavior to architecturally-relevant
observations, we have defined a three-level approach illustrated in Figure 4. This
monitoring infrastructure is described in more detail elsewhere [12]: here we summa-
rize the main features.

The lowest level is a set of probes, which are �deployed� in the target system or
physical environment. Probes monitor the system and announce observations via a
�probe bus.� We can use off-the-shelf monitoring components (such as Remos [19])
and write wrappers to turn them into probes, or write custom probes. At the second
level a set of gauges consume and interpret lower-level probe measurements in terms
of higher-level model properties. Like probes, gauges disseminate information via a
�gauge reporting bus.� The top-level entities in Figure 4 are gauge consumers, which
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consume information disseminated by gauges. Such information can be used, for
example, to update an abstraction/model, to make system repair decisions, to display
warnings and alerts to system users, or to show the current status of the running sys-
tem.

In the context of architectural repair, we use the architectural style to inform us
where to place gauges. Specifically, for each constraint that we wish to monitor, we
must place gauges that dynamically update the properties over which the constraint is
defined. In addition, our repair strategies may require additional monitored informa-
tion to pinpoint sources of problems and execute repair operations.

For instance, in the example above we are concerned with the average latency of
client requests. To monitor this property, we must associate a gauge with the aver-
ageLatency property of each client role. Each latency gauge in turn deploys a probe
into the implementation that monitors the timing of reply-request pairs. When it re-
ceives such monitored values it averages them over some window, updating the la-
tency property in the architecture model when it changes. In addition to this gauge,
we are also guided by the repair tactics to place gauges that measure the bandwidth
between the client and the server group and also to measure the load on the server
group. The gauge for measuring bandwidth uses the same probe used by the latency
gauge for measuring the time it takes to receive a reply. An additional probe measures
the size of the reply and calculates the bandwidth based on these values. A probe
measuring the size of the request queue indicates whether a server group is over-
loaded.

3.3.2 Repair Execution

The final component of our adaptation framework is a translator that interprets repair
scripts as operations on the actual system (Figure 1, item 5). The nature of these op-
erations will depend heavily on the implementation platform. In general, a given
architectural operation will be realized by some number of lower level system recon-
figuration operations. Each such operator can raise exceptions to signal a failure.
These are then propagated to the Model Layer.

To illustrate, the specific operators and queries supported by the runtime system in
our example are listed in Table 1. These operators include low-level routines for cre-
ating new request queues, activating and deactivating servers, and moving client
communications to a new queue. The operations at the Model Layer, describe in Sec-
tion 3.2.1, are translated into calls on the operations in the Runtime Layer (Table 1) to
effect the actual change in the system.

4 Implementation
Previously, the work on tools software architecture has mostly focused on design-time
support. We have adapted these tools so that they can be used as runtime facilities.
Specifically, AcmeStudio, an architecture design environment, can now make avail-
able an architectural description at runtime. This description can be analyzed by run-
time versions of our Armani constraint checking and performance analysis tools, as
well as be manipulated by our repair engine. Collectively, these tools implement the
Model Layer elements in Figure 1.
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Fig. 4. Gauge Infrastructure

Table 1. Environment Manager Operators and Queries

CreateReqQueue() Adds a logical request queue to Req-queue
machine in Figure 2.

findServer([string cli_ip,
                    float bw_thresh])

Finds a spare server that has at least bw_thresh
bandwidth between it and the client.

moveClient(ReqQ newQ) Moves a client to the new request queue.
connectServer(Server srv,
                           ReqQ to)

Configures a server so that it pulls client re-
quests out of the to request queue.

activateServer () Signals that the server should begin pull re-
quests from the request queue.

DeactivateServer() Signals that a server should stop pulling re-
quests from the request queue.

remos_get_flow (string clIP,
string svIP)

This is a Remos API call that returns the pre-
dicted bandwidth between two IP addresses.

In terms of monitoring, we have developed prototype probes for gathering infor-
mation about networks, based on the Remos system [19]. Remos has two parts: (1) an
API, that allows applications to issue queries about bandwidth and latency between
groups of hosts; and (2) a set of collectors that gather information about different
parts of the network [21]. A probe uses Remos to collect the information required for
the probe and distributes it as events using the Siena wide area event bus [6]; gauges
listen to this information and perform calculations and transformations to relate it to
the software architecture of the system.

Currently, we have hand-tailored support for translating APIs in the Model Layer
to ones in the Runtime Layer that need to be changed for each implementation. Our
work in this area will concentrate on providing more general mechanisms where ap-
propriate, and perhaps using off-the-shelf reconfiguration commands for commercial
systems.

With respect to the Task Layer, we are actively investigating effective means for
specifying user tasks, as part of our broader research in the Aura project at Carnegie
Mellon University [27,33].
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Fig. 5. (a) The Analytical Compression Model; (b) Comparing Measured and Predicted Per-
formance

For our modeling and analysis approach to be feasible, we need to have some con-
fidence that the analysis at the Model Layer is relevant at the Runtime Layer. To ex-
plore specific data points of this, we have conducted some initial experimentation
with comparing predicted performance and measured performance. Our simple ex-
perimental testbed was a client-server application where the repair tactic was to use
compression to make more effective use of the available bandwidth [17]. In this case,
we used simple analytical models instead of queuing models � shown in Figure 5(a).

The model variables in italics have to be determined at runtime.  For our prototype
(where compression uses gzip), the compression ratio (comp_ratio) depends on the
data type (text, JPEG, etc.) and is simply determined through look up in a predefined
table.  The compression speed (comp_speed) is machine dependent. It is estimated
based on benchmarks. Finally, the estimated network throughput (available_bw) is
obtained using the Remos system.

Figure 5(b) shows the result of a set of experiments performed on a dedicated test-
bed.  The testbed allows us to vary the available bandwidth (x-axis) by generating a
variable competing UDP stream.  The y-axis shows execution, both estimated (dashed
lines) and measured (full lines).  The experiments show two interesting results.  First,
the crossover point for the estimated execution time with and without compression
happens at about the same point as the crossover point for the measured execution
times with and without compression (indicated by the arrows in Figure 5(b)). This
shows that the choice of tactics based on an analytical model will have the desired
effect in the implementation. Second, around the crossover point, the execution times
for the different tactics are very similar, suggesting that even if the client would pick
the wrong tactic (for example because of a probe value with an unusually large error),
the impact on performance would be minimal.

5 Related Work

Considerable research has been done in the area of dynamic adaptation at an imple-
mentation level. There are a multitude of programming languages and libraries that
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provide dynamic linking and binding mechanisms (e.g., [15,16]), as well as exception
handling capabilities and distributed debugging [14].  Systems of this kind allow self-
repair to be programmed on a per-system basis, but do not provide external, reusable
mechanisms that can be added to systems in a disciplined manner, as with an archi-
tecture-driven approach.

There is a large body of research in the area of pervasive computing (e.g., [2]) and
many companies are exploring support for this area. This research primarily focuses
on user interface issues and the provision of low-level services and infrastructure in
the environment. The notion of adaptation is hardwired into particular applications or
services [5,9,18]. Again, our architecture-based approach provides a general solution
that supports adaptation of applications and systems for which it is not explicitly
supported.

The BBN QuO system [20] extends CORBA to support applications that adapt to
resource availability. One aspect of the system is that users can define operating re-
gions. The runtime system monitors the application and execution environment, and
invokes application specific handlers when the application changes operating region.
QuO is a specific example of an adaptive and reflective middleware system, which in
general do not have an explicit architectural model of the application.

There has been some related research on architecture-based adaptation. However,
this research relies on specific architectural styles, and implementations that match
these styles [13,24].  In this paper, we have concentrated on how architectural models
can be used to guide adaptation in a pervasive system, and the extensions need to
software architectures to make them useful in a dynamic setting. In our broader ap-
proach we decouple the style from the system infrastructure so that developers have
the flexibility to pair an appropriate style to a system based on its implementation and
the system attributes that should drive adaptation. To accomplish this we have intro-
duced some new mechanisms to allow �runtime� styles to be treated as a design pa-
rameter in the runtime adaptation infrastructure. Specifically, we have shown how
styles can be used to detect problems and trigger repairs. We have also provided
mechanisms that bridge the gap between an architectural model and an implementa-
tion � both for monitoring and for effecting system changes.

6 Conclusions and Future Work

In this paper we have presented a technique for using software architectural models to
automate dynamic repair of systems. In particular, architectures and their associated
analyses:

• make explicit the constraints that must be maintained in the face of evolution;
• direct us to the set of properties that must be monitored to achieve system quality

attributes and maintain constraints;
• define a set of abstract architectural operators for repairing a system; and
• allow us to select appropriate repair strategies, based on analytical methods.

We illustrated how the technique can be applied to performance-oriented adaptation
in a pervasive computing environment with mobile users, time-varying resources, and
heterogeneous devices.
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For future research we need to be able to develop mechanisms that provide richer
adaptability for executing systems. We also need new monitoring capabilities, and
reusable infrastructure for relating monitored values to architectures. Finally, we need
new analytical methods for architecture that will permit the specification of principled
adaptation policies. Additionally we see a number of other key future research areas.
First is the investigation of more intelligent repair policy mechanisms. For example,
one might like a system to dynamically adjust its repair tactic selection policy so that
it takes into consideration the history of tactic effectiveness: effective tactics would be
favored over those that sometimes fail to produce system improvements. Second is
the link between architectures and tasks. We need to further explore both how to
specify user tasks and the precise interaction between them and the architectural pa-
rameters and constraints.
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Abstract. Event services have received increased attention as scalable
tools for the composition of large-scale, distributed systems, as evidenced
by their successful deployment in interactive multimedia applications and
scientific collaborative tools. This paper introduces KECho, a kernel-
based event service aimed at supporting the coordination among multiple
kernel services in distributed systems, typically to provide applications
using these services with certain levels of Quality of Service (QoS). The
publish/subscribe communication supported by KECho permits compo-
nents of remote kernels as well as applications to coordinate their opera-
tion. The target group of such a kernel-based event service is the rapidly
increasing number of extensions that are being added to existing oper-
ating systems and are intended to support the Quality of Service and
real-time requirements of distributed and embedded applications.

1 Introduction

Kernel-level services and their run-time coordination. The need to offer
high or predictable levels of performance, especially in distributed and embedded
systems, has resulted in the kernel-level implementation of certain applications
and services. Examples include the in-kernel web servers khttpd and tux on
Linux, kernel-level QoS management and resource management mechanisms [7],
and load balancing algorithms [8]. To attain desired gains in predictable perfor-
mance, distributed kernel-level extensions must coordinate their operation. For
example, for load balancing, multiple machines in a web server cluster must not
only exchange information about their respective CPU and device loads (e.g.,
disks), but must also be able to forward requests to each other without un-
due involvement of clients and forwarding engines [16]. Similarly, to ensure the
timely execution of pipelined sensor or display processing applications in embed-
ded systems, hosts must not only share detailed information on their respective
CPU schedules and the operation of the communication links they share [17,18],
but they must also coordinate the ways in which they allocate resources to
pipelined tasks. Finally, the run-time coordination among kernel-level services
illustrated above is highly dynamic, involving only those kernel services and ma-
chines that currently conduct a shared application-level task. In addition, the
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extent of such cooperation strongly depends on the application-level quality cri-
teria being sought, ranging from simply ’better performance’ to strong properties
like ’deadline guarantees.’

Run-time kernel coordination with KECho. This paper presents KECho,
a kernel-level publish/subscribe mechanism for run-time coordination among dis-
tributed kernel services. Using KECho, any number of kernel-level services on
multiple hosts can dynamically join and leave a group of information-sharing,
cooperating hosts. Using KECho, services can exchange resource information,
share resources (e.g., via request forwarding), and coordinate their operation
to meet desired QoS guarantees. KECho uses anonymous event-based notifica-
tion and data exchange, thereby contrasting it to lower-level mechanisms like
kernel-to-kernel socket communications, RPC [9], or the RPC-like active mes-
saging developed in previous work [19]. Furthermore, compared to object-based
kernel interactions [20] or to the way in which distributed CORBA, DCOM, or
Java objects interact at the user level [10,11,12], KECho’s model of communica-
tion provides improved flexibility, since its use of anonymous event notification
permits services to interact without explicit knowledge of each others identities.

The KECho kernel-level publish/subscribe mechanism shares several impor-
tant attributes with its user-level counterparts. First, KECho events may be used
to notify interested subscribers of internal changes of system state or of external
changes captured by the system [4]. Second, it may be used to implement kernel-
level coordination among distributed services, perhaps even to complement the
application-level coordination implemented with user-level event notification ar-
chitectures [1,2,3,4]. Applications constructed with event-based architectures in-
clude peer-to-peer applications like distributed virtual environments, collabo-
rative tools, multiplayer games, and certain real-time control systems. Third,
KECho’s functionality is in part identical to that of known user-level event sys-
tems, which means that we describe it using interchangeable terms like event no-
tification mechanism, event service, and publish/subscribe mechanism. Further,
KECho’s event services faithfully implement the publish/subscribe paradigm,
where events are sent by publishers (or sources) directly to all subscribers (or
sinks). Channel members are anonymous, which implies that members are freed
from the necessity to learn about dynamically joining and leaving members.

KECho is implemented as an extension to the Linux operating system (using
kernel-loadable modules) and offers a lightweight high-performance event service
that allows Linux kernel-level services (which could themselves be extensions)
to coordinate their actions. The intent is to ensure that distributed applications
achieve high/predictable performance and good system utilization. By using the
resulting distributed kernel services, distributed applications can improve their
use of shared underlying machine resources like processing power and disk space,
without having to explicitly interact at the application level. Application-level
counterparts to such functionality typically require additional kernel calls and
inter-machine communications, and they may even require the implementation
of extensions to existing user/kernel interfaces, so that applications can gather
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the resource information they need from their respective operating system ker-
nels. In contrast, the kernel-level solutions to distributed resource management
enabled by KECho can access any kernel or network service and any kernel data
structures without restrictions, which is particularly important for fine-grained
resource monitoring or control. Finally, KECho can also be used directly by ap-
plications, thereby permitting them to directly interact with their distributed
components.

Contributions. (1) KECho is an in-kernel event-based group communication
mechanism that supports the anonymous and asynchronous cooperation of dis-
tributed kernel-based services and user-level applications. (2) KECho (i) achieves
high event responsiveness by using a kernel extension that monitors socket ac-
tivity and (ii) reduces processing and networking overhead by filtering events
based on information supplied by the event publisher and by all event sinks. (3)
The advantages of the KECho kernel-based communication tool are explained by
means of two extensions to the Linux kernel’s functionality: (i) a novel resource
management system and (ii) a load balancing mechanism for cluster-based web
services.

2 Kernel Event Channels

Event notification systems have been used in applications including virtual en-
vironments, scientific computing, and real-time control. Compared to user-level
implementations of event services, the advantages of a kernel-level implementa-
tion include:

– Performance: each call to a user-level function of the event system (e.g., re-
siding in statically or dynamically linked libraries associated with the appli-
cation) can internally result in a high number of system calls. These calls can
block, thereby delaying an application and causing unpredictable application
behavior. By using a kernel-based service, we can significantly reduce both
the number of system calls used in its implementation and the effects on pre-
dictability of its execution. Furthermore, if the application components using
event services are implemented entirely within the kernel, then no system
calls are required at all, and performance is improved further by minimized
blocking delays within the kernel. Specifically, a kernel-thread waiting for an
event can be invoked immediately after the event occurs, while a user-level
application may suffer further delays by waiting in the CPU scheduler’s run
queue for a time period dependent on its scheduling priority and the current
system load.

– Functionality: an increasing number of services is being implemented inside
of an operating system’s kernel, mainly for performance reasons. Only a
direct, kernel-to-kernel connection of such services without the additional
overheads of user/kernel crossings allows for fine-grained and direct commu-
nication and coordination among remote kernel services.
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– Accessibility of resources: typical user/kernel interfaces restrict the number
and type of kernel resources that can be accessed. Kernel-based implemen-
tations have no restrictions regarding the access to such resources, that is,
resources and kernel data structures (e.g., task structures, file structures) can
be accessed and used directly. This allows kernel solutions to make ‘smarter’
decisions compared to user-level solutions.

2.1 Architecture of KECho

The goal of a kernel-based event service is to support the coordination and
communication among distributed operating system services.

Figure 1 shows the architecture of KECho, using which both kernel- and
user-level OS services and user-level applications can dynamically create and
open event channels, subscribe to these channels as publishers and subscribers,
and then submit and receive events. Although the event channel in Figure 1 is
depicted as a logically centralized element, it is a distributed entity in practice,
where channel members are connected via direct communication links. The chan-
nel creator has a prominent role in these communications only in that it serves
as the contact point for anyone wishing to join or leave a group. Any number of
kernel services can subscribe to an event channel, and events can be typed, the
latter meaning that only events that fit a certain description will be forwarded
to subscribers.

The implementation of KECho is based on its user-level counterpart, called
ECho [2], the libraries of which have been ported to six kernel-loadable modules
for Linux 2.4.0, each with a certain task:

– KECho Module: the main interface to kernel services for channel management
and event submission/handling.

– ECalls Module: a richer interface to user-level applications that implements
a lightweight version of system calls and shared memory segments. In addi-
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tion, this module can influence CPU scheduling decisions to maximize event
responsiveness [5].

– Group Manager Module: a user-level group server, running on a publicized
host, serves as channel registry, where channel creators store their contact
information and channel subscribers can retrieve this information. This mod-
ule supports the communication among subscribers and the group server.

– Communication Manager Module (CM): this module is responsible for the
connection management, including creating and operating the connections
between remote and local channel members. It currently supports TCP con-
nections as well as a reliable version of UDP to which we are planning to
add real-time communication properties.

– Attribute List Module: this module implements attributes, which are name-
value pairs with which performance or QoS information may be piggybacked
onto events.

– Network Monitoring Module (NW-MON): this module monitors socket ac-
tivity and notifies the CM module of newly arrived data at any of the sockets
associated with an event channel.

2.2 Event Delivery

The lowest module in the KECho module stack, the network monitoring module
(NW-MON), allows KECho to register interest in certain sockets. Specifically,
KECho registers interest in all sockets associated to event channels. NW-MON
then will be notified by the network interrupt handler once data arrives at one of
these sockets. In return, this module then notifies the CM module of this event.

As an example, a subscriber waits for a new event (step 1 in Figure 2) by
sleeping or blocking. Activity of a socket related to an event channel (step 2)
prompts the network monitoring module to send a wake-up call to the CM
module (step 3). CM then reads the data from the socket (step 4) and identifies
and notifies (step 5) the thread owning this socket. Finally, the thread can now
copy the received data from the CM module (step 6) and act upon this event.

Sockets

NW−MON

THREAD
1 (sleep)

2 (socket activity)

3 (wake up)

4 (read)

5 (wake up)

6 (read)

Kernel

Network

CM

Fig. 2. Event Delivery in KECho
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While CM awakens and notifies waiting threads about the arrival of events,
it can also accelerate event responsiveness by increasing the CPU scheduling
priority of the process receiving an event. This is part of the ECalls module and
is described in more detail in two other papers [5,6].

2.3 Filtering

Most event systems offer the possibility to limit the number of events received
through event filters. Filters can be placed at either the event sink or the event
source and can significantly reduce event processing and network overheads.
The most basic filters ensure that events are delivered only if they are of certain
types. Typical event systems allow those filters to base their decisions only on a
per-connection basis, where a filter makes its decision without considering the
overall channel condition. In addition to event filters, KECho offers so-called
channel filters, which (1) can be dynamically inserted by the event source and
(2) can decide on a per-channel basis which sinks will receive an event, that
is, filtering decisions are based on information collected from the publishers and
subscribers via separate event channels or via attributes piggybacked onto events.
As an example consider the task of load balancing. Here, a service request from a
machine in a web server cluster is forwarded to an event channel if the local server
is not able to service this request. A filtering function can collect load information
from all other servers and then decide which other server will receive the event
carrying the forwarded request. Alternatively, if load information is outdated and
requests are idempotent, then the quality of load balancing can be improved by
simultaneously forwarding the request to n servers, where n is chosen by the
event source. Upon delivery of the event to the n best servers (e.g, the servers
with the lightest loads) and completed event handling, duplicate responses can
be discarded by the load balancing mechanism. In this example, the event source
supplies the number of desired recipients of a forwarded request and all event
sinks supply their current load information.



KECho - Event Communication for Distributed Kernel Services 89

A filter can also be applied to incoming events, in which case it is simply
invoked once each time an event arrives at the channel. For example, such a
filter can decide – based on information from the event source and from all sinks
– to which sinks the event will be dispatched. In the load balancing example
mentioned above, this kind of filter could make sure that the response to a
request is being returned to only the one sink that issued the original request,
or it could block multiple responses to the same request. A kernel service can
register two filter functions with an event channel, an IN-filter and an OUT-
filter (Figure 3). An IN-filter is invoked each time an event is being received by
KECho. The IN-filter is able to investigate the event before it is being dispatched
to the event sinks. On the other hand, an OUT-filter is being invoked each time
an event is being submitted by a local event source. Again, the filter inspects
the event and can decide which remote sinks will ultimately receive the event.

3 Example 1: Resource Management

Applications rely on the availability of certain system resources in order to per-
form their tasks successfully. System resources can include processing power,
network bandwidth, disk bandwidth, RAM, and input/output devices such as
cameras or printers. Resource management systems [13,14] have the task to allow
applications to discover, allocate, and monitor such distributed resources. This
task is made difficult by (i) the dynamic behavior of resources (i.e., resources
can join and leave at any time), (ii) the dynamic arrival and departure of ap-
plication components requiring resources (e.g., through process migration), and
(iii) run-time variations in the current resources required by an application.

Figure 4 shows how KECho connects resource managers to facilitate the task
of locating and acquiring resources for applications. Kernels I and II have 3 resp.
2 resources that are shared with other hosts, e.g., CPU, disk, and network re-
sources. As an alternative, a kernel could have only one resource manager, which
assumes the task of managing all available resources at a host, as shown in kernel
III. In both cases, resource managers can forward requests for resource alloca-
tions from applications to other, remote resource managers by submitting an
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Fig. 4. Resource management with KECho
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event. If a remote resource manager can fulfill the request, it responds accord-
ingly to the manager that forwarded the original request. If there are several
positive responses, a resource manager can use certain criteria (e.g., response
times, location of the resource) to decide which response to accept or discard.
Resource managers can dynamically join or leave resource-sharing groups, by
joining a group it makes its resources publicly available to all other members in
the group. However, all managers are unaware of the number or the location of
other group members and resource requests are submitted and accepted/denied
via events.

4 Example 2: Load Balancing

Load balancers in web server clusters [8,15] have the task to forward requests
that can not be handled locally to other servers in the cluster. Figure 5 shows
the architecture of a simple load balancing mechanism for a web server cluster.

When using KECho to implement load balancing, each server in the cluster
subscribes to the shared data channel, which is used to forward requests to
other servers if the load on the host is too high to successfully handle a request.
Further, servers send responses to such requests in form of events over the same
event channel. All servers also register two filters, which are supplied by the load
balancing mechanism in the kernel: (i) an OUT-filter, which intercepts service
requests and decides which remote server(s) will receive a forwarded request, and
(ii) an IN-filter, which discards multiple responses from different servers if the
request has been forwarded to more than one server. The load balancing decision
is based on load information exchanged between all servers via a separate event
channel, called monitoring channel. In addition, the server forwarding a request
determines how many remote servers will receive this request. This can improve
the server utilization even more if the load information is not updated frequently
enough, that is, the n servers with the lowest utilization receive a request and
only the first response from these servers will be used, all other responses are
discarded.

Load Balancing Module

KECho

CLUSTER SERVER
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5 Simulation Results

The following microbenchmarks have been performed on a dual-Pentium III with
2x800MHz, 1GB RAM, running Linux 2.4.0. The intent is to investigate the
overheads associated with event submission and delivery, channel management,
and filtering.

5.1 Event Submission

The first measurement compares the event submission overheads of the user-level
implementation of event channels (ECho), the kernel-level event channels used
by a user-level application (KECho-UL), and the kernel-level event channels used
by a kernel-thread (KECho-KL).

The graphs in Figure 6 compare the event submission overheads of these
three scenarios for 100b and 1Kbyte, where the overheads of ECho and KECho-
UL differ only minimally. This can be explained by the fact that ECho uses only
two system calls per sink for the submission of an event, where KECho requires
also two system calls, but that number is independent from the number of sinks.
Event submissions with KECho-KL show up to 15% (for 100b) and up to 20%
(for 1Kb) less overhead compared to ECho.

Table 1 compares the performance of some of the functionality of KECho
(KECho-UL/KECho-KL) with the performance of the user-level implementation
ECho. Channel creation requires 850µs in ECho, compared to 182µs in KECho-
UL and 170µs in KECho-KL. The large difference between kernel-level and user-
level approach can be explained by the number of system calls required for the
creation of a channel in ECho, which is 56, compared to 5 in KECho-UL. The
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Table 1. Overheads and number of system calls

ECho KECho-UL KECho-KL

Channel Creation 850µs (56) 182µs (5) 170µs (-)

Channel Opening approx. 1.5s (117) approx. 1.5s (5) approx. 1.5s (-)

Event Submission 100µs (2 per sink) 95µs (2) 85µs (-)

Event Polling 32µs (4) 40µs (2) 5µs (-)

opening of a channel depends on the current number of subscribers, the network
transmission delays and other factors, however, typical values for this operation
are approximately 1.5s in all three cases. Event submission takes about 100µs
per event subscriber for ECho, compared to 95µs and 85µs for KECho-UL and
KECho-UL, respectively. In ECho, the overhead for polling for new events is 32µs
(4 system calls) compared to 40µs (2 system calls) in KECho-UL. The reason
for this increase are some inefficiencies in the implementation which will be
addressed in our future work. However, the overhead for event polling in KECho-
KL decreases to only 5µs. Note that while typical applications using ECho have
to periodically poll for new events, KECho is able to notify kernel threads almost
immediately of the arrival of a new event. This ability is investigated in the
following section.

5.2 Event Delivery

Events in KECho are pushed from event sources to event sinks. The network
monitoring module of KECho is able to immediately notify a waiting thread of
the arrival of such an event. Typical latencies measured from the arrival of an
event at a socket to the invocation of a handler function are in the range of
250-300µs. In the case of ECho and KECho-UL, these latencies depend heavily
on the polling frequency, the systems load, and the scheduling priority of the
application receiving the event. However, ECalls ability to boost the scheduling
priority of an application that receives a newly arrived event can significantly
reduce these latencies. This cooperation between ECalls and the CPU scheduler
is described in detail in [5].

5.3 Filtering Overhead

The following measurements have been performed on a cluster of 4x200MHz
Pentium Pros, with 512MB RAM, connected via 100Mbps Ethernet, running
Linux 2.4.0.

The filtering functions (IN- and OUT-filter) serve to reduce processing and
network overhead depending on application-specific attributes, supplied by the
event producer and the event subscribers.

The left graph in Figure 7 compares the advantages of event filtering with
IN- and OUT-filters. The left bars show the event handling overhead for a host
with 8 sinks, i.e., an incoming event is dispatched to all 8 sinks and the overhead
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Fig. 7. Filtering of events can reduce event submission and event handling over-
heads (a), while the filtering overhead is only in the microsecond range (b)

is approximately 950µs (event handling in this example means copying of the
incoming event into a buffer and printing a time-stamp into a file). This overhead
can be reduced significantly when we use an IN-filter to block the event from
being dispatched to all 8 sinks, e.g., if only one sink receives the event, the
overhead is reduced to 312µs. If the filter blocks the event completely (i.e., the
event is discarded), the overhead is a little more than 200µs. The right bars
in the same graph compare a similar scenario, however, the overhead shown in
the graph is the overhead associated with event submission, when the number
of remote sinks is 8. The overhead in this example is 430µs. However, when an
OUT-filter is being used to block the submission of the event to some servers,
this overhead can be reduced, e.g., if the event is submitted to only one sink, the
overhead is 156µs. If the event is discarded (i.e., no sink will receive the event),
the overhead is 56µs. The second graph in Figure 7 compares the overhead of
the IN- and OUT-filters that have been used for the results in the left graph.
Both the IN-filter and the OUT-filter use a number of simple if-else statements
to decide if an event has to be submitted/dispatched to a certain sink or not.
The overheads are independent of the number of events submitted or blocked
and are very low in the example shown here, e.g., approximately 1µs for the
OUT-filter and 0.9µs for the IN-filter.

5.4 Simulated Web Server Results

In this section we investigate the load balancing mechanism introduced in Sec-
tion 4 in more detail. Measurements have been performed on a cluster of 8 nodes,
acting as a web server cluster. Web servers receive requests at rates ranging from
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20 to 50 requests per second. Each request requires a simulated web server to
perform processing for approximately 38ms. The first graph in Figure 8 shows
the response times (in milliseconds) without any load balancing compared to the
scenario where load balancing is being used. Requests in this experiment have a
time-out of 5s, leading to the leveling off at 5s of the first line in the graph, i.e.,
requests are either being handled within 5s after request receipt or discarded
otherwise. In the second scenario, we modify the server such that requests that
have been waiting for more than 2.5s are being forwarded to other servers in the
cluster. In these experiments, we assume that there is at least one server in the
cluster with utilization less than 10%.

The second line in the graph (w/ load balancing - local requests) shows the
response times of all requests which are handled on the local node. This time, the
response times level off at 2.5 at request rates of approximately 33 per second.
The third line shows the response time of the requests being handled on remote
servers, which is slightly higher than the times measured at the local server due
to the overhead of two events being submitted and received (forwarded request
and request response). The second graph in Figure 8 analyzes the overhead for
the load balancing mechanism, which makes sure that only one other server
(dependent on load information collected from these servers) will receive the
forwarded request. The graph compares the overhead of three actions performed
by the load balancing mechanism: (i) the monitoring of CPU utilization and the
submission of events carrying this information, (ii) the handling of incoming CPU
information from other servers in the cluster, and (iii) the filtering necessary
to ensure the delivery of the forwarded request to the server with the lowest
utilization. The graph shows that all these overheads vary only minimally with
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the number of requests, where the task of event handling is the most expensive
(approximately 70% of the total load balancing overhead).

The final experiment investigates the advantage of event filtering in more
detail. The OUT-filter introduced above forwards requests to the servers with low
load to ensure small response times. However, the frequency of load information
exchange among the nodes in a server cluster has an obvious influence on the load
balancing quality, i.e., if load information is not exchanged frequently enough,
the forwarding decision can be based on outdated information, which reduces
the effectiveness of load balancing.

The left graph in Figure 9 compares the overhead of load balancing dependent
on the frequency of load information events. The overhead is mainly due to the
event handling process, followed by the load monitoring and event submission
process. Smaller overheads are caused by the actual forwarding of the requests
and the filtering functions. The overhead increases rapidly with the number of
events exchanged per second, e.g., more than 8ms with a frequency of 5 events per
second. The right graph in Figure 9 compares the approach, where the frequency
of load events is kept constantly at 1 per second, however, the filter forwards the
request to up to 5 different servers. In other words, multiple servers in the cluster
respond to the event and only the first response is being used by the server that
issued the event carrying the forwarded request. Again, the event handling and
the load monitoring and event submission contribute most to the overheads,
however, the overhead increases only minimally with the number of event sinks.
The biggest increase in overhead is caused by the IN-filter, which has the task
of discarding duplicate responses. This experiment ignores the increased total
utilization in the whole cluster due to the request handling by multiple servers.
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As an alternative to the solution suggested above, a server could issue a cancel
event to all other servers, that makes sure that only one server handles a request.
If several servers issue a cancel event, a time-stamp or some other criterion can
decide which server wins. This approach reduces the unnecessary processing on
the servers, however it increases the event communication by up to n cancel
events per forwarded request.

6 Conclusions

The need for globally managing system services is exemplified by previous work
on distributed resource management, on load balancing, and QoS mechanisms.
This paper addresses dynamic service management by providing a novel fa-
cility for inter-service cooperation in distributed systems. KECho is a kernel-
based publish/subscribe communication tool that supports anonymous and asyn-
chronous group communication. KECho’s main components are its lightweight
interface to user-level service realizations, a network monitor that minimizes the
latency of event delivery, and channel filters that allow kernel services and ap-
plications to intercept event submissions with the goal of minimizing network
traffic and optimizing system performance.

Our future work will investigate the two examples introduced in this paper
in more depth and analyze their performance compared to user-level solutions.
Further, we will extend KECho to support real-time events, thereby addressing
the substantial set of applications requiring real-time guarantees. In addition,
we will deploy KECho in the embedded, wireless system domains for which its
ability to access and use power, load, and network information is critical to the
success of this class of ubiquitous applications. Finally, while protection issues
have been ignored to this point, we are already investigating and implementing
protection mechanisms that will ensure the proper system operation in face of
misbehaving kernel extensions.
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Abstract. GeoCast provides the functionality of sending messages to
everyone in a specific area. So far, only the addressing of larger two-
dimensional areas was possible. For the use in an urban environment it
is crucial that small and three-dimensional areas can be addressed. For
example, GeoCast can then be used to send lecture notes to all in a
classroom. In this paper we describe a fine-grained addressing concept
for GeoCast that supports such areas. In addition we present an archi-
tecture that allows the use of that addressing concept together with the
GeoRouting-approach developed by Navas and Imielinski [7]. We also
present some modifications necessary to enhance the scalability of Geo-
Cast.

1 Introduction

If we look at the means of communication that human beings use, we find that
there are different categories of how we determine the receiver of a message. If we
speak, everyone who is at the same location will get the message. We can adjust
the area in which the message is perceived by changing the tone of our voice.
If we shout, the area gets larger and if we whisper the area becomes smaller.
If we write a letter, we address someone specific and only that person will get
the message. Finally, if we publish something, then everyone who is interested
in it can get that information. These ways of communication are also reflected
in the Internet. We can send messages to a specific receiver using unicast. If we
use multicast, everyone who is interested in the information can tune into the
group and receive the messages. Finally, as an equivalent to speech, which is a
location specific way of communication we find GeoCast [3,5].

GeoCast is a relatively new means of communication. A sender specifies the
area in which the message should be received by everyone. The receivers do
not need to be known and do not have to decide that they want to receive
the messages. They get the message when they are in the area that the sender
specified and they do not get it if they are outside that area. Because many
messages are not only interesting for users who are currently in the area, but
also for those who arrive some time later, the concept of lifetime was introduced
to GeoCast. The lifetime of a message determines how long this message will be
available in the target area. It can be compared to a poster. While the poster is
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up, the message can be read by everyone close enough. Messages with a lifetime
can be used to warn people of danger, to announce new services or for many
other purposes.

In order to use such means of communication we find that the receivers
have to have devices that are capable of determining their current position,
maintaining a connection to the Internet and doing the necessary computation.
Devices, such as future mobile phones or PDA’s will become artefacts of our
daily life. GeoCast is still a fairly new concept, so it is at the very beginning of
its evolution. One of the main issues in GeoCast is how the area, that defines the
receivers of the message, can be specified. GeoCast has been mainly driven by
the work of Julio Navas and Thomasz Imielinski. Their protocols are optimized
for larger two-dimensional areas [4]. Therefore we call this kind of addressing
coarse-grained. Coarse-grained addresses can be used to send a message to all
people in a wood, where a wildfire is happening or send a message to a part
of a city announcing that a new restaurant has opened. Considering the needs
that arise if GeoCast is to be used in an urban environment we find that having
coarse-grained addressing is not sufficient [6].

Scenarios that show possible usages of what we call fine-grained addressing
are to send lecture notes or subtitles for the hearing impaired to everyone lis-
tening to a talk, to distribute some information on a floor (e.g. broken lift) or to
send a message to everyone on a bridge (e.g. warning of a traffic jam). Common
to these scenarios is that they rely on the third dimension and that the addressed
areas are small.

An important aspect of addressing a geographic area is how location informa-
tion can be expressed. There are two fundamental possibilities. One can express
the location of a person by stating his coordinates in a predefined coordinate
system like WGS84 [2]. Or the position information can be expressed using a
symbolic identifier that states in what area a person is. Whereas coordinates
are dominant in the outdoor use (e.g. used by GPS [1]) symbolic identifiers are
dominant in the indoor use (e.g. used by Active Badge System [9]). To make
GeoCast available in all kind of areas, it has to work together with both kinds
of position information and therefore with all kinds of positioning systems.

In this paper we will look at the technology that is used for GeoCast. We will
extract the requirements that GeoCast has to meet in order to be usable in urban
as well as in rural areas. A fine-grained addressing concept will be presented that
meets the requirements and finally we will show how this addressing concept
can be implemented using the GeoRouting presented by Navas and Imielinski.
The local dissemination of GeoCast messages imposes scalabilty problems. We
will introduce a notify-pull mechanism, the so-called message announcements,
in order to make GeoCast more scalable.

This paper is organized as follows: In the next section we will look at the
related work. Section three deals with the requirements for a more sophisticated
fine-grained addressing concept. In the following section we will present an ad-
dressing concept that meets these requirements. In section five we will look at
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the realisation and implementation of the addressing concept. And finally, we
will conclude our paper with an outlook on future work.

2 System Model

In this section we will have a closer look at the technology that forms the foun-
dation of this paper. We will look at the current state of GeoCast, at the way
how addresses can be constructed today and define some terms that are used
throughout this paper.

The focus of Navas and Imielinski is the message forwarding. They have
looked at different means for transporting the message towards the target area
and have defined a protocol called GeoRouting that is able to route geographic
messages with acceptable performance [7,8]. Such a GeoCast using GeoRouting
is shown in Fig. 1. The sender S sends a message to the grey area. The node E is
inside the area and therefore should receive the message. To develop an address-
ing concept was not their primary concern and thus their concept of defining
target areas is fairly simple. The target area of a message is the geographic area
in which the message is to be distributed. In other words, the target area is
the area that the sender specifies and in which every participating node will
receive the message.The target area can be described using a polygon of the
area-boundary, specified through the coordinates of the edges in WGS84 coordi-
nates [3]. Because only two-dimensional coordinates have been chosen, it is not
possible to address a three-dimensional area. The whole protocol is optimized
for larger target areas, which normally span several networks.

In order to perform GeoCast several software components are needed: The
GeoHost is the software running on the client. It is responsible for sending and
receiving the messages on the device. In order to send a message, the GeoHost
builds packets and forwards them to the next GeoRouter. Messages that are
to be received are broadcasted by the GeoNodes on the networks in the target
area. Because there might be devices connected to the network that lie outside
the target area, it is necessary that the client itself checks whether it is actually
supposed to receive the message or not. If the GeoHost is inside the target area,
the message is forwarded to the appropriate application. Therefore, in Fig. 1
GH1 accepts the message and GH2 discards it.

The GeoNode is a special node that is responsible for distributing the message
in the target area. In addition, it stores messages which have a lifetime. The
messages are distributed by the GeoNode until the lifetime expires. There should
be one GeoNode for each IP-subnetwork. A GeoNode services the network that
it is directly connected to. The geographic area that is covered by that network
is called the service area of the appropriate GeoNode.

Another component is the GeoRouter. Each GeoRouter knows its service
area. The service area of a GeoRouter is the aggregate of the service areas of
the GeoNodes that are assigned to it. Normally these GeoNodes are directly
connected to the GeoRouter, but there is also the possibility to connect a GeoN-
ode using tunnelling. The GeoRouters use the GeoRIP protocol to exchange the
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Fig. 1. GeoCast using GeoRouting

information about their service areas. This results in every GeoRouter knowing
the service areas of all other GeoRouters. If a GeoCast message arrives at a
GeoRouter it checks which service areas of the other GeoRouters overlap with
the target area of the message and forwards the message towards them. If the
target area overlaps with its own service area, then the message is forwarded to
the appropriate GeoNodes.

3 Requirements on Fine-Grained Addresses

The main requirement for the fine-grained addressing concept is the ability to
address small target areas. Additionally, three-dimensional target areas should
be addressable in order to allow target areas like rooms. The lack of such a
concept is the major flaw of existing GeoCast systems that prevents the use in
an urban environment.

For GeoCast to become a success it must be efficient and scalable. So the
addressing concept should not only take into account what the user might want
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to address, but also if addressed areas can be processed efficiently. As we have
seen, there are two kinds of operations necessary in order to deliver a message.
The GeoRouters check whether the target area overlaps with some service areas
of other GeoRouters and the GeoHosts calculate if their position is within the
target area. Especially the first check is important, because for routers it is
critical to reach the forwarding decision fast, in order to prevent congestion.
But also the check on the client can be critical if we want computationally
“weak” devices to participate. Another issue is bandwidth consumption. As the
specification of a three-dimensional body can use a large amount of space, it
is an important requirement that the space used by the address stays small, in
order to increase the amount of payload that can be transported in each packet.

The major strength of the existing protocol is the message forwarding itself.
GeoRouting offers a good means to transport messages to two-dimensional areas.
If possible, the fine grained-addressing concept should work together with the
GeoRouting of Navas and Imielinski.

Hence the requirements are:

– Support for efficient handling of small target areas
– Ability to address three-dimensional target areas
– Efficient overlap calculation (for the GeoRouters)
– Efficient include operation (for the GeoHost)
– Compact addresses
– Interoperability with GeoRouting

4 Fine-Grained Addressing Concept

In this section we will present our addressing concept. As stated above, two
addressing methods have to be considered. On the one hand there are coordinates
and on the other hand there are symbolic identifiers. Both describe location
using different concepts. The first denotes a position whereas the latter states
in what area somebody is. It is important to note that there is normally only
one kind of position information available in an area. Either the sensor systems
in the infrastructure delivers coordinates or symbolic identifiers. To have both
(expensive) infrastructures in the same building is only a rare case restricted
to a few research institutions. So we can assume that inside such an area there
is only one kind of position information available. Our fine-grained addressing
scheme consists of two kinds of addresses. One kind is based on coordinates and
the other is based on symbolic identifiers. Depending on the technology used in
the target area the appropriate address can be used.

4.1 Geographic Coordinate-Based Addresses

For coordinate-based addresses we have to differentiate between two-dimensional
and three-dimensional target areas. Two-dimensional ones can be specified us-
ing the concepts of the existing protocols. They allow to address polygons and



106 Peter Coschurba et al.

point 1 point 2

point 3point 4

point 5point 6

height

Fig. 2. 2.5-dimensional target area

circles. If 8 Bytes represent an element of a coordinate then the accuracy of
the coordinates is below a millimetre, which should be enough for all kinds of
applications. In the case of the polygon, one specifies all the edges using two-
dimensional WGS84 coordinates. For the circle the centre and the radius have
to be specified.

For three-dimensional addresses the situation is more complex. On the one
hand we want to have small addresses that can be processed efficiently and on
the other hand we want to give the user the possibility to address all target areas
that he might need or want to address. If we look at what that target areas might
be, we find that they can be modelled by using so called 2.5-dimensional bodies.
Targets like a room, a floor or a house have in common that they can be defined
by specifying the base and adding a fix height (see Fig. 2). An example is shown
in picture where a room is addressed.

