

Advanced
FileMaker® Pro 6
Web Development

Bob Bowers and Steve Lane

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Bowers, Bob, 1969-
Advanced filemaker pro 6 web development / by Bob Bowers and Steve Lane.

p. cm.
ISBN 1-55622-860-0
1. FileMaker pro. 2. Database management. 3. World Wide Web.
I. Lane, Steve, 1965- II. Title.
QA76.9.D3B6739 2003
005.75'65--dc21 2003005386

CIP

© 2003, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-860-0

10 9 8 7 6 5 4 3 2 1
0303

FileMaker is a registered trademark of FileMaker, Inc.

All brand names and product names mentioned in this book are trademarks or service marks

of their respective companies. Any omission or misuse (of any kind) of service marks or

trademarks should not be regarded as intent to infringe on the property of others. The

publisher recognizes and respects all marks used by companies, manufacturers, and

developers as a means to distinguish their products.

All inquiries for volume purchases of this book should be addressed to Wordware
Publishing, Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Dedication

To my parents, who paved the way.
Steve Lane

For my soon-to-be-born, yet unnamed son. You’ll get
your name in the next one.

Bob Bowers

iii

This page inten tion ally left blank

Contents

Acknowledgments . xi
Introduction. xiii
About the Authors . xiv

Chapter 1 The Dynamic Web 1
A Case Study . 1
The Web as a Database Client 2
FileMaker on the Web . 6
The Web Companion . 8
Available Technologies . 11

Chapter 2 Preparing Your Databases for the Web 15
Planning the Project . 16

The Piecemeal Project . 16
The Wholesale Migration Project 17
The Web-only Project . 18
The Hybrid Project . 19

Naming Conventions . 19
Spaces . 20
Case . 21
Special Characters . 21
Uniqueness. 22

Use of Global Fields, Calculations, and Summary Fields 22
Use of Scripts . 24
Relationships, Portals, and Related Records. 25
Layouts . 27
Summary . 30

Chapter 3 Configuring FileMaker for the Web 31
Choosing Instant vs. Custom Web Publishing 31
Setting up the Host Machine 33

Hardware Configuration . 33
Software . 33
Your Database Files . 34

Enabling the Web Companion 36
Web Companion User Interface 38
Remote Administration . 39

v

Logging. 39
Security . 40

Sharing the Databases . 41
Securing Your Site . 41

Protecting Your Database with FileMaker’s
Access Privileges . 42

Protecting Script Access 43
Protecting Fields . 44
Protecting Records . 46

Protecting Your Databases with the Web
Security Databases . 46

Setting Up Usernames 48
Setting Field and Record Restrictions 49
Creating Global Security for “All Databases” 53
Remote Administration. 53
Other Remote Administration Privileges 55

Protecting Your Format Files 56
Using the Web Server Connector 57
Summary . 59

Chapter 4 Publishing Your FileMaker Data with XML 61
What Is XML?. 62
Why the Web? . 68
More about XML . 68
XML Documents Are Trees 70
FileMaker and XML . 71
Using XSLT to Transform FileMaker’s Output 76
Generating HTML . 84
XSL So Far . 93

XSL Tags . 93
XPath Expressions. 94

Calculation and Computation with XSL 95
More Complex Reporting with XML. 97
Advanced Sub-summary Reporting in XSL. 106
Sorting . 112
Multilevel Reporting . 113
Displaying Hierarchical Data 116
Transforming FileMaker Data into Non-HTML Text Data . . 121
Resources and References 124

Books for Learning XML and XSL 124
Web-based Resources on XML and SGML 124
“Official” W3C pages on XML and HTML 124

Contents

vi

Chapter 5 Instant Web Publishing 125
Getting Started . 126
Home Page Options . 127
Creating Your Own Home Page 127
Selecting a Style . 132
Selecting Your Views . 133
Layout Elements on the Web 136

Container Fields . 136
Value Lists . 136
Field Formatting . 137
Merge Fields . 137
Portals. 137

Scripting . 137
Building a Customized IWP Application 139

Hiding the Frame. 140
Using a Layout as Your Home Page 141
Planning the Site . 143
The Search Routine . 145
Detail and Update Pages 149
Validation . 154
Building Dynamic Links to External Sites 155

Summary . 155

Chapter 6 Custom Web Publishing with CDML 157
Introduction to CDML. 157
Getting Started . 158
Variable Tags and Replacement Tags 164
Building Applications Using CDML 166

The Web Store Page . 166
Searchable Web Store . 168
Search Forms in CDML 170
Finishing the Searchable Web Store v. 1.0. 172
Upgrading the Search Page 174
Greater Control: Using CDML Tokens 180
Showing Portal Data in CDML. 182
Inline Actions: Performing Multiple Tasks in a
Single Page . 188
Using CDML to Send E-mail 196
Cookies . 200

Summary . 203

Contents

vii

Chapter 7 Custom Web Publishing with Lasso 205
Configuring Lasso for FileMaker 206
Building an Application with Lasso 210
A Simple Search in Lasso . 211
Variables in Lasso . 214
Error Handling in Lasso. 216
Folding Up the Search Pages 219
Writing the Folded Page with Inlines 223
Adding More Actions to the Page 227
Adding Error Handling . 238
Using Arrays and Maps to Create a Value List Library 242
Coding for Reuse: Lasso Custom Tags 244
Custom Types: Writing Object-Oriented Code in Lasso 248
Preserving State: Sessions in Lasso 253
Summary . 259

Chapter 8 Custom Web Publishing with PHP 261
What Is PHP? . 261
Coding in PHP—General Principles 265

Working with Variables. 266
Arrays . 268
The Include Function. 270
Conditional Statements 271
Looping Constructs . 273

For Loops . 273
Foreach Loops . 274

Functions . 275
Objects . 276

Using PHP with FileMaker 279
FX: The Right Tool for the Job 282

Creating an Instance of FX. 284
Specifying Request Parameters 285

SetDBData. 285
SetDBPassword . 286
AddDBParam . 286
AddSortParam . 288
FMSkipRecords . 289
FMPostQuery . 289

Calling an Action . 290
FMFind . 290
FMFindAll . 291
FMFindAny . 291
FMDelete . 292
FMEdit. 292

Contents

viii

FMNew . 293
FMView . 293
FMDBNames . 294
FMLayoutNames . 294
FMDBOpen . 294
FMDBClose . 295

Creating Web Applications with PHP, FX, and FileMaker . . . 295
Summary . 318

Chapter 9 FileMaker and Web Services: Learning

about XML Import 319
Working with a Real Web Service. 321

Processing the Author Data 330
Optimizing the XML Import 333

So What Can I Do with Web Services? 336
Finding Web Services . 337
Writing Your Own . 338

Writing a Time Server 338
Other Kinds of Web Services 342
FileMaker and SOAP . 345

SOAP Wrap-up . 361
Web Services Push . 362
Summary . 372

Appendix CDML Reference Guide 373
Request Parameters . 373

Action Parameters . 373
Other Request Parameters. 382

Replacement Tags . 397

Index . 439

Contents

ix

This page inten tion ally left blank

Acknowledgments

We’d like to heartily thank all of the people whose help and support
made this book possible. To start, Jim Hill, Wes Beckwith, Heather
Hill, and Beth Kohler at Wordware Publishing were exceedingly
patient with us, even as deadlines came and went. Thanks to Bill
Bennett and Greg Lane for reading and commenting on chapters in
spite of their own busy schedules. Aaron Holdsworth helped write the
Web Server Connector section of Chapter 3. Thanks to Chris Moyer,
Scott Love, and the rest of the Moyer Group team for keeping our
business moving ahead and allowing us free time for writing.

Writing a book, I’ve come to discover, has a way of affecting the lives of
everyone around you. Coworkers, clients, friends, and family can’t help
but get caught up in the stress and strain. Thanks to my in-laws,
MaryAnn and Tom Moore, for the use of their cottage as a hideaway.
Thanks to John Overton and Molly Thorsen for being such good
friends and advisors. And thanks to Kim Fenn, Adam Christofferson,
and Bethany Albertson for prescribing reality TV and cheese fondue as
stress relief medication. I’d also like to thank Steve Lane for being
such a great co-author, co-worker, friend, and all-around good guy.

Finally, thanks to my wife, Rebecca Moore. She’s pregnant now
with our first child, and nonetheless has been a constant source of love
and support. She has given up many evenings and weekends and part
of a vacation so that this book could be finished. The next major pro-
ject is turning the guest room into a nursery—I promise.

Bob Bowers

xi

No one writes a book alone. It’s just the opposite: The more we lock
ourselves away to pound the keyboard, the more we rely on those
around us to keep us sane and healthy (or, in the worst case, fed and
dressed!). And, especially with a technical topic, we also rely on con-
stant recourse to the people who can answer the hard questions.
Thanks to Jay Welshofer for straightening me out on the points of
FileMaker’s XML implementation and to Greg Lane and Andrew Nash
for their rigorous “usability testing” on a number of chapters. Any
errors or omissions that remain are my own. Bob Bowers has been a
great partner—not just in this book, but in all of our work together
over the last few years. Writing a book is never the easiest thing, but
Bob’s good humor, sound technical judgment, and determination made
it much easier. Two are better than one, as they say, and Bob’s always
been there with a hand.

Steve Lane

Acknowledgments

xii

Introduction

This is the second in a series of books on advanced FileMaker Pro
development techniques. The first book, Advanced FileMaker Pro 5.5

Techniques for Developers, focused on programming techniques for pure
FileMaker Pro solutions. These days, however, many powerful
FileMaker solutions are not just pure FileMaker but hybrid solutions,
where FileMaker is tied to other data sources and interfaces, including
prepress workflows, SQL databases, legacy data from mainframes, and,
of course, the ever-present web.

This book focuses on the last of these rich integration possibili-
ties—publishing your FileMaker data to the World Wide Web. Over six
years ago, we first used FileMaker to export HTML to build static web
pages. Since then, we’ve watched as FileMaker has steadily added sup-
port for a wide variety of web standards. As the product has grown,
third-party and open-source offerings have grown along with it. Today,
a FileMaker developer charged with “putting our database on the web”
has an almost bewildering variety of options, ranging from the built-in
capabilities of FileMaker itself to commercial tools such as Lasso and
open-source tools such as PHP and XML. Our goals in writing this
book have been both to introduce you to the major web technologies
that you can use with FileMaker and give you a decent footing in the
general principles of designing data-driven web applications.

Whether you’re a proficient FileMaker developer looking to make
the leap to the web or you’ve already worked with one or more of the
major FileMaker web tools and want to hone your skills, you should
find something of value in this book. We’re going to assume that you
have intermediate-level FileMaker skills. To us, this means knowing
how to create a FileMaker database, how to work with related data-
bases, and how to work with basic calculations. We also assume that
you have a basic familiarity with HTML.

You’ll get the most out of this book if you follow along with our
demo files, which are available for download at http://www.moyer-
group.com/webbook/ and www.wordware.com/files/fmweb. Errata, if
any, and other notes are available at these sites as well.

xiii

About the Authors

Bob Bowers is president of the Moyer Group, a FileMaker consulting
and training firm with offices in Chicago, Atlanta, and San Francisco.
He has been a columnist and contributing editor for FileMaker Advisor

magazine since the publication’s inception and is the co-author (with
Chris Moyer) of Advanced FileMaker Pro 5.5 Techniques for Developers.
At the 2002 FileMaker Developer’s Conference, he was awarded the
FileMaker Fellowship Award “for developing outstanding technical and
educational resources for FileMaker.” Bob holds a master’s degree in
musicology from the University of Chicago and enjoys playing guitar,
singing, woodworking, and biking in his off hours.

Steve Lane is vice president for the Moyer Group, where he’s
involved in all phases of the application development process, from
sales to development and deployment. His chief focus is on advanced
web technologies as they relate to FileMaker Pro. He’s worked with
relational databases for over a dozen years. In his previous life he was
a medieval historian.

xiv

Chapter 1

The Dynamic Web

So you want to put your data on the web? Join the crowd. Few 21st-
century web sites consist of nothing but static HTML pages. Most web
sites have at least some amount of dynamic content—meaning content
that changes automatically (or at least according to some programmed
schedule). More often than not, this content is fetched from some type
of database in response to user inputs or preferences. This book shows
you how to build dynamic web sites that use FileMaker Pro as a data
source. In this chapter, we look at some reasons that you might want
to do this and explore the ways in which accessing a database over the
web differs from the regular FileMaker model you’re probably used to.

Note: A certain amount of the material in this chapter covers basic
facts about web protocols and web programming. If you’ve done web
programming in other environments and feel comfortable with the basics
of web programming and how it differs from traditional database pro-
gramming, feel free to skim this chapter or skip it entirely.

A Case Study

Let’s take a hypothetical example. Blue Horizon Bison Breeders is a
nonprofit organization dedicated to reintroducing the American Bison
into the Great Plains. They run a web site explaining their mission and
sell bison-watching “safaris” as well as the occasional buffalo sirloin to
help pay the costs of their enterprise. (The fine print at the front of the
book may already say this, but it’s worth saying again—Blue Horizon,
like all the examples in this book, is a fictitious organization. So, no, we
can’t give you their web address.) The Blue Horizon online store is a
simple web page that lists all of the items that Blue Horizon sells,
along with the price for each, and a phone number that visitors can call
to place a phone order. Additionally, three to five items each week are

1

featured as “specials” and shown prominently at the top of the store’s
web page with price reductions.

Karen Thornapple is vice president, buffalo breeder, and Blue
Horizon’s web site administrator. Each week Karen edits the Blue
Horizon store web page, manually removing last week’s specials and
adding this week’s. Blue Horizon actually tracks all of their sales to the
public using a FileMaker database that Karen helped to write. (They
track all of their breeding and herd statistics in FileMaker also, but
that’s a story for another chapter.) In any case, Karen is frustrated with
having to edit the store page manually every week. Wouldn’t it be eas-
ier, she reasons, if the store page could somehow pull data directly
from her FileMaker system? Then all she’d have to do is check the
Special box in FileMaker, and the list of specials would automatically
be updated on the web page. Then she thinks what if customers could
order products online and have their orders flow straight into the same
FileMaker database that Blue Horizon’s phone operators use to take
phone orders?

Soon Karen starts to obsess about the possibilities (in a good way,
of course). What if all the breeding data in their FileMaker system
could be made available online for other breeders and researchers?
What if veterinarians could query their herd medical statistics to learn
about disease incidences in the Blue Horizon herds?

How hard could that be?
Well, Karen, this book is here to answer that question for you. It

can be as easy or complex as you need it to be. Publishing data from
FileMaker Pro to the web can take anywhere from five minutes to five
weeks, or even five months. It can be as simple as clicking a few but-
tons or as complicated as building an entire application framework in a
web-based scripting language like PHP or Lasso.

First, though, you need to know something about what the web is
and how it operates. If you’re used to the way your users interact with
data in the world of FileMaker, you’ll learn that there are some impor-
tant differences when it comes to making that same data available
through a web interface.

The Web as a Database Client

The web wasn’t originally intended as an interface to any kind of data-
base. It was conceived as a simple means to publish documents that
would a) integrate different types of content, such as text and pictures,
and b) provide a ready means to link these documents together using

2 Chapter 1

electronic cross-references called hyperlinks. This idea was sensa-
tional enough for its time, but like most good ideas, it has since far
exceeded what its creators had in mind (all the way back in 1989 or
so).

Let’s look first at how the web works in its simplest, original form.
Like FileMaker itself, the web follows a client-server model: A com-
puter called a web server contains a repository of hypertext docu-
ments, and many users, usually physically distant from that machine,
use a piece of client software called a web browser to query the server
and request documents. You’ve probably seen references to HTTP
(Hypertext Transfer Protocol); this is the language used by the web
server and the web browser to communicate back and forth. A simple
exchange might go something like this:

Web browser: “Hello, www.sasquatch.com, send me your main
home page so I can look at it.”

Web server: “Okay, here’s the page.”
Web browser (when user clicks a link): “That article about Bigfoot

in Patagonia looks cool. Send it my way.”
Web server: “Okay, here it comes. It has a bunch of pictures too.”

HTTP is a very simple request-response protocol; the client (web
browser) makes a request for some resource, and if the web server has
what’s requested, it sends it back or reports an error if no such
resource can be found. (If you’ve ever received a “404 Page Not
Found” error, you’ve heard this reply from a web server.) The same
transaction looks like this when expressed in the underlying HTTP
protocol:

Browser Request:

GET / HTTP/1.1

Accept: image/gif, image/jpeg, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)

The Dynamic Web 3

C
h
a
p
te

r
1

Figure 1.1

Host: www.sasquatch.com

Connection: Keep-Alive

Server Response:

HTTP/1.1 200 OK

Date: Mon, 25 Apr 2002 12:11:10 GMT

Server: Apache/1.3.24 (Unix)

Last-Modified: Sat, 04 Dec 2001 11:01:00 GMT

ETag: "6f8ab-132-312c4be5"

Accept-Ranges: bytes

Content-length: 367

Connection: close

Content-type: text/html

<html> <head>

<title>Welcome to the Sasquatch Watchers' Home Page</title>

</head><body>

<h1>Big Footprint Country</h1>

Dear Sasquatch fancier:

This page is still under construction. Don't you hate that? But in

the meantime click here for a

breaking story on a sighting way down in Tierra del Fuego ...

</body>

As you can see, the request-response cycle is quite straightforward.
The client asks for the default home page at www.sasquatch.com and
also tells the web server what image types, languages, and compres-
sion schemes it can handle. The server sends back a message that
says “okay, I have that” and follows with the actual text of the
requested page, along with a link to an embedded image.

So much for HTTP. The pages sent down by the web server are
written in another standard web language called HTML (Hypertext
Markup Language), which describes the contents of the page and often
contains instructions for how to display portions of the page as well.
(Although features such as font size, margins, and color were not part
of the original intention of the web, they have since been added to the
web standards due to public demand.) For the purpose of this book,
we’re going to assume that you have basic familiarity with HTML and
are comfortable writing and troubleshooting basic HTML code. We’ll
touch on details of constructing certain types of HTML from time to
time, but a full tutorial is beyond the scope of this book.

This static model works well if you, as a web author, want to sit
down, write a bunch of pages or an entire site in HTML, upload the
files to a server, and sit back and watch the world beat a path to your
door. But if you want users to come to your site and search for the lat-
est specials on lamps from Bactria or see the ten most frequently

4 Chapter 1

viewed photos from your Aunt Cleo’s retirement barbecue, you’re
going to need more than what a simple, static HTML page can give
you. Your user now needs to interact not just with a web server but
also with a database that contains the dynamic, changing content of
your web site.

Hmm. Well, a web server by itself has no particular facilities for
talking to a database. This is not actually a limitation of the web server
but an example of an important software design principle called loose

coupling (better known as “You Do Your Job, I’ll Do Mine”). There are
dozens of different database products in circulation. If I’m building a
piece of web server software (such as WebSTAR, Apache, Zeus, or
Internet Information Server), which database should my web server be
able to talk to? Do I choose just one? Do I try to talk to a dozen differ-
ent ones? Suddenly my web server is much, much more complicated
than it was before. Worse—it’s now tightly coupled to one or more
database products; every time those products change, I may have to
revise my web server product as well.

We don’t need a web server that knows about databases or a data-
base that can talk directly to a web server; we need a third type of
software that can talk to both at once. The generic name for this kind
of software is middleware. Middleware takes many forms. Some
middleware is designed to attach to a web server and extend its capa-
bilities (a web server plug-in or module). Other middleware can take
the form of a stand-alone application that specializes in talking to data-
bases but also provides some web serving capabilities (FileMaker’s
Web Companion falls into this category). In this book, we’ll look at
FileMaker-oriented middleware choices that fall into both of these
categories.

So how does middleware actually work? Well, in the plug-in model
that we just mentioned, the middleware is installed and configured
alongside the web server software. The web server is aware of the
existence of the middleware, and it knows that the middleware can
handle certain special types of content. When a web server receives a
request for a file with a name that ends in .html, it knows to simply
fetch the page from disk and send it straight back to whoever
requested it. But when the same server, appropriately configured,
receives a request for a page ending in .php or .lasso, it may instead
hand that page off to the PHP engine or the Lasso engine for process-
ing. The middleware will read the page, execute any database
commands that it contains, and return a page of plain HTML, which

The Dynamic Web 5

C
h
a
p
te

r
1

the server will then send down to the client as it would for a plain
static HTML page.

Well, that makes things more complicated. Instead of having to worry
about two pieces of software (web browser and web server), we now
have to worry about as many as four (adding in the middleware and the
database). Not to worry. In the chapters that follow, we give you all the
details that you need to get these different software components up
and running in a FileMaker-based environment.

FileMaker on the Web

So how does all of this relate to FileMaker Pro? What, for that matter,
does it mean to “put your FileMaker database on the web”? Do users
see exactly the same interface as the users who access the files using
regular FileMaker? Do scripts and buttons work the same way? Well,
no, not quite. The snazzy interfaces that we’re accustomed to building
in FileMaker don’t necessarily translate directly to a web environment.
Even when they do, we often have to make concessions to the differ-
ences between the web environment and the regular client-server
world of FileMaker. In general, the more full-featured and script-heavy
your FileMaker application is, the more additional work you’ll have to
do to bring that functionality to the web.

To understand why this is so, we need to take a closer look at how
regular FileMaker does things and then compare this to the web
model. In regular FileMaker, the user’s FileMaker software (the client)
makes a connection to a FileMaker server of some kind (possibly just
another copy of regular FileMaker but hopefully an instance of the
more heavy-duty FileMaker Server software). The server registers
the connection and remains aware of the client as long as the user is
connected. The FileMaker client software, for its part, is responsible
for reading all the layouts that the developer has created and turning

6 Chapter 1

Figure 1.2

those into the pleasing user interfaces that we associate with
FileMaker.

Neither of these things happen this way in a web environment.
HTTP is often referred to as a connectionless protocol. This means
that once the web server has serviced a request (say, by sending a
page back to a web browser), it promptly forgets that the particular
browser has connected to it. This makes it more difficult to have a
sustained interaction (often called a session) in which the server
remembers important information about the client from one mouse
click to the next. This is very easy to do in regular FileMaker (usually
by using global fields). It takes a bit more work on the web.

FileMaker interfaces also don’t translate directly to the web. Web
interfaces are built by using the HTML language (often augmented by
other technologies such as Cascading Style Sheets and JavaScript—
though support for these varies widely from browser to browser).
HTML was actually never designed with page layout in mind. Ori-
ginally, HTML was simply intended to describe the structure of a
document (this piece is a level one heading, this one is a blockquote,
this one represents an ordered list). It was supposed to be up to the
user to decide how she wanted those different kinds of structures to
display. Almost immediately, though, there was a demand for HTML
extensions that would provide control over fonts, colors, and the like.
Though these are now in the process of being standardized and work
fairly well, it’s still relatively cumbersome to design a rich, complex
layout for the web. In FileMaker, you drag fields onto layouts and posi-
tion them accurately with the mouse. In HTML, you need to type out
text codes that contain all of the graphical and positioning information
for each element. There is no tool that can translate a FileMaker lay-
out directly into accurate HTML (well, Filemaker Instant Web
Publishing does—we discuss it later in Chapter 5).

Wait a minute, you say. I thought there were all kinds of great
graphical editors for the web that would let me make web layouts the
same way I make FileMaker layouts. Well, yes, there are many very
good graphical tools for doing web work. The problem is that, sooner
or later, you will need to add special middleware code to those pages,
which means editing the raw HTML. Some modern tools are designed
to work with different flavors of middleware, which can lessen the
amount of time you spend typing actual text pages. But you’re still a
programmer; you’ll need to troubleshoot when things don’t quite work,
and at that point the visual interface won’t help you too much. In this
book, we adopt a purist’s stance—we think it’s best to learn web

The Dynamic Web 7

C
h
a
p
te

r
1

programming and HTML by sitting down and typing. You’ll need that
level of control, and if you later find a visual tool that you really like,
you should be able to figure out how to make the transition. If you start
off in the visual tool, you’ll learn how to point and click up a storm, but
you’re less likely to master the underlying web languages fully. When
something breaks or doesn’t work quite right, you’ll need to know how
things work under the hood.

The bottom line is this: There are a variety of ways to make the
web closely mimic the feel and flavor of your FileMaker system, but
there is no transparent, seamless translator available yet. You’ll proba-
bly need to do some additional work to bring over your FileMaker
functionality.

So, to sum up, the two principal differences between “regular”
FileMaker and FileMaker on the web are: The web server does not
remember from click to click and page to page who is connected to it,
and secondly, it can be harder to construct a pleasing user interface
with a FileMaker-like level of richness.

With these caveats in mind, let’s learn more about how FileMaker
data can be made available on the web. It’s time to introduce you to the
Web Companion.

The Web Companion

FileMaker, like other database systems, needs some additional help to
serve its information to the web. Like other database products, it
needs some type of middleware in order to pass database information
out to the web. In FileMaker’s case, the essential middleware is the
Web Companion, which is not part of the FileMaker software itself but
is a FileMaker plug-in.

Usually, to serve database content to the web, you need three
pieces of software: database, middleware, and web server. In
FileMaker’s case, the rules are bent a bit for several reasons. In the
first place, the “database” component of the equation in FileMaker’s
case can actually be as many as three pieces of software: FileMaker
client, the Web Companion, and possibly a copy of the FileMaker
Server as well. To further complicate things though, the Web Compan-
ion itself can actually act as a web server in its own right!

To make things a bit clearer, let’s consider two examples for our
friends at Blue Horizon. In the case that we talked about earlier, the
products database for the Blue Horizon store is a simple FileMaker file
that lives on a single machine in the BHBB store. Only one person

8 Chapter 1

inside BHBB needs to use the file, and when she does, she works at
that machine. In this configuration, a single client copy of FileMaker
has the served files open from a local hard drive, and the Web Compan-
ion is responsible for allowing requests for data to come in over the
web. (This is not a great setup: The incoming web requests will inter-
fere with anyone using the machine. It will work well enough if no one
actually needs to use the machine much, and it just sits aside as a
stand-alone machine.) The following diagram illustrates such a config-
uration. All incoming web requests are directed to a single computer
(and specifically to the Web Companion plug-in running alongside
FileMaker on that computer). The Web Companion communicates with
FileMaker to service these incoming requests. All of this occurs on a
single computer.

Now let’s consider BHBB’s large database system that tracks herd sta-
tistics, breeding, and disease in their population. This system is used
by many people at different places inside the grounds of BHBB, so the
files are run under FileMaker Server, with everyone connecting to
them via the FileMaker client. Web Companion is a plug-in for the
FileMaker client. It can’t talk directly to the server, so this is now a
three-link chain: The FileMaker client connects to FileMaker Server
to request data, and the Web Companion connects to the FileMaker cli-
ent in order to serve that data out to the web. In this instance, you
would want to set aside a workstation that is dedicated to the File-
Maker client/Web Companion setup; it’s actually very disruptive to
have your copy of FileMaker involved in web-serving while you’re try-
ing to get work done. Here’s how this would look. All incoming web
requests, as above, come to a single computer running FileMaker Pro
and the Web Companion. (Technically, this computer should be running
FileMaker Pro Unlimited, which we’ll discuss in detail later on.) That
single computer, in turn, is connected to a FileMaker Server machine
where the files of interest are actually located. In this way, the web-

The Dynamic Web 9

C
h
a
p
te

r
1

Figure 1.3

serving machine is just one of several different clients using the
served files.

If you’re thinking that this still sounds short on detail, don’t worry. We
document all of the setups in considerable detail for you later on. For
now, though, just understand that the primary link between FileMaker
data and the web is a plug-in known as the Web Companion, and that
plug-in must always be paired with a client copy of FileMaker, even
when the databases are being hosted by FileMaker Server.

There’s one more important thing to know about the Web Com-
panion, and it involves a bit of FileMaker history. FileMaker, Inc.
introduced the plug-in architecture for FileMaker in version 4.0 of the
software. At that time, the Web Companion was distributed with every
copy of the regular FileMaker Pro client. Since a single copy of the
Web Companion could be used to distribute FileMaker data to dozens
or even hundreds of users, this was a pretty good deal. It was a good
enough deal, in fact, that as of FileMaker version 5, the standard ver-
sion of FileMaker comes with a Web Companion that no longer has
unlimited web-serving capabilities. The off-the-shelf Web Companion
is now limited to answering requests from a maximum of ten different
Internet addresses in any 12-hour period. This is barely enough for
some light testing and certainly not likely to be enough for any serious
distribution of your data. If you want more than ten computers to be
able to see your data in any 12-hour period, you’ll need to get your
hands on FileMaker Pro Unlimited. This is a copy of the FileMaker cli-
ent software that is more or less the same as the regular client—the
only difference being that the Web Companion included with Unlimited
can serve to any number of Internet addresses (well, any number
within reason). It is more expensive than the regular FileMaker client
to reflect the fact that Unlimited can open your data to many other
users, none of which need FileMaker to access your data.

10 Chapter 1

Figure 1.4

Available Technologies

Once you’ve decided that you want to web-enable your FileMaker
databases, you face a choice or rather, a wide range of choices. There
are many possibilities here; this section gives you an overview of
those possibilities, and subsequent chapters examine each one in
greater (often much greater) depth.

Static Publishing: You can create web pages simply by exporting
data from FileMaker Pro. It used to be that you’d have to create calcu-
lations inside FileMaker that would wrap your FileMaker data in
HTML to display it nicely. You’d then export that HTML to static files
and move those to your web directory. These days, with FileMaker 6
and its new XML Export capabilities, it makes more sense to write
some XSL stylesheets to generate that HTML for you. XSL
stylesheets are a technology that we spend more time on later.

Regardless of which export technology you choose, calculated
HTML or XML/XSL, this technique is most suitable for web sites that
draw on data that doesn’t change by the minute. A database of press
releases or other relatively slow-changing content could easily be pub-
lished in this way.

Instant Web Publishing: FileMaker’s built-in Instant Web Pub-
lishing, or IWP, is one of the easiest ways to publish a FileMaker Pro
database on the web. With just a few mouse clicks, your system can be
available to other users in a very attractive web interface. Though it’s
probably the easiest way to present a web interface to FileMaker, it
does have some drawbacks.

IWP doesn’t give you quite the level of control over the look and
feel of your pages that you might need. It tries to provide a standard
web appearance for FileMaker. It’s excellent at reproducing the look
and feel of your layouts, but it wraps them in a standard web appear-
ance that you may or may not want. If you want to customize that
appearance, you’re pretty much out of luck.

IWP also doesn’t let you override the pages that it builds. If you
have complicated functionality in your system, there’s no way to add it
to the pages that IWP generates. If that functionality lives in
FileMaker scripts, it won’t do you much good. Only a few of the
FileMaker script steps are currently compatible with IWP.

IWP is a great way to get a FileMaker database on the web quickly.
If you don’t need much look-and-feel customization or complex,
scripted functionality, it’s a great way to get a good-looking web inter-
face for your files with minimum hassle.

The Dynamic Web 11

C
h
a
p
te

r
1

Once you get beyond static web export and IWP, the difficulty
curve begins to steepen a little bit. Your other choices all involve
learning some kind of new programming language, which will allow
you to express the same rich constructs on the web that you can cre-
ate by using ScriptMaker inside of FileMaker. Each of these languages
is different, and each has its strengths and weaknesses.

Custom Web Publishing: This is FileMaker’s own “advanced”
solution. Using Custom Web Publishing (CWP), you can create your
web pages by hand in a text editor or similar tool. Each page contains
programming instructions in a language called CDML (which actually
stands for Claris Dynamic Markup Language, harking back to the days
when FileMaker was produced by Claris Corp.). CDML instructions
are intercepted by the Web Companion and used to insert dynamic
FileMaker data into your page before it’s sent to the user.

Though FileMaker uses the term “Custom Web Publishing” to
refer specifically to CDML, we’ll use it more generically to refer to any
of the advanced programming technologies that are the next step up
from Instant Web Publishing.

Lasso: Like CDML, Lasso is a markup language, meaning that it
consists of commands that are inserted into web pages in order to pop-
ulate them with dynamic data. Lasso is a commercial product made by
BlueWorld Communications, Inc., that has long been a popular choice
for web-enabling complex FileMaker systems. Its language is much
richer than that of CDML and boasts many additional capabilities. In
addition, Lasso can talk to many other database systems besides
FileMaker Pro and thus offers the opportunity to integrate FileMaker
data with data from, say, Sybase, more or less seamlessly in a single
web application.

The Lasso environment is covered extensively in Duncan
Cameron’s Lasso Professional 5 Developer’s Guide from Wordware Pub-
lishing, so we won’t spend as much time on Lasso in this book as we
might otherwise. We introduce you to the basic concepts and compare
it with the other technologies that we discuss, but we refer you to
Cameron’s book for more extensive examples.

PHP: PHP is another markup language that can work with File-
Maker. Unlike Lasso, it’s not a commercial product but an open-source

tool, meaning it can be downloaded and installed for free. This might
seem like a huge advantage, but it also means that there is no tele-
phone help hotline. We’ll discuss the pros and cons of open source
later. PHP is a hugely popular language for web application develop-
ment. A quick check of your favorite physical or virtual bookstore

12 Chapter 1

should turn up dozens of books on this burgeoning language. Like
Lasso, PHP can work with many other databases in addition to File-
Maker, and its range of extra libraries and modules allow an intrepid
developer to add everything from dynamically generated Flash content
and PDFs to live graphs and charts to their web application. We think
PHP is a language that deserves a fuller introduction to the FileMaker
community, and we’ll spend quite a bit of time with it in this book.

Java Server Pages: Like PHP, Java Server Pages (JSPs) are an
extremely popular web technology with dozens of books on your local
shelves. Using the FileMaker-supplied JDBC driver, FilerMaker can
actually be accessed by any Java-based application—be it a web-based
application that uses JSPs or servlets or a full-fledged graphical client
written in Java.

JSPs are a powerful web technology, but using them presumes a
solid foundation in the Java programming language. It’s our guess that
not too many FileMaker developers are also Java whizzes (we know
that there are some of you, though!), so we decided it would not be
appropriate to spend much time on JSPs in this book.

ODBC: Using FileMaker’s ODBC drivers, it is technically possible
to hook up other web development environments, such as the popular
ASP language, to FileMaker. FileMaker’s ODBC implementation,
though, is not terribly fast, and this is probably not a great choice for
web connectivity technologies, unless you’re building an application
that needs data from FileMaker infrequently and in small amounts.

XML/XSL: We mentioned XML’s use in the static model of data
serving. It also has intriguing possibilities for building a fully dynamic
web site. Although XSL’s limitations probably make it a bit cumber-
some for large-scale sites, it can be a very effective publishing
technology under the right circumstances.

So there’s your menu. In the pages ahead, our greatest focus will
be on XML/XSL, CDML, Lasso, and PHP. XML/XSL is an important
part of FileMaker’s stated strategic direction, and every web developer
will need to be familiar with it. PHP is a very powerful tool for building
web applications, from the modest to the very large, so we want to
explore it thoroughly here. In between, we’ll give some attention to
Lasso and provide thorough coverage of FileMaker’s built-in CDML
technology.

The Dynamic Web 13

C
h
a
p
te

r
1

This page inten tion ally left blank

Chapter 2

Preparing Your
Databases for the
Web

The transition from FileMaker jockey to web monkey won’t be instan-
taneous, and it will require a modest investment of time and effort on
your part. At the outset of your journey, you’ll find yourself faced with
a dizzying array of options and tools, and at times you may experience
some anxiety over whether you’re up for the challenge. That’s a natu-
ral feeling when learning any new technology, and it’s especially hard
to be patient and start at the beginning if you’re already skilled with
other programming tools.

In Chapter 1, we discussed various scenarios where web publish-
ing makes sense, and we talked broadly about some of the different
tools available for web-enabling FileMaker Pro databases. Before look-
ing more closely at these tools, we’re going to discuss some larger
issues about preparing your databases for the web. Whether you are
retro-fitting an already existing solution or designing from scratch, we
hope that by following our advice, you’ll avoid some potential bear
traps down the road. The main topics that we address in this chapter
are:

� Planning the project

� Naming conventions

� Use of global fields, calculations, and summary fields

� Use of scripts

� Relationships, portals, and related fields

� Layouts

Preparing your databases is also about optimizing them for peak per-
formance. Usually if a web application isn’t performing up to snuff, the
hardware, the software, or the network is the scapegoat. Many times,

15

however, the application design itself is as big a determination of per-
formance as those other factors.

Planning the Project

We find that most FileMaker web projects fall into one of four catego-
ries. Determining which category best fits your project can help you
decide what tools you should use to put your database on the web.
Mind you, these categories have nothing whatsoever to do with what
business you’re in or how you’re going to use the databases. Rather,
they’re concerned with the state of your existing FileMaker databases
and the role that the web will play in your organization. Each of the
categories offers its own challenges, so knowing what you’re up
against before you start can help you anticipate roadblocks.

The Piecemeal Project

Piecemeal projects are the most common and often the easiest File-
Maker web projects. They involve web-enabling a small portion of an
established FileMaker solution that’s untenable as a traditional File-
Maker client-server application. For instance, you might want your
outside salespeople to be able to look up contact or project information
when they’re on the road. You’ve tried to have them connect back to
the FileMaker server directly (as the internal salespeople do) but have
found that it’s too slow. You don’t need to web-enable the whole sys-
tem—just a few components. Another example of this type of project
is an art gallery that manages its entire business using FileMaker and
now wants to put their catalog online. Here, it’s not a question of
speed, but it is rather simply that the catalog needs to be accessible
from a web browser instead of a FileMaker Pro client.

Instant Web Publishing is a good place to start with these projects.
It may not be robust enough for complex tasks, but it’s so easy to try
that you’d be remiss not to. Even if it’s not up to the challenge,
Intstant Web Publishing can still give you a good starting point for
planning your custom web development.

You’ll face a serious challenge in piecemeal projects if you don’t
have your own high-speed Internet connection. It’s not that it’s diffi-
cult these days to find a FileMaker-friendly hosting provider. The
problem is that in a typical hosting situation, you’ll need to place a
copy of your database on a shared server provided by the hosting com-
pany. Now you have to worry about synchronizing two copies of your
database, and this has the potential to be a nightmare. We suggest that

16 Chapter 2

you start by defining very rigorous business rules. For instance, maybe
you make the copy at the hosting company a “read-only” file, and you
refresh the data once a day.

Even if you do have a high-speed Internet connection, you might
not want the responsibility or expense of hosting your own web server.
In these cases, PHP can be a compelling solution. Most every ISP will
have machines configured with Apache and PHP, and you can have
PHP talk to a FileMaker Pro Unlimited machine in your office. There
are two benefits to this configuration. The first is that you only need a
very vanilla (inexpensive, ubiquitous) hosting arrangement. The sec-
ond is that you avoid synchronization issues; web users access your
live FileMaker system in real-time.

The Wholesale Migration Project

These projects are probably the hardest and riskiest of the bunch.
They involve taking an existing FileMaker solution and replacing or
replicating all of its functionality over the web. These projects often
come about as an organization grows from a single location to multiple
locations. The entire solution that worked great over the local area
network now needs to be used by people in one or more remote
offices. Instant Web Publishing is almost certainly not able to fulfill the
needs of this type of project.

The risk here is that it can be very difficult, if not impossible, to
faithfully replicate a FileMaker interface and FileMaker functionality in
a web browser. We strongly suggest you don’t even try. Instead, force
yourself to think about it as a new system and design it from scratch.
As a user interface, the web behaves much differently than FileMaker.
For instance, you can’t just jump into Find mode anywhere you want.
You need to build search screens and search results screens. You’ll also
find that printing, importing, and exporting all require much more
effort and a much different user interface on the web.

The temptation will be great to make the web interface as similar
as possible to the FileMaker interface. You’ll rationalize that it’s a good
thing because it won’t require users to be retrained on the new sys-
tem. However, as long as the business logic doesn’t change, users will
easily adapt to a new interface, and having the interfaces significantly
distinct from one another will avoid confusion over the minor differ-
ences that will inevitably occur.

Be sure you also consider in advance what you plan to do with
your existing FileMaker users. Do you still want them to use the
FileMaker interface, or will they use the web interface as well?

Preparing Your Databases for the Web 17

C
h
a
p
te

r
2

There’s no simple answer for this one. It really depends on your busi-
ness and your users. If you have FileMaker veterans who move around
the system with keyboard shortcuts and like to tweak layouts from
time to time, you’ll get strong resistance about moving to a web-only
interface. If you have one interface for people in one location and
another for people in every other location, that means you have to
keep two interfaces up to date. Any new feature needs to be imple-
mented twice. Invariably, there will be some functionality that’s easier
for people using FileMaker, and you’ll run the risk of your other loca-
tions feeling like second-class citizens. They may even use the system
differences as justification for not getting things done.

We’re not trying to scare you. These projects can be quite success-
ful. Just go into it knowing that you face some hard decisions, and it
may feel like you’re moving backward at times. You should probably
also consider Citrix MetaFrame as an alternative. There are some
hefty upfront hardware and software costs, but all of the risks associ-
ated with web development are eliminated.

Wholesale migration projects generally require that you have a
high-speed Internet connection and are willing to host the web solu-
tion yourself. Because these projects typically have a complex
business logic and often need to interact with the file system or other
applications, PHP and Lasso are probably the tools that you should
consider using. You’ll likely need the power of a full service web
server and the flexibility that these tools provide.

Whereas the first two project types described web-enabling exist-
ing solutions, the next two deal with new projects.

The Web-only Project

A web-only project, as its name hopefully suggests, is one in which the
primary goal of the project is to create a brand new web application.
You’ll have a slew of technology decisions to make at the outset of
such a project, including platform, operating system, middleware, and
database. Should you use FileMaker or some other web-friendly data-
base, like MySQL, PostgreSQL, or SQL Server? If you choose File-
Maker, it’s likely for one of a few reasons. Maybe you’re using
FileMaker for other applications and are loyal to the product. Or per-
haps you’ll need a few administrative screens or need easy access to
the data collected over the web and are comfortable doing this yourself
in FileMaker.

18 Chapter 2

If you’re undertaking one of these projects, go ahead and architect
your solution as you would if you were creating a pure FileMaker solu-
tion, but don’t spend much time on the database interface. Keep
reminding yourself that the databases are just buckets of raw data. As
we’ll discuss later, you probably don’t need scripts, relationships, cal-
culation fields, or summary fields.

If you don’t have your own high-speed Internet connection and a
dedicated machine, you’ll again need to consider finding a hosting com-
pany. You probably won’t have the same hosting headaches with a
web-only project that you do with piecemeal projects. You should con-
sider the files located at the hosting company as the master set and
then import or export data as necessary.

The Hybrid Project

We’ll use the term “hybrid project” to describe a new project that’s
destined to be deployed as a part web, part FileMaker application. In
the end, it will probably end up resembling either a piecemeal project
or a wholesale migration project. Similarly, web-only projects often
evolve into hybrid projects as the need arises for additional behind-
the-scenes functionality.

The advice we have for hybrid projects is that you do the web por-
tion first. Start out as if it’s going to be a web-only project. Once you
get the web interface done, then work on designing a FileMaker inter-
face that’s similar. It’s much easier to make a FileMaker interface look
and act like a web interface than it is to make a web interface look and
act like a FileMaker interface.

Now that you’ve had a glimpse at some of the tasks that await you,
we’ll turn to the general preparation that you’ll want to do no matter
which type of project you’re facing.

Naming Conventions

One of the most important considerations when preparing your data-
bases for the web is what to call things. By “things,” we mean any or
all of the following:

� Field names

� Layout names

� Script names

� Relationship names

Preparing Your Databases for the Web 19

C
h
a
p
te

r
2

� Value list names

� Database names

Most FileMaker developers have their own habits for naming these
things, and it’s our distinct desire to stay clear of the debate over the
relative merits of different habits. Rather, we’d prefer to discuss some
broad “dos and don’ts” that you’ll be able to incorporate into your par-
ticular set of habits. The reason for our reticence is simple. Many of
you have systems that have hundreds or thousands of named objects,
and it’s folly to suggest that you should rename everything. In what
follows, then, we offer some “best practice” conventions you should
consider for future projects, but we also let you know of a few
showstoppers that you need to scour from your existing files.

Spaces

Many web developers will glibly tell you that you should never use
spaces in any of your names for any object. In truth, there’s only one
pitfall to be aware of, and it’s easily handled. You’ve probably noticed
when typing URLs into a web browser that you never see any spaces.
That’s the pitfall: A URL can’t contain a space. If you had a field called
“Last Name” and you were using CDML for Custom Web Publishing,
the danger is that you could end up with a link like this:

http://10.10.10.10/FMPro?-db=contact.fp5&-layout=main&-format=

test.htm&Last Name=Flintstone&-find

The space in the field name may cause this URL to fail. You would
receive similar results if there were spaces in the database name or
layout name. The “fix” for this, if for some reason you can’t simply
rename the offending object, is to encode the spaces. That is, you need
to replace them either with %20 (the hexadecimal code for a space) or
a + sign. The fixed URL might then appear like this:

http://10.10.10.10/FMPro?-db=contact.fp5&-layout=main&-format=

test.htm&Last+Name=Flintstone&-find

If you’re using Instant Web Publishing, this is done for you behind the
scenes, and you don’t need to worry about spaces at all. With Custom
Web Publishing, we recommend avoiding spaces when possible and
encoding as appropriate if you can’t. Script names are where we usu-
ally draw the line. Most scripts you write will never be called from a
browser. For those few that might, you can either name without spaces
or encode. If you’re worried about keeping things readable, you might
consider using underscores in your names (e.g., First_Name,
Last_Name).

20 Chapter 2

Case

People often wonder whether it matters (for web publishing) if they
name a field FirstName, firstName, or firstname. Some database sys-
tems are extremely case sensitive, but FileMaker is not one of them.
The Web Companion, which handles all web requests, doesn’t care at
all whether you use uppercase, lowercase, or any combination of the
two. For instance, these two requests will yield identical results:

http://10.10.10.10/FMpro?-db=CONTACT.fp5&-format=

test.htm&-lay=MAIN&last+name=flintstone&-find

http://10.10.10.10/FMpro?-db=contact.fp5&-format=

test.htm&-lay=main&Last+Name=Flintstone&-find

We recommend that you use whatever makes the most intuitive sense
to you and stick to it. Consistency is a good thing.

Special Characters

The use of certain “special characters” is the one place where you
need to be more disciplined in your naming. By special characters we
mean things like punctuation symbols, math operators, and high ASCII
characters. FileMaker itself places few restrictions on the use of these
characters, and some of them can cause headaches on the web because
they are defined to mean certain things to a web browser. The key
things to avoid are symbols like &, <, >, /, \, #, @, -, ?, =, and ". For
instance, an ampersand is used to separate name-value pairs passed as
parameters in a URL. If you named one of your layouts Entry&Editing
and then referenced that layout from the web (-lay=Entry&Editing),
FileMaker would look for a layout named Entry and think there was
some other parameter called Editing. You’d end up with a “Layout not
found” error.

FileMaker itself protects against certain evil characters in field
names and relationship names. You’ve probably experienced the fol-
lowing warning that pops up when you try to use one of FileMaker’s
own reserved symbols.

Preparing Your Databases for the Web 21

C
h
a
p
te

r
2

Figure 2.1

No such dialog protects layout names, script names, or value list
names, so these are areas where you want to be particularly watchful.

We’ve found that it’s safe to use underscores, periods, and pipe
characters. If you feel a need for symbols in your names, stick to
those. High ASCII characters (such things as bullets, trademark sym-
bols, accented characters) should definitely be avoided in object
names.

Uniqueness

FileMaker will prevent you from having duplicate field, value list, and
relationship names, but there’s no such restriction on layout names or
database names. Having multiple databases with the same name is
obviously a bad idea, and you can easily imagine how a request to
Orders.fp5 might go astray if there were two open files of that name at
the designated IP address. Less obvious is why layout names should
be unique. FileMaker doesn’t require that layout names be unique
because it uses an internal serial number to store and retrieve layout
information. So, a script with a Go To Layout step in it doesn’t care
about ambiguous layout names.

A web request will usually specify which layout should be used to
process the request (more on this later in the chapter). That request
just specifies the layout name, so in the case of duplicate layout names,
FileMaker uses the earliest one created to process the request. We
wouldn’t make such a big deal out of this if it hadn’t been the source of
a painful debugging episode a few years back.

Use of Global Fields, Calculations,
and Summary Fields

When you think of your databases, try to make a mental distinction
between fields that store data (text, number, date, time, and container
fields), fields that act as variables (global fields), and fields that are
derived from other fields (calculations and summary fields). All of
these are useful and necessary when designing straight FileMaker
solutions, but for web solutions, you should try to forget that your
globals, calcs, and summary fields even exist.

This may be a hard mindset to get used to if your programming
experience is limited to FileMaker. It will help if you think of your web
applications as having distinct layers or components. The front end is
the browser, the middleware is a programming tool such as CDML,
PHP, Lasso, or XSL, and the back end is your FileMaker database

22 Chapter 2

system. The primary purpose of the back end is to act as a receptacle
for data. It’s a simple bucket-o’-data and shouldn’t be bothered with
requests for summarization or formatting. All of the middleware tools
used for Custom Web Publishing have the ability to manipulate data,
and they’ll typically do it much faster than FileMaker. Your business
logic and all of your data manipulation should, to the largest extent
possible, reside in the middleware code. The middleware typically
does much of the screen rendering as well, but the browser itself, via
JavaScript or Cascading Style Sheets, can also play an important role in
the “look and feel” of your application.

If you have a pre-existing solution that you intend to put on the
web, you may be tempted to tap into the calcs and summary fields that
you’ve painstakingly created. It will work, and that may unfortunately
lead you to think that you’re doing a good thing. The problem will be
speed. Not only is FileMaker not particularly fast at summarizing large
data sets, but the FileMaker Web Companion is single-threaded, which
means that while it’s processing one web request, all other requests
must wait in a queue to be processed. Therefore, a time-consuming
summary or calc not only impacts the requestor but also all of the
other web users who won’t have a clue why the site seems slow.

The mere presence of summary fields or calcs in your database
tables isn’t cause for alarm. If your system is used by FileMaker cli-
ents internally and web clients externally, you certainly can’t just
delete all of those fields. Don’t request that they be displayed in the
browser, and don’t put them on the layouts that you access from the
web. This may be the single best thing you can do to increase the per-
formance of your web application.

Global fields are another story entirely. Global fields are variables.
That is, they’re temporary storage locations. They’re local to each cli-
ent on a FileMaker network, which essentially means that each user
gets her own global fields that no other user can see. This fact means
that global fields become a vital tool for implementing business logic in
straight FileMaker solutions. For instance, maybe you set the user’s
access level into a global field upon logging into the system. It can then
be referenced any time during that session when you need to validate
access to something. Or you might choose to store search parameters
in global fields so that upon searching again you can default the search
to the last set of criteria.

The problem with accessing global fields from the web is that all of
the web users share the same set of global fields. They’re not unique
for each web user—just for each FileMaker client. This means that if

Preparing Your Databases for the Web 23

C
h
a
p
te

r
2

Web User A stores something in a global field, then Web User B not
only can potentially see what’s stored there but can also change it.
Business rules in web applications should never rely upon data stored
in global fields.

Middleware applications typically have several types of variables
that can be used in the roles where you had previously used global
fields. PHP and Lasso, for instance, both have session variables that
can act as temporary storage locations as the user navigates through
your application.

As you’re preparing existing databases for the web, you should be
on the lookout for routines that rely on global fields. Don’t worry about
scripts that use globals as counters. Those are innocuous. Worry about
any globals that need to persist as the user moves from place to place.
More than likely you’ll need to abandon them and come up with alter-
natives as you move to the web.

Use of Scripts

Our advice for the use of scripts depends on what tool you’re using to
web-enable your database. As we discuss in depth in Chapter 5, if you
are using Instant Web Publishing, scripts are essential for customizing
a site. But only a handful of script steps are IWP compliant, and they
may have a very different meaning for IWP than they normally do.

If you’re using one of the Custom Web Publishing methods, you
have entirely different issues with scripts. Scripts are the lifeblood of
many FileMaker solutions; they’re typically how business logic is
implemented and enforced. Remember our earlier discussion of appli-
cation components? On the web, the middleware has the primary
responsibility for business logic, and the back end is supposed to be a
simple bucket-o’-data. This isn’t an arbitrary distinction, but rather one
that recognizes and exploits the strengths of each tool. Moreover,
you’ll find that having some business logic implemented in the middle-
ware and some in the back-end database (and possibly some in the
front end as JavaScript validation) complicates the maintenance of an
application.

You should therefore be very choosy when it comes to running
scripts from the web. The rule of thumb is to avoid running scripts
unless there’s a really good reason. There are a few reasons why this
is so. The first is again one of performance. If FileMaker is running a
script that takes a few seconds to execute, it won’t be able to respond
to other requests during that time. The other reason is that most

24 Chapter 2

scripts simply won’t be useful. Scripts that navigate from one layout to
another, for instance, have no impact whatsoever on what a web user
sees on her screen. Other typical script functions, like searching, cre-
ating, and deleting records, should be done directly by calls to the Web
Companion.

Be sure never to call a script from the web that brings up a dialog
on the host computer, such as Show Message, or a delete confirmation.
If this happens, you’re in big trouble. The Web Companion can’t pro-
cess any requests until the dialog is cleared, and so your web site
would be toast.

There are nonetheless a few situations where it is appropriate and
desirable to invoke scripts directly from a web interface. Take, for
instance, printing and exporting. Printing from a web browser is the
Achilles’ heel of the web, but with FileMaker scripting available to you,
you can have a button on your web interface trigger a script that, say,
prints to a PDF (you’d have the PDF driver selected as the default
printer on your FileMaker Pro Unlimited machine) and moves the
resulting file to a directory where it can be viewed or downloaded by
the user. You will need the help of a plug-in for the file-moving part of
the script, but you get the idea.

Typically, if you are creating a new solution and the only access is
through a web interface, you will find that you do almost no FileMaker
scripting. All of the business logic and navigation is done in the middle-
ware instead. For existing solutions, don’t worry at all about your
existing scripts; just write new ones specific for the web as you need
them.

Relationships, Portals, and Related Records

In complex FileMaker systems, many of the relationships between
tables serve utilitarian, rather than structural, purposes. Examples of
these include constant relationships that are used for setting and
retrieving global values from other tables, relationships based on
multivalued keys that are used for selection portals, and relationships
that facilitate jumping to sets of related records. By and large, these
utilitarian relationships have no place in a web solution.

Your structural relationships remain important not only because
they enable you to access related fields, but also because they can be
used to enforce referential integrity (i.e., cascading deletes). More
important than the actual definition of a relationship, however, is that
you have a coherent system of primary and foreign keys. You’ll find

Preparing Your Databases for the Web 25

C
h
a
p
te

r
2

that on the web, you use the keys themselves more than you use
FileMaker relationships.

An example will help clarify what we mean by this. In FileMaker, if
you wanted to navigate from a parent record to a set of children, you’d
most likely use a Go to Related Record script step that requires a
defined relationship between the two tables. In a web application, on
the other hand, you’d end up accomplishing this by performing a
search in the child table for records that have a certain parent key. It
wouldn’t matter whether or not there was a relationship defined in the
underlying FileMaker database.

Portals—one of the most powerful tools in the FileMaker devel-
oper’s toolbox—are used much less often on the web than in File-
Maker. This isn’t because of a dearth of tools for creating them.
Indeed, there are CDML and Lasso tags for creating portals, and
FileMaker’s XML schema can represent sets of related records. The
reason that they aren’t used as much on the web is simply that there
are other, perhaps even better, ways of rendering sets of related
records. All of the middleware tools that we discuss have the ability to
perform multiple database actions and return the results as a single
HTML page. CDML and Lasso both refer to these actions as inlines,
and we use that term as well to refer to any action whose result is
available within the page itself (as opposed to actions that call other
pages).

Let’s look at an example of the functional resemblance of portals
and inlines. Say you wanted to have a web page that displayed informa-
tion about a company and you wanted a list of related contacts to
appear on the page as well. In a straight FileMaker application, you’d
create a relationship from company to contacts based on a company ID,
and then you’d create a portal in the company record to show the
related set of contacts. On the web, you could either use a portal, or
you could do a search of the company table (based on the company ID)
and an inline search of the contact table (also based on the company
ID). The results of both searches could be displayed on the same web
page, giving much of the same user experience as a portal. The inline
approach is structurally similar to how other web database applications
operate, so if you’ve done web development with other tools, you’ll
probably find inlines more intuitive than portals.

Portals have one major advantage over inlines—the ability to edit
multiple records in one request. When you submit an update of a
record that has a portal, both the parent record and all of the portal

26 Chapter 2

records are updated. It’s very complicated to do multiple updates in
one action if you’ve used inlines.

If you’re using Instant Web Publishing, you’ll find that portals on
your layouts are rendered almost flawlessly, including alternate line
coloring and a vertical scroll bar. You can even allow creation of related
records like you would in FileMaker.

Even though you’ll use fewer portals in your web applications,
you’ll still find it convenient to use related fields for displaying more
information about a parent record. If you want to access related fields,
you must explicitly request a layout that contains the related fields.
The layout is an optional parameter that you send as part of a web
request. Without it, the database uses what’s known as Layout 0, a vir-
tual layout that contains all the fields of the table (but no related
fields).

As an example of when you’d use related fields, let’s say that you
wanted to display a list of all the records in the contact table, but you
wanted to include the company name as one of the columns in your
list. You certainly wouldn’t want to do an inline search of the company
database for each contact—that would be downright slow. Instead,
you’d establish a FileMaker relationship from contacts to company, and
then you’d put the company name field on your web layout in the con-
tact table.

Our bottom-line advice is that if you’re using any of the Custom
Web Publishing tools to web-enable existing FileMaker databases, you
should try to ignore utility relationships and portals. Plan on replacing
them with inline actions. If you’re building a new system, put in what-
ever structural relationships are useful for displaying related parent
data and enforcing relational integrity. Outside of these pragmatic con-
siderations, we don’t architect a file structure any differently, whether
we’re planning a pure FileMaker interface or a web interface.

Layouts

We’ve already touched on the importance of layouts for web-enabling
your databases. When you access a database through the FileMaker
Web Companion, you generally want to tell it what layout to use to
process your request. For certain requests, it’s irrelevant, such as if
you asked the Web Companion for a list of open databases or the num-
ber of records in a given table. Most requests, however, are layout
specific, which is both a good thing and a bad thing.

Preparing Your Databases for the Web 27

C
h
a
p
te

r
2

Let’s look at an example to clarify how important layouts are to
web development. Say you have a CDML request to find all the
records in the contact.fp5 database with a last name beginning with a
B. Your request as a URL would look something like this:

http://<your IP address>/FMpro?-db=contact.fp5&-format=

list.htm&last+name=B&-find

When the Web Companion receives this request, it looks at all of the
information after the question mark and parses it into name-value
pairs. So, in this case, it knows that we’re interested in the contact.fp5
database, we want the results sent to the list.htm format file, we’re
interested in last names that begin with a B (begins with is the default
search behavior), and we’re doing a find action.

After performing a find action, the Web Companion creates a result
set to pass back to the requestor. That result set contains data from all
the fields on the specified layout for all of the records in the found set.
In our example, since no layout was specified, FileMaker uses a virtual
layout referred to as Layout 0 and includes every field as part of the
result set. That’s probably much more information than you need to
display a search results screen. The bloated result is bad for two rea-
sons. The first is simply that the set takes longer to move across the
network. The other is that if you have summary fields in your data-
base, FileMaker must evaluate those in order to prepare the result set
in the first place.

Better by far would be to create a layout in the contact database
that contains any possible search fields and all of the fields (including
related fields) that you want to be returned as part of the results. Per-
haps for our example we’d have a layout called WebFind with contact
ID, First Name, and Last Name. Then, we’d restructure the request to
look like the following.

http://<your IP address>/FMpro?-db=contact.fp5&-lay=

WebFind&-format=list.htm&last+name=B&-find

The impact this has on performance is truly dramatic.
When preparing your databases, then, you’ll want to create a slew

of web-only layouts that have the minimal set of fields you need to
accomplish the given task. Avoid putting summary fields or slow calcu-
lations on any of these. It’s not uncommon to have a half dozen or
more web-specific layouts in a table. These layouts take just seconds
to create, as all you need is a simple form view with a handful of fields.
Don’t waste any more time than necessary with the formatting or
maintenance of them.

28 Chapter 2

While specifying layouts is a good thing and can greatly speed up
your solution, there are, alas, a few things of which you need to be
aware. The first is the situation where you’ve specified a layout but
you don’t have the right fields on it. If our WebFind layout above didn’t
have the First Name field on it and we tried to display it on the search
results page, we’d simply have an empty column on our result page.
The other situation to worry about is someone deleting or renaming
one of your web layouts. Web layouts usually look disposable, and a
well-meaning future developer may come along and ruin an entire
solution “cleaning up” the database. To protect against this, we sug-
gest that you put a big, bold message at the top of your web layouts
that warns the viewer of the nasty consequences that await those who
mess with that layout, as in Figure 2.2.

It’s tempting to use just one or two layouts for all of your web needs,
but pretty soon you end up with a giant utility layout with way more
stuff on it than you need for any given task. Take the time to create
request-specific layouts as you need them.

Our discussion of layouts pertains to all methods of Custom Web
Publishing. For Instant Web Publishing, layouts are even more impor-
tant. With IWP, your FileMaker layouts are instantly and entirely
recreated in a web browser. For a complete discussion of Instant Web
Publishing, please see Chapter 5.

Preparing Your Databases for the Web 29

C
h
a
p
te

r
2

Figure 2.2

Summary

In this chapter, we’ve tried to cover a broad range of things you should
do and consider as you prepare your FileMaker database systems for
the web. In our discussion of the four categories of web projects, we
suggested that the choice of development tool could be partially deter-
mined by the project type. We presented some “best practices”
naming conventions and discussed the problems you might encounter
if your databases used names with certain special characters. We also
discussed the performance and design implications of using global
fields, calculations, summary fields, scripts, and portals. Finally, we
explained why layouts are crucial to web requests and how you can use
layouts specific to particular actions to optimize the performance of
your solution.

30 Chapter 2

Chapter 3

Configuring
FileMaker for the Web

In the last chapter we discussed several strategies for preparing your
databases for the web. The structure of your databases can have a big
impact on how they’ll perform over the web. The next subject we dis-
cuss is configuring the FileMaker application itself so that it can be
securely accessed from the web. It’s not terribly complicated, but
there are several pieces involved, and it’s good to know what they do.
The topics covered in this chapter are:

� Choosing Instant vs. Custom Web Publishing

� Setting up the host machine

� Enabling the Web Companion

� Sharing the databases

� Securing your site

� Using the Web Server Connector

Choosing Instant vs. Custom Web Publishing

Broadly speaking, there are two methods for web-enabling FileMaker
Pro databases. The first is referred to as Instant Web Publishing, or
simply IWP. The beauty of IWP is that you don’t need to write a single
line of HTML code. When IWP is enabled, FileMaker generates and
serves web pages automatically, basing the design on layouts that
you’ve selected for various tasks. IWP was first introduced in File-
Maker 4.0 and has been updated steadily in each major version since.
The early IWP really wasn’t suitable for building web apps of any com-
plexity, but in FileMaker 6, IWP has some added features that give
enough flexibility to finally be considered a viable web development

31

tool. If you haven’t seen IWP since its infancy, you should give it
another look. We cover IWP in detail in Chapter 5 of this book.

The other method for publishing FileMaker databases to the web
is referred to as Custom Web Publishing. Custom Web Publishing is
really a catch-all term for using any of a number of tools to exchange
data with FileMaker through the Web Companion. The majority of this
book is in fact about Custom Web Publishing using CDML, Lasso,
PHP, and XSML/XSTL.

Instant Web Publishing is utterly simple to set up and use, but it’s
not very programmable. You have some limited control over function-
ality, but for the most part, it gives you a set of features, and if they’re
not what you want, you’re out of luck. You can’t “look behind the cur-
tain” to see what’s going on or extend the functionality. IWP is suitable
for relatively simple web applications. By “simple,” we don’t mean
screen design or number of fields. In fact, since IWP renders your
FileMaker layouts as HTML, it’s very easy to produce beautiful look-
ing pages. Rather, we mean “simple” in terms of the business logic
that you’re able to implement. If you recall from our discussion in
Chapter 2 of the components of a web application, business logic is
typically best implemented by the middleware layer. There is no
middleware layer with IWP. So, for instance, you can’t create condi-
tional branches. If I click on a button, I can’t have a rule where it takes
me to one layout under conditions XYZ and a different layout under
conditions ABC.

The decision to go to Custom Web Publishing comes with a bit of a
learning curve. Even the simplest solution requires a bunch of coding.
You’ll need to be adept with both HTML and a tool for interacting with
the Web Companion (PHP, Lasso, CDML, or XML/XST). Figure 3.1
illustrates the complexity vs. functionality trade-off of Custom Web
Publishing.

32 Chapter 3

Figure 3.1

What we mean to show by this illustration is that there’s no middle
ground on the complexity side. Instead of a smooth transition from
IWP to CWP, there’s a big complexity gap. If you want more functional-
ity than what IWP can provide, you’re going to be in for more
complexity.

Setting up the Host Machine

Regardless of which option you choose for publishing your database to
the web—Instant Web Publishing or Custom Web Publishing—you
should have a dedicated computer that will act as the web host. This
machine can run any OS supported by FileMaker, including Windows
NT/2000/XP/98 and Macintosh 9.x/10. We strongly recommend that
the machine not be used for any tasks other than FileMaker web
hosting.

Hardware Configuration

You don’t need to run out and buy a server-class machine to act as the
web host. But don’t relegate your slowest and oldest workstation to
this task either. We consider a mid- to high-end workstation sufficient.
iMacs make great web hosts. The machine you choose doesn’t need to
have a large hard drive or gigabytes of RAM or any other bells and
whistles. Its primary purpose is to serve data through the network, so
the most important components are the network subsystem and the
hard drive. The faster the machine can get the data to and from the
disk and back to the network, the better. Splurge for a fast hard drive
(Wide Ultra SCSI with high RPMs) rather than a large hard drive, and
make sure you have a quality network card. Check also that your web
host is connected as directly as possible to your high-speed Internet
connection. That is, don’t have the machine routed through a cheap
hub on its way to your fast switch.

Your host machine needs to have a static IP address, and it should
be connected to the Internet at all times. If your organization uses a
firewall to protect its network, you might need to work with your IT
department to place your machine outside the firewall.

Software

Your web host needs to have either FileMaker Pro or FileMaker Pro
Unlimited installed and running. (We discuss the FileMaker 6 product
line in this book, but just about everything applies equally as well to
FileMaker 5.x.) You can’t web-enable FileMaker Server. The difference

Configuring FileMaker for the Web 33

C
h
a
p
te

r
3

between Pro and Unlimited is important to understand. FileMaker Pro
is limited to receiving requests from ten different IP addresses every
12 hours. Further requests will be denied. This might be sufficient if
you’re using Instant Web Publishing so your outside sales reps can
look up contact information, but it’s clearly not for any kind of public
site.

FileMaker Pro Unlimited has no such IP metering (hence the
“unlimited” in the name), and it’s the correct tool to use for most web
applications. The IP metering is the only difference between the two
products. You can develop and use databases with Unlimited exactly
the same as you would with Pro. When you purchase FileMaker Pro
Unlimited, you also receive the Web Server Connector, which is a Java
servlet that allows you to integrate FileMaker’s Web Companion with
full-service web serving software (such as Microsoft’s Internet Infor-
mation Server (IIS), or Apache on OS X or Red Hat Linux). We discuss
the Web Server Connector in detail at the end of this chapter. If you’re
using any sort of middleware to connect to the Web Companion,
regardless of the number of IP addresses, you are bound under the
FileMaker licensing terms to use FileMaker Pro Unlimited rather than
Pro as your web host.

Both products come with a plug-in called the Web Companion; it’s
installed in your plug-in directory (FileMaker/System on Windows,
FileMaker:FileMaker Extensions on Macintosh) as part of the typical
installation. That’s the tool that allows your database to respond to
HTTP requests. In the next section we discuss how you enable and
configure the Web Companion.

Whichever product or platform you’re using, you’ll have much
better performance if FileMaker is the foreground application; it can’t
run as a service or daemon like FileMaker Server can. Disable any
screen savers or other routines (like indexing) that may compete with
FileMaker for resources.

Your Database Files

Any databases that you want accessible to the web need to be open on
the host machine. The databases can either reside locally on the host
machine, or they can be open as guests of FileMaker Server. Figure 3.2
illustrates the topology of these two configurations.

34 Chapter 3

If the databases live on the host machine (as in Figure 3.2A), it really
doesn’t matter where you put them. The only restriction is that they
should not be placed in the web folder within the FileMaker folder.
That’s the root folder for all web requests, and a web user can poten-
tially download anything in that folder. Running with this topology, it
doesn’t matter what you set as your FileMaker network protocol. In
fact, you’ll probably want to disable peer-to-peer networking (access
this under Edit>Preferences>Application). Similarly, it doesn’t matter
whether you set your files to be single-user or multi-user.

Under either topology, when you open the databases on the web
host, the password you use must have the Export Records privilege.
The Web Companion can’t interact with a table that doesn’t have this
privilege. This is good because if there are certain databases that need
to be open but shouldn’t be web accessible, simply use a password
without the Export privilege for those files.

If your web host is a guest of FileMaker Server (as in Figure 3.2B),
be sure that the password you use to open the databases is not discon-
nected during idle time by the server. That was a feature added to
FileMaker Server 5.0 that kicks off users who haven’t had activity for
some specified amount of time. The problem, of course, is that you
might want to kick off regular users who have been inactive for two
hours, but you certainly don’t want your web server disconnecting
during a lull in the middle of the night. You can prevent the disconnec-
tion at the password level simply by unchecking the Disconnect from

Configuring FileMaker for the Web 35

C
h
a
p
te

r
3

Figure 3.2

FileMaker Server when idle check box in the Define Passwords dialog
(see Figure 3.3).

Enabling the Web Companion

Simply put, the Web Companion is a plug-in that responds to HTTP
requests. It’s installed as part of the typical installation of both
FileMaker Pro and FileMaker Pro Unlimited. You don’t need to buy or
install anything special to use the Web Companion. It can act both as a
Common Gateway Interface (CGI) to pass data to a web server and as
a web server itself.

Keep in mind that since the Web Companion is a client-side tool,
users on your FileMaker network might inadvertently (or even
advertently…) permit access to your databases to web users through
their machines. If you’re the system administrator of a database with
sensitive data, you might rest easier at night if you pull the Web Com-
panion off your users’ workstations.

Enabling and configuring the Web Companion is a breeze. On the
host machine, launch FileMaker (it doesn’t matter what database), go
to Edit>Preferences>Application, and click the Plug-Ins tab. As
shown in Figure 3.4, you’ll see a list of plug-ins that are available for
use on that machine.

36 Chapter 3

Figure 3.3

If you don’t see the Web Companion listed among the choices, you’ll
have to manually find it and place it in the appropriate directory. Rather
than reinstalling the application, it’s probably easier to go to another
machine and see if you can copy it over. On Windows machines, plug-
ins are located in the System folder within the FileMaker application
folder. On Macs, they’re in the FileMaker Extensions folder within the
FileMaker application folder. After moving files into the appropriate
directory, you’ll probably need to restart FileMaker to see the revised
list of available plug-ins.

To enable the Web Companion, all you have to do is select the
Enabled check box on the screen. See, we told you it was easy.

Configuring the Web Companion is only a hair more difficult. Click
on the Web Companion plug-in to highlight it, and then click the Con-
figure button. You’re now at the configuration screen, which is shown
in Figure 3.5. Keep in mind that you’re configuring the FileMaker
application itself, not an individual database. Any changes you make to
the Web Companion configuration immediately affects all open
databases.

Configuring FileMaker for the Web 37

C
h
a
p
te

r
3

Figure 3.4

The following sections explain in detail what each of these configura-
tion options offers.

Web Companion User Interface

By selecting or deselecting the check box in this section, Instant Web
Publishing is turned on or off. If you’re going to be using a tool like
CDML, Lasso, PHP, or XML to web-enable your databases, you’ll
probably want to deselect this option. It’s not that you can’t do Custom
Web Publishing with IWP enabled, but rather your databases will be
accessible in a manner that you haven’t planned for, so go ahead and
disable IWP if you aren’t planning on using it.

By the way, there’s nothing that you need to do on the FileMaker
side to allow for the use or restriction of a particular Custom Web Pub-
lishing tool. As long as the Web Companion is active, it will respond to
any and all properly formatted inquiries.

If you have enabled Instant Web Publishing, you have the further
option of having FileMaker generate a home page (that’s the “built-in”
option) or selecting one of your own design. Any document that’s in
the Web directory inside the FileMaker folder will be available to
choose as the home page. We discuss the creation of custom home
pages in Chapter 5.

The language selection again only applies if you’ve enabled Instant
Web Publishing. It determines, as you might expect, the language in
which the pregenerated IWP web pages are displayed.

38 Chapter 3

Figure 3.5

Remote Administration

The Remote Administration area governs a handful of tasks that can
be done remotely through a browser. The most important of these is
administration of the Web Security Databases. Of course, if you
haven’t selected this as your security option, it’s a moot point. Remote
Administration also allows you to:

� Use the -dbopen tag to open a database

� Use the -dbclose tag to close a database

� Download .fp5 files from the web directory

� Upload files (of any type) to the web directory using HTTP PUT

You should only enable Remote Administration if you intend to modify
user or database privileges remotely or if you need access to any of
these other functions. If you do enable it, then of course you’ll want to
require a password. The other choice shouldn’t even be presented as
an option.

Logging

The Web Companion can create log files that allow you to monitor its
activities. The logs, which are placed in the FileMaker application
folder, can be opened by any text editor.

� The Access Log gives you a list of incoming requests, including
the date, time, and requestor’s IP address.

� The Error Log is a list of errors generated by the Web
Companion.

� The Information Log records any text specified by the
[FMP-Log] tag. You can use this to create your own custom logs as
users move through your application. For instance, you might have
the tag [FMP-Log: Order Submitted] in one of your format files.

If you enable these options, you probably want to periodically purge or
archive their contents. The Access Log especially can become large
rather quickly with a busy site. Some people wonder whether logging
slows down their web application. We haven’t found the difference to
be noticeable, so if you think you’d benefit from having logs generated,
go ahead and turn on these options.

Configuring FileMaker for the Web 39

C
h
a
p
te

r
3

Security

When you publish databases to the web, you can either use whatever
passwords and privileges you’ve already set up to protect the database
or you can use what are called the Web Security Databases to create
web-only privileges. If you’re using Instant Web Publishing, you really
don’t have a choice; only FileMaker’s built-in security can be used.

When you first come to the Web Companion configuration screen,
the option to select the Web Security Databases may be grayed out.
This is because the Web Security Databases must be open before you
can choose this as an option. The three files that comprise the Web
Security Databases are found in the Web Security/Databases folder.

If you opt to use the Web Security Databases, these three files
must remain open at all times on the host machine. You’ll need to set
up security for every file that you make accessible via the web.

There’s no simple rule of thumb for when you should use
FileMaker’s access privileges and when you should use the Web Secu-
rity Databases. Most people find that it’s much simpler to use the
built-in access privileges. One of the nice things about the Web Secu-
rity Databases is that you can make changes to your security while
your application is being used. Any new passwords or restrictions you
set up take effect immediately.

In the Security section of the configuration window, you also have
the option to restrict access to certain IP numbers. This is extremely
good security for intranets or solutions where you know the identity of
your users. You can enter up to 255 characters in the space provided.
Lists of IP addresses should be separated by commas. You can specify
an entire subnet by using a wildcard (i.e., 209.243.123.*) in place of the
final number.

There’s one final section of the configuration window. In the lower
left-hand corner you’ll see a place to enter the TCP/IP port number
that the Web Companion uses. The default port for web applications is
80. If you know that this port isn’t in use by another application, go
ahead and use it. In the event that port 80 is in use, set the port num-
ber as 591. That is a registered number that shouldn’t conflict with any
other applications. Keep in mind that if you use anything other than
port 80, all of your web requests will need to specify the port number.
That is, a request might be 123.123.123.123:591/FMPro… instead of
123.123.123.123/FMPro…

Underneath the port number, you’ll see the IP guest limit. This
isn’t something that you set. It lets you know whether you’re running

40 Chapter 3

regular FileMaker Pro client (in which case, it says “10”) or if you’re
using FileMaker Pro Unlimited (in which case, it says “Unlimited”).

Sharing the Databases

Enabling and configuring the Web Companion allows the FileMaker
application itself to respond to web requests. You then need to go into
each of the databases that you want to be web accessible and explicitly
set them up to share to the web. To do this, select File>Sharing—at
which point you’ll see the dialog shown in Figure 3.6.

Under Companion Sharing, select the check box next to Web Compan-
ion. If you’re going to be using Instant Web Publishing, you can pro-
ceed from here to set up your views. We discuss this in Chapter 5. For
now, you’re done—your database is accessible from the web.

Securing Your Site

There’s one final and vital thing for you to consider when web-enabling
a FileMaker database: security. We’ve already briefly discussed the two
ways that security can be implemented for a web solution—using
FileMaker’s access privileges or using the Web Security Databases. In
this section, we elaborate on each of these, focusing especially on the
use of the Web Security Databases.

To begin, we’re going to try to scare you a bit by telling you about
some of the things that can happen to your databases if you don’t

Configuring FileMaker for the Web 41

C
h
a
p
te

r
3

Figure 3.6

secure them (or secure them improperly). Web users interact with the
Web Companion by sending it HTTP requests. These requests are
quite simple. They specify the IP address of your server and a string of
commands that tell the Web Companion what to do and how to furnish
a response. Typically, these requests are sent when a user clicks on a
link or submits a form that you’ve created in your web solution.
Would-be hackers can glean a lot of information about your databases
by studying these valid requests. They can possibly find out the names
of databases, layouts, and fields. They might even see record IDs pass
by as they edit records. The hackers can then create their own mali-
cious request simply by typing a well-formatted URL into their
browser’s address bar. They might be able to gain access to data in
your database that you hadn’t intended to put on the web, or they
might change or delete records whimsically. They can also easily get a
list of script names and run any one they want.

Even if a hacker knows only the name of your database and you
haven’t protected it, the following URL would show him the data from
every field and every record of your database, all nicely formatted in an
XML result set:

http://<your IP address>/FMpro?-db=myDatabase.fp5&-format=

-dso_xml&-max=all&-findall

There’s no way for the Web Companion to know that this isn’t a valid
request coming from a button that you programmed in one of your for-
mat files.

Hopefully, you’re sufficiently scared now to read the rest of this
section diligently. Setting up security properly takes time to plan,
implement, and maintain, but that’s better than the alternative.

Protecting Your Database with FileMaker’s Access
Privileges

If your database requires a password for entry, and you’ve configured
the Web Companion to use FileMaker access privileges, any request to
the web companion will trigger an HTTP authentication dialog, similar
to that in Figure 3.7

42 Chapter 3

Figure 3.7

It doesn’t matter what, if anything, is entered as the user ID, but the
password must match one of the passwords in the database. If it
doesn’t, the user won’t be able to do anything. If it does, the privileges
that user has within FileMaker extend to the web. There’s no way to
allow only certain passwords access from the web when you’re using
this security method. A user who knows any valid password can
authenticate via the web.

A user is only prompted for authentication the first time a request
is submitted to the Web Companion. The browser automatically sends
this information with subsequent requests during the session. If the
user attempts to perform an action he doesn’t have the privilege to
perform, he is prompted for the password again. Only by entering a
valid password with that privilege is the request processed.

If you’re designing a site that is used by the general public (say, a
product catalog), you obviously can’t require that a password be
entered to access your data. Yet of course you still need to protect it.
For these situations, you’ll want to define a blank password in File-
Maker and give it the bare minimum set of privileges needed to use
your site. As long as they are performing actions permitted by a blank
password, your visitors will not be asked for a password. But as soon
as they attempt to do something they shouldn’t, they will be.

Protecting Script Access

One of the hardest things to protect against is a web user running one
of your scripts. You’re probably thinking that they’d have to know the
name of a script before they could run it. And you’re correct. But it’s
trivial for a user with a limited password (or if you’ve set up a blank
password) to get a list of all your scripts, simply by sending the follow-
ing request:

http://<your IP address>/FMpro?-db=myDatabase.fp5&-format=

-dso_xml&-scriptnames

Try this before setting up security on your databases and you’ll be
amazed at the result. Once someone knows the names of your scripts,
they can run one with another simple request:

http://<your IP address>/FMpro?-db=myDatabase.fp5&-format=

-dso_xml&-script=Super+Secret+Script&-findany

There’s no way using FileMaker’s built-in access privileges to grant a
user some access to your data, yet protect the list of scripts or prevent
any of them from being run. Running scripts might not cause much
mischief in some systems, but there are an awful lot where it could.

Configuring FileMaker for the Web 43

C
h
a
p
te

r
3

One bad thing that can happen is the web hacker runs a script that
causes a dialog box to appear on the host machine, perhaps a Show
Message or a print dialog. Until that dialog is cleared on the host
machine, the Web Companion is deaf to any other requests. Well, at
least the hacker would be out of business for a while!

If you’re concerned about this, you can add a few lines to the
beginning of each of your scripts that detects whether or not it’s being
called by a web user. The Web Companion, being a plug-in, has exter-
nal functions similar to those of other plug-ins. Using those, you can
get information like the IP address that’s currently using the Web
Companion. At the top of your scripts, then, you might put the follow-
ing code:

If [External("Web-ClientIP", "")]

Halt Script

End If

The Web-ClientIP function doesn’t take a parameter, so just put in “”
as the second argument. Any script protected this way is harmless if
called from the web, and you haven’t sacrificed a bit of functionality. If
you want to go beyond protection and try to hunt the hacker down, you
can also write the IP address, date, time, and script name to a log file
before halting the script.

While we’re on the subject of the Web Companion’s External func-
tions, there’s another place where you should consider using them. If
you have a solution where users are adding records from a browser,
create a field in your database that has the Web-ClientIP function
auto-entered so you’ll have it for future reference.

Protecting Fields

In addition to protecting your scripts, you should take the time to pro-
tect the contents of any fields that you wouldn’t want displayed for a
web hacker. You might, for instance, publish your company’s phone
directory database online, carefully making sure that you don’t divulge
sensitive data, such as salary or home phone numbers. A savvy user of
your system, however, will potentially be able to see that information if
you don’t explicitly guard against it.

To see a list of all the fields in your database, a hacker with some
access would simply submit the following request:

http://<your IP address>/FMpro?-db=myDatabase.fp5&-format=

-fmp_xml&-view

44 Chapter 3

They could also specify a particular layout name and see just the fields
on that layout, as well as any formatting information, such as value
lists. A list of your layouts is also quite accessible; it’s available
through the request:

http://<your IP address>/FMpro?-db=myDatabase.fp5&-format=

-fmp_xml&-layoutnames

Knowing your field and layout names might not seem like a big deal,
but for every field a hacker can see in your field list, he can also see
data in that field. Assuming he had the privilege to browse records in
the database, he’d just have to request:

http://<your IP address>/FMpro?-db=myDatabase.fp5&-format=

-fmp_xml&-max=all&-findall

. . .and he’d see all of your data. Your best hope would then be that the
size of the result set is so large that it causes the browser to time out
while waiting for a response.

If you’re using FileMaker’s built-in access privileges to protect
your system and there are fields that you don’t want web users to see,
you need to wander into the murky world of FileMaker’s Access Privi-
lege Overview screen to protect them.

First, set up a new group. Then go into the Access screen and
click on the password that your web users will be using in the second
column. While it’s highlighted, click on the dot in front of your web
group to add it to that group. Make sure that it’s not part of any other
groups. Then click on the name of your group to activate it. Now you’ll
be able to deselect those layouts and fields that you don’t want that
group to have access to. If you need more information about how to
use the Overview screen, refer to the FileMaker Help system.

Once you’ve done this, web users won’t even know these fields
exist and won’t have access to the data in them. Usually, in a pure
FileMaker system, you can rely on hiding layouts to keep users from
sensitive data. Be aware that if you have regular FileMaker users
whose passwords allow access to those fields, they may have a back-
door into the data through the web companion. They can even set up
their own workstation as the web server if they have the privilege to
export records.

Configuring FileMaker for the Web 45

C
h
a
p
te

r
3

Protecting Records

It’s relatively easy to protect certain records from being viewed,
edited, or deleted from the web using FileMaker’s built-in access privi-
leges for security. This is done exactly the same way as if you were
protecting records from regular FileMaker Pro users. When you set up
your web password, you can leave the privileges for Browse, Edit, and
Delete checked, but then in the pop-up menu next to the privilege,
select Limited and put a condition on the use of that action.

Say that you had an event calendar online, and you only wanted
web users to be able to view records with an event date within the
next two weeks. In that case, you’d set up the following condition
under Browse records:

EventDate >= Status(CurrentDate) and EventDate <=

Status(CurrentDate) + 14

If a user tries to mine your entire database using the method that we
described earlier, they’d get <No Access> for the fields of the events
that didn’t fit this criterion.

This concludes our discussion of how to protect web databases
using FileMaker’s built-in access privileges. If you take a few simple
and reasonable precautions, you can rest easier knowing your data is
safe.

Protecting Your Databases with the Web Security
Databases

The other method for protecting your web site is through the Web
Security Databases. Most people find that there’s a slight learning
curve associated with their use. The main advantages that the Web
Security Databases have over FileMaker’s built-in access privileges
are that you can administer your security settings remotely, require
both a user name and a password, and keep your web users and
FileMaker users separate from each other.

Note: If you are using Instant Web Publishing, you cannot use the Web
Security Databases. Access to your site will be controlled by FileMaker’s
built-in access privileges.

The three files that comprise the Web Security Databases are Web
Security.fp5, Web Users_.fp5, and Web Fields_.fp5. You’ll find them in
the Databases folder within the Web Security directory. You can move
the files if you like, but there’s no need to. The Web Security Data-
bases are ordinary FileMaker databases, and they’re wide open. You
can alter them if you want, but you probably shouldn’t. Under no

46 Chapter 3

circumstances should you set these databases to share to the web—
that would be a huge security risk. Similarly, you should never share
the Web Security Databases with FileMaker Server or peer-to-peer. If
you need the ability to edit the files remotely, use the Remote Admin-
istration capabilities built into the tool.

The Web Security Databases need to be open in order for you even
to choose that option in the Web Companion Configuration. They must
remain open at all times. If they aren’t open for some reason, web
users get an error and no requests are processed by the Web
Companion.

When you first open the Web Security database, it will be empty
and look something like Figure 3.8.

You’ll need to create a record in this file for each database for which
you want to provide security. On each record, you’ll then enter the
usernames, passwords, and access privileges in the top portal. You’ll
also be able to set field- and record-level restrictions in the bottom
portal. The key that’s used to relate the three files together is the
database name itself, so if you ever have to modify the name of a table
for some reason, all of the data in the portals will seem to disappear.

Any changes that you make to the Web Security Database take
effect immediately. Even if a user has already authenticated, you can
change his privileges anytime, even in the middle of his session.

You also have an opportunity on this screen to enter a database
password. Its purpose is to allow you to tap into FileMaker’s built-in
access privileges and use them in conjunction with the Web Security
Databases. If you enter here one of your FileMaker passwords, then no
web user can have greater access than what is provided with that pass-
word. That is, the privileges you set up in the Web Security Databases

Configuring FileMaker for the Web 47

C
h
a
p
te

r
3

Figure 3.8

can further restrict access, but they can’t extend it. The privileges
associated with the FileMaker password represent the maximum set of
privileges that any web user could possibly have.

Setting Up Usernames

Usernames and passwords are entered in the top portal. If your solu-
tion contains multiple databases, you need to set up the same user-
names and passwords for each of your tables. For each user, you can
grant or restrict access for viewing, creating, editing, and deleting
records. You can also prohibit that user from running any of your
FileMaker scripts, which if you recall was something that you couldn’t
do using FileMaker’s built-in access privileges.

Usernames and passwords should consist only of the letters A
through Z and numbers. Don’t use leading or trailing spaces, punctua-
tion symbols, or any special characters. Usernames and passwords are
not case sensitive.

Any user attempting to access a table protected by the Web Secu-
rity Databases is prompted for a username and password. If no names
have been set up, no one can access that table, even if you’ve specified
a database password. Just as we discussed for FileMaker’s built-in
access privileges, once a user has been authenticated, each subse-
quent request during that session automatically carries the name and
password information.

If you’re creating a site that will be accessed by the public at large,
you obviously can’t set a password for each of your users. For these
situations, there’s a special username called All Users that you can
use. You’d set that up as the username, leave the password blank, and
then set any access restriction that you want to place on your guests.
Figure 3.9 shows the setup that you’d use if you had a database that
you wanted anyone on the web to be able to browse but not edit.

48 Chapter 3

Figure 3.9

The All Users username functions similarly to how a blank password
does if you’re using the built-in access privileges. Depending on your
solution, it may make sense to set up All Users with extremely limited
privileges (say, browse only) and then set up other names/passwords
for those who need additional access. As long as web users are doing
things allowed by the All Users settings, they won’t be prompted for a
password, but as soon as they try to do something more, they are
prompted to enter a password.

You can’t define other names/passwords that are more restrictive
than the settings for All Users. For instance, you can’t grant All Users
the privilege to delete records and then restrict it for other users. An
explicitly defined user can always do what All Users can do, and they
can also perform additional actions that they’ve been granted.

Setting Field and Record Restrictions

At the bottom of the Web Security.fp5 database, you have the opportu-
nity to set up field and record restrictions. Any restrictions you set up
apply to the table as a whole. That is, you can’t allow some users
access to a field but not others. The two portals are independent of one
another.

There are six restrictions that you can define for a field, and
although it’s not very intuitive, three of them define field restrictions
and three define record restrictions. Since this is probably the most
nebulous part of the Web Security Databases, let’s look at each of the
restrictions and discuss how and why you might want to use it.

First, the field restrictions:

Don’t Show

If you select the option to not show a field, you’ll prohibit any web user
from ever seeing data in that field. You’d probably want to set this up
for every field that you’re not displaying somewhere yourself in a for-
mat file. Earlier in this chapter we discussed how easy it could be for a
web hacker to get information from any field in an unprotected data-
base. Beware: Fields that are hidden using Don’t Show can still be
edited. In most cases, you’ll want to select Read Only every time you
select Don’t Show.

Don’t Search

This option restricts which fields can be used as search arguments
from a web browser. Even if you’ve selected the Don’t Show option for
a field, that field could still be used as a search parameter. For instance,
if you had a personnel database online and you set the Salary field to

Configuring FileMaker for the Web 49

C
h
a
p
te

r
3

Don’t Show, a user who knew the name of the field could still search
using that field and get back lists of employees that met the criteria
they defined.

Read Only

As you’d probably expect, fields that have a read-only restriction can
be viewed but not edited via a request to the Web Companion.

Now the record restrictions:

Exact Search

Exact Search is really a browse restriction. When you select Exact
Search for a field, every search request that comes into the Web Com-
panion needs to have that field as one of the search arguments. Then,
only records where the incoming search argument matches exactly the
data in that field will be returned. Clear as mud, right?

