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Preface

The present book deals with canonical factorization problems for different classes
of matrix and operator functions. Such problems appear in various areas of math-
ematics and its applications. The functions we consider have in common that they
appear in the state space form or can be represented in such a form. The main
results are all expressed in terms of the matrices or operators appearing in the
state space representation. This includes necessary and sufficient conditions for
canonical factorizations to exist and explicit formulas for the corresponding fac-
tors. Also, in the applications the entries in the state space representation play a
crucial role.

The theory developed in the book is based on a geometric approach which has
its origins in different fields. One of the initial steps can be found in mathematical
systems theory and electrical network theory, where a cascade decomposition of
an input-output system or a network is related to a factorization of the associated
transfer function.

Canonical factorization has a long and interesting history which starts in
the theory of convolution equations. Solving Wiener-Hopf integral equations is
closely related to canonical factorization. The problem of canonical factorization
also appears in other branches of applied analysis and in mathematical systems
theory, in H∞-control theory in particular.

The first book devoted to the state space factorization theory was published
in 1979 as the monograph “Minimal factorization of matrix and operator func-
tions,” Operator Theory: Advances and Applications 1, Birkhäuser Verlag, writ-
ten by the first three authors. Some of the factorization results published in the
1979 book appeared there in print for the first time.

The present book is the second book written by the four of us in which the
state space factorization method is systematically used and developed further. In
the earlier book [20], published in 2008, the emphasis is on non-canonical factoriza-
tions and degree 1 factorizations, in particular. In the present book we concentrate
on canonical factorizations. Together both books present a rich and far reaching
update of the 1979 monograph [11].

In the present book the emphasis is on canonical factorization and symmetric
factorization with applications to different classes of convolution equations. For
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the latter we have in mind the transport equation, singular integral equations,
equations with symbols analytic in a strip, and equations involving factorization
of non-proper rational matrix functions. A large part of the book will deal with
factorization of matrix functions satisfying various symmetries. A main theme will
be the effect of these symmetries on factorization and how the symmetries can be
used in effective ways to get state space formulas for the factors. Applications to
H∞-control theory, which have been developed in the 1980s and 1990s, will also
be included. The text is largely self-contained, and will be of interest to experts
and students in mathematics, sciences and engineering.

The authors gratefully acknowledge a visitor fellowship for the second au-
thor from the Netherlands Organization for Scientific Research (NWO), and the
financial support from the School of Economics of the Erasmus University at Rot-
terdam, from the School of Mathematical Sciences of Tel-Aviv University and the
Nathan and Lily Silver Family Foundation, and from the Mathematics Depart-
ment of the Vrije Universiteit at Amsterdam. These funds allowed us to meet and
to work together on the book for different extended periods of time in Amsterdam
and Tel-Aviv.

The authors Amsterdam – Rotterdam – Tel-Aviv, Summer 2009

Postscript
On Monday October 12, 2009, Israel Gohberg, the second author of this book,
passed away at the age of 81. At that time the preparation of the book was in a
final phase and only some minor work had to be done. Israel Gohberg was one of
the initiators using state space methods in solving problems appearing in various
branches of mathematical analysis and its applications. His fundamental insights
and inspiring leadership have been driving forces in our joint work.





Chapter 0

Introduction

This monograph presents a unified approach for solving canonical factorization
problems for different classes of matrix and operator functions. The notion of
canonical factorization originates from the theory of convolution equations. For
instance, canonical factorization, provided it exists, allows one to invert Wiener-
Hopf, Toeplitz and singular integral operators, and when the factors are known one
can also build explicitly the inverses of these operators. The problem of canonical
factorization also appears in various branches of applied analysis, in linear trans-
port theory, in interpolation theory, in mathematical systems theory, in particular,
in H∞-control theory.

The various matrix and operator functions that are considered in this book
have in common that they appear in a natural way as functions of the form

W (λ) = D + C(λI −A)−1B (1)

or (after a suitable transformation) can be represented in this form. In the above
formula λ is a complex variable, and A, B, C, and D are matrices or linear op-
erators acting between appropriate Banach or Hilbert spaces, which in this book
often will be finite dimensional. When the underlying spaces are all finite dimen-
sional, A, B, C, and D can be viewed as matrices and the function W is a rational
matrix function which is analytic at infinity. From mathematical systems theory it
is known that, conversely, any rational matrix function which is analytic at infinity
admits a representation of the above form. In systems theory the right hand side
of (1) is called a state space realization of the function W , and one refers to the
space in which A is acting as the state space.

The method of factorization employed in this book uses realizations as in
(1), and for this reason it is referred to as the state space method. It allows one
to deal with factorization from a geometric point of view. This state space factor-
ization approach has its origins in different fields, for instance, in the theory of
non-selfadjoint operators [27], [141], in mathematical systems theory and electrical
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network theory [23], [95], [94], and in the factorization theory of matrix polyno-
mials [67], [131]. In all three areas a state space representation of the function to
be factored is used, and the factors are also expressed in state space form.

The first book to deal with factorization problems in a systematic way using
the state space approach is the monograph [11] of the first three authors. This
monograph appeared in 1979, very soon after the first main results were obtained.
In fact, some of the factorization results were published in [11] for the first time.

The present book is the second book written by the four of us in which the
state space factorization method is systematically used and developed further. In
our first book [20], published in 2008, the emphasis is on non-canonical factoriza-
tions and degree 1 factorizations, in particular. In the present book we concentrate
on canonical factorizations. As a result the overlap between the main parts of the
two books is minor. Together both books present a rich and far reaching update
of the 1979 monograph [11].

In the present book special attention is paid to various factorizations with
additional symmetries such as spectral factorization, inner-outer factorization, and
J-spectral factorization. The latter require elements of the theory of spaces with
an indefinite metric. Factorizations with symmetries appear in a natural way in
H∞-control problems and the related Nehari approximation problem. In fact, the
latter problems are the main topic of the final part of the book. We also deal
with applications to problems in the theory of algebraic Riccati equations, to
inversion problems for Wiener-Hopf, Toeplitz and singular integral operators, and
to Riemann-Hilbert problems. The linear transport equation from mathematical
physics is another important area of application in this book. It requires infinite
dimensional realizations of a special type.

We have made an effort to make the text reasonably self-contained. For that
reason we included some known material about realizations, minimal factorizations
of rational matrix functions, angular operators, and the theory of matrices in
indefinite inner product spaces. In the final part we also briefly review elements
of control theory of linear systems.

Not counting the present introduction, the book consists of 20 chapters
grouped into 7 parts. We shall now give a short description of the contents of
the book.

Part I. The first part has a preparatory character. In the first chapter we review
the role of canonical factorization in inverting Wiener-Hopf integral operators and
block Toeplitz operators. Also the role of this factorization in solving singular
integral equations is described. The second chapter presents in detail the elements
of the state space method that are used in this book.

Part II. This part starts with the canonical factorization theorem for rational
matrix functions in state space form. This theorem is then used to invert explic-
itly Wiener-Hopf, Toeplitz and singular integral operators with a rational matrix
symbol, with the inverses being presented explicitly in state space formulas. For
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rational matrix symbols the solution to the homogeneous Riemann-Hilbert bound-
ary value problem is also given in state space form. In the first chapter of this part
we consider proper rational matrix functions, that is, rational matrix functions
that are analytic at infinity. The case of non-proper rational symbols is treated in
the second chapter of this part. In this case the realization (1) is replaced by

W (λ) = I + C(λG −A)−1B, (2)

where I is an identity matrix, G and A are square matrices, and B and C are
matrices of appropriate sizes. A square rational matrix function, proper or not,
always admits such a realization. We develop this realization result, and prove
a canonical factorization theorem for the realization (2). As an application we
solve the homogeneous Riemann-Hilbert boundary value problem for an arbitrary
rational matrix symbol.
Part III. In this part we carry out a program analogous to that of the second
part, but now for certain classes of non-rational matrix and operator functions.
For instance, for matrix functions analytic on a strip but not at infinity we develop
a realization theory, prove a canonical factorization theorem in state space form,
and develop its applications to Wiener-Hopf integral equations. A new feature is
that the problems involved require us to employ realizations with an unbounded
main operator A and deal with curves cutting through the spectrum of this main
operator. In this part it is also shown that, after an appropriate modification, the
state space method can be used to solve the integro-differential equation appearing
in linear transport theory, which forces us to use realizations of operator-valued
functions. In the final chapter of this part we make an excursion into non-canonical
Wiener-Hopf factorization for analytic operator-valued functions on a curve, and
identify the so-called factorization indices in state space terms.
Part IV. The fourth part deals with factorization of rational matrix functions that
have Hermitian values on the imaginary axis, the real line or the unit circle. In
the analysis of such functions, minimal realizations play an important role. These
are realizations of which the order of the state matrix in (1) is a small possible.
Also the so-called state space similarity theorem, which tells us that a minimal
realization is unique up to a basis transformation in the state space, enters into
the analysis. These facts are reviewed in the first chapter of this part. In this
first chapter, using the notion of local minimality, also the concept of a pseudo-
canonical factorization relative to a curve is introduced and studied for rational
matrix functions with singularities on the given curve. The effect on minimal
realizations of the function having Hermitian values on the imaginary axis, the real
line or the unit circle is described in the second chapter of this part. This then leads
to the construction of special canonical and pseudo-canonical factorizations with
additional relations between the factors. Included are spectral factorization for
positive definite rational matrix functions and pseudo-spectral factorization for
nonnegative rational matrix functions. In the final chapter we present (without
proofs) some background material on matrices in indefinite inner product spaces,
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and review the main results from this area that are used in this book.

Part V. In this part the canonical factorization theorem is presented in a different
way using the notion of an angular subspace and Riccati equations. In this case
one has to look for angular subspaces that are also spectral subspaces, and the
solutions of the Riccati equation must have additional spectral properties. These
results, which have a preliminary character, are presented in the first chapter of
this part. In the second chapter we introduce the symmetric algebraic Riccati equa-
tion, and describe spectral factorization as well as pseudo-spectral factorization in
terms of Hermitian solutions of such a Riccati equation. In the final chapter of this
part we continue the study of rational matrix functions that take Hermitian values
on certain curves. The emphasis will be on rational matrix functions that have Her-
mitian values for which the inertia is independent of the point on the curve. Such
functions may still admit a symmetric canonical factorization, provided we allow
for a constant Hermitian invertible matrix in the middle. Such a factorization is
commonly known as a J-spectral factorization. Necessary and sufficient conditions
for its existence are given, first in terms of invariant subspaces and then in terms of
solutions of a corresponding symmetric algebraic Riccati equation. We also study
the question when a function which admits a left J-spectral factorization admits
a right J-spectral factorization too.

Part VI. In this part we study rational matrix functions that are unitary or of the
form identity matrix plus contractions, and rational matrix functions that have a
positive real part. Because of the state space similarity theorem, these additional
symmetries can be restated in terms of special properties of the minimal real-
izations of the rational matrix functions considered. These reformulations involve
an algebraic Riccati equation. The results are known in systems theory as the
bounded real lemma and the positive real lemma, respectively. They allow us to
solve related canonical and pseudo-canonical factorization problems in state space
form. In the final chapter of this part realizations are used to analyze rational
matrix functions of which the values on the imaginary axis are J-unitary matri-
ces. Solutions to various factorization problems are given. Special attention is paid
to factorization of J-unitary rational matrix functions into J-unitary factors. In
this chapter we also discuss problems of embedding a contractive rational matrix
function into a unitary rational matrix function of larger size.

Part VII. In this part the state space theory of J-spectral factorization, developed
in the final chapter of the fifth part, is used to solve H∞ problems. The first
chapter of this part contains the solution of the Nehari interpolation problem
for rational matrix interpolants. The second chapter presents a short review of
elements of control theory that play an important role in the third (and final)
chapter of this part. This final chapter is about H∞-control. Here we use the J-
spectral factorization theory to obtain the solutions of some of the main problems
in this area, namely the standard problem, the one-sided problem, and the full
model matching problem.
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As the description of the contents given above shows, the emphasis in the
book is mainly on rational matrix functions and finite dimensional realizations. An
exception is Part III. The latter part deals with non-rational matrix functions and
operator-valued functions, and it uses realizations that have an infinite dimensional
state space. Other exceptions are Chapter 2 in Part I and Chapter 12 in Part V.
For the material in the other chapters of the book, in particular, in Parts IV–VII,
often extensions to an infinite dimensional setting exist; they require appropriate
modifications. See, e.g., the books [5], [35], [42], [73], and the references therein.

A few remarks about terminology and notation
At the end of this book, after the bibliography, the reader will find a List of
Symbols and an Index. The latter contains in alphabetical order the various terms
that are used in this book with references to the pages where they are introduced.
In addition, we would like to mention the following.

In the sequel, whenever convenient, a p× q matrix with complex entries will
be identified with the (linear) operator from Cq into Cp defined by the canonical
action of the matrix on the standard orthogonal basis of Cq . Conversely, a linear
operator from Cq into Cp is identified with its p × q matrix representation with
respect to the standard orthogonal bases of Cq and Cp.

+F
Γ

F−

Throughout the word “operator” refers to a bounded linear transformation
acting between Banach or Hilbert spaces (finite or infinite dimensional). We as-
sume the reader to be familiar with Sections I.1 and I.2 in [51] which contain the
standard spectral theory of operators, including the notion of a Riesz projection
and the corresponding functional calculus (see, also Chapter V in [144]). In partic-
ular, we shall often use the notions of a Cauchy domain and Cauchy contour which
are defined as follows. A Cauchy domain is an open set in the complex plane C

consisting of a finite number of components such that its boundary is composed
of a finite number of simple closed non-intersecting rectifiable curves. A Cauchy
contour Γ is the positively oriented boundary of a bounded Cauchy domain. We
write F+ for the interior domain of Γ, and F− for the exterior domain, i.e., the
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complement of the closure F+ of F+ in the Riemann sphere C∞ = C ∪ {∞}. The
picture on the previous page illustrates this notion. We shall also work with the
extended real line and the extended imaginary axis as contours on the Riemann
sphere C∞. For the real line the orientation will be from left to right and for the
imaginary axis from bottom to top. Thus for the extended real line the interior do-
main is the open upper half plane, which will be denoted by C+; for the extended
imaginary axis it is the open left half plane, which is denoted by Cleft.

We shall also freely use the Lesbesgue integral and related Lp spaces (see,
e.g., Appendix 2 in [53]). Functions which are equal almost everywhere (shorthand:
a.e.) are often identified, sometimes without explicitly mentioning this.

Finally, when dealing with inner-outer factorization, we shall always assume
that the outer factor is invertible outer (see Section 17.6). In the outer-co-inner
factorizations considered in this book, the outer factor will be assumed to be in-
vertible outer as well.



Part I
Convolution equations,
canonical factorization and the
state space method

This part has a preparatory character. It consists of two chapters. In the first
chapter we review the role of canonical factorization in inverting Wiener-Hopf
integral operators and block Toeplitz operators. The role of this factorization in
solving singular integral equations is described as well. The second chapter presents
in detail the basic elements of the state space method that are used throughout this
book. The central notion is that of a realization of a matrix or operator function.
Three important operations on realizations are studied.





Chapter 1

The role of canonical
factorization in solving
convolution equations

This chapter has a preparatory character. We review (without giving proofs) the
role of canonical factorization in inverting systems of convolution equations. The
chapter consists of three sections. Section 1.1 deals with Wiener-Hopf integral
equations, Section 1.2 with block Toeplitz equations, and Section 1.3 with singular
integral equations.

1.1 Wiener-Hopf integral equations and factorization

In this section we outline the factorization method of [61] to solve systems of
Wiener-Hopf integral equations. Such a system may be written as a single vector-
valued Wiener-Hopf equation

φ(t) −
∫ ∞
0

k(t− s)φ(s) ds = f(t), t ≥ 0. (1.1)

Here φ and f are m-dimensional vector functions and k ∈ Lm×m
1 (−∞,∞), that is,

the kernel function k is an m×m matrix function whose entries are in L1(−∞,∞).
We assume that the given vector function f has its component functions in the
Lebesgue space Lp[0,∞), and we express this property by writing f ∈ Lm

p [0,∞).
Throughout this section p will be fixed and 1 ≤ p < ∞. The problem we shall
consider is to find a solution φ of equation (1.1) that also belongs to the space
Lm

p [0,∞).
The usual method (see [61]) for solving equation (1.1) is as follows. First

assume that (1.1) has a solution φ in Lm
p [0,∞). Extend φ and f to the full real
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line by putting

φ(t) = 0, f(t) = −
∫ ∞
0

k(t− s)φ(s) ds, t < 0.

Then φ, f ∈ Lm
p (−∞,∞) and the full line convolution equation

φ(t)−
∫ ∞
−∞

k(t− s)φ(s) ds = f(t), −∞ < t < ∞

is satisfied. By applying the Fourier transformation and leaving the part of f that
is given in the right-hand side, one gets

W (λ)Φ+(λ)− F−(λ) = F+(λ), λ ∈ R, (1.2)

where

W (λ) = Im −
∫ ∞
−∞

eiλtk(t) dt, F+(λ) =
∫ ∞
0

eiλtf(t) dt, (1.3)

Φ+(λ) =
∫ ∞
0

eiλtφ(t) dt, F−(λ) =
∫ 0

−∞
eiλtf(t) dt. (1.4)

Here Im is the m×m identity matrix. Note that the functions K and F+ are given,
but the functions Φ+ and F− have to be found. In fact in this way the problem to
solve (1.1) is reduced to that of finding two functions Φ+ and F− such that (1.2)
holds, while furthermore Φ+ and F− must be as in (1.4) with φ ∈ Lm

p [0,∞) and
f ∈ Lm

p (−∞, 0].
To find Φ+ and F− of the desired form such that (1.2) holds, one factorizes

the m×m matrix function W appearing in (1.2). This function is called the symbol
of the integral equation (1.1). Note that W is continuous on the real line, and by
the Riemann-Lebesgue lemma limλ∈R, λ→∞W (λ) exists and is equal to Im.

Assume that the symbol admits a factorization of the following form:

W (λ) =
(
Im +G−(λ)

)(
Im +G+(λ)

)
, λ ∈ R, (1.5)

where

G+(λ) =
∫ ∞
0

eiλtg+(t) dt, G−(λ) =
∫ 0

−∞
eiλtg−(t) dt,

with g+ ∈ Lm×m
1 [0,∞) and g− ∈ Lm×m

1 (−∞, 0] while, in addition, the determi-
nants

det
(
Im +G+(λ)

)
, det

(
Im +G−(λ)

)
do not vanish in the closed upper and lower half plane, respectively. We shall refer
to the factorization (1.5) as a right canonical factorization of W with respect to
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the real line. Under the conditions stated above the functions
(
Im+G+(λ)

)−1 and(
Im +G−(λ)

)−1 admit representations as Fourier transforms:
(
Im +G+(λ)

)−1 = Im +
∫ ∞
0

eiλtγ+(t) dt, (1.6)

(
Im +G−(λ)

)−1 = Im +
∫ 0

−∞
eiλtγ−(t) dt, (1.7)

with γ+ ∈ Lm×m
1 [0,∞) and γ− ∈ Lm×m

1 (−∞, 0]. Using the factorization (1.5) and
omitting the variable λ, equation (1.2) can be rewritten as

(Im +G+)Φ+ − (Im +G−)−1F− = (Im +G−)−1F+. (1.8)

Let P be the projection acting on the Fourier transforms of Lm
p (−∞,∞)-functions

according to the following rule:

P
(∫ ∞

−∞
eiλth(t) dt

)
=
∫ ∞
0

eiλth(t) dt.

Applying P to (1.8) one gets

(Im +G+)Φ+ = P((Im +G−)−1F+
)
,

and hence
Φ+ = (Im +G+)−1P

(
(Im +G−)−1F+

)
, (1.9)

which is the formula for the solution of equation (1.2). To obtain the solution φ
of the original equation (1.1), i.e., to obtain the inverse Fourier transform of Φ+,
one can employ the formulas (1.6) and (1.7). In fact

φ(t) = f(t) +
∫ ∞
0

γ(t, s)f(s) ds, t ≥ 0,

where the m×m matrix function γ(t, s) is given by

γ(t, s) = γ+(t− s) + γ−(t− s) +
∫ min(t, s)

0

γ+(t− r)γ−(r − s) dr.

We conclude the description of this factorization method by mentioning that the
equation (1.1) has a unique solution in Lm

p [0,∞) for each f in Lm
p [0,∞) if and

only if its symbol admits a factorization as in (1.5). For details, see [50], [61].
Let T be the Wiener-Hopf integral operator on Lm

p [0,∞) associated with
equation (1.1), that is, T is the operator on Lm

p [0,∞) given by

(Tφ)(t) = φ(t) −
∫ ∞
0

k(t− s)φ(s) ds, t ≥ 0.
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The function W in the left-hand side of (1.3) is also referred to as the symbol of
T . Obviously the operator T is invertible if and only if the equation (1.1) has a
unique solution in Lm

p [0,∞) for each f in Lm
p [0,∞). Thus the results reviewed

above can be summarized as follows.

Theorem 1.1. Let T be the Wiener-Hopf integral operator on Lm
p [0,∞) with symbol

W . Then T is invertible if and only if W admits a right canonical factorization
with respect to the real line. Furthermore, if (1.5) is such a factorization of W ,
then the inverse of T is the integral operator given by

(T−1f)(t) = f(t) +
∫ ∞
0

γ(t, s)f(s) ds, t ≥ 0,

where the kernel function γ is defined by

γ(t, s) =

⎧⎪⎪⎨⎪⎪⎩
γ+(t− s) +

∫ s

0

γ+(t− r)γ−(r − s) dr, 0 ≤ s < t,

γ−(t− s) +
∫ t

0

γ+(t− r)γ−(r − s) dr, 0 ≤ t < s

(1.10)

with γ− and γ+ as in (1.6) and (1.7), respectively.

To illustrate the method, let us consider a special choice for the right-hand
side f (cf., [61]). Take

f(t) = e−iqtx0, (1.11)

where x0 is a fixed vector in Cm and q is a complex number with �q < 0. Then

F+(λ) =
∫ ∞
0

ei(λ−q)tx0 dt =
i

λ− q
x0, �λ ≥ 0.

Now observe that

i

λ− q

((
Im +G−(λ)

)−1 − (Im +G−(q)
)−1)

x0

is the Fourier transform of an Lm
p (−∞, 0]-function and hence it vanishes when the

projection P is applied. It follows that in the present case the formula for Φ+ may
be written as

Φ+(λ) =
i

λ− q

(
Im +G+(λ)

)−1(
Im +G−(q)

)−1
x0.

Recall that the solution φ is the inverse Fourier transform of Φ+. So we have

φ(t) = e−iqt

(
Im +

∫ t

0

eiqsγ+(s) ds

)(
Im +G−(q)

)−1
x0. (1.12)
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1.2 Block Toeplitz equations and factorization

In this section we consider the discrete analogue of a Wiener-Hopf integral equa-
tion, that is, a block Toeplitz equation . So we consider an equation of the type

∞∑
k=0

aj−kξk = ηj , j = 0, 1, 2, . . . . (1.13)

Throughout we assume that the coefficients aj are given complex m×m matrices
satisfying

∞∑
j=−∞

‖aj‖ < ∞, (1.14)

and η = (ηj)∞j=0 is a given vector from �m
p = �p(Cm). The problem is to find

ξ = (ξk)∞k=0 ∈ �m
p such that (1.13) is satisfied. We shall restrict ourselves to the

case 1 ≤ p ≤ 2; the final results however are valid for 2 < p ≤ ∞ as well.
Assume ξ ∈ �m

p is a solution of (1.13). Then one can write (1.13) in the form

∞∑
k=−∞

aj−kξk = ηj , j = 0,±1,±2, . . . , (1.15)

where ξk = 0 for k < 0 and ηj is defined by (1.15) for j < 0. Multiplying both
sides of (1.15) by λj with |λ| = 1 and summing over j, one gets

a(λ)ξ+(λ)− η−(λ) = η+(λ), |λ| = 1, (1.16)

where

a(λ) =
∞∑

j=−∞
λjaj , η+(λ) =

∞∑
j=0

λjηj , (1.17)

ξ+(λ) =
∞∑

j=0

λjξj , η−(λ) =
−1∑

j=−∞
λjηj .

In this way the problem to solve (1.13) is reduced to that of finding two sequences
ξ+ and η− such that (1.16) holds, while moreover, ξ+ and η− must be as in (1.2)
with (ξj)∞j=0 and (η−j−1)∞j=0 from �m

p .
The usual way (cf., [61] or the book [40]) of solving (1.16) is again by fac-

torizing the symbol a(λ) of the given block Toeplitz equation. Assume that a(λ)
admits a right canonical factorization with respect to the unit circle . By definition
this means that a(λ) can be written as

a(λ) = h−(λ)h+(λ), |λ| = 1, (1.18)

h+(λ) =
∞∑

j=0

λjh+j , h−(λ) =
0∑

j=−∞
λjh−j ,
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where (h+j )
∞
j=0 and (h

−
−j)

∞
j=0 belong to the space �m×m

1 of all absolutely convergent
sequences of complex m×m matrices, deth+(λ) 	= 0 for |λ| ≤ 1 and deth−(λ) 	= 0
for |λ| ≥ 1 (including λ = ∞). Then h−1+ and h−1− also admit a representation of
the form

h−1+ (λ) =
∞∑

j=0

λjγ+j , h−1− (λ) =
0∑

j=−∞
λjγ−j , (1.19)

with (γ+j )
∞
j=0 and (γ

−
−j)

∞
j=0 from �m×m

1 . Defining the projection P by

P
( ∞∑

j=−∞
λjbj

)
=

∞∑
j=0

λjbj ,

one gets from (1.16) and (1.18)

ξ+ = h−1+ P
(
h−1− η+

)
. (1.20)

Here, for convenience, the variable λ is omitted. The solution of the original equa-
tion (1.13) can now be written as

ξk =
∞∑

s=0

γksηs, k = 0, 1, . . . , (1.21)

where

γks =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s∑
r=0

γ+k−rγ
−
r−s, s ≤ k,

k∑
r=0

γ+k−rγ
−
r−s, s ≥ k.

Note that for s = k both sums in the above formula define the same matrix.
The assumption that a(λ) admits a right canonical factorization as in (1.18)

is equivalent to the requirement that for each η = (ηj)∞j=0 in �m
p the equation

(1.13) has a unique solution ξ = (ξk)∞k=0 in �m
p . For details we refer to [61], [40].

Let T be the block Toeplitz operator on �m
p associated with the Toeplitz

equation (1.13), that is, T is the operator on �m
p given by

Tξ = η ⇐⇒
∞∑

k=0

aj−kξk = ηj , j = 0, 1, 2, . . . .

The function a appearing in the left-hand side of (1.17) is also referred to as the
symbol of T . Obviously T is invertible if and only if for each η = (ηj)∞j=0 in �m

p

the equation (1.13) has a unique solution ξ = (ξk)∞k=0 in �m
p . This allows us to

summarize the results reviewed above as follows.
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Theorem 1.2. Let T be the block Toeplitz operator on �m
p with symbol a(λ) satisfying

(1.14). Then T is invertible if and only a(λ) admits a right canonical factorization
with respect to the unit circle. Furthermore, if (1.18) is such a factorization of the
function a(λ), then the inverse of T is given by

T−1 =

⎡⎢⎢⎢⎣
γ11 γ12 γ13 · · ·
γ21 γ22 γ23 · · ·
γ31 γ32 γ33 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ ,

where the matrices γks are defined by

γks =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s∑
r=0

γ+k−rγ
−
r−s, s ≤ k,

k∑
r=0

γ+k−rγ
−
r−s, s ≥ k,

(1.22)

with γ+j and γ−j being determined by (1.19).

By way of illustration, we consider the special case when

ηj = qjη0, j = 0, 1, . . . . (1.23)

Here η0 is a fixed vector in Cm and q is a complex number with |q| < 1. Then
clearly

η+(λ) =
1

1− λq
η0, |λ| ≤ 1,

and one checks without difficulty that formula (1.21) becomes

ξk = qk
k∑

s=0

q−sγ+s h−1− (q−1)η0, k = 0, 1, . . . . (1.24)

This is the analogue of formula (1.12) in the previous section.

1.3 Singular integral equations and factorization

In this section we review the factorization method that is used to solve systems of
singular integral equations [48]. Consider the singular integral equation

a(t)φ(t) + b(t)
1
πi

∫
Γ

φ(τ)
τ − t

dτ = f(t), t ∈ Γ, (1.25)

with integration taken over a Cauchy contour Γ. (For the definition of the latter
notion see the final paragraphs of Chapter 0 dealing with terminology and nota-
tion.) We write F+ for the interior domain of Γ, and F− for the exterior domain
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(i.e., the complement of F+ in the Riemann sphere C∪{∞}). The functions a and
b in (1.25) are given continuous m×m matrix functions defined on Γ, and f is a
given function from Lm

p (Γ), p fixed, 1 < p < ∞. As usual in the theory of singular
integral equations, it is assumed that the interior domain F+ of Γ is connected
and contains 0; the exterior domain F− of Γ contains ∞. The problem is to find
φ ∈ Lm

p (Γ) such that(1.25) is satisfied.
For φ a rational function without poles on Γ we put

(Sφ)(t) =
1
πi

∫
Γ

φ(τ)
τ − t

dτ = f(t), t ∈ Γ, (1.26)

where the integral is taken in the sense of the Cauchy principal value. The operator
S defined in this way can be extended by continuity to a bounded linear operator,
again denoted by S, on all of Lm

p (Γ). Equation (1.25) can now be written as

aIφ+ bSφ = f, (1.27)

where I is the identity operator on Lm
p (Γ). In other words, the study of the equa-

tion (1.25) reduces to that of the operator aI + bS. Here a and b are viewed as
multiplication operators. Equation (1.25) has a unique solution φ ∈ Lm

p (Γ) for
each choice of f ∈ Lm

p (Γ) if and only if the operator aI+ bS is invertible as an op-
erator on Lm

p (Γ). In the remainder of this section we shall discuss a necessary and
sufficient condition for this to happen, and we shall give formulas for the inverse
(aI + bS)−1.

The operator S enjoys the property S2 = I. Hence the operators

PΓ =
1
2
(I + S), QΓ =

1
2
(I − S)

are complementary projections on Lm
p (Γ). The image of PΓ consists of all functions

in Lm
p (Γ) that admit an analytic continuation into F+. Similarly, the image of QΓ

is the set of all functions in Lm
p (Γ) that admit an analytic continuation into F−

vanishing at∞. Putting c = a+ b and d = a− b, one can write the equation (1.27)
in the form cPΓφ+ dQΓφ = f .

The following is known (see [62] for the case when the coefficients a and b
are scalar functions and [48] for the matrix-valued case). The operator aI + bS =
cPΓ + dQΓ is invertible if and only if the matrices c(λ) and d(λ) are invertible
for each λ ∈ Γ and the function w given by w(λ) = d(λ)−1c(λ) admits a right
canonical factorization with respect to Γ . By this we mean a factorization

w(λ) = w−(λ)w+(λ), λ ∈ Γ, (1.28)

where w− and w+ arem×mmatrix functions, analytic and taking invertible values
on an open neighborhood of F− and F+, respectively. With the help of (1.28), the
operator aI+bS = cPΓ+dQΓ can be rewritten as aI+bS = dw−(w+PΓ+w−1− QΓ),
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and its inverse is given by

(aI + bS)−1 = (w−1+ PΓ + w−QΓ)w−1− d−1

= w−1+ PΓw−1− d−1 + w−QΓw−1− d−1. (1.29)

Replacing PΓ and QΓ by 1
2
(I + S) and 1

2
(I − S), respectively, one gets

(aI + bS)−1 =
1
2
(c−1 + d−1)I +

1
2
(w−1+ − w−)Sw−1− d−1

=
1
2
[(a+ b)−1 + (a− b)−1]I +

1
2
(w−1+ − w−)Sw−1− (a− b)−1

= (a+ b)−1a(a− b)−1I +
1
2
(w−1+ − w−)Sw−1− (a− b)−1.

Summarizing we get the following theorem.

Theorem 1.3. The singular integral operator T = aI+bS on Lm
p (Γ) is invertible if

and only if the matrices a(λ) + b(λ) and a(λ)− b(λ) are invertible for each λ ∈ Γ
and the function w given by

w(λ) =
(
a(λ) + b(λ)

)−1(
a(λ) + b(λ)

)
admits a right canonical factorization with respect to Γ. Furthermore, if (1.28) is
such a factorization of w, then the inverse of T is given by

T−1 = (a+ b)−1a(a− b)−1I +
1
2
(w−1+ − w−)Sw−1− (a− b)−1. (1.30)

Thus, as before for Wiener-Hopf and block Toeplitz operators, canonical
factorization is a useful method for inverting singular integral operators too.

Notes

The material in this chapter is standard, and can be found in much more detail and
greater generality in various monographs and papers, for instance, see the books
[29] and [50]. A first introduction to the theory of Wiener-Hopf integral equations
and the theory of (block) Toeplitz operators can be found in Chapters XII and XIII
of [51] and Chapters XXIII–XXV of [52], respectively. More information can be
found in the monographs [37], [62], [63], [64] and [24]. For an extensive review (with
many additional references) of the factorization theory of matrix functions with
respect to a curve and its applications to inversion of singular integral operators
of different types, including Wiener-Hopf and block Toeplitz operators, the reader
is referred to the recent survey paper [59].





Chapter 2

The state space method and
factorization

This chapter describes in detail the elements of the state space method that are
used throughout this book. The central notion is that of a realization of a matrix
or operator function. The chapter consists of six sections. Section 2.1 presents
preliminaries on realization, including the relevant definitions and the connection
with systems theory. In the next two sections the realization problem is discussed.
First for rational matrix functions in Section 2.2, and then for analytic operator
functions in a possibly infinite dimensional setting in Section 2.3. The last three
sections are devoted to the main operations on realizations that are needed in
this book: inversion (Section 2.4), taking products (Section 2.5), and factorization
(Section 2.6).

2.1 Preliminaries on realization

Let W be a rational matrix function which is also proper, that is, W has no pole
at infinity. As is well-known such a function can always be represented (see the
next section for an explicit construction) in the form

W (λ) = D + C(λI − A)−1B. (2.1)

Here λ is a complex variable, A is a square matrix, I is the identity matrix of the
same size as A, and B and C are matrices of appropriate sizes. Since A, B, C
and D are matrices, it is immediate from Cramer’s rule that the right-hand side of
(2.1) is also a proper rational matrix function. We shall understand the equality in
(2.1) as an equality between rational matrix functions, and we shall refer to (2.1)
as a matrix-valued realization of W . Sometimes we simply say that the quadruple
of matrices (A, B, C, D) is a realization of W . A rational matrix function has many
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different realizations. Of particular interest are those matrix-valued realizations of
W of which the order of the matrix A is as small as possible. These realizations
are called minimal ; we shall describe their properties in Chapter 8.

For operator-valued functions W , expressions of the type (2.1) are important
too but have to be considered with some care. Let W be an L(U, Y )-valued function
on a subset Ω of C. Here U and Y are possibly infinite dimensional complex Banach
spaces. We say that W admits a realization on Ω whenever W can be written as

W (λ) = D + C(λIX −A)−1B, λ ∈ Ω. (2.2)

Here A is a bounded linear operator on a complex Banach space X such that Ω is
a subset of ρ(A), the resolvent set of A. Furthermore, IX is the identity operator
on X , and

B ∈ L(U, X), C ∈ L(X, Y ), D ∈ L(U, Y ),

that is B : U → X, C : X → Y, and D : U → Y, are bounded linear operators.
The fact that Ω ⊂ ρ(A) implies that the right-hand side of (2.2) is a well-defined
bounded linear operator which maps U into Y for each λ ∈ Ω. Also, W (λ) is a
bounded linear operator mapping U into Y for each λ ∈ Ω. Note that (2.2) requires
these operators to be equal for each λ ∈ Ω. When Ω is open, an obvious necessary
condition for W to admit a realization on Ω is that W be analytic on Ω. When
Ω is a punctured open neighborhood of ∞, then (2.2) implies limλ→∞W (λ) = D
and so W is proper.

Often the identity matrix I in (2.1) and the identity operator IX in (2.2)
will be suppressed, and we simply write (λ − A)−1 in place of (λI − A)−1 or
(λIX −A)−1.

When X and Y are both finite dimensional, then the realization (2.2) is
called finite dimensional . In that case W (λ), A, B, C and D can be identified in
the usual way with matrices.

In the next two sections we shall address the realization problem, i.e., the
question under what conditions a given matrix or operator function admits a real-
ization. First however, we sketch a connection with systems theory which reflects
itself in some terminology to be introduced at the end of the present section.

A system Σ can be considered as a physical object which produces an output
in response to an input. Schematically:

yu Σ

where u denotes the input and y denotes the output. Mathematically, the input
u and the output y are vector-valued functions of a parameter t. The input can
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be chosen freely (at least in principle), but the output is uniquely determined by
the choice of the input. The relationship between the input and the output can
be quite complicated. Here we consider the simplest model which means that the
relationship in question is described by a causal linear time invariant system, i.e.,
a system of differential equations of the type

Σ

⎧⎪⎪⎨⎪⎪⎩
x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), t ≥ 0,

x(0) = 0,

(2.3)

where A, B, C and D are matrices of appropriate sizes, A and D square. Appli-
cation of the Laplace transform (under appropriate conditions on the input and
output functions) changes (2.3) into{

λx̂(s) = Ax̂(λ) +Bû(λ),

ŷ(λ) = Cx̂(λ) +Dû(λ),

and from these expressions one can solve ŷ(λ) in terms of û(λ), resulting in

ŷ(λ) =
(
D + C(λ −A)−1B

)
û(λ).

So in what is called the frequency domain, the input-output behavior of (2.3) is
determined by the function D+C(λ−A)−1B, which is called the transfer function
of the system (2.3). Note that this function appears in the realized form.

The connection with systems theory indicated above is reflected in the termi-
nology which is customarily used in dealing with realizations. Returning to (2.2),
the space X is usually called the state space of the realization, and the operator A
is referred to as its state space operator or main operator . Further we call B the
input operator , C the output operator , and D the external operator of (2.2). The
realization is called strictly proper when D = 0 and biproper if D is an invertible
operator. In the latter case, the operator A−BD−1C is well-defined. It is referred
to by the term the associate state space operator or associate main operator and
(by slight abuse of notation as A× does not depend only on A) denoted by A×.
This operator will play a crucial role in the inversion and factorization results to
be discussed later on. In the situation where U = Y and D is the identity oper-
ator, we say that (2.2) is a unital realization. The associate main operator then
has the form A× = A−BC. In the case of a matrix-valued realization, the terms
state space matrix , main matrix , input matrix , output matrix , external matrix ,
associate state space matrix , and associate main matrix will be used.

Other elements of systems theory involving stability properties, feedback and
stabilization, will be reviewed in Chapter 19. These will be of central importance
in Chapter 20 (the final chapter of the book) which is concerned with H∞-control.
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2.2 Realization of rational matrix functions

In this section we construct a matrix-valued realization for a given proper rational
(possibly non-square) matrix function.

Theorem 2.1. Every proper rational matrix function has a matrix-valued realiza-
tion. Moreover, the realization can be chosen in such a way that the set of eigen-
values of the main matrix coincides with the set of poles of W .

Proof. Let W be a proper rational r × m matrix function, and let wij be the
(i, j)-entry of W . Since W is rational, we have

wij(λ) =
pij(λ)
qij(λ)

, i = 1, . . . , r, j = 1, . . . , n,

where pij and qij are scalar polynomials. The polynomials qij are non-zero and
can be taken to be monic. Without loss of generality we may assume that the
polynomials pij and qij have no common zero. Taking the least common multiple
of the polynomials qij , we obtain a monic polynomial q.

Define ΩW to be the set of all complex λ for which q(λ) 	= 0. Notice that
C \ΩW is precisely the set of all points in C where W has a pole. One checks
without difficulty that W has a representation of the form

W (λ) = W (∞) +
1

q(λ)
H(λ), λ ∈ ΩW ,

where H is an r×m matrix polynomial. Since W is proper, this matrix polynomial
is either identically equal to zero or it has degree strictly smaller than k, the degree
of the scalar polynomial q. Write

q(λ) = λk +
k−1∑
j=0

λjqj , H(λ) =
k−1∑
j=0

λjHj ,

and, with Ir the r × r identity matrix,

A =

⎡⎢⎢⎢⎢⎣
0 0 . . . 0 −q0Ir

I 0 . . . 0 −q1Ir

. . .
...

0 . . . I −qk−1Ir

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
H0

H1

...

Hk−1

⎤⎥⎥⎥⎥⎦ , C =
[
0 . . . 0 Ir

]
.

Then the resolvent set ρ(A) of A coincides with ΩW , the subset of C on which q
takes non-zero values. For λ ∈ ρ(A), define C1(λ), . . . , Ck(λ) by

[ C1(λ) C2(λ) . . . Ck(λ) ] = C(λ −A)−1.
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From the special form of the matrix A (second companion type) we see that

Cj+1(λ) = λCj(λ), j = 0, . . . , k − 1,

and C1(λ) = q(λ)−1I. Hence

C(λ−A)−1B =
k−1∑
j=0

Cj+1(λ)Hj =
1

q(λ)
H(λ).

It follows that W (λ) = W (∞) + C(λ−A)−1B for each λ ∈ ΩW = ρ(A). Thus W
has a matrix-valued realization such that the set of eigenvalues of the main matrix
A is equal to C \ΩW . In other words, the set of eigenvalues of A coincides with
the set of poles of W, as desired. �

Let W be a proper rational matrix function. Elaborating on Theorem 2.1
and its proof, we note that W does not admit any realization involving a main
matrix A whose spectrum σ(A) is strictly smaller than C \ΩW , the set of poles of
W . Indeed, we would then have a realization of W on an open subset of C strictly
larger than ΩW and such a subset would contain a pole of W , contradicting the
fact that W has to be analytic on it. It is not difficult to construct realizations of
W having a main matrix A with spectrum strictly larger than C \ΩW and where
certain eigenvalues of A (namely those belonging to ΩW ) do not correspond with
poles of W . So the realization constructed in the proof of Theorem 2.1 enjoys a
certain minimality property. However, it does this only in a weak sense. This one
sees, for instance, by looking at the pole orders. If μ is a pole of W , its order as a
pole of W is generally strictly smaller than the order of μ as a pole of the resolvent
(λ−A)−1. With the proper notion of minimality to be introduced in Section 8.1,
this anomaly disappears so that the two pole orders are the same. The key point
is that the state space dimension (which is equal to rk) of the realization of the
proof of Theorem 2.1 is generally not the least possible.

2.3 Realization of analytic operator functions

In this section we consider the realization problem for possibly non-rational opera-
tor functions. First we consider operator functions that are analytic on a bounded
Cauchy domain in C. Recall from Chapter 0 that the boundary of such a Cauchy
domain consists of a finite number of simple closed non-intersecting rectifiable
curves.

Theorem 2.2. Let Ω be a bounded Cauchy domain, and let W be an operator func-
tion with values in L(U, Y ), where U and Y are complex Banach spaces. Suppose
W is analytic on Ω and continuous on the closure of Ω. Then, given a bounded
linear operator D : U → Y , there exists a realization for W on Ω having D as
its external operator. In particular, if U = Y , then W admits a unital realization
on Ω.
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Proof. Let Γ be the positively oriented boundary of Ω (so that Ω is the interior
domain of Γ). With Γ and U we associate the space C(Γ;U) of all U -valued
continuous functions on Γ endowed with the supremum norm. This will become
the state space of the realization to be constructed.

Write B for the canonical embedding of U into C(Γ;U), so (Bu)(z) = u for
each u ∈ U and z ∈ Γ. Next, define C : C(Γ;U)→ Y by setting

Cf =
1
2πi

∫
Γ

(
D −W (z)

)
f(z) dz, f ∈ C(Γ;U).

Here D is the given operator from U into Y . Finally, the operator A from C(Γ;U)
into C(Γ;U) is the multiplication operator given by

(Af)(z) = zf(z), f ∈ C(Γ;U), z ∈ Γ.

All these operators are linear and bounded. We claim that

W (λ) = D + C(λ−A)−1B, λ ∈ Ω ⊂ ρ(A).

Take λ ∈ Ω. Then λ−A is invertible with inverse given by

(
(λ−A)−1g

)
(z) =

1
λ− z

g(z), g ∈ C(Γ;U), z ∈ Γ.

It follows that (
(λ −A)−1Bu

)
(z) =

1
λ− z

u, u ∈ U, z ∈ Γ,

and hence

C(λ −A)−1Bu =
1
2πi

∫
Γ

1
λ− z

(
D −W (z)

)
u dz, u ∈ U.

By the Cauchy integral formula, the right-hand side of this identity isW (λ)u−Du,
and the desired result is immediate. �

Theorem 2.2 remains true when the conditions on Ω and W are replaced by
the simpler hypotheses that Ω is any bounded open set in C and W is just analytic
on Ω. In that case the space C(Γ;U) must be replaced by an appropriate Banach
space defined in terms of the behavior of W near the boundary of Ω. For details,
cf., [113]; see also the next theorem.

Theorem 2.3. Let Ω ⊂ C be an open punctured neighborhood of ∞ in the Riemann
sphere C∞, let U and Y be complex Banach spaces, and let W : Ω → L(U, Y )
be analytic and proper. Then W admits a realization on Ω with external operator
D = limλ→∞W (λ).
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Proof. First assume Ω is the full complex plane. Then, by Liouville’s theorem, the
function W has the constant value D = limλ→∞W (λ). Now take for the state
space X the zero space {0}, and the desired realization for W on C is obtained
trivially.

Next, consider the more interesting case where Ω is different from C. For
notational reasons we will assume that 0 /∈ Ω. The general case can be reduced to
this situation by a simple translation.

Define X to be the space of all Y -valued functions, analytic on Ω ∪ {∞},
such that

‖f‖• = sup
z∈Ω∪{∞}

‖f(z)‖
max(1, ‖W (z)‖) < ∞.

Taking ‖ · ‖• for the norm, X is a Banach space. Introduce B : U → X by

(Bu)(z) =

⎧⎨⎩ z
(
W (z)u−W (∞)u

)
, z ∈ Ω,

lim
z→∞ z

(
W (z)u−W (∞)u

)
, z =∞.

Further, let C : X → Y be given by Cf = f(∞). Finally, define A : X → X by

(Af)(z) =

⎧⎨⎩ z
(
f(z)− f(∞)

)
, z ∈ Ω,

lim
z→∞ z

(
f(z)− f(∞)

)
, z =∞.

All these operators are linear and bounded. We claim that

W (λ) = W (∞) + C(λ −A)−1B, λ ∈ Ω ⊂ ρ(A).

Take λ ∈ Ω. For g ∈ X , put

h(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zg(λ)− λg(z)

z − λ
, z ∈ Ω, z 	= λ,

g(λ)− λg′(λ), z = λ,

g(λ), z =∞,

where g′ stands for the derivative of g. Then h ∈ X , and by direct computation
one sees that

(
(λ − A)h

)
(z) = λg(z), z ∈ Ω ∪ {∞}. Now λ is non-zero (since Ω

does not contain the origin), and it follows that λ −A is surjective. But λ−A is
injective too. Indeed, if f ∈ X and Af = λf , then

f(z) =
z

z − λ
f(∞), z ∈ Ω, z 	= λ,

which, on account of the definition of the norm ‖ · ‖• on X , implies f(∞) = 0
(cf., the behavior of f when z → λ), hence f = 0. It follows that λ ∈ ρ(A) and
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(λ − A)−1g = λ−1h. We now apply this result to g = Bu with u ∈ U . With this
g, we have h(∞) = (Bu)(λ) = λ

(
W (λ)u −W (∞)

)
u, and so(

(λ−A)−1Bu
)
(∞) = λ−1h(∞) =

(
W (λ)u −W (∞)

)
u.

In other words C(λ − A)−1Bu =
(
W (λ)u −W (∞)

)
u. As u ∈ U was taken arbi-

trarily, we get W (λ) = W (∞) + C(λ −A)−1B for each λ ∈ Ω. �

2.4 Inversion

We begin with some heuristics. Consider the realization

W (λ) = D + C(λ −A)−1B, λ ∈ ρ(A), (2.4)

and view W as the transfer function of the linear time invariant system

Σ

⎧⎪⎪⎨⎪⎪⎩
x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), t ≥ 0,

x(0) = 0.

Assuming that we are in the biproper situation where D is invertible, we can solve
u in terms of x and y:

u(t) = −D−1Cx(t) +D−1y(t), t ≥ 0.

Inserting this into Σ yields

Σ×

⎧⎪⎪⎨⎪⎪⎩
x′(t) = A×x(t) + BD−1y(t),

u(t) = −D−1Cx(t) +D−1y(t), t ≥ 0,

x(0) = 0.

Here A× = A−BD−1C is the associate main operator of the given realization as
introduced in the last paragraph of Section 2.1. The linear time invariant systems
Σ and Σ× can be seen as each other’s inverse. The transfer function of Σ is given
by (2.4), the transfer function of Σ× by

W×(λ) = D−1 −D−1C(λ−A×)−1BD−1, λ ∈ ρ(A×).

So it is to be expected that W and W× are related by inversion. We shall now
make this precise.

Theorem 2.4. Consider the biproper realization

W (λ) = D + C(λ −A)−1B, λ ∈ ρ(A).
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Put A× = A − BD−1C, and take λ ∈ ρ(A). Then W (λ) is invertible if and only
if λ belongs to ρ(A×). In that case, for λ ∈ ρ(A) ∩ ρ(A×), the following identities
hold:

W (λ)−1 = D−1 −D−1C(λ−A×)−1BD−1,

(λ−A×)−1 = (λ−A)−1 − (λ −A)−1BW (λ)−1C(λ−A)−1.

Moreover, again for λ ∈ ρ(A) ∩ ρ(A×), we have

W (λ)D−1C(λ−A×)−1 = C(λ−A)−1,

(λ−A×)−1BD−1W (λ) = (λ−A)−1B.

Proof. For λ ∈ ρ(A×), put W×(λ) = D−1−D−1C(λ−A×)−1BD−1. Then, when
λ ∈ ρ(A) ∩ ρ(A×), one has

W (λ)W×(λ) =
(
D + C(λ −A)−1B

) (
D−1 −D−1C(λ−A×)−1BD−1

)
= IY + C(λ −A)−1BD−1 − C(λ −A×)−1BD−1 +

−C(λ−A)−1BD−1C(λ −A×)−1BD−1.

Now use thatBD−1C = A−A× = (λ−A×)−(λ−A). It follows thatW (λ)W×(λ)
= IY . Analogously one has W×(λ)W (λ) = IU . The expression for (λ− A×)−1 as
well as the last two identities in the theorem are obtained in a similar way. �

Instead of the previous proof one can also give an argument using Schur
complements of the operator matrix[

A− λI B

C I

]
.

For details, see the second proof of Theorem 2.1 in [20] or Sections 2 and 4 in [19].

2.5 Products

Again we begin with some heuristical remarks. This time we start with two linear
time invariant systems

Σ1

⎧⎪⎪⎨⎪⎪⎩
x′1(t) = A1x1(t) +B1u1(t),

y1(t) = C1x1(t) +D1u1(t), t ≥ 0,

x1(0) = 0,
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Σ2

⎧⎪⎪⎨⎪⎪⎩
x′2(t) = A2x2(t) +B2u2(t),

y2(t) = C2x2(t) +D2u2(t), t ≥ 0,

x2(0) = 0,

and we assume that the output y2 of Σ2 can be and is used as the input u1 = y2 for
Σ1, resulting in the cascade synthesis Σ of the systems Σ1 and Σ2. The input for
Σ is u = u2 and the output (modulo u1 = y2) is y = y1. The equations governing
the relationship between u and y then are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x′1(t) = A1x1(t) +B1C2x2(t) +B1D2u(t),

x′2(t) = A2x2(t) + B2u(t),

y(t) = C1x1(t) +D1C2x2(t) +D1D2u(t), t ≥ 0,

x1(0) = 0,

x2(0) = 0,

and this is a linear time invariant system which can be rewritten as

Σ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
x1

x2

]′
=

[
A1 B1C2

0 A2

][
x1

x2

]
+

[
B1D2

B2

]
u,

y =
[

C1 D1C2

] [ x1

x2

]
+ D1D2u,

[
x1

x2

]
(0) =

[
0

0

]
.

The transfer functions of Σ1 and Σ2 are

W1(λ) = D1 + C1(λ−A1)−1B1, λ ∈ ρ(A1), (2.5)

W2(λ) = D2 + C2(λ−A2)−1B2, λ ∈ ρ(A2), (2.6)

respectively, and the transfer function of Σ is the product W1W2 of W1 and W2,
in other words

W (λ) = W1(λ)W2(λ).

So our considerations lead to a product formula for realizations. Here are the
details.

First we specify the spaces associated with the realizations (2.5) and (2.6),
and the actions of the operators involved:

A1 : X1 → X1, B1 : U1 → X1, C1 : X1 → Y1, D1 : U1 → Y1,
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A2 : X2 → X2, B2 : U2 → X2, C2 : X2 → Y2, D2 : U2 → Y2.

Now assume Y1 = U2. Put U = U1, Y = Y2, and introduce

A =

[
A1 B1C2

0 A2

]
: X1+̇X2 → X1+̇X2,

B =

[
B1D2

B2

]
: Y → X1+̇X2,

C =
[

C1 D1C2

]
: X1+̇X2 → Y,

D = D1D2 : U → Y.

Then the following result holds true.

Theorem 2.5. Let W1 and W2 be given by the realizations (2.5) and (2.6), respec-
tively. Then, with A, B, C and D as above,

W1(λ)W2(λ) = D + C(λ −A)−1B, λ ∈ ρ(A1) ∩ ρ(A2) ⊂ ρ(A).

Proof. Take λ ∈ ρ(A1) ∩ ρ(A2). Then λ ∈ ρ(A). Indeed, λ − A is invertible with
inverse given by

(λ−A)−1 =

⎡⎣ (λ−A1)
−1

H(λ)

0 (λ−A2)
−1

⎤⎦ : X1+̇X2 → X1+̇X2,

where H(λ) = − (λ−A1)
−1

B1C2 (λ−A2)
−1. Employing this, and the expres-

sions for B, C and D given prior to the theorem, D + C(λ −A)−1B is seen to be
equal to

D1D2 +
[

C1 D1C2

]⎡⎣ (λ−A1)
−1

H(λ)

0 (λ−A2)
−1

⎤⎦⎡⎣ B1D2

B2

⎤⎦
= D1D2 +

[
C1 (λ−A1)

−1
C1H(λ) +D1C2 (λ−A2)

−1 ] [ B1D2

B2

]

=
(
D1 + C1(λ −A1)−1B1

) (
D2 + C2(λ−A2)−1B2

)
.

Thus D + C(λ −A)−1B = W1(λ)W2(λ), as desired. �

The product W1(λ)W2(λ) is defined for λ ∈ ρ(A1) ∩ ρ(A2), a punctured
neighborhood of ∞ in C ∪ {∞}. On the other hand D + C(λ −A)−1B is defined
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for λ ∈ ρ(A). As we have seen above ρ(A1) ∩ ρ(A2) ⊂ ρ(A). In general, this
inclusion is strict. Equality occurs, for instance, when the spectra σ(A1) and σ(A2)
of the operators A1 and A2 are disjoint. Another case where one has the equality
ρ(A) = ρ(A1) ∩ ρ(A1) is when ρ(A) is connected. In particular, the equality in
question is valid when W1 and W2 are rational matrix functions, and (2.5) and
(2.6) are matrix-valued realizations.

The realization of Theorem 2.5 is called the product of the realizations (2.5)
and (2.6), in that order.

The counterpart of taking products is factorization. In the next section this
topic will be discussed for functions given by a biproper realization. We close the
present section with a remark preparing for this discussion.

The main operator A in the product realization is given in the form of a 2×2
upper triangular operator matrix:

A =

[
A1 B1C2

0 A2

]
: X1+̇X2 → X1+̇X2.

Analogously, assuming the external operators to be invertible, the associate main
operator A× = A−BD−1C is of 2× 2 lower triangular type:

A× =

[
A×1 0

B2D
−1C1 A×2

]
: X1+̇X2 → X1+̇X2

where A×1 = A1 − B1D
−1
1 C1 and A×2 = A2 − B2D

−1
2 C2 are the associate main

operators of (2.5) and (2.6), respectively. Note that M = X1+̇ {0} is an invariant
subspace for A, that M× = {0} +̇X2 is an invariant subspace for A×, and that M
and M× match in the sense that the state space of the product realization is the
direct sum of M and M×. This state of affairs turns out to be a key point in the
discussion of factorization we now turn to.

2.6 Factorization

The theorems in this section will serve as a basis for the more involved factorization
results to be given in the sequel. Subspaces of Banach spaces are always assumed to
be closed, otherwise we use the term linear manifold. For simplicity (and without
loss of generality) we assume the external spaces U and Y to be equal.

Theorem 2.6. Consider the biproper realization

W (λ) = D + C(λIX −A)−1B, λ ∈ ρ(A), (2.7)

and let A× = A − BD−1C be its associate main operator. Let M and M× be
invariant subspaces for A and A×, respectively, and suppose

X = M � M×. (2.8)
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Assume D = D1D2, where D1 and D2 are invertible operators on Y , and write

A =

[
A1 A+

0 A2

]
: M+̇M× → M+̇M×,

B =

[
B1

B2

]
: Y → M+̇M×,

C =
[

C1 C2

]
: M+̇M× → Y.

Introduce the functions W1 and W2 via the biproper realizations

W1(λ) = D1 + C1(λIM −A1)−1B1D
−1
2 , λ ∈ ρ(A1), (2.9)

W2(λ) = D2 +D−11 C2(λIM× −A2)−1B2, λ ∈ ρ(A2). (2.10)

Then W admits the factorization

W (λ) = W1(λ)W2(λ), λ ∈ ρ(A1) ∩ ρ(A2) ⊂ ρ(A).

The function W is defined and analytic on ρ(A), while the factors W1 and W2

are defined and analytic on the sets ρ(A1) and ρ(A2), respectively. In particular,
the factors may be defined and analytic on domains where the left-hand side is
not. This will turn out to be relevant in applications (cf., the remarks made at the
end of this section).

Proof. Identifying X and M+̇M× in the usual manner, the product of the real-
izations (2.9) and (2.10) is precisely the realization (2.7). The desired result now
follows from Theorem 2.5. �

We shall refer to (2.8) as the matching condition, and when this condition is
satisfied we refer to M, M× as a pair of matching subspaces . A pair of matching
subspaces M, M× satisfying

A[M ] ⊂M, A×[M×] ⊂ M×

will be called a supporting pair of subspaces for the realization (2.7). Matching
pairs of subspaces correspond to projections. So Theorem 2.6 has a counterpart
in terms of projections. We say that a projection Π : X → X is a supporting
projection for the realization (2.7) if

A[KerΠ] ⊂ KerΠ, A×[ImΠ] ⊂ ImΠ.

Here KerT stands for the null space of an operator or matrix T , and ImT for its
range.
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Theorem 2.7. Let Π be a supporting projection for the biproper realization

W (λ) = D + C(λIX −A)−1B, λ ∈ ρ(A).

Assume D = D1D2, where D1 and D2 are invertible operators on Y , and introduce
the functions W1 and W2 via the biproper realizations

W1(λ) = D1 + C(λIX −A)−1(IX −Π)BD−12 , λ ∈ ρ(A),

W2(λ) = D2 +D−11 CΠ(λIX −A)−1B, λ ∈ ρ(A).

Then W (λ) = W1(λ)W2(λ) for all λ ∈ ρ(A).

This factorization holds on the resolvent set ρ(A) of A. However, in many
cases (relevant for applications), the factors in the right-hand side have an analytic
extension to larger domains (see Theorem 2.6; cf., also the remarks made at the
end of this section).

Proof. The fact that Π is a supporting projection for the given biproper realization
means nothing else than that the identities ΠA = ΠAΠ and A×Π = ΠA×Π are
satisfied. Hence (I −Π)(A −A×)Π = AΠ−ΠA. Now take λ ∈ ρ(A). Then

W1(λ)W2(λ) = D + C(λ −A)−1(I −Π)B + CΠ(λ−A)−1B
+C(λ−A)−1(I −Π)BD−1CΠ(λ −A)−1B

= D + C(λ −A)−1(I −Π)B + CΠ(λ−A)−1B
+C(λ−A)−1(I −Π)(A −A×)Π(λ −A)−1B

= D + C(λ −A)−1(I −Π)B + CΠ(λ−A)−1B
+C(λ−A)−1(AΠ−ΠA)(λ −A)−1B

= D + C(λ −A)−1(I −Π)B + CΠ(λ−A)−1B
+C(λ−A)−1

(
Π(λ−A)− (λ−A)Π

)
(λ−A)−1B

= D + C(λ −A)−1(I −Π)B + CΠ(λ−A)−1B
+C(λ−A)−1ΠB − CΠ(λ−A)−1B,

= D + C(λ −A)−1B = W (λ),

as desired. �

The material presented above contains two factorization results: Theorems
2.6 and 2.7. These theorems contain not only different expressions for the fac-
tors, these factors also have different domains. For rational matrix functions and
matrix-valued realizations, the differences are not essential. In the case of an in-
finite dimensional state space one has to be more careful, the reason being that
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ρ(A1) ∩ ρ(A2) can then be a proper subset of ρ(A). For an exhaustive discussion
of the issues involved, see Section 2.5 in [20].

We shall meet the differences referred to above when the factorization results
are applied, as will be done later on, for solving Wiener-Hopf, Toeplitz or singular
integral equations. In that context, it is also necessary to have information on
the sets where the factors take invertible values and to have expressions for the
inverses. In other words, it is necessary to have a good understanding of the
relationship between Theorems 2.6 and 2.7 on the one hand, and the inversion
result Theorem 2.4 on the other. The point here is that, by taking inverses, the
factorizations of the function W (λ) given in Theorems 2.6 and 2.7 directly induce
factorizations of the point-wise inverse W−1 of W , that is the function given by
W−1(λ) = W (λ)−1, while on the other hand factorizations of W−1 can also be
obtained by applying Theorems 2.6 and 2.7 to the realization

W−1(λ) = D−1 −D−1C(λ−A×)−1BD−1. (2.11)

Note here that if M, M× is a supporting pair of subspaces for the realization
(2.7), then M×, M is a supporting pair of subspaces for the realization (2.11), and,
analogously, if Π is a supporting projection for (2.7), then I − Π is a supporting
projection for (2.11). The analysis in [20], Section 2.5 also clarifies these matters;
the upshot is that the two approaches lead to essentially the same result.

Notes

The notion of a realization originates from the Kalman theory of linear time-
invariant systems [95]. The literature on the subject is rich; see, e.g., the text books
[94], [33]. In a somewhat different form the notion of realization also appears in
the theory of characteristic operator functions [27], [141]. The realization problem
has many different faces, depending on the class of matrix or operator functions
one is dealing with. The material of the first two sections is standard. Theorem 2.1
is a variation on Theorem 4.20 in [10]. Other constructions of matrix-valued real-
izations, including realizations with smallest possible state space dimension, can
be found in text books; see, e.g., [94], [33] or [85] and references given there. The
realization theorems for analytic operator functions in Section 2.3 originate from
[57]. The operations of inversion and taking products are standard in systems the-
ory. Theorem 2.11 has a natural Schur complement interpretation; see Section 2.2
in [20] and the paper [19]. The factorization theorem in the final section originates
from [21]; see also the first chapter of [11]. For a brief description of the history of
the factorization principle presented here, we refer to the Editorial introduction
in [54].





Part II
Convolution equations with
rational matrix symbols

The canonical factorization theorem for rational matrix functions in state space
form is the first result presented and proved in this part. This theorem is then used
to invert explicitly Wiener-Hopf, Toeplitz and singular integral operators with a
rational matrix symbol, with the inverses being presented explicitly in state space
formulas. For rational matrix symbols the solution to the homogeneous Riemann-
Hilbert boundary value problem is also given in state space form.

This part consists of two chapters. In the first chapter (Chapter 3) we consider
proper rational matrix functions, that is, rational matrix functions that are ana-
lytic at infinity. The case of non-proper rational symbols is treated in the second
chapter (Chapter 4). This requires a different type of realization. This modified re-
alization result is developed and a corresponding canonical factorization theorem
is proved. As an application the homogeneous Riemann-Hilbert boundary value
problem is solved for an arbitrary rational matrix symbol.





Chapter 3

Explicit solutions using
realizations

As we have seen in Chapter 1, canonical factorization serves as a tool to solve
Wiener-Hopf integral equations, their discrete analogues, and the more general
singular integral equations. In this chapter the state space factorization method
developed in Chapter 2 is used to solve the problem of canonical factorization
(necessary and sufficient conditions for its existence) and to derive explicit formulas
for its factors. This is done in Section 3.1 for rational matrix functions and later
in Section 7.1 for operator-valued transfer functions that are analytic on an open
neighborhood of a curve. The results are applied to invert Wiener-Hopf integral
equations with a rational matrix symbol (Section 3.2), block Toeplitz operators
(Section 3.3) and singular integral equations (Section 3.4). The methods developed
in this chapter also allow us to deal with the Riemann-Hilbert boundary value
problem. This is done in the final section which also contains material on the
homogeneous Wiener-Hopf equation.

3.1 Canonical factorization of rational matrix functions
in state space form

In this section and the next one we shall consider the factorization theorems of
Section 2.6 for the special case when the two factors satisfy additional spectral
conditions. Recall from Chapter 0 that a Cauchy contour is the positively oriented
boundary of a bounded Cauchy domain in C and that such a contour consists of
a finite number of simple closed non-intersecting rectifiable curves. We say that
a Cauchy contour Γ splits the spectrum σ(S) of a bounded linear operator S if
Γ∩ σ(S) = ∅. In that case σ(S) decomposes into two disjoint compact sets σ+ and
σ− such that σ+ is in the interior domain of Γ and σ− is in the exterior domain
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of Γ. If Γ splits the spectrum of S, then we have a Riesz projection, also called
spectral projection, associated with S and Γ, namely

P (S; Γ) =
1
2πi

∫
Γ

(λ− S)−1 dλ.

The subspace N = ImP (S; Γ) will be called the spectral subspace for S corre-
sponding to the contour Γ (or to the spectral set σ+).

Lemma 3.1. Let Y1 and Y2 be complex Banach spaces, and consider the operator

S =

[
S11 S12

0 S22

]
: Y1+̇Y2 → Y1+̇Y2. (3.1)

Let Π be any projection of Y = Y1+̇Y2 such that KerΠ = Y1. Then the compression
ΠS|ImΠ : ImΠ → ImΠ and S22 : Y2 → Y2 are similar. Furthermore, Y1 is a
spectral subspace for S if and only if σ(S11)∩ σ(S22) = ∅, and in that case σ(S) =
σ(S11) ∪ σ(S22) while, in addition,

Y1 = ImP (S; Γ) = Im
(

1
2πi

∫
Γ

(λI − S)−1 dλ

)
, (3.2)

where Γ is a Cauchy contour around σ(S11) separating σ(S11) from σ(S22).

Proof. Let P be the projection of Y = Y1+̇Y2 along Y1 onto Y2. As KerP = KerΠ,
we have P = PΠ and the map E = P |ImΠ : ImΠ→ Y2 is an invertible operator.
Write S0 for the compression ΠS|ImΠ : ImΠ → ImΠ of S to ImΠ, and take
x = Πy. Then ES0x = PΠSΠy = PSΠy = PSPΠy = S22Ex, and hence S0 and
S22 are similar.

Now suppose σ(S11) ∩ σ(S22) = ∅. Then ρ(S11) ∪ ρ(S22) = C and hence

ρ(S) =
(
ρ(S) ∩ ρ(S11)

)⋃(
ρ(S) ∩ ρ(S22)

)
.

The upper triangular form of S in (3.1) ensues

ρ(S) ∩ ρ(S11) = ρ(S) ∩ ρ(S22) = ρ(S11) ∩ ρ(S22)

and it follows that ρ(S11) ∪ ρ(S22) = ρ(S), an identity which can be rewritten as
σ(S) = σ(S11) ∪ σ(S22).

Still under the assumption that σ(S11)∩ σ(S22) = ∅, let Γ be a Cauchy con-
tour Γ around σ(S11) separating σ(S11) from σ(S22). Then Γ splits the spectrum
of S. In fact, if λ ∈ Γ, then both λ− S11 and λ− S22 are invertible and

(λ− S)−1 =

⎡⎣ (λ− S11)−1 (λ− S11)−1S12(λ− S22)−1

0 (λ− S22)−1

⎤⎦
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which leads to an expression of the type

P (S; Γ) =

[
I ∗
0 0

]

for the Riesz projection associated with S and Γ. In particular, it is clear that
Y1 = ImP (S; Γ). So Y1 is a spectral subspace for S and (3.2) holds.

Next assume that Y1 = ImQ, where Q is a Riesz projection for S. Put
Π = I−Q, and let S0 be the restriction of S to ImΠ. Then σ(S11)∩ σ(S0) = ∅. By
the first part of the proof, the operators S0 and S22 are similar. So σ(S0) = σ(S22),
and hence we have shown that σ(S11) ∩ σ(S22) = ∅. �

Let Γ be a Cauchy contour. As before (see the one but last paragraph in
Chapter 0) we denote by F+ and F− the interior and exterior domain of Γ, re-
spectively. Note that ∞ ∈ F−. Let W be a rational m×m matrix function, with
W (∞) = I, analytic on an open neighborhood of Γ, whose values on Γ are invert-
ible matrices. By a right canonical factorization of W with respect to Γ we mean
a factorization

W (λ) = W−(λ)W+(λ), λ ∈ Γ, (3.3)

where W− and W+ are rational m × m matrix functions, analytic and taking
invertible values on (an open neighborhood of) F− and F+, respectively. If in (3.3)
the factorsW− andW+ are interchanged, we speak of a left canonical factorization.

Theorem 3.2. Let Γ be a Cauchy contour and let W be a rational m×m matrix
function, Suppose W admits the realization W (λ) = Im + C(λIn − A)−1B such
that the main matrix A has no eigenvalues on Γ. Then W admits a right canon-
ical factorization with respect to Γ if and only if the following two conditions are
satisfied:

(i) A× = A−BC has no eigenvalues on Γ,

(ii) Cn = ImP (A; Γ) +̇ KerP (A×; Γ).

In that case, a right canonical factorization of W is given by

W (λ) = W−(λ)W+(λ), λ ∈ Γ,

where the factors and their inverses can be written as

W−(λ) = Im + C(λIn −A)−1(I −Π)B,

W+(λ) = Im + CΠ(λIn −A)−1B,

W−1
− (λ) = Im − C(I −Π)(λIn −A×)−1B,

W−1
+ (λ) = Im − C(λIn −A×)−1ΠB.

Here Π is the projection of Cn along ImP (A; Γ) onto KerP (A×; Γ).
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For left canonical factorizations an analogous theorem holds. In the result in
question, (ii) is replaced by Cn = KerP (A; Γ) +̇ ImP (A×; Γ).

The expressions for the functions W− and W+ suggest that these functions
are defined on the resolvent set ρ(A) of A. Similarly, W−1

− and W−1
+ seem to have

ρ(A×) as their domain. At first sight this is at variance with the requirements for
Wiener-Hopf factorization. We will address this point in the proof.

Proof. From the definition given above it is clear that a necessary condition in
order that W admits a right canonical factorization with respect to Γ is that W
takes invertible values on Γ. By Theorem 2.4 this necessary condition is met if and
only if (i) holds true.

Assume that (i) is satisfied. The spectral projections P (A; Γ) and P (A×; Γ)
are then well-defined. The image X− = ImP (A; Γ) of P (A; Γ) and the null space
X+ = KerP (A×; Γ) of P (A×; Γ) are invariant for A and A×, respectively. Suppose
(ii) is fulfilled too, and write

A =

[
A− A0

0 A+

]
, B =

[
B−

B+

]
, C =

[
C− C+

]
for the matrix presentations of A, B and C with respect to the decomposition
Cn = X−+̇X+. With

W−(λ) = IX− + C−(λ −A−)−1B−, λ ∈ ρ(A−),

W+(λ) = IX+ + C+(λ−A+)−1B+, λ ∈ ρ(A+),

we have (from Theorem 2.6) the factorization

W (λ) = W−(λ)W+(λ), λ ∈ ρ(A−) ∩ ρ(A+) ⊂ ρ(A).

As X− is a spectral subspace for A, we can apply Lemma 3.1 to show that σ(A−)
and σ(A+) are disjoint. But then ρ(A) = ρ(A−) ∩ ρ(A+) and it follows that

W (λ) = W−(λ)W+(λ), λ ∈ ρ(A−) ∩ ρ(A+) = ρ(A). (3.4)

Applying Lemma 3.1 once again we see that

σ(A−) = σ(A) ∩ F+, σ(A+) = σ(A) ∩ F−, (3.5)

where F+ and F− are the interior and exterior domain of Γ, respectively. In a
similar way one proves that

σ(A×−) = σ(A×) ∩ F+, σ(A×+) = σ(A×) ∩ F−. (3.6)

Using the first parts of (3.5) and (3.6), it now follows that W− is analytic and
has invertible values on an open neighborhood of F−. Analogously, employing the
second parts of (3.5) and (3.6), one gets that W+ is analytic and has invertible
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values on an open neighborhood of F+. Thus (3.4) is a right canonical Wiener-Hopf
factorization with respect to Γ.

The projection Π of Cn along ImP (A; Γ) onto KerP (A×; Γ) is a supporting
projection for the given realization of W . Also In−Π is a supporting projection for
the realization W (λ)−1 = Im −C(λIn −A×)−1B of W−1. With this in mind, one
checks without difficulty that W−, W+, W−1

− and W−1
+ can also be written as in

the theorem. For an exhaustive discussion of the intricacies concerning inversion,
factorization, and the combination of these operations (in fact: the relationship
between Theorems 2.6, 2.7 and 2.4), see Section 2.5 in [20]. Note, however, that in
the present case there is no ambiguity because we are working here with rational
matrix functions.

Next, suppose that W (λ) = W−(λ)W+(λ) is a right canonical factorization
with respect to Γ. We only have to show that Cn = ImP (A; Γ) +̇KerP (A×; Γ).
We first prove that ImP (A; Γ) ∩ KerP (A×; Γ) = {0}. Without loss of generality
it may be assumed that the values of W− and W+ at infinity are equal to Im.

Suppose x ∈ ImP (A; Γ)∩KerP (A×; Γ), and consider (λ−A)−1x. This func-
tion is analytic on an open neighborhood of F−. On the other hand the function
(λ−A×)−1x is analytic on an open neighborhood of F+. For λ in the intersection
ρ(A) ∩ ρ(A×), we have

W (λ)C(λ −A×)−1 = C(λ −A×)−1 + C(λ−A)−1BC(λ −A×)−1

= C(λ −A×)−1 + C(λ−A)−1(A−A×)(λ −A×)−1

= C(λ −A)−1,

and it follows that W+(λ)C(λ − A×)−1 = W−(λ)−1C(λ − A)−1. The analyticity
properties of the factors W−, W+ and their inverses now imply that the function
W+(λ)C(λ − A×)−1x = W (λ)−1C(λ − A)−1x is analytic on the Riemann sphere
C∞. By Liouville’s theorem it must be constant. As it takes the value zero at
infinity, it is identically zero. Hence both C(λ−A×)−1x and C(λ−A)−1x vanish.
Next use the identity

(λ−A×)−1BC(λ −A)−1 = (λ−A)−1 − (λ−A×)−1

to obtain (λ − A×)−1x = (λ − A)−1x. But then this function is analytic on the
Riemann sphere too. Using Liouville’s theorem again, we see that it must be
identically zero. Thus x = 0.

Observe that up to this point in the proof we have not used the finite dimen-
sionality of the state space. It will play a role in the next paragraph.

We now finish the proof by a duality argument. Let Γ∗ be the adjoint curve
of Γ, i.e., the curve obtained from Γ by complex conjugation. Also introduce
the functions V, V+ and V− by putting V (λ) = W (λ̄)∗, V−(λ) = W−(λ̄)∗ and
V+(λ) = W+(λ̄)∗. Clearly V has the realization V (λ) = I + B∗(λ − A∗)−1C∗

and V (λ) = V+(λ)V−(λ) is a left canonical factorization. Arguing as above,
we may conclude that KerP (A∗,Γ∗) ∩ ImP

(
(A×)∗,Γ∗

)
= 0. It follows that
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KerP (A∗,Γ∗) + ImP
(
(A×)∗,Γ∗

)
= Cn. In the first instance, this equality holds

for the closure of KerP (A∗,Γ∗)+ ImP
(
(A×)∗,Γ∗

)
, but in Cn all linear manifolds

are closed. �
With minor modifications we could have worked in Theorem 3.2 with two

curves, one splitting the spectrum of A and the other splitting the spectrum of A×

(cf., [100]). Finally, let us mention that Theorem 3.2 remains true if the Cauchy
contour Γ is replaced by the extended real line R∞, i.e., the closure of the real line
in the Riemann sphere C∞. In that case F+ is the open upper half plane and F−
is the open lower half plane. For details, see Theorem 4.5 at the end of Section 4.3
below which, by the way, deals with the situation where W is a not necessarily
proper rational matrix function.

3.2 Wiener-Hopf integral operators

In this section the general factorization result proved in the preceding sections is
used to provide explicit formulas for solutions of finite systems of the Wiener-Hopf
equation

φ(t) −
∫ ∞
0

k(t− s)φ(s) ds = f(t), t ≥ 0, (3.7)

where φ and f are m-dimensional vector functions and k ∈ Lm×m
1 (−∞,∞), i.e.,

the kernel function k is an m × m matrix function of which the entries are in
L1(−∞,∞). We assume that the given vector function f has its component func-
tions in Lp[0,∞), and we express this property by writing f ∈ Lm

p [0,∞). Through-
out this section, p will be fixed and 1 ≤ p < ∞. The problem we shall consider is
to find a solution φ for equation (3.7) that also belongs to the space Lm

p [0,∞). As
was explained in Section 1.1 the equation (3.7) has a unique solution in Lm

p [0,∞)
for each f in Lm

p [0,∞) if and only if its symbol Im −K(λ) admits a factorization
as in (1.5).

Our aim is to apply the factorization theory developed in the previous sec-
tions to get the canonical factorization (1.5). Therefore, in the sequel we assume
that the symbol is a rational m × m matrix function. As K(λ) is the Fourier
transform of an Lm×m

1 (−∞,∞)–function, the symbol is continuous on the real
line. In particular, Im −K(λ) has no poles on the real line. Furthermore, by the
Riemann-Lebesgue lemma,

lim
λ∈R, |λ|→∞

K(λ) = 0,

which implies that the symbol Im − K(λ) has the value In at ∞. The fact that
Im −K(λ) is rational is equivalent to the requirement that the kernel function k
is in the linear space spanned by all functions of the form

h(t) =

{
p(t)eiαt, t > 0,

q(t)eiβt, t < 0,
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where p(t) and q(t) are matrix polynomials in t with coefficients in Cm×m, and α
and β are complex numbers with �α > 0 and �β < 0.

From Section 2.2 we know that the matrix function Im − K(λ) admits a
realization

Im −K(λ) = Im + C(λIn −A)−1B

such that the main matrix A has no real eigenvalues. In the next theorem we
express the solvability of equation (3.7) in terms of such a realization and give
explicit formulas for its solutions in the same terms.

Theorem 3.3. Let Im − K(λ) = Im + C(λIn − A)−1B be a realization for the
symbol of equation (3.7), and suppose A has no real eigenvalues. In order that
(3.7) has a unique solution φ in Lm

p [0,∞) for each f in Lm
p [0,∞), the following

two conditions are necessary and sufficient:

(i) A× = A−BC has no real eigenvalues;

(ii) Cn = M+̇M×, where M is the spectral subspace of A corresponding to the
eigenvalues of A in the upper half plane, and M× is the spectral subspace of
A× corresponding to the eigenvalues of A× in the lower half plane.

Assume conditions (i) and (ii) hold true, and let Π be the projection of Cn along
M onto M×. Then Im −K(λ) admits a right canonical factorization with respect
to the real line that has the form

Im −K(λ) =
(
Im +G−(λ)

)(
Im +G+(λ)

)
, λ ∈ R,

where the factors and their inverses can be written as

Im +G+(λ) = Im + CΠ(λIn −A)−1B,

Im +G−(λ) = Im + C(λIn −A)−1(In −Π)B,(
Im +G+(λ)

)−1 = Im − C(λIn −A×)−1ΠB,(
Im +G−(λ)

)−1 = Im − C(In −Π)(λIn −A×)−1B.

The functions γ+ and γ− in (1.6) and (1.7) are given by

γ+(t) = +iCe−itA×ΠB, t > 0,

γ−(t) = −iC(In −Π)e−itA×tB, t < 0.

Finally, the solution φ to (3.7) can be written as

φ(t) = f(t) +
∫ ∞
0

γ(t, s)f(s) ds,

where

γ(t, s) =

⎧⎨⎩ +iCe−itA×ΠeisA×B, s < t,

−iCe−itA×(In −Π)eisA×B, s > t.
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Proof. We have already mentioned that equation (3.7) has a unique solution in
Lm

p [0,∞) for each f in Lm
p [0,∞) if and only if the symbol Im − K(λ) admits a

right canonical factorization as in (1.5). So to prove the necessity and sufficiency
of the conditions (i) and (ii), it suffices to show that the conditions (i) and (ii)
together are equivalent to the statement that Im −K(λ) admits a right canonical
factorization as in (1.5). We first observe that condition (i) is equivalent to the
requirement that Im − K(λ) is invertible for all λ ∈ R (see Theorem 2.4). But
then we can apply Theorem 3.2 in combination with the remark made at the end
of Section 3.1 to prove the first part of the theorem.

Next assume that conditions (i) and (ii) hold true. Applying Theorem 3.2
once again, we get the desired formulas for Im + G+(λ), Im + G−(λ) and their
inverses. The formulas for γ+ and γ− are now obtained by noticing that

∫ ∞
0

eiλte−itA×Π dt = i(λ−A×)−1Π, λ ∈ ρ(A×), �λ ≥ 0,∫ 0

−∞
eiλt(I −Π)e−itA× dt = −i(I −Π)(λ −A×)−1, λ ∈ ρ(A×), �λ ≤ 0,

where I = In. The proof of the latter identity uses (the first conclusion in)
Lemma 3.1.

It remains to prove the final formula for γ(t, s). We use (1.10), and compute
first that

γ+(t− r)γ−(r − s) = Ce−i(t−r)A×ΠBC(I −Π)e−i(r−s)A×B.

NowKerΠ = M isA-invariant and ImΠ = M× is A×-invariant. Thus ΠA(I−Π) =
0 and (I − Π)A×Π = 0, and it follows that ΠBC(I − Π) = Π(A −A×)(I − Π) =
ΠA× −A×Π. But then

γ+(t− r)γ−(r − s) = Ce−i(t−r)A×(A×Π−ΠA×)e−i(r−s)A×B

= −i
d

dr
Ce−i(t−r)A×Πe−i(r−s)A×B.

Inserting this in (1.30) we obtain for s < t that

γ(t, s) = iCe−i(t−s)A×ΠB −
∫ s

0

i
d

dr
Ce−i(t−r)A×Πe−i(r−s)A×B dr

= iCe−i(t−s)A×ΠB − Ce−i(t−r)A×Πe−i(r−s)A×B|sr=0
= iCe−itA×ΠeisA×B,
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while for s > t we get

γ(t, s) = −iC(I −Π)e−i(t−s)A×B +
∫ t

0

i
d

dr
Ce−i(t−r)A×Πe−i(r−s)A×B dr

= −iC(I −Π)e−i(t−s)A×B − Ce−i(t−r)A×Πe−i(r−s)A×B|tr=0
= −iCe−itA×(I −Π)eisA×B.

This completes the proof. �

Corollary 3.4. Let Im − K(λ) = Im + C(λIn − A)−1B be a realization for the
symbol of equation (3.7). Assume that A and A× = A−BC have no spectrum on
the real line, and that

Cn = ImP +̇KerP×, (3.8)

where P and P× are the Riesz projections of A and A×, respectively, corresponding
to the spectra in the upper half plane. Fix x ∈ KerP , and let the right-hand side of
(3.7) be given by f(t) = Ce−itAx, t ≥ 0. Then the unique solution φ in Lm

p [0,∞)
of equation (3.7) is given by

φ(t) = Ce−itA×Πx, t ≥ 0.

Here Π is the projection of Cn onto KerP× along ImP .

Proof. Since x ∈ KerP , the vector e−itAx is exponentially decaying in norm when
t→∞, and thus the function f belongs to Lm

p [0,∞). Furthermore, the conditions
(i) and (ii) in Theorem 3.3 are fulfilled, and hence equation (3.7) has a unique
solution φ ∈ Lm

p [0,∞). Moreover from Theorem 3.3 we know that φ is given by

φ(t) = f(t) + iCe−itA×
(∫ t

0

ΠeisA×BCe−isAxds
)

−iCe−itA×
(∫ ∞

t

(I −Π)eisA×BCe−isAxds
)
.

Now use that

eisA×BCe−isA = ieisA×(iA× − iA)e−isA = i
d

ds
eisA×e−isA.

It follows that

φ(t) = f(t)− Ce−itA×
(
ΠeisA×e−isAx|t0

)
+Ce−itA×

(
(I − Π)eisA×e−isAx|∞t

)
.
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Since (I − Π) = (I − Π)P×, the function (I − Π)eisA× = (I − Π)P×eisA× is
exponentially decaying for s → ∞. As we have seen, the same holds true for
e−isAx. Thus

φ(t) = f(t)− Ce−itA×ΠeitA×e−itAx+ Ce−itA×Πx

−Ce−itA×(I −Π)eitA×e−itAx

= f(t) + Ce−itA×Πx − Ce−itAx

= Ce−itA×Πx,

which completes the proof. �
Finally, let us return to the special situation where the functionf is given

by formula (1.11), and assume that the conditions (i) and (ii) in Theorem 3.3 are
satisfied. Then the solution φ admits the representation

φ(t) = e−iqt{Im + i

∫ t

0

Cei(q−A×)sΠB ds} (3.9)

·{Im − C(I −Π)(q −A×)−1B}x0; (3.10)

see formula (1.12).

3.3 Block Toeplitz operators

In the previous section the factorization theory was applied to finite systems of
Wiener-Hopf integral equations. In this section we carry out a similar program for
their discrete analogues, block Toeplitz equations (cf., Section 1.2). So we consider
an equation of the type

∞∑
k=0

aj−kξk = ηj , j = 0, 1, 2, . . . . (3.11)

Throughout we assume that the coefficients aj are given complex m×m matrices
satisfying

∞∑
j=−∞

‖aj‖ <∞,

and η = (ηj)∞j=0 is a given vector from �m
p = �p(Cm). The problem is to find

ξ = (ξk)∞k=0 ∈ �m
p such that (3.11) is satisfied.

As before, we shall apply our factorization theory. For that reason we assume
that the symbol a(λ) =

∑∞
j=−∞ λjaj is a rational m ×m matrix function whose

value at ∞ is Im. Note that a(λ) has no poles on the unit circle. Therefore the
conditions on a(λ) are equivalent to the following assumptions:
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(j) the sequence (aj − δj0Im)∞j=0 is a linear combination of sequences of the form(
αjjrD

)∞
j=0

,

where |α| < 1, r is a nonnegative integer and D is a complex m×m matrix;

(jj) the sequence (a−j)∞j=1 is a linear combination of sequences of the form(
β−jjsE

)∞
j=1

,
(
δjkF

)∞
j=1

,

where |β| > 1, s and k are nonnegative integers and E and F are complex
m×m matrices.

From Section 2.2 we know that the matrix function a(λ) admits a realization

a(λ) = Im + C(λIn −A)−1B (3.12)

such that the main matrix A has no eigenvalues on the unit circle. The next
theorem is the analogue of Theorem 3.3.

Theorem 3.5. Let (3.12) be a realization for the symbol a(λ) of the equation (3.11),
and suppose A has no eigenvalues on the unit circle. Then (3.11) has a unique
solution ξ = (ξk)∞k=0 in �m

p for each η = (ηj)∞j=0 in �m
p if and only if the following

two conditions are satisfied:

(i) A× = A−BC has no eigenvalues on the unit circle,

(ii) Cn = M+̇M×, where M is the spectral subspace of A corresponding to the
eigenvalues of A inside the unit circle, and M× is the spectral subspace of
A× corresponding to the eigenvalues of A× outside the unit circle.

Assume conditions (i) and (ii) are satisfied, and let Π be the projection of Cn along
M onto M×. Then the function a(λ) admits a right canonical factorization with
respect to the unit circle that has the form

a(λ) = h−(λ)h+(λ), |λ| = 1,

where the factors and their inverses can be written as

h+(λ) = Im + CΠ(λIn −A)−1B,

h−(λ) = Im + C(λIn −A)−1(In −Π)B,

h−1+ (λ) = Im − C(λIn −A×)−1ΠB,

h−1− (λ) = Im − C(In −Π)(λIn −A×)−1B.

The sequences (γ+j )
∞
j=0 and (γ−−j)

∞
j=0 in (1.19) are given by

γ+0 = Im + C(A×)−1ΠB,

γ+j = C(A×)−(j+1)ΠB, j = 1, 2, . . . ,

γ−0 = Im,

γ−j = −C(In −Π)(A×)−(j+1)B, j = −1,−2, . . . .
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Finally, the solution ξ to (3.11) can be written as ξk =
∑∞

s=0 γksηs where

γks =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(A×)−(k+1)Π(A×)sB, s < k,

Im + C(A×)−(s+1)Π(A×)sB, s = k,

−C(A×)−(k+1)(In −Π)(A×)sB, s > k.

Proof. The proof of Theorem 3.5 is similar to that of Theorem 3.3. Here we only
derive the final formula for γks.

With respect to the formulas for γ+j , we note that ImΠ is A×-invariant and
the restriction of A× to ImΠ is invertible. So, with slight abuse of notation as far
as inverses of A× are involved,

h+(λ)−1 = Im − C(λ −A×)−1ΠB

= Im + C
(
I − λ(A×)−1

)−1(A×)−1ΠB

= Im +
∞∑

j=0

λjC(A×)−(j+1)ΠB.

Now compare coefficients with h+(λ)−1 =
∑∞

j=0 λjγ+j . Similarly, the formulas for
γ−j are obtained by comparing

h−(λ)−1 = Im − C(I −Π)(λ−A×)−1B

= Im − C(I −Π)
∞∑

j=1

1
λj
(A×)j−1B

= Im −
−1∑

j=−∞
λjC(I −Π)(A×)−(j+1)B

with h−(λ)−1 =
∑0

j=−∞ λjγ−j . Here I = In.
To obtain the formulas for γks we employ (1.22). For s < k we must find

γks = γ+k−sγ
−
0 +

s−1∑
r=0

γ+k−rγ
−
r−s,

while for s > k we need to calculate

γks = γ+0 γ−k−s +
k−1∑
r=0

γ+k−rγ
−
r−s.
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Again by slight abuse of notation

γ+k−rγ
−
r−s = −C(A×)−(k−r+1)ΠBC(I −Π)(A×)−(r−s+1)B

= −C(A×)−(k−r+1)(A×Π−ΠA×)(A×)−(r−s+1)B

= −C(A×)−(k−r)Π(A×)−(r−s+1)B +
+C(A×)−(k−r+1)Π(A×)−(r−s)B.

Observe that if we replace r by r+1 in the last one of the latter two terms we get
the first one. So the summation in the formula for γks is telescoping and collapses
into just a few terms. We proceed as follows.

For s < k we get

γks = γ+k−sγ
−
0 − C(A×)−(k−s+1)ΠB + C(A×)−(k+1)Π(A×)sB.

Since γ−0 = I and γ+k−s = C(A×)−(k−s+1)ΠB, this results in

γks = C(A×)−(k+1)Π(A×)sB.

For s > k the computation is a little more involved as γ+0 = In + C(A×)−1ΠB.
Using that ΠBC

(
I −Π) = A×Π−ΠA×, it goes this way:

γks = −(I + C(A×)−1ΠB
)
C
(
I −Π)(A×)−(k−s+1)B

+C(A×)−(k+1)Π(A×)sB − C(A×)−1Π(A×)−(k−s)B

= −C
(
I −Π)(A×)−(k−s+1)B

+C(A×)−1(ΠA× −A×Π)(A×)−(k−s+1)B

+C(A×)−(k+1)Π(A×)sB − C(A×)−1Π(A×)−(k−s)B

= C(A×)−(k+1)Π(A×)sB − C(A×)−(k−s+1)B

= −C(A×)−(k+1)(I −Π)(A×)sB.

It remains to consider the case k = s. Then we have

γss = γ+0 γ−0 +
k−1∑
r=0

γ+s−rγ
−
r−s.

Following the line of argument as in the case s < k this yields

γss = Im + C(A×)−1ΠB − C(A×)−1ΠB + C(A×)−(k+1)Π(A×)kB

= Im + C(A×)−(k+1)Π(A×)kB,

which completes the proof. �
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The main step in the factorization method for solving the equation (3.11)
is to construct a right canonical factorization of the symbol a(λ) with respect to
the unit circle. In Theorem 3.5 we obtained explicit formulas for the case when
a(λ) is rational and has the value In at ∞. The latter condition is not essential.
Indeed, by a suitable Möbius transformation one can transform the symbol α(λ)
into a function which is invertible at infinity (see Section 3.6). Next one makes the
Wiener-Hopf factorization of the transformed symbol with respect to the image
of the unit circle under the Möbius transformation. Here one can use the same
formulas as in Theorem 3.5. Finally, using the inverse Möbius transformation, one
can obtain explicit formulas for the factorization with respect to the unit circle,
and hence also for the solution of equation (3.11).

3.4 Singular integral equations

In this section we apply Theorem 3.2 to solve the singular integral equation from
Section 1.3:

a(t)φ(t) + b(t)
1
πi

∫
Γ

φ(τ)
τ − t

dτ = f(t), t ∈ Γ, (3.13)

where Γ is a Cauchy contour. The problem is to find φ ∈ Lm
p (Γ) such that (3.13)

is satisfied. Recall that (3.13) can be rewritten in the form aIφ+ bSφ = f , where
S is the singular integral operator as in (1.26). Put c = a+ b and d = a− b. Then
we know from Section 1.3 that the operator aI+ bS is invertible if and only if c(λ)
and d(λ) are invertible for all λ ∈ Γ and the function w(λ) = d(λ)−1c(λ) admits a
right canonical factorization with respect to Γ. The next theorem deals with the
case when w(λ) is rational and has the value Im at ∞.

Theorem 3.6. Suppose det
(
a(λ)+b(λ)

)
and det

(
a(λ)−b(λ)) do not vanish on Γ,

and assume w(λ) =
(
a(λ)− b(λ)

)−1(
a(λ) + b(λ)

)
is a rational function which has

the value Im at infinity. Let

w(λ) = Im + C(λIn − A)−1B

be a realization for w. Suppose A and A× = A − BC have no spectrum on Γ.
Then aI + bS is invertible if and only if Cn = M+̇M×, where M is the spectral
subspace corresponding to the eigenvalues of A inside Γ, and M× is the spectral
subspace corresponding to the eigenvalues of A× outside Γ. In that case the func-
tions w+, w−1+ , w− and w−1− appearing in the expressions for (aI+ bS)−1 given in
Section 1.3 can be specified as follows:

w+(λ) = Im + CΠ(λIn −A)−1B,

w−(λ) = Im + C(λIn −A)−1(In −Π)B,

w−1+ (λ) = Im − C(λIn −A×)−1ΠB,

w−1− (λ) = Im − C(In −Π)(λIn −A×)−1B.
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Here Π is the projection of Cn along M onto M× and I = In is the identity
operator on Cn.

By way of illustration, we consider the special case when

f(t) =
1

t− α

(
a(t)− b(t)

)
η,

where α is a complex number outside Γ and η ∈ Cm. Put

g(t) =
1

t− α
η.

Then one can write f = dg, where as before d = a − b. Hence w−1− d−1 = w−1− g.
Observe now that the function

1
t− α

(
w−1− (t)− w−1− (α)

)
η

is analytic outside Γ and vanishes at ∞. So when we apply PΓ to it, we get zero.
It follows that (

PΓw−1− g
)
(t) =

1
t− α

w−1− (α)η.

But then (
QΓw−1− g

)
(t) =

1
t− α

(
w−1− (t)− w−1− (α)

)
η,

and hence(
(aI + bS)−1f

)
(t) =

1
t− α

w−1+ (t)w−1− (α)η +
1

t− α

(
Im − w−(t)w−1− (α)

)
η.

In the situation of Theorem 3.6, the right-hand side of this equality becomes

1
t− α

η − 1
t− α

C
(
(t−A×)−1Π+ (t−A)−1(I −Π)

)
B

·
(
Im − C(I −Π)(α−A×)−1B

)
η.

The case when w(λ) is rational, but does not have the value Im at ∞, can be
treated by applying a suitable Möbius transformation. The argument is similar to
that indicated at the end of Section 3.3.

3.5 The Riemann-Hilbert boundary value problem

In this section we consider the (homogeneous) Riemann-Hilbert boundary value
problem (on the real line):

W (λ)Φ+(λ) = Φ−(λ), −∞ < λ < +∞. (3.14)
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The precise formulation of this problem is as follows. Let W be a given m × m
matrix function, with entries that are integrable on the real line. The problem is
to describe all pairs Φ+,Φ− of Cm-valued functions such that (3.14) is satisfied
while, in addition, Φ+ and Φ− are the Fourier transforms of integrable Cm-valued
functions with support in [0,∞) and (−∞, 0], respectively. For such a pair of
functions Φ+,Φ− we have that Φ+ is continuous on the closed upper half plane,
analytic in the open upper half plane and vanishes at infinity, the same being true
for Φ− with the understanding that the upper half plane is replaced by the lower.

The functions W that we shall deal with are rational m×m matrix functions
with the value Im at infinity and given in the form of a realization.

Theorem 3.7. Let W be a rational m×m matrix function, and suppose W admits
the realization W (λ) = Im + C(λIn − A)−1B. Suppose further that both A and
A× = A−BC have no eigenvalues on the real line. Let M be the spectral subspace
of A corresponding to the eigenvalues of A in the upper half plane, and let M× be
the spectral subspace of A× corresponding to the eigenvalues of A× in the lower
half plane. Then the pair of functions Φ+,Φ− is a solution of the Riemann-Hilbert
boundary value problem (3.14) if and only if there exists x ∈M ∩M× such that

Φ+(λ) = C(λIn −A×)−1x, Φ−(λ) = C(λIn −A)−1x. (3.15)

Moreover, the vector x in (3.15) is uniquely determined by the pair Φ+,Φ−.

Proof. Take x ∈ M ∩M× and define Φ+ and Φ− by (3.15). From Theorem 2.4 we
know that W (λ)C(λ−A×)−1 = C(λ−A)−1. It follows that (3.14) is satisfied. Here
the specific choice of x does not even play a role. Put φ+(t) = −iCe−itA×x, t ≥ 0.
Since x ∈ M×, the function φ+ is integrable on [0,∞). Similarly, as x ∈ M ,
the function φ− given by φ−(t) = iCe−itAx, t ≤ 0 is integrable on (−∞, 0]. A
straightforward computation shows that

Φ+(λ) =
∫ ∞
0

eiλtφ+(t)dt, Φ−(λ) =
∫ 0

−∞
eiλtφ−(t)dt (3.16)

and the proof of the “if part” of the theorem is complete.
The proof of the “only if part” is somewhat more involved. Let Φ+,Φ− be a

solution of (3.14) given in the form (3.16) with integrable φ+ and φ−. It will be
convenient to extend φ+ and φ− to integrable functions on the full real line by
stipulating that they vanish on [−∞, 0) and [0,∞), respectively. For λ ∈ R put
ρ(λ) = (λ−A)−1BΦ+(λ). Note that (λ−A)−1 appears as a Fourier transform of
a matrix function with entries from L1(R). In fact

(λ−A)−1 =
∫ ∞
−∞

eiλt�(t)dt, λ ∈ R,

where

�(t) =

{
ie−itAP, t < 0,

−ie−itA(In − P ), t < 0.
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Using inverse Fourier transforms and the fact that the support of φ+ is contained
in [0,∞), we have

ρ(λ) =
∫ ∞
−∞

eiλt

(∫ ∞
0

�(t− s)Bφ+(s) ds

)
dt, λ ∈ R.

Introduce

γ−(t) =
∫ ∞
0

�(t− s)Bφ+(s) ds, (t < 0), γ−(t) = 0 (t > 0),

γ+(t) =
∫ ∞
0

�(t− s)Bφ+(s) ds, (t > 0), γ+(t) = 0 (t < 0),

and for each λ ∈ R set

ρ+(λ) =
∫ ∞
−∞

eiλtγ+(t) dt =
∫ ∞
0

eiλtγ+(t) dt,

ρ−(λ) =
∫ ∞
−∞

eiλtγ−(t) dt =
∫ 0

−∞
eiλtγ−(t) dt.

Obviously, ρ(λ) = ρ−(λ) + ρ+(λ) for each λ ∈ R. From (3.14) and the definition
of ρ it follows that

Φ+(λ) + Cρ+(λ) = Φ−(λ) − Cρ−(λ), λ ∈ R. (3.17)

The left-hand side of (3.17) is continuous on the closed upper half plane, analytic
in the open upper half plane and vanishes at infinity. The same is true for the
right-hand side of (3.17) provided the upper half plane is replaced by the lower
half plane. But then we can apply Liouville’s theorem to show that both sides of
(3.17) are identically zero. Hence

Φ−(λ) = Cρ−(λ) =
∫ 0

−∞
eiλtCγ−(t) dt, �λ ≤ 0, (3.18)

Φ+(λ) = −Cρ+(λ) = −
∫ ∞
0

eiλtCγ+(t) dt, �λ ≥ 0. (3.19)

For t < 0 we have

γ−(t) =
∫ ∞
0

�(t− s)Bφ+(s) ds

= ie−itA

∫ ∞
0

eisAPBφ+(s) ds = ie−itAx,

where x =
∫∞
0

eisAPBφ+(s) ds. Clearly x ∈ ImP , and we conclude that

ρ−(λ) =
∫ 0

−∞
eiλt
(
ie−itAx

)
dt = (λ−A)−1x, �λ ≤ 0. (3.20)
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Next, fix λ ∈ R. Since (λ−A)ρ(λ) = BΦ+(λ) and (λ−A)ρ−(λ) = x, we can
use the first part of (3.19) to show that

(λ−A)ρ+(λ) + x = (λ−A)ρ(λ) = BΦ+(λ) = −BCρ+(λ).

Recall that A× = A−BC. It follows that

ρ+(λ) = −(λ−A×)−1x, λ ∈ R. (3.21)

The left-hand side of (3.21) is continuous on the closed upper half plane and
analytic in the open upper half plane. Thus (3.21) implies that P×x = 0, where
P× is the spectral projection of A× corresponding to the eigenvalues in the upper
half plane. Since ImP = M and KerP× = M×, we see that x ∈ M ∩M×. From
(3.19) and (3.21) it follows that the first identity in (3.15) holds. Similarly, (3.18)
and (3.20) yield the second identity in (3.15).

It remains to prove the unicity of x. Take u ∈ M ∩M×, and assume that
C(λ−A)−1u = 0. It suffices to show that u = 0. To do this, recall (see Theorem 2.4)
that

(λ−A×)−1 = (λ−A)−1 − (λ−A)−1BW (λ)−1C(λ −A)−1, λ ∈ R.

Thus the assumption C(λ−A)−1u = 0 yields

(λ −A×)−1u = (λ−A)−1u, λ ∈ R. (3.22)

The fact that u ∈ M× implies that (λ − A×)−1u is analytic on �λ ≥ 0. On
the other hand, u ∈ M gives that (λ − A)−1 is analytic on �λ ≤ 0. Since both
(λ − A×)−1u and (λ − A)−1u vanish at infinity, Liouville’s theorem implies that
(λ−A)−1u is identically zero on R, hence u = 0. �

There is an intimate connection between the Riemann-Hilbert boundary
value problem (on the real line) and the homogeneous Wiener-Hopf integral equa-
tion. This is already clear from the material presented in Section 1.1 by specializing
to the situation where f = 0. The fact is further underlined by the above proof of
Theorem 3.7. Indeed, notice that (3.19) implies that φ+ = −Cγ+, and hence we
see from the definition of γ+ that

φ+(t)−
∫ ∞
0

k(t− s)φ+(s) ds = 0, t > 0,

where k(t) = −C�(t)B, and hence k̂(λ) = −C(λIn − A)−1B. Thus φ+ is the
solution of the homogeneous Wiener-Hopf integral equation with symbol given by
Im + C(λIn − A)−1B. A more detailed (but straightforward) analysis gives the
following result, the formulation of which is in line with Theorem 3.3.
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Theorem 3.8. Let Im−K(λ) = Im+C(λIn−A)−1B be a realization for the symbol
of the homogeneous Wiener-Hopf equation

φ(t)−
∫ ∞
0

k(t− s)φ(s)ds = 0, t ≥ 0, (3.23)

and let A× = A − BC. Assume that both A and A× have no real eigenvalues, in
other words,

det
(
Im −K(λ)

) 	= 0, −∞ < λ < +∞.

Let M be the spectral subspace of A corresponding to the eigenvalues of A in the
upper half plane, and let M× be the spectral subspace of A× corresponding to the
eigenvalues of A× in the lower half plane. Then φ is a solution of (3.23) if and
only if there exists x ∈ M ∩M× such that

φ(t) = Ce−itA×x, t ≥ 0. (3.24)

Moreover, the vector x in (3.24) is uniquely determined by φ.

Formula (3.24) has to be understood in the sense of equality in the solution
space Lm

1 [0,∞) (or, more generally, Lm
p [0,∞) with 1 ≤ p < ∞; cf., Section 1.1

and Theorem 3.3).
As a direct consequence of Theorem 3.8, one sees that the dimension of the

null space of the Wiener-Hopf integral operator T defined by the left-hand side of
(3.23) is equal to dim(M ∩M×). It can also be proved that the codimension of its
range is equal to codim (M +M×). In fact, under the conditions of Theorem 3.8,
the operator T is a Fredholm operator (see Section XI.1 in [51] for the definition
of this notion), and its Fredholm index, which is defined as the difference of the
codimension of its range and the dimension of its null space, is equal to

indT = codim (M +M×)− dim(M ∩M×)

= dim
Cn

M +M× − dim(M ∩M×)

= dim
Cn

M× − dim
M +M×

M× − dim(M ∩M×)

= dim
Cn

M× − dim
M

M ∩M× − dim(M ∩M×)

= dim
Cn

M× − dimM

= rankP× − rankP.

Here P and P× are the spectral projections corresponding to the eigenvalues in
the upper half plane of A and A×, respectively. (In the step from the third to the
fourth equality in the above calculation we used Lemma 2 in [89].) More detailed
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information about the null space and range of the Wiener-Hopf integral operator T
can be obtained in this way (see, e.g., Theorem XIII.8.1 in [51]). We shall return
to this theme, in a more general context, in Chapter 7, where it will be shown
that the factorization indices in a non-canonical Wiener-Hopf factorization can be
expressed in terms of the spaces M and M×, and related subspaces defined in
terms of these spaces and the matrices appearing in the realization of the symbol.

Notes

The first section of this chapter originates from Section 1.2 in [11]. The basic
facts about Cauchy domains (see also the final paragraphs of Chapter 0), Riesz
projections and spectral subspaces, used in this first section, can be found in
Sections I.1 – I.3 of [51]. The material in Sections 3.2, 3.3 and 3.4 goes back to
Chapter 4 in [11]. For Section 3.5 we refer to [12]. We shall return to canonical
factorization in a more general setting in Chapters 5 and 7; see Theorems 5.14 and
7.1. Other state space methods for solving convolution equations, also based on
matrix-valued realizations but not employing factorization, are developed in [12]
and [13].



Chapter 4

Factorization of non-proper
rational matrix functions

In this chapter we treat the problem of factorizing a non-proper rational matrix
function. The realization used in the earlier chapters is replaced by

W (λ) = I + C(λG −A)−1B. (4.1)

Here I = Im is the m×m identity matrix, A and G are square matrices of order
n say, and the matrices C and B are of sizes m × n and n × m, respectively.
Any rational m × m matrix function W , proper or non-proper, admits such a
representation. The representation (4.1) allows us to extend the results obtained
in the previous chapter to arbitrary rational matrix functions. As an application
we treat the problem to invert a singular integral operator with a rational matrix
symbol.

This chapter consists of five sections. In Section 4.1 we review the spectral
theory of matrix pencils. Section 4.2 presents the realization theorem for non-
proper rational matrix functions referred to in the previous paragraph. The cor-
responding canonical factorization theorem is given in Section 4.3. The final two
sections deal with applications to inverting singular integral operators (Section
4.4) and solving Riemann-Hilbert problems (Section 4.5).