Such addresses have the advantage that they are compact, using only slightly
more space then two-dimensional ones (8 Bytes for each coordinate dimension
and another 8 Bytes for the height) and all the overlap and inclusion calculations
can be done using the same algorithms used for two-dimensional figures adding
only a check for the height. In order to address all kind of targets we provide
two base figures. One is a polygon with height and the other is a cylinder. An
example for such and address would be the first floor of the computer science
building of the university of Stuttgart:

3D_Polygon((48.431782N; 9.7410E; 508) (48.43169N; 9.7398E; 508)
(48.431815N; 9.7398E; 508) (48.43195N; 9.7363E, 508)
2.6)

The coordinates of the edges are listed counter-clockwise and the height is
given in metres. The third parameter of the coordinates is the height over sea
level.
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4.2 Symbolic Identifier-Based Addresses

Symbolic identifiers describe an area in which the object is located. Such an
area is in most cases a room or an open area with a distinct extension. One
could think that providing that identifier would be enough to address the room.
But unfortunately these identifiers are only unique within a limited area. The
addressing scheme used by company A can also be used by the neighbouring
company B. So there could be two rooms with exactly the same identifier. But
in order to use the symbolic identifiers as an address they have to be globally
unique. To achieve that, we add to each symbolic identifier the area in which
the ID is unique, that is, the area that is covered by the organisation to which
the room belongs. This area can be a large two-dimensional area, in case of a
large company or it can be only the floor of a large building when we look at a
small company or a local branch of some company. So an address that is based
on symbolic identifiers consists of two parts, the geographic address denoting
the area in which the identifier scheme is valid and then the identifier itself.

Many symbolic identifier schemes are built hierarchically, thus implementing
the “inside” relationship. The identifier reflects in what building and in what
floor the room is. So, for example the symbolic identifier “22.2.018” in the Com-
puter Science Dept. of Stuttgart implicitly states that the room denoted by this
symbolic identifier is located in building 22 on the second floor. For GeoCast
this is – of course – a nice feature. Besides single rooms, it allows to address all
rooms on a specific floor or even in a building. In order to use the knowledge
inside the identifiers, there must be a understanding of the semantics of the sym-
bolic identifier. Therefore it is necessary to have a common format, how these
identifiers are built. We use a scheme that will be met by most local schemes:

BUILDING.FLOOR.ROOM.

If another scheme is used, there has to be a mapping to this scheme. This
mapping function has to be provided to the clients in order to make use of the
knowledge embedded into the identifier.

To make things more clear we will look at our example. We want to address
room 18 on the second floor of building 20 at the Computer Science Dept. of
Stuttgart. The appropriate address looks as follows:

ID((2D_Polygon((48,431782N; 9,7410E) (48,43169N; 9,7398E)
(48,431815N; 9,7398E) (48,43195N; 9,7363E))

(20.2.18))

The first part describes the area in which the identifier scheme is valid, or in
other words which is encompassed by the model. The second part is the identifier
itself. If we wanted to address the whole floor we would just omit the 18 at the
end of the identifier.
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5 Realisation

5.1 Architecture

To integrate fine-grained addresses with the GeoRouting of Navas and Imielinski
is the main focus of this paper. In order to achieve that, at least the GeoHost
has to be modified. But in order to achieve a good performance and to get a
scalable solution changes at the GeoNode are also needed. The basic architecture
remains the same. GeoHosts have to be present on every node that wants to send
or receive messages. A GeoNode is needed for each participating subnetwork and
there are GeoRouters, which do not have to be modified.

However, the interface between the application and the GeoHost and be-
tween the GeoNode and the GeoHost have to be changed. The interface of the
GeoHost that an application can use to send a message is modified to support
the new types for target areas. The function is sendGeoMessage(Area, Port,
Lifetime, MessageID). Thus, the application can specify the following param-
eters:

– Area: The area information consists of an area type and the parameters
(points and height or radius information) that specify the target area. Each
point is provided using 8 bytes for longitude, latitude and, in case of a three-
dimensional area, for the height information. For areas whose addresses are
built using an area and a symbolic identifier, this can be specified too. The
type and parameters are:
• 2D Polygon: For a polygon all points that specify the edges are listed

counter clockwise.
• 2D Circle: For the 2D Circle the centre point is specified and then the

radius is provided in metres.
• 3D Polygon: A list of three-dimensional points and the height of the

figure is specified. The height is given in metres above the base of the
figure.

• 3D Circle: A cylinder is specified by specifying the point that is the
centre of the circle that forms the base. The radius and the height are
also provided in metres.

• ID: An identifier-based address always consists of two parts. First an
area is provided and then the identifier. (see Sect. 4.2)
∗ Area: Any of the areas described above
∗ ID: A string that contains the identifier. Points are used as delimiters.

– Port: The port specifies which applications will receive the message.
– Lifetime: The lifetime specifies for how many seconds the message will be

distributed by the GeoNodes. The time starts when the GeoNode receives
the message.

– Message ID: The sender creates a unique message identifier for each message.

As stated above, GeoRouting is used to forward the messages. It offers an
acceptable performance and has already been implemented by Navas and Imielin-
ski. But GeoRouting operates only on two-dimensional target areas. So it seems
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that the GeoRouter have to be modified to route on three-dimensional target ar-
eas. But if we look at the requirements, we see that the efficiency at the forward-
ing decision is one of the key requirements. The routing on three-dimensional
target areas would make the forwarding decision more complex. Therefore we
have chosen another alternative. We will do the forwarding decision based on
two-dimensional areas. For this we introduce the concept of the scope of a mes-
sage.

We distinguish between the address of a message, which denotes the target
area and the scope, which is a simplified target area used only for routing. In
order to allow an efficient routing, we use the scope, a two-dimensional area,
to forward the message. All GeoNodes, that are inside that scope will get the
message. They will then look inside the message and evaluate the address. If
their service area overlaps with the target area, the message will be processed
like normal, if not it will be discarded. So messages are only distributed in
networks that service the target area. This modification in the GeoNodes makes
it possible to have an efficient routing and to save the bandwidth in the networks
that overlap with the scope but not with the target area.

But how is the scope generated? In case of a two-dimensional target area,
the scope is just identical to the target area. If a three-dimensional target area is
specified, then the third-dimension is omitted. For addresses based on symbolic
identifiers, the geographical part is used to generate the scope. The result of
all these operations is a two-dimensional area that can be used by GeoRouting.
This is used to build a header conforming to the GeoRouting. As a result we
have two headers, the outer header is conform to the GeoRouting and specifies
the coarse-grained scope of the message and an inner header, that specifies the
fine-grained target area.

To clarify the architecture, we will look at what happens when a GeoCast
message is sent:

1. The sender specifies a target area. This is done using the fine-grained ad-
dressing concept. The message is then transferred by the sending application
to the GeoHost.

2. The GeoHost calculates the scope. It then creates a message as it can be used
by the GeoRouting and encapsulates the original message with the original
header in it. The header for such a fine grained GeoCast message is shown
in Fig. 3. This message is then processed as before the modification. It is
forwarded to the next GeoRouter and from there to all the GeoNodes in the
scope. The GeoNode checks whether its service area overlaps with the target
area and forwards the message to the network if it does.

3. The GeoHost on the receiving device checks whether the device is actually
in the target area. This is done by comparing the position information with
the address information in the message header. In case of an identifier-based
address, the device checks first if the area of the address equals the validation
area of its identifier-based scheme. In a second step it checks whether the
identifier that describes its location is either equal or enclosed in the identifier
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LifetimeMessage ID
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Height (Center)
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Height

Message

32 Bits

~~ ~~

Fig. 3. Message header for coordinate-based target area

of the address. If the position is inside the area, the message is accepted and
forwarded to the appropriate application, if not it is discarded.

5.2 Message Announcements

So far we have shown how to send messages using the fine-grained addressing
concept. But if we look at the lifetime of a message a new problem arises. Origi-
nally, the target areas were rather large, spanning several networks. In addition
it was assumed that only few messages are sent using GeoCast. With the new
fine-grained addresses a different situation arises. First of all, the target areas get
smaller. The average target size will probably be a room. Because most networks
span more then only one room, there might be several target areas overlapping
with the service area of the network.

So far, the lifetime was realized, by just re-sending the messages during the
lifetime. Clearly, this is not scalable if we have lots of messages. Many of these
messages would be sent without anyone being interested in it. Ideally, the mes-
sages would only be re-sent when someone enters the target area. Because the
receivers do not have to announce their position and presence, this is not pos-
sible. The idea is to send only short messages that include the address of the
message and the message identifier. The GeoHost on the mobile device checks, if
it is in the target area and if it has already received the message. If it determines
that it is inside the target area, but has not received the message so far, it issues
a message request, requesting the message to be re-sent. Upon receiving such a
request the GeoNode will re-send the whole message.
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Whereas previously the whole messages had to be resent during the lifetime,
now only short announcements are sent. This results in a large decrease of band-
width that is used for the local dissemination of the GeoCast messages and thus
makes GeoCast more scalable. Especially, if we take into account that the smaller
areas will lead to an increase in message size. There is rarely a usage scenario for
large areas where one wants to send, for example, a power point presentation.
But to send the slides during a presentation to all people in room makes sense.

Such a message announcement consists of two parts:

– The unique message ID: Every message gets a unique message identifier.
This identifier is constructed by the sender.

– The target area: Each message announcement contains the target area that
forms the address of the message. The format is exactly the same as in the
message header.

– The port: This allows the potential receiver to determine if there is an ap-
plication registered for that port, which is interested in such messages. Only
those messages are requested for which receiving applications are registered
which eliminates unneccessary transmissions.

Since the size that is needed to store the target area is not fixed, we can not
state how large such an message announcement will be. But if we assume that the
standard case will be to address a room, then such a message announcement will
use 140 Bytes. So even in the unlikely case that 500 messages have a target area
that overlaps with the service area and have a valid lifetime, that is a lifetime
that has not yet been expired, only about 6% of the bandwidth of a 802.11b
network would be used to send the announcements every second. If we assume
that the average message is about 10 kilobyte, it would take about 6 seconds
while using up all the bandwidth to resend the messages. So clearly we enhance
the scalability of GeoCast by using message announcements.

The rate at which the messages are repeated is subject to parametrization. If
the announcements are sent more frequently, they use up more of the bandwidth
but people entering a target area will get the message earlier. If the messages are
sent less frequently, bandwidth is saved, but the receivers will get the message
later.

We think that four seconds between announcements is a good value for net-
works that have a bandwidth of about 10 megabit per second (like 802.11b).
Four seconds is a rather small time for human beings, so the user will not notice
a large delay. On the other hand, the consumed bandwidth is quite low. In the
above example, we could send 500 message announcements by using only about
1.5% of the available bandwidth. Again, if we sent the whole messages all the
time, we would use about the whole bandwidth in order to resend the messages
all four seconds. Clearly this is not possible. Of course the frequency parameter
is subject to local optimization. It has to be adjusted to the local needs and
depends on the average number of messages and the bandwidth of the network.

In order to understand how this protocol works we will look at what happens
when a message with a valid lifetime arrives at the GeoNode:
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1. Upon reception of a new message the GeoNode checks if its service area
overlaps with the target area. If it does the message is sent.

2. If the message has a valid lifetime then the message is stored, and the tar-
get area is used to build a message announcement. Every four seconds the
announcement is sent (together with the other announcements) until its life-
time expires. Before the announcements are sent, the GeoNode checks if the
lifetime has not expired. If it has expired, then the message is just discarded.

3. A GeoHost that receives the announcement uses the message ID to check
whether the message has already been received earlier. If not, it checks if its
position is inside the target area. If it is inside the target area and has not
received the message yet, it sends a message request to the GeoNode. Such
a message request is represented by the message ID.

4. When the GeoNode receives a message request, it re-sends the message on a
broadcast channel, so that other devices that have just entered the area do
also get the message.

6 Conclusion

The advent of location-aware applications and ubiquitous computing has created
a need for geographic communication. The existing approach for GeoCast, how-
ever, has some disadvantages that have prevented a widespread use. So far, one
of this disadvantages is the lack of a sophisticated addressing concept that allows
the addressing of the intended areas. Another problem has been the scalability
issue, i.e. if lot’s of messages arrive for several closely connected areas. For both
problems we have presented an solution.

Still more problems remain that need to be solved before GeoCast will become
part of our everyday communication. So far, there are no real applications that
make use of GeoCast. Without such applications, which provide a clear benefit
to the user, GeoCast will not be used. We have shown several usage areas where
GeoCast makes sense, so we assume that these applications will arrive soon.
Actually, we have developed an application that allows the sending and receiving
of geographic e-mails and messages. GeoRouting is relatively efficient, but still
several magnitutes worse then all other routing methods for unicast or multicast.
This remains an area of research. If GeoCast is to become popular, the message
forwarding mechanism has to become more scalable and more efficient.

However, the foundations are laid, and GeoCast will become more and more
popular. It’s use will grow together with the number of location-aware applica-
tions. And therefore we think that it is worthwhile to do research in order to
solve the above problems and create a means of communication that is beneficial
to it’s users.
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Abstract. Wearable communication networks are a new type of
networks where communication wires are embedded into textiles. It
allows the connection between sensors and devices embedded into the
material. Data from such devices can be sent over various pieces of
clothing to other devices in the network. A special characteristic of such
a network is the unreliable connection between different pieces of
clothing. This paper presents a prototype system and investigates
routing methods using simulations of a fabric area network. Input data
for simulations are derived from the operation of a first working
prototype. Among the investigated routing methods are various
Flooding, Hot- Potato and Simple Hot-Potato protocols. Throughput,
way lengths and delay times were used as metrics. Results indicate that
routing can optimize the performance of the FAN for each metric, but
not for all metrics.

1 Introduction
We are in the maturing phase of an explosion in private devices that we can carry
around with us or that are even attached to our body or clothing. Today these devices
work standalone and are not interconnected. But with upcoming Ubiquitous
Communication (Ubicomp) and Computing [W91] technology new applications will
arise and existing applications will profit from enhanced knowledge transferred from
other devices attached to us. Interconnection of such small devices is the goal of
several novel technologies, especially RF based pico-networks like Bluetooth [S99]
and body-networks. These systems have the disadvantage that they broadcast the
information into the nearby environment [PAB00] and are therefore vulnerable for
possible intruders. They also consume substantial quantities of energy compared to
wire-based solutions.

This paper concentrates on one special kind of network used for interconnecting
devices that are worn or near the body. The Fabric Area Network (FAN) [H01] is a
wire-based network embedded into textiles that allows secure and private transfer of
data between all devices that have a connection through clothes that are being worn.
Possible application areas of such networks are communication of sensors
incorporated into clothing with a central computer, health applications with various
independent devices (pacemaker, life-care watch etc.) or blue color workers with
pagers, scanners and special-purpose devices.
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This paper presents a system and its first outcome and finally simulations of a
network implemented into the fibers of clothing. The paper concentrates on the
problem of routing of packets in the network. For clothing, the intersection points can
provide the connection between parts of the network and are therefore the places
where routing and filtering of packets should be implemented. Various algorithms for
routing are introduced and analyzed in this paper. The use of routing gives the
possibility to control the workload and the power consumption of the stations and
therewith the control over the workload of the entire network. The opportunity to
decide which way data packets should go makes the network more powerful and more
adaptable in the dynamic environment in which it resides. Characteristics of the
network (e.g. packet loss, delay etc.) are derived from experimental prototypes that
we had integrated into clothing and had them worn.

In the next section, we go more into detail about the FAN. This is followed by the
description of the FAN simulation architecture that we designed and implemented to
test the network under different conditions and to test different routing strategies. We
obtained reasonable parameters for link failures by measurements, which we describe
in the following section. These parameters are used in a simulation of a wearable
sensor network with some user interaction. We simulate different routing strategies
while focusing on certain metrics like data loss, hop counts and delay times. Our
results are presented in the last section.

FAN � A Wearable Network

The Fabric Area Network (FAN) introduces a concept of coupling of different pieces
of clothing to make them interconnected for data transport. The prototype developed
by Starlab [H01] is based on coils creating a strong limited electromagnetic field,
which is modulated with data packets. A pair of two coils forms a simple
sender/receiver system and is used as a FAN link (Fig. 1).

Fig. 1. FAN Link
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Over these links, data is transported in packets of maximum 18 bytes with a
transfer rate of 1000 bits/s. Before a data packet is transported, the hardware which
drives the link has to power up the electromagnetic field and the sender performs a
handshake procedure to detect the receiver. This causes a latency of 100 ms for each
data packet.

FAN links reside in very dynamic areas where the parts they try to connect are
loosely coupled. They are not wired links so it can be impossible to transport data for
an undetermined timeframe or if a connection is reestablished it is not sure whether it
will run over the same link.

The driver hardware has to be very small because it is mounted within the clothes
and like the links it is distributed all over the clothing. They have only small amounts
of resources for computing power, memory and available energy whereas most of the
energy is used for powering the links.

The entire Fabric-Area-Network resides in a very dynamic area where data is
transported over slow and unreliable links and hardware has strongly limited
resources.

2 Simulation

In order to understand the behavior of networks based on the FAN system, we
developed a simulator. For it to be as flexible as possible regarding the property
changes, we designed an architecture that embedded the simulator. This architecture
is a test bed, which enables us to design, debug and evaluate various routing
protocols.

2.1 Overview: The FAN Simulation Architecture

The FAN simulation architecture consists of two distinct modules - the simulator
kernel and the data processing module (see Fig. 2).

The simulator kernel is a discrete event simulator, so we have an exact trace of
what happened at any time step. It is deterministic, so each simulation is reproducible.
The Data Processing module is independent of the kernel's implementation and takes
the Log Files as input to compute in respect of them the output we want (e.g. statistic
data, plots, text,...).

Simulator

Data
Processing

Log File

Input

O
utput

Fig. 2. FAN Simulation Architecture



Data Paths in Wearable Communication Networks      117

Table 1. Behavior of Components

Component Behavior Character
Station Router behavior Dynamic

Producer behavior Dynamic
Consumer behavior Dynamic

Buffer Size Static
Policy Dynamic

Link Bandwidth Static
Latency Static
half/full duplex Dynamic

Network size (number of stations) Static
number of links owned by a
station

Static

Connectivity matrix (symmetric) Dynamic

Every FAN simulation model, given as input to the kernel, is built upon 4 different
components, which are identified as station, buffer, link, and network. The way each
component acts during a time step is described by the component�s behaviors. We
differentiate between dynamic and static behavior. A dynamic behavior can change
during the run of the simulator. This is implemented by calling functions. On the
other side the static behavior is fixed for the whole duration of the simulation and is
implemented through parameter values. Tab. 1 lists the components and their
behaviors.

The described architecture was implemented in Ptolemy II [DHK01] and tests
showed that a network with the FAN properties (see section 1) could be simulated and
ended up with the expected results.

2.2 Input Data

The simulation architecture requires setting up the input behavior of all components.
While this is easy for all static behaviors, it becomes a concatenation of assumptions
for the dynamic behaviors. Especially, the network dynamic should be described as
close as possible to reality, because it strongly influences routing decisions and
therewith station performance and also network performance. But, the process of
network dynamic is hard to describe appropriately by assumptions. The concept of
functions as input behaviors for the simulator let us supply the simulator with
measured data for the network behavior.

Measurement of the Network Dynamic

We chose the T-shirt-trousers region as a typical place where data has to pass through
a FAN link (see Fig. 1) and where the network behavior is important. The FAN
prototype with the coil-based links was not available. To measure the link reliability
in this region we mounted two electrodes (size 10.5cm x 5cm) in this region. One is
located on the T-shirt and the other one is located on the trousers in such a way, that
they can close an electric circuit when the T-shirt touches the trousers. Whether the
circuit is closed or opened is registered by the Beck IPC [B01], a small computer
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system powered by a camcorder battery and mounted on the belt on the other side of
the measurement region. Electrodes and the IPC can be seen in Fig. 3, and Fig. 4
shows how the T-shirt�s electrode overlaps the electrode on the trousers. For the
measurement we had a 4 minutes walk outside. During that time the IPC tested the
circuit every 10 ms for the opened or closed state and saved it internally. At the end
we had more than 24500 measured values.

Fig. 3. Measurement Setup(1)

Fig. 4. Measurement Setup(2)
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Interpretation

After the measurement, the next step was the interpretation, because these measured
values were not obtained by the FAN prototype. The interpretation step converts them
to the behavior of a FAN link. However, although this interpretation is based on
assumptions, we are convinced that it describes the behavior of the network much
more accurately than with a mathematical function.

One or more values indicating the same state of the circuit form a sequence. We
then count how many measurement cycles the circuit was opened and closed. This is
called a sequence length. These are signed to indicate the open or the closed state of
the circuit. A short-time shift of the circuit's state does not mean a connection state
change of a FAN link, because the electromagnetic field can transport data over a
small distance. That's why we apply a high-pass filter, which kills all sequences
smaller than 10, which is equivalent to a measurement timeframe of 100ms. This
threshold was chosen according to the latency of 100 ms for every FAN link (see
section 1). Fig. 5 shows the distribution of the relative frequency of occurrence of all
measured sequences after applying the high-pass filter. Positive sequence lengths
indicate a closed electric circuit, while negative lengths indicate an opened electric
circuit.
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Fig. 5. Distribution of Sequence Lengths

The measurement of network dynamic gave us a set of data, which was then
supplied to the simulator as a part of the network behavior for FAN links in the
T-shirt-trousers region.
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2.3 Output Results: Sensor Network Simulation

The aim of building a simulator (see section 2) and setting it up with input behaviors
as close as possible to the reality (see section 2.2), is to get an experimental idea of
how routing can improve the FAN. For this purpose we evaluate different routing
protocols working in a model of a sensor network, which is distributed over different
parts of our clothing. A sensor network is seen as an application, where effects on
performance are easily traceable. Thereby we map a set of routing protocols to router
stations. This mapping is called routing strategy. Our goal is to optimize the message
distribution in respect to metrics like way lengths (hops), delay times, and message
loss only by changing the routing strategy.

Topology and Simulation Parameter

Our sensor network consists of 3 sensors boards connected to a network of routers.
Furthermore we have one source for user input. The topology can be seen in Fig. 6.

R1

R2

R3

R4

R

R8

R7

R6

R9

R5

Sensor 1 Sensor 2

Sensor 3

Output

Output

User Input

FAN Link

Router

Fig. 6. Sensor Network Topology

Sensors boards are located on both shoes (R1, R5) and on the femoral (R9), which
is a good place according to [LAL01]. Every 500 ms the sensor boards send a data
packet of 8 bytes to their attached station, which adds a 6-byte header with source and
destination address, message type number, and a maximum hop count (default value
is 16). All messages are addressed to station R8, the user interface station, as the
destination. The user itself can send commands as 3-bytes data packets to an attached
device at R9. This is done via a random generator to simulate a user�s behavior.
Stations between the source and destination stations only have a routing behavior and
build up a transit network. The FAN links between R1, R2 and R5, R6 are located in
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the shoes-trousers region while the FAN links between R2, R3 and R6, R7 respective
R9, R7 are located in the T-shirt-trousers region. In the latter case the measured data
for network behavior (see section 2.2) are used to describe the behavior of these links.
A random generator determines the behavior of the FAN links for the shoes-trousers
region. However, they are connected for 95% of the runtime. The user interface is
coupled by a FAN link over R8 to station R4, but its reliability is 100%. All FAN
links are half-duplex links and have a bandwidth of 1000 bits/s and a latency of 100
ms. All other links which are not indicated as FAN links are half-duplex serial links
with a bandwidth of 9600 bits/s. Each link has a send buffer organized in a FIFO
policy with a size of 160 bytes. Previous simulations showed that this a good buffer
size for data producers like our sensors. Each station is customized with a routing
protocol, which we discuss in the section below. The simulation time is 30 hours to
produce enough data packets to build stable statistics.

Routing Protocols

Router stations reside in a very dynamic environment, where data is transported over
slow and unreliable links and hardware has strongly limited resources. These
conditions affected our choice of proper routing protocols. Protocols building up
routing tables are unsuitable, because of limited memory resources. A further problem
is represented by protocols, which try to get a survey of the network. Because the
network is too dynamic and bandwidth is very limited, it is hard for the protocol to
converge in case of link state changes and routing tables must be often updated, which
stress the entire network.

We chose three routing protocols, which are simple to implement, rapidly come to
a decision and do not use many resources. They do not build routing tables, nor do
they use information about link states to come to a routing decision. The first protocol
is Flooding Routing, which is often used because it always finds the shortest path,
apart from the overhead it produces. Shoubridge [S96] made some detailed
considerations about flooding. The second is the Hot-Potato protocol [B64] making
its routing decision according to buffer fillings. The third one is a Hot-Potato
Protocol, which comes to a routing decision according to a random generator, which
decides to which link of the station the messages will be forwarded. This is called
Simple Hot-Potato.

While implementing these routing protocols, we discovered that the maximum hop
count for every message plays a crucial role. Previous simulations showed that lots of
resources were used by messages running in loops. We decided to extend all routing
protocols for stations with consumer behavior by an announcement mechanism,
which generates only a small overhead. These stations announce themselves with a
special message. These announcement messages have a high maximum hop count, so
that they can be transported over many stations. Stations with a producer behavior can
evaluate such announcement messages and initialize the maximum hop count of their
messages on the basis of the number of hops it took the announcement message to
reach them. There is no fixed timeslot for a consumer station to send these
announcement messages. This depends on the average hops it takes for messages to
reach this station. If the average number of hops becomes too bad, then a new
announcement message will be sent and producer stations will align the maximum
hop count for their messages. The path that the message followed is not recorded
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because stations are not aware of the name of their neighbor stations. Recording the
traveled links is also not suitable because the states of the links are too dynamic and
links are not reconnected to their same counterpart. Routing decision should be made
within each station. The announcement mechanism optimizes very fast the setting of
the maximum hop count in the messages. It is stable and also adaptable if the
destination station moves.

Routing Strategies

To apply the previous introduced routing protocols to the sensor network (Fig. 6), we
developed different routing strategies (Tab. 2), which map the protocol to every
station with a routing behavior. The mapping bases on the knowledge of the domain
and the task of the router stations. The routing behavior is changed for certain stations
to investigate the performance of a certain routing protocol on critical junction points.

Table 2. Routing Strategies

Routing
Strategy

Router Station Routing Behavior

0 R2, R3, R4, R6, R7 Flooding Routing
R9 Simple Hot-Potato
R1, R5 Drop messages sent from the

transit network
R8 Takes off message from the transit

network
1 R2, R3, R4, R6, R7 Flooding Routing

R9 Simple Hot-Potato
R1, R5 Reflect messages back into the

transit network
R8 Takes off message from the transit

network
2 R2, R4, R6 Flooding Routing

R3, R7 Hot-Potato
R9 Simple Hot-Potato
R1, R5 Drop messages sent from the

transit network
R8 Takes off message from the transit

network
3 R2, R3, R6, R7 Flooding Routing

R4 Simple Hot-Potato
R9 Simple Hot-Potato
R1, R5 Drop messages sent from the

transit network
R8 Takes off message from the transit

network
4 Strategy 1 + 2
5 Strategy 2 + 3
6 Strategy 1 + 2 + 3
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The strategy 0 uses the flooding algorithm for almost all router stations. Router
stations R1 and R5 drop all messages from the transit network because they mark
sources of packets. R8 takes all messages off the network because it is connected with
only one link to the transit network.

In strategy 1 we change the behavior of R1 and R5. They send the received
messages back into the transit network. What we want to achieve is that the message
drop rate at these stations decreases and that wrongly routed messages are sent back
into the network while trying to reach their destination.

The strategy 2 changes the routing behavior in R3 and R7 into the Hot-Potato
routing. Two links are connected to each of these stations with a focus on redundancy.
Changing the routing protocol into something else than Flooding will decrease the
number of messages, which are sent back to R2 and R6. Here we are trying to support
the forwarding to the destination station.

And strategy 3 bases on the same idea but for R4. In this case we do not use Hot-
Potato because not all links are equal in their behavior. Hot-Potato would prefer the
links to R3 and R7 because they are faster than FAN links. So, we set R4 to Simple
Hot-Potato.

Strategies 4, 5, and 6 are combinations of the previous three cases. They will show
whether a combination could increase the performance explicitly. In each
combination the peculiarity of the participated strategies is taken. For instance
strategy 4 combines the reflection capability of R1 and R5 from strategy 1 with the
use of Hot-Potato in R3 and R7 from strategy 2. The combination of strategy 1 and
strategy 3 is only used in connection with strategy 2, because in our opinion the
influence on the result is not noticeable without the strategy 2.

R2 and R6 are all the time set up with the Flooding Protocol. That provides
redundancy on the way to R3, R7. The router station R9 uses in all strategies the
Simple Hot-Potato routing protocol. Flooding would discriminate the other sensor
sources and Hot-Potato would prefer the link to R8. But, the injection of data packets
should be fair for all sensor sources.

Fig. 7, Fig. 8, and Fig. 9 show the results of the simulator runs referring to the
metrics average delay times, average hops, and relative amount of received messages.
In the upper plot of each figure these metrics are plotted for each strategy, which uses
the routing protocols implementing the announcement mechanism. The lower plot of
each figure shows the plot of the metrics, which is based on the routing protocols but
without implementing the announcement mechanism.

Evaluation of Routing Strategies

The first point we state is that the announcement mechanism works in the way it was
designed for. For all strategies, it reduced delay times and optimized the number of
hops for the messages according to their destination. This can be seen in Fig. 7 and
Fig. 8. The effects of different strategies can also be seen in each metric. The strategy
0 is the so-called reference strategy. It shows how the network behaves when simply
every message is sent to every station. Especially junction points like R3, R4, and R7
were sometimes heavily loaded and overloaded which result in higher delay times for
instance. The strategies were developed to have a positive effect on all metrics. This
only partially worked. In strategy 1, R1 and R5 should reflect misrouted messages
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back into the transit network. While R5 could benefit from that and more messages
from Sensor2 reached their destination, the throughput from Sensor3 broke down
(Fig. 9, upper plot). The delay times increases as expected, but send buffer fillings in
the same way. So, router stations, especially R2 and R6, were sometimes heavily
overloaded and had to drop messages, for instance messages from R9. With strategy
2, we wanted to decrease the production of more duplicated messages than already
produced by the use of Flooding in R2 and R6. But, with Hot-Potato for R3 and R7 in
this strategy there are misrouted messages, but no duplicates anymore, which might
be on the shorter way to the destination. Because of the hop counter optimization
caused by the announcement mechanism, misrouted messages where dropped quickly
and fewer messages reach their destination (Fig. 9, upper plot). When the mechanism
was not active some messages could benefit from a longer lifetime and got the chance
of being sent back on the right way (Fig. 9, lower plot). In general, delay times and
number of hops could be reduced (Fig. 7 and Fig. 8). In strategy 3 we tried to
decrease the number of duplicated messages at router R4 - a central point every
message has to pass to reach its destination. The routing behavior was set to Simple
Hot-Potato to reduce number of duplicates in the send buffers of R4. But we achieved
a poor performance. Many messages were misrouted, delay times and hops increased
and fewer messages reached their destination. The combinations of routing strategies
also performed only partly well. While strategy 4 and 5 performed much better for
delay times and number of hops (Fig. 7 and Fig. 8), they performed even worse than
the single strategies referred to throughput in Fig. 9. Finally, we consider the trend of
the curve for the R9-R8 route in Fig. 9. The throughput for this route in the upper plot
of Fig. 9 achieves around half of the one in the lower plot. The reason for that is the
announcement mechanism. It optimized the hop counter for the route over R7 to the
destination R8, because it is shorter than the route over R6 (see Fig. 6). But, the R9
station works with Simple Hot-Potato protocol, which distributes messages uniformly
over both routes. So, for half of the messages the hop counter exceeded its maximum
value and they were dropped when routed over R6.

For all simulated strategies, there is no one method or combination of methods,
which can be declared as an overall winner. It mainly depends on the focus. If the
focus is on the messages reaching their destination, then strategy 0 (the flooding
strategy) with the announcement mechanism performs best. However, with the focus
on the delay times and way length (hops), the combination in strategy 5 (see Tab. 2)
performs best. But it has a poor performance when considering the throughput.

3 Application Area and Related Work

The network is part of our ongoing research in supporting Ubiquitous Computing
applications with local communication. Although applications are in the center of this
research, several types of networks (wired and wireless) are developed, tested and
enhanced for the use in applications. Protocols supporting these applications include
the RAUM protocol [HB00]. This protocol is used for interconnecting (existing)
devices equipped with computer and communication technology. In the MediaCup
[BGS01] prototype RAUM is used for ISO/OSI layer 3 communication while infrared
based IrDA, proprietary radio-frequency and Controller Area Network (CAN) provide
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functionality of layer 2 and 1. A similar research project is Roy Want�s ParcTab
network and application at XeroxParc [WSA97], the first prototype in Ubicomp
generally.

So-called pico-networks may also be useful in this application area. Such networks
allow devices to communicate to other devices nearby mainly in range of 2 to 10
meters. Bluetooth [S99] for example provides a standardized communication platform
for nearby electronic devices, e.g. mobile phones and personal digital assistants.
Because of the all-purpose communication stack Bluetooth adds some complexity to a
device. AT&T Cambridge Research Lab has developed a very low power network
(Pen, [BCE97]). Power management is a key issue in Ubiquitous Computing and this
network is specially dedicated to applications with small devices that have to save as
much power as possible. Research on Mobile Ad-Hoc networks (e.g. MANET of the
IETF) focuses on the transmission of information over a larger distance through
routing with a changing and unknown topology of the participating network nodes.

A way to interconnect devices attached to the body is provided by body networks.
[PAB00] presents a system prototype with data rates up to 56 kbaud per second.
Radiation to the outside and effects on vital devices (e.g. pacemakers) are still subject
to research here. Other ways to interconnect devices on the body are Fiber fabrics,
where communication lines, sensors and computing units are embedded into the fiber
or constructed by interweaving the fibers. Examples are the FICOM research in the
Disappearing Computer call of the European Union (www.disappearing-
computer.org) or work at the MIT on Washable Computing (e.g. [PO97]).

4 Conclusion and Future Work
This paper presented a prototype system and investigates routing methods in the
Fabric Area Network. For this purpose we developed a simulator supplied by
measured data to design, debug, and evaluate different routing protocols. We chose
Flooding, Hot-Potato and Simple Hot-Potato as routing protocols, which met the
requirements in sense of simplicity, robustness and speed. To optimize the maximum
hop counter we added an announcement mechanism for consumer stations.
Simulations showed that the performance is improved by the use of routing protocols.
But, the choice of an appropriate routing protocol depends on the metric that the focus
is on. Throughput, way lengths and delay times were used as metrics. Results showed
that routing can optimize the performance of the FAN for each metric, but not for all
metrics.

Our simulations and tests have indicated that the introduction of domain specific
knowledge enhances the overall performance of the system. The topology of the
system is known to some extent and also the needed quality of service can be obtained
from some nodes. So, sophisticated routing algorithms may be an option to the current
more simple protocols. Although it is not clear if the overhead generated by such a
protocol relates to the performance gain. One goal for the future is to simulate these
more complex networks where links can be reconnected on routers that were not
connected beforehand.

Furthermore the whole concept of coil-based communication should be replaced by
contact oriented links as they were used in section 2.2. The higher rate of breaks of
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links can maybe be compensated by the bandwidth that is many times higher. Then
protocols with more overhead and higher complexity become also more interesting. In
addition, extensive application testing will provide us with more data to be fed into
the simulator. It also allows us to evaluate the usefulness of the network in real
settings.
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Abstract. Wireless networks intrinsically contain pockets of lowered
quality within the coverage area, where environmental factors cause
packet loss, lowered bandwidth, or intermittent connectivity. Early de-
tection of such regions can be extremely valuable; in order to facilitate
preemptive or corrective action by protocols and applications, we pro-
pose a software framework that detects and predicts impending “trouble
spots” when a mobile device moves through a wireless network. Based
on measurements of signal strength, network latency and packet loss, we
postulate that mobile devices (and their landline communication part-
ners) can be forewarned with a high degree of accuracy when approaching
trouble spots. In this paper we describe a lightweight software framework
that assists in monitoring network quality within a coverage area, based
on several parameters in isolation and in combination. The effectiveness
of using these metrics was measured, and experimental results indicate
that accuracies of the order of 95% with very low false positives can be
obtained. We conclude with an exemplary outline of how applications
may use this software to detect regions of degraded network quality and
take compensatory action, resulting in enhanced effectiveness.

1 Introduction

Wireless networks are increasing in popularity and use, and trends suggest very
widespread deployment in the near future. In particular, local area wireless net-
works based on the 802.11b standard are becoming ubiquitous, not only in busi-
ness and commercial settings, but also in public places and in private homes.
With this increasing adoption, quality of network service gains importance. In
essence, network facilities delivered to the end application or the end user should
be as robust as possible, within the constraints imposed by the physical network.
For example, currently, applications utilizing wireless networks deal with loss of
connectivity or even lost data by reinitiating the connection or reissuing the
data transfer. While this mode of operation may be acceptable today for certain
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applications, degradation in quality will become a serious issue that must be ad-
dressed at various levels as the technology matures and other more sophisticated
applications evolve.

Like other networks, wireless network quality is subject to network factors
such as congestion, traffic spikes, and link failures. However, in addition, wire-
less networks are also susceptible to environmental factors that affect network
quality when a mobile device is within specific regions within a coverage area.
Examples include physical obstructions such as walls or other structures, elec-
trical disturbances from other devices, or even factors such as weather. When
a mobile device is within such areas in the scope of a wireless network, com-
munication bandwidth, latency, and packet loss are generally affected. In this
project we focus on network quality issues that are a direct result of location
and environmental factors, and propose methods for detecting and adapting to
them.

We postulate that through lightweight monitoring in software, it is possible
for mobile devices and their communicating partners to detect when a wireless
node is (imminently) entering and departing a “trouble spot”, i.e. a region within
the coverage area that is characterized by degraded network quality. If devices,
protocols or applications are forewarned about imminent quality degradation,
they can take preemptive or corrective action, if they so desire. For example,
transport protocols may decide to increase acknowledgment timeout durations
or the number of retransmissions. Applications may defer critical actions such as
database commits until the device is clear of the trouble spot. Low level protocols
or the device itself may wish to take power-saving actions or to hibernate. Such
measures will lead to increased overall effectiveness in the wireless environment,
and are also likely to be crucial to certain classes of applications. In this paper
we describe our work in constructing software frameworks that detect trouble
spots in IEEE 802.11b networks, comment on the accuracy of these methods,
and provide an application level example of using trouble spot information to
improve throughput.

2 Related Work

Two major aspects, related to quality variations and trouble spots in wireless
networks, are: (1) detecting and predicting areas that can cause degraded net-
work performance; and (2) providing this information to entities that may find
it useful. In the past, most efforts have focused on correcting trouble spot re-
lated problems, while little has been done to integrate their prediction with
taking early corrective measures. Typically, most projects require certain trade-
offs, ranging from modifying existing applications or protocol implementations
to adding new hardware. In addition, existing approaches focus only on a specific
facet of wireless communications, such as improving the performance of a given
protocol over wireless links, e.g. TCP. Balakrishnan et al. [2] classify different
approaches to this problem into three different groups: (1) end-to-end strategies,
where the TCP sender is responsible for handling losses through selective ac-
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knowledgments or explicit loss notifications; (2) split-connection techniques that
hide the wireless link from the sender by terminating the TCP connection at
the base station; (3)link-layer modifications that hide link-related losses from
the TCP sender by using local retransmissions and forward error correction over
the wireless link. One deficiency of most of these projects is that they require
low level modifications (e.g. firmware modifications in Snoop [1]) that detracts
from their usability. Furthermore, all are corrective in nature, and do not make
provisions for predicting trouble spots and taking preventive measures.

Another research direction that is less closely related, concerns location de-
termination. While such techniques may not be directly related to improving
performance, they can be valuable as auxiliary tools. Once a device associates
degraded performance with a certain location, it can reasonably expect a similar
experience on subsequent revisits, and can take preemptive action. Location de-
termination also frequently involves trade-offs; an example system is Cricket [3]
that necessitates additional hardware in the mobile device and in the infrastruc-
ture.

Although approaches such as those mentioned above can be useful in certain
cases, we believe that a need exists for a trouble spot detection tool that can
be easily integrated into various systems without the use of special hardware.
Our project makes no assumptions about location awareness and the data it
generates depends only on the accurate measurement of network parameters.
Applications or protocols may then decide if, and how, the data provided by our
tool will be used. To the best of our knowledge, few other projects have proposed
this approach in the context of IEEE 802.11b networks.

3 Monitoring Software

The trouble spot detection framework presented in this paper is based on mon-
itoring network parameters from within the mobile device; our experimental
platform is based on the IEEE 802.11b standard. Such local area wireless net-
works are currently the most popular, and in widespread use. Possible reasons
for the popularity of 802.11b networks include their network compatibility, use
of unregulated frequencies, and (relatively) high bandwidth. However, as with
most devices, there are variations in adherence to the standard as well as in the
interpretation of unspecified aspects, both in hardware and device drivers. For
our purposes, we wish to measure general network artifacts such as packet loss
and round-trip time, and wireless-specific parameters such as signal strength,
bitrate, and noise, although the latter measurements are only as reliable as the
data provided by wireless NIC device drivers. In this section, we describe our
experimental setup and project scenario, and briefly highlight the relevant as-
pects of wireless networks that affect the above parameters and are subject to
variability due to device driver differences.

Our experimental setup consists of portable laptop computers with PCMCIA
wireless NICs that are operating in infrastructural mode. One base station is
used. It should be noted that the base station does not play a direct role in
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our experiments (and our proposed scheme), unlike projects such as Snoop [1]
that modify base station firmware/software. Our monitoring software executes
as a background process on the laptop computers and injects minimally sized
packets into the network to measure round-trip times and packet loss; sampling
is done at a rate of 10 per second. Signal strength is also monitored at the same
frequency by querying the device driver, which in turn reads the value from the
device hardware. Figure 1 depicts our experimental setup and proposed scheme
for supporting network quality detection and adaptation in a typical wireless
and wired network scenario.
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Fig. 1. Project schematic and operational overview

3.1 Hardware

For the purpose of performing our experiments we evaluated the Compaq WL110
(orinoco cs driver), the SMC 2632 (orinoco cs driver) and the Aironet 4800b
(airo cs driver) wireless PCMCIA cards. Despite the relatively small number of
devices used, we came across a number of inconsistencies in the cards’ hardware
implementation and in the drivers used. While the field of wireless LANs us-
ing Linux is an emerging one and serious attempts for standardization are yet
to be witnessed, these inconsistencies make the creation of a general purpose
tool, independent from the underlying hardware, difficult to achieve. Wireless
802.11b PCMCIA cards are essentially capable of providing information on sig-
nal strength, noise, signal quality and bitrate. Bitrate may be automatically
adjusted by the card and can therefore be a good indicator of network quality,
but according to the standard, it may be set, via software, to a fixed value.
Moreover, cards do not reliably supply either bitrate, noise, or signal quality in-
formation. For example, in some of the device drivers we analyzed, noise was set
to a hardcoded value and the kernel tables were not updated when appropriate.
Consequently, signal quality becomes irrelevant, since it is normally computed
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as a direct function of noise. In other cases, the hardware itself is suspect. For
example, using the same device driver, a card from one manufacturer registered
significant noise levels when used near a microwave oven, while another did not
register any noise. Yet another problem with certain cards is their reported val-
ues of signal strength; one card displayed 0% signal strength even when network
performance was entirely satisfactory. Based on these experiences, we selected
the Compaq WL110 card with the orinoco cs driver as the one providing the
most stable information for our experiments.