An example will hopefully shed some light on the matter. Say that
you have a contact database online that’s used by your outside sales
folks, but you don’t want them to be able to view each other’s contacts.
Create a field in the database called RecordKey or something similar
and populate each salesperson’s set of records with some kind of pass-
word that only he or she will know. In the Web Security.fp5 database,
put an Exact Search restriction on the RecordKey field.

Then, when you build the web forms that the salespeople use to
find contacts, stick an extra field on your search form so they can enter
their secret record key. Say they search for all the “Smiths” and enter
their record key as well. Only the Smith records with their record key
would be returned. Any search that doesn’t have a record key as one of
its arguments fails. Similarly, a search with an empty record key also
fails.

In your forms and URLs, you need to explicitly set the operator for
the record key to “eq” when submitting these types of requests. The
default operator is “begins with,” and that doesn’t work for any fields
set with this Exact Search restriction. In a URL, just add &-op=eq
before the Exact Search argument. In a form, you’ll have a hidden
input with a name of -op and a value of eq before the Exact Search
argument. Operators always affect the following search parameter.
Using CDML, your form might end up looking like the following:

<input type="hidden" name="-db" value="myContacts.fp5">

<input type="hidden" name="-lay" value="searchForm">

Last Name to Search for:<input type="text" name="Last Name"

value="">

50 Chapter 3

<input type="hidden" name="-op" value="eq">

Record Key:<input type="password" name="RecordKey" value="">

As another example, say you have a large product database, but you
only want information on a handful of products to be available on your
web site. To achieve this, set up a field called ViewOnline and set it to
some value (like 1) for those records that you want accessible. Then
set up an Exact Search restriction for this field in the Web Security
Database. As part of all of your search forms, you’d then have a hidden
input field that sets ViewOnline to 1. All of the search requests would
thereby be constrained to the set of records that you had flagged. Even
if a hacker figured out what you were doing, he would still not be able
to access unflagged records. Remember, in an unprotected database,
the following URL would spit back every iota of data to a hacker:

http://<your IP address>/FMpro?-db=products.fp5&-format=

-dso_xml&-max=all&-findall

With an Exact Search restriction, this command wouldn’t do a thing.
And even if the hacker knew the restriction and submitted this
request:

http://<your IP address>/FMpro?-db=products.fp5&-format=

-dso_xml&-max=all&-op=eq&ViewOnline=1&-find

. . .he would only see the records you allowed to be viewed on the web.
It is possible to set an Exact Search restriction for multiple fields,

but that is seldom necessary. In that case, all of the restricted fields
need to be included in the search. That is, it’s an “and” restriction
rather than an “or” restriction.

Another nice side effect of Exact Search is that it disables the
-findall and -findany actions. Finally, you’ll usually want to select the
Don’t Show restriction on fields where you’ve selected Exact Search.

Exact Update

The Exact Update restriction is very similar to the Exact Search
restriction. The difference is that it governs the editing of records
rather than the viewing of records. By placing this restriction on a
field, any request to edit a record has to be accompanied by a record
key.

This restriction usually causes some misunderstandings. It’s not
the case that in every record where the key exists, some value will be
changed. It also has nothing to do with editing the restricted field.

Configuring FileMaker for the Web 51

C
h
a
p
te

r
3

To understand what it does do, it’s helpful to review how to
request edits via the Web Companion. With an edit request, you must
always specify the internal ID of the record to edit. You also pass infor-
mation about what fields you want to change. So, for instance, the
following request might be used to change a contact’s name from Fred
to Joe:

http://<your IP address>/FMpro?-db=contacts.fp5&-format=

-dso_xml&-recid=37&firstname=joe &-edit

The Exact Update restriction checks a passed parameter to make sure
that value is in the record, and only if it is will the edit be allowed to
proceed. So, if we wanted to protect Fred’s contact record from being
incorrectly updated, we might have an UpdateKey field in the database
and set it to, say, “foo.” Then the request to change this record would
need to be changed to the following:

http://<your IP address>/FMpro?-db=contacts.fp5&-format=

-dso_xml&-recid=37&firstname=joe&UpdateKey=foo&-edit

This request states that if the UpdateKey of record 37 is “foo,” then
the firstname field should be set to “joe.” It doesn’t set the UpdateKey,
nor does it find records where the UpdateKey is equal to “foo.”

A good example of when you might use this would be an internal
employee directory where everyone can see everything, but where
you need to confine users to only modify their own profile. You can’t
simply remove edit access; you need to restrict it. To do this, provide
each employee with an update key of some sort and set an Exact
Update restriction on that field. Then, when they go to the edit screen
that you designed, you would require them to enter the key along with
their changes. Again, you’ll usually want to select the Don’t Show
restriction on fields where you’ve selected Exact Update.

Exact Delete

The Exact Delete restriction provides a mechanism for requiring
record-specific authentication to delete records. It’s very similar to the
Exact Update restriction in its syntax. Record deletion also requires
that an internal record ID be passed to the Web Companion. With
Exact Delete set for a field, web requests require that an additional
parameter be passed that matches a piece of existing data in that
record. That is to say a user can only delete a record if he knows the
key to that record.

As an example, consider a solution where you allow web users to
post events to an online event calendar. When new events are

52 Chapter 3

submitted, you can have a random confirmation string generated by
FileMaker and echoed back to the user (or e-mailed to them). Then,
you can require that editing or deleting that event record requires the
event key be entered by the user. This way, you’re leaving users with
the privilege of deleting records, but they can only delete records
they’ve created.

Creating Global Security for “All Databases”

Just as you can define global security for All Users, you can also set up
global security for “All Databases.” Simply create a new record in the
Web Security Database and name the database All Databases, and then
set up your usernames and passwords as you would for any other data-
base. Using the special All Databases name is helpful if you have many
database tables with the same restrictions and many usernames to set
up. You can still set up field-level restrictions as well, but think
through whether it makes sense. For instance, you might elect to not
show a Salary field no matter what database it appears in. It might not
make as much sense, however, to set any of the Exact restrictions.

What happens, you might wonder, if you have a record for All Data-
bases and another that’s specific to a given table? It’s quite similar to
what happens when you have All Users set up as well as other users.
Anything that can be done for All Databases can be done in any table.
Other tables can grant additional privileges, but they can’t be more
restrictive.

Say, for instance, that you have “Fred” set up as a user in All Data-
bases with the privilege to delete but not to run scripts. If you set
security records for specific tables and define Fred as a user in those,
you won’t be able to take away his privilege to delete records, but you
can grant him the privilege of running scripts if you want.

Use the All Databases and All Users settings with caution. If
you’ve set up a record for All Databases, and you’ve given All Users
access to Browse, Edit, Create, Delete, and Scripts, then you’ve
essentially turned off security.

Remote Administration

One of the best things about the Web Security Databases is that you
can administer them equally well through a browser interface as you
can through the FileMaker interface. Recall from our discussion of the
Web Companion configuration that you have an option there to enable
remote administration. We strongly recommend that if you choose to

Configuring FileMaker for the Web 53

C
h
a
p
te

r
3

enable remote administration that you select the option to use a
password.

Beyond enabling remote administration, there’s one other thing
that you must do; in the Web Security folder, there’s a folder called
Security, and that’s where all of the HTML pages for doing remote
access can be found. You’ll need to move or copy the entire Security
directory into the Web directory. You probably shouldn’t modify any of
the actual web forms, as you may break things or introduce security
holes.

Once you’ve enabled remote administration and moved the Secu-
rity folder, you can view and edit your security settings from anywhere
you have browser access to the server. To bring up the web interface,
go to http://<your IP address>/Security. You’ll be presented with the
screen shown in Figure 3.10.

From here, you can either enter the name of the database that you
want to administer or you can add a new database. If you’ve set up a
password to access remote administration, you won’t be prompted for
it until you do one of these things (since that’s the first time you’re
requesting any data from the Web Companion). You’ll need to use
“Admin” as the username in the authentication dialog and whatever
password you set up on the configuration screen.

You’ll find that the interface for remote administration is very sim-
ilar to the FileMaker interface. Figure 3.11, for instance, shows what
the database overview screen looks like through a browser.

54 Chapter 3

Figure 3.10

We think you’ll have no problem navigating through the interface, so
we’re not going to bore you by going through every screen. All the
functionality that we discussed in the previous section (both for setting
up user accounts and field restrictions) is available to you. Any
changes you make via Remote Administration are captured in the Web
Security Databases, and they go into effect immediately.

Other Remote Administration Privileges

By turning on Remote Administration, you not only allow browser
access to the Web Security Databases, but you also enable a few other
important, but potentially dangerous, commands.

-dbOpen and -dbClose

The -dbOpen and -dbClose actions can only be used when Remote
Administration is enabled, but they have nothing whatsoever to do
with the Web Security Databases. Use of either command prompts the
user for a password if one has been set. These commands are very
useful if you ever need to close files for maintenance or restart them
after a server crash.

The syntax to open a file is as follows:

http://<your IP address>/FMPro?-db=myDatabase.fp5&-format=

-fmp_xml&-dbOpen

Configuring FileMaker for the Web 55

C
h
a
p
te

r
3

Figure 3.11

You must include a valid format file and a database name. If you’d like
the database to open using a certain password, you enter that as an
additional argument in the request, as follows:

http://<your IP address>/FMPro?-db=myDatabase.fp5&-format=

-fmp_xml&-password=myPassword&-dbOpen

The requested database, or an alias to it, must reside in the web folder
for this command to work.

Closing a file is just as easy as opening one:

http://<your IP address>/FMPro?-db=myDatabase.fp5&-format=

-fmp_xml&-dbClose

Unlike -dbOpen, however, -dbClose works no matter where the file
lives.

Uploading and Downloading from the Web Directory

With Remote Administration enabled, you can download any FileMaker
file that lives in (or has an alias in) the web directory. You’ll need a
password, provided that you’ve set one up. To download a file, simply
enter into your browser http://<your IP address>/myDatabase.fp5.

Files can be uploaded to the web directory as well using HTTP
PUT. These can be very useful if you have a database hosted by an ISP
that you need to periodically refresh.

You should always close a file before downloading it or you run the
risk that your downloaded copy will be corrupted.

Protecting Your Format Files

In Chapter 6 we discuss how to create format files for rendering the
responses to CDML requests. Format files contain your business logic
and shouldn’t be accessible by web users. To protect them, be sure to
place them in the cdml_format_files directory, which is inside your
FileMaker directory. FileMaker 6 is the first version of the product
with this directory. In earlier versions, your format files needed to be
placed in the web directory. Putting them there, however, potentially
allows your source code to be viewed from a web browser. The
cdml_format_files directory is not directly accessible from the web and
is therefore secure from this type of attack.

Images and static files must still be placed in the web directory.
You can put copies of them in the cdml_format_files directory, but they
won’t actually be served from there.

56 Chapter 3

If you need additional information on securing your web applica-
tions, you can find a PDF document on web security in the Web
Security folder. You’ll also find security updates posted from time to
time on FileMaker’s web site (www.filemaker.com).

Using the Web Server Connector

In our discussion up to this point, we’ve assumed a configuration in
which the Web Companion acts as both a CGI (Common Gateway
Interface) and an HTTP server. It’s also possible through the use of a
tool called the FileMaker Web Server Connector (FMWSC) to have a
full-service web server in the role of the HTTP server, freeing the
Web Companion to focus on responding to database queries.

The Web Server Connector is a Java servlet that acts as an exten-
sion to a web server, passing requests for XML or CDML from File-
Maker to one or more machines running FileMaker Pro Unlimited. By
license agreement, the Web Server Connector can only be used with
FileMaker Pro Unlimited (not FileMaker Pro), even if you don’t
exceed the ten IP addresses per 12 hours limitation. The FMWSC
does not support Instant Web Publishing.

You should consider using the Web Server Connector in the fol-
lowing situations:

� You serve a lot of static HTML files and/or images.

� You need web server functionality that the Web Companion
doesn’t provide, such as secure socket layers (SSL) or server side
includes.

� You want to set up a RAIC (Redundant Array of Inexpensive Com-
puters) to increase performance and/or reliability.

The FMWSC can work with a variety of popular web servers, includ-
ing Apache, Microsoft’s Internet Information Server, Netscape
Enterprise Server, and WebSTAR. When you purchase FileMaker Pro
Unlimited, you receive a separate CD that contains the Web Server
Connector, documentation, and example files. The documentation is
quite good, and it contains detailed installation and configuration
instructions, which we won’t repeat here.

The Web Server Connector is always installed on the machine that
contains your web server. It’s this machine that users hit from their
browser. For performance reasons, you don’t want FileMaker Pro
Unlimited on the same machine as your web server. Rather, you’ll
have one or more separate machines each running FileMaker Pro

Configuring FileMaker for the Web 57

C
h
a
p
te

r
3

Unlimited. You can place any static HTML files or images on your web
server, but CDML and XSLT format files still live in the web directory
on the FileMaker Pro Unlimited machine(s).

You can configure the Web Server Connector from a web browser
at the following address:

http://<IP address of your web server>/FMPro?config

There are two options there for telling the Web Server Connector how
to find your FileMaker Pro Unlimited machines. The first is by host.
When you tell the FMWSC connector the IP address and port of the
FMU machine, it gives you a list of the databases available at that
address and you can check the ones to which you want requests sent.
The other option is by database. Here, instead of starting with the
address of your FMU machine, enter the name of a database. Then
provide the WSC a list of IP addresses and ports where it can find that
database.

The simplest deployment involving the Web Server Connector is
to have all of your databases available on a single FileMaker Pro
Unlimited machine. The FMWSC passes along all FileMaker requests
from the web server to that machine. More advanced deployments
involve using multiple machines in a RAIC, each having its own copy
of FileMaker Pro Unlimited.

The typical reason that you want to involve multiple FileMaker
Pro Unlimited machines is to provide load balancing and/or fault toler-
ance. Load balancing increases the performance of a web application by
dividing requests among several machines. So, even while FMU
machine 1 is bogged down processing a query, FMU machine 2 (3, 4,
5, . . .) is capable of processing the next query that comes into the web
server. Fault tolerance means reducing the risk of downtime by not
keeping all of your eggs in one basket. If each of several machines is
equally able to process a request, a hardware or software problem that
disrupts one machine doesn’t disrupt the functionality of the system as
a whole. The Web Server Connector is able to detect that a machine is
unable to receive a request and simply passes it on to a different
machine.

There are three typical configurations of a RAIC. Each has pluses
and minuses that you need to weigh based on your requirements and
resources. The first is having identical copies of your databases on
several FileMaker Pro Unlimited machines. This represents the opti-
mal fault tolerance, as well as the optimal load balancing, but requires
that the databases are accessible for read only. Editing and adding data

58 Chapter 3

to independent copies of the databases doesn’t simply present a syn-
chronization problem either. Imagine that a web user submits a
request that adds a record and then submits another request to view
the record that they’ve just added. There’s no guarantee that the sec-
ond request is processed by the same machine, and so it appears that
the data has disappeared. Typical examples of solutions that would be
deployed using this configuration are things like catalogs or document
retrieval systems.

The second configuration option is to have FileMaker Server host
the databases and then have each of several FileMaker Pro Unlimited
machines open all of the files as guests. This way, you are able to han-
dle both reading and writing to the databases without worrying about
which machine processes the request. However, any RAIC configura-
tion that involves FileMaker Server is not optimally fault tolerant. The
FileMaker Server becomes a weak link in the system. If a drive fails on
that machine or some other disruption occurs, the system is down
until it’s fixed or replaced.

A third configuration to consider is routing requests for certain
databases to one machine and requests for other databases to other
machines. Perhaps you have an application where one database
receives a majority of requests. To balance the load, you’d place that
database on its very own FileMaker Pro Unlimited machine and put
the other databases on another machine. It’s irrelevant (for load bal-
ancing purposes) whether the files physically reside on the Unlimited
machines or are simply open as guests of a FileMaker Server.

This last configuration gives you more control over exactly how
the system is balanced. It’s also a good first step beyond having every-
thing hosted by a single machine. The downside, of course, is that it
lacks fault tolerance—but then, so does having everything hosted on a
single machine (and that’s the most typical configuration there is). If
performance is your primary concern, this configuration may be worth
trying. If stability is your primary concern, then the first configuration
we discussed offers the most hope.

Summary

We’ve covered a wide range of topics in this chapter. We began with
instructions and advice for how to configure the Web Companion and
allow your databases to be accessed from the web. We then had a
lengthy discussion about securing your databases from hackers using
either FileMaker’s built-in access privileges or the Web Security

Configuring FileMaker for the Web 59

C
h
a
p
te

r
3

Databases. Finally, we examined situations where it makes sense to
use the Web Server Connector.

This concludes the theory and setup portion of the book. From
here, we begin looking closely at the tools themselves.

60 Chapter 3

Chapter 4

Publishing Your
FileMaker Data with
XML

By now you’ve probably heard something about XML. It’s been a
heavily hyped technology for some years. But until FileMaker version
5, if you were a FileMaker developer, the buzz didn’t matter, since
FileMaker didn’t do anything with XML. But now that’s changed. As of
FileMaker 5, the Web Companion can publish data in XML format. As
of FileMaker 6, this capability has been augmented with the ability to
import and export data directly in an XML format and apply transfor-

mations to XML-formatted FileMaker data. You can’t avoid it any
longer; you know you need to learn this technology. But what is it, and
where do you start?

This book gives a very basic grounding in XML and its companion
technology, XSL. We don’t provide comprehensive coverage of either
technology—each one could easily fill several books. But the basics
are not hard to grasp. By the time we’re done, you’ll have a working
knowledge of XML and be able to use the XSL transformation lan-
guage to take FileMaker’s raw XML output and transform it into a
variety of text-based formats. We also leave you with a solid set of ref-
erences to printed books and online resources that you can use to
further your knowledge of XML.

In this chapter, we lay out a general introduction to XML and then
delve into FileMaker specifics. If you already have a handle on what
XML is and why it’s (arguably) important, feel free to skim this first
section or skip it completely and move on to the section “FileMaker
and XML”), which introduces FileMaker’s own XML capabilities. If
you’ve worked with FileMaker’s XML output already and are familiar
with FileMaker’s different XML “grammars,” skip ahead to the section
“Using XSL to Transform FileMaker’s Output” in order to delve
directly into stylesheet writing.

61

What Is XML?

XML is an acronym for Extensible Markup Language, but what is a
“markup language”? In the simplest terms, a markup language is a set
of rules for adding extra data to a document—data that can help tell us
something about what the document contains and how it’s organized.
This is information that a human can often easily glean from inspecting
a document, but it’s very difficult for a computer to discern.

For example, we have a text file representing a poem, as follows:

O Rose Thou Art Sick
by William Blake

O Rose, thou art sick!
The invisible worm
That flies in the night,
In the howling storm,

Has found out thy bed
Of crimson joy:
And his dark secret love
Does thy life destroy.

As we read this poem, we are aware that the first line is a title and the
second is an author. We’re aware that subsequent lines are verse lines,
and they’re grouped into stanzas of four lines apiece. But how would a
computer know that?

We could create a rule that a verse line is everything between two
carriage returns. That wouldn’t work well though, since the title and
author would look like verse lines as well. We could create a rule that
two carriage returns divide one stanza from the next, but that would
make the title and author look like a stanza. We could hard-code every-
thing and tell the computer the first line is a title, the second is an
author, and all other lines are stanzas in groups of four. But what if
there are two authors or the number of lines per stanza changes?
Clearly, it’s very hard to write rules for things that just depend on the
plain format of the text. We need some way to add semantics to the
text, to include information that says “this part is a title, this part is an
author,” and so forth.

62 Chapter 4

This is exactly the problem that markup languages were designed
to solve. Probably the best known modern markup language is SGML,
which stands for Standard Generalized Markup Language. SGML was
the crystallization of many ideas about electronic document represen-
tation that were percolating in the late ’60s. These ideas resulted in
the creation of something called GML around 1969 and SGML around
1974. By 1986, SGML was accepted as an international standard for
document encoding.

Here’s how the above poem might look marked up in some form of
SGML:

<poem>

<title>O Rose Thou Art Sick</title>

<author>William Blake</author>

<stanza>

<line>O Rose, thou art sick!</line>

<line>The invisible worm</line>

<line>That flies in the night,</line>

<line>In the howling storm,</line>

</stanza>

<stanza>

<line>Has found out thy bed</line>

<line>Of crimson joy:</line>

<line>And his dark secret love</line>

<line>Does thy life destroy.</line>

</stanza>

<poem>

Notice that the interpretation of the document’s structure is now made
very plain. A computer could easily come in and find the author, the
first stanza, the second stanza, and so forth. The text has been
“marked up” according to a set of rules. SGML and its descendants are
tools that help us define such rule sets.

SGML is a huge topic, so we include a range of resources and ref-
erences at the end of the chapter. The basics are covered very briefly.
One thing to note is that the ML in SGML is a bit misleading. It is not
really a single markup language but a set of tools for defining such lan-
guages. SGML is a tool that lets us lay down the rule (expressed in the
marked-up Blake poem) that a poem is something that contains a title,
an author, and one or more stanzas grouped into lines. This set of rules
is contained in something called a Document Type Definition (DTD).
By comparing the marked-up document with a “poems” DTD, we can
decide whether the document was indeed a valid instance of a poem.
SGML is the language we use to write the DTD itself.

Why does this matter? Weren’t we talking about XML? Well, XML
is one of two relatives of SGML that are extremely important for the

Publishing Your FileMaker Data with XML 63

C
h
a
p
te

r
4

web. The first is HTML, the language of the web since its invention in
1989. The second is XML, which promises to remedy all the defects of
HTML. Technically speaking, XML is, like SGML, a metalanguage
(that is, a means for generating rule sets to describe documents).
HTML, on the other hand, is such a rule set—a rule set that describes
the permissible forms of markup for an HTML document. Think of
XML as a simpler form of SGML—a way to generate sets of rules that
describe document content. HTML, on the other hand, is a particular
rule set, one that can be described in an SGML document definition.

So now we understand the concept of markup, but what problem
does it solve? Here are a few:

� Proprietary data interchange formats

� Non-semantic data formats

� Non-hierarchical data formats

Ideally, a data format is a) open and b) tells you not only what the data
is but what it means. Tab-delimited text, for example, is an open for-
mat, but it’s non-semantic (that is, it doesn’t tell you what any of the
data inside itself actually means). There’s no way to look at a file and
know that the first column is personal name, the third is lung size, etc.
It lacks metadata (“data about the data”). You can send along a list of
column names or say that they live in the first row, and this works—
but it’s clumsy. With XML markup, as we saw with the Blake poem, we
can include markup that tells us what the different pieces of the docu-
ment are.

XML also leaps over the problem of proprietary data formats. Tra-
ditionally, there is a hard choice to make in sending documents. If you
want a rich representation of the document, containing things like foot-
notes, bold text, and the like, you need to create it using a proprietary
tool like a word processor so that the file could only easily be read by
others with the same software. Many converters and intermediate for-
mats exist to ease this process, of course, but the point remains. Or
you can save the document in a purely textual format, which makes it
simple for others to read but robs the document of most of its richness.
Markup languages, in theory, give you the best of both worlds. XML
(and SGML and HTML) documents are plain text and can be transmit-
ted and read anywhere, while containing a great deal of rich data about
the document.

On a more specialized note, XML also makes it easier to work
with hierarchical data. This gets us closer to the database areas that
are really the focus of this book. Let’s say that I want to send someone

64 Chapter 4

some publishing data. I have data on magazines and data on magazine
articles. Magazines can contain one or many articles. I can send this in
tab-delimited text files, which will look like the dump from a relational
database. I can include the field names as a first row. To do this I have
to send two files, one for magazines and the other for articles. The data
might look like this:

[magazines.txt]

mag_id mag_name mag_year mag_month

001 Fine Soapmaking 1981 September

002 Styrofoam Artist 1990 August

003 Squirrel 1999 December

004 Meteor Monthly 1996 March

[articles.txt]

article_id mag_id author_fname author_lname title

001 001 Jason Saponard Rose Essence and Paraffin?

002 001 Sarah Lipidary Five Kinds of Pumice

003 001 Agape Sanders 99 44/100 Of What?

004 003 Harlan Marquardt Black Squirrels of the Andes

005 004 Janet Choi A New Take on the Leonids

Here’s how this data might look in XML:

<magazines>

<magazine>

<mag_id>001</mag_id>

<mag_name>Fine Soapmaking</mag_name>

<mag_year>1981</mag_year>

<mag_month>September</mag_month>

<articles>

<article>

<article_id>001</article_id>

<author_fname>Jason</author_fname>

<author_lname>Saponard</author_fname>

<title>Rose Essence and Paraffin?</title>

</article>

<article>

<article_id>002</article_id>

<author_fname>Sarah</author_fname>

<author_lname>Lipidary</author_fname>

<title>Five Kinds of Pumice</title>

</article>

<article>

<article_id>003</article_id>

<author_fname>Agape</author_fname>

<author_lname>Sanders</author_fname>

<title>99 44/100 of What?</title>

</article>

</articles>

</magazine>

<magazine>

<mag_id>002</mag_id>

<mag_name>Styrofoam Artist</mag_name>

Publishing Your FileMaker Data with XML 65

C
h
a
p
te

r
4

<mag_year>1990</mag_year>

<mag_month>August</mag_month>

</magazine>

<magazine>

<mag_id>003</mag_id>

<mag_name>Squirrel</mag_name>

<mag_year>1999</mag_year>

<mag_month>December</mag_month>

<articles>

<article>

<article_id>004</article_id>

<author_fname>Harlan</author_fname>

<author_lname>Marquardt</author_fname>

<title>Black Squirrels of the Andes</title>

</article>

</articles>

</magazine>

<magazine>

<mag_id>004</mag_id>

<mag_name>Meteor Monthly</mag_name>

<mag_year>1996</mag_year>

<mag_month>March</mag_month>

<articles>

<article>

<article_id>005</article_id>

<author_fname>Janet</author_fname>

<author_lname>Choi</author_fname>

<title>A New Take on the Leonids</title>

</article>

</articles>

</magazine>

</magazines>

At first glance this comparison doesn’t look too promising for XML. It
seems to be much more verbose and harder to read. Where exactly is
the charm in this? The flat text files are much more concise and, to a
trained database eye, express the structure and relationships of their
data perfectly well.

XML is interesting to a certain degree for what it does and to an
even greater degree for what can be done to it. One thing it does well
is describe itself. The above document makes it clear that there is
something called a magazine, which has an ID, a name, a month, and a
year, and the magazine contains zero or more things called articles that
in turn have some other information that describes them. This is a
simple example, but almost any kind of document can be well repre-
sented by XML, even those that are typically not well representable by
a database structure. Consider a book. It may have a foreword, or not,
possibly one or more prefaces, a table of contents, a set of chapters
that might be broken down into more sub-levels, possibly an index,

66 Chapter 4

possibly one or more appendices, and possibly an author biography.
This kind of structure is quite painful to capture in a relational data-
base structure, but it can easily be represented in XML. Best of all, the
XML itself makes it clear what the structure of the document is sup-
posed to be.

So XML is interesting because it can readily describe very com-
plex documents and data structures, and it carries inside itself all the
necessary information to understand how that data is organized. What
can be done to it is equally interesting. Far more than being simply a
big block of text, XML can be validated, parsed, and transformed. For
purposes of using FileMaker’s XML capabilities, the last of these is the
most important. Let’s look at each one.

� XML can be validated. If you send someone a flat text file or
two, your recipient has no way to determine whether the contents
of the files are really any good or not. They can tell whether you
sent the right number of fields, but that’s about it without import-
ing the data into some application (like FileMaker, for instance)
that can validate it further. XML, on the other hand, can be vali-
dated according to a set of rules that you send along with the docu-
ment. These rules, known as a Document Type Definition (DTD),
can be embedded directly in the XML document or stored and
referenced as a separate document. (Side note: To a database
designer, the kinds of validation possible within a DTD still appear
rather weak. In particular, DTDs have very little support for data
typing. This concern lies behind the movement to develop a more
rigorously validated type of XML, called, appropriately enough,
XML Schema.)

� XML can be parsed. You’re probably thinking that it would be a
large pain to pick through that whole XML document to find what
you want. You envision writing complicated, text-parsing calcula-
tions in an environment like FileMaker and shudder. And you’d be
right. Thankfully, you don’t have to. There are many tools available
that know how to read XML documents and pick out the pieces
that you specify. Normally, these tools are invisible to you, the
developer; they are incorporated into other tools (like FileMaker)
that use them to do useful things with XML. There are many
XML-parsing tools available—you won’t need to write your own.

� XML can be transformed. This is the big one for us as File-
Maker developers. By using an intermediate language called XSLT
(Extensible Stylesheet Language Transformations), a single XML
document can be transformed into a variety of useful output

Publishing Your FileMaker Data with XML 67

C
h
a
p
te

r
4

formats, such as HTML, RTF, and PDF. XSL transformations pro-
vide a unified framework for publishing your data from FileMaker
in a wide variety of formats, many of them suited for display or dis-
tribution over the web.

Why the Web?

Why does a discussion of XML belong in a book about FileMaker and
the web? Well, XML documents are very well suited to web delivery.
In a typical web scenario, a user types a URL into her browser and
gets back an HTML document, which her browser then renders into a
nice-looking document. But the remote web server could just as well
return an XML document. In fact, the FileMaker Web Companion is
able to do just that. Certain types of requests to the Web Companion
result in an XML-formatted data set that can then be further manipu-
lated or transformed.

To take matters one step further, the request for a web-based XML
document need not come from a user clicking or typing in a browser. It
can come from some remote machine that simply wants to fetch that
XML data over the web for its own purposes. This kind of data
provisioning is called a web service, and we discuss it in depth in
Chapter 9. In addition to being able to publish its own data to the web
via XML, FileMaker 6 can now also request XML data from remote
web sources and import it directly into FileMaker. So XML can be a
vehicle for publishing data from FileMaker to a variety of data formats
for distribution via numerous media, including the web. XML can also
be a means to allow FileMaker to request data from remote web serv-
ers, import it, and do something useful with it. XML is the interchange
medium for a possibly two-way communication stream that moves data
in and out of FileMaker via the web.

More about XML

Before learning more about FileMaker’s XML capabilities, let’s take
another look at the structure of an XML document. XML documents
are made up of elements. An element is simply a pair of tags with some-
thing between them. Take, for example, the following snippet:

<title>The Pardoner’s Tale</title>

This code consists of an element called <title> and that element’s con-

tent. The content is everything inside the element, delimited by the
element’s opening and closing tags. Notice that in XML, all tags come

68 Chapter 4

in pairs and must be closed properly. If the </title> tag were missing,
the XML would not be valid, and XML parsers would inform you of
this. This is in strong contrast to HTML, where many user agents
(otherwise known as browsers) are very forgiving of lax syntax. XML
is not forgiving. Think of it as HTML’s mean uncle. Thankfully, you
won’t have to write much XML by hand yourself—XSL stylesheets are
the notable exception.

Elements can contain other things. In the simplest case, they just
contain some content. In the example above, the content of the title
element is the text “The Pardoner’s Tale.” But elements may also con-
tain other elements:

<magazine>

<mag_id>004</mag_id>

<mag_name>Meteor Monthly</mag_name>

<mag_year>1996</mag_year>

<mag_month>March</mag_month>

</magazine>

Here the magazine element contains four other elements and no con-
tent. Elements may also have attributes. Here’s another way to write
the code above:

<magazine mag_id="004" mag_name="Meteor Monthly" mag_year="1996"

mag_month="March"/>

Well, hmm, this starts to look a bit more like some of the HTML we’re
used to seeing:

<form name="search_form" method="post" action="search.html">

This is valid HTML (well, it would need a closing </form> tag), and
it’s valid XML as well (with the same proviso). In XML slang, this is a
form element with three attributes. Attributes are expressed in XML
the same way they are in HTML—as name-value pairs. The attribute
begins with the attribute name, followed by an equals sign and the
attribute’s value in quotation marks. In HTML the quotes are often
optional. In XML, as you might guess, they are not.

There are a few more oddities to explore. What’s with the odd
characters (/>) at the end of the magazine element that has the attrib-
utes? The extra backslash indicates that this element has no content at
all (just attributes), and so it can be considered closed with just the
extra backslash without going to all the trouble of writing an ending
</magazine> tag. So <magazine></magazine> is the long form, but
if there’s nothing between the two tags, <magazine/> is the legiti-
mate short form in XML.

Publishing Your FileMaker Data with XML 69

C
h
a
p
te

r
4

I mentioned that the two forms of the <magazine> element are
identical. One stores information about the magazine as additional ele-
ments that are nested inside the <magazine> element. The other
stores the magazine info as attributes of the magazine tag. The two are
completely equivalent. So which is better? Neither. It’s a matter of per-
sonal preference.

XML Documents Are Trees

We said earlier that XML documents are tree-like. We should state
that a bit more strongly. XML documents are trees and often referred
to as such in the literature. But what does that mean? Well, a tree is a
hierarchy of associations, or links between things. Consider an organi-
zation chart or a family tree. In a family tree, the links are links of
parentage—we are linked to the elements below us because they’re
our descendants, and we’re linked to the elements above because
they’re our ancestors. We also have a relationship with elements at the
same level; they’re our siblings.

XML documents work just the same way, and we’ll see that they
even deliberately borrow the language of parent, child, ancestor,
descendant, and sibling to describe relationships between different
parts of a document. Here’s how the “XML-ized” Blake poem might
look, represented as a tree:

One thing to know about XML trees is that they can have just one ele-
ment at the very top. In the Blake example, the topmost node is the
<poem> element. Every valid XML document must have one and
only one top-level element, often called the root element. Everything
else is a descendant of the root element. Take a look at some of the
relationships inside this document. The immediate children of
<poem> are <author>, <title>, and a bunch of <stanza> elements.

70 Chapter 4

Figure 4.1

The immediate children of a <stanza> are each a <line>. All the
lines of a stanza are siblings, as are all the stanzas. A <line> is a
descendant of the <poem>. The <poem> is an ancestor of every
<line>. You get the idea.

Keep the idea of an XML document as a tree very firmly in mind.
When we transform XML using stylesheets, we’re actually changing
one tree (the input XML document, often called the source tree) into
another (the output document, often called the result tree). This com-
pletes our quick tour of some of the building blocks of XML—tags,
elements, element content, and attributes.

FileMaker and XML

So what does this have to do with FileMaker? Let’s walk through
FileMaker’s XML capabilities one small step at a time. At points along
the way, you may feel slightly puzzled as to what these capabilities are
good for. Just bear with us, and everything should become clear. We
work with files from the book’s downloadable content, so you may
want to grab those first.

The simplest thing FileMaker can do with XML is export it. To see
what this means, open the Animal.fp5 file (available in the download-
able files) and Show All Records. Select Export. . . from the File menu,
and then select XML as the output format. Export the records to a file
called animal.xml. Before you see the usual Export dialog, you see an
XML Export dialog first. It prompts you to make two choices: First
you need to choose an XML grammar and then, optionally, a
stylesheet. Don’t worry too much about what these choices mean for
now. Choose FMPDSO as the grammar, and don’t bother with a
stylesheet. Once you’ve made those choices, you see the Export dia-
log. Do a Move All to make sure all fields get exported, and then
export the data. The XML is now in a file, somewhere on your drive,
called animal.xml. That’s all there is to it.

That’s all there is to what, though? What did I get, and what good
is it? Good question. Let’s look at animal.xml and see what it’s got in
it. There are two good ways to do this. One is to open it in the text edi-
tor of your choice. That way you can see exactly what information got
exported. The problem is that it’s not formatted very nicely. It’s most
likely all run together, without useful line breaks or indents. Another
choice is to view it in a web browser. Currently only a few web brows-
ers support an XML view. If you have one of these browsers (Internet
Explorer 5 and above is a good choice), try opening the new file in the

Publishing Your FileMaker Data with XML 71

C
h
a
p
te

r
4

browser. You’ll see the XML rendered as a nice tree that’s expandable
and collapsible at each level. Be warned, though, that IE is not show-
ing you exactly what was exported. It is showing you a rendering of
that XML data. As it happens, the rendering is very accurate, but some
things do change. For example, if your XML contains elements with no
content (like <herd></herd>), IE automatically converts those tags
to the short form (<herd/>). If you don’t expect little changes like
this, they may surprise you. When in doubt, cross-check your expecta-
tions with the actual exported text as viewed in a text editor.

When we open animal.xml in a text editor, we see something like
this:

<?xml version="1.0" encoding="UTF-8" ?>

<FMPDSORESULT xmlns="http://www.filemaker.com/fmpdsoresult">

<ERRORCODE>0</ERRORCODE>

<DATABASE>Animal.fp5</DATABASE>

<LAYOUT></LAYOUT>

<ROW MODID="0" RECORDID="1">

<date_birth>4/23/1994</date_birth>

<id_animal>A1</id_animal>

<id_father></id_father>

<id_mother></id_mother>

<name>Great Geronimo</name>

<weight_birth>107</weight_birth>

<weight_current>812</weight_current>

</ROW>

[numerous other rows here ...]

</FMPDSORESULT>

Let’s look at the structure of this document. FMPDSO is one of two
“grammars” of XML that FileMaker can work with. It’s by far the most
human-readable of the two. Again, every well-formed XML document
has to have what’s called a root element; there has to be one element
that is the parent (or better, ancestor) of all the others. In our earlier
document, the root element was called <magazines>. Here it’s called
<FMPDSORESULT>. According to our output, an <FMPDSO-
RESULT> element can contain four other kinds of elements: an
<ERRORCODE>, a <DATABASE>, a <LAYOUT>, and one or
more <ROW> elements. Each of these is fairly straightforward. The
<ERRORCODE> element contains the most recent error code, as if
we’d written Status(CurrentError) in a calculation. <DATABASE>
contains the name of the database that the data came from, and
<LAYOUT> specifies the name of the layout that was in effect at the
time, if any. Finally, the <ROW> elements have two attributes that
give us the FileMaker record ID and some information about the last
modification of the record. The <ROW> element then has other

72 Chapter 4

elements that appear to correspond to the database fields. In fact, the
<ROW> element has one of each of these elements per exported
field. We exported seven fields, so we get seven elements inside
<ROW>, each with the name of the exported field.

All right—that was FileMaker’s “readable” XML grammar. Let’s
look at the other one, called FMPXML. This is a more verbose format,
full of metadata (again, “data about the data”). The FMPDSO grammar
has a little metadata, like the database name and the layout, but it is
missing potentially crucial information, like the data types of each of
the fields. Let’s re-export the data from Animal.fp5 again to an XML
format, but this time let’s choose the FMPXML grammar and save it
to a file with a different name.

Here’s what the result looks like, in part:

<?xml version="1.0" encoding="UTF-8" ?>

<FMPXMLRESULT xmlns="http://www.filemaker.com/fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

<PRODUCT BUILD="06/13/2002" NAME="FileMaker Pro"

VERSION="6.0v1"/>

<DATABASE DATEFORMAT="M/d/yyyy" LAYOUT="" NAME="Animal.fp5"

RECORDS="11" TIMEFORMAT="h:mm:ss a"/>

<METADATA>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="date_birth"

TYPE="DATE"/>

<FIELD EMPTYOK="NO" MAXREPEAT="1" NAME="id_animal"

TYPE="TEXT"/>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="id_father"

TYPE="TEXT"/>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="id_mother"

TYPE="TEXT"/>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="name"

TYPE="TEXT"/>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="weight_birth"

TYPE="NUMBER"/>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="weight_current"

TYPE="NUMBER"/>

</METADATA>

<RESULTSET FOUND="11">

<ROW MODID="0" RECORDID="1">

<COL>

<DATA>4/23/1994</DATA>

</COL>

<COL>

<DATA>A1</DATA>

</COL>

<COL>

<DATA></DATA>

</COL>

<COL>

<DATA></DATA>

Publishing Your FileMaker Data with XML 73

C
h
a
p
te

r
4

</COL>

<COL>

<DATA>Great Geronimo</DATA>

</COL>

<COL>

<DATA>107</DATA>

</COL>

<COL>

<DATA>812</DATA>

</COL>

</ROW>

[... many other rows]

</RESULTSET>

</FMPXMLRESULT>

This is similar to the other but contains more metadata and is less
readable. The root element is now <FMPXMLRESULT> rather than
<FMPDSORESULT>. It now also contains information about the
product, as well as similar-looking information about the database and
layout (though with more information about database settings). Then
comes a section called <METADATA>, which is a bit different.
<METADATA> contains one <FIELD> element per exported field,
and each <FIELD> element has four useful attributes, mostly
self-explanatory, which tell us whether the field may be empty
(whether it “allows nulls,” in database geek parlance), whether it’s a
repeating field (and if so, with how many repetititions), and what the
field’s name and data type are.

After the <METADATA>, we get a <RESULTSET>. This ele-
ment contains numerous <ROW> elements—one per exported
<ROW>, as always. Each row contains some number of <COL> ele-
ments (one per exported field), and each <COL> element contains a
<DATA> element that contains that field’s data for that record. Note
that the <COL> elements do not explicitly name the field. To figure
out with which field the data goes in, reference must be made to the
<METADATA>, which fills you in on the details of the field that’s in
that particular spot in the numerical order. This data is really meant for
further processing by XML parsers or XSL transformers, rather than
being very legible to people.

So now we know that a set of FileMaker records can be exported
in one of two XML formats (“grammars”) called FMPDSO (think of it
as “FMP Dead Simple Output”) and FMPXML. So what can we do
with these verbose outputs? Well, there are really two answers to that
question.

First, we can do nothing with them. It may be that some other
application out there needs data in XML format. Well, FileMaker can

74 Chapter 4

produce that output. It can be printed and sent (we’re kind of joking
about that one), sent in an electronic document, picked up via FTP for
further processing—you get the idea. It can also, by the way, be broad-
cast over the web so that other systems can consume it. This is funda-
mental to the idea of a web service, a topic we discuss in a chapter of its
own.

So our first choice is to do nothing with the XML and just send it
along to some other service that knows how to read it and presumably
has a use for it. This is appropriate if you are trying to engineer some
kind of data exchange between systems with XML as the common
exchange mechanism.

Aside from just shipping off the raw XML to another system, there
is one other interesting thing we can do with it, and that is to trans-

form it. With a certain amount of work, we can take any XML docu-
ment and transform it into almost any other kind of document that can
be represented by plain text. This means that, in theory, we can trans-
form our XML documents into tab-delimited text, HTML, Rich Text
Format, PDF, or almost anything else.

This is all accomplished through a technology called XSL (Extensi-
ble Stylesheet Language). XSL is really a group of languages devel-
oped and promoted by the World Wide Web Consortium
(www.w3c.org). With these languages, we can write stylesheets that
specify how XML can be transformed into other kinds of documents.
Using different stylesheets, a single XML document can be trans-
formed into comma-separated text, a PDF document, and an HTML
presentation, to name just a few. (XSL technically consists of three
technologies at the moment: XSLT, XPath, and XSL-FO. We’re con-
cerned with transformations, and we use the terms XSL and XSLT
interchangeably to refer to XSL’s transformation capabilities.)

So what’s inside these XSL “stylesheets”? Quite a lot, actually. XSLT
is a language unto itself. You can certainly get started by modifying
stylesheets that others have written (including the bunch that ship

Publishing Your FileMaker Data with XML 75

C
h
a
p
te

r
4

Figure 4.2

with FileMaker), but sooner or later you’re going to want to roll your
own. We take you through the basics and get you started writing sim-
ple stylesheets, but you also want to pick up one of the many good
books that cover this topic in more depth.

Great, you say, another chapter, another language! Can I go home
now? No, no, stick around. This is fairly interesting stuff, and the
amount of flexibility and power it adds to FileMaker on the output side
is nothing short of staggering. If you master XSLT, you can output
from FileMaker to any text-based format imaginable.

XSLT is a full-fledged programming language. It is not terribly dif-
ficult to learn, but, like any new language, it requires patience and
practice in order to become fluent. If it seems tricky or peculiar at first,
be patient, and we’ll try to introduce you to it one step at a time.

Using XSLT to Transform FileMaker’s Output

Let’s return to our Animal.fp5 database. Our state government has
asked for herd information in a text-only reporting format. PDFs or
other such output are not welcome. The government inspectors have
told us they need a report that looks like this:

Herd Listing for Blue Horizon Bison Breeders

=======================================

date_birth: 4/23/1994

id_animal: A1

id_father:

id_mother:

name: Great Geronimo

weight_birth: 107

weight_current: 812

=======================================

date_birth: 6/1/1993

id_animal: A2

id_father:

id_mother:

name: Stellazura

weight_birth: 90

weight_current: 702

=======================================

We need some kind of a header, the data on each animal with one field
per row, and the records separated by rows of line delimiters. We can
probably produce this output from FileMaker the old-fashioned way—
create a big text calculation that chunks together all the record data
into a single field and adds the record delimiters. This works but has
irritating drawbacks (not least of which is the need to edit the field
structure of the database). Good luck trying that during the business

76 Chapter 4

day in a production system! We can produce this output with an XSL
stylesheet without altering the database fields in any way.

Let’s start with a simple task and work our way up. Using your
favorite text editor, create a new file with the following content, and
save it as animal1.xsl:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="text" version="1.0" encoding="UTF-8"

indent="no"/>

<xsl:template match="fmp:FMPDSORESULT">

<xsl:text>Herd Listing for Blue Horizon Bison

Breeders</xsl:text>

</xsl:template>

</xsl:stylesheet>

Now go into the Animal.fp5 file, Show All Records, and select Export
Records. Choose XML as the output format, and, when prompted,
choose FMPDSO as the XML grammar. Now let’s turn our attention to
the lower half of the XML options dialog where we’re prompted to
select a stylesheet. Click File and navigate to the animal1.xsl style-
sheet that you just saved. Click OK, and then make sure all the fields
are selected for export. Export the data to a file called animal1.txt. If
FileMaker complains about your XML and throws up an XML error,
make sure that your animal1.xsl looks just like the example above.

Assuming your export ran without any XML errors, you should
have a file called animal1.xml somewhere on your hard drive. Navigate
to it and open it in a text editor. It should only contain the single line
“Herd Listing for Blue Horizon Bison Breeders.”

Well, that was a lot of work for just one line. We could have typed
that line quicker by hand, but let’s look at animal1.xsl and see what’s
going on. The first thing to notice is that this XSL document is actually
a valid XML document also. A quick glance should confirm this. So,
what’s inside it? It has a root element called <xsl:stylesheet>. All
XSL stylesheets have this same root element. This node has a couple
of attributes called “version” and “xmlns,” which we’ll skip over for
now. Let’s also skip the <xsl:output> tag for now—it provides a clue
as to what kind of document is being produced (text, HTML, RTF,
etc.).

The first really interesting tag is the <xsl:template> tag. Recall
that the XML input that we are transforming is organized into a tree.
XSL templates let us pick specific parts of that tree and take specific
actions when we find them. The most usual action is to output some

Publishing Your FileMaker Data with XML 77

C
h
a
p
te

r
4

text. For example, we can use an <xsl:template> to output specific
text every time we come to a new FileMaker <ROW> element; we
get to that example shortly.

Back to our first example, the <xsl:template> tag has an attribute
called “match”. This attribute tells us what this particular template is
looking for (whereas the content of the tag tells us what to do when we
find it). Here the value of match is set to fmp:FMPDSORESULT. This
indicates the root element of the document. So the moment we find
the root element of the document, we perform the instructions in this
template. Since there’s only one root element, these instructions only
get executed once. That makes this node’s template a good place to
put anything that needs to be output only once per entire document,
such as a title.

Once we find the root element, we perform whatever instructions
we find inside the <xsl:template> tag. In this case the only content is
another tag (called <xsl:text>). This tag instructs the processor to
copy the tag’s text content to the output at this point. So in our case,
when we find the root element, we copy the text string “Herd Listing
for Blue Horizon Bison Breeders” to the output.

That’s all this stylesheet does. There are no more templates, so no
more pieces of the input are matched. This is a critical concept. We use
templates to tell the XSL processor which parts of the input to look at.
We use the content of the templates to tell the processor what to do. In
this stylesheet, once we’ve looked at the root element, the processing
is complete, and the output tree is actually output. The result is a doc-
ument with a title and nothing else.

This is the basic mechanism of an XSL stylesheet. The processor
is going to read through the input XML tree and check each piece of it
to see if our stylesheet has any templates that match the current item.
If so, the XSL processor looks at the template and decides what to do.
Most interesting actions involve sending something to the output tree.

So now we have a stylesheet that can print a report header. This is
not very interesting so far. Let’s add some code to our stylesheet, as
follows:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="text" version="1.0" encoding="UTF-8"

indent="no"/>

<xsl:template match="fmp:FMPDSORESULT">

<xsl:text>Herd Listing for Blue Horizon Bison Breeders

78 Chapter 4

</xsl:text>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="fmp:ROW">

<xsl:text>=======================================

Row data goes here

</xsl:text>

</xsl:template>

</xsl:stylesheet>

If you export the records from Animal.fp5 using this new stylesheet,
you should get the following result:

Herd Listing for Blue Horizon Bison Breeders

0Animal.fp5=======================================

Row data goes here

=======================================

Row data goes here

=======================================

Row data goes here

Let’s take a look at what has changed. First of all, we have a new tem-
plate element. This one matches on fmp:ROW. (The reasons for the
“fmp” prefix are a bit arcane. “Fmp” here is an XML namespace,
hence the “xmlns” attributes of the stylesheet tag in this document,
and it refers to all the elements in the FMPDSORESULT grammar.)
This template element instructs the XSL processor to stop every time
it finds a ROW element and perform the instructions inside the tem-
plate. In this case, the instructions consist of one xsl:text element that
outputs the record separator, along with some boilerplate text
announcing that we’ve found a record.

There’s one other interesting difference in the new stylesheet,
and that’s the presence of the <xsl:apply-templates> tag inside the
template that matches on the root element. If you’re curious about
what it does, try leaving it out. If you do, you’ll discover that the pro-
cessor stops after handling the root element. If we want it to continue,
we need to issue the <xsl:apply-templates> tag to tell it to keep
working its way down the tree. Without this tag, the processor never
examines any of the child elements of the root and doesn’t bother try-
ing to apply the second template.

There’s one problem with our output. Before the first record
delimiter line, we’ve got what looks like some stray data—the string
“0Animal.fp5.” This data represents the content of the <ERROR-
CODE> and <DATABASE> elements from the XML source. To
make a long story short, our stylesheet doesn’t say anything about

Publishing Your FileMaker Data with XML 79

C
h
a
p
te

r
4

what to do with these tags, so their contents get dumped into the out-
put, whole and unadorned.

The real story is a bit longer than that. <ERRORCODE> and
<DATABASE> are both children of the <FMPDSORESULT> node.
The <FMPDSORESULT> node is matched by the / template that we
provided. In our instructions for that match, we used the apply-
templates command, instructing the processor to try to find templates
that apply to all of <FMPDSORESULT>’s children. Again, there are
no templates for <ERRORCODE> or <DATABASE>. Rather than
skipping them, though, the XSL processor applies one of a set of
default templates. As it happens, the default template for textual con-
tent, as well as for attributes, is to send the data straight to the output.

To fix this, we can supply templates for the <ERRORCODE> and
<DATABASE> elements that specify that these elements should be
ignored. All we need to do is add these two lines of code:

<xsl:template match="fmp:ERRORCODE"/>

<xsl:template match="fmp:DATABASE"/>

The two matches explicitly match the <ERRORCODE> and
<DATABASE> elements. Since these templates don’t actually output
anything, the effect is to ignore these two elements, and we get the
following result:

Herd Listing for Blue Horizon Bison Breeders

=======================================

Row data goes here

=======================================

Row data goes here

=======================================

Row data goes here

=======================================

(A better way to accomplish this is by adding some specificity to our
<xsl:apply-templates> command. We can tell it to apply only the tem-
plate for fmp:ROW and skip others, including the default template. We
see shortly how to do this.)

This output is better, but we still need to do something with the
row data. Each <ROW> element has a number of child elements—
one for each database field. We’d like to somehow loop through these
and output each on its own line—first the name of the element and
then its content, which is the value of the database field.

Here’s the stylesheet that does it:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

80 Chapter 4

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="text" version="1.0" encoding="UTF-8"

indent="no"/>

<xsl:template match="fmp:FMPDSORESULT">

<xsl:text>Herd Listing for Blue Horizon Bison Breeders

</xsl:text>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="fmp:ROW">

<xsl:text>=======================================

</xsl:text>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="fmp:ERRORCODE"/>

<xsl:template match="fmp:DATABASE"/>

<xsl:template match="fmp:ROW/*">

<xsl:value-of select="name()"/>

<xsl:text>: </xsl:text>

<xsl:value-of select="."/>

<xsl:text>

</xsl:text>

</xsl:template>

</xsl:stylesheet>

(Note that, although we’ve had to break lines in our code to fit them
onto a book page, in most cases those line breaks are optional. But this
is not the case with our <xsl:text> elements. <xsl:text> outputs all
of its content literally. In the above code, we’ve included carriage
returns as part of the content of <xsl:text> in order to get these car-
riage returns into the final text output. So the carriage returns inside
the <xsl:text elements> are significant and need to be preserved.)

We’ve added one more template element to match on all the chil-
dren of any <ROW> element. We’ve also added the xsl:apply-
templates element to the template for <ROW> to tell the XSL pro-
cessor to keep applying other templates, rather than stopping once it is
done with the <ROW> elements. The new template matches on
fmp:ROW/*. This is XSL syntax for “match on any child of an
fmp:ROW element.” (Technically, this is not XSLT but rather an
expression in the XPath language. XPath is the language that XSL uses
to select portions of an XML document. We just refer to it as part of
XSL for the sake of convenience.)

Inside this last template element is one more new XSL construct,
the <xsl:value-of> tag. This tag is used to extract information from
one or more nodes of an XML document tree and copy them to the
output. <xsl:value-of> says “get me information about some piece of

Publishing Your FileMaker Data with XML 81

C
h
a
p
te

r
4

the source XML document,” and the select attribute of the
<xsl:value-of> tag says “get this particular piece of data.”

In the first <xsl:value-of> tag, the select attribute is set to
“name()”. This is an example of an XSL function call. The name() func-
tion returns the name of the current element. In this case, for a child
of a <ROW> element, the node name is actually the name of a data-
base field. So this tag gets the name of the node. Then we have an
<xsl:text> element, used only to output the colon-space combination
that follows the field name. Then we get another <xsl:value-of> tag,
and here the selector is set to “.”. If you’re familiar with command-line
syntax for an operating system like Unix (or DOS, for that matter), you
know that “.” means “the current directory,” or more generally “right
where I already am.” Its significance is similar in XSL; it refers to the
current node being evaluated. This selector simply copies the content
of the current node, whereas the previous selector deliberately
extracted the tag’s name.

We finish the template with a carriage return, courtesy of
<xsl:text>. Our resulting output should look like this:

Herd Listing for Blue Horizon Bison

=======================================

date_birth: 4/23/1994

id_animal: A1

id_father:

id_mother:

name: Great Geronimo

weight_birth: 107

weight_current: 812

=======================================

date_birth: 6/1/1993

id_animal: A2

id_father:

id_mother:

name: Stellazura

weight_birth: 90

weight_current: 702

=======================================

Okay, very good; we’re actually working our way up to something use-
ful here. However, there are some changes that we’d like to make.
Right now, the stylesheet picks up all fields (that is, all children of a
<ROW>). It also doesn’t give us any ability to specify which order
they should come out in. Let’s say that instead we wanted our data-
base records to come out looking like this:

=======================================

Great Geronimo

82 Chapter 4

Born 4/23/1994

Birth Weight: 107

Current Weight: 812

=======================================

So we want our fields formatted more nicely, and we want to limit our-
selves to only four of them. As is often the case with XSL, there are a
number of ways to do this. Later we look at one that showcases
another feature of the <xsl:apply-templates> tag. So far, we’ve used
<xsl:apply-templates> to keep working our way down the document
tree. We haven’t used it to limit what kinds of further matches we
might be looking for. But it can be used in exactly this way by adding a
“match” attribute to the tag to ensure that it only applies some tem-
plates, not all of them.

Clearly, we’re going to have to do something with the part of the
code that displays all the children of a <ROW> element. Right now,
we have a template that matches any child of <ROW> (fmp:ROW/* is
the match condition). We’re going to need to replace that with tem-
plates that match the specific items we’re looking for. Then we’re
going to have to make sure that those templates are applied in the
exact order that we want the fields to come out in. Here’s how it looks:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="text" version="1.0" encoding="UTF-8"

indent="no"/>

<xsl:template match="fmp:FMPDSORESULT">

<xsl:text>Herd Listing for Blue Horizon Bison Breeders

</xsl:text>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="fmp:ROW">

<xsl:text>=======================================

</xsl:text>

<xsl:apply-templates select="fmp:name"/>

<xsl:apply-templates select="fmp:date_birth"/>

<xsl:apply-templates select="fmp:weight_birth"/>

<xsl:apply-templates select="fmp:weight_current"/>

</xsl:template>

<xsl:template match="fmp:ERRORCODE"/>

<xsl:template match="fmp:DATABASE"/>

<xsl:template match="fmp:name">

<xsl:value-of select="."/>

<xsl:text>

</xsl:text>

</xsl:template>

Publishing Your FileMaker Data with XML 83

C
h
a
p
te

r
4

<xsl:template match="fmp:date_birth">

<xsl:text>Born </xsl:text>

<xsl:value-of select="."/>

<xsl:text>

</xsl:text>

</xsl:template>

<xsl:template match="fmp:weight_birth">

<xsl:text>Birth Weight </xsl:text>

<xsl:value-of select="."/>

<xsl:text>

</xsl:text>

</xsl:template>

<xsl:template match="fmp:weight_current">

<xsl:text>Current Weight </xsl:text>

<xsl:value-of select="."/>

<xsl:text>

</xsl:text>

</xsl:template>

</xsl:stylesheet>

We’ve changed two things here. First, in the <ROW> element, rather
than a single <xsl:apply-templates> that matches all children of
<ROW>, we have four <xsl:apply-templates> commands. Each one
has a “select” attribute that limits which templates are matched on and
applied. They’re ordered in the way we want our fields ordered in the
output.

Correspondingly, instead of a single template that matches all chil-
dren of <ROW>, we have four specific templates, one for each
possible output field.

Remember that the <xsl:apply-templates> command acts within
the context of the current position in the XML tree. Typically, it’s only
acting on children of the current node or element. So, from the vantage
point of a <ROW> element, the logic is something like this: “go find
me any of my children that are called name, and then apply the appro-
priate template. Then do the same for date_birth, weight_birth, and
weight_current.” The ordering of the <xsl:apply-templates> ele-
ments determines the order in which the fields are output. The
content of the individual templates determines how the data is format-
ted for output.

Generating HTML

That was a lot of work just to generate a fairly dowdy-looking text
report. We hope you can see how the stylesheet that we’ve written is
already fairly flexible. Without needing to touch anything inside of

84 Chapter 4

FileMaker, we can fairly easily alter which fields are displayed in the
report, how they’re displayed, and the order in which they appear. This
was a useful way to learn the basic mechanics of XSL’s template-based
transformation process. But plain text is not a very attractive output
format. In this section, we look at using XSL stylesheets to turn
FileMaker data into HTML.

Let’s say that we want to take the simple text output that we just
finished creating and output something similar in HTML. (See Figure
4.3 for an image of the rendered HTML.)

Here’s the stylesheet that produces that result:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="html" indent="yes"

doctype-public="-//W3C//DTD HTML 3.2 Final//EN"/>

<xsl:template match="fmp:FMPDSORESULT">

<html>

<head>

<title>BHBB Herd Listing</title>

</head>

<body>

<H2>Blue Horizon Bison Breeders</H2>

<H3>Herd Listing</H3>

<table border="">

<xsl:apply-templates/>

</table>

</body>

</html>

</xsl:template>

<xsl:template match="fmp:ROW">

<xsl:apply-templates select="fmp:name"/>

<tr>

<xsl:apply-templates select="fmp:date_birth"/>

<xsl:apply-templates select="fmp:weight_birth"/>

<xsl:apply-templates select="fmp:weight_current"/>

</tr>

</xsl:template>

<xsl:template match="fmp:ERRORCODE"/>

<xsl:template match="fmp:DATABASE"/>

<xsl:template match="fmp:name">

<tr><td colspan="3"><xsl:value-of select="."/>

</td></tr>

</xsl:template>

<xsl:template match="fmp:date_birth">

<td>Born <xsl:value-of select="."/></td>

</xsl:template>

Publishing Your FileMaker Data with XML 85

C
h
a
p
te

r
4

<xsl:template match="fmp:weight_birth">

<td>Birth Weight <xsl:value-of select="."/></td>

</xsl:template>

<xsl:template match="fmp:weight_current">

<td>Current Weight <xsl:value-of select="."/></td>

</xsl:template>

</xsl:stylesheet>

The mechanics of this stylesheet should be pretty clear to you by now.
Our final HTML document has a lot of HTML code that only occurs
once, like the <head> element and the initial large headers. Then it
has a table with many items repeated inside it (these being the data-
base records). In our stylesheet, then, the first thing we do is match on
the root element and use that template to output all of our non-
recurring HTML: the <head> element, the <H2> and <H3> ele-
ments that make up the text header, and the <table>.. .</table> tags.
Then, within the <table> element, we issue the <xsl:apply-
templates> command, instructing the XSL processor to keep working
downward from the root element to find other elements to process.

The only other element that we’re interested in is the <ROW>
element and its children. We match on the <ROW> element exactly
as before and then hand off most of the processing to the templates
that match the interesting children of <ROW>. There is a tiny
amount of other work done by the <ROW> template. Notice that the
last three <xsl:apply-templates> commands are wrapped in a pair of
<tr>.. .</tr> tags. The reason for this is that the stylesheet is an
XML document, and XML documents don’t like to see unbalanced
tags, even if they’re HTML tags. All three fields that those templates
match are intended to appear in a single HTML table row. We could
have put the <tr> tags inside the template that matches on fmp:date_
birth and the </tr> tag inside the template for fmp:weight_current,
but in either case we’d have an unbalanced tag and the XSL processor
would complain. The right thing to do is wrap all three templates up at
the next higher level inside the <ROW> element with a pair of bal-
anced <table>.. .</table> tags. We don’t have this problem with the
template for fmp:name because that table contains both the starting
and ending tags inside itself, so nothing is unbalanced.

We can finish this example by adding a little polish to the output
with some CSS styling for those browsers that support it (which nowa-
days is most of them). Change the fmp:ROW template to look like this:

<xsl:template match="fmp:ROW">

<xsl:apply-templates select="fmp:name"/>

86 Chapter 4

<tr style="border-bottom: 1px solid silver">

<xsl:apply-templates select="fmp:date_birth"/>

<xsl:apply-templates select="fmp:weight_birth"/>

<xsl:apply-templates select="fmp:weight_current"/>

</tr>

</xsl:template>

. . .and the fmp:name template to look like this:

<xsl:template match="fmp:name">

<tr><td colspan="3" style="color:red"><xsl:value-of

select="."/></td></tr>

</xsl:template>

. . . to give a more polished appearance to the report. (You should also
set the table to have border=0.)

Note: When you’re outputting to different text formats, it’s a good idea
to pay attention to file suffixes. You should export all your HTML to files
ending in .html, for example. Most operating systems will use the suffix to
determine the file type, which will make life easier when you want to view
the results.

Here’s the full pipeline for this example, starting with the raw data and
finishing with the rendered HTML:

1. Raw data:

Great Geronimo 4/23/94 107 812

Stellazura 6/1/93 90 702

Hohokam Glory 4/5/99 123 900

Chin-cha-pe 4/5/99 82 598

Shaw-Shaw-wa Be-na-se 4/5/99 101 1032

Hector 1/19/90 102 899

Harriet 8/14/92 79 680

Sweetpea 6/8/00 80 502

Sacajawea 6/8/00 94 856

Barleycorn 6/8/00 60 402

Scatters Them 6/8/00 100 789

Harlequin 7/1/01 112 500

Mandan 8/1/01 90 412

Hedda 3/1/02 85 200

2. FileMaker’s DSO XML output:

<?xml version="1.0" encoding="UTF-8" ?>

<FMPDSORESULT xmlns="http://www.filemaker.com/fmpdsoresult">

<ERRORCODE>0</ERRORCODE>

<DATABASE>Animal.fp5</DATABASE>

<LAYOUT></LAYOUT>

<ROW MODID="7" RECORDID="1">

<name>Great Geronimo</name>

<date_birth>4/23/1994</date_birth>

<weight_birth>107</weight_birth>

<weight_current>812</weight_current>

Publishing Your FileMaker Data with XML 87

C
h
a
p
te

r
4

</ROW>

<ROW MODID="6" RECORDID="2">

<name>Stellazura</name>

<date_birth>6/1/1993</date_birth>

<weight_birth>90</weight_birth>

<weight_current>702</weight_current>

</ROW>

<ROW MODID="7" RECORDID="3">

<name>Hohokam Glory</name>

<date_birth>4/5/1999</date_birth>

<weight_birth>123</weight_birth>

<weight_current>900</weight_current>

</ROW>

<ROW MODID="7" RECORDID="4">

<name>Chin-cha-pe</name>

<date_birth>4/5/1999</date_birth>

<weight_birth>82</weight_birth>

<weight_current>598</weight_current>

</ROW>

<ROW MODID="9" RECORDID="5">

<name>Shaw-Shaw-wa Be-na-se</name>

<date_birth>4/5/1999</date_birth>

<weight_birth>101</weight_birth>

<weight_current>1032</weight_current>

</ROW>

<ROW MODID="5" RECORDID="6">

<name>Hector</name>

<date_birth>1/19/1990</date_birth>

<weight_birth>102</weight_birth>

<weight_current>899</weight_current>

</ROW>

<ROW MODID="4" RECORDID="7">

<name>Harriet</name>

<date_birth>8/14/1992</date_birth>

<weight_birth>79</weight_birth>

<weight_current>680</weight_current>

</ROW>

<ROW MODID="5" RECORDID="8">

<name>Sweetpea</name>

<date_birth>6/8/2000</date_birth>

<weight_birth>80</weight_birth>

<weight_current>502</weight_current>

</ROW>

<ROW MODID="6" RECORDID="9">

<name>Sacajawea</name>

<date_birth>6/8/2000</date_birth>

<weight_birth>94</weight_birth>

<weight_current>856</weight_current>

</ROW>

<ROW MODID="6" RECORDID="10">

<name>Barleycorn</name>

<date_birth>6/8/2000</date_birth>

<weight_birth>60</weight_birth>

<weight_current>402</weight_current>

88 Chapter 4

</ROW>

<ROW MODID="5" RECORDID="11">

<name>Scatters Them</name>

<date_birth>6/8/2000</date_birth>

<weight_birth>100</weight_birth>

<weight_current>789</weight_current>

</ROW>

<ROW MODID="3" RECORDID="12">

<name>Harlequin</name>

<date_birth>7/1/2001</date_birth>

<weight_birth>112</weight_birth>

<weight_current>500</weight_current>

</ROW>

<ROW MODID="4" RECORDID="13">

<name>Mandan</name>

<date_birth>8/1/2001</date_birth>

<weight_birth>90</weight_birth>

<weight_current>412</weight_current>

</ROW>

<ROW MODID="4" RECORDID="14">

<name>Hedda</name>

<date_birth>3/1/2002</date_birth>

<weight_birth>85</weight_birth>

<weight_current>200</weight_current>

</ROW>

</FMPDSORESULT>

3. The final version of our XSL stylesheet:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="html" indent="yes"

doctype-public="-//W3C//DTD HTML 3.2 Final//EN"/>

<xsl:template match="fmp:FMPDSORESULT">

<html>

<head>

<title>BHBB Herd Listing</title>

</head>

<body>

<H2>Blue Horizon Bison Breeders</H2>

<H3>Herd Listing</H3>

<table border="0">

<xsl:apply-templates/>

</table>

</body>

</html>

</xsl:template>

<xsl:template match="fmp:ROW">

<xsl:apply-templates select="fmp:name"/>

<tr style="border-bottom: 1px solid silver">

<xsl:apply-templates select="fmp:date_birth"/>

<xsl:apply-templates select="fmp:weight_birth"/>

Publishing Your FileMaker Data with XML 89

C
h
a
p
te

r
4

<xsl:apply-templates select="fmp:weight_current"/>

</tr>

</xsl:template>

<xsl:template match="fmp:ERRORCODE"/>

<xsl:template match="fmp:DATABASE"/>

<xsl:template match="fmp:name">

<tr><td colspan="3" style="color:red"><xsl:value-of

select="."/></td></tr>

</xsl:template>

<xsl:template match="fmp:date_birth">

<td>Born <xsl:value-of select="."/></td>

</xsl:template>

<xsl:template match="fmp:weight_birth">

<td>Birth Weight <xsl:value-of select="."/></td>

</xsl:template>

<xsl:template match="fmp:weight_current">

<td>Current Weight <xsl:value-of select="."/></td>

</xsl:template>

</xsl:stylesheet>

4. HTML output from the stylesheet:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<html xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">

<title>BHBB Herd Listing</title>

</head>

<body>

<h2>Blue Horizon Bison Breeders</h2> <h3>Herd Listing</h3>

<table border="0">

<tr>

<td colspan="3" style="color:red">

Great Geronimo</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 4/23/1994</td>

<td>Birth Weight 107</td>

<td>Current Weight 812</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Stellazura</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 6/1/1993</td>

<td>Birth Weight 90</td>

<td>Current Weight 702</td>

</tr>

<tr>

90 Chapter 4

<td colspan="3" style="color:red">

Hohokam Glory</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 4/5/1999</td>

<td>Birth Weight 123</td>

<td>Current Weight 900</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Chin-cha-pe</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 4/5/1999</td>

<td>Birth Weight 82</td>

<td>Current Weight 598</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Shaw-Shaw-wa Be-na-se</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 4/5/1999</td>

<td>Birth Weight 101</td>

<td>Current Weight 1032</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Hector</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 1/19/1990</td>

<td>Birth Weight 102</td>

<td>Current Weight 899</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Harriet</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 8/14/1992</td>

<td>Birth Weight 79</td>

<td>Current Weight 680</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Sweetpea</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 6/8/2000</td>

<td>Birth Weight 80</td>

<td>Current Weight 502</td>

</tr>

<tr>

Publishing Your FileMaker Data with XML 91

C
h
a
p
te

r
4

<td colspan="3" style="color:red">

Sacajawea</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 6/8/2000</td>

<td>Birth Weight 94</td>

<td>Current Weight 856</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Barleycorn</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 6/8/2000</td>

<td>Birth Weight 60</td>

<td>Current Weight 402</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Scatters Them</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 6/8/2000</td>

<td>Birth Weight 100</td>

<td>Current Weight 789</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Harlequin</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 7/1/2001</td>

<td>Birth Weight 112</td>

<td>Current Weight 500</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Mandan</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 8/1/2001</td>

<td>Birth Weight 90</td>

<td>Current Weight 412</td>

</tr>

<tr>

<td colspan="3" style="color:red">

Hedda</td>

</tr>

<tr style="border-bottom: 1px solid silver">

<td>Born 3/1/2002</td>

<td>Birth Weight 85</td>

<td>Current Weight 200</td>

</tr>

</table>

92 Chapter 4

</body>

</html>

5. Rendered HTML in the browser (IE 5.2 for Mac OS X):

XSL So Far

Here’s a recap of the XSL commands and expressions that we’ve
encountered so far and how they’re used.

XSL Tags

� xsl:template

Syntax: <xsl:template match="XPath expression">

Description: xsl:template contains information to be output every time
the match criterion is met. This could be as simple as some static text
or as complicated as an expression that pulls in data from several other
parts of the document (or even from another document altogether).

Publishing Your FileMaker Data with XML 93

C
h
a
p
te

r
4

Figure 4.3

� xsl:apply-templates

Syntax: <xsl:apply-templates select="XPath expression">

Description: xsl:apply-templates is a command to specify which parts
of the source XML document should be transformed next. Apply-
templates is often used within a template definition. For example, you
might have a template expression to output information about an
invoice, and then within that template you would apply another tem-
plate to output information about invoice line items.

� xsl:text

Syntax: <xsl:text>Included text</xsl:text>

Description: xsl:text is a simple way to include raw text in the output
of your stylesheet.

� xsl:value-of

Syntax: <xsl:value-of select="XPath expression">

Description: xsl:value-of is used to extract content from an XML
source file and include it in the output of the stylesheet. Anytime that
you need to include some of the actual element content from your
XML file, you need to use xsl:value-of to specify that content.

XPath Expressions

XPath is that part of XSL that is used to “point to” specific portions of
the XML input. Very often, your XSL commands need to be told on
which parts of the XML input to operate. XPath is the syntax that you
use to do that. We talk more about complex XPath later in this chapter.
So far we’ve seen syntax to match on all children of the current node
that have a specified name.

The XPath expression is just what’s inside the quotes following the
match statement.

� <xsl:template match="fmp:ROW"> matches any child of the cur-
rent element if that child is called fmp:ROW.

We’ve also seen XPath syntax to match on what could be called
“grandchildren”:

� <xsl:template match="fmp:ROW/*"> defines a template that
matches any grandchild of the current element, as long as that
grandchild’s parent is called fmp:ROW.

94 Chapter 4

We’ve also seen some miscellaneous XPath expressions that point to
different pieces of the current data element:

� <xsl:value-of select="."/> fetches the data content of the current
element.

� <xsl:value-of select="name()"/> fetches the name of the current
element.

Calculation and Computation with XSL

So far we’ve treated XSL as a presentation tool. We’ve mostly been
concerned with making our output look right. But XSL can do other
kinds of work for us as well. Consider our well-worn Animal database.
It’s missing some information that we’d like to have. Specifically, it
doesn’t give us a way to see the average birth weight or average cur-
rent weight for our animals.

Now, it’s true that we can build those computations into the
FileMaker file as calculations. But our focus here is on moving func-
tions out of FileMaker. The less work (calculations, for example) we
ask FileMaker to perform, the more quickly it can serve data to us.
Ideally, we’d like it to return a bunch of raw data to us, and let us do
the rest of the processing. In this case, we delegate the math to XSLT.

XSLT has a couple of functions that are similar to FileMaker’s
aggregate functions. They’re called sum() and count(). Whereas
FileMaker’s functions of these names operate on groups of related
records, their XSL equivalents operate on node sets. A node set is sim-
ply a group of nodes (we call them nodes because they could be
elements, attributes, or other more specialized types of nodes we
haven’t encountered here) that’s usually referred to by a match
expression of some kind. So, to add up the birth weights of the entire
herd, we can say <xsl:value-of select="sum(fmp:weight_birth)"/>.
This will take the sum of all <fmp:weight_birth> elements that are
children of the current node. If we want to limit the set of weights
being added, we can change the selector. So <xsl:value-of select=
"sum(fmp:ROW/weight_birth)"/> would add only the weights that
were direct children of an <fmp:ROW> element, and that
<fmp:ROW> element would have to be a child of the current node. In
this document, that doesn’t really change anything; all of the birth
weight fields are children of a <ROW>. We see later, though, how this
is useful in performing computations on subgroups, just as you would
in a FileMaker sub-summary report.

Publishing Your FileMaker Data with XML 95

C
h
a
p
te

r
4

XSLT, at least in the 1.0 version that’s still prevalent, has no aver-
age() function. So we just have to make do with sum() and count().
Here’s a stylesheet that computes the average birth and current
weights for the entire herd. In order to do this, we need to take our
last stylesheet and modify the template that matches on the root ele-
ment. Once we’re done applying templates to output all the rows, we
want to output a final row that contains the averages for birth and cur-
rent weights. The right place for this is in the template that matches
the root element. The new template should look like this:

<xsl:template match="fmp:FMPDSORESULT">

<html>

<head>

<title>BHBB Herd Listing</title>

</head>

<body>

<H2>Blue Horizon Bison Breeders</H2>

<H3>Herd Listing</H3>

<table border="0">

<tr>

<td>

<xsl:apply-templates/></td>

<td align="right">

avg. = <xsl:value-of select='sum(fmp:ROW/

fmp:weight_birth) div count(fmp:ROW/

fmp:weight_birth)'/></td><td align="right">

avg. = <xsl:value-of select="sum(//fmp:weight_

current) div count(//fmp:weight_

current)"/></td>

</tr>

</table>

</body>

</html>

</xsl:template>

Here, we use the sum() function to add up all the birth weights (for
example) and then divide by the count of all the birth weights to get an
average. Sum() and count() are both functions that work on node sets,
meaning that you need to hand them expressions that return one or
more nodes from the source document. The expression fmp:ROW/
fmp:weight_birth, for example, means “starting from the current node,
find me all fmp:weight_birth elements that are children of fmp:ROW
elements.” This expression is evaluated relative to the current node,
which in this case is the root element, called <fmp:FMPDSORE-
SULT>. From there, it tries to find <fmp:ROW> elements that are
children of <fmp:FMPDSORESULT>. Having found one or more
ROWs, it looks into each one to see whether it contains a <weight_
birth> element. Right now we’re using these functions to sum up

96 Chapter 4

elements from the entire data set (a FileMaker Grand Summary, if that
comparison helps). For sub-summary-style reports, though, the fact
that functions like sum() and count() can operate on specific node sets
turns out to be very useful.

More Complex Reporting with XML

So far, we’ve seen how to output a few different types of simple list
reports in HTML format using FileMaker’s XSL transformations. Let’s
look at some more complex reporting now—the kind we’re used to
doing with FileMaker sub-summary reports. The ride is a little bump-
ier here; it’s not quite as easy as popping open FileMaker’s report
wizard, but with a little work, we can achieve some great-looking web
reports.

Let’s start with the most basic element of a sub-summary report: a
header for each subgroup. Let’s say that we want a report like the pre-
vious list but separated by herd, with a header for each herd. Before
delving into XSL particulars, let’s think about the necessary logic. We
need an algorithm for outputting “herd breaks,” and it goes something
like this: If the herd for this animal is different from the herd for the
previous animal, output a herd break; otherwise, don’t. To this we
need to add: If this is the very first animal in the list, output a herd
break. (By the way, this is a good way to approach any programming
problem; think about it in terms of general logic at first with as little
reference as possible to the tool that you’re planning to use.)

In order to work with herd information, we need to do a little more
work. Right now the Animal.fp5 database has just the HerdID in it. We
naturally want our report to show the herd names, so we need to bring
these in somehow. Let’s create a relationship from Animal.fp5 to
Herd.fp5 called Herd_By_Herd_ID. We’ll have to add the herd name
(Herd_By_Herd_ID::HerdName) field to our export order as well. This
will give us a chance to see how FileMaker exports related fields as
XML. Here’s what the new output will look like, in part:

<row modid="7" recordid="1">

<name>Great Geronimo</name>

<date_birth>4/23/1994</date_birth>

<weight_birth>107</weight_birth>

<weight_current>812</weight_current>

<herd_by_herd_id.herdname>

<data>North Branch</data>

</herd_by_herd_id.herdname>

</row>

Publishing Your FileMaker Data with XML 97

C
h
a
p
te

r
4

Notice how FileMaker handles the export of the related field. Instead
of having one piece of content, it contains multiple <data> elements,
each of which contains some data. We’ll see how to handle this in a
minute.

We’re making one critical assumption here. Did you notice what it
was? The assumption is that the records are going to come to us
presorted by herd. We can write an XSL stylesheet that doesn’t need
to make that assumption, but it’s a bit more complicated. So for now,
we’re going to have FileMaker sort these records by herd before
exporting them (this is part of our export script).

So now we have our algorithm. How do we translate it into XSL?
We need to make some kind of conditional test each time we hit a
<ROW> element. Specifically, we need to drill into the <ROW>,
extract the Herd_By_Herd_ID.HerdName element, and then dig into
that element and extract its <DATA> element. (This nested data
structure might seem odd, but it is how FileMaker represents related
fields in its XML grammar. The reason for going a level deeper, rather
than just having the herd name be the direct content of the <Herd_
By_Herd_ID.HerdName> element, is that this structure allows for
multiple related fields for a single record—in other words, a portal. In
our example, each animal has only one herd, so this consideration
doesn’t apply here, but later we see an example of a more “portal-like”
display.)

Once we have the current row’s herd name, we need to compare it
to the previous row’s. If they’re not equal, we output the herd break.

To perform a conditional test, we need a new XSL element called
<xsl:if>. Its syntax looks like this:

<xsl-if test="a>b">

a is greater than b!

</xsl:if>

<xsl:if> has a single attribute called test, which has a Boolean (that is,
true-false) expression as its value. To use it for our purposes, let’s
start with the first test for herd breaks: We just want to know if the
current <ROW> element is the first one in the document or not.

That’s a bit trickier than it sounds. XSL has a function called posi-
tion(), which sounds helpful. It returns the position of the current
node, relative to what’s called its context. The context of a node is
determined not by the structure of the XML document but by how we
write our stylesheet. In our stylesheet, in our template for
<FMPDSORESULT>, we have an <xsl:apply-templates> call. It’s in
the context (that word again) of that <xsl:apply-templates> that we

98 Chapter 4

come upon the template for a <ROW> element. Recall what File-
Maker’s DSO XML output looks like:

<?xml version="1.0" encoding="UTF-8" ?>

<FMPDSORESULT xmlns="http://www.filemaker.com/fmpdsoresult">

<ERRORCODE>0</ERRORCODE>

<DATABASE>Animal.fp5</DATABASE>

<LAYOUT></LAYOUT>

<ROW MODID="0" RECORDID="1">

<date_birth>4/23/1994</date_birth>

<id_animal>A1</id_animal>

<id_father></id_father>

<id_mother></id_mother>

<name>Great Geronimo</name>

<weight_birth>107</weight_birth>

<weight_current>812</weight_current>

</ROW>

[numerous other rows here ...]

</FMPDSORESULT>

And here is our problem: The first <ROW> element is not the very
first element in its context; it’s the fourth—preceded by <ERROR-
CODE>, <DATABASE>, and <LAYOUT>. We can use position(),
though, if we really want to. Here it is, by way of illustration. We would
put this conditional in the template that matches on <ROW>
elements:

<xsl-if test="position()=4">

This is the first row of the data set.

</xsl:if>

This works for now, but what’s wrong with it? Well, it’s fragile. If the
format of FileMaker’s DSO output changes slightly, this could break. It
can be pointed out that most stylesheets certainly break if the underly-
ing XML structure that they’re transforming changes. Though this is
true, it still pays to make your code (XSL, FileMaker, COBOL, what-
ever) somewhat protected against such changes.

We’d rather have a test that asks whether a given element is the
first one of its type in the document, no matter how the document is
organized and no matter how we process it. That’s a little more robust
than depending on the first <ROW> being the fourth element in a
given context. For each <ROW>, we’d like to look backward and ask,
“Are there any other <ROW> elements before me in this document?”

This concept of “looking backward” brings us to the XSL concept
of an “axis.” More specifically, this construct is part of XPath. XPath,
as you might recall, is the part of XSL that lets us point to things, usu-
ally to sections of a document tree. XPath lets us express concepts like
“all elements named DATA, wherever they are in the document,” or

Publishing Your FileMaker Data with XML 99

C
h
a
p
te

r
4

“all children of the current ROW node,” or “all grandchildren of the
current ROW node that are named DATA,” or “all siblings of the cur-
rent ROW node.” Each of these has a corresponding XPath expression,
and each of these expressions uses an axis, either explicitly or
implicitly.

My, that sounds dense. We can feel your eyelids getting heavy. Let’s go
to some examples. Let’s say that we want to write a template that
matches a <ROW> node, and inside that template we want to find and
output the herd name.

<xsl:template match="fmp:ROW">

Herd: <xsl:value-of select='fmp:Herd_By_Herd_ID.HerdName/

fmp:DATA'>

</xsl:template>

The interesting XPath expression is in the select attribute of the
xsl:value-of element. This expression says “find me a child of the cur-
rent <ROW> element called fmp:Herd_By_Herd_ID.HerdName.
Then find me a child of that element called <DATA>.” Notice the
forward slash—this indicates that <fmp:DATA> is a child of
<fmp:Herd_By_Herd_ID.HerdName>. If this slash makes you think
of the way directory paths are written in some operating systems
(notably Unix), so much the better—much of XPath uses a direc-
tory-like syntax. This is not surprising, since an XML document and a
filesystem directory structure are both examples of a tree-like
structure.

XPath syntax is fairly rich, and there are often a few ways to say
the same thing. For example, this selector gets us the same result as
the previous one:

<xsl:template match="fmp:ROW">

Herd: <xsl:value-of select='.//fmp:DATA'>

</xsl:template>

100 Chapter 4

Figure 4.4

Although this gives us the same result, it doesn’t say exactly the same
thing. This expression says “find me any descendant of the current
node (a <ROW>) called <fmp:DATA>.” It could be one level down; it
could be ten levels down. If the single slash in the first expression
meant “go down one level,” the double slash here means “go down all
the levels.”

The other interesting point here is the dot (.) in the expression.
Again, if you’re familiar with some directory notations, the dot gener-
ally means “where I am now.” So this expression means “starting
where I am now (in this particular <ROW> node), go through all of
this node’s children, grandchildren, etc., all the way down, and find me
any instance of <fmp:DATA>.” Now we happen to know that there is
only one of these per <ROW>, so this expression has the same result
as the previous. It is, though, potentially much less efficient. The first
selector gives an exact path (fmp:Herd_By_Herd_ID.HerdName/
fmp:DATA). The second one just says “search the house.” Depending
on how many descendants a <ROW> element has, this search could
take quite a bit longer. Of the two expressions, then, the first is much
preferable for our purpose.

So what does this have to do with the ominous-sounding concept
of axes (that would be “ax-eez,” as opposed to hatchets)? Well, these
two expressions use two different XPath axes. The first uses an axis
called child, and the second uses an axis called descendant-or-self. (In
fact, the second expression incorporates a third axis, called self, abbre-
viated by the dot.)

XPath 1.0 has a total of 13 axes (http://www.w3.org/TR/
xpath#axes). A number of these can be represented by an abbreviated
syntax, such as those we used above. For example, the child axis is
effectively the default axis and can be omitted from any expression.
The expression fmp:Herd_By_Herd_ID.HerdName/fmp:DATA is the
same as the more verbose child::fmp:Herd_By_Herd_ID.HerdName/
child::fmp:DATA. The expression .//fmp:DATA is equivalent to the
more verbose self::node()/descendant-or-self::node()/child::
fmp:DATA.

Not all of the 13 XPath axes have an abbreviated syntax. In partic-
ular, the one we need to solve our row-counting problem doesn’t. It’s
called preceding-sibling and points backward from the current node
through any previous siblings of the current node in document order.
For a <ROW> node in our XML document from the Animal.fp5, the
preceding-sibling axis contains all the previous nodes in the document

Publishing Your FileMaker Data with XML 101

C
h
a
p
te

r
4

that are children of the same parent, starting with the nearest one and
going backward to the beginning of the document.

The following diagram shows some of the major axes in the docu-
ment that we’re working with. The numbers show the order in which
elements are traversed as you go along each axis:

Our plan for using this axis is simple: We want to count all the nodes
along it, starting from the current <ROW>. If the count is zero, we
know this <ROW> is the first. But this is still not quite enough. The
concept of “sibling” here doesn’t necessarily mean that all siblings
have the same name. In particular, among the children of the
<FMPDSORESULT> element, <ROW> has many <ROW> siblings
but also siblings called <LAYOUT>, <ERRORCODE>, and
<DATABASE>. We can still count backward along the preceding-
sibling axis, but we need to make sure that we’re only counting ROWs.
Here, without further ado, is how it looks:

<xsl:if test="count(preceding-sibling::fmp:ROW)=0">

<xsl:apply-templates select="fmp:Herd_By_Herd_

ID.HerdName"/>

</xsl:if>

Let’s take this apart. The test expression is counting something using
the count() function and checking to see if it equals zero. It’s taking the

102 Chapter 4

Figure 4.5

count along the preceding-sibling axis, which is written in full since it
has no abbreviated syntax. It looks back along that axis but only for
<ROW> elements. It then counts those elements to see if there actu-
ally are any.

If you want true abstraction, there’s one more step that you can
take. The above expression works fine, but it only works for <ROW>
elements. How can we generalize it so that it works for any element,
regardless of its name? Our XPath expression needs to say something
like “count all my preceding siblings that have the same name as me.”
Here’s how that would look:

<xsl:if test="count(preceding-sibling::*[name() =

name(current())])=0">

<xsl:apply-templates select="fmp:Herd_By_Herd_

ID.HerdName"/>

</xsl:if>

This is a pretty dense expression. It starts, again, by looking at every-
thing along that same axis (preceding-sibling) and takes everything it
finds there—this is expressed by the wildcard character *. It then
applies a predicate, expressed by the square brackets. The brackets
contain a logical test that’s used to narrow down the node set. Here
the test says “find me nodes where the name matches the name of the
current node.” This is a fairly complicated XPath expression. If you can
get your head around that expression, you’ll know most of the XPath
that you’ll probably ever need.

Notice that XPath lets us narrow down the node set in three differ-
ent ways: by axis, by node name, and with a final predicate (inside the
square brackets), which could be almost any kind of expression. This
example is a bit complicated because the predicate test is actually a
node name test as well. It could just as easily have said “find me all
preceding siblings where the birth weight is greater than 200 pounds,”
as shown in the following:

preceding-sibling::*[birth_weight>200]

Or it could have been searching for a particular record ID attribute on
the row:

preceding-sibling::*[@RECORDID=2]

(Here, by the way, the @ sign is abbreviated syntax for the attribute
axis.) XPath is quite flexible and expressive, but there’s no denying
that it takes some getting used to. We can’t cover every aspect of
XPath (or XSL for that matter) exhaustively in this book. As you delve
deeper into writing your own stylesheets, equip yourself with

Publishing Your FileMaker Data with XML 103

C
h
a
p
te

r
4

reference materials that cover these languages in greater depth. But
don’t worry—we leave you with more than enough XSL to modify
other people’s stylesheets and write some cool ones of your own.

After that dizzying dive, the expression for deciding if the current
<ROW> is the first for its herd is not too bad by comparison:

<xsl:if test="preceding-sibling::fmp:ROW[1]/fmp:Herd_By_Herd_

ID.HerdName/fmp:DATA != fmp:Herd_By_Herd_ID.HerdName/

fmp:DATA">

<xsl:apply-templates select="fmp:Herd_By_Herd_

ID.HerdName"/>

</xsl:if>

Here, the expression again looks backward along the preceding-sibling
axis. Recall that this axis starts with the immediately preceding sibling
and works backward from there. Well, the immediately preceding sib-
ling is just the one that we want. We refer to it this way:

preceding-sibling::fmp:ROW[1]

We want to know whether its herd is the same as that of the current
node. Well, recall that the herd name is actually wrapped in the
<DATA> element, which is wrapped in the <Herd_By_Herd_
ID.HerdName element>, so it’s a grandchild of <ROW>. Knowing
that, the XPath syntax should be fairly clear.