4.1 Preliminaries about matrix pencils

Let A and G be complex n×n matrices. The linear matrix-valued function λG−A,
where λ is a complex variable, is called a (linear matrix ) pencil . We say that the
pencil λG−A is regular on Ω or Ω-regular if λG−A is invertible for each λ ∈ Ω.
Here Ω is a subset of C.

From now on Γ will be a Cauchy contour. Its interior domain is denoted by
F+ and its exterior domain by F−. We shall assume that ∞ ∈ F−. Pencils that
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are Γ-regular admit block matrix partitionings that are comparable to spectral de-
compositions of a single matrix. This fact is summarized by the following theorem,
the proof of which can be found in [140] (see also Section IV.1 of [51]).

Theorem 4.1. Let λG− A be a Γ-regular pencil, and let the matrices P and Q be
defined by

P =
1
2πi

∫
Γ

G(λG−A)−1dλ, Q =
1
2πi

∫
Γ

(λG −A)−1Gdλ. (4.2)

Then P and Q are projections such that

(i) PA = AQ and PG = GQ,

(ii) (λG − A)−1P = Q(λG − A)−1 on Γ and this function has an analytic con-
tinuation on F− which vanishes at ∞,

(iii) (λG − A)−1(I − P ) = (I − Q)(λG − A)−1 on Γ and this function has an
analytic continuation on F+.

The properties (i)–(iii) in the above proposition determine P and Q uniquely,
that is, if P and Q are projections such that (i)–(iii) hold, then P and Q are given
by the integral formulas in (4.2).

For a better understanding of the above result, let us write A and G as
block matrices relative to the decompositions of Cm induced by the projections P
and Q. Condition (i) in Theorem 4.1 implies that A and G have block diagonal
representations:

A =

[
A1 0

0 A2

]
: ImQ +̇KerQ → ImP +̇KerP,

G =

[
G1 0

0 G2

]
: ImQ +̇KerQ → ImP +̇KerP.

Property (ii) is equivalent to saying that the pencil λG1 − A1 is regular on F−
and G1 is invertible; property (iii) amounts to regularity of the pencil λG2 − A2

on F+.
In the particular case when G is the identity matrix I, the two projections P

and Q coincide, and P is just the spectral (or Riesz) projection of A corresponding
to the eigenvalues in F+. The latter means (see Section 3.1 or Section I.2 in [51])
that P is a projection commuting with A, the eigenvalues of A|ImP are in F+ and
the eigenvalues of A|KerP are in F−. In that case, ImP is the spectral subspace of
A corresponding to the eigenvalues of A in F+, and KerP is the spectral subspace
of A corresponding to the eigenvalues of A in F−.
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4.2 Realization of a non-proper rational matrix
function

In this section we derive the representation (4.1), and present some useful identities
related to (4.1).

Theorem 4.2. Let W be a rational m×m matrix function, and let Ω be the subset
of C on which W is analytic. Then, given an m ×m matrix D, the function W
admits a representation

W (λ) = D + C(λG−A)−1B, λ ∈ Ω, (4.3)

where λG−A is an Ω-regular m×m matrix pencil, and B and C are matrices of
sizes n×m and m× n, respectively.

The set Ω is the complement in C of the set of finite poles of W (i.e., the
poles of W in C). In later applications, D will be taken to be Im, the m × m
identity matrix.

Proof. Let us first remark that W admits a decomposition

W (λ) = K(λ) + L(λ), λ ∈ Ω, (4.4)

where L is an m×m matrix polynomial and K is a proper rational m×m matrix
such that the subset of C on which K is analytic coincides with Ω. Such a decom-
position is not unique. In fact, given (4.4) we can obtain another decomposition
of F with the same properties by adding a constant matrix to K and subtracting
the same matrix from L. This, however, is all the freedom one has. In other words
the decomposition (4.4) will be unique if we fix the value of K at infinity.

From now on we shall assume that K(∞) = D. The results obtained in
Section 2.2 then imply that K admits a realization

K(λ) = D + CK(λ−AK)−1BK , λ ∈ Ω,

where AK , BK and CK are matrices of appropriate sizes and the resolvent set
of the (square) matrix AK coincides with Ω. The latter can be reformulated by
saying that the eigenvalues of AK are just the finite poles of W .

Proceeding with the second term in the right-hand side of the identity (4.4),
we write L(λ) = L0 + λL1 + · · ·+ λqLq, and introduce

GL =

⎡⎢⎢⎢⎢⎣
0 Im

0
. . .

. . . Im

0

⎤⎥⎥⎥⎥⎦ , BL =

⎡⎢⎢⎢⎢⎣
L0

L1
...

Lq

⎤⎥⎥⎥⎥⎦ , CL =
[ −Im 0 · · · 0

]
,
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where the blanks in GL indicate zero entries. The matrix GL is square of size
l = m(q+1). Also GL is nilpotent (of order q+1), and hence Il−λGL is invertible
for each λ in C. The first row in the block matrix representation of (Il − λGL)−1

is equal to [ Im λIm . . . λqIm] and it follows that L(λ) = CL(λGL − Il)−1BL on
all of the (finite) complex plane.

By combining the representation results for K and L we see that W can be
written in the form (4.3) with

A =

[
AK 0

0 Il

]
, B =

[
BK

BL

]
, C =

[
CK CL

]
, G =

[
I 0

0 GL

]
.

Here I is the identity matrix of the same size as AK . The fact that GL is nilpotent,
implies that the matrix λG − A is invertible if and only if λ is an eigenvalue of
AK , that is if and only if λ is a finite pole of W . �

The following proposition, which describes some elementary operations on a
rational matrix function in terms of a given realization, is the natural analogue of
Theorem 2.4 for realizations of the form (4.1).

Theorem 4.3. Let W (λ) = I+C(λG−A)−1B, and put A× = A−BC. Then W (λ)
is invertible if and only if λG − A× is invertible, and in that case the following
identities hold:

W (λ)−1 = I − C(λG −A×)−1B, (4.5)

W (λ)C(λG −A×)−1 = C(λG −A)−1, (4.6)

(λG −A×)−1BW (λ) = (λG −A)−1B, (4.7)

(λG−A×)−1 = (λG−A)−1 − (λG −A)−1BW (λ)−1C(λG−A)−1. (4.8)

Proof. Fix λ ∈ C such that λG−A is invertible. Then

detW (λ) = det
(
I + C(λG−A)−1B

)
= det

(
I + (λG−A)−1BC

)
= det

(
(λG− A)−1

)
det(λG −A+BC)

=
det(λG −A×)
det(λG −A)

.

It follows that W (λ) is invertible if and only if λG−A× is invertible. Also, in that
case, a straightforward computation yields
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W (λ)C(λG −A×)−1 − C(λG−A×)−1

= C(λG −A)−1BC(λG− A×)−1

= C(λG −A)−1
(
A−A×

)
(λG−A×)−1

= C(λG −A)−1
(
(λG−A×)− (λG −A)

)
(λG −A×)−1

= C(λG −A)−1 − C(λG −A×)−1.

Since W (λ) is invertible, this proves (4.6). The identity (4.7) is proved in a similar
way. Using (4.6) a straightforward computation shows that

W (λ)
(
I − C(λG−A×)−1B

)
= I,

and hence (4.5) holds. Finally, (4.8) follows by applying (4.6) and again using the
identity BC = (λG −A×)− (λG−A). �

Instead of the above argument one can also use an analogue of the second
proof of Theorem 2.1 in [20], which uses Schur complements arguments (cf., the
remark made in the final paragraph of Section 2.4).

4.3 Explicit canonical factorization

In this section we show how the realization (4.1) can be used to construct a
canonical factorization of an arbitrary rational matrix function. Necessary and
sufficient conditions for the existence of such a factorization and formulas for the
factors are stated explicitly in terms of the data appearing in the realization.
The next theorem, a counterpart of Theorem 3.2 for non-proper rational matrix
functions, is the main result.

Theorem 4.4. Let W be a rational m × m matrix function without poles on the
curve Γ, and let W be given by the Γ-regular realization

W (λ) = I + C(λG−A)−1B, λ ∈ Γ. (4.9)

Put A× = A−BC. Then W admits a right canonical factorization with respect to
Γ if and only if the following two conditions are satisfied:

(i) the pencil λG−A× is Γ-regular,

(ii) Cn = ImP +̇ KerP× and Cn = ImQ +̇ KerQ×.

Here n is the order of the matrices G and A, and

P =
1
2πi

∫
Γ

G(λG −A)−1dλ, P× =
1
2πi

∫
Γ

G(λG −A×)−1dλ,
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Q =
1
2πi

∫
Γ

(λG −A)−1Gdλ, Q× =
1
2πi

∫
Γ

(λG−A×)−1Gdλ.

If the conditions (i) and (ii) are satisfied, a right canonical factorization with
respect to Γ is given by

W (λ) = W−(λ)W+(λ), λ ∈ Γ,

where the factors and their inverses can be written as

W−(λ) = I + C(λG −A)−1(I −Δ)B, (4.10)

W+(λ) = I + CΛ(λG− A)−1B, (4.11)

W−1
− (λ) = I − C(I − Λ)(λG −A×)−1B, (4.12)

W−1
+ (λ) = I − C(λG −A×)−1ΔB. (4.13)

Here Δ is the projection along ImP onto KerP×, and Λ is the projection of Cn

along ImQ onto KerQ×. Finally, the first equality in (ii) implies the second and
conversely.

Proof. We split the proof into four parts. The first part concerns the condition (i).
In the second part we prove that the first equality in (ii) implies the second and
conversely. In the third part we use (i) and (ii) to derive the canonical factoriza-
tion and the formulas for its factors. The final part concerns the necessity of the
condition (ii).
Part 1. From the definition given in Section 3.1 it is clear that a necessary condition
in order that W admits a right canonical factorization with respect to Γ is that W
takes invertible values on Γ. By Theorem 4.3 this necessary condition is fulfilled
if and only if (i) holds true. In what follows we shall assume that (i) is satisfied.
Part 2. In this part we prove the last statement of the theorem. Consider the
operators

P×|ImP : ImP → ImP×, Q×|ImQ : ImQ→ ImQ×. (4.14)

The first equality in (ii) is equivalent to the invertibility of the first operator in
(4.14). To see this, note that Ker

(
P×|ImP

)
= KerP× ∩ ImP , and thus P×|ImP

is injective if and only if KerP× ∩ ImP = {0}. Next, observe that for each
y ∈ ImP we have y = (I − P×)y + P×|ImP y ∈ KerP× + Im

(
P×|ImP

)
. Thus

KerP×+ImP ⊂ KerP× + Im
(
P×|ImP

)
. The reverse inclusion is also true.

Indeed, for z ∈ ImP we have P×z = (P×z − z) + z ∈ KerP× + ImP . It follows
that KerP× + Im

(
P×|ImP

)
= KerP× + ImP , and hence P×|ImP considered as

an operator into ImP× is surjective if and only if Cn = KerP× + ImP . Thus,
as claimed, the first identity in (ii) amounts to the same as the invertibility of the
first operator in (4.14). Similarly, the second equality in (ii) is equivalent to the
invertibility of the second operator in (4.14). Notice that

GQ = PG, GQ× = P×G, (4.15)
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which is clear from the definitions of the projections Q, P and Q×, P×. Further-
more, from the material presented in Section 4.1, applied to λG − A as well as
to λG − A×, we see that G maps ImQ and ImQ× in a one-one manner onto
ImP and ImP×, respectively. Thus the operators E = G|ImQ : ImQ → ImP and
E× = G|ImQ× : ImQ× → ImP× are invertible and, in addition,

E×(Q×|ImQ) = (P×|ImP )E.

So the operators in (4.14) are equivalent, and hence the first operator in (4.14) is
invertible if and only if the same is true for the second operator in (4.14). This
proves that the first equality in (ii) implies the second and vice versa.

Part 3. Next assume that (i) and the direct sum decompositions in (ii) hold true.
Our aim is to obtain a canonical factorization of W . Write A, G, B, C as well as
A× = A−BC in block form relative to the decompositions in (ii):

A =

[
A11 A12

0 A22

]
: ImQ +̇KerQ× → ImP +̇KerP×, (4.16)

G =

[
G11 0

0 G22

]
: ImQ +̇KerQ× → ImP +̇KerP×, (4.17)

B =

[
B1

B2

]
: Cn → ImP +̇KerP×, (4.18)

C =
[

C1 C2

]
: ImQ +̇KerQ× → Cn, (4.19)

A× =

[
A×11 0

A×21 A×22

]
: ImQ +̇KerQ× → ImP +̇KerP×. (4.20)

From Theorem 4.1, applied to λG−A as well as to λG−A×, we know that

AQ = PA, A×Q× = P×A×. (4.21)

The first identity in (4.21) implies that A maps ImQ into ImP . This explains
the zero entry in the left lower corner of the block matrix for A. From (4.15) we
conclude that G has the desired block diagonal form. From the second identity in
(4.21) it follows that A× maps KerQ× into KerP×, which justifies the zero in the
right upper corner of the block matrix for A×. Taking into account the identity
A× = A−BC gives

A12 = B1C2, A×21 = −B2C1, (4.22)

A×11 = A11 −B1C1, A×22 = A22 −B2C2. (4.23)
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Define the matrix functions W− and W+ by (4.10) and (4.11), respectively. Using
the block matrix representations of A, G, B, and C we may rewrite W− and W+

in the form
W−(λ) = I + C1(λG1 −A11)−1B1, λ ∈ Γ, (4.24)

W+(λ) = I + C2(λG2 −A22)−1B2, λ ∈ Γ. (4.25)

From the block matrix representation of A and the first identity in (4.22) we see
that

W−(λ)W+(λ) = I +
[

C1 C2

]⎡⎣ λG1 −A11 −B1C2

0 λG2 −A22

⎤⎦−1 ⎡⎣ B1

B2

⎤⎦
= I + C(λG −A)−1B

= W (λ),

which gives the factorization W = W−W+.
Next, we check the analytic properties of the factors. Obviously, W− and W+

have no poles on Γ. Note that

λG1 −A11 = (λG−A)|ImQ : ImQ → ImP.

Thus we know from Section 4.1 that (λG1 −A11)−1 has an analytic extension on
F− which vanishes at infinity. So W− is continuous on F− ∪ Γ and analytic on F−
(including infinity). To see that a similar statement holds true for W+ on F+, we
first note that the linear maps

J = (I −Q)|KerQ× : KerQ× → KerQ,

H = (I − P )|KerP× : KerP× → KerP,

are invertible. In fact, J−1 = Λ|KerQ andH−1 = Δ|KerP , where Λ is the projection
along ImQ onto KerQ×, and Δ is the projection along ImP onto KerP×. Next,
take x ∈ KerQ×. Then

(λG2 −A22)x = Δ(λG−A)x = Δ(λG−A)(I −Q)x = Δ(λG −A)Jx,

which shows that H(λG2 −A22) =
(
(λG−A)|KerQ

)
J. But then we can use The-

orem 4.1 and the invertibility of the operators H and J to show that the function
(λG2−A2)−1 has an analytic extension on F+. Hence W+ is continuous on F+ ∪ Γ
and analytic on F+.

From the factorizationW (λ) = W−(λ)W+(λ) for λ ∈ Γ it follows that W−(λ)
and W+(λ) are both invertible for each λ ∈ Γ. So we can apply Theorem 4.3 to
show that

W−1
− (λ) = I − C1(λG1 −A×11)

−1B1, (4.26)

W−1
+ (λ) = I − C2(λG2 −A×22)

−1B2. (4.27)
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Here we use the two identities in (4.23). Using the block matrix representations
of A, G, B and C given above, it is clear that (4.26) and (4.27) yield the formulas
(4.12) and (4.13), respectively.

We proceed by checking the analyticity properties of the functions W−1
− and

W−1
+ . First note that

λG2 −A×22 = (λG−A×)|KerQ× : KerQ× → KerP×.

Thus by applying Theorem 4.1 with λG − A× in place of λG − A we see that
the function (λG2 − A×22)

−1 has an analytic extension on F+. It follows that the
function W−1

+ is continuous on F+ ∪ Γ and analytic on F+. To prove the analogous
result for W−1

− with respect to F− we use that

H×(λG1 −A×11) =
(
(λG −A×)|ImQ×

)
J×,

where J× = Q×|ImQ : ImQ → ImQ× and H× = P×|ImP : ImP → ImP× are
invertible linear maps of which the inverses are given by

(J×)−1 = (I − Λ)|ImQ× , (H×)−1 = (I −Δ)|ImP× .

Since
(
(λG − A×)|ImQ×

)−1 is analytic on F− by virtue of Theorem 4.1 applied
to λG−A×, we conclude that the same holds true for (λG1 −A×11)

−1. Hence the
function W−(λ)−1 is continuous on F− ∪ Γ and analytic on F−. Thus we have
proved that W = W−W+ is a right canonical factorization with respect to the
curve Γ.
Part 4. In this part we prove the necessity of the equalities in (ii). So in what follows
we assume that W = W−W+ is a canonical factorization of W with respect to Γ.
Take x ∈ ImP ∩KerP× and, for λ ∈ Γ, put

ϕ−(λ) = C(λG−A)−1x, ϕ+(λ) = C(λG−A×)−1x.

Since x ∈ ImP , the first identity in (4.21) allows us to rewrite ϕ− as

ϕ−(λ) = (C|ImQ)
(
(λG −A)|ImQ

)−1
x,

and hence Theorem 4.1(ii) implies that ϕ− has an analytic continuation on F−
which vanishes at infinity. Similarly, since

ϕ+(λ) = (C|KerQ×)
(
(λG −A×)−1|KerQ×

)−1
x,

we conclude from Theorem 4.1(iii) applied to λG − A× that ϕ+ has an analytic
continuation on F+. Note that W (λ)−1ϕ−(λ) = ϕ+(λ) for each λ ∈ Γ, because of
formula (4.6) in Theorem 4.3. It follows that

W−(λ)−1ϕ−(λ) = W+(λ)ϕ+(λ), λ ∈ Γ.
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Now use the analyticity properties of the factors W− and W+. We conclude that
W−1
− ϕ− has an analytic continuation on F− which vanishes at infinity, and W+ϕ+

has an analytic continuation on F+. Liouville’s theorem implies that both functions
are identically zero. It follows that ϕ−(λ) = 0 for each λ ∈ Γ. But then we can
apply formula (4.8) to show that

(λG −A×)−1x = (λG−A)−1x, λ ∈ Γ.

Now, repeat part of the above reasoning. Note that (λG−A)−1x has an analytic
continuation on F− which vanishes at infinity, and (λG−A×)−1x has an analytic
continuation on F+. Again using Liouville’s theorem we conclude that both matrix
functions (λG − A)−1x and (λG − A×)−1x are identically zero on Γ. This yields
x = 0.

We proved that ImP ∩ KerP× = {0}. Recall that G maps ImQ in a one-one
manner onto ImP . Thus (4.15) shows that G maps ImQ ∩ KerQ× in a one-one
manner into ImP ∩KerP×. Hence ImQ ∩KerQ× = {0} too.

Next we show that ImQ+KerQ× = Cn. Take y ∈ Cn such that y is orthog-
onal to ImQ+ KerQ×. Let y∗ be the row vector of which the j-th entry is equal
to the complex conjugate of the j-th entry of y (j = 1, . . . , m). For λ ∈ Γ, put

ψ−(λ) = y∗(λG −A×)−1B, ψ+(λ) = y∗(λG −A)−1B.

Since y∗(I − Q)× = 0, Theorem 4.1 shows that ψ−(λ) = y∗(λG − A×)−1P×B,
and thus ψ− has an analytic continuation on F− which vanishes at infinity. Simi-
larly, y∗Q = 0 implies that ψ+ has an analytic continuation on F+. Now, use the
canonical factorization W = W−W+ and (4.7) to show that

ψ+(λ)W+(λ)−1 = ψ−(λ)W−(λ), λ ∈ Γ.

But then, as before, we can use Liouville’s theorem to show that both sides of the
identity are equal to zero. It follows that ψ+(λ) = 0 for each λ ∈ Γ, and we can
use formula (4.8) to show that

y∗(λG −A×)−1 = y∗(λG−A)−1, λ ∈ Γ.

Recall that y∗Q and y∗(I − Q×) are both zero. Thus Theorem 4.1 implies that
y∗(λG−A×)−1 has an analytic continuation on F− which vanishes at infinity, and
the function y∗(λG−A)−1 has an analytic continuation on F+. So, by Liouville’s
theorem, y∗(λG−A)−1 = 0 on Γ, and thus y = 0. This gives ImQ+ KerQ× = Cn.
Combining this with with what we saw in the preceding paragraph, we obtain
ImQ +̇KerQ× = Cn. But then the result of Part 2 yields the direct sum decom-
position ImP˙+KerP× = Cn, and (ii) is proved. �

The fact that in Theorem 4.4 the curve Γ is bounded is not essential. We
only use that Γ is a closed curve on the Riemann sphere C∞ and that W has no
poles on Γ. Thus Γ may pass through infinity. For instance, let us replace Γ by the
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extended real line R∞ which passes through infinity. By the results of Section 2.2,
the condition that the m×m rational matrix function W has no poles on R ∪{∞}
implies that W can be represented in the form

W (λ) = D + C(λ −A)−1B, λ ∈ R, (4.28)

where A is a square matrix with no real eigenvalues. The condition that W takes
invertible values on R ∪{∞} now amounts to the requirement that D is invertible
and the matrix A−BD−1C has no real eigenvalues. Also, in that case,

W−1(λ) = D−1 −D−1C(λ −A×)−1BD−1, λ ∈ R,

whereA× = A−BD−1C. With these minor modifications the proof of Theorem 4.4
also applies to realizations of the form (4.28), and yields the following theorem.

Theorem 4.5. Let W be a rational m × m matrix function without poles on the
real line, and let W be given by the realization

W (λ) = D + C(λIn −A)−1B, λ ∈ R, (4.29)

where A is an n×n matrix with no real eigenvalues. Then W admits a right canon-
ical factorization with respect to R ∪ {∞} if and only if the following conditions
are satisfied:

(i) D is invertible and A× = A−BD−1C has no real eigenvalues,

(ii) Cn = M+̇M×.

Here n is the order of the matrix A, the space M is the spectral subspace of A
corresponding to its eigenvalues in the upper half plane, and M× is the spectral
subspace of A× corresponding to its eigenvalues in the lower half plane. Further-
more, if the conditions (i) and (ii) are fulfilled, then a right canonical factorization
with respect to R ∪ {∞} is given by

W (λ) = W−(λ)W+(λ), λ ∈ Γ,

where the factors and their inverses can be written as

W−(λ) = D + C(λIn −A)−1(I −Π)B,

W+(λ) = I +D−1CΠ(λIn −A)−1B,

W−1
− (λ) = D−1 −D−1C(I −Π)(λIn −A×)−1BD−1,

W−1
+ (λ) = I −D−1C(λIn −A×)−1ΠB.

Here Π is the projection of Cn along M onto M×.

Since there is no a priori assumption on the invertibility of (the external)
operator D, Theorem 4.5 is a slight extension of Theorem 3.2 dealing with matrix
functions too. The results can be generalized to the case of operator functions (cf.,
Section 7.1 below).
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4.4 Inversion of singular operators with a rational
matrix symbol

In this section we apply the results of the previous sections to solve the problem
of inverting the singular integral equation

a(t)ϕ(t) + b(t)
1
πi

∫
Γ

ϕ(τ)
τ − t

dτ = g(t), t ∈ Γ. (4.30)

Throughout we assume that a and b are rational m ×m matrix functions which
do not have poles on the Cauchy contour Γ. We shall analyze equation (4.30)
under the additional condition that the difference a(λ) − b(λ) is invertible for
each λ ∈ Γ. Since we are interested in invertibility, the latter condition is not an
essential restriction (cf., Theorem 1.3).

The fact that the matrix a(λ) − b(λ) is invertible for λ ∈ Γ allows us to
introduce the operator T = MW PΓ +QΓ which we consider on Lm

2 (Γ). Here

W (λ) =
(
a(λ)− b(λ)

)−1(
a(λ) + b(λ)

)
,

and MW is the operator of multiplication by W on Lm
2 (Γ), that is, for ϕ ∈ Lm

2 (Γ)
we have (MW ϕ)(t) = W (t)ϕ(t) for almost all t ∈ Γ. Furthermore, PΓ and QΓ are
the orthogonal projections on Lm

2 (Γ) associated with the singular integral operator
introduced in Section 1.3. Thus, for ϕ ∈ Lm

2 (Γ),

(PΓϕ)(t) =
1
2

ϕ(t) +
1
2πi

∫
Γ

ϕ(τ)
τ − t

dτ, (4.31)

(QΓϕ)(t) =
1
2

ϕ(t)− 1
2πi

∫
Γ

ϕ(τ)
τ − t

dτ, (4.32)

for almost all t ∈ Γ. The image of PΓ consists of all functions in Lm
2 (Γ) that admit

an analytic continuation into F+. Similarly, the image of QΓ is the subspace of
all functions in Lm

2 (Γ) that admit an analytic continuation into F− and vanish at
infinity. Note that equation (4.30) is equivalent to

(MW PΓ +QΓ)ϕ = g̃, where g̃(λ) =
(
a(λ)− b(λ)

)−1
g(λ).

Since W is a rational m ×m matrix function without poles on Γ, we know
from Theorem 4.2 that W admits a Γ-regular realization

W (λ) = I + C(λG−A)−1B, λ ∈ Γ. (4.33)

The main result of this section provides an explicit inversion formula for the op-
erator MW PΓ +QΓ in terms of the realization (4.33).

Theorem 4.6. Let the rational m×m matrix function W be given by the Γ-regular
realization (4.33), and put A× = A − BC. Then MW PΓ + QΓ is an invertible
operator on Lm

2 (Γ) if and only if the following two conditions are satisfied:
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(1) the pencil λG−A× is Γ-regular,

(2) Cn = ImP +̇ KerP×,

where n is the order of the matrices A and G, and

P =
1
2πi

∫
Γ

G(λG −A)−1dλ, P× =
1
2πi

∫
Γ

G(λG−A×)−1dλ. (4.34)

In that case(
(MW PΓ +QΓ)−1g

)
(λ) = g(λ)− C(λG −A×)−1B(PΓg)(λ)

+
(
C(λG −A×)−1 − C(λG −A×)−1

)
(I −Π)

·
( 1
2πi

∫
Γ

P×G(ζG−A×)−1Bg(ζ)dζ
)
, λ ∈ Γ.

Here Π is the projection of Cn along ImP onto KerP×.

With suitable changes, the theorem remains true when P and P× are replaced
by the projections Q and Q× (also) appearing in Theorem 4.4.

Proof. From the general theory of singular integral equations reviewed in Sec-
tion 1.3 we know that the operator MW PΓ + QΓ is invertible if and only if W
admits a right canonical factorization with respect to Γ. Since W is given by
(4.33), the latter is the case if and only if conditions (i) and (ii) in Theorem 4.4
are fulfilled. By the final statement in Theorem 4.4, conditions (i) and (ii) in The-
orem 4.4 are equivalent to conditions (1) and (2) in the present theorem. Thus we
have proved that MW PΓ +QΓ is invertible if and only if (1) and (2) are satisfied.

To get the formula for the inverse of MW PΓ +QΓ we again use the general
theory of singular integral equations, the inversion formula (1.29) in particular.
Let W = W−W+ be a right canonical factorization of W with respect to Γ. For
g ∈ Lm

2 (Γ) we then have, suppressing the variable λ,

(MW PΓ +QΓ)−1g = W−1
+

(
PΓ(W−1

− g)
)
+W−

(
QΓ(W−1

− g)
)
.

Taking into account the form of PΓ and QΓ in (4.31) and (4.32), this identity can
be rewritten as

(
(MW PΓ +QΓ)−1g

)
(λ) =

1
2

g(λ) +
1
2

W (λ)−1g(λ)

+
1
2πi

∫
Γ

1
τ − λ

(
W+(λ)−1 −W−(λ)

)
W−(τ)−1g(τ) dτ, λ ∈ Γ. (4.35)
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Next, we use the formulas for W+, W− and their inverses given in Theorem 4.4.
This yields(

W+(λ)−1 −W−(λ)
)
W−(τ)−1

= −C(λG −A×)−1ΔB − C(λG −A)−1(I −Δ)B (4.36)

+ λG−A×)−1ΔBC(I − Λ)(τG −A×)−1B

+ C(λG −A)−1(I −Δ)BC(I − Λ)(τG −A×)−1B.

Here Δ and Λ are the projections defined in Theorem 4.4. Using these definitions,
and the partitionings of A, G, and A× in (4.16), (4.17) and (4.20), respectively,
we obtain

ΔA(I − Λ) = 0, (I −Δ)A×Λ = 0, ΔG = GΛ.

Since BC = A−A×, it follows that

ΔBC(I − Λ) = A×Λ−ΔA×

= (A× − λG)Λ−Δ(A× − τG)− (τ − λ)ΔG,

and

(I −Δ)BC(I − Λ) = A(I − Λ)− (I −Δ)A×

= (A− λG)(I − Λ)− (I −Δ)(A× − τG) − (τ − λ)(I −Δ)G.

Inserting these expressions into (4.36) gives(
W+(λ)−1 −W−(λ)

)
W−(τ)−1 = −C(τG −A×)−1B

−(τ − λ)C(λG −A×)−1ΔG(τG −A×)−1B

−(τ − λ)C(λG −A)−1(I −Δ)G(τG − A×)−1B.

Next we use that (τ − λ)C(λG −A×)−1G(τG −A×)−1B can be written as

C(λG−A×)−1
(
(τG −A×)− (λG−A×)

)
(τG −A×)−1B

which in turn is equal to C(λG−A×)−1B − C(τG −A×)−1B, and this leads to(
W+(λ)−1 −W−(λ)

)
W−(τ)−1 = −C(λG −A×)−1B

+(τ − λ)
(
C(λG −A×)−1 − C(λG −A)−1

)
·(I −Δ)G(τG −A×)−1B. (4.37)
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Using (4.37) and (4.5) in (4.35) we obtain

(
(MW PΓ +QΓ)−1g

)
(λ) = g(λ)− 1

2
C(λG −A×)−1Bg(λ)

−C(λG−A×)−1B
(

1
2πi

∫
Γ

1
τ − λ

g(τ) dτ

)
+
(
C(λG −A×)−1 − C(λG −A)−1

)
(I −Δ)

·
(

1
2πi

∫
Γ

G(τG −A×)−1Bg(τ) dτ

)
, λ ∈ Γ.

Finally, note that Δ = Π and (I − Π)P× = I − Π. Since PΓ is given by (4.31),
we see that we have derived the desired expression for the inverse of the operator
MW PΓ +QΓ. �

4.5 The Riemann-Hilbert boundary value problem

revisited (1)

In this section we treat the (homogeneous) Riemann-Hilbert boundary value prob-
lem for non-proper rational matrix functions. As before Γ is a Cauchy contour. As
usual, the interior domain of Γ is denoted by F+, and its exterior domain, which
contains the point infinity, by F−. Throughout W is a rational m × m matrix
function which does not have poles on Γ.

We say that a pair of Cm-valued functions Φ+,Φ− is a solution of the
Riemann-Hilbert boundary problem of W with respect to Γ if Φ+ and Φ− are
continuous on F+∪Γ and F−∪Γ, respectively, Φ+ and Φ− are analytic in F+ and
F−, respectively, Φ− vanishes at infinity, and

W (λ)Φ+(λ) = Φ−(λ), λ ∈ Γ. (4.38)

Since W is assumed to be a rational m ×m matrix function which has no poles
on Γ, we may assume that W is given by a Γ-regular realization

W (λ) = I + C(λG −A)−1B, λ ∈ Γ. (4.39)

We shall also assume thatW takes invertible values on Γ. This additional condition
is equivalent to the requirement that the pencil λG−A× is Γ-regular. The following
theorem is the natural analogue of Theorem 3.7.

Theorem 4.7. Let W be given by (4.39), and assume that the pencil λG−A× is a
Γ-regular. Put

P =
1
2πi

∫
Γ

G(λG −A)−1 dλ, P× =
1
2πi

∫
Γ

G(λG−A×)−1 dλ.
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Then the pair of functions Φ+ and Φ− is a solution of the Riemann-Hilbert bound-
ary value problem of W with respect to Γ if and only if there exists x belonging to
ImP ∩ KerP× such that

Φ+(λ) = C(λG −A×)−1x, Φ−(λ) = C(λG −A)−1x. (4.40)

Moreover the vector x in (4.40) is uniquely determined by Φ+,Φ−

With the appropriate modifications, the theorem remains true when P and
P× are replaced by the projections Q and Q× (also) appearing in Theorem 4.4.

Proof. Take x ∈ ImP ∩ KerP×, and define Φ+ and Φ− by (4.40). Formula (4.6)
implies that (4.38) is satisfied. Since x = Px, Theorem 4.1 (ii) shows that Φ−
is continuous on F− ∪ Γ, analytic in F−, and vanishes at infinity. Similarly, using
x = (I−P×)x, Theorem 4.1 (iii), applied to λG−A×, yields that Φ+ is continuous
on F+ ∪ Γ and analytic on F+. Thus the functions Φ+ and Φ− have the desired
properties, and the pair Φ+,Φ− is a solution.

To prove the converse, assume that the pair Φ+,Φ− is a solution of the
Riemann-Hilbert problem for W with respect to Γ. For λ ∈ Γ, introduce ρ(λ) =
(λG−A)−1BΦ+(λ). The n×m matrix function ρ is continuous on Γ, thus it makes
sense to put

ρ+(λ) =
1
2

ρ(λ) +
1
2πi

∫
Γ

ρ(τ)
τ − λ

dτ, λ ∈ Γ,

ρ−(λ) =
1
2

ρ(λ)− 1
2πi

∫
Γ

ρ(τ)
τ − λ

dτ, λ ∈ Γ;

cf., the expressions (4.31) and (4.32). The function ρ+ is continuous on F+∪ Γ and
analytic in F+, and ρ− has the same properties with F− in place of F+. Moreover,
ρ− vanishes at infinity.

We first show that

Φ+(λ) = −Cρ+(λ), λ ∈ F+ ∪ Γ, (4.41)

Φ−(λ) = Cρ−(λ), λ ∈ F− ∪ Γ. (4.42)

Since the pair Φ+,Φ− satisfies (4.38), we have

Φ−(λ) = Φ+(λ) + C(λG −A)−1BΦ+(λ) = Φ+(λ) + Cρ(λ), λ ∈ Γ.

But ρ(λ) = ρ−(λ) + ρ+(λ) on Γ, and therefore

Φ−(λ) − Cρ−(λ) = Φ+(λ) + Cρ+(λ), λ ∈ Γ. (4.43)

The right-hand side of (4.43) is continuous on F+ ∪ Γ and analytic in F+. On
the other hand, the left-hand side of (4.43) is continuous on F− ∪ Γ, analytic in
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F− and vanishes at infinity. Thus, by Liouville’s theorem, both sides of (4.43) are
identically zero on Γ, and the identities (4.41) and (4.42) hold.

Next, we compute the function ρ−. From the definition of ρ(λ) we see that
(λG−A)ρ(λ) = BΦ+(λ) for λ ∈ Γ. Since Φ+ is continuous on F+∪ Γ and analytic
in F+, we conclude that for each λ ∈ Γ,

1
2
(λG −A)ρ(λ) =

1
2πi

∫
Γ

1
τ − λ

(τG−A)ρ(τ) dτ

=
1
2πi

∫
Γ

1
τ − λ

(
(λG −A) + (τ − λ)G

)
ρ(τ) dτ

= (λG−A)
(

1
2πi

∫
Γ

ρ(τ)
τ − λ

dτ

)
+ x,

where
x =

1
2πi

∫
Γ

Gρ(τ) dτ.

Using the definition of ρ−, the above calculation shows that

ρ−(λ) = (λG −A)−1x, λ ∈ Γ. (4.44)

To compute ρ+, recall that ρ(λ) = ρ−(λ) + ρ+(λ) on Γ. This, together with
(4.41) and (4.42), yields

(λG−A)ρ+(λ) = (λG −A)ρ(λ) − (λG−A)ρ−(λ)

= BΦ+(λ) − x = −BCρ+(λ) − x, λ ∈ Γ.

Since A× = A−BC, we obtain

ρ+(λ) = −(λG−A×)−1x, λ ∈ Γ. (4.45)

From (4.44) and the fact that ρ− is continuous on F− ∪ Γ, analytic in F−,
and vanishes at infinity, we conclude that x = Px. Similarly, we obtain from (4.45)
that x = (I−P×)x. Thus x ∈ ImP ∩ KerP×. Formulas (4.41), (4.42), (4.44) and
(4.45) now show that the functions Φ+ and Φ− have the desired representation
(4.40).

It remains to prove the uniqueness of the vector x in (4.40). To do this
assume that u ∈ ImP ∩ KerP×, and let C(λG−A)−1u be identically zero on Γ.
It suffices to show that u = 0. For this purpose we use the identity (4.8). Applying
this identity to the vector u, we see that

(λG −A×)−1u = (λG−A)−1u, λ ∈ Γ. (4.46)

Since u ∈ KerP×, the left-hand side of (4.46) has an analytic continuation on
F+; see Theorem 4.1 (iii). Similarly, u ∈ ImP implies that the right side of (4.46)
has an analytic continuation on F− which vanishes at infinity; see Theorem 4.1
(ii). But then we can apply Liouville’s theorem to show that these functions are
identically zero on Γ, which yields u = 0. �
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Notes

The extension of the Riesz spectral theory for operators to operator pencils, which
is described in Section 4.1, is due to Stummel [140]; the results can also be found
in Section IV.1 of [51]. Section 4.2 combines the classical realization theory for
proper rational matrix functions with that of matrix polynomials; for the latter,
see [65]. The main source for the material in Sections 4.2 and 4.3 is the paper
[55]; Section 4.4 is based on [56]. Section 4.5 seems to be new. For realizations of
the form considered in this chapter, non-canonical Wiener-Hopf factorization has
been studied in [151]. Instead of (4.3) other realizations of W can be used; see for
instance [79], where (4.3) is replaced by the realization

W (λ) = D + (λ − α)C(λG −A)−1B

which can also be used for non-square matrix functions.



Part III
Equations with non-rational
symbols

In this part we carry out a program analogous to that of the second part, but
now for certain classes of non-rational matrix and operator functions. Included
are matrix functions analytic in a strip but not at infinity, an operator function
appearing in linear transport theory, and operator functions analytic on a given
curve.

There are three chapters. The main topic of the first chapter (Chapter 5) is
a canonical factorization theorem for matrix functions analytic in a strip but not
necessarily at infinity. Its applications to different classes of Wiener-Hopf equations
are included too. The realizations of such matrix functions require that we consider
systems with an infinite dimensional state space and with a state operator that
is unbounded and exponentially dichotomous. Thus the theory of strongly contin-
uous semigroups plays an important role in this material. Chapter 6 is entirely
dedicated to the solution of an integro-differential equation from mathematical
physics describing stationary migration of particles in a medium. To illustrate the
approach, the special case of a finite number of scattering directions is considered
first. This restriction makes it possible to reduce the problem to a canonical fac-
torization problem for rational matrix functions. The general situation features
an infinite dimensional separable Hilbert space as state space. The final chapter
(Chapter 7) deals with canonical factorization and non-canonical Wiener-Hopf fac-
torization for operator-valued functions that are analytic on a given curve. In this
chapter the so-called factorization indices are described in state space terms.





Chapter 5

Factorization of matrix
functions analytic in a strip

This chapter deals with m×m matrix-valued functions of the form

W (λ) = I −
∫ ∞
−∞

eiλtk(t) dt, (5.1)

where k is an m×m matrix-valued function with the property that for some ω < 0
the entries of e−ω|t|k(t) are Lebesgue integrable on the real line. In other words,
k is of the form

k(t) = eω|t|h(t) with h ∈ Lm×m
1 (R). (5.2)

It follows that the function W is analytic in the strip |�λ| < τ , where τ = −ω.
This strip contains the real line. The aim is to extend the canonical factorization
theorem of Chapter 5 to functions of the type (5.1).

In general, the function W in (5.1) is not a rational matrix function, and
hence one cannot expect a representation of W in the form

W (λ) = I + C(λ −A)−1B (5.3)

with A, B, C matrices. Also a realization with A, B and C bounded linear op-
erators will not work. Indeed, in that case the function W would be analytic at
infinity, however in general it is not. Thus to get a representation of the type (5.3)
one has to allow for unbounded linear operators. In fact, we shall have to allow
for A and C to be unbounded while B can be taken to be bounded.

This chapter consists of nine sections. In Sections 5.1 and 5.2 we present pre-
liminary material on exponentially dichotomous operators and associated bisemi-
groups. These exponentially dichotomous operators appear as state operators in
the realization triples defined in Section 5.3. In Section 5.4 we construct realiza-
tion triples for m ×m matrix-valued functions W of the form (5.1) with k as in
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(5.2), and in Section 5.5 we use the realization triples to invert such a matrix
function W . It turns out that inversion is only possible when the associate oper-
ator A× = A − BC is exponentially dichotomous too. The inversion formula of
Section 5.5 is used in Section 5.6 to derive an explicit formula for the kernel func-
tion of the inverse of a full line convolution integral operator when the symbol W
is given by (5.1) and (5.2). This section also contains some preliminary material
about Hankel operators. The final three sections concern applications. Sections
5.7 and 5.8 deal with inversion of a Wiener-Hopf integral equation with a kernel
function k of the form (5.2) and with canonical factorization of the corresponding
symbol. In Section 5.9 we revisit the Riemann-Hilbert boundary value problem.

5.1 Exponentially dichotomous operators and

bisemigroups

We begin with some preliminaries about strongly continuous semigroups of oper-
ators (also called C0-semigroups). Free use will be made of the standard theory
of these semigroups as explained, for instance, in Chapter XIX of [51]. Besides
ordinary C0-semigroups defined on the positive half line [0,∞), henceforth to be
called right semigroups , we shall also consider semigroups defined on the negative
half line (−∞, 0]. The latter will be called left semigroups. Notice that T (t) is a
left semigroup if and only if T (−t) is a right semigroup.

Let T (t) be a strongly continuous right or left semigroup. As is well-known,
there exist constants M and ω such that

‖T (t)‖ ≤ Meω|t|, t ∈ J.

Here J is the half line [0,∞) or (−∞, 0] according to T (t) being a right or a left
semigroup. If the above inequality is satisfied for a given real number ω and some
positive constant M , we say that T (t) is of exponential type ω. Semigroups of
negative exponential type will be called exponentially decaying.

Next we introduce the concept of an exponentially dichotomous operator.
Let X be a complex Banach space, and let A be a (possibly unbounded) linear
operator with domain D(A) in X and with values in X , in short A(X → X).
Further, let P : X → X be a (bounded linear) projection of X commuting with
A. The latter means that P maps D(A) into itself and PAx = APx for each
x ∈ D(A). Put X− = ImP and X+ = KerP . Then

X = X−+̇ X+, (5.4)

and this decomposition reduces A, that is,

D(A) = [D(A) ∩X−] +̇ [D(A) ∩X+], (5.5)
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with A mapping [D(A) ∩ X−] into X− and [D(A) ∩ X+] into X+. So with respect
to the decompositions (5.4) and (5.5), the operatorA has the matrix representation

A =

[
A− 0

0 A+

]
. (5.6)

Here A−(X− → X−) is the restriction of A to X−, and A+(X+ → X+) is the
restriction of A to X+. In particular, the domain D(A−) of A− is D(A) ∩ X−
and the domain D(A+) of A−+ is D(A) ∩ X+. Thus (5.5) can be rewritten as
D(A) = D(A−) +̇ D(A+).

The operator A is said to be exponentially dichotomous if the operators A−
and A+ in (5.6) are generators of exponentially decaying strongly continuous left
and right semigroups, respectively. In that case the projection P , which will turn
out to be unique (see Proposition 5.1 below), is called the separating projection for
A. We say that A is of exponential type ω (< 0) if this is true for the semigroups
generated by A− and A+.

Suppose, for the moment, that A : X → X is a bounded linear operator.
Then A is exponentially dichotomous if and only if the spectrum σ(A) of A does
not meet the imaginary axis. In that situation the separating projection for A is
simply the Riesz projection corresponding to the part of σ(A) lying in the open
right half plane �λ > 0.

Next, observe that generators of exponentially decaying strongly continuous
semigroups belong to the class of exponentially dichotomous operators, the left
semigroup case corresponding to the separating projection being the identity op-
erator and the right semigroup case corresponding to the separating projection
being the zero operator on X.

Returning to the general case, we note that the operators A− and A+ in
the definition of an exponentially dichotomous operator are closed and densely
defined. Hence the same is true for their direct sum A. Furthermore, if A is of
(negative) exponential type ω, then, by the Hille-Yosida-Phillips theorem (see,
e.g., Theorem XIX.2.3 in [51]), the spectrum σ(A−) of A− is contained in the
closed half plane �λ ≥ −ω, whereas σ(A+) is a subset of �λ ≤ ω. In particular,
the strip |�λ| < −ω is contained in ρ(A), the resolvent set of A. This justifies the
use of the term “separating projection” for P .

It is convenient to adopt the following notation and terminology. Suppose
A(X → X) is an exponentially dichotomous operator with separating projection
P , and let A− and A+ be as above. Thus A− and A+ are the restrictions of A
to X− = ImP and X+ = KerP , respectively. With A we associate a function
E(·;A) with domain R \ {0} and with values in L(X), the space of all bounded
operators on X . The definition is as follows: for x ∈ X ,

E(t;A)x =

⎧⎨⎩ −etA−Px, t < 0,

etA+(I − P )x, t > 0,
(5.7)
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where, following standard conventions, etA− denotes the value at t(< 0) of the
semigroup generated by A− and etA+ denotes the value at t(> 0) of the semigroup
generated by A+. We call E(· ;A) the bisemigroup generated by A. The operator
A will be referred to as the bigenerator of E(· ;A).

For each x ∈ X the function E(t;A)x is continuous on R \ {0}, and
lim
t↑0

E(t;A)x = −Px, lim
t↓0

E(t;A)x = (I − P )x. (5.8)

We conclude that E(· ;A) is an exponentially decaying operator function which is
strongly continuous on the real line, except at the origin where it has (at worst)
a jump discontinuity. For x ∈ D(A) = D(A−) +̇ D(A+), the function E(t;A)x is
even differentiable on R \ {0}. In fact, we have

d

dt
E(t;A)x = AE(t;A)x = E(t;A)Ax, t 	= 0.

Obviously the derivative of E(· ;A)x is continuous on R \ {0}, exponentially de-
caying (in both directions) and has (at worst) a jump discontinuity at the origin.
From (5.7) it is clear that

E(t, A)P = PE(t, A) = E(t;A), t < 0,

E(t, A)(I − P ) = (I − P )E(t, A) = E(t;A), t > 0.

Also the following semigroup properties hold:

E(t+ s, A) = −E(t;A)E(s;A), t, s < 0,

E(t+ s, A) = E(t, A)E(s;A), t, s > 0.

One of the reasons for the different signs to appear in the definition of E(t;A)
is that in this way the following identity holds:

(λ−A)−1x =
∫ ∞
−∞

e−λtE(t;A)xdt, x ∈ X, |�λ| < −ω. (5.9)

Here ω is a negative constant such that A is of exponential type ω. The proof of
(5.9) is based on standard semigroup theory (see, e.g., Theorem XIX.2.2 in [51]).

With the help of (5.8) and (5.9) we now can prove the uniqueness of the
separating projection.

Proposition 5.1. Let A(X → X) be an exponentially dichotomous operator. Then
A has precisely one separating projection.

Proof. Let P be a separating projection for A, and let E(· ;A) be the associate
bisemigroup. A priori E(· ;A) depends not only on A but also on P . However, (5.9)
and the fact that E(· ;A) is strongly continuous on R \ {0} imply that E(· ;A) is
uniquely determined by A. On the other hand the first identity in (5.8) shows
that P is uniquely determined by E(· ;A). So along with E(· ;A) the separating
projection is uniquely determined by A. �
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From (5.9) it follows that on a strip around the imaginary axis, the resolvent
(λ − A)−1 of A is the pointwise two-sided Laplace transform of an exponentially
decaying operator function which is strongly continuous on R \ {0} and has (at
worst) a jump discontinuity at zero. The following theorem shows that this prop-
erty characterizes exponentially dichotomous operators.

Theorem 5.2. Let A(X → X) be a densely defined closed linear operator on the
complex Banach space X. Then A is exponentially dichotomous if and only if the
imaginary axis is contained in the resolvent set of A and

(λ−A)−1x =
∫ ∞
−∞

e−λtE(t)xdt, x ∈ X, �λ = 0, (5.10)

where E : R \ {0} → L(X) is exponentially decaying and strongly continuous, and
E has (at worst) a jump discontinuity at zero. In that case the function E is the
bisemigroup generated by A.

The above theorem will play an important role in Section 5.5. For the sake
of completeness its proof is given in the next section. The reader who is ready to
accept Theorem 5.2 may proceed directly to Section 5.3.

5.2 Spectral splitting and proof of Theorem 5.2

In this section we prove Theorem 5.2. The proof will be based on the spectral
splitting results proved in Section XV.3 of [51], which originate from [16]. It will
be convenient first to prove the following result which is the semigroup version of
Theorem 5.2.

Theorem 5.3. Let S(X → X) be a densely defined closed linear operator on the
complex Banach space X. Then S is the infinitesimal generator of a strongly con-
tinuous right semigroup of negative exponential type if and only if the imaginary
axis is contained in the resolvent set of S and

(λ − S)−1x =
∫ ∞
0

e−λtE(t)xdt, x ∈ X, �λ = 0, (5.11)

where E : [0,∞) → L(X) is exponentially decaying and strongly continuous. In
that case the function E is the right semigroup generated by S.

Proof. The “only if part” of Theorem 5.2 is immediate from standard semigroup
theory. To prove the “if part” let ω be a negative real number and L a positive
constant such that

‖E(t)‖ ≤ Leωt, t ≥ 0. (5.12)

For �λ > ω and x ∈ X , put

R(λ)x =
∫ ∞
0

e−λtE(t)xdt. (5.13)
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ThenR(λ) is a well-defined bounded linear operator onX with norm not exceeding
L. The function R is pointwise analytic on �λ > ω, and hence it is analytic on
�λ > ω. We shall prove that �λ > ω implies that λ ∈ ρ(S) and R(λ) = (λ−S)−1.

Let T = S−1 be the (bounded) inverse of S. For 0 	= λ ∈ ρ(S), one has
λ−1 ∈ ρ(T ) and (λ − S)−1 = −λ−1T (λ−1 − T )−1. Take λ on the imaginary axis,
λ 	= 0. Combining (5.11) and (5.13) we get

R(λ) = (λ− S)−1 = −λ−1T (λ−1 − T )−1,

and hence R(λ) =
(
λR(λ)− I

)
T . But then the unicity theorem for analytic func-

tions gives that these identities hold on all of �λ > ω. A simple computation now
shows that R(λ) = (λ− S)−1 for each λ with �λ > ω.

We have seen that the open half plane �λ > ω is contained in ρ(S) and

(λ− S)−1x =
∫ ∞
0

e−λtE(t)xdt, x ∈ X, �λ > ω. (5.14)

Differentiating the left-and right-hand side of (5.14) for the variable λ, one finds

(λ − S)−nx =
(−1)n
(n− 1)!

∫ ∞
0

tn−1e−λtE(t)xdt, x ∈ X, �λ > ω. (5.15)

Here n is an arbitrary positive integer. Taking λ > ω and combining (5.12) and
(5.15) we get the estimate

‖(λ− S)−nx‖ ≤ L

(n− 1)!

(∫ ∞
0

tn−1e−(λ−ω)t dt

)
‖x‖.

Observe that∫ ∞
0

tn−1e−(λ−ω)t dt =
1

(λ− ω)n

∫ ∞
0

sn−1e−s ds =
(n− 1)!
(λ− ω)n

.

Thus ‖(λ − S)−n‖ ≤ L(λ − ω)−n for real λ > ω and n = 1, 2, . . . . The Hille-
Yosida-Phillips theorem ([51], page 419) now guarantees that S is the generator
of a strongly continuous right semigroup T (t) of exponential type ω < 0. But then
(5.11) holds with E(t) replaced by T (t). As the operator-valued functions E) and
T are both strongly continuous, they must coincide, and the proof is complete. �

Proof of Theorem 5.2. We split the proof into three parts. Throughout ω is a
negative real number and L is a positive constant such that

‖E(t)‖ ≤ Leω|t|, 0 	= t ∈ R. (5.16)

Part 1. In this part we show that (λ−A)−1 is well-defined and uniformly bounded
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on each closed strip |�λ| ≤ h where 0 < h < −ω. To do this, let us consider the
following expressions:

Ψ+(λ)x =
∫ ∞
0

e−λtE(t)xdt, �λ > ω,

Ψ−(λ)x =
∫ 0

−∞
e−λtE(t)xdt, �λ < −ω.

Here x ∈ X . Clearly Ψ+(λ) is a well-defined bounded linear operator on X which
depends analytically on λ on the open half plane �λ > ω, and an analogous
statement holds of course for Ψ−(λ). Note that Ψ−(λ) + Ψ+(λ) is analytic on
the strip |�λ| < −ω and coincides on the imaginary axis with (λ − A)−1. Thus
|�λ| < −ω implies λ ∈ ρ(A) and (λ−A)−1 = Ψ−(λ) + Ψ+(λ), i.e.,

(λ−A)−1x =
∫ ∞
−∞

e−λtE(t)xdt, x ∈ X, |�λ| < −ω. (5.17)

A detailed argument can be given along the lines indicated in the second paragraph
of the proof of Theorem 5.3.

From (5.16) one easily deduces that

‖Ψ+(λ)‖ ≤ L

�λ− ω
, �λ > ω,

‖Ψ−(λ)‖ ≤ −L

�λ+ ω
, �λ < −ω.

On the strip |�λ| < −ω, the norm of (λ − A)−1 = Ψ−(λ) + Ψ+(λ) can now be
estimated as follows:

‖(λ−A)−1‖ ≤ −2Lω

ω2 − (�λ)2
, |�λ| < −ω. (5.18)

In particular (λ −A)−1 is uniformly bounded on each closed strip |�λ| ≤ h with
0 < h < −ω.
Part 2. Fix 0 < h < −ω. From what has been proved in the previous part, we
know that

sup
|
λ|≤h

‖(λ−A)−1‖ < ∞. (5.19)

This allows us to use the spectral theory developed in Section XV.3 of [51]. First
we introduce the operators

Q− =
1
2πi

∫ −α+i∞

−α−i∞
λ−2(λ −A)−1 dλ,

Q+ =
−1
2πi

∫ α+i∞

α−i∞
λ−2(λ−A)−1 dλ.
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Here 0 < α < h, and hence (5.19) implies that Q− and Q+ are well-defined
bounded linear operators on X . It can be proved that these operators do not
depend on the particular choice of α; nevertheless, in what follows we keep α
fixed. (Notice that in Section XV.3 of [51] the operators Q− and Q+ are denoted
by S− and S+, respectively.) We define

M− = ImQ−, M+ = ImQ+.

Put T = A−1. Then T is a bounded linear operator onX commuting with (λ−A)−1

for each λ in the strip |�λ| ≤ h. It follows that T commutes with Q− and Q+.
Since T is bounded, this implies that TM− ⊂ M− and TM+ ⊂M+. We also know
that ImT = D(A), and thus TM− and TM+ belong to D(A). This allows us to
define operators A−(M− →M−) and A+(M+ →M+) by setting

D(A−) = TM−, A−x = Ax, x ∈ D(A−),
D(A+) = TM+, A+x = Ax, x ∈ D(A+).

In other words,
A− =

(
T |M−

)−1
, A+ =

(
T |M+

)−1
.

The first part of Lemma XV.3.3 in [51] shows that A− and A+ are closed and
densely defined linear operators, and their spectra satisfy the inclusion relations

σ(A−) ⊂ {λ ∈ C | �λ ≤ −h},
σ(A+) ⊂ {λ ∈ C | �λ ≥ h}.

We shall now prove that

(λ−A−)−1x =
∫ ∞
0

e−λtE(t)xdt, x ∈ M−, Reλ > −h, (5.20)

(λ −A+)−1x =
∫ 0

−∞
e−λtE(t)xdt, x ∈ M+, Reλ < h. (5.21)

Following Section XV.3, page 330, of [51], we introduce two auxiliary sets N−
and N+. By definition N− is the set of all vectors x ∈ X for which there exists an
X-valued function ϕ−x , bounded and analytic on �λ > −h, which takes its values
in D(A) and satisfies

(λ−A)ϕ−x (λ) = x, �λ > −h.

Roughly speaking, N− consists of all vectors x ∈ X such that (λ − A)−1x has a
bounded analytic continuation to the open half plane �λ > −h. The function ϕ−x
(assuming it exists) is uniquely determined by x. Analogously, we let N+ be the
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set of all vectors x ∈ X for which there exists an X-valued function ϕ+x , bounded
and analytic on �λ < h, which takes its values in D(A) and satisfies

(λ−A)ϕ+x (λ) = x, �λ < h.

Also ϕ+x is unique, provided it exists. Obviously, the sets N− and N+ are (possibly
non-closed) linear manifolds of X .

The second part of Lemma XV.3.3 in [51] states that D(A2
−) ⊂ N− and

D(A2
+) ⊂ N+. Now, fix x ∈ D(A2−). Then x ∈ N−, and hence (λ−A)−1x extends

to a bounded analytic function on �λ > −h. Notice that Ψ+(λ) is also bounded
and analytic on �λ > −h. Recall that Ψ−(λ) is equal to (λ − A)−1 − Ψ+(λ) for
each λ in the strip |�λ| < ω. It follows that Ψ−(λ)x extends to a bounded analytic
function on �λ > −h. On the other hand Ψ−(λ)x is analytic on �λ < −ω and
bounded on �λ ≤ h. Hence Ψ−(λ)x determines a bounded entire function. From
the estimate given for ‖Ψ−(λ)‖ in the previous part, it is clear that

lim
λ∈R, λ→−∞

Ψ−(λ)x = 0.

But then we can use Liouville’s theorem to show that Ψ−(λ)x vanishes identically.
We conclude that ∫ 0

−∞
e−λtE(t)xdt = 0, �λ < −ω.

Since E(t)x is continuous on −∞ < t < 0, it follows that E(t)x = 0 for all negative
real numbers t.

Now recall that T |M− is one-to-one and that A− =
(
T |M−

)−1 is densely
defined. This implies that

D(A2
−) = Im

(
T |M−

)2
,

and that D(A2
−) is dense in M−. Thus the result of the previous paragraph shows

that E(t) vanishes on M− for −∞ < t < 0. For x ∈ M− and |�λ| < h, we have

(λ−A)−1x = −(I − λT )−1Tx = − (I − λ(T |M−)
)−1 (T |M−)x = (λ−A−)−1x.

Hence, for x ∈M− and |�λ| < h,

(λ−A−)−1x = (λ −A)−1x =
∫ ∞
−∞

e−λtE(t)xdt =
∫ ∞
0

e−λtE(t)xdt.

By analytic continuation this proves (5.20). Formula (5.21) is proved in a similar
manner.
Part 3. In this part we complete the proof. First we show that for t > 0 the
operator E(t) maps M− into M−. To see this, take x ∈ M−, and let f be a
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continuous linear functional on X annihilating M−. Then f
(
(λ−A−)−1x

)
= 0 for

�λ > −h, and thus (5.20) yields∫ ∞
0

e−λtf
(
E(t)x

)
dt = 0, �λ > −h.

This implies that f
(
E(t)x

)
= 0 for t > 0, and so, by the Hahn-Banach theorem,

E(t)x ∈M− for t > 0. Thus E(t)M− ⊂ M− for t > 0.
The result of the previous paragraph enables us to define an operator-valued

function E− : (0, ∞) → L(M−) by stipulating that E−(t) = E(t)|M− . Our
assumptions on the behavior of E near the origin (together with the Banach-
Steinhaus theorem) imply that E− can be extended to a strongly continuous func-
tion, defined on 0 ≤ t <∞, by putting

E−(0)x = lim
t↓0

E(t)x, x ∈ M−.

The identity (5.20) can now be written as

(λ−A−)−1x =
∫ ∞
0

e−λtE−(t) dt, x ∈ M−, �λ > −h.

Since A−(M− → M−) is closed and densely defined, it follows from Theorem 5.3
that E− is a strongly continuous right semigroup, and that A− is its infinitesimal
generator.

In the same way one proves that E(t)M+ ⊂ M+ for t < 0, and we define
E+ : (−∞, 0]→ L(M+) by setting

E+(t) = −E(t)|M+ , E+(0)x = lim
t↑0
−E(t)x, x ∈M+.

Then the analogue of Theorem 5.3 for left semigroups shows that E+ is a strongly
continuous left semigroup which has A+(M+ →M+) as its generator.

Next, consider the operator P on X defined by

Px = lim
t↑0
−E(t)x, x ∈ X.

By the Banach-Steinhaus theorem, P is a bounded linear operator on X . For t < 0
we have that E(t) vanishes on M−, and so Px = 0 for each x ∈M−. For x ∈M+

and t < 0 we have E(t)x = −E+(t)x, and thus Px = x. These properties of P
imply that

M− ∩ M+ = {0} and M− + M+ is closed. (5.22)

The first part of (5.22) is obvious. To prove the second part, let x1, x2, . . . be a
sequence in M−, let y1, y2, . . . be a sequence in M+, and assume that xn + yn → z
for n → ∞. It suffices to show that z ∈ M− + M+. Since P is continuous on X
and P is zero on M−, we have

Pz = lim
n→∞P (xn + yn) = lim

n→∞Pyn.
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But Pyn = yn ∈ M+ and M+ is closed. Thus Pz ∈ M+. Moreover, yn = Pyn

converges to Pz if n →∞. Thus xn = (xn+yn)−yn converges to z−Pz if n →∞.
Also, M− is closed. We conclude that z − Pz ∈ M−, and hence z = z − Pz + Pz
belongs to M− +M+. So M− +M+ is closed.

Finally, the first part of the proof of Theorem XV.3.1 in [51] shows that
M− + M+ is dense in X . We conclude that X = M−+̇M+, and that P is the
projection of X along M− onto M+. Recall that D(A) = ImT , where T = A−1.
It follows that

D(A) = TX = T (M−+̇ M+) = TM−+̇ TM+ = D(A−)+̇D(A+).

Hence P maps D(A) into itself, and P commutes with A. Thus relative to the
decompositions

X = M−+̇ M+, D(A) = D(A−) +̇ D(A+),

the operator A admits the partitioning

A =

[
A− 0

0 A+

]
.

Therefore A is an exponentially dichotomous operator, P is the separating pro-
jection for A, and E(·) = E(· ;A). �

5.3 Realization triples

In this section we introduce the realizations that will be used to obtain represen-
tations of the type (5.3). We begin with some additional notation.

By Dm
1 (R) we denote the linear submanifold of Lm

1 (R) = L1(R, Cm) consist-
ing of all f ∈ Lm

1 (R) for which there exists g ∈ Lm
1 (R) such that

f(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ t

−∞
g(s) ds, a.e. on (−∞, 0),

∫ ∞
t

g(s) ds, a.e. on (0,∞).

(5.23)

If f ∈ Dm
1 (R), then there is only one g ∈ Lm

1 (R) such that (5.23) holds. This
g is called the derivative of f and is denoted by f ′. From (5.23) it follows that
f(0+) = limt↓0 f(t) and f(0−) = limt↑0 f(t) exist; in fact,

f(0+) =
∫ ∞
0

g(s) ds, f(0−) =
∫ 0

−∞
g(s) ds.

Let ω be a negative constant. A triple Θ = (A, B, C) of operators is called a
realization triple of exponential type ω if the following conditions are satisfied:
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(C1) −iA is an exponentially dichotomous operator of exponential type ω with
domain D(A) and range in a Banach space X ;

(C2) B : Cm → X is a linear operator;

(C3) C is a possibly unbounded operator with domain D(C) in X and range in
Cm such that D(A) ⊂ D(C) and C is A-bounded;

(C4) there exists a linear operator ΛΘ from X into Lm
1 (R) such that

(i) sup
‖x‖≤1

∫ ∞
−∞

e−ω|t|‖(ΛΘx)(t)‖ dt <∞,

(ii) for every x ∈ D(A) we have (ΛΘx)(t) = iCE(t;−iA)x, t ∈ R, and the
function ΛΘx belongs to Dm

1 (R).

In (ii), the function E(t;−iA) is the bisemigroup generated by −iA. Note that B,
being a linear operator from Cm into X , is automatically bounded. Observe also
that (i) implies that ΛΘ is bounded and maps X into Lm

1,ω(R) where

Lm
1,ω(R) =

{
f ∈ Lm

1 (R) | e−ω|·|f(·) ∈ Lm
1 (R)

}
. (5.24)

Taking into account (ii) and the fact that D(A) is dense in X , one sees that ΛΘ
is uniquely determined. Since ω is negative, Lm

1,ω(R) given by (5.24) is a linear
manifold in Dm

1 (R).
The space X is called the state space and the space Cm the input/output

space of the triple. We shall refer to A as the main operator of the triple.
Suppose Θ is a realization triple of exponential type ω and ω ≤ ω1 < 0. Then

Θ is a realization triple of exponential type ω1 too. To see this, note that (i) and
(ii) are fulfilled with ω replaced by ω1. When the actual value of ω is not relevant,
we simply call Θ a realization triple. Thus Θ = (A, B, C) is a realization triple if Θ
is a realization triple of exponential type ω for some ω < 0. The operator ΛΘ does
not depend on the value of ω, and the same is true with regard to the separating
projection for −iA. This projection will be denoted by PΘ, although it is defined
in terms of A alone.

The case when C is a bounded linear operator from X into Cm is of special
interest. In that case C is obviously A-bounded, and (C4) is fulfilled with ΛΘx =
iCE(·,−iA)x for each x ∈ X . Thus when C is bounded, then conditions (C3) and
(C4) are automatically satisfied.

Let Θ = (A, B, C) be a realization triple with state space X . Notice that
item (i) in (C4) implies that ΛΘ : X → Lm

1 (R) is a bounded linear operator. Since
(ii) prescribes ΛΘ on D(A), the boundedness of ΛΘ and the density of D(A) in X
imply that ΛΘ is uniquely determined by the operators A and C. The operator
ΛΘ plays the role of the observability operator in systems theory. For its dual
analogue (the controllability operator) we refer to the following proposition.
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Proposition 5.4. Suppose Θ = (A, B, C) is a realization triple of exponential type
ω < 0, and let ΓΘ : Lm

1 (R)→ X be defined by

ΓΘϕ =
∫ ∞
−∞

E(−t;−iA)Bϕ(t) dt, ϕ ∈ Lm
1 (R). (5.25)

Then ΓΘ is a bounded linear operator, and ΓΘ maps Dm
1 (R) into D(A).

Proof. The operator function E(· ;−iA) is strongly continuous. Now recall the fol-
lowing well-known fact: if a sequence of operators converges in the strong operator
topology, then the convergence is uniform on compact subsets of the underlying
space. Because of the finite dimensionality of Cm, the operator B is of finite rank,
hence compact. It follows that the function E(· ;−iA)B is continuous on R \ {0}
with a possible jump at the origin where continuity is taken with respect the oper-
ator norm. It follows that the integral in (5.25) is well-defined for each ϕ ∈ Lm

1 (R),
and that ΓΘ is a bounded linear operator.

Now fix ϕ ∈ Dm
1 (R). For simplicity we restrict ourselves to the case when

ϕ vanishes almost everywhere on (−∞, 0). By our assumption on ϕ there exists
ψ ∈ Lm

1 (R) such that

ϕ(t) = −
∫ ∞

t

ψ(s) ds, t > 0.

But then

ΓΘϕ = −
∫ ∞
0

E(−t;−iA)B
(∫ ∞

t

ψ(s) ds
)

dt

= −
∫ ∞
0

(∫ ∞
t

E(−t;−iA)Bψ(s) ds
)

dt

= −
∫ ∞
0

(∫ s

0

E(−t;−iA)Bψ(s) dt
)

ds.

The last equality follows by applying Fubini’s theorem. Since A is exponentially
dichotomous, zero belongs to the resolvent set of A. So it makes sense to consider
the operator iE(−t;−iA)A−1B. This function is differentiable on [0,∞), and its
derivative is the continuous operator-valued function −E(−t;−iA)B. Here differ-
entiation and continuity are taken with respect to the operator norm which we
can use because of the compactness of B. Thus

−
∫ s

0

E(−t;−iA)B dt = iE(−s;−iA)A−1B − iPΘA−1B,

where PΘ is the separating projection of −iA. Hence

ΓΘϕ =
∫ ∞
0

(
iE(−s;−iA)A−1B − iPΘA−1B

)
ψ(s) ds

= A−1
( ∫ ∞

0

(
iE(−s;−iA)B − iPΘB

)
ψ(s) ds

)
.
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This shows that ΓΘϕ belongs to ImA−1 = D(A). �
Let Θ = (A, B, C) be a realization triple of exponential type ω < 0 and

having input/output space Cm. With Θ we associate two m×m matrix functions.
These functions will be denoted by kΘ and WΘ, and they are called the kernel
function associated with Θ and the transfer function of Θ, respectively. The first
of these is defined as follows. For every u in Cm, we have that ΛΘBu belongs to
Lm
1,ω(R). Thus the expression

kΘ(.)u =
(
ΛΘBu

)
(.), u ∈ Cm, (5.26)

determines a unique element kΘ of Lm×m
1,ω (R), that is each column of kΘ belongs

to Lm
1,ω(R). In fact kΘ(.)u ∈ Lm

1,ω(R) ⊂ Dm
1 (R) ⊂ Lm

1 (R) for each u ∈ Cm.
Next let us turn to WΘ. This function is given by

WΘ(λ) = I + C(λ−A)−1B, |�λ| < −ω. (5.27)

To see that WΘ is well-defined, fix λ in the resolvent set ρ(A) of A. Since the
operator (λ−A)−1 maps X into the domain D(A) of A, and D(A) is contained in
the domain of C, the product C(λ−A)−1 is well-defined. Hence C(λ−A)−1B is
a well-defined linear transformation on Cn. The fact that −iA is an exponentially
dichotomous operator of exponential type ω implies that |�λ| < −ω is contained
in ρ(−iA), and thus |�λ| < −ω is contained in ρ(A). We conclude that WΘ is a
well-defined analytic m×m matrix function on |�λ| < −ω.

The next proposition explains the relation between the two functions WΘ

and kΘ.

Proposition 5.5. Suppose Θ = (A, B, C) is a realization triple of exponential type
ω < 0. Then

WΘ(λ) = I −
∫ ∞
−∞

eiλtkΘ(t) dt, |�λ| < −ω. (5.28)

Proof. It suffices to show that for x ∈ X and |�λ| < −ω we have

C(λ −A)−1x = −
∫ ∞
−∞

eiλt(ΛΘx)(t) dt, (5.29)

that is, −C(λ−A)−1x is equal to the Fourier transform (̂ΛΘx)(λ) of ΛΘx. In what
follows λ is fixed subject to |�λ| < −ω.

We already know that C(λ − A)−1 is a well-defined map from X into Cm.
Obviously, this map is linear. To show that it is also bounded, take x ∈ X . Using
the fact that C is A-bounded, there exists a constant M such that

‖C(λ−A)−1x‖ ≤ M
(‖(λ−A)−1x‖+ ‖A(λ−A)−1x‖).

Now A(λ−A)−1x = −x+ λ(λ −A)−1x. Thus

‖C(λ−A)−1x‖ ≤ M
(‖(λ−A)−1‖+ 1 + |λ|‖(λ−A)−1‖)‖x‖.
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It follows that C(λ−A)−1 is a bounded linear operator from X into Cm.
Now consider the map x �→ (̂ΛΘx)(λ) from X into Cm. This map is linear

and bounded too. Linearity is obvious. Boundedness follows from the estimate

‖(̂ΛΘx)(λ)‖ ≤
∫ ∞
−∞

e−ω|t|‖ΛΘx(t)‖ dt,

together with condition (i) in the definition of a realization triple.
We have now shown that, for λ fixed, both sides of (5.29) are continuous in

x. Hence it suffices to prove (5.29) for x ∈ D(A) because of D(A) = X .
Take x ∈ D(A), and put y = Ax. Since −iA is an exponentially dichotomous

operator of exponential type ω, we use (5.9) for −iA in place of A and −iλ in
place of λ to show that

(λ−A)−1y = −i

∫ ∞
−∞

eiλtE(t;−iA)y dt. (5.30)

Recall that CA−1 is a bounded linear operator. It follows that

C(λ −A)−1x = CA−1(λ−A)−1y

= −i

∫ ∞
−∞

eiλtCA−1E(t;−iA)y dt

= −i

∫ ∞
−∞

eiλtCE(t;−iA)xdt

= −i

∫ ∞
−∞

eiλt(ΛΘx)(t) dt,

the latter equality holding by virtue of condition (ii) in the definition of a realiza-
tion triple. Thus (5.29) is proved. �

From (5.29) it follows that C(λ−A)−1 is analytic on |�λ| < −ω. This result
can also be proved directly using that C is A-bounded. In fact, employing the
C-boundedness of A one can show that the function λ �→ C(λ − A)−1 is analytic
on the resolvent set ρ(A).

5.4 Construction of realization triples

In this section we construct a representation of the form (5.3) for the m × m
matrix-valued function W in (5.1) with the kernel function k being given by (5.2).
The following theorem is the main result.

Theorem 5.6. An m×m matrix function W is the transfer function of a realization
triple if and only if W is of the form

W (λ) = I −
∫ ∞

−∞
eiλtk(t) dt, (5.31)



92 Chapter 5. Factorization of matrix functions analytic in a strip

where k is an m×m matrix function with the property that there exist ω < 0 and
h ∈ Lm×m

1 (R) such that
k(t) = eω|t|h(t). (5.32)

If W is given by (5.31) and (5.32) for some ω < 0 and h ∈ Lm×m
1 (R), then

W = WΘ with Θ = (A, B, C) constructed in the following way: the state space X
of Θ is Lm

1 (R), the input/output space is Cm,

D(A) = D(C) = Dm
1 (R),

(Af)(t) =

{ −iωf(t) + if ′(t), a.e. on −∞ < t < 0,

iωf(t) + if ′(t), a.e. on 0 < t < ∞,

(By)(t) = e−ω|t|k(t)y, a.e. on R,

Cf = i

∫ ∞
−∞

f ′(s) ds.

Proof. Let Θ be a realization triple, and let W = WΘ be its transfer function.
Then, by Proposition 5.5 in the preceding section, (5.31) holds with k = kΘ.
Using the fact that the second operator in a realization triple is bounded, we see
from (i) in the definition of a realization triple that

sup
‖y‖≤1

∫ ∞
−∞

e−ω|t|‖kΘ(t)y‖ dt < ∞,

for some ω < 0. Hence k = kΘ satisfies (5.32). This proves the “if part” of the
theorem.

Next, let W be given by (5.31) and (5.32) for some ω < 0 and h ∈ Lm×m
1 (R),

and let Θ = (A, B, C) be the triple of operators defined in the second part of the
theorem. We need to show that this triple is a realization triple and that W = WΘ.

As is well-known (cf., [51], page 420), the backward translation semigroup
on Lm

1 [0,∞) is strongly continuous. The infinitesimal generator of this semigroup
has Dm

1 [0,∞) as its domain and its action amounts to taking the derivative. Here
Dm
1 [0,∞) is the linear manifold consisting of all functions f ∈ Dm

1 (R) with the
property that f(t) = 0 for t < 0, and hence the derivative f ′ is well-defined for
each f ∈ Dm

1 [0,∞). Using this, one sees that −iA an exponentially dichotomous
operator of exponential type ω and that the bisemigroup associated with −iA acts
as follows: for t < 0,

(
E(t;−iA)f

)
(s) =

{ −e−ωtf(t+ s), a.e. on −∞ < s < 0,

0, a.e. on 0 < s <∞,

and for t > 0,

(
E(t;−iA)f

)
(s) =

{
0, a.e. on −∞ < s < 0,

eωtf(t+ s), a.e. on 0 < s < ∞.
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The separating projection for −iA is the projection of the state space X = Lm
1 (R)

onto Lm
1 (−∞, 0] along Lm

1 [0,∞).
Condition (5.32) on k implies that the operator B from Cm into Lm

1 (R) is
bounded. From the definition of C and A we see that

‖Cf‖ ≤ −ω‖f‖+ ‖Af‖, f ∈ D(A).
Thus C is A-bounded.

Define Λ : X → Lm
1 (R) by

(Λf)(t) = eω|t|f(t), a.e. on R. (5.33)

Then Λ satisfies the conditions (i) and (ii) in the definition of a realization triple
with Λ in place of ΛΘ. For (i) this is obvious. To check the first part of (ii), one
uses the above description of the bisemigroup E(t;−iA) and the definition of C.
As to the second part of (ii), observe that f ∈ Dm

1 (R) and ω < 0 imply that the
function eωtf(t) belongs to Dm

1 (R) too.
We have now proved that Θ = (A, B, C) is a realization triple We claim that

the kernel function kΘ associated with Θ coincides with k. Indeed, for y ∈ Cm the
following identities hold almost everywhere on R:

kΘ(t)y = (ΛBy)(t) = (eω|t|By)(t) = k(t)y.

Since Cm has a finite basis, it follows that kΘ(t) = k(t) almost everywhere on R.
In other words, kΘ and k coincide as elements of Lm×m

1 (R). �

5.5 Inverting matrix functions analytic in a strip

Let Θ = (A, B, C) be a realization triple with state space X . In this section we
shall employ the operator A×(X → X). Here is the definition: the domain of A×

is equal to the domain of A, and its action is defined by A× = A−BC. We call A×

the associate main operator of the triple Θ. As one may expect from Section 2.4,
the operator A× plays an important role in inverting WΘ(λ). In fact, we have the
following theorem.

Theorem 5.7. Let the m×m matrix function W be given by

W (λ) = I + C(λ−A)−1B,

with Θ = (A, B, C) being a realization triple. Let A× be the associate main operator
of Θ. Then W (λ) is invertible for each λ ∈ R if and only if the spectrum of A×

does not intersect the real line. In that case (A×, B,−C) is a realization triple,
and

W (λ)−1 = I − C(λ −A×)−1B, λ ∈ R, (5.34)

W (λ)C(λ −A×)−1 = C(λ −A)−1, λ ∈ R, (5.35)

(λ−A×)−1BW (λ) = (λ−A)−1B, λ ∈ R, (5.36)

(λ−A×)−1 = (λ−A)−1 − (λ−A)−1BW (λ)−1C(λ −A)−1, λ ∈ R. (5.37)
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Proof. We split the proof into four parts. In the first part we show that W (λ) is
invertible for each λ ∈ R if and only if the spectrum of A× does not intersect the
real line, and we derive the expressions (5.34) – (5.37). The remaining three parts
are concerned with the statement that (A×, B,−C) is a realization triple.
Part 1. Suppose A× has no spectrum on the real line. This condition means that
for each real λ the linear operator λ − A× maps D(A×) = D(A) in a one-one
way onto X, and hence the linear operator I − C(λ − A×)−1B acting on Cm is
well-defined. We claim that it is the inverse of W (λ). To see this we first prove
(5.35). From BCx = (A−A×)x for each x ∈ D(A), it follows that

BC(λ −A)−1 = (A−A×)(λ−A)−1.

Using the latter identity and fixing λ ∈ R, we obtain the equality (5.35) from the
following calculation:

W (λ)C(λ −A×)−1 = C(λ −A×)−1 + C(λ−A)−1BC(λ −A)−1

= C(λ −A×)−1 + C(λ−A)−1(A−A×)(λ −A)−1

= C(λ −A×)−1 + C(λ−A)−1
(
(A− λ) + (λ−A×)

)
(λ−A)−1

= C(λ −A)−1.

From (5.35) we obtain that

W (λ)
(
I − C(λ −A×)−1B

)
= W (λ)− C(λ −A)−1 = I, λ ∈ R.

Hence W (λ) is invertible for each λ ∈ R.
Next assume W (λ) is invertible for each λ ∈ R. We claim that A× has no

spectrum on the real line and that (5.37) holds. To prove this, fix λ ∈ R and
let R(λ) be the operator on X defined by the right-hand side of (5.37). Since
(λ−A×)(λ−A)−1 = I +BC(λ −A)−1, we have

(λ−A×)R(λ) = I +BC(λ −A)−1

+
(− I −BC(λ −A)−1

)
BW (λ)−1C(λ−A)−1

= I +BC(λ −A)−1

+B
(− I − C(λ −A)−1B

)
W (λ)−1C(λ−A)−1

= I +BC(λ −A)−1 −BC(λ− A)−1,

and so (λ − A×)R(λ) = I. Thus to prove (5.37) it remains to show that λ − A×

is one-to-one.
Let x ∈ D(A×) = D(A) and suppose (λ−A×)x = 0. Since A×x = Ax−BCx,

we have (λ−A)−1BCx = −x, and hence

W (λ)Cx = Cx+ C(λ −A)−1BCx = Cx− Cx = 0.
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By assumptionW (λ) is invertible. Therefore Cx = 0 and, consequently, (λ−A)x =
(λ−A×)x = 0. Now use the fact that A has no spectrum on the real line. It follows
that x = 0, and hence λ−A× is one-to-one.

Note that in passing we established (5.34), (5.35) and (5.37). The argument
for (5.36) is analogous to that for (5.35).
In the remaining three parts it is assumed that A× has no spectrum on the real
line, or equivalently, that W (λ) is invertible for each λ ∈ R.
Part 2. We show that A× is closed and that C is A×-bounded. Applying (5.37)
with λ = 0 we see that

(A×)−1 = A−1 +A−1BW (0)−1CA−1. (5.38)

Since C is A-bounded, the operator CA−1 is bounded. Thus in the right-hand side
of (5.38) the operators B, A−1 and CA−1 are all bounded. It follows that (A×)−1

is bounded too. Hence A× is a closed operator. Recall that the operators A−1 and
(A×)−1 map X into D(A) = D(A×). Since the latter space is contained in D(C),
we can apply C to both sides of (5.38). This yields

C(A×)−1 = CA−1 + CA−1BW (0)−1CA−1.

But CA−1 is bounded. Hence C(A×)−1 is bounded, which implies that C is A×-
bounded.
Part 3. In this part we show that −iA× is exponentially dichotomous. To do this
we apply Theorem 5.2. First some preparations. Recall that

W (λ) = I −
∫ ∞
−∞

eiλtkΘ(t) dt, λ ∈ R,

with kΘ belonging to the space eω|·|Lm×m
1 (R). By the matrix-valued version of

Wiener’s theorem (see, e.g., [52], page 830), the fact that W (λ) is invertible for
each λ ∈ R implies that

W (λ)−1 = I −
∫ ∞
−∞

eiλtk×(t) dt, λ ∈ R, (5.39)

for some k× ∈ Lm×m
1 (R). In fact (see [47], Section 18), taking |ω| smaller if nec-

essary we may assume that k× also belongs to eω|·|Lm×m
1 (R). Next note that for

each x ∈ X and each y ∈ Cm,

C(λ−A)−1x = −i

∫ ∞
−∞

eiλt(ΛΘx)(t) dt, λ ∈ R,

(λ−A)−1x = −i

∫ ∞
−∞

eiλtE(t;−iA)xdt, λ ∈ R,

(λ−A)−1By = −i

∫ ∞
−∞

eiλtE(t;−iA)By dt, λ ∈ R;
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cf., (5.29) and (5.30). Using these formulas in (5.37), and taking inverse Fourier
transforms, we see that

(λ−A×)−1x = −i

∫ ∞
−∞

eiλt
(
E(t;−iA) + E1(t) + E2(t)

)
xdt, λ ∈ R,

where for each x ∈ X we have

E1(t)x = i

∫ ∞
−∞

E(t− s;−iA)B(ΛΘx)(s) ds, (5.40)

E2(t)x = −i

∫ ∞
−∞

E(t− s;−iA)B
(∫ ∞

−∞
k×(s− r)(ΛΘx)(r) dr

)
ds. (5.41)

Recall that the function E(· ;−iA)B is exponentially decaying, that k× belongs to
eω|·|Lm×m

1 (R), and that for each x ∈ X the function ΛΘx belongs to eω|·|Lm
1 (R).

These facts imply that E1 and E2 are exponentially decaying too. Moreover, a
routine argument shows that these functions are strongly continuous, that is, for
each x ∈ X the functions E1(·)x and E2(·)x are continuous in the norm of X .
We conclude that the function E(· ;−iA) +E1(·) +E2(·) is exponential decaying,
strongly continuous on R \ {0}, and that at zero it has (at worst) a jump dis-
continuity. But then we can apply Theorem 5.2 with A replaced by −iA× and λ
replaced by −iλ to show that −iA× is exponentially dichotomous. Furthermore,
the bisemigroup generated by −iA× is given by

E(· ;−iA×) = E(· ;−iA) + E1(·) + E2(·), (5.42)

where E(· ;−iA) is the bisemigroup generated by −iA, and the functions E1(·)
and E2(·) are given by (5.40) and (5.41), respectively.
Part 4. In this part we complete the proof and show Θ× = (A×, B,−C) is a
realization triple. The negative constant ω having been taken sufficiently close to
zero, one has that Θ is of exponential type ω and k× belongs to eω|·|Lm×m

1 (R). A
standard reasoning now shows that the convolution product k× ∗ (ΛΘx

)
, given by

(
k× ∗ (ΛΘx)

)
(t) =

∫ ∞
−∞

k×(t− s)(ΛΘx)(s) ds, a.e. on R,

determines a bounded linear operator from X into Lm
1 (R) such that

sup
‖x‖≤1

∫ ∞
−∞

e−ω|t|‖k× ∗ (ΛΘx)(t)‖ dt <∞.

But then the expression

Λ×x = −ΛΘx+
(
k× ∗ (ΛΘx)

)
(5.43)

defines a bounded linear operator Λ× : X → Lm
1 (R) for which condition (i) in the

definition of a realization triple (Section 5.3), with ΛΘ replaced by Λ×, is satisfied.
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Next, take x ∈ X , and consider the Fourier transform of Λ×x. Using formula
(5.43) we see that for each λ ∈ R we have

(̂Λ×x)λ = −(̂ΛΘx)(λ) + k̂×(λ)(̂ΛΘx)(λ)

=
(
I − k̂×(λ)

)
(̂ΛΘx)(λ)

= −W (λ)−1C(λ−A)−1x.

In this calculation the final equality results from (5.29) and (5.39). Next, using
(5.35) we see that

(̂Λ×x)(λ) = C(λ −A×)−1x, λ ∈ R. (5.44)

Note that this equality actually holds in a strip |�λ| < −ω containing the real
line.

Now take x ∈ D(A×) = D(A), and put z = A×x. Then C(λ − A×)−1x =
C(A×)−1(λ−A×)−1z, and the operator C(A×)−1 is bounded by the result of the
second part of the proof. Since −iA× is exponentially dichotomous, by the third
part of the proof, we can use formula (5.9), with A replaced by −iA× and by −iλ,
to show that

(̂Λ×x)(λ) = −iC(A×)−1
∫ ∞
−∞

eiλtE(t;−iA×)z dt

= −i

∫ ∞
−∞

eiλtC(A×)−1E(t;−iA×)z dt

= −i

∫ ∞
−∞

eiλtCE(t;−iA×)xdt, λ ∈ R.

Thus we have proved that (Λ×x)(t) = −iCE(t;−iA×)x almost everywhere on R.
It remains to show that Λ×x ∈ Dm

1 (R).
In view of the properties of ΛΘ and the identity (5.43), it suffices to show

that k× ∗ (ΛΘx) belongs to Dm
1 (R). Since ΛΘx = Dm

1 (R), we can consider its
derivative g, that is the function given by

(ΛΘx)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ t

−∞
g(s) ds, a.e. on (−∞, 0),

−
∫ ∞

t

g(s) ds, a.e. on (0,−∞).

Now use that

(k× ∗ f)′ = k× ∗ f ′ + k×(· )(f(0+)− f(0−)), f ∈ Dm
1 (R).
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If follows that

(
k× ∗ (ΛΘx)

)
(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ t

−∞
h(s) ds, a.e. on (−∞, 0),

−
∫ ∞

t

h(s) ds < a.e. on (0,−∞),

where h ∈ Lm
1 (R) is given by

h = k× ∗ g − k×(· )
(∫ ∞

−∞
g(s) ds

)
.

This proves that k× ∗ (ΛΘx) ∈ Dm
1 (R). Thus, with ΛΘ× = Λ×, we see that

condition (C4) in the definition of a realization triple is satisfied. �

5.6 Inverting full line convolution operators

Let L be the convolution integral operator on Lm
1 (R) defined by

(Lf)(t) =
∫ ∞
−∞

k(t− s)f(s) ds, a.e. on R. (5.45)

Here k is a kernel function of the form (5.2). As is well-known (see, e.g., Theorem
XII.1.4 in [51]), the operator I −L is invertible if and only if its symbol W , which
is the m × m matrix function defined by (5.1), has the property that W (λ) is
invertible for each λ ∈ R. Moreover we then have (I − L)−1 = I − L×, where L×

is the convolution integral operator on Lm
1 (R) given by

(L×g)(t) =
∫ ∞
−∞

k×(t− s)f(s) ds, a.e. on R, (5.46)

the kernel function k× of which is the inverse Fourier transform of
(
I −W (λ)

)−1,
that is

k̂×(λ) = I − (I − k̂(λ)
)−1

, λ ∈ R. (5.47)

Since the kernel function k in (5.45) is of the form (5.2), we know that k = kΘ
for some realization triple Θ = (A, B, C), and hence the symbol W of I −L is the
transfer function of this triple Θ. But then we can use the result of the previous
section to restate the inversion theorem for I − L in terms of Θ, and to give an
explicit formula for k× in terms of the operators A, B and C. The details are as
follows.

Theorem 5.8. Let L be the convolution integral operator on Lm
1 (R) given by (5.45),

and assume that k = kΘ, where kΘ is the kernel function associated with the
realization triple Θ = (A, B, C). Then I−L is invertible if and only if the spectrum
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of A× does not intersect the real line. In that case Θ× = (−iA×, B,−C) is a
realization triple and (I − L)−1 = I − L×, where L× is given by (5.46) with

k×(t)y = (ΛΘ×By)(t), a.e. on R, y ∈ Cm. (5.48)

Proof. Since k = kΘ, we have W = WΘ. Recall that I − L is invertible if and
only if W (λ) is invertible for each λ ∈ R. Thus Theorem 5.7 shows that I − L
is invertible if and only if the spectrum of A× does not intersect the real line.
Moreover, in that case Θ× = (−iA×, B,−C) is a realization triple and

W (λ)−1 = I − C(λ−A×)−1B, λ ∈ R.

Next we use Proposition 5.5 with Θ× in place of Θ. This yields

k̂×(λ) = I − (I − k̂(λ)
)−1 = I −W (λ)−1 =

∫ ∞
−∞

eiλtkΘ×(t) dt, λ ∈ R.

Formula (5.48) now follows by applying (5.26) to Θ× in place of Θ. �

It is interesting to write I − L as a 2× 2 operator matrix relative to the de-
composition Lm

1 (R) = Lm
1 [0,∞) +̇ Lm

1 (−∞, 0]. In particular, we will be interested
in the first row and first column of this matrix. We have

I − L =

[
I −K L+

L− ∗

]
,

with

(Kϕ)(t) =
∫ ∞
0

k(t− s)ϕ(s) ds, a.e. on [0,∞),

(L−ϕ)(t) = −
∫ ∞
0

k(t− s)ϕ(s) ds, a.e. on (−∞, 0],

(L+ψ)(t) = −
∫ 0

−∞
k(t− s)ψ(s) ds, a.e. on [0,∞).

Here ϕ belongs to Lm
1 [0,∞) and ψ to Lm

1 (−∞, 0]. The operator I − K is called
the Wiener-Hopf operator with kernel function k. The operators L+ and L− are
known as Hankel operators (see, e.g., Section XII.2 in [51]). We call L+ the right
Hankel operator associated with k, and L− will be referred to as the left Hankel
operator associated with k. Notice that L+ and L− are uniquely determined by
the restrictions of k to the half lines [0,∞) and (−∞, 0], respectively. For later
purpose we present the following lemma.

Lemma 5.9. Let Θ = (A, B, C) be a realization triple, and let kΘ be the associated
kernel function. Then the right Hankel operator L+ and left Hankel operator L−
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associated with kΘ are given by

L+ψ = −QΛΘΓΘψ, ψ ∈ Lm
1 (−∞, 0], (5.49)

L−ψ = (I −Q)ΛΘΓΘϕ, ϕ ∈ Lm
1 [0,∞, ). (5.50)

Here Q is the projection of Lm
1 (R) onto Lm

1 [0,∞) along Lm
1 (−∞, 0].

Proof. We shall prove (5.49). The proof of (5.50) is similar to that of (5.49).
Let us first establish (5.49) for the case when ImB ⊂ D(A). Then B can

be written as B = A−1B1, where B1 is a bounded linear operator from Cm into
X . Write C1 = CA−1. Then C1 : X → Cm is a bounded linear operator too. For
y ∈ Cm, we have

kΘ(t)y = iCE(t;−iA)By = iC1E(t;−iA)B1y, a.e. on R.

Since Cm has a finite basis, we may assume that kΘ on all of R \ {0} can be
represented as kΘ(t) = iC1E(t;−iA)B1. Take ψ ∈ Lm

1 (−∞, 0]. Then L+ψ belongs
to Lm

1 [0,∞) and

(L+ψ)(t) = −
∫ 0

−∞
kΘ(t− s)ψ(s) ds = −

∫ 0

−∞
iC1E(t− s;−iA)B1ψ(s) ds,

almost everywhere on [0,∞). Next we use the semigroup properties of the bisemi-
group E(·;−iA) to show that

E(t− s;−iA) = E(t;−iA)E(−s;−iA), t > 0, s < 0.

It follows that, almost everywhere on [0,∞),

(L+ψ)(t) = −iC1E(t;−iA)
∫ 0

−∞
E(−s;−iA)B1ψ(s) ds

= −iCE(t;−iA)
∫ 0

−∞
E(−s;−iA)Bψ(s) ds

= (−QΛΘΓΘψ)(t),

and (5.49) has been obtained for the case when ImB ⊂ D(A).
The general situation, where ImB need not be contained in D(A), can be

treated with an approximation argument based on the fact that B can be approx-
imated (in norm) by bounded linear operators from Cm into X with ranges inside
D(A). This is true because D(A) is dense in X and Cm is finite dimensional. �

5.7 Inverting Wiener-Hopf integral operators

In this section we study inversion of the Wiener-Hopf integral operator T :

Tf(t) = f(t)−
∫ ∞
0

k(t− s)f(s) ds, a.e. on [0,∞). (5.51)
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It will be assumed that the m × m matrix kernel function k is the kernel func-
tion associated with some realization triple. This implies that T is a well-defined
bounded linear operator on Lm

1 (R). We shall prove the following theorem.

Theorem 5.10. Let T be the Wiener-Hopf integral operator on Lm
1 (R) given by

(5.51). Assume that k = kΘ for some realization triple Θ = (A, B, C). Then T is
invertible if and only if the following two conditions are satisfied:

(i) Θ× = (A×, B,−C) is a realization triple,

(ii) X = ImPΘ +̇ KerPΘ× .

Here X is the state space of both Θ and Θ×, and PΘ and PΘ× are the separating
projections of −iA and −iA×, respectively. If (i) and (ii) hold, the inverse of T is
given by

(T−1g)(t) = g(t)−
∫ ∞
0

kΘ×(t− s)g(s) ds

−
∫ ∞
0

ΛΘ×(I −Π)E(−s,−iA×)Bg(s) ds(t), a.e. on [0,∞).

Here Π is the projection of X onto KerPΘ× along ImPΘ.

To facilitate the proof of Theorem 5.10 we first establish two lemmas. If Θ is
a realization triple with main operator A, the separating projection of the operator
−iA will be denoted by PΘ.

Lemma 5.11. Let Θ = (A, B, C) and Θ× = (A×, B,−C) be realization triples with
state space X. Then the operator

J× : ImPΘ → ImPΘ× , J×x = PΘ×x, (5.52)

is invertible if and only if X = ImPΘ +̇ KerPΘ× , and in that case

(J×)−1 = (I −Π)|ImPΘ× , Π = I − (J×)−1PΘ× , (5.53)

where Π is the projection of X along ImPΘ onto KerPΘ× .

Proof. Obviously KerJ× = ImPΘ ∩ KerPΘ× . Thus J× is one-to-one if and only
if ImPΘ ∩ KerPΘ× = {0}. Next, assume J× is surjective. Take x ∈ X . Then
PΘ×x = J×PΘz = PΘ×PΘz for some z ∈ X . This yields

x = PΘ×x+ (I − PΘ×)x

= PΘ×PΘz + (I − PΘ×)x

= PΘz + (I − PΘ×)(x− PΘz).

Hence x ∈ ImPΘ + KerPΘ× , and we conclude that ImPΘ + KerPΘ× = X . Thus
X = ImPΘ+̇KerPΘ× provided that J× is invertible. Moreover, the above calcu-
lations show that(

J×
)−1

PΘ×x = PΘz = (I −Π)x = (I −Π)PΘ×PΘz = (I −Π)PΘ×x,
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which proves the first identity in (5.53).
To complete the proof, assume X = ImPΘ +̇ KerPΘ× . Then J× is injective.

To prove that J× is surjective, take y ∈ ImPΘ× . Since PΘ×y = y and PΘ×Π = 0,
we have

y = PΘ×y = PΘ×(I −Π)y + PΘ×Πy = PΘ×(I −Π)y.

Put x = (I−Π)y. Then x ∈ ImPΘ and J×x = y. This shows that J× is surjective,
and thus J× is invertible. Moreover, we see that (J×)−1y = x = (I − Π)y, which
proves the second identity in (5.53). �

Lemma 5.12. Assume that Θ = (A, B, C) and Θ× = (A×, B,−C) are realization
triples, with Cm being the input/output space of both Θ and Θ×. Introduce the
maps

K : Lm
1 [0,∞)→ Lm

1 [0,∞),

(Kϕ)(t) =
∫ ∞
0

kΘ(t− s)ϕ(s) ds, a.e. on [0,∞),

K× : Lm
1 [0,∞)→ Lm

1 [0,∞),

(K×ϕ)(t) =
∫ ∞
0

k×Θ(t− s)ϕ(s) ds, a.e. on (−∞, 0]),

U : ImPΘ× → Lm
1 [0,∞), (Ux)(t) = (ΛΘx)(t), a.e. on [0,∞),

U× : ImPΘ → Lm
1 [0,∞), (U×x)(t) = −(ΛΘ×x)(t), a.e. on [0,∞),

R : Lm
1 [0,∞)→ ImPΘ, Rϕ =

∫ ∞
0

E(−t;−iA)Bϕ(t) dt,

R× : Lm
1 [0,∞)→ ImPΘ× , R×ϕ = −

∫ ∞
0

E(−t;−iA×)Bϕ(t) dt,

J : ImPΘ× → ImPΘ, Jx = PΘx,

J× : ImPΘ → ImPΘ× , J×x = PΘ×x.

Then all these operators are well-defined, linear and bounded. Moreover,[
I −K U

R J

]
: Lm

1 [0,∞) +̇ ImPΘ× → Lm
1 [0,∞) +̇ ImPΘ,

[
I −K× U×

R× J×

]
: Lm

1 [0,∞) +̇ ImPΘ → Lm
1 [0,∞) +̇ ImPΘ× ,
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are bounded linear operators, which are invertible, and[
I −K U

R J

]−1
=

[
I −K× U×

R× J×

]
. (5.54)

Proof. As we have seen in Section 5.6 the operators K and K× are bounded.
To see that the other operators are well-defined and bounded too it suffices to
make a few observations. Let Q be the projection of Lm

1 (R) onto Lm
1 [0,∞) along

Lm
1 (−∞, 0]. Then

U = QΛΘ|ImPΘ× , U× = −QΛΘ×|ImPΘ ,

and hence these two operators are well-defined and bounded. Next, viewing PΘ
and PΘ× as operators from X onto ImPΘ and ImPΘ× , respectively, we have

R = PΘΓΘ|Lm
1 [0,∞), R× = −PΘ×ΓΘ× |Lm

1 [0,∞).

From these identities and Proposition 5.4 it follows that R and R× are also well-
defined and bounded.

It remains to prove (5.54). This amounts to checking eight identities. Pairwise
these identities have analogous proofs. So, actually only four identities have to be
taken care of. This will be done in the remaining part of the proof which is divided
into four steps.
Step 1. First we prove that R(I − K×) + JR× = 0. Take ϕ in Lm

1 [0,∞). We
need to show that RK×ϕ = PΘR×ϕ + Rϕ. Whenever this is convenient, it may
be assumed that ϕ is a continuous function with compact support in (0,∞). By
applying Fubini’s theorem, one gets

RK×ϕ =
∫ ∞
0

(∫ ∞
0

E(−t;−iA)BkΘ×(t− s)ϕ(s) ds
)

dt

=
∫ ∞
0

(∫ ∞
0

E(−t;−iA)BkΘ×(t− s)ϕ(s) dt
)

ds.

For s > 0 and x ∈ X , consider the identity∫ ∞
0

E(−t;−iA)B(ΛΘ×x)(t− s) dt (5.55)

= E(−s;−iA)x− PΘE(−s;−iA×)x.

To prove it, we first take x ∈ D(A) = D(A×). Then, for t 	= 0 and t 	= s,

d

dt

(
E(−t;−iA)E(t− s;−iA×)x

)
= iE(−t;−iA)BCE(t− s;−iA×)x

= iE(−t;−iA)BC(A×)−1E(t− s;−iA×)A×x.
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Because C(A×)−1 is bounded, the last expression is a continuous function of t
on the intervals [0, s] and [s,∞). It follows that (5.55) holds for x ∈ D(A). The
validity of (5.55) for arbitrary x ∈ X can now be obtained by a standard approx-
imation argument based on the fact that D(A) is dense in X and the continuity
of the operators involved. Substituting (5.55) in the expression for RK×ϕ, one
immediately gets the desired identity R(I −K×) + JR× = 0.
Step 2. Next we show that RU× + JJ× = IImPΘ . Take x in ImPΘ. Then

RU×x = −
∫ ∞
0

E(−t;−iA)B(ΛΘ×x)(t) dt. (5.56)

Apart from the minus sign, the right-hand side of (5.56) is exactly the same as
the left-hand side of (5.55) for s = 0. It is easy to check that (5.55) also holds for
s = 0, provided that the right-hand side is interpreted as −PΘx+ PΘPΘ×x. Thus
RU×x = PΘ×x = x− PΘPΘ×x, and the desired identity RU× + JJ× = IImPΘ is
proved.
Step 3. This step concerns the identity (I −K)U× + UJ× = 0. Take x ∈ ImPΘ.
Then U×x = −QΛΘ×x, where Q is the projection of Lm

1 (R) onto Lm
1 [0,∞) along

Lm
1 (−∞, 0]. Here the latter two spaces are considered as subspaces of Lm

1 (R). Ob-
serve now that QΛΘ× = ΛΘ×(I − PΘ×)x. For x ∈ D(A) = D(A×) this is evident,
and for arbitrary x one can use an approximation argument. Hence KU×x = Qh,
where h = −kΘ ∗

(
ΛΘ×(I−PΘ×)x

)
, that is, h is the (full line) convolution product

of −kΘ and ΛΘ×(I − PΘ×)x. Taking Fourier transforms, one gets

ĥ(λ) = C(λ −A)−1BC(λ−A×)−1(I − PΘ×)x

= C(λ −A)−1(I − PΘ×)x− C(λ− A×)−1(I − PΘ×)x.

Put g = U×x + UPΘ×x. Since both U and U× map into ImQ = Lm
1 [0,∞), we

have g = Qg. Also g = −ΛΘ×(I − PΘ×)x + ΛΘ(I − PΘ)PΘ×x, and hence

ĝ(λ) = −C(λ− A×)−1(I − PΘ×)x − C(λ −A)−1(I − PΘ)PΘ×x.

Since x ∈ ImPΘ, it follows that ĥ(λ) − ĝ(λ) = C(λ − A)−1PΘ(I − PΘ×)x. So
ĥ(λ) − ĝ(λ) is the Fourier transform of −ΛΘPΘ(I − PΘ×)x. But then

h− g = −ΛΘPΘ(I − PΘ×)x = −(I −Q)ΛΘ(I − PΘ×)x.

Applying Q to both sides of this identity, we get Qh = Qg = g. In other words,
KU×x = U×x + PΘ×x for all x ∈ X , and this is nothing else than the identity
(I −K)U× + UJ× = 0.
Step 4. Finally, we prove (I − K)(I − K×) + UR× = I. Let L be the (full line)
convolution integral operator associated with kΘ, featured in Theorem 5.8. Since
Θ and Θ× are both realization triples, the operator I−L is invertible with inverse
(I − L)−1 = I − L×, where L× is the convolution integral operator associated
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with Θ×. With respect to the decomposition Lm
1 (R) = Lm

1 [0,∞) +̇ Lm
1 (−∞, 0),

we write I − L and its inverse in the form

I − L =

[
I −K L+

∗ ∗

]
, I − L× =

[
I −K× ∗

L×− ∗

]
. (5.57)

Thus L+ is the right Hankel operator associated with kΘ, and the operator L×− is
the left Hankel operator associated with kΘ× . But then Lemma 5.9 yields

L+ψ = −QΛΘΓΘψ, ψ ∈ Lm
1 (−∞, 0], (5.58)

L×−ϕ = (I −Q)ΛΘ×ΓΘ×ϕ, ϕ ∈ Lm
1 [0,∞). (5.59)

Since I − L× is the inverse of I − L, formula (5.57) shows that

(I −K)(I −K×) + L+L×− = I.

So, in order to get the desired identity, it suffices to show that L+L×− = UR×.
As was observed in the last paragraph of Step 2 of the present proof, (5.55)

also holds for s = 0, that is∫ ∞
0

E(−t;−iA)B(ΛΘ×x)(t) dt = PΘ(I − PΘ×)x, x ∈ X.

Analogously, one has∫ 0

−∞
E(−t;−iA)B(ΛΘ×x)(t) dt = (I − PΘ)PΘ×x, x ∈ X.

Using the expressions for L+ and L×− given in (5.58) and (5.59) we obtain

L+L×−ϕ = −QΛΘΓΘ(I −Q)ΛΘ×ΓΘ×ϕ

= −QΛΘ(I − PΘ)PΘ×ΓΘ×ϕ

= URΘϕ.

Thus (I −K)(I −K×) + UR× = I holds, and the lemma is proved. �
Following [13] (see also Section III.4 in [51]) we summarize the result of the

preceding lemma by saying that the operators I−K and J× arematricially coupled
with (5.54) being the coupling relation. The coupling relation is very useful. For
instance, this relation and Corollary III.4.3 in [51] immediately yield the following
result.

Corollary 5.13. Let the operators K, K×, U, U×, R, R×, J and J× be as in (5.54).
Then I −K is invertible if and only if J× is invertible, and in that case

(I −K)−1 = I −K× − U×(J×)−1R×, (J×)−1 = J −R(I −K)−1U. (5.60)
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Proof of Theorem 5.10. We split the proof into two parts. In the first part we show
that the invertibility of T implies that Θ× is a realization triple. In the second
part we assume that Θ× is a realization triple and complete the proof by using
Lemma 5.11 and Corollary 5.13.

Part 1. Since the kernel function k is equal to kΘ, we know from Proposition 5.5
that the symbol of T is equal to WΘ. Assume T is invertible. From the general
theory of Wiener-Hopf operators we know that this assumption implies thatWΘ(λ)
is invertible for all real λ. But then we can use the final part of Theorem 5.7 to
show that Θ× is a realization triple.

Part 2. In this part we assume that Θ× is a realization triple. From Corollary 5.13
we know that T = I−K is invertible if and only if J× is invertible. By Lemma 5.11
the latter happens if and only if condition (ii) is satisfied. Together with the result
of the first part we have now shown that T is invertible if and only if conditions
(i) and (ii) are both fulfilled. Moreover, if these conditions are fulfilled we see from
the first parts of formulas (5.60) and (5.53) that

(I −K)−1 = I −K× − U×(I −Π)R×,

where K×, R× and U× are as in Lemma 5.12, and Π is the projection of X along
ImPΘ onto KerPΘ× . Using the definitions of the operators K×, R× and U× given
in Lemma 5.12, the formula for T−1 presented in Theorem 5.10 is now clear. �

5.8 Explicit canonical factorization

In this section we use realization triples to construct a canonical factorization
for an m ×m matrix function W of the form (5.1) with k being given by (5.2).
By Theorem 5.6 such a function is the transfer function of a realization triple
Θ = (A, B, C). In what follows it is assumed that Θ is given. We present necessary
and sufficient conditions for the existence of a canonical factorization in terms of
the operators appearing in the realization triple, Also, supposing these conditions
are fulfilled, we give formulas for the factors and their inverses in a canonical
factorization of W . The main result (Theorem 5.14 below) is the natural analogue
of Theorem 5.3 for the functions considered in this section. For the definition of a
canonical factorization, see Section 1.1 (cf., also Section 3.1).