3.2 Methodology

To determine the influence of location and environment factors on wireless net-
work performance, we propose a lightweight and realtime monitoring strategy;
each mobile device monitors local conditions and takes adaptive action, while
simultaneously recording status information in a landline database (see Fig-
ure 1). Communicating partner devices (both landline and wireless) consult the
database either on demand or via periodic updates and take appropriate actions.
To prototype this scenario, we implemented a tool that is designed to be: (1)
lightweight – it should impose as little overhead as possible on both the mobile
device and the network (both wired and wireless components); (2) transparent
to the user – the tool is initiated as a background process during system startup
and continues to operate as long the system is up and running; (3) flexible –
it should facilitate interfacing with a more comprehensive monitoring system or
graphical tool, in addition to working as autonomous monitoring software.

While the manner in which signal and noise related data is retrieved is quite
straightforward (the device driver updates kernel tables and standard interfaces
are available to access them), measuring round-trip time and packet loss is some-
what more difficult. There are several different techniques that can be employed
for this purpose. One obvious strategy is to mimic the way ping works, i.e. by
using ICMP echo request packets [7]; another is to use UDP datagrams sent to
idle ports, and exploit the default response of conforming UDP implementations.
While it is widely known that ICMP echo request packets are often filtered due
to security concerns (and this can easily turn into an obstacle to our goals), ex-
periments showed that in practice this approach caused far fewer problems than
the UDP one. Thus far, we have not encountered an access point that is set to
filter ICMP echo request packets, and since the wireless portion of the network
is under analysis, ideally, it is the access point that should serve as the target of
the probes. For this reason, we chose to mimic the ping approach.

The prototype implementation of our monitoring tool runs as a daemon pro-
cess that does not require user interaction or intervention. When started, the
tool spawns three threads: an injector, a capturer and a signal data processor,
each performing a specific task. The injector constructs ICMP echo request pack-
ets and sends them to the access point. The capturer thread monitors incoming
traffic and processes the returned ICMP echo reply packets. The signal data
processor parses the /proc file system and retrieves data for the signal strength.
Based on the data collected, a local adaptive action may be taken. In other
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words, the mobile device possesses all the information needed about local condi-
tions, and can take preemptive or corrective action as appropriate; an example
of such an action is described in section 5.

Alternatively or additionally, the monitoring software on a given mobile de-
vice can be integrated into a larger system. A number of mobile devices, each
working separately, but requiring information about the current state of their
peers can register with a central server (or a number of central servers, if dis-
tributed control is required) that stores data for each registered device and sup-
plies it to its peers upon request or through periodic updates. The peers can then
also take preemptive or corrective actions, thereby improving the overall robust-
ness or performance characteristics of the wireless system. In both scenarios, but
especially important for the hybrid (database supported) model, is the ability
of each monitor to be able to predict imminent trouble spots, before the device
actually enters them, so that the mobile device has a reasonable opportunity to
notify the appropriate server. Since the same network that is susceptible is also
used to send updates to the database, it may not be possible to guarantee that
device status information will always be delivered to the external system and
database when a device enters a trouble spot.

4 Experimental Results

The goal of this project is to determine the feasibility of characterizing and pre-
dicting network behavior, based on the quality of service provided by the wireless
connection at a given location and under the influence of certain environmen-
tal factors. We denote coverage according to the severity of the degradation in
performance as good, average and poor. Good coverage implies maximal through-
put, minimal latency, and only occasional packet loss; “poor” implies little or
no connectivity. Areas of “average” coverage are characterized by high packet
loss and lowered bandwidth; these areas typically surround poor areas for a
distance of a few meters. Our preliminary analysis suggests that it is possible
to devise a more fine grained categorization; we are currently investigating the
need and usefulness of using a greater number of classifications. The qualitative
characterizations of poor, average, and good may be viewed from the network
perspective as: trouble spot – areas with poor network quality, where the mobile
host is practically disassociated with the access point; any network activity is
impossible; preamble/postamble to the trouble spot – areas with variable network
performance where communication is sometimes possible, but the mobile host
experiences significant network problems; performance and reliability is severely
degraded; normal – the least interesting case; there may be transient errors in
the network, but these do not influence its performance. The results of the ex-
periments that are discussed below pertain to a number of measurements over
a fixed path, while moving the mobile device at a constant speed through the
coverage area. The path, shown in Figure 2, contains two trouble spots. Due
to the difficulty of recreating linear patterns of trouble spots, the path involves
movement of the mobile host into the trouble spot, turning around and retracing
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Fig. 2. Diagram of the test environment

the incoming route. While this is equivalent to a trajectory that passes through
a trouble spot, it also shows how the network reacts when the direction of move-
ment of the mobile device changes in relation to the access point. Given the range
of 802.11b networks and the fact that such networks are usually installed within
buildings, mobility rates are typically that of human movement; our experiments
were therefore conducted at normal walking pace.

The experimental results that we present, indicate the raw measurements of
round-trip time, packet loss, and signal strength (individually), when a mobile
device traverses the path shown in Figure 2 at a constant rate; the duration
of the traversal is 120 seconds in all cases. For each metric, we then attempt
to categorize each instantaneous position along the route as good, average, or
poor, based on data trends in the measured values of that parameter. We also
perform this characterization by using all three metrics in combination. It should
be noted that in each case, the software makes a decision on the status of a point
on the path based only on data available up to that point. Finally, we evaluate the
accuracy of each of the four methods of classifying network regions by comparing
the perceptions of each method to the known characteristics of the region that
were determined through careful experimentation and human observation (i.e.
as shown in Figure 2).

4.1 RTT-Based Classification

The software framework measures round-trip time (RTT) at the rate of ten times
per second by injecting sequenced packets into the network and recording the
duration until the corresponding response is received. A frequency distribution of
RTT measurements is constructed, using 10 millisecond ranges. Responses that
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Fig. 3. RTT raw data and the corresponding network performance estimate

do not arrive within a conservative threshold are assumed to signify “infinite”
RTT (i.e. lost packets), but to unify the algorithm, are assigned an artificial
value of 100 milliseconds1. By analyzing the frequency distribution and using
experimentally determined ranges, the software identifies the mobile device as
being in a normal, preamble/postamble, or trouble spot region.

Figure 3 shows a scatter-plot of the RTT measurements; normal values are
in the 2-5 milliseconds range, while values in the 10-20 millisecond range can be
seen in a limited portion of the graph. The two trouble spots are clearly seen
even from the raw data. In the first conglomeration of samples with high RTT
values, it is easy to distinguish even the preamble to the trouble spot. The shaded
areas in Figure 3 show the classification by the software system of the different
region categories (unfilled areas are judged to be normal, light shaded areas are
preambles/postambles, and dark shaded areas are deemed to be trouble spots).
Through visual inspection of the figure, it can be seen that the software decisions
are reasonably accurate; later in this section we quantify the degree of accuracy.

4.2 Packet Loss

The injector and capturer components of the software measure packet loss by
periodically harvesting unacknowledged probes from RTT measurements. Packet
loss, by definition, can only be inferred locally by a mobile device long after its
actual occurrence. Therefore, this metric is less likely to be of value in early warn-
ings of impending trouble spots, however, it is useful in detecting the emergence
of a mobile device from a trouble spot.

Figure 4 shows a plot of the instantaneous (not cumulative) number of pack-
ets lost during each second, as the mobile device traverses the standard path.
1 This value was selected as being far above any plausible real RTT, and is valid for
802.11b networks.
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Fig. 4. Packet loss raw data and the corresponding network performance esti-
mate

Again, using a frequency distribution and distinct ranges, software decisions
about the status of each point along the path are shown as shaded areas. It can
be discerned from a comparison of Figures 3 and 4 that both schemes possess
the same view of trouble spots, but their interpretations of preamble/postamble
areas are considerably different.

4.3 Signal Strength

Instantaneous measurements of signal strength, sampled at the rate of 10 per
second, are shown in the graph in Figure 5. Being an electrical, rather than a
network measure, much greater continuity of trend is exhibited by this metric –
it gradually decreases as the mobile devices moves away from the base station,
and increases as the device moves toward it. By using a threshold corresponding
to 15% of the maximum, the software classifies regions as “good” and “poor” for
values above and below the threshold, with an “average” performance for values
roughly equal to 15%.

As with the previous two metrics, there is a clear indication of the two trou-
ble spots. The shape of the curve facilitates early decision making and allows
the communication device to undertake corrective measures, while it still has
connectivity with the rest of the network. We expect even better results, once
we are able to augment this metric with signal quality, which normally takes
noise into account.

4.4 Combinations

In the previous subsections we presented the decisions made by our monitoring
software as to the presence of trouble spots and preambles/postambles, based
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Fig. 5. Signal strength raw data and the corresponding network performance
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on three different metrics used in isolation. Since all three metrics are available
to the software, it is also possible to combine them and perhaps gain a greater
degree of confidence in the identification of trouble spots and preambles. In
order to measure this, we employed a “majority” rule using the three metrics in
combination; a given point is deemed to be “good”, “average” or “poor” based
on the largest number of metrics that characterize it as such (and deemed to be
“average” when there is no clear majority). Figure 6 shows the superimposed
metrics; the shaded regions again depict judgment points of the monitoring in
determining the three types of regions. Using the combined metrics, regions quite
similar in appearance to the others are visually observed.

4.5 Accuracy

Based on the decision graphs presented, we can safely argue that we have two
trouble spots, each surrounded by a preamble and a postamble. However, the
true accuracy of these heuristic decisions by the software still remains to be
verified. In order to do so, we need a reference map that represents the “actual”
network zones that can be used to measure the deviation of the four methods.
In this exercise, we constructed this reference map based on multiple manual
observations measured along the path: (a) intervals 0-220, 411-860 and 1021-
12002 correspond to areas with good network performance; (b) intervals 221-265,
356-410, 861-900 and 1006-1020 correspond to preambles/postambles to trouble
spots; and (c) intervals 266-355 and 901-1005 correspond to trouble spots. Based
on the above reference regions, we compared the decisions made by the software
using RTT, packet loss, signal strength, and all three metrics in combination to
2 time intervals are measured in tenths of a second
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our known view of the different regions. True-positives and true-negatives, or
the percent of time when the software determines correctly that the device is,
or is not, in a zone of a certain type, should be as close to 100% as possible.
False-positives, when the software believes that it is in a zone of certain type
and in fact it is not, should be near 0%. Similarly, false negatives should also be
near 0%.

Table 1 shows the accuracy of determining network zones through RTT alone.
It can be seen that this method very accurately determines normal regions, and
identifies trouble spots quite well, but the accuracy for identifying average areas
is not as high.

Tables 2 and 3 show the accuracy measures when using signal strength and
packet loss metrics in isolation. With these metrics, “good” areas are identified
correctly with a high degree of accuracy, but the identification of “average” and
“poor” areas exhibit a very large percentage of erroneous conclusions.

Finally, Table 4 shows the accuracy levels of detecting different zones in an
802.11b network when all three metrics are used in combination, i.e. it quantifies
the veracity of Figure 6 when compared against the true locations of different
types of zones in the coverage area. It is clear from the table that the combined
metrics provide the best results. In particular, using the combined metrics cor-
rectly identifies trouble spots almost 95% of the time. False-positive readings in
“good” zones, and false-negative readings in both “good” and “poor” zones are
at very acceptable levels of just a few percent (or less). Accuracy of detecting
“average” zones is also better as compared to any of the metrics used in isolation,
although it is still not near the 100% mark. This is intrinsic to “average” areas;
the degree of nondeterminism that is present in these zones will necessarily result
in a lowered degree of confidence in identifying them.
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Good Average Poor

Table 1. Round-trip Time

pos neg pos neg pos neg

true 99.65% 90.57% 81.29% 97.99% 88.72% 100.00%

false 2.75% 0.25% 1.75% 2.42% 0.00% 1.83%

Table 2. Signal Strength

pos neg pos neg pos neg

true 98.82% 89.71% 56.77% 97.89% 93.85% 96.92%

false 3.00% 0.83% 1.83% 5.58% 2.58% 1.00%

Table 3. Packet Loss

pos neg pos neg pos neg

true 98.82% 94.29% 67.74% 95.52% 84.62% 97.50%

false 1.67% 0.83% 3.75% 4.17% 2.08% 2.50%

Table 4. Combined

pos neg pos neg pos neg

true 99.76% 93.43% 85.16% 98.85% 94.87% 100.00%

false 1.92% 0.17% 1.00% 1.92% 0.00% 0.83%

5 Application-Level Adaptation

The long-term goal of this project is to devise lightweight and accurate schemes
to monitor mobile devices within a wireless network, with a view of detecting
their movement into and out of trouble spots. Our approach is to signal any
perception of trouble spot or preamble/postamble and leave it up to the pro-
grammer to decide how and when this information will be used. In addition, we
also intend to investigate techniques that utilize this location information, to
adaptively deliver more effective network services to user applications. In order
to validate this premise and to demonstrate the viability of our approach, we
undertook a simple case study involving file transfers between a mobile device
and a landline host. This exercise postulates that when mobile devices move in
and out of trouble spots during file transfers, using TCP, the transport layer
assumes that there is network congestion or a rate control issue. In other words,
the TCP protocol, intended for long-haul wired networks, cannot distinguish be-
tween trouble spots and typical Internet congestion that occurs in routers, and
therefore invokes standard slow start and congestion avoidance [5]algorithms
that degrade overall throughput. Our hypothesis is that if monitoring software
could detect an imminent trouble spot, the default action of TCP could be over-
ridden, thereby delivering higher performance. To experimentally verify this, we
modified the TCP protocol implementation in the Linux kernel to differentiate
between trouble spots and other network effects. We changed the default behav-
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ior of the TCP stack with particular reference to its slow start and congestion
avoidance algorithms.

It is known that slow start and congestion avoidance are two phases in a TCP
connection that are invoked when the sender senses that maximum network
capacity is reached. In order to describe and justify our modifications when
wireless trouble spots are encountered, we provide some details of these two
algorithms, including the criteria for their invocation and the consequences of
their activation.

5.1 TCP Issues and Algorithms

To achieve high performance, a TCP connection should attempt to utilize the
entire network bandwidth available. This means that the sender should inject
enough data to keep the “pipe” full, but the rate at which it sends data should
not exceed the rate at which the receiver or any intermediate router can han-
dle it. This principle, called “conservation of packets”, implies that the network
is operating at full capacity (i.e. utilizing the entire sliding window size) and
also that a new packet is injected only after an old packet loaves [4]. Violating
this principle leads to underutilization of network resources or alternatively to
overutilization, which results in increased number of packet retransmissions. Ei-
ther situation is undesirable and leads to lowered bandwidth and an increase in
the time required to complete a transfer. These problems occur when the connec-
tion is unable to reach equilibrium, either because the sender has an unrealistic
estimate of the rate at which it should operate, or there are insufficient network
resources along the path [4]. However, when a TCP connection starts for the first
time, or when it is restarted after a timeout, the sender has no way of know-
ing its ideal transmit rate. The “standard” TCP implementations paces packet
injection by using acknowledgments to clock the sending of new data, but this
can only be done after the connection reaches steady state. Therefore, initially,
and every time the clocking mechanism is disrupted due to a timeout, the rate
at which data is sent is drastically reduced and the process of establishing the
clock is restarted. This process is controlled by the two algorithms mentioned
previously, namely slow start and congestion avoidance.

As a result of our experiments, we came to think that the major cause for in-
voking the two algorithms is (a) packets being dropped and (b) packets arriving
out of order. These are usually manifested in the form of selective acknowledg-
ments [6] received by the sender. In a wired network both events would normally
suggest congestion (i.e. packets are being dropped at the routers or the receiver,
or alternate routes are being used). This classic characteristic of TCP results
in a saw-tooth throughput pattern in the presence of congestion, and leads to
reduced overall bandwidth for a given connection.

5.2 Trouble Spot Handling

While selective acknowledgments and time-outs generally indicate congestion
in conventional networks, this is not necessarily the case in wireless ones. As



144 Georgi Tonev et al.

discussed in [8], one characteristic feature of 802.11b is a high bit-error rate in
trouble spots, which in turn leads to an increased number of damaged packets
and hence, to packets considered lost. In addition, multipath causes packets to
arrive out of sequence. As a result, trouble spots cause unmodified TCP imple-
mentations to (erroneously) invoke congestion related algorithms (usually slow
start followed by congestion avoidance) in an attempt to fix a problem that is
actually due to the location of the mobile device. Even worse, as a result of these
algorithms, TCP will unnecessarily spend a great portion of its time, operating
with a decreased window size, thereby substantially affecting performance for a
given connection.

It is exactly this behavior that we try to prevent using our trouble spot
detection methodology. We want to be able to provide TCP with “hints” about
what it should do when we are reasonably sure that current network problems
are due to damaged packets as a result of multipath or signal attenuation [8].
This decision is taken heuristically; if the device is in, or is entering, a trouble
spot, and recent events do not suggest network congestion, then lost packets
and/or selective acknowledgments are likely to be due to the trouble spot. In
these situations the monitoring software can notify the TCP stack that adaptive
actions should be taken. For example if we are entering a trouble spot, the size
of the congestion window [4]3 should be kept down, while when moving out of
trouble spot its size should be increased much faster in contrast to conventional
TCP practice.

In order to measure the effectiveness of the above approach, we modified
the TCP implementation in the Linux kernel to use the adaptive actions above,
when a mobile device entered the trouble spots, in our test environment, shown
in Figure 2. The mobile device was engaged in a large file transfer, and measure-
ments were made with an unmodified as well as a modified kernel. We observed
rates of improvement ranging from 3% up to 14.5%, which indicates that TCP
is very sensitive to the way the experiment is performed and that precise coor-
dination of our tool and the kernel is required. Nevertheless, the results are very
encouraging and indicate the high degree of effectiveness of this scheme.

6 Discussion and Future Work

The existence of trouble spots within wireless networks leads to disruptions in
connectivity and degraded performance of user applications. Although trouble
spots cannot be eliminated, their detrimental effects can be considerably di-
minished by detecting them and preemptively adapting to them. In this paper,
we have demonstrated a lightweight and highly effective scheme for monitoring
network quality as a mobile device moves through a wireless coverage area; this
scheme is able to distinguish between normal, average, and poor network regions
3 a variable that directly controls the transmission rate of the sender; the sender’s
output routine sends the minimum of the congestion window size and the size of the
sliding window negotiated by the receiver
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with a very high degree of accuracy. By using a combination of network and in-
terface card metrics (i.e. round-trip time, packet loss, and signal strength), the
software classifies each point within the coverage area into one of the three cate-
gories, with error rates of only a few percent. Furthermore, we have shown that
this status information can be used to adapt to current conditions, leading to
significant improvements in application effectiveness. We believe that our scheme
will be effective even in the presence of multiple access points, but this has to
be further investigated and enhancements will be made if necessary. In addi-
tion, we intend to continue our research in the following directions: (1) measure
and analyze the overheads involved in trouble spot detection; (2) devise schemes
to make the process more efficient and accurate; and (3) investigate the use of
trouble spot adaptation in group communications protocols [9], where the level
of disruption due to intermittent connectivity and network quality is extremely
high. We believe that the outcome of these efforts will contribute to enhanc-
ing the effectiveness and service levels as wireless networks become increasingly
commonplace.
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Abstract. Demands for flexible processing have moved general-purpose
processing into the data path of networks. With the development of
System-On-a-Chip technology, it is possible to put a number of proces-
sors with memory and I/O components on a single ASIC. We present a
performance model of such a system and show how the number of pro-
cessors, cache sizes, and the tradeoffs between the use of on-chip SRAM
and DRAM can be optimized in terms of computation per unit chip
area for a given workload. Based on a telecommunications benchmark
the results of such an optimization are presented and design tradeoffs for
Systems-on-a-Chip are identified and discussed.

1 Introduction

Over the past decade there has been rapid growth in the need for reliable, ro-
bust, and high performance communications networks. This has been driven in
large part by the demands of the Internet and general data communications.
To adapt to new protocols, services, standards, and network applications, many
modern routers are equipped with general purpose processing capabilities to
handle (e.g., route and process) data traffic in software rather than dedicated
hardware. Design of the network processors associated with such routers is a
current and competitive area of computer architecture. This paper is aimed at
examining certain tradeoffs associated with the design of these embedded net-
work processors.

In the current router environment, single processor systems generally cannot
meet network processing demands. This is due to the growing gap between link
bandwidth and processor speed. Broadly speaking, with the advent of optical
WDM links, packets are arriving faster than single processors can deal with
them. However, since packet streams only have dependencies among packets of
the same flow but none across different flows, processing can be distributed over
several processors. That is, there is an inherent parallelism associated with the
processing of independent packet flows. Thus, the problems of complex synchro-
nization and inter-processor communications, typically encountered with paral-
lelization arising from scientific applications, are not present. From a functional
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and performance standpoint it is therefore reasonable to consider developing
network processors as parallel machines.

There are a host of advantages associated with integrating multiple process-
ing units, memory, and I/O components on a single chip and developing what
is referred to as a SOC (System-On-a-Chip) network processor. Chief among
them are the ability to achieve higher performance and, by using fewer chips,
lower cost. Such implementations are however limited by the size of the chip
that is feasible (for cost and technology reasons), the packaging technology that
can be utilized (to achieve given pin requirements), and the power which can
be dissipated (at a given frequency).Therefore, one important design decision
for such multiprocessor chips is how many processors and how much associated
cache should be placed on a single chip. This is important since, for a given chip
size, more processors imply smaller caches and smaller caches lead to higher
fault rates. High fault rates, in turn, impact performance and also the required
off-chip memory bandwidth. Bandwidth requirements for off-chip memory ac-
cess and network traffic I/O are yet another important design constraint. In this
paper, we address these optimization issues. In particular, our contributions are:

– Development of a performance model for a general single chip multiproces-
sor oriented towards network processing, but applicable across a range of
application domains. Such a model easily accommodates future technology
changes that drive the design space.

– Exploration of the design tradeoffs available and development of optimal
architecture configurations. In particular the model permits examination of
the interactions between number of processors, size of on-chip caches, type
of on-chip cache (SRAM, DRAM), number of off-chip memory channels, and
characteristics of the application workload.

– Development of selected network processor design guidelines.

Two metrics are associated with the performance model presented. The first
is processing power per unit chip area, and the second is the total processing
power for a fixed size chip. Model evaluation is performed for a realistic network
processor workload over a range of design parameters. The derived set of design
curves can be used as guidelines for future network processor designs.

Section 2 that follows characterizes the overall system design in more detail.
Section 3 covers the analysis of the optimization problem. Section 4 introduces
the application workload that was used for the optimization results that are
shown in Section 5. Section 6 summarizes the work and presents conclusions.

2 Multiple Processor Systems-On-a-Chip

For the remainder of the paper we focus on a single SOC architecture consisting
of multiple independent processing engines (Figure 1). The memory hierarchy
consists of on-chip, per-processor instruction and data cache, and shared off-chip
memory. A cluster of processors shares a common memory channel for off-chip
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memory accesses. The I/O channel is used by the system controller/scheduler to
send packets requiring processing to the individual processors.

Typically, a packet is first received and reassembled by the Transmission
Interface on the input port of the router. The packet then enters a Packet
Demultiplexer which uses packet header information to determine the flow to
which the packet belongs. Based on this flow information the Packet Demul-
tiplexer now decides what processing is required for the packet. The packet is
then enqueued until a processor becomes available. When a processor becomes
available, the packet and the flow information is sent over the I/O channel to one
of the processors on the network processor chip. After processing has completed,
the packet is returned to the Packet Demultiplexer and enqueued before being
sent through the router switching fabric to its designated output port. A more
detailed functional description of the above design can be found in [8]. Here, we
consider the single chip design optimization problem associated with selection
of the:

– Number of processors per cluster.
– Instruction and data cache size per processor.
– Cache memory technology (SRAM vs. DRAM).
– Bandwidth and load of the memory channels.
– ASIC size.
– Application workload.

Table 1 lists the parameters that are considered. The processors are assumed
to be simple pipelined, general purpose RISC cores (e.g., MIPS [6], ARM [1],
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or PowerPC [5]). VLIW or superscalar processors are not considered since they
require significantly more silicon real-estate than simple RISC cores. A study of
different multi-processor architectures [3] has shown that single chip multipro-
cessors are highly competitive with super-scalar and multithreaded processors.
Also, super-scalar processors are optimized for workloads with few complex tasks
rather than many simple and highly parallelized tasks that are found in the net-
work processor environment.

Table 1. System Parameters

Component Symbol Description

processor clkp processor clock frequency

program fload frequency of load instructions

fstore frequency of store instructions

mic i-cache miss probability for cache size ci

mdc d-cache miss probability for cache size cd

dirtyc prob. of dirty bit set in d-cache of size cd

compl complexity (instr. per byte of packet)

caches ci instruction cache size

cd data cache size

linesize cache line size of i- and d-cache

tcache.dram time for cache access (only DRAM)

off-chip memory tmem time to access off-chip memory

memory channel widthmchl width of memory channel

clkmchl memory channel clock frequency

ρ load on memory channel

I/O channel widthio width of I/O channel

clkio clock rate of I/O channel

cluster n number of processors per cluster

ASIC m number of clusters and memory channels

s(x) actual size of component x, with
x ∈ {ASIC, p, ci, cd, io,mchl}

3 Analysis

Given that we are interested in the amount of traffic the system can handle, we
view the design problem as one of selecting the parameter values which maximize
the throughput assuming chip area constraints, reasonable technology parame-
ters, and the operational characteristics of a benchmark of network processing
programs.1

1 In this treatment we do not consider latency issues and assume that these require-
ments are met if the design can keep up with the incoming packet rate.
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Throughput in this environment corresponds to the number of packets that
can be processed in a given time. This is determined by a combination of the
instruction processing requirements of a given application (e.g., number of in-
structions necessary for routing table lookup, packet encoding, etc.), and the
number of instructions that can be executed per second on the network proces-
sor. We assume that all packet processing tasks are performed in software on
the RISC microprocessors. Thus, the throughput is proportional to the number
of Instructions Per Second (IPS) that can be executed on the system. Given
a typical RISC instruction set, network application benchmark characteristics,
and various other parameters (e.g., CPU clock rate, cache miss times, etc.), an
optimal system configuration, that maximizes IPS, can be determined.

3.1 Configurations

We begin by defining the fundamental chip area limitations for this system. The
network processor chip size limits the number of processors, the amount of in-
struction and data cache per processor, and the number of memory channels that
may be present. Let s(ASIC) be the size of the network processor chip, s(pk),
s(cik

), and s(cdk
) respectively the sizes of a processor k, instruction cache cik

,
and data cache cdk

, and s(mchl) and s(io) the sizes of a memory channel and
an I/O channel. With n processors per cluster and m clusters, all valid solutions
must satisfy the following inequality:

s(io) +
n·m∑
k=1

(s(pk) + s(cik
) + s(cdk

)) +
m∑

k=1

s(mchl) ≤ s(ASIC). (1)

With identical processors, cache configurations, and I/O channels this be-
comes:

s(io) + m · [s(mchl) + n · (s(p) + s(ci) + s(cd))] ≤ s(ASIC). (2)

Further, we can assume that the best performance is achieved with a set of
design parameters which result in an area as close to s(ASIC) as possible. That
is, we need to investigate only configurations that try to “fill” the available chip
area. Another potential constraint concerns chip I/O pin limitations with a given
packaging technology. We show later that this is not a significant constraint for
the optimized systems considered.

3.2 Single Processor

Consider first the performance model for a single processor in terms of the num-
ber of instructions per second (IPS) that can executed by the processor. This
metric is highly dependent on the processor architecture, however it does capture
the effect of application instruction mix and memory hierarchy performance.
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The number of executed instructions per second for a single processor, IPS1,
depends on the processor clock speed and the CPI:

IPS1 =
clkp

CPI
(3)

In an ideal RISC processor, where there are no cache misses, branch mispre-
dictions, or other hazards, all instructions can be pipelined without stalls and
the CPI is 1. While in a realistic system the CPI increases with the occurrence
of hazards, for this analysis, we only consider memory hazards since other haz-
ards, like branch mispredictions, are relatively rare and cause only brief stalls
(1-2 cycles) in the short pipeline RISC processors considered here. This model
constraint can be easily removed if greater accuracy is required. If SRAM is
used as cache memory, a cache access can be done in one processor clock cycle
and no stall cycles are introduced by cache hits. If DRAM is used for the in-
struction and data caches, then the basic pipeline clock cycle increases from 1
to tcache.dram · clkp. Thus:

CPI =
{

1 + pmiss · penalty, for SRAM
tcache.dram · clkp + pmiss · penalty, for DRAM

(4)

where pmiss is the probability for an instruction cache miss or a data cache miss.
The probability that a cache miss occurs, depends on the application being
executed and the parameters associated with the caches. Using load and store
frequencies and cache miss probabilities results in:

pmiss = mic + (fload + fstore) ·mdc. (5)

Note that Equation 5 considers only cache misses resulting from memory
reads. Writes to memory, which are caused by replacing dirty cache lines, do
not cause processor stalls. Assuming no contention for the memory channel, the
miss penalty of a cache miss in turn depends on the memory access time and the
time it takes to transfer a cache line over the memory bus (in processor clock
cycles):

penalty = clkp ·
(
tmem +

linesize

widthmchl · clkmchl

)
. (6)

With a cache miss, one cache line of size linesize is transferred over the
memory channel. Additionally, if the replaced cache line was dirty, one cache
line is written back to memory. The off-chip memory bandwidth generated by
a single processor, BWmchl,1, therefore depends on the number of instructions
executed and how many off-chip accesses are generated. Thus:

BWmchl,1 = IPS1 · linesize · (mic + (fload + fstore) ·mdc · (1 + dirtyc)). (7)

The I/O bandwidth for a processor depends on the complexity of the ap-
plication that is running. Complexity in the context of network processors is
defined as the number of instructions that are executed per byte of packet data
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(header and payload). Applications with a high complexity require little I/O
bandwidth, since more time is spent processing. Thus, the I/O bandwidth of a
single processor, BWio,1, is

BWio,1 = 2 · IPS1

compl
. (8)

The factor of 2 is present since every packet has to be sent first from the
scheduler to the processor chip, and then later back out to the network. In the
next section, this basic model is extended to the multiple processor situation.

3.3 Multiple Processors

Consider the case where multiple processors in a cluster share a common memory
channel. Since the processors contend for the memory channel, it is necessary
to account for the delay tQ that is introduced by queuing memory requests.
Equation 6 becomes:

penalty = clkp ·
(
tmem + tQ +

linesize

widthmchl · clkmchl

)
. (9)

To model the queuing delay, we approximate the distribution of memory
requests due to cache misses by a exponential distribution. This reflects the
bursty nature associated with memory locality processes.2 Thus, the queuing
system can be approximated by a M/D/1 queuing model. The deterministic
service time corresponds to the duration of a cache line transfer over the memory
channel. Given the load, ρ, on the memory channel, the average queue length
for an M/D/1 queue can be expressed as:

NQ =
ρ2

2(1 − ρ)
. (10)

Multiplying by the time associated with a single non-blocked request, we
obtain the average time for a request entering the system as:

tQ =
ρ2

2(1− ρ)
· linesize

widthmchl · clkmchl
. (11)

The obtained cache miss penalty for the multiprocessor case (Equation 9)
can now be used with Equation 4 to determine the CPI of a processor and
Equation 3 then provides the number of instructions executed. If we know the
number of processors, n, then multiplying by IPS1 by n will result in the overall
2 Using a cache simulator, we measured the distribution of memory request interar-
rival times for the benchmark applications (Section 4). This was compared to an
exponential distribution with the same mean. For 2kB instruction and data cache,
the standard deviation of the measured interarrival times, on average, comes within
a factor of 0.70 of the standard deviation of the exponential distribution.
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IPScluster . Using Equation 7 for the memory bandwidth generated by a single
processor, n is the maximum number of processors that can be accommodated
in a cluster without exceeding a selected load ρ:

n =
⌊
widthmchl · clkmchl · ρ

BWmchl,1

⌋
, (12)

IPScluster = n · IPS1. (13)

Knowing n, the size of such a cluster, s(cluster), can be determined as the
sum of all of its components (the I/O channel is not considered here, since it
is shared over several clusters). Since n processors in a cluster share a single
memory channel:

s(cluster) = s(mchl) + n · (s(p) + s(ci) + s(cd)). (14)

Before turning to the optimization problem, we briefly discuss workloads that
consist of multiple applications.

3.4 Multiple Applications

So far we have considered only a single program to be executed on the processors.
A more realistic assumption is that there is a set of programs that make up the
processor workload. The above analysis can easily be extended to accommodate
such a workload notion.

Let the network processing workload W consist of l applications a1, a2, ..., al.
Each application i is executed on a fraction qi of the total data stream (

∑
qi = 1).

The actual number of instructions that are executed by an application ai depends
on qi and on its complexity, compli. Let ri be the fraction of instructions executed
that belong to application ai.

ri =
qi · compli∑l

k=1 qk · complk
, i = 1, ..., l (15)

The fraction ri determines the contribution of each application to memory
accesses and associated pipeline stalls. The load and store frequencies fload,i

and fstore,i of each application ai, the cache miss rates mic,i, mdc,i, and the dirty
bit probability dirtyc,i are determined experimentally. The resulting average
cache miss probability pmiss,W for workload W is

pmiss,W =
l∑

i=1

ri · (mic,i + (fload,i + fstore,i) ·mdc,i). (16)

Similarly, the memory bandwidth BWmchl,1,W of a processor for workload W
becomes:

BWmchl,1,W = IPS1 · linesize ·
∑l

i=1 ri · (mic,i+
(fload,i + fstore,i) ·mdc,i · (1 + dirtyc,i)).

(17)

The new definitions of pmiss,W and BWmchl,1,W can be replaced in the above
formulas to obtain n and IPS.
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3.5 Optimization

The optimization process can be targeted either to a single cluster or to an entire
chip containing multiple clusters:

– Processor cluster: The optimization of a processor cluster for different con-
figurations helps to identify and understand basic design tradeoffs. It does
not take into account global system components, like the I/O channel, and
ASIC size constraints.

– Complete ASIC: The optimization of the complete system accounts for ASIC
size and includes the I/O channel.

Based on the optimization goal, different optimization functions can be cho-
sen. For the processor cluster, we define the number of instructions per second
per area (IPSAcluster) as:

IPSAcluster =
IPS

size(cluster)
. (18)

To find the maximum IPSAcluster , theoretically any parameter shown in Ta-
ble 1 can be varied. Practically, though, certain parameters, like s(x) or linesize,
are fixed and the optimization space can be limited to a smaller set of variables,
such as clkp, ci, cd, ρ, and whether the cache is implemented with on-chip SRAM
or DRAM.

The complete ASIC optimization considers an integrated system consisting
of several processor clusters on one chip. The number of clusters, m, is limited
by the area constraint (Equation 2). The goal is to maximize the total number
of instructions per second, IPSASIC , that can be executed on the ASIC.

IPSASIC = m · IPScluster. (19)

Due to the limited number of possible configurations, either optimization
problem can be solved by exhaustive search over the configuration space.

4 Workload Definition

To properly evaluate and design network processors it is necessary to specify a
workload that is typical of that environment. This has been done in the de-
velopment of the benchmark CommBench [7]. Applications for CommBench
were selected to include a balance between header-processing applications (HPA)
and payload-processing applications (PPA). HPA processes only packet headers
which generally makes them computationally less demanding than PPA that
process all of the data in a packet.

For each application, the following properties have been measured experimen-
tally: computational complexity, load and store instruction frequencies, instruc-
tion cache and data cache miss rate, and dirty bit probability. The complexity
of an application can be obtained by measuring the number of instructions that
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are required to process a packet of a certain length (for header-processing appli-
cations, we assumed 64 byte packets):

compl =
instructions executed

packet size
(20)

The cache properties of the benchmark applications were also measured to
obtain mic,i, mdc,i, and dirtyc,i. This was done with the cache size ranging from
1kB to 1024kB. For this purpose, a processor and cache simulator (Shade [2] and
Dinero [4]) where used. A 2-way associative write-back cache with a linesize of
32 bytes was simulated. The cache miss rates were obtained such that cold cache
misses were amortized over a long program run. Thus, they can be assumed to
represent the steady-state miss rates of these applications.

We consider two workloads for the evaluation of our analysis: considered:

– Workload A - HPA: Header-processing applications.
– Workload B - PPA: Payload-processing applications.

These workloads are such that there is an equal distribution of processing
requirements over all applications within each workload. Table 2 shows the ag-
gregate complexity and load and store frequencies of the workloads. Note that
the complexity of payload processing is significantly higher than for header pro-
cessing. This is due to the fact that payload processing actually touches every
byte of the packet payload and typically executes complex transcoding algo-
rithms. Header processing on the other hand, typically only reads few header
fields and does simple lookup and comparison operations. The aggregate cache
miss rates for instruction and data cache are shown in Figure 2. Both workloads
achieve instruction miss rates below 0.5% for cache sizes of 8kB or more. The
data cache miss rate for workload A also drops below 0.5% for 8kB. For work-
load B, though, the data cache miss rate only drops below 1% for 32kB or larger
caches.

Table 2. Computational Complexity and Load and Store Frequencies of Work-
loads

Workload complW fload,W fstore,W

A - HPA 9.1 0.2319 0.0650

B - PPA 249 0.1691 0.0595

5 Evaluation

For the optimization of the network processor we have to define a design space
that reflects current ASIC technology. Table 3 shows the values, or ranges of
values, of each system parameter considered. For the feature size of components,
we assume .25µm technology.
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Fig. 2. Aggregate Cache Performance of Workloads

Table 3. System Parameters for Optimization

Parameter Value(s)

clkp 50MHz . . . 400MHz

ci 1kB . . . 1024kB

cd 1kB . . . 1024kB

linesize 32byte

tmem 40ns . . . 80ns

tcache.dram 15ns

widthmchl 4bit . . . 64bit

clkmchl 200MHz

Parameter Value(s)

ρ 0 . . . 1

widthio up to 64bit

clkio 200MHz

s(ASIC) 100mm2 . . . 400mm2

s(proc) 2mm2

s(ci), s(cd) SRAM: 0.15mm2 per kB
DRAM: 0.015mm2 per kB

s(mchl), s(io) 10mm2 + width · 0.25mm2

Given the analysis of Section 3 and the workload and system properties of
Section 4, the optimal configuration of a network processor can now be deter-
mined.

5.1 Cluster Optimization

This optimization looks only at the configuration of a cluster without considering
ASIC chip size constraints or the I/O channel. Under these conditions, no area
fragmentation occurs and design tradeoffs can be easily observed. For the two
workloads, and the SRAM and DRAM configurations, we evaluate the effect
of memory channel bandwidth and load, processor speed, and off-chip memory
access time.

As base parameters, we use a memory channel bandwidth of BWmchl =
800MB/s, a off-chip memory access time of tmem = 60ns, and a processor clock
speed of clkp = 400MHz. Starting out with this configuration, we vary different
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parameters to see their effects on the overall system performance. Table 4 shows
the optimal configuration for the base parameters.

For workload A, an 8kB instruction cache is sufficient to achieve very low
instruction cache misses (see Figure 2). Workload B, requires a 16kB instruction
cache. Since there is no “knee” in the data cache miss curve, the optimization
results are 16kB and 32kB for data caches, which achieve less than 0.3% miss
rate for workload A and less than 1% for workload B. Larger caches do not im-
prove the miss rates significantly, but require much more chip area. The memory
channel load for these configurations ranges from 69% to 79%. The number of
processors per clusters is 6 and 16 when SRAM is present, and about 6 time
larger, 40 and 91, when DRAM is present. The DRAM results stem from a
combination of several effects: a) the processor speed is limited by the on-chip
DRAM access time, b) the limited processor speed permits more processors to
share a single memory channel, and c) DRAM takes about one tenth the area of
SRAM. Despite the slower processing speed of DRAM configurations, they still
achieve 50% − 75% of the ISPA rating of the SRAM configurations.

Table 4. Optimal configuration of cluster with base parameters of BWmchl =
800MB/s, tmem = 60ns, and clkp = 400MHz

Workload On-chip Memory n ci (kB) cd (kB) ρ IPSA (MIPS/mm2)

A - HPA SRAM 16 8 16 0.72 50.31

B - PPA SRAM 6 16 16 0.69 25.55

A - HPA DRAM 91 8 16 0.78 25.20

B - PPA DRAM 40 16 32 0.79 19.38

One important observation is that increasing processor speed only affects
SRAM cache configurations. This can be seen in Figure 3, where the IPSAcluster

for different workloads and on-chip memory configurations is plotted over a set
processor clock speeds. In the SRAM case, the total processing per area increases
with faster processor clocks, since IPS1 from Equation 3 increases. For DRAM
cache, though, the effective processor speed is bound by the time it takes to
access on-chip DRAM.

The effect of the memory channel load, ρ, on the IPSAcluster is shown in
Figure 4. Also shown on this figure is NQ, the queue length associated with
the M/D/1 model of the memory channel. The largest number of instructions
executed can be achieved for memory channel loads of ρ = 0.6 . . . 0.85, which
corresponds to the region where the queue length is small (< 3). While smaller
loads cause lower queuing delays, they also require more chip area per processor
since fewer processors share the fixed size channel. Higher loads increase the
queuing delay significantly, which in turn causes processors to stall very long on
cache misses.

Figure 5 shows the IPSAcluster for different memory channel bandwidths.
For SRAM configurations, a faster memory channel improves the IPSAcluster
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by about 20MIPS/mm2, from 100MB/s to 1600MB/s. This is due to the
reduced transfer time for a cache line. These improvements are less significant
for the DRAM configuration, since the processors operate at a much slower rate
(bound by the on-chip DRAM access time) and the reduction in memory transfer
time has less of an impact on the total CPIDRAM (see Equation 4).

Different types of off-chip memories with different access times can also be
used. The effect of the memory access time tmem on the processing power per
area is very limited. The total IPSAcluster decreases slightly for slower memories
(2-5% for tmem = 80ns over tmem = 40ns), but the memory access time is only
a small component in the cache miss penalty (Equation 6). More important is
the actual memory bandwidth and the load on the memory channel as shown in
Figures 4 and 5.

