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Preface

The present book deals with canonical factorization problems for different classes
of matrix and operator functions. Such problems appear in various areas of math-
ematics and its applications. The functions we consider have in common that they
appear in the state space form or can be represented in such a form. The main
results are all expressed in terms of the matrices or operators appearing in the
state space representation. This includes necessary and sufficient conditions for
canonical factorizations to exist and explicit formulas for the corresponding fac-
tors. Also, in the applications the entries in the state space representation play a
crucial role.

The theory developed in the book is based on a geometric approach which has
its origins in different fields. One of the initial steps can be found in mathematical
systems theory and electrical network theory, where a cascade decomposition of
an input-output system or a network is related to a factorization of the associated
transfer function.

Canonical factorization has a long and interesting history which starts in
the theory of convolution equations. Solving Wiener-Hopf integral equations is
closely related to canonical factorization. The problem of canonical factorization
also appears in other branches of applied analysis and in mathematical systems
theory, in H,-control theory in particular.

The first book devoted to the state space factorization theory was published
in 1979 as the monograph “Minimal factorization of matrix and operator func-
tions,” Operator Theory: Advances and Applications 1, Birkhduser Verlag, writ-
ten by the first three authors. Some of the factorization results published in the
1979 book appeared there in print for the first time.

The present book is the second book written by the four of us in which the
state space factorization method is systematically used and developed further. In
the earlier book [20], published in 2008, the emphasis is on non-canonical factoriza-
tions and degree 1 factorizations, in particular. In the present book we concentrate
on canonical factorizations. Together both books present a rich and far reaching
update of the 1979 monograph [11].

In the present book the emphasis is on canonical factorization and symmetric
factorization with applications to different classes of convolution equations. For
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the latter we have in mind the transport equation, singular integral equations,
equations with symbols analytic in a strip, and equations involving factorization
of non-proper rational matrix functions. A large part of the book will deal with
factorization of matrix functions satisfying various symmetries. A main theme will
be the effect of these symmetries on factorization and how the symmetries can be
used in effective ways to get state space formulas for the factors. Applications to
H -control theory, which have been developed in the 1980s and 1990s, will also
be included. The text is largely self-contained, and will be of interest to experts
and students in mathematics, sciences and engineering.

The authors gratefully acknowledge a visitor fellowship for the second au-
thor from the Netherlands Organization for Scientific Research (NWQO), and the
financial support from the School of Economics of the Erasmus University at Rot-
terdam, from the School of Mathematical Sciences of Tel-Aviv University and the
Nathan and Lily Silver Family Foundation, and from the Mathematics Depart-
ment of the Vrije Universiteit at Amsterdam. These funds allowed us to meet and
to work together on the book for different extended periods of time in Amsterdam
and Tel-Aviv.

The authors Amsterdam — Rotterdam — Tel-Aviv, Summer 2009

Postscript

On Monday October 12, 2009, Israel Gohberg, the second author of this book,
passed away at the age of 81. At that time the preparation of the book was in a
final phase and only some minor work had to be done. Israel Gohberg was one of
the initiators using state space methods in solving problems appearing in various
branches of mathematical analysis and its applications. His fundamental insights
and inspiring leadership have been driving forces in our joint work.






Chapter 0

Introduction

This monograph presents a unified approach for solving canonical factorization
problems for different classes of matrix and operator functions. The notion of
canonical factorization originates from the theory of convolution equations. For
instance, canonical factorization, provided it exists, allows one to invert Wiener-
Hopf, Toeplitz and singular integral operators, and when the factors are known one
can also build explicitly the inverses of these operators. The problem of canonical
factorization also appears in various branches of applied analysis, in linear trans-
port theory, in interpolation theory, in mathematical systems theory, in particular,
in H.,-control theory.

The various matrix and operator functions that are considered in this book
have in common that they appear in a natural way as functions of the form

W) =D+C\ —-A)~'B (1)

or (after a suitable transformation) can be represented in this form. In the above
formula A is a complex variable, and A, B, C', and D are matrices or linear op-
erators acting between appropriate Banach or Hilbert spaces, which in this book
often will be finite dimensional. When the underlying spaces are all finite dimen-
sional, A, B, C, and D can be viewed as matrices and the function W is a rational
matrix function which is analytic at infinity. From mathematical systems theory it
is known that, conversely, any rational matrix function which is analytic at infinity
admits a representation of the above form. In systems theory the right hand side
of (1) is called a state space realization of the function W, and one refers to the
space in which A is acting as the state space.

The method of factorization employed in this book uses realizations as in
(1), and for this reason it is referred to as the state space method. It allows one
to deal with factorization from a geometric point of view. This state space factor-
ization approach has its origins in different fields, for instance, in the theory of
non-selfadjoint operators [27], [141], in mathematical systems theory and electrical
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network theory [23], [95], [94], and in the factorization theory of matrix polyno-
mials [67], [131]. In all three areas a state space representation of the function to
be factored is used, and the factors are also expressed in state space form.

The first book to deal with factorization problems in a systematic way using
the state space approach is the monograph [11] of the first three authors. This
monograph appeared in 1979, very soon after the first main results were obtained.
In fact, some of the factorization results were published in [11] for the first time.

The present book is the second book written by the four of us in which the
state space factorization method is systematically used and developed further. In
our first book [20], published in 2008, the emphasis is on non-canonical factoriza-
tions and degree 1 factorizations, in particular. In the present book we concentrate
on canonical factorizations. As a result the overlap between the main parts of the
two books is minor. Together both books present a rich and far reaching update
of the 1979 monograph [11].

In the present book special attention is paid to various factorizations with
additional symmetries such as spectral factorization, inner-outer factorization, and
J-spectral factorization. The latter require elements of the theory of spaces with
an indefinite metric. Factorizations with symmetries appear in a natural way in
H.-control problems and the related Nehari approximation problem. In fact, the
latter problems are the main topic of the final part of the book. We also deal
with applications to problems in the theory of algebraic Riccati equations, to
inversion problems for Wiener-Hopf, Toeplitz and singular integral operators, and
to Riemann-Hilbert problems. The linear transport equation from mathematical
physics is another important area of application in this book. It requires infinite
dimensional realizations of a special type.

We have made an effort to make the text reasonably self-contained. For that
reason we included some known material about realizations, minimal factorizations
of rational matrix functions, angular operators, and the theory of matrices in
indefinite inner product spaces. In the final part we also briefly review elements
of control theory of linear systems.

Not counting the present introduction, the book consists of 20 chapters
grouped into 7 parts. We shall now give a short description of the contents of
the book.

Part I. The first part has a preparatory character. In the first chapter we review
the role of canonical factorization in inverting Wiener-Hopf integral operators and
block Toeplitz operators. Also the role of this factorization in solving singular
integral equations is described. The second chapter presents in detail the elements
of the state space method that are used in this book.

Part II. This part starts with the canonical factorization theorem for rational
matrix functions in state space form. This theorem is then used to invert explic-
itly Wiener-Hopf, Toeplitz and singular integral operators with a rational matrix
symbol, with the inverses being presented explicitly in state space formulas. For



rational matrix symbols the solution to the homogeneous Riemann-Hilbert bound-
ary value problem is also given in state space form. In the first chapter of this part
we consider proper rational matrix functions, that is, rational matrix functions
that are analytic at infinity. The case of non-proper rational symbols is treated in
the second chapter of this part. In this case the realization (1) is replaced by

W) =1+C\G— A)'B, (2)

where I is an identity matrix, G and A are square matrices, and B and C are
matrices of appropriate sizes. A square rational matrix function, proper or not,
always admits such a realization. We develop this realization result, and prove
a canonical factorization theorem for the realization (2). As an application we
solve the homogeneous Riemann-Hilbert boundary value problem for an arbitrary
rational matrix symbol.

Part III. In this part we carry out a program analogous to that of the second
part, but now for certain classes of non-rational matrix and operator functions.
For instance, for matrix functions analytic on a strip but not at infinity we develop
a realization theory, prove a canonical factorization theorem in state space form,
and develop its applications to Wiener-Hopf integral equations. A new feature is
that the problems involved require us to employ realizations with an unbounded
main operator A and deal with curves cutting through the spectrum of this main
operator. In this part it is also shown that, after an appropriate modification, the
state space method can be used to solve the integro-differential equation appearing
in linear transport theory, which forces us to use realizations of operator-valued
functions. In the final chapter of this part we make an excursion into non-canonical
Wiener-Hopf factorization for analytic operator-valued functions on a curve, and
identify the so-called factorization indices in state space terms.

Part I'V. The fourth part deals with factorization of rational matrix functions that
have Hermitian values on the imaginary axis, the real line or the unit circle. In
the analysis of such functions, minimal realizations play an important role. These
are realizations of which the order of the state matrix in (1) is a small possible.
Also the so-called state space similarity theorem, which tells us that a minimal
realization is unique up to a basis transformation in the state space, enters into
the analysis. These facts are reviewed in the first chapter of this part. In this
first chapter, using the notion of local minimality, also the concept of a pseudo-
canonical factorization relative to a curve is introduced and studied for rational
matrix functions with singularities on the given curve. The effect on minimal
realizations of the function having Hermitian values on the imaginary axis, the real
line or the unit circle is described in the second chapter of this part. This then leads
to the construction of special canonical and pseudo-canonical factorizations with
additional relations between the factors. Included are spectral factorization for
positive definite rational matrix functions and pseudo-spectral factorization for
nonnegative rational matrix functions. In the final chapter we present (without
proofs) some background material on matrices in indefinite inner product spaces,
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and review the main results from this area that are used in this book.

Part V. In this part the canonical factorization theorem is presented in a different
way using the notion of an angular subspace and Riccati equations. In this case
one has to look for angular subspaces that are also spectral subspaces, and the
solutions of the Riccati equation must have additional spectral properties. These
results, which have a preliminary character, are presented in the first chapter of
this part. In the second chapter we introduce the symmetric algebraic Riccati equa-
tion, and describe spectral factorization as well as pseudo-spectral factorization in
terms of Hermitian solutions of such a Riccati equation. In the final chapter of this
part we continue the study of rational matrix functions that take Hermitian values
on certain curves. The emphasis will be on rational matrix functions that have Her-
mitian values for which the inertia is independent of the point on the curve. Such
functions may still admit a symmetric canonical factorization, provided we allow
for a constant Hermitian invertible matrix in the middle. Such a factorization is
commonly known as a J-spectral factorization. Necessary and sufficient conditions
for its existence are given, first in terms of invariant subspaces and then in terms of
solutions of a corresponding symmetric algebraic Riccati equation. We also study
the question when a function which admits a left J-spectral factorization admits
a right J-spectral factorization too.

Part VI. In this part we study rational matrix functions that are unitary or of the
form identity matrix plus contractions, and rational matrix functions that have a
positive real part. Because of the state space similarity theorem, these additional
symmetries can be restated in terms of special properties of the minimal real-
izations of the rational matrix functions considered. These reformulations involve
an algebraic Riccati equation. The results are known in systems theory as the
bounded real lemma and the positive real lemma, respectively. They allow us to
solve related canonical and pseudo-canonical factorization problems in state space
form. In the final chapter of this part realizations are used to analyze rational
matrix functions of which the values on the imaginary axis are J-unitary matri-
ces. Solutions to various factorization problems are given. Special attention is paid
to factorization of J-unitary rational matrix functions into J-unitary factors. In
this chapter we also discuss problems of embedding a contractive rational matrix
function into a unitary rational matrix function of larger size.

Part VII In this part the state space theory of J-spectral factorization, developed
in the final chapter of the fifth part, is used to solve H., problems. The first
chapter of this part contains the solution of the Nehari interpolation problem
for rational matrix interpolants. The second chapter presents a short review of
elements of control theory that play an important role in the third (and final)
chapter of this part. This final chapter is about H,-control. Here we use the J-
spectral factorization theory to obtain the solutions of some of the main problems
in this area, namely the standard problem, the one-sided problem, and the full
model matching problem.



As the description of the contents given above shows, the emphasis in the
book is mainly on rational matrix functions and finite dimensional realizations. An
exception is Part III. The latter part deals with non-rational matrix functions and
operator-valued functions, and it uses realizations that have an infinite dimensional
state space. Other exceptions are Chapter 2 in Part I and Chapter 12 in Part V.
For the material in the other chapters of the book, in particular, in Parts IV-VII,
often extensions to an infinite dimensional setting exist; they require appropriate
modifications. See, e.g., the books [5], [35], [42], [73], and the references therein.

A few remarks about terminology and notation

At the end of this book, after the bibliography, the reader will find a List of
Symbols and an Index. The latter contains in alphabetical order the various terms
that are used in this book with references to the pages where they are introduced.
In addition, we would like to mention the following.

In the sequel, whenever convenient, a p X ¢ matrix with complex entries will
be identified with the (linear) operator from C? into CP defined by the canonical
action of the matrix on the standard orthogonal basis of C9. Conversely, a linear
operator from CY into CP is identified with its p X ¢ matrix representation with
respect to the standard orthogonal bases of C? and CP.

F

r

Throughout the word “operator” refers to a bounded linear transformation
acting between Banach or Hilbert spaces (finite or infinite dimensional). We as-
sume the reader to be familiar with Sections I.1 and 1.2 in [51] which contain the
standard spectral theory of operators, including the notion of a Riesz projection
and the corresponding functional calculus (see, also Chapter V in [144]). In partic-
ular, we shall often use the notions of a Cauchy domain and Cauchy contour which
are defined as follows. A Cauchy domain is an open set in the complex plane C
consisting of a finite number of components such that its boundary is composed
of a finite number of simple closed non-intersecting rectifiable curves. A Cauchy
contour T is the positively oriented boundary of a bounded Cauchy domain. We
write Iy for the interior domain of I', and F_ for the exterior domain, i.e., the
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complement of the closure F, of F; in the Riemann sphere Co, = C U {oo}. The
picture on the previous page illustrates this notion. We shall also work with the
extended real line and the extended imaginary axis as contours on the Riemann
sphere Co. For the real line the orientation will be from left to right and for the
imaginary axis from bottom to top. Thus for the extended real line the interior do-
main is the open upper half plane, which will be denoted by C; for the extended
imaginary axis it is the open left half plane, which is denoted by Cieg.

We shall also freely use the Lesbesgue integral and related L, spaces (see,
e.g., Appendix 2 in [53]). Functions which are equal almost everywhere (shorthand:
a.e.) are often identified, sometimes without explicitly mentioning this.

Finally, when dealing with inner-outer factorization, we shall always assume
that the outer factor is invertible outer (see Section 17.6). In the outer-co-inner
factorizations considered in this book, the outer factor will be assumed to be in-
vertible outer as well.



Part 1

Convolution equations,
canonical factorization and the
state space method

This part has a preparatory character. It consists of two chapters. In the first
chapter we review the role of canonical factorization in inverting Wiener-Hopf
integral operators and block Toeplitz operators. The role of this factorization in
solving singular integral equations is described as well. The second chapter presents
in detail the basic elements of the state space method that are used throughout this
book. The central notion is that of a realization of a matrix or operator function.
Three important operations on realizations are studied.






Chapter 1

The role of canonical
factorization in solving
convolution equations

This chapter has a preparatory character. We review (without giving proofs) the
role of canonical factorization in inverting systems of convolution equations. The
chapter consists of three sections. Section 1.1 deals with Wiener-Hopf integral
equations, Section 1.2 with block Toeplitz equations, and Section 1.3 with singular
integral equations.

1.1 Wiener-Hopf integral equations and factorization

In this section we outline the factorization method of [61] to solve systems of
Wiener-Hopf integral equations. Such a system may be written as a single vector-
valued Wiener-Hopf equation

é(¢) —/OOO k(t— $)o(s)ds = f(), >0, (1.1)

Here ¢ and f are m-dimensional vector functions and k € L™ (—o0, 00), that is,
the kernel function % is an m x m matrix function whose entries are in L1 (—00, 00).
We assume that the given vector function f has its component functions in the
Lebesgue space L,[0,00), and we express this property by writing f € L}'[0,00).
Throughout this section p will be fixed and 1 < p < oo. The problem we shall
consider is to find a solution ¢ of equation (1.1) that also belongs to the space
L0, 00).

The usual method (see [61]) for solving equation (1.1) is as follows. First
assume that (1.1) has a solution ¢ in L}*[0,00). Extend ¢ and f to the full real
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line by putting

<
—~
~
=
I
<o
By
—~
~
=
I

- /00 kE(t —s)p(s)ds, t<O0.
0

Then ¢, f € Lj*(—oc,00) and the full line convolution equation

(b(t)—/oo k(t —s)p(s)ds = f(t), —00 <t <00

— 00

is satisfied. By applying the Fourier transformation and leaving the part of f that
is given in the right-hand side, one gets

WP\ — F-(\) = F,(\), AeR, (1.2)

where

o0

W(A) = I, —/

— 00

D (N = /0 h eMp(t) dt, F_(\) = / eMft)ydt.  (1.4)

— 00

eME(t) dt, F+(A)=/ooemf(t)dt, (1.3)
0

Here I,,, is the m x m identity matrix. Note that the functions K and Fy are given,
but the functions ®; and F_ have to be found. In fact in this way the problem to
solve (1.1) is reduced to that of finding two functions ®; and F_ such that (1.2)
holds, while furthermore @ and F_ must be as in (1.4) with ¢ € L;*[0,00) and
f e Ly (—o0,0].

To find @4 and F_ of the desired form such that (1.2) holds, one factorizes
the m x m matrix function W appearing in (1.2). This function is called the symbol
of the integral equation (1.1). Note that W is continuous on the real line, and by
the Riemann-Lebesgue lemma limyer, x—00 W(A) exists and is equal to I,,,.

Assume that the symbol admits a factorization of the following form:

W) = (Im + G-(\) (Im + G+ (1),  A€R, (1.5)

where

o) 0
G = [CeMama = [ M@
0 —00
with g1 € LT"*™[0,00) and g_ € LT"*™(—0o0,0] while, in addition, the determi-
nants
det (In + G+ (\),  det (I + G_(\)

do not vanish in the closed upper and lower half plane, respectively. We shall refer
to the factorization (1.5) as a right canonical factorization of W with respect to
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the real line. Under the conditions stated above the functions (Im + G+()\)) ~and

(Im + G-(N)) ~! admit representations as Fourier transforms:

(hn+Ge) " = It [ (16)
(In+G-(N) " = Im+/0 e (t)dt, (1.7)

with v4 € LT[0, 00) and y— € LT"*™(—o00,0]. Using the factorization (1.5) and
omitting the variable A, equation (1.2) can be rewritten as

(I + G2)®s = (I + G_) ' F_ = (I +G_) "' FL. (L8)

Let P be the projection acting on the Fourier transforms of L;”(—oo, oo)-functions
according to the following rule:

P (/: eMh(t) dt> = /OOO eMh(t) dt.

Applying P to (1.8) one gets
(Im + G1)®@4 = P((Im + G-)"'Fy),

and hence
Oy =L+ Gy) "P(Im +G-)"'Fy), (1.9)

which is the formula for the solution of equation (1.2). To obtain the solution ¢
of the original equation (1.1), i.e., to obtain the inverse Fourier transform of ®,
one can employ the formulas (1.6) and (1.7). In fact

o) =10+ | T f(s)ds, 20,

where the m x m matrix function (¢, s) is given by

min(t, s)
At s) = 7+(t—8)+%(t—5)+/0 it = Py (r — 5) dr.

We conclude the description of this factorization method by mentioning that the
equation (1.1) has a unique solution in L}'[0,00) for each f in L;*[0,00) if and
only if its symbol admits a factorization as in (1.5). For details, see [50], [61].

Let T" be the Wiener-Hopf integral operator on L' [0,00) associated with
equation (1.1), that is, T is the operator on L;'[0,00) given by

(To)(t) = olt) - / Tkt s)e(s)ds,  t>0.
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The function W in the left-hand side of (1.3) is also referred to as the symbol of
T. Obviously the operator T is invertible if and only if the equation (1.1) has a
unique solution in L7*[0,00) for each f in L}'[0,00). Thus the results reviewed
above can be summarized as follows.

Theorem 1.1. Let T' be the Wiener-Hopf integral operator on Ly'[0, 00) with symbol
W. Then T is invertible if and only if W admits a right canonical factorization
with respect to the real line. Furthermore, if (1.5) is such a factorization of W,
then the inverse of T is the integral operator given by

<T*n@>f@>gémwn@ﬂ@da 1> 0,

where the kernel function 7y is defined by

’H(t—s)—&—/Sw(t—r)v,(r—s)dr, 0<s<t,
v(t,s) = 0 (1.10)

t
Vf(t—s)—i—/%r(t—r)’y,(r—s)dr, 0<t<s
0

with y— and v+ as in (1.6) and (1.7), respectively.

To illustrate the method, let us consider a special choice for the right-hand
side f (cf., [61]). Take
ft) = e "y, (1.11)

where xg is a fixed vector in C™ and ¢ is a complex number with 3¢ < 0. Then

Zo, RP Z 0.

Fi (N :/ A= Do dt = 3 k
0

Now observe that
7

A—gq

(I + G- )" = (T + G-(@)) )0

is the Fourier transform of an L}*(—oc, 0]-function and hence it vanishes when the
projection P is applied. It follows that in the present case the formula for ®, may
be written as

o
=34

1

@ (\) (In + G+ (\) " (Im + G—(q) 0.

Recall that the solution ¢ is the inverse Fourier transform of ®,. So we have

o(t) = et (Im + /0 t €5, (s) ds> (In + G_(q)) 0. (1.12)
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1.2 Block Toeplitz equations and factorization

In this section we consider the discrete analogue of a Wiener-Hopf integral equa-
tion, that is, a block Toeplitz equation . So we consider an equation of the type

Y ajwbe =m;,  §=0,1,2,.... (1.13)
k=0

Throughout we assume that the coefficients a; are given complex m x m matrices
satisfying
oo
> llajll < oo, (1.14)
Jj=—00

and n = (1;)72, is a given vector from £;' = ¢,(C™). The problem is to find
§ = (§k)72o € £, such that (1.13) is satisfied. We shall restrict ourselves to the
case 1 < p < 2; the final results however are valid for 2 < p < 0o as well.

Assume & € £ is a solution of (1.13). Then one can write (1.13) in the form

o0

S oajn& =my,  j=0,41,42,.., (1.15)

k=—o0

where & = 0 for k < 0 and 5; is defined by (1.15) for j < 0. Multiplying both
sides of (1.15) by M with |[A| = 1 and summing over j, one gets

aNE ) —n-() = e (), =1, (1.16)
where

o) = Y Naj,  m() =Y N, (1.17)

j=—o00

oo -1
= Mg )= N
3=0 j=—o00
In this way the problem to solve (1.13) is reduced to that of finding two sequences
&+ and n— such that (1.16) holds, while moreover, {4 and n_ must be as in (1.2)
with (§;)52, and (1-;-1)52, from £}

The usual way (cf., [61] or the book [40]) of solving (1.16) is again by fac-
torizing the symbol a()\) of the given block Toeplitz equation. Assume that a(X)
admits a right canonical factorization with respect to the unit circle . By definition
this means that a()\) can be written as

aN) = h-h (), =1, (118)

o) 0
> Nnf, ho(\) = Y Nhj,
§=0

j=—oc

he (V)
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where (hj);";o and (hZ;)32, belong to the space 7™ of all absolutely convergent
sequences of complex m x m matrices, det h4(A) # 0 for |A] < 1 and det h_(X) # 0
for [A| > 1 (including A = oo). Then A" and h~' also admit a representation of

the form

) 0
i CYEDPE TN SOV NP SE (1.19)
=0

j=—o00

with (%—'F)})'O:o and (v2;)52 from £7"*"™. Defining the projection P by

7>< > Afbj> = Nb;,
j=—00 7=0
one gets from (1.16) and (1.18)
& = hI'P(hT'ny). (1.20)

Here, for convenience, the variable A is omitted. The solution of the original equa-
tion (1.13) can now be written as

&= Ysns, k=01, (1.21)
s=0

where

S
dovnlse  s<k
r=0
Yks = b
v s>k
r=0

Note that for s = k both sums in the above formula define the same matrix.

The assumption that a(A) admits a right canonical factorization as in (1.18)
is equivalent to the requirement that for each n = (1;)32, in £} the equation
(1.13) has a unique solution § = (§x)R2, in £". For details we refer to [61], [40].

Let T be the block Toeplitz operator on £ associated with the Toeplitz
equation (1.13), that is, T" is the operator on £;* given by

T¢=n <= Zaj—kfk:nj, i=0,1,2,....
k=0

The function a appearing in the left-hand side of (1.17) is also referred to as the
symbol of T. Obviously T is invertible if and only if for each n = (77]‘)3‘”;0 in £}
the equation (1.13) has a unique solution § = (& )72, in £;". This allows us to
summarize the results reviewed above as follows.
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Theorem 1.2. Let T' be the block Toeplitz operator on £} with symbol a(\) satisfying
(1.14). Then T is invertible if and only a(\) admits a right canonical factorization
with respect to the unit circle. Furthermore, if (1.18) is such a factorization of the
function a(X), then the inverse of T is given by

Y11 Y12 Y13
-1 Y21 Y22 Y23

Y31 Y32 Y33
where the matrices s are defined by

o s<k
r=0
Vs = (1.22)

k
v s>k
r=0

with "/j and ;" being determined by (1.19).
By way of illustration, we consider the special case when
n; = ¢ no, j=0,1,.... (1.23)

Here 1 is a fixed vector in C™ and ¢ is a complex number with |¢| < 1. Then
clearly

1
= <1
77+(/\) 1— )\q7707 |A| = 4

and one checks without difficulty that formula (1.21) becomes

k
& = quqfsfyjhzl(qfl)no, k=0,1,.... (1.24)
s=0

This is the analogue of formula (1.12) in the previous section.

1.3 Singular integral equations and factorization

In this section we review the factorization method that is used to solve systems of
singular integral equations [48]. Consider the singular integral equation

1[0

t)o(t b(t dr = f(t), tel, 1.25
a(tolt) + blt) | T dr = f() (1.25)
with integration taken over a Cauchy contour I'. (For the definition of the latter
notion see the final paragraphs of Chapter 0 dealing with terminology and nota-

tion.) We write F for the interior domain of T', and F_ for the exterior domain
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(i.e., the complement of F'; in the Riemann sphere CU{oc}). The functions a and
b in (1.25) are given continuous m x m matrix functions defined on I', and f is a
given function from L7*(T"), p fixed, 1 < p < 0o. As usual in the theory of singular
integral equations, it is assumed that the interior domain F of I' is connected
and contains 0; the exterior domain F_ of I' contains co. The problem is to find
¢ € Ly'(I') such that(1.25) is satisfied.

For ¢ a rational function without poles on I we put

1 [ ¢()

m JpT—1

(So)(t) = dr = f(t), tel, (1.26)

where the integral is taken in the sense of the Cauchy principal value. The operator
S defined in this way can be extended by continuity to a bounded linear operator,
again denoted by S, on all of L;*(I'). Equation (1.25) can now be written as

alg +bS¢ = f, (1.27)

where I is the identity operator on Ly'(I'). In other words, the study of the equa-
tion (1.25) reduces to that of the operator al + bS. Here a and b are viewed as
multiplication operators. Equation (1.25) has a unique solution ¢ € L;"(F) for
each choice of f € L}*(T') if and only if the operator al +bS' is invertible as an op-
erator on L*(I"). In the remainder of this section we shall discuss a necessary and
sufficient condition for this to happen, and we shall give formulas for the inverse
(al +bS)~1L.
The operator S enjoys the property S? = I. Hence the operators

Pr= (48,  Qr=.(-9)

are complementary projections on L;"(F). The image of Pr consists of all functions
in L;(T') that admit an analytic continuation into F'. Similarly, the image of Qr
is the set of all functions in L}'(I') that admit an analytic continuation into F_
vanishing at co. Putting ¢ = a+b and d = a — b, one can write the equation (1.27)
in the form c¢Pr¢ + dQr¢ = f.

The following is known (see [62] for the case when the coefficients a and b
are scalar functions and [48] for the matrix-valued case). The operator al + bS =
c¢Pr + dQr is invertible if and only if the matrices ¢(A) and d()\) are invertible
for each A € T and the function w given by w()\) = d(\)"tc()\) admits a right
canonical factorization with respect to I' . By this we mean a factorization

w\) =w_(MNwy(\), Ael, (1.28)

where w_ and w, are mxm matrix functions, analytic and taking invertible values
on an open neighborhood of F'_ and F,, respectively. With the help of (1.28), the
operator al+bS = cPr+dQr can be rewritten as al +bS = dw_ (w4 Pr +w:1Qp),
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and its inverse is given by

(al +bS)~? (wi'Pr +w_Qr)w='d™"

= wi'Prw 'd™' +w_Qrw 'd~". (1.29)

Replacing Pr and Qr by 3(I + ) and 3(I — S), respectively, one gets

1 1
(al +0bS)~" 5(071 +d NI+ 5(“’11 —w_)Sw”td!

- %[(H B+ (a— b)) + %(w;l —w )Sw(a—b)"!
= (a+b)tala—0b)"'T+ %(wjrl —w_)Sw=(a—b)"t

Summarizing we get the following theorem.

Theorem 1.3. The singular integral operator T'= al +bS on L' (T') is invertible if
and only if the matrices a(A) + b(\) and a(X) — b(\) are invertible for each A € T
and the function w given by

w(d) = (a(\) + (V) (a(A) + (V)

admits a right canonical factorization with respect to T'. Furthermore, if (1.28) is
such a factorization of w, then the inverse of T is given by

T = (a+b)ala—b)"'T+ %(w;l —w_)Sw>l(a—b)"L. (1.30)

Thus, as before for Wiener-Hopf and block Toeplitz operators, canonical
factorization is a useful method for inverting singular integral operators too.

Notes

The material in this chapter is standard, and can be found in much more detail and
greater generality in various monographs and papers, for instance, see the books
[29] and [50]. A first introduction to the theory of Wiener-Hopf integral equations
and the theory of (block) Toeplitz operators can be found in Chapters XII and XIII
of [51] and Chapters XXIII-XXV of [52], respectively. More information can be
found in the monographs [37], [62], [63], [64] and [24]. For an extensive review (with
many additional references) of the factorization theory of matrix functions with
respect to a curve and its applications to inversion of singular integral operators
of different types, including Wiener-Hopf and block Toeplitz operators, the reader
is referred to the recent survey paper [59].






Chapter 2

The state space method and
factorization

This chapter describes in detail the elements of the state space method that are
used throughout this book. The central notion is that of a realization of a matrix
or operator function. The chapter consists of six sections. Section 2.1 presents
preliminaries on realization, including the relevant definitions and the connection
with systems theory. In the next two sections the realization problem is discussed.
First for rational matrix functions in Section 2.2, and then for analytic operator
functions in a possibly infinite dimensional setting in Section 2.3. The last three
sections are devoted to the main operations on realizations that are needed in
this book: inversion (Section 2.4), taking products (Section 2.5), and factorization
(Section 2.6).

2.1 Preliminaries on realization

Let W be a rational matrix function which is also proper, that is, W has no pole
at infinity. As is well-known such a function can always be represented (see the
next section for an explicit construction) in the form

W(\) =D+ C\ — A)~'B. (2.1)

Here )\ is a complex variable, A is a square matrix, I is the identity matrix of the
same size as A, and B and C are matrices of appropriate sizes. Since A, B, C
and D are matrices, it is immediate from Cramer’s rule that the right-hand side of
(2.1) is also a proper rational matrix function. We shall understand the equality in
(2.1) as an equality between rational matrix functions, and we shall refer to (2.1)
as a matriz-valued realization of W. Sometimes we simply say that the quadruple
of matrices (A, B, C, D) is a realization of W. A rational matrix function has many
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different realizations. Of particular interest are those matrix-valued realizations of
W of which the order of the matrix A is as small as possible. These realizations
are called minimal; we shall describe their properties in Chapter 8.

For operator-valued functions W, expressions of the type (2.1) are important
too but have to be considered with some care. Let W be an £(U, Y)-valued function
on a subset €2 of C. Here U and Y are possibly infinite dimensional complex Banach
spaces. We say that W admits a realization on €2 whenever W can be written as

W) =D+ C\x —A)'B, AeEQ. (2.2)

Here A is a bounded linear operator on a complex Banach space X such that € is
a subset of p(A), the resolvent set of A. Furthermore, Ix is the identity operator
on X, and

B e L(U,X), CeL(X)Y), DeL(UY),

thatis B: U — X, C: X —Y, and D : U — Y, are bounded linear operators.
The fact that Q@ C p(A) implies that the right-hand side of (2.2) is a well-defined
bounded linear operator which maps U into Y for each A € Q. Also, W(A) is a
bounded linear operator mapping U into Y for each A € Q. Note that (2.2) requires
these operators to be equal for each A € Q. When 2 is open, an obvious necessary
condition for W to admit a realization on {2 is that W be analytic on 2. When
(2 is a punctured open neighborhood of co, then (2.2) implies limy_,oo W(A) = D
and so W is proper.

Often the identity matrix I in (2.1) and the identity operator Iy in (2.2)
will be suppressed, and we simply write (A — A)~! in place of (A — A)~! or
()\IX — A)_l.

When X and Y are both finite dimensional, then the realization (2.2) is
called finite dimensional. In that case W(\), A, B, C' and D can be identified in
the usual way with matrices.

In the next two sections we shall address the realization problem, i.e., the
question under what conditions a given matrix or operator function admits a real-
ization. First however, we sketch a connection with systems theory which reflects
itself in some terminology to be introduced at the end of the present section.

A system 3 can be considered as a physical object which produces an output
in response to an input. Schematically:

u Z y

\4

Y

where u denotes the input and y denotes the output. Mathematically, the input
u and the output y are vector-valued functions of a parameter ¢. The input can
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be chosen freely (at least in principle), but the output is uniquely determined by
the choice of the input. The relationship between the input and the output can
be quite complicated. Here we consider the simplest model which means that the
relationship in question is described by a causal linear time invariant system, i.e.,
a system of differential equations of the type

2'(t) = Ax(t) + Bu(t),
X< yt) = Cx(t)+ Du(t), t>0, (2.3)
z(0) = 0,

where A, B,C and D are matrices of appropriate sizes, A and D square. Appli-
cation of the Laplace transform (under appropriate conditions on the input and
output functions) changes (2.3) into

{A&E(s) = AZ(\) + Ba(N),
J) = CEO + Da),

and from these expressions one can solve 3(\) in terms of u(A), resulting in
g\ = (D+C(A—A)'B)a(N).

So in what is called the frequency domain, the input-output behavior of (2.3) is
determined by the function D+ C(A— A)~! B, which is called the transfer function
of the system (2.3). Note that this function appears in the realized form.

The connection with systems theory indicated above is reflected in the termi-
nology which is customarily used in dealing with realizations. Returning to (2.2),
the space X is usually called the state space of the realization, and the operator A
is referred to as its state space operator or main operator. Further we call B the
input operator, C the output operator, and D the external operator of (2.2). The
realization is called strictly proper when D = 0 and biproper if D is an invertible
operator. In the latter case, the operator A — BD~'C is well-defined. It is referred
to by the term the associate state space operator or associate main operator and
(by slight abuse of notation as A* does not depend only on A) denoted by A*.
This operator will play a crucial role in the inversion and factorization results to
be discussed later on. In the situation where U = Y and D is the identity oper-
ator, we say that (2.2) is a unital realization. The associate main operator then
has the form A* = A — BC. In the case of a matrix-valued realization, the terms
state space matriz, main matrix, input matriz, output matriz, external matriz,
associate state space matrix, and assoctate main matriz will be used.

Other elements of systems theory involving stability properties, feedback and
stabilization, will be reviewed in Chapter 19. These will be of central importance
in Chapter 20 (the final chapter of the book) which is concerned with Ho,-control.
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2.2 Realization of rational matrix functions

In this section we construct a matrix-valued realization for a given proper rational
(possibly non-square) matrix function.

Theorem 2.1. Every proper rational matrixz function has a matriz-valued realiza-
tion. Moreover, the realization can be chosen in such a way that the set of eigen-
values of the main matriz coincides with the set of poles of W.

Proof. Let W be a proper rational r x m matrix function, and let w;; be the
(i,7)-entry of W. Since W is rational, we have

_ pij(N)
aij(A)’

where p;; and g¢;; are scalar polynomials. The polynomials g;; are non-zero and
can be taken to be monic. Without loss of generality we may assume that the
polynomials p;; and ¢;; have no common zero. Taking the least common multiple
of the polynomials ¢;;, we obtain a monic polynomial g.

Define Quw to be the set of all complex A for which ¢(A) # 0. Notice that
C\ Qw 1is precisely the set of all points in C where W has a pole. One checks
without difficulty that W has a representation of the form

wij(A)

1=1,...,7, j=1,...)n,

L
q(\)

where H is an r X m matrix polynomial. Since W is proper, this matrix polynomial
is either identically equal to zero or it has degree strictly smaller than k, the degree
of the scalar polynomial q. Write

W) =W(co)+ —H()), A€ Qw,

k—1 k—1
g\ =XN+> Ng;,  HN=> NH
j=0 j=0
and, with I,. the r x r identity matrix,
0 0 ... 0 —qOIT HO
I 0 ... 0 —ql, H,
A= . . , B= _ , C=[0...01L].
0o ... I —qkfllr Hk,1

Then the resolvent set p(A) of A coincides with Qyy, the subset of C on which ¢
takes non-zero values. For A € p(A), define C1(N),...,Cr()) by

[C1(A) Ca(N) ... Ck(N) ] =C(A—A)"
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From the special form of the matrix A (second companion type) we see that
Cit1(A) = ACj(N), j=0,....,k—1,
and C1(A\) = ¢(\)~1I. Hence

k—1
COA=A)'B =% Ci(NH;

Jj=0

It follows that W()\) = W (o) + C(A — A)~1B for each A € Qw = p(A). Thus W
has a matrix-valued realization such that the set of eigenvalues of the main matrix
A is equal to C\ Q. In other words, the set of eigenvalues of A coincides with
the set of poles of W, as desired. O

Let W be a proper rational matrix function. Elaborating on Theorem 2.1
and its proof, we note that W does not admit any realization involving a main
matrix A whose spectrum o(A) is strictly smaller than C\ Qy, the set of poles of
W. Indeed, we would then have a realization of W on an open subset of C strictly
larger than Qyp and such a subset would contain a pole of W, contradicting the
fact that W has to be analytic on it. It is not difficult to construct realizations of
W having a main matrix A with spectrum strictly larger than C\ Qu and where
certain eigenvalues of A (namely those belonging to Qy/) do not correspond with
poles of W. So the realization constructed in the proof of Theorem 2.1 enjoys a
certain minimality property. However, it does this only in a weak sense. This one
sees, for instance, by looking at the pole orders. If i is a pole of W its order as a
pole of W is generally strictly smaller than the order of y as a pole of the resolvent
(A — A)~!. With the proper notion of minimality to be introduced in Section 8.1,
this anomaly disappears so that the two pole orders are the same. The key point
is that the state space dimension (which is equal to k) of the realization of the
proof of Theorem 2.1 is generally not the least possible.

2.3 Realization of analytic operator functions

In this section we consider the realization problem for possibly non-rational opera-
tor functions. First we consider operator functions that are analytic on a bounded
Cauchy domain in C. Recall from Chapter 0 that the boundary of such a Cauchy
domain consists of a finite number of simple closed non-intersecting rectifiable
curves.

Theorem 2.2. Let Q) be a bounded Cauchy domain, and let W be an operator func-
tion with values in L(U,Y), where U and Y are complex Banach spaces. Suppose
W is analytic on Q and continuous on the closure of Q. Then, given a bounded
linear operator D : U — Y, there exists a realization for W on § having D as

its external operator. In particular, if U =Y, then W admits a unital realization
on €.
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Proof. Let I" be the positively oriented boundary of 2 (so that € is the interior
domain of T'). With T" and U we associate the space C(I';U) of all U-valued
continuous functions on I' endowed with the supremum norm. This will become
the state space of the realization to be constructed.

Write B for the canonical embedding of U into C(T';U), so (Bu)(z) = u for
each u € U and z € I. Next, define C' : C(I';U) — Y by setting

Cf—L/F(D—W(z))f(z)dz, fec®;U).

T o

Here D is the given operator from U into Y. Finally, the operator A from C(T;U)
into C(T'; U) is the multiplication operator given by

(Af)(z) = 2f(2),  feC@;U), z€l.
All these operators are linear and bounded. We claim that
W) =D+C(\—A)'B, A€ QCp(A).
Take A € Q. Then A — A is invertible with inverse given by

(A=A4)"tg)(2) = )\izg(z), geC(;U), z €.

It follows that

1
A—z

((/\ — A)_lBu)(z) = U, uelU zeT,

and hence

1 1
A=A 'Bu=— D— d :
C( ) U 27ri/p)\—z( W(z))udz, ueU
By the Cauchy integral formula, the right-hand side of this identity is W (\)u— Du,
and the desired result is immediate. O

Theorem 2.2 remains true when the conditions on €2 and W are replaced by
the simpler hypotheses that {2 is any bounded open set in C and W is just analytic
on . In that case the space C(I'; U) must be replaced by an appropriate Banach
space defined in terms of the behavior of W near the boundary of Q2. For details,
cf., [113]; see also the next theorem.

Theorem 2.3. Let Q C C be an open punctured neighborhood of oo in the Riemann
sphere Coo, let U and Y be complex Banach spaces, and let W : Q — L(U,Y)
be analytic and proper. Then W admits a realization on Q) with external operator
D = limy_,oo W(N).
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Proof. First assume {2 is the full complex plane. Then, by Liouville’s theorem, the
function W has the constant value D = limy_,oo W(A). Now take for the state
space X the zero space {0}, and the desired realization for W on C is obtained
trivially.

Next, consider the more interesting case where € is different from C. For
notational reasons we will assume that 0 ¢ Q. The general case can be reduced to
this situation by a simple translation.

Define X to be the space of all Y-valued functions, analytic on Q U {co},
such that

[RAG|

[flle = sup ——2—ft— < 0.
zeQU{oo} maX(L ||W(Z)H)

Taking || - || for the norm, X is a Banach space. Introduce B : U — X by

B z(W(2)u — W (co)u), z €Q,
= ZILI&Z(W(Z)U — W(oo)u), z = 00.

Further, let C : X — Y be given by C'f = f(oc0). Finally, define A: X — X by

y 2(f(2) — F(o0)), e
(A=) = zlirgoz(f(z)—f(oo)), Zz = o0.

All these operators are linear and bounded. We claim that
W(A) = W(o0) +C(\— A) !B, A€ QCp(A).
Take A € Q. For g € X, put

zg(\) — Ag(2)

, z2€Q, z# N\
zZ—A
h(z) = g()) = Agd'(N), 2=,
g()\)a z = 00,

where ¢’ stands for the derivative of g. Then h € X, and by direct computation
one sees that (A — A)h)(z) = Ag(z), z € Q U{oo}. Now X is non-zero (since {2
does not contain the origin), and it follows that A — A is surjective. But A — A is
injective too. Indeed, if f € X and Af = A\f, then

f(Z): f(OO), z2€Q, z# A,

which, on account of the definition of the norm || - ||¢ on X, implies f(oco) = 0
(cf., the behavior of f when z — M), hence f = 0. It follows that A € p(A) and
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(A— A)~tg = A~'h. We now apply this result to g = Bu with v € U. With this
g, we have h(oo) = (Bu)(A) = A(W(A)u — W (o0))u, and so

(A= A)"'Bu)(c0) = A h(00) = (W(A)u — W(o0))u.
In other words C(A — A)"'Bu = (W(A)u — W(o0))u. As u € U was taken arbi-
trarily, we get W(\) = W(oo) + C(A — A)~1 B for each X € Q. O

2.4 Inversion
We begin with some heuristics. Consider the realization
WA)=D+CA—A)"'B, XepA), (2.4)

and view W as the transfer function of the linear time invariant system

2'(t) = Ax(t) + Bu(t),
X< ylt) = Cx(t)+ Du(t), t>0,
z(0) = 0.

Assuming that we are in the biproper situation where D is invertible, we can solve
u in terms of z and y:

u(t)=—-D'Cx(t) + D 'y(t), t>0.
Inserting this into ¥ yields
2/ (t) A*z(t) + BD 1y(t),
(t) = —D7Cx(t) + D 1y(t), t>0,
0) = o.

»x U
x

Here AX = A— BD~!C is the associate main operator of the given realization as
introduced in the last paragraph of Section 2.1. The linear time invariant systems
3 and X can be seen as each other’s inverse. The transfer function of X is given
by (2.4), the transfer function of ¥* by

W*(\)=D"'—-D'C(A\—-A)"'BD A€ p(AX).

So it is to be expected that W and W are related by inversion. We shall now
make this precise.

Theorem 2.4. Consider the biproper realization

W) =D+ C(\—A)"'B, A € p(A).
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Put AX = A— BD7C, and take X € p(A). Then W () is invertible if and only
if X belongs to p(A*). In that case, for X € p(A) N p(A*), the following identities
hold:

W)™ = D'—D'C(A-A)"'BD !,
A=A = A=A —A=A)'BWN)'CA-A).
Moreover, again for A € p(A) N p(AX), we have
WD 'CA—A)"1 = cA-A)7,
A=AT'BD'W(\) = (A-A)"'B.

Proof. For X € p(A*), put W*(\) = D~! = D71C(A\— AX)"!BD~!. Then, when
A€ p(A) N p(A*), one has

WAW*(A) = (D+CA=A)7'B)(D™'-=D'C(A—A*)"'BD™)
= Iy +CA\—A)"'BD'—C\-A)"'BD™ +
~CA—A)'BD'C(A—-A*)"'BD L.

Now use that BD71C' = A—A* = (A — A¥)—(\ — A). It follows that W (X)W *(\)
= Iy. Analogously one has W>*(A\)W (\) = Iy. The expression for (A — AX)~! as
well as the last two identities in the theorem are obtained in a similar way. O

Instead of the previous proof one can also give an argument using Schur
complements of the operator matrix

A—-)X B
C I

For details, see the second proof of Theorem 2.1 in [20] or Sections 2 and 4 in [19].

2.5 Products

Again we begin with some heuristical remarks. This time we start with two linear
time invariant systems

) = Awza(t) + Brua(t),
Y1 Y1 (t) = C1$1(t) + Dlul(t)7 t>0,
Il(O) = O,
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:Z}/z (t) = Aoxy (t) + Bous (t),
I yg(t) = ngg(t) + D2U2(t)7 t>0,
zZ(O) = 07

and we assume that the output y, of 35 can be and is used as the input u; = y for
31, resulting in the cascade synthesis X of the systems ¥; and 5. The input for
Y is u = ug and the output (modulo u; = y2) is y = y1. The equations governing
the relationship between v and y then are

2 (t) = Ajz(t) + B1Coxa(t) + B1Doult),

xh(t) = Agza(t) + Baul(t),

y(t) = Ciz1(t) + D1Caxa(t) + D1 Dou(t), t>0,
z1(0) = 0,

z2(0) = 0,

and this is a linear time invariant system which can be rewritten as

Al / Ay B0y 1 B1D,
= + U,
o 0 A2 X2 B2
T
DM Y = [ C1 DiCy ] + Di1Dsu,
T2
X1 0
X9 0
The transfer functions of X1 and X5 are
W1(>\) = D1 + Ol()\ — 141)71B17 A€ p(Al), (25)
WQ()\) = D2 + CQ()\ — A2)71B2, A€ p(AQ), (26)

respectively, and the transfer function of ¥ is the product W7 W5 of W7 and W,
in other words
W(X) = Wi(M)Wa(A).

So our considerations lead to a product formula for realizations. Here are the
details.

First we specify the spaces associated with the realizations (2.5) and (2.6),
and the actions of the operators involved:

A Xy — X, B::U; — X, Cr: X, — Y, Dy:Uy — Y,
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A21X2—>X27 BQIU2—>X2, CQIX2—>Y2, D22U2—>Yé.
Now assume Y7 = Us. Put U = Uy, Y = Y5, and introduce

[ Ay B1C ) )
A = X+ Xe — X+ X,
0 A
[ B1Ds .
B = Y — X1+X27
L B2
Cc = [ 01 chz ] :Xl‘i_XQ —>K
D = D1D2 . U — Y

Then the following result holds true.

Theorem 2.5. Let Wy and Wy be given by the realizations (2.5) and (2.6), respec-
tively. Then, with A, B,C and D as above,

Wi(MWo(\) =D +C(\— A)~'B, A € p(A1)Np(A2) C p(A).

Proof. Take A € p(A1) N p(Az). Then X € p(A). Indeed, A — A is invertible with

inverse given by

(A-A)" HO : :
()\_A)_l = X1+ X — X1+ Xo,
0 (A=A !
where H(\) = — (A — 4;)" " B1Cy (A — A3)~". Employing this, and the expres-

sions for B, C' and D given prior to the theorem, D + C(\ — A)~!B is seen to be
equal to

A—A))"" HOW) By D,
DiDy+ [ C1 D1Cs | )
0 (A — Ay)~ B,
1 1 B1D,

= DiDy+ [ Ci(A— A1) C1HA) + D10y (A — A3) " | 5
2

= (Di+C1(A=A41)7'By) (Da+ Co(A — A2) ' By).

Thus D + C(\ — A)~1B = W1 (\)Wa(A), as desired. O

The product Wi (A)Wa(A) is defined for A € p(A1) N p(Az), a punctured
neighborhood of oo in C U {co}. On the other hand D + C(\ — A)~! B is defined
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for A € p(A). As we have seen above p(A41) N p(A2) C p(A). In general, this
inclusion is strict. Equality occurs, for instance, when the spectra (A1) and o(A4s)
of the operators A; and As are disjoint. Another case where one has the equality
p(A) = p(A1) N p(A;) is when p(A) is connected. In particular, the equality in
question is valid when W; and W5 are rational matrix functions, and (2.5) and
(2.6) are matrix-valued realizations.

The realization of Theorem 2.5 is called the product of the realizations (2.5)
and (2.6), in that order.

The counterpart of taking products is factorization. In the next section this
topic will be discussed for functions given by a biproper realization. We close the
present section with a remark preparing for this discussion.

The main operator A in the product realization is given in the form of a 2 x 2
upper triangular operator matrix:

Ay BCy
0 As

. Xl-i-Xg — Xl'i-Xg.

Analogously, assuming the external operators to be invertible, the associate main
operator AX = A — BD~'C is of 2 x 2 lower triangular type:

A0
BgD_lCl A;

AX = : Xl‘i’XQ — X1+X2

where A = A; — BlDflCl and A = Ay — Bngng are the associate main
operators of (2.5) and (2.6), respectively. Note that M = X;+ {0} is an invariant
subspace for A, that M>* = {0} +X; is an invariant subspace for AX, and that M
and M* match in the sense that the state space of the product realization is the
direct sum of M and M*. This state of affairs turns out to be a key point in the
discussion of factorization we now turn to.

2.6 Factorization

The theorems in this section will serve as a basis for the more involved factorization
results to be given in the sequel. Subspaces of Banach spaces are always assumed to
be closed, otherwise we use the term linear manifold. For simplicity (and without
loss of generality) we assume the external spaces U and Y to be equal.

Theorem 2.6. Consider the biproper realization
W(\) =D+ C(\x —A)'B, A € p(4), (2.7)

and let AX = A — BD7C be its associate main operator. Let M and M* be
invariant subspaces for A and A*, respectively, and suppose

X=M+M~. (2.8)
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Assume D = D1 D5, where D1 and Do are invertible operators on Y, and write

A A . .
A = VO M - MM
0 A
B .
B = Y — MM,
By
C =[G C|:M+M* =Y.

Introduce the functions W1 and Ws via the biproper realizations
Wi(\) = Di+Ci(My —A)'BiD; Y, X € p(Ay), (2.9)
Wa(\) = Dy+ Dy Co(Mp« — Az) ' Bo, A€ p(Ay). (2.10)
Then W admits the factorization
W) =Wi(AMWa (), A € p(A1) Np(A2) C p(A).

The function W is defined and analytic on p(A), while the factors Wy and Ws
are defined and analytic on the sets p(A;) and p(Asz), respectively. In particular,
the factors may be defined and analytic on domains where the left-hand side is
not. This will turn out to be relevant in applications (cf., the remarks made at the
end of this section).

Proof. Identifying X and M+M> in the usual manner, the product of the real-
izations (2.9) and (2.10) is precisely the realization (2.7). The desired result now
follows from Theorem 2.5. O

We shall refer to (2.8) as the matching condition, and when this condition is
satisfied we refer to M, M * as a pair of matching subspaces. A pair of matching
subspaces M, M * satisfying

AM]c M,  AX[M*] c M*

will be called a supporting pair of subspaces for the realization (2.7). Matching
pairs of subspaces correspond to projections. So Theorem 2.6 has a counterpart
in terms of projections. We say that a projection II : X — X is a supporting
projection for the realization (2.7) if

A[KerIT] C KerII, AX[ImII] C ImIIL.

Here Ker T stands for the null space of an operator or matrix 7', and Im T for its
range.
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Theorem 2.7. Let II be a supporting projection for the biproper realization
W) =D+ C\x —A)'B, A € p(A).

Assume D = D1 Do, where Dy and Dy are invertible operators on'Y , and introduce
the functions W1 and Wy via the biproper realizations

Wi(\) = Dy +C(0\x —A)~'(Ix —1)BD,", M€ p(A),
Wa(\) = Dy+Dy'CU(Mx — A)7'B, X € p(A).

Then W(A) = Wi (A)Wa(X) for all A € p(A).

This factorization holds on the resolvent set p(A) of A. However, in many
cases (relevant for applications), the factors in the right-hand side have an analytic
extension to larger domains (see Theorem 2.6; cf., also the remarks made at the
end of this section).

Proof. The fact that II is a supporting projection for the given biproper realization
means nothing else than that the identities IIA = ITAIl and A*II = ITA*II are
satisfied. Hence (I —II)(A — A*)II = AIl — ITA. Now take A € p(A). Then

Wi(M)Wa(A) = D+C\—A) (I -T)B+ClO\-A)"'B
+C(A—A)~ Y1 -m)BDCU(\ - A)"'B
= D4+CA-A)'I-)B+ClO\N-A)"'B
+CA—A) I - (A - AT\ - A)'B
= D4+C\—-A)'I-I)B+ClON-A)'B
+C(\—A)~ Al -TTA) (A - A)~'B

= D+CA-A)'I-IB+CII(AN—-A)"'B
+CA—A) N IIA—A4) — (A= AO)(A—A)'B

= D+CA—-A)'I-IM)B+CI(\-A)"'B
+C(\—A)~'MIB - ClI(\ — A)~'B,

= D+C\—A)"'B=W(),

as desired. O

The material presented above contains two factorization results: Theorems
2.6 and 2.7. These theorems contain not only different expressions for the fac-
tors, these factors also have different domains. For rational matrix functions and
matrix-valued realizations, the differences are not essential. In the case of an in-
finite dimensional state space one has to be more careful, the reason being that
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p(A1) N p(Asz) can then be a proper subset of p(A). For an exhaustive discussion
of the issues involved, see Section 2.5 in [20].

We shall meet the differences referred to above when the factorization results
are applied, as will be done later on, for solving Wiener-Hopf, Toeplitz or singular
integral equations. In that context, it is also necessary to have information on
the sets where the factors take invertible values and to have expressions for the
inverses. In other words, it is necessary to have a good understanding of the
relationship between Theorems 2.6 and 2.7 on the one hand, and the inversion
result Theorem 2.4 on the other. The point here is that, by taking inverses, the
factorizations of the function W(A) given in Theorems 2.6 and 2.7 directly induce
factorizations of the point-wise inverse W1 of W, that is the function given by
W=Y\) = W(AN) ™!, while on the other hand factorizations of W~! can also be
obtained by applying Theorems 2.6 and 2.7 to the realization

W=\ =D"'-D'C(A\-A*)"'BD™. (2.11)

Note here that if M, M* is a supporting pair of subspaces for the realization
(2.7), then M *, M is a supporting pair of subspaces for the realization (2.11), and,
analogously, if II is a supporting projection for (2.7), then I — II is a supporting
projection for (2.11). The analysis in [20], Section 2.5 also clarifies these matters;
the upshot is that the two approaches lead to essentially the same result.

Notes

The notion of a realization originates from the Kalman theory of linear time-
invariant systems [95]. The literature on the subject is rich; see, e.g., the text books
[94], [33]. In a somewhat different form the notion of realization also appears in
the theory of characteristic operator functions [27], [141]. The realization problem
has many different faces, depending on the class of matrix or operator functions
one is dealing with. The material of the first two sections is standard. Theorem 2.1
is a variation on Theorem 4.20 in [10]. Other constructions of matrix-valued real-
izations, including realizations with smallest possible state space dimension, can
be found in text books; see, e.g., [94], [33] or [85] and references given there. The
realization theorems for analytic operator functions in Section 2.3 originate from
[57]. The operations of inversion and taking products are standard in systems the-
ory. Theorem 2.11 has a natural Schur complement interpretation; see Section 2.2
in [20] and the paper [19]. The factorization theorem in the final section originates
from [21]; see also the first chapter of [11]. For a brief description of the history of
the factorization principle presented here, we refer to the Editorial introduction
in [54].






Part 11
Convolution equations with
rational matrix symbols

The canonical factorization theorem for rational matrix functions in state space
form is the first result presented and proved in this part. This theorem is then used
to invert explicitly Wiener-Hopf, Toeplitz and singular integral operators with a
rational matrix symbol, with the inverses being presented explicitly in state space
formulas. For rational matrix symbols the solution to the homogeneous Riemann-
Hilbert boundary value problem is also given in state space form.

This part consists of two chapters. In the first chapter (Chapter 3) we consider
proper rational matrix functions, that is, rational matrix functions that are ana-
lytic at infinity. The case of non-proper rational symbols is treated in the second
chapter (Chapter 4). This requires a different type of realization. This modified re-
alization result is developed and a corresponding canonical factorization theorem
is proved. As an application the homogeneous Riemann-Hilbert boundary value
problem is solved for an arbitrary rational matrix symbol.






Chapter 3

Explicit solutions using
realizations

As we have seen in Chapter 1, canonical factorization serves as a tool to solve
Wiener-Hopf integral equations, their discrete analogues, and the more general
singular integral equations. In this chapter the state space factorization method
developed in Chapter 2 is used to solve the problem of canonical factorization
(necessary and sufficient conditions for its existence) and to derive explicit formulas
for its factors. This is done in Section 3.1 for rational matrix functions and later
in Section 7.1 for operator-valued transfer functions that are analytic on an open
neighborhood of a curve. The results are applied to invert Wiener-Hopf integral
equations with a rational matrix symbol (Section 3.2), block Toeplitz operators
(Section 3.3) and singular integral equations (Section 3.4). The methods developed
in this chapter also allow us to deal with the Riemann-Hilbert boundary value
problem. This is done in the final section which also contains material on the
homogeneous Wiener-Hopf equation.

3.1 Canonical factorization of rational matrix functions
in state space form

In this section and the next one we shall consider the factorization theorems of
Section 2.6 for the special case when the two factors satisfy additional spectral
conditions. Recall from Chapter 0 that a Cauchy contour is the positively oriented
boundary of a bounded Cauchy domain in C and that such a contour consists of
a finite number of simple closed non-intersecting rectifiable curves. We say that
a Cauchy contour T' splits the spectrum o(S) of a bounded linear operator S if
I'n o(S) = 0. In that case o(S) decomposes into two disjoint compact sets o and
o_ such that oy is in the interior domain of I' and o_ is in the exterior domain
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of I'. If T splits the spectrum of S, then we have a Riesz projection, also called
spectral projection, associated with S and I', namely

P(S;T) = = /(A - 8)tadn.
r

27
The subspace N = Im P(S;T") will be called the spectral subspace for S corre-
sponding to the contour T' (or to the spectral set o).

Lemma 3.1. Let Y7 and Ys be complex Banach spaces, and consider the operator

. Sll 512

0 Sy

LetI1 be any projection of Y = Y1+ Yy such that Ker Il = Y;. Then the compression
IS|imm : ImIT — ImII and Sao : Yo — Ya are similar. Furthermore, Y1 is a
spectral subspace for S if and only if 0(S11) N 0(S22) = 0, and in that case o(S) =
a(S11) U 0(Sa2) while, in addition,

Y; =Im P(S;T) = Im(% /F()\I - 9)! d)\), (3.2)

Yy’

where I" is a Cauchy contour around o(S11) separating o(S11) from o(Sa22).

Proof. Let P be the projection of Y = Y; + Y5 along Y; onto Y. As Ker P = KerII,
we have P = PII and the map E = Py, : ImII — Y3 is an invertible operator.
Write Sy for the compression S|y : ImII — ImII of S to ImII, and take
x = Ily. Then ESpx = PIISTly = PSIly = PSPIly = SaaFx, and hence Sy and
Soo are similar.

Now suppose o(S11) N 0(S22) = 0. Then p(S11) U p(S22) = C and hence

p(8) = (p(8) 0 p(s10) | (p(5) 01 p(S22)).
The upper triangular form of S in (3.1) ensues
p(S) N p(S11) = p(S) N p(S22) = p(S11) N p(S22)

and it follows that p(S11) U p(S22) = p(S), an identity which can be rewritten as
U(S) = O’(Sll) @] 0'(522).

Still under the assumption that o(S11) N 0(S22) = 0, let I" be a Cauchy con-
tour T around o(S71) separating o(S11) from o(S22). Then T splits the spectrum
of S. In fact, if A € I', then both A — S1; and A — Sy5 are invertible and

(A_8) ! = A=S11)"" (A= 511) " S12(A — Saa) 7t
: 0 (>\—522)71
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which leads to an expression of the type

I =
P(S;F)[O 0]

for the Riesz projection associated with S and I'. In particular, it is clear that
Y =Im P(S;T). So Y] is a spectral subspace for S and (3.2) holds.

Next assume that Y7 = Im @, where @ is a Riesz projection for S. Put
IT = I —Q, and let Sy be the restriction of S to ImIT. Then ¢(S11)N o(Sy) = 0. By
the first part of the proof, the operators Sy and Sz are similar. So o(Sy) = o(Sa2),
and hence we have shown that o(S11) N o (S22) = 0. O

Let T' be a Cauchy contour. As before (see the one but last paragraph in
Chapter 0) we denote by Fy and F_ the interior and exterior domain of T, re-
spectively. Note that co € F_. Let W be a rational m x m matrix function, with
W (o0) = I, analytic on an open neighborhood of T', whose values on I" are invert-
ible matrices. By a right canonical factorization of W with respect to I' we mean
a factorization

W(A) = W_ (MWL), Ael, (3.3)

where W_ and W, are rational m x m matrix functions, analytic and taking
invertible values on (an open neighborhood of) F'_ and F'1, respectively. If in (3.3)
the factors W_ and W, are interchanged, we speak of a left canonical factorization.

Theorem 3.2. Let I' be a Cauchy contour and let W be a rational m X m matriz
function, Suppose W admits the realization W(X\) = I,,, + C(AI,, — A)~'B such
that the main matriz A has no eigenvalues on I'. Then W admits a right canon-
ical factorization with respect to T if and only if the following two conditions are
satisfied:

(i) A* = A— BC has no eigenvalues on T,
(i) C" = Im P(A;T) + Ker P(AX;T).
In that case, a right canonical factorization of W is given by
W(A) = W_(NWi(N), Arel
where the factors and their inverses can be written as

W_(\) = IL,+CW\,—-A)"'(I-1)B,

(N

Wi(\) = I,+CI\, — A 'B,
(N
(A)

W=\ = I,-CU -1\, - A)"'B,
W'\ = I, — O\, — A*)"'IB.

Here 11 is the projection of C™ along Im P(A;T') onto Ker P(A*;T).
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For left canonical factorizations an analogous theorem holds. In the result in
question, (ii) is replaced by C"* = Ker P(A;T) + Im P(AX;T).

The expressions for the functions W_ and W, suggest that these functions
are defined on the resolvent set p(A) of A. Similarly, W~' and W;l seem to have
p(A*) as their domain. At first sight this is at variance with the requirements for
Wiener-Hopf factorization. We will address this point in the proof.

Proof. From the definition given above it is clear that a necessary condition in
order that W admits a right canonical factorization with respect to I' is that W
takes invertible values on I'. By Theorem 2.4 this necessary condition is met if and
only if (i) holds true.

Assume that (i) is satisfied. The spectral projections P(A4;T") and P(A*;T)
are then well-defined. The image X_ = Im P(A;T") of P(A4;T") and the null space
X+ =Ker P(A%;T) of P(A*;T') are invariant for A and A*, respectively. Suppose
(ii) is fulfilled too, and write

A A
0 A

A= B= ,  C=[0C- O} ]

)

B,

for the matrix presentations of A, B and C with respect to the decomposition
C" = X_+ X,. With

W_(\) = Ix +C_-(A\—A_)"'B_, A€ p(Al),

Wi(\) = Ix, +Ci(A=A1)7 1By, Aep(Ay),
we have (from Theorem 2.6) the factorization

W) =W_(OW(A),  Aep(A)np(Ay) C p(A).

As X_ is a spectral subspace for A, we can apply Lemma 3.1 to show that o(A_)
and o(Ay) are disjoint. But then p(A) = p(A_) N p(A4+) and it follows that

W) = W_(NW4(N), A€ p(A_)Np(As) = p(A). (3.4)
Applying Lemma 3.1 once again we see that
o(A_) =0(A)N Fy, o(Ay)=0c(A)NF_, (3.5)

where F; and F_ are the interior and exterior domain of I', respectively. In a
similar way one proves that

g(AX) =0o(A*)N Fy, o(AY)=0c(A")NF_. (3.6)

Using the first parts of (3.5) and (3.6), it now follows that W_ is analytic and
has invertible values on an open neighborhood of F'_. Analogously, employing the
second parts of (3.5) and (3.6), one gets that W, is analytic and has invertible
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values on an open neighborhood of F' . Thus (3.4) is a right canonical Wiener-Hopf
factorization with respect to I'.

The projection IT of C™ along Im P(A;T") onto Ker P(A*;T) is a supporting
projection for the given realization of W. Also I,, —II is a supporting projection for
the realization W(\)~! = I,,, — C(\I,, — A*)~1 B of W~1. With this in mind, one
checks without difficulty that W_, W, | W=t and W;l can also be written as in
the theorem. For an exhaustive discussion of the intricacies concerning inversion,
factorization, and the combination of these operations (in fact: the relationship
between Theorems 2.6, 2.7 and 2.4), see Section 2.5 in [20]. Note, however, that in
the present case there is no ambiguity because we are working here with rational
matrix functions.

Next, suppose that W(X) = W_(A)W,(A) is a right canonical factorization
with respect to I'. We only have to show that C* = Im P(A;T) 4 Ker P(A*;T).
We first prove that Im P(A;T) N Ker P(A*;T") = {0}. Without loss of generality
it may be assumed that the values of W_ and W, at infinity are equal to I,,.

Suppose z € Im P(A;T)NKer P(A*;T), and consider (A— A)~'z. This func-
tion is analytic on an open neighborhood of F_. On the other hand the function
(A — AX)~ 1z is analytic on an open neighborhood of F', . For A in the intersection
p(A) N p(A*), we have

WA)CA—-A)" = A=A+ CON—-A)'BCN— A
= CA—A)T+CA—A) A - )N -4t
= CA—A),

and it follows that W (A\)C(A — AX)™1 = W_(A)"!C(A — A)~!. The analyticity
properties of the factors W_, W, and their inverses now imply that the function
Wi (A)CA =A%)z = W(A)"1C(A — A)~ 'z is analytic on the Riemann sphere
Cw. By Liouville’s theorem it must be constant. As it takes the value zero at
infinity, it is identically zero. Hence both C(A — A*)~!'z and C'(\ — A) ™'z vanish.
Next use the identity

A=A)IBOA-A) = A=-A)-(A—-A)"1

to obtain (A — AX)~lz = (A — A)~lz. But then this function is analytic on the
Riemann sphere too. Using Liouville’s theorem again, we see that it must be
identically zero. Thus x = 0.