Theorem 5.14. Let the m×m matrix function W be given by

W (λ) = I + C(λ−A)−1B,

with Θ = (A, B, C) a realization triple, and let A× be the associate main operator
of Θ. Then W admits a canonical factorization with respect to the real line if and
only if the following two conditions are satisfied:

(i) Θ× = (A×, B,−C) is a realization triple,
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(ii) X = ImPΘ +̇ KerPΘ× .

Here X is the state space of both Θ and Θ×, and PΘ and PΘ× are the separating
projections of −iA and −iA×, respectively. If the conditions (i) and (ii) are satis-
fied, then the projection Π of X along ImPΘ onto KerPΘ× maps D(A) = D(A×)
into itself, and a canonical factorization W = W−W+ with respect to the real line
is given by

W (λ) = W−(λ)W+(λ), λ ∈ R,

where the factors and their inverses can be written as

W−(λ) = I + C(λ −A)−1(I −Π)B,

W+(λ) = I + CΠ(λ −A)−1B,

W−1
− (λ) = I − C(I − Π)(λ−A×)−1B,

W−1
+ (λ) = I − C(λ −A×)−1ΠB.

The projection Π maps D(A) = D(A×) into itself and D(A) ⊂ D(C). Hence
the right-hand sides of the first two of the above four expressions are well-defined
on ρ(A), and those of the last two are well-defined on ρ(A×). In particular the
formulas make sense for λ in a strip containing the real line. At first sight this
seems to be short of the requirements for Wiener-Hopf factorization. We will come
back to and resolve this point at the end of the proof.

Proof of Theorem 5.14. The proof will be divided into four parts. In the first we
show that the conditions (i) and (ii) are necessary and sufficient. In the remaining
three parts we assume that (i) and (ii) are satisfied.
Part 1. Let K be the Wiener-Hopf integral operator with kernel function kΘ. Then
the function W is the symbol of the operator I − K, and hence we know from
the general theory of Wiener-Hopf integral equations that W admits a canonical
factorization with respect to the real line if and only if T = I −K is invertible.
The first part of Theorem 5.10 implies that the latter is satisfied if and only if (i)
and (ii) are fulfilled. Thus (i) and (ii) are necessary and sufficient in order that W
admits a canonical factorization with respect to the real line.
In the remaining three parts of the proof we assume that conditions (i) and (ii)
are satisfied; Π will be the projection of X along ImPΘ onto KerPΘ× .
Part 2. In this part we show that Π maps D(A) into itself. To do this we need
the operator J× defined by (5.52). Our hypotheses imply (see Lemma 5.11) that
J× is invertible and that Π = I − (J×)−1PΘ× . Recall that PΘ× maps D(A) into
D(A) ∩ ImPΘ× . Thus in order to prove that D(A) is invariant under Π it suffices
to show that (J×)−1 maps D(A) ∩ ImPΘ× into D(A). From the relation (5.54)
and the invertibility of the operator I −K, it follows (see Corollary 5.13) that

(J×)−1 = J −R(I −K)−1U,
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where U , R and J are as in Lemma 5.12. Take x ∈ D(A) ∩ ImPΘ× . Then Ux =
QΛΘx ∈ Dm

1 [0,∞), where Q is the projection of Lm
1 (R) onto Lm

1 [0,∞) along
Lm
1 (−∞, 0]. From the general theory of Wiener-Hopf operators we know that

(I −K)−1 = (I + Γ1)(I + Γ2), (5.61)

where for j = 1, 2 the operator Γj is the integral operator given by

(Γjϕ)(t) =
∫ ∞
0

γj(t− s)ϕ(s) ds, t > 0,

with γj ∈ Lm×m
1 (R). In fact, γ1 has its support in [0,∞) and γ2 in (−∞, 0];

see Section 1.5. From the representation (5.61) it follows that (I − K)−1 maps
Dm
1 [0,∞) into itself. Note in this context that for h ∈ Lm×m

1 (R) and f ∈ Dm
1 (R),

we have h ∗ f ∈ Dm
1 (R) and

(h ∗ f)′ = h ∗ f ′ + h(·)(f(0+)− f(0−)).
Thus (I −K)−1Ux ∈ Dm

1 (R). But then the final part of Proposition 5.4 tells us
that we end up in D(A) by applying ΓΘ. We conclude that R(I −K)−1U maps
D(A) ∩ ImPΘ× into D(A). Since the separating projection PΘ maps D(A) into
itself, we know that J maps D(A) ∩ ImPΘ× also into D(A). Thus (J×)−1 maps
D(A) ∩ ImPΘ× into D(A), and hence Π maps D(A) into itself.

Amplifying on the above, we note that J× maps D(A)∩ ImPΘ in a one-to-one
way onto D(A) ∩ ImPΘ× . Since J× is invertible, it suffices to show that (J×)−1

maps D(A) ∩ ImPΘ× into D(A) ∩ ImPΘ. We have already shown that (J×)−1

maps D(A) ∩ ImPΘ× into D(A), and the inclusion (J×)−1ImPΘ× ⊂ ImPΘ is
clear from the definition of J×. Thus J× has the desired property.
Part 3. According to our hypotheses and the fact that Π maps D(A) into itself,
we have the following direct sum decompositions:

X = ImPΘ +̇ KerPΘ× , (5.62)

D(A) =
(D(A) ∩ ImPΘ

)
+̇
(D(A) ∩ KerPΘ×

)
. (5.63)

Write

A =

[
A1 Z

0 A2

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
(5.64)

for the corresponding matrix representations of A, B, and C. We now show that

Θ1 = (A1, B1, C1), Θ×1 = (A×1 , B1,−C1),

Θ2 = (A2, B2, C2), Θ×2 = (A×2 , B2,−C2),

are realization triples, and we analyze the spectral properties of their main oper-
ators. Here A×1 = A1 −B1C1 and A×2 = A2 −B2C2.
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We start with Θ1. Note that A1(ImPΘ → ImPΘ) and C1(ImPΘ → Cm)
are the restrictions of A and C to D(A) ∩ ImPΘ, respectively. Since PΘ is the
separating projection of Θ, this implies that Θ1 is a realization triple. From the
definition of A1 it follows that −iA1 is the infinitesimal generator of a strongly
continuous left semigroup of negative exponential type. Thus the kernel function
k1 = kΘ1 has its support in (−∞, 0] and

W1(λ) = I − k̂1(λ) = I + C1(λ−A1)−1

is defined and analytic on an open half plane of the type Imλ < −ω with ω strictly
negative.

Next, we consider Θ×1 . Let J× : ImPΘ → ImPΘ× be the operator defined by
(5.52).We know that J× is invertible, mappingD(A)∩ ImPΘ ontoD(A)∩ ImPΘ× .
It is easy to check that J× provides a similarity between the operator A×1 and the
restriction of A× to D(A×) ∩ ImPΘ× . Hence iA×1 is the infinitesimal generator
of a strongly continuous left semigroup of negative exponential type. But then
Theorem 5.7 guarantees that Θ×1 is a realization triple. Furthermore , the kernel
function k×1 associated with Θ×1 has its support in (−∞, 0], and

W1(λ)−1 = I − k̂×1 (λ) = I − C1(λ−A×1 )
−1B1

for all λ with Imλ < −ω. Here it is assumed that the negative constant ω has
been taken sufficiently close to zero.

We proceed by considering Θ2 and Θ×2 . Obviously Θ
×
2 is a realization triple,

and a similarity argument of the type presented above yields that the same is true
for Θ2. The operators −iA2 and −iA×2 are infinitesimal generators of strongly con-
tinuous right semigroups of negative exponential type. Hence the kernel functions
k2 and k×2 associated with Θ2 and Θ×2 , respectively, have their support in [0,∞).
Finally, taking |ω| smaller if necessary, we have that

W2(λ) = I − k̂2(λ) = I + C2(λ−A2)−1B2

and
W2(λ)−1 = I − k̂×2 (λ) = I − C2(λ−A×2 )

−1B2

are defined and analytic on Imλ > −ω.
We may assume that both Θ and Θ× are of exponential type ω. For values

of λ with |�λ| < −ω one then has

W (λ) = I + C1(λ−A1)B−11 + C2(λ−A2)−1B2

+C1(λ−A1)−1Z(λ−A2)−1B2.

Now KerP×Θ is an invariant subspace for

A× =

⎡⎣ A×1 Z −B1C2

−B2C1 A×2

⎤⎦ ,
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and so Z = B1C2. Substituting this in the above expression for W (λ), we get
W (λ) = W1(λ)W2(λ). Clearly this is a canonical Wiener-Hopf factorization.

The expressions obtained for the factors and their inverses are not quite the
same as those given in the theorem. One verifies without difficulty, however, that
for λ in the intersection of ρ(A) and ρ(A×), they amount to the same. For further
information on this point we refer again (see the proof of Theorem 3.2) to Section
2.5 in [20] where the case when all three operators A, B and C are bounded is
analyzed in great detail. �

Inspired by the terminology used in [20] (see also [11], Section 1.1), we intro-
duce some additional terminology and notation. Let Θ = (A, B, C) be a realization
triple with state space X , and let Π be a projection of X which maps D(A) into
itself. We then have

X = KerΠ +̇ ImΠ,

D(A) =
(D(A) ∩KerΠ) +̇ (D(A) ∩ ImΠ

)
,

and with respect to these decompositions the operators A, B and C have the form

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
.

The triple (A22, B2, C2) will be called the projection of Θ = (A, B, C) associated
with Π, and it is denoted by prΠ(Θ). Note that (A11, B1, C1) is the projection
prI−Π(Θ) of (A, B, C) associated with the projection I −Π. A particularly inter-
esting case for what follows is when Π is a supporting projection for Θ. This means
that besides the Π-invariance of D(A) = D(A×) the following inclusion relations
are satisfied:

A
[D(A) ∩KerΠ] ⊂ KerΠ, A×

[D(A×) ∩ ImΠ
] ⊂ ImΠ.

In that situation we have A12 = B1C2 and A21 = 0. Also Π is a supporting
projection for the realization triple Θ = (A, B, C) if and only I−Π is a supporting
projection for Θ× = (A×, B,−C). Finally, if Π is supporting for Θ, the arguments
used in Part 3 of the proof of Theorem 5.14 show that prΠ(Θ) and prI−Π(Θ) are
again realization triples.

With this notation and terminology we have the following alternative version
of Theorem 5.10.

Theorem 5.15. Let T be the Wiener-Hopf integral operator on Lm
1 (R) given by

(5.51). Assume that k = kΘ for some realization triple Θ = (A, B, C). Then T is
invertible if and only if the following two conditions are satisfied:

(i) Θ× = (A×, B,−C) is a realization triple,

(ii) X = ImPΘ +̇ KerPΘ× .
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Here X is the state space of both Θ and Θ×, and PΘ and PΘ× are the separating
projections of −iA and −iA×, respectively. If (i) and (ii) hold, then the projection
Π of X onto KerPΘ× along ImPΘ is a supporting projection for Θ, the comple-
mentary projection I −Π is a supporting projection for Θ×, and(

T−1g
)
(t) = g(t)−

∫ ∞
0

γ(t, s)g(s) ds.

Here γ is given by

γ(t, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k×+(t− s)−

∫ s

0

k×+(t− r)k×−(r − s) dr, s < t,

k×−(t− s)−
∫ t

0

k×+(t− r)k×−(r − s) dr, s > t,

where k×+ and k×− are the kernel functions associated with the realization triples
prΠ(Θ×) and prI−Π(Θ×), respectively.

5.9 The Riemann-Hilbert boundary value problem
revisited (2)

In this section we deal with the Riemann-Hilbert boundary value problem on the
real line for matrix functions W of the form

W (λ) = I −
∫ ∞
−∞

eiλtk(t) dt, (5.65)

where k is an m×m matrix-valued function with the property that for some ω < 0
the entries of e−ω|t|k(t) are Lebesgue integrable on the real line. In this case W is
analytic in a strip around the real axis. For such a function the Riemann-Hilbert
problem consists of finding pairs Φ+,Φ− of Cm-valued functions on the real line
such that

W (λ)Φ+(λ) = Φ−(λ), −∞ < λ <∞ (5.66)

while, in addition, Φ+ and Φ− are Fourier transforms of integrable Cm-valued
functions with support in [0,∞) and (−∞, 0], respectively. These requirements
imply that Φ+ and Φ− both vanish at infinity and that they are continuous on
the closed upper and closed lower half plane, respectively.

From the special form of k in (5.65) we know that W is the transfer function
of some realization triple Θ = (A, B, C). The following theorem gives the solution
of the Riemann-Hilbert problem for W in terms of the operators A, B and C
appearing in the triple.

Theorem 5.16. Let W be the transfer function of realization triple Θ = (A, B, C).
Assume Θ× = (A×, B, C) is a realization triple too (or, equivalently, that W (λ)
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is invertible for all λ ∈ R). Write PΘ and PΘ× for the separating projections
of −iA and −iA×, respectively. Then the pair of functions Φ+,Φ− is a solution
of the Riemann-Hilbert boundary value problem (5.66) if and only if there exists
x ∈ ImPΘ ∩KerPΘ× such that

Φ+(λ) = C(λ−A×)−1x =
∫ ∞
0

eiλt(Λ×Θx)(t) dt, (5.67)

Φ−(λ) = C(λ−A)−1x = −
∫ 0

−∞
eiλt(ΛΘx)(t) dt. (5.68)

Moreover the vector x is uniquely determined by the functions Φ+,Φ−.

Proof. Take x ∈ ImPΘ ∩KerPΘ× . Condition (C4) in the definition of a realization
triple implies that (Λ×Θx)(t) is zero almost everywhere on the half line −∞ < t ≤ 0,
while (ΛΘx)(t) is zero almost everywhere on 0 ≤ t < ∞. It follows that we can
apply (5.29) to both Θ and Θ× in order to show that∫ ∞

0

eiλt(Λ×Θx)(t) dt =
∫ ∞
−∞

eiλt(Λ×Θx)(t) dt = C(λ −A×)−1x,

∫ 0

∞
eiλt(ΛΘx)(t) dt =

∫ ∞
−∞

eiλt(ΛΘx)(t) dt = −C(λ−A)−1x.

Thus the functions Φ+ and Φ− in (5.67) and (5.68) are well-defined. Furthermore,
these functions are Fourier transforms of integrable Cm-valued functions with sup-
port in [0,∞) and (−∞, 0], respectively. From (5.35) we see that (5.66) is satisfied.
Thus the pair Φ+,Φ− is a solution of the Riemann-Hilbert problem.

To prove the reverse implication, assume that the pair Φ+,Φ− is a solution
of the Riemann-Hilbert problem (5.66). Write Φ+ and Φ− in the form

Φ+(λ) =
∫ ∞
0

eiλtφ+(t) dt, Φ−(λ) =
∫ 0

−∞
eiλtφ−(t) dt,

where φ+ ∈ Lm
1 [0,∞) and φ− ∈ Lm

1 (−∞, 0]. Now, let kΘ be the kernel function
associated with Θ, and consider the integral operator on Lm

1 [0,∞) defined by

(Kf)(t) =
∫ ∞
0

kΘ(t− s)f(s) ds, a.e. on [0,∞).

Using (5.66) and the fact that W (λ) = Im − k̂Θ(λ), a routine argument yields
that φ+−Kφ+ = 0. In other words, φ+ ∈ Ker (I −K). Next, we use the coupling
relation (5.54) together with Corollary 4.3 in Section III.4 of [51]. It follows that
φ+ = U×x for some x in KerJ×, where

U× : ImPΘ → Lm
1 [0,∞), (U×x)(t) = −(ΛΘ×x)(t), a.e. on [0,∞),

J× : ImPΘ → ImPΘ× , J×x = PΘ×x.
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Obviously, KerJ× = ImPΘ ∩ KerPΘ× . Thus there exists x ∈ ImPΘ ∩ KerPΘ×
such that φ+(t) = −(ΛΘ×x)(t) a.e. on the half line 0 ≤ t < ∞. But then (5.67) is
satisfied. By (5.66), the identity (5.29) applied to Θ× = (A×, B,−C), and (5.35)
we have Φ−(λ) = W (λ)Φ+(λ) = C(λ−A)−1x. Hence (5.68) holds too.

It remains to prove the uniqueness of the vector x in (5.67) and (5.68).
Assume that x′ is a second vector with the same properties as the vector x. So
x′ ∈ ImPΘ ∩KerPΘ× while (5.67) and (5.68) hold true with x′ in place of x. Let
J× and U× be as in the previous paragraph. Since KerJ× = ImPΘ ∩ KerPΘ× , we
have x− x′ ∈ KerJ×. Furthermore, the fact that the left-hand side of (5.67) does
not depend on x nor on x′ yields that (Λ×Θx)(t) = (Λ×Θx′)(t) a.e. on [0,∞). Thus
U×x = U×x′. It follows that both J×(x − x′) and U×(x − x′) are equal to zero.
If x 	= x′, this implies that the operator defined by the right-hand side of (5.54) is
not invertible, which is impossible by Lemma 5.12. We conclude that x = x′, as
desired. �

Notes

The material presented in this chapter is taken from the papers [16] and [15]. In
[16] the reader will also find a systematic treatment of realization triples (A, B, C)
with C bounded and A unbounded. The notion of an exponentially dichotomous
operator, which has been introduced in [16], has proved to be quite useful in
other areas. See, e.g., the papers [22] and [93]. The theory of realization triples
is also used in [14] and [92]. The papers [90] and [91] present an extension of the
theory of realization triples to operator-valued functions by introducing two-sided
Pritchard-Salomon realizations. In particular, the factorization theory of Section
5.8 is developed further in [91].

For more information on exponentially dichotomous operators, including var-
ious perturbation theorems and a wide variety of applications, we refer to the
monograph [111]. See also the notes to Chapter 6.





Chapter 6

Convolution equations and the
transport equation

In this chapter the factorization theory developed in the previous chapters is ap-
plied to solve a linear transport equation. It is known that the transport equation
may be transformed into a Wiener-Hopf integral equation with an operator-valued
kernel function (see [40]). An equation of the latter type can be solved explicitly
if a canonical factorization of its symbol is available (cf., Sections 1.1 and 3.2).
In our case the symbol may be represented as a transfer function, and to make
the factorization the general factorization theorem of the second chapter can be
applied. This requires that one finds an appropriate pair of invariant subspaces.
In the case of the transport equation the choice of the subspaces is evident, but
to prove that their direct sum is the whole space takes some effort. The latter is
related to a new difficulty that appears here. Namely, in this case the curve cuts
through the spectra of the main operator and the associate main operator. Nev-
ertheless, due to the special structure of the operators involved, the factorization
can be made and explicit formulas are obtained.

Since our main purpose is to show how our method works, we restrict our-
selves to the case when the kernel function describing the effect of the scattering
is of finite rank.

In Section 6.1 we describe the transport equation that is considered in this
chapter. To illustrate our approach we first study (in Section 6.2) a simplified
model, namely when the scattering appears only in a finite number of directions.
In Section 6.3 the vector-valued Wiener-Hopf equation associated to the transport
equation is introduced. In Section 6.4 it is shown that under appropriate condi-
tions a canonical factorization of the symbol associated with the equation can be
constructed, and the matching of corresponding invariant subspaces is established
in Section 6.5. In Section 6.6, the final section of the chapter, we present formulas
for the solution.
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6.1 The transport equation

Transport theory is a branch of mathematical physics concerned with the mathe-
matical analysis of equations that describe the migration of particles in a medium,
for instance, a flow of electrons through a metal strip or radiative transfer in a
stellar atmosphere.

For the plane symmetric case, a stationary transport problem through a
homogeneous medium can be modelled by an integro-differential equation of the
following form:

μ
∂ψ(t, μ)

∂t
+ ψ(t, μ) =

∫ 1

−1
k(μ, μ′)ψ(t, μ′) dμ′, t ≥ 0. (6.1)

This equation is a balance equation. The unknown function ψ is a density function
related to the expected number of particles in an infinitesimal volume element. The
right-hand side describes the effect of the collisions. The variable μ is equal to cosα
where α is the scattering angle, and therefore −1 ≤ μ ≤ 1. The variable t is not a
time variable but a position variable, sometimes referred to as the optical depth.
The kernel function k in the right-hand side of (6.1), which is called the scattering
function, is assumed to be a real symmetric L1-function on [−1, 1]× [−1, 1].

We shall consider the so-called half range problem, that is, we assume the
medium to be semi-infinite, and hence the position variable runs over the interval
0 ≤ t < ∞. Since the density of the incoming particles is known, the values of
ψ(0, μ) are known for 0 < μ ≤ 1. Thus the above equation will be considered
together with the boundary condition

ψ(0, μ) = f+(μ), 0 < μ ≤ 1, (6.2)

where f+ is a given function on (0,1]. In the sequel we shall consider f+ as a
function on [−1, 1] by setting f+(μ) = 0 for −1 ≤ μ < 0, and we assume that
f+ ∈ L2[−1, 1].

There is also a boundary condition at infinity, which appears in different
forms. Here we take the condition at infinity to be

lim
t→∞ψ(t, μ) exp

(
t

μ

)
= 0, −1 ≤ μ < 0. (6.3)

Thus the problem is to solve (6.1) under the boundary conditions (6.2) and (6.3).
In this chapter we shall assume (cf., [81], [82] and [108]) that the scattering

function k is given by

k(μ, μ′) =
n∑

j=0

ajpj(μ)pj(μ′), (6.4)

where pj(μ) is the j-th normalized Legendre polynomial (see [53], page 26) and

−∞ < aj < 1, j = 0, 1, . . . , n. (6.5)
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In particular, the integral operator defined by the right-hand side of (6.1) has finite
rank.

By writing ψ(t)(μ) = ψ(t, μ), we may consider the unknown function ψ as a
vector function on [0,∞) with values in H = L2[−1, 1]. In this way equation (6.1)
can be written as an operator differential equation:

T
dψ

dt
(t) + ψ(t) = Kψ(t), t ≥ 0, (6.6)

where the derivative is taken with respect to the norm in H. In (6.6) the operators
T and K are defined by

(
Tf
)
(μ) = μf(μ), Kf =

n∑
j=0

aj〈f, pj〉pj . (6.7)

Because of (6.5), the operator I−K is strictly positive, and hence (6.6) is equivalent
to

(I −K)−1T
dψ

dt
= −ψ.

In [81], [82], [108] this equation is solved by diagonalizing the operator
(I −K)−1T .

Equation (6.1) with boundary conditions (6.2) and (6.3) can also be written
as a Wiener-Hopf integral equation with an operator-valued kernel function (cf.,
[40]). In order to do this, let us introduce some notation. Let H+ and H− be the
subspaces of H = L2[−1, 1] consisting of all functions that are zero almost every-
where on [−1, 0] and [0, 1], respectively. By P+ and P− we denote the orthogonal
projections of H = L2[−1, 1] onto the subspace H+ and H−, respectively. Further-
more, h will be the operator-valued function defined by

(
h(t)f

)
(μ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
μ
exp
(
− t

μ

)
(P+Kf)(μ), t > 0,

− 1
μ
exp
(
− t

μ

)
(P−Kf)(μ), t < 0,

(6.8)

and F is the vector-valued function given by

F (t)(μ) =

⎧⎪⎪⎨⎪⎪⎩
f+(μ)exp

(
− t

μ

)
, 0 < μ ≤ 1,

0, −1 ≤ μ ≤ 0.

(6.9)

The operator-valued function h is referred to as the propagator function associated
with the half range problem (6.6).
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Given these functions h and F , equation (6.1) with the boundary conditions
(6.2) and (6.3) can be written as

ψ(t)−
∫ ∞
0

h(t− s)ψ(s) ds = F (t), t ≥ 0. (6.10)

To see this, multiply equation(6.1) by μ−1 exp(t/μ) and integrate over (0, t) when
μ > 0 or over (t,∞) in case μ < 0. With the help of the boundary conditions one
gets in this way the integral equation (6.10). In [40] the asymptotics of solutions
of equation (6.10) are found and used to describe the asymptotics of solutions of
the transport equation.

6.2 The case of a finite number of scattering directions

To make the method used in this chapter more transparent we first consider the
case when scattering occurs in a finite number of directions only. This assumption
reduces the equation (6.1) and the boundary condition (6.2) to

μi
dψ

dt
(t, μi) + ψ(t, μi) =

n∑
j=1

k(μi, μj)ψ(t, μj), (6.11)

i = 1, . . . , n, t ≥ 0,

where
ψ(0, μi) = ϕ+(μi), μi > 0. (6.12)

To treat this version of the problem, introduce the Cn-valued function

ψ(t) =

⎡⎢⎣ ψ(t, μ1)
...

ψ(t, μn)

⎤⎥⎦ ,

and the matrices

T = diag [μ1, . . . , μn], K = [k(μi, μj)]ni,j =1. (6.13)

Observe that T and K are real symmetric (hence selfadjoint) n × n matrices.
Using this notation, equation (6.11) taken with the boundary condition (6.12) can
be rewritten as {

Tψ′(t) + ψ(t) = Kψ(t), 0 ≤ t < ∞,

P+ψ(0) = x+,
(6.14)

where P+ is the projection on Cn defined by

P+

⎡⎢⎣ x1
...

xn

⎤⎥⎦ =
⎡⎢⎣ y1

...
yn

⎤⎥⎦ , yi =

{
0 if μi ≤ 0,

x1 if μi > 0,
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and x+ is a given vector in ImP+. Observe that P+ is the spectral projection
of T corresponding to the positive eigenvalues of T . In what follows we assume
additionally that T is invertible, which is the generic case and corresponds to the
requirement that all μi in (6.11) are different from 0; cf., formula (6.12). We shall
look for solutions ψ of (6.14) in the space Ln

2 [0,∞).
The first step in solving (6.14) is based on the observation that, for invertible

T , equation (6.14) is equivalent to a Wiener-Hopf integral equation with a rational
matrix symbol. In fact, the following theorem holds.

Theorem 6.1. Suppose T in (6.13) is invertible and let ψ ∈ Ln
2 [0,∞). Then ψ is

a solution of equation (6.14) if and only if ψ is a solution of the Wiener-Hopf
integral equation with a special right-hand side, namely

ψ(t)−
∫ ∞
0

h(t− s)Kψ(s) ds = e−tT−1
x+, t ≥ 0, (6.15)

where h is the propagator function associated with problem (6.14), that is,

h(t) =

⎧⎨⎩ T−1e−tT−1
P+, t > 0,

−T−1e−tT−1
P−, t < 0.

(6.16)

Here P− = I − P+.

Proof. Assume ψ is a solution of (6.14). Applying T−1 to the first identity in
(6.14), and solving the resulting equation by using variation of constants, yields

ψ(t) = e−tT−1
ψ(0) + e−tT−1

∫ t

0

esT−1
T−1Kψ(s)ds, t ≥ 0. (6.17)

Next, apply etT−1
P− to both sides of (6.17) and use that etT−1

and P− commute.
Since etT−1

P− is exponentially decaying on [0,∞), the function etT−1
P−Kψ(t) is

integrable on [0,∞), and thus

lim
t→∞ etT−1

P−ψ(t) = P−ψ(0) +
∫ ∞
0

esT−1
P−T−1Kψ(s)ds. (6.18)

Again using that the function etT−1
P−ψ(t) is integrable on [0,∞), we see that the

left-hand side of (6.18) has to be equal to zero, which proves that

P−ψ(0) = −
∫ ∞
0

esT−1
P−T−1Kψ(s)ds. (6.19)

Now, replace ψ(0) in (6.17) by P+ψ(0) + P−ψ(0), use the boundary condition in
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(6.14), and apply (6.19). This gives

ψ(t) = e−tT−1
x+ −

∫ ∞
t

e−(t−s)T−1
P−T−1Kψ(s)ds

+
∫ t

0

e−(t−s)T−1
T−1Kψ(s)ds

= e−tT−1
x+ +

∫ ∞
0

h(t− s)Kψ(s)ds, t ≥ 0.

Thus ψ is a solution of (6.15).
To prove the converse statement, assume that ψ is a solution of (6.15). Thus

ψ(t) = e−tT−1
x+ + e−tT−1

∫ t

0

esT−1
P+T−1Kψ(s)ds (6.20)

−e−tT−1
∫ ∞

t

esT−1
P−T−1Kψ(s)ds, t ≥ 0.

It follows that ψ is absolutely continuous on each compact subinterval of [0,∞),
and hence the integrands in the right-hand side of (6.20) are continuous functions
of the variable s. But then ψ is differentiable on (0,∞), and we see that

ψ′(t) = −T−1ψ(t) + P+T−1Kψ(t) + P−T−1Kψ(t)

= −T−1ψ(t) + T−1Kψ(t), t ≥ 0,

and hence ψ satisfies the first equation in (6.14). From (6.20) it also follows that

ψ(0) = x+ −
∫ ∞
0

esT−1
P−T−1Kψ(s)ds, t ≥ 0,

which implies that P+ψ(0) = P+x+ = x+. We conclude that ψ is a solution of the
problem (6.14). �

A direct computation yields that the symbol of the Wiener-Hopf operator
associated with (6.15) is the n× n matrix function W given by

W (λ) = In − iT−1(λ+ iT−1)−1K,

where In is the n× n identity matrix. Thus the symbol W is not only a rational
matrix function but it is already given in a concrete realized form, namely

W (λ) = In + C(λ−A)−1B,

with
A = −iT−1, B = K, C = −iT−1. (6.21)
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Notice that A does not have eigenvalues on the real line. Thus in order to solve
equation (6.15) we can apply Theorem 3.3. This requires us to analyze the spectral
properties of the matrix

A× = A− BC = −iT−1(I −K). (6.22)

In view of (6.5) it is natural to assume I −K is positive definite.

Lemma 6.2. Assume I −K is positive definite. Then the matrix A× in (6.22) has
no real eigenvalues and

Cn = M +̇M×, (6.23)

where M is the spectral subspace of the matrix A in (6.21) corresponding to the
eigenvalues in the upper half plane, and M× is the spectral subspace of A× in
(6.22) corresponding to the eigenvalues in the lower half plane.

Proof. Let 〈· , ·〉 be the standard inner product in Cm and put S = (I −K)−1T .
Since I −K is positive definite, S is well-defined and the sesquilinear form

[x, y] = 〈(I −K)x, y〉 (6.24)

is an inner product on Cn. From [Sx, y] = 〈(I −K)Sx, y〉 = 〈Tx, y〉 and the fact
that T is selfadjoint, it follows that S is selfadjoint with respect to the inner prod-
uct [· , ·]. But then the same holds true for iA× = S−1. Thus A× is invertible and
its eigenvalues are on the imaginary axis. In particular, A× has no real eigenvalues.

Recall that P+ is the spectral projection of T corresponding to the positive
eigenvalues of T . Let P×+ be the analogous projection for S. Since T and S are
invertible, T |KerP+ is negative definite and S|ImP×+

is positive definite. Thus

0 	= x ∈ KerP+ =⇒ 〈Tx, x〉 < 0,

0 	= x ∈ ImP×+ =⇒ [Sx, x] > 0.

But [Sx, x] = 〈Tx, x〉 for each x ∈ Cn. It follows that KerP+ ∩ ImP×+ = {0}. In
particular, rankP+ ≥ rankP×+ . By repeating the argument with KerP+ replaced
by KerP×+ and ImP×+ by ImP+, we see that rankP×+ ≥ rankP+. But then we
may conclude that Cn = KerP+ +̇ ImP×+ . Finally, from iA = T−1 we see that
M = KerP+, and from iA× = S−1 we conclude that M× = ImP×+ . �

We can now apply Theorem 3.3 to solve equation (6.15). Note however that
the right-hand side of (6.15) is of a special form. In fact, in terms of the matrices
appearing in (6.21) this right-hand side can be written as

g(t) = iCe−itAx+,

where x+ ∈ ImP+. Thus instead of Theorem 3.3 we can also directly apply Corol-
lary 3.4. This yields the following result.
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Theorem 6.3. Assume I − K is positive definite and T is invertible. Then the
matrix (I −K)−1T is selfadjoint with respect to the inner product (6.24) and the
half range problem (6.14) has a unique solution ψ in Ln

2 (0,∞), namely

ψ(t) = e−tT−1(I−K)Πx+, t ≥ 0, (6.25)

where Π is the projection of Cn along KerP+ onto the spectral subspace ImP×+ of
(I −K)−1T corresponding to its positive eigenvalues.

6.3 Wiener-Hopf equations with operator-valued kernel

functions

It is well-known that the Wiener-Hopf integral equation

ψ(t)−
∫ ∞
0

k(t− s)ψ(s) dy = F (t), t ≥ 0 (6.26)

can be solved by constructing appropriate factorizations of its symbol (cf., Sections
1.1, 3.2, the papers [49], [71], or the survey article [59]). In this section we shall
describe this method for the case when k is an L1-kernel function the values of
which are compact operators on a separable Hilbert space H. So we assume that
k(t) is a compact operator for each real t, that 〈k(·)f, g〉 is measurable on the real
line for each f and g in H, and that∫ ∞

−∞
‖k(t)‖ dt < 0,

where 〈·, ·〉 is the inner product on H, and ‖ · ‖ is the operator norm for operators
on H. Note that the kernel function h considered in the previous section falls into
this category.

Recall that the symbol of equation (6.26) is the operator-valued function
I −K(λ), where K(λ) is the Fourier transform of the kernel function k, i.e.,

K(λ) =
∫ ∞
−∞

eiλtk(t) dt, −∞ < λ < ∞.

By the Riemann-Lebesgue lemma, we have limλ∈R, λ→±∞K(λ) = 0. Here we
also need the concept of canonical factorization, this time in the present infinite
dimensional context. The symbol is said to admit a (right) canonical factorization
with respect to the real line if

I −K(λ) = G−(λ)G+(λ), −∞ < λ <∞, (6.27)

where the factors G− and G+ meet the following requirements:
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(i) the operator function G− is analytic on the (open) lower half plane �λ < 0
and continuous on the closure of the left half plane in the Riemann sphere
(infinity included); also for each λ in this closure (infinity included), the
operator G−(λ) is invertible;

(ii) the operator function G+ is analytic on the (open) upper half plane �λ > 0
and continuous on the closure of the right half plane in the Riemann sphere
(infinity included); also for each λ in this closure (infinity included), the
operator G+(λ) is invertible.

Note that the definition is analogous to that given earlier in the matrix-valued
case (see Sections 1.1 and 3.1). According to [49], because of the fact that k is an
L1-kernel function the values of which are compact operators on H, the inverses
of the factors in the right-hand side of (6.27) can be written as

G−1+ (λ) = I +
∫ ∞
0

eiλtγ+(t), G−1− (λ) = I +
∫ 0

−∞
eiλtγ−(t) dt, (6.28)

where, γ+ and γ− are L1-functions on [0,∞) and (−∞, 0], respectively, whose
values are compact operators on H.

Let L2(R+,H) denote the space of all L2-integrable functions on [0,∞) with
values in H. The identities (6.28) are important, because they allow for explicit
formulas for the solutions of (6.26). Indeed, by [18] equation (6.26) has a unique
solution ψ in L2(R+,H) for each F ∈ L2(R+,H) if and only if a canonical fac-
torization (6.27) exists, and in that case (just as in Section 1.1 for matrix-valued
kernel functions) the Fourier transform ψ̂ of the solution ψ is given by

ψ̂(λ) = G−1+ (λ)P(G−1− (λ)F̂ (λ)
)
, (6.29)

where F̂ is the Fourier transform of the right-hand side of equation (6.26), and P
is the projection defined by

P
(∫ ∞

−∞
f(t)eitλ dt

)
=
∫ ∞
0

f(t)eitλ dt.

Taking inverse Fourier transforms in (6.29) one finds

ψ(t) = F (t) +
∫ ∞
0

γ(t, s)F (s) ds,

where γ(t, s) is given by (1.10), i.e.,

γ(t, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ+(t− s) +

∫ s

0

γ+(t− r)γ−(r − s) dr, 0 ≤ s < t,

γ−(t− s) +
∫ t

0

γ+(t− r)γ−(r − s) dr, 0 ≤ t < s.
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As we observed already, in (6.10) the kernel function h(·) is an L1-function on
the real line whose values are compact (in fact finite rank) operators on L2[−1, 1].
In the next section we shall prove that the corresponding symbol admits a canon-
ical factorization, and we shall describe the factors explicitly.

6.4 Construction of a canonical factorization

We now return to equation (6.10). Note that its symbol is given by I − H(λ),
where

H(λ) =
∫ ∞
−∞

eiλth(t)K dt = (I − iλT )−1K, −∞ < λ < ∞.

Here h is given by (6.8), and the operators T and K are as in formula (6.7). The
operator function H is analytic on the strip |�λ| < 1. Note that σ(T ) is the closed
interval [−1, 1], so that (I − iλT )−1 is defined for all λ in the complement of the
union of the subsets i[1,∞) and i(−∞,−1] of the imaginary axis. In this section
we show that I −H(λ) admits a canonical factorization with respect to the real
line:

I −H(λ) = G−(λ)G+(λ), −∞ < λ < ∞,

where the factors and their inverses can be written as

G−(λ) = I − (I − iλT )−1(I − P )K(I − PK)−1,

G+(λ) = I − (I −Q∗K)−1(I −Q∗)(I − iλT )−1K,

G−1− (λ) = I + (I −Q∗K)−1Q∗
(
I − iλ(T×)∗

)−1
K,

G−1+ (λ) = I + (I − iλT×)−1PK(I − PK)−1.

Here T× = (I −K)−1T , and P and Q are projections of which the definition will
be given below. With regard to the domains of the factors and their inverses, the
situation is similar to what we encountered earlier for Theorems 3.2 and 5.14.

In order to make the factorization we transform the symbol of equation (6.10)
into another function W which is defined and continuous on the imaginary axis.
This will be done as follows.

Recall that T and K are both selfadjoint and that I−K, being a strictly pos-
itive operator because of (6.5), is invertible. Hence, for non-zero purely imaginary
values of λ,

I −H(i/λ)∗ = I − ((I + λ−1T )−1K
)∗

= I −K(I − λ−1T )−1

= I − λK(λ− T )−1

= (I −K)
(
I −K(I −K)−1T (λ− T )−1

)
.
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We now introduce W by writing

W (λ) = I − (I −K)−1KT (λ− T )−1. (6.30)

Note that this expression is a unital realization for W . The state space is the
separable Hilbert space H = L2[−1, 1]. The operator T is the main operator, and
(I−K)−1T is the associate main operator, denoted above by T× (in line with the
notation adopted in Section 2.1).

Via (6.30) the function W is defined and analytic on the resolvent set of
T , so on the complement of the interval [−1, 1]. In particular, W is defined and
continuous on the imaginary axis punctured at the origin. We shall now prove that
by setting W (0) = (I−K)−1 the restriction of W (now defined on the complement
of the set [−1, 0) ∪ (0, 1]) to the imaginary axis is a continuous function. For this
we need to show that

lim
α→ 0, α∈R

W (iα) = (I −K)−1. (6.31)

It is convenient to establish the following lemma which will also play a role later
on in this section.

Lemma 6.4. Let S be a bounded selfadjoint operator on a given Hilbert space. Then

‖S(iα− S)−1‖ ≤ 1, 0 	= α ∈ R, (6.32)

while, furthermore,

lim
α→ 0, α∈R

S(iα− S)−1f = −f, f ⊥ KerS. (6.33)

Under the additional assumption that S is a nonnegative operator, the limit result
(6.33) can be sharpened to

lim
λ→ 0,
λ≤ 0

S(λ− S)−1f = −f, f ⊥ KerS. (6.34)

Proof. Let ES(t) be the spectral resolution of the identity for S, and let f be an
element of the underlying Hilbert space. Then

‖S(iα− S)−1f‖2 ≤
∫ ∞
−∞

t2

α2 + t2
d ‖ES(t)f‖2

≤
∫ ∞
−∞

d ‖ES(t)f‖2

= ‖f‖2.
This proves (6.32). Next, observe that

‖f + S(iα− S)−1f‖2 ≤
∫ ∞
−∞

α2

α2 + t2
d ‖ES(t)f‖2.
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So by Lebesgue’s dominated convergence theorem we get

lim
α→ 0, α∈R

‖f + S(iα− S)−1f‖ ≤ ‖ES(0+)f‖2 − ‖ES(0−)f‖2

= ‖(ES(0+)− ES(0−))f‖2,
which is zero if f ⊥ KerS. Hence (6.33) is proved. The argument for (6.34), taking
nonnegativity of the operator S for granted, is analogous. �

The proof of (6.31) is now as follows. As KerT = {0}, we see from Lemma 6.4
that limα→ 0, α∈R (iα + T )−1Tf = f, f ∈ H. Since K is compact (actually
even of finite rank), it follows that (iα + T )−1TK tends to K in the operator
norm if α ∈ R, α → 0. Taking adjoints, we obtain that the same holds true for
−KT (iα− T )−1. But then we have (6.31), where the convergence is with respect
to the operator norm. So with W (0) = (I−K)−1, indeed W becomes a continuous
function on the imaginary axis.

It is this operator function for which we want a (right) canonical Wiener-Hopf
factorization. This time not with respect to the real line (see the definition in Sec-
tion 6.3) but for the analogous situation where the curve in the Riemann sphere
is the imaginary axis with infinity included. The theory concerning canonical fac-
torization developed earlier suggests that we have to find an invariant subspace
M for T such that the spectrum of T restricted to M lies in the closed right half
plane, and an invariant subspace M× for T× such that the spectrum of T× re-
stricted to M× lies in the closed left half plane. Since T is selfadjoint the choice
of M is clear: M = H+, where H+ is the subspace of H = L2[−1, 1] consisting
of all functions that are zero almost everywhere on [−1, 0]. As we shall see below,
after replacing the standard inner product on L2[−1, 1] by a suitable equivalent
one, the operator T× is selfadjoint too. So for M× we can take the spectral sub-
space of T× corresponding to the part of the spectrum of T× on (−∞, 0]. The
first difficulty is to prove the matching of the subspaces M and M×, i.e., to show
that H = M +̇M×. Taking for granted that this has been established a second
difficulty appears, because in the present case the imaginary axis does not split
the spectra of T and T×. So we cannot apply directly the theory developed so far,
but we have to prove, using the specifics of the situation, that the factors obtained
have the desired boundary behavior. The purpose of this section is to show that
this approach works indeed.

We begin by considering the operator T× = (I−K)−1T . As I−K is strictly
positive, [f, g] = 〈(I−K)f, g〉 defines an inner product onH = L2[−1, 1] equivalent
with the standard one. Writing A[∗] for the adjoint of an operator A relative to
the inner product [· , ·], we have

A[∗] = (I −K)−1A∗(I −K). (6.35)

In particular, we see that the operator T× is selfadjoint with respect to the inner
product [·, ·]. Let E×(·) be the corresponding spectral resolution and introduce

Hm = ImE×(0), Hp = KerE×(0).



6.4. Construction of a canonical factorization 127

Then Hm and Hp are both invariant under T× and

σ
(
T×|Hm

) ⊂ (−∞, 0] ∩ σ(T×), σ
(
T×|Hp

) ⊂ [0,∞) ∩ σ(T×). (6.36)

For T the situation is more straightforward. Indeed, T is selfadjoint with
respect to the original (standard) inner product on H and leaves invariant the
spaces H− and H+ featured in Section 6.1. Further

σ
(
T |H−

)
= [−1, 0], σ

(
T |H+

)
= [0, 1]. (6.37)

The subspaces M and M× mentioned above are H+ and Hm, respectively.
So proving that these subspaces match amounts to showing that H = H+ +̇Hm.
In fact, in the next section we shall show the following stronger result:

H = H− +̇Hp , H = H+ +̇Hm. (6.38)

Let P be the projection of H along H− onto Hp, and let Q be the projection of
H along H+ onto Hm. Since the subspaces H−,H+ are invariant under T and
Hm,Hp are invariant under T×, both P and Q are supporting projections for the
realization (6.30). Associated with these projections are two factorizations:

W (λ) = W̃+(λ)W̃−(λ), W (λ) = Ŵ−(λ)Ŵ+(λ). (6.39)

With the appropriate choice for the value of the factors at the origin, both these
factorizations are canonical factorizations of W with respect to the imaginary axis;
the first a left and the second a right factorization. In the sequel we only need the
second factorization in (6.39).

First we give the expressions for the factors Ŵ−(λ) and Ŵ+(λ):

Ŵ−(λ) = I − ((I −K)−1KT
)|H+

(
λ− T |H+

)−1(I −Q), (6.40)

Ŵ+(λ) = I − ((I −K)−1KT
)|Hm

(
λ−QT |Hm

)−1
Q. (6.41)

Note that there is slight abuse of notation here. Indeed, the operator I −Q in the
formula for Ŵ−(λ) should be interpreted as a mapping from H onto H+, and Q

in the expression for Ŵ+(λ) must be seen as a mapping from from H onto Hm. In
particular QT |Hm should be read as the compression of T to Hm (relative to the
decomposition H = H+ +̇Hm). The function Ŵ− is defined and analytic on the
resolvent set of T |H+ so, by the second part of (6.37) on the complement of the
interval [0, 1]. Similarly, the function Ŵ+ is defined and analytic on the resolvent
set of the compression operator QT |Hm. Now H = H+ +̇H− = H+ +̇Hm, and
Lemma 3.1 guarantees that QT |Hm is similar to T |H−. In particular the resolvent
sets of QT |Hm and T |H− coincide. It follows from the first part of (6.37) that
function Ŵ+ is defined and analytic on the complement of the interval [−1, 0].
The argument also indicates that the second factorization in (6.39) holds for all
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λ outside the interval [−1, 1]. Indeed this interval is precisely the union of the
spectra of T |H+ and QT |Hm (cf., Theorem 2.6).

Next we deal with the invertibility of the factors Ŵ−(λ) and Ŵ+(λ). The
above realization of W− has

(I −Q)T×|H+ : H+ → H+

as its associate main operator. From Section 2.4 we now know that Ŵ−(λ) is invert-
ible for λ in the intersection of the resolvent sets of T |H+ and (I −Q)T×|H+ . The
resolvent set of T |H+ is the complement of the interval [0, 1]. As H = H+ +̇Hm =
Hp +̇Hm, the compression operator (I −Q)T×|H+ is similar to T×|Hp . Hence, by
the second part of (6.36), the resolvent set of (I −Q)T×|H+ is the complement of
the set [0,∞) ∩ σ(T×). It follows that Ŵ−(λ) is invertible for all non-zero λ with
�λ ≤ 0, its inverse (see Theorem 2.4) being given by

Ŵ−(λ)−1 = I +
(
(I −K)−1KT

)|H+

(
λ− (I −Q)T×|H+

)−1(I −Q)

= I +
(
KT×

)|H+

(
λ− (I −Q)T×|H+

)−1(I −Q).

In an analogous manner one proves that Ŵ+(λ) is invertible for all non-zero λ
with �λ ≥ 0, its inverse having the representation

Ŵ+(λ)−1 = I +
(
(I −K)−1KT

)|Hm

(
λ− T |×Hm

)−1
Q

= I +
(
KT×

)|Hm

(
λ− T |×Hm

)−1
Q.

The above formulas contain the precise description of the factors W−, W+

and their inversesW−1
− , W−1

+ . Giving up some precision but gaining in conciseness,
we can also write

Ŵ−(λ) = I − (I −K)−1KT (λ− T )−1(I −Q),

Ŵ+(λ) = I − (I −K)−1KTQ(λ− T )−1,

Ŵ−1
− (λ) = I +KT×(I −Q)(λ− T×)−1,

Ŵ−1
+ (λ) = I +KT×(λ− T×)−1Q;

see Section 2.4 and [20], Section 2.5 for details.
We have come close to proving that the second factorization in (6.39) is a

(right) canonical factorization of W with respect to the imaginary axis. To make
the proof complete we need to check the behavior of the functions at infinity and
at the origin. As far as the behavior at infinity is concerned the situation is simple.
Indeed the functions Ŵ−, Ŵ+, Ŵ−1

− and Ŵ−1
+ are analytic there with value the

identity operator on H. For the origin the situation is more complicated.



6.4. Construction of a canonical factorization 129

Earlier we completed the definition of the function W , initially introduced
via the unital realization (6.30), by stipulating that W (0) = (I −K)−1. Now we
make a similar move with respect to Ŵ− and Ŵ+, in the first instance given by
(6.40) and (6.41), respectively. Indeed, we stipulate that

Ŵ−(0) = (I −K)−1(I −KQ), Ŵ+(0) = (I −K)−1(I −KP ∗).

In this manner the closed left half plane �λ ≤ 0 is contained in the domain of Ŵ−,
and the closed right half plane �λ ≥ 0 is contained in the domain of Ŵ+. Our task
is now threefold: to verify the invertibility of Ŵ−(0) and Ŵ+(0), to demonstrate
the continuity of Ŵ− and Ŵ+ on the appropriate half planes, i.e., to show that

lim
λ→ 0,
λ≤ 0

Ŵ−(λ) = (I −K)−1(I −KQ), (6.42)

lim
λ→ 0,
λ≥ 0

Ŵ+(λ) = (I −K)−1(I −KP ∗), (6.43)

and to verify that the factorizationW = Ŵ−Ŵ+ holds at the origin. As a first step
we present the following lemma (which will also be used in Section 6.6 below).

Lemma 6.5. Let P, Q and K be as above. Then

Q∗(I −K)P = 0, (I −Q∗)(I − P ) = 0. (6.44)

Proof. Note that ImP = Hp is orthogonal to ImQ = Hm with respect to the
inner product [f, g] = 〈(I −K)f, g〉. Thus

〈(I −K)Pf, Qg〉 = [Pf, Qg] = 0, f, g ∈ L2[−1, 1].

This yields the first identity in (6.44). Next observe that, relative to the usual
inner product on H = L2[−1, 1], the space Im (I − Q) = H+ is orthogonal to
Im (I − P ) = H−. It follows that

〈(I − P )f, (I −Q)g〉 = 0, f, g ∈ L2[−1, 1],

which proves the second identity in (6.44). �

Corollary 6.6. The operators I −KQ and (I −K)−1(I −KP ∗) are invertible and
each other’s inverse.

Proof. As K is compact (actually even of finite rank), the operator I − KQ is
Fredholm of index zero. In particular I −KQ is invertible if and only if I −KQ
is left invertible. Thus it suffices to show that the operator (I −K)−1(I −KP ∗)
is a left inverse of I −KQ. Now the identities in Lemma 6.5 can be rewritten as
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Q∗KP = Q∗P and Q∗ + P −Q∗P = I. Combining these, one gets

I −K = I − (Q∗ + P −Q∗P )K

= I −Q∗K − PK +Q∗PK

= I −Q∗K − PK +Q∗KPK

= (I −Q∗K)(I − PK).

Taking adjoints yields I − K = (I − KP ∗)(I − KQ), and this identity can be
rewritten as (I −K)−1(I −KP ∗)(I −KQ) = I. �

The corollary can be rephrased by saying that Ŵ+(0) = (I−K)−1(I−KP ∗)
is invertible with inverse I−KQ. Likewise Ŵ−(0) = (I−K)−1(I−KQ) is invertible
with inverse (I −K)−1(I −KP ∗)(I −K). It remains to verify (6.42) and (6.43).
We begin with (6.42).

For �λ ≤ 0, λ 	= 0, we have

Ŵ−(λ) = I − (K(I −K)−1T
)|H+

(
λ− T |H+

)−1(I −Q),

= I −K+

(
T |H+

)(
λ− T |H+

)−1(I −Q).

Here K+ is the restriction of K(I −K)−1 to H+ considered as an operator from
H+ into H and, as before, I −Q should be read as a mapping from H onto H+.
The restriction operator T |H+ : H+ → H+ is selfadjoint and nonnegative. It also
has a trivial null space. So we can apply Lemma 6.4 to show that

lim
λ→ 0,
λ≤ 0

T |H+

(
λ− T |H+

)−1
f+ = −f+, f+ ∈ H+.

Along with K+, the operator K∗
+ : H → H+ is compact (actually even of finite

rank), and it follows that

lim
λ→ 0,
λ≤ 0

T |H+

(
λ− T |H+

)−1
K∗
+ = −K∗

+,

with convergence in norm. Taking adjoints we get

lim
λ→ 0,
λ≤ 0

K+

(
T |H+

)(
λ− T |H+

)−1 = −K+,

and hence

lim
λ→ 0,
λ≤ 0

K+

(
T |H+

)(
λ− T |H+

)−1(I −Q) = −K+(I −Q).

A simple computation gives I +K+(I −Q) = (I −K)−1(I −KQ), and (6.42) is
immediate.
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Next we turn to (6.43). By Corollary 6.6 and the continuity of the operation
of taking the inverse, it suffices to show that

lim
λ→ 0,
λ≥ 0

Ŵ+(λ)−1 = I −KQ.

For �λ ≥ 0, λ 	= 0, we have

Ŵ+(λ)−1 = I +
(
KT×

)|Hm

(
λ− T |×Hm

)−1
Q,

= I +Km

(
T×|Hm

)(
λ− T×|Hm

)−1
Q.

Here Km is the restriction of K to Hm considered as an operator from Hm into
H and, as before, Q should be read as a mapping from H onto Hm. Because
T× = (I − K)−1T , the operator T×|Hm has a trivial null space. Further it is
nonpositive with respect to the alternative inner product [· , ·], and Km is compact.
Using Lemma 6.4 in an analogous way as in the previous paragraph, we see that

lim
λ→ 0,
λ≥ 0

Km

(
T×|Hm

)(
λ− T×|Hm

)−1 = −Km,

and we get limλ→ 0,
λ≥ 0 Ŵ+(λ)−1 = I −KQ, as desired.
From what we have obtained so far and a continuity argument it is already

clear that the second factorization in (6.39) holds at the origin too. The calculation

Ŵ−(0)Ŵ+(0) = (I −K)−1(I −KQ)(I −K)−1(I −KP ∗)

= (I −K)−1
(
(I −KP ∗)−1I −K)

)
(I −K)−1(I −KP ∗)

= (I −K)−1 = W (0),

based on Corollary 6.6, corroborates this fact.

Our ultimate goal in this section is to produce a right canonical factorization
with respect to the real line of the symbol I−H(λ) of equation (6.10). For non-zero
real λ we have I−H(λ) = W (i/λ)∗(I−K), and with the right interpretation this
identity even holds on the extended real line. Indeed, as W is given by a unital
realization, the value of W at ∞ is I, and this corresponds with the fact that
H(0) = K. Also by the Riemann-Lebesgue lemma, H vanishes at ∞, and this is
in accord with W (0) = (I −K)−1. The right canonical Wiener-Hopf factorization
W = Ŵ−Ŵ+ with respect to the imaginary axis that we obtained for W now
induces a right canonical Wiener-Hopf factorization with respect to the real line
for the symbol. The details are given in the next two paragraphs.

We begin by defining a function G− on the complement in C∞ of the interval
i[1,∞) which is situated on the imaginary axis. The determining expressions are

G−(λ) = Ŵ+(i/λ)∗(I −Q∗K),

G−(0) = I −Q∗K,

G−(∞) = I.
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Note that G− is analytic on the complement of i[1,∞) in the finite complex plane
C. Also G− is continuous on the closed lower half plane �λ ≤ 0, this time infinity
included. Indeed,

lim
λ→∞,�λ≤ 0

G−(λ) = lim
μ→ 0,
μ≥ 0

W+(μ)∗(I −Q∗K)

= (I − PK)(I −K)−1(I −Q∗K) = I = G−(0).

Here we used (6.43). Further define G+ on the complement in C∞ of the interval
i(−∞,−1], again located on the imaginary axis, by

G+(λ) = (I −Q∗K)−1Ŵ−(i/λ)∗(I −K),

G+(0) = I − PK,

G+(∞) = I.

Then G+ is analytic on the complement of i(−∞,−1]) in C. Also G+ is continuous
on the closed upper plane �λ ≥ 0, infinity included. Indeed, using (6.42) one gets

lim
λ→∞,�λ≥ 0

G+(λ) = lim
μ→ 0,
μ≤ 0

(I −Q∗K)−1W−(μ)∗(I −K) = I = G+(0).

Observe that I − H(λ) = G−(λ)G+(λ), λ ∈ R. For non-zero λ this is clear
from the corresponding factorization for W ; for λ = 0 we have G−(0)G+(0) =
(I − Q∗K)(I − PK) = I − K = I − H(0). From what we saw in the preceding
paragraph it is now clear that we have arrived at a right canonical factorization
with respect to the real line, of the symbol I − H(λ). Explicit formulas for the
factors G−, G+ and their inverses G−1− , G−1+ can be obtained from the descriptions
of Ŵ+, Ŵ−, Ŵ−1

+ and Ŵ−1
− given earlier in this section. In fact the formulas in

question coincide with the ones already presented in the first paragraph of this
section. For the verification of this we need the following intertwining result.

Lemma 6.7. Let P and Q be as above. Then (I −Q∗)T = TP .

Proof. It is sufficient to establish the identities (I−Q∗)T (I−P ) = 0 and Q∗TP =
0. For the first of these we argue as follows. Clearly

〈(I −Q∗)T (I − P )f, g〉 = 〈T (I − P )f, (I −Q)g〉.
Now (I − P )f ∈ H− and (I − Q)g ∈ H+. As H− is T -invariant we also have
T (I − P )f ∈ H−. But H− ⊥ H+. So 〈(I −Q∗)T (I − P )f, g〉 = 0 for all f and g
in H. It follows that (I −Q∗)T (I − P ) = 0, as desired. Next observe that

〈Q∗TPf, g〉 = 〈TPf, Qg〉 = [(I −K)−1TPf, Qg] = [T×Pf, Qg].

As Pf ∈ Hp and Hp is invariant under T×, we have T×Pf ∈ Hp. Furthermore
Qg ∈ Hm. But Hm ⊥ Hp is H endowed with the inner product [·, ·]. It follows that
(Q∗TPf, g) = 0 for all f and g. Hence Q∗TP = 0, which is the second identity we
wanted to establish. �
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We proceed by deriving the state space formulas forG−, G+ and their inverses
G−1− , G−1+ . Recall that Ŵ+(λ) = I − (I −K)−1KTQ(λ− T )−1. Hence, for λ 	= 0,

G−(λ) = Ŵ+(i/λ)∗(I −Q∗K)

=
(
I − (I −K)−1KTQ(i/λ− T )−1

)∗(I −Q∗K)

=
(
I − iλ(I − iλT )−1Q∗TK(I −K)−1

)
(I −Q∗K).

On account of Lemma 6.7, we have Q∗T = T (I −P ). Also (I −K)−1(I −Q∗K) =
(I − PK)−1, and we get

G−(λ) =
(
I − iλ (I − iλT )−1 T (I − P )K(I −K)−1

)
(I −Q∗K)

=
(
I −K − iλ (I − iλT )−1 T (I − P )K

)
(I − PK)−1.

But then, proceeding in a straightforward manner,

G−(λ) =
(
I −K − iλT (I − iλT )−1(I − P )K

)
(I − PK)−1

=
(
I −K + (I − P )K − (I − iλT )−1(I − P )K

)
(I − PK)−1

=
(
I − PK − (I − iλT )−1(I − P )K

)
(I − PK)−1

= I − (I − iλT )−1(I − P )K(I − PK)−1.

In this computation λ was of course taken to be non-zero. For λ = 0, the last
expression in the above series of identities reduces to I− (I−P )K(I−PK)−1 and
this is easily seen to be equal to (I −K)(I − PK)−1. The latter can be rewritten
as I − Q∗K which was earlier identified as the value G−(0) of G− in the origin.
So in the final analysis the zero value of λ is admissible too.

Next we turn to G+ which was defined using W−. For the latter we have the
expression Ŵ−(λ) = I − (I −K)−1KT (λ− T )−1(I −Q) and we can carry out a
similar computation as the one presented above:

G+(λ) = (I −Q∗K)−1Ŵ−(i/λ)∗(I −K)

= (I −Q∗K)−1
(
I − (I −K)−1KT (i/λ− T )−1(I −Q)

)∗(I −K)

= (I −Q∗K)−1
(
I − iλ(I −Q∗)(I − iλT )−1TK(I −K)−1

)
(I −K)

= (I −Q∗K)−1
(
I −K − iλ(I −Q∗)T (I − iλT )−1 K

)
= (I −Q∗K)−1

(
I −K + (I −Q∗)(I − iλT − I)(I − iλT )−1K

)
= (I −Q∗K)−1

(
I −K + (I −Q∗)K − (I −Q∗)(I − iλT )−1K

)
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= (I −Q∗K)−1
(
I −Q∗K − (I −Q∗)(I − iλT )−1K

)
= I − (I −Q∗K)−1(I −Q∗)(I − iλT )−1K.

For λ = 0, the last expression comes down to I − (I −Q∗K)−1(I −Q∗)K and this
is easily seen to be equal to (I − QK∗)−1(I −K), so to I − PK. The latter was
earlier identified as the value G+(0) of G+ in the origin. So here the zero value of
λ is admissible too.

Let us now deal with G−1− and G−1+ . The first of these functions is tied to
Ŵ−1
+ for which we have the expression Ŵ+(λ)−1 = I +KT×(λ− T×)−1Q. From

this we get

G−1− (λ) = (I −Q∗K)−1
(
Ŵ+(i/λ)∗

)−1
= (I −Q∗K)−1

(
I +KT×(i/λ− T×)−1Q

)∗
= (I −Q∗K)−1

(
I +Q∗

(
(i/λ− T×)−1

)∗(T×)∗K)
= (I −Q∗K)−1

(
I + iλQ∗

(
I − iλ(T×)∗

)−1(T×)∗K)
= (I −Q∗K)−1

(
I −Q∗K +Q∗

(
I − iλ(T×)∗

)−1
K
)

= I + (I −Q∗K)−1Q∗
(
I − iλ(T×)∗

)−1
K.

Putting λ = 0 in the last expression gives I+(I−Q∗K)−1Q∗K which is obviously
equal to (I −Q∗K)−1, the value of G−1− at the origin.

Finally we consider G−1+ . For the appropriate values of λ, we have

G−1+ (λ) = (I −K)−1
(
Ŵ−(i/λ)∗

)−1(I −Q∗K)

=
(
(I −K)−1

(
Ŵ−(i/λ)

)∗(I −K)
)−1(I −K)−1(I −Q∗K)

=
((

Ŵ−(i/λ)
)[∗])−1(I − PK)−1

=
((

Ŵ−(i/λ)
)−1)[∗](I − PK)−1.

Here we have used (6.35) and the fact, already noted above, that I − PK and
(I −K)−1(I −Q∗K) are each other’s inverse. Recall now that

Ŵ−(λ)−1 = I +KT×(I −Q)(λ− T×)−1.

Thus, as T× and K are [· , ·]-selfadjoint,

G−1+ (λ) =
(
I +KT×(I −Q)(i/λ− T×)−1

)[∗](I − PK)−1

=
(
I + (1/iλ− T×)−1 (I −Q)[∗] T×K

)
(I − PK)−1
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=
(
I + iλ(I − iλT×)−1

(
I −Q[∗])T×K

)
(I − PK)−1.

As an intermediate step, we note that the identity in Lemma 6.7 can be rewritten
as
(
I −Q[∗])T× = T×P . Indeed,

T×P = (I −K)−1TP

= (I −K)−1(I −Q∗)T

= (I −K)−1(I −Q)∗(I −K)T×

= (I −Q)[∗]T×

=
(
I −Q[∗])T×.

This makes it possible to proceed as follows:

G−1+ (λ) =
(
I + iλ(I − iλT×)−1T×PK

)
(I − PK)−1

=
(
I − PK + (I − iλT×)−1PK

)
(I − PK)−1

= I + (I − iλT×)−1PK(I − PK)−1.

The check for λ = 0 yields the desired result, namely I + PK(I − PK)−1 =
(I − PK)−1 which is the value of G−1+ at the origin.

6.5 The matching of the subspaces

In the canonical factorization carried out in the previous section, we used that

H = H− +̇Hp , H = H+ +̇Hm. (6.45)

In this section we shall prove that, indeed, the space H may be decomposed in
these two ways.

Let P− and P+ be the orthogonal projections of H onto H− and H+, respec-
tively. Also, put Pm = E×(0) and Pp = I − E×(0), where E×(t) is the spectral
resolution of the identity for the operator T× = (I −K)−1T with respect to the
inner product [f, g] = 〈(I −K)f, g〉). By definition

H− = ImP−, H+ = ImP+, Hm = ImPm, Hp = ImPp .

We claim that

H = H− +̇Hp ⇐⇒ P+|Hp : Hp → H+ is bijective, (6.46)

H = H+ +̇Hm ⇐⇒ P−|Hm : Hm → H− is bijective. (6.47)

The argument for this is simple and in a different context (involving a different
notation too) spelled out in the beginning of Part 2 of the proof of Theorem 4.4.
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For the convenience of the reader we give it here too. Note that Ker
(
P+|Hp

)
=

H−∩ Hp, and thus P+|Hp is injective if and only if H−∩ Hp = {0}. Next, observe
that for each y ∈ Hp we have y = (I − P+)y + P+|Hpy ∈ H− + Im

(
P+|Hp

)
.

Thus H−+Hp ⊂ H− + Im
(
P+|Hp

)
. The reverse inclusion also holds. Indeed, for

z ∈ Hp we have P+z = (P+z − z) + z ∈ KerP+ +Hp = H− +Hp. It follows that
H− + Im

(
P+|Hp

)
= H− + Hp, and hence P+|Hp is surjective if and only if H =

H− + Hp. This proves (6.46). The proof of (6.47) is similar. Now H = Hm +̇ Hp

and H = H− +̇ H+. Combining this with (6.46) and (6.47), we see that (6.45)
holds if and only if the operator V = P−Pm + P+Pp is bijective.

It is not difficult to prove that V is injective. Indeed, take f ∈ H and assume
V f = 0. Put fm = Pmf and fp = Ppf . Then P−fm + P+fp = V f = 0, and hence
P+fp = 0 and P−fm = 0. The latter gives fm = P+fm, and we get

0 ≥ [T×fm, fm] = 〈Tfm, fm〉 = 〈TP+fm, P+fm〉 ≥ 0.

It follows that P+fm ∈ KerT . But T is injective. So P+fm = 0. As P−fm = 0 too,
we have fm = 0. In the same way one proves that fp = 0. Hence f = 0, as desired.

To prove that V is surjective too, we use that I − V is compact. Indeed,
as soon as we know that this is the case, the Fredholm alternative implies that
V = I − (I − V ) is surjective if and only if V is injective.

Lemma 6.8. The operator I − V is compact.

Proof. The compact operators form an ideal and

I − V = P− + P+ − P−Pm − P+Pp

= P− + P+Pm + P+Pp − P−Pm − P+Pp

= P− + P+Pm − P−Pm

= (P+ − P−) (Pm − P−) .

Hence it suffices to prove that Pm − P− is compact. Now Pm = E×(0), where
E×(t) is the spectral resolution of the identity for T× with respect to the inner
product [· , ·]. Similarly, P− = E(0), where E(t) is the spectral resolution of the
identity for T . As T and T× are injective, in both cases the spectral resolutions
are continuous at zero. So, using a standard formula for the spectral resolution
(see [99], Problem VI.5.7) we may write, for each f ∈ H,

(Pm − P−)f = lim
h ↓ 0

1
2πi

∫
Γh

(
(λ− T )−1 − (λ− T×)−1

)
f dλ. (6.48)

Here h is a (sufficiently small) positive number and Γh is the union of two non-
closed oriented curves as in the following picture:
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i

+ i

−− 0a  h

 h

The positive number a is chosen in such a way that the spectra of T and T× both
are in the open half-line (−a,∞). For the difference of the resolvents of T and T×

appearing in (6.48) we have

(λ− T )−1 − (λ− T×)−1 = (λ− T )−1
(
I − (λ− T )(λ− T×)−1

)
= (λ− T )−1(T − T×)(λ − T×)−1

= −(λ− T )−1KT×(λ − T×)−1,

and from the latter expression we see that it is a finite rank (hence compact)
operator.

Let Δ be the closed contour obtained from Γh by letting the positive number
h go to zero. As T× is selfadjoint in H endowed with the inner product [· , ·], we
know from (6.32) in Lemma 6.4 and the choice of a that T×(λ−T×)−1 is bounded
in norm on Δ \ {0}.

Next, let us investigate (λ− T )−1K. First we shall prove that

‖(ic− T )−1K‖ ≤ q0√|c| , 0 	= c ∈ R, (6.49)

where q is some positive constant. To prove this, recall that K is the finite rank
operator given by the right-hand side of (6.7), and hence

‖(ic− T )−1K‖ ≤
n∑

j=0

|aj | ‖pj‖ ‖(ic− T )−1pj‖, 0 	= c ∈ R.

For each j the function pj is a normalized Legendre polynomial in t (and so the
norm of pj appearing in the above expression is actually equal to 1). Also T is the
multiplication operator given by the left-hand side of (6.7). So to find an upper
bound for ‖(ic− T )−1pj‖, we need to estimate√∫ 1

−1

t2k

c2 + t2
dt . (6.50)
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As t2k+2 ≤ t2k for |t| ≤ 1, it suffices to find an upper bound for (6.50) for the
case k = 0. But√∫ 1

−1

dt

c2 + t2
=

√
2
|c| arctan

1
|c| , 0 	= c ∈ R.

This proves (6.49) for an appropriate choice of q0.
Note that the function (λ − T )−1KT×(λ − T×)−1 is continuous on Δ \ {0}.

Also, for some positive constant q,

‖(ic− T )−1KT×(ic− T×)−1‖ ≤ q√|c| , 0 	= c ∈ R.

A straightforward Cauchy argument now gives that

lim
h ↓ 0

∫
Γh

(λ− T )−1KT×(λ− T×)−1 dλ

exists in norm. But then the same is true for

lim
h ↓ 0

∫
Γh

(
(λ− T )−1 − (λ− T×)−1

)
dλ.

As the integrand in this expression is a compact operator-valued function, we can
use (6.48) to show that Pm − P− is compact too. �

Close inspection of the above proof shows that I − V is in fact a trace class
operator (cf., Lemma 6.3 in [11]).

6.6 Formulas for solutions

Let I−H(λ) be the symbol of the Wiener-Hopf integral equation (6.10). From the
results of the previous sections we know that I −H(λ) admits a right canonical
factorization with respect to the real line:

I −H(λ) = G−(λ)G+(λ), −∞ < λ < ∞. (6.51)

As we have seen in Section 6.3, this implies that equation (6.10) is uniquely solvable
in L1([0,∞),H), where H = L2[−1, 1]. This fact and the equivalence (explained
in the first section of this chapter) of equations (6.1) and (6.10), allows us to prove
the following result.

Theorem 6.9. Consider equation (6.1) with the kernel function k being given by
(6.4). Let T and K be the operators on L2[−1, 1] defined by (6.7), and assume that
I −K is strictly positive. Then equation (6.1) has a unique solution ψ satisfying
the initial condition (6.2) and∫ ∞

0

∫ 1

−1
|ψ(t, μ)|2 dμ dt < ∞. (6.52)
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This solution is given by

ψ(t, ·) = e−t(T×p )
−1

Pf+, t ≥ 0. (6.53)

Here f+ is the given function appearing in the initial condition (6.2), the oper-
ator P is the projection of L2[−1, 1] defined directly after (6.38), and T×p is the
restriction of T× = (I −K)−1T to Hp = ImP .

Note that (6.53) is the natural analogue of (6.25) in Theorem 6.3. Formula
(6.53) features the inverse of the injective operator

T×p = T×|Hp : Hp → Hp.

This operator has dense range and is nonnegative with respect to the inner product
[· , ·]. Hence its inverse (T×p )−1

(Hp → Hp

)
is an unbounded operator which has

ImT×p as its (dense) domain and is nonnegative with regard to the inner product
[· , ·]. Thus the expression

e−t(T×p )−1
(6.54)

is well-defined via the operational calculus for selfadjoint operators based on the
notion of the resolution of the identity. One can view (6.54) also as the operator
semigroup generated by the unbounded infinitesimal generator −(T×p )−1.
Proof. Recall that I−H(λ) is the symbol of equation (6.10). Since I−H(λ) admits
the canonical Wiener-Hopf factorization (6.51) we can use the general theory of
Wiener-Hopf equations (see the one but last paragraph in Section 6.3) to show that
equation (6.10) has a unique solution ψ in L1([0,∞),H), where H = L2[−1, 1].
Moreover, the Fourier transform ψ̂ of ψ is given by

ψ̂(λ) = G−1+ (λ)P(G−1− (λ)F̂ (λ)
)
, (6.55)

where F̂ is the Fourier transform of the right-hand side of equation (6.10), and P
is the projection defined by

P
(∫ ∞

−∞
eitλf(t) dt

)
=
∫ ∞
0

eitλf(t) dt.

Since ψ ∈ L1([0,∞),H), condition (6.52) is fulfilled. To derive formula (6.53), we
first compute ψ̂ using equation (6.55).

Recall that F is given by (6.9). It follows that

F̂ (λ) = (I − iλT )−1Tf+, �λ ≥ 0. (6.56)

As we know from Section 6.4 the inverses of the factors G−(λ) and G+(λ) in (6.51)
are given by

G−1− (λ) = I + (I −Q∗K)−1Q∗
(
I − iλ(T×)∗

)−1
K,

G−1+ (λ) = I + (I − iλT×)−1PK(I − PK)−1.
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Here T× = (I −K)−1T . Let us use these formulas to compute ψ̂(λ) from (6.55).
As a first step we have G−1− (λ)F̂ (λ) = F̂ (λ) +X(λ)F̂ (λ), where

X(λ) = (I −Q∗K)−1Q∗
(
I − iλ(T×)∗

)−1
K

= (I −Q∗K)−1Q∗
(
I − iλT (I −K)−1

)−1
K

= (I −Q∗K)−1Q∗(I −K)
(
I −K − iλT

)−1
K.

Thus X(λ)F̂ (λ) = (I −Q∗K)−1Q∗(I −K)R(λ)Tf+, where

R(λ) = (I −K − iλT )−1K(I − iλT )−1

= (I −K − iλT )−1
(
(I − iλT )− (I −K − iλT )

)
(I − iλT )−1

= (I −K − iλT )−1 − (I − iλT )−1.

Hence

X(λ)F̂ (λ) = (I −Q∗K)−1Q∗(I −K)(I −K − iλT )−1Tf+

−(I −Q∗K)−1Q∗(I −K)(I − iλT )−1Tf+.

We conclude that

G−1− (λ)F̂ (λ) = F̂ (λ)− (I −Q∗K)−1Q∗(I −K)F̂ (λ)

+ (I −Q∗K)−1Q∗
(
I − iλ(T×)∗

)−1
Tf+.

Now apply the projection P . Since f+ ∈ H+ and T |H+ is nonnegative, we have
P(F̂ ) = F̂ . Furthermore, using the spectral properties of T× and the definition of
Q, we see that the function Q∗(I − iλ(T×)∗)−1 is annihilated by P . Therefore

P(G−1− (λ)F̂ (λ)
)

= F̂ (λ) − (I −Q∗K)−1Q∗(I −K)F̂ (λ)

= (I −Q∗K)−1
(
I −Q∗K −Q∗(I −K)

)
F̂ (λ)

= (I −Q∗K)−1(I −Q∗)F̂ (λ).

Put Z(λ) = (I − Q∗K)−1(I − Q∗)F̂ (λ). Recall from the previous section that
I − PK is invertible with inverse (I −K)−1(I −Q∗K). Hence

(I − PK)−1(I −Q∗K)−1 = (I −K)−1,

and it follows that G−1+ (λ)P(G−1− (λ)F̂ (λ)
)
= Z(λ) +H(λ), where

H(λ) = (I − iλT×)−1PK(I −K)−1(I −Q∗)F̂ (λ)

= (I − iλT×)−1P
(
I − (I −K)

)
(I −K)−1(I −Q∗)F̂ (λ)

= A(λ) −B(λ),
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with

A(λ) = (I − iλT×)−1P (I −K)−1(I −Q∗)T (I − iλT )−1f+,

B(λ) = (I − iλT×)−1P (I −Q∗)T (I − iλT )−1f+.

Using (I −Q∗)T = TP and T× = (I −K)−1T we get

A(λ) = (I − iλT×)−1P (I −K)−1TP (I − iλT )−1f+

= (I − iλT×)−1PT×P (I − iλT )−1f+

= (I − iλT×)−1T×P (I − iλT )−1f+,

and

B(λ) = (I − iλT×)−1PTP (I − iλT )−1f+

= (I − iλT×)−1PT (I − iλT )−1f+.

Thus (with λ 	= 0 in the intermediate steps)

H(λ) = (I − iλT×)−1(T×P − PT )(I − iλT )−1f+

=
1
iλ

(
(I − iλT×)−1

(
P (I − iλT )− (I − iλT×)P

)
(I − iλT )−1f+

)
=

1
iλ
(I − iλT×)−1Pf+ − 1

iλ
P (I − iλT )−1f+

=
1
iλ

Pf+ + T×(I − iλT×)−1Pf+ − 1
iλ

Pf+ − PT (I − iλT )−1f+

= T×(I − iλT×)−1Pf+ − PT (I − iλT )−1f+.

Therefore

G−1+ (λ)P(G−1− (λ)F̂ (λ)
)
= T×(I − iλT×)−1Pf+

+
(
(I −Q∗K)−1(I −Q∗)− P

)
T (I − iλT )−1f+.

From Lemma 6.5 we get

(I −Q∗K)−1(I −Q∗)− P = (I −Q∗K)−1(I −Q∗ − P +Q∗KP )

= (I −Q∗K)−1(I −Q∗ − P +Q∗P )

= (I −Q∗K)−1(I −Q∗)(I − P ) = 0,

and we conclude that

ψ̂(λ) = G−1+ (λ)P(G−1− (λ)F̂ (λ)
)
= T×(I − iλT×)−1Pf+. (6.57)
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Now T× maps Hp into Hp, and so the operator T×p = T×|Hp : Hp → Hp is
well-defined. Since T×p is injective, the expression (6.57) can be rewritten as

ψ̂(λ) = −(iλ− (T×p )
−1)−1Pf+. (6.58)

As was already observed, (T×p )−1
(Hp → Hp

)
is an unbounded operator which has

ImT×p as its (dense) domain and is nonnegative with regard to the inner product
[· , ·]. Hence we can take the inverse Fourier transform in (6.58), to get the desired
formula (6.53).

From (6.53) we see that ψ(0) = ψ(0, · ) = Pf+. Now let P+ be the orthogonal
projection of L2[−1, 1] onto H+. Since KerP = H−, we have P+(I − P ) = 0, and
thus

P+ψ(0) = P+(Pf+) = P+(Pf+ + (I − P )f+) = P+f+ = f+.

Therefore ψ satisfies the initial condition (6.2). Finally, the uniqueness statement
follows from the general theory of Wiener-Hopf equations. �

Notes

The theory of the linear transport equation has a long history. For this see the
books [28] and [96] which also contain extensive lists of references. The material in
Section 6.2 is taken from Section XIII.9 of [51] where the reader can also find an
illustrative example. The other sections in this chapter follow basically Chapter 6
in [11] which was inspired by the dissertation [80] and the papers [81], [82]. In
[108] one can also find an analytic description of the subspaces concerned. Later
results based on [110] and [124] are also included here. Further developments
using the method described in this chapter can be found in [110], where the case
of non-degenerate kernel functions k(μ, μ′) is treated. See also the book [78], and
the paper [124]. For an alternative proof of Theorem 6.9, not using Wiener-Hopf
factorization, we refer to Section XIX.7 in [51].

The results presented in Sections 6.4 – 6.6 can also be understood from the
point of view described in Chapter 5. Note, however, that in Sections 6.4–6.6 the
symbol is an operator-valued function (and not a matrix-valued function as in
Chapter 5). On the other hand, the operator (T×)−1 appearing in Theorem 6.9
is exponentially dichotomous. This has been proved in Section 5.2 of the recent
monograph [111]. The latter book also contains many new additions related to the
analysis of equation (6.6). See also the notes to Chapter 5.



Chapter 7

Wiener-Hopf factorization and
factorization indices

This chapter concerns canonical as well as non-canonical Wiener-Hopf factoriza-
tion of an operator-valued function which is analytic on a Cauchy contour. Such
an operator function is given by a realization with a possibly infinite dimensional
Banach space as state space, and with a bounded state operator and with bounded
input-output operators. The first main result is a generalization to operator-valued
functions of the canonical factorization theorem for rational matrix functions pre-
sented earlier in Section 3.1. In terms of the given realization, necessary and suf-
ficient conditions are also presented in order that the operator function involved
admits a (possibly non-canonical) Wiener-Hopf factorization. The corresponding
factorization indices are described in terms of certain spectral invariants which are
defined in terms of the realization but do only depend on the operator function
and not on the particular choice of the realization. The analysis of these spectral
invariants is one of the main themes of this chapter.

The chapter consists of three sections. Section 7.1 describes the main result
for canonical factorization and introduces the spectral invariants involved. The
proof that the spectral invariants do not depend on the particular realization is
given in Section 7.2. The final section of the chapter, Section 7.3, deals with non-
canonical Wiener-Hopf factorization and the corresponding factorization indices.

7.1 Canonical factorization of operator functions

Throughout this chapter, W is an operator function, analytic on an open neigh-
borhood of a given Cauchy contour Γ, and with values that are operators on a
possibly infinite dimensional Banach space Y . Anticipating the results to be pre-
sented below, we note that in this situation W admits a realization on Γ involving
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a possibly infinite dimensional state space X and having IY as external operator:

W (λ) = IY + C(λIX −A)−1B, (7.1)

where Γ splits the spectrum of A, that is Γ ⊂ ρ(A). This is immediate from
Theorem 2.2.

As before, we denote by F+ the interior domain of Γ, and by F− the comple-
ment of F+ in the Riemann sphere C∞. By a right canonical factorization of W
with respect to Γ we mean a factorization

W (λ) = W−(λ)W+(λ), λ ∈ Γ, (7.2)

where W− and W+ are functions with values in L(Y ) satisfying
(i) W− is analytic on F− and continuous on F−,

(ii) W+ is analytic on F+ and continuous on F+,

(iii) W− and W+ take invertible values on F− and F+, respectively.

If in (7.2) the factors W− and W+ are interchanged, we speak of a left canonical
factorization. A necessary condition for a right or left canonical factorization with
respect to Γ to exist is that W takes invertible values on Γ. In terms of the
realization (7.1) this means that Γ also splits the spectrum of the associate main
operator A× = A−BC (see Theorem 2.4).

We now extend Theorem 3.2 to a possibly infinite dimensional context.

Theorem 7.1. Let W be an operator function, analytic on an open neighborhood
of a Cauchy contour Γ, and with values that are operators on a Banach space Y .
Let (7.1) be a realization of W , i.e.,

W (λ) = IY + C(λIX −A)−1B,

and suppose Γ splits the spectrum of A. Then W admits a right canonical factor-
ization with respect to Γ if and only if the following two conditions are satisfied:

(a) Γ splits the spectrum of A× = A−BC,

(b) X = ImP (A; Γ) +̇ KerP (A×; Γ).

In that case, a right canonical factorization of W is given by

W (λ) = W−(λ)W+(λ), λ ∈ Γ,

where the factors and their inverses can be written as

W−(λ) = Im + C(λIX −A)−1(IX −Π)B,

W+(λ) = Im + CΠ(λIX −A)−1B,

W−1
− (λ) = Im − C(IX −Π)(λIX −A×)−1B,

W−1
+ (λ) = Im − C(λIX −A×)−1ΠB.

Here Π is the projection of Cn along ImP (A; Γ) onto KerP (A×; Γ).
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For left canonical factorizations an analogous theorem holds. In the result in
question, (b) is replaced by X = KerP (A; Γ) +̇ ImP (A×; Γ). The theorem also
has an analogue for appropriate closed contours in the Riemann sphere C∞ like
the extended real line or the extended imaginary axis.

Proof. To establish the theorem, we can rely for a large part on the proof of
Theorem 3.2. In fact, we only have to add an argument for the following assertion: if
W admits a right canonical factorization with respect to Γ, then the decomposition
in (b) holds. The first step consists in showing that if W admits a right canonical
factorization with respect to Γ, then there is a way of representing W in the form
W (λ) = IY + C̃(λIX̃ − Ã)−1B̃ such that Γ splits the spectra of Ã and Ã× while,
in addition, X̃ = ImP (Ã; Γ) +̇ KerP (Ã×; Γ).

Let W (λ) = W−(λ)W+(λ), λ ∈ Γ, be a right canonical factorization of W .
Recall that ∞ belongs to F−. Since W−(∞) is invertible we may assume without
loss of generality that W−(∞) = IY . From the identity W−(λ) = W (λ)W+(λ)−1

and the fact that W is analytic on a neighborhood of Γ, it follows that W− has an
analytic extension, again denoted by W−, to some open neighborhood Ω− of the
closed set F− ∪ Γ. Taking Ω− sufficiently small, we have that W− assumes only
invertible values on Ω−. But then Theorems 2.3 and 2.4 can be applied to show
that W− admits a realization of the form

W−(λ) = IY + C−(λIX− − A−)−1B−, λ ∈ Ω−, (7.3)

where σ(A−) ⊂ F+ and σ(A×−) ⊂ F+. Here A×− = A− −B−C−.
A similar reasoning holds for W+. This function has an analytic extension,

again denoted by W+, to some open neighborhood Ω+ of the closed set F+ ∪ Γ.
Taking Ω+ sufficiently small, we have that W+(λ) is invertible for all λ ∈ Ω+. But
then Theorems 2.2 and 2.4 yield that W+ admits a realization

W+(λ) = IY + C+(λIX+ −A+)−1B+, λ ∈ Ω+, (7.4)

such that σ(A+) ⊂ F− and σ(A×+) ⊂ F−. Here A×+ = A+ − B+C+.
On Γ we have the factorization W (λ) = W−(λ)W+(λ), and so we can apply

the product rule of Section 2.5 to show that W (λ) = IY +C̃(λIX̃−Ã)−1B̃, λ ∈ Γ,
where X̃ = X− � X+ and A : X̃ → X̃, B : Y → X̃ and C : X̃ → Y are given by
the operator matrices

Ã =

[
A− B−C+

0 A+

]
, B̃ =

[
B−

B+

]
, C̃ =

[
C− C+

]
.

The realization IY + C̃(λIX̃ − Ã)−1B̃ has the desired properties. This can be seen
as follows.
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From the operator matrix representation for Ã, and the corresponding one
for A× = A−BC : X̃ → X̃ , namely

Ã× =

[
A×− 0

−B+C− A×+

]
,

it is immediate that Γ splits the spectra of both Ã and Ã×. Furthermore, the
spectral projections P (Ã; Γ) and P (Ã×,Γ) are of the form

P (Ã; Γ) =

[
IX− �

0 0

]
, P (Ã×,Γ) =

[
IX− 0

� 0

]
.

Hence ImP (Ã; Γ) = X− � {0} and KerP (Ã×; Γ) = {0} � X+, and from this
X̃ = ImP (Ã; Γ) +̇KerP (Ã×; Γ) is immediate.

The proof can now be finished by verifying the following two identities:

dim
(
ImP (Ã; Γ) ∩KerP (Ã×; Γ)) = dim

(
ImP (A; Γ) ∩KerP (A×; Γ)),

dim

(
X̃

ImP (Ã; Γ) + KerP (Ã×; Γ)

)
= dim

(
X

ImP (A; Γ) + KerP (A×; Γ)

)
.

In other words, we are ready once it has been shown that the right-hand side of
these identities depend only on W and Γ and are independent of the realization
(7.1) of W . This is indeed the case as is seen from Theorem 7.2 below which even
exhibits several other spectral invariants. �
Theorem 7.2. Let W be an operator function, analytic on an open neighborhood
of a Cauchy contour Γ, and with values that are operators on a Banach space Y .
Let (7.1) be a realization of W , i.e., W (λ) = IY + C(λIX − A)−1B, and suppose
Γ splits the spectrum of A. In addition, assume that Γ also splits the spectrum of
A× = A−BC. Introduce

P = P (A; Γ), M = ImP, P× = P (A×; Γ), M× = KerP×.

Then the quantities

dim(M ∩M×), dim
(

X

M +M×

)
,

dim
(

M ∩M× ∩ KerC ∩KerCA ∩ · · · ∩KerCAk−1

M ∩M× ∩ KerC ∩KerCA ∩ · · · ∩KerCAk

)
, k = 0, 1, 2 . . . ,

dim
(

M +M× + ImB + ImAB + · · ·+ ImABk

M +M× + ImB + ImAB + · · ·+ ImABk−1

)
, k = 0, 1, 2 . . . ,

depend on W only and do not depend on the realization (7.1) of W .
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The theorem has an analogue for appropriate closed contours in the Riemann
sphere C∞ like the extended real line or the extended imaginary axis.

To put Theorem 7.2 in context, consider a proper rational matrix function W
having the value Im at infinity. With a realization W (λ) = Im + C(λIn −A)−1B
of W , one can associate the numbers

dim
(
KerC ∩KerCA ∩ · · · ∩KerCAk−1), k = 0, 1, 2, . . . , (7.5)

codim
(
ImB + ImAB + · · ·+ ImABk−1), k = 0, 1, 2, . . . . (7.6)

Here the codimension is taken with respect to Cn. Now realizations of rational
matrix functions are not unique and the above numbers, as well as their differences,
generally vary with different choices of A, B and C in the realization for W . The
above theorem shows that this dependence on the specific form of (7.1) disappears
when one combines the spaces appearing in (7.5) and (7.6) with certain spectral
subspaces of A and A×. We will meet the subspaces featuring in (7.5) and (7.6)
again in Section 8.1.

The proof of Theorem 7.2 is rather complicated and we will devote a separate
section to it.

7.2 Proof of Theorem 7.2

Let W and Γ be as in Theorem 7.2, and suppose we have the realizations

W (λ) = IY + C̃(λIX̃ − Ã)−1B̃, (7.7)

W (λ) = IY + Ĉ(λIX̂ − Â)−1B̂, (7.8)

where Γ splits the spectra of Ã and Ã× as well as those of Â and Â×. In other
words Γ ⊂ ρ(Ã) ∩ ρ(Ã×) ∩ ρ(Â) ∩ ρ(Ã×). Writing

P̃ = P (Ã; Γ), M̃ = Im P̃ , P̃× = P (Ã×; Γ), M̃× = Ker P̃×,

P̂ = P (Â; Γ), M̂ = Im P̂ , P̂× = P (Â×; Γ), M̂× = Ker P̂×,

we need to show that

dim(M̃ ∩ M̃×) = dim(M̂ ∩ M̂×),

dim

(
X̃

M̃ + M̃×

)
= dim

(
X̂

M̂ + M̂×

)
,

dim

(
M̃ ∩ M̃× ∩ Ker C̃ ∩Ker C̃Ã ∩ · · · ∩Ker C̃Ãk−1

M̃ ∩ M̃× ∩ Ker C̃ ∩Ker C̃Ã ∩ · · · ∩Ker C̃Ãk−1 ∩Ker C̃Ãk

)

= dim

(
M̂ ∩ M̂× ∩ Ker Ĉ ∩Ker ĈÂ ∩ · · · ∩Ker ĈÂk−1

M̂ ∩ M̂× ∩ Ker Ĉ ∩Ker ĈÂ ∩ · · · ∩Ker ĈÂk−1 ∩Ker ĈÂk

)
,
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dim

(
M̃ + M̃× + Im B̃ + Im ÃB̃ + · · ·+ Im ÃB̃k−1 + Im ÃB̃k

M̃ + M̃× + Im B̃ + Im ÃB̃ + · · ·+ Im ÃB̃k−1

)

= dim

(
M̂ + M̂× + Im B̂ + Im ÂB̂ + · · ·+ Im ÂB̂k−1 + Im ÂB̂k

M̂ + M̂× + Im B̂ + Im ÂB̂ + · · ·+ Im ÂB̂k−1

)
.

Here k = 0, 1, 2, . . . .
It is convenient to first present a series of auxiliary results. These concern

the operators Ψ̃ and Ψ̂ given by the integrals

Ψ̃ =
1
2πi

∫
Γ

(λ− Â×)−1B̂C̃(λ− Ã)−1 dλ, (7.9)

Ψ̂ =
1
2πi

∫
Γ

(λ− Ã×)−1B̃Ĉ(λ− Â)−1 dλ. (7.10)

Note that Ψ̃ : X̃ → X̂ and Ψ̂ : X̂ → X̃.

Lemma 7.3. The operators Ψ̃ and Ψ̂ also admit the representation:

Ψ̃ =
1
2πi

∫
Γ

(λ− Â)−1B̂C̃(λ− Ã×)−1 dλ, (7.11)

Ψ̂ =
1
2πi

∫
Γ

(λ− Ã)−1B̃Ĉ(λ− Â×)−1 dλ, (7.12)

Proof. From Theorem 2.4 we know that

W (λ)C̃(λ− Ã×)−1 = C̃(λ− Ã)−1, W (λ)Ĉ(λ− Â×)−1 = Ĉ(λ− Â)−1,

(λ− Ã×)−1B̃W (λ) = (λ− Ã)−1B̃, (λ− Â×)−1B̂W (λ) = (λ − Â)−1B̂.

Now make the appropriate substitutions. �
Lemma 7.4. For the products of Ψ̃ and Ψ̂ the following identities hold:

Ψ̂Ψ̃ = (P̃× − P̃ )2, Ψ̃Ψ̂ = (P̂× − P̂ )2.

Proof. It is assumed that Γ ⊂ ρ(Ã) ∩ ρ(Â). For λ ∈ Γ, we have

C̃(λ− Ã)−1(μ− Ã)−1B̃ = Ĉ(λ− Â)−1(μ− Â)−1B̂. (7.13)

Indeed, taking advantage of the resolvent identity, we get for λ ∈ Γ,
(μ− λ)C̃(λ− Ã)−1(μ− Ã)−1B̃

= C̃
(
(λ− Ã)−1 − (μ− Ã)−1

)
B̃

= C̃(λ− Ã)−1B̃ − C̃(μ− Ã)−1B̃
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=
(
W (λ)− I

)− (W (μ) − I
)

= Ĉ(λ− Â)−1B̂ − Ĉ(μ− Â)−1B̂

= Ĉ
(
(λ− Â)−1 − (μ− Â)−1

)
B̂

= (μ− λ)Ĉ(λ− Â)−1(μ− Â)−1B̂.

Now, when λ 	= μ, divide by μ− λ; for λ = μ, employ a continuity argument.
To compute Ψ̂Ψ̃, we use the expression (7.10) for Ψ̂, formula (7.11) for Ψ̃,

and the identity (7.13):

Ψ̂Ψ̃ =
(

1
2πi

)2 ∫
Γ

∫
Γ

(λ− Ã×)−1B̃Ĉ(λ− Â)−1

·(μ− Â)−1B̂C̃(μ− Ã×)−1 dλ dμ

=
(

1
2πi

)2 ∫
Γ

∫
Γ

(λ− Ã×)−1B̃C̃(λ− Ã)−1

·(μ− Ã)−1B̃C̃(μ− Ã×)−1 dλ dμ

=
(

1
2πi

)2 ∫
Γ

∫
Γ

(λ− Ã×)−1(Ã− Ã×)(λ − Ã)−1

·(μ− Ã)−1(Ã− Ã×)(μ− Ã×)−1 dλ dμ

=
(

1
2πi

)2 ∫
Γ

∫
Γ

(
(λ− Ã×)−1 − (λ− Ã)−1)

)
·
(
(μ− Ã×)−1 − (μ− Ã)−1

)
dλ dμ

=
(

1
2πi

∫
Γ

(λ− Ã×)−1 − (λ− Ã)−1 dλ

)2

= (P̃× − P̃ )2.

For Ψ̃Ψ̂ = (P̂×− P̂ )2, interchange the roles of the realizations (7.7) and (7.8). �

Lemma 7.5. The operators Ψ̃ and Ψ̂ satisfy the following intertwining relations:

Ψ̃P̃ = (I − P̂×)Ψ̃, Ψ̃P̃× = (I − P̂ )Ψ̃, (7.14)

Ψ̂P̂ = (I − P̃×)Ψ̂, Ψ̂P̂× = (I − P̃ )Ψ̂. (7.15)

Proof. Focussing on the first identity in (7.14), note that the function

P̂×(λ− Â×)−1B̂C̃(λ − Ã)−1P̃
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is analytic on an open neighborhood of F− ∪Γ. Here F− is the exterior domain of
Γ (including ∞). Furthermore, the expansion of this function at infinity is of the
form λ−2P̂×B̂C̃P̃ plus lower order terms. Hence

1
2πi

∫
Γ

P̂×(λ− Â×)−1B̂C̃(λ− Ã)−1P̃ dλ = 0.

On the other hand (I − P̂×)(λ − Â×)−1B̂C̃(λ − Ã)−1(I − P̃ ) is analytic on an
open neighborhood of F+ ∪ Γ, where F+ is the interior domain of Γ, and so

1
2πi

∫
Γ

(I − P̂×)(λ − Â×)−1B̂C̃(λ− Ã)−1(I − P̃ )dλ = 0.

It follows that

Ψ̃P̃ =
1
2πi

∫
Γ

(λ− Â×)−1B̂C̃(λ− Ã)−1P̃ dλ

=
1
2πi

∫
Γ

(I − P̂×)(λ − Â×)−1B̂C̃(λ− Ã)−1P̃ dλ

=
1
2πi

∫
Γ

(I − P̂×)(λ − Â×)−1B̂C̃(λ− Ã)−1dλ

= (I − P̂×)Ψ̃,

as desired.
This proves the first identity in (7.14). The second identity in (7.14) is proved

in a similar way using the formula for Ψ̃ given by (7.11). The identities in (7.15)
follow from those in (7.14) by interchanging the roles of the realizations (7.7) and
(7.8). �

Lemma 7.6. The operators Ψ̃ and Ψ̂ satisfy the following Lyapunov equations:

Ψ̃Ã− Â×Ψ̃ = B̂C̃P̃ − P̂×B̂C̃, (7.16)

Ψ̃Ã× − ÂΨ̃ = B̂C̃P̃× − P̂ B̂C̃, (7.17)

Ψ̂Â− Ã×Ψ̂ = B̃ĈP̂ − P̃×B̃Ĉ, (7.18)

Ψ̂Â× − ÃΨ̂ = B̃ĈP̂× − P̃ B̃Ĉ. (7.19)

Proof. Using the definition of Ψ̃ via (7.9), we have

Ψ̃Ã =
1
2πi

∫
Γ

(λ− Â×)−1B̂C̃(λ− Ã)−1Ã dλ
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=
1
2πi

∫
Γ

(λ− Â×)−1B̂C̃(λ− Ã)−1(Ã− λI + λI) dλ

=
1
2πi

∫
Γ

λ(λ − Â×)−1B̂C̃(λ− Ã)−1 dλ− 1
2πi

∫
Γ

(λ− Â×)−1B̂C̃ dλ

=
1
2πi

∫
Γ

(λI − Â× + Â×)(λ− Â×)−1B̂C̃(λ− Ã)−1 dλ− P̂×B̂C̃

= B̂C̃P̃ + Â×Ψ̃− P̂×B̂C̃.

This gives (7.16). The identity (7.17) can be proved similarly by using the alter-
native expression for Ψ̃ of Lemma 7.3. For (7.18) and (7.19), use (7.16) and (7.17)
and interchange the roles of of the realizations (7.7) and (7.8). Direct computations
as the one above of course also work. �

Lemma 7.7. The operators Ψ̃, Ψ̂, B̃, B̂, C̃ and Ĉ are related as follows:

Ψ̃B̃ = (P̂ − P̂×)B̂, ĈΨ̃ = C̃(P̃ − P̃×), (7.20)

Ψ̂B̂ = (P̃ − P̃×)B̃, C̃Ψ̂ = Ĉ(P̂ − P̂×). (7.21)

Proof. Using the expression (7.9) for Ψ̃, we have

Ψ̃B̃ =
1
2πi

∫
Γ

(λ− Â×)−1B̂C̃(λ− Ã)−1B̃ dλ

=
1
2πi

∫
Γ

(λ− Â×)−1B̂
(
W1(λ) − I

)
dλ

=
1
2πi

∫
Γ

(λ− Â×)−1B̂
(
W2(λ) − I

)
dλ

=
1
2πi

∫
Γ

(λ− Â×)−1B̂W2(λ) dλ − 1
2πi

∫
Γ

(λ− Â×)−1B̂ dλ.

By Theorem 2.4, we may replace (λ− Â×)−1B̂W (λ) by (λ− Â)−1B̂. Hence

Ψ̃B̃ =
1
2πi

∫
Γ

(λ− Â)−1B̂ dλ − 1
2πi

∫
Γ

(λ− Â×)−1B̂ dλ,

and this can be rewritten as the first part of (7.20). The second part can be proved
via a similar computation. The identities in (7.21) follow by interchanging the roles
of the realizations (7.7) and (7.8). �
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Proof of Theorem 7.2. The proof will be divided into three parts. The first con-
tains some preliminary observations about the spaces M̃, M̃×, M̂ and M̂×, ending
up in an argument establishing the identities

dim(M̃ ∩ M̃×) = dim(M̂ ∩ M̂×), dim

(
X̃

M̃ + M̃×

)
= dim

(
X̂

M̂ + M̂×

)
.

Part 1. We begin by noting that

Ψ̃[M̃ ∩ M̃×] ⊂ M̂ ∩ M̂×, Ψ̃[M̃ + M̃×] ⊂ M̂ + M̂×,

Ψ̂[M̂ ∩ M̂×] ⊂ M̃ ∩ M̃×, Ψ̂[M̂ + M̂×] ⊂ M̃ + M̃×.

To prove this, it suffices to show that

Ψ̃M̃ ⊂ M̂×, Ψ̃M̃× ⊂ M̂, Ψ̂M̂ ⊂ M̃×, Ψ̂M̂× ⊂ M̃.

These inclusions, however, are obvious from (7.14) and (7.15).
Next observe that

M̃ ∩ M̃× ⊂ Ker (I − Ψ̂Ψ̃), M̂ ∩ M̂× ⊂ Ker (I − Ψ̃Ψ̂), (7.22)

M̃ + M̃× ⊃ Im
(
I − Ψ̂Ψ̃

)
, M̂ + M̂× ⊃ Im

(
I − Ψ̃Ψ̂

)
. (7.23)

The formulas concerning the product Ψ̂Ψ̃, follow from

I − Ψ̂Ψ̃ = P̃ P̃× + (I − P̃×)(I − P̃ ),

which, in turn, is immediate from Lemma 7.4. The two expressions involving the
product Ψ̃Ψ̂ are obtained by interchanging the roles of the realizations (7.7) and
(7.8).

Consider the restriction operators

Ψ̃|
M̃∩M̃× : M̃ ∩ M̃× → M̂ ∩ M̂×,

Ψ̂|
M̂∩M̂× : M̂ ∩ M̂× → M̃ ∩ M̃×.

From (7.22) it is clear that these operators are each others inverse. Hence M̃ ∩M̃×

and M̂ ∩M̂× are linearly isomorphic and so they have the same (possibly infinite)
dimension. Next we turn to the operators

Φ̃ :
X̃

M̃ + M̃×
→ X̂

M̂ + M̂×
, Φ̂ :

X̂

M̂ + M̂×
→ X̃

M̃ + M̃×
,

induced by Ψ̃ and |̂Ψ, respectively. These are well-defined because of the inclusions
Ψ̃[M̃ +M̃×] ⊂ M̂ +M̂× and Ψ̂[M̂ +M̂×] ⊂ M̃ +M̃×. Also it follows from (7.23)
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that Φ̃ and Φ̂ are each other’s inverse. Thus the quotient spaces X̃/
(
M̃+M̃×) and

X̂/
(
M̂ + M̂×) are linearly isomorphic. In particular they have the same (possibly

infinite) dimension.
Part 2. In this part of the proof we shall verify that for all nonnegative integers k
the following identities hold:

dim

(
M̃ ∩ M̃× ∩ Ker C̃ ∩Ker C̃Ã ∩ · · · ∩Ker C̃Ãk−1

M̃ ∩ M̃× ∩ Ker C̃ ∩Ker C̃Ã ∩ · · · ∩Ker C̃Ãk−1 ∩Ker C̃Ãk

)

= dim

(
M̂ ∩ M̂× ∩ Ker Ĉ ∩Ker ĈÂ ∩ · · · ∩Ker ĈÂk−1

M̂ ∩ M̂× ∩ Ker Ĉ ∩Ker ĈÂ ∩ · · · ∩Ker ĈÂk−1 ∩Ker C̃Ãk

)
.

This will be done by showing that the quotient spaces appearing in these identities
are linearly isomorphic. To facilitate the discussion, we adopt the notation

Ker k(C̃|Ã) = Ker C̃ ∩ Ker C̃Ã ∩ · · · ∩ Ker C̃Ãk−1,

where, following standard convention, Ker 0(C̃|Ã) is read as X̃. Of course the
notation Ker k(Ĉ|Â) is defined similarly. First we shall prove that the operator Ψ̃
maps M̃ ∩ M̃× ∩ Ker k(C̃|Ã) into M̂ ∩ M̂× ∩ Ker k(Ĉ|Â).

This has already been established for k = 0 (Part 1). For k = 1 it must be
proved that

Ψ̃
[
M̃ ∩ M̃× ∩Ker C̃] ⊂ M̂ ∩ M̂× ∩Ker Ĉ.

We know already that Ψ̃
[
M̃ ∩ M̃×] ⊂ M̂ ∩ M̂×, and so it is enough to derive

the inclusion Ψ̃
[
M̃ ∩ M̃× ∩ Ker C̃] ⊂ Ker Ĉ or, what comes down to the same,

M̃ ∩ M̃× ∩Ker C̃ ⊂ Ker ĈΨ̃. The latter, however, is immediate from the identity
ĈΨ̃ = −C̃(I − P̃ )− C̃P̃× + C̃ for which we refer to Lemma 7.7.

We proceed by induction. Let k be a nonnegative integer and suppose that
the operator Ψ̃ maps M̃ ∩ M̃×∩ Ker k(C̃|Ã) into M̂ ∩ M̂×∩ Ker k(Ĉ|Â). We shall
show that the same is true with k replaced by k + 1. Clearly

M̃ ∩ M̃× ∩ Ker k+1(C̃|Ã) = M̃ ∩ M̃× ∩ Ker k(C̃|Ã) ∩ Ker C̃Ãk,

and similarly with M̃, M̃×, Ã and C̃ replaced by M̂, M̂×, Â and Ĉ, respectively.
Hence, in view of the induction hypothesis, it is sufficient to verify that Ψ̃ maps
the space M̃ ∩ M̃× ∩ Ker k+1(C̃|Ã) into Ker ĈÂk. In other words, what we need
is the inclusion

Ker ĈÂkΨ̃ ⊂ M̃ ∩ M̃× ∩ Ker k+1(C̃|Ã). (7.24)

With the help of (the second identity in) Lemma 7.6, the operator ĈÂkΨ̃ can be
written as

ĈÂkΨ̃ = ĈÂk−1(−B̂C̃P̃× + P̂ B̂C̃ + Ψ̃Ã×)

= ĈÂk−1(− B̂C̃P̃× + (P̂ B̂ − Ψ̃B̃)C̃ + Ψ̃Ã
)
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and we may conclude that

Ker ĈÂkΨ̃ ⊃ M̃× ∩ Ker C̃ ∩ Ker ĈÂk−1Ψ̃Ã. (7.25)

Now Ker ĈÂk−1 ⊃ M̂ ∩ M̂× ∩ Ker k(Ĉ|Â). Employing the induction hypothesis
once again gives Ker ĈÂk−1 ⊃ Ψ̃

[
M̃ ∩ M̃× ∩ Ker k(C̃|Ã)

]
, i.e.,

Ker ĈÂk−1Ψ̃ ⊃ M̃ ∩ M̃× ∩ Ker k(C̃|Ã).
But then

Ker ĈÂk−1Ψ̃Ã = Ã−1
[
Ker ĈÂk−1Ψ̃

]
⊃ Ã−1

[
M̃ ∩ M̃× ∩ Ker k(C̃|Ã)

]
= Ã−1

[
M̃
] ∩ Ã−1

[
M̃×] ∩ Ã−1

[
Ker k(C̃|Ã)

]
⊃ M̃ ∩ (Ã× + B̃C̃

)−1[M̃×] ∩ Ã−1
[
Ker k(C̃|Ã)

]
⊃ M̃ ∩ Ã×−1

[
M̂×] ∩ Ker C̃ ∩ Ã−1

[
Ker k(C̃|Ã)

]
⊃ M̃ ∩ M̃× ∩ Ker C̃ ∩ Ã−1

[
Ker k(C̃|Ã)

]
,

and hence, taking into account (7.25),

Ker ĈÂkΨ̃ ⊃ M̃ ∩ M̃× ∩ Ker C̃ ∩ Ã−1
[
Ker k(C̃|Ã)

]
.

As Ker C̃ ∩ Ã−1
[
Ker k(C̃|Ã)] = Ker k+1(C̃|Ã), the inclusion (7.24) follows.