5.2 ASIC Optimization

For the ASIC optimization, ASIC size constraints have to be considered as well
as the I/O channel. To illustrate the optimization space, Figure 6 shows the
optimal IPSASIC of a 400mm2 ASIC with workload A and SRAM caches. The
memory channel bandwidth is 800MB/s, the processor clock speed is 400MHz,
and the off-chip memory access time is 60ns. One can see that there is a distinct
optimum for 8kB instruction and 16kB data cache. Cache configurations that
vary significantly from this optimum show a steep decline in overall performance.
This emphasizes the importance of an optimally configured system.
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Table 5. ASIC configurations with maximum processing power (s(ASIC) =
400mm2)

Workload Cache m n ci cd ρ tmem BWmchl clkp I/O pins IPS
Type (kB) (kB) (ns) (GB/s) (MHz) (MIPS)

A - HPA SRAM 3 20 8 8 0.8 40 1.6 400 365 19700

B - PPA SRAM 6 10 4 8 0.86 40 1.6 400 389 12600

A - HPA DRAM 1 145 8 16 0.63 40 1.6 ≥673 148 9450

B - PPA DRAM 1 64 16 16 0.92 40 1.6 ≥673 131 8050

The maximum IPSASIC found in any system configuration is shown in
Table 5 for both workloads and cache technologies. It is not surprising that
the optimum is achieved for the fastest technology parameters in all categories
(BWmchl = 1.6GB/s, tmem = 40ns, and clkp = 400MHz for SRAM caches).
The maximum processing capacity is almost 20000MIPS for an SRAM cache
configuration with 8kB for data and 8kB for instructions. The DRAM cache
configurations, again, achieve about half the performance of the SRAM caches.
Note however, that the optimal DRAM configurations obtained do not take into
account other factors which would likely make this design infeasible. For exam-
ple, electrical bus loading would preclude having 145 processors associated with
a single memory bus. Nevertheless, with improved DRAM implementations, the
model will permit analysis of alternative configurations.

One important thing to note in Table 5 is that the maximum number of
I/O pins (that is the number of data pins for the memory channels and the I/O
channel) does not exceed 400. Even when adding pins that are necessary for
signaling, control, and power, the total pin count does not go beyond current
packaging technologies.

6 Summary and Conclusions

In this paper, we consider a multiprocessor System-on-a-Chip that is specialized
for the telecommunications environment. Network traffic can be processed by
special application software that executes on a set of processors contained on a
single chip. The problem analyzed is that of determining the optimal number of
processors, associated cache sizes, and memory channels that should be present
in such a design given a set of defining parameters and constraints with the
principal constraint being the total chip area available.

An analytical model of the system has been presented that reflects the com-
putational power per area of a cluster and the total processing power of an ASIC.
Using application statistics from a telecommunications benchmark, a workload
was defined and used in the optimization process. Results for various cluster and
3 As explained in Section 5.1, the processor clock speed has no impact on the per-
formance, as long as it is faster than the on-chip DRAM access time. Thus, any
frequency above 67MHz will achieve the same performance in this configuration.
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ASIC configurations were presented and analyzed. The following key technology
tradeoffs for System-on-a-Chip designs can be derived:

– The processor clock frequency has significant impact on configurations with
on-chip SRAM caches. For on-chip DRAM caches, it does not improve the
performance for clock rates higher that the memory access speed.

– Higher memory channel bandwidth improves both SRAM and DRAM config-
urations. The impact is larger for SRAM configurations. The optimal mem-
ory channel load for SRAM caches is in the range of 65% to 85% and for
DRAM caches in the range of 70% to 92%.

– For the workload considered, the access delay of off-chip memory has little
impact on the system performance.

– Optimal DRAM cache configurations achieve on average only half of the
processing power of SRAM cache configurations, however, with current tech-
nologies, other implementation constraints likely make them a less desirable
alternative than SRAM.

– Tradeoff trends are the same for both of the workloads considered. This
indicates that they are independent of the particular workload for which the
system is optimized.

These general observations along with the use of the model can be utilized
to guide the design of network processors.
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Abstract. This approach modifies a RISC processor by integrating an
additional Fetch Look-Aside Buffer (FLAB) for instructions. While the
first fetch of any instruction results in normal execution, this instruction
is combined in parallel with former instructions for later execution and
saved inside the FLAB. The architecture works like a dynamic Very-
Long-Instruction-Word architecture using code morphing. Extensive
simulations indicate that this approach results in average instructions
per cycle rate up to 1.4. The more important fact is that these values are
obtained at moderate hardware extensions. The Space-Time-Efficiency
E is defined and shows values from 0.5 to 1 for all modified
architectures, relative to the RISC processor.

1 Introduction

The development of microprocessors in the last three decades seems to be mostly
dominated by ever increasing clocking rates. This results in high power dissipation as
well as increasing power densities on the surface of the devices: The values have
passed the power density of a hot plate and are expected soon to reach nuclear reactor
power densities.

New architectural concepts were taken into consideration as the second best choice
for improvements. While there were some exceptions to this rule like the introduction
of RISC and superscalar processors as well as other concepts, the focus on the
development of faster clocking rates has returned soon afterwards.

But since the last two years the upcoming ubiquitous computing has changed the
point of interest from performance to performance per power or even power
dissipation itself. The focus on electrical power necessary for specific computations
has been changed so that power is considered to be a �First-Class Architectural
Design Constraint� [Mudge_2001].

The first in [Wennekers_2001] introduced and now extended approach for a modi-
fied processor architecture meets this new architecture paradigm. Based on a well-
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known RISC architecture two major modifications are added to obtain superscalarity
without the necessity for expensive hardware extensions: A Fetch Look-Aside Buffer
(FLAB) is integrated to store modified instructions for later fetches at the same
address, and some executing parts inside the processor are identified for �natural�
partitioning for parallel execution.

The later means that those parts inside the real processor were identified that could
be used for execution in parallel without any or with only negligible additional effort.
This includes that no part of the CPU is doubled like inside superscalar architectures �
with one inexpensive exception as described later.

The question arises how to compare this architecture with well-known architec-
tures in research and practice. The basic roots are located inside the >S<puter concept
first published in [Siemers_1997]. This approach introduced a new scheduling
algorithm for superscalar processor architectures and replaced the execution pipelines
by one or more configurable data path systems. Once configured the system called s-
unit could work as long as no new reconfiguration occurred.

The Universal Configurable Block/Machine-concept UCB/UCM [Siemers_2000a]
introduced real reconfigurability [Siemers_2000b] enabling the application to decide
to reconfigure (while inside sequential system the machine decides to fetch and
execute the next instruction). It considered the blocks to work independent from but
with communication to each other and gave the UCM the ability to schedule frequent-
ly used program parts into exclusive UCBs.

Inside the actual architecture the already mentioned modified instructions are
stored inside a configuration containing more than one instruction as well as addi-
tional information. This is equivalent to the >S<puter model and the UCBs, but the
comparison of the execution model with the definition in [Siemers_2000b] shows the
reconfiguration is not completely met.

The paper will show that the global execution principle consists of the composition
of long instructions during execution. The way this architecture acts can be described
as dynamic Very-Long-Instruction-Word (dVLIW) using code morphing. The algo-
rithm located inside the FLAB morphs incoming code during runtime to composed
(very long) instructions. The execution itself uses either the original instruction (if no
composed instruction is available) or the morphed instruction. Nevertheless we call
our architecture �reconfigurable RISC� or �rRISC� due to the roots it was derived
from.

The remainder of this paper introduces the micro-architecture for reconfigurable
RISC and describes the modified architecture and the impacts on the pipelining in
chapter 2. The corresponding instructions for parallel execution are identified and
classified in chapter 3. Chapter 4 discusses the way the translation of instructions into
the configuration works and how the information is stored within the FLAB. The
performance side of this microprocessor is concluded with simulation results in
chapter 5. These values were obtained introducing a model called Small RISC
Machine (SRM), which was completely described in VHDL to be cycle-accurate
during simulation.

Chapter 6 discusses the efficiency of the architectural approach. For this purpose
the Space-Time-Efficiency ES/T is defined with respect to [Flynn_1999]. This attempt
presents a metric for comparing all obtained values of this project but shows a lack
when comparing with other architectures.
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Finally the advantages of our approach but also open questions are discussed in the
summary and outlook (chapter 7). It is important to note that the defined efficiency
shows the relationship between (silicon) space and (execution) time but obviously not
power consumption.

2 Micro-Architecture for Reconfigurable RISC

The micro-architecture of the rRISC-machine may be described as an extension of a
standard RISC-like processor. Fig. 1 shows the typical structure of a 4-stage RISC
processor using fetch, decode/load, execute and write-back stage. The new Fetch
Look-Ahead Buffer (FLAB) is added to the classical structure and holds the
capability of translating and storing code for future execution. This model shows the
micro-architecture of the concrete model SRM too.

Fetch-/Predecode-
Unit

Decode-/Load-
Unit

ALU

Look-Ahead-
Resolution

Write-Back-Unit

Memory
Access

Data
Forwarding

Register File

Bus Interface Unit

DataAddr

DataAddr

DataAddr Control

Execute-Unit

Control

Mem_Wait Mem_Wait

Fetch Look-Aside
Buffer (FLAB)Address, Data

Predecoded
Information

Fig. 1. rRISC Block Structure

Every cycle the processor fetches the next instruction from code memory, this
fetch is additionally performed in the FLAB. From this point of view the FLAB acts
like a fully-associative cache memory. If the FLAB access does not hit, the fetch from
memory is used and the rRISC architecture works as a RISC-like processor.

In this case the fetched instruction is not only decoded for further execution but
also analyzed for integration inside the FLAB. The FLAB integration phase works
completely parallel to (and independent of) the decode/load phase. The instruction is
not stored directly but computed to a configuration in combination with previous
instruction. The FLAB acts like a trace cache but does not store the original infor-
mation, and the algorithm is described in chapter 4.
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The pipelining system is changed in three major parts: The fetch stage works not
only via the bus interface but in parallel using the FLAB, the FLAB itself is
considered to morph the actual instruction within one cycle into a new or existing
FLAB line, and the complete execution through decode/load, execution, write back
and interfacing to the register file must work for parallel operations.

2.1 Fetch Operation

The fetch operation starts with parallel accesses to main (or cache) memory and to the
FLAB. As soon as the FLAB working like a fully-associative cache responds with a
FLAB hit the memory access is aborted. If on the other side the fetch access to main
memory is blocked by data access through memory access unit, the FLAB access still
works, if a FLAB hit occurs, and avoids pipeline stalls resulting from concurrent
memory accesses in this case.

This principle avoids any performance degradation inside the fetch unit because all
operations are performed in parallel. The only additional path is a condition whether
the FLAB hits or not (similar to cache hits), but this effect is neglected.

2.2 FLAB Operation

As discussed later in this paper the FLAB performs several operations beside serving
fetch requests. These operations result in the composition of the FLAB lines from the
incoming and previous instructions.

In most cases the algorithm consists of three operations: test of the suitable instruc-
tion class, test for integration capabilities and test for data hazards. With carefully
designed instruction coding the first test is rather simple and similar to a
corresponding part inside the decode sub-unit. The second test, which might even
include the first, tests the corresponding space inside a FLAB line and is again very
simple.

The third part must use parallel checks for any data dependency. The parts inside a
FLAB line, where information about previous generated data are located, are well-
defined and consist of all destination registers. Therefor any test for dependency must
compare source registers with previous destination registers, and if such dependency
occurs, the FLAB line is closed without integrating the actual instruction.

The FLAB operations were carefully analyzed for their runtime, and the result is
that the complete FLAB operation will not use more time than the decode phase. This
encourages to assume that the FLAB operation completes within 1 cycle and runs
fully parallel to decode/load phase.

2.3 Parallel Execution

The first effect of parallel execution inside the rRISC architecture is that the pipeline
structure from fetch to write back is spread. Fig. 2 shows the resulting fine structure.

The execution unit is carefully partitioned into parts with independent execution.
The independence is based on the operations and shown in the next chapter: While
addition and subtraction will use the same silicon part, addition and load or move will



Reconfigurable RISC      169

not. This results in parallel execution using only independent parts with no impact on
execution speed.

The pipeline is of course spread (additional signals are shown with broader lines)
but the influence on the overall speed and clock frequency is neglected. Especially the
configuration time for the execution unit is the same compared to the known RISC
architecture, because the information for execution is simply stored in the pipeline
stage registers between decode/load and execution unit.

Fetch-/Predecode-
Unit

Decode-/Load-
Unit

dVL-Inst

Normal Inst.

Write-Back-Unit

Memory
Access

Register File

Execute-Unit

Move

ALU_1

ALU_2

Fig. 2. Pipeline fine-structure for rRISC implementation

The analysis of all delays inside the modified pipeline results in no clock speed
degradation. Therefor all modification is considered to be delay-time neutral.

3 Instruction Classes for Parallel Execution

As introduced in previous work [Wennekers_2001] the instruction are classified for
the determination of usable instructions for integration. The following classes are
received:

• M-class (Memory): All memory access operations like load, store, push and pop
(as stack operations) are classified in this class.

• C-class (Control Flow): This class includes conditional and unconditional
branches and jumps as typical control flow operations, independent of the
addressing format.

• NOP-class (No Operation): As described in the previous work it makes sense to
classify this operation on its own for compressing this fill operation inside the
code.

• I-class (Internal operations): All integer operations, arithmetical and logical, as
well as move, copy and exchange operations are included inside. This class is
further divided into several subclasses:

• MC-subclass (Move and Copy): All copy and exchange instructions using
internal registers as source and destination.

• A-subclass (Arithmetical): This subclass contains all arithmetical operations on
integer with the exception of decrement and increment.
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• DI-subclass (Decrement/Increment): The decrement and increment operations,
often used for loops with predetermined length, build their own subclass as ex-
plained below.

• L-subclass (Logical): Logical as well as shift and rotate operations are classified
for themselves.

• FP-class (Floating-Point): Executing internally too, all floating-point operations
are included within their own class.

• OT-class (Other operations): Further instructions which influence the control
flow may be wait, stop and others. These instructions may influence the
operational mode of the processor and have substantial differences to the
branches and jumps. Other instructions in this class are call to and return from
subroutine and flag modification instructions like Set Carry which also influence
the control flow but in a more indirect way.

These 6 classes and 4 subclasses are discussed for parallel execution using exclusive
parts of the processor. The main goal of this work was to identify natural parallel
resources inside a typical processor architecture. For all simulation purposes, a simple
microprocessor model called Small RISC Machine (SRM) was used containing all
further described resources.

As discussed in our previous work, it is assumed that a memory sub-unit is always
existing for exclusively executing the M-class members (refer to fig. 1). The first
approach called rRISC level 1 connected one M-class member with one C-class
instruction, which will typically execute inside the fetch unit with support by e.g. the
look-ahead unit, and one I-class instruction for parallel execution.

The subclasses MC, A, DI and L were carefully chosen for independent hardware
regions inside the execution unit. Even the decrement/increment operation, which
could be executed using the adder block with one constant operand, may receive
exclusive hardware with little effort. The simulated model did not support floating-
point operations, but these operations would be good candidates for parallel execution
too.

Table 1 defines the level 2 and 3 for the rRISC-model using the SRM machine.
The inexpensive execution for move-instructions � this is a simple data transfer �
helped to decide to use up to 4 moves within one configuration and execute them in
parallel. This is the only exception from the rule of using only single instances of any
operation. Level 2 already uses these moves and one other internal instruction from
A-, L- and DI-subclass.

Level 3 finally supplies the full parallelism even for internal operations at the
above defined classification. Of course this classification could be refined but it was
decided to stop, because any refinement would also result in more efforts for storing
and transporting the configuration.

The NOP instruction as a special case was also defined to be integratable. This
eliminates all effects from NOP, but if there are wanted (like lengthening a waiting
loop), integration must be avoided. In any way, the NOP instruction was not used
during simulation.

The overview of the rRISC classes contains 2 values for each degree of
parallelization. The first number counts the maximum number of instructions (except
NOP instructions), the second takes into account that all moves may consist of two
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partial moves. A combination like move/move high word with the same destination
register, which loads a complete word of immediate data into the register but uses 2
instructions, will be compressed into one instruction inside the FLAB. This results in
pmax = 13 for this approach.

Table 1. Summary of rRISC levels for the SRM

Instructions Parallelization degree

Level 1 1 M-class
1 C-class
1 I-class

3 (4)

Level 2 1 M-class
1 C-class
1 AL-subclass (A, DI, L)
4 MC-subclass

7 (11)

Level 3 1 M-class
1 C-class
1 A-subclass
1 L-subclass
1 DI-subclass
4 MC-subclass

9 (13)

4 Fetch Look-Aside Buffer

Fig. 3 shows the way the Fetch Look-Aside Buffer (FLAB) is coupled with the fetch
unit. During fetch phase the FLAB looks like a fully associative cache memory to the
processor. A cache hit cancels the normal fetch, and the FLAB line is going into
execution. If a FLAB miss occurs, the normal fetch is finished. During the next phase
the fetched instruction is available for being translated for a new FLAB line. The data
from fetch unit include all necessary address informations.

Inside the Fetch Look-Aside Buffer all translated information is stored. Fig. 4
depicts the format for level 3. The information include start address, number of
instructions and/or end address and the instructions themselves. For easy execution
these instructions are stored in pre-decoded format.

4.1 PDSP � Procedural-Driven Structural Programming

The algorithm performs some binary translation and is called PSDP (Procedural-
Driven Structural Programming) [Siemers_2000b]. Summarized three major stages
are performed, which include checking for integration capability, data dependencies
and availability. In particular the following steps are taken:

1. The actual instruction is tested whether it belongs to a class with integration
capabilities. If this is not true, any FLAB line under construction will be closed
and eventually stored. The classes for integration in the simple RISC machine in
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fig. 1 are defined in table 1. In addition to this list, the NOP instruction is also
integratable.

2. If the integration test is true, the corresponding line part is tested for availability.
Any occupation results in closing the FLAB line. For all but MC-class and NOP
only one resource is available in the SRM. For the move and copy instructions all
parts are tested, and for the NOP instruction the number of instructions is just
incremented.

3. In parallel to the resource checking part data dependencies are tested. This com-
pares all registers for read-after-write-hazards, and for this example it is defined
that the algorithm finishes for the actual line if this occurs. In general, even RAW
dependencies may be integrated in the structure [Siemers_2000a].

4. As special case the mov/movh instruction pairing is checked in the SRM. This
pairing is defined by a mov-instruction with immediate addressing followed by a
movh with the same destination register. The necessity for these pairs arises from
data constants in the source code, which uses the full data width but are stored
only with fractional portions inside the code. This pair is stored as one move-
instruction with a full-width data constant as operand.

Fetch Look-Aside Buffer

FLAB-Line LRU

FLAB-Line LRU

FLAB-Line LRU

...

Read-Port

PDSP-Algorithm for
next FLAB-line

Data (Hit)Address
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W
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Po
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Instruction
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Fig. 3. FLAB Fine Structure
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As described earlier in this paper the algorithm was implemented and carefully tested
for execution speed. All steps may execute in parallel to each other, and at the end of
the cycle the result is stored. This enables the algorithm to execute within one clock
cycle, and a critical path analysis shows that no clock speed reduction will occur.

The translation into one FLAB line will finish under some circumstances. First, a
non-integratable instruction may occur. In this case, the actual FLAB line is closed
and no new will be opened. Second, the actual instruction is of C-class type. In most
cases, this will be a conditional branch instruction, and the actual way is unknown.
Therefor, the FLAB line is closed, the C-class instruction is integrated, and no new
line is opened (in both cases, this is done with the next integratable instruction).

Third, data dependencies will be recognized and fourth, the resource for the
specific instruction is already occupied. In these case, the actual line is closed and a
new is opened storing the actual instruction. In all cases, when a FLAB line is closed
it is only stored when more then 1 instructions are configured within the line. As
replacement strategy, least-recently-used was chosen.

The following example shows the effect for level 1 and 3. This example is part of
the array initialization algorithm published in [Kelly_1998]:

The translation for level 1 results in 2 FLAB lines because the resource for the
decrement instruction (DEC) is occupied by the SUB-instruction. However, level 3
contains enough resources to store the complete loop body inside 1 FLAB line. This
results in 4 instructions per cycle during execution after correct branch prediction.

LOOP:
ST [R4], R1 ; M-Inst.
SUB R4, R4, R5 ; A-Inst.

DEC R2, R2 ; DI-Inst.
BNE LOOP ; C-Inst.

ST [R4], R1 ;

int i, a[256];

for( i = 255; i >= 0; i--)
a[i] = 0;

1st FLAB-line

2nd FLAB-line

a)

b) c)

1 FLAB-line

d)

Fig. 5. Example for PDSP algorithm: a) C-sourcecode b) assembler code c) Level 1
translation  d) Level 3 translation

4.2 Branch Prediction

The branch prediction is a problem that must be solved within the rRISC architecture.
The actual model uses a dynamic 1-bit branch prediction. The branch target address is
stored inside the FLAB line, and the last direction (taken/not taken) is always stored
after execution. Other prediction strategies may be used instead.

The behavior for misprediction is a critical point for the rRISC architecture,
because this could lead to performance reduction. If a branch inside the FLAB line is
executed, the net effect for the execution time is 0 (zero branch time), but what
happened when the branch direction is mispredicted?
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For the estimation of this effect, a rRISC-architecture with k pipeline stages is
assumed. Furthermore, at the end of stage kf the fetch has finished, and at the end of
stage kst the status flags or conditions for the branch are available using data
forwarding. If kexe defines the stage where operations would be irreversible, then

kexe  ≥  kst � kf (1)

must be valid, if execution shall not lead to clock cycle losses, compared with the
corresponding RISC-model. Inside the simulated SRM model, any misprediction
leads to 2 cycles waiting time which is exactly the value without using the FLAB.

5 Performance Simulations for rRISC
For quantitative results, the rRISC model was simulated in all levels including level 0
for a RISC processor with 1-bit branch prediction. The following programs were used
for this purpose:

• INIT_ARR: Initialization of a 1-dimensional integer array (see fig. 5 for inner
loop).

• MOV_AVRG: Computing the moving average of 4 elements within an integer
array of 64 elements.

• PARITY: Computing the even parity bit for all possible 8-bit values.
• WORDCOUN: The well-known UNIX-tool for a book text.
• CRC-8: Computing the cyclic redundancy check sum as used for ATM headers.

The first part computes the syndrome-table, the second one the error table, the
third part tests the tables with correct headers, headers with 1-bit error and with
2-bit errors.

• SEL_SORT: The selectionsort algorithm is used for 2 arrays containing 100
members each.

• QUICKSRT: The quicksort algorithm sorts the same 2 arrays containing 100
elements each.

The rRISC architecture SRM (Small RISC Machine) was described as VHDL-
model on RT-level. This resulted in cycle-accurate instruction counts. Fig. 6 presents
the results for the basic RISC-model as well as for models with 12 FLAB-lines inside
the levels 1�3 of the rRISC architecture. With the exception of the INIT_ARR
program, which is optimal for execution, all programs show positive effects for higher
levels but are limited to IPC-values less than 2. Level 3 was additional simulated for
64 FLAB-lines to explore saturation effects.

All tested programs show a saturation using 64 FLAB lines, most of them at values
much lesser. This encourages to use only small numbers of buffer lines for this
architecture. On the other side, higher levels (2 and 3) show performance reduction
when the number of lines is very small. Fig. 7 presents the effect for the CRC-8
program, 3rd part, but some other show the same effect.

The effect is based on the small number of lines. For level 2 and 3, more
possibilities exist inside a program to obtain a FLAB line with 2 or more instructions,
and therefor lines are earlier replaced. As result the extensive use of FLAB lines is
self-blocked.
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Fig. 6. IPC values for test programs and rRISC levels 0 .. 3 (single port) 

CRC-8 (run) 

Fig. 7. IPC reduction for higher levels with small buffer sizes 

Last-not-least the impact of single-ported and dual-ported memory architecture, 
referred as von-Neuman and Harvard-model, is shown in fig. 8. The difference 
between both memory port architectures is nearly constant 0.12 IPC. This was 
surprising, because some positive effect for the single port system could be expected. 
It was implemented inside the simulation model that a fetch is blocked for the 
external bus system when a data memory access occurs, but not for the FLAB. This 
should decrease the difference between both memory systems. 

The reason for this behavior was identified in the fact that in most cases the M- 
class instructions could not be integrated into a FLAB line due to data dependencies. 
A change of the PDSP-algorithm and storage of  a FLAB line containing a M-class 
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instruction even if only 1 instruction is inside will positively impact the single-ported
values.

Fig. 8. IPC-values for single- and dual-ported memory architecture

6 Space-Time-Efficiency

One important question already mentioned in the introduction is the efficiency of the
architecture. For this purpose the space-time relationship as discussed in
[Flynn_1999] is taken for a definition of the space-time-efficiency. This relationship
results in Eq. 2:

2..1with. ==⋅ nConstTA n (2)

This equation was first developed for single operations but is now used for
complete microprocessors and related designs. For arithmetical operations, the
constant n is near to 2. This is used to define the space-time-efficiency ES/T as

AT
E TS ⋅

= 1
/ (3)

With definition (3), values relative to the rRISC-L0 architecture can be estimated.
For this purpose, the inverted IPC-values were used for the execution time T, and the
(weighted) number of generated signals inside the design can be taken for the space A.
As a Register-Transfer-Level VHDL-model was used for cycle-accurate simulation,
the number of signals could be determined rather precise.

Fig. 9 presents the values derived from eq. (3) using measured values for the
performance and estimated for the space. Two different models were estimated. The
original 16-bit processor model shows a relative great efficiency reduction, because
the basic model is quite small. The 32-bit values were estimated from scaling up the
16-bit design. In this case the space used for the FLAB buffer and the translation
algorithm was reduced, relative to the basic model.
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We found the 32-bit-values to be more realistic, as microcontroller in this area
have always 32 bit intrinsic data width. The efficiency shows with 40% reduction for
the L3-12 model a rather smooth efficiency reduction and with values near 1 for the
L1-4 model nearly the same value as in the basic model.

Fig. 9. Relative Space-Time-Efficiency for various rRISC-Level

7 Summary and Outlook

This work introduces an alternative way for superscalarity inside microprocessors,
probably well-suited for microcontroller in the embedded world. The integrated Fetch
Look-Aside Buffer, which acts like a trace-cache but stores more than 1 instruction
for further execution, enhances the performance in connection with the configurable
way the processor executes more than 1 instruction. IPC-values up to 1.4 are reported.
The size of 8�12 FLAB lines seems to be the best trade-off between performance
enhancement and efficiency reduction.

The way this model executes instructions has its roots in the area of reconfigurable
computing but shows now much similarity to Very-Long-Instruction-Word architec-
tures. While well-known members of this architecture class, e.g. the EPIC architecture
from Intel, receive compile-time composed instructions during fetch, the rRISC
architecture composes them during runtime. This dramatically downsizes the memory
interface and might be well-suited for embedded systems reducing system costs. This
could be named dynamical VLIW-architecture.

The way the instructions are composed shows similarities to code morphing [Kel-
ly_1998]. Instructions are composed as long as no dependency or resource problem
occurs avoiding any control function or any performance degradation during runtime.

Some questions are still open. The first is that the algorithm for translation and
storing the configuration was not changed but has some impact on the results. This is
obviously for M-class operations, where the expected value improvement for single
port architecture failed to come.
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The second question is, whether the space-time-efficiency, which reduces rather
moderate compared to other superscalar architectures, also indicates a good power-
performance-ratio, which would be of much more interest. Future work will address
this question, but until now quantitative values are missing.

The third question concerns the optimal structure inside. There is a great degree of
freedom for choosing combinations of operations, even multiple units might be
useful. Algorithms from digital signal processing e.g. would tend to have more than
one port to data memory, others could prefer more arithmetical capacities. This
question will be addressed by intensive simulations of realistic benchmarks and by
exploring the design space.
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Abstract. In this paper, we quantify the performance of a novel family
of multi-stage Two-Level Adaptive Branch Predictors.  In each two-
level predictor, the PHT of a conventional Two-level Adaptive Branch
Predictor is replaced by a Prediction Cache.  Unlike a PHT, a Prediction
Cache saves only relevant branch prediction information.  Furthermore,
predictions are never based on uninitialised entries and interference
between branches is eliminated.  In the case of a Prediction Cache miss
in the first stage, our two-stage predictors use a default two-bit
prediction counter stored in a second stage.  We demonstrate that a two-
stage Cached Predictor is more accurate than a conventional two-level
predictor and quantify the crucial contribution made by the second
prediction stage in achieving this high accuracy.  We then extend our
Cached Predictor by adding a third stage and demonstrate that a Three-
Stage Cached Predictor further improves the accuracy of cached
predictors.

1 Introduction

The advent of superscalar processors has given renewed impetus to branch prediction
research.  On a scalar processor, an incorrect branch prediction costs only a small
number of processor cycles and only one or two instructions are lost.  In contrast, in a
superscalar processor many cycles may elapse before a mispredicted branch
instruction is finally resolved.  Furthermore, each cycle lost now represents multiple
lost instructions.  As a result branch mispredictions are far more costly on a
superscalar processor.

This renewed interest in branch prediction led to a dramatic breakthrough in the
1990s with the development of Two-Level Adaptive Branch Predictors by Yale Patt�s
group [1] and by Pan, So and Rahmeh [2].  More recently two-level branch predictors
have been implemented in several commercial microprocessors [3], [4].  However,
although high prediction rates are achieved with Two-Level Adaptive Branch
Predictors, this success is obtained by providing very large arrays of prediction
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counters or PHTs (Pattern History Tables).  Since the size of the PHT increases
exponentially as a function of history register length, the cost of the PHT can become
excessive, and it is difficult to exploit a large amount of branch history effectively.
Two-level Adaptive Branch Predictors have two other disadvantages.  Firstly, in most
practical implementations each prediction counter is shared between several branches.
There is therefore interference or aliasing between branch predictions.  Secondly,
large arrays of prediction counters require extensive initial training.  Furthermore, the
amount of training required increases as additional branch history is exploited, further
limiting the amount of branch history that can be exploited.

We have developed [5] a family of Two-Level Branch Predictors that addresses the
three problems of conventional two-level predictors: cost, interference and initial
training.  We have called these novel predictors Cached Correlated Branch Predictors.
By replacing the second level PHT with a cache, we significantly reduce the cost.  At
the same time, our predictors outperform traditional implementations.  For equal cost
models, this performance advantage is particularly significant.  These advantages are
achieved for three reasons.  Firstly, our cached predictor only holds those prediction
counters that are actually used.  Secondly, interference between branches is
eliminated; each branch prediction is determined solely by historical information
related to the branch being predicted.  Thirdly, a simple default prediction mechanism
is included that is initialised after a single occurrence of each branch.  This avoids the
high number of initial mispredictions sustained during the warm-up phase of
conventional two-level predictors and minimises the impact of misses in the
Prediction Cache.

In an earlier feasibility study [6] we presented a Cached Correlated Branch
Predictor that used a fully associative Prediction Cache.  Although the concept of a
cached PHT was successfully demonstrated, a fully associative cache would be too
costly in practice.  In contrast, all the Cached Correlated Branch Predictors presented
in this paper, use a set-associative Prediction Cache that is indexed by hashing the PC
with the history register.  We also quantify the crucial role played by a second
prediction stage in our cached predictor and we then extend cached prediction
techniques to three-stages for the first time.

2 Two-Level Branch Prediction

Recent research on branch prediction has focused almost exclusively on Two-Level
Adaptive Branch Predictors, which are usually classified using a system proposed by
Yeh and Patt [7], [8].  The six most common configurations are GAg, GAp, GAs,
PAg, PAp and PAs. The first letter specifies the first-level mechanism and the last
letter the second level, while the �A� emphasises the adaptive or dynamic nature of
the predictor.  GAg, GAp and GAs rely on global branch history while PAg, PAp and
PAs rely on local branch history.

GAg uses a single global history register, that records the outcome of the last k
branches encountered, and a single global PHT containing an array of two-bit
prediction counters.  To generate a prediction, the k bit pattern in the first-level global
history register is used to index the array of prediction counters in the second level
PHT.  Each branch prediction therefore seeks to exploit correlation between the next
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branch outcome and the outcome of the k most recently executed branches.  The
prediction counter in the PHT and the global history register are updated as soon as
the branch is resolved.  Finally, a separate BTC is still required to provide branch
target addresses.

Unfortunately, since all the branches in a GAg predictor share a common set of
prediction counters, the outcome of one branch can affect the prediction of all other
branches.  Although this branch interference limits the performance, the prediction
accuracy improves as the history register length is increased.  At the same time, the
number of counters in the PHT also increases, which in turn increases both the
number of initial mispredictions and the cost of the PHT.  Eventually, the increased
number of initial mispredictions negates the benefit of additional branch history and
the prediction accuracy stops improving.

Several researchers have attempted to reduce interference in the PHT.  The Gshare
Predictor [9], [10], for example, hashes the PC and history register bits before
accessing the PHT, in an attempt to spread accesses more evenly throughout the PHT.
Alternatively, the Bimodal Predictor [11] uses twin PHT arrays to decrease
destructive interference between branch predictions and to maximise positive
interference.  Finally, the Agree Predictor [12] also attempts to maximise positive
interference.

GAp was first proposed by Pan et al [2] and called Correlated Branch Prediction.
Like GAg, GAp uses a single history register to record the outcome of the last k
branches executed.  However, to reduce the interference between different branches, a
separate per-address PHT is provided for each branch.  Conceptually in GAp, the PC
and the history register are used to index into an array of PHTs.  Although this ideal
model eliminates interference between branches, it leads to an exceptionally large
PHT array.  For example, with a 30-bit PC and 12-bit history register, 242 counters
would be required.  In practice, to limit the size of the predictor, only a limited
number of PHT arrays is provided; each PHT is therefore shared by a group of PCs
with the same least significant address bits.  Since a separate set of PHT counters is
provided for each set of branch addresses, this configuration is classified as GAs.
However, while the size of the PHT array is significantly reduced, branch interference
is now reintroduced.  As in the case of GAg, a separate BTC is provided to furnish
branch target addresses in both the GAp and GAs configurations.

The Two-Level Adaptive Branch Prediction mechanism originally proposed by
Yeh and Patt in 1991 [1] was later classified as PAg.  PAg uses a separate local
history register for each branch, or a Per-address history register, and a single shared
global PHT.  Each branch prediction is therefore based entirely on the history of the
branch being predicted.  The local history registers can be integrated into the BTC by
adding a history register field to each entry.  Since all branches share a single PHT,
PAg is also characterised by interference between different branches.  Interference
can be reduced by providing multiple PHTs.  If we retain the Per-Address Branch
History Table and provide a separate PHT for each address or a Per-Address PHT, we
have the PAp configuration.  As in the case of GAp, the size of the PHT array is
excessive, and the initial training problem is exacerbated.  A separate PHT is
therefore usually provided for sets of branches, giving rise to the PAs configuration.

We have emphasised that most branch prediction research is based on Two-Level
Adaptive Branch Predictors.  Yet, branch prediction is a specific example of a general
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Time Series Prediction problem that occurs in many diverse fields of science.  It is
therefore surprising that there has not been more cross-fertilisation of ideas between
different application areas.  A notable exception is a paper by Mudge�s group [13]
that demonstrates that all Two-Level Adaptive Predictors implement special cases of
the Prediction by Partial Matching [PPM] algorithm that is widely used in data
compression.  Mudge uses the PPM algorithm to compute a theoretical upper bound
on the accuracy of branch prediction.  Another exception is a recent attempt to use
Neural Networks for dynamic branch prediction [14].

3 Two Stage Cached Correlated Prediction

The high cost of Two-level Adaptive Branch Predictors is a direct result of the size of
the second level PHTs which increase exponentially in size as a function of History
Register length.  In a Cached Correlated Predictor [5], [6], the second-level table is
therefore replaced with a Prediction Cache, while the first level is unchanged.  Unlike
PHTs in conventional two-level predictors, the number of entries in a Prediction
Cache is not a direct function of the History Register length.  Instead, the size of the
cache is determined by the number of prediction counters that are actually used.  This
number increases only slowly as a function of History Register length.  Since the
Prediction Cache only needs to store active prediction counters, most of the entries in
a traditional PHT can be discarded.  However, to implement caching, a tag field must
be added to each entry and the size of the tag field increases linearly as a function of
History Register length.  A Cached Correlated Branch Predictor will therefore only be
cost effective as long as the cost of the redundant counters removed from the PHT
exceeds the cost of the added tags.  Two Cached Correlated Branch Predictors are
presented in this section.  The first predictor employs a global history register, while
the second employs multiple local or per-address history registers.

3.1 Global Cached Correlated Predictor

Figure 1 shows a four-way set-associative Global Cached Correlated Branch
Predictor.  Each entry in the Prediction Cache consists of a PC tag, a history register
tag, a two-bit prediction counter, a valid bit and a LRU (Least Recently Used) field.
A four-way set-associative BTC is also provided to furnish the branch target address.
Each BTC entry is augmented with a two-bit default prediction counter and consists
of a branch target address, a branch address tag, the two-bit prediction counter, a valid
bit and a LRU field.

Both the global Prediction Cache and the BTC are accessed simultaneously to
provide two predictions.  The length of the pipelength need not therefore be increased,
and there is no significant increase in the clock cycle time.  The BTC is accessed
using the least significant bits of the PC, while the Prediction Cache index is obtained
by hashing the PC with the global history register bits.  As long as there is a miss in
the BTC, the predictor has no previous record of the branch and defaults to predict not
taken.  Whenever there is a BTC hit a prediction is attempted.  If there is also a hit in
the Prediction Cache, the corresponding two-bit counter from the Prediction Cache
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entry is used to generate the prediction.  In this case the prediction is based on the past
behaviour of the branch with the current history register pattern.  If, however, there is
a miss in the Prediction Cache, the prediction is based on the default prediction
counter held in the BTC and is therefore based on the overall past behaviour of the
branch.  Once the branch outcome is known, the relevant saturating counters are
updated in both the Prediction Cache and the BTC.  In the case of misses in either
cache, new entries are added using an LRU replacement algorithm.  Finally, the
global history register is updated.

Fig. 1. A Global Cached Correlated Branch Predictor

Adding a default prediction counter to each BTC entry has several advantages.
Firstly, the default predictor is initialised after only one execution of the branch.  In
contrast, with a k bit history register, up to 2k Prediction Cache entries must be
initialised for each branch before the two-level predictor is fully trained.  Adding a
default predictor should therefore significantly reduce the number of initial
mispredictions.  Secondly, the default predictor minimises the impact of misses in the
Prediction Cache.

The hashing function to access the Prediction Cache requires careful consideration.
Both a BTC and an instruction cache are usually indexed by the least significant bits
of the PC.  However, this solution is completely unsatisfactory for a Prediction Cache.
Consider, for example, a four-way set-associative cache.  In the absence of collisions
with other branches, each branch is restricted to only four entries.  However, if k
history register bits are used by the predictor, as many as 2k cache entries may
theoretically be required for each branch.  Although most history register patterns will
never occur, a PC indexed cache will clearly suffer from excessive collisions, even
with modest history register lengths.
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A second alternative is to use the history register to index the Prediction Cache.
This solution also has disadvantages.  Firstly, if only a small number of history
register bits is used, only part of the Prediction Cache will be used.  Secondly, when
the number of history register bits exceeds the number of bits in the cache index,
sufficient collisions occur to prevent the predictor from reaching its full potential.

We found that the most accurate predictions were obtained when the history
register bits were XORed with the PC bits to form the Prediction Cache index.  A
single XOR followed by truncation was found to be non-optimum.  Instead, the
following hashing algorithm was adopted.  First, the PC was concatenated with the
history register.  Second, the resulting bit pattern was divided into groups that
contained the same number of bits as the required index.  Finally, all the groups were
XORed to generate the Prediction Cache index.

3.2 Local Cached Correlated Predictor

The Local Cached Correlated Predictor (Figure 2) also replaces the PHT with a
Prediction Cache.  A local Cached Correlated predictor is more complex than a global
Cached Correlated predictor.  Since a history register is now required for every
branch, a local history register field is added to each BTC entry.  As with the Global
Cached Correlated Predictor, a prediction counter is ncluded in each BTC entry.

Fig. 2. A Local Cached Correlated Branch Predictor

To avoid two sequential table accesses, the first to access the BTC to furnish the
local history register and a second to access the Prediction Cache, the access time can
be reduced to one clock cycle by caching the next prediction for each branch in the
BTC.  As a result, the next time there is a hit in the BTC, the prediction will be
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available after only one table access.  Once the counters have been updated the
revised prediction from the Prediction Cache must now be cached in the BTC.  There
is, however, a possibility that the attempt to obtain the next prediction for a branch
may result in a Prediction Cache miss.  Therefore a valid bit must also be associated
with the cached prediction bit in each entry.

The BTC is accessed using the least significant bits of the PC.  On a BTC hit, the
history register associated with the PC is obtained along with a default prediction.
The history register is then hashed with the PC and the resulting bit pattern is used to
access the Prediction Cache.  Whenever possible a prediction counter stored in the
Prediction Cache is used to make a prediction.  However, in the case of a Prediction
Cache miss and a hit in the BTC, the prediction from the BTC is used.

Hybrid predictors [9], [15] also use two or more predictors to generate each
prediction.  A hybrid predictor chooses dynamically between two or more distinct
predictors on the basis of each predictor�s past success.  In contrast, our priority
prediction mechanism uses the Prediction Cache whenever possible, and only uses the
prediction counter in the BTC when no other prediction is available.

4 Two Stage Predictor Performance

In this section, we quantify the performance of two-stage Cached Correlated
Predictors.  First we compare their performance with conventional two-level
predictors.  We then quantify the crucial contribution of the second stage.  Our
simulations used a set of eight integer programs known collectively as the Stanford
benchmarks.  Since the programs are shorter than the SPEC benchmarks, each branch
is executed fewer times.  The branches are therefore more difficult to predict and the
initial training problems are more acute.  As a result, a classic BTC only achieves an
average misprediction rate of 11.86% with the Stanford benchmarks. The benchmarks
were compiled for the Hatfield Superscalar Architecture [16], a high-performance
multiple-instruction-issue architecture developed to exploit instruction-level
parallelism through static instruction scheduling.  The HSA instruction-level
simulator was then used to generate instruction traces for the branch prediction
simulations.  All the predictors simulated use a four-way set-associative BTC with 1K
entries; sufficient entries are always available to minimise BTC misses.  A four-way
set-associative organisation is also always used for the Prediction Cache.

4.1 Global Cached Predictors

For comparative purposes, we first simulated a GAg predictor, a GAs predictor with
16 sets and a GAp predictor.  The best misprediction rates were achieved by the GAp
predictor (Figure 3).  The average misprediction rate initially falls steadily as a
function of the history register length before flattening out at a misprediction rate of
around 9.5%.  The best misprediction rate of 9.23% is achieved with the 26 history
register bits.  In general, however, there is little benefit from increasing the history
register length beyond 16 bits.
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The average misprediction rates achieved with a Global Cached Correlated
Predictor are also shown in Figure 3.  The number of entries in the Prediction Cache
is varied from 1K to 64K.  Initially, the misprediction rate steadily improves as a
function of history register length for all cache sizes.  However, after history register
lengths of 12 bits, the limited capacity of the 1K Prediction Cache prevents further
improvement.  In contrast, with larger Prediction Cache sizes, the prediction rate
continues to improve until a history register length of 26 bits is reached.  Not
surprisingly, the larger the Prediction Cache the better the misprediction rates.  The
lowest misprediction rate of 5.99% is achieved with a 32K entry Prediction Cache and
a 30-bit history register.  This represents a 54% reduction over the best misprediction
rate achieved by a conventional Global Two-Level Adaptive Predictor.