Here’s the whole stylesheet. We’ve added a little CSS styling that
indicates the herd breaks in red on the browser:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="html" indent="yes"

doctype-public="-//W3C//DTD HTML 3.2 Final//EN"/>

<xsl:template match="fmp:FMPDSORESULT">

<html>

<head>

<title>BHBB Herd Listing</title>

</head>

<body>

<H2>Blue Horizon Bison Breeders</H2>

<H3>Herd Listing</H3>

<table border="0">

<xsl:apply-templates/>

</table>

</body>

</html>

</xsl:template>

<xsl:template match="fmp:ROW">

<!--If this is the first ROW element, insert a herd break...-->

104 Chapter 4

<xsl:if test="count(preceding-sibling::*[name() =

name(current())])=0">

<xsl:apply-templates select="fmp:Herd_By_Herd_

ID.HerdName"/>

</xsl:if>

<!--Or if this herd differs from the herd of the previous ROW,

insert a herd break-->

<xsl:if test="preceding-sibling::fmp:ROW[1]/

fmp:Herd_By_Herd_ID.HerdName/fmp:DATA !=

fmp:Herd_By_Herd_ID.HerdName/fmp:DATA">

<xsl:apply-templates select="fmp:Herd_By_Herd_

ID.HerdName"/>

</xsl:if>

<xsl:apply-templates select="fmp:name"/>

<tr>

<xsl:apply-templates select="fmp:date_birth"/>

<xsl:apply-templates select="fmp:weight_birth"/>

<xsl:apply-templates select="fmp:weight_current"/>

</tr>

</xsl:template>

<xsl:template match="fmp:ERRORCODE"/>

<xsl:template match="fmp:DATABASE"/>

<xsl:template match="fmp:Herd_By_Herd_ID.HerdName">

<tr style="color:red; border-bottom=2px solid;" >

<td colspan="3"><xsl:value-of select="./fmp:DATA"/>

Herd</td></tr>

</xsl:template>

<xsl:template match="fmp:name">

<tr><td colspan="3"><xsl:value-of select="."/>

</td></tr>

</xsl:template>

<xsl:template match="fmp:date_birth">

<td>Born <xsl:value-of select="."/></td>

</xsl:template>

<xsl:template match="fmp:weight_birth">

<td>Birth Weight <xsl:value-of select="."/></td>

</xsl:template>

<xsl:template match="fmp:weight_current">

<td>Current Weight <xsl:value-of select="."/></td>

</xsl:template>

</xsl:stylesheet>

That will do it. You might think that this was a lot of work just to out-
put sub-summary group breaks. Yes, it was. We took you down that
path because it’s a useful tour of conditionals and complex XPath
expressions, but it’s not the most flexible way to transform XML data
into grouped reports using XSL. For that, we need some more
advanced tools.

Publishing Your FileMaker Data with XML 105

C
h
a
p
te

r
4

Advanced Sub-summary Reporting in XSL

In this section we’re going to look at a technique called the Muenchian

Method, named for its progenitor, Steve Muench. The technique is
well explained on the excellent XSLT pages of Jeni Tennison
(http://www.jenitennison.com/xslt/grouping/muenchian.html) and dem-
onstrated in the sub-summary stylesheet example that ships with
FileMaker Pro 6. The stylesheet that we build here is quite similar to
the FileMaker example, since, in addition to advanced summary
reporting, it introduces a number of other useful XSL techniques.

There are a couple of problems with the technique that we illus-
trated in the previous section. First, it assumes the data is already
sorted. Second, the “look-backward” technique that we use to decide if
a row is the first in the entire dataset is inefficient. For every <ROW>
the processor encounters, it has to count all the previous <ROW>
elements. For a database of n rows, this means counting about n2/2 ele-
ments—(n2 + n)/2 to be exact. For those of you who have had some
exposure to the analysis of algorithms, a computation that performs
about n2 operations for an input of size n is considered dangerously
inefficient and should be avoided wherever possible. The situation is
worse if the data is unsorted; in this case, we are unable to rely on the
sorted relationship between each record and the one previous. Though
we can actually replace the “very-first” test with a more efficient oper-
ation, we are still stuck doing the backward search for each and every
<ROW>, which is devastating in a large data set. We need a different
tool.

XSL is going to help us out with some constructs that are specifi-
cally designed to help in identifying subgroups within XML data sets.
In particular, we use the <xsl:key> element and the corresponding
key() function to solve our problems. Our plan is a “top-down” one. If
we’re grouping by herd, the first thing to do is to find all the different
herds that are represented in the data set. Then we want to loop
through that set (it will have two herds in it for our data set) and, for
each distinct herd, output a list of all animals in that herd. That is
enough for a one-level sub-summary.

<xsl:key> gives us an elegant way to pull out a group of nodes
that correspond to certain criteria and, in effect, build an index into
those nodes. The “look-back” XPath expressions that we used before
were inefficient because they kept looking backward over almost the
same set of nodes without taking advantage of any of that previous

106 Chapter 4

processing. <xsl:key> lets you, in effect, index a group of nodes for
faster lookup later. It looks like this:

<xsl:key name="animals_by_herd" match="fmp:ROW"

use="fmp:Herd_By_Herd_ID.HerdName/fmp:DATA"/>

The <xsl:key> element has three attributes: name, match, and use
(pronounced “yooz” and not “yoose,” so it may help you remember the
meaning better). The name is any name that you want to give the key.
The match attribute specifies what kind of thing ends up in the result
set. <xsl:key> creates a kind of dictionary—you use the match attrib-
ute to say what kind of thing each dictionary entry is. In our case, the
dictionary contains instances of <fmp:ROW>. Lastly, the use attribute
specifies which part of the entry is its actual key (that is, the part that
we’re going to look it up by). For each row, we’re going to look it up by
the herd ID, and the path to that data is fmp:Herd_By_Herd_ID.Herd-
Name/fmp:DATA. (Remember, that’s an XPath expression going along
the default child axis down from a ROW element, so it means “the
<fmp:DATA> element that’s a child of the fmp:Herd_By_Herd_
ID.HerdName that’s a child of the current <fmp:ROW> node.” The
<fmp:ROW> node is the context for the XPath expression.)

We use <xsl:key> in what turns out to be a nested loop. We first
want to find all unique herds in the data set. Then we want to loop
through those herds and, for each herd, find all the animals for that
herd and output them in sorted order. We use a couple more new ele-
ments to do this: <xsl:for-each> to perform the loops and <xsl:sort>
to sort the records within groups.

We’re glossing over an important step, though. Somehow we need
to pull out a list that consists only of the unique herd names. What kind
of test can give us that? Well, one way to rephrase the test is that we
only want to keep a herd name if it’s the first occurrence of that name
in the data set. We know that a look-back expression along the preced-
ing-sibling axis does this but at a serious cost to efficiency. This time,
as we look at each <fmp:ROW> node, we’re instead going to compare
it to the set of nodes that our key expression extracts. For each
<fmp:ROW>, we’re going to look at the key-selected set of all the
<fmp:ROW> nodes with the same herd name (remember, the herd
name is the “match field” for the <xsl:key> element, shown by the
use attribute). If the current <fmp:ROW> node is the same as the
first one in the key-selected set, we keep it. Otherwise, we move on.

If this sounds obscure, think about how you do this in FileMaker
Pro. Have you ever had to write a report that needed to behave like a
sub-summary report but couldn’t be displayed in Preview mode,

Publishing Your FileMaker Data with XML 107

C
h
a
p
te

r
4

possibly because it needed to perform scripts in response to user
mouse clicks? Or possibly, your client doesn’t like the fact that sum-
mary parts in FileMaker appear above or below groups, rather than
inline. Imagine, for example, in our herd database, your user decides
that he wants the herd name to appear next to the animal name but
only for the first animal:

Herd Animal

North Branch Chin-cha-pe

Scatters Them

Hohokam Glory

Roaring Brook Barleycorn

Sacajawea

In FileMaker, you’d want to create a calculated field to display the herd
name. The calculation would say, in effect, “if this animal is the first for
this herd, show the herd name; otherwise, don’t.” But what kind of cal-
culation decides if a record is the first in its group? To solve this
problem, you need a self-relationship based on whatever field you’re
trying to “de-dupe.” Here you want to avoid duplicate display of the
herd name, so you would create a self-relationship based on the herd
name. Then, for any individual record, you want to ask whether it’s the
same as the first record found by that relationship. This means that
you need to define both “same” and “first.” For deciding about same-
ness, your records need a primary key. Two records are the same if and
only if their primary key is the same. For our Animal.fp5 database, the
key is the id_animal field. So if two records have the same id_animal,
they’re the same.

Then we get to the concept of “first.” What’s the “first” record in a
related set? The concept really only has meaning if you’ve applied
some ordering to that set (that is, if you’ve sorted it). So we want to
sort our self-relationship. For right now, it is best to sort them by
id_animal, since this has a unique value for each record; thus, the
records are always fully sorted.

So we create a self-relationship on id_herd and sort it by id_ani-
mal. We then create a calculation called something like FirstForHerd,
where the definition is:

id_animal = SelfByIDHerd::id_animal

We can then create a calculation called HerdDisplay to show the herd
name for the first herd record in each group:

Case(FirstForHerd, HerdByHerdID::HerdName, "")

108 Chapter 4

Here is one last important note about this technique. There’s a bit
more to the choice of the sort order on the self-relationship than we
said. What’s important is that the self-related records have to be
ordered in the same way that the animal records are ordered within
each subgroup. If animals are going to be sorted by name within the
herd group, the self-relationship should also be sorted by name. This is
to ensure that the record that is first in the subgroup (which is where
you want the herd name to display) is also “first” in the self-related
records. If your ordering is different, the herd name shows up—not on
the first line but on some seemingly random line farther down.

The only drawback to this technique in FileMaker is its speed.
FirstForHerd is a calculation based on a related value, so it cannot be
stored. In a big list view (which is of course where you want to do
this), these self-related calcs can slow things down somewhat.

Back to XSL. The link is that the <xsl:key> construction that we
saw above is almost exactly equivalent to the self-relationship in the
FileMaker example: For a given node (record), the expression (rela-
tionship) pulls out all other records of the same set that somehow
“match” it. In FileMaker, the match condition is set up in the self-
relationship. In <xsl:key>, the match condition is actually established
by the use attribute. If you think of use like a relational key, you are
not far off.

Once our <xsl:key> is established, we invoke it using the key()
function. (Keep the terms in mind: <xsl:key> is an element and key()
is a function.) If we’re on an <fmp:ROW> node (most likely in a tem-
plate that somehow matches <fmp:ROW>), we can say:

key("animals_by_herd", fmp:Herd_By_Herd_ID.HerdName/fmp:DATA)

That’s an XPath expression that returns a node set consisting of all
nodes with the same herd name as the current <fmp:ROW>. We can
now apply a predicate to that node set to get the first one:

key("animals_by_herd", fmp:Herd_By_Herd_ID.HerdName/fmp:DATA)[1]

We’re almost there. We’ve picked out all the animals with the same
herd name, using the more efficient key() function rather than the
much-less-efficient lookback expressions. We’ve found the first one in
that set. Now we just need to compare that node to the current one
and decide whether they’re the same. If they are, the current node is
the first in its set, and we can act accordingly.

But here it gets sticky. XSL and XML don’t really have any con-
cept of sameness. If we’re aware that each node of the type that we’re

Publishing Your FileMaker Data with XML 109

C
h
a
p
te

r
4

working with has a unique value somewhere in it, we can just compare
these values. So we could have a test like this:

fmp:id_animal = key("animals_by_herd",

fmp:Herd_By_Herd_ID.HerdName/fmp:DATA)[1]/fmp:id_animal

This means “look at the animal ID of the current node, and then go get
the set of all nodes with the same herd name, get the first one, look at
its animal ID, and compare the two.” This works fine but only if the
nodes that we’re working on have some unique value like this. It won’t
work in a more general case where that unique value is either nonexis-
tent or unknown. For that, we need to do more work.

We have a couple of choices here. One is to get XSL to generate
the unique keys for us. XSL has a function called generate-id(), which
generates a unique ID for any node. It is guaranteed to return the
same unique ID for a given node within the context of a single XSL
program. (We say “program” instead of “stylesheet” because it is pos-
sible to create XSL programs that are larger than a single stylesheet.)
The ID is not guaranteed to be unique across multiple invocations of a
program. So we can write the following test on an <fmp:ROW> node:

generate-id() = generate-id(key('animals_by_herd',

fmp:Herd_By_Herd_ID.HerdName/fmp:DATA)[1]

This means generate IDs for the current <fmp:ROW> and for the
first one in the key set, and compare them.

The other technique is more abstract. We can create a new node
set by joining other nodes together using the union operator, which is
written “|”. We can try to create a set consisting of the current node
and the first node in the key set, like this:

. | key('animals_by_herd', fmp:Herd_By_Herd_

ID.HerdName/fmp:DATA)[1]

The dot, of course, is shorthand for the current node, while the key
expression returns the first in the key set. Now, XSL forbids you from
adding the same node twice to the same node set—a node can only
appear once per set. So, if our set from above contains just one node, it
means the two nodes were the same. We use the count() function to
perform this test:

count(. | key('animals_by_herd', fmp:Herd_By_Herd_

ID.HerdName/fmp:DATA)[1]) = 1

This might seem a little odd, but it does work. Feel free to use which-
ever “find-first” technique makes more sense to you.

110 Chapter 4

Are we there yet? Well, we’re definitely out of the driveway. So far
we’ve learned how to use XSL key constructs to: a) pull a list of all
unique herds from our XML data set, and b) given a specific
<fmp:ROW> element, pull a set of all the other <fmp:ROW>
elements that share the same herd ID. From here, we need to write
that nested loop that we mentioned, going through all the distinct
herds one by one and, for each one, going through all the individual
animal records and writing them out.

We haven’t seen explicit looping in XSL so far. The closest we’ve
come has been the <xsl:apply-templates> element. In fact, the two
are very often interchangeable. It’s up to you to choose the one that
you think is easier to read or write. The “loop-ness” of our program is
clearer with the <xsl:for-each> element, so let’s go ahead and use
that. Here’s a full program to generate our grouped report using
<xsl:for-each> and the key techniques that we just learned.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="html" indent="yes"

doctype-public="-//W3C//DTD HTML 3.2 Final//EN"/>

<xsl:key name="animals_by_herd" match="fmp:ROW"

use="fmp:Herd_By_Herd_ID.HerdName/fmp:DATA"/>

<xsl:template match="fmp:FMPDSORESULT">

<html>

<head>

<title>BHBB Herd Listing</title>

</head>

<body>

<H2>Blue Horizon Bison Breeders</H2>

<H3>Herd Listing</H3>

<table border="0">

<xsl:for-each select="fmp:ROW[generate-id()=

generate-id(key('animals_by_herd',

fmp:Herd_By_Herd_ID.HerdName/fmp:DATA)[1])]">

<tr style="color:red; border-bottom=2px solid;" >

<td colspan="3">Herd: <xsl:value-of

select="fmp:Herd_By_Herd_ID.HerdName/fmp:DATA"/>

</td></tr>

<xsl:for-each select="key('animals_by_herd',

fmp:Herd_By_Herd_ID.HerdName/fmp:DATA)">

<tr><td colspan="3"><xsl:value-of

select="./fmp:name"/></td></tr>

<tr>

<td>Born <xsl:value-of select="./fmp:date_

birth"/></td>

<td>Birth Weight <xsl:value-of

select="./fmp:weight_birth"/></td>

<td>Current Weight <xsl:value-of

Publishing Your FileMaker Data with XML 111

C
h
a
p
te

r
4

select="./fmp:weight_current"/></td>

</tr>

</xsl:for-each>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

The finished stylesheet turns out to be pleasingly compact. Much of
the reason for this is the <xsl:for-each> structure. Where previous
stylesheets that we worked with had as many as five templates, this
has only one. In particular, all of the individual data fields are handled
within the same template, rather than each having their own template.
The result is perhaps more readable. In any event, it looks more like a
traditional computer program, which depending on your point of view
is either a good thing or not.

Sorting

We said that we’d add sorting to this report. To do this, we use the
<xsl:sort> element. We use <xsl:sort> to force a specific ordering of
data inside either an <xsl:apply-templates> or an <xsl:for-each> ele-
ment. XSL lets us specify what data to sort on, what data type the data
should be treated as (text or numeric), and whether to sort in ascend-
ing or descending order. It looks like this:

<xsl:sort select="fmp:Herd_By_Herd_ID.HerdName/fmp:DATA"

data-type="text" order="ascending"/>

We would place this immediately inside any <xsl:apply-templates> or
<xsl:for-each> where we wanted to sort the matched elements. Both
the data-type and order attributes are optional. The above statement
tells the processor to sort by herd name—we’d place this right inside
the first <xsl:for-each>. To further sort by animal name inside each
herd, we’d add:

<xsl:sort select="fmp:name" data-type="text" order="ascending"/>

We’d add that element just inside the second <xsl:for-each>. We
won’t reprint the whole stylesheet here with those additions; the next
example incorporates several levels of sorting as well.

112 Chapter 4

Multilevel Reporting

So far, all that pain doesn’t seem to have bought us much. Our
stylesheet still churns out pretty much the same report as before. It’s
true that it is more compact, and we swear it’s more efficient for big-
ger data sets. But other than that, how does it help? Let’s go ahead and
extend it to a multilevel grouped report and see how that works.

Let’s say that now, within each herd, we want to do subgrouping
by animal gender. We can probably find a shortcut based on the fact
that we know in advance that there are only two possible genders. But
let’s pretend that we don’t know the range of possible choices there
(just to cover the more general case).

Our situation is similar to the previous report, but now we need
three nested loops instead of two. First we grab all the herds and loop
through them. For each herd, we grab all the genders and loop through
them. For each gender, we grab all the animals that match both that
herd and that gender and output them somehow.

The main difference here is that since we have two grouping lev-
els, we need to have two key elements. The first key, as in the
previous example, gathers up all unique herd names. The second key
gathers up all unique combinations of a herd name and a gender. The
first key looks the same:

<xsl:key name="animals_by_herd" match="fmp:ROW"

use="fmp:Herd_By_Herd_ID.HerdName/fmp:DATA"/>

For the second expression, we need a use attribute that somehow
combines both the herd name and gender of the current record. We do
this in XSL much the way that we might in FileMaker; we use string
concatenation to create a value that includes both fields (herd name
and animal gender). In FileMaker, we use the concatenation operator
(&). In XSL, we can use the concat() function. Here’s our second-level
key expression:

<xsl:key name="herd_by_gender" match="fmp:ROW" use="concat

(fmp:Herd_By_Herd_ID.HerdName/fmp:DATA, ' ', fmp:gender)"/>

This doesn’t get us all the way out of the woods. At the second level,
the gender level, we need to make sure that we’re only searching in
the current herd. In the case of gender, this isn’t such a strong restric-
tion because the genders don’t actually vary across herds. In other
cases, we want to make sure that we did this. So the second-level key
expression is going to be a bit more complicated. Let’s look at the
whole stylesheet and see what’s going on.

Publishing Your FileMaker Data with XML 113

C
h
a
p
te

r
4

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="html" indent="yes" doctype-public="-//W3C//DTD

HTML 3.2 Final//EN"/>

<!--First-level key for herd grouping-->

<xsl:key name="animals_by_herd" match="fmp:ROW"

use="fmp:Herd_By_Herd_ID.HerdName/fmp:DATA"/>

<!--Second-level key for subgrouping by gender within herd-->

<xsl:key name="herd_by_gender" match="fmp:ROW" use="concat

(fmp:Herd_By_Herd_ID.HerdName/fmp:DATA, ' ', fmp:gender)"/>

<xsl:template match="fmp:FMPDSORESULT">

<html>

<head>

<title>BHBB Herd Listing</title>

</head>

<body>

<H2>Blue Horizon Bison Breeders</H2>

<H3>Herd Listing</H3>

<table border="0">

<!--Here we select our unique herd names-->

<xsl:for-each select="fmp:ROW[generate-id()=generate-id

(key('animals_by_herd', fmp:Herd_By_Herd_ID.HerdName/

fmp:DATA)[1])]">

<!--Here we sort the herds by name-->

<xsl:sort select="fmp:Herd_By_Herd_ID.HerdName/fmp:DATA"

data-type="text" order="ascending"/>

<!--And output the herd break line-->

<tr style="color:red; border-bottom=2px solid;" >

<td colspan="3"><xsl:value-of select="fmp:Herd_By_

Herd_ID.HerdName/fmp:DATA"/> Herd</td></tr>

<!--Here we select the unique genders for this herd-->

<xsl:variable name="animals" select="key('animals_by_herd',

fmp:Herd_By_Herd_ID.HerdName/fmp:DATA)"/>

<xsl:for-each select="$animals[generate-id()=generate-id

(key('herd_by_gender', concat(fmp:Herd_By_Herd_

ID.HerdName/fmp:DATA, ' ', fmp:gender))[1])]">

<!--And output the gender break line-->

<tr style="background-color: gray" ><td colspan="3">

<xsl:value-of select="fmp:gender"/></td></tr>

<xsl:for-each select="key('herd_by_gender', concat

(fmp:Herd_By_Herd_ID.HerdName/fmp:DATA, ' ',

fmp:gender))">

<xsl:sort select="fmp:name" data-type="text"

order="ascending"/>

<tr><td colspan="3"><xsl:value-of select="./

fmp:name"/></td></tr>

<tr>

<td>Born <xsl:value-of select="./fmp:date_birth"/>

</td>

<td>Birth Weight <xsl:value-of select="./fmp:weight_

114 Chapter 4

birth"/></td>

<td>Current Weight <xsl:value-of select="./

fmp:weight_current"/></td>

</tr>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

We set up our two keys, as described above, with one based on herd
name and the other on a combination of herd name and gender. We pro-
ceed as before, first pulling all unique herd names and looping through
them. But the expression to pull all unique genders within a herd is
more complicated. It’s sufficiently snarly that we’re going to use an
<xsl:variable> element to minimize the confusion.

The <xsl:variable> lets us assign a name to a value. This is a con-
venient way to store complicated expressions, either for later reuse or
just to make the code more readable. The name is actually mislead-
ing—typically we refer to a variable as a named value that can change
(hence the term “variable”). Variables in XSLT can’t change. Once
they’re set, there they stay. They’re a bit more like what other lan-
guages would call a “constant.”

Once a variable has been defined in XSLT, it can be referred to by
prefixing it with a dollar sign. So this expression:

<xsl:variable name="animals" select="key('animals_by_herd',

fmp:Herd_By_Herd_ID.HerdName/fmp:DATA)"/>

. . .creates a variable that we can refer to as $animals.
Here we use an <xsl:variable> to hold an XPath expression that

points to the set of all the animals in the current herd. We want to pick
the unique genders out of that specific group. We’re using this to keep
the next expression somewhat readable. Here it is:

<xsl:for-each select="$animals[generate-id()=generate-id

(key('herd_by_gender', concat(fmp:Herd_By_Herd_ID.HerdName/

fmp:DATA, ' ', fmp:gender))[1])]">

This is the for-each that is going to loop through all genders in a spe-
cific herd. We’re using the familiar (if complicated) predicate that uses
generate-id() to find the first gender records, but it’s important that we
limit our search to the current herd. Our $animals variable points to
just those records, so it’s in that group that we want to make our
search.

Publishing Your FileMaker Data with XML 115

C
h
a
p
te

r
4

Other than that, this stylesheet is very similar to the previous.
Admittedly, this multilevel grouping is a bit of a chore. If that last
expression made your head hurt, rest assured that the requirements
for XSL 2.0, currently under development, include a call for a more
straightforward multilevel grouping mechanism.

Displaying Hierarchical Data

Using XML and XSL, we can also work with data that is often difficult
to manage in a traditional database. Take the example of hierarchical
data. This is data, such as an organization chart or genealogy, that is
structured like a tree. Advanced FileMaker Pro 5.5 Techniques for

Developers from Wordware Publishing showed how to manipulate hier-
archical data in FileMaker, which requires quite some effort to get a
nice tree-like display in FileMaker. Here we’re going to show you how
to accomplish something similar using XSL.

That main difficulty with hierarchical data is that it’s recursive. In a
way, it looks somewhat like a traditional relational database structure.
For example, there’s a parent-child (or one-to-many) relationship
between a given manager and her employees. But one of these
employees might have others underneath him, and so on down the
line. How deep do these relationships extend? We don’t know.
Thinking in terms of display, a portal shows us one “level” of children.
So, for a given manager, a portal shows that manager’s direct reports.
But we want a display that goes all the way down. How far is that?
There’s no way to know. We have to keep following the tree until we
reach the bottom.

The formula for doing this (the algorithm, in geek-speak) looks
something like this: Find the top of the tree. Find all the immediate
children. Display all the children. Then, for each of the children, repeat
exactly the same process. If a node has no children, keep going. Draw
yourself a tree structure on paper and work through this process by
hand, and you’ll see how it works. The process finishes when, and only
when, you have touched each node in the tree, no matter how deep the
tree is.

Let’s look at an example of this, intended to output a family tree of
Native American languages. Take a look at the NatAmLang.fp5 data-
base included with the downloadable files, and you’ll see a straightfor-
ward tree structure. All languages have a parent language ID, except
for the language at the very top. We want a display that looks some-
thing like this:

116 Chapter 4

Algonquian Language

Central Algonquian Languages

Cree Languages

Attikamekw

Cree

Michif

Montagnais

Naskapi

Our algorithm goes like this: First we want to find all the top-level lan-
guages. These are the ones with an empty id_parent field. For each of
these, we want to indent one level, find all children of that language,
and repeat the same process until we run out of children.

There are a few ways to do this. We’re using one that illustrates an
important new concept that helps in writing modular, reusable XSL
code. This new construct is called a named template. A named template
is very similar to a regular template, but it can be invoked directly.
With <xsl:apply-templates>, you instruct the processor to find what-
ever template matches certain criteria. With a named template, you
can point to one specific template and call it directly. Named templates
are closely analogous to function calls in procedural languages. You can
even pass parameters to a named template, just as you would to a
function.

The easiest thing to do is examine the entire stylesheet:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="html" indent="yes"

doctype-public="-//W3C//DTD HTML 3.2 Final//EN"/>

<xsl:template match="fmp:FMPDSORESULT">

<html>

<head>

<title>Languages</title>

</head>

<body>

<h2>Partial Tree of Native American Languages</h2>

<table border="0">

<xsl:for-each select="fmp:ROW[fmp:id_parent='']">

<tr><td><xsl:value-of select="fmp:name"/></td></tr>

<xsl:call-template name="childLanguages">

<xsl:with-param name="langid" select="./

fmp:id_language"/>

<xsl:with-param name="indent" select="0"/>

</xsl:call-template>

</xsl:for-each>

</table>

</body></html>

Publishing Your FileMaker Data with XML 117

C
h
a
p
te

r
4

</xsl:template>

<xsl:template name="childLanguages">

<xsl:param name="langid"/>

<xsl:param name="indent"/>

<xsl:for-each select="/fmp:FMPDSORESULT/

fmp:ROW[fmp:id_parent=$langid]">

<tr><td>

<xsl:call-template name="Indenter">

<xsl:with-param name="iIndent"

select="$indent"/>

</xsl:call-template>

<xsl:value-of select="fmp:name"/>

</td></tr>

<xsl:call-template name="childLanguages">

<xsl:with-param name="langid"

select="fmp:id_language"/>

<xsl:with-param name="indent" select=

"$indent + 2"/>

</xsl:call-template>

</xsl:for-each>

</xsl:template>

<xsl:template name="Indenter">

<xsl:param name="iIndent"/>

<xsl:text> </xsl:text>

<xsl:if test="$iIndent>0">

<xsl:call-template name="Indenter">

<xsl:with-param name="iIndent"

select="$iIndent - 1"/>

</xsl:call-template>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

Let’s see what’s going on here. Our first template, as usual, matches
<fmp:FMPDSORESULT>, the root element. Here we output all the
initial HTML for our page and then open a table. Then we use
<xsl:for-each> to loop through all top-level languages, defined as
those where id_parent is blank. Things begin to look different inside
the <xsl:for-each>. Here we call a named template and pass it two
parameters called langid and indent.

If you’re at all familiar with functions from other languages, you’ll
understand the concept of parameters. These are named values that
you pass off to another routine, usually as inputs to whatever process-
ing it does. In FileMaker, most of the calculations take one or more
parameters—the Length function takes one parameter (a field name)

118 Chapter 4

while the Left function takes two (field name and length). Here we’re
calling a template called childLanguages and passing it two parame-
ters: langid, which is the ID of the language currently being processed,
and indent, a value that tells us how much to indent the current ele-
ment. From our top-level nodes, we pass down our own id_language
and a current indent of zero.

Let’s turn our attention to the childLanguages template proper.
Unlike earlier templates, this one uses a name attribute. This is man-
datory if we want to call the template by name. It also declares two
parameters using an <xsl:param> element. These declarations are
mandatory if we want to pass parameters to the template. Let’s take a
look at what the template actually does.

The template is going to do another <xsl:for-each> using the
langid parameter to grab all languages that have langid as their parent.
For each of those children, the template then calls another template
called Indenter, passing along the indent value that was passed to the
childLanguages template. This template simply adds space before the
language name. Finally, the language name itself is output, and then,
interestingly, the childLanguages template calls itself again. This time,
though, it passes in the id_language from the current record and adds
two to the indent parameter so that deeper levels of the tree are more
deeply indented.

Finally, we can look at the Indenter template. This template really
is just a looping construct. It outputs a pair of spaces for each value of
$iIndent, meaning that if $iIndent is four, it indents the current name
by eight spaces. You can see that it does this by repeatedly calling
itself until it has counted from $iIndent backward to zero.

If you’re new to recursive functions, you might be puzzled by the
fact that childLanguages calls itself. Won’t that create an infinite loop?
That’s a good question, and the answer is that it won’t. Every
recursion has a terminating condition (namely, a point at which the
recursion does not go any deeper). In this case, the terminating condi-
tion comes from the fact that childLanguages is called from inside an
<xsl:for-each> that operates on all the children of the current node. If
the current node has no children, the <xsl:for-each> never gets off
the ground, and the inner call to childLanguages doesn’t get reached.

This is already pretty nice. Certainly, this kind of output seems a
bit easier to achieve using XML than by operations inside FileMaker.
Let’s add a little refinement, all the same. In our chart, some of the
elements, such as Micmac and Yurok, are actual languages. Others,

Publishing Your FileMaker Data with XML 119

C
h
a
p
te

r
4

though, are group names, like Arapaho Languages. Is there an easy
way to distinguish between them visually?

We can choose any presentation styles for these elements. We just
need some way for XSL to decide which records are languages and
which are headers. The clear giveaway seems to be that the languages
proper don’t have children, while the headers do. (In comp-sci termi-
nology, the language records are leaf nodes of the tree.) But there is
one exception to our rule, the Cree language, which has the Cree-
French hybrid Michif underneath it. So, though it’s a little inelegant,
we’re going to say that any record with zero or one child is a leaf node,
and we represent it differently. So now we want to write some XSL
code that says “if this node has two or more children, represent it one
way; otherwise, represent it some other way.” Here’s the code. It
replaces the simple output of fmp:name with a more complex
expression:

<xsl:choose>

<xsl:when test="count(/fmp:FMPDSORESULT/fmp:ROW[fmp:id_

parent=current()/fmp:id_language])<2">

<xsl:value-of

select="fmp:name"/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="fmp:name"/>

</xsl:otherwise>

</xsl:choose>

Here we run into a few more of XSL’s flow-of-control constructs. The
outermost element is called <xsl:choose>. This element can be used
to mimic what other languages call a switch statement, or an if-then-
else construct. The <xsl:choose> element can contain any number of
<xsl:when> elements and an <xsl:otherwise> element that applies if
none of the <xsl:when> elements were used. In FileMaker, this is
closest to the Case statement. Each instance of <xsl:when> has a test
attribute that contains the logical test for the element. Here, our test
is to count all records where the id_parent is equal to the id_language
of the current row. We then check to see if that count is less than two.
One irritating fact you should notice is that we’ve written the less-than
symbol as <. This special encoding (called an entity reference) is
necessary because the less-than symbol is reserved in XSL for open-
ing a tag.

So, our logic here tells XSL to count the children and, if they’re
fewer than two, output the language name in red; otherwise, output it
with no color applied. Now our languages come out in red and our
headers in black.

120 Chapter 4

So there you have it—an elegant hierarchical display of FileMaker
data. If you feel like that technique made sense and you’re game for a
challenge, try writing a stylesheet that takes our Herd file and turns it
into a family tree. Warning: Since each animal can have two parents
instead of just one, it becomes more difficult. If we assume that bison
are polygamous and can have more than one mate (which is the case),
it becomes more difficult. A nice challenge.

Transforming FileMaker Data
into Non-HTML Text Data

So far, all of our examples have demonstrated transformations of
FileMaker data into HTML pages. That fits with the web focus of this
book, and HTML is also both easy to read and fairly widely known.
But, as we said earlier, XSL can produce data in any text format con-
ceived by humanity. Let’s look at a very popular format called RTF.

RTF, or Rich Text Format, is a Microsoft technology that was
designed to make documents written in Microsoft’s Word program
more portable over networks. Text is inherently easier to send than
the binary data that makes up most proprietary formats. Using RTF, a
document can be sent over almost any kind of network connection and
reinterpreted at the other end by an RTF-aware application with little
risk of the contents being scrambled or misinterpreted. The fact that
RTF is a text format is a huge boon to us. It means that we can use
XSL to turn FileMaker data into documents that are readable by the
widely popular Word program, among others.

This does introduce another speed bump. Just as we have to be
able to read and write HTML to produce web pages as our XSL output,
we also have to be familiar with the RTF format if we’re going to write
stylesheets that produce Word documents. But RTF is, frankly, an
extremely dense and cryptic notation when compared to HTML. It’s
not that it can’t be mastered, but it requires a bit of work. The RTF
specification is available at http://msdn.microsoft.com/library/?url=/
library/en-us/dnrtfspec/html/rtfspec.asp?frame=true. One good way to
get a sense of what’s involved in an RTF document is to take an appli-
cation that can produce RTF and save a moderately complex document
in RTF format. Open the resulting file in a non-RTF-aware text editor
and feast your eyes. The odds are that you’ll see something like the
following repeated for perhaps several pages:

Publishing Your FileMaker Data with XML 121

C
h
a
p
te

r
4

\rtf1\mac\ansicpg10000\uc1 \deff4\deflang1033\deflangfe1033{\

upr{\fonttbl{\f0\fnil\fcharset256\fprq2{*\panose

00020206030504050203}Times New Roman;}{\f4\fnil\

fcharset256\fprq2{*\panose 00020005000000000000}Times;}

}{*\ud{\fonttbl{\f0\fnil\fcharset256\fprq2{*\panose

00020206030504050203}Times New Roman;}{\f4\fnil\

fcharset256\fprq2{*\panose 00020005000000000000}Times;}}}}

These are RTF’s internal formatting instructions. The good news is
that many of them are optional.

It’s hard to say more about the RTF code itself without going into
a primer on the structure and syntax of RTF. To keep this book man-
ageable, we can’t delve into all the details, but here’s a stylesheet that
turns our list of languages into a lightly formatted RTF file that can be
opened and read in Word and other RTF-aware programs (remember to
save your output as a file ending with .rtf suffix):

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fmp="http://www.filemaker.com/fmpdsoresult">

<xsl:output method="text" version="1.0" encoding="UTF-8"

indent="no"/>

<xsl:template match="fmp:FMPDSORESULT"><xsl:text>{\rtf1\

ansi\ansicpg10000\uc1 \deff4\deflang1033\deflangfe1033{\upr{\

fonttbl{\f0\fnil\fcharset256\fprq2{*\panose

00020206030504050203}Times New Roman;}{\f4\fnil\

fcharset256\fprq2{*\panose 00020005000000000000}Times;}

}{*\ud{\fonttbl{\f0\fnil\fcharset256\fprq2{*\panose

00020206030504050203}Times New Roman;}{\f4\fnil\

fcharset256\fprq2{*\panose 00020005000000000000}Times;}}}}

\deftab288{Partial Tree of Native American Languages \par \par

</xsl:text>

<xsl:for-each select="fmp:ROW[fmp:id_parent='']">

<xsl:value-of select="fmp:name"/>

<xsl:call-template name="childLanguages">

<xsl:with-param name="langid" select="./

fmp:id_language"/>

<xsl:with-param name="indent" select="0"/>

</xsl:call-template>

</xsl:for-each>

<xsl:text>}}</xsl:text>

</xsl:template>

<xsl:template name="childLanguages">

<xsl:param name="langid"/>

<xsl:param name="indent"/>

<xsl:for-each select="/fmp:FMPDSORESULT/

fmp:ROW[fmp:id_parent=$langid]">

<xsl:text>\par </xsl:text>

<xsl:call-template name="Indenter">

122 Chapter 4

<xsl:with-param name="iIndent"

select="$indent"/>

</xsl:call-template>

<xsl:choose>

<xsl:when test="count(/fmp:FMPDSORESULT/

fmp:ROW[fmp:id_parent=current()/

fmp:id_language])<2">

<xsl:value-of select="fmp:name"/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="fmp:name"/>

</xsl:otherwise>

</xsl:choose>

<xsl:call-template name="childLanguages">

<xsl:with-param name="langid"

select="fmp:id_language"/>

<xsl:with-param name="indent" select="$indent

+ 2"/>

</xsl:call-template>

</xsl:for-each>

</xsl:template>

<xsl:template name="Indenter">

<xsl:param name="iIndent"/>

<xsl:text>\tab </xsl:text>

<xsl:if test="$iIndent>0">

<xsl:call-template name="Indenter">

<xsl:with-param name="iIndent"

select="$iIndent - 1"/>

</xsl:call-template>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

In fact, it’s very similar to our HTML output template. From looking at
what gets output, you can see that an RTF file consists of many dense
codes wrapped up in nested braces. A typical RTF document is like an
HTML document in that, in the simplest terms, it consists of a header
and a body. As with HTML, most of what gets output in the template
that matches on FMPDSO is header information. Our header is light-
weight; the major items it specifies are the RTF version, the list of
available fonts, and the character set. Near the end of that template,
after the four closing braces, we finish the header and begin the body.
The body is also lightweight; there’s one command to specify how
wide a tab stop is, and then the actual text begins. (For the curious, the
tab unit is in “twips,” meaning “twentieths of a point,” with an inch
containing 1440 twips. So these tab stops are .2 inches apart.) From
there it’s straightforward (except where HTML uses
, RTF uses

Publishing Your FileMaker Data with XML 123

C
h
a
p
te

r
4

\par, and where HTML uses spaces to indent, we use \tab). Finally, at
the end of the FMPDSO template, we output two closing braces to fin-
ish the body first and then the RTF document.

RTF is capable of many advanced formatting techniques.
Explaining them all is beyond the scope of this book, but we hope this
example has at least whetted your appetite to learn more about RTF
and what it can do. In theory, you can publish an entire database as a
formatted Word document with a table of contents, clickable cross-
references, an index, and more. All that stands between you and glory
is the RTF spec, and you know where to find that! With sufficient
research into the RTF format, you should be able to turn out docu-
ments that take full advantage of indexes, tables of contents, embed-
ded images, and other RTF features.

Resources and References

Books for Learning XML and XSL

� Kurt Cagle et al., Professional XSL. Wrox Press, 2001.

� Charles Goldfarb and Paul Prescod, The XML Handbook. Prentice
Hall, 2000.

� Mark Birbeck, et al, Professional XML. Wrox Press, 2001.

Web-based Resources on XML and SGML

� http://www.oasis-open.org/cover/general.html—large compendium
of links on XML and SGML

� http://etext.virginia.edu/bin/tei-tocs?div=DIV1&id=SG—intro-
duction to SGML

� http://www.ucc.ie:8080/cocoon/xmlfaq—XML FAQ

“Official” W3C pages on XML and HTML

� http://www.w3.org/XML/

� http://www.w3.org/TR/html4/sgml/dtd.html

124 Chapter 4

Chapter 5

Instant Web
Publishing

Instant Web Publishing is a term used to describe FileMaker’s ability
to generate a web site based on the look and feel of a FileMaker data-
base. It’s not that FileMaker produces ready-to-host HTML pages or
anything like that. Rather, when you enable Instant Web Publishing,
FileMaker responds directly to a web query, and the web user sees the
requested data in an interface that’s virtually identical to a layout in
the FileMaker database itself.

Most books and reference materials that we’ve seen don’t cover
Instant Web Publishing very well. They basically rehash the documen-
tation, showing you how to configure the Web Companion and select
themes and layouts. Those things are important (and easy), but they
don’t really give you a sense of what the tool is capable of. We’d like to
plumb the depths of Instant Web Publishing. Our approach is to cover
the fundamentals quickly and then walk leisurely through creation of a
quasi-custom application. We hope to show you a few things along the
way that you might not have thought possible with Instant Web
Publishing.

If you’d like information about how Instant Web Publishing com-
pares to Custom Web Publishing, please refer to our discussion of that
topic in Chapter 3. There you can also find a thorough coverage of
using FileMaker’s built-in access privileges to protect the Web Com-
panion (and hence, your IWP applications).

125

Getting Started

The concepts behind Instant Web Publishing are simple. Have
FileMaker render layouts that you’ve developed in FileMaker as web
pages. Have the security that you’ve already set up in FileMaker
restrict what web users can do and see. Allow buttons on the web to
run FileMaker scripts that affect the behavior of the web site. In short,
bring the FileMaker experience to the web.

It’s a great concept, and Instant Web Publishing gets stronger with
each new release of FileMaker. Layout objects in FileMaker are stored
internally as stylesheets that allow them to be rendered almost flaw-
lessly in a browser. The web publishing themes provide an attractive
and functional frame for your data. When you use Instant Web Pub-
lishing, the Web Companion not only acts as a web server, but it also
generates 100 percent of the web interface for you, based on a handful
of simple configuration options.

The first step down the IWP path is enabling the Web Companion.
We covered this in detail in Chapter 3. It boils down to activating the
Web Companion and then allowing each database to be shared to the
web. By checking two check boxes, you’ve web-enabled your
FileMaker Pro or FileMaker Pro Unlimited application.

If you’ve never done this before, we’d recommend trying that now
so that you’ve got an idea of what the “vanilla” configuration gives you.
Take an existing or new database (the simpler the better for now), set
it to be shared to the web, and then fire up a browser and point to
http://localhost/. If you have a static IP address (which you’ll need for
web serving), you can use that address in place of localhost. If you’re
not on a network, localhost should work, but in some cases you need
to set your TCP/IP settings to a static address, like 10.10.10.10, and
then use that in your browser.

If everything is configured properly, you should see a default home
page with a list of accessible databases. If you’ve never used or seen
IWP before, we’d urge you again to take ten minutes and do this now
before you read any further.

There are a handful of configuration options that affect the look
and feel of your IWP applications. Let’s look at some of these now.

126 Chapter 5

Home Page Options

When you enable Instant Web Publishing on the Web Companion con-
figuration screen, you can choose to use what’s called the “built-in”
home page or you can create your own home page. Using the built-in
home page, a user who types in the IP address of your server (or you,
typing “localhost”) sees something like what’s shown in Figure 5.1.

There are two ways to prevent open databases from appearing on this
list. The first is to set those particular tables to not share to the web
(this is part of the File>Sharing setup). The other way is to put an
underscore at the end of the table name (i.e., contact_.fp5 instead of
contact.fp5).

Creating Your Own Home Page

If you prefer that your web users see a different home page than the
“built-in” screen shown in Figure 5.1, you can build a home page your-
self and have IWP display that instead. If you have any experience at
all creating web pages, it is fairly easy to build your own custom home

Instant Web Publishing 127

C
h
a
p
te

r
5Figure 5.1

page. Creating your own home page allows you to customize the look
of the page with your own graphics, text, and links. You also have con-
trol over which databases are accessible and the ability to create links
not only to the IWP form view (which is where the links on the built-in
home page go) but also to any of the other IWP views (search, table,
and new record).

Once you’ve built a new home page, put it in the Web folder, which
is at the root of the FileMaker Pro application folder. Then you need to
go back to the Web Companion configuration screen where you can
select your new home page from the pop-up list.

There’s a tool new to the FileMaker 6 Web Companion called the
WebPortal object that facilitates construction of custom home pages. In
earlier versions of FileMaker, you would typically build custom home
pages by copying the complicated links generated by the built-in home
page. The WebPortal is a JavaScript object that gives you information
about the databases shared to the Web Companion. You can get the
table names from it, the host user name, and most importantly, fully
formed URLs to each of the views of each of your tables. It greatly
facilitates the creation of custom home pages.

Let’s look now at a simple example of how you might use the
WebPortal object to create a custom home page. In this example, let’s
pretend that you have a database of rare books (called books.fp5) that
you want visitors to your web site to be able to search. Let’s start by
creating a shell for the page with placeholders that we’ll come back to
later and replace with some fancy code.

<html>

<head>

<title>Welcome!</title>

</head>

<body>

<table width=60% align=center>

<tr>

<td align=center>

<h1>Welcome to the Rare Book Emporium </h1>

<h3>Please click on the link below to search our

collection</h3>

</td>

</tr>

<tr>

<td align=center>

<!--Here's where we want a link to the IWP search view-->

</td>

</tr>

128 Chapter 5

</table>

</body>

</html>

Save this page as home.htm, put it in the web directory, and configure
the Web Companion to use that as its home page. It’s a good idea to
test at this point to make sure that you’ve got everything wired prop-
erly. That way, when you start adding code and something doesn’t
work, you know it’s your code and not a configuration issue. Our fledg-
ling page in its current state is shown in Figure 5.2.

Now to the fun part. In order to generate the WebPortal object, insert
the following line of code in the <head> portion of your page:

<script language="JavaScript" SRC="FMPro?-webportal"></script>

With that in place, every time this page loads, the Web Companion is
queried for information about its shared databases; it returns a
JavaScript object that you have access to for the remainder of the page.
If you’re curious to see exactly what it returns, just type http://<your
IP address>/FMPro?-webportal into your browser.

Instant Web Publishing 129

C
h
a
p
te

r
5

Figure 5.2

The WebPortal object has the following properties:

� window.webportal.databases: An array containing the name of
your databases and URLs to the various views. The elements of
the array are name, defaultURL, formViewURL, tableViewURL,
searchViewURL, and newViewURL.

� window.webportal.username: The identity of the FileMaker Pro
host

� window.webportal.language: A code representing the language
selected on the Web Companion configuration screen

There are a number of ways that you can use the WebPortal in a cus-
tom home page. If you want, you can simply list all of the available
databases and allow the user to select links to any of their views. In
our example, we want to confirm that our books.fp5 database is avail-
able, and if so, we’d like to build a link to its search page.

If you are absolutely sure that you only have one database avail-
able, you can simply use window.webportal.databases[0] to refer to
that database. In the likelier event that there are several hosted data-
bases, you won’t know which position in the database array contains
information about the books.fp5 database. We therefore need to look
through each item in the array for our table. The following JavaScript
function, which also goes in the <head> portion of the page, looks for
the books database and builds a dynamic link to its search page.

function BooksSearchLink() {

j= -1;

for (i in window.webportal.databases) {

if (window.webportal.databases[i].name == "books") {

j = i;

}

}

if (j == -1) {

link = "The collection is temporarily unavailable.

Please try again later.";

} else {

link = "<A HREF = /FMRes/" + window.webportal.data-

bases[j].searchViewURL + ">Search"

}

document.write (link);

}

If for any reason the books.fp5 database is unavailable, instead of a link
to nowhere, the user is notified that the collection is unavailable.
Another nice feature of building the page this way (as opposed to

130 Chapter 5

hard-coding a link yourself) is that if you ever decide to use a different
layout in your database as the search view, the web site automatically
and immediately reflects that change.

The only thing left to do to finish our custom home page is to call
the BooksSearchLink function at the appropriate place in the body of
the page. The full, final code is shown below.

<html>

<head>

<title>Welcome!</title>

<script language="JavaScript" SRC="FMPro?-webportal"></script>

<script language="JavaScript">

function BooksSearchLink() {

j= -1;

for (i in window.webportal.databases) {

if (window.webportal.databases[i].name == "books") {

j = i;

}

}

if (j == -1) {

link = "The collection is temporarily unavailable.

Please try again later";

} else {

link = "<A HREF = /FMRes/" + window.webportal.data-

bases[j].searchViewURL + ">Search"

}

document.write (link);

}

</script>

</head>

<body>

<table width=60% align=center>

<tr>

<td align=center>

<h1>Welcome to the Rare Book Emporium</h1>

<h3>Please click on the link below to search our

collection</h3>

</td>

</tr>

<tr>

<td align=center>

<script language="JavaScript">

BooksSearchLink();

</script>

</td>

</tr>

</table>

Instant Web Publishing 131

C
h
a
p
te

r
5

</body>

</html>

Later in this chapter, we look at another method for creating your own
home page. There, we actually use a FileMaker layout itself as the
home page. For now, satisfied with the job that the WebPortal has done
for us, we turn our attention to selecting styles and views.

Selecting a Style

For each database that you publish to the web using Instant Web Pub-
lishing, you can select a web style that determines the look of your
site. To select a style, go to the File>Sharing screen (see Figure 5.3),
highlight Web Companion under Companion Sharing, and select Set
Up Views.

You then arrive at the Web Companion View Setup, the first screen of
which is shown in Figure 5.4.

132 Chapter 5

Figure 5.3

As you select a style from the drop-down list of choices, you see a brief
description of the style and any browser restrictions that you need to
be aware of. Most of the styles require a browser that supports Cas-
cading Style Sheets, as those allow the Web Companion to accurately
recreate your FileMaker layouts. In fact, only Fern Green and Blue and
Gold 2 work with older browsers (before Internet Explorer 4/Netscape
Navigator 3).

The Soft Gray, Lavender, and Wheat styles are very similar; they
differ only in their color schemes. They are probably the most popular
styles for Instant Web Publishing. The Search Only style restricts
users to the Form View, Table View, and Search pages. Similarly, the
Entry Only style confines users to the New Records page.

Selecting Your Views

Once you’ve selected a style, you’re ready to move on to selecting
your views. The middle three tabs in the Web Companion View Setup
allow you to specify which layout FileMaker should render in response
to IWP requests. The Table View layout (see Figure 5.5) is used any-
time FileMaker needs to display sets of records, such as in response to
a query. The Form View is used to display single records. You also
select a layout as a Search page, but that layout is not rendered as-is
on the web like Form View and Table View layouts. Instead, select a
layout merely as a way of specifying which fields should be searchable.
On each of the tabs, when you select a layout from the drop-down list,

Instant Web Publishing 133

C
h
a
p
te

r
5

Figure 5.4

there is a list of the fields on that layout. Those are simply for your ref-
erence and not for you to choose among.

If you want, you can designate that the same layout be used for
multiple views. Or, by not selecting a layout at all, you tacitly specify
that Layout 0, a virtual layout that contains all fields in the table, is
used.

We recommend that you select layouts that you’ve specifically
designed for the web. For the Table View, it doesn’t matter what your
layout looks like as a form or list in FileMaker. On the web, the fields
on the selected layout are presented as a simple table. We find that it’s
best to choose as your Table View a layout that contains only the three
to five most salient fields from a record. Including too many fields
causes the data to extend off the edge of the browser window and look
sloppy. Web users are unable to do any data editing or entry on the
Table View itself. Clicking on a row in the Table View always takes the
user to the Form View.

The Form View is where you can let loose your FileMaker layout
design talents. We do have a few tips, however, on how to make lay-
outs that look good in a browser:

� Use a white background for your parts. If you use a color and the
user has a browser window larger than the part, they see white at
the bottom. Making big parts to compensate only allows the user
to scroll meaninglessly.

� Use colors and fonts that complement the style that you choose.

134 Chapter 5

Figure 5.5

� Put a little more space between objects than you usually do. The
browser doesn’t always line up everything perfectly, so a little wig-
gle room helps.

� Don’t put objects against the top or left edge of the layout.
Because the style adds top and left elements, it looks best to have
a bit of white space between them and your data.

� Put instructions on your layout that help users understand how to
use the page.

� Don’t use complicated layering of elements, as you run the risk
that something won’t quite line up right in the browser. Similarly,
3D effects don’t render nicely on certain platforms and browsers.

� Be careful using field borders or placing boxes behind your fields.
They may look great on the regular Form View, but clicking on any
data entry field transforms the screen into an edit mode. In Edit
mode, all data fields appear as either regular input fields or pop-up
lists (if it has a value list attached to it on that layout). The edges
of the input fields don’t always line up with your field borders and
background boxes on the web.

� When setting up a layout for your Table View, be sure to go into
the Layout Options and set up the Table View in FileMaker to
show the header and footer if you’d like to have those displayed on
the web. The option to have the column headers act as sort but-
tons carries over to the web as well.

In the end, of course, nothing is better than trial and error. It’s a good
idea also to view your site from a few different machines and browsers.

The final bit of customization that you can do on the Web Compan-
ion View Setup screen is to select a sort option. As shown in Figure
5.6, there are three options you can choose from:

� You can choose not to allow sorting (in which case the link never
appears).

� You can specify a set of fields that users can choose for sorting
records displayed in the Form and Table Views.

� You can hard-code the sort order that you want the records to be
sorted in. In this case, again, the Sort button disappears from the
interface.

Instant Web Publishing 135

C
h
a
p
te

r
5

We caution you against the third option if you have large record sets.
In such cases, forcing a sort before every download to the browser
could slow your site substantially.

Layout Elements on the Web

The Web Companion does a great job of building web pages that look
almost identical to your FileMaker layouts. Nonetheless, there are a
few elements whose behavior on the web merits additional discussion.

Container Fields

There are no problems displaying images stored in container fields on
your web page. FileMaker turns them into JPEGs on the fly. But web
users are unable to put new images into container fields. In case you’re
curious, all of the graphic formatting options for alignment, cropping,
and maintaining original proportions carry over perfectly to the web.

Value Lists

If you attach a value list to a field on any of your web layouts, those
value lists display in the web browser as well. There are often a few
minor formatting issues, however. For instance, pop-up lists and
pop-up menus both render as pop-up menus. Lengthy check box and
radio button lists display nicely as aligned columns in FileMaker. On
the web, they lose their columnar shape and can appear very messy.
Functionally, there are a few minor differences as well. The option to

136 Chapter 5

Figure 5.6

display Other as a choice with radio buttons and check boxes does not
work on the web, nor does the Edit option. More importantly, if you’ve
built a value list dynamically using the contents of a field and also
selected the option to display another field (i.e., so your pick list has
both part IDs and part names displayed), only the first value is dis-
played on the web. This can be a real nuisance. Building a calculation
field that combines the two fields and using that field may seem like a
good workaround, but keep in mind that the entire calculation is set
into your field (not just the first value, as it is in FileMaker).

Field Formatting

Field formatting options that you set for number, date, and text fields
should carry over to the web nicely. For instance, you can set a num-
ber to display using a currency symbol, right-align text in a field, and
use custom date formats with no fear. Font, size, and color are also
translated well.

Merge Fields

Text blocks that contain merge fields do not show up on your web
layouts.

Portals

Portals display wonderfully using Instant Web Publishing. They can
even have alternating row coloring and scroll bars. Best of all, when
you drop into Edit mode, you can edit the content of multiple portal
rows and even add a new related record through the portal.

Scripting

As if rendering FileMaker layouts on the web wasn’t cool enough, the
Web Companion also turns any buttons on your web layouts into
clickable links. This allows you to use FileMaker’s ScriptMaker to add
functionality to your site. Only a small number of scripts steps are cur-
rently supported from the web, and most of them act a bit differently in
IWP than they do normally in FileMaker.

Don’t confuse IWP scripting and calling scripts from Custom Web
Publishing applications.

When you call a script using CWP, you’re in effect asking the host
machine to run the script as if there were a user sitting at the machine.
The script can be as long or as complex as you need it to be.

Instant Web Publishing 137

C
h
a
p
te

r
5

Scripting for Instant Web Publishing is very different. When a lay-
out is requested via IWP, the scripts attached to your buttons are
converted into JavaScript instructions for formulating a URL to which
the Web Companion can respond. For instance, let’s say that you have
a button on your layout that calls the Sort script step. Clicking it from
the web does not actually sort a darned thing. Instead, it takes you to
the Sort page, as if you’d clicked the Sort button in the IWP frame.
Nothing happens on the host workstation.

Besides having only a few commands at your disposal, there are
some severe restrictions on the length of your scripts as well. In order
to run from the web, your buttons can be connected to valid single
script steps or to scripts of one to three lines long. Anything after the
third line of a script is ignored. Also, the Web Companion stops reading
as soon as it finds any unsupported script steps. So, since Beep isn’t a
supported script step, a script that went Sort, Beep would work, but
not one that went Beep, Sort.

An important further restriction is that your script must include a
change of mode, layout, or current record.

The following is a list of the IWP-supported script steps and a
description of their behavior. Some script steps cannot be used in com-
bination with other steps in multi-line scripts. Those that can are
indicated with a “Yes” in the Multi column in the table below.

Script Step Comments Multi

Open This allows you to navigate to another database.
It’s just like you’ve clicked on that table from the
IWP home page. The specified database must be
open and shared to the web on the host machine.

Open URL This creates a hyperlink to whatever address
you’ve specified. You need to specify a full
address, including the http://.

Go to Layout This takes you to a web version of whatever
layout you’ve specified. Using Go to Layout
extends your solution beyond the three layouts
that you can specify in the View Setup screens.

Yes

Go to Related Record This jumps you to the related set of records
through the specified relationship. The other
database must be open and shared to the web.

Go to Record/Request/
Page

The options to go to First, Last, Next, and Previous
all function the way that you’d expect them to.

Yes

Go to Field Changes to Edit mode Yes

New Record Request Changes to New Record mode Yes

Enter Browse Mode Navigates to the Form View defined for the
database

Yes

Enter Find Mode Navigates to the Search page defined for the
database

Yes

138 Chapter 5

Script Step Comments Multi

Show All Records As you’d expect, this keeps the current view but
with a found set of all records.

Perform Find Submits a search request. It doesn’t care about
any requests that you might have saved with the
script.

Exit Record Submits a new record request, an edit request, or
a search request, and automatically navigates
back to the Form View

Sort Navigates to the Sort page

Delete Record/Request Deletes the current record. It can’t be part of a
script; it must be called directly by a button. It’s
performed with or without a dialog, as specified
by the script step parameter.

View as Table View current layout as Table Yes

View as Form View current layout as Form Yes

View as List View current layout as Table Yes

View as Cycle Toggles between Form View and Table View Yes

Open Help Opens a new browser window with help for users
on navigating using the Instant Web Companion
tools

In the next section we build an actual application using Instant Web
Publishing, and we have occasion to write several scripts that further
explain their use and behavior.

Building a Customized IWP Application

Most developers, when they think about Instant Web Publishing, think
about a tool full of limitations. They appreciate its ease—select a style,
select a few layouts—but lament the lack of control and extensibility.
They are often surprised to discover that there’s another facet to
Instant Web Publishing, one that in fact provides a great deal of
programmability.

To show you this other facet of IWP, we’re going to use IWP tools
to build a complete web application. It doesn’t rival the complexity of
the custom web apps we build later in the book, but it hopefully gives
you some idea of the scope of applications that you can build with IWP.

For the inspiration for our application, we return to the fictional
company that we invented in Chapter 1—Blue Horizon Bison
Breeders. The breeders spend most of their time at the company’s
headquarters, but they also spend a lot of time on the road. For a con-
tact management system, the company uses a simple FileMaker Pro
database system that consists of two files, Contacts.fp5 and His-
tory.fp5. Contacts contains standard name, address, and phone info.
History records notes from communications with a contact. They’d

Instant Web Publishing 139

C
h
a
p
te

r
5

like to make the system available as part of their company intranet but
don’t want to spend a lot of time or money having a custom web solu-
tion developed. Let’s see what they might accomplish in just a few
hours using Instant Web Publishing.

Hiding the Frame

As we’ve discussed, one of the features of Instant Web Publishing is a
built-in navigation frame. You can change the appearance of the frame
some by selecting a different style, but that’s the extent of your cus-
tomization. You can’t change the order of the links, add links, or insert
your logo. Essentially, you’re giving up flexibility in exchange for ease
of use and development time.

If you’d like, however, you can get rid of the frame entirely. By
doing so, you take responsibility for providing the user with all of the
navigation that they need, and that’s no trivial task. We think the
increase in flexibility is well worth the effort. Once the frame is gone,
what the web user sees in his browser is your exact FileMaker layout.
You’re in total control of the look, feel, and functionality. The con-
straints are those imposed by what you can and can’t script, which we
discussed in the previous section.

Turning the IWP frame off is trivial. Simply create a script with a
single step—Toggle Status Area[Hide]—and set that script as a
startup script. Do that by going under Edit>Preferences>Document,
as shown in Figure 5.7. This signals to the Web Companion that it
shouldn’t include the navigation frame as it assembles web pages. The
startup script is called with each and every IWP request to that data-
base. If you have multiple
tables in your solution, you
want to set up this same
startup script in each of
them to ensure that navi-
gating between databases
doesn’t inadvertently reacti-
vate the frame.

140 Chapter 5

Figure 5.7

Using a Layout as Your Home Page

Earlier, we discussed how you can create your own home page and
embed links to IWP-generated pages using JavaScript. There’s also an
easy way to use one of your FileMaker layouts as a home page, and
that’s what we do for the Bison Breeders WebContacts application. In a
nutshell, our home page becomes a small HTML page that contains a
redirect to a URL that renders one of our layouts.

First, let’s look at the FileMaker layout that we want to use as our
home page. It’s shown in Figure 5.8. It’s nothing fancy, but it’s much
easier to design a page using FileMaker’s layout tools than any
web-authoring tool we’ve ever used.

Next you need to determine the URL that displays this layout on the
web. You might be able to deduce the logic of IWP URLs, but that’s
hardly necessary. If you temporarily configure the database to use this
layout as its Form View and tell the Web Companion to use its built-in
home page, you can simply copy the URL generated when you click
the link from the home page. In our case, that URL is:

http://<your IP address>/FMRes/FMPJS?-db=Contacts.fp5&-layID=

7&-token=25&-max=1&-format=formvwcss.htm&-mode=browse&-findall

Instant Web Publishing 141

C
h
a
p
te

r
5

Figure 5.8

Armed with this information, we’re ready to create the redirect page.
Let’s call our new home page start.html. The entire page is as follows:

<html>

<head>

<title>Page Loading...</title>

<meta http-equiv="Refresh" Content="0; URL=/FMRes/FMPJS?-db=

Contacts.fp5&-layID=7&-token=25&-max=1&-format=

formvwcss.htm&-mode=browse&-findall">

</head>

<body>

<center>

<h3>One moment while the page loads...</h3>

</center>

</body>

</html>

After saving this document in the web directory of our host machine,
we configure the Web Companion to use start.html as its home page.
Now, anyone going to our IP address briefly sees a message asking
them to wait while the page loads, and then they see our wonderful
menu. These two screens are shown in Figures 5.9 and 5.10, respec-
tively. Remember that we’ve already hidden the IWP frame by creating
a startup script that hides the status area.

142 Chapter 5

Figure 5.9

Planning the Site

With the home page in place, it’s now time to think about functionality.
We find it helpful to conceptualize our layouts as web pages and plan in
advance the navigation from place to place. But know that designing
web pages that flow well is very different from designing intuitive
FileMaker solutions. In FileMaker, the same layout can easily be used
for a variety of purposes, such as displaying, editing, or finding records,
and there usually isn’t a prescribed path through a system. In the
majority of FileMaker solutions, users can switch layouts using the
pop-up in the status area, they can move from table to table via the
Window menu, and they can use menu commands or keyboard short-
cuts to perform actions such as deleting or duplicating records. You can
certainly create FileMaker systems with more user constraints, but
the point is that you don’t have to.

Web sites require more structure. If a user should have the ability
to move from point A to point B or to perform some action, then you
have to create a mechanism for him to do so. On the web, you must
think in terms of requests and responses. A user submits a request for
a set of records from a search page; the response is a list of records. A
user requests a new record; the response is a blank form that the user
needs to fill out. A user requests that his new record be submitted; the
response contains the record data as a read-only form. Usually, each

Instant Web Publishing 143

C
h
a
p
te

r
5

Figure 5.10

response page contains the seeds for one or more possible subsequent
requests.

For the WebContacts system, we create a handful of FileMaker
layouts, each of which serves a particular function. In Figure 5.11, you
can see a site map for our application. A site map is nothing more than
an overview of how a user can navigate through the system. It’s a
schematic of where the links on a page lead. Even if you don’t create
formal site maps suitable for display on your mother’s refrigerator, a
site map is an indispensable tool for creating web applications.

You can download the databases that we used for the WebContact sys-
tem from www.wordware.com/files/fmweb and www.moyergroup.com/
webbook. We suggest that you take the time to download them to your
system and try them out. They’re fully editable, so they also provide a
place for you to play around and learn firsthand how FileMaker scripts
work in IWP.

We don’t describe in detail every button or layout of the solution.
That would become tedious quickly. Rather, we look closely at a few of
the key functional areas, and you can explore the rest of the screens at
your leisure using the demo files.

144 Chapter 5

Figure 5.11

The Search Routine

The first routine that we investigate is the search routine, which
begins when the user clicks Find an Existing Contact from the main
menu. Of course, before that link can be enabled, we must first build
the destination layout/page so that we have some place to actually link
to.

All you need for this is a FileMaker layout that contains the fields
that you want to allow the user to search on. In our demo system,
we’ve decided that searching on first or last name, city, or state is suffi-
cient to find a set of contacts. Our search layout is shown in Figure
5.12. Even though we’re just at the point of navigating to the search
screen, you can see that we’ve stubbed in buttons that are eventually
used to perform the find. Those buttons do absolutely nothing at this
point, but they help us remember where we’re headed.

So how does the user manage to get from the menu to the search
screen? If we were creating static HTML web pages, we’d create a
hyperlink from one page to the other. But since we’re using Instant
Web Publishing, all we need to do is create a FileMaker script! All of
the scripts that we are creating are quite simple, and none are more
than three lines long. Keep in mind that some script steps behave dif-
ferently for the Instant Web Publishing engine than they normally do.

Instant Web Publishing 145

C
h
a
p
te

r
5

Figure 5.12

You might find it helpful to refer back to our IWP scripting section
from time to time.

We call our new script Go to Search Page, and we attach it to the
top link on our menu layout. The script is simply the following two
steps:

Go to Layout ["Search"]

Enter Find Mode

It doesn’t make a bit of difference whether you choose the options to
Restore Find Requests or Pause for the Enter Find Mode step. These
are ignored for IWP purposes. There’s of course no such thing as Find
mode in a web browser. What FileMaker is doing is simply creating a
form where the user can enter some text. That text is not turned into
an actual find request until that form is submitted.

Figure 5.13 shows what the user will see in her browser when she
clicks on the link.

In case you’re curious, the link from the menu to the search page was
transmuted into the following link by the Web Companion:

http://localhost/FMRes/FMPJS?-db=Contacts.fp5&-layid=9&-format

=searchcss.htm&-max=1&-token.0=25&-token.1=9&-mode=search&-lop=

and&-findall

146 Chapter 5

Figure 5.13

The “-layid” tells the Web Companion which layout to render, and the
“-format” and “-mode” values tell it to render it as a search form.

Anytime you’re in Find mode using IWP, clicking into one of the
search fields brings up a palette of search options. All of the options
available in FileMaker—from “…” for ranges to “!” for duplicates—are
available to the user. It might seem trivial and hardly worth our men-
tion, but if you had to create functionality like that from scratch in a
typical web app, you’d know it was hardly trivial. There’s no way to
disable the search option palette, and that’s something that you’ll prob-
ably start to wish for. Although it adds fantastic functionality, it can get
in the way sometimes.

Once our user is at the search page, we’re going to give her three
options for how to proceed: She can return to the menu (canceling the
search), she can enter some search criteria and select Find, or she can
select Find All. All of these actions can be accomplished through
FileMaker scripting.

The script to return to the menu is very similar to the first script
that we wrote:

Go to Layout ["Menu"]

Enter Browse Mode

The Find script needs to submit the user’s request and go to the detail
page (which we explore in a moment):

Perform Find

Go to Layout ["Address Detail"]

Enter Browse Mode

The Find All script is predictably similar:

Show All Records

Go to Layout ["Address Detail"]

Enter Browse Mode

The Perform Find step tells the Web Companion that it should take the
form parameters of the submitted page and consider them to be a find
request (as opposed to, say, considering them to be a new record). You
must be in Search mode for a Perform Find to do anything. On a page
where the mode is Browse or Table, a button with a Perform Find
would not even be an active link.

You might wonder if the Enter Browse Mode at the end of each of
these is redundant. It would be, of course, if this was a straight File-
Maker script. On the web, however, after a Find is performed, the
default mode is Table mode. We find that Table mode is unsuitable as a
web tool, and so we go directly to a Form View instead.

Instant Web Publishing 147

C
h
a
p
te

r
5

There are three reasons that we avoid Table View. The first is an
aesthetic reason; you can’t customize a table view enough to make it
look like it’s part of your solution. You can put a header on a Table
View layout, but you can’t edit the column labels, you can’t move the
table away from the left edge of the browser, and you can’t put fields in
any arrangement other than side by side. So, it’s really impossible to
create a typical web-like hit list that users have come to expect from
the web. Figure 5.14 shows what a table view might look like as a
search results screen.

Lest you think we’re just being petty to quibble over the interface, the
second reason we avoid Table View is that you can’t navigate off it
well. Clicking a row in Table View automatically switches you to
Browse mode on the same layout. You can’t put a script over the row
that, say, navigates to a different detail layout and goes to Browse
mode.

The third reason is another functional issue. Without the IWP
frame, there’s no way to limit the result to a given number of records
and have next and previous links to move through the found set (as
you typically want on a hit list). Actually, instead of returning all of the
records as one big set, the Table View automatically limits the set to

148 Chapter 5

Figure 5.14

25 records. With no way to navigate, you’d never be able to see result
records other than the first 25.

This concludes our discussion of the search routine. We turn next
to the address detail screens and learn how to edit records.

Detail and Update Pages

In FileMaker, any time you’re viewing a record, you’re probably also
going to be able to edit that record by clicking into a field. When you’re
done editing, you need to click out of the field or do something else to
exit the record, and your changes are automatically saved.

That model doesn’t translate well to the web. After making
changes to a record, a user explicitly needs to submit that record
through the browser to the Web Companion. The question then
becomes whether you want the user to be in a perpetual edit mode or
whether you’d rather differentiate between Browse and Edit modes.
We think the latter is more web-like and makes for a better user expe-
rience. But it means a bit more development work to make this
happen.

First, let’s create some layouts to use for Browse mode. We can
probably fit both the contact information and the note history on the
same layout, but we thought it would be educational to show a tabbed
interface implemented on the web. Figure 5.15 shows the layout that
we came up with for browsing addresses, and Figure 5.16 shows the
one we use for viewing notes.

Instant Web Publishing 149

C
h
a
p
te

r
5

Figure 5.15

On both layouts, the Menu button runs the same script that we used
earlier to get back from the Search page to the menu. The record
counts in the top right were created as calculation fields that use basic
Status functions: Status(CurrentRecordCount), Status(Current-
FoundCount), and Status(CurrentRecordNumber). Remember that you
should set calculations that reference status fields explicitly to be
unstored so they keep updating.

The arrows for navigating from record to record call four different
single step scripts. They’re each just the obvious variant of Go to
Record/Request/Page []. The tabs themselves are buttons set to call
the following scripts:

Go to Notes Detail:

Go to Layout ["Notes Detail"]

Enter Browse Mode []

Go to Address Detail:

Go to Layout ["Address Detail"]

Enter Browse Mode []

Before looking at the Edit buttons, there’s one other thing that you
probably want to do on your browse layouts. If a user is browsing a
record and she clicks on a field that allows entry, she is automatically
put in Edit mode on the same layout. That might not sound so bad, but
once in Edit mode, the user has no way to submit the edited record.
We think the best way to avoid this is to set all of the fields on the
browse layouts to not allow entry. (You do that by selecting the fields,

150 Chapter 5

Figure 5.16

going to Field Format, and unchecking the Allow Entry into field check
box.)

By creating these two layouts and writing a few simple navigation
scripts, a user should be able to perform a search (or find all records)
at this point and easily comb through the search results. Figures 5.17
and 5.18 show how well the two browse layouts translated to the web.
Without the status bar on the FileMaker screens and the button bar at
the top of the web screens, it would be pretty darn tough to tell the
two sets apart, wouldn’t it?

Instant Web Publishing 151

C
h
a
p
te

r
5

Figure 5.17

With the browse layouts already built, the edit screens are very easy to
make. Just copy the layouts, turn on the ability to enter fields, and do a
bit of scripting. Notice that we’ve also taken off the navigation tools.
The idea is that a user drops into Edit mode, and the only way out is
either to submit the record or cancel. There weren’t any technical rea-
sons why we did this; we just felt it made for a more intuitive and
web-like user experience. The Address Edit page is shown in Figure
5.19.

152 Chapter 5

Figure 5.18

Once you’ve created the edit layouts, you can create navigation scripts
from the browse pages. The script behind the Edit button on the
Address tab is as follows:

Go to Address Edit:

Go to Layout ["Address Edit"]

Go to Field[]

The Go to Field step is what puts the user into Edit mode. It doesn’t
matter, by the way, if you have Go to Layout before or after Go to
Field. For consistency, we’ve been putting Go to Layout as the first
step in our navigation scripts.

The scripts to update the changed record and cancel are just as
basic as the others that we’ve been working with:

Submit Add/Edit:

Go to Layout ["Address Detail"]

Exit Record/Request

Return to Detail:

Go to Layout["Address Detail"]

Enter Browse Mode[]

When you enter Edit mode, FileMaker generates a form and populates
it with data from the database. It’s the Exit Record/Request in the first
script above that tells the Web Companion to update the database
based on the values in the form.

Instant Web Publishing 153

C
h
a
p
te

r
5

Figure 5.19

The portal on the Notes tab surprisingly doesn’t present any addi-
tional challenges as far as editing goes. You can edit one or more
records in the portal or even add a new related item. All of these
changes are saved once the user clicks Submit.

Validation

Hopefully, the examples of the search routine and the detail/update
pages give you a better idea of how to use scripts to control the func-
tionality and navigation of your IWP site. Instead of walking screen by
screen through the rest of the app, we’re turning now to two final top-
ics: field-level validation and creating dynamic links to other web sites.

The reason we want to discuss field validation isn’t because it’s a
particularly troublesome concept or hard to implement with IWP.
Rather, we want to show an example of how IWP takes care of alert
dialogs and errors. You don’t have any programmatic control over the
content or appearance of error messages, but that’s a small price to
pay when so much is done for you.

To see field validation at work, let’s put an arbitrary restriction on
one of the address fields. Say, perhaps, that you want two (and only
two) characters in the State field. In the database, you’d set this up by
adding a validation by calculation using the following formula:

Length (State) = 2

When that statement is true, the record passes our validation. If it’s
ever false, we’d like an error to stop the user from submitting the
record.

Back on the web, if you were now to attempt to edit an address,
putting in “Illinois” as the state, you’d see an error dialog similar to
that in Figure 5.20.

Note that it doesn’t matter if you set the validation to be strict or not,
nor will anything you set as a custom error message ever be seen on
the web.

154 Chapter 5

Figure 5.20

Building Dynamic Links to External Sites

The final experiment we conduct using the WebContacts system is to
build a dynamic link to an external site. You may have noticed on the
address detail screen a button that says Map It. It’s finally time to see
how that works. The concept is hopefully an intuitive one. Since we
have address information on a contact, can’t we just use an address
service, such as mapquest.com, to get directions?

The first thing to do is figure out what a valid request to mapquest
looks like. You can do this simply by running an address query manu-
ally and copying the URL that’s generated. It should be easy to see
which parts of the URL are from your query.

Once you know the general structure of a query, you can create a
calculation field in your database that assembles a well-structured
request. For our Map It button, we defined a new field called
MapQuestLink with the following definition:

"http://www.mapquest.com/maps/map.adp?country=US" &

"&address=" & External ("Web-ToHTTP", Address1) &

"&city=" & External ("Web-ToHTTP", City) &

"&state=" & External ("Web-ToHTTP", State) &

"&zip=" & External ("Web-ToHTTP", Zip) &

"&homesubmit=Get+Map"

Remember that URLs should never have spaces in them. If we were
simply to substitute an address like “123 Main Street” into the URL,
our request would fail. To prevent this, we chose to use one of the
External functions of the Web Companion. The Web-ToHTTP function
takes a string and returns an HTTP safe version of that string. So for
instance, “123 Main Street” would be encoded as “123%20Main-
%20Street.” You could easily do a substitution and replace spaces with
%20s, but the Web-ToHTTP function takes care of other characters
too, such as ampersands and angle brackets (< and >).

Finishing the task is easy. You simply define a new script with the
single step OpenURL and tell it to open the URL given by your calcu-
lation field. Now hook that up to the button on the layout and test it
out.

Summary

We hope that after reading this chapter you are inspired to try using
Instant Web Publishing to build a simple web application. We began the
chapter with an overview of how to configure a file for Instant Web
Publishing. This included selecting a style and layouts for various

Instant Web Publishing 155

C
h
a
p
te

r
5

views, as well as how to use the WebPortal object to create your own
custom home pages. The next main topic was scripting. We discussed
which script steps work with IWP and how their behavior differs in an
IWP context.

In the context of building an actual web application, we then
showed you how to hide the IWP frame and use a redirect to make it
seem that one of your layouts is actually your home page. Once the
frame is gone, IWP at last becomes somewhat of a development envi-
ronment. If you’ve never tried doing this, you’ll be amazed at how
much quicker it is to develop pages and functionality using FileMaker
rather than any other development tool.

Demo files containing the complete WebContacts application are
available at www.wordware.com/files/fmweb and
www.moyergroup.com/webbook.

156 Chapter 5

Chapter 6

Custom Web
Publishing with CDML

By now your web skills are increasing. You may have used FileMaker’s
text calculations to publish static updates to your HTML-based web
site. You’ve tinkered with XML and XSL to make the process more
flexible and take the burden off of FileMaker itself. You’ve also web-
enabled some databases using Instant Web Publishing. But you still
want more. Well, who wouldn’t? In the world of technology, more is
usually available. The same is true with FileMaker web publishing.
There are more tools and techniques ahead of you than behind you at
this point, but they come with a steeper price. We’re beginning to
leave the point-and-click world of the native FileMaker interface and
enter the wide world of text-based programming. From here on, a firm
grounding in HTML is essential. Exposure to formal programming
concepts are somewhat helpful as well, but if you don’t have that expo-
sure, there’s nothing to worry about. We fully explain all the concepts
as we go.

Introduction to CDML

CDML is a tag-based, server-side scripting language. Isn’t that a
mouthful? Let’s examine that statement piece by piece.

CDML is a scripting language. A scripting language is an imprecise
term that usually refers to a language that’s used to automate or drive
some other process or tie several disparate processes together as a
kind of “glue.” Examples of other scripting languages include
AppleScript, WinBatch, Unix shell scripts, and languages like Perl,
Python, and TCL.

157

CDML is a server-side language; when you write a script in
FileMaker and that script is executed by someone running her own
copy of the FileMaker software, the script is executed locally on the
user’s own desktop. The FileMaker client is responsible for finding the
script, following its instructions, and giving the result back to the user.
This is known as client-side execution. With most web technologies
though (CDML included), the scripting instructions are processed by
the web server itself, and only the result (which is generally a page of
HTML) is actually returned to the user.

CDML is a tag-based language. Like the other web scripting lan-
guages we look at, CDML can be used inside pages containing regular
HTML code. The CDML code stands out because it is usually con-
tained inside CDML-specific tags that augment the regular HTML tag
set. Whereas HTML might indicate bold text this way,
CDML might use this syntax to refer to [FMP-Record]data that needs
to be pulled from a record in a FileMaker database[/FMP-Record].
Everything inside the [FMP-Record]. . .[/FMP-Record] tags is pulled
out and replaced with content from a database.

In order to develop using CDML, all you need is a regular, every-
day copy of FileMaker. Assuming you’re all set with FileMaker, let’s go
ahead and write a very simple CDML page that illustrates the idea of
tag replacement.

Getting Started

The prerequisites for getting started with CDML are almost exactly
the same as those for working with Instant Web Publishing. You need
the following:

� A copy of FileMaker Pro with the Web Companion plug-in enabled

� At least one FileMaker database open on your development com-
puter with the Web Companion enabled (this is done under
File>Sharing, in case you’ve forgotten)

� A text editor of your choice (for Macintosh users we recommend
BBEdit; Dreamweaver is a popular cross-platform choice with a
graphical interface)

First, let’s fire up your text editor and type in the following page:

<html>

<head>

<title>Server Date Test</title>

</head>

<body>

158 Chapter 6

Date is: [FMP-CurrentDate] [FMP-CurrentTime]

</body>

</html>

Save the document to the Web folder inside your FileMaker folder.
Name it date.html.

The first thing we want to remember is that the Web Companion is
a web server in its own right. To see this, open a browser and type in
the following URL (this assumes that you’ve configured your Web
Companion to operate on port 591, which is what we recommend):

http://127.0.0.1:591/date.html

You should see a web page that shows the words “Date is [FMP-
CurrentDate] [FMP-CurrentTime].” The Web Companion, acting as a
web server, received our request for the document called date.html
and sent it back to the browser.

We’ve seen that the Web Companion, all by itself, can serve up a
web page, but the result isn’t quite what we were looking for. There
are some special instructions embedded in the date.html page, written
in CDML. In particular, the [FMP-CurrentDate] is supposed to be a
cue to the Web Companion to insert the current date at that point in
the HTML document. Each time we refresh the page, we should see a
different time inserted there, but all we got back was the raw CDML
tag, exactly as we typed it in. Why is that, and how do we get the Web
Companion to read that tag as CDML and do something with it, rather
than reading it as plain text and shipping it unceremoniously back to
the browser?

In order to tell the Web Companion to look for CDML tags inside
the file that we wrote, we need to format our URL a little differently.
Instead of calling the page directly, we need to call the Web Compan-
ion’s CDML engine and tell it to do something with that page. Bear
with us for a moment and follow these instructions, and we’ll explain
what’s going on.

Open the BHBB_Product.fp5 file. Make sure it is shared via the
Web Companion and that the Web Companion plug-in is enabled. Make
sure that the database file is in Browse mode. Now go back to your
browser and type the following URL:

http://127.0.0.1:591/FMPro?-db=bhbb_Product.fp5&-lay=Web&-format=

date.html&-view.

There’s our date.html page again, but this time the CDML tag has
been replaced with the actual time of day. Hit your browser’s Refresh
button and watch the time update.

Custom Web Publishing with CDML 159

C
h
a
p
te

r
6

Okay, that works now, but what’s with that hideous URL? It repre-
sents a string of commands to the Web Companion’s CDML engine.
This URL contains what’s sometimes called a query string—every-
thing before the question mark is the URL proper, and everything after
the question mark is a set of specific commands that we’re sending
along. Notice that instead of calling the date.html page directly, we’ve
accessed a URL simply called FMPro. A URL of the form http://
<machine hosting Web Companion>[:optional port number]/FMPro
represents a call to the Web Companion’s CDML engine. The Web
Companion, when it sees a URL of this form, knows that it’s not trying
to fetch an actual HTML page directly. It knows that the URL repre-
sents a call to the CDML engine, and that specific commands will
follow.

All right then, what about that ugly query string? Its structure is
very simple; it’s a set of what is known as name-value pairs, four of
them in this case. The string of name-value pairs begins at the ques-
tion mark in the URL. Each name-value pair is separated from the next
by an ampersand. (Query strings and name-value pairs, by the way, are
not peculiar to the Web Companion at all. They’re a standardized
means of sending commands to pieces of middleware running on a web
server. They’re part of the HTTP standard.) Here we’re using name-
value pairs to send four specific pieces of information to the CDML
engine: the name of a FileMaker database to use, a specific layout
within that database file, a web page to process and display, and finally,
the name of a database action to perform. So what this URL really says
is this: “Hey, Web Companion, look at the web layout in the BHBB_
Product.fp5 file, do a view action, take me to the page called date.html,
and process all the tags you find inside it.”

Well, this seems confusing. Why do we need to reference a data-
base and a layout? We didn’t do anything with any database data yet;
we just asked to see the current time. Well, it’s a foible of the Web
Companion that it always requires you to give it at least three pieces of
information: a database, a web page to display at the end, and the name
of an action to perform. In many cases, you need to give the CDML
engine the name of a layout as well. In this case, the action is “view,”
which for now we’ll think of as meaning “perform no specific database
action; just take me to the results page.” Regardless of what was speci-
fied for the database, the layout, and the action, the Web Companion
always processes the target page (the format file, as CDML calls it)
and acts on any CDML commands that it finds in it.

160 Chapter 6

Let’s step back and review what we know so far about using
CDML. In order to create a web page that contains CDML commands
and have the Web Companion act on it, we do the following things:
Write the page, with all necessary CDML instructions, and send a
command to the Web Companion through a URL like the one we just
saw, specifying a database, a layout, an action, and the CDML file that
is the final page to display. When the Web Companion receives this
string of commands, it performs the specified database action (so far
it’s a view, which doesn’t do much), using the specified database file
and the specified layout. Then it reads the specified results page (for-
mat file) and processes all the CDML commands in it, using, if
necessary, the results of the just-completed database action. It then
sends the resulting HTML page back to the user’s browser.

This all becomes clearer if we move on to another example. Let’s
do something that requires an actual database action. We want to write
a page that looks for all the animals in a database file and shows the
user a formatted list of those records.

Let’s open up the Animal.fp5 database we used in Chapter 4. Make
sure the database is web-enabled (see Chapter 3 for a refresher on
how to do this).

Now create the following web page, and save it in your Web folder
as animals_all.html:

<html>

<head>

<title>View All Animals</title>

</head>

<body>

<table>

<tr>

<th colspan="7">A listing of all animals in the Blue

Horizons herd</td>

</tr>

<tr>

<th>Name</th>

<th>Born</th>

<th>Father</th>

<th>Mother</th>

<th>Animal ID</th>

<th>Birth Weight</th>

<th>Current Weight</th>

</tr>

[FMP-Record]

<tr>

<td>[FMP-Field: name]</td>

<td>[FMP-Field: date_birth]</td>

<td>[FMP-Field: id_father]</td>

Custom Web Publishing with CDML 161

C
h
a
p
te

r
6

<td>[FMP-Field: id_mother]</td>

<td>[FMP-Field: id_animal]</td>

<td>[FMP-Field: weight_birth]</td>

<td>[FMP-Field: weight_current]</td>

</tr>

[/FMP-Record]

</table>

</body>

</html>

Now that the page is written, let’s view it again in our browser:
http://127.0.0.1:591/animals_all.html.

As usual, we get a plain text rendering of the page with all the
CDML sitting in the page in unprocessed lumps. Now the fun begins.
Enter the following URL into your browser:

http://127.0.0.1:591/FMPro?-db=Animal.fp5&-lay=Web&-format=animals_

all.html&-findall.

This looks similar to the last one, but the database action is different;
instead of -view, it’s -findall. The meaning of the findall action com-
mand should be clear—it instructs the Web Companion to find all the
records in the specified database. Then we go to the results page, ani-
mals_all.html, process whatever CDML we find there, and hand the
result back to the user.

Let’s look at the CDML for the page in more detail. There’s not
actually a whole lot of CDML there. There are a pair of tags called
[FMP-Record]. . .[/FMP-Record] and a bunch of uses of the [FMP-Field]
tag. What do these mean? Let’s look at each one in turn.

The [FMP-Record] tags are an example of what CDML calls a
replacement tag. Whenever CDML encounters a replacement tag, it
removes it and replaces it with something else. In the case of a tag like
[FMP-CurrentDate], CDML just replaces the entire tag with the cur-
rent date. [FMP-Record], on the other hand, is an example of a looping
replacement tag—everything between the start and the end of the tag
is repeated some number of times. How many times depends on the
exact tag being used. In the case of [FMP-Record], the replacement
happens as many times as there are records in the current found set. If
there are five records in the current found set, the code between the
start and the end of the tags is executed five times.

Hold on, you say. What found set is that? Nothing in this page per-
forms a search. How would I know how big the found set is? This is a
great question, and it illustrates a point of fundamental importance, not
only for CDML but for all forms of web programming, which we can
state as follows: In order to figure out what’s going on in a dynamic

162 Chapter 6

web page, you have to know not only where you are but where you
came from. We can refine this still further for CDML. What you need
to remember in CDML (and in Lasso as well) is this: In many cases,
the database action is performed before the target page (format file) is
processed. (This is generally true of what’s sometimes called the
“classic” CDML/Lasso programming style. We demonstrate a more
powerful programming model that relies on inline actions later.)

Let’s look again at the URL that we used to get to the ani-
mals_all.html page:

http://127.0.0.1:591/FMPro?-db=Animal.fp5&-lay=Web&-format=animals_

all.html&-findall.

When the Web Companion sees this URL, the very first thing it does is
perform the database action. That action then usually yields a found
set; if the action was some sort of search, the found set contains
everything in the specified database that met the search criteria.
(Actions that edit or add a single record generally yield a result set of
one record, namely the record being added or edited.) Once the action
is completed, the file named in the -format tag is loaded and processed.

Let’s look back at animals_all.html. Remember the earlier rule—
we need to remember how we got here. In our case, we got here
through a URL that included a -findall command. So we wrote the page
with the assumption that it would be preceded by some kind of search
that would give us a set of records to work with. What we want to do is
build an HTML table with one table row per found record. So we want
to loop through our found set and write an HTML table row for each
record. That’s exactly what the [FMP-Record]. . .[/FMP-Record] tag
lets us do. The code inside the tag is repeated once for each record
found.

If we inspect the code inside the [FMP-Record]. . .[/FMP-Record]
tag, we see that it includes instances of another CDML tag called
[FMP-Field]. This tag simply inserts the value of the specified field
from the current database record. So when we say [FMP-Field:name],
we’re telling CDML, “replace this tag with the value of the name field
from the current database record.” Hold on again, you say. Current
record? Which one is that? In a looping tag like [FMP-Record], the cur-
rent record is going to change each time through the loop. The first
time through the loop the [FMP-Field] tags pull values from the first
record; the second time through they reference the second record and
so on.

Okay, let’s review once more. When we call our animals_all.html
page via the special Web Companion URL that we used before, here’s

Custom Web Publishing with CDML 163

C
h
a
p
te

r
6

what happens: The Web Companion does a search for all database
records. It holds the results in memory (assuming there were no
errors on the search) and then loads the animals_all.html page and
looks for CDML tags inside it. It finds the [FMP-Record] tag pair,
which instructs it to loop through all the records in the found set and
perform the actions inside the tags for each found record. This code, in
turn, tells the Web Companion to extract certain fields from the cur-
rent record, each time through the loop, and insert them into code that
builds an HTML table row.

Variable Tags and Replacement Tags

If you’ve sufficiently recovered from that example, let’s expand it a bit.
In doing so, we learn about a distinction that may have been confusing
to you up to this point. Let’s look at the [FMP-Record entry in the
CDML Reference in the appendix. Everything between the [FMP-
Record] and [/FMPRecord] tags will be repeated for each record in the
found set. The CDML Reference also directs our attention to the -Max
and -Skip tags. If we look at those, we see that these commands give
us a way to, for example, tell CDML the maximum number of records
to show at one time. If -Max is set to 10, the [FMP-Record] tag pair in
our page loops a maximum of ten times, regardless of how big the
found set is.