Fix the nonnegative integer k. As we have seen, the linear operator Ψ̃ maps
M̃ ∩ M̃× ∩ Ker k(C̃|Ã) into M̂ ∩ M̂× ∩ Ker k(Ĉ|Â). Likewise Ψ̂ maps the space
M̂∩M̂×∩Ker k(Ĉ|Ã) into M̃∩M̃×∩Ker k(C̃|Ã). The same is true with k replaced
by k + 1. But then the linear operators

Θ̃k :
M̃ ∩ M̃× ∩Ker k(C̃|Ã)

M̃ ∩ M̃× ∩Ker k+1(C̃|Ã)
→ M̂ ∩ M̂× ∩Ker k(Ĉ|Â)

M̂ ∩ M̂× ∩Ker k+1(Ĉ|Â)
, (7.26)

Θ̂k :
M̂ ∩ M̂× ∩Ker k(Ĉ|Â)

M̂ ∩ M̂× ∩Ker k+1(Ĉ|Â)
→ M̃ ∩ M̃× ∩Ker k(C̃|Ã)

M̃ ∩ M̃× ∩Ker k+1(C̃|Ã)
, (7.27)

induced by Ψ̃ and Ψ̂, respectively, are well-defined. They are also each others
inverse. This can be deduced easily from

M̃ ∩ M̃× ∩ Ker k(C̃|Ã) ⊂ Ker (I − Ψ̂Ψ̃),

M̂ ∩ M̂× ∩ Ker k(Ĉ|Â) ⊂ Ker (I − Ψ̃Ψ̂),
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two inclusions which are immediate from (7.22). Thus the quotient spaces appear-
ing in (7.26) and (7.27) are linearly isomorphic. In particular they have the same
(possibly infinite) dimension.
Part 3. Finally we shall prove that the identities

dim

(
M̃ + M̃× + Im B̃ + Im ÃB̃ + · · ·+ Im ÃB̃k−1 + Im ÃB̃k

M̃ + M̃× + Im B̃ + Im ÃB̃ + · · ·+ Im ÃB̃k−1

)

= dim

(
M̂ + M̂× + Im B̂ + Im ÂB̂ + · · ·+ Im ÂB̂k−1 + Im ÂB̂k

M̂ + M̂× + Im B̂ + Im ÂB̂ + · · ·+ Im ÂB̂k−1

)
are valid for all nonnegative integers k. This will be done by showing that the
quotient spaces appearing in these identities are linearly isomorphic. To facilitate
the discussion, we adopt the notation

Im k(Ã|B̃) = Im B̃ + Im ÃB̃ + · · · + Im ÃB̃k−1,

where, following standard convention, Im 0(Ã|B̃) is read as {0}. Of course the
notation Im k(Â|B̂) is defined similarly. First we shall verify that the operator Ψ̃
maps M̃ + M̃× + Im k(Ã|B̃) into M̂ + M̂× + Im k(Â|B̂).

This has already been established for k = 0 (Part 1). For k = 1 it must be
proved that

Ψ̃
[
M̃ + M̃× + Im B̃

] ⊂ M̂ + M̂× + Im B̂.

We know already that Ψ̃
[
M̃ + M̃×] ⊂ M̂ + M̂×, and so it is enough to derive

the inclusion Ψ̃
[
Im B̃] ⊂ M̂ + M̂× + Im B̂ or, what comes down to the same,

Im Ψ̃B̃ ⊂ M̂ + M̂× + Im B̂. The latter, however, is immediate from the identity
Ψ̃B̃ = P̂ B̂ + (I − P̂×)B̂ − B̂ for which we refer to Lemma 7.7.

We proceed by induction. Let k be a positive integer and suppose that the
operator Ψ̃ maps the space M̃ + M̃×+ Im k(Ã|B̃) into M̂ + M̂×+ Im k(Â|B̂). We
shall show that the same is true with k replaced by k + 1. Clearly

M̃ + M̃× + Im k+1(Ã|B̃) = M̃ + M̃× + Im k(Ã|B̃) + Im ÃkB̃,

and similarly with M̃, M̃×, Ã and B̃ replaced by M̂, M̂×, Â and B̂, respectively.
Hence, in view of the induction hypothesis, it suffices to verify that Ψ̃ maps Im ÃkB̃
into M̂ + M̂× + Im k+1(Â|B̂). In other words, what we need is the inclusion

Im Ψ̃ÃkB̃ ⊂ M̂ + M̂× + Im k(Â|B̂). (7.28)

With the help of (the first identity in) Lemma 7.6, the operator Ψ̃ÃkB̃ can be
written as

Ψ̃ÃkB̃ = (B̂C̃P̃ − P̂×B̂C̃ + Â×Ψ̃)Ãk−1B̃

=
(
(I − P̂×)B̂C̃ + B̂(C̃P̃ − C̃ − ĈΨ̃) + ÂΨ̃

)
Ãk−1B̃,
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and we may conclude that

Im Ψ̃ÃkB̃ ⊂ M̂× + Im B̂ + Im ÂΨ̃Ãk−1B̃. (7.29)

Now Im Ãk−1B̃ ⊂ M̃ + M̃× + Im k(Ã|B̃). Employing the induction hypothesis
once again gives Ψ̃

[
Im Ãk−1B̃

] ⊂ M̂ + M̂× + Im k(Â|B̂), i.e.,

Im Ψ̃Ãk−1B̃ ⊂ M̂ + M̂× + Im k(Â|B̂).
But then

Im ÂΨ̃Ãk−1B̃ = Â
[
Im Ψ̃Ãk−1B̃

]
⊂ Â

[
M̂ + M̂× + Im k(Â|B̂)

]
= Â

[
M̂
]
+ Â
[
M̂×]+ Â

[
Im k(Â|B̂)

]
⊂ M̂ +

(
Â× + B̂Ĉ

)
[M̂×] + Â

[
Im k(Â|B̂)

]
⊂ M̂ + Â×

[
M̂×]+ Im B̂ + Â

[
Im k(Â|B̂)

]
⊂ M̂ + M̂× + Im B̂ + Â

[
Im k(Â|B̂)

]
,

and hence, taking into account (7.29),

Im Ψ̃ÃkB̃ ⊂ M̂ + M̂× + Im B̂ + Â
[
Im k(Â|B̂)

]
.

As Im B̂ + Â
[
Im k(Â|B̂)

]
= Im k+1(Â|B̂), the inclusion (7.28) follows.

Fix the nonnegative integer k. As we have seen, the linear operator Ψ̃ maps
M̃ + M̃× + Im k(Ã|B̃) into M̂ + M̂× + Im k(Â|B̂). Likewise Ψ̂ maps the space
M̂+M̂×+ Im k(Â|B̂) into M̃+M̃×+Im k(Ã|B̃). The same is true with k replaced
by k + 1. But then the linear operators

Φ̃k :
M̃ + M̃× + Im k(Ã|B̃)

M̃ + M̃× ∩ Im k+1(Ã|B̃)
→ M̂ + M̂× + Im k(Â|B̂)

M̂ + M̂× + Im k+1(Â|B̂)
, (7.30)

Φ̂k :
M̂ + M̂× + Im k(Â|B̂)

M̂ + M̂× ∩ Im k+1(Â|B̂)
→ M̃ + M̃× + Im k(Ã|B̃)

M̃ + M̃× + Im k+1(Ã|B̃)
(7.31)

induced by Ψ̃ and Ψ̂, respectively, are well-defined. They are also each other’s
inverse. This can be deduced easily from

M̃ + M̃× + Im k(C̃|Ã) ⊃ Im (I − Ψ̂Ψ̃),

M̂ + M̂× + Im k(Ĉ|Â), ⊃ Ker (I − Ψ̃Ψ̂),
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two inclusion relations which are immediate from (7.23). Thus the quotient spaces
appearing in (7.30) and (7.31) are linearly isomorphic. In particular they have the
same (possibly infinite) dimension. �

The symmetry in the arguments employed in the above proof (Parts 2 and
3 especially) suggests the possible use of a duality reasoning. Working in a finite
dimensional context this line of approach is indeed possible. In the infinite di-
mensional situation, however, it does not work, an obstacle being that (sums of)
operator ranges need not be closed.

7.3 Wiener-Hopf factorization and spectral invariants

Let Y, W, Γ, F+ and F− be as in the preceding two sections, and let ε+, ε− ∈ C

be points in F+ and F−, respectively. By a right Wiener-Hopf factorization of W
with respect to Γ (and the points ε+ and ε−) we mean a factorization

W (λ) = W−(λ)D(λ)W+(λ), λ ∈ Γ, (7.32)

where the factors W− and W+ are operator-valued functions, the values being
operators on Y , such that

(i) W− is analytic on F− and continuous on F−,

(ii) W+ is analytic on F+ and continuous on F+,

(iii) W− and W+ take invertible values on F− and F+, respectively,

(iv) the middle term D in (7.32) has the form

D(λ) = Π0 +
r∑

j=1

(
λ− ε+
λ− ε−

)κj

Πj , λ ∈ Γ, (7.33)

where κ1, . . . , κr are non-zero integers, κ1 ≤ κ2 ≤ · · · ≤ κr, the operators
Π1, . . . ,Πr are mutually disjoint rank 1 projections on Y , and

Π0 = IY − (Π1 + · · ·+ Πr)

so Π0 is a projection disjoint from Π1, . . . ,Πr.

A necessary condition for such a factorization to exist is that W takes invertible
values on Γ. In terms of a realization of W on Γ this means that Γ splits the
spectrum of the associate main operator (see again Theorem 2.4). If in (7.32) the
factorsW− andW+ are interchanged, we speak of a left Wiener-Hopf factorization.
We will focus on the right version; for the left variant analogous results hold.

A few remarks are in order. Suppose W admits a right Wiener-Hopf factor-
ization with respect to Γ and the points ε+ ∈ F+ and ε− ∈ F−. Then W also
admits a right Wiener-Hopf factorization with respect to Γ and any other two
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points γ+ ∈ F+ and γ− ∈ F−. For γ− in the finite complex plane this is clear from
the simple identity(

λ− ε+
λ− ε−

)
=
(

λ− ε+
λ− γ+

)(
λ− γ+
λ− γ−

)(
λ− γ−
λ− ε−

)
.

For γ− =∞, use (
λ− ε+
λ− ε−

)
=
(

λ− ε+
λ− γ+

)(
λ− γ+

)( 1
λ− ε−

)
.

This brings the middle term D(λ) into the form

D(λ) = Π0 +
r∑

j=1

(
λ− γ+

)κjΠj , λ ∈ Γ. (7.34)

Note that the scalar functions
(
λ − γ+

)κj featured in the latter expression have
their zeros and poles in γ+ and ∞. When the origin belongs to F+, one can take
γ+ = 0 and (7.34) becomes

D(λ) = Π0 +
r∑

j=1

λκjΠj , λ ∈ Γ.

This type of middle term plays a role in the study of Toeplitz equations where Γ
is taken to be the unit circle (see [52], Chapter XXIV).

Although a right Wiener-Hopf factorization is (generally) not unique, the
non-zero integers κ1, . . . , κr are. They are called the right (Wiener-Hopf ) fac-
torization indices of W with respect to Γ. Left factorization indices are defined
similarly. Sometimes the term partial indices is used instead of factorization in-
dices. Finally, we mention that right (left) canonical factorization corresponds to
the case when the right (left) factorization indices are all zero.

For the convenience of the reader, we recall (from the previous section) that
Ker k(C|A) and Im k(A|B) are defined as

Ker k(C|A) = KerC ∩KerCA ∩ · · · ∩KerCAk−1,

Im k(A|B) = ImB + ImAB + · · ·+ ImAk−1B.

Theorem 7.8. Let the function W be given by the realization (7.1), i.e,

W (λ) = IY + C(λIX −A)−1B,

where Γ splits the spectrum of A. Then W admits a right Wiener-Hopf factoriza-
tion with respect to Γ if and only if the following two conditions are satisfied:

(a) Γ splits the spectrum of A× = A−BC,
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(b) dim
(
M ∩M×) < ∞ and dim

(
X

M +M×

)
< ∞,

where M = ImP (A; Γ) and M× = KerP (A×; Γ). In that case, the right factor-
ization indices of W can be described in terms of the operators appearing in (7.1)
as follows:

(c) the number s of negative right factorization indices and the negative right
factorization indices −α1, . . . ,−αs (in the ordinary order: −α1 ≤ · · · ≤ −αs)
themselves are given by

s = dim
(

M ∩M×

M ∩M× ∩ KerC

)
,

αj = �

{
k = 1, 2, . . . | dim

(
M ∩M× ∩ Ker k−1(C|A)
M ∩M× ∩ Ker k(C|A)

)
≥ j

}
,

j = 1, . . . , s,

(d) the number t of positive right factorization indices and the positive right fac-
torization indices ω1, . . . , ωt (in reversed order: ωt ≤ · · · ≤ ω1) themselves
are given by

t = dim
(

M +M× + ImB

M +M×

)
,

ωj = �

{
k = 1, 2, . . . | dim

(
M +M× + Im k(A|B)

M +M× + Im k−1(A|B)
)
≥ j

}
,

j = 1, . . . , t.

As was already indicated above, for left Wiener-Hopf factorizations an anal-
ogous theorem holds. The theorem also has an analogue for appropriate closed
contours in the Riemann sphere C∞ like the extended real line or the extended
imaginary axis.

Proof. For the (long and complicated) proof of the “if part” of Theorem 7.8 we
refer to [17]. Here we shall concentrate on the “only if part” and the description of
the right factorization indices. So we shall assume that W admits a Wiener-Hopf
factorization (7.32) with respect to the contour Γ and, say, the points ε+ ∈ F+
and ε− ∈ F−. According to Theorem 7.2 it suffices to prove that there exists a
special realization for W , for convenience also written as (7.1), such that Γ splits
the spectra of A and A× and for which (b)–(d) hold. The argument consists of
several steps.
Step 1. Write the negative right factorization indices of W in the ordinary order (so
from small to large) as −α1, . . . ,−αs, and the positive right factorization indices
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in the reversed order (so from large to small) as ω1, . . . , ωt:

−α1 ≤ · · · ≤ −αs < 0 < ωt ≤ · · · ≤ ω1. (7.35)

Then D can be written in the form

D(λ) = P0 +
s∑

j=1

(
λ− ε−
λ − ε+

)αj

P−j +
1∑

j=t

(
λ− ε+
λ− ε−

)ωj

Pj , (7.36)

where P−1, . . . , P−s, Pt, . . . , P1 are mutually disjoint rank 1 projections on Y , and
P0 = IY − (P−1 + · · ·+ P−s + Pt + · · ·+ P1), so P0 is a projection disjoint from
P−1, . . . , P−s, Pt, . . . , P1. For definiteness, we shall assume that s and t are both
positive.
Step 2. Fix j among the integers 1, . . . , s, and let D−j (λ) be the scalar function
given by

D−j (λ) =
(

λ− ε−
λ− ε+

)αj

, λ 	= ε+.

Write J−j for the lower triangular Jordan block with eigenvalue ε+ and order αj ,
so that σ(J−j ) = {ε+} . Further introduce

B−j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ε+ − ε−)αj

(
αj

αj

)
...

(ε+ − ε−)2
(

αj

2

)
(ε+ − ε−)

(
αj

1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C−j =
[
0 . . . 0 1

]
.

Then D−j (λ) = 1 + C−j (λ − J−j )
−1B−j is a (minimal) realization of D−j . Now

J−×j − ε−Iαj is similar with the lower triangular nilpotent Jordan block of order
αj and having eigenvalue ε+, a similarity being given by the upper triangular
matrix [

(ε+ − ε−)ν−μ

(
ν − 1
ν − μ

) ]αj

μ,ν=1

,

where
(

ν−1
μ−1
)
is read as zero for μ > ν. Thus σ

(
J−×j

)
= {ε−}.

Clearly P
(
J−j ; Γ

)
= I and P

(
J−×j ; Γ

)
= 0. Hence

ImP
(
J−j ; Γ

)
= KerP

(
J−×j ; Γ

)
= Cαj ,
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and so, trivially,
Im k

(
J−j B−j

)
= C αj , k = 0, 1, . . . . (7.37)

Furthermore, as is easily verified,

Ker k

(
C−j |J−j

)
= C αj−k � {0}k, k = 0, 1, . . . , (7.38)

where the right-hand side of the equality is read as {0}αj for k ≥ αj .

Step 3. Take j among the integers 1, . . . , t, and let D+
j (λ) be the scalar function

given by

D+
j (λ) =

(
λ− ε+
λ− ε−

)ωj

, λ 	= ε−.

Write J+j for the lower triangular Jordan block with eigenvalue ε− and order ωj ,
so that σ(J−j ) = {ε−} . Further introduce

B+
j =

⎡⎢⎢⎢⎢⎢⎣
1

0
...

0

⎤⎥⎥⎥⎥⎥⎦ ,

C+
j =

[
(ε− − ε+)

(
ωj

1

)
(ε− − ε+)2

(
ωj

2

)
. . . (ε− − ε+)ωj

(
ωj

ωj

) ]
.

Then D+
j (λ) = 1+C+

j (λ−J+j )
−1B+

j is a (minimal) realization of D+
j . Analogously

to what we saw in the previous step for the matrix J−×j − ε−Iαj , the matrix
J+×j − ε+Iωj is similar with the lower triangular nilpotent Jordan block of order
ωj and having ε+ as eigenvalue. Thus σ

(
J+×j

)
= {ε+}.

Clearly P
(
J+j ; Γ

)
= 0 and P

(
J+×j ; Γ

)
= I. Hence

ImP
(
J−j ; Γ

)
= KerP

(
J−×j ; Γ

)
= {0}ωj ,

and so, trivially,

Ker k

(
C+

j |J+j
)
= {0}ωj , k = 0, 1, . . . . (7.39)

Furthermore, as is easily verified,

Im k

(
J+j |B+

j

)
= C k � {0}ωj−k, k = 0, 1 . . . , (7.40)

where the right-hand side of the equality is read as Cωj for k ≥ ωj .
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Step 4. Let D0(λ) be the diagonal matrix given by

D0(λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D−1 (λ)
. . .

D−s (λ)

D+
t (λ)

. . .

D+
1 (λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.41)

i.e., D0(λ) is the direct sum of the matrices D−1 (λ), . . . , D
−
s (λ), D

+
t (λ), . . . , D

+
1 (λ).

Then D0 is a rational m × m matrix function, where m = s + t. To obtain a
realization for D0, we introduce n = α1 + · · ·+ αs + ωt + · · ·+ ω1, and introduce
an n× n matrix A0, an n×m matrix B0 and an m× n matrix C0 as follows: A0

is the direct sum of the matrices J−1 , . . . , J−s , J+t , . . . , J+1 , B0 is the direct sum of
the matrices B−1 , . . . , B−s , B+

t , . . . , B+
1 , and C0 is the direct sum of the matrices

C−1 , . . . , C−s , C+
t , . . . , C+

1 . Then, indeed, D0(λ) = Im + C0(λIn − A0)−1B0 is a
(minimal) realization.

Obviously, Γ splits the spectra of A0 and A×0 = A0 − B0C0. In fact, these
spectra coincide with {ε+, ε−}. (Without the assumption introduced in Step 1
that s and t are both positive, we would have that the spectra of A0 and A×0 are
subsets of {ε+, ε−}, and these inclusions are both proper if and only if one of the
integers s or t equals zero.) Put M0 = ImP (A0; Γ) and M×

0 = KerP (A×0 ; Γ). Then

M0 = M×
0 = Cα1 � · · ·� Cαs � {0}ωt � · · ·� {0}ω1. (7.42)

Further we have, for k = 1, 2, . . . ,

Ker k(C0|A0) = Ker k(C−1 |J−1 )� · · ·�Ker k(C−s |J−s )� {0}ωt � · · ·� {0}ω1,

Im k(A0|B0) = Cα1 � · · ·� Cαs � Im k(J+t |B+
t ))� · · ·� Im k(J+1 |B+

1 ),

and

M0 ∩M×
0 ∩Ker k(C0|A0) = Ker k(C0|A0), (7.43)

M0 +M×
0 + Im k(A0|B0) = Im k(A0|B0). (7.44)

Here we used (7.39) and (7.37).
It is clear from (7.42) that

dim
(
M0 ∩M×

0

)
= α1 + · · ·+ αs.

Combining (7.43) and (7.38), we get

dim
(
M0 ∩M×

0 ∩Ker k(C0|A0)
)
= max{0, α1 − k}+ · · ·+max{0, αs − k}.
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In particular

dim
(
M0 ∩M×

0 ∩KerC0)
)
= (α1 − 1) + · · ·+ (αs − 1),

and it follows that

dim
(

M0 ∩M×
0

M0 ∩M×
0 ∩ KerC0

)
= s.

Thus, with M, M×, C replaced by M0, M×
0 , C0, respectively, the first identity in

Theorem 7.8, item (c) is satisfied .
We also have

dim
(

M0 ∩M×
0 ∩ Ker k−1(C0|A0)

M0 ∩M×
0 ∩ Ker k(C0|A0)

)
=

∑
l∈{1,...,s}

(
max{αl−k+1}−max{αl−k})

=
∑

l∈{1,...,s}, αl≥k

1 = �{l = 1, . . . , s |αl ≥ k}.

Now, fix j ∈ {1, . . . , s}. Then
�{l = 1, . . . , s |αl ≥ k} ≥ j ⇔ k ∈ {1, . . . , αj},

and hence
�
{

k = 1, 2, . . . | �{l = 1, . . . , s |αl ≥ k} ≥ j
}
= αj .

Combining these elements we see that, with M, M×, A, B, C replaced by
M0, M×

0 , A0, B0, C0, respectively, the second identity in Theorem 7.8, item (c)
holds too.

For the two identities in Theorem 7.8, item (d), the analogous observation is
true. The arguments are basically the same as the ones presented for item (b).
Step 5. Next we deal with the middle term D in the factorization (7.32), written
in the form (7.36) with −α1, . . . ,−αs, ωt, . . . , ω1 satisfying (7.35), P−1, . . . , P−s,
Pt, . . . , P1 mutually disjoint rank 1 projections on Y and

P0 = IY − (P−1 + · · ·+ P−s + Pt + · · ·+ P1) .

Clearly P0 and P−1 + · · · + P−s + Pt + · · · + P1 are complementary projections.
Put Y0 = KerP0. Then Y0 = ImP−1 � · · ·� P−s � ImPt � · · ·� P1 and so Y0 can
be identified with Cm where, as before, m = s + t. Thus Y = Cm � ImP0 and
with respect to this decomposition D(λ) can be written as an operator matrix

D(λ) =

[
D0(λ) 0

0 I

]
.

Here D0 is given by (7.41) and I is the identity operator on ImP0. Now let

AD = A0, BD =
[

B0 0
]
, CD =

[
C0

0

]
,
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where A0, B0 and C0 are as in Step 4. Then we have the realization

D(λ) = IY + CD(λIn −AD)−1BD,

n = α1+ · · ·+αs+ωt+ · · ·+ω1, with Γ splitting the spectra of AD = A0 and A×D =
A0 − B0C0 = A×0 . Write MD = ImP (AD ; Γ) and M×

D = KerP (A×D; Γ). In
other words, MD = M0 and M×

D = M×
0 where, again, we use the notation of

the previous step. For k = 1, 2, . . . , clearly, Ker k(CD|AD) = Ker k(C0|A0) and
Im k(AD|BD) = Im k(A0|B0. It follows that, with M, M×, A, B, C replaced by
MD, M×

D , AD, BD, CD, respectively, (b)–(d) in Theorem 7.8 are satisfied.
Step 6. We begin this sixth and final step by representing the factors W− and W+

in the Wiener-Hopf factorization (7.32) in the form

W−(λ) = IY + C−(λIX− −A−)−1B−, λ ∈ Ω−,

W+(λ) = IY + C+(λIX+ −A+)−1B+, λ ∈ Ω+,

with

σ(A−) ⊂ F+, σ(A×−) ⊂ F+, σ(A+) ⊂ F−, σ(A×+) ⊂ F−.

Why this can be done is explained in the proof of Theorem 7.1. On Γ we have the
factorization (7.32), and so we can apply the product rule of Section 2.5 to show
that W (λ) = IY + C(λIX −A)−1B, λ ∈ Γ, where

X = X− � Cn � X+, (7.45)

n = α1 + · · · + αs + ωt + · · · + ω1, and A : X → X, B : Y → X and C : X → Y
are given by

A =

⎡⎢⎢⎢⎣
A− B−CD B−C+

0 AD BDC+

0 0 A+

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
B−

BD

B+

⎤⎥⎥⎥⎦ , C =
[

C− CD C+

]
.

Here the operator matrices are taken with respect to the decomposition (7.45).
Now the realization obtained for W this way has the desired properties. This can
be seen as follows.

Obviously Γ splits the spectrum of A and the same is true for A× = A−BC
which has the matrix representation

A× =

⎡⎢⎢⎢⎣
A×− 0 0

−BDC− A×D 0

−B+C− −B+CD A×+

⎤⎥⎥⎥⎦ .
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Let M = ImP (A; Γ) and M× = KerP (A×; Γ). Assume for the moment that we
have established the identities

M ∩M×∩ Ker k(C|A) = {0−}�
(
MD∩M×

D∩Ker k(CD|AD)
)
� {0+}, (7.46)

M +M× + Im k(A|B) = X− �
(
MD +M×

D + Im k(AD|BD)
)

� X+, (7.47)

where 0− is the zero element in X−, 0+ is the zero element in X+ and k is allowed
to take the values 0, 1, 2, . . . . Then it would be clear from the conclusions obtained
in the previous step that (b)–(d) in Theorem 7.8 are met and we would be ready.
So we need to concentrate on (7.46) and (7.47).

Clearly P = P (A; Γ) has the form

P =

⎡⎢⎢⎢⎣
IX− P1 P2

0 P (AD ; Γ) P3

0 0 0

⎤⎥⎥⎥⎦ .

From the fact that P (A; Γ) is a projection one gets the relations

P1P (AD; Γ) = 0, P1P3 = 0, P (AD; Γ)P3 = P3,

(where the two outer ones imply the middle). In turn these give

P =

⎡⎢⎢⎢⎣
IX− −P1 −P2

0 In −P3

0 0 IX+

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

IX− 0 0

0 P (AD; Γ) 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

IX− P1 P2

0 In P3

0 0 IX+

⎤⎥⎥⎥⎦ ,

with the first and last factor in the right-hand side invertible and being each other’s
inverse. Hence

M =

⎡⎢⎢⎢⎣
IX− −P1 −P2

0 In −P3

0 0 IX+

⎤⎥⎥⎥⎦ [X− � MD + {0+}
]
= X− � MD � {0+}.

In the same way one gets M× = {0−}� M×
D � X+, and it follows that

M ∩M× = {0−}�
(
MD ∩M×

D

)
� {0+}, (7.48)

M +M× = X− �
(
MD +M×

D

)
� X+. (7.49)

Thus (7.46) and (7.47) are valid for k = 0.
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To prove (7.46) for arbitrary k we argue as follows. A simple induction argu-
ment shows that CAl is of the form

CAl =

[
∗

(
l−1∑
ν=0

Qν,lCDAν
D

)
+ CDAl

D ∗
]

, l = 0, 1, . . . , (7.50)

where Q0,l, . . . Ql−1,l and the stars denote appropriate but here not explicitly spec-
ified operators. Together with (7.48) this gives that the right-hand side of (7.46)
is contained in the left-hand side. The reverse inclusion can be proved by an in-
duction argument in which (7.50) is employed once more.

Finally let us turn to (7.47). For AlB there is an expression analogous to
(7.50), namely

AlB =

⎡⎢⎢⎢⎣
∗( l−1∑

ν=0

Aν
DBDRν,l

)
+ Al

DBD

∗

⎤⎥⎥⎥⎦ , l = 0, 1, . . . , (7.51)

whereR0,l, . . . Rl−1,l and the stars stand for certain operators. Together with (7.49)
this yields that the left-hand side of (7.47) is contained in the right-hand side. The
reverse inclusion can be proved by an induction argument in which (7.51) is used
once again. �

We close this section with a couple of observations on the dimension numbers
featuring in Theorems 7.2 and 7.8. For shortness sake, introduce

α̂k = dim
(

M ∩M× ∩ Ker k−1(C|A)
M ∩M× ∩ Ker k(C|A)

)
,

ω̂k = dim
(

M +M× + Im k(A|B)
M +M× + Im k−1(A|B)

)
.

Here k may run through the positive integers 1, 2, . . . . Recall that Ker 0(C|A) is
read as X and Im 0(A|B) as {0}, so

α̂1 = dim
(

M ∩M×

M ∩M× ∩ KerC

)
,

ω̂1 = dim
(

M +M× + ImB

M +M×

)
.

Using standard linear algebra arguments it can be shown that the sequences
α̂1, α̂2, . . . and ω̂1, ω̂2, . . . are decreasing, i.e.,

α̂k ≥ α̂k+1, ω̂k ≥ ω̂k+1, k = 1, 2, . . . .
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In addition it can be proved that α̂k and ω̂k vanish for k sufficiently large, provided
that M ∩M× and M +M× have finite dimension and codimension, respectively.
In fact we then even have,

M ∩M× ∩ Ker k(C|A) = {0},
M + M× + Im k(A|B) = X,

again holding for k sufficiently large. The considerations in Step 4 in the above
proof corroborate these facts.

Here are some details for the integers α̂1, α̂2, . . . ; for ω̂1, ω̂2, . . . the situation
is analogous. The mapping

M ∩M× ∩ Ker k(C|A)
M ∩M× ∩ Ker k+1(C|A) �→ M ∩M× ∩ Ker k−1(C|A)

M ∩M× ∩ Ker k(C|A)
induced by A is easily seen to be injective. Hence α̂k+1 ≤ α̂k. Assume now that
M ∩M× has finite dimension. Then there exists a positive integer r such that

M ∩M× ∩ Ker k(C|A) = M ∩M× ∩ Ker r(C|A), k = r, r + 1, . . . .

Evidently M∩M×∩ Ker r(C|A) is invariant under both A and A×. Also A and A×

coincide on M ∩M×∩ Ker r(C|A). As the restriction of A to M and that of A× to
M× have no eigenvalue in common, it follows that M ∩M× ∩ Ker r(C|A) = {0}.

Notes

This chapter is based on the papers [17] and [18]. The material of these papers
relevant for this book has been reorganized and several of the arguments have been
improved. The details are as follows. The “if part” of Theorem 7.1 is a special case
of Theorem 3.1 in [17]; it also has the first part of Theorem 1.5 in [11] as a less
general predecessor. Theorem 7.2 combines Theorems 5.1 and 6.1 of [18] in a
more appropriate formulation. The proof of Theorem 7.2 given in Section 7.2 is
a significant improvement over the argument given in [18]. The results from [17]
and [18] to be mentioned in connection with Theorem 7.8 are Theorem 3.1 and
Corollary 3.2 in [17] and Theorem 1.2 in [18].

The spectral invariants appearing in Theorem 7.2 are closely related to the
block similarity invariants of operator blocks of the first or third kind; see [58],
Section XI.5 in particular. For a review of the theory of possibly non-canonical
Wiener-Hopf factorization of matrix-valued functions taking invertible values, we
refer to the book [29] and the more recent survey article [59]. Wiener-Hopf factor-
ization of operator-valued functions goes back to [71] and [72]; see also the recent
book [73] . The fact that the Wiener-Hopf factorization indices depend on the
given function only (and not on the particular Wiener-Hopf factorization) is well-
known for continuous matrix-valued functions (see [60]) and for certain classes of
continuous operator-valued functions (see [49]). The latter do not cover the class
of operator-valued functions considered in this chapter.





Part IV
Factorization of selfadjoint
rational matrix functions

This part deals with factorization problems for rational matrix functions that have
Hermitian values on the real line, the imaginary axis, or the unit circle. Included
are problems of spectral factorization and pseudo-spectral factorization. The em-
phasis is on positive definite and nonnegative functions. In general, the factoriza-
tions considered are canonical or pseudo-canonical, and they are symmetric in the
sense that they consist of two factors, where the first factor is the adjoint of the
second (relative to the given curve). This part consists of four chapters.

Minimal realizations play an important role in the analysis of rational matrix
functions that have Hermitian values on a curve. These are realization of which the
order of the state matrix is equal to the MacMillan degree of the function. In the
first chapter (Chapter 8) we review the theory of such realizations. Included are
the state space similarity theorem and the minimal factorization theorem. In this
first chapter we also introduce the notion of pseudo-canonical factorization and
describe such factorizations in state space terms. In Chapter 9 we study in a state
space setting spectral factorizations, that is, symmetric canonical factorizations
for rational matrix functions that are positive definite on the unit circle, the real
line or the imaginary axis. Chapter 10 carries out a similar program for non-
negative functions. In this case one has to consider symmetric pseudo-canonical
factorization. In the final chapter (Chapter 11) we present (without proofs) some
background material on matrices in finite dimensional indefinite inner product
spaces, and review the main results from this area that are used in this part and
the other remaining parts.





Chapter 8

Preliminaries concerning
minimal factorization

In this chapter we gather together several results concerning minimal realizations
and minimal factorizations that will play an important role in the sequel. Most of
these results can also be found in Part II of the book [20]. For the reader’s conve-
nience we have chosen to summarize them here (without proofs). Special attention
is given to the notion of pseudo-canonical factorization, which is a generalization
of canonical factorization by allowing singularities on the curve.

This chapter consists of three sections. Sections 8.1 and 8.2 deal with mini-
mal realizations and minimal factorizations, respectively. Section 8.3 is devoted to
pseudo-canonical factorization.

8.1 Minimal realizations

Let W be a proper rational m×m matrix function, and let

W (λ) = D + C(λIn −A)−1B (8.1)

be a realization of W . The realization is said to be minimal if the dimension n of
the state space has the smallest possible value. This smallest possible value is equal
to the McMillan degree of W (see Section 8.5 in [20] for details). The McMillan
degree of W will be denoted by δ(W ).

For a characterization of minimality in terms of the matrices A, B and C, we
need some more terminology. Let A be an n×n matrix, let B be an n×m matrix,
and let C be an m× n matrix. The pair (A, B) is called controllable if

Im (A|B) = ImB + ImAB + · · ·+ ImABn−1 = Cn.
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So (A, B) is controllable if and only if Cn is the unique A-invariant subspace
containing ImB. The pair (C, A) is said to be observable if

Ker (C|A) = KerC ∩KerCA ∩ · · · ∩KerCAn−1 = {0}.

Thus (C, A) is observable if and only if {0} is the unique A-invariant subspace
contained in KerC.

In line with these definitions, the realization (8.1) is called controllable, re-
spectively observable, if the pair (A, B) is controllable, respectively the pair (C, A)
is observable. From Sections 7.1 and 7.3 in [20] we now recall the main results on
minimal realizations in the following two theorems.

Theorem 8.1. A realization of a proper rational matrix function is minimal if and
only if it is controllable and observable.

Theorem 8.2. Let W be a proper rational matrix function and suppose

W (λ) = D1 + C1(λIn −A1)−1B1, (8.2)

W (λ) = D2 + C2(λIn −A2)−1B2, (8.3)

are minimal realizations of W . Then D1 = D2 and there exists a unique invertible
n× n matrix S such that

S−1A1S = A2, S−1B1 = B2, C1S = C2. (8.4)

This second theorem is known as the state space similarity theorem; the
operator S is called a (state space) similarity between the realizations (8.2) and
(8.3).

In the situation where (8.1) is a minimal realization, there is a close connec-
tion between the poles of W and the eigenvalues of A. Obviously, whether or not
the realization is minimal, the poles of W form a subset of σ(A). However, when
the realization is minimal, the spectrum of A coincides with the set of poles of
W . In addition, when W is a square matrix-valued function, and D is invertible
so that A× = A − BD−1C is well-defined, σ(A×) is precisely equal to the set of
zeros of W . Here a zero of W is a pole of the inverse W−1 of W . For further
details, including a more intrinsic definition of the notion of a zero of a rational
matrix function, taking into account multiplicities and pole orders too, see Chap-
ter 8 in [20]. From Chapter 7 in [20] we also recall that (8.1) is minimal when
σ(A) ∩ σ(A×) = ∅.

Next we consider the concept of local minimality. Let λ0 be a point in the
complex plane. The realization (8.1) is called locally minimal at λ0 if

ImPB + ImPAB + · · ·+ ImPABn−1 = ImP, (8.5)

KerCP ∩KerCAP ∩ · · · ∩ KerCAn−1P = KerP, (8.6)
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where P is the Riesz projection of A at λ0. There is a local version of the observa-
tion given at the end of the previous paragraph: if λ0 is not a common eigenvalue
of A and A×, then (8.1) is minimal at λ0. For details see Section 8.4 in [20]) where
it is also shown that the realization (8.1) is minimal if and only if it is minimal at
each point in the complex plane.

We finish this section by reviewing some results on Jordan chains and co-
pole functions. Let W be a rational square matrix-valued function, and let ϕ be
a Cm-valued function which is analytic at λ0 with ϕ(λ0) = 0. We call ϕ a co-pole
function of W at λ0 if W (λ)ϕ(λ) is analytic at λ0 and limλ→λ0 W (λ)ϕ(λ) is non-
zero. For this to happen, it is necessary that detW (λ) does not vanish identically.
As before, let W−1 denote the pointwise inverse of W , i.e., the function determined
by the expression W−1(λ) = W (λ)−1. Now, if ϕ is a co-pole function of W at λ0,
then the function ψ(λ) = W (λ)ϕ(λ) is a so-called root function of W−1 at λ0,
that is, ψ is analytic at λ0 with ψ(λ0) 	= 0 and limλ→λ0 W (λ)−1ψ(λ) = 0. The
converse is also true. A root function of W−1 at λ0 is also referred to as a pole
function of W at λ0 (see [7], page 67).

The next two results have been taken from [20], Section 8.4 (Proposition 8.21
and Corollary 8.22).

Proposition 8.3. Let the rational square matrix-valued function W be given by
the realization (8.1), and let λ0 be an eigenvalue of A. Assume the realization is
minimal at λ0. Let k ≥ 1, and let

ϕ(λ) = (λ− λ0)kϕk + (λ− λ0)k+1ϕk+1 + · · ·
be a co-pole function of W at λ0. Put

xj =
∞∑

ν= k

P (A− λ0)ν−j−1Bϕν , j = 0, . . . , k − 1, (8.7)

where P is the Riesz projection of A corresponding to λ0. Then x0, . . . , xk−1 is a
Jordan chain of A at λ0, that is, x0 	= 0 and

(A− λ0)x0 = 0, (A− λ0)rxk−1 = xk−1−r , r = 0, . . . , k − 1. (8.8)

Moreover, each Jordan chain of A at λ0 is obtained in this way. Finally, if the
chain x0, . . . , xk−1 given by (8.7) is maximal, that is, xk−1 	∈ Im (A − λ0), then
ϕk 	= 0.

With respect to (8.7) there is no convergence issue; actually only a finite
number of terms in the sum are non-zero.

Proposition 8.4. Let the rational square matrix-valued function W be given by the
realization (8.1), and suppose detW (λ) 	≡ 0. Let λ0 be an eigenvalue of A, and
assume that (8.1) is minimal at λ0. If x0, . . . , xk−1 is a Jordan chain of A at λ0,
then Cx0, . . . , Cxk−1 is a Jordan chain of W−1 at λ0, and each Jordan chain of
W−1 at λ0 is obtained in this way.
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For later use (see Section 10.1) we introduce the following terminology sug-
gested by Proposition 8.3. Let W be given by the realization (8.1). If x0, . . . , xk−1
is a Jordan chain of A at λ0, any co-pole function ϕ(λ) =

∑∞
j=k(λ − λ0)jϕj sat-

isfying (8.7) will be called a co-pole function corresponding to the Jordan chain
x0, . . . , xk−1. In this case Cxj is precisely the coefficient of (λ−λ0)r in the Taylor
expansion of W (λ)ϕ(λ) at λ0. To see this, use (8.7) and the fact that the coeffi-
cients in the principal part of the Laurent expansion of W at λ0 are given by the
expression CP (A− λ0)j−1B, where P is the Riesz projection of A corresponding
to the eigenvalue λ0. These observations lie also behind Proposition 8.4 above.

8.2 Minimal factorization

The McMillan degree features a sublogarithmic property. Indeed, if W1 and W2

are rational matrix functions and W = W1W2, that is

W (λ) = W1(λ)W2(λ),

then the McMillan degree of W is less than or equal to the sum of the McMillan
degrees of W1 and W2:

δ(W1W2) ≤ δ(W1) + δ(W2). (8.9)

This is clear from Theorem 2.5 and the definition of the McMillan degree given
in the beginning of the previous section. A factorization W = W1W2 is called
a minimal factorization (involving two factors) if equality occurs, that is, when
δ(W ) = δ(W1) + δ(W2). Intuitively, this means that there is no pole-zero cancel-
lation in the product W1W2; this is made precise in Theorem 9.1 in [20].

Let W (λ) = D+C(λIn−A)−1B be a realization of an m×m rational matrix
function, assume that D is invertible, and let D = D1D2 with D1, D2 m × m
matrices (automatically invertible). Put A× = A−BD−1C. Suppose M, M× is a
pair of subspaces of Cn satisfying

AM ⊂ M, A×M× ⊂M×, M +̇M× = Cn. (8.10)

In that case we know (see Section 2.6) that W admits a factorization W = W1W2

where the factors can be described using the projection Π onto M× along M as
follows:

W1(λ) = D1 + C(λIn −A)−1(I −Π)BD−12 , (8.11)

W2(λ) = D2 +D−11 CΠ(λIn −A)−1B. (8.12)

The next theorem, which is a reformulation of the main result in [20], Sec-
tion 9.1, shows that the above factorization principle yields all minimal factoriza-
tions of W whenever the given realization is minimal.
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Theorem 8.5. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of the
m×m rational matrix-valued function W , and assume D is invertible.

(i) Let D = D1D2 with D1, D2 (invertible) m×m matrices. If a pair of subspaces
M and M× of Cn satisfies (8.10), then the factorization W = W1W2, with
the factors W1 and W2 given by (8.11) and (8.12), is a minimal factorization.

(ii) If W = W1W2 is a minimal factorization of W involving proper rational
m×m matrix functions W1 and W2, then there is a unique pair of subspaces
M and M× satisfying (8.10) such that the factors W1 and W2 are given by
(8.11) and (8.12) where D1 and D2 are the (invertible) values of W1 and W2

at ∞, respectively.

The notion of minimal factorization can be extended to products involving
an arbitrary number of factors. Indeed, a factorization W = W1 · · ·Wk is called a
minimal factorization if

δ(W ) = δ(W1) + · · ·+ δ(Wk). (8.13)

In general all we can say is that the left-hand side of (8.13) does not exceed the
right-hand side.

The special case of complete factorization is of particular interest. Let W
be a rational m ×m matrix-valued function which is biproper , that is, W is an-
alytic at infinity and has an invertible value there. A minimal factorization of
W into biproper rational m × m matrix functions, each having McMillan de-
gree 1, is called a complete factorization of W . The number of factors in such
a complete factorization is necessarily equal to the McMillan degree of W . If
W (λ) = D + C(λIn − A)−1B is a minimal realization of W , then W admits a
complete factorization if and only if the matrices A and A× can be brought into
complementary triangular form, i.e., there is a basis such that, with respect to
this basis, A has upper triangular form and A× has lower triangular form. For
further details, see Chapter 10 in [20]. We shall meet complete factorization later
in Section 17.3.

We conclude this section with some remarks on a local version of minimal
factorization. First we introduce the local (McMillan) degree. Let W be a proper
rational matrix function, let

W (λ) = D + C(λIn −A)−1B (8.14)

be a minimal realization of W , and let μ ∈ C. The algebraic multiplicity af μ
as an eigenvalue of A is called the local (McMillan) degree of W at μ, written
δ(W ;μ). By the state space similarity theorem, this definition does not depend on
the choice of the minimal realization (8.14). For an alternative definition of the
local degree, we refer to Section 8.4 in [20] where the square case is considered. In
that situation, when detW (λ) does not vanish identically, the local degree of W
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at μ coincides with the pole-multiplicity of W at μ in the sense of [20], Section
8.2.

It is obvious, again from Theorem 2.5, that the global sublogarithmic prop-
erty (8.9) has the following local counterpart:

δ(W1W2;μ) ≤ δ(W1 μ) + δ(W2;μ). (8.15)

A factorization W = W1W2 is said to be locally minimal at μ if equality occurs in
(8.15), that is, when δ(W1W2;μ) = δ(W1 μ) + δ(W2;μ). Intuitively, this means
that in the product W1W2 no pole-zero cancellation occurs at the point μ (see
again Theorem 9.1 in [20]). For the case of proper rational matrix functions (as
considered here), the minimality of a factorization comes down to local minimality
at each point in the complex plane. Thus W = W1W2 is a minimal factorization
if and only if

δ(W1W2;λ) = δ(W1 λ) + δ(W2;λ), λ ∈ C;

see Section 9.1 in [20].

8.3 Pseudo-canonical factorization

Let Γ be a Cauchy contour in C. As before, the interior domain of Γ is denoted
by F+, and the exterior domain by F−. By definition (see Chapter 0), ∞ ∈ F−.
Let W be an m×m rational matrix function, possibly having poles and zeros on
Γ. By a right pseudo-canonical factorization of W with respect to Γ we mean a
factorization

W (λ) = W−(λ)W+(λ), λ ∈ Γ, λ not a pole of W, (8.16)

where W− and W+ are rational m×m matrix functions such that W− is analytic
and takes invertible values on F− (i.e., W− has neither poles nor zeros there),
W+ is analytic and takes invertible values on F+ (i.e., W− has neither poles nor
zeros there), and the factorization (8.16) is locally minimal at each point of Γ.
If in (8.16) the factors W− and W+ are interchanged, we speak of a left pseudo-
canonical factorization.

In passing we mention that the definition of pseudo-canonical factorization
given in the second paragraph of [20], Section 9.2 is not quite correct. The point
is that the function W is allowed to have poles and zeros on Γ. This is explicitly
stated in the third paragraph of the section in question, but the formal definition
referred to above in the second paragraph erroneously suggests otherwise.

As for canonical factorization, the notion of pseudo-canonical factorization
extends to factorization with respect to the real line and the imaginary axis. To
be more specific, if Γ is the closure of the real line on the Riemann sphere, then
F+ is the open upper half plane, and F− is the open lower half plane. Replacing R
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by iR means only replacing the open upper half plane by the open left half plane,
and the open lower half plane by the open right half plane.

A pseudo-canonical factorization is not only minimal at each point of Γ but
also at all other points of C and at infinity. This follows from the conditions on
the poles and zeros of the factors W− and W+ in (8.16). Thus a pseudo-canonical
factorization is a minimal factorization. In combination with Theorem 8.5 this fact
makes it possible to describe all right pseudo-canonical factorizations of a biproper
rational matrix function W in terms of a minimal realization of W . The resulting
theorem (which is taken from Section 9.2 in [20]) is given below. In contrast to
the main theorem on canonical factorization (Theorem 3.2) we are forced here to
work with minimal realizations.

Theorem 8.6. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of a
biproper rational matrix-valued function W , and put A× = A−BD−1C. Let Γ be a
Cauchy contour. Let D = D1D2, with D1 and D2 invertible square matrices. Then
there is a one-to-one correspondence between the right pseudo-canonical factoriza-
tions W = W−W+ of W with respect to Γ with W−(∞) = D1 and W+(∞) = D2,
and the pairs of subspaces M, M× of Cn with the following properties:

(i) M is an A-invariant subspace such that the restriction A|M of A to M has
no eigenvalues in F−, and M contains the span of all eigenvectors and gen-
eralized eigenvectors of A corresponding to eigenvalues in F+,

(ii) M× is an A×-invariant subspace such that the restriction A×|M× of A× to
M× has no eigenvalues in F+, and M× contains the span of all eigenvectors
and generalized eigenvectors of A× corresponding to eigenvalues in F−,

(iii) Cn = M +̇M×.

The correspondence is as follows: given a pair of subspaces M, M× of Cn with
the properties (i), (ii) and (iii), a right pseudo-canonical factorization of W with
respect to Γ is given by W (λ) = W−(λ)W+(λ), where

W−(λ) = D1 + C(λIn −A)−1(I −Π)BD−12 , (8.17)

W+(λ) = D2 +D−11 CΠ(λIn −A)−1B, (8.18)

where Π is the projection along M onto M×. Conversely, given a right pseudo-
canonical factorization of W with respect to Γ and with W−(∞) = D1, W+(∞) =
D2, there exists a unique pair of subspaces M, M× with the properties (i), (ii)
and (iii) above, such that the factors W− and W+ are given by (8.17) and (8.18),
respectively.

The span of all eigenvectors and generalized eigenvectors of A corresponding
to eigenvalues in F+ mentioned in (i) is just the spectral subspace of A associ-
ated with the part of the spectrum of A lying in F+. Similarly, the span of all
eigenvectors and generalized eigenvectors of A× featuring in (ii) corresponding to
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eigenvalues in F− is the spectral subspace of A× associated with the part of σ(A×)
lying in F−.

A pair of subspaces M, M× for which (i), (ii) and (iii) hold need not be
unique. In line with this, pseudo-canonical factorizations are generally not unique
either. An example illustrating this is given in [133]; see also Section 9.2 in [20].

Note that for an m×m rational matrix function W , a canonical factorization
of W with respect to the curve Γ is a pseudo-canonical factorization with the
additional property that the factors have no poles or zeros on the curve. In that
case, W has no poles or zeros on Γ also. Conversely, if W has no poles or zeros on
Γ, then any pseudo-canonical factorization W = W1W2 of W is automatically a
canonical factorization. Indeed, if W has no poles or zeros on Γ, then the fact that
the factorizationW = W1W2 is locally minimal at each point of Γ, implies thatW1

and W2 have no poles or zeros on Γ, and thus the pseudo-canonical factorization
W = W1W2 is a canonical one. As a result we have the following special case of
Theorem 8.6.

Theorem 8.7. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of a
biproper rational matrix-valued function W , and put A× = A − BD−1C. Let Γ
be a Cauchy contour. Assume that A has no eigenvalues on Γ. Then W admits
a right canonical factorization with respect to Γ if and only if the following two
conditions are satisfied:

(i) A× has no eigenvalues on Γ,

(ii) Cn = ImP (A; Γ)+̇KerP (A×; Γ).

In that case, the right canonical factorizations with respect to Γ are of the form
W = W−W+, with W− and W+ given by (8.17) and (8.18), where Π is the pro-
jection along ImP (A; Γ) onto KerP (A×; Γ), and where D = D1D2, with D1 and
D2 invertible square matrices. This correspondence is a one-to-one correspondence
between the right canonical factorizations of W and the factorizations of D into
square factors.

Observe that the above theorem is a modest refinement of Theorem 3.2 in
the sense that we allow the value of W at infinity to be an arbitrary invertible
matrix here. The result of the theorem also holds for non-minimal realizations.
The argument for this consists of a straightforward modification of the proof of
Theorem 3.2. Theorem 8.7 allows for analogues in which the Cauchy contour Γ is
replaced by the extended real or imaginary axis.

Notes

The material in the first section is standard and can be found in many textbooks;
see, e.g., [94], or the more recent [33], [85]. The idea of minimal factorization orig-
inates from mathematical systems theory and has been developed systematically
in Chapter 4 of [11] (see also [21]), and with further details in Part II of [20]. An
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extensive analysis of factorization into square degree 1 factors can be found in Part
III of [20]. The analysis involves a connection with a problem of job scheduling
from operations research. Minimal factorization into possibly non-square factors
of McMillan degree 1 is always possible. This has been established in [143]. The
notion of a pseudo-canonical factorization is introduced and developed in [132],
[133].





Chapter 9

Factorization of positive definite
rational matrix functions

The central theme of this chapter is the state space analysis of rational matrix
functions with Hermitian values either on the real line, on the imaginary axis, or
on the unit circle. The main focus will be on rational matrix functions that take
positive definite values on one of these contours. It will be shown that if W is such
a function, then W admits a spectral factorization, i.e., a canonical factorization
W = W−W+ with an additional symmetry between the corresponding factors,
depending on the contour.

This chapter consists of three sections. In Section 9.1 we analyze selfadjoint-
ness of a rational matrix function relative to the real line, the imaginary axis or the
unit circle. The analysis is done in terms of (minimal) realizations of the functions
involved. Elements of the theory of matrices that are selfadjoint with respect to
an indefinite inner product enter into the analysis in a natural way. Section 9.2
deals with rational matrix functions that are positive definite on the real line or
on the imaginary axis. The results of Section 9.1 are used to show that such a
function admits a spectral factorization and in terms of a given realization an ex-
plicit formula for the corresponding spectral factor is given. Section 9.3 presents
an analogous result for rational matrix functions that are positive definite on the
unit circle.

9.1 Preliminaries on selfadjoint rational matrix
functions

Let Γ be one of the following two contours in the complex plane: the real line R,
or the imaginary axis iR. A rational m×m matrix function W is called selfadjoint
on Γ or Hermitian on Γ if for each λ ∈ Γ, λ not a pole of W , the matrix W (λ)
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is selfadjoint or, which is the same, Hermitian. By the uniqueness theorem for
analytic functions, a rational matrix function W is selfadjoint on R if and only if
W (λ) = W (λ̄)∗ for all λ ∈ C, λ not a pole of W . Similarly, W is selfadjoint on iR
if and only if W (λ) = W (−λ̄)∗, λ not a pole of W . From these characterizations
it follows that if W is selfadjoint on Γ and detW (λ) does not vanish identically,
then W−1 is also selfadjoint on Γ.

This section is concerned with the problem how selfadjointness of a rational
matrix function is reflected in properties of the matrices in a minimal realization of
the function. For proper rational matrix functions this is described in the following
theorem.

Theorem 9.1. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of an
m×m rational matrix function. Then the following statements hold:

(i) W is Hermitian on the real line if and only if D = D∗ and there exists an
n× n matrix H such that

HA = A∗H, HB = C∗, H = H∗; (9.1)

(ii) W is Hermitian on the imaginary axis if and only if D = D∗ and there exists
an n× n matrix H such that

HA = −A∗H, HB = C∗, H = −H∗. (9.2)

In both cases (because of the minimality of the realization), the matrix H is
uniquely determined by the matrices in the given realization of W and invertible.

A matrix H such that H = −H∗ is called skew-Hermitian. For such a matrix
iH is Hermitian.

Proof. We first prove (i). Assume the matrix function W is Hermitian on R, so
the rational matrix functions W (λ) and W (λ̄)∗ coincide. Hence

W (λ) = D∗ +B∗(λ−A∗)−1C∗

is also a minimal realization for W . By the state space similarity theorem (The-
orem 8.2) we obtain the existence of a unique (invertible) n × n matrix H such
that

HA = A∗H, HB = C∗, B∗H = C.

Taking adjoints one gets

H∗A∗ = AH, C = B∗H∗, H∗B = C∗.

Comparing these two sets of equations and employing the uniqueness of H , we see
that H = H∗. Clearly D = D∗ as D = W (∞) must be selfadjoint.
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For the converse, supposeD = D∗ and there exist an n×nmatrixH for which
(9.1) holds. From the first equality in (9.1) we see that H(λ−A)−1 = (λ−A∗)−1H .
Then, using the second equality in (9.1), one computes

W (λ̄)∗ = D∗ +B∗(λ−A∗)−1C∗ = D +B∗(λ−A∗)−1HB

= D +B∗H(λ−A)−1B = D + C(λ −A)−1B = W (λ).

So W is selfadjoint on R.
Next we show that (because of minimality) the identities in (9.1) imply that

H is invertible. Indeed, assume Hx = 0 for some x ∈ Cn. Then the first equality
in (9.1) yields HAx = 0. Repeating the argument, using induction, we obtain
HAkx = 0 for k = 0, 1, 2, . . .. Using the two other equalities in (9.1) we see that
CAkx = B∗HAkx = 0 for k = 0, 1, 2, . . . . Since the given realization is minimal,
the pair (C, A) is observable, and hence x = 0. Thus H is invertible.

The proof of (ii) can be given using the same type of reasoning as for (i).
On the other hand (ii) also follows directly from (i) by using the transformation
λ → −iλ. Indeed, put W̃ (λ) = W (−iλ). Since W is assumed to be selfadjoint on
iR, the function W̃ is selfadjoint on R. Moreover, W̃ admits the minimal realization

W̃ (λ) = D + C̃(λ− Ã)−1B,

where C̃ = iC and Ã = iA. By (i), there exists an (invertible) selfadjoint matrix
H̃ such that H̃Ã = Ã∗H̃ and H̃B = C̃∗. Setting H = −iH̃ we derive the desired
equalities in (9.2). �

In the proof of the “if parts” of (i) and (ii), minimality does not play a role.
Thus, if (9.1) holds and D = D∗, then W (λ) = D + C(λ − A)−1B is selfadjoint
on R. Similarly, if D = D∗ and (9.2) holds, then W is selfadjoint on iR.

In the next proposition we consider the case when the rational matrix func-
tion in Theorem 9.1 is biproper, and we describe the effect of the matrices H on
the associate main operator A× = A−BD−1C.

Proposition 9.2. Let W (λ) = D + C(λIn − A)−1B be a realization of an m ×m
rational matrix function, and let H be an n × n matrix. Assume D is invertible,
and put A× = A−BD−1C. Then the following statements hold:

(i) If D = D∗ and (9.1) is satisfied, then HA× = (A×)∗H;

(ii) If D = D∗ and (9.2) is satisfied, then HA× = −(A×)∗H.

Proof. Assume D = D∗ and the identities (9.1). Then

HA× = HA−HBD−1C = A∗H − C∗D−∗B∗H = (A×)∗H,

so (i) holds. Statement (ii) is proved analogously. �
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Next we analyze how the matrix H appearing in Theorem 9.1 behaves under
a state space similarity transformation on the realization of W .

Theorem 9.3. For i = 1, 2, let W (λ) = D+Ci(λn−Ai)−1Bi be a minimal realiza-
tion of the rational matrix function W , and let S be the (unique invertible) n× n
matrix such that

SA1 = A2S, C1 = C2S, B2 = SB1.

Then the following statements hold:

(i) Let W be selfadjoint on the real line. For i = 1, 2, write Hi for the (unique
invertible) Hermitian n× n matrix such that HiAi = A∗i Hi and HiBi = C∗i .
Then H1 = S∗H2S;

(ii) Let W be selfadjoint on iR. For i = 1, 2, write Hi for the (unique invertible)
skew-Hermitian n × n matrix such that HiAi = −A∗i Hi and HiBi = C∗i .
Then H1 = S∗H2S.

Proof. We shall only prove (i); statement (ii) can be verified analogously. One
easily checks that S∗H2S satisfies (9.1):

S∗H2SA1 = S∗H2A2S = S∗A∗2H2S = A∗1S
∗H2S,

S∗H2SB1 = S∗H2B2 = S∗C∗2 = C∗1 .

By the uniqueness of H1 the assertion (i) follows. �

We conclude this section with a comment on the theory of matrices acting in
an indefinite inner product space. Elements of this theory play an important role
in the study of selfadjoint rational matrix functions. To see the connection, let H
be an invertible Hermitian n×n matrix, and consider on Cn the sesquilinear form

[x, y] = 〈Hx, y〉.

If HA = A∗H , then [Ax, y] = [x, Ay], and hence A is selfadjoint in the indefinite
inner product [· , · ] on Cn induced by H . Thus the first part and third identity in
(9.1) imply that A is selfadjoint in an indefinite inner product space. In the sequel
we call A H-selfadjoint if H = H∗ and HA = A∗H . Notice that the third identity
in (9.2) implies that iH is Hermitian, and hence the first identity in (9.2) can be
summarized by saying that iA is iH-selfadjoint.

In Section 11.2 we review the results from the theory of matrices acting in
an indefinite inner product space insofar as they are useful to us in this and the
next chapters.
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9.2 Spectral factorization

The first factorization result to be presented in this section concerns an important
class of rational matrix functions, namely those which are positive definite on the
contour Γ under consideration (again, either R or iR). A rational m ×m matrix
function W is called positive definite on Γ if for each λ ∈ Γ, λ not a pole of W ,
the matrix W (λ) is positive definite.

Suppose W is a rational m×m matrix function. A factorization

W (λ) = L(λ̄)∗L(λ) (9.3)

is called a right spectral factorization with respect to the real line if L and L−1 are
rational m×m matrix functions which are analytic on the closed upper half plane
(infinity included). In that case the function L(λ̄)∗ and its inverse are analytic on
the closed lower half plane (including infinity). Thus a right spectral factorization
with respect to R is a right canonical factorization with respect to the real line
featuring an additional symmetry property between the factors. A factorization
(9.3) is called a left spectral factorization with respect to the real line if L and
L−1 are rational m ×m matrix functions which are analytic on the closed lower
half plane (infinity included), in which case the function L(λ̄)∗ and its inverse are
analytic on the closed upper half plane including infinity). Such a factorization is
a left canonical factorization with respect to R.

A factorization
W (λ) = L(−λ̄)∗L(λ) (9.4)

is called a right spectral factorization with respect to the imaginary axis if L and
L−1 are rational m×m matrix functions which are analytic on the closed left half
plane (infinity included). Such a factorization is, in particular, a right canonical
factorization with respect to iR. Analogously, (9.4) is called a left spectral factor-
ization with respect to the imaginary axis if L and L−1 are rational m×m matrix
functions which are analytic on the closed right half plane (infinity included).

The factors in a spectral factorization are uniquely determined up to multi-
plication with a constant unitary matrix. More precisely, if W (λ) = L(λ̄)∗L(λ) is
a spectral factorization with respect to the real line, and E is an m×m unitary
matrix, then W (λ) = L̃(λ̄)∗L̃(λ) with L̃(λ) = EL(λ) is again a spectral factor-
ization of W , and this is all the freedom one has. To see the latter, assume that
W (λ) = L(λ̄)∗L(λ) and W (λ) = L̃(λ̄)∗L̃(λ) are right spectral factorizations with
respect to R, then

L̃(λ)L(λ)−1 = L̃(λ̄)−∗L(λ̄)∗.

The left-hand side of this identity is an m×m rational matrix function which is
analytic on the closed upper half plane and the right-hand side is analytic on the
closed lower half plane (in both cases the point infinity included). By Liouville’s
theorem neither side depends on λ, that is, there exists an m×m matrix E such
that E = L(λ)L̃(λ)−1 and L(λ̄)−∗L̃(λ̄)∗. But this implies that E is invertible and
E∗ = E−1. Hence E is unitary and E = L̃(λ) = EL(λ), as desired.
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If (9.4) is a right (respectively, left) spectral factorization of W with respect
to the real line, we refer to L as the right (respectively, left) spectral factor .
Without further explanation a similar terminology will be used in comparable
circumstances.

Note that existence of a spectral factorization implies that W has no poles
or zeros on the given contour and on the contour it is positive definite. The con-
verse also holds: for positive definite rational matrix functions, both left and right
spectral factorizations exist. This will now be proved for the case when W is a
proper rational m×m matrix function. Moreover, explicit formulas for the factors
will be given in terms of a realization of W . First we consider the situation where
W is positive definite on the real line.

Theorem 9.4. Let W (λ) = D + C(λIn − A)−1B be a realization of the rational
m × m matrix function W . Suppose A has no real eigenvalues, W is positive
definite on the real line, and W (∞) = D is positive definite too. Further assume
there exists an invertible Hermitian n × n matrix H for which HA = A∗H and
HB = C∗. Then, with respect to the real line, W admits right and left spectral
factorization. Such factorizations can be obtained in the following way. Let M+

and M− be the spectral subspaces of A associated with the parts of σ(A) lying in
the lower and upper half plane, respectively, and let M×

+ and M×
− be the spectral

subspaces of A× associated with the parts of σ(A×) lying in the lower and upper
half plane, respectively. Then

Cn = M−+̇ M×
+ , Cn = M++̇ M×

− . (9.5)

Write Π+ for the projection of Cn along M− onto M×
+ , Π− for the projection of

Cn along M+ onto M×
− , and introduce

L+(λ) = D1/2 +D−1/2CΠ+(λIn −A)−1B, (9.6)

L−(λ) = D1/2 +D−1/2CΠ−(λIn −A)−1B. (9.7)

Then
W (λ) = L+(λ̄)∗L+(λ), W (λ) = L−(λ̄)∗L−(λ),

are right and left spectral factorizations with respect to the real line, respectively.
These spectral factorizations are uniquely determined by the fact that they have
the value D1/2 at infinity.

The conditions of the theorem are satisfied in case W has no poles on the real
line, W (λ) is positive definite for all real λ, and the given (biproper) realization
of W is a minimal one.

Proof. The invertibility of W (λ) for real λ combined with the fact that A has no
real eigenvalues implies that A× does not have real eigenvalues either (see Theorem
2.4). So the subspaces M+, M−, M×

+ and M×
− are well-defined. Let P and P× be
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the Riesz projections of A, and A×, respectively, with respect to the upper half
plane. From HA = A∗H and HA× = (A×)∗H one easily computes that

HP = (I − P ∗)H, HP× = (I − P×)∗H.

It follows that the spaces M+, M−, M×
+ and M×

− satisfy

HM+ = M⊥
+ , HM− = M⊥

− , HM×
+ = M×⊥

+ , HM×
− = M×⊥

− . (9.8)

First it will be shown that M+ ∩M×
− = {0}. Suppose x ∈M+∩M×

− . As M+

is invariant under A, we have Ax ∈ M+. But then the first identity in (9.8) shows
that 〈HAx, x〉 = 0. The space M×

− is invariant under A×. Thus A×x belongs to
M×
− , and the last identity in (9.8) yields 〈HA×x, x〉 = 0. Hence

0 = 〈H(A−A×)x, x〉 = 〈HBD−1Cx, x〉 = 〈D−1Cx, Cx〉 = ‖D−1/2Cx‖2.

As D > 0, it follows that Cx = 0. Thus A×x = (A−BD−1C)x = Ax. We conclude
that M+ ∩ M×

− is invariant under both A and A×, and we have A|M+∩M×
−
=

A×|M+∩M×
−
. However,

σ(A|M+∩M×
−
) ⊂ σ(A|M+) ⊂ {λ | �λ > 0},

σ(A×|M+∩M×
−
) ⊂ σ(A×|M×

−
) ⊂ {λ | �λ < 0}.

Thus A|M+∩M×
−
= A×|M+∩M×

−
implies that M+ ∩M×

− = {0}.
Proving (9.5) is now done via a dimension argument. Since H is invertible,

the first identity in (9.8) shows that M+ and M⊥
+ have the same dimension. In

particular, dimM+ = n/2. Similarly, the last identity in (9.8) yields dimM×
− =

n/2. Hence the first identity in (9.5) holds. Let Π− be the projection along M+

onto M×
− . The second identity in (9.5) is established in a similar way.

Let Π− be the projection along M+ onto M×
− . Then Π− is a supporting

projection, and by Theorem 3.2 the corresponding factorization is a left canonical
factorization given by

W (λ) = K−(λ)L−(λ),

where L− is given by (9.7), and

K−(λ) = D1/2 + C(λ−A)−1(I −Π−)BD−1/2.

It remains to prove that K−(λ) = L−(λ̄)∗. Using (9.7) and (9.1) we have

L−(λ̄)∗ = D1/2 +B∗(λ−A∗)−1Π∗−C∗D−1/2

= D1/2 + C(λ−A)−1H−1Π∗−HBD−1/2.

Thus in order to get K−(λ) = L−(λ̄)∗, it suffices to show that H(I−Π−) = Π∗−H .
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Using the definition of Π−, together with the first and the last identity in
(9.8), we see that 〈H(I − Π−)x, (I − Π−)y〉 = 0 and 〈HΠ−x,Π−y〉 = 0 for all x
and y in Cn. Hence for all x, y,

〈H(I −Π−)x, y〉 = 〈H(I −Π−)x,Π−y〉 = 〈Hx,Π−y〉,
which yields the desired identity H(I −Π−) = Π∗−H .

As for the last statement in the theorem, recall that the factors in a spectral
factorization are uniquely determined up to multiplication with a constant unitary
matrix. This settles the theorem as far as left spectral factorization is concerned.
For right spectral factorizations the reasoning is similar. �

With minor modifications one proves the following theorem concerning left
and right spectral factorizations with respect to the imaginary axis.

Theorem 9.5. Let W (λ) = D + C(λIn − A)−1B be a realization of the rational
m × m matrix function W . Suppose A has no pure imaginary eigenvalues, W
is positive definite on the imaginary axis, and W (∞) = D is positive definite
too. Further assume there exists an invertible skew-Hermitian n×n matrix H for
which HA = −A∗H and HB = C∗. Then, with respect to the imaginary axis, W
admits right and left spectral factorization. Such factorizations can be obtained in
the following way. Let M+ and M− be the spectral subspaces of A associated with
the parts of σ(A) lying in the right and left half plane, respectively, and let M×

+

and M×
− be the spectral subspaces of A× associated with the parts of σ(A×) lying

in the right and left half plane, respectively. Then

Cn = M−+̇ M×
+ , Cn = M++̇ M×

− .

Write Π+ for the projection of Cn along M− onto M×
+ , Π− for the projection of

Cn along M+ onto M×
− , and introduce

L+(λ) = D1/2 +D−1/2CΠ+(λIn −A)−1B,

L−(λ) = D1/2 +D−1/2CΠ−(λIn −A)−1B.

Then
W (λ) = L+(−λ̄)∗L+(λ), W (λ) = L−(−λ̄)∗L−(λ),

are right and left spectral factorizations with respect to the imaginary axis, respec-
tively. These spectral factorizations are uniquely determined by the fact that they
have the value D1/2 at infinity.

The conditions of the theorem are satisfied in case W has no poles on the
imaginary axis, W (λ) is positive definite for λ ∈ iR, and the given (biproper)
realization ofW is a minimal one. In terms of the theory of spaces with an indefinite
metric (see the appendix at the end of this chapter), the identities in (9.8) say
that the spectral subspaces M+, M−, M×

+ and M×
− are Lagrangian subspaces in

the indefinite inner product induced by H .
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9.3 Positive definite functions on the unit circle

In this section we shall discuss rational matrix functions that take positive definite
values on the unit circle T and their spectral factorizations. This class of functions
is more complicated than the ones discussed in the previous sections, the main
reason being that infinity is not on the contour, and so the value at infinity is not
necessarily a selfadjoint matrix.

A rational m ×m matrix function W is called selfadjoint on the unit circle
or Hermitian on the unit circle if for each λ ∈ T, λ not a pole of W , the matrix
W (λ) is selfadjoint or, which is the same, Hermitian. By the uniqueness theorem
for analytic functions, a rational matrix function W is selfadjoint on T if and
only if W (λ) = W (λ̄−1)∗, for all λ ∈ C, λ not a pole of W . It follows that if W
is selfadjoint on T and detW (λ) does not vanish identically, then W−1 is also
selfadjoint on T.

We first discuss how selfadjointness of W is reflected in properties of the
matrices in a minimal realization of the function. For proper rational matrix func-
tions this is described in the following theorem, a counterpart of Theorem 9.1 for
the unit circle.

Theorem 9.6. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of an
m ×m rational matrix function. Then W is Hermitian on T if and only if A is
invertible, D∗ = D − CA−1B, and there exists an n× n matrix H such that

HA = A−∗H, HB = A−∗C∗, H = −H∗. (9.9)

The matrix H is uniquely determined by the matrices in the given realization of
W and invertible.

Recall that A−∗ stands for (A∗)−1 or, which amounts to the same, (A−1)∗.
The first part of (9.9) means that A is iH-unitary, that is, A is unitary with
respect to the indefinite inner product induced by the selfadjoint matrix iH (cf.,
Chapter 11 and Section 17.1). The first part of (9.9) can be rewritten as A∗HA =
H . Note that, given the invertibility of H , the identity A∗HA = H implies the
invertibility of A.

Proof. First observe that if W is Hermitian on T, then W has no pole at 0, as
W (∞) = D and W (0) = W (∞)∗. Because of minimality, this shows that A is
invertible and D∗ = D − CA−1B. But then

W (λ̄−1)∗ = D∗ +B∗(λ−1 −A∗)−1C∗

= D∗ −B∗A−∗(λ−A−∗)−1λC∗

= D∗ −B∗A−∗C∗ −B∗A−∗(λ−A−∗)−1A−∗C∗.

Now the rational matrix functions W (λ) and W (λ̄−1)∗ coincide. Thus, again by
the state space similarity theorem (Theorem 8.2), there exists a unique invertible
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matrix H such that

HA = A−∗H, HB = A−∗C∗, −B∗A−∗H = C.

Taking adjoints and employing the uniqueness of H , one finds H = −H∗.
This settles the “only if part” of the theorem; the “if part” is obtained via

a straightforward computation (not using minimality). Because of minimality, the
identities in (9.9) imply that H is invertible. The argument is similar to that given
in the third paragraph of the proof of Theorem 9.1. �

Next, we consider the associate main operator.

Proposition 9.7. Let W (λ) = D + C(λIn − A)−1B be a realization of an m×m
rational matrix function and assume D is invertible. Suppose A is invertible too,
D∗ = D−CA−1B, and there exists an n×n matrix H such that (9.9) holds. Then
A× = A−BD−1C is invertible and HA× = (A×)−∗H.

Proof. From the invertibility of A and D, and the assumption D∗ = D−CA−1B,
we get [

A B

C D

]
=

[
I 0

CA−1 I

][
A 0

0 D∗

] [
I A−1B

0 I

]

=

[
I BD−1

0 I

][
A× 0

0 D

] [
I 0

D−1C I

]
.

As both A and D∗ are invertible, A× must be invertible too. Furthermore, by
(9.9), we have

(A×)∗HA× = (A∗ − C∗D−∗B∗)H(A−BD−1C)

= H − C∗D−∗B∗HA−A∗HBD−1C + C∗D−∗B∗HBD−1C

= H + C∗D−∗(D −D∗ +B∗HB)D−1C

= H + C∗D−∗(CA−1B +B∗A−∗C∗)D−1C.

However, as D − D∗ = CA−1B, we have B∗A−∗C∗ = −CA−1B. Therefore,
(A×)∗HA× = H . �

Next we analyze how the matrix H appearing in Theorem 9.6 behaves under
a state space similarity transformation on the realization of W . The proof of the
next theorem is analogous to the proof of Theorem 9.3.

Theorem 9.8. For i = 1, 2, let W (λ) = D+Ci(λIn −Ai)−1Bi be minimal realiza-
tions of the rational m×m matrix function W , and let S be the (unique invertible)
n× n matrix such that

SA1 = A2S, C1 = C2S, B2 = SB1.
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Suppose W is Hermitian on the unit circle. For i = 1, 2, write Hi for the (unique
invertible) skew-Hermitian n × n matrix such that A∗i HiAi = Hi and HiBi =
A−∗i C∗i . Then H1 = S∗H2S.

The above results can also be obtained by reduction to the real line results
of Section 9.1. To illustrate this, let W (λ) = D + C(λIn − A)−1B be a minimal
realization of an m×m rational matrix function, and let α ∈ T be a regular point
for A, that is, α is not an eigenvalue of A. Consider the Möbius transformation

φ(λ) = α(λ− i)(λ + i)−1. (9.10)

Note that φ maps the upper half plane in a one-to-one way onto the open unit disc
D, and the extended real line is mapped in a one-to-one way onto the unit circle
T, with φ(∞) = α. Put W̃ (λ) = W (φ(λ)). Then W̃ is again an m ×m rational
matrix function and (see Section 3.6 in [20]) the function W̃ admits the realization
W̃ (λ) = D̃ + C̃(λIn − Ã)−1B̃, where

Ã = (iα+ iA)(α−A)−1 = φ−1(A), B̃ = (α−A)−1B,

C̃ = 2iαC(α−A)−1, D̃ = W (α) = D + C(α−A)−1B.

Moreover this realization is again minimal. Now assume that W is selfadjoint on
T, then W̃ is selfadjoint on R and by Theorem 9.1 there exists an invertible n×n
matrix H̃ such that

H̃Ã = Ã∗H̃, H̃B̃ = C̃∗, H̃ = H̃∗.

Observe that

H̃Ã = Ã∗H̃ ⇐⇒ H̃(iα+ iA)(α−A)−1 = (ᾱ−A∗)−1(−iᾱ− iA∗)H̃

⇐⇒ (ᾱ −A∗)H̃(iα+ iA) = (−iᾱ− iA∗)H̃(α−A)

⇐⇒ iH̃ + iᾱH̃A− iαA∗H̃ − iA∗H̃A

= −iH̃ + iᾱH̃A− iαA∗H̃ + iA∗H̃A

⇐⇒ 2iH̃ = 2iA∗H̃A.

We already know (see the first paragraph of the proof of Theorem 9.6) that the
operator A is invertible, and thus we may conclude that H̃A = A−∗H̃ . Using this
and the invertibility of H , one gets

H̃B̃ = H̃(α−A)−1B = (αH̃−1 −AH̃−1)−1B

= (αH̃−1 − H̃−1A−∗)−1B = (α −A−∗)−1H̃B

= (αA∗ − In)−1A∗H̃B = −ᾱ(ᾱ−A∗)−1A∗H̃B.
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From the definition of C̃ we know that C̃∗ = −2iᾱ(ᾱ−A∗)−1C∗, and hence

H̃B̃ = C̃∗ ⇐⇒ A∗H̃B = 2iC∗.

Now define H by 2iH = H̃ . Then H has the properties listed in (9.9).
In a similar way it can be shown that Proposition 9.7 and Theorem 9.8 follow

from the analogous results in Section 9.1.

We now turn to spectral factorization. Suppose W is a rational m×m matrix
function. A factorization

W (λ) = L(λ̄−1)∗L(λ) (9.11)

is called a right spectral factorization with respect to the unit circle if L and L−1

are rational matrix functions which are analytic on the closure of the (open) unit
disc D. In that case the function L(λ̄−1)∗ and its inverse are analytic on the closure
of Dext, the exterior domain of the unit circle in C (infinity included). Thus, in
particular, a right spectral factorization with respect to the unit circle is a right
canonical factorization with respect to T. Analogously, (9.11) is called a left spectral
factorization with respect to the unit circle if L and L−1 are analytic on the closure
of Dext (infinity included), in which case the function L(λ̄−1)∗ and its inverse are
analytic on the closed unit disc. Such a factorization is a left canonical factorization
with respect to T. Observe that the existence of a spectral factorization implies
that W has positive definite values on the unit circle. As we will see in the next
theorem, the converse is also true.

A rational m ×m matrix function W is called positive definite on the unit
circle if for each λ ∈ T, λ not a pole of W , the matrix W (λ) is positive definite.
Left and right spectral factorization of functions which are positive definite on
the unit circle is slightly more complicated than spectral factorization of functions
which are positive definite on either the real line or the imaginary axis. This is
mainly caused by the fact that the value at infinity generally is no longer positive
definite.

Theorem 9.9. Let W (λ) = D + C(λIn − A)−1B be a realization of a rational
m ×m matrix function such that W (λ) is positive definite for |λ| = 1. Suppose
D is invertible, A is invertible, and A has no eigenvalues on the unit circle. Fur-
thermore, assume there exists an invertible skew-Hermitian n× n matrix H such
that HA = A−∗H and HB = A−∗C∗. Then, with respect to the unit circle, W
admits right and left spectral factorization. Such factorizations can be obtained in
the following way. Let M+ and M− be the spectral subspaces of A associated with
the parts of σ(A) lying in Dext and D, respectively, and let M×

+ and M×
− be the

spectral subspaces of A× associated with the parts of σ(A×) lying in Dext and D,
respectively. Then

Cn = M−+̇ M×
+ , Cn = M++̇ M×

− . (9.12)
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Write Π+ for the projection of Cn along M− onto M×
+ , Π− for the projection of Cn

along M+ onto M×
− . Then D+ = D−CA−1(I −Π+)B and D− = D−CA−1(I −

Π−)B are selfadjoint. Further there are unique rational matrix functions L+ and
L− such that

W (λ) = L+(λ̄−1)L+(λ), W (λ) = L−(λ̄−1)L−(λ)

are right and left spectral factorizations with respect to the unit circle, respectively,
and such that L+(∞) = D

1/2
+ , L−(∞) = D

1/2
− . These functions are given by

L+(λ) = D
1/2
+ +D

1/2
+ D−1CΠ+(λIn −A)−1B, (9.13)

L−(λ) = D
1/2
− +D

1/2
− D−1CΠ−(λIn −A)−1B. (9.14)

The conditions of the theorem are satisfied in case W has no poles on the
unit circle, takes positive definite values there, and the given (biproper) realization
of W is a minimal one.

Proof. Our hypotheses imply that A and A× do not have eigenvalues on the unit
circle. Let P and P× be the Riesz projections of A and A×, respectively, cor-
responding to the eigenvalues in Dext. As in the proof of Theorem 9.4, one first
shows that HP = (I − P ∗)H and HP× = (I − P×)∗H , using A∗HA = H and
(A×)∗HA× = H . Hence for the subspaces M+, M−, M×

+ and M×
− we again have

the identities

HM+ = M⊥
+ , HM− = M⊥

− , HM×
+ = M×⊥

+ , HM×
− = M×⊥

− .

Now introduce ϕ(λ) = −i(λ− i)(λ+ i)−1 (i.e., (9.10) with α = −i). Observe
that ϕ−1 = ϕ, and ϕ maps the circle to the real line, D to the open upper half
plane and Dext to the open lower half plane. Consider V (λ) = W (ϕ(λ)). Then
V (λ) is positive definite on the real line and

V (λ) = W (−i) + C̃(λ− Ã)−1B̃

with Ã = (I + iA)(−A− iI)−1. Since W (−i) is invertible, we can use Proposition
3.4 in [20] to show that the associate main matrix in the above realization of V is
given by Ã× = (I + iA×)(−A× − iI)−1. Using A∗HA = H and (A×)∗HA× = H

one computes that Ã and Ã× are H-selfadjoint. The spectral subspaces of Ã with
respect to the upper and lower half planes are M− and M+, respectively, while
the spectral subspaces of Ã× with respect to the upper and lower half planes are
M×
− and M×

+ , respectively. From the proof of Theorem 9.4, it now follows that
(9.12) holds. So the projections Π+ and Π− are well-defined, and they are support-
ing projections giving rise to right and left canonical factorizations, respectively.
Moreover H(I −Π+) = Π∗+H , and H(I −Π−) = Π∗−H .
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A canonical factorization corresponding to Π+ is given byW = W−W+ where

W−(λ) = D + C(λ−A)−1(I −Π+)B,

W+(λ) = I +D−1CΠ+(λ −A)−1B.

For later use, recall that the factors W− and W+ in a canonical factorization
are uniquely determined by their values at infinity. It remains to show that from
L+(λ) = D

1/2
+ W+(λ) it follows that W−(λ)D

−1/2
+ = L+(λ̄−1)∗. We shall in fact

prove that W (λ) = W+(λ̄−1)∗D+W+(λ).
Observe that D+ = W−(0). To see that D+ is selfadjoint, just carry out the

calculation

D∗+ = D∗ −B∗(I −Π∗+)A
−∗C∗ = D∗ −B∗A−∗C∗ +B∗Π∗+A−∗C∗

= D − CH−1A∗Π∗+HB = D − CA−1H−1Π∗+HB

= D − CA−1(I −Π+)B

= D+.

Then write W (λ) = K(λ)D+W+(λ) with

K(λ) = DD−1+ + C(λ−A)−1(I −Π+)BD−1+ .

Now compute W+(λ̄−1)∗:

W+(λ̄−1)∗ = I +B∗(λ−1 −A∗)−1Π∗+C∗D−∗

= I −B∗A−∗Π∗+C∗D−∗

−B∗A−∗(λ−A−∗)−1A−∗Π∗+C∗D−∗

= (D∗ −B∗A−∗Π∗+C∗)D−∗

+C(λ−A)−1AH−1Π∗+HA−1BD−∗.

We claim that

(D∗ −B∗A−∗Π∗+C∗)D−∗ = DD−1+ , (9.15)

AH−1Π∗+HA−1BD−∗ = (I −Π+)BD−1+ . (9.16)

Indeed, for (9.15), observe that D+ is invertible because W (0) = D∗ is invertible,
and

D∗ = D+W+(0) = D+(I −D−1CΠ+A−1B).

So D−1
+ D∗ = D−1(D − CΠ+A−1B). Taking adjoints yields (9.15).
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To verify (9.16), compute (I−Π+)BD−1+ D∗, using what we just have proved:

(I −Π+)BD−1+ D∗ = (I −Π+)B(I −D−1CΠ+A−1B)

= (I −Π+)(A−BD−1CΠ+)A−1B

= (I −Π+)(A− (A−A×)Π+)A−1B

= (I −Π+){A(I −Π+) +A×Π+}A−1B.

Now ImΠ+ is A×-invariant, so (I −Π+)A×Π+ = 0. Hence

(I −Π+)BD+D∗ = (I −Π+)A(I −Π+)A−1B

= A(I −Π+)A−1B

= AH−1Π∗+HA−1B,

as KerΠ is A-invariant. Thus (9.16) holds.
Now using (9.15) and (9.16) we see

W+(λ̄−1)∗ = DD−1+ + C(λ−A)−1(I −Π+)BD−1+ = K(λ).

As W (λ) = W+(λ̄−1)∗D+W+(λ) we see that D+ must be positive definite. Since
the factors W+ and W− in a canonical factorization are uniquely determined by
their values at infinity, it follows that the factor L+ in a right spectral factorization
is also uniquely determined by its value at infinity. Thus the part of the theorem
concerned with right spectral factorization follows. For the other part dealing with
left spectral factorization the reasoning is similar. �

Notes

The results of Section 9.1 can be found in several sources, e.g., [26] and [45]. The
factorization results of Sections 9.2 and 9.3 are based on [119] (see also Chapter 1
in [120]). Spectral factorizations play an important role in mathematical systems
theory, see e.g., [4]. In [4], [41] and [147] spectral factorizations of a selfadjoint
rational matrix function W are studied in state space form, starting from different
representations of W .

Part IV of [20] is devoted to stability of minimal factorizations of rational
matrix functions. The issue of stability of factorizations within the class of spectral
factorizations has also been studied. This requires the analysis of perturbations of
H-selfadjoint matrices and stability of their invariant Lagrangian subspaces. For
instance, from Theorem 14.12 in [20] it follows straightforwardly that canonical
factorizations are Lipschitz stable under small perturbations of the matrices in
the realization. Restricting attention to spectral factorizations of positive definite
rational matrix functions, and to perturbations of the matrices in the realizations
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that make the perturbed rational matrix function also positive definite, it still
holds that spectral factorization is Lipschitz stable in this sense. For these and
related results we refer to [123], see also [127].



Chapter 10

Pseudo-spectral factorizations
of selfadjoint rational matrix
functions

In this chapter we consider rational matrix functions on a contour having values
that are selfadjoint matrices, but not necessarily positive definite ones. Whereas
in the previous chapter we studied spectral factorization, in the present chapter
the focus will be on functions that have poles or zeros on the contour, and so we
will consider pseudo-spectral factorization here.

This chapter consists of two sections. Section 10.1 develops the notion of
pseudo-spectral factorization for nonnegative rational matrix functions. The con-
tours considered are the real line, the imaginary axis and the unit circle. In Sec-
tion 10.2 the main result of the first section is generalized to the case of arbitrary
selfadjoint rational matrix functions with positive definite value at infinity.

10.1 Nonnegative rational matrix functions

In this section we consider rational matrix functions W having nonnegative values
on either the real line, the imaginary axis or the unit circle. The section may be
viewed as a continuation of the discussion in Chapter 9. However, in contrast to
the situation there, in this section we consider cases where W may have poles or
zeros on the contour.

A rational m ×m matrix function W is called nonnegative on the real line
if for each λ ∈ R, λ not a pole of W , the matrix W (λ) is nonnegative. Without
further explanation, the analogous terminology will be used for rational matrix
functions having nonnegative values on the imaginary axis or on the unit circle,
respectively.
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As in Section 9.2 we shall start by considering the case of nonnegative rational
matrix functions W on the real line, and continue with the situation where W is
nonnegative on the imaginary axis. However, it is the latter case that we shall
use frequently in the subsequent chapters. Therefore only for this case shall we
provide a detailed proof. The real line situation can then be dealt with by using
the Möbius transformation λ �→ −iλ. The section is concluded by presenting the
results for the case of the unit circle. Again, the proof may be obtained by using
a Möbius transformation (cf., the proofs of Theorems 9.4 and 9.9).

A factorization
W (λ) = L(λ̄)∗L(λ) (10.1)

is called a right pseudo-spectral factorization with respect to the real line if L has
no poles or zeros in the open upper half plane and the factorization is locally
minimal at each point of the real line. Analogously, (10.1) is called a left pseudo-
spectral factorization with respect to the real line if L has no poles or zeros in the
open lower half plane and the factorization is locally minimal at each point of
the real line. Such right or left pseudo-spectral factorizations are pseudo-canonical
factorizations with respect to iR in the sense of Section 8.3.

Although a nonnegative rational matrix function generally does not allow for
a left or right spectral factorization, it does admit left and right pseudo-spectral
factorization.

Theorem 10.1. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of a
rational m×m matrix function which is nonnegative on the real line, and assume
D is positive definite. Then, with respect to the real line, W admits left and right
pseudo-spectral factorization. Such factorizations can be obtained in the following
way. Let H be the (unique invertible) Hermitian n × n matrix with HA = A∗H
and HB = C∗. Then there are unique A-invariant subspaces M+ and M−, and
unique A×-invariant subspaces M×

+ and M×
− , such that

(i) M+ contains the spectral subspace of A associated with the part of σ(A) lying
in the open lower half plane, and σ(A|M+) ⊂ {λ | �λ ≤ 0},

(ii) M− contains the spectral subspace of A associated with the part of σ(A) lying
in the open upper half plane, and σ(A|M− ) ⊂ {λ | �λ ≥ 0},

(iii) M×
+ contains the spectral subspace of A× associated with the part of σ(A×)

lying in the open lower half plane, and σ(A×|M×
+
) ⊂ {λ | �λ ≤ 0},

(iv) M×
− contains the spectral subspace of A× associated with the part of σ(A×)

lying in the open upper half plane, and σ(A×|M×
−
) ⊂ {λ | �λ ≥ 0},

(v) H [M+] = M⊥
+ , H [M−] = M⊥− , H [M×

+ ] = M×⊥
+ , H [M×

− ] = M×⊥
− .

The subspaces in question also satisfy the matching conditions

Cn = M−+̇ M×
+ , Cn = M++̇ M×

− . (10.2)
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Let Π+ be the projection along M− onto M×
+ , let Π− be the projection along M+

onto M×
− , and introduce

L+(λ) = D1/2 +D−1/2CΠ+(λIn −A)−1B, (10.3)

L−(λ) = D1/2 +D−1/2CΠ−(λIn −A)−1B. (10.4)

Then
W (λ) = L+(λ̄)∗L+(λ), W (λ) = L−(λ̄)∗L−(λ),

are right and left pseudo-spectral factorizations with respect to the real line, respec-
tively. These pseudo-spectral factorizations are uniquely determined by the fact that
they have the value D1/2 at infinity.

All possible right pseudo-spectral factors can be obtained from L+ as given
in (10.3) by multiplying on the left with a unitary matrix, and likewise, all possible
left pseudo-spectral factors are obtained from L− as given in (10.4) by multipli-
cation on the left with a unitary matrix. Indeed, suppose W (λ) = L̃−(λ̄)∗L̃−(λ)
is another left pseudo-spectral factorization of W . Put E(λ) = L̃−(λ̄)−∗L−(λ̄)∗ =
L̃−(λ)L−(λ)−1. Then E(λ) is analytic outside the real line, and on the real line it
is unitary, except for possible poles. So for all values of λ concerned, the norm of
E(λ) is 1. But then E cannot have poles. Indeed, in the vicinity of a pole the norm
of E(λ) cannot be bounded (cf., [134], Chapter 10, page 211). It follows that E is
analytic on the whole complex plane. But then it must be a constant function by
Liouville’s theorem. As it is unitary for real λ, we conclude that the sole value of
E is a unitary matrix.

Let W be a rational m×m, and suppose W is nonnegative on the real line.
A factorization

W (λ) = L(−λ̄)∗L(λ)

is called a right pseudo-spectral factorization with respect to the imaginary axis if
L has no poles or zeros in the open left half plane and the factorization is locally
minimal at each point of the imaginary axis. Left pseudo-spectral factorizations
with respect to the imaginary axis are defined by replacing the upper half plane
by the lower half plane.

Theorem 10.2. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of
an m ×m rational matrix function which is nonnegative on the imaginary axis,
and assume D is positive definite. Put A× = A − BD−1C. Then, with respect
to the imaginary axis, W admits left and right pseudo-spectral factorization. Such
factorizations can be obtained in the following way. Let H be the (unique invertible)
skew-Hermitian n × n matrix with HA = −A∗H and HB = C∗. Then there are
unique A-invariant subspaces M+ and M−, and unique A×-invariant subspaces
M×
+ and M×

− , such that

(i) M+ contains the spectral subspace of A associated with the part of σ(A) lying
in the open right half plane, and σ(A|M+ ) ⊂ {λ | �λ ≥ 0},
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(ii) M− contains the spectral subspace of A associated with the part of σ(A) lying
in the open left half plane, and σ(A|M− ) ⊂ {λ | �λ ≤ 0},

(iii) M×
+ contains the spectral subspace of A× associated with the part of σ(A×)

lying in the open right half plane, and σ(A×|M×
+
) ⊂ {λ | �λ ≥ 0},,

(iv) M×
− contains the spectral subspace of A× associated with the part of σ(A×)

lying in the open left half plane, and σ(A×|M×
−
) ⊂ {λ | �λ ≤ 0},

(v) H [M+] = M⊥
+ , H [M−] = M⊥

− , H [M×
+ ] = M×⊥

+ , H [M×
− ] = M×⊥

− .

The subspaces in question also satisfy the matching conditions

Cn = M−+̇ M×
+ , Cn = M++̇ M×

− .

Let Π+ be the projection of Cn along M− onto M×
+ , let Π− be the projection of

Cn along M+ onto M×
− , and define L+ and L− by (10.3) and (10.4), that is

L+(λ) = D1/2 +D−1/2CΠ+(λIn −A)−1B,

L−(λ) = D1/2 +D−1/2CΠ−(λIn −A)−1B.

Then
W (λ) = L+(−λ̄)∗L+(λ), W (λ) = L−(−λ̄)∗L−(λ), (10.5)

are right and left pseudo-spectral factorizations with respect to the imaginary axis,
respectively. These pseudo-spectral factorizations are the unique ones for which
L+(∞) = D1/2 and L−(∞) = D1/2.

As was noted before, Theorem 10.1 can be derived from Theorem 10.2 via the
transformation λ �→ −iλ. Conversely, Theorem 10.2 obtained from Theorem 10.1
by the transformation λ �→ iλ.

Before we prove Theorem 10.2 we need some preparations concerning the
spectral properties of nonnegative rational matrix functions. First we discuss the
partial pole-multiplicities and partial zero-multiplicities of W . These notions have
been defined in Sections 8.2 and 8.1 of [20], respectively. We start with a minimal
realization

W (λ) = D + C(λ−A)−1B. (10.6)

Assume that W is biproper, i.e., D is invertible. Then the eigenvalues of A coincide
with the poles of W and the eigenvalues of A× coincide with the zeros of W . More
precisely, the partial multiplicities of λ as an eigenvalue of A coincide with the
partial pole-multiplicities of λ as a pole of W , and the multiplicities of λ as an
eigenvalue of A× coincide with the partial zero-multiplicities of λ as a zero of W
(cf., [20], Section 8.4, in particular Proposition 8.23).

We also need the connection between the Jordan chains of A at an eigen-
value λ0 and the co-pole functions of W at λ0 described in Proposition 8.3. For
a nonnegative rational matrix function, we have the following addition to that
proposition.
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Proposition 10.3. Let W (λ) = D + C(λIn − A)−1B be a minimal realization for
a rational m×m matrix function which is selfadjoint on the imaginary axis, and
let H be the (unique) invertible skew-Hermitian n× n matrix such that

HA = −A∗H, HB = C∗.

Let λ0 ∈ iR be an eigenvalue of A, let x0, . . . , xk−1 be a Jordan chain for A at
λ0, and let ϕ be a co-pole function of W at λ0 corresponding to the Jordan chain
x0, . . . , xk−1. Then the function 〈W (λ)ϕ(λ), ϕ(−λ̄)〉 has a zero of order at least k
at λ0 and its Taylor expansion at λ0 has the following form:

〈W (λ)ϕ(λ), ϕ(−λ̄)〉 = (−1)k〈x0, Hxk−1〉(λ − λ0)k + · · ·
· · ·+ (−1)k〈xk−1, Hxk−1〉(λ− λ0)2k−1 + h.o.t. ,

where h.o.t. stands for higher order terms.

Proof. The fact that ϕ is a co-pole function of W at λ0 implies that W (λ)ϕ(λ) is
analytic at λ0. This together with the fact that ϕ has a zero of order at least k at
λ0 shows that the function 〈W (λ)ϕ(λ), ϕ(−λ̄)〉 has a zero of order at least k at λ0
too. The property that ϕ is a co-pole function of W at λ0 corresponding to the
Jordan chain x0, . . . , xk−1 means that

xj =
∞∑

ν=k

P0(A− λ0)ν−j−1Bϕν , j = 0, . . . , k − 1 (10.7)

(where the sum in the right-hand side of the identity is actually finite so that there
is no convergence issue). Here P0 is the Riesz projection of A corresponding to
the eigenvalue λ0, and ϕν is the coefficient of (λ − λ0)ν in the Taylor expansion
of ϕ at λ0. We use this connection to compute 〈Hxi, xk−1〉. The fact that λ0 is
in iR yields HP0 = P ∗0H . Indeed, since HAH−1 = −A∗, we have that HPH−1

is the Riesz projection of −A∗ for the eigenvalue λ0. Thus, using Proposition
I.2.5 in [51], we get HP0H

−1 = P (−A∗; {λ0}) = P (A∗; {−λ0}) = P (A∗; {λ0}) =
P (A; {λ0})∗ = P ∗0 . Also, note that the vectors x0, . . . , xk−1 belong to ImP0. In
particular, P0xk−1 = xk−1. Now use (10.7) and the identities HA = −A∗H and
HB = C∗. This gives, for i = 0, . . . , k − 1,

〈Hxi, xk−1〉 =
∞∑

ν=k

〈HP0(A− λ0)ν−i−1Bϕν , xk−1〉

=
∞∑

ν=k

〈H(A− λ0)ν−i−1Bϕν , P0xk−1〉

=
∞∑

ν=k

(−1)ν−i−1〈ϕν , C(A− λ0)ν−i−1xk−1〉

=
k+i∑
ν=k

(−1)ν−i−1〈ϕν , Cxk−ν+i〉.



202 Chapter 10. Pseudo-spectral factorizations

From the final paragraph of Section 8.1 we know that the vector Cxk−ν+1 is given
by Cxk−ν+1 = (Wϕ)k−ν+i, where (Wϕ)j is the coefficient of (λ − λ0)j in the
Taylor expansion of W (λ)ϕ(λ) at λ0. So

〈Hxi, xk−1〉 =
k+i∑
ν=k

(−1)ν−i−1〈ϕν , (Wϕ)k−ν+i〉, i = 0, . . . , k − 1. (10.8)

On the other hand we have

〈W (λ)ϕ(λ), ϕ(−λ̄)〉 =
∞∑

�=k

( �∑
ν=k

(−1)ν〈(Wϕ)�−ν , ϕν〉
)
(λ− λ0)�. (10.9)

Comparing formulas (10.8) and (10.9), we see that for i = 0, . . . , k − 1 the co-
efficient of (λ − λ0)k+i in the Taylor expansion of W (λ)ϕ(λ) at λ0 is given by
(−1)i+1〈xk−1, Hxi〉. Now note that

〈Hxi, xk−1〉 = 〈H(A− λ0)k−i−1xk−1, xk−1〉
= (−1)k−1−i〈Hxk−1, (A− λ0)k−1−ixk−1〉
= (−1)k−1−i〈Hxk−1, xi〉 = (−1)k−1−i〈xk−1, Hxi〉.

We conclude that (−1)i+1〈xk−1, Hxi〉 = (−1)k〈Hxi, xk−1〉, which completes the
proof. �

Specializing to the case when W is nonnegative on iR we obtain the following
result.

Proposition 10.4. Let W (λ) = D+C(λIn−A)−1B be a minimal realization for a
rational m×m matrix function which is nonnegative on iR. Assume D is positive
definite, and let H be the (unique invertible) skew-Hermitian n × n matrix such
that HA = −A∗H and HB = C∗. Then the partial multiplicities corresponding to
pure imaginary eigenvalues of A and A× are all even, the sign characteristic of
(iA, iH) consists of the integers +1 only, and the sign characteristic of the pair
(iA×, iH) consists of the integers −1 only.

For the definition of the notion of sign characteristic the reader is referred to
Section 11.2 below.

Proof. Let us first prove the proposition for the matrix A. Let λ0 = iμ0 be a pure
imaginary eigenvalue of A, and let x0, . . . , xk−1 be a maximal Jordan chain for A
at λ0. Then x0, −ix1, (−i)2x2, . . . , (−i)k−1xk−1 is a Jordan chain of iA for its
eigenvalue−μ0. In fact, all Jordan chains of iA for−μ0 can be obtained in this way.
Choose a Jordan basis for A such that relative to it the pair (iA, iH) is in canonical
form (see Section 11.2). This means, in particular, that if x0, . . . , xk−1 is a maximal
Jordan chain of A for λ0, which is part of this basis, then 〈iHx0, (−i)k−1xk−1〉 =
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ik〈Hx0, xk−1〉 is either +1 or −1. The sequence of +1’s and −1’s, obtained in this
manner, is the sign characteristic of the pair (iA, iH).

Let x0, . . . , xk−1 be as in the previous paragraph, and let

ϕ(λ) = (λ− λ0)kϕk + (λ− λ0)k+1ϕk+1 + · · ·
be a corresponding co-pole function for W at λ0. From Proposition 10.3 we know
that on a neighborhood of λ0

〈W (λ)ϕ(λ), ϕ(−λ̄)〉 = (λ− λ0)kh(λ),

where the scalar function h is analytic at λ0 and h(λ0) = (−1)k〈Hx0, xk−1〉.
Consider the pure imaginary λ = iμ in this neighborhood. Rewriting the expression
above in terms of μ− μ0, and using the fact that W is nonnegative, one sees that
k is even and (−i)k〈Hx0, xk−1〉 > 0. This proves that the partial multiplicities
corresponding to pure imaginary eigenvalues of A are even, and that the sign
characteristic of the pair (iA, iH) consists of +1’s only.

To prove the part of the proposition concerning A×, note that the function
W (λ)−1 = D−1−D−1C(λ−A×)−1BD−1 is nonnegative on iR too. Moreover, for
this realization we have (−H)A× = −(A×)∗(−H) and (−H)BD−1 = (−D−1C)∗.
So, the corresponding indefinite inner product is given by −H rather than H . The
desired result now follows by basically repeating the argument given above. �

We now have all the equipment necessary for the proof of Theorem 10.2.

Proof of Theorem 10.2. Based on Proposition 10.4 the existence and uniqueness
of A-invariant subspaces M+, M− and A×-invariant subspaces M×

+ , M
×
− such that

(i), (ii) and (iii) hold follow from Theorem 11.5 in Section 11.2 below.
To prove the first equality in (10.2) one establishes M+∩ M×

− ⊂ KerC as in
the proof of Theorem 9.4: use (9.2) instead of (9.1). HenceM+∩M×

− is invariant for
both A and A×. However, as the realization is minimal, an A-invariant subspace
contained in KerC must be the zero space. Thus M+ ∩ M×

− = {0}. To show
Cn = M++̇M×

− it remains to note that dimM+ = dimM×
− = n/2. In a similar

manner one gets Cn = M−+̇M×
+ .

Denote by Π+ the projection along M− onto M×
+ , then Π+ is a supporting

projection, and by Theorem 8.5 the factorization

W (λ) = K(λ)L+(λ),

with L+ given by (10.3) and

K(λ) = D1/2 + C(λ−A)−1(I −Π+)BD−1/2,

is minimal. Moreover, L+ has no poles in the open left half plane because Π+A =
Π+AΠ+. So

L+(λ) = D1/2 +D−1/2CΠ+(λ−Π+AΠ+)−1Π+B.
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Also
L−1+ (λ) = D−1/2 − CΠ+(λ−Π+A×Π+)−1Π+BD−1/2,

thus L+ has no zeros in the open left half plane. Finally, K(λ) = L+(−λ̄)∗. Indeed,

L+(−λ̄)∗ = D1/2 −B∗(λ+A∗)−1Π∗+C∗D−1/2

= D1/2 + C(λ −A)−1H−1Π∗+HBD−1/2.

As H [KerΠ+] = (KerΠ+)⊥ and H [ImΠ+] = (ImΠ+)⊥, we have H−1(Π+)∗H =
I −Π+. But then the factorization corresponding to Π+ is a right pseudo-spectral
factorization. One proves in a similar way that Π− gives rise to a left pseudo-
spectral factorization. �

Next, we introduce the notion of left and right pseudo-spectral factoriza-
tions with respect to the unit circle, Let W be a rational matrix function having
nonnegative values on T. A factorization

W (λ) = L(λ̄−1)∗L(λ)

is called a right pseudo-spectral factorization with respect to the unit circle if L has
no poles or zeros in the open unit disc and the factorization is locally minimal at
each point of the unit circle. Left pseudo-spectral factorizations with respect to the
unit circle are defined by replacing the open unit disc D by Dext.

In dealing with pseudo-spectral factorizations with respect to the unit circle,
we discuss only a restricted class of rational matrix functions that are nonnegative
on the unit circle, namely those which are biproper. Because of symmetry, this
forces the function to have an invertible value at zero too. The restriction is induced
by our methods, rather than by the problem itself.

The following theorem can be obtained from using an appropriate Möbius
transformation (cf., the proof of Theorem 9.9).

Theorem 10.5. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of a
rational m ×m matrix function which is nonnegative on the unit circle, and as-
sume D and A are invertible. Then, with respect to the unit circle, W admits left
and right pseudo-spectral factorization. Such factorizations can be obtained in the
following way. Let H be the (unique invertible) skew-Hermitian n×n matrix satis-
fying A∗HA = H and A∗HB = C∗. Then there are unique A-invariant subspaces
M+, M− and unique A×-invariant subspaces M×

+ , M×
− , such that

(i) M+ contains the spectral subspace of A associated with the part of σ(A) lying
in the open exterior of the unit disc, and σ(A|M+ ) ⊂ {λ | |λ| ≥ 1},

(ii) M− contains the spectral subspace of A associated with the part of σ(A) lying
in the open unit disc, and σ(A|M−) ⊂ {λ | |λ| ≤ 1},

(iii) M×
+ contains the spectral subspace of A× associated with the part of σ(A×)

lying in the open exterior of the unit disc, and σ(A×|M×
+
) ⊂ {λ | |λ| ≥ 1},



10.2. Selfadjoint rational matrix functions and further generalizations 205

(iv) M×
− contains the spectral subspace of A× associated with the part of σ(A×)

lying in the open unit disc, and σ(A×|M×
−
) ⊂ {λ | |λ| ≤ 1},

(v) H [M+] = M⊥
+ , H [M−] = M⊥

− , H [M×
+ ] = M×⊥

+ , H [M×
− ] = M×⊥

− .

The subspaces in question also satisfy (10.2), i.e.,

Cn = M++̇ M×
− , Cn = M−+̇ M×

+ .

Let Π+ be the projection of Cn along M− onto M×
+ , and let Π− be the projection

of Cn along M+ onto M×
− , and define L+ and L− by (9.13) and (9.14), so

L+(λ) = D
1/2
+ +D

1/2
+ D−1CΠ+(λIn −A)−1B,

L−(λ) = D
1/2
− +D

1/2
− D−1CΠ−(λIn −A)−1B,

where D+ = D − CA−1(I −Π+)B and D− = D − CA−1(I −Π−)B. Then

W (λ) = L+(λ̄−1)∗L+(λ), W (λ) = L−(λ̄−1)∗L−(λ),

are right and left pseudo-spectral factorizations with respect to the unit circle,
respectively. The functions L+ and L− are the unique right and left pseudo-spectral
factors, respectively, such that L+(∞) = D

1/2
+ and L−(∞) = D

1/2
− .

10.2 Selfadjoint rational matrix functions and further
generalizations

The main result of Section 10.1 will be generalized here to the case of an arbitrary
selfadjoint rational matrix function with positive definite value at infinity. We start
with the case of selfadjoint functions on the real line.