Fig. 3. Global Cached Correlated misprediction rates

The high performance of the Cached Predictor depends crucially on the provision
of the two-stage mechanism.  Without the default prediction counters in the BTC,
Prediction Cache misses result in an excessive number of mispredictions.  To quantify
the contributions of the default prediction counters, we repeated our simulations with
the BTC counters removed (Figure 4).  The best misprediction rate achieved rose to
9.12%.  Removing the second stage therefore degrades the prediction accuracy by
52%.  As a result, the Prediction Cache performance is now only marginally better
than a conventional Two-Level Adaptive Predictor and only 12 bits of history register
information can be exploited.  Even worse, as the history register length is increased
beyond twelve bits, the prediction accuracy is degraded catastrophically.

4.2 Local Cached Predictors

Again for comparative purposes, we first simulated conventional PAg, PAs and PAp
predictors.  Conventional local predictors achieve average misprediction rates of
around 7.5%, significantly better than GAg/GAs predictors.  The best conventional
local performance of 7.35% is achieved with a PAp predictor and a 30-bit history
register length (Figure 5).  Local predictors are therefore able to benefit from longer
history registers than their global counterparts.
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Fig. 4. Global Cached Correlated misprediction rates (no default predictor)

The misprediction rates achieved by a Local Cached Correlated Predictor are also
recorded in Figure 5.  The number of entries in the Prediction Cache is varied
between 1K and 64K.  Initially the misprediction rate falls steadily as a function of
history register length for all cache sizes.  Then as more and more predictions need to
be cached, the larger caches deliver superior prediction rates.  However, no significant
benefit is derived from increasing the cache size beyond 8K.  The best misprediction
rate of 6.19% is achieved with a 64K cache and a 28-bit history register.  This figure
is slightly worse than the best global predictor, but represents a 19% improvement
over the best PAg/PAp configuration.

In Figure 6, we record the impact of removing the default prediction stage from our
Global Cached Correlated Predictors.  Again, the impact is severe.  The best
misprediction rate rises to 8.21%, an increase of 33%.  This figure is achieved with 12
history register bits and a 32K Prediction Cache.  Overall, the performance is now
worse than a conventional Two-Level Adaptive Predictor.  We conclude that Local
Cached Predictors are ineffective without a default prediction mechanism and are
unable to exploit more than around 12 bits of branch history information.

Fig. 5. Local Cached Correlated misprediction rates
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Fig. 6. Local Cached Correlated misprediction rates (no default predictor)

5 Three Stage Predictor

The simulation results in the previous section suggest that a Cached Predictor can
deliver a higher prediction accuracy than a conventional Two-Level Adaptive
Predictor.  However, this superiority is crucially dependent on the provision of default
prediction counters in the BTC.  Default prediction counters improve performance for
two reasons.  Firstly, each counter is initialised after only a single execution of a
branch.  In contrast, a branch may have to be executed many times before a useful
entry is made in the Prediction Cache.  Furthermore, several entries must be initialised
for each branch.  Secondly, the Prediction Cache is of finite size and is therefore
unable to retain all the relevant branch prediction information.  In the absence of a
default predictor, a high proportion of Prediction Cache misses will generate
mispredictions.

Furthermore, the best misprediction rates were achieved with long history registers.
For example, the best Global Cached Predictor achieved a misprediction rate of
5.99% with a 30-bit History Register, while the best Local Cached Predictor achieved
6.19% with 28 bits.  This is remarkable, since Prediction Caches using 30-bit history
registers require considerable initiation.  We therefore believed that there was scope
for introducing a third prediction level of intermediate complexity.  This third
prediction stage would use fewer history register bits than the main Prediction Cache,
but, unlike the BTC, would not throw away all the history register information.

These considerations led to the development of a Three-Stage Cached Predictor
with the following stages: a Primary Prediction Cache with k history register bits, a
Secondary Prediction Cache with k/2 history register bits and a default BTC predictor.
Two clock cycles are therefore required to generate a prediction.  However, as
described earlier, the prediction in the two Prediction Caches can be cached in the
BTC to reduce the access time to one clock cycle.  Our expectation was that the new
Secondary Prediction Cache, with only half the number of history register bits, would
be initialised more rapidly than the Primary Prediction Cache.  It would therefore be
able to generate more accurate predictions than the BTC when there were misses in
the Primary Prediction Cache.
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A Three-Stage Predictor can be viewed as a practical implementation of Prediction
by Partial Matching [13].  Predictions are generated as follows.  If there is a miss in
the BTC, the predictor has no knowledge of the branch and defaults to predict-not-
taken.  However, whenever there is a BTC hit, a prediction is attempted on a strict
priority basis.  Whenever possible, the Primary Prediction Cache is used, then the
Secondary Prediction Cache, and finally the BTC.

5.1 Three Stage Predictor Performance

We repeated our simulations using both Global and Local versions of our Three-Stage
Cached Predictors.  As before, the size of the Primary Prediction Cache was varied
between 1K and 64K.  The Secondary Prediction Cache was always half the size of
the Primary Cache and used exactly half the number of history register bits.  The
results for  the Global Three-Stage Predictors are summarised in Figure 7.  As
expected, the three-stage predictor consistently outperforms the simpler global two-
stage predictor, particularly when a large number of history register bits is involved.
The best misprediction rate of 5.57% is achieved with a 32K Primary Prediction
Cache and a 30-bit history register.  This represents a 7.5% improvement over the
best Two-Stage Global Predictor.

Fig. 7. Global Three Stage misprediction rates

The results for the Local Three-Stage Cached Predictor are summarised in
Figure 8.  Again, the three-stage predictor consistently outperforms its two-stage
counterparts.  The best misprediction rate of 6.00% is achieved with a 64K Primary
Prediction Cache and a 28-bit history register, an improvement over the best Local
Two-Level Predictor of 3.2%.

Three-Stage Predictors therefore consistently recorded a small but significant
improvement over their two-stage counterparts.  Furthermore, this improvement was
not necessarily achieved by increasing cost.  For example, a Global Three-Stage
Predictor with an 8K primary cache and a 4K secondary cache outperforms a Global
Two-Stage Predictor with a 32K Prediction Cache.
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Fig. 8. Local Three Stage misprediction rates

6 Conclusions

Our simulations show that a Cached Correlated Branch Predictor is significantly more
accurate than a conventional Two-level Adaptive Predictor.  In earlier work, we also
demonstrated that cached predictors are more cost-effective than conventional
predictors [5], [6].  Our best global predictor is 54% better than the best GAs
predictor and our best local predictor is 19% better than the best PAg/PAp predictor.
We ascribe this higher accuracy to our more disciplined approach.  Our predictions
are always based on counters that have been trained using at least one previous
encounter with the branch being predicted.  Furthermore, there is never any
interference between branch predictions.

The higher accuracy depends crucially on the addition of default predictors in the
BTC.  Removing the default prediction counters degrades the performance of the best
global predictors by 52% and the best local predictor by 33%.  As history register
lengths increase, two-level predictors require an increasing number of counter
initialisations and therefore suffer an increasing numbers of initial mispredictions.  In
contrast, the default counter is initialised after only one execution of a branch,
significantly reducing the number of initial mispredictions.

Even higher prediction accuracy was achieved with our Three-Stage Cached
Predictors, which can be viewed as a practical implementation of Prediction by Partial
Matching.  The best three-stage predictor delivered a misprediction rate of 5.43%, a
35% improvement over the best conventional Two-Level Adaptive Predictor, and a
4.6% improvement over the best two-stage cached predictor.

A major advantage of Cached Correlated Branch Predictors is their ability to
exploit correlations from a large number of history bits.  In our two-stage Combined
Cached Predictor, this advantage is exploited to combine local and global history
information in a single predictor.  This combined predictor delivered a misprediction
rate of 5.68%, 29.4% better than the best conventional two-level predictor.  Finally, a
three-stage combined predictor delivered a misprediction rate of 5.42%, the lowest
misprediction rate reported in this paper.
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Abstract. Embedded systems for safety-critical applications need de-
sign methods, which comply with the requirements of such sensitive
systems. This paper proposes a new approach to the design of such
systems and presents first results. We introduce the method of Virtual
Prototyping in combination with assertions for an UML-based system
design. This means that we build an abstract model of a heterogeneous
embedded system including functional and especially timing constraints
from the very beginning. The Unified Modeling Language (UML) has
been extended to model complex heterogeneous systems rather than just
software. The Virtual Prototype is made executable on an open simula-
tor platform. From the simulation we derive information about the sys-
tem�s functional and timing behavior, which is fed back to the UML
system level. This paper discusses the assertion-based design process
and its implementation by corresponding design tools, and it shows how
assertions can vastly improve the quality of embedded system design.

1 Introduction

This paper proposes a new approach to the design of systems and presents first re-
sults. It concentrates on formal methods and tools to make safety-critical systems
more reliable. By "systems" we mean mainly but not exclusively "embedded systems"
used for the control of complex technical devices like cars, production lines or tele-
communication systems. They are characterized by

- the heavy usage of invisible computing power; this means that a large part of
the design effort is spent on software design;

- distribution of computing resources over typically tens of processors;
- communication via local or remote connections like e.g. the CANbus;
- real time requirements;
- complex I/O consisting of peripherals, sensors and actuators;
- a closed control loop via the system-under-control.

This notion of a system largely extends the system view taken by the integrated
circuit community (system on a chip). A system in our sense is truly heterogeneous
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spanning a variety of different design domains like software, hardware (ASICs),
communication and mechanical subsystems. Moreover, the system designer is con-
fronted with a large variety of modeling methods and languages for each of these
domains.

The development of system design methods and tools is directed by three major
trends:

- Design space extension,
- Need for efficiency improvement and
- Functionality increase.

Design space extension: The design of heterogeneous systems demands the master-
ing and integration of many methods and tools already in use for the single domains.
Since a single formal system description language has proven unrealistic, we must
provide design methods, which allow for multi-language approaches. This means e.g.
the combination of a software simulator, a hardware emulator and a differential equa-
tion solver. In addition to this horizontal extension of the design space we witness
also a vertical extension towards the higher system levels. Here high-level formal
system descriptions are necessary.

Efficiency: Generative approaches are commonplace on the lower design levels (e.g.
the translation from high level language to machine code). If we want to extend auto-
matic synthesis to the system level we need formal system level models, which can be
subjected to rigorous examination by validation and verification tools. A concise and
validated (if not verified) system model is also a guarantee for the success of the sub-
system integration further down in the design process. High time pressure usually
demands the parallel development of subsystems with the result that overall system
test during large parts of the design process must be based on a fully virtual or mixed
real/virtual prototype.

Functionality: More powerful microprocessors attract more complex applications.
This in turn requires RTOS support which then complicates the test phase, especially
if hard real time constraints are to be fulfilled. This is even more serious due to the
increased usage of embedded control systems in safety-critical applications (like the
upcoming X-by-wire technology for cars).

The current situation in the area of systems design is rather fragmented and lacks
integration. There are, however, promising starting points and building blocks avail-
able:

Simulation tools have developed from single domains (like MATLAB/Simulink  for
control system design or MODELICA/DYMOLA  for continuous time systems) par-
tially to tools covering a wider range. The open system simulator ClearSim-
MultiDomain [Sch01], developed at IRB/University of Hannover, combines a very
efficient software simulation (almost real time) with a variety of other executable
modeling languages like EFSM (extended finite state machines), MODELICA,
VHDL, SDL and MATLAB/Simulink.

For system level modeling, the telecom-oriented protocol description language SDL
has become popular and tool-supported in recent years. Its main disadvantage, lacking
real-time support, is overcome by a variant, SDL.Realtime [Wel01]. Despite its ge-
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neric name suggesting a wider applicability, UML (Unified Modeling Language) is in
use exclusively for the domain of software design. Moreover, its real-time support is
not adequate for the design of heterogeneous embedded hardware/software systems.
Nevertheless, we think that UML is a very good candidate for a general system de-
scription language.

Safety-critical systems such as an ABS for airplanes are usually verified by ex-
haustive test. This is clearly not possible for more complex or consumer-oriented
lower-cost systems. Formal verification is promising but difficult to handle by the
average design engineer. A more pragmatic solution is the design-by-contract method
proposed by B. Meyer [Mey01]. It provides a syntax for the insertion of so-called
assertions into the code. Assertions check the validity of logical conditions and fire
exception handling procedures in case of violation. It seems obvious to extend this
idea to timing assertions to support the design of safety-critical real-time systems

The design method described in this article builds on a system design and valida-
tion process (fig. 1), which generates an executable system model (a virtual proto-
type) from UML models. Simulation is carried out by ClearSim-MultiDomain, which
predicts function as well as timing. Safety-critical requirements are introduced in
terms of assertions into the system-level UML diagrams. Logical values as well as
timing assertions are possible. From the graphical input, the assertions are captured in
form of a well-defined language, ADL (Assertion Definition Language [ADL01]).
ADL can be translated back into natural language to support communication with the
possibly non-technical customer. ADL is also the basis for an automatic insertion of
assertions into the C code and the virtual prototype. During the following simulation,
assertions act like "intelligent printf's" allowing for a systematic debug process. For
real-time systems, the combination of timing assertions and the timing predictions of
the system simulator is crucial. Assertions can be debug-time-only (non-resident) or
left in the final product (code resident) forming the basis for an on-board diagnosis
system.

The proposed combination of (1) our UML-based high-level system design, (2) the
virtual prototype simulation and (3) the instrumentation with assertions has the fol-
lowing advantages:

•  Safety requirements like parameter ranges or time constraints can be enforced
through formal constructs inserted into the graphical system design.

•  Assertions formally reflect the requirements from the usually non-formal
specification.

•  Assertions are inserted into the code without manual interaction.
•  A back-annotation into natural language supports contract transparency.
•  Assertions if properly allocated allow to catch a large number of design errors

already during virtual prototype simulation, i.e. in the early design phases.
•  Code-resident assertions serve as hooks for on-board diagnosis.
•  Non-resident (i.e. debug-time-only) assertions can be made time-invisible by

the simulator. Hence they don't influence the timing predictions.

The remaining part of the paper will first briefly review our UML- and simulation-
based system design method thereby largely referring to previous publications. Then
it introduces the usage of assertions for timing and variable value supervision, their
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classification and the code-resident vs. non-resident variants. The following chapter
covers the possibilities of assertion instrumentation into the virtual prototype with the
help of the assertion definition language ADL. Finally we will discuss the multiple
ways of using assertions in the overall design process of safety-critical systems.

Fig. 1: The basic design process (left) based on the simulation of virtual prototypes with Clear-
Sim-MD. The picture omits for reasons of simplification the refinement steps which follow
after the system level design. The right side shows the safety-critical extensions

2 UML-Based System Design for Embedded Systems

The most important and far-reaching decisions in system design are made in the early
design phase when the designer defines the overall system structure that is able to
fulfill the given requirements (in terms of function and timing).

We use the Unified Modeling Language (UML) for high-level system design.
UML is normally used for the structured development of (large) software systems. In
this context, UML classes represent portions of software. However, we can �misuse�
UML to describe systems in a far more general way if we attach additional properties
like timing or a binding to a specific processor type to the objects where necessary. It
is important to construct already this high level view of the embedded system in such
a way that it can be validated by simulation. This means that we need a structural as
well as a functional and executable description.

It should be emphasized that we do not try to find a general system description
language for all the different domains involved. Rather, we use UML to define the
top-level system structure (also called communication skeleton) in terms of a modi-
fied class diagram. The single classes corresponding to the submodules of our embed-
ded system will later have to be modeled with conventional domain-specific methods
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and tools. In addition we exploit three more UML diagrams to present different useful
views on the system to the designer: the Use Case Diagram, the Statecharts and the
Sequence Diagram.

Use Case Diagrams are the external user�s view of a system and its environment.
They describe primary and secondary functions (requirements) and show the main
services the system offers to human users and external systems. Use cases are easy to
grasp also by non-technical persons and should be the basic platform for customers
and system designers to jointly discuss and develop the system�s requirements
(Fig. 2).

Fig. 2: A Use Case Diagram of a cellular telephone

The use cases are also the starting point for the designer to partition an embedded
system into different classes. These classes realize the use cases. The result is a Class
Diagram, which describes the modules of the total system and their relations to each
other.

The following example clarifies how we use an UML Class Diagram to model the
structure of embedded systems. An embedded system may be composed of modules
as shown in the example in fig. 3. A fan, controlled by a microcontroller C167, gener-
ates an airflow whose speed is measured at the end of a wind tunnel. All data are
transferred via a CANbus with 2 microcontrollers C505 driving the CANbus. This
embedded system leads to the Class Diagram also shown in fig. 3.
The Class Diagram is the base for the automatic Virtual Prototype (VP) generation
(more details about the VP simulation in chapter 3). From it we extract the top-level
communication structure of our embedded system. Modules are extracted to a module
list, relations between modules like communication links result in a net list, which is
used in the subsequent steps of building the VP.

In order to make the class diagram executable, the classes� behavior has to be de-
fined. This can be done using domain-specific design tools. During system design,
however, this step has to be deferred. For the time being we are content with a gross
behavioral description of function and timing of the submodules. We use UML State-
charts to define the behavior of the classes (subsystems). These classes are described
in terms of states and event driven transitions forcing the subsystem from one state to
another (see fig. 4 and fig. 5).
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Fig. 3: Example embedded system consisting of 3 microcontrollers and a wind tunnel as sys-
tem-under-control and the corresponding Class Diagram

The description of class behavior by Statecharts may be implemented in two refine-
ment steps. One rudimentary description sketches the gross behavior (see fig. 4). A
fine description, which is also made with the help of Statecharts, can be transformed
into a finite state machine (EFSM) model (see fig. 5) and also used to generate C
code.
In any case, the state model is the input for the automatic generation of a Virtual Pro-
totype. In case a state description is not adequate for specific domains, other models
(Modelica, MatLab/Simulink, C) can be used for refinement.
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Fig. 4: A Statechart as a rudimentary description destined to be refined by Modelica

Fig. 5: A Statechart as a fine description suitable to be transformed to EFSM

At this point in the design process the timing behavior of the modules is not known
yet. Instead we assign timing assumptions to the transitions, which have to be cor-
rected further down in the design process. There is a close relationship between these
high level assumptions and the timing assertions to be introduced later in this article.

The forth type of UML diagrams we use are the Sequence Diagrams. They visual-
ize the communication between the components of the system for the execution of a
scenario. They are useful for the specification of the flow of events and the time rela-
tionships (Fig. 6). Hence Sequence Diagrams capture the (time-oriented) dynamic
behavior between several objects. We use sequence diagrams for the specification of
timing constraints and the back-annotation of the simulation results onto the system
level as will be explained below.

A more complete description of the UML-based heterogeneous system design
methodology is given in [KRI01].
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Fig. 6: A Sequence Diagram showing the timing behavior of a system

3 Simulation of the Virtual Prototype
In order to make embedded systems which typically consist of quite different domains
(like electrical, mechanical and software running on microcontrollers) executable, we
have developed an open simulation platform called �ClearSim-MultiDomain� (Clear-
Sim-MD) to integrate subsystems of different domains into one Virtual Prototype of
the embedded system.

The generation of a Virtual Prototype is done automatically. A subsystem de-
scribed by Statecharts is automatically transformed into an internal textual EFSM
representation (Extended Finite State Machine) and further into an EFSM simulation
module executable by ClearSim-MD. Similarly the other model domains are trans-
lated into executable simulation modules. So far ClearSim-MD supports widely used
languages like Modelica, MatLab/Simulink, EFSM, SDL and a software-emulation
for Infineon C167 and C505 microcontrollers.

ClearSim-MD predicts the function as well as the exact timing of the VP. This is
important for the evaluation of the assertions to be discussed in the next chapter.

So far we have shown how to use UML for the specification and description of
embedded systems, introducing the Use Case Diagram, Class Diagram, Statechart and
Sequence Diagram, and how to translate these models into an executable Virtual
Prototype. Next we will introduce assertions and their role in safety-critical system
design.

4 Assertions in UML-Based System Design
Assertions are a construct to specify constraints in a software system. We use the term
assertion in the way Bertrand Meyer [Mey02] defined it: "An assertion is an expres-
sion of the element's purpose". Like Meyer we also distinguish between pre-, post-
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and process conditions. According to Warmer and Kleppe [War01] constraints are
"Restrictions on one or more values of an object-oriented module or system". Asser-
tions in the context of embedded systems design serve two purposes. (1) They moni-
tor the values of specified variables or of expressions built from variables. This way, a
variable can be restricted in a limited range. This is the usage of assertions as pro-
posed by Meyer. (2) Moreover, assertions are also ideal for monitoring the timing
behavior of an embedded system. So, we can check e.g. if a certain critical section of
a program is carried out within a given time limit. So far, we have not seen an imple-
mentation of timing assertions mentioned in the literature. - In both cases an assertion,
which is, violated leads to a reaction by some kind of monitoring system.

Depending on the location of an assertion at the beginning or the end of a function,
we talk about pre- or postconditions. A process condition makes sure that the asser-
tion is monitored during the whole run time of the program.

The introduction of the concept of assertions into (embedded) systems design
poses two problems: (1) How and where are assertions inserted into the model? (2)
How can we organize the proper reaction of internal or external monitors to the possi-
ble violation of assertions?

4.1 Internal vs. External Monitoring

Assertions may be used for debugging purposes only. In this case they are called
�non-resident� since they are removed from the code after the test phase. Accordingly
the monitors reacting to violations are external, i.e. not part of the target system. They
rather belong to the simulation system (in case of a virtual prototype) or to the test
and measurement system in case of a real prototype. Code-resident assertions remain
in the final target system to observe, log and possibly correct critical parameters. The
monitor in this case has to be part of the target system, i.e. it is internal. Internal
monitors can also be viewed as on-board diagnosis systems.

In case of a diagnosis system there exist several possibilities how to react upon as-
sertion violations: Values slightly out of range can be pushed back into the specified
range (Meyer�s �correct values and continue�). More serious violations might require
a system reset or lead to "organized panic" (Meyer in [Mey01]).

The combination of assertions with a full functional and timing simulator allows to
enforce constraints already during the early design phases. Its advantage in compari-
son to a test of the real prototype is that non-resident assertions can be skipped in
terms of virtual time calculation. Hence they will not distort the exact timing predic-
tions of the test run, as is always the case with the real test instrumentation.

4.2 Assertion Instrumentation

It is the final goal of a system design methodology to let the designer interact with
only high level system representations as introduced in chapter 2 above. This is of
course also valid for the insertion of assertions. E.g. general physical constraints (or
other obvious constraints taken from the system�s specification) will be inserted as
assertions into the Class Diagram as they are relevant for a whole subsystem (a class
of the Class Diagram).
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For the insertion of assertions at a finer granularity we see two possibilities: Asser-
tions can be graphically inserted into the Statecharts (see fig. 7).

This method is advantageous for value range assertions as well as for timing-
constraints. Alternatively, timing assertions e.g. of the type min/max time or time-out
can be inserted into a Sequence Diagram.

This usage of assertions on the high system level means that not only software
systems can be monitored but also � on a rather abstract level � the behavior of sub-
systems from other domains like electro-mechanical subsystems or sensors. Of course
in this case the assertions are restricted to the Virtual Prototype.

So we can summarize the design flow with assertions as follows: First, the designer
models the Virtual Prototype with UML diagrams. Starting point for the designer is a
requirement analysis with use cases that helps him to divide his system into classes
(subsystems). After he has defined the system's structure by a class diagram, he will
insert some already known safety-critical constraints (e.g. based on physical limits or
other obvious constraints). Then the projected behavior of the different classes will be
specified by rudimentary Statecharts. These diagrams import assertions from the
Class Diagram level and will be augmented by additional "local assertions", relevant
only inside the subsystem itself. So we distinguish between �global assertions� rele-
vant on the upper level of the embedded system (Class Diagrams and rudimentary
Statecharts) and �local assertions� relevant on the subsystem level (e.g. fine State-
charts or Modelica, MatLab/Simulink etc.). The system model described so far is then
transformed automatically from the instrumented UML diagrams into an executable
Virtual Prototype.

Fig. 7: A Statechart with functional and timing constraints (assertions)
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So far, we have implemented an assertion instrumentation method into an SDL model
for software subsystems only. A more general assertion instrumentation as described
above will be based on graphical primitives inserted into the UML diagrams. Pres-
ently we are assessing the possibility to use OCL [War01] (possibly in a slightly
modified version) to introduce constraints into the system level UML diagrams.

Having explained the concept of assertions according to B. Meyer and their usage
on the embedded system level we will discuss their transformation into target code
with the help of the Assertion Definition Language (ADL) and give a short glance to
the Object Constraint Language (OCL) which is in its current version 1.4
(UML1.4/OCL1.4) an interesting candidate for high level input of assertions.

5 ADL Supports UML-Based System Design
The objective of the Assertion Definition Language (ADL) is to instrument C-Code,
C++-Code and also Java-Code with assertions and to support test scenarios for soft-
ware (TDD Test Data Description). The latter aspect is not our focus. ADL is also
able to use a Natural Language Definition to present its assertions in natural language,
which could be used for a non-technical client to crosscheck the final assertions of the
embedded system with his expectations and requirements.

Assertions are written in ADL as a description of how the functional behavior is af-
fected by the input state, and the resulting changes on the output state. This is referred
to as the pre/post conditions [Oba01]. Figure 8 shows an example of an ADL defini-
tion of a function �integer square root� and illustrates the generation of program code
by an ADL-Translator (ADLT). The outputs of ADLT are Assertion Checking Ob-
jects (ACO) and Assertion Checking Functions (ACF), which we use to instrument C-
Code. Additionally we use the Documentation output for a description of assertions in
natural language.

Fig. 8: An example of a function �integer square-root� defined in ADL and translated to As-
sertion Checking Objects/Functions to instrument C Code

We have examined the suitability of ADL to insert the assertions from high-level
UML diagrams into the low level C Code generation. First results show that ADL
serves this purpose quite adequately. A (so-far manually written) ADL assertion
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specification is automatically translated into instrumented C code. As ADL is an open
and well documented software it seems obvious that by translating OCL to ADL we
will be able to close the remaining gap between system level assertion specification
and implementation level assertion instrumentation into C code.

So far we have shown what a closed design process - from system level to the real
prototype via a simulated virtual prototype - under inclusion of assertions could look
like. In the final chapter of this paper we want to show how this basic mechanism can
be used for the design of safety-critical systems.

6 Assertion-Based Design of Safety-Critical Systems
In previous chapters we have discussed the UML Diagrams, Virtual Prototyping in
combination with assertions and the usage of ADL (and OCL). So we are now able to
extend the design flow of figure 1 to give a more general description of our approach.
Figure 9 illustrates the UML-based system design process and especially the flow of
assertions in more detail.

Based on the Use Cases and the Class Diagram the embedded system is partitioned
into subsystems. Already on the level of Class Diagrams some obvious constraints are
attached to the classes. More detailed assertions can be introduced at the levels of the
rudimentary and refined Statecharts in the form of graphical add-ons. It is important
for our approach that on this abstraction level only assertion tokens are defined as
placeholders, which so far carry no values. - With the focus on assertions, now we
will explain some details of their further processing.

The module �Assertion Capture� extracts the assertion tokens from a Statechart
and builds an assertion table. The values of the assertions are entered into the table by
the system designer. They will be possibly changed after a later simulation run of the
Virtual Prototype. Where necessary the designer now selects the desired reactions on
assertion violations by assigning the assertion tokens to certain reaction classes. In
case of using OCL for the instrumentation of assertions into UML diagrams the As-
sertion Capture module will additionally translate OCL to ADL.

The output of Assertion Capture in combination with the assertion table values is
transferred to the ADL translator (ADLT) which generates C code in form of Asser-
tion Checking Objects and Assertion Checking Functions to instrument the C code
generated by our Virtual Prototype Builder. Additionally the ADL translator outputs
the assertions in natural language for a crosscheck by the client. Therefore ADLT
uses a natural language definition file (NLD).

The process of building the VP is synchronized with the ADLT to generate simu-
lation modules including the assertions of the UML level.

The systematic insertion and corresponding check of assertions opens a number of
possibilities for their further usage:

(1) Back-Annotation: We have already stated that the ultimate goal of a system design
process is to allow the system designer to interact with the design process exclu-
sively from the high-level system point of view. This means that eventual asser-
tion violations must be reported back to the levels of Class Diagrams, Statecharts
and Sequence Diagrams. We use graphical representations of assertion violations
to achieve this goal.
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(2) Assertion correction: The values, which are assigned to the assertion tokens, usu-
ally are not final but best guesses. It might turn out during the analysis of the VP
that some of them are too narrow, some are too loose. Therefore during a step that
we call �assertion sharpening/loosing� the designer goes back to the assertion ta-
ble to make the necessary corrections. This step can even be partially automated if
we assign range parameters (like a relative sharpness) to the assertions.

(3) Automated diagnosis generation: Code resident assertions require defined reac-
tions. Based on the assertion structure it is possible to generate the skeleton of a
diagnosis system, which has to be filled in later by the software implementing the
desired, the reactions.

Fig. 9: The UML-based system design using Virtual Prototyping in combination with asser-
tions

7 Summary and Status of Work
We have introduced the concept of an assertion-based design method and associated
tools for safety-critical systems. The standard design process for heterogeneous sys-
tems based on the simulator ClearSim-MD has been implemented and tested for sev-
eral applications. In the present version, we support several popular modeling meth-
ods for non-software domains like EFSM, Modelica and MatLab/Simulink. Target
software is written in C or graphically in SDL.RT. For SDL.RT we have implemented
the graphical input of assertions and their processing down to the code level as well as
a means for back-annotation to the SDL.RT source level. However, for the future we
favor an UML-based approach since UML is widely supported and offers a rich vari-
ety of diagrams. We have adapted UML for the use as a general system design lan-
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guage. The automatic translation from Class Diagrams and Statecharts into an execu-
table Virtual Prototype works already in a prototype version. Presently we are devel-
oping the Assertion Capture module. First results with (so far manually written) ADL
specifications are encouraging. The shift from assertion definition by ADL to a high-
level constraint definition by OCL is in its conceptual phase.
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Abstract. Existing architectures for wide-area high-performance computing
often suffer from their inefficient access mechanisms. Especially due to the chal-
lenge of ubiquitous computing, flexible access to those infrastructures is needed.
Different possibilities to fulfil these requirements are discussed in this paper.
Starting with the Hypercomputer as a Java-based architecture for wide-area
high-performance computing, access mechanisms for web computing as well as
mobile computing are presented. With the Home@Globe system, interactive
applications on distributed servers can be run using a web browser. Also, using
the Kertasarie VM, resource constrained client devices can be integrated into the
system. The successful integration of these four mechanisms is explained by
means of an application scenario from the field of agricultural science.

1 Introduction

1.1 Motivation

The capabilities, computational performance and data throughput of desktop computers
are continuously growing, but usually they are available only for single users. Further-
more, dedicated high-performance machines need to be integrated into standard
computing processes. Different services like the access to applications, information,
storage or specific hardware can be offered world-wide by connecting these resources
via internet. Since the early ‘90s, several architectures have been developed to imple-
ment this idea. The basic requirements for those systems are:

• The system is widely distributed, and its components and configuration can be
changed dynamically.

• The developed or used software must be platform independent and interoperable
with other technologies.

• The system shall provide a high degree of performance.
• Because of the use of the internet for communication, security aspects need to be

considered.
• The use of the system shall be flexible and easy.

In order to allow or assure a widespread use of existing, powerful infrastructures for
high-performance computing, especially their access mechanisms have to be improved.
A command line or application program interface is not acceptable for most types of
users. Also, there is a continuous trend towards the integration of applications into the
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world wide web, and to offer them as services via web browser interfaces. This func-
tionality is implemented in portals, e.g. for application service providing (ASP).

Furthermore, the challenge of ubiquitous systems asks for mechanisms to integrate
computers into every-day life [1]. This especially requires a large number of various cli-
ent devices, like smart labels, information appliances or Personal Digital Assistants
(PDAs). These devices are constrained in resources and power consumption, and for
this reason special considerations must be given to these aspects.

This paper gives an overview on the successful integration of mobile components into
distributed high-performance architectures.

1.2 Scenario of Use

An example for the resulting hardware infrastructure is depicted in Figure 1. There are
high-performance server farms, which are interconnected by communication networks
like the internet. Additionally, wireless networks can be integrated. Different client
devices are completing the scenario, for instance desktop systems with enhanced
multimedia capabilities, or portable computers like a PDA.

A system of flexible and powerful software is needed for the management and access
of the hardware components, as well as to provide services to the users. A server can
act as a portal, e.g. for the combination or web integration of services, which requires
further tools.

The main software components as the pivotal points of such an architecture are subject
of this paper. In chapter 2, the Hypercomputer as the infrastructure for wide-area high-
performance computing for this work is described. The web portal Home@Globe offers
access to high-performance and interactive applications through standard web brows-
ers. It is presented in chapter 3. Finally, chapter 4 presents the Kertasarie VM and Tiny
RMI implementation for resource-constrained devices. References of these components
are given in the corresponding chapters. In order to intensify the motivation of this
work, some example applications are given in the following section.

Fig. 1. Ubiquitous Access to Wide-Area Resources
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1.3 Example Applications

There are a lot of application scenarios, where on one hand powerful computational
resources are needed, yet on the other hand the user needs to be extremely mobile. For
instance, in agricultural sciences input data is often gathered outdoors. Since their
calculation is resource-intensive and Therefore must take place on a central server, a
connection between the mobile measurement device and the server is needed. The client
is thus only responsible for the submission of data and the user interface.

A distributed high-performance application that has been implemented is the analysis
of water tickling in soils, respectively the simulation of this process. Figure 2 depicts
this scenario schematically, together with a sample simulation output.

The soil section to be analyzed consists of different soil particles and numerous spaces
between them. These can be filled with water or air particles. The deeper a level is, the
more water it contains. The movement of water is caused by gravity (downwards) and
capillary effects (isotrop), and it depends on the soil type, vegetation, evaporation and
so on. The simulation figures out the degree of saturation in the soil levels, following a
model based on the hydraulic conductivity of different soil types and rainfall tables
troughout several days. The water movement and thus the new water volume of each
soil level are calculated. The diagram shows the results for 20 soil levels, where the up-
per 5 levels consist of a more pervious material than the lower 15 ones. Basically, dur-
ing a period with continuous rainfall, the water is tickling down, until each soil level is
fully saturated. This equals 40 % of the soil volume, which is reached only by level 20
in the diagram.

The combination of mobile devices and distributed high-performance applications
could also be used for the cultivation of forests. Foresters often need to decide which
trees must be cut down in order to leave enough space for the healthy trees. The main
problem is to optimize the amount of valuable wood in a forest. A forester can record
various attributes of trees, submit this data, and as a result he gets the trees to cut down.
Another application can be found within sports. The analysis of motion sequences of
sportsmen requires much computational power. Coaches can input different parameters
via mobile devices, submit them for analysis and receive the results within a short
period of time.

Fig. 2. Principles and Output Visualization of Soil Simulation
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Moreover, the system can be used without the high-performance facility for conven-
tional interactive and client-server applications on mobile devices, like distributed in-
formation systems, e.g. for medical diagnosis.

2 Distributed High-Performance Computing: Hypercomputing

Starting in 1996, the project Hypercomputing was one of the first distributed computing
initiatives in Germany [2], and was supported by partners from university as well as
from industry. The following sections give an overview of the system. Detailed infor-
mation can be found in the final project report [3].

2.1 Project Principles

The Hypercomputer offers an infrastructure for the concurrent job execution in a wide-
area network of workstation clusters. A cluster can be configured to use conventional
batch queueing systems. Interfaces to LSF, DQS, NQS and Codine [4] have been
implemented. Several types of resources are combined: from the local environment
(local-area or cluster computing) as well as remote resources (wide-area, Meta-, Hyper-
or Grid computing). The clusters are arranged in a network of neighbourhood relation-
ships.

The system is scalable due to its dynamic resource management, which is transparent
to the user. Due to load balancing mechanisms, all available resources and services are
used effectively. Furthermore, the architecture is based on a security concept, consisting
of authentication, encryption, logging and accounting. A user interface is offered local-
ly on shell level as well as remotely via WWW. All components are implemented in
Java and thus executable on VMs on different platforms.

These are significant advantages compared to other projects, which are developed using
platform dependent mechanisms or do not offer the full bandwidth of functionality of
the Hypercomputer. For instance, the project Metacomputing is focused on dedicated
parallel machines [5]. The meanwhile widespread GRID technology formerly suffered
from security aspects or data management [6]. Finally, existing tools (e.g. PVM, MPI,
or batch queueing systems) are not that comfortable and portable [7].

The following subsection gives an overview on the software architecture of the Hyper-
computing system.

2.2 System Architecture

The components of the Hypercomputer are designed as independent modules and thus
easy to extend, to replace or to reuse [8]. All software has been written in Java. Each
Hypercomputing cluster has a master host, on which the following servers are providing
the core functionality of the system (see Figure 3):

• resource management
• job management
• performance management
• security management

The management of resources includes their detection and periodical measurement as
well as the information exchange with neighbour clusters. For measurement tasks, the
functions of the Hypercomputer or a batch queueing system can be used.
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The job server is responsible for all tasks related to the execution of jobs, i.e. their
reception from the user, the determination of suitable execution resources, the transport
of the job and its data through the Hypercomputer, the observation of job execution, and
the notification of the user. In local environments, batch queueing systems can be used
for these tasks. The Hypercomputer extends their mechanisms for heterogeneous wide-
area networks by defining an overall, flexible and platform independent infrastructure,
which is locally adopted to existing systems.

For best use of the Hypercomputing resources, performance management has been
integrated. It consists of a flexible load balancing module, a component for resource
prediction in order to consider future conditions, and especially an evaluation of
communication performance, which has a strong influence in wide-area networks. The
load balancer is able to manage various algorithms, which are sorted in a decision tree.
Thus, for different types of jobs, users, external constraints and so on, different load bal-
ancing strategies can be applied.

All components are accessing security mechanisms in order to mutually authenticate
users as well as system modules. The authentication is based on a distributed, Kerberos-
like ticketing system. Furthermore, all resources used by jobs are logged and signed by
the job server, and are later analyzed and converted into costs per job and per user by
an accounting component.

The Hypercomputer software components are communicating with each other using
Java Remote Method Invocation (RMI). This requires no special infrastructure on the
servers or clients except for the Java Virtual Machine (JVM). Besides, network connec-
tions or lower protocols are fully transparent to the system.

2.3 Applications

The Hypercomputing infrastructure can be used for simultaneous execution of parallel
or sequential applications on distributed resources in wide-area networks. Because of
the often limited network performance, applications with only minimal communication

Fig. 3. Components of the Hypercomputing Architecture
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between their program parts should be preferred. Following Flynn´s classification,
these are mainly single program multiple data (SPMD) applications.

In order to evaluate and demonstrate the Hypercomputing infrastructure, several exam-
ple applications have been developed: programs for the parallel rendering of images or
animations, a distributed number crunching program for cracking RSA cryptographic
keys, and a parallel simulator for soil analysis (see section 1.3). Compared to a
sequential algorithm, a huge speed-up can be gained using the Hypercomputer. Follow-
ing Amdahl´s law, it is limited by the number of parallel processes respectively the
number of hosts used for computation. Because of the overhead for administration of
the infrastructure and the limited communication performance of wide-area networks,
further latencies arise.

The basic Hypercomputer suffers from two restrictions: Firstly, it doesn’t allow inter-
active applications, since the execution host is generally not known to the user. This re-
striction is addressed by Home@Globe, presented in the next chapter. Secondly, client
software of the hypercomputer relies on Java and Java-RMI. Thus, it can not be used on
systems that do not provide this infrastructure (like mobile systems). This restriction is
addressed by the Kertasarie VM and TinyRMI as middleware, presented in chapter 4.

3 Web Access to Interactive Applications

Home@Globe is a WWW computing portal, which provides a uniform framework for
application service providing (ASP) and distributed high-performance computing.
Users can access and run applications through a standard web browser. Machines, data,
applications, and other computing services at different places can be managed.
Home@Globe provides a suitable remote access to normal desktop applications as well
as to distributed parallel applications. The following sections give an overview of the
system. Detailed information can be found in [9][10].

3.1 Related Work

There are several projects addressing the problem of remote access. As an example,
VNC and WinFrame are closely related to this project. They provide flexible mecha-
nisms to export graphical displays to remote clients in a platform independent manner,
but they do not address further issues that arise in a wide-area distributed computing
environment.

Other work is done to support the development of computational grids. For instance,
WebOS [11] provides operating system services to wide area applications, e.g. resource
discovery, remote process execution, and security. The Purdue University Network
Computing Hubs (PUNCH) [12] consists of a two-level infrastructure. It supports a
network-based desktop environment, and the SCION (Scalable Infrastructure for On-
demand Network computing) middleware manages distributed resource back end.
PUNCH submits jobs to SCION, which determines the most cost-effective system to
run the job. SCION supports physically distributed compute engines and tools, and han-
dles the resource and priority assignment as well as failure recovery.

3.2 System Architecture

The software components of the Home@Globe system provide a suitable remote access
to common desktop applications as well as to distributed parallel applications. A user
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interacts with the system in two ways: by invoking single or parallel server applications.
The main components of the Home@Globe architecture are (see Figure 4):

• a central server, which provides applications and data
• a HTTP server for the communication with the user
• a Hypercomputing system for distributed applications
• the client

The central server is managing several types of applications, that can be run by the user.
These are applications for Unix or Linux as well as Windows variants. Furthermore, the
personal data of each user is handled in a local file system. The central server can be
distributed on different hosts in a local- or wide-area environment.

The HTTP server is the main communication element of a Home@Globe architecture.
It provides HTML and Java classes to establish the connection between the user’s
browser and the application, for the input of high performance parallel applications, and
for remote displaying of applications. Therefore, management information on applica-
tions as well as users is stored here. Furthermore, monitoring of users and their jobs is
done on this server. The HTTP server can be implemented hierarchically.

In order to avoid making the application server an I/O bottleneck, the application
management is responsible for keeping track of the capabilities of each application
server. The HTTP server’s configuration database contains information about all
applications, e.g. user licenses, user priorities, locations of installed software etc. If the
number of users or licences on an application server is exhausted, another server which
provides the same application can be used.

Besides the central server, a Hypercomputing system can be bound to Home@Globe
for the integration of other applications (especially, from the distributed computing
area). This is explained in more detail in the following subsection.

The fourth component is the client, which is just a Java-enabled web browser on a work-
station, a desktop PC, a network computer (NC), or a notebook. It can be located on any
type of platform; Unix, Linux, NT or Windows. Thus, Home@Globe is totally platform
independent.

After a user has opened the Java-based Home@Globe web interface and provided that
he has authenticated correctly, he can request an application desktop from the central
server or the Hypercomputer remotely.