Observe that up to this point in the proof we have not used the finite dimen-
sionality of the state space. It will play a role in the next paragraph.

We now finish the proof by a duality argument. Let I'* be the adjoint curve
of T, i.e., the curve obtained from I'" by complex conjugation. Also introduce
the functions V, Vi and V_ by putting V(A) = W(\)*, V_(A\) = W_(\)* and
Vi(A) = Wi (A)*. Clearly V has the realization V(A\) = I + B*(\ — A*)~1C*
and V() = VL (A)V_()) is a left canonical factorization. Arguing as above,
we may conclude that Ker P(A*,I*) N Im P((A*)*,I*) = 0. It follows that



42 Chapter 3. Explicit solutions using realizations

Ker P(A*,T*) + Im P((AX)*,I'*) = C". In the first instance, this equality holds
for the closure of Ker P(A*,T'*) + Im P((A*)*,I'*), but in C" all linear manifolds
are closed. g

With minor modifications we could have worked in Theorem 3.2 with two
curves, one splitting the spectrum of A and the other splitting the spectrum of A*
(cf., [100]). Finally, let us mention that Theorem 3.2 remains true if the Cauchy
contour I' is replaced by the extended real line R, i.e., the closure of the real line
in the Riemann sphere C,. In that case F is the open upper half plane and F_
is the open lower half plane. For details, see Theorem 4.5 at the end of Section 4.3
below which, by the way, deals with the situation where W is a not necessarily
proper rational matrix function.

3.2 Wiener-Hopf integral operators

In this section the general factorization result proved in the preceding sections is
used to provide explicit formulas for solutions of finite systems of the Wiener-Hopf
equation

o) — / TRt - s)é(s)ds = f(B),  £20, (3.7)

where ¢ and f are m-dimensional vector functions and k € LT"™(—o00, ), i.e.,
the kernel function k is an m X m matrix function of which the entries are in
Li(—00,00). We assume that the given vector function f has its component func-
tions in L,[0, 00), and we express this property by writing f € L;'[0, 0o). Through-
out this section, p will be fixed and 1 < p < co. The problem we shall consider is
to find a solution ¢ for equation (3.7) that also belongs to the space L;'[0,00). As
was explained in Section 1.1 the equation (3.7) has a unique solution in L;*[0, c0)
for each f in L7'[0,00) if and only if its symbol I, — K'()) admits a factorization
as in (1.5).

Our aim is to apply the factorization theory developed in the previous sec-
tions to get the canonical factorization (1.5). Therefore, in the sequel we assume
that the symbol is a rational m x m matrix function. As K()\) is the Fourier
transform of an L7"*™(—o0, 0o)—function, the symbol is continuous on the real
line. In particular, I,,, — K(\) has no poles on the real line. Furthermore, by the
Riemann-Lebesgue lemma,

lim K\ =0,
AER, [A]—=o0
which implies that the symbol I, — K(X) has the value I,, at co. The fact that
I, — K()) is rational is equivalent to the requirement that the kernel function k
is in the linear space spanned by all functions of the form

p(t)et,  t>0,
h(t) =

q(t)et,  t <0,
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where p(t) and ¢(t) are matrix polynomials in ¢ with coefficients in C™*™ and «
and 3 are complex numbers with Sa > 0 and &3 < 0.

From Section 2.2 we know that the matrix function I,, — K(\) admits a
realization

Im—K\) = I, +C(\I, — A)™'B

such that the main matrix A has no real eigenvalues. In the next theorem we
express the solvability of equation (3.7) in terms of such a realization and give
explicit formulas for its solutions in the same terms.

Theorem 3.3. Let I,,, — K(\) = I,,, + C(Al,, — A)"'B be a realization for the
symbol of equation (3.7), and suppose A has no real eigenvalues. In order that
(3.7) has a unique solution ¢ in L;'[0,00) for each f in L;'[0,00), the following
two conditions are necessary and sufficient:

(i) A* = A— BC has no real eigenvalues;

(ii) C* = M+ M*, where M is the spectral subspace of A corresponding to the
eigenvalues of A in the upper half plane, and M™ is the spectral subspace of
A* corresponding to the eigenvalues of A* in the lower half plane.

Assume conditions (i) and (ii) hold true, and let II be the projection of C™ along
M onto M*. Then I, — K()\) admits a right canonical factorization with respect
to the real line that has the form

L= KO = (In + G-(\)) (Im + G+ (), A€ER,

where the factors and their inverses can be written as

Im+G+(\) = IL,+CII(\, — A)~'B,
Im +G_(\) = IL,+C0\,—A)""(I,-1)B,
(In +G+(\) ™" = I, — C(\I, — A¥)"'IB,
(In+G-(N)"" = IL,—C(I, — )\, — A*)"'B.
The functions v+ and y— in (1.6) and (1.7) are given by
. (t) = +iCe ™ IIB,  t>0,
v_(t) = —iC(, —M)e "B, t<o.

Finally, the solution ¢ to (3.7) can be written as

olt) = F() + / ot s)f(s) ds,

where I
+iCe A" TIeA™ B, s < t,
v(t,s) = . .
—iCe A" (I, —Ie™4" B, s>t
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Proof. We have already mentioned that equation (3.7) has a unique solution in
L7[0,00) for each f in L;'[0,00) if and only if the symbol I, — K()\) admits a
right canonical factorization as in (1.5). So to prove the necessity and sufficiency
of the conditions (i) and (ii), it suffices to show that the conditions (i) and (ii)
together are equivalent to the statement that I,, — K(\) admits a right canonical
factorization as in (1.5). We first observe that condition (i) is equivalent to the
requirement that I,,, — K(\) is invertible for all A € R (see Theorem 2.4). But
then we can apply Theorem 3.2 in combination with the remark made at the end
of Section 3.1 to prove the first part of the theorem.

Next assume that conditions (i) and (ii) hold true. Applying Theorem 3.2
once again, we get the desired formulas for I,,, + G4 (\), I, + G_(\) and their
inverses. The formulas for 74 and _ are now obtained by noticing that

/ GMeTHA g — (A= AL A€ p(A¥), SA >0,
0

0
/ EMI —M)e A dt = —i(I—I)(A— A%)7 L, € p(AX), IA <0,

— 00

where I = I,,. The proof of the latter identity uses (the first conclusion in)
Lemma 3.1.

It remains to prove the final formula for (¢, s). We use (1.10), and compute
first that
Yo (t—r)y_(r —s) = Ce A IBC(I — M)e =904 B.
Now Ker Il = M is A-invariant and ImIT = M* is A*-invariant. Thus ITA(1—1I) =
0 and (I — IT)A*II = 0, and it follows that IIBC(I —II) = II(A — A*)(I — II) =
IMA>* — AXII. But then

Yt —r)v—(r—s) = Ceilt=r)A% (AXTI — T1A™ )eii(T*S)AxB

_idice—i(t—r)Ax l—Ie—i(r—s)A>< B.
-

Inserting this in (1.30) we obtain for s < ¢ that

. G ax s 4 . 5 ‘ L
’Y(t,s) = Z’Ce—l(t—-s)A HB—/ i_ce—z(t—r)A He—l(r_é)A Bdr
0 dr
= Qe =AM IB _ Qi AN [milr=9)AX pJs_

o it AX o AX
— iCe itA HeisA B,
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while for s > ¢ we get

t
. x d . x . A X
y(t,s) = —iC(I—T)e " ¢t=s)4 B+/ igCe_l(t_T)A e~ "=*)4" Bdr
0

_,ch([ _ 1—1)671'@75)14>< B— Ce*i(tfr)AXHefi(rfs)AX B|f‘:0

= —iCe (I — e B.
This completes the proof. O

Corollary 3.4. Let I, — K(\) = I, + C(\l, — A)"'B be a realization for the
symbol of equation (3.7). Assume that A and A* = A — BC' have no spectrum on
the real line, and that

C" = Im P+Ker P*, (3.8)

where P and P* are the Riesz projections of A and A*, respectively, corresponding
to the spectra in the upper half plane. Fiz x € Ker P, and let the right-hand side of
(3.7) be given by f(t) = Ce~ Az, t > 0. Then the unique solution ¢ in L0, 00)
of equation (3.7) is given by

o(t) = Ce A" Iz, t>0.

Here 11 is the projection of C™ onto Ker P* along Im P.

Proof. Since z € Ker P, the vector e~ "4z is exponentially decaying in norm when
t — oo, and thus the function f belongs to L’ [0, 00). Furthermore, the conditions
(i) and (ii) in Theorem 3.3 are fulfilled, and hence equation (3.7) has a unique
solution ¢ € L7'[0,00). Moreover from Theorem 3.3 we know that ¢ is given by

t
o(t) = f(t)+ iCe~tA” (/ A" BCe 54y ds)
0

—iCe™ A (/OO(I - H)eiSAXBC’e*iSAx ds).
t
Now use that
eisAXBCeﬂ'sA _ Z-eisAX (iAX _ Z-A)efisA _ Z-%eisAXeﬂ‘sA.
It follows that

¢(t) _ f(t) _ CefitAX (1—161'514>< efisAl,H&))

+Ce AT ((I — H)G”AX efiSAx|f°).



46 Chapter 3. Explicit solutions using realizations

Since (I —II) = (I — II)P*, the function (I — I)e*4™ = (I — I)P*etA” is
exponentially decaying for s — 0o. As we have seen, the same holds true for
e~ 4z, Thus

O(t) = f(t) — Ce A T e~y 4 Ce™ A Iy
_CefitAX (I o H)eitAX e~ itAL
= f(t)+ Ce A Iy — Ce g

= Ce " Iz
which completes the proof. O

Finally, let us return to the special situation where the functionf is given
by formula (1.11), and assume that the conditions (i) and (ii) in Theorem 3.3 are
satisfied. Then the solution ¢ admits the representation

t
ot) = eI, +i / Cel =4I TIB ds) (3.9)
0

Al = C(I—T)(g— A)"'Blag;  (3.10)

see formula (1.12).

3.3 Block Toeplitz operators

In the previous section the factorization theory was applied to finite systems of
Wiener-Hopf integral equations. In this section we carry out a similar program for
their discrete analogues, block Toeplitz equations (cf., Section 1.2). So we consider
an equation of the type

Y aj b =m;,  j=012,.... (3.11)
k=0

Throughout we assume that the coefficients a; are given complex m x m matrices
satisfying

(oo}

> llagll < oo,

j=—o0

and n = (1;)52, is a given vector from /' = {,(C™). The problem is to find
£ = (&)pZo € £y such that (3.11) is satisfied.

As before, we shall apply our factorization theory. For that reason we assume
that the symbol a(X) = Z;’ifoo Maj is a rational m x m matrix function whose
value at oo is I,. Note that a(A) has no poles on the unit circle. Therefore the
conditions on a(\) are equivalent to the following assumptions:
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(j) the sequence (a; — d0lm)3 is a linear combination of sequences of the form

(oﬂ TD) o

where |a| < 1, r is a nonnegative integer and D is a complex m X m matrix;

(jj) the sequence (a—;)32, is a linear combination of sequences of the form

(ﬁijjsE);ip (5J’€F)j 1

where |3 > 1, s and k are nonnegative integers and E and F' are complex
m X m matrices.

From Section 2.2 we know that the matrix function a(A) admits a realization
a(\) = I, + C\I,, — A)"'B (3.12)

such that the main matrix A has no eigenvalues on the unit circle. The next
theorem is the analogue of Theorem 3.3.

Theorem 3.5. Let (3.12) be a realization for the symbol a(\) of the equation (3.11),
and suppose A has no eigenvalues on the unit circle. Then (3.11) has a unique
solution & = (&) in £y for each n = (1;)52, in €' if and only if the following
two conditions are satzsﬁed

(i) A* = A— BC has no eigenvalues on the unit circle,

(ii) C™ = M+ M™>, where M is the spectral subspace of A corresponding to the
eigenvalues of A inside the unit circle, and M™> is the spectral subspace of
A* corresponding to the eigenvalues of A* outside the unit circle.

Assume conditions (1) and (ii) are satisfied, and let II be the projection of C™ along
M onto M*. Then the function a(X) admits a right canonical factorization with
respect to the unit circle that has the form

a(A) =h-(MNhe(X), A =1,

where the factors and their inverses can be written as

hy(A) = I, +CT(\, — A)'B,
ho(\) = I,+CW\,— A", -1)B,
') = I, —C(\, — AX)'IB,
hZ'(\) = I, - C(, -\, — A*)7!
The sequences (’y;r)j:O and (v-;)520 in (1.19) are given by
v = I, +C(A*)" B,
v o= c@)"UthnB,  j=1.2,...,
Yo = Im,

/yj_ = _C(In - H)(Ax)i(j+1)B7 ] = _17 _27 R
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Finally, the solution & to (3.11) can be written as & = > oo VksTs where

C(A)~+DII(AX)* B, s <k,
Ves = & I + C(AX)~CHDII(AX)* B, s=k,
—C(A) =R+, —TI)(AX)*B, s> k.

Proof. The proof of Theorem 3.5 is similar to that of Theorem 3.3. Here we only
derive the final formula for ~yg;.

With respect to the formulas for ’y;f, we note that Im1II is A*-invariant and
the restriction of A* to ImII is invertible. So, with slight abuse of notation as far
as inverses of A are involved,

hy(N)™' = I,—-C\—A)"'IB

L+ C(I = AA*)™) (4" 'IB

= I,+ Z N O(A) DB,
Now compare coefficients with 4. (A)~! = 3772 M~;". Similarly, the formulas for
7; are obtained by comparing

ho(N)™' = IL,-CU-I)\—A%)"!

—1
= In— Y NC(I-ImA*)~UtB

j=—o0

with h_(\)~t = Z?:_oo MN~; . Here I = I,,.
To obtain the formulas for v;s we employ (1.22). For s < k we must find

s—1
Vks = ’Y]j_,s'}/()_ + Z’Y}:r%_—s,
r=0
while for s > k we need to calculate
k—1

Vrs = V3 Vies + D Vi Vrs-
r=0
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Again by slight abuse of notation
'71;‘;/7:75 = _C(AX)f(k—qul)HBC(I _ H)(AX)f(r—s+1)B
= O~ ) (k— T+1)(A><H ITA™)(A%)~ (r—s+1) g

— _C(AX)—(k—r)H(Ax)—(r—s+1)B +
+C’(A><) (k— r+1)H(A><) (rfs)B.

Observe that if we replace r by r+ 1 in the last one of the latter two terms we get
the first one. So the summation in the formula for 7, is telescoping and collapses
into just a few terms. We proceed as follows.

For s < k we get

Yes = Vg0 — C(A)" WL 4 C(A%) " HD1I(A%)* B
Since 75 = I and 7, = C(A*)~*=s+DIIB, this results in
Vs = C(AX)f(k+1)H(A><)sB

For s > k the computation is a little more involved as v = I,, + C(A*)'1IB.
Using that IIBC (I —II) = A*II — ITA, it goes this way:

Yes = —(I+C(A)IB)C(I —)(AX)~h==t1p
+C(AX)"DI(AX)*B — C(A*)'I(A*)~ "B

= —C(I-I)Ax)~tk—=tp
—I—C(AX)*l(HAX _ AXH)(AX)f(kferl)B
+C(A)"II(A*)* B — C(A*)'I(A*)~ "B
= C(A)"FIAX ) B - c(A*)~(=tB
= —C(A)""I(I —1)(AX)*B

It remains to consider the case kK = s. Then we have
k—1
Vss = FY(;F’Y(; + Z PYer—r’yg—s'
r=0
Following the line of argument as in the case s < k this yields
Yos = I+ C(A*)"HIB — C(A*)"H{IB 4 C(AX) -k D11(A*)k B
= L+ C(A) " HDII(A) B,

which completes the proof. O
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The main step in the factorization method for solving the equation (3.11)
is to construct a right canonical factorization of the symbol a(A) with respect to
the unit circle. In Theorem 3.5 we obtained explicit formulas for the case when
a(A) is rational and has the value I,, at co. The latter condition is not essential.
Indeed, by a suitable Mdbius transformation one can transform the symbol a(\)
into a function which is invertible at infinity (see Section 3.6). Next one makes the
Wiener-Hopf factorization of the transformed symbol with respect to the image
of the unit circle under the Md&bius transformation. Here one can use the same
formulas as in Theorem 3.5. Finally, using the inverse Mobius transformation, one
can obtain explicit formulas for the factorization with respect to the unit circle,
and hence also for the solution of equation (3.11).

3.4 Singular integral equations

In this section we apply Theorem 3.2 to solve the singular integral equation from
Section 1.3:

aot) + b= [ 2D ar — p@y, ter (3.13)

i JpT—t ’ ’ '

where I' is a Cauchy contour. The problem is to find ¢ € L;'(I') such that (3.13)
is satisfied. Recall that (3.13) can be rewritten in the form al¢ + bS¢ = f, where
S is the singular integral operator as in (1.26). Put c=a+b and d = a — b. Then
we know from Section 1.3 that the operator al 4 S is invertible if and only if ¢())
and d()) are invertible for all A € I" and the function w()\) = d(\)~1c()\) admits a
right canonical factorization with respect to I'. The next theorem deals with the
case when w(\) is rational and has the value I,,, at oo.

Theorem 3.6. Suppose det(a(X) +b(N)) and det(a(X) —b(X)) do not vanish on T,

and assume w(\) = (a(A) — b(/\))_1 (a(X) +b(N)) is a rational function which has
the value I,, at infinity. Let

w(\) = I, + C(\I, — A)"'B

be a realization for w. Suppose A and A* = A — BC have no spectrum on T'.
Then al + bS is invertible if and only if C* = M+M>, where M is the spectral
subspace corresponding to the eigenvalues of A inside I, and M is the spectral
subspace corresponding to the eigenvalues of A* outside I'. In that case the func-
tions w4, wjrl7 w_ and w_' appearing in the expressions for (al +bS)~1 given in
Section 1.3 can be specified as follows:

wy(A) = Iy +CI\, — A)~'B,

w_(\) = IL,+C\, —A)~YI, -T)B,
wi'(\) = IL,—C(\, —A*) B,
w='(\) = I,—C(, -\, — A*) B,
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Here 11 is the projection of C™ along M onto M* and I = I, is the identity
operator on C™.

By way of illustration, we consider the special case when

1
t) = ( ¢ fbt) ,
76 =+ (al) ~ b(t) )
where « is a complex number outside I" and n € C™. Put
1
t) = ——n.
9(t) = T

Then one can write f = dg, where as before d = a — b. Hence w”='d~! = w™lg.
Observe now that the function

. (wil(t) — w:l(a))n

t—«

is analytic outside I' and vanishes at co. So when we apply Pr to it, we get zero.
It follows that

(Pru=lg)(t) = ——w= ().
But then 1
(Qrag)(t) = 7 (w™' () —w™' (@),
and hence
(a2 +58)7£) (1) = 7=—w (Ww (@ + = (I — v (=" (@) ).

In the situation of Theorem 3.6, the right-hand side of this equality becomes

LI —aC<(t ST (- AN - H))B

~(Im — (I - )(a — AX)*lB)n.
The case when w(\) is rational, but does not have the value I, at oo, can be
treated by applying a suitable M&bius transformation. The argument is similar to
that indicated at the end of Section 3.3.
3.5 The Riemann-Hilbert boundary value problem

In this section we consider the (homogeneous) Riemann-Hilbert boundary value
problem (on the real line):

WAL () =P_(\), —00<A<+00. (3.14)
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The precise formulation of this problem is as follows. Let W be a given m x m
matrix function, with entries that are integrable on the real line. The problem is
to describe all pairs @, ®_ of C™-valued functions such that (3.14) is satisfied
while, in addition, ®; and ®_ are the Fourier transforms of integrable C™-valued
functions with support in [0,00) and (—o0,0], respectively. For such a pair of
functions ®,,®_ we have that ®, is continuous on the closed upper half plane,
analytic in the open upper half plane and vanishes at infinity, the same being true
for ®_ with the understanding that the upper half plane is replaced by the lower.

The functions W that we shall deal with are rational m x m matrix functions
with the value I, at infinity and given in the form of a realization.

Theorem 3.7. Let W be a rational m x m matriz function, and suppose W admits
the realization W(\) = I, + C(M,, — A)~'B. Suppose further that both A and
A* = A— BC have no eigenvalues on the real line. Let M be the spectral subspace
of A corresponding to the eigenvalues of A in the upper half plane, and let M ™ be
the spectral subspace of A* corresponding to the eigenvalues of A™ in the lower
half plane. Then the pair of functions @, ®_ is a solution of the Riemann-Hilbert
boundary value problem (3.14) if and only if there exists x € M N M* such that

O (\)=C(\I, — A) L, d_(\) =C(\\I, — A) "t (3.15)

Moreover, the vector x in (3.15) is uniquely determined by the pair &4, P_.

Proof. Take x € M NM* and define &4 and ®_ by (3.15). From Theorem 2.4 we
know that W(X\)C(A—AX)~! = C(A—A) L. It follows that (3.14) is satisfied. Here
the specific choice of z does not even play a role. Put ¢ (t) = —iCe A"z t > 0.
Since x € M*, the function ¢ is integrable on [0,00). Similarly, as z € M,
the function ¢_ given by ¢_(t) = iCe ™4z, t < 0 is integrable on (—o0,0]. A
straightforward computation shows that

0

DL (N = /(Jooei/\tqﬁ+(t)dt, d_(\) = / e (t)dt (3.16)

— 00

and the proof of the “if part” of the theorem is complete.

The proof of the “only if part” is somewhat more involved. Let &, ®_ be a
solution of (3.14) given in the form (3.16) with integrable ¢ and ¢_. It will be
convenient to extend ¢4 and ¢_ to integrable functions on the full real line by
stipulating that they vanish on [—00,0) and [0, 00), respectively. For A € R put
p(A) = (A= A)~1B®,()\). Note that (A — A)~! appears as a Fourier transform of
a matrix function with entries from L; (R). In fact

A=A = / e y(t)dt, AER,

where

ie AP, t<0,
(t) =

—ie”"A(I, — P), t <O.
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Using inverse Fourier transforms and the fact that the support of ¢, is contained
in [0, 00), we have

p(\) = /_: e“t</ooo ((t — s)Bo, (s) ds) dt, AER.

Introduce

)= [ =B ds, (<0, (=0 (>0)

o0

V+(t) = ; Ut —5)Boy(s)ds, (t>0), () =0 (t<0),

and for each A € R set

mm:/ MMMﬁzéemwm%

— 00

p—(N) = /OO Ny _(t)dt = / ey (t) dt.

— 00 — 00

Obviously, p(A) = p—(A) + p+(N) for each A € R. From (3.14) and the definition
of p it follows that

S\ +Cpr(\) = D_(\)—Cp_(\), AeR. (3.17)

The left-hand side of (3.17) is continuous on the closed upper half plane, analytic
in the open upper half plane and vanishes at infinity. The same is true for the
right-hand side of (3.17) provided the upper half plane is replaced by the lower
half plane. But then we can apply Liouville’s theorem to show that both sides of
(3.17) are identically zero. Hence

0

O _(N)=Cp_(\) = /_ eMCry_(t) dt, I <0, (3.18)
D (\)=—-Cpr(\) =— /OOO eMCry, (t)dt,  SIA>0. (3.19)

For ¢t < 0 we have
0 = [ He-)Boss)ds
0
. © . .
= ie_’tA/ e“APBo, (s)ds = ie” ",
0
where z = [ e"*APB¢,(s)ds. Clearly x € Im P, and we conclude that

0
p_(N\) = / i) dt = (A —A) e, A <0 (3.20)

— 00
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Next, fix A € R. Since (A — A)p(A) = B®(A\) and (A — A)p_(\) = x, we can
use the first part of (3.19) to show that

(A= A)ps(N) + 2 = (A= A)p(A) = BOL(\) = —BCpy ().
Recall that A* = A — BC. It follows that
pr(N) = (A= A%) ", AER. (3.21)

The left-hand side of (3.21) is continuous on the closed upper half plane and
analytic in the open upper half plane. Thus (3.21) implies that P>z = 0, where
P> is the spectral projection of A* corresponding to the eigenvalues in the upper
half plane. Since Im P = M and Ker P* = M*, we see that x € M N M*. From
(3.19) and (3.21) it follows that the first identity in (3.15) holds. Similarly, (3.18)
and (3.20) yield the second identity in (3.15).

It remains to prove the unicity of z. Take u € M N M*, and assume that
C(A—A)~tu = 0. It suffices to show that u = 0. To do this, recall (see Theorem 2.4)
that

A=A =A=' - A=A ' BWNTCN-A), A ER.
Thus the assumption C'(A — A)~tu = 0 yields
A=Aty =\ - A) ", A eR. (3.22)

The fact that v € M* implies that (A — A*)7lu is analytic on SA > 0. On
the other hand, u € M gives that (A — A)~! is analytic on I\ < 0. Since both
(A — A)"ly and (A — A)~lu vanish at infinity, Liouville’s theorem implies that
(A — A)~lu is identically zero on R, hence u = 0. O

There is an intimate connection between the Riemann-Hilbert boundary
value problem (on the real line) and the homogeneous Wiener-Hopf integral equa-
tion. This is already clear from the material presented in Section 1.1 by specializing
to the situation where f = 0. The fact is further underlined by the above proof of
Theorem 3.7. Indeed, notice that (3.19) implies that ¢4 = —C~,4, and hence we
see from the definition of v, that

o)~ [T souds =0 t>0,

where k(t) = —CU(t)B, and hence k(\) = —C(A, — A)~'B. Thus ¢, is the
solution of the homogeneous Wiener-Hopf integral equation with symbol given by
I, + C(\I,, — A)"'B. A more detailed (but straightforward) analysis gives the
following result, the formulation of which is in line with Theorem 3.3.
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Theorem 3.8. Let I, — K(\) = I, +C (A, — A) 1B be a realization for the symbol
of the homogeneous Wiener-Hopf equation

6(t) — /OOO k(t— $)o(s)ds = 0, >0, (3.23)

and let A* = A — BC. Assume that both A and A* have no real eigenvalues, in
other words,

det (Im, — K (X)) #0, —00 < A < +00.

Let M be the spectral subspace of A corresponding to the eigenvalues of A in the
upper half plane, and let M* be the spectral subspace of A* corresponding to the
eigenvalues of A* in the lower half plane. Then ¢ is a solution of (3.23) if and
only if there exists x € M N M> such that

o(t) =Ce ™z, t>0. (3.24)

Moreover, the vector x in (3.24) is uniquely determined by ¢.

Formula (3.24) has to be understood in the sense of equality in the solution
space L7'[0,00) (or, more generally, L;'[0,00) with 1 < p < oo; cf., Section 1.1
and Theorem 3.3).

As a direct consequence of Theorem 3.8, one sees that the dimension of the
null space of the Wiener-Hopf integral operator 1" defined by the left-hand side of
(3.23) is equal to dim(M N M *). It can also be proved that the codimension of its
range is equal to codim (M + M*). In fact, under the conditions of Theorem 3.8,
the operator T' is a Fredholm operator (see Section XI.1 in [51] for the definition
of this notion), and its Fredholm index, which is defined as the difference of the
codimension of its range and the dimension of its null space, is equal to

ind7T = codim(M + M*) —dim(M N M*)
— d Cn 3 X
n M MX
= dim EX — dim % — dim(M N M>)
. (C’n X
= dlme fdlmMmMX dim(M N M™)
= dim e —dim M

= rank P* —rank P.

Here P and P* are the spectral projections corresponding to the eigenvalues in
the upper half plane of A and A*, respectively. (In the step from the third to the
fourth equality in the above calculation we used Lemma 2 in [89].) More detailed
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information about the null space and range of the Wiener-Hopf integral operator T
can be obtained in this way (see, e.g., Theorem XIIL.8.1 in [51]). We shall return
to this theme, in a more general context, in Chapter 7, where it will be shown
that the factorization indices in a non-canonical Wiener-Hopf factorization can be
expressed in terms of the spaces M and M*, and related subspaces defined in
terms of these spaces and the matrices appearing in the realization of the symbol.

Notes

The first section of this chapter originates from Section 1.2 in [11]. The basic
facts about Cauchy domains (see also the final paragraphs of Chapter 0), Riesz
projections and spectral subspaces, used in this first section, can be found in
Sections 1.1 — 1.3 of [51]. The material in Sections 3.2, 3.3 and 3.4 goes back to
Chapter 4 in [11]. For Section 3.5 we refer to [12]. We shall return to canonical
factorization in a more general setting in Chapters 5 and 7; see Theorems 5.14 and
7.1. Other state space methods for solving convolution equations, also based on
matrix-valued realizations but not employing factorization, are developed in [12]
and [13].



Chapter 4

Factorization of non-proper
rational matrix functions

In this chapter we treat the problem of factorizing a non-proper rational matrix
function. The realization used in the earlier chapters is replaced by

W) =1+C\G—A)"'B. (4.1)

Here I = I,,, is the m x m identity matrix, A and G are square matrices of order
n say, and the matrices C and B are of sizes m x n and n X m, respectively.
Any rational m x m matrix function W, proper or non-proper, admits such a
representation. The representation (4.1) allows us to extend the results obtained
in the previous chapter to arbitrary rational matrix functions. As an application
we treat the problem to invert a singular integral operator with a rational matrix
symbol.

This chapter consists of five sections. In Section 4.1 we review the spectral
theory of matrix pencils. Section 4.2 presents the realization theorem for non-
proper rational matrix functions referred to in the previous paragraph. The cor-
responding canonical factorization theorem is given in Section 4.3. The final two
sections deal with applications to inverting singular integral operators (Section
4.4) and solving Riemann-Hilbert problems (Section 4.5).

4.1 Preliminaries about matrix pencils

Let A and G be complex n x n matrices. The linear matrix-valued function \G— A4,
where A is a complex variable, is called a (linear matriz) pencil. We say that the
pencil A\G — A is reqular on  or Q-reqular if A\G — A is invertible for each A € Q.
Here € is a subset of C.

From now on I' will be a Cauchy contour. Its interior domain is denoted by
F, and its exterior domain by F_. We shall assume that oo € F_. Pencils that
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are I'-regular admit block matrix partitionings that are comparable to spectral de-
compositions of a single matrix. This fact is summarized by the following theorem,
the proof of which can be found in [140] (see also Section IV.1 of [51]).

Theorem 4.1. Let A\G — A be a I'-regular pencil, and let the matrices P and QQ be
defined by

p=L [coc-atar, © L/(AG—A)*GCM. (4.2)
r

~ 2 p " omi
Then P and Q are projections such that
(i) PA = AQ and PG = GQ,
(i) A\G — AP = Q(\G — A)~! on T and this function has an analytic con-

tinuation on F_ which vanishes at oo,

(ili) (MG — AT - P) = (I —Q)\G — A)~! on T and this function has an
analytic continuation on F. .

The properties (i)—(iii) in the above proposition determine P and @) uniquely,
that is, if P and @ are projections such that (i)—(iii) hold, then P and @ are given
by the integral formulas in (4.2).

For a better understanding of the above result, let us write A and G as
block matrices relative to the decompositions of C™ induced by the projections P
and Q. Condition (i) in Theorem 4.1 implies that A and G have block diagonal
representations:

Ay 0 . .

A = ! :ImQ+Ker@Q — ImP+KerP,
0 A
Gi O . .

G = :Im@Q+Ker@ — Im P+ KerP.
0 Go

Property (ii) is equivalent to saying that the pencil AG; — A; is regular on F_
and G; is invertible; property (iii) amounts to regularity of the pencil A\Gy — Ay
on F.

In the particular case when G is the identity matrix I, the two projections P
and @ coincide, and P is just the spectral (or Riesz) projection of A corresponding
to the eigenvalues in F.. The latter means (see Section 3.1 or Section 1.2 in [51])
that P is a projection commuting with A, the eigenvalues of A|iy, p are in Fy and
the eigenvalues of A|ker p are in F_. In that case, Im P is the spectral subspace of
A corresponding to the eigenvalues of A in F', and Ker P is the spectral subspace
of A corresponding to the eigenvalues of A in F_.
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4.2 Realization of a non-proper rational matrix
function

In this section we derive the representation (4.1), and present some useful identities
related to (4.1).

Theorem 4.2. Let W be a rational m X m matriz function, and let Q) be the subset
of C on which W is analytic. Then, given an m X m matriz D, the function W
admits a representation

W(A\) =D+ C(\G - A)"'B, AEQ, (4.3)

where A\G — A is an Q-regular m x m matriz pencil, and B and C are matrices of
sizes m X m and m X n, respectively.

The set Q is the complement in C of the set of finite poles of W (i.e., the
poles of W in C). In later applications, D will be taken to be I,,, the m x m
identity matrix.

Proof. Let us first remark that W admits a decomposition
W(X) = K(\) + L(N), Ae (4.4)

where L is an m X m matrix polynomial and K is a proper rational m x m matrix
such that the subset of C on which K is analytic coincides with 2. Such a decom-
position is not unique. In fact, given (4.4) we can obtain another decomposition
of F' with the same properties by adding a constant matrix to K and subtracting
the same matrix from L. This, however, is all the freedom one has. In other words
the decomposition (4.4) will be unique if we fix the value of K at infinity.

From now on we shall assume that K(oco) = D. The results obtained in
Section 2.2 then imply that K admits a realization

K(\) =D+ Cg(\— Ag) 'Bg, AEQ,

where Agx, Bx and Ck are matrices of appropriate sizes and the resolvent set
of the (square) matrix Agx coincides with . The latter can be reformulated by
saying that the eigenvalues of Ax are just the finite poles of .

Proceeding with the second term in the right-hand side of the identity (4.4),
we write L(A) = Lo + ALy + - - - + A?L,, and introduce

0 I, Lo
0 - Ly
G = C Bp=| |, co=[-In 0 - 0],
. Im :
0 L,
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where the blanks in G, indicate zero entries. The matrix G, is square of size
I =m(qg+1). Also G, is nilpotent (of order ¢+ 1), and hence I; — AGy, is invertible
for each \ in C. The first row in the block matrix representation of (I, — \G1)~!
is equal to [I, ALy, ... A%1,,] and it follows that L(\) = C(AGL — I;)"*By on
all of the (finite) complex plane.

By combining the representation results for K and L we see that W can be
written in the form (4.3) with

I 0
0 Gp

A 0
K . B-
Il]

Here [ is the identity matrix of the same size as Ak . The fact that G is nilpotent,
implies that the matrix AG — A is invertible if and only if A is an eigenvalue of
Ak, that is if and only if X is a finite pole of W. O

The following proposition, which describes some elementary operations on a
rational matrix function in terms of a given realization, is the natural analogue of
Theorem 2.4 for realizations of the form (4.1).

Theorem 4.3. Let W()\) = [+C(A\G—A)"!' B, and put A* = A— BC. Then W ()\)
s invertible if and only if A\G — A™ is invertible, and in that case the following
identities hold:

WA\ t=T-C0\G - A)"'B, (4.5)
WANCAG — At =0(\G - A1, (4.6)
(MG — A)'BW(\) = (\G — A)'B, (4.7)

NG —A) T =(\G A -G -A)'BWNTCOOG - A (4.8)
Proof. Fix \ € C such that AG' — A is invertible. Then
det W(A) = det (I +C(\G—A)"'B) =det (I +(AG—A)"'BC)
= det (AG — A)7!) det(A\G — A + BC)

det(\G — A%)
det(A\G — A)

It follows that W () is invertible if and only if AG — A is invertible. Also, in that
case, a straightforward computation yields
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W(ACAG — A —C(\G — A~

= C(\G — A)'BC(\G — A*)~?

=C(\G — A)7HA - A)(AG — A7

=C(AG —A) (MG =A%) — (A\G — A))(A\G — A)7!
= C(\G — AL —C(\G — AL,

Since W () is invertible, this proves (4.6). The identity (4.7) is proved in a similar
way. Using (4.6) a straightforward computation shows that

W) (I - C\G—A*)"'B) =1,

and hence (4.5) holds. Finally, (4.8) follows by applying (4.6) and again using the
identity BC' = (A\G — A*) — (A\G — A). O

Instead of the above argument one can also use an analogue of the second
proof of Theorem 2.1 in [20], which uses Schur complements arguments (cf., the
remark made in the final paragraph of Section 2.4).

4.3 Explicit canonical factorization

In this section we show how the realization (4.1) can be used to construct a
canonical factorization of an arbitrary rational matrix function. Necessary and
sufficient conditions for the existence of such a factorization and formulas for the
factors are stated explicitly in terms of the data appearing in the realization.
The next theorem, a counterpart of Theorem 3.2 for non-proper rational matrix
functions, is the main result.

Theorem 4.4. Let W be a rational m x m matriz function without poles on the
curve I', and let W be given by the I'-reqular realization

W) =1+C\G—A)"'B, NeT. (4.9)
Put A* = A— BC. Then W admits a right canonical factorization with respect to
T' if and only if the following two conditions are satisfied:
(i) the pencil A\G — A* is T'-regular,
(ii) C" = Im P + Ker P* and C" = Im Q + Ker Q*.
Here n is the order of the matrices G and A, and

1 1
P=— [ GOG-A)'d\, P*=_— [ GO\G - A*)d\,

27 Jp 210 Jp
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_ 1 —1 X _ 1 x\—1
Q= 5 /F()\G A)T Gd), Q* = 5 F()\G AX)TGdA.
If the conditions (i) and (ii) are satisfied, a right canonical factorization with
respect to I' is given by
W)= W OW,(\),  AeT,

where the factors and their inverses can be written as

W_(\) = I+C\G—A)"YI-A)B, (4.10)
Wi(\) = I+CANG - A)'B, (4.11)
W\ = I-C(—-AWNG - A)'B, (4.12)
Wit (\) = I-C(\G—AY)'AB. (4.13)

Here A is the projection along Im P onto Ker P*, and A is the projection of C"
along Im Q onto Ker Q. Finally, the first equality in (ii) implies the second and
conversely.

Proof. We split the proof into four parts. The first part concerns the condition (i).
In the second part we prove that the first equality in (ii) implies the second and
conversely. In the third part we use (i) and (ii) to derive the canonical factoriza-
tion and the formulas for its factors. The final part concerns the necessity of the
condition (ii).

Part 1. From the definition given in Section 3.1 it is clear that a necessary condition
in order that W admits a right canonical factorization with respect to I' is that W
takes invertible values on I'. By Theorem 4.3 this necessary condition is fulfilled
if and only if (i) holds true. In what follows we shall assume that (i) is satisfied.

Part 2. In this part we prove the last statement of the theorem. Consider the
operators

PX|imp : Im P — Im P*, Q*|img : ImQ — ImQ*. (4.14)

The first equality in (ii) is equivalent to the invertibility of the first operator in
(4.14). To see this, note that Ker (PX |1mp) = Ker P* N Im P, and thus P* |, p
is injective if and only if Ker P* N Im P = {0}. Next, observe that for each
y € ImP we have y = (I — P*)y + P*|mmpy € Ker P* + Im (P*|pm p). Thus
KerP*+ImP C KerP* + Im (PX|1m p). The reverse inclusion is also true.
Indeed, for z € Im P we have P*z = (P*z — z) + z € Ker P* + Im P. Tt follows
that Ker P* 4+ Im (PX |1mp) = Ker P* + Im P, and hence P* |}, p considered as
an operator into Im P* is surjective if and only if C* = Ker P* + Im P. Thus,
as claimed, the first identity in (ii) amounts to the same as the invertibility of the
first operator in (4.14). Similarly, the second equality in (ii) is equivalent to the
invertibility of the second operator in (4.14). Notice that

GQ=PG, GQ*=P*G, (4.15)
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which is clear from the definitions of the projections @, P and @Q*, P*. Further-
more, from the material presented in Section 4.1, applied to A\G — A as well as
to A\G — A*, we see that G maps Im@ and Im Q> in a one-one manner onto
Im P and Im P*, respectively. Thus the operators E = G\ImQ :Im@Q — Im P and
E* = Glimgx : ImQ* — Im P* are invertible and, in addition,

EX(Q%mq) = (P |lmp)E.

So the operators in (4.14) are equivalent, and hence the first operator in (4.14) is
invertible if and only if the same is true for the second operator in (4.14). This
proves that the first equality in (ii) implies the second and vice versa.

Part 3. Next assume that (i) and the direct sum decompositions in (ii) hold true.
Our aim is to obtain a canonical factorization of W. Write A, G, B, C as well as
A* = A — BC in block form relative to the decompositions in (ii):

[ A Ar . .
A = :Im Q +Ker Q* — Im P+ Ker P*, (4.16)
| 0 A |
[ G 0 ] . .
G = :ImQ+KerQ* — ImP +Ker P*, (4.17)
L 0 G22 _
[ B, .
B = :C" — Im P+ Ker P*, (4.18)
By
C = [ Cl Cg ] IIHIQ—;—KGYQX — (Cn, (419)
Afy 0 . ,
A = :Im@Q +KerQ* — Im P+ Ker P*. (4.20)
Aj AZ,

From Theorem 4.1, applied to AG — A as well as to A\G — A*, we know that
AQ = PA, AXQ* = P*A*. (4.21)

The first identity in (4.21) implies that A maps Im @ into Im P. This explains
the zero entry in the left lower corner of the block matrix for A. From (4.15) we
conclude that G has the desired block diagonal form. From the second identity in
(4.21) it follows that A* maps Ker Q* into Ker P*, which justifies the zero in the
right upper corner of the block matrix for A*. Taking into account the identity
A* = A — BC gives

A12 = 31027 A;l = —Bgcl, (422)

Al = An — B.Cy, Ajy = Azg — B (. (4.23)
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Define the matrix functions W_ and W by (4.10) and (4.11), respectively. Using
the block matrix representations of A, G, B, and C' we may rewrite W_ and W
in the form

W_(\)=1+Ci(\Gy — A1) !By, NeT, (4.24)
Wi(\) = I+ Ca(\Gg — Azz) ' Ba, AeT. (4.25)

From the block matrix representation of A and the first identity in (4.22) we see
that

AG1 — An —-B,Cs - By

Wf()\)WJr()\) = I+ [ ;. Oy }
0 /\Gg — A22 B2

I+C0\G - A)'B

= W),

which gives the factorization W = W_W..
Next, we check the analytic properties of the factors. Obviously, W_ and W
have no poles on I'. Note that

)\Gl — AH = ()\G — A)lImQ : ImQ — Im P.

Thus we know from Section 4.1 that (A\G; — Au)_1 has an analytic extension on
F_ which vanishes at infinity. So W_ is continuous on F_ U I' and analytic on F_
(including infinity). To see that a similar statement holds true for W, on F, we
first note that the linear maps

J = (I*CQNKerQ>< : KerQ* — Ker @,
H = (I—-P)lgerpx : Ker P* — Ker P,

are invertible. In fact, J=! = A|ker@ and H ! = A|ker p, where A is the projection
along Im @ onto Ker Q*, and A is the projection along Im P onto Ker P*. Next,
take x € Ker @*. Then

(AGo — Ag)x = AMNG —A)x = AANG - AT —Q)xr = ANG — A)Jx,

which shows that H(AGs — Ags) = (()\G — A)\KerQ)J. But then we can use The-
orem 4.1 and the invertibility of the operators H and J to show that the function
(AG2— A2)~! has an analytic extension on F. Hence W, is continuous on Fy UT
and analytic on Fly.

From the factorization W(\) = W_(A)W4 () for A € T it follows that W_())
and W, (\) are both invertible for each A € I'. So we can apply Theorem 4.3 to
show that

<

L

=
I

I—-Ci(\Gy — A7) ' By, (4.26)

Wit (\) = I—Co(AGe — A%) 'Bo. (4.27)
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Here we use the two identities in (4.23). Using the block matrix representations
of A, G, B and C given above, it is clear that (4.26) and (4.27) yield the formulas
(4.12) and (4.13), respectively.

We proceed by checking the analyticity properties of the functions W-! and
W_:l. First note that

MGy — Az, = (MG — A")|ker o= : Ker Q* — Ker P*.

Thus by applying Theorem 4.1 with AG — A* in place of AG — A we see that
the function (AGa — A,)~! has an analytic extension on F. It follows that the
function W;l is continuous on F; U T and analytic on F.. To prove the analogous
result for W' with respect to F_ we use that

HX()\Gl _Afl) == (()\G - Ax)llmQx) JX,

where J* = Q*|img : Im@Q — ImQ* and H* = P*|ymp : In P — Im P* are
invertible linear maps of which the inverses are given by

()= = Mlmex,  (H) =T = Al px.

Since (()\G — AX)|ImQ><)_1 is analytic on F_ by virtue of Theorem 4.1 applied
to AG — A*, we conclude that the same holds true for (AG; — A77)~!. Hence the
function W_(X)~! is continuous on F_ U I' and analytic on F_. Thus we have
proved that W = W_W_ is a right canonical factorization with respect to the
curve I.

Part 4. In this part we prove the necessity of the equalities in (ii). So in what follows
we assume that W = W_W, is a canonical factorization of W with respect to I'.
Take z € Im PN Ker P* and, for A € T, put

0 (N =C\G —A) ', 0ir(\) =C\G — A e,
Since x € Im P, the first identity in (4.21) allows us to rewrite ¢_ as
~1
p-(N) = (Clm @) (MG = A)lmq) =,

and hence Theorem 4.1(ii) implies that ¢_ has an analytic continuation on F_
which vanishes at infinity. Similarly, since

0+ (A) = (Clkerx ) (AG — AX>71|KerQX)71z7

we conclude from Theorem 4.1(iii) applied to AG — A* that ¢4 has an analytic
continuation on Fy. Note that W (\)~tp_()\) = 4 ()) for each A € T, because of
formula (4.6) in Theorem 4.3. It follows that

W_(N)7lo-(A) = Wi(Nes(A),  Ael.
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Now use the analyticity properties of the factors W_ and W,. We conclude that
W-ly_ has an analytic continuation on F_ which vanishes at infinity, and W o
has an analytic continuation on Fy . Liouville’s theorem implies that both functions
are identically zero. It follows that ¢_(A) = 0 for each A € T'. But then we can
apply formula (4.8) to show that

(NG — Al = (\G — A) 'z, AeTl.

Now, repeat part of the above reasoning. Note that (AG — A)~ 'z has an analytic
continuation on F_ which vanishes at infinity, and (A\G — A*)~1z has an analytic
continuation on Fy. Again using Liouville’s theorem we conclude that both matrix
functions (A\G' — A) "'z and (AG — AX)~ 'z are identically zero on I'. This yields
z=0.

We proved that Im P N Ker P* = {0}. Recall that G maps Im @ in a one-one
manner onto Im P. Thus (4.15) shows that G maps Im Q N Ker @* in a one-one
manner into Im P N Ker P*. Hence Im Q N Ker @* = {0} too.

Next we show that Im @ + Ker Q> = C". Take y € C" such that y is orthog-
onal to Im @ + Ker Q*. Let y* be the row vector of which the j-th entry is equal
to the complex conjugate of the j-th entry of y (j = 1,...,m). For A € T, put

b-(N) =y (AG - A)T'B, v (N) =y (\G - A)7'B.

Since y*(I — Q)* = 0, Theorem 4.1 shows that ¢¥_(\) = y*(A\G — AX)"1P*B,
and thus ¥_ has an analytic continuation on F_ which vanishes at infinity. Simi-
larly, y*@Q = 0 implies that ¢4 has an analytic continuation on F. Now, use the
canonical factorization W = W_W, and (4.7) to show that

DW=y (WW-(\), A€l

But then, as before, we can use Liouville’s theorem to show that both sides of the
identity are equal to zero. It follows that ¢4 (A) = 0 for each A € T', and we can
use formula (4.8) to show that

YOG — A = y*(AG - A7 el

Recall that y*@ and y*(I — @*) are both zero. Thus Theorem 4.1 implies that
y*(AG — A*)~! has an analytic continuation on F_ which vanishes at infinity, and
the function y*(AG — A)~! has an analytic continuation on F;. So, by Liouville’s
theorem, y*(A\G—A)~! = 0 on T, and thus y = 0. This gives Im Q+ Ker @* = C".
Combining this with with what we saw in the preceding paragraph, we obtain
Im Q +Ker Q* = C™. But then the result of Part 2 yields the direct sum decom-
position Im P+ Ker P* = C", and (ii) is proved. O

The fact that in Theorem 4.4 the curve I' is bounded is not essential. We
only use that I" is a closed curve on the Riemann sphere C,, and that W has no
poles on I'. Thus I' may pass through infinity. For instance, let us replace I' by the
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extended real line R, which passes through infinity. By the results of Section 2.2,
the condition that the m x m rational matrix function W has no poles on R U{oo}
implies that W can be represented in the form

W) =D+C(\—A)"'B, A ER, (4.28)

where A is a square matrix with no real eigenvalues. The condition that W takes
invertible values on R U{cc} now amounts to the requirement that D is invertible
and the matrix A — BD~'C has no real eigenvalues. Also, in that case,

W=tA)=D'-D'C(A\-A*)"'BD™', AeR,
where AX = A—BD~'C. With these minor modifications the proof of Theorem 4.4
also applies to realizations of the form (4.28), and yields the following theorem.

Theorem 4.5. Let W be a rational m X m matriz function without poles on the
real line, and let W be given by the realization

W) =D+ C(\, —A)™'B,  XeR, (4.29)

where A is an n X n matriz with no real eigenvalues. Then W admits a right canon-
ical factorization with respect to R U {oo} if and only if the following conditions
are satisfied:

(i) D is invertible and A* = A — BD~'*C has no real eigenvalues,

(ii) C* = M+ M*.
Here n is the order of the matrixz A, the space M is the spectral subspace of A
corresponding to its eigenvalues in the upper half plane, and M* is the spectral
subspace of A* corresponding to its eigenvalues in the lower half plane. Further-
more, if the conditions (i) and (ii) are fulfilled, then a right canonical factorization
with respect to R U {oo} is given by

W) =W_(MW(A),  Ael,

where the factors and their inverses can be written as

W_(\) = D+CW\,—A)"'(I-1)B,

W.(\) = I+D'CO\,—A)'B,
W=\ = D '-D7lCc(I -1\, - AX)"'BD!,
Wi\ = I-D'C(\\I,—A*)'IB.

Here 11 is the projection of C™ along M onto M*.

Since there is no a priori assumption on the invertibility of (the external)
operator D, Theorem 4.5 is a slight extension of Theorem 3.2 dealing with matrix
functions too. The results can be generalized to the case of operator functions (cf.,
Section 7.1 below).
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4.4 Inversion of singular operators with a rational
matrix symbol

In this section we apply the results of the previous sections to solve the problem
of inverting the singular integral equation

a(t)e(t) + b(t)% /F % dr = g(t), tel. (4.30)

Throughout we assume that a and b are rational m x m matrix functions which
do not have poles on the Cauchy contour I'. We shall analyze equation (4.30)
under the additional condition that the difference a()\) — b(A) is invertible for
each A € I'. Since we are interested in invertibility, the latter condition is not an
essential restriction (cf., Theorem 1.3).

The fact that the matrix a(\) — b(A) is invertible for A € T allows us to
introduce the operator T' = Myw Pr + Qr which we consider on L5*(T"). Here

W) = (a(A) —b(N) " (a(N) + (),

and My is the operator of multiplication by W on L3*(T'), that is, for ¢ € L(T")
we have (Mw)(t) = W(t)p(t) for almost all ¢ € I'. Furthermore, Pr and Qr are
the orthogonal projections on LY*(T") associated with the singular integral operator
introduced in Section 1.3. Thus, for ¢ € L7 (T),

(Pro)t) = 500+ o [ E D ar (431)
(Qre)(t) = %g@(t) - %/F f(_T)t dr, (4.32)

for almost all ¢ € T'. The image of Pr consists of all functions in LJ*(T") that admit
an analytic continuation into F. Similarly, the image of Qr is the subspace of
all functions in L5*(I") that admit an analytic continuation into F__ and vanish at
infinity. Note that equation (4.30) is equivalent to

(MwPr+Qr)p =g, where g(A) = (a(\) — b()\))_lg()\).

Since W is a rational m x m matrix function without poles on I', we know
from Theorem 4.2 that W admits a I'-regular realization

W) =1+CO\G—A)~'B, Ael. (4.33)
The main result of this section provides an explicit inversion formula for the op-
erator My Pr + Qr in terms of the realization (4.33).

Theorem 4.6. Let the rational m x m matriz function W be given by the I'-reqular
realization (4.33), and put A* = A — BC. Then Mw Pr + Qr is an invertible
operator on LY (T) if and only if the following two conditions are satisfied:
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(1) the pencil \G — A* is T'-regular,
(2) C" = Im P+ Ker PX,
where n is the order of the matrices A and G, and

1

1
— —A)d P* —
ami [ GOG = A7

P = =
2mt Jr

GG — At (4.34)

In that case
(MwPr+Qr) 'g)(\) = g(A) —CO\G —A*)"'B(Prg)(\)
+(COG - 47 = CG = a) ) (1 - T)

(zm /FPXG@G ~ )7 Bg(Q)dc). A€

Here 11 is the projection of C™ along Im P onto Ker P*.

With suitable changes, the theorem remains true when P and P* are replaced
by the projections @ and @* (also) appearing in Theorem 4.4.

Proof. From the general theory of singular integral equations reviewed in Sec-
tion 1.3 we know that the operator My Pr + Qr is invertible if and only if W
admits a right canonical factorization with respect to I'. Since W is given by
(4.33), the latter is the case if and only if conditions (i) and (ii) in Theorem 4.4
are fulfilled. By the final statement in Theorem 4.4, conditions (i) and (ii) in The-
orem 4.4 are equivalent to conditions (1) and (2) in the present theorem. Thus we
have proved that My Pr + Qr is invertible if and only if (1) and (2) are satisfied.

To get the formula for the inverse of My Pr + Qr we again use the general
theory of singular integral equations, the inversion formula (1.29) in particular.
Let W = W_W, be a right canonical factorization of W with respect to I'. For
g € L3 (T") we then have, suppressing the variable A,

(M Pr+Qr) g = Wi (Pr(W=lg)) + - (Qr(W=1g)).

Taking into account the form of Pr and Qr in (4.31) and (4.32), this identity can
be rewritten as

(M Pr+Qr) 1) (0) = 590 + 5 W) g(3)
1 1

2ri Jp T — A

(W+()\)‘1 - W_()\)) W_(r)"Yg(r)dr, AeTl. (4.35)
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Next, we use the formulas for W, W_ and their inverses given in Theorem 4.4.
This yields

(W)t = W))W () !
=-C\NG—-A)'AB-C(\G - A)~'(I-A)B (4.36)
+AG — AX)T'ABC(I — M) (G — A)™'B
+C(\G — A I - A)BC(I — N)(tG — A*)"'B.
Here A and A are the projections defined in Theorem 4.4. Using these definitions,

and the partitionings of A4, G, and A* in (4.16), (4.17) and (4.20), respectively,
we obtain

AA(I —A)=0, (I —A)A*A =0, AG = GA.
Since BC = A — A%, it follows that
ABC(I —A) = A*A—-AAX
= (A = XGA - A(4L* —7G) — (1 = MAG,
and
(I-A)BCI—-AN)=AI-A)—(I-A)A~
=(A—-XG)I —A)— (I -A)A* —7G) — (T — M) — A)G.
Inserting these expressions into (4.36) gives
(W@QY*—WLQDWL&le—CﬁG—Aﬂ*B
—(1 = NC\G — A)IAG(TG — A*)7'B
—(1=NC\G — A)~ (I - AG(rG — A)7'B.
Next we use that (1 — \)C(AG — AX)"L1G(7G — AX)71B can be written as
CAG — A) (G — A) = (AG — A7) (G — A)'B
which in turn is equal to C(AG — A*)"1B — C(7G — A*)~1B, and this leads to
(W+(A)‘1 - W,(A)) W_(r)"L = —C(A\G — A)"'B

(- ) (C()\G AT O(AG — A)—l)
(I -=A)G(TG — A*)™'B.  (4.37)
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Using (4.37) and (4.5) in (4.35) we obtain

(M Pr+@Qe)™ 9)0) = g(N) — L COG — A%) 7 Bg(3)

—C(\G — AX)lB<21m, /F . i )\g(T) dT)

H(CAG — AL = C(AG — A) ) (I = A)

~<271Ti/FG(TG—AX)1Bg(T)dT>, AeT.

Finally, note that A = IT and (I — II)P* = I —II. Since Pr is given by (4.31),
we see that we have derived the desired expression for the inverse of the operator
Mw Pr + Qr-. O

4.5 The Riemann-Hilbert boundary value problem
revisited (1)

In this section we treat the (homogeneous) Riemann-Hilbert boundary value prob-
lem for non-proper rational matrix functions. As before I' is a Cauchy contour. As
usual, the interior domain of I' is denoted by F, and its exterior domain, which
contains the point infinity, by F_. Throughout W is a rational m x m matrix
function which does not have poles on I'.

We say that a pair of C™-valued functions ®,,®_ is a solution of the
Riemann-Hilbert boundary problem of W with respect to I' if &, and ®_ are
continuous on F, UT" and F_ UT', respectively, @, and ®_ are analytic in F} and
F_, respectively, ®_ vanishes at infinity, and

WP (\) = d_()), Ael. (4.38)

Since W is assumed to be a rational m x m matrix function which has no poles
on I', we may assume that W is given by a I'-regular realization

W) =IT+CO\G—A)'B, AeT. (4.39)

We shall also assume that W takes invertible values on I'. This additional condition
is equivalent to the requirement that the pencil A\G—A* is I'-regular. The following
theorem is the natural analogue of Theorem 3.7.

Theorem 4.7. Let W be given by (4.39), and assume that the pencil \G — A* is a
I'-reqular. Put

1 1
P=_— | GG —A)td), P*= — [ GIANG — A¥)"La
271 r 271 r
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Then the pair of functions @1 and ®_ is a solution of the Riemann-Hilbert bound-
ary value problem of W with respect to I if and only if there exists x belonging to
Im PN Ker P* such that

d (\) = OC\G — A) ta, d_(\) = C\G — A)" . (4.40)

Moreover the vector x in (4.40) is uniquely determined by @, P _

With the appropriate modifications, the theorem remains true when P and
P> are replaced by the projections @@ and Q* (also) appearing in Theorem 4.4.

Proof. Take x € Im P N Ker P*, and define ®; and ®_ by (4.40). Formula (4.6)
implies that (4.38) is satisfied. Since x = Pz, Theorem 4.1 (ii) shows that ®_
is continuous on F_ UT', analytic in F_, and vanishes at infinity. Similarly, using
x = (I—P*)x, Theorem 4.1 (iii), applied to A\G— A, yields that ® is continuous
on F, U I and analytic on F;. Thus the functions ®; and ®_ have the desired
properties, and the pair ®,, ®_ is a solution.

To prove the converse, assume that the pair ®;,P_ is a solution of the
Riemann-Hilbert problem for W with respect to I'. For A € T', introduce p(\) =
(AG—A)~1B® ()\). The n x m matrix function p is continuous on I', thus it makes
sense to put

1 1 p(7)
A = = T
p+(A) 2p(A>+2m/FT—AdT’ AeT,
1 1 p(7)
_ = — — F
p—(A) 5 P(A) 27”-/FT7/\d7'7 AET;

cf., the expressions (4.31) and (4.32). The function p is continuous on F U T and
analytic in F';, and p_ has the same properties with F_ in place of F';.. Moreover,
p— vanishes at infinity.

We first show that

d.(\) = —Cpi(\), Ae€F.UT, (4.41)
d_(\) = Cp_(N), ANeF_UT. (4.42)
Since the pair @, ®_ satisfies (4.38), we have
D (N\) =D, (N +CAG—A)"'BD (\) = &, (\) +Cp(N), AeTl.
But p(A) = p—(A) + p4(A) on I', and therefore
D_(AN) —Cp_(A) = 2L(A) +Cpir(N), rel. (4.43)

The right-hand side of (4.43) is continuous on Fy UT and analytic in Fy. On
the other hand, the left-hand side of (4.43) is continuous on F_ U T, analytic in
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F_ and vanishes at infinity. Thus, by Liouville’s theorem, both sides of (4.43) are
identically zero on T', and the identities (4.41) and (4.42) hold.

Next, we compute the function p_. From the definition of p(A\) we see that
(AG—A)p(A) = B®,(N) for A € T. Since @ is continuous on F U I" and analytic
in Fy, we conclude that for each A € T,

1 1 1
5(/\G —A)p(\) = Dyl My (tG — A)p(1) dr
1 1

_ (()\G —A) + (1 — )\)G) p(r) dr

% FT7>\

bk [ 2

1
= — T)drT.
T o FGp()

where

Using the definition of p_, the above calculation shows that
p—(\) = (\G — A) "', AeT. (4.44)

To compute p;, recall that p(A) = p_(A) + p4+(A) on I'. This, together with
(4.41) and (4.42), yields

(G = A)pr () = (AG = A)p(A) — (G — A)p_(\)
= BP (A —ax=—-BCpi(N) —z, rel.
Since A* = A — BC, we obtain
p+(\) = —(A\G — A) 1z, NeT. (4.45)

From (4.44) and the fact that p_ is continuous on F_ UT, analytic in F_,
and vanishes at infinity, we conclude that 2 = Px. Similarly, we obtain from (4.45)
that x = (I — P*)x. Thus € Im P N Ker P*. Formulas (4.41), (4.42), (4.44) and
(4.45) now show that the functions ®, and ®_ have the desired representation
(4.40).

It remains to prove the uniqueness of the vector z in (4.40). To do this
assume that u € Im P N Ker P*, and let C(AG — A)~!u be identically zero on I'.
It suffices to show that w = 0. For this purpose we use the identity (4.8). Applying
this identity to the vector u, we see that

(AG — Aty = (\G — A) " tu, NeT. (4.46)

Since u € Ker P*, the left-hand side of (4.46) has an analytic continuation on
Fy; see Theorem 4.1 (iii). Similarly, v € Im P implies that the right side of (4.46)
has an analytic continuation on F_ which vanishes at infinity; see Theorem 4.1
(ii). But then we can apply Liouville’s theorem to show that these functions are
identically zero on I', which yields u = 0. O
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Notes

The extension of the Riesz spectral theory for operators to operator pencils, which
is described in Section 4.1, is due to Stummel [140]; the results can also be found
in Section IV.1 of [51]. Section 4.2 combines the classical realization theory for
proper rational matrix functions with that of matrix polynomials; for the latter,
see [65]. The main source for the material in Sections 4.2 and 4.3 is the paper
[55]; Section 4.4 is based on [56]. Section 4.5 seems to be new. For realizations of
the form considered in this chapter, non-canonical Wiener-Hopf factorization has
been studied in [151]. Instead of (4.3) other realizations of W can be used; see for
instance [79], where (4.3) is replaced by the realization

W(A) = D+ (\—a)C(AG — A)~'B

which can also be used for non-square matrix functions.



Part 111
Equations with non-rational
symbols

In this part we carry out a program analogous to that of the second part, but
now for certain classes of non-rational matrix and operator functions. Included
are matrix functions analytic in a strip but not at infinity, an operator function
appearing in linear transport theory, and operator functions analytic on a given
curve.

There are three chapters. The main topic of the first chapter (Chapter 5) is
a canonical factorization theorem for matrix functions analytic in a strip but not
necessarily at infinity. Its applications to different classes of Wiener-Hopf equations
are included too. The realizations of such matrix functions require that we consider
systems with an infinite dimensional state space and with a state operator that
is unbounded and exponentially dichotomous. Thus the theory of strongly contin-
uous semigroups plays an important role in this material. Chapter 6 is entirely
dedicated to the solution of an integro-differential equation from mathematical
physics describing stationary migration of particles in a medium. To illustrate the
approach, the special case of a finite number of scattering directions is considered
first. This restriction makes it possible to reduce the problem to a canonical fac-
torization problem for rational matrix functions. The general situation features
an infinite dimensional separable Hilbert space as state space. The final chapter
(Chapter 7) deals with canonical factorization and non-canonical Wiener-Hopf fac-
torization for operator-valued functions that are analytic on a given curve. In this
chapter the so-called factorization indices are described in state space terms.






Chapter 5

Factorization of matrix
functions analytic in a strip

This chapter deals with m x m matrix-valued functions of the form

W) =1-— /oo eME(t) dt, (5.1)

— 00

where k is an m x m matrix-valued function with the property that for some w < 0
the entries of e=“/tlk(t) are Lebesgue integrable on the real line. In other words,
k is of the form

k(t) = e“"Ih(t) with h e LT*™(R). (5.2)

It follows that the function W is analytic in the strip |SA| < 7, where 7 = —w.
This strip contains the real line. The aim is to extend the canonical factorization
theorem of Chapter 5 to functions of the type (5.1).

In general, the function W in (5.1) is not a rational matrix function, and
hence one cannot expect a representation of W in the form

W\ =I+C\—-A)"'B (5.3)

with A, B, C matrices. Also a realization with A, B and C bounded linear op-
erators will not work. Indeed, in that case the function W would be analytic at
infinity, however in general it is not. Thus to get a representation of the type (5.3)
one has to allow for unbounded linear operators. In fact, we shall have to allow
for A and C to be unbounded while B can be taken to be bounded.

This chapter consists of nine sections. In Sections 5.1 and 5.2 we present pre-
liminary material on exponentially dichotomous operators and associated bisemi-
groups. These exponentially dichotomous operators appear as state operators in
the realization triples defined in Section 5.3. In Section 5.4 we construct realiza-
tion triples for m x m matrix-valued functions W of the form (5.1) with &k as in
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(5.2), and in Section 5.5 we use the realization triples to invert such a matrix
function W. It turns out that inversion is only possible when the associate oper-
ator A = A — BC' is exponentially dichotomous too. The inversion formula of
Section 5.5 is used in Section 5.6 to derive an explicit formula for the kernel func-
tion of the inverse of a full line convolution integral operator when the symbol W
is given by (5.1) and (5.2). This section also contains some preliminary material
about Hankel operators. The final three sections concern applications. Sections
5.7 and 5.8 deal with inversion of a Wiener-Hopf integral equation with a kernel
function k of the form (5.2) and with canonical factorization of the corresponding
symbol. In Section 5.9 we revisit the Riemann-Hilbert boundary value problem.

5.1 Exponentially dichotomous operators and
bisemigroups

We begin with some preliminaries about strongly continuous semigroups of oper-
ators (also called Cp-semigroups). Free use will be made of the standard theory
of these semigroups as explained, for instance, in Chapter XIX of [51]. Besides
ordinary Cp-semigroups defined on the positive half line [0, c0), henceforth to be
called right semigroups, we shall also consider semigroups defined on the negative
half line (—o0, 0]. The latter will be called left semigroups. Notice that T'(t) is a
left semigroup if and only if T'(—t) is a right semigroup.

Let T'(t) be a strongly continuous right or left semigroup. As is well-known,
there exist constants M and w such that

IT(t)| < Melfl, ted

Here J is the half line [0, 00) or (—o0, 0] according to T'(t) being a right or a left
semigroup. If the above inequality is satisfied for a given real number w and some
positive constant M, we say that T'(t) is of exponential type w. Semigroups of
negative exponential type will be called exponentially decaying.

Next we introduce the concept of an exponentially dichotomous operator.
Let X be a complex Banach space, and let A be a (possibly unbounded) linear
operator with domain D(A) in X and with values in X, in short A(X — X).
Further, let P : X — X be a (bounded linear) projection of X commuting with
A. The latter means that P maps D(A) into itself and PAz = APx for each
x € D(A). Put X_ =ImP and X; = Ker P. Then

X=X_+X,, (5.4)
and this decomposition reduces A, that is,

D(A) = [D(A)NX_] + [D(A) N X4], (5.5)
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with A mapping [D(A) N X_] into X_ and [D(A) N X] into X ;. So with respect
to the decompositions (5.4) and (5.5), the operator A has the matrix representation

A0
0 A,

A= . (5.6)

Here A_(X_ — X_) is the restriction of A to X_, and A, (X; — X;) is the
restriction of A to X . In particular, the domain D(A_) of A_ is D(A) N X_
and the domain D(A;) of A_+ is D(A) N X4. Thus (5.5) can be rewritten as
D(A) =D(A_)+ D(Ay).