That’s all fine, but how do we specify a value for -Max? Do we put
it somewhere inside the results page? If so, where? Looking at the
CDML reference entry for -Max gives a clue. It shows a URL that
includes the -Max parameter: FMPro?-DB=Employee.fp5&-Lay=
WebSearch&-Format=EmpList.html&-Max=15&-FindAll. (There’s also
another flavor of the -Max command that uses an HTML form, but
we’re going to hold off on talking about that method for now.) So it
seems that the value of -Max is something that gets set in a name-
value pair, just like the values for -DB, -Lay, and -Format. Let’s modify
our “all animals” URL and see what happens: http://127.0.0.1:591/
FMPro?-db=Animal.fp5&-lay=Web&-format=animals_all.html&-Max=

5&-findall. Our page comes back as before but with only five records
shown. That worked well. It limited us to five records, which is what
we wanted. But it raises a puzzling question; it seems that we can
issue CDML instructions in two different ways: either in name-value
pairs that we put into URLs or in replacement tags that we put into
results pages. Which is which, and what’s the difference?

164 Chapter 6

To start with, let’s look at the CDML Reference Guide in the
appendix. Look over the different tags and notice that we divide the
available commands into three groups: request parameters, action
parameters, and replacement tags. The request parameters and the
action parameters all begin with a hyphen, whereas the replacement
tags are enclosed in square brackets. Here’s how to think about the
difference: We said before that in order to figure out what happens
when a results page (format file) gets processed, we need to know two
things—not only what CDML code is in the current file but which
commands we issued on the way to that page (database name, layout
name, etc.). To understand the different types of CDML tags, we can
rephrase that somewhat. CDML is divided into two types of com-
mands—those that are processed on the way to a page (action and
request parameters) and those that get processed when you get there.
Commands of the first type always begin with a hyphen (in CDML syn-
tax) and are passed along with the rest of the web request. So far, all of
those requests have been in the shape of a URL, but we discuss
another way later on. Commands of the second type (replacement
tags) are placed into a text file and processed when that file is loaded
as a results page (format file). Of those in the first group, some tags
(the action parameters) specify a database action to be taken before the
format file is loaded, while the rest (request parameters) specify addi-
tional information that CDML needs in order to perform the specified
action.

To tie all this together, let’s take one more look at how we issue
commands to the Web Companion and get back a page with dynamic
data in it:
1. We create a special URL that contains a number of named values.

The minimum we need is to provide values for -db and -format
(though we really should provide a specific layout as well) and pro-
vide an action command, such as -findall or -view.

2. When the user clicks or otherwise activates the URL, Web Com-
panion performs the requested action against the specified
database. If we’ve added any additional named values to the com-
mand, such as -Max, it takes those into account.

3. Web Companion loads the specified target page (CDML, again, calls
this the format file, but we find the term “target page” more
descriptive) and processes any CDML commands that it finds
there. If any of those commands refer to database data, CDML uses
the found set that resulted from the just-completed database action.

Custom Web Publishing with CDML 165

C
h
a
p
te

r
6

Building Applications Using CDML

Now that we understand the basic mechanisms that the Web Compan-
ion uses, it’s time to write some software. Let’s start with a few
simple pages for our friends at BHBB and work up to a more complex
application.

The Web Store Page

Recall that Karen wanted a way to pull weekly specials from her
FileMaker database dynamically, rather than having to go in and edit
the store’s web page by hand each week. Her existing static page is a
very simple document; it’s really just a one-page brochure about the
store with its hours and locations (BHBB actually maintains two
stores, one on the reservation itself and one down in Lone Wolf, about
14 miles away). Instant Web Publishing is not really suitable for this,
since Karen just wants to drop a little bit of dynamic data into a page of
her own designing; she doesn’t need anything like the full IWP inter-
face, not even if she loads it down with password restrictions.

Karen keeps all her product information in a database file called,
appropriately enough, Product.fp5. In the Product file is a field called
Special, which can have a value of either “yes” or “no.” To get the
information on specials into a web page, Karen needs to do three
things: create a Web Companion URL that searches for specials in the
product file, create a CDML-ized version of the store page with code in
it to display the dynamic data, and lastly, put the Web Companion URL
in a place where someone can click on it to come to the store page.

Let’s tackle the URL first. For a URL that performs a search, the
action is -find. In addition, we need to specify some search criteria; we
need the name of at least one field, along with the value that we want
to search for in that field. Here’s how it looks: http://www.bhbb.com/
FMPro?-DB=Product&-Lay=Web&-format=store.html&special=yes&-max=

5&-find. In this URL, the Web Companion knows that “special” is the
name of a field and “yes” is the value it needs to look for in that field.
Additionally, we use the -max tag to limit the search to five results at
the most. Now Karen can drop that URL on the main BHBB page, and
all she needs to do now is reformat the store.html page to contain
some database-aware CDML code.

Right now Karen keeps the specials in an HTML table that looks
like the following:

166 Chapter 6

<table>

<tr>

<td>Bison Rump Roast - Our succulent roast should be

slow-cooked for six to eight hours and enjoyed with root vegetables

and an assertive red wine.</td><td>$8.49/lb</td>

</tr>

<tr>

<td>Lone Wolf Wild Rice - Dark and nutty in flavor, our rice

pairs up extremely well with the Bison Rump Roast. Allow at least an

hour to cook before enjoying this native delicacy!.</td>

<td>$13.00/lb</td>

</tr>

<tr>

<td>Bison Skull - Harvested from our own herd, from animals

that have died a natural death, our Bison Skull brings the grandeur

of this majestic Plains beast to your living room or

cubicle.</td><td>$500 (subject to availability)</td>

</tr>

<tr>

<td>Chicory Coffee - What the cowhands drink at dawn. Wakes

You Up Right Quick (tm).</td><td>$6.49/lb</td>

</tr>

<tr>

<td>Plains Wall Poster - Lovely depiction of the geographic

range of the major flora and fauna of the central Plains, based on

data gathered by the US Geographic Survey.</td><td>$30.00 (tube),

$50.00 (laminated), $175.00 (framed)</td>

</tr>

</table>

Not only is it tedious to edit these table cells by hand, but it involves
copying and pasting the descriptions from FileMaker into her web page
editor. Tedious and, with CDML, unnecessary. In addition, CDML
makes the code more compact. Here’s how it looks:

<table>

[FMP-Record]

<tr>

<td>[FMP-Field:product_name] - [FMP-Field:product_

description]</td>

<td>[FMP-Field:product_price]</td>

</tr>

[/FMP-Record]

</table>

Short and sweet. How does it work? Remember that the first key to
understanding a dynamic web page, whether you’re using CDML, PHP,
Lasso, or some other middleware tool, is to think about how you got to
the page. CDML, as you recall, executes its database actions before
loading the target page (with, again, the important exception of inline
actions, which we cover later). This page, as it happens, is the target
for a search action. What we want to do is build an HTML table, loop

Custom Web Publishing with CDML 167

C
h
a
p
te

r
6

through the found set from the search, and write out a table row for
each record. The [FMP-Record] tag loops through a found set and out-
puts whatever code is contained between the [FMP-Record] and
[/FMP-Record] tags once for each found record.

So, before we issue the CDML command, we open the HTML
table with a <table> tag and begin looping through records. For each
one, we output all the code for an HTML table row. But all the data in
the row is dynamic—it’s inserted via three different [FMP-Field] tags,
one each for name, description, and price. We format the HTML to
assure that the product name is in bold and it is separated from the fol-
lowing description by a dash. CDML takes care of looping through the
found records and inserting the field data from each one into the
HTML.

That’s it! If you’re the hands-on type, build a quick search results
page like this one and give these techniques a try.

Searchable Web Store

That exercise was fairly easy and took one irritating task off of Karen’s
plate. But like most successfully executed software tasks, it gets her
thinking about what else she can do. Listing the specials is nice, but
shouldn’t she now provide a way for people to search the whole inven-
tory of the store? Better yet, how about a way to see which of the two
stores has a given item in stock? Like most of us, Karen needs more
work like she needs a substantial cranial aperture, but that doesn’t
stop her from embarking on a task that seems new and exciting, as
opposed to all the boring old tasks that are moldering in her in-box.
She decides to lock the door for the weekend and build a searchable
web store.

This job is going to be a bit more complex than the last one. For
any software job that’s going to take you more than a few hours to
complete, the place to begin is always at the drawing board—pencil
and paper, marker and whiteboard, whatever works for you. With web
applications (like any other type of application design), a good story-
board goes a long way. (Storyboard is a term borrowed from the movie
industry, referring to a hand-drawn depiction of the key frames of a
movie sequence with notes. An application storyboard should have
rough sketches of all the major interface screens, along with descrip-
tions of what each button, hyperlink, or the like does and where it
takes you.) Here’s Karen’s storyboard for the searchable web store:

168 Chapter 6

Karen’s idea is that there will be a link at the bottom of the main store
page that says “Search the Store.” Clicking the link will bring the user
to a screen with a search form where he can search by name, price,
category, or description. The user will also be able to specify how
many records he wants to view at once in the found set. If the search
succeeds, the user will be taken to a page that shows a list view of the
found set grouped according to the user’s choice (five records at a
time, ten records, all records). Each line will show the name, the cate-
gory, the description, and the price. If the result set is broken up into
groups of, say, ten records, there will be links at the bottom of each
page to the previous ten records or the next ten, where applicable.
Each results page (we often call such search results pages a hit list)
will have links to return to the main store page or begin another
search.

Besides the hit list pages, if the user’s search fails for any reason,
she will be taken to an error page that explains the error and gives her
a place to click to begin another search. (A good storyboard, by the
way, maps out not only what happens when the user’s actions are suc-
cessful but, perhaps even more importantly, what happens when they
fail.)

So how many different pages does Karen need to write? It seems
like three: one for the search form, one for the hit list, and one for a
search error. Let’s begin with the search form.

Custom Web Publishing with CDML 169

C
h
a
p
te

r
6

Figure 6.1

Search Forms in CDML

The last time we performed a database search, we did it by passing a
hard-coded search criterion to the Web Companion in a URL. This
time we can’t hard-code the search parameters, since they’re going to
be defined by the user. So somehow, once the user enters all his search
criteria, we need to take those criteria and embed them into a Web
Companion URL and somehow trigger that URL to start the database
action. Right?

Not quite. We’ve used the URL technique so far because it’s easy
(easier) to understand and because it provides a clear view of the com-
mands that are passed to the Web Companion. In fact, a URL is one of
two ways to send a command to the Web Companion. The other is in
an HTML form. Submitting commands via a form is often more conve-
nient and also has a few security advantages that we discuss later. But
for now, let’s just jump in and explore the form.

Karen needs two things to make this work: an HTML form capable
of triggering Web Companion commands and an HTML table to format
the search form nicely. Typically, we like to wrap the table around the
form. Here’s what Karen’s search form is going to look like:

<table border="1">

<form action="FMPro" method="post">

<input type="hidden" name="-db" value="Product">

<input type="hidden" name="-lay" value="Web">

<input type="hidden" name="-format" value="product_hitlist.html">

<input type="hidden" name="-error" value="store_error.html">

<tr>

<th>Name:</th>

<td><input type="text" name="product_name"</td>

</tr>

<tr>

<th>Price:</th>

<td><input type="text" name="product_price"</td>

</tr>

<tr>

<th>Category:</th>

<td><input type="text" name="product_category"</td>

</tr>

<tr>

<th>Description:</th>

<td><input type="text" name="product_description"</td>

</tr>

<tr>

<td colspan="2" align="center"><input type="submit" name=

"-find" value="Search"></td>

</tr>

</form>

</table>

170 Chapter 6

This looks superficially similar to some of the URLs that we’ve
worked with. We have values for -db, -lay, and -format (as well as a
new parameter called -error), and we also have the -find command at
the end. But other than that, the syntax is alien. A programmer’s first
questions are probably “Why are there two different ways to send
commands to the Web Companion? And how are they different?”

The answer to the first question is easy, but somewhat abstract;
the two methods we’ve seen, namely sending commands in a URL and
sending commands in a form, are not very different at all. For the tech-
nically curious, these two methods are the two standard methods that
HTTP has for sending extra data to a web server. One of these meth-
ods, called GET, involves sending the extra data as a query string on
the end of a URL (that’s the question mark/ampersand syntax that
we’ve used in our URLs so far, and it’s standard HTTP). The other
method, called POST, also sends a bunch of name-value pairs, but
instead of appending them to the URL, it packages them up and sends
them behind the scenes. Anything sent with a URL is automatically
sent using the GET method. POST is generally done with an HTML
form (as in the example above), but it is possible to force a form to use
the GET method instead. Notice in the above example that the HTML
<form> tag has an attribute called "method". In our example (and in
all the examples we use), we set the method to post (capitalization
doesn’t matter—HTTP will send the method in all uppercase, as
POST, but good HTML/XHTML/XML coding practice mandates that
the value in any name-value pair be all lowercase). It is possible to set
the method of a form to "get". We try that a bit later just to see what
happens.

The important thing to understand about an HTML form is this:
When the form is submitted, every named input in the form gets
turned into a name-value pair. The name of the pair takes its name, of
course, from the input name; in the above example, we have inputs
named -db, -error, and product_price, to name a few. The value for the
pair comes either from the input’s "value" attribute (for non-editable
inputs like the hidden inputs and the submit input) or whatever value
the user has set the input to (for editable inputs like the text inputs in
our example).

So the major difference between the URL syntax that we’ve been
working with and the form-based method of sending commands to the
Web Companion is this: Using the form allows the web user to specify
values for some of the commands that we send to the Web Companion,
as opposed to having those values hard-coded by the programmer. We

Custom Web Publishing with CDML 171

C
h
a
p
te

r
6

most often need this for search forms, where we want the user to
specify what to search for.

Note: There are other important differences between GET (sending
commands in the URL) and POST (sending them via a form). One of the
most obvious is that the parameters of the GET command are all visible in
the address area of the user’s browser. By manually editing the URL and
resubmitting it, the user can send commands to the Web Companion
other than those we intended. The POST method is somewhat more
secure, though only marginally; the commands are not visible in the
address, but they’re visible the moment you select the View Source com-
mand (or its equivalent) in your web browser.

Another difference between these two methods is how much data can
be submitted. According to the HTTP standard, a web server may not
set any limit on the length of the URLs that it accepts, so in theory you
can use a URL to transmit as long a command string as you want.
However, the standard also says that a user agent (in other words, a
web browser) may impose a limit on the length of the URLs it trans-
mits. Some experimentation reveals that different browsers do indeed
truncate the URL if it becomes “too long.” Where they cut it varies by
manufacturer, platform, and software version. It is not uncommon to
truncate it at 1024 characters, but numbers as small (and as peculiar)
as 219 characters can also be found. This means that the URL method
is only suitable for short command strings. The POST method, by con-
trast, can send an unlimited amount of data, with no limits imposed by
the browser.

This may seem like a long technical digression, but the mechanism
of submitting commands to the web server via forms and URLs is at
the heart of all web programming. All of these terms and concepts
apply equally to all of the types of middleware that we’re looking at in
this book. They are by no means unique to CDML or to the Web Com-
panion for that matter.

Finishing the Searchable Web Store v. 1.0

That takes care of the search form. What about our other two pages?
As you recall, with most CDML commands, you tell the Web Compan-
ion where you want to end up if everything goes right. This is the
-format parameter and, as we’ve seen, it means “take me to this page
if everything works out all right.” The search page that we just looked
at adds another parameter, called -error. Its meaning, predictably
enough, is “take me here if anything goes wrong.” In each case, the
value of the parameter is the name of a web page to load.

172 Chapter 6

Let’s look at these in order. In the first place we want to design
the page that the user sees if her search returns some results. This
page has been named product_hitlist.html, and it works in a fashion
very similar to the simple store page with specials that we already
examined. Like that page, product_hitlist.html is the target page for a
search action. Unlike the specials page, the search data is being sub-
mitted from user input through a form, rather than hard-coded into a
URL. That difference aside, the page looks and works about the same.
Let’s start with the core function of the page (displaying search
results) and then go ahead and add some features to make it more
usable. (In general, this is a good rule of thumb in software design—
implement your features one at a time. That way, if something breaks,
you have a much better idea of where the problem is.) Here’s how the
first draft looks:

<html>

<head>

<title>Store Search Results</title>

</head>

<body>

Your search found [FMP-CurrentFoundCount] records

<table>

<tr>

<th>Item Name</th>

<th>Category</th>

<th>Description</th>

<th>Price</th>

</tr>

[FMP-Record]

<tr>

<td>[FMP-Field:product_name]</td>

<td>[FMP-Field:product_category]</td>

<td>[FMP-Field:product_description]</td>

<td>[FMP-Field:product_price]</td>

</tr>

[/FMP-Record]

</table>

</body>

</html>

This is fairly bare-bones still, but it should look familiar. We’re doing
just what we did on the original specials page—using [FMP-Record] to
loop through all the records in the found set and using [FMP-Field] to
get data from each record as we come to it. The only thing that we’ve
added is the [FMP-CurrentFoundCount] tag. Predictably enough, the
Web Companion replaces this tag with the found count that resulted
from the last operation; in the case of a search, like this one, this
should tell us how many records the search found.

Custom Web Publishing with CDML 173

C
h
a
p
te

r
6

Lastly, we need the error page. If the search fails for any reason,
we’ll end up on a page called store_error.html. We could be here for a
variety of reasons; it could mean that no records were found, but it
could also mean that the search contained no valid criteria or that we
tried to search for a field that either isn’t in the database or, just as bad,
isn’t on the specific layout that we told the Web Companion to use.
Here’s what such a page might look like:

<html>

<head>

<title>Whoops!</title>

</head>

<body>

Sorry, but the BHBB web store couldn't process your request. (Error

number was [FMP-CurrentError]). Please click your browser's Back

button to try again, or click here to return

to our main Web Store page.

</body>

</html>

With that, our three-page web application is done. We’ve just imple-
mented a stripped-down version of a design pattern called “search and
hit list.” In such a pattern, the user sees a search page, almost always
implemented with an HTML form. That form targets a hit list page
that’s responsible for displaying the search results, if any. As with any
web programming design pattern, there is also (at least) one error
page, for handling any result that might be deemed an error.

Upgrading the Search Page

As we’ve said, the web store works, but it is fairly rudimentary.
Karen’s first complaint is with the hit list. Right now it dumps all the
results into a single long list, whether the found count is one or a hun-
dred. What she was hoping for is one of those nice displays at the top
that says “viewing records 1-10 of 69 records found” and a pair of links
at the bottom of the list that say “view next 10” and “view previous
10.” Even better is if the user could choose how many records she
wants to view in a single page. How is this possible?

You might recall from our discussion of variable and replacement
tags that the Web Companion accepts a command called -Max. The
-Max command tells FileMaker how many records to return at once.
By default, with no specific value for -Max, the Web Companion
returns records in groups of 25. Like all command parameters, it could
be specified in a URL, like this:

http://127.0.0.1/FMPro?-db=Animals.fp5&-Lay=Web&name=Bigbull&

-Max=20&-find

174 Chapter 6

Or we could pass the command to the Web Companion through a form,
like this:

<form action="FMPro" method="post>

<input type="hidden" name="-db" value="Product">

<input type="hidden" name="-lay" value="Web">

<input type="hidden" name="-format" value="product_hitlist.html">

<input type="hidden" name="-error" value="store_error.html">

<input type="hidden" name="-Max" value="20">

Whichever way we do it, the command gets passed to the Web Com-
panion as a typical set of name-value pairs. It’s worth stating (if we
haven’t already) that the order in which the Web Companion receives
these values is unimportant. Both in the URL format and the form, we
can put the items in any order that we please. By convention, we like
to list the database first, then the layout, then any search parameters,
then any other CDML command parameters like -Max and -Skip, and
finally the action tag. But there’s nothing magic about this order; it’s
just a convention that makes the code more consistent and readable.

Let’s get back to Karen’s problem and look first at her idea of
returning the found records in pages. In our first cut, for purposes of
illustration, we deliberately set the -Max value to “all,” so all the
records would be returned at once and displayed in a single page. In
general, this is not a good idea. It is likely to be slow in any case and is
completely impractical for databases of more than a few hundred
records. We’d like the records to come back in sets of a fixed size and
let the user flip through these sets like pages. This is a very common
web programming design pattern that we’ll call “paged result set.”

For now, let’s let the Web Companion break the result set up into
groups of the default size of 25 records. So when we do a search, we
actually only get the first 25 records in the database. We then need a
link at the bottom of the page that says, in effect, “go run exactly the
same search, and give me another 25 records, but start at record 26
this time instead of record 1.” If the page was somewhere further
down in the result set, we’d need links to take us to either the previ-
ous or the next 25. Finally, it’s not uncommon for a paged result set to
include links to take us to the very first or very last page of results.

There are two challenges here. The first is passing along all the
search criteria involved in the current search. Remember, HTTP is a
stateless protocol, and without some help from us programmers, the
web server happily forgets all the details of our search once it has
given us a result set back. The second challenge is getting the Web
Companion to give us back a result set starting with something other
than the first record.

Custom Web Publishing with CDML 175

C
h
a
p
te

r
6

Let’s take the second challenge first. There’s a CDML command
parameter called -Skip, which tells the Web Companion how many
records to skip before it begins returning results. So if we send the
Web Companion a search command where we specify -Max as 30 and
-Skip as 60, we get back records 61-90 of the result set, assuming that
many records can be found.

Let’s take a sample search in the Products database. Here’s the
URL version:

http://127.0.0.1/FMPro?-db=Products.fp5&-Lay=Web&-format=

results.html&description=rice&-Max=20&-find

The Next link on our results hit list would need to look something like
this:

http://127.0.0.1/FMPro?-db=Products.fp5&-Lay=Web&-format=

results.html&description=rice&-Max=20&-Skip=20&-find

This is actually looking fairly complicated. The -Skip values of these
URLs have to change from page to page, even though the actual
CDML page that we’re using is the same each time (it’s the page
called results.html). What’s worse is we somehow have to capture all
the search criteria (and sort criteria, which is a topic we haven’t dis-
cussed yet) and get them into those URLs. Fortunately, CDML gives
us a number of prepackaged replacement tags that automate this grue-
some process and make it fairly easy. The tags that we’re interested in
are called [FMP-LinkFirst], [FMP-LinkNext], [FMP-LinkLast], and
[FMP-LinkPrevious]. Unlike the -Max and -Skip command parameters,
these are replacement tags. This means, again, that rather than be
embedded in a form or a URL on the originating page, they are
inserted into the HTML text of the destination page.

What these tags do is fairly straightforward. The contents of the
tag are turned into a URL that performs the complex Web Companion
command necessary to restore all previous search and sort criteria.
These tags are also quite intelligent: If the user is on the first page of
results, the [FMP-LinkFirst] and [FMP-LinkPrevious] tags do nothing,
and the text in them is hidden. Likewise, on the last results page, the
[FMP-LinkLast] and [FMP-LinkNext] tags do nothing either.

CDML thus gives us an easy way to build the paged result set.
The other improvement we want to make to our search page is to let
the user choose the number of records that are displayed in each result
set page. All this means is letting the user specify a custom value for
-Max, and this turns out to be just as easy as letting the user specify
search criteria; we just add it into the form.

176 Chapter 6

Here’s what the beginning of the form looks like:

<table>

<form action="FMPro" method="post>

<input type="hidden" name="-db" value="Product">

<input type="hidden" name="-lay" value="Web">

<input type="hidden" name="-format" value="product_hitlist.html">

<input type="hidden" name="-error" value="store_error.html">

<tr>

<th>Records per page:</th>

<td>

<select name="-Max">

<option value="10">10</option>

<option value="25">25</option>

<option value="50">50</option>

<option value="100">100</option>

<option value="250">250</option>

<option value="All">All</option>

</select>

</td>

</tr>

The way we’ve coded this page, the -Max parameter is going to take
its value from the selection that the user makes using a drop-down
menu. The menu here is coded as an HTML <select>, and we’ve
given it the name of -Max so that the -Max command is sent to the
destination page, along with the value that the user selected.

So far, so good. We’ve added the paged results set design pattern,
and we’ve let the user select how many records he wants to view per
page. Karen has one more modification to the search page in mind
before she goes on to add some other features; she would like the user
also to be able to specify how the result set is sorted (by name, by
price, or by category). She also wants to offer the option to sort the
results in either ascending or descending order so that, for example, a
customer can see the most expensive items in the result set first.

How do we tell Web Companion how to sort a result set? You can
probably guess. There are two command parameters that we can use
for this purpose called -SortField and -SortOrder. Each occurrence of
the -SortField tag tells the Web Companion to add a field to the sort
order. (You would use multiple instances of -SortField if you want to
sort by more than one criterion at once, such as sorting by customer
and then by invoice date.) The -SortOrder parameter is optional, but if
used, it goes directly after a -SortField tag and specifies whether the
sort should be ascending, descending, or custom.

As we did with the -Max tag, we’re going to add a place on the
search layout where the user can specify both a sort field and a sort

Custom Web Publishing with CDML 177

C
h
a
p
te

r
6

order. The database doesn’t have many fields, so we’re only going to
allow the user to sort on a single field. Here’s how the code looks:

<tr>

<td>

<select name="-SortField">

<option value="name">Name</option>

<option value="unit_price">Price</option>

</select>

</td>

<td>

<select name="-SortOrder">

<option value="Ascending">Ascending</option>

<option value="Descending">Descending</option>

</select>

</td>

</tr>

What we’re doing should look familiar by now. We’re creating HTML
elements that have the same names as the command tags that we want
to send. (This works because HTTP packages these up into name-
value pairs, exactly the way the Web Companion wants to see them.)
We’re making sure that these user input areas only allow the right
types of data to get into the field. For the -SortField command, the
value must be the name of a FileMaker field. For -SortOrder, a value of
Ascending, Descending, or Custom is permitted.

Here’s what our heavily revised search page looks like:

178 Chapter 6

Figure 6.2

Here’s the code that generates it:

<table border="1">

<form action="FMPro" method="post">

<input type="hidden" name="-db" value="Product">

<input type="hidden" name="-lay" value="Web">

<input type="hidden" name="-format" value="product_hitlist.html">

<input type="hidden" name="-error" value="store_error.html">

<tr>

<th>Name:</th>

<td><input type="text" name="product_name"</td>

</tr>

<tr>

<th>Price:</th>

<td><input type="text" name="product_price"</td>

</tr>

<tr>

<th>Category:</th>

<td><input type="text" name="product_category"</td>

</tr>

<tr>

<th>Description:</th>

<td><input type="text" name="product_description"</td>

</tr>

<tr>

<th>Sort By</th><th>Order</th>

</tr>

<tr>

<td>

<select name="-SortField">

<option value="name">Name</option>

<option value="unit_price">Price</option>

</select>

</td>

<td>

<select name="-SortOrder">

<option value="Ascending">Ascending</option>

<option value="Descending">Descending</option>

</select>

</td>

</tr>

<tr>

<th>Records per page:</th>

<td>

<select name="-Max">

<option value="10">10</option>

<option value="25">25</option>

<option value="50">50</option>

<option value="100">100</option>

<option value="250">250</option>

<option value="All">All</option>

</select>

</td>

</tr>

Custom Web Publishing with CDML 179

C
h
a
p
te

r
6

<tr>

<td colspan="2" align="center"><input type="submit" name=

"-find" value="Search"></td>

</tr>

</form>

</table>

Greater Control: Using CDML Tokens

So far we’ve just been working with the built-in parameters that
CDML itself knows how to work with, such as the values -Skip and
-Max. But if we want to do any sort of sophisticated programming, we
need to be able to create our own kinds of parameters and pass them
from page to page.

For example, Karen would now like to be able to include thumbnail
images of BHBB products on the search results page. But she’s con-
cerned that since many of her customers and constituents live in rural,
sometimes impoverished areas, they may not have access to a very
fast web connection. So she’d like her web customers to be able to
choose whether they want images displayed on their results page or
they’d like a text-only page for faster download.

One of the significant limitations of CDML is that it gives us no
direct, generalized way to inspect the values that are sent to a particu-
lar web page. This means that there’s no way, in CDML, to write a
program that says “if the -Script value sent to this page was Update-
Record, do this; otherwise, do something else.” CDML itself knows
how to use the -Script parameter, but it doesn’t give us, the program-
mers, a direct way to inspect that value. (CDML does include
commands to inspect many of the commonly used page parameters,
such as the -Max and -Skip values.) In order for us to be able to send
our own customized values from one page to another in such a way
that we can inspect them, we have to use a feature of CDML called
tokens.

A token is nothing more than a specially written name-value pair.
Here’s an example, expressed as a hidden input:

<input type=hidden name="token" value="custom token">

If we put this into an HTML form that ends up sending us to a CDML
page, that CDML page can inspect the value of “token” to see what
value was sent. It used to be that CDML suppported only a single
token. This meant that if you wanted to send multiple pieces of data,
you had to somehow pack them into a single token and unpack them at
the other end. CDML now supports up to nine tokens. They are

180 Chapter 6

referred to as token.1 through token.9 (or -token.1 through -token.9
when used in the URL syntax). If you’re only using one token in a page
you can omit the number, but we favor always using explicit token
numbers—it cuts down on confusion, especially if you need to add
other tokens to the same page later.

Tokens need not be expressed as hidden inputs. They can be used
in a page in such a way as to capture a user’s input and send it to
another page where it can be checked and put to use. As an example,
let’s consider Karen’s project to allow people to choose a text-only
version of the product search results.

All that really needs to happen is for the following code to be
added to the search page. We add it to the area for selecting sort
orders:

<td>Display Results as:

<select name="-token.1">

<option value="1">Text Only (faster)</option>

<option value="2">Text with Images (prettier)</option>

</select>

</td>

Finally, we need to add some code to the results page to check this
value and act accordingly. To do this, we need to conditionally add a
column to the search results. If the token that we received is equal to 1
(for text-only display), we omit the image column. Otherwise, we
include it. To pull this off, we need to use some of CDML’s conditional
logic. Here’s how it looks:

[FMP-If: CurrentToken:1.eq.2]

<td>[FMP-Image: thumbnail]</td>

[/FMP-If]

There are actually three new tags here. The first of these is [FMP-If]
. . .[/FMP-If], which is used (not surprisingly) to write conditional state-
ments in CDML. This tag has the same effect as If. . .EndIf in File-
Maker. To use the FMP-If tag, we must include a logical test with the
tag; here we want to test whether the first token is equal to 2 (2, as
you recall, is the value that indicates the user wants to see text and
images together).

To retrieve the value of that token, we need another new tag,
called CurrentToken. CurrentToken can be used to indicate which of
the nine possible tokens is the one we want. Here we specify that we
want the first token, called CurrentToken:1. This lets us build the logi-
cal test that we need for the FMP-If tag. We want to test whether that
token is equal to 2. To do that, we use CDML’s equality operator, which

Custom Web Publishing with CDML 181

C
h
a
p
te

r
6

is written .eq. (CDML does not use many of the usual symbols for its
operators; instead of = it uses .eq, instead of > it uses .gt, and so on.)

So now that we’ve tested whether our custom token has the value
that means “show me images in this page,” all that remains is to show
the image. We do that with the FMP-Image tag. FMP-Image is just like
FMP-Field, except we use it when the field in question is a container
field containing an image.

That does it. We’ve used CDML’s token feature to extend the
range of user choices in our small web application. With regular
CDML, we can let the user choose how many records to show at once
and how to sort them. Using tokens, we can add capabilities unknown
in regular CDML, such as the ability to specify text-only and text-
with-images views of a page. (Of course, we still had to do the pro-
gramming that shows or hides the images depending on the value of
the token.)

This is probably the most obvious use of tokens—to capture and
store additional pieces of user input that you might need to pass from
page to page.

Showing Portal Data in CDML

So far we’ve seen how to work with data from a single database table.
CDML also gives us an easy way to pull data from a portal on a layout.
Let’s design some CDML pages that let us search for herd animals and
see each one with a list of its offspring.

We’ll also use the occasion here to broaden our skills in web appli-
cation design. We’re going to design using a pattern we call “integrated
search page.” Previously, we had one page that contained just a search
form, and we then took the user to another page to display his results.
Generally, for search forms that are small and uncomplicated, it’s often
nicer to display the results immediately underneath the search page.
This makes it much easier for the user to input a fresh search, rather
than have to click back to the previous screen and wait for it to load. In
doing this, we effectively integrate our search and hit list pages.

Let’s do a little design-think first. Doing it this way means that the
display of the search results is conditional. We only want to display the
results table if we reached this page as the result of a search. If we’re
coming to the page for the first time, we just want to show a message
that says “no current search” or “please enter your search criteria
above.” So we need some way to know whether a search action is in
effect or not. CDML gives us this ability.

182 Chapter 6

As far as display goes, we’re envisioning a results list with each
row broken into two columns; the left column contains information
about the current animal, and the right column is a mini-table of its off-
spring, pulled from a portal in FileMaker.

That’s a fairly challenging page design, so let’s get to work. As
always, we want to design in pieces. The goal, in all software design, is
always to break your task down into small, testable pieces. There are
three tasks here—the search form, the results display, and some way
of integrating the two. Obviously, the integration should come last.
What should come first? Well, the search form by itself is not testable;
until we write some kind of results page, we can’t really know if the
search form is working. So we start, oddly, with the results page
because we can actually test the results page without a search form—
we can just hit the page with a CDML -findall action passed via a URL.
Once the results page looks good, we can make and test the search
form and finally we bring them both together. So here it goes.

For the results page, we’re envisioning a two-column table. The
first column, again, contains basic data about the animal, while the sec-
ond contains another table that lists the offspring. Here’s how the page
looks before any design improvements or graphical polish:

We need a new layout and some other improvements to the Animal.fp5
database to support what we’re trying to do here. We need several new
relationships—one to view the animal’s mother, another to view the

Custom Web Publishing with CDML 183

C
h
a
p
te

r
6

Figure 6.3

father, and a third to view the offspring. For the first two, we just relate
id_father and id_mother, respectively, to id_animal. To view the off-
spring, it’s slightly trickier; we need a key in the Animal file that
contains both the parent IDs. We create a new field called ParentIDs,
defined as “id_father & "¶" & id_mother.” Then we relate id_animal to
that field to get the offspring.

We should also make a new layout for this search. Let’s call it
WebSearchResults. We need to make sure that the animal name from
each of the related parent records is displayed, and we also need to
make sure that there’s a portal showing each animal’s offspring. We
want to display at least the name and date of birth. Once we have the
layout and the new relationships built, we can start coding our results
page. Let’s call it AnimalSearchPortal.html.

The code looks like this for starters:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Animal Search</title>

</head>

<body>

<table summary="Table of animal search results" border="1"

width="600" cellspacing="2" cellpadding="3" frame="above"

rules="all">

<tr>

<th>Animal</th>

<th>Offspring</t>

</tr>

[FMP-Record]

<tr>

<td>

Name: [FMP-Field:name]

Father: [FMP-Field:SelfByFather::name]

Mother: [FMP-Field:SelfByMother::name]

Born: [FMP-Field:date_birth]

Birth Weight: [FMP-Field:weight_birth]

Current Weight: [FMP-Field:weight_current]

</td>

<td align="top">

<table>

[FMP-Portal: SelfByOffspring]

<tr>

<td>[FMP-Field: SelfByOffSpring::

name]</td><td align="right">[FMP-

Field: SelfByOffSpring::date_

birth]</td>

</tr>

[/FMP-Portal]

</table>

184 Chapter 6

</td>

</tr>

[/FMP-Record]

</table>

</body>

</html>

If you create this document and then bring it up in your web browser
with a URL like:

http://127.0.0.1:591/FMPro?-db=Animal.fp5&-lay=WebSearchResults&-

format=AnimalSearchPortal.html&-findall

. . .you see a bare-bones version of the results page. Information on the
individual is in the first column, and a list of offspring is in the second.
Not much is new here except for the portal tags. To retrieve informa-
tion from the portal on the layout, we use the [FMP-Portal] tag,
specifying the name of the relationship that we want to use (again, a
portal based on this relationship must be on the specified layout for
this to work). [FMP-Portal] is a looping tag, like [FMP-Record]. This
means that it outputs its contents multiple times. In the case of [FMP-
Record], we get one loop per record in the current found set. With
[FMP-Portal], we get one loop per record in the portal. Inside the por-
tal tags, any reference to an [FMP-Field] tries to draw data from the
current portal record.

Okay, we have a working and tested results page. Let’s write a
simple search page and wire it up. Here it is:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>AnimalSearchForm</title>

</head>

<body>

<form action="FMPro" method="post">

<input type="hidden" name="-db" value="Animal.fp5">

<input type="hidden" name="-lay" value="WebSearchResults">

<input type="hidden" name="-format" value="AnimalSearch.html">

<table>

<tr>

<td>Name</td><td><input type="text" name=

"name"></td><td><input type="submit" name="-find"></td>

</tr>

</table>

</form>

</body>

</html>

Custom Web Publishing with CDML 185

C
h
a
p
te

r
6

This is a very simple search form with just one search element—the
animal name. Of course, we have the usual set of hidden inputs to
establish the necessary Web Companion parameters, then the search
element, and then a submit element with the name of -find, which exe-
cutes our search. (Our dummy URL for testing the results page had an
action of -findall, but that’s not what we want here.)

Test your search-and-hit list page combination here and make sure
everything is working. Now we’re ready for the last stage, which is
integrating them into a single page. Putting the search form at the top
of the results page is easy. But if there are no search results, we don’t
want to display the results table. Even empty, it does not look pretty or
professional. So we somehow need to test whether this page is being
called with a -find action or not. CDML gives us the [FMP-Current-
Action] tag to determine this. So let’s test the value of that tag and
only display the results if a search is in effect. Here’s how that test
looks:

[FMP-If: CurrentAction .eq. find]

This test actually exposes some of the significant oddities of the
CDML language. Though the CDML tag to determine the current
action is called [FMP-CurrentAction] when it stands alone, inside the
logical test it is instead written as CurrentAction. Despite the fact that
the action value that we are looking for is the literal string “find,” we
don’t enclose the value we’re searching for in quotes since doing so
causes the quotes to be part of the search string.

Here’s the integrated version of the search page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Animal Search</title>

</head>

<body>

<form action="FMPro" method="post">

<input type="hidden" name="-db" value="Animal.fp5">

<input type="hidden" name="-lay" value="WebSearchResults">

<input type="hidden" name="-format" value="AnimalSearch.html">

<table>

<tr>

<td>Name</td>

<td><input type="text" name="name"></td>

<td><input type="submit" name="-find" value="Find"></td>

<td><input type="submit" name="-findall" value="Find

All"></td>

</tr>

186 Chapter 6

</table>

</form>

[FMP-If: (CurrentAction .eq. find) .or. (CurrentAction .eq.

findall)]

<table summary="Table of animal search results" border="1"

width="600" cellspacing="2" cellpadding="3">

<tr>

<th>Animal</th>

<th>Offspring</t>

</tr>

[FMP-Record]

<tr>

<td>

Name: [FMP-Field:name]

Father: [FMP-Field:SelfByFather::name]

Mother: [FMP-Field:SelfByMother::name]

Born: [FMP-Field:date_birth]

Birth Weight: [FMP-Field:weight_birth]

Current Weight: [FMP-Field:weight_current]

</td>

<td align="top">

<table>

[FMP-Portal: SelfByOffspring]

<tr>

<td>[FMP-Field: SelfByOff-

Spring::name]</td><td align=

"right">[FMP-Field: SelfByOff-

Spring::date_birth]</td>

</tr>

[/FMP-Portal]

</table>

</td>

</tr>

[/FMP-Record]

</table>

[/FMP-If]

</body>

</html>

As you can see, we’ve added the search form to the top of the page.
That, more or less, works. The format file now points to this very
same page, which means that this is the page on which the results are
displayed as well. If that seems odd, look it over and give it some
thought. A web page that targets itself is an extremely common and
useful design pattern. Other than this, all we’ve added to the search
form is a Find All button, which seems like a useful convenience.

The addition of the Find All button does complicate our test a lit-
tle. Now, instead of just looking for an action of “find,” we need to look
for “findall” as well. You can see the appropriate syntax for that above.

That’s it! We’ve not only learned how to pull related data into a
web page, portal-style, but we’ve also seen how to apply some more

Custom Web Publishing with CDML 187

C
h
a
p
te

r
6

sophisticated logic to control the display of an integrated search-and-
hit list page. We still have a few more hills to climb before we’re done
with CDML, though.

Inline Actions: Performing Multiple Tasks in a Single
Page

One of the odd things about CDML’s execution environment is that we
don’t perform database actions once we get to the page, but rather, we
somehow perform them “on the way” to that page. We launch a data-
base action either by embedding CDML parameters in a URL’s query
string or by storing them in hidden inputs in an HTML form. Which-
ever technique we use, those parameters all get passed to the Web
Companion, which follows this execution path:
1. Read all the incoming parameters (-db, -lay, -format, -Max, -find,

and so forth).

2. Perform whatever database action is indicated.

3. Load up the HTML/CDML page specified by the -format
parameter.

4. Using whatever found set was generated in step 2, process any
CDML instructions in the format file.

5. Send the resulting HTML page back to the user.

The result of this way of doing things is that we can perform only one
database action per page. We can search for something, or we can
delete something, or we can update a user record, and so on. But most
web applications frequently need to do more than one “database thing”
per page. Let’s say, for example, that we want to perform some kind of
logging, creating a new database record every time a user views a page
(we might be building a subscription-based information service that
limits a user’s page views per month based on a subscription level). Or
we might want to perform some kind of conditional logic on a page;
depending on a user’s choice in a previous page, we might want to run
one of two completely different searches in different databases. These
kinds of accomplishments are difficult and, in many cases, impossible
with “classic” CDML and its one-action-per-page execution model.

To get over this hurdle, CDML now offers us the inline action, or
just “inline.” Inlines are a technology inherited from Lasso, on which
CDML is ultimately based. Lasso also offers a one-action-per-page
execution model, but savvy Lasso developers avoid it for the most
part. Instead, it’s more common in Lasso to accomplish all database

188 Chapter 6

actions with inlines. We strongly advocate this technique for CDML
development as well.

This sounds good, but what exactly is an inline? It’s just another
way of submitting a CDML request, which so far we’ve done through
forms and URLs. Let’s re-examine one of the URLs that we’ve already
used:

http://127.0.0.1:591/FMPro?-db=Animal.fp5&-lay=WebSearchResults&-

format=AnimalSearch.html&-findall

We’re instructing the Web Companion to find all records in Animal.fp5
and display them using the AnimalSearch.html page. Here’s how this
might look as an inline:

[FMP-InlineAction: -db=Animal.fp5, -lay=WebSearchResults, -findall]

[/FMP-InlineAction]

We can see that we’ve taken most of the CDML parameters, namely
the database, the layout, and the action, and included them in the inline
tag. Two things are immediately interesting about this. First, this is a
CDML replacement tag, meaning it expects to have some content
inside of it. What goes between the opening and closing [FMP-Inline-
Action] tags? Secondly, we’ve somehow lost our -format parameter
along the way, so how do we display the results of our database action?

The answers to both of those questions are the same. Inline
actions are, well, in-line. Rather than occurring on our way to some
page that we specified with the -format parameter, they happen after
we’ve arrived at the page. In that sense, the format file is really the
current page. More accurately though, the format file consists of the
contents of the inline tag (that is, whatever’s inside it).

What we need to understand about this whole execution model is
that every database action has a scope. Remember that, way back at
the beginning of our CDML tour, we asked a question about which
found set would be in effect when we got to our search results page.
The answer was, “whatever found set we picked up on the way in via
our database action.” That found set is then in effect for the duration of
the format page only. All references to records and record sets occur
within the context or the scope of that found set or other database
action.

Whenever you work with database data, you’re always “inside”
some database scope, usually a found set. Up to this point, that scope
has always started at the top of the format page and ended at the bot-
tom of it. With inlines, it’s a little different. The scope of an inline is
limited to its insides, so to speak. If your inline performs a search, you

Custom Web Publishing with CDML 189

C
h
a
p
te

r
6

can only access the results of that search from inside the inline. Once
you pass the [/FMP-InlineAction] tag, you’re out of the inline context
and back into whatever the original context was. Of course, the beauty
of inlines is that you can launch another one right away and create an
entirely different context to work with some other set of database data.

That’s a lot of talk with few examples. Let’s start small and see
how to use an inline action to replace the portal tags that we used
before. In reality, the portal tags suffice perfectly well for the task of
displaying those related offspring, but showing the same example
inline-style is instructive. All we need to change from the previous
version is the part of the page that uses portal tags. We remove the
portal tags and put in the following code instead:

[FMP-InlineAction: -db=Animal.fp5, -lay=web, ParentIDs={field:id_

animal}, -find]

[FMP-Record]

<tr>

<td>[FMP-Field: name]</td><td align="right">[FMP-Field:

date_birth]</td>

</tr>

[/FMP-Record]

[/FMP-InlineAction]

The first thing to notice is that this inline performs a search (-find).
We’re telling it which database and layout, and we’re also telling it
what to search for. This search replaces the relationship that drove the
portal in the previous example, so it needs to do the same thing—
search for all records that have the current record’s id_animal some-
where in the ParentIDs field. The syntax for this is odd, to say the
least. We’re using what CDML calls its intratag syntax. This is a fancy
way of saying that regular CDML tags change their syntax when
they’re used inside of other tags. Normally, to refer to the id_animal
field of the current record, CDML has us write [FMP-Field:id_animal].
Since we’re already inside another tag, though (the [FMP-InlineAction]
tag), we need to change the syntax; we drop the FMP- prefix, put the
tag inside curly braces, and make everything lowercase.

Confusing? You bet. Intratag syntax is one of those language
quirks that we just have to live with when we’re programming in
CDML (and still to some extent in its parent Lasso, though Lasso 5 did
introduce some more manageable syntax choices with its LassoScript
feature).

Grumpy digressions aside, we’ve managed to reproduce, using
inline syntax, the same effect that we were getting with the portal
tags. Let’s take a look at the idea of context in this example. There are

190 Chapter 6

actually two nested contexts here. One is made of the outermost page,
and the other is made up of the insides of the inline. In the outermost,
we have a set of master [FMP-Record]. . .[/FMP-Record] tags that loop
us through a found set of animals. That master context is still in effect
through the end of the first inline tag because in that first inline tag,
we need to refer to a value from the current record in the outermost
context—we need to grab the id_animal from the current animal and
use it to run our search. Once we get inside the inline, though, the
new search (for offspring) is the current context, and when we use
another pair of [FMP-Record]. . .[/FMP-Record] tags inside the inline,
we’re looping through the results of our inner search. This loop has no
effect on what’s outside the inline, and once we’re done with the con-
tents of the inline, we go right on looping through records in the outer
context. The key here is to understand that neither context can “see”
the other; each is its own isolated environment.

Let’s now take the next step with this search-and-hit list page.
We’re already driving the offspring search with an inline, so now let’s
see how to drive the master search with an inline as well. Due to some
CDML limitations, this is not as easy here as it would be in Lasso.
Here’s a first cut at a new page intended to accomplish this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Animal Search</title>

</head>

<body>

<form action="FMPro" method="post">

<input type="hidden" name="-db" value="Animal.fp5">

<input type="hidden" name="-lay" value="WebSearchResults">

<input type="hidden" name="-format" value="AnimalSearchInline2.html">

<table>

<tr>

<td>Name</td>

<td><input type="text" name="-token.1"></td>

<td><input type="submit" name="-token.2" value=

"Find"></td>

<td><input type="submit" name="-token.2" value=

"Find All"></td>

</tr>

</table>

<input type="hidden" name="-view" value="view">

</form>

[FMP-If: (CurrentToken:2 .eq. Find) .or. (CurrentToken:2 .eq. Find

All)]

[FMP-InlineAction: -db=Animal.fp5, -lay=web, name=

"{CurrentToken:1}", -find]

Custom Web Publishing with CDML 191

C
h
a
p
te

r
6

<table summary="Table of animal search results" border="1"

width="600" cellspacing="2" cellpadding="3">

<tr>

<th>Animal</th>

<th>Offspring</t>

</tr>

[FMP-Record]

<tr>

<td>

Name: [FMP-Field:name]

Father: [FMP-Field:SelfByFather::name]

Mother: [FMP-Field:SelfByMother::name]

Born: [FMP-Field:date_birth]

Birth Weight: [FMP-Field:weight_birth]

Current Weight: [FMP-Field:weight_current]

</td>

<td align="top">

<table>

[FMP-InlineAction: -db=Animal.fp5, -lay=

web, ParentIDs={field:id_animal}, -find]

[FMP-Record]

<tr>

<td>[FMP-Field: name]</td>

<td align="right">[FMP-Field:

date_birth]</td>

</tr>

[/FMP-Record]

[/FMP-InlineAction]

</table>

</td>

</tr>

[/FMP-Record]

</table>

[/FMP-InlineAction]

[/FMP-If]

</body>

</html>

Let’s see what’s changed. The first big change is in the names of our
form inputs. Everything is now being passed as a token. The text input
for the name field is passed as token 1, and the user’s choice of find or
find all is passed as token 2. We need to pass these as tokens because,
again, CDML gives us no way to inspect all the parameters passed to a
page, and we need to reuse these values. Lastly, we’ve added an addi-
tional hidden input to hold our action parameter. Remember, the action
parameter, which is mandatory, tells CDML what database action to
perform on the way to the target page. Well, our whole idea here is to
perform no action on the way to the page but to perform all actions
once we get there, via inlines. So we add this extra input specifying
the database action is -view, effectively meaning “perform no action.”

192 Chapter 6

(In fact, it is relatively harmless to leave the two submit inputs the
way they were, named as -find and -findall, and skip the additional
-view action. The find or find all action gets performed on the way to
the page and is then overridden by our inlines. But why waste the
cycles on an unnecessary search action? Using -view guarantees that
we don’t waste time on a search that we’re going to override right
away.)

The next part is similar to the original code. Instead of checking
the value of the current action, we check the value of token 2 instead.
If token 2 is equal to find or find all, we know that one of the two but-
tons was pressed, and we can go ahead and perform the search. The
search is now driven by a master inline that looks like this:

[FMP-InlineAction: -db=Animal.fp5, -lay=web, name=

"{CurrentToken:1}", -find]

It’s a search that is similar to the offspring search that we ran before.
The only difference is that we’re searching by name instead of id_ani-
mal, and we want to search for a value of the name equal to whatever
the user entered in the search form, which we’ve arranged to be
passed along as token 1. (Notice that CDML’s token technology
imposes a clear and fairly sharp limit on this way of doing things—
with only nine tokens available, we’re limited in the number of search
choices we can pass to a page.)

There’s one other difficulty with this page. It doesn’t matter
whether the user pressed Find or Find All; the master inline we wrote
always performs a -find action. How can we perform different actions
based on the different user choices? There are a few ways to do this,
none as elegant as we’d like. One thing that we can do is change the
Find and Find All buttons so their code looks like this:

<td><input type="submit" name="-token.2" value="-find"></td>

<td><input type="submit" name="-token.2" value="-findall"></td>

With this, token 2 now passes along the correct value of each of the
possible actions. If we then write our inline like this:

[FMP-InlineAction: -db=Animal.fp5, -lay=web, name=

"{CurrentToken:1}", {CurrentToken:2}]

. . . it works fine, pulling the name of the correct action from token 2.
The problem with this is that HTML submit elements show their
value to the user as a button label, which means the buttons are
labeled -find and -findall in the user interface, which is not remotely
elegant.

Custom Web Publishing with CDML 193

C
h
a
p
te

r
6

What about generating two different inline statements using some
kind of condition logic? We’d like to write something that looks more
or less like this:

[FMP-If: CurrentToken:2 .eq. Find]

[FMP-InlineAction: -db=Animal.fp5, -lay=web, name=

"{CurrentToken:1}", -find]

[FMP-ElseIf: CurrentToken:2 .eq. Find All]

[FMP-InlineAction: -db=Animal.fp5, -lay=web, name=

"{CurrentToken:1}", -findall]

[/FMP-If]

Then we’d like to have the rest of the page go on as before. Unfortu-
nately, this is not kosher CDML. We would have the inline start tag
inside the [FMP-If] tag and the inline closing tag somewhere else.
CDML doesn’t let us nest tags in this way. To do it like this, we’d have
to include the entire inline inside the [FMP-If] clause for each of the
two cases.

Hmm. We’re definitely on the right track. This is the right kind of
construct, but we have to avoid the code duplication.

Note: This style of programming, where we’re building source code in
a text editor, makes it very easy to duplicate code by cut-and-paste. It’s
tempting, but it’s often a bad idea. If you duplicate the same logic all over
your system and that logic later changes, you need to track down every
place where you duplicated that code and make the change there. The
possibilities for error multiply every time you duplicate code. Sometimes
it’s necessary, but do so with care.

In order to avoid this duplication, we’re going to take all of that inner
code and move it into its own file. We’re then going to use a new
CDML tag, called [FMP-Include], to reference that file. So let’s make a
new file, called AnimalSearchInner.html, with the following contents:

<table summary="Table of animal search results" border="1" width=

"600" cellspacing="2" cellpadding="3">

<tr>

<th>Animal</th>

<th>Offspring</t>

</tr>

[FMP-Record]

<tr>

<td>

Name: [FMP-Field:name]

Father: [FMP-Field:SelfByFather::name]

Mother: [FMP-Field:SelfByMother::name]

Born: [FMP-Field:date_birth]

Birth Weight: [FMP-Field:weight_birth]

Current Weight: [FMP-Field:weight_current]

</td>

<td align="top">

194 Chapter 6

<table>

[FMP-InlineAction: -db=Animal.fp5, -lay=web,

ParentIDs={field:id_animal}, -find]

[FMP-Record]

<tr>

<td>[FMP-Field: name]</td><td align=

"right">[FMP-Field: date_birth]</td>

</tr>

[/FMP-Record]

[/FMP-InlineAction]

</table>

</td>

</tr>

[/FMP-Record]

</table>

Let’s rewrite the original file using our conditional logic in a way that
references the new file:

<form action="FMPro" method="post">

<input type="hidden" name="-db" value="Animal.fp5">

<input type="hidden" name="-lay" value="WebSearchResults">

<input type="hidden" name="-format" value="AnimalSearchInline2.html">

<table>

<tr>

<td>Name</td>

<td><input type="text" name="-token.1"></td>

<td><input type="submit" name="-token.2" value=

"Find"></td>

<td><input type="submit" name="-token.2" value=

"Find All"></td>

</tr>

</table>

<input type="hidden" name="-view" value="view">

</form>

[FMP-If: CurrentToken:2 .eq. Find]

[FMP-InlineAction: -db=Animal.fp5, -lay=web, name=

"{CurrentToken:1}", -find]

[FMP-Include: AnimalSearchInner.html]

[/FMP-InlineAction]

[FMP-ElseIf: CurrentToken:2 .eq. Find All]

[FMP-InlineAction: -db=Animal.fp5, -lay=web, name=

"{CurrentToken:1}", -findall]

[FMP-Include: AnimalSearchInner.html]

[/FMP-InlineAction]

[/FMP-If]

</body>

</html>

Here we have the necessary double statement of the inline to prevent
nesting violations, but inside each inline, we simply reference the
external file that contains the shared code. The inlines differ only in

Custom Web Publishing with CDML 195

C
h
a
p
te

r
6

the kind of search they perform. Once the search is done, the page dis-
play is identical.

That was a lot of work. What exactly have we accomplished? Well,
the main advantage of inlines is their increased readability. In pages
built with “classic” CDML syntax, where all actions happen on the way
to a page, it’s a bit difficult to tell what the context is when you look at
the target page. Have we come here via a search action, and if so, what
are the possible search parameters? With the inline syntax, we can
always tell what’s going on. In the original version of this page, we
didn’t necessarily know that a user could choose either a find or a find
all action. The inline syntax makes this very clear and also shows us
that the search has only a single parameter—the name field.

Powerful as this technique is, we have to state again that CDML’s
limited token support also limits the usability of this technique. Lasso
does lift the token limitation, so this technique can really come into its
own with Lasso. In the PHP language, as we see later, the limitation
against nested contexts is also lifted, allowing us to do things like
interleave the results of two database searches, which is not really fea-
sible in environments that limit us to one database context at a time.

Using CDML to Send E-mail

By now we’ve covered most of the major features of CDML, but there
are still a few more to go. One important feature of CDML is its ability
to send e-mails. This capability is also tailor-made for use with
CDML’s inline facilities, since e-mailing represents exactly the kind of
“extra” in-page action that inlines are meant to support.

Before we get to inlines, though, let’s start with something sim-
pler. Karen wants to put a simple feedback form on the BHBB web
site. It will be a place for customers, researchers, or the interested
general public to submit questions. Of course, Karen could just use a
simple mailto: link of the form
Contact Us, but she doesn’t favor this. This will kick off the
user’s local e-mail client, which may or may not be configured cor-
rectly. Further, ever mindful of her constituency, people using the
BHBB web site (possibly at some public site like a library) may not
even have a personal e-mail account. Karen would like to be able to
gather the questions and post the responses on the web site itself in a
kind of virtual bulletin board.

Let’s illustrate here the simple form Karen needs to gather
feedback:

196 Chapter 6

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Contact Us</title>

</head>

<body>

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Comment.fp5">

<input type="hidden" name="-Format" value="CommentThanks.html">

<input type="hidden" name="-MailTo" value="karent@bhbb.com">

<input type="hidden" name="-MailFrom" value=

"webserver@bhbb.com">

<input type="hidden" name="-MailSub" value="Web Feedback">

<input type="hidden" name="-MailHost" value="smtp.bhbb.com">

<input type="hidden" name="-MailFormat" value="comment.txt">

<table border="1">

<tr>

<th>Please enter your question or comment below,

then press the Submit button

(Please include your e-mail address if an e-mail reply is

desired).</th>

</tr>

<tr><td><textarea name="comment" rows="50" cols=

"60"></textarea></td></tr>

<tr><td align="center"><input type="submit" name="-new"

value="Submit"></td></tr>

</table>

</form>

</body>

</html>

That short piece of code deserves a good bit of dissecting. In the first
place, let’s talk about e-mailing in general. CDML needs a total of
seven pieces of information to execute an e-mail action. Five of these
are specific to e-mailing; the other two are just a database name and an
action parameter, which are always mandatory in CDML requests. The
e-mail-specific five are a subject, a From address, a To address, a mail
server, and a mail format file. The first four of those are basic to any
e-mail that you might send. The last is specific to CDML. The mail for-
mat file (which is indeed a separate physical file) contains the text that
is sent as the body of the e-mail. It is important to know that file can
contain CDML replacement tags, and these are evaluated in the cur-
rent CDML context.

The context is a -new action, since this page is going to try to cre-
ate a new record in a database for each comment submitted. The
database is called Comment.fp5, and right now it just has a single field
called “comment.”

Custom Web Publishing with CDML 197

C
h
a
p
te

r
6

We’ve set up most of the e-mail parameters as hard-coded values
using hidden form inputs. The e-mail always comes to Karen, it always
comes from the BHBB web server, and it always has a subject line of
“Web Feedback.” The interesting piece that we need to look at is the
mail format file. Let’s look at comment.txt:

Date: [FMP-CurrentDate]

Time: [FMP-CurrentTime]

Comment: [FMP-Field:comment]

Note that this is a plain text file, not an HTML file (though it could be
if you wanted to send HTML-enhanced e-mail, which some of us cur-
mudgeons regard as a pernicious practice). It is executed “on the back
end,” so to speak, after and in the context of the specified database
action, which is a -new action. In the context of a -new action, the
fields from the just-added record are accessible to us using [FMP-
Field]. So the comment in the above e-mail is the comment from the
most recently added record.

There’s one other format file of interest here, which is Comment-
Thanks.html. We are not reproducing it here; this is just the page
where the user lands after submitting a comment and that presumably
contains a thank-you and a link back to the main page.

Let’s consider a trickier example. Say that Karen has given her
researchers a way to delete animal records from the hit list. In the
rightmost column she’s put a link that says Delete. But she suspects
that records may occasionally be deleted in error, and she also wants to
make sure the feature is being used as intended. So she wants to set
things up such that before deleting any record, the system sends her
an e-mail with the details of the outgoing record. Inspecting these
e-mails lets her be sure that the feature is being used correctly, and
the e-mails act as a “trash can” if any of the researchers come running
to her needing to get their deleted records back.

To kick things off, let’s add a third column to the hit list. To the
right of each entry, we put a table cell that looks like this:

<td><a href="FMPro?-db=Animal.fp5&-lay=WebSearchResults&-RecID=

[FMP-CurrentRecId]&-format=DeleteAnimal.fp5&-view">Delete</td>

The format of that URL should be familiar by now. It directs us to a
page where the actual processing occurs. Since our action is -view,
nothing special happens on the way. The only thing unfamiliar might be
the RecID tag, which comes in two different flavors. RecID is a named
value that we can pass along to our results page, and [FMP-Cur-

198 Chapter 6

rentRecID] gets the ID of the current record. We need the record ID
on the results page to tell CDML which record we want deleted.

So what does DeleteAnimal.html look like? It needs to do two
things—first, send an e-mail to Karen informing her of the deletion
and send her the record data, and second, delete the record as
instructed. (Actually, a competent implementation would first prompt
the user for confirmation before deleting a record. We know you’d
never leave this out of a production solution, but we’re going to skip it
here for clarity only.)

Well, a CDML page that needs to do two things probably has to
involve inlines. In fact, we use one inline to send the e-mail and a sec-
ond one to perform the deletion. Watch carefully because there are
some extra wrinkles here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Delete Animal</title>

</head>

<body>

<!--Send an e-mail message about the deletion-->

[FMP-InlineAction: -db=Animal.fp5, -lay=WebSearchResults,

-mailto=karen@bhbb.com, -mailfrom=webserver@bhbb.com,

-mailsub=Animal Record Deleted, -mailhost=smtp.bhbb.com,

-mailformat=deletemessage.txt, -RecID={CurrentRecID}, -find]

[/FMP-InlineAction]

<!--Delete the record-->

[FMP-InlineAction: -db=Animal.fp5, -lay=WebSearchResults,

-RecID={CurrentRecID}, -delete]

[/FMP-InlineAction]

</body>

</html>

Here’s the code for the mail format file:

<!--deletemessage.txt-->

Date: [FMP-CurrentDate]

Time: [FMP-CurrentTime]

id_animal: [FMP-Field:id_animal]

Name: [FMP-Field:name]

Mother: [FMP-Field:id_mother]

Father: [FMP-Field:id_father]

Birth Weight: [FMP-Field:weight_birth]

Current Weight: [FMP-Field:weight_current]

The first inline reprises the e-mail parameters from the previous
example. But, while the previous example used a -new action, this
e-mail inline uses a -find. We need to take the -RecID parameter that

Custom Web Publishing with CDML 199

C
h
a
p
te

r
6

was shipped in by the URL and use it to find the record that’s about to
be deleted. This is important because we want our e-mail to send
Karen specific information about the exact record being deleted, rather
than just a generic notice that some record, somewhere, is now his-
tory. Remember, the mail format file (as well as the regular format file)
operates in the current CDML context. To show information about a
record, we need to find it first. (To be specific, CDML lets us work
with information from a record that we have found, added, or updated.)
Our e-mail message just sends Karen the date and time of the deletion
and the critical fields from the record.

Once the e-mail is sent, we run a second inline to perform the
actual deletion. We send along the same record ID (this time in the
context of a delete action), and the record is presumably removed. I
say presumably because our code is not really production quality. It
doesn’t account for the fact that the delete might fail or provide what
to do if this happens. In a more powerful programming environment,
we might set up the text of the e-mail beforehand and store it in some
kind of variable and only send it if the delete succeeded. In CDML, we
might instead check whether the delete inline succeeded and, if not,
send another e-mail to Karen indicating the failure.

That’s really all there is to know about CDML’s e-mail capabilities.
Virtually all web development environments worth their salt provide
some kind of e-mailing facilities. More advanced tools like PHP and
Lasso offer richer e-mail capabilities, such as the ability to add attach-
ments to your e-mail.

Cookies

Though this is our last topic in the CMDL chapter, cookies are not spe-
cific to CDML at all. They’re an almost universal feature of dynamic
web programming.

A cookie is a programming device intended to overcome the state-
less nature of the web. If I do some shopping on BHBB’s web site, and
they want to be able to greet me by name when I come back (disre-
garding the Big-Brotherish intrusiveness of this gesture), they have a
problem. After all, when I, via my web browser (or mobile phone or
doubtlessly soon my toaster), send a request to a web server, I don’t
identify myself by name. Among the few bits of useful information the
remote web server can glean from my incoming HTTP request are my
user agent (usually a browser but, again, possibly some other device
entirely) and the IP address of my computer. But the user agent identi-
fier is easily spoofed or altered and isn’t good for much anyway. My IP

200 Chapter 6

address doesn’t help to link my request uniquely to a person either; if I
work in a DHCP environment, I might have different IP addresses on
different days, and if I’m behind a NAT device or a proxy server, the IP
address on the request may not even be traceable to my machine. But
if I’m a remote web server, that’s all I get.

A cookie is a piece of data that is stored on your computer, usually
under the stewardship of your web browser. If I’m the BHBB web
server, for example, whenever a user first comes to the site I can send
the user a cookie with a specific name (say, BHBB_ID). Inside the
cookie I can store a piece of information, such as the user’s name
(assuming he has given it to me). Think of the cookie as a database
record that a web server stores on your local machine. The cookie’s
name is its primary key—when you visit the web server or web site
again, it will ask for the cookie by name, and your local cookie manager
(usually your browser or other user agent) will look up the cookie by
that name and send it back to the remote server. Within the cookie
there can be a single piece of data. The remote web server can read
this data back out of the cookie. It can also update it, add new cookies,
or remove its cookies from your machine altogether. The important
thing to remember is that each cookie has one name and one associ-
ated value.

Cookies are a tricky and inelegant way to get past the fact that the
web was never designed as a client-server platform. In typical cli-
ent-server computing, remember that the server maintains a known
connection with each client and is able to associate every action and
request with a particular client. The web, by contrast, was intended to
be lightweight, stateless, and request-oriented rather than connection-
oriented. As the web moved from being a medium for the navigation of
information to a medium for presentation as well (and now also for the
operation of client-server applications), new technologies had to be
grafted onto the original HTTP and HTML that were the basis for the
web. To enable better presentation, HTML was “extended” (some
would say polluted) with tags like . To allow persistent com-
puting, cookies were born.

Not everyone agrees that cookies are a good thing. Some see them
as tools to invade privacy. The important thing to remember is that the
user has (or should have) complete control over whether and how her
user agent accepts cookies. Most modern browsers allow the setting
of different levels of cookie security, including allowing all cookies with
no prompting, allowing cookies but prompting you to accept each one,
allowing only cookies from certain sites, and allowing no cookies at all.

Custom Web Publishing with CDML 201

C
h
a
p
te

r
6

A good browser will have a cookie manager that lets you see what
cookies are stored on your computer at any time, who sent them, and
what their contents are. It should also let you delete cookies, either
singly or en masse. This has an important ramification for you as a web
programmer; if you design your site to depend on cookies and your
user disables cookies in her browser, your application may not work. If
you’re building a private application (say, for use by paid subscribers or
the members of a company intranet), you can probably communicate to
all prospective users that cookies are mandatory to use the site. If
you’re building something for widespread public consumption, though,
beware. Users may not like being told that they need to enable cook-
ies. So just remember that cookies, like many other aspects of the
web’s user experience, are configurable by the user. At the very least,
you may need to do some negotiation to make sure that your site
works as expected. For more information on cookies (much more) visit
www.cookiecentral.com, and be sure to check out their detailed FAQ.

Let’s take a look at a simple file that exercises CDML’s cookie
capabilities:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>CDML Cookie Test</title>

</head>

<body>

<!--Check to see if the user has submitted her name to this page.

If so, store it-->

[FMP-If: CurrentToken .neq.]

Hello, [FMP-CurrentToken]. Welcome back!

[FMP-SetCookie: name={CurrentToken}, expires = 1440]

[FMP-Else]

Hello, [FMP-Cookie:name]. Welcome back!

[/FMP-If]

<form action="FMPro" method="post">

<input type="hidden" name="-db" value="Animal.fp5">

<input type="hidden" name="-lay" value="WebSearchResults">

<input type="hidden" name="-format" value=

"CookieTest.html">

Enter your name: <input type="text" name="-token"> <input

type="submit" name="-view" value="Submit">

</form>

</body>

</html>-

202 Chapter 6

This is a simple form with a place for a user to type in his name and
submit it. It’s stored in a CDML token and passed back to the same
page, where, if the user has actually submitted a name, it’s stored in a
cookie. If you run this page repeatedly (changing the name if you like),
the message always shows the most recently submitted name. By
itself, this means nothing—this is happening simply because we’re
always passing the name back through using a token, so of course it’s
up to date. But the magic (such as it is) happens if you quit your
browser, start it up again, and re-enter the same URL. Without submit-
ting a name to the browser this time around, the last name you entered
should appear in the message. That’s because each name was being
stored in the cookie by our code.

Inelegant as they are, cookies have many uses in web program-
ming. The most important role for our purposes is their use in
maintaining user sessions, a critical concept that we explore a bit fur-
ther in the chapters ahead.

Summary

That finishes up our tour of CDML, the web publishing technology
that’s built into versions of the Web Companion from FileMaker 4 to
FileMaker 6. It is a reasonably capable, tag-based web development
language, and since it ships with FileMaker, it deserves our attention.
Quite a number of simple tasks can be fairly easily accomplished using
CDML, and if you stretch a bit more, you can use it to design a fairly
sophisticated site. (There are capable commercial and public sites
based entirely on CDML.)

All the same, we’re going to argue that if you have the time, the
energy, and the need to learn an actual web programming language,
you might as well not stop with CDML. By all means, start there to
test the waters and see how well you adapt to this style of program-
ming. But we’re going to argue that to really prosper as a web
developer, you’re going to want to learn a more powerful development
language. CDML has been useful to us as a laboratory for learning
some basic web programming concepts, but it’s time to move on. In
the chapters to come, we give you an overview of Lasso and then
move on to PHP.

Custom Web Publishing with CDML 203

C
h
a
p
te

r
6

This page inten tion ally left blank

Chapter 7

Custom Web
Publishing with Lasso

Lasso is one of the most long-lived available tools for web-enabling
FileMaker Pro databases, having outlasted a number of the other early
tools that became available when FileMaker added web capabilities to
the product line. It is now a multi-platform web application tool that
can work directly with data from FileMaker and from the popular
open-source database MySQL. Lasso can also work with data from any
JDBC-enabled data source, which includes most major relational data-
base products. The current version, Lasso 6, runs on Mac OS X, Red
Hat Linux, and Windows 2000 and XP.

Lasso runs in the classic middleware fashion; it’s installed along-
side a dedicated web server (Apache or WebSTAR in the case of Mac
OS X, Apache for Linux, and Microsoft’s IIS in the case of Windows)
and does special extra processing to certain files. In a typical scenario,
the web server will be instructed to hand all files with a .lasso suffix to
Lasso for processing. As with CDML, these pages contain special
markup code that represents instructions to Lasso. The difference
between CDML and the other, more powerful Custom Web Publishing
languages is simply in the range of available features, but the underly-
ing mechanism is just the same.

The newest version of Lasso has some considerable strengths.
Most outstanding is Lasso’s ease of installation and powerful graphical
tools for administering databases, database hosts, and other web appli-
cation settings. Also very nice is the inclusion of Lasso MySQL, a
licensed version of the popular open-source database MySQL. Lasso
uses MySQL internally for keeping its database of administrative infor-
mation, but you can use this powerful relational database engine for
your own purposes in any Lasso application that you build, accessing it
as easily as your FileMaker data. MySQL is able to handle extremely

205

large data sets and complex queries that might be beyond the capabili-
ties of FileMaker; if one of your database tables is hugely and
disproportionately large or complex, you could store that data in
MySQL instead of FileMaker, for example. (Our personal favorite
among open source databases is PostgreSQL, but hey, you can’t have
everything!) Also noteworthy is the ability to compile your Lasso pro-
grams into LassoApps that can be deployed without releasing the
application source code. (We’ve never needed such a feature, but we
can see how, if you wanted to market a “shrink-wrap” style of applica-
tion, you might.)

In this chapter, we show you some of the basic and advanced fea-
tures of Lasso. For additional information, you can consult Duncan
Cameron’s Lasso Professional 5 Developer’s Guide from Wordware Pub-
lishing for a full range of code examples.

Lasso is a commercial product, which means you must purchase it
in addition to FileMaker Pro Unlimited. If you’re interested in testing
the product or just following along with our examples, you can down-
load a 30-day evaluation copy at http://www.blueworld.com.

Configuring Lasso for FileMaker

We’re going to assume that you’ve installed Lasso successfully. All
Lasso configuration is done, appropriately enough, through a web
interface, which is accessed at <your.server.address>/lasso. If you’re
working from the install machine, opening a browser and going to
http://127.0.0.1/lasso should get you started. Here’s how the opening
screen should look.

206 Chapter 7

Figure 7.1

Once you’ve established your administrative username and password
and added your serial number, you’re ready to tell Lasso where to find
some FileMaker Pro files. To do this, go to the Setup>Data
Sources>Hosts tabs. Here’s what you should see once you click the
name of a host in the left-hand panel:

After selecting Lasso Connector for FileMaker Pro from the Connec-
tor pull-down menu and clicking the FileMaker Local link in the left
panel (this is a host that we already configured—you need to set up
your own), the details of the selected FileMaker host appear in the
panel to the right. Here we’ve specified a FileMaker installation run-
ning on the same machine as Lasso (127.0.0.1, by the way, is an IP
address that always points to the current machine) on port 591 (the
Apple-registered port for Web Companion). We can work with as many
hosts as we want, FileMaker or otherwise. We just need to use the
Add Host button to make sure they get correctly configured and
included in the list.

Finally, if we click the List Databases link for a given host, we see
the available databases on that host in the left panel, and if we click on
a database, we see a number of specific settings for that one database
in the right panel.

Custom Web Publishing with Lasso 207

C
h
a
p
te

r
7

Figure 7.2

Take a look at the lower right-hand corner of Figure 7.3. Notice that,
for the selected database, there’s a listing of what are called Group
Permissions. This is just the tip of the great iceberg that is Lasso’s
security system. Lasso has an extremely full-fledged security system
built into it. It’s so full-fledged that it can seem somewhat intrusive
until you get used to it. For any database, you can control access based
on layouts, fields, database actions, or even individual Lasso tags. A
full exposition of Lasso’s security system would take up a bit too much
space here, but the important thing to realize is that Lasso takes a
fairly restrictive stance by default; unless you specifically permit an
action on a particular database, it is generally assumed to be forbidden.
So if you configure a FileMaker connector, set up some databases for
web sharing, and start writing Lasso pages to hit those databases, you
may find yourself faced with a host of permissions errors.

When you’re developing in Lasso, we recommend that you open
up the permissions as wide as possible. If you want to make Lasso’s
security a part of whatever security scheme you devise for your
Lasso-driven sites, you can add restrictions later in your production
configuration. For now, we recommend effectively disabling Lasso’s
built-in security so that you can get on with your development.

To do this, you need to open the permissions on each database that
you want to work with. There are two steps involved here. In the first
place, referring again to Figure 7.3, you want to make sure that each

208 Chapter 7

Figure 7.3

database you want to work with is marked as Enabled on the database
detail screen.

Once a given database is enabled, open up the group permissions
on that database. Lasso’s security model has some similarities to
FileMaker’s: In Lasso, permissions are granted to groups rather than
to individual users. Users get privileges (or are denied them) by virtue
of being in one or more groups. You, as the system administrator, can
create as many users as you like and divide them up into groups any
way you like. But there are also special built-in entities called Any
User and Any Group. Any User is by definition a member of the group
Any Group. By manipulating the permissions for these entities, you
can open up whole classes of privileges quickly and easily.

To allow all users to perform all actions on a specified database,
click on Setup>Groups>Databases in the Lasso administrative inter-
face. If the pull-down menu at the upper right is not already set to
AnyUser, change it to AnyUser. Make sure that you have the right host
and connector selected in the left-hand panel (we’re choosing the
FileMaker connector and our own local host machine). Once you see
the list of databases at the left, select one to edit its group permis-
sions. Your screen should look something like this:

In order to allow unfettered access to the selected database during
development, you need to make sure that the detail listed at the right
shows that the database is enabled and that all six specific privileges

Custom Web Publishing with Lasso 209

C
h
a
p
te

r
7

Figure 7.4

are set to Allow. There’s an Allow All button that will set these all at
once. Once the database is enabled and all actions are allowed to the
Any User group, you should be able to develop freely without any per-
missions errors.

Building an Application with Lasso

At first, Lasso may seem to you to be a more powerful CDML. The
syntax and approach are similar, but the differences become more and
more apparent the more you work with it. We’re going to come back to
the Blue Horizon databases and start developing some more powerful
pages for them.

Before we get started, though, let’s write a very minimal Lasso
page just to make sure everything works. Create the following docu-
ment and save it somewhere in your web server’s directory structure
as datetest.lasso:

<html>

<head>

<title>Lasso Date Test</title>

</head>

<body>

Date is: [Date_GetCurrentDate]

</body>

</html>

The only Lasso code in the page so far is the [Date_GetCurrentDate]
tag. The square-bracket syntax should look familiar from CDML; this
syntax is common to the CDML-Lasso family. Once you’ve saved this
page, load it up in your browser. You should see a simple page with the
words “Date is: 12/26/2002 18:02:15” or something to that effect.
Because the page has a .lasso suffix, the web server sends it over to
Lasso for processing. [Date_GetCurrentDate] is a replacement tag,
much like those we saw in CDML, so the Lasso processor replaces it
with the current date and ships the whole page back through the web
server to the user’s browser.

With that under our belts, let’s move into some real work. We
start with some simple examples. Let’s begin with a basic search page.

210 Chapter 7

A Simple Search in Lasso

Let’s start with a simple page for searching the BHBB herds by ani-
mal. We want users to be able to look for animals by a variety of
criteria. Here’s what our page looks like:

Here’s the code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>BHBB Animal Search</title>

</head>

<body>

<H2>Welcome to the Blue Horizon
Animal Research

Database!</H2>

<H3>Please enter your search criteria, then press Search</H3>

<form action="AnimalSearchResults.lasso" method="post">

<input type="hidden" name="-Database" value="Animal">

<input type="hidden" name="-Layout" value="WebSearchResults">

<table border cellspacing="2" cellpadding="3">

<tr>

<th align="right">Name:</th>

<td><input type="text" name="name"></td>

</tr>

<tr>

<th align="right">Mother:</th>

<td><input type="text" name="SelfByMother::name"></td>

</tr>

<tr>

<th align="right">Father:</th>

Custom Web Publishing with Lasso 211

C
h
a
p
te

r
7

Figure 7.5

<td><input type="text" name="SelfByFather::name"></td>

</tr>

<tr>

<th align="right">Birth Date:</th>

<td><input type="text" name="date_birth"></td>

</tr>

<tr>

<th align="right">Birth Weight:</th>

<td><input type="text" name="weight_birth"></td>

</tr>

<tr>

<th align="right">Current Weight:</th>

<td><input type="text" name="weight_current"></td>

</tr>

<tr>

<th align="right">Gender:</th>

<td>

<select name="gender">

<option label="Male" value="Male">Male</option>

<option label="Female" value="Female">Female</option>

</select>

</td>

</tr>

<tr>

<td align="center">

<input type="submit" name="-Search" value="Search">

</td>

<td align="center">

<input type="submit" name="-FindAll" value="Find

All">

</td>

</tr>

</table>

</form>

</body>

As usual, we’ve wrapped our search form in a table for nicer format-
ting. It’s a straightforward search form, and in fact so far it’s very
similar to the form that we would write if we were working in CDML.
At the top, we have two hidden inputs called -Database and -Layout to
specify the database and layout. At the bottom we have two buttons,
one of which triggers a Find action and the other of which triggers a
Find All.

The following figure shows the search results page after pressing
Find All:

212 Chapter 7

Here’s the code for AnimalSearchResults.lasso:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Animal Search Results</title>

</head>

<body>

<table border="0" cellspacing="2" cellpadding="3">

<tr bgcolor="CCCCCC">

<td colspan="5" align="center">Found a total of

[Found_Count] records</td>

</tr>

<tr>

<th>Name</th>

<th>Mother</th>

<th>Father</th>

<th>Birth Date</th>

<th>Birth Weight</th>

</tr>

[Records]

<tr>

<td>[Field:'name']</td>

<td>[Field:'SelfByMother::name']</td>

<td>[Field:'SelfByFather::name']</td>

<td align="right">[Field:'date_birth']</td>

<td align="right">[Field:'weight_birth']</td>

</tr>

[/Records]

</table>

</body>

</html>

Custom Web Publishing with Lasso 213

C
h
a
p
te

r
7

Figure 7.6

The result page code should again look familiar—the [Field] tag and
[Found_Count] tags behave as they do in CDML. As is often the case,
there are slight variations between CDML and Lasso syntax; the
CDML parameters -db and -lay become -Database and -Layout in
Lasso, and the [FMP-CurrentFoundCount] tag becomes [Found_
Count].

Variables in Lasso

Let’s do something we can’t do in CDML. We’d like every other row of
our results table to be striped in a contrasting shade. Some people
think this is easier to read. As always, we try to think through the logic
of what we need to do before committing to code. We need to decide
whether a given row number is odd or even and color it (or not)
depending on that result. Conceptually, we need some way to count
the rows and then some way to examine the current row count and
decide if it’s odd or even.

If we were doing this in FileMaker, we might use a global field for
our row counter. We’d set it to zero initially and then add 1 to it every
time through a loop. This FileMaker global would be an example of the
general programming concept of a variable. A variable could be defined
as “a named value that can vary.” If you can remember your basic alge-
bra, with x and y in equations, the concept of a variable will be very
familiar.

In Lasso, you declare a variable by saying [Variable: 'LoopCoun-
ter']. This creates a variable called LoopCounter and allows you to
assign values to it. If you want to assign an initial value to it (called,
appropriately enough, initializing the variable), you could write [Vari-
able: 'LoopCounter' = 0]. If you think that’s a lot to type just to set one
variable, you can use the shorter syntax [Var: 'LoopCounter' = 0].
Most economical is to use Lasso’s new short variable keyword, writ-
ten $. This lets us say [$LoopCounter=0]. (This, as we see, is how
PHP and other languages refer to their variables; it’s both more stan-
dard and economical, and we encourage you to use it where possible.
The one place this compact syntax can’t be used in Lasso is when
you’re declaring a variable for the first time. So in our current exam-
ple, we have to at least say [Var:'LoopCounter'=0], to get the variable
to be created.)

So we can initialize a variable called LoopCounter to 0. We can
increment it each time through the [Records] loop by using Lasso’s
increment operator, written ++. So by saying [++$LoopCounter], we

214 Chapter 7

add 1 to LoopCounter. Finally, for a given value of LoopCounter, we
need to decide whether it’s odd or even. To do this, we can use a
modulus function, often just called mod. A mod operator performs divi-
sion and looks at the remainder. We want to divide our row number by
2 and look at the remainder (the modulus). If it’s 1, the number is odd.
If it’s 0, the number is even.

We can write the mod check in a couple of ways. There’s a more
verbose way, like this: [Math_Mod: $LoopCount, 2]. And there’s a
more economical way, like this: [$LoopCount %2]. Lasso tries to group
its functions into families with consistent prefixes, so all the math
functions are accessible under names that begin with Math_:
Math_Mod, Math_Add, Math_Div, etc. At the same time, sensitive to
programmers who may feel that [Math_Add: 2, 2] is a bit harder to
write and more obscure than, say, [2+2], the language has a number of
“shortcuts” for more commonly used language elements like math
operators.

With that in mind, we can go ahead and rewrite the page using
Lasso’s variable capability and the mod operator to do our work.
Here’s how it looks:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Animal Search Results</title>

</head>

<body>

<table border="0" cellspacing="2" cellpadding="3">

<tr bgcolor="CCCCCC">

<td colspan="5" align="center">Found a total of

[Found_Count] records</td>

</tr>

<tr>

<th>Name</th>

<th>Mother</th>

<th>Father</th>

<th>Birth Date</th>

<th>Birth Weight</th>

</tr>

[Var:'LoopCount' = 0]

[Var: 'OddEven']

[Records]

[$OddEven = $LoopCount % 2]

[If: $OddEven == 1]

[Var:'BackColor'='FFFFFF']

[Else]

[Var:'BackColor'='DDDDDD']

[/If]

Custom Web Publishing with Lasso 215

C
h
a
p
te

r
7

<tr bgcolor="[Output: $BackColor]">

<td>[Field:'name']</td>

<td>[Field:'SelfByMother::name']</td>

<td>[Field:'SelfByFather::name']</td>

<td align="right">[Field:'date_birth']</td>

<td align="right">[Field:'weight_birth']</td>

</tr>

[/Records]

</table>

</body>

</html>

In the code, we initialize our LoopCount variable to 0 and create a vari-
able called OddEven, without initializing it. Each time through the
[Records] loop, we set OddEven equal to LoopCount %2, which will be
either 1 or 0 depending on whether the row number is odd or even. We
then write a conditional statement using [If]. . .[Else] syntax very simi-
lar to CDML’s to set a new variable called BackColor. If the row is
even, it will be white; otherwise, it will be a light gray.

That’s a very simple introduction to Lasso variables. Suffice it to
say that you need to use variables for almost any significant work that
you do in Lasso. We recommend that you use the short form for vari-
able references ($) wherever possible to save keystrokes. The only
place you can’t use $ to refer to a variable is during the process of cre-
ating it. So the minimum work to create and use a variable looks like
this:

[Var:'LoopCount'=0]

[Output:++$LoopCount]

Error Handling in Lasso

As we program, we expose our code to all kinds of possible errors.
Some are simple and direct, such as mistyped program syntax. Others,
especially in a middleware application, are more complex; the network
might be down, or the remote copy of FileMaker might be unavailable
for some other reason. Lasso has a well-developed system for provid-
ing error feedback to the programmer. Let’s say, for example, that we
introduce an error into our search results page above. We’re going to
mistype the closing square bracket on one of the Lasso tags, like this:

[Var:'LoopCount' = 0}

Then we’re going to run a search and load the page again. We get an
error message from Lasso that looks like the following:

216 Chapter 7

The main error message at the top of the page is a bit misleading. It
says “No records found,” but in fact, the problem is the syntax error. In
the meat of the error output, Lasso identifies the exact line and char-
acter position of the suspected error and highlights what it believes to
be the offending code. Now, Lasso does not always point you to the
correct spot, nor does any code processor—there are many syntax
errors you can make that will bamboozle a code parser into pointing to
some other section of the code. This is true of languages like C and
Java, and Lasso is no different. Overall, it gives you extremely rich and
generally accurate feedback on all error conditions. In addition to the
core error message, you can also see what action was being per-
formed, against what database, with what search parameters, from
what IP address, and a number of other important details. In general, if
your program encounters an error, Lasso gets you a long way toward
debugging the problem.

Error handling doesn’t just result in messages to the screen. Error
handling is also built into Lasso’s system of action handling. When you
set up an action, such as a search, Lasso (like CDML) lets you specify
not only a format file (a page to go to if the action is successful) but
also a number of error files as well, which represent pages to go to if
certain types of errors are encountered. To learn more about this, let’s
run an unsuccessful search on the Animal file. We’re searching for a

Custom Web Publishing with Lasso 217

C
h
a
p
te

r
7

Figure 7.7

buffalo called Cody (something no buffalo should ever be called), and
the search fails. Here’s what Lasso tells me:

It says “No records found” again, but this time it really means it. In the
absence of any other handling, Lasso considers this an error and takes
us to a default Lasso error page. We can change this behavior by giving
Lasso a value for a parameter called ResponseNoResultsError. If no
records are found, we’d like to go back to our search page and show a
message that says so. We need to modify AnimalSearch.lasso in two
ways. First we need to make sure that any search error comes back to
this page. Secondly, we need to add code to check for whether a search
error has occurred and if so to display a message.

To point any errors back to this page, we can add this to the
HTML <form> in AnimalSearch.lasso:

<input type="hidden" name="-ResponseNoResultsError" value=

"AnimalSearch.lasso

If we simply add this to the search page and repeat our failing search,
we are brought straight back to the search page. This isn’t very good
form, since it doesn’t tell the user what happened and will most likely
convince him that the page doesn’t work at all. We need to check to
see whether a search is in effect. If so, and we return to this page, the
search must have failed, and we can output an error message of some
kind. We need to add the following code:

218 Chapter 7

Figure 7.8

[If: Lasso_CurrentAction == 'Search' || Lasso_CurrentAction ==

'FindAll']

<tr>

<td colspan="2">Sorry, your search did not find any

records.</td>

</tr>

[/If]

The [Lasso_CurrentAction] tag, appropriately enough, returns the
value of the current Lasso action. In this case, if the action is either
Search or FindAll (|| is the operator for “or,” by the way), we know
we came here as a result of a failed search. If so, we output a table row
with the error message at the top of everything.

Lasso’s -ResponseNoResultsError is an example of a response
parameter. In addition to this one, Lasso has response parameters for
quite a number of possible outcomes of database actions—both failures
and successes. Check the Lasso Reference (a web-based help system
available from the Lasso Administration interface) under the Response
category for a full listing of these. You can use these parameters to
specify custom response pages for a variety of successful or unsuc-
cessful actions.

One important note is that the response page mechanism really
only has meaning in what’s called “classic” Lasso, meaning the pro-
gramming style in which you trigger database actions by including
action parameters (such as Search, FindAll, Add, and Duplicate) in
HTTP requests, either URLs or HTML forms. In general, as we men-
tion in the previous chapter, we recommend that you stop using the
“classic” style as soon as you feel comfortably able to and begin using
inlines. We feel the same way about an application architecture based
around response pages; it works perfectly well for relatively small
applications, but for larger programs we like to centralize things a bit
more, rather than spreading logic across dozens of small response
pages. As long as you’re programming in “classic” style, though, it’s
very worthwhile to know how to use response pages.

Folding Up the Search Pages

In general, we advocate a programming style that uses fewer individ-
ual code files rather than more. Often, this means rolling a couple of
different functions together into a single page. First we’ll show you
how to fold the search page and the results page into a single combined
page using “classic” Lasso style. Then we’ll redo it in the preferred
inline style and try to work as much as possible with inlines from there

Custom Web Publishing with Lasso 219

C
h
a
p
te

r
7

on. This design won’t work very well if there’s a huge number of fields
that we need to search on; in that case, a separate search form is
better. For a lightweight search form, it should work fine. We take a
few of our fields out to make it a bit lighter.