Fig. 4. System Architecture of Home@Globe
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3.3 Integration of the Hypercomputer

The Hypercomputer and Home@Globe mutually extend each others functionality. The
original Hypercomputing architecture is not able to deal with interactive applications
with graphical user interfaces, but Home@Globe handles a display redirection. On the
other hand, the Hypercomputer offers a huge amount of distributed applications to the
Home@Globe web computing interface.

Both systems can share some components, for instance the user management. Indeed,
the current Home@Globe architecture is using the user database, authentication, and
authorisation from the Hypercomputer. This is not only done in order to minimize the
expense for implementation, but also to simplify the security mechanisms.

The communication between the components of both systems takes place using Java
RMI. Thus, Home@Globe acts as another node for the Hypercomputing architecture,
which is able to configure the system and to submit jobs, but is unable to execute any.
No modifications of the existing Hypercomputing software have been necessary for its
integration into Home@Globe.

4 Access by Mobile Devices

4.1 Java in Embedded Systems

Throughout this chapter, we will focus on PDAs as an example for mobile devices. In
the last two years a fusion of PDAs and cellular phones can be seen. This adds substan-
tial capabilities to such devices. This kind of equipment allows network access virtually
anywhere. Persistent network connections are conceivable using GPRS technology.
Thus, PDAs seem to be an ideal portal to access the Hypercomputer from every place.
There are some severe restrictions on these devices, however. Typical PDAs like the
3Com Palm series offer only very limited resources. The constraints by name are com-
puting power, memory (up to 8MBytes), a limited display (160x160 pixel) and bounded
network capabilities (with respect to bandwidth and latency).

Accessing the Hypercomputer mandatorily requires Java RMI as a middleware infra-
structure. RMI is so tightly integrated into the language concepts of Java that it is not
possible to use RMI without Java. The use of RMI yields to the deployment of a Java
infrastructure. Unfortunately, common Java implementations require considerably too
many resources in terms of computing power and memory in order to use them on a
PDA. There are three major components that are not suited to run on a PDA: the virtual
machine itself, Sun’s implementation of RMI and the available Java GUI systems.

Over the last two years, several Java virtual machines, that are especially designed for
embedded systems and particularly PDAs were introduced. Examples are the KVM by
Sun [13], IBM’s J9 [14], Esmertec’s JBed [15] and a VM by Kada Systems [16]. All
these developments have one thing in common: they do not support reflection. Reflec-
tion is a concept to gain information about classes, fields and methods. It is a mandatory
component of the Java API to allow object serialization and remote method invocation.
Another VM implementation of Sun which supports reflection, the CVM, is much to
large (about 2 MBytes of code) to be run on a restricted device like a PDA. To sum up,
there is no virtual machine implementation available that is designed for PDAs and sup-
ports Java RMI. This led us to the development of our own VM implementation, called
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Kertasarie, which fully supports reflection. This VM, as well as a windowing toolkit
suited for limited displays, are described in more detail in the next subsection.

Another drawback is the current RMI implementation of Sun. It was designed for use
in well-equipped desktop and server systems and not with limited resources in mind.
Therefore, a compatible RMI implementation suited for embedded devices and PDAs
was developed. It is described in section 4.3. Finally, the connection of PDAs to the
Hypercomputer is described in section 4.4.

4.2 The Kertasarie VM Implementation

The Kertasarie VM was designed with restricted resources in mind [17]. Not only com-
puting power, but also memory is very limited compared to desktop systems. Hence,
the major objective was to focus on low memory consumption. Other design goals
were:

• full support of the Java 1.2 standard including reflection,
• shifting as many data structures as possible into ROM to gain more object store,
• ease of portability,
• real-time capabilities,
• scalability of VM functionality as well as of the Java API, and
• an integrated Java debugger for remote access to the internal VM structures via a

socket connection.

Table 1 shows the code size of the Kertasarie VM compared to the market leaders KVM
from Sun and the J9 VM from IBM. 1

All VMs are running on a PalmOS PDA, which is a typical example of a mobile device.
The Kertasarie VM was compiled with full reflection and RMI support. The column
„overall“ represents the sum of binary code, specialized API and the application. The
results show, that the Kertasarie VM is smaller than the other implementations, even
though it offers a more extensive functionality. Table 2 shows the results of a simple
benchmark [18].

This benchmark consists of 9 tests:

• empty loop iteration (1 000 000 times),
• addition of 1 000 000 values,
• multiplication of 1 000 000 values,

JVM
Binary Code

(kB)

API (kB) Application
(kB)

Overall (kB)
Standard Specialized

KVM 581 1 - - 19 600

J9 85 211 98 15 198

Kertasarie 105 440 53 13 171

Tab. 1. Size of different VM implementations

1 The standard API of the KVM can’t be tailored to a specific application. Thus, the KVM itself contains
the full API.
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• 1 000 000 array assignments,
• 1 000 000 object field accesses,
• 1 000 000 method calls in the same object,
• 1 000 000 method calls in another object,
• throwing and catching of 1 000 000 exceptions, and
• thread switchings between two threads with the same priority, 10 000 times for

each thread.

Table 2 shows, that the Kertasarie VM is the fastest among the three tested VMs. It
should be noted, that the Kertasarie VM implements a strict „highest priority first“
algorithm, including „priority inheritance“ to prevent high priority threads from being
starved by a low priority thread holding a needed resource. This implementation was
chosen with real-time scenarios in mind.

Major attention was put on the ease of portability. The Kertasarie VM is strictly ANSI-
C compliant, and all platform dependent code is strongly encapsulated. Until now, the
VM has been ported to the following operating systems: Linux, Solaris, LynxOS,
PalmOS, and a special operating system inside a PBX (private branch exchange).

The scalability of the VM and the appendant API is addressed in several ways. Firstly,
it is possible to exclude at compile time those functions from the VM, that are not
needed for a particular application. This can considerably decrease the size of the virtual
machine. Another way to reduce the amount of necessary memory is to tailor the API
according to a particular application. A tool suite developed for the Kertasarie VM,
called Embedded Java Tools (EJT), takes an application as a starting point and builds a
new API adapted to this application. Only those classes and methods that are needed to
execute the application are adopted into the specially created API. For a typical appli-
cation, approximately 50 percent of the methods are swept. This VM-independent part
of the EJT is the input to another process that takes this API and transforms it into the
internal Kertasarie VM structures. One benefit is the reduced size of the classes, be-
cause all symbolic references are substituted with pointers to the appropriate VM struc-
tures. The table containing the symbolic references in the class-files is now obsolete.
Further important advantages are the possibility to shift these generated VM structures
into the ROM to save much valuable RAM and to reduce the start-up time.

Existing GUI systems for Java also do not address the restricted resources in terms of
display sizes and memory constraints. The standard windowing toolkits like AWT
(Abstract Windowing Toolkit) and Java Swing are much too large to deploy them into
a PDA. Moreover, the GUI components like buttons, menus, sliders etc. are not
designed for small displays. There are notably two existing GUI toolkits designed for
use on PDAs: kJava and kAWT.

JVM
Execution
Time (s)

KVM 1 142

J9 1 147

Kertasarie 963

Tab. 2. Performance of different VM implementations
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The kJava [19] native components are tightly integrated into Suns KVM, so an easy
integration into the Kertasarie VM is out of question. Besides these drawbacks, kJava
only supports the dynamically representable elements, and therefore suffers from
displaying menus on PalmOS devices. Recently, the kJava package was migrated into
the MIDP (Mobile Information Device Profile) LCD-user interface package, which is
even more restricted and heavily tied to the capabilities of cellular phones.

The kAWT [20] was developed to be functionally compatible to the standard AWT
package. A major drawback is that kAWT rebuilds its own GUI components and does
not use the native operating system components, which decreases the performance.

For the Kertasarie VM, an own GUI system has been developed. A major goal was the
usability on PalmOS devices and Linux/Unix desktop systems. The PalmOS implemen-
tation supports all native GUI components of the operating system including menus.
Figure 5 shows a screenshot of an example application, which is the submission of a
batch job to the Hypercomputer.

The Linux/Unix implementation relies on the Gimp toolkit (GTK). It was chosen
because it offers a C interface and particularly because it is available in a framebuffer
version. This framebuffer version allows an easy integration into various embedded
systems.

Using the Kertasarie GUI toolkit, it is now possible to write applications for various
embedded devices including PDAs and desktop systems. Especially, rapid prototyping
becomes now feasible.

4.3 A minimized RMI variant: TinyRMI

The usage of a middleware like RMI on a mobile device is not only limited by the re-
quired virtual machine, but also by the middleware layer itself. The original implemen-
tation of RMI by Sun amounts to more than 400 KB of class files. This includes

Fig. 5. PDA with the developed GUI for PalmOS, and the original Hypercomputer
GUI with the Java AWT
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components for distributed garbage collection and activation. Even if those components
are not considered, still 200 KB of class files remain.

Thus, it is not only necessary to minimize the resources required by the virtual machine,
but also to minimize the size of the implementation of the middleware layer. TinyRMI
was designed and implemented with this goal in mind. Primary focus was the minimi-
zation of the number and size of the classes. Yet, space should not simply be traded for
time and thus the resulting implementation should not be considerably slower than the
original implementation.

Other researchers have already implemented special versions of RMI. NexusRMI [21]
was intended to provide a uniform interface to remote objects, that can be used with
Java as well as with C++. Its main target is high performance computing. JavaParty [22]
is targeted for the same area and offers direct usage of various transport layers. Another
interesting RMI variant is NinjaRMI [23], which implements other transport protocols
besides TCP like UDP, multicast and broadcast. All of these variants were not designed
with a minimization of the memory usage in mind. Thus, we decided to design our own
variant. A more detailed discussion of these implementations and an analysis of the
structure of the Sun implementation can be found in [24].

The resulting TinyRMI implementation has an API that is fully compatible to the
reference implementation, while not using exactly the same protocol on the communi-
cation channel. TinyRMI doesn’t provide distributed garbage collection and activation,
but in our opinion these are not required in embedded systems.

Table 3 shows the number of classes and the corresponding sizes of the reference im-
plementation, NinjaRMI and TinyRMI. The other implementations are considerably
larger and thus not suitable for embedded systems. The results show that TinyRMI is
by far smaller than the reference implementation and noticeably smaller than Ninja-
RMI. Yet, the full quality of the implementation can only be seen, if not only the classes
itself, but also the required Java API classes are counted. Table 4 shows these figures
for all three variants. Now the difference between NinjaRMI and TinyRMI becomes
substantially larger (almost 70KB). The given figures are based on the standard API by
Sun. If we use the specialized API of the Kertasarie VM the required memory space
shrinks dramatically, as the last line of Table 4 shows. Compared with the original
version of Sun this variant only consumes one fifth of the memory space.

Such a clear reduction of the space is often traded for the speed of the corresponding
implementation. Table 5 shows communication times for all three variants for two dif-
ferent test cases. The first case is a method call with no parameters and no return value
(thus the most simple case that can be thought of). The second case is a method call with
an array long[1024] as parameter and result value. The table does not only show the

Variant # of Classes Size (Byte)

Sun RMI 121 209 573

NinjaRMI 42 68 343

TinyRMI 26 51 060

Tab. 3. Size of the three RMI implementations
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average time for the method call, but also the standard deviation of the sample. It turns
out, that NinjaRMI is the fastest variant for the simple case, and TinyRMI is the fastest
for the complex case, and is considerably faster than the Sun implementation for the
simple case. Even more interesting is the fact, that the standard deviation of the
TinyRMI results are considerably lower than for both other variants. We currently can’t
give an explanation of this behaviour, although it is absolutely in the favour of
TinyRMI. Several additional test cases and a more thorough analysis of the results can
also be found in [24].

4.4 Integration of the PDA into the Hypercomputer

In order to use TinyRMI as middleware between the Hypercomputer and the mobile de-
vice, the Hypercomputer had to use TinyRMI as middleware layer for its internal com-
munication. This required only the change of an import clause in the sources. No
additional changes were required, since the API of TinyRMI is fully compatible to the
reference implementation.

On the PDA’s side, the implementation of the Hypercomputer client was required.
Unfortunately, this implied many more changes, since the GUI differs significantly
from the standard AWT used in the Hypercomputer. Thus, the screen layout had to be
adapted to the limited display size of the PDA, and the dialogues had to be restructured
slightly in order to fit all essential elements on the screen. With these changes, the user
was able to submit jobs to the Hypercomputer from his PDA. Network access of the
PDA can be established by several alternative layers. Sometimes infrared communica-
tion might be sufficient, while at other times a GSM mobile phone connected to the
PDA will provide the network access.

Variant # of Classes Size (Byte)

Sun RMI 254 703 836

NinjaRMI 202 458 400

TinyRMI 194 391 122

TinyRMI + KertasarieVM 97 140637

Tab. 4. Overall Size (including API) of the three RMI implementations

Test Case Variant Average (ms) Deviation (ms)

1
SunRMI 3.868 6.785

NinjaRMI 2.799 4.531

TinyRMI 3.048 2.903

2
SunRMI 22.104 10.962

NinjaRMI 52.289 9.698

TinyRMI 20.693 4.890

Tab. 5. Performance of the three RMI implementations
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5 Conclusion and Further Work

This paper has introduced topical developments offering an ubiquitous access to wide-
area high-performance computing systems not only for common desktop computers or
web-based systems, but also for small mobile computer systems like PDAs. Based on a
concrete application scenario in agricultural science, we have shown the necessity for
new access possibilities to (distributed) compute servers that allow mobile systems with
strongly restricted resources to act as an access terminal to services of powerful servers
via wireless network connections.

The Hypercomputer is the distributed wide-area computing infrastructure to build such
a scenario. It has been developed in a recent research project at the University of
Rostock. Its architecture is implemented using Java and Java RMI, which allows to
combine the distributed wide-area high-performance computing services of the Hyper-
computer with any other system that is able to communicate via Java RMI.

A current development is the Home@Globe system, which has been designed to enable
web-based remote access to distributed applications via a graphical user interface. It is
also mainly realized using the Java technology, and may therefore be easily tied to the
Hypercomputer. This leads to a web-based, graphical interface to run interactive jobs
in a distributed wide-area environment.

Finally, a highly portable, extra small Java infrastructure called Kertasarie VM has been
developed. It is a complete Java 1.2 implementation for resource-constrained devices,
offers full RMI support as well as a special GUI system for PDAs, and has proven to be
the key technology in this respect. The use of the Kertasarie VM for the mobile access
to a Hypercomputing infrastructure by PDA has been demonstrated.

Future work will concentrate on different security aspects, like the security of RMI
connections and the encryption of transmitted data. Due to the limitations concerning
computing power, only simple encryption policies and algorithms may be engaged,
either proprietary or well known like RC4. The exploitation of socket factories within
the Java API may be an effective way to secure data transmissions even over wireless
media. This reflects the high importance of security aspects especially with respect to
ubiquitous environments, since mobile communication is by nature open to several
types of attacks - and the vision of ubiquitous computing will surely stay just a vision,
if this problem is not fixed.

6 References

1. Weiser, M. The Computer for the Twenty-First Century. Scientific American,
September 1991.

2. Tavangarian, D.; Eschholz, P.; Koch, M.; Pitz, C.; Preuß, St. Hypercomputing: A
Concept for a Network-based Computer Architecture. In: Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), CSREA Press, Las Vegas (USA), July 1998.

3. Tavangarian, D.; Lucke, U.; Lucke, Th.: "Hypercomputing: Ein verteiltes System
zur Bearbeitung von DV-Problemen in Weitverkehrsnetzen", final project report,
University of Rostock, 2001.

4. Kaplan, J.A. et.al. A Comparison of Queueing, Cluster and Distributed Computing
Systems. NASA Langley Research Center, June 1994.

222 Frank Burchert  et al.



5. Monien, B. Jahresbericht des Forschungsverbundes NRW-Metacomputing
‚Verteiltes Höchstleistungsrechnen‘ für das Jahr 1997. University of Paderborn
(Germany), March 1998.

6. Foster, I.; Kesselman, C. The Grid - Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, Inc., San Francisco 1999.

7. Ungerer, Th. Parallelrechner und parallele Programmierung. Spektrum Verlag,
Berlin (Germany), 1997.

8. Tavangarian, D.; Kleinau, U.; Schulz, J. Eine Architektur für Hochleistungs-
Datenverarbeitung in Weitverkehrs Workstation Netzwerken. In: Proceedings of
the German Conference on Architecture of Computing Systems (ARCS’99), VDE
Verlag, Berlin (Germany), October 1999.

9. Lee, Ch.-K.; Hochberger, Chr.; Tavangarian, D. Application Service Providing for
Distributed High-Performance Computing. In: Proceedings of the International
Conference on High Performance Computing Systems and Applications (HPCS
2001), Kluwer Academic Press, Dordrecht (Netherlands), June 2001.

10. Lee, Ch.-K.; Hochberger, Chr.; Tavangarian, D. Home@Globe: Integration of
Distributed High- Performance Computing into Application Service Providing. In:
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2001), CSREA Press, Las
Vegas (USA), June 2001.

11. WebOS, http://www.cs.duke.edu/ari/issg/webos
12. Purdue University Network Computing Hubs, http://punch.ecn.purdue.edu/
13. Sun KVM, http://java.sun.com/products/cldc
14. IBM J9 VM, http://www.embedded.oti.com
15. Esmertec JBed, http://www.jbed.com
16. Kada Systems VM, http://www.kadasystems.com/kada_vm.html
17. Burchert, Fr.; Gatzka, St.; Geithner, Th.; Hochberger, Chr.; Kopp, H.;

Tavangarian, D. Providing Java Based Middleware for PalmOS Devices. To
appear in: Proceedings of the International ITEA Workshop on Virtual Home
Environments, 2002.

18. UCSD Benchmarks for Java, http://www-cse.ucsd.edu/users/wgg/JavaProf/
javaprof.html

19. kJava, http://www.microjava.com/technologies/kJava
20. kAWT, http://ww.kawt.de
21. Breg, F.; Diwan, Shr.; Villacis, J.; Balasubramanian, J.; Akman, E.; Gannon, D.

Java RMI Performance and Object Model Interoperability: Experiments with Java/
HPC++. In: Proceedings of the Workshop on Java for High Performance Network
Computing, Palo Alto (California), 1998.

22. Nester, Chr.; Philippsen, M.; Haumacher, B. Effizientes RMI für Java. In:
Proceedings of the conference JIT 99, Springer, Berlin (Germany), 1999.

23. Ninja RMI, http://www.cs.berkeley.edu/~mdw/proj/ninja/ninjarmi.html
24. Gatzka, St.; Hochberger, Chr.; Kopp, H. Deployment of Middleware in Resource

Constrained Embedded Systems. In: Proceedings of the Workshop on Pervasive
computing and information logistics, GI/OCG conference, Vienna (Austria),
September 2001.

223Ubiquitous Access to Wide-Area High-Performance Computing           



Filter Similarities in Content-Based

Publish/Subscribe Systems
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Abstract. Matching notifications to subscriptions and routing notifica-
tions from producers to interested consumers are the main problems in
large-scale publish/subscribe systems.
Most previously proposed distributed notification services either use
flooding or, if filtering is performed, they assume that each event broker
has global knowledge about all active subscriptions. Both approaches de-
grade the scalability of notification services as the former wastes network
resources and the latter generates overly large routing tables.
In this paper we describe content-based routing algorithms that exploit
filter similarities in order to reduce the size of routing tables and the num-
ber of control messages that are exchanged among the brokers in order
to keep the routing tables up-to-date. In particular, the proposed algo-
rithms do not assume global knowledge about all active subscriptions.
Furthermore, we describe how these optimizations can be supported if
the underlying data and filter model is based on structured records.

1 Introduction

Publish/subscribe provides means for the loosely coupled exchange of asyn-
chronous messages. A publish/subscribe system consists of a set of nodes that
communicate by exchanging notifications with the help of a notification service
that is interposed between the producers and consumers. A broad range of ap-
plications can benefit from a solution that is based on publish/subscribe. For
example, electronic trading platforms including stock exchanges, auction sites,
and reverse auction platforms are inherently event-based [3,19]. Also applications
from the area of ubiquitous computing where clients are interested in up-to-date
data and bandwidth is scarce or expensive are good candidates.

A notification is simply a message that contains some information called its
content. Clients are producers, consumers, or both. Producers publish notifica-
tions and consumers subscribe to notifications by issuing subscriptions that are
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essentially stateless message filters. Consumers can have multiple active sub-
scriptions and after a client has issued a subscription the notification service
is responsible for delivering all future matching notifications that are published
until the client cancels the respective subscription.

The expressiveness of the subscription model is crucial for both the flexibility
and the scalability of a notification service. Insufficient expressiveness can lead to
unnecessary broad subscriptions stressing the network and raising the need for
additional consumer-side filtering. On the other hand, scalable implementations
of more expressive description models require complex delivery strategies [5].

Content-based filtering allows subscriptions to evaluate the whole content of
a notification, leveraging finer notification selection both inside the notification
service and at the clients. Therefore, it provides a more powerful and flexible
notification selection than it is possible for channel- or subject-based notification
services where the content of a notification is opaque.

Centralized solutions of content-based notification services do not scale and
the use of a distributed implementation that is built upon a set of cooperating
event brokers is the key for scalability. Besides flooding, content-based routing
is known from the literature. Here, a broker forwards a notification that it pro-
cesses to some other brokers that is determined by a filter-based routing table.
Unfortunately, almost all approaches dealing with content-based routing assume
that each broker has global knowledge about all active subscriptions [2,21]. In
our view, flooding and content-based routing that assumes global knowledge
degrade the scalability of notification services because the former may waste
network resources while the latter generates overly large routing tables.

As an alternative approach Carzaniga [4] has shown that global knowledge
about all active subscriptions is not necessary in order to implement a routing
algorithm that solely forwards notifications that match active subscriptions. He
proposed to use covering tests among filters to reduce the amount of informa-
tion that is needed by a broker to determine the set of brokers to which an
incoming notification must be forwarded. However, his work has only considered
some predefined constraints on primitive data types (e.g., comparisons among
integers). In a previous paper we have presented how more complex data types
and constraints can be supported and also how filters can be merged [17]. We
also presented preliminary ideas how to apply covering tests and merging to
semistructured data and objects [18].

In this paper we combine and build on previous results and describe a set
of routing algorithms that exploit filter similarities by applying identity and
covering tests as well as carrying out filter merging. We show how to support
these routing optimizations if the underlying data and filter model is based on
structured records.

The remainder of this paper is organized as follows: Section 2 presents our
system model and describes some routing algorithms that exploit filter similari-
ties. In section 3 we show how to support identity and covering tests as well as
filter merging for structured records. In the final sections we give an overview of
some related work and briefly depict our notification service called Rebeca.
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2 Content-Based Routing

2.1 System Architecture

Clearly, a notification service that relies on a centralized broker cannot be
scalable. It may match a notification against a large set of subscriptions very
fast [1,7], but it will not be able to communicate with millions of clients. More-
over, a centralized broker is a single point of failure. In consequence, an imple-
mentation is needed that distributes the functionality of the service.

The key for a scalable notification service is to use content-based routing.
In a publish/subscribe system that is based on content-based routing a set of
cooperating brokers is arranged in a distributed topology. The topology of a
distributed broker network is a connected undirected graph G = (V,E) with a
set of nodes V = {B1, . . . , Bn} corresponding to the brokers and a set of edges
E ⊆ {(Bi, Bj) | 1 ≤ i < j ≤ n} representing connections among them. For
convenience, we define a function e(Bi, Bj) that returns (Bi, Bj) if i < j and
(Bj , Bi) otherwise.

In general, a topology is not static but it changes when new connections
are established or existing connections are closed. One can distinguish between
acyclic and generic topologies. In an acyclic topology between any two brokers
exactly one path exists. In this case each broker is a single point of failure
because if a single broker fails the topology is partitioned into two disconnected
sub-topologies. Contrary to that, cycles can exist in a generic topology allowing
for multiple paths between two brokers. Hence, a broker may not be a single
point of failure but special care must be taken to avoid duplicated notifications
and passing notifications and control messages in cycles. A simple and well-
known method [4,5] to support generic topologies is to define for each broker B
a (minimal) spanning tree of G that is used to route notifications originating
from B. With this approach every broker is still a single point of failure but
if a broker fails the spanning trees can be adapted accordingly. In order to
resiliently tolerate broker failures multiple independent paths must exist between
any two brokers [13,14,24]. In this paper we concentrate on acyclic topologies.
In first approximation, routing algorithms are independent of the underlying
transport mechanisms (e.g., multicast and unicast). They only specify the flow
of notifications. Please refer to [2,21] for a detailed overview showing how to
efficiently use multicast to disseminate notifications.

Each broker B has a set of neighbor brokers NB = {H | e(B,H) ∈ E}
and manages an exclusive set of local clients LB. Each client X has a set of
active subscriptions SX that changes if X subscribes or unsubscribes to a filter.
Each broker B delivers a notification that it processes to all of its local clients
that have a matching subscription, i.e., {X | X ∈ LB ∧ ∃F ∈ SX . n ∈ N(F )}.
Additionally, every broker forwards a notification to a subset of its neighbors by
evaluating a filter-based routing table.

Formally, a filter F is a stateless boolean function that maps a notification n
to the boolean values true and false . A notification n matches a filter F iff F (n)
evaluates to true. We denote by N(F ) the set of all notifications that match F .
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In our model the routing table TB of a broker B consists of a set of routing
entries (F,U) where F is a filter and U is a neighbor of B. Let FN

B (n) be the
set of neighbors of B for whom there exists a routing entry that matches a given
notification n, i.e., {U | U ∈ NB ∧∃(F,U) ∈ TB. n ∈ N(F )}. Then B forwards a
notification that it processes to all neighbors in FN

B if n has been published by
a local client of B and to all neighbors in FN

B \ {H} if B has received n from
a neighbor H . Finally, the brokers exchange control messages in order to keep
their routing tables up to date.

2.2 Flooding vs. Filtering

Flooding The technique of flooding can be seen as the simplest approach to
implement content-based routing. In this case the routing tables of all brokers
are initialized with constant routing entries such that FN

B (n) evaluates to NB for
all notifications n. Brokers do not exchange any control messages and therefore,
they have no knowledge about active subscriptions of clients of other brokers and
solely perform filtering on behalf of their local consumers. Hence, every broker
simply forwards a notification that is published by one of its local clients to all
of its neighbors and if a broker receives a notification from a neighbor it simply
forwards it to all other neighbors. In consequence, each published notification
is eventually processed by every broker and a lot of notifications may be for-
warded unnecessarily. On the other hand, flooding may be a rather good choice
if subscription profiles are equally distributed among the clients [21].

Filtering at Intermediate Brokers Alternatively to flooding, filtering can
be performed at intermediate brokers to reduce the number of notifications that
are unnecessarily forwarded. In order to determine the minimal set of neighbors
to which a broker must forward a notification assume for a moment that the set
of active subscriptions is static and that the edge between a broker B and one
of its neighbors U is removed from E. In this case the graph G is partitioned
into two not connected subgraphs. Let VU,B be the set of all brokers that are
nodes of the subgraph that contains the broker U . We denote by ηU,B the set of
all notifications that are of interest to any local consumer of a broker in VU,B ,
i.e., ∪H∈VU,B IH with IH = ∪X∈LH ∪F∈SX N(F ). Let φB(n) be the set of all
neighbors of B for which n is in ηU,B, i.e., {U | U ∈ NB ∧ n ∈ ηU,B}. Since G
is acyclic a routing algorithm must ensure that FN

B (n) is a superset of φB(n)
for all notifications. We call a routing algorithm perfect if FN

B (n) = φB(n) for
all notifications. Otherwise it is called imperfect. In general, a perfect routing
algorithm requires that each broker has a more detailed knowledge about the
active subscriptions but it also minimizes notification forwarding.

In a real system however, the set of active subscriptions changes as clients
issue new or cancel existing subscriptions. The problem with this is that the set
of notifications a client is interested in changes instantly while the routing tables
cannot reflect this immediately. This means that the delivery of notifications
which are exclusively matched by a new subscription is not guaranteed until
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all necessary updates to the routing tables have been carried out. Besides the
delivery of matching notifications a routing algorithm should try to minimize
unnecessary forwarding of notifications. For example, the routing tables should
be updated in reaction to cancellations of subscriptions, too.

In the next subsections we describe some routing algorithms that are based on
control message forwarding: For each new and canceled subscription the broker
that manages the corresponding client sends an individual control message to
some of its neighbors. A broker that receives a control message from a neighbor
updates its routing table (if necessary) and sends an individual control message
to some of its other neighbor. Brokers process incoming control messages serially
and in FIFO-order.

2.3 Routing Based on Global Knowledge

A simple approach is to incorporate a routing entry for every active subscription
into the routing tables of all brokers. To achieve this, the broker that manages
the subscribing/unsubscribing client sends a control message that contains the
new/canceled subscription S to all of its neighbors. A broker that receives such
a control message from one of its neighbors H adds/extracts a corresponding
routing entry (S,H) to its routing table and forwards the control messages un-
changed to all of its other neighbors.

2.4 Routing Based on Filter Identity

The simple routing algorithm described in the previous subsection enforces that
all brokers have knowledge about all active subscriptions. Clearly, this is not
feasible in a large scale system because this would result in huge routing ta-
bles and costly coordination. Therefore, it is crucial to minimize the number of
routing entries that is needed in the routing table of a broker to determine FN

B

while still retaining the same quality of filtering. This can be achieved by tak-
ing into account similarities among the filters, i.e., the subscriptions. Of course,
this requires that it is possible to detect a relation between the sets of matched
notifications among filters.

For example, assume that we are able to detect that two filters match the
same notifications. Formally, two filters F1 and F2 are identical, denoted by F1 ≡
F2, iff N(F1) = N(F2). A broker does not need to forward a new/canceled
subscription S2 to a neighbor if another identical subscription S1 has already
been forwarded to that neighbor for that no corresponding unsubscription has
been received yet. This reduces the size of the routing tables because routing
entries with identical filters regarding the same neighbors are avoided. Moreover,
the number of exchanged control messages is reduced, too.

2.5 Routing Based on Filter Covering

The direct extension of identity-based routing is to apply more complex sim-
ilarity tests among subscriptions. The next step is to exploit covering among
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Fig. 1. Illustrating perfect and imperfect merging

filters. Let F1 and F2 be two arbitrary filters. We say that F1 covers F2, denoted
by F1 � F2, iff N(F1) ⊇ N(F2). It is easy to see that if F1 � F2 then n ∈ N(F2)
implies n ∈ N(F1) and n /∈ N(F1) implies n /∈ N(F2). The pair (F ,�) defines
a partial order over the set of all filters F and can be illustrated by a Hasse
diagram.

Covering tests can be used to reduce the number of routing entries in routing
tables as well as the number of control messages that must be forwarded. A bro-
ker B does not need to forward a subscription/unsubscription S2 to a neighborH
if B has already forwarded a subscription S1 to H that covers S2 for which B has
not received a corresponding unsubscription yet. Moreover, if B receives a new
subscription S from a neighbor U it can drop those routing entries regarding U
whose filters are covered by S. But this implies that in the case that B forwards
an unsubscription S to a neighbor H then also all subscriptions that are covered
by S of those routing entries regarding all brokers except H must be forwarded
to H again.

In the context of notification services the use of covering was first described
by Carzaniga [4,5]. Computing covering tests is in general very expensive or even
intractable. For example, computing covering tests for relational expressions or
linear context-free grammars isNP -complete [10]. Fortunately, in practice special
cases exist for which covering can be determined quite efficiently [17,18].

2.6 Routing Based on Filter Merging

In this subsection we describe how to extend the routing algorithm outlined in
the previous section in order to exploit filter merging in addition to covering.
In contrast to covering, merging does not merely rely on the filters that have
been issued by the clients. Instead, new filters are derived from existing ones
such that each new filter covers the set of filters it was generated from. We
say that F is a merger of (or covers) a set of filters {F1, . . . , Fn}, denoted by
F � {F1, . . . , Fn} iff N(F ) ⊇ (∪iN(Fi)

)
. The merger F is perfect if the equality

holds and imperfect, otherwise (see Fig. 1).
The basic idea of merging-based routing is that each broker can merge filters

of existing routing entries and forward the generated merger to a subset of its
neighbors. As a merger covers the filters it was generated from, a broker that
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receives a merger from a neighbor will drop those routing entries that belong
to this neighbor and represent the merged filters. Hence, the number of routing
entries is reduced. Periodically or triggered by the receipt of a control message
every broker investigates its routing table and checks whether it can generate new
mergers and if the existing mergers can be kept. After that the broker forwards
subscriptions/unsubscriptions corresponding to each new/canceled merger to a
specific subset of its neighbors. If it forwards an unsubscription corresponding to
a canceled merger, the broker also embeds the subscriptions that were covered
by the merger into the control message.

The following example illustrates that generating a perfect merger is not
sufficient to guarantee that no notifications will be forwarded unnecessarily. In
fact, the subset of neighbors to which a merger is forwarded plays an important
role. Consider a broker B3 with two neighbors B1 and B2. The routing table
of B3 consists of two routing entries (F1, B1) and (F2, B2) with N(F1) �= N(F2).
Now, B3 decides to forward a perfect merger of F1 and F2 to all of its neighbors,
i.e., B1 and B2. In this example, broker B1 will also forward notifications that
match F2 but not F1 and broker B2 will forward notifications that match F1

but not F2 to B3 although B3 will not forward any of these notifications to B1

or B2. In fact, the set of neighbors to which a merger can be forwarded without
raising this problem depends on the routing entries from which it was generated:
a merger can be forwarded to all neighbors if for each routing entry (F,H)
from which it was generated there exists another routing entry (G, I) such that
N(F ) = N(G) and H �= I.

At a first glance, imperfect merging seems to be less promising, but in situa-
tions in which perfect merging cannot be applied it might be a good compromise.
On one hand, imperfect merging results in notifications being forwarded that do
not match any of the original subscriptions and one must be careful to avoid
that the effects of imperfect merging are chained along delivery paths such that
the routing degenerates to flooding. But on the other hand, imperfect merging
can greatly reduce the amount of subscriptions that must be dealt with.

In order to apply merging it must be possible to efficiently compute mergers
and if imperfect merging is performed the fraction of the irrelevantly matched
notifications must be sufficiently small. Merging is powerful but also complex
and its usability needs further investigation.

2.7 Use of Advertisements

Advertisements are filters that are issued by producers to indicate their intention
to publish notifications. In our model each notification that is published by a
producer must match one of its active advertisements. Advertisements can be
used as additional mechanism to further optimize content-based routing [4]. For
this purpose they are propagated through the broker network in the same way
as described for subscriptions in order to route subscriptions more efficiently: a
subscription is only forwarded to a neighbor if it overlaps with an advertisement
that has been received from this neighbor. The only underlying assumption is
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that it is possible to detect whether a given advertisement A and a given sub-
scription S are overlapping, i.e., whether or not N(S) ∩ N(A) �= ∅. All routing
algorithms presented in the former sections can be easily extended in such a way
that advertisements are used.

2.8 Discussion

The routing algorithms are getting more complex by applying the proposed rout-
ing optimizations such as covering and merging. But on the other hand, these
improvements reduce the size of the routing tables and may also reduce the num-
ber of exchanged control messages. If they are used, the efficient evaluation of
these optimizations will be crucial for the load induced on the brokers. Normally,
a more expressive data and filter model tends to make these optimization more
complex, too. Moreover, there exists a trade-off between network and computing
resource usage/wastage and in our view there will be no static solution that is
optimal for all application scenarios. We propose to use statistical online evalu-
ation of connection and filter selectivity as a basis to adapt routing algorithms:
the forwarding broker disables filtering if the matching rate exceeds a certain
threshold while the receiving broker can request to turn filtering on again if the
relative amount of forwarded notifications that do not match is too large.

3 Supporting Filter Similarities for Structured Records

Many systems model notifications similar to structured records consisting of a
set of name/value pairs called attributes. Examples are Siena [4], Gryphon [1,2],
Rebeca [8], and the Corba Notification Service [20]. In this model attributes
are addressed by their unique name and constraints are imposed on the values of
the respective attributes. Besides flat records in which values are atomic types,
structured records in which attributes may be nested can also be supported by
using a dotted naming scheme (e.g., Position.x ).

Some systems restrict constraints to depend on a single attribute (e.g., x = 1)
while other systems allow them to depend on multiple attributes which are
combined by operators (e.g., x+y = 5). Multiple constraints can be combined by
boolean operators (e.g., y < 3 ∧ x = 4). Siena and Rebeca limit constraints to
depend on a single attribute and the combination of constraints to conjunctions
in order to allow for efficient evaluation of routing optimizations. In the following
we present some of the basics that underlie the proposed routing optimizations
such as covering and merging.

3.1 Notifications

Formally, a notification n is a set of attributes {A1, . . . , An} where each Ai is
a name/value pair (ni, vi) with name ni and value vi. We assume that names
are unique, i.e., i �= j implies that ni �= nj, and that there exists a function that
uniquely maps each ni to a type Tk that is the type of the corresponding value vi
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(e.g. Integer). Moreover, a notification has a mandatory attribute with name type
that indicates the type of the notification (e.g., StockQuote) in order to enable
type-based filtering based on a type hierarchy. For each type a set of additional
mandatory attributes is defined that may be empty. An example of a notification
in this model is {(type,StockQuote), (name, ”Foo Inc.”), (price , 45.0)}.

3.2 Filters

A filter consisting of a single atomic predicate is a simple filter or constraint.
Filters that are derived from simple filters by combining them with boolean
operators are compound filters. A compound filter that is a conjunction of simple
filters is called a conjunctive filter. Any compound filter can be converted into
its DNF (disjunctive normal form) that consists of a disjunction of a set of
conjunctive filters whose size may be exponential in the worst case. As multiple
subscriptions of a single client are interpreted disjunctively this implies that it
is sufficient to support conjunctive filters. Therefore, we restrict the discussion
to conjunctive filters for the rest of this paper.

3.3 Attribute Filters

We model filters as conjunctions of attribute filters that are simple filters and im-
pose a constraint on the value of a single attribute (e.g., {name = ”Foo Inc.”}).
Hence, a notification n matches a filter F iff it satisfies all attribute filters of F .
Moreover, a filter with an empty set of attribute filters matches any notification.

An attribute filter is defined as a tuple AFi = (ni, Opi, Ci) where ni is an
attribute name, Opi is a test operator and Ci is a set of constants that may be
empty. The name ni determines to which attribute the constraint applies. If the
notification does not contain an attribute with name ni then AFi evaluates to
false . Therefore, each constraint implicitly defines an existential quantifier over
the notification. Otherwise, the operator Opi is evaluated using the value of the
addressed attribute and the specified set of constants Ci. We assume that the
types of operands are compatible with the used operator. The outcome of AFi is
defined as the result of Opi that evaluates either to true or false . We also provide
an attribute filter that simply checks whether a given attribute is contained in n.
For the sake of simplicity we use the more readable notation {price > 10} instead
of {(price, >, {10})}. An example for a conjunctive filter consisting of attribute
filters is {(type = StockQuote), (name = ”Foo Inc.”), (price /∈ [30, 40])}. Note,
that this filter potentially matches also all notifications whose type is a subtype
of StockQuote.

By L(AFi) ⊆ dom(Tk) we denote the set of all values that cause an attribute
filter to match an attribute, i.e., {vi | Opi(vi, Ci) = true}. We assume that
L(AFi) �= ∅. An attribute filter AF1 covers an attribute filter AF2, written
AF1 � AF2, iff n1 = n2 ∧ L(AF1) ⊇ L(AF2). For example, {price > 10} covers
{price ∈ [20, 30]}.
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Fig. 2. F1 � F2 although neither F 1
1 � F 1

2 nor F 1
1 � F 2

2 (two examples)

3.4 Covering of Conjunctive Filters

Here, we investigate covering of filters that are conjunctions of attribute filters.

Proposition 1. Given two filters F1 = AF 1
1 ∧ . . .∧AFn

1 and F2 = AF 1
2 ∧ . . . ∧

AFm
2 that are conjunctions of attribute filters, the following holds: ∀i∃j. AF i

1 �
AF j

2 implies F1 � F2.

Assume: ∀i∃j. AF 1
i � AF 2

j

Prove: F1 � F2

Proof: If an arbitrary notification n is matched by F2 then n satisfies all AF j
2 .

This fact together with the assumption implies that n also satisfies all AF i
1 .

Therefore, n is matched by F1, too. Hence, F1 � F2.

If several attribute filters can be imposed on the same attribute then ∀i∃j.AF i
1 �

AF j
2 is not a necessary condition for F1 � F2 (see also Fig. 2). If we restrict

conjunctive filters to have at most one attribute filter for each attribute then we
can strengthen Proposition 1 to an equivalence:

Proposition 2. Given two filters F1 = AF 1
1 ∧ . . .∧AFn

1 and F2 = AF 1
2 ∧ . . . ∧

AFm
2 that are conjunctions of attribute filters with at most one attribute filter

for each attribute, the following holds: F1 � F2 implies ∀i∃j. AF i
1 � AF j

2 .

Assume: ¬(∀i∃j. AF i
1 � AF j

2 )
Prove: ¬(F1 � F2)
Proof: We construct a notification n that matches F2 but not F1 to prove
that F1 does not cover F2. The assumption implies that there is at least one
AF k

1 that does not cover any AF j
2 . If there exists an AF l

2 that constrains the
same attribute as such anAF k

1 then choose for this attribute a value that matches
AF l

2 but not AF k
1 . Such a value exists because L(AF k

1 ) �= ∅ and AF k
1 �� AF l

2.
Add name/value pairs for all other attributes that are constrained in F2 such
that they are matched by the appropriate attribute filters of F2. The constructed
notification matches F2 but not F1. Therefore, F1 does not cover F2.

Corollary 1. Given two filters F1 = AF 1
1 ∧. . .∧AFn

1 and F2 = AF 1
2 ∧. . .∧AFm

2

that are conjunctions of attribute filters with at most one attribute filter per
attribute, F1 � F2 is equivalent to ∀i∃j. AF i

1 � AF j
2 .

Proof: by Proposition 1 and 2.
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The limitation to at most one attribute filter for each attribute is not severe
because our system provides complex data types as attribute values and an
extensible set of constraints that can be imposed. Moreover, it is often possible
to merge several conjunctive constraints imposed on a single attribute into a
single constraint on the same attribute. If the result of a conjunction of two
constraints of some constraint type always yields another constraint of the same
type then this set of constraints is either contradicting or can be replaced by a
single constraint of the same type. We call such types of constraints and their
corresponding attribute filters conjunction-complete. For example, constraints
testing whether a point is in a given rectangle in a two-dimensional plane are
conjunction-complete. If a constraint type is not conjunction-complete it is often
possible to substitute a set of such constraints by a single constraint of a more
general type. For example, a set of ordering constraints defined on a totally
ordered set (e.g., integer numbers) are either contradictory or can be replaced
by a single interval constraint. In a previous paper [17] we have presented an
algorithm that determines the possibly empty set of filters that cover a given
filter which is derived from the predicate counting matching algorithm [26].