The operator A is said to be exponentially dichotomous if the operators A_
and A4 in (5.6) are generators of exponentially decaying strongly continuous left
and right semigroups, respectively. In that case the projection P, which will turn
out to be unique (see Proposition 5.1 below), is called the separating projection for
A. We say that A is of exponential type w (< 0) if this is true for the semigroups
generated by A_ and A,.

Suppose, for the moment, that A : X — X is a bounded linear operator.
Then A is exponentially dichotomous if and only if the spectrum o(A) of A does
not meet the imaginary axis. In that situation the separating projection for A is
simply the Riesz projection corresponding to the part of o(A) lying in the open
right half plane A > 0.

Next, observe that generators of exponentially decaying strongly continuous
semigroups belong to the class of exponentially dichotomous operators, the left
semigroup case corresponding to the separating projection being the identity op-
erator and the right semigroup case corresponding to the separating projection
being the zero operator on X.

Returning to the general case, we note that the operators A_ and A, in
the definition of an exponentially dichotomous operator are closed and densely
defined. Hence the same is true for their direct sum A. Furthermore, if A is of
(negative) exponential type w, then, by the Hille-Yosida-Phillips theorem (see,
e.g., Theorem XIX.2.3 in [51]), the spectrum o(A_) of A_ is contained in the
closed half plane R\ > —w, whereas o(A4) is a subset of A < w. In particular,
the strip [RA| < —w is contained in p(A), the resolvent set of A. This justifies the
use of the term “separating projection” for P.

It is convenient to adopt the following notation and terminology. Suppose
A(X — X) is an exponentially dichotomous operator with separating projection
P, and let A_ and A} be as above. Thus A_ and A, are the restrictions of A
to X_ = ImP and X; = Ker P, respectively. With A we associate a function
E(-; A) with domain R\ {0} and with values in £(X), the space of all bounded
operators on X. The definition is as follows: for z € X,

—etA- P, t <0,
E(t; A — (5.7)
etA+ (I — P)z, t>0,
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where, following standard conventions, e!4- denotes the value at ¢(< 0) of the
semigroup generated by A_ and e!“+ denotes the value at (> 0) of the semigroup
generated by Ay. We call E(-; A) the bisemigroup generated by A. The operator
A will be referred to as the bigenerator of E(-; A).
For each z € X the function E(¢; A)z is continuous on R\ {0}, and

lim E(t; A)r = —P lim E(t; A)x = (I — P)x. .

im E(t; A)z 7, ImE(tA)r = ( )z (5.8)
We conclude that E(-; A) is an exponentially decaying operator function which is
strongly continuous on the real line, except at the origin where it has (at worst)
a jump discontinuity. For x € D(A) = D(A_) + D(A,), the function E(t; A)z is
even differentiable on R\ {0}. In fact, we have

d
EE(t;A)x = AE(t; A)x = E(t; A) Az, t#0.
Obviously the derivative of E(-; A)x is continuous on R\ {0}, exponentially de-
caying (in both directions) and has (at worst) a jump discontinuity at the origin.
From (5.7) it is clear that

E(t,A)P = PE(t,A) = E(t; A), t <0,
E(t,A)YI-P)= (I-P)E(t,A) =E(t;A), t>0.
Also the following semigroup properties hold:
E(t+s,A) = —E(t;A)E(s;A), t,s <0,
E(t+s,A) = E(,A)E(s;A), t,s > 0.

One of the reasons for the different signs to appear in the definition of E(t; A)
is that in this way the following identity holds:

A=Az = / e ME(t; A)x dt, rzeX, RN < —w. (5.9)
Here w is a negative constant such that A is of exponential type w. The proof of
(5.9) is based on standard semigroup theory (see, e.g., Theorem XIX.2.2 in [51]).

With the help of (5.8) and (5.9) we now can prove the uniqueness of the
separating projection.

Proposition 5.1. Let A(X — X) be an exponentially dichotomous operator. Then
A has precisely one separating projection.

Proof. Let P be a separating projection for A, and let E(-;A) be the associate
bisemigroup. A priori FE(-; A) depends not only on A but also on P. However, (5.9)
and the fact that E(-; A) is strongly continuous on R\ {0} imply that E(-; A) is
uniquely determined by A. On the other hand the first identity in (5.8) shows
that P is uniquely determined by E(-; A). So along with E(-; A) the separating
projection is uniquely determined by A. (]
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From (5.9) it follows that on a strip around the imaginary axis, the resolvent
(A — A)~! of A is the pointwise two-sided Laplace transform of an exponentially
decaying operator function which is strongly continuous on R\ {0} and has (at
worst) a jump discontinuity at zero. The following theorem shows that this prop-
erty characterizes exponentially dichotomous operators.

Theorem 5.2. Let A(X — X) be a densely defined closed linear operator on the
complex Banach space X. Then A is exponentially dichotomous if and only if the
imaginary azis is contained in the resolvent set of A and

(A= A)lg = / e ME(M)zdt, we X, RA=0, (5.10)

where E : R\ {0} — L(X) is exponentially decaying and strongly continuous, and
E has (at worst) a jump discontinuity at zero. In that case the function E is the
bisemigroup generated by A.

The above theorem will play an important role in Section 5.5. For the sake
of completeness its proof is given in the next section. The reader who is ready to
accept Theorem 5.2 may proceed directly to Section 5.3.

5.2 Spectral splitting and proof of Theorem 5.2

In this section we prove Theorem 5.2. The proof will be based on the spectral
splitting results proved in Section XV.3 of [51], which originate from [16]. It will
be convenient first to prove the following result which is the semigroup version of
Theorem 5.2.

Theorem 5.3. Let S(X — X) be a densely defined closed linear operator on the
complex Banach space X. Then S is the infinitesimal generator of a strongly con-
tinuous Tight semigroup of negative exponential type if and only if the imaginary
axis is contained in the resolvent set of S and

A=9)"te = / e ME(t)x dt, reX, RA=0, (5.11)
0

where E : [0,00) — L(X) is exponentially decaying and strongly continuous. In
that case the function E is the right semigroup generated by S.

Proof. The “only if part” of Theorem 5.2 is immediate from standard semigroup
theory. To prove the “if part” let w be a negative real number and L a positive
constant such that

|E®)| < Le*t, t>0. (5.12)

For RA > w and = € X, put

R(\)zx = /Ooo e MEB(t)x dt. (5.13)
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Then R()) is a well-defined bounded linear operator on X with norm not exceeding
L. The function R is pointwise analytic on 8\ > w, and hence it is analytic on
R > w. We shall prove that R\ > w implies that A € p(S) and R(\) = (A—9)~ L.

Let T = S~! be the (bounded) inverse of S. For 0 # X € p(S), one has
At ep(T)and (A — S)~t = —A"1T (A"t — T)~L. Take X on the imaginary axis,
A # 0. Combining (5.11) and (5.13) we get

RN =MN=9)""t=-x'T(\"t -1,

and hence R(A\) = (AR(\) — I)T. But then the unicity theorem for analytic func-
tions gives that these identities hold on all of R\ > w. A simple computation now
shows that R(\) = (A — S)~! for each \ with R\ > w.

We have seen that the open half plane R\ > w is contained in p(S) and

A=8)te = / e ME(t)x dt, r€X, R\ >w. (5.14)
0

Differentiating the left-and right-hand side of (5.14) for the variable A, one finds

(="

AN=8)""z = 1)

/ t" e M E(t)x dt, reX, fA>w. (5.15)
0

Here n is an arbitrary positive integer. Taking A > w and combining (5.12) and
(5.15) we get the estimate

T L el —(-w
=8)7al = ot ([ et ar) o,

Observe that

/OO tn—le—()\—w)t di = 1 /OO sl ds = (Tl — 1)' )
0 (A=w)™ Jo

Thus [|[(A = 9)™| < LA —w)™™ for real A > w and n = 1,2,... . The Hille-
Yosida-Phillips theorem ([51], page 419) now guarantees that S is the generator
of a strongly continuous right semigroup T'(¢) of exponential type w < 0. But then
(5.11) holds with E(t) replaced by T'(t). As the operator-valued functions E) and
T are both strongly continuous, they must coincide, and the proof is complete. [J

Proof of Theorem 5.2. We split the proof into three parts. Throughout w is a
negative real number and L is a positive constant such that

|E®)| < Le?'tt,  0#teR. (5.16)

Part 1. In this part we show that (A— A)~! is well-defined and uniformly bounded
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on each closed strip |[RA| < h where 0 < h < —w. To do this, let us consider the
following expressions:

U, ( Nz = / e ME(t)x dt, RA > w,
0

0
U_(Nz = / e ME(t)x dt, RN < —w.

— 00

Here z € X. Clearly ¥ ()) is a well-defined bounded linear operator on X which
depends analytically on A on the open half plane ®\ > w, and an analogous
statement holds of course for W_()). Note that ¥_(\) + U ()) is analytic on
the strip [RA| < —w and coincides on the imaginary axis with (A — A)~!. Thus
IRA| < —w implies A € p(A) and (A — A)~L = W_(A) + U, (N), ie,

A=A lr = / e MEB(t)x dt, z e X, RN < —w. (5.17)

A detailed argument can be given along the lines indicated in the second paragraph
of the proof of Theorem 5.3.
From (5.16) one easily deduces that

L
RN —w’

—-L
<
- <

On the strip |[RA| < —w, the norm of (A — A)~! = U_()\) + ¥, (A\) can now be
estimated as follows:

IN

[NV RA > w,

RN < —w.

—2Lw

H()\ - A)71|| S ma

IR < —w. (5.18)
In particular (A — A)~! is uniformly bounded on each closed strip |RA| < h with
0<h<—w.

Part 2. Fix 0 < h < —w. From what has been proved in the previous part, we
know that
sup ||[(A —A)7Y| < oo. (5.19)
[RA[<h
This allows us to use the spectral theory developed in Section XV.3 of [51]. First
we introduce the operators

1 —a+ic0 ) )
= — - — A d
Q=5m ] A O-ATR
-1 a+100 Ly .
Q= 5 A2 — A)"la.

a—100
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Here 0 < o < h, and hence (5.19) implies that Q_ and Q. are well-defined
bounded linear operators on X. It can be proved that these operators do not
depend on the particular choice of «a; nevertheless, in what follows we keep «
fixed. (Notice that in Section XV.3 of [51] the operators @_ and @4 are denoted
by S_ and Sy, respectively.) We define

M_ = ImQ,, M+ = ImQ+

Put T = A~!. Then T is a bounded linear operator on X commuting with (A—A4)~*
for each A in the strip |RA| < h. It follows that T' commutes with Q_ and Q.
Since T' is bounded, this implies that TM_ C M_ and TM, C M. We also know
that ImT = D(A), and thus TM_ and T My belong to D(A). This allows us to
define operators A_(M_ — M_) and Ay (M, — M) by setting

D(A_)=TM_, A_x = Az, x € D(AL),
D(A+) = TM+, A+x = Ax7 T € D(A+)
In other words,
—1 —1
A= (T|M,) ) AL = (T\MJ .

The first part of Lemma XV.3.3 in [51] shows that A_ and A, are closed and
densely defined linear operators, and their spectra satisfy the inclusion relations

o(A_) C {AeC|RI< —h},
o(Ay) C {AeC|RN>h}.

We shall now prove that

A—A )z = / e MEB(t)x dt, x € M_, Reh>—h, (5.20)
0
0
A=A = / e ME(t)x dt, x € My, ReX < h. (5.21)

Following Section XV.3, page 330, of [51], we introduce two auxiliary sets N_
and N;. By definition N_ is the set of all vectors € X for which there exists an
X-valued function ¢, bounded and analytic on ®\ > —h, which takes its values
in D(A) and satisfies

A=A, (N) ==, RA > —h.
Roughly speaking, N_ consists of all vectors z € X such that (A — A)~!z has a

bounded analytic continuation to the open half plane ®X > —h. The function ¢
(assuming it exists) is uniquely determined by z. Analogously, we let Ny be the
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set of all vectors x € X for which there exists an X-valued function ¢, bounded
and analytic on ’*A < h, which takes its values in D(A) and satisfies

A= A)pF(\) ==, RA < h.

Also ¢ is unique, provided it exists. Obviously, the sets N_ and N are (possibly
non-closed) linear manifolds of X.

The second part of Lemma XV.3.3 in [51] states that D(A%2) C N_ and
D(A?%) C Ny. Now, fix z € D(A?). Then x € N_, and hence (A — A) "'z extends
to a bounded analytic function on RA > —h. Notice that U, (A) is also bounded
and analytic on R\ > —h. Recall that ¥_()) is equal to (A — A)~1 — ¥, ()) for
each A in the strip |[RA| < w. It follows that ¥_(\)z extends to a bounded analytic
function on RA > —h. On the other hand ¥_(\)z is analytic on RA < —w and
bounded on RA < h. Hence U_(\)z determines a bounded entire function. From
the estimate given for || ¥_(\)|| in the previous part, it is clear that

lim  W_(\)z = 0.
AER, A——o0

But then we can use Liouville’s theorem to show that W_(\)x vanishes identically.
We conclude that

0
/ e ME(t)zdt =0, R < —w.

Since E(t)x is continuous on —oo < ¢ < 0, it follows that E(¢)x = 0 for all negative
real numbers ¢.

Now recall that T'|p;_ is one-to-one and that A_ = (T| M7)71 is densely
defined. This implies that

D(A%) =Im (T|a)?,

and that D(A?) is dense in M_. Thus the result of the previous paragraph shows
that E(t) vanishes on M_ for —oco < ¢t < 0. For z € M_ and |RA| < h, we have

A=A 'z = —(I—=AT) "Ta=—(T=\NT|n ) (T|n )z =(—A) 'a.

Hence, for € M_ and |RA| < h,

AN—A)lz=N-A) 1z = /00 e MEt)xdt = /0OO e ME(t)z dt.

—o0
By analytic continuation this proves (5.20). Formula (5.21) is proved in a similar
manner.

Part 8. In this part we complete the proof. First we show that for ¢ > 0 the
operator E(t) maps M_ into M_. To see this, take x € M_, and let f be a
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continuous linear functional on X annihilating M_. Then f((A—A_)"'z) = 0 for
RA > —h, and thus (5.20) yields

/ e Mf(EMz)dt =0, RA>—h.
0

This implies that f(E(t)z) = 0 for t > 0, and so, by the Hahn-Banach theorem,
E(t)x € M_ for t > 0. Thus E(t)M_ C M_ for t > 0.

The result of the previous paragraph enables us to define an operator-valued
function E_ : (0, 00) — L(M_) by stipulating that E_(t) = E(t)|m_. Our
assumptions on the behavior of F near the origin (together with the Banach-
Steinhaus theorem) imply that E_ can be extended to a strongly continuous func-
tion, defined on 0 <t < oo, by putting

E_(0)z = ltilrg E(t)x, reM_.
The identity (5.20) can now be written as

AN—A )tz = / e ME_(t)dt, x€ M_, R\ > —h.
0
Since A_(M_ — M_) is closed and densely defined, it follows from Theorem 5.3
that E_ is a strongly continuous right semigroup, and that A_ is its infinitesimal
generator.

In the same way one proves that E(t)M; C M, for t < 0, and we define
E; : (—00,0] — L(My) by setting
Then the analogue of Theorem 5.3 for left semigroups shows that F, is a strongly
continuous left semigroup which has Ay (M, — M) as its generator.

Next, consider the operator P on X defined by

Pz = lim—FE(t)z, r e X.
10

By the Banach-Steinhaus theorem, P is a bounded linear operator on X. For ¢t < 0
we have that F(t) vanishes on M_, and so Pz = 0 for each x € M_. For x € M
and t < 0 we have E(t)r = —E(t)x, and thus Px = z. These properties of P
imply that

M_n My ={0} and M_ + M, is closed. (5.22)
The first part of (5.22) is obvious. To prove the second part, let x1,z3,... be a
sequence in M_, let y1,y2,... be a sequence in M, and assume that x,, +y, — z

for n — oo. It suffices to show that z € M_ 4+ M. Since P is continuous on X
and P is zero on M_, we have

Pz = lim P(z,+y,) = lim Py,.

n—oo
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But Py, = y, € M, and M, is closed. Thus Pz € M,. Moreover, y, = Py,
converges to Pz if n — oo. Thus z, = (25, +yn) — yn converges to z— Pz if n — oc.
Also, M_ is closed. We conclude that z — Pz € M_, and hence z = z — Pz + Pz
belongs to M_ + M. So M_ + M is closed.

Finally, the first part of the proof of Theorem XV.3.1 in [51] shows that
M_ + M, is dense in X. We conclude that X = M_+M,, and that P is the
projection of X along M_ onto M. Recall that D(A) = Im T, where T' = A~1.
It follows that

DA =TX =T(M_+ M,)=TM_+TM, =D(A_)+D(A,).

Hence P maps D(A) into itself, and P commutes with A. Thus relative to the
decompositions

X= M.+ My, D)= DA)+D(Ay),
the operator A admits the partitioning

A_ 0
0 A,

A:

Therefore A is an exponentially dichotomous operator, P is the separating pro-
jection for A, and E(-) = E(-; A). O

5.3 Realization triples

In this section we introduce the realizations that will be used to obtain represen-
tations of the type (5.3). We begin with some additional notation.

By D7*(R) we denote the linear submanifold of L{*(R) = L;(R,C™) consist-
ing of all f € LT*(R) for which there exists g € LT*(R) such that

t g(s)ds, a.e. on (—00,0),
/

— 00

f(t) = N (5.23)
/t g(s) ds, a.e. on (0,00).

If f € DT(R), then there is only one g € LT(R) such that (5.23) holds. This
g is called the derivative of f and is denoted by f’. From (5.23) it follows that
f(04) = limy o f(¢) and f(0—) = limo f(¢) exist; in fact,

0

o0 = [ Colds g0 = [ gts)ds

— 00

Let w be a negative constant. A triple © = (4, B, C) of operators is called a
realization triple of exponential type w if the following conditions are satisfied:
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(C1) —iA is an exponentially dichotomous operator of exponential type w with
domain D(A) and range in a Banach space X;

(C2) B:C™ — X is a linear operator;

(C3) C is a possibly unbounded operator with domain D(C) in X and range in
C™ such that D(A) C D(C) and C is A-bounded;

(C4) there exists a linear operator Ag from X into L{*(R) such that

() s [ e tea)t)] di < .
lz|<1/—oco

(ii) for every z € D(A) we have (Agz)(t) = iCE(t; —iA)x, t € R, and the
function Agz belongs to DT*(R).

In (ii), the function E(¢; —iA) is the bisemigroup generated by —iA. Note that B,
being a linear operator from C™ into X, is automatically bounded. Observe also
that (i) implies that Ag is bounded and maps X into L', (R) where

TL@®) = {f € L'R) | e If() € LT'(R)}. (5.24)

Taking into account (ii) and the fact that D(A) is dense in X, one sees that Ag
is uniquely determined. Since w is negative, L7, (R) given by (5.24) is a linear
manifold in DT*(R).

The space X is called the state space and the space C™ the input/output
space of the triple. We shall refer to A as the main operator of the triple.

Suppose O is a realization triple of exponential type w and w < w; < 0. Then
O is a realization triple of exponential type w; too. To see this, note that (i) and
(ii) are fulfilled with w replaced by w;. When the actual value of w is not relevant,
we simply call © a realization triple. Thus © = (A, B, C) is a realization triple if ©
is a realization triple of exponential type w for some w < 0. The operator Ag does
not depend on the value of w, and the same is true with regard to the separating
projection for —iA. This projection will be denoted by Pg, although it is defined
in terms of A alone.

The case when C' is a bounded linear operator from X into C™ is of special
interest. In that case C' is obviously A-bounded, and (C4) is fulfilled with Agz =
iCE(-,—iA)x for each x € X. Thus when C is bounded, then conditions (C3) and
(C4) are automatically satisfied.

Let © = (A, B,C) be a realization triple with state space X. Notice that
item (i) in (C4) implies that Ag : X — L*(R) is a bounded linear operator. Since
(ii) prescribes Ag on D(A), the boundedness of Ag and the density of D(A4) in X
imply that Ag is uniquely determined by the operators A and C. The operator
Ao plays the role of the observability operator in systems theory. For its dual
analogue (the controllability operator) we refer to the following proposition.
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Proposition 5.4. Suppose © = (A, B,C) is a realization triple of exponential type
w <0, and let Tg : LT*(R) — X be defined by

Fep = /00 E(—t;—iA)Bp(t) dt, v € LT'(R). (5.25)

Then I'g is a bounded linear operator, and I'e maps DT*(R) into D(A).

Proof. The operator function E(-; —iA) is strongly continuous. Now recall the fol-
lowing well-known fact: if a sequence of operators converges in the strong operator
topology, then the convergence is uniform on compact subsets of the underlying
space. Because of the finite dimensionality of C™, the operator B is of finite rank,
hence compact. It follows that the function E(-; —iA)B is continuous on R\ {0}
with a possible jump at the origin where continuity is taken with respect the oper-
ator norm. It follows that the integral in (5.25) is well-defined for each ¢ € LT*(R),
and that I'g is a bounded linear operator.

Now fix ¢ € D7"(R). For simplicity we restrict ourselves to the case when
 vanishes almost everywhere on (—oc0,0). By our assumption on ¢ there exists
¥ € LT (R) such that

o(t) = f/ ¥(s)ds, t>0.
t
But then

Top = /OOOE(t;iA)B(/tOOw(s)ds) dt
. /OOO (/tOOE(—t; ~i4)B(s) ds) di

_ /0(><> (/Os E(—t; —iA)By(s) dt) ds.

The last equality follows by applying Fubini’s theorem. Since A is exponentially
dichotomous, zero belongs to the resolvent set of A. So it makes sense to consider
the operator iE(—t; —iA)A~1B. This function is differentiable on [0, 00), and its
derivative is the continuous operator-valued function —FE(—t; —iA)B. Here differ-
entiation and continuity are taken with respect to the operator norm which we
can use because of the compactness of B. Thus

7/ E(—t;—iA)Bdt = iFE(—s;—iA)A™'B —iPg A™'B,
0
where Pg is the separating projection of —iA. Hence

Top = /Oo (iE(—s;—iA)A™'B — iPo A""B)1(s) ds
0

= Al(/oOO (iE(—s; —iA)B — iPoB)v(s) ds).
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This shows that T'g¢ belongs to Im A~1 = D(A). O

Let © = (A, B,C) be a realization triple of exponential type w < 0 and
having input /output space C™. With © we associate two m x m matrix functions.
These functions will be denoted by kg and Wg, and they are called the kernel
function associated with © and the transfer function of ©, respectively. The first
of these is defined as follows. For every u in C™, we have that Ag Bu belongs to
LT, (R). Thus the expression

ko(.)u = (AeBu)(.), ueCm, (5.26)

determines a unique element ke of L7’ ™ (R), that is each column of ke belongs

to LT, (R). In fact ke(.)u € L7, (R) C DT*(R) C Li*(R) for each u € C™.
Next let us turn to Wg. This function is given by

We(\) =1+ C(\—A)"'B, ISA| < —w. (5.27)

To see that We is well-defined, fix A in the resolvent set p(A) of A. Since the
operator (A — A)~! maps X into the domain D(A) of A, and D(A) is contained in
the domain of C, the product C(A — A)~! is well-defined. Hence C(A — A)" !B is
a well-defined linear transformation on C™. The fact that —i A is an exponentially
dichotomous operator of exponential type w implies that |R*A| < —w is contained
in p(—iA), and thus |\ < —w is contained in p(A). We conclude that Wg is a
well-defined analytic m x m matrix function on |S\| < —w.

The next proposition explains the relation between the two functions Wg
and /4:@.

Proposition 5.5. Suppose © = (A, B,C) is a realization triple of exponential type
w < 0. Then

Wo(\) = I—/ Mo (t) dt, ISA| < —w. (5.28)
Proof. Tt suffices to show that for x € X and |3\ < —w we have
CO— A) g = — / M (Aoz)(t) dt, (5.29)

that is, —C(A— A)~!a is equal to the Fourier transform (A/@\a:)()\) of Agzx. In what
follows A is fixed subject to |S)\| < —w.

We already know that C(A — A)~! is a well-defined map from X into C™.
Obviously, this map is linear. To show that it is also bounded, take x € X. Using
the fact that C' is A-bounded, there exists a constant M such that

IC = A) " ] < M(|(A = A afl + AN = A) " a]).
Now A(A — A) "o = —x + A(A — A)'z. Thus
ICO =) el < M= A7+ 1+ MO = A)7H]) |-
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It follows that C'(A — A)~! is a bounded linear operator from X into C™.

Now consider the map = — (A/@\x)()\) from X into C™. This map is linear
and bounded too. Linearity is obvious. Boundedness follows from the estimate

[(Aez)(N)]| < / e[ Aez(t)] dt,
together with condition (i) in the definition of a realization triple.

We have now shown that, for A fixed, both sides of (5.29) are continuous in
x. Hence it suffices to prove (5.29) for € D(A) because of D(A) = X.

Take € D(A), and put y = Az. Since —iA is an exponentially dichotomous
operator of exponential type w, we use (5.9) for —iA in place of A and —i\ in
place of A to show that

(A= A)yly = —i / M Bt —iA)y dt. (5.30)

Recall that CA~! is a bounded linear operator. It follows that
CA-A)'zs = cA ' O-A) Yy

= —i/ eMNCATVE(t; —iA)y dt

— 00

= —i/ eMCOE(t; —iA)x dt

oo

_ / M (Aoa) (1) dt,

—00

the latter equality holding by virtue of condition (ii) in the definition of a realiza-
tion triple. Thus (5.29) is proved. O

From (5.29) it follows that C'(A — A)~! is analytic on |3\| < —w. This result
can also be proved directly using that C' is A-bounded. In fact, employing the

C-boundedness of A one can show that the function A — C(A — A)~! is analytic
on the resolvent set p(A).

5.4 Construction of realization triples

In this section we construct a representation of the form (5.3) for the m x m
matrix-valued function W in (5.1) with the kernel function k being given by (5.2).
The following theorem is the main result.

Theorem 5.6. An m xm matriz function W is the transfer function of a realization
triple if and only if W is of the form

W) =1 - /Oo e E(t) dt, (5.31)
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where k is an m X m matriz function with the property that there exist w < 0 and
h € LT"™(R) such that

k(t) = e h(t). (5.32)
If W is given by (5.31) and (5.32) for some w < 0 and h € LT"*™(R), then
W = Wg with © = (A, B,C) constructed in the following way: the state space X
of © is LT'(R), the input/output space is C™,

D(4) = D(C) = DT'(R),

(AP (H) = { —twf(t) +if'(t), a.e. on —o0 <t <0,

iwf(t)+if'(t), a.e. on 0 <t < oo,

(By)(t) = e “Itk(t)y, a.e. on R,

Cf= i/oo 1'(s)ds.

Proof. Let © be a realization triple, and let W = Wg be its transfer function.
Then, by Proposition 5.5 in the preceding section, (5.31) holds with k& = ke.
Using the fact that the second operator in a realization triple is bounded, we see
from (i) in the definition of a realization triple that

sup [ e Mot de < oc,
lyll <1/ —o0

for some w < 0. Hence k = ke satisfies (5.32). This proves the “if part” of the
theorem.

Next, let W be given by (5.31) and (5.32) for some w < 0 and h € LT (R),
and let © = (A, B, C) be the triple of operators defined in the second part of the
theorem. We need to show that this triple is a realization triple and that W = Wg.

As is well-known (cf., [51], page 420), the backward translation semigroup
on LT[0, 00) is strongly continuous. The infinitesimal generator of this semigroup
has D7"[0, c0) as its domain and its action amounts to taking the derivative. Here
D*[0,00) is the linear manifold consisting of all functions f € D7*(R) with the
property that f(t) = 0 for ¢ < 0, and hence the derivative f’ is well-defined for
each f € D7'[0,00). Using this, one sees that —iA an exponentially dichotomous
operator of exponential type w and that the bisemigroup associated with —i A acts
as follows: for ¢t < 0,

—e Wt +s), a.e.on —oo < s < 0,
(Emvaﬁ—{ Jees) =0

0, a.e.on 0 < s < oo,
and for ¢t > 0,
) 0, a.e.on —oo < s <0,
(B - ) =]
e“tf(t+ s), a.e.on 0 < s < oo.
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The separating projection for —i A is the projection of the state space X = L7*(R)
onto Li*(—o0, 0] along Li*[0, c0).

Condition (5.32) on k implies that the operator B from C™ into LT*(R) is
bounded. From the definition of C' and A we see that

ICfI < =l Al + 1Al F e DA).

Thus C' is A-bounded.
Define A : X — LT*(R) by

(Af)(#) =e“tf(t),  ae onR. (5.33)

Then A satisfies the conditions (i) and (ii) in the definition of a realization triple
with A in place of Ag. For (i) this is obvious. To check the first part of (ii), one
uses the above description of the bisemigroup E(t; —iA) and the definition of C.
As to the second part of (ii), observe that f € DT*(R) and w < 0 imply that the
function et f(t) belongs to DT*(R) too.

We have now proved that © = (A, B, C) is a realization triple We claim that
the kernel function kg associated with © coincides with k. Indeed, for y € C™ the
following identities hold almost everywhere on R:

ke(t)y = (ABy)(t) = (e*'IBy)(t) = k(t)y.

Since C™ has a finite basis, it follows that ke(t) = k(t) almost everywhere on R.
In other words, ke and k coincide as elements of L7"*™(R). O

5.5 Inverting matrix functions analytic in a strip

Let © = (A, B,C) be a realization triple with state space X. In this section we
shall employ the operator A*(X — X). Here is the definition: the domain of A*
is equal to the domain of A, and its action is defined by A* = A— BC. We call A*
the associate main operator of the triple ©. As one may expect from Section 2.4,
the operator A* plays an important role in inverting We (A). In fact, we have the
following theorem.

Theorem 5.7. Let the m x m matriz function W be given by
W) =I+C(\—A)"'B,

with © = (A, B, C) being a realization triple. Let A* be the associate main operator
of ©. Then W () is invertible for each A € R if and only if the spectrum of A*
does not intersect the real line. In that case (A*, B,—C) is a realization triple,

and
WM\ P=TI-C\— A8, AER,

WANCA A =0\— A1, AER,
A=AIBW\) =(\A—A)"'B, A ER,
A=A)T=A=A) A=A BWN)TC(A - A)7, AeER.
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Proof. We split the proof into four parts. In the first part we show that W(\) is
invertible for each A € R if and only if the spectrum of A* does not intersect the
real line, and we derive the expressions (5.34) — (5.37). The remaining three parts
are concerned with the statement that (A*, B, —C) is a realization triple.

Part 1. Suppose A* has no spectrum on the real line. This condition means that
for each real A\ the linear operator A — A* maps D(A*) = D(A) in a one-one
way onto X, and hence the linear operator I — C(A — AX)~!B acting on C™ is
well-defined. We claim that it is the inverse of W(\). To see this we first prove
(5.35). From BCxz = (A — A*)x for each x € D(A), it follows that

BCA— A= (A-A\- AL

Using the latter identity and fixing A € R, we obtain the equality (5.35) from the
following calculation:

WACA—-A) = CA-A) "+ CA—-A)'BC(A - A1
= CA-A)TH oA A-A) A -A)7!
= CA-A)T+COA-A)HA-N+ A=A - A
=Ch-A)"h
From (5.35) we obtain that
WN(I-CA=A4")"'B) = WQA) —CA-—A)" =1, AeR

Hence W () is invertible for each A € R.

Next assume W () is invertible for each A € R. We claim that A* has no
spectrum on the real line and that (5.37) holds. To prove this, fix A € R and
let R(A) be the operator on X defined by the right-hand side of (5.37). Since
A=A)YAN—A)"t =T+ BC\—A)"!, we have

A=A)R(\) = I+BCA—-A)"!

+(—I—-BCA—A)"H)BW\) 'CA—A)"

= I+BC(A—A)!
+B(—1-CA—A)'B)W)'C(A—4)~"
= I4+BCA—A)"'—BCO\- A",

and so (A — A*)R(X) = I. Thus to prove (5.37) it remains to show that A — A%
is one-to-one.

Let 2 € D(A*) = D(A) and suppose (A—A* )z = 0. Since Az = Az— BC,
we have (A — A)"'BCx = —z, and hence

W(\Cz = Cx+C(\— A 'BCx = Cz—Cz =0.
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By assumption W () is invertible. Therefore Cx = 0 and, consequently, (A—A)x =
(A—A>)z = 0. Now use the fact that A has no spectrum on the real line. It follows
that £ = 0, and hence A — A* is one-to-one.

Note that in passing we established (5.34), (5.35) and (5.37). The argument
for (5.36) is analogous to that for (5.35).
In the remaining three parts it is assumed that A* has mo spectrum on the real
line, or equivalently, that W(X) is invertible for each )\ € R.
Part 2. We show that A* is closed and that C is A*-bounded. Applying (5.37)
with A = 0 we see that

(A t= A At BW(0) ATt (5.38)

Since C is A-bounded, the operator CA~! is bounded. Thus in the right-hand side
of (5.38) the operators B, A~! and C A~ are all bounded. It follows that (A*)~!
is bounded too. Hence A* is a closed operator. Recall that the operators A~! and
(AX)~! map X into D(A) = D(A*). Since the latter space is contained in D(C),
we can apply C to both sides of (5.38). This yields

C(A*)™ = CA™' + CA'BW(0)"'CA™".

But CA~1! is bounded. Hence C'(A*)~1! is bounded, which implies that C' is A*-
bounded.

Part 3. In this part we show that —iA* is exponentially dichotomous. To do this
we apply Theorem 5.2. First some preparations. Recall that

W) = 17/ eMko(t)dt,  AER,

with kg belonging to the space e“’HL’lnxm(R). By the matrix-valued version of
Wiener’s theorem (see, e.g., [52], page 830), the fact that W (A) is invertible for
each A € R implies that

W)t = - / GMEX (1) dt,  AER, (5.39)
for some k* € LT"*™(R). In fact (see [47], Section 18), taking |w| smaller if nec-
essary we may assume that k> also belongs to e!'/L™*™(R). Next note that for
each x € X and each y € C™,

CO— Az = —i / M (Aoz)(t) dt, AeER,
A=Az = —i/ eMNE(t; —iA)x dt, AER,

A-A)"'By = —i/ eME(t; —iA)By dt, AER;
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cf., (5.29) and (5.30). Using these formulas in (5.37), and taking inverse Fourier
transforms, we see that

(A—AX)_lx:—i/m M (B(t; —iA) + E1(t) + Ba(t))z dt, A ER,

— 00

where for each x € X we have

B(t)r = z/ B(t — 5 —iA)B(Aox)(s) ds, (5.40)

:_Z/ E(t — s—iA)B </ KX (s —7) A@x)()dr>ds. (5.41)

Recall that the function E(-; —iA)B is exponentially decaying, that k* belongs to
e?l'I L™ (R), and that for each # € X the function Agz belongs to e*I'l LT*(R).
These facts imply that F; and Es are exponentially decaying too. Moreover, a
routine argument shows that these functions are strongly continuous, that is, for
each z € X the functions E;(-)z and Es(-)x are continuous in the norm of X.
We conclude that the function E(-; —iA) + F1(-) + E2(-) is exponential decaying,
strongly continuous on R\ {0}, and that at zero it has (at worst) a jump dis-
continuity. But then we can apply Theorem 5.2 with A replaced by —iA* and A
replaced by —i\ to show that —iA* is exponentially dichotomous. Furthermore,
the bisemigroup generated by —iA* is given by

E(;—iA%) = E(-;—iA) + E1() + Ea (), (5.42)
where E(-;—iA) is the bisemigroup generated by —iA, and the functions Fi(-)

and Fs(+) are given by (5.40) and (5.41), respectively.

Part 4. In this part we complete the proof and show ©* = (A%, B,-C) is a
realization triple. The negative constant w having been taken sufficiently close to
zero, one has that © is of exponential type w and kX belongs to eIl L7"*™(R). A
standard reasoning now shows that the convolution product k* % (A@x), given by

(k* % (Aox))(t) = / E*(t — s)(Aox)(s) ds, a.e. on R,
determines a bounded linear operator from X into L7*(R) such that
sup / e I % (Aoz)(t)] dt < oc.
llzll<1
But then the expression

ANz = —Aoz+ (k™ * (Aox)) (5.43)

defines a bounded linear operator A* : X — L7"(R) for which condition (i) in the
definition of a realization triple (Section 5.3), with Ag replaced by A*| is satisfied.
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Next, take z € X, and consider the Fourier transform of A*z. Using formula
(5.43) we see that for each A € R we have

(A 2)A = —(Aer)(N) + k(N (Aez)(A)

= (- FW)Ben ()
= WO e - 4) e

In this calculation the final equality results from (5.29) and (5.39). Next, using
(5.35) we see that

A<2)(\) = C(A— ALz, AeR. (5.44)

Note that this equality actually holds in a strip |SA| < —w containing the real
line.

Now take x € D(AX) = D(A), and put 2 = A*x. Then C(\ — AX) 1z =
C(A*)~H (A= AX)7 1z, and the operator C(A*)~! is bounded by the result of the
second part of the proof. Since —iA* is exponentially dichotomous, by the third
part of the proof, we can use formula (5.9), with A replaced by —iA* and by —i\,
to show that

(A*z)(\) = —iC(A*)~! /fo eNE(t; —iAX)z dt

= —i/ eMO(A) LBt —iA)zdt

— 00

= fi/ eMCE(t; —iA™)x dt, AeR.

— 00

Thus we have proved that (A*z)(t) = —iCE(t; —iA*)x almost everywhere on R.
It remains to show that A%z € DT*(R).

In view of the properties of Ag and the identity (5.43), it suffices to show
that k* % (Aez) belongs to DT*(R). Since Agz = DJ*(R), we can consider its
derivative g, that is the function given by

/ g(s) ds, a.e. on (—o0,0),
(Rom)) =4 77
—/t g(s)ds, a.e. on (0, —00).

Now use that

(B s f) =k« [+ k*()(f(0+) = f(0-)),  [fE€DT(R).
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If follows that
(> * (Aex))(t) = "~

where h € LT*(R) is given by

h=k<xg — kX(.)(/_Zg(s)ds>.

This proves that k™ x (Agz) € DP"(R). Thus, with Agx = A*, we see that
condition (C4) in the definition of a realization triple is satisfied. O

5.6 Inverting full line convolution operators

Let L be the convolution integral operator on L7*(R) defined by

(L)) = /OO k(t—s)f(s)ds, a.e. on R. (5.45)

— 00

Here k is a kernel function of the form (5.2). As is well-known (see, e.g., Theorem
XII.1.4 in [51]), the operator I — L is invertible if and only if its symbol W, which
is the m x m matrix function defined by (5.1), has the property that W (\) is
invertible for each A € R. Moreover we then have (I — L)™' = I — L*, where L*
is the convolution integral operator on LT*(R) given by

(L*g)(t) = /_OO EX(t —s)f(s)ds, a.e. on R, (5.46)

1

9

the kernel function & of which is the inverse Fourier transform of (I — W (X))~
that is . R )
XA\ =1—-(I—-k(N) , AXeR (5.47)

Since the kernel function & in (5.45) is of the form (5.2), we know that k = ke
for some realization triple © = (4, B, C), and hence the symbol W of I — L is the
transfer function of this triple ©. But then we can use the result of the previous
section to restate the inversion theorem for I — L in terms of ©, and to give an
explicit formula for k* in terms of the operators A, B and C. The details are as
follows.

Theorem 5.8. Let L be the convolution integral operator on LT (R) given by (5.45),
and assume that k = kg, where ko is the kernel function associated with the
realization triple © = (A, B,C). Then I —L is invertible if and only if the spectrum
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of A* does not intersect the real line. In that case ©* = (—iA*,B,—C) is a
realization triple and (I — L)™' = I — L, where L* is given by (5.46) with
E*(t)y = (Agx By)(t), a.e. on R, y e C™. (5.48)

Proof. Since k = kg, we have W = Wg. Recall that I — L is invertible if and
only if W(A) is invertible for each A € R. Thus Theorem 5.7 shows that [ — L
is invertible if and only if the spectrum of A* does not intersect the real line.
Moreover, in that case ©* = (—iA*, B, —C) is a realization triple and

WA t=I-CA-A4%)"'B, XeR.

Next we use Proposition 5.5 with ©* in place of ©. This yields
=TI-WH\™! :/ Mg (1) dt, AER.

Formula (5.48) now follows by applying (5.26) to ©* in place of ©. O

It is interesting to write I — L as a 2 x 2 operator matrix relative to the de-
composition L7*(R) = LT[0, 00) + L{*(—00,0]. In particular, we will be interested
in the first row and first column of this matrix. We have

I-K L
I—L:[ -

L_ *
with
(Ko)(t) = /0 kE(t — s)p(s)ds, a.e. on [0, 00),
(L_p)(t) = - /000 k(t — s)p(s)ds, a.e.on (—o0,0],
0
(Ly)(t) = 7/7 kE(t — s)iy(s)ds, a.e.on [0,00).

Here ¢ belongs to L*[0,00) and 9 to L7*(—o0,0]. The operator I — K is called
the Wiener-Hopf operator with kernel function k. The operators Ly and L_ are
known as Hankel operators (see, e.g., Section XII.2 in [51]). We call L the right
Hankel operator associated with k, and L_ will be referred to as the left Hankel
operator associated with k. Notice that L, and L_ are uniquely determined by
the restrictions of k to the half lines [0, 00) and (—o0, 0], respectively. For later
purpose we present the following lemma.

Lemma 5.9. Let © = (A, B,C) be a realization triple, and let ko be the associated
kernel function. Then the right Hankel operator Ly and left Hankel operator L _
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associated with ko are given by

Liy = —-QAelev, ¥ € Ly*(—00,0], (5.49)

Ly = (I-QAeTep, e Li0.00). (5.50)
Here Q is the projection of LT*(R) onto LT[0, 00) along L*(—o0,0].

Proof. We shall prove (5.49). The proof of (5.50) is similar to that of (5.49).

Let us first establish (5.49) for the case when Im B C D(A). Then B can
be written as B = A~'B;, where B; is a bounded linear operator from C™ into
X. Write C; = CA~1. Then C; : X — C™ is a bounded linear operator too. For
y € C™, we have

ko(t)y = iCE(t; —iA)By = iC1E(t; —iA)Byy, a.e. on R.

Since C™ has a finite basis, we may assume that ke on all of R\ {0} can be
represented as ke (t) = iC1 E(t; —iA)By. Take ¢ € L7*(—00,0]. Then L1 belongs
to LT[0, 00) and

0 0
(Law)(t) = — [ kot — s)(s) ds = — [ iCVE(t — 51 —iA)Biob(s) ds,

almost everywhere on [0, 00). Next we use the semigroup properties of the bisemi-
group E(-; —iA) to show that

E(t — s;—iA) = E(t; —iA)E(—s; —iA), t>0,s<0.

It follows that, almost everywhere on [0, c0),
0

(Ly)(t) = —iC1E(t;—iA) /_ E(—s;—iA)B1v(s) ds
0
= —iCE(t;—iA) / E(—s;—iA)By(s)ds

= (_QAQF@’(/})(t)7

and (5.49) has been obtained for the case when Im B C D(A).

The general situation, where Im B need not be contained in D(A), can be
treated with an approximation argument based on the fact that B can be approx-
imated (in norm) by bounded linear operators from C" into X with ranges inside
D(A). This is true because D(A) is dense in X and C™ is finite dimensional. O

5.7 Inverting Wiener-Hopf integral operators

In this section we study inversion of the Wiener-Hopf integral operator T':

Tf() = f(t) — /000 k(t —s)f(s)ds, a.e. on [0, 00). (5.51)
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It will be assumed that the m x m matrix kernel function k is the kernel func-
tion associated with some realization triple. This implies that T is a well-defined
bounded linear operator on L7*(R). We shall prove the following theorem.

Theorem 5.10. Let T be the Wiener-Hopf integral operator on L{*(R) given by
(5.51). Assume that k = kg for some realization triple © = (A, B,C). Then T is
invertible if and only if the following two conditions are satisfied:

(i) ©* = (A%, B,—-C) is a realization triple,
(ii) X =1Im Po + Ker Pgx .

Here X 1is the state space of both © and ©*, and Po and Pgx are the separating
projections of —iA and —iA*, respectively. If (i) and (i) hold, the inverse of T is
given by

(90 = o)~ [ hax (6= s)a(e)ds
- /000 Aex (I —II)E(—s,—iA*)Bg(s) ds(t), a.e. on [0, 00).

Here 11 is the projection of X onto Ker Pgx along Im Pg.

To facilitate the proof of Theorem 5.10 we first establish two lemmas. If © is
a realization triple with main operator A, the separating projection of the operator
—iA will be denoted by Pg.

Lemma 5.11. Let © = (A, B,C) and ©* = (A*, B, —C) be realization triples with
state space X. Then the operator

J* :Im Pg — Im Pgx, J*x = Pgxu, (5.52)
is invertible if and only if X = Im P + Ker Pgx, and in that case
(J) ' =T -M)|mp,,, H=1-(J")"Pox, (5.53)
where 11 is the projection of X along Im Pg onto Ker Pgx .

Proof. Obviously Ker J* = Im Pg N Ker Pgx. Thus J* is one-to-one if and only
if Im P N Ker Pox = {0}. Next, assume J* is surjective. Take € X. Then
Poxx = J*Poz = Pgx Poz for some z € X. This yields

r = P@x$+(I—P@X)1’
= P@XP@Z"—(I_P@X)I
= Poz+ (I — Pox)(z — Poz).

Hence = € Im Pg + Ker Pgx, and we conclude that Im Pg + Ker Pgx = X. Thus
X = Im Po+Ker Py~ provided that J* is invertible. Moreover, the above calcu-
lations show that

(J) ' Poxw = Poz = (I =)z = (I — 1) Pox Poz = (I — 1) Poxx,
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which proves the first identity in (5.53).

To complete the proof, assume X = Im Pg + Ker Pgx. Then J* is injective.
To prove that J* is surjective, take y € Im Pgx. Since Pgxy = y and Pgx Il = 0,
we have

y:P@xy:P@x(I—H)y—i—P@xﬂy:P@x(I—H)y

Put z = (I —I)y. Then « € Im Pg and J*x = y. This shows that J* is surjective,
and thus J* is invertible. Moreover, we see that (J*)~'y = = (I — II)y, which
proves the second identity in (5.53). O
Lemma 5.12. Assume that © = (A, B,C) and ©* = (A*,B,—C) are realization
triples, with C™ being the input/output space of both © and ©*. Introduce the
maps

K : LT*[0,00) — LT*[0, 00),

(ko)) = [ elt = shpls)ds, a.c. on [0.5%),
0
K> : LT'[0,00) — LT[0, c0),

(10)(0) = [ k3= e(s) ds, e on (~o0,0])

U :Im Pgx — LT[0, 0), (Ux)(t) = (Aox)(t), a.e. on [0,00),

U* :Im Py — LT[0, 0), (U*z)(t) = —(Agxx)(t), a.e. on [0,00),

R: LT0,00) — Im Peg, Ry = / E(—t; —iA)Byp(t) dt,
0

R*: LT'[0,00) —» Im Pgx, R*p= f/ E(—t; —iA*)Byp(t) dt,
0
J :Im Pgx — Im Peg, Jxr = Pox,

J* :Im Pg — Im Pgx, J*x = Poxw.

Then all these operators are well-defined, linear and bounded. Moreover,

I-K U . .
" : LT[0, 00) + Im Pgx — LT*[0,00) 4 Im Peg,
(I KX U~ . .
P s : LT'[0,00) + Im Pg — L7'[0,00) + Im Pgx,
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are bounded linear operators, which are invertible, and

—1

I-K U I-K* U~

o (5.54)

R J

Proof. As we have seen in Section 5.6 the operators K and K* are bounded.
To see that the other operators are well-defined and bounded too it suffices to
make a few observations. Let @ be the projection of LT*(R) onto LT[0, c0) along
L7 (—00,0]. Then

U=QAelmpr,,, U = —QAox|tm Po

and hence these two operators are well-defined and bounded. Next, viewing Pg
and Pgx as operators from X onto Im Pg and Im Pgx, respectively, we have

R = Polelrmoe), R =—PoxTox|rmoc)-

From these identities and Proposition 5.4 it follows that R and R* are also well-
defined and bounded.

It remains to prove (5.54). This amounts to checking eight identities. Pairwise
these identities have analogous proofs. So, actually only four identities have to be
taken care of. This will be done in the remaining part of the proof which is divided
into four steps.

Step 1. First we prove that R(I — K*) + JR* = 0. Take ¢ in LT*[0,00). We
need to show that RK*¢ = PogR*¢ + Ryp. Whenever this is convenient, it may
be assumed that ¢ is a continuous function with compact support in (0, 00). By
applying Fubini’s theorem, one gets

REK*yp = /OOO(/OOOE(t; —iA)Bk@x(t—s)cp(s)ds) dt

- /OOO (/OOO E(—t; —iA)Bkox (t — s)g(s) dt) ds.
For s > 0 and = € X, consider the identity
/O T (ot —iA)B(Aee2)(t — 5) dt (5.55)
= F(—s;—iA)x — PoE(—s; —iA™)x.

To prove it, we first take & € D(A) = D(A*). Then, for t # 0 and ¢ # s,

% (E(—t; —1A)E(t — 5; —iA¥)z)
= iF(—t; —tA)BCE(t — s; —iA™ )z

= iE(—t; —iA)BC(A*) 'E(t — s; —iA*)A*x.
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Because C(A*)~! is bounded, the last expression is a continuous function of ¢
on the intervals [0, s] and [s, 00). It follows that (5.55) holds for « € D(A). The
validity of (5.55) for arbitrary x € X can now be obtained by a standard approx-
imation argument based on the fact that D(A) is dense in X and the continuity
of the operators involved. Substituting (5.55) in the expression for RK*p, one
immediately gets the desired identity R(I — K*) + JR* = 0.

Step 2. Next we show that RU* + JJ* = Iy py. Take x in Im Pg. Then
RU*z = — / B(—t: —iA)B(Agx 2)(t) dt. (5.56)
0

Apart from the minus sign, the right-hand side of (5.56) is exactly the same as
the left-hand side of (5.55) for s = 0. It is easy to check that (5.55) also holds for
s = 0, provided that the right-hand side is interpreted as —Pox + Pg Pox x. Thus
RU*z = Pgxx = © — PgPgxz, and the desired identity RU* + JJ* = Ity py is
proved.

Step 3. This step concerns the identity (I — K)U* +UJ* = 0. Take z € Im Peg.
Then U*z = —QAgxx, where @ is the projection of L7*(R) onto LT*[0,c0) along
L7 (—00,0]. Here the latter two spaces are considered as subspaces of L7*(R). Ob-
serve now that QAgx = Agx (I — Pgx)z. For x € D(A) = D(A*) this is evident,
and for arbitrary x one can use an approximation argument. Hence KU *z = Qh,
where h = —ko * (A@x (I — Py )x), that is, h is the (full line) convolution product
of —ke and Agx (I — Pox )z. Taking Fourier transforms, one gets

h(A) = C(A\—A)"'BC\— A*)" (I — Pox)x
= C(A—A)il(l—P@x)I—C(A—AX)il(I—P@x)ZL’

Put ¢ = U*z + UPgxx. Since both U and U* map into ImQ = L7*[0,00), we
have g = Qg. Also g = —Agx (I — Pgx)x + Ag(I — Po)Pgxx, and hence

G\ = —C\— A)"HI — Pox )z — C(A\ — A)"*(I — Pg)Pgx .

Since € Im Po, it follows that A(\) — G(\) = C(A — A)"1Pg(I — Pgx)z. So
h(\) —g(X) is the Fourier transform of —AgPo(I — Pgx )x. But then

h—g = ~AePo(l — Pox)r = —(I - Q)Ae(I — Pox)a.

Applying @ to both sides of this identity, we get Qh = Qg = g. In other words,
KU*x = U*x + Pgxx for all x € X, and this is nothing else than the identity
(I-K)U*+UJ*=0.

Step 4. Finally, we prove (I — K)(I — K*) +UR* = I. Let L be the (full line)
convolution integral operator associated with kg, featured in Theorem 5.8. Since
© and ©* are both realization triples, the operator I — L is invertible with inverse
(I — L)™' = I — L%, where L* is the convolution integral operator associated
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with ©*. With respect to the decomposition LT*(R) = L7*[0,00) + L*(—00,0),
we write I — L and its inverse in the form

I-K L,
., I-L*=

* *

I-L= (5.57)

I—-K* «x
L* *

Thus L. is the right Hankel operator associated with ke, and the operator L* is
the left Hankel operator associated with kgx. But then Lemma 5.9 yields

Ly = —QAele?, Y € LY"(—00,0], (5.58)
L = (I-Q)AexTgxp, v € LT[0, 00). (5.59)
Since I — L* is the inverse of I — L, formula (5.57) shows that
(I-K)I—-K*)+LyL*=1.
So, in order to get the desired identity, it suffices to show that L, L* = UR*.

As was observed in the last paragraph of Step 2 of the present proof, (5.55)
also holds for s = 0, that is

0
Analogously, one has
0
/ .E(—lf7 —ZA)B(A@xl')(t) dt = (I—P@)P@xx, zeX.

Using the expressions for Ly and L” given in (5.58) and (5.59) we obtain

LiL%p = —QAel'e(I —Q)AexTexp
— —QAo(I — Po)PoxToxp
= URop.
Thus (I — K)(I — K*)+ UR* = I holds, and the lemma is proved. O

Following [13] (see also Section II1.4 in [51]) we summarize the result of the
preceding lemma by saying that the operators I — K and J* are matricially coupled
with (5.54) being the coupling relation. The coupling relation is very useful. For
instance, this relation and Corollary I11.4.3 in [51] immediately yield the following
result.

Corollary 5.13. Let the operators K, K* U, U*, R, R*,J and J* be as in (5.54).
Then I — K is invertible if and only if J* is invertible, and in that case

(I-K)'=I1-K*-U*(J) 'R, (J)'=J-R(I-K)'U (560)
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Proof of Theorem 5.10. We split the proof into two parts. In the first part we show
that the invertibility of 7" implies that ©* is a realization triple. In the second
part we assume that ©* is a realization triple and complete the proof by using
Lemma 5.11 and Corollary 5.13.

Part 1. Since the kernel function k is equal to kg, we know from Proposition 5.5
that the symbol of T' is equal to Wg. Assume T is invertible. From the general
theory of Wiener-Hopf operators we know that this assumption implies that Wg ()
is invertible for all real A\. But then we can use the final part of Theorem 5.7 to
show that ©* is a realization triple.

Part 2. In this part we assume that ©* is a realization triple. From Corollary 5.13
we know that T' = I — K is invertible if and only if J* is invertible. By Lemma 5.11
the latter happens if and only if condition (ii) is satisfied. Together with the result
of the first part we have now shown that 7T is invertible if and only if conditions
(i) and (ii) are both fulfilled. Moreover, if these conditions are fulfilled we see from
the first parts of formulas (5.60) and (5.53) that

(I-K)'=T1-K*-U*(I-T)R*,

where K>, R* and U* are as in Lemma 5.12, and IT is the projection of X along
Im Pg onto Ker Pgx . Using the definitions of the operators K>, R* and U* given
in Lemma 5.12, the formula for 7! presented in Theorem 5.10 is now clear. [

5.8 Explicit canonical factorization

In this section we use realization triples to construct a canonical factorization
for an m x m matrix function W of the form (5.1) with & being given by (5.2).
By Theorem 5.6 such a function is the transfer function of a realization triple
O = (A, B, C). In what follows it is assumed that © is given. We present necessary
and sufficient conditions for the existence of a canonical factorization in terms of
the operators appearing in the realization triple, Also, supposing these conditions
are fulfilled, we give formulas for the factors and their inverses in a canonical
factorization of W. The main result (Theorem 5.14 below) is the natural analogue
of Theorem 5.3 for the functions considered in this section. For the definition of a
canonical factorization, see Section 1.1 (cf., also Section 3.1).

Theorem 5.14. Let the m x m matriz function W be given by
W) =I+C(\—A)'B,

with © = (A, B, C) a realization triple, and let A* be the associate main operator
of ©. Then W admits a canonical factorization with respect to the real line if and
only if the following two conditions are satisfied:

(i) ©* = (A%, B, —C) is a realization triple,
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(ii) X = Im Po + Ker Pgx .

Here X 1is the state space of both © and ©*, and Po and Pgx are the separating
projections of —iA and —iA*, respectively. If the conditions (i) and (ii) are satis-
fied, then the projection I of X along Im Pg onto Ker Pox maps D(A) = D(A*)
into itself, and a canonical factorization W = W_W_, with respect to the real line
s given by

W(X) = W_ (MWL (N, A eR,

where the factors and their inverses can be written as

W_(\) = I+C\—-A)~'(I-1)B,
Wi(\) = I+CI\-A)'B,
Wi\ = I—-C(I-T)(\—A*)"'B,
Wi\ = I-C(\—A*)"'B.

The projection IT maps D(A) = D(A*) into itself and D(A) C D(C). Hence
the right-hand sides of the first two of the above four expressions are well-defined
on p(A), and those of the last two are well-defined on p(A*). In particular the
formulas make sense for A in a strip containing the real line. At first sight this
seems to be short of the requirements for Wiener-Hopf factorization. We will come
back to and resolve this point at the end of the proof.

Proof of Theorem 5.14. The proof will be divided into four parts. In the first we
show that the conditions (i) and (ii) are necessary and sufficient. In the remaining
three parts we assume that (i) and (ii) are satisfied.

Part 1. Let K be the Wiener-Hopf integral operator with kernel function kg. Then
the function W is the symbol of the operator I — K, and hence we know from
the general theory of Wiener-Hopf integral equations that W admits a canonical
factorization with respect to the real line if and only if 7' = I — K is invertible.
The first part of Theorem 5.10 implies that the latter is satisfied if and only if (i)
and (ii) are fulfilled. Thus (i) and (ii) are necessary and sufficient in order that W
admits a canonical factorization with respect to the real line.

In the remaining three parts of the proof we assume that conditions (1) and (ii)
are satisfied; I1 will be the projection of X along Im Pg onto Ker Pgx .

Part 2. In this part we show that IT maps D(A) into itself. To do this we need
the operator J* defined by (5.52). Our hypotheses imply (see Lemma 5.11) that
J* is invertible and that IT = I — (J*)~!Pgx. Recall that Pgx maps D(A) into
D(A) NIm Pgx. Thus in order to prove that D(A) is invariant under II it suffices
to show that (J*)~! maps D(A) N Im Pox into D(A). From the relation (5.54)
and the invertibility of the operator I — K, it follows (see Corollary 5.13) that

(J)Y ' =J-R(I-K)'U,
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where U, R and J are as in Lemma 5.12. Take € D(A) NIm Pgx. Then Uz =
QAox € D7'[0,00), where @ is the projection of LT*(R) onto L7*[0,00) along
L' (—00,0]. From the general theory of Wiener-Hopf operators we know that

(I —K)™' =T +T)(I +Ty), (5.61)

where for j = 1,2 the operator I'; is the integral operator given by

o0 = [ Tt es)ds, >0,

with v; € LT"*™(R). In fact, v has its support in [0,00) and 2 in (—o0,0];
see Section 1.5. From the representation (5.61) it follows that (I — K)~! maps
D7"[0, c0) into itself. Note in this context that for h € LT"*™(R) and f € DT*(R),
we have h  f € DT*(R) and

(R f) = hx f" + h()(f(0+) = f(0-)).

Thus (I — K)~*Uxz € D7*(R). But then the final part of Proposition 5.4 tells us
that we end up in D(A) by applying I'e. We conclude that R(I — K)~'U maps
D(A) NIm Pgx into D(A). Since the separating projection Pg maps D(A) into
itself, we know that J maps D(A4) N Im Pgx also into D(A). Thus (J*)~! maps
D(A) N Im Pgx into D(A), and hence IT maps D(A) into itself.

Amplifying on the above, we note that J* maps D(A) NIm Pg in a one-to-one
way onto D(A) N Im Pgx. Since J* is invertible, it suffices to show that (J*)~*
maps D(A) N Im Pgx into D(A) N Im Po. We have already shown that (J*)~!
maps D(A) N Im Pgx into D(A), and the inclusion (J*)~'Im Pgx C Im Pg is
clear from the definition of J*. Thus J* has the desired property.

Part 3. According to our hypotheses and the fact that IT maps D(A) into itself,
we have the following direct sum decompositions:

X = ImPo+ KerPox, (5.62)
D(A) = (D(A) NImPs) + (D(A) N Ker Pox ). (5.63)
Write
A Z B
= ., B= ., C=[C1 Cy] (5.64)
0 A2 B2

for the corresponding matrix representations of A, B, and C. We now show that
91:(A1’B1acl)a G)T :(AfaBl,*Cﬁ%
@2 = (AQ?BQaCQ)a G); = (A;aBZa 702)7

are realization triples, and we analyze the spectral properties of their main oper-
ators. Here A = A; — B1Cy and A5 = Ay — ByCs.
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We start with ©;. Note that A;(Im Ps — Im Pg) and Ci(ImPg — C™)
are the restrictions of A and C to D(A) N Im Py, respectively. Since Pg is the
separating projection of ©, this implies that ©; is a realization triple. From the
definition of A; it follows that —iA; is the infinitesimal generator of a strongly
continuous left semigroup of negative exponential type. Thus the kernel function
k1 = ke, has its support in (—o0,0] and

Wi(\) = I —Fky(\) = T+Ci(A— Ap)~*

is defined and analytic on an open half plane of the type Im A < —w with w strictly
negative.

Next, we consider ©1°. Let J* : Im Pg — Im Pgx be the operator defined by
(5.52). We know that J* is invertible, mapping D(A) NIm Pg onto D(A) NIm Pgx .
It is easy to check that J* provides a similarity between the operator A} and the
restriction of A* to D(AX) N Im Pgx. Hence iA] is the infinitesimal generator
of a strongly continuous left semigroup of negative exponential type. But then
Theorem 5.7 guarantees that O is a realization triple. Furthermore , the kernel
function k;* associated with ©; has its support in (—o0, 0], and

Wit = T—kX(\) = I —Ci(A— AY)'B,

for all A with Im A < —w. Here it is assumed that the negative constant w has
been taken sufficiently close to zero.

We proceed by considering ©3 and ©5. Obviously ©. is a realization triple,
and a similarity argument of the type presented above yields that the same is true
for ©,. The operators —iAs and —i A are infinitesimal generators of strongly con-
tinuous right semigroups of negative exponential type. Hence the kernel functions
ko and k. associated with ©2 and ©J, respectively, have their support in [0, 00).
Finally, taking |w| smaller if necessary, we have that

Wo(A) = I —ka(A) = I+ Co(A — A2) "' By

and -
Wo\) ™' =Tk (\) = I—Co(A— AF) " 'By

are defined and analytic on Im A > —w.
We may assume that both © and ©* are of exponential type w. For values
of A with |$A| < —w one then has

W) =I+Ci(A—A)B "+ Co(A— As) ' By
+C (A — AT Z(N— Ay) 7By,
Now Ker PJ is an invariant subspace for
Af Z — B1Cy

AX =
~B,Cy A}
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and so Z = BjC5. Substituting this in the above expression for W(\), we get
W(A) = Wi (A\)Wa()). Clearly this is a canonical Wiener-Hopf factorization.

The expressions obtained for the factors and their inverses are not quite the
same as those given in the theorem. One verifies without difficulty, however, that
for A in the intersection of p(A) and p(A*), they amount to the same. For further
information on this point we refer again (see the proof of Theorem 3.2) to Section
2.5 in [20] where the case when all three operators A, B and C are bounded is
analyzed in great detail. O

Inspired by the terminology used in [20] (see also [11], Section 1.1), we intro-
duce some additional terminology and notation. Let © = (A4, B, C) be a realization
triple with state space X, and let II be a projection of X which maps D(A) into
itself. We then have

X = KerII4+ImlII,
D(A) = (D(A)NKerll) + (D(A) NImII),
and with respect to these decompositions the operators A, B and C' have the form

A A
Aoy Ao

A= . o=[a o]

)

The triple (Agz, Ba, C3) will be called the projection of © = (A, B,C) associated
with I, and it is denoted by prp(©). Note that (Aj;1, B1,Ch) is the projection
pr;_n(0©) of (A, B,C) associated with the projection I — II. A particularly inter-
esting case for what follows is when II is a supporting projection for ©. This means
that besides the II-invariance of D(A) = D(A*) the following inclusion relations
are satisfied:

A[D(A) NKerll] C Kerll, A*[D(A*)NImII| C ImIL

In that situation we have Ajp = B1Cs and Az; = 0. Also Il is a supporting
projection for the realization triple © = (A, B, C) if and only I —1II is a supporting
projection for ©* = (A*, B, —C). Finally, if II is supporting for O, the arguments
used in Part 3 of the proof of Theorem 5.14 show that pr(©) and pr;_;(©) are
again realization triples.

With this notation and terminology we have the following alternative version
of Theorem 5.10.

Theorem 5.15. Let T be the Wiener-Hopf integral operator on L7*(R) given by
(5.51). Assume that k = ko for some realization triple © = (A, B,C). Then T is
invertible if and only if the following two conditions are satisfied:

(i) ©* = (4%, B, —C) is a realization triple,
(ii) X =Im Po + Ker Pgx .
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Here X 1is the state space of both © and ©*, and Pe and Pgx are the separating
projections of —iA and —iA*, respectively. If (i) and (ii) hold, then the projection
IT of X onto Ker Pgx along Im Pg is a supporting projection for ©, the comple-
mentary projection I — 11 is a supporting projection for ©*, and

(T~ g)(t) = g(t) - /OOO v(t, s)g(s) ds.

Here v is given by

k:f_(t—s)—/ kX (t —r)kX(r —s)dr, s <t
0
V(t,s) = .
kf(tfs)—/k:(t—r)kf(r—s)dr, 5> 1,
0

where kI and kX are the kernel functions associated with the realization triples
pr(©%) and pr;_(©%), respectively.

5.9 The Riemann-Hilbert boundary value problem
revisited (2)

In this section we deal with the Riemann-Hilbert boundary value problem on the
real line for matrix functions W of the form

W) = 17/ e k(t) dt, (5.65)
where k is an m x m matrix-valued function with the property that for some w < 0
the entries of e~“I*lk(t) are Lebesgue integrable on the real line. In this case W is
analytic in a strip around the real axis. For such a function the Riemann-Hilbert
problem consists of finding pairs &, ®_ of C™-valued functions on the real line
such that

WA)PL(N) =D_(N), —00 < A <00 (5.66)

while, in addition, ®; and ®_ are Fourier transforms of integrable C™-valued
functions with support in [0,00) and (—o0, 0], respectively. These requirements
imply that &, and ®_ both vanish at infinity and that they are continuous on
the closed upper and closed lower half plane, respectively.

From the special form of k in (5.65) we know that W is the transfer function
of some realization triple © = (4, B, C). The following theorem gives the solution
of the Riemann-Hilbert problem for W in terms of the operators A, B and C
appearing in the triple.