Theorem 10.6. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of an
m×m rational matrix function which is selfadjoint on the real line, and assume
D is positive definite. Then, with respect to the real line, W admits right and left
pseudo-canonical factorization. Such factorizations can be obtained in the following
way. Let H be the (unique invertible) Hermitian n×n matrix such that HA = A∗H
and HB = C∗. Then there exist A-invariant subspaces M+ and M−, and A×-
invariant subspaces M×

+ and M×
− such that

(i) M+ contains the spectral subspace of A associated with the part of σ(A) lying
in the open lower half plane, and σ(A|M+) ⊂ {λ | �λ ≤ 0},

(ii) M− contains the spectral subspace of A associated with the part of σ(A) lying
in the open upper half plane, and σ(A|M− ) ⊂ {λ | �λ ≥ 0},

(iii) M×
+ contains the spectral subspace of A× associated with the part of σ(A×)

lying in the open lower half plane, and σ(A×|M×
+
) ⊂ {λ | �λ ≤ 0},
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(iv) M×
− contains the spectral subspace of A× associated with the part of σ(A×)

lying in the open upper half plane, and σ(A×|M×
−
) ⊂ {λ | �λ ≥ 0},

(v) M+ and M− are maximal H-nonnegative, and M×
+ and M×

− are maximal
H-nonpositive.

The subspaces in question also satisfy

Cn = M++̇ M×
− , Cn = M−+̇ M×

+ .

Let Π+ be the projection of |BCn onto M×
+ along M−, and let Π− be the projection

of Cn onto M×
− along M+, and introduce

L−(λ) = D1/2 + C(λIn −A)−1(I − Π+)BD−1/2, (10.10)

L+(λ) = D1/2 +D−1/2CΠ+(λIn −A)−1B, (10.11)

K+(λ) = D1/2 + C(λIn −A)−1(I − Π−)BD−1/2, (10.12)

K−(λ) = D1/2 +D−1/2CΠ−(λIn −A)−1B. (10.13)

Then
W (λ) = L−(λ)L+(λ), W (λ) = K+(λ)K−(λ), (10.14)

are right and left pseudo-canonical factorizations with respect to the real line, re-
spectively.

The subspaces M+, M−, M×
+ and M×

− are not unique. In line with this, the
uniqueness of the factorizations that we had at earlier occasions is lacking here.
Also, not all pseudo-canonical factorizations for selfadjoint rational matrix func-
tions are obtained in the way described in Theorem 10.6 .

The theorem will be obtained from the more general result stated below.

Theorem 10.7. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of an
m×m rational matrix function which is selfadjoint on the real line, and assume
D is positive definite. Suppose D = D+D− with D+ and D− m × m matrices
(automatically invertible). Let H be the (unique invertible) Hermitian n×n matrix
for which HA = A∗H and HB = C∗. Let M+ be an A-invariant maximal H-
nonnegative subspace, and let M− be an A×-invariant maximal H-nonpositive
subspace. Then

Cn = M++̇ M−. (10.15)

In that case, the projection Π of Cn along M+ onto M− is a supporting projection,
and (hence) W admits a minimal factorization W (λ) = W+(λ)W−(λ) with W+

and W− given by

W+(λ) = D+ + C(λIn −A)−1(I −Π)BD−1− ,

W−(λ) = D− +D−1+ CΠ(λIn −A)−1B.
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For the existence of A-invariant maximal H-nonnegative and maximal H-
nonpositive subspaces, see Section 11.2 below.

Proof. First we show that M+ ∩M− = {0}. Choose x ∈ M+ ∩ M−. As M+ is
nonnegative and M− is nonpositive, we have 〈Hx, x〉 = 0. On M+ the Schwartz
inequality holds for the H-inner product. Since x ∈M+ and Ax ∈M+, we get

|〈HAx, x〉|2 ≤ 〈HAx, Ax〉 · 〈Hx, x〉 = 0.

So for all x ∈ M+ ∩M− we have 〈HAx, x〉 = 0. In the same way one shows that
for all x ∈ M+ ∩M− we have 〈HA×x, x〉 = 0. It follows that

0 = 〈H(A−A×)x, x〉 = 〈HBD−1Cx, x〉 = 〈C∗D−1Cx, x〉 = ‖D−1/2Cx‖2,

and hence M+ ∩ M− ⊂ KerC. But then A×x = Ax − BCx = Ax for all x
belonging to M+ ∩ M−, and so M+ ∩ M− is A-invariant. Hence CAnx = 0 for
all x ∈ M+ ∩ M− and n = 0, 1, 2, . . . . So

M+ ∩M− ⊂
∞⋂

j=0

KerCAj = {0}.

Now (see Section 11.2) every maximal nonnegative subspace has the same di-
mension as M+. Also, for a maximal H-nonpositive subspace M−, the subspace
H−1[M⊥

− ] is maximal H-nonnegative. Hence

dimM+ = dimH−1[M⊥
− ] = dimM⊥

− = n− dimM−,

and from this we get (10.15), i.e, the first part of the theorem. To obtain the
second part, apply Theorem 8.5. �

Proof of Theorem 10.6. For the existence of A-invariant subspaces M+, M− and
A×-invariant subspaces M×

+ , M×
− such that (i), (ii) and (iii) hold we refer to Sec-

tion 11.2. The matching of the appropriate subspaces is an immediate consequence
of Theorem 10.7. The factorizations (10.14), where the factors are given by (10.10)–
(10.13) are minimal by Theorem 8.5. As in the proof of Theorem 10.2 one shows
that L+ and K+ have no zeros or poles in the open upper half plane. In the same
vein, L− and K− have no zeros or poles in the open lower half plane. Hence the
factorizations in (10.14) are right and left pseudo-canonical factorizations, respec-
tively. �

Analogues of Theorems 10.6 and 10.7 concerning rational matrix functions
which are selfadjoint on the unit circle or imaginary axis can be derived too.
An analogue of Theorem 10.7 also holds true if one takes M+ to be A-invariant
maximal H-nonpositive (instead of maximal H-nonnegative) and M− to be A×-
invariant maximal H-nonnegative (instead of maximal H-nonpositive). A similar
remark can be made concerning Theorem 10.6.
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We finish this section with a theorem concerning symmetric factorization of
rational matrix functions which are nonnegative. Here we shall present only the
case involving the imaginary axis.

Theorem 10.8. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of an
m×m rational matrix function which is nonnegative on iR. Assume D is positive
definite, and let H be the (unique invertible) skew-Hermitian n × n matrix such
that HA = −A∗H and HB = C∗. Suppose M and M× are subspaces of CN for
which

A[M ] ⊂ M, A×[M×] ⊂ M×, H [M ] = M⊥, H [M×] = M×⊥. (10.16)

Then Cn = M +̇M×. Let Π be the projection of Cn along M onto M×, and
introduce

L(λ) = D1/2 +D−1/2CΠ(λIn −A)−1B. (10.17)

Then
W (λ) = L(−λ̄)∗L(λ) (10.18)

is a minimal factorization. Conversely, given a minimal factorization (10.18), with
L(∞) = D1/2, the factor L is as in (10.17) for a supporting projection Π such
that M = KerΠ and M× = ImΠ satisfy (10.16).

Proof. Let M and M× be as in the theorem. We shall show that Cn = M+̇M×.
The argument follows a (by now) familiar pattern. One first shows that the inter-
section M ∩M× is contained in KerC (see, e.g., the proof of Theorem 9.4, or the
proof of Theorem 10.7). Then M ∩ M× is both A-invariant and A×-invariant
and contained in KerC. By minimality (in fact observability) it follows that
M ∩ M× = {0}. Since dimM = dimM× = n/2, we have the desired match-
ing.

Denote by Π the projection along M onto M×. Then Π is a supporting
projection. Write the factorization of W corresponding to Π and the factorization
D = D1/2D1/2 as W (λ) = K(λ)L(λ), where

K(λ) = D1/2 + C(λ−A)−1(I −Π)BD−1/2,

L(λ) = D1/2 +D−1/2CΠ(λ −A)−1B.

Arguing as in the proof of Theorem 9.4 we have Π∗H = H(I−Π). Using also (9.2)
it then follows easily that L(−λ̄)∗ = K(λ).

Conversely, suppose W (λ) = L(−λ̄)∗L(λ) is a minimal factorization with
L(∞) = D1/2. Let Π be the corresponding supporting projection (which exists by
Theorem 8.5). From the fact that the left-hand factor K(λ) is L(−λ̄)∗, where L(λ)
is the right-hand factor, and using (9.2), we have Π∗H = H(I − Π). Thus both
M = KerΠ and M× = ImΠ satisfy (i) and (ii). �
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Notes

This chapter originates from [119] which deals with rational matrix functions that
are selfadjoint on the real line. The term pseudo-canonical is from a later date,
and is taken from [132]. The results presented here for nonnegative rational matrix
functions on the unit circle are based on Section 3 of [104]. In this case, the
restriction toW being invertible at infinity and at zero may be lifted by considering
a different type of realization, namely, realizations of the type discussed in [79].

In mathematical systems theory also the following problem is of interest:
given is a nonnegative rational matrix function W as in Theorem 10.8, without
poles on the imaginary axis. One is looking for all possible factorizations W (λ) =
L(−λ̄)∗L(λ), where L has all its poles in the open left half plane, but there is
no condition on the zeros of L. This problem too sometimes goes by the name
of “spectral factorization problem” and such factors L are sometimes also called
“spectral factors”. The problem of parametrizing such factors is considered in
many papers and books, see, e.g., [116] and [46] and the references given there.
The papers [30], [31], provide a discussion involving computational aspects.

For matrix polynomials a similar problem is considered in the literature, see
e.g., [88] and [66]. For later developments on factorization of selfadjoint matrix
polynomials, see [103], [125].

In [20] stability of factorizations of rational matrix functions under small
perturbations of the matrices in a realization is studied. For the particular case
where the function is positive semidefinite on the real line, and the factorizations
are of the type (10.1), stability under small perturbations is treated in [123].
This involves stability of invariant Lagrangian subspaces for matrices that are
selfadjoint in a space with an indefinite inner product. It turns out that the left
and right pseudo-spectral factorizations are stable (see Theorem 2.5 in [123]).





Chapter 11

Review of the theory of
matrices in indefinite inner
product spaces

In this chapter we present some backgroundmaterial on matrices in indefinite inner
product spaces, and review the main results from this area that are used in this
book. No proofs will be provided; we refer to the literature for more information.
Good sources are [68] and [70]. The material is not only useful for understanding of
the results of the preceding two chapters, but is also intended for use in subsequent
chapters.

This chapter consists of three sections. Section 11.1 considers subspaces that
are negative, positive or neutral relative to an indefinite inner product and var-
ious generalizations of such subspaces. Section 11.2 deals with matrices that are
selfadjoint relative to an indefinite inner product, and Section 11.3 with matrices
that are dissipative relative to an indefinite inner product.

11.1 Subspaces of indefinite inner product spaces

Let H be an invertible Hermitian n× n matrix. On Cn we denote the usual inner
product with 〈·, ·〉. The indefinite inner product given by H is defined as follows:

[x, y] = 〈Hx, y〉.

A vector x ∈ Cn is called H-positive, H-negative, or H-neutral, respectively, if
[x, x] > 0, [x, x] < 0, or [x, x] = 0, respectively. A subspace M of Cn is called
H-nonnegative, H-nonpositve, or H-neutral, respectively, if [x, x] ≥ 0, [x, x] ≤ 0,
or [x, x] = 0, respectively, for all x ∈ M . Observe that an H-neutral subspace is
at the same time H-nonnegative and H-nonpositive.
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Although the Cauchy-Schwarz inequality does not hold for just any two vec-
tors x, y in an indefinite inner product space, it does hold for vectors x, y which
are both in an H-nonnegative subspace, or both in an H-nonpositive subspace.
Note that it follows from this that M is H-neutral if and only if H [M ] ⊂ M⊥.

A subspace M of Cn will be called maximal H-nonnegative whenever it is
H-nonnegative and not properly contained in a larger H-nonnegative subspace.
Similarly,M will be called a maximal H-nonpositive subspace if it is H-nonpositive
and not properly contained in a larger H-nonpositive subspace. The first part of
the following proposition can be found in Theorem 2.3.2 in [70], the second part
is Lemma 6.3 in [25].

Proposition 11.1. The dimension of any maximal H-nonnegative subspace coin-
cides with the number of positive eigenvalues of H, while the dimension of any
maximal H-nonpositive subspace coincides with the number of negative eigenval-
ues of H. Also, if M is maximal H-nonpositive then H−1[M⊥] is maximal H-
nonnegative.

A subspace M of Cn is said to be H-Lagrangian if H [M ] = M⊥. Such a
subspace is both maximal H-nonnegative and maximal H-nonpositive, and hence
such a subspace can exist only if H has as many positive eigenvalues as it has
negative ones. As an example, suppose n is even, n = 2k say, and let

H = i

[
0 Ik

−Ik 0

]
.

Then any subspace of the form M = Im [P I ]∗ with P Hermitian will be a
Lagrangian subspace.

The concepts involving ordinary orthogonality have straightforward ana-
logues for H-orthogonality. For instance, vectors x and y in Cn are H-orthogonal
if [x, y] = 0.

A subspace M is called H-nondegenerate in case there is no non-zero vector
x ∈M that is H-orthogonal to all vectors in M . An equivalent requirement is that
M ∩H [M ]⊥ = {0}. It follows that for H-nondegenerate subspaces M , one has

Cn = M +̇ H [M ]⊥.

Conversely, each subspace M of Cn with this property is H-nondegenerate.

11.2 H-selfadjoint matrices

Let the indefinite inner product on Cn be given by the invertible Hermitian matrix
H . An n× n matrix A has an H-adjoint A[∗] defined by

[Ax, y] = [x, A[∗]y].
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Thus A[∗] = H−1A∗H . The matrix A is called H-selfadjoint if A = A[∗] or which
amounts to the same, HA = A∗H .

As an example, let A = Jn(λ) be the n × n upper triangular Jordan block
with a real eigenvalue λ, and let H = εPn, where ε is +1 or −1, and Pn is the
standard n×n involutary matrix (also called the n× n reversed identity matrix).
Thus Pn is the n× n matrix with 1s on the diagonal running from the lower left
corner to the upper right corner, and 0s elsewhere. Clearly H is invertible and
selfadjoint while, moreover, HA = A∗H . Hence A is H-selfadjoint.

As a second example, suppose n is even, n = 2k say, let λ be non-real, and
let A = diag

(
Jk(λ), Jk(λ)

)
be the block diagonal sum of two Jordan blocks of

size k with eigenvalues λ and λ, respectively. Further, let H = P2k. Then again
HA = A∗H , so A is H-selfadjoint.

It turns out that these two examples can serve as the building blocks for any
pair (A, H), where A is H-selfadjoint. To state this more precisely, first observe
that if A is H-selfadjoint, and if S is an invertible matrix, then S−1AS is S∗HS-
selfadjoint. The map (A, H) �→ (S−1AS, S∗HS) defines an equivalence relation on
the set of pairs (A, H) with A being H-selfadjoint. The following result, which can
be found in [70], Theorem 5.1.1, describes a canonical form for pairs of matrices
of this type.

Theorem 11.2. Let A be an H-selfadjoint matrix. Then there exists an invertible
matrix S such that S−1AS is equal to the block-diagonal matrix

diag
(
Jk1(λ1), . . . , Jkm(λm), Jkm+1(λm+1), Jkm+1(λm+1), . . . , Jkl

(λl), Jkl
(λl)
)
,

while

S∗HS = diag
(
ε1Pk1 , . . . , εmPkm , P2km+1 , . . . , P2kl

)
.

Here λ1, . . . , λm are the real eigenvalues of A, geometric multiplicities counted,
λm+1, λm+1, . . . , λl, λl are the non-real eigenvalues of A, geometric multiplicities
counted too, and the numbers ε1, . . . , εm take the values +1 and −1.

Behind the theorem is the fact that if A is H-selfadjoint, then the spectrum of
A is closed under complex conjugation, taking (partial) multiplicities into account.
By slight abuse of terminology, the ordered m-tuple (ε1, . . . , εm) is called the sign
characteristic of the pair (A, H). It is uniquely determined by the pair (A, H) up
to permutations of signs corresponding to equal Jordan blocks.

Next, we consider invariant maximal H-nonnegative and invariant maximal
H-nonpositive subspaces. We start again with examples. Let A be a single Jordan
block of size n×n with a real eigenvalue, and take H = εPn. Denote the standard
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basis of Cn by e1, . . . , en. Introduce

M+ =

⎧⎪⎪⎨⎪⎪⎩
span {e1, . . . , en/2} in case n is even,

span {e1, . . . , e(n+1)/2} in case n is odd and ε = +1,

span {e1, . . . , e(n−1)/2} in case n is odd and ε = −1,

M− =

⎧⎪⎪⎨⎪⎪⎩
span {e1, . . . , en/2} in case n is even,

span {e1, . . . , e(n+1)/2} in case n is odd and ε = −1,
span {e1, . . . , e(n−1)/2} in case n is odd and ε = +1.

Then M+ is A-invariant and maximal H-nonnegative, while M− is A-invariant
and maximal H-nonpositive.

As a second example, suppose n is even, n = 2k say, let A = Jk(λ) ⊕ Jk(λ)
with λ non-real, let H = P2k, and write e1, . . . , e2k for the standard basis of C2k.
Then, for l = 0, . . . , k, we have that M = span {e1, . . . , el, ek+1, . . . , e2k−l} is an
A-invariant H-Lagrangian subspace.

If A is H-selfadjoint, and λ is a real eigenvalue of A, then the spectral invari-
ant subspace of A corresponding to λ is H-orthogonal to the spectral invariant
subspace of A corresponding to all other eigenvalues. A similar statement holds for
a pair of complex conjugate non-real eigenvalues λ, λ. This allows one to build up
A-invariant maximal H-nonnegative subspaces by taking direct sums of subspaces
constructed “locally” as in the previous two examples. In particular the following
holds, see Theorem 5.12.1 in [70].

Theorem 11.3. Let A be H-selfadjoint. The following statements hold:

(i) There exists an A-invariant maximal H-nonnegative subspace M+
u such that

σ(A|M+
u
) is in the closed upper half plane. Furthermore, any such M+

u con-
tains the spectral invariant subspace of A corresponding to the open upper
half plane.

(ii) There exists an A-invariant maximal H-nonpositive subspace M−
u such that

σ(A|M−
u
) is in the closed upper half plane. Furthermore, any such M−

u con-
tains the spectral invariant subspace of A corresponding to the open upper
half plane.

(iii) There exists an A-invariant maximal H-nonnegative subspace M+
l such that

σ(A|M+
l
) is in the closed lower half plane. Furthermore, any such M+

l con-
tains the spectral invariant subspace of A corresponding to the open lower
half plane.

(iv) There exists an A-invariant maximal H-nonpositive subspace M−
l such that

σ(A|M−
l
) is in the closed lower half plane. Furthermore, any such M−

l con-
tains the spectral invariant subspace of A corresponding to the open lower
half plane.
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Our next concern is the existence of A-invariant H-Lagrangian subspaces.
These do not always exist. The next theorem gives a necessary and sufficient
condition.

Theorem 11.4. Let A be H-selfadjoint. There exists an A-invariant H-Lagrangian
subspace if and only if for each real eigenvalue μ of A the following two conditions
hold:

(i) the number of odd partial multiplicities associated with μ is even,

(ii) exactly half of those odd partial multiplicities associated with μ have sign +1
corresponding to them in the sign characteristic of (A, H), the other half have
sign −1 corresponding to them.

In particular, if all the partial multiplicities associated with the real eigenvalues of
A are even, there does exist an A-invariant H-Lagrangian subspace.

To elucidate what is said in Theorem 11.4, let us return to Theorem 11.2.
With the notation employed there, write s(1), . . . , s(t) for the positive integers
such that λs(j) = μ, j = 1, . . . , t. Then the numbers ks(1), . . . , ks(t) are the partial
multiplicities associated with μ, and the corresponding signs in the sign charac-
teristic of (A, H) are εs(1), . . . , εs(t). Item (i) of the above theorem declares that
the number of j for which ks(j) is odd is even, 2p say. Suppose ks(r1), . . . , ks(r2p)

are odd. Then item (ii) of the theorem says that among the signs εs(r1), . . . , εs(r2p)

there are p having the value +1 and p with the value −1.
We now state a result on the uniqueness of A-invariant H-Lagrangian sub-

spaces. In one direction, this result can be found in Theorem 5.12.4 in [70], the
other direction is proved in [122].

Theorem 11.5. Assume that A is H-selfadjoint. The following two statements are
equivalent:

(i) There exist unique A-invariant H-Lagrangian subspaces Mu and Ml such
that σ(A|Mu) is in the closed upper half plane and σ(A|Ml

) is in the closed
lower half plane;

(ii) The real eigenvalues of A have even partial multiplicities, and for each real
eigenvalue μ of A the signs in the sign characteristic of the pair (A, H) cor-
responding to the partial multiplicities associated with μ are all the same.

In particular, the existence of subspaces Mu and Ml with the properties mentioned
in (i) is guaranteed when A has no real eigenvalues. In this case Mu and Ml are
the spectral subspaces of A associated with the part of σ(A) lying in the open upper
and open lower half plane, respectively.

11.3 H-dissipative matrices

Next, we turn to another class of matrices. An n × n matrix is H-dissipative if
1
2i (HA − A∗H) is nonnegative. It can be shown that the spectral subspace of an



216 Chapter 11. Matrices in indefinite inner product spaces

H-dissipative matrix A associated with the part of σ(A) lying in the open upper
half plane is H-nonnegative, while the spectral subspace corresponding to the part
of σ(A) lying in the open lower half plan is H-nonpositive.

Theorem 11.6. Let A be H-dissipative. Then the following statements hold:

(i) There exists an A-invariant maximal H-nonnegative subspace M+ such that
σ(A|M+ ) is in the closed upper half plane. Furthermore, any such M+ con-
tains the spectral subspace of A associated with the part of σ(A) lying in the
open upper half plane.

(ii) There exists an A-invariant maximal H-nonpositive subspace M− such that
σ(A|M−) is in the closed lower half plane. Furthermore, any such M− con-
tains the spectral subspace of A associated with the part of σ(A) lying in the
open lower half plane.

The usual proof of this result is quite involved, uses a fixed point argument,
and holds in an infinite dimensional setting as well, see [6], [87]. A constructive
argument for the finite dimensional case can be found in [129], [137].

The matrix A is said to be strictly H-dissipative if 1
2i
(HA − A∗H) is pos-

itive definite. In that case A cannot have real eigenvalues. Hence, for a strictly
H-dissipative matrix A, the spectral subspace of A associated with the part of
σ(A) lying in the open upper half plane is maximal H-positive, and, similarly, the
spectral subspace of A corresponding to the part of σ(A) contained in the open
lower half plane is maximal H-negative.

Notes

The material in this chapter is taken from the books [68] and [70]. For other books
in this area, with an emphasis on infinite dimensional spaces, see [87], [25], and
[6].



Part V
Riccati equations and
factorization

In this part the canonical factorization theorem is presented in a different way us-
ing the notion of an angular subspace and Riccati equations. In this case one has
to look for angular subspaces that are also spectral subspaces, and the solutions of
the Riccati equation must have additional spectral properties. Spectral factoriza-
tion as well as pseudo-spectral factorization are described in terms of Hermitian
solutions of such a Riccati equation. The study of rational matrix functions that
take Hermitian values on certain curves, started in the previous part, is continued
with an analysis of rational matrix functions that have Hermitian values for which
the inertia is independent of the point on the curve. Such functions may still admit
a symmetric canonical factorization, provided one allows for a constant Hermitian
invertible matrix as a middle factor. A factorization of this type is commonly
known as a J-spectral factorization.

This part consists of three chapters. The first chapter (Chapter 12), which has
a preliminary character, introduces the (non-symmetric) algebraic Riccati equation
and presents the state space canonical factorization theorem in terms of solutions
of such an equation. Pseudo-canonical factorization is treated in an analogous
way. In the second chapter (Chapter 13) the symmetric algebraic Riccati equation
is introduced, and spectral factorization as well as pseudo-spectral factorization
are described using such Riccati equations. In the third chapter (Chapter 14) the
notion of a J-spectral factorization of a rational matrix function is introduced.
Necessary and sufficient conditions for the existence of a such factorization are
given, first in terms of invariant subspaces and then in terms of solutions of a
corresponding symmetric algebraic Riccati equation. The connection between left
and right J-spectral factorization is also studied.





Chapter 12

Canonical factorization and
Riccati equations

In this chapter the canonical factorization theorem from Section 7.1 is presented
in a different way using the notion of an angular subspace and Riccati equations.
In this case one has to look for solutions of the Riccati equation that have addi-
tional spectral properties. Section 12.1, which has a preliminary character, deals
with angular subspaces, and in particular those that are also spectral subspaces.
Section 12.2 deals with the connection between factorization and Riccati equa-
tions in general, while Section 12.3 contains the main result. It specifies further
the main theorem of the second section for the case of canonical factorization.
In Section 12.4, as an application, we solve in state space form the problem of
obtaining a right canonical factorization when a left one is given (or reversely).

12.1 Preliminaries on spectral angular subspaces

Let X be a complex Banach space, let X1 and X2 be closed subspaces of X , and
suppose

X = X1 +̇X2. (12.1)

A closed subspace N of X is said to be angular relative to the decomposition
(12.1) if X = X1+̇N . In that case there is a unique operator R : X2 → X1, called
the angular operator for N , such that

N = {Rx+ x | x ∈ X2} = Im
[

R
I

]
,

where I, as always in this section, stands for the identity operator on the appro-
priate space which can be easily identified from the context (in this case X2).
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Let N be an angular subspace of X relative to (12.1), and let

T =

[
T11 T12

T21 T22

]
: X1+̇X2 → X1+̇X2 (12.2)

be an operator on X . We consider the question when N is invariant under T . For
this purpose, set

E =

[
I R

0 I

]
: X1+̇X2 → X1+̇X2.

This operator is invertible, and maps X2 in a one-to-one way onto N . It follows
that T leaves N invariant if and only if E−1TE leaves X2 invariant. A direct
computation yields

E−1TE =

⎡⎣ T11 −RT21 −RT21R−RT22 + T11R+ T12

T21 T22 + T21R

⎤⎦ . (12.3)

This formula shows that E−1TE leaves X2 invariant if and only if the angular
operator R for N satisfies the algebraic Riccati equation

RT21R+RT22 − T11R− T12 = 0. (12.4)

More precisely, this equation is usually referred to as a nonsymmetric algebraic Ric-
cati equation. In the next chapter we shall encounter symmetric algebraic Riccati
equations. The 2×2 operator matrix (12.2) is often referred to as the Hamiltonian
corresponding to the algebraic Riccati equation (12.4).

Next, let E2 be the restriction of E to X2 considered as an operator from X2

into N . Then E2 is invertible. In fact, E−12 is the restriction of E−1 to N viewed as
an operator from N into X2. Using (12.3) we see that E−12 (T |N )E2 = T22+ T21R,
and hence T |N and T22 + T21R are similar.

In this section we want additionally that N is a spectral subspace of T . The
next proposition shows in terms of the angular operator when this happens.

Proposition 12.1. Let N be an angular subspace of X relative to the decomposition
(12.1), and let T be the operator on X given by (12.2). Then N is a spectral
subspace for T if and only if the angular operator R for N satisfies the algebraic
Riccati equation (12.4) and

σ(T11 −RT21) ∩ σ(T22 + T21R) = ∅.
More precisely the following holds. If N = ImP (T ; Γ), where Γ is a Cauchy contour
that splits σ(T ), then σ(T22 + T21R) is inside Γ and σ(T11 − RT21) is outside Γ.
Conversely, if Γ is a Cauchy contour such that σ(T22 + T21R) is inside Γ and
σ(T11 −RT21) is outside Γ, then the spectrum of T does not intersect with Γ and
N = ImP (T ; Γ).
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Proof. We use the operator E introduced before. The operator E is invertible and
maps X2 in a one-to-one way onto N . Since a spectral subspace of T is invariant
under T , we may assume without loss of generality that the angular operator R
for N satisfies the Riccati equation (12.4). Then formula (12.3) shows that

E−1TE =

[
T11 −RT21 0

T21 T22 + T21R

]
. (12.5)

Since E maps X2 in a one-to-one way onto N , the space N is a spectral subspace
for T if and only if X2 is a spectral subspace for E−1TE, and we can apply
Lemma 3.1 to get the desired result. �

12.2 Angular operators and factorization

In this section we use the concepts introduced in the previous section to bring
the factorization theorem (see Section 2.6) for realizations in a different form. The
main point is that throughout we work with a fixed decomposition X = X1+̇X2

of the state space X of the realization that has to be factorized and the factors
are described with respect to this decomposition. In the finite dimensional case
this corresponds to working with a fixed coordinate system.

Theorem 12.2. Let W (λ) = D + C(λIX − A)−1B be a biproper realization with
state space X and input-output space Y . Let X1 and X2 be closed subspaces of
X such that (12.1) holds, i.e., X = X1 +̇X2, let N be a closed subspace of X
which is angular relative to this decomposition, so X = X1+̇N , and denote the
corresponding angular operator by R. Assume

A[X1] ⊂ X1, A×[N ] ⊂ N, (12.6)

and let D = D1D2 with D1 and D2 invertible operators on Y . Write

A =

[
A11 A12

0 A22

]
: X1+̇X2 → X1+̇X2,

B =

[
B1

B2

]
: Y → X1+̇X2,

C =
[

C1 C2

]
: X1+̇X2 → Y.

Then R satisfies the algebraic Riccati equation

RB2D
−1C1R−R(A22 −B2D

−1C2) + (A11 −B1D
−1C1)R (12.7)

+ (A12 −B1D
−1C2) = 0.



222 Chapter 12. Canonical factorization and Riccati equations

Introduce the functions W1 and W2 via the biproper realizations

W1(λ) = D1 + C1(λIX1 −A11)−1B1D
−1
2 ,

W2(λ) = D2 +D−11 C2(λIX2 −A22)−1B2.

Then W admits the factorization

W (λ) = W1(λ)W2(λ), λ ∈ ρ(A11) ∩ ρ(A22) ⊂ ρ(A).

Also put

A×11 = A11 − (B1 −RB2)D−1C1, A×22 = A22 −B2D
−1(C1R+ C2). (12.8)

Then, for λ ∈ ρ(A×11) ∩ ρ(A×22) ∩ ρ(A11) ∩ ρ(A22), the operators W (λ), W1(λ) and
W2(λ) are invertible, and

W (λ)−1 = W2(λ)−1W1(λ)−1,

where

W−1
1 (λ) = D−11 −D−11 C1(λIX1 −A×11)

−1(B1 −RB2)D−1,

W−1
2 (λ) = D−12 −D−1(C1R+ C2)(λIX2 −A×22)

−1B2D
−1
2 .

Proof. The first part of the theorem is a direct consequence of the observations
presented before Proposition 12.1, applied to A×. Indeed, let E be the invertible
operator

E =

[
I R

0 I

]
,

and write Â = E−1AE, B̂ = E−1B, Ĉ = CE. Then

Â =

[
A11 A12 −RA22 +A11R

0 A22

]
,

B̂ =

[
B1 −RB2

B2

]
,

Ĉ =
[

C1 C1R+ C2

]
and it follows that

Â× = E−1A×E =

[
A×11 H

−B2D
−1C1 A×22

]
,
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where A×11 and A×22 are defined by (12.8), and where H is equal to the left-hand
side of (12.7). Now E maps X1 onto X1 and X2 onto N . Thus (12.6) implies that

Â[X1] ⊂ X1, Â×[X2] ⊂ X2.

Hence (12.7) is satisfied.
It remains to prove the factorization W = W1W2 and to establish the formu-

las for W1, W2 and their inverses. We have W (λ) = D + Ĉ(λI − Â)−1B̂. On the
other hand, by the product rule for realizations,

W1(λ)W2(λ) = D + Ĉ(λI − Ã)−1B̂,

where

Ã =

[
A11 (B1 −RB2)D−1(C1R+ C2)

0 A22

]
.

It remains to observe that by (12.7)

(B1 −RB2)D−1(C1R+ C2) = A12 −RA22 +A11R.

So W = W1W2. The formulas for the inverses are immediate. �

The next theorem is a symmetric version of Theorem 12.2.

Theorem 12.3. Let W (λ) = D + C(λIX − A)−1B be a biproper realization with
state space X and input-output space Y . Let X1 and X2 be closed subspaces of X
with X = X1 +̇X2. Further, let N1 and N2 be closed subspaces of X for which

X = X1+̇N2, X = N1+̇X2,

that is, N2 is angular relative to the decomposition X = X1 +̇X2 while N1 is
angular relative to X = X2 +̇X1. Let R12 : X2 → X1 and R21 : X1 → X2 be the
corresponding angular operators. Assume

X = N1+̇N2, A[N1] ⊂ N1, A×[N2] ⊂ N2, (12.9)

and let D = D1D2 with D1 and D2 invertible operators on Y . Write

A =

[
A11 A12

A21 A22

]
: X1+̇X2 → X1+̇X2,

B =

[
B1

B2

]
: Y → X1+̇X2,

C =
[

C1 C2

]
: X1+̇X2 → Y,
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and put R1 = IX1 − R12R21 and R2 = IX2 − R21R12. Then R1 : X1 → X1 and
R2 : X2 → X2 are invertible. Introduce the functions W1 and W2 via the biproper
realizations

W1(λ) = D1 + (C1 + C2R21)
(
λIX1 − (A11 +A12R21)

)−1
R−11 (B1 −R12B2)D−12 ,

W2(λ) = D2 +D−11 (C1R12 + C2)R−12
(
λIX2 − (A22 −R21A12)

)−1(B2 −R21B1).

Then W admits the factorization

W (λ) = W1(λ)W2(λ), λ ∈ ρ(A11 +A12R21) ∩ ρ(A22 −R21A12) ⊂ ρ(A).

Also put

A×11 = A11 −B1D
−1C1 −R12A21 +R12B2D

−1C1,

A×22 = A22 −B2D
−1C2 +A21R12 −B2D

−1C1R12.

Then, for λ ∈ ρ(A11+A12R21) ∩ ρ(A22−R21A12) ∩ ρ(A×11) ∩ ρ(A×22), the operators
W (λ), W1(λ) and W2(λ) are invertible, and

W (λ)−1 = W2(λ)−1W1(λ)−1,

where

W−1
1 (λ) = D−11 −D−11 (C1 + C2R21)R−11 (λIX1 −A×11)

−1(B1 −R12B2)D−1,

W−1
2 (λ) = D−12 −D−1(C1R12 + C2)(λIX2 −A×22)

−1R−12 (B2 −R21B1)D−12 .

We prepare for the proof of the theorem with a lemma.

Lemma 12.4. Let X be a Banach space, and let X1 and X2 be closed subspaces of
X with X = X1 +̇X2. Further, let N1 and N2 be closed subspaces of X for which

X = X1+̇N2, X = N1+̇X2,

i.e., N2 is angular relative to the decomposition X = X1 +̇X2 while N1 is an-
gular relative to X = X2 +̇X1. Let R12 : X2 → X1 and R21 : X1 → X2 be the
corresponding angular operators. Then the following statements are equivalent:

(i) X = N1+̇N2;

(ii) I −R21R12 is invertible;

(iii) I −R12R21 is invertible;

(iv) F =

[
I R12

R21 I

]
: X1+̇X2 → X1+̇X2 is invertible.
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In case the equivalent conditions (i)–(iv) hold, the projection PN of X along N1

onto N2 is given by

PN =

[
R12

I

]
(I −R21R12)−1

[ −R21 I
]
,

while the complementary projection I − PN can be written as

I − PN =

[
I

R21

]
(I −R12R21)−1

[
I −R12

]
.

Proof. The equivalence of (ii), (iii) and (iv) is straightforward. Observe that F
maps X1 and X2 in a one-to-one manner onto N1 and N2, respectively. Since
X = X1+̇X2, it is clear that X = N1+̇N2 if and only if F is invertible. So (i)
and (iv) are equivalent.

To complete the proof it remains to prove the formula for PN . Observe that
the expression in the right-hand side of the claimed identity for PN does define a
projection. Its image and kernel are given by

Im

[
R12

I

]
, Im

[
I

R21

]
,

respectively, so it is indeed equal to the projection PN . �
Proof of Theorem 12.3. From Lemma 12.4 we know that the operator

F =

[
I R12

R21 I

]
: X1+̇X2 → X1+̇X2

is invertible. Introduce Â = F−1AF, B̂ = F−1B and Ĉ = CF . Then W (λ) =
D + Ĉ(λI − Â)−1B̂. Note that Â[X1] ⊂ X1 and Â×[X2] ⊂ X2, where, following
standard convention Â× = Â− B̂D−1Ĉ, and so Â× = F−1A×F . Write

Â =

[
Â11 Â12

0 Â22

]
, B̂ =

[
B̂1

B̂2

]
, Ĉ =

[
Ĉ1 Ĉ2

]
,

and put

Ŵ1(λ) = D1 + Ĉ1(λ− Â11)−1B̂1D
−1
2 ,

Ŵ2(λ) = D2 +D−11 Ĉ2(λ− Â22)−1B̂2.

Then on ρ(Â11) ∩ ρ(Â22) ⊂ ρ(Â) = ρ(A), the function W is the product of Ŵ1

and Ŵ2.
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The inverse of F is given by

F−1 =

[
R−11 −R−11 R12

−R21R
−1
1 I +R21R

−1
1 R12

]
: X1+̇X2 → X1+̇X2.

Using this and the expression for F , one easily sees that

Â11 = R−11 (A11 + A12R21 −R12A21 −R12A22R21),

B̂1D
−1
2 = R−11 (B1 −R12B2)D−12 ,

Ĉ1 = C1 + C2R21.

Now R21 satisfies the algebraic Riccati equation

R21A12R21 +R21A11 −A22R21 −A21 = 0,

and it follows that Â11 = A11 +A12R21. Thus, for the function Ŵ1, we have

Ŵ1(λ) = D1 + Ĉ1(λ− Â11)−1B̂1D
−1
2

= D1 + (C1 + C2R21)
(
λ− (A11 +A12R21)

)−1
R−11 (B1 −R12B2)D−12 ,

as desired.
Next we compute the function Ŵ2. Using the alternative formula

F−1 =

[
I +R12R

−1
2 R21 −R12R

−1
2

−R−12 R21 R−12

]
: X1+̇X2 → X1+̇X2

for the inverse of F , we obtain

Â22 = R−12 (A22 −R21A12)R−12 ,

B̂2 = R−12 (B2 −R21B1),

D−11 Ĉ1 = D−11 (C1R12 + C2).

Hence, for the function Ŵ2 we get

Ŵ2(λ) = D2 +D−11 Ĉ2(λ− Â22)−1B̂2

= D2 +D−11 (C1R12 + C2)R−12
(
λ− (A22 −R21A12)

)−1(B1 −R12B2)D−12 ,

again as desired.
This proves that the factorization claimed in the theorem holds on

ρ(A11 +A12R21) ∩ ρ(A22 −R21A12)
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which is a subset of ρ(A). What remains to be done is to deduce the formulas for
the inverses. But this amounts to repeating the work with W replaced by W−1.
In doing so, one employs the Riccati equation

R12(A21 −B2D
−1C1)R12 +R12(A22 −B2D

−1C2)

−(A11 −B1D
−1C1)R12 − (A12 −B1D

−1C2) = 0

for R12 instead of the one for R21 used above. The details are omitted. �

12.3 Riccati equations and canonical factorization

In this section Theorem 12.2 is specified further for the case of canonical factor-
ization. As usual, Γ is a Cauchy contour in the complex plane, F+ is its interior
domain, and F− its exterior domain (infinity included).

Theorem 12.5. Let W (λ) = D + C(λIX − A)−1B be a biproper realization with
state space X and input-output space Y . Assume that the spectrum of A does not
intersect Γ. Put X1 = ImP (A; Γ) and let X2 be a closed subspace of X such that
X = X1 +̇X2, so

X = ImP (A; Γ) +̇X2.

Let D = D1D2 with D1 and D2 invertible operators on Y , and write

A =

[
A11 A12

0 A22

]
: X1+̇X2 → X1+̇X2,

B =

[
B1

B2

]
: Y → X1+̇X2,

C =
[

C1 C2

]
: X1+̇X2 → Y.

Then W admits a right canonical factorization with respect to Γ if and only if the
Riccati equation

RB2D
−1C1R−R(A22 −B2D

−1C2) + (A11 −B1D
−1C1)R (12.10)

+ (A12 −B1D
−1C2) = 0

has a (unique) solution R satisfying the constraints

σ
(
A11 − (B1 −RB2)D−1C1

) ⊂ F+, (12.11)

σ
(
A22 −B2D

−1(C1R+ C2)
) ⊂ F−. (12.12)
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In that case a right canonical factorization W (λ) = W−(λ)W+(λ) of W with
respect to Γ is obtained by taking

W−(λ) = D1 + C1(λ −A11)−1(B1 −RB2)D−12 ,

W+(λ) = D2 +D−11 (C1R+ C2)(λ−A22)−1B2.

Moreover, the inverses of W− and W+ are given by

W−1
− (λ) = D−11 −D−11 C1(λ−A×11)

−1(B1 −RB2)D−1,

W−1
+ (λ) = D−12 −D−1(C1R+ C2)(λ−A×22)

−1B2D
−1
2 ,

where

A×11 = A11 − (B1 −RB2)D−1C1, A×22 = A22 −B2D
−1(C1R + C2).

With the appropriate modifications, the theorem also holds for certain con-
tours in the Riemann sphere. For instance, if for Γ one takes the (extended) imagi-
nary axis, one has to take for F+ the open left half plane and for F− the open right
half plane. For left canonical factorizations analogous results hold: just interchange
the roles of inner and outer domains (see the comment after Theorem 3.2).

Proof. The subspace X1 = ImP (A; Γ) is invariant under A, and hence the zero
entry in the left lower corner of the operator matrix representation of A is justified.
Furthermore σ(A11) ⊂ F+ and σ(A22) ⊂ F−.

Next note that relative to the decomposition X = X1 +̇X2 we have

A× = A−BD−1C =

⎡⎣ A11 −B1D
−1C1 A12 −B1D

−1C2

−B2D
−1C1 A22 −B2D

−1C2

⎤⎦ .

Thus −A× is precisely the Hamiltonian of the Riccati equation (12.10).
Assume that W admits a right canonical factorization with respect to Γ.

Then, in particular, W (λ) is invertible for each λ ∈ Γ; hence, by Theorem 2.4, the
spectrum of the operator A× does not intersect Γ. Thus we can use Theorem 7.1
to show that N = KerP (A×; Γ) is an angular subspace for the decomposition
X = X1 +̇X2. Let R be the corresponding angular operator. Since A× leaves N
invariant, we know that R satisfies the Riccati equation

−RB2D
−1C1R +R(A22 −B2D

−1C2)− (A11 −B1D
−1C1)R (12.13)

−(A12 −B1D
−1C2) = 0,

which is equivalent to (12.10). Now Proposition 12.1, applied to A× and with the
roles of the interior and exterior domain of the contour Γ being reversed, shows
that (12.11) and (12.12) are fulfilled.
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Conversely, let R be a solution of the Riccati equation (12.10) for which
(12.11) and (12.12) are satisfied. Thus R satisfies the Riccati equation (12.13)
which has A× as its Hamiltonian. Hence the corresponding angular subspace N is
invariant under A×. Next we again use Proposition 12.1 with T = A× and with the
roles of the interior and exterior domain of the contour Γ being reversed. This yields
that the spectrum of A× does not intersect Γ and that N = KerP (A×; Γ). Since
N is an angular subspace of X relative to X = X1 +̇X2, the latter implies that
X = ImP (A; Γ) +̇KerP (A×; Γ). But then Theorem 3.2 implies that W admits a
right canonical factorization with respect to the contour Γ.

To show uniqueness of the solution R of (12.10) for which the spectral in-
clusions (12.11) and (12.12) are satisfied, it suffices to note that these spectral
inclusions imply that N = KerP (A×; Γ). Indeed, in that case the angular opera-
tor R for N relative to X = X1+̇X2 is uniquely determined.

It remains to get the formulas for the factors. First note that Theorem 12.2
shows that W (λ) = W−(λ)W+(λ) with the factors W−(λ), W+(λ) and their in-
verses being of the desired form. The spectral properties of A11 and A22, together
with those of A×11 and A×22, show that the factorization W (λ) = W−(λ)W+(λ) is
a right canonical factorization with respect to Γ. �

12.4 Left versus right canonical factorization

In this section we answer the following question: if a rational matrix function
W admits a left canonical factorization, under what conditions does it also have
a right canonical factorization? And, if so, how can the right factorization be
obtained from the left one?

Our starting point is a given biproper operator function W , a Cauchy contour
Γ, and a left canonical factorization

W (λ) = Y+(λ)Y−(λ), λ ∈ Γ. (12.14)

The biproper factors Y+ and Y− are given in terms of realizations, that is,

Y+(λ) = D+ + C+(λIX+ −A+)−1B+, (12.15)

Y−(λ) = D− + C−(λIX− −A−)−1B−. (12.16)

We are looking for a right canonical factorization W (λ) = W−(λ)W+(λ). The
key idea for solving this problem is the following: combine the realizations of
Y+ and Y− into a realization for W using the product rule for realizations, then
apply the canonical factorization theorem (Theorem 7.1) to see if a right canonical
factorization exists and, if so, produce formulas for the factors.

As before the interior of Γ will be denoted by F+, the exterior by F−. We
(may and) shall assume that the operators in the realizations are chosen in such
a way that the operators D+ and D− are invertible, the spectra of the operators



230 Chapter 12. Canonical factorization and Riccati equations

A+ and A×+ = A+ −B+D−1+ C+ are contained in F−, and those of A− and A×− =
A−−B−D−1− C− in F+. Then, in particular, the spectra of A− and A+ are disjoint
and the Lyapunov equation

A+Z − ZA− = −B+C− (12.17)

has a unique solution Z : X− → X+(see Section I.4 in [51]). Similarly, the Lya-
punov equation

A×−Z − ZA×+ = B−D−1− D−1+ C+ (12.18)

has a unique solution Z : X+ → X−. These facts are used in the following theorem
and its proof.

Theorem 12.6. Let W (λ) = Y+(λ)Y−(λ) be a left canonical factorization of W
with respect to the Cauchy contour Γ, and let the factors be given by (12.15) and
(12.16). Let Q : X− → X+ and P : X+ → X− be the unique solutions of the
Lyapunov equations (12.17) and (12.18), respectively, that is,

A+Q−QA− = −B+C−, A×−P − PA×+ = B−D−1− D−1+ C+. (12.19)

Then W has a right canonical factorization W (λ) = W−(λ)W+(λ) with respect to
Γ if and only if IX+ −QP is invertible, or, which amounts to the same, IX−−PQ
is invertible. In that case, on the appropriate domains, the factors W− and W+,
and their inverses W−1

− and W−1
+ , are given by

W−(λ) = D+ + (D+C− + C+Q)(λIX− −A−)−1

· (IX− − PQ)−1(B−D−1− − PB+),

W+(λ) = D− + (D−1+ C+ + C−P )(IX+ −QP )−1

· (λIX+ −A+)−1(B+D− −QB−),

W−1
− (λ) = D−1+ −D−1+ (D+C− + C+Q)(IX− − PQ)−1

· (λIX− −A×−)
−1(B−D−1− − PB+)D−1+ ,

W−1
+ (λ) = D−1− −D−1− (D−1+ C+ + C−P )(λIX+ −A×+)

−1

· (IX+ −QP )−1(B+D− −QB−)D−1− .

Proof. First we use (12.15) and (12.16) to obtain a realization for W given in the
form (12.14). So we write X = X−+̇X+ and define A : X → X by

A =

[
A− 0

B+C− A+

]
: X−+̇X+ → X−+̇X+.

Then, by the product rule (see Section 2.5),

W (λ) = D+D− +
[

D+C− C+

] (
λIX −A

)−1 [ B−

B+D−

]
.
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The associate main operator of this realization is

A× =

[
A×− −B−D−1− D−1+ C+

0 A×+

]
: X−+̇X+ → X−+̇X+.

The spectra of A and A× do not intersect Γ. Put

M = ImP (A; Γ), M× = KerP (A×; Γ).

In order that W admits a right canonical factorization with respect to Γ it is
necessary and sufficient (see Theorem 7.1) that X = M+̇M×.

From the matrix representation of A given above we see that KerP (A; Γ)
coincides with X+. So X = M+̇X+, and hence for some Z : X− → X+ we have

M = Im

[
I

Z

]
.

The fact that M is invariant under A now amounts to (12.17). But then the
operator Z must be equal to Q. In a similar way one shows that

M× = Im

[
P

I

]
,

where P : X+ → X− is the unique solution of (12.18). From Lemma 12.4 we know
that the condition X = M×+̇M is equivalent to the invertibility of the matrix[

I P

Q I

]
,

which, in turn, is equivalent to the invertibility of I − QP or, which amounts to
the same, the invertibility of I − PQ. This proves the first part of the theorem.

The formulas for the factors follow by applying Theorem 12.3 with X−, X+,
M , M×, Q and P in the role of X1, X2, N1, N2, R21 and R12, respectively. �

With the obvious modifications, Theorem 12.6 holds true for canonical fac-
torizations with respect to the usual contours in the Riemann sphere (real line
and imaginary axis).

Notes

This chapter is a rewritten and enriched version of Chapter 5 in [11]. Theorem 12.5
in Section 12.3 seems to be new. The material in the final section can be found
in [8]. The notion of an angular operator is standard in operator theory and goes
back to [101]. The theory of Riccati equations is important in system theory; see,
e.g., the text books [94], [33]. For more details on this subject we also refer to the
monograph [106] and to Section 1.6 in [69].





Chapter 13

The symmetric algebraic Riccati
equation

As we know from the previous part there is an intimate connection between canoni-
cal factorization and Riccati equations. In this chapter this connection is developed
further for the case when the rational matrix functions involved have Hermitian
values on the imaginary axis. In this case the corresponding Riccati equation has
additional symmetry properties too.

The chapter consists of three sections. In Section 13.1 we discuss two spe-
cial cases, which both lead to symmetric algebraic Riccati equations of a special
type. In a somewhat more general form, this symmetric version of the algebraic
Riccati equation is studied in Section 13.2, with special attention for stabilizing
solutions. The study is completed in Section 13.3 where we consider Hermitian
solutions of the symmetric algebraic Riccati equation and related pseudo-spectral
factorizations.

13.1 Spectral factorization and Riccati equations

In this section we present two illustrative special cases of spectral factorization.
In both cases the corresponding Riccati equations are symmetric.

For our first case, the starting point is a rational m × m matrix function
G given in realized form G(λ) = Im + C(λIn − A)−1B, with σ(A) in the open
left half plane, and we consider the product W (λ) = G(−λ̄)∗G(λ). Clearly W is
a nonnegative rational m × m matrix function on the imaginary axis. We shall
assume additionally that G(λ) is invertible for each λ ∈ iR, which in the present
situation is equivalent to the requirement that A× = A − BC has no eigenvalue
on iR. The fact that G(λ) is invertible for each λ ∈ iR means that W is positive
definite on R and, as we shall see, Theorem 9.5 can be applied to show that the
function W admits a left spectral factorization with respect to iR. We shall use
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Theorem 12.5 to obtain such a factorization explicitly in terms of the matrices A,
B and C appearing in the realization of G.

Theorem 13.1. Let G(λ) = Im + C(λIn − A)−1B be a realization of a rational
m×m matrix function G such that A has all its eigenvalues in the open left half
plane. Put A× = A − BC, and assume that A× has no eigenvalue on iR. Then
the Riccati equation

−PBB∗P + PA× + (A×)∗P = 0 (13.1)

has a unique Hermitian solution P such that A×−BB∗P has all its eigenvalues in
the left half plane. Furthermore, the rational matrix function W (λ) = G(−λ̄)∗G(λ)
admits a left spectral factorization of W with respect to the imaginary axis. In fact,
W (λ) = L−(−λ̄)∗L−(λ) with

L−(λ) = Im + (C +B∗P )(λIn −A)−1B,

is such a factorization.

By Theorem 2.4, the inverse L−1− of the spectral factor L− in the above
theorem is given by

L−1− (λ) = Im − (C +B∗P )(λIn −A× +BB∗P )−1B.

In comparable situations later on in the book, where obtaining descriptions of
inverses of factors would involve only a routine application of Theorem 2.4, we
will refrain from giving the expressions.

Proof. We split the proof into two parts. In the first part we show that equa-
tion (13.1) has a unique Hermitian solution P such that A× − BB∗P has all its
eigenvalues in the left half plane.
Part 1. From the given realization of G we get G(−λ̄)∗ = Im−B∗(λIn+A∗)−1C∗.
Now apply the product rule from Section 2.5). This gives

W (λ) = I +
[ −B∗ C

](
λ −

[ −A∗ C∗C

0 A

])−1 [
C∗

B

]
. (13.2)

It is easy to check that the hypotheses of Theorem 9.5 are satisfied with the skew-
Hermitian matrix H given by

H =

[
0 −In

In 0

]
. (13.3)

Hence W admits both a left and a right spectral factorization with respect to iR.
In particular W admits both a left and a right canonical factorization with respect
to the imaginary axis.
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Put F− = Cleft and F+ = Cright, where Cleft and Cright are the open left and
right half planes, respectively. By hypothesis σ(A) ⊂ Cleft. So σ(−A∗) ⊂ Cright.
Thus the realization of W in (13.2) is of the form required in Theorem 12.5, and
the Riccati equation (12.10) in the theorem reduces here to

−RBB∗R−RA× − (A×)∗R = 0, (13.4)

where, as usual, A× = A−BC. Since W admits a left canonical factorization with
respect to the imaginary axis, (the appropriate version of) Theorem 12.5 (see the
remark made between the theorem and its proof) shows that (13.4) has a unique
solution R satisfying

σ
(
A× +BB∗R

) ⊂ Cleft, σ
(
(A×)∗ +RBB∗

) ⊂ Cleft. (13.5)

Here we used that σ
(− (A×)∗ − RBB∗

) ⊂ Cright is equivalent to the second in-
clusion in (13.5). Taking adjoints in (13.4) and (13.5) we see that (13.4) and (13.5)
remain true if R is replaced by R∗. But then the uniqueness of the solution implies
R = R∗. Note that for R = R∗ the two inclusions in (13.5) are equivalent. Thus we
see that (13.4) has a unique Hermitian solution R satisfying the first inclusion in
(13.5). When R is replaced −P , equation (13.4) transforms into equation (13.1).
Thus (13.1) has a unique Hermitian solution P satisfying σ(A×−BB∗P ) ⊂ Cleft.
Part 2. Theorem 12.5 also yields a canonical factorization of the rational ma-
trix function given by (13.2). In fact, such a factorization is given by W (λ) =
W−(λ)W+(λ) where the factors and their inverses are given by

W−(λ) = I −B∗(λ+A∗)−1(C∗ + PB),

W+(λ) = I + (B∗P + C)(λ −A)−1B,

W−1
− (λ) = I +B∗

(
λ+ (A×)∗ − PBB∗

)−1(C∗ + PB),

W−1
+ (λ) = I − (B∗P + C)

(
λ−A× +BB∗P

)−1
B.

Comparing the first two expressions we see that W−(λ) = W+(−λ̄)∗, and hence
the factorizationW (λ) = W−(λ)W+(λ) is a left spectral factorization with respect
to iR. Now put L− = W+ to arrive at the desired result. �

For our second special case, we assume that W is proper, Hermitian on the
imaginary axis, and has no poles there. This implies that W can be written in the
form

W (λ) = D + C(λIn −A)−1B −B∗(λIn +A∗)−1C∗, (13.6)

where D is Hermitian and A has all its eigenvalues in the open left half plane. On
the basis of this representation we shall prove the following theorem.

Theorem 13.2. Let the rational m×m function W be given by (13.6), where D is
positive definite and A has all its eigenvalues in the open left half plane. Assume
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additionally that W has no zeros on the imaginary axis, and put A× = A−BD−1C.
Then the Riccati equations

PBD−1B∗P − PA× − (A×)∗P + C∗D−1C = 0, (13.7)

QC∗D−1CQ−Q(A×)∗ −A×Q+ BD−1B∗ = 0 (13.8)

have unique Hermitian solutions P and Q that satisfy

σ
(
A× −BD−1B∗P

) ⊂ Cleft, σ
(
(A×)∗ − C∗D−1CQ

) ⊂ Cleft. (13.9)

Furthermore, with respect to the imaginary axis, W admits left and right spectral
factorizations,

W (λ) = L−(−λ̄)∗L−(λ), W (λ) = L+(−λ̄)∗L+(λ), (13.10)

respectively, with the factors L− and L+ being given by

L−(λ) = D1/2 +D−1/2(C +B∗P )(λIn −A)−1B, (13.11)

L+(λ) = D1/2 −D−1/2(CQ+B∗)(λIn +A∗)−1C∗. (13.12)

Proof. We split the proof into four parts. In the first three parts the attention is
focussed on equation (13.7) and the first parts of (13.9) and (13.10).
Part 1. From (13.6) we get

W (λ) = D +
[

B∗ C
](

λ −
[ −A∗ 0

0 A

])−1 [ −C∗

B

]
.

The main matrix of this realization has no pure imaginary eigenvalues. This follows
from the assumption on the eigenvalues of A. Clearly W is selfadjoint on the
imaginary axis and takes invertible values there. It follows that for λ ∈ iR the
signature of the matrixW (λ), that is, the difference between the number of positive
and negative eigenvalues of W (λ), does not depend on λ. As W (∞) = D is positive
definite, we obtain that W (λ) is positive definite for λ ∈ iR. So the hypotheses
of Theorem 9.5 are satisfied with the skew-Hermitian matrix H given by (13.3).
Hence W admits both a left and a right spectral factorization with respect to
iR. To get the formulas for the factors we will apply (the appropriate version of)
Theorem 12.5 (see the remark made between the theorem and its proof)
Part 2. For the case considered here the Riccati equation (12.10) in Theorem 12.5
has the form

RBD−1B∗R−RA× − (A×)∗R+ C∗D−1C = 0.

This is precisely equation (13.7) with R in place of P . Since W admits a left
canonical factorization with respect to the imaginary axis, Theorem 12.5 tells us
that equation (13.7) has a unique solution P satisfying

σ
(− (A×)∗ + PBD−1B∗

) ⊂ Cright, σ
(
A× − BD−1B∗P

) ⊂ Cleft. (13.13)
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Using the symmetry properties in (13.7) and (13.13), we see that P ∗ is also a
solution of (13.7) satisfying (13.13). Because of the uniqueness of P , we have
P = P ∗, and hence P is a Hermitian solution of (13.7) satisfying the first inclusion
in (13.9). On the other hand, if P̃ is a Hermitian solution of (13.7) satisfying the
first inclusion in (13.9), then P̃ actually satisfies both inclusions in (13.13), and
hence P = P̃ .
Part 3. Next, we derive the first factorization in (13.10). By Theorem 12.5 the
matrix function W admits a right canonical factorization, W (λ) = W−(λ)W+(λ),
with respect to iR. The factors in this factorization are given by

W−(λ) = D1/2 +B∗(λ+A∗)−1(−C∗ − PB)D−1/2,

W+(λ) = D1/2 +D−1/2(B∗P + C)(λ −A)−1B.

Put L−(λ) = W+(λ). Then L−(−λ̄)∗ = W−(λ), and hence the first identity in
(13.10) holds. Moreover, the function L−(λ) is given by (13.11). Since the factor-
ization W (λ) = W−(λ)W+(λ) is a canonical one, we also know that the factoriza-
tion W (λ) = L−(−λ̄)∗L−(λ) is a left spectral factorization of W with respect to
iR.
Part 4. Finally, to get the corresponding result for the Riccati equation (13.8) and
the second factorization in (13.10), we apply the results obtained in the preceding
paragraphs to V (λ) = W (−λ), that is, to

V (λ) = D + B∗(λ−A∗)−1C∗ − C(λ+A)−1B.

Note that A∗ has all its eigenvalues in Cleft. Furthermore, if the function V ad-
mits a left spectral factorization with respect to the imaginary axis, V (λ) =
K−(−λ̄)∗K−(λ) say, then W (λ) = K−(λ̄)∗K−(−λ) is a right spectral factorization
of W with respect to iR. �

We conclude this section with a few remarks about the Hermitian solutions
of the Riccati equations appearing in Theorem 13.2. Let W be given by (13.6)
with D positive definite.

First we show that any Hermitian solution P of (13.7) is invertible whenever
the pair (C, A) is observable. Suppose Px = 0. Since P is Hermitian, we also
have x∗P = 0. Then (13.7) yields x∗C∗D−1Cx = 0. As D is positive definite, this
gives Cx = 0. But then, again using (13.7), we get PA× = 0, and hence PAx =
PA×x+PBD−1Cx = 0. So KerP is A-invariant and is contained in KerC. Hence
KerP is contained in Ker (C|A), and thus KerP = {0} when Ker (C|A) = {0}.

In a similar way one shows that controllability of the pair (A, B) implies
that every Hermitian solution Q of (13.8) is invertible. Thus, if the realization
C(λ − A)−1B is minimal, then the Hermitian solutions of the Riccati equations
(13.7) and (13.8) are automatically invertible.

Now let P be an invertible Hermitian solution of (13.7). Multiplying (13.7)
from both sides by P−1 shows that Q = P−1 is an invertible Hermitian solution of
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(13.8). The converse is also true, that is, if Q is an invertible Hermitian solution
of (13.8), then P = Q−1 is an invertible Hermitian solution of (13.7). Thus the
map P �→ Q = P−1 provides a one-to-one correspondence between the invertible
Hermitian solutions P of (13.7) and the invertible Hermitian solutions Q of (13.8).
Furthermore, in this case (with Q = P−1) we have

σ
(
A× −BD−1B∗P

)
= σ
(− (A×)∗ + C∗D−1CQ

)
.

Indeed, by (13.7) we have PA× − PBD−1B∗P = −(A×)∗P + C∗D−1C, and so

A× −BD−1B∗P = P−1(PA× − PBD−1B∗P )

= P−1
(− (A×)∗P + C∗D−1C

)
= P−1

(− (A×)∗ + C∗D−1CP−1
)
P

= P−1
(− (A×)∗ + C∗D−1CQ

)
P.

In particular, if the eigenvalues of A× −BD−1B∗ are in the open left half plane,
then those of (A×)∗−C∗D−1CQ are in the open right half plane. Comparing this
with (13.9), we see that in Theorem 13.2 the matrix Q is not the inverse of the
matrix P .

13.2 Stabilizing solutions

The equations (13.1) and (13.7) are special cases of the general symmetric algebraic
Riccati equation

−PBR−1B∗P + PA+A∗P + Q = 0, (13.14)

with R and Q selfadjoint, R invertible. Note that the Hamiltonian (see Sec-
tion 12.1) corresponding to equation (13.14) is the 2× 2 block matrix

T =

[ −A∗ −Q

−BR−1B∗ A

]
. (13.15)

We shall assume throughout this section that A is an n × n matrix, B an n×m
matrix, Q a selfadjoint n × n matrix, and R a positive definite m × m matrix.
Thus the Hamiltonian T can be viewed as an operator on C2n = Cn ⊕ Cn.

We shall also assume that the pair (A, B) is stabilizable. The latter means
that there there exists an m×n matrix F such that A−BF has all its eigenvalues
in the open left half plane.

Equation (13.14) plays an important role in optimal control theory, where
one is mainly interested in stabilizing solutions P . A solution P of (13.14) is said to
be iR-stabilizing, or simply stabilizing when no confusion is possible, if the matrix
A − BR−1B∗P has all its eigenvalues in the open left half plane. In order that
such a solution exists the pair (A, B) has to be stabilizable. In general, however,
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this condition is not sufficient. An additional condition on the eigenvalues of the
Hamiltonian T is required.

Theorem 13.3. Consider the symmetric algebraic Riccati equation (13.14) with R
positive definite and Q selfadjoint. Then the following two statements are equiva-
lent:

(i) There exists an iR-stabilizing solution of (13.14);

(ii) The pair (A, B) is stabilizable and the Hamiltonian T given by (13.15) does
not have pure imaginary eigenvalues.

Moreover, if (13.14) has an iR-stabilizing solution, then it is unique and Hermi-
tian.

The proof of the implication (i)⇒ (ii) and of the final statement of the the-
orem concerning the uniqueness of the iR-stabilizing solution do not require R to
be positive definite; selfadjointness and invertibility of R are enough.

It will be convenient first to prove a lemma using a somewhat more general
setting. For this purpose we return to the general algebraic Riccati equation which
was studied in Chapter 12:

XT21X +XT22 − T11X − T12 = 0. (13.16)

Taking

T21 = −BR−1B∗, T22 = A, T11 = −A∗, T12 = −Q, (13.17)

and setting X = P , we see that we arrive at (13.14). Note that in this case

T22 = −T ∗11, T ∗12 = T12, T ∗21 = T21. (13.18)

In this symmetric case the coefficients Tij , 1 ≤ i, j ≤ 2, are square matrices, all of
the same order, n say.

In what follows H will denote the Hamiltonian of (13.16), that is, H =[
Tij

]2
i,j=1

. Note that the identities in (13.18) hold if and only if

JH = −H∗J, where J =

[
0 In

−In 0

]
. (13.19)

We are now ready to state the lemma.

Lemma 13.4. Let X be a solution of (13.16) such that σ(T22 + T21X) ⊂ Cleft. If,
in addition, the coefficients of (13.16) satisfy the identities in (13.18), then the
Hamiltonian H has no pure imaginary eigenvalues and σ(T11 −XT21) ⊂ Cright.
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Proof. We shall use freely the results of Section 12.1. Let N be the angular sub-
space determined by X . Then N is invariant under the Hamiltonian H and the
restriction H |N is similar to the matrix T22+T21X . Since the identities in (13.18)
are satisfied, (13.19) holds. The symmetry relation JH = −H∗J implies that the
eigenvalues ofH are placed symmetrically with respect to the imaginary axis (mul-
tiplicities included). Note that the dimension of the angular subspace N is equal to
n, where n is the size of the matrices Tij , 1 ≤ i, j ≤ 2. Since N is invariant under
H and H |N is similar to T22+T21X , the condition on the spectrum of T22+T21X ,
implies that σ(H |N ) ⊂ Cleft. It follows that H has at least n eigenvalues (multi-
plicities taken into account) in Cleft. The symmetry referred to above then gives
that H also has at least n eigenvalues in Cright. But the order of H is 2n. So H
has precisely n eigenvalues in Cleft, and also precisely n eigenvalues in Cright. In
particular, H has no eigenvalue on the imaginary axis.

Next, recall formula (12.5) for the present setting, that is,

E−1HE =

[
T11 −XT21 0

T21 T22 + T21X

]
, where E =

[
In X

0 In

]
. (13.20)

As H and E−1HE have the same set of eigenvalues (multiplicities taken into
account) and σ(T22 + T21X) ⊂ Cleft, the result of the previous paragraph implies
that σ(T11 −XT21) ⊂ Cright, which completes the proof. �
Corollary 13.5. Assume the coefficients of the Riccati equation (13.16) satisfy the
symmetry conditions in (13.18). Then equation (13.16) has at most one solution X
such that σ(T22+T21X) ⊂ Cleft. Moreover, this solution, if it exists, is Hermitian.

Proof. Assume X is a solution of (13.16) such that σ(T22 + T21X) is a subset of
Cleft. Then, by Lemma 13.4, the HamiltonianH has no pure imaginary eigenvalues
and σ(T11 − XT21) ⊂ Cright. But then we can apply Proposition 12.1 to show
that the angular subspace N determined by X is the spectral subspace of H
corresponding to the eigenvalues of H in the open left half plane. In particular,
N is uniquely determined and does not depend on the particular choice of the
solution X . This implies that X is also uniquely determined.

Again assume that X is a solution of (13.16) such that σ(T22 + T21X) is a
subset of Cleft. Then σ(T11 − XT21) ⊂ Cright. By taking adjoints and using the
identities in (13.18) we see that the latter inclusion implies that σ(T22 + T21X

∗)
is a subset of Cleft. Furthermore, from the identities in (13.18) it also follows that
X∗ is a solution of (13.16). But then, by the uniqueness result of the previous
paragraph, X∗ = X . Hence X is Hermitian, as desired. �
Proof of Theorem 13.3. The implication (i)⇒ (ii) and the final statements of the
theorem follow directly by applying Lemma 13.4 and Corollary 13.5 with the
coefficients Tij , 1 ≤ i, j ≤ 2, being taken as in (13.17).

It remains to prove the implication (ii)⇒ (i). Let F be an m×n matrix such
that A−BF has all its eigenvalues in the open left half plane. Such a matrix exists
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because (A, B) is stabilizable. Introduce the rational m×m matrix function

V (λ) = R+
[
B∗ −RF

]
(λ−G)−1

[
F ∗R

B

]
, (13.21)

where

G =

[ −A∗ + F ∗B∗ −Q− F ∗RF

0 A−BF

]
.

The fact that R is invertible implies that the realization (13.21) is biproper, and
one verifies easily that the associate main operator is precisely the Hamiltonian
T . Thus

V −1(λ) = R−1 − [R−1B∗ − F
]
(λ− T )−1

[
F ∗

BR−1

]
.

Since A−BF has all its eigenvalues in the open left half plane, G has no eigenvalue
on the imaginary axis. By assumption the same holds true for T . Thus V has no
poles or zeros on iR. In particular, V (λ) is invertible for each λ ∈ iR. With J as
in (13.19) we have

JG = −G∗J, J

[
F ∗R

B

]
=
[
B∗ −RF

]∗
.

So, by the remark made after the proof of Theorem 9.1, the values of V on iR are
selfadjoint matrices. Since V (λ) is invertible for each λ ∈ iR, it follows that the
signature of the matrices V (λ) for λ ∈ iR, i.e., the difference between the number
of positive and negative eigenvalues of the selfadjoint matrix V (λ), is constant. As
V (∞) = R is positive definite, we obtain that V (λ) is positive definite for λ ∈ iR.
Hence we know from Theorem 9.5 that V admits a left spectral factorization with
respect to iR.

To finish the proof of (ii)⇒ (i), we apply (the appropriate version of) Theo-
rem 12.5 (see the remark made between the theorem and its proof) with

A11 = −A∗ + F ∗B∗, A12 = −Q− F ∗RF, A22 = A−BF,

B1 = F ∗R, B2 = B, C1 = B∗, C2 = −RF, D = R.

Via these choices, equation (12.10) transforms into (13.14) with P as the unknown.
Furthermore, the inclusions (12.11) and (12.12) change into

σ(−A∗ + PBR−1B∗) ⊂ Cright, σ(A−BR−1B∗P ) ⊂ Cleft. (13.22)

The conclusion is that equation (13.14) has a unique solution P satisfying the
inclusions in (13.22). The second of these shows that P is a stabilizing solution of
(13.14). Thus (i) is proved. �
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Let P be an iR-stabilizing solution of (13.14). Then by definition, the spectral
inclusion σ(A − BR−1B∗P ) ⊂ Cleft holds. Furthermore, since P is Hermitian,
also σ(−A∗+PBR−1B∗P ) ⊂ Cright; see also Lemma 13.4. So one of the spectral
inclusions in (13.22) implies the other one automatically; cf., the two spectral
inclusions (12.11), (12.12).

13.3 Symmetric Riccati equations and pseudo-spectral

factorization

We now continue the discussion of Section 13.2. The object of study will be the
algebraic Riccati equation

A∗P + PA+Q− (PB + S∗)R−1(B∗P + S) = 0. (13.23)

Observe that compared to (13.14) there are some additional terms. On the other
hand, (13.23) can be rewritten in the more familiar form (13.14) as

(A∗ − S∗R−1B∗)P + P (A− BR−1S) + (Q− S∗R−1S)− PBR−1B∗P = 0.

The Hamiltonian of this equation is given by

T =

[ −A∗ + S∗R−1B∗ −Q+ S∗R−1S

−BR−1B∗ A−BR−1S

]
. (13.24)

Also of importance is the rational matrix function

W (λ) =
[ −B∗(λ+A∗)−1 I

] [ Q S∗

S R

][
(λ−A)−1B

I

]
. (13.25)

Note that W is selfadjoint on the imaginary axis, and admits the realization

W (λ) = R+
[

B∗ S
](

λ−
[ −A∗ −Q

0 A

])−1 [ −S∗

B

]
. (13.26)

For the inverse of W , one computes that

W (λ)−1 = R−1 − R−1
[

B∗ S
]
(λ− T )−1

[ −S∗

B

]
R−1.

Letting n be the order of the matrix A and the skew-Hermitian 2n× 2n matrix J
as in (13.19), we have

J

[ −A∗ −Q

0 A

]
= −

[ −A∗ −Q

0 A

]∗
J, J

[ −S∗

B

]
=
[

B∗ S
]∗

,
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and hence also JT = −T ∗J .
The hypotheses we shall have in effect in this section are more stringent than

those in Section 13.2. In fact, we shall assume A is an n × n matrix and B an
n × m matrix such that (A, B) is a controllable pair (as opposed to the weaker
condition of stabilizability). As in Section 13.2 we take R positive definite and Q
selfadjoint.

In the next theorem we characterize when the function W introduced above
is nonnegative on the imaginary axis. The characterization is given in terms of the
existence of Hermitian solutions of the Riccati equation (13.23). Also we specify
further the pseudo-spectral factorization result in Theorem 10.2, again in terms of
Hermitian solutions of (13.23).

Theorem 13.6. Consider the Riccati equation (13.23) with (A, B) a controllable
pair, R positive definite and Q selfadjoint. Let T be the matrix given by (13.24)
and let W be the rational matrix function defined by (13.25). Then the following
statements are equivalent:

(i) Equation (13.23) has a Hermitian solution P ;

(ii) The rational matrix function W is nonnegative on the imaginary axis;

(iii) The partial multiplicities of T at its pure imaginary eigenvalues are all even;

(iv) There exists a T -invariant subspace M such that J [M ] = M⊥.

In that case, so if the equivalent conditions (i)−(iv) hold, then, given a Hermitian
solution P of (13.23), the rational matrix function W (λ) factors as

W (λ) = L(−λ̄)∗L(λ), (13.27)

where
L(λ) = R1/2 + R−1/2(B∗P + S)(λIn −A)−1B. (13.28)

Moreover, if M is a T -invariant subspace such that J [M ] = M⊥, then M is of the
form

M = Im
[

P
In

]
for a Hermitian solution P of (13.23). In addition, if both A and T |M have all
their eigenvalues in the closed left half plane, then the factorization (13.27) is a
pseudo-spectral factorization with respect to the imaginary axis.

Proof. (i)⇒ (ii) Suppose (13.23) has a Hermitian solution P . With this P , define
L(λ) by (13.28). We then have

L(−λ̄)∗L(λ) = R−B∗(λ +A∗)−1(S∗ + PB) + (B∗P + S)(λ−A)−1B
−B∗(λ+A∗)−1(S∗ + PB)R−1(B∗P + S)(λ−A)−1B.

Using (13.23), one rewrites the last term as

B∗(λ+A∗)−1
(
Q+ (λ −A∗)P + P (A− λ)

)
(λ−A)−1B
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which, in turn, can be transformed into

B∗(λ+A∗)−1Q(λ−A)−1B +B∗P (λ−A)−1B −B∗(λ+A∗)−1PB.

Thus L(−λ̄)∗L(λ) = W (λ), and (ii) holds. Moreover, the identity (13.27) is proved.
(ii)⇒ (iii) To prove that (ii) implies (iii) a couple of preparatory remarks are

needed. Let A be an n × n matrix and B be an n × m matrix. For any m × n
matrix F introduce

AF = A−BF, SF = S −RF, QF = Q− S∗F − F ∗S + F ∗RF.

Then, [
QF S∗F
SF R

]
=

[
I −F ∗

0 I

][
Q S∗

S R

][
I 0

−F I

]
.

Thus

W (λ) =
[ −B∗(λ+A∗)−1 I

] [ I F ∗

0 I

][
QF S∗F
SF R

]

·
[

I 0

F I

][
(λ−A)−1B

I

]

=
[ −B(λ+A∗)−1 I −B∗(λ+A∗)−1F ∗

]
·
[

QF S∗F
SF R

][
(λ−A)−1B

I + F (λ−A)−1B

]
.

Now introduce

WF (λ) =
[ −B∗(λ+A∗F )

−1 I
] [ QF S∗F

SF R

] [
(λ−AF )−1B

I

]
,

and Φ(λ) = I + F (λ − A)−1B. Then Φ(λ)−1 = I − F (λ − AF )−1B. Using the
fourth identity in Theorem 2.4 one sees that (λ−A)−1BΦ(λ)−1 = (λ−AF )−1B.
Thus W (λ) = Φ(−λ̄)∗WF (λ)Φ(λ). So W (λ) is nonnegative for λ ∈ iR if and only
if WF (λ) is nonnegative for λ ∈ iR, provided λ is not a pole of the functions
involved. Next, notice that WF (λ) has the realization

WF (λ) = R+
[

B∗ SF

](
λ−
[ −A∗F −QF

0 AF

])−1 [ −S∗F
B

]
.

One readily computes that[ −A∗F −QF

0 AF

]
−
[ −S∗F

B

]
R−1

[
B∗ SF

]
= T,
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where T is given by (13.24). So

WF (λ)−1 = R−1 −R−1
[

B∗ SF

]
(λ− T )−1

[ −S∗F
B

]
R−1.

Since the pair (A, B) is controllable, we can use the pole placement theorem
from mathematical systems theory (see Theorem 19.3 in Chapter 20 below), to
conclude that there exists an m× n matrix F such that all the eigenvalues of AF

are in the open left half plane. Using such an F , we see that the matrix[ −A∗F −QF

0 AF

]

has no imaginary eigenvalues. This allows us to show (see formula (4.7) in Section
4.3 in [20]) that the matrix functions[

WF (λ) 0

0 I2n

]
and

[
λI2n − T 0

0 Im

]

are analytically equivalent on an open set containing the imaginary axis. It follows
that for each λ ∈ iR the partial multiplicities of λ as an eigenvalue of T are equal
to the partial multiplicities of λ as a zero of WF . Since WF is nonnegative on iR,
we know from Proposition 10.4 that the partial multiplicities of λ ∈ iR as a zero
of WF are even. Hence the partial multiplicities at the pure imaginary eigenvalues
of T are even. Thus (ii) implies (iii).

(iii)⇒ (iv) This implication can be seen from Theorem 11.4 in Chapter 11
applied to A = iT and H = iJ . Indeed, since there are no odd partial multiplicities
corresponding to pure imaginary eigenvalues of T , the condition of Theorem 11.4
is satisfied. Hence there exists an A-invariant subspace M such that H [M ] = M⊥.
This subspace then is also T -invariant and satisfies J [M ] = M⊥.

(iv)⇒ (i) Let M be T -invariant subspace such that J [M ] = M⊥, and write

M = Im

[
X1

X2

]
,

for appropriate n× n matrices X1 and X2. It will be shown that X2 is invertible.
Once this is done, we can take P = X1X

−1
2 . From T [M ] ⊂ M one obtains that

P solves (13.23), while from J [M ] = M⊥ one has P = P ∗. Hence (i) holds.
We have also shown that any T -invariant J-Lagrangian subspace M is the graph
of a Hermitian solution P of the Riccati equation, that is, M is of the form
M = Im

[
P I

]∗ for a matrix P = P ∗ that solves (13.23).
It remains to verify that KerX2 = {0}. As dimM = n, the null spaces KerX1

and KerX2 have a trivial intersection. So it is sufficient to establish that X2x = 0
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implies X1x = 0. Let X2x = 0. Then[
X1x

0

]
∈M,

and hence

T

[
X1x

0

]
=

[ −A∗X1x+ S∗R−1B∗X1x

−BR−1B∗X1x

]
∈ M.

Now M is iJ-Lagrangian, i.e., J [M ] = M⊥. So

0 =

〈
T

[
X1x

0

]
, J

[
X1x

0

]〉
= −〈R−1B∗X1x, B∗X1x〉.

As R is positive definite, we obtain B∗X1x = 0. Hence

T

[
X1x

0

]
=

[ −A∗X1x

0

]
.

But this vector is in M , so it must be of the form[
X1y

X2y

]
.

Thus X2y = 0 and X1y = −A∗X1x. As X2y = 0, we have B∗X1y = 0 by the
argument given above. So B∗A∗X1x = 0. Now consider

T 2

[
X1x

0

]
= T

[
−A∗X1x

0

]
=

[
A∗2X1x

0

]
.

Repeating the argument we get B∗A∗2X1x = 0. Continuing in this way we arrive
at X1x ∈ KerB∗A∗j for all j. As (A, B) is a controllable pair, the pair (B∗, A∗)
is observable, and thus we see that X1x = 0, as desired.

It is easily seen that the eigenvalues of T |M coincide with those of the matrix
A−BR−1S −BR−1B∗P . Thus, if both A and T |M have their eigenvalues in the
closed left half plane, then the factorization (13.27) with L given by (13.28) is a
pseudo-spectral factorization. �

Notice that the full force of the controllability condition on the pair (A, B)
was only used in the last part of the proof. More precisely, the implications (i)⇒ (ii)
and (iii)⇒ (iv) are true without any condition on (A, B), and for the implication
(ii)⇒ (iii) only stabilizability of (A, B) was used.
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Notes

The connection between Riccati equations and factorizations as discussed in Sec-
tion 13.1 goes back to [147] and [41]. The main result of Section 13.2 originates
from [102], see also [106], Section 9.3. The results of Section 13.1 and 13.2, and sim-
ilar results for the discrete time algebraic Riccati equation, play an important role
in several problems in mathematical systems theory, notably, LQ-optimal control,
Kalman filtering and stochastic realization (see, e.g., [84], [85], [33]). The main
result of Section 13.3 appeared for the first time in [105] and [34]. See also Chap-
ter 7 in [106]. The parametrization of solutions of the algebraic Riccati equation
in terms of invariant subspaces of the matrix T , as described in Theorem 13.6,
also plays a role in [135], [136].





Chapter 14

J-spectral factorization

In this chapter we continue the study of rational matrix functions that take Hermi-
tian values on certain contours. In contrast to the previous chapters, the emphasis
will not be on positive definite or nonnegative rational matrix functions, but rather
on ones that have values for which the inertia is independent of the point on the
contour. Such functions may still admit a symmetric canonical factorization, pro-
vided we allow for a constant Hermitian invertible matrix as a middle factor. Such
a factorization is commonly known as a J-spectral factorization. We shall give nec-
essary and sufficient conditions for its existence, and study the question when a
function which admits a left J-spectral factorization also admits a right J-spectral
factorization.

This chapter consists of seven sections. The first four sections and the one
but last deal with J-spectral factorization with respect to the imaginary axis. Sec-
tion 14.1 introduces the notion of J-spectral factorization. The next two sections
provide necessary and sufficient conditions for the existence of such factorizations;
in Section 14.2 these conditions are stated in terms of certain invariant subspaces
and in Section 14.3 they are given in terms of Riccati equations. Two special cases
are discussed in detail in Section 14.4. The fifth section (Section 14.5) deals with J-
spectral factorization with respect to the unit circle and the real line. Section 14.6
concerns the topic of left versus right J-spectral factorization. In Section 14.7 an
alternative approach is used to derive J -spectral factorizations with respect to the
unit circle. The main result of this final section extends to a more general setting
the first main result of Section 14.5.

14.1 Definition of J-spectral factorization

Throughout this chapter J is an invertible Hermitian m × m matrix. Often we
shall assume additionally that J−1 = J . Thus in that case we have

J = J∗ = J−1. (14.1)
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Such a matrix is called a signature matrix. Up to a congruence transformation any
selfadjoint invertible matrix is a signature matrix.

Suppose W is a rational m×m matrix function. A factorization

W (λ) = L(−λ̄)∗JL(λ) (14.2)

is called a right J-spectral factorization with respect to the imaginary axis if L
and L−1 are rational m×m matrix functions which are analytic on the closed left
half plane (infinity included). In that case the function L(−λ̄)∗ and its inverse are
analytic on the closed right half plane (including infinity). Thus a right J-spectral
factorization with respect to the imaginary axis is a right canonical factorization
with respect to iR featuring an additional symmetry property between the factors.
A factorization (9.3) is called a left J-spectral factorization with respect to the
imaginary axis if L and L−1 are rationalm×mmatrix functions which are analytic
on the closed right half plane (infinity included), in which case the function L(λ̄)∗

and its inverse are analytic on the closed left half plane (infinity included). Such
a factorization is a left canonical factorization with respect to iR.

The existence of a right or left J-spectral factorization implies that W admits
a canonical factorization with respect to the imaginary axis. In particular, in order
that a right or left J-spectral factorization of W exists it is necessary that W is
biproper and has no poles or zeros on the imaginary axis. Furthermore, the identity
(14.2) gives that W is selfadjoint on the imaginary axis.

Contrary to spectral factorizations for positive definite rational matrix func-
tions, J-spectral factorizations do not always exist for biproper rational matrix
functions that satisfy the obvious necessary conditions mentioned in the previous
paragraph. Since a J-spectral factorization is a canonical factorization, we can use
Theorem 3.2 to prepare for an example of this phenomenon. Let

W (λ) =

⎡⎢⎢⎣ 0
λ− 1
λ+ 1

λ+ 1
λ− 1

0

⎤⎥⎥⎦ . (14.3)

Obviously, W is biproper and its values on the imaginary axis are selfadjoint.
Furthermore, W has no pole or zero on the imaginary axis. The function W has
the minimal realization W (λ) = D + C(λ −A)−1B, with

D =

[
0 1

1 0

]
, A =

[
1 0

0 −1

]
, B =

[
1 0

0 −2

]
, C =

[
0 1

2 0

]
. (14.4)

The associate main operator is given by

A× = A−BD−1C =

[−1 0

0 1

]
= −A.
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Now for a right canonical factorization with respect to the imaginary axis to exist,
we must have C2 = M−+̇M×

+ , where M− is the spectral subspace of A associated
with the part of σ(A) lying in the left half plane, andM×

+ is the spectral subspace of
A× associated with the part of σ(A×) lying in the right half plane. However, since
in this case A× = −A, we have M− = M×

+ . Hence a right canonical factorization
of W with respect to iR does not exist. Analogously, a left canonical factorization
does not exist either. Hence neither left nor right J-spectral factorizations of W
with respect to the imaginary axis exist for any choice of J = J∗ = J−1.

To further clarify the connection between J-spectral factorization and canon-
ical factorization we present the following proposition.

Proposition 14.1. Let W be a biproper rational m × m matrix function that is
selfadjoint on the imaginary axis and has no pole there. Then W (∞) is congruent
to a signature matrix J , and for such a matrix J the function W admits a right
(respectively, left) J-spectral factorization with respect to the imaginary axis if and
only if it admits a right (respectively, left) canonical factorization with respect to
the imaginary axis.

Proof. Since W is selfadjoint on the imaginary axis and proper, we see that D =
W (∞) is well-defined and selfadjoint. The fact that W is biproper means that D
is invertible. Thus D is an invertible selfadjoint matrix, and hence congruent to a
signature matrix, J say: D = E∗JE for some invertible matrix E.

Let W (λ) = W−(λ)W+(λ) be a right canonical factorization of W with
respect to the imaginary axis. Since W , W− and W+ are biproper we have D =
D−D+, where D− = W−(∞) and D+ = W+(∞). It follows that the factorization
W (λ) = W−(λ)W+(λ) can be rewritten as W (λ) = V−(λ)DV+(λ), where

V−(λ) = W−(λ)D−1− , V+(λ) = D−1+ W−(λ).

In particular, the values of V− and V+ at infinity are equal to the m×m identity
matrix. Since V+ and V −1+ are analytic on the closed right half plane (infinity
included) and the functions V− and V −1− are analytic on the closed left half plane
(infinity included), the factorization is unique. Now we use that D is selfadjoint
and that W is selfadjoint on the imaginary axis. It follows that

W (λ) = V+(−λ̄)∗DV−(−λ̄)∗,

and in this factorization the factors have the same analyticity properties as those
in W (λ) = V−(λ)DV+(λ). Because of the uniqueness of the latter factorization,
we conclude that V−(λ) = V+(−λ̄)∗. Recall that D = E∗JE. Put L(λ) = EV+(λ).
ThenW (λ) = L(−λ̄)∗JL(λ), and this factorization is a left J-spectral factorization
with respect to the imaginary axis. The reverse implication is trivial. �

14.2 J-spectral factorizations and invariant subspaces

In this section necessary and sufficient conditions for existence of a right or left
J-spectral factorization with respect to the imaginary axis will be derived in terms
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of invariant subspaces. It will be assumed that the obvious necessary conditions
for the existence of a J-spectral factorization are satisfied, that is, the rational
m×m matrix function W for which we wish to find J-spectral factorizations with
respect to iR is assumed to be biproper, to have no poles or zeros on iR, and to
be selfadjoint on iR.

We begin with two lemmas which can be viewed as further refinements of
Theorem 9.1(ii).

Lemma 14.2. Let W be a biproper rational m×m matrix function that is selfadjoint
on the imaginary axis and has no pole there. Then W admits a minimal realization

W (λ) = D +B∗H∗(λI2n −A)−1B, (14.5)

such that D = D∗ is invertible, H is invertible,

HA = −A∗H, H∗ = −H, (14.6)

and the matrices A and H partition as

A =

[
A11 A12

0 A22

]
, H =

[
0 −H∗

21

H21 H22

]
, (14.7)

where A11 and A22 are n×n matrices which have all their eigenvalues in the right
open half plane and left open half plane, respectively.

Proof. Since W is biproper, D = W (∞) is invertible. The fact that D is selfadjoint
is covered by item (ii) in Theorem 9.1.

Next, let W (λ) = D + Ĉ(λIp − Â)−1B̂ be a minimal realization of W . The
fact that W has no poles on iR and the minimality of the realization imply that
Â has no eigenvalue on iR. Furthermore, using item (ii) of Theorem 9.1 again, we
know that there exists a unique invertible p× p matrix T̂ for which we have

T̂ Â = −Â∗T̂ , T̂ B̂ = Ĉ∗, T̂ = −T̂ ∗. (14.8)

Let N+ be the spectral subspace of Â corresponding to the eigenvalues in the
open right half plane. The identity T̂ Â = −Â∗T̂ yields T̂ [N+] = N⊥

+ . But then
the invertibility of T̂ implies that dimN+ = dimN⊥

+ . The latter can only happen
when p is even, that is, p = 2n for some nonnegative integer n. In particular,
dimN+ = n. Now let f1, . . . , fn be an orthogonal basis ofN+, and let fn+1, . . . , f2n
be an orthogonal basis ofN⊥

+ . Since Cn = N+⊕N⊥
+ , the vectors f1, . . . , f2n form an

orthogonal basis of C2n, and we can consider the unitary matrix U that transforms
the basis f1, . . . , f2n into the standard basis e1, . . . , e2n of C2n. Define

A = UÂU−1, B = UB̂, C = ĈU−1, H = UT̂U∗.

Then W (λ) = D+C(λI2n −A)−1B is a minimal realization of W . The fact that
U−1 = U∗ together with (14.8) shows that

HA = −A∗H, HB = C∗, H = −H∗.
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Thus W is of the form (14.5) and (14.6) holds.
The spectral subspace M+ of A corresponding to the eigenvalues in the open

right half plane is given by

M+ = span {e1, . . . , en}. (14.9)

The first identity in (14.8) yields

H
[
[span {e1, . . . , en}

]
= H [M+] = M⊥

+ = span {en+1, . . . , e2n}. (14.10)

It follows that the matrices A, and H can be partitioned as in (14.7). All blocks in
these representations of A and H are n× n matrices. The zero entry in A follows
from the A-invariance of M+ and the fact that this space is given by (14.9), while
the zero entry in H follows from (14.10). The definition of M+ and the identity
(14.9) also imply that all the eigenvalues of A11 are in the open right half plane
and those of A22 are in the open left half plane. �

Lemma 14.3. Let W be a biproper rational m×m matrix function that is selfadjoint
on the imaginary axis and has no pole there. Then W admits a minimal realization

W (λ) = D + C(λI2n −A)−1B, (14.11)

such that D = D∗ is invertible and the matrices A, B and C can be partitioned as

A =

[ −A∗22 A12

0 A22

]
, B =

[
B1

B2

]
, C =

[ −B∗2 B∗1
]
, (14.12)

where A12 is a selfadjoint n × n matrix, A22 is a n × n matrix which has all its
eigenvalues in the open left half plane, and both B1 and B2 are n×m matrices.

Proof. From the preceding lemma we know that W admits a minimal realization

W (λ) = D + B̃∗H̃∗(λI2n − Ã)−1B̃,

where D = D∗ is invertible, H̃ is invertible,

H̃Ã = −Ã∗H, H̃∗ = −H̃,

and the matrices Ã and H̃ partition as

Ã =

[
Ã11 Ã12

0 Ã22

]
, H̃ =

[
0 −H̃∗

21

H̃21 H̃22

]
, (14.13)

such that the eigenvalues of Ã11 are in the open right half plane and those of Ã22

are in the open left half plane.
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Since H̃ is invertible, it follows that H̃21 is invertible, and hence we can define

S =

⎡⎢⎣ H̃−1
21 −1

2
H̃−1
21 H̃22

0 In

⎤⎥⎦ .

The matrix S is invertible. Put C̃ = B̃∗H̃∗, and consider the matrices

A = S−1ÃS, B = S−1B̃, C = C̃S−1, H = S∗H̃S.

Obviously, W (λ) = D + C(λIn −A)−1B is a minimal realization of W .
It remains to prove that A, B, C can be partitioned in the desired way. A

straightforward calculation shows that

HA = −A∗H, HB = C∗, H =

[
0 −In

In 0

]
. (14.14)

Since the matrices Ã, S, and S−1 are all block upper triangular, the same holds true
for A. The first identity in (14.14) together with the third identity in (14.14) shows
thatA is of the form given in (14.12) with A12 being selfadjoint. Furthermore, since
the entry in the right lower corner of S and S−1 is the n × n identity matrix we
see that A22 = Ã22, and hence A22 is an n×n matrix which has all its eigenvalues
in the open left half plane. The second and third identities in (14.14) show that
B and C are as in (14.12). Obviously, B1 and B2 are matrices of size n×m. �

The external matrix D in the realizations (14.5) and (14.11) is congruent to
a signature matrix J , that is, D = E∗JE for some invertible matrix E. Replacing
W (λ) by (E∗)−1W (λ)E−1 we may assume that the external matrix is actually
equal to J . In the next theorem we shall make this assumption.

Theorem 14.4. Let W be a rational m×m matrix function that is selfadjoint on
the imaginary axis and has no pole there. Suppose W is given by

W (λ) = J + C(λI2n −A)−1B,

where J is a signature matrix and

A =

[ −A∗22 A12

0 A22

]
, B =

[
B1

B2

]
, C =

[ −B∗2 B∗1
]
,

such that A12 is a selfadjoint n× n matrix, A22 is an n× n matrix which has all
its eigenvalues in the open left half plane, and both B1 and B2 are n×m matrices.
Then W admits a left J-spectral factorization with respect to the imaginary axis,

W (λ) = L−(−λ)∗JL−(λ),
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if and only if

A× =

⎡⎣ −A∗22 +B1B
∗
2 A12 −B1B

∗
1

B2B
∗
2 A22 −B2B

∗
1

⎤⎦
has no eigenvalues on the imaginary axis, and the spectral subspace of A× corre-
sponding to its eigenvalues in the open left half plane is of the form

Im

[
X

In

]

for some Hermitian matrix X. In that case the unique left J-spectral factor L−
for which L−(∞) = Im is given by

L−(λ) = Im + J−1(B∗1 −B∗2X)(λIn −A22)−1B2.

In this expression (as well as in other comparable formulas below) the matrix
J−1 can be replaced by J .

Proof. In order to prove the first part of the theorem, we have only to check when
W admits a left canonical factorization with respect to the imaginary axis (see
Proposition 14.1).

Let M be a spectral subspace of A corresponding to its eigenvalues in the
open right half plane. Then M = Im [I 0]∗. Writing M× for the spectral subspace
of A× corresponding to its eigenvalues in the open left half plane, the matching
condition

Cn = M +̇M× (14.15)

is satisfied if and only if M× = Im [X∗ I]∗ for some matrix X . With H as in
(14.14), the subspace M× is iH-Lagrangian (see Section 11.1). Thus

Im

[
−I

X

]
= H [M×] = (M×)⊥ = Ker

[
X∗ I

]
,

which implies X = X∗. Applying the left-version of Theorem 3.2 the first part of
the theorem follows.

Next let us deal with the second part. So suppose (14.15) is satisfied and
write the projection Π of Cn along M onto M× in the form

Π =

[
0 X

0 I

]
.

Then the unique right hand factor L− in a left canonical factorization with respect
to the imaginary axis of W , satisfying the additional condition that L(∞) = Im,
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is given by

L−(λ) = I + J−1CΠ(λ −ΠAΠ)−1ΠB

= I + J−1
[
0 B∗1 −B∗2X

](
λ−
[
0 XA22

0 A22

])−1 [
XB2

B2

]

= I + J−1(B∗1 −B∗2X)(λ−A22)−1B2,

as was claimed. �
In Section 14.5 below we shall consider J-spectral factorization for selfadjoint

rational matrix functions on the real line or on the unit circle.

14.3 J-spectral factorizations and Riccati equations

In this section, necessary and sufficient conditions for existence of a right or left J-
spectral factorization with respect to the imaginary axis will be derived in terms
of Riccati equations. It will be assumed that the obvious necessary conditions
for the existence of a J-spectral factorization are satisfied, that is, the rational
m×m matrix function W for which we wish to find J-spectral factorizations with
respect to iR is assumed to be biproper, to have no poles or zeros on iR, and to be
selfadjoint on iR. As in Theorem 14.4 we assume that the external matrix (that
is, the value at infinity) is a signature matrix.

Theorem 14.5. Let W be a rational m×m matrix function that is selfadjoint on
the imaginary axis and has no pole there. Suppose W is given by

W (λ) = J + C(λI2n −A)−1B,

where J is a signature matrix and

A =

[ −A∗22 A12

0 A22

]
, B =

[
B1

B2

]
, C =

[ −B∗2 B∗1
]
,

such that A12 is a selfadjoint n× n matrix, A22 is an n× n matrix which has all
its eigenvalues in the open left half plane, and both B1 and B2 are n×m matrices.
Then W admits a left J-spectral factorization with respect to the imaginary axis,

W (λ) = L−(−λ)∗JL−(λ),

if and only if the algebraic Riccati equation

XB2J
−1B∗2X +X(A22 −B2J

−1B∗1) + (A∗22 −B1J
−1B∗2)X (14.16)

−A12 +B1J
−1B∗1 = 0
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has a (unique) iR-stabilizing Hermitian solution X. In that case the unique left
J-spectral factor L− for which L−(∞) = Im is given by

L−(λ) = Im + J−1(B∗1 −B∗2X)(λIn −A22)−1B2. (14.17)

In line with the definition given in the paragraph preceding Theorem 13.14, a
solution of (14.16) is said to be iR-stabilizing (or simply stabilizing) if the matrix
A22 −B2J

−1B∗1 +B2J
−1B∗2X has its eigenvalues in the open left half plane.

Proof. In order to prove the first part of the theorem, we have only to check when
W admits a left canonical factorization with respect to the imaginary axis (see
Proposition 14.1).

A straightforward application of Theorem 12.5, with F+ equal to Cleft and F−
equal to Cright, tells us that W admits a left canonical factorization with respect to
the imaginary axis if and only if the Riccati equation (14.16) has a unique solution
X satisfying the additional spectral constraints

σ
(−A∗22 + (B1 −XB2)J−1B∗2

) ⊂ Cright, (14.18)

σ
(
A22 −B2J

−1(B∗1 −B∗2X)
) ⊂ Cleft. (14.19)

Next, note that X satisfies (14.16) and the spectral constraints (14.18) and (14.19)
if and only if the same holds true for X∗. Because of uniqueness it follows that
X = X∗. The second spectral constraint (14.19) means that X is a stabilizing
solution of (14.16). This completes the proof of the first part of the theorem.

To prove the second part one applies the second part of Theorem 12.5 with
D1 = J and D2 = Im. �

Theorem 14.6. Let W be a rational m×m matrix function that is selfadjoint on
the imaginary axis and has no pole there. Suppose W is given by

W (λ) = J +B∗H∗(λI2n −A)−1B,

where J is a signature matrix, H is invertible, HA = −A∗H and H∗ = −H, and
the matrices A and H partition as

A =

[
A11 A12

0 A22

]
, H =

[
0 −H∗

21

H21 H22

]
,

where A11 and A22 are n×n matrices which have all their eigenvalues in the open
right half plane and open left half plane, respectively. Put

Â12 =
1
2
A∗22H22 +

1
2
H22A22 +H21A12, (14.20)

B̂1 = H21B1 +
1
2
H22B2. (14.21)



258 Chapter 14. J-spectral factorization

Then W admits a left J-spectral factorization with respect to the imaginary axis,

W (λ) = L−(−λ)∗JL−(λ),

if and only if the algebraic Riccati equation

XB2J
−1B∗2X +X(A22 −B2J

−1B̂∗1) + (A∗22 − B̂1J
−1B∗2)X (14.22)

−Â12 + B̂1J
−1B̂∗1 = 0.

has a (unique) iR-stabilizing Hermitian solution X. In that case the unique left
J-spectral factor L− for which L−(∞) = Im is given by

L−(λ) = Im + J−1(B̂∗1 −B∗2X)(λIn −A22)−1B2. (14.23)

Recall that an iR-stabilizing solutionX of (14.22) is one for which the matrix
A22 −B2J

−1B̂∗1 + B2J
−1B∗2X has its eigenvalues in the open left half plane.

Proof. Put C = B∗H∗, and consider the matrices Â = S−1AS, B̂ = S−1B and
Ĉ = CS, where

S =

⎡⎢⎣ H−1
21 −1

2
H−1
21 H22

0 I

⎤⎥⎦ .

Then W (λ) = J + Ĉ(λI2n − Â)−1B̂, and from the proof of Lemma 14.3 we know
that Â, B̂ and Ĉ partition as

Â =

⎡⎣ −Â∗22 Â12

0 Â22

⎤⎦ , B̂ =

⎡⎣ B̂1

B̂2

⎤⎦ , Ĉ =
[
−B̂∗2 B̂∗1

]
,

where Â22 = A22 and B̂2 = B2. Since

S−1 =

⎡⎢⎣H21
1
2
H22

0 I

⎤⎥⎦ ,

one readily computes that Â12 and B̂2 are given by (14.20) and (14.21), respec-
tively. It follows that the realization W (λ) = J + Ĉ(λI2n − Â)−1B̂ satisfies the
conditions of Theorem 14.5. Note that the Riccati equation (14.16) transforms
into equation (14.22) when B1 is replaced by B̂1 and the matrix A12 by Â12. Fur-
thermore, when passing from B1 to B̂1, formula (14.17) transforms into (14.23).
But then we can apply Theorem 14.5 to finish the proof. �
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Note that the procedure to find the J-spectral factor, if it exists, now consists
of two main steps. The first is to find a realization as in Theorem 14.6, which can
be done by using an orthogonal basis transformation (see the proof of Lemma
14.2), and then to find the stabilizing solution X of (14.22) in case it exists.

With this in mind, let us return to the counterexample given in Section 14.1.
Let W be the rational 2 × 2 matrix function given by (14.3). The realization of
this function given in Section 14.1, involving the matrices featured in (14.4), can
be rewritten as W (λ) = J +B∗H∗(λI2 −A)−1B, where

J =

[
0 1

1 0

]
, A =

[
1 0

0 −1

]
, B =

[
1 0

0 −2

]
, H =

[
0 −1
1 0

]
.

This realization satisfies the conditions required in the first part of Theorem 14.6.
So it makes sense to check the situation with respect to the Riccati equation
featured in the theorem. Note that in this case Â12 = 0 and B̂1 =

[
1 0
]
. Since

B2 =
[
0 −2], it follows that in the algebraic Riccati equation (14.22) both the

quadratic and the constant term vanish. Hence (14.22) reduces to a linear equation,
namely 2x = 0. So x = 0 is the unique solution, and this solution is not stabilizing.
Hence, W does not admit a J-spectral factorization with respect to the imaginary
axis, which corroborates what was already observed in the paragraph preceding
Proposition 14.1.

14.4 Two special cases of J-spectral factorization

In this section we consider two special cases. The first concerns the situation where
the rational matrix function appears already as a product

W (λ) = V (−λ̄)∗J ′V (λ) (14.24)

where J ′ is a signature matrix and V has all its poles in the open left half plane.
This situation is encountered in several problems in mathematical systems theory,
notably in the theory of H∞-control (see Chapter 20 below).

Let W be the rational m×m matrix function given by the product (14.24),
where V (λ) = D+C(λIn−A)−1B. Observe that W is selfadjoint on the imaginary
axis. We assume that A has all its eigenvalues in the open left half plane and that
the (possibly non-square) matrix D is of full column rank (that is, KerD = {0}).
The latter implies that D∗J ′D is selfadjoint and invertible, and hence D∗J ′D
is congruent to some signature matrix, J say. We are looking for a J-spectral
factorization of D.

Theorem 14.7. Let V (λ) = D+C(λIn −A)−1B be a given rational p×m matrix
function. Assume A has all its eigenvalues in the open left half plane and the p×m
matrix D has full column rank. Let J ′ be a p × p signature matrix, and let E be
an invertible m × m matrix such that J = E∗D∗J ′DE is an m × m signature
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matrix. Then the rational m ×m matrix function W (λ) = V (−λ̄)∗J ′V (λ) has a
left J-spectral factorization with respect to the imaginary axis,

W (λ) = L−(−λ)∗JL−(λ),

if and only if the algebraic Riccati equation

XBJ−1B∗X +X(A−BJ−1D∗J ′C) + (A∗ − C∗J ′DJ−1B∗)X (14.25)

+C∗J ′DJD∗J ′C − C∗J ′C = 0

has a (unique) iR-stabilizing Hermitian solution X. In that case, the corresponding
left J-spectral factor of W is given by

L−(λ) = E−1 + JE∗(D∗J ′C −B∗X)(λIn −A)−1B.

Recall that an iR-stabilizing solutionX of (14.25) is one such that the matrix
A−BJ−1D∗J ′C + BJ−1B∗X has its eigenvalues in the open left half plane.

Proof. Put D̂ = DE, B̂ = BE, and consider the rational m×m matrix function

Ŵ (λ) = E∗W (λ)E = V̂ (−λ̄)∗J ′V̂ (λ),

where V̂ (λ) = V (λ)E = DE + C(λIn − A)−1BE. Using the product rule for
realizations, we see that W admits the realization W (λ) = J + Ĉ(λI2n − Â)−1B̂,
where

Â =

[−A∗ C∗J ′C

0 A

]
, B̂ =

[
C∗J ′DE

BE

]
, Ĉ =

[−E∗B∗ E∗D∗J ′C
]
.

Obviously, Ŵ is selfadjoint on the imaginary axis. Furthermore, Ŵ is biproper.
Since A has all its eigenvalues in the open left half plane, we know that Â has
no eigenvalue on iR, and hence Ŵ has no pole on iR. We conclude that the
realization Ŵ (λ) = J + Ĉ(λI2n − Â)−1B̂ meets all the requirements of the first
part of Theorem 14.5. It follows that Ŵ admits a left J-spectral factorization
with respect to the imaginary axis if and only if the Riccati equation (14.25) has
a unique stabilizing Hermitian solution X . Moreover, in that case a left J-spectral
factorization Ŵ (λ) = K−(−λ̄)∗JK−(λ) of Ŵ with respect to the imaginary axis
is obtained by taking

K−(λ) = Im + J−1E∗(D∗J ′C −B∗X)(λIn −A)−1BE.

Recall that W (λ) = E−∗Ŵ (λ)E−1. It follows that W admits a left J-spectral
factorization with respect to the imaginary axis if and only if so does W̃ . Thus
the result of the preceding paragraph shows that W admits a left J-spectral fac-
torization with respect to the imaginary axis if and only if the Riccati equation
(14.25) has a unique stabilizing Hermitian solution X . Moreover, in that case a
left J-spectral factorization W (λ) = L−(−λ̄)∗JL−(λ) of W with respect to the
imaginary axis is obtained by taking L−(λ) = K−(λ)E−1. �
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In our second example we assume that the rational m ×m matrix function
is given in the following manner (cf., the paragraph preceding Theorem 13.2):

W (λ) = J + C(λIn −A)−1B −B∗(λIn +A∗)−1C∗, (14.26)

where A has only eigenvalues in the open left plane and J is a signature matrix.
The function W admits a realization

W (λ) = J +
[ −B∗ C

](
λI2n −

[ −A∗ 0

0 A

])−1 [
C∗

B

]
. (14.27)

This realization satisfies all the requirements of the first part of Theorem 14.5,
which yields immediately the following result.

Theorem 14.8. Let the rational m × m matrix function W be given by (14.26),
where J is a signature matrix and A has its eigenvalues in the open left half plane.
Then W admits a left J-spectral factorization with respect to the imaginary axis,

W (λ) = L−(−λ̄)∗JL−(λ),

if and only if the algebraic Riccati equation

XBJB∗X +X(A−BJC) + (A∗ − C∗JB∗)X + C∗JC = 0

has a (unique) Hermitian solution X such that the matrix A − BJC + BJB∗X
has all its eigenvalues in the open left half plane (so X is iR-stabilizing). In that
case the unique left J-spectral factor L− for which L−(∞) = Im and its inverse
L−1− are given by

L−(λ) = Im + J(C −B∗X)(λIn −A)−1B,

So far we have mainly concentrated on left J-spectral factorizations. The
analogous results for right J-spectral factorization of W can be obtained by simply
applying the left factorization results to V (λ) = W (−λ). Indeed, a left J-spectral
factorization,

V (λ) = K−(−λ̄)∗JK−(λ),

of V with respect to iR yields a right J-spectral factorization,

W (λ) = L+(−λ̄)∗JL+(λ),

of W with respect to iR by taking L+(λ) = K−(−λ).
Let us apply this observation to W given by the realization (14.27). Note

that

V (λ) = W (−λ) = J +
[ −C B∗

](
λI2n −

[ −A 0

0 A∗

])−1 [
B

C∗

]
.