3.5 Identity and Overlapping of Conjunctive Filters

The following two propositions show how identity and overlapping of conjunctive
filters can be reduced to their respective attribute filters. The proofs are left out
due to space reasons.

Proposition 3. Two filters F1 = AF 1
1 ∧ . . . ∧AFn

1 and F2 = AF 1
2 ∧ . . . ∧AFm

2

that are conjunctions of attribute filters with at most one attribute filter for each
attribute are identical iff they contain the same number of attribute filters and
∀AF i

1∃AF j
2 .

(
ni

1 = nj
2 ∧ L(AF i

1) = L(AF j
2 )

)
.

Proposition 4. Two filters F1 = AF 1
1 ∧ . . . ∧AFn

1 and F2 = AF 1
2 ∧ . . . ∧AFm

2

that are conjunctions of attribute filters with at most one attribute filter for each
attribute are overlapping iff �AF i

1 , AF
j
2 .

(
ni

1 = nj
2 ∧ L(AF i

1) ∩ L(AF j
2 ) = ∅)

3.6 Merging of Conjunctive Filters

In the general case purely algebraic merging techniques have exponential time
complexity. Alternatively, a predicate proximity graph can be used to implement
a greedy algorithm [15]. For many practical cases (e.g., the set operators) efficient
algorithms exist.

An algorithm that determines the possibly empty set of filters which are
candidates to be merged with a given filter was depicted in a previous paper [17].
From the set of merging candidates the set of attribute filters to be merged can
be easily extracted. This set is used as input of a merging algorithm which has
a specialized implementation for each type of constraint. Only in rare cases it is
necessary to use an exhaustive combinatorial or a suboptimal greedy algorithm.
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Perfect Merging A set of conjunctive filters with at most one attribute filter
for each attribute can be perfectly merged into a single conjunctive filter if for
all except a single attribute their corresponding attribute filters are identical
and if the attribute filters of the distinguishing attribute can be merged into a
single attribute filter. For example, the two filters F1 = {x = 5 ∧ y ∈ {2, 3}}
and F2 = {x = 5 ∧ y ∈ {4, 5}} can be merged to F = {x = 5 ∧ y ∈ {2, 3, 4, 5}}.

The characteristics of the constraints that are used to define attribute fil-
ters are important for merging. Constraints which only exist in a normal and
a negated form can be directly merged by using some basic laws of boolean
algebra. For example, a filter F1 = P1 ∧ P2 can be merged perfectly with a fil-
ter F2 = P1 ∧ P̄2 to a filter F = P1. Although these cases also exist for more
complex constraints (e.g., x = 5 and x �= 5) constraints are not restricted to be
the negated form of each other. Better merging can be achieved by taking the
specific characteristics of the imposed constraints into account.

A class of constraints that is complete under disjunction allows to merge a
set of constraints of this class into a single constraint of the same class. Examples
for disjunction-complete constraints are set inclusions (e.g., x ∈ {2, 3, 7}) and
set exclusions (e.g., x /∈ {2, 3, 7}) while comparison constraints (e.g., x < 4) are
not disjunction-complete. If a constraint class is not disjunction-complete it may
still be possible to carry out merging if a specific merging condition is met. For
example, a set of interval tests (e.g., x ∈ [2, 4] and x ∈ [3, 5]) can be merged
into a single interval test (here, x ∈ [2, 5]) if the intervals form a connected set.
Otherwise, merging may be possible if a more general constraint is considered as
merging result. For example, two comparison constraints (e.g., x < 4 and x > 7)
can be merged to an interval test (here, x /∈ [4, 7]).

Imperfect Merging In order to use imperfect merging a set of heuristics is
necessary that define in what situations and to what degree imperfect merging
should be carried out. For example, filters that differ in few attribute filters could
be merged imperfectly by imposing on each attribute a constraint that covers
all original constraints. This could also be accomplished by explicitly replacing
an attribute filter with another that only tests for the existence of the given
attribute or by simply dropping the attribute filter. Note, that an existence test
is equivalent to no constraint if the attribute is mandatory for the corresponding
type of notification.

4 Related Work

Answering Queries Using Views Covering relations are known from the
database theory and in particular from the area of answering queries using
views [12,25]. There, the question is whether the result set of a given query Q
can be solely obtained from a set of predefined views V whose elements can be
combined by the usual relational operators, i.e., whether Q is covered by some
combination of the views in V . Answering this question for relational expressions
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is NP -hard even without comparison operators. If only the union operator is al-
lowed, this is still a more general scenario than ours. Although special cases have
been investigated, we were not able to find an approach that is closely related
to ours.

Semantic Caching Lee and Chu [16] describe a semantic caching algorithm for
conjunctive point queries that exploits covering between conjunctive predicates
to find cache entries which cover a given query. However, this work is restricted
to point queries involving the equivalence and the like operator. Godfrey and
Gryz [11] depict an architecture for predicate-based caching that is similar to
answering queries using views. Therefore, it is not surprising that their algo-
rithms are NP -complete, too. Keller and Basu [15] propose a predicate-based
caching scheme for client/server database architectures. They perfectly merge
predicates in the cache to obtain a more compact cache description and to speed
up query processing. Their algorithm has exponential time complexity.

Query Merging Crespo et al. [6] propose merging of queries that are evalu-
ated periodically against a database. As example, they use geographical queries
represented by a rectangle. Before the queries are processed a merging algorithm
is run that combines similar queries and outputs a set of merged queries whose
answers contain all tuples of the original query. Their aim is to find a set of merg-
ers which is cost optimal. They show that in the general case query merging is
NP -complete and discuss optimal and heuristic algorithms.

Geometrical Algorithms In the context of geometrical algorithms [22], for
example, polygon inclusion, intersection, and containment of convex polygons
are investigated. These algorithms can be integrated with our work to support
efficient matching, covering, and merging of notifications containing geometric
objects. Such objects are, for example, prevalent in geographical information
systems.

Notification Services Siena [4] exploits covering relations between filters and
applies them to subscription and advertisement forwarding, but their support
for data types and constraints is very limited. Moreover, they do not support
merging. Elvin [23] supports quenching in which notifications are first evaluated
against a broader subscription that covers the disjunction of all subscriptions
but no algorithms are described.

5 Implementation

In the context of our research project Rebeca [9,17] we investigate event-based
architectures for E-commerce applications. We have realized a prototype of a
content-based publish/subscribe middleware that relies on content-based rout-
ing and exploits covering and merging. The routing algorithms are implemented
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on top of a flexible routing framework in order to enable the testing of various
routing algorithms. Optionally, our system can use subscription and advertise-
ment leasing in order to be more fault-tolerant. We also implemented support
of notifications about new/canceled subscriptions and advertisements.

We have implemented a stock trading application based on real-time quotes
to test the system under an observable load. At the moment we investigate the
effects of using different data models and routing algorithms on the performance
of the system. Moreover, we are developing another application dealing with
meta-auctions that are a generalization of normal Internet auctions.

6 Conclusion

In this paper we outlined a set of content-based routing algorithms that exploit
similarities among filters. In particular, we have described how identity and cov-
ering tests as well as filter merging can be used in order to reduce the size of
routing tables and the number of exchanged control messages. We have also
presented the basic mechanisms and assumptions that underly these optimiza-
tions and how they can be supported if the underlying data and filter model
uses structured records. We suggested to use statistical on-line adaption of the
filtering strategy to cope with the trade-off between network resource waste and
processing cost overhead. Future work will include detailed studies of the ef-
fects of different filtering strategies based on our prototypical publish/subscribe
middleware and the implemented applications.
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Abstract. Emerging radio technologies like WLAN and Bluetooth en-
able electronic devices of any kind to communicate with one another. A
simple and easy to implement application layer protocol called BTRC
protocol was developed allowing devices to exchange data of any kind
and format over different protocols like TCP/IP or Bluetooth. Based
upon this protocol a universal remote control system was implemented.
Software applications simulating cellular phones and personal digital as-
sistants (PDA) were developed as remote control devices. BTRC server
devices send their graphical XML based user interface to the remote
control. This way the use of devices is simplified significantly.

1 Introduction

The Internet revolution of the nineties has concentrated mainly on the communi-
cation of Personal Computers. While these developments were based mainly on
wire connections between the computers, wireless technologies like WLAN and
Bluetooth are offering new possibilities. These technologies will eventually be
more than just a replacement of wires. Electronic devices of any kind like house-
hold, audio and video devices will be able to exchange information. To make
this future come true, applications running on these devices must obey certain
standards of communication to understand each other and to make access to
peer devices uniform.

These ideas enlarge upon the concept of a conventional remote control. Un-
fortunately, today every device has its own proprietary infrared remote control.
This is why we developed the Bluetooth remote control (BTRC) system, which
allows devices to send requests to one another in a standard way, to describe
the commands they support and to provide a flexible user interface description.
Using the BTRC system, it is possible to use various existing devices (e.g. mo-
bile phones, personal digital assistants, web pads or even web browsers) as a
universal remote control.

When a user enters a room, every device that can be controlled remotely
identifies itself to the remote control’s gadget list. Depending on the size of
the display and the computing capacity of the remote control, these devices are
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shown as a list of strings or as icons. When the user chooses a device, a request is
sent to the device to query its user interface. This way the remote control obtains
all commands that are supported by this device and supplementary online help
files to guide the user. XML (extensible markup language) and XSL (extensible
stylesheet language) are used for the description of the user interface.

The BTRC system uses the application layer BTRC protocol, which permits
devices to send commands over various transport protocols. The simplicity of the
protocol permits its implementation on small wearable devices with limited com-
putational resources. Furthermore, BTRC protocol messages can be embedded
in Universal Resource Identifies (URIs), as proposed by several RFCs [1],[2],[3].
To show the applicability of the BTRC protocol, both clients and servers using
Bluetooth and TCP/IP were implemented. An HTTP proxy enabling a conven-
tional web-browser to access BTRC devices was also implemented.

2 System Overview

Figure 1 shows the overview of the entire remote control system. An application
simulating a Bluetooth PDA remote control was developed as a reference im-
plementation (right top of figure 1). This application is equipped with a speech
recognition interface to demonstrate a highly user-friendly system.

Fig. 1. System overview
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In the left top of figure 1 there is an example for a controlled device. In the
near future these devices will contain a cheap Bluetooth transmitter and a con-
troller for analyzing protocol strings, operating the device and delivering stored
XML pages on demand. Due to the fact that various types of remote controls
offer different displaying capabilities and therefore seek different graphical user
interfaces a controlled device provides a set of several XML based GUIs.

A BTRC enabled Web browser and a HTTP based BTRC proxy were im-
plemented to show how easy conventional Web and Internet applications can
be integrated into a BTRC environment (left bottom of figure 1). To prove the
applicability of the BTRC approach, various types of server applications were
developed. Several Bluetooth based multimedia applications were implemented
to demonstrate the collaboration of BTRC and Bluetooth.

A BTRC-to-RC5-Infrared relay application that consists of both software
and hardware components was designed to integrate legacy devices into a BTRC
system (right bottom of figure 1). The BTRC approach is particularly pervasive
because the BTRC protocol is scalable down to pieces of equipment even with
very restricted computing and networking capabilities. All implementations were
tested to prove the compliance with the BTRC protocol specification.

3 The BTRC Protocol

The BTRC protocol is a simple request/response based protocol. Its pursuit
is to provide a simple, uniform and scalable way of information exchange be-
tween embedded as well as higher scaled devices. It allows the transfer of device
commands and device information, as known from existing remote controls, and
targets every device platform that offers accessible and controllable functionality.
To ease the integration of BTRC into a wide range of existing device and com-
munication technologies (e.g. consumer devices, existing applications), BTRC
messages are very easy to parse, and can be mapped to hyperlinks, to which
many users are already accustomed from their Web browser. Moreover, we will
present some extensions of the BTRC core protocol, enlarging its remote control
capabilities.

3.1 Protocol Design

Request/Response Scheme The BTRC protocol is trying to provide a sim-
ple protocol allowing the user to send device commands as he used to with a
normal remote control. The BTRC protocol is request/response based: each re-
quest encapsulates a whole command to the target device. Furthermore, it is an
application protocol (on OSI layer 7), and is thus transport protocol indepen-
dent, requiring the implementation to use a reliable channel to transmit protocol
messages. Flow control is done using a stop and wait scheme. While highly ineffi-
cient in data transmission protocols, this model is adequate for a remote control
protocol, as under normal conditions few requests are send, and they mostly
represent independent device commands, requiring individual acknowledgement.
More complex schemes such as transmission windows are neither applicable nor
necessary.
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An Application Protocol Before sending BTRC requests to a target device,
a client device has to establish a reliable channel using the underlying transport
protocol. This can be quite resource expensive, so the BTRC protocol allows the
underlying channel to be reused by making it possible to send another request
after receiving a response. It is up to the specific implementation to choose
reasonable timeout values if necessary, and to close the underlying channel when
appropriate so as not to waste resources. As multiple devices can be attached
to one communication controller (for example a radio and a cd player sharing
one Bluetooth controller), BTRC requests to different target devices can be
multiplexed over the underlying channel using BTRC IDs (see subsection 3.1).

Gatewaying the BTRC Protocol As the BTRC protocol does not require a
BTRC message to be delivered in a special way, it can easily be gatewayed over
different nodes using various transport protocols. The delivery and forwarding
of a BTRC message as well as the discovering of BTRC devices has to be han-
dled appropriately by the underlying transport protocol (see subsection 3.3 and
subsection 3.3). Furthermore, the BTRC protocol can be gatewayed over other
application protocols. As we designed BTRC messages so that BTRC requests
could be serialized into URIs (see subsubsection 3.2), it was quite natural to
implement a HTTP gateway (see subsubsection 3.3).

BTRC IDs The multiplexing of BTRC requests is achieved using BTRC IDs,
which uniquely identify the receiving and the sending end of a BTRC request.
BTRC IDs have to be unique in order to precisely identify a device in different
networks where no common reliable characteristic can be found. 64 bit hex-
adecimal, permanent and uniquely assigned numbers meet these requirements.
Padding up Ethernet MAC adresses or Bluetooth IDs can easily generate such
an ID. This temporary solution is used up to now. In the future BTRC IDs
could for example be assigned by a central instance, just as ranges of Ethernet
MAC addresses are granted to network hardware manufacturers. As the BTRC
protocol is a text-based protocol, switching to bigger BTRC IDs is seamless.

Device Independency The purpose of the BTRC protocol is not to provide
command handling in place of the device. The BTRC protocol knows nothing
about possible states of the underlying device, and cannot enforce interrequest
dependencies and error handling of out of state requests. As with existing re-
mote controls, the device has to handle inconsistent commands (a VCR still has
to handle the command to play a VCR while recording in a reasonable way).
However, the BTRC protocol can be used to negotiate the use of other protocols,
for example to set quality of service parameters for streaming protocols.

Device Naming and Discovery Another issue which is not adressed directly
by the BTRC protocol is the discovery and naming of BTRC devices. The first
issue is addressed by the transport protocol, either using available functionality



A Bluetooth Remote Control System 245

(see subsubsection 3.3) or storing device references into a database (see sub-
subsection 3.3). Moreover, a 64 bit BTRC ID, even if presented in hexadecimal
form, may not be easily memorized. There is an evident need for a name service
that enables the user to use symbolic names. A name service can be used to map
class names or manufacturer names to the locally available devices conforming
to their classes (the locally available CD player could for exemple be referenced
by ”cd-player” as well as his exact name). Such a name service was implemented
using the DNS (Domain Name System), as described in subsubsection 3.3.

3.2 BTRC Commands

BTRC Messages The BTRC protocol is intended to be simple and its messages
easy to parse. We chose a message format similar to the format of messages in
the HTTP protocol. Each message is divided in a header, which uses the 8 bit
ASCII encoding, and a body, which can contain any kind of data. The header
contains connection, command and additional information, consisting of text
lines divided into an attribute name and an attribute value, as in HTTP.

Every message header includes connection information: a source ID, iden-
tifying the source device issuing the command and a destination ID, identify-
ing the device which has to receive the message. BTRC devices can implement
additional features such as XML parsing/generation, speech control or encryp-
tion/authentication. These additional features are specified in the header as
boolean attribute/value pairs. Additional information such as the body encod-
ing is also specified in the header.

Every BTRC message is either a command request or a command response: a
command attribute/value pair has to be present in the header. Most commands
take parameters, which are given in additional attribute/value pairs. In case
of a command response message, the parameters of the executed command are
repeated in order to simplify message handling by the requesting device.

An example of a request is given below.

Srcid: 0x12345678
Destid: 0x87654321
Cmd: cd-play-track
Track: 01

Standard BTRC Commands Each BTRC device, regardless of its actual
functionality, has to supply a mandatory set of standard commands: device-
commands and device-attributes. This permits the client device to build a
custom user interface and allows the BTRC protocol to scale well, allowing ex-
isting BTRC clients to interface correctly with new devices. When a BTRC client
encounters a new device, its commands are inquired via device-commands. This
request is answered with a list of all supported commands, their description and
their specification. The description allows human users to directly understand
the command, and allows generic clients to support unknown devices and provide
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online help. The device-attributes request is answered with an extensive de-
scription of the device, containing manufacturer information, model, type, name,
production year as well as the device class (see subsubsection Device Classes).

A possible device-commands answer is given below.

cd-play-track: Play a CD Track,track,required,integer,0,99
cd-pause-duration: Pause the CD for,duration,optional,integer,0,99
xml-interface: Get an XML interface,style,required,string
device-attributes: Get the device attributes
device-commands: Get the device commands
device-description: Get the device description

The BTRC URI Scheme BTRC messages can be serialized to the BTRC
URI scheme, which fully complies with the hierarchical subset of URIs defined
in RFC 2396. Here is an example for an URI for playing the first track of a CD
on a device named cd-player:

btrc://cd-player?cmd=cd-play-track&track=01

The BTRC URI scheme has been kept simple, just containing the identifica-
tion of the remote device, the command and the command’s parameters. As the
BTRC URI scheme can be understood and remembered by humans, it is quite
easy to write such URIs by hand and embed them in hyperlink documents or
emails. The BTRC scheme is a ”generic scheme” (”Uniform Resource Identifiers
(URI): Generic Syntax”, [1]). Thus it uses an identifier for the host (either the
BTRC ID or the name provided by the naming system). BTRC further supports
hierarchical based resource addressing (which is not yet used). We want to em-
phasize that a BTRC URI is not an URL; as such an URI does not identify
a resource through its location in a network but by its name. In order to test
the correctness of the design decisions, the guidelines defined in RFC 2718 were
applied (”Guidelines for new URL Schemes”, [3]). To demonstrate the applica-
bility of the BTRC URI scheme a HTTP based BTRC proxy was implemented
as proposed in RFC 2718 (see subsubsection 3.3). This proxy enables access to
BTRC devices through the Internet.

Device Classes Several BTRC devices that offer a common set of commands
create a device equivalency class (i.e. [CD player, tape recorder]). In order to
simplify the handling of these commands and to avoid command clashing (many
manufacturers tend to reimplement standard commands), this common set of
commands is not to be modified and should be supplied whenever possible.
Manufacturer consortiums could for example issue ”device class specifications”
on which they agree, so that generic interfaces could be integrated in control
devices. Device classes, as they are standard sets of commands, enable BTRC
remote controls to store standard interfaces for these devices and thus permit
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reuse of existing software components. For example, one could build a stan-
dard cd-player interface and use it with every device conforming to the class
cd-player. In the future, a device class name could be mapped to the BTRC
ID of an available device belonging to that device class via a BTRC name service.

Security and Privacy The BTRC protocol can be used to control security sen-
sitive services like gates or resource consuming devices (i.e. heating, fridge). Such
functionality is solely to be accessed in a secure environment. The BTRC pro-
tocol therefore has to possess some encryption and authentication mechanism.
In the implementation, the OpenPGP package, using an hybrid key architecture
for encryption and a public key architecture for authentication, was preferred
since it is widely used and freely available. In a secure BTRC communication,
each side has a private/public key pair, which it uses for both authentication and
encryption. In order to set up a secure communication, the devices must trust
each other. This can basically be achieved by doing manual or user controlled
key exchanges. Secure BTRC communications make use of a challenge/response
scheme to avoid replay attacks: the challenge is changed by the server on each
message, the client then has to send it back to the server. BTRC messages can
be crypted with the public key of the other side, and signed with the own secret
key. This way, services requiring a secure access can request both an encrypted
channel and make sure the commands are coming from an authenticated client.

3.3 Protocol Implementation

Bluetooth Integration In a Bluetooth wireless network, the reliable trans-
port channel is provided by the Logical Link Control and Adaption Protocol
(L2CAP), which provides protocol multiplexing, packet fragmentation and re-
liable transfer of data. However, a Bluetooth network is a moving network: it
is possible for BTRC devices to move out of range of a client device, and for
new ones to move in range. The inquiry procedure used for the discovery of
new devices is quite time-expensive. Fortunately, periodic piconet browsing and
clock resynchronization with reachable devices can improve the mean access and
response time. This strategy is used in the reference implementation of a HTTP
based BTRC proxy and of a BTRC remote control (see subsubsection 3.3 and
section 4). Moreover, device discovery in a Bluetooth network can be achieved us-
ing the Bluetooth Service Discovery Protocol (SDP). Therefore, it is reasonable
to map the information and attributes of a BTRC service normally provided
as response to device-attributes and device-commands requests into SDP
Service Records. SDP can also be used as a name service, allowing the client to
refer to BTRC devices using the information found in SDP Service Records.

TCP/IP Integration The BTRC protocol can also be used over the TCP/IP
transport protocol, hence BTRC messages can be transported over the entire
Internet. Location and naming information can be kept in DNS databases, using
a special query type and a special query class. A BTRC device can thus be found
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by querying the appropriate directory server. As the BTRC protocol is mostly
used in order to control a small group of devices (e.g. household, home office),
there is no need to provide a self-propagating, worldwide directory service. Such a
service would permit users to locate and gather information about other people’s
property, which would be rather useless and probably unwanted by most users.

A HTTP Based BTRC Proxy There is an obvious desire to control con-
sumer devices through the Internet. To accomplish this, BTRC messages have
to be delivered using Internet protocol standards (i.e. the HTTP protocol and
the browser concept as it is used in the World Wide Web). Every web browser is
inherently a possible BTRC client. For that reason if must be capable of recogniz-
ing an entered BTRC URI (starting with btrc://). A BTRC enabled browser
can deliver such a URI via a HTTP GET or PUT request to a HTTP based
BTRC proxy. Such a browser was implemented both using an Internet Explorer
ActiveX Control and using an embedded Mozilla component. Whenever the nav-
igation target is a BTRC scheme URI, the browser forwards the complete URI
to the BTRC proxy using a HTTP request. The appropriate BTRC proxy was
implemented as well, supporting the BTRC protocol both over the Bluetooth
L2CAP protocol and over the TCP/IP transport protocol. In case the BTRC
request addresses a Bluetooth based device or a TCP/IP based device, the mes-
sage is sent to the destination device. Otherwise, the proxy could again forward
the BTRC message to a further proxy server. As HTTP is used as a transport
protocol for BTRC requests, the proxy has to enforce appropriate error handling
if the request cannot be sent to the end device.

Suppose now the use case example of accessing a BTRC video recorder at
home while being at work. Moreover the VCR is supposed to be part of a Blue-
tooth piconet and the office PC connected to the Internet and running a BTRC
enabled web browser. A BTRC request that is sent from the office has to be
conveyed to the VCR: the web browser sends the request to the BTRC proxy
at home, which will contact the VCR over Bluetooth, delivering the request and
sending back the answer over HTTP to the web browser.

Protocol Requirements The BTRC protocol is a low bandwidth protocol.
In fact, measurements conducted on the protocol implementation came up with
following data:

Table 1. Average message length

Message type Request Answer

Text-only protocol 80 bytes 120 bytes

GUI (XML, XSL, Jpeg, ...) 100 bytes 6080 bytes

GUI (compressed) 90 bytes 1950 bytes
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BTRC messages tend to be sent in short, high-rate bursts (when the user
actually sends commands to the device, for example when setting the right vol-
ume). Even in those cases, the underlying protocol’s bandwidth is left nearly
untouched by the BTRC protocol.

BTRC messages were designed to be very easy to parse, while allowing for
extension if the communicating devices can provide support for more elaborated
formats like XML. A complete BTRC service (switching a LED on and off) using
a serial transport protocol was successfully implemented on a PIC microprocessor
with 2 Mhz clock frequency, 1024 words of ROM and 128 bytes of RAM, showing
that the BTRC protocol requires only minimal computing resources. The virtual
service implemented on a PC (switching a virtual light on and off) was able
to saturate a 10 Mbps ethernet link. Even when XML is used, precalculated
documents for often occuring requests can be returned, thus allowing even very
simple computers to provide flexible GUIs.

4 Implementation

4.1 PDA Simulator

The BTRC protocol is to a great extent independent of the underlying hardware
platform. However, to demonstrate the practicability of our approach an instance
of a BTRC device representing a wireless PDA simulator extended with BTRC
remote control capabilities was implemented [5]. For the purpose of a vivid im-
pression the specification is explained below by visualizing the sequential control
flow of a typical use case (see Fig. 2).

Switching on the PDA simulator via <ON/OFF> enables the <Browse
Piconet> button. This function inquires the local Piconet of all BTRC devices in
reach. The application internally maintains an array of all discovered Bluetooth
transceivers. These devices are displayed as root nodes in the above services
<Tree View Control>. A double-click on such a device expands the node and
lists the services on hand by this device. These services are also internally held
in a dynamic array. Certain BTRC service properties such as flags whether the
service performs communication via XML or supplies a certain speech recogni-
tion vocabulary were mapped directly onto Bluetooth Service Record Attributes
to minimize request/response transmission traffic. When a service is selected
within the <Tree View Control> the application automatically displays a URI
in the <Address Field>. The user has just to complete this string with the ap-
posite command. All right, but: How to know what functionality a BTRC device
provides? Both cases specified by the BTRC protocol were implemented:

Supposing the selected appliance does not speak XML; yet it will support
the BTRC command device-commands. This command is applied to the device
instantly when it has been selected. Since the result of this call is a list of all
device commands in plain text this catalog is put out directly to the <Main
Display> area (Fig. 2).
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Fig. 2. PDA simulator

In case the device knows XML the command xml-interface will lead to
a complete XML based GUI for this device displayed on the <Main Display>
(Fig. 3).

For that reason the <Main Display> area is implemented by means of an
Internet Explorer ActiveX Control. Because a GUI Web page comprises several
items and files several distinct transmissions would be necessary. Again to re-
duce networking overhead all these file objects are compressed into one zip-file
(so specified in the BTRC extended protocol). The BTRC device determines in
advance which files are needed for its XML response. It then builds a zip-file
containing exactly this collection. The BTRC remote control receives this item
and extracts it. Thus obtaining the original files. In this way the number of
discrete broadcasts as well as the total amount of transmitted data is reduced
significantly. To finally send a command string you can submit the string con-
tained in the <Address Field> with <ENTER>. You can of course also click
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Fig. 3. XML GUI on PDA

on a BTRC hyperlink that is embedded in the XML based GUI. We want to
emphasize that our PDA simulator application supports both input methods
known from common Web browsers: You can both enter a URI directly and you
can rely on embedded hyperlinks. In case the addressed BTRC device supports
XML communication the BTRC remote control even gets a response through an
updated XML based GUI. For such a use case please refer to section 4.2.

4.2 BTRC CD Player

The BTRC CD Player simulator is a potential counterpart to the BTRC remote
control simulator. Basically it is a windows application able to play CDs via an
ActiveX Control and beyond capable of Bluetooth communication. This BTRC
CD player is derived from a generic BTRC server application that was developed
before. This generic server can easily be extended to implement a concrete device,
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Fig. 4. Several XML pages are sent in one zip-file

which then provides its functionality to clients in that way that it acts as a BTRC
server. This implies that it exports Bluetooth properties indicating it is a BTRC
device. An own Class Of Device [4] and dedicated device and service names were
defined to enable a purposeful service search for each device since there is interest
only in finding a possible BTRC functionality of a certain device. Of course such
Bluetooth specific definitions are as usual subject to the approval of an official
instance (e.g. Bluetooth SIG members). The packaging of a BTRC device can
be extremely simple. The screenshot of figure 5 shows an example of a BTRC
device. Actually you can completely omit any LEDs, switches and buttons that
have made the manufacture of consumer devices tremendously expensive until
now. Access to a BTRC device is completely wireless. These devices will appeal

Fig. 5. BTRC CD-Player
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to prospective buyers with a well developed XML based GUI set that adapts to
a wide range of BTRC remote control devices. Our CD Player simulator fully
complies with the BTRC protocol specification and provides the functionality of
a very simple real life CD Player. The device-commands BTRC request delivers
a plain text response as seen in Fig. 2. The output as seen in Fig. 3 is a result of an
xml-interface request. Supposing now that the CD Player has been discovered
by a BTRC remote control and has already sent its XML based GUI. Then the
BTRC command

btrc://0x123456781234?cmd=cd-play-track&track=07
will start the device playing track number seven and send an updated XML
based GUI to the remote control that contains for instance the refreshed number,
remaining time and title of the current track.

Fig. 6. Different XML GUIs

4.3 Legacy Infrared Devices under the Control of BTRC

Until now the power of the BTRC protocol has only been demonstrated by either
Bluetooth wireless technology or a complex HTTP and TCP/IP based proto-
col stack. But there are billions of infrared controlled consumer devices. They
can neither run a Bluetooth stack nor will they ever join the Internet via an
IP based network connection. Instead they are accessed by an infrared remote
control. This was taken into account when BTRC was developed. Due to the
fact that there are already several established infrared remote control standards
we decided to implement a BTRC-to-RC5 gateway since RC5 is by far the most
widely used one. The basic idea of such a relay is that there are, as we think of
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a home automation environment, accumulations of consumer devices in certain
rooms (e.g. in a living room there may be a TV set, a VCR, a CD player and a
tape recorder). They all seek infrared commands. These commands are supplied
by a BTRC-to-RC5 gateway that is for example attached to the living room
ceiling. This relay may either be connected to the Internet or possessing a Blue-
tooth transceiver and thus be accessible by BTRC clients using the methods and
technologies already introduced above. The relay must only be set up once with
a mapping of BTRC commands onto infrared codes. Since a single BTRC-to-
RC5 gateway might be responsible for more than one legacy device multiplexing
incoming requests to several infrared receivers was also taken into consideration.
In case of addressing RC5 devices this is pretty easy because the RC5 proto-
col specification already provides a scheme of device ”addresses”. Consequently
distinguishing between BTRC IDs and identifiers of underlying transport proto-
cols avoids ambiguities in case of a 1:n relation between a relay and its infrared
receivers. It is possible to supply several Bluetooth Service Records with in-
formation about numerous BTRC services from one Bluetooth transceiver. The
reference implementation of such a BTRC-to-RC5 gateway is a normal MS Win-
dows application. Again this instance (of a BTRC server!) is derived from the
same generic BTRC server application just like the also Bluetooth based BTRC
CD player (section 4.2).

5 Summary

The objective of this work was to realize a universal remote control system. An
application layer protocol was developed to provide uniform access to devices. A
complete remote control system was developed based on this specification. This
system consists of the following implementations:

– Bluetooth based PDA simulator
– Speech recognition interface
– BTRC enabled Web browser
– HTTP based BTRC proxy
– Generic BTRC server template
– Several BTRC server applications (CD player, MS Power Point, etc.)
– BTRC-to-RC5-Infrared gateway

The BTRC approach is pervasive, scalable, uniform, completely wireless and by
means of speech recognition highly user-friendly. Its simplicity makes develop-
ment of BTRC devices fast and easy. Even infrared controlled legacy devices
were integrated into our remote control system. The range of a Bluetooth based
remote control was extended to the entire Internet. We expect that in the near
future Bluetooth based remote control systems will replace other existing solu-
tions.
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Abstract. Communication platforms for ubiquitous computing need to
be flexible, self-organizing, highly scalable and energy efficient, because in
the envisioned scenarios a large number of autonomous entities communi-
cate in potentially unpredictable ways. Short-range wireless technologies
form the basis of such communication platforms. In this paper we inves-
tigate device discovery in Bluetooth, a candidate wireless technology for
ubiquitous computing. Detecting new devices accounts for a significant
portion of the total energy consumption in Bluetooth. It is argued that
the standard Bluetooth rendezvous protocols for device detection are not
well suited for ubiquitous computing scenarios, because they do not scale
to a large number of devices, take too long to complete, and consume too
much energy. Based on theoretical considerations, practical experiments
and simulation results, recommendations for choosing inquiry parameters
that optimize discovery performance are given. We propose an adaptive
rendezvous protocol that significantly increases the performance of the
inquiry procedure by implementing cooperative device discovery. Also
higher level methods to optimize discovery performance, specifically the
use of sensory data and context information, are considered.

1 Introduction

Ubiquitous computing [10,11] envisions that information technology is present
throughout the physical environment, integrated in a broad range of everyday
objects. Thereby, information technology becomes omnipresent but at the same
time also invisible to users. Everyday items are augmented with self-awareness
and awareness of their surroundings in order to provide new functionality and
novel interaction patterns.

A first step towards this vision is to attach small computing devices to ev-
eryday objects. Smart things sense their surroundings and cooperate with one
another. Information processing takes place autonomously in the background,
unsupervised by human beings. To collect information about their surroundings,
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smart artifacts need to be equipped with sensors for various physical parame-
ters. To cooperate with other entities, e.g. to distribute collected sensor data
or to use services offered by other entities, smart artifacts need to be able to
communicate.

The communication of smart objects poses several challenging problems: the
communication technology must be unobtrusive; the scarce radio resources must
be used effectively in order to achieve scalability; communication must hap-
pen without mediation, spontaneously and without administration; previously
unknown devices have to be discovered automatically; a wide range of commu-
nication patterns and traffic volumes must be accommodated for; and the least
energy possible must be used.

In the Smart-Its project [17] small computing devices – so-called Smart-
Its – were developed that are attached to everyday items providing them with
collective awareness and supporting intelligent collaborative behavior. As a com-
munication platform we investigate low-power fixed-frequency modules as well
as Bluetooth [5], which is a frequency-hopping system. Fig. 1 shows a Smart-It
equipped with a Bluetooth module and an attached sensor board [13].

One reason for using Bluetooth in the Smart-Its project is that frequency-
hopping as a spread-spectrum technique offers higher robustness and scalability
than fixed-frequency systems. Smart-Its are designed to operate in areas with
dozens of devices in range and are going to be equipped not only with standard
sensors for temperature and acceleration but also with more data intensive sen-
sors such as low resolution cameras. Hence, scalability in terms of number of
devices in communication range and volume of data traffic is crucial.

The issue we focus on in this paper is the discovery of new devices, which
is a necessary task for each device in an ad hoc network. Device detection is
an essential part of the rendezvous layer. The challenge is to find all potential
communication partners present in communication range using the shortest time
and the least amount of energy possible. This issue is critical if a huge number
of devices are present as in the scenarios envisioned. Although Bluetooth seems
to be a promising technology for ubiquitous computing, the insufficient scalabil-
ity and high energy consumption of its rendezvous layer limit its applicability.

pluggable
sensor
board

Bluetooth
module

Atmel micro-
controller

Fig. 1. A Bluetooth-enabled Smart-Its prototype
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While investigating Bluetooth, we found that the Bluetooth modes for device
detection – Inquiry and Inquiry Scan – consume significantly more energy
than normal receive and transmit modes. For the modules used in the Smart-Its
project, energy consumption in Inquiry mode is approximately twice as high as
in transmit mode [12,14]. Therefore, our goal in this paper is to reduce the en-
ergy consumption of Bluetooth’s rendezvous layer during device discovery, while
at the same time increasing its scalability. This is achieved through appropriate
settings for the inquiry parameters, an adaptive protocol for cooperative device
discovery, and the utilization of context information.

Due to a limited number of available Bluetooth modules and their restricted
functionality, the performance evaluation of Bluetooth’s rendezvous layer and of
the proposed adaptions are based on simulation results with the Network Simu-
lator (ns-2) [15] and BlueHoc [16], an open-source Bluetooth simulator provided
by IBM. Considerable extensions of BlueHoc were necessary to carry out the
simulation experiments described in this paper.

The remainder of the paper is structured as follows: Section 2 motivates
the need for a rendezvous layer in ad-hoc networks in general. Section 3 intro-
duces the Bluetooth inquiry procedure in particular, while section 4 evaluates its
performance in terms of time to complete, energy consumption, and scalability.
Section 5 discusses how to set the Bluetooth inquiry parameters in order to opti-
mize performance. In section 6 we present an adaptive rendezvous layer protocol
that optimizes discovery performance in settings with many devices present. In
section 7 several possibilities for the utilization of context information in device
discovery are explored. We conclude with a general judgement of the Bluetooth
discovery process and give some suggestions for improvements.

2 The Rendezvous Layer

In mobile ad hoc environments of smart devices, units initially posses no in-
formation about nearby devices, and no centralized instance exists where de-
vices can acquire information about their environment. Therefore, protocols are
needed that provide energy-efficient means for detecting new devices and enable
peer communications in mobile environments. The rendezvous layer contains
such protocols. A rendezvous layer for fixed-frequency systems introduced in [4]
provides a mechanism for node discovery using a beaconing approach and imple-
ments power saving meachnisms that allow units to be put in sleep modes be-
tween communication periods. Our approach to the rendezvous layer is different
in that we concentrate on Bluetooth’s device discovery and try to minimize power
consumption by minimizing the time units have to stay in power-consuming de-
vice detection modes. Scheduled rendezvous are not an issue of this paper.

The rendezvous layer enables devices to communicate with each other by
helping them to find potential communication partners. The actual data traffic
after connection establishment, however, does not flow through the rendezvous
layer. The term “layer” might therefore be misleading, but it emphasizes that
the results of rendezvous layer protocols are a precondition for communication
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Fig. 2. Communication platform architecture for smart devices

and that every mobile node generally needs to use rendezvous protocols to be
able to connect to other devices.

Fig. 2 shows a possible communication platform architecture for smart de-
vices. The actual position of the rendezvous layer strongly depends on the con-
crete design. It is possible that it reaches down to the hardware layer, e.g. when
low-power RF detection circuits are used to detect other devices. For fixed-
frequency systems, [4] distinguishes between client and server beaconing. In
the envisioned ubiquitous computing application scenarios there are no fixed
client/server roles. Hence, it seems advantageous to distinguish between dynam-
ically assigned roles such as service provider and service consumer. In general
each device acts both as service provider and service consumer.

The rendezvous layer for frequency hopping systems is more complicated
than for fixed-frequency solutions. This is mainly due to an initial frequency
discrepancy between devices. Frequency hopping systems also result in a much
higher energy consumption of the rendezvous layer compared to fixed-frequency
systems. In Bluetooth, the rendezvous layer mainly consists of the Inquiry and
Inquiry Scan procedures.

3 Bluetooth’s Inquiry Procedure

The Bluetooth standard introduces an Inquiry procedure for device detection
and a Page procedure for connection establishment. Both are asymmetric pro-
cesses initiated by the unit that wants to collect device information or create a
connection. The initiating unit spends significantly more energy than the unit
that is inquired or paged, because it stays in Inquiry or Page mode for a long
time whereas the other device enters a scanning mode only periodically for short
time intervals. The Page and Inquiry procedures resemble each other in that
they both have to overcome an initial frequency discrepancy between devices.
However, the paging unit has an estimate of the scanning unit’s current clock
which was acquired during a preceding inquiry.
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Unit A

Unit B

Overlapping
inquiry windows

Tw inquiry

Tinquiry

Tw inquiryscan Tinquiryscan

Fig. 3. Important inquiry parameters

During the inquiry process, the unit that wants to find devices in communica-
tion range periodically enters the Inquiry state. Devices that want to advertise
their presence and thereby agree to be found by other devices enter the In-
quiry Scan state regularly. Typically, in the envisioned application scenarios
devices enter both states, Inquiry and Inquiry Scan, in certain time inter-
vals. But in order to ensure that two devices find each other, one has to be
in Inquiry and the other in Inquiry Scan state simultaneously. To prevent
devices from synchronizing their inquiry states, the time between the start of
two consecutive inquiries, Tinquiry , has to be randomly distributed in an interval
[T min

inquiry , T max
inquiry ]. Fig. 3 and Tab. 1 show the parameters influencing Bluetooth’s

inquiry procedure.
The device in Inquiry state broadcasts ID packets on different frequencies

at twice the usual hopping rate. That is, it sends two ID packets in a 625 µs
wide slot, and afterwards listens for 625µs for responses from other devices.
This is repeated for the duration of the entire inquiry window, Tw inquiry , which
is typically in the range of several seconds. There exists a unique inquiry hop-
ping sequence comprising 32 frequencies1 on which an inquirer sends out ID
packets. This sequence is the same for all devices, only the phase within the
sequence is determined by the native clock CLKN of the inquiring unit and
therefore specific for each device. Furthermore, for each 1.28 s the inquiry hop-
ping sequence is divided into two disjunct, consecutive trains A and B, each
containing 16 frequencies. The inquirer needs Ttrain = 10 ms to both send on all
frequencies in a single train and check for potential responses. According to the
Bluetooth specification [5], the frequencies in “a single train must be repeated
for at least Ninquiry = 256 times before a new train is used”. The phase Xp in
the inquiry hopping sequence that determines the frequency at which ID packets
are transmitted is calculated as follows:

Xp = [CLKN16−12+ koffset+(CLKN4−2,0−CLKN16−12)mod 16]mod 32 (1)

In equation 1, CLKNx−y,z denotes bits x to y and bit z of the inquiring unit’s
native clock. koffset ∈ {24, 8} selects the active train A or B of the inquirer. koffset
1 This paper concentrates on Bluetooth’s 79 hop system because it is applied in the
vast majority of countries in the European Union and in the USA. In case of the
reduced hop system, the inquiry hopping sequence contains only 16 frequencies.
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Fig. 4. Overview of the inquiry procedure

is changed after a single train is repeated Ninquiry times. The frequencies within
each train are shifted by one phase every 1.28 s, since after this time CLKN16−12
changes. CLKN has a resolution of 312.5 µs. (CLKN4−2,0−CLKN16−12)mod 16
determines the phase within each train. The expression CLKN16−12 is necessary
to avoid omitting a frequency when CLKN16−12 changes, since this could lead
to a repetitive mismatch between inquiring and scanning unit.

The device that agrees to be found enters the Inquiry Scan state peri-
odically. The time between two consecutive inquiry scans is determined by the
inquiry scan interval Tinqscan. The inquiry scan window, Tw inqscan, specifies the
time a unit stays in Inquiry Scan mode. During that time the unit listens at
a single frequency in the inquiry hopping sequence for ID packets from the in-
quirer. The current phase in the inquiry hopping sequence is determined by its
native clock [5]:

Xp = CLKN16−12. (2)

The Bluetooth standard defines Tw inqscan ≥ Ttrain = 10 ms in order to
ensure that a frequency synchronization between inquiring and scanning unit
takes place when the scanning frequency is in the currently active train of the
inquirer. Also, the condition Tinqscan ≤ 2.56 s must hold. When the unit in In-
quiry Scan mode receives an ID packet, it leaves the Inquiry Scan mode for
a random backoff delay which is evenly distributed between [0, . . . , 639.375]ms.
This reduces the probability that units simultaneously transmit response pack-
ets on the same frequency. Afterwards, the unit enters Inquiry Response state
and again listens for ID packets of the inquiring unit. When the unit in Inquiry
Response state achieves frequency synchronization, it transmits a packet con-
taining device information such as its current clock timing and its Bluetooth
device address to the inquirer.