Theorem 5.16. Let W be the transfer function of realization triple © = (A, B,C).
Assume ©* = (A*, B,C) is a realization triple too (or, equivalently, that W(\)
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is tnvertible for all A € R). Write Pg and Pgx for the separating projections
of —iA and —iA*, respectively. Then the pair of functions ®,,®_ is a solution
of the Riemann-Hilbert boundary value problem (5.66) if and only if there exists
z € Im Po N Ker Pgx such that

P () = C(/\AX)lz/OOOeW(Agx)(t)dt, (5.67)
0
(N = CO—A)lg —— / M (Aoz)(t) dt. (5.68)

Moreover the vector x is uniquely determined by the functions @4, P_.

Proof. Take x € Im Pg N Ker Pgx. Condition (C4) in the definition of a realization
triple implies that (ASz)(t) is zero almost everywhere on the half line —oo < ¢ <0,
while (Aex)(t) is zero almost everywhere on 0 < ¢t < oo. It follows that we can
apply (5.29) to both ©® and ©* in order to show that

/oo ML) () dt = /00 eM(AZz)(t)dt = C(A — A)ta,
0

— 00

0 (oo}
/ eMt(A@x)(t) dt = / eikt(A@a?)(t) dt = -C(\— A>_1x.

oo — 00

Thus the functions &4 and ®_ in (5.67) and (5.68) are well-defined. Furthermore,
these functions are Fourier transforms of integrable C"-valued functions with sup-
port in [0, 00) and (—oo, 0], respectively. From (5.35) we see that (5.66) is satisfied.
Thus the pair @, P_ is a solution of the Riemann-Hilbert problem.

To prove the reverse implication, assume that the pair &, ®_ is a solution
of the Riemann-Hilbert problem (5.66). Write ®; and ®_ in the form

%) 0
B0 = [ Mo e = [ Mo @

where ¢, € LT"[0,00) and ¢_ € LT*(—00,0]. Now, let kg be the kernel function
associated with ©, and consider the integral operator on LT[0, 00) defined by

(Kf)(t) = /OOO ko(t — s)f(s)ds, a.e. on [0, 00).

Using (5.66) and the fact that W(X) = I,,, — %(A), a routine argument yields
that ¢4 — K¢+ = 0. In other words, ¢4 € Ker (I — K). Next, we use the coupling
relation (5.54) together with Corollary 4.3 in Section I11.4 of [51]. It follows that
¢+ = Uz for some z in Ker J*, where

U* :Im Pg — LT[0, 0), (U*x)(t) = —(Aoxx)(t), a.e.on [0,00),

J* :Im Pg — Im Pgx, J*x = Pgxx.
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Obviously, Ker J* = Im Pg N Ker Pgx. Thus there exists x € Im Pg N Ker Pgx
such that ¢4 (t) = —(Agxx)(t) a.e. on the half line 0 < ¢ < co. But then (5.67) is
satisfied. By (5.66), the identity (5.29) applied to ©* = (A*, B, —C), and (5.35)
we have ®_(\) = W(A\)®,(\) = C(A — A)~ 2. Hence (5.68) holds too.

It remains to prove the uniqueness of the vector z in (5.67) and (5.68).
Assume that 2’ is a second vector with the same properties as the vector . So
x’ € Im Pg N Ker Pgx while (5.67) and (5.68) hold true with 2’ in place of x. Let
J* and U* be as in the previous paragraph. Since Ker J* = Im Pg N Ker Pgx , we
have x — 2’ € Ker J*. Furthermore, the fact that the left-hand side of (5.67) does
not depend on z nor on z’ yields that (Ajz)(t) = (Agz’)(t) a.e. on [0,00). Thus
U*x = U*2'. Tt follows that both J*(z — ') and U*(z — a’) are equal to zero.
If « # 2/, this implies that the operator defined by the right-hand side of (5.54) is
not invertible, which is impossible by Lemma 5.12. We conclude that z = 2/, as
desired. O

Notes

The material presented in this chapter is taken from the papers [16] and [15]. In
[16] the reader will also find a systematic treatment of realization triples (A, B, C)
with C bounded and A unbounded. The notion of an exponentially dichotomous
operator, which has been introduced in [16], has proved to be quite useful in
other areas. See, e.g., the papers [22] and [93]. The theory of realization triples
is also used in [14] and [92]. The papers [90] and [91] present an extension of the
theory of realization triples to operator-valued functions by introducing two-sided
Pritchard-Salomon realizations. In particular, the factorization theory of Section
5.8 is developed further in [91].

For more information on exponentially dichotomous operators, including var-
ious perturbation theorems and a wide variety of applications, we refer to the
monograph [111]. See also the notes to Chapter 6.






Chapter 6

Convolution equations and the
transport equation

In this chapter the factorization theory developed in the previous chapters is ap-
plied to solve a linear transport equation. It is known that the transport equation
may be transformed into a Wiener-Hopf integral equation with an operator-valued
kernel function (see [40]). An equation of the latter type can be solved explicitly
if a canonical factorization of its symbol is available (cf., Sections 1.1 and 3.2).
In our case the symbol may be represented as a transfer function, and to make
the factorization the general factorization theorem of the second chapter can be
applied. This requires that one finds an appropriate pair of invariant subspaces.
In the case of the transport equation the choice of the subspaces is evident, but
to prove that their direct sum is the whole space takes some effort. The latter is
related to a new difficulty that appears here. Namely, in this case the curve cuts
through the spectra of the main operator and the associate main operator. Nev-
ertheless, due to the special structure of the operators involved, the factorization
can be made and explicit formulas are obtained.

Since our main purpose is to show how our method works, we restrict our-
selves to the case when the kernel function describing the effect of the scattering
is of finite rank.

In Section 6.1 we describe the transport equation that is considered in this
chapter. To illustrate our approach we first study (in Section 6.2) a simplified
model, namely when the scattering appears only in a finite number of directions.
In Section 6.3 the vector-valued Wiener-Hopf equation associated to the transport
equation is introduced. In Section 6.4 it is shown that under appropriate condi-
tions a canonical factorization of the symbol associated with the equation can be
constructed, and the matching of corresponding invariant subspaces is established
in Section 6.5. In Section 6.6, the final section of the chapter, we present formulas
for the solution.
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6.1 The transport equation

Transport theory is a branch of mathematical physics concerned with the mathe-
matical analysis of equations that describe the migration of particles in a medium,
for instance, a flow of electrons through a metal strip or radiative transfer in a
stellar atmosphere.

For the plane symmetric case, a stationary transport problem through a
homogeneous medium can be modelled by an integro-differential equation of the
following form:

1

P2 s e = [ s =0 )

This equation is a balance equation. The unknown function %) is a density function

related to the expected number of particles in an infinitesimal volume element. The

right-hand side describes the effect of the collisions. The variable p is equal to cos «

where « is the scattering angle, and therefore —1 < p < 1. The variable ¢ is not a

time variable but a position variable, sometimes referred to as the optical depth.

The kernel function & in the right-hand side of (6.1), which is called the scattering
function, is assumed to be a real symmetric L;-function on [—1,1] x [—1,1].

We shall consider the so-called half range problem, that is, we assume the
medium to be semi-infinite, and hence the position variable runs over the interval
0 <t < oo. Since the density of the incoming particles is known, the values of
(0, ) are known for 0 < p < 1. Thus the above equation will be considered
together with the boundary condition

Y0, 1) = fi (), 0<p<l, (6.2)

where fi is a given function on (0,1]. In the sequel we shall consider fy as a
function on [—1,1] by setting fi(u) = 0 for —1 < p < 0, and we assume that
f+ € LQ[—]., 1]

There is also a boundary condition at infinity, which appears in different
forms. Here we take the condition at infinity to be

t
tlim Y (t, p) exp (;) =0, —1<pu<0. (6.3)
Thus the problem is to solve (6.1) under the boundary conditions (6.2) and (6.3).

In this chapter we shall assume (cf., [81], [82] and [108]) that the scattering
function k is given by

k(') =Y ajpi(m)p; (1), (6.4)
=0

where p;(u) is the j-th normalized Legendre polynomial (see [53], page 26) and

—o0 < aj <1, i=0,1,...,n. (6.5)
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In particular, the integral operator defined by the right-hand side of (6.1) has finite
rank.

By writing ¢ (¢)(u) = 9(t, 1), we may consider the unknown function v as a
vector function on [0, 00) with values in H = Lao[—1, 1]. In this way equation (6.1)
can be written as an operator differential equation:

T

it )+ ¢(t) = Kuy(t), t >0, (6.6)

where the derivative is taken with respect to the norm in H. In (6.6) the operators
T and K are defined by

n

(TF) () = puf (), Kf=>> a;{f,p;)p;. (6.7)

§=0
Because of (6.5), the operator I — K is strictly positive, and hence (6.6) is equivalent

to
@

I—-K)"'T
( ) i

—Y

In [81], [82], [108] this equation is solved by diagonalizing the operator
(I - K)~'T.

Equation (6.1) with boundary conditions (6.2) and (6.3) can also be written
as a Wiener-Hopf integral equation with an operator-valued kernel function (cf.,
[40]). In order to do this, let us introduce some notation. Let H4 and H_ be the
subspaces of H = Ls[—1, 1] consisting of all functions that are zero almost every-
where on [—1,0] and [0, 1], respectively. By Py and P— we denote the orthogonal
projections of H = Ls[—1, 1] onto the subspace H and H_, respectively. Further-
more, h will be the operator-valued function defined by

Loo (<L) RKnG). r>0,
(h(0)F) () = ©8)
1 t
—;exp (—’u>(P—Kf)(ﬂ)7 t <0,

and F is the vector-valued function given by

t
f ( )eX - > 0 < S 13
P =4 p< M) 8 6.9)

The operator-valued function h is referred to as the propagator function associated
with the half range problem (6.6).
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Given these functions h and F, equation (6.1) with the boundary conditions
(6.2) and (6.3) can be written as

[ee]
P(t) — / h(t — s)¥(s)ds = F(t), t>0. (6.10)
0

To see this, multiply equation(6.1) by p~!exp(t/u) and integrate over (0,¢) when
>0 or over (t,00) in case pu < 0. With the help of the boundary conditions one
gets in this way the integral equation (6.10). In [40] the asymptotics of solutions
of equation (6.10) are found and used to describe the asymptotics of solutions of
the transport equation.

6.2 The case of a finite number of scattering directions

To make the method used in this chapter more transparent we first consider the
case when scattering occurs in a finite number of directions only. This assumption
reduces the equation (6.1) and the boundary condition (6.2) to

dvp -
j=1
i=1,...,n, t>0,
where
Y0, 1) = py(pi),  pi >0. (6.12)
To treat this version of the problem, introduce the C™-valued function
"/}(tv /1‘1)
Y(t) = : ;
Y(t, pn)
and the matrices
T = diag [p1, - - -, fin], K = [k(pi, 13)]7 5 =1 (6.13)

Observe that T and K are real symmetric (hence selfadjoint) n X n matrices.
Using this notation, equation (6.11) taken with the boundary condition (6.12) can
be rewritten as

{ TY'(t) +(t) = K¢(t), 0<t<oo,
(6.14)

P.(0) = a4,
where P, is the projection on C™ defined by
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and x4 is a given vector in Im P,. Observe that Py is the spectral projection
of T corresponding to the positive eigenvalues of T'. In what follows we assume
additionally that T is invertible, which is the generic case and corresponds to the
requirement that all y; in (6.11) are different from 0; cf., formula (6.12). We shall
look for solutions v of (6.14) in the space L30, c0).

The first step in solving (6.14) is based on the observation that, for invertible
T, equation (6.14) is equivalent to a Wiener-Hopf integral equation with a rational
matrix symbol. In fact, the following theorem holds.

Theorem 6.1. Suppose T in (6.13) is invertible and let » € L5[0,00). Then v is
a solution of equation (6.14) if and only if ¥ is a solution of the Wiener-Hopf
integral equation with a special right-hand side, namely

Y(t) — /OOO ht—s)Kip(s)ds = e T 'y, t >0, (6.15)

where h is the propagator function associated with problem (6.14), that is,

Tl T P, t>0,
h(t) = B (6.16)

T le T P, t<0.
Here P_ =1 — P,.

Proof. Assume 1) is a solution of (6.14). Applying 7! to the first identity in
(6.14), and solving the resulting equation by using variation of constants, yields

—1

(t) = e T p(0) + e T /t T T K p(s)ds, t>0. (6.17)

0
Next, apply etT ' P_ to both sides of (6.17) and use that etT"" and P_ commute.

Since e!T" ' P_ is exponentially decaying on [0,00), the function et P_K(t) is
integrable on [0, 00), and thus

lim €T P_ap(t) = P_1p(0) +/Oo T P_T VKp(s)ds. (6.18)

t—o0o 0

Again using that the function etT_lP_@/J(t) is integrable on [0, o), we see that the
left-hand side of (6.18) has to be equal to zero, which proves that

P_ip(0) = — /OOO ST P_T VKip(s)ds. (6.19)

Now, replace ¥(0) in (6.17) by P+1(0) + P_1(0), use the boundary condition in
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(6.14), and apply (6.19). This gives

Y(t) = e—tT”m—/ e~ =T p_ T Kap(s)ds
t

t
+/ e~ =T o1y (s)ds
0

= T g, +/ h(t — s)K1(s)ds, t>0.
0

Thus 9 is a solution of (6.15).
To prove the converse statement, assume that ¢ is a solution of (6.15). Thus

t
V() = e T g et /esT’ P, T K1(s)ds (6.20)
0
_e*tTfl/ eSTilP,Tfle(s)ds, t>0.
t

It follows that v is absolutely continuous on each compact subinterval of [0, 00),
and hence the integrands in the right-hand side of (6.20) are continuous functions
of the variable s. But then ¢ is differentiable on (0, 00), and we see that

V() = T + PLT T Ky (t) + P-T7 K y(1)
= T Y%Wt)+ T Ky(t), t>0,

and hence v satisfies the first equation in (6.14). From (6.20) it also follows that
P(0) = x4 —/ eSTflP,Tfle/)(s)ds, t >0,
0

which implies that Py (0) = Pyay = x4. We conclude that 4 is a solution of the
problem (6.14). O

A direct computation yields that the symbol of the Wiener-Hopf operator
associated with (6.15) is the n x n matrix function W given by

W) =1, —iT '\ +iT Y 'K,

where I, is the n x n identity matrix. Thus the symbol W is not only a rational
matrix function but it is already given in a concrete realized form, namely

W) =1, + C(A— A)"'B,

with
A=—-iT™', B=K, CO=-iT. (6.21)
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Notice that A does not have eigenvalues on the real line. Thus in order to solve
equation (6.15) we can apply Theorem 3.3. This requires us to analyze the spectral
properties of the matrix

A* = A - BC=—iT"'(I - K). (6.22)

In view of (6.5) it is natural to assume I — K is positive definite.

Lemma 6.2. Assume I — K is positive definite. Then the matriz A* in (6.22) has
no real eigenvalues and

Cr =M+ M*, (6.23)

where M is the spectral subspace of the matriz A in (6.21) corresponding to the
eigenvalues in the upper half plane, and M™ is the spectral subspace of A* in
(6.22) corresponding to the eigenvalues in the lower half plane.

Proof. Let (-,-) be the standard inner product in C™ and put S = (I — K)~'T.
Since I — K is positive definite, S is well-defined and the sesquilinear form

[z, y] = (I = K)z,y) (6.24)

is an inner product on C". From [Sz,y] = (I — K)Sz,y) = (T'z,y) and the fact
that T is selfadjoint, it follows that .S is selfadjoint with respect to the inner prod-
uct [+, -]. But then the same holds true for iAX = S~1. Thus A* is invertible and
its eigenvalues are on the imaginary axis. In particular, A* has no real eigenvalues.
Recall that P, is the spectral projection of T' corresponding to the positive
eigenvalues of T'. Let P be the analogous projection for S. Since T and S are
invertible, T'|ker p, is negative definite and S It Px is positive definite. Thus

0#ze€KerPy, = (Tx,z)<0,
0#zcImP? = [Sz,z]>0.

But [Sz,z] = (Tz,z) for each z € C". It follows that Ker P NIm P = {0}. In
particular, rank Py > rank P°. By repeating the argument with Ker Py replaced
by Ker P and Im P} by Im P, we see that rank P > rank P,. But then we
may conclude that C" = Ker Py 4+ Im P}. Finally, from iA = T~! we see that
M = Ker Py, and from iA* = S~ we conclude that M* =Im P}, O

We can now apply Theorem 3.3 to solve equation (6.15). Note however that
the right-hand side of (6.15) is of a special form. In fact, in terms of the matrices
appearing in (6.21) this right-hand side can be written as

g(t) = iCe "z,

where z € Im P,. Thus instead of Theorem 3.3 we can also directly apply Corol-
lary 3.4. This yields the following result.



122 Chapter 6. Convolution equations and the transport equation

Theorem 6.3. Assume I — K is positive definite and T is invertible. Then the
matriz (I — K)™T is selfadjoint with respect to the inner product (6.24) and the
half range problem (6.14) has a unique solution v in L3 (0,00), namely

-1
Yt) = et U=B1e, . >0, (6.25)

where 11 is the projection of C" along Ker P, onto the spectral subspace Im P} of
(I — K)~'T corresponding to its positive eigenvalues.

6.3 Wiener-Hopf equations with operator-valued kernel
functions

It is well-known that the Wiener-Hopf integral equation
vlt) = [T K- s dy = F@), 120 (6.26)
0

can be solved by constructing appropriate factorizations of its symbol (cf., Sections
1.1, 3.2, the papers [49], [71], or the survey article [59]). In this section we shall
describe this method for the case when k is an Li-kernel function the values of
which are compact operators on a separable Hilbert space H. So we assume that
k(t) is a compact operator for each real , that (k(-)f, g) is measurable on the real
line for each f and ¢ in H, and that

/mnuwwﬁ<m

— 00

where (-, -) is the inner product on H, and || - || is the operator norm for operators
on H. Note that the kernel function h considered in the previous section falls into
this category.

Recall that the symbol of equation (6.26) is the operator-valued function
I — K()\), where K (\) is the Fourier transform of the kernel function k, i.e.,

K\ = / e E(t) dt, —00 < \ < o0.
By the Riemann-Lebesgue lemma, we have limyer, x—d00 K(A) = 0. Here we

also need the concept of canonical factorization, this time in the present infinite
dimensional context. The symbol is said to admit a (right) canonical factorization
with respect to the real line if

I-K(\)=G_(NG+(N), —00 < A < 00, (6.27)

where the factors G_ and G meet the following requirements:
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(i) the operator function G_ is analytic on the (open) lower half plane S\ < 0
and continuous on the closure of the left half plane in the Riemann sphere
(infinity included); also for each A in this closure (infinity included), the
operator G_()) is invertible;

(ii) the operator function G4 is analytic on the (open) upper half plane A > 0
and continuous on the closure of the right half plane in the Riemann sphere

(infinity included); also for each A in this closure (infinity included), the
operator G4 (A) is invertible.

Note that the definition is analogous to that given earlier in the matrix-valued
case (see Sections 1.1 and 3.1). According to [49], because of the fact that k is an
L1-kernel function the values of which are compact operators on H, the inverses
of the factors in the right-hand side of (6.27) can be written as

oo 0
Gl =1 +/ eMy (1), G\ =1 +/ eMNy_(t)dt,  (6.28)
0

— 00

where, v4 and «_ are Lj-functions on [0,00) and (—oo0,0], respectively, whose
values are compact operators on H.

Let Lo(R,H) denote the space of all Le-integrable functions on [0, 00) with
values in H. The identities (6.28) are important, because they allow for explicit
formulas for the solutions of (6.26). Indeed, by [18] equation (6.26) has a unique
solution ¢ in Lo(Ry,H) for each F € Ly(Ry,H) if and only if a canonical fac-
torization (6.27) exists, and in that case (just as in Section 1.1 for matrix-valued
kernel functions) the Fourier transform {b\ of the solution 1 is given by

PN = GIHP(GZH N E(N), (6.29)

where F is the Fourier transform of the right-hand side of equation (6.26), and P
is the projection defined by

P([ swera) = [T e a

Taking inverse Fourier transforms in (6.29) one finds

v = F )+ [ ot )P (s) ds,

where (¢, s) is given by (1.10), i.e.,

’y+(t—s)+/'y+(t—r)fy,(r—s)dr, 0<s<t,
0
V(t,s) = .
fy,(t—s)—k/”y+(t—r)'y,(r—s)dr, 0<t<s.
0
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As we observed already, in (6.10) the kernel function A(-) is an L;-function on
the real line whose values are compact (in fact finite rank) operators on Lo[—1, 1].
In the next section we shall prove that the corresponding symbol admits a canon-
ical factorization, and we shall describe the factors explicitly.

6.4 Construction of a canonical factorization

We now return to equation (6.10). Note that its symbol is given by I — H(\),
where

H(\) = / eMh)K dt = (I —idT) 'K, —00 < A < 00.
Here h is given by (6.8), and the operators T and K are as in formula (6.7). The
operator function H is analytic on the strip |SA| < 1. Note that o(T") is the closed
interval [—1,1], so that (I —iAT)~! is defined for all A in the complement of the
union of the subsets i[1, 00) and i(—oo, —1] of the imaginary axis. In this section
we show that I — H()) admits a canonical factorization with respect to the real
line:

I-—H\=G_(ANGL(N), —00 < A < 00,
where the factors and their inverses can be written as
G.(N) = I—(I—i\XI)"'(I-P)K(I—-PK)",
Gy(\) = I-(I-QK)"'(I-Q)I—ixI)T'K,
G\ = I+(I-QK) Q" (I —i\NT*)") 'K,
GI'(\) = I+ —i\T*)"'"PK(I - PK)™"

Here T* = (I — K)~!'T, and P and @ are projections of which the definition will
be given below. With regard to the domains of the factors and their inverses, the
situation is similar to what we encountered earlier for Theorems 3.2 and 5.14.

In order to make the factorization we transform the symbol of equation (6.10)
into another function W which is defined and continuous on the imaginary axis.
This will be done as follows.

Recall that T" and K are both selfadjoint and that I — K, being a strictly pos-
itive operator because of (6.5), is invertible. Hence, for non-zero purely imaginary
values of A,

I—H(i/N* = I—(I+Xx'T)'K)"
= I-KI-Xx'1)!
= I-AKW\-T7)""!
= [-K)I[-KI-K)'T(x-17)7").
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We now introduce W by writing
W\ =I1-T-K) 'KT(A-T)"" (6.30)

Note that this expression is a unital realization for W. The state space is the
separable Hilbert space H = La[—1, 1]. The operator T is the main operator, and
(I — K)~!T is the associate main operator, denoted above by T (in line with the
notation adopted in Section 2.1).

Via (6.30) the function W is defined and analytic on the resolvent set of
T, so on the complement of the interval [—1,1]. In particular, W is defined and
continuous on the imaginary axis punctured at the origin. We shall now prove that
by setting W (0) = (I — K)~! the restriction of W (now defined on the complement
of the set [—1,0) U (0, 1]) to the imaginary axis is a continuous function. For this
we need to show that

: : -1
aHIOI,H;ERW(Za) =T -K) " (6.31)

It is convenient to establish the following lemma which will also play a role later
on in this section.

Lemma 6.4. Let S be a bounded selfadjoint operator on a given Hilbert space. Then
|S(ia —S)~Y| <1, 0+#acR, (6.32)
while, furthermore,

lim  S(io—S)"'f=—f,  fLKerS. (6.33)

a—0,aeR

Under the additional assumption that S is a nonnegative operator, the limit result
(6.33) can be sharpened to

. _ “1p_ _
,\Hol,lg&gos()\ Sy f fs f L KerS. (6.34)

Proof. Let Es(t) be the spectral resolution of the identity for S, and let f be an
element of the underlying Hilbert space. Then

A

, - o
ISta=s)"t12 < [ G dimso

IN

[ aiesor?

= |fI*
This proves (6.32). Next, observe that

o] 2
I+ S(ia—8)"Lf|2 < / Y d|Es)f|*.

oo @2+ 12
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So by Lebesgue’s dominated convergence theorem we get

lim __|f+SGa=S8)7 | < [EsO)f* = [Es(0-)f]?

a—0,aeR
= [I(Es(0+) — Es(0-)) fII,

which is zero if f L Ker.S. Hence (6.33) is proved. The argument for (6.34), taking
nonnegativity of the operator S for granted, is analogous. g

The proof of (6.31) is now as follows. As Ker T' = {0}, we sec from Lemma 6.4
that limg— 0 acr (ia + T)7'Tf = f, f € H. Since K is compact (actually
even of finite rank), it follows that (ia + T) 'TK tends to K in the operator
norm if @ € R, @ — 0. Taking adjoints, we obtain that the same holds true for
—KT(ia—T)~!. But then we have (6.31), where the convergence is with respect
to the operator norm. So with W (0) = (I — K)~!, indeed W becomes a continuous
function on the imaginary axis.

It is this operator function for which we want a (right) canonical Wiener-Hopf
factorization. This time not with respect to the real line (see the definition in Sec-
tion 6.3) but for the analogous situation where the curve in the Riemann sphere
is the imaginary axis with infinity included. The theory concerning canonical fac-
torization developed earlier suggests that we have to find an invariant subspace
M for T such that the spectrum of T restricted to M lies in the closed right half
plane, and an invariant subspace M * for T such that the spectrum of T re-
stricted to M ™ lies in the closed left half plane. Since T is selfadjoint the choice
of M is clear: M = Hy, where H, is the subspace of H = Ls[—1, 1] consisting
of all functions that are zero almost everywhere on [—1,0]. As we shall see below,
after replacing the standard inner product on Lo[—1,1] by a suitable equivalent
one, the operator T is selfadjoint too. So for M* we can take the spectral sub-
space of T corresponding to the part of the spectrum of T on (—o0,0]. The
first difficulty is to prove the matching of the subspaces M and M *, i.e., to show
that H = M + M*. Taking for granted that this has been established a second
difficulty appears, because in the present case the imaginary axis does not split
the spectra of T and T*. So we cannot apply directly the theory developed so far,
but we have to prove, using the specifics of the situation, that the factors obtained
have the desired boundary behavior. The purpose of this section is to show that
this approach works indeed.

We begin by considering the operator T = (I — K)~'T. As I — K is strictly
positive, [f,g] = ((I—K)f, g) defines an inner product on H = Ly[—1, 1] equivalent
with the standard one. Writing A for the adjoint of an operator A relative to
the inner product [-, -], we have

Al = (1 — K)7'A* (I - K). (6.35)
In particular, we see that the operator T is selfadjoint with respect to the inner
product [-,-]. Let E*(-) be the corresponding spectral resolution and introduce

Hy, = Im E7(0), H, = Ker EX(0).
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Then H,, and H, are both invariant under 7' and
o(T*|n,,) C (—o0,0]N o(T™), o(T"|n,) C [0,00)N o(T*). (6.36)

For T the situation is more straightforward. Indeed, T is selfadjoint with
respect to the original (standard) inner product on H and leaves invariant the
spaces H_ and H featured in Section 6.1. Further

o(The ) =[-1,0,  o(T|y,)=[0,1]. (6.37)

The subspaces M and M * mentioned above are H; and H,,, respectively.
So proving that these subspaces match amounts to showing that H = Hy + H,,.
In fact, in the next section we shall show the following stronger result:

H=H_+H,, H=Hys+Hn. (6.38)

Let P be the projection of H along H_ onto H,, and let @) be the projection of
‘H along H4 onto H,,. Since the subspaces H_,H are invariant under 7" and
Hu, Hp are invariant under 7, both P and () are supporting projections for the
realization (6.30). Associated with these projections are two factorizations:

W) =W, OW_()), W) =W_(NW,(\). (6.39)

With the appropriate choice for the value of the factors at the origin, both these
factorizations are canonical factorizations of W with respect to the imaginary axis;
the first a left and the second a right factorization. In the sequel we only need the
second factorization in (6.39).

First we give the expressions for the factors W_ (M) and /W+()\):
_ -1
W) = I (- K) KT, (- The,) (1= Q) (6.40)
—~ _ -1
Wi(\) = I—(I—-K)'KT)|,, (A= QT|xn,) Q. (6.41)

Note that there is slight abuse of notation here. Indeed, the operator I — ) in the
formula for W_ (M) should be interpreted as a mapping from H onto H,, and @
in the expression for W+()\) must be seen as a mapping from from H onto H,,. In
particular QT'|3,, should be read as the compression of T' to H,, (relative to the
decomposition H = H4 + H,,). The function W_ is defined and analytic on the
resolvent set of T'|3, so, by the second part of (6.37) on the complement of the
interval [0, 1]. Similarly, the function /W+ is defined and analytic on the resolvent
set of the compression operator QT |z, . Now H = Hy +H_ = Hy + H, and
Lemma 3.1 guarantees that QT|3,, is similar to T'|5_. In particular the resolvent
sets of QT|x,, and T|y_ coincide. It follows from the first part of (6.37) that
function /V[7+ is defined and analytic on the complement of the interval [—1,0].
The argument also indicates that the second factorization in (6.39) holds for all
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A outside the interval [—1,1]. Indeed this interval is precisely the union of the
spectra of T'|y, and QT |3, (cf., Theorem 2.6).

Next we deal with the invertibility of the factors W_(\) and W, ()). The
above realization of W_ has

(L= QT o, + Hae — My

as its associate main operator. From Section 2.4 we now know that W_()) is invert-
ible for A in the intersection of the resolvent sets of T'|3,, and (I — Q)T * |y, . The
resolvent set of T3, is the complement of the interval [0, 1]. As H = H, + H,, =
Hp + Hum, the compression operator (I — Q)T * |y, is similar to 7|3, . Hence, by
the second part of (6.36), the resolvent set of (I — Q)T |3 is the complement of
the set [0,00) N o(T*). It follows that W (M) is invertible for all non-zero A with
RA <0, its inverse (see Theorem 2.4) being given by

W' = I+ (I -E) KD, (A= - QT ) (I -Q)
= T+ (KT¥)h, (A= (1= Q)T |s,) (I - Q).

In an analogous manner one proves that /V[7+()\) is invertible for all non-zero A
with *A > 0, its inverse having the representation

-1

W)™ = T4+ (- EK) KT e, (A= T1,,) " Q

-1
= I+ (KT, A=T1"n,,) Q.
The above formulas contain the precise description of the factors W_, W

and their inverses W1, W;l. Giving up some precision but gaining in conciseness,
we can also write

W_(\) = I-(I-K)'KT(\-T)""(I-Q),
Wi(\) = I—(I-K) 'KTQ\—T)""
W'\ = I+KT*(I-Q)A—T%)"
Wt = T+ KT\ —T%)"'Q;

see Section 2.4 and [20], Section 2.5 for details.

We have come close to proving that the second factorization in (6.39) is a
(right) canonical factorization of W with respect to the imaginary axis. To make
the proof complete we need to check the behavior of the functions at infinity and
at the origin. As far as the behavior at infinity i 1s concerned the situation is simple.
Indeed the functions W_, W+, W__ and W, + are analytic there with value the
identity operator on H. For the origin the situation is more complicated.
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Earlier we completed the definition of the function W, initially introduced
via the unital realization (6.30), by stipulating that W (0) = (I — K)~!. Now we
make a similar move with respect to W_ and WJH in the first instance given by
(6.40) and (6.41), respectively. Indeed, we stipulate that

o~

W_(0) = (I - K)'(I = KQ),  Wa(0) = (I - K)'(I - KP").

In this manner the closed left half plane RA < 0 is contained in the domain of /VI7_,
and the closed right half plane )\ > 0 is contained in the domain of ﬁ/\Jr. Our task
is now threefold: to verify the invertibility of W_ (0) and W, (0), to demonstrate
the continuity of W_ and WJF on the appropriate half planes, i.e., to show that

Ldm W) = (- K) NI~ KQ), (6.42)
- 01711%1/\ 20W+(A) = (I-K)'(I-KP*), (6.43)

and to verify that the factorization W = W WJF holds at the origin. As a first step
we present the following lemma (which will also be used in Section 6.6 below).

Lemma 6.5. Let P,Q and K be as above. Then
Q*(I - K)P=0, I-Q"HUI—-P)=0. (6.44)

Proof. Note that Im P = 'H,, is orthogonal to ImQ = H,, with respect to the
inner product [f,g] = ((I — K)f, g). Thus

(I-K)Pf,Qg)=[Pf,Qg]=0,  f g€ Ly[-1,1].

This yields the first identity in (6.44). Next observe that, relative to the usual
inner product on H = Ls[—1,1], the space Im (I — ) = H, is orthogonal to
Im (I — P) =H_. It follows that

<(pr)f’(I—Q)g>:07 fageLQ[_lyl]y
which proves the second identity in (6.44). O

Corollary 6.6. The operators I — KQ and (I — K)~'(I — KP*) are invertible and
each other’s inverse.

Proof. As K is compact (actually even of finite rank), the operator I — KQ is
Fredholm of index zero. In particular I — K@ is invertible if and only if I — KQ
is left invertible. Thus it suffices to show that the operator (I — K)~1(I — KP*)
is a left inverse of I — K @Q. Now the identities in Lemma 6.5 can be rewritten as
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Q*KP =Q*P and Q* + P — Q*P = I. Combining these, one gets

I-K

I-(Q*+P—-QPK
= I-Q'K-PK+Q'PK
= I-Q'K-PK+QKPK
= (I-Q*K)(I - PK).

Taking adjoints yields I — K = (I — KP*)(I — KQ), and this identity can be
rewritten as (I — K)~'(I — KP*)(I - KQ) = I. O

The corollary can be rephrased by saying that W+ 0)={I-K)"Y{(I-KP")
is invertible with inverse I — K Q. Likewise W_ (0) = (I-K) '(I-KQ) is invertible
with inverse (I — K)~}(I — KP*)(I — K). It remains to verify (6.42) and (6.43).
We begin with (6.42).

For ®A < 0, A # 0, we have

W) = I— (K=K, (A\=The,)  (I1-Q),

=Ky (The)) (A= The) (I - Q).

Here K is the restriction of K (I — K)~! to H. considered as an operator from
‘H into ‘H and, as before, I — ) should be read as a mapping from H onto H.
The restriction operator T'|3, : Hy — Hy is selfadjoint and nonnegative. It also
has a trivial null space. So we can apply Lemma 6.4 to show that

. —1
AH%}%}E&SOT|H+(}\_T‘H+) f+ - 7f+7 f+ € H+'

Along with K, the operator K% : H — H, is compact (actually even of finite
rank), and it follows that

lim

. —1,5 o
,\ﬂo{mgon*()\_T'H*) Ky =~k

with convergence in norm. Taking adjoints we get

lim

-1
A_}()}wgoK+(T|H+)(>\—T|H+) =Ky,

and hence

Lol K (The ) (0= The,) (- Q) = KT - Q).

A simple computation gives I + K, (I — Q) = (I — K)"}(I — KQ), and (6.42) is
immediate.
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Next we turn to (6.43). By Corollary 6.6 and the continuity of the operation
of taking the inverse, it suffices to show that

. o -1 _ 7 _
,\Hég}el/\zoWJ“()\) =1-KQ.

For RA > 0, A # 0, we have
= _ -1
Wy = T+ (KT, (A= T[*n,,)  Q,

— T+ EKn(T ) A= T"|3,,) " Q.

Here K, is the restriction of K to H,, considered as an operator from H,, into
‘H and, as before, () should be read as a mapping from H onto H,,. Because
*=(UI-K)” 1T the operator T |y, has a trivial null space. Further it is
nonpositive with respect to the alternative inner product [-, -], and K, is compact.
Using Lemma 6.4 in an analogous way as in the previous paragraph, we see that
I K (T A=T*h,) " = -K
,\Ho}gel,\zo m( ‘H"‘)( I ’") m

and we get limx .o, ga >0 /W+()\)_1 = I — KQ, as desired.
From what we have obtained so far and a continuity argument it is already
clear that the second factorization in (6.39) holds at the origin too. The calculation

W_(OW(0) = (I-K)'(I-KQ)I-K)"(I-KP")

(I-K)""((I-KP*) ' I-K))(I-K)"'(I-KP")

= ([-K)"'=w(0),
based on Corollary 6.6, corroborates this fact.

Our ultimate goal in this section is to produce a right canonical factorization
with respect to the real line of the symbol I — H () of equation (6.10). For non-zero
real A we have I — H(\) = W (i/\)*(I — K), and with the right interpretation this
identity even holds on the extended real line. Indeed, as W is given by a unital
realization, the value of W at oo is I, and this corresponds with the fact that
H(0) = K. Also by the Riemann-Lebesgue lemma, H vanishes at oo, and this is
in accord with W(0) = (I — K)~!. The right canonical Wiener-Hopf factorization
W=W._ W+ with respect to the imaginary axis that we obtained for W now
induces a right canonical Wiener-Hopf factorization with respect to the real line
for the symbol. The details are given in the next two paragraphs.

We begin by defining a function G_ on the complement in C, of the interval
i[1,00) which is situated on the imaginary axis. The determining expressions are

G-(N) = W (/NI -QK),
I-Q'K
G_(0) = I

|Q
—~
=)
=
I
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Note that G_ is analytic on the complement of i[1, 00) in the finite complex plane
C. Also G_ is continuous on the closed lower half plane S\ < 0, this time infinity
included. Indeed,

aodm G-y = lim W ()T - Q7K)

= (I-PK)I-K)'I-Q'K)=1= G_(0).

Here we used (6.43). Further define G on the complement in Co, of the interval
i(—o0, —1], again located on the imaginary axis, by

Gi(N) = I-QK)'W_(i/N)*(I - K),
G.(0) = I-PK,

Then G is analytic on the complement of i(—oo, —1]) in C. Also G is continuous
on the closed upper plane S\ > 0, infinity included. Indeed, using (6.42) one gets
li Gi(\) = li I-Q*K)"'W_(u)*(I -K)=1=G4(0).
o G =l (- Q7K) ()" ( ) +(0)
Observe that I — H(A) = G_(A\)G4(N), A € R. For non-zero A this is clear
from the corresponding factorization for W; for A = 0 we have G_(0)G4+(0) =
(I -Q*K)(I - PK)=1-K =1— H(0). From what we saw in the preceding
paragraph it is now clear that we have arrived at a right canonical factorization
with respect to the real line, of the symbol I — H()). Explicit formulas for the
factors G_, G4 and their inverses GZ*, G_T_l can be obtained from the descriptions
of Wy, W_, W;l and W_! given earlier in this section. In fact the formulas in
question coincide with the ones already presented in the first paragraph of this
section. For the verification of this we need the following intertwining result.

Lemma 6.7. Let P and Q be as above. Then (I — Q*)T =TP.

Proof. Tt is sufficient to establish the identities (I —Q*)T(I — P) = 0 and Q*TP =
0. For the first of these we argue as follows. Clearly

(I=Q)TU = P)f,g) = (T(I = P)f, (I - Q)g)-

Now (I — P)f € H_ and (I — Q)g € H4. As H_ is T-invariant we also have
T(I-P)f e H_.But H_ L Hy. So (I — Q)T (I — P)f,g) =0 for all f and ¢
in H. It follows that (I — Q*)T(I — P) =0, as desired. Next observe that

(QTPf.g)=(TPf.Qg) = - K)~'TPf,Qg] = [T*Pf,Qg].

As Pf € H, and H,, is invariant under T, we have T*Pf € H,. Furthermore
Qg € Hy,. But Hy, L Hp is H endowed with the inner product [, -]. It follows that
(Q*TPf,g) =0 for all f and g. Hence Q*T'P = 0, which is the second identity we
wanted to establish. ]



6.4. Construction of a canonical factorization 133

We proceed by deriving the state space formulas for G_, G and their inverses
GZ',G1" Recall that W (\) =1 — (I — K)"*KTQ(\ — T)~!. Hence, for \ # 0,

G-(\) = Wi(/N"(-QK)
(I-(-K)'KTQ@/N—T)"")"(I -Q*K)

= ([[—iXI—-i\D)'Q*'TK(I - K) ")(I-Q*K).

On account of Lemma 6.7, we have Q*T = T'(I — P). Also (I - K)™'(I - Q*K) =
(I — PK)™!, and we get

G_()) (I —iX(I —iAT) ' T(I - P)K(I - K)"Y)(I - Q*K)

= (I-K—i\(I—iXT)"'T(I - P)K)(I — PK)™*!
But then, proceeding in a straightforward manner,
G-(\) = (I-K-—i\T(I—i\T)""(I-P)K)(I-PK)™"
= I-K+({I-P)K—-(I-iXI)"'(I-P)K)I-PK)™*
= (I-PK—-(I—-i\T)"'(I-P)K)(I-PK)™!
= I—(I—i\T)"'(I-P)K(I-PK)™*

In this computation A\ was of course taken to be non-zero. For A = 0, the last
expression in the above series of identities reduces to I — (I — P)K (I — PK)~! and
this is easily seen to be equal to (I — K)(I — PK)~!. The latter can be rewritten
as I — Q*K which was earlier identified as the value G_(0) of G_ in the origin.
So in the final analysis the zero value of A is admissible too.

Next we turn to G4 which was defined using W_. For the latter we have the
expression W_(A) =1 — (I — K)"'KT(A—T)~'(I — Q) and we can carry out a
similar computation as the one presented above:

Gi(\) = (I-QK)'W_(i/N) (I - K)
I-Q'K

I - -K)T'KT(/A-T)"' 1 - Q) (I - K)
Yr

I-Q'K — NI = Q") —iAT)'TK(I— K) ") (I — K)

( )
( )

= ([-QK)YI-K—i\I-Q")T(I—i\) 'K)
(I-QK)'"(I-K+(I—-Q")(I—i ' —I)(I—i\T)"'K)
( )

I-Q*K) ' (I-K+(I-Q)K—(I-Q"(I —1i\"'K)
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(I-QK) "I -QK—(I-Q")(I—i\)"K)
= I-(I-QK)'(I-Q")(I—iT)"

For A = 0, the last expression comes down to I — (I — Q*K)~!(I — Q*)K and this
is easily seen to be equal to (I — QK*)™'(I — K), so to I — PK. The latter was
earlier identified as the value G4 (0) of G4 in the origin. So here the zero value of
A is admissible too.

Let us now deal with G~! and G;l. The first of these functions is tied to
W_:l for which we have the expression W (A\)~! = I + KT*(A — T%)~'Q. From
this we get

G\ = (I—Q'K) Y (W.(i/N)) ™"

- (

= (I-QK)'(I+KT*(i/x-T*)"'Q)"

= (I-QK)'(I+Q"((/X—T*)"")(T")K)
(

-1

= (I-Q'K) "I+ Q*(I—iNT*)*) (T™)'K)

= U-QE) (I -QK+Q(I—ixNT*)") "
I+ (I —QK)'\Q (I —iNT*)") K.

Putting A = 0 in the last expression gives I + (I — Q*K)~1Q* K which is obviously
equal to (I — Q*K)~?, the value of G~! at the origin.
Finally we consider G;l. For the appropriate values of A, we have

Gy = <I—K>-1(W_<z'/X>*)*1<I—Q*K)
(= KM (W_(i/2) (I - K)) "' (I = K)™I - Q"K)
- ( (i/3) [*) (I - PK)~!

K)

1)[*](1— PK)™!

Here we have used (6.35) and the fact, already noted above, that I — PK and
(I — K)~Y(I — Q*K) are each other’s inverse. Recall now that

W_(AN)"'=T+KT*I-Q)\—T*)""
Thus, as T* and K are [, -]-selfadjoint,
G N = ([+KT(I-Q)i/x- 1) "1~ Pr)™

= (I+1)ix=T)" 1 -QYT*K)(I - PK)™*
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= (I +i\I —iXT*) (I - Q" T*K)(I - PK)~™.

As an intermediate step, we note that the identity in Lemma 6.7 can be rewritten
as (I — QM)T* = T*P. Indeed,

TP =

This makes it possible to proceed as follows:
G7'(N) = (I+ixI —i\T*)'T*PK)(I — PK)™*
= (I-PK+({I—-i\T*)"'PK)(I - PK)™"
= I+ —i\T*)'PK(I - PK)™ "

The check for A = 0 yields the desired result, namely I + PK(I — PK)™! =
(I — PK)~! which is the value of G1' at the origin.

6.5 The matching of the subspaces

In the canonical factorization carried out in the previous section, we used that
H=H_+H,, H=Hy +Hpm. (6.45)

In this section we shall prove that, indeed, the space H may be decomposed in
these two ways.

Let P_ and P4 be the orthogonal projections of H onto H_ and H., respec-
tively. Also, put P,, = E*(0) and P, = I — E*(0), where E*(¢) is the spectral
resolution of the identity for the operator T = (I — K)~'T with respect to the
inner product [f,g] = (I — K)f, g)). By definition

H_o=ImP_, Hy =1Im Py, Hy, = Im P, Hp, =Im P, .
We claim that
H=H_+H, <= Pyln,:H,— Hy is bijective, (6.46)
H=Hy+Hn <= P_ln, :Hn— H_ is bijective. (6.47)

The argument for this is simple and in a different context (involving a different
notation too) spelled out in the beginning of Part 2 of the proof of Theorem 4.4.
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For the convenience of the reader we give it here too. Note that Ker (P+|Hp) =
H_ N Hp, and thus Py |3, is injective if and only if H_ N H, = {0}. Next, observe
that for each y € H, we have y = (I — P{)y + Pylp,y € H- + Im (Py|y,).
Thus H_ +H, C H— + Im (Py|s, ). The reverse inclusion also holds. Indeed, for
z € Hp we have Pyz = (P1z — z) + z € Ker PL + H, = H_ + H,. It follows that
H_ 4+ Im (P+|Hp) =H_ + H,, and hence Py|y, is surjective if and only if H =
H_ + H,. This proves (6.46). The proof of (6.47) is similar. Now H = H,, + H,
and H = H_ + Hy. Combining this with (6.46) and (6.47), we see that (6.45)
holds if and only if the operator V = P_P,, + P} P, is bijective.

It is not difficult to prove that V is injective. Indeed, take f € H and assume
Vf=0.Put f,, = P, f and f, = P,f. Then P_f,, + P, f, =V f =0, and hence
Py f, =0and P_f, = 0. The latter gives f,, = P fn, and we get

0> [Txfmvfm] = <Tfmafm> = <TP+fm,P+fm> > 0.

It follows that Py f,, € KerT'. But T is injective. So Py f,,, = 0. As P_ f,,, = 0 too,
we have f,, = 0. In the same way one proves that f, = 0. Hence f = 0, as desired.

To prove that V is surjective too, we use that I — V is compact. Indeed,
as soon as we know that this is the case, the Fredholm alternative implies that
V =1-(I—-V) is surjective if and only if V is injective.

Lemma 6.8. The operator I —V is compact.
Proof. The compact operators form an ideal and
I1-V = P_+PL—P_P,—P.P,
= P +PP,+P.P,—P_ P, —P.P,
= P_+P,P,—P_P,

— (Ps—P.)(Pu—P.).

Hence it suffices to prove that P,, — P_ is compact. Now P,, = E*(0), where
E*(t) is the spectral resolution of the identity for T with respect to the inner
product [-,-]. Similarly, P~ = E(0), where E(t) is the spectral resolution of the
identity for T. As T and T are injective, in both cases the spectral resolutions
are continuous at zero. So, using a standard formula for the spectral resolution
(see [99], Problem VI1.5.7) we may write, for each f € H,

(P — P_)f = lim L/ (A=T)"t=(A=T%)"1) fdx (6.48)

Here h is a (sufficiently small) positive number and T'j, is the union of two non-
closed oriented curves as in the following picture:
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+ih

The positive number a is chosen in such a way that the spectra of T and 7' both
are in the open half-line (—a, c0). For the difference of the resolvents of T and T'*
appearing in (6.48) we have

A=T)"" = (A =T

A=T)(I-(A=-T)A=T)7")
= A-T)" YT -TYN-T*)"!
= —(A=T)'KT*(A-=T")"",

and from the latter expression we see that it is a finite rank (hence compact)
operator.

Let A be the closed contour obtained from I'j, by letting the positive number
h go to zero. As T* is selfadjoint in H endowed with the inner product [-,-], we
know from (6.32) in Lemma 6.4 and the choice of a that T (A —T>)~! is bounded
in norm on A\ {0}.

Next, let us investigate (A — 7)1 K. First we shall prove that

lic—T)'K|| < L 0£ceR, (6.49)

i

where ¢ is some positive constant. To prove this, recall that K is the finite rank
operator given by the right-hand side of (6.7), and hence

I(ic = T)' K| <> laslllpsll ;e = T)'psll,  0#ceR
§=0

For each j the function p; is a normalized Legendre polynomial in ¢ (and so the
norm of p; appearing in the above expression is actually equal to 1). Also T' is the
multiplication operator given by the left-hand side of (6.7). So to find an upper
bound for ||(ic — T)~'p;||, we need to estimate

L 2k
——dt . 6.50
/ 1 C2 =+ t2 ( )
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As t2F+2 < 2k for |t| < 1, it suffices to find an upper bound for (6.50) for the
case k = 0. But

/ / 1
102—1—252 arctan 0#ceR.

This proves (6.49) for an appropriate choice of gq.
Note that the function (A — T)"LKT>(X — T*)~! is continuous on A\ {0}.
Also, for some positive constant g,

|l (ic = T) ' KT (ic — T*)~ 0#ceR.

"< —=,
Vel
A straightforward Cauchy argument now gives that
lim [ A=T)"'KT*(\=T%)"'d\
h10 Jp,

exists in norm. But then the same is true for

]111% A (A=T)""=(A=T%)"")dx

As the integrand in this expression is a compact operator-valued function, we can
use (6.48) to show that P,, — P_ is compact too. O

Close inspection of the above proof shows that I — V is in fact a trace class
operator (cf., Lemma 6.3 in [11]).

6.6 Formulas for solutions

Let I — H(A) be the symbol of the Wiener-Hopf integral equation (6.10). From the
results of the previous sections we know that I — H(\) admits a right canonical
factorization with respect to the real line:

I—H)) = G_(NG4()), —00< < oo (6.51)

As we have seen in Section 6.3, this implies that equation (6.10) is uniquely solvable
in L'(]0,00),H), where H = Ly[—1,1]. This fact and the equivalence (explained
in the first section of this chapter) of equations (6.1) and (6.10), allows us to prove
the following result.

Theorem 6.9. Consider equation (6.1) with the kernel function k being given by
(6.4). Let T and K be the operators on La[—1,1] defined by (6.7), and assume that
I — K is strictly positive. Then equation (6.1) has a unique solution v satisfying
the initial condition (6.2) and

o) 1
L[ wtrduar < . (6:52)
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This solution is given by
«\—1
() = e T Pr., t>o0. (6.53)

Here fi is the given function appearing in the initial condition (6.2), the oper-
ator P is the projection of Lo[—1,1] defined directly after (6.38), and T, is the
restriction of T* = (I — K)7'T to H, =Im P.

Note that (6.53) is the natural analogue of (6.25) in Theorem 6.3. Formula
(6.53) features the inverse of the injective operator

Tp>< = TX|'HP : Hp - Hp.

This operator has dense range and is nonnegative with respect to the inner product
[-,+]. Hence its inverse (T,})~!(H, — Mp) is an unbounded operator which has
Im T as its (dense) domain and is nonnegative with regard to the inner product
[,]. Thus the expression

et (6.54)

is well-defined via the operational calculus for selfadjoint operators based on the
notion of the resolution of the identity. One can view (6.54) also as the operator
semigroup generated by the unbounded infinitesimal generator f(TPX)_l.

Proof. Recall that I —H (X) is the symbol of equation (6.10). Since I —H () admits
the canonical Wiener-Hopf factorization (6.51) we can use the general theory of
Wiener-Hopf equations (see the one but last paragraph in Section 6.3) to show that
equation (6.10) has a unique solution 1 in L!(]0,00),H), where H = Lo[—1,1].
Moreover, the Fourier transform zZ of 9 is given by

b\ = GIEP(GZHNEW), (6.55)

where F is the Fourier transform of the right-hand side of equation (6.10), and P
is the projection defined by

P (/_i e (1) dt) = /OOo e F(t) dt.

Since ¢ € L'([0,00),H), condition (6.52) is fulfilled. To derive formula (6.53), we

'~

first compute ¥ using equation (6.55).
Recall that F' is given by (6.9). It follows that

F(\) = (I—iXT)"'Tfy,  SA > 0. (6.56)

As we know from Section 6.4 the inverses of the factors G_(A) and G4 (X) in (6.51)
are given by
GZ'N) = T+ (I - Q*K)'Q*(I —iNT*)*) 'K,

GI'(\) =T+ (I —i\T*)"'PK(I - PK)™*.
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Here T* = (I — K)~!T. Let us use these formulas to compute 12()\) from (6.55).
As a first step we have GZ'(\)F(\) = F()\) + X(\)F(\), where
XN = (I-QK)'Q (I—iNT*)) 'K

= (I-QFK)'Q"I-iT(I-K) ) 'K
= (I-QK)'Q"(I-K)(I-K—ixT)"'K.
Thus X(A\)F(\) = (I — Q*K)~'Q*(I — K)R(\)T f, where
R(\) = (I—K—i)\T)'K(I —i\T)™*
= (I-K—i\T)""((I —i\T) — (I — K —iXT)) (I —iAT) ™!
(

I — K —iXT)™' — (I —idT)~ %

Hence
X(NFO) = (I - Q*K)"'Q*(I — K)(I — K —iXT)"'T'f,
—(I-Q*K)7'Q*(I — K)(I —iXT)™'Tf,.
We conclude that
GZ'WEWN) = F(\) = (I - Q" K)™'Q*(I - K)F ()
F (I = Q K)'Q* (I —iXT*)") "' Tfy.
Now apply the projection P. Since fy € Hy and Ty, is nonnegative, we have

P(ﬁ ) = F. Furthermore, using the spectral properties of T* and the definition of
Q, we see that the function Q*(I —iX\(T%)*)~! is annihilated by P. Therefore

P(GT'NF(N) = FO\) - (I -QK)'Q"(I-K)F())

(I-QK) ™ (I-QK—Q*(I-K)F()

= (I-QK)'I-Q)F(\).
Put Z(\) = (I — Q*K)~'(I — Q*)F()\). Recall from the previous section that
I — PK is invertible with inverse (I — K)~!(I — Q*K). Hence
(1 PE) (I~ Q" K) ™ = (1 - K) ™,

and it follows that GZ*(\)P(GZL(A)F(N)) = Z(A) + H()), where

H()\) (I —iNT*)"'PK(I — K)""(I — Q")F()\)

= (I—iXT*)'P(I = (I - K))(I - K)"(I - Q")F())
= AN - B,
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with
AN) = (I —idT)'P(I — K) ™Y1 — Q")T(I —iXT) " fy,
B\) = (I —iXT*)"'P(I —Q")T(I —i )" ' f,.

Using (I — Q*)T =TP and T* = K)'T we get

I -
AN = (I =a\T*)7'P(I = K)'TP(I —idT) ™ fy
= (I —iXT*)'PT*P(I —i)\T)"'fy
= (I —iXT?) TP —iAT) ™! fy,
and
B(\) = (I—4iXT*)"'PTP(I —i\T) ' fy

= (I —i\T*)'PT(I —i )" ' fy.
Thus (with A # 0 in the intermediate steps)
H\) = (I—i\T*)"Y(T*P - PT)(I —i\T)"'fy

= (= IXT) N (P(T = iNT) — (T = AT P) (I —iXT) )

1 Sy Xy —1 1 ; -1
= —(I- Pf. — — _
S —iINT*) TP L = (I = iXT) 7

1 1
= P+ TX(I —idNT*) "' Pfy — Pl - PT(I —i\T) "t fy

= T*(I —iXT*)"'Pfy — PT(I —iXT) "' fy.
Therefore
GTYWP(GZHNF(WN) = T (I —iXT*) " P S,
+H(I - Q" K) (I - Q") = P)T(I —iXT) ™' fy.
From Lemma 6.5 we get
I-QK)'(I-Q)-P = (I-QK)'(I-Q -P+Q"KP)
= (-QK)'I-Q"-P+QP)
= (I-Q"K)"'(I-Q")(I-P)=0,
and we conclude that

b(N\) = GNP (GZY N F(N) = T*(I —iXT*) " Pfy. (6.57)
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Now T maps H, into H,, and so the operator T = T*[y, : H, — H, is
well-defined. Since 7,¢ is injective, the expression (6.57) can be rewritten as

D) = —(iIA—(T) ) PLy (6.58)

As was already observed, (T,})~!(H, — Hp) is an unbounded operator which has
ImT,¢ as its (dense) domain and is nonnegative with regard to the inner product
[-,-]- Hence we can take the inverse Fourier transform in (6.58), to get the desired
formula (6.53).

From (6.53) we see that 1(0) = (0,-) = Pf,. Now let P, be the orthogonal
projection of Lo[—1,1] onto Hy. Since Ker P = H_, we have P, (I — P) =0, and
thus

Piyp(0) = Pp(Pfy) = Po(Pfy + (I = P)f+) = Py f4+ = [+

Therefore v satisfies the initial condition (6.2). Finally, the uniqueness statement
follows from the general theory of Wiener-Hopf equations. O

Notes

The theory of the linear transport equation has a long history. For this see the
books [28] and [96] which also contain extensive lists of references. The material in
Section 6.2 is taken from Section XIII.9 of [51] where the reader can also find an
illustrative example. The other sections in this chapter follow basically Chapter 6
in [11] which was inspired by the dissertation [80] and the papers [81], [82]. In
[108] one can also find an analytic description of the subspaces concerned. Later
results based on [110] and [124] are also included here. Further developments
using the method described in this chapter can be found in [110], where the case
of non-degenerate kernel functions k(u, i) is treated. See also the book [78], and
the paper [124]. For an alternative proof of Theorem 6.9, not using Wiener-Hopf
factorization, we refer to Section XIX.7 in [51].

The results presented in Sections 6.4 — 6.6 can also be understood from the
point of view described in Chapter 5. Note, however, that in Sections 6.4-6.6 the
symbol is an operator-valued function (and not a matrix-valued function as in
Chapter 5). On the other hand, the operator (T)~! appearing in Theorem 6.9
is exponentially dichotomous. This has been proved in Section 5.2 of the recent
monograph [111]. The latter book also contains many new additions related to the
analysis of equation (6.6). See also the notes to Chapter 5.



Chapter 7

Wiener-Hopf factorization and
factorization indices

This chapter concerns canonical as well as non-canonical Wiener-Hopf factoriza-
tion of an operator-valued function which is analytic on a Cauchy contour. Such
an operator function is given by a realization with a possibly infinite dimensional
Banach space as state space, and with a bounded state operator and with bounded
input-output operators. The first main result is a generalization to operator-valued
functions of the canonical factorization theorem for rational matrix functions pre-
sented earlier in Section 3.1. In terms of the given realization, necessary and suf-
ficient conditions are also presented in order that the operator function involved
admits a (possibly non-canonical) Wiener-Hopf factorization. The corresponding
factorization indices are described in terms of certain spectral invariants which are
defined in terms of the realization but do only depend on the operator function
and not on the particular choice of the realization. The analysis of these spectral
invariants is one of the main themes of this chapter.

The chapter consists of three sections. Section 7.1 describes the main result
for canonical factorization and introduces the spectral invariants involved. The
proof that the spectral invariants do not depend on the particular realization is
given in Section 7.2. The final section of the chapter, Section 7.3, deals with non-
canonical Wiener-Hopf factorization and the corresponding factorization indices.

7.1 Canonical factorization of operator functions

Throughout this chapter, W is an operator function, analytic on an open neigh-
borhood of a given Cauchy contour I', and with values that are operators on a
possibly infinite dimensional Banach space Y. Anticipating the results to be pre-
sented below, we note that in this situation W admits a realization on I" involving
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a possibly infinite dimensional state space X and having Iy as external operator:
W) =Ty +C(\x — A)~'B, (7.1)

where T' splits the spectrum of A, that is ' C p(A). This is immediate from
Theorem 2.2.

As before, we denote by F'; the interior domain of I'; and by F_ the comple-
ment of F; in the Riemann sphere C.,. By a right canonical factorization of W
with respect to I' we mean a factorization

W(AX) = W_ (MWL), Aerl, (7.2)
where W_ and W are functions with values in £(Y") satisfying
(i) W_ is analytic on F_ and continuous on F_,
(i) W, is analytic on F, and continuous on F,
(iii) W_ and W, take invertible values on F_ and F, respectively.

If in (7.2) the factors W_ and W, are interchanged, we speak of a left canonical
factorization. A necessary condition for a right or left canonical factorization with
respect to I' to exist is that W takes invertible values on I'. In terms of the
realization (7.1) this means that I" also splits the spectrum of the associate main
operator A* = A — BC (see Theorem 2.4).

We now extend Theorem 3.2 to a possibly infinite dimensional context.

Theorem 7.1. Let W be an operator function, analytic on an open neighborhood
of a Cauchy contour I, and with values that are operators on a Banach space Y .
Let (7.1) be a realization of W, i.e.,

W) =1y +C(\x —A)7'B,
and suppose T splits the spectrum of A. Then W admits a right canonical factor-
ization with respect to T if and only if the following two conditions are satisfied:
(a) T splits the spectrum of A* = A — BC,
(b) X = Im P(A;T) + Ker P(A%;T).
In that case, a right canonical factorization of W is given by
W(A) = W_(MNWL(N), rel,

where the factors and their inverses can be written as

W_-(\) = IL,+CW\x—A)"YIx-1)B,
Wi(A) = IL,+CH\x —A)'B,
W=\ = I, —Cx —I)(Mx — A)7'B,
W'\ = I,—-C\x —A*)'IB.

Here 11 is the projection of C™ along Im P(A;T') onto Ker P(A*;T).
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For left canonical factorizations an analogous theorem holds. In the result in
question, (b) is replaced by X = Ker P(A4;T') +Im P(A*;T). The theorem also
has an analogue for appropriate closed contours in the Riemann sphere Co, like
the extended real line or the extended imaginary axis.

Proof. To establish the theorem, we can rely for a large part on the proof of
Theorem 3.2. In fact, we only have to add an argument for the following assertion: if
W admits a right canonical factorization with respect to I', then the decomposition

in (b) holds. The first step consists in showing that if W admits a right canonical
factorlzatlon with respect to I, then there is a way of representing W' in the form
W) =1y + C()\I~ - A) 1B such that T splits the spectra of A and AX while,
in addition, X = Im P(A;T) + Ker P(A%;T).

Let W(A) = W_(M)W4 (), A €T, be a right canonical factorization of W.
Recall that oo belongs to F_. Since W_(o0) is invertible we may assume without
loss of generality that W_(oo) = Iy. From the identity W_(\) = W(\)W, (\)~!
and the fact that W is analytic on a neighborhood of T', it follows that W_ has an
analytic extension, again denoted by W_, to some open neighborhood Q_ of the
closed set F_ UT'. Taking Q_ sufficiently small, we have that W_ assumes only
invertible values on 2_. But then Theorems 2.3 and 2.4 can be applied to show
that W_ admits a realization of the form

W_(\)=1Iy +C_(Mx_ —A_)"'B_, XeQ_, (7.3)

where 0(A_) C F} and 0(A”X) C Fy. Here A = A_ — B_C_.

A similar reasoning holds for W,.. This function has an analytic extension,
again denoted by W, , to some open neighborhood € of the closed set Fy UT.
Taking 2 sufficiently small, we have that W, (\) is invertible for all A € 1. But
then Theorems 2.2 and 2.4 yield that W, admits a realization

Wi(\) =Iy + Cy(Mx, —Ay) "By, AeQy, (7.4)

such that o(Ay) C F_ and o(AY) C F_. Here AY = AL — B, (4.

On I' we have the factorization W(A) = W_(A)W,.(A), and so we can apply
the product rule of Section 2.5 to show that W(\) = Iy —|—C(/\I~ —A)"'B, MeT,
Where)?:X_JrX+ and A: X > X, B:Y — X and C: X — Y are given by
the operator matrices

A. B.C, B_

A:

, C=[cCc. o4,

so ]}
|

0 A, B,

The realization Iy + C~'()\I)~( - Z)_lé has the desired properties. This can be seen
as follows.
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From the operator matrix representation for A, and the corresponding one
for A =A— BC: X — X, namely
AX 0

A =

~B.C. A%

it is immediate that ' splits the spectra of both A and A*. Furthermore, the
spectral projections P(A;I") and P(A*,T') are of the form

~ Ix_ 0
@ D)= [ ]
* 0

~ Ix
P(A;T) =

0 O

Hence Im P(A;T) = X_ + {0} and Ker P(A%;T') = {0} + X, and from this
X =Im P(4;T) + Ker P(A%;T) is immediate.
The proof can now be finished by verifying the following two identities:

dim (Im P(A;T) NKer P(A*;T)) = dim (Im P(4;T) N Ker P(AX;T)),

dim X = dim ( X )
Im P(A;T) + Ker P(AX;T) Im P(A;T) + Ker P(AX;T) /-

In other words, we are ready once it has been shown that the right-hand side of
these identities depend only on W and I' and are independent of the realization
(7.1) of W. This is indeed the case as is seen from Theorem 7.2 below which even
exhibits several other spectral invariants. ([l

Theorem 7.2. Let W be an operator function, analytic on an open neighborhood
of a Cauchy contour I, and with values that are operators on a Banach space Y .
Let (7.1) be a realization of W, i.e., W(\) = Iy + C(Mx — A)~'B, and suppose
I splits the spectrum of A. In addition, assume that I' also splits the spectrum of
A* = A— BC. Introduce

P=P(AT), M =TImP, P* = P(A*;T), M* = Ker P*.

Then the quantities

. . X
dlm(M N MX), dim (W),

di MAM*NKerCNnKerCAN---NKer CAF1 019

lm - ...
MnM*NKerCNKerCAN---NKerCA* )’ o '

. M+ M*+TmB+ImAB+---+ Im AB*

dim ’ k:0,1,2...,
M+M*+ImB+ImAB+ - +Im ABk-1

depend on W only and do not depend on the realization (7.1) of W.
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The theorem has an analogue for appropriate closed contours in the Riemann
sphere C, like the extended real line or the extended imaginary axis.

To put Theorem 7.2 in context, consider a proper rational matrix function W
having the value I,,, at infinity. With a realization W()\) = I,,, + C(\L, — A)~'B
of W, one can associate the numbers

dim (Ker C NKer CAN - N Ker CA* 1), k=0,1,2,..., (7.5)

codim (Im B +Im AB + -+ - + Im AB*™1), k=0,1,2,.... (7.6)

Here the codimension is taken with respect to C™. Now realizations of rational
matrix functions are not unique and the above numbers, as well as their differences,
generally vary with different choices of A, B and C in the realization for W. The
above theorem shows that this dependence on the specific form of (7.1) disappears
when one combines the spaces appearing in (7.5) and (7.6) with certain spectral
subspaces of A and A*. We will meet the subspaces featuring in (7.5) and (7.6)
again in Section 8.1.

The proof of Theorem 7.2 is rather complicated and we will devote a separate
section to it.