Since A has all its eigenvalues in the open left half plane, the same holds true for
A∗. Thus we can apply Theorem 14.8 together with the above scheme to get the
following right J-spectral factorization result.
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Theorem 14.9. Let the rational matrix function W be given by (14.26), where J
is a signature matrix and A has its eigenvalues in the open left half plane. Then
W admits a right J-spectral factorization with respect to the imaginary axis,

W (λ) = L+(−λ̄)∗JL+(λ),

if and only if the algebraic Riccati equation

Y C∗JCY + Y (A∗ − C∗JB∗) + (A−BJC)Y +BJB∗ = 0 (14.28)

has a (unique) Hermitian solution Y such that A∗ − C∗JB + C∗JCY has all its
eigenvalues in the open left half plane (so X is iR-stabilizing). In that case the
unique right J-spectral factor L+ for which L+(∞) = Im and its inverse L−1+ are
given by

L+(λ) = Im + J(CY −B∗)(λIn +A∗)−1C∗.

14.5 J-spectral factorization with respect to other
contours

In this section we consider J-spectral factorizations with respect to the real line
R and to the unit circle T featuring an additional symmetry property between the
factors. Here, as before, J is is an invertible Hermitian m ×m matrix. We begin
by considering the case of the unit circle.

Suppose W is a rational m×m matrix function. A factorization

W (λ) = L(λ̄−1)∗JL(λ) (14.29)

is called a right J-spectral factorization with respect to the unit circle if L and L−1

are rational m×m matrix functions which are analytic on the closed unit disc. In
that case the function L(λ̄−1)∗ and its inverse are analytic on the closure of Dext

(infinity included). Thus a right J-spectral factorization with respect to the unit
circle is a right canonical factorization with respect to T featuring an additional
symmetry property between the factors. A factorization (14.29) is called a left
J-spectral spectral factorization with respect to the unit circle if L and L−1 are
rational m×m matrix functions which are analytic on the closure of Dext (infinity
included), in which case the function L(λ̄−1)∗ and its inverse are analytic on the
closed unit disc. Such a factorization is a left canonical factorization with respect
to T.

The case of J-spectral factorization with respect to the unit circle is some-
what more complicated than that of J-spectral factorization with respect to the
imaginary axis. The first result is an analogue of Proposition 14.1.

Proposition 14.10. Let W be a rational m×m matrix function that is selfadjoint on
the unit circle and has neither poles nor zeros there. Then there exists a signature
matrix J such for each λ ∈ T the matrix W (λ) is congruent to J . For such a matrix
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J , the function W admits a right (respectively, left) J-spectral factorization with
respect to the unit circle if and only if it admits a right (respectively, left) canonical
factorization with respect to the unit circle.

We can use a Möbius transform to reduce the case of the unit circle to the
case of the imaginary axis. To be precise, let V (λ) = W

(
(λ− i)/(λ+ i)

)
. Then V

is a rational m×m matrix function that has neither poles nor zeros on the imagi-
nary axis, and has selfadjoint values there. Moreover, V (∞) = W (1), and thus V
is biproper. Also, right and left J-spectral factorizations of W , and right and left
canonical factorization of W can easily be obtained from the corresponding factor-
izations of V . Thus the proposition above actually follows from Proposition 14.1.
For the sake of completeness we shall give a direct proof.

Proof. By assumption, W (λ) is invertible and selfadjoint for each λ ∈ T. Thus
the number of eigenvalues of W (λ) in the open unit disc does not depend on the
particular choice of λ ∈ T. In other words W (λ) has constant signature on T.
Now let J be a signature matrix the signature of which is equal to this constant
signature. Then for each λ ∈ T the matrix W (λ) is congruent to J .

Let W (λ) = W−(λ)W+(λ) be a right canonical factorization of W with
respect to T. Consider

W̃+(λ) = W+(λ̄−1)∗, W̃−(λ) = W−(λ̄−1)∗.

Then W (λ) = W̃+(λ)W̃−(λ) is again a right canonical factorization of W with re-
spect to T. It follows that W̃+(λ)−1W−(λ) is a constant matrix, F say. This shows
that W (λ) = W+(λ̄−1)∗FW+(λ). Since W (λ) is selfadjoint for λ ∈ T, it follows
that F is congruent to the signature matrix J introduced in the first paragraph of
the proof. Thus F = E∗JE for some invertible matrix E. Put L+(λ) = EW+(λ).
ThenW (λ) = L+(λ̄−1)∗JL+(λ) is a left J-spectral factorization ofW with respect
to the unit circle. The reverse implication is trivial. �

In what follows we assume that W is a biproper rational m × m matrix
function which is selfadjoint on the unit circle and has no pole there. Such a
function can be represented in the form

W (λ) = D0 + C(λIn −A)−1B +B∗(λ−1In −A∗)−1C∗,

where A has all its eigenvalues in the open unit disc. The fact that W is proper
implies that W is analytic at zero. We shall assume additionally that A is invert-
ible. Note that the invertibility of A follows from the analyticity at zero whenever
the realization C(λ−A)−1B is minimal.

The invertibility assumption on A allows us to write

W (λ) = D0 −B∗A−∗C∗ + C(λ−A)−1B −B∗A−∗(λ−A−∗)−1A−∗C∗.

Since W (∞) = D0 −B∗A−∗C∗ = W (0)∗ one has

D0 −B∗A−∗C∗ = (D0 − CA−1B)∗.



264 Chapter 14. J-spectral factorization

Hence D0 is selfadjoint. We shall assume additionally that D0 = J0 for some
signature matrix J0. Thus W is of the form

W (λ) = J0 −B∗A−∗C∗ + C(λ−A)−1B −B∗A−∗(λ−A−∗)−1A−∗C∗. (14.30)

We shall prove the following factorization result.

Theorem 14.11. Let W be a biproper rational m × m matrix function given by
(14.30), where J0 is a signature matrix and A is an invertible n×n matrix having
all its eigenvalues in the open unit disc. In order that, for some signature matrix
J the function W admits a left J-spectral factorization with respect to the unit
circle, it is necessary and sufficient that there exists a Hermitian n× n matrix Y
such that J0 +B∗Y B is invertible and Y is a solution of the equation

Y = A∗Y A− (C∗ +A∗Y B)(J0 +B∗Y B)−1(C +B∗Y A) (14.31)

with A−B(J0+B∗Y B)−1(C +B∗Y A) having all its eigenvalues in the open unit
disc. In that case Y is unique and for J one can take any signature matrix J
determined by

J0 +B∗Y B = E∗JE, (14.32)

where E is some invertible matrix. Furthermore, if Y is a Hermitian matrix with
the properties mentioned above, then for a signature matrix J determined by the
expression (14.32), a left J-spectral factorization W (λ) = L−(λ̄−1)∗JL−(λ) of W
with respect to the unit circle is obtained by taking

L−(λ) = E + E(J0 +B∗Y B)−1(C +B∗Y A)(λIn −A)−1B. (14.33)

Equation (14.31) is a particular case of the so-called discrete algebraic Ric-
cati equation. A solution Y of equation (14.31) is called T-stabilizing, or simply
stabilizing when no confusion can arise, if J0+B∗Y B is invertible and the matrix
A−B(J0+B∗Y B)−1(C +B∗Y A) has all its eigenvalues in the open unit disc. In
the above theorem, the existence of such a solution is required.

Proof. We split the proof into six parts.
Part 1. Since W is biproper and given by (14.30), we can write a realization for
W . In fact W (λ) = D + C̃(λ− Ã)−1B̃, where D = W (∞) = J0 −B∗A−∗C∗ and

Ã =

[
A−∗ 0

0 A

]
, B̃ =

[ −A−∗C∗

B

]
, C̃ =

[
B∗A−∗ C

]
. (14.34)

Recall that the matrix A is invertible and has all its eigenvalues in the open
unit disc D. Hence A−∗ has all its eigenvalues in Dext. This allows us to apply
Theorem 12.5 with F− = D and F+ = Dext. It follows that W admits a left
canonical factorization with respect to T if and only if the equation

Y BD−1B∗A−∗Y − Y (A−BD−1C) (14.35)
+ (A−∗ +A−∗C∗D−1B∗A−∗)Y +A−∗C∗D−1C = 0
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has a unique solution Y satisfying the following additional spectral constraints:

σ
(
A−∗ + (A−∗C∗ + Y B)D−1B∗A−∗

) ⊂ Dext, (14.36)

σ
(
A−BD−1(B∗A−∗Y + C)

) ⊂ D. (14.37)

Furthermore, if Y is such a solution of (14.35), then a left canonical factorization
W (λ) = W1(λ)W2(λ) of W with respect to T is obtained by taking

W1(λ) = D −B∗A−∗(λ−A−∗)−1(A−∗C∗ + Y B), (14.38)

W2(λ) = I +D−1(B∗A−∗Y + C)(λ −A)−1B. (14.39)

Let Y be the solution of (14.35) satisfying (14.36) and (14.37). We claim that
J0 + B∗Y B is invertible. To prove this it will be convenient to rewrite W1 as a
function of λ−1. This can be done as follows:

W1(λ) = D −B∗(λA∗ − I)−1(A−∗C∗ + Y B)

= D +B∗λ−1(λ−1 −A∗)−1(A−∗C∗ + Y B)

= D +B∗(λ−1 −A∗ +A∗)(λ−1 −A∗)−1(A−∗C∗ + Y B)

= D +B∗A−∗C∗ +B∗Y B +B∗(λ−1 −A∗)−1(C∗ +A∗Y B).

Recall that D = J0 −B∗A−∗C∗. Thus

W1(λ) = J0 +B∗Y B +B∗(λ−1 −A∗)−1(C∗ +A∗Y B). (14.40)

Since A is invertible, both W and W2 are analytic at zero. From the above formula
for W1 we see that W1 is also analytic at zero. Hence W (0) = W1(0)W2(0). But
W (0) is invertible. Thus W1(0) = J0 +B∗Y B is invertible too.

Part 2. In this part Y stands for a solution of (14.35) such that J0 + B∗Y B is
invertible. We prove that in this case Y is also a solution of (14.31). Furthermore,
we show that

D−1(C +B∗A−∗Y ) = (J0 +B∗Y B)−1(C +B∗Y A). (14.41)

Multiplying (14.35) on the left by A∗ and regrouping terms one obtains

A∗Y A− Y − (A∗Y B + C∗)D−1(C +B∗A−∗Y ) = 0. (14.42)

So Y = A∗Y A− (A∗Y B+C∗)D−1(C+B∗A−∗Y ). Multiplying the latter identity
on the left with B∗A−∗ and adding C to both sides gives

C +B∗A−∗Y = C +B∗Y A− (B∗Y B +B∗A−∗C∗)D−1(C +B∗A−∗Y ).
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It follows that

C +B∗Y A =
(
I + (B∗Y B +B∗A−∗C∗)D−1

)
(C +B∗A−∗Y )

=
(
D +B∗A−∗C∗ +B∗Y B

)
D−1(C +B∗A−∗Y )

= (J0 +B∗Y B)D−1(C +B∗A−∗Y ).

Since J0 +B∗Y B is invertible, we see that (14.41) holds. Using (14.41) in (14.42)
gives that Y is a solution of (14.31).
Part 3. In this part we show that Y ∗ is a solution of (14.35) whenever so is Y . For
this purpose we consider the Hamiltonian T of (14.35), that is,

T =

⎡⎣ −A−∗ −A−∗C∗D−1B∗A−∗ −A−∗C∗D−1C

BD−1B∗A−∗ −(A−BD−1C)

⎤⎦ .

Note that T = −(Ã− B̃D−1C̃), where Ã, B̃ and C̃ are given by (14.34). Put

H =
[

0 I
−I 0

]
.

Then HÃ = Ã−∗H, HB̃ = Ã−∗C̃∗ and H = −H∗. Next we carry out the following
computation:

D − C̃Ã−1B̃ = D − [ B∗A−∗ C
] [ A∗ 0

0 A−1

][ −A−∗C∗

B

]

= D − [ B∗ CA−1
] [ −A−∗C∗

B

]

= D +B∗A−∗C∗ − CA−1B = J0 − CA−1B = D∗.

Thus D − C̃Ã−1B̃ = D∗ and we can apply item (iii) in Proposition 9.2 to show
that T is invertible and HT = T ∗H .

Taking adjoints in (14.35) we obtain the equation

Y ∗A−1BD−∗B∗Y ∗ + Y ∗(A−1 +A−1BD−∗CA−1) (14.43)
−(A∗ − C∗D−∗B∗)Y ∗ + C∗D−∗CA−1 = 0,

where Y ∗ is the unknown. The Hamiltonian T∗ of this equation is given by

T∗ =

⎡⎣ A∗ − C∗D−∗B∗ −C∗D−∗CA−1

A−1BD−∗B∗ A−1 +A−1BD−∗CA−1

⎤⎦ .
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It follows that T∗ = HT ∗H . This together with the result of the previous para-
graph shows that T∗ = T−1.

Now let Y be a solution of (14.35). It follows that Y ∗ is a solution of (14.43).
Using the general theory of Riccati equations (see Section 12.1), this implies that
the space

N∗ = Im
[

Y ∗

I

]
is invariant under T∗. But T∗ = T−1. Thus the finite dimensional space N∗ is
invariant under the Hamiltonian T of (14.35). But then (again see Section 12.1)
we may conclude that Y ∗ is a solution of (14.35) too.

Part 4. Let Y be a solution of (14.35) satisfying the additional spectral constraints
(14.36) and (14.37). In this part we show that Y must be Hermitian. Now Y is
uniquely determined by the given properties. Since, by the result of the previ-
ous part of the proof, Y ∗ a solution of (14.35), it thus suffices to show that the
conditions (14.36) and (14.37) hold with Y ∗ in place of the matrix Y .

From the first part of the proof we know that J0+B∗Y B is invertible. Hence
the identity (14.41) holds. Using this identity, we can rewrite (14.37) as

σ
(
A−B(J0 +B∗Y B)−1(C +B∗Y A)

) ⊂ D.

Taking adjoints, we arrive at σ
(
(A∗ − (A∗Y ∗B + C∗)(J0 + B∗Y B)−1B∗

) ⊂ D.
Next, note that

(
A∗ − (A∗Y ∗B + C∗)(J0 +B∗Y B)−1B∗

)−1
=
(
I − (Y ∗B +A−∗C∗)(J0 +B∗Y B)−1B∗

)−1
A−∗

=
(
I + (Y ∗B +A−∗C∗)

(
J0 +B∗Y B

−B∗(Y ∗B +A−∗C∗)
)−1

B∗
)
A−∗

= A−∗ + (Y ∗B +A−∗C∗)D−1B∗A−∗.

Here we used that D = J0 −B∗A−∗C∗. We conclude that

σ(A−∗ + (Y ∗B +A−∗C∗)D−1B∗A−∗) ⊂ Dext,

which is (14.36) with Y ∗ in place of Y .
In Part 3 of the proof we saw that Y ∗ is a solution of (14.35). Furthermore,

J0 + B∗Y ∗B = (J0 + B∗Y ∗B)∗ is invertible. Thus we know that (14.41) holds
with Y ∗ in place of Y , that is,
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D−1(C +B∗A−∗Y ∗) = (J0 +B∗Y ∗B)−1(C +B∗Y ∗A). (14.44)

Using this we show that (14.37) holds with Y ∗ in place of Y . Indeed, taking
adjoints in (14.36) we get σ(A−1 +A−1BD−∗(B∗Y ∗ + CA−1) ⊂ Dext. Now

(
A−1 +A−1BD−∗(B∗Y ∗ + CA−1

)−1
=
(
I +BD−∗(B∗Y ∗ + CA−1)

)−1
A

=
(
I −B(D∗ +B∗Y ∗B + CA−1B)−1(B∗Y ∗ + CA−1)

)−1
A

= A−B(J0 +B∗Y ∗B)−1(B∗Y ∗A+ C).

Here we used that D∗ = J0 − CA−1B. Now apply the identity (14.44). It follows
that σ(A −BD−1(C +B∗A−∗Y ∗)) ⊂ D, which is (14.37) with Y ∗ in place of Y .

Part 5. Let Y be a Hermitian matrix such that J0+B∗Y B is invertible and Y is a
stabilizing solution of (14.31). In this part we show that in that case Y is a solution
of (14.35) and that Y satisfies the spectral constraints (14.36) and (14.37).

As a first step let us prove that under the above conditions on Y again (14.41)
holds. Indeed, multiplying (14.31) from the left by B∗A−∗ and adding C to both
sides we get

C +B∗A−∗Y = C +B∗Y A− (B∗A−∗C∗ +B∗Y B)
·(J0 +B∗Y B)−1(C +B∗Y A)

=
(
(J0 +B∗Y B)− (B∗A−∗C∗ +B∗Y B)

)
·(J0 +B∗Y B)−1(C +B∗Y A)

= (J0 −B∗Y B)(J0 +B∗Y B)−1(C +B∗Y A)

= D(J0 +B∗Y B)−1(C +B∗Y A).

Hence (14.41) holds indeed. Using this we can rewrite (14.31) as

A∗Y A− Y − (A∗Y B + C∗)D−1(C +B∗A−∗Y ) = 0.

Multiplying the latter on the left by A−∗ and regrouping terms we see that Y
satisfies (14.35).

Since Y is a stabilizing solution of (14.31) and (14.41) holds, the spectral
constraint (14.37) is satisfied too. It remains to prove (14.36) To do this we first
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note that (
A−1 +A−1BD−∗(B∗Y + CA−1

)−1
=
(
I +BD−∗(B∗Y + CA−1)

)−1
A

=
(
I −B(D∗ +B∗Y ∗B + CA−1B)−1(B∗Y ∗ + CA−1)

)−1
A

= A−B(J0 +B∗Y ∗B)−1(B∗Y ∗A+ C)

= A−BD−1(C +B∗A−∗Y ).

Thus, since Y is Hermitian, we see that (14.36) follows from (14.37) by taking
adjoints and an inverse.

Because of the uniqueness of the solution Y in the first part of the proof, the result
of the present part also shows that the Hermitian stabilizing solution of (14.31),
if it exists, is unique

Part 6. In this final part we complete the argument. Assume that for some J the
function W admits a left J-spectral factorization with respect to the unit circle.
Then by the first part of the proof, equation (14.35) has a solution Y satisfying
(14.36) and (14.37). Moreover for this Y we have that J0 + B∗Y B is invertible.
Part 4 of the proof tells us that Y is Hermitian. From Part 2 we know that Y is
a solution of (14.31) which, according to (14.37) and (14.41), is stabilizing.

Conversely, if Y is a Hermitian matrix such that J0+B∗Y B is invertible and
Y is a stabilizing solution of (14.31), then Y is a solution of (14.35) and Y satisfies
(14.36) and (14.37). Hence W admits a left canonical factorization with respect to
the unit circle, and thus, by Proposition 14.10, also a left J-spectral factorization
with respect to the unit circle.

Finally, take a signature matrix J such that (14.32) holds. It remains to estab-
lish the formula for the left spectral factor L−. To do this we use the left canonical
factorization W (λ) = W1(λ)W2(λ) obtained in Part 1. Combining (14.39) and
(14.41) we get W2(λ) = I +(J0 +B∗Y B)−1(C +B∗Y A)(λ−A)−1B. Thus, using
the expression (14.40) for W1(λ),

W2(λ̄−1)∗ = I +B∗(λ−1 −A∗)−1(C∗ +A∗Y B)(J0 +B∗Y B)−1

=
(
J0 +B∗Y B +B∗(λ−1 −A∗)−1(C∗ +A∗Y B)

)
(J0 +B∗Y B)−1

= W1(λ)(J0 +B∗Y B)−1,

and it follows that W (λ) = W2(λ̄−1)∗(J0+B∗Y B)W2(λ). Now let J be a signature
matrix such that (14.32) holds. Then we see that W (λ) = L−(λ̄−1)∗JL−(λ), with
L− given by (14.33), is a left J-spectral factorization with respect to the unit
circle. �



270 Chapter 14. J-spectral factorization

We now turn to a situation arising from linear-quadratic optimal control
theory. It concerns the following version of the discrete algebraic Riccati equation

X = A∗XA+Q−A∗XB(R+B∗XB)−1B∗XA. (14.45)

Here A, B, Q and R are given matrices of sizes n × n, n ×m, n× n and m ×m,
respectively. We will consider the case when A has all its eigenvalues in the open
unit circle, R and Q are Hermitian, and R is invertible. Of special interest are the
stabilizing solutions of (14.45). A solution X of (14.45) is said to be T-stabilizing,
or simply stabilizing when there is no danger of confusion, if R+B∗XB is invertible
and A − B(R + B∗XB)−1B∗XA has all its eigenvalues in the open unit disc. In
connection with (14.45) we consider the rational matrix function

W (λ) = R+B∗(λ−1In −A∗)−1Q(λIn −A)−1B. (14.46)

Note that this function is Hermitian on the unit circle.

Proposition 14.12. Let A, B, Q and R be as above, so A is an n×n matrix having
its eigenvalues in the open unit disc, B is an m × m matrix, R is an invertible
Hermitian m×m matrix, and Q is a Hermitian n×n matrix. Assume in addition
that A is invertible. The following two statements are equivalent:

(i) The Riccati equation (14.45) has a (unique) Hermitian T-stabilizing solution;

(ii) For some Hermitian matrix J , the rational matrix function (14.46) admits a
left J-spectral factorization with respect to the unit circle.

In that case J is congruent to R+B∗XB. Also, if X is the Hermitian T-stabilizing
solution of (14.45), then

W (λ) = L−(λ̄−1)∗(R +B∗XB)L−(λ),

with
L−(λ) = Im + (R +B∗XB)−1B∗XA(λIn −A)−1B,

is a left (R + B∗XB)-spectral factorization with respect to the unit disc. The
function L− is the unique left (R+B∗XB)-spectral factor with L−(∞) = Im.

The additional assumption that A is invertible plays an essential role in the
proof as we give it below. Indeed, the argument involves a reduction to earlier
results, in particular to Theorem 14.11. However, instead of Theorem 14.11 one
can employ Theorem 14.15 below which does not feature the hypothesis that A is
invertible.

Before we prove the proposition, let us remark that in the case of the linear
quadratic optimal control problem of mathematical systems theory, one has that
R is positive definite and Q is positive semidefinite. Hence the function (14.46) is
positive definite on the unit circle, and as A has is eigenvalues in the open unit
disc, it has no poles on the unit circle. Thus, in that case, the function does admit
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a right spectral factorization with J = I, and hence there is a stabilizing solution
X to the discrete algebraic Riccati equation. In addition, for that solution the
matrix R+B∗XB is positive definite.

Proof. We shall deduce Proposition 14.12 from Theorem 14.11. First, a realization
for (14.46) is given as

W (λ) = R+
[−B∗A−∗Q B∗A−∗

](
λ−
[

A 0

−A−∗Q A−∗

])−1 [
B

0

]
.

Since A is has all its eigenvalues in the open unit disc, there is a unique solution
to the equation

X0 −A∗X0A = Q. (14.47)

Taking as a similarity transformation the matrix[
I 0

X0 I

]
,

and using Q−X0 = −A∗X0A, the realization above can be rewritten as:

W (λ) = R+
[−B∗A−∗(Q−X0) B∗A−∗

](
λ−
[
A 0

0 A−∗

])−1 [
B

X0B

]

= R+B∗X0A(λ−A)−1 +B∗A−∗(λ−A−∗)−1X0B.

The latter expression is of the form (14.30), with C = B∗X0A and with J0 =
R+B∗X0B. So, we can apply Theorem 14.11, with (14.31) suitably modified, to
conclude that W admits a left J-spectral factorization if and only if there is a
solution Y , satisfying additional constraints, of the equation

Y = A∗Y A− (A∗X0B +A∗Y B)(R +B∗X0B +B∗Y B)−1(B∗Y A+B∗X0A).

Putting X = X0 + Y and taking into account (14.47), we see that the above
equation becomes (14.45) for X . The additional constraints referred to above are:
in the first place, invertibility of R + B∗X0B + B∗Y B = R + B∗XB, which we
also required for the solution of (14.45), and, secondly, the condition that the
eigenvalues of

A−B(R+B∗(X0 + Y )B)−1B∗(X0 + Y )A = A−B(R+B∗XB)−1B∗XA

are in the open unit disc. But this is exactly what is required for the stabilizing
solution of the equation (14.45).

The expressions for the factorization also follow directly from the formulas
in Theorem 14.11. �
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We conclude this section by considering J-spectral factorization of a self-
adjoint function on the real line. As before J is an invertible Hermitian m × m
matrix.

Suppose W is a rational m×m matrix function. A factorization

W (λ) = L(λ̄)∗JL(λ) (14.48)

is called a right J-spectral factorization with respect to the real line if L and L−1 are
rational m×m matrix functions which are analytic on the closed upper half plane
(infinity included). In that case the function L(λ̄)∗ and its inverse are analytic on
the closed lower half plane (infinity included). Thus a right J-spectral factorization
with respect to the real line is a right canonical factorization with respect to R

featuring an additional symmetry property between the factors. A factorization
(14.48) is called a left J-spectral factorization with respect to the real line if L and
L−1 are rational m ×m matrix functions which are analytic on the closed lower
half plane (infinity included), in which case the function L(λ̄)∗ and its inverse are
analytic on the closed upper half plane (infinity included). Such a factorization is
a left canonical factorization with respect to R.

Results for this type of factorization can be derived in a straightforward
manner from J-spectral factorization theorems with respect to the imaginary axis.
Indeed, if W is selfadjoint on the real line, then V given by V (λ) = W (−iλ) is self-
adjoint on the imaginary axis. Also W (λ) = L+(λ̄)JL+(λ) is a right J-spectral fac-
torization of W with respect to the real line if and only V (λ) = K+(−λ̄)JK+(λ),
with K+(λ) = L+(−iλ), is a right J-spectral factorization of V with respect to
the imaginary axis. As an illustration we show how one can derive the following
result as a corollary from Theorem 14.9.

Theorem 14.13. Let the rational m×m matrix function W be given by

W (λ) = J + C(λIn −A)−1B +B∗(λIn −A∗)−1C∗,

where J is an m × m signature matrix and A is an n × n matrix having all
its eigenvalues in the open upper half plane. Then W admits a right J-spectral
factorization with respect to the real line,

W (λ) = L+(λ̄)∗JL+(λ),

if and only if the algebraic Riccati equation

Y C∗JCY − Y (A∗ − C∗JB∗) + (A−BJC)Y −BJB∗ = 0 (14.49)

has a (unique) skew-Hermitian solution Y such that A∗ − C∗JB∗ − C∗JCY has
all its eigenvalues in the open lower half plane. In that case, the unique right
J-spectral factor L+ for which L+(∞) = Im is given by

L+(λ) = Im + J(CY +B∗)(λIn −A∗)−1C∗.
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A solution Y of the Riccati equation (14.49) is called R-stabilizing, or simply
stabilizing when confusion is not possible, if A∗ − C∗JB∗ − C∗JCY has all its
eigenvalues in the open lower half plane. In the above theorem, the existence of
such a solution is required.

Proof. Write V (λ) = W (−iλ). Then

V (λ) = J + C(−iλ−A)−1B +B∗(−iλ−A∗)−1C

= J + (iC)
(
λ− (iA)

)−1
B +B∗

(
λ+ (iA)∗

)−1(iC).
Notice that iA has all its eigenvalues in the open left half plane. By Theorem 14.9
the function V admits a right J-spectral factorization with respect to the imagi-
nary axis if and only if the equation

X(iC)∗J(iC)X +X
(
(iA)∗ − (iC)∗JB∗

)
(14.50)

+
(
iA−BJ(iC)

)
X +BJB∗ = 0

has a Hermitian solution X such that the matrix (iA)∗−(iC)∗JB∗+(iC)∗J(iC)X
has all its eigenvalues in the open left half plane. In that case, a right J-spectral
factorization V (λ) = K+(−λ̄)∗JK+(λ) of V with respect to the imaginary axis is
obtained by taking K+(λ) = I+J(iCX−B∗)

(
λ+(iA)∗

)−1(iC)∗. Next we replace
X by iY and multiply equation (14.50) by −1. In this way (14.50) is shown to
be equivalent to (14.49). Furthermore Y is skew-Hermitian if and only if X is
Hermitian, and A∗ − C∗JB∗ − C∗JCY = i

(
(iA)∗ − (iC)∗JB∗ + (iC)∗J(iC)X

)
.

Finally, put L+(λ) = K+(iλ). Then

L+(λ) = I + J(iCX −B∗)
(
λ+ (iA)∗

)−1(iC)∗
= I + J(−CY −B∗)(iλ− iA∗)−1(−i)C∗

= I + J(CY +B∗)(λ−A∗)−1C∗.

Using these formulas it is now straightforward to complete the argument. �

14.6 Left versus right J-spectral factorization

The existence of a left canonical factorization does not always imply the existence
of a right canonical factorization. The same is true for J-spectral factorization.
In this section we answer the following question: if a rational matrix function W
admits a left J-spectral factorization, under what conditions does it also have
a right J-spectral factorization? And, if so, how can the right factorization be
obtained from the left one? The main result can be viewed as a symmetric version
of Theorem 12.6. We restrict our attention to factorization with respect to the
imaginary axis.
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For later purposes it will be convenient to only assume that J is an invertible
Hermitian matrix. We do not stipulate it to be a signature matrix here.

Theorem 14.14. Let J be an invertible Hermitian m×m matrix, and let W be a
rational m×m matrix function. Suppose

W (λ) = L−(−λ̄)∗JL−(λ)

is a left J-spectral factorization with respect to the imaginary axis, and L− admits
the realization

L−(λ) = Im + C(λIn −A)−1B (14.51)

with A and A× = A−BC having their eigenvalues in the open left half plane. Let
Q and P be the unique (Hermitian) solutions of the Lyapunov equations

QA+A∗Q = C∗JC. (14.52)

A×P + P (A×)∗ = −BJ−1B∗. (14.53)

Then W admits a right J-spectral factorization with respect to the imaginary axis
if and only if I − QP is invertible, or, which amounts to the same, I − PQ is
invertible. In that case, a right J-spectral factorization of W with respect to the
imaginary axis is given by

W (λ) = L+(−λ̄)∗JL+(λ), (14.54)

where L+(λ) and its inverse are given by

L+(λ) = Im + (CP − J−1B∗)(I −QP )−1 (14.55)
·(λIn +A∗)−1(C∗J −QB),

L−1+ (λ) = Im − (CP − J−1B∗)
(
λIn + (A×)∗

)−1 (14.56)

·(I −QP )−1(C∗J −QB).

Proof. We bring ourselves in the situation of Section 12.4 by introducing

Y+(λ) = L−(−λ̄)∗ = Im −B∗(λIn +A∗)−1C∗,

Y−(λ) = JL−(λ) = J + JC(λIn −A)−1B.

ThenW (λ) = Y+(λ)Y−(λ) is a left canonical factorization, here taken with respect
to the imaginary axis (cf., the remark made after the proof of Theorem 12.6). In
terms of the notation employed in Section 12.4,

Y+(λ) = D+ + C+(λ−A+)−1B+,

Y−(λ) = D− + C−(λ−A−)−1B−,
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with
D+ = Im, A+ = −A∗, B+ = C∗, C+ = −B∗,

D− = J, A− = A, B− = B, C− = JC.

For the associate main matrices we have A×+ = −(A×)∗ and A×− = A×. Thus the
Lyapunov equations (12.19) reduce to the equations (14.53) and (14.52). Appli-
cation of Theorem 12.6 now shows that W admits a right canonical factorization
with respect to the imaginary axis if and only if I − QP is invertible, or, which
amounts to the same, I − PQ is invertible.

Assume this is the case. Then, again by virtue of Theorem 12.6, we have the
right canonical factorization W (λ) = W−(λ)W+(λ), where

W−(λ) = D+ + (D+C− + C+Q)(λIX− −A−)−1

· (IX− − PQ)−1(B−D−1− − PB+),

W+(λ) = D− + (D−1+ C+ + C−P )(IX+ −QP )−1

· (λIX+ −A+)−1(B+D− −QB−).

Making the appropriate substitutions, we get

W−(λ) = I + (JC −B∗Q)(λ−A)−1(I − PQ)−1(BJ−1 − PC∗),

W+(λ) = J + (JCP −B∗)(I −QP )−1(λ +A∗)−1(C∗J −QB).

Put L+(λ) = J−1W+(λ). Then L+(λ) is given by (14.55). Taking into account the
selfadjointness of Q and P , one sees that L+(−λ̄)∗ is precisely W−(λ). It follows
that W (λ) = L+(−λ̄)∗JL+(λ), and this factorization is a right J-spectral factor-
ization of W with respect to the imaginary axis. Finally, L−1+ (λ) = W−1

+ (λ)J , and
according to Theorem 12.6,

W−1
+ (λ) = D−1− −D−1− (D−1+ C+ + C−P )(λIX+ −A×+)

−1

· (IX+ −QP )−1(B+D− −QB−)D−1− .

Via the appropriate substitutions this becomes

W−1
+ (λ) = J−1 − (CP − J−1B∗)

(
λ+ (A×)∗

)−1(I −QP )−1(C∗J −QB)J−1.

Multiplying the latter identity from the right by J gives (14.56). �
For the case when J is a signature matrix (that is, J = J∗ = J−1) it is also

possible to derive the previous result from Theorem 14.9. Indeed, let Q be the
solution of (14.52), and introduce

T =
[

I 0
Q I

]
.
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Then one has (via the product rule for realizations)

W (λ) = L−(−λ̄)∗JL−(λ)

= J +
[

JC −B∗
]
T

(
λ− T−1

[
A 0

C∗JC −A∗

]
T

)−1
T−1
[

B

C∗J

]

= J + (JC −B∗Q)(λ−A)−1B −B∗(λ+A∗)−1(C∗J −QB).

Clearly, one can now apply Theorem 14.9. The stabilizing solution of equation
(14.28), taken for this particular situation, and the solution P of (14.53) are related
as follows: if Y is the stabilizing solution, then I+QY is invertible, the matrix P =
Y (I +QY )−1 solves (14.53), and I −QP = (I +QY )−1 is invertible. Conversely,
if P is the solution of (14.53) and I −QP is invertible, then Y = P (I −QP )−1 is
Hermitian and it is the desired stabilizing solution.

Finally, for the case where J = I, and so W is positive definite on the
imaginary line, the condition that I − QP is invertible should be automatically
fulfilled on account of Theorem 9.4. That this is indeed the case can be seen as
follows. First recall that A has all its eigenvalues in the open left half plane. This
implies that P is positive semidefinite and Q is negative semidefinite. Since J = I
we get from (14.53) that KerP is invariant under A∗. Now write P , Q, A and C
with respect to the decomposition Cn = KerP +̇ ImP as

P =

[
0 0

0 P22

]
, Q =

[
Q11 Q12

Q21 Q22

]
, A =

[
A11 0

A21 A22

]
, C =

[
C1 C2

]
.

Then Q22 is negative semidefinite and P22 is positive definite. Finally, I −QP is
invertible if and only if I−Q22P22 is invertible as a map from ImP to itself. Since
I − Q22P22 is similar to I − P

1/2
22 Q22P

1/2
22 , and the latter is positive definite, we

see that invertibility of I −QP is indeed automatically satisfied.

14.7 J-spectral factorization relative to the unit circle
revisited

In this section we present a somewhat more general form of Theorem 14.11, using
an alternative approach. As in the first part of Section 14.5, the function W is a
rational m×m matrix function which is selfadjoint on the unit circle and has no
pole there. Such a function can be represented in the form

W (λ) = D0 + C(λIn −A)−1B +B∗(λ−1In −A∗)−1C∗, (14.57)

where D0 is a Hermitian m × m matrix and A is an n × n matrix having all
its eigenvalues in the open unit disc. In contrast to the situation considered in
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Section 14.5 we do not assume that A is invertible, and hence the representation
(14.30) is not available in the present context.

Similar to what was done in Theorem 14.11, we associate with the represen-
tation (14.57) the Riccati equation

Y = A∗Y A− (C∗ +A∗Y B)(D0 +B∗Y B)−1(C +B∗Y A). (14.58)

Recall from the paragraph directly following Theorem 14.11 that a solution Y to
this Riccati equation is called T-stabilizing (or simply stabilizing) if D0 + B∗Y B
is invertible and the matrix

A−B(D0 +B∗Y B)−1(C +B∗Y A) (14.59)

has all its eigenvalues in the open unit disc. The following theorem is the main
result of this section.

Theorem 14.15. Let W be a rational m×m matrix function given by (14.57), where
D0 is a Hermitian matrix and A is an n×n matrix having all its eigenvalues in the
open unit disc. In order that, for some signature matrix J the function W admits
a left J-spectral factorization with respect to the unit circle, it is necessary and
sufficient that the Riccati equation (14.58) has a Hermitian T-stabilizing solution
Y . In that case Y is unique, and for J one can take any signature matrix J
determined by

D0 +B∗Y B = E∗JE, (14.60)

where E is some invertible matrix. Furthermore, if Y is the Hermitian T-stabilizing
solution to (14.58), then for a signature matrix J determined by (14.60), a left J-
spectral factorization W (λ) = L−(λ̄−1)∗JL−(λ) of W with respect to the unit
circle can be obtained by taking

L−(λ) = E + E(D0 +B∗Y B)−1(C +B∗Y A)(λIn −A)−1B. (14.61)

To prove the above theorem we cannot use the method employed in Sec-
tion 14.5. Instead we shall use the connection between canonical factorization and
invertibility of Toeplitz operators described in Section 1.2. For this purpose we
need the block Toeplitz operator T on �m

2 defined by the rational m × m ma-
trix function W (λ−1). Recall (see Section 1.2) that �m

2 = �2(Cm) stands for the
Hilbert space of all square summable sequences (x0, x1, x2, . . .) with entries in
Cm. Furthermore, by definition, T is the operator on �m

2 given by the block matrix
representation

T =

⎡⎢⎢⎢⎢⎢⎣
R0 R−1 R−2 · · ·
R1 R0 R−1 · · ·
R2 R1 R0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎦ , (14.62)
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where . . . , R−1, R0, R1, . . . are the coefficients in the Laurent expansion

W (λ−1) =
∞∑

j=−∞
λjRj

of the function W (λ−1) on the unit circle. When W is given by (14.57), we have

R0 = D0, Rj = R∗−j = CAj−1B, j = 1, 2, . . . . (14.63)

The following lemma provides one of the main steps in the proof of Theorem 14.15.
As always in this section, J stands for a signature matrix.

Lemma 14.16. Let W be a rational m×m matrix function given by (14.57), where
D0 is a Hermitian matrix and A is an n× n matrix having all its eigenvalues in
the open unit disc. Assume W admits a left J-spectral factorization with respect
to the unit circle. Then the block Toeplitz operator T on �m

2 defined by the rational
m×m matrix function W (λ−1) is invertible, and the n× n matrix Y given by

Y = − [C∗ A∗C∗ A∗ 2C∗ · · · ]T−1
⎡⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

⎤⎥⎥⎥⎥⎥⎦ (14.64)

is a Hermitian stabilizing solution to the Riccati equation (14.58).

Proof. A left J-spectral factorization with respect to the unit circle is, in partic-
ular, a left canonical factorization with respect to the unit circle. But then the
function W (λ−1) admits a right canonical factorization with respect to the unit
circle, and Theorem 1.2 tells us that the block Toeplitz operator T is invertible.
This, together with the fact that A has all its eigenvalues in the open unit disc,
gives that the matrix Y is well-defined by (14.64). Note that T is selfadjoint be-
cause W (λ−1) has Hermitian values on the unit circle. But then T−1 is selfadjoint
too, and (14.64) shows that Y is Hermitian

Note that �m
2 can be identified with the Hilbert space direct sum Cm ⊕ �m

2 .
Via this identification the operator T partitions as

T =

[
R0 Λ∗

Λ T

]
, where Λ =

⎡⎢⎢⎢⎢⎢⎣
R1

R2

R3

...

⎤⎥⎥⎥⎥⎥⎦ : Cm → �m
2 . (14.65)

Put Δ = R0 − Λ∗T−1Λ. Since the 2 × 2 operator matrix in (14.65) and the op-
erator in its right lower corner are both invertible, a standard Schur complement



14.7. J-spectral factorization relative to the unit circle revisited 279

argument (see [19] or the second proof of Theorem 2.1 in [20]) tells us that Δ is
invertible as well. Furthermore, relative to the Hilbert space direct sum decompo-
sition Cm ⊕ �m

2 the inverse of T admits the block matrix representation

T−1 =

⎡⎣ Δ−1 −Δ−1Λ∗T−1

−T−1ΛΔ−1 T−1 + T−1ΛΔ−1Λ∗T−1

⎤⎦ . (14.66)

Recall from (14.63) that R0 = D0. Combining the second part of (14.63)
with (14.64) we obtain that B∗Y B = −Λ∗T−1Λ. It follows that D0+B∗Y B = Δ,
and hence D0 +B∗Y B is invertible, as desired.

To prove that Y satisfies the Riccati equation (14.58) we first consider the
operator T−1 − ST−1S∗, where S is the (block) forward shift on �m

2 . Thus the
actions of S and S∗ on �m

2 are given by

S(x0, x1, x2, . . .) = (0, x0, x1, . . .), S∗(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

A straightforward computation shows that the partitioning of ST−1S∗ relative to
the Hilbert space direct sum Cm ⊕ �m

2 is given by

ST−1S∗ =

[
0 0

0 T−1

]
.

This identity, together with the identity (14.66), yields

T−1 − ST−1S∗ =

[
Δ−1 −Δ−1Λ∗T−1

−T−1ΛΔ−1 T−1ΛΔ−1Λ∗T−1

]

=

[
I

−T−1Λ

]
Δ−1

[
I −Λ∗T−1] . (14.67)

Next, let Γ be the operator from Cn to �m
2 given by

Γ =

⎡⎢⎢⎢⎢⎢⎣
C

CA

CA2

...

⎤⎥⎥⎥⎥⎥⎦ . (14.68)

Note that this operator Γ is well-defined because the matrix A has all its eigen-
values in the open unit disc. As is easily checked

ΓA = S∗Γ, ΓB = Λ, Y = −Γ∗T−1Γ. (14.69)
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From these identities and (14.67) it follows that

Y −A∗Y A = −Γ∗T−1Γ +A∗Γ∗T−1ΓA

= −Γ∗T−1Γ + Γ∗ST−1S∗Γ

= −Γ∗(T−1 − ST−1S∗)Γ

= −Γ∗
[

I

−T−1Λ

]
Δ−1

[
I −Λ∗T−1]Γ.

Furthermore

[ I − Λ∗T−1 ]Γ = C − Λ∗T−1S∗Γ = C −B∗Γ∗T−1Γ = C +B∗Y A. (14.70)

Summarizing (and using that Y is Hermitian) we have

Y −A∗Y A = −(C +B∗Y A)∗Δ−1(C +B∗Y A).

Since Δ = D0 + B∗Y B, this identity shows that Y satisfies the Riccati equation
(14.58).

Write A× for the matrix (14.59). We need to show that for Y given by (14.64),
all eigenvalues of A× are in the open unit disc. Using (14.67), the fact that S∗S is
the identity operator on �m

2 , and the identities in (14.69) and (14.70), we see that

S∗T−1Γ = T−1S∗Γ + S∗
[

I

−T−1Λ

]
Δ−1

[
I −Λ∗T−1]Γ

= T−1ΓA− T−1ΛΔ−1(C +B∗Y A)

= T−1Γ
(
A−BΔ−1(C +B∗Y A)

)
= T−1ΓA×.

Thus S∗T−1Γ = T−1ΓA×. It follows that

(S∗)kT−1Γ = T−1Γ(A×)k, k = 1, 2, . . . .

But then the fact that S∗n converges to zero in the strong operator topology yields

lim
k→∞

T−1Γ(A×)kx = lim
k→∞

(S∗)kT−1Γx = 0, x ∈ Cn. (14.71)

We shall use (14.71) to prove that A× has all its eigenvalues in the open unit
disc. To do this we first decompose Cn as Cn = X1 ⊕ X2, where X2 = KerΓ and
X1 = (KerΓ)⊥. Notice that X2 is an invariant subspace for A, and C[X2] = {0}.
We also have Y A[X2] = {0}. Indeed

Y [AX2] ⊂ Y [X2] = −Γ∗T−1Γ[X2] = {0}.
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Using C[X2] = {0} and Y A[X2] = {0} in (14.59), we see that A×|X2 = A|X2 ,
and X2 is an invariant subspace for A× too. In other words, A× admits a matrix
representation of the form

A× =

[
A×11 0

A×21 A×22

]
: X1 ⊕X2 → X1 ⊕X2, (14.72)

where A×22 = A|X2 : X2 → X2. Since X2 is an invariant subspace for A and A
has all its eigenvalues in the open unit disc, A22 has all its eigenvalues in the
open unit disc too. Hence, in order to prove that A× has all its eigenvalues in
the open unit disc, it now suffices to prove that A×11 has this property. Let τ1 be
the canonical embedding of X1 into Cn = X1 ⊕ X2, and let Γ1 be the one-to-one
operator from X1 into �m

2 defined by Γ1 = Γτ1. Take x ∈ X1. Since Γ is equal to
zero on X2, we see from (14.72) that T−1Γ(A×)kx = T−1Γ1(A×11)

kx. But then
(14.71) tells us that limk→∞ T−1Γ1(A×11)

kx = 0. Observe that T−1Γ1 is one-to-
one and has a closed (finite dimensional) range, that is, T−1Γ1 is left invertible.
Hence limk→∞ T−1Γ1(A×11)

kx = 0 implies that limk→∞(A×11)
kx = 0. Since x is an

arbitrary element of X1, the latter holds if and only if the eigenvalues of A×11 are
in the open unit disc. �

Lemma 14.16 proves the necessity part of Theorem 14.15. The sufficiency
part, the formula for the J-spectral factorization, and the uniqueness statement
are covered by the next two lemmas.

Lemma 14.17. Let W be a rational m×m matrix function given by (14.57), where
D0 is a Hermitian matrix and A is an n× n matrix having all its eigenvalues in
the open unit disc. Assume Y is a Hermitian stabilizing solution of the Riccati
equation (14.58). Then W admits a left J-spectral factorization with respect to
the unit circle. Such a factorization can be obtained as follows. Choose an m×m
signature matrix J such that D0 + B∗Y B = E∗JE, where E is some invertible
matrix, and define L− by (14.61), i.e.,

L−(λ) = E + E(D0 +B∗Y B)−1(C +B∗Y A)(λIn −A)−1B.

Then W (λ) = L−(λ̄−1)∗JL−(λ) is a left J-spectral factorization of W with respect
to the unit circle.

Proof. Put Δ = D0 +B∗Y B, C0 = C +B∗Y A, and set

Ψ(λ) = Δ+ C0(λ−A)−1B. (14.73)

Note that A−BΔ−1C0 is equal to the matrix A× defined by (14.59). Thus

Ψ(λ)−1 = Δ−1 −Δ−1C0(λ−A×)−1BΔ−1. (14.74)

The fact that A and A× have all their eigenvalues in the open unit disc implies
that Ψ(λ) and Ψ(λ)−1 are both analytic on the closure of the exterior of the unit
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disc, infinity included. Since L−(λ) = EΔ−1Ψ(λ), the same holds true for L−(λ)
and L−(λ)−1. It follows that L−(λ̄−1)∗JL−(λ) is a left spectral factorization with
respect to the unit circle. It remains to show that

W (λ) = L−(λ̄−1)∗JL−(λ). (14.75)

From L−(λ) = EΔ−1Ψ(λ) and Δ = D0 +B∗Y B = E∗JE we see that

L−(λ̄−1)∗JL−(λ) = Ψ(λ̄−1)∗Δ−1Ψ(λ).

Using the definitions of Δ and C0, the Riccati equation (14.58) can be rewritten
as Y −A∗Y A = −C∗0Δ

−1C0. It follows that

λC∗0Δ
−1C0 = −Y (λ−A) + (I − λA∗)Y (λ−A)− λ(I − λA∗)Y.

Using this identity we obtain

B∗(I − λA∗)−1(λC∗0Δ
−1C0)(λ−A)−1B

= −B∗(I − λA∗)−1Y B +B∗Y B − λB∗Y (λ−A)−1B

= −λB∗(I − λA∗)−1A∗Y B −B∗Y B −B∗Y A(λ−A)−1B.

Hence

Ψ(λ̄−1)∗Δ−1Ψ(λ)

=
(
Δ+ λB∗(I − λA∗)−1C∗0

)
Δ−1
(
Δ+ C0(λ−A)−1B

)
= Δ+ λB∗(I − λA∗)−1C∗0 + C0(λ−A)−1B

+B∗(I − λA∗)−1(λC∗0Δ
−1C0)(λ−A)−1B.

From the definitions of Δ and C0 given in the beginning of the proof we see that
Δ−B∗Y B = D0 and C0 −B∗Y A = C. Thus the calculations above yield

Ψ(λ̄−1)∗Δ−1Ψ(λ) = D0 + λC(I − λA)−1 +B∗(λ−A∗)−1C∗.

According to (14.57) the right-hand side in the previous identity is equal to W (λ).
Thus Ψ(λ̄−1)∗Δ−1Ψ(λ) = W (λ), as desired. �

Lemma 14.18. Let W be a rational m×m matrix function given by (14.57), where
D0 is a Hermitian matrix and A is an n× n matrix having all its eigenvalues in
the open unit disc. Assume Y is a Hermitian stabilizing solution of the Riccati
equation (14.58). Then the block Toeplitz operator T on �m

2 defined by the rational
m×m matrix function W (λ−1) is invertible and Y is uniquely determined by the
expression (14.64).
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Proof. As in the proof of the preceding lemma, we set Δ = D0 + B∗Y B and
C0 = C+B∗Y A. Furthermore, Ψ(λ) is the rational m×m matrix function defined
by (14.73). Put Θ(λ) = Ψ(λ−1). The proof of the preceding lemma tells us that

W (λ−1) = Θ(λ̄−1)∗Δ−1Θ(λ).

Hence the block Toeplitz operator T on �m
2 defined by W (λ−1) admits the factor-

ization T = (TΘ)∗ ΞTΘ, where TΘ is the block Toeplitz operator on �m
2 defined by

Θ, and Ξ is the block diagonal operator on �m
2 given by

Ξ = diag (Δ−1,Δ−1,Δ−1, . . .).

From (14.73), (14.74) and Θ(λ) = Ψ(λ−1) we know that

Θ(λ) = Δ+ λC0(I − λA)−1B, (14.76)

Θ(λ)−1 = Δ−1 − λΔ−1C0(I − λA×)−1BΔ−1, (14.77)

where A× is given by (14.59). From (14.76), (14.77), and the fact that both A and
A× have all their eigenvalues in the open unit disc we see that TΘ is invertible and
T−1Θ is given by

T−1Θ =

⎡⎢⎢⎢⎢⎢⎣
Θ×0 0 0 · · ·
Θ×1 Θ×0 0 · · ·
Θ×2 Θ×1 Θ×0
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦ , (14.78)

where Θ×0 ,Θ×1 ,Θ×2 , . . . are the Taylor coefficients of Θ(λ)−1 at zero. Furthermore,
(14.76) yields

Θ×0 = Δ−1, Θ×j = −Δ−1C0(A×)j−1BΔ−1, j = 1, 2, . . . . (14.79)

Let Γ be the operator from Cn into �m
2 defined by (14.68). Using the identities

in (14.78) and (14.79) we compute that

Γ∗T−1Θ =
[
β̃ A∗β̃ (A∗)2β̃ · · ·

]
, (14.80)

with β̃ given by

β̃ = C∗Δ−1 −A∗
( ∞∑

j=0

(A∗)jC∗Δ−1C0(A×)j
)

BΔ−1. (14.81)

As T = (TΘ)∗ΞTΘ and TΘ is invertible, we conclude that T is invertible. Moreover,
using (14.80), we have

Γ∗T−1Γ = (Γ∗T−1Θ ) Ξ−1(Γ∗T−1Θ )∗ =
∞∑

j=0

(A∗)j β̃Δβ̃∗Aj . (14.82)
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We proceed by showing that β̃ = (C∗ + A∗Y B)Δ−1, where A× is given by
(14.59). To prove this we use the fact that Y satisfies the Riccati equation (14.58).
A straightforward computation gives

Y = A∗Y A− (C∗ +A∗Y B)Δ−1(C +B∗Y A)

= A∗Y
(
A−BΔ−1(C +B∗Y A)

)
− C∗Δ−1(C +B∗Y A)

= A∗Y A× − C∗Δ−1C0.

We conclude that Y −A∗Y A× = −C∗Δ−1C0. Since both A and A× have all their
eigenvalues in the open unit disc, we obtain

Y = −
∞∑

j=0

(A∗)jC∗Δ−1C0(A×)j .

Using the latter identity in (14.81) we arrive at

β̃ = C∗Δ−1 +A∗Y BΔ−1 = (C∗ +A∗Y B)Δ−1.

Finally, the identity β̃ = (C∗ +A∗Y B)Δ−1 and the fact that Y satisfies the
Riccati equation yield

Y −A∗Y A = −(C∗ +A∗Y B)Δ−1(C +B∗Y A) = −β̃Δβ̃∗. (14.83)

But then Y = −∑∞
j=0(A

∗)j β̃Δβ̃∗Aj because A has all its eigenvalues in the
open unit disc. Comparing the latter expression for Y with (14.82) we see that
Y = −Γ∗T−1Γ. Thus Y is given by (14.64), as desired. �

In Theorem 14.15 we restricted the attention to stabilizing solutions of the
Riccati equation (14.58) that are required to be Hermitian. This requirement is not
essential: Theorem 14.15 remains true if Y is just an arbitrary stabilizing solution
of (14.58). The reason is that a stabilizing solution of (14.58) is always Hermitian.
This result is the contents of the following proposition.

Proposition 14.19. If Y is a T-stabilizing solution of the Riccati equation (14.58),
then Y is Hermitian.

Proof. Let Y be a stabilizing solution of (14.58), and put Δ = D0+B∗Y B. Then
Δ is invertible, and

σ
(
A−BΔ−1(C + B∗Y A)

) ⊂ D. (14.84)

Consider the m×m rational matrix functions

W−(λ) = Im +Δ−1(C +B∗Y A)(λIn −A)−1B, (14.85)

W+(λ) = Δ+B∗(λ−1In − A∗)−1(C∗ +A∗Y B). (14.86)
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The first part of the proof consists of showing that W (λ) = W+(λ)W−(λ) and
that this factorization is a left canonical one with respect to the unit circle.

Part 1. To prove that W (λ) = W+(λ)W−(λ), we use a modification of the argu-
ment used to prove (14.75). Put

C0 = C +B∗Y A, B0 = C∗ +A∗Y B. (14.87)

Then equation (14.58) can be rewritten as Y −A∗Y A = −C0Δ−1B0, and hence

λB0Δ−1C0 = −Y (λ−A) + (I − λA∗)Y (λ−A)− λ(I − λA∗)Y.

It then follows that

B∗(λ−1 −A∗)−1B0Δ−1C0(λIn −A)−1B

= −B∗(λ−1 −A∗)−1A∗Y B −B∗Y B −B∗Y A)(λIn −A)−1B.

This yields

W+(λ)W−(λ) = Δ+ B∗(λ−1 −A∗)−1B0 + C0(λIn −A)−1B

+B∗(λ−1 −A∗)−1B0Δ−1(λIn −A)−1B

= D0 +B∗(λ−1 −A∗)−1C∗ + C(λIn −A)−1B = W (λ).

Next we prove that W (λ) = W+(λ)W−(λ) is a left canonical factorization
with respect to the unit circle. To do this, using (14.85), we first note that

W−(λ)−1 = Im −Δ−1(C +B∗Y A)(λIn −A×)−1B, (14.88)

where A× = A − BΔ−1(C + B∗Y A). From (14.84) we know that A× has all
its eigenvalues in D. By assumption the same holds true for the matrix A. Thus
(14.85) and (14.88) tell us that both W− and W−1

− are analytic on the complement
of D, infinity included. Thus the factor W− has the desired properties.

As A has all its eigenvalues in D, the same holds true for A∗. Thus (14.86)
tells us that W+ is analytic on the closed unit disc D. We have to show that W−1

+

also is analytic on D. To do this, put

V+(λ) = W−(λ̄−1)∗, V−(λ) = W+(λ̄−1)∗.

Using the properties of W− derived in the previous paragraph, we see that V+ and
V −1+ are analytic on D. Furthermore, V− is analytic on |λ| ≥ 1, infinity included.
Now, recall that W is selfadjoint on the unit circle. Hence W (λ) = W (λ̄−1)∗, and
thus W (λ) = W+(λ)W−(λ) = V+(λ)V−(λ). But then

V−(λ)W−(λ)−1 = V+(λ)−1W+(λ). (14.89)
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The left-hand side of (14.89) is analytic on |λ| ≥ 1 with infinity included, and the
right-hand side of (14.89) is analytic on D. By Liouville’s theorem, there exists a
constant matrix K such that

V−(λ) = KW−(λ), W+(λ) = V+(λ)K. (14.90)

As detW+(λ) does not vanish identically,K is invertible. Hence the second identity
in (14.90) tells us that W+(λ) = K−1V+(λ)−1 is analytic on D. Thus W+ and W−1

+

are analytic on D, as desired. We conclude that W (λ) = W+(λ)W−(λ) is a left
canonical factorization with respect to the unit circle.
Part 2. In this part we establish the inclusion

σ
(
A∗ − (C∗ +A∗Y B)Δ−1B∗

) ⊂ D. (14.91)

Put Φ(λ) = W+(λ−1). Then, with Ω = A∗ and Ω× = A∗ − (C∗ +A∗Y B)Δ−1B∗,

Φ(λ) = Δ+B∗(λIn − Ω)−1(C∗ +A∗Y B), (14.92)

Φ−1(λ) = Δ−1 −Δ−1B∗(λIn − Ω×)−1(C∗ + A∗Y B)Δ−1. (14.93)

We want to prove that σ(Ω×) ⊂ D. Take |λ0| ≥ 1. As σ(Ω) ⊂ D, we have λ0 	∈ σ(Ω),
and hence λ0 	∈ σ(Ω) ∩ σ(Ω×). From (14.92) and (14.93) we see that Ω× is the
associate main matrix of the realization (14.92). But then λ0 	∈ σ(Ω) ∩ σ(Ω×)
implies that the realization in (14.92) is locally minimal at λ0. Since W+ and
W−1
+ are analytic on D, the rational matrix function Φ has no poles or zeros on

|λ| ≥ 1. But then the local minimality at λ0 implies that λ0 is not an eigenvalue
of Ω×. Recall that λ0 is an arbitary complex number with |λ0| ≥ 1. We conclude
that σ(Ω×) is contained in D, that is, (14.91) is proved.
Part 3. Let T be the block Toeplitz operator on �m

2 determined by W (λ−1). Since
W admits a left canonical factorization with respect to the unit circle, the function
W (λ−1) admits a right canonical factorization with respect to the unit circle, and
hence T is invertible. We claim that

Y = − [C∗ A∗C∗ A∗2C∗ · · · ]T−1
⎡⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

⎤⎥⎥⎥⎥⎥⎦ . (14.94)

Since the values of W (λ−1) on the unit circle are Hermitian, the operator T is
selfadjoint, and hence the same holds true for T−1. But then the identity (14.94)
shows that Y is Hermitian. Thus it remains to prove (14.94).

To prove (14.94) we follow the same line of reasoning as in the proof of
Lemma 14.18. Put

Θ(λ) = ΔW−(λ−1), Φ(λ) = W+(λ−1). (14.95)
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Here W+ and W− are as in Part 1 of the proof; see (14.85) and (14.86). By the
result of Part 1 we have that W−(λ−1) = Φ(λ)Δ−1Θ(λ). Moreover, Θ and Θ−1

are analytic on D, and Φ and Φ−1 are analytic on |λ| ≥ 1 with infinity included.
Let TΘ and TΦ be the block Toeplitz operators on �m

2 determined by Θ and
Φ, respectively. By the results mentioned in the previous paragraph, the operators
TΘ and TΦ are invertible, T−1Θ = TΘ−1 and T−1Φ = TΦ−1 . Furthermore, T−1 =
TΘ−1Ξ−1TΦ−1 , where, as in the proof of Lemma 14.18, the operator Ξ is the block
diagonal operator on �m

2 given by

Ξ = diag (Δ−1,Δ−1,Δ−1, . . .).

Note that

Θ−1(λ) = Δ−1 −Δ−1(C +B∗Y A)(λ=1In −A×)−1BΔ−1,

Φ−1(λ) = Δ−1 −Δ−1B∗(λIn − Ω×)−1(C∗ +A∗Y B)Δ−1.

Here

A× = A−BΔ−1(C +B∗Y A), Ω× = A∗ − (C∗ +A∗Y B)Δ−1B∗,

and the eigenvalues of these two matrices are all in the open unit disc.
Let Γ be the operator defined by (14.68). We now repeat the arguments used

in the proof of Lemma 14.18, more specifically appearing in the paragraphs after
(14.79). This together with a duality argument yields

Γ∗T−1Γ = (Γ∗T−1Θ )Ξ−1(T−1Φ Γ) =
∞∑

j=0

(A∗)j β̃Δ−1γ̃Aj . (14.96)

Here

β̃ = C∗Δ−1 −A∗
( ∞∑

j=0

(A∗)jC∗Δ−1(C +B∗Y A)(A×)j
)
BΔ−1,

γ̃ = Δ−1C −Δ−1B∗
(∑

j=0

(Ω×)j(C∗ +A∗Y B)Δ−1CAJ
)
A.

Note that the Riccati equation (14.58) can be rewritten in the following two equiv-
alent forms

Y −A∗Y A× = −C∗Δ−1(C +B∗Y A),

Y − Ω×Y A = −(C∗ +A∗Y B)Δ−1C.

Since the eigenvalues of the matrices A, A∗, A× and Ω× are all in the open unit
disc, we see that the formulas for β̃ and γ̃ can be transformed into

β̃ = (C∗ +A∗Y B)Δ−1, γ̃ = Δ−1(C +B∗Y A).

This allows us to rewrite (14.58) as Y −A∗Y A = −β̃Δγ̃, and we see from (14.96)
that (14.94) holds. �
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Notes

As noted J-spectral factorization is a special form of canonical factorization, re-
flecting the symmetry condition on the given function. This chapter develops this
theme in a systematic way for rational matrix functions. Sections 14.2 and 14.3
are based on [121]. For Section 14.4 we refer to [76], see also [112] and [83]. A good
source for Section 14.5 is [98], see also [97]. The linear quadratic optimal control
problem for discrete time systems, mentioned in Section 14.5 in the paragraph
before Proposition 14.12, can be found in many books on mathematical systems
theory, see, e.g., [85]. The connection with the algebraic Riccati equation of the
form (14.45) is also shown in the latter book. Much more information on this
equation, including its connection to factorization in more general setting than
the one exhibited in Proposition 14.12, can be found in Part III of [106]. Sec-
tion 14.6 is based on [9], see also [8]. The final section is inspired by [44]. In fact,
Theorem 14.15 is just the symmetric version of Theorem 1.1 in [44].

The notion of J-spectral factorization plays an important role in control
theory; see, e.g., the books [43], [85], [150], the papers [76], [145] and the references
in these papers. The final part of this book is devoted to this connection, with an
emphasis on H∞-problems.



Part VI
Factorizations and symmetries

In this part we study rational matrix functions that are unitary or of the form iden-
tity matrix plus contractions, and rational matrix functions that have a positive
real part. Because of the state space similarity theorem, these additional symme-
tries can be restated in terms of special properties of the minimal realizations of
the rational matrix functions considered. These reformulations involve an alge-
braic Riccati equation. The results are known in systems theory as the bounded
real lemma and the positive real lemma, respectively.

This part consists of three chapters. In the first chapter (Chapter 15) we
study rational matrix functions that have a positive definite real part or a non-
negative real part on the real line, and we present canonical and pseudo-canonical
factorization theorems for such functions in state space form. In the second chapter
(Chapter 16) realizations are used to study rational matrix functions of which the
values on the imaginary axis (or on the real line) are contractive matrices. Included
are solutions to spectral and canonical factorization problems for functions V of
the form

V (λ) = I −W (−λ̄)∗W (λ), V (λ) = I +W (λ),

where W has contractive values on the imaginary axis (or on the real line) and
is strictly contractive at infinity. In the third chapter (Chapter 17) realizations
are used to study rational matrix functions of which the values on the imaginary
axis are J-unitary matrices. Solutions to various factorization problems are given.
Special attention is paid to factorization of J-unitary rational matrix functions
into J-unitary factors. In this chapter we also discuss problems of embedding a
contractive rational matrix function into a unitary rational matrix function of
larger size.





Chapter 15

Factorization of positive real
rational matrix functions

This chapter is concerned with canonical factorization (with respect to the real
line) of rational matrix functions with a positive definite real part on the real
line. Also the generalization to pseudo-canonical factorization for functions that
have a nonnegative real part is developed. All factorizations are obtained explicitly
using state space realizations of the functions involved. In Section 15.1 rational
matrix functions that have a positive definite real part or a nonnegative real part
on the real line are characterized in terms of realizations. Section 15.2 deals with
canonical factorization, and Section 15.3, the final section of the chapter, with
pseudo-canonical factorization.

15.1 Rational matrix functions with a positive definite

real part

In this section we consider rational m × m matrix functions W which have the
property that

W (λ) + W (λ)∗ ≥ 0, λ ∈ R, λ not a pole of W. (15.1)

In this case we say that W has a nonnegative real part on the real line. If in (15.1)
the inequality is strict, that is,

W (λ) + W (λ)∗ > 0, λ ∈ R, λ not a pole of W. (15.2)

we say that W has a positive definite real part on the real line. The following two
theorems characterize these properties in terms of realizations of W .
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Theorem 15.1. Let W (λ) = D + C(λIn − A)−1B be a rational m × m matrix
function, and let (A, B) be controllable. Write G = D + D∗ and assume G is
positive definite. Then W has a nonnegative real part on the real line if and only
if there is a Hermitian solution X of the equation

−iA∗X + iXA− (XB − iC∗)G−1(B∗X + iC) = 0. (15.3)

Furthermore, for any Hermitian solution X of (15.3) one has

W (λ) + W (λ̄)∗ = K(λ̄)∗K(λ), (15.4)

where
K(λ) = G1/2 + G−1/2(C − iB∗X)(λIn −A)−1B. (15.5)

Finally, if, in addition, the pair (C, A) is observable, then each solution X of
(15.3) is invertible.

For later use we note that equation (15.3) can be rewritten as

−(iA∗−iC∗G−1B∗)X+X(iA−iBG−1C)−C∗G−1C−XBG−1B∗X = 0. (15.6)

Proof. Put V (λ) = W (−iλ) +W (iλ̄)∗. Then W has a nonnegative real part on R

if and only if V is nonnegative on the imaginary axis. Using the given realization
of W we have

V (λ) = D + C(−iλIn −A)−1B +D∗ +B∗(−iλIn −A∗)−1C∗

= G+ (iC)
(
λIn − (iA)

)−1
B −B∗

(
λIn + (iA)∗

)−1(iC)∗
=
[
−B∗

(
λ+ (iA)∗

)−1
I
] [ 0 (iC)∗

iC G

][
(λ− iA)−1B

I

]
.

Thus we can apply Theorem 13.6, with R = G, Q = 0, S = iC and iA instead of
A, to show that W has a nonnegative real part on R if and only equation (15.3)
has a Hermitian solution.

Next, let X be a Hermitian solution of (15.3). By the second part of Theo-
rem 13.6, the function V admits a factorization V (λ) = L(−λ̄)∗L(λ), where

L(λ) = G1/2 +G−1/2(B∗X + iC)(λ − iA)−1B.

As W (λ)+ W (λ̄)∗ = V (iλ), we see that (15.4) holds with K being given by (15.5)
To prove the final part, assume additionally that the pair (C, A) is observable,

and let X be a Hermitian solution of (15.3). We have to show that X is invertible.
Since X is square it suffices to prove that KerX = {0}. Assume Xx = 0. Then
x∗X = 0 because X is Hermitian, and by (15.3) we have 0 = −〈C∗G−1Cx, x〉.
As G > 0, this gives Cx = 0. Multiplying (15.3) on the right by x we then
obtain iXAx = 0. So KerX is A-invariant and contained in KerC. Therefore
KerX = {0} and X is invertible. �
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Theorem 15.2. Let W (λ) = D + C(λIn − A)−1B be a rational m × m matrix
function, and let (A, B) be controllable. Write G = D + D∗ and assume G is
positive definite. If, in addition, A has no real eigenvalues, then the following
statements are equivalent:

(i) The function W has a positive definite real part on the real line;

(ii) Equation (15.3) has a Hermitian solution X such that the matrix

A−BG−1C + iBG−1B∗X (15.7)

has no real eigenvalues;

(iii) The matrix

H =

⎡⎣ iA∗ − iC∗G−1B∗ C∗G−1C

−BG−1B∗ iA− iBG−1C

⎤⎦
has no pure imaginary eigenvalues.

Moreover, in that case equation (15.3) has a unique Hermitian solution X such
that the matrix (15.7) has its eigenvalues in the open upper half plane.

Proof. As in the proof of the previous theorem, we consider the rational m ×m
matrix function V (λ) = W (−iλ) + W (iλ̄)∗. Using the given realization of W we
see (see (13.6) and the second part of the proof of Theorem 13.2) that V admits
the realization V (λ) = G+ Ĉ(λI2n − Â)−1B̂, where

Â =

[
iA∗ 0

0 iA

]
, B̂ =

[
iC∗

B

]
, Ĉ =

[
B∗ iC

]
.

It follows that Â× = Â− B̂G−1Ĉ is precisely equal to the block matrix H appear-
ing in item (c). Since A has no real eigenvalue, the matrix Â has no pure imaginary
eigenvalue. Thus V has no pole on the imaginary axis. Hence (cf., Section 8.1) the
realization V −1(λ) = G−1 − G−1Ĉ(λI2n − Â×)−1B̂G−1 is minimal at each point
of the imaginary axis. But then V −1 has no pole on the imaginary axis if and only
if Â× has no pure imaginary eigenvalue. As Â× = H , we conclude that condition
(iii) is equivalent to the requirement that V (λ) is invertible for each λ ∈ iR.

(i)⇒ (iii) If (i) is satisfied, then V (λ) is positive definite for each λ ∈ iR.
In particular, V (λ) is invertible for each λ ∈ iR, and hence, by the result of the
previous paragraph, (iii) holds.

(iii)⇒ (i) Conversely, assume (iii) is satisfied. Recall that V has no pole
on the imaginary axis. Furthermore, V (λ) is selfadjoint for λ ∈ iR. Since V (λ)
is invertible for each λ ∈ iR, it follows that for imaginary λ the signature of the
matrix V (λ) does not depend on λ. Next, observe that the rational matrix function
V is biproper and that its value at infinity is equal to G. Hence the value of V
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at infinity is positive definite. We obtain that V (λ) is positive definite for each
λ ∈ iR. Thus (i) holds.

(i)⇒ (ii) Assume W has a positive definite real part on R. Theorem 15.1
implies that equation (15.3) has a Hermitian solution X . Hence we have the fac-
torization W (λ) + W (λ̄)∗ = K(λ̄)∗K(λ) with K(λ) being given by (15.5). Since
A has no eigenvalue on R, the functions W and K have no pole on R. The fact
that W has a positive definite real part on R and the fact that W has no pole on
R together imply that W (λ) +W (λ̄)∗ is invertible for each λ ∈ R. Hence K(λ) is
also invertible for each λ ∈ R. Thus K(λ)−1 has no pole on R. Notice that

K(λ)−1 = G−1/2 −G−1(C − iB∗X)(λ− Z)−1B, (15.8)

where Z = A−BG−1(C − iB∗). Let λ0 ∈ R. Then λ0 is not a common eigenvalue
of A and Z. Thus we can apply the material presented in Section 8.1 to show that
the realization given by the right-hand side of (15.8) is minimal at λ0. But then
the fact that K(λ)−1 has no pole on R implies that λ0 is not an eigenvalue of Z.
Thus Z = A−BG−1C + iBG−1B∗X has no real eigenvalue. This proves (ii).

(ii)⇒ (i) Let X be as in (ii). Then W (λ) +W (λ̄)∗ = K(λ̄)∗K(λ) with K(λ)
being given by (15.5). Observe that K(λ)−1 is given by (15.8), where Z is as
above. According to our hypothesis Z has no real eigenvalue. Hence K(λ̄)∗K(λ)
is positive definite for each λ ∈ R. Thus (i) holds.

To prove the second part of the theorem, we apply Theorem 13.3. Recall that
equation (15.3) can be rewritten into the algebraic Riccati equation (15.6). The
Hamiltonian of this Riccati equation is precisely the block matrixH defined in item
(iii). According to our hypotheses (A, B) is controllable. This implies that the pair
(iA − iBG−1C, B) is also controllable. But controllability implies stabilizability.
Thus the pair (iA − iBG−1C, B) is stabilizable. But then Theorem 13.3 tells us
that condition (iii) implies that equation (15.3) has a unique Hermitian solution
X such that the eigenvalues of iA − iBG−1C − BG−1B∗X are in the open left
half plane. Multiplication by −i then gives the desired result. �

15.2 Canonical factorization of functions with a positive
definite real part

In this section we consider canonical factorization of functions with a positive
definite real part on the real line. Using state space realizations we shall prove the
following result.

Theorem 15.3. Let W be a proper rational matrix function having no real poles
and such that D = W (∞) satisfies D + D∗ > 0. Assume that W has a positive
definite real part on the real line. Then W admits both a right and a left canonical
factorization with respect to the real line.

We start with some preparations that are of independent interest and will
be useful in the next section too. Let T be a square matrix. If the real part of T
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is positive definite, then T is injective, hence invertible. Indeed, for non-zero x we
have 2�(〈Tx, x〉) = 〈(T + T ∗)x, x〉 > 0. Also, if T is invertible, then T−1 has a
positive definite real part if and only if this is the case for T . This is immediate
from either of the identities

T−1 + T−∗ = T−1(T + T ∗)T−∗, T−1 + T−∗ = T−∗(T + T ∗)T−1.

Now let W (λ) = D + C(λIn − A)−1B be a rational m×m matrix function
with G = D + D∗ positive definite, and assume W has a nonnegative real part
on R. Then D is invertible, G× defined by G× = D−1 +D−∗ is positive definite,
G× = D−1GD−∗, and W−1 has a nonnegative real part on R. For W−1 we have
the realization

W−1(λ) = D−1 −D−1C(λIn −A×)−1BD−1, (15.9)

where, as usual, A× = A − BD−1C. This gives rise to the following analogue of
equation (15.3):

−i(A×)∗X + iXA× − (XBD−1 + iC∗D−∗)(G×)−1(D−∗B∗X − iD−1C) = 0,
(15.10)

which can also be written as an algebraic Riccati equation

−(i(A×)∗ + iC∗D−∗(G×)−1D−∗B∗
)
X

+X
(
iA× + iBD−1(G×)−1D−1C

)
(15.11)

−C∗D−∗(G×)−1D−1C −XBD−1(G×)−1D−∗B∗X = 0.

Now let us look at the right coefficient of X in this expression. Using the identity
(G×)−1 = DG−1D∗, we get

iA× + iBD−1(G×)−1D−1C = iA− iBD−1C + iBD−1(DG−1D∗)D−1C

= iA− iBD−1C + iBG−1D∗D−1C

= iA− iBG−1(G−D∗)D−1C

= iA− iBG−1DD−1C = iA− iBG−1C.

Thus the right coefficient of X in (15.11) is equal to the right coefficient of X in
(15.6). The left coefficient of X in (15.11) is the adjoint of the right coefficient of
X in (15.11), and the same is true with (15.11) replaced by (15.6). Hence the left
coefficient of X in (15.11) is equal to the left coefficient of X in (15.6). For the
constant term in (15.11), we have

−C∗D−∗(G×)−1D−1C = −C∗D−∗(D∗G−1D)D−1C = −C∗G−1C,

and the latter is the constant term in (15.11). Finally, the identities

−BD−1(G×)−1D−∗B∗ = −BD−1(DG−1D∗)D−∗B∗ = −BG−1B∗



296 Chapter 15. Factorization of positive real rational matrix functions

show that the coefficients of the quadratic terms in (15.11) and (15.6) coincide
too. We conclude that the equations (15.3), (15.6), (15.10) and (15.11) all amount
to the same.

Lemma 15.4. Let W (λ) = D+C(λIn−A)−1B be a rational m×m matrix function
such that G = D+D∗ > 0. Assume X is an invertible Hermitian matrix satisfying
(15.3). Then

1
2i
(XA−A∗X) = −1

2
(B∗X + iC)∗G−1(B∗X + iC),

1
2i
(
XA× − (A×)∗X

)
= −1

2
(DD−∗B∗X − iC)∗G−1(DD−∗B∗X − iC).

In particular both A and A× are (−X)-dissipative.

Proof. The first identity is just a restatement of (15.3). Recall that (15.3) and
(15.10) amount to the same. Hence X also satisfies (15.10). Now note that the
second identity in the lemma is just another way of writing (15.10). Here we use
that (G×)−1 = D∗G−1D. �

Before turning to the proof of Theorem 15.3 we present another lemma.

Lemma 15.5. Let W (λ) = D+C(λIn−A)−1B be a rational m×m matrix function
such that G = D+D∗ > 0 and the pair (C, A) is observable. Assume X is an in-
vertible Hermitian matrix satisfying (15.3). Let N1, N

×
1 be maximal X-nonpositive

subspaces and N2, N
×
2 be maximal X-nonnegative subspaces such that N1, N2 are

invariant under A and N×
1 , N×

2 are invariant under A×. Then

Cn = N1 +̇N×
2 , Cn = N2 +̇N×

1 . (15.12)

Proof. Applying Proposition 11.1 we obtain

dimN1 + dimN×
2 = n, dimN2 + dimN×

1 = n.

Therefore in order to prove that (15.12) holds, it suffices to show that the in-
tersections N1 ∩ N×

2 and N2 ∩ N×
1 are both trivial. Take x ∈ N1 ∩ N×

2 . Then
〈Xx, x〉 = 0. Now the Cauchy-Schwartz inequality holds on N1. Thus

|〈XAx, x〉|2 ≤ 〈XAx, Ax〉〈Xx, x〉 = 0,

|〈Xx, Ax〉|2 ≤ 〈XAx, Ax〉〈Xx, x〉 = 0.

Using this together with the first identity in Lemma 15.4, we get

0 = �〈XAx, x〉 = −1
2
‖G−1/2(B∗X + iC)x‖2.

Similarly, employing the Cauchy-Schwartz inequality on N×
2 and the second iden-

tity in Lemma 15.4, we get

0 = �〈XA×x, x〉 = −1
2
‖G−1/2(DD−∗B∗X − iC)x‖2.
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Thus (B∗X + iC)x = 0 and (DD−∗B∗X − iC)x = 0. Adding these two identities
we arrive at 0 = (I + DD−∗)B∗Xx = GD−∗B∗Xx. Hence B∗Xx = 0, and it
also follows that Cx = 0. Thus Ax = A×x for x ∈ N1 ∩ N×

2 . Hence N1 ∩ N×
2 is

an A-invariant subspace contained in KerC. Given the observability of the pair
(C, A), this yields N1 ∩N×

2 = {0}.
The proof of N2∩N×

1 = {0} is analogous. It can also be obtained by applying
the result of the previous paragraph to the rational matrix function W−1. �

Proof of Theorem 15.3. Let W (λ) = D+C(λIn−A)−1B be a minimal realization
of W . Since W has no poles on R, the minimality of the realization guarantees
that A has no eigenvalues on R. As we have seen (in the first paragraph after
Theorem 15.3), the positive definiteness of D + D∗ implies that D is invertible.
Similarly we conclude that W takes invertible values on R. Hence we know from
Theorem 2.4 that A× = A−BD−1C has no real eigenvalues either.

Since W has a positive definite real part, we can use Theorem 15.1 to deduce
that equation (15.3) has an invertible Hermitian solution X , say. Lemma 15.4 now
gives that both A and A× are (−X)-dissipative.

Let M+ and M×
+ be the spectral subspaces of A and A×, respectively, cor-

responding to the open upper half plane, and let M− and M×
− , be the spectral

subspaces of A and A×, respectively, corresponding to the open lower half plane.
As A and A× are (−X)-dissipative, we have that M+ and M×

+ are maximal X-
nonpositive. Similarly, the spaces M− and M×

− are maximal X-nonnegative. Using
Lemma 15.5 we may conclude that Cn = M++̇M×

− and Cn = M−+̇M×
+ . But then

Theorem 3.2 guarantees that W admits the desired canonical factorizations. �

15.3 Generalization to pseudo-canonical factorization

In this section the results of the previous section concerning canonical factoriza-
tions will be generalized to pseudo-canonical factorizations.

Theorem 15.6. Let W be a proper rational m×m matrix function having no real
poles such that D = W (∞) satisfies D+D∗ > 0. Assume that W has a nonnegative
real part on the real line. Then, with respect to the real line, W admits both right
and left pseudo-canonical factorization. Such factorizations can be obtained in the
following manner. Let W (λ) = D+C(λIn−A)−1B be a minimal realization, and
put G = D +D∗. Then there exists an invertible Hermitian matrix X satisfying

−iA∗X + iXA− (XB − iC∗)G−1(B∗X + iC) = 0. (15.13)

Also there are A-invariant subspaces M+ and M−, and A×-invariant subspaces
M×
+ and M×

− , such that

(i) M+ is maximal X-nonpositive, M+ contains the spectral subspace of A
associated with the part of σ(A) lying in the open upper half plane, and
σ(A|M+ ) ⊂ {λ | �λ ≥ 0},
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(ii) M− is maximal X-nonnegative, M− contains the spectral subspace of A
associated with the part of σ(A) lying in the open lower half plane, and
σ(A|M−) ⊂ {λ | �λ ≤ 0},

(iii) M×
+ is maximal X-nonpositive, M×

+ contains the spectral subspace of A×

associated with the part of σ(A×) lying in the open upper half plane, and
σ(A×|M×

+
) ⊂ {λ | �λ ≥ 0},

(iv) M×
− is maximal X-nonnegative, M×

− contains the spectral subspace of A×

associated with the part of σ(A×) lying in the open lower half plane, and
σ(A×|M×

−
) ⊂ {λ | �λ ≤ 0}.

For such subspaces the matching conditions

Cn = M++̇M×
− , Cn = M−+̇M×

+ (15.14)

are satisfied. Write Πr for the projection along M+ onto M×
− and Πl for the

projection along M− onto M×
+ . Further put

W̃−(λ) = D + C(λIn −A)−1(In −Πr)B,

W̃+(λ) = In +D−1CΠr(λIn −A)−1B,

Ŵ+(λ) = D + C(λIn −A)−1(In −Πl)B,

Ŵ−(λ) = In +D−1CΠl(λIn −A)−1B.

Then W (λ) = W̃−(λ)W̃+(λ) and W (λ) = Ŵ+(λ)Ŵ−(λ) are a right and a left
pseudo-canonical factorization with respect to the real line, respectively.

Proof. In view of the minimality of the given realization we can employ The-
orem 15.1 to show that there is an invertible Hermitian matrix X such that
(15.13), which is identical to (15.3), holds. By Lemma 15.4 the matrices A and
A× are (−X)-dissipative. The existence of subspaces M+, M−, M×

+ and M×
− with

the properties mentioned above is now guaranteed by Theorem 11.6. Lemma 15.5
gives the direct sums (15.14), and the conclusion of the theorem is straightforward
by Theorem 8.6. �

As a further application of Lemma 15.5 we prove the following result on skew
selfadjoint matrix functions. A rational m×m matrix function W is called skew-
Hermitian on the real line if W (λ) is skew-Hermitian for all λ in R, λ not a pole
of W .

Proposition 15.7. Let W (λ) = D + V (λ), where V is a strictly proper rational
m×m matrix function that has no real poles, is skew-Hermitian on the real line
and vanishes at infinity. Assume D+D∗ > 0. The following statements are true.
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(i) W admits a minimal factorization W (λ) = W̃1(λ)W̃2(λ) where W̃1 has all
its poles, respectively zeros, in the open upper, respectively lower, half plane,
and W̃2 has all its poles, respectively zeros, in the open lower, respectively
upper, half plane.

(ii) W admits a minimal factorization W (λ) = Ŵ1(λ)Ŵ2(λ) where Ŵ1 has all
its poles, respectively zeros, in the open lower, respectively upper, half plane,
and Ŵ2 has all its poles, respectively zeros, in the open upper, respectively
lower, half plane.

Proof. Recall that D + D∗ > 0 implies that D is invertible. Since V is skew-
Hermitian on the real line, we see that W (λ) + W (λ)∗ = D +D∗ > 0 for λ ∈ R.
From the latter it follows that W (λ) is invertible for each λ ∈ R. Now let W (λ) =
D + C(λIn − A)−1B be a minimal realization of W . Then both A and A× have
no eigenvalues on the real line.

From C(λIn − A)−1B = −(C(λIn −A)−1B)∗ for λ ∈ R and the minimality
of the realization we may conclude (by the state space similarity theorem) that
there is a unique invertible matrix Y such that

Y A = A∗Y, Y B = C∗, C = −B∗Y.

Taking adjoints in the above equations, and using the uniqueness of Y , one deduces
that Y = −Y ∗. Put X = −iY . Then X is selfadjoint. As XA = A∗X , the matrix
A is X-selfadjoint. Furthermore, from −iA∗X + iXA = 0 and XB − iC∗ = 0,
we see that X is an invertible Hermitian solution of (15.13). But then we can use
Lemma 15.4 to show that A× is (−X)-dissipative.

Let Mu and Ml be the spectral subspaces of A associated with the part of
σ(A) lying in the open upper and open lower half plane, respectively. Also let M×

u

and M×
l be the spectral subspaces of A× associated with the part of σ(A×) lying

in the open upper and open lower half plane, respectively. Since the matrix A is
X-selfadjoint and has no real eigenvalues, we know (see Theorem 11.5) that the
spaces Mu and Ml are X-Lagrangian. In particular, these spaces are both maximal
X-nonpositive and maximal X-nonnegative. The fact that A× is (−X)-dissipative
and has no real eigenvalues either, gives that the same conclusion holds for M×

u

and M×
l . But then Lemma 15.5 gives Cn = Mu +̇M×

u as well as Cn = Ml +̇M×
l .

Let Π bethe projection of Cn along Mu onto M×
u . Then Π is a supporting

projection of the minimal realization W (λ) = D + C(λI − A)−1B. Hence W

admits a minimal factorization W (λ) = W̃1(λ)W̃2(λ) such that (see Chapter 8)
the following holds: the poles of W̃1 and W̃2 coincide with the eigenvalues of A|Mu

and A|M×
u
, respectively, and the zeros of W̃1 and W̃2 coincide with the eigenvalues

of A×|Mu and A×|M×
u
, respectively. Since A and A× have no real eigenvalues

and Mu +̇M×
u = Cn, we have σ(A|M×

u
) = σ(A|Ml

) and σ(A×|Mu) = σ(A×|M×
l
).

From these remarks it is clear that the factorization W (λ) = W̃1(λ)W̃2(λ) has the
desired properties. The factorization W (λ) = Ŵ1(λ)Ŵ2(λ) is obtained in a similar
way using the other direct sum decomposition Cn = Ml +̇M×

l . �
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Notes

This chapter is based on [126], see also [129] and [128]. Rational matrix functions
with a positive definite real part play a role in circuit and systems theory. In
particular, Theorem 15.2 is a version of what is known as the positive real lemma.
There are several variants of this result, see, for instance, Section 5.2 in [4], where
also the connection with spectral factorization and Riccati equations is discussed.
Another version in terms of Riccati inequalities is given in Section 12.6.3 in [83].
An infinite dimensional version may be found as Exercise 6.28 in [35].



Chapter 16

Contractive rational matrix
functions

In this chapter rational matrix functions are studied of which the values on the
imaginary axis or on the real line are contractive matrices. Included are solutions
to spectral or canonical factorization problems for functions V of the form

V (λ) = I −W (−λ̄)∗W (λ) or V (λ) = I +W (λ),

where W is a rational matrix function which has contractive values on the imag-
inary axis or on the real line and, in addition, has a strictly contractive value at
infinity.

This chapter consists of five sections. Sections 16.1 and 16.2 present a state
space analysis (involving algebraic Riccati equations) of rational matrix functions
that are contractive or strictly contractive on the imaginary axis. In Section 16.3 a
state space formula is derived for the spectral factor in a spectral factorization of a
rational matrix function of the form V (λ) = I−W (−λ̄)∗W (λ), where W is strictly
proper and strictly contractive on the imaginary axis. The final two sections of
the chapter deal with canonical and pseudo-canonical factorization, respectively,
for functions of the form V (λ) = I + W (λ), where W (λ) is strictly proper and
strictly contractive for real λ (Section 16.4) or just contractive (Section 16.5).

16.1 State space analysis of contractive rational matrix

functions

A rational p × m matrix function W is called contractive on the imaginary axis
if the values that W takes on the imaginary axis are contractive matrices. Such a
function does not have a pole on the imaginary axis. Moreover, it is proper and the
value at infinity is again contractive. Of special interest is the subclass consisting
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of the contractive rational matrix functions W that are strictly contractive at
infinity, i.e., the value of W at ∞ has norm smaller than 1. The first main result
of this section is a characterization of this subclass in terms of realizations.

Theorem 16.1. Let W (λ) = D + C(λIn − A)−1B be a realization of a p × m
rational matrix function, and assume D is a strict contraction. Then the following
two assertions hold:

(i) Assume (C, A) is an observable pair. Then W is contractive on the imaginary
axis if and only if the algebraic Riccati equation

−AP − PA∗ −BB∗ − (PC∗ +BD∗)(I −DD∗)−1(CP +DB∗) = 0 (16.1)

has a Hermitian solution P .

(ii) Assume (A, B) is a controllable pair. Then W is contractive on the imaginary
axis if and only if the algebraic Riccati equation

A∗P + PA− C∗C − (PB − C∗D)(I −D∗D)−1(B∗P −D∗C) = 0 (16.2)

has a Hermitian solution P .

Proof. Put V (λ) = I −W (λ)W (−λ̄)∗. Since W is proper, the same holds true for
V . Moreover, V (∞) = I −DD∗, and hence V (∞) is positive definite, because D
is assumed to be a strict contraction. Note that W is contractive on iR if and only
if V is nonnegative on iR. Using the given realization for W we have

V (λ) = I −DD∗ +
[

C DB∗
](

λ−
[

A BB∗

0 −A∗

])−1 [ −BD∗

C∗

]

=
[ −C(λ−A)−1 I

] [ −BB∗ BD∗

DB∗ I −DD∗

][
(λ +A∗)−1C∗

I

]
.

The latter expression is of the form (13.25) and we see that (i) is an immediate
consequence of the equivalence of statements (i) and (ii) in Theorem 13.6.

To prove assertion (ii) we use a duality argument. First note that a matrix
X is a (strict) contraction if and only if X∗ is a (strict) contraction. So W is
contractive on iR if and only this is the case for the function W (−λ̄)∗. The latter
has the realization W (−λ̄)∗ = D∗ − B∗(λ + A∗)−1C∗. Also, the controllability
of the pair (A, B) implies the observability of (B∗,−A∗). Finally, D∗ is a strict
contraction. Thus assertion (ii) follows from part (i) by taking adjoints. �

Suppose D is a strict contraction. If the pair (C, A) is observable, then each
Hermitian solution P of (16.2) is invertible. To see this, we argue as follows.
Assume Px = 0. Multiplying (16.2) from the left by x∗ and from the right by
x yields x∗C∗Cx + x∗C∗D(I − D∗D)−1DC∗x = 0. Now C∗C and I − D∗D are
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nonnegative (in fact even I −DD∗ > 0), and it follows that x∗C∗Cx = 0. Hence
Cx = 0. But then, multiplying (16.2) on the right by x, we get PAx = 0. So
KerP is A-invariant and contained in KerC. As (C, A) is an observable pair, it
follows that KerP = {0}. Since P is a square matrix, this yields the invertibility
of P . In a similar fashion one proves that each solution of (16.1) is invertible
provided that the pair (A, B) is controllable, or, which amounts to the same, the
pair B∗, A∗) is observable. Finally we note that P is an invertible solution of (16.2)
if and only if −P 1 is an invertible solution of (16.1). Indeed, replacing P by −P−1

in (16.1) and multiplying from the left and the right with P , one gets (16.2). In
working out the details, identities of the type D(I − D∗D)−1 = (I − DD∗)−1D
and I +D(I −D∗D)−1D∗ = (I −DD∗)−1 play a role.

Theorem 16.2. Let W (λ) = D+C(λIn−A)−1B be a realization of a p×m rational
matrix function, and let D be a strict contraction. Assume, in addition, that the
pair (C, A) is observable. Then W is contractive on the imaginary axis if and only
if the matrix

T =

[
A+BD∗(I −DD∗)−1C B(I −D∗D)−1B∗

−C∗(I −DD∗)−1C −A∗ − C∗(I −DD∗)−1DB∗

]
(16.3)

has only even partial multiplicities at its pure imaginary eigenvalues.

Proof. Let V be as in the proof of Theorem 16.1, and recall that W is contractive
on iR if and only if V is nonnegative on iR. The desired result is now immediate
from the equivalence of statements (ii) and (iii) in Theorem 13.6 combined with
the fact that (16.3) is the Hamiltonian of the equation (16.1). �

Theorem 16.2 has a counterpart in which (16.3) is replaced by the Hamilto-
nian of (16.2).

As a special case of Theorem 16.1 let us consider rational matrix functions
which are contractive not only on the imaginary axis but on the full closed right
half plane.

Theorem 16.3. Let W (λ) = D+C(λIn −A)−1B be a minimal realization of a ra-
tional p×m matrix function. Assume that W is contractive on the imaginary axis,
and let D be a strict contraction. Then the following statements are equivalent:

(i) For each λ in the closed right half plane, λ not a pole of W , the matrix W (λ)
is a contraction;

(ii) The matrix A has all its eigenvalues in the open left half plane;

(iii) There is a positive definite solution of (16.1).

Proof. Suppose A has all its eigenvalues in the open left half plane. Then W (λ) is
analytic in the closed right half plane. As W (λ) is a contraction for each λ ∈ iR
and at infinity, the maximum modulus theorem implies W (λ) is contractive for all
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λ in the open right half plane as well. Thus (ii) implies (i). Conversely, suppose (i)
holds. Then W must be analytic in the closed right half plane (infinity included),
and by minimality of the realization the matrix A has all its eigenvalues in the
open left half plane. The equivalence of (ii) and (iii) follows by rewriting (16.1) as

AP + PA∗ = RR∗,

where Q = −P and R =
[

B (PC∗ +BD∗)(I −DD∗)−1/2
]
. Since the realiza-

tion is minimal, (A, B) is a controllable pair, and hence the same holds true for
the pair (A, R). But then we can apply a well-known inertia theorem (see, e.g.,
Theorem 13.1.4 in [107]) to show that (ii) and (iii) are equivalent. �

16.2 Strictly contractive rational matrix functions

In this section we specify further the results of the previous section for the case of
rational matrix functions W that are strictly contractive on the imaginary axis.
By this we mean that ‖W (λ)‖ < 1 for λ ∈ iR. Such a function does not have a
pole on iR and is proper.

Theorem 16.4. Let W (λ) = D+C(λIn−A)−1B be a realization of a p×m rational
matrix function W . Assume A has no pure imaginary eigenvalues, D is a strict
contraction, and the pair (C, A) is observable. Then the following statements are
equivalent:

(i) The function W is strictly contractive on the imaginary axis;

(ii) Equation (16.1) has an iR-stabilizing solution P , that is, it has a solution
P such that −A∗ − C∗(I − DD∗)−1DB∗ − C∗(I − DD∗)−1CP has all its
eigenvalues in the open left half plane;

(iii) The matrix T given by (16.3) has no pure imaginary eigenvalues.

Moreover, if one of the above conditions is satisfied, then the iR-stabilizing solution
P in (ii) is unique and Hermitian.

Proof. Suppose W is strictly contractive on iR. Then the rational m×m matrix
function V (λ) = I−W (λ)W (−λ̄)∗ is positive definite on iR and V (∞) = I−DD∗

is positive definite too. In particular, V is biproper and V has no pole or zero on
iR. Recall (see the proof of Theorem 16.1) that

V (λ) = I −DD∗ +
[

C DB∗
](

λ−
[

A BB∗

0 −A∗

])−1 [ −BD∗

C∗

]
.

The associate main matrix of this realization is T given by (16.3). It follows that
T has no eigenvalues on iR. So (iii) holds. Conversely, if T has no pure imaginary
eigenvalues, then V has no poles or zeros on iR. As V (∞) is positive definite, it fol-
lows that V (λ) is positive definite for λ ∈ iR. Hence W (∞) is strictly contractive
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for λ ∈ iR. We have now proved the equivalence of (i) and (iii). The equivalence of
(ii) and (iii) is a direct consequence of Theorem 13.3. Note here that the observ-
ability of the pair (C, A) is equivalent to the controllability of (A∗, C∗), and the
latter implies the stabilizabilty of (A∗, C∗). The final statement of the theorem is
covered by Theorem 13.3 as well. �
Corollary 16.5. Let (C, A) be an observable pair, and assume that A has no pure
imaginary eigenvalue. Then the Riccati equation

Y C∗CY − Y A∗ −AY = 0

has a unique Hermitian solution Y such that A−Y C∗C has all its eigenvalues in
the open right half plane.

Proof. Apply Theorem 16.4 with D = 0 and B = 0. Then D is a strict contraction
and W is identically equal to zero. In particular, (i) in Theorem 16.4 is satisfied.
Next, note that with D = 0 and B = 0 equation (16.1) reduces to

−AP − PA∗ − PC∗CP = 0,

and by Theorem 16.4, with D = 0 andB = 0, this equation has a unique Hermitian
solution P such that −A∗−C∗CP has all its eigenvalues in the open left half plane.
But then A− Y C∗C has all its eigenvalues in the open right half plane. Now put
Y = −P , then we see that Y has all the desired properties. �

16.3 An application to spectral factorization

In this section we consider functions of the form

V (λ) = I −W (−λ̄)∗W (λ), (16.4)

where W is a proper rational p×m matrix function which is strictly contractive
on the imaginary axis. In fact we shall assume that W is strictly proper , that is
W vanishes at infinity. Thus V is positive definite on the imaginary axis and has
a positive definite value at infinity (namely Im). Hence W admits a right spectral
factorization. Using a minimal realization of W , such a factorization is constructed
in the following theorem.

Theorem 16.6. Let W (λ) = C(λIn−A)−1B be a minimal realization of the p×m
rational matrix function W which is strictly contractive on the imaginary axis.
Then the Riccati equations

XBB∗X −XA−A∗X + C∗C = 0, (16.5)

Y C∗CY − Y A∗ −AY = 0, (16.6)

have Hermitian solutions X and Y , respectively, such that the matrices A−BB∗X
and A−Y C∗C have all their eigenvalues in the open right half plane, and In−XY
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is invertible (or, which amounts to the same, In−Y X is invertible). Furthermore,
with respect to the imaginary axis, the function V (λ) = Im−W (−λ̄)∗W (λ) admits
the right spectral factorization V (λ) = L+(−λ̄)∗L+(λ) with L+ and its inverse L−1+
being given by

L+(λ) = I +B∗X(In − Y X)−1(λIn −A+ Y C∗C)−1B, (16.7)

L−1+ (λ) = I −B∗X(λIn −A+BB∗X)−1(In − Y X)−1B. (16.8)

Proof. By Corollary 16.5, the equation (16.6) has a Hermitian solution Y such
that A−Y C∗C has all its eigenvalues in the open right half plane. Next, we apply
Theorem 16.4 to

W̃ (λ) = W (−λ̄)∗ = −B∗(λ+A∗)−1C∗.

Notice that W̃ (λ) = −B∗(λ + A∗)−1C∗ satisfies the general hypotheses of Theo-
rem 16.4. Furthermore, W̃ is strictly contractive on iR and its value at infinity is
zero. In particular, item (i) in Theorem 16.4 is satisfied. Hence item (iii) is satisfied
as well, i.e., the matrix T of (16.3) has no pure-imaginary eigenvalues.

Now consider the function V (λ) = I−W (−λ̄)∗W (λ) which has the realization

V (λ) = I +
[

B∗ 0
](

λ−
[ −A∗ C∗C

0 A

])−1 [ 0

B

]
. (16.9)

Put

Â =

[ −A∗ C∗C

0 A

]
, Â× =

[ −A∗ C∗C

−B∗B A

]
.

Since W is contractive on the imaginary axis, the function W has no pure imagi-
nary poles. According to our assumptions the given realization of W is minimal.
This implies that A has no eigenvalue on iR. But then we can use the triangular
form of Â to show that the same holds true for the matrix Â. Since V is positive
definite on the imaginary axis, we know that V (λ) is invertible for each λ ∈ iR.
But then Theorem 2.4 gives that Â× has no pure imaginary eigenvalues either.
(Alternatively, this may be seen from the fact that T and Â× are similar.)

Let M− be the spectral subspace of the matrix Â with respect to the open
left half plane, and let M×

+ be the spectral subspace of Â× with respect to the
open right half plane. Observe that V is positive definite on the imaginary axis
and has a positive definite value at infinity, namely Im. This suggests the use of
Theorem 9.4 to show that C2n = M−+̇ M×

+ . For this a skew-Hermitian H must
be identified with the properties required in Theorem 9.4. This can be done along
the lines indicated in the proof of Theorem 13.1. So indeed C2n = M−+̇M×

+ . The
fact that Y is Hermitian and the eigenvalues of A∗ −C∗CY are in the open right
half plane implies that σ(A − Y C∗C) ∩ σ(−A∗ + C∗CY ) = ∅. Hence Proposition
12.1 gives that the spectral subspace M− is given by M− = Im

[
I Y

]∗.
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Now M×
+ is an H-Lagrangian invariant subspace for Â× by Theorem 11.5.

From Theorem 13.6 we see that there is a Hermitian solution X of (16.5) such
that M×

+ = Im
[
X I

]∗. Moreover, A− BB∗X and the restriction of Â× to M×
+

have the same eigenvalues. Thus, the eigenvalues of A − BB∗X are in the open
right half plane. As C2n = M−+̇M×

+ , the invertibility of I − XY follows from
Lemma 12.4.

Finally, we apply Theorem 12.3 to show that V admits the factorization
V (λ) = V1(λ)V2(λ), where

V1(λ) = I −B∗(λ+A∗ − C∗CY )−1(I −XY )−1XB∗,

V2(λ) = I +B∗X(I − Y X)−1(λ−A+ Y C∗C)−1B,

V −11 (λ) = I +B∗(I −XY )−1(λ+A∗ −XBB∗)−1XB,

V −12 (λ) = I −B∗X(λ−A+BB∗X)−1(I − Y X)−1B.

Clearly, V2 = L+ and V −12 = L−1+ with L+ and L−1+ being given by (16.7) and
(16.7), respectively. Furthermore, taking into account that X and Y are Hermitian,

L+(−λ̄)∗ = V2(−λ̄)∗

= I +B(−λ−A∗ + CC∗Y )−1(I −XY )−1XB = V1(λ).

Thus we have V (λ) = L+(−λ̄)∗L+(λ), and from the location of the eigenvalues of
A− Y C∗C and A−BB∗X we see that this is a right spectral factorization. �

16.4 An application to canonical factorization

Consider a function of the form

V (λ) = Im + C(λIn −A)−1B, (16.10)

where W (λ) = C(λIn −A)−1B is strictly contractive on the real line. By this we
mean that the values of W on R are strict contractions, and this implies that W
has no pole on the real line. Hence the latter holds true for V too. It follows also
that V takes invertible values on the real line, i.e., V has no zero there.

Now assume for the moment that (16.10) is a minimal realization for W .
Since V has neither a pole nor a zero on the real line, the minimality of the
realization implies that the matrices A and A× = A−BC have no real eigenvalues.
Furthermore, since the function W̃ (λ) = C(iλIn − A)−1B is strictly contractive
on the imaginary axis, we can apply Theorem 16.1(ii) to establish the existence of
a Hermitian matrix X for which

iXA− iA∗X +XBB∗X + C∗C = 0. (16.11)



308 Chapter 16. Contractive rational matrix functions

Finally, because of the minimality (see the remark in the paragraph after the proof
of Theorem 16.1), such a matrix X is invertible.

Summarizing, if (16.10) is a minimal realization and the matrix function
W (λ) = C(λIn − A)−1B is strictly contractive for real λ, then both A and A×

have no real eigenvalues and there exists a Hermitian invertible matrix X solving
(16.11). The next theorem describes canonical factorizations of a function of the
form (16.10) in terms of a realization having the properties just described.

Theorem 16.7. Let V (λ) = Im + C(λIn − A)−1B be a realization of an m × m
rational matrix function such that A and A× = A−BC have no real eigenvalues,
and assume that there exists a Hermitian invertible X satisfying (16.11), i.e.,

iXA− iA∗X +XBB∗X + C∗C = 0.

Let M− and M+ be the spectral subspaces of A associated with the parts of σ(A)
lying in the open lower and open upper half plane, respectively, and let M×

− and
M×
+ be the spectral subspaces of A× associated with the parts of σ(A×) lying in

the open lower and open upper half plane, respectively. Then

Cn = M−+̇M×
+ , Cn = M++̇M×

− . (16.12)

Moreover, V admits both a left and a right canonical factorization with respect to
the real line,

V (λ) = Ṽ+(λ)Ṽ−(λ), V (λ) = V̂−(λ)V̂+(λ),

with the factors being given by

Ṽ+(λ) = Im + C(λIn −A)−1(In −Πl)B,

Ṽ−(λ) = Im + CΠl(λIn −A)−1B,

V̂−(λ) = In + C(λIn −A)−1(In −Πr)B,

V̂+(λ) = Im + CΠr(λIn −A)−1B.

Here Πl is the projection along M− onto M×
+ , and Πr is the projection along M+

onto M×
− .

Proof. In view of Theorem 3.2, only (16.12) needs to be proved. We begin the
verification of (16.12) by observing that (16.11) implies

1
2i
(XA−A∗X) =

1
2
(XBB∗X + C∗C), (16.13)

1
2i
(
XA× − (A×)∗X

)
=

1
2
(iXB + C∗)(C − iB∗X). (16.14)

These two identities imply that �〈XAx, x〉 and �〈XA×x, x〉 are nonnegative for
all x ∈ Cn. In other words, both A and A× are X-dissipative, that is, they are



16.5. A generalization to pseudo-canonical factorization 309

dissipative in the indefinite inner product given by X (cf., Section 11.3). Because of
this property, it follows that M+ and M×

+ are maximal X-nonnegative, while M−
and M×

− are maximal X-nonpositive (see Section 11.3). Using Proposition 11.1 it
follows that dimM+ + dimM×

− = n and dimM− + dimM×
+ = n. Thus (16.12) is

obtained via a dimension argument as soon as we have shown that M+ ∩M×
− =

M− ∩M×
+ = {0}.

Take x ∈ M+ ∩ M×
− . Then 〈Xx, x〉 = 0, as x belongs to both an X-

nonnegative subspace and an X-nonpositive subspace. Now the Cauchy-Schwartz
inequality holds on M+. Thus

|〈XAx, x〉|2 ≤ 〈XAx, Ax〉〈Xx, x〉 = 0,
and

|〈Xx, Ax〉|2 ≤ 〈XAx, Ax〉〈Xx, x〉 = 0.

From (16.13) we get

0 =
1
2i
〈(XA−A∗X)x, x〉 = 1

2
(‖Cx‖2 + ‖B∗Xx‖2).

Hence Cx = 0, and so for x ∈ M+ ∩ M×
− we have A×x = (A − BC)x = Ax.

Consequently M+ ∩M×
− is both A-invariant and A×-invariant. As

σ(A|M+∩M×
−
) ⊂ σ(A|M+ ) ⊂ {λ | �λ > 0},

σ(A×|M+∩M×
−
) ⊂ σ(A×|M×

−
) ⊂ {λ | �λ < 0},

and A|M+∩M×
−
= A×|M+∩M×

−
, we have that M+∩M×

− = {0}. In a similar way one
shows that M− ∩M×

+ = {0}. �
Note that the above theorem together with the arguments given in the first

two paragraphs of this section yield the following corollary.

Corollary 16.8. Let V (λ) = Im + W (λ), where W is a strictly proper rational
matrix function which is strictly contractive on the real line. Then V admits both
a right and a left canonical factorization with respect to the real line.