Here’s how the new page looks prior to a search:

Here’s how it looks after a failed search:

Here’s the result of a successful search:

220 Chapter 7

Figure 7.9

Figure 7.10

Figure 7.11

Let’s look at the code that accomplishes this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>BHBB Animal Search</title>

</head>

<body>

<H2>Welcome to the Blue Horizon
Animal Research

Database!</H2>

<form action="AnimalSearchIntegrated.lasso" method="post">

<input type="hidden" name="-Database" value="Animal">

<input type="hidden" name="-Layout" value="WebSearchResults">

<input type="hidden" name="-ResponseNoResultsError"

value="AnimalSearchIntegrated.lasso">

<table border cellspacing="0" cellpadding="3" width="600">

<tr align="center">

<td colspan="6">

<table border="0"cellspacing="0">

<tr>

<th align="right">Name:</th>

<td><input type="text" name="name"></td>

</tr>

<tr>

<th align="right">Birth Date:</th>

<td><input type="text" name=

"date_birth"></td>

</tr>

<tr>

<th align="right">Gender:</th>

<td>

<select name="gender">

<option label="" value=""></option>

<option label="Male" value="Male">Male</option>

<option label="Female" value="Female">Female

</option>

</select>

</td>

</tr>

<tr>

<td align="center">

<input type="submit" name="-Search"

value="Search">

</td>

<td align="center">

<input type="submit" name="-FindAll"

value="Find All">

</td>

</tr>

</table>

</td>

</tr>

</form>

Custom Web Publishing with Lasso 221

C
h
a
p
te

r
7

[If: Lasso_CurrentAction == 'Search' || Lasso_CurrentAction ==

'FindAll']

<tr>

[If: Found_Count == 0]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Sorry, your search did not

return any records</td>

</tr>

</table>

[Else]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Found a total of [Found_Count]

records</td>

</tr>

<tr>

<th>Name</th>

<th>Mother</th>

<th>Father</th>

<th>Birth Date</th>

<th>Birth Weight</th>

</tr>

[Var:'LoopCount' = 0]

[Var: 'OddEven']

[Records]

[$OddEven = LoopCount % 2]

[If: $OddEven == 0]

[Var:'BackColor'='#FFFFFF']

[Else]

[Var:'BackColor'='#DDDDDD']

[/If]

<tr>

<td bgcolor="[Output: $BackColor]">[Field:

'name'] </td>

<td bgcolor="[Output: $BackColor]">[Field:

'SelfByMother::name'] </td>

<td bgcolor="[Output: $BackColor]">[Field:

'SelfByFather::name'] </td>

<td bgcolor="[Output: $BackColor]"

align="right">[Field:'date_birth'] </td>

<td bgcolor="[Output: $BackColor]" align=

"right">[Field:'weight_birth'] </td>

</tr>

[/Records]

</table>

[/If]

[Else]

</table>

[/If]

</body>

</html>

Design-wise we’ve created one big table. The first row has another
table nested inside it, which contains the slimmed-down search form.
The next row displays a status message (if a search has been run), and

222 Chapter 7

the rest of the table consists of the search results. The search form
always gets displayed, so we begin with that code. Then we come to a
conditional where, as before, we check the current action. If it’s a
Search or a Find All, we begin to do some other processing. If there
are no found records, then as before, we write a message to that effect.
Otherwise, we begin to output the same results list that we have pre-
viously stowed in a different page file. The result is a single integrated
page.

There are two schools of thought on this. One school says “one
action, one page.” That way, it’s easier to understand what each page is
supposed to do. Another school says “one user screen, one page.” The
thought there is that if a user can perform five actions from a single
screen, that one page file should handle them all. This is the idea that
we tend to lean toward. It does make the page more complex, and it
requires more discipline to manage that complexity.

If we lean in that direction, we run into a problem with “classic”
Lasso. The classic style only allows one database action per page
request, since the action command is sent along with the HTTP
request (whether POST or GET), and Lasso only recognizes one data-
base action per request. The only way to leap that limitation is to use
inlines, so that’s where we head next.

Writing the Folded Page with Inlines

Inlines in Lasso are conceptually very similar to inlines in CDML.
They allow a programmer to perform multiple database actions in a
single page file, and they each represent their own special context
where different things can occur. (Lasso’s named inlines are an impor-
tant exception to this rule.) Let’s redo the “folded search page” with
an inline.

Right now, the only actions that the page performs are a search
and a Find All. These searches are performed by Lasso “on the way to
the page,” as we’ve been saying it. When we rewrite it as an inline, it
happens in the page, but to get this to work, a few other things have to
happen. First, we need to not send a real Lasso action parameter to the
page. If we send a -Search or -FindAll parameter, that action gets per-
formed. Instead, we send what’s called a “nothing action,” as follows:

<input type="hidden" name="-nothing" value="">

This tells Lasso not to perform any database actions prior to loading
the page. This is important because the database actions are going to
be performed by our inline once we’re actually inside the page. We

Custom Web Publishing with Lasso 223

C
h
a
p
te

r
7

also need to change the names of our two buttons. We can’t call them
-Search and -FindAll anymore because when Lasso sees those names,
it performs them as database actions. Instead, we call them both
"action".

We still have some more work to do. When we call the inline, we
need to tell it what database action to perform. To do this, we create a
variable called DBAction. If we reached this page because the user
pressed one of the search buttons, the name of that search button has
been sent to this page as part of a name-value pair. We somehow need
to ask whether either name has been sent to the page, and if it has, we
act accordingly.

CDML gave us no way to inspect all of the name-value pairs that
are passed to a page. Different commands, such as [FMP-Current-
Format], let us inspect particular parameters that were passed to a
page, but there was no mechanism to inspect any one we chose. Lasso
uses the [Action_Param] tag to do this. What we want to do is create a
new variable called DBAction and set it to the correct action parameter
for either of the search buttons, if a search button was indeed pressed.
We do it like this:

[If: (Action_Param: action) == 'Search']

[Var: 'DBAction' = '-Search']

[Else: (Action_Param: action) == 'Find All']

[Var: 'DBAction' = '-FindAll']

[/If]

If the user presses the Search button, the page receives the name-
value pair action=Search. If she presses Find All, the page receives
the name-value pair action=Find All. If either of these is true, we set
the DBAction variable to the appropriate database action. Finally, we
perform our inline:

[Inline: (Action_Params), $DBAction, -Database='Animal', -Layout=

'WebSearchResults']

For the inline to work, we need to pass it the same parameters that we
normally pass through a form or URL. This includes a value for -Data-
base, one for -Layout, a specific database action, and all of the name-
value pairs that make up the search request. In the case of this search,
a number of parameters are sent back to this page via the search form.
These parameters include values for name, birth date, gender, and a
database action. All four of these values are sent when the user
presses Search or Find All. In Lasso, you can use the [Action_Params]
tag to grab all of these named values and hand them off to an inline.
[Action_Params] is in fact a Lasso array, a data type that we haven’t

224 Chapter 7

looked at yet. In any case, adding (Action_Params) to the inline causes
all of these values to be handed off to the inline for it to use. Since the
form is no longer passing a database or a layout name (the previous
example did but we’ve omitted those lines this time around), we need
to supply those explicitly to the inline—though if we added them back
to the search form as hidden inputs (as they were before), we wouldn’t
even need to do that. Note the intratag syntax of (Action_Params), by
the way; we’re inside a tag already, the Inline tag, so we have to use
rounded parentheses instead of square brackets to enclose this inner
tag. So this inline tells Lasso to run the specified request (either a
Search or a Find All) and then execute the code inside the inline in the
context of the specified database action (which, again, is some kind of
search).

Here’s the complete code for the folded page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>BHBB Animal Search</title>

</head>

<body>

<H2>Welcome to the Blue Horizon
Animal Research

Database!</H2>

<form action="AnimalSearchIntegratedInline.lasso" method="post">

<input type="hidden" name="-nothing" value="">

<table border cellspacing="0" cellpadding="3" width="600">

<tr align="center">

<td colspan="6">

<table border="0"cellspacing="0">

<tr>

<th align="right">Name:</th>

<td><input type="text" name="name"></td>

</tr>

<tr>

<th align="right">Birth Date:</th>

<td><input type="text" name=

"date_birth"></td>

</tr>

<tr>

<th align="right">Gender:</th>

<td>

<select name="gender">

<option label="" value=""></option>

<option label="Male" value="Male">Male</option>

<option label="Female" value=

"Female">Female</option>

</select>

</td>

</tr>

Custom Web Publishing with Lasso 225

C
h
a
p
te

r
7

<tr>

<td align="center">

<input type="submit" name="action"

value="Search">

</td>

<td align="center">

<input type="submit" name="action"

value="Find All">

</td>

</tr>

</table>

</td>

</tr>

</form>

[Var: 'DBAction']

[If: (Action_Param: action) == 'Search']

[Var: 'DBAction' = '-Search']

[Else: (Action_Param: action) == 'Find All']

[Var: 'DBAction' = '-FindAll']

[/If]

[If: $DBAction == '-Search' || $DBAction == '-FindAll']

<tr>

[Inline: (Action_Params), $DBAction, -Database='Animal',

-Layout='WebSearchResults']

[If: Found_Count == 0]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Sorry, your search did not

return any records</td>

</tr>

</table>

[Else]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Found a total of [Found_Count]

records</td>

</tr>

<tr>

<th>Name</th>

<th>Mother</th>

<th>Father</th>

<th>Birth Date</th>

<th>Birth Weight</th>

</tr>

[Var:'LoopCount' = 0]

[Var: 'OddEven']

[Records]

[$OddEven = LoopCount % 2]

[If: $OddEven == 0]

[Var:'BackColor'='#FFFFFF']

[Else]

[Var:'BackColor'='#DDDDDD']

[/If]

<tr>

<td bgcolor="[Output: $BackColor]">[Field:

226 Chapter 7

'name'] </td>

<td bgcolor="[Output: $BackColor]">[Field:

'SelfByMother::name'] </td>

<td bgcolor="[Output: $BackColor]">[Field:

'SelfByFather::name'] </td>

<td bgcolor="[Output: $BackColor]" align=

"right">[Field:'date_birth'] </td>

<td bgcolor="[Output: $BackColor]" align=

"right">[Field:'weight_birth'] </td>

</tr>

[/Records]

</table>

[/If]

[/Inline]

[Else]

</table>

[/If]

</body>

</html>

Adding More Actions to the Page

This is all well and good, but we’d talked about adding other functions
to this page as well. Suppose we’d like a column at the right with a link
that privileged users could click on to delete a record. Naturally, once
the record is deleted, we want to show this same page again, minus
the deleted record. So it’s natural enough to want this page to do the
processing. The challenge here is that once the delete happens, we
need to rerun the original search so that they see exactly the same
found set, minus one.

So we need two things to do this: a way to trigger a delete com-
mand from this page that comes back to this page to perform the action
and some code that deletes a specific record and then reruns a previ-
ous search that is somehow being saved. It seems like this is all much
easier in FileMaker! So it is. This is one way to appreciate how much
work FileMaker actually does on your behalf.

The Lasso -Delete action, when used with FileMaker records,
needs to be told which record to delete. To do this, we give Lasso the
internal FileMaker record ID, which is a number generated by File-
Maker that uniquely identifies a database record. Here’s a little HTML
form that instructs Lasso to delete a specific record by its ID:

<form action=action.lasso method="post>

<input type="hidden" name="-Database" value="Animal.fp5">

<input type="hidden" name="-Layout" value="Web.fp5">

<input type="hidden" name="-KeyValue" value="12312">

<input type="submit" name="-Delete" value="Delete">

</form>

Custom Web Publishing with Lasso 227

C
h
a
p
te

r
7

The -KeyValue parameter specifies the exact record ID that we’re
going to delete. Right now it’s hard-coded, but that needs to change.
What we want to do, remember, is put a Delete button at the end of
each row of our search results that will send Lasso the command to
delete that specific record. There are two wrinkles to this. Firstly, we
can’t hard-code the -KeyValue parameter since it changes from line to
line. Secondly, once we come back to the page and perform the delete
operation, we need to somehow rerun the previous search so that we
can show the old results list minus the deleted record.

Let’s look first at how to make the key value dynamic. We can
write a little form to wrap around each Delete button:

<form action="AnimalSearchIntegratedInlineDelete.lasso"

method="post">

<input type="hidden" name="-Database" value="Animal.fp5">

<input type="hidden" name="-Layout" value="Web.fp5">

<input type="hidden" name="-KeyValue" value="[Keyfield_Value]">

<input type="submit" name="-Delete" value="Delete">

</form>

Lasso replaces the [Keyfield_Value] tag with the record ID of the cur-
rent FileMaker record. (The [Keyfield_Value] tag’s behavior is
different for SQL database sources with which Lasso can also work.)
Now it happens that we don’t actually want to send a real -Delete
parameter back to our page. That’s “classic” Lasso style, and we’re
doing this with inlines. If Lasso sees a -Delete coming back, it tries to
execute that action. Instead, as before, we pass the name of the
desired action in a named value called “action,” and we pass “-nothing”
back as our Lasso action.

So our Delete button looks like this:

<form action="AnimalSearchIntegratedInlineDelete.lasso" method=

"post">

<input type="hidden" name="RecordId" value=

"[Keyfield_Value]">

<input type="hidden" name="-nothing" value="">

<input type="submit" name="action" value="Delete">

</form>

As with the search actions, our page can now check for this “action”
parameter and do the appropriate thing when it finds it:

[If: (Action_Param: 'action') == 'Delete']

[Inline: -Database='Animal', -KeyValue= (Action_Param:

'RecordId'), -Delete]

[/Inline]

[$DBAction = (Action_Param:'prevaction')]

[/If]

228 Chapter 7

(Don’t worry about the “prevaction” value for now; it’s explained fur-
ther later in this chapter.) We have one more detail to attend to: Once
the deletion has happened, we want to rerun the previous search.
Here’s our strategy: When we issue the delete command (by submit-
ting the form that we just saw), we pass back the user’s search
choices, as well as the specific type of search (Search or Find All).
Once we’re done with our deletion, we reuse the page’s search logic to
rerun the search.

So our Delete form/button is actually going to look like this:

<form action="AnimalSearchIntegratedInlineDelete.lasso" method=

"post">

<input type="hidden" name="RecordId" value="[Keyfield_Value]">

<input type="hidden" name="name" value="[Action_Param:'name']">

<input type="hidden" name="gender" value="[Action_Param:

'gender']">

<input type="hidden" name="date_birth" value="[Action_Param:

'date_birth']">

<input type="hidden" name="-nothing" value="">

<input type="hidden" name="prevaction" value="[$DBAction]">

<input type="submit" name="action" value="Delete">

</form>

The different [Action_Param] values are the user’s search criteria, if
any, while the $DBAction variable is either Search or FindAll, depend-
ing on which the user chose. We can pass all these values back to the
page in the course of the delete, and then our page logic looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>BHBB Animal Search</title>

</head>

<body>

<H2>Welcome to the Blue Horizon
Animal Research

Database!</H2>

<form action="AnimalSearchIntegratedInlineDelete.lasso"

method="post">

<input type="hidden" name="-nothing" value="">

<table border cellspacing="0" cellpadding="3" width="600">

<tr align="center">

<td colspan="6">

<table border="0"cellspacing="0">

<tr>

<th align="right">Name:</th>

<td><input type="text" name="name"></td>

</tr>

<tr>

<th align="right">Birth Date:</th>

Custom Web Publishing with Lasso 229

C
h
a
p
te

r
7

<td><input type="text" name="date_

birth"></td>

</tr>

<tr>

<th align="right">Gender:</th>

<td>

<select name="gender">

<option label="" value=""></option>

<option label="Male" value="Male">Male</option>

<option label="Female" value="Female">Female

</option>

</select>

</td>

</tr>

<tr>

<td align="center">

<input type="submit" name="action"

value="Search">

</td>

<td align="center">

<input type="submit" name="action"

value="Find All">

</td>

</tr>

</table>

</td>

</tr>

</form>

[Var: 'DBAction']

[If: (Action_Param: 'action') == 'Delete']

[Inline: -Database='Animal', -KeyValue= (Action_Param:

'RecordId'), -Delete]

[/Inline]

[$DBAction = (Action_Param:'prevaction')]

[/If]

[If: (Action_Param: 'action') == 'Search']

[Var: 'DBAction' = '-Search']

[Else: (Action_Param: 'action') == 'Find All']

[Var: 'DBAction' = '-FindAll']

[/If]

[If: $DBAction == '-Search' || $DBAction == '-FindAll']

<tr>

[Inline: (Action_Params), $DBAction, -Database='Animal',

-Layout='WebSearchResults']

Error = [Error_CurrentError], [Error_CurrentError:

-ErrorCode]

[If: (Found_Count) == 0]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Sorry, your search did not

return any records</td>

</tr>

230 Chapter 7

</table>

[Else]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Found a total of [Found_Count]

records</td>

</tr>

<tr>

<th>Name</th>

<th>Mother</th>

<th>Father</th>

<th>Birth Date</th>

<th>Birth Weight</th>

<th> </th>

</tr>

[Var:'LoopCount' = 0]

[Var: 'OddEven']

[Records]

[$OddEven = LoopCount % 2]

[If: $OddEven == 0]

[Var:'BackColor'='#FFFFFF']

[Else]

[Var:'BackColor'='#DDDDDD']

[/If]

<tr>

<td bgcolor="[Output: $BackColor]">[Field:

'name'] </td>

<td bgcolor="[Output: $BackColor]">[Field:

'SelfByMother::name'] </td>

<td bgcolor="[Output: $BackColor]">[Field:

'SelfByFather::name'] </td>

<td bgcolor="[Output: $BackColor]" align=

"right">[Field:'date_birth'] </td>

<td bgcolor="[Output: $BackColor]" align=

"right">[Field:'weight_birth'] </td>

<td bgcolor="[Output: $BackColor]" align=

"right">

<form action="AnimalSearchIntegratedIn-

lineDelete.lasso" method="post">

<input type="hidden" name="RecordId"

value="[Keyfield_Value]">

<input type="hidden" name="name"

value="[Action_Param:'name']">

<input type="hidden" name="gender"

value="[Action_Param:'gender']">

<input type="hidden" name="date_

birth" value="[Action_Param:

'date_birth']">

<input type="hidden" name="-nothing"

value="">

<input type="hidden" name=

"prevaction" value="[$DBAction]">

<input type="submit" name="action"

value="Delete">

</form>

Custom Web Publishing with Lasso 231

C
h
a
p
te

r
7

</td>

</tr>

[/Records]

</table>

[/If]

[/Inline]

[Else]

</table>

[/If]

</body>

</html>

Now, in the course of performing the Delete action, we also set the
variable DBAction equal to the value for “prevaction” that got passed
back to the page. This is a setup for the logic that performs the search;
when it sees a correctly set value for DBAction, it re-performs the
specified search. The user’s old search criteria are automatically
reused in the search by virtue of the (Action_Params) value that is
passed in to the search inline.

All right, our users can now delete records to their hearts’ con-
tent. What else might they want to do on this page? Well, how about
adding records? After all, it’s easy to build a single layout in FileMaker
that lets users create, delete, and edit records all in the same place.
Can it be that much harder on the web? Not really—it’s just a matter
of adding more actions to the page.

Let’s say that we want to add a new row just under the column
headers with editable areas where the user can enter data. At the end
of the row, instead of a Delete button like we used on the search
results rows, we’ll put an Add button instead. From here the user can
fill in these fields, hit Add, and the new record will be added. As
always, we rerun the previous search to make sure the displayed set of
records stays the same.

232 Chapter 7

Here’s how the page looks:

To fit this new row in, we need to change the structure of the page
quite a lot. Things are getting crowded in there, so we’re also going to
resort to a fairly new and quite useful Lasso feature called named

inlines. Lasso lets us give a specific inline a name and refer to the
results of that inline later. In the new add row we’re building, the
Mother and Father columns each have a drop-down menu in them. In
the Mother column, the names are those of all the female animals,
while the Father column is a list of all the males. Each of those is built
with a named inline:

[Inline: -InlineName='FemaleAnimals', -Database='Animal', -Layout=

'WebSearchResults', 'gender'='Female', -Search][/Inline]

Once the inline has a name, we can refer to its results elsewhere with-
out needing to do so inside the context of the inline. So later on we can
say:

[Records: -InlineName='FemaleAnimals']...[/Records]

. . .anywhere we want to use the records from that inline (assuming it
found any, which is an issue we have to deal with in our page). We also
use a named inline for the main user search, since it makes some
things more convenient. Here’s the code for the new page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

Custom Web Publishing with Lasso 233

C
h
a
p
te

r
7

Figure 7.12

<title>BHBB Animal Search</title>

</head>

<body>

<H2>Welcome to the Blue Horizon
Animal Research

Database!</H2>

<form action="AnimalSearchIntegratedInlineAll.lasso"
method="post">

<input type="hidden" name="-nothing" value="">

<table border cellspacing="0" cellpadding="3" width="600">

<tr align="center">

<td colspan="6">

<table border="0"cellspacing="0">

<tr>

<th align="right">Name:</th>

<td><input type="text" name="name"></td>

</tr>

<tr>

<th align="right">Birth Date:</th>

<td><input type="text" name=

"date_birth"></td>

</tr>

<tr>

<th align="right">Gender:</th>

<td>

<select name="gender">

<option label="" value=""></option>

<option label="Male" value="Male">Male</option>

<option label="Female" value=

"Female">Female</option>

</select>

</td>

</tr>

<tr>

<td align="center">

<input type="submit" name="action"

value="Search">

</td>

<td align="center">

<input type="submit" name="action"

value="Find All">

</td>

</tr>

</table>

</td>

</tr>

</form>

[Var: 'DBAction']

[Inline: -InlineName='FemaleAnimals', -Database='Animal',
-Layout='WebSearchResults', 'gender'='Female',
-Search][/Inline]

[Inline: -InlineName='MaleAnimals', -Database='Animal',
-Layout='WebSearchResults', 'gender'='Male', -Search][/Inline]

234 Chapter 7

[If: (Action_Param: 'action') == 'Add']
[Inline: -Database='Animal', -Layout='WebSearchResults',
'name'=(Action_Param:'a_name'),

'id_mother'=(Action_Param:'a_id_mother'),
'id_father'=(Action_Param:'a_id_father'),

'date_birth'=(Action_Param:'a_date_birth'),
'weight_birth'=(Action_Param:'a_weight_birth'), -Add]

[/Inline]
[$DBAction = (Action_Param:'prevaction')]

[/If]

[If: (Action_Param: 'action') == 'Delete']

[Inline: -Database='Animal', -KeyValue= (Action_Param:

'RecordId'), -Delete]

[/Inline]

[$DBAction = (Action_Param:'prevaction')]

[/If]

[If: (Action_Param: 'action') == 'Search']

[Var: 'DBAction' = '-Search']

[Else: (Action_Param: 'action') == 'Find All']

[Var: 'DBAction' = '-FindAll']

[/If]

<!--Error = [Error_CurrentError], [Error_CurrentError:

-ErrorCode]-->

[If: $DBAction == '-Search' || $DBAction == '-FindAll']

<tr>

[Inline: -InlineName='UserSearch', (Action_Params),

$DBAction, -Database='Animal', -Layout=

'WebSearchResults']

<!--Error = [Error_CurrentError], [Error_CurrentError:

-ErrorCode]-->

[Var: 'UserFoundCount' = (Found_Count)]
[If: $UserFoundCount == 0]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Sorry, your search did not

return any records</td>

</tr>

[Else]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Found a total of

[Found_Count] records</td>

</tr>

[/If]

[/Inline]

[/If]

<tr>
<th>Name</th>
<th>Mother</th>
<th>Father</th>
<th>Birth Date</th>

Custom Web Publishing with Lasso 235

C
h
a
p
te

r
7

<th>Birth Weight</th>
<th> </th>

</tr>
<tr>

<form action="AnimalSearchIntegratedInlineAll.lasso"
method="post">

<td><input type="text" name="a_name" size="20"></td>
<td>

<select name="a_id_mother">
[Records: -InlineName='FemaleAnimals']
<option value="[Field:
'id_animal']">[Field:'name']</option>

[/Records]
</select>

</td>
<td>

<select name="a_id_father">
[Records: -InlineName='MaleAnimals']
<option value="[Field:
'id_animal']">[Field:'name']</option>

[/Records]
</select>

</td>
<td align="right"><input type="text" name=
"a_date_birth" size="15"></td>

<td align="right"><input type="text"
name="a_weight_birth" size="15"></td>

<td align="right"><input type="submit"
name="-nothing" value="Add"></td>

<input type="hidden" name="prevaction"
value="[$DBAction]">

<input type="hidden" name="action" value="add">
</form>

</tr>

[If: $UserFoundCount > 0]
[Var:'LoopCount' = 0]

[Var: 'OddEven']

[Records: -InlineName = 'UserSearch']

[$OddEven = LoopCount % 2]

[If: $OddEven == 0]

[Var:'BackColor'='#FFFFFF']

[Else]

[Var:'BackColor'='#DDDDDD']

[/If]

<tr>

<td bgcolor="[Output: $BackColor]">[Field:

'name'] </td>

<td bgcolor="[Output: $BackColor]">[Field:

'SelfByMother::name'] </td>

<td bgcolor="[Output: $BackColor]">[Field:

'SelfByFather::name'] </td>

<td bgcolor="[Output: $BackColor]" align=

"right">[Field:'date_birth'] </td>

236 Chapter 7

<td bgcolor="[Output: $BackColor]" align=

"right">[Field:'weight_birth'] </td>

<td bgcolor="[Output: $BackColor]" align=

"right">

<form action="AnimalSearchIntegratedIn-

lineAll.lasso" method="post">

<input type="hidden" name="RecordId"

value="[Keyfield_Value]">

<input type="hidden" name="name"

value="[Action_Param:'name']">

<input type="hidden" name="gender"

value="[Action_Param:'gender']">

<input type="hidden" name="date_

birth" value="[Action_Param:'date_

birth']">

<input type="hidden" name="-nothing"

value="">

<input type="hidden" name=

"prevaction" value="[$DBAction]">

<input type="submit" name="action"

value="Delete">

</form>

</td>

</tr>

[/Records]

</table>

[Else]

</table>

[/If]

</body>

</html>

The bold sections represent changes to the original code. Let’s begin
our analysis of the code with the last bold section, which represents
the new “add” row. There are two things of note. Firstly, notice that
we’ve prefixed all the HTML element names with “a_.” It’s important
to do something like this because the search form already contains ele-
ments whose names match those of some of the database fields. If we
put elements in the add row with any of these same names, a number
of different kinds of confusion are possible. Unless we have a special
purpose in mind, we try not to have several different HTML elements
share the same name. So we adopt the a_ prefix here to distinguish the
elements in the add row. The other item of note is the way in which
the mother and father drop-down menus are built using the results of
two named inlines.

Turning to the first bold section, here we see the two named
inlines for the mother and father menus. There’s no particular reason
to have them up here, other than to keep them out of the way. They
could just as well be closer to the code for the add row. Also in this

Custom Web Publishing with Lasso 237

C
h
a
p
te

r
7

section is the conditional code dealing with the “add” action. Here we
have an inline with an -Add action, in which all the fields are specified
by name and value. We can’t simply send the inline the [Action_
Params] array as we’ve done elsewhere because our element names
for the -Add action don’t match up with the database names. So we
have to map from these names to the database field names explicitly.

Adding Error Handling

Error handling is the bugaboo of every complicated program. If you’re
writing high-quality code, you need to check for errors at every point
where they can possibly occur. In our case, that generally means data-
base actions. Any of our database actions could fail. If they do, we need
to diagnose the failure and report this gracefully to the user. Lasso
gives us two mechanisms for catching and handling errors. The sim-
plest technique uses the [Error_CurrentError] tag. More sophisticated
error handling is possible using combinations of the [Protect] and
[Handle] tags.

The [Error_CurrentError] tag simply reports the most recent
Lasso error as a text message. It can also return the numeric code
associated with that error when written like this: [Error_Current-
Error: -ErrorCode]. Any error code other than zero indicates some
type of error. Lasso also provides replacement tags that correspond to
particularly common errors, including the “no error” state; these tags
have names like [Error_NoError], [Error_FileNotFound], and the like.
These can be used for the sake of convenience when checking for
errors. So it’s common to write:

[If: (Error_CurrentError) == (Error_NoError)]

. . .when checking for the absence of errors. We can use this to add
simple error handling to each of our inlines. For example, the inline
that performs the search could be rewritten like this:

[Var: 'UserFoundCount' = 0]

[If: $DBAction == '-Search' || $DBAction == '-FindAll']

<tr>

[Inline: -InlineName='UserSearch', (Action_Params),

$DBAction, -Database='Animal', -Layout=

'WebSearchResults']

[If: (Error_CurrentError) == (Error_NoError)]

[$UserFoundCount = (Found_Count)]

[If: $UserFoundCount == 0]

<td colspan="6" align="center"

bgcolor="#CCCCCC">Sorry, your

search did not return any

238 Chapter 7

records</td>

</tr>

[Else]

<td colspan="6" align="center"

bgcolor="#CCCCCC">Found a total

of [Found_Count] records</td>

</tr>

[/If]

[Else]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">An error occurred during

your search: [Error_CurrentError]

([Error_CurrentError: -ErrorCode])

</td>

</tr>

[/If]

[/Inline]

[/If]

This simply wraps the inner logic in an error check and, if any error is
present, substitutes an error message for the found set message. But
this kind of error handling gets cumbersome quickly. You need to
check for errors after each database action, and only continue execut-
ing the page if no error is found. You rapidly get deep into nested
conditional statements (“do this, and if there’s no error do this, and if
there’s no error do this” and so on). A more elegant style of error han-
dling lets you specify what in some languages are called try and catch

blocks and in Lasso are called [Protect] and [Handle] blocks.
These two tags, [Protect] and [Handle], work together. [Protect]

. . .[/Protect] creates a code block that traps all errors inside itself. Any
error that occurs inside this block is never presented directly to the
user. It can, however, be handled inside a [Handle] block at the end of
the [Protect] block. Further, Lasso provides a way to skip directly to
the [Handle] sections inside any [Protect] block by using a tag called
[Fail]. [Fail] is a way of saying “stop whatever you’re doing and skip
directly to the [Handle] sections.”

A [Handle] block without any qualifiers traps all errors that occur
in an enclosing [Protect] block. We can also add conditional expres-
sions to [Handle] to tell it to handle only certain types of errors. For
example:

[Protect]

[Var: 'Error']

[Inline: -Database='Animal.fp5', -Layout='Web', -FindAll]

[$Error = (Error_CurrentError)]

[If: $Error != 0]

[Fail]

[/If]

Custom Web Publishing with Lasso 239

C
h
a
p
te

r
7

[/Inline]

[Handle: $Error == (Error_InvalidDatabase)]

Sorry, the specified database could not be found.

[/Handle]

[Handle: $Error == (Error_NoPermission)]

Sorry, you don't have permission to search the Animals

database.

[/Handle]

[/Protect]

Here, we run an inline that does a search in the Animals database. If
we find any error, we capture its value and issue a [Fail] command. The
enclosing [Protect] block has two [Handle] clauses, each with a condi-
tional statement that triggers the use of that particular block. If the
error we failed on was a problem with the database’s validity, we exe-
cute the first block. If it’s a permissions error, the second block gets
executed instead.

This way of doing things creates an implicit branching structure
that makes it fairly easy to handle a number of different possible errors
neatly. We can have multiple [Fail] or [FailIf] statements inside a [Pro-
tect] block, each one triggering a different type of error handler. This
allows us to put all of our error-handling code in one place—inside one
or more [Handle] blocks that are grouped together at the end of the
[Protect] structure.

Here’s how the core of our integrated animal search page looks,
rewritten with [Protect] and [Handle]:

[Var: 'DBAction']

[Protect]

[Inline: -InlineName='FemaleAnimals', -Database='Animal',

-Layout='WebSearchResults', 'gender'='Female',

-Search][/Inline]

[Inline: -InlineName='MaleAnimals', -Database='Animal',

-Layout='WebSearchResults', 'gender'='Male',

-Search][/Inline]

[If: (Action_Param: 'action') == 'Add']

[Inline: -Database='Animal', -Layout=

'WebSearchResults', 'name'=(Action_Param:'a_name'),

'id_mother'=(Action_Param:'a_id_mother'),

'id_father'=(Action_Param:'a_id_father'),

'date_birth'=(Action_Param:'a_date_birth'),

'weight_birth'=(Action_Param:'a_weight_birth'),

-Add]

[If: (Error_CurrentError) != (Error_NoError)]

[Fail]

[/If]

[/Inline]

240 Chapter 7

[$DBAction = (Action_Param:'prevaction')]

[/If]

[If: (Action_Param: 'action') == 'Delete']

[Inline: -Database='Animal', -KeyValue= (Action_

Param:'RecordId'), -Delete]

[If: (Error_CurrentError) != (Error_NoError)]

[Fail]

[/If]

[/Inline]

[$DBAction = (Action_Param:'prevaction')]

[/If]

[If: (Action_Param: 'action') == 'Search']

[Var: 'DBAction' = '-Search']

[Else: (Action_Param: 'action') == 'Find All']

[Var: 'DBAction' = '-FindAll']

[/If]

<!--Error = [Error_CurrentError], [Error_CurrentError:

-ErrorCode]-->

[Var: 'UserFoundCount' = 0]

[If: $DBAction == '-Search' || $DBAction == '-FindAll']

<tr>

[Inline: -InlineName='UserSearch', (Action_Params),

$DBAction, -Database='Animal', -Layout=

'WebSearchResults']

<!--Error = [Error_CurrentError], [Error_

CurrentError: -ErrorCode]-->

[If: ((Error_CurrentError) != (Error_NoError))

&& ((Error_CurrentError: -ErrorCode) !=

-1728)]

[Fail]

[/If]

[$UserFoundCount = (Found_Count)]

[If: $UserFoundCount == 0]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Sorry, your search did not

return any records</td>

</tr>

[Else]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">Found a total of

[Found_Count] records</td>

</tr>

[/If]

[/Inline]

[/If]

[Handle: (Error_CurrentError) != (Error_No_Error)]

<td colspan="6" align="center" bgcolor=

"#CCCCCC">An error occurred: [Error_

CurrentError] ([Error_CurrentError:

Custom Web Publishing with Lasso 241

C
h
a
p
te

r
7

-ErrorCode])</td>

</tr>

[/Handle]

[/Protect]

We’ve now wrapped all of our database actions in a [Protect] block.
After each action, we check the current error status, and if necessary,
we [Fail]. In general we fail if the error code is other than zero (in
other words, if [Error_CurrentError] is something other than [Error_
NoError]). The only exception is in our search routine, where, if we
find no records, Lasso returns an error of –1728. We’d rather handle
that error a little differently, so we make an exception for that case and
output a specific error message. Otherwise, all errors are handled by
the [Handle] block. Notice that the code in the [Handle] block will
always execute once all the other code in the [Protect] block is done,
unless we add a conditional statement to the [Handle] block. Here we
just add a conditional that checks to make sure there really is an error
in effect. If not, we skip the [Handle] block.

This is a fairly simple application of [Protect] and [Handle], but
these constructs can be used for complex error handling in a way that
reduces the overall number of conditional branches needed to handle
errors and brings all the error-handling code together in one place.
Once your pages become as complex as the ones we’ve been working
with, you’ll benefit from learning to use these more advanced
error-handling constructs.

Using Arrays and Maps to
Create a Value List Library

Lasso, like PHP and other more advanced programming languages, has
a number of built-in data types that offer the programmer elegant solu-
tions to a variety of programming problems. For the handling of more
complicated data structures, Lasso offers us the array and the map.
(PHP refers to both of these structures simply as arrays, by way of
comparison.) An array is an ordered list of elements where each item
is distinguished by its position, while a map is a list of element pairs
where each pair consists of a key and a value.

For example, we can use an array to create a list of possible saluta-
tions, like this:

[Var:'Salutations' = (Array: 'Ms.', 'Mrs.', 'Mr.', 'Dr.', 'Fr.',

'Rev.')]

242 Chapter 7

Once the array is created, we can access its elements using the Get
function. So to get the third element of the array, we would write:

[Var;'Sal3' = $Salutations->(Get:3)]

. . .which would cause the variable Sal3 to be set to the value “Mr.”
There are quite a number of other functions that operate on arrays as
well (about a dozen in all). There are functions to add items to an array,
remove items at any position, merge two arrays, flatten an array into a
string, sort an array, and get the size of an array (the number of
elements).

A map is a similar concept, except each value in the map has a key

instead of a numeric index. Let’s say that you’re taking a population
survey and you have a set of codes that correspond to various ethnic
backgrounds. Each possible background has a short two-letter code
and a longer description. A map can store both of these together and
use the shorter code to look up the longer description. For example:

[Var:'Backgrounds' = (Map: 'CR'='Cree', 'AB'='Athabasca',

'MC'='Micmac', 'SX'='Sioux', 'KW'='Kiowa', 'KS'='Kansa',

'SK'='Sauk', 'FX'='Fox', 'DW'='Delaware', 'MN'='Mandan')]

We can then extract elements from the array by saying:

[Var:'CurrentTribe'=$Backgrounds->(Find:'CR')]

. . .which retrieves the mapped value corresponding to the key of CR
and places it into the variable CurrentTribe.

Let’s take a look at how we can use these structures to store value
lists in our application. Of course, FileMaker itself can store value lists,
and there are specific Lasso tags that let us work with FileMaker value
lists. But we’ve decided that we’d rather not do a database query into
FileMaker every time we want to use a value list of some kind. In any
case, FileMaker value lists are not able to hold key-value pairs of the
type that we often want to use in web applications.

Instead we construct a special file with all of our value list data in
it. When we need a value list, we can include that file using Lasso’s
[Include] tag. So here’s a sample ValueList.lasso file:

[Var:'BackgroundsVL' = (Map: 'CR'='Cree', 'AB'='Athabasca',

'MC'='Micmac', 'SX'='Sioux', 'KW'='Kiowa', 'KS'='Kansa',

'SK'='Sauk', 'FX'='Fox', 'DW'='Delaware', 'MN'='Mandan')]

[Var:'PlainsStatesVL' = (Map: 'KS'='Kansas', 'MO'='Missouri',

'NE'='Nebraska', 'OK'='Oklahoma', 'SD'='South Dakota', 'ND'='North

Dakota')]

Custom Web Publishing with Lasso 243

C
h
a
p
te

r
7

[Var:'IncomeLevelsVL' = (Map: 'LT10'='Less Than $10,000',

'10-15'='$10,000-$15,000', '15-25'='$15,000-$25,000', '25+'='Over

$25,000')]

We could have quite a number of other value lists in that same file as
well. Once we’ve built the value list file, all of our value lists are there
waiting to be used. We can write some simple Lasso code to take any
of our value lists, which are stored as Lasso maps, and turn them into
HTML. For example, to turn a value list into an HTML SELECT
structure, we could write something like this:

[Var:'StateCount']

[Var:'CurrentPair']

[$StateCount =$PlainsStatesVL->Size]

<select name="PlainsStates">

[Loop: -LoopFrom=1, -LoopTo=$StateCount]

[$CurrentPair=$PlainsStatesVL->(Get:(Loop_Count))]

<option value=[$CurrentPair->First]>[$CurrentPair->

Second]</option>

[/Loop]

</select>

This code pulls items off the selected map in “pairs.” In Lasso, a pair

is simply that—a two-element structure that can have its elements
accessed with the First and Second functions, as we see here. First we
count the number of elements in the chosen value list. Then we loop
from one up to that number, and each time through the loop we grab
the current pair from the map. We then use its first and second ele-
ments to create the value and the actual display text for the menu
item, respectively.

Well, that was straightforward enough. But we’re likely to have to
do that kind of thing over and over again, every time we want to make
an HTML menu out of one of our arrays. Isn’t there some way to pack-
age up that code in one place so we don’t have to type it again and
again? Yes there is, and that’s what we’re going to show you next.

Coding for Reuse: Lasso Custom Tags

Any programming language worth its salt will have some way to define
custom chunks of reusable code. In traditional procedural program-
ming languages, these reusable units are often called functions. In
Lasso, they’re known as custom tags. If you’re used to languages like
C, PHP, and Java, Lasso’s custom tags are definitely a bit more cum-
bersome than traditional functions, but they accomplish the same
goals.

244 Chapter 7

The first chunk of code that we want to write is one that spits out
map structures that correspond to our different value lists. We could
just define each one as a separate variable, as we did above, but they’ll
be slightly easier to use if we write a custom tag that accepts the name
of the value list as an input and returns the desired data map as its out-
put. Here’s how that looks:

[Define_Tag:'getValueListData', -Required='valueListName']

[Var:'returnMap']

[Select: (Local: 'valueListName')]

[Case: 'BackgroundsVL']

[$returnMap=(Map: 'CR'='Cree', 'AB'='Athabasca',

'MC'='Micmac', 'SX'='Sioux', 'KW'='Kiowa',

'KS'='Kansa', 'SK'='Sauk', 'FX'='Fox',

'DW'='Delaware', 'MN'='Mandan')]

[Case: 'PlainsStatesVL']

[$returnMap=(Map: 'KS'='Kansas', 'MO'='Missouri',

'NE'='Nebraska', 'OK'='Oklahoma', 'SD'='South

Dakota', 'ND'='North Dakota')]

[Case: 'IncomeLevelsVL']

[$returnMap=(Map: 'LT10'='Less Than $10,000',

'10-15'='$10,000-$15,000', '15-25'=

'$15,000-$25,000', '25+'='Over $25,000')]

[/Select]

[Return: $returnMap]

[/Define_Tag]

There are several important new tags here. [Define_Tag] is the first of
these. This is the master construct that encloses all of our custom
code. Within the [Define_Tag] tag, we also need to specify what
parameters the custom tag is going to take and whether they’re
required. In our case, we only need one parameter, which is the name
of the value list whose data we’re going to retrieve. This is a required
parameter, so we use the -Required keyword and follow it with the
name of our parameter, which is called valueListName. This is enough
to finish defining the tag.

Now that the tag is defined (that is, it has a name and a list of
parameters), we need to fill in its innards so that it can do some work.
The logic is fairly simple; we’re going to change the value that was
passed in for valueListName, and if it’s a name that we recognize,
we’re going to generate a map that contains the data for that value list.
Lastly, we need to return the appropriate map to the user of our cus-
tom tag.

Inside our tag, we use a [Select] command to distinguish between
different incoming values of valueListName. [Select] is a tag that lets
us choose among many different values for a single variable and take a
potentially different action for each one. Lasso’s [Select] is similar to

Custom Web Publishing with Lasso 245

C
h
a
p
te

r
7

the switch construct in languages such as C, Java, and PHP. There’s a
wrinkle here, though; in order to access the incoming value for
valueListName, we need to use the Lasso [Local] tag. To understand
this, we need to understand a little bit about a topic called variable

scoping. This is a point where novice programmers often get confused,
so pay close attention if this concept is unfamiliar to you.

Our custom tag has a single parameter called valueListName.
When a user calls our tag, she does so like this:

[getValueListData: 'BackgroundsVL']

In this case, the string BackgroundsVL is our inbound parameter. This
means that inside the body of our function, the value BackgroundsVL
is known by the name of valueListName. Now, if there’s already some
variable named valueListName in use somewhere outside our custom
tag, these two variables are not the same, despite sharing the same
name. The one defined outside our tag is the global version of the vari-
able, and the one defined inside our tag is called the local version
(because it’s “local” to our tag code).

In many programming languages, the distinction between a global
variable and a local variable of the same name is handled transparently;
references to variables inside a function, in a language such as C or
Java, are implicitly understood to refer to local variables. If no local
variable by a given name can be found, an error results. Lasso does
things the other way around; even inside a custom tag, all variable ref-
erences are global by default, unless the [Local] keyword is used. If,
instead of using the [Local] keyword, we just treated valueListName
like a plain old variable and said this:

[Select: $valueListName]

. . .you’d get a Lasso error that states “the global variable 'valueList-
Name' has not been declared.” In other words, there’s no variable by
that name outside the tag, which is where Lasso looks by default. In
order for Lasso to look at the inbound valueListName parameter, we
have to force it to do this by saying [Local: 'valueListName']. For pur-
poses of comparison, as you go on to learn other programming lan-
guages, realize that it is far more typical for a modular unit of code to
see its own local variables by default and require special prompting to
see variables in the global namespace. In Lasso, it’s just the other way
around.

So, we have a [Select] statement based on whatever value the user
passed in for the valueListName parameter. Based on its value, we
assign one of a number of different maps to a variable called return-

246 Chapter 7

Map. Once we’re done with our [Select] statement, we return what-
ever value is in returnMap. Note that returnMap is also a local
variable; we declared it as such by saying [Local:'returnMap'], and
later, when we refer to it, we use the special # character. In just the
same way that $variable is shorthand for referring to a global variable
named “variable,” #variable is shorthand for referring to a local vari-
able of the same name.

To use our new custom tag, we can just write:

[getValueListData: 'BackgroundsVL']

We should see the following in our Lasso page:

map: (AB)=(Athabasca), (CR)=(Cree), (DW)=(Delaware), (FX)=(Fox),

(KS)=(Kansa), (KW)=(Kiowa), (MC)=(Micmac), (MN)=(Mandan),

(SK)=(Sauk), (SX)=(Sioux)

Okay, so far so good. We’ve written one custom tag to spit back maps
that contain value list data based on some value list name that we pass
in. But what we really want is some reusable custom code to turn a
given value list’s data into, say, an HTML SELECT or a set of HTML
radio buttons. Somehow, we want to package up that code that we
wrote before into a custom tag. It should let us specify the name of the
value list to use, just like the tag we just wrote. It should also allow us
to specify a currently selected value so that if the user has made a
menu choice, the output reflects that. Here’s how the tag looks, along
with an example of its use:

<!--Here's the definition of the tag-->

[Define_Tag: 'HTMLSelect', -Required='selectName',

-Required='valueListName', -Required='currentValue']

[Local: 'dataMap' = (getValueListData: #valueListName)]

[Local: 'vlCount'=#dataMap->Size]

[Local: 'currentPair']

[Local: 'selectText']

[Local: 'htmlResult']

[#htmlResult = '<select name="' + #selectName + '">']

[Loop: -LoopFrom=1, -LoopTo=#vlCount]

[#currentPair=#dataMap->(Get:(Loop_Count))]

[If: #currentPair->First == #currentValue]

[#selectText=' selected']

[Else]

[#selectText='']

[/If]

[#htmlResult = #htmlResult + '<option value=' +

(#currentPair->First) + #selectText + '>' +

(#currentPair->Second) + '</option>']

[/Loop]

[#htmlResult = #htmlResult + '</select>']

[Return: #htmlResult]

Custom Web Publishing with Lasso 247

C
h
a
p
te

r
7

[/Define_Tag]

<!--Here's how we use it-->

[HTMLSelect: 'background', 'BackgroundsVL', 'KW']

Our new tag has three required parameters: selectName, which is the
name that the actual HTML element will have; valueListName, which
is the name of our value list data, as before; and currentValue, which
indicates the currently selected value in the value list (though
required, this value may blank, indicating no selection). Our new tag
does quite a bit with local variables, but it’s really just a rewrite of the
code that we used before made more generic. The only substantive
differences are that we call on our other piece of custom code,
getValueListData, to get back the data map corresponding to the
inbound value list name, and we check each value as we loop to see
whether it’s the same as what was named as the currently selected
value. If so, we output the HTML “selected” keyword; otherwise we
don’t. Lastly, we concatenate all of our HTML code together into a
single local variable called htmlResult, which is what we ultimately
return.

Custom Types: Writing
Object-Oriented Code in Lasso

In the last couple of sections, you’ve probably noticed some syntax
that appears a bit confusing at first glance. You’ve seen notations such
as $PlainsStatesVL->Size and $CurrentPair->Second. What is that
right-pointing arrow all about? It indicates that the thing to its left is an
object and the thing to its right is one of that object’s member functions

(or member tags, as Lasso calls them). In the first example above,
$PlainsStatesVL is a map, and all maps have a member tag called Size
that returns the number of elements in the map. Maps have a number
of other member tags, which would be called in a similar way—
$PlainsStatesVL->Find or $PlainsStatesVL->Insert, for example. In
all of these cases, $PlainsStatesVL is an object, an instance of the Map
class, and it’s capable of calling a variety of different member tags that
operate on its own data.

Lasso has fairly strong support for creating new types of objects.
As with custom tag definition, if you’re used to the way this works in a
language like Java, you may find that the Lasso method requires a tiny
bit more typing, but the overall functionality is the same. If you’re not
very familiar with object-oriented programming concepts, follow along

248 Chapter 7

anyway and see how much you can pick up. (For reference and to
become more familiar with object-oriented concepts, we recommend
giving the early chapters of Bruce Eckel’s Thinking in Java a glance.
It’s available online at www.bruceeckel.com.)

By way of demonstration, we’re going to write a custom type
(which most other languages would call a class, so we use that termi-
nology from now on) that wraps up some of the functionality of an
HTML table. Our particular table class is designed to display a set of
database records. It allows us to color rows or columns with a specified
color shade. Since we frequently display database result sets in HTML
tables, we should get a lot of use out of our table class.

A proper HTML table class that provides an interface to all of the
possible attributes of an HTML table would be a pretty complicated
entity, so we’re going to keep it simple for the sake of illustration. We
allow the user to select a border width, whether they want to stripe
some of the rows and in what color, and whether to write the field
names into a header row. We also allow them to use column headers
that are different from the underlying field names. So here then is the
code for our table class. We’ve included both the class definition and
some sample code that exercises the class.

<!--This custom type defines a class for handling HTML tables that

display database data-->

[Define_Type: 'HTMLTable']

[Local: 'inlineName']

[Local: 'fieldNameArray']

[Local: 'fieldLabelArray']

[Local: 'rowStripeInterval' = 1] <!--default, means no row

striping-->

[Local: 'rowStripeColor' = '#CCCCCC']

[Local: 'useHeaderRow' = 1] <!--if 1, output a header row with

field names-->

[Local: 'border' = 'null']

[Local: 'recordCount' = 0]

[Define_Tag: 'generateHTML']

[Local: 'htmlOutput'='']

[Local: 'fieldCount' = (Self->'fieldNameArray'->Size)]

<!--begin table-->

[If: (Self->'border'=='null')]

[#htmlOutput += '<table border>']

[Else]

[#htmlOutput += '<table border="' + (Self->'border')

+ '">']

[/If]

Custom Web Publishing with Lasso 249

C
h
a
p
te

r
7

<!--generate header row if required-->

[If: (Self->'useHeaderRow') == 1]

[#htmlOutput += '<tr>']

[Loop: #fieldCount]

[#htmlOutput += '<th>']

[#htmlOutput += (Self->'fieldLabelArray'->(Get:

(Loop_Count)))]

[#htmlOutput += '</th>']

[/Loop]

[#htmlOutput += '</tr>']

[/If]

<!--generate data rows-->

[Records: -InlineName=(Self->'inlineName')]

[#htmlOutput += '<tr>']

<!--loop through array of field names-->

[Loop: #fieldCount]

[#htmlOutput += '<td']

<!--stripe the row if necessary-->

[If: (Self->'rowStripeInterval' > 1) &&

((Self->'recordCount') % (Self->

'rowStripeInterval') == 0)]

[#htmlOutput += ' bgcolor="' + (Self->

'rowStripeColor') + '"']

[/If]

[#htmlOutput += '>']

[#htmlOutput += (Field: (Self->

'fieldNameArray'->(Get: (Loop_Count))))]

[#htmlOutput += '</td>']

[/Loop]

[#htmlOutput += '</tr>']

[++(Self->'recordCount')]

[/Records]

[#htmlOutput += '<table>']

[Return: #htmlOutput]

[/Define_Tag]

[/Define_Type]

<!--code to test the class-->

<!--named inline to generate data-->

[Inline: -InlineName='FemaleAnimals', -Database='Animal',

-Layout='WebSearchResults', 'gender'='Female', -Search][/Inline]

<!--declare an instance of the class-->

[Var:'myTable' = (htmlTable)]

<!--set up all attributes of the object-->

[$myTable->'border' = 0]

[$myTable->'rowStripeInterval' = 3]

250 Chapter 7

[$myTable->'fieldLabelArray' = (Array: 'Name', 'Birth Date', 'Birth

Weight')]

[$myTable->'fieldNameArray' = (Array: 'name', 'date_birth',

'weight_birth')]

[$myTable->'inlineName' = 'FemaleAnimals']

<!--generate HTML-->

[$myTable->generateHTML]

The entire class (or custom type, again, in Lasso terminology) is
wrapped in the [Define_Type]. . .[/Define_Type] tags. Inside those tags
we find two things: definitions of member variables and definitions of
member tags. Member variables represent the class’s data, while mem-
ber tags represent the internal functions that can operate on that data.
In the case of our table class, our member variables, for the most part,
represent user-settable attributes of the table, such as its border
width, the names of column headers and data fields, the name of a
named inline from which to draw the data, and so forth. The only
exception is the recordCount variable that we use to keep track of
which rows need to be striped. This class of ours has only one member
tag, called generateHTML, which is responsible for generating all the
HTML for our table and returning it as a string.

The member variables are fairly straightforward. Many of them are
initialized to reasonable default values so that the user still gets a
decent-looking table even if he doesn’t specify values for all of them.
Our default table has no row striping, has a default stripe color (if we
do choose striping) of a medium gray, displays a header row, and has no
border. All of these can be overridden by the user.

Let’s turn our attention to the sole member tag, generateHTML.
Its mechanics are fairly simple. It has a few local variables of its own,
one to hold the HTML code as it’s built up and the other to hold a
count of the fields being displayed. It begins by outputting an opening
table tag. We allow a value of null for the border width because some
browsers display <table border> differently from <table bor-
der="0">.

Next we check to see if the user has opted to display a header row.
If so, we loop through the array called fieldLabelArray and output each
of its items in a <th>.. .</th> tag pair. This separate label array
allows us to have column headings that differ from the underlying field
names.

Next we generate the data rows. Our particular table class
assumes that it will be displaying dynamic data from a named inline,
and it requires an inline name to be set up for the object. It uses the

Custom Web Publishing with Lasso 251

C
h
a
p
te

r
7

[Records: -InlineName] tag to loop through the inline’s records. For
each record in the result set, it loops across through the fieldName-
Array and outputs the value of each specified field for the current
record. Inside this loop, it checks to see whether striping has been
turned on and, if so, whether the current row should be striped. It
writes this into the table cell (<td>) tag. Once it’s done looping
through all the data records, it closes up the table and returns the
HTML as a string.

That’s all there is to the innards of our table class. Much of the
beauty, though, is in how easy it is to use. In the test usage code that
follows the class definition, we first set up a named inline (stealing one
from our earlier examples). We then create a new instance of our table
class by creating a variable of that type:

[Var:'myTable' = (htmlTable)]

Then we set the table’s border and stripe interval, set up one array of
field labels and another of actual field names, and finally set the table’s
inline name. Then, to generate and output the HTML for the table, we
simply say:

[$myTable->generateHTML]

Our “in-page” code has become much, much simpler with our table
class. Most likely we will put the class definition in a library file some-
where and make it available with an [Include] statement or the like. So
the class definition will not clutter the pages in which we use it. All we
see is the [Include] statement, probably near the top of the page, and
then some code very similar to what we just reviewed that creates the
new object, sets up its parameters, names its inline, and outputs the
HTML.

This kind of abstraction can be very powerful. We still need to do
quite a lot of work with our fledgling table class to make it production
quality. For example, we need a way to put things other than database
data into table cells—like delete buttons or hyperlinks. We also need a
much fuller interface to manipulate all of the other possible HTML and
CSS (Cascading Style Sheet) attributes, but we have a solid foundation
for adding all of those features.

If programming features like functions (“custom tags”) and classes
(“custom types”) are new to you, we strongly urge you to become very
familiar with their uses. Functions and classes are the foundation of
almost all advanced, modular programming, web or otherwise. We
have more to say about these concepts in Chapter 8, “Custom Web
Publishing with PHP.”

252 Chapter 7

Preserving State: Sessions in Lasso

No tutorial on advanced web programming would be complete without
some mention of sessions. It’s an important enough topic that we go
into it twice, once here in the context of Lasso and again in the next
chapter in the context of PHP. All heavy-duty middleware has some
kind of support for sessions. We begin here with an overview of the
important concepts and then look at how they’re applied in Lasso.

As we’ve said in a few places, the web is very different from
FileMaker’s client-server model. The FileMaker Server tries its best
to keep a dedicated connection open to each of its FileMaker clients. It
knows which one is which and can distinguish between them. A web
server, on the other hand, is an amnesiac; once it’s sent you some-
thing, it forgets who you are and has no easy way to identify multiple
different HTTP requests as originating from the same source. It can
look at things like IP addresses, but for reasons we explain elsewhere,
this data is possibly misleading or inaccurate.

Sessions are a way to overcome this limitation. The term session is
a generic term for any technique that allows us to associate some per-
sistent chunk of data with a particular user in the context of a web
application. We really want something roughly equivalent to File-
Maker’s globals—persistent data that’s unique to each user of the sys-
tem. To do this on the web, our middleware needs to provide us with
two things: a persistence mechanism and an identification mechanism.
In other words, we need a place to store user data, and we need a way
to associate a particular web request with a particular set of user data.

Middleware products generally offer a variety of persistence
mechanisms. Lasso, by default, stores its session data in its built-in
MySQL database in a way that’s more or less transparent to us. PHP,
which we discuss in the next chapter, stores its user data in disk-based
text files by default, but it can be configured to store its session data in
a database of the programmer’s choosing as well. It’s really the iden-
tity mechanism that requires the most work. Each user session needs
a unique identifier of some kind. The middleware needs to generate
that ID, associate it with the user’s data, and somehow make sure that
each web request from that user comes in bearing the key that allows
us to find that user’s data.

In order to make a Lasso page “session-aware,” we need to use
the Lasso [Session_Start] tag. The tag name, like PHP’s ses-
sion_start() function, is named in a slightly misleading fashion, since
the appearance of this tag starts a brand new session if none exists yet

Custom Web Publishing with Lasso 253

C
h
a
p
te

r
7

for that user, or it continues the use of an existing session if one has
already begun. Regardless, we need to put this tag at the beginning of
any page that uses a session. It does not need to come at the very
beginning of the page, but it’s an extremely good idea to always put
this tag early enough that it precedes any actual output from the page.

When Lasso encounters the [Session_Start] tag, it first tries to
decide if this user already has a session going. If the user does have a
session going, he’ll be carrying around a session identifier with him,
and it will be found in one of two places: Either the session ID will
have come to the page as a GET or POST variable with the name -Ses-
sion, or the ID will be available in a cookie that Lasso has set. (See
Chapter 6 for a longer discussion on cookies.)

If Lasso finds that session data has been passed to this page, either
over HTTP (GET/POST) or in a cookie, it assumes that a pre-existing
session is being continued and fetches the user data associated with
the given session key. Otherwise, it generates a brand new session
key, which is a long, randomly generated character string whose only
purpose is to uniquely identify a session.

When we start or continue a session in Lasso, we can specify what
method we want Lasso to use to propagate the session ID. If we want
the key to be passed in URLs and forms, we can write this:

[SessionStart: -Name='BHBBSession', -Expires=180, -UseLink]

The -UseLink parameter will force Lasso to automatically add the ses-
sion ID to any internal URL links that it finds, as distinguished by the
 tag. Although Lasso handles propagating the session
ID through any URLs that it finds, it’s still up to the programmer to
make sure that any and all forms also pass the session ID. Here’s how
such a form might look:

<form action="AnimalSearchIntegratedInlineAll.lasso" method="post">

<input type="hidden" name="RecordId" value="[Keyfield_Value]">

<input type="hidden" name="name" value="[Action_Param:'name']">

<input type="hidden" name="gender" value="[Action_Param:'gender']">

<input type="hidden" name="date_birth" value=

"[Action_Param:'date_birth']">

<input type="hidden" name="-nothing" value="">

<input type="hidden" name="prevaction" value="[$DBAction]">

<input type="hidden" name="-Session" value=
"BHBBSession:[Session_ID: -Name='BHBBSession']">

<input type="submit" name="action" value="Delete">

<form>

254 Chapter 7

We’ve added the bold line to a form based on a previous example. Here
we create a hidden input called -Session and assign it a value com-
posed of two things: the name of the current session and the uniquely
generated ID. The [Session_ID] tag, coupled with the name of the ses-
sion, gives this to us.

So this is how propagation of the session ID via URLs and forms
would work. But there are a number of serious drawbacks to this way
of doing things. Firstly, Lasso can only automatically add the session
ID to hyperlinks that are of the typical form. If you
dynamically generate any of your hyperlinks or dynamically change
them using technologies like JavaScript, Lasso may not be able to
detect all of your URLs and modify them accordingly. Needing to
remember to pass the session ID manually through each and every
form is cumbersome and fragile. Instead, we’re going to argue (and we
know there are those who disagree) that the best way to handle ses-
sion IDs is to pass them around using cookies. To do that, we write the
[Session_Start] tag in the same way, but instead of -UseLink, we write
-UseCookie.

Now, there are drawbacks to cookies as well. Some people are con-
vinced that they are evil and only useful for invading privacy. For this
reason, some users disable them. In our view, if that opposition exists,
it’s a hurdle that you need to overcome. It may be trickier for public-
oriented sites, but certainly for internal intranet applications you ought
to be able to mandate certain browser settings to anyone who wants to
use your application. For example, for most of our custom applications,
we mandate that users enable cookies and JavaScript. If you’re work-
ing in a consulting mode for an organization whose IT practices you’re
not completely familiar with yet, it’s very important to inquire up front
whether these restrictions are acceptable. We know of at least one
quite large firm that does not permit JavaScript to be run on any
browser internally for security reasons. So be sure to do some due dili-
gence before mandating any browser settings. With that said, in
environments where it can be done, we recommend propagating all
your session data using cookies.

Let’s look at a small example to illustrate the use of sessions.
We’re going to return to our custom table class, but we’re going to add
a place on the display page where the user can set her preference for a
striping interval. By itself, this is not too spectacular, but the point of
our page is that the user can leave the page and come back again or
even close her browser completely and come back to the page at a

Custom Web Publishing with Lasso 255

C
h
a
p
te

r
7

later time and her preference will still be retained. Let’s look at the
modified code:

<!--Code to handle session-->
[Session_Start: -Name='Table', -UseCookie]
[If: (Action_Param:'stripeCount') > 0]

[Var: 'stripeCount' = (Action_Param:'stripeCount')]
[/If]
[Session_AddVar: -Name='Table', 'stripeCount']

<!--This custom type defines a class for handling HTML tables that

display database data-->

[Define_Type: 'HTMLTable']

[Local: 'inlineName']

[Local: 'fieldNameArray']

[Local: 'fieldLabelArray']

[Local: 'rowStripeInterval' = 1] <!--default, means no row

striping-->

[Local: 'rowStripeColor' = '#CCCCCC']

[Local: 'useHeaderRow' = 1] <!--if 1, output a header row with

field names-->

[Local: 'border' = 'null']

[Local: 'recordCount' = 0]

[Define_Tag: 'generateHTML']

[Local: 'htmlOutput'='']

[Local: 'fieldCount' = (Self->'fieldNameArray'->Size)]

<!--begin table-->

[If: (Self->'border'=='null')]

[#htmlOutput += '<table border>']

[Else]

[#htmlOutput += '<table border="' + (Self->'border')

+ '">']

[/If]

<!--generate header row if required-->

[If: (Self->'useHeaderRow') == 1]

[#htmlOutput += '<tr>']

[Loop: #fieldCount]

[#htmlOutput += '<th>']

[#htmlOutput += (Self->'fieldLabelArray'->

(Get: (Loop_Count)))]

[#htmlOutput += '</th>']

[/Loop]

[#htmlOutput += '</tr>']

[/If]

<!--generate data rows-->

[Records: -InlineName=(Self->'inlineName')]

[#htmlOutput += '<tr>']

<!--loop through array of field names-->

256 Chapter 7

[Loop: #fieldCount]

[#htmlOutput += '<td']

<!--stripe the row if necessary-->

[If: (Self->'rowStripeInterval' > 1) &&

((Self->'recordCount') % (Self->

'rowStripeInterval') == 0)]

[#htmlOutput += ' bgcolor="' + (Self->

'rowStripeColor') + '"']

[/If]

[#htmlOutput += '>']

[#htmlOutput += (Field: (Self->

'fieldNameArray'->(Get: (Loop_Count))))]

[#htmlOutput += '</td>']

[/Loop]

[#htmlOutput += '</tr>']

[++(Self->'recordCount')]

[/Records]

[#htmlOutput += '<table>']

[Return: #htmlOutput]

[/Define_Tag]

[/Define_Type]

<!--code to test the class-->

<!--named inline to generate data-->

[Inline: -InlineName='FemaleAnimals', -Database='Animal',

-Layout='WebSearchResults', 'gender'='Female', -Search][/Inline]

<!--declare an instance of the class-->

[Var:'myTable' = (htmlTable)]

<!--setup all attributes of the object-->

[$myTable->'border' = 0]

[If: $stripeCount > 0]
[$myTable->'rowStripeInterval' = $stripeCount]

[Else]
[$myTable->'rowStripeInterval' = 3]

[/If]
[$myTable->'fieldLabelArray' = (Array: 'Name', 'Birth Date', 'Birth

Weight')]

[$myTable->'fieldNameArray' = (Array: 'name', 'date_birth',

'weight_birth')]

[$myTable->'inlineName' = 'FemaleAnimals']

<!--generate HTML-->

[$myTable->generateHTML]

<form action="TableClass.lasso" method="post">
Choose a stripe interval: <input type="text" name="stripeCount"
size="5">

<input type="submit" name="-nothing" value="Submit">
</form>

Custom Web Publishing with Lasso 257

C
h
a
p
te

r
7

Again, the bold areas show the code that’s changed from the previous
version of the page. At the very top of the page, we use the [Session_
Start] tag so that this page will be session-aware. We refer to our ses-
sion by the name Table, and we tell Lasso to use cookies to propagate
the session ID. This requires the user to have cookies enabled. Next
we check to see if an action parameter called stripeCount has been
passed to the page. If so, we put that value into a variable called
stripeCount. Lastly, we add the stripeCount variable to the session.
This is a critical step; only variables that are added to a session in this
way are stored with the session and passed from page to page. This
step assures us that Lasso stores the stripeCount value with this
user’s session.

Any time that we return to this page, the [Session_Start] com-
mand finds all the variables added to the user’s session and their
values and restores them into the page. The first thing that happens is
that Lasso finds the stripeCount variable in its session storage and
creates a variable in the page called stripeCount with the stored value.
Next, if the user has submitted a new value for stripeCount by filling in
the box and pressing Submit, that value is put into stripeCount and
overrides the value stored by the session. Finally, the [Session_
AddVar] tag makes sure that the session is aware of the variable and
stores the current value when the page is done.

Later on, our code checks the value of the stripeCount variable,
and if it’s been set to something greater than zero, it uses that value.
Otherwise, it uses a default value of 3. Finally, we’ve added a little
form at the bottom of the page where the user can submit new values
of stripeCount back to the page.

This is a very small illustration of the power of sessions. One very
good way to use sessions in a dynamic web site is to store data that
needs to come from a database, but that is not likely to change over the
course of a user’s visit. If you need to carry around a number of differ-
ent pieces of data about a user that are fetched from a database,
sessions are the way to go. Say you’re building a web site for sales
reps to log into and record contact information. Each sales rep might
have a region and a state. They might be able to view information for
all other sales reps in their region and edit information for all contacts
in their state. This information is stored in a database, but you’re likely
to need to refer to it on every page of your web site. You could query
the database for this information on each page, but since sales reps
don’t change region and state very often, this needlessly slows things
down. It is better to query for the information once when the user logs

258 Chapter 7

in, then store the region and state in session variables and carry them
from page to page that way. (It’s true, by the way, that Lasso is in turn
storing the session data in a database and doing a database query on
every page where you invoke the session using [Session_Start]. But
we gain two things from this: Lasso stores the session data in its
built-in MySQL database, which is likely to be faster than FileMaker,
and in any case, having Lasso handle this behind the scenes simplifies
our code.)

Summary

Lasso is one of a number of powerful tools available for advanced web
publishing of FileMaker databases. Its strengths are its ease of installa-
tion, its unified feature set (no need to install or enable third-party
software to add functionality), and its graphical administrative inter-
face. The embedded MySQL database is also an attractive addition. It
has become quite easy to set up “out of the box” and includes every-
thing that you need to get started. Programmers used to more
traditional languages may still find its syntax somewhat verbose and
particular, but the new LassoScript syntax helps this somewhat, and
it’s an obstacle that can be overcome. If you don’t want to wrestle
around much with installation and configuration, Lasso is a fine choice.
In the chapter that follows, we delve into a powerful, non-commercial
middleware solution—the open-source tool PHP.

Custom Web Publishing with Lasso 259

C
h
a
p
te

r
7

This page inten tion ally left blank

Chapter 8

Custom Web
Publishing with PHP

So far, we’ve discussed how to create web applications using Instant
Web Publishing, CDML, and Lasso, and we’ve even used XML to
move data from FileMaker to the web. The last, but certainly not least,
tool that we focus on is PHP. We think (indeed, hope) that you’ll find
many similarities between PHP, CDML, XML, and Lasso. Knowing
any one of them makes learning the others easier, and knowing several
of them gives you a wide range of tools to choose from for your Cus-
tom Web Publishing needs.

In the first section of this chapter, we give you a bit of background
about what PHP is and how it fits into the web publishing landscape.
Figuring that many of you have never seen PHP before, we then pro-
vide a brief overview and tutorial that covers general PHP program-
ming skills. Next, we focus on how PHP can send XML queries to the
Web Companion. It’s here that we introduce you to a fabulous tool
called FX. Finally, we bring everything together as we create an entire
web application using PHP and FileMaker. But first things first. . . .

What Is PHP?

PHP is a powerful, open-source middleware tool for building web
applications, especially data-driven applications. With native connec-
tions to over 20 relational database systems, PHP is the tool of choice
for thousands of web developers worldwide. From modest beginnings
in the late ’90s, it has risen to an installed base of over one million
servers serving over ten million domains in the most recent Netcraft
survey (www.php.net/usage.php). Its combination of power, versatility,
and open-source licensing have contributed greatly to its popularity.

261

PHP is a procedural language with full support for user-defined
functions and relatively weak enforcement of data types (in this way,
it’s similar to other scripting languages like JavaScript). PHP has all of
the syntax elements and flow-of-control structures that one would
expect of a modern programming language (rich set of built-in opera-
tors, for loops, while loops, switch statements, and the like). In
addition, PHP can also be used in an object-oriented (OO) fashion to
define traditional OO classes and methods for those who are used to
working in an OO programming style.

PHP is freely downloadable from the project site at www.php.net.
It is usually distributed in the form of source code but can be down-
loaded in precompiled (“binary”) form for a variety of platforms,
including Windows and Mac OS X. PHP can be built with support for
dozens of different modules and additional libraries, and for this reason
many developers prefer to compile it themselves from source code.
For those lacking the technical expertise or the inclination to build
PHP for themselves, the available binaries are usually configured with
support for many of the most popular add-ins. A basic configuration of
PHP also comes preinstalled with Mac OS X, as does an appropriately
configured copy of the Apache web server. As a result, OS X is a great
open-source web development platform right out of the box.

There is no printed documentation available for PHP, but the dis-
tributions come with copious electronic documentation that provides
detailed installation instructions. Additionally, there are numerous
excellent third-party books on PHP. The project site (www.php.net)
also contains extensive documentation for installing and programming
with PHP.

PHP is configured as an extension to an existing web server. The
most popular web server choices for this purpose are Apache (on
Unix/Linux platforms, including Mac OS X) and Internet Information
Server (on platforms based on Microsoft technology), though other
web servers such as WebSTAR and the Zeus server are supported.
Regardless of platform, PHP is installed in such a way that the host
web server will hand off requests for certain types of pages to the PHP
processor. These pages contain PHP code, which the PHP processor
will execute before returning an HTML page to the web server to be
sent to the client. In this way PHP is no different from other widely
popular middleware tools like JSP, ColdFusion, and ASP.

The only tool that you need to write PHP code is a text editor. Our
favorite editor for Macintosh is Barebone’s BBEdit, and on Windows
it’s Macromedia’s HomeSite (now a part of the Dreamweaver MX

262 Chapter 8

product line). In addition to HTML editing tools, both offer syntax col-
oring to make your PHP code more readable.

Put simply, the job of a PHP programmer is to insert programming
logic into HTML pages. Let’s look at a simple example to illustrate
this point.

<html>

<head>

<title>PHP Test1</title>

</head>

<body>

<?php

$myDate = getdate();

echo "<center>Today is ". $myDate['weekday'] . "</center>";

?>

</body>

</html>

Type this into a text editor and save it as test1.php on a web server on
which PHP is configured. Figure 8.1 shows the result of requesting
this page via a browser.

So how does this work? As part of the installation of PHP, you config-
ure your web browser to pass on requests with certain extensions to

Custom Web Publishing with PHP 263

C
h
a
p
te

r
8

Figure 8.1

PHP. Typically, the extension is .php, but you could send .foo requests
there if you wanted. In our example, then, the request for test1.php
comes into the web server, and the .php extension tells the web server
that this page should be processed by PHP. PHP looks for code blocks
that are demarcated by <?php and ?>. Anything between these tags is
processed by PHP; it ignores anything (HTML, JavaScript) outside of
these tags.

The first line of PHP code in our example calls the built-in PHP
function getdate(). This function returns an associative array contain-
ing information about the current local time (of the web server). The
second line of code uses the echo function, which is used to print stuff
(text, HTML) to the browser screen. In this case, we’re sending some
HTML formatting instructions, some literal text, and the “weekday”
element of the $myDate array.

Once PHP is done processing all of its commands, it hands a docu-
ment back to the web server containing all of the text that it didn’t
process (everything outside the <?php and ?> tags) and all of the out-
put results of the PHP commands that it did process (such as the stuff
in our echo function). The web server then sends that resultant docu-
ment back to the browser that requested it. If you were to view the
browser source of Figure 8.1, you’d see the following:

<html>

<head>

<title>PHP Test1</title>

</head>

<body>

<center>Today is Saturday</center>

</body>

</html>

Thus, a person requesting this document has no idea what the original
PHP commands were, which is a good thing. It means that your pro-
gramming logic is completely hidden from the end user.

We hope this short example is enough to give you an idea of how a
PHP page is processed. We cover the nuts and bolts of PHP program-
ming in the next section and then move on to see how PHP can
communicate with FileMaker.

264 Chapter 8

Coding in PHP—General Principles

PHP is a relatively easy programming language to learn and use. If you
have any procedural programming experience (such as C++, Perl, and
Visual Basic), you’ll pick up PHP in no time. Even if you don’t, you’ll
find learning PHP quicker than just about any other language out
there.

In this section, we cover the basics of PHP programming. We don’t
intend this to be a complete or exhaustive PHP reference—that would
require a book of its own—but rather a sort of primer or tutorial to
give you the tools that you’ll need to get started (and understand the
examples through the rest of the chapter).

Let’s start with some coding conventions. First, we’ve seen that
PHP code blocks are set apart from other code by the use of <?php
and ?> tags. The opening tag can actually be written either as <?php
or simply as <?, which is how we usually write it for brevity’s sake.
You can put any number of PHP code blocks in a document; they can
even appear in the middle of HTML commands, like this:

<a href="<? echo $myURL;?>"> Click here

All single-line PHP commands must end with a semicolon. Multiple-
line constructs, such as conditionals and loops, must be surrounded by
curly braces, such as { and }. By convention, usually only one com-
mand is placed on a line, but this isn’t a requirement. PHP doesn’t care
about any white space between or within commands. Thus, the follow-
ing two code blocks do exactly the same thing:

<? $x = 1; $y = 2; $z = $x + $y; echo $z;?>

and

<?

$x = 1;

$y = 2;

$z = $x + $y;

echo $z;

?>

You’ll find that liberal amounts of spacing help keep your code legible.
If you have multiple programmers coding on a project, you’ll probably
want to come up with some orthography conventions. Coding typically
isn’t a good outlet for individualism.

Custom Web Publishing with PHP 265

C
h
a
p
te

r
8

There are two ways to add comments to your PHP code. The first
is to use a //, which indicates that everything on the remainder of the
line is a comment and should be ignored. To comment multiple lines,
you can use /* at the beginning and */ at the end of a block. For
example:

<?

// this is a comment line; anything I write here is ignored by PHP

$x = “hello”; // here we’ve added a comment to the end of a line

/*

Everything in here

Is a comment

*/

?>

Try to get in the habit of thoroughly commenting your code. Most
FileMaker programmers don’t have good commenting habits since it’s
a bit cumbersome to comment with FileMaker. It’s so easy in PHP that
you don’t have any excuses not to. (Being lazy isn’t a good excuse.)

Working with Variables

It’s very easy to define and work with variables using PHP. All vari-
ables begin with a $, must consist of letters, numbers, and under-
scores, and must begin with a letter or underscore. So, $foo, $foo2, and
$foo_2 are all valid variable names, but $2foo is not. There’s no restric-
tion on the length of a variable name, but they are case sensitive.
Thus, $foo and $FOO refer to two distinct variables. We typically use
all lowercase (myvarname) or camel case (myVarName) to name
variables.

You can define a variable simply by a statement like:

var $myVar;

Unlike other languages, however, you don’t need to define variables
before using them. The first time you set them, they are declared auto-
matically. Thus:

$myVar = “blah”;

. . .creates a variable called myVar and sets it to the string “blah.”
(We’re going to stop putting <? and ?> around all of our code snippets,
but don’t let that confuse you. You still need them.)

266 Chapter 8

Unlike C++ and Java, PHP is a loosely typed language, which
means that a variable can hold any of several different types of data,
including strings, integers, floating-point numbers, pointers, objects,
and arrays. Consider the following examples:

$var1 = 23; // var1 is an integer

$var2 = 4.34; // var2 is a floating-point number

$var3 = "My name is Fred"; // var3 is a string

$var4 = array ('banana', 'dirty socks', 'toothbrush') // var4 is an

// array with 3 elements

$var5 = new Customer(); // var5 is an object

When defining a variable to hold a string, you can use either single or
double quotes. The only difference is that if you use double quotes,
PHP will evaluate any variables referred to in the string. That is, if:

$var = "My name is $name";

$var2 = 'My name is $name';

. . . then if $name is “Fred,” $var would be the string “My name is
Fred” but $var2 would be the string “My name is $name.”

If you want to put a single or double quote within a text string, you
need to “escape” them using a backslash. Consider the following code
snippets:

$myVar = “And then he said, “Wow!””; // this won’t work, you’ll

// get a syntax error

$myVar = “And then he said, \”Wow!\””; // this will work, because

// the internal quotes are

// properly escaped

There are a few other characters that need to be escaped in text
strings. These include $, \, tabs (\t), carriage returns (\r), and new lines
(\n).

Once you’ve declared a variable, there are a zillion ways that you
can manipulate it. Let’s look at just a few math and string
manipulations.

Addition, subtraction, multiplication, and division are performed
using the +, –, *, and / operators. The ^ symbol is used to raise a
number to some power, and the % symbol is used for modulo division.
You can use parentheses to specify order of operation. Consider the
following:

$a = 20;

$b = 5;

$c = $a + $b; // $c is 25

$d = $a - $b; // $d is 15

Custom Web Publishing with PHP 267

C
h
a
p
te

r
8

$e = $a * $b; // $e is 100

$f = $a / $b; // $f is 4

$g = $b ^ 3; // $g is 625

$h = $a % 3; // $h is 2, since 20 / 3 = 6 remainder 2

$i = 3 + 4 * 5 // $i is 23; order of operations is

// multiplication/division before

// addition/subtraction

$j = (3 + 4) * 5 // $j is 35

There are also special shorthand operators for incrementing or decre-
menting numbers. These get frequent use in looping constructs, so be
sure you understand what they do.

$x = 5;

$x++; // increases the variable by one. Shorthand for

// $x = $x + 1 (x = 6)

$x––; // decreases a variable by one. Shorthand for $x = $x

// – 1 (x = 5)

$x += 5; // adds 5 to x. Shorthand for $x = $x + 5; (x = 10)

$x -= 5; // subtracts 5 from x. Shorthand for $x = $x – 5

// (x = 5)

There are dozens of functions built in to PHP for manipulating text
strings, but there are really only a few that you need to know about to
get started. The most basic string manipulation is concatenating two
strings together. The concatenation operator is a period. So:

$a = "foo";

$b = "bar";

$c = $a . $b; // $c = "foobar";

Similar to the shorthand math operators, there’s a shorthand operator
(.=) for appending to a string.

$a = "foo";

$a .= "bar"; // $a = "foobar". Shorthand for $a = $a . "bar"

Arrays

If you’ve never used arrays before in your programming, they can be a
bit difficult to sink your teeth into. But it’s going to be crucial for you
to have a good understanding of arrays when we start talking about
PHP and FileMaker, so take your time going through this section.

An array is really just a set of “things.” Those things can be num-
bers, strings, other arrays, or even objects. Perhaps it will help to
think of an array as a bag that you toss stuff into. For instance, con-
sider the following:

$myArray = array ("banana", "toothpaste", "race car");

268 Chapter 8

We’ve just declared that $myArray is an array that contains three text
strings. When you simply throw things into a set like this, each thing is
assigned a number (starting at zero unless we specify otherwise) that
can be used to retrieve the values. We call those numbers “keys.” You
use a key to retrieve a value from an array. If you want to refer to a
specific element of an array, place the key after the name of the array
name surrounded by square brackets. So, for example:

$a = $myArray[0]; // $a would be the string "banana"

$b = $myArray[2]; // $b would be the string "race car"

You can toss additional items into an array by using empty braces and
asserting equality to some value. For example:

$myArray[] = "chocolate chip cookie"; // this added a new element to

// the end of $myArray.

We can also add a new element, which itself is an array:

$myArray[] = array ("Beethoven", "Bach", "Mozart", "Brahms");

// we've added an element to $myArray (the 5th element...), which is

// itself an array with 4 items

Nesting arrays like this is quite powerful and, as we see soon, very
common. If you wanted to refer to an element in a nested array, you’d
just “drill down” into it:

$z = $myArray[4][2]; // $z would be "Mozart," since it's the

// 3rd element of the 5th element of

// $myArray (remember that we're 0 based)

The arrays that we’ve been using are often referred to as indexed
arrays. The other type of array is what’s known as an associative array.
Essentially, this let’s you define a key for each “thing” in the array,
which can make retrieving it later much simpler (since you won’t need
to know its position in the array). There are a few ways to create asso-
ciative arrays.

$myNewArray = array ('color' => 'green', 'size' => 'small',

'smell'=>'not unpleasant');

The => symbol is used to assign a value to a key. There are three
things in this new array, but we can retrieve them by the name of the
key now:

$color = $myNewArray['color']; // $color would be the string "green"

The single quotes around color are not required but are conventionally
used. You can add elements to an associative array just by asserting
them:

Custom Web Publishing with PHP 269

C
h
a
p
te

r
8

$myNewArray['capacity'] = 200; // we've just added a new element to

// the array

Just as you can manipulate strings and numbers, there are many things
that you can do to arrays. For instance, you can count the number of
items in them, you can sort them, and you can search through them.
We see some of these functions in our examples later, but you cer-
tainly don’t need to know all of them at this point. For now, it is
sufficient if you can conceptualize arrays well and recognize them if
you see them.

In an earlier example, we saw the echo function, which is used to
output information to a user’s browser screen. Echo works fine for
rendering strings and numbers, but it can’t show an entire array. As
you’re writing and debugging PHP code, it’s frequently desirable to
see everything that’s in an array. To do this, you can use the print_r
function to dump out the entire array to the screen.

print_r ($myNewArray);

In your browser window, the array dump can be difficult to read since it
sprawls across the screen. If you ask your browser to display the
source code for the page, however, the array will be nicely formatted
for you.

The Include Function

One of the first and most important functions we use in our web appli-
cation at the end of this chapter is the include function. The include
function lets you modularize your code for easy reuse and mainte-
nance. Essentially, it pulls the entire contents of a document into
another document. An example will clarify this. Say you have a whole
bunch of HTML pages with different body content but they need the
same header information on each page. If you put the HTML code for
the header in each page and decide later that you want to change
something, you might have to go through dozens or hundreds of docu-
ments to make the change. Or, you can place the common code in its
own file and simply include that file at the top of the other files. What’s
nice is that any variables that you’ve declared can be referenced inside
of the included file. It’s really as if PHP is cutting and pasting the con-
tents of the included file into the main file.

Let’s look at an example of this. Say you have a file called
“header.php” with the following code:

<html>

<head>

270 Chapter 8

<title>

<? echo $title; ?>

</title>

</head>

<body bgcolor="red">

Now, this obviously isn’t a well-formed HTML page and isn’t intended
to be requested directly from a web browser. But consider having the
page info.php as follows:

<?

$title = "Information about our company";

include ("header.php");

?>

<!--lots of HTML here...!-->

</body>

</html>

Hopefully you can see right away what will happen. When a user
requests info.php, PHP will assemble a response page from the snip-
pets of the header file and the info page itself. Hundreds of other pages
could also include the same header page. Yet since the title is a vari-
able set in the calling document, it has the appearance of being
customized for each page. If you ever wanted to change the header,
simply changing the one document would cause anything that included
it to change as well.

The include happens on demand as a browser requests a page. It’s
not compiled or stored in any way. You can put includes anywhere you
want in your document. Your includes can themselves include other
files.

Conditional Statements

If you’re comfortable with If/Else/End If conditional scripting in
FileMaker, then you’ll have no problem with it in PHP. The concept is
essentially the same; if some condition holds, do these things, or else
do these other things. The syntax may look strange until you get used
to it, but this will likely be one of the easier aspects of PHP to master.
Let’s look at a few examples:

if ($someVar == 10) {

echo "Hello"; // these lines will only be executed

$foo = 123; // if $someVar is equal to 10

} else {

echo "someVar is equal to $someVar";

}

Custom Web Publishing with PHP 271

C
h
a
p
te

r
8

There are several things that we’d like to point out in this example.
First, notice that we use a double equal sign to test for equality. A sin-
gle equal sign is only used when you’re setting variables. Be careful
that you use the double equal sign; you won’t get a syntax error if you
don’t, but your code won’t work. Notice next that the conditional test
is within parentheses. Outside of the parentheses, you indicate with a
left brace ({) the opening of a set of instructions to perform if the
conditional statement evaluates as true. The else statement is
optional; if it’s used, you enclose the statements to perform with curly
brackets. The spacing and indentation shown in our example is simply
our convention to make if statements easily readable.

There are other types of conditional statements in PHP that we
won’t go into now (such as ternary operators and the switch function),
but we would like to discuss a few useful constructions of the condi-
tional statement itself. First, if you want to test multiple conditions,
use && (two ampersands) or || (two pipes) to indicate AND or OR
logic, respectively. For example:

if ($a == 10 && $b == 5) // means "if $a is 10 and $b is 5"

if ($a == 10 || $b == 5) // means "if $a is 10 or $b is 5"

You can use parentheses to create more complex conditions, such as:

if ($a ==10 && ($b == 5 || $b == 1)) // means "if $a is 10 and

// $b is either 5 or 1"

Finally, you can test for things other than equality. You can test for
existence, nonexistence, and inequality, as the following examples
show:

if ($myVar) // returns true if $myVar is set to

// anything

if ($myVar != null) // alternate syntax for above

if (!$myVar) // returns true if $myVar doesn't exist

if ($myVar == null) // alternate syntax for above

if ($myVar >= $myOtherVar) // returns true if $myVar is greater

// than or equal to $myOtherVar

if (count ($myArray) > 0) // returns true if the array $myArray

// contans at least one item

The ! symbol is a negation symbol. So, != means “does not equal.”

272 Chapter 8

Looping Constructs

As with conditional statements, a familiarity with the FileMaker
Loop/End Loop script steps makes it easier to conceptualize PHP
looping constructs. A looping construct is a mechanism for performing
a series of commands repetitively until some condition “breaks” the
loop. PHP actually has several types of looping constructs that you’ll
want to be familiar with. Here, we discuss the for and foreach
statements.

For Loops

For loops are a core element of most every programming language.
They are most often used if you know in advance the number of times
you want your loop to iterate. Consider the following example:

for ($i = 1 ; $i <= 10 ; $i++) {

echo "Line $i
";

}

This would render the following in a browser:

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Line 9

Line 10

The for statement always takes three arguments separated by semi-
colons. The first argument contains one or more commands to execute
before the loop begins. Here, we’re simply setting a variable $i to 1.
The second argument defines the conditions that must be true for the
loop to go through another cycle. Here, as long as $i is less than or
equal to 10, it will keep chugging along. The final argument defines
one or more commands to execute in between loops. Typically, this
third argument will increment a variable, as in our example. The incre-
menting happens before the exit condition is evaluated. That is, after
completing an iteration of the loop, the variable increments; then if the
condition still holds, all of the commands between the curly braces will
be executed again.

Custom Web Publishing with PHP 273

C
h
a
p
te

r
8

Foreach Loops

The foreach loop is used to walk through the elements of a variable-
length array. As a simple example:

$myArray = array ("blue", "yellow", "white", "orange", "peanut

butter');

echo "Which of the following things is not like the others?
";

foreach ($myArray as $thing) {

echo "". $thing . "
";

}

This would render in a browser as:

Which of the following things is not like the others?

- blue

- yellow

- white

- orange

- peanut butter

When you use a foreach loop, you walk through the array elements as
an ordered set. With each iteration, the next item from the array is set
into the variable that you’ve named (here, $thing). The loop ends auto-
matically after the statements inside the loop have executed for each
item in the array.

If you have an associative array, you can grab both the key and
value of the items as you iterate through them. Consider the following:

$myArray['name'] = "Fred Flintstone";

$myArray['hobby'] = "Bowling";

$myArray['pet name'] = "Dino";

foreach ($myArray as $key_name => $value) {

echo $key_name . " - " . $value . "
";

}

This would render in a browser as:

name - Fred Flintstone

hobby - Bowling

pet name - Dino

You can see that each time we grab an element, we assign its key to
the first variable that we’ve specified ($key_name) and its value to the
second variable ($value).

We see a lot of the foreach loop later on for displaying sets of
records returned from FileMaker.

274 Chapter 8

Functions

Functions are among the most useful and important programming
tools. A function is essentially a subroutine that you can call whenever
you like. The code within a function only executes, in fact, if the func-
tion is called. Functions can be placed anywhere in a page, but they are
typically placed near the top or in separate documents. The latter is
particularly useful if the functions need to be called from multiple doc-
uments. Functions can be passed inputs (also called arguments), and
they can return a value as well. Functions are all about modularity,
code reuse, and stability.

To create a function, simply declare it and specify the commands
that it performs. For example, the following function, displayError,
could be used to display error messages to the user:

function displayError ($errorMsg) {

echo "An error has been generated.

";

echo "The error message is: $errorMsg";

}

Once you’ve written this function, instead of having to explicitly echo
out an error message every time there is an error, you can just call this
function:

if (!$someValue) {

displayError ("someValue was empty");

}

if (!$db_connect) {

displayError ("Could not connect to the database");

}

Do you see how it’s more efficient to have the code that actually ren-
ders the error only written once? Not only does it mean writing fewer
lines of code, but if you ever need to change the error display, you can
do it in a single place.

Let’s look at a slightly more complex example of a function—this
time one that returns a value:

function computeTaxAmount ($state, $amount) {

$state_rates = array ('IL'=>8.25, 'MI'=>6.25, 'CA'=>9.75)

$tax_rate = $state_rates[$state];

$tax = $amount * $tax_rate / 100 ;

return $tax;

}

This function expects to be passed two arguments. It puts the values
that are passed in into the $state and $amount variables. Then, the

Custom Web Publishing with PHP 275

C
h
a
p
te

r
8

function grabs a tax rate from an array based on the $state it was
passed and uses this to calculate the amount of sales tax that should be
charged. That tax amount is then returned as the result of the function.
This function might be used as follows:

$myAmount = 84.54;

$myState = 'MI';

$theTax = computeTaxAmount ($myState, $myAmount)

$total = $myAmount + $theTax;

There are several benefits of encapsulating the tax computation in a
function. The first is, again, reuse. Any time you need to find the sales
tax amount, just call the function and you’ll have your answer. Using a
function also gives your code stability because you don’t have to worry
about the potential for inconsistency in your application. Did you com-
pute the tax one way here and a different way over there? Did you
forget to update the new rates in all six places where you compute the
tax? If you’re using a function, you won’t have those sorts of worries.