7.2 Proof of Theorem 7.2

Let W and I' be as in Theorem 7.2, and suppose we have the realizations
W) = Iy +C(\Mz — A)7'B, (7.7)

W) = Iy + C(\M ¢ — A)7'B, (7.8)

where I' splits the spectra of /:1 and gx as well as those of A and A*. In other
words I' C p(A) N p(A*) N p(A) N p(A*). Writing
P=P(AT), M=ImP, DP*=PA%I), M*=Ker P,
P=P(A), M=ImP, P*=PA%TI), M*=ZKerP*,

we need to show that

dim(M N M*) = dim(M N M*),

. X , X
dim [ ——— = dim = |>
M + M* M + M

di ( MAM*NKerCNKerCAN---NKer CAF! )
im

MNM*NKerCNKerCAN---NKer CA—1 N Ker C Ak
N ( MNM*NKerCNKerCAN---NKer CA1 )
= dim ;

—

MAM*NKerCNKerCAN---NKer CA1 0 Ker O Ak
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M+M*+ImB+ImAB + -+ Im ABk-1
N <J\//.7+ M*+ImB+ImAB+--- 4+ Im ABF 1 +Im2§k>
= 1m .

dinn (MHTIX +ImB+ImAB+ -+ Im AB*! +Imﬁ§’€>

M+M*+ImB+ImAB +---+Im ABk-1

Here K =0,1,2,....
It is convenient to first present a series of auxiliary results. These concern
the operators ¥ and ¥ given by the integrals

-1

_ _oax\=1pAay A1
V= F(A AX)TIBC(A — A)~la), (7.9)
¥= L (A= A)'BC(A — A)~tdA. (7.10)
27TZ T

Note that ¥ : X — X and ¥ : X — X.
Lemma 7.3. The operators U and U also admit the representation:

~ 1

- = _’\—1B‘~ _gx—l )
V= F()\ A)'BC(A )~LdA, (7.11)
T (A—A)"'BC(A — A7) "L dx, (7.12)

2mi Jp

Proof. From Theorem 2.4 we know that
WANCA—A)t=CA-—A)",  WNCA-A)' =Ch—A)1,

A—A)TTBW(A) = A—A)'B,  (A—A)T'BW(O) = (A—A)"'B.

Now make the appropriate substitutions. O

Lemma 7.4. For the products of U and U the following identities hold:
YU = (P —P)?, WU = (PX - P)>
Proof. Tt is assumed that T' C p(A) N p(g) For A € T', we have
CA—A) Y u—A)"'B=CA—A) Y (u—A)"'B. (7.13)
Indeed, taking advantage of the resolvent identity, we get for A € T,

(= NCOA - A (u— 4B

I
Q

(A=A — (- A)B

=CA—A)"'B-Cu—-A"'B
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= (W) —=I)— (W(p) — 1)

=CA—A)"'B - C(u—A)"

C((A=-AH" = (u-4)")B
= (p=NCO= A (- A~

Now, when A # p, divide by p — A; for A = p, employ a continuity argument.
To compute UV, we use the expression (7.10) for U, formula (7. 11) for U,
and the identity (7.13).

b (ﬁf/r/r()\—ﬁx)‘léé()\—ﬁ)‘l

(u—A)TLBC(u— A*) "t ddu

(%) [ [o-a5e0 - 4

(u— A)T'BC(p— A) " ddp

() [ foo- A= -

A)THA = A (p— A) " dhdp

: (%M)Q/FA((A—ZX>1—<A—Z>1>)

(=27 = (= D)) drdp

_ (2;/F(A Ayt (A—Z)‘MA)Q

(P* — P)2.

For U = (13X — ﬁ)z, interchange the roles of the realizations (7.7) and (7.8). O
Lemma 7.5. The operators U and U satisfy the following intertwining relations:
UP=(I-PX¥, UP*=(I-P)V, (7.14)
UP=(1-P*¥, UP*=(I-P)U. (7.15)
Proof. Focussing on the first identity in (7.14), note that the function
P (A= A)"'BC(A— A)~*
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is analytic on an open neighborhood of F_ UT. Here F_ is the exterior domain of
I (including oo). Furthermore, the expansion of this function at infinity is of the
form A=2P* BCP plus lower order terms. Hence

1 ~ —~ o~~~ ~ ~
— [ P*A=A""'B — A)~1Pd)\ = 0.
2 ) (A )y"IBC(A Y"1PdA =0

On the other hand (I — P*)(A — AX)"'BC(A — A)~}(I — P) is analytic on an
open neighborhood of Fy UT', where F. is the interior domain of I'; and so

1

— [ (1= P*)(A=AX)"'BC(A— A)~'(I — P)dx = 0.
2wt Jr

It follows that
1

UP = — [ (A= A)"'BC(A— A)"'PdA
2wt Jr
= L 0=y A9 BEO - A) ' Pax
271 r
- L — PX)(A = AN)TIBC(A — A)~ldx
27TZ r
= (I_ﬁx)\i}a

as desired.

This proves the first identity in (7.14). The second identity in (7.14) is proved
in a similar way using the formula for ¥ given by (7.11). The identities in (7.15)
follow from those in (7.14) by interchanging the roles of the realizations (7.7) and
(7.8). O

Lemma 7.6. The operators T and U satisfy the following Lyapunov equations:

UA—- AU = BCP- P*BC, (7.16)
PAX - AV = BCP* - PBC, (7.17)
VA- A"V = BCP-P*BC, (7.18)
VA* — AV = BCP* - PBC. (7.19)

Proof. Using the definition of ¥ via (7.9), we have

i = = [(0— 2)BA(O - A1 Adx
27Tl T
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1 —~ ~~ ~ ~
= — [(A=A)"IBC\— A) " (A - A+ \I)d)

2mi Jr

1 ~ s ~ 1 ~ .
= — [ AMA=A"IBOMN—A)tdr— — | (A= A)"'BCdA

271 ( ) ( ) 271 F( )

1 s
= 5= ()\I A 4 AN — A 'BC(A— A" d\ — P*BC

= BCP+A*¥ - P*BC.

This gives (7.16). The identity (7.17) can be proved similarly by using the alter-
native expression for ¥ of Lemma 7.3. For (7.18) and (7.19), use (7.16) and (7.17)
and interchange the roles of of the realizations (7.7) and (7.8). Direct computations
as the one above of course also work. g

Lemma 7.7. The operators \If, @, E, E, C and C are related as follows:

~ o~~~ ~

UB = (P—-P*)B, CU = C(P— P¥), (7.20)
UB = (P—P*)B, CU = C(P - PX). (7.21)
Proof. Using the expression (7.9) for \Tl, we have
s - L x\—1 3 nN-15
VB = - F()\ A)'BC(A — A)"'Bd
1 —~ ~
= — [(AN=4A"'B ) —1I)d\
5 | )TIB(Wi(A) — 1)
- Y [ _
= 5= F()\ ATIB(Wa(A) — 1) dA
_ ! (>\ AT BWy(A) dA — = (A= A*)"'Bd\
T o ? 27 Jp .

By Theorem 2.4, we may replace (A — AX)"1BW(A) by (A — A)~'B. Hence

o~ 1 ~ i~ 1 —~ ~
UB = — [ (A=A)"'Bd\x — — [ (A= A*)"'Bd),
2wt Jr 2mi Jr

and this can be rewritten as the first part of (7.20). The second part can be proved
via a similar computation. The identities in (7.21) follow by interchanging the roles
of the realizations (7.7) and (7.8). O
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Proof of Theorem 7.2. The proof will be divided into_three parts. The first con-
tains some preliminary observations about the spaces M, M*, M and M *, ending
up in an argument establishing the identities

U S X X
M 4+ M M + M

Part 1. We begin by noting that
UMNM*] ¢ MOM*,  U[M+M*] c M+M~,
UIMNM*] c MOM*,  O[M+M*] Cc M+M*.
To prove this, it suffices to show that
UM c M*, UM*cM, UMcM*,  OM*cCM.

These inclusions, however, are obvious from (7.14) and (7.15).
Next observe that

MAM* C Ker(I-0¥), MANM* CcKer(I—U¥), (7.22)
M+M* > Im(I-9¥), M+M*> Im(l-U¥). (7.23)
The formulas concerning the product \T/\Tl, follow from
[ —UU = PP* 4 (I — PX)(I - P),

which, in_turn, is immediate from Lemma 7.4. The two expressions involving the
product U¥ are obtained by interchanging the roles of the realizations (7.7) and
(7.8).
Consider the restriction operators

{IVI|J\70*]\7IX Mﬂﬁxﬁﬁﬂﬁx,
E"J\?ﬁ]\A/IX M\HM\X%MHMX.
From (7.22) it is clear that these operators are each others inverse. Hence MNMX
and M NM™* are linearly isomorphic and so they have the same (possibly infinite)
dimension. Next we turn to the operators

~ ~ ~ ~

~ X X ~ X X
P = =  : —— 5 =,
M + M M + MX* M + M M + MX*

induced by ¥ and T\I/, respectively. These are well-defined because of the inclusions
UM+M*] C M+M* and WM +M*] C M+ M*. Also it follows from (7.23)
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that ® and ® are cach other’s inverse. Thus the quotient spaces X / (Z/\Y +M *) and
X / (]\/4\ +M X) are linearly isomorphic. In particular they have the same (possibly
infinite) dimension.

Part 2. In this part of the proof we shall verify that for all nonnegative integers k
the following identities hold:

MAM*NKerCNKerCAN---NKer CA1 0 Ker C Ak
dlm( MNM* N KerCNnKerCAN---NKer CAF1 )

d1m< MAM*AKerCNKerCAN---NKerCAF! )

MAM*NKerCNKerCAN---NKer CA—1 N Ker C Ak

This will be done by showing that the quotient spaces appearing in these identities
are linearly isomorphic. To facilitate the discussion, we adopt the notation

Ker 4 (C|A) = KerC N KerCA N --- N Ker CA !,

where, following standard convention, Ker o(C|A) is read as X. Of course the
notation Ker k(C |A) is defined blmllarly First we shall prove that the operator ¥
maps M N M* N Ker ,(C|A) into MAnM*n Kerk(C|A

This has already been established for k¥ = 0 (Part 1). For k = 1 it must be
proved that

U[MNM*NKerC] ¢ MNM*nKerC.

We know already that {IVI[Z\AZ N MX] c Mn J/\/[\X, and so it is enough to derive
the inclusion \I![M N M* N Ker C’] C KerC or, what comes down to the same,

M N M*NKerC C KerCVU. . The latter, however, is immediate from the identity
CVU = —C(I — P) — CP* 4 C for which we refer to Lemma 7.7.

We proceed by induction. Let £ be a nonnegative integer and suppose that
the operator ¥ maps M N M* Ker (C|A) into MnM*n Kerk(C|A) We shall
show that the same is true with k replaced by k + 1. Clearly

M N M* N Ker g1 (C|A) = MNM* N Ker i (C|A) N Ker CAF,

and similarly with ]\7 M ﬁ and C replaced by J/W\ M E and 6 respectively.
Hence, in view of the 1nduct10n 1 hypothesis, it is sufﬁment to verify that ¥ maps
the space M N M* N Ker k11(C|A) into Ker CA*. In other words, what we need

is the inclusion o o s
Ker CA*U ¢ M N M* N Keryy1(ClA). (7.24)

With the help of (the second identity in) Lemma 7.6, the operator CA*V can be
written as

CA*G — GA-\(—BOP* + PBO + A%

— GAF\(- BEP* 4 (PB - WB)C + 0A)
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and we may conclude that
Ker CA*U > M* N KerC N Ker CA* 1WA, (7.25)
Now Ker CA*~1 > M: N M ﬁ}(e/rvk(@g) Employing the induction hypothesis
once again gives Ker CA*=t 5 W[M N M* N Ker(C|A4)], i.e
Ker CA*='W > M N M* N Ker x(C|A).
But then
Ker CAF WA = A~ [Ker éA\k—l\j]
5 AY[M N M*n Ker(C|A)]
= A7YM] n A7 [M*] N A7 [Ker ,(C|A)]

5> M n (A% +BO)'M*] n A [Ker(C|A)]

> Mn /lefl[.f\?x] N KerC' N A~'[Ker,(C|A)]
> Mn M*NKerC N gfl[Kerk(CN'VT)],
and hence, taking into account (7.25),
KerCA*W > M n M* N KerC N g_l[Kerk(@g)]

AsKerC'n A! [Kerk(5|g)] = Ker 4 1(C|A), the inclusion (7.24) follows.

Fix the nonnegative integer k. As we have seen, the linear operator U maps
MNM*nN Kerk(C|A) into M N M* N Kerk(C|A Likewise ¥ maps the space
MNM*NKer k(C|A) into MMM * N Ker «(C|A). The same is true with k replaced
by k + 1. But then the linear operators

~ M 0 M* NKer (C|A) M 0 M* NnKer ,(C|A)

O : =— — — ——, (7.26)
M N M*nKergi1(ClA) MﬁMXﬂKerk+1(C|A)

~ M N M* NnKer(C|A M N M* NnKer ,(C|A

8, . MOoMTOKer,(Cl4) - MOMTnKeri(ClA) oo
M N M* N Ker y41(C|A) M N M* NKer 41 (C|A)

induced by ¥ and \Tl, respectively, are well-defined. They are also each others
inverse. This can be deduced easily from

M N M* N Kery(ClA) C Ker(I— W),

MNM* N Keri(ClA) C Ker(I—U¥),
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two inclusions which are immediate from (7.22). Thus the quotient spaces appear-
ing in (7.26) and (7.27) are linearly isomorphic. In particular they have the same
(possibly infinite) dimension.

Part 3. Finally we shall prove that the identities

. <M+ Z\zX +im§+1ri1g§ +--~+Img§kij—1mg§k>
M+ M*+ImB+ImAB+---+Im ABk-1
— dim <J\/I\—|— ]\:/.zX —l—lmé—i—hil;l\é —l—A--A-—l—ImA\B\k_ii—ImEB\k)
M+M*+ImB+ImAB+ -+ 1Im ABk-1

are valid for all nonnegative integers k. This will be done by showing that the
quotient spaces appearing in these identities are linearly isomorphic. To facilitate
the discussion, we adopt the notation

Im(A|B) = ImnB + ImAB + --- + ImAB* !,

where, following standard convention, Im(A|B) is read as {0}. Of course the
notation Im k(A|B) is defined similarly. First we shall verlfy that the operator ¥
maps M + M* + Im (A|B) into M+ M* + Im (4| B).
This has already been established for k = 0 (Part 1). For k = 1 it must be
proved that o _ P N
U[M+M*+ImB] ¢ M+M*+ImB.
We know already that \I/[M + MX] c M+ M\X, and so it is enough to derive
the inclusion \I/[Im B] C M + M* + ImB or, what comes down to the same,

Im UB C M+ M X 4 ImB The latter, however, is immediate from the identity
UB = PB+ (- P*)B — B for which we refer to Lemma 7.7.

We proceed by induction. Let k be a positive integer and suppose that the
operator ¥ maps the space M + M* + Im (A|B) into M + M* + Im (A|B).
shall show that the same is true with k replaced by k£ + 1. Clearly

M + M* + Im 41 (A|B) = M + M* + Im (A|B) + Im A* B,

and similarly with M MX A and B replaced by M M A and B respectively.
Hence, in view of the mductlon hypothesis, it suffices to verlfy that U maps Im Ak B
into M + M* + Im k+1(A|B). In other words, what we need is the inclusion

ImVA*B C M+ M* + Im (A|B). (7.28)

With the help of (the first identity in) Lemma 7.6, the operator UA*B can be
written as

VA*B = (BCP - P*BC + A*W)A*'B

— ((I-P*)BC+ B(CP —C —CV) + AV)A* 1B,
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and we may conclude that
ImVA*B ¢ M* +1ImB +Im AVAF1B. (7.29)

Now Im A¥=1B ¢ M + M* + Im 1,(A|B). Employing the induction hypothesis
once again gives \I/[ImAk_lB] C M+ M* + Img(A|B), ie.,

ImUA*'B ¢ M+ M* + Im(A|B).

But then

)

Im 4041 B m A1 B

C M+ AX[M*] +1Im B + Alm 4(A|B)]
C M+ M* +TmB + A[lm (A|B)],
and hence, taking into account (7.29),
ImVA*B ¢ M+ M* +Im B + A\[Imk(;ﬂé)}

AsIm B + E[Imk(mé)] = Im 41 (A|B), the inclusion (7.28) follows.

Fix the nonnegative integer k. As we have seen, the linear operator T maps
M+ M* + Imk(A|B) into M + M* + Imk(A|B) Likewise W maps the space
M+M*+ Im 1,(A|B) into M+ M > +Im 1, (A|B). The same is true with k replaced
by k + 1. But then the linear operators

- M + M* 4 Im (A|B) J\7+J\7X+Imk(ﬁu§)
M —_—

&, . = 2) T (7.30)
M + M* N Im i1 (A B) M + M* +Im s, (A|B)

- M+ M* +1Im (A B M + M* +Im (A|B

§, . MAM AImyAB) - M4 ME A ImAB) g,
M + M* NlIm i1 (AB) M + M* + Im 41 (A|B)

induced by ¥ and \Tl, respectively, are well-defined. They are also each other’s
inverse. This can be deduced easily from

M+ M+ Imy(C|A) > Im(I—WV),

M+ M* + Im,(C|A), D> Ker(I— VD),
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two inclusion relations which are immediate from (7.23). Thus the quotient spaces
appearing in (7.30) and (7.31) are linearly isomorphic. In particular they have the
same (possibly infinite) dimension. O

The symmetry in the arguments employed in the above proof (Parts 2 and
3 especially) suggests the possible use of a duality reasoning. Working in a finite
dimensional context this line of approach is indeed possible. In the infinite di-
mensional situation, however, it does not work, an obstacle being that (sums of)
operator ranges need not be closed.

7.3 Wiener-Hopf factorization and spectral invariants

Let Y, W, I', F, and F_ be as in the preceding two sections, and let e;,e_ € C
be points in F, and F_, respectively. By a right Wiener-Hopf factorization of W
with respect to I' (and the points £, and £_) we mean a factorization

W(A) = W_(A)DAN)Wi(N), Ael (7.32)
where the factors W_ and W, are operator-valued functions, the values being
operators on Y, such that

(i) W_ is analytic on F_ and continuous on F_,

(ii) W is analytic on F; and continuous on F'y,

(iii) W_ and W, take invertible values on F_ and F, respectively,
(iv) the middle term D in (7.32) has the form

ks K
A— g4 7
D(\) = Iy + Z(A_€_> I;, Ael, (7.33)
j=1
where k1,...,k, are non-zero integers, k1 < kg < --- < K, the operators
II4, ..., II, are mutually disjoint rank 1 projections on Y, and

My = Iy — (Ily + -+ 1)

so Ilj is a projection disjoint from Ily,... IL,.

A necessary condition for such a factorization to exist is that W takes invertible
values on I'. In terms of a realization of W on I' this means that I' splits the
spectrum of the associate main operator (see again Theorem 2.4). If in (7.32) the
factors W_ and W are interchanged, we speak of a left Wiener-Hopf factorization.
We will focus on the right version; for the left variant analogous results hold.

A few remarks are in order. Suppose W admits a right Wiener-Hopf factor-
ization with respect to I' and the points ey € Fy and e € F_. Then W also
admits a right Wiener-Hopf factorization with respect to I' and any other two
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points v+ € Fy and «y_ € F_. For y_ in the finite complex plane this is clear from
the simple identity

(=)= (=) =) =)
G=2) -G ea ().

This brings the middle term D(A) into the form

For v_ = o0, use

D(\) = IIp + Z (A —73)™;, Nel. (7.34)

Jj=1

Note that the scalar functions ()\ - 7+)Hj featured in the latter expression have
their zeros and poles in v4 and co. When the origin belongs to F';, one can take
v+ = 0 and (7.34) becomes

D) =T + Y AI,  Ael.
j=1

This type of middle term plays a role in the study of Toeplitz equations where T’
is taken to be the unit circle (see [52], Chapter XXIV).

Although a right Wiener-Hopf factorization is (generally) not unique, the
non-zero integers Ki,...,k, are. They are called the right (Wiener-Hopf) fac-
torization indices of W with respect to I'. Left factorization indices are defined
similarly. Sometimes the term partial indices is used instead of factorization in-
dices. Finally, we mention that right (left) canonical factorization corresponds to
the case when the right (left) factorization indices are all zero.

For the convenience of the reader, we recall (from the previous section) that
Ker;(C|A) and Im (A|B) are defined as

Ker,(C|4) = KerCnNKerCAN---NKer CA* 1,
Imp(A|B) = ImB + ImAB +---+Im A1 B.
Theorem 7.8. Let the function W be given by the realization (7.1), i.e,
W(A\) =Iy + C(\x — A)"'B,

where T splits the spectrum of A. Then W admits a right Wiener-Hopf factoriza-
tion with respect to I if and only if the following two conditions are satisfied:

(a) T splits the spectrum of A* = A — BC,
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X
where M = Im P(A;T) and M* = Ker P(A*;T). In that case, the right factor-
ization indices of W can be described in terms of the operators appearing in (7.1)
as follows:

(c) the number s of negative right factorization indices and the negative right
factorization indices —an, . .., —as (in the ordinary order: —aq < -+ < —ay)
themselves are given by

s = dim MM
- MnNM*nKerC )’

_ _ . MNM*n Kerp_1(C|A) i
o= it =t am (SRS ) = ).

7=1...,s,
(d) the number t of positive right factorization indices and the positive right fac-

torization indices wy,...,w; (in reversed order: wy < --- < wy) themselves
are given by

M+ M* + Tm B
t:dim( + +m),

M+ M*

(MM 4 Ima(AB) \
J— = . =
ny ﬁ{k 1727 |dlm<M+M><+ Imk—l(AlB) =7y

j=1,....t

As was already indicated above, for left Wiener-Hopf factorizations an anal-
ogous theorem holds. The theorem also has an analogue for appropriate closed
contours in the Riemann sphere C,, like the extended real line or the extended
imaginary axis.

Proof. For the (long and complicated) proof of the “if part” of Theorem 7.8 we
refer to [17]. Here we shall concentrate on the “only if part” and the description of
the right factorization indices. So we shall assume that W admits a Wiener-Hopf
factorization (7.32) with respect to the contour I' and, say, the points e € F}
and e_ € F_. According to Theorem 7.2 it suffices to prove that there exists a
special realization for W, for convenience also written as (7.1), such that ' splits
the spectra of A and A* and for which (b)—(d) hold. The argument consists of
several steps.

Step 1. Write the negative right factorization indices of W in the ordinary order (so
from small to large) as —ayq, ..., —as, and the positive right factorization indices
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in the reversed order (so from large to small) as w1, ..., w;:
—ap << e <0 <wp < - S (7.35)

Then D can be written in the form

s A—ce_ o 1 )\_€+ wj
D(\) = P, P_; P; .
were () e X (5EE) A 0w

where P_1,...,P_g, P, ..., P are mutually disjoint rank 1 projections on Y, and
Ph=Iy—-(P.1+-+P_s+ P+ -+ Pp), so Py is a projection disjoint from
P4,...,P 4, P,..., P;. For definiteness, we shall assume that s and ¢ are both
positive.

Step 2. Fix j among the integers 1,...,s, and let Dj_()\) be the scalar function
given by

A—e_
A — &4

Dj_()\):< )aj, A ey

Write J;~ for the lower triangular Jordan block with eigenvalue €, and order ay,
so that o(J;") = {e4+} . Further introduce

mer ()

B; = )
- ()
i (e+ —e-) (?) ]
c; = [0 ...0 1]

Then D; (A\) = 14 C; (A — J;)"'B; is a (minimal) realization of D . Now
Jj_X —¢e_1,; is similar with the lower triangular nilpotent Jordan block of order
a; and having eigenvalue €, a similarity being given by the upper triangular

matrix o
e (V2]
v— R pr=1
v—1

where (u—l) is read as zero for p > v. Thus O'(J;X) ={e_}.
Clearly P(Jj*; I') =1 and P(JJ-*X;I‘) = 0. Hence

Im P(J;;T) = Ker P(J; *;T) = C%,



7.3. Wiener-Hopf factorization and spectral invariants 161

and so, trivially,
Imy(J;B;) = C%, E=0,1,.... (7.37)
Furthermore, as is easily verified,

Ker,(Cy[J7) = C% * 4 {0}*,  k=01,..., (7.38)

where the right-hand side of the equality is read as {0}* for k > a;.

Step 3. Take j among the integers 1,...,t, and let D;-r()\) be the scalar function
given by

Df(\) = (;:i)w AAe_.

Write J;“ for the lower triangular Jordan block with eigenvalue e_ and order wj,
so that o(J;" ) = {e_} . Further introduce

Cf = [ (e- —e4) (“f) (. —e4)? (“;f> (el — ey (ij) } .

Then D;-"(/\) = 1+CJ'-"()\—JJ7")713;' is a (minimal) realization of D;'. Analogously
to what we saw in the previous step for the matrix J{X — €-1q;, the matrix
J;’ X —eyl, , is similar with the lower triangular nilpotent Jordan block of order
w; and having €4 as eigenvalue. Thus J(J;_X) ={e4}.

Clearly P(J;;l") =0 and P(J;X;l") = J. Hence

ImP(Jj_;F) = KerP(Jj_X;F) = {0}*7,
and so, trivially,
Ker (Cf|J}) = {0}, k=0,1,.... (7.39)
Furthermore, as is easily verified,
Img(JF|B) = CF+ {0}~ %  k=0,1.., (7.40)

where the right-hand side of the equality is read as C*7 for £ > w;.
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Step 4. Let Do(A) be the diagonal matrix given by
Dy (N)

Dy (N

Do(N) = D) , (7.41)

I Df(\) |
i.e., Do()) is the direct sum of the matrices Dy (), ..., Dy (A), D (A),..., D (A).
Then Dy is a rational m X m matrix function, where m = s + t. To obtain a
realization for Dy, we introduce n = a3 + -+ + a5 + w; + - - - + wy, and introduce
an n X n matrix Ag, an n X m matrix By and an m x n matrix Cy as follows: Ag
is the direct sum of the matrices J; ,...,J;, Jj‘7 ..., Ji, By is the direct sum of
the matrices By ,..., By, B;,..., B, and Cj is the direct sum of the matrices
Cy,...,C7,Cf ... Cf. Then, indeed, Do(\) = I, + Co(A, — Ag) ™' By is a
(minimal) realization.

Obviously, T splits the spectra of Ay and Af = Ay — BoCp. In fact, these
spectra coincide with {4, e_}. (Without the assumption introduced in Step 1
that s and ¢ are both positive, we would have that the spectra of Ay and AJ are
subsets of {4, e_}, and these inclusions are both proper if and only if one of the
integers s or ¢ equals zero.) Put My = Im P(Ag;T') and M = Ker P(A;;T). Then

Mo = MY = C & 4 C £ {0}t +--- + {0} (7.42)

Further we have, for k =1,2,...,

Kery(Coldo) = Kerp(CylJy )+ FKerp(Co|J7) + {0} +--- {0},
Im(Ao|Bo) = C* 4. +C% +Imp(J[B)) + -+ Imy(J|BY),
and
Mon My NKerg(ColAdg) = Kerk(ColAo), (7.43)

M() + ]\40>< + Imk(A0|Bo) Imk(A0|Bo) (744)

Here we used (7.39) and (7.37).
It is clear from (7.42) that

dim(MoﬂMOX) = a1+ -+ as.
Combining (7.43) and (7.38), we get

dim (Mo N M NKer(ColAg)) = max{0, 1 — k} + - - - + max{0, a; — k}.
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In particular

dim (Mo N Mg NKerCp)) = (ag — 1) + -+ + (s — 1),

. MynN MOX
dim > = s.
MoN Mg N KerCy

Thus, with M, M*, C replaced by My, M, Cy, respectively, the first identity in
Theorem 7.8, item (c) is satisfied .
We also have

dim (MO n 1\40>< N Ker kl(CO|AO))
MO N MOX N Kerk(C’0|A0)

and it follows that

= Z (max{al —k+1} —max{oy — k})

= Z 1=8{l=1,...,8|aqy > k}.

le{1,...,s}, oy>k
Now, fix j € {1,...,s}. Then

Hi=1,...,slay > k}>j < ke{l,...,05},

and hence
ﬁ{k:l,Q,...|ﬁ{l:1,...,s|al > k) Zj}: a;.

Combining these elements we see that, with M, M*, A, B, C' replaced by
My, M, Aoy, By, Co, respectively, the second identity in Theorem 7.8, item (c)
holds too.

For the two identities in Theorem 7.8, item (d), the analogous observation is
true. The arguments are basically the same as the ones presented for item (b).
Step 5. Next we deal with the middle term D in the factorization (7.32), written
in the form (7.36) with —aq, ..., —as,ws, ..., w; satisfying (7.35), P_1,..., P_s,
P;, ..., Pp mutually disjoint rank 1 projections on Y and

Po=Iy—-(P1+---+P +P+---+P).

Clearly Py and Py + ---+ P_s + P, + --- + P, are complementary projections.
Put Yy =Ker Py. Then Yo =ImP_1+4---+P_s+Im P, 4 --- 4+ P; and so Yy can
be identified with C™ where, as before, m = s +t. Thus Y = C™ + Im Py and
with respect to this decomposition D(A) can be written as an operator matrix

Do(A) 0

D)) = .
0 1

Here Dy is given by (7.41) and I is the identity operator on Im Py. Now let

Co

Ap = Ao, Bp=[By 0], Cp = 0
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where Ag, By and Cj are as in Step 4. Then we have the realization
D()\) = Iy + CD(/\In — AD)ilBD7

n=ay+ - +tas+w+---+wi, with I" splitting the spectra of Ap = Ay and AB =
Ay — BoCy = AJ. Write Mp = ImP(Ap;T) and M} = Ker P(A};T'). In
other words, Mp = My and M} = M, where, again, we use the notation of
the previous step. For k = 1,2,..., clearly, Ker,(Cp|Ap) = Ker,(Co|Ap) and
Im x(Ap|Bp) = Imk(Ag|By. It follows that, with M, M*, A, B, C replaced by
Mp, M5, Ap, Bp, Cp, respectively, (b)—(d) in Theorem 7.8 are satisfied.

Step 6. We begin this sixth and final step by representing the factors W_ and W
in the Wiener-Hopf factorization (7.32) in the form

W_(\) = Iy+C_(Mx_—A_)"'B_, XeQ_,
Wi\ = I+Ci(MX.—Ay) 'By, AeEQ,,
with
o(A-) C Fy, o(AX) C Fy, o(Ay) C F_, o(AY) C F_.

Why this can be done is explained in the proof of Theorem 7.1. On I" we have the
factorization (7.32), and so we can apply the product rule of Section 2.5 to show
that W(A) = Iy + C(\Ix — A)7!B, X\ €T, where

X=X_+C"+ x,, (7.45)

n=ay+--+as+w+---tw,andAd: X - X, B:Y >Xand(C:X —>Y
are given by

A. B_Cp B_C, B_
A=| 0 Ap BpCi |, B=|Bp|, c=[C Cp Ci].
0 0 A, B.

Here the operator matrices are taken with respect to the decomposition (7.45).
Now the realization obtained for W this way has the desired properties. This can
be seen as follows.
Obviously T splits the spectrum of A and the same is true for A* = A— BC
which has the matrix representation
AX 0 0

A= | —BpC_ A5 0
~-B,C_ —-B,Cp A%
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Let M = Im P(A;T) and M* = Ker P(A*;T). Assume for the moment that we
have established the identities

M N M*NKer(Cl4) = {0_}+(MpnMjnKer(Cp|Ap))+{04+}, (7.46)

M +M* +Tm(A|B) = X_+ (Mp+ M} +Imy(Ap|Bp)) + Xp, (7.47)

where O_ is the zero element in X_, O is the zero element in X and k is allowed
to take the values 0,1,2,.... Then it would be clear from the conclusions obtained
in the previous step that (b)—(d) in Theorem 7.8 are met and we would be ready.
So we need to concentrate on (7.46) and (7.47).

Clearly P = P(A;T) has the form

Ix_ Py Py
P=| 0 PApD) P
0 0 0

From the fact that P(A;T) is a projection one gets the relations
PLP(Ap;T) =0, PP =0, P(Ap;T)Py = P3,

(where the two outer ones imply the middle). In turn these give

Ix. —-P —P Ix_ 0 0 Ix. P P
P = 0 In —P3 0 P(AD,P) 0 0 In P3 5
0 0 Ix, 0 0 0 0 0 Ix,

with the first and last factor in the right-hand side invertible and being each other’s
inverse. Hence

Ix. -Ph —-P
M=| 0 I, -P|[X-+Mp+{04}] = X_+Mp+{04}.
0 0 Iy,
In the same way one gets M* = {0_} + M5 + X, and it follows that
MaM* = {0_}+ (MpnMpy)+ {04}, (7.48)
M+M* = X_+ (Mp+Mp) +X,. (7.49)

Thus (7.46) and (7.47) are valid for k = 0.
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To prove (7.46) for arbitrary k we argue as follows. A simple induction argu-
ment shows that C A is of the form

CA' =

-1
% (ZQVJCDA”D>+CDAlD *] 1=0,1,..., (7.50)

v=0

where Qo i, . .. Q;—1, and the stars denote appropriate but here not explicitly spec-
ified operators. Together with (7.48) this gives that the right-hand side of (7.46)
is contained in the left-hand side. The reverse inclusion can be proved by an in-
duction argument in which (7.50) is employed once more.

Finally let us turn to (7.47). For A'B there is an expression analogous to
(7.50), namely

*

-1
AB = <ZA”DBDR,,J) +ALBy |, 1=01...,  (75])
v=0
*

where Ry, ... Rj—1,; and the stars stand for certain operators. Together with (7.49)
this yields that the left-hand side of (7.47) is contained in the right-hand side. The
reverse inclusion can be proved by an induction argument in which (7.51) is used
once again. O

We close this section with a couple of observations on the dimension numbers
featuring in Theorems 7.2 and 7.8. For shortness sake, introduce

S i (MM 0 Ker o (C]4)
b M N M~* N Kery(C|A) )’
o i (M M Im i (A]B)

B M+ M* + Im_1(AB) )’

Here k may run through the positive integers 1,2,.... Recall that Kero(C|A) is
read as X and Imo(A|B) as {0}, so

R i M N M
o A M A M A KerC )

. ) M+ M*+ ImB
w1 = dim e .

Using standard linear algebra arguments it can be shown that the sequences
Qi, s, ... and Wy, ws, ... are decreasing, i.e.,

Qg > Oy, O > W, kE=1,2,....
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In addition it can be proved that aj and Wy, vanish for k sufficiently large, provided
that M N M* and M 4+ M* have finite dimension and codimension, respectively.
In fact we then even have,

MnM* N Kerg(ClA) = {0},
M+ M*+ Img(AB) = X,

again holding for k sufficiently large. The considerations in Step 4 in the above
proof corroborate these facts.

Here are some details for the integers oy, ag, .. .; for &y, Ws, . .. the situation
is analogous. The mapping
M N M*n Ker,(C|A) MO M*n Kerp_1(C|A)

MM N Kerg1(C]A) MO M<N Ker 5 (C|A)

induced by A is easily seen to be injective. Hence agy1 < Q. Assume now that
M N M?* has finite dimension. Then there exists a positive integer r such that

MNM*N Kerg(ClA) = M N M*n Ker,.(C|A), k=rr+1,....

Evidently MNM* N Ker,(C|A) is invariant under both A and A*. Also A and A*
coincide on M N M * N Ker,(C|A). As the restriction of A to M and that of A* to
M* have no eigenvalue in common, it follows that M N M* N Ker ,.(C|A) = {0}.

Notes

This chapter is based on the papers [17] and [18]. The material of these papers
relevant for this book has been reorganized and several of the arguments have been
improved. The details are as follows. The “if part” of Theorem 7.1 is a special case
of Theorem 3.1 in [17]; it also has the first part of Theorem 1.5 in [11] as a less
general predecessor. Theorem 7.2 combines Theorems 5.1 and 6.1 of [18] in a
more appropriate formulation. The proof of Theorem 7.2 given in Section 7.2 is
a significant improvement over the argument given in [18]. The results from [17]
and [18] to be mentioned in connection with Theorem 7.8 are Theorem 3.1 and
Corollary 3.2 in [17] and Theorem 1.2 in [18].

The spectral invariants appearing in Theorem 7.2 are closely related to the
block similarity invariants of operator blocks of the first or third kind; see [58],
Section XI.5 in particular. For a review of the theory of possibly non-canonical
Wiener-Hopf factorization of matrix-valued functions taking invertible values, we
refer to the book [29] and the more recent survey article [59]. Wiener-Hopf factor-
ization of operator-valued functions goes back to [71] and [72]; see also the recent
book [73] . The fact that the Wiener-Hopf factorization indices depend on the
given function only (and not on the particular Wiener-Hopf factorization) is well-
known for continuous matrix-valued functions (see [60]) and for certain classes of
continuous operator-valued functions (see [49]). The latter do not cover the class
of operator-valued functions considered in this chapter.






Part 1V
Factorization of selfadjoint
rational matrix functions

This part deals with factorization problems for rational matrix functions that have
Hermitian values on the real line, the imaginary axis, or the unit circle. Included
are problems of spectral factorization and pseudo-spectral factorization. The em-
phasis is on positive definite and nonnegative functions. In general, the factoriza-
tions considered are canonical or pseudo-canonical, and they are symmetric in the
sense that they consist of two factors, where the first factor is the adjoint of the
second (relative to the given curve). This part consists of four chapters.

Minimal realizations play an important role in the analysis of rational matrix
functions that have Hermitian values on a curve. These are realization of which the
order of the state matrix is equal to the MacMillan degree of the function. In the
first chapter (Chapter 8) we review the theory of such realizations. Included are
the state space similarity theorem and the minimal factorization theorem. In this
first chapter we also introduce the notion of pseudo-canonical factorization and
describe such factorizations in state space terms. In Chapter 9 we study in a state
space setting spectral factorizations, that is, symmetric canonical factorizations
for rational matrix functions that are positive definite on the unit circle, the real
line or the imaginary axis. Chapter 10 carries out a similar program for non-
negative functions. In this case one has to consider symmetric pseudo-canonical
factorization. In the final chapter (Chapter 11) we present (without proofs) some
background material on matrices in finite dimensional indefinite inner product
spaces, and review the main results from this area that are used in this part and
the other remaining parts.






Chapter 8

Preliminaries concerning
minimal factorization

In this chapter we gather together several results concerning minimal realizations
and minimal factorizations that will play an important role in the sequel. Most of
these results can also be found in Part IT of the book [20]. For the reader’s conve-
nience we have chosen to summarize them here (without proofs). Special attention
is given to the notion of pseudo-canonical factorization, which is a generalization
of canonical factorization by allowing singularities on the curve.

This chapter consists of three sections. Sections 8.1 and 8.2 deal with mini-
mal realizations and minimal factorizations, respectively. Section 8.3 is devoted to
pseudo-canonical factorization.

8.1 Minimal realizations
Let W be a proper rational m x m matrix function, and let
W) = D+C(\, —A)™'B (8.1)

be a realization of W. The realization is said to be minimal if the dimension n of
the state space has the smallest possible value. This smallest possible value is equal
to the McMillan degree of W (see Section 8.5 in [20] for details). The McMillan
degree of W will be denoted by 6(W).

For a characterization of minimality in terms of the matrices A, B and C, we
need some more terminology. Let A be an n x n matrix, let B be an n X m matrix,
and let C be an m x n matrix. The pair (4, B) is called controllable if
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So (A, B) is controllable if and only if C™ is the unique A-invariant subspace
containing Im B. The pair (C, A) is said to be observable if

Ker (C|A) = KerCNKerCAN---NKerCA" ! = {0}.

Thus (C, A) is observable if and only if {0} is the unique A-invariant subspace
contained in Ker C'.

In line with these definitions, the realization (8.1) is called controllable, re-
spectively observable, if the pair (A, B) is controllable, respectively the pair (C, A)
is observable. From Sections 7.1 and 7.3 in [20] we now recall the main results on
minimal realizations in the following two theorems.

Theorem 8.1. A realization of a proper rational matriz function is minimal if and
only if it is controllable and observable.

Theorem 8.2. Let W be a proper rational matriz function and suppose
W) = Di+Ci(M, — Al)_lBh (8.2)
W(X) = D+ Ca(A, — Ay) "' By, (8.3)

are minimal realizations of W. Then D1 = Dy and there exists a unique invertible
n X n matrix S such that

ST1ALS = Ay, S™'By = By, C1S = Cs. (8.4)

This second theorem is known as the state space similarity theorem; the
operator S is called a (state space) similarity between the realizations (8.2) and
(8.3).

In the situation where (8.1) is a minimal realization, there is a close connec-
tion between the poles of W and the eigenvalues of A. Obviously, whether or not
the realization is minimal, the poles of W form a subset of o(A4). However, when
the realization is minimal, the spectrum of A coincides with the set of poles of
W. In addition, when W is a square matrix-valued function, and D is invertible
so that AX = A — BD1C is well-defined, o(A*) is precisely equal to the set of
zeros of W. Here a zero of W is a pole of the inverse W—1 of W . For further
details, including a more intrinsic definition of the notion of a zero of a rational
matrix function, taking into account multiplicities and pole orders too, see Chap-
ter 8 in [20]. From Chapter 7 in [20] we also recall that (8.1) is minimal when
a(4) N o(A*) = 0.

Next we consider the concept of local minimality. Let Ag be a point in the
complex plane. The realization (8.1) is called locally minimal at A\g if

ImPB+ImPAB +---+ImPAB"! = ImP, (8.5)
KerCP NKerCAP N---N KerCA"'P = KerP, (8.6)
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where P is the Riesz projection of A at Ag. There is a local version of the observa-
tion given at the end of the previous paragraph: if Ay is not a common eigenvalue
of A and A, then (8.1) is minimal at \o. For details see Section 8.4 in [20]) where
it is also shown that the realization (8.1) is minimal if and only if it is minimal at
each point in the complex plane.

We finish this section by reviewing some results on Jordan chains and co-
pole functions. Let W be a rational square matrix-valued function, and let ¢ be
a C™-valued function which is analytic at A\g with ¢(Ag) = 0. We call ¢ a co-pole
function of W at Ao if W(A\)p(A) is analytic at A\g and limy_,x, W(A)¢(A) is non-
zero. For this to happen, it is necessary that det W () does not vanish identically.
As before, let W~ denote the pointwise inverse of W, i.e., the function determined
by the expression W=1(\) = W(A\)~L. Now, if ¢ is a co-pole function of W at ),
then the function ¢(\) = W(A)p(A) is a so-called root function of W=t at A,
that is, ¢ is analytic at A\ with ¥(A\g) # 0 and limy_, W(A)~*(X) = 0. The
converse is also true. A root function of W1 at \¢ is also referred to as a pole
function of W at Ao (see [7], page 67).

The next two results have been taken from [20], Section 8.4 (Proposition 8.21
and Corollary 8.22).

Proposition 8.3. Let the rational square matriz-valued function W be given by
the realization (8.1), and let Ao be an eigenvalue of A. Assume the realization is
minimal at Ag. Let k > 1, and let

e(N) = (A= 20)F 0k + (A= X0) M ppyr + -+

be a co-pole function of W at Ag. Put

zj= Y P(A-X)"7"'Bp,,  j=0,..k-1, (8.7)
v=k
where P is the Riesz projection of A corresponding to A\g. Then xq,...,Tk—1 1S a

Jordan chain of A at Ao, that is, xo # 0 and

(A — /\0).%‘0 = 07 (A — )\O)Txk_l = Tk—1—1r, r= O7 ey k—1. (8.8)
Moreover, each Jordan chain of A at Ay is obtained in this way. Finally, if the
chain xg,...,xk—1 given by (8.7) is maximal, that is, xx—1 & Im (A — Xg), then
or # 0.

With respect to (8.7) there is no convergence issue; actually only a finite
number of terms in the sum are non-zero.

Proposition 8.4. Let the rational square matriz-valued function W be given by the
realization (8.1), and suppose det W () £ 0. Let Ao be an eigenvalue of A, and
assume that (8.1) is minimal at X\o. If xo,...,xx—1 is a Jordan chain of A at X,
then Cxg,...,Cxip_1 is a Jordan chain of W1 at Ao, and each Jordan chain of
W= at Ao is obtained in this way.
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For later use (see Section 10.1) we introduce the following terminology sug-
gested by Proposition 8.3. Let W be given by the realization (8.1). If zq, ..., xp—_1
is a Jordan chain of A at A\, any co-pole function p(\) = Z;ik(/\ — o) p; sat-
isfying (8.7) will be called a co-pole function corresponding to the Jordan chain
Zo,...,Tk—1. In this case Cx; is precisely the coefficient of (A — Ag)" in the Taylor
expansion of W(A)p(A) at Ag. To see this, use (8.7) and the fact that the coeffi-
cients in the principal part of the Laurent expansion of W at g are given by the
expression CP(A — \g)?~1 B, where P is the Riesz projection of A corresponding
to the eigenvalue A\g. These observations lie also behind Proposition 8.4 above.

8.2 Minimal factorization

The McMillan degree features a sublogarithmic property. Indeed, if W7 and Wy
are rational matrix functions and W = W31 W5, that is

W(A) = Wi(A)W2(N),

then the McMillan degree of W is less than or equal to the sum of the McMillan
degrees of W7 and Ws:

(WiWa) < 6(W1) + 6(W2). (8.9)

This is clear from Theorem 2.5 and the definition of the McMillan degree given
in the beginning of the previous section. A factorization W = W;Ws is called
a minimal factorization (involving two factors) if equality occurs, that is, when
o(W) = 6(Wh) + 6(Wa). Intuitively, this means that there is no pole-zero cancel-
lation in the product W;Ws; this is made precise in Theorem 9.1 in [20].

Let W(A\) = D+C(M,,— A)~! B be a realization of an m x m rational matrix
function, assume that D is invertible, and let D = DDy with Di,Ds m X m
matrices (automatically invertible). Put A = A — BD~1C. Suppose M, M* is a
pair of subspaces of C" satisfying

AM Cc M, A*M*cM*, M+M*=C" (8.10)

In that case we know (see Section 2.6) that W admits a factorization W = W1 W,
where the factors can be described using the projection IT onto M* along M as
follows:

Wi(\) = Dy +C(\L, — A~ -1)BD;", (8.11)
Wa(\) = D+ D;'CTI(M, — A)~'B. (8.12)

The next theorem, which is a reformulation of the main result in [20], Sec-
tion 9.1, shows that the above factorization principle yields all minimal factoriza-
tions of W whenever the given realization is minimal.
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Theorem 8.5. Let W()\) = D + C(A\l,, — A)~'B be a minimal realization of the
m X m rational matriz-valued function W, and assume D 1is invertible.

(i) Let D = D1 D5 with Dy, Dy (invertible) m xm matrices. If a pair of subspaces
M and M* of C™ satisfies (8.10), then the factorization W = W1 Wa, with
the factors Wy and Wy given by (8.11) and (8.12), is a minimal factorization.

(ii) If W = W1Ws is a minimal factorization of W involving proper rational
m X m matrix functions Wy and Wa, then there is a unique pair of subspaces
M and M* satisfying (8.10) such that the factors Wy and Wy are given by
(8.11) and (8.12) where Dy and Dy are the (invertible) values of Wi and Wy
at 0o, respectively.

The notion of minimal factorization can be extended to products involving
an arbitrary number of factors. Indeed, a factorization W = W7y --- Wy is called a
minimal factorization if

(S(W) = 5(W1)+'-'+ 5(Wk) (8.13)

In general all we can say is that the left-hand side of (8.13) does not exceed the
right-hand side.

The special case of complete factorization is of particular interest. Let W
be a rational m x m matrix-valued function which is biproper, that is, W is an-
alytic at infinity and has an invertible value there. A minimal factorization of
W into biproper rational m x m matrix functions, each having McMillan de-
gree 1, is called a complete factorization of W. The number of factors in such
a complete factorization is necessarily equal to the McMillan degree of W. If
W(A) = D+ C(\, — A)~1B is a minimal realization of W, then W admits a
complete factorization if and only if the matrices A and A* can be brought into
complementary triangular form, i.e., there is a basis such that, with respect to
this basis, A has upper triangular form and A* has lower triangular form. For
further details, see Chapter 10 in [20]. We shall meet complete factorization later
in Section 17.3.

We conclude this section with some remarks on a local version of minimal
factorization. First we introduce the local (McMillan) degree. Let W be a proper
rational matrix function, let

W) = D+C(\, —A)™'B (8.14)

be a minimal realization of W, and let © € C. The algebraic multiplicity af u
as an eigenvalue of A is called the local (McMillan) degree of W at p, written
0(W; ). By the state space similarity theorem, this definition does not depend on
the choice of the minimal realization (8.14). For an alternative definition of the
local degree, we refer to Section 8.4 in [20] where the square case is considered. In
that situation, when det W (\) does not vanish identically, the local degree of W
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at p coincides with the pole-multiplicity of W at p in the sense of [20], Section
8.2.

It is obvious, again from Theorem 2.5, that the global sublogarithmic prop-
erty (8.9) has the following local counterpart:

S(WiWa;p) < 6(Wh ) + 6(Wa; ). (8.15)

A factorization W = W1 W is said to be locally minimal at p if equality occurs in
(8.15), that is, when §(W1Wa; u) = (W1 p) + 6(Wa; p). Intuitively, this means
that in the product Wi W5 no pole-zero cancellation occurs at the point u (see
again Theorem 9.1 in [20]). For the case of proper rational matrix functions (as
considered here), the minimality of a factorization comes down to local minimality
at each point in the complex plane. Thus W = W, W5 is a minimal factorization
if and only if

see Section 9.1 in [20].

8.3 Pseudo-canonical factorization

Let T' be a Cauchy contour in C. As before, the interior domain of I' is denoted
by F,, and the exterior domain by F_. By definition (see Chapter 0), oo € F_.
Let W be an m x m rational matrix function, possibly having poles and zeros on
I'. By a right pseudo-canonical factorization of W with respect to I' we mean a
factorization

W(A) = W_(ANWL(N), A €T, Anot a pole of W, (8.16)

where W_ and W, are rational m x m matrix functions such that W_ is analytic
and takes invertible values on F_ (i.e., W_ has neither poles nor zeros there),
W4 is analytic and takes invertible values on Fly (i.e., W_ has neither poles nor
zeros there), and the factorization (8.16) is locally minimal at each point of T
If in (8.16) the factors W_ and W are interchanged, we speak of a left pseudo-
canonical factorization.

In passing we mention that the definition of pseudo-canonical factorization
given in the second paragraph of [20], Section 9.2 is not quite correct. The point
is that the function W is allowed to have poles and zeros on I'. This is explicitly
stated in the third paragraph of the section in question, but the formal definition
referred to above in the second paragraph erroneously suggests otherwise.

As for canonical factorization, the notion of pseudo-canonical factorization
extends to factorization with respect to the real line and the imaginary axis. To
be more specific, if I' is the closure of the real line on the Riemann sphere, then
F is the open upper half plane, and F_ is the open lower half plane. Replacing R
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by iR means only replacing the open upper half plane by the open left half plane,
and the open lower half plane by the open right half plane.

A pseudo-canonical factorization is not only minimal at each point of I" but
also at all other points of C and at infinity. This follows from the conditions on
the poles and zeros of the factors W_ and W in (8.16). Thus a pseudo-canonical
factorization is a minimal factorization. In combination with Theorem 8.5 this fact
makes it possible to describe all right pseudo-canonical factorizations of a biproper
rational matrix function W in terms of a minimal realization of W. The resulting
theorem (which is taken from Section 9.2 in [20]) is given below. In contrast to
the main theorem on canonical factorization (Theorem 3.2) we are forced here to
work with minimal realizations.

Theorem 8.6. Let W(\) = D + C(A\,, — A)"'B be a minimal realization of a
biproper rational matriz-valued function W, and put AX = A—BD~'C. LetT be a
Cauchy contour. Let D = D1 D5, with Dy and Do invertible square matrices. Then
there is a one-to-one correspondence between the right pseudo-canonical factoriza-
tions W = W_W, of W with respect to T’ with W_(00) = D1 and W4 (00) = Da,
and the pairs of subspaces M, M* of C™ with the following properties:

(i) M is an A-invariant subspace such that the restriction Aly of A to M has
no eigenvalues in F_, and M contains the span of all eigenvectors and gen-
eralized eigenvectors of A corresponding to eigenvalues in Fy,

(il) M™* is an A*-invariant subspace such that the restriction A |pyx of A* to
M™>* has no eigenvalues in Fy, and M* contains the span of all eigenvectors
and generalized eigenvectors of A* corresponding to eigenvalues in F_,

(iii) C" = M+ M*.
The correspondence is as follows: given a pair of subspaces M, M* of C"™ with

the properties (i), (ii) and (iii), a right pseudo-canonical factorization of W with
respect to T is given by W (X\) = W_ (AW (N), where

W_(A) Dy +C(\, — A)~YI —-1)BD; ", (8.17)

Wi(\) = Dy+Dy'CO(\, - A)'B, (8.18)

where II is the projection along M onto M*. Conversely, given a right pseudo-
canonical factorization of W with respect to T’ and with W_(oc0) = Dy, W, (00) =
Do, there exists a unique pair of subspaces M, M* with the properties (i), (ii)
and (iii) above, such that the factors W_ and Wy are given by (8.17) and (8.18),
respectively.

The span of all eigenvectors and generalized eigenvectors of A corresponding
to eigenvalues in F; mentioned in (i) is just the spectral subspace of A associ-
ated with the part of the spectrum of A lying in F.. Similarly, the span of all
eigenvectors and generalized eigenvectors of A* featuring in (ii) corresponding to
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eigenvalues in F_ is the spectral subspace of A* associated with the part of o(A*)
lying in F_.

A pair of subspaces M, M* for which (i), (ii) and (iii) hold need not be
unique. In line with this, pseudo-canonical factorizations are generally not unique
either. An example illustrating this is given in [133]; see also Section 9.2 in [20].

Note that for an m x m rational matrix function W, a canonical factorization
of W with respect to the curve I' is a pseudo-canonical factorization with the
additional property that the factors have no poles or zeros on the curve. In that
case, W has no poles or zeros on I" also. Conversely, if W has no poles or zeros on
I', then any pseudo-canonical factorization W = W1 W5 of W is automatically a
canonical factorization. Indeed, if W has no poles or zeros on I', then the fact that
the factorization W = W7 W5 is locally minimal at each point of ', implies that W
and W5 have no poles or zeros on I'; and thus the pseudo-canonical factorization
W = W1Ws is a canonical one. As a result we have the following special case of
Theorem 8.6.

Theorem 8.7. Let W(\) = D + C(A\,, — A)"'B be a minimal realization of a
biproper rational matriz-valued function W, and put AX = A — BD™'C. Let T
be a Cauchy contour. Assume that A has no eigenvalues on I'. Then W admits
a right canonical factorization with respect to U if and only if the following two
conditions are satisfied:

(i) A* has no eigenvalues on T,
(ii) C" =Im P(A;T)+ Ker P(AX;T).

In that case, the right canonical factorizations with respect to I' are of the form
W = W_W,, with W_ and W, given by (8.17) and (8.18), where II is the pro-
jection along Im P(A;T) onto Ker P(A*;T"), and where D = Dy Dy, with D1 and
D5 invertible square matrices. This correspondence is a one-to-one correspondence
between the right canonical factorizations of W and the factorizations of D into
square factors.

Observe that the above theorem is a modest refinement of Theorem 3.2 in
the sense that we allow the value of W at infinity to be an arbitrary invertible
matrix here. The result of the theorem also holds for non-minimal realizations.
The argument for this consists of a straightforward modification of the proof of
Theorem 3.2. Theorem 8.7 allows for analogues in which the Cauchy contour I is
replaced by the extended real or imaginary axis.

Notes

The material in the first section is standard and can be found in many textbooks;
see, e.g., [94], or the more recent [33], [85]. The idea of minimal factorization orig-
inates from mathematical systems theory and has been developed systematically
in Chapter 4 of [11] (see also [21]), and with further details in Part IT of [20]. An
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extensive analysis of factorization into square degree 1 factors can be found in Part
III of [20]. The analysis involves a connection with a problem of job scheduling
from operations research. Minimal factorization into possibly non-square factors
of McMillan degree 1 is always possible. This has been established in [143]. The
notion of a pseudo-canonical factorization is introduced and developed in [132],
[133].






Chapter 9

Factorization of positive definite
rational matrix functions

The central theme of this chapter is the state space analysis of rational matrix
functions with Hermitian values either on the real line, on the imaginary axis, or
on the unit circle. The main focus will be on rational matrix functions that take
positive definite values on one of these contours. It will be shown that if W is such
a function, then W admits a spectral factorization, i.e., a canonical factorization
W = W_W, with an additional symmetry between the corresponding factors,
depending on the contour.

This chapter consists of three sections. In Section 9.1 we analyze selfadjoint-
ness of a rational matrix function relative to the real line, the imaginary axis or the
unit circle. The analysis is done in terms of (minimal) realizations of the functions
involved. Elements of the theory of matrices that are selfadjoint with respect to
an indefinite inner product enter into the analysis in a natural way. Section 9.2
deals with rational matrix functions that are positive definite on the real line or
on the imaginary axis. The results of Section 9.1 are used to show that such a
function admits a spectral factorization and in terms of a given realization an ex-
plicit formula for the corresponding spectral factor is given. Section 9.3 presents
an analogous result for rational matrix functions that are positive definite on the
unit circle.

9.1 Preliminaries on selfadjoint rational matrix
functions
Let T’ be one of the following two contours in the complex plane: the real line R,

or the imaginary axis iR. A rational m x m matrix function W is called selfadjoint
on I" or Hermitian on T if for each A € ', A not a pole of W, the matrix W ()
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is selfadjoint or, which is the same, Hermitian. By the uniqueness theorem for
analytic functions, a rational matrix function W is selfadjoint on R if and only if

W(A) = W(A)* for all A € C, X not a pole of W. Similarly, W is selfadjoint on iR
if and only if W(\) = W(—=MA)*, X not a pole of W. From these characterizations
it follows that if W is selfadjoint on I" and det W () does not vanish identically,
then W~ is also selfadjoint on T.

This section is concerned with the problem how selfadjointness of a rational
matrix function is reflected in properties of the matrices in a minimal realization of
the function. For proper rational matrix functions this is described in the following

theorem.

Theorem 9.1. Let W(\) = D + C(A,, — A)"'B be a minimal realization of an
m x m rational matriz function. Then the following statements hold:

(i) W is Hermitian on the real line if and only if D = D* and there exists an
n X n matric H such that

HA=A*H, HB=C*, H=H" (9.1)

(ii) W is Hermitian on the imaginary azis if and only if D = D* and there exists
an n X n matrix H such that

HA=—-A*H, HB=C*, H=-H" (9.2)

In both cases (because of the minimality of the realization), the matrix H is
uniquely determined by the matrices in the given realization of W and invertible.

A matrix H such that H = —H* is called skew-Hermitian. For such a matrix
1H is Hermitian.

Proof. We first prove (i). Assume the matrix function W is Hermitian on R, so

the rational matrix functions W (\) and W (\)* coincide. Hence
W(\) = D* + B*(A — A*)~'C*

is also a minimal realization for W. By the state space similarity theorem (The-
orem 8.2) we obtain the existence of a unique (invertible) n x n matrix H such
that

HA=A"H, HB=_C", B*H =C.

Taking adjoints one gets
H*A* = AH, C=B"H", H*B =C".

Comparing these two sets of equations and employing the uniqueness of H, we see
that H = H*. Clearly D = D* as D = W(c0) must be selfadjoint.
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For the converse, suppose D = D* and there exist an n xn matrix H for which
(9.1) holds. From the first equality in (9.1) we see that H(A—A)~! = (A—A*)"1H.
Then, using the second equality in (9.1), one computes

W(\)* = D*+B*(\-A")"'C*= D+ B*(A\-A")"'HB
= D+B*HAN-A)'B=D+CM\-A)"'B=W().

So W is selfadjoint on R.

Next we show that (because of minimality) the identities in (9.1) imply that
H is invertible. Indeed, assume Hx = 0 for some x € C". Then the first equality
in (9.1) yields HAz = 0. Repeating the argument, using induction, we obtain
HAFz =0 for k = 0,1,2,.... Using the two other equalities in (9.1) we see that
CAFx = B*HAFz =0 for k = 0,1,2,.... Since the given realization is minimal,
the pair (C, A) is observable, and hence = 0. Thus H is invertible.

The proof of (ii) can be given using the same type of reasoning as for (i).
On the other hand (ii) also follows directly from (i) by using the transformation

A — —iA. Indeed, put ﬁ//()\) = W(—iA). Since W is assumed to be selfadjoint on
1R, the function W is selfadjoint on R. Moreover, W admits the minimal realization

W) =D+C(A—A)"'B,

where C' =iC and A = iA. By (i), there exists an (invertible) selfadjoint matrix
H such that HA = A*H and HB = C*. Setting H = —iH we derive the desired
equalities in (9.2). O

In the proof of the “if parts” of (i) and (ii), minimality does not play a role.
Thus, if (9.1) holds and D = D*, then W(\) = D + C(A — A)~!B is selfadjoint
on R. Similarly, if D = D* and (9.2) holds, then W is selfadjoint on ¢R.

In the next proposition we consider the case when the rational matrix func-
tion in Theorem 9.1 is biproper, and we describe the effect of the matrices H on
the associate main operator AX = A — BD~!(.

Proposition 9.2. Let W(\) = D + C(\l,, — A)"'B be a realization of an m x m
rational matriz function, and let H be an n X n matriz. Assume D is invertible,
and put AX = A — BD7'C. Then the following statements hold:

(i) If D = D* and (9.1) is satisfied, then HA* = (A*)*H;
(ii) If D = D* and (9.2) is satisfied, then HA* = —(A*)*H.
Proof. Assume D = D* and the identities (9.1). Then
HA* = HA— HBD 'C = A*H - C*D *B*H = (A*)*H,

so (i) holds. Statement (ii) is proved analogously. O



184 Chapter 9. Factorization of positive definite rational matrix functions

Next we analyze how the matrix H appearing in Theorem 9.1 behaves under
a state space similarity transformation on the realization of W.

Theorem 9.3. Fori = 1,2, let W(A\) = D+C;(\, — A;) "1 B; be a minimal realiza-
tion of the rational matriz function W, and let S be the (unique invertible) n x n
matriz such that

SA; = AyS, C1 =048, By = SB;.

Then the following statements hold:

(i) Let W be selfadjoint on the real line. For i = 1,2, write H; for the (unique
invertible) Hermitian n X n matriz such that H;A; = AfH; and H;B; = C}.
Then Hy = S*H,S;

(ii) Let W be selfadjoint on iR. For i = 1,2, write H; for the (unique invertible)
skew-Hermitian n X n matriz such that H;A; = —AfH; and H;B; = C}.
Then Hy = S*H,S.

Proof. We shall only prove (i); statement (ii) can be verified analogously. One
easily checks that S*H»S satisfies (9.1):

S*HySA) = S*HyAxS = S*ASHyS = A1S™H, S,

S*HySBy = S*HyBy = S*C = Cf.

By the uniqueness of H; the assertion (i) follows. |

We conclude this section with a comment on the theory of matrices acting in
an indefinite inner product space. Elements of this theory play an important role
in the study of selfadjoint rational matrix functions. To see the connection, let H
be an invertible Hermitian n x n matrix, and consider on C™ the sesquilinear form

[z, y] = (Hz,y).

If HA = A*H, then [Ax,y] = [z, Ay], and hence A is selfadjoint in the indefinite
inner product [-, -] on C" induced by H. Thus the first part and third identity in
(9.1) imply that A is selfadjoint in an indefinite inner product space. In the sequel
we call A H-selfadjoint if H = H* and HA = A*H. Notice that the third identity
in (9.2) implies that ¢H is Hermitian, and hence the first identity in (9.2) can be
summarized by saying that ¢A is i H-selfadjoint.

In Section 11.2 we review the results from the theory of matrices acting in
an indefinite inner product space insofar as they are useful to us in this and the
next chapters.
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9.2 Spectral factorization

The first factorization result to be presented in this section concerns an important
class of rational matrix functions, namely those which are positive definite on the
contour I" under consideration (again, either R or iR). A rational m x m matrix
function W is called positive definite on I if for each A € I'; A not a pole of W,
the matrix W () is positive definite.

Suppose W is a rational m x m matrix function. A factorization

W(A\) = L(\)*L(\) (9.3)

is called a right spectral factorization with respect to the real line if L and L™! are
rational m X m matrix functions which are analytic on the closed upper half plane
(infinity included). In that case the function L(\)* and its inverse are analytic on
the closed lower half plane (including infinity). Thus a right spectral factorization
with respect to R is a right canonical factorization with respect to the real line
featuring an additional symmetry property between the factors. A factorization
(9.3) is called a left spectral factorization with respect to the real line if L and
L' are rational m x m matrix functions which are analytic on the closed lower
half plane (infinity included), in which case the function L(\)* and its inverse are
analytic on the closed upper half plane including infinity). Such a factorization is
a left canonical factorization with respect to R.
A factorization

W(A) = L(—=A\)*L(\) (9.4)

is called a right spectral factorization with respect to the imaginary axis if L and
L~ are rational m x m matrix functions which are analytic on the closed left half
plane (infinity included). Such a factorization is, in particular, a right canonical
factorization with respect to iR. Analogously, (9.4) is called a left spectral factor-
ization with respect to the imaginary axis if L and L1 are rational m x m matrix
functions which are analytic on the closed right half plane (infinity included).

The factors in a spectral factorization are uniquely determined up to multi-
plication with a constant unitary matrix. More precisely, if W(\) = L(A)*L(}) is
a spectral factorization with respect to the real line, and F is an m X m unitary
matrix, then W(\) = L(A\)*L(\) with L(\) = EL()) is again a spectral factor-
ization of W, and this is all the freedom one has. To see the latter, assume that
W(A) = L(A)*L(\) and W(X) = L(A)*L()\) are right spectral factorizations with
respect to R, then

L)L)t = LN T*L(A)™.

The left-hand side of this identity is an m x m rational matrix function which is
analytic on the closed upper half plane and the right-hand side is analytic on the
closed lower half plane (in both cases the point infinity included). By Liouville’s
theorem neither side depends on A, that is, there exists an m x m matrix E such
that £ = L(A\)L(A)~! and L(A)~*L()\)*. But this implies that E is invertible and
E* = E~'. Hence E is unitary and E = L(\) = EL()\), as desired.
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If (9.4) is a right (respectively, left) spectral factorization of W with respect
to the real line, we refer to L as the right (respectively, left) spectral factor.
Without further explanation a similar terminology will be used in comparable
circumstances.

Note that existence of a spectral factorization implies that W has no poles
or zeros on the given contour and on the contour it is positive definite. The con-
verse also holds: for positive definite rational matrix functions, both left and right
spectral factorizations exist. This will now be proved for the case when W is a
proper rational m X m matrix function. Moreover, explicit formulas for the factors
will be given in terms of a realization of W. First we consider the situation where
W is positive definite on the real line.

Theorem 9.4. Let W(\) = D + C(M,, — A)~'B be a realization of the rational
m X m matriz function W. Suppose A has no real eigenvalues, W is positive
definite on the real line, and W (oo) = D is positive definite too. Further assume
there exists an invertible Hermitian n X n matriz H for which HA = A*H and
HB = C*. Then, with respect to the real line, W admits right and left spectral
factorization. Such factorizations can be obtained in the following way. Let M,
and M_ be the spectral subspaces of A associated with the parts of o(A) lying in
the lower and upper half plane, respectively, and let M_f and M* be the spectral
subspaces of A* associated with the parts of o(A*) lying in the lower and upper
half plane, respectively. Then

C'= M_+ MY,  C'= M+ M~ (9.5)

Write I1y. for the projection of C™ along M_ onto M, II_ for the projection of
C" along My onto M, and introduce

L.(\) = DY?4+DY2C1,(\, - A)"'B, (9.6)
L_(\) = DY24 D V2CmI_(\I, — A)'B. (9.7)

Then

WO) = L) Ly (), W) = L)' L_(V),
are right and left spectral factorizations with respect to the real line, respectively.
These spectral factorizations are uniquely determined by the fact that they have
the value DY/? at infinity.

The conditions of the theorem are satisfied in case W has no poles on the real
line, W () is positive definite for all real A\, and the given (biproper) realization
of W is a minimal one.