16.5 A generalization to pseudo-canonical factorization

In this section the result of the previous section is generalized to pseudo-canonical
factorizations. As a preparation we recall from Theorem 11.6 the following facts.
Let X be an n×n invertible Hermitian matrix and let A be an n×n matrix which
is X-dissipative. Then there exist A-invariant subspaces M+ and M− such that
M+ is maximal X-nonnegative and M− is maximal X-nonpositive,

σ(A|M+) ⊂ {λ | �λ ≥ 0}, σ(A|M− ) ⊂ {λ | �λ ≤ 0},
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M+ contains the spectral subspace of A corresponding to the eigenvalues of A in
the open upper half plane, and M− contains the spectral subspace of A corre-
sponding to the eigenvalues of A in the open lower half plane.

These facts allow us to deal with rational matrix functions that are contrac-
tive on the real line. A rational matrix function W is called contractive on the real
line if the values that W takes on R are contractive matrices. Such a function does
not have a pole on the real line.

Theorem 16.9. Let W be a strictly proper rational m×m matrix function which
is contractive on the real line. Then V (λ) = Im +W (λ) admits both a right and a
left pseudo-canonical factorization with respect to the real line. Such factorizations
can be obtained as follows. Let W (λ) = C(λIn −A)−1B be a minimal realization.
Then there exists an invertible Hermitian matrix X satisfying

iXA− iA∗X +XBB∗X + C∗C = 0. (16.15)

Let M− and M×
− be maximal X-nonpositive subspaces that are invariant under A

and A×, respectively, such that

σ(A|M−) ⊂ {λ | �λ ≤ 0}, σ(A×|M×
−
) ⊂ {λ | �λ ≤ 0},

and let M+ and M×
+ be maximal X-nonnegative subspaces that are invariant under

A and A×, respectively, such that

σ(A|M+ ) ⊂ {λ | �λ ≥ 0}, σ(A×|M×
+
) ⊂ {λ | �λ ≥ 0}.

Then (16.12) holds, that is Cn = M−+̇M×
+ and Cn = M++̇M×

− . Let Πl be the
projection along M− onto M×

+ , and put

Ṽ+(λ) = Im + C(λIn −A)−1(In −Πl)B,

Ṽ−(λ) = Im + CΠl(λIn −A)−1B.

Then V (λ) = Ṽ+(λ)Ṽ−(λ) is a left pseudo-canonical factorization with respect to
the real line. Write Πr for the projection along M+ onto M×

− , and set

V̂−(λ) = Im + C(λ−A)−1(In −Πr)B,

V̂+(λ) = Im + CΠr(λIn −A)−1B.

Then V (λ) = V̂−(λ)V̂+(λ) is a right pseudo-canonical factorization with respect to
the real line .

Proof. By applying Theorem 16.1 (ii) to W (λ) = C(iλIn − A)−1B we see that
there is an invertible Hermitian X such that (16.15) holds. Once (16.12) is proved
the rest of the theorem is a consequence of Theorem 8.5. Of the two equalities in
(16.12) only the first will be proved, the second can be established analogously.
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As M+ is maximal X-nonnegative and M×
− is maximal X-nonpositive we

have dimM+ + dimM×
− = n, by Proposition 11.1. So it remains to show that

M+∩M×
− = {0}. Take x ∈M+∩M×

− . As in the proof of Theorem 16.7, one shows
that Cx = 0, and thus Ax = A×x. Obviously, it follows from this that M+ ∩M×

−
is A-invariant and contained in KerC. Because of the minimality, we can conclude
that M+ ∩M×

− = {0}. �

Note that the location of the spectra of the operators A|M− , A×|M×
−

, A|M+

and A×|M×
+
do not play a role in the proof of the identities in (16.12). Thus we

also have the following result.

Proposition 16.10. Let V (λ) = Im+C(λIn−A)−1B be a minimal realization, and
let X be an invertible Hermitian solution of (16.15). Let M be any A-invariant
maximal X-nonnegative subspace, and let M× be any A×-invariant maximal X-
nonpositive subspace. Then Cn = M +̇M×. Let Π be the projection along M onto
M×, and write

V1(λ) = Im + C(λIn −A)−1(I −Π)B,

V2(λ) = Im + CΠ(λIn −A)−1B.

Then V (λ) = V1(λ)V2(λ) is a minimal factorization.

A similar result holds for any A-invariant maximal X-nonpositive subspace
M and any A×-invariant maximal X-nonnegative subspace M×.

Notice that there are various similarities between the proofs of Theorems 16.7
and 16.9 on the one hand and those of Theorems 15.3 and 15.6 on the other hand.
These similarities are not surprising. In fact, the main results of the previous
two sections are closely related to those in Sections 15.2 and 15.3 of the previous
chapter. To see this we use the Cayley transformation

F (λ) =
(
I −W (λ)

)(
I +W (λ)

)−1
. (16.16)

Here are the details.
Let W be a strictly proper rational m × m matrix function, and let F be

the rational m×m matrix function given by (16.16). Since W is strictly proper,
I+W (λ) is biproper, and hence F is well-defined. Furthermore, F is biproper and
its value at infinity is equal to Im. The identity

F (λ) + F (λ̄)∗ = 2
(
Im +W (λ̄)∗

)−1(
Im −W (λ̄)∗W (λ)

)(
Im +W (λ)

)−1
shows that F has a nonnegative real part on R if and only if W is contractive on
R. Moreover, F has a positive definite real part on R if and only if W is strictly
contractive on R.
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Assume now that W is given by the realization W (λ) = C(λIn − A)−1B.
Since F (λ) =

(
2Im − (Im + W (λ)

)
(Im + W (λ)

)−1 = 2(Im + W (λ)
)−1 − Im, we

see that F admits the realization

F (λ) = Im − 2C(λIn −A×)−1B, (16.17)

where, as usual, A× = A−BC. Now apply Theorem 15.1 to F using the realization
(16.17). For this case equation (15.3), with X replaced by Y , has the form

−i(A×)∗Y + iY A× − 1
2
(Y B + i2C∗)(B∗Y − 2iC) = 0. (16.18)

Using A× = A−BC and setting Y = −2X , a straightforward computation shows
that (16.18) is equivalent to

iXA− iA∗X +XBB∗X + C∗C = 0, (16.19)

and the latter equation is precisely (16.11). By applying Theorem 15.1 to F and
using the equivalence between (16.18) and (16.19) we obtain the following result.

Proposition 16.11. Let W (λ) = C(λIn −A)−1B, and assume that the pair (A, B)
is controllable. Then W is contractive on the real line if and only if the equation
(16.19) has a Hermitian solution. Moreover, if the given realization is minimal,
then any Hermitian solution of (16.19) is invertible.

The above proposition provides an alternative proof of Theorem 16.1(ii) for
the case when W is square and D = 0. The details involve a transformation λ �→ iλ
(cf., the beginning of the proof of Theorem 16.9).

Notes

The state space characterizations of contractive and strictly contractive rational
matrix functions given in Theorems 16.1, 16.3 and 16.4 are versions of what is
known as the bounded real lemma in mathematical systems theory. These results
play an important role in robust and optimal control theory, see, e.g., the text
books [77] and [150]. The bounded real lemma may also be found in [4] in another
form. The application to spectral factorization (Section 16.3) is classical and can
be found in Chapter 7 in [4]. The result that a function of the form identity plus
a strict contraction admits canonical factorization (Section 16.4) is well-known;
see e.g., [29] and the references given there. A surprising fact is that this property
actually characterizes the circle or the line; for this see [109]. The state space
results given in Sections 16.4 and 16.5 are based on [74].



Chapter 17

J-unitary rational matrix
functions

In this chapter realizations are used to study rational matrix functions of which the
values on the imaginary axis are J-unitary matrices. Solutions to various factor-
ization problems are given. Special attention is paid to factorization of J-unitary
rational matrix functions into J-unitary factors. We also discuss the problem of
embedding a contractive rational matrix function as the (1, 2) block in a unitary
rational matrix function. The latter problem is related to the Darlington synthesis
problem from network theory.

This chapter consists of eight sections. Realization and minimal factorization
of J-unitary rational matrix functions are the main topics of Sections 17.1 and 17.2.
In Section 17.3 the factorization results are specified further for unitary rational
matrix functions. The Redheffer transform, which allows one to relate J-unitary
rational matrix functions to certain classes of unitary rational matrix functions, is
introduced in Section 17.4. This transform is used in Section 17.5 in the study of J-
inner rational matrix functions. A state space analysis of inner-outer factorization
is the main topic of Section 17.6. The final two sections deal with completion
problems. Section 17.7 presents state space formulas for unitary completions of
minimal degree, and Section 17.8 presents such formulas for bi-inner completions
of non-square inner rational matrix functions.

17.1 Realizations of J-unitary rational matrix functions

Throughout this section, J stands for an m×m signature matrix, that is, J is an
invertible Hermitian matrix such that J = J−1. An m×m matrix M is said to be
J-unitary if M∗JM = J . Since all matrices in the latter identity are square and J
is invertible, it follows that a J-unitary matrix M is invertible and M−1 = JM∗J .
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If M is a J-unitary matrix, then M∗ and M−1 are both J-unitary too. Indeed,

MJM∗ = (M∗J)−1M∗ = J−1(M∗)−1M∗ = J−1 = J,

M−1)∗JM−1 = (JM∗J)∗J(JM∗J) = J(MJM∗)J = J.

In this chapter we deal with rational matrix functions of which the values
on the imaginary axis are J-unitary matrices. A rational m×m matrix function
W is called J-unitary on the imaginary axis if it takes J-unitary values on the
imaginary axis. In other words, W is J-unitary with respect to the imaginary axis
whenever

W (λ)∗JW (λ) = J, λ ∈ iR, λ not a pole of W. (17.1)

Equivalently, W is J-unitary with respect to the imaginary axis if and only if

W (−λ̄)∗JW (λ) = J, λ,−λ̄ not a pole of W. (17.2)

In the sequel we shall only consider matrix functions that are J-unitary with
respect to the imaginary axis and not with respect to other contours. Therefore
we shall feel free to omit the phrase “with respect to the imaginary axis.”

Observe that if W is J-unitary, then both the functions W (λ)−1 and W (−λ̄)∗

are J-unitary as well. Furthermore, ifW1 andW2 are two J-unitary rational matrix
functions, their product W1W2 will also be J-unitary.

First we shall characterize the property of being a J-unitary rational matrix
function in terms of realizations. We shall assume throughout that the rational
matrix functions are proper.

Theorem 17.1. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of a
proper rational m×m matrix function. The following statements are equivalent:

(i) W is J-unitary;

(ii) D is J-unitary and there exists an n× n matrix H such that

AH +HA∗ = BJB∗, CH = DJB∗, H = H∗; (17.3)

(iii) D is J-unitary and there exists an n× n matrix G such that

GA+A∗G = C∗JC, GB = C∗JD, G = G∗. (17.4)

In this case the matrices H and G are uniquely determined by the given realization,
they are invertible and G = H−1.

Proof. Assume that W is J-unitary. Taking the limit in (17.1) for λ →∞ we see
that D∗JD = J . Thus D is a J-unitary matrix. In particular, D is invertible,
and hence W is biproper. By (17.2) we have J(W (−λ̄)∗)−1J = W (λ) for all λ for
which λ is not a pole of W and −λ̄ is not a zero of W . Now one computes that

JW (−λ̄)−∗J = JD−∗J + JD−∗B∗
(
λIn − (−A∗ + C∗D−∗B∗)

)−1
C∗D−∗J.
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The fact that the realization is minimal yields, by the state space similarity theo-
rem, the existence of a unique (invertible) n× n matrix H such that

AH = −HA∗ +HC∗D−∗B∗, B = HC∗D−∗J, JD−∗B∗ = CH. (17.5)

Next, take adjoints and use D∗JD = J to see that (17.5) also holds with H∗ in
place of H . By uniqueness it follows that H = H∗. Hence (17.3) holds, and so (i)
implies (ii), even with the additional condition that H is invertible.

Next assume D is J-unitary and there exists an n × n matrix H such that
(17.3) holds. A straightforward computation gives

W (λ)JW (−λ̄)∗ =
(
I + C(λ −A)−1BD−1

)
DJD∗

(
I −D−∗B∗(λ+A∗)−1C∗

)
= J + C(λ −A)−1BJD∗ −DJB∗(λ+A∗)−1C∗

−C(λ−A)−1BJB∗(λ+A∗)−1C∗

= J + C(λ −A)−1HC∗ − CH(λ+A∗)−1C∗

−C(λ−A)−1(H(λ+A∗)− (λ−A)H)(λ +A∗)−1C∗

= J + C(λ −A)−1HC∗ − CH(λ+A∗)−1C∗

−C(λ−A)−1HC∗ + CH(λ+A∗)−1C∗ = J.

Thus the function W (λ)∗ is J-unitary. But then so is W .
We have now proved that (i) and (ii) are equivalent. The equivalence of (i)

and (iii) can be established in the same way. Actually the implication (iii)⇒ (i) can
be obtained directly from (17.4) without having to take recourse to the function
W (λ)∗. As above, (i) implies the stronger version of (iii) with the extra requirement
that G is invertible.

The uniqueness and invertibility of H and G follow from the minimality.
The invertibility can also be proved directly, and in fact from slightly weaker
conditions. Assume (17.3) holds and that the pair (A, B) is controllable. Then H
is invertible. Indeed, assume Hx = 0. Then DJB∗x = CHx = 0, so B∗x = 0.
Hence (AH + HA∗)x = 0 too. With Hx = 0, this gives HA∗x = −AHx = 0. So
KerH ⊂ KerB∗ and A∗[KerH ] ⊂ KerH . Thus KerH ⊂ Ker (B∗|A∗) = {0}. So
H is invertible. Likewise, one shows that if (17.4) is satisfied and the pair (C, A)
is observable, then G is invertible.

Finally, let H be as in (17.3), then (17.4) holds with H−1 in place of G. By
uniqueness it follows that G = H−1. �

In the argument for the implication (ii)⇒ (i) given above, the minimality
of the given realization does not play a role. Similarly the minimality condition
is irrelevant for the implication (iii)⇒ (i). This is also reflected by the following
proposition.
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Proposition 17.2. Let W (λ) = D + C(λIn − A)−1B be a realization of a ratio-
nal m × m matrix function. Assume D is J-unitary, and let H and G be given
Hermitian n× n matrices. Consider the following four statements:

(i) AH +HA∗ = BJB∗, CH = DJB∗;

(ii) AH +HA∗ = HC∗JCH, CH = DJB∗;

(iii) GA+A∗G = C∗JC, GB = C∗JD;

(iv) GA+A∗G = GBJB∗G, GB = C∗JD.

Then (i) and (ii) are equivalent, and so are (iii) and (iv). Each of (i)–(iv) implies
that W is J-unitary. Moreover, if (A, B) is controllable and (i) holds, then all
four statements are equivalent and the realization is minimal. Likewise, if (C, A)
is observable and (iii) holds, then again all four statements are equivalent and the
realization is minimal.

Proof. To see the equivalence of (i) and (ii), use D∗JD = J to see that BJB∗ =
HC∗JCH. In an analogous manner one sees that (iii) and (iv) are equivalent.
For the case when the realization is minimal the fact that (i) and (iii) imply that
W is J-unitary is covered by Theorem 17.1. The general case is proved using the
type of arguments occurring the proof of Theorem 17.1. Now suppose that (A, B)
is controllable, and that (i) holds. In the proof of Theorem 17.1 we have already
shown that this implies that H is invertible. Taking G = H−1 it follows that (iii) is
satisfied, and hence also (iv). Next, we show that in this case (C, A) is observable.
Indeed, by induction one shows that H−1Ker (C|A) ⊂ Ker (B∗|A∗) = {0}. Hence
the realization is minimal. The equivalence of all four statements now follows from
Theorem 17.1. The reasoning for final statement of the theorem is similar. �

The next proposition shows that under certain additional conditions the first
identity in (i) of Proposition 17.2 implies the second identity in (i), and analogously
for (i) replaced by (iii).

Proposition 17.3. Let W (λ) = D+C(λIn−A)−1B be a realization of a J-unitary
rational m ×m matrix function, and let H and G be n × n Hermitian matrices.
The following two statements are true:

(i) If the pair (A, B) is controllable and GA+A∗G = C∗JC, then GB = C∗JD.

(ii) If the pair (C, A) is observable and AH+HA∗ = BJB∗, then CH = DJB∗.

Proof. We only prove the first part of the proposition, the second part can be
established analogously. Assume that W is J-unitary. Computing W (−λ̄)∗JW (λ)
one sees that this is equivalent to

[ −B∗ D∗JC
](

λ−
[ −A∗ C∗JC

0 A

])−1 [
C∗JD

B

]
= 0. (17.6)
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Now assume that GA+A∗G = C∗JC. Using

S =

[
I G

0 I

]
as a similarity transformation in the realization (17.6), we see that (17.6) is equiv-
alent to

[ −B∗ D∗JC − B∗G
](

λ−
[ −A∗ 0

0 A

])−1 [
C∗JD −GB

B

]
= 0.

But this identity, in turn, is equivalent to (D∗JC−B∗G)(λ−A)−1B = 0, λ ∈ ρ(A).
The fact that (A, B) is controllable now implies that GB = C∗JD. �

The Hermitian matrix H in Theorem 17.1(ii), which is uniquely determined
by the conditions stated there, will be called the Hermitian matrix associated with
the minimal realization W (λ) = D + C(λIn − A)−1B. Our next concern is how
the associated Hermitian matrix behaves under similarity transformation on the
realization.

Proposition 17.4. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of
a J-unitary rational m ×m matrix function. Write H for the Hermitian matrix
associated with this realization, and let S be an invertible n× n matrix. Then the
Hermitian matrix associated with the minimal realization

W (λ) = D + CS−1(λIn − SAS−1)−1SB (17.7)

is given by SHS∗.

Proof. For the (minimal) realization (17.7), the matrix SHS∗ satisfies the require-
ments of condition (ii) in Theorem 17.1. �

As a consequence of the above proposition the number of positive and the
number of negative eigenvalues of the matrix H do not depend on the particu-
lar choice of the minimal realization of the function W . The number of positive
eigenvalues of H will be denoted by π+(W ). At the end of this section, in Propo-
sition 17.10, it will be seen how to express π+(W ) completely in terms of W itself
rather than in terms of the associated Hermitian matrix H .

The next two propositions describe how the associated Hermitian matrix
behaves under the operations of inversion, taking adjoints, and multiplication.

Proposition 17.5. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of
a J-unitary rational m ×m matrix function. Write H for the Hermitian matrix
associated with this realization and, as usual, A× for the matrix A−BD−1C. Then
the Hermitian matrices associated with the minimal realizations

W (λ)−1 = D−1 −D−1C(λIn −A×)−1BD−1,

W (−λ̄)∗ = D∗ − B∗(λIn +A∗)−1C∗,
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are −H and −H−1, respectively.

Proof. For the first realization, use (17.3) and observe that

A×(−H) + (−H)(A×)∗ = −AH −HA∗ +BD−1CH +HC∗D−∗B∗

= −BJB∗ +BD−1DJB∗ +BJD∗D−∗B∗

= BJB∗ = (BD−1)J(D−∗B∗),

and −D−1C(−H) = D−1CH = JB∗ = D−1J(BD−1)∗. The claim for the second
realization is straightforward from the fact that in Theorem 17.1, the matrix G is
the inverse of H . �

Proposition 17.6. For j = 1, 2, let Wj(λ) = Dj+Cj(λInj −Aj)−1Bj be a minimal
realization of a J-unitary rational m×m matrix function Wj having as the Hermi-
tian matrix associated to it Hj. Suppose W = W1, W2 is a minimal factorization.
Then W is a J-unitary rational matrix function,

W (λ) = D1D2 +
[

C1 D1C2

](
λIn1+n2 −

[
A1 B1C2

0 A2

])−1 [
B1D2

B2

]

is a minimal realization of W , and the associated Hermitian matrix is the block
diagonal matrix diag (H1, H2).

Proof. Applying (17.3) to both realizations, using also D2JD∗2 = J , one sees that[
H1 0

0 H2

][
A∗1 0

C∗2B
∗
1 A∗2

]
+

[
A1 B1C2

0 A2

] [
H1 0

0 H2

]

=

[
B1JB∗1 B1C2H2

H2C
∗
2B

∗
1 B2JB∗2

]
=

[
B1D2

B2

]
J
[
D∗2B

∗
1 B∗2

]
.

So the first equality in (17.3) is satisfied for the product realization. Also,

[
C1 D1C2

] [H1 0

0 H2

]
=
[
C1H1 D1C2H2

]

=
[
D1JB∗1 D1D2JB∗2

]
= (D1D2)J

[
D∗2B∗1 B∗2

]
,

and this proves the second equality of (17.3) for the product realization. �

Next, we present a few examples. As before, J stands for an m×m signature
matrix.
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Example 17.7. Let R be an m×m matrix such that R∗JR = JR, and let ω /∈ iR.
Then the rational m×m matrix function W given by

W (λ) = Im −R+
λ− ω

λ+ ω̄
R

is J-unitary. To be more specific, let u be a vector in Cm such that u∗Ju =
〈Ju, u〉 	= 0, and take for R the rank 1 matrix

R =
1

u∗Ju
Juu∗.

Then R∗JR = JR = R∗J = (u∗Ju)−1uu∗. (Note here that uu∗ is a rank 1 matrix,
while u∗Ju is just a scalar.) A minimal realization for W for this particular choice
of R may be obtained by setting

A = −ω̄, B = u∗, C = − (ω + ω̄)
u∗Ju

.

The associated Hermitian matrix satisfies AH+HA∗ = BJB∗, which in this case
becomes −(ω + ω̄)H = u∗Ju. So H = −(u∗Ju)(2�ω)−1.
Example 17.8. Let α ∈ iR, n ∈ N, and let x ∈ Cm be a J-neutral vector, i.e.,
x∗Jx = 0. Then

W (λ) = Im +
i

(λ− α)2n
Jxx∗

is J-unitary. A minimal realization for W can be obtained by setting A = J2n(α),
the Jordan block of size 2n with eigenvalue α, and

C = i
[
Jx 0 · · · 0

]
, B =

⎡⎢⎢⎢⎣
0
...
0
x∗

⎤⎥⎥⎥⎦ ,

where C is an m×2n matrix and B is a 2n×m matrix. The associated Hermitian
matrix can be computed to be the following matrix:

H = [hp q]
2n
p,q=1 , hp q =

{
0 if p+ q 	= 2n+ 1,

(−1)qi if p+ q = 2n+ 1.

We conclude this section with a few remarks on matrix-valued kernel func-
tions and their state space representations. Introduce the functions

KW (λ, μ) =
J −W (λ)JW (μ)∗

λ+ μ̄
,

K∗,W (μ, λ) =
J −W (μ)∗JW (λ)

λ+ μ̄
.

Here W is a rational m×m matrix function. Furthermore, λ and μ are complex
numbers, not poles of W , λ 	= −μ.
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Lemma 17.9. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of a
J-unitary rational matrix function having H as its associated Hermitian matrix.
Then the following two identities hold:

KW (λ, μ) = −C(λ−A)−1H−1(μ̄−A∗)−1C∗, (17.8)

K∗,W (μ, λ) = −B∗(μ̄−A∗)−1H−1(λ −A)−1B. (17.9)

Proof. We shall only prove (17.9); identity (17.8) can be obtained in an analogous
fashion. First note that

W (μ)∗JW (λ) =
(
D∗ +B∗(μ̄−A∗)−1C∗

)
J
(
D + C(λ−A)−1B

)
= D∗JD +B∗(μ̄−A∗)−1C∗JD +D∗JC(λ −A)−1B

+B∗(μ̄−A∗)−1C∗JC(λ− A)−1B.

Now use the identities D∗JD = J, C∗JD = HB and C∗JC = H−1A + A∗H−1

which hold by Theorem 17.1. Then one sees that

W (μ)∗JW (λ) = J + (λ+ μ̄)B∗(μ̄−A∗)−1H−1(λ−A)−1B.

From this (17.9) is immediate. �
The kernel function KW (λ, μ) is said to have κ negative squares if for each

r ∈ N and any collection of points ω1, . . . , ωr in the complex plane, not poles of
W , and any collection of vectors u1, . . . , ur in Cm the r × r Hermitian matrix[

u∗jKW (ωj , ωi)ui

]r
i,j=1

(17.10)

has at most κ negative eigenvalues, and it has exactly κ negative eigenvalues for
at least one choice of r, ω1, . . . , ωr and u1, . . . , ur. For K∗,W (μ, λ), the definition
is of course similar.

Proposition 17.10. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of
a J-unitary rational m ×m matrix function, and let H be the Hermitian matrix
associated with this realization. Then the number of negative squares of each of the
functions KW and K∗,W is equal to π+(W ), the number of positive eigenvalues of
the matrix H.

This result corroborates the already established fact that the integer π+(W )
is independent of the particular minimal realization of W (cf., the paragraph after
the proof of Proposition 17.4).

Proof. It follows from the previous lemma that K∗,W has at most π+(W ) negative
squares. Indeed, if ω1, . . . , ωr is a collection of points in the complex plane, not
poles of W , and u1, . . . , ur is a collection of vectors in Cm, then the r×r Hermitian
matrix (17.10) can be written in the form −E∗H−1E, where H is the Hermitian
matrix associated with the given realization of W .
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Next, consider

M = span {(λ−A)−1Bu | u ∈ Cm, λ ∈ C not an eigenvalue of A}.
Clearly, for u ∈ Cm and λ not an eigenvalue of A, the vector λ(λ−A)−1Bu belongs
to M . Since M is closed in Cn, this implies that

Bu = lim
λ→∞

λ(λ −A)−1Bu ∈ M, u ∈ Cm.

Thus ImB ⊂ M . Next, note that A(λ −A)−1Bu = −Bu+ λ(λ − A)−1Bu ∈ M .
Hence M is invariant under A. But then Im (A|B) ⊂ M . By hypothesis, the given
realization of W is minimal. This implies that Im (A|B) = Cn. We conclude that
M = Cn. The latter implies that Cn has a basis x1, . . . , xn such that for each j
the vector xj is of the form xj = (λi − A)−1Buj for some vector uj ∈ Cm and
some ωj ∈ C. Consider the n × n matrix X = [ x1 · · · xn ]. We obtain that for
these uj and ωi we have[

u∗jK∗,W (ωj , ωi)ui

]n
i,j=1

= −X∗H−1X.

AsX is invertible, this matrix has exactly π+(W ) negative eigenvalues. This settles
the matter for K∗,W ; for KW the argument is similar. �

17.2 Factorization of J-unitary rational matrix

functions

In this section minimal factorizations of J-unitary rational matrix functions into
a product of two J-unitary rational matrix functions will be studied. Here, as in
the previous section, J is an m×m signature matrix. To state the main theorem
we need to recall a notion introduced in Section 11.1. Let H = H∗ be an invertible
n×n matrix. A subspaceM ⊂ Cn is called H-nondegenerate ifM∩ [HM ]⊥ = {0}.
For such a subspace one hasM+̇ [HM ]⊥ = Cn, as a simple dimension count shows.
Also note that (HM)⊥ = H−1[M⊥].

Theorem 17.11. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of
a J-unitary rational m ×m matrix function, and let H be the Hermitian matrix
associated with this realization. Let M be an A-invariant H−1-nondegenerate sub-
space, and denote by Π the projection of Cn onto H [M⊥] along M . Let D = D1D2

be a factorization of D into two J-unitary constant matrices, and put

W1(λ) = D1 + C(λIn −A)−1(I −Π)BD−12 ,

W2(λ) = D2 +D−11 CΠ(λIn −A)−1B.

Then W = W1W2, this factorization is minimal, and the factors W1 and W2

are J-unitary. Conversely, any minimal factorization W = W1W2 with J-unitary
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factors W1 and W2 is obtained in this way. Moreover, given a fixed factorization
D = D1D2, the correspondence between minimal factorizations of W with two
J-unitary factors and H-nondegenerate invariant subspaces of A is one-to-one.

Proof. From (17.3) we know that A× = −HA∗H−1, where A× = A−BD−1C. It
follows that H [M⊥[ is A×-invariant because M is A-invariant. Since the subspace
M is H−1-nondegenerate, the projection Π is a supporting projection. Hence the
factorization W = W1W2 is a minimal one. To complete the proof of the first
part of the theorem it remains to show that the factors W1 and W2 are J-unitary
rational matrix functions. In fact, it suffices to show that one of them is J-unitary,
the J-unitarity of the other one then follows automatically. Since Π is a supporting
projection we know that a minimal realization,

W1(λ) = D1 + C1(λ−A1)−1B1,

of W1 is obtained by taking

A1 = τM
∗AτM : M →M,

B1 = τM
∗(I −Π)BD−12 : Cm →M,

C1 = CτM : M → Cm.

Here τM is the canonical embedding of M into Cn, and hence τM
∗τM is the

orthogonal projection of Cn onto M . Put G1 = τM
∗H−1τM . Then G1 is invertible.

Indeed, suppose G1x = 0 for some x ∈ M . Then H−1x ∈ Ker τM
∗ = M⊥, i.e.,

x ∈ H(M⊥). So x ∈M ∩H(M⊥) = {0}.
Next, we shall show that the conditions of Theorem 17.1 (iii) are satisfied.

First, note that

(G1A1 +A∗1G1) = τM
∗H−1τMτM

∗AτM + τM
∗AτMτM

∗H−1τM

= τM
∗(H−1A+A∗H−1)τM

= τM
∗C∗JCτM

∗ = C∗1JC1.

Furthermore, we have

G1B1 = τM
∗H−1τMτM

∗(I −Π)BD−12 = τM
∗H−1(I −Π)BD−12 .

Now, as M is H−1-nondegenerate, ImH−1Π = M⊥ and H−1[M ]⊥ = H [M⊥] =
ImΠ. This yields 〈H−1Πx, y〉 = 〈H−1Πx,Πy〉 = 〈Πx, H−1Πy〉 = 〈x, H−1Πy〉.
Hence Π∗H−1 = H−1Π, that is, the projection Π is H−1-selfadjoint. Therefore
H−1(I − Π) = (I − Π∗)H−1. Moreover, as (I − Π)τM = τM we have the identity
τM

∗(I −Π∗) = τM
∗. Thus

G1B1 = τM
∗H−1(I −Π)BD−12

= τM
∗(I −Π∗)H−1BD−12

= τM
∗H−1BD−12 = τM

∗C∗JD1 = C∗1JD1.
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Hence the conditions of Theorem 17.1 (iii) are satisfied, and thus W1 is J-unitary.
The converse statement is a direct consequence of Proposition 17.6 and The-

orem 8.5. �

As a special case of the preceding theorem we state the following proposition
concerning the case where one of the factors is of degree 1.

Proposition 17.12. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of
a J-unitary rational m ×m matrix function, and let H be the Hermitian matrix
associated with this realization. Suppose x is an eigenvector of A corresponding
to the eigenvalue ω of A, and assume 〈H−1x, x〉 	= 0. Then W admits a minimal
factorization W = W1W2 into two J-unitary factors where the factor W1 is given
by

W1(λ) = Im +
1

(λ− ω)〈H−1x, x〉 Cxx∗C∗J . (17.11)

Furthermore, in case ω /∈ iR the scalar x∗C∗JCx is non-zero and

W1(λ) = Im − 1
x∗C∗JCx

(
1− λ+ ω̄

λ− ω

)
Cxx∗C∗J. (17.12)

Observe that the factor W1 is of the form as given in Example 17.7

Proof. As 〈H−1x, x〉 	= 0, the subspace M = span {x} is H−1-nondegenerate.
Therefore we can apply the previous theorem. The projection I −Π is given by

(I −Π)v =
〈H−1v, x〉
〈H−1x, x〉x =

x∗H−1v
x∗H−1x

x.

Taking D1 = I and D2 = D one obtains

W1(λ) = I + C(λ−A|M )−1(I −Π)BD−1

= I +
Cxx∗H−1BD−1

(λ− ω)〈H−1x, x〉

= I +
Cxx∗C∗J

(λ− ω)〈H−1x, x〉 .

This proves (17.11).
Next we apply (17.4) in the present setting. Recall that G = H−1. It follows

that x∗C∗JCx = (ω+ ω̄)x∗H−1x. Thus, when ω /∈ iR or, equivalently, ω+ ω̄ 	= 0,

x∗C∗JCx 	= 0, 〈H−1x, x〉 = x∗C∗JCx

ω + ω̄
.

Employing this in (17.11) immediately yields (17.12). �
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17.3 Factorization of unitary rational matrix functions

In this section we shall consider the special case of rational matrix functions that
are unitary on the imaginary axis, that is, we continue the theme of the previous
section with J = I. For simplicity, we call such functions unitary rational matrix
functions and omit the additional qualifier “on the imaginary axis.”

Let W be a unitary rational matrix function. Then W is bounded by 1 on
the imaginary axis, and hence W cannot have pure imaginary poles. Since W−1

is also a unitary rational matrix function, W cannot have pure imaginary zeros
either. Replacing λ by λ−1 one also sees that W has to be biproper.

Lemma 17.13. Let W (λ) = D+C(λ−A)−1B be a minimal realization of a unitary
rational m×m matrix function, and let H be the Hermitian matrix associated with
this realization. Then A has no pure imaginary eigenvalues. Let P be the spectral
projection of A corresponding to the part of σ(A) lying in the open right half plane.
Then ImP is maximal H−1-positive and KerP is maximal H−1-negative.

Proof. Since the realization is minimal and W has no poles on the imaginary axis,
the matrix A has no pure imaginary eigenvalues. By Theorem 17.1 with G = H−1

we have GA + A∗G = C∗C. Because of the minimality of the realization we
also know that the pair (C, A) is observable. Let us denote by ν(G) the number
of negative eigenvalues of G, and by π(G) the number of positive eigenvalues
of G. By a well-known inertia theorem (see Theorem 13.1.4 in [107]) we have
ν(G) = dimKerP and π(G) = dim ImP .

Now put M = ImP , let τM be the canonical embedding of M into Cn,
and introduce AM = τM

∗AτM , GM = τM
∗GτM and CM = CτM . Then GM is

Hermitian, and (using the fact that M is invariant under A) we have

GMAM +A∗MGM = τM
∗GτMτM

∗AτM + τM
∗A∗τMτM

∗GτM

= τM
∗(GA+A∗G)τM = τM

∗C∗CτM = C∗MCM .

The invariance of M under A also implies that Ker (CM |AM ) ⊂ Ker (C|A), and
hence (CM , AM ) is an observable pair too. Moreover, AM has only eigenvalues in
the open right half plane. The inertia theorem referred to above then gives that
GM is positive definite. But this is equivalent to saying that ImP is H−1-positive.
As π(H−1) = dim ImP , it is actually maximal H−1-positive. The other part of
the proposition is proved in a similar way. �

Observe that an H−1-positive subspace is in particular H−1-nondegenerate .
Likewise, an H−1-negative subspace is H−1-nondegenerate. So we are in a position
to apply Theorem 17.11. This yields the following two results of which we shall
only prove the second.

Theorem 17.14. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of a
unitary rational m × m matrix function (so, in particular, D is invertible), and
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let A× = A−BD−1C be the associate main operator. Then W admits a minimal
factorization W = W1W2 having the following additional properties:

(i) W1 has its poles in the left half plane and its zeros in the right half plane,

(ii) W2 has its poles in the right half plane and its zeros in the left half plane,

(iii) δ(W1) = n− π+(W ) and δ(W2) = π+(W ).

Such a factorization can be obtained as follows. Let P denote the spectral projection
corresponding to the part of σ(A) lying in the open left half plane, and write P×

for the spectral projection of A× corresponding to the part of σ(A×) lying in the
open right half plane. Then Cn = ImP +̇ KerP× and the functions

W1(λ) = Im + C(λIn −A)−1(In −Π)BD−1, (17.13)

W2(λ) = D + CΠ(λIn −A)−1B,

meet the requirements. Here Π is the projection of Cn along ImP onto KerP×.

Theorem 17.15. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of a
unitary rational m × m matrix function (so, in particular, D is invertible), and
let A× = A−BD−1C be the associate main operator. Then W admits a minimal
factorization W = W1W2 having the following additional properties:

(i) W1 has its poles in the right half plane and its zeros in the left half plane,

(ii) W2 has its poles in the left half plane and its zeros in the right half plane,

(iii) δ(W1) = π+(W ) and δ(W2) = n− π+(W ).

Such a factorization can be obtained as follows. Let P denote the spectral projection
corresponding to the part of σ(A) lying in the open right half plane, and write P×

for the spectral projection of A× corresponding to the part of σ(A×) lying in the
open left half plane. Then Cn = ImP +̇ KerP× and the functions

W1(λ) = Im + C(λIn −A)−1(In −Π)BD−1, (17.14)

W2(λ) = D + CΠ(λIn −A)−1B,

meet the requirements. Here Π is the projection of Cn along ImP onto KerP×.

Proof. With Lemma 17.13 in mind, the idea is to apply Theorem 17.11 taking
M = ImP . We need to find H [ImP ]⊥ = Ker (P ∗H−1).

From (17.3) we know that A× = −HA∗H−1, hence P× = −HP ∗H−1. It
follows that H [ImP ]⊥ = ImP×. Let Π be the projection along ImP onto ImP×.
Then, by Theorem 17.11, the function W admits the factorization W = W1W2,
where W1 and W2 are given by (17.14), and these factors are unitary. Moreover,
the factorization is minimal. Finally, the poles of W1 are the eigenvalues of A|ImP

(counting multiplicities), its zeros are the eigenvalues of A×|ImP× (counting mul-
tiplicities too). Similarly, the poles of W2 are the eigenvalues of A|KerP , while the
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zeros of W2 are the eigenvalues of A×|KerP× . So the position of poles and zeros of
W1 and W2 is as required. It also follows that

δ(W1) = dimKerΠ = dim ImP = π+(W ),

and hence by minimality also δ(W2) = n− π+(W ). �

Our next theorem is on complete factorization of a unitary rational matrix
function into unitary factors (cf., Part III in [20]).

Theorem 17.16. Let W be a unitary rational m×m matrix function of McMillan
degree n. Then W admits a minimal factorization into n factors of McMillan
degree 1. Moreover, each of these factors can be taken to be unitary.

In order to prove this theorem we first show that a unitary rational matrix
function allows for a realization with very special properties.

Lemma 17.17. Let W be a unitary rational m × m matrix function with
W (∞) = Im. Then W admits a minimal realization W (λ) = Im+ C(λIn−A)−1B
such that

A =

[
A11 A12

0 A22

]
, (17.15)

where A11 and A22 are upper triangular, A11 has all its eigenvalues in the open
right half plane, A22 has all its eigenvalues in the open left half plane, and the
Hermitian matrix associated with the realization is given by

H =

[
In 0

0 −In

]
. (17.16)

Proof. Take an arbitrary minimal realizationW (λ) = I+C(λ−A)−1B. By Schur’s
theorem there is an orthogonal change of basis such that A is upper triangular. In
fact, we may take the eigenvalues of A on the diagonal in any order we like. This
is known as the ordered Schur form of A. We apply this to construct a similarity
transformation such that A is of the form

A =

[
A11 A12

0 A22

]

where A11 is upper triangular having all its eigenvalues in the open right half
plane, and A22 is upper triangular having all its eigenvalues in the open left half
plane. The spectral projection of A corresponding to its eigenvalues in the open
right half plane is given by

P =

[
I 0

0 0

]
.
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Let H be the Hermitian matrix associated with this realization, and let G be its
inverse. Decompose G in the same way as A, and write

G =

[
G11 G12

G∗12 G22

]
.

Because of Lemma 17.13 we have that ImP is maximal G-positive, and so G11

is positive definite. Likewise, since KerP is maximal G-negative, G22 is negative
definite.

Next, we employ the Schur complement of G11 in G. So we factorize G as

G =

[
I 0

G∗12 I

][
G11 0

0 G22 −G∗12G
−1
11 G12

][
I G−111 G12

0 I

]
.

Since G11 is positive definite and G22 is negative definite, the Schur complement
G22 −G∗12G

−1
11 G12 is negative definite too.

Now take the Cholesky decomposition of G11, that is, write G11 = C∗11C11

with C11 upper triangular. Likewise, take the Cholesky decomposition of the Schur
complement. Thus G22 −G∗12G

−1
11 G12 = −C∗22C22 with C22 upper triangular. Put

S =

[
C−111 −G−111 G12C

−1
22

0 C−122

]
.

Then, using Proposition 17.4, one checks that the realization

W (λ) = I + CS(λ− S−1AS)−1S−1B

has all the desired properties. �

Proof of Theorem 17.16. Without loss of generality we may assume that Whas the
value Im at infinity. Let W (λ) = Im + C(λIn − A)−1B be a minimal realization
as in the previous lemma, and let H be the Hermitian matrix associated with
this realization. In particular, A is upper triangular. For this realization we have
by (17.3) that A× = −HA∗H−1. This is clearly a lower triangular matrix. Now
let e1, . . . , en be the standard basis of Cn. For k = 1, . . . , n, define Πk to be
the orthogonal projection of Cn onto span {ek}. Then for j = 1, . . . , n − 1 the
projection Πj+1 + · · ·+ Πn is a supporting projection for the minimal realization
W (λ) = Im + C(λIn −A)−1B. It then follows from Theorem 10.5 in [20] that W
admits a factorization into n factors of degree 1.

It remains to prove that each of the factors is unitary. Clearly, for each
integer j = 1, . . . , n − 1 the image and kernel of Πj+1 + · · · + Πn are both
H−1-nondegenerate and are each other’s H-orthogonal complements. From Theo-
rem 17.11 it then follows that for each j the products W1 · · ·Wj and Wj+1 · · ·Wn

are unitary. From this one concludes that each Wj separately is unitary. �
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17.4 Intermezzo on the Redheffer transformation

In this section we study the Redheffer transform of a J-unitary rational matrix
function. This will allow us to relate J-unitary rational matrix functions to certain
classes of unitary rational matrix functions. The results obtained will be used in
the next section. All the time, J will be a signature matrix.

The starting point of our considerations is a 2× 2 block matrix

M =

[
M11 M12

M21 M22

]
, (17.17)

with M11 a p×p matrix and M22 a q×q matrix. When M22 is an invertible matrix,
the Redheffer transform Λ of M is defined as follows:

Λ =

[
Λ11 Λ12

Λ21 Λ22

]
=

[
M11 −M12M

−1
22 M21 M12M

−1
22

−M−1
22 M21 M−1

22

]
. (17.18)

We refer to the map M �→ Λ as the Redheffer transformation.
Let J = diag (Ip ,−Iq). The matrix M in (17.17) is said to be J-contractive

if M∗JM ≤ J . The next lemma shows that for such a matrix the requirement
that M22 is invertible is automatically fulfilled. Hence the Redheffer transform of
a J-contractive matrix M with J = diag (Ip ,−Iq) is well-defined.

Lemma 17.18. Let J = diag (Ip ,−Iq). If the matrix M in (17.17) is J-contractive,
then M22 is invertible, the (well-defined) Redheffer transform Λ of M is a con-
traction, and ‖M−1

22 M21‖ < 1. Conversely, if M22 is invertible and the Redheffer
transform Λ of M is a contraction, then M is J-contractive.

Proof. Assume that the matrix M is J-contractive. By considering the (2, 2)-entry
of M∗JM and using M∗JM ≤ J , we see that

M∗
22M22 ≥ Iq +M∗

12M12. (17.19)

Thus M∗
22M22 is positive definite, and hence, because M22 is square, the matrix

M22 is invertible. Multiplying the inequality (17.19) from the left byM−∗
22 and from

the right by M−1
22 , we get Iq −M−∗

22 M∗
12M12M

−1
22 ≥ M−∗

22 M−1
22 . Since M−∗

22 M−1
22

is positive definite, we may conclude that so is Iq −M−∗
22 M∗

12M12M
−1
22 . But this is

equivalent to ‖M−1
22 M21‖ < 1.

Next assume that M22 is invertible and consider the equations[
M11 M12

M21 M22

][
x

y

]
=

[
u

v

]
. (17.20)

Then, as M22 is invertible, these equations are equivalent to[
Λ11 Λ12

Λ21 Λ22

][
x

v

]
=

[
u

y

]
. (17.21)
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Indeed, rewrite (17.20) as M11x+M12y = u and M21x+M22y = v. Solving for y
in the second of these equations, one gets

y = −M−1
22 M21x+M−1

22 v. (17.22)

Inserting this in the first of the two equations above, we obtain

u = (M11 −M12M
−1
22 M21)x+M12M

−1
22 v. (17.23)

Together, (17.22) and (17.23) prove the desired equivalence between (17.20) and
(17.21).

Notice that the condition that the matrix M is J-contractive is equivalent to
the inequality ‖u‖2 − ‖v‖2 ≤ ‖x‖2 − ‖y‖2. Indeed, M∗JM ≤ J is equivalent to

‖u‖2 − ‖v‖2 = 〈J
[
u
v

]
,

[
u
v

]
〉 = 〈JM

[
x
y

]
, M

[
x
y

]
〉 (17.24)

= 〈M∗JM

[
x
y

]
,

[
x
y

]
〉 ≤ 〈J

[
x
y

]
,

[
x
y

]
〉 = ‖x‖2 − ‖y‖2.

Similarly, the condition that the Redheffer transform Λ is a contraction is equiv-
alent to ‖u‖2 + ‖y‖2 ≤ ‖x‖2 + ‖v‖2. But

‖u‖2 − ‖v‖2 ≤ ‖x‖2 − ‖y‖2 ⇐⇒ ‖u‖2 + ‖y‖2 ≤ ‖x‖2 + ‖v‖2.
Thus, as desired, M is J-contractive amounts to the same as M22 is invertible and
Λ is a contraction. �
Corollary 17.19. Let J = diag (Ip ,−Iq), and assume that the matrix M in (17.17)
is J-contractive. Then M∗ is J-contractive too.

Proof. By Lemma 17.18, the fact that M is J-contractive implies that M22 is
invertible and the Redheffer transform Λ of M is a contraction. Since M22 is
invertible, so isM∗

22. Thus the Redheffer transform ofM∗ is well-defined. Moreover,
the Redheffer transform of M∗ is equal to Λ∗. As Λ is a contraction, the same
holds true for Λ∗. But then the converse part of Lemma 17.18 shows that M∗ is
J-contractive too. �
Proposition 17.20. Let J = diag (Ip ,−Iq). The matrix M in (17.17) is J-unitary
if and only if M22 is invertible and the Redheffer transform of M is unitary.

Proof. Since a J-unitary matrix is J-contractive and a unitary matrix is a con-
traction, we see from Lemma 17.18 that without loss of generality we may assume
that the matrix M22 is invertible. This allows us to use the equivalence of the
equations (17.20) and (17.21).

Next, using a calculation as in (17.24), one sees that M is J-contractive if and
only if the equality ‖x‖2 − ‖y‖2 = ‖u‖2 − ‖v‖2 holds. Furthermore, the condition
that Λ is unitary is equivalent to ‖x‖2 + ‖v‖2 = ‖u‖2 + ‖y‖2. But

‖x‖2 − ‖y‖2 = ‖u‖2 − ‖v‖2 ⇐⇒ ‖x‖2 + ‖v‖2 = ‖u‖2 + ‖y‖2.
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Hence M is J-unitary if and only if Λ is unitary. �

Next we pass from matrices to matrix functions. Consider a rational matrix
function W,

W (λ) =

[
W11(λ) W12(λ)

W21(λ) W22(λ)

]
, (17.25)

with W11 a p×p rational matrix function and W22 a q×q rational matrix function.
Assume W22 to be regular, i.e., detW22(λ) 	≡ 0. Thus W−1

22 is a well-defined
rational matrix function. Under these assumptions the Redheffer transform of W
is defined to be the rational matrix function Σ given by

Σ(λ) =

[
Σ11(λ) Σ12(λ)

Σ21(λ) Σ22(λ)

]
(17.26)

=

[
W11(λ) −W12(λ)W22(λ)−1W21(λ) W12(λ)W22(λ)−1

−W22(λ)−1W21(λ) W22(λ)−1

]
.

As before, let J = diag (Ip ,−Iq). If the rational matrix function W is J-unitary
with respect to the imaginary axis, then we know from Proposition 17.20 that the
Redheffer transform Σ is unitary. In particular, it has no pure imaginary poles and
zeros (see the second paragraph of Section 17.3).

The following theorem is the main result of this section.

Theorem 17.21. Let W be a rational matrix function, and let

W (λ) =

[
D1 0

0 D2

]
+

[
C1

C2

]
(λIn −A)−1

[
B1 B2

]
(17.27)

be a realization of W . Assume D2 is invertible, and put A×2 = A − B2D
−1
2 C2.

Then the Redheffer transform Σ of W has the realization

Σ(λ) =

[
D1 0

0 D−12

]
+

[
C1

−D−12 C2

]
(λIn −A×2 )

−1 [ B1 B2D
−1
2

]
, (17.28)

and this realization is minimal if and only if so is the realization (17.28). Moreover,
assuming both realizations (17.27) and (17.28) to be minimal, the following holds.
Let J = diag (Ip ,−Iq) and suppose W is J-unitary on the imaginary axis. If HW

and HΣ denote the Hermitian matrices associated with the realizations (17.27) and
(17.28), respectively, then HW = HΣ.

Proof. Write W in the form (17.25). From Theorem 2.4 we have

W22(λ)−1 = D−12 −D−12 C2(λ −A×2 )
−1B2D

−1
2 ,
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and with the help of this expression one computes

W12(λ)W22(λ)−1 = C1(λ−A)−1B2

(
D−12 −D−12 C2(λ−A×2 )

−1B2D
−1
2

)
= C1(λ−A×2 )

−1B2D
−1
2 ,

W22(λ)−1W21(λ) =
(
D−12 −D−12 C2(λ −A×2 )

−1B2D
−1
2

)
C2(λ −A)−1B1

= D−12 C2(λ−A×2 )
−1B1.

Now W12(λ)W22(λ)−1W21(λ) =
(
C1(λ− A)−1B2

)
W22(λ)−1W21(λ), and hence

W11(λ) −W12(λ)W22(λ)−1W21(λ)

= D1 + C1(λ−A)−1B1 −
(
C1(λ−A)−1B2

)(
D−12 C2(λ−A×2 )

−1B1

)
= D1 + C1(λ−A)−1B1 − C1(λ−A)−1(A−A×2 )(λ−A×)−1B1

= D1 + C1(λ−A×2 )
−1B1.

This proves (17.28).
Next we deal with minimality. Assume the realization (17.27) is minimal. To

prove the minimality of the realization (17.28), assume the realization (17.28) is
not observable. Then

Ker
([

C1

−D−12 C2

]
, A×2

)
	= {0}.

Observe that the subspace on the left-hand side is invariant under A×2 . Hence
there exists an eigenvalue λ0 of A×2 and there is a non-zero vector x such that
A×2 x = λ0x, and C1x = 0, −D−12 C2x = 0. By the definition of A×2 this implies
that Ax = A×2 x−B2D

−1
2 C2x = A×2 x = λ0x. So

Ker
([

C1

C2

]
, A

)
	= {0}.

Hence the realization (17.27) is not observable, which is a contradiction. It follows
that the realization (17.28) is observable. A similar argument proves that the
realization (17.28) is controllable. The reverse implication, minimality of (17.28)
implies minimality of (17.27), is proved in an analogous way.

Now assume both realizations are minimal. It remains to prove the equality
of the corresponding Hermitian matrices. This is seen as follows. According to
Theorem 17.1 the matrix HW is uniquely determined by the four expressions
D∗1D1 = Ip, D∗2D2 = Iq and

AHW +HW A∗ = B1B
∗
1 −B2B

∗
2 ,

[
C1

C2

]
HW =

[
D1B

∗
1

−D2B
∗
2

]
.
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Next, using the same theorem with Ip+q as the signature matrix, we know that
HΣ is uniquely determined by the identities D∗1D1 = Ip, D∗2D2 = Iq and

A×2 HΣ +HΣ(A×2 )
∗ = B1B

∗
1 +B2D

−∗
2 D−12 B∗2 , (17.29)[

C1

−D−12 C2

]
HΣ =

[
D1B

∗
1

D−12 D−∗2 B∗2

]
.

Since D∗2D2 = Iq and A×2 = A − B2C2 = A + B2B
∗
2H

−1
W , we obtain that the

formulas for HΣ are satisfied by HW . Uniqueness of the associated Hermitian
matrix proves then that HW = HΣ. �

We finish this section by returning to the examples of Section 17.1. Consider,
for J = diag (Ip ,−Iq), the function W of Example 17.7. So, taking u =

[
u∗1 u∗2

]∗,
W (λ) = Ip+q +

[−u1
u2

]
(λ + ω̄)−1

[
u∗1 u∗2

] 2�ω

u∗Ju
.

Using Theorem 17.21 one finds, for Redheffer transform Σ of W ,

Σ(λ) = Ip+q − 1
λ− α

2�ω

u∗Ju
uu∗,

where

α = −ω̄ − 2�ω

u∗Ju
‖u2‖2 = −ω̄‖u1‖2 − ω‖u2‖2

u∗Ju
.

For the Example 17.8, things are somewhat more complicated. We use the
realization presented there, writing x =

[
x∗1 x∗2

]∗. The Redheffer transform of

W (λ) = Ip+q +
i

(λ− α)2n

[
x1

−x2

] [
x∗1 x∗2

]
then becomes

Σ(λ) = Ip+q + i
[
x 0 · · · 0

]
(λ−A×2 )

−1

⎡⎢⎢⎢⎣
0
...
0
x∗

⎤⎥⎥⎥⎦ ,

where

A×2 = J2n(α) +

⎡⎢⎢⎢⎣
0 0 · · · 0
...

...
0 0

i‖x2‖2 0 · · · 0

⎤⎥⎥⎥⎦ .
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Since Σ only involves the entry of (λ − A×2 )
−1 in the upper right corner, this

can be computed further. The entry in question is just 1 over the characteristic
polynomial of A×2 , and so

Σ(λ) = Ip+q +
i

(λ− α)2n − i‖x2‖2 xx∗.

17.5 J-inner rational matrix functions

A matrix M is called a J-contraction if M∗JM ≤ J . A rational matrix function
W is called J-inner if W is J-unitary on the imaginary axis and, in addition,
W (λ) is a J-contraction for λ in the open right half plane, λ not a pole of W .
Note that we restrict the attention here to functions that are J-inner relative to
the imaginary axis.

If W is J-inner with J = I, then W is called bi-inner or two-sided inner
(cf., Section 17.6 below). Clearly, if W is bi-inner it cannot have poles in the right
open half plane. Also, if a unitary rational matrix W is analytic on the right half
plane, then by the maximum modulus theorem ‖W (λ)‖ ≤ 1 for �λ > 0, i.e., W is
bi-inner. Thus a unitary rational matrix function W is bi-inner if and only if it is
analytic on the right half plane. Recall from the second paragraph of Section 17.3
that a unitary rational matrix function has no pure imaginary poles or zeros, and
that it is biproper.

The next theorem characterizes the property of being J-inner in terms of a
minimal realization.

Theorem 17.22. Let W (λ) = D + C(λIn − A)−1B be a minimal realization of
a J-unitary rational m ×m matrix function, and let H be the Hermitian matrix
associated with this realization. Then W is J-inner if and only if H is negative
definite.

First we state a result that is of independent interest, and which proves one
direction of Theorem 17.22.

Proposition 17.23. If W is a J-inner rational matrix function, where the signature
matrix J has the form J = diag (Ip ,−Iq), then its Redheffer transform Σ is bi-
inner. If, in addition, W is given by the minimal realization (17.27), then A×2 =
A−B2D

−1
2 C2 has all its eigenvalues in the open left half plane, and the Hermitian

matrix H associated with (17.27) is negative definite.

Proof. The first part of the proposition can be derived from Proposition 17.20 and
Lemma 17.18. For the second part, consider a minimal realization of W written
in the form (17.27) with the partitioning induced by J = diag (Ip ,−Iq). Then we
also have a minimal realization (17.28) of Σ. Since Σ is bi-inner, it is analytic in
the right half plane, and by minimality of the realization this shows that A×2 has
all its eigenvalues in the left half plane.
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It follows from the fact that H satisfies the Lyapunov equation (17.29) and
from minimality that H is negative definite (see Corollary 1 in Section 13.1 in
[107]). �
Proof of Theorem 17.22. Assume H is negative definite. For �λ > 0 we then have

J −W (λ)∗JW (λ) = J − (D∗ +B∗(λ̄−A∗)−1C∗
)
J
(
D + C(λ−A)−1B

)
= J −D∗JD −B∗(λ̄−A∗)−1C∗JD −D∗JC(λ−A)−1B

−B∗(λ̄−A∗)−1C∗JC(λ−A)−1B.

Using the identities D∗JD = J, C∗JD = HB and C∗JC = H−1A + A∗H−1,
which hold by Theorem 17.1, one sees that

J −W (λ)∗JW (λ) = −2(Re λ)B∗(λ̄−A∗)−1H−1(λ−A)−1B ≥ 0.

Hence W is J-inner.
Conversely, if W is J-inner, where J = diag (Ip ,−Iq), then H is negative

definite by Proposition 17.23. So, it remains to show that we can reduce the
general case to the situation where J is of the form J = diag (Ip ,−Iq). To this
end, let T be an invertible matrix such that T ∗JT = J1 = diag (Ip ,−Iq) for some
nonnegative integers p and q. Such a T does exist. Observe that J = T−∗J1T−1,
and since J = J−1, we obtain that J = TJ1T

∗. Consider the matrix function
W1 = T−1WT . Then W1 is J1-inner, and has a minimal realization

W1(λ) = T−1DT + T−1C(λ−A)−1BT.

We claim that H is the Hermitian matrix associated with this minimal realization.
Indeed, using J = TJ1T

∗ we have

AH +HA∗ = BJB∗ = BTJ1T
∗B∗,

T−1CH = T−1DJB∗ = (T−1DT )J1T ∗B∗.

By Theorem 17.1, the matrix H is the Hermitian matrix associated with the given
minimal realization of W1. So we can apply Proposition 17.23 to W1 in order to
conclude that H is negative definite. �

In the next theorem we analyze J-inner functions in terms of a realization
which is not necessarily minimal. As always in this chapter, J stands for a signature
matrix.

Theorem 17.24. Let W (λ) = D + C(λIn − A)−1B be a (possibly non-minimal)
realization of a rational m×m matrix function. Suppose D∗JD = J , and assume
there exists a Hermitian matrix X such that

XA+A∗X = C∗JC, XB = C∗JD, Ker (C|A) ⊂ KerX.

Then W is J-unitary. In that case W is J-inner if and only if X is nonpositive.
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Proof. With respect to the orthogonal decomposition Cn = ImX ⊕KerX write

X =
[

G 0
0 0

]
.

Note that G is invertible and Hermitian. Also, with respect to the decomposition
Cn = ImX ⊕ KerX , write

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
.

Then XB = C∗JD yields

XB =

[
GB1

0

]
=

[
C∗1

C∗2

]
JD.

Since D∗JD = J , we know that D is invertible. Hence JD is invertible, and so
C2 = 0. Now XA+A∗X = C∗JC gives

XA+A∗X =

[
GA11 +A∗11G GA12

A∗12G 0

]
=

[
C∗1JC1 0

0 0

]
.

As G is invertible, one obtains A12 = 0. Therefore

W (λ) = D + C1(λ−A11)−1B1, (17.30)

and for this realization of W we have GA11 +A∗11G = C∗1JC1 and GB1 = C∗1JD.
It is now sufficient to show that (17.30) is minimal. Indeed, the proof can

then be completed by applying Theorems 17.1 and 17.22.
One checks that

KerCAj = KerC1A
j
11 ⊕ KerX, j = 0, 1, 2, . . . .

As Ker (C|A) ⊂ KerX by assumption, we obtain Ker (C1|A11) = {0}. Thus
(C1, A11) is an observable pair. It remains to show that (A11, B1) is control-
lable. For this it suffices to prove that (A×11, B1) is a controllable pair, where
A×11 = A11 − B1D

−1C1. Now A×11 = −G−1A∗11G, while B1 = G−1C∗1JD. So it is
enough to show that (−A∗11, C

∗
1JD) is a controllable pair. But this is equivalent

to (D∗JC1,−A11) being an observable pair. Now D∗J is invertible, and hence

Ker (D∗JC1| −A11) = Ker (C1|A11) = {0},
which completes the proof. �

We finish this section with a theorem on the multiplicative structure of
J-inner rational matrix functions. It states that a J-inner rational matrix function
admits a complete factorization into J-inner factors of McMillan degree 1.
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Theorem 17.25. Let W be a J-inner rational matrix function of McMillan degree n.
Then there are J-inner rational matrix functions W1, . . . , Wn of McMillan degree
1 such that W = W1 · · ·Wn.

Proof. Employing a similar argument as in the proof of Lemma 17.17, taking into
account Theorem 17.22, one can prove that the J-inner rational matrix function
W admits a realization with upper triangular main matrix and having −I as
its associated Hermitian matrix. Following the line of argument of the proof of
Theorem 17.16 one then proves that a J-inner rational matrix function admits
a minimal factorization into n factors of degree 1, and that these factors can be
taken to be J-unitary.

It remains to show that the factors are actually J-inner. Let us consider for
each of the factors a minimal realization of the form

Wj(λ) = Dj +
1

λ− aj
DjJB∗j h−1j Bj .

The Hermitian matrix associated with this realization is denoted by hj ; it is just
a real number in this case (compare Example 17.7). Consider the minimal real-
ization for W resulting from taking the product realization of the above minimal
realizations of the Wi’s. According to Proposition 17.6, the Hermitian matrix H
associated with this product realization is the diagonal matrix with the numbers
h1, . . . , hn on the diagonal. According to Proposition 17.4 and the state space sim-
ilarity theorem, there is an invertible matrix S such that SHS∗ is the Hermitian
matrix associated with the minimal realization of W mentioned in the first para-
graph of this proof. That is, SHS∗ = −I. But this is only possible if all numbers
hi are negative. Then we can apply Theorem 17.22 to conclude that each of the
factors is J-inner. �

17.6 Inner-outer factorization

In this section we consider inner-outer factorization of a possibly non-square p× q
rational matrix function L. First we introduce the necessary terminology.

A p×q rational matrix function V is called inner if V is analytic on the closed
right half plane (including the imaginary axis and infinity) and the values of V on
the imaginary axis are isometries. The latter means that V (λ)∗V (λ) = Ip for each
λ ∈ iR. Since V is assumed to be proper, this identity also holds at infinity. By
the maximum modulus principle, an inner function V satisfies

‖V (λ)‖ ≤ 1, �λ ≥ 0.

Note that for V to be inner, we must have q ≤ p. If q = p , then V is inner if and
only if V is bi-inner (cf., the first two paragraphs of Section 17.5).

A rational square matrix-valued function X is said to be an invertible outer
function if X is analytic on the closed right half plane (infinity included) and
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detX(λ) 	= 0 for �λ ≥ 0 (again with infinity included). Finally, given a p × q
rational matrix function L, we say that a factorization

L(λ) = V (λ)X(λ),

is an inner-outer factorization if V is a p × q inner rational function and X is a
q × q invertible outer rational matrix function.1 Clearly, for such a factorization
to exist L must be analytic in the closed right half plane (infinity included) and
the values of L on iR ∪ {∞} have to be left invertible matrices. As we shall see
(Theorem 17.26 below), these two conditions are not only necessary for L to have
an inner-outer factorization but also sufficient.

Put Φ(λ) = L(−λ̄)∗L(λ). Obviously, if L has an inner-outer factorization
L = V X (suppressing the variable λ), then, since V takes isometric values on the
imaginary axis and at infinity, we have

Φ(λ) = X(−λ̄)∗X(λ),

and this factorization is a left spectral factorization (with respect to iR) of the
rational q × q matrix function Φ. This gives a hint about how to construct an
inner-outer factorization.

Indeed, assume L is analytic in the closed right half plane, infinity included,
and let Φ(λ) = X(−λ̄)∗X(λ) be a left spectral factorization of Φ with respect to
iR. Put V (λ) = L(λ)X(λ)−1. Then V is analytic in the closed right half plane
(infinity included) because both L and X−1 are analytic there. In addition, V
takes isometric values on the imaginary axis. Hence L = V X is an inner-outer
factorization. This leads to the following theorem.

Theorem 17.26. Let L(λ) = D+C(λIn−A)−1B be a realization of a p×q rational
matrix function. Assume A has all its eigenvalues in the open left half plane, L
takes left invertible values on the imaginary axis, and D∗D = Iq. Then L admits
an inner-outer factorization L(λ) = V (λ)X(λ) with the inner factor V and the
invertible outer factor X given by

V (λ) = D +
(
(I −DD∗)C +DB∗P

)(
λIn − (A−BD∗C +BB∗P )

)−1
B,

X(λ) = Iq + (D∗C −B∗P )(λIn −A)−1B.

Here P is the (unique) Hermitian iR-stabilizing solution of

PBB∗P + P (A−BD∗C) + (A∗ − C∗DB∗)P − C∗(I −DD∗)C = 0,

that is, the solution P = P ∗ for which A−BD∗C +BB∗P has all its eigenvalues
in the open left half plane.

1Note that in our definition of inner-outer factorization, the outer factor is required to be
invertible outer. This restricted version of inner-outer factorization is used throughout the book.
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Proof. Put Φ(λ) = L(−λ̄)∗L(λ). Using D∗D = I and the given realization for L

we compute that Φ is given by the realization Φ(λ) = I + Ĉ(λ− Â)−1B̂, where

Â =

[ −A∗ C∗C

0 A

]
, B̂ =

[
C∗D

B

]
, Ĉ =

[ −B∗ D∗C
]
. (17.31)

Since L has left invertible values on the imaginary axis (that is, has full
column rank there), Φ takes positive definite values on the imaginary axis. Thus
we know from Section 9.2 that Φ admits a left spectral factorization with respect
to iR. It follows that an inner-outer factorization does exist under the assumptions
of the theorem.

To find the spectral factorization in concrete form, we proceed as in the proof
of Theorem 13.1. In other words we apply Theorem 12.5 with the data given by
(17.31). The same argument as in the proof of Theorem 13.1 gives that the Riccati
equation featured in the theorem has a Hermitian stabilizing solution P . Now use
P to define X(λ) by the expression given in the theorem which is the analogue
of the expression for L−(λ) in Theorem 13.1. With the function X obtained this
way, we have the left spectral factorization Φ(λ) = X(−λ̄)∗X(λ).

It remains to compute V (λ) = L(λ)X(λ)−1. Note that

X−1(λ) = I − (D∗C −B∗P )
(
λ− (A−BD∗C +BB∗P )

)−1
B.

From A−BD∗C + BB∗P = A−B(D∗C −B∗P ), we now obtain

(λ−A)−1BX(λ)−1 =
(
λ− (A−BD∗C +BB∗P )

)−1
B.

Using the latter identity it is straightforward to deduce the formula for V given
in the theorem. �

The following corollary will be useful in the final chapter of the book.

Corollary 17.27. Let L(λ) = D+C(λIn−A)−1B be a realization of a p×q rational
matrix function. Assume A has all its eigenvalues in the open left half plane, L
takes left invertible values on the imaginary axis, and D∗D = Iq. Then there is
a q × p rational matrix function L	(λ) which has no poles on the imaginary line
including infinity, such that L	(iω)L(iω) = Iq , ω ∈ R.

Proof. Let L(λ) = V (λ)X(λ) be an inner-outer factorization of L and take L	(λ) =
X(λ)−1V (−λ)∗. �

Next we consider the dual problem of outer-co-inner factorization. A possibly
non-square rational matrix function V is called co-inner if V is analytic on the
closed right half plane (including infinity), and takes co-isometric values on the
imaginary axis. In other words, V is co-inner if Ṽ is inner, where Ṽ (λ) = V (λ̄)∗.
Note that for V to be co-inner, we must have p ≤ q.
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A factorization
L(λ) = X(λ)V (λ),

where X is invertible outer and V is co-inner is called an outer-co-inner factor-
ization.2 Obviously, in that case Φ(λ) = L(λ)L(−λ̄)∗ = X(λ)X(−λ̄)∗ is a right
spectral factorization with respect to iR, and conversely. Using a duality argument
we obtain the following counterpart to Theorem 17.26.

Theorem 17.28. Let L(λ) = D+C(λ−A)−1B be a realization of a p× q rational
matrix function. Assume A has all its eigenvalues in the open left half plane, L(iω)
is right invertible for each ω ∈ R, and DD∗ = I. Then L admits an outer-co-inner
factorization

L(λ) = X(λ)V (λ),

with the co-inner factor and the invertible outer factor being given by

V (λ) = D + C
(
λIn − (A−BD∗C +QC∗C)

)−1(
B(I −D∗D) +QC∗D

)
,

X(λ) = Ip + C(λIn −A)−1(BD∗ −QC∗).

Here Q is the (unique) Hermitian iR-stabilizing solution

QC∗CQ+ (A−BD∗C)Q+Q(A∗ − C∗DB∗)−B(I −D∗D)B∗ = 0,

that is, the solution Q = Q∗ for which A−BD∗C +QC∗C has all its eigenvalues
in the open left half plane.

Proof. Let L̃(λ) = D∗+B∗(λ−A∗)−1C∗, and apply Theorem 17.26 to L̃. Note that
A∗ also has all its eigenvalues in the open left half plane. So, applying Theorem
17.26 to L̃ yields a factorization L̃(λ) = Ṽ (λ)X̃(λ), where Ṽ is inner and X̃ is
invertible outer. Then V (λ) = Ṽ (λ̄)∗ is co-inner and X(λ) = X̃(λ̄)∗ is invertible
outer. So L(λ) = X(λ)V (λ) is an outer-co-inner factorization of L. Theorem 17.26
also gives formulas for the factors Ṽ and X̃. Those for V and X are now obtained
from the expressions V (λ) = Ṽ (λ̄)∗ and X(λ) = X̃(λ̄)∗. �

17.7 Unitary completions of minimal degree

In this section we deal with the following completion problem. Given a strictly
proper rational m× p matrix function W , having contractive values on the imag-
inary axis, find an (m + p) × (m + p) rational matrix function U having unitary
values on the imaginary axis, such that

U(λ) =

[
U11(λ) W (λ)

U21(λ) U22(λ)

]
. (17.32)

2Note that in our definition of outer-co-inner factorization, the outer factor is required to be
invertible outer (cf., footnote 1).



340 Chapter 17. J-unitary rational matrix functions

In other words, we want to find a unitary rational matrix function U such that
W is embedded as a (right upper) corner in U . Moreover, we wish to find such
a U which has the same McMillan degree as W . We shall normalize U so that
U(∞) = Im+p.

This problem can be treated for the more general case of a proper W (see
[75]). However, for sake of simplicity we shall confine ourselves to the strictly
proper case. The following theorem describes all possible solutions.

Theorem 17.29. Let W (λ) = C(λIn−A)−1B be a minimal realization of an m×p
strictly proper rational matrix function W which is contractive on the imaginary
axis. Then the set of all unitary rational (m + p) × (m + p) matrix functions
U of the form (17.32) with U(∞) = Im+p and δ(U) = δ(W ) is in one-to-one
correspondence with the set of Hermitian solutions of the algebraic Riccati equation

XC∗CX −AX −XA∗ +BB∗ = 0. (17.33)

Moreover, these Hermitian solutions X are invertible, and the one-to-one corre-
spondence referred to above is given by

U(λ) =

[
Im 0

0 Ip

]
+

[
C

B∗X−1

]
(λIn −A)−1

[
XC∗ B

]
. (17.34)

Proof. Suppose U is a unitary rational matrix function with W as its right upper
corner block entry, U(∞) = Im+p and δ(U) = δ(W ). The McMillan degree of
W is n, the size of the main matrix in the given minimal realization W (λ) =
C(λIn −A)−1B of W . Hence δ(U) = n, and U has a realization of the type

U(λ) =

[
Im 0

0 Ip

]
+

[
Ĉ1

Ĉ2

]
(λIn − Â)−1

[
B̂1 B̂2

]
.

Clearly W (λ) = Ĉ1(λIn− Â)−1B̂2 is realization of W . Comparing this realization
with the given one, and using the state space similarity theorem for minimal real-
izations, we see that there exists an invertible n×n matrix with Â = S−1AS, B̂2 =
S−1B and Ĉ1 = CS. Introducing C2 = Ĉ2S

−1 and B1 = SB1, we get

U(λ) =

[
Im 0

0 Ip

]
+

[
C

C2

]
(λIn −A)−1

[
B1 B

]
, (17.35)

and this realization of U is a minimal one.
Since U is unitary, there is a Hermitian X such that

AX +XA∗ =
[
B1 B

] [B∗1
B∗

]
,

[
C

C2

]
X =

[
B∗1

B∗

]
. (17.36)
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In particular, we have B∗1 = CX . Inserting B∗1 = CX into the first part of (17.36)
we obtain (17.33). Moreover, X is invertible by minimality of the realization of U
(see Theorem 17.1), and so C2 = B∗X−1, which yields (17.34).

Conversely, suppose that X is a Hermitian solution of (17.33). By minimality
of the realization of W we have that X is invertible. The argument is as follows.
Suppose Xx = 0. Then (17.33) gives x∗BB∗x = 0, hence B∗x = 0. Again using
(17.33) we get XA∗x = 0, and we see that KerX ⊂ Ker (B∗|A∗) = {0}. Let U be
given by (17.34). Then, by Theorem 17.1, the rational matrix function U is unitary.
Obviously, W is the right upper corner block entry of U and δ(U) = δ(W ), and
U(∞) = Im+p.

To show that the correspondence between Hermitian solutions X of (17.33)
and the set of all unitary rational matrix functions U of the form (17.32) with
U(∞) = I and δ(U) = δ(W ) is one-to-one we argue as follows. We have seen in
the previous part of the theorem that any such U is necessarily of the form (17.34)
for some Hermitian solution of (17.33). Assume that for two solutions X1 and
X2 the functions U1 and U2 given by (17.34) with these solutions in place of X
coincide. Then, from (17.36) it is seen that

A(X1 −X2) + (X1 −X2)A∗ = 0,

[
C

C2

]
(X1 −X2) = 0.

Hence Im (X1−X2) is A-invariant, and it is also contained in KerC. This implies
that Im (X1 −X2) ⊂ Ker (C|A) = {0}. Thus X1 = X2. �

17.8 Bi-inner completions of inner functions

Our aim in this section is to complete a possibly non-square inner function to a
(square) bi-inner one. It is convenient to begin with two propositions. With the
notation used in the first proposition we anticipate Theorem 17.32 below.

Proposition 17.30. Let V (λ) = D̃ + C(λIn − A)−1B̃ be a realization of a p × q
rational matrix function, and assume

D̃∗D̃ = Iq , σ(A) ⊂ Cleft, Y B̃ = C∗D̃, (17.37)

where Y is the unique (Hermitian) solution of the Lyapunov equation

Y A+A∗Y = C∗C. (17.38)

Then V is inner. Conversely, if V is inner, the given realization of V is minimal,
and Y is the unique (Hermitian) solution of the Lyapunov equation (17.38), then
(17.37) is satisfied.

Since A has all its eigenvalues in the open left half plane, equation (17.38)
has a unique solution Y , and this solution is given by

Y = −
∫ ∞
0

etA∗C∗CetA dt. (17.39)
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From this representation one sees that the matrix Y is generally negative semidef-
inite, and that it has the stronger property of being negative definite when the
realization V (λ) = D̃+C(λIn−A)−1B̃ is minimal (or even just observable). Thus
the above result can be viewed as a special case of Theorem 17.24. It is illustrative
to give a direct proof.

Proof. Assume that (17.37) holds with Y as indicated in the theorem. Then D̃ is
an isometry by the first condition in (17.37). Thus p ≥ q. For pure imaginary λ, a
straightforward computation, using (17.37) and (17.38), gives

V (λ)∗V (λ) =
(
D̃∗ + B̃∗(λ̄−A∗)−1C∗

)(
D̃ + C(λ −A)−1B̃

)
= Iq − B̃∗(λ+A∗)−1Y B̃ + B̃∗Y (λ −A−1B̃

−B̃∗(λ+A∗)−1(Y A+A∗Y )(λ− A)−1B̃

= Iq − B̃∗(λ+A∗)−1Y B̃ + B̃∗Y (λ −A)−1B̃

−B̃∗(λ+A∗)−1
(
Y (A− λ) + (A∗ + λ)Y )(λ−A

)−1
B̃ = Iq .

Hence V has isometric values on iR. Since V is analytic in the open right half
plane by the second condition in (17.37), we may conclude that V is inner.

Next, let V be inner and let the realization V (λ) = D̃ +C(λIn −A)−1B̃ be
minimal. Clearly, since V is inner, the first two conditions in (17.37) are satisfied.
Let Y be the unique solution of (17.38). It remains to show that Y B̃ = C∗D̃. This
is done by using the same arguments as used in the proof of Proposition 17.3. �
Proposition 17.31. Let U(λ) = D + C(λIn − A)−1B be a realization of a p × p
rational matrix function. Assume

D∗D = Iq , σ(A) ⊂ Cleft, Y B = C∗D, (17.40)

where Y is the unique (Hermitian) solution of the Lyapunov equation

Y A+A∗Y = C∗C. (17.41)

Then U is bi-inner and the McMillan degree of U is equal to the rank of Y which,
in turn, is equal to dimKer (C|A)⊥.

Proof. The fact that U is bi-inner follows from Proposition 17.30. Since σ(A)
is contained in Cleft, the unique solution Y of (17.41) is given by the integral
representation (17.39), from which we easily obtain KerY = Ker (C|A). Now
consider the decomposition Cn = X1 ⊕ X2, where X1 = Ker (C|A) and X2 is
the orthogonal compliment of X1 in Cn. Thus X1 = KerY and X2 = ImY . In
particular rankY = dimX2. Write A, B, C and Y as block matrices according to
the decomposition Cn = X1 ⊕ X2. Then

A =

[
A1 �

0 A2

]
, B =

[
B1

B2

]
, C =

[
0 C2

]
, Y =

[
0 0

0 Y2

]
, (17.42)
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and U(λ) = D+C2(λIn −A2)−1B2. Since rankY = rankY2 = dimX2, it suffices
to prove that this second realization of U is minimal. From (17.41), the third
identity in (17.40) and the partitioning of A, B, C and Y in (17.42), we see that

Y2A2 +A∗2Y2 = C∗2C2, Y2B2 = C∗2D.

For A×2 = A2 − B2D
−1C2, the associate main matrix of the realization U(λ) =

D + C2(λIn −A2)−1B2, this gives

Y2A
×
2 = Y2A2 − Y2B2D

−1C2 = −A∗2Y2 + C∗2C2 − C∗2DD−1C2 = −A∗2Y2.

Now Y2 is invertible. Thus A×2 and −A∗2 are similar. From the second part of
(17.40) and the partitioning of A in (17.42), we see that σ(A2) ⊂ Cleft. Taking
into account the similarity of A×2 and −A∗2, it follows that σ(A×2 ) ⊂ Cright. In
particular, σ(A2) and σ(A×2 ) are disjoint. But then, by a remark made after the
proof of Theorem 7.6 in [20], the realization U(λ) = D + C2(λIn − A2)−1B2 is
minimal. �

Let V be as in Proposition 17.30, so in particular V is inner. Returning to
the aim of this section, we shall now complete V to a p×p bi-inner rational matrix
function. Before turning to the theorem in question, we make some preparations.

According to the first condition in (17.37) the matrix D̃ is an isometry. Thus
p ≥ q. When p = q, there is nothing to do. Therefore in what follows we take
p > q. The fact that D̃ is an isometry, implies that Ip − D̃D̃∗ is an orthogonal
projection of rank p − q. Thus we can choose a p× (p− q) isometry E such that
Ip − D̃D̃∗ = EE∗. Now note that there exists an n× (p− q) matrix B	 such that

Y B	 = C∗E. (17.43)

Since Y is Hermitian, to prove that equation (17.43) has a solution of the desired
form, it suffices to show that KerY ⊂ KerE∗C. In fact, we have KerY ⊂ KerC.
Indeed, assume that Y x = 0, then we see from (17.38) that x∗C∗Cx = 0, which
is equivalent to Cx = 0.

Theorem 17.32. Let V (λ) = D̃ + C(λIn − A)−1B̃ be a realization of a p × q
rational matrix function satisfying the conditions (17.37), where Y is the unique
(Hermitian) solution of the Lyapunov equation (17.38). Let E be a p × (p − q)
isometry such that Ip− D̃D̃∗ = EE∗, and let B	 be an n× (p− q) matrix solution
of (17.43). Put U(λ) = D + C(λIn − A)−1B, where B and D are the p × p

matrices given by B = [B	 B̃ ] and D = [E D̃ ]. Then U is a p × p bi-inner
completion of V , that is, U is a bi-inner rational p×p matrix function of the form
[V 	(λ) V (λ) ], and the McMillan degree of U is equal to the rank of Y .

The rational p× (p− q) matrix function V 	 can be described explicitly; it is
actually given by the realization V 	(λ) = E + C(λIn −A)−1B	.
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Proof. To prove that U is bi-inner, apply Proposition 17.30 to U with its given
realization. Since (17.38) holds, it suffices to show that Y B = C∗D and D∗D = Ip.
These facts follow from the third identity in (17.37) and the definitions of E and
B	. Indeed, we have

Y B =
[
Y B	 Y B̃

]
=
[
C∗E C∗D̃

]
= C∗D,

DD∗ =
[
E D̃

] [E∗
D̃∗

]
= EE∗ + D̃D̃∗ = Ip,

and, since D is a square matrix, DD∗ = Ip amounts to the same as D∗D = Ip.
The final statement is an immediate corollary of Proposition 17.31. �

Next, we return to the inner-outer factorization discussed in Section 17.6.
The point we focus on here is the completion of the inner factor to a bi-inner
function.

Let L(λ) = D + C(λIn − A)−1B be a realization of a p× q rational matrix
function. Assume A has all its eigenvalues in the open left half plane, L(iω) is
left invertible for each ω ∈ R, and D∗D = Iq. Let L(λ) = V (λ)X(λ) be the
inner-outer factorization constructed in Theorem 17.26, in particular,

V (λ) = D +
(
(I −DD∗)C +DB∗Y

)(
λIn − (A−BD∗C +BB∗Y )

)−1
B,

where Y = Y ∗ satisfies the algebraic Riccati equation

Y BB∗Y + Y (A−BD∗C) + (A∗ − C∗DB∗)Y − C∗(I −DD∗)C = 0,

and A−BD∗C +BB∗Y has all its eigenvalues in the open left half plane. Choose
a p× (p− q) isometry E such that I −DD∗ = EE∗, and let B	 be any n× (p− q)
matrix such that Y B	 = C∗E.

Corollary 17.33. In the situation described in the previous paragraph, introduce

U(λ) =
[
V 	(λ) V (λ)

]
,

where the rational p× (p− q) matrix function V 	 is given by

V 	(λ) = E +
(
(I −DD∗)C +DB∗Y

)(
λIn − (A−BD∗C +BB∗Y )

)−1
B	.

Then U is bi-inner.

Proof. All we need to show is that Theorem 17.32 may be applied with the matrices
A−BD∗C +BB∗Y and (I −DD∗)C +DB∗Y in place of A and C, respectively.
For this we need to verify the identities

(
(I −DD∗)C +DB∗Y

)∗
D = Y B and

Y (A−BD∗C +BB∗Y ) + (A−BD∗C +BB∗Y )∗Y

=
(
(I −DD∗)C +DB∗Y

)∗(
(I −DD∗)C +DB∗Y

)
.

This involves nothing more than a routine computation using that D∗D = I
and that Y = Y ∗ is a solution of the Riccati equation featured in the paragraph
preceding the corollary. �
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Notes

The first three sections are largely based on [3]. The Redheffer transformation
of Section 17.4, which is a standard tool in the analysis of 2 × 2 block matrix
functions, originates from [130]. Theorem 17.22 in Section 17.5 also implies that
if W is a J-inner rational matrix function, then the function K∗,W (μ, λ) has no
negative squares, that is, it is a positive definite kernel, see also Theorem 2.5 in
[39]. Theorem 17.25 in Section 17.5 is a simple case of a more far-reaching theory
concerning the multiplicative structure of general matrix-valued J-inner functions,
which originates from [118]; see also Chapter 4 in [39]. Factorizations in degree 1
factors, of which Theorem 17.25 provides an example, are the main topic of Part
III in [20]. Section 17.6 originates from Section 7.4 in [43]; for the corresponding
state space formulas, see [146]. Section 17.7 is related to the problem of Darlington
synthesis. The latter problem can be found in [4]. The presentation given here is
based on [75]. For further results in this direction, including Darlington embedding
for time-variant systems, see [36] and Chapter 6 in [117]. The result presented in
Section 17.8 may be found in, e.g., Chapter 12 (page 249) in [149].





Part VII
Applications of J-spectral
factorizations

In this part, the state space theory of J-spectral factorization, developed in the
preceding two parts, is used to solve H∞-problems. There are three chapters.
The first chapter (Chapter 18) presents the solution of the Nehari interpolation
problem for rational matrix functions. The second chapter (Chapter 19) reviews
elements from control and mathematical systems theory that play an essential role
in the final chapter. The third and final chapter (Chapter 20) treats H∞-control
problems. Here we use the J-spectral factorization theory to obtain the solutions
of some of the main problems in this area, namely the standard problem, the
one-sided problem, and the full model matching problem.





Chapter 18

Application to the rational
Nehari problem

In this chapter the rational matrix version of the Nehari problem (relative to the
imaginary axis) is solved using a J-spectral factorization approach. The data of
the problem are given in realized form. This together with the state space results
on J-spectral factorization derived in Chapter 14 allows us to solve the prob-
lem and to obtain an explicit linear fractional representation of all its solutions,
again in realized form. The main attention is given to the so-called suboptimal
case. The more general Nehari-Takagi problem is also solved using the J-spectral
factorization method.

This chapter consists of six sections. Section 18.1 presents the problem state-
ment and the main theorem. Section 18.2 deals with the theory of linear fractional
maps. Such maps will play an important role in this and the final chapter. In
Section 18.3 the rational matrix Nehari problem is reduced to a J-spectral factor-
ization of a special kind, and all solutions are described in terms of the coefficients
of the J-spectral factor. This result is used in Section 18.4 to prove the main theo-
rem of Section 18.1. Section 18.5 deals with the Nehari problem for the non-stable
case, when the given function does not necessarily have all its poles in the open
left half plane. Section 18.6, the final section of the chapter, gives the solution of
the rational matrix Nehari-Takagi problem.

18.1 Problem statement and main result

Let R be a rational p × q matrix function which does not have a pole on the
imaginary axis and at infinity. In particular, R is proper. In this section we study
the problem of finding all proper rational p × q matrix functions K such that K
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has all its poles in the open right half plane and

‖K −R‖∞ = sup
s∈iR

‖K(s)−R(s)‖ < γ, (18.1)

where γ is a pre-specified positive number. Note that both R and K are proper
and have no pole on the imaginary axis, and hence the so-called infinity norm
‖K − R ‖∞ is well-defined. We shall refer to this problem as the (suboptimal)
rational Nehari problem for R relative to the imaginary axis with tolerance γ. The
latter qualifier will be omitted when γ = 1. The word “suboptimal” refers to the
fact that we use in (18.1) a strict inequality.

We first deal with the case when R is stable. A rational matrix function is
called iR-stable, or simply stable when no confusion is possible (as will be the case
in this chapter), if all its poles are in the open left half plane. Note that such a
function is proper and has no pole on iR. We shall assume additionally that R is
strictly proper.

To state the main result we start with a realization of R. Since R is stable
and strictly proper, we can choose a realization of R of the form

R(λ) = C(λIn −A)−1B, (18.2)

with the property that A has all its eigenvalues in the open left half plane. Let P
and Q be the unique solutions of the Lyapunov equations

AP + PA∗ = −BB∗, A∗Q+QA = −C∗C, (18.3)

respectively. Note that P and Q are given by

P =
∫ ∞
0

eτABB∗eτA∗ dτ, Q =
∫ ∞
0

eτA∗C∗CeτA dτ.

Hence P and Q are nonnegative Hermitian matrices. One usually refers to P as
the controllability gramian, and to Q as the observability gramian, corresponding
to the realization (18.2). We shall prove the following theorem.

Theorem 18.1. Let R(λ) = C(λIn − A)−1B be a realization of the p × q rational
matrix function R, and assume that A has all its eigenvalues in the open left
half plane. Then the rational Nehari problem for R relative to the imaginary axis
with tolerance γ is solvable if and only if the matrix γ2In −P 1/2QP 1/2 is positive
definite. In that case all solutions of the Nehari problem for R can be obtained in
the following way. Introduce the rational matrix functions

X11(λ) = Ip + CP (λIn +A∗)−1Z−1C∗, (18.4)

X12(λ) = CP (λIn +A∗)−1Z−1QB, (18.5)

X21(λ) = −B∗(λIn +A∗)−1Z−1C∗, (18.6)

X22(λ) = Iq −B∗(λIn +A∗)−1Z−1QB, (18.7)
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where Z = γ2In − QP . Then all solutions K of the rational Nehari problem for
R relative to the imaginary axis are given by

K(λ) = −(X11(λ)H(λ) +X12(λ)
)(

X21(λ)H(λ) +X22(λ)
)−1

, (18.8)

where H is any rational p× q matrix function which has all its poles in the open
right half plane and satisfies ‖H‖∞ < γ. Moreover, there is a one-to-one corre-
spondence between the solution K and the free parameter H.

Before we prove the above theorem (in Section 18.4 below) it will be conve-
nient first to make some preparations. The following lemma restates the necessary
and sufficient condition appearing in Theorem 18.1 in operator language.

Lemma 18.2. Let R(λ) = C(λIn − A)−1B be a realization of the p × q rational
matrix function R, and assume that A has all its eigenvalues in the open left half
plane. Consider the Hankel operator HR generated by R, that is the finite rank
integral operator from Lq

2[0,∞) into Lp
2[0,∞) given by

(HRf)(t) =
∫ ∞
0

CeA(t+τ)Bf(τ) dτ.

Then ‖HR‖ < γ if and only if the matrix γ2In − P 1/2QP 1/2 is positive definite.

Proof. We need the controllability operator Ξ and the observability operator Ω
associated with the realization (18.2). Thus

Ξ : Lq
2[0,∞)→ Cq, Ξf =

∫ ∞
0

eτABf(τ) dτ,

Ω : Cn → Lp
2[0,∞), (Ωx)(t) = CetAx, t > 0.

Clearly P = ΞΞ∗, Q = Ω∗Ω and HR = ΩΞ. Now let λ1(X) denote the largest
eigenvalue of an operator X all of whose non-zero spectrum consists of positive
eigenvalues. Then

‖HR‖2 = λ1(H∗
RHR) = λ1(Ξ∗Ω∗ΩΞ)

= λ1(ΞΞ∗Ω∗Ω) = λ1(PQ) = λ1(P 1/2QP 1/2).

Hence ‖HR‖ < γ if and only if all the eigenvalues of P 1/2QP 1/2 are strictly less
than γ2. Thus ‖HR‖ < γ if and only if γ2I − P 1/2QP 1/2 is positive definite. �

We close the section by showing that, without loss of generality, we may
assume that in Theorem 18.1 the tolerance γ = 1. Indeed, consider for the original
problem R̃(λ) = γ−1R(λ), and K̃(λ) = γ−1K(λ). Then we have ‖R −K‖∞ < γ

if and only if ‖R̃ − K̃‖∞ < 1. Moreover, if R is given by the realization (18.2),
then R̃ admits the realization R̃ = C̃(λ − A)−1B, where C̃ = γ−1C. One easily
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sees that, for solutions P̃ and Q̃ of the corresponding Lyapunov equations (18.3),
one has P̃ = P , Q̃ = γ−2Q. Hence Z̃ = I − P̃ Q̃ = γ−2Z. For the functions Xij(λ)
appearing in Theorem 18.1 we have the following:

X̃11(λ) = Ip + C̃P (λ+A∗)−1Z̃−1C̃∗ = X11(λ),

X̃12(λ) = C̃P (λ+A∗)−1Z̃−1Q̃B = γ−1X21(λ),

X̃21(λ) = −B∗(λ+A∗)−1Z̃−1C̃∗ = γX21(λ),

X̃22(λ) = Iq −B∗(λ+A∗)−1Z̃−1Q̃B = X22(λ).

Suppose that K̃(λ) is a solution to the problem with γ = 1, given by

K̃(λ) = −(X̃11(λ)H̃(λ) + X̃12(λ))(X̃21(λ)H̃(λ) + X̃22(λ))−1,

for some H̃ satisfying ‖H̃‖∞ < 1. Now taking H(λ) = γH̃(λ) we have ‖H‖∞ < γ,
and with K(λ) = γK̃(λ), we obtain that (18.8) holds.

18.2 Intermezzo about linear fractional maps

The expression (18.8), which assigns to the rational matrix function H a rational
matrix function K, is usually called a linear fractional map. Such maps will play
an important role in this and the final chapter. Therefore, we review some of the
main properties of linear fractional maps in this section.

It will be convenient first to introduce some notation and terminology. Given
a p× q rational matrix function F , we write F ∗ for the adjoint of F relative to the
imaginary axis, that is, F ∗(λ) = F (−λ̄)∗. (In engineering literature, including [76],
[43]), this function is often denoted by F∼.) By Rat we shall denote the set of all
rational matrix functions that are proper and have no pole on the imaginary axis
iR, and Ratp×q will stand for the set of all F in Rat that are of size p× q. If F
belongs to Ratp×q, then F ∗ belongs to Ratq×p. Note that Ratp×q is closed under
the usual addition of matrix functions as well as under scalar multiplication. Also
for F ∈ Ratp×q and G ∈ Ratq×r, we have FG ∈ Ratp×r. In particular Ratp×p

is an algebra. The unit element in this algebra is Ep, the p × p matrix function
which is identically equal to the p× p identity matrix Ip.

A function F ∈ Ratp×p is said to be invertible in Ratp×p if F has an inverse
G in Ratp×p, that is, G ∈ Ratp×p and FG = GF = Ep. For a rational p × p
matrix function F such that detF (λ) 	≡ 0, the pointwise inverse F−1, defined
by F−1(λ) = F (λ)−1, is again a rational matrix function. If F ∈ Ratp×p and
detF (λ) 	≡ 0, then F−1 need not be an element of Ratp×p. Indeed, F−1 might
have a pole on the imaginary axis or fail to be proper. In fact, F−1 ∈ Ratp×p if
and only if F is biproper and detF (λ) has no zero on iR, and in that case F−1 is
the inverse of F in the algebra Ratp×p.
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A function F in Ratp×q is analytic on the imaginary axis and at infinity.
Hence we can consider the norm

‖F‖∞ = sup
s∈ iR

‖F (s)‖. (18.9)

This is the usual L∞-norm for bounded matrix functions on iR which we already
used in (18.1). We write F ∈ Ratp×q

B
, whenever F belongs to Ratp×q and its

infinity-norm ‖F‖∞ is strictly less than 1. Thus Ratp×q
B

is the open unit ball
in Ratp×q with respect to the norm defined by (18.9). Note that ‖F‖∞ < 1 is
equivalent to Ip−F (−λ̄)∗F (λ) being positive definite on iR ∪ {∞}. For the latter
property we use the notation Ep − F ∗F > 0.

Now let Θ ∈ Rat(p+q)×(p+q), and let us partition Θ as a 2× 2 block matrix
function in the following way:

Θ(λ) =

[
Θ11(λ) Θ12(λ)

Θ21(λ) Θ22(λ)

]
(18.10)

with Θ11(λ) a p× p matrix and Θ22(λ) a q × q matrix. With this partitioning of
Θ we associate the linear fractional map

(FΘH)(λ) =
(
Θ11(λ)H(λ) + Θ12(λ)

)(
Θ21(λ)H(λ) + Θ22(λ)

)−1
. (18.11)

Here H is assumed to be in Ratp×q. In general, it is not clear for which H the
map is well-defined. However for a J-unitary Θ, with J = diag (Ip , −Iq), we have
the following result.

Theorem 18.3. Let Θ ∈ Rat (p+q)×(p+q) be J-unitary with J = diag (Ip , −Iq).
Then Θ is invertible in Rat(p+q)×(p+q), the maps FΘ and FΘ−1 are well-defined
on Ratp×q

B
and map Ratp×q

B
into itself. Moreover

H = FΘ−1FΘH = FΘFΘ−1H, H ∈ Ratp×q
B

. (18.12)

Proof. We divide the proof into three parts. In the first part it is shown that Θ−1

is in Rat(p+q)×(p+q) and is J-unitary, and also that the maps FΘ and FΘ−1 are
well-defined on Ratp×q

B
. In the second part we prove that FΘ maps Ratp×q

B
into

itself. In the final part the identities in (18.12) will be established.
Part 1. Since Θ is proper and has no pole on iR, the fact that Θ is J-unitary implies
that for each λ ∈ iR ∪ {∞} the matrix Θ(λ) is J-unitary and hence invertible. It
follows that Θ is invertible in Rat(p+q)×(p+q) and that Θ−1 is J-unitary.

The fact that the matrix Θ(λ) is J-unitary for λ ∈ iR ∪ {∞} implies that
Θ22(λ) is invertible and ‖Θ22(λ)−1Θ21(λ)‖ < 1 for λ ∈ iR ∪ {∞} . It follows that
Θ22 is invertible in Ratq×q and that

‖Θ−122 Θ21‖∞ = sup
λ∈R

‖Θ22(λ)−1Θ21(λ)‖ = max
λ∈ iR∪{∞}

‖Θ22(λ)−1Θ21(λ)‖ < 1.
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Next, take H ∈ Ratp×q
B

. Then ‖Θ−122 Θ21H‖∞ ≤ ‖Θ−122 Θ21‖∞‖H‖∞ < 1. Thus
Θ21H+Θ22 = Θ22

(
Θ−122 Θ21H + Eq

)
is invertible in Ratq×q. It follows that FΘH

is well-defined for H ∈ Ratp×q
B

. Since Θ−1 is also J-unitary, FΘ−1 is well-defined
on Ratp×q

B
too.

Part 2. In this part we show that FΘ maps Ratp×q
B

into itself. Take H in Ratp×q
B

,
and write F = FΘH . First note that[

F

Eq

]
=

[
(Θ11H +Θ12)(Θ21H +Θ22)−1

(Θ21H +Θ22)(Θ21H +Θ22)−1

]
= Θ

[
H

Eq

]
X−1, (18.13)

where X = Θ21H +Θ22. The fact that Θ is J-unitary, with J = diag (Ip , −Iq) is
equivalent to the identity

Θ∗
[
Ep 0

0 −Eq

]
Θ =

[
Ep 0

0 −Eq

]
. (18.14)

Hence, using (18.13), we obtain

Eq − F ∗F = − [ F ∗ Eq

] [ Ep 0

0 −Eq

][
F

Eq

]

= −X−∗ [ H∗ Eq

]
Θ∗
[

Ep 0

0 −Eq

]
Θ

[
H

Eq

]
X−1

= −X−∗ [ H∗ Eq

] [ Ep 0

0 −Eq

][
H

Eq

]
X−1

= X−∗(Eq −H∗H
)
X−1.

It follows that Iq − F (−λ̄)∗F (λ) = X(−λ̄)−∗
(
Iq − H(−λ̄)∗H(λ)

)
X(λ)−1. Now

‖H‖∞ < 1. This means that Ip −H(−λ̄)∗H(λ) is positive definite on iR ∪ {∞}.
But then Iq − F (−λ̄)∗F (λ) is also positive definite on iR ∪ {∞}. The latter is
equivalent to ‖F‖∞ < 1. Thus F ∈ Ratp×q

B
, as desired.

From what has been proved so far, we conclude that the result of the previ-
ous steps also hold with Θ−1 instead of Θ. Thus FΘ−1 maps Ratp×q

B
into itself.

Therefore, to complete the proof, it remains to prove the identities in (18.12). In
fact, by interchanging the roles of Θ and Θ−1, it suffices to prove the first identity
in (18.12). This will be done in the next part.
Part 3. Take H ∈ Ratp×q

B
, and put F = FΘH, G = FΘ−1F . From (18.14) we see

that

Θ−1 =

[
Ep 0

0 −Eq

]
Θ∗
[
Ep 0

0 −Eq

]
=

[
Θ∗11 −Θ∗21
−Θ∗12 Θ∗22

]
. (18.15)
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By using (18.13) for Θ as well as for Θ−1, we have[
F

Eq

]
= Θ

[
H

Eq

]
(Θ21H +Θ22)−1,

[
G

Eq

]
= Θ−1

[
F

Eq

]
(−Θ∗12F +Θ∗22)

−1.

Now observe that

−Θ∗12F + Θ∗22 =
[
0 Eq

] [ Θ∗11F −Θ∗21
−Θ∗12F +Θ∗22

]
=
[
0 Eq

]
Θ−1

[
F

Eq

]

=
[
0 Eq

]
Θ−1Θ

[
H

Eq

]
(Θ21H +Θ22)−1

=
[
0 Eq

] [ H

Eq

]
(Θ21H +Θ22)−1 = (Θ21H +Θ22)−1.

In particular, (Θ21H +Θ22)−1(−Θ∗12F +Θ∗22)
−1 = Eq . But then

G =
[

Ep 0
] [ G

Eq

]
=
[

Ep 0
]
Θ−1

[
F

Eq

]
(−Θ∗12F +Θ∗22)

−1

=
[

Ep 0
]
Θ−1Θ

[
H

Eq

]
(Θ21H +Θ22)−1(−Θ∗12F +Θ∗22)

−1

=
[

Ep 0
] [ H

Eq

]
= H,

which proves the first identity in (18.12). �

We are particulary interested in proper rational p× q matrix functions that
are analytic on the closed left half plane with infinity included. The class of these
functions will be denoted by Ratp×q

+ . Since the functions in Ratp×q
+ have no pole

on iR and are proper, Ratp×q
+ is a linear subspace of Ratp×q. We write Ratp×q

+, B

for the set of all F Ratp×q
+ such that (18.9) holds. Thus

Ratp×q
+, B

= Ratp×q
+ ∩ Ratp×q

B
.
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Now, as in Theorem 18.3, let Θ ∈ Rat(p+q)×(p+q) be J-unitary with J =
diag (Ip , −Iq). Fix R ∈ Ratp×q, and consider

V =

[
V11 V12

V21 V22

]
=

[
Θ11 −RΘ21 Θ12 −RΘ22

Θ21 Θ22

]
=

[
Ep −R

0 Eq

]
Θ. (18.16)

Since Θ is invertible in Rat(p+q)×(p+q) by Theorem 18.3, it follows that the same
holds true for V .

Let FV be the linear fractional map defined by V . Since V21 = Θ21 and
V22 = Θ22, we know from Theorem 18.3 that for each function H in Ratp×q

B
the

function V21H + V22 is invertible in Ratq×q. Thus FV is well-defined on Ratp×q
B

.
Moreover, since

V11H + V12 = (Θ11 −RΘ21)H + (Θ12 −RΘ22)

= (Θ11H +Θ12)−R(Θ21H +Θ22),

we see that
FV H = FΘH −R, H ∈ Ratp×q

B
. (18.17)

The fact V22 = Θ22 implies that V22 is invertible inRatq×q . The following theorem
is the second main result of this section.

Theorem 18.4. Let Θ ∈ Rat(p+q)×(p+q) be J-unitary with J = diag (Ip , −Iq),
and let V be given by (18.16), where R ∈ Ratp×q. Then V is invertible in
Rat (p+q)×(p+q), and V22 is invertible in Rat q×q. Assume additionally that

(a) V and V −1 belong to Rat
(p+q)×(p+q)
+ ,

(b) V22 and V −122 belong to Ratq×q
+ .

Then FV is well-defined and one-to-one on Ratp×q
+, B

. Also

FV

[
Ratp×q

+, B

]
=
{
K ∈ Ratp×q

+ | ‖R+K‖∞ < 1
}
. (18.18)

Note that conditions (a) and (b) in the above theorem are not independent.
Indeed, the property that V22 belongs to Ratq×q

+ follows from the fact that V

belongs to Rat
(p+q)×(p+q)
+ .

Proof. The fact that V is invertible in Rat(p+q)×(p+q) and V22 in Ratq×q has al-
ready been proved in the two paragraphs preceding Theorem 18.4. From Theorem
18.3 we know that FΘ is well-defined and one-to-one on Ratp×q

B
. But then we see

from (18.17) that the same holds true for FV . Now recall that Ratp×q
+, B

⊂ Ratp×q
B

.
This allows us to conclude that FV is well-defined and one-to-one on Ratp×q

+, B
. It

remains to show the identity (18.18). This will be done in two parts. The first part
covers the inclusion

FV

[
Ratp×q

+, B

] ⊂ {K ∈ Ratp×q
+ | ‖R+K‖∞ < 1

}
. (18.19)
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The reverse inclusion is proved in the second step.

Part 1. Take H in Ratp×q
+, B

. We first show that FV H belongs to Ratp×q
+ . From

condition (a) we know that V is analytic on the closed left half plane. Hence the
same holds true for the entries Vij , i, j = 1, 2. Now V22 = Θ22 is invertible in
Ratq×q

+ , and so V −122 V21H is analytic on the closed left half plane. Moreover,

‖V −122 V21H‖∞ ≤ ‖V −122 V21‖∞ ‖H‖∞ ≤ ‖Θ−122 Θ21‖∞ ‖H‖∞ < 1.

By the maximum modulus principle, this gives ‖V −122 (λ)V21(λ)H(λ)‖ < 1 for λ in
the closure of Cleft. It follows that V −122 (λ)V21(λ)H(λ) + Iq is invertible for each λ
in the closed left half plane, and that the function

(
V −122 (λ)V21(λ)H(λ) + Iq)−1 is

again analytic on the closed left half plane. Thus V −122 V21H + Eq is invertible in
Ratq×q

+ . By assumption, V22 is invertible in Ratq×q
+ too. Combining these facts

we obtain that V21H + V22 belongs to Ratq×q
+ and is invertible in Ratq×q

+ . But
then FV H belongs to Ratp×q

+ , as desired.
Next, consider K = FV H . Using (18.17), we see that R +K = FΘH . Since

Ratp×q
+, B

is a subset of Ratp×q
B

and FΘ maps Ratp×q
B

into itself (by Theorem 18.3),
we know that R+K belongs to Ratp×q

B
, that is, ‖R+K‖∞ < 1. Thus (18.19) is

proved

Part 2. Take K ∈ Ratp×q
+ , and suppose ‖R + K‖∞ < 1. Since R + K belongs

to Ratp×q
B

, we know from Theorem 18.3 that there exists a unique H in Ratp×q
B

such that FΘH = R + K. In fact, by (18.12), the function in question is H =
FΘ−1(R + K). Furthermore, according to (18.17), the equality FΘH = R + K
yields FV H = K. Note that H has no poles on iR ∪ {∞}. The main difficulty is
to show that H is analytic on the open left half plane Cleft.

From (18.15) and H = FΘ−1(R+K) we know that

H = FΘ−1(R+K) =
(
Θ∗11(R +K)−Θ∗21

)(−Θ∗12(R +K) + Θ∗22
)−1

.

Put
H1 = Θ∗11(R +K)−Θ∗21, H2 = −Θ∗12(R +K) + Θ∗22.

Then H2 is invertible in Ratq×q and H = H1H
−1
2 . Moreover,[

H1

H2

]
= Θ−1

[
R+K

Eq

]
= V −1

[
K

Eq

]
. (18.20)

Since V −1 and K belong to Rat
(p+q)×(p+q)
+ and Ratp×q

+ , respectively, we see
from the second equality in (18.20) that H1 belongs to Ratp×q

+ and H2 belongs
to Ratq×q

+ . In other words, H1 and H2 are analytic in the open left half plane.
Hence, in order to prove that H is analytic on the open left half plane Cleft, it
remains to show H−1

2 is analytic in Cleft.
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Multiplying (18.20) from the left by V we get V21H1 + V22H2 = Eq, hence

V −122 = V −122 (V21H1 + V22H2) = V −122 (V21H + V22)H2 = (V −122 V21H + Eq)H2.

Now introduce the scalar rational functions

f(λ) = detV22(λ)−1,

g(λ) = det
(
V22(λ)−1V21(λ)H(λ) + Iq

)
,

h(λ) = detH2(λ).