4 Performance of Bluetooth’s Inquiry Procedure

A characteristic feature of ubiquitous computing settings is the presence of many
highly autonomous, mobile devices with distinctive resource restrictions in a



262 Frank Siegemund and Michael Rohs

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

R
es

po
ns

es
 p

er
 in

qu
iry

 (
av

er
ag

e)

Number of devices

Tw  inquiry = 2.56 s, 
without duplicates

Tw  inquiry = 2.56 s, 
with duplicates

Tw  inquiry = 10.24 s, 
without duplicates

Tw  inquiry = 10.24 s, 
with duplicates
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relatively small area. The aspects of scalability, energy consumption, and device
detection delay are therefore crucial when evaluating Bluetooth’s rendezvous
protocols.

According to datasheets [14] and experimental measurements [12], the energy
consumption in Inquiry and Inquiry Scan state is approximately twice as high
as in normal receive and transmit modes. The Bluetooth standard suggests that
devices could enter Inquiry mode for 10.24 s every minute. This means that
Bluetooth devices would spend approximately 17% of their lifetime in Inquiry
mode. Besides an unacceptably high energy consumption, this also leads to poor
performance if many devices are present. Above all, in Inquiry mode a Blue-
tooth unit cannot actively exchange application data with other devices. Fig. 5
shows the average number of responses during inquiry subject to the number of
potential communication partners in range. It indicates that in the presence of
only a limited number of devices practically all units are found, when Tw inquiry

is chosen as suggested in the standard. It also indicates that performance dete-
riorates as the number of devices grows, in that a smaller and smaller portion
of devices are discovered. The reasons are manifold and are discussed in more
detail in the following sections:

– Because of a long random backoff delay, Tw inqscan must be very large when
the scanning unit is supposed to answer more than once during one scan
window. Large scan windows are undesirable because they are repeatedly
blocking the device.

– Since the relative clock differences of Bluetooth units remain unchanged, a
unit tends to answer the same device in consecutive Inquiry Scan intervals
(cf. equations 1 and 2). Fig. 5 shows that the overall number of responses
is sufficiently high, but the same device often answers the same inquirer in
consecutive inquiry scan intervals. This prevents the device from responding
to other devices. Only in Inquiry Response state an offset is added to the
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scanning frequency after each response. However, multiple responses during
a single inquiry scan window are only possible when the window is relatively
large, which is undesirable in the envisioned application scenarios.

– Large Tw inquiry

Tinquiry
values lead to high numbers of overlapping inquiry windows

where the devices cannot find each other.

Regarding scalability and energy consumption the rendezvous layer must be
designed to support inquiry parameter settings such that

– the overall time a unit has to stay in Inquiry and Inquiry Scan modes is
minimized,

– the probability for overlapping Inquiry and Inquiry Scan states is maxi-
mized,

– the probability for overlapping Inquiry modes in different units is reduced,
and

– the time for the frequency synchronization delay between inquiring and in-
quired device is as low as possible.

Decreasing the value of Tw inquiry

Tinquiry
leads to fewer overlapping inquiry inter-

vals. Since Tinquiry cannot be predetermined but generally depends on sensory
input and application restrictions, one purpose of the rendezvous layer is to de-
crease Tw inquiry , the inquiry window. Small Tw inquiry values reduce the energy
consumption and decrease the number of duplicate responses and overlapping in-
quiry intervals. However, Tw inquiry cannot be decreased arbitrarily. Fig. 5 shows
the average number of devices found during a 2.56 s compared to a 10.24 s in-
quiry window subject to the number of devices in range. In 2.56 s the inquirer
can probe only at a single train, which limits the number of responses. But com-
pared to Twinquiry = 10.24 s, in the presence of many devices fewer duplicate
responses are received, much less energy is consumed, and proportionally more
devices are found. In settings with many devices, increasing Tw inquiry will not re-
sult in the discovery of significantly more devices, because the devices will block
each other. Even with large inquiry windows, in settings with many devices not
all devices in range are found.

5 Inquiry and Inquiry Scan Settings

Device discovery in Bluetooth is performed in the Inquiry and Inquiry Scan
procedures which are controlled by various parameters. These are shown in Fig. 3
and Tab. 1. Tinquiry and Tinqscan denote the interval between the start of two
consecutive inquiries and inquiry scans, respectively. Tw inquiry and Tw inqscan

specify the duration of a single inquiry and inquiry scan, respectively. Nmax
devices

depends on the memory restrictions of a device in that it restricts the number of
inquiry responses that are processed. As pointed out before, Tinquiry depends on
specific applications and sensory input. Therefore, the rendezvous layer does not
influence Tinquiry and Nmax

devices settings. The train repetition number Ninquiry
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Table 1. Inquiry and inquiry scan parameters

Parameter Description

Tinquiry inquiry interval
Tw inquiry inquiry window, Tw inquiry ≤ Tinquiry

Tinqscan inquiry scan interval, Tinqscan ≤ 2.56 s [5]
Tw inqscan inquiry scan window, Ttrain = 10 ms2 ≤ Tw inqscan ≤ Tinqscan

Nmax
devices maximum number of responses processed in a single inquiry

Ninquiry train repetition number, Ninquiry ≥ 256 (predefined, fixed)
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Fig. 6. Average number of devices found during inquiry subject to Tw inqscan

and number of devices in range, Tinqscan = 2.56 s

defines the number of times a single train is repeated by the inquirer before a
new train is used.

5.1 The Inquiry Scan Window

A suitable value for the inquiry scan window is the minimal setting Tw inqscan =
Ttrain = 10 ms2. Here, Ttrain is the time period for the inquirer to send at
all Ntrain = 16 frequencies in the active train. Tw inqscan should only be in-
creased when Ninquiry is noticeable smaller than 256 (which is not the case
in Bluetooth), because the inquirer consecutively sends on more than Ntrain

frequencies only when it switches between different trains. This happens just
every Ttrain ∗ Ninquiry seconds and would not justify the additional time a unit
would have to spend in Inquiry Scan mode.

In an error-free environment, Tw inqscan = Ttrain seems to be the best choice.
However, in ubiquitous computing application scenarios where the probability
of packet loss is relatively high, we suggest to choose Tw inqscan = 2 ∗ Ttrain =
20 ms to ensure that an inquirer can send ID packets at each frequency in its
active train twice. If the ID packet that was sent at the scanning frequency
gets lost, the inquirer can send it again at this frequency. Fig. 6 and 7 show
2 The definition of the Write Inquiry Scan Activity HCI command says
that Tw inqscan ≥ 11.25 ms.
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the average number of devices found during inquiry considering inquiry scan
windows of varying length in an error-free environment. Noticeably more devices
are only found when Tw inqscan is substantially increased, because in this case
the probability that a train switch takes place during scanning is significantly
higher. However, since all connections have to be suspended during scanning,
substantially increasing Tw inqscan is not recommendable. Instead, as Fig. 6 and 7
suggest, decreasing the inquiry scan interval is much more effective regarding
both energy consumption and the number of devices found. Increasing Tw inqscan

by a factor of 32 from 10 ms to 320 ms is not as effective as lowering Tinqscan

from 2.56 s to 1 s regarding the number of devices that are found during inquiry
and the energy consumed.

5.2 The Inquiry Scan Interval

The inquiry scan interval, Tinqscan, denotes the time between the start of two
consecutive inquiry scans. The condition Tinqscan ≤ 2.56 s must hold. Tinqscan

is chosen such that the overall energy consumption of the whole system of par-
ticipating nodes is reduced. Consequently, the scan interval can be shortened
when in return the inquiry window of other devices can be reduced. Since ev-
ery unit generally attains both inquiry and inquiry scan modes regularly, this
is beneficial for the whole system of smart devices as well as for single units. A
module in continuous Inquiry mode consumes significantly more energy than
in periodic Inquiry Scan mode when the inquiry scan window is sufficiently
small as suggested in section 5.1.

Tinqscan can be used to control the accessibility of single devices. A short
inquiry scan interval entails that the device can easily be found by other devices.
On the other hand, a low value of Tinqscan also means that the device might
respond more often to the same device during consecutive inquiry windows.

In order to decrease the time a unit has to stay in continuous Inquiry mode
it is desirable that the first and second frequency synchronization before and
after the random backoff delay (cf. Fig. 4) take place before a train switch in
the inquiring unit occurs. Since a train switch takes place every Ttrain ∗Ninquiry

seconds, a first approximation for a suitable Tinqscan is

Tinqscan ≤ Ttrain ∗ Ninquiry − RBmax − Ttrain (3)

Here, RBmax = 639.375 ms is the maximum random backoff delay. For the
standard settings and Ninquiry = 256 this results to Tinqscan ≤ 1910.625 ms.

The above settings ensure that when there are only two devices and one
of them enters Inquiry mode, the inquirer has to stay in inquiry mode for
only 5.12 s (instead of 10.24 s) to find the other device with high probability.
Especially in the presence of many devices it is worthwhile to decrease Tinqscan

further. A lower value than 1910.625 ms leads to a higher energy consumption
for scanning. But on the other hand, Tw inquiry can be reduced to Ninquiry ∗
Ttrain + Tinqscan + RBmax + Ttrain. Furthermore, a device with a short inquiry
scan interval can respond to other devices more frequently.
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5.3 The Inquiry Window

The inquiry window, Tw inquiry , denotes the time a unit continuously stays
in Inquiry mode. Since Inquiry is a mode with very high energy consump-
tion, Tw inquiry should be as low as possible. In settings with a low number of
Bluetooth devices, a unit might prolong the inquiry window until no new devices
are found for a certain amount of time. However, as shown before (cf. section 4) in
environments with a large number of devices, prolonged inquiry windows make
the rendezvous layer inefficient because of overlapping inquiry windows, high
energy consumption, and decreased accessibility of inquiring devices. Further-
more, even in settings with large inquiry windows it cannot be assured that all
potential communication partners are found.

When equation 3 holds for all devices d ∈ D in communication range, a
good lower bound for the inquiry window parameter would be Tw inquiry =
maxd∈D{(�Ttrain∗Ninquiry

Tinqscan(d)
	 + 1) ∗ Tinqscan(d)} + RBmax, where D is the set of

devices in range and Tinqscan(d) the inquiry scan interval of device d. This set-
ting ensures that without overlapping inquiry windows and only a few devices in
range all potential communication partners can be found with high probability.

A generally appropriate setting for Tw inquiry is Tw inquiry = 2 ∗ Ninquiry ∗
Ttrain = 5.12 s, when Tinqscan and Tw inqscan are selected as recommended in
the previous sections. This enables the inquiring device to probe at frequencies
in both trains for an equal amount of time and provides sufficient time to select
responses. On the other hand the number of duplicate responses is relatively low
and the energy consumption is much lower than for the suggested 10.24 s in the
Bluetooth standard.

However, Tw inquiry = 5.12 s might be a suboptimal choice for environments
with only few devices and is still very energy consuming. The next section deals
with an adaptive protocol for Bluetooth-enabled smart devices that performs well
independently of the number of devices present and further reduces Tw inquiry to
save energy.
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6 An Adaptive Rendezvous Layer Protocol for
Cooperative Device Discovery

The performance of the standard Bluetooth inquiry procedure is sufficient for
settings with a limited number of devices in communication range. But the per-
formance decreases significantly with a rising number of units. In such environ-
ments only a fraction of the potential communication partners are found – even
when Tw inquiry is high. Unfortunately, large values for Tw inquiry result in many
duplicate responses, overlapping inquiry windows, and poor overall performance
(cf. section 4).

In settings with many devices, it is more appropriate to discover devices in
a cooperative fashion. Cooperative device discovery splits up the task of finding
communication partners between multiple units. One idea is to let only one
or two units per piconet [5] handle rendezvous tasks on behalf of the whole
piconet; another is to utilize inquiry results of other devices that responded
during inquiry. The goal of such measures is to reduce the overall number of
devices that take part in inquiry and the overall time units have to stay in
Inquiry mode in order to discover more devices in less time using less energy.

In the adaptive protocol proposed here, a unit starts inquiry for a certain
time window and accumulates responses from other devices. Although units
do not know how many devices are in range, they can estimate their number
considering the number of devices that responded during the first seconds of an
inquiry. When, after a given time interval, more devices than a predetermined
threshold were discovered, it concludes that many devices are in range, stops the
inquiry, builds up connections to some of those devices, and gets further discovery
information from them. By selecting devices with appropriate clock values, this
can be done in such a way that a large subset of the available devices is covered,
as explained below.

The advantage of this approach is that it splits up the responsibility for
inquiry between different nodes and, more importantly, that the time inter-
val after which inquiry is canceled when a sufficient number of responses are
accumulated can be very short. In fact, we suggest a value of only 2.56 s.
During this interval an inquirer only inquires at frequencies in a single train
since Ttrain ∗ Ninquiry ≥ 2.56 s (cf. section 3). That is, in the average case only
50% of devices in range can be found during the first phase of the protocol.
However, the timing information transferred during inquiry responses enables
the original inquirer to identify devices that during their inquiries discover a
subset of devices not found by direct inquiry. It might seem that connecting to
another device consumes the energy saved by a shorter inquiry for the paging
process – which is also very energy intensive. But since the timing information of
this device were transferred during a recent inquiry response, connection estab-
lishment is almost instantaneous. The simulation results show that the overall
execution time for the adaptive protocol is only slightly longer than the interval
after which the actual inquiry is stopped.

In the following, the algorithm for the inquirer is depicted. The inquiry
scan settings in participating Bluetooth units should be chosen as described
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in section 5. The protocol can be implemented on top of Bluetooth’s Host Con-
troller Interface (HCI) without changing lower layers of Bluetooth. An initial-
ization for all Bluetooth-enabled smart devices should include enabling page
and inquiry scans (HCI Write Scan Enable) and setting the inquiry and page
parameters (HCI Write Inquiry Scan Activity, HCI Write Page Scan Activity).
Furthermore, the page timeout should be chosen as low as possible in order to
prevent a device from paging a unit that left its communication range for a long
time (HCI Write Page Timeout). After sending inquiry responses, units should
enter Page Scan state to ensure fast connection establishment.

BRLP (Bluetooth Rendezvous Layer Protocol)
Input:

Inquiry settings for inquirer: Tinquiry ∈ [T min
inquiry , T max

inquiry ], Tw inquiry , Nmax
devices

Time interval for normal inquiry: BRLP timeout
Threshold for device responses: BRLP size
Number of devices to retrieve discovery information from: Nselect

Output:
Bluetooth device addresses and clock settings of devices

ensure(T min
inquiry > Tw inquiry)

inqtimer = random(T min
inquiry, T max

inquiry)
do forever

if time over(inqtimer) then
responses.delete()
HCI Inquiry(ALL DEVICES, Tw inquiry , Nmax

devices)
inqtimer = random(T min

inquiry, T max
inquiry)

BRLP timer = BRLP timeout
end if

end do

inquiry response event handler(Inquiry Response Event e)
begin

response = e.getResponse()
responses.add(response)

if not time over(BRLP timer) and responses.size > BRLP size then
HCI Inquiry Cancel()
selected responses = responses.select(Nselect)
for all sr in selected responses do

HCI Create Connection(sr)3

end for
end if

end
connection complete event handler(Connection Complete Event e)
begin

get assembled devices(e.connection handle);
end
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The suggested protocol decreases the level of confidence in the obtained re-
sults, because they are partially retrieved indirectly from other devices and might
refer to units outside the communication range. This is not a severe problem,
because direct results might also be inaccurate – e.g. obsolete because of mo-
bility – and the algorithm has to deal with uncertain results anyway. Section 7
shows how sensory input can be used to decrease this uncertainty. Also, in order
to inhibit error propagation, a unit is only allowed to pass on discovery informa-
tion that it learned from its own most recent inquiry procedure. A low value for
BRLP size means that only a few inquiry results are available to be transferred
to other devices. This entails that this parameter should be adapted after each
inquiry process. A variation of the described protocol is to carry out normal in-
quiry for a certain amount of time (for example 2.56 s) regardless of the number
of devices found during this inquiry window. When more than a given threshold
of units have been found after this period, connections to some of these devices
are established and discovery information is requested.

To clarify the performance of the adaptive part of the algorithm, Fig. 8
shows the average number of devices found considering a very low value for
BRLP size. It considers only the cases in which after 2.56 s inquiry connections
to other devices are established to request discovery information. From the set of
inquiry results two devices are selected to retrieve further discovery information
from (Nselected = 2). The selection criteria are explained below. The average
total time for the initial 2.56 s inquiry, connection establishment, and transfer
of discovery information from the two selected devices was 3.44 s. Compared
to normal inquiry with Twinquiry = 10.24 s a better performance regarding the
number of responses is achieved, and the time a unit has to stay in inquiry mode
is reduced significantly. Therefore, the adaptive protocol results in substantial
energy savings, enables units to enter energy-saving modes more frequently, and
leaves more time for application specific tasks.

The selection of units to retrieve discovery information from is important for
the performance of the adaptive algorithm. The retrieved discovery information
is only useful if it contains inquiry results from devices not already found by
direct inquiry. The probability for this is highest, when devices with appropriate
clock offsets are selected. The clock offsets are part of the inquiry results.

When the timeout for the initial inquiry, BRLP timeout, is lower than or
equal to Ttrain ∗ Ninquiry = 2.56 s – which is desirable regarding energy con-
sumption – only the frequencies of a single train are inquired. Let I be the in-
quiring and S a scanning unit that responded to I during the initial inquiry
window. CLKN I

16−12 and CLKNS
16−12 shall be bits 12 to 16 of the native

clock of I and S, respectively. The frequencies at which I inquires and S scans
only depend on CLKN I

16−12 and CLKNS
16−12 (cf. equations 1 and 2). Let the

first active train during inquiry be train A. Then, the phases of the frequen-
cies in the active train are [CLKN I

16−12 − 8, . . . , CLKN I
16−12 + 7] (mod 32).

When CLKNS
16−12 ∈ [CLKN I

16−12 − 8, . . . , CLKN I
16−12 + 7] during one in-

quiry scan interval this will also be the case during all successive inquiry scan
3 See the definition of HCI Create Connection for the exact sequence of parameters.
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intervals due to constant clock differences. This is important: because of given
constant clock differences it does not matter when a device enters inquiry state.
It will always find the same devices scanning at frequencies in the same train,
because the frequencies in a train also depend on CLKN16−12. This implies
that I should select a device S to obtain discovery information from, such that
|CLKN I

16−12 − CLKNS
16−12| is maximal.

Fig. 9 illustrates this in the light of a concrete example. The semicircles show
the frequency phases covered by units I, S1, and S2 during inquiry in train A
relative to CLKN I

16−12. The inquiry of I results in the discovery of two units, S1
and S2. The clock offset of S1 is CLKNS1

16−12−CLKN I
16−12 = −8; that of S2 is

CLKNS2
16−12−CLKN I

16−12 = 7. These relative clock differences remain constant
over a longer period of time, although the CLKN16−12 change every 1.28 s,
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possibly at different times, rotating the halfcircles right. Fig. 9 shows that S1
and S2 in their inquiries cover frequency phases relative to CLKN I

16−12 that
are not traversed by I. Units scanning at these phases with a relative distance
larger than 7 or lower than −8 are never found by I, regardless of the current
value of CLKN16−12. Since the clock offsets of S1 and S2 are maximal, they
cover the maximal number of phases relative to CLKN I

16−12 not traversed by I.
By transitively selecting devices from the discovery information of S1 and S2
it is possible for I to choose devices that have optimal clock offsets in order to
cover a large area of phases. In the same way that a device Sopt is an optimal
choice for I, I vice versa is an optimal choice for Sopt – the relationship is
symmetric. Therefore in a setting with a large number of devices present, a few
devices can form stable subgroups to cooperatively perform device discovery.
They complement each other, and the whole system as well as individual units
profit in terms of energy savings, number of devices discovered, and shorter
discovery delays.

7 Using Sensory Input to Improve Rendezvous-Layer
Protocol Performance

When everyday items are augmented with information processing capabilities
they will provide information about their environment to other devices, thus
enabling collaborative perception of the environment. In the Smart-Its project,
smart devices are equipped with a wide variety of different sensors for physical
parameters like temperature, acceleration, etc. An interesting question is how
sensory data that is accumulated independently from the communication plat-
form can be used to improve rendezvous layer protocol performance. The idea
to take advantage of context information – especially location – in communica-
tion protocols has also been used to improve other protocol layers, e.g. routing
protocols [8].

If sensory input from acceleration or general location sensors are available,
the inquiry parameter settings are adapted when a device moves. Since it is more
probable that a moving device enters a new environment, the inquiry window is
prolonged or the inquiry interval is shortened in order to discover new devices.
In this case only individual devices increase their inquiry window; this does not
lead to a deterioration of the rendezvous layer protocol performance of the whole
system. Alternatively, the inquiry scan interval is reduced to ensure that other
units can access the device faster. In general, all sensory input that could lead to
an increased access to the device could result in the same adjustment of inquiry
setting parameters.

Context information can also be used to implement the select routine in
the adaptive rendezvous layer protocol. The purpose of the select statement
is to choose such devices among all units that responded during inquiry, for
which the uncertainty of transferring obsolete device information is as low as
possible. When no sensory input is available, devices are selected as shown in
the previous section or randomly from the set of devices that already responded
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during inquiry. But when context information is available, then it should be
used to select devices that are as near as possible, that inquired at different
frequencies, and that started inquiry most recently. In the Bluetooth 1.1 standard
there exists a link manager protocol (LMP) command to determine the signal
strength to other Bluetooth devices. This information could be used to evaluate
whether the device is suitable to get device information from.

8 Conclusion

The standard inquiry procedure of Bluetooth consumes much energy which is
problematic for communicating smart devices in ubiquitous computing settings.
This paper showed how the standard inquiry parameters can be adapted to
decrease power consumption and increase the scalability of the inquiry proce-
dure. Since typically smart devices perceive their environment through sensors,
we also presented ways for using sensory input to improve the performance of
Bluetooth’s rendezvous layer.

Furthermore, it was pointed out that the scalability of Bluetooth’s inquiry
procedure is not sufficient if many devices are present. As a result from this ob-
servation, an adaptive protocol for cooperative device detection was introduced
that reduces energy consumption and improves scalability for environments with
many devices.

The properties of Bluetooth’s rendezvous layer that have the strongest impact
on device detection delay are a relatively high random backoff delay and the
existence of two separate frequency trains. In terms of the rendezvous layer for
general frequency hopping systems there should be only a single train comprising
all 32 frequencies of the inquiry hopping sequence. Alternatively, Ninquiry could
be reduced to one, and the minimum inquiry scan window should be increased to
20 ms. It is important to note that even with these adaptations the majority of
parameter selection rules and the adaptive rendezvous layer protocol presented
in this paper are still applicable.
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Abstract. IP-based realtime multimedia communication provides for a
large Layer-3 and Layer-4 header overhead due to usually small pay-
load sizes of single packets in a realtime flow. Because of the restricted
bandwidth of wireless links, header compression represents an essential
prerequisite for the Mobile Internet, i.e., whenever an IP-based mobile
end device has to communicate with an IP-based infrastructure. RFC
3095 on Robust Header Compression (ROHC) represents the state-of-
the-art header compression proposal. It provides a complex framework
that allows to fine-tune compression efficiency versus robustness
against link errors. We present a Java-based simulator/visualizer cur-
rently running ROHC Profile 2 (UDP/IP) in Uni-directional Mode that
allows experimentation with all relevant ROHC parameters (like state
transition timers and repeat counters) as well as with various link con-
ditions. We present the implementation and report on simulation results.
An average header length of about 2.8 bytes is achieved. In general, the
tool is useful as an educational tool for assessing ROHC performance
and to see Robust Header Compression �at work�, i.e., to explore the
underlying parameter space. For the future, the simulator will be also
used to generate realistic audio/video packet flows for evaluation with
respect to audio/video decompression handling in the presence of
packet losses.

1 Introduction

When a streaming application sends UDP/IPv4 packets with a packet rate of 50 pack-
ets/s, the bandwidth needed solely for the UDP/IPv4 headers amounts to 11.2 kbits/s.
With RTP, IPv6, or tunneling approaches the overhead gets even larger. Since the air
interface in a wireless system represents a scarce resource, header compression tech-
niques are of utmost importance in order to make �IP over air� economically feasible.
The basic assumption for header compression is that the link over which IP headers
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are compressed is a point-to-point link. IP headers in packet flows over the link will
not change much from packet to packet, thus, this �temporal� redundancy can be ex-
ploited by compression techniques. The main idea is that both end points of the link �
in a 3G system, for example,  the Radio Network Controller and the mobile terminal �
maintain a copy of a context containing all the fixed fields of the header (static part of
context) as well as reference values for fields with predictable changing patterns (dy-
namic part of context). In subsequent (compressed) headers, the fixed fields can be
entirely omitted and for the predictable fields only some delta-information with re-
spect to the reference values has to be sent. However, to keep contexts at both end
point of the link in sync is a challenge for lossy links. Here, the engineering trade-off
involves compression efficiency versus robustness of the method. The state-of the-art
in header compression for wireless links is RFC 3095 Robust Header Compression
(ROHC) [1]. ROHC will be used in UMTS from Release 4 onwards (see [2]) and
represents an enabling technology for IP-based wireless communications.

The field of header compression came to life with Van Jacobson�s header compres-
sion scheme for TCP/IP [3] developed for slow modem lines. Degermark et al. de-
signed a general IP header compression framework [4] for compressing IPv6 base and
extension headers, IPv4 headers, TCP and UDP headers, and encapsulated IPv6/IPv4
headers. Degermark�s et al. framework was extended to RTP/UDP/IP header com-
pression in [5]. This so-called CRTP mechanism was analyzed for appropriateness for
wireless links in [6]. The  analysis showed significant drawbacks with respect to ro-
bustness. Several improvements were proposed, most notably ROCCO (Robust
Checksum-based Header Compression) [7] and ACE [8] that very much influenced
the ROHC proposal.

The ROHC proposal represents a complex framework for header compression
where complexity comes from various sources: i)  in order to maximize compression
efficiency various special cases have to be taken into account, ii) it provides a general
framework for a large number of header types, and iii) it provides a high degree of
adaptivity to various links and their respective error characteristics. Since ROHC
presents a very recent approach to header compression, only very few performance
results can be found in the literature today. In order to study the effects of changing
the various ROHC parameters as well as to check the corresponding compression
performance, we have seen the necessity to come up with a ROHC simula-
tor/visualizer. The simulator currently supports ROHC Profile 2 (UDP/IP) in Uni-
directional Mode. The simulator allows us to tune ROHC parameters, serves for edu-
cational purposes, and will be extended in the future in order to study ROHC effects
on various audio/video codecs.

2 A Brief Introduction to Robust Header Compression
Header Compression aims at reducing the header overhead by exploiting the redun-
dancy inherent in a sequence of UDP/IP (or other types of) headers stemming from a
flow of packets. The redundancy is due to the fact that within a flow of packets, sev-
eral fields in the header do not change at all or change predictably. Table 1 indicates
the static and inferable fields in IPv4 and UDP headers.
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Table 1. UDP/IPv4 header fields and their ROHC classification (static, inferable, irregular)

Field Type Field Type
Version
IHL
Type of Service
Total Length
Identification
Flags
Fragment Offset
Time to Live
Protocol

Static
Static
Static
Inferable
Irregular
Static
Static
Static
Static

Header Checksum
Source Address
Dest. Address

Source Port
Destination Port
Length
Checksum

Irregular
Static
Static

Static
Static
Inferable
Irregular

The static fields are constant for the complete packet stream while the inferable
fields (length information) can be computed from link layer header information. The
IP header checksum as well as the UDP checksum are discarded at the compressor
and restored at the decompressor using the well-known checksum mechanism. Thus,
only the IP Identification (IP ID) field is left over for compression. The IP ID is as-
sumed to follow the Sequential Allocation Policy, therefore, it changes predictably
and can be coded efficiently.

In an �ideal� scenario where the link between compressor and decompressor can be
assumed to be error-free, header compression works as follows. When the compressor
gets the first packet of a packet flow, it stores all the static fields as well as reference
values of predictably changing fields in a context. The compressor assigns a currently
unused context identifier (CID, a small integer) to the context and sends the uncom-
pressed header together with the CID to the decompressor. The decompressor gener-
ates an identical context with the same CID. All following packet headers can now be
sent only with the CID and without the constant and inferred fields, and the remaining
fields can be coded efficiently. When the context has to be changed, a packet of ap-
propriate type that contains the necessary context updating information is sent to the
decompressor.

Clearly, the challenge of header compression is to deal with non-perfect links
where packets can get damaged or lost. In this case, the contexts at compressor�s and
decompressor�s side can get out of sync. In other words, the decompressor�s context
might no longer be correct and needs to be repaired, e.g., by sending a full header or
some partial update. The extent to which a header compression algorithm is able to
deal with such loss/error situations determines its robustness. The efficiency of header
compression and its robustness are directly related, and a ROHC operator has to find a
tradeoff between the two by tuning the scheme�s parameters. One of the goals of the
simulator described in this paper is to help in finding good parameter settings for
specific link characteristics.

There are three operating modes of the ROHC Protocol, namely Unidirectional
Mode (U-Mode), Optimistic Mode (O-Mode), and Reliable Mode (R-Mode).

U-Mode is designed for links with no return path (path from the decompressor to
the compressor), or where a return path is not desired. Thus, there is no means or need
for the decompressor to communicate with the compressor.

The Optimistic Mode is aiming at maximizing compression efficiency and makes
sparse usage of the feedback channel when running in an environment of relatively
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low bit error rates and low irregularities. The feedback channel is used to send error
recovery requests and (optionally) acknowledgments of significant context updates
from decompressor to compressor.

The Reliable Mode, finally, aims at maximizing the robustness against loss propa-
gation and damage propagation, i.e., minimize the probability of context invalidation
even under header loss/error burst conditions. It may have a lower probability of
context invalidation than O-mode due to the fact that context invalidation is almost
immediately feedbacked to the compressor. R-Mode has a more intensive usage of the
feedback channel and a stricter logic at both the compressor and the decompressor
that prevents loss of context synchronization  except for very high residual bit error
rates. Feedback is sent to acknowledge all context updates, including updates of the
sequence number field.

A ROHC implementation should be able to support all three modes of operation,
and all operation must start at U-Mode. Transition to any of the bi-directional modes
can be performed as soon as a packet has reached the decompressor and it has replied
with a feedback packet indicating that a mode transition is desired. In the rest of the
paper we restrict ourselves to U-mode as the ROHC base mode.

Both compressor and decompressor are described as state machines with 3 main
states each. The compressor states are �Initialization and Refresh State� (IR State),
�First Order State� (FO State), and �Second Order State� (SO State). The compressor
states dictate what kind of headers are allowed to be sent by the compressor: in IR
state, full headers together with additional information like CIDs has to be sent, in FO
state partial updates and  a specific compressed header (UOR2, see below) can be sent
additionally, and in SO state the smallest compressed headers (UO1, UO0, see below)
can be sent in addition.  A state transition diagram is given in Figure 1.

The states of the decompressor indicate whether the decompressor has i) no con-
text, or ii) a partial context, or iii) a full context available. At each state only packets
of certain type(s) are given decompression permission. A state transition diagram for
the decompressor is given in Figure 2.

As mentioned above, ROHC defines a number of different packet formats for the
exchange between compressor and decompressor  (see Table 2). The Initialization and
Refresh (IR) header sets up contexts and is 27 bytes long for UDP/IPv4. The IR_DYN
header is used to update the total dynamic part of the context and is 13 bytes long.
There are three compressed header formats (UOR2, UO1, and UO0 are the official
names of RFC 3095) that differ slightly in their fields and field lengths, respectively,
and their respective lengths are 4, 3, and 2 bytes. The compressed headers only con-
tain information on the �irregular� UDP/IPv4 header fields. All the packets contain
also CRC fields (see below) and a CID that refers to its context.

The decompressor needs to be able to decide whether a decompressed packet is
correct, i.e., the context that has been used for decompressing the compressed header
is up-to-date. In ROHC this is done using Cyclic Redundancy Checks (CRC). At the
compressor side, CRCs for IR and IR_DYN packets are computed over their respec-
tive structures that contain rearranged header fields and some other information.
CRCs for compressed header packets are computed over the original header fields.
The CRC is then performed again after all header fields are restored at the decom-
pressor. The results of the two CRC calculations are checked to see whether they
match. If yes, there is a good chance that the piece of data before compression and the
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restored piece of data after decompression are identical. A CRC mismatch might be
caused either by a damaged context or by a bit error. In the first case, the decompres-
sor typically tries to repair the context, e.g., by decompressing it with a previously
used context, in the second case, it usually discards the packet and remains in its cur-
rent state.

IR FO SO 

Initialization & Refresh State

Purpose: send the static context or
recover context after failure.

Prerequisite: None

Allowed Packet Type: IR

First Order State

Purpose: communicate the irregularities in the
packet stream.

Prerequisite: Static context is established

Allowed Packet Type: IR,   IR-DYN, UOR2-ID

Second Order State

Purpose: Practice optimal
compression/decompression

Prerequisite: change patterns of
related fields are established

Allowed Packet Type: IR, IR-
DYN, UOR2-ID,  UO1-ID, UO0

! Timeout for SO state

! String variation: the change
pattern of a  dynamic field is
different, update need

Timeout for FO state

Optimistic approach:
repeated static context

Optimistic Approach: context repeated

Timeout for all states

Repeat

context

Before
timeout

Before
timeout

Optimistic approach:
repeated dynamic contexts

Fig. 1. State transition diagram of compressor in U-Mode

Fig. 2. State transition diagram of decompressor in U-Mode

No Context Static Context Full Context
! Continuous decom pression
failures on SO State packets

! S till continuous
decom pression failures of
the FO state packets

Receive a FO State packet
and  acquires new patterns of
the dynam ic context

Receive and successful decom press an IR packet

No static context No dynam ic
context

Successful
decom pression

No Context State

Purpose: to acquire sta tic context or
recover context after failure.

Prerequisite: None

Allowed Packet Type: IR

Static Context State

Purpose: to acquire dynamic context when
irregularities occur in the packet stream.

Prerequisite: Static context is established

Allowed Packet Type: IR ,   IR-DYN, UOR2-ID

Full Context State

Purpose: to achieve optimal
decompression

Prerequisite: change pa tterns of
related fields are established

Allowed Packet Type: IR , IR-
DYN, UOR2-ID,  UO1-ID, UO0
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Table 2. ROHC packet types used in U-Mode

Packet Name Packet Function Packet Size [bytes]
IR Initialization / Refresh 27
IR_DYN Partial context update 13
UOR2-ID Compressed header 4
UO1-ID Compressed header 3
UO0 Compressed header 2

3 Simulator/Visualizer Implementation

Our ROHC simulator for UDP/IPv4 in U-mode allows to set operational parameters
of repeat counters, timers, options, packet delay, link packet loss rate, and link bit
error rate for performance evaluation and tuning. The corresponding visualizing com-
ponent allows us to view original headers together with their compressed and recon-
structed counterparts. Monitoring information like current compressor/decompressor
states, state transition events, current packet type, and context update events are also
shown. In addition, we provide evaluation results like bandwidth consumption, com-
pression gain, and average header length as well as statistics on packet type distribu-
tions. Furthermore, the ROHC simulation tool provides for debugging facilities.

The ROHC simulator/visualizer has been written in Java to avoid  a split-level im-
plementation with two programming languages. In addition, Java enforces good ob-
ject-oriented design practices in order to produce solid and extensible applications and
it ensures portability. We encountered two (tractable)  problems when using Java for
our purposes. First, Java has no support for unsigned data types, thus, mapping be-
tween signed values and their unsigned equivalent binary representations  has to be
done. Second, in order to write and read ROHC packet headers of different types (in
form of Java class objects) to and from a data stream, the mechanism of Object Seri-
alization is used to significantly simplify the task of passing data. However, since the
serialization mechanism automatically deals with the process of saving and restoring
the state of a class, regardless of where the stream points, packet type indication suf-
fers. The reason is that the decompressor cannot locate the exact position of the
packet type indication byte inside a received packet, and therefore the decompression
based on packet type halts. To fix this problem, an additional layer of encapsulation is
introduced. A ROHC header object is defined as member of object of a common class
Uniform. Packet Type Indication bytes are separated from the ROHC packet header
to avoid the location problem.

The simulations testbed is presented in Figure 3: two Windows 2000 PCs on a Fast
Ethernet provide us with a compressor and decompressor facility, respectively. The
compressor uses as input a recorded sequence of packet headers. The compres-
sor/decompressor are structured into a back-end and a front-end: the back-end is re-
sponsible for protocol operations while the front-end allows interactions between the
user and the back-end. Screenshots of the compressor and decompressor GUIs are
shown in Figure 4. The main parameters to experiment with are as follows.
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The screenshot of the Compressor GUI shows four timers: Delay determines the
inter-arrival times of packets, TIME_ALL determines after which time interval the
compressor has to transit back to IR state, and TIME_SO and TIME_FO correspond-
ingly determine after which time interval the compressor has to transit back from
second order to first order and from first order to IR state, respectively. Not shown in
the current view are the counters for repeats (successive transmissions) of significant
context update packets like IR Repeat, IR_DYN Repeat, and UOR2 Repeat.  The
minimum values are 2 for these counters (otherwise there is no repeat of packets).
Higher values lead to higher reliability but less compression efficiency.

At the decompressor side, failure thresholds that decide when to fall back to a
lower state in case of continuous decompression failures have to be set. Examples are
threshold_FC that decides when to trigger a downward transition from Full Context
State to Static Context State, and threshold_SC that decides when a backward transi-
tion is triggered from Static Context State to No Context State. The thresholds are
common for all modes, and the exact values are subject to link characteristics.

Fast Ethernet PCCompressor DecompressorPC

p

Fig. 3. Testbed scenario

4 Experimental Results

In this section we present experimental results obtained with the proposed simulator.
We show what compression efficiency can be optimally achieved and then give an
example for the exploration of the parameter space as it is enabled by the simulator.
For the first, �optimal� scenario we have set the repeat values for IR, IR_DYN, and
UOR2 packets to 2, and the timers TIME_ALL and TIME_SO to 9s and 3.3s, respec-
tively. For a second, �more reliable but less efficient scenario� we have increased the
repeat values to 6 and have the timers TIME_ALL and TIME_SO decreased to 3s and
1.1s. Compression gain and average header length vs number of packets are given in
Figures 5 and 6 for a packet stream of about 2000 packets where a packet is sent
every 100ms.

The optimal scenario shows a compression gain of 83.04% after 20 packets, and
the compression gain reaches about 90.0% after 2000 packets. However, if the repeat
counters for IR, IR_DYN and UOR2 are set to 3 times larger, and the timers for
TIME_ALL, TIME_SO are adjusted to 3 times smaller, the  compression gain drops
immediately by more than 20%.

The corresponding header lengths for the �optimal� scenario are 4.75 bytes after 20
packets and 2.84 bytes after 2000 packets. For the �less efficient but more reliable�
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scenario the compression performance measured by average header length is signifi-
cantly affected., i.e., eventually more than three times higher than in the �optimal�
case.

Fig. 4. Screenshots of compressor and decompressor GUI
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Fig. 6. Average header length (in bytes) vs packet numbers

Figure 7 shows the packet distribution for the two scenarios at the level of 2000
packets sent. For the �optimal� scenario, the packet with minimum-sized header-UO0
packets is in the vast majority, it occupies about 88% of the overall packet numbers.
The packets with biggest header, IR packet, is below 1%.  This leads to an average
header length of only 2.84 Bytes.
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Fig. 7. Distribution of ROHC packet types for the �more robust but less efficient� scenario (left)
and the �optimal� scenario (right)

Figure 8 presents a study on the robustness of ROHC in U-mode. We show how a
damaged or lost header can affect the successive packet stream due to a damaged
context on the compressor�s side.
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Fig. 8. A study on the robustness of ROHC. Shown are packet numbers for a stream of packets
vs corresponding packet header types (1: IR; 2: IR_DYN; 3: UOR2-ID; 4: UO1-ID; 5: UO0; 6:
lost or damaged). Ideal case (no packet losses) is shown in (a), (b) shows the loss of a UO1-ID
packet that leads to the loss of the following packet, (c) shows the loss of 2 UO0 packets that
does not lead to successive losses, (d) shows that loss of UO2 packets might result in succes-
sive losses (continued on next page)
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Fig. 8 (cont�d). (e) shows that loss of a single IR packet does not effect the system, while (f)
indicates that a loss of �number of repeats� IR packets results in a loss of successive packets
until the context is repaired again by a context-updating packet
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Figure 8(a) shows the pattern of changing header types when no loss/damage is
present. Figure 8(b) illustrates the case where a UO1-ID packet is damaged and a
following packet is discarded until the context is repaired again. Figures 8(c) and (d)
show that the loss of UO0 packets might or might not lead to successive packet losses
depending on whether the sequence number least significant bits (SN LSB) field
wraps around or not. If it is just wrapping around the finite number space when a UO0
packet gets lost, the decompressor�s context gets irritated and a number of subsequent
packets will be discarded until a context repair procedures adjusts the sequence num-
ber again. Figures 8(e) and (f) show the importance of the repeat counters for major
context updates like IR packet headers: the loss of a single IR packet does not affect
the packet stream, while the loss of two (number of repeats) IR packets leads to suc-
cessive packet losses until the context is repaired again, in the worst case when the
next IR packet is periodically sent.

The purpose of the above discussion has been to demonstrate the tuning of the
trade-off between compression efficiency and robustness. Of course, as input pa-
rameter also the distribution of the bit errors should be taken into account.

Quantitative results with respect to packet loss rate depending on residual bit error
rate are presented in Figure 9. Again, the error distribution is a uniform distribution.
Only errors in the packet headers were considered.
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Fig. 9. Relationship between residual Bit Error Rate and Packet Loss Rate

5 Discussion & Future Work

We have presented a ROHC simulator and visualizer for Profile 2 (UDP/IP) in
U-mode in order to facilitate exploration of the ROHC parameter space as well as
ROHC evaluation, i.e., the trade-off between efficiency and robustness. Experimental
results show that optimimum compression in U-mode leads to an average header
length of 2.84 bytes. We have also shown the effects of damaged headers on the
packet loss rate. The simulator/visualizer is implemented in Java and allows easy
replacement and extensions of modules, e.g., for error modeling or input packet types.
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Furthermore, we use the outlined tool also for determining which ROHC parameters
should be configurable via SNMP, thus, should be included in the Management
Information Base [9]. Finally, we plan to perform experiments on the effects of packet
losses due to decompression failures on several audio and video codecs.
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