Proof. The invertibility of W (A) for real A combined with the fact that A has no
real eigenvalues implies that A* does not have real eigenvalues either (see Theorem
2.4). So the subspaces M, M_, M} and M are well-defined. Let P and P* be



9.2. Spectral factorization 187

the Riesz projections of A, and A*, respectively, with respect to the upper half
plane. From HA = A*H and HA* = (A*)*H one easily computes that

HP = (I —P*)H, HP*=(I-P*)*H.
It follows that the spaces M4, M_, M} and M satisfy
HM, = My, HM_-= M=%, HMI=M ", — HMX= M** (98)

First it will be shown that M, N M* = {0}. Suppose x € My NM*. As M,
is invariant under A, we have Az € M. But then the first identity in (9.8) shows
that (HAz,z) = 0. The space M is invariant under A*. Thus A*z belongs to
M, and the last identity in (9.8) yields (HA*z,x) = 0. Hence

0= (H(A—-A")z,z) = (HBD 'Cz,z) = (D™'Cx,Cx) = | D~2Cx| 2.

As D > 0, it follows that Cz = 0. Thus A*z = (A—BD~1C)x = Az. We conclude
that My N M is invariant under both A and A, and we have A|M+0Mf =

A%y, % - However,
o(Aly, ) C o(Alar) C© {A[SA >0},

(A% |y ) C a(A%[yx) € {A]SA <0}

Thus Aly, < = A%y, qarx implies that My 0 M = {0}.

Proving (9.5) is now done via a dimension argument. Since H is invertible,
the first identity in (9.8) shows that M and M7 have the same dimension. In
particular, dim M, = n/2. Similarly, the last identity in (9.8) yields dim M* =
n/2. Hence the first identity in (9.5) holds. Let II_ be the projection along M,
onto M. The second identity in (9.5) is established in a similar way.

Let TI_ be the projection along My onto M*. Then II_ is a supporting
projection, and by Theorem 3.2 the corresponding factorization is a left canonical
factorization given by

where L_ is given by (9.7), and
K_(\)=DY24+C\—A)"'(I-11_)BD™'/2,
It remains to prove that K_(A\) = L_(\)*. Using (9.7) and (9.1) we have
L-(\)* = DY?+B*(A-A")"'I"C*D"'/?
DYV2 £ C(A\— A)~'H 'II* HBD™/2.

Thus in order to get K_(\) = L_(\)*, it suffices to show that H(I —TI_) = II* H.
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Using the definition of I1_, together with the first and the last identity in
(9.8), we see that (H(I —II_)z, (I —TI_)y) = 0 and (HII_z,II_y) = 0 for all =
and y in C™. Hence for all z, y,

(H(I -1 )z,y) = (HI — )z, 1l_y) = (Hz,II_y),

which yields the desired identity H(I —II_) = II* H.

As for the last statement in the theorem, recall that the factors in a spectral
factorization are uniquely determined up to multiplication with a constant unitary
matrix. This settles the theorem as far as left spectral factorization is concerned.
For right spectral factorizations the reasoning is similar. (]

With minor modifications one proves the following theorem concerning left
and right spectral factorizations with respect to the imaginary axis.

Theorem 9.5. Let W(\) = D + C(M,, — A)~'B be a realization of the rational
m X m matrix function W. Suppose A has no pure imaginary eigenvalues, W
is positive definite on the imaginary axis, and W(oo) = D is positive definite
too. Further assume there exists an invertible skew-Hermitian n X n matriz H for
which HA = —A*H and HB = C*. Then, with respect to the imaginary axis, W
admits Tight and left spectral factorization. Such factorizations can be obtained in
the following way. Let My and M_ be the spectral subspaces of A associated with
the parts of o(A) lying in the right and left half plane, respectively, and let M}
and M be the spectral subspaces of A* associated with the parts of o(A*) lying
in the right and left half plane, respectively. Then

Write Iy for the projection of C™ along M_ onto M, II_ for the projection of
C™ along My onto M, and introduce

L.(\) = DY?4 D YV2Cm, (M, — A)~'B,
L_(\) = DY24Dp'V2cm_(AL, — A)'B.

Then

W) = Ly(-N LA, W) = L (=X)*L_(V),
are Tight and left spectral factorizations with respect to the imaginary axis, respec-
tively. These spectral factorizations are uniquely determined by the fact that they
have the value DY/? at infinity.

The conditions of the theorem are satisfied in case W has no poles on the
imaginary axis, W(\) is positive definite for A € iR, and the given (biproper)
realization of W is a minimal one. In terms of the theory of spaces with an indefinite
metric (see the appendix at the end of this chapter), the identities in (9.8) say
that the spectral subspaces M, M_, M_f and M are Lagrangian subspaces in
the indefinite inner product induced by H.
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9.3 Positive definite functions on the unit circle

In this section we shall discuss rational matrix functions that take positive definite
values on the unit circle T and their spectral factorizations. This class of functions
is more complicated than the ones discussed in the previous sections, the main
reason being that infinity is not on the contour, and so the value at infinity is not
necessarily a selfadjoint matrix.

A rational m x m matrix function W is called selfadjoint on the unit circle
or Hermitian on the unit circle if for each A € T, X\ not a pole of W, the matrix
W (A) is selfadjoint or, which is the same, Hermitian. By the uniqueness theorem
for analytic functions, a rational matrix function W is selfadjoint on T if and
only if W(\) = W(A~1)*, for all A € C, X not a pole of W. It follows that if W
is selfadjoint on T and det W (\) does not vanish identically, then W~ is also
selfadjoint on T.

We first discuss how selfadjointness of W is reflected in properties of the
matrices in a minimal realization of the function. For proper rational matrix func-
tions this is described in the following theorem, a counterpart of Theorem 9.1 for
the unit circle.

Theorem 9.6. Let W(\) = D + C(M,, — A)~'B be a minimal realization of an
m X m rational matriz function. Then W is Hermitian on T if and only if A is
invertible, D* = D — CA™'B, and there exists an n x n matriz H such that

HA=A*H,  HB=A*C*, H=-H" (9.9)

The matriz H is uniquely determined by the matrices in the given realization of
W and invertible.

Recall that A=* stands for (4*)~! or, which amounts to the same, (A~1)*.
The first part of (9.9) means that A is ¢H-unitary, that is, A is unitary with
respect to the indefinite inner product induced by the selfadjoint matrix iH (cf.,
Chapter 11 and Section 17.1). The first part of (9.9) can be rewritten as A*HA =
H. Note that, given the invertibility of H, the identity A*HA = H implies the
invertibility of A.

Proof. First observe that if W is Hermitian on T, then W has no pole at 0, as
W(o0) = D and W(0) = W(oc0)*. Because of minimality, this shows that A is
invertible and D* = D — CA~!'B. But then

WA = D*+B*(\ ' —A%)Tier
= D*—B'A*(A-AT)IAC"
= D" —B*ATC* —B*ATT(A—AT*)TTATICR

Now the rational matrix functions W(\) and W (A~!)* coincide. Thus, again by
the state space similarity theorem (Theorem 8.2), there exists a unique invertible
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matrix H such that
HA=A""H, HB=A*C", —B*A™*H =C.

Taking adjoints and employing the uniqueness of H, one finds H = —H*.

This settles the “only if part” of the theorem; the “if part” is obtained via
a straightforward computation (not using minimality). Because of minimality, the
identities in (9.9) imply that H is invertible. The argument is similar to that given
in the third paragraph of the proof of Theorem 9.1. O

Next, we consider the associate main operator.

Proposition 9.7. Let W(X\) = D + C(\,, — A)~'B be a realization of an m x m
rational matriz function and assume D is invertible. Suppose A is invertible too,
D* = D—CA™'B, and there exists an n x n matriz H such that (9.9) holds. Then
A* = A— BD71C is invertible and HA* = (A*)"*H.

Proof. From the invertibility of A and D, and the assumption D* = D — CA~'B,
we get

A B I 0 A 0 |[1I A'B]
¢ D] |catr1]|lo D ]lo I |
[ 1 BD! A< 0 [ I 0]
Colo 1 o D||DC 1]

As both A and D* are invertible, A* must be invertible too. Furthermore, by
(9.9), we have

(AX)*HA* = (A*-C*D*B*)H(A—- BD™'C)
= H-C*D *B*HA—- A*HBD 'C+C*D *B*HBD'C
= H+C*D*(D-D*+B*HB)D™'C
= H+C*D*(CA™'B+ B*A~*C*)D™'C.

However, as D — D* = CA™!'B, we have B*A~*C* = —CA™'B. Therefore,
(A*)*HA* = H. O
Next we analyze how the matrix H appearing in Theorem 9.6 behaves under
a state space similarity transformation on the realization of W. The proof of the
next theorem is analogous to the proof of Theorem 9.3.
Theorem 9.8. Fori=1,2, let W(X\) = D+ C;(M,, — A;) "' B; be minimal realiza-
tions of the rational m x m matriz function W, and let S be the (unique invertible)
n X n matriz such that

SA; = AsS, C1 = (018, By = SB;.
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Suppose W is Hermitian on the unit circle. For i = 1,2, write H; for the (unique
invertible) skew-Hermitian n X n matriz such that AXH;A; = H; and H;B; =
A;*Cl* Then H1 = S*HQS.

The above results can also be obtained by reduction to the real line results
of Section 9.1. To illustrate this, let W(\) = D + C(\l,, — A)~!B be a minimal
realization of an m X m rational matrix function, and let a € T be a regular point
for A, that is, « is not an eigenvalue of A. Consider the Mobius transformation

AN = a(X—i) (A +14)7 L (9.10)

Note that ¢ maps the upper half plane in a one-to-one way onto the open unit disc
D, and the extended real line is mapped in a one-to-one way onto the unit circle
T, with ¢(00) = a. Put W(A) = W(¢p(A)). Then W is again an m x m rational
matrix function and (see Section 3.6 in [20]) the function W admits the realization
W(A) =D + C(M,, — A)~'B, where

A=(ia+id)(a—A) "= ¢ Y4, B=(a—A)"'B,
C =2iaCla—A)"", D=W(a)=D+Cla—A)"'B.

Moreover this realization is again minimal. Now assume that W is selfadjoint on
T, then W is selfadjoint on R and by Theorem 9.1 there exists an invertible n x n
matrix H such that

HA=A*H, HB=C*,  H=H"
Observe that
HA=A"H < H(ia+iA)(a—A)" = (a—A") " (—ia—iA")H
— (a—A"H(ioa+iA) = (—ia —iA*)H(a — A)
— iH+iaHA—iaA*H —iA*HA
= —iH +iaHA—iaA*H +iA*HA
— 2H=2iA"HA.

We already know (see the first paragraph of the proof of Theorem 9.6) that the
operator A is invertible, and thus we may conclude that HA = A~*H. Using this
and the invertibility of H, one gets

HB = H(a—A) 'B=(aH '—AH ")'B
= (@aH'—-H'A™)"'B=(a—A*)"'HB

= (@A*—1I,) 'A*HB = —a(a — A*) ' A*HB.
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From the definition of C' we know that C* = —2ia(a@ — A*)~1C*, and hence
HB =C* <= A"HB =2iC"

Now define H by 2iH = H. Then H has the properties listed in (9.9).
In a similar way it can be shown that Proposition 9.7 and Theorem 9.8 follow
from the analogous results in Section 9.1.

We now turn to spectral factorization. Suppose W is a rational m x m matrix
function. A factorization -
W(A) = LA™Y L(N) (9.11)

is called a right spectral factorization with respect to the unit circle if L and L~!
are rational matrix functions which are analytic on the closure of the (open) unit
disc D. In that case the function L(A~!)* and its inverse are analytic on the closure
of Dext, the exterior domain of the unit circle in C (infinity included). Thus, in
particular, a right spectral factorization with respect to the unit circle is a right
canonical factorization with respect to T. Analogously, (9.11) is called a left spectral
factorization with respect to the unit circle if L and L~! are analytic on the closure
of Dext (infinity included), in which case the function L(A~!)* and its inverse are
analytic on the closed unit disc. Such a factorization is a left canonical factorization
with respect to T. Observe that the existence of a spectral factorization implies
that W has positive definite values on the unit circle. As we will see in the next
theorem, the converse is also true.

A rational m x m matrix function W is called positive definite on the unit
circle if for each A € T, A not a pole of W, the matrix W () is positive definite.
Left and right spectral factorization of functions which are positive definite on
the unit circle is slightly more complicated than spectral factorization of functions
which are positive definite on either the real line or the imaginary axis. This is
mainly caused by the fact that the value at infinity generally is no longer positive
definite.

Theorem 9.9. Let W(A\) = D + C(A\,, — A)"'B be a realization of a rational
m X m matriz function such that W () is positive definite for |\| = 1. Suppose
D is invertible, A is invertible, and A has no eigenvalues on the unit circle. Fur-
thermore, assume there exists an invertible skew-Hermitian n X n matrix H such
that HA = A=*H and HB = A~*C*. Then, with respect to the unit circle, W
admits right and left spectral factorization. Such factorizations can be obtained in
the following way. Let My and M_ be the spectral subspaces of A associated with
the parts of o(A) lying in Dexy and D, respectively, and let MY and M be the
spectral subspaces of A* associated with the parts of o(A*) lying in Dexy and D,
respectively. Then

C'= M _+ M},  C'= M+ M (9.12)
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Write I11. for the projection of C™ along M_ onto M, II_ for the projection of C™
along My onto M*. Then Dy = D —CA™Y(I -14{)B and D_ = D —CA~(I -
I1_)B are selfadjoint. Further there are unique rational matriz functions Ly and
L_ such that

W) = LeA LN, W) = Lo(A)L_(V)

are right and left spectral factorizations with respect to the unit circle, respectively,
and such that L4 (o0) = D1+/2, L_(c0) = DY?. These functions are given by

L.(\) = DY*+DY?’D7'Cll, (M, — A)'B, (9.13)
L_(\) = DY?4+DY’D'c_(\I, - A)'B. (9.14)

The conditions of the theorem are satisfied in case W has no poles on the
unit circle, takes positive definite values there, and the given (biproper) realization
of W is a minimal one.

Proof. Our hypotheses imply that A and A* do not have eigenvalues on the unit
circle. Let P and P* be the Riesz projections of A and A, respectively, cor-
responding to the eigenvalues in Dgyy. As in the proof of Theorem 9.4, one first
shows that HP = (I — P*)H and HP* = (I — P*)*H, using A*HA = H and
(A*)*HA* = H. Hence for the subspaces My, M_, M and M we again have
the identities

HM, =M}, HM_=M*  HM;=M* — HM*=M*"

Now introduce ¢(\) = —i(A —i)(A+4)71 (ie., (9.10) with o = —i). Observe
that ¢=! = ¢, and ¢ maps the circle to the real line, D to the open upper half
plane and Dey; to the open lower half plane. Consider V(X)) = W (p(A)). Then
V() is positive definite on the real line and

V) =W(=i)+C(A—A)"'B

with A = (I +iA)(—A —iI)~'. Since W (—i) is invertible, we can use Proposition
3.4 in [20] to show that the associate main matrix in the above realization of V' is
given by AX = (I 4+ iA*)(—A* —iI)~!. Using A*"HA = H and (A*)*HA* = H
one computes that Aand A are H -selfadjoint. The spectral subspaces of A with
respect to the upper and lower half planes are M_ and M, respectively, while
the spectral subspaces of A% with respect to the upper and lower half planes are
M and M, respectively. From the proof of Theorem 9.4, it now follows that
(9.12) holds. So the projections IT; and II_ are well-defined, and they are support-
ing projections giving rise to right and left canonical factorizations, respectively.
Moreover H(I — 1) =1I H, and H(I —1I_) =II* H.
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A canonical factorization corresponding to Il is given by W = W_W_. where
W_(\) = D+CW\—-A)"YI-T1,)B,
Wi(\) = I+D'CI (\—A)"'B.

For later use, recall that the factors W_ and W, in a canonical factorization
are uniquely determined by their values at infinity. It remains to show that from
Li(\) = DY?W,()) it follows that W_(A)D;"? = L (A~1)*. We shall in fact
prove that W(\) = Wi (A~H*D, W, (N).

Observe that D, = W_(0). To see that D is selfadjoint, just carry out the
calculation

D} = D*-B*(I-MY)A*C*=D*— B*A™*C* + B*II}A~*C*

= D-CH 'AM'HB=D-CA'H 'II' HB

= D-CA'(I-T1,)B

= D,.
Then write W(A\) = K(A\) Dy Wi () with

K(\)= DD;'+C(A—A)~'(I —114)BD".
Now compute W, (A71)*:
WiA™h* = I+B*(\ -4 ' CcrD

= I-B*AII'.C*D™*
—B*A™*(A— AT*)T'ATIILCT D

(D* — B*A™*II}, C*)D™*
+CA—A)'AH ' HA'BD ™.

We claim that
(D* — B*AT*II.C*)D~* = DD;', (9.15)
AH'IIHA'BD™* = (I-114)BD;". (9.16)

Indeed, for (9.15), observe that D is invertible because W (0) = D* is invertible,
and

D*= D, W,(0)=D,.(I - D 'Cll, A 'B).
So D;'D* = D™Y(D — CIIL A~' B). Taking adjoints yields (9.15).
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To verify (9.16), compute (I—H+)BD;1D*, using what we just have proved:

(I -14)BD{'D* = (I-1.)B(I-D 'CI;A™'B)

)
I-T,)(A-BD 'ClI,)A™'B
+)(
I ){A(I —TI) + AT, }JA™'B.

=

( _
( _
(I - A— (A=A )AT'B
(-
Now ImIIy is A*-invariant, so (I — II;)A*II+ = 0. Hence
(I -1,)BDyD* = (I-T,)A(I-T1I,)A™'B
= AU -T,)A'B
= AH 'II'HA™'B,

as KerII is A-invariant. Thus (9.16) holds.
Now using (9.15) and (9.16) we see

Wi(A™Y)* = DD+ C(A— A)~'(I —11)BD;" = K(\).

As W(\) = Wi (A" H)* DLW, (\) we see that D, must be positive definite. Since
the factors W, and W_ in a canonical factorization are uniquely determined by
their values at infinity, it follows that the factor Ly in a right spectral factorization
is also uniquely determined by its value at infinity. Thus the part of the theorem
concerned with right spectral factorization follows. For the other part dealing with
left spectral factorization the reasoning is similar. O

Notes

The results of Section 9.1 can be found in several sources, e.g., [26] and [45]. The
factorization results of Sections 9.2 and 9.3 are based on [119] (see also Chapter 1
in [120]). Spectral factorizations play an important role in mathematical systems
theory, see e.g., [4]. In [4], [41] and [147] spectral factorizations of a selfadjoint
rational matrix function W are studied in state space form, starting from different
representations of W.

Part IV of [20] is devoted to stability of minimal factorizations of rational
matrix functions. The issue of stability of factorizations within the class of spectral
factorizations has also been studied. This requires the analysis of perturbations of
H-selfadjoint matrices and stability of their invariant Lagrangian subspaces. For
instance, from Theorem 14.12 in [20] it follows straightforwardly that canonical
factorizations are Lipschitz stable under small perturbations of the matrices in
the realization. Restricting attention to spectral factorizations of positive definite
rational matrix functions, and to perturbations of the matrices in the realizations
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that make the perturbed rational matrix function also positive definite, it still
holds that spectral factorization is Lipschitz stable in this sense. For these and
related results we refer to [123], see also [127].



Chapter 10

Pseudo-spectral factorizations
of selfadjoint rational matrix
functions

In this chapter we consider rational matrix functions on a contour having values
that are selfadjoint matrices, but not necessarily positive definite ones. Whereas
in the previous chapter we studied spectral factorization, in the present chapter
the focus will be on functions that have poles or zeros on the contour, and so we
will consider pseudo-spectral factorization here.

This chapter consists of two sections. Section 10.1 develops the notion of
pseudo-spectral factorization for nonnegative rational matrix functions. The con-
tours considered are the real line, the imaginary axis and the unit circle. In Sec-
tion 10.2 the main result of the first section is generalized to the case of arbitrary
selfadjoint rational matrix functions with positive definite value at infinity.

10.1 Nonnegative rational matrix functions

In this section we consider rational matrix functions W having nonnegative values
on either the real line, the imaginary axis or the unit circle. The section may be
viewed as a continuation of the discussion in Chapter 9. However, in contrast to
the situation there, in this section we consider cases where W may have poles or
zeros on the contour.

A rational m X m matrix function W is called nonnegative on the real line
if for each A € R, X not a pole of W, the matrix W () is nonnegative. Without
further explanation, the analogous terminology will be used for rational matrix
functions having nonnegative values on the imaginary axis or on the unit circle,
respectively.
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As in Section 9.2 we shall start by considering the case of nonnegative rational
matrix functions W on the real line, and continue with the situation where W is
nonnegative on the imaginary axis. However, it is the latter case that we shall
use frequently in the subsequent chapters. Therefore only for this case shall we
provide a detailed proof. The real line situation can then be dealt with by using
the Mobius transformation A — —iA. The section is concluded by presenting the
results for the case of the unit circle. Again, the proof may be obtained by using
a Mobius transformation (cf., the proofs of Theorems 9.4 and 9.9).

A factorization

W(A) = L\)*L(\) (10.1)

is called a right pseudo-spectral factorization with respect to the real line if L has
no poles or zeros in the open upper half plane and the factorization is locally
minimal at each point of the real line. Analogously, (10.1) is called a left pseudo-
spectral factorization with respect to the real line if L has no poles or zeros in the
open lower half plane and the factorization is locally minimal at each point of
the real line. Such right or left pseudo-spectral factorizations are pseudo-canonical
factorizations with respect to iR in the sense of Section 8.3.

Although a nonnegative rational matrix function generally does not allow for
a left or right spectral factorization, it does admit left and right pseudo-spectral
factorization.

Theorem 10.1. Let W(A\) = D + C(A,, — A)~'B be a minimal realization of a
rational m X m matriz function which is nonnegative on the real line, and assume
D is positive definite. Then, with respect to the real line, W admiats left and right
pseudo-spectral factorization. Such factorizations can be obtained in the following
way. Let H be the (unique invertible) Hermitian n X n matric with HA = A*H
and HB = C*. Then there are unique A-invariant subspaces My and M_, and
unique A* -invariant subspaces M7 and M, such that

(i) My contains the spectral subspace of A associated with the part of o(A) lying
in the open lower half plane, and o(Alnr,) C {A | IA <0},

(ii) M_ contains the spectral subspace of A associated with the part of o(A) lying
in the open upper half plane, and o(Ala_) C {\| S\ > 0},

(iil) M contains the spectral subspace of A associated with the part of o(A*)
lying in the open lower half plane, and o(A* |Mf) c{N\| SA <0},

(iv) M* contains the spectral subspace of A* associated with the part of o(A™)

lying in the open upper half plane, and o(A*|yx) C{A|IA > 0},
(v) HMy] =M+, HM_]=M*, HM=M" HM*]=M*
The subspaces in question also satisfy the matching conditions

C"= M_+ M7, C" = My+ M*. (10.2)
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Let IL be the projection along M_ onto MY, let II_ be the projection along M
onto M, and introduce

L.(\) = DY?4 D '2C1, (A, — A)~'B, (10.3)
L_(\) = DY24 D V2CI_(\, — A)~'B. (10.4)

Then

W) = LoV LN, W) = L) L-(N),
are right and left pseudo-spectral factorizations with respect to the real line, respec-
tively. These pseudo-spectral factorizations are uniquely determined by the fact that
they have the value DY/? at infinity.

All possible right pseudo-spectral factors can be obtained from L, as given
in (10.3) by multiplying on the left with a unitary matrix, and likewise, all possible
left pseudo-spectral factors are obtained from L_ as given in (10.4) by multipli-
cation on the left with a unitary matrix. Indeed, suppose W(A) = L_(X)*L_())

is another left pseudo-spectral factorization of W. Put E(A) = L_(A\)"*L_(\)* =
L_(A)L_(M\)"!. Then E()) is analytic outside the real line, and on the real line it
is unitary, except for possible poles. So for all values of A concerned, the norm of
E()) is 1. But then E cannot have poles. Indeed, in the vicinity of a pole the norm
of E(\) cannot be bounded (cf., [134], Chapter 10, page 211). It follows that E is
analytic on the whole complex plane. But then it must be a constant function by
Liouville’s theorem. As it is unitary for real A\, we conclude that the sole value of
FE is a unitary matrix.

Let W be a rational m x m, and suppose W is nonnegative on the real line.
A factorization -
W(A) = L(=\)*L()\)

is called a right pseudo-spectral factorization with respect to the imaginary axis if
L has no poles or zeros in the open left half plane and the factorization is locally
minimal at each point of the imaginary axis. Left pseudo-spectral factorizations
with respect to the imaginary axis are defined by replacing the upper half plane
by the lower half plane.

Theorem 10.2. Let W(A) = D + C(M,, — A)~'B be a minimal realization of
an m X m rational matrix function which is nonnegative on the imaginary axis,
and assume D is positive definite. Put AX = A — BD~'C. Then, with respect
to the imaginary axis, W admits left and right pseudo-spectral factorization. Such
factorizations can be obtained in the following way. Let H be the (unique invertible)
skew-Hermitian n X n matriz with HA = —A*H and HB = C*. Then there are
unique A-invariant subspaces My and M_, and unique A*-invariant subspaces
MZ and M, such that

(i) My contains the spectral subspace of A associated with the part of o(A) lying
in the open right half plane, and o(A|ar,) C {A | RX >0},
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(ii) M_ contains the spectral subspace of A associated with the part of o(A) lying
in the open left half plane, and o(Alp_) C {A| R <0},

(iil) M contains the spectral subspace of A associated with the part of o(A*)
lying in the open right half plane, and o(A* |M+x) C{A|RX>0},,

(iv) M contains the spectral subspace of A* associated with the part of o(AX)
lying in the open left half plane, and o(A*|yx) C {A| RA < 0},

(v) HMy)=ME, HM_]=M*, HM=M" HM*]=M"
The subspaces in question also satisfy the matching conditions

Let TL be the projection of C™ along M_ onto MY, let II_ be the projection of
C™ along My onto M, and define Ly and L_ by (10.3) and (10.4), that is

Ly(\) = DY?4 D V201, (M, — A)7'B,
L_(\) = DY24D7'V2Cm_(AI, — A)7'B.
Then B _
W) =L (=A)"Li(A),  W(A)=L_(=N)"L_(}), (10.5)

are right and left pseudo-spectral factorizations with respect to the imaginary axis,

respectively. These pseudo-spectral factorizations are the unique ones for which
L, (c0) = DY? and L_(c0) = D'/2.

As was noted before, Theorem 10.1 can be derived from Theorem 10.2 via the
transformation A — —iA. Conversely, Theorem 10.2 obtained from Theorem 10.1
by the transformation A — .

Before we prove Theorem 10.2 we need some preparations concerning the
spectral properties of nonnegative rational matrix functions. First we discuss the
partial pole-multiplicities and partial zero-multiplicities of W. These notions have
been defined in Sections 8.2 and 8.1 of [20], respectively. We start with a minimal
realization

W) =D+C(\—A)"'B. (10.6)

Assume that W is biproper, i.e., D is invertible. Then the eigenvalues of A coincide
with the poles of W and the eigenvalues of A* coincide with the zeros of W. More
precisely, the partial multiplicities of A as an eigenvalue of A coincide with the
partial pole-multiplicities of A as a pole of W, and the multiplicities of A as an
eigenvalue of A* coincide with the partial zero-multiplicities of A as a zero of W
(cf., [20], Section 8.4, in particular Proposition 8.23).

We also need the connection between the Jordan chains of A at an eigen-
value \g and the co-pole functions of W at A\¢ described in Proposition 8.3. For
a nonnegative rational matrix function, we have the following addition to that
proposition.
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Proposition 10.3. Let W(\) = D + C(\I, — A)~'B be a minimal realization for
a rational m X m matriz function which is selfadjoint on the imaginary axis, and
let H be the (unique) invertible skew-Hermitian n X n matriz such that

HA=—-A*H, HB=C"

Let \g € iR be an eigenvalue of A, let xo,...,zx—1 be a Jordan chain for A at
Ao, and let  be a co-pole function of W at Ao corresponding to the Jordan chain

x0,...,Tk—1. Then the function (W(X)p(N), o(=N)) has a zero of order at least k
at N\ and its Taylor expansion at Ay has the following form:

W)@V, o(=A)) = (=1)(wo, Hrp—1)(A = Ao)* + -
o (=DM, Hop ) (A — M) 4+ hooot.
where h.o.t. stands for higher order terms.

Proof. The fact that ¢ is a co-pole function of W at Ag implies that W (X)p(A) is
analytic at Ag. This together with the fact that ¢ has a zero of order at least k at
Ao shows that the function (W (X\)p(X), o(—\)) has a zero of order at least k at A
too. The property that ¢ is a co-pole function of W at Ao corresponding to the

Jordan chain xy, ..., z;—1 means that

2= P(A=X)"7'Bp, j=0,... k-1 (10.7)
v=k

(where the sum in the right-hand side of the identity is actually finite so that there
is no convergence issue). Here Py is the Riesz projection of A corresponding to
the eigenvalue Ao, and ¢, is the coefficient of (A — Ag)” in the Taylor expansion
of ¢ at Ag. We use this connection to compute (Hz;,xx—1). The fact that A\ is
in iR yields HPy = P{H. Indeed, since HAH~! = —A*, we have that HPH !
is the Riesz projection of —A* for the eigenvalue \g. Thus, using Proposition
1.2.5 in [51], we get HPoH ™' = P(—=A*;{\o}) = P(A*;{-Xo}) = P(A*;{\o}) =
P(A;{\o})* = P§. Also, note that the vectors zo,...,xr—1 belong to Im Py. In
particular, Pyxg—1 = xx—1. Now use (10.7) and the identities HA = —A*H and
HB = C*. This gives, fort =0,...,k—1,
(Hxi,xk_ﬁ = Z <HP0(A — /\o)y_z_lB(py,.%'k_1>

v=~k
oo

= Y (H(A=X0)"""'Byy, Pux_1)
v=k

= D (DTN, CA = X))
v=k
k41 )

= > ()" e, Capva).

v=k
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From the final paragraph of Section 8.1 we know that the vector Cxy_, 11 is given
by Cxi_yt1 = W@)k—rti, where (We); is the coefficient of (A — \)? in the
Taylor expansion of W (A)p(A) at Ag. So

k+i

(Hrjap-1) = > (-1 Hou,(We)e—pys),  i=0,....k—1.  (10.8)
v=~k

On the other hand we have

o] L
W e(-2) = 3 (S0 W)= M) (109)

=k v=k

Comparing formulas (10.8) and (10.9), we see that for ¢ = 0,...,k — 1 the co-
efficient of (A — \g)¥*? in the Taylor expansion of W(A\)p(\) at Ag is given by
(—1)"*Ywy_1, Hz;). Now note that

(Hrixp—1) = (H(A—=X0)" " lap_1,25-1)
_ (_1)k—1—i<ka71’ (A _ Ao)k_l_ixk,ﬁ
= (D" Hapon, ) = (1) (@1, Ha).

We conclude that (—1)*Y(z)._1, Ha;) = (—1)*(Hx;,x_1), which completes the
proof. O

Specializing to the case when W is nonnegative on iR we obtain the following
result.

Proposition 10.4. Let W(\) = D+ C(A\,, — A)~' B be a minimal realization for a
rational m X m matriz function which is nonnegative on iR. Assume D is positive
definite, and let H be the (unique invertible) skew-Hermitian n X n matriz such
that HA = —A*H and HB = C*. Then the partial multiplicities corresponding to
pure imaginary eigenvalues of A and A* are all even, the sign characteristic of
(1A, iH) consists of the integers +1 only, and the sign characteristic of the pair
(1A*,iH) consists of the integers —1 only.

For the definition of the notion of sign characteristic the reader is referred to
Section 11.2 below.

Proof. Let us first prove the proposition for the matrix A. Let Ao = iug be a pure
imaginary eigenvalue of A, and let zg, ..., x,_1 be a maximal Jordan chain for A
at A\o. Then zg, —izy, (—i)%wa, ..., (—i)* 'ox_1 is a Jordan chain of iA for its
eigenvalue — . In fact, all Jordan chains of i A for —po can be obtained in this way.
Choose a Jordan basis for A such that relative to it the pair (¢4, ¢H) is in canonical
form (see Section 11.2). This means, in particular, that if g, ..., zx—1 is a maximal
Jordan chain of A for Ao, which is part of this basis, then (iHwzg, (—i)* tz_;) =
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i*(Hxo,x1_1) is either +1 or —1. The sequence of +1’s and —1’s, obtained in this
manner, is the sign characteristic of the pair (i4,iH).
Let xq,...,xx—1 be as in the previous paragraph, and let

e(A) = (A - )\O)k@k + (A= /\0)k+1<Pk+1 + -

be a corresponding co-pole function for W at Ag. From Proposition 10.3 we know
that on a neighborhood of \g

(WD), 9(=X)) = (A = Xo)"h(N),

where the scalar function h is analytic at Ao and h(X\g) = (=1)*(Hzo,zx_1).
Consider the pure imaginary A = iy in this neighborhood. Rewriting the expression
above in terms of p — o, and using the fact that W is nonnegative, one sees that
k is even and (—4)*(Hzg,r5—1) > 0. This proves that the partial multiplicities
corresponding to pure imaginary eigenvalues of A are even, and that the sign
characteristic of the pair (iA,iH) consists of +1’s only.

To prove the part of the proposition concerning A*, note that the function
W)=t =D"1-D71C(A\—A*)"1BD~! is nonnegative on iR too. Moreover, for
this realization we have (—H)A* = —(AX)*(—H) and (—H)BD~! = (-D~'C)*.
So, the corresponding indefinite inner product is given by —H rather than H. The
desired result now follows by basically repeating the argument given above. 0O

We now have all the equipment necessary for the proof of Theorem 10.2.

Proof of Theorem 10.2. Based on Proposition 10.4 the existence and uniqueness
of A-invariant subspaces M., M_ and A*-invariant subspaces M, M such that
(i), (ii) and (iii) hold follow from Theorem 11.5 in Section 11.2 below.

To prove the first equality in (10.2) one establishes My N M>* C KerC as in
the proof of Theorem 9.4: use (9.2) instead of (9.1). Hence M N M is invariant for
both A and A*. However, as the realization is minimal, an A-invariant subspace
contained in Ker C' must be the zero space. Thus My N M* = {0}. To show
C" = M.+ M* it remains to note that dim M, = dim M* = n/2. In a similar
manner one gets C" = M_+ M.

Denote by II; the projection along M_ onto M, then II; is a supporting
projection, and by Theorem 8.5 the factorization

W(A) = K(A) L1 (N),
with Ly given by (10.3) and
K(\) = DY?24+C(\—A)"Y(I —11.)BD™/?,

is minimal. Moreover, L has no poles in the open left half plane because 1, A =
H+AH+ . So

Li(\) = DY? 4+ DY2CII (A — I AIL, )11, B.
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Also
L7'(\) = D7V2 — 0TI (A — Ty A1, ) "' BD V2,

thus L4 has no zeros in the open left half plane. Finally, K'(\) = L4 (—\)*. Indeed,
L+(—)\)* _ D1/2 o B*()\ + A*)—lniC*D—l/Q
DY2 4 O(\— A)"'H I HBD /2.

As H[KerIl;] = (Ker Iy )+ and H[ImTI,] = (Im I, )+, we have H (Il )*H =
I —1I,. But then the factorization corresponding to II is a right pseudo-spectral
factorization. One proves in a similar way that II_ gives rise to a left pseudo-
spectral factorization. (|

Next, we introduce the notion of left and right pseudo-spectral factoriza-
tions with respect to the unit circle, Let W be a rational matrix function having
nonnegative values on T. A factorization

W(A) = LAY L(N)

is called a right pseudo-spectral factorization with respect to the unit circle if L has
no poles or zeros in the open unit disc and the factorization is locally minimal at
each point of the unit circle. Left pseudo-spectral factorizations with respect to the
unit circle are defined by replacing the open unit disc D by Deys.

In dealing with pseudo-spectral factorizations with respect to the unit circle,
we discuss only a restricted class of rational matrix functions that are nonnegative
on the unit circle, namely those which are biproper. Because of symmetry, this
forces the function to have an invertible value at zero too. The restriction is induced
by our methods, rather than by the problem itself.

The following theorem can be obtained from using an appropriate Mobius
transformation (cf., the proof of Theorem 9.9).

Theorem 10.5. Let W(\) = D + C(M,, — A)~1B be a minimal realization of a
rational m X m matriz function which is nonnegative on the unit circle, and as-
sume D and A are invertible. Then, with respect to the unit circle, W admits left
and right pseudo-spectral factorization. Such factorizations can be obtained in the
following way. Let H be the (unique invertible) skew-Hermitian n X n matriz satis-
fying A*HA = H and A*HB = C*. Then there are unique A-invariant subspaces
My, M_ and unique A*-invariant subspaces M_f , M, such that

(i) My contains the spectral subspace of A associated with the part of o(A) lying
in the open exterior of the unit disc, and o(Aln,) C{N||A| > 1},

(il) M_ contains the spectral subspace of A associated with the part of o(A) lying
in the open unit disc, and o(Alp_) C{N| [N < 1},

(iil) M contains the spectral subspace of A associated with the part of o(A*)
lying in the open exterior of the unit disc, and o(A* |M+x) C{A| | > 1},
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(iv) M contains the spectral subspace of A* associated with the part of o(AX)
lying in the open unit disc, and U(AX|M_X) c{M] N <1},
(v) HMy] =M+, H[M_|=M* H[M]=M"*, H[M]=M*"*
The subspaces in question also satisfy (10.2), i.e.,
C'"= M,+ M*, C"= M_+ MY.

Let IL be the projection of C™ along M_ onto MY, and let IL_ be the projection
of C"™ along My onto M, and define L, and L_ by (9.13) and (9.14), so

L.(\) = DY?*+DY?’D7'Cll, (M, — A)'B,
L_(\) = DY?4DY*D-1CT_(\, — A)~'B,

where Dy = D — CA=Y(I —=T1;)B and D_ = D — CA=Y(I —TI_)B. Then
W) = Lo Ly(N, W) =L (A ) Lo(\),

are right and left pseudo-spectral factorizations with respect to the unit circle,
respectively. The functions Ly and L_ are the unique right and left pseudo-spectral

factors, respectively, such that L1 (c0) = Di/2 and L_(o0) = DY2.

10.2 Selfadjoint rational matrix functions and further
generalizations

The main result of Section 10.1 will be generalized here to the case of an arbitrary
selfadjoint rational matrix function with positive definite value at infinity. We start
with the case of selfadjoint functions on the real line.

Theorem 10.6. Let W (\) = D + C(\I,, — A)~1B be a minimal realization of an
m X m rational matriz function which is selfadjoint on the real line, and assume
D is positive definite. Then, with respect to the real line, W admits right and left
pseudo-canonical factorization. Such factorizations can be obtained in the following
way. Let H be the (unique invertible) Hermitian nxn matriz such that HA = A*H
and HB = C*. Then there exist A-invariant subspaces My and M_, and A*-
invariant subspaces MY and M* such that

(i) My contains the spectral subspace of A associated with the part of o(A) lying
in the open lower half plane, and o(Alnr,) C {A | IA < 0},

(il) M_ contains the spectral subspace of A associated with the part of o(A) lying
in the open upper half plane, and o(Alp_) C {\| S\ > 0},

(iil) MZ contains the spectral subspace of A associated with the part of o(A*)
lying in the open lower half plane, and o(A* |MJ§) c{A|SA <0},
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(iv) M contains the spectral subspace of A* associated with the part of o(AX)
lying in the open upper half plane, and o(A* |M_x) C {A]| S\ >0},

(v) My and M_ are mazimal H-nonnegative, and M} and M* are mazimal
H -nonpositive.

The subspaces in question also satisfy

C'= M+ M*, C"= M_+ M.

Let I be the projection of |[BC™ onto M along M_, and let IL_ be the projection
of C™ onto M* along M., and introduce

L_(\) = DY24+C(\, —A)~Y(I-1,)BD™ /2 (10.10)
L.(\) = DY?4+ D '2C1, (), — A)~'B, (10.11)
K{(\) = DY?4+C(\,—-A)~'(I-1_)BD'/?, (10.12)
K_(\) = DY?4+ D Y2CU_(\, —A)~'B. (10.13)
Then
W) =L_-(NLi(N), W) =K (A)K_(N), (10.14)

are right and left pseudo-canonical factorizations with respect to the real line, re-
spectively.

The subspaces M, M_, M and M are not unique. In line with this, the
uniqueness of the factorizations that we had at earlier occasions is lacking here.
Also, not all pseudo-canonical factorizations for selfadjoint rational matrix func-
tions are obtained in the way described in Theorem 10.6 .

The theorem will be obtained from the more general result stated below.

Theorem 10.7. Let W(\) = D + C(\I,, — A)~!'B be a minimal realization of an
m X m rational matriz function which is selfadjoint on the real line, and assume
D is positive definite. Suppose D = Dy D_ with Dy and D_ m X m matrices
(automatically invertible). Let H be the (unique invertible) Hermitian n x n matric
for which HA = A*H and HB = C*. Let M, be an A-invariant mazimal H-
nonnegative subspace, and let M_ be an A*-invariant mazximal H-nonpositive
subspace. Then

C"= Mi+ M_. (10.15)

In that case, the projection I of C™ along My onto M_ s a supporting projection,
and (hence) W admits a minimal factorization W(X\) = W (NW_(X) with W4
and W_ given by

Wi(\) = Dy +C0\,—A)~I-T)BD*,

=
=
I

D_ + D;'CI(\, — A)~'B.
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For the existence of A-invariant maximal H-nonnegative and maximal H-
nonpositive subspaces, see Section 11.2 below.

Proof. First we show that M, N M_ = {0}. Choose x € M, N M_. As M, is
nonnegative and M_ is nonpositive, we have (Hz,z) = 0. On M, the Schwartz
inequality holds for the H-inner product. Since x € My and Az € M, we get

(HAz,z)]? < (HAz,Az) - (Hz,z) = 0.

So for all x € My N M_ we have (HAz,z) = 0. In the same way one shows that
for all x € My N M_ we have (HA*z,z) = 0. It follows that

0= (H(A—A")z,z) = (HBD 'Cx,z) = (C*D~*Cx,z) = |D~Y2Cxl?,

and hence My N M_ C KerC. But then Az = Ax — BCx = Az for all =
belonging to My N M_, and so M N M_ is A-invariant. Hence CA™z = 0 for
alze My N M_and n=20,1,2,.... So

MynM_ C (| KerCA = {0}.

=0

Now (see Section 11.2) every maximal nonnegative subspace has the same di-
mension as M. Also, for a maximal H-nonpositive subspace M_, the subspace
H~'[M*] is maximal H-nonnegative. Hence

dim M, = dim H'[M*] = dim M+ = n —dim M_,

and from this we get (10.15), i.e, the first part of the theorem. To obtain the
second part, apply Theorem 8.5. O

Proof of Theorem 10.6. For the existence of A-invariant subspaces My, M_ and
A*-invariant subspaces M, M such that (i), (ii) and (iii) hold we refer to Sec-
tion 11.2. The matching of the appropriate subspaces is an immediate consequence
of Theorem 10.7. The factorizations (10.14), where the factors are given by (10.10)—
(10.13) are minimal by Theorem 8.5. As in the proof of Theorem 10.2 one shows
that L and K, have no zeros or poles in the open upper half plane. In the same
vein, L_ and K_ have no zeros or poles in the open lower half plane. Hence the
factorizations in (10.14) are right and left pseudo-canonical factorizations, respec-
tively. O

Analogues of Theorems 10.6 and 10.7 concerning rational matrix functions
which are selfadjoint on the unit circle or imaginary axis can be derived too.
An analogue of Theorem 10.7 also holds true if one takes My to be A-invariant
maximal H-nonpositive (instead of maximal H-nonnegative) and M_ to be A*-
invariant maximal H-nonnegative (instead of maximal H-nonpositive). A similar
remark can be made concerning Theorem 10.6.
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We finish this section with a theorem concerning symmetric factorization of
rational matrix functions which are nonnegative. Here we shall present only the
case involving the imaginary axis.

Theorem 10.8. Let W(\) = D + C(\I,, — A)~'B be a minimal realization of an
m X m rational matriz function which is nonnegative on iR. Assume D is positive
definite, and let H be the (unique invertible) skew-Hermitian n X n matriz such
that HA = —A*H and HB = C*. Suppose M and M* are subspaces of CN for
which

AM]c M, AXM*]c M*, H[M]=M* H[M*|=M*t  (10.16)

Then C* = M+ M>*. Let II be the projection of C" along M onto M*, and
introduce

L(\) = DY2 4+ D=Y2CI(\],, — A)'B. (10.17)

Then
W(A\) = L(=\)*L(\) (10.18)

is a minimal factorization. Conversely, given a minimal factorization (10.18), with
L(co) = D2, the factor L is as in (10.17) for a supporting projection I1 such
that M = KerIl and M>* = Im1I satisfy (10.16).

Proof. Let M and M* be as in the theorem. We shall show that C* = M+ M*.
The argument follows a (by now) familiar pattern. One first shows that the inter-
section M N M* is contained in Ker C (see, e.g., the proof of Theorem 9.4, or the
proof of Theorem 10.7). Then M N M* is both A-invariant and A*-invariant
and contained in Ker C. By minimality (in fact observability) it follows that
M n M* = {0}. Since dimM = dimM* = n/2, we have the desired match-
ing.

Denote by II the projection along M onto M*. Then II is a supporting
projection. Write the factorization of W corresponding to IT and the factorization
D = DY2D"Y? as W(\) = K(\)L()\), where

K(\) = DY?4+cC\-A)"YI-1)BD V2
L(\) = DY?4 D YV2CT()\ - A)!B.

Arguing as in the proof of Theorem 9.4 we have IT*H = H (I —1II). Using also (9.2)

it then follows easily that L(—\)* = K(\).

Conversely, suppose W()\) = L(—\)*L()\) is a minimal factorization with
L(c0) = D'/2. Let TI be the corresponding supporting projection (which exists by
Theorem 8.5). From the fact that the left-hand factor K (\) is L(—))*, where L()\)
is the right-hand factor, and using (9.2), we have II*H = H(I — II). Thus both

M = KerIl and M* = ImII satisfy (i) and (ii). O
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Notes

This chapter originates from [119] which deals with rational matrix functions that
are selfadjoint on the real line. The term pseudo-canonical is from a later date,
and is taken from [132]. The results presented here for nonnegative rational matrix
functions on the unit circle are based on Section 3 of [104]. In this case, the
restriction to W being invertible at infinity and at zero may be lifted by considering
a different type of realization, namely, realizations of the type discussed in [79].

In mathematical systems theory also the following problem is of interest:
given is a nonnegative rational matrix function W as in Theorem 10.8, without
poles on the imaginary axis. One is looking for all possible factorizations W (\) =
L(—=)\)*L()\), where L has all its poles in the open left half plane, but there is
no condition on the zeros of L. This problem too sometimes goes by the name
of “spectral factorization problem” and such factors L are sometimes also called
“spectral factors”. The problem of parametrizing such factors is considered in
many papers and books, see, e.g., [116] and [46] and the references given there.
The papers [30], [31], provide a discussion involving computational aspects.

For matrix polynomials a similar problem is considered in the literature, see
e.g., [88] and [66]. For later developments on factorization of selfadjoint matrix
polynomials, see [103], [125].

In [20] stability of factorizations of rational matrix functions under small
perturbations of the matrices in a realization is studied. For the particular case
where the function is positive semidefinite on the real line, and the factorizations
are of the type (10.1), stability under small perturbations is treated in [123].
This involves stability of invariant Lagrangian subspaces for matrices that are
selfadjoint in a space with an indefinite inner product. It turns out that the left
and right pseudo-spectral factorizations are stable (see Theorem 2.5 in [123]).






Chapter 11

Review of the theory of
matrices in indefinite inner
product spaces

In this chapter we present some background material on matrices in indefinite inner
product spaces, and review the main results from this area that are used in this
book. No proofs will be provided; we refer to the literature for more information.
Good sources are [68] and [70]. The material is not only useful for understanding of
the results of the preceding two chapters, but is also intended for use in subsequent
chapters.

This chapter consists of three sections. Section 11.1 considers subspaces that
are negative, positive or neutral relative to an indefinite inner product and var-
ious generalizations of such subspaces. Section 11.2 deals with matrices that are
selfadjoint relative to an indefinite inner product, and Section 11.3 with matrices
that are dissipative relative to an indefinite inner product.

11.1 Subspaces of indefinite inner product spaces

Let H be an invertible Hermitian n x n matrix. On C"™ we denote the usual inner
product with (-, -). The indefinite inner product given by H is defined as follows:

[z,y] = (Hz,y).

A vector z € C" is called H-positive, H-negative, or H-neutral, respectively, if
[z,2] > 0, [z,2] < 0, or [z,z] = 0, respectively. A subspace M of C" is called
H-nonnegative, H-nonpositve, or H-neutral, respectively, if [x,z] > 0, [z,z] < 0,
or [x,z] = 0, respectively, for all z € M. Observe that an H-neutral subspace is
at the same time H-nonnegative and H-nonpositive.
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Although the Cauchy-Schwarz inequality does not hold for just any two vec-
tors x,y in an indefinite inner product space, it does hold for vectors x,y which
are both in an H-nonnegative subspace, or both in an H-nonpositive subspace.
Note that it follows from this that M is H-neutral if and only if H[M] C M*.

A subspace M of C™ will be called mazimal H-nonnegative whenever it is
H-nonnegative and not properly contained in a larger H-nonnegative subspace.
Similarly, M will be called a mazimal H-nonpositive subspace if it is H-nonpositive
and not properly contained in a larger H-nonpositive subspace. The first part of
the following proposition can be found in Theorem 2.3.2 in [70], the second part
is Lemma 6.3 in [25].

Proposition 11.1. The dimension of any maximal H-nonnegative subspace coin-
cides with the number of positive eigenvalues of H, while the dimension of any
mazimal H-nonpositive subspace coincides with the number of negative eigenval-
ues of H. Also, if M is mazximal H-nonpositive then H~'[M=] is marimal H-
nonnegative.

A subspace M of C" is said to be H-Lagrangian if H[M] = M=. Such a
subspace is both maximal H-nonnegative and maximal H-nonpositive, and hence
such a subspace can exist only if H has as many positive eigenvalues as it has
negative ones. As an example, suppose n is even, n = 2k say, and let

l 0 I 1

H=1 .

Iy 0

Then any subspace of the form M = Im[P T]* with P Hermitian will be a
Lagrangian subspace.

The concepts involving ordinary orthogonality have straightforward ana-
logues for H -orthogonality. For instance, vectors z and y in C™ are H -orthogonal
if [z,y] = 0.

A subspace M is called H-nondegenerate in case there is no non-zero vector

x € M that is H-orthogonal to all vectors in M. An equivalent requirement is that
M N H[M]+ = {0}. It follows that for H-nondegenerate subspaces M, one has

C" = M+ H[M]* .

Conversely, each subspace M of C™ with this property is H-nondegenerate.

11.2 H-selfadjoint matrices

Let the indefinite inner product on C™ be given by the invertible Hermitian matrix
H. An n x n matrix A has an H-adjoint A} defined by

[Az,y] = [z, AFly].
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Thus A*l = H='A*H. The matrix A is called H-selfadjoint if A = A or which
amounts to the same, HA = A*H.

As an example, let A = J,(\) be the n x n upper triangular Jordan block
with a real eigenvalue )\, and let H = ¢P,,, where ¢ is +1 or —1, and P, is the
standard n x n involutary matrix (also called the n X n reversed identity matrix).
Thus P, is the n X n matrix with 1s on the diagonal running from the lower left
corner to the upper right corner, and Os elsewhere. Clearly H is invertible and
selfadjoint while, moreover, HA = A*H. Hence A is H-selfadjoint.

As a second example, suppose n is even, n = 2k say, let A be non-real, and
let A = diag (Jx(\), Ji(X)) be the block diagonal sum of two Jordan blocks of
size k with eigenvalues A and ), respectively. Further, let H = Pyj. Then again
HA = A*H, so A is H-selfadjoint.

It turns out that these two examples can serve as the building blocks for any
pair (A, H), where A is H-selfadjoint. To state this more precisely, first observe
that if A is H-selfadjoint, and if S is an invertible matrix, then S™'AS is S*HS-
selfadjoint. The map (A, H) — (S71AS, S* HS) defines an equivalence relation on
the set of pairs (A, H) with A being H-selfadjoint. The following result, which can
be found in [70], Theorem 5.1.1, describes a canonical form for pairs of matrices
of this type.

Theorem 11.2. Let A be an H-selfadjoint matriz. Then there exists an invertible
matriz S such that STYAS is equal to the block-diagonal matriz

diag (Jkl ()‘1)7 ) ka ()‘m)7 ka+1 ()‘m-‘rl)? ka+1 ()‘m-l—l)a RS sz ()‘l)v sz ()‘_l))v

while

S*HS = diag (€1Pk1,. .. 7€mPkm7P2km+17 .. .,ngl).

Here \1,..., A\ are_the real eigenvalues of A, geometric multiplicities counted,
Amt1, Admtl, - - -5 AL, Ay are the non-real eigenvalues of A, geometric multiplicities
counted too, and the numbers €1, ..., ., take the values +1 and —1.

Behind the theorem is the fact that if A is H-selfadjoint, then the spectrum of
A is closed under complex conjugation, taking (partial) multiplicities into account.
By slight abuse of terminology, the ordered m-tuple (g1, ...,&,,) is called the sign
characteristic of the pair (A, H). It is uniquely determined by the pair (A, H) up
to permutations of signs corresponding to equal Jordan blocks.

Next, we consider invariant maximal H-nonnegative and invariant maximal
H-nonpositive subspaces. We start again with examples. Let A be a single Jordan
block of size n x n with a real eigenvalue, and take H = £P,,. Denote the standard
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basis of C™ by eq,...,e,. Introduce
span{ei,...,e, 2} in case n is even,

M* =< span{ey,. .. ,€(nt1)/2} in case n is odd and €= +1,
span{ei,...,em_1)/2} in case n is odd and &= —1,
span{ei,..., e, 2} in case n is even,

M~ = ¢span{eq,...,enq1y/2} in case n is odd and e = —1,
span{ei,...,€(—1)/2} in case n is odd and e = +1.

Then M™ is A-invariant and maximal H-nonnegative, while M~ is A-invariant
and maximal H-nonpositive.

As a second example, suppose n is even, n = 2k say, let A = Ji(\) @ Ji(\)
with A non-real, let H = Py, and write eq, ..., e for the standard basis of C2*.
Then, for [ = 0,...,k, we have that M = span{ey,..., e, €xt1,-..,€26—;} IS an
A-invariant H-Lagrangian subspace.

If A is H-selfadjoint, and A is a real eigenvalue of A, then the spectral invari-
ant subspace of A corresponding to A is H-orthogonal to the spectral invariant
subspace of A corresponding to all other eigenvalues. A similar statement holds for
a pair of complex conjugate non-real eigenvalues A, X. This allows one to build up
A-invariant maximal H-nonnegative subspaces by taking direct sums of subspaces
constructed “locally” as in the previous two examples. In particular the following
holds, see Theorem 5.12.1 in [70].

Theorem 11.3. Let A be H-selfadjoint. The following statements hold:

(i) There exists an A-invariant maximal H-nonnegative subspace M;; such that
CT(A‘MJ) is in the closed upper half plane. Furthermore, any such M, con-
tains the spectral invariant subspace of A corresponding to the open upper
half plane.

(ii) There exists an A-invariant mazimal H-nonpositive subspace M, such that
0(Aly;-) is in the closed upper half plane. Furthermore, any such M, con-
tains the spectral invariant subspace of A corresponding to the open upper
half plane.

(iii) There exists an A-invariant mazimal H-nonnegative subspace M;" such that
O'(A‘M;r) is in the closed lower half plane. Furthermore, any such M;" con-
tains the spectral invariant subspace of A corresponding to the open lower
half plane.

(iv) There exists an A-invariant mazimal H-nonpositive subspace M| such that
0(A|le) is in the closed lower half plane. Furthermore, any such M, con-
tains the spectral invariant subspace of A corresponding to the open lower
half plane.
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Our next concern is the existence of A-invariant H-Lagrangian subspaces.
These do not always exist. The next theorem gives a necessary and sufficient
condition.

Theorem 11.4. Let A be H-selfadjoint. There exists an A-invariant H -Lagrangian
subspace if and only if for each real eigenvalue p of A the following two conditions
hold:

(i) the number of odd partial multiplicities associated with u is even,

(i) ezactly half of those odd partial multiplicities associated with p have sign +1
corresponding to them in the sign characteristic of (A, H), the other half have
sign —1 corresponding to them.

In particular, if all the partial multiplicities associated with the real eigenvalues of
A are even, there does exist an A-invariant H-Lagrangian subspace.

To elucidate what is said in Theorem 11.4, let us return to Theorem 11.2.
With the notation employed there, write s(1),...,s(t) for the positive integers
such that Ay;) =, j =1,...,t. Then the numbers ky(1),. .., k) are the partial
multiplicities associated with p, and the corresponding signs in the sign charac-

teristic of (A, H) are £4(1),...,&50). Item (i) of the above theorem declares that
the number of j for which k() is odd is even, 2p say. Suppose ky(r,); - - Ks(ry,)
are odd. Then item (ii) of the theorem says that among the signs e,(,,), ..., €g(ry,)

there are p having the value +1 and p with the value —1.

We now state a result on the uniqueness of A-invariant H-Lagrangian sub-
spaces. In one direction, this result can be found in Theorem 5.12.4 in [70], the
other direction is proved in [122].

Theorem 11.5. Assume that A is H-selfadjoint. The following two statements are
equivalent:

(i) There exist unique A-invariant H-Lagrangian subspaces M, and M; such
that o(Ala,) is in the closed upper half plane and o(A|nr,) is in the closed
lower half plane;

(ii) The real eigenvalues of A have even partial multiplicities, and for each real
eigenvalue 1 of A the signs in the sign characteristic of the pair (A, H) cor-
responding to the partial multiplicities associated with p are all the same.

In particular, the existence of subspaces M, and M; with the properties mentioned
in (1) is guaranteed when A has no real eigenvalues. In this case M, and M; are
the spectral subspaces of A associated with the part of o(A) lying in the open upper
and open lower half plane, respectively.

11.3 H-dissipative matrices

Next, we turn to another class of matrices. An n X n matrix is H-dissipative if
%(H A — A*H) is nonnegative. It can be shown that the spectral subspace of an
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H-dissipative matrix A associated with the part of o(A4) lying in the open upper
half plane is H-nonnegative, while the spectral subspace corresponding to the part
of 0(A) lying in the open lower half plan is H-nonpositive.

Theorem 11.6. Let A be H-dissipative. Then the following statements hold:

(i) There exists an A-invariant mazimal H-nonnegative subspace My such that
o(Aln, ) is in the closed upper half plane. Furthermore, any such My con-
tains the spectral subspace of A associated with the part of o(A) lying in the
open upper half plane.

(ii) There exists an A-invariant mazimal H-nonpositive subspace M_ such that
o(A|np_) is in the closed lower half plane. Furthermore, any such M_ con-
tains the spectral subspace of A associated with the part of o(A) lying in the
open lower half plane.

The usual proof of this result is quite involved, uses a fixed point argument,
and holds in an infinite dimensional setting as well, see [6], [87]. A constructive
argument for the finite dimensional case can be found in [129], [137].

The matrix A is said to be strictly H-dissipative if -(HA — A*H) is pos-
itive definite. In that case A cannot have real eigenvalues. Hence, for a strictly
H-dissipative matrix A, the spectral subspace of A associated with the part of
0(A) lying in the open upper half plane is maximal H-positive, and, similarly, the
spectral subspace of A corresponding to the part of o(A) contained in the open
lower half plane is maximal H-negative.

Notes

The material in this chapter is taken from the books [68] and [70]. For other books
in this area, with an emphasis on infinite dimensional spaces, see [87], [25], and
[6].



Part V

Riccati equations and
factorization

In this part the canonical factorization theorem is presented in a different way us-
ing the notion of an angular subspace and Riccati equations. In this case one has
to look for angular subspaces that are also spectral subspaces, and the solutions of
the Riccati equation must have additional spectral properties. Spectral factoriza-
tion as well as pseudo-spectral factorization are described in terms of Hermitian
solutions of such a Riccati equation. The study of rational matrix functions that
take Hermitian values on certain curves, started in the previous part, is continued
with an analysis of rational matrix functions that have Hermitian values for which
the inertia is independent of the point on the curve. Such functions may still admit
a symmetric canonical factorization, provided one allows for a constant Hermitian
invertible matrix as a middle factor. A factorization of this type is commonly
known as a J-spectral factorization.

This part consists of three chapters. The first chapter (Chapter 12), which has
a preliminary character, introduces the (non-symmetric) algebraic Riccati equation
and presents the state space canonical factorization theorem in terms of solutions
of such an equation. Pseudo-canonical factorization is treated in an analogous
way. In the second chapter (Chapter 13) the symmetric algebraic Riccati equation
is introduced, and spectral factorization as well as pseudo-spectral factorization
are described using such Riccati equations. In the third chapter (Chapter 14) the
notion of a J-spectral factorization of a rational matrix function is introduced.
Necessary and sufficient conditions for the existence of a such factorization are
given, first in terms of invariant subspaces and then in terms of solutions of a
corresponding symmetric algebraic Riccati equation. The connection between left
and right J-spectral factorization is also studied.






Chapter 12

Canonical factorization and
Riccati equations

In this chapter the canonical factorization theorem from Section 7.1 is presented
in a different way using the notion of an angular subspace and Riccati equations.
In this case one has to look for solutions of the Riccati equation that have addi-
tional spectral properties. Section 12.1, which has a preliminary character, deals
with angular subspaces, and in particular those that are also spectral subspaces.
Section 12.2 deals with the connection between factorization and Riccati equa-
tions in general, while Section 12.3 contains the main result. It specifies further
the main theorem of the second section for the case of canonical factorization.
In Section 12.4, as an application, we solve in state space form the problem of
obtaining a right canonical factorization when a left one is given (or reversely).

12.1 Preliminaries on spectral angular subspaces

Let X be a complex Banach space, let X; and X5 be closed subspaces of X, and
suppose
X =X+ Xs. (12.1)

A closed subspace N of X is said to be angular relative to the decomposition
(12.1) if X = X;+ N. In that case there is a unique operator R : Xo — X7, called
the angular operator for N, such that

N{Rx+x|x€X2}:Im{]I%],

where I, as always in this section, stands for the identity operator on the appro-
priate space which can be easily identified from the context (in this case X5).
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Let N be an angular subspace of X relative to (12.1), and let

Ty Tho

2X1+X2 — X1+X2 (122)
To1 1o

be an operator on X. We consider the question when N is invariant under T'. For
this purpose, set

I R
0 I

E = :Xl—i'XQ — Xl—i—XQ.

This operator is invertible, and maps X5 in a one-to-one way onto N. It follows
that T leaves N invariant if and only if E~'TFE leaves X5 invariant. A direct
computation yields

T — RI»1 —RInR— RTs +T11R+Tho
E-ITE = . (12.3)
b3 Too +To1R

This formula shows that E~'TE leaves X, invariant if and only if the angular
operator R for N satisfies the algebraic Riccati equation

RI51R+ RT5 — TR —Ty2 = 0. (12.4)

More precisely, this equation is usually referred to as a nonsymmetric algebraic Ric-
cati equation. In the next chapter we shall encounter symmetric algebraic Riccati
equations. The 2 x 2 operator matrix (12.2) is often referred to as the Hamiltonian
corresponding to the algebraic Riccati equation (12.4).

Next, let E5 be the restriction of F¥ to X5 considered as an operator from X5
into N. Then F is invertible. In fact, E5 ' is the restriction of E~* to N viewed as
an operator from N into X5. Using (12.3) we see that E;l(T|N)E2 = Too+ T01 R,
and hence T'|n and Taz + T R are similar.

In this section we want additionally that N is a spectral subspace of T'. The
next proposition shows in terms of the angular operator when this happens.

Proposition 12.1. Let N be an angular subspace of X relative to the decomposition
(12.1), and let T be the operator on X given by (12.2). Then N is a spectral
subspace for T if and only if the angular operator R for N satisfies the algebraic
Riccati equation (12.4) and

o(Tiy — RTy1) N o(Tae + T R) = 0.

More precisely the following holds. If N = Im P(T';T"), where I is a Cauchy contour
that splits o(T), then o(Tas + To1R) is inside T' and o(Th1 — RT%1) is outside T.
Conversely, if T is a Cauchy contour such that o(Tes + To1R) is inside T' and
o(T11 — RT1) is outside T, then the spectrum of T does not intersect with T' and
N =Im P(T;T).
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Proof. We use the operator E introduced before. The operator F is invertible and
maps Xo in a one-to-one way onto IN. Since a spectral subspace of T' is invariant
under 7', we may assume without loss of generality that the angular operator R
for N satisfies the Riccati equation (12.4). Then formula (12.3) shows that

T — RI» 0
E7'TE = : (12.5)
o1 Too +1T21 R

Since E maps X5 in a one-to-one way onto N, the space IV is a spectral subspace
for T if and only if X, is a spectral subspace for E~'TE, and we can apply
Lemma 3.1 to get the desired result. |

12.2 Angular operators and factorization

In this section we use the concepts introduced in the previous section to bring
the factorization theorem (see Section 2.6) for realizations in a different form. The
main point is that throughout we work with a fixed decomposition X = X+ X,
of the state space X of the realization that has to be factorized and the factors
are described with respect to this decomposition. In the finite dimensional case
this corresponds to working with a fixed coordinate system.

Theorem 12.2. Let W(A\) = D + C(AMx — A)"'B be a biproper realization with
state space X and input-output space Y. Let X1 and X5 be closed subspaces of
X such that (12.1) holds, i.e., X = X1+ X3, let N be a closed subspace of X
which is angular relative to this decomposition, so X = X+ N, and denote the
corresponding angular operator by R. Assume

A[X)) ¢ Xy,  AX[N] C N, (12.6)

and let D = D1Dsy with Dy and Dy invertible operators on'Y . Write

All A12 . .
A = IX1+X2 — X1+X2,
0 A22
By .
B = Y — X1+X2,
By
Cc = [ Cl CQ ] 2X1+X2 — Y.

Then R satisfies the algebraic Riccati equation
RByD'CiR — R(Agyy — BoD™'Cy) + (A1, — BiD™'C1)R (12.7)

+ (A12 — BlDilcg) = 0.
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Introduce the functions W1 and W wvia the biproper realizations
Wi(\) = Di+Ci(Mx, — An) 'BiD;,
Wa(\) = Dy+ Dy Co(Mx, — Axy) ' Bs.
Then W admits the factorization
W(A) = Wi(A)W2(A), A € p(A11) N p(A2) C p(A).
Also put
A} = Ay, — (B, — RBy)D™ 10y, ASy = Agg — BoD N (C1R+ Cy). (12.8)

Then, for X € p(A77) N p(Asy) N p(A11) N p(Asz), the operators W (), Wi(X) and
W () are invertible, and

W)™ = Wa(N) WA
where

W) Dt — DyMCi (M x, — A7) "By — RBo)D ™1,

Wyt(\) = D' =D N CiR+ Cy)(Mx, — AY,) 'BaDyt.

Proof. The first part of the theorem is a direct consequence of the observations
presented before Proposition 12.1, applied to A*. Indeed, let E be the invertible
operator

I R

0 I

E =

)

and write A = E-YAE, B= E-'B, C = CE. Then

. [ Ain Aig — RA» + AR
A = ,
L O Asgo
~ [ B1 — RB,
B = ;
L By
C = [C1 CiR+Cy ]
and it follows that
. A%y H
A*=E'AE =

—BgDilcl A;Q
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where A} and A%, are defined by (12.8), and where H is equal to the left-hand
side of (12.7). Now E maps X; onto X; and X3 onto N. Thus (12.6) implies that

-~ -~

A[Xl] C Xy, AX[XQ] C Xo.