Putting code into functions also makes your applications easier to
debug. If you’ve written your function correctly and tested it thor-
oughly, you can rest assured that if you pass it good arguments, it gives
you a good result. If there’s a bug in your code, you won’t waste time
and effort looking through that code. In essence, you are modularizing
your application logic so you can test each bit independently and have
greater overall stability.

There’s much more that you can learn about functions in PHP, but
hopefully you understand the purpose and syntax of functions at this
point. We have many opportunities to look at examples of functions in
the web application at the end of this chapter.

Objects

The final topic that we cover in our brief PHP tutorial is an overview
of object-oriented (OO) programming. We only scratch the surface of
OO, but having at least some understanding of how to use objects is
important when we start discussing FX, an object designed to let PHP
talk to FileMaker Pro. Hopefully, the topic intrigues you and you’ll do
some further investigation into OO programming on your own.

First off, let’s define, or rather describe, what we mean when we
say “object.” An object has attributes, which are called properties, and
it can perform actions, which are called methods. Methods are nothing
more than functions that act on the properties of the object. Think of
an object as a generic template or idealized representation of

276 Chapter 8

something. In your programming, you then “instantiate” the object,
breathing life into it by setting its properties and having it do things by
invoking its methods. An example will help clarify this. Imagine an
object called “dog.” Try to think of a dog as a concept rather than
thinking of a particular dog. Conceptually, you might identify proper-
ties that exist for dogs in general, such as “name,” “age,” “breed,”
“owner,” and “gender.” Then think about the things that dogs, in gen-
eral, can do. Your list of methods might include such things as “roll_
over,” “beg_for_food,” and “go_for_walk.” It doesn’t matter at this
point if all dogs do these things; we’re trying to define a lexicon that
describes the things that a dog will potentially do. When we instantiate
an actual dog, we can choose the actions that we want it to perform
from the items in that lexicon. From this, the important things to
remember are that properties are attributes of the object and methods
are what it can do. If it helps you, try thinking of the properties as sim-
ilar to field definitions of a FileMaker database and methods as similar
to its scripts.

We look at the syntax for defining your own objects in a moment,
but let’s first discuss using objects that other programmers have cre-
ated. This is akin to adding plug-ins to your FileMaker solutions. Say
someone has created an object for drawing circles—they’ve deter-
mined a list of properties that belong to circles and have come up with
a canonic set of functions that can be applied to them. The circle object
might have properties like radius and color and methods like draw and
move. To draw a circle, all you’d need to do is instantiate a new
instance of circle, set its properties, and draw it. Instead of having to
know lots about rendering graphics, all you need to know is how to use
the object. Large amounts of programming complexity are entirely hid-
den from you. It’s like driving a car without having to build it yourself
or, indeed, even knowing how it works.

So, an object is a tool. You can create your own tools or you can
use tools that others have developed, in which case you need to learn
how to use the tool (not necessarily how the tool works). Implicit is a
trust that if used properly, the tool will produce the desired and
expected results.

To define an object in PHP, you use a class statement. Below is
what the code might look like for defining our dog object:

class dog {

var $name;

var $age;

var $breed;

Custom Web Publishing with PHP 277

C
h
a
p
te

r
8

var $owner;

var $gender;

function roll_over() {

// some code here

}

function beg_for_food($from_whom) {

// some code here

if ($from_whom == "Rebecca") {

return true;

} else {

return false;

}

}

function go_for_walk() {

// some code here

}

}

As with functions, the code within a class declaration will only execute
if it’s called explicitly. Typically, class declarations will be placed in
their own files, which will be included in pages where they’ll be called.
To use our object, then, we might have the following code:

include ("class_dog.php"); // class_dog would have the code above...

$myDog = new dog();

$myDog->name = "Jasper"; // the -> symbol denotes a property of an

// object

$treat = $myDog->beg_for_food("Rebecca");

Above, we’ve used the keyword “new” to create a new instance of the
dog class; the variable $myDog now refers to that instance. It doesn’t
matter what variable name you use to instantiate the object. Then,
we’ve set the name property of the instance using the $myDog->
name syntax. Finally, we’ve invoked the beg_for_food method, passing
“Rebecca” as an argument and putting the value returned by the func-
tion into the $treat variable. We don’t need to know the complex logic
involved in determining whether or not a dog will be given a treat. All
we need to know is that the function needs to be told from whom food
is being begged and that it returns a Boolean true or false.

We have ample opportunity in the coming sections to learn more
about objects. For now, our whirlwind overview of PHP programming
is complete. It’s finally time to turn to integrating PHP with FileMaker.

278 Chapter 8

Using PHP with FileMaker

Now that you know a little about PHP, you might be wondering how it
works with FileMaker and what advantages or drawbacks it has com-
pared to the other Custom Web Publishing methods that we discuss in
this book. Let’s focus first on how PHP works with FileMaker. Put
simply, PHP sends requests to the Web Companion and receives XML
back in response to those requests. The requests and responses look
exactly the same as they would have, had they been requested directly
by a web browser. In just a bit, we tell you about an object called FX
that makes all of the XML interaction between FileMaker and PHP
transparent to you, but before we do, we think it will be helpful for you
to have an idea of what the communication between PHP and
FileMaker looks like.

First, let’s assume that we have set up a machine running File-
Maker Pro Unlimited to act as our web host, and the IP address of that
machine is 127.0.0.2. We further assume that we have a separate web
server with Apache and PHP properly configured, and the IP address
of that machine is 127.0.0.1. There are three databases open on the
FileMaker Pro Unlimited machine, all of which have been set to share
to the Web Companion. The Web Companion itself has been configured
to use port 591 and not to do Instant Web Publishing.

Now, if you were sitting at a third machine, a plain old workstation
with a browser (say, for now, Internet Explorer), and you typed the fol-
lowing URL into your browser:

http://127.0.0.2:591/FMPro?-format=-fmp_xml&-dbnames

. . .you’d see the following result in your browser window (Figure 8.2).

Custom Web Publishing with PHP 279

C
h
a
p
te

r
8

All we’ve done is issue a request directly to the Web Companion to
give us a list of the open, shared databases and return the results using
the fmp_xml grammar (we could have asked for the dso_xml grammar
just as easily). Now, let’s see how we can write a PHP page that per-
forms this same request. The page, which we call getFileNames.php,
is saved in the root web directory of the web server.

<html>

<head>

<title>Get File Names</title>

</head>

<body>

<?

$request = "http://127.0.0.2:591/FMPro?-format=-fmp_xml&-dbnames";

$fp = fopen($request, "r"); // opens the file for reading

$myXML = fread($fp, 4096); // reads the first 4096 characters

// of the file

echo htmlentities($myXML); // prints the raw code to screen

?>

</body>

</html>

Now, were we to request this page from our web server, we’d see the
following result (Figure 8.3):

280 Chapter 8

Figure 8.2

This is pretty similar to what we obtained submitting the request
directly to the Web Companion, isn’t it? Our four lines of PHP code in
getFileNames.php are fairly straightforward. First, we set a variable
called $request to a string containing our request. We then used the
fopen command (file open) to submit the request, we read (using fread)
the first 4,096 characters of the file into a variable called $myXML, and
then we echoed that response string to the browser. The htmlentities
function simply allows the XML to be displayed properly in the browser.

In real life, what we’d do next is parse through the incoming XML
using PHP string functions and then display HTML back to the user.
Summing up, we’re using PHP to submit requests for XML to the Web
Companion, and rather than spitting that raw XML back to the user or
writing XSL stylesheets to turn that XML into HTML, we can use
PHP to do our XML parsing and display appropriate HTML.

One of the big advantages of having PHP talk to the Web Compan-
ion, rather than having the Web Companion respond to individual
browser requests (CDML or XML), is that you can completely hide
the structure of your solution. A user never needs to see the names of
your databases, layouts, or fields. They might not even know you’re
using FileMaker at all. This greatly reduces the chances of someone
attempting to “hack” your databases. Moreover, since all of the
requests to the Web Companion are coming from your web server, you
can configure the Web Companion to only respond to requests from
that IP address. The fact that it’s free, fast, and secure certainly makes
PHP an attractive choice for your FileMaker web publishing needs.

Custom Web Publishing with PHP 281

C
h
a
p
te

r
8

Figure 8.3

FX: The Right Tool for the Job

FX makes PHP an even more attractive tool for FileMaker web pub-
lishing. It would get quite cumbersome indeed if you needed to create
an entire custom web application using the methods that we discussed
in the previous section. Thankfully, someone’s created a tool that sim-
plifies and streamlines the process. That tool is a PHP object called
FX, and it’s freely available from the web site www.iviking.org. The
author of FX, Chris Hansen, has even written easy-to-follow instruc-
tions and demo files to help get you started. We think FX is a great
tool, and Chris deserves much thanks for his contribution to the
FileMaker and PHP communities.

Recall from our earlier discussion about object-oriented program-
ming that when using objects that others have developed, you don’t
need to know how the object works; you just need to know how to use
the object. In this section, we’re going to teach you how to use FX. All
the code is open and available for you to peruse if you’re curious about
how it’s put together, but we’re essentially going to ignore all of the
XML parsing and query assembling that Chris built in the FX class.

When you download FX from the www.iviking.org site, among the
files that you receive is something called FX.php. That’s the actual
object code. You need to copy that file to your web server and then
include it in any pages that you create. Just for comparison, if we
wanted to use the FX class to get a list of open databases, we could
create the following page:

<html>

<head>

<title>Get File Names</title>

</head>

<body>

<?

include ("FX.php");

$FMAddress = "127.0.0.2";

$FMPort = "591";

$request = new FX ($FMAddress, $FMPort);

$result = $request->FMDBNames();

print_r ($result);

?>

</body>

</html>

282 Chapter 8

If you were to run this script, PHP would execute the same fopen that
we saw earlier, and then FX would parse the resulting XML into a mul-
tidimensional associative array. The $result array would appear as
follows:

Array

(

[linkNext] => /getFileNames2.php?skip=0&

[linkPrevious] => /getFileNames2.php?skip=0&

[foundCount] => 3

[fields] => Array

(

[0] => Array

(

[emptyok] => NO

[maxrepeat] => 1

[name] => DATABASE_NAME

[type] => TEXT

)

)

[data] => Array

(

[0.0] => Array

(

[DATABASE_NAME] => Array

(

[0] => Database2.fp5

)

)

[0.1] => Array

(

[DATABASE_NAME] => Array

(

[0] => Database3.fp5

)

)

[0.2] => Array

(

[DATABASE_NAME] => Array

(

[0] => Database1.fp5

)

)

)

[URL] => http://127.0.0.2:591/FMPro?-db=&-format=-fmp_xml&-max=

&-dbnames

[errorCode] => 0

[valueLists] => Array

(

)

)

Custom Web Publishing with PHP 283

C
h
a
p
te

r
8

The object represented by the FX class is a FileMaker XML request. It
might not be as intuitive to conceptualize an XML request object as it
was to imagine a dog object. In essence, every time you create an
instance of an FX object, it represents a query that you can have PHP
submit to FileMaker. It’s sort of like being handed a blank order form
to fill out. You check off the things that you want and submit the order
form. Your order is processed and the results are handed back to you.
Think of FX as an endless stack of blank order requests.

In order to submit an FX request, you need to do three things.
First, create an instance of the object. Second, specify request parame-
ters. Finally, specify the action to perform. Let’s look at each of these
in detail.

Creating an Instance of FX

The syntax to create a new instance of FX is as follows:

$newInstance = new FX ($dataServer, $dataPort);

This syntax is slightly different than what we learned earlier in our dog
class example. Here, we’re asked to pass arguments to the class as
part of its creation. If you were to look at the FX class definition, you’d
see a function there known as a constructor, which is called automati-
cally every time an instance of the class is created. The constructor
function is named FX, just like the class, and is shown below:

function FX ($dataServer, $dataPort=591) {

$this->dataServer = $dataServer;

$this->dataPort = ":" . $dataPort;

$this->ClearAllParams();

}

This function takes the attributes passed to it and sets them into the
dataServer and dataPort properties. Then, it calls the ClearAllParams
method, presumably just as insurance that there are no vestigial bits of
previous requests still floating about.

The $dataServer should be the IP address of the machine with the
Web Companion. The $dataPort is an optional argument that you can
pass to specify the port that the Web Companion is configured to use.
If you don’t specify a $dataPort, it assumes you’re using port 591.
That’s what the "=591" part of the function definition indicates.

It’s generally a good practice to set variables equal to the IP
address and port and then use those as you instantiate the object. That
way, if you ever change the IP address or port or move the site, you’ll

284 Chapter 8

just need to change one or two variables rather than dozens of direct
function calls. Those variables should be placed in their own file and
included on every page you write. So, you’ll have a file called prefs.php
that contains the following code:

<?

$FMAddress = "127.0.0.2";

$FMPort = 591;

// put any other "constants" in this file

?>

Then, in all of your other pages, you’ll have something like the
following:

<?

include ("FX.php");

include ("prefs.php");

$request = new FX ($FMAddress, $FMPort);

// the rest of your code...

?>

The names of the variables don’t matter. If you want to use $IPAddress
or $IP instead of $FMAddress, go for it.

Specifying Request Parameters

Once an instance of FX has been created, you can then specify request
parameters. We’ve listed all of the request parameters below. Certain
actions require that you’ve specified certain parameters. Later in this
section we have a matrix that specifies which parameters are required
and optional for each of the actions. In general, it doesn’t matter in
which order you specify the parameters; there are a few exceptions
that we point out when we come to them.

SetDBData

Syntax: SetDBData ($database, $layout="", $groupSize=50)

Example:

$myQuery = new FX ('127.0.0.2', '80');

$myQuery->SetDBData('contacts.fp5', 'webFind', 'All');

The SetDBData method specifies to which database and layout a
request should be sent. You must call this method for every action

Custom Web Publishing with PHP 285

C
h
a
p
te

r
8

with the exception of DBNames. The first parameter tells FX what
database to specify in the action. It will become the -db parameter of
the XML request. The second parameter, the layout, is optional in all
cases, but it’s highly recommended that you use it. Refer back to the
discussion in Chapter 2 to refresh your memory about the importance
of specifying a layout when sending requests to the Web Companion.
In a nutshell, it’s a performance issue. The only time you wouldn’t
want to set a layout parameter is if you’ll be calling the LayoutNames
method.

The final parameter, groupSize, is only relevant when performing a
find. By default, the Web Companion will send back a maximum of 25
records at a time. If you plan on displaying a result set in chunks of,
say, 10 or 20 records at a time, you’ll want to set this parameter
accordingly. If you want the Web Companion to send back the entire
result set, set the groupSize to “All.”

SetDBPassword

Syntax: SetDBPassword ($password)

Example:

$myQuery = new FX ('127.0.0.2', '80');

$myQuery->SetDBData('contacts.fp5', 'webFind', 'All');

$myQuery->SetDBPassword ('blah');

If you’ve protected your database with a password, you’ll need to send
that password as part of every request to that file. See our discussion
in Chapter 3 for more information on securing databases while web
publishing.

AddDBParam

Syntax: AddDBParam ($name, $value, $operator="")

Example:

$myQuery = new FX ('127.0.0.2', '80');

$myQuery->SetDBData('contacts.fp5', 'webFind', 'All');

$myQuery->SetDBPassword ('blah');

$myQuery->AddDBParam('FirstName', 'Fred', 'eq');

$myQuery->AddDBParam('LastName, 'Fintstone', 'eq');

The AddDBParam method is used differently for different actions.
When performing a find, it’s how you’ll specify the search criteria.
When adding or editing records, it’s how you’ll send the data to add or
edit. For editing and deleting, it’s also how you specify which record to
edit or delete. This function can even be used to perform FileMaker

286 Chapter 8

scripts. Even though it’s optional, you’ll likely end up calling this
method more than any other. In fact, in many instances you’ll find that
you need multiple AddDBParams to specify all of the criteria for an
action. Let’s look at some of the uses more closely.

For an FMFind action, you’ll specify the search criteria using
AddDBParams. Set the $name parameter to the name of the field that
you want to search on. The $value parameter is where you’ll place the
search criteria itself. Finally, you can specify an operator for the
search. If you leave this optional third parameter blank, a default oper-
ator of “begins with” will be used. Acceptable values for this
parameter are the following:

'eq'—an 'equals' search
'cn'—a 'contains' search
'bw'—a 'begins with' search
'ew'—an 'ends with' search
'gt'—a 'greater than' search
'gte'—a 'greater than or equal to' search
'lt'—a 'less than' search
'lte'—a 'less than or equal to' search
'neq'—a 'not equal to' search

If you use multiple AddDBParam method calls to specify multiple
search criteria, FileMaker by default will interpret your request as an
“and” find. That is, it will find only records where all of the conditions
hold. You can change the logical operator by adding the following call:

$myQuery->AddDBParam('-lop', 'or');

Using or as the logical operator, a find will return records where any of
the conditions hold. You can only specify one logical operator (-lop) per
query. Again, it’s optional. If you don’t include it, the default is and.

For both the FMEdit and FMDelete actions, you must use the
AddDBParam method to specify which record you’ll be editing or
deleting. To do this, you’ll use the “-recid” keyword as the $name and
FileMaker’s internal record ID as the $value, as follows:

$myQuery->AddDBParam('-recid', '23');

As an additional criterion for an FMEdit action, you can also use the
AddDBParam method to specify a “-modid.” Anytime you retrieve
record information from the Web Companion, one of the bits of infor-
mation that you’ll receive back is the number of times the record has
been modified. If you’re editing a record and you want to be sure that
the record hasn’t been changed by someone else while you were

Custom Web Publishing with PHP 287

C
h
a
p
te

r
8

viewing it on the web, you’ll want to send that mod count back as part
of your edit request. If the number that you send is lower than the cur-
rent mod count, the edit will not be performed and an error will be
returned.

The final use for the AddDBParam is for calling FileMaker scripts.
Anytime you perform an action through the Web Companion, you can
ask FileMaker to perform a script as well. It’s as if the script rides on
the coattails of the other action. One common use for this is having
FileMaker print something out, usually as a PDF. For instance, you
might have a form that submits a new order for a widget and then calls
a Print Order script afterward. To call such a script, you’d simply
include the following criterion:

$myQuery->AddDBParam('-script', "Print Order");

There are two variations of calling scripts to be aware of. If you are
performing a find action and want a script to be executed before the
find is performed, you can use the “-script.prefind” keyword. Similarly,
if your action involves a sort, the “-script.presort” keyword will cause
the script to be executed before the sort.

In Chapter 2, we discussed several reasons why you should avoid
calling scripts as part of a web query. As you undoubtedly recall, the
most important reason is that it can cause huge performance prob-
lems. Printing, importing, and exporting are possibly the only times
that you would want to call scripts. For anything else, try to find some
other solution.

AddSortParam

Syntax: AddSortParam ($field, $sortorder="")

Example:

$myQuery = new FX ('127.0.0.2', '80');

$myQuery->SetDBData('contacts.fp5', 'webFind', 'All');

$myQuery-> AddSortParam ('Last_Name', 'Descend');

$myQuery-> FMFindAll();

You hopefully are not shocked or surprised to discover that the
AddSortParam is the tool you use to specify the sort order of records
returned by the Web Companion. It’s an optional criterion and is only
useful with find and findall actions. The first parameter specifies the
field to sort on; use the second parameter to indicate whether the sort
should be Ascend, Descend, or Custom. If the second parameter is
omitted, an ascending sort is performed by default. A Custom sort

288 Chapter 8

order works just as it does in FileMaker; if there’s a value list attached
to the specified field on the layout that you’ve called in SetDBParam,
the field is sorted in the order of the value list entries.

You can specify multiple sort fields simply by calling the AddSort-
Param multiple times. The sorts are performed in the order that they
appear in your code. For example:

$myQuery-> AddSortParam ('Last_Name');

$myQuery-> AddSortParam ('First_Name');

Here, the records returned from FileMaker would be sorted first by
Last_Name and then by First_Name.

FMSkipRecords

Syntax: FMSkipRecords ($skipsize)

Example:

$myQuery->FMSkipRecords('25');

A skip value is useful when you want to retrieve only a subset of the
records found by a query. It’s a very common device in web program-
ming. Say for instance that you have a search results page where you
want to show the user the first ten records of the found set and then
give him a “Next 10” button to retrieve records 11 through 20. On the
query to pull back that second set, you want to skip the first ten
records. The typical calculation to determine the proper skip size is:

(page requested - 1) * records on a page

So, if you displayed 15 records on a page and wanted to see the third
page of results, the skip size would be (3–1) * 15 = 30.

The main purpose of limiting the set size is performance. The less
data that the web server has to send back to the browser, the faster the
site will run. Navigating from page to page is also generally thought to
be a better user interface than scrolling through large result sets.

FMPostQuery

Syntax: FMPostQuery ($isPostQuery = true)

Example:

$myQuery-> FMPostQuery ();

When FX sends a request to the Web Companion, it uses the HTTP
GET method by default. That’s the same method that is used anytime
you type a URL into a browser window. However, there’s a 255-char-
acter limit to an HTTP GET request. For most requests, that’s plenty

Custom Web Publishing with PHP 289

C
h
a
p
te

r
8

of characters. Sometimes adding and updating records generates long
query strings, depending of course on the number of fields and how
much data is submitted. In these cases, you’ll want to change the
query method to HTTP POST by using the FMPostQuery method.

In order to send POST requests, you must configure PHP to use
CURL, a library that allows PHP to communicate to a variety of serv-
ers using a variety of protocols.

Calling an Action

Now that we’ve looked at the various query criteria that you can set,
we can finally turn to the actions themselves. Don’t be surprised if the
list of actions looks familiar; it should by now. They’re essentially the
same actions that can be performed by CDML. Only one action can be
performed at a time. Once an action is performed, all of the query cri-
teria will be reset.

Invoking any of the actions listed below triggers the action to be
performed. Until the action is called, FX is just collecting bits for
assembling a request. Calling one of the action methods completes the
construction of the request and submits it to the Web Companion. As
we’ve discussed, the response to your request is then parsed and put
into a multidimensional array for your use.

Most of the following actions take an optional parameter of true or
false to indicate whether you want FX to parse the response XML or
not. By default, this parameter is true (meaning it parses the incoming
XML) for every function except FMDelete(). The reason that
FMDelete doesn’t return data by default should be obvious; there’s no
data to return if the record has been deleted. For every other function,
you typically want to retrieve the data returned by your request. But
there are a few cases where you might want to override the default.
For instance, you might want to perform a search just to get a found
count without displaying the actual found data. Or you might have an
add action that logs some sort of activity. If you have no intention or
need to display or use the data returned by a request, consider using
false—there is a small performance benefit if FX doesn’t need to parse
all of the incoming XML.

FMFind ($returnDataSet = true)

This is the function that you call to perform a search of a database. As
discussed above, you specify the actual search criteria using the
AddDBParam method.

290 Chapter 8

Example:

$myQuery = new FX ('127.0.0.2', '80');

$myQuery->SetDBData('contacts.fp5', 'webFind', 'All')

$myQuery-> AddDBParam ('Last_Name', 'Flintstone');

$myResults = $myQuery-> FMFind();

The above code searches the contacts.fp5 database for all records where
Last_Name is Flintstone. The response is parsed and put into the
$myResults array. We discuss the structure of a result array shortly.

FMFindAll ($returnDataSet = true)

This function finds and retrieves all of the records from the database
specified in the SetDBData function. Note that for any type of find, the
returned data set only contains data for those fields (including related
fields) that appear on the layout specified by the SetDBData function.
Failure to specify a layout causes data to be returned for every field
(but no related fields). If your database contains summary fields or
complex calculations, performance may be severely diminished.

If you use the FMFindAll action and don’t seem to be able to
retrieve more than 25 records from your database, chances are that
you haven’t specified a third argument for the SetDBData function and
the groupsize default of 25 is being used. Change it to “all” if you really
want to return every record at once.

An FMFindAll action ignores any search criteria that you may have
set using the AddDBParam function.

Example:

$myQuery = new FX ('127.0.0.2', '80');

$myQuery->SetDBData('contacts.fp5', 'webFind', 'All')

$myResults = $myQuery-> FMFindAll();

FMFindAny ($returnDataSet = true)

The FMFindAny function returns a single random record from a data-
base. As with FMFind and FMFindAll, the SetDBData function deter-
mines the database and layout used for the query. Any search criteria
that you may have set using the AddDBParam function are ignored.

Example:

$myQuery = new FX ('127.0.0.2', '80');

$myQuery->SetDBData('contacts.fp5', 'webFind')

$myResults = $myQuery-> FMFindAny();

Custom Web Publishing with PHP 291

C
h
a
p
te

r
8

FMDelete ($returnDataSet = false)

The FMDelete function deletes a record from a database. You can only
delete a single record at a time; there’s no Delete All function avail-
able. In order to delete a record, you must specify its record ID using a
call to AddDBParam. The record ID is an internal serial number that
FileMaker assigns to a record as it’s created. Any time that you
retrieve information about a record via the Web Companion, you
receive this ID as part of the returned data. That’s how you know what
you should pass back when you want to delete a record. Consider the
following example.

Example:

$request = new FX ($FMAddress, $FMPort);

$request->SetDBData('calendar.fp5, 'web', 'all');

$request->AddDBParam('Date', $myDate,'lt');

$returnedData = $request->FMFind();

foreach ($returnedData['data'] as $key=>$data) {

$keyparts = explode (".", $key);

$recID = $keyparts[0];

$delRequest = new FX ($FMAddress, $FMPort);

$delRequest->SetDBData('Database3.fp5');

$delRequest->AddDBParam('-recid', $recID);

$delRequest->FMDelete();

}

The code above begins by finding all records less than a certain date
($myDate) in a database called calendar.fp5. The foreach loop pulls the
record ID out of each of the returned records and uses it as the basis
for a delete request. So all records prior to the specified date are
deleted from the database. We should mention that a delete loop like
this is a fairly slow way to delete large sets of records. Record creation
and deletion are two of the slower actions that FileMaker performs. If
you ever need to do a large delete through the web, consider calling a
deletion script as part of a find action.

FMEdit ($returnDataSet = true)

You use the FMEdit method to modify an existing record. Like
FMDelete, FMEdit operates on a single record at a time and requires
that you specify a -recid. If you have problems with deleting or editing

292 Chapter 8

records, the first thing you should check is whether you’ve specified a
record ID or not.

In addition to the record ID, you also use the AddDBParam func-
tion to specify the changes that you want to make to the record. The
following example shows how you might update a contact record.

Example:

$request = new FX ($FMAddress, $FMPort);

$request->SetDBData('contact.fp5, 'web');

$request->AddDBParam('First_name', $firstname);

$request->AddDBParam('Last_name', $lastname);

$request->AddDBParam('Address1', $address1);

$request->AddDBParam('Address2', $address2);

$request->AddDBParam('City', $city);

$request->AddDBParam('State', $state);

$request->AddDBParam('Zip', $zip);

$request->AddDBParam('-recid', $recID);

$result = $request->FMEdit();

You can update related records (as long as they are on the layout that
you’ve specified) by using standard double-colon syntax. For example,
you could have something like $request->AddDBParam('Customer by
Contact ID::CustomerName', $customerName) as part of your update
request.

FMNew ($returnDataSet = true)

The FMNew function is used to add new records to a database. You
can specify initial field values using AddDBParam.

Example:

$request = new FX ($FMAddress, $FMPort);

$request->SetDBData('contact.fp5, 'web');

$request->AddDBParam('First_name', 'John');

$request->AddDBParam('Last_name', 'Doe');

$result = $request->FMNew();

The $result array that’s returned by this function will contain the new
record data, including the record ID that’s been assigned to it.

FMView ($returnDataSet = true)

FMView is probably the least intuitive of the actions that you can per-
form. It really doesn’t do anything at all to the database. Rather, it lets
you get metainformation, such as field names, field types, and value
lists. The following example shows how you might use FMView to

Custom Web Publishing with PHP 293

C
h
a
p
te

r
8

create check boxes on the web based on a value list (called “colors”)
from FileMaker.

Example:

$request = new FX ($FMAddress, $FMPort);

$request->SetDBData('contacts.fp5', 'web');

$returnedData = $request->FMView();

$myList = $returnedData['valueLists']['colors'];

foreach ($myList as $listItem) {

echo "<input type=\"checkbox\" name=\"color\" value=\"".

$listItem."\">". $listItem . "
";

}

FMDBNames ($returnDataSet = true)

FMDBNames returns a list of databases that are open and shared to
the Web Companion. This action is unique in that it needs no additional
criteria (not even SetDBData) to work.

Example:

$request = new FX ($FMAddress, $FMPort);

$DBList = $request->FMDBNames();

FMLayoutNames ($returnDataSet = true)

FMLayoutNames returns a list of layout names from a specified
database.

Example:

$request = new FX ($FMAddress, $FMPort);

$request->SetDBData('contacts.fp5');

$LayoutList = $request->FMLayoutNames();

FMDBOpen()

The FMDBOpen function allows you to have PHP open a FileMaker
database. There are a few restrictions that you should be aware of.
First, in order to use either the FMDBOpen or FMDBClose functions,
the Web Companion must be configured to allow remote access with-

out a password. See our discussion in Chapter 3 about how to configure
the Web Companion to do this and about the potential security prob-
lems that this introduces. The second restriction is that the database
that you want to open, or a shortcut/alias to it, must be placed in the
Web directory in your FileMaker application folder.

Use the SetDBData function before calling FMDBOpen. If the
database has a password, use AddDBParam (not SetDBPassword) to

294 Chapter 8

specify it. The FMDBOpen function takes no parameters and does not
return anything.

Example:

$request = new FX ($FMAddress, $FMPort);

$request->SetDBData('contacts.fp5');

$request->AddDBParam('-password', 'foo');

$request->FMDBOpen();

FMDBClose()

FMDBClose is used to close a particular database. Similar to FMDB-
Open, this function takes no arguments and does not return anything.
The Web Companion must be configured to allow remote access with-
out a password. Unlike FMDBOpen, you can close any open file
regardless of whether it’s stored in the Web folder or not.

Example:

$request = new FX ($FMAddress, $FMPort);

$request->SetDBData('contacts.fp5');

$request->FMDBClose();

The matrix below sums up which criteria can and should be used with
which actions.

Creating Web Applications
with PHP, FX, and FileMaker

In the remainder of the chapter, we use PHP and FX to construct a
complete (albeit small) data-driven web application. Along the way, we
focus on developing a modular site design, the anatomy of an FX result
set, how to pass variables from page to page, building a log-in screen,
and sessions. This is the fun part.

Custom Web Publishing with PHP 295

C
h
a
p
te

r
8

Let’s begin by setting out the scenario for our application. Imagine
that your neighbor, whom we call Fran, is the owner of a new dog
walking business, and you’ve created a simple, relational database
using FileMaker to help her keep track of scheduling and client data.
Her business has become so successful that she’s about to hire several
walkers throughout the city, allowing her to focus on growing the busi-
ness. But now Fran is worried about how her crew of walkers will get
their schedules each day. “Relax,” you tell her. “I’ll just whip up a web
interface so they can log in and review their schedule.” You roll up
your sleeves, put on a fresh pot of coffee, and dive right in. And we’ll
help a bit, too.

Now, Fran has DSL service at her home and has a spare machine
that she can configure with a static IP address. She doesn’t mind put-
ting FileMaker Pro Unlimited on that machine and having it act as a
host for this application. You check with the ISP that hosts her web
site and are pleasantly surprised that they already have Apache and
PHP all set up and ready to use on all their servers. The only setup
you need to do on the web server is upload a copy of FX.php.

After you add a new Walker database to her solution, Fran’s
FileMaker system consists of four tables, as shown in Figure 8.4.

For the web site, Fran would like the walker to begin by entering his
username and password. Once that’s been verified, the walker should
go directly to a list of his appointments for the current week. From
there, he needs to be able to see detailed information about the dog
and client, as well as enter post-walk notes.

Let’s start with the login. That gives us an opportunity to learn
how to pass variables between pages and use sessions. The first thing
that the walker needs to see is a simple HTML form that prompts for a
username and password. For now, then, logon.php consists of the
following:

296 Chapter 8

Figure 8.4

<html>

<head>

<title>Log in</title>

</head>

<body>

<form action='logon_validate.php' method='post'>

<table width='60%' border='0' align='center'>

<tr>

<td colspan='2' align='center'>Please enter your username

and password to enter the site

</td>

</tr>

<tr>

<td>Username:</td>

<td><input type='text' name='name'></td>

</tr>

<tr>

<td>Password:</td>

<td><input type='password' name='pw'></td>

</tr>

<tr>

<td colspan='2' align='center'><input type='submit'

name='submit' value='submit'></td>

</tr>

</table>

</form>

</body>

</html>

Figure 8.5 shows how this would be rendered in the browser. Note that
there’s not a lick of PHP code on the page. The page contains a form
with two input fields. When a form is submitted, the web server calls
the thing specified by the form’s action parameter (here logon_vali-
date.php, which we see shortly), and it sends along all of the form’s
data to that thing.

Custom Web Publishing with PHP 297

C
h
a
p
te

r
8

When you call a PHP page through a form or URL, PHP automatically
puts any form parameters into an array called $_POST (for forms) or
$_GET (for URLs). There’s nothing special that you need to do either
to pass or retrieve the data. On the logon_validate.php page, then, we
can access the user’s form entries as $_POST['name'] and
$_POST['pw']. We purposefully didn’t name our variables identically to
the field names in the database both to keep the database schema hid-
den (any user can see the names of your form variables) and make it
clear that we’re not interacting with a database at this point.

The logon_validate page performs a query of the Walker.fp5 table.
If it doesn’t find a record that matches the submitted criteria, it should
display a message to the user and give him another opportunity to
login correctly. For this application, let’s not worry about limiting the
number of login attempts or anything fancy like that. At this point,
logon_validate.php might look something like this:

<?

include ("FX.php");

$serverIP = "127.0.0.2";

$port = "591";

$query = new FX($serverIP, $port);

$query->SetDBData ('Walker.fp5', 'web');

$query->AddDBParam ('username', "==". $_POST['name']);

$query->AddDBParam ('password', "==". $_POST['pw']);

298 Chapter 8

Figure 8.5

$result = $query->FMFind();

if ($result['foundCount'] == 1) {

// successful login

echo "will be for successful login routine.";

exit;

} else {

$msg = "Unsucessful login attempt. Please try again.";

include ("logon.php");

}

?>

This code uses FX to perform a find in Walker.fp5. Note that we’ve
prepended FileMaker’s exact equals operator onto the search strings.
This protects against the submission of empty or truncated strings.

After sending the query to FileMaker, $result will be a multidi-
mensional associative array with all sorts of information. One of the
pieces of information is the number of records the search returned. For
now, we’ve put a placeholder in for the successful login. If it’s not suc-
cessful, we set a variable to an error message and then include our
original logon.php page. We don’t want to echo out the error message
right here because we’re not at an appropriate place in an HTML
stream.

In order to get that error message to display, we return to the
logon.php page and add a conditional statement toward the top of the
body (right above the form works well here). If there’s something in
the $msg variable, it is echoed to the screen, or else the page renders
exactly as before. The conditional logic is as follows:

if ($msg) {

echo "<center>$msg</center>

";

}

So much then for the unsuccessful login. A successful login is a bit
more complicated to process. Once it has been determined that the
user has a valid name and password, we want to start a session and
jump to that walker’s schedule. Sessions are powerful but complicated
tools, and we certainly won’t be able to discuss every nuance of them
here. Essentially, a session enables you, the programmer, to store
information (whatever information you want) on the server rather than
having to pass everything from page to page via hidden inputs or extra
URL parameters. These so-called session variables can be retrieved
by a session ID that’s either passed from page to page or stored as a
cookie on the user’s machine. If you can require that visitors to your
site accept cookies, then that’s probably the preferable method. For

Custom Web Publishing with PHP 299

C
h
a
p
te

r
8

our dog walking application, we store both the walker’s ID and name as
session variables. That way, wherever they go after logging in, we
always know who they are and that they’ve been authenticated.

PHP has many built-in tools for managing sessions. There are con-
figuration settings that you can use to do things such as set the name
of the session ID and determine how the data is stored on the server.
There are two options for this; either the session data can be written
out to a text file or it can be stored in a database. For Fran’s site, let’s
go ahead and build a database to store the session data. It is just
another FileMaker database (called session.fp5) with the following
fields:

id_session - text
id_user - text
status - text
value - text
date_created - date
date_mod - date
time_created - time
time_mod - time
expiration - text

We create a table view layout called Web that has all of these fields on
it, and we share the database to the Web Companion.

PHP uses functions to handle writing and reading session data.
These functions are often referred to as the session handlers and are
usually placed in their own document (and included as necessary).
Below, we give the code for a complete FileMaker-based session han-
dler. We put this code in a file called session_handler.php, but we won’t
discuss this page in much detail.

<?

// this page is session_handler.php

function sess_open($save_path, $session_name) {

return true;

}

function sess_close() {

return true;

}

function sess_read($key) {

global $serverIP, $port, $sessLife, $sessionDB;

$query=new FX($serverIP, $port);

$query->SetDBData($sessionDB,'web');

300 Chapter 8

$query->AddDBParam('id_session', $key);

$result = $query->FMFind();

if ($result['foundCount'] > 0) {

$recordKey = key($result['data']);

if(($result['data'][$recordKey]['expiration'][0]*1) > time() &&

$result['data'][$recordKey]['status'][0] == 'a') {

return (string)($result['data'][$recordKey]['value'][0]);

} else {

return "exp|i:1" . $result['data'][$recordKey]

['value'][0];

}

}

return '';

}

function sess_write($key, $val) {

global $sessionDB, $serverIP, $port, $sessLife, $idUser;

$expiration = time() + $sessLife;

$query=new FX($serverIP, $port);

$query->SetDBData($sessionDB,'web');

$query->AddDBParam('id_session', $key);

$query->AddDBParam('status', 'a');

$result = $query->FMFind();

if ($result['foundCount'] == 0) {

$query=new FX($serverIP, $port);

$query->SetDBData($sessionDB,'web');

$query->AddDBParam('id_session', $key);

$query->AddDBParam('id_user', $idUser);

$query->AddDBParam('expiration', $expiration);

$query->AddDBParam('value', $val);

$query->AddDBParam('status', 'a');

$result = $query->FMNew();

} else {

$recID = explode('.', key($result['data']));

$query2 = new FX($serverIP, $port);

$query2->SetDBData($sessionDB,'web');

$query2->AddDBParam('-recid', $recID[0]);

$query2->AddDBParam('expiration', $expiration);

$query2->AddDBParam('value', $val);

$updateResult = $query2->FMEdit();

}

return (string)$updateResult;

}

function sess_destroy($key) {

Custom Web Publishing with PHP 301

C
h
a
p
te

r
8

global $sessionDB, $serverIP, $port;

$query=new FX($serverIP, $port);

$query->SetDBData($sessionDB,'web');

$query->AddDBParam('id_session', $key);

$result = $query->FMFind();

$recID = explode('.', key($result['data']));

$query2 = new FX($serverIP, $port);

$query2->SetDBData($sessionDB,'web');

$query2->AddDBParam('-recid', $recID[0]);

$query2->AddDBParam('status', 'e');

$updateResult = $query2->FMEdit();

return (string)$updateResult;

}

function sess_gc($maxlifetime) {

return true;

}

session_set_save_handler("sess_open", "sess_close", "sess_read",

"sess_write", "sess_destroy", "sess_gc");

In order to allow this code to be as generic as possible, we’ve used
variables to denote the IP address and port of the server, the name of
the session database itself, and length of time that a session will live.
Rather than specify these things over and over, it makes sense at this
point to create a small file called prefs.php and put these constants in
there. We then must include prefs.php on every page that we access.

<?

// prefs.php

// connection information

$serverIP = "127.0.0.1"; // IP address of the FileMaker Pro

// Unlimited machine

$port = "591"; // port that the Web Companion is

// configured to use

// session handler variables

$sessLife = 10800; // number of seconds til the session

// expires

$sessionDB = "session.fp5"; // name of the session database

?>

302 Chapter 8

Next, we need to edit logon_validate.php to include both the new ses-
sion_handler.php and prefs.php page. After a successful login, we start
a session, declare two session variables (using session_register) called
$sessWalkerID and $sessWalkerName, and set them to the appropriate
walker ID and name. The final change we need to make to logon_vali-
date before it’s complete is to add a redirect to the page that we build
next, which is called index.php. That is the central control file for the
rest of the entire application.

The finished logon_validate page looks as follows:

<?

include ("FX.php");

include ("prefs.php");

include ("session_handler.php");

$query = new FX($serverIP, $port);

$query->SetDBData ('Walker.fp5', 'web');

$query->AddDBParam ('username', "==". $_POST['name']);

$query->AddDBParam ('password', "==". $_POST['pw']);

$result = $query->FMFind();

if ($result['foundCount'] == 1) {

session_set_save_handler("sess_open","sess_close","sess_read",

"sess_write","sess_destroy","sess_gc");

setcookie("sid");

session_start();

if ($exp) {

$msg = "Your session has expired. You must login again.";

include_once ("logon.php");

exit;

}

session_register("sessWalkerID");

session_register("sessWalkerName");

$recID = current($result['data']);

$sessWalkerID = $recID['WalkerID'][0];

$sessWalkerName = $recID['WalkerName'][0];

echo "Logging in... one moment please";

echo "<meta http-equiv=refresh content=\"1;url=index.php?area=

show_schedule\">";

exit;

} else {

$msg = "Unsuccessful login attempt. Please try again.";

include ("logon.php");

Custom Web Publishing with PHP 303

C
h
a
p
te

r
8

}

?>

To thoroughly test the login and session, you should create a place-
holder page for index.php. A quick, simple “hello world” will do the job
just fine—anything so that you won’t generate a missing file error.

We mentioned a moment ago that index.php becomes a central
control file for the rest of the application. There’s no reason that we
couldn’t call that page foo.php or anything else. For that matter, there’s
nothing that requires a control file at all. We’ve found, however, that
with the exception of the logon and validation pages, it makes for a
much more intuitive and easier to maintain site if you do. Just keep in
mind that we’re talking about programming techniques, not prescrip-
tive rules for building web applications.

The thought behind the single page control file concept is that
every form and URL in the application is sent to the control page. As
part of every call, you also send one or more variables that tell the con-
trol file what documents to include. For instance, notice in our redirect
from the validation page that we specified a URL of index.php?area=
show_schedule. On the index.php page, then, we’ll have access to a
variable in the $_GET array called area, and we can use the include
function to bring in a chunk of code that pertains to that area.

At the very top of the control file, you want to have a check of
some sort to make sure that the user has actually gone through the
login and been authenticated. If not, redirect them back to the logon
page (via an expired.php page—see the demo files for an example of
this). If they have been authenticated, use the include function to pull
in code appropriate to the area. Remember to create hello world
placeholders as you build new areas so that you can test the navigation
away from one page before starting construction on another. The
index.php page ends up as follows:

<?

include ("FX.php");

include ("prefs.php");

include ("session_handler.php");

session_set_save_handler("sess_open","sess_close","sess_read",

"sess_write","sess_destroy","sess_gc");

session_start();

if($exp == 1 || !$_SESSION['sessWalkerID']){ // if their session

// has expired

include("expired.php"); // or they don't have a

// valid session started

304 Chapter 8

exit;

}

$filename = $_GET['area'] . ".php"; // construct a filename from the

// contents of the area variable

$inc = @include ($filename); // include the file

if (!$inc){ // error trap

echo "Could not locate requested file for inclusion: $filename";

exit;

}

?>

Not very much code for something so important, is it? The beauty of
this design is that simply by feeding it a different value for $area, you
can have it pull in any page that you want. By centralizing the over-
head tasks (like starting the session and making sure there’s a valid
login), we’ve made it easy to troubleshoot or modify those routines.

One PHP coding detail to point out above is the @ sign in front of
the include command. That sign tells PHP to suppress the display of
any errors that the function may generate. By doing this, we have the
opportunity to check for the error ourselves (if !$inc. . .), and we can
display a more attractive and user-friendly error message than PHP
would have provided.

Let’s turn our attention now to the show_schedule.php page,
which, as you recall, is supposed to retrieve all of the user’s appoint-
ments for the current week. This finally gives us a good opportunity to
look closely at the anatomy of the return data set that FX provides.
First, though, we have to figure out what to use as query criteria.
There are two approaches that we could take. One would be to have a
calculation in the Appointment.fp5 database that returned the week
beginning date and then have FX do a search of that field. The other
would be to have PHP figure out the dates of the first and last days of
the week and search on that range in the appointment date field.
There’s no compelling reason to use one method over the other, so
let’s try the latter. We need to use the PHP functions mktime(),
getDate(), and Date() to do date manipulations. The mktime() function
builds a timestamp (date and time combo) out of bits that you feed it.
For instance, to build a timestamp representing 8:30 A.M. on Wednes-
day, February 19, 2003, you’d use mktime(8,30,0,3,19,2003). We use
the getDate() function to fetch the current date. This function returns
an array that has elements for all of the bits that you might want. For
instance, there’s a wday element that tells you where a date falls
within the week (0 to 6). You can also feed the getDate function a

Custom Web Publishing with PHP 305

C
h
a
p
te

r
8

timestamp and it returns data about that date (rather than the current
date). Finally, the Date() function is used for specifying the output for-
mat of a timestamp. For example, to display a date using a mm/dd/yyyy
format, you’d use Date('m/d/Y'). With those three functions and a little
basic math, we can construct a range string that can be passed directly
to FileMaker as a search parameter. The beginning of the show_sched-
ule page, where all of this is happening, is shown below:

<?

// show_schedule.php

include ("header.php")

$today = getDate(); // gets today's date

$month = $today['mon']; // returns the month number (ie, 2)

$year = $today['year']; // returns the year (ie, 2003)

$dayofmonth = $today['mday']; // returns the day of month (ie, 19)

$dayofweek = $today['wday']; // returns the day of week

// (ie, 3 = wednesday)

// build timestamps for week beginning Sunday and week ending

// Saturday

$sunofweek = mktime (0,0,0,$month,$dayofmonth - $dayofweek, $year);

$satofweek = mktime (0,0,0,$month,$dayofmonth + 6 - $dayofweek,

$year);

$startDate = Date("m/d/Y", $sunofweek);

$endDate = Date("m/d/Y", $satofweek);

$search = $startDate . "...". $endDate; // FM search string

// (ie, 2/16/2003...2/22/2003)

$query = new FX($serverIP, $port);

$query->SetDBData ('Appointment.fp5', 'web', 'all');

$query->AddDBParam ('WalkerID', $_SESSION['sessWalkerID'], 'eq');

$query->AddDBParam ('Date', $search);

$result = $query->FMFind();

We’ve put off for long enough a discussion of the structure of the data
array that FX returns to you. Let’s use the $result array returned by
this find as a specimen for study. The structure of the returned data set
is virtually the same no matter what action you run. Remember that
you can always do a print_r ($result) as you’re programming to see the
entire result set.

Think of the returned data set as a tree structure. The highest
level node contains the following:

306 Chapter 8

[linkNext] // URL link for next set of records

[linkPrevious] // URL link for previous sets of records

[foundCount] // number of records found

[fields] // array about fields on the layout

[data] // array with returned data

[URL] // copy of the query that was sent to FM

[errorCode] // error code. 0 means no error

[valueLists] // array containing value lists

So, if you want to check after the query to see if an error has been
generated, you should check $result['errorCode']. Notice that three of
the nodes of this array are themselves arrays. These each deserve
some discussion.

The [fields] array consists of a set of arrays that contain four
pieces of data about each of the fields on the current layout (as speci-
fied by the SetDBData function). Say you had three fields on the layout
used to perform an action. The fields array might look something like
this:

[fields] => Array

(

[0] => Array

(

[emptyok] => YES

[maxrepeat] => 1

[name] => FirstName

[type] => TEXT

)

[1] => Array

(

[emptyok] => YES

[maxrepeat] => 1

[name] => YearsExperience

[type] => NUMBER

)

[2] => Array

(

[emptyok] => YES

[maxrepeat] => 1

[name] => BirthDate

[type] => DATE

)

)

)

The [data] array is the most complex and the most useful. That’s
where you find the actual data returned by FileMaker. The key of the
data array consists of the record ID and the modification count, sepa-
rated by a period (e.g., [2.5]). Within each “record,” you have another
layer of keys; this time the field name is the key. Finally, the inner

Custom Web Publishing with PHP 307

C
h
a
p
te

r
8

level of the data array is a number/value pair, where the number speci-
fies the repetition. If you don’t use repeating fields, just remember that
you still have to put a [0] after the field name to grab the first repeti-
tion. As an example, then, of what an element in the data array looks
like, consider the following:

[data] => Array

(

[2.5] => Array

(

[First_name] => Array

(

[0] =>Fred

)

[Last_name] => Array

(

[0] =>Flintstone

)

)

[3.2] => Array

(

[First_name] => Array

(

[0] =>Barney

)

[Last_name] => Array

(

[0] =>Rubble

)

)

)

So, to actually display “Fred,” you’d need to refer to $result['data']
['2.5']['First_name'][0]. Usually, you’ll find it helpful to set a variable to
some intermediate level of this so that other calls are shorter to type.
For instance, to display “Fred Flintstone,” you might do this:

$recordData = $result['data']['2.5'];

echo $recordData['First_name'][0] . " ".$recordData['Last_

name'][0];

The [valuelist] array will be populated if you’ve performed an FMView
action. It will contain an array for each value list present on the
selected layout. The key of the array is the list’s name, while the list
choices are the array’s elements. In our earlier discussion of FMView,
we showed an example of how to iterate through the [valuelist] array
to create a set of check box input fields.

For our dog walking application, there are several ways that we
could have PHP go through the [data] array of the returned data set. If
we try a method that simply loops through the data, even in order, it

308 Chapter 8

may be hard to put blank placeholders for off days. It would be easier if
the data were in an array with the Date field at the top node. So let’s
do that. We turn the returned data array inside out. It’s actually pretty
easy to do; just go through the data, grab the bits as they go by, and
reassemble them in whatever order you prefer. The code to do this is
as follows:

foreach ($result['data'] as $dataArray) {

$apt_date = $dataArray['Date'][0];

$apt_time = $dataArray['Time'][0];

$apt_dogID = $dataArray['DogID'][0];

$apt_Status = $dataArray['Status'][0];

$apt_ID = $dataArray['AppointmentID'][0];

$dog_name = $dataArray['Dog by DogID::DogName'][0];

$newArray[$apt_date][$apt_time]['id'] = $apt_ID;

$newArray[$apt_date][$apt_time]['status'] = $apt_Status;

$newArray[$apt_date][$apt_time]['dogname'] = $dog_name;

$newArray[$apt_date][$apt_time]['dogID'] = $apt_dogID;

}

After turning it around, the newArray looks something like this:

Array

(

[2/17/2003] => Array

(

[9am] => Array

(

[id] => 2

[status] => Complete

[dogname] => Tessa

[dogID] => 2

)

0

[2/18/2003] => Array

(

[9am] => Array

(

[id] => 1

[status] => Complete

[dogname] => Tessa

[dogID] => 2

)

)

[2/21/2003] => Array

(

[3:00] => Array

(

[id] => 9

[status] => Confirmed

[dogname] => Morgan

Custom Web Publishing with PHP 309

C
h
a
p
te

r
8

[dogID] => 3

)

[9am] => Array

(

[id] => 3

[status] => Confirmed

[dogname] => Tessa

[dogID] => 2

)

)

)

That’s a much easier format to render out as a week-at-a-glance calen-
dar. However, you probably wouldn’t want to loop through this array
and spit out the data. For something like a calendar, it’s nice to at least
have placeholders for the days without activities. A good approach is to
loop through the days instead of looping through the data. Then, as
your loop comes across a day, look to see if that day is a key in the
$newArray. If so, it’s easy to have an inner loop run through the day’s
events. If not, you can either just display the date and move on or, as
we’ve done in the code below, you can put in some sort of “Nothing
scheduled” message. You can see the schedule above rendered in a
browser in Figure 8.6.

// continuation of show_schedule page ... code for rendering the

// schedule

echo "<table width=75% border=0 align=center>";

echo "<tr><td>Dog Walking Schedule for: ". $_SESSION

['sessWalkerName']. "

</td></tr>";

for ($i = 0; $i<=6; $i++){ // will loop 7 times

$theDate = mktime(0,0,0,date("m", $sunofweek), date("d",

$sunofweek) + $i, date("Y"));

$dateDisplay = Date("l, F j, Y", $theDate);

echo "<tr><td bgcolor='#666666'>";

echo $dateDisplay. "</td></tr>";

echo "<tr><td><table border=0 width=100%>";

$dailyActivities = array();

$dailyActivities = $newArray[date("n/j/Y",$theDate)];

if (count($dailyActivities)) {

foreach ($dailyActivities as $time=>$aptData) {

echo "<tr><td width=20%></td><td>".$time."</td>";

echo "<td>".$aptData['dogname']."</td>";

echo "<td>".$aptData['status']."</td></tr>";

}

} else {

310 Chapter 8

echo "<tr><td width=20%></td><td>Nothing

scheduled</td></tr>";

}

echo "</table>
</td></tr>";

}

echo "</table>";

Now that we have the walker’s schedule created, the remaining two
tasks (seeing the dog detail and entering post-walk notes) are both
simple in comparison. We tackle the dog detail first. From the weekly
schedule, we want to turn the name of the dog into a hyperlink that
shows the detailed dog record. If this were a FileMaker application, all
you’d need is a Go To Related Record script. On the web, we just do an
actual search in the related table.

Remember that we’re pointing all requests to index.php for pro-
cessing. Our request needs to have two pieces of information in order
to be processed. First, it needs an $area. Something like $area=dog_
detail should be adequate. Even though index.php is the center of the
universe, you don’t need to edit that page at all. Second, it must spec-
ify the dogID of the record to retrieve. To make the link, then, you
need to edit the line where the dog’s name is rendered out to be:

echo "<td><a href=\"index.php?area=dog_detail&dogID=

".$aptData['dogID']."\">".$aptData['dogname']."</td>";

Custom Web Publishing with PHP 311

C
h
a
p
te

r
8

Figure 8.6

As before, to test the link, just stub in a dog_detail.php page. Echo out
the $dogID or something trivial. Once you think the link is working
well, you can start to worry about building the page itself.

There are a few issues to think about on the dog_detail page. The
first is error trapping. If for some reason a user gets to that page with-
out a $dogID or with an invalid $dogID, then it’s quite likely that the
application will break. So both of these conditions are things that you
should trap for. How you handle the errors is up to you. You could sim-
ply echo out an error message, as we do in the code below. Or you
could do something elaborate like call a function that logs the error and
redirects the user back to the login page.

Another challenge on this page is getting an image from a File-
Maker container field to show up in the user’s browser. In essence,
you put the field in the src argument of an image tag. However, the
resulting link assumes that the image is on the same machine as the
web page (as it would be if you were serving CDML directly from
FileMaker). So, you need to specify the IP address and port number of
the Web Companion. The code for the page is given below; Figure 8.7
shows how it ends up looking in the browser.

<?

// coming here, should have a $dogID set

include ("header.php");

if (!$_GET['dogID']) {

echo "Improper access attempt. Go away";

exit;

}

$query = new FX($serverIP, $port);

$query->SetDBData ('dog.fp5', 'web');

$query->AddDBParam ('dogID', $_GET['dogID']);

$result = $query->FMFind();

if (!$result['foundCount'] == 1) {

echo "Invalid ID. Go away";

exit;

}

$dogInfo = current($result['data']);

echo "<table width=70% align=center>";

echo "<tr><td>Dog Detail</td>";

echo "<td align=right>Back

to Schedule</td</tr>";

echo "</table>";

312 Chapter 8

echo "
";

echo "<center>".$dogInfo['DogName'][0]. "</center>";

echo "
";

echo "<hr width=70%>";

echo "<table width=70% border=0 cellspacing=10 align=center>";

echo "<tr><td width=30% align=right>Gender:</td>";

echo "<td>".$dogInfo['Gender'][0]."</td></tr>";

echo "<tr><td width=30% align=right>Breed:</td>";

echo "<td>".$dogInfo['Breed'][0]."</td></tr>";

echo "<tr><td width=30% align=right>Notes:</td>";

echo "<td>".$dogInfo['Notes'][0]."</td></tr>";

echo "<tr><td width=30% align=right>Owner:</td>";

echo "<td>".$dogInfo['Client by ClientID::Name'][0]."</td></tr>";

echo "<tr><td width=30% align=right>Address:</td>";

echo "<td>".$dogInfo['Client by ClientID::Address'][0]."</td></tr>";

echo "<tr><td width=30% align=right>City, State, Zip:</td>";

echo "<td>".$dogInfo['Client by ClientID::City'][0]. ", ";

echo $dogInfo['Client by ClientID::State'][0]. " ";

echo $dogInfo['Client by ClientID::Zip'][0]."</td></tr>";

echo "</table>";

echo "<hr width=70%>
";

echo "<center><img src=\"http://$serverIP:$port/".$dogInfo

['Picture'][0]."\"></center>";

?>

Custom Web Publishing with PHP 313

C
h
a
p
te

r
8

The only place to go from this page is back to the week’s schedule, and
that’s a trivial link to create. Since the user’s ID is stored as a session
variable, all we need is a URL to index.php?area=show_schedule.

As a final PHP exercise, let’s add one more feature to this applica-
tion. Recall that Fran wanted the walker to be able to enter in notes
after the walk and change the status from Confirmed to Complete. To
do this, we add another link from the schedule. The link is very similar
to the link to the dog_detail, except we want to go to a walk_notes area
this time, and instead of dogID, we need to know the AppointmentID
(we’re just calling it ID for brevity). Creating the link requires only the
addition of one line of code to the show_schedule.php page:

echo "<td><a href=\"index.php?area=walk_notes&ID=". $aptData

['id']."\">Walk Notes</td></tr>";

Rendering the walk_notes page is similar in some ways to what we
needed to do on the dog_detail page: We need to find the record and
echo out everything that we know about it. The big difference is that
there’s editable information on this page. When rendering the page,
that difference only means that we need a form, some input fields, and
a button. The tricky part is figuring what to do when that form is actu-
ally submitted. Should the user end up back on the schedule page, or

314 Chapter 8

Figure 8.7

should the form submission leave them on the walk_notes page? This
is important because it determines where the update logic will live. We
just checked with Fran, and she said that she’d like the walk notes
page to have a Save and a Cancel button, both of which take the user
back to the schedule.

Let’s look at the code for the walk_notes page. Note especially the
logic in the middle for determining which status should be selected.
We didn’t pull the value list from the database since it’s a static list, but
we would have used the same sort of logic if we had—loop through the
list items, build up the HTML text for all of the choices, and the one
that’s currently selected (as determined by comparison to the record
value) gets marked as selected. Figure 8.8 shows the completed page.

<?

// walk_notes.php

// coming here, should have an AppointmentID ($ID)

include ("header.php");

if (!$_GET['ID']) {

echo "Improper access attempt. Go away";

exit;

}

$query = new FX($serverIP, $port);

$query->SetDBData ('Appointment.fp5', 'web');

$query->AddDBParam ('AppointmentID', $_GET['ID']);

$result = $query->FMFind();

if (!$result['foundCount'] == 1) { // you can perhaps handle the

// error more tactfully...

echo "Invalid ID. Go away";

exit;

}

$recKey = key ($result['data']);

$keyParts = explode (".", $recKey);

$recID = $keyParts[0];

$appInfo = current($result['data']);

echo "<form action=\"index.php?area=show_schedule\" method=

\"post\">";

echo "<input type=\"hidden\" name=\"rec\" value=\"$recID\">";

echo "<table width=70% align=center>";

echo "<tr><td>Walk Notes</td>";

echo "</tr></table>";

echo "<hr width=70%>";

Custom Web Publishing with PHP 315

C
h
a
p
te

r
8

echo "<table width=70% border=0 cellspacing=10 align=center>";

echo "<tr><td width=30% align=right>Dog:</td>";

echo "<td>".$appInfo['Dog by DogID::DogName'][0]."</td></tr>";

echo "<tr><td width=30% align=right>Walker:</td>";

echo "<td>".$appInfo['Walker by WalkerID::WalkerName']

[0]."</td></tr>";

echo "<tr><td width=30% align=right>Date:</td>";

echo "<td>".$appInfo['Date'][0]."</td></tr>";

echo "<tr><td width=30% align=right>Time:</td>";

echo "<td>".$appInfo['Time'][0]."</td></tr>";

$choices = array("Confirmed", "Canceled", "Complete");

foreach ($choices as $myChoice) {

if ($appInfo['Status'][0] == $myChoice) {

$selected = "selected";

} else {

$selected = "";

}

$options .= "<option value=\"". $myChoice. "\" $selected>".

$myChoice. "</option>\n";

}

echo "<tr><td width=30% align=right>Status:</td>";

echo "<td><select name=\"status\"><option>$options";

echo "</select></td></tr>";

echo "<tr><td width=30% align=right>Notes:</td>";

echo "<td><textarea name=\"notes\" cols=50 rows=6>".$appInfo

['WalkNotes'][0]."</textarea></td></tr>";

echo "</table>";

echo "<hr width=70%>
";

echo "<table width=40% align=center>";

echo "<tr><td align=center><input type=\"Submit\" name=\"Action\"

value=\"Cancel\"></td>";

echo "<td align=center><input type=\"Submit\" name=\"Action\"

value=\"Submit\"></td></tr>";

echo "</table>";

?>

316 Chapter 8

Notice in the code that we’ve already specified the return to the sched-
ule as part of the form action, regardless of which button the user
selects. We now need to add some logic to the top of the show_sched-
ule page to check the incoming form parameters for something called
“Action” with a value of “Submit.” It’s important that the test is done
at the top of the page so that when the search is performed afterward,
it picks up the latest changes that you may have just made. Also, don’t
forget that to edit a record, you must have its record ID. That’s why
we parsed the ID out in the code above and created a hidden input
field. It will be sent back to the show_schedule page with the rest of
the form parameters.

The logic that we need to add to show_schedule is fairly straight-
forward: If the user submitted something, then update the record; if
not, don’t. As code, it would look something like this:

if ($_POST['Action'] == 'Submit') { // means they've submitted from

// walk note page

$update = new FX($serverIP, $port);

$update->SetDBData ('Appointment.fp5', 'web');

$update->AddDBParam ('Status', $_POST['status']);

$update->AddDBParam ('WalkNotes', $_POST['notes']);

Custom Web Publishing with PHP 317

C
h
a
p
te

r
8

Figure 8.8

$update->AddDBParam ('-recid', $_POST['rec']);

$updateResult = $update->FMEdit();

if ($updateResult['ErrorCode'] != 0) {

echo "There was a problem updating the walk notes.";

}

}

Our dog walking schedule application is now functionally complete.
The single-page architecture may take some getting used to, but hope-
fully you can at least appreciate the efficiency and simplicity of it. For
any additional functionality that we want to add later on, we just need
to figure out what “area” it belongs in and what input parameters it
needs to be fed.

Another nice thing about this architecture is that it scales very
well. For a large solution, you’ll find it helpful to have another variable
besides $area. We commonly use $sub as a second variable, and that
allows us to group pages by functional areas. For instance, within an
“area” of “contacts,” there might be “sub” pages to find, add, edit, or
delete contacts. Then, for your filename, use a concatenation of the
area and sub (contacts_find.php or contacts_add.php).

Summary

PHP is a fast, popular, free, and easy-to-learn web development envi-
ronment. We covered four main areas in this chapter. First, we gave
you a sense of what PHP is and how it compares with other web devel-
opment tools. Second, we presented an overview of the PHP program-
ming syntax and a brief tutorial of how variables, arrays, functions, and
objects are represented and manipulated by PHP. We then investigated
how PHP can be used to talk to FileMaker’s Web Companion via XML.
The FX class greatly simplifies hooking PHP to FileMaker. Finally, we
built an entire web application using PHP, FX, and FileMaker.

318 Chapter 8

Chapter 9

FileMaker and Web
Services: Learning
about XML Import

By now you might have heard of the concept of a web service. Like
other subjects connected with XML and the web, the idea of web ser-
vices has been at the center of a great deal of discussion and a certain
amount of hype. So what exactly is a web service?

Web services build on the universality of XML. Remember that
one of the most important features of XML is that it breaks down the
wall of proprietary data formats. Web services are a way to use XML
(among other tools) as an all-purpose language for communication
between different computers doing different things.

It might be best to start with an example. Let’s go back to Blue
Horizon Bison Breeders again. Researchers have told BHBB that the
online reports of herd activity that the new web site provides are
extremely useful. The problem is that these reports still present the
data visually, marked up with HTML. These researchers would like a
way to get their hands on the raw data, and these web pages don’t do
that. The researchers can resort to workarounds, such as downloading
the HTML pages and running a bunch of “screen scraper” parsing pro-
cesses to extract the herd information again, but this is not only
tedious to program, it’s very fragile. If anything in the HTML changes,
the parsing routines will probably break. The researchers don’t really
want to head down that path. They’d rather find some way to send a
request to the BHBB servers and get the data back in some unvar-
nished form.

How about XML? Yes, an XML data feed would be perfect, the
researchers say. That would allow them to apply their own XSL trans-
formations to the data (say, into tab-delimited text or whatever other
format their analysis tools require). Since the Web Companion can
publish data in XML, nothing could be easier. BHBB can simply tell

319

the researchers the appropriate URLs to use to extract the XML
data—something like:

http://services.bhbb.com/FMPro?-db=Herd&-format=-fmp_xml&-findall

Once BHBB lets its clients know about this URL, they are providing a
web service—a facility that works over the existing web protocols
(HTTP) to distribute information. That’s all there is to it. It’s up to
BHBB to decide which data they want to publish and how they want to
grant or restrict access to it, but the idea is always the same; a
researcher submits a specially formatted URL and gets back a stream
of XML data.

Web services are not limited to returning data from a database.
The command you send to a remote server could in fact be a compli-
cated set of instructions to do something. The remote server could
take action based on the commands that you sent it and return a
response telling you the status of your request. Consider the following
transaction. You send this URL to a remote server:

http://mytrade.stockloss.com/traderApp?symbol=TXX&action=buy&

maxPrice=55.6&shares=100&account=10019298381&passKey=A908DF82348F

. . .and you get back the following reply:

<?xml version="1.0" encoding="UTF-8" ?>

<trade>

<symbol>TXX</symbol>

<shares>100</shares>

<action>buy</action>

<tradePrice>55.125</tradePrice>

<tradeStatus>Complete</tradeStatus>

</trade>

Apparently, you just sent a command to your stockbroker’s server, ask-
ing it to buy 100 shares of TXX stock at a price not to exceed $55.60.
The server has responded with an XML message confirming what you
asked for and letting you know the trade was completed for $55.125
per share. The common thread here is that, once again, we are using
familiar, standardized protocols for both the request and the response.
The request is a simple URL, and the response is sent back over
HTTP in the form of XML. It may be that you never need to read or
see the XML response directly. The trading software that you use may
invisibly translate it back into the proper feedback, possibly in some
graphical environment. The important thing is that another wall is
being broken down here. Probably in the past, your stockbroker’s com-
puters used some proprietary networking protocol, thus vastly limiting
the number of other computers that could possibly send it requests or

320 Chapter 9

interact with it. If we use a standard protocol (HTTP) instead and send
our messages in a standard format (XML), suddenly everything is wide
open. If you want to interact with the trading systems at Stock-
loss.com, suddenly all you need is to be able to send and receive
requests over HTTP and maybe parse some XML. (You probably also
need to pay Stockloss a fee for access to their servers.)

This idea of sending messages in a standard format over a standard
protocol is at the heart of the idea of web services. If you can send and
receive web requests and read XML, you can publish or consume web
services, regardless of your operating system or hardware or that of
the remote machines with which you interact.

Working with a Real Web Service

Let’s look at some real-life examples. One company that has been
something of a pioneer in opening its databases to the world via web
services is Amazon.com. If you go to http://www.amazon.com/
webservices, you’ll see instructions there for downloading their devel-
oper’s kit and getting a free “developer’s token” that lets you have
access to their web services. The token is what you really need—this
gets sent with each request you submit to make sure you’re an autho-
rized user. We suggest that you go ahead and download the kit and
apply for the token; it should arrive in your e-mail in a few minutes.

Note: As of publication, you did not actually need to submit a valid
value for the developer’s token, but it would probably be courteous to
apply and use your own token anyway.

Once you’ve got your Amazon developer’s token, open up an XML-
aware web browser and send this URL, replacing the XXXXXXXXXXX
with your own developer’s token:

http://xml.amazon.com/onca/xml2?t=webservices-20&dev-t=

XXXXXXXXXXX&KeywordSearch=american%20indians&mode=books&type=

lite&page=&f=xml

You’re performing a book search on Amazon for books matching the
keywords “american indians.” Before long, your XML-aware browser
should show you several screenfuls of XML that tell you about the
results of your search. We’ve chosen Amazon’s “lightweight” data for-
mat (that’s the type=lite parameter that you sent). Feel free to experi-
ment with the heavy form by sending type=heavy. In my case the
search retrieved 7507 titles. Of course, I didn’t get the XML data for

FileMaker and Web Services: Learning about XML Import 321

C
h
a
p
te

r
9

all of those at once. Amazon sent them to me in “pages” of ten books
each. If I want to see books 11-20, I can send page=2 instead.

This is all very well, but what good does this do me in FileMaker?
Well, as of FileMaker 6, you can import this data directly back into
FileMaker. You can create new records in a database using this infor-
mation or just use it to update an existing database. If you were a book
publisher, for example, and you had your book database in FileMaker,
you could use FileMaker 6’s XML Import to add the Amazon price and
the Amazon sales rank to your database for each book.

That sounds almost too good to be true. FileMaker can read any
XML data from anywhere and turn it into FileMaker records? Well, no,
not quite. There is one catch: In order for FileMaker to import the
data, it needs to be in one of the two FileMaker XML grammars that
we looked at earlier. In particular, it needs to be in the FMPXML
grammar. The way that we get it there, as you might guess, is to trans-
form it using a stylesheet. Here’s what that process looks like:

So let’s look at the data that we just got from Amazon and then look at
what we need to turn it into in order for FileMaker to read it. Here’s a
partial sample of the Amazon XML:

<?xml version="1.0"?>

<ProductInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://xml.amazon.com/schemas2/

dev-lite.xsd">

<TotalResults>7571</TotalResults>

<Details url="http://www.amazon.com/exec/obidos/redirect?tag=

webservices-20%26creative=XXXXXXXXXXX%26camp=2025%26link_

code=xm2%26path=ASIN/0684818868">

<Asin>0684818868</Asin>

<ProductName>Lies My Teacher Told Me: Everything Your

American History Textbook Got Wrong</ProductName>

<Catalog>Book</Catalog>

<Authors>

<Author>James W. Loewen</Author>

</Authors>

<ReleaseDate>September, 1996</ReleaseDate>

322 Chapter 9

Figure 9.1

<Manufacturer>Touchstone Books</Manufacturer>

<ImageUrlSmall>http://images.amazon.com/images/P/

0684818868.01.THUMBZZZ.jpg</ImageUrlSmall>

<ImageUrlMedium>http://images.amazon.com/images/P/

0684818868.01.MZZZZZZZ.jpg</ImageUrlMedium>

<ImageUrlLarge>http://images.amazon.com/images/P/

0684818868.01.LZZZZZZZ.jpg</ImageUrlLarge>

<ListPrice>$15.00</ListPrice>

<OurPrice>$10.50</OurPrice>

<UsedPrice>$5.00</UsedPrice>

</Details>

<Details url="http://www.amazon.com/exec/obidos/redirect?tag=

webservices-20%26creative=XXXXXXXXXXX%26camp=2025%26link_code=

xm2%26path=ASIN/0969297939">

<Asin>0969297939</Asin>

<ProductName>Learning by Designing Pacific Northwest Coast

Native Indian Art, vol.1</ProductName>

<Catalog>Book</Catalog>

<Authors>

<Author>Jim Gilbert</Author>

<Author>Karin Clark</Author>

</Authors>

<ReleaseDate>27 November, 1999</ReleaseDate>

<Manufacturer>Raven Publishing</Manufacturer>

<ImageUrlSmall>http://images.amazon.com/images/P/096929793

9.01.THUMBZZZ.jpg</ImageUrlSmall>

<ImageUrlMedium>http://images.amazon.com/images/P/

0969297939.01.MZZZZZZZ.jpg</ImageUrlMedium>

<ImageUrlLarge>http://images.amazon.com/images/P/

0969297939.01.LZZZZZZZ.jpg</ImageUrlLarge>

<ListPrice>$27.95</ListPrice>

<OurPrice>$27.95</OurPrice>

</Details>

Overall, the Amazon XML format consists of a root element called
ProductInfo, which contains one TotalResults element (giving the total
found count for your query) and then a number of Details elements,
which each contain data on an individual title. Right now Amazon is
handing us ten of these Details records per request, so as not to over-
whelm its servers. The Details element itself is pretty uncomplicated;
the only thing that we need to note is that the Authors element can
contain multiple authors, which is an issue we need to resolve as far as
importing that data into FileMaker.

Now we need to figure out how that data should look to appease
FileMaker’s XML Import capability. The best thing to do here is cheat.
We’re going to build a simple FileMaker database that contains the
fields we’re interested in, put a little sample data into it, perform an
XML Export using the FMPXML grammar, and see what we get.

Here’s our database structure:

FileMaker and Web Services: Learning about XML Import 323

C
h
a
p
te

r
9

We’ve included some fields that are part of the “heavy,” rather than the
“light,” Amazon format. For now, just ignore these fields.

Let’s go ahead and put in one record’s worth of sample data, and
then export that data in XML format using the FMPXML grammar to a
file called AmazonLiteFormatExport.xml. Here’s how the export
looks:

<?xml version="1.0" encoding="UTF-8" ?>

<fmpxmlresult xmlns="http://www.filemaker.com/fmpxmlresult">

<errorcode>0</errorcode>

<product build="08/09/2002" name="FileMaker Pro" version=

"6.0v3" />

<database dateformat="M/d/yyyy" layout="" name="Book.fp5"

records="1" timeformat="h:mm:ss a" />

<metadata>

<field emptyok="YES" maxrepeat="1" name="ASIN" type=

"TEXT" />

<field emptyok="YES" maxrepeat="1" name="ProductName"

type="TEXT" />

<field emptyok="YES" maxrepeat="1" name="Catalog"

type="TEXT" />

<field emptyok="YES" maxrepeat="1" name="ReleaseDate"

type="TEXT" />

<field emptyok="YES" maxrepeat="1" name="Manufacturer"

type="TEXT" />

<field emptyok="YES" maxrepeat="1" name="ImageUrlSmall"

type="TEXT" />

<field emptyok="YES" maxrepeat="1" name="ImageUrlMedium"

type="TEXT" />

<field emptyok="YES" maxrepeat="1" name="ImageUrlLarge"

324 Chapter 9

Figure 9.2

type="TEXT" />

<field emptyok="YES" maxrepeat="1" name="ListPrice"

type="NUMBER" />

<field emptyok="YES" maxrepeat="1" name="AmazonPrice"

type="NUMBER" />

<field emptyok="YES" maxrepeat="1" name="UsedPrice"

type="NUMBER" />

</metadata>

<resultset found="1">

<row modid="4" recordid="12">

<col>

<data>0684818868</data>

</col>

<col>

<data>Lies My Teacher Told Me: Everything Your

American History Textbook Got Wrong</data>

</col>

<col>

<data>Book</data>

</col>

<col>

<data>September, 1996</data>

</col>

<col>

<data>Touchstone Books</data>

</col>

<col>

<data>http://images.amazon.com/images/P/

0684818868.01.THUMBZZZ.jpg</data>

</col>

<col>

<data>http://images.amazon.com/images/P/

0684818868.01.MZZZZZZZ.jpg</data>

</col>

<col>

<data>http://images.amazon.com/images/P/

0684818868.01.LZZZZZZZ.jpg</data>

</col>

<col>

<data>15</data>

</col>

<col>

<data>10.5</data>

</col>

<col>

<data>5</data>

</col>

</row>

</resultset>

</fmpxmlresult>

So, as we understand it, if we can transform the incoming Amazon
XML into data in the above format, FileMaker should be able to import
it. Well, we’re battle-scarred XSL veterans by now, and we know how

FileMaker and Web Services: Learning about XML Import 325

C
h
a
p
te

r
9

to do that. Let’s think about the general strategy, though, before start-
ing to code up the XSL. The FMPXML grammar begins with a lot of
header-like information, which is the database metadata. So we need to
arrange to output all of that at the top of the document. The FMPXML
grammar contains a <resultset>, which contains one or more
instances of a <ROW>.

Well, for one-time output, we probably want to write a template
that matches on the incoming XML’s root element. The FMPXML
<ROW> element matches up to the Amazon XML <Details> ele-
ment, so we presumably want a template that matches the <Details>
element and then output a <ROW> in its place. Or we could use
<xsl:for-each> to loop through the available <Details> records.

That sounds like enough of a plan, so let’s dive in and take a cut at
the stylesheet:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="ProductInfo">

<FMPXMLRESULT xmlns="http://www.filemaker.com/

fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

<PRODUCT BUILD="" NAME="" VERSION=""/>

<DATABASE DATEFORMAT="M/d/yyyy" LAYOUT="" NAME=""

RECORDS="10" TIMEFORMAT="h:mm:ss a"/>

<METADATA>

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="AmazonURL" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="ASIN"

TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="ProductName" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="Catalog" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="ReleaseDate" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="Manufacturer" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="ImageUrlSmall" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="ImageUrlMedium" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="ImageUrlLarge" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="ListPrice" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="AmazonPrice" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1"

NAME="UsedPrice" TYPE="NUMBER" />

326 Chapter 9

</METADATA>

<RESULTSET>

<xsl:attribute name="FOUND"><xsl:value-of

select="/ProductInfo/TotalResults"/>

</xsl:attribute>

<xsl:for-each select="Details">

<ROW>

<xsl:attribute name="MODID">0

</xsl:attribute>

<xsl:attribute name="RECORDID">0

</xsl:attribute>

<COL><DATA><xsl:value-of select=

"@url"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"Asin"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ProductName"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"Catalog"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ReleaseDate"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"Manufacturer"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ImageUrlSmall"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ImageUrlMedium"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ImageUrlLarge"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ListPrice"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"OurPrice"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"UsedPrice"/></DATA></COL>

</ROW>

</xsl:for-each>

</RESULTSET>

</FMPXMLRESULT>

</xsl:template>

</xsl:stylesheet>

We’ve chosen to write this stylesheet with just one template that
matches on <ProductInfo>. Inside this template, we first output all of
the components of the <METADATA> elements. We then start up
the <RESULTSET> element. To gather up all of the <Details> ele-
ments in the Amazon XML, we use <xsl:for-each>. Since our context
is the <ProductInfo> node, <xsl:for-each select="Details"> tells the
XSL processor to loop through all <Details> nodes that are children
of the <ProductInfo> node, which is exactly what we want. Finally, for
each <ROW>, we output a ModID and a RecordID of 0 and then

FileMaker and Web Services: Learning about XML Import 327

C
h
a
p
te

r
9

output a <COL><DATA>.. .</COL></DATA> tagset for each field
that we’re interested in.

One small note concerns the field that we’re calling AmazonURL.
The data we want to bring into that field lives in the <Details> ele-
ment in the url attribute. So an opening <Details> tag looks like this:

<Details url="http://www.amazon.com/exec/obidos/redirect?tag=

webservices-20%26creative=XXXXXXXXXXX%26camp=2025%26link_code=

xm2%26path=ASIN/0684818868">

We need to fetch the url attribute, so our XPath expression reads 'se-
lect = "@url" '. This translates as “fetch an attribute of the current
node called url.” In this context, the current node is always a
<Details> node, so this expression pulls the URL from the current
<Details> node.

Once the stylesheet is complete, we need to set up the import
routine in FileMaker. Save the stylesheet as AmazonLite.xsl. Select
File>Import Records, and choose XML as the import type. Use the
following for the source URL, remembering to use your own developer
token in place of the XXXXXXX.

http://xml.amazon.com/onca/xml2?t=webservices-20&dev-t=XXXXXXX&

KeywordSearch=american%20indians&mode=books&type=lite&page=

1&f=xml

Then specify AmazonLite.xsl. Go ahead with the import, and you get
the familiar FileMaker Import dialog. If all is well with the stylesheet,
you should see a set of field names on the left that correspond to the
ones that we defined in the <METADATA> section of our stylesheet.
Proceed with the import, and ten new records should be created in our
Books database.

This stylesheet should work well enough, but it does leave a few
questions unanswered. Suppose we want to know the total number of
records that our query returned? Right now we can only see and fetch
them in groups of ten. If we learn what the total number was, how can
we fetch all of them? First let’s try to get the total record count and do
something with it.

This number is available in the Amazon XML as <TotalResults>,
a child of <ProductInfo>. We’d like to bring it into a global field. We’ve
defined such a field in our FileMaker database already, so we just need
to tweak our stylesheet to bring that information back from Amazon. If
we add this row to the <METADATA> section of the stylesheet:

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="gSearchTotal" TYPE=

"NUMBER" />

328 Chapter 9

. . .and this row to the <ROW> section of the stylesheet:

<COL><DATA><xsl:value-of select="../TotalResults"/></DATA></COL>

. . . that should do the job. Repeat the import with this new stylesheet,
and the total found count should be stored in our gSearchTotal field.
(We got about 7500 records the last time we tried this.)

Now, on to the more challenging part. We want to import some
user-defined number of these records, instead of just ten. Before pro-
ceeding, we should say that we’re showing the following technique by
way of illustration. Be aware, though, that the reason web service pro-
viders “throttle” the amount of data returned is to keep the load on
their servers reasonable. To fetch all 7500 records, we would have to
run 750 consecutive requests against the server, which is potentially
abusive. Use this technique carefully.

In the case of the Amazon XML, the returned record sets are gov-
erned by the page parameter that we pass as part of the URL.
Somehow we need to submit the same URL repeatedly, varying just
the page parameter. FileMaker gives us a good way to do this. If we
drive our XML import by a script, we get an additional option that the
menu-driven version doesn’t give us: We can draw our source URL
from a field. This means that we can define a calculation that returns
different URLs based on different circumstances. What we want to do
is set a global page counter and then set up a calculation that uses the
current value of that page counter to generate the right URL. Then we
submit that URL multiple times to fetch as many pages as we want.

Let’s add a few fields to our Books database. We can add
gRecordsToFetch, which is a value that the user can manipulate to
decide how many records to bring back. We can define gPagesToFetch,
which is just the number of HTTP requests that we need to fetch the
specified number of pages. We can also define CalculatedAmazonURL,
which dynamically generates the right URL based on which page we
currently need to fetch. CalculatedAmazonURL looks like this:

"http://xml.amazon.com/onca/xml2?t=webservices-20&dev-t=

XXXXXXXXXXXX&KeywordSearch=american%20indians&mode=books&type=

lite&page=" & gCurrentPage & "&f=xml"

(So elsewhere, you should substitute in your own developer token.)
We also need to add two scripts to make this work. One, which we call
Import Amazon Lite Data from Calc, does an XML Import using
CalculatedAmazonURL as the URL for the data source. We can add a
master script that calculates the total number of necessary page
fetches and then runs a loop to fetch each new page in sequence:

FileMaker and Web Services: Learning about XML Import 329

C
h
a
p
te

r
9

Fetch Specified Record Count

Show All Records

Delete All Records [No dialog]

Set Field [gPagesToFetch, (Int(gRecordsToFetch/10))]

Set Field [gCurrentPage, 1]

Loop

Exit Loop If [gCurrentPage > gPagesToFetch]

Perform Script ["Import Amazon Lite Data From Calc"]

[Sub-scripts]

Set Field [gCurrentPage, 1 + gCurrentPage]

End Loop

"To break out of found set from last import"

Show All Records

With that, we can display a menu of possible record counts to the user:
10, 20, 50, 100, 500, up to whatever we like. Since we’re now fetching
the total found count into a global field, we can even add an “All”
option. This would require a little extra work in the Fetch script and
could lead to some very lengthy processing times for large record
counts.

Processing the Author Data

One other unexplored item is the author information. Author data
comes with each record, but it’s a compound element; one instance of
the <Authors> element can contain one or several <Author> ele-
ments. How should we handle this? Well, first we should decide how
we want to store it in FileMaker. There are three clear choices—store
the authors in a repeating field, store them in a single flat text field
(perhaps with a comma delimiter), or store them in a separate, related
file.

If we want to store them in a repeating field, we’re out of luck.
FileMaker actually exports all the repetitions of a repeating field as
multiple <DATA> instances within a single <COL> element. But
when you try to import such a file back into FileMaker, only the first
repetition is populated.

Storing the authors in a separate, related file sounds like the most
correct thing to do. But since we don’t have unique keys for these
authors, we’re potentially going to get multiple records per individual
author (so we’re certainly not cutting out any redundancy that way).
For now, let’s go for the option of turning the authors into a comma-
delimited list. Here’s what the stylesheet looks like:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

330 Chapter 9

<xsl:template match="ProductInfo">

<FMPXMLRESULT xmlns="http://www.filemaker.com/

fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

<PRODUCT BUILD="" NAME="" VERSION=""/>

<DATABASE DATEFORMAT="M/d/yyyy" LAYOUT="" NAME=""

RECORDS="10" TIMEFORMAT="h:mm:ss a"/>

<METADATA>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"AmazonURL" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="ASIN"

TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"ProductName" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"Catalog" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"ReleaseDate" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"Manufacturer" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"ImageUrlSmall" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"ImageUrlMedium" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"ImageUrlLarge" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"ListPrice" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"AmazonPrice" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"UsedPrice" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"gSearchTotal" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"Author" TYPE="TEXT" />

</METADATA>

<RESULTSET>

<xsl:attribute name="FOUND"><xsl:value-of

select="/ProductInfo/TotalResults"/>

</xsl:attribute>

<xsl:for-each select="Details">

<ROW >

<xsl:attribute name="MODID">0

</xsl:attribute>

<xsl:attribute name="RECORDID">0

</xsl:attribute>

<COL><DATA><xsl:value-of select=

"@url"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"Asin"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ProductName"/></DATA></COL>

<COL><DATA><xsl:value-of select=

FileMaker and Web Services: Learning about XML Import 331

C
h
a
p
te

r
9

"Catalog"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ReleaseDate"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"Manufacturer"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ImageUrlSmall"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ImageUrlMedium"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ImageUrlLarge"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ListPrice"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"OurPrice"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"UsedPrice"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"../TotalResults"/></DATA></COL>

<COL><DATA>

<xsl:variable name=

"authorCount" select=

"count(Authors/Author)"/>

<xsl:for-each select=

"Authors/Author">

<xsl:value-of select=

"."/>

<xsl:if test=

"position() <

$authorCount">

<xsl:text>,

</xsl:text>

</xsl:if>

</xsl:for-each></DATA>

</COL>

</ROW>

</xsl:for-each>

</RESULTSET>

</FMPXMLRESULT>

</xsl:template>

</xsl:stylesheet>

So we’ve added a field called Author to the <METADATA> section.
Corresponding to that new field in the part of the stylesheet that gen-
erates the <ROW> element, we have a more complicated statement
than we had for other fields. We first declare a variable called author-
Count using <xsl:variable>. The authorCount variable stores the total
number of authors for this book. We then use <xsl:for-each> to loop
through the authors, and for each one, we output the content of the
given <Author> element. We then need to decide whether to output a
comma-space pair after the name. We do so only if the current author

332 Chapter 9

isn’t the last of the bunch. We use the XPath position() function to
decide where the current <Author> is in its set and compare that
position to the authorCount. If it’s less, we output the comma-space
(using xsl:text), and if not, we don’t. Note that we have to express the
less-than operator by writing “<.” This is the XML entity for the
less-than symbol, and we have to use it because the symbol itself is
reserved for starting XML tags.

So now we’ve devised a way to import differing numbers of
records, and we’ve found out how to bring the author data in as well.
Let’s move on to some refinements intended to make the whole thing
quicker and more usable.

Optimizing the XML Import

So far, we’ve been using XML Import to browse an online data reposi-
tory. But as a browsing tool, our little application isn’t too efficient. For
example, it fetches a lot of data about each book, even if the user never
wants to look at that book closely. We can probably speed things up a
bit (and lower the penalty for those big record fetches) if we fetch a lit-
tle bit of information at first and then fetch all the details if and only if
the user requests a closer look at a particular book. (We can’t actually
control how much data Amazon sends us, but we can control how
much of it we import.)

Here’s our new strategy. Initially we import just the author, title,
and list price for each book. We display these in a list view with a but-
ton that the user can click to view the detailed information for each
book. Each book record has a flag field, initially set to 0, indicating
whether we’ve fetched full details for the record or not. If we haven’t
fetched them, we fetch the detail for just that one record, take the user
to a detail screen, and change the flag field to 1 to indicate that we’ve
fetched the full detail. We update the current record by selecting a
match field and using FileMaker’s option to update matching records
on import.

We need a couple of new fields. One, called FlagGotDetails, is a
number field where 0 means that no details have been fetched yet and
1 means they have been. We also need a field to produce a calculated
URL that fetches data for just the one record that we’re interested in.
That URL should look like this:

http://xml.amazon.com/onca/xml2?t=webservices-20&dev-t=

XXXXXXXXX&AsinSearch=0671600419&mode=books&type=lite&page=1&f=xml

FileMaker and Web Services: Learning about XML Import 333

C
h
a
p
te

r
9

This URL searches by ASIN (equivalent to the book’s ISBN, so it’s a
unique identifier for the book). Our calculated field inserts the correct
ASIN for whatever record we’re on. The field definition looks like this:

"http://xml.amazon.com/onca/xml2?t=webservices-20&dev-t=

aasdasdasda&AsinSearch=" & ASIN & "&mode=books&type=

lite&page=1&f=xml"

With these new fields in hand, we also need a couple of new scripts.
One script brings in just the information that we need for the list view,
while the other fetches details for one record. Here’s the list import
script:

Import Amazon Lite Data For List

Show All Records

Delete All Records [No dialog]

Import Records [XML (from http):

"http://xml.amazon.com/onca/xml2?t=webservices-20&dev-t=

XXXXXXXXXXXXXXX&KeywordSearch=american%20indians&mode=

books&type=lite&page=2&f=xml"; XSL (from file):

"AmazonLiteList.xsl";

Import Order: ASIN(Text), ProductName(Text), AmazonPrice(Number),

Authors(Text)] [Restore import order, No dialog]

We’re taking a few shortcuts in this script. We’re automatically delet-
ing all records and starting fresh. We’re still hard-coding all the search
parameters, such as keyword and page. Consider it a challenge to
improve it on your own. For now, let’s stick with our simple version.