Then f = gh. Also f, g and h have no poles or zeros on iR ∪{∞}. This allows us to
use winding number arguments (see Section IV.5 in [32]; also [53], pages 143 and
152). For simplicity we write wn◦(f) for the winding number around the origin of
f , and we use the analogous notation for g and h. Note that wn◦(f) is just equal
to the difference of the number of zeros and number of poles (multiplicities taken
into account) of f in Cleft, and similarly for wn◦(g) and wn◦(h). First observe
that, by condition (b) in our theorem, both V22 and V −122 are analytic in the closed
left half plane. Thus f has no zeros or poles in the closed left half plane, which
implies that wn◦(f) = 0. Since

‖V −122 V21H‖∞ ≤ ‖V −122 V21‖∞‖H‖∞ < 1,

it follows that g is analytic on the closed left half plane and has no zeros in the
closed left half plane. Thus wn◦(g) is also zero. The fact that f = gh implies that
wn◦(f) is the sum of wn◦(g) and wn◦(h). Hence wn◦(h) = 0. We already know
that h is analytic on the closed left half plane. Thus wn◦(h) = 0 tells us that h
has no zeros on the closed left half plane. This implies H2 is analytic on Cleft, and
hence the same holds true for H . �

Next we present a more general version of Theorem 18.4. In this more general
version K ∈ Ratp×q is not supposed to be analytic on the open left half plane
Cleft but K is required to have a prescribed number of poles in Cleft. To state
the result we need the following terminology. Let F ∈ Ratp×q. By the number of
poles of F in the open left half plane, multiplicities taken into account, we mean
the nonnegative integer ∑

λ∈Cleft

δ(F ;λ). (18.21)

Here δ(F ;λ) is the local degree of F at λ defined in the one but last paragraph
of Section 8.2. Since δ(F ;λ) is non-zero if and only if λ is a pole of F , the sum in
(18.21) is finite.

Theorem 18.5. Let Θ ∈ Rat(p+q)×(p+q) be J-unitary with J = diag (Ip , −Iq),
and let V be given by (18.16), where R ∈ Ratp×q. Then V is invertible in
Rat(p+q)×(p+q), and V22 is invertible in Ratq×q. Assume additionally that



18.3. The J-spectral factorization approach 359

(α) V and V −1 belong to Rat
(p+q)×(p+q)
+ ,

(β) V22 belongs to Ratq×q
+ and V −122 has precisely κ poles, multiplicities taken

into account, in Cleft.

Then FV is well-defined and one-to-one on Ratp×q
+, B

. Also

FV

[
Ratp×q

+, B

]
=
{
K ∈ Ratp×q | ‖R+K‖∞ < 1 and K (18.22)

has κ poles in Cleft, multiplicities taken into account
}
.

For κ = 0 the above theorem is just Theorem 18.4. To prove Theorem 18.5
one can use the same line of reasoning as in the proof of Theorem 18.4 above.
However, the winding number argument employed in the final paragraph of the
proof of Theorem 18.4 has to be used in a more sophisticated way. For the details
we refer to the literature; see, e.g., [86] and the references therein.

18.3 The J-spectral factorization approach

In this section we shall exhibit the connection between the rational Nehari problem
and J-spectral factorization. From the final paragraph of Section 18.1 we know
that without loss of generality the tolerance γ can be assumed to be equal to 1.
Therefore, in what follows we take γ = 1.

Let R be a stable rational p × q matrix function. With R we associate the
(p+ q)× (p+ q) matrix function W given by

W (λ) = G(−λ̄)∗JG(λ), (18.23)

where

J =
[

Ip 0
0 −Iq

]
, G(λ) =

[
Ip R(λ)
0 Iq

]
. (18.24)

Note that J is a (p+ q)× (p+ q) signature matrix.
The fact that R is stable implies that G and G−1 are analytic on the closed

right half plane (infinity included), and hence the right-hand side of (18.23) is
a left J-spectral factorization of W relative to iR. In this section we shall show
that the rational Nehari problem for R relative to the imaginary axis is solvable
if and only if W admits a right J-spectral factorization of W relative to iR with
an additional condition on the inverse of the spectral factor.

The first step is given by the next proposition. This proposition, which does
not involve realizations and does not require R to be stable, will also provide one
of the main steps in the proof of Theorem 18.1 which will be given in the next
section.

Proposition 18.6. Let R be a proper rational p × q matrix function, and consider
the factorization W (λ) = G(−λ̄)∗JG(λ), where J and G are defined by (18.24).
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Assume that W admits a right J-spectral factorization with respect to the imagi-
nary axis, W (λ) = L+(−λ̄)∗JL+(λ), with the additional property that the rational
q×q matrix function in the right lower corner of L−1+ (λ) is biproper and its inverse
is analytic on the closed left half plane. Then the rational Nehari problem for R
relative to the imaginary axis is solvable. Moreover, all solutions can be obtained
in the following way. Partition L−1+ (λ) as a 2× 2 block matrix function,

L−1+ (λ) =

[
Y11(λ) Y12(λ)

Y21(λ) Y22(λ)

]
, (18.25)

where Y22(λ) has size q × q. Then all solutions K of the rational Nehari problem
for R relative to the imaginary axis are given by

K(λ) = −(Y11(λ)H(λ) + Y12(λ)
)(

Y21(λ)H(λ) + Y22(λ)
)−1

, (18.26)

where H is any rational p× q matrix function which has all its poles in the open
right half plane and satisfies ‖H‖∞ < 1. Finally, there is a one-to-one correspon-
dence between the solution K and the free parameter H.

Proof. We shall apply the results of the previous section. Put

Θ(λ) =

[
Ip R(λ)

0 Iq

]
L(λ)−1.

Then Θ ∈ Rat(p+q)×(p+q) and Θ is J-unitary on the imaginary axis. Introduce
V (λ) = L−1+ (λ). Then

V =

[
Ep −R

0 Eq

]
Θ,

and thus (18.16) is satisfied. From V = L−1+ and the properties of L+ and L−1+ we
see that V satisfies all conditions necessary to apply Theorem 18.4. Thus

FV

[
Ratp×q

+, B

]
=
{−K ∈ Ratp×q

+ | ‖R−K‖∞ < 1
}
.

This proves that (18.26) indeed describes the set of all solutions of the rational
Nehari problem for R relative to the imaginary axis. Since FV is one-to-one on
Ratp×q

+, B
, by Theorem 18.3, we also obtain the one-to-one correspondence between

the solutions K and the free parameter H . �

In Proposition 18.6 we have thatW admits a J-spectral factorizationW (λ) =
L+(−λ̄)∗JL+(λ) with the additional property that the q × q matrix function in
the right lower corner of L−1+ is biproper and has an analytic inverse on the closed
left half plane. This property, which involves an inverse of a block of the inverse
of L+, can be replaced by the following more simple condition: the p × p matrix
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function in the left upper corner of L+ is biproper and its inverse is analytic in
the closed left half plane. To see this, write

L+(λ) =

⎡⎣ L11(λ) L12(λ)

L21(λ) L22(λ)

⎤⎦ , L−1+ (λ) =

⎡⎣ X11(λ) X12(λ)

X21(λ) X22(λ)

⎤⎦ .

A straightforward Schur complement argument gives that L−111 is analytic in the
closed left half plane if and only if X−1

22 is analytic in the closed left half plane.
Indeed, from Section 2.2 in [20] we have that

X−1
22 (λ) = L22(λ)− L21(λ)L−111 (λ)L12(λ),

L−111 (λ) = X11(λ) −X12(λ)X−1
22 (λ)X21(λ).

This observation will be used in the final chapter to smoothen the phrasing of
several theorems.

18.4 Proof of the main result

Proof of Theorem 18.1. We split the proof into five parts. Throughout this section
we take γ = 1. As has been explained in the final paragraph of Section 18.1, this
can be done without loss of generality. Furthermore, in what follows R is the
strictly proper p× q rational matrix function given by formula (18.2).

Part 1. Let K be a solution of the rational Nehari problem for R relative to the
imaginary axis. Define F to be the p × q rational matrix function on iR given
by F (iλ) = K(iλ) − R(iλ). Note that F is continuous on the imaginary axis,
limλ∈R, |λ|→∞ F (iλ) exists and is equal to a p× q matrix D, say. Furthermore,

‖F‖∞ = sup
λ∈R

‖F (iλ)‖ < 1.

Now, since K is analytic, the Hankel operator generated by F is equal to the
Hankel operator generated by −R, that is, HF = HK−R = HR and ‖HF ‖ < 1
(see, e.g., Section XII.2 in [51]). So ‖HR‖ < 1, and hence, by Lemma 18.2, the
matrix I − P 1/2QP 1/2 is positive definite.

In the remaining Parts 2–5 of the proof it is assumed that I − P 1/2QP 1/2 is pos-
itive definite. We show that under this condition the Nehari problem is solvable
and we derive all its solutions. The main work is done in Parts 3 and 4. Part 2
has a preliminary character, and in Part 5 we finish the proof by applying Propo-
sition 18.6.
Part 2. As a first step we show that I − P 1/2QP 1/2 is positive definite implies
that I − Q1/2PQ1/2 is positive definite too. To see this, we argue as follows.
Introduce T = Q1/2P 1/2. Clearly I − T ∗T is positive definite, and hence T is a
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strict contraction (i.e., ‖T ‖ < 1). But then so is T ∗ = P 1/2Q1/2. Thus, as desired,
I −Q1/2PQ1/2 is positive definite.

Next, put K = Z−1Q, where Z = I − QP while Q and P are the unique
solutions to the Lyapunov equations (18.3). Note that Z is invertible, because the
matrix I − P 1/2QP 1/2 is positive definite. We claim that K is nonnegative and
that the following identity holds:

KA+A∗K = KBB∗K − Z−1C∗CZ−∗. (18.27)

To prove that K is nonnegative , we use

ZQ1/2 = (I −QP )Q1/2 = Q1/2(I −Q1/2PQ1/2).

This yields Z−1Q1/2 = Q1/2(I −Q1/2PQ1/2)−1, and hence

K = Z−1Q = Q1/2(I −Q1/2PQ1/2)−1Q1/2 ≥ 0. (18.28)

To prove (18.27) we first multiply the second identity in (18.3) from the left
by Z−1 and from the right by Z−∗. Using K = Z−1Q = QZ−∗, this yields

KAZ−∗ + Z−1A∗K = −Z−1C∗CZ−∗.

Now observe that

KAZ−∗ = KA(I − PQ)−1 = KA
(
I + P (I −QP )−1Q

)
= KA+KAPZ−1Q = KA+KAPK.

But then, taking advantage of the first identity in (18.3) , we obtain

KAZ−∗ + Z−1A∗K = KA+A∗K +K(AP +A∗P )K

= KA+A∗K −KBB∗K.

Thus

KA+A∗K = KAZ−∗ + Z−1A∗K +KBB∗K

= KBB∗K − Z−1C∗CZ−∗,

which proves (18.27).
Part 3. Put W (λ) = G(−λ̄)∗JG(λ), where J and G are defined by (18.24). It
was already observed that this factorization is a left J-spectral factorization with
respect to iR. In this part we prove that W also admits a right J-spectral fac-
torization with respect to iR. To do this we use that I − P 1/2QP 1/2 is positive
definite and apply Theorem 14.14 with L−(λ) = G(λ).
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Employing the realization (18.2) of R, one gets

L−(λ) =

[
Ip R(λ)

0 Iq

]
=

[
Ip 0

0 Iq

]
+

[
C

0

]
(λ−A)−1

[
0 B

]
.

So, with

Â = A, B̂ =
[
0 B

]
, Ĉ =

[
C

0

]
,

we have L−(λ) = Ip+q + Ĉ(λ − Â)−1B̂, and the associate main matrix of this
realization Â× = Â− B̂Ĉ obviously coincides with the main matrix Â = A.

For the realization considered here we denote by P̂ and Q̂ the solutions of
the equations (14.53) and (14.52), respectively. In other words, P̂ and Q̂ are the
unique solutions of

AP̂ + P̂A∗ = BB∗, A∗Q̂+ Q̂A = C∗C.

So P̂ = −P and Q̂ = −Q. It follows that I − P̂ Q̂ = I − PQ, and therefore (ii)
implies that I−P̂ Q̂ = (I−PQ) = P 1/2(I−P 1/2QP 1/2)P−1/2 is invertible. Hence
I − Q̂P̂ is invertible too.

Thus by Theorem 14.14 the rational (p + q) × (p + q) matrix function W
admits a right J-spectral factorization, W (λ) = L+(−λ̄)∗JL+(λ), with respect to
iR. In fact, for L+ one can take

L+(λ) =

[
Ip 0

0 Iq

]
+

[ −CP

B∗

]
Z−1(λ+A∗)−1

[
C∗ QB

]
, (18.29)

where Z = I − QP . Theorem 14.14 also tells us that for this choice of the right
J-spectral factor L+ we have

L−1+ (λ) =

[
Ip 0

0 Iq

]
−
[ −CP

B∗

]
(λ +A∗)−1Z−1

[
C∗ QB

]
, (18.30)

where, as before, Z = I −QP .
Now partition L−1+ (λ) as

V (λ) = L−1+ (λ) =

[
X11(λ) X12(λ)

X21(λ) X22(λ)

]
, (18.31)

where the block in the right lower corner has size q × q. Comparing (18.30) and
(18.31) we see that the rational matrix functions Xij , i, j = 1, 2, are precisely the
functions given by (18.4)– (18.7).
Part 4. In this part, again assuming I − P 1/2QP 1/2 to be positive definite, we
show that the q × q rational matrix function X22(λ) in the right lower corner of
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the block matrix in (18.31) has precisely the properties which will allow us to
apply Proposition 18.6.

Obviously, X22 is biproper. Since the eigenvalues of A are in the open left
half plane, those of −A∗ are in the open right half plane as well, and hence X22 is
analytic on the closed left half plane. It remains to show that X−1

22 is also analytic
on the closed left half plane. From the expression for X22(λ) we see that

X−1
22 (λ) = I +B∗(λ−A0)−1Z−1QB,

where A0 = −A∗+ Z−1QBB∗ = −A∗+KBB∗, with K as in Part 2 of the present
proof. Thus, in order to show that X−1

22 is analytic on the closed left half plane, it
suffices to show that A0 has all its eigenvalues in the open right half plane.

To determine the location of the eigenvalues of A0 we first prove that

A0K +KA∗0 = KBB∗K + Z−1C∗CZ−∗. (18.32)

This identity follows from (18.27). Indeed, using the definition of A0, we have

A0K = (−A∗ +KBB∗)K = −A∗K +KBB∗K.

But then, using (18.27), we see that

A0K +KA∗0 = −A∗K −KA+ 2KBB∗K = KBB∗K + Z−1C∗CZ−∗,

which proves (18.32).
The identity (18.32) implies that A0 does not have pure imaginary eigenval-

ues. Indeed, suppose A0 has a pure imaginary eigenvalue. Then the same holds
true for A∗0, that is, there is a pure imaginary λ0 and a non-zero vector x such
that A∗0x = λ0x. This implies x∗A0 = −λ0x

∗, and hence x∗(A0K +KA∗0)x = 0.
From (18.32) it then follows that x∗KBB∗Kx = 0. In other words, x∗KB = 0.
Using the definition of A0, we see that

−λ0x
∗ = x∗A0 = −x∗A∗ + x∗KBB∗ = −x∗A∗.

We conclude that A∗ has a pure imaginary eigenvalue which is impossible because
by assumption A (and hence A∗ too) has all its eigenvalues in the open left half
plane. Thus a contradiction has been obtained, and we conclude that A0 has no
pure imaginary eigenvalue.

It remains to show that A0 has no eigenvalues in the open left half plane. If
K would be invertible, then K would be positive definite, and the statement that
A0 has no eigenvalues in the open left half plane would now follow immediately
from A0K + KA∗0 ≥ 0 and the classical Carlson-Schneider inertia theorem (see
Theorem 13.1.3 in [107]). However since K may not be invertible an additional
argument is required, which will be presented in the next two paragraphs.

Let n be the order of the square matrix A. Note that K, Q, and Z are also
square matrices of order n. Put X1 = ImK and X2 = KerK. Since K is selfadjoint,
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we have the orthogonal direct sum decomposition Cn = X1 ⊕ X2. The identity
K = Z−1Q implies that KerQ = KerK. Hence, by selfadjointness, ImQ = ImK.
It follows that relative to the decomposition Cn = X1 ⊕X2 the matrices K and Q
admit the following 2× 2 block matrix representation:

K =

[
K1 0

0 0

]
, Q =

[
Q1 0

0 0

]
,

where both K1 andQ1 are positive definite. Next, we partitionA, B, and C relative
to the decomposition Cn = X1 ⊕X2. This yields

A =

[
A11 0

A21 A22

]
, B =

[
B1

B2

]
, C = [C1 0 ].

Here we used that X2 = KerQ = Ker (C|A), which implies that X2 is A-invariant
and that C is zero on X2. From ZK = Q, we see that Z[ImK] = ImQ, and hence
Z[X1] = X1. Thus. relative to Cn = X1 ⊕X2, the matrix Z partitions as

Z =

[
Z11 Z12

0 Z22

]
,

where both Z11 and Z22 are invertible. Employing the block matrix representations
for K, A and B we compute A0. We have

A0 = −
[
A∗11 A∗21
0 A∗22

]
+

[
K1 0

0 0

][
B1B

∗
1 B1B

∗
2

B2B
∗
1 B2B

∗
2

]
.

Thus A0 has the form

A0 =

[
A0,11 �

0 A0,22

]
,

where A0,11 = −A∗11 +K1B1B
∗
1 and A0,22 = A∗22. Since A has all its eigenvalues

in the open left half plane, the same holds true for A22. Hence A0,22 has all its
eigenvalues in the open right half plane. Thus, in order to prove that A0 has all
its eigenvalues in the open right half plane, it suffices to show that A0,11 has this
property. This will be done in the next paragraph.

Since A0 has no pure imaginary eigenvalue, the same holds true for A0,11.
From (18.32), using the block matrices in the previous paragraph, we see that
A0,11K1+K1A

∗
0,11 ≥ 0. As K1 is positive definite we can now apply the Carlson-

Schneider inertia theorem (i.e., Theorem 13.1.3 in [107]) to show that the inertia
of A0,11 is equal to the inertia of K1. Using again that K1 is positive definite, it
follows that all the eigenvalues of A0,11 are in the open right half plane, as desired.
Part 5. We are now ready to complete the proof. Assume I−P 1/2QP 1/2 is positive
definite. By the previous two parts of the proof, the rational matrix function
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W (λ) = G(−λ̄)∗JG(λ) admits a right J-spectral factorization with respect to the
imaginary axis, written W (λ) = L+(−λ̄)∗JL+(λ), with the additional property
that the q× q matrix function in the right lower corner of L−1+ (λ) is biproper and
its inverse is analytic on the closed left half plane. It was also shown that L−1+ (λ)
partitions as

L−1+ (λ) =

[
X11(λ) X12(λ)

X21(λ) X22(λ)

]
,

where the rational matrix functions Xij , i, j = 1, 2, are precisely the functions
given by (18.4)– (18.7). But then we can apply Proposition 18.6 to get the desired
description of all solutions. �

.

18.5 The case of a non-stable given function

In this section we return to the general case, where the rational p × q matrix
function R is not necessarily stable, i.e., does not necessarily have all its poles in
the open left half plane. Throughout we assume R to be proper and to have no
poles on the imaginary axis. Write R = R− + R+, where R− is a stable rational
p× q matrix function which is strictly proper, and R+ is a proper rational p× q
matrix function which has all its poles in the open right half plane. The required
location of the poles determines R− and R+ uniquely. Recall that we seek proper
rational p× q matrix functions K such that K has all its poles in the open right
half plane and

‖R−K‖∞ = ‖R− − (K −R+)‖∞ < γ. (18.33)

The second term in (18.33) gives us a hint of how to solve the Nehari problem
for R. In fact, from (18.33) we see that K is a solution to the Nehari problem with
tolerance γ for R if and only if K −R+ is a solution to the Nehari problem with
tolerance γ for R−. This remark allows us to extend Theorem 18.1 to the case
when the given function R is non-stable.

To describe the resulting theorem, we shall assume that R− and R+ are given
in the form

R−(λ) = C−(λIn −A−)−1B−, R+(λ) = D + C+(λIn −A+)−1B+, (18.34)

where A− has all its eigenvalues in the open left half plane, and A+ has all its
eigenvalues in the open right half plane. In the situation where the realizations in
(18.34) are minimal, these conditions on the location of the spectra of A− and A+

are automatically fulfilled. Put

P− =
∫ ∞
0

eτA−B−B∗−eτA∗− dτ, Q− =
∫ ∞
0

eτA∗−C∗−C−eτA− dτ. (18.35)

Note that P− and Q− are well-defined because all the eigenvalues of A− are in the
open left half plane. The following theorem is the main result of this section.



18.5. The case of a non-stable given function 367

Theorem 18.7. Let R = R−+R+ with R− and R+ being given by (18.34). Assume
A− and A+ have all their eigenvalues in the open left and open right half plane,
respectively, and let P− and Q− be given by (18.35). Then the rational Nehari
problem for R relative to the imaginary axis with tolerance γ is solvable if and
only if the matrix γ2In − P

1/2
− Q−P

1/2
− is positive definite. In this case the matrix

Z− = γ2In − P−Q− is invertible and all solutions of the Nehari problem un-
der consideration can be obtained in the following way. Introduce rational matrix
functions Yij , i, j = 1, 2, by setting[

Y11(λ) Y12(λ)

Y21(λ) Y22(λ)

]
=

[
Ip −D

0 Iq

]
+

[ −C+ C−P− +DB∗−

0 −B∗−

]
(18.36)

.

(
λI2n −

[
A+ −B+B∗−
0 −A∗−

])−1 [ 0 B+

Z−1− C∗− Z−1− Q−B−

]
.

Then all solutions K to the rational Nehari problem for R relative to the imaginary
axis with tolerance γ are given by

K(λ) = −(Y11(λ)H(λ) + Y12(λ)
)(

Y21(λ)H(λ) + Y22(λ)
)−1

, (18.37)

where H is any rational p× q matrix function which has all its poles in the open
right half plane and satisfies ‖H‖∞ < γ. Moreover, there is a one-to-one corre-
spondence between the solution K and the free parameter H.

Proof. From Theorem 18.1 we know that the Nehari problem with tolerance γ for
R− is solvable if and only if the matrix γ2I − P

1/2
− Q−P

1/2
− is positive definite.

On the other hand, we also know (see the second paragraph of this section) that
the Nehari problem with tolerance γ for R is solvable if and only if the Nehari
problem with tolerance γ for R+ is solvable. These two “if and only if” statements
together yield the first part of the theorem.

Next, assume that the matrix γ2I − P
1/2
− Q−P

1/2
− is positive definite. As we

have already seen, K is a solution to the Nehari problem with tolerance γ for R
if and only if K is of the form K̃ + R+, where K̃ is an arbitrary solution to the
Nehari problem with tolerance γ for R−. By Theorem 18.1, applied to R− in place
of R, the latter solutions are given by

K̃(λ) = −(X11(λ)H(λ) +X12(λ)
)(

X21(λ)H(λ) +X22(λ)
)−1

,

with the coefficients in this linear fractional representation given by

X11(λ) = Ip + C−P−(λ+A∗−)
−1Z−1− C∗−,

X12(λ) = C−P−(λ+A∗−)
−1Z−1− Q−B−,

X21(λ) = −B∗−(λ+A∗−)
−1Z−1− C∗−,

X22(λ) = Iq −B∗−(λ+A∗−)
−1Z−1− Q−B−,
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where Z− = γ2I − P−Q−, which is invertible. It follows that

K(λ) = R+(λ) + K̃(λ)

= R+(λ)−
(
X11(λ)H(λ) +X12(λ)

)(
X21(λ)H(λ) +X22(λ)

)−1
= R+(λ)

(
X21(λ)H(λ) +X22(λ)

)(
X21(λ)H(λ) +X22(λ)

)−1
−(X11(λ)H(λ) +X12(λ)

)(
X21(λ)H(λ) +X22(λ)

)−1
= −

((
X11(λ)−R+(λ)X21(λ)

)
H(λ) +

(
X12(λ) −R+(λ)X22(λ)

))
.
(
X21(λ)H(λ) +X22(λ)

)−1
= −(Y11(λ)H(λ) + Y12(λ)

)(
Y21(λ)H(λ) + Y22(λ)

)−1
,

where H is any rational p× q matrix function having all its poles in the open right
half plane and satisfies ‖H‖∞ < γ. Moreover, the coefficient matrix

Y (λ) =

[
Y11(λ) Y12(λ)

Y21(λ) Y22(λ)

]
is given by

Y (λ) =

[
Ip −R+(λ)

0 Iq

][
X11(λ) X12(λ)

X21(λ) X22(λ)

]
.

Now, using the formulas for Xij , i, j = 1, 2, one gets[
X11(λ) X12(λ)

X21(λ) X22(λ)

]
=

[
Ip 0

0 Iq

]
+

[
C−P−

−B∗−

]
(λ+A∗−)

−1 [Z−1− C∗− Z−1− Q−B−
]
.

Furthermore, employing the realization of R+,[
Ip −R+(λ)

0 Iq

]
=

[
Ip −D

0 Iq

]
+

[−C+

0

]
(λ−A+)−1

[
0 B+

]
.

Taking the product of these realizations (see Theorem 2.5) we reach the conclusion
that the coefficient matrix Y (λ) admits the desired realization (18.36).

The fact that there is one-to-one correspondence between the solution K and
the free parameter H in (18.37) follows directly from the corresponding result in
Theorem 18.1. �

18.6 The Nehari-Takagi problem

In the Nehari-Takagi problem the given function R is the same as in the Nehari
problem. However the solutions K are allowed to come from a wider class. To
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be more more specific, let the rational p × q matrix function R be as in the
first paragraph of Section 18.1. Thus R is proper and does not have a pole on
the imaginary axis. Let κ be a non-negative integer. Then the (rational) Nehari-
Takagi problem (relative to the imaginary axis) is the problem of finding all proper
rational p× q matrix functions K such that K has no pole on the imaginary axis
and at most κ poles in the open left half plane (multiplicities taken into account),
and

‖K −R‖∞ = sup
s∈iR

‖K(s)−R(s)‖ < γ, (18.38)

where γ is a pre-specified positive number. When κ = 0, the conditions on K
reduce to the requirement that K has all its poles in the open right half plane.
Thus with κ = 0 the Nehari-Takagi problem is just the Nehari problem considered
in the preceding sections.

In this section we take γ = 1, which can be done without loss of generality
(cf., the last paragraph of Section 18.1), and we assume that R is strictly proper
and stable. Thus R admits a realization R(λ) = C(λIn −A)−1B where A has all
its eigenvalues in the open left half plane. The following result is the analogue of
Theorem 18.1 for the Nehari-Takagi problem.

Theorem 18.8. Let (λ) = C(λIn − A)−1B be a realization of the rational p × q
matrix function R, assume A has all its eigenvalues in the open left half plane,
and let

P =
∫ ∞
0

esABB∗esA∗ ds, Q =
∫ ∞
0

esA∗C∗CesA ds

(i.e., P and Q are the controllability and observability gramians corresponding to
the given realization). Suppose In − PQ is invertible. Then the rational Nehari-
Takagi problem for R relative to the imaginary axis with γ = 1 is solvable if and
only if the matrix PQ has at most κ eigenvalues (multiplicities taken into account)
larger than 1. Moreover, if κ0 is the number of eigenvalues of PQ larger than 1,
then all solutions K of the Nehari-Takagi problem for R relative to the imaginary
axis with γ = 1 such that K has precisely κ0 poles in the open left half plane are
given by the linear fractional formula

K(λ) = −(Θ11(λ)G(λ) + Θ12(λ)
)(
Θ21(λ)G(λ) + Θ22(λ)

)−1
. (18.39)

Here the free parameter G is an arbitrary rational p × q matrix function which
has all its poles in the open right half plane and ‖G‖∞ < 1. Furthermore, the
coefficients Θij , i, j = 1, 2, are given by

Θ11(λ) = Ip + CP (λIn +A∗)−1(In −QP )−1C∗,

Θ12(λ) = CP (λIn +A∗)−1(In −QP )−1QB,

Θ21(λ) = −B∗(λIn +A∗)−1(In −QP )−1C∗,

Θ22(λ) = Iq −B∗(λIn +A∗)−1(In −QP )−1QB.
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To prove the above theorem one can follow the same line of reasoning as
used in this chapter to prove Theorem 18.1. The role of Theorem 18.4 has to be
taken over by Theorem 18.5. For further details we refer to the literature; see for
example [86] and the references therein.

Notes

The Nehari problem has its roots in the classical papers of Nehari [114] and
Adamjan-Arov-Krein [1], [2]. The rational matrix version played an important
role in the early development of H-infinity control theory; see, e.g., the lecture
notes [43]. Here one already finds the J-spectral factorization approach. For an
overview of the various methods to deal with the matrix Nehari problem we refer
to the notes to Chapter 20 in [7]. The Takagi version of the Nehari problem has
its roots in [142]. The result with a full proof can also be found in Section 20.5 of
[7]. For an abstract approach to the Nehari-Takagi problem, covering applications
to time-invariant infinite-dimensional systems and time-varying finite-dimensional
linear systems, we refer to [86].



Chapter 19

Review of some control theory
for linear systems

In this chapter a brief survey is given of a number of basic elements of control
and mathematical systems theory. The main aim is to give the reader some un-
derstanding for the type of problems that will be treated in the final chapter.

The chapter consists of two sections. Section 19.1 introduces the concepts of
stability of systems and the method of feedback to stabilize a system. Section 19.2
deals with the notion of internal stability of a closed loop system. In particular the
Youla-Jabr-Bongiorno parametrization of all stabilizing compensators is presented.

19.1 Stability and feedback

In this section we consider a causal input-output system Σ as in the figure below:

yu Σ

As usual (cf., Section 2.1) the symbol u denotes the input and y the output. Math-
ematically input and output are vector-valued functions of a (time) parameter t.
Such an input-output system is called externally stable or bounded-input bounded-
output stable (BIBO-stable) if a bounded input u produces a bounded output y,
that is, supt≥0 ‖u(t)‖ < ∞ implies supt≥0 ‖y(t)‖ <∞.
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Now let us assume that Σ is a causal linear time invariant system given by
the following finite dimensional state space representation:{

x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), t ≥ 0.
(19.1)

Here A, B, C, D are matrices of appropriate sizes, and A is a square matrix. We
refer to (19.1) as a realization of the system. The realization (19.1) is called stable
if for any initial value x(0), with zero input u, the state x(t) will go to zero if
t→∞. It is easily seen that stability of the realization (19.1) is equivalent to the
requirement that the matrix A has all its eigenvalues in the open left half plane.
If the latter holds, A is said to be a stable matrix .

Given (19.1) the effect of inputs on outputs can be described in the time
domain by a lower triangular integral operator

y(t) = CetAx(0) +
∫ t

0

k(t− s)u(s) ds+Du(t), (19.2)

where k(t) is the so-called impulse response function. As we have already seen in
Section 2.1, in the frequency domain with x(0) = 0 the connection between input
and output is given by ŷ(λ) = W (λ)û(λ), where W is the transfer function of the
system, and û and ŷ denote the Laplace transforms of the input u and the output
y, respectively. In terms of (19.1) we have

k(t) = CetAB, W (λ) = D + C(λ−A)−1B. (19.3)

From (19.2) and the first identity in (19.3) it is clear that stability of the realization
(19.1) implies external stability of the corresponding system. The converse is also
true when the realization is minimal, that is, when the pair (A, B) is controllable
and the pair (C, A) is observable. We summarize this and related results in the
following theorems.

Theorem 19.1. Let (19.1) be a minimal realization, then the corresponding system
is externally stable if and only if the realization is stable.

Theorem 19.2. Let k be the impulse response function and let W be the trans-
fer function of the linear time invariant system given by (19.1). The following
statements are equivalent:

1. The system given by (19.1) is externally stable;

2.
∫ ∞
0

‖k(t)‖ dt < ∞;

3. The rational matrix function W is iR-stable, that is, W has all its poles in
the open left half plane.
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An important issue is stabilizing an unstable system. The simplest method
is that of static state feedback. To explain this method consider the system given
by the state space representation:{

x′(t) = Ax(t) + Bu(t),

y(t) = x(t), t ≥ 0.

Note that the output is equal to the state. This case is sometimes referred to as
the full information case. The problem is to find a static feedback control law
u(t) = Fx(t) + v(t) that will make the system sending v to x stable. That is, to
find a matrix F of appropriate size such that

x′(t) = (A+BF )x(t) +Bv(t)

is stable. This amounts to requiring that the matrix A+BF is stable, i.e., all its
eigenvalues are in the open left half plane. For such a matrix F to exist the pair
(A, B) should be stabilizable in the sense of Section 13.2. Two questions appear:
first, when is a pair of matrices (A, B) stabilizable, and second, how to construct
a stabilizing matrix F?

We start with an observation concerning the so-called single input case. In
that situation, the matrix B is an n× 1 vector, and one may assume without loss
of generality that A and B have the form

A =

⎡⎢⎢⎢⎢⎣
0 1

. . .

1
−an · · · · · · −a1

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
0
...

0
1

⎤⎥⎥⎥⎥⎦ .

Consider F = [ fn · · · f1 ]. Then

A+BF =

⎡⎢⎢⎢⎢⎣
0 1

. . .

1
fn − an · · · · · · f1 − a1

⎤⎥⎥⎥⎥⎦ .

So, in this case, any polynomial can be obtained as the characteristic polynomial
of A+BF by an appropriate choice of F .

Next we make a second observation. Let A be an n× n matrix, let B be an
n ×m matrix, and write Cn = Im (A|B) � X0. With respect to this direct sum
decomposition, the matrices A and B can be written as

A =

[
A11 A10

0 A00

]
, B =

[
B1

0

]
,
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with (A11, B1) controllable. Thus, for any m× n matrix F =
[
F1 F0

]
, one has

A+BF =

[
A11 +B1F1 A10 +B1F0

0 A00

]
,

and hence σ(A+BF ) = σ(A11+B1F1)∪σ(A00). Note that σ(A00), the second part
in the right-hand side of the preceding identity, is independent of the particular
choice of X0 and also of the choice of F . Therefore the eigenvalues of A00 are
called the uncontrollable eigenvalues of A relative to the matrix B. Clearly, A
has no uncontrollable eigenvalues relative to B if and only if the pair (A, B) is
controllable.

From the discussion in the previous paragraph we conclude that, in order for
(A, B) to be stabilizable, it is necessary that the uncontrollable eigenvalues of A
relative to B are in the open left half plane. The converse of this observation would
follow if any controllable pair is stabilizable. This is the case for single input as we
have already seen. That it is true in general appears from the next result which is
actually quite a bit stronger, and is known as the pole placement theorem.

Theorem 19.3. Let A be an n × n matrix, and let B be an n × m matrix. The
following two statements are equivalent:

(i) The pair (A, B) is controllable;

(ii) For any scalar polynomial p(λ) = λn+p1λ
n−1+ · · ·+pn−1λ+pn, there is an

m×n matrix F such that the characteristic polynomial of A+BF coincides
with p.

Corollary 19.4. Let A be an n×n matrix and let B be an n×m matrix. The pair
(A, B) is stabilizable if and only if the uncontrollable eigenvalues of A relative to
the matrix B are in the open left half plane.

Let A be an n × n matrix and let C be an m × n matrix. The pair (C, A)
is called detectable when there exists an n × m matrix R such that A − RC is
stable. In other words the pair (C, A) is detectable if and only if the pair (A∗, C∗)
is stabilizable. By definition the unobservable eigenvalues of A relative to C are
the uncontrollable eigenvalues of A∗ relative to C∗. It is also possible to give
a direct definition of the latter notion, involving a decomposition of the type
Cn = Ker (C|A) � X0. From the above definitions and Corollary 19.4 it is clear
that the pair (C, A) is detectable if and only if the unobservable eigenvalues of A
relative to the matrix C are in the open left half plane.

19.2 Parametrization of internally stabilizing
compensators

In this section G is the transfer function of a system Σ with two inputs u and w,
and two outputs y and z. Here u is the control input, w a disturbance, y is the
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output which can be measured and z is the output to be controlled. Throughout,
we shall assume that the system Σ is given in state space form as follows:⎧⎪⎪⎨⎪⎪⎩

x′(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + D1u(t),

y(t) = C2x(t) + D2w(t), t ≥ 0.

(19.4)

It will be convenient to rewrite the realization (19.4) in the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x′(t) = Ax(t) +

[
B1 B2

] [w(t)
u(t)

]
,

[
z(t)

y(t)

]
=

[
C1

C2

]
x(t) +

[
0 D1

D2 0

][
w(t)

u(t)

]
.

From the latter representation we see that the transfer function of (19.4) is given
by

G(λ) =

[
G11(λ) G12(λ)

G21(λ) G22(λ)

]
=

[
0 D1

D2 0

]
+

[
C1

C2

]
(λ−A)−1

[
B1 B2

]
.

In particular, the transfer function G22 is strictly proper.

Let C be a causal finite dimensional linear time invariant system of the type
considered in the previous section, and let K be its transfer function. Thus K is
a proper rational matrix function To define what it means that C is an internally
stabilizing compensator for Σ we introduce two additional inputs v1 and v2 as in
the following figure:

These two additional inputs are regarded as disturbances: v1 is a disturbance on the
control input u, while v2 is a disturbance on the measured output. Then the system
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C with transfer function K is said to be an internally stabilizing compensator for
the system Σ if the nine transfer functions from the disturbances w, v1, v2 to z, u
and y are all stable rational matrix functions. In this case, by slight abuse of
terminology, we shall also say that K is an internally stabilizing compensator for
the transfer function G of Σ.

After Laplace transform, the nine transfer functions from the disturbances
w, v1, v2 to z, u and y are given by⎡⎢⎢⎣

ẑ

û

ŷ

⎤⎥⎥⎦ =
⎡⎢⎢⎣

I −G12 0

0 I −K

0 −G22 I

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

G11 0 0

0 I 0

G21 0 I

⎤⎥⎥⎦
⎡⎢⎢⎣

ŵ

v̂1

v̂2

⎤⎥⎥⎦ . (19.5)

Now G22 is strictly proper and K is proper. Hence the rational matrix functions
I −G22(λ)K(λ) and I −K(λ)G22(λ) are biproper with the value I at infinity. It
follows that the inverses I − G22K and I − KG22 are well-defined. Using these
facts, the product of the first two matrices in the right-hand side of the identity
(19.5)can be computed as⎡⎢⎢⎣

G11 +G12K(I −G22K)−1G21 G12(I −KG22)−1 G12K(I −G22K)−1

K(I −G22K)−1G21 (I −KG22)−1 K(I −G22K)−1

(I −G22K)−1G21 G22(I −KG22)−1 (I −G22K)−1

⎤⎥⎥⎦ .

Theorem 19.5. Let G be the transfer function of the system Σ given by (19.4), and
let C be a causal finite dimensional linear time invariant system whose transfer
function K is a proper rational matrix function. Then C is an internally stabilizing
compensator for Σ if and only if K stabilizes G22 in the sense that the transfer
functions from v1 and v2 to u and y are stable rational matrix functions, that is,
the four functions

(I −KG22)−1, K(I −G22K)−1, G22(I −KG22)−1, (I −G22K)−1,

are stable.

There is a beautiful parametrization of all internally stabilizing compen-
sators, known as the Youla-Jabr-Bongiorno parametrization. In order to state the
parametrization we need a doubly coprime factorization of G22, that is, a factor-
ization

G22(λ) = N(λ)M(λ)−1 = M̃(λ)−1Ñ(λ), (19.6)

where N, M, Ñ and M̃ are iR-stable rational matrix functions of appropriate sizes,
with the additional property that there exist iR-stable rational matrix functions
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X, Y, X̃ and Ỹ such that[
X̃(λ) −Ỹ (λ)

−Ñ(λ) M̃(λ)

][
M(λ) Y (λ)

N(λ) X(λ)

]
(19.7)

=

[
M(λ) Y (λ)

N(λ) X(λ)

][
X̃(λ) −Ỹ (λ)

−Ñ(λ) M̃(λ)

]
= I.

Such a factorization always exists, in fact we can readily give formulas for all
matrix functions involved in terms of the realization of G22. To do this we assume
that the realization

G22(λ) = C2(λI −A)−1B2,

has two additional properties, namely (C2, A) is detectable, and (A, B2) is stabiliz-
able. That is, there exist matrices F and H such that the matrices AF = A+B2F
and AH = A+HC2 are both stable. Then, one choice of a doubly coprime factor-
ization is given by the functions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M(λ) = I + F (λ −AF )−1B2, N(λ) = C2(λ−AF )−1B2,

M̃(λ) = I + C2(λ−AH)−1H, Ñ(λ) = C2(λ−AH )−1B2,

X(λ) = I − C2(λ−AF )−1H, Y (λ) = −F (λ−AF )−1H,

X̃(λ) = I − F (λ−AH)−1B2, Ỹ (λ) = −F (λ−AH)−1H.

(19.8)

Next, we give the Youla-Jabr-Bongiorno parametrization, which describes all
internally stabilizing compensators of Σ in terms of iR- stable, proper rational
matrix functions in a one-to-one way.

Theorem 19.6. Let G be the transfer function of the system Σ given by (19.4), and
let M , N , X, Y be the iR-stable rational matrix functions related to the doubly
coprime factorization of G22. Let C be a causal finite dimensional linear time
invariant system whose transfer function K is a proper rational matrix function.
Then C is an internally stabilizing compensator of Σ if and only if K has the form

K(λ) =
(
Y (λ)−M(λ)Q(λ)

)(
X(λ)−N(λ)Q(λ)

)−1
, (19.9)

where Q is an iR-stable rational matrix function. Moreover, the map from Q to
K is one-to-one.

Replacing M , N , X , Y by M̃ , Ñ , X̃, Ỹ we have the following alternative
expression for the transfer function K of the compensator:

K(λ) =
(
X̃(λ)−Q(λ)Ñ(λ)

)−1(
Ỹ (λ) −Q(λ)M̃(λ)

)
.
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Notes

The results of the first section are standard results in mathematical systems theory,
see, e.g., [94] or the more recent [33], [84]. For analogous results in the discrete
time case we refer to [94], Chapter 21 of [150], and to [85]. A proof of Theorem 19.5
can be found in Chapter 4 of [43]. The formulas (19.8) giving the doubly coprime
factorization in state space terms were derived in [115], see also Section 4.5 in [43].
Theorem 19.6 presents a result of [148].



Chapter 20

H-infinity control applications

The focus of the chapter is on a part of control theory calledH-infinity control. The
problem involved is the general H-infinity control problem, the so-called standard
problem. It concerns the construction of a stabilizing controller with additional
constraints on the maximum of the norm of the closed loop transfer function,
taken over the values of the argument on the imaginary line. In its simplest form
the problem is equivalent to the rational matrix Nehari problem considered in
Chapter 18. The label H-infinity is related to the fact that a proper rational
matrix function is stable if and only if it is analytic and uniformly bounded in the
open right half plane. A function with the latter properties is usually referred to
as an H∞-function (on the right half plane).

The chapter consists of four sections. Section 20.1 introduces the standard
problem mentioned above, and shows how this problem can be reduced to a model
matching problem. In the next two sections we discuss a one-sided model match-
ing problem (Section 20.2) and the two-sided model matching problem (Section
20.3). In particular, it will be shown how these two problems reduce to J-spectral
factorization problems involving certain rational matrix functions. All of this will
be done in general terms, without any state space formulas as yet. In the final
section (Section 20.4) we use results from Chapter 14 and present the solution to
the model matching problem in state space terms. This leads to the solution of
the standard problem in these terms too.

In this chapter, as in Section 18.2, we use the following notation: if R is a rational
matrix function, then R∗ denotes the rational matrix function given by R∗(λ) =
R(−λ̄)∗. (In engineering literature, including [76] and [43], this function is often
denoted by R∼.) Recall also from Section 18.2 that Rat denotes the set of all proper
rational matrix functions that are analytic on the imaginary axis. Furthermore,
Ratp×q stands for the set of all F in Rat that are of size p × q, and Ratp×q

+

denotes the set of all F in Ratp×q that are analytic on the closed left half plane.
In the present chapter we shall also use the notation Ratp×q

− (Rat−) which will
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denote the set of all F in Ratp×q (in Rat) that are analytic in the closed right half
plane. In other words, F belongs to Ratp×q

− if and only if F is an iR stable p× q

rational matrix function. Note also that F ∈ Ratp×q
− if and only if F ∗ ∈ Ratq×p

+ .

20.1 The standard problem and model matching

Throughout this chapter G is the transfer function of a system Σ with two inputs
u and w, and two outputs y and z. The input u is the control input, w is a distur-
bance, y is the output we can measure, and z is the output to be controlled. As in
Section 19.2 we assume that the system is given by the state space representation⎧⎪⎪⎨⎪⎪⎩

x′(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + D1u(t),

y(t) = C2x(t) + D2w(t), t ≥ 0.

(20.1)

In particular, the function G is of the form

G(λ) =

[
G11(λ) G12(λ)

G21(λ) G22(λ)

]

=

[
0 D1

D2 0

]
+

[
C1

C2

]
(λ−A)−1

[
B1 B2

]
. (20.2)

Taking Laplace transforms and assuming the system to be at rest at t = 0 we have[
ẑ(λ)

ŷ(λ)

]
=

[
G11(λ) G12(λ)

G21(λ) G22(λ)

][
ŵ(λ)

û(λ)

]
. (20.3)

Our goal is to find a proper rational matrix function K such that: (1) K is
the transfer function of an internally stabilizing compensator C of Σ (see Section
19.2), and (2) the influence of w on z is kept small in a sense we shall explain
presently.

Inserting û(λ) = K(λ)ŷ(λ) into (20.3), one sees that⎧⎨⎩ẑ(λ) = G11(λ)ŵ(λ) +G12(λ)K(λ)ŷ(λ),

ŷ(λ) = G21(λ)ŵ(λ) +G22(λ)K(λ)ŷ(λ).
(20.4)

Since G22 is strictly proper, so is G22K, and hence the determinant of the matrix
I −G22(λ)K(λ) does not vanish identically. By the second equation in (20.4) we
have ŷ(λ) =

(
I−G22(λ)K(λ)

)−1
G21(λ)ŵ(λ). Inserting this into the first equation
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of (20.4), we obtain that the closed loop transfer function from ŵ to ẑ is given by
the Redheffer representation

ẑ(λ) =
(RG(K)(λ)

)
ŵ(λ) (20.5)

=
(
G11(λ) +G12(λ)K(λ)

(
I −G22(λ)K(λ)

)−1
G21(λ)

)
ŵ(λ).

The second requirement on K is that, given a tolerance γ, we want RG(K) to be
in Rat and to satisfy the bound

‖RG(K)‖∞ = max
λ∈iR

‖RG(K)(λ)‖ < γ. (20.6)

This problem is known in control theory as the standard problem of H-infinity
control .

The approach to solving this problem using J-spectral factorization tech-
niques starts from the Youla parametrization of internally stabilizing compen-
sators which we reviewed in Section 19.2. This leads, as we shall see in the final
two paragraphs of this section, to an equivalent and easier to handle problem.
Indeed, from the given rational matrix function G one constructs three rational
matrix functions, T1, T2 and T3 such that internally stabilizing compensators for
which (20.6) holds are in one-to-one correspondence with iR-stable rational matrix
functions Q for which

‖T1 − T2QT3‖∞ < γ. (20.7)

The latter problem is called the model matching problem . It turns out that under
mild assumptions (see Section 20.4 below) the rational matrix functions T1, T2 and
T3 are iR stable. In particular, these functions have no poles on the imaginary axis
and at infinity, and hence they are all in Rat. Furthermore, we shall see that T2
has a left inverse in Rat and T3 has a right inverse in Rat.

A particular case (see the next section) of the model matching problem,
when T2 is square and T3 = I, is a variation on the Nehari problem as discussed
in Chapter 18.

Next, we present the reduction of the standard problem to a model matching
problem. All necessary calculations take place in Rat, i.e., in the set of rational
matrix functions that are analytic on iR and at infinity. As before, we partition
the transfer function G as in the first part of (20.3). Also we shall employ the same
notation as in Section 19.2 insofar as it concerns the doubly coprime factorization
of G22 in (19.6) and the parametrization of the transfer functions of the internally
stabilizing compensators of the system Σ in Theorem 19.6. We can then introduce
three new functions, namely

T1(λ) = G11(λ) + G12(λ)M(λ)Ỹ (λ)G21(λ), (20.8)

T2(λ) = G12(λ)M(λ), (20.9)

T3(λ) = M̃(λ)G21(λ). (20.10)
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Recall that the problem we wish to solve is to find, if possible, internally
stabilizing compensators C of the system Σ with a proper transfer function K
such that RG(K) belongs to Rat and (20.6) is satisfied, i.e.,

‖RG(K)‖∞ = max
λ∈iR

‖RG(K)(λ)‖ < γ.

Here RG(K) is given by

RG(K)(λ) = G11(λ) +G12(λ)K(λ)
(
I −G22(λ)K(λ)

)−1
G21(λ); (20.11)

see (20.5). In case K is given by (19.9) involving the function Q featured there,
we can rewrite RG(K) as follows.

Theorem 20.1. With K as in (19.9), the closed loop transfer function is given by

RG(K)(λ) = T1(λ)− T2(λ)Q(λ)T3(λ),

where T1, T2 and T3 are given by (20.8), (20.9) and (20.10), respectively

Proof. Inserting G22(λ) = M̃(λ)−1N(λ) and (19.9) into
(
I−G22(λ)K(λ)

)−1, and
suppressing the variable λ for notational convenience, we get

(I −G22K)−1 = (X −NQ)
(
M̃(X −NQ)− Ñ(Y −MQ)

)−1
M̃

= (X −NQ)M̃.

In the actual derivation of these identities, the doubly coprime factorization in
(19.6) and the defining properties given by (19.7) are employed. Again using (19.9),
we arrive at K(I −G22K)−1 = (Y −MQ)M̃ . Substituting this in the formula for
the closed loop transfer function (20.11) yields

RG(K) = (G11 +G12Y M̃G21)−G12MQM̃G21

= (G11 +G12Y M̃G21)− T2QT3.

Now from the defining properties of a doubly coprime factorization (19.6) one
sees that MỸ = Y M̃ . Inserting this in the formula above we obtain that T1 =
G11 +G12Y M̃G21. This completes the proof. �

20.2 The one-sided model matching problem

In this section we consider the model matching problem (20.7) with T1 ∈ Ratl×p,
T2 ∈ Ratl×q

− and T3 = Ip. Furthermore, we assume that T2 has a left inverse in
Ratq×l. In particular, T1 is analytic on the imaginary axis (with infinity included)
and T2 is iR-stable. Note that the left invertibility of T2 implies that l ≥ q, that
is, T2 is a “tall” matrix.
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Given T1 and T2 as in the previous paragraph, the problem is to find necessary
and sufficient conditions for the existence of an iR-stable rational q × p matrix
function Q, i.e., Q ∈ Ratq×p

− , such that ‖T1 − T2Q‖∞ < γ, and to give a full
parametrization of all such Q. We refer to this problem as the one-sided model
matching problem corresponding to T1 and T2.

We shall explain how this problem reduces to the Nehari problem, and we
shall present a necessary and sufficient condition for its solution in terms of a
J-spectral factorization. The following theorem is the main result of this section.

Theorem 20.2. Let T1 ∈ Ratl×p and T2 ∈ Ratl×q
− be given, and assume T2 has a

left inverse in Rat. Let γ > 0, and put

Υ(λ) =

[
T ∗2 (λ) 0

T ∗1 (λ) Ip

] [
Il 0

0 −γ2Ip

] [
T2(λ) T1(λ)

0 Ip

]
,

J =

[
Iq 0

0 −Ip

]
.

Then there exists Q ∈ Ratq×p
− such the norm constraint ‖T1 − T2Q‖∞ < γ is

satisfied if and only if Υ admits a left J-spectral factorization

Υ(λ) = W ∗(λ)JW (λ), (20.12)

with respect to the imaginary axis having the additional property that the q × q
block in the left upper corner of W (λ) has an inverse in Ratq×q

− . Moreover, writing
W−1(λ) =

[
ωij(λ)

]2
i,j=1

, where ω11(λ) and ω22(λ) are of sizes q × q and p× p,
respectively, all solutions Q of the one-sided model matching problem corresponding
to T1 and T2 are given by

Q(λ) = −(ω11(λ)U(λ) + ω12(λ)
)(

ω21(λ)U(λ) + ω22(λ)
)−1

, (20.13)

where U is a rational matrix function in Ratq×p
− with ‖U‖∞ < 1.

Proof. Since T2 belongs to Ratl×q
− and has a left inverse in Rat, we know from

Theorem 17.26 that T2 admits an inner-outer factorization with an invertible outer
factor. Thus T2 = V X , where V is inner, and both X and X−1 are analytic in the
closed right half plane. If T2 happened to be square, the reduction to the Nehari
problem would now be easy. Indeed, in that case V is bi-inner, and hence

‖T1 − T2Q‖∞ = ‖T1 − V XQ‖∞ = ‖V ∗T1 −XQ‖∞ = ‖R− Q̂‖∞,

where R = V ∗T1 and Q̂ = XQ. Actually, since both X and Q are in Rat−, also Q̂
is in Rat−. Thus, this is not quite the Nehari problem as presented in Chapter 18,
but applying the results of Section 18.3 to R∗ yields Q̂∗. Also note that R∗ is not
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stable, but it is just in Rat. At this point we use the fact that Proposition 18.6,
when applied to R∗, does not require R∗ to be stable. Recall that this point was
made explicitly in the paragraph preceding the statement of Proposition 18.6.

However, in general, T2 is only left invertible and not square, in which case
V is only inner and not bi-inner. To deal with this more general case, we proceed
as follows (see Section 17.8): take V 	 such that Ũ =

[
V V 	

]
is bi-inner. We

choose V 	 such that Ũ has the same McMillan degree as V , that is, in the way
outlined in Section 17.8. Then

‖T1 − T2Q‖∞ = ‖
[

V ∗

(V 	)∗

]
T1 −

[
XQ

0

]
‖∞.

It follows that ‖T1 − T2Q‖∞ < γ if and only if for each for λ ∈ iR ∪ {∞} the
following two conditions hold:

(a) Φ(λ) = γ2Ip − T ∗1 (λ)V
	(λ)(V 	)∗(λ)T1(λ) > 0,

(b) γ2Ip − T ∗1 (λ)V
	(λ)(V 	)∗(λ)T1(λ)

−(V ∗(λ)T1(λ) −X(λ)Q(λ))∗(V ∗(λ)T1(λ) −X(λ)Q(λ)) > 0.

Using (a), the inequality (b) can be reduced to Φ−(V ∗T1−XQ)∗(V ∗T1−XQ) > 0
where, for notational convenience, the variable λ being suppressed.

Now, let Φ(λ) = N∗(λ)N(λ) be a left canonical factorization of Φ relative to
the imaginary axis. Then condition (b) above is equivalent to

Ip −N−∗(V ∗T1 −XQ)∗(V ∗T1 −XQ)N−1 > 0,

i.e., to ‖V ∗T1N−1 − XQN−1‖∞ < 1. Observe that this, in turn, is precisely an
instance of Nehari’s problem, with R = V ∗T1N−1 and Q̂ = XQN−1.

We apply the Nehari problem to R. Applying the result of Section 18.3, in
particular Proposition 18.6 (which we apply with left half plane and right half
plane interchanged) one sees that this Nehari problem is solvable if and only if the
function Ψ(λ), defined by

Ψ(λ) =

[
Iq 0

N−∗(λ)T ∗1 (λ)V (λ) Ip

] [
Iq 0

0 −Ip

][
Iq V ∗(λ)T1(λ)N−1(λ)

0 Ip

]
,

has a left J-spectral factorization of the form

Ψ(λ) = L∗−(λ)
[

Iq 0
0 −Ip

]
L−(λ), (20.14)

with the additional property that the p× p block entry in the right lower corner
of L−1− has an inverse in Ratp×p

− . Moreover, in that case, if we partition L−1− (λ)
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as L−1− (λ) =
[

Lij(λ)
]2
i,j=1

, with L11 a q × q rational matrix function, then all
solutions to this Nehari problem are given by

Q̂(λ) = −(L11(λ)U(λ) + L12(λ))(L21(λ)U(λ) + L22(λ))−1,

where U runs over all functions in Ratq×p
− for which ‖U‖∞ < 1. Finally, recall

(see the final paragraph of Section 18.3) that the additional property of the p× p
block entry in the right lower corner of L−1− is equivalent to the q × q block entry
in the left upper corner of L− having an inverse in Ratp×p

− .

Put Q(λ) = X−1(λ)Q̂(λ)N(λ). From the results of the previous paragraph,
we get that all solutions to the one-sided model matching problem are given by

Q(λ) = −(X−1(λ)L11(λ)U(λ) +X−1(λ)L12(λ)
)

·(N−1(λ)L21(λ)U(λ) +N−1(λ)L22(λ)
)−1

,

where U runs over all functions in Ratq×p
− for which ‖U‖∞ < 1.

Next, introduce

W (λ) = L−(λ)

[
X(λ) 0

0 N(λ)

]
. (20.15)

Note that the q × q block entry in the left upper corner of W has an inverse in
Ratq×q

− . Furthermore,

W−1(λ) =

[
X−1(λ)L11(λ) X−1(λ)L12(λ)

N−1(λ)L21(λ) N−1(λ)L22(λ)

]
.

So all solutions are parametrized by the function W−1.
It remains to establish the identity (20.12), that is, once more suppressing

the variable λ,

Υ = W ∗JW.

Let us denote the right side of the previous identity by Ξ. Thus Ξ = W ∗JW .
Using the definition of W in (20.15) together with formula (20.14), we see that

Ξ =

[
X∗ 0

0 N∗

]
Ψ

[
X 0

0 N

]
.
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It follows that

Ξ =

[
X∗ 0

T ∗1 V N∗

] [
I 0

0 −I

][
X V ∗T1

0 N

]

=

[
X∗ 0

T ∗1 V N∗

] [
V ∗V 0

0 −I

][
X V ∗T1

0 N

]

=

[
T ∗2 0

T ∗1 V V ∗ I

][
I 0

0 −N∗N

][
T2 V V ∗T1

0 I

]

=

[
T ∗2 0

T ∗1 V V ∗ I

][
I 0

0 −γ2I + T ∗1 V 	(V 	)∗T1

][
T2 V V ∗T1

0 I

]

=

[
T ∗2 T2 T ∗2 V V ∗T1

T ∗1 V V ∗T2 −γ2I + T ∗1 (V V ∗ + V 	(V 	)∗)T1

]

=

[
T ∗2 T2 X∗V ∗T1

T ∗1 V X −γ2I + T ∗1 T1

]

=

[
T ∗2 T2 T ∗2 T1

T ∗1 T2 −γ2I + T ∗1 T1

]

=

[
T ∗2 0

T ∗1 I

][
I 0

0 −γ2I

][
T2 T1

0 I

]
= Υ.

Thus we conclude that we may obtain W from a J-spectral factorization of a
function that is easily described in terms of T1 and T2, as desired. Note also that
the positivity of γ2 − T ∗1 V 	(V 	)∗T1 on iR ∪ {∞} is implied by the J-spectral
factorization. �

20.3 The two-sided model matching problem

In this section we extend the analysis of the previous section to the two-sided
model matching problem. It will turn out that in this case we need two J-spectral
factorizations.

Theorem 20.3. Let T1 ∈ Ratl×p
− , T2 ∈ Ratl×q

− and T3 ∈ Ratm×p
− . Assume that

T2 has a left inverse in Rat, and T3 has a right inverse in Rat. Let γ > 0, and
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put

Ω(λ) =

[
T3(λ) 0

T1(λ) Il

][
Ip 0

0 −γ2Il

][
T ∗3 (λ) T ∗1 (λ)

0 Il

]
. (20.16)

Then there exists Q ∈ Ratq×m
− such that ‖T1 − T2QT3‖ < γ if and only if two

conditions (i) and (ii) hold. The first condition (i) is as follows:

(i) With respect to the imaginary axis, Ω admits a right J-spectral factorization

Ω(λ) = V (λ)JV (−λ̄)∗, where J =

[
Im 0

0 −Il

]
, (20.17)

having the additional property that the m × m block in the upper left-hand
corner of V has an inverse in Ratm×m

− .

With V as in (20.17), define

Ω̃(λ) =

[
0 −T ∗2 (λ)

I 0

]
V −∗(λ)

[ −Im 0

0 Il

]
V −1(λ)

[
0 I

−T2(λ) 0

]
. (20.18)

Then the second condition (ii) is:

(ii) With respect to the imaginary axis, Ω̃ admits a left J-spectral factorization
of the form

Ω̃(λ) = W (−λ̄)∗JW (λ), where J =

[
Iq 0

0 −Im

]
, (20.19)

having the additional property that the q × q block in the upper left-hand
corner of W has an inverse in Ratq×q

− .

Moreover, when (i) and (ii) are satisfied, (all ) the solutions Q to the two-sided
model matching problem corresponding to T1, T2 and T3 can be obtained as follows.
Partition W−1 =

[
Xij

]2
i,j=1

, with X11 a q × q rational matrix function. Then

Q = −(X11U +X12)(X21U +X22)−1, (20.20)

where U is an iR-stable rational q ×m matrix function with ‖U‖∞ < 1.

Proof. The idea of the proof is to reduce the two-sided model matching problem
to the one-sided model matching problem discussed in the previous section. The
proof is divided into several steps.
Part 1. We first show that condition (i) in the theorem is a necessary condition.
To this end, introduce T �1 (λ) = T1(λ̄)∗ and T �3 (λ) = T3(λ̄)∗. Note the crucial
difference with the functions T ∗1 and T ∗3 : the functions T �1 and T �3 are analytic
in the closed right half plane, infinity included. With the help of these functions,
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rewrite ‖T1 − T2QT3‖∞ < γ in the following way: ‖T �1 − T �3 Q̂‖∞ < γ, where
Q̂ = Q�T �2 (with the obvious interpretations for these functions). Taking into
account Theorem 20.2, this gives that the first condition is necessary. Indeed, with

L =

[
T �3 T �1
0 I

]

and V = W �, we obtain

L∗
[
I 0

0 −γ2I

]
L = W ∗

[
I 0

0 −γ2I

]
W.

Part 2. The next step is to rewrite the two-sided model matching problem in an
equivalent way.

Use Theorem 17.28 to write T3(λ) = Y (λ)V1(λ) where Y is an m × m in-
vertible outer function and V1 is an m × p co-inner function. Let V 	

1 be such
that Ṽ =

[
V ∗1 (V 	

1 )
∗] is bi-inner (see Corollary 17.33). Write R = T1Ṽ =[

T1V
∗
1 T1(V

	
1 )
∗] = [R1 R2

]
, where R1 is an l × m and R2 is an l × (p − m)

matrix function. As Ṽ is bi-inner, T3Ṽ =
[
Y 0

]
. Thus we have

‖T1 − T2QT3‖∞ < γ

if and only if
‖ [R1 R2

]− [T2QY 0
] ‖∞ < γ.

In turn, this can be rewritten as

γ2Il >
(
R1(λ)− T2(λ)Q(λ)Y (λ)

)(
R1(λ)− T2(λ)Q(λ)Y (λ)

)∗ + R2(λ)R∗2(λ),

for all λ ∈ iR ∪ {∞}, or equivalently, suppressing the variable λ again, as

γ2Il −R2R
∗
2 > (R1 − T2QY )(R1 − T2QY )∗.

This implies that γ2Il −R2R
∗
2 > 0, and if we write γ2Il −R2R

∗
2 = MM∗ with M

and M−1 in Ratl×l
− , then we can rewrite the inequality above as

Il > M−1(R1 − T2QY )(R1 − T2QY )∗M−∗.

Thus ‖T1 − T2QT3‖∞ < γ if and only if the following two conditions hold:

γ2Il −R2R
∗
2 > 0, ‖M−1R1 −M−1T2QY ‖∞ < 1. (20.21)

Note that the last of these two conditions is a one-sided model matching prob-
lem for QY , as both Y and Y −1 are in Ratm×m

− . Observe also that M−1R1 =
M−1T1V ∗1 is in Ratl×m, because V ∗1 is inner and hence analytic in the closed left
half plane, infinity included. Also M−1T2 is in Ratl×q

− . Although we do not know
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that M−1R1 is in Ratl×m
− (that is, we do not know that it is analytic in the closed

right half plane), still all conditions of Theorem 20.2 are met. Thus we may apply
Theorem 20.2, to see that solvability of the one-sided model matching problem,
which is the second condition in (20.21), is equivalent to a J-spectral factorization
problem in the following way.

Put

K =

[
M−1T2 M−1R1

0 Im

]
.

Then, by Theorem 20.2, solvability of the one-sided model matching problem,
which (as just noted) is the second part of (20.21), is equivalent to existence of a
matrix function P such that P and P−1 are in Rat

(m+q)×(m+q)
− ,

K∗
[
Il 0
0 −Im

]
K = P ∗

[
Iq 0
0 −Im

]
P,

and, in addition, the q × q-block of P in the upper left corner has an inverse in
Ratm×m

− . Recall that the last condition is equivalent to the requirement that the
m×m-block in the right lower corner of P−1 is in Ratm×m

− . Moreover, (all) the
solutions Q to the one-sided model matching problem corresponding to M−1T2
and M−1R1 are generated by P−1 as follows: if P−1 =

[
Pij

]2
i,j=1

, with P11 of size
q × q, then

Q = −(P11U + P12)(P21U + P22)−1Y −1

= −(P11U + P12)(Y P21U + Y P22)−1.

Introduce

W = P

[
Iq 0

0 Y −1

]
.

Then W and W−1 are analytic in the right half plane and the m×m block in the
right lower corner of W−1 is equal to Y P22, which is also in Ratm×m

− . Finally, W
generates all solutions Q.

Let

K̃ = K

[
Iq 0

0 Y −1

]
.

We conclude that solvability of the one-sided model matching problem, which is
the second part of (20.21), is equivalent to existence of a J-spectral factorization
of the form

W ∗
[
Iq 0

0 −Im

]
W = K̃∗

[
Il 0

0 −Im

]
K̃, (20.22)

with the additional property that the m × m block in the right lower corner of
W−1 is in Ratm×m

− .
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Part 3. Continuing with the considerations above, we compute

K̃ =

[
M−1T2 M−1R1

0 Im

][
Iq 0

0 Y −1

]

=

[−M−1 M−1R1Y
−1

0 Y −1

][−T2 0

0 Im

]

=

[−M R1

0 Y

]−1 [−T2 0

0 Im

]

=

[
0 Y

−M R1

]−1 [ 0 Im

−T2 0

]
.

It follows that

K̃∗
[
Il 0

0 −Im

]
K̃

is equal to[
0 −T ∗2

Im 0

][
0 −M∗

Y ∗ R∗1

]−1 [
Il 0

0 −Im

][
0 Y

−M R1

]−1 [ 0 Im

−T2 0

]
,

which, in turn, can be written as,[
0 −T ∗2

Im 0

]([
0 Y

−M R1

][
Il 0

0 −Im

][
0 −M∗

Y ∗ R∗1

])−1 [
0 Im

−T2 0

]
.

Now the product of the middle three terms is easily seen to be equal to[
Y Y ∗ Y R∗1

R1Y R1R
∗
1 −MM∗

]
.

Observe also that Y Y ∗ = T3T
∗
3 and Y R∗1 = Y V1T

∗
1 = T3T

∗
1 . Furthermore,

R1R
∗
1 −MM∗ = R1R

∗
1 − γ2Il +R2R

∗
2

= −γ2Il +
[
R1 R2

] [R∗1
R∗2

]

= −γ2Il + T1Ṽ
∗Ṽ T ∗1 = −γ2Il + T1T

∗
1 .
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Hence[
Y Y ∗ Y R∗1

R1Y R1R
∗
1 −MM∗

]
=

[
T3T

∗
3 T3T

∗
1

T1T
∗
3 −γ2Il + T1T

∗
1

]

=

[
T3 0

T1 I

][
Ip 0

0 −γ2IL

][
T ∗3 T ∗1
0 I

]
= Ω.

Part 4. After these preliminaries we can now complete the proof in one direction.
Indeed, to show that both the conditions (i) and (ii) need to be satisfied, note that
we already saw at the beginning of the proof that (i) is necessary. Assuming that
(i) holds, we continue the computation above, with V as in (20.17), and see that

K̃∗
[
Il 0

0 −Im

]
K̃ =

[
0 −T ∗2

Im 0

](
V

[
Im 0

0 −Il

]
V ∗
)−1 [

0 Im

−T2 0

]

=

[
0 −T ∗2

Im 0

]
V −∗

[
Im 0

0 −Il

]
V −1

[
0 Im

−T2 0

]
.

Thus, by (20.22), the second condition (ii) is necessary as well.
Part 5. For the converse, assume that both (i) and (ii) are satisfied. As in the
proof of Theorem 20.2, applied to T �1 and T �3 , in place of T1 and T2, we see that
(i) implies that the first condition in (20.21) holds. Now follow the arguments in
Parts 3 and 4 backwards to see that also the second condition in (20.21) is met.
As we have already seen that these two conditions taken together are equivalent
to the two-sided model matching problem, the proof is complete. �

Note that for the factorization (20.17) we need the analogue of Theorem 14.7
for right J-spectral factorization, applied to the function Ω given by (20.16). This
analogue can be obtained by applying the left factorization result of Theorem 14.7
to the function Ω(−λ); cf., the paragraphs immediately following Theorem 14.8. In
addition, the analogue of Theorem 14.7 for right J-spectral factorization provides
us with a formula for the right J-spectral factor Ṽ , satisfying

Ω(λ) = Ṽ (−λ̄)∗
[
Im 0

0 −Il

]
Ṽ (λ).

The function we need will then be V (λ) = Ṽ (−λ̄)∗. We state the result of carrying
out all this in state space form as a lemma, which will be useful in the next section.

Lemma 20.4. Let H(λ) = D+C(λIn−A)−1B be a realization of an (m+l)×(p+l)
rational matrix function H. Write J ′ = diag (Ip,−Il), J = diag (Im,−Il), and



392 Chapter 20. H-infinity control applications

assume that DJ ′D∗ = J . Also assume that A has all its eigenvalues in the open
left half plane. Put Ω(λ) = H(λ)J ′H(−λ̄)∗. Then Ω admits a right J-spectral
factorization with respect to the imaginary axis if and only if the algebraic Riccati
equation

XC∗JCX +X(A∗ − C∗J−1DJ ′B∗) + (A−BJ ′D∗J−1C)X

+BJ ′D∗JDJ ′B∗ −BJB∗ = 0

has a Hermitian solution X such that A∗ − C∗J−1(DJ ′B∗ − CX) has its eigen-
values in the open left half plane. If X is such a solution (necessarily unique),
and

V (λ) = Im+l + C(λIn −A)−1(BJ ′D∗ −XC∗)J−1,

then Ω(λ) = V (λ)JV (−λ)∗ is a right J-spectral factorization of Ω with respect to
the imaginary axis.

20.4 State space solution of the standard problem

In this section we return to the standard problem. We recall the basic facts about
the problem. The starting point is a system in state space form⎧⎪⎪⎨⎪⎪⎩

x′(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + D1u(t),

y(t) = C2x(t) + D2w(t), t ≥ 0.

(20.23)

The input vector u(t) belongs to Cq, the noise vector w(t) belongs to Cp, the state
vector x(t) belongs to Cn, the measured output y(t) belongs to Cm, and finally, the
output z(t) to be controlled belongs to Cl. Thus the sizes of the matrices featured
in (20.23) are as follows: A is n × n, B1 is n × p, B2 is n × q, C1 is l × n, C2 is
m× n, D1 is l× q, and D2 is m× p.

Throughout the section we assume that the following simplifying assumptions
hold:

A1. (A, B1) is controllable and (C1, A) is observable,

A2. (A, B2) is stabilizable and (C2, A) is detectable, that is, there are matrices F
and H so that both A+B2F and A+HC2 have all their eigenvalues in the
open left half plane.

A3. D∗1C1 = 0, D∗1D1 = Iq , D2B
∗
1 = 0, D2D

∗
2 = Im.

Given is also γ > 0. The problem we consider is to find an internally stabilizing
compensator K from ŷ to û such that (20.6) holds.

As we have explained in Section 20.1 this problem can be transformed into
a model matching problem, using the rational matrix functions T1, T2, and T3
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appearing in (20.8)–(20.10). First we shall use (20.23) to derive state space real-
izations for T1, T2, and T3. For this purpose we fix matrices H and F such that
AF = A+B2F and AH = A+HC2 are stable matrices. Recall that assumption A2
guarantees the existence of matrices H and F with these properties. It is a matter
of straightforward calculations to check that the following proposition holds.

Proposition 20.5. Write G22(λ) = C2(λIn −A)−1B2, and assume assumption A2
is satisfied. Let F and H be matrices such that AF = A+B2F and AH = A+HC2

are stable matrices. Suppose a doubly coprime factorization of G22(λ) is given by
the functions in (19.8). Then

T1(λ) =
[

C1 +D1F −D1F
](

λI2n −
[

AF −B2F

0 AH

])−1 [
B1

B1 +HD2

]
,

T2(λ) = D1 + (C1 +D1F )(λIn −AF )−1B2,

T3(λ) = D2 + C2(λIn −AH )−1(B1 +HD2).

Observe that T1, T2 and T3 are in Rat−. Next, we show that T2 has a left
inverse, while T3 has a right inverse, both in Rat.

Lemma 20.6. Under the assumptions A1, A2, A3, the matrix function T2 has a
left inverse in Rat and T3 has a right inverse in Rat.

Proof. By Corollary 17.27, it suffices to show that T2(λ) is left invertible for all
λ ∈ iR and that T3(λ) is right invertible for all λ ∈ iR. First we show that[

A− λIn B2

C1 D1

]
(20.24)

is left invertible for all λ ∈ iR if and only if T2(λ) is left invertible for all λ ∈ iR.
To see that this is the case, we first establish that T2(λ) is left invertible for

all λ ∈ iR if and only if [
AF − λIn B2

C1 +D1F D1

]
(20.25)

is left invertible for all λ ∈ iR. Indeed, assume that T2(λ) is left invertible for all
pure imaginary λ, and that for some λ0 ∈ iR and some vectors u and x we have[

AF − λ0In B2

C1 +D1F D1

][
x

u

]
=

[
0

0

]
. (20.26)

Then, since λ0 is not an eigenvalue of AF , it follows that x = (λ0 − AF )−1B2u.
Inserting this in (C1 +D1F )x+D1u = 0, gives T2(λ0)u = 0. Since T2(λ0) is left
invertible u = 0, and hence also x = 0.
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Conversely, assume T2(λ0)u = 0 for some u and some pure imaginary λ0.
Suppose that (20.25) is left invertible for all λ ∈ iR. Put x = (λ0 − AF )−1B2u,
then (20.26) holds, hence x = 0 and u = 0.

Now (20.25) can be written as[
AF − λ0In B2

C1 +D1F D1

]
=

[
A− λIn B2

C1 D1

] [
In 0

F Iq

]
.

Thus we see that (20.25) is left invertible if and only if (20.24) is left invertible.
Next we show that [

A− λIn B2

C1 D1

]

is left invertible for all λ ∈ iR. Indeed, assume that for some λ0 ∈ iR and some
vectors u and x we have [

A− λ0In B2

C1 D1

][
x

u

]
=

[
0

0

]
.

Then, in particular, C1x+D1u = 0. Using D∗1D1 = Iq and D∗1C1 = 0, this implies
that u = 0. But then (A − λ0In)x = 0 and C1x = 0. Since the pair (C1, A1) is
observable by assumption, it follows that x = 0. �

For sake of convenience, and without loss of generality, we shall assume from
now on that γ = 1. The first main result in this section is the following theorem.

Theorem 20.7. Suppose the system (20.23) satisfies the assumptions A1, A2 and
A3, and let γ = 1. Then there is an internally stabilizing compensator K for the
system (20.23) satisfying (20.6) if and only if the following two conditions hold:

(i) there is a Hermitian solution Y of the Riccati equation

Y (C∗1C1 − C∗2C2)Y +AY + Y A∗ + B1B
∗
1 = 0 (20.27)

with the additional properties that A∗+(C∗1C1−C∗2C2)Y is stable and Y > 0,

(ii) with the unique Y from (i) there is a Hermitian solution Z of the Riccati
equation

Z(Y C∗2C2Y − B2B
∗
2)Z + Z(A+ Y C∗1C1) + (A∗ + C∗1C1Y )Z + C∗1C1 = 0

(20.28)
with the additional properties that A+Y C∗1C1−B2B

∗
2Z+Y C∗2C2Y Z is stable

and Z > 0.
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Moreover, when (i) and (ii) are satisfied, (all ) the internally stabilizing compen-
sators can be obtained as follows. Introduce

Ψ(λ) =

[
Ψ11(λ) Ψ12(λ)

Ψ21(λ) Ψ22(λ)

]

=

[
Iq 0

0 Im

]
+

[ −B∗2Z

C2(In + Y Z)

]
(λIn − Ã)−1

[
B2 Y C∗2

]
, (20.29)

where Ã = A+Y C∗1C1−B2B
∗
2Z+Y C∗2C2Y Z. Then (all ) the internally stabilizing

compensators satisfying (20.6) are given by

K(λ) =
(
Ψ11(λ)U(λ) + Ψ12(λ)

)(
Ψ21(λ)U(λ) + Ψ22(λ)

)−1
,

where U is an iR-stable rational q ×m matrix function with ‖U‖∞ < 1.

Note that condition (i) requires the Riccati equation (20.27) to have a positive
definite iR-stabilizing solution. From Theorem 13.3 we know that the iR-stabilizing
solution is unique. Similarly, condition (ii) requires (20.28) to have a positive
definite iR-stabilizing solution, which is unique for the same reason.

It will be convenient to split the proof in a number of lemmas.

Lemma 20.8. The existence of a right J-spectral factorization (20.17) in condition
(i) of Theorem 20.3 is equivalent to the existence of an iR-stabilizing Hermitian
solution Y to the Riccati equation (20.27). Moreover, the additional property that
the m × m block in the left upper corner of V has an inverse in Ratm×m

− is
equivalent to Y > 0.

Proof. We split the proof in two parts.
Part 1. Starting from the formulas for T1 and T3 given in Proposition 20.5 we form

L =

[
T3 0

T1 Il

]
.

This matrix function has the realization L(λ) = D + C̃(λIn − Ã)−1B̃, where

Ã =

[
AF −B2F

0 AH

]
, B̃ =

[
B1 0

B1 +HD2 0

]
,

C̃ =

[
0 C2

C1 +D1F −D1F

]
, D =

[
D2 0

0 Il

]
.

It will be more convenient however to work with a similar realization. Put

S =

[
In In

0 In

]
. (20.30)
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Note that

Ã = S

[
AF −HC2

0 AH

]
S−1, B̃ = S

[ −HD2 0

B1 +HD2 0

]
,

C̃ =

[
0 C2

C1 +D1F −C1

]
S−1.

Also put J ′ = diag (Ip,−Il) and J = diag (Im,−Il).
Using the factorization principle from Section 2.6 one sees that L can be

factored as L(λ) = L1(λ)L2(λ), where

L1(λ) =

[
Im 0

0 Il

]
+

[
0

C1 +D1F

]
(λ−AF )−1

[−H 0
]
,

L2(λ) =

[
D2 0

0 Il

]
+

[
C2

C1

]
(λ−AH )−1

[
B1 +HD2 0

]
.

Because L1 is of the form

L1(λ) =
[

Im 0
Ξ(λ) Il

]
,

where
Ξ(λ) = −(C1 +D1F )(λIn −AH)−1H,

we have that L1 and its inverse are in Rat−. Thus Ω admits a right J-spectral
factorization if and only if Ω2 = L2J

′L∗2 admits a right J-spectral factorization.
Moreover, Ω = V JV ∗ with V and its inverse in Rat− if and only if Ω2 = V2JV ∗2 ,
where V2 = L−11 V , and V2 and its inverse are in Rat−.

Now applying Lemma 20.4 to Ω2, and using that D2D
∗
2 = Im and D2B

∗
1 = 0,

we obtain that a right J-spectral factorization of Ω2 exists if and only if the
algebraic Riccati equation

X(C∗2C2 − C∗1C1)X +XA∗ +AX −B1B
∗
1 = 0

has a Hermitian solution X for which A∗+(C∗2C2−C∗1C1)X has all its eigenvalues
in the open left half plane. Comparing with (20.27) we see that this is equivalent
to taking X = −Y . Observe also that this solution Y is unique since X is unique.

In addition V (λ) = L1(λ)−1V2(λ), where

V2(λ) =

[
Im 0

0 Il

]
+

[
C2

C1

]
(λIn −AH)−1

[
H −XC∗2 XC∗1

]

=

[
Im 0

0 Il

]
+

[
C2

C1

]
(λIn −AH)−1

[
H + Y C∗2 −Y C∗1

]
.
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Part 2. Next, we show that the property that the m ×m block in the left upper
corner of V has an inverse in Rat−, is equivalent to Y being positive definite.

Because of the special form of H1, we have that the m×m block in the left
upper corner of V is equal to the m×m block in the left upper corner of V2. Let
us denote this block by V11. Then

V11(λ)−1 = Im − C2

(
λIn − (A− Y C∗2C2)

)−1(H + Y C∗2 ).

Now using (20.27) we have that

(A− Y C∗2C2)Y + Y (A∗ − C∗2C2Y )

= −B1B
∗
1 − Y (C∗1C1 + C∗2C2)Y ≤ −B1B

∗
1 ≤ 0. (20.31)

Since the pair (A, B1) is controllable it follows from standard arguments concerning
Lyapunov equations (see, e.g., Theorem 4 in Section 13.1 in [107]) that A−Y C∗2C2

has its spectrum in the open left half plane if and only if Y is positive definite. �
This finishes the first part of the proof of Theorem 20.7. Next we consider

the second condition in Theorem 20.3 and its equivalence to the remaining parts
of Theorem 20.7.

Lemma 20.9. The existence of a left J-spectral factorization as in (20.19) in condi-
tion (ii) of Theorem 20.3 is equivalent to the existence of an iR-stabilizing solution
Z of (20.28). Moreover, the additional property that the q × q block in the upper
left corner of W is in Ratq×q

− is equivalent to Z being positive definite.

Proof. Again we shall split the argument into several parts.
Part 1. For the first step we start by computing the function from condition (ii)
of Theorem 20.3 as follows. Using the notation of the proof of Lemma 20.8, define

L̃(λ) = V (λ)−1
[

0 Im

−T2(λ) 0

]
= V2(λ)−1L1(λ)−1

[
0 Im

−T2(λ) 0

]
.

Observe that the function Ω̃ in condition (ii) of Theorem 20.3 is given by

Ω̃(λ) = L̃∗(λ)J ′L̃(λ), where J ′ =

[−Im 0

0 Il

]
.

First we show that the existence of a left J-spectral factorization

Ω̃ = W ∗JW, where J =

[
Iq 0

0 −Il

]
amounts to the existence of a left J-spectral factorization of the matrix function
L̃∗1J

′L̃1, where L̃1 arises from a certain factorization of L̃. In fact, the argument
will be similar to the one used in the proof of the previous lemma.
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Using the product rule and then simplifying, we get

L1(λ)−1
[

0 Im

−T2(λ) 0

]
=

(
Im+l +

[
0

C1 +D1F

]
(λIn −AF )−1

[
H 0

])

·
([

0 Im

−D1 0

]
+

[
0

C1 +D1F

]
(λIn −AF )−1

[−B2 0
])

=

([
0 Im

−D1 0

]
+

[
0

C1 +D1F

]
(λIn −AF )−1

[−B2 H
])

.

Thus, again applying the multiplication rule, we obtain a formula for L̃(λ), by
pre-multiplying the above expression with V2(λ)−1. Using also C∗1D1 = 0, this
yields L̃(λ) = D̃ + C̃(λ− Ã)−1B̃, where

Ã =

[
A− Y C∗2C2 + Y C∗1C1 −Y C∗1C1

0 AF

]
, B̃ =

[
0 H + Y C∗2

−B2 H

]
,

D̃ =

[
0 Im

−D1 0

]
, C̃ =

[−C2 0

−C1 C1 +D1F

]
.

It is convenient to consider another realization. With S as in (20.30) and
writing AY = A− Y C∗2C2 + Y C∗1C1, we have

Ã = S

[
AY −B2F − Y C∗2C2

0 AF

]
S−1, B̃ = S

[
B2 Y C∗2

−B2 H

]
,

C̃ =

[−C2 −C2

−C1 D1F

]
S−1.

It is now easily checked that L̃ = L̃1L̃2, where

L̃1(λ) =

[
0 Im

−D1 0

]
+

[−C2

−C1

]
(λIn −AY )−1

[
B2 Y C∗2

]
,

L̃2(λ) =

[
Iq 0

0 Im

]
+

[−F

−C2

]
(λIn −AF )−1

[−B2 H
]
.

Since AF is stable, L̃2 is in Rat−, and as

AF −
[−B2 H

] [−F

−C2

]
= AF −B2F +HC2 = AH
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has all its eigenvalues in the open left half plane, L̃−12 is in Rat− too.
From the considerations in the previous paragraph it follows that the rational

matrix function Ω̃ = L̃∗J ′L̃ admits a left J-spectral factorization if and only if the
function L̃1J

′L̃1 admits a left J-spectral factorization.. In that case, if W1 is a left
J-spectral factor of L̃∗1J

′L̃1, then W = W1L̃2 is a J-spectral factor of L̃∗J ′L̃.
Part 2 . In this part we continue to use the notation of the previous part. We
now apply Theorem 14.7 to L̃1. This yields that there exists a left J-spectral
factorization of Ω̃ = L̃∗J ′L̃ if and only if there is a Hermitian solution X of the
algebraic Riccati equation

X(B2B
∗
2 − Y C∗2C2Y )X +X(A+ Y C∗1C1) + (A∗ + C∗1C1Y )X − C∗1C1 = 0

having the additional property σ(A + Y C∗1C1 + B2B
∗
2X − Y C∗2C2Y X) ⊂ Cleft.

This solution X is unique.
Taking Z = −X we see that Z satisfies the algebraic Riccati equation (20.28)

and is the iR-stabilizing solution of that equation. Thus the left J-spectral factor
W1 of L̃∗1J

′L̃1 is given by

W1(λ) = Iq+m +

[
B∗2Z

−C2 − C2Y Z

]
(λIn −AY )−1

[
B2 Y C∗2

]
, (20.32)

and the product W (λ) = W1(λ)L̃2(λ) becomes

Iq+m +
[

B∗2Z −F
−C2 − C2Y Z −C2

](
λ−
[
AY −B2F − Y C∗2C2

0 AF

])−1 [
B2 Y C∗2

−B2 H

]
.

Part 3. We now consider the additional property that the q× q block in the upper
left corner of W has an inverse in Ratq×q

− , and prove that this is equivalent to Z
being positive definite. Let us denote the q × q block in the upper left corner of
W by W11. Then

W11(λ) = Iq +
[
B∗2Z −F

](
λI2n −

[
AY −B2F − Y C∗2C2

0 AF

])−1 [
B2

−B2

]
.

Thus the main operator in the realization of W−1
11 is

Ã =

[
AY −B2F − Y C∗2C2

0 AF

]
−
[

B2

−B2

] [
B∗2Z −F

]

=

[
AY −B2B

∗
2Z −Y C∗2C2

B2B
∗
2Z A

]
.

We have to show that this matrix has all its eigenvalues in the open left half plane
if and only if Z is positive definite.
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In order to do this, it is helpful to consider a similar matrix. Take

S =

[
In 0

−In In

]
,

and put

Â = S−1ÃS =

[
A+ Y C1C

∗
1 −B2B

∗
2Z −Y C∗2C2

Y C∗1C1 A− Y C∗2C2

]
.

We shall show that Z > 0 if and only if Â has all its eigenvalues in the left half

plane. To this end, consider

[
Z 0

0 Y −1

]
Â+ Â∗

[
Z 0

0 Y −1

]

=

[−C∗1C1 − ZB2B
∗
2 − ZY C∗2C2Y Z C∗1C1 − ZY C∗2C2

C∗1C1 − C∗2C2Y Z Λ

]
,

where, because of (20.31),

Λ = Y −1(A− Y C∗2C2) + (A∗ − C∗2C2Y )Y −1

= −Y −1B1B
∗
1Y

−1 − C∗1C1 − C∗2C2.

Substituting the latter expression for Λ in the right lower corner of the matrix
above, we obtain[

Z 0

0 Y −1

]
Â + Â∗

[
Z 0

0 Y −1

]

=

[−C∗1C1 − ZB2B
∗
2 − ZY C∗2C2Y Z C∗1C1 − ZY C∗2C2

C∗1C1 − C∗2C2Y Z −Y −1B1B
∗
1Y

−1 − C∗1C1 − C∗2C2

]

= −
[

C∗1 ZB2 0 ZY C∗2

−C∗1 0 Y −1B1 C∗2

]⎡⎢⎢⎢⎢⎢⎣
C1 −C1

B∗2Z 0

0 B∗1Y −1

C2Y Z C2

⎤⎥⎥⎥⎥⎥⎦ .

With the notation Ĉ as shorthand for the latter factor, this reduces to[
Z 0

0 Y −1

]
Â + Â∗

[
Z 0

0 Y −1

]
= −Ĉ∗Ĉ. (20.33)
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Next, we show that the pair
(
Ĉ, Â
)
is observable. Suppose

Â

[
x

y

]
= λ0

[
x

y

]
, Ĉ

[
x

y

]
= 0,

or, which comes down to the same,

(A+ Y C∗1C1 −B2B
∗
2Z)x− Y C2C

∗
2y = λ0x,

Y C∗1C1x+ (A− Y C∗2C2)y = λ0y,

and

C1x = C1y, B∗2Zx = 0, B∗1Y
−1y = 0, C2Y Zx = −C2y.

Using C1x = C1y, it follows that (A− Y C∗2C2 + Y C∗1C1)y = λ0y. Combining this
with B∗1Y

−1y = 0, and putting w = Y −1y, we obtain

(AY − Y C∗2C2Y + Y C1C
∗
1Y +B1B

∗
1)w = λ0Y w, B∗1w = 0.

Now use (20.27) to see that this implies Y A∗w = λ0Y w. As Y is invertible we
have A∗w = λ0w and B∗1w = 0. Since (A, B1) is controllable, it follows that w = 0.
Hence y = 0 too. From

(A+ Y C∗1C1 −B2B
∗
2Z)x− Y C2C

∗
2y = λ0x,

combined with y = 0, C1x = C1y = 0 and B∗2Zx = 0 we then have Ax = λ0x.
The observability of the pair (C1, A) finally gives x = 0.

We finish by applying the result of Theorem 4 in Section 13.1 in [107] to the
equation (20.33). Combined with the fact that Y > 0, this gives that Z > 0 if and
only if Â has all its eigenvalues in the open left half plane. �

This concludes the proof of the equivalence of (i) and (ii) in Theorem 20.7.
We bring the argument to a close as follows.

Proof of Theorem 20.7. In view of the two preceding lemmas, it remains to prove
the formulas for the parametrization of the internally stabilizing compensators
satisfying (20.6). Recall from Theorem 19.6, in particular from formula (19.9),
that K = (Y − MQ)(X − NQ)−1. Also we have formula (20.20), that is the
expression Q = −(X11U +X12)(X21U +X22)−1, where

W−1 =

[
X11 X12

X21 X22

]
.
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Here W is obtained from Part 1 of the proof of Lemma 20.9. Combining the
expressions, we see that

K =
(
(Y X21 +MX11)U + (Y X22 +MX12)

)
·((XX21 +NX11)U + (XX22 +NX12)

)−1
= (Ψ11U +Ψ12)(Ψ21U +Ψ22)−1,

with Ψ given by

Ψ =

[
Ψ11 Ψ12

Ψ21 Ψ22

]
=

[
M Y

N X

][
X11 X12

X21 X22

]
.

The formulas in (19.8) now give[
M(λ) Y (λ)

N(λ) X(λ)

]
=

[
Iq 0

0 Im

]
+

[
F

C2

]
(λIn −AF )−1

[
B2 −H

]
.

Fortuitously, this is equal to the function L̃2(λ) from Part 1 of the proof of the
previous lemma. Since W = W1L̃2, we get Ψ = L̃2W

−1 = W−1
1 , where W1 is

given by (20.32). Hence Ψ is given by (20.29), as desired. �
We conclude with the second main result of this chapter.

Theorem 20.10. Suppose the system (20.23) satisfies the assumptions A1, A2 and
A3, and let γ be an arbitrary positive number. Then there is an internally sta-
bilizing compensator K for the system (20.23) satisfying (20.6) if and only if the
following three conditions hold:

(i) there is a positive definite iR-stabilizing solution X of the Riccati equation

X(γ−2B1B
∗
1 −B2B

∗
2)X +A∗X +XA+ C∗1C1 = 0, (20.34)

(ii) there is a positive definite iR-stabilizing solution Y of the Riccati equation

Y (γ−2C∗1C1 − C∗2C2)Y +AY + Y A∗ +B1B
∗
1 = 0, (20.35)

(iii) X < γ−2Y −1 or, equivalently, all eigenvalues of XY are in the open disc
{z | |z| < γ−2}.

In that case (all ) the internally stabilizing compensators K can be obtained as
follows. Introduce

Φ(λ) =

[
Φ11(λ) Φ12(λ)

Φ21(λ) Φ22(λ)

]

=
[

0 Iq

Im 0

]
−
[

B∗2X
C2

]
(I − γ−2Y X)−1(λ− Â)−1

[
Y C∗2 B2

]
,
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where Â = A − Y (C∗2C2 − γ−2C∗1C1)− B2B
∗
2X(In − γ−2Y X)−1. Then (all ) the

internally stabilizing compensators satisfying (20.6) are given by

K(λ) = Φ11(λ) + Φ12(λ)U(λ)(Im − Φ22(λ)U(λ))−1Φ21(λ),

where U is an iR-stable rational q ×m matrix function satisfying ‖U‖∞ < γ.

Proof. The theorem may be derived from the previous one upon giving the con-
nections between X and Z. Again we assume γ = 1 without loss of generality.

Under this assumption, condition (i) in Theorem 20.7 is exactly the same as
the second condition in the present theorem. Henceforth we suppose it is satisfied.
Thus, throughout the proof, Y will be a positive definite iR-stabilizing solution
of (20.27), or, equivalently, of (20.35) with γ = 1. The argument below is divided
into four parts.
Part 1. Introduce the block matrices

H =

[ −A∗ −C∗1C1

B1B
∗
1 −B2B

∗
2 A

]
, H̃ =

[ −A∗ − C∗1C1Y −C∗1C1

Y C∗2C2Y −B2B
∗
2 A+ Y C∗1C1

]
.

In the terminology of Section 12.1 the matrix H is the Hamiltonian of the Riccati
equation (20.34) with γ = 1, while H̃ is the Hamiltonian of the Riccati equation
(20.28). Introduce also

S =
[
In 0
Y In

]
.

Since Y is a solution of the Riccati equation (20.35) and γ = 1, a direct computa-
tion gives S−1HS = H̃.
Part 2. Here we assume that Z is the (unique) Hermitian iR-stabilizing solution of
equation (20.28), and in addition that Z is positive definite. That is, it is assumed
that condition (ii) in Theorem 20.7 is met. Since Z is iR-stabilizing, the space
Im
[
Z∗ In

]∗ is the spectral subspace of H̃ corresponding to the open left half
plane. It follows that

SIm

[
Z

In

]
= Im

[
Z

In + Y Z

]
is the spectral subspace of H corresponding to the open left half plane.

Our next concern is the invertibility of In + Y Z. Since Z is positive definite,
In + Y Z = Z−1/2(In + Z1/2Y Z1/2)Z1/2 is similar to a positive definite matrix.
Consequently, In + Y Z is invertible.

Next, put X = Z(In + Y Z)−1. We shall show that X is positive definite,
X is the iR-stabilizing solution of (20.34) (with γ = 1), and that X < Y −1. For
this, note that X = Z(In + Y Z)−1 = (Z−1 + Y )−1, so that X is positive definite.
Furthermore,

Im

[
Z

In + Y Z

]
= Im

[
X

In

]
.
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Hence X is the Hermitian iR-stabilizing solution of (20.34). In addition, since Z
is positive definite also X−1 > Y , and as both X and Y are positive definite this
yields X < Y −1. We conclude that all conditions of Theorem 20.10 are satisfied.
Part 3. This part deals with the reverse implication. So, we start with the positive
definite iR-stabilizing solution X of (20.34) with γ = 1 such that X < Y −1. We
show that Z = (In−Y X)−1 is well-defined and positive definite, and that Z is the
iR-stabilizing solution of (20.28). Since X < Y −1, the matrix I−Y X is invertible,
hence Z is well-defined. In addition, Z = X(In−Y X)−1 = (X−1−Y )−1 is positive
definite because X < Y −1.

Recall that Im
[
X∗ In

]∗ is the spectral subspace of H corresponding to the
open left half plane. It follows that

S−1Im

[
X

In

]
= Im

[
X

In − Y X

]
= Im

[
Z

In

]
is the spectral subspace of H̃ corresponding to the open left half plane. Thus Z
is the Hermitian iR-stabilizing solution of (20.28) and, in addition, Z is positive
definite. So all conditions of Theorem 20.7 are met.
Part 4. We have shown that the conditions in Theorem 20.7 are equivalent to
the conditions in Theorem 20.10. It remains to show that the parametrizations in
both theorems are equivalent. The parametrization in Theorem 20.10 is obtained
by applying the Redheffer transformation to the function Ψ of Theorem 20.7 in
order to arrive at a formula for Φ. Indeed,

(Ψ11U +Ψ12)(Ψ21U +Ψ22)−1 = Φ11 +Φ12U(Im − Φ22U)−1Φ21

if the functions Ψ and Φ are connected via

Φ =

[
Ψ12Ψ−122 Ψ11 −Ψ12Ψ−122 Ψ21

Ψ−122 −Ψ−122 Ψ21

]
,

and this, up to an interchange of the columns, is the Redheffer transform. The
desired expression for Φ is now obtained by applying Theorem 17.21 to Ψ. �

Notes

The approach to H-infinity control using factorization presented in this chapter
follows closely the lines of [76], see also [77]. A precursor of this approach is [43].
Theorem 20.10 originates from [38]; the proof given there is based on arguments
from optimal control theory, rather than on a factorization approach, see also [84],
[150]. An interpolation approach to the problems considerd in this chapter can be
found in Part V of [7]. The present chapter discusses the H-infinity control problem
for systems in continuous time. The H-infinity control problem for systems in
discrete time was first considered in [138], see also [139], or [42] which employs
commutant lifting techniques.
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Birkhäuser Verlag, Basel, 2003.

[54] I. Gohberg, M.A. Kaashoek (Eds), Constructive methods of Wiener-Hopf
factorization. OT 21, Birkhäuser Verlag, Basel, 1986.
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Basel 2002, pp. 337–383.

[128] A.C.M. Ran, L. Rodman, D. Temme, Stability of pseudo-spectral factoriza-
tions. In: Operator Theory and Analysis, The M.A. Kaashoek Anniversary
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dimM dimension of linear manifold M
codimM codimension of linear manifold M
M

N
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IX identity operator on X
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(complex) matrix
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λ−A shorthand for λI −A (standard practice)
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σ(A) spectrum of operator or matrix A
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2πi
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1,ω(R) a weighted Lm

1 -space; see Section 5.3
Dm
1 (R) a certain linear submanifold of Lm

1 (R); see Section 5.3
Dm
1 [0,∞) linear manifold of all functions f ∈ Dm
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D + C(λI −A)−1B realization
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operator (or matrix) corresponding to a realization
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Im (A|B) stands for ImB + ImAB + ImA2B + · · ·

E(·;A) bisemigroup generated by exponentially dichotomous
operator A

etS value at t(< 0) of the left semigroup generated by S
etS value at t(> 0) of the right semigroup generated by S
PΘ separating projection for −iA where A is the main

operator of the spectral triple Θ
prΠ(Θ) projection of realization triple Θ = (A, B, C) associated

with a projection Π

W−1 pointwise inverse of rational matrix function W , defined
by W−1(λ) = W (λ)−1)

δ(W ) McMillan degree of a rational matrix function W
δ(W ;λ0) local degree of W at λ0
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π+(W ) number of positive eigenvalues of the Hermitian matrix
associated with a minimal realization of J-unitary rational
matrix function W

F ∗ adjoint of the rational matrix function F relative to the
imaginary axis, defined by F ∗(λ) = F (−λ̄)∗

Rat the set of all rational matrix functions that are proper
and have no pole at the imaginary axis

Ratp×q the set of all p× q matrix functions in Rat

Ratp×q
B

the set of all F in Ratp×q such that sups∈iR ‖F (s)‖ ≤ 1
Ratp×q

+ the set of all matrix functions in Ratp×q that are analytic
on the closed left half plane, infinity included

Ratp×q
+, B

the set Ratp×q
+ ∩Ratp×q

B

Rat− the set of all rational matrix functions that are analytic
on the closed right half plane, infinity included, that is,
the set of all iR-stable rational matrix functions

Ratp×q
− the set of all p× q matrix functions in Rat−

Ep the unit element in the algebra Ratp×p
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H-adjoint of matrix, 212
H-Lagrangian subspace, 212
H-dissipative, 215
H-negative vector, 211
H-neutral subspace, 211
H-neutral vector, 211
H-nondegenerate, 212
H-nonnegative subspace, 211
H-nonpositive subspace, 211
H-orthogonal vectors, 212
H-orthogonality, 212
H-positive vector, 211
H-selfadjoint matrix, 184, 213
J-contraction, 333
J-contractive, 328
J-inner rational matrix function, 333
J-unitary matrix, 313
J-unitary rational matrix function

on the imaginary axis, 314
R-stabilizing solution of Riccati

equation, 273
T-stabilizing solution of discrete Ric-

cati equation, 264, 270
Ω-regular (linear matrix) pencil, 57
iR-stabilizing solution of Riccati

equation, 238
iR-stable rational matrix function,

350

angular operator, 219
angular subspace, 219
associate main matrix of matrix real-

ization, 21

associate main operator of
realization, 21
realization triple, 93

associate state space matrix of ma-
trix realization, 21

associate state space operator of re-
alization, 21

bi-inner rational matrix function, 333
BIBO-stable, 371
bigenerator of bisemigroup, 80
biproper rational matrix function,

175
biproper realization, 21
bisemigroup generated by

exponentially dichotomous
operator, 80

block Toeplitz equation, 13
bounded-input bounded-output sta-

ble, 371

Cauchy contour, 5
Cauchy domain, 5
co-inner rational matrix, 339
co-pole function, 173

corresponding to Jordan chain,
174

complete factorization, 175
contractive rational matrix function

on imaginary axis, 301
on real line, 310

controllability gramian, 350
controllable pair of matrices, 171
controllable realization, 172
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coupling relation (between
operators), 106

derivative of f ∈ Dm
1 (R), 87

detectable pair of matrices, 374
doubly comprime factorization, 376

exponential type
of exponentially dichotomous

operator, 79
of realization triple, 87
of semigroup, 78

exponentially decaying semigroup, 78
exponentially dichotomous operator,

79
exterior domain of Cauchy contour,

5
external matrix of matrix realization,

21
external operator of realization, 21
externally stable system, 371

finite dimensional realization, 20

gramian, 350

half range problem, 116
Hamiltonian, 220
Hermitian matrix associated with

minimal realization, 317
Hermitian rational matrix function

on imaginary axis, 181
on real line, 181
on unit circle, 189

indefinite inner product given by
Hermitian matrix, 211

inner rational matrix function, 336
inner-outer factorization (with

invertible outer factor), 337
input matrix of matrix realization, 21
input operator of realization, 21
input space of realization triple, 88
interior domain of Cauchy contour, 5
internal stability, 376

internally stabilizing compensator
for system, 376

invertible in Ratp×p, 352
invertible outer rational matrix func-

tion, 337

kernel function
associated with realization

triple, 90
of Wiener-Hopf equation, 9

left J-spectral factorization
with respect to the imaginary

axis, 250
with respect to the real line, 272
with respect to the unit circle,

262
left (C0-)semigroup, 78
left canonical factorization

of operator function (with
respect to Cauchy contour),
144

of rational matrix function, 39
left Hankel operator, 100
left pseudo-canonical factorization,

176
left pseudo-spectral factorization

with respect to imaginary axis,
199

with respect to real line, 198
with respect to unit circle, 204

left spectral factor, 185
left spectral factorization

with respect to the imaginary
axis, 185

with respect to the real line, 185
with respect to the unit circle,

192
left Wiener-Hopf factorization (with

respect to Cauchy contour),
158

linear fractional map, 352
linear manifold, 30
linear matrix pencil, 57
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local minimality at a given point, 172

main matrix of matrix realization, 21
main operator of

realization, 21
realization triple, 88

manifold, 30
matching condition, 31
matricially coupled operators, 105
matrix-valued realization of rational

matrix function, 19
maximal H-nonnegative subspace,

212
maximal H-nonpositive subspace,

212
McMillan degree, 171
minimal factorization (involving ar-

bitrary number of factors),
175

minimal realization, 20
model matching problem, 381

one-sided, 383
two-sided, 381, 386

negative squares, 320
Nehari problem, 350
Nehari-Takagi problem (relative to

the imaginary axis), 369
nonnegative rational matrix function

on imaginary axis, 197
on real line, 197
on unit circle, 197

nonnegative real part on the real line,
291

number of poles of function in
Ratp×q in the open left half
plane, multiplicities taken
into account, 358

observability gramian, 350
observable pair of matrices, 172
observable realization, 172
one-sided model matching problem ,

383

outer rational matrix function
(invertible), 337

outer-co-inner factorization (with in-
vertible outer factor), 339

output matrix of matrix realization,
21

output operator of realization, 21
output space of realization triple, 88

pair of matching subspaces, 31
partial indices, 159
pencil, 57
pole placement theorem, 374
positive definite rational matrix func-

tion
on imaginary axis, 185
on real line, 185
on unit circle, 192

positive definite real part on the real
line, 291

product of realizations, 30
projection of realization triple associ-

ated with a projection, 110
propagator function, 117
proper rational matrix function, 19

rational Nehari problem (relative to
the imaginary axis with
given tolerance), 350

rational Nehari-Takagi problem (rel-
ative to the imaginary axis),
369

realization
of a system, 372
of operator function on given

set, 20
of rational matrix function, 19

realization triple, 88
of given exponential type, 87

Redheffer transform
of 2× 2 block matrix, 328
of rational matrix function, 330

Redheffer transformation, 328
regular (linear matrix) pencil, 57
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resolvent set of operator, 20
Riccati equation

algebraic, 220
discrete algebraic, 264, 270
symmetric algebraic, 238

Riemann-Hilbert boundary value
problem, 52

Riesz projection, 38
right J-spectral factorization

with respect to the imaginary
axis, 250

with respect to the real line, 272
with respect to the unit circle,

262
right (C0-)semigroup, 78
right (Wiener-Hopf) factorization in-

dices (with respect to
Cauchy contour), 159

right canonical factorization
(of symbol) with respect to real

line, 10
(of symbol) with respect to the

unit circle, 13
of operator function (with

respect to Cauchy contour),
144

of rational matrix function, 39
of Wiener-Hopf equation with

integrable operator-valued
kernel function, 122

with respect to Cauchy contour,
16

right Hankel operator, 100
right pseudo-canonical factorization,

176
right pseudo-spectral factorization

with respect to imaginary axis,
199

with respect to real line, 198
with respect to unit circle, 204

right spectral factor, 185
right spectral factorization

with respect to the imaginary
axis, 185

with respect to the real line, 185
with respect to the unit circle,

192
right Wiener-Hopf factorization

(with respect to Cauchy
contour), 157

scattering function, 116
selfadjoint rational matrix function

on imaginary axis, 181
on real line, 181
on the unit circle, 189

separating projection for
exponentially dichotomous
operator, 79

sign characteristic of pair of matrices,
213

signature matrix, 250
similarity between realizations, 172
singular integral equation, 15
skew-Hermitian matrix, 182
skew-Hermitian rational matrix func-

tion on real line, 298
solution of Riemann-Hilbert bound-

ary problem, 71
spectral projection, 38
spectral subspace, 38
splitting of spectrum, 37
stabilizable pair of matrices, 238
stabilizing solution

of discrete Riccati equation, 264,
270

of Riccati equation, 238, 273
stable matrix, 372
stable rational matrix function, 350
stable realization of system, 372
standard problem of H-infinity con-

trol, 381
state space matrix of matrix realiza-

tion, 21
state space of realization, 21

triple, 88
state space operator of realization, 21
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theorem, 172

strictly H-dissipative matrix, 216
strictly contractive at infinity, 302
strictly contractive rational matrix

function
on imaginary axis, 304
on the real line, 307

strictly proper rational matrix func-
tion, 305

strictly proper realization, 21
suboptimal rational Nehari problem

relative to the imaginary
axis with given tolerance,
350

supporting pair of subspaces, 31
supporting projection for

realization, 31
realization triple, 110

symbol of
(block) Toeplitz equation, 13
(block) Toeplitz operator, 14
Wiener-Hopf equation with

integrable operator-valued
kernel, 122

Wiener-Hopf integral
equation, 10

Wiener-Hopf integral
operator, 12

transfer function
of realization triple, 90
of system, 21

two-sided inner rational matrix func-
tion, 333

two-sided model matching problem,
381, 386

uncontrollable eigenvalues, 374
unital realization, 21
unitary rational matrix functions,

324
unobservable eigenvalues of, 374

Wiener-Hopf equation, 9
Wiener-Hopf integral operator, 11
Wiener-Hopf operator with kernel

function k, 99

zero of rational matrix function, 172
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