Hence (12.7) is satisfied.

It remains to prove the factorization W = W1 W3 and to establish the formu-
las for W1, W and their inverses. We have W(A\) = D + C(AM — A)~!B. On the
other hand, by the product rule for realizations,

Wi(MWa(\) = D+ C(M — A)~'B,

where
Ay (B1 - RBQ)Dil(ClR -+ Cg)

A =
0 Ao

It remains to observe that by (12.7)
(Bl — RBQ)Dil(OlR + CQ) = Aj9 — RAs + A1 R.
So W = W1 W5. The formulas for the inverses are immediate. O

The next theorem is a symmetric version of Theorem 12.2.

Theorem 12.3. Let W(A\) = D + C(Mx — A)"'B be a biproper realization with
state space X and input-output space Y. Let X1 and X5 be closed subspaces of X
with X = X1 + Xo. Further, let Ni and Ny be closed subspaces of X for which

X = Xi1+ Ny, X = N1+ Xo,
that is, No is angular relative to the decomposition X = X+ Xo while Ny is
angular relative to X = Xo + X1. Let Rig : Xo — X1 and Ro1 : X1 — Xo be the
corresponding angular operators. Assume

X = N1+ No, A[Nl] C Ny, AX[NQ] C Noy, (12.9)

and let D = D1Ds with Dy and D+ invertible operators on'Y . Write

A A Ao v ix, X
= s X4+ X 1+ Xo,
Az Aso
B, .
B = :Y — X1+X27
By

C == [Cl 02]:X1+X2—>K
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and put R1 = IX1 - R12R21 and RQ = IX2 - R21R12. Then R1 : X1 — X1 and
Ry : Xo — X5 are invertible. Introduce the functions W1 and Wy via the biproper
realizations

Wi(A) = D1+ (C1 + CQR21)()\IX1 — (A1 + A12R21))_1Rf1(31 - R1232)D517
Wa(\) = Dy + Dy (Ci Rys + Ca) Ry (M x, — (Ass — Ro1A12)) ™ (Ba — Ro1 By).
Then W admits the factorization
W(A) = Wi(A)Wa(N), A€ p(A1r + A1aRo1) N p(Asz — Ro1Ar2) C p(A).
Also put
A¥ = Ay — B1D7'Cy — RigAgy + R1aBo D™ 1Cy,
Ay = Ay — ByD7'Co + Ag1Rip — BoD 7' CiRys.

Then, for A € p(A11+A12R21) N p(Aze — Ra1 A12) N p(A7) N p(A2,), the operators
W(X), Wi (\) and Wa(X) are invertible, and

W)™ = Wa(N) W (V)7

where
W t(\) = Dyt —D7YNCy+ CaRot)Ry Y (M x, — AY) ™Y (B1 — Ri2Bs) D™,
Wy '\ = Dy' =D CiRia+ Co)(Mx, — ASy) 'Ry (Ba — Ro1 By) Dyt

We prepare for the proof of the theorem with a lemma.

Lemma 12.4. Let X be a Banach space, and let X1 and X5 be closed subspaces of
X with X = X1 + Xs. Further, let Ni and N be closed subspaces of X for which
X = X1+ Ny, X = Ni+ Xo,

i1.e., No is angular relative to the decomposition X = X3 + X5 while Ny is an-
gular relative to X = Xo+Xi. Let Ris : Xo — X1 and Ry : X1 — X5 be the
corresponding angular operators. Then the following statements are equivalent:

(i) X = N1+ No;
(i1) I — Ro1R12 is invertible;
(iii) I — Ry12R2; is invertible;
I Ry

(iv) F =
Roy

s X1+ Xy — Xq+ Xo is invertible.
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In case the equivalent conditions (i)—(iv) hold, the projection Py of X along Ny
onto Na is given by

Ry

Py = (I — Ro1Ry) ™! [ —Roy 1 ] ;

while the complementary projection I — Py can be written as

[—Py=
21

1 (I —Ri2Ro)™'[I —Riz ].

Proof. The equivalence of (ii), (iii) and (iv) is straightforward. Observe that F
maps X1 and X5 in a one-to-one manner onto N7 and N, respectively. Since
X = X+ Xo, it is clear that X = N+ Ny if and only if F is invertible. So (i)
and (iv) are equivalent.

To complete the proof it remains to prove the formula for Py. Observe that
the expression in the right-hand side of the claimed identity for Py does define a
projection. Its image and kernel are given by

Im , Im ,
Roy
respectively, so it is indeed equal to the projection Py. O

Proof of Theorem 12.3. From Lemma 12.4 we know that the operator

I Ry

X1+ Xy — X+ Xo
Roy

F =

is invertible. Introduce A = F~'AF, B = F~'B and C = CF. Then W) =
D + C(M — A)~'B. Note that A[X;] C X; and A*[X5] C Xa, where, following
standard convention AX = A — BD~'C, and so AX = F~1AXF. Write

-~

. [4, A . B . .
= 0 z , = éi . O=[a &,
and put
Wi(\) = Di+Ci(\—Ay) 'BiD; ",
Wa(\) = Do+ Dy'Co(A— Agy) ' By.

Then on p(Ay1) N p(Azs) C p(A) = p(A), the function W is the product of Wi
and Ws.
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The inverse of F' is given by

L Ry! —Ri"'Rys . .
F = 1 1 1X1—|—X2 — X1+X2.
_R21R1_ I+ R21R1_ R12

Using this and the expression for F', one easily sees that

Ay = RyY(A11 + A12Ro1 — Ri2 A9y — RigAsaRar),
BiD;' = R{'(By— Ry2By)D; ",
61 = C1+C53Rs.

Now Rs; satisfies the algebraic Riccati equation
Ro1A12Ro1 + Ro1 A11 — A2 Ray — A2 = 0,
and it follows that Au = Aq1 + A12R21. Thus, for the function /V[71, we have
Wi(\) = Dy + Ci(A — An) ' BiD;*!
= Dy + (Cy + CyRa1) (A — (A1 + A1aRo1)) " RyN(By — R1sB) D,

as desired. .
Next we compute the function W5. Using the alternative formula
I+ Ri2R;'Ryy —RioRy! . .
= 1 1 X+ Xe — X1+ Xo
—R5 "Ry Ry

for the inverse of F', we obtain

Ay = Ry (Azg — Ro1 A19) Ry 1,
B, = R;Y(Ba — Ry By),
Dl_lél = Dl_l(clRlz =+ 02)

Hence, for the function /V[72 we get
WQ()\) =Dy + D;lag()\ — 222)_13\2
= Dy + Dy (C1Rya + CQ)Rg_l()\ — (A2 — R21A12))71(31 — Ri9B2) Dyt

again as desired.
This proves that the factorization claimed in the theorem holds on

p(A11 + A12R21) N p(Aze — Ro1Ar2)
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which is a subset of p(A). What remains to be done is to deduce the formulas for
the inverses. But this amounts to repeating the work with W replaced by W 1.
In doing so, one employs the Riccati equation

Ri2(Ag1 — BQD_lcl)Rw + Ri2(Ag — BzD_lcz)

—(A1; — BID7'C)Ryz — (A1 — B1D7'Cy) = 0

for Ry instead of the one for Rs; used above. The details are omitted. O

12.3 Riccati equations and canonical factorization

In this section Theorem 12.2 is specified further for the case of canonical factor-
ization. As usual, I" is a Cauchy contour in the complex plane, F is its interior
domain, and F_ its exterior domain (infinity included).

Theorem 12.5. Let W()\) = D + C(Ax — A)"'B be a biproper realization with
state space X and input-output space Y. Assume that the spectrum of A does not
intersect T'. Put X1 = Im P(A;T") and let X5 be a closed subspace of X such that
X = X1 + XQ, SO

X = Im P(A;T) + Xo.

Let D = D1Ds with D1 and Dy invertible operators on Y, and write

Al Ap . .
A = Xi+ Xe — X+ X,
0 Ap
B, .
B = Y — X1+X2a
By
Cc = [Cl CQ]:Xl‘i_XQ_)Y

Then W admits a right canonical factorization with respect to I if and only if the
Riccati equation

RByD™'CiR — R(Ags — BoD7'Cy) + (A1 — B1D7'C1)R  (12.10)
+ (A2 — B1D7'Cy) = 0
has a (unique) solution R satisfying the constraints
o(An — (Bi— RB2)D™'Cy) C Fy, (12.11)

o(Ass — BsD"YC1R+ C2)) C F_. (12.12)
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In that case a right canonical factorization W(X) = W_ (MW (X) of W with
respect to I' is obtained by taking

W_(\) = D;+Ci(A\—An) (B — RBy)D;
Wi(\) = Do+ DIHCiR+ C2) (A — Az) ' Bs.

Moreover, the inverses of W_ and W, are given by

W='(\) = D;'—Di'Ci(A— AX) "By — RBy)D 7!,
Wil A) = Dyt =D HOIR+Co)(A = A) ' B2 Dy,
where
A¥ = Ay — (B — RBy)D™'Cy, Axy, = Agy — BoD7H(C1R + COy).

With the appropriate modifications, the theorem also holds for certain con-
tours in the Riemann sphere. For instance, if for I' one takes the (extended) imagi-
nary axis, one has to take for F'; the open left half plane and for F_ the open right
half plane. For left canonical factorizations analogous results hold: just interchange
the roles of inner and outer domains (see the comment after Theorem 3.2).

Proof. The subspace X1 = Im P(A4;T") is invariant under A, and hence the zero
entry in the left lower corner of the operator matrix representation of A is justified.
Furthermore (A1) C Fy and o(Ag) C F—.

Next note that relative to the decomposition X = X; + X, we have

N ) A11 — BlD_lCl A12 — BlD_lcg
A*=A—-BD 'C=
—BQD_101 Aoy — BQD_ng

Thus —A* is precisely the Hamiltonian of the Riccati equation (12.10).

Assume that W admits a right canonical factorization with respect to T'.
Then, in particular, W () is invertible for each A € T'; hence, by Theorem 2.4, the
spectrum of the operator A* does not intersect I'. Thus we can use Theorem 7.1
to show that N = Ker P(A*;T) is an angular subspace for the decomposition
X = X; + Xs. Let R be the corresponding angular operator. Since A leaves N
invariant, we know that R satisfies the Riccati equation

—RBgD‘lClR + R(A22 — BQD_lcQ) — (A11 — BlD_lCl)R (1213)
—(A12 — B1D'Cy) =0,

which is equivalent to (12.10). Now Proposition 12.1, applied to A* and with the
roles of the interior and exterior domain of the contour I' being reversed, shows
that (12.11) and (12.12) are fulfilled.
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Conversely, let R be a solution of the Riccati equation (12.10) for which
(12.11) and (12.12) are satisfied. Thus R satisfies the Riccati equation (12.13)
which has A* as its Hamiltonian. Hence the corresponding angular subspace N is
invariant under A*. Next we again use Proposition 12.1 with T'= A* and with the
roles of the interior and exterior domain of the contour I' being reversed. This yields
that the spectrum of A* does not intersect I' and that N = Ker P(A*;T"). Since
N is an angular subspace of X relative to X = X; 4+ X, the latter implies that
X =Im P(A;T) + Ker P(A*;T). But then Theorem 3.2 implies that W admits a
right canonical factorization with respect to the contour I'.

To show uniqueness of the solution R of (12.10) for which the spectral in-
clusions (12.11) and (12.12) are satisfied, it suffices to note that these spectral
inclusions imply that N = Ker P(A*;T'). Indeed, in that case the angular opera-
tor R for N relative to X = X;+X5 is uniquely determined.

It remains to get the formulas for the factors. First note that Theorem 12.2
shows that W(X) = W_ (X)W, (\) with the factors W_(A), W (\) and their in-
verses being of the desired form. The spectral properties of A;; and Ao, together
with those of A7 and AJ,, show that the factorization W (\) = W_(A\)W()) is
a right canonical factorization with respect to I'. O

12.4 Left versus right canonical factorization

In this section we answer the following question: if a rational matrix function
W admits a left canonical factorization, under what conditions does it also have
a right canonical factorization? And, if so, how can the right factorization be
obtained from the left one?

Our starting point is a given biproper operator function W, a Cauchy contour
I', and a left canonical factorization

W) =Y. (M)Y_(N), Xel. (12.14)

The biproper factors Y, and Y_ are given in terms of realizations, that is,
Yi(A) = Di+ Cy(Mx, —Ay) "By, (12.15)
Y_-(\) = D_+C_-(Mx —A_)'B_. (12.16)

We are looking for a right canonical factorization W(X) = W_ (AW, ()A). The
key idea for solving this problem is the following: combine the realizations of
Y, and Y_ into a realization for W using the product rule for realizations, then
apply the canonical factorization theorem (Theorem 7.1) to see if a right canonical
factorization exists and, if so, produce formulas for the factors.

As before the interior of I' will be denoted by F, the exterior by F_. We
(may and) shall assume that the operators in the realizations are chosen in such
a way that the operators D, and D_ are invertible, the spectra of the operators
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Ay and AY = Ay — B D{'Cy are contained in F_, and those of A_ and AX =
A_—B_D~'C_in F,. Then, in particular, the spectra of A_ and A are disjoint
and the Lyapunov equation

A+Z - ZA, == —B+C, (1217)

has a unique solution Z : X_ — X (see Section 1.4 in [51]). Similarly, the Lya-
punov equation
A*Z - ZAY = B_DZ'D;'C, (12.18)

has a unique solution Z : Xy — X_. These facts are used in the following theorem
and its proof.

Theorem 12.6. Let W(A\) = Y (A\)Y_()\) be a left canonical factorization of W
with respect to the Cauchy contour T', and let the factors be given by (12.15) and
(12.16). Let @ : X_ — Xy and P : Xy — X_ be the unique solutions of the
Lyapunov equations (12.17) and (12.18), respectively, that is,

ALQ—-QA_=—-B,C_, AXP - PAX =B_DZ'D;'Cy. (12.19)

Then W has a right canonical factorization W (X\) = W_ (AW, (\) with respect to
I if and only if Ix, — QP is invertible, or, which amounts to the same, Ix_ — PQ
is invertible. In that case, on the appropriate domains, the factors W_ and W,
and their inverses W1 and W;l, are given by

W_(A) = Dy+ (D0 +CiQ)Nx —A )}
(Ix. = PQ)"(B-DZ' — PBy),

Wi(\) = D_+(Dy'Cy+C_P)(Ix, —QP)™
-(Mx, = A4) N (B+D- - QB-),
W'\ = D' = DINDiC- +CLQ)(Ix. — PQ)™
‘(M x_ — AY)"YB_D-' - PB,)D}",
Wil(\) = D' - DINDI'Cy +C_P)(Mx, — A%
-(Ix, —QP)~"(B4D- — QB-)DZ".

Proof. First we use (12.15) and (12.16) to obtain a realization for W given in the
form (12.14). So we write X = X_+ X and define A: X — X by

A_ 0

A: IX7+X+ — X7<|;X+.

Then, by the product rule (see Section 2.5),
B_

W(\) = DyD_+[ DyC_ C, ] (Mx—A4)""
[ I ( B.D.
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The associate main operator of this realization is
—1p-1
AX —B_DZ'D'Cy
X
0 AL

AX = ZX,—i—X+ — X,—i—X+.

The spectra of A and A* do not intersect I". Put
M =Tm P(A;T), M* =Ker P(A*;T).

In order that W admits a right canonical factorization with respect to I' it is
necessary and sufficient (see Theorem 7.1) that X = M+ M*.

From the matrix representation of A given above we see that Ker P(A;T)
coincides with X,. So X = M+ X, and hence for some Z : X_ — X, we have

1
Z

M =1Im

The fact that M is invariant under A now amounts to (12.17). But then the
operator Z must be equal to . In a similar way one shows that

P
MX:Im[ 1,
I

where P : Xy — X_ is the unique solution of (12.18). From Lemma 12.4 we know
that the condition X = M*+ M is equivalent to the invertibility of the matrix

I P
Q I

which, in turn, is equivalent to the invertibility of I — QP or, which amounts to

the same, the invertibility of I — P@Q. This proves the first part of the theorem.
The formulas for the factors follow by applying Theorem 12.3 with X_, X,

M, M*, Q and P in the role of X1, X5, N1, No, Ro1 and Ryo, respectively. [

)

With the obvious modifications, Theorem 12.6 holds true for canonical fac-
torizations with respect to the usual contours in the Riemann sphere (real line
and imaginary axis).

Notes

This chapter is a rewritten and enriched version of Chapter 5 in [11]. Theorem 12.5
in Section 12.3 seems to be new. The material in the final section can be found
in [8]. The notion of an angular operator is standard in operator theory and goes
back to [101]. The theory of Riccati equations is important in system theory; see,
e.g., the text books [94], [33]. For more details on this subject we also refer to the
monograph [106] and to Section 1.6 in [69].






Chapter 13

The symmetric algebraic Riccati
equation

As we know from the previous part there is an intimate connection between canoni-
cal factorization and Riccati equations. In this chapter this connection is developed
further for the case when the rational matrix functions involved have Hermitian
values on the imaginary axis. In this case the corresponding Riccati equation has
additional symmetry properties too.

The chapter consists of three sections. In Section 13.1 we discuss two spe-
cial cases, which both lead to symmetric algebraic Riccati equations of a special
type. In a somewhat more general form, this symmetric version of the algebraic
Riccati equation is studied in Section 13.2, with special attention for stabilizing
solutions. The study is completed in Section 13.3 where we consider Hermitian
solutions of the symmetric algebraic Riccati equation and related pseudo-spectral
factorizations.

13.1 Spectral factorization and Riccati equations

In this section we present two illustrative special cases of spectral factorization.
In both cases the corresponding Riccati equations are symmetric.

For our first case, the starting point is a rational m x m matrix function
G given in realized form G(\) = I, + C(\l,, — A)~'B, with o(A) in the open
left half plane, and we consider the product W(\) = G(—=\)*G()). Clearly W is
a nonnegative rational m x m matrix function on the imaginary axis. We shall
assume additionally that G(A) is invertible for each A € iR, which in the present
situation is equivalent to the requirement that A* = A — BC has no eigenvalue
on iR. The fact that G(X) is invertible for each A € iR means that W is positive
definite on R and, as we shall see, Theorem 9.5 can be applied to show that the
function W admits a left spectral factorization with respect to iR. We shall use
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Theorem 12.5 to obtain such a factorization explicitly in terms of the matrices A,
B and C appearing in the realization of G.

Theorem 13.1. Let G(\) = I, + C(\I,, — A)~'B be a realization of a rational
m X m matriz function G such that A has all its eigenvalues in the open left half
plane. Put A* = A — BC, and assume that A* has no eigenvalue on iR. Then
the Riccati equation

—PBB*P + PA* + (AX)*P = 0 (13.1)

has a unique Hermitian solution P such that A* — BB*P has all its eigenvalues in

the left half plane. Furthermore, the rational matriz function W(A) = G(—=A)*G(\)
admits a left spectral factorization of W with respect to the imaginary axis. In fact,

W(A) = L_(=X)*L_()\) with
L_-(\)= I, + (C+ B*P)(\I, — A)~'B,

is such a factorization.

By Theorem 2.4, the inverse L~! of the spectral factor L_ in the above
theorem is given by

L='(\) = I, — (C+ B*P)(\l, — A* + BB*P)"'B.

In comparable situations later on in the book, where obtaining descriptions of
inverses of factors would involve only a routine application of Theorem 2.4, we
will refrain from giving the expressions.

Proof. We split the proof into two parts. In the first part we show that equa-
tion (13.1) has a unique Hermitian solution P such that A* — BB*P has all its
eigenvalues in the left half plane.

Part 1. From the given realization of G we get G(—\)* = I,,, — B*(\I,, + A*)~1C*.
Now apply the product rule from Section 2.5). This gives

:

It is easy to check that the hypotheses of Theorem 9.5 are satisfied with the skew-
Hermitian matrix H given by
0o -1,
H= . (13.3)

—A* C*C
0 A

C*

5 (13.2)

W) =1+ -B* C]()\—

I, O

Hence W admits both a left and a right spectral factorization with respect to ¢R.
In particular W admits both a left and a right canonical factorization with respect
to the imaginary axis.
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Put F_ = Ciet, and Fp = Ciighs, where Ciege and Ciighy are the open left and
right half planes, respectively. By hypothesis 0(A) C Ciets. So o(—A*) C Cirignt.
Thus the realization of W in (13.2) is of the form required in Theorem 12.5, and
the Riccati equation (12.10) in the theorem reduces here to

—~RBB*R — RA* — (AX)*R = 0, (13.4)

where, as usual, A = A— BC'. Since W admits a left canonical factorization with
respect to the imaginary axis, (the appropriate version of) Theorem 12.5 (see the
remark made between the theorem and its proof) shows that (13.4) has a unique
solution R satisfying

0(A* + BB*R) C Ciegt, o((A*)* + RBB*) C Ciegs. (13.5)

Here we used that 0( — (A)* — RBB*) C Ciignt is equivalent to the second in-
clusion in (13.5). Taking adjoints in (13.4) and (13.5) we see that (13.4) and (13.5)
remain true if R is replaced by R*. But then the uniqueness of the solution implies
R = R*. Note that for R = R* the two inclusions in (13.5) are equivalent. Thus we
see that (13.4) has a unique Hermitian solution R satisfying the first inclusion in
(13.5). When R is replaced —P, equation (13.4) transforms into equation (13.1).
Thus (13.1) has a unique Hermitian solution P satisfying o(A* — BB*P) C Ceg.
Part 2. Theorem 12.5 also yields a canonical factorization of the rational ma-

trix function given by (13.2). In fact, such a factorization is given by W(\) =
W_ (X)W, (N) where the factors and their inverses are given by

W_(\) = I-DB*(A\+A")"YC*+ PB),

Wi(\) = I+ (B'P+C)(\—A)"'B,

W='(\) = I+B*(\+(4%)* = PBB*)”(C* + PB),
Wil'(\) = I—(B*P+C)(\— A" +BB*P) 'B.

Comparing the first two expressions we see that W_(\) = W, (—\)*, and hence
the factorization W (A) = W_(A)W, (A) is a left spectral factorization with respect
to 7R. Now put L_ = W, to arrive at the desired result. ]

For our second special case, we assume that W is proper, Hermitian on the
imaginary axis, and has no poles there. This implies that W can be written in the
form

W(\) = D+ C(\I, — A)~'B - B*(\I,, + A*)"'C*, (13.6)

where D is Hermitian and A has all its eigenvalues in the open left half plane. On
the basis of this representation we shall prove the following theorem.

Theorem 13.2. Let the rational m x m function W be given by (13.6), where D is
positive definite and A has all its eigenvalues in the open left half plane. Assume
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additionally that W has no zeros on the imaginary azis, and put AX = A—BD~1C.
Then the Riccati equations

PBD™'B*P — PA* — (A*)*P+ C*D™'C = 0, (13.7)
QC*D'CQ - Q(AX)* —A*Q+ BD'B* =0 (13.8)

have unique Hermitian solutions P and Q that satisfy
o(A* = BD™'B*P) C Cie, o((A)" —=C*D7'CQ) C Ciee.  (13.9)

Furthermore, with respect to the imaginary axis, W admits left and right spectral
factorizations,

W) = L(=NL_()), W) = Li(-A\)*Ly(N), (13.10)
respectively, with the factors L_ and L. being given by

L_(\) = DY? 4+ D"V2(C + B*P)(\M,, — A)"'B, (13.11)

Li(\) = DY? - D7V2(CQ + B*)(\I, + A")~'C*. (13.12)

Proof. We split the proof into four parts. In the first three parts the attention is
focussed on equation (13.7) and the first parts of (13.9) and (13.10).

Part 1. From (13.6) we get
>—1

The main matrix of this realization has no pure imaginary eigenvalues. This follows
from the assumption on the eigenvalues of A. Clearly W is selfadjoint on the
imaginary axis and takes invertible values there. It follows that for A € iR the
signature of the matrix W (), that is, the difference between the number of positive
and negative eigenvalues of W (\), does not depend on A. As W (oo) = D is positive
definite, we obtain that W(\) is positive definite for A € iR. So the hypotheses
of Theorem 9.5 are satisfied with the skew-Hermitian matrix H given by (13.3).
Hence W admits both a left and a right spectral factorization with respect to
iR. To get the formulas for the factors we will apply (the appropriate version of)
Theorem 12.5 (see the remark made between the theorem and its proof)

—A* 0
0 A

—-C*

W) =D+ | B C](A— 5

Part 2. For the case considered here the Riccati equation (12.10) in Theorem 12.5
has the form

RBD™'B*R — RA* — (AX)*R+C*D™'C = 0.

This is precisely equation (13.7) with R in place of P. Since W admits a left
canonical factorization with respect to the imaginary axis, Theorem 12.5 tells us
that equation (13.7) has a unique solution P satisfying

o( = (A*)*+ PBD 'B*) C Ciign, o(A* = BD7'B*P) C Cieg. (13.13)
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Using the symmetry properties in (13.7) and (13.13), we see that P* is also a
solution of (13.7) satisfying (13.13). Because of the uniqueness of P, we have
P = P*, and hence P is a Hermitian solution of (13.7) satisfying the first inclusion
in (13.9). On the other hand, if P is a Hermitian solution of (13.7) satisfying the
first inclusion in (13.9), then P actually satisfies both inclusions in (13.13), and
hence P = P.

Part 3. Next, we derive the first factorization in (13.10). By Theorem 12.5 the
matrix function W admits a right canonical factorization, W(\) = W_ (AW (),
with respect to iR. The factors in this factorization are given by

W_(\) = DY24B*(\+A")"Y(-C* - PB)D™'/2,
Wi\ = DYV24 D V2(B*P+CO)\—A)'B.

Put L_(\) = W, (A\). Then L_(—=)\)* = W_()), and hence the first identity in
(13.10) holds. Moreover, the function L_(A) is given by (13.11). Since the factor-
ization W(A) = W_(A)W,()) is a canonical one, we also know that the factoriza-
tion W(A) = L_(—=X)*L_()) is a left spectral factorization of W with respect to
iR.

Part 4. Finally, to get the corresponding result for the Riccati equation (13.8) and
the second factorization in (13.10), we apply the results obtained in the preceding
paragraphs to V(\) = W (=), that is, to

V()= D+ B*(A\—A")"'C* —C(\+ A)'B.

Note that A* has all its eigenvalues in Cje;. Furthermore, if the function V' ad-
mits a left spectral factorization with respect to the imaginary axis, V(\) =
K_(=X\)*K_()) say, then W(\) = K_(\)*K_(—)\) is a right spectral factorization
of W with respect to iR. O

We conclude this section with a few remarks about the Hermitian solutions
of the Riccati equations appearing in Theorem 13.2. Let W be given by (13.6)
with D positive definite.

First we show that any Hermitian solution P of (13.7) is invertible whenever
the pair (C, A) is observable. Suppose Pz = 0. Since P is Hermitian, we also
have z* P = 0. Then (13.7) yields z*C*D~'Cxz = 0. As D is positive definite, this
gives Cx = 0. But then, again using (13.7), we get PA* = 0, and hence PAx =
PAXxz+PBD 'Cx = 0. So Ker P is A-invariant and is contained in Ker C. Hence
Ker P is contained in Ker (C|A), and thus Ker P = {0} when Ker (C|A) = {0}.

In a similar way one shows that controllability of the pair (A, B) implies
that every Hermitian solution @ of (13.8) is invertible. Thus, if the realization
C(A\ — A)7!B is minimal, then the Hermitian solutions of the Riccati equations
(13.7) and (13.8) are automatically invertible.

Now let P be an invertible Hermitian solution of (13.7). Multiplying (13.7)
from both sides by P~! shows that Q = P! is an invertible Hermitian solution of
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(13.8). The converse is also true, that is, if @ is an invertible Hermitian solution
of (13.8), then P = Q~! is an invertible Hermitian solution of (13.7). Thus the
map P +— @Q = P! provides a one-to-one correspondence between the invertible
Hermitian solutions P of (13.7) and the invertible Hermitian solutions @ of (13.8).
Furthermore, in this case (with Q = P~!) we have

0(A* = BD™'B*P) = o( — (A*)*+C*D'CQ).
Indeed, by (13.7) we have PAX — PBD 'B*P = —(A*)*P + C*D~1C, and so
A* -BD™'B*P = P Y(PA* - PBD 'B*P)
P~ 1( (A*)*P+C*D™'0)
= P (- +CD'CPYP
P (= (A)*+C*D'CQ)P
In particular, if the eigenvalues of AX — BD~!B* are in the open left half plane,
then those of (AX)* —C*D~1CQ are in the open right half plane. Comparing this

with (13.9), we see that in Theorem 13.2 the matrix @ is not the inverse of the
matrix P.

13.2 Stabilizing solutions

The equations (13.1) and (13.7) are special cases of the general symmetric algebraic
Riccati equation

~PBR'B*P+PA+A*P+ Q = 0, (13.14)

with R and @ selfadjoint, R invertible. Note that the Hamiltonian (see Sec-
tion 12.1) corresponding to equation (13.14) is the 2 x 2 block matrix

_A* —Q

13.15
~BR™'B* A (13.15)

We shall assume throughout this section that A is an n X n matrix, B an n X m
matrix, @ a selfadjoint n X n matrix, and R a positive definite m X m matrix.
Thus the Hamiltonian T can be viewed as an operator on C?* = C" & C".

We shall also assume that the pair (A, B) is stabilizable. The latter means
that there there exists an m x n matrix F such that A— BF has all its eigenvalues
in the open left half plane.

Equation (13.14) plays an important role in optimal control theory, where
one is mainly interested in stabilizing solutions P. A solution P of (13.14) is said to
be iR-stabilizing, or simply stabilizing when no confusion is possible, if the matrix
A — BR™'B*P has all its eigenvalues in the open left half plane. In order that
such a solution exists the pair (A, B) has to be stabilizable. In general, however,
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this condition is not sufficient. An additional condition on the eigenvalues of the
Hamiltonian T is required.

Theorem 13.3. Consider the symmetric algebraic Riccati equation (13.14) with R
positive definite and Q selfadjoint. Then the following two statements are equiva-
lent:

(i) There exists an iR-stabilizing solution of (13.14);

(ii) The pair (A, B) is stabilizable and the Hamiltonian T given by (13.15) does
not have pure imaginary eigenvalues.

Moreover, if (13.14) has an iR-stabilizing solution, then it is unique and Hermi-
tian.

The proof of the implication (i) = (ii) and of the final statement of the the-
orem concerning the uniqueness of the iR-stabilizing solution do not require R to
be positive definite; selfadjointness and invertibility of R are enough.

It will be convenient first to prove a lemma using a somewhat more general
setting. For this purpose we return to the general algebraic Riccati equation which
was studied in Chapter 12:

XTon X + XToo —T11 X —Ti2= 0. (13.16)
Taking
Ty = —BR'B*, Typ=A, Ti=-A" Ta=-Q, (13.17)
and setting X = P, we see that we arrive at (13.14). Note that in this case
Too = —T},,  ThH=To, T35 =T (13.18)

In this symmetric case the coefficients T;;, 1 < i, j < 2, are square matrices, all of
the same order, n say.
In what follows H will denote the Hamiltonian of (13.16), that is, H =

[T;;];,_, Note that the identities in (13.18) hold if and only if

0 I,
JH = —H*J, where J = . (13.19)
I, 0

We are now ready to state the lemma.

Lemma 13.4. Let X be a solution of (13.16) such that o(Tee + T21X) C Ciegt. If,
in addition, the coefficients of (13.16) satisfy the identities in (13.18), then the
Hamiltonian H has no pure imaginary eigenvalues and o(T11 — XT51) C Cright-
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Proof. We shall use freely the results of Section 12.1. Let NV be the angular sub-
space determined by X. Then N is invariant under the Hamiltonian H and the
restriction H|y is similar to the matrix Ta + 721 X . Since the identities in (13.18)
are satisfied, (13.19) holds. The symmetry relation JH = —H*J implies that the
eigenvalues of H are placed symmetrically with respect to the imaginary axis (mul-
tiplicities included). Note that the dimension of the angular subspace N is equal to
n, where n is the size of the matrices T35, 1 <+4,7 < 2. Since N is invariant under
H and H|y is similar to Tee 4+ T51 X, the condition on the spectrum of Thy 4+ T51 X,
implies that o(H|n) C Ciegg. It follows that H has at least n eigenvalues (multi-
plicities taken into account) in Cjeg. The symmetry referred to above then gives
that H also has at least n eigenvalues in C,igh¢. But the order of H is 2n. So H
has precisely n eigenvalues in Cieg, and also precisely n eigenvalues in Cyighe. In
particular, H has no eigenvalue on the imaginary axis.
Next, recall formula (12.5) for the present setting, that is,

T — X1y 0
E'HE = , where E = 0 1

I, X
. (13.20)
15, Too + T X

As H and E~'HE have the same set of eigenvalues (multiplicities taken into
account) and o(Tae + T21X ) C Ciest, the result of the previous paragraph implies
that o(T11 — XT51) C Cyignt, which completes the proof. O

Corollary 13.5. Assume the coefficients of the Riccati equation (13.16) satisfy the
symmetry conditions in (13.18). Then equation (13.16) has at most one solution X
such that 0(Teg +T21X) C Ciety. Moreover, this solution, if it exists, is Hermitian.

Proof. Assume X is a solution of (13.16) such that o (752 + T2 X) is a subset of
Ciett- Then, by Lemma 13.4, the Hamiltonian H has no pure imaginary eigenvalues
and o(Th1 — XT»1) C Ciigne. But then we can apply Proposition 12.1 to show
that the angular subspace N determined by X is the spectral subspace of H
corresponding to the eigenvalues of H in the open left half plane. In particular,
N is uniquely determined and does not depend on the particular choice of the
solution X. This implies that X is also uniquely determined.

Again assume that X is a solution of (13.16) such that o(Ta + 751 X) is a
subset of Ciege. Then o(Th1 — XT21) C Ciigne. By taking adjoints and using the
identities in (13.18) we see that the latter inclusion implies that o(T2e + T21 X ™)
is a subset of Cjeg. Furthermore, from the identities in (13.18) it also follows that
X* is a solution of (13.16). But then, by the uniqueness result of the previous
paragraph, X* = X. Hence X is Hermitian, as desired. O

Proof of Theorem 13.3. The implication (i) = (ii) and the final statements of the
theorem follow directly by applying Lemma 13.4 and Corollary 13.5 with the
coefficients T;;, 1 < i, j < 2, being taken as in (13.17).

It remains to prove the implication (ii) = (i). Let F be an m X n matrix such
that A— BF has all its eigenvalues in the open left half plane. Such a matrix exists



13.2. Stabilizing solutions 241

because (A, B) is stabilizable. Introduce the rational m x m matrix function

F*R

, 13.21
B (13.21)

V(A)= R+ [B* —RF](A-G)™!

where
—A*+ F*B* —Q — F*RF

0 A— BF

G:

The fact that R is invertible implies that the realization (13.21) is biproper, and
one verifies easily that the associate main operator is precisely the Hamiltonian
T. Thus

F*

VN =R'-[R'B* —F](A-T)""! BR-1

Since A— BF has all its eigenvalues in the open left half plane, G has no eigenvalue
on the imaginary axis. By assumption the same holds true for 7. Thus V has no
poles or zeros on iR. In particular, V() is invertible for each A € iR. With J as
in (13.19) we have

F*R

JG=-G"J, ] = [B* —RF]".

So, by the remark made after the proof of Theorem 9.1, the values of V on iR are
selfadjoint matrices. Since V() is invertible for each A € iR, it follows that the
signature of the matrices V() for A € iR, i.e., the difference between the number
of positive and negative eigenvalues of the selfadjoint matrix V' (\), is constant. As
V(o0) = R is positive definite, we obtain that V(\) is positive definite for A € iR.
Hence we know from Theorem 9.5 that V' admits a left spectral factorization with
respect to ¢R.

To finish the proof of (ii) = (i), we apply (the appropriate version of) Theo-
rem 12.5 (see the remark made between the theorem and its proof) with

Ay = —A* + F*B*, Ay = —Q — F*RF, Agy = A— BF,
Bi=F*R, B,=B, (=B, (Cy=-RF, D=R

Via these choices, equation (12.10) transforms into (13.14) with P as the unknown.
Furthermore, the inclusions (12.11) and (12.12) change into

o(—A* + PBR™'B*) C Cyignt, 0(A—=BR 'B*P) C Cieg. (13.22)

The conclusion is that equation (13.14) has a unique solution P satisfying the
inclusions in (13.22). The second of these shows that P is a stabilizing solution of
(13.14). Thus (i) is proved. O
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Let P be an iR-stabilizing solution of (13.14). Then by definition, the spectral
inclusion 0(A — BR™!B*P) C Cief; holds. Furthermore, since P is Hermitian,
also o(—A* + PBR™'B*P) C Cyignt; see also Lemma 13.4. So one of the spectral
inclusions in (13.22) implies the other one automatically; cf., the two spectral
inclusions (12.11), (12.12).

13.3 Symmetric Riccati equations and pseudo-spectral
factorization

We now continue the discussion of Section 13.2. The object of study will be the
algebraic Riccati equation

A*P+PA+Q— (PB+ S )R Y(B*P+S) = 0. (13.23)

Observe that compared to (13.14) there are some additional terms. On the other
hand, (13.23) can be rewritten in the more familiar form (13.14) as

(A* — S*R™'B*)P + P(A— BR™'S) + (Q — S*R™'S) — PBR™'B*P = 0.

The Hamiltonian of this equation is given by

7A*+ S*Rle* 7Q+S*R715
T = (13.24)
—~BR™'B* A—BR™'S
Also of importance is the rational matrix function
W(A) [ B*(A+ A7t T ] @ & (A-A)7B (13.25)
=| —B*(A+A")" .
S R I

Note that W is selfadjoint on the imaginary axis, and admits the realization

_A* _Q -1 _S*
WA)=R+[ B S]|[A= (13.26)
0 A B
For the inverse of W, one computes that
W l=RY-R[ B S]-1)'| R

Letting n be the order of the matrix A and the skew-Hermitian 2n x 2n matrix J
as in (13.19), we have

*

—A* —Q
0 A
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and hence also JT = —T*J.

The hypotheses we shall have in effect in this section are more stringent than
those in Section 13.2. In fact, we shall assume A is an n X n matrix and B an
n X m matrix such that (A, B) is a controllable pair (as opposed to the weaker
condition of stabilizability). As in Section 13.2 we take R positive definite and @
selfadjoint.

In the next theorem we characterize when the function W introduced above
is nonnegative on the imaginary axis. The characterization is given in terms of the
existence of Hermitian solutions of the Riccati equation (13.23). Also we specify
further the pseudo-spectral factorization result in Theorem 10.2, again in terms of
Hermitian solutions of (13.23).

Theorem 13.6. Consider the Riccati equation (13.23) with (A, B) a controllable
pair, R positive definite and Q selfadjoint. Let T be the matriz given by (13.24)
and let W be the rational matriz function defined by (13.25). Then the following
statements are equivalent:

(i) Equation (13.23) has a Hermitian solution P;

(ii) The rational matriz function W is nonnegative on the imaginary axis;
(iii) The partial multiplicities of T at its pure imaginary eigenvalues are all even;
(iv) There exists a T-invariant subspace M such that J|M] = M*.

In that case, so if the equivalent conditions (1)—(iv) hold, then, given a Hermitian
solution P of (13.23), the rational matriz function W(X) factors as

W(A\) = L(=\)*L()\), (13.27)
where
L(\) = RY2 + R™Y*(B*P + S)(\,, — A)"'B. (13.28)
Moreover, if M is a T-invariant subspace such that JIM] = M, then M is of the
form
M =TIm [ i ]

for a Hermitian solution P of (13.23). In addition, if both A and T|p have all
their eigenvalues in the closed left half plane, then the factorization (13.27) is a
pseudo-spectral factorization with respect to the imaginary axis.

Proof. (i) = (ii) Suppose (13.23) has a Hermitian solution P. With this P, define
L(X) by (13.28). We then have

L(-N*L(\) = R—B*(\+A")"YS*+PB)+ (B*"P+S)(\—A)"'B
~B*(\+ A")"HS* + PB)R"Y(B*P + S)(A\— A)"'B.

Using (13.23), one rewrites the last term as

B*A+A ) Q+(N—A)P+PA-N))A—A)'B
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which, in turn, can be transformed into

B*A+A)'QIN—A) !B+ B*P(\ - A)"'B—-B*(\+ A*)"'PB.

Thus L(—A)*L(A) = W()), and (ii) holds. Moreover, the identity (13.27) is proved.

(ii) = (iii) To prove that (ii) implies (iii) a couple of preparatory remarks are
needed. Let A be an n X n matrix and B be an n X m matrix. For any m x n
matrix F' introduce

Ap=A—-BF, Sp=S—-RF, Qp=Q-SF-F'S+FRF.

Then,
Qr St I —F* Q S* I 0
Se R | |0 I S R “F I
Thus
I F* Q S*
W) = [=B(A+A971 I ] noor
0 I Sr R
I 0 A—-A)'B
F I I
= [ —B\A+ A"t I —-B*(\+A*)"1p* }
Qr S}_ A—-A)"'B
Sp R | I+F\-A)™'B
Now introduce
Qr Sk [ (A\—Ap)"'B
WrA) = [ =B*(\N+ A%)"L T ,
F(N) = [ ( 7) ] Sy R s

and ®(\) = I + F(A\ — A)"'B. Then ®(A\)~! = I — F(A\ — Ar)~!B. Using the
fourth identity in Theorem 2.4 one sees that (A — A) "' B®(\)~! = (A — Ap) "' B.
Thus W(A) = &(=X)*Wg(A)®(N). So W(A) is nonnegative for A € iR if and only
if Wg()) is nonnegative for A € iR, provided A is not a pole of the functions
involved. Next, notice that Wx(\) has the realization

5 |

A%
We(\) =R+ [ B SF]<>\— Pl
R'[ B* Sp|=T,

0 Ap

One readily computes that

-Ay —Qr
0 Afp

~ Sk
B
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where T is given by (13.24). So

_S;‘:

WrA)'=R 'R '[B* Sp|(A-T7)" R™L

Since the pair (A, B) is controllable, we can use the pole placement theorem
from mathematical systems theory (see Theorem 19.3 in Chapter 20 below), to
conclude that there exists an m x n matrix F' such that all the eigenvalues of Ap
are in the open left half plane. Using such an F, we see that the matrix

-Ar —Qr
0 Ap

has no imaginary eigenvalues. This allows us to show (see formula (4.7) in Section
4.3 in [20]) that the matrix functions

Wgr(A) 0 Moy — T 0
and
0 Lo, 0 I,

are analytically equivalent on an open set containing the imaginary axis. It follows
that for each A\ € iR the partial multiplicities of A as an eigenvalue of T" are equal
to the partial multiplicities of A as a zero of Wpg. Since W is nonnegative on iR,
we know from Proposition 10.4 that the partial multiplicities of A € iR as a zero
of Wg are even. Hence the partial multiplicities at the pure imaginary eigenvalues
of T are even. Thus (ii) implies (iii).

(iii) = (iv) This implication can be seen from Theorem 11.4 in Chapter 11
applied to A = 4T and H = iJ. Indeed, since there are no odd partial multiplicities
corresponding to pure imaginary eigenvalues of T', the condition of Theorem 11.4
is satisfied. Hence there exists an A-invariant subspace M such that H[M] = M*.
This subspace then is also T-invariant and satisfies J[M] = M*.

(iv) = (i) Let M be T-invariant subspace such that J[M] = M~ and write

M =1Im ,
X5

for appropriate n x n matrices X; and Xs. It will be shown that X5 is invertible.
Once this is done, we can take P = X; X, '. From T[M] C M one obtains that
P solves (13.23), while from J[M] = M~ one has P = P*. Hence (i) holds.
We have also shown that any 7T-invariant J-Lagrangian subspace M is the graph
of a Hermitian solution P of the Riccati equation, that is, M is of the form
M=1Im [P 1] " for a matrix P = P* that solves (13.23).

It remains to verify that Ker X5 = {0}. As dim M = n, the null spaces Ker X
and Ker X, have a trivial intersection. So it is sufficient to establish that Xox = 0
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implies Xjx = 0. Let Xox = 0. Then

Xl.’L'
0

| o

and hence
T X1z —A* Xz + S*R_IB*X;LLL‘
= €
0 —~BR™'B* X1z
Now M is iJ-Lagrangian, i.e., J[M] = M*. So
X X
0= <T . 1 L J [ L ] > = —(R™'B* X2, B*X12).

0 0
As R is positive definite, we obtain B*X;xz = 0. Hence

[ X1{,C
T
0

—A*Xlx
0 .

But this vector is in M, so it must be of the form

le

Xoy |
Thus Xoy = 0 and Xyy = —A* X z. As Xoy = 0, we have B* Xy = 0 by the
argument given above. So B*A* X x = 0. Now consider

XlI
0

T2

0 0

—A*X1I ] .

A*2X1l‘ ]

Repeating the argument we get B*A*2X 2 = 0. Continuing in this way we arrive
at X1z € Ker B*A* for all j. As (A, B) is a controllable pair, the pair (B*, A*)
is observable, and thus we see that X;z = 0, as desired.

Tt is easily seen that the eigenvalues of T'|js coincide with those of the matrix
A— BR™'S — BR!B*P. Thus, if both A and T|j; have their eigenvalues in the
closed left half plane, then the factorization (13.27) with L given by (13.28) is a
pseudo-spectral factorization. O

Notice that the full force of the controllability condition on the pair (4, B)
was only used in the last part of the proof. More precisely, the implications (i) = (ii)
and (iil) = (iv) are true without any condition on (A, B), and for the implication
(ii) = (iii) only stabilizability of (A4, B) was used.
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Notes

The connection between Riccati equations and factorizations as discussed in Sec-
tion 13.1 goes back to [147] and [41]. The main result of Section 13.2 originates
from [102], see also [106], Section 9.3. The results of Section 13.1 and 13.2, and sim-
ilar results for the discrete time algebraic Riccati equation, play an important role
in several problems in mathematical systems theory, notably, LQ-optimal control,
Kalman filtering and stochastic realization (see, e.g., [84], [85], [33]). The main
result of Section 13.3 appeared for the first time in [105] and [34]. See also Chap-
ter 7 in [106]. The parametrization of solutions of the algebraic Riccati equation
in terms of invariant subspaces of the matrix 7', as described in Theorem 13.6,
also plays a role in [135], [136].






Chapter 14

J-spectral factorization

In this chapter we continue the study of rational matrix functions that take Hermi-
tian values on certain contours. In contrast to the previous chapters, the emphasis
will not be on positive definite or nonnegative rational matrix functions, but rather
on ones that have values for which the inertia is independent of the point on the
contour. Such functions may still admit a symmetric canonical factorization, pro-
vided we allow for a constant Hermitian invertible matrix as a middle factor. Such
a factorization is commonly known as a J-spectral factorization. We shall give nec-
essary and sufficient conditions for its existence, and study the question when a
function which admits a left J-spectral factorization also admits a right J-spectral
factorization.

This chapter consists of seven sections. The first four sections and the one
but last deal with J-spectral factorization with respect to the imaginary axis. Sec-
tion 14.1 introduces the notion of J-spectral factorization. The next two sections
provide necessary and sufficient conditions for the existence of such factorizations;
in Section 14.2 these conditions are stated in terms of certain invariant subspaces
and in Section 14.3 they are given in terms of Riccati equations. Two special cases
are discussed in detail in Section 14.4. The fifth section (Section 14.5) deals with J-
spectral factorization with respect to the unit circle and the real line. Section 14.6
concerns the topic of left versus right J-spectral factorization. In Section 14.7 an
alternative approach is used to derive J -spectral factorizations with respect to the
unit circle. The main result of this final section extends to a more general setting
the first main result of Section 14.5.

14.1 Definition of ./-spectral factorization

Throughout this chapter J is an invertible Hermitian m x m matrix. Often we
shall assume additionally that J~! = J. Thus in that case we have

J=J"=J" (14.1)
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Such a matrix is called a signature matriz. Up to a congruence transformation any
selfadjoint invertible matrix is a signature matrix.
Suppose W is a rational m x m matrix function. A factorization

W(A) = L(~\)*JL(\) (14.2)

is called a right J-spectral factorization with respect to the imaginary axis if L
and L~! are rational m x m matrix functions which are analytic on the closed left
half plane (infinity included). In that case the function L(—\)* and its inverse are
analytic on the closed right half plane (including infinity). Thus a right J-spectral
factorization with respect to the imaginary axis is a right canonical factorization
with respect to ¢R featuring an additional symmetry property between the factors.
A factorization (9.3) is called a left J-spectral factorization with respect to the
imaginary axis if L and L~! are rational m xm matrix functions which are analytic
on the closed right half plane (infinity included), in which case the function L(\)*
and its inverse are analytic on the closed left half plane (infinity included). Such
a factorization is a left canonical factorization with respect to ¢R.

The existence of a right or left J-spectral factorization implies that W admits
a canonical factorization with respect to the imaginary axis. In particular, in order
that a right or left J-spectral factorization of W exists it is necessary that W is
biproper and has no poles or zeros on the imaginary axis. Furthermore, the identity
(14.2) gives that W is selfadjoint on the imaginary axis.

Contrary to spectral factorizations for positive definite rational matrix func-
tions, J-spectral factorizations do not always exist for biproper rational matrix
functions that satisfy the obvious necessary conditions mentioned in the previous
paragraph. Since a J-spectral factorization is a canonical factorization, we can use
Theorem 3.2 to prepare for an example of this phenomenon. Let

A—1
A+1
W()) = LR (14.3)
A+1 0
A—1
Obviously, W is biproper and its values on the imaginary axis are selfadjoint.
Furthermore, W has no pole or zero on the imaginary axis. The function W has
the minimal realization W(\) = D + C(\ — A)~! B, with

0 1 1 0 10
D= . A= ., B= ., C=
10 0 -1

0 -2
The associate main operator is given by

0 1
2 0

] . (14.4)

AX=A—-BDC =
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Now for a right canonical factorization with respect to the imaginary axis to exist,
we must have C2 = M_+ M, where M_ is the spectral subspace of A associated
with the part of 0(A) lying in the left half plane, and M_f is the spectral subspace of
A* associated with the part of (A*) lying in the right half plane. However, since
in this case A* = —A, we have M_ = M. Hence a right canonical factorization
of W with respect to iR does not exist. Analogously, a left canonical factorization
does not exist either. Hence neither left nor right J-spectral factorizations of W
with respect to the imaginary axis exist for any choice of J = J* = J 1.

To further clarify the connection between J-spectral factorization and canon-
ical factorization we present the following proposition.

Proposition 14.1. Let W be a biproper rational m X m matriz function that is
selfadjoint on the imaginary axis and has no pole there. Then W (00) is congruent
to a signature matriz J, and for such a matrix J the function W admits a right
(respectively, left) J-spectral factorization with respect to the imaginary azis if and
only if it admits a right (respectively, left) canonical factorization with respect to
the imaginary azis.

Proof. Since W is selfadjoint on the imaginary axis and proper, we see that D =
W (o0) is well-defined and selfadjoint. The fact that W is biproper means that D
is invertible. Thus D is an invertible selfadjoint matrix, and hence congruent to a
signature matrix, J say: D = E*JFE for some invertible matrix E.

Let W(A) = W_(A)Wx(A) be a right canonical factorization of W with
respect to the imaginary axis. Since W, W_ and W, are biproper we have D =
D_D,, where D_ = W_(00) and Dy = Wy (o). It follows that the factorization
W(X) = W_(A)W4(A) can be rewritten as W(A) = V_(A) DV, (\), where

Vo(A) =W_(NDZ',  Vi(\)=D;'W_()).

In particular, the values of V_ and V. at infinity are equal to the m x m identity
matrix. Since V; and V[ ! are analytic on the closed right half plane (infinity
included) and the functions V_ and V! are analytic on the closed left half plane
(infinity included), the factorization is unique. Now we use that D is selfadjoint
and that W is selfadjoint on the imaginary axis. It follows that

W) = Vi (—X) DV (-A)",
and in this factorization the factors have the same analyticity properties as those
in W(X) = V_(A\)DV,()). Because of the uniqueness of the latter factorization,

we conclude that V_ () = Vi (=A)*. Recall that D = E*JE. Put L(\) = EVy()).

Then W(A) = L(—A)*JL()), and this factorization is a left J-spectral factorization
with respect to the imaginary axis. The reverse implication is trivial. O

14.2 J-spectral factorizations and invariant subspaces

In this section necessary and sufficient conditions for existence of a right or left
J-spectral factorization with respect to the imaginary axis will be derived in terms
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of invariant subspaces. It will be assumed that the obvious necessary conditions
for the existence of a J-spectral factorization are satisfied, that is, the rational
m X m matrix function W for which we wish to find J-spectral factorizations with
respect to iR is assumed to be biproper, to have no poles or zeros on iR, and to
be selfadjoint on ¢R.

We begin with two lemmas which can be viewed as further refinements of
Theorem 9.1(ii).

Lemma 14.2. Let W be a biproper rational mxm matriz function that is selfadjoint
on the imaginary azxis and has no pole there. Then W admits a minimal realization

W(A\) = D+ B*H*(\ly, — A)"'B, (14.5)
such that D = D* is invertible, H is invertible,
HA=-A"H, H* = —H, (14.6)
and the matrices A and H partition as
_ &1Am, H:[O i@ﬂ, (14.7)
0 Ao H  Hax

where A1 and Ass are n X n matrices which have all their eigenvalues in the right
open half plane and left open half plane, respectively.

Proof. Since W is biproper, D = W(o0) is invertible. The fact that D is selfadjoint
is covered by item (ii) in Theorem 9.1.

Next, let W(A) = D + 5()\1,, — A)"'B be a minimal realization of W. The
fact that W has no poles on 7R and the minimality of the realization imply that
A has no eigenvalue on iR. Furthermore, using item (ii) of Theorem 9.1 again, we
know that there exists a unique invertible p x p matrix T for which we have

TA=-AT, TB=C*, T=-T" (14.8)

Let N, be the spectral subspace of A corresponding to the eigenvalues in the
open right half plane. The identity TA = —A*T yields f[NJr} = Ni. But then
the invertibility of T implies that dim N; = dim V. i‘ The latter can only happen
when p is even, that is, p = 2n for some nonnegative integer n. In particular,
dim Ny = n. Now let fi1,..., f, be an orthogonal basis of N, and let f+1,..., fon
be an orthogonal basis of Nj_-. Since C" = N, & Nj_-, the vectors f1, ..., fon, form an
orthogonal basis of C?”, and we can consider the unitary matrix U that transforms
the basis fi,..., fan into the standard basis e1, ..., ea, of C>". Define

A=UAU"Y, B=UB, C=CU', H=UTU".

Then W()\) = D+ C(Mz, — A)~!B is a minimal realization of W. The fact that
U~ = U* together with (14.8) shows that

HA=—-A*H, HB=C*  H=-H"
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Thus W is of the form (14.5) and (14.6) holds.
The spectral subspace M of A corresponding to the eigenvalues in the open
right half plane is given by

My =span{ei,...,en}. (14.9)
The first identity in (14.8) yields
H([span{e1,...,e,}] = H[My] = M = span{enii,...,en}. (14.10)

It follows that the matrices A, and H can be partitioned as in (14.7). All blocks in
these representations of A and H are n X n matrices. The zero entry in A follows
from the A-invariance of M and the fact that this space is given by (14.9), while
the zero entry in H follows from (14.10). The definition of M, and the identity
(14.9) also imply that all the eigenvalues of Aj; are in the open right half plane
and those of Aso are in the open left half plane. O

Lemma 14.3. Let W be a biproper rational mxm matriz function that is selfadjoint
on the imaginary azxis and has no pole there. Then W admits a minimal realization

W) =D+ C(\a, —A)™'B, (14.11)
such that D = D* is invertible and the matrices A, B and C can be partitioned as

—A3y A
0 Ago

By
By

A= B= , C=[-B; Bf], (1412

)

where Ais is a selfadjoint n X n matriz, Ass is a n X n matriz which has all its
eigenvalues in the open left half plane, and both By and Bs are n X m matrices.

Proof. From the preceding lemma we know that W admits a minimal realization
W(A) = D+ B*H*(\, — A)"'B,
where D = D* is invertible, H is invertible,

HA=-A*H, H*=-H

)

and the matrices A and H partition as
Apr An
0 A

N 0 —Hj
., H=|_ 7, (14.13)
Hy1  Hao

such that the eigenvalues of Ay are in the open right half plane and those of Ao
are in the open left half plane.
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Since H is invertible, it follows that f[gl is invertible, and hence we can define
-1 1~ 15
H21 _§H 21 Hjo
0 I,

The matrix S is invertible. Put C = B*H *, and consider the matrices
A=S"'4S, B=S5"'B, (C=CS', H=S5"HS.

Obviously, W(A\) = D + C(\I,, — A)~1 B is a minimal realization of W.
It remains to prove that A, B, C can be partitioned in the desired way. A
straightforward calculation shows that

[0 —Inl

HA=-A"H, HB=C", H= . (14.14)
L, 0

Since the matrices Z, S, and S~ are all block upper triangular, the same holds true
for A. The first identity in (14.14) together with the third identity in (14.14) shows
that A is of the form given in (14.12) with A1 being selfadjoint. Furthermore, since
the entry in the right lower corner of S and S ~1 is the n x n identity matrix we
see that Ags = Aso, and hence Aos is an n X n matrix which has all its eigenvalues
in the open left half plane. The second and third identities in (14.14) show that
B and C are as in (14.12). Obviously, By and Bs are matrices of size n x m. O

The external matrix D in the realizations (14.5) and (14.11) is congruent to
a signature matrix J, that is, D = E*JFE for some invertible matrix E. Replacing
W(A) by (E*)"'W(AN)E~! we may assume that the external matrix is actually
equal to J. In the next theorem we shall make this assumption.

Theorem 14.4. Let W be a rational m x m matriz function that is selfadjoint on
the imaginary azis and has no pole there. Suppose W is given by

W(\) =J+C(\, —A)'B,
where J is a signature matriz and

—A3y A
0 Ao

A= B= , C=[-B; Bi],

)

By

such that Ays is a selfadjoint n x n matriz, Asg is an n X n matriz which has all
its eigenvalues in the open left half plane, and both By and Bs are n X m matrices.
Then W admits a left J-spectral factorization with respect to the imaginary axis,

W(A) = L_(=N)*JL_(\),
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if and only if
—A5, + B1B; Aix— B1Bj
AX =
ByB3 Ago — By BY

has no eigenvalues on the imaginary axis, and the spectral subspace of A* corre-
sponding to its eigenvalues in the open left half plane is of the form

an

for some Hermitian matriz X . In that case the unique left J-spectral factor L_
for which L_(o0) = Iy, is given by

L-(\) = I, +J 4B — B3X)(\I, — Asz) ' By.

In this expression (as well as in other comparable formulas below) the matrix
J~1 can be replaced by J.

Proof. In order to prove the first part of the theorem, we have only to check when
W admits a left canonical factorization with respect to the imaginary axis (see
Proposition 14.1).

Let M be a spectral subspace of A corresponding to its eigenvalues in the
open right half plane. Then M = Im|[I 0]*. Writing M * for the spectral subspace
of A* corresponding to its eigenvalues in the open left half plane, the matching
condition

C'= M+ M*~ (14.15)

is satisfied if and only if M* = Im[X* I]* for some matrix X. With H as in
(14.14), the subspace M * is iH-Lagrangian (see Section 11.1). Thus

[ -y
Im
X

which implies X = X*. Applying the left-version of Theorem 3.2 the first part of
the theorem follows.

Next let us deal with the second part. So suppose (14.15) is satisfied and
write the projection IT of C" along M onto M* in the form

)

Then the unique right hand factor L_ in a left canonical factorization with respect
to the imaginary axis of W, satisfying the additional condition that L(co) = Iy,

=H[M*]=(M*)" =Ker [ X* I ],
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is given by
L_(\) = I+J'Cl(\-TAI) B
0 XA 1\ '[ XB,
= I+J'[0 Bf-B;X | [A-
O A22 B2
= I+ J Y4B} —B;X)(\— Ay) ' By,
as was claimed. O

In Section 14.5 below we shall consider J-spectral factorization for selfadjoint
rational matrix functions on the real line or on the unit circle.

14.3 J-spectral factorizations and Riccati equations

In this section, necessary and sufficient conditions for existence of a right or left J-
spectral factorization with respect to the imaginary axis will be derived in terms
of Riccati equations. It will be assumed that the obvious necessary conditions
for the existence of a J-spectral factorization are satisfied, that is, the rational
m X m matrix function W for which we wish to find J-spectral factorizations with
respect to iR is assumed to be biproper, to have no poles or zeros on iR, and to be
selfadjoint on 7R. As in Theorem 14.4 we assume that the external matrix (that
is, the value at infinity) is a signature matrix.

Theorem 14.5. Let W be a rational m x m matriz function that is selfadjoint on
the imaginary azis and has no pole there. Suppose W is given by

W) = J+C(An — A)7' B,

where J is a signature matriz and
—A3 A
0 Ago

A= B = , C=[-B; Bf],

)

By

such that Ays is a selfadjoint n x n matriz, Ass is an n X n matriz which has all
its eigenvalues in the open left half plane, and both By and Bs are n x m matrices.
Then W admits a left J-spectral factorization with respect to the imaginary axis,

W(A) = L_(=N)*JL_()\),
if and only if the algebraic Riccati equation
XByJ 'ByX + X(Agg — BoJ 'B}) + (A5 — B1J'B5) X (14.16)
~Ap+ B J !B =0
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has a (unique) iR-stabilizing Hermitian solution X . In that case the unique left
J-spectral factor L_ for which L_(00) = I, is given by

L (N = I,+J YBf = B3X)(\I, — Agz) ' By. (14.17)

In line with the definition given in the paragraph preceding Theorem 13.14, a
solution of (14.16) is said to be iR-stabilizing (or simply stabilizing) if the matrix
Agy — BoJ 1B} + BaJ B3 X has its eigenvalues in the open left half plane.

Proof. In order to prove the first part of the theorem, we have only to check when
W admits a left canonical factorization with respect to the imaginary axis (see
Proposition 14.1).

A straightforward application of Theorem 12.5, with Fy equal to Cyep and F—
equal to Ciignt, tells us that W admits a left canonical factorization with respect to
the imaginary axis if and only if the Riccati equation (14.16) has a unique solution
X satisfying the additional spectral constraints

o(— A+ (B1— XB2)J'B;) C  Chigns, (14.18)
0(Ag2 — BoJ ' (B} — B5X)) C  Cieg. (14.19)

Next, note that X satisfies (14.16) and the spectral constraints (14.18) and (14.19)
if and only if the same holds true for X*. Because of uniqueness it follows that
X = X*. The second spectral constraint (14.19) means that X is a stabilizing
solution of (14.16). This completes the proof of the first part of the theorem.

To prove the second part one applies the second part of Theorem 12.5 with
Dy =J and Dy = I,. O

Theorem 14.6. Let W be a rational m x m matriz function that is selfadjoint on
the imaginary axis and has no pole there. Suppose W is given by

W) = J+ B*H*(\y, — A)"'B,

where J is a signature matriz, H is invertible, HA = —A*H and H* = —H, and
the matrices A and H partition as
. [ 0 —Hﬂ

H21 H22

A A
0 Ag

where A1 and Ass are n X n matrices which have all their eigenvalues in the open
right half plane and open left half plane, respectively. Put

1 1
Az = §A§2H22 + §H22A22 + Ha1 Aso, (14.20)

= 1
B, = H2131+§H22Bz~ (14.21)
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Then W admits a left J-spectral factorization with respect to the imaginary axis,

W) =L_(=N)*JL_(N),
if and only if the algebraic Riccati equation

XByJ 'BiX + X(Agy — BoJ 'BY) + (A5, — B1JT'B)X  (14.22)
—Ay+ B J B =0.

has a (unique) iR-stabilizing Hermitian solution X. In that case the unique left
J-spectral factor L_ for which L_(o0) = I, is given by

L_(A\) = I+ J B! = B3X)(AL, — Ag) ' Bo. (14.23)

Recall that an iR-stabilizing solution X of (14.22) is one for which the matrix
Agy — BoJ 'Bf + ByJ B3 X has its eigenvalues in the open left half plane.

Proof. Put C'= B*H*, and consider the matrices A= S—LAS, B =SB and
C =CS, where

_ 1
Hy! —§H211H22

S =
0 1
Then W(A) = J + C(Al, — A)~1B, and from the proof of Lemma 14.3 we know
that A, B and C partition as
~ — A3, Ar N B N R
A= R , B=| _ |, C:[_B; Bf},
0 AQQ BQ

where A\QQ = A22 and EQ = BQ. Since

1
g1 Hyy §H22
0 1

one readily computes that A1 and B, are given by (14.20) and (14.21), respec-
tively. It follows that the realization W(A) = J + G(Afgn - A\)’lé satisfies the
conditions of Theorem 14.5. Note that the Riccati equation (14.16) transforms
into equation (14.22) when By is replaced by f?l and the matrix A5 by 21\12. Fur-
thermore, when passing from By to By, formula (14.17) transforms into (14.23).
But then we can apply Theorem 14.5 to finish the proof. O
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Note that the procedure to find the J-spectral factor, if it exists, now consists
of two main steps. The first is to find a realization as in Theorem 14.6, which can
be done by using an orthogonal basis transformation (see the proof of Lemma
14.2), and then to find the stabilizing solution X of (14.22) in case it exists.

With this in mind, let us return to the counterexample given in Section 14.1.
Let W be the rational 2 x 2 matrix function given by (14.3). The realization of
this function given in Section 14.1, involving the matrices featured in (14.4), can
be rewritten as W()\) = J + B*H*(A; — A)~! B, where
0 -1
1 0]

[0 11 1 0 ] 1 0 ]

J = , A= , B = , H =
1 0 0 -1 0 -2

This realization satisfies the conditions required in the first part of Theorem 14.6.
So it makes sense to check the situation with respect to the Riccati equation
featured in the theorem. Note that in this case A1 = 0 and By = [1 O]. Since
By = [0 —2], it follows that in the algebraic Riccati equation (14.22) both the
quadratic and the constant term vanish. Hence (14.22) reduces to a linear equation,
namely 2z = 0. So = 0 is the unique solution, and this solution is not stabilizing.
Hence, W does not admit a J-spectral factorization with respect to the imaginary

axis, which corroborates what was already observed in the paragraph preceding
Proposition 14.1.

14.4 Two special cases of J-spectral factorization

In this section we consider two special cases. The first concerns the situation where
the rational matrix function appears already as a product

W) =V(=N"TV) (14.24)

where J' is a signature matrix and V has all its poles in the open left half plane.
This situation is encountered in several problems in mathematical systems theory,
notably in the theory of H.o-control (see Chapter 20 below).

Let W be the rational m x m matrix function given by the product (14.24),
where V(\) = D+C(M\I,, — A) = B. Observe that W is selfadjoint on the imaginary
axis. We assume that A has all its eigenvalues in the open left half plane and that
the (possibly non-square) matrix D is of full column rank (that is, Ker D = {0}).
The latter implies that D*.J'D is selfadjoint and invertible, and hence D*.J'D
is congruent to some signature matrix, J say. We are looking for a J-spectral
factorization of D.

Theorem 14.7. Let V(\) = D + C (M, — A)~1B be a given rational p x m matriz
function. Assume A has all its eigenvalues in the open left half plane and the pxm
matriz D has full column rank. Let J' be a p x p signature matriz, and let E be
an invertible m X m matriz such that J = E*D*J'DE is an m X m signature
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matriz. Then the rational m x m matriz function W()\) = V(=A)*J'V(\) has a
left J-spectral factorization with respect to the imaginary azis,

W(A) = L_(—=\)*JL_(\),
if and only if the algebraic Riccati equation
XBJ'B*X + X(A—BJ'D*J'C) + (A* —C*J'DJ'B*)X (14.25)
+C*J'DJD*J'C—-C*J'C =0
has a (unique) iR-stabilizing Hermitian solution X . In that case, the corresponding
left J-spectral factor of W is given by
L_.(\)=E'4+JE*(D*J'C — B*X)(\l, — A)"'B.