We import four fields: ASIN, Product Name, Amazon Price, and
Authors. We transform the incoming data using a new stylesheet called
AmazonLiteList.xsl, which looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="ProductInfo">

<FMPXMLRESULT xmlns="http://www.filemaker.com/

fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

<PRODUCT BUILD="" NAME="" VERSION=""/>

<DATABASE DATEFORMAT="M/d/yyyy" LAYOUT="" NAME=""

RECORDS="10" TIMEFORMAT="h:mm:ss a"/>

<METADATA>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="Asin"

TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"ProductName" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"AmazonPrice" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

334 Chapter 9

"Author" TYPE="TEXT" />

</METADATA>

<RESULTSET>

<xsl:attribute name="FOUND"><xsl:value-of

select="/ProductInfo/TotalResults"/>

</xsl:attribute>

<xsl:for-each select="Details">

<ROW >

<xsl:attribute name="MODID">0

</xsl:attribute>

<xsl:attribute name="RECORDID">0

</xsl:attribute>

<COL><DATA><xsl:value-of

select="Asin"/></DATA></COL>

<COL><DATA><xsl:value-of

select="ProductName"/></DATA></COL>

<COL><DATA><xsl:value-of

select="OurPrice"/></DATA></COL>

<COL><DATA>

<xsl:variable name=

"authorCount" select=

"count(Authors/Author)"/>

<xsl:for-each select=

"Authors/Author">

<xsl:value-of select="."/>

<xsl:if test=

"position() <

$authorCount">

<xsl:text>,

</xsl:text>

</xsl:if>

</xsl:for-each></DATA>

</COL>

</ROW>

</xsl:for-each>

</RESULTSET>

</FMPXMLRESULT>

</xsl:template>

</xsl:stylesheet>

This pulls just the few fields that we need out of the incoming XML.
We then take the user to a List View Layout and let her look at the
titles. From there, clicking on any row in the list view triggers a new
script:

View Detail

If [FlagGotDetails = 0]

Perform Script [“Import One”] [Sub-scripts]

End If

Go to Layout [View Detail]

Toggle Status Area [Hide]

Import One

FileMaker and Web Services: Learning about XML Import 335

C
h
a
p
te

r
9

Import Records [XML (from field): “CalculatedAsinSearchURL”; XSL

(from file): “Amazonlite2.xsl”; Import Order:

AmazonURL(Text), ASIN(Text), ProductName(Text), Catalog(Text),

ReleaseDate(Text), Manufacturer(Text), ImageUrlSmall(Text),

ImageUrlMedium(Text), ImageUrlLarge(Text), ListPrice(Number),

AmazonPrice(Number), UsedPrice(Number), gSearchTotal(Number),

Authors(Text)]

[Restore import order, No dialog]

Set Field [FlagGotDetails , 1]

Show All Records

The View Detail script checks the FlagGotDetails field, and if it’s 0, it
calls the Import One script to fetch the full data set for the given
record. The new import command uses the CalculatedASINSearch-
URL field and imports using the Update Matching Records option with
ASIN set as the match field.

This kind of “lazy fetch” technique is typical of many client-server
computing. It’s a bit less effective here because Amazon always sends
us the same data, but it’s still an important technique to be aware of.

So What Can I Do with Web Services?

Now we understand the basics of FileMaker’s XML Import. Let’s sum-
marize. FileMaker 6 and above can import data from an XML data
source. That data source can be a file, or a resource accessible over a
network via HTTP. The URL for the network resource can either
come from a hard-coded value or a FileMaker field. When we import,
FileMaker fetches the source XML, either by reading a file that we
specified or by issuing an HTTP GET request for the URL that we
specified (we see later on why it’s important that FileMaker accesses
URLs via the GET method only).

Once FileMaker has the XML in hand (so to speak), it can then
transform it using an XSL stylesheet that we specify. This step is nec-
essary only if the source XML is not already in the FMPXML gram-
mar. If it is, we can import it directly, but if not, the import would fail,
and we’d need to transform it to FMPXML with a stylesheet. We can
specify the stylesheet by pointing to a particular file. We can also (and
this is something that we haven’t discussed so far) access the
stylesheet via HTTP, either through a hard-coded URL or one taken
from a field. (The field-based options for XML data source and XSL
stylesheet are only available when you are scripting the import.) If you
are writing a solution for many users, you do not need to have copies
of all of your stylesheets that are local to each user’s machine or acces-
sible via some common network volume; you can simply put them up

336 Chapter 9

on a web server, in your building or in Patagonia, and access them that
way.

We understand how XML Import works, but what good is it?
We’ve all been exposed to techno-hype, and we’ve heard all the fancy
speeches that begin with “Well, you could. . . .” You could pull stock
quotes (still everyone’s favorite example, for some reason) from Yahoo
and display them in your accounting system. You could pull weather
data from a satellite for your travel agency system. But I’m tired of
hearing about what I could do. I want to know what I can do. That boils
down to one of two things: You can consume someone else’s web ser-
vice or you can write your own.

Finding Web Services

By now there are many web services out there that do everything
from the aforementioned stock quoting and mortgage calculation to
more esoteric applications. There are several things that we, as
FileMaker developers, need to know about these:

� They’re not always easy to find (or maybe they’re too easy).

� They tend to cost money.

� FileMaker can’t necessarily use all of them.

To the first point, there is not necessarily any central repository of
information about web services. There are a number of web sites that
index and catalog web services (see http://www.xmethods.com for an
example or search for “Web Services Directory” on your favorite
Internet search engine).

To the second point, web services are just that; they’re services,
usually distributing some kind of information—information that some-
body owns. Most places (Amazon is an exception) don’t open their
databases to outside queries for free. Once you find one you want to
use, you may have to purchase an access code or enter into some kind
of subscription agreement in order to use it. Fortunately, FileMaker
has entered into an arrangement with ServiceObjects, a provider of
web services, whereby FileMaker users can experiment with Service-
Objects’ web services. See http://www.filemaker.com/xml for details
and http://www.serviceobjects.com/products/default.asp for an over-
view of ServiceObjects’ offerings. But in general, expect many web
services to cost something.

To the third point, FileMaker is currently limited to fetching XML
from a web service via an HTTP GET operation. But many, if not
most, of today’s web services use more complex models, such as

FileMaker and Web Services: Learning about XML Import 337

C
h
a
p
te

r
9

XML-RPC and SOAP. We look more at these later on, but one key
point about these models is that they expect their requests as an
HTTP POST, which FileMaker cannot deliver yet.

None of this is intended to be discouraging. There are plenty of
good web services available directly to FileMaker (some at no charge,
some with a fee). Hit the Internet and take a look at what’s out there.
Just be aware that when you see web services that require XML-RPC
or SOAP, you won’t be able to use those directly. In the section that
follows we show you how to create a middleware layer that lets you
access these web services as well.

Writing Your Own

Write my own web service? What does that mean? Why would I want
to do it? Well, here’s where web services get interesting. Web services
use standard languages and protocols: XML, HTTP, TCP/IP. With the
right programming, they can be used to link together many different
computing environments doing many different things. FileMaker, for
example, can provide web services (by spitting XML out of the Web
Companion) or consume them (as we’ve just seen). To the environ-
ments on the other end of these transactions, no one knows whether
it’s talking to FileMaker, SAP, Oracle, or a very powerful new toaster.
Likewise, when it consumes a web service, FileMaker doesn’t need to
know what’s on the other end. All that matters is the information. Very
powerful applications are possible with this kind of abstraction. But
let’s start small.

Writing a Time Server

Have you, as a FileMaker developer, ever been bedeviled by the differ-
ence between server time and client time? Let’s say that you time-
stamp your records with the date and time of their creation, and your
users often need this data for auditing or reconciliation of some kind.
But every time a user’s local date and time settings get out of whack,
the creation times in the system are wrong. Sasha’s Mac battery died
and all of her charts from last week show a creation date of 1954.
Worse, even when all the desktops are kept clean and in sync, if your
application spans time zones, you have an even less tractable problem.
Since FileMaker reckons time based on the individual client desktop,
not on the server, it’s very easy to get bad timestamp data.

What we need is a way to have a central timekeeping server that
keeps time on a unified clock. When we create a new record, we first
fetch the date and time from that server and use them to timestamp

338 Chapter 9

the new record. Well, suppose there were a timekeeping web service.
All it needs to do is hand back a date and a time in XML format. We’d
use a stylesheet to transform it into the mandatory FMPXML gram-
mar and pull the data into a couple of global fields before creating the
new record.

That all sounds good, but how do we write this time server? Any
middleware language that can send XML over HTTP will do. For our
purposes, we show how to do this in PHP. Our strategy is to write a
PHP page that returns the current date and time, according to the
PHP server, in some XML format. Here’s how that page will look:

TimeService.php:

<?

/*

* This page returns current server date and time in a generic XML

format

*/

header ("Content-type: text/xml"); // signal that we're sending XML

echo '<?xml version="1.0"?>';

$serverTime = time(); // get and hold current server time

?>

<TimeService>

<ServerDate><? echo date("m/d/Y", $serverTime);

?></ServerDate>

<ServerTime><? echo date("H:i:s", $serverTime);

?></ServerTime>

</TimeService>

We begin by using PHP’s header function to send an HTTP header
that declares we’re sending XML. This is not mandatory for import
into FileMaker, but it does help in other areas. For example, this lets
Internet Explorer display the page as XML rather than HTML, which
helps us in troubleshooting.

We then send the opening XML declaration and grab the current
time. Down below, we’re outputting straight XML except inside the
ServerDate and ServerTime elements. There we use PHP to format
the current server time, first as month/day/four-digit year and then as
military hours:minutes:seconds.

Here’s how the output would look:

<?xml version="1.0"?>

<TimeService>

<ServerDate>01/05/2003</ServerDate>

<ServerTime>12:06:15</ServerTime>

</TimeService>

FileMaker and Web Services: Learning about XML Import 339

C
h
a
p
te

r
9

We can now import this into FileMaker, transforming it on the way.
Wait a minute, you say. Couldn’t we just have the TimeService.php
page produce its output in the FMPXML form? Then we wouldn’t
have to write a stylesheet to transform it. Let’s save some work!

Well, yes, we could do that. But it would fly in the face of one of
the most important principles of computing—the principle of sufficient
abstraction. The point about web services is that anyone can use them.
Maybe our TimeService page will be hit by FileMaker. But maybe later
some Access users will need it too. The XML service should be plat-
form- and tool-agnostic, so it should not be tailored to FileMaker. It
wouldn’t actually hurt anything to do that, of course. Others could just
write stylesheets to transform the FMPXML into whatever form they
needed. The data would still be intact. All the same, we’re going to use
the two-step method because it’s the right thing to do.

This means that we need a stylesheet to transform this generic
TimeService XML into FMPXML. Here’s how it looks.

TimeService.xsl:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="TimeService">

<FMPXMLRESULT xmlns="http://www.filemaker.com/

fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

<PRODUCT BUILD="" NAME="" VERSION=""/>

<DATABASE DATEFORMAT="M/d/yyyy" LAYOUT="" NAME=""

RECORDS="1" TIMEFORMAT="h:mm:ss a"/>

<METADATA>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"gServerDate" TYPE="DATE" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"gServerTime" TYPE="TIME" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"Constant" TYPE="NUMBER" />

</METADATA>

<RESULTSET>

<xsl:attribute name="FOUND">1</xsl:attribute>

<ROW >

<xsl:attribute name="MODID">0

</xsl:attribute>

<xsl:attribute name="RECORDID">0

</xsl:attribute>

<COL><DATA><xsl:value-of select=

"ServerDate"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"ServerTime"/></DATA></COL>

<COL><DATA>1</DATA></COL>

</ROW>

340 Chapter 9

</RESULTSET>

</FMPXMLRESULT>

</xsl:template>

</xsl:stylesheet>

We want to import the ServerDate and ServerTime content into two
FileMaker global fields called gServerDate and gServerTime. That’s
pretty much all the above stylesheet does. The only oddity is the addi-
tion of a field called Constant. On the FileMaker side, we’ve defined a
typical constant field as a calculation with a value of 1. In the style-
sheet, we include this field in the metadata and also supply it a
constant value of 1.

The reason for doing this is that, left to itself, the XML import
behaves like any other import and creates new records. We don’t want
that—we just want it to populate two globals. So, rather than have it
create new records, we have it “update matching records.” We’re pop-
ulating globals, so it doesn’t matter which record it updates. We use
the constant field as a match field when we define the import. That
way, the globals get populated but no new records get created.
(Actually, since our goal is to create a new record with a server-based
timestamp, we could probably allow the import to create a new record
and save some work. But in other cases, we might truly want to just
fetch globals, so it’s good to practice this technique here.)

With this stylesheet in hand, the rest is easy. We define a script to
perform the import, matching the server date and time up to the cor-
rect globals, choosing the option Update Matching Records, and using
the Constant field for the match. We add two fields to the database
called CreationDate and CreationTime. We make these auto-enter
fields; CreationDate auto-enters gServerDate, and CreationTime
auto-enters gServerTime.

Finally, we write a New Record script. It calls the time-import
script to set the globals with the current server date and time and cre-
ates a new record where the auto-entry options fire and bring in the
creation date and time from the globals. (Note that this will only work
in environments where record creation is scripted.)

There you have it. To make this work well, you would put the
TimeService.xsl stylesheet up on a web server somewhere as well and
end up with a transparent central time server that would guarantee
consistent creation times across all records. For a production environ-
ment, you’d need some error checking. You’d want to set Error
Capture on in the XML import script and test for errors after the
import. If an error was found, you could either try again up to some
maximum number of attempts or fall back right away to local desktop

FileMaker and Web Services: Learning about XML Import 341

C
h
a
p
te

r
9

time, possibly marking a flag field to indicate client vs. server time. As
with most production code, the error checking could easily be more
work than the core logic itself.

Other Kinds of Web Services

Web services are just one manifestation of a widespread trend toward
distributed computing. The idea behind distributed computing is that it
can be very beneficial to decouple certain kinds of functionality from
one another. Let’s say that you’re working on a system that needs to
do calculations of mortgage loans. The functionality for amortizing a
loan is very well understood, and thousands of systems can do it. But if
you’re building software from scratch, you may need to reimplement
this functionality yourself. Or, if you’re working in a development envi-
ronment, such as FileMaker, you’ll be constrained by whether that
environment offers the needed functionality or not.

In a distributed computing environment, we’re going to try to
abstract that functionality out and have it live someplace on its own,
not embedded in any application. Applications that need that function-
ality can send a request to the mortgage service and get back the data
that they need. They don’t need to embed this functionality inside
themselves; they just need to know where to find it and how to use it.
Ideally, these services don’t need to be any particular place—just
accessible over a network somehow.

There are many flavors of distributed computing already in play. If
you’ve run across acronyms such as CORBA, DCOM, Java-RMI,
Sun-RPC, and the like, these all refer to different distributed comput-
ing technologies. Web services are yet another form of distributed
computing, one that runs over HTTP and uses XML as its data format.
With web services, as with any other kind of distributed computing, we
can, in effect, “outsource” certain tasks in the event that our own soft-
ware or environment doesn’t or can’t perform those tasks.

Let’s return to PHP. PHP offers many capabilities that can’t be
found inside of FileMaker. One way to unlock that functionality for use
with FileMaker is to write a PHP-based web service that lets File-
Maker exchange data with PHP. Let’s say that we want to do some
sort of password encryption inside of FileMaker of the kind that Unix
systems do. In this scenario, we never store a user’s password inside
the system. Instead, we store what’s called a hash equivalent (or just
hash) of the password, which we get by running a particular hash func-
tion on the password. This isn’t really encryption—the password can

342 Chapter 9

never be recovered from the hashed value. But it can be used for com-
parison, since the same password should always hash to the same
value.

FileMaker doesn’t have a built-in hashing algorithm. But PHP
does! Why not write a small web service to hash up FileMaker pass-
words? That way, we can patch the security hole inherent in storing
the user’s actual password in a database. (Note that this would only
apply to a custom security system that you would write yourself; it has
nothing to do with FileMaker’s built-in password security, nor do we
mean to imply that the built-in FileMaker security has a vulnerability
in this regard.)

This service is different from the last one, since we need to pass
some data in from FileMaker and let PHP act on it. What we’d like to
do is send a URL that looks something like this:

http://my.host.com/pw_hash.php?input=shangri_la

. . .and then get back some XML that looks like this:

<xml version="1.0">

<PWHash>

<Input>shangri_la</Input>

<Output>aaf271f04dbe72c4412f3b23d9fee21e</Output>

</PWHash>

Here we are sending a password, “shangri_la,” to the server for hash-
ing and getting back XML with the original password (for confirma-
tion) plus the hashed output, “aaf271f04dbe72c4412f3b23d9fee21e.”
We can now apply a stylesheet, as usual, and bring it back into
FileMaker.

This looks a lot like our last example. Let’s look at the PHP code
for the web service first:

<?

/* pw_hash.php

* This page accepts a text string and returns the MD5 hash in XML

format

* The incoming text string must be called input in the HTTP request

*/

header ("Content-type: text/xml"); // signal that we're sending XML

echo '<?xml version="1.0"?>';

$output = md5($input); // get the hash of the input

?>

<PWHash>

<Input><? echo $input; ?></Input>

<Output><? echo $output; ?></Output>

</PWHash>

FileMaker and Web Services: Learning about XML Import 343

C
h
a
p
te

r
9

This page simply calls PHP’s md5 function on the input and sends the
result back. (MD5 happens to be the name of the hashing algorithm
that PHP is using.)

When we hit that page with the URL http://my.host.com/
PWHash.php?input=hasdrubal, here’s what we get back in XML:

<?xml version="1.0"?>

<PWHash>

<Input>hasdrubal</Input>

<Output>feda91b2282169b09977a6717368edb4</Output>

</PWHash>

We then need a stylesheet to bring that back into FMPXML and into
FileMaker:

PWHash.xsl:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="PWHash">

<FMPXMLRESULT xmlns="http://www.filemaker.com/

fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

<PRODUCT BUILD="" NAME="" VERSION=""/>

<DATABASE DATEFORMAT="M/d/yyyy" LAYOUT="" NAME=""

RECORDS="1" TIMEFORMAT="h:mm:ss a"/>

<METADATA>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"Password" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"HashMD5" TYPE="TEXT" />

</METADATA>

<RESULTSET>

<xsl:attribute name="FOUND">1</xsl:attribute>

<ROW >

<xsl:attribute name="MODID">0

</xsl:attribute>

<xsl:attribute name="RECORDID">0

</xsl:attribute>

<COL><DATA><xsl:value-of select=

"Input"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"Output"/></DATA></COL>

</ROW>

</RESULTSET>

</FMPXMLRESULT>

</xsl:template>

</xsl:stylesheet>

344 Chapter 9

In our FileMaker database, we have fields called Password and
HashMD5. We also have a calculated field called HashRequestURL,
which looks like this:

"http://agamemnon.fmpro.com/slane/WebServices/PWHash.php?input="

& Password

So it builds a URL and passes the current record’s Password field
along in the HTTP “input” parameter. PWHash.php expects to receive
a parameter called input, and that’s what it processes to return the
hash.

From here, we need to only write a simple script that fetches XML
from the URL specified by HashRequestURL (so we use the option to
fetch the URL from a field). We apply the PWHash.xsl stylesheet to it,
and when importing, we update matching records with Password as the
match field. (This is actually an inferior technique because it assumes
that the password is unique. It would be better to have FileMaker gen-
erate a serial number for each record. We could then send that along
with the password and have the PHP page ship it straight back to us.
We could then use that unique key as the match field.)

You can now use these hashes for password validation. Every time
a user sets or updates her password, we can fetch the hashed value
from the web service and store it in her record. Her security can never
be breached; the system doesn’t store her password, only the hash,
and the hash cannot easily be used to reconstruct the password. When-
ever the user logs in, you would fetch the hash of whatever password
she typed and compare it to the stored hash value of her password.
You’d need to extend our example a bit to make all these things hap-
pen, but the work is straightforward.

FileMaker and SOAP

FileMaker and what? Apparently, we’ve veered into the topic of clean-
ing liquids. Well no, not quite. We are not talking about soap, but SOAP,
yet another acronym, which stands for Simple Object Access Protocol.
Reams of ink have been spilled on this topic, as with most of our other
buzzwords. We’ll try to boil it down for you. SOAP is one of a number
of technologies that are being touted as ways to send messages
between computers using standard protocols, such as TCP/IP and
XML. Think of SOAP as a standard for defining how web services look
and act using XML. It’s a standard that provides some additional struc-
ture to messages that pass between computers, written in some form

FileMaker and Web Services: Learning about XML Import 345

C
h
a
p
te

r
9

of XML. Although the SOAP standard doesn’t mandate that SOAP
messages pass over HTTP, this is a common transport mechanism.

SOAP messages are XML messages with a standard structure. If it
helps to think of them as documents rather than messages, that’s fine.
What we mean by “message” is that what’s important about these
chunks of XML is not that they’re stored on a disk as files but that
they’re sent and received as part of a communication between comput-
ers. They could be stored as files, but it’s more likely that they’re
composed dynamically, passed back and forth, and never saved.

Here’s a sample SOAP message:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope"

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<soap:Header>

<fm:version xmlns:fm="http://www.fmpro.com/xml/

Header">6.0v2</fm:version>

</soap:Header>

<soap:Body>

<pw:GetPasswordHash xmlns:pw="http://www.fmpro.com/xml/

password_hash">

<pw:clearText xmlns:pw="http://www.fmpro.com/xml/

password_hash">myUnhashedPassword</pw:clearText>

</pw:GetPasswordHash>

</soap:Body>

</soap:Envelope>

The first thing that we notice about this message is that it’s XML. The
root element is something called an Envelope, and inside the Envelope
are a Header and Body. All of these elements are in the soap: name-
space; SOAP makes heavy use of XML namespaces. (Namespaces,
remember, are an additional level of specification you can use in an
XML document to prevent conflicting element names. If we just called
something Envelope, there could be other Envelope definitions out
there, but when we put in the soap namespace and call it soap:Enve-
lope, the chances of conflict go way down.)

The Header has one element in the fm namespace called fm:ver-
sion. The Body seems to encapsulate something like a function call.
There’s an element called GetPasswordHash, and then inside it is an
element called clearText. In fact, that’s exactly what this SOAP mes-
sage does—it sends a function call to a remote server, calling a
function named GetPasswordHash and passing it a parameter named
clearText that contains the password to be hashed.

That’s fine, but where’s the link with FileMaker? Many web ser-
vices these days are based on SOAP. Rather than a straight HTTP
GET request like the ones FileMaker sends to perform XML Import,

346 Chapter 9

they expect to receive a formatted XML message that follows the
SOAP protocol. Once they receive it, they send back a SOAP-
formatted message in response. The SOAP return message is XML, so
in theory FileMaker could import it the way we’ve already done in this
chapter. The catch here is that although FileMaker could handle a
SOAP message if it got one back, it doesn’t have the means to send
the SOAP request in the first place. Why? There are many reasons,
but the simplest is that FileMaker sends its XML Import requests via
the HTTP GET method, and SOAP requests are sent inside an HTTP
POST request, which FileMaker can’t send at the moment.

So what do we do? Give up on the large and growing number of
web services that are written as SOAP services? Wait for FileMaker to
add SOAP capabilities? None of the above. Like many such integration
problems, this one can be solved by writing something in middleware.
Assuming that we’re using PHP, we need to write a PHP web service
that can take an XML Import request from FileMaker, turn it into a
full-blown SOAP request, hand off the SOAP request to a remote
server, and get the SOAP return message back. Then, depending on
the circumstances, it can either send its own XML message back to
FileMaker or just hand the SOAP message off as is and let FileMaker
work with that. We’ve already written a couple of small web services
for FileMaker in PHP. This one is a little bigger, but the theory is the
same.

So, suppose that we’ve found a web service that we really want to use
with FileMaker, but it’s only available over SOAP. Let’s say that we
want to consume some web services from Google, the massive
Internet search engine. Like Amazon, Google exposes its search capa-
bilities as a web service. Unlike Amazon, it doesn’t make them
available via HTTP GET—only over SOAP.

Google suggests that you download their developer’s kit and
requires that you register for a key code, just as Amazon did. The
developer kit download can be found at http://www.google.com/apis/,

FileMaker and Web Services: Learning about XML Import 347

C
h
a
p
te

r
9

Figure 9.3

along with instructions for signing up to receive a token. If you want to
follow along and build these or similar examples, we suggest that you
grab the developer’s kit and sign up for a token before proceeding. At
the time of publication, there was no fee for signing up.

We actually need several pieces of software in order to make this
work. No surprise there; we need to write or tap into a piece of
middleware with fairly significant features. To make our job easier
(much easier), we can download and install a PHP library that helps us
work with SOAP web services. The one we use is called NuSOAP,
available at http://dietrich.ganx4.com/nusoap/.

NuSOAP is a pure PHP library. This means that rather than being
a core part of PHP, it is a set of source code files written in the PHP
language, just like FX/PHP. To use it, we need to do more or less what
we did with FX: Download the files, unpack them, and install them
where PHP can see and use them. You can download the latest version
of NuSOAP by following the links at http://dietrich.ganx4.com/. Once
you unpack it, you should have a single (large) file called nusoap.php.
Put it somewhere in your PHP include path, or if you haven’t quite got
your head around the concept of include paths yet, put it in the direc-
tory where you’ll be building your SOAP services for FileMaker.

There’s a lot to know about SOAP, and it would be hard, or rather
impossible, for us to cover this complex topic in the context of this
book. But we can give you a brief overview of the concepts that you
need to know in order to work with NuSOAP and FileMaker.

If you take a look at the developer kit that you downloaded from
Google (if you did), you’ll see a document called GoogleSearch.wsdl.
We show it below for the sake of convenience. The .wsdl at the end of
the filename stands for Web Services Definition Language. Documents
in this format (and others) attempt to solve the problem of how to
specify what kinds of commands and parameters a web service can
respond to. In the earlier example with Amazon’s XML, we had to read
the Amazon documentation in order to find out how to format and pop-
ulate a URL that would get us back some XML from Amazon. That’s
fine for us, but it’s not very easy for a computer. WSDL and similar
protocols are intended to be machine-readable descriptions of what a
web service can do. If you’ve ever programmed in a language that uses
header files, you are familiar with this concept. Header files tell the
computer, for example, the name of all the individual functions in a
code library. With the header file, it’s easy to know what the library
can do. Without it, you have to guess or read code examples.

348 Chapter 9

WSDL and similar technologies try to solve this problem. A WSDL
document describes a web service. Let’s look at Google’s:

<?xml version="1.0"?>

<!-- WSDL description of the Google Web APIs.

The Google Web APIs are in beta release. All interfaces are

subject to change as we refine and extend our APIs. Please see

the terms of use for more information. -->

<!-- Revision 2002-08-16 -->

<definitions name="GoogleSearch"

targetNamespace="urn:GoogleSearch"

xmlns:typens="urn:GoogleSearch"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/

encoding/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- Types for search - result elements, directory categories -->

<types>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:GoogleSearch">

<xsd:complexType name="GoogleSearchResult">

<xsd:all>

<xsd:element name="documentFiltering" type="xsd:boolean"/>

<xsd:element name="searchComments" type="xsd:string"/>

<xsd:element name="estimatedTotalResultsCount"

type="xsd:int"/>

<xsd:element name="estimateIsExact" type="xsd:boolean"/>

<xsd:element name="resultElements" type="typens:

ResultElementArray"/>

<xsd:element name="searchQuery" type="xsd:string"/>

<xsd:element name="startIndex" type="xsd:int"/>

<xsd:element name="endIndex" type="xsd:int"/>

<xsd:element name="searchTips" type="xsd:string"/>

<xsd:element name="directoryCategories" type="typens:

DirectoryCategoryArray"/>

<xsd:element name="searchTime" type="xsd:double"/>

</xsd:all>

</xsd:complexType>

<xsd:complexType name="ResultElement">

<xsd:all>

<xsd:element name="summary" type="xsd:string"/>

<xsd:element name="URL" type="xsd:string"/>

<xsd:element name="snippet" type="xsd:string"/>

<xsd:element name="title" type="xsd:string"/>

FileMaker and Web Services: Learning about XML Import 349

C
h
a
p
te

r
9

<xsd:element name="cachedSize" type="xsd:string"/>

<xsd:element name="relatedInformationPresent"

type="xsd:boolean"/>

<xsd:element name="hostName" type="xsd:string"/>

<xsd:element name="directoryCategory" type=

"typens:DirectoryCategory"/>

<xsd:element name="directoryTitle" type="xsd:string"/>

</xsd:all>

</xsd:complexType>

<xsd:complexType name="ResultElementArray">

<xsd:complexContent>

<xsd:restriction base="soapenc:Array">

<xsd:attribute ref="soapenc:arrayType" wsdl:arrayType=

"typens:ResultElement[]"/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="DirectoryCategoryArray">

<xsd:complexContent>

<xsd:restriction base="soapenc:Array">

<xsd:attribute ref="soapenc:arrayType" wsdl:arrayType=

"typens:DirectoryCategory[]"/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="DirectoryCategory">

<xsd:all>

<xsd:element name="fullViewableName" type="xsd:string"/>

<xsd:element name="specialEncoding" type="xsd:string"/>

</xsd:all>

</xsd:complexType>

</xsd:schema>

</types>

<!-- Messages for Google Web APIs - cached page, search,

spelling. -->

<message name="doGetCachedPage">

<part name="key" type="xsd:string"/>

<part name="url" type="xsd:string"/>

</message>

<message name="doGetCachedPageResponse">

<part name="return" type="xsd:base64Binary"/>

</message>

<message name="doSpellingSuggestion">

<part name="key" type="xsd:string"/>

<part name="phrase" type="xsd:string"/>

350 Chapter 9

</message>

<message name="doSpellingSuggestionResponse">

<part name="return" type="xsd:string"/>

</message>

<!--note, ie and oe are ignored by server; all traffic is UTF-8.-->

<message name="doGoogleSearch">

<part name="key" type="xsd:string"/>

<part name="q" type="xsd:string"/>

<part name="start" type="xsd:int"/>

<part name="maxResults" type="xsd:int"/>

<part name="filter" type="xsd:boolean"/>

<part name="restrict" type="xsd:string"/>

<part name="safeSearch" type="xsd:boolean"/>

<part name="lr" type="xsd:string"/>

<part name="ie" type="xsd:string"/>

<part name="oe" type="xsd:string"/>

</message>

<message name="doGoogleSearchResponse">

<part name="return" type="typens:GoogleSearchResult"/>

</message>

<!--Port for Google Web APIs, "GoogleSearch"-->

<portType name="GoogleSearchPort">

<operation name="doGetCachedPage">

<input message="typens:doGetCachedPage"/>

<output message="typens:doGetCachedPageResponse"/>

</operation>

<operation name="doSpellingSuggestion">

<input message="typens:doSpellingSuggestion"/>

<output message="typens:doSpellingSuggestionResponse"/>

</operation>

<operation name="doGoogleSearch">

<input message="typens:doGoogleSearch"/>

<output message="typens:doGoogleSearchResponse"/>

</operation>

</portType>

<!--Binding for Google Web APIs - RPC, SOAP over HTTP-->

<binding name="GoogleSearchBinding" type="typens:GoogleSearchPort">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

FileMaker and Web Services: Learning about XML Import 351

C
h
a
p
te

r
9

<operation name="doGetCachedPage">

<soap:operation soapAction="urn:GoogleSearchAction"/>

<input>

<soap:body use="encoded"

namespace="urn:GoogleSearch"

encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="urn:GoogleSearch"

encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/"/>

</output>

</operation>

<operation name="doSpellingSuggestion">

<soap:operation soapAction="urn:GoogleSearchAction"/>

<input>

<soap:body use="encoded"

namespace="urn:GoogleSearch"

encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="urn:GoogleSearch"

encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/"/>

</output>

</operation>

<operation name="doGoogleSearch">

<soap:operation soapAction="urn:GoogleSearchAction"/>

<input>

<soap:body use="encoded"

namespace="urn:GoogleSearch"

encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="urn:GoogleSearch"

encodingStyle="http://schemas.xmlsoap.org/soap/

encoding/"/>

</output>

</operation>

</binding>

<!--Endpoint for Google Web APIs-->

<service name="GoogleSearchService">

<port name="GoogleSearchPort" binding="typens:

GoogleSearchBinding">

<soap:address location="http://api.google.com/search/beta2"/>

352 Chapter 9

</port>

</service>

</definitions>

That’s quite a headful, but we don’t need to understand it all. We’re not
going to write WSDL files, since you only need to do this if you’re pro-
viding a web service. From here on, we’re not even going to read
them. The NuSOAP library can do some pretty neat things if it has
access to the WSDL definitions for a web service, things that make our
life very easy. So glance over the above, before forgetting it and mov-
ing on.

The WSDL file has many elements, but the most interesting to us
consist of message definitions. Think of a message like a function call:
It has a name, and it takes parameters. The WSDL file tells us what
these are. For example:

<message name="doGoogleSearch">

<part name="key" type="xsd:string"/>

<part name="q" type="xsd:string"/>

<part name="start" type="xsd:int"/>

<part name="maxResults" type="xsd:int"/>

<part name="filter" type="xsd:boolean"/>

<part name="restrict" type="xsd:string"/>

<part name="safeSearch" type="xsd:boolean"/>

<part name="lr" type="xsd:string"/>

<part name="ie" type="xsd:string"/>

<part name="oe" type="xsd:string"/>

</message>

Here’s the definition for a message/function, one we’re actually going
to call in a bit. It’s called doGoogleSearch and has no fewer than ten
parameters. This definition tells us the message name and the names
and data types of each parameter. The type information is important to
any intermediate library, like NuSOAP, that needs to translate a stream
of XML into native data types in some language (in this case, PHP).

So the WSDL file, among other things, defines the format and
input types of all the messages the service listens to. Also, in the
<service> element, it points to a URL. This URL is the address of the
actual web service and tells us where to send the request.

That’s about all we need to know about WSDL. The point to make
for our purposes is that these files can make it very easy to work with
web services via NuSOAP. Let’s leave FileMaker out of the picture for
the moment and look at a PHP page that uses NuSOAP to make a
Google query via SOAP. We show you the entire code here first and
then walk through it:

FileMaker and Web Services: Learning about XML Import 353

C
h
a
p
te

r
9

<?

require_once('nusoap.php');

// make a new SOAP client using the Google WSDL file ...

$s = new soapclient('http://api.google.com/GoogleSearch.wsdl',

'wsdl');

// and create a proxy class that we can call directly

$p = $s->getProxy();

// set up the parameters for a call to Google's doGoogleSearch method

$key = 'qw2rrPVQFHLsLQQ3IeUPnRm5mWSayn4o';

$query = 'Native American Languages';

$start = 0;

$maxResults = 10;

$filter = '';

$restrict = '';

$safeSearch= '';

$lr = 'lang-en';

$ie = '';

$oe = '';

// call the function on our proxy with the specified values

$result = $p->doGoogleSearch($key,

$query,

$start,

$maxResults,

$filter,

$restrict,

$safeSearch,

$lr,

$ie,

$oe);

// now that we have the result, the following code is devoted to

outputting some XML

header ("Content-type: text/xml"); // signal that we're sending XML

echo '<?xml version="1.0"?>';

?>

<GoogleResults>

<documentFiltering><? echo $result['documentFiltering'];

?></documentFiltering>

<estimatedTotalResultsCount><? echo

$result['estimatedTotalResultsCount'];

?></estimatedTotalResultsCount>

<directoryCategories><? echo $result['directoryCategories'];

?></directoryCategories>

<searchTime><? echo $result['searchTime']; ?></searchTime>

<resultElements>

<?

$elements = $result['resultElements'];

354 Chapter 9

for ($i = 0; $i < $maxResults; $i++) {

$currentResult = $elements[$i]; ?>

<resultElement>

<cachedSize><? echo $currentResult['cachedSize'];

?></cachedSize>

<hostName><? echo $currentResult['hostName'];

?></hostName>

<snippet><? echo htmlspecialchars

($currentResult['snippet']); ?></snippet>

<directoryCategory>

<specialEncoding><? echo $currentResult

['directoryCategory']['specialEncoding'];

?></specialEncoding>

<fullViewableName><? echo $currentResult

['directoryCategory']['fullViewableName'];

?></fullViewableName>

</directoryCategory>

<relatedInformationPresent><? echo $currentResult

['relatedInformationPresent'];

?></relatedInformationPresent>

<directoryTitle><? echo $currentResult

['directoryTitle']; ?></directoryTitle>

<summary><? echo $currentResult['summary'];

?></summary>

<URL><? echo $currentResult['URL']; ?></URL>

<title><? echo $currentResult['title']; ?></title>

</resultElement>

<? }

?>

</resultElements>

</GoogleResults>

This code is even simpler than it looks since about half of it is devoted
to outputting the XML that we’re eventually sending back to File-
Maker. Though the SOAP message does come back in an XML format,
the NuSOAP library transparently converts the returned data into
PHP native data types, such as arrays. Thus, somewhat inconve-
niently, we need to recompose the data into XML so that FileMaker
can import it.

In any case, we start off by importing the NuSOAP library:

require_once('nusoap.php');

We then make a new instance of the soapclient class. In doing this,
we’re going to hand it the web address of the Google WSDL file and
specify that this is a WSDL file, not an actual web service. (The WSDL
file, remember, contains the URL of the actual web service.)

// make a new SOAP client using the Google WSDL file ...

$s = new soapclient('http://api.google.com/GoogleSearch.wsdl',

'wsdl');

FileMaker and Web Services: Learning about XML Import 355

C
h
a
p
te

r
9

Now we have a soap client object called $s. It’s kind of hard to do jus-
tice to the neatness and convenience of what happens next.

// and create a proxy class that we can call directly

$p = $s->getProxy();

We call the client’s getProxy() method, which returns an object that
has all of the Google web service functions as methods. The WSDL file
tells us that Google supports messages such as doGoogleSearch() and
doSpellingSuggestion(). Well, our new proxy object, $p, actually sup-
ports the very same function calls. Since it was built with Google’s
WSDL file, it transparently converts calls on itself to calls on the
Google web service. It listens for the response, receives it, parses it
into PHP data types, and hands the result back to us. Once we’ve built
the proxy object, we don’t need to worry about Google at all. The
proxy handles all the communications.

Once we’ve got our proxy, we can now set up and call our search
function:

$key = 'qw2rrPVQFHLsLQQ3IeUPnRm5mWSayn4o';

$query = 'Native American Languages';

$start = 0;

$maxResults = 10;

$filter = '';

$restrict = '';

$safeSearch= '';

$lr = 'lang-en';

$ie = '';

$oe = '';

// call the function on our proxy with the specified values

$result = $p->doGoogleSearch($key,

$query,

$start,

$maxResults,

$filter,

$restrict,

$safeSearch,

$lr,

$ie,

$oe);

The proxy, again, handles all the details of talking to Google; it learned
how to do this from the WSDL file, and that’s all we need to know.
When we call the proxy’s doGoogleSearch function, it relays the call to
Google, gets the data back, and builds a PHP array out of it. The rest
of our code above just parses out that array and sends it back in a
generic XML format of our own definition. To get that data back into
FileMaker, of course, we need to write a stylesheet that transforms the

356 Chapter 9

generic XML into FMPXML. As before, we can have PHP output
FMPXML directly, rather than going through the transform phase, but
we feel strongly that this would be bad abstraction and bad design.

Our PHP page above, by the way, is not quite ready to go. Right
now it’s hard-coding all the function parameters, especially the query
string. But we want to be able to send those from FileMaker, so we
need to rewrite the page to accept parameters in the HTTP request.
We can do that easily by changing our function call setup to look like
this:

/// set up the parameters for a call to Google's doGoogleSearch

method

// first figure out which request array to use, $_GET or $_POST

$method = $_SERVER['REQUEST_METHOD'];

$requestArrayName = "_$method";

$requestArray = $$requestArrayName;

if ($requestArray['useDefault'] == true) { // set default

parameters if instructed

$key = 'qw2rrPVQFHLsLQQ3IeUPnRm5mWSayn4o';

$query = 'Native American Languages';

$start = 0;

$maxResults = 10;

$filter = '';

$restrict = '';

$safeSearch= '';

$lr = 'lang-en';

$ie = '';

$oe = '';

} else {

$key = $requestArray['key'];

$query = $requestArray['query'];

$start = $requestArray['start'];

$maxResults = $requestArray['maxResults'];

$filter = $requestArray['filter'];

$restrict = $requestArray['restrict'];

$safeSearch= $requestArray['safeSearch'];

$lr = $requestArray['lr'];

$ie = ''; // these last two params are deprecated by Google so

no need to worry about them

$oe = '';

}

We need to be able to inspect the name-value pairs that were sent to
our page. In PHP, the more secure way to do this is to use the different
request arrays that PHP provides. Prior to PHP 4.1, these were called
$HTTP_GET_VARS and $HTTP_POST_VARS, while in PHP 4.1 and
above, though the old names still work, the names $_GET and
$_POST are preferred and behave in a more convenient fashion. Here
we assume that the PHP version is at least 4.1 and do a little work

FileMaker and Web Services: Learning about XML Import 357

C
h
a
p
te

r
9

with the $_SERVER['REQUEST_METHOD'] value to figure out if our
page was accessed via POST or GET to set the arrays up accordingly.

If you’ve been reading closely, you’ll point out that FileMaker’s
XML Import only works via GET, so why do we need to provide for
POST requests here? We give the same answer here that we do to the
question of why we don’t generate FMPXML in our pages but insist on
creating generic XML and transforming it: The fewer assumptions that
you make about how your code is going to be used, the easier a time
you have later on. If we do it this way now, if FileMaker ever supports
a POST flavor of the XML Import, we’re already prepared.

What we’ve done up above is configured our page to look for an
incoming parameter called useDefault. If that’s set to true, we don’t
look at the incoming parameters any more; we just use the default data
hard-coded in the page. We decided to leave those defaults in place and
control them with a flag because it makes testing easier. In order to
test this page, we don’t need to drive it by some outside request that
specifies all parameters; we can just hit it with a parameter of
useDefault=true and test it with data that we know gives a good
result. But if we leave useDefault out of the request or set it to false,
the page will try to use parameters from the incoming request.

So now we have two jobs remaining: Set up a FileMaker database
that can send a query to our SOAP-enabled PHP page, and write a
stylesheet that can transform the XML output. Both of these tasks are
going to be very similar to the way we set up our database and style-
sheet for the Amazon query. After all, it’s all the same to FileMaker; in
one case it talks directly to Amazon and in another it talks to an inter-
mediate PHP layer, but in each case it’s gathering up user input,
formatting a URL that’s intended to retrieve some XML, transforming
the XML, and importing it.

For our FileMaker
database, we want a way
for a user to enter a query,
perform a search, and see
the results. We define the
following fields:

358 Chapter 9

Figure 9.4

We set up a search screen with a single global field into which a user
can type a query. We make an auxiliary field called EncodedQuery to
transform any spaces in the query into the + symbol, which is one
acceptable way of encoding whitespace so that it can be sent as part of
a URL. (In fact, this is a fairly minimal form of URL encoding, and in a
production system we’d want to be more thorough; there are a number
of other characters that we would need to trap for and encode as well.)
We also have the usual calculation field that assembles the final URL
based on the user’s input. Here it looks like this:

"http://testbed.fmpro.com/slane/WebServices/GoogleSOAP.php?key=

XXXXXXXXXXXXXXX&query=" & EncodedQuery & "&start=0&maxResults=

10&lr=lang-en&filter=&restrict=&safeSearch="

As usual, you would need to replace the host name by your own host
name and the XXXXX sequence with your actual Google developer
code. We provide the user with a simple search screen that looks like
this:

Once the search is run and the XML is imported, we take them to a
results list that looks like the following:

FileMaker and Web Services: Learning about XML Import 359

C
h
a
p
te

r
9

Figure 9.5

All that remains is to write the XSL stylesheet that transforms the
generic XML output of GoogleSOAP.php into FileMaker’s native
FMPXML. From the Google data stream, we just want to select the
title, summary, URL, and snippet fields and format them for the user.
The stylesheet should be familiar by now:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="GoogleResults">

<FMPXMLRESULT xmlns="http://www.filemaker.com/

fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

<PRODUCT BUILD="" NAME="" VERSION=""/>

<DATABASE DATEFORMAT="M/d/yyyy" LAYOUT="" NAME=""

RECORDS="10" TIMEFORMAT="h:mm:ss a"/>

<METADATA>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"gEstimatedTotalResults" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"gSearchTime" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="title"

TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"summary" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"snippet" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME="URL"

TYPE="TEXT" />

</METADATA>

<RESULTSET>

<xsl:attribute name="FOUND"><xsl:value-of

select="/GoogleResults/maxResults"/>

360 Chapter 9

Figure 9.6

</xsl:attribute>

<xsl:for-each select="/GoogleResults/

resultElements/resultElement">

<ROW >

<xsl:attribute name="MODID">0

</xsl:attribute>

<xsl:attribute name="RECORDID">0

</xsl:attribute>

<COL><DATA><xsl:value-of select=

"../estimatedTotalResultsCount"/>

</DATA></COL>

<COL><DATA><xsl:value-of select=

"../searchTime"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"title"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"summary"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"snippet"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"URL"/></DATA></COL>

</ROW>

</xsl:for-each>

</RESULTSET>

</FMPXMLRESULT>

</xsl:template>

</xsl:stylesheet>

As we saw with the Amazon example, there’s much more that we can
do to improve the user experience with a tool like this. We can vary
the number of results fetched, we can give the user an easy way to
fetch the next ten results, and so forth. That’s all fairly routine File-
Maker programming for us at this point though, so let’s move on.

SOAP Wrap-up

We’ve learned that, although FileMaker doesn’t natively have the
capability to converse directly with SOAP-based web services, it’s rel-
atively straightforward to build a middleware layer that can mediate
between these types of web services and FileMaker. If working with
the NuSOAP library and writing a chunk of PHP seemed like a lot of
work, well, in one way, it is. On the other hand, think of the amazing
feat of computing that we just performed. In more or less the blink of
an eye, our routines query Google’s internal servers, come back with a
pile of data, pull it through many networks, protocols, and database lan-
guages, and bring it back to a FileMaker user. Without XML, this
would be fiendishly difficult; the remote data source would probably
have to open its databases directly to you, set up some security that
limited your queries, and you’d still need to set up some kind of

FileMaker and Web Services: Learning about XML Import 361

C
h
a
p
te

r
9

SQL/ODBC query, configure local drivers, and so forth. But XML does
what many modern software technologies do—take tasks that used to
be really, really difficult and turn them into tasks that are merely
annoying. That’s quite a feat.

So, with some PHP in the middle, FileMaker can be a first-class
web services citizen, fully able to converse with all those SOAP-based
web services out there. If you hear someone belittling FileMaker
because it’s not “SOAP-capable,” you know what to tell them. Actually,
if that person is insistent and a little fiendish, she’ll press the point.
“Ah, but FileMaker can’t publish its own data over SOAP, right?” she’ll
say. Well, a little thought will show that that’s not true either. The PHP
NuSOAP library lets us write both SOAP clients that go and get data
from SOAP sources and also SOAP servers, which can publish data in a
SOAP format. So the answer here again is that, with some PHP in the
middle, FileMaker can be a SOAP-based web service in its own right.
We’re not going to work through all the code here, one reason being
that we’d need a SOAP-based client in order to test the results. We’re
just going to mention the possibility. To accomplish this, you’d write a
SOAP server in PHP using NuSOAP, and any functions supported by
the server that need FileMaker data would have custom code written
in FX to go and fetch that data. To help possible client applications
know what services we would offer, we’d write or publish a file in
WSDL or a similar protocol and publish that on the web as well. This
would be a fairly involved application, but we’ve already worked with
all the required tools.

Web Services Push

So far, all of our examples in this chapter have dealt with bringing data
into FileMaker. After all, the feature that underlies FileMaker’s ability
to consume web services is called XML Import, right? All the same,
the benefits of this feature extend well beyond just bringing data from
the web into FileMaker. They can be used equally as well to push data
out of FileMaker to, well, just about anywhere. Let’s say, for example,
that we’re dealing with a student information system. Staff in the
admissions office follow prospects through the whole admissions cycle
using a FileMaker database. When a prospect accepts an offer and is
admitted, there needs to be a new student record created in the big
iron mainframe that runs the campus-wide student database that
everyone else uses. Typically, this means some kind of double entry.

362 Chapter 9

Or we could try to find a way for FileMaker to insert the data directly
in the mainframe.

If the server is ODBC- or JDBC-capable, we could try to do this
directly from the FileMaker desktop, using the built-in SQL capabili-
ties or a plug-in that adds JDBC capabilities. But this puts us back in
the realm of drivers, desktop operating systems, and multiple client
configurations. We want something easier. It still depends on what
interfaces the mainframe makes available, but let’s say for the sake of
argument that the server is an IBM mainframe running OS/400 and
IBM’s DB2 database software. As it happens, PHP has a library that
lets it talk to DB2 database servers. FileMaker would have to jump
through some serious hoops to talk directly to a DB2 server. Using
HTTP and PHP, it has to jump through one rather small one.

Here’s the strategy: We want to make some kind of HTTP request
from FileMaker to a PHP-based web page that instructs PHP to send
FileMaker data off to the DB2 server. We don’t actually need to send
the student record data directly to PHP via the HTTP request. In fact,
it’s probably not even a good idea to try; data sent via an HTTP GET,
which is FileMaker’s request method, can easily get cut off along the
way if the resulting URL is too long. There are no hard and fast rules
for when and at what point the cutoff will happen, but it can happen.
What we want to do instead is send a short request to PHP that tells it
which FileMaker record to query for and ship off to the mainframe.
Consider the following short URL:

http://www.exchanger.local-university.edu/AdmissionsPush.php?

prospectID=A12DE70

If we use that as our URL for an XML Import operation, the target
page (AdmissionsPush.php) receives the specified value for pros-
pectID and is able to do something with it. Specifically, it should pull
that record from FileMaker (possibly using FX), read the resulting
data, format a database request to DB2, send it off, and report the
results back to FileMaker in an XML format. So the only XML that
FileMaker is actually going to import here is a message from the PHP
middleware layer letting FileMaker know how things went. This really
isn’t an import at all; it’s a multi-tier, multi-database transaction with
HTTP and XML as the messaging protocol.

Let’s look at a PHP page that could act as the middleware for a
transaction like this. For our example, since we don’t have any OS/400
mainframes lying around to test on, we’re going to pretend that we
have a group of archaeologists who record their finds in FileMaker but

FileMaker and Web Services: Learning about XML Import 363

C
h
a
p
te

r
9

ultimately want to push them into a museum database that’s based on
the open-source SQL database server PostgreSQL. The museum pos-
sibly chose PostgreSQL over FileMaker for the back end because they
need to store tens of millions of records or because they need to per-
form extremely complex queries across multiple physical locations.
Whatever the reason, we want to be able to originate and work with
data in FileMaker but ultimately store it in the SQL back end. Here’s a
diagram of the architecture that we need:

We have, of course, a full-fledged FileMaker client-server setup with
an instance of FileMaker Server and however many FileMaker clients
that we need. One of those clients is FileMaker Pro Unlimited for com-
municating with our middleware layer. We also have our PHP layer,
with one or more pages that know how to exchange data between File-
Maker and PostgreSQL. Finally, we have our PostgreSQL server all
the way on the back end. The transaction that we’re trying to set up
looks like this: Starting from a record in FileMaker, we perform an
XML Import that sends the record’s designation code to a PHP page.
That PHP page does the heavy lifting; it fetches the full record from
FileMaker and tries to pass the data over to SQL via native PHP calls.
At the end, PHP sends an XML-formatted message back to FileMaker
to report on how the transaction went.

First, let’s take a quick look at our FileMaker database. It has six
fields that capture data about artifacts and some utility fields:

364 Chapter 9

Figure 9.7

The “update” script sends an XML Import request that looks like this:

http://hosts.museum.org/slane/WebServices/PGPush.php?designation=

AR456GQ

Naturally, the import is hooked up to the stylesheet that transforms
the XML from the PHP page back into something that FileMaker can
import. But the bulk of the logic for this transaction lives in the PHP
page, so let’s walk through it step by step and see what it does. One
note about this code is that we’ve tried to be more rigorous with our
error handling this time. Multi-tier transactions like this have a host of
possible failure points, and without solid error handling, problems can
be a nightmare to debug. Hopefully, this offers a look at what a more
production-level error-handling scheme would look like:

<?

/* Page to pull data from FileMaker and insert in PostgreSQL database

table

*

*/

require_once('FX.php');

// database variables

$fmDataServer = '209.242.196.70';

$fmDataPort = 1080;

$fmDatabase = 'Pottery.fp5';

$fmLayout = 'Web';

FileMaker and Web Services: Learning about XML Import 365

C
h
a
p
te

r
9

Figure 9.8

$sqlDatabase = "webservices";

$sqlTable = "pottery";

We’re going to be using FX for the FileMaker portion of the transac-
tion, so we begin by including the FX code. We then set up a number
of variables that hold information about our two database setups—one
in FileMaker, the other in PostgreSQL. It’s always better to put such
“magic” values in variables (or constants, as we see in a moment),
since it makes it vastly easier to change them when, say, the server IP
changes.

// error constants

define ('ERROR_NO_ERROR', 0);

define ('ERROR_NO_DESIGNATION', -10);

define ('ERROR_FM_ERROR', -11);

define ('ERROR_PG_CONNECT', -12);

define ('ERROR_PG_QUERY', -13);

define ('ERROR_NO_SUCH_FM_RECORD', -14);

$resultCode = ERROR_NO_ERROR;

// first figure out which request array to use, $_GET or $_POST

$method = $_SERVER['REQUEST_METHOD'];

$requestArrayName = "_$method";

$requestArray = $$requestArrayName;

We next set up a number of constants to support our error-handling
scheme. Constants are values in a computer program that are never
allowed to change. Defining these values as constants here, rather
than variables, can give us certain advantages (primarily that we can
use these values inside PHP functions without doing any extra work).

Once the error codes are set up, we start by initializing our result
code to a status that shows no error yet. Then we use the same code
that we’ve seen earlier to decide whether to look in the GET variable
array or the POST array for incoming variables.

$primaryKey = $requestArray['designation'];

if ($primaryKey == '') {

$resultCode = ERROR_NO_DESIGNATION;

} else {

// query FileMaker for the record whose designation we were sent

$fmpConnection = new FX($fmDataServer, $fmDataPort);

$fmpConnection->setDBData($fmDatabase, $fmLayout);

$fmpConnection->addDBParam("DesignationCode", $primaryKey);

$fmReturn = $fmpConnection->FMFind();

//print_r($fmReturn);

if ($fmReturn['errorCode'] != 0) { // got a FileMaker Error

// of some kind

$resultCode = ERROR_FM_ERROR;

366 Chapter 9

Next we delve into the data sent to the page and extract the “designa-
tion” parameter. This is the primary key of the FileMaker record, and
we need it for a number of operations. If we don’t find it, we set the
resultCode to an error code. Execution effectively stops there, since
all the rest of the code is inside an else clause. So this is our strategy
when looking for errors: We test for them inside of if-else constructs,
and if we find one, we don’t go on with the regular code flow. The
effect of this is to skip straight to the end of the program if we find an
error. We see later on what we do when we get there.

If we do have a primary key, the next thing we do is set up an FX
connection to our databases. We need to point FX to a FileMaker Pro
Unlimited instance that has access to the database file or files that
we’re working with. It’s very important, by the way, that you not point
FX straight back to one of the FileMaker clients that initiate this trans-
action. If so, that client makes an XML request and waits to hear back
from the PHP page, but the PHP page, before returning any XML,
tries to make an XML request against the very same FileMaker client
that’s still waiting to hear back from it. The two requests deadlock and
you will likely have to shut down your copy of FileMaker by force.

So we set up a new instance of the FX class, point it to our data-
base and layout, and ask it to perform a search action for the primary
key that was sent to the page. This way, we fetch back all the other
record data associated with that record. At the end, we check to see
whether the operation generated a FileMaker error, and if so, we stop
the main execution of the program.

} else { // no error looking for the record in FileMaker

$foundCount = $fmReturn['foundCount'];

if ($foundCount == 0) { // no FMP record corresponds to

// the primary key that was sent

$resultCode = ERROR_NO_SUCH_FM_RECORD;

} else {

$dataArray = $fmReturn['data'];

foreach($dataArray as $id_mod=>$recordData) {

$site = $recordData['Site'][0];

$coordEW = $recordData['CoordEW'][0];

$coordNS = $recordData['CoordNS'][0];

$weight = $recordData['Weight'][0];

$designationCode = $recordData

['DesignationCode'][0];

$description = $recordData['Description'][0];

//echo ("$site, $coordEW, $coordNS, $weight,

$designationCode, $description");

} // we're not checking for more than one found

// record, which perhaps we should

FileMaker and Web Services: Learning about XML Import 367

C
h
a
p
te

r
9

Assuming that there was no serious FileMaker error in making the
search request, we next check the FileMaker found count. If it’s 0, this
is again a problem, since it means we were sent a designation code
that doesn’t match anything in the database. So again we would error
out here with still another different error code. If we pass that test,
though, we can delve into the data returned by FX and pick out all the
record fields that we need. Then we can go ahead and try to move the
data into the SQL database, as we see in the following code.

// set up connection to PostgreSQL database

$pgConnectionString = "dbname=$sqlDatabase user=

PostgreSQL";

$pgConnection = @pg_connect($pgConnectionString);

if ($pgConnection == false) { // got some error

// connecting to postgres

$resultCode = ERROR_PG_CONNECT;

} else {

// first check to see if this record is already

// in the SQL database

$sqlStmt = "SELECT * FROM $sqlTable WHERE

designation_code='$designationCode'";

$queryResult = @pg_exec($pgConnection,

$sqlStmt);

if ($queryResult == false) { // some query

// error

$resultCode = ERROR_PG_QUERY;

$resultMessage = pg_errormessage(

$pgConnection);

} else { // we got some result from the database

$pgFoundCount = pg_numrows(

$queryResult);

if ($pgFoundCount == 0) { // the record

// was not already in the db

$sqlStmt = "INSERT INTO $sqlTable

VALUES ('$site', $coordEW,

$coordNS, $weight,

'$designationCode',

'$description')";

} else {

$sqlStmt = "UPDATE $sqlTable set

site='$site', coord_ew=$coordEW,

coord_ns=$coordNS, weight=$weight,

description='$description' WHERE

designation_code=

'$designationCode'";

}

$queryResult = @pg_exec($pgConnection,

$sqlStmt);

if ($queryResult == false) { // some

// query error

$resultCode = ERROR_PG_QUERY;

$resultMessage = pg_errormessage

368 Chapter 9

($pgConnection);

}

}

}

}

}

}

If we successfully fetched the FileMaker record, we now need to work
on the PostgreSQL side of things. Our logic is similar: First try to con-
nect to the PostgreSQL server, and error out if we can’t. Then things
get a little trickier; we want to know if the record has already been
added to PostgreSQL, since the SQL is different for an update than for
adding a record. So we need to run a query that tells us if the record
already exists there. If that query has a problem, we error out (monot-
onous, eh?). Then, we generate an SQL statement. Depending on
whether the record was already stored in PostgreSQL, we create
either an SQL INSERT statement or an SQL UPDATE statement
using the data values from the FileMaker record. Once we have our
statement, we try to execute it against the server. If we fail, well, you
know.

By now, we’ve either done all the work we came to do or found an
error of some kind. So all that remains is to check the error code and
then generate our XML response. Here’s how it looks:

switch($resultCode) {

case ERROR_NO_DESIGNATION:

$errorMsg = "No designation code was sent so the request

could not be processed.";

break;

case ERROR_NO_SUCH_FM_RECORD:

$errorMsg = "No FileMaker record matching the specified

designation could be found.";

break;

case ERROR_FM_ERROR:

$errorMsg = "A FileMaker error occurred: FileMaker

error #" . $fmReturn['errorCode'];

break;

case ERROR_PG_CONNECT:

$errorMsg = "A connection to the Postgres database could

not be established.";

break;

case ERROR_PG_QUERY:

$errorMsg = "An error occurred processing the Postgres

query. Database said: $resultMessage";

break;

case ERROR_NO_ERROR:

$errorMsg = "The Postgres database was successfully

updated!";

break;

FileMaker and Web Services: Learning about XML Import 369

C
h
a
p
te

r
9

}

header ("Content-type: text/xml"); // signal that we're sending XML

echo '<?xml version="1.0"?>';

?>

<PGPushResult>

<resultCode><? echo $resultCode; ?></resultCode>

<resultMessage><? echo $errorMsg; ?></resultMessage>

<designationCode><? echo $primaryKey; ?></designationCode>

</PGPushResult>

We set up an error message based on the value of the $resultCode
variable (which includes the code for no error). Once we have that, we
send the result code, the result message, and the original primary key
back to FileMaker as our XML response. Here’s the simple stylesheet
that we use to transform it:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="PGPushResult">

<FMPXMLRESULT xmlns="http://www.filemaker.com/

fmpxmlresult">

<ERRORCODE>0</ERRORCODE>

<PRODUCT BUILD="" NAME="" VERSION=""/>

<DATABASE DATEFORMAT="M/d/yyyy" LAYOUT="" NAME=""

RECORDS="1" TIMEFORMAT="h:mm:ss a"/>

<METADATA>

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"gResultCode" TYPE="NUMBER" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"gResultMessage" TYPE="TEXT" />

<FIELD EMPTYOK="YES" MAXREPEAT="1" NAME=

"DesignationCode" TYPE="TEXT" />

</METADATA>

<RESULTSET>

<xsl:attribute name="FOUND">1</xsl:attribute>

<ROW >

<xsl:attribute name="MODID">0

</xsl:attribute>

<xsl:attribute name="RECORDID">0

</xsl:attribute>

<COL><DATA><xsl:value-of select=

"resultCode"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"resultMessage"/></DATA></COL>

<COL><DATA><xsl:value-of select=

"designationCode"/></DATA></COL>

</ROW>

</RESULTSET>

</FMPXMLRESULT>

370 Chapter 9

</xsl:template>

</xsl:stylesheet>

This is just one example of the kind of multi-tier, multi-database logic
we could create using FileMaker’s XML Import capability. There’s a
host of other possibilities as well. Let’s say that you’re building a
FileMaker system for a large vendor of starches and cleaning products.
They use FileMaker to handle their ordering, but all of their customer
data is stored in a large Oracle database. FileMaker doesn’t need to
originate or change any customer information. You just need to make
certain that the FileMaker system always has a full and accurate cus-
tomer list that reflects what’s contained in Oracle. We need some way
to refresh the customer data from Oracle into FileMaker—either on a
regular basis or on demand.

Of course, we can go through the various two-tier client-server
permutations that we’ve talked about before—Oracle drivers on the
desktop, and so forth. But by now, you know a better answer. Have
FileMaker send an HTTP command to a PHP middleware layer; that in
turn holds all the logic for querying Oracle, formatting the results as
XML, and sending them back to FileMaker. FileMaker’s update script
would simply delete all the current customer records, send an XML
Import request to a PHP page, and get back all the customer records in
XML format.

If you let your imagination roam a little bit, you can probably see
that these techniques could even be used for building synchronization
solutions, where data is kept in synch between FileMaker and
PostgreSQL, FileMaker and Oracle, or even FileMaker and FileMaker.

It should be said that FileMaker, Inc. has been careful to state that
they’re not positioning the XML Import capability as a replacement for
client-server technologies. It’s not necessarily meant to be used to
build, for example, an Oracle or a PostgreSQL client. But that’s more
or less exactly what we’ve sketched out how to do here. FileMaker
Inc. doesn’t say that the technology can’t be used this way or that it
shouldn’t—merely that multi-tier applications like this are not the pri-
mary use that they had in mind for this new tool. But we feel obliged
to point out all of the possible cool applications and what we’ve tried to
do here.

FileMaker and Web Services: Learning about XML Import 371

C
h
a
p
te

r
9

Summary

In our opinion, XML Import is one of the coolest and most significant
new FileMaker features in a long time. In this chapter we’ve seen a
host of possible uses for this capability. We can bring in data from web
services around the world using plain old HTTP GET. With the help of
a relatively thin, SOAP-aware layer of middleware written in PHP, we
can consume SOAP-based web services as well. Using the same
middleware layer we could, if we so desired, broadcast FileMaker data
to SOAP clients. We can even turn the XML Import capability into a
pretty capable multi-tier, multi-platform messaging base for exchang-
ing data between FileMaker and other database platforms with nary a
whiff of an ODBC driver. If the madness took us, we could probably
use this technology to put together a pretty compelling synchroniza-
tion solution as well.

Lastly, we also saw how we could use PHP (or indeed, any similar
middleware language) to write our own web services to add capabili-
ties like unified time service and password hashing to FileMaker. If you
need a capability that FileMaker doesn’t have, try to code it up in
FileMaker or look for a plug-in that does what you need and install it
everywhere. Or you could write it once in some middleware language
and put it out there as a web service for FileMaker or anyone else to
use. Maybe there’s a great Java library that you can buy that performs
some complex operations tailored to a vertical market. Buy the library,
wrap it in a web service (with PHP, for example, which can talk to Java,
or via a Java servlet, if you know how to write the same). Now have
FileMaker talk to your new web services layer, and you have a whole
new library of functionality waiting to be tapped. Hopefully, these
examples and possibilities have made the reasons for our excitement
clear.

372 Chapter 9

Appendix

CDML Reference
Guide

Notes:

1) CDML tags, parameters and values, unless otherwise specified, are not
case sensitive.

2) Because of formatting constraints, many long commands appear to
have returns in them. In general, avoid having returns within any CDML
tag or URL. The text may soft wrap in your text editor, but don’t put in
hard returns.

Request Parameters

CDML command parameters are sent with a request, either as part of
a URL (GET method) or as part of an HTML form (POST method).
They are distinguished by being prefixed by a hyphen. Within the
command parameters is also the important subgroup of the action
parameters.

Action Parameters

A CDML request, whether by URL (GET) or form (POST), must have
one and only one action parameter. We call it an action parameter
because it tells the CDML engine what one database action to perform
in the course of the request. An action parameter may be any one of
the following:

Database Close -DBClose

Description: -DBClose is a tag that allows you to close a database on a
FileMaker Pro host machine from a remote browser. It will look to the
-db parameter for the name of the database to close and at the URL to
determine which host to work with. The database host must have

373

Remote Administration enabled (in the Web Companion configuration
settings under Application Preferences) in order for this command to
work. For security purposes it is strongly advised that you apply a
password to the Remote Administration capability so that unauthorized
users can’t send a -DBClose command to your Web Companion and
start shutting down databases.

Example: In an embedded URL:

http://thehost.com/FMPro?-db=Employees.fp5&-format=

aFormatFile.html&-DBClose

To execute the same command using a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Employees.fp5">

<input type="hidden" name="-format" value=" aFormatFile.html">

<input type="submit" name="-DBClose" value="Close Employees

Database">

</form>

Note that the -format parameter is required, even though -DBClose
doesn’t use it.

Database Open -DBOpen

Description: -DBOpen is a tag that allows you to open a database on a
FileMaker Pro host machine from a remote browser. It will look to the
-db parameter for the name of the database to close and at the URL to
determine which host to work with. The database host must have
Remote Administration enabled (in the Web Companion configuration
settings under Application Preferences) in order for this command to
work. In addition, the database to be opened must be in the host’s Web
folder.

Example: In an embedded URL:

http://thehost.com/FMPro?-db=Employees.fp5&-format=

aFormatFile.html&-DBOpen

To execute the same command using a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value= "Employees.fp5">

<input type="hidden" name="-format" value=" aFormatFile.html">

<input type="submit" name="-DBOpen" value="Open Employees

Database">

</form>

374 Appendix

Note that the -format parameter is required, even though -DBOpen
doesn’t use it.

Delete Record -Delete

Description: -Delete is an action tag that will delete the record speci-
fied by the -RecID tag. In order to use this function, a user must have
delete privileges for the file. Using JavaScript, it’s possible to include a
confirmation dialog to a Delete action (see below for an example). Only
one record at a time can be deleted from the web. It would be possible,
however, to script deletion of multiple records.

Example: In an embedded URL:

<a href="FMPro?-DB=classes.fp5&-Format=DeleteReply.html&-RecID=

[FMP-CurrentRecID]&-Delete>Delete this record

Note: This embedded URL contains a replacement tag, [FMP-Cur-
rentRecID], which means that the current format file would need to be
dynamically generated. Only if the RecID is literally specified can the
-Delete action occur on a static page.

To delete a record using a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="classes.fp5">

<input type="hidden" name="-Format" value="DeleteReply.html">

<input type="hidden" name="-RecID" value="[FMP-CurrentRecID]">

<input type="submit" name="-Delete" value="Delete this record">

</form>

To add a JavaScript confirmation to a delete action:
1. Change the <head> section of your HTML document to include

the following:

<head>

<script language="javascript">

<!-- begin to hide script contents from old browsers

function DeleteConfirmation()

{

return confirm(’Are you sure you wish to delete this record?’);

}

// end hiding script from old browsers -->

</script>

</head>

2. Change your submit button so that it invokes the DeleteConfirma-
tion function when it is clicked:

<input type="submit" name="-Delete" value="Delete this record"

onclick="return DeleteConfirmation()">

CDML Reference Guide 375

A
p
p
e
n
d
ix

Remember that JavaScript is case sensitive, so be careful naming and
invoking your functions! The same JavaScript could function as a con-
firmation for any action, such as a Duplicate or Update, with only
trivial modifications.

Duplicate Record -Dup

Description: The -Dup action duplicates the record specified by the
-RecID tag. In order to use this function, a user must have record cre-
ation privileges for the file.

Example: In an embedded URL:

<a href="FMPro?-DB=classes.fp5&-Format=DuplicateReply.html&-RecID=

[FMP-CurrentRecID]&-Dup">Duplicate this record

Note: This embedded URL contains a replacement tag, [FMP-Cur-
rentRecID], which means that the current format file would need to be
dynamically generated. Only if the RecID is literally specified can the
-Duplicate action occur on a static page.

To duplicate a record using a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="classes.fp5">

<input type="hidden" name="-Format" value="DupReply.html">

<input type="hidden" name="-RecID" value="[FMP-CurrentRecID]">

<input type="submit" name="-Dup" value="Duplicate this record">

</form>

Note: The form in the example above contains only one submit button,
but keep in mind that forms can contain multiple submit buttons. Only
one, of course, can be selected by the user. For instance, this means that
from the same form you can give the user the option to Edit, Duplicate, or
Delete the record currently being displayed. Unfortunately, you can spec-
ify only one format file as the response file. Using the [FMP-Current-
Action] tag on that response file will let you customize it based on the
action that the user selected.

Edit Record -Edit

Description: The -Edit action tag is used to change the record in a
database specified by the -RecID tag. Only one record at a time can be
updated from the web. To use this function, the user must have edit
privileges for the database being called. When performing an edit, you
must also specify the fields to update. This is done through name-
value pairs in embedded URLs and user input fields in forms.

376 Appendix

Often, edits will be done from some sort of Detail page. Instead of
creating a separate HTML file that serves as an Edit reply page, try
using the Detail page as its own response page. This way, a user edits
a record and immediately sees the results of the update and has the
option to make additional modifications.

The most frequent cause of errors using the -Edit tag is forgetting
to specify the -RecID. Also, take care never to attempt to update calcu-
lation fields, as this will also trigger errors.

Example: In an embedded URL:

<a href="FMPro?-DB=parts.fp5&-Lay=WebEdit&-Format=Detail.html&-RecID=

[FMP-CurrentRecID]&part_status=Out+Of+Stock&-Edit">Flag as Out of

Stock

Note: As many fields as necessary can be updated in an embedded
URL. Remember to change any spaces in the text into plus signs (+) or
into %20.

Using a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="parts.fp5">

<input type="hidden" name="-Lay" value="WebEdit">

<input type="hidden" name="-Format" value="Detail.html">

<input type="hidden" name="-RecID" value="[FMP-CurrentRecID]">

Part Number: [FMP-Field:part_number]

Description: <input type="text" name="description" value=

"[FMP-Field: description]">

Status: <input type="text" name="part_status" value="[FMP-Field:

part_status]">

<input type="submit" name="-Edit" value="Update this Record">

</form>

This would create a form that displays the part number (non-update-
able), description, and status. The description and status could be
changed by the user.

Find All Records -FindAll

Description: The -FindAll action will find all records of a specified data-
base. A user must have browse permission to use this tag. It’s gener-
ally a good idea to use the -Max tag when returning large sets of
records, both to achieve better performance and to avoid out-of-
memory errors. If the -Max tag is not specified, the default value of 25
records will be used. Use -Max=All to return the entire found set all at

CDML Reference Guide 377

A
p
p
e
n
d
ix

once. Any name-value pairs specified will be ignored by the -FindAll
action, so there is no problem having a form with buttons to perform
both a Find (using name-value pairs) and a FindAll.

As with all Finds, you will get better performance if you specifiy a
layout using the -Lay tag.

Since -FindAll is a fairly innocuous action, it’s often specified as
the action when you simply want to send mail or perform a script.
Both of these features require some sort of action to occur.

Example: In an embedded URL:

<a href="FMPro?-DB=Contact.fp5&-Lay=WebSearch&-Format=hitlist.html&-

Max=20&-SortField=Last_Name&-FindAll">Find All Contacts

In a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Contact.fp5">

<input type="hidden" name="-Lay" value="WebSearch">

<input type="hidden" name="-Format" value="hitlist.html">

<input type="hidden" name="-Max" value="20">

<input type="hidden" name="-SortField" value="Last_Name">

<input type="submit" name="-FindAll" value="Find All Contacts">

</form>

Find Any Record -FindAny

Description: -FindAny will find a single random record in the specified
database. As with all Find actions, a user must have browse privileges
to use this function. Since only a single record will be returned, it is
unnecessary to specify -Max or -SortField as you might for other
Finds.

Example: In an embedded URL:

<a href="FMPro?-DB=Cards.fp5&-Lay=WebSearch&-Format=detail.html&

-FindAny">Pick a Card, Any Card.

In a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Cards.fp5">

<input type="hidden" name="-Lay" value="WebSearch">

<input type="hidden" name="-Format" value="detail.html">

<input type="submit" name="-FindAny" value="Find All Contacts">

</form>

378 Appendix

Find Record -Find

Description: The -Find tag is used to query a specified database based
on a certain set of criteria. These criteria can either be completely pre-
defined (as in an embedded URL) or based on a user’s input (as in a
form). A user must have Browse privileges in order to perform a Find.

As with all actions, a -Find involves two separate but complemen-
tary HTML files—one to specify the parameters of the search and the
other to display the results of the search (often called a hit list). A form
or URL is required on the search page itself but not on the response
page. Any replacement tags used on the response page (such as
[FMP-CurrentFoundCount] or [FMP-Field]) will be determined by the
database specified on the search page.

For better performance, use the -Max tag to specify the number of
records that should be returned at a time. Also, use the -Lay tag to
specify on which layout the query should be performed. Any fields
involved in your find or that you intend to display on the response
page, must appear on the specified layout. Unless an error response
page is specified using the -Error tag, a generic “No Records Found”
response will be generated if no records match the search criteria.

Finally, keep in mind that your search page can be either static or
dynamic. Dynamic pages allow you to use replacement tags and, more
importantly, value lists generated by the database on your form.

Example: In an embedded URL:

<a href="FMPro?-DB=Compact_Disc.fp5&-Lay=SearchMe&-Format=

hitlist.html&-Error=Error.html&-Max=15&-SortField=Artist&Category=

Classical&Status=On+Hand&-Find">Click here for Classical Music

selections.

In a form (on a dynamic search page):

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Compact_Disc.fp5">

<input type="hidden" name="-Lay" value="SearchMe">

<input type="hidden" name="-Format" value="hitlist.html">

<input type="hidden" name="-Error" value="error.html">

<input type="hidden" name="Status" value="On Hand">

Category:

<select name="Category">

<option>

[FMP-ValueList: Category]

<option value="[FMP-ValueListItem]">[FMP-ValueListItem]

[/FMP-ValueList]

</select>

CDML Reference Guide 379

A
p
p
e
n
d
ix

<input type="submit" name="-Find" value="Find CDs">

</form>

The above form would allow the user to select a category from a
pull-down menu generated by a value list in FileMaker. An additional
search criteria for Status=On Hand is hard-coded as a hidden input
field.

Display Image -Img

Description: -Img is a command that returns an image from a database.
In general, there’s no need to use this command directly; instead use
the [FMP-Image] tag to retrieve an image.

Using the -Img command, images can be retrieved from a File-
Maker database in two ways. The first is to specify a value for -DB, a
record ID (using -RecID), and a field name. The second is to specify a
value for -DB and an “image key.” An image key is specified using the
[FMP-Field] tag. See below for examples.

Example: Link to a page containing an image:

Display the picture from record ID 11 and field name “pictures”

Display an image in a page by ID and field:

Display an image in a page by image key:

Display an image the recommended way:

New Record -New

Description: -New is an action tag that is used to add records to a data-
base. Data for the new record can be specified by name-value pairs. A
user must have create permission in order to use this function.

Example: As an embedded URL:

<a href="FMPro?-DB=Event.fp5&-Lay=WebAdd&-Format=AddReply.html&

EventType=Track&-New">Create a new Track Event

380 Appendix

To do the same in a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Event.fp5">

<input type="hidden" name="-Lay" value="WebAdd">

<input type="hidden" name="-Format" value="AddReply.html">

Event Type: <input type="text" name="EventType">

<input type="submit" name="-New" value="Add Event">

</form>

View Form -View

Description: The -View action allows you to process a format file with-
out interacting directly with the database. It’s most frequently used as
a link to a search or add page that needs to include data drawn from
FileMaker, such as a set of value lists. Additionally, the -View action is
often used in conjunction with sending e-mail, and is also one of the
principal ways of kicking off a page where most of the work is done
with inline actions.

Example: A link to a search page can be made either through a plain
file reference or through the -View action, which enables the use of
replacement tags and value lists from the database.

As a plain file reference, the link would be:

Search the database

Using the -View action would result in an embedded URL similar to
the following:

Search the database

In a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="products.fp5">

<input type="hidden" name="-Format" value="search.html">

<input type="submit" name="-View" value="Search the database">

</form>

CDML Reference Guide 381

A
p
p
e
n
d
ix

Other Request Parameters

Like the database action parameters, the following request parameters
can all be passed via a form or URL and are all distinguished by the
prefix of a hyphen. These parameters can all be added to a request in
addition to the action parameter. In some cases, a request could con-
tain numerous of these additional parameters; a request with the -Find
action parameter might, for example, also include the -LOP, -Max, and
-Skip parameters to control the search, while an e-mail command
might contain as many as eight additional parameters. The following
section details the use of these parameters and what other parameters
they can combine with, if any.

Blind Carbon Copy for E-mail -MailBCC

See E-mail

Carbon Copy for E-mail -MailCC

See E-mail

Database Name -DB

Description: The -DB tag is perhaps the most used CDML tag, since
all actions require that you specify which database to process. By con-
vention, it is the first name-value pair specified in embedded URLs and
the first hidden input field in a form.

The name of the database and any extension needs to be speci-
fied—but not the path. The database must simply be open and in
Browse mode. In fact, it’s a good idea to keep your databases any-
where except your Web folder.

Example: In an embedded URL:

Click
here to go to the search page

To do the same using a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="inventory.fp5">

<input type="hidden" name="-Format" value="Search.html">

<input type="submit" name="-View" value="Click here to go to

search page">

</form>

382 Appendix

E-mail

To Address for Mail -MailTo

From Address for Mail -MailFrom

Subject for Mail -MailSub

Host for Mail -MailHost

Format Field for Mail -MailFmtField

Format File for Mail -MailFormat

Blind Carbon Copy for E-mail -MailBCC

Carbon Copy for E-mail -MailCC

Description: FileMaker has the ability to automatically send e-mail
after a CDML action has taken place. All of the tags above, with the
exception of -MailBCC and -MailCC, are required to send mail. More-
over, the tags must have values.

-MailTo The e-mail address of the recipient of the e-mail

-MailFrom The e-mail address to use as the sender for the e-mail

-MailSub The subject of the mail message

-MailHost The SMTP server to use for sending the mail

-MailFmtField Name of a field containing the name of a text file to
use as the body of the mail message

-MailFormat Name of a text file to use as the body of the mail
message

-MailBCC (Optional) E-mail address to receive a blind carbon
copy of the message

-MailCC (Optional) E-mail address to receive a carbon copy of
the message

Multiple values can be specified for the -MailTo, -MailCC, and
-MailBCC by adding additional input fields. The value for each tag can
either be hard-coded or it can be specified as a replacement tag.

Note: No error message is generated if the e-mail message is either
malformed or missing data. The web log in the web directory is the only
way that you can tell if there was an error.

CDML Reference Guide 383

A
p
p
e
n
d
ix

Example: In any sort of shopping cart solution, you’d likely want to
send an e-mail confirmation to your customers after they place an
order. Let’s say that the user has filled out and submitted an order
form (which included customer information such as e-mail address),
and you’ve specified OrderConfirm.html as the reponse file. Add the
following HTML form to the OrderConfirm file. The -MailCC tag is
used to notify you that an order has been placed.

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="order.html">

<input type="hidden" name="-Format" value="thanks.html">

<input type="hidden" name="-MailTo" value="[FMP-Field:

Customer::E-mail]">

<input type="hidden" name="-MailCC" value=

"bobcmc@mindspring.com">

<input type="hidden" name="-MailFrom" value=

"bobcmc@mindspring.com">

<input type="hidden" name="-MailSub" value="Order Confirmation">

<input type="hidden" name="-MailHost" value="SMTP.Company.COM">

<input type="hidden" name="-MailFormat" value="email.txt">

Please confirm the following order items:

[FMP-Portal: OrderItems]

Quantity: [FMP-Field: OrderItems::Quantity]

Description: [FMP-Field: OrderItems::Quantity]

Unit Price: [FMP-Field: OrderItems::Quantity]

[/FMP-Portal]

<input type="submit" name="-View" value="Confirmed">

</form>

The format file email.txt is a plain text file, but it can contain CDML
tags like any other format file. In this example, that file might be some-
thing like the following:

Dear [FMP-Field: Customer::First Name]

Thank you for your order!

The following items will be shipped to you via [FMP-Field:

Shipping Method].

[FMP-Portal: OrderItems]

Quantity: [FMP-Field: OrderItems::Quantity]

Description: [FMP-Field: OrderItems::Quantity]

Unit Price: [FMP-Field: OrderItems::Quantity]

[/FMP-Portal]

Please call us if you have any problems with your order.

Thanks and come again soon!

384 Appendix

Error Format Field -ErrorFmtField

Description: This tag is used to indicate the name of a field that con-
tains the HTML that will be returned in the event of an error in a
database action. Rather than direct the user to a new page (which
would entail using the -Error tag), you may opt instead to pull the
error response HTML from a page in the database instead.

Example: In an embedded URL:

<a href="FMPro?-DB=Employee.fp5&-Lay=WebSearch&-Format=

hitlist.html&-ErrorFmtField=error_response&Status=Full+Time&
-Find">Find Full Time Employees

To specify an Error reply page in a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Employee.fp5">

<input type="hidden" name="-Lay" value="WebSearch">

<input type="hidden" name="-Format" value="hitlist.html">

<input type="hidden" name="-Error" value="error.html">

Employment Status?: <input type="text" name="Status">

<input type="submit" name="-Find" value="Find">

</form>

Error Number -ErrNum

Description: This parameter is used to indicate a range of FileMaker
Pro error codes that will trigger the use of any special error page indi-
cated by the -Error or -ErrorFmtField parameters. If you only want
your error pages or error code to be used in the event of certain
FileMaker errors, you can use this parameter to limit the range of
error codes that will trigger your custom error handling. You may
specify a single code or a range of codes, and you can use the -ErrNum
parameter multiple times to specify multiple different error ranges.

Any error not specified in the -ErrNum tags (if -ErrNum is being
used) will be caught by the Web Companion’s default error-handling
pages. You cannot use -ErrNum with multiple instances of -Error or
-ErrorFmtField to specify different custom error pages for different
error codes or error code ranges.

Example: In an embedded URL:

<a href="FMPro?-DB=Employee.fp5&-Lay=WebSearch&-ErrNum=500-509&
-Format=hitlist.html&-ErrorFmtField=custom_error_response&Status=
Full+Time&-Find">Find Full Time Employees

CDML Reference Guide 385

A
p
p
e
n
d
ix

Error Response -Error

Description: This tag is used to specify a format file to use in the event
of an error during processing of an action. If no such file is specified,
FileMaker will display a generic error message. Using Error reply files
allows you to give more information to the user about how to fix the
error, and it keeps the overall “look and feel” of your site intact. It
doesn’t matter where you put the -Error tag within your URL or form.

The path to use for the Error reply file is relative not to the Web
folder but rather to the current file. So if your Error reply file is in the
same directory as your Search file, then you shouldn’t re-specify the
directory name—just put the name of the file.

If you prefer to use paths that are relative to the Web folder, just
change the path of the FMPro action to /FMPro or ../FMPro.

Example: In an embedded URL:

<a href="FMPro?-DB=Employee.fp5&-Lay=WebSearch&-Format=hitlist.html&

-Error=error.html&Status=Full+Time&-Find">Find Full Time

Employees

To specify an Error reply page in a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Employee.fp5">

<input type="hidden" name="-Lay" value="WebSearch">

<input type="hidden" name="-Format" value="hitlist.html">

<input type="hidden" name="-Error" value="error.html">

Employment Status?: <input type="text" name="Status">

<input type="submit" name="-Find" value="Find">

</form>

Format Field -FmtField

Description: This parameter is used to indicate the name of a field that
contains the HTML that will be used as the “format page” for a given
database action. Rather than direct the user to a new page (which
would entail using the -Format tag), you may opt instead to pull the
response HTML from a field in the database instead.

Example: In an embedded URL:

<a href="FMPro?-DB=Employee.fp5&-Lay=WebSearch&-Format=hitlist.html&

-ErrorFmtField=error_response&-FmtField=custom_format_field&Status=
Full+Time&-Find">Find Full Time Employees

386 Appendix

Format Field for Mail -MailFmtField

See E-mail

Format File -Format

Description: The -Format tag is used to specify the HTML document
that should be used as the response for the current action. It’s a man-
datory part of any embedded URL or form.

If the response document is in a directory other than the one con-
taining the current document, you may need to include a path to the
document (relative to the location of the current document). For
instance, say you have a folder inside your Web folder called Time-
Track, which contains most of your HTML documents for your site.
You have a subdirectory inside this folder called Admin, and you want
to specify a document in this folder as your response to a search from a
document in the parent directory. For this, you’d use -Format=Admin/
SearchReply.html.

It’s a little trickier to specify a format file in a directory above the
current working directory. Let’s say that you have a generic error page
at the root level of your Web folder, and you want to use that no matter
what subdirectory you’re in. In this case, change the path to the CGI as
specified in the action tag to “../FMPro,” and then make all paths rela-
tive to the root directory. Your error page would then be simply
-Format=Error.html, while your pages in subdirectories would be
-Format=TimeTrack/SearchReply.html.

Example: In an embedded URL:

<a href="FMPro?-DB=TimeLog.fp5&-Lay=WebSearch&-Format=search.html&
-View">Go to the Seach Page

In a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="TimeLog.fp5">

<input type="hidden" name="-Lay" value="WebSearch">

<input type="hidden" name="-Format" value="search.html">

<input type="submit" name="-View" value="Go to the Search Page">

</form>

CDML Reference Guide 387

A
p
p
e
n
d
ix

Format File for Mail -MailFormat

See E-mail

From Address for Mail -MailFrom

See E-mail

Host for Mail -MailHost

See E-mail

Layout Name -Lay

Description: The -Lay tag specifies the name of the layout that the
current action should reference as it processes the user’s request. In
most cases, it’s an optional tag, but for performance reasons, it should
be specified whenever possible.

If the -Lay tag is not used, FileMaker uses what’s known as Lay-
out 0, which contains all the fields in the database. Actions such as
Finds and Edits will run significantly faster if they are performed on a
layout that only contains the fields that are pertinent for that specific
action. Referencing related fields and portals requires the use of the
-Lay tag and the presence of the referenced fields on the specified
layout.

Additionally, the layout is used to specify value lists for the field
and specify the number of repetitions available for repeating fields.

Example: In an embedded URL:

<a href="FMPro?-DB=activity.fp5&-Lay=WebSearch&-Format=
Hitlist.html&-FindAll>List All Activities

To do the same using a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="activity.fp5">

<input type="hidden" name="-Lay" value="WebSearch">

<input type="hidden" name="-Format" value="hitlist.html">

<input type="submit" name="-FindAll" value="List All

Activities">

</form>

388 Appendix

Logical Operator -LOP

Description: Searches on the web will be either AND searches or OR
searches; the default is the AND search. For instance, if you have two
input fields on your search form (one for First Name and Last Name),
searching for “Fred” in First Name AND “Flintstone” in Last Name
will return records where both criteria are true. An OR search will
return records that match either criteria. It can be tricky, since the OR
search returns these records and those records.

The logical operator should not be confused with the search opera-
tor, which is a field-level comparison, such as First Name “begins
with” Fred. The logical operator can be specified anywhere in the form
and is usually either a hidden input field or a user-selectable value list.

FileMaker users are accustomed to performing multiple find
requests; the logical operator OR can be used to achieve similar
results through the web. For example, to search an activity file for all
“calls” and “meetings,” create two input fields with the same name
(see the example below for the correct syntax). FileMaker will create a
find request for each input field on the form for which the user types
or selects data. Alternatively, a user can type multiple requests into a
single input field, separated by spaces. As long as the logical operator
is OR, FileMaker will create find requests for each word entered. This
is also how multiple requests can be created using embedded URLs.

At this time, it’s not possible to perform complex finds (such as
“active calls” and “active meetings”) because that would involve using
two logical operators. To test and troubleshoot searches, activate
FileMaker after submitting a web search and do a Modify Last Find
(Cmd-R/Ctrl-R).

Example: In an embedded URL:

<a href="FMPro?-DB=activity&-Lay=WebSearch&-Format=hitlist.html&type=

calls+meeting&-LOP=or&-Find">Search for Calls and meetings.

Find some records using a form action:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="activity.fp5">

<input type="hidden" name="-Lay" value="web">

<input type="hidden" name="-Format" value="hitlist.html">

<input type="hidden" name="-LOP" value="OR">

Enter Search Criteria below.

CDML Reference Guide 389

A
p
p
e
n
d
ix

Activity Type<input type="text" size=12 name="type">

Activity Type<input type="text" size=12 name="type">

<input type="submit" name="-Find" value="Find">

</form>

Max Records -Max

Description: The -Max tag is used to set the maximum number of
records to display per page on the search reply page. The -Max tag
belongs on the search page rather than the search reply page. If omit-
ted, a default of 25 is used. To return all records in the set rather than
break the set into chunks, set -Max to “all.”

The maximum that the -Max tag can be set to is 2147483647. On
the reply page, [FMP-CurrentMax] can be used to display the value
that was used for the search.

Example: As an embedded URL:

<a href="FMPro?-DB=Employee.fp5&-Lay=WebSearch&-Format=EmpList.html

&-Max=15&-FindAll">Employee List

In a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Employee">

<input type="hidden" name="-Lay" value="WebSearch">

<input type="hidden" name="-Format" value="EmpList.html">

<input type="hidden" name="-Max" value="15">

<input type="submit" name="-FindAll" value="Find All Employees">

</form>

Modification ID -ModID

Current Modification ID [FMP-CurrentModID]

Description: The modification ID parameter and its associated tag,
[FMP-CurrentModID], were introduced in order to deal with the diffi-
culties of record locking on the web—or, more exactly, with the lack of
record locking. In regular FileMaker Pro, if you attempt to edit a
record that another user is already editing, FileMaker will warn you
that the record is in use and prevent you from modifying it until the
other user has released it. The web was never designed for client-
server database use, so there is nothing built into HTTP that helps
overcome this. If two of your web users opt to edit the same record at
the same time, they may do so. If the first one submits some changes,

390 Appendix

they will get written back to the database. When the second one sub-
mits his changes, they will overwrite the first user’s changes, leaving
neither of them any the wiser about what has happened.

FileMaker Pro keeps track internally of a “modified ID” that is
guaranteed to change every time a record is modified. In general, the
technique for using this ID is to inspect the ID whenever a user
“checks out” a record for editing (for example, by bringing up a web
page that allows her to edit the record) and then inspect the ID again
when changes are submitted to the record. If the two ModIDs don’t
match, this indicates that someone else has modified the record
between the time the current user “checked out” the record and the
time she submitted it.

To overcome this problem, you may add the -ModID parameter to
an -Edit request in CDML. You then supply a ModID that the record’s
own ModID needs to match (typically this would be whatever the
record’s ModID was at the time it was fetched). If the two IDs don’t
match, the -Edit action will fail.

Example: In a form:

<!-- Make sure, when updating the country, that no one else changed

it -->

<FORM ACTION="FMPro" METHOD="POST">

<INPUT TYPE="HIDDEN" NAME="-DB" VALUE="contacts.fp5">

<INPUT TYPE="HIDDEN" NAME="-Format" VALUE="results.html">

<INPUT TYPE="HIDDEN" NAME="-RecID" VALUE="[FMP-CurrentRecID]">

<INPUT TYPE="HIDDEN" NAME="-ModID" VALUE="[FMP-CurrentModID]">

<INPUT TYPE="TEXT" NAME="Country">

<INPUT TYPE="SUBMIT" NAME="-Edit" VALUE="Edit This Record">

</FORM>

Operator -Op

Description: The -Op tag specifies the find operator to use when
searching for records. An -Op can be specified for each field in a find
request; the operator should be inserted directly before the field that it
affects. The default operator is “begins with.”

There are short values and long values for each operator. Either
can be used.

Short Long

eq equals
neq not equals
cn contains

CDML Reference Guide 391

A
p
p
e
n
d
ix

bw begins with
ew ends with
gt greater than
gte greater than or equals
lt less than
lte less than or equals

Example: In an embedded URL:

<a href="FMPro?-db=Members.fp5&-Lay=Search&-Format=Hitlist.html&

-Op=gte&Days_Overdue=90&-Op=gt&Amount_Due=0&-Find">Find Members

over 90 days overdue

To do the same in a form:

form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Members.fp5">

<input type="hidden" name="-Lay" value="Search">

<input type="hidden" name="-Format" value="Hitlist.html">

<input type="hidden" name="-Op" value="gte">

Days Overdue: <input type="text" name="Days_Overdue" value="90">

<input type="hidden" name="-Op" value="gt">

Days Overdue: <input type="text" name="Amount_Due" value="0">

<input type="submit" name="-Find" value="Find Members >

</form>

The choice of operator can be left to the user as well. To create a
hard-coded selection list of operators, use the following syntax:

Operator: <select name="-Op">

<option>Begins with

<option>Equals

<option>Not Equals

<option>Contains

</select>

Perform Script -Script

Perform Script Before Find -Script.PreFind

Perform Script Before Sort -Script.PreSort

Description: The -Script tags specify a script to run during the pro-
cessing of an action. There are three options as to what order the
action and scripts take place:

-Script Script executes after finding and sorting the records

392 Appendix

-Script.PreSort Script executes after finding the records but before
sorting

-Script.PreFind Script executes prior to both the find and sort

Only scripts that are in the database specified by the -DB tag can be
executed. If execution of a script causes the found set to change, the
new found set is the one that is returned to the user.

The reply format file will not be generated until all scripts have
finished. Multiple scripts can be specified simply by putting multiple
tags on the same page. They will be executed in the order that they
appear in the HTML document.

Scripts should be used sparingly (when at all) in web-based solu-
tions. This is particularly the case in heavy traffic sites. Since
FileMaker is not multithreaded, no other requests will be processed
while a script is running.

Example: In an embedded URL:

<a href="FMPro?-DB=Registration.fp5&-Format=menu.html&

-Script.Prefind=Export+Registrants&-FindAll">Export this set of

registrants

When clicked, this link would run the Export Registrants script in the
Registrants database, perform a find all in same, and return the user to
the menu.html page.

The following form specifies a script to run every time a new
record is added to a database:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Purchase_Order.fp5">

<input type="hidden" name="-Lay" value="WebAdd">

<input type="hidden" name="-Format" value="AddReply.html">

<input type="hidden" name="-Script" value="Verify Data">

.... user inputs

<input type="submit" name="-New" value="Submit this PO Request">

</form>

Record ID -RecID

Description: The -RecID tag specifies the record to be used for certain
actions. It points not to a field in the database, but rather to File-
Maker’s internal serial number for records. -RecID is a required tag for
updating, duplicating, and deleting records.

CDML Reference Guide 393

A
p
p
e
n
d
ix

Normally, the -RecID will be set to the [FMP-CurrentRecID],
which is a replacement tag that returns this internal serial number.

Example: In an embedded URL:

<a href="FMPro?-DB=OrderItem.fp5&-Format=OrderDetail.html&

-RecID=[FMP-CurrentRecID]&-Delete">Delete this item

To do the same in a form:

form action="FMPro" method="post">

<input type="hidden" name="-DB" value="OrderItem.fp5">

<input type="hidden" name="-Format" value="OrderDetail.html">

<input type="hidden" name="-RecID" value="[FMP-CurrentRecID]">

<input type="submit" name="-Delete" value="Delete this item">

</form>

Skip Records -Skip

Description: The -Skip tag is used to indicate how many records to
skip when performing a search. It’s most often used in conjunction
with the -Max tag to jump forward or backward through a found set.
The -Skip value must be between 0 (the default) and 214749367 (the
maximum number of records in a FileMaker database), or it can be
“All.” When the value is “All,” or if the value exceeds the number of
records in the found set, the last record is displayed. Skipping records
does not change the found set nor the active record in FileMaker.

-Skip is specified on the search page as either an embedded URL
or as an input tag in a form. Most often it will be a hidden tag, though it
can certainly be turned into a user selection. The order of the tags in
either case is not relevant.

The Link Forward and Link Previous tags are shortcuts for skip-
ping records while browsing through a found set.

Example: As an embedded URL:

<a href="FMPro?-DB=Employee.fp5&-Lay=WebSearch&-Format=

SearchReply.html&-Max=20&-Skip=40&-SortField=EmpID&-FindAll">Goto
Page 3 of Employee List

This would create a hyperlink that would perform a FindAll action in
the Employee.fp5 database, sort the records by EmpID, skip the first
40 records in the found set, and then return a set of the next 20
records.

394 Appendix

To do the same in a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Employee.fp5">

<input type="hidden" name="-Lay" value="WebSearch">

<input type="hidden" name="-Format" value="SearchReply.html">

<input type="hidden" name="-Skip" value="40">

<input type="hidden" name="-Max" value="20">

<input type="hidden" name="-SortField" value="EmpID">

<input type="submit" name="-FindAll" value="Goto Page 3 of

Employee List">

</form>

Sort Field -SortField

Sort Order -SortOrder

Description: -SortField and -SortOrder are used on search pages to
specify the sort to perform on the resulting set of records. -SortOrder
is optional and defaults to Ascending. Additionally, multiple sort fields
can be specified—they are processed in the order they occur in the
HTML. The -SortOrder tag must come immediately after the
-SortField that it modifies.

-SortOrder can be defined as Ascending, Descending, or Custom
according to a value list. Custom sorts either use the value list associ-
ated with the field on the layout, or the value list to be used can be
specified by name, like Custom=StatusList.

Example: In an embedded URL:

<a href="FMPro?-DB=movies.fp5&-Lay=WebSearch&-Format=

hitlist.html&-SortField=Title&-SortOrder=Ascend&-FindAll">Find All,

sort by Title.

In a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="movies.fp5">

<input type="hidden" name="-Format" value="hitlist.html">

<input type="hidden" name="-SortField" value="Date">

<input type="hidden" name="-SortOrder" value="Descending">

<input type="hidden" name="-SortField" value="Title">

<input type="hidden" name="-SortOrder" value="Ascending">

<input type="submit" name="-FindAll" value="Sort by Color">

</form>

CDML Reference Guide 395

A
p
p
e
n
d
ix

Subject for Mail -MailSub

See E-mail

To Address for E-mail -MailTo

See E-mail

Token -Token

Description: A token is nothing more than a temporary variable that
you can use to pass data from one format file to another without stor-
ing it in the database. Unlike cookies, tokens don’t require the consent
of the user to store; they are stored by the CGI and don’t persist from
visit to visit to a site.

Tokens are set using the -Token tag, and they are retrieved using
the [FMP-CurrentToken] tag. To continue to pass along a token stored
on a previous page, include a hidden input (or name-value pair) that
sets -Token=[FMP-CurrentToken]. The value of a token can also be
used as an argument in conditional statements.

A token will typically be set to the value of a field from a database,
a user-entered value, or a record ID (using [FMP-CurrentRecID]). The
maximum length for a token is 255 characters.

One common use of tokens is to store the order ID in a shopping
cart solution. Typically, a new record will be created as a user enters
the site. On the first response page, a token will be set to the
[FMP-CurrentRecID] or the [Field: Order ID]. For further examples of
this implementation of tokens, refer to the example shopping cart solu-
tion that comes with FileMaker.

Example: In an embedded URL:

<a href="FMPro?-DB=OrderItems.fp5&-Lay=Web&-Format=ItemList.html&

-Token=[Field: OrderID]&OrderID=[Field: OrderID]&-Find">Go to

Related Records

This code would be used to “jump” to a set of related records and
could be used on a detail or hit list page. In this case, assume that
you’re in an Order database and you want a link to display the related
records as a hit list. The URL above will perform a find in the related
database for order items with the current OrderID, and it sets the
OrderID into a token so that on a later page there is something that
you can use to find the correct order again. Since the user might want

396 Appendix

to delete order items, relying on the OrderID of the order items is
unreliable.

To do the same with a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="OrderItems.fp5">

<input type="hidden" name="-Lay" value="Web">

<input type="hidden" name="-Format" value="ItemList.html">

<input type="hidden" name="-Token" value="[Field: OrderID]">

<input type="hidden" name="OrderID" value="[Field: OrderID]">

<input type="submit" name="-Find" value="Go to Related Records">

</form>

Replacement Tags

Client Address [FMP-ClientAddress]

Description: [FMP-ClientAddress] is a replacement tag that returns
the current user’s domain address if domain name lookups are enabled
in the web server or the user’s IP address if it’s not. When used in
conditional statements, the syntax changes slightly to just
ClientAddress.

Example: As a replacement tag:

Client Address is: [FMP-ClientAddress]

. . .would return:

Client Address is: fmpro.com

In a conditional statement:

[FMP-If: ClientAddress .eq. fmpro.com]

<p>Only users from the fmpro.com domain can access this

site.</p>

[/FMP-If]

Client IP Address [FMP-ClientIP]

Description: [FMP-ClientIP] is a replacement tag that returns the cur-
rent user’s IP address. In a conditional statement, the syntax is simply
ClientIP. Wildcards can be used for sections of the IP address, and mul-
tiple IPs can be specified, separated by commas.

Example: As a replacement tag:

Client IP is: [FMP-ClientIP]

CDML Reference Guide 397

A
p
p
e
n
d
ix

. . .would return:

Client IP is: 248.231.25.84

In a conditional statement:

[FMP-If: ClientIP .eq. 248.231.*, 248.230.*]

<p>You must be from either the 231 or 230 subnet. Hi there!</p>

[/FMP-If]

Client Password [FMP-ClientPassword]

Description: When you implement security, users will be prompted by
HTTP basic authentication to enter a username and password. [FMP-
ClientPassword] is a replacement tag that returns the user’s entry. It’s
probably most useful in conditional statements, where its syntax is
ClientPassword.

Example: As a replacement tag:

The Password you entered is: [FMP-ClientPassword]

. . .would return:

The Password you entered is: abracadabra

In a conditional statement:

[FMP-If: ClientPassword .neq. abracadabra]

<p>You haven't entered the secret password correctly.</p>

[FMP-Else]

<p>Welcome!</p>

[/FMP-If]

Client Type [FMP-ClientType]

Description: [FMP-ClientType] returns information about the type of
browser being used to view your page. Again, it’s not terribly useful as
a straight replacement tag, but consider using it in conditional state-
ments to customize your site for certain browsers or platforms. In
conditional statements, the syntax is ClientType.

The following are examples of what is returned for different types
of browsers:

� Mozilla 1.3 (Mac)—Mozilla/5.0 (Macintosh; U; PPC Mac OS X;
en-US; rv:1.3a)

� Mozilla 1.3 (PC)—Mozilla/5.0 (Windows; U; Windows NT 5.1;
en-US; rv:1.3)

398 Appendix

� Netscape 4.76 (Mac)—Mozilla/4.76 (Macintosh; I; PPC)

� Netscape 4.76 (Windows)—Mozilla/4.76 [en] (Win98; U; Windows
NT 5.0)

� Netscape 7 (Mac)—Mozilla/5.0 (Macintosh; U; PPC Mac OS X;
en-US; rv:1.0.1)

� Netscape 7 (PC)—Mozilla/5.0 (Windows; U; Windows NT 5.1;
en-US; rv:1.0rc2)

� Explorer 5.22 (Mac)—Mozilla/4.0 (compatible; MSIE 5.22;
Mac_PowerPC)

� Explorer 5.5 (PC)—Mozilla/4.0 (compatible; MSIE 5.5; AOL 8.0;
Windows NT 5.0)

� Explorer 6 (PC)—Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.0; T312461)

For an exhaustive list of browser name strings, see http://
www.pgts.com.au/pgtsj/pgtsj0208c.html.

Example: As a replacement tag:

Your browser type is: [FMP-ClientType]

. . .would return:

Your browser type is: Mozilla/3.0 (Macintosh; I; PPC)

In conditional statements, since the exact string that gets returned dif-
fers slightly from version to version, using the contains operator (.cn.)
is likely a more useful comparison than an equals operator.

[FMP-IF: ClientType .cn. Mac]

<p>You're using a Mac</p>

[FMP-Else]

[FMP-IF: ClientType .cn. Win]

<p>You're using a Windows machine, n'est ce pas?</p>

[/FMP-IF]

[/FMP-IF]

Client User Name [FMP-ClientUserName]

Description: Similar to the [FMP-ClientPassword] tag, [FMP-Client-
UserName] returns the name that the user entered if he was prompted
by HTTP basic authentication. The syntax in conditional statements is
ClientUserName.

Example: As a replacement tag:

Your Username is: [FMP-ClientUserName]

CDML Reference Guide 399

A
p
p
e
n
d
ix

. . .would return:

Your Username is: Fred

In a conditional statement:

[FMP-If: ClientUserName .eq. Fred]

<p>Howdy Fred! This section is just for you!</p>

[/FMP-If]

Content MIME Type [FMP-ContentMIMEType]

Syntax: [FMP-ContentMIMEType: Mime Type]

Description: MIME stands for Multipurpose Internet Mail Extension;
it specifies information about the type of document being transmitted.
Now referred to as Internet Media Types, MIME extensions allow doc-
uments to contain things like character sets other than ASCII, images,
audio or video messages, or even binary files.

When an HTTP Server sends information to a client, it includes
the MIME type in the header to inform the client what type of data will
be following the header. The client then uses this information to deter-
mine how to handle the incoming data and whether it needs to find a
movie player or image viewer. The client’s browser stores these
mappings. With Netscape, for instance, go to General Preferences>
Helpers to see how the browser is configured to handle MIME
encoded documents.

The [FMP-ContentMimeType] tag allows the MIME type of a doc-
ument to be specified. The default MIME type is text/html. Even
though this is a replacement tag, nothing will be actually substituted.

Example: [FMP-ContentMIMEType: text/plain]

Cookie [FMP-Cookie]

Description: [FMP-Cookie: COOKIE_NAME] is used to retrieve the
value of cookies set in the user’s browser. (See [FMP-SetCookie] for a
complete description of the function and use of cookies.) When used in
conditional statements, the syntax is CurrentCookie:COOKIE_NAME.
Both [FMP-Cookie] and [FMP-SetCookie] are replacement tags and as
such can only be used on dynamic format files. Keep this in mind if
you’re thinking about setting or retrieving cookies from your default
page, which is generally a static page.

400 Appendix

Example: To set the date of a person’s visit to your site into the cookie
LastVisitDate and subsequently retrieve this value, you would need to
do the following:
1. Create an unstored calculation (date result) in your database called

CurrentDate.

CurrentDate=Status(CurrentDate)

2. Set the cookie at some point during the user’s visit. The Expires
parameter can be set to anything you wish.

[FMP-SetCookie: LastVisitDate=FMP-Field:CurrentDate, Expires=200000]

3. Use the [FMP-Cookie] tag to retrieve the cookie during the user’s
next visit.

<p>The last day you visited our site was [FMP-Cookie:

LastVisitDate]</p>

This would be returned to the user as:

The last day you visited our site was 6/6/98.

Current Action [FMP-CurrentAction]

Syntax: [FMP-CurrentAction: Encoding]

The Encoding parameter is optional and can either be:

� HTML (default)—Performs HTML encoding

� Display—Displays the results in the language specified in the con-
figuration of the Web Companion

Description: [FMP-CurrentAction] will be replaced by the name of the
action that was performed to arrive at the current page. For instance, if
you were to place this tag on a search reply page, it would return
“find.” Often, there will be multiple ways of getting to a page, and this
tag allows you to customize the page, depending on the route taken.

The syntax in conditional statements is CurrentAction.

Example: As a replacement tag:

The Action you did to get here was: [FMP-ClientAction]

. . .would return:

The Action you did to get here was: edit

If you change the configuration of the Web Companion to use German,
then:

The Action you did to get here was: [FMP-ClientAction: Display]

CDML Reference Guide 401

A
p
p
e
n
d
ix

. . .would return:

The Action you did to get here was: Suchen

In a conditional statement:

[FMP-If: ClientAction .eq. edit]

<p>The database has been updated. Thank you!</p>

[FMP-If: ClientAction .eq. find]

<p>Here is the record you requested.</p>

[/FMP-If]

[/FMP-If]

Current Database [FMP-CurrentDatabase]

Description: [FMP-CurrentDatabase] is a replacement tag that returns
the name of the database that was processed to return the current
page. It’s most helpful during the development of a site to help track
down errors. The syntax in conditional statements is CurrentDatabase.

Example: As a replacement tag:

You just did a find in the [FMP-CurrentDatabase] database

. . .would return:

You just did a find in the Employee.fp5 database

In a conditional statement:

[FMP-If: CurrentDatabase .neq. Employee.fp5]

<p>Something's wrong. The find used the wrong database!</p>

[/FMP-If]

Current Date [FMP-CurrentDate]

Syntax: [FMP-CurrentDate: Format]

Format is optional and can either be Short (default), Abbrev, or Long:

� Short—Short date format (6/1/98)

� Abbrev—Abbreviated date format (Mon, Jun 1, 1998)

� Long—Full date format (Monday, June 1, 1998)

Description: [FMP-CurrentDate] returns the current date as set on the
web server. This tag is often used in conditional statements, where its
syntax is CurrentDate, to customize a site for particular days, like the
fourth of July or New Year’s Eve. The date can be specified in any of
the above formats in conditional statements.

402 Appendix

Example: As a replacement tag:

Today is [FMP-CurrentDate: Long]

. . .would return:

Today is Monday, June 1, 1998

In a conditional statement:

[FMP-If: CurrentDate .cn. 7/4]

<p>Happy 4th of July!</p>

[/FMP-If]

Current Day [FMP-CurrentDay]

Syntax: [FMP-CurrentDay: Format]

Format is optional and can either be Short (default) or Long:

� Short—Short day name (Mon)

� Long—Full day format (Monday)

Description: [FMP-CurrentDay] returns the name of the current day of
the week, as set on the web server. Similar to the [FMP-CurrentDate]
tag, it’s often found in conditional statements, where its syntax is
CurrentDay, to dynamically modify a web page.

Example: As a replacement tag:

Today is [FMP-CurrentDay: Long]

. . .would return:

Today is Monday

In a conditional statement:

[FMP-If: CurrentDay .eq. Friday]

<p>Don't forget to get your timecards in by the end of the

day!</p>

[/FMP-If]

Current Error [FMP-CurrentError]

Description: [FMP-CurrentError] returns the error number for the
current action. The error numbers are the same as those returned by
the Status(CurrentError) function in FileMaker. Usually, this tag is put
on a custom error reply page to give the user more information about
what went wrong. The error reply page can be specified in the search

CDML Reference Guide 403

A
p
p
e
n
d
ix

arguments using the -Error tag. Without this, a default error dialog will
be displayed to the user.

CurrentError can also be used in conditional statements. If there
was no error during the action, [FMP-CurrentError] will return 0.
There is no tag that returns the description of the error.

The list of error codes is below. Codes 100-105 and 500-509 are
among the most often encountered by web users.

-1 Unknown error

0 No error

1 User cancelled action

2 Memory error

3 Command is unavailable (for example, wrong operating
system, wrong mode, etc.)

4 Command is unknown

5 Command is invalid (for example, a Set Field script step
does not have a calculation specified)

100 File is missing

101 Record is missing

102 Field is missing

103 Relation is missing

104 Script is missing

105 Layout is missing

200 Record access is denied

201 Field cannot be modified

202 Field access is denied

203 No records in file to print or password doesn’t allow print
access

204 No access to field(s) in sort order

205 Cannot create new records; import will overwrite existing
data

300 The file is locked or in use

301 Record is in use by another user

302 Script definitions are in use by another user

303 Paper size is in use by another user

304 Password definitions are in use by another user

305 Relationship or value list definitions are locked by another
user

404 Appendix

400 Find criteria is empty

401 No records match the request

402 Not a match field for a lookup

403 Exceeding maximum record limit for demo

404 Sort order is invalid

405 Number of records specified exceeds number of records
that can be omitted

406 Replace/Reserialize criteria is invalid

407 One or both key fields are missing (invalid relation)

408 Specified field has inappropriate data type for this operation

409 Import order is invalid

410 Export order is invalid

411 Cannot perform delete because related records cannot be
deleted

412 Wrong version of FileMaker Pro used to recover file

500 Date value does not meet validation entry options

501 Time value does not meet validation entry options

502 Number value does not meet validation entry options

503 Value in field does not meet range validation entry options

504 Value in field does not meet unique value validation entry
options

505 Value in field failed existing value validation test

506 Value in field is not a member value of the validation entry
option value list

507 Value in field failed calculation test of validation entry
option

508 Value in field failed query value test of validation entry
option

509 Field requires a valid value

510 Related value is empty or unavailable

600 Print error has occurred

601 Combined header and footer exceed one page

602 Body doesn’t fit on a page for current column setup

603 Print connection lost

700 File is of the wrong file type for import

701 Data Access Manager can’t find database extension file

CDML Reference Guide 405

A
p
p
e
n
d
ix

702 The Data Access Manager was unable to open the session

703 The Data Access Manager was unable to open the session;
try later

704 Data Access Manager failed when sending a query

705 Data Access Manager failed when executing a query

706 EPSF file has no preview image

707 Graphic translator cannot be found

708 Can’t import the file or need color computer to import file

709 QuickTime movie import failed

710 Unable to update QuickTime file reference because the
database is read-only

711 Import translator cannot be found

712 XTND version is incompatible

713 Couldn’t initialize the XTND system

714 Insufficient password privileges do not allow the operation

800 Unable to create file on disk

801 Unable to create temporary file on System disk

802 Unable to open file

803 File is single user or host cannot be found

804 File cannot be opened as read-only in its current state

805 File is damaged; use Recover command

806 File cannot be opened with this version of FileMaker Pro

807 File is not a FileMaker Pro file or is severely damaged

808 Cannot open file because of damaged access privileges

809 Disk/volume is full

810 Disk/volume is locked

811 Temporary file cannot be opened as FileMaker Pro file

812 Cannot open the file because it exceeds host capacity

813 Record Synchronization error on network

814 File(s) cannot be opened because maximum number is open

815 Couldn’t open lookup file

816 Unable to convert file

900 General spelling engine error

901 Main spelling dictionary not installed

902 Could not launch the Help system

406 Appendix

903 Command cannot be used in a shared file

Example: As a replacement tag:

The error number is: [FMP-CurrentError]

. . .would return:

The error number is: 501

In a conditional statement:

[FMP-If: CurrentError .gte. 500]

[FMP-If: CurrentError .lte. 509]

<p>One of your entries failed validation. Click Back on

your browser and check your entry.</p>

[/FMP-If]

[/FMP-If]

Current Find [FMP-CurrentFind]

Find Field Item [FMP-FindFieldItem]

Find Operator Item [FMP-FindOpItem]

Find Value Item [FMP-FindValueItem]

Syntax:

[FMP-CurrentFind]

[FMP-FindFieldItem] [FMP-FindOpItem] [FMP-FindValueItem]

[/FMP-CurrentFind]

Description: Everything between the [FMP-CurrentFind] and
[/FMP-CurrentFind] tags is repeated for each find criterion that was
part of the find request that created the current page.

[FMP-FindFieldItem] returns the name of the field used in the find
request. If a search was performed on a related field, the name of the
field will include the relationship (e.g., Contact::First Name)

[FMP-FindOpItem] returns the find operator used for the search.
The find operator is linked to a specific find field. This tag returns the
long description of the operator (e.g., equals) as opposed to the short
version (e.g, eq). The default find operator is begins with.

[FMP-FindValueItem] returns the value that was specified for the
search. Like the find operator, it is linked to a specific Find Field Item.

CDML Reference Guide 407

A
p
p
e
n
d
ix

Example:

The find you just performed was:

[FMP-CurrentFind]

[FMP-FindFieldItem] [FMP-FindOpItem][FMP-FindValueItem]

[/FMP-CurrentFind]

. . .would return:

The find you just performed was:

• Last Name begins with Smith

• Color equals Blue

Current Format File [FMP-CurrentFormat]

Description: [FMP-CurrentFormat] will return the name and relative
path of the current format file. Path will be relative to the Web folder.
As with any replacement tag, keep in mind that this tag can only be
used on a dynamic format file.

Example:

<p>Current file: [FMP-CurrentFormat]

. . .would return:

Current file: tracker/results.html

Current Found Count [FMP-CurrentFoundCount]

Description: Similar to the status function of the same name, [FMP-
CurrentFoundCount] will return the number of records in the found
set. In conditional statements, its syntax is CurrentFoundCount. The
value is determined after the previous action has taken place, so when
it’s placed on a search reply page, it will equal the number of records
found by the search.

Example: As a replacement tag:

Your search found [FMP-CurrentFoundCount] records.

. . .would return:

Your search found 244 records.

In a conditional statement:

[FMP-If: CurrentFoundCount .gt. 1]

<p>Your search found multiple records.</p>

[/FMP-If]

408 Appendix

Current Layout [FMP-CurrentLayout]

Description: As its name suggests, the [FMP-CurrentLayout] tag can
be used to display or test for the name of the layout used during the
processing of the current page. Like the [FMP-CurrentDatabase] tag,
its main use is for troubleshooting as you’re constructing a site.

Example: As a replacement tag:

The action was performed using the [FMP-CurrentLayout] layout.

. . .would return:

The action was performed using the AllFields layout.

In a conditional statement:

[FMP-If: CurrentLayout .ne. AllFields]

<p>The action didn't use the AllFields layout. Something's

amiss!</p>

[/FMP-If]

Current Logical Operator [FMP-CurrentLOP]

Description: [FMP-CurrentLOP] will return the logical operator that
was used to generate the current page. It will either be AND or OR.

Example:

<p>The search was performed using the [FMP-CurrentLOP]

operator.

. . .would return:

The search was performed using the AND operator.

Current Max [FMP-CurrentMax]

Description: This tag can be used on search reply pages to display the
maximum records returned variable (see -Max) that was specified on
the search that generated the current page. If no value was explicitly
set on the search page, [FMP-CurrentMax] will return the default
-Max, which is 25.

If -Max was set to All on the search page, Current Max will return
2147483647, which is the maximum number of records in a FileMaker
database. You can test for this value and return a more user-friendly
reply by the following:

CDML Reference Guide 409

A
p
p
e
n
d
ix

[FMP-If: CurrentMax .eq. 2147483647]

<p>All found records are being displayed.

[fmp-else]

<p>Records displayed in [FMP-CurrentMax] record sets.

[/FMP-If]

Example: On a search page, if you have the following in your form:

<input type="hidden" name="-Max" value="15">

Then on the reply page, [FMP-CurrentMax] can be used as follows:

<p>Click below to see the next [FMP-CurrentMax] records.

This would return:

Click below to see the next 15 records.

Current Modification ID [FMP-CurrentModID]

See the description for the -ModID command parameter.

Current Portal Number [FMP-CurrentPortalRowNumber]

Description: Used inside the [FMP-Portal]. . .[/FMP-Portal] tag pair,
[FMP-CurrentPortalRowNumber] outputs the number of the current
portal row being processed.

Example:

<!-- Add row number in front of each portal row -->

[FMP-Portal:lineitems]

[FMP-CurrentPortalRowNumber]: [FMP-Field:lineitems::name]

[/FMP-Portal]

<!-- After processing it could look like:

1: Red

-->

Current Record Count [FMP-CurrentRecordCount]

Description: [FMP-CurrentRecordCount] returns the total number of
records of a database. More specifically, it returns the record count
from the database that was acted upon to arrive at the current page.
Current Record Count can also be used in conditional statements.

410 Appendix

Example: As a replacement tag:

Your search found [FMP-CurrentFoundCount] records out of

[FMP-CurrentRecordCount] in the database.

. . .would return:

Your search found 244 records out of 894 in the database.

In a conditional statement:

[FMP-If: CurrentRecordCount .eq. 1000]

<p>Congratulations! You've placed the 1000th order and win a

lovely prize.</p>

[/FMP-If]

Current Record ID [FMP-CurrentRecID]

Description: [FMP-CurrentRecID] represents a unique ID number
assigned by FileMaker to each record. The number itself is meaning-
less with respect to the data in the database. It’s the behind-the-scenes
identification for a record. Don’t get this tag confused with any serial-
ized ID fields that you may have in your database.

It’s also a very important and useful CDML tag. You can display its
value as a straight replacement, but more often, [FMP-CurrentRecID]
will be used as an argument in a search string as a way to link to a
particular record without having to rely on the primary key of the
database.

The [FMP-CurrentRecID] tag will be used almost every time you
want to update, duplicate, or delete a record from the database. The
-RecID tag, which is required for all of these actions, will usually be set
to [FMP-CurrentRecID].

Example: In an embedded URL:

<a href="FMPro?-DB=contact.fp5&-Format=DeleteReply.fp5&

-RecID=[FMP-CurrentRecID]&-Delete">Delete this Contact

On a form:

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="contact.fp5">

<input type="hidden" name="-Format" value="DeleteReply.html">

<input type="hidden" name="-RecID" value="[FMP-CurrentRecID]">

<input type="submit" name="-Delete" value="Delete this Contact">

</form>

CDML Reference Guide 411

A
p
p
e
n
d
ix

Current Record Number [FMP-CurrentRecordNumber]

Description: [FMP-CurrentRecordNumber] returns the current
record’s position within the found set. It cannot be used in conditional
statements.

Example:

Displaying record [FMP-CurrentRecordNumber] of [FMP-

CurrentFoundCount] records found.

. . .would return:

Displaying record 5 of 24 records shown.

Current Repeat Number [FMP-CurrentRepeatNumber]

Description: Used inside the [FMP-Repeating]. . .[/FMP-Repeating] tag
pair, [FMP-CurrentRepeatNumber] outputs the number of the current
portal row being processed.

Example:

<!-- Add a number in front of each repetition -->

[FMP-Repeating: extensions]

[FMP-CurrentRepeatNumber]: [FMP-RepeatingItem]

[/FMP-Repeating]

<!-- After processing it could look like:

3: Green

-->

Current Skip Setting [FMP-CurrentSkip]

Description: [FMP-CurrentSkip] returns the -Skip value that was used
to generate the current page. If -Skip was set to all or a number
greater than the size of the found set, then [FMP-CurrentSkip] will be
one less than the current found count.

This tag can be used as the value argument for the -Skip of subse-
quent searches. It can also be used in conditional statements, where its
syntax is simply CurrentSkip.

Example: As a replacement tag:

Records skipped: [FMP-CurrentSkip]

412 Appendix

. . .would return:

Records skipped: 100

As an argument for -Skip in an embedded URL:

<a href="FMPro?-DB=Employee.fp5&-Lay=WebSearch&-Format=

SearchReply.html&-Max=20&-Skip=[FMP-CurrentSkip]&-SortField=

EmpID&-FindAll">Go to Next Page

As an argument for -Skip in a form:

<input type="hidden" name="-Skip" value="[FMP-CurrentSkip]">

In a conditional statement:

[FMP-If: CurrentSkip .eq. 0]

<p>This is the first page of data

[/FMP-If]

Current Sort Order [FMP-CurrentSort]

Sort Field Item [FMP-SortFieldItem]

Sort Order Item [FMP-SortOrderItem]

Description: These tags are used on search reply pages to indicate
what sort criteria were used to process the current page. [FMP-
CurrentSort] is a looping tag, which means that it requires a closing
tag. Everything between the opening and closing tag is repeated for
each sort criteria. [FMP-SortFieldItem] and [FMP-SortOrderItem] are
replaced with the appropriate values, as defined on the search page.

Example:

Sort criteria:

[FMP-CurrentSort]

Field: [FMP-SortFieldItem], Order: [FMP-SortOrderItem]

[/FMP-CurrentSort]

. . .would return:

Sort criteria:

• Field: Activity Date, Order: descend

• Field: Type, Order: ascend

CDML Reference Guide 413

A
p
p
e
n
d
ix

Current Time [FMP-CurrentTime]

Description: [FMP-CurrentTime] returns the current time (as set by
the server, not the client) in either a short or long format. It can be
used in conditional statements—with the syntax CurrentTime—to
make a page more personalized, depending on the time of day.

� Short (default)—7:36 PM

� Long—7:36:24 PM

Example: As a replacement tag:

<p>The current time is [FMP-CurrentTime, long]

. . .would return:

The current time is 6:34:26 PM

In a conditional statement:

[FMP-If: CurrentTime .lt. 12:00 PM]

<p>Good Morning!

[/FMP-Else]

[FMP-If: CurrentTime .lt. 5:00 PM]

<p>Good Afternoon!

[/FMP-Else]

<p>Good Evening!

[/FMP-If]

[/FMP-If]

Current Token [FMP-CurrentToken]

Description: [FMP-CurrentToken] returns the value of the token as set
during the previous action. If no token was set as a parameter for that
action, [FMP-CurrentToken] will be blank. It can also be used as the
left-hand argument in conditional statements where its syntax is
CurrentToken.

Example: As a replacement tag:

<p>The token passed was: [FMP-CurrentToken]

. . .would return:

The token passed was: fred

To continue to pass a previously set token set to the next page, set the
-Token tag to [FMP-CurrentToken]. This must be done to retrieve the
token value on the following page.

414 Appendix

<input type="hidden" name="-Token" value="[FMP-CurrentToken]">

The same holds true for embedded URLs:

<a href="FMPro?-DB=products&-Format=detail.html&-Token=

[FMP-CurrentToken]&ProductID=23&-Search>Click here to go to the

search page

CurrentToken can also be tested in conditional statements. The follow-
ing example tests if the token is empty, which can be useful for
troubleshooting errors.

[FMP-If: CurrentToken .eq.]

No token has been set. What happened?

[/FMP-If]

Else If [FMP-ElseIf]

See [FMP-If]

Field [FMP-Field]

Description: This tag will be replaced with the value from the appropri-
ate field from the database used to generate the current page. It can
also be used as either argument in conditional statements.

Syntax: [FMP-Field: Field_Name, Encoding]

If a layout was specified by the -Lay tag on the previous page, then the
field must be present on that layout. Related fields can also be dis-
played, but the -Lay tag is required.

Encoding can be:

� Raw—No encoding is performed. Use if your fields contain
HTML.

� URL—URL encoding; should be used when field names are used
in URLs, such as anchors and images

� HTML (default)—Performs standard HTML encoding

� Break—Performs standard HTML encoding and replaces soft
returns with breaks (
)

Example: [FMP-Field] is used extensively as a replacement tag in gen-
erating hit lists of records returned. The following is an example of a
table that would be found on a search reply page.

CDML Reference Guide 415

A
p
p
e
n
d
ix

<table border=1 align=center>

<tr>

<th>First Name</th>

<th>Last Name</th>

<th>Phone Number</th>

</tr>

[FMP-Record]

<tr>

<td>[FMP-Field: first_name]</td>

<td>[FMP-Field: last_name]</td>

<td>[FMP-Field: phone_number]</td>

</tr>

[/FMP-Record]

</table>

In an embedded URL:

<a href="FMPro?-DB=Employee.fp5&-Lay=WebSearch&-Format=Detail&Last_

Name=[FMP-Field: Last_Name, URL]&-Find">Find [FMP-Field:Last

Name]

In a form, the [FMP-Field] tag will generally be used both to populate
the value of input fields with data and as a straight replacement tag.

<form action="FMPro" method="post">

<input type="hidden" name="-DB" value="Employee.fp5">

<input type="hidden" name="-Lay" value="WebSearch">

<input type="hidden" name="-Format" value="Detail.html">

Employee ID: [FMP-Field: EmpID]

<input type="text" name="first_name" value="[FMP-Field:

first_name">

<input type="text" name="last_name" value="[FMP-Field:

last_name">

<input type="text" name="phone_number" value="[FMP-Field:

phone_number">

<input type="submit" name="-Edit" value="Update this Record">

</form>

In conditional statements:

[FMP-If: Field:authorization_level .eq. administration]

<p>Click here to get to the secret

admin page!

[/FMP-If]

[FMP-If: Field:HomeTeamScore .gt. Field:AwayTeamScore]

<p>We won!

[FMP-Else]

[FMP-If: Field:HomeTeamScore .eq. Field:AwayTeamScore]

<p>It was a tie

[FMP-Else]

<p>We Lost. Drat

416 Appendix

[/FMP-If]

[/FMP-If]

Field Name [FMP-FieldName]

See [FMP-LayoutFields]

Find Field Item [FMP-FindFieldItem]

See [FMP-CurrentFind]

Find Operator Item [FMP-FindOpItem]

See [FMP-CurrentFind]

Find Value Item [FMP-FindValueItem]

See [FMP-CurrentFind]

Header [FMP-Header]

Description: [FMP-Header] can be used to specify the HTTP header
information for a document. It is a replacement tag (so it can only be
used on pages that are responses of CDML actions), and it requires a
closing tag, [/FMP-Header]. The tag can be placed anywhere in a
document.

The header of an HTTP action can specify such things as the type
of data being transferred, authorizations, cache instructions, and
encoding mechanisms. If you need to learn more about specific header
actions, there are many resources on the web. The Web Developer’s
Virtual Library at http://WDVL.com is a good place to start.

The most common use of the [FMP-Header] tag is to create what
is often referred to as a header redirect, which allows you to perform
multiple CDML actions. That is, the first action calls a page that con-
sists only of a header redirect, and the header redirect performs a
second action that specifies its own response page. An example of this
is given in a moment.

Another interesting use of the [FMP-Header] tag, also demon-
strated here, is to add a command to refresh a document after a certain
time interval. This could be used to cause a session to “time out” after
a period of inactivity. Also, the refresh can be used to create the feel of

CDML Reference Guide 417

A
p
p
e
n
d
ix

a chat room in CDML, where the page being refreshed performs a
search for the latest entries to the chat.

Finally, many header attributes can also be set using META
HTTP-EQUIV tags. For instance, the META tag for refreshing a page
every five seconds would be:

<META HTTP-EQUIV="Refresh" Content = "5">

. . .and the META tag for not allowing caching of a page would be:

<META HTTP-EQUIV="Pragma" Content = "no-cahce">

META tags must appear between the <HEAD> and </HEAD> por-
tion of your HTML document.

Example: To perform a simple header redirect, create a document
called redirect.html that contains only the text below. Then, reference
redirect.html as the format response file (or error response file).

[FMP-Header]

HTTP/1.0 302

Location: http://www.fmpro.com

[/FMP-Header]

Similarly, Location can contain an embedded URL, which would allow
you to perform additional database actions. For instance, in a shopping
cart solution, you might want to be able to update an item and then
return a list of all items in the shopping cart. In the update file, you
would set the -Token equal to the Order Number and specify the -For-
mat file as redirect.html, which would be similar to the following:

[FMP-Header]

HTTP/1.0 302

Location: FMPro?-db=OrderItems.fp5&-Lay=Shop&-Format=

shoppingcart.html&OrderNumber=[FMP-CurrentToken]&-find

[/FMP-Header]

In the example below, a Refresh attribute is set in [FMP-Header],
which would cause a client who has been inactive for more than five
minutes to be taken back to the default page of the site.

[FMP-Header]

HTTP/1.0 302

Refresh: 5;URL=http://www.fmpro.com

[/FMP-Header]

418 Appendix

If [FMP-If]

Else If [FMP-ElseIf]

Description: The [FMP-If] tag, along with the optional [FMP-Else] tag,
allows you to enable or disable the display of different HTML based on
conditions that you specify. Its syntax is as follows:

[FMP-If: LeftSide operator RightSide]

...HTML if condition is true...

[FMP-ElseIf]

...HTML if condition is false...

[/FMP-If]

The [FMP-If] tag contains a logical test, expressed as LeftSide operator

RightSide. Descriptions of these items are as follows.

Left side: The following tags can be used on the left side of an
[FMP-If] test. Note that many of these are based on CDML replace-
ment tags, but the syntax is quite different. This is CDML’s intratag

syntax, meaning that when you, in effect, use a tag inside another tag,
the syntax changes.

Boolean comparisons

CanDelete—Do password privileges allow for deleting records?
CanEdit—Do password privileges allow for editing records?
CanNew—Do password privileges allow creation of new records?
IsSorted—Is the database currently sorted?

Numeric comparisons

CurrentError—Returns the current error number. See the entry
for [FMP-CurrentError] for possible values.
CurrentFoundCount—Returns how many records are in the found
set
CurrentMax—Returns the current -Max value, which describes
how many records should be shown
Current ModID—Returns the current ModID for the current data-
base record (if applicable)
Current RecID—Returns the current RecID for the current data-
base record (if applicable)
CurrentRecordCount—Returns how many records are in the
database
CurrentRecordNumber—Returns the current record number

CDML Reference Guide 419

A
p
p
e
n
d
ix

CurrentSkip—Returns how many records were skipped to the
beginning of the range
RangeEnd—Returns the record number of the last record in the
range
RangeSize—Returns the number of records that were actually
shown in the range
RangeStart—Returns the record number of the first record in the
range

Text comparisons

ClientPassword—Returns the client’s password
ClientType—Returns the type of browser the web user is using
ClientUsername—Returns the client’s username as typed in by
the web user in the authentication dialog box
CurrentAction—Returns the current action (e.g., Delete, New)
CurrentCookie: Cookie Name—Returns the value of the named
cookie
CurrentDatabase—Returns the current database name
CurrentFormat—Returns the name of the current format file
CurrentLayout—Returns the current layout name
CurrentToken—Returns the current token value

Text or numeric comparisons depending on field type

Field: Field Name—Name of a field to compare with

Value list comparisons

ValueListItem—Returns the current value list item

Date/time comparisons

CurrentDate—Returns the current date in short format
CurrentDay—Returns the current day name in short format
CurrentTime—Returns the current time in short format

Address comparisons

ClientAddress—Returns the domain address
ClientIP—Returns the IP address

Operators: The operator specifies how the left side and the right side
should be compared. Unlike operators in many programming lan-
guages, the CDML operators are not single symbols but short strings
of text, as follows:

.eq—equals

.neq—not equal to

.gt—greater than

420 Appendix

.gte—greater than or equal to

.lt—less than

.lte—less than or equal to

.cn—contains

.ncn—does not contain

Right side: In CDML, you’re relatively constrained as to what you can
compare things to. Further, the choices depend on the data type of the
left side of the test. Here are the possibilities:

Boolean comparisons (only with .eq. and .neq. operators)
False
True

Numeric comparisons (only with eq, neq, gt, gte, lt, lte)
Field: Field Name—Name of a field to compare with (should be a
number)
Literal Numeric Value—A number

Text comparisons (all operators allowed)
Field: Field Name—Name of a field to compare with
Literal Value—Any literal text that does not contain a] character
(right square bracket)

Value list comparisons (all operators, except for Checked, which
can only use eq)
Checked—Used with .eq. to test if the value list item should be
checked
Field: Field Name—Name of a field to compare with
Literal Value—Any literal text that does not contain a] character
(right square bracket)

Date/time comparisons (only with eq, neq, gt, gte, lt, lte)
Literal Value—Proper date, day, or time literal in current OS’s
format

Address comparisons (only with eq)
List of Literal Value—List of address or IP numbers with wildcards
if wanted, separated by commas

Notes about literal values:

� If specifying a literal value, FileMaker Pro treats everything
from the end of the operator to the closing right square
bracket (minus leading and trailing blanks) as the comparison
value.

CDML Reference Guide 421

A
p
p
e
n
d
ix

� Don’t enclose literal values in quotes. If you include quotes,
they’re treated as part of the comparison value.

� Literal values are not case sensitive and can include spaces
within text or number values.

Examples: Show information on the current found set:

[FMP-If: CurrentFoundCount .eq. 0]

Sorry, no records were found!

[FMP-Else]

[FMP-CurrentFoundCount] records were found

[/FMP-If]

Check whether the user is permitted to delete records:

[FMP-If: CurrentAction .eq. Delete]

[FMP-If: CanDelete .eq. False]

Sorry, you do not have sufficient privileges to delete this

record!

[/FMP-If]

[/FMP-If]

Customize a greeting based on the user’s address:

[FMP-If: ClientAddress .eq. users.home.cx]

Welcome, Christmas Island user!

[/FMP-If]

Image [FMP-Image]

Description: This tag is the preferred means to display a picture from a
FileMaker container field. When processed, this tag is replaced with a
URL pointing to the specified image.

Syntax: [FMP-Image: Field name]

Examples: Display a picture:

Link to a picture:

Click to view the image

Include [FMP-Include]

Syntax: [FMP-Include: Filename]

Description: The [FMP-Include] tag allows a site to be built in a modu-
lar fashion by specifying a file to insert into the current document. For
instance, if there is a header or navigation bar that needs to appear on

422 Appendix

multiple pages, that code can be moved to its own file and substituted
with an Include tag reference. Updating sites becomes much easier,
since the code is changed in one location and cascades automatically to
all files that reference it.

The file that is included doesn’t need to be a complete HTML doc-
ument. Similarly, the included file can be inserted anywhere in the
current document, even as header information.

The path to the included file is relative to the current document,
so if they are in the same subdirectory, no path should be necessary. If
the path of the action has been changed (to ../FMPro, for instance),
then the path to the file will need to be specified.

Example: Specify general page information, such as background color
or logos, as includes. Modifying the one included document will imme-
diately update the whole site. The include file (let’s call it header.txt)
might look something like this:

<BODY bgcolor="#FFFFFF">

<CENTER>

Then, incorporate this into all of your pages by using an Include tag.
Note that in this example, the <BODY> tag is in the header file and
should therefore be omitted from any pages that include it.

<HTML>

<HEAD>

<TITLE>Search Page</TITLE>

</HEAD>

[FMP-Include: header.txt]

// the rest of the page

</BODY>

</HTML>

Include Field [FMP-IncludeField]

Description: Though similar to [FMP-Include], this tag includes
HTML taken from the specified database field, as opposed to the con-
tents of a named file.

Syntax: [FMP-IncludeField: FieldName]

CDML Reference Guide 423

A
p
p
e
n
d
ix

Examples:

[FMP-If: CurrentTime .lt. 12:00:00]

[FMP-Include: Morning_HTML]

[FMP-Else]

[FMP-Include: Evening_HTML]

[/FMP-If]

Inline Action [FMP-InlineAction]

Description: [FMP-InlineAction] allows for the processing of multiple
database actions within a single target page (format file) rather than
the “classic” CDML programming technique, which only allows one
database action per page (specified by the action parameter in the URL
or the HTML form that caused the page to load).

Each [FMP-InlineAction] tag has its own set of parameters, which
are the same as the parameters that we would pass to CDML via a
URL or a form. This means that we need at least a database name, a
format file, and a database action, but optionally also a layout name and
any of the other possible command parameters. The syntax of these
differs from both the URL and the form syntax; instead, it uses the
CDML intratag syntax that we’ve seen before.

Inside the inline tag pair, all replacement tags will function in the
context of the current inline action. If the inline action were a search,
for example, any [FMP-Record] or [FMP-Field] tags would refer to
whatever found set resulted from the inline search. Outside the inline
tag pair, the original page context would be in effect again.

Syntax: [FMP-InlineAction: intratag command parameters]

Examples: List all invoices for the current customer:

[FMP-InlineAction: -db=Invoice.fp5, -lay=Web, customer_id={field:

customer_id}, -find]

[FMP-Field: invoice_date] [FMP-Field: invoice_amount]

[/FMP-InlineAction]

Log record edits in an audit trail database (this inline would be present
on any page that loaded after a successful edit action):

[FMP-InlineAction: -db=audit_trail.fp5, -lay=web, time=

"{CurrentTime}", date="{CurrentDate}", record_id = {CurrentRecID},

browser="{ClientType}", ip="{ClientIP}", -new]

[/FMP-InlineRequest]

424 Appendix

Send a mail message after a subscription application:

[FMP-InlineAction: -db=application.fp5, -mailto={field:applicant_

email}, -mailfrom=webserver@host.edu,

-mailsub=Application Confirmation, -mailhost=mail.nexus.be,

-mailformat=newuser.txt, -view]

[/FMP-InlineAction]

Layout Fields [FMP-LayoutFields]

Field Name [FMP-FieldName]

Description: These tags are used to display a list of all the fields on a
certain layout. Any text between the [FMP-LayoutFields] and [/FMP-
LayoutFields] tags will be repeated for every field on the layout speci-
fied during the preceding action. [FMP-FieldName], when placed
between these tags, is replaced with the name of the current field.

Any related fields on a layout will also be returned, but a layout
must be specified. If no layout has been specified, then all fields in the
database will be returned (in creation order). Field names of related
fields do not include the name of the relationship. Related fields con-
tained in portals will not be returned by the [FMP-LayoutFields] tag.
Instead, the name of the portal’s relationship is returned.

The order in which fields are listed is based on their position on
the specified layout; they are ordered from topmost field to bottom-
most field.

Two uses of these tags are to provide dynamic pop-up lists for
users to choose sort fields and create search pages where the user can
select the field to find from a pop-up list. The latter of these is demon-
strated below.

Example: To get a simple list of all the fields on a given layout:

[FMP-LayoutFields]

Field: [FMP-FieldName]

[/FMP-LayoutFields]

Following is an entire HTML document that allows a user to select the
field he wishes to search on from a pop-up generated by the [FMP-
LayoutFields] tags. This page needs to be dynamically generated so
that the CGI can query the database for the list of field names. It is the
name of the input field itself that needs to be changed, which requires
the use of JavaScript.

CDML Reference Guide 425

A
p
p
e
n
d
ix

<html>

<head>

<script language="JavaScript">

<!--Hide JavaScript from older browsers-->

function Finder() {

with (document.myForm.foo) {

for (j=0 ; j<options.length ; j++) {

if (options[j].selected == true) {

document.myForm.elements[0].name=options[j].text;

}

}

}

document.myForm.elements[0].value=document.myForm.foobar.value;

document.myForm.foobar.value="";

document.myForm.foo.options[0].selected=true;

}

<!-- Ending Hiding -->

</script>

</head>

<body><center>

<form name="myForm" action="fmpro" method="post">

<input type="hidden" name="" value="">

<input type="hidden" name="-db" value="Contact.fp5">

<input type="hidden" name="-lay" value="web">

<input type="hidden" name="-format" value="reply.html">

<input type="hidden" name="-error" value="error.html">

In the Field: <select name="foo">

<option>

[FMP-LayoutFields]

<option>[FMP-FieldName]

[/FMP-LayoutFields]

</select>

Find records that begin with: <input type="text" name="foobar"

value="">

<input type="submit" name="-Find" value="Search" onClick="Finder()">

</form>

</body>

</html>

When processed, the page above will present the user with a form con-
taining two input fields. The first, called “foo” here, will be a pop-up
menu with a blank option at the top as the default, followed by a list of
all the fields on the web layout of the Contact.fp5 database. For
instance, the list might contain First Name, Last Name, and Favorite

426 Appendix

Color. The second, called “foobar” here, will contain the value that the
user wants to search for. After filling these in, the user clicks the
Search button.

At this point, the onClick event handler kicks in and runs the
JavaScript function “Finder.” The function does four things:
1. It loops through all the options in the pull-down menu to find the

selected one. When it finds it, it sets the name of the first form ele-
ment to that value. The first form element is a hidden text field,
which is actually the one that will be passed to the CGI for per-
forming the search.

2. It sets the value of the first form element to the value of foobar.

3. The value of foobar is cleared so that it won’t show up as a search
request.

4. The first blank option is selected for foo, again, so that this won’t
show up as a search request.

The names foo and foobar can be anything; they don’t need to be fields
in the database. They are simply temporary input fields where the user
can enter his selections. When users submit the form, JavaScript com-
piles the name and value to search for.

It would be easy to extend this example to allow the user to
“dynamically” specify multiple search criteria or select find operators
other than “begins with.”

Link [FMP-Link]

Description: [FMP-Link] gives you a convenient way to reuse some or
all of the command parameters that a particular page was invoked with.
For example, let’s say that you are producing an online catalog, where
users can select a record from a hit list and view the record details.
Rather than have them go back and forth to the hit list each time they
want a new record detail, put Next and Previous buttons on the detail
screen that will take them directly to the next or previous detail. To do
this, you’d like to “reuse” most of their search parameters, possibly
only changing a -Skip value or a record ID.

[FMP-Link] by default will regenerate the current page’s URL in
its entirety. You can also hand [FMP-Link] a series of character codes
that will tell it which components of the URL to leave out. You can
then add your own parameters to the resulting URL. For example, the
code “r” will instruct CDML to leave out the format file section of the
URL, while the code “a” will cause it to omit the action section. So the

CDML Reference Guide 427

A
p
p
e
n
d
ix

command [FMP-Link: ra] will regenerate the current page’s URL,
minus the format file and action parameters. Here’s a full list of possi-
ble character codes. They can be used in any order.

d—Omit database section of the URL
r—Omit format file section of the URL
l—Omit layout section of the URL
s—Omit sort criteria section of the URL
f—Omit find criteria section of the URL
m—Omit max section of the URL
k—Omit skip section of the URL
t—Omit token section of the URL
a—Omit action section of the URL

Syntax: [FMP-Link: character codes]

Examples: Reload a hit list page with a different sort order (this could
be applied to each of the column headers in a hit list to allow the user
to click a column head and resort by that column):

Last Name

Link First [FMP-LinkFirst]

Link Last [FMP-LinkLast]

Link Next [FMP-LinkNext]

Link Previous [FMP-LinkPrevious]

Description: The link tags are used for navigation between sets of
records on a search reply page. Returning large found sets of records
to the web can be time consuming, so splitting the set into more man-
ageable chunks using the -Max tag during the search is usually
advisable. Then, the various link tags are used on the reply page to
navigate to the first, last, next, or previous chunk of records.

When a search results in a found set smaller than the size desig-
nated by the -Max tag, the Web Companion is smart enough to know
not to display the links. Similarly, Link Previous and Link First won’t
appear on the first page of data, nor will Link Last or Link Next appear
on the last page of data.

The Link tags all require a closing tag. Any text (or images)
between the tags becomes the hyperlink to the next page. FileMaker
will actually perform a new search each time the user clicks one of the
links, but it will figure out how many records to skip to display the

428 Appendix

proper set of data. The smaller the set, the quicker the search. All
search and sort criteria will be identical for each subsequent search.

Another potential use of the Link tags is to navigate from record to
record within a found set. To do this, simply set the -Max tag to 1 (so
no more than one record will ever be displayed at a time) and then use
the Link Previous and Link Next tags to move from record to record.

Example:

[FMP-LinkFirst]First set of records[/FMP-LinkFirst]

[FMP-LinkPrevious]Previous set of records[/FMP-LinkPrevious]

[FMP-LinkNext]Next set of records[/FMP-LinkNext]

[FMP-LinkLast]Last set of records[/FMP-LinkLast]

Link to a Record ID [FMP-LinkRecID]

Syntax: [FMP-LinkRecID: Format=Pathname, Layout=Layout Name]

Description: [FMP-LinkRecID] is a replacement tag that returns an
embedded URL that points to a specific record in the database. Its
main use is as a shortcut for putting a detail link on a hit list page. The
same embedded URL that might be constructed manually is con-
structed entirely by the LinkRecID.

The Format and Layout parameters are optional. If they are not
specified, they will default to those used to generate the current page.

The LinkRecID restores any find and sort criteria that were used
to arrive at the current page, even though they will be largely super-
fluous because of the inclusion of the RecID in the search.

Example: In a hit list, use [FMP-LinkRecID] to provide a link to more
detailed information about any given record.

<table border=1>

<tr>

<th>First Name</th>

<th>Last Name</th>

<th> </th>

</tr>

[FMP-Record]

<tr>

<td>[FMP-Field: First_Name]</td>

<td>[FMP-Field: Last_Name]</td>

<td><a href="[FMP-LinkRecID: Format=detail.html, Layout=

WebSearch]More Info</td>

</tr>

[/FMP-Record]

</table>

CDML Reference Guide 429

A
p
p
e
n
d
ix

After processing, the HTML source returned to the user would look
something like the following. The search performed to get to the hit
list, Last_Name begins with “Fred,” returned two records—one for
Fred Flintstone and one for Fred Smith.

<table border=1>

<tr>

<th>First Name</th>

<th>Last Name</th>

<th>Last Name</th>

</tr>

<tr>

<td>Fred</td>

<td>Flintstone</td>

<td><a href="FMPro?-db=contact.fp5&-format=reply.html&-lay=

web&First%5fName=fred&-recid=1&-find">More Info</td>

</tr>

<tr>

<td>Fred</td>

<td>Smith</td>

<td><a href="FMPro?-db=contact.fp5&-format=reply.html&-lay=

web&First%5fName=fred&-recid=6&-find">More Info</td>

</tr>

</table>

Log [FMP-Log]

Description: You can use the [FMP-Log] tag to write information into a
log file. This can be useful for diagnostic or debugging purposes. For
this capability to be enabled, you’ll need to select the check box that
says Information Log File in the Web Companion configuration dialog.

Syntax: [FMP-Log: some text to be written to the log]

Example: [FMP-Log: The welcome page was accessed at {Current-
Time} from IP Address {Client IP}]

Option [FMP-Option]

Description: The [FMP-Option] tag provides a quick and easy way to
dynamically access the contents of a value list for use in a selection
list. All of the values in the list are replaced by <option>Value. This
tag will usually be placed between <select name="FieldName"> and
</select> tags.

430 Appendix

Keep in mind that in order to display value lists derived from the
database, the page must be dynamically generated (likely by the -View
action).

Syntax: [FMP-Option: Field Name, List= Value List Name]

The first parameter, Field Name, specifies the name of the field that
the value list is associated with.

The second parameter, Value List Name, is optional. If omitted, the
default is to use the value list specified for that field on the layout
defined by the preceding -Lay tag.

Example: To create a value list for a selection field:

Favorite Color: <select name="Favorite_Color"><option>[FMP-Option:

Favorite_Color, List=Colors]</select>

The extra <option> tag creates a blank entry at the top of the selec-
tion list. It isn’t required, but if omitted, the first value of the value list
will be the default value.

Portal [FMP-Portal]

Description: The Portal tag allows you to display multiple related
records, like you would with a portal in FileMaker Pro. You must spec-
ify a layout using the -Lay tag on the previous format file, and any
related fields that you want to display must be on that layout. There
doesn’t need to be an actual portal on the layout. Having the related
fields there is all that’s needed.

Everything between the begin and end portal tags will be repeated
for each related record. It is not possible to update portal records.

Syntax:

[FMP-Portal: Relationship_Name]

...some HTML

[/FMP-Portal]

Example: Imagine that you have an Employee file with a related
Equipment file that contains information about hardware issued to that
employee. On the Employee detail page, you’d like to place a portal
displaying the related equipment. You’ve come to the detail page
through a search and subsequent detail link.

<center>

<h3>Equipment Log for: [FMP-Field: Employee_Full_Name]</h3>

<table border=1>

CDML Reference Guide 431

A
p
p
e
n
d
ix

<tr>

<th>Model</th>

<th>Description</th>

</tr>

[FMP-Portal: Equipment_by_Employee_ID]

<tr>

<td>[FMP-Field: Equipment_by_Employee_ID::Model]</td>

<td>[FMP-Field: Equipment_by_Employee_ID::

Description]</td>

</tr>

[/FMP-Portal]

</table>

Range End [FMP-RangeEnd]

Range Size [FMP-RangeSize]

Range Start [FMP-RangeStart]

Description: The Range tags are substitution tags that will display the
First and Last record numbers of a found set. They are used in close
conjunction with the Link and Max tags. [FMP-RangeStart] is the first
record number, and [FMP-RangeEnd] is the last. [FMP-Range Size]
indicates how many records are in the found set. In most cases,
[FMP-RangeSize] will always be the same as the value of [FMP-
CurrentMax], with the exception of partial pages where RangeSize will
be the actual number of records shown (whereas [FMP-CurrentMax] is
still the chunk size).

Example:

<p>Displaying records [FMP-RangeStart] through [FMP-RangeEnd] of

[FMP-CurrentFoundCount] records found.

([FMP-RangeSize] records displayed)

. . .would return:

Displaying records 16 through 30 of 1835 records found

(15 records displayed)

Record [FMP-Record]

Description: Everything between the [FMP-Record] and [/FMP-
Record] tags will be repeated for each record in the found set. Anytime
you want to create a list of records (usually as the result of a search),
you’ll need the [FMP-Record] tag. If a -Max tag has been specified as
part of the search, only that number of records will be displayed at any

432 Appendix

one time. If a -Skip tag has been specified, the search will return
records beginning at the value of the -Skip tag, plus one. See the
entries for -Max and -Skip for more information.

Example: After a successful search, the user will likely be taken to a
hit list of found records. The HTML below uses the [FMP-Record] tag
to format a table of search results.

<table border=1>

<tr><th>Employee ID</th>

<th>Last Name</th>

<th>First Name</th>

<th>Phone Number</th></tr>

[FMP-Record]

<tr><td>[Field: Emp ID]</td>

<td>[Field: Last_Name ID]</td>

<td>[Field: First_Name]</td>

<td>[Field:Phone Number]</td></tr>

[/FMP-Record]

Repeating [FMP-Repeating]

Repeating Item [FMP-RepeatingItem]

Syntax: [FMP-Repeating: FieldName]. . .[FMP-RepeatingItem]. . .
[/FMP-Repeating]

Description: The [FMP-Repeating] tag is used to display and update
data stored in a repeating field within a FileMaker Pro database.
Everything between the [FMP-Repeating] and [/FMP-Repeating] tags
will be repeated the number of times that the repeat is defined to dis-
play on the layout specified during the proceding action. The actual
data contained in the repeating field is obtained by the
[FMP-RepeatingItem] tag.

To add data to repeating fields in new records, however, does not
require the repeating tags. Instead, use multiple instances of <input
type="text" name="FieldName"> on your form, one for each repeti-
tion that you want to set.

Example: Say that you have a repeating field called Keywords, which
was defined to display five occurrences on the preceding layout. Now,
to simply display the contents of the field on a response page, the fol-
lowing HTML could be used:

Keyword List:
[FMP-Repeating: Keywords]

[FMP-RepeatingItem]

[/FMP-Repeating]

CDML Reference Guide 433

A
p
p
e
n
d
ix

To be able to update this same field would require the use of <input>
tags:

Keyword List:
[FMP-Repeating: Keywords]

<input type="text" name="Keywords" value="[FMP-

RepeatingItem]">

[/FMP-Repeating]

The HTML above would need to be part of a <form> to display and
update properly.

Set Cookie [FMP-SetCookie]

Description: Cookies are used by server-side connections (like CGIs)
to store and retrieve information on the client side of the connection.
They can significantly extend the capabilities of web-based
applications.

Cookies are stored by the user’s web browser and are sent to the
server during subsequent visits to a site. Therefore, to set cookies, a
user must have a browser that supports this feature (older versions of
browsers may not), and it must be enabled.

Cookies can be used to store information like a user’s client ID,
the number of times he’s visited your site, and information about his
purchasing habits, shipping preference, and so on. To modify an exist-
ing cookie, simply set it again with the same path and name
parameters as when it was originally set.

[FMP-SetCookie] is a replacement tag (and therefore can only be
used in dynamic format files), but it returns nothing as its value.

If you need more information on cookies than what is presented
here, check out http://home.netscape.com/newsref/std/cookie_
spec.html or one of the dozens of other sites that offer definitions and
examples of cookies.

Syntax: [FMP-SetCookie: CookieName=CookieValue, Expires=
Minutes, Domain=DomainName, Path=Pathname]

Expires, Domain, and Path are optional parameters and can appear in
any order within the tag.

Parameter descriptions:

CookieName: The name of the cookie that you want set. It can either
be straight text or set to the value of a field using Field: FieldName.
The name of the cookie can be anything you want; it doesn’t have to be

434 Appendix

the name of a field in your database. CookieName must be fewer than
1,024 characters.

CookieValue: The value assigned to the cookie. It can either be
straight text or set to the value of a field using Field: FieldName.
CookieValue must be fewer than 1,024 characters.

Expires: The number of minutes until the cookie expires. If this
parameter is not specified, the cookie will expire at the end of the
user’s current session.

Domain: Defines the valid domain to which the browser will pass the
cookie. This ensures that only applications on the specified domain can
access the cookie value. If there is a tail match, the cookie goes
through path matching to see if it should be sent. Tail matching means
that the domain “.fred.com” would match “pudding.fred.com” and
“www.fred.com.” The domain is required to have at least two periods
in it to prevent it from being set to something like “.com.” Only hosts
within the specified domain can set a cookie for that domain. The
default value of the domain is the host name of the server that gener-
ated the cookie response. Finally, the domain must be fewer than 256
characters.

Path: The path attribute specifies the subset of URLs in a domain for
which the coookie is valid. A cookie first must pass domain matching,
and then the pathname of the URL is compared with the path attribute.
If there is a match, the cookie is considered valid and passed to the
server. The path “/fred” would match “/fred/wilma” and “/fredflint-
stone.” If the path is not specified, it will default to the path to
FileMaker Pro. Path must be fewer than 256 characters.

The length of the entire SetCookie tag must be less than 2,048
characters.

Example: As an example, say that you’re selling gourmet food on the
web and wanted to capture the type of food that a customer ordered so
that you could automatically display those items during any subse-
quent visit in the next six months. The user has filled out and submit-
ted an order form in the format file order.html and is then taken to the
format file orderreply.html. To set the cookie, the following would need
to be added to the reply page:

<p>Thank you for your order. A cookie has been set on your local

browser so that the next time you visit our site, we'll immediately

take you to a listing of our [FMP-Field: FoodType].</p>

[FMP-SetCookie: FavoriteFood=Field: FoodType, Expires=259200]

CDML Reference Guide 435

A
p
p
e
n
d
ix

To retrieve the cookie during the user’s next visit, the [FMP-Cookie]
tag would be used.

[FMP-If: CurrentCookie:FavoriteFood .neq.]

<p>Welcome back! Click <a href="FMPro?-DB=products.fp5-Lay=

WebSearch&-Format=hitlist.html&FoodType=[FMP-Cookie:

FavoriteFood]&-Max=10&-Find">here to see our currently

available [FMP-Cookie: FavoriteFood].</p>

[/FMP-If]

The conditional statement used is a Boolean comparison and simply
tests to see if the specified cookie is not empty. If not, the user would
see the following:

Welcome back! Click here to see our currently available Mushrooms.

Sort Field Item [FMP-SortFieldItem]

See [FMP-CurrentSort]

Sort Order Item [FMP-SortOrderItem]

See [FMP-CurrentSort]

Value List [FMP-ValueList]

Value List Checked [FMP-ValueListChecked]

Value List Item [FMP-ValueListItem]

Syntax: [FMP-ValueList: Field Name, List=List Name]

Description: These tags are used to create radio buttons or check
boxes based on a value list from a database. Everything between the
[FMP-ValueList] and [/FMP-ValueList] tags will be repeated for each
member of the specified value list. The [FMP-ValueListItem] tag,
when placed between these tags, will be replaced with the names of
the value list items. Similarly, the [FMP-ValueListChecked] tag will
return either "selected” or nothing, depending on the contents of the
specified record.

List=Listname is an optional parameter. It is not required as long
as the field is formatted to use a value list on the layout that was
specified during the preceding action. For clarity, however, it’s good
practice to always specify the list name explicitly.

The syntax of radio buttons and check boxes may differ slightly,
depending on what type of format file they are contained in. It doesn’t
make any sense, for instance, to use the [FMP-ValueListChecked] field

436 Appendix

on a search or add page, as there is no data available to evaluate yet. It
hurts nothing to include it, but it is completely superfluous. Keep in
mind also that search and add pages need to be dynamically generated
in order to use value lists stored in the database.

Example: In any of the following examples, substitute type="radio" for
type="checkbox" to change the format of the value list. The syntax
otherwise is identical.

To create a check box data entry field on a dynamic search or add
page:

[FMP-ValueList: Favorite_Color, List=Color]

<input type="checkbox" name="Favorite_Color" value="[FMP-

ValueListItem]">[FMP-ValueListItem]

[/FMP-ValueList]

The
 tag at the end of the second line will cause a line break
between values. Omitting it will cause the value list to be displayed on
one line horizontally.

On a response page, include [FMP-ValueListChecked] at the end of
the input tag to display the data already selected.

[FMP-ValueList: Favorite_Color, List=Color]

<input type="checkbox" name="Favorite_Color" value=

"[FMP-ValueListItem]" [FMP-ValueListChecked]>

[FMP-ValueListItem]

[/FMP-ValueList]

After the page is processed by the CGI, the source that’s passed back
to the user would look something like the following. Note especially
how [FMP-ValueListChecked] is interpreted.

<input type="checkbox" name="Favorite_Color" value="Black" >Black

<input type="checkbox" name="Favorite_Color" value="Blue" >Blue

<input type="checkbox" name="Favorite_Color" value="Green"

checked>Green

<input type="checkbox" name="Favorite_Color" value="Pink" >Pink

<input type="checkbox" name="Favorite_Color" value="Red" >Red

<input type="checkbox" name="Favorite_Color" value="White"

checked>White

Value Name Item [FMP-ValueNameItem]

Value Names [FMP-ValueNames]

Syntax: [FMP-ValueNames]. . .[FMP-ValueNameItem]. . .
[/FMP-ValueNames]

CDML Reference Guide 437

A
p
p
e
n
d
ix

Description: Anything between the [FMP-ValueNames] and [/FMP-
ValueNames] tags will be repeated for each value list in the database
that was specified during the preceding action. [FMP-ValueNameItem]
will be replaced with the names of the value lists.

Example: The primary use of these tags would be to give a user a
selection list on a search page for defining a -SortOrder based on a cus-
tom value list.

<select name="-SortOrder">

<option>Ascending

<option>Descending

[FMP-ValueNames]

<option value="Custom=[FMP-ValueNameItem]">

[FMP-ValueNameItem]

[/FMP-ValueNames]

</select>

<select name="-SortOrder">

<option>Ascending

<option>Descending

<option value="Custom=StatusList">Colors

<option value="Custom=Color">Sizes

</select>

438 Appendix

Index

A
Amazon.com, 321-336
Apache, 205

C
calculation fields, 22-23, 28
Cameron, Duncan, 206
catch (error handling), 239
CDML,

“classic” programming style, 163,
188, 196

compared to Lasso, 214, 224
cookies and, 200-202
inlines, 26, 188-190
overview, 12, 157-158, 161
planning a site, 168
portals and, 182-183
sending e-mail, 196-200
submitting forms, 170
tokens and, 180-181, 192-193
URL requests, 160, 164, 166
using inline actions, 188-191

CDML commands
-db, 164, 214, 382
-dbClose, 373
-dbOpen, 374
-delete, 198, 375
-dup, 376
-edit, 376
-errNum, 385
-error, 170-172, 386
-errorFmtField, 385
-find, 51, 166, 171, 186, 193, 379
-findall, 51, 162, 193, 377
-findany, 378
FMP-ClientAddress, 397
FMP-ClientIP, 397
FMP-ClientPassword, 398
FMP-ClientType, 398
FMP-ClientUserName, 399
FMP-ContentMIMEType, 400

FMP-Cookie, 400
FMP-CurrentAction, 186, 401
FMP-CurrentDatabase, 402
FMP-CurrentDate, 159, 162,

402-403
FMP-CurrentDay, 403
FMP-CurrentError, 403
FMP-CurrentFind, 407
FMP-CurrentFormat, 224, 408
FMP-CurrentFoundCount, 173,

214, 408
FMP-CurrentLayout, 409
FMP-CurrentLOP, 409
FMP-CurrentMax, 409
FMP-CurrentModID, 390
FMP-CurrentPortalRowNumber,

410
FMP-CurrentRecID, 199, 411
FMP-CurrentRecordCount, 410
FMP-CurrentRecordNumber, 412
FMP-CurrentRepeatNumber, 412
FMP-CurrentSkip, 412
FMP-CurrentSort, 413
FMP-CurrentTime, 159, 414
FMP-CurrentToken, 414
FMP-ElseIf, 419
FMP-Field, 161-163, 168, 173, 185,

415
FMP-FieldName, 425
FMP-FindFieldItem, 407
FMP-FindOpItem, 407
FMP-FindValueItem, 407
FMP-Header, 417
FMP-If, 181, 194, 419
FMP-Image, 181-182, 422
FMP-Include, 194, 422
FMP-IncludeField, 423
FMP-InlineAction, 189-190, 424
FMP-LayoutFields, 425
FMP-Link, 427
FMP-LinkFirst, 176, 428

439

FMP-LinkLast, 176, 428
FMP-LinkNext, 176, 428
FMP-LinkPrevious, 176, 428
FMP-LinkRecID, 429
FMP-Log, 39, 430
FMP-Option, 430
FMP-Portal, 185, 431
FMP-RangeEnd, 432
FMP-RangeSize, 432
FMP-RangeStart, 432
FMP-Record, 158, 162-163,

167-168, 173, 191, 432
FMP-Repeating, 433
FMP-RepeatingItem, 433
FMP-SetCookie, 434
FMP-SortFieldItem, 413, 436
FMP-SortOrderItem, 413, 436
FMP-ValueList, 436
FMP-ValueListChecked, 436
FMP-ValueListItem, 436
FMP-ValueNameItem, 437
FMP-ValueNames, 437
-fmtField, 386
-format, 164, 172, 387
-img, 380
-lay, 164, 214, 388
-lop, 389
-mailFmtField, 383
-mailFormat, 383
-mailFrom, 383
-mailHost, 383
-mailSub, 383
-mailTo, 383
-max, 164, 166, 174-177, 180, 390
-modID, 390
-new, 380
-op, 50, 391
-recID, 52, 98, 393
-script, 392
-skip, 164, 176, 180, 394
-sortField, 176, 178, 395
-SortOrder, 176, 178
-token, 396
-view, 160, 192, 381

cdml_format_files directory, 56
Citrix MetaFrame, 18
client-server architecture, 3
Common Gateway Interface (CGI), 36, 57
cookies, 254-255

CORBA, 342
CSS (cascading style sheets), 23, 86
CURL, 290
Custom Web Publishing, 12, 31-32

layouts, 29
use of scripts, 24

D
DB2, 363
-dbClose, 39, 55-56
-dbOpen, 39, 55-56
DCOM, 342
distributed computing, 342
Don’t Search, 494
Don’t Show, 49
DTD (Document Type Definition), 63, 67

E
Eckel, Bruce, 249
Exact Delete, 52
Exact Search, 50-51
Exact Update, 51-52

F
FileMaker,

access privileges, 43, 45-46
and XML, 61, 71
configuring as web host, 31, 33
record id, 225
XML Export, 71-72, 77, 97-98
XML Import, 319-371

FileMaker Pro Unlimited, 9-10, 33-34
and Web Server Connector, 57-59

FileMaker Server, 9, 34-35
configuration with a RAIC, 59

FMPDSO grammar, 71-72, 74, 79-80, 99
FMPXML grammar, 73-74, 98
FX,

class, 363, 367-371
creating an instance, 284
displaying container fields, 312
overview, 279, 282-283
returned data array, 305-308

FX functions
AddDBParam(), 286-287
AddSortParam(), 288
FMDBClose(), 295
FMDBNames(), 294
FMDBOpen(), 294

Index

440

FMDelete(), 292
FMEdit(), 292
FMFind(), 290
FMFindAll(), 291
FMFindAny(), 291
FMLayoutNames(), 294
FMNew(), 293
FMPostQuery(), 289
FMSkipRecords(), 289
FMView(), 293
SetDBData(), 285
SetDBPassword(), 286

G
global fields, 22-24
Google, 347-362

H
HTML, 4, 7

element names, 237
history, 64
radio buttons, 247
SELECT, 244, 247

HTTP, 3, 7, 57
GET, 171-172
PUT, 171-172

hybrid projects, 19

I
IBM, 363
Instant Web Publishing, 11, 31-32, 126

building links to external sites, 155
built-in home page, 38, 127
configuration, 127
enabling, 37
field formatting, 137
hiding the frame, 140
layouts, 29
merge fields, 137
planning a site, 142-143
portals, 27, 137
project planning, 16
scripting in, 24, 137-139, 145-153
security, 40
setting up views, 133-135
styles, 132, 133
using a custom home page, 128-130
using a layout as a home page, 141
using container fields, 136

using value lists, 136-137
validation, 154

Internet Information Server, 205

J
Java-RMI, 342
JavaScript, 23, 255
JDBC, 13, 363
JSP, 13

L
Lasso, 12, 205-259

syntax (local variable reference),
247

$ syntax (variable reference), 214
arrays, 224, 242-244
“classic” programming style, 219,

223, 228
configuration and setup, 206-210
custom tags, 244-248
custom types, 248-252
-Database, 212, 214, 224
error handling, 216-219, 238-242
error response pages, 217-219
inlines, 26, 219, 223-225, 228, 238
intratag syntax, 225
-KeyValue, 228
LassoApps, 206
-Layout, 212, 214, 224
maps, 242-244
named inlines, 223, 233, 237,

251-252
Pair (in relation to Map), 244
permissions, 209-210
-ResponseNoResultsError, 219
-Session, 254
sessions in, 253-259
SQL database sources, 228
value lists in, 243-244
variables, 214-216

Lasso actions
-Add, 238
-Delete, 225
-FindAll, 223
-nothing, 228
-Search, 223

Lasso operators
% operator (modulus), 215
|| operator (logical OR), 219

Index

441

+ operator (addition), 215
++ operator, (increment), 214

Lasso tags
[Action_Param], 224, 229
[Action_Params], 224, 232, 238
[Date_GetCurrentDate], 211
[Define_Tag], 245
[Define_Type], 251
[Else], 215
[Error_CurrentError], 238
[Error_FileNotFound], 238
[Error_NoError], 238
[Fail], 239-240
[FailIf], 240
[Field], 214
[Found_Count], 214
[Handle], 238, 239
[If], 215
[Include], 252
[Keyfield_Value], 228
[Lasso_CurrentAction], 219
[Local], 246
[Math_Add], 215
[Math_Div], 215
[Math_Mod], 215
[Protect], 238, 239
[Records], 216
[Records], with named inline, 252
[Select], 245
[Session_AddVar], 258
[Session_ID], 255
[Session_Start], 253, 254, 255
[Variable] or [Var], 214

layouts, 27-29
loose coupling, 5

M
middleware, 5-8, 22-24
MySQL, 205, 253, 259

N
naming conventions, 19-22
NuSOAP (PHP library), 348, 353, 356, 361

O
ODBC, 13, 363
Oracle, 338
OS/400, 363

P
PHP, 12, 261-262

arrays, 268-270
coding principles, 265-266
conditional statements, 271, 299
connecting to the Web Companion,

279- 281
creating functions, 275-276
for loops, 273
foreach loop, 275, 309
hashing, 342
installation and configuration, 262
NuSOAP library, 348, 353, 356, 361
object-oriented programming,

276-278
project planning, 17
session_start, 253
sessions, 299-303
SOAP and, 347-362
variables, 266, 267

PHP arrays
$_GET, 298, 304, 357
$_POST, 298, 357
$_SERVER['REQUEST_

METHOD'], 358
$HTTP_GET_VARS, 357
$HTTP_POST_VARS, 357

PHP functions
date(), 305-306, 339
getdate(), 264, 305
include(), 270
md5(), 344
mktime(), 305

piecemeal projects, 16
portals, 25-27
PostgreSQL, 206, 364-371

R
RAIC (Redundant Array of Inexpensive

Computers), 57-59
relationships, 25-26
RTF (Rich Text Format), 75

S
SAP, 338
scripts, web use, 24-25, 43-44
search operators, 50
session, 7, 253

variables, 24

Index

442

SGML (Standard Generalized Markup
Language), 63, 64

SOAP (Simple Object Access Protocol),
338, 346-362

SQL database language, 369
SSL (Secure Sockets Layer), 57
static web publishing, 4, 11
summary fields, 22-23, 28
Sun-RPC, 342

T
Tennison, Jeni, 106
try (error handling), 239

V
variables, scoping, 246

W
Web Companion, 5, 8-10, 23, 34

Access Log, 39
All Databases, 53
All Users, 48-49, 53
as a web server, 159
configuring, 35, 37
enabling, 36-37
Error Log, 39
external functions, 44, 155
Information Log, 39
Read Only, 50
remote administration, 39, 53-55
security, 36, 40-56
sharing database tables, 41
specifying layouts, 27-28
TCP/IP port, 40, 207
using CDML, 159-161
XML output, 68

Web Security Databases, 39-40, 46-55
Web Server Connector, 34, 57-58
web services, 75, 319-371

Amazon.com and, 321-336
finding, 337
Google and, 347-362

Web-ClientIP, 44
web-only project, 18
WebPortal, 128-130
WebSTAR, 205
wholesale migration projects, 17
World Wide Web Consortium, 75

WSDL (Web Services Definition
Language), 348-353, 356

X
XML (Extensible Markup Language), 13,

61-62
attributes, 69
document structure, 65-67, 70-71
elements, 68
grammars, 71-73
history, 63-64
root element, 70, 78
source and result trees, 71
transformation, 67, 75
use with Web Companion, 68
validating, 67
with FileMaker, 71

XML Export, 11, 71-72, 77, 97-98
XML Import, 319-371
XML-RPC, 338
XPath, 75, 81, 94, 99-101, 103-104, 109,

328
calculation functions, 95
predicates, 103

XPath axes, 99-103
/ (child) axis, 81, 101
// (descendant) axis, 101
@ (attribute) axis, 81, 102-103, 328
descendant-or-self axis, 101
preceding-sibling axis, 101
(self) axis, 101

XPath functions
concat(), 113
count(), 95-97, 102, 110
name(), 82, 95
position(), 98-99, 333
sum(), 95-97

XSL (Extensible Stylesheet Language),
11, 13, 61, 75-76 see also XPath

context, 98, 106
displaying hierarchical data,

116-119
generate_id() function, 110, 115
HTML transformation, 85-93
key() function, 106, 109
Muenchian Method, 106
named templates, 117-119
node sets, 95
RTF transformation, 121-124

Index

443

text transformation, 77-84
XSL-FO (XSL Formatting Objects), 75
XSL tags

xsl:apply-templates, 79-80, 83-84,
86, 94, 112

xsl:choose, 120
xsl:for-each, 107, 111-112, 115,

118-119, 332
xsl:if, 98-99
xsl:key, 106-107, 109
xsl:otherwise, 120

xsl:output, 77
xsl:param, 119
xsl:sort, 107, 112
xsl:stylesheet, 77
xsl:template, 77-78, 93
xsl:text, 78, 81-82, 94, 333
xsl:value-of, 81-82, 94, 100
xsl:variable, 115, 332
xsl:when, 120

XSLT (XSL Transformations), 67, 76

Index

444

FileMaker Pro 6
Developer’s Guide to
XML/XSL
1-55622-043-X • $49.95
6 x 9 • 416 pp.

Learn FileMaker Pro 6
1-55622-974-7 • $39.95
6 x 9 • 504 pp.

C++Builder 6
Developer’s Guide
1-55622-960-7 • $49.95
6 x 9 • 528 pp.

Learn Microsoft Excel
2002 VBA Programming
with XML and ASP
1-55622-761-2 • $49.95
6 x 9 • 736 pp.

Visit us online at www.wordware.com for more
information. Use the following coupon code for online specials:

fmp-8600

Lasso Professional 5
Developer’s Guide
1-55622-961-5 • $54.95
7½ x 9¼ • 496 pp.

Looking for more?
Check out Wordware’s market-leading libraries

featuring the following current releases.

Advanced FileMaker Pro 5.5
Techniques for Developers
1-55622-859-7 • $59.95
7½ x 9¼ • 392 pp.

Visit us online at www.wordware.com for more
information. Use the following coupon code for online specials:

excel-7612

Learn AutoCAD LT 2002

1-55622-907-0 • $32.95
7½ x 9¼ • 396 pp.

Learn to Diagram with
Microsoft Visio 2002

1-55622-866-X • $29.95
7½ x 9¼ • 256 pp.

Learn Peachtree
Accounting

1-55622-710-8 • $39.95
7½ x 9¼ • 464 pp.

Direct3D ShaderX
Vertex and Pixel Shader
Tips and Tricks

1-55622-041-3 • $59.95
7½ x 9¼ • 520 pp.

Modeling a Character
in 3DS Max

1-55622-815-5 • $44.95
7½ x 9¼ • 544 pp.

LightWave 3D 7
Character Animation

1-55622-901-1 • $49.95
7½ x 9¼ • 360 pp.

Looking for more?

Check out these and other titles from
Wordware’s complete list

Learn FileMaker Pro 6

1-55622-974-7 • $39.95
7½ x 9¼ • 504 pp.

JBuilder 8.0 JFC and
Swing Programming

1-55622-900-3 • $59.95
6 x 9 • 400 pp.

About the Companion Files

All of the code samples and database files mentioned in the book are
available for download at http://www.wordware.com/files/fmweb and
http://www.moyergroup.com/webbook/. The files are grouped by chap-
ter and, in the case of code samples, identified by page number. The
files consist of FileMaker database files and text files containing source
code. The downloads are available in a variety of commonly used
archive formats.

Any errata or updates to the book will also be downloadable from
these sites.

	Contents
	Acknowledgments
	Introduction
	About the Authors
	Chapter 1 The Dynamic Web
	A Case Study
	The Web as a Database Client
	FileMaker on the Web
	The Web Companion
	Available Technologies

	Chapter 2 Preparing Your Databases for the Web
	Planning the Project
	The Piecemeal Project
	The Wholesale Migration Project
	The Web-only Project
	The Hybrid Project

	Naming Conventions
	Spaces
	Case
	Special Characters
	Uniqueness

	Use of Global Fields, Calculations, and Summary Fields
	Use of Scripts
	Relationships, Portals, and Related Records
	Layouts
	Summary

	Chapter 3 Configuring FileMaker for the Web
	Choosing Instant vs. Custom Web Publishing
	Setting up the Host Machine
	Hardware Configuration
	Software
	Your Database Files

	Enabling the Web Companion
	Web Companion User Interface
	Remote Administration
	Logging
	Security

	Sharing the Databases
	Securing Your Site
	Protecting Your Database with FileMaker’s Access Privileges
	Protecting Your Databases with the Web Security Databases
	Protecting Your Format Files

	Using the Web Server Connector
	Summary

	Chapter 4 Publishing Your FileMaker Data with XML
	What Is XML?
	Why the Web?
	More about XML
	XML Documents Are Trees
	FileMaker and XML
	Using XSLT to Transform FileMaker’s Output
	Generating HTML
	XSL So Far
	XSL Tags
	XPath Expressions

	Calculation and Computation with XSL
	More Complex Reporting with XML
	Advanced Sub-summary Reporting in XSL
	Sorting
	Multilevel Reporting
	Displaying Hierarchical Data
	Transforming FileMaker Data into Non-HTML Text Data
	Resources and References
	Books for Learning XML and XSL
	Web-based Resources on XML and SGML
	“Official” W3C pages on XML and HTML

	Chapter 5 Instant Web Publishing
	Getting Started
	Home Page Options
	Creating Your Own Home Page
	Selecting a Style
	Selecting Your Views
	Layout Elements on the Web
	Container Fields
	Value Lists
	Field Formatting
	Merge Fields
	Portals

	Scripting
	Building a Customized IWP Application
	Hiding the Frame
	Using a Layout as Your Home Page
	Planning the Site
	The Search Routine
	Detail and Update Pages
	Validation
	Building Dynamic Links to External Sites

	Summary

	Chapter 6 Custom Web Publishing with CDML
	Introduction to CDML
	Getting Started
	Variable Tags and Replacement Tags
	Building Applications Using CDML
	The Web Store Page
	Searchable Web Store
	Search Forms in CDML
	Finishing the Searchable Web Store v. 1.0
	Upgrading the Search Page
	Greater Control: Using CDML Tokens
	Showing Portal Data in CDML
	Inline Actions: Performing Multiple Tasks in a Single Page
	Using CDML to Send E-mail
	Cookies

	Summary

	Chapter 7 Custom Web Publishing with Lasso
	Configuring Lasso for FileMaker
	Building an Application with Lasso
	A Simple Search in Lasso
	Variables in Lasso
	Error Handling in Lasso
	Folding Up the Search Pages
	Writing the Folded Page with Inlines
	Adding More Actions to the Page
	Adding Error Handling
	Using Arrays and Maps to Create a Value List Library
	Coding for Reuse: Lasso Custom Tags
	Custom Types: Writing Object-Oriented Code in Lasso
	Preserving State: Sessions in Lasso
	Summary

	Chapter 8 Custom Web Publishing with PHP
	What Is PHP?
	Coding in PHP—General Principles
	Working with Variables
	Arrays
	The Include Function
	Conditional Statements
	Looping Constructs
	Functions
	Objects

	Using PHP with FileMaker
	FX: The Right Tool for the Job
	Creating an Instance of FX
	Specifying Request Parameters
	Calling an Action

	Creating Web Applications with PHP, FX, and FileMaker
	Summary

	Chapter 9 FileMaker and Web Services: Learning about XML Import
	Working with a Real Web Service
	Processing the Author Data
	Optimizing the XML Import

	So What Can I Do with Web Services?
	Finding Web Services
	Writing Your Own

	Other Kinds of Web Services
	FileMaker and SOAP
	SOAP Wrap-up

	Web Services Push
	Summary

	Appendix CDML Reference Guide
	Index
	About the Companion Files