Recall that an iR-stabilizing solution X of (14.25) is one such that the matrix
A—BJ'D*J'C + BJ !B*X has its eigenvalues in the open left half plane.

Proof. Put D= DE, B= BE, and consider the rational m x m matrix function
W) = E*W(\)E = V(=X)*J'V(N),
where V(A\) = V(NE = DE + C(M, — A)"'BE. Using the product rule for

realizations, we see that W admits the realization W(X) = J 4+ C (A, — A) !B,
where

C*J' DE
BE

—A* C*J'C
0 A

A= B = ,  C=[-E"B* E*D*JC].

Obviously, W is selfadjoint on the imaginary axis. Furthermore, W is biproper.
Since A has all its eigenvalues in the open left half plane, we know that A has
no eigenvalue on iR, and hence W has no pole on iR. We conclude that the
realization W(\) = J + C(Ala, — A)~1 B meets all the requirements of the first
part of Theorem 14.5. It follows that W admits a left J-spectral factorization
with respect to the imaginary axis if and only if the Riccati equation (14.25) has
a unique stabilizing Hermitian solution X. Moreover, in that case a left J-spectral
factorization W (\) = K_(—=\)*JK_()\) of W with respect to the imaginary axis
is obtained by taking

K (N =I,+J 'EY(D*J'C - B*X)(\l, — A)"'BE.

Recall that W(A) = E**W\(A)E*I. It follows that W admits a left .J-spectral
factorization with respect to the imaginary axis if and only if so does W. Thus
the result of the preceding paragraph shows that W admits a left J-spectral fac-
torization with respect to the imaginary axis if and only if the Riccati equation
(14.25) has a unique stabilizing Hermitian solution X. Moreover, in that case a

left J-spectral factorization W(A) = L_(—=A\)*JL_(\) of W with respect to the
imaginary axis is obtained by taking L_(\) = K_(\)E~. O
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In our second example we assume that the rational m X m matrix function
is given in the following manner (cf., the paragraph preceding Theorem 13.2):

W) = J+C(\, — A)~'B - B*(\l, + A*)"'C*, (14.26)

where A has only eigenvalues in the open left plane and J is a signature matrix.
The function W admits a realization
> 71

This realization satisfies all the requirements of the first part of Theorem 14.5,
which yields immediately the following result.

—A* 0
0 A

C*

. (14.27)

W) =J+[ -B* C] (Alzn—

Theorem 14.8. Let the rational m x m matriz function W be given by (14.26),
where J is a signature matrix and A has its eigenvalues in the open left half plane.
Then W admits a left J-spectral factorization with respect to the imaginary axis,

W(\) = L_(=\)*JL_(\),
if and only if the algebraic Riccati equation
XBJB*X +X(A-BJC)+ (A" -C"JB" )X+ C*"JC =0

has a (unique) Hermitian solution X such that the matric A — BJC + BJB*X
has all its eigenvalues in the open left half plane (so X is iR-stabilizing). In that
case the unique left J-spectral factor L_ for which L_(c0) = I, and its inverse
L~ are given by

L-(\) = I,+J(C—-B*X)\, — A)'B,

So far we have mainly concentrated on left J-spectral factorizations. The
analogous results for right J-spectral factorization of W can be obtained by simply
applying the left factorization results to V(X)) = W(—=)). Indeed, a left J-spectral
factorization,

V(A) = K_(=N)"JK_(\),
of V with respect to iR yields a right J-spectral factorization,

W) = Ly (~X) TL4 (A),

of W with respect to iR by taking L4 () = K_(=\).
Let us apply this observation to W given by the realization (14.27). Note

that
> —1

Since A has all its eigenvalues in the open left half plane, the same holds true for
A*. Thus we can apply Theorem 14.8 together with the above scheme to get the
following right J-spectral factorization result.

-A 0
A*

B

VI =W(=\)=J+[ -C B*] </\Ign - -
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Theorem 14.9. Let the rational matriz function W be given by (14.26), where J
s a signature matriz and A has its eigenvalues in the open left half plane. Then
W admits a right J-spectral factorization with respect to the imaginary azis,

W) = Ly (—X) JLy V),
if and only if the algebraic Riccati equation
YC*JCY +Y(A* - C*JB*)+ (A—BJC)Y + BJB* =0 (14.28)

has a (unique) Hermitian solution Y such that A* — C*JB + C*JCY has all its
eigenvalues in the open left half plane (so X is iR-stabilizing). In that case the
unique right J-spectral factor Ly for which Li(o0) = I,,, and its inverse L;l are
given by

Li(\) = I, +J(CY — B)(\, + A*)"tC*.

14.5 J-spectral factorization with respect to other
contours

In this section we consider J-spectral factorizations with respect to the real line
R and to the unit circle T featuring an additional symmetry property between the
factors. Here, as before, J is is an invertible Hermitian m x m matrix. We begin
by considering the case of the unit circle.

Suppose W is a rational m x m matrix function. A factorization

W(A) = LAYH*JL(N) (14.29)

is called a right J-spectral factorization with respect to the unit circle if L and L™!
are rational m X m matrix functions which are analytic on the closed unit disc. In
that case the function L(S\_l)* and its inverse are analytic on the closure of Dyt
(infinity included). Thus a right J-spectral factorization with respect to the unit
circle is a right canonical factorization with respect to T featuring an additional
symmetry property between the factors. A factorization (14.29) is called a left
J-spectral spectral factorization with respect to the unit circle if L and L™ are
rational m X m matrix functions which are analytic on the closure of Deyt (infinity
included), in which case the function L(A~!)* and its inverse are analytic on the
closed unit disc. Such a factorization is a left canonical factorization with respect
to T.

The case of J-spectral factorization with respect to the unit circle is some-
what more complicated than that of J-spectral factorization with respect to the
imaginary axis. The first result is an analogue of Proposition 14.1.

Proposition 14.10. Let W be a rational mxm matriz function that is selfadjoint on
the unit circle and has neither poles nor zeros there. Then there exists a signature
matriz J such for each A € T the matriz W(X) is congruent to J. For such a matriz
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J, the function W admits a right (respectively, left) J-spectral factorization with
respect to the unit circle if and only if it admits a right (respectively, left) canonical
factorization with respect to the unit circle.

We can use a Mobius transform to reduce the case of the unit circle to the
case of the imaginary axis. To be precise, let V() = W ((A—14)/(A+1)). Then V
is a rational m x m matrix function that has neither poles nor zeros on the imagi-
nary axis, and has selfadjoint values there. Moreover, V(co) = W (1), and thus V
is biproper. Also, right and left J-spectral factorizations of W, and right and left
canonical factorization of W can easily be obtained from the corresponding factor-
izations of V. Thus the proposition above actually follows from Proposition 14.1.
For the sake of completeness we shall give a direct proof.

Proof. By assumption, W () is invertible and selfadjoint for each A € T. Thus
the number of eigenvalues of W () in the open unit disc does not depend on the
particular choice of A € T. In other words W () has constant signature on T.
Now let J be a signature matrix the signature of which is equal to this constant
signature. Then for each A € T the matrix W (A) is congruent to J.

Let W(A) = W_(A)Wy,(\) be a right canonical factorization of W with
respect to T. Consider

We) =Wy (A, W) =W_(A)".
Then W(\) = Wy (A)W_ (\) is again a right canonical factorization of W with re-
spect to T. It follows that W, (A\)~'W_()) is a constant matrix, F say. This shows
that W (\) = Wi (A~H*FW,()\). Since W ()) is selfadjoint for A € T, it follows
that F' is congruent to the signature matrix J introduced in the first paragraph of
the proof. Thus F' = E*JFE for some invertible matrix E. Put Ly (\) = EW, ().

Then W(A) = Ly (A™1)*JL4 () is a left J-spectral factorization of W with respect
to the unit circle. The reverse implication is trivial. O

In what follows we assume that W is a biproper rational m x m matrix
function which is selfadjoint on the unit circle and has no pole there. Such a
function can be represented in the form

W(A) = Do+ C(\I, — A)~'B+ B*(\7'I, — A")~tC*,

where A has all its eigenvalues in the open unit disc. The fact that W is proper
implies that W is analytic at zero. We shall assume additionally that A is invert-
ible. Note that the invertibility of A follows from the analyticity at zero whenever
the realization C'(\ — A)~!' B is minimal.

The invertibility assumption on A allows us to write

W(A) = Dog—B*A™*C*+C(A—A)"'B—B*A™*(A— A™*)'A~*C*.
Since W (co) = Dy — B*A~*C* = W(0)* one has
Dy — B*A™*C* = (Dy — CA™'B)*.
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Hence Dy is selfadjoint. We shall assume additionally that Dy = Jy for some
signature matrix Jy. Thus W is of the form

W) =Jo—B*A*C*+C(A\—A)'B-B*A*(A\— A™")"tA7*C*. (14.30)
We shall prove the following factorization result.

Theorem 14.11. Let W be a biproper rational m x m matriz function given by
(14.30), where Jy is a signature matriz and A is an invertible n X n matriz having
all its eigenvalues in the open unit disc. In order that, for some signature matriz
J the function W admits a left J-spectral factorization with respect to the unit
circle, it is necessary and sufficient that there exists a Hermitian n X n matriz Y
such that Jo + B*Y B is invertible and Y is a solution of the equation

Y = A*YA— (C* + A*YB)(Jo + B*YB) "' (C + B*Y A) (14.31)

with A — B(Jo+ B*Y B)~Y(C + B*Y A) having all its eigenvalues in the open unit
disc. In that case Y is unique and for J one can take any signature matriz J
determined by

Jo+ B*YB = E*JE, (14.32)

where E is some invertible matriz. Furthermore, if Y is a Hermitian matriz with
the properties mentioned above, then for a signature matriz J determined by the
expression (14.32), a left J-spectral factorization W (\) = L_(A"1)*JL_()\) of W
with respect to the unit circle is obtained by taking

L_(\)=E+E(Jy+B'YB)"Y(C+B*YA)\, — A)~'B. (14.33)

Equation (14.31) is a particular case of the so-called discrete algebraic Ric-
cati equation. A solution Y of equation (14.31) is called T-stabilizing, or simply
stabilizing when no confusion can arise, if Jy+ B*Y B is invertible and the matrix
A—B(Jo+ B*YB)~}(C + B*Y A) has all its eigenvalues in the open unit disc. In
the above theorem, the existence of such a solution is required.

Proof. We split the proof into six parts.

Part 1. Since W is biproper and given by (14.30), we can write a realization for
W. In fact W(A) = D + C(A — A)~!'B, where D = W () = Jy — B*A~*C* and

A 0 —AT*C
0 A B

A=

B= ,  C=[BA™ C]. (14.34)

Recall that the matrix A is invertible and has all its eigenvalues in the open
unit disc D. Hence A™* has all its eigenvalues in Deyt. This allows us to apply
Theorem 12.5 with F~ = D and Fy = Dey. It follows that W admits a left
canonical factorization with respect to T if and only if the equation

YBD 'B*A™*Y —Y(A - BD™'C) (14.35)
(AT H+ATC'DTIBTAT)Y + ATFC*DTIC =0
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has a unique solution Y satisfying the following additional spectral constraints:
o(A* +(A*C*+YB)D'B*A™*) C Dex, (14.36)
c(A—BD Y (B*A™*Y +C)) C D. (14.37)

Furthermore, if Y is such a solution of (14.35), then a left canonical factorization
W(X) = Wi (A\)Wa(\) of W with respect to T is obtained by taking

Wi(\) =D - B*A*(A— A" 1 (A™*C* +YB), (14.38)
Wo(\) =TI+ D YB*A™*Y + C)(A\— A)~'B. (14.39)

Let Y be the solution of (14.35) satisfying (14.36) and (14.37). We claim that
Jo + B*Y B is invertible. To prove this it will be convenient to rewrite Wi as a
function of A=!. This can be done as follows:

Wi(A\) = D—B*\A*—I)"Y(A*C* +YB)
= D+B X'\t -4 HATFC* +YB)
= D+B*\N' A AN AT (AT C* +YB)
= D+ B*A*C*+B*YB+B*(\! - A*)"1(C* + A*YB).
Recall that D = Jy — B*A~*C*. Thus
Wi(\) = Jo+B*YB+ B*(\™' — A")"Y(C* + A*YB). (14.40)

Since A is invertible, both W and W5 are analytic at zero. From the above formula
for Wy we see that W is also analytic at zero. Hence W (0) = W1 (0)W2(0). But
W(0) is invertible. Thus W7 (0) = Jo + B*Y B is invertible too.

Part 2. In this part Y stands for a solution of (14.35) such that Jy + B*Y B is
invertible. We prove that in this case Y is also a solution of (14.31). Furthermore,
we show that

D YC+B*A™*Y) = (Jo+ B*YB) ' (C + B*Y A). (14.41)
Multiplying (14.35) on the left by A* and regrouping terms one obtains
A*YA-Y — (A*YB+C*)D™1(C + B*A™*Y) = 0. (14.42)

SoY = A*YA— (A*YB+C*)D~1(C+ B*A™*Y). Multiplying the latter identity
on the left with B*A™* and adding C to both sides gives

C+B*A™Y =C+B*YA— (B*YB+ B*A™*C*)D"*(C + B*A™*Y).
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It follows that
C+BYA = (I+(B*YB+B*A™*C*)D™")(C+B*A™Y)
= (D+B*A™*C*+B*'YB)D ' (C+ B*A™Y)
= (Jo+B'YB)D YC + B*A~*Y).

Since Jo + B*Y B is invertible, we see that (14.41) holds. Using (14.41) in (14.42)
gives that Y is a solution of (14.31).

Part 3. In this part we show that Y* is a solution of (14.35) whenever so is Y. For
this purpose we consider the Hamiltonian T of (14.35), that is,
—AT* — A*C*D7IB*A™* —A*C*D7'C
T =
BD 1B*A~* —(A— BD™'0)

Note that T' = —(A'— ED’lé), where A, B and C are given by (14.34). Put
0 I
wel 9 1]

Then HA = g’*H, HB = A=*C* and H = —H*. Next we carry out the following
computation:

JUNS A* 0 —ArCr
D-CA™'B = D-|[B*A™ C]
0 A! B
_A—*C*
= D-[B* CA™']
B

= D+ B*A*C*—CA'B=J,—CA 'B= D*.

Thus D — CA~'B = D* and we can apply item (iii) in Proposition 9.2 to show
that T is invertible and HT =T*H.
Taking adjoints in (14.35) we obtain the equation

Y*AT'BD*B*Y* +Y*(A™' + A7'BD*CA™Y) (14.43)
—(A* = C*D*B*)Y* +C*D*CA™ ' =0,
where Y* is the unknown. The Hamiltonian T} of this equation is given by
A*—-C*D*B* ~C*D *CA!

T, =
A71BD*B* A '+ A 'BD*CA™!
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It follows that T, = HT*H. This together with the result of the previous para-
graph shows that T, = T~ 1.

Now let Y be a solution of (14.35). It follows that Y™* is a solution of (14.43).
Using the general theory of Riccati equations (see Section 12.1), this implies that

the space
N, = Im { }; ]

is invariant under T,. But T, = T~!. Thus the finite dimensional space N, is
invariant under the Hamiltonian 7" of (14.35). But then (again see Section 12.1)
we may conclude that Y™* is a solution of (14.35) too.

Part 4. Let Y be a solution of (14.35) satisfying the additional spectral constraints
(14.36) and (14.37). In this part we show that ¥ must be Hermitian. Now Y is
uniquely determined by the given properties. Since, by the result of the previ-
ous part of the proof, Y* a solution of (14.35), it thus suffices to show that the
conditions (14.36) and (14.37) hold with Y™ in place of the matrix Y.

From the first part of the proof we know that Jy+ B*Y B is invertible. Hence
the identity (14.41) holds. Using this identity, we can rewrite (14.37) as
o(A—B(Jo+ B*YB)™'(C + B*Y 4)) C D.

Taking adjoints, we arrive at o((4* — (A*Y*B + C*)(Jo + B*YB)"'B*) C D.
Next, note that

(A* — (A*Y*B+C*)(Jo+ B'YB)'B*)™"
— (I = (Y*B+A*C*)(Jo+BYB)'B*) 'A™
= (1+ "B+ A7 CY)(Jo+ B'YB
-B*(Y*B+ A‘*C’*))ilB*)A_*

=A*+(Y*B+A*C*)D 'B*A™".

Here we used that D = Jy — B*A~*C*. We conclude that

oA+ (Y*B+A*C*)D'B*A™*) C Deys,
which is (14.36) with Y™ in place of Y.
In Part 3 of the proof we saw that Y* is a solution of (14.35). Furthermore,

Jo+ B*Y*B = (Jy + B*Y*B)* is invertible. Thus we know that (14.41) holds
with Y* in place of Y, that is,
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D YC + B*A™*Y*) = (Jo+ B*Y*B) ' (C + B*Y*A). (14.44)

Using this we show that (14.37) holds with Y* in place of Y. Indeed, taking
adjoints in (14.36) we get o(A~! + A"'BD=*(B*Y* + CA~!) C Dext. Now

(AL 4+ AT BD (B Y* +CA)

1

=(I+BD *(B'Y*+CA™")) A

— (I-B(D*+B*Y*B+CA'B) " {(B*Y*+CA™"))"'A

=A—-B(Jo+B'Y*B)"Y(B*Y*A+C).

Here we used that D* = Jo — CA~!B. Now apply the identity (14.44). It follows
that (A — BDY(C + B*A=*Y*)) C D, which is (14.37) with Y* in place of Y.

Part 5. Let Y be a Hermitian matrix such that Jy+ B*Y B is invertible and Y is a
stabilizing solution of (14.31). In this part we show that in that case Y is a solution
of (14.35) and that Y satisfies the spectral constraints (14.36) and (14.37).

As a first step let us prove that under the above conditions on Y again (14.41)
holds. Indeed, multiplying (14.31) from the left by B*A~* and adding C' to both
sides we get

C+B*A™Y = C+BYA— (B*A™*C* + B*YDB)
(Jo+ B*YB)"Y(C + B*Y A)

((Jo+B*YB) — (B*A™*C* + B*YB))
(Jo+ B*YB)"}(C + B*Y A)

= (Jo—B*YB)(Jo+ B*YB) }(C + B*Y A)

D(Jo+ B*YB)™Y(C + B*Y A).
Hence (14.41) holds indeed. Using this we can rewrite (14.31) as
A*YA-Y —(A*YB+C*)DY(C+B*A™*Y) = 0.

Multiplying the latter on the left by A™* and regrouping terms we see that Y
satisfies (14.35).

Since Y is a stabilizing solution of (14.31) and (14.41) holds, the spectral
constraint (14.37) is satisfied too. It remains to prove (14.36) To do this we first
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note that

(A"' 4+ AT'BD*(BY +CA™H)

1

={I+BD*(B'Y+CA™")) A

— (I-B(D*+B*Y*B+CA™'B) " {(B*Y*+CA™")) " 'A

= A—B(Jy+B*Y*B)"Y(B*Y*A+C)
=A—-BD }C+ B*A™*Y).

Thus, since Y is Hermitian, we see that (14.36) follows from (14.37) by taking
adjoints and an inverse.

Because of the uniqueness of the solution Y in the first part of the proof, the result
of the present part also shows that the Hermitian stabilizing solution of (14.31),
if it exists, is unique

Part 6. In this final part we complete the argument. Assume that for some J the
function W admits a left J-spectral factorization with respect to the unit circle.
Then by the first part of the proof, equation (14.35) has a solution Y satisfying
(14.36) and (14.37). Moreover for this Y we have that Jy + B*Y B is invertible.
Part 4 of the proof tells us that Y is Hermitian. From Part 2 we know that Y is
a solution of (14.31) which, according to (14.37) and (14.41), is stabilizing.

Conversely, if Y is a Hermitian matrix such that Jy+ B*Y B is invertible and
Y is a stabilizing solution of (14.31), then Y is a solution of (14.35) and Y satisfies
(14.36) and (14.37). Hence W admits a left canonical factorization with respect to
the unit circle, and thus, by Proposition 14.10, also a left J-spectral factorization
with respect to the unit circle.

Finally, take a signature matrix J such that (14.32) holds. It remains to estab-
lish the formula for the left spectral factor L_. To do this we use the left canonical
factorization W(A) = W1(A\)Wa(A) obtained in Part 1. Combining (14.39) and
(14.41) we get Wa(\) = I+ (Jo+ B*YB)~1(C + B*Y A)(A— A)~!B. Thus, using
the expression (14.40) for Wy (M),

Wo(A1) = T+ B*(A'—A")"YC* + A*YB)(Jo + B'YB)™!

(Jo+B*YB+B*(A\™' — A*) " (C*+ A*YB))(Jo+ B*YB) ™"
= Wi(\)(Jo+B*YB)™!,

and it follows that W (X) = Wa(A™1)* (Jo+B*Y B)Wa()). Now let J be a signature
matrix such that (14.32) holds. Then we see that W (\) = L_(A~1)*JL_(\), with
L_ given by (14.33), is a left J-spectral factorization with respect to the unit

circle. O
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We now turn to a situation arising from linear-quadratic optimal control
theory. It concerns the following version of the discrete algebraic Riccati equation

X=A"XA+Q—-A"XB(R+B*XB) 'B*XA. (14.45)

Here A, B, and R are given matrices of sizes n x n, n X m, n X n and m x m,
respectively. We will consider the case when A has all its eigenvalues in the open
unit circle, R and @ are Hermitian, and R is invertible. Of special interest are the
stabilizing solutions of (14.45). A solution X of (14.45) is said to be T-stabilizing,
or simply stabilizing when there is no danger of confusion, if R+ B*X B is invertible
and A — B(R+ B*XB) ' B*X A has all its eigenvalues in the open unit disc. In
connection with (14.45) we consider the rational matrix function

W)= R+ B*(\ 'L, — A7 'Q(\, — A)~'B. (14.46)

Note that this function is Hermitian on the unit circle.

Proposition 14.12. Let A, B, Q and R be as above, so A is an n X n matriz having
its eigenvalues in the open unit disc, B is an m X m matriz, R is an invertible
Hermitian m x m matriz, and Q is a Hermitian n x n matriz. Assume in addition
that A is invertible. The following two statements are equivalent:

(i) The Riccati equation (14.45) has a (unique) Hermitian T-stabilizing solution;

(ii) For some Hermitian matriz J, the rational matriz function (14.46) admits a
left J-spectral factorization with respect to the unit circle.

In that case J is congruent to R+B*X B. Also, if X is the Hermitian T-stabilizing
solution of (14.45), then

W) = LA H*(R+ B*XB)L_(\),

with
L. (\)=1I,+(R+B*XB)"'B*XA\I, — A)™'B,

is a left (R 4+ B*X B)-spectral factorization with respect to the unit disc. The
function L_ is the unique left (R + B*X B)-spectral factor with L_(00) = I,.

The additional assumption that A is invertible plays an essential role in the
proof as we give it below. Indeed, the argument involves a reduction to earlier
results, in particular to Theorem 14.11. However, instead of Theorem 14.11 one
can employ Theorem 14.15 below which does not feature the hypothesis that A is
invertible.

Before we prove the proposition, let us remark that in the case of the linear
quadratic optimal control problem of mathematical systems theory, one has that
R is positive definite and @ is positive semidefinite. Hence the function (14.46) is
positive definite on the unit circle, and as A has is eigenvalues in the open unit
disc, it has no poles on the unit circle. Thus, in that case, the function does admit
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a right spectral factorization with J = I, and hence there is a stabilizing solution
X to the discrete algebraic Riccati equation. In addition, for that solution the
matrix R + B* X B is positive definite.

Proof. We shall deduce Proposition 14.12 from Theorem 14.11. First, a realization
for (14.46) is given as
> —1

Since A is has all its eigenvalues in the open unit disc, there is a unique solution
to the equation

A 0
_A—*Q A—*

B

W(\) = R+ [-B*A~*Q B*A~] ()\— .

Xo— A* XA = Q. (14.47)

Taking as a similarity transformation the matrix

I 0
X, I’

and using @ — Xog = —A* XA, the realization above can be rewritten as:
> _1

The latter expression is of the form (14.30), with C' = B*XpA and with Jy =
R+ B*XyB. So, we can apply Theorem 14.11, with (14.31) suitably modified, to
conclude that W admits a left J-spectral factorization if and only if there is a
solution Y, satisfying additional constraints, of the equation

A 0
0 A

B
XoB

W(N) R+ [-B*A™*(Q — Xo) B*A™"] ()\ —

= R+B*XoAN—A) '+ B*A*(A— A7) XyB.

Y = A*YA— (A*XoB + A*YB)(R + B*X,B + B*YB)" ' (B*Y A + B*X, A).

Putting X = Xy + Y and taking into account (14.47), we see that the above
equation becomes (14.45) for X. The additional constraints referred to above are:
in the first place, invertibility of R + B*XoB + B*Y B = R + B*X B, which we
also required for the solution of (14.45), and, secondly, the condition that the
eigenvalues of

A—B(R+B*(Xo+Y)B) 'B*(Xo+Y)A=A-B(R+B*XB) 'B*XA

are in the open unit disc. But this is exactly what is required for the stabilizing
solution of the equation (14.45).

The expressions for the factorization also follow directly from the formulas
in Theorem 14.11. ]
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We conclude this section by considering J-spectral factorization of a self-
adjoint function on the real line. As before J is an invertible Hermitian m x m
matrix.

Suppose W is a rational m x m matrix function. A factorization

W(A\) = L(A)*JL(\) (14.48)

is called a right J-spectral factorization with respect to the real line if L and L~ are
rational m X m matrix functions which are analytic on the closed upper half plane
(infinity included). In that case the function L(\)* and its inverse are analytic on
the closed lower half plane (infinity included). Thus a right J-spectral factorization
with respect to the real line is a right canonical factorization with respect to R
featuring an additional symmetry property between the factors. A factorization
(14.48) is called a left J-spectral factorization with respect to the real line if L and
L~! are rational m x m matrix functions which are analytic on the closed lower
half plane (infinity included), in which case the function L()\)* and its inverse are
analytic on the closed upper half plane (infinity included). Such a factorization is
a left canonical factorization with respect to R.

Results for this type of factorization can be derived in a straightforward
manner from J-spectral factorization theorems with respect to the imaginary axis.
Indeed, if W is selfadjoint on the real line, then V' given by V() = W (—i)) is self-
adjoint on the imaginary axis. Also W (\) = L4 ()\)J L. ()) is a right J-spectral fac-
torization of W with respect to the real line if and only V() = K (—=)\)JK()),
with K () = Ly (—iX), is a right J-spectral factorization of V' with respect to
the imaginary axis. As an illustration we show how one can derive the following
result as a corollary from Theorem 14.9.

Theorem 14.13. Let the rational m x m matriz function W be given by
W) = J+C\, — A)™'B+ B*(\I, — A")"'C*,

where J is an m X m signature matriz and A is an n X n matrix having all
its eigenvalues in the open upper half plane. Then W admits a right J-spectral
factorization with respect to the real line,

W(A) = Ly (\)"JL+(N),
if and only if the algebraic Riccati equation

YC*JCY —Y(A* — C*JB*) + (A— BJC)Y — BJB* = 0 (14.49)

has a (unique) skew-Hermitian solution Y such that A* — C*JB* — C*JCY has
all its eigenvalues in the open lower half plane. In that case, the unique right
J-spectral factor L for which Ly(0c0) = I, is given by

Li(\) = I, + J(CY + B*)(\,, — A*)~'C*.
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A solution Y of the Riccati equation (14.49) is called R-stabilizing, or simply
stabilizing when confusion is not possible, if A* — C*JB* — C*JCY has all its
eigenvalues in the open lower half plane. In the above theorem, the existence of
such a solution is required.

Proof. Write V() = W(—i\). Then
VAN = J+C(=ix—A)'B+B*(-ix—A*)"'C
— J+(iC) (A= (i4)) ' B+ B (A + (14)*) ' (i0).

Notice that iA has all its eigenvalues in the open left half plane. By Theorem 14.9
the function V' admits a right J-spectral factorization with respect to the imagi-
nary axis if and only if the equation

X (iC)*J(iC)X + X ((i1A)* — (iC)*JB*) (14.50)
+(iA - BJ(iC))X + BJB* =0

has a Hermitian solution X such that the matrix (iA)* — (:C)*JB*+ (iC)*J(iC) X
has all its eigenvalues in the open left half plane. In that case, a right J-spectral
factorization V(\) = K, (—\)*JK,()\) of V with respect to the imaginary axis is
obtained by taking K (\) = I+J(iCX —B*)(A+(iA)*) 71(1’0)*. Next we replace
X by iY and multiply equation (14.50) by —1. In this way (14.50) is shown to
be equivalent to (14.49). Furthermore Y is skew-Hermitian if and only if X is
Hermitian, and A* — C*JB* — C*JCY = i((iA)* — (iC)*JB* + (iC)*J(iC)X).
Finally, put L (A\) = K1 (i)\). Then

Ly(A) = I+J3GCX —B)(A+(14)") " (iC)*
= I+ J(=CY — B*)(ix —iA") " (=i)C*
= [+ J(CY +B*)(\—A")"1C*.

Using these formulas it is now straightforward to complete the argument. O

14.6 Left versus right J-spectral factorization

The existence of a left canonical factorization does not always imply the existence
of a right canonical factorization. The same is true for J-spectral factorization.
In this section we answer the following question: if a rational matrix function W
admits a left J-spectral factorization, under what conditions does it also have
a right J-spectral factorization? And, if so, how can the right factorization be
obtained from the left one? The main result can be viewed as a symmetric version
of Theorem 12.6. We restrict our attention to factorization with respect to the
imaginary axis.
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For later purposes it will be convenient to only assume that J is an invertible
Hermitian matrix. We do not stipulate it to be a signature matrix here.

Theorem 14.14. Let J be an invertible Hermitian m X m matriz, and let W be a
rational m X m matriz function. Suppose

W) = L_(=N\)*JL_(\)

is a left J-spectral factorization with respect to the imaginary axis, and L_ admits

the realization
L_(\)= L, +C(\,—A)"'B (14.51)

with A and A* = A — BC having their eigenvalues in the open left half plane. Let
Q and P be the unique (Hermitian) solutions of the Lyapunov equations

QRQA+A*Q = C*JC. (14.52)

AXP 4 P(A¥)* = —-BJ'B". (14.53)

Then W admits a right J-spectral factorization with respect to the imaginary axis
if and only if I — QP is invertible, or, which amounts to the same, I — PQ is
invertible. In that case, a right J-spectral factorization of W with respect to the
imaginary aris is given by

W) = Ly(=N)*JLi(N), (14.54)
where Ly (\) and its inverse are given by
Li(\) =1, +(CP—J'B)I-QP)! (14.55)
(AL, + A"~ (C*J - QB),
L7'(N) = L, — (CP — J ' B*) (AL, 4 (A%)*) ™
(I -QP)"*(C*J-QB).

(14.56)

Proof. We bring ourselves in the situation of Section 12.4 by introducing
Yi(\) = L_(-N* = I, — B*(\,, + A*)~'C*,
Y-(\) = JL_(\) = J+JC(\I, — A)~'B.

Then W () = Y4 (A)Y_()) is a left canonical factorization, here taken with respect
to the imaginary axis (cf., the remark made after the proof of Theorem 12.6). In
terms of the notation employed in Section 12.4,

Yi(N) = Di+ Cp(A—=Ay) "By,
Y-(\) = D_+C_-(A-A_)"'B_,
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with
D+ = Im, A+ - —A*, B+ = C*, C+ = _B*,
D_ =], A_= A, B_ = B, c_=JC.

For the associate main matrices we have A} = —(A*)* and AX = A*. Thus the
Lyapunov equations (12.19) reduce to the equations (14.53) and (14.52). Appli-
cation of Theorem 12.6 now shows that W admits a right canonical factorization
with respect to the imaginary axis if and only if I — QP is invertible, or, which
amounts to the same, I — P(Q is invertible.

Assume this is the case. Then, again by virtue of Theorem 12.6, we have the
right canonical factorization W (\) = W_ (AW, (X), where

W_(A) = Di+(Di0-+CQ)(Nx_ —A)™
(Ix_ — PQ)(B-D=' — PBy),

Wi(\) = D-+(Dy'Cy+C-P)(Ix, —QP)™
-(Mx, —Ay) " (By+D_ — QB-).
Making the appropriate substitutions, we get
W_(\) = I+ (JC-B*Q)(\—A)~'I—-PQ)Y(BJ'-PC,
Wi(\) = J+4(JCP —B"(I—-QP) '(A\+A")"Y(C*J —QB).

Put Ly (X\) = J "W, (A). Then L ()) is given by (14.55). Taking into account the
selfadjointness of @) and P, one sees that L, (—\)* is precisely W_(\). It follows

that W(A\) = Ly (—A)*JL4(\), and this factorization is a right J-spectral factor-
ization of W with respect to the imaginary axis. Finally, L_T_l()\) = W;l()\)(], and
according to Theorem 12.6,

Wit(\) = DIZ'-DZYDi'Cy+C_P)(\Ix, — AY)™*
(Ix, —QP)"YBy+D_ —QB_)DZ".
Via the appropriate substitutions this becomes
Wt (A) = J 71— (CP = J7'BY) (A + (A%)) (I = QP)~ (C*J — QB)J .

Multiplying the latter identity from the right by J gives (14.56). a

For the case when J is a signature matrix (that is, J = J* = J~1) it is also
possible to derive the previous result from Theorem 14.9. Indeed, let @@ be the
solution of (14.52), and introduce

=[5 1]
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Then one has (via the product rule for realizations)

W(A) = L_(=X)*JL_()\)

B
c*J

A 0

=J+[JC —-B*|T(Ax-T""
C*JC —A*

—1
T) 71!

=J+(JC-B*QAN-A)"'B-B*(\+A")"YC*J - QB).

Clearly, one can now apply Theorem 14.9. The stabilizing solution of equation
(14.28), taken for this particular situation, and the solution P of (14.53) are related
as follows: if Y is the stabilizing solution, then I+ QY is invertible, the matrix P =
Y(I+ QY)~! solves (14.53), and I — QP = (I + QY)~ ! is invertible. Conversely,
if P is the solution of (14.53) and I — QP is invertible, then Y = P(I — QP)~! is
Hermitian and it is the desired stabilizing solution.

Finally, for the case where J = I, and so W is positive definite on the
imaginary line, the condition that I — QP is invertible should be automatically
fulfilled on account of Theorem 9.4. That this is indeed the case can be seen as
follows. First recall that A has all its eigenvalues in the open left half plane. This
implies that P is positive semidefinite and @) is negative semidefinite. Since J = I
we get from (14.53) that Ker P is invariant under A*. Now write P, @, A and C
with respect to the decomposition C* = Ker P 4+Im P as

Qll QlQ]
Q21 QZQ ’

Then Q22 is negative semidefinite and Pss is positive definite. Finally, I — QP is
invertible if and only if I — Q22 Pso is invertible as a map from Im P to itself. Since
I — Qo2 P55 is similar to I — P212/2Q22P212/2, and the latter is positive definite, we
see that invertibility of I — QP is indeed automatically satisfied.

0 0
0 Pa

A11 0
A21 A22

, C=[C1 .

)

14.7 J-spectral factorization relative to the unit circle
revisited

In this section we present a somewhat more general form of Theorem 14.11, using
an alternative approach. As in the first part of Section 14.5, the function W is a
rational m x m matrix function which is selfadjoint on the unit circle and has no
pole there. Such a function can be represented in the form

W(A) = Do+ C(\,, — A~ 'B+B*(\"'I, — A*)"'C*, (14.57)

where Dy is a Hermitian m X m matrix and A is an n X n matrix having all
its eigenvalues in the open unit disc. In contrast to the situation considered in



14.7. J-spectral factorization relative to the unit circle revisited 277

Section 14.5 we do not assume that A is invertible, and hence the representation
(14.30) is not available in the present context.

Similar to what was done in Theorem 14.11, we associate with the represen-
tation (14.57) the Riccati equation

Y = A*YA— (C* + A*YB)(Dy + B*YB)"}(C + B*Y A). (14.58)

Recall from the paragraph directly following Theorem 14.11 that a solution Y to
this Riccati equation is called T-stabilizing (or simply stabilizing) if Dy + B*Y B
is invertible and the matrix

A—B(Dy+ B*YB) }(C + B*Y A) (14.59)

has all its eigenvalues in the open unit disc. The following theorem is the main
result of this section.

Theorem 14.15. Let W be a rational mxm matriz function given by (14.57), where
Dy is a Hermitian matrix and A is an n xXn matriz having all its eigenvalues in the
open unit disc. In order that, for some signature matriz J the function W admits
a left J-spectral factorization with respect to the unit circle, it is necessary and
sufficient that the Riccati equation (14.58) has a Hermitian T-stabilizing solution
Y. In that case Y is unique, and for J one can take any signature matriz J
determined by

Do+ B*YB=FE*"JE, (14.60)

where E is some invertible matriz. Furthermore, if Y is the Hermitian T-stabilizing
solution to (14.58), then for a signature matriz J determined by (14.60), a left J-
spectral factorization W(\) = L_(A"Y)*JL_(\) of W with respect to the unit
circle can be obtained by taking

L (\)= E+E(Dy+B*YB)"Y(C+ B*YA)(\,, — A)~'B. (14.61)

To prove the above theorem we cannot use the method employed in Sec-
tion 14.5. Instead we shall use the connection between canonical factorization and
invertibility of Toeplitz operators described in Section 1.2. For this purpose we
need the block Toeplitz operator T on (3" defined by the rational m x m ma-
trix function W(A™1). Recall (see Section 1.2) that ¢5* = (2(C™) stands for the
Hilbert space of all square summable sequences (zo,z1,Z2,...) with entries in
C™. Furthermore, by definition, 7" is the operator on ¢4 given by the block matrix
representation

Ry R_1 R_o

Ri Ry R_4
T = , (14.62)
Ry R Ry -
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where ..., R_1, Rg, Ry, ... are the coefficients in the Laurent expansion

W) = i N R;

j=—00
of the function W (A™1) on the unit circle. When W is given by (14.57), we have
Ry = Dy, Rj=R';=CA7'B, j=12,.... (14.63)

The following lemma provides one of the main steps in the proof of Theorem 14.15.
As always in this section, J stands for a signature matrix.

Lemma 14.16. Let W be a rational m x m matriz function given by (14.57), where
Dy is a Hermitian matriz and A is an n X n matriz having all its eigenvalues in
the open unit disc. Assume W admits a left J-spectral factorization with respect
to the unit circle. Then the block Toeplitz operator T on €5* defined by the rational
m x m matriz function W(A™1) is invertible, and the n x n matriz Y given by

C
CA

Y = — [C* A*C'* A*Qc* ] T71
C A2

(14.64)

is a Hermitian stabilizing solution to the Riccati equation (14.58).

Proof. A left J-spectral factorization with respect to the unit circle is, in partic-
ular, a left canonical factorization with respect to the unit circle. But then the
function W(A~!) admits a right canonical factorization with respect to the unit
circle, and Theorem 1.2 tells us that the block Toeplitz operator T is invertible.
This, together with the fact that A has all its eigenvalues in the open unit disc,
gives that the matrix YV is well-defined by (14.64). Note that T is selfadjoint be-
cause W (A1) has Hermitian values on the unit circle. But then 7! is selfadjoint
too, and (14.64) shows that Y is Hermitian

Note that £5* can be identified with the Hilbert space direct sum C™ & (3.
Via this identification the operator T" partitions as

Ry
Ry A~ Ry

T= , where A = : C™ — g, (14.65)
AT R;

Put A = Ry — A*T~A. Since the 2 x 2 operator matrix in (14.65) and the op-
erator in its right lower corner are both invertible, a standard Schur complement
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argument (see [19] or the second proof of Theorem 2.1 in [20]) tells us that A is
invertible as well. Furthermore, relative to the Hilbert space direct sum decompo-
sition C™ @ £3' the inverse of T" admits the block matrix representation

A~! —ATIAFTT
7! = : (14.66)
—T7'AA™Y T U4 TIAATIAT !

Recall from (14.63) that Ry = Dy. Combining the second part of (14.63)
with (14.64) we obtain that B*Y B = —A*T~!A. Tt follows that Do+ B*Y B = A,
and hence Dy + B*Y B is invertible, as desired.

To prove that Y satisfies the Riccati equation (14.58) we first consider the
operator T—! — ST=15* where S is the (block) forward shift on ¢5*. Thus the
actions of S and S* on ¢3* are given by

S(.’Eo,l‘l,xg, .. ) = (0,1‘0,1‘1, .. .), S*(xo,xl,xg, .. ) = ($1,$2,£L'3, .. )

A straightforward computation shows that the partitioning of ST~1S* relative to
the Hilbert space direct sum C™ & ¢5* is given by

0
T—l

ST1S* =

This identity, together with the identity (14.66), yields
A1 —ATIA T

7187715 =
T IAATL TTIAATIATY

AT AT (14.67)

_—T*1A
Next, let I" be the operator from C™ to ¢35 given by

C

CA
P=1.el (14.68)

Note that this operator I' is well-defined because the matrix A has all its eigen-
values in the open unit disc. As is easily checked

I'A = ST, I'B = A, Y = —I*T7IT. (14.69)
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From these identities and (14.67) it follows that
Y -A'YA = -I"T"'T+ A T*T'T4A
= —I*T7'T+I*ST'S*T
= -I"(T7'-ST's")r
1
~T71A

- I AT AT YT

Furthermore
[I —AT'T'=C~-ANT'S*T=C-BT*T'T'=C+BYA. (14.70)
Summarizing (and using that Y is Hermitian) we have
Y - A*YA=—(C+B*YA*A Y(C + B*Y A).

Since A = Dy + B*Y B, this identity shows that Y satisfies the Riccati equation
(14.58).

Write A* for the matrix (14.59). We need to show that for Y given by (14.64),
all eigenvalues of A* are in the open unit disc. Using (14.67), the fact that S*S is
the identity operator on ¢5*, and the identities in (14.69) and (14.70), we see that

S*T~'r = T7'S* T+ 5 ATM[I —ATTHT

T7ITA—-T7'AATY(C + B*Y A)
= T 'T(A-BA™(C+B*YA))=T"'TA".
Thus S*T~T' = T~1T'AX. It follows that
(SFT=IT = T7IT(AX)F, E=1,2,....
But then the fact that S*™ converges to zero in the strong operator topology yields
Jim T7IT(A )k = klggo(s*)kT-lrx =0, =xeC™ (14.71)

We shall use (14.71) to prove that A* has all its eigenvalues in the open unit
disc. To do this we first decompose C" as C" = X} & X5, where X5 = KerI" and
X1 = (KerD')L. Notice that X5 is an invariant subspace for A, and C[Xz] = {0}.
We also have Y A[X,] = {0}. Indeed

Y[AXy] C Y[X] = —T*T7'T[Ax,] = {0}.
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Using C[X2] = {0} and YA[X,] = {0} in (14.59), we see that A*|x, = Alx,,
and X5 is an invariant subspace for A* too. In other words, A* admits a matrix
representation of the form

A0
AZ A,

A* = XA, — X A, (1472)

where A%, = Alx, : Xo» — Xb. Since X; is an invariant subspace for A and A
has all its eigenvalues in the open unit disc, As; has all its eigenvalues in the
open unit disc too. Hence, in order to prove that A* has all its eigenvalues in
the open unit disc, it now suffices to prove that A} has this property. Let 71 be
the canonical embedding of X} into C" = &} @ X5, and let 'y be the one-to-one
operator from X; into ¢5" defined by I'y = I'ry. Take x € &;. Since I is equal to
zero on Xa, we see from (14.72) that T—1T'(AX )z = T~y (A})*2. But then
(14.71) tells us that limg_ o T7'T1(A})*2 = 0. Observe that T~'T'; is one-to-
one and has a closed (finite dimensional) range, that is, 71Ty is left invertible.
Hence limg oo 771 (A})*2 = 0 implies that limy_,o (A7 )¥2 = 0. Since x is an
arbitrary element of X7, the latter holds if and only if the eigenvalues of A} are
in the open unit disc. O

Lemma 14.16 proves the necessity part of Theorem 14.15. The sufficiency
part, the formula for the J-spectral factorization, and the uniqueness statement
are covered by the next two lemmas.

Lemma 14.17. Let W be a rational m x m matriz function given by (14.57), where
Dy is a Hermitian matriz and A is an n X n matriz having all its eigenvalues in
the open unit disc. Assume Y is a Hermitian stabilizing solution of the Riccati
equation (14.58). Then W admits a left J-spectral factorization with respect to
the unit circle. Such a factorization can be obtained as follows. Choose an m X m
signature matrix J such that Dy + B*Y B = E*JE, where E is some invertible
matriz, and define L_ by (14.61), i.e.,

L (N = E+E(Dy+ B*YB) YC+ B*YA)(\M, — A)~'B.

Then W(X) = L_(A"Y)*JL_(}) is a left J-spectral factorization of W with respect
to the unit circle.

Proof. Put A= Dy+ B*YB, Cy=C+ B*Y A, and set
T(\) = A+ Co(A—A)'B. (14.73)
Note that A — BA™1C) is equal to the matrix AX defined by (14.59). Thus
TN t= AT ATIC (N - ATt BATL (14.74)

The fact that A and A* have all their eigenvalues in the open unit disc implies
that ¥(\) and U(A\)~! are both analytic on the closure of the exterior of the unit
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disc, infinity included. Since L_(\) = EA~'¥()), the same holds true for L_())
and L_(\)~L. It follows that L_(A~1)*JL_()) is a left spectral factorization with
respect to the unit circle. It remains to show that

W) =L_(AH*JL_()). (14.75)
From L_(\) = EA7'¥()\) and A = Do+ B*Y B = E*JE we see that
LoAH*JL_(\) = Y(AH*A71e()).

Using the definitions of A and Cp, the Riccati equation (14.58) can be rewritten
as Y — A*Y A= —CiA~1Cy. Tt follows that

MOGATICo= —Y (A= A) + (I =AY (A — A) — M1 — NAM)Y.
Using this identity we obtain
B*(I = MA")'(ACEA™1Co)(A— A)'B
= -—B*(I - A)"'WB+BYB-AB'Y(A\— A)~'B
= -AB*(I = \A*)"'A*YB - B*YB - B*"YA(A - A)"'B.
Hence
TAH*ATIw()N)
= (A+AB (I - AA")T'CH AT (A+ Co(A— A)7'B)

A+AB* (I = MA*)'C +Co(A—A)'B
+B*(I = M"Y A\CEATCo)(A— A) ' B.

From the definitions of A and Cj given in the beginning of the proof we see that
A — B*YB =Dy and Cy — B*Y A = C. Thus the calculations above yield

TAH*ATIW(N) = Do+ AO(I — NA)™' + B* (A — A*)~LC™,

According to (14.57) the right-hand side in the previous identity is equal to W ().
Thus Y(A~1)*A~1W()\) = W(N), as desired. O

Lemma 14.18. Let W be a rational m X m matriz function given by (14.57), where
Dy is a Hermitian matriz and A is an n X n matriz having all its eigenvalues in
the open unit disc. Assume Y is a Hermitian stabilizing solution of the Riccati
equation (14.58). Then the block Toeplitz operator T on £5* defined by the rational
m x m matriz function W(A\™1) is invertible and Y is uniquely determined by the
expression (14.64).
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Proof. As in the proof of the preceding lemma, we set A = Dy + B*Y B and
Co = C+ B*Y A. Furthermore, U () is the rational m x m matrix function defined
by (14.73). Put ©(\) = ¥(A~!). The proof of the preceding lemma tells us that

WA = e hHrAaTte().

Hence the block Toeplitz operator T' on £3* defined by W(A™1) admits the factor-
ization T = (Te)* ETe, where Tg is the block Toeplitz operator on ¢5* defined by
O, and = is the block diagonal operator on ¢35 given by

E = diag(A™H, AL AT ).

From (14.73), (14.74) and ©(\) = ¥(A~1) we know that
O(\) = A+NCo(I —)\A)'B, (14.76)
O\t = AP NATICH(I - AA)TIBAT (14.77)

where A% is given by (14.59). From (14.76), (14.77), and the fact that both A and
A* have all their eigenvalues in the open unit disc we see that Tg is invertible and
Tg s given by

Oy 0 0
. ey o o0
Ty = of or o , (14.78)
where O, 07,05, ... are the Taylor coefficients of ©(A)~! at zero. Furthermore,
(14.76) yields
oF =A~1, OF = —AT'Cy(A)TIBATY, j=1,2,.... (14.79)

Let I' be the operator from C™ into ¢5* defined by (14.68). Using the identities
in (14.78) and (14.79) we compute that

rr5! = [B A3 (A*)23 } , (14.80)
with B given by
B=CrATl - A*(Z(A*)ﬂ'c*A1CO(AX)1)BA1. (14.81)
j=0

AsT = (To)*=To and Tp is invertible, we conclude that T is invertible. Moreover,
using (14.80), we have

DT = (T ) ETN I T ') = Y (A" BAG A (14.82)
7=0
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We proceed by showing that B = (C* + A*Y B)A™!, where AX is given by
(14.59). To prove this we use the fact that Y satisfies the Riccati equation (14.58).
A straightforward computation gives

Y = A*YA—(C*+ A*YB)A™'(C + B*Y A)
- A*Y(A ~ BA YO + B*YA)) — C*ATNC + B*Y A)
= A'YA* —C*A™'Cy.
We conclude that Y — A*Y AX = —C*A~'Cy. Since both A and A have all their

eigenvalues in the open unit disc, we obtain

Y == (A CTAT Co(AXY .
J=0

Using the latter identity in (14.81) we arrive at
B=C*A' 4+ A*YBA™' = (C* + A*YB)A™ L.

Finally, the identity 3 = (C* + A*Y B)A~! and the fact that Y satisfies the
Riccati equation yield

Y —A*YA=—(C*+ A*YB)A™'(C 4+ B*Y A) = —BAS". (14.83)

But then Y = —Z;‘;O(A*)jBAB*Aj because A has all its eigenvalues in the
open unit disc. Comparing the latter expression for Y with (14.82) we see that
Y = —I'*T~IT. Thus Y is given by (14.64), as desired. O

In Theorem 14.15 we restricted the attention to stabilizing solutions of the
Riccati equation (14.58) that are required to be Hermitian. This requirement is not
essential: Theorem 14.15 remains true if Y is just an arbitrary stabilizing solution
of (14.58). The reason is that a stabilizing solution of (14.58) is always Hermitian.
This result is the contents of the following proposition.

Proposition 14.19. IfY is a T-stabilizing solution of the Riccali equation (14.58),
then Y is Hermitian.

Proof. Let Y be a stabilizing solution of (14.58), and put A = Dy + B*Y B. Then
A is invertible, and

oc(A—BA™Y(C+ B*YA)) C D. (14.84)

Consider the m x m rational matrix functions
W_(\) = I,+AC+BYA)\,—-A)'B, (14.85)
Wi(\) = A+B*(\'I,— A HC*+ A*YB). (14.86)
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The first part of the proof consists of showing that W (\) = W, (A\)W_(A\) and
that this factorization is a left canonical one with respect to the unit circle.

Part 1. To prove that W(\) = W (A)W_(A), we use a modification of the argu-
ment used to prove (14.75). Put

Co=C+BYA,  By=C*+AYB. (14.87)

Then equation (14.58) can be rewritten as Y — A*Y A = —CoA~1 By, and hence
ABoA™!Ch = - Y (A — A) + (I = AA*)Y (A — A) — \I — MA*)Y.
It then follows that
B*(\' = AT'BATICy(M L, — A)T'B
=B\ ' -A)'A*YB-B'YB - B*YA)(\, — A)"'B.
This yields
Wy MOW_(\) = A+B*\ =AY By+Co(M, — A)~'B
+B*(A\ ! — A" IBy AT (M, — A)'B
= Do+ B*\ ' —ANTICr+C(M, — A)IB = W()).

Next we prove that W(A) = WL (A)W_()) is a left canonical factorization
with respect to the unit circle. To do this, using (14.85), we first note that

W_(A)"! = I, — A™Y(C + B*YA)(\,, — A)"'B, (14.88)

where A = A — BA™YC + B*Y A). From (14.84) we know that A* has all
its eigenvalues in . By assumption the same holds true for the matrix A. Thus
(14.85) and (14.88) tell us that both W_ and W' are analytic on the complement
of D, infinity included. Thus the factor W_ has the desired properties.

As A has all its eigenvalues in D, the same holds true for A*. Thus (14.86)
tells us that W, is analytic on the closed unit disc D. We have to show that W;l
also is analytic on . To do this, put

Vi) =W_(A7h, V() =W ()

Using the properties of W_ derived in the previous paragraph, we see that V and
V_:l are analytic on D. Furthermore, V_ is analytic on |\| > 1, infinity included.
Now, recall that W is selfadjoint on the unit circle. Hence W(A\) = W(A~1)*, and
thus W(A\) = W (AMW_(\) = Ve (A)V-(A). But then

VoOW_ ()= ()T, (14.89)
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The left-hand side of (14.89) is analytic on [A| > 1 with infinity included, and the
right-hand side of (14.89) is analytic on D. By Liouville’s theorem, there exists a
constant matrix K such that

Vo) = KW_(\),  Wi(\) = Va(VK. (14.90)

As det W () does not vanish identically, K is invertible. Hence the second identity
in (14.90) tells us that W, (\) = K~V (\)~! is analytic on D. Thus W, and W;l
are analytic on D, as desired. We conclude that W ()\) = W, (\)W_()) is a left
canonical factorization with respect to the unit circle.

Part 2. In this part we establish the inclusion
o(A*—(C*+ A*YB)A™'B*) C D. (14.91)
Put ®(\) = W, (A~1). Then, with Q = A* and Q% = A* — (C* + A*YB)A~'B*,
d(\) = A+ B\, —Q)"HC*+ A'YB), (14.92)
o'\ = AT'-ATIB*(AL, Q) THOT 4+ ATYB)ATE (14.93)

We want to prove that o(2%) C D. Take [Ag| > 1. As 0(2) C D, we have A\g & (1),
and hence A\g & o(Q2) N o(2%). From (14.92) and (14.93) we see that Q> is the
associate main matrix of the realization (14.92). But then A\g & () N o (%)
implies that the realization in (14.92) is locally minimal at Ag. Since W, and
W_:l are analytic on DD, the rational matrix function ® has no poles or zeros on
[A| > 1. But then the local minimality at A¢ implies that ¢ is not an eigenvalue
of 2%. Recall that \g is an arbitary complex number with |\g| > 1. We conclude
that o(2*) is contained in D, that is, (14.91) is proved.

Part 3. Let T be the block Toeplitz operator on £3* determined by W (A~!). Since
W admits a left canonical factorization with respect to the unit circle, the function
W (A1) admits a right canonical factorization with respect to the unit circle, and
hence T is invertible. We claim that

Y =—[C* AC* A=2Cr ... ]T7! (14.94)

Since the values of W(A™!) on the unit circle are Hermitian, the operator T is
selfadjoint, and hence the same holds true for 7-1. But then the identity (14.94)
shows that Y is Hermitian. Thus it remains to prove (14.94).

To prove (14.94) we follow the same line of reasoning as in the proof of
Lemma 14.18. Put

O\ = AW_(\1), DN = W, (A7), (14.95)
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Here W, and W_ are as in Part 1 of the proof; see (14.85) and (14.86). By the
result of Part 1 we have that W_(A~!) = ®(\)A~1O()). Moreover, © and O~}
are analytic on D, and ® and ®~! are analytic on || > 1 with infinity included.

Let Te and T be the block Toeplitz operators on £5" determined by © and
®, respectively. By the results mentioned in the previous paragraph, the operators
Te and Ty are invertible, Tgl = To-1 and qul = Tp-1. Furthermore, T =
To-1Z"1Tp-1, where, as in the proof of Lemma 14.18, the operator Z is the block
diagonal operator on ¢5* given by

E=diag(A™HL AL AT ).
Note that
07'(\) = ATP-AHC+BYAWN, - AY)TIBAT,

N = AT'-ATIB(AL, - Q)N Cr + ATYB)ATL
Here
A* = A - BATY(C + B*YA), 0 =A*— (C*+ A'YB)A™' B,
and the eigenvalues of these two matrices are all in the open unit disc.
Let T be the operator defined by (14.68). We now repeat the arguments used

in the proof of Lemma 14.18, more specifically appearing in the paragraphs after
(14.79). This together with a duality argument yields

*T-'T = (T'TgH)E"Y(T;'T) = Y (A*)BA~1547. (14.96)
j=0
Here
3 = Cc*ATl - (Z AYIC*ATY(C + B*Y A)(A* ))BA—l,
7=0

5 = AlC-— A*lB*(Z(QX)J’(O* + A*YB)A*OAJ)A.
=0

Note that the Riccati equation (14.58) can be rewritten in the following two equiv-
alent forms

Y - A'YA* = —C*A YO+ B*YA),
Y -Q*YA = —(C*+A'YB)A™'C.
Since the eigenvalues of the matrices A, A*, A* and Q* are all in the open unit
disc, we see that the formulas for 8 and 5 can be transformed into
B=(C*+AYB)A™',  F=A"YC+ B*YA).
This allows us to rewrite (14.58) as Y — A*Y A = —BAY, and we see from (14.96)
that (14.94) holds. O
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Notes

As noted J-spectral factorization is a special form of canonical factorization, re-
flecting the symmetry condition on the given function. This chapter develops this
theme in a systematic way for rational matrix functions. Sections 14.2 and 14.3
are based on [121]. For Section 14.4 we refer to [76], see also [112] and [83]. A good
source for Section 14.5 is [98], see also [97]. The linear quadratic optimal control
problem for discrete time systems, mentioned in Section 14.5 in the paragraph
before Proposition 14.12, can be found in many books on mathematical systems
theory, see, e.g., [85]. The connection with the algebraic Riccati equation of the
form (14.45) is also shown in the latter book. Much more information on this
equation, including its connection to factorization in more general setting than
the one exhibited in Proposition 14.12, can be found in Part IIT of [106]. Sec-
tion 14.6 is based on [9], see also [8]. The final section is inspired by [44]. In fact,
Theorem 14.15 is just the symmetric version of Theorem 1.1 in [44].

The notion of J-spectral factorization plays an important role in control
theory; see, e.g., the books [43], [85], [150], the papers [76], [145] and the references
in these papers. The final part of this book is devoted to this connection, with an
emphasis on H..-problems.



Part VI
Factorizations and symmetries

In this part we study rational matrix functions that are unitary or of the form iden-
tity matrix plus contractions, and rational matrix functions that have a positive
real part. Because of the state space similarity theorem, these additional symme-
tries can be restated in terms of special properties of the minimal realizations of
the rational matrix functions considered. These reformulations involve an alge-
braic Riccati equation. The results are known in systems theory as the bounded
real lemma and the positive real lemma, respectively.

This part consists of three chapters. In the first chapter (Chapter 15) we
study rational matrix functions that have a positive definite real part or a non-
negative real part on the real line, and we present canonical and pseudo-canonical
factorization theorems for such functions in state space form. In the second chapter
(Chapter 16) realizations are used to study rational matrix functions of which the
values on the imaginary axis (or on the real line) are contractive matrices. Included
are solutions to spectral and canonical factorization problems for functions V' of
the form

VN =1—-W(=A)*W(N), VA =1+W(),

where W has contractive values on the imaginary axis (or on the real line) and
is strictly contractive at infinity. In the third chapter (Chapter 17) realizations
are used to study rational matrix functions of which the values on the imaginary
axis are J-unitary matrices. Solutions to various factorization problems are given.
Special attention is paid to factorization of J-unitary rational matrix functions
into J-unitary factors. In this chapter we also discuss problems of embedding a
contractive rational matrix function into a unitary rational matrix function of
larger size.






Chapter 15

Factorization of positive real
rational matrix functions

This chapter is concerned with canonical factorization (with respect to the real
line) of rational matrix functions with a positive definite real part on the real
line. Also the generalization to pseudo-canonical factorization for functions that
have a nonnegative real part is developed. All factorizations are obtained explicitly
using state space realizations of the functions involved. In Section 15.1 rational
matrix functions that have a positive definite real part or a nonnegative real part
on the real line are characterized in terms of realizations. Section 15.2 deals with
canonical factorization, and Section 15.3, the final section of the chapter, with
pseudo-canonical factorization.

15.1 Rational matrix functions with a positive definite
real part

In this section we consider rational m x m matrix functions W which have the
property that

W)+ WA)* >0, A €R, X not a pole of W. (15.1)

In this case we say that W has a nonnegative real part on the real line. If in (15.1)
the inequality is strict, that is,

W)+ W(A)" > 0, A €R, X not a pole of W. (15.2)

we say that W has a positive definite real part on the real line. The following two
theorems characterize these properties in terms of realizations of W.
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Theorem 15.1. Let W()\) = D + C(M\,, — A)~'B be a rational m x m matriz
function, and let (A, B) be controllable. Write G = D + D* and assume G is
positive definite. Then W has a nonnegative real part on the real line if and only
if there is a Hermitian solution X of the equation

—iA*X + iXA— (XB—iC*)G ™1 (B*X +iC) = 0. (15.3)

Furthermore, for any Hermitian solution X of (15.3) one has

W)+ W) = KA\)*K(\), (15.4)

where
K(\) =GY?+ GV*(C —iB*X)(\,, — A)'B. (15.5)

Finally, if, in addition, the pair (C, A) is observable, then each solution X of
(15.3) is invertible.

For later use we note that equation (15.3) can be rewritten as
—(iA* —iC*G'B*) X+ X (iA—iBG™'C)-C*G™'C-XBG'B*X = 0. (15.6)

Proof. Put V(\) = W(—i\) + W (i\)*. Then W has a nonnegative real part on R
if and only if V' is nonnegative on the imaginary axis. Using the given realization
of W we have

V() = D+C(=iM, = A)T B+ D"+ B*(=iM, — A")7'C”
= G+ (C) (M = (i4)) " B = B" (M + (14)") " (iC)*
0 (i0)*

= | B (+aa)T T o o

(A —iA)"'B
Y

Thus we can apply Theorem 13.6, with R = G, Q@ =0, S = iC and iA instead of
A, to show that W has a nonnegative real part on R if and only equation (15.3)
has a Hermitian solution.

Next, let X be a Hermitian solution of (15.3). By the second part of Theo-
rem 13.6, the function V admits a factorization V (\) = L(—A)*L(\), where

L\ =GY2 + G Y3(B*X +iC)(A —iA)"'B.

As W(A)+ W(A)* = V(i\), we see that (15.4) holds with K being given by (15.5)

To prove the final part, assume additionally that the pair (C, A) is observable,
and let X be a Hermitian solution of (15.3). We have to show that X is invertible.
Since X is square it suffices to prove that Ker X = {0}. Assume Xz = 0. Then
2*X = 0 because X is Hermitian, and by (15.3) we have 0 = —(C*G~'Cxz, ).
As G > 0, this gives Cz = 0. Multiplying (15.3) on the right by = we then
obtain iXAx = 0. So Ker X is A-invariant and contained in Ker C. Therefore
Ker X = {0} and X is invertible. O
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Theorem 15.2. Let W()\) = D + C(M\,, — A)"'B be a rational m x m matriz
function, and let (A, B) be controllable. Write G = D + D* and assume G is
positive definite. If, in addition, A has no real eigenvalues, then the following
statements are equivalent:

(i) The function W has a positive definite real part on the real line;

(ii) Fquation (15.3) has a Hermitian solution X such that the matriz
A—BG™'C+ iBG'B*X (15.7)

has no real eigenvalues;
(iii) The matriz
iA* —iC*G~1B* c*G-ic
H =
—-BG™'B* iA—iBG™1C
has no pure imaginary eigenvalues.

Moreover, in that case equation (15.3) has a unique Hermitian solution X such
that the matriz (15.7) has its eigenvalues in the open upper half plane.

Proof. As in the proof of the previous theorem, we consider the rational m x m
matrix function V(\) = W (—i\) + W(i\)*. Using the given realization of W we
see (see (13.6) and the second part of the proof of Theorem 13.2) that V' admits
the realization V(A) = G + C (A, — A)~1 B, where

itA* 0
0 <A

1C*
B

i

It follows that AX = A— BG~1C is precisely equal to the block matrix H appear-
ing in item (c). Since A has no real eigenvalue, the matrix A has no pure imaginary
eigenvalue. Thus V' has no pole on the imaginary axis. Hence (cf., Section 8.1) the
realization V-1(\) = G~ — G_lé(/\fgn — AX)~1BG~! is minimal at each point
of the imaginary axis. But then V! has no pole on the imaginary axis if and only
if A* has no pure imaginary eigenvalue. As A* = H, we conclude that condition
(i) is equivalent to the requirement that V' (\) is invertible for each A € iR.

(i) = (iii) If (i) is satisfied, then V(\) is positive definite for each A € iR.
In particular, V(\) is invertible for each A € iR, and hence, by the result of the
previous paragraph, (iii) holds.

(iii) = (i) Conversely, assume (iii) is satisfied. Recall that V has no pole
on the imaginary axis. Furthermore, V() is selfadjoint for A € iR. Since V(})
is invertible for each A € iR, it follows that for imaginary A the signature of the
matrix V(\) does not depend on A. Next, observe that the rational matrix function
V' is biproper and that its value at infinity is equal to G. Hence the value of V
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at infinity is positive definite. We obtain that V() is positive definite for each
A € iR. Thus (i) holds.

(i) = (ii) Assume W has a positive definite real part on R. Theorem 15.1
implies that equation (15.3) has a Hermitian solution X. Hence we have the fac-
torization W(\) + W (A\)* = K(A\)*K()\) with K()\) being given by (15.5). Since
A has no eigenvalue on R, the functions W and K have no pole on R. The fact
that W has a positive definite real part on R and the fact that W has no pole on
R together imply that W (\) 4+ W(A)* is invertible for each A € R. Hence K () is
also invertible for each A € R. Thus K (A\)~! has no pole on R. Notice that

KN '=GY2-GYC—-iB*X)(\\— Z)"'B, (15.8)

where Z = A— BG~(C —iB*). Let A9 € R. Then ) is not a common eigenvalue
of A and Z. Thus we can apply the material presented in Section 8.1 to show that
the realization given by the right-hand side of (15.8) is minimal at Ag. But then
the fact that K (A\)~! has no pole on R implies that Ao is not an eigenvalue of Z.
Thus Z = A — BG71C + iBG~!B* X has no real eigenvalue. This proves (ii).

(ii) = (i) Let X be as in (ii). Then W(\) + W(A)* = K(\)*K()\) with K()\)
being given by (15.5). Observe that K(A)~! is given by (15.8), where Z is as
above. According to our hypothesis Z has no real eigenvalue. Hence K (\)*K ()
is positive definite for each A € R. Thus (i) holds.

To prove the second part of the theorem, we apply Theorem 13.3. Recall that
equation (15.3) can be rewritten into the algebraic Riccati equation (15.6). The
Hamiltonian of this Riccati equation is precisely the block matrix H defined in item
(iii). According to our hypotheses (A, B) is controllable. This implies that the pair
(iA —iBG~1C, B) is also controllable. But controllability implies stabilizability.
Thus the pair (iA —iBG~'C, B) is stabilizable. But then Theorem 13.3 tells us
that condition (iii) implies that equation (15.3) has a unique Hermitian solution
X such that the eigenvalues of 1A — iBG~'C — BG~'B*X are in the open left

half plane. Multiplication by —i then gives the desired result. |

15.2 Canonical